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Abstract

Feedback in wireless communications is tied to a long-standing and successful history, facilitating
robust and spectrally efficient transmission over the uncertain wireless medium. Since the application
of multiple antennas at both ends of the communication link, enabling multiple-input multiple-output
(MIMO) transmission, the importance of feedback information to achieve the highest performance is
even more pronounced. Especially when multiple antennas are employed by the transmitter to handle
the interference between multiple users, channel state information (CSI) is a fundamental prerequisite.
The corresponding multi-user MIMO, interference alignment and coordination techniques are con-
sidered as a central part of future cellular networks to cope with the growing inter-cell-interference,
caused by the unavoidable densification of base stations to support the exponentially increasing
demand on network capacities. However, this vision can only be implemented with efficient feedback
algorithms that provide accurate CSI at the transmitter without overloading the uplink channel.

In this dissertation, channel state information feedback algorithms for the downlink of MIMO
OFDM cellular networks are proposed and evaluated. After developing the basic mathematical
description of the data transmission to a user, the first part of the thesis is concerned with single-user
MIMO (SU-MIMO) transmission, i.e., spatial multiplexing of multiple data streams to a single
user. SU-MIMO is already incorporated and standardized in current cellular technology, such as
3GPP Long Term Evolution (LTE). The SU-MIMO feedback selection algorithms developed in this
thesis are hence designed to optimize the achievable throughput of the transmission while keeping
standard-compliance and the corresponding architectural constraints of the physical layer in mind.
The performance of the proposed methods is evaluated with extensive link level simulations and by
comparison to theoretical bounds on the achievable throughput.

In the second part of this dissertation, multi-user MIMO (MU-MIMO) is considered. Here only
rudimentary specifications are provided in standards, giving a much larger design freedom. The
focus is put on block-diagonalization based MU-MIMO. CSI feedback algorithms are proposed that
are based on memoryless and predictive quantization on the Grassmann manifold. With predictive
quantization, the temporal correlation of the wireless channel can be exploited to enable high fidelity
quantization with a reasonable feedback overhead. A subspace quantization based antenna combiner
is proposed for the case that the receivers are equipped with excess antennas. With this combiner
a significant improvement in the CSI feedback accuracy can be achieved, reducing the residual
multi-user interference. The performance of this combiner is analytically analyzed and contrasted to
a strategy that maximizes the channel gain of a single user without considering interference.

Finally, the performance of SU- and MU-MIMO is investigated by means of simulations, revealing
significant improvements with MU-MIMO provided sufficiently accurate CSI is available at the
transmitter. Also, the area spectral efficiency of networking architectures using remote radio units
and small cells is compared to the classical macro cellular network, demonstrating valuable capacity
gains with remote radio units, which enable joint transmission over the distributed antenna system.



vi



Kurzfassung

In der drahtlosen Kommunikation wird die Informationsrückführung vom Empfänger zum Sender,
das sogenannte Feedback, als ein zentrales Mittel gesehen, um die Robustheit und Effizienz der
Übertragung über den unsteten Kanal zu verbessern. Mit der Einführung von Mehrantennensystemen
(MIMO) hat die Bedeutung des Feedbacks noch weiter zugenommen. Speziell dann, wenn Mehran-
tennensysteme eingesetzt werden, um die Interferenz zwischen Benutzern zu reduzieren, ist genaue
Kanalinformation am Sender unumgänglich, um Konzepte wie räumliches Multiplexing mehrerer
Benutzer (Multi-user (MU-)MIMO) und Interference Alignment zu ermöglichen. Solche Methoden
sollen in zukünftigen zellulären Netzen, die der stark anwachsenden Nachfrage nach Übertragungs-
kapazität nur durch eine Verdichtung der Netzstruktur begegnen können, eingesetzt werden, um
die damit verbundene Zunahme der Interferenz zu bewältigen. Jedoch kann diese Vision nur mit
effizientem Feedback Realität werden, um nicht im Gegenzug die Aufwärtsstrecke zu überlasten.

In der vorliegenden Dissertation wird dementsprechend die Entwicklung effizienter Feedback
Algorithmen für zelluläre Netzwerke behandelt, deren physikalische Schicht auf MIMO und OFDM
basiert. Zunächst wird die mathematische Modellierung der Datenübertragung beschrieben, um darauf
aufbauend sogenannte Single-User MIMO (SU-MIMO) Systeme zu erörtern, bei denen ein einzelner
Benutzer über mehrere Datenströme im räumlichen Multiplex bedient wird. Solche Konzepte sind
bereits in standardisierten Kommunikations-Technologien, wie 3GPP Long Term Evolution (LTE),
implementiert. Deswegen wird die Standard-Konformität bei der Herleitung der Feedback Methoden
als eine entscheidende Nebenbedingung zur Optimierung der Übertragungsrate betrachtet. Die
Leistungsfähigkeit der entwickelten Algorithmen wird mittels umfangreicher Simulationen und durch
Vergleich mit theoretischen Durchsatzgrenzen analysiert.

Im zweiten Teil dieser Dissertation wird MU-MIMO Übertragung behandelt. Hierfür sind in
aktuellen Kommunikations-Standards noch kaum Vorgaben gemacht, wodurch ein großer Gestal-
tungsfreiraum offen ist. Am Sender wird das Block-Diagonalization Verfahren angewendet, um die
Datenströme der Benutzer zu trennen. Gedächtnislose und prädiktive Quantisierung von Elementen
der Grassmann Mannigfaltigkeit wird entwickelt, um eine effiziente Rückführung der Kanalinfor-
mation zu erzielen. Für den Fall, dass die Empfänger über Überschussantennen verfügen, wird ein
Verfahren zur Kombination der Antennenausgänge abgeleitet, das eine zusätzliche Reduktion des
Quantisierungsfehlers erzielt und dadurch die verbleibende Interferenz zwischen den Benutzern mini-
miert. Das Potenzial dieser Methode zur Reduzierung der Rückführinformation wird mathematisch
analysiert und mit einer Alternative verglichen, die Quantisierungseffekte vernachlässigt.

Ein Vergleich von SU- und MU-MIMO wird im letzten Abschnitt dieser Arbeit durchgeführt.
Mittels Simulationen wird das Potenzial von MU-MIMO gegenüber SU-MIMO aufgezeigt, sofern
ausreichend genaue Kanalinformation am Sender zur Verfügung steht. Des Weiteren werden ver-
schiedene Netzstrukturen, basierend auf verteilten Antennen sowie Mikrozellen, gegenübergestellt
und die Leistungsfähigkeit kohärenter Übertragung in verteilten Antennensystemen dargelegt.



viii



Acknowledgements

First of all, I would like to thank my supervisor Prof. Markus Rupp for sharing his profound scientific
and technical knowledge and for introducing me to the amazing field of wireless communications.
Prof. Rupp’s guidance during the work on this thesis, but also the provided freedom to pursue own
ideas and objectives contributed significantly to the success of this dissertation.

Many thanks to the great team of students and researches that has contributed to and evolved
around the Vienna LTE simulators, especially to my colleagues Josep Colom Ikuno, Michal Šimko
and Martin Taranetz. Valuable discussions, constructive team work and a good deal of fun made my
life as a doctoral candidate more interesting and exciting.

My gratitude goes to Prof. Robert W. Heath Jr. for the time and effort spent as an examiner of this
thesis and as a co-author of several conference papers and journal articles constituting an important
part of this dissertation. Most of my work on distributed antenna systems was inspired by discussions
with Prof. Heath during my three month research stay at the University of Texas at Austin.

The financial support of the Institute of Telecommunications, Vienna University of Technology,
and of A1 Telekom Austria AG is gratefully appreciated.

Meinen Eltern Maria und Siegfried möchte ich von ganzem Herzen danken. Eure Unterstützung,
euer Vertrauen und eure Geduld gaben mir den nötigen Rückhalt zur Erstellung dieser Arbeit. Zu
guter Letzt, danke an meine Geschwister Claudia und Gerald und ihre Familien, Gerald, Silvy und
Lena sowie Nicole und Laurenz, für zahllose schöne Stunden abseits des Alltages.



x



Contents

List of Figures xv

1. Introduction 1
1.1. Trends and Development of Cellular Networks . . . . . . . . . . . . . . . . . . . 1
1.2. Motivation for this Dissertation and Scope of Work . . . . . . . . . . . . . . . . . 3
1.3. Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. Mathematical Description of Downlink MIMO OFDM Transmission 13
2.1. Input-Output Relationship of a Cellular User . . . . . . . . . . . . . . . . . . . . . 14
2.2. Instantaneous Post-Equalization SINR . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3. DAS Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4. Simulation Relevant Channel Modeling . . . . . . . . . . . . . . . . . . . . . . . 19

3. Linear Transmission and CSI Feedback for Single-User MIMO 21
3.1. Principles of Link Adaptation and Linear Precoding . . . . . . . . . . . . . . . . . 23

3.1.1. Link Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2. Linear Precoding for SU-MIMO . . . . . . . . . . . . . . . . . . . . . . . 25

3.2. Implicit CSI Feedback Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1. Feedback Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2. Feedback Selection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3. Approximate Sequential Solution . . . . . . . . . . . . . . . . . . . . . . 34
3.2.4. Antenna Subset Selection for DASs . . . . . . . . . . . . . . . . . . . . . 35

3.3. Performance Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.1. Comparison of LTE to Theoretical Throughput Bounds . . . . . . . . . . . 37
3.3.2. Evaluation of the Feedback Algorithms . . . . . . . . . . . . . . . . . . . 39
3.3.3. Impact of CSI Feedback Granularity . . . . . . . . . . . . . . . . . . . . . 42

3.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4. Linear Transmission and CSI Feedback for Multi-User MIMO 45
4.1. Zero-Forcing and Block-Diagonalization Precoding . . . . . . . . . . . . . . . . . 47

4.1.1. Transmit Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.2. Limited Feedback Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xi



Contents

4.2. Explicit CSI Feedback Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.1. Memoryless Grassmannian Quantization . . . . . . . . . . . . . . . . . . 52
4.2.2. Predictive Grassmannian Quantization . . . . . . . . . . . . . . . . . . . . 54
4.2.3. Evaluation of the Quantization MSE . . . . . . . . . . . . . . . . . . . . . 64

4.3. Extension to Systems with Excess Antennas . . . . . . . . . . . . . . . . . . . . . 67
4.3.1. Summary of Previous Results . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.2. Subspace Quantization based Combining . . . . . . . . . . . . . . . . . . 69
4.3.3. Maximum Eigenmode Transmission . . . . . . . . . . . . . . . . . . . . . 75
4.3.4. Achievable Rate Comparison of SQBC and MET . . . . . . . . . . . . . . 77
4.3.5. Adjustment of the Grassmannian CSI Feedback . . . . . . . . . . . . . . . 79

4.4. Extension to Frequency-Selective Systems . . . . . . . . . . . . . . . . . . . . . . 80
4.4.1. Grassmannian Interpolation and Clustering . . . . . . . . . . . . . . . . . 81
4.4.2. Channel Quality Feedback and Multi-User Scheduling . . . . . . . . . . . 86
4.4.3. Performance Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5. Application Scenarios 97
5.1. Cellular Networking Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2. Centralized versus Distributed Antenna Systems . . . . . . . . . . . . . . . . . . . 101
5.3. Distributed Antenna Systems versus Small Cells . . . . . . . . . . . . . . . . . . . 104
5.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6. Conclusions 109
6.1. Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2. Open Issues and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A. List of Abbreviations 113

B. Notation 117

C. Grassmann Manifold Basics 119
C.1. Definition of the Grassmann Manifold . . . . . . . . . . . . . . . . . . . . . . . . 119
C.2. Distance Measures on the Grassmannian . . . . . . . . . . . . . . . . . . . . . . . 120
C.3. Geometry on the Grassmannian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

D. Performance Bounds for MIMO OFDM 123

E. Overview and Calibration of ESM 129

xii



Contents

F. Derivations and Proofs of SQBC 131
F.1. Derivation of the SQBC Condition . . . . . . . . . . . . . . . . . . . . . . . . . . 131
F.2. Proof of Lemma 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
F.3. Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
F.4. Proof of Theorem 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

G. SINR Lower Bound for Block Diagonalization 139

H. MMSE Equalizers for BD based MU-MIMO 143
H.1. Interference-Aware MMSE Equalizer . . . . . . . . . . . . . . . . . . . . . . . . 143
H.2. Interference-Averaged MMSE Equalizer . . . . . . . . . . . . . . . . . . . . . . . 144
H.3. Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

I. Out-Of-Cell Interference Models 147

Bibliography 151

xiii





List of Figures

1.1. Estimated growth of the global mobile data and voice traffic. . . . . . . . . . . . . 2
1.2. Estimated number of subscribers partitioned by wireless access technology. . . . . 3

2.1. Segment of an exemplary cellular network as considered in this dissertation. . . . . 14
2.2. MIMO OFDM transceiver architecture as considered in this dissertation. . . . . . . 15

3.1. AMC based on a BICM architecture according to the LTE specifications. . . . . . . 24
3.2. Shannon capacity versus BICM capacity and the efficiency of LTE. . . . . . . . . . 25
3.3. OFDM time-frequency resource grid and clustering of REs into RBs. . . . . . . . . 29
3.4. Achieved throughput versus channel capacity and the proposed throughput bounds. 38
3.5. Comparison of the proposed rank adaptive scheme to fixed rank transmission. . . . 39
3.6. Performance of approximate sequential CSI feedback selection schemes. . . . . . . 40
3.7. Delay sensitivity of the proposed feedback algorithms. . . . . . . . . . . . . . . . 41
3.8. Cell throughput with proportional fair scheduling. . . . . . . . . . . . . . . . . . . 42

4.1. Structure of the Grassmannian subspace quantizer. . . . . . . . . . . . . . . . . . 64
4.2. MSE performance of the proposed predictive Grassmannian quantizer. . . . . . . . 65
4.3. Quantization MSE achieved with memoryless and predictive quantization. . . . . . 67
4.4. Achievable rate and CSI feedback overhead with SQBC and MET. . . . . . . . . . 78
4.5. Achievable sum rate of BD using SQBC with quantized and perfect CSIT. . . . . . 79
4.6. Chordal distance MSE investigation for frequency-selective channels. . . . . . . . 91
4.7. Throughput achieved with ZF beamforming and SQBC feedback clustering. . . . . 92
4.8. Throughput achieved with BD using limited feedback clustering and quantization. . 93
4.9. Performance of the proposed SUS scheduling algorithm. . . . . . . . . . . . . . . 94

5.1. Investigated cellular networking architectures. . . . . . . . . . . . . . . . . . . . . 98
5.2. ASE achieved in the CAS and the DAS versus the number of users. . . . . . . . . . 101
5.3. ASE achieved in the CAS and the DAS versus the receive antenna correlation. . . . 102
5.4. ASE achieved in the CAS and the DAS versus the feedback overhead. . . . . . . . 103
5.5. ASE achieved in the CAS and the DAS versus the channel Doppler frequency. . . . 104
5.6. ASE achieved in the DAS and the small cell system versus the number of users. . . 105
5.7. ASE achieved in the DAS and the small cell system versus the feedback overhead. . 106

E.1. Calibration and accuracy of effective SNR mapping. . . . . . . . . . . . . . . . . . 130

xv



LIST OF FIGURES

H.1. Comparison of channel subspace feedback strategies and receive equalizers. . . . . 146

I.1. Mean and variance of the interference power of a single interferer. . . . . . . . . . 150

xvi



Chapter 1.

Introduction
Concern for man himself and his fate must always
be the chief interest of all technical endeavors, in
order that the creations of our mind shall be a
blessing and not a curse to mankind. Never forget
this in the midst of your diagrams and equations.

(Albert Einstein)

1.1. Trends and Development of Cellular Networks

Cellular networks are currently experiencing a tremendous growth of data traffic. A ten to seventeen-
fold increase of global mobile data traffic between 2012 and 2017 is predicted by several studies [1–3].
A few notable statements of Cisco’s Visual Networking Index [3], illustrating these trends, are:

• Mobile data traffic in 2012 was nearly twelve times the size of the entire Internet in 2000.

• Average smartphone usage grew 81 percent in 2012.

• Smartphones represented only 18 percent of total global handsets in use in 2012, but represented
92 percent of total global handset traffic.

The predicted trends in global mobile traffic according to Ericsson [2] are shown in Figure 1.1. The
expected exponential growth in traffic due to data services (video, web-browsing, email, etc.) is
illustrated in the figure, while the contribution of voice traffic stays approximately constant. The
driving forces behind the expected traffic explosion are hence new applications enabled by modern
devices such as smartphones and tablet-computers, while the classical role of the mobile as a phone
becomes less and less significant. Similar tendencies are observed globally as shown in Figure 1.1b.
Such observations substantiate a demand for larger network capacities in future cellular networks,
but also for improved per-user data rates to support the requirements of novel applications.

The evolution in the mobile phone usage behavior is very well reflected in the historical development
of cellular networks. The first fully digital mobile communication system, the Global System for
Mobile Communications (GSM), was commercially launched in 1991. This second generation
(2G) mobile communication system was developed by the European Telecommunications Standard

1
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Figure 1.1.: Estimated growth of the global mobile data and voice traffic and partitioning of the smartphone data traffic by geographic
regions. (Source: Ericsson traffic exploration tool, June 2013 [4]; note: 1 Exabyte = 1018 bytes).

Institute (ETSI) to replace first generation (1G) analog cellular networks. It was originally designed
as a circuit-switched network optimized for telephony, to enable similar quality of experience as
in fixed telephone networks. Soon, a need to support packet-switched data traffic for Internet
applications was recognized and GSM was extended by General Packet Radio Service (GPRS) and
Enhanced Data Rates for GSM Evolution (EDGE) to achieve data rates of up to 236 kbit/s over
four time slots [5]. New features (e.g., video telephony, web-browsing) and further improvements
in transmission rates were enabled with the launch of the third generation (3G) Universal Mobile
Telecommunications System (UMTS) in 1999, originally standardized by the ETSI. The system
was adopted by many countries and became a quasi world-standard. Due to this global interest,
UMTS is nowadays kept and improved by the Third Generation Partnership Project (3GPP), a
global collaboration of telecommunication associations and standardization bodies. 3GPP constantly
evolves the cellular networking technology, providing major standard releases every few years. In
that way, the maximum downlink data rates have improved from 384 kbit/s of the first UMTS release
(Rel’99 [6]) to 330 Mbit/s achieved with High Speed Packet Access (HSPA) in Rel’11 [7]. Such data
rates are enabled by the wideband code division multiple access (WCDMA) physical layer (PHY)
technology in combination with 4 × 4 multiple-input multiple-output (MIMO) and aggregation
of four 5 MHz carriers. In parallel, an entirely new air interface based on orthogonal frequency
division multiple access (OFDMA) was released in 2009 (Rel’8 [8]) under the designation Long
Term Evolution (LTE), enabling downlink data rates of up to 300 Mbit/s and setting the basis for an
International Mobile Telecommunications-Advanced (IMT-A) capable fourth generation (4G) radio
access technology [9]. In 2010, LTE advanced (LTE-A), i.e., LTE Rel’10 [10], breaking the 1 Gbit/s
barrier, was officially announced as a 4G technology by the International Telecommunications
Union (ITU). This technology allows for location-independent broadband Internet access and

2
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facilitates video and multimedia streaming applications. Notice that the mentioned data rates are only
achieved under ideal conditions; typical values are far below these numbers [11].

Figure 1.2 visualizes the current and future number of subscribers of the aforementioned wireless
access technologies according to a study conducted by Ericsson [2]. Currently and over the next few
years, GSM and its enhancements still dominate the market, while HSPA and even more LTE just
start to gain momentum. Still, research today has to focus on the time period beyond the horizon
shown in the figure. Hence, in this dissertation the OFDMA based PHY of LTE is considered as the
basis technology for proposing novel algorithms and techniques.1

1.2. Motivation for this Dissertation and Scope of Work

Cellular networks play a central role in today’s global networking and communication infrastructure
and will become even more dominant in future, because people expect broadband wireless access
everywhere. Coping with the expected exponential growth in mobile data traffic, as shown in Fig-
ure 1.1, is a considerable research challenge that many academic and industrial research groups
worldwide are trying to solve currently. To achieve the performance of current cellular networks,
three approaches have mostly been applied:

• increasing the amount of available spectrum,

• densifying the network,

• improving the PHY.

1The same concepts are mostly applicable to similar OFDMA systems as well, e.g., WiMAX [12] and WiFi [13].

3
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Comparing GSM to LTE, the transmission bandwidth per carrier has increased from 200 kHz to
20 MHz, explaining already a large part of the performance improvement achieved between these
two systems. LTE-A further enables aggregation of up to five LTE component carriers amounting in
a total bandwidth of 100 MHz [14]. It seems straightforward to carry on with this strategy, but there
is the problem that the available spectrum at the carrier frequencies enabled by current technology
is limited [15]. A research report from 2010 showed that many European network operators do not
even have 100 MHz of bandwidth at their disposal [16]. By utilizing the available spectrum more
efficiently, e.g., by employing cognitive radio techniques and ultra wideband transmission [17, 18],
and by refarming some of the old spectrum and utilizing so called spectrum white spaces [19], it
is still possible to harvest additional bandwidth, but it is questionable whether such approaches
can sustain the expected exponential growth in demand. An alternative, which is currently highly
promoted, is to go for much higher carrier frequencies, so called millimeter-waves [20–22], where
several GHz of spectrum are available for communication. But this technology is still in an early
stage of research; it is considered as a potential long-term solution for 5G cellular, and it lies outside
the scope of this dissertation. In the near future of LTE networks significant bandwidth expansions
cannot be expected. Hence, alternative approaches to improve the network capacity are required.

In cellular networks, the same radio spectrum is reused in different cells, in order to improve
the network capacity [23]. Several authors have considered the effect of increasing the density
of base stations in the network, and improvements in the network capacity with increasing base
station density have been revealed, e.g., [24–26]. Hence, network densification is considered as
an important means to overcome spectrum shortcomings. This is achieved by augmenting the
already existing macro-cellular base stations with comparatively cheap and easy to deploy radio
equipment such as remote radio units (RRUs) and small cells (micro, pico, femto cells). Hereby
obtained networking architectures are denoted as distributed antenna systems (DASs) [27] and
heterogeneous networks (HetNets), respectively. RRUs are remotely controlled antenna elements that
are connected to the macro base station via low-latency high-bandwidth dedicated connections using,
e.g., micro-wave links or radio-over-fiber technology [28]. The purpose of the RRUs is to reduce the
distance between users and the antenna ports of the base station, by distributing antennas over the
cell area. Several publications have established the theoretical potential of DASs for improving the
indoor coverage [29], reducing the outage probability of the network [30], increasing the network
capacity [31], providing a more uniform coverage of the served area [32] and improving the area
spectral efficiency (ASE) of the system [32]. Small cells, on the other hand, are autonomous base
stations that are mostly deployed in user hot-spots to off-load traffic from the macro base station.
They can be either open to all users of the network (open access) or closed to a specific group of users
(closed access), leading to distinct throughput performance of the macro and small cell layers [33,34].
The specifics of DASs, i.e., the pathloss differences with respect to different RRUs, are explicitly
treated in the proposed transceivers and feedback algorithms of this dissertation. Small cells, however,
do not require a specific treatment in that sense, because they behave like macro base stations.
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1.2. Motivation for this Dissertation and Scope of Work

Improvements of the PHY have increased the peak spectral efficiency of cellular networks from
1.92 bit/s/Hz, achieved with EDGE, to the 30 bit/s/Hz of LTE-A. These gains were obtained to some
extent by improving the modulation and coding schemes; EDGE is limited to 8 phase shift keying
(PSK), while LTE-A supports up to 64 quadratur amplitude modulation (QAM). The supported
spectral efficiency of the transmission channel varies strongly in wireless communication systems, due
to fading, pathloss and interference effects [23]. In LTE this is taken into account by supporting several
modulation and coding schemes (MCSs), covering an efficiency range from 0.15 bit/modulated
symbol to 5.55 bit/modulated symbol, which corresponds to a receive signal to noise ratio (SNR)
range of approximately −5 dB to 20 dB [11]. Utilizing feedback information from the receivers,
adaptive modulation and coding (AMC) is employed by the base station to match the transmission
rate to the current channel conditions. Additionally, cases in which the selected transmission rate was
too high, leading to decoding errors [11] at the receiver, are covered by the hybrid automatic repeat
request (HARQ) PHY protocol. The optimal calculation of the feedback information for transmission
rate adaptation is an important part of this dissertation.

More significant physical layer gains were obtained by the introduction of single-user MIMO
(SU-MIMO), improving the robustness (diversity) and capacity of the transmission channel [35–
37]. Channel state information (CSI) is useful for achieving the highest performance in multiple
antenna wireless communications. In SU-MIMO, CSI is employed to match the spatial signature
of the transmit signal to the channel, and to separate the spatially multiplexed data streams at the
receiver [38]. CSI at the receiver is commonly acquired using channel estimation [39], while CSI at
the transmitter (CSIT) for the downlink channel of the currently most prevalent frequency division
duplex (FDD) systems can only be obtained from explicit feedback from the receiver. Codebook based
precoding is an efficient way for attaining close to optimal SU-MIMO performance with a reasonable
CSI feedback overhead [40]. This strategy was therefore incorporated into the LTE specifications,
and Chapter 3 of this dissertation is devoted to the calculation of the optimal SU-MIMO feedback
information.

There are a few weak points of SU-MIMO transmission. Firstly, the potential spatial multiplexing
gain of the system is limited by the minimum of the number of transmit antennas at the base station
and the number of receive antennas at the users. While it is mostly not a significant problem to
put a large amount of antennas at the transmitter array, the number of receive antennas is often
limited by hardware complexity and available space, especially in hand held devices such as mobile
phones or tablet-computers. Additionally, a strong reduction of the channel capacity can be caused
by antenna correlation, e.g., due to closely spaced antenna elements [41, 42]. For that reasons,
multi-user MIMO (MU-MIMO) became increasingly popular in the research literature over the last
few years [43, 44]. With MU-MIMO, the spatial multiplexing capabilities of the transmitter can be
fully exploited by serving several users in parallel over the same time-frequency resources. Provided
the transmitter has accurate CSI, multi-user interference can be pre-canceled by the transmitter
allowing the users to be equipped with far less antennas than the transmitter. When applied in cellular
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Chapter 1. Introduction

networks, the complexity burden is hence offloaded from the mobile devices to the stationary base
station. In contrast to SU-MIMO, where CSIT is not essential but a welcome extra, MU-MIMO with
less receive antennas per user than the total number of spatially multiplexed data streams suffers
significantly from imperfect channel knowledge at the transmitter [45, 46]. Therefore accurate and
efficient CSI feedback for MU-MIMO systems is an important research area. Chapter 4 of this
dissertation is hence devoted to limited feedback MU-MIMO systems, presenting my contributions
to predictive quantization on the Grassmann manifold.

Significant gains in the throughput performance of cellular networks are expected from coordinated
multi-point (CoMP) transmission [47–49]. CoMP was introduced to cope with the increased inter-
cell-interference encountered in dense wireless networks. Through coordination of neighboring cells,
the interference can be reduced or even exploited to improve the throughput of the system. There
are many approaches for solving the interference problematic, which can basically be classified as
coordinated scheduling, coordinated beamforming or joint processing techniques, e.g., [50–52]. As in
MU-MIMO, accurate CSIT is central for coordinated beamforming and joint processing techniques
to achieve interference coordination. Although CoMP is not a central topic in this dissertation,
the proposed limited feedback algorithms can be applied to obtain the necessary CSIT for many
coordination techniques, e.g., interference alignment [53] and signal to leakage and noise ratio
beamforming [54]. Also, coordinated transmission in a DAS, which is recognized as an important
CoMP use case for LTE-A [55], is considered in Chapter 5 as an application scenario of the proposed
transceivers and feedback algorithms.

1.3. Outline and Contributions

The focus of this dissertation is on OFDMA based single- and multi-user MIMO multi-cell wireless
communication systems, as outlined in the previous section. Limited feedback algorithms for both
MIMO concepts are proposed under the assumption of linear transceiver architectures. Additionally,
a novel joint CSI feedback selection and antenna combining strategy for block diagonalization (BD)-
based MU-MIMO with excess antennas at the receivers is proposed and analytically analyzed.
Proportional fairness based multi-user scheduling algorithms are considered for distributing the time,
space and frequency resources among the users in an optimal way [56]. For SU-MIMO, well-known
scheduling algorithms can be applied [57], while for BD-based MU-MIMO an extension of the
semi-orthogonal user selection (SUS) algorithm [58] is proposed. The performance of the proposed
algorithms and techniques is analyzed by means of extensive link level simulations employing an
LTE-A compliant simulator [59]. In Chapter 2, the basic system model employed throughout the
thesis is derived. The main contributions of this dissertation are detailed in Chapters 3 to 5. The
thesis is concluded in Chapter 6 with a discussion of the contributions and implications of this work
and an outlook on possible future research. Background information as well as detailed proofs and
derivations, which are not essential for a basic understanding of my contributions, are provided
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1.3. Outline and Contributions

in the appendices. The employed abbreviations and the mathematical notation are summarized
in Appendices A and B. Below, a description of the contributions of the main chapters and listings of
the corresponding publications are given.

Chapter 2: Mathematical Description of Downlink MIMO OFDM Transmission
In this chapter, the basic mathematical description of an OFDMA based single- and multi-user MIMO
multi-cell wireless communication network is developed, building the basis for the contributions
presented in subsequent chapters. Centralized antenna systems (CASs) as well as DASs are en-
compassed by the derived system model. A realistic model of the PHY is essential to accurately
capture effects observed in wireless networks. The distinctive feature of DASs compared to classical
CASs is the introduction of pathloss differences between spatially separated transmission points,
improving the macro-diversity of the transmission against shadow fading and reducing the average
access-distance to the base station. These pathloss differences are explicitly incorporated in the
mathematical description of the system, facilitating their consideration in the proposed algorithms
and techniques of later chapters to achieve an improved performance. Notice that in some designated
derivations, simplifications are required to facilitate analytical tractability.

Chapter 3: Linear Transmission and CSI Feedback for Single-User MIMO
In MIMO communications, achieving the highest performance requires CSI at both, the transmitter
and the receiver. In most wireless communication systems CSIT is acquired over dedicated feedback
links from the users. Due to the limited capacity of these feedback links, the CSI is quantized by
the users prior to signaling to the base station. Theoretical investigations have shown that a large
part of the single-user channel capacity [38] can be achieved with a reasonable feedback overhead
employing a codebook based precoding scheme, in which the precoders applied at the transmitter are
restricted to a pre-defined codebook of matrices [40]. Provided the receiver has knowledge of the
precoder codebook, the preferred precoder for the current channel conditions can be selected and
signaled to the transmitter. Different precoder selection criteria have been considered in literature,
e.g., maximizing the mutual information between channel input and output, minimizing the bit-
error ratio (BER), and so on, mostly for frequency flat single-carrier transmission. Extensions to
frequency selective multi-carrier orthogonal frequency division multiplexing (OFDM) have also been
proposed, based on clustered feedback and pilot feedback interpolation approaches; see [60] for
an overview of this work. Due to the effectiveness of this approach, codebook based precoding is
incorporated into the specifications of LTE [8, 10] in a transmission mode denoted as closed loop
spatial multiplexing (CLSM). In addition to precoder selection, transmission rank (i.e., the number of
spatially multiplexed data streams) and transmission rate adaptation are also considered in CLSM.

In Chapter 3 of this dissertation, feedback selection algorithms for precoder, rank and transmission
rate adaptation, applicable to LTE, are proposed. Directly applying the ideas presented in [60], i.e.,
maximizing the channel capacity or mutual information, or minimizing the theoretical BER, is not
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effective for LTE, because the performance of this practical system is not realistically represented by
such theoretical measures [11]. Hence, practical constraints (e.g., limited number of MCSs) and the
PHY architecture imposed by LTE are considered in the proposed feedback selection algorithms to
optimize the achieved throughput of the data transmission. In detail, the following contributions are
provided:

• Joint selection of the transmission rate, rank and precoder to maximize the data throughput,
while targeting a pre-specified maximum average block-error ratio (BLER). This target BLER
is commonly dictated by the application.

• The frequency domain granularity of the feedback indicators can be adapted to match the
frequency selectivity of the wireless channel. A trade-off between the feedback overhead and
the potential multi-user frequency diversity gain, enabled by frequency selective multi-user
scheduling, can hence be obtained.

• Several simplifications are considered to reduce the computational complexity of the proposed
algorithms.

• An antenna subset selection algorithm is proposed to select the preferred transmit antenna
subset in DASs.

• The performance of the proposed algorithms is investigated by means of simulations, and
by comparison to theoretical performance bounds, revealing starting points for potential
improvements of the LTE system.

Notice that the proposed algorithms are limited to linear transceiver architectures, for which a post-
equalization signal to interference and noise ratio (SINR) can be defined. The contributions of this
chapter are published in the following papers:

[i] S. Schwarz, M. Wrulich, and M. Rupp, “Mutual information based calculation of the precoding
matrix indicator for 3GPP UMTS/LTE,” in International ITG Workshop on Smart Antennas,
Bremen, Germany, Feb. 2010, pp. 52–58

[ii] S. Schwarz, C. Mehlführer, and M. Rupp, “Calculation of the spatial preprocessing and link
adaption feedback for 3GPP UMTS/LTE,” in 6th Conf. on Wireless Advanced, London, UK,
June 2010, pp. 1–6

[iii] S. Schwarz, M. Simko, and M. Rupp, “On performance bounds for MIMO OFDM based
wireless communication systems,” in IEEE 12th International Workshop on Signal Processing
Advances in Wireless Communications, San Francisco, CA, June 2011, pp. 311–315

[iv] S. Schwarz and M. Rupp, “Throughput maximizing feedback for MIMO OFDM based wireless
communication systems,” in IEEE 12th International Workshop on Signal Processing Advances
in Wireless Communications, San Francisco, CA, June 2011, pp. 316–320
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Chapter 4: Linear Transmission and CSI Feedback for Multi-User MIMO
In this chapter, spatial multiplexing of several users is considered. The focus is put on scenarios in
which the total number of spatially multiplexed data streams is larger than the number of receive
antennas per user. In that case, the interference between the data streams of different users cannot be
eliminated by the users, but must be pre-canceled by the precoder applied at the base station. It is
known that the sum-rate capacity of such a MU-MIMO broadcast channel can be achieved by dirty
paper coding (DPC) [65–67], but the complexity of this nonlinear precoding approach is currently
considered as too high for practical implementations. Of greater practical interest are low-complexity
linear precoding techniques such as zero forcing (ZF) beamforming [68] and BD precoding [69],
which are therefore also assumed in this dissertation. Notice that BD precoding is a generalization
of ZF beamforming, enabling multiple data-streams per user. Under the premise of perfect CSIT,
interference between users is perfectly canceled with these techniques, by projecting the signals of
interfering users onto the null spaces of each others’ channel matrices. With BD and ZF precoding,
the maximum number of degrees of freedom (DoF) [70] of the broadcast channel can be achieved,
but an SNR loss is encountered with respect to DPC [71]. For the calculation of the precoders at the
base station explicit CSI is required. Hence, codebook based precoding and feedback, as applied in
SU-MIMO, are not useful in this case. Instead, the channel matrix is directly quantized by the users,
employing a quantization procedure and a quantization codebook that is known by the base station.
There also exists a codebook based MU-MIMO scheme denoted as per-user unitary beamforming
and rate control [72]. According to [49, 73], this method is outperformed by ZF beamforming, even
with quantized CSIT, and it is hence not considered in this dissertation. Notice that non-codebook
based precoding with up to eight parallel spatial streams is supported in LTE by transmission mode 9,
introduced in Rel’10.

When the precoders for BD precoding are calculated from quantized CSI, residual interference
between users cannot be avoided, which significantly impacts the throughput performance of the
transmission. It has been shown that the number of feedback bits must be scaled linearly with the
logarithmic SNR (the SNR in [dB]) to maintain a bounded rate-gap with respect to perfect CSIT [45,
46]. Notice that very similar behavior is observed with interference alignment as well [53, 74].
Accurate CSIT is therefore an essential pre-requisite for such interference cancellation techniques.
With a reasonable feedback overhead, the CSI accuracy requirements can often not be met using
memoryless quantization. The interest of researchers has thus focused on the exploitation of the
temporal channel correlation to improve the quantization accuracy. In addition to capacity limits,
the feedback links in wireless communication systems also exhibit delay limits, due to the temporal
variation of the wireless channel. It has been shown that outdated CSI degrades the throughput
in a similar way as a quantization error [75]. Therefore, vector quantization over multiple time
instants [76] is not an option to exploit the temporal channel correlation. Instead, differential [77, 78],
predictive [79–82] and progressive refinement [83] quantization algorithms have been proposed
to improve the quantization accuracy. Despite the success of [77–83], the algorithms are not as
sophisticated as predictive coding techniques in other areas, e.g., speech coding [84]. Also, the
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quantizers in [78, 79, 81–83] are restricted to quantization of vector channels for beamforming
systems, whereas only single-user spatial multiplexing is considered by the channel matrix quantizers
of [77, 80].

Mostly in parallel with this work, the development of a predictive CSI quantizer for MU-MIMO
was pursued by myself as well. The description and derivation of this quantizer is a central topic
of Chapter 4. CSI feedback for ZF and BD based MU-MIMO systems can be considered as a
quantization problem on the Grassmann manifold of n-dimensional subspaces in an underlying
m-dimensional Euclidean space (n ≤ m). Background information on the Grassmannian is provided
in Appendix C. The main contributions of this dissertation to Grassmannian quantization are:

• Efficient predictive quantization of temporally correlated n-dimensional subspaces in the
m-dimensional Euclidean space. Despite n ≤ m, no restrictions are imposed on the dimen-
sionality of the quantization problem.

• Prediction of the current subspace from previously quantized observations. The prediction is
achieved by translating the Grassmannian prediction problem to the tangent space associated
with the manifold.

• Derivation of an adaptive Grassmannian quantization codebook to match the temporal evolution
of the Grassmannian source. A local codebook is generated on the Grassmann manifold that
covers a certain volume around the prediction of the current subspace. The size of the volume
that needs to be covered is determined by the prediction accuracy, which depends on the
strength of the temporal correlation of the source.

• Evaluation of the quantization error by means of Monte-Carlo simulations, and comparison to
alternative quantizers.

When the number of data streams ` per user is less than the number of receive antennas, interference-
free transmission is ensured by the BD precoder only over `-dimensional subspaces of the users’
channel matrices. An antenna combiner is applied at each user to separate the interference-free
signal-space from the interference-contaminated space. To reduce the CSI feedback overhead, a
selfish pre-selection of an `-dimensional subspace by the users as CSI feedback is proposed, instead
of quantizing the full channel matrix. Within this area, the following contributions are made:

• Proposal of subspace selection strategies to achieve either a maximal channel gain or a minimal
CSI quantization error. The trade-off between these two approaches is investigated.

• Construction of the corresponding antenna combiners to filter out the signal-space. Specifically,
the quantization based combining (QBC) method of [85] is extended to multiple data-streams.

• Analytic performance investigation of the proposed subspace selection and antenna combining
strategies. Upper bounds on the throughput loss compared to perfect CSIT are derived, and the
necessary number of feedback bits to achieve a given rate loss is determined.
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Finally, the CSI quantizer is extended to frequency-selective multi-carrier OFDM systems by con-
sidering two approaches. With feedback pilot interpolation, the frequency-domain correlation of
the subspaces on neighboring OFDM subcarriers is exploited by providing CSI feedback only for a
subset of subcarriers, so-called CSI pilots, and interpolating the quantized CSI at the base station.
This approach has already been investigated in [86] for one-dimensional subspaces. A high density
of CSI pilots is required to achieve a satisfying interpolation performance. Alternatively, clustered
CSI feedback is considered. Here, a subspace is determined by each user that provides the best
representation of a block of subcarriers, avoiding the need for an interpolator at the base station.2 It
is shown, by means of simulations, that this approach can outperform CSI interpolation if the density
of CSI pilots is small compared to the coherence bandwidth of the channel. The contributions of this
chapter are published in the following conference papers and journal articles:

[v] S. Schwarz and M. Rupp, “Adaptive channel direction quantization based on spherical predic-
tion,” in IEEE International Conference on Communications, Ottawa, Canada, June 2012, pp.
3757 – 3762

[vi] S. Schwarz and M. Rupp, “Adaptive channel direction quantization – enabling multi user
MIMO gains in practice,” in IEEE International Conference on Communications, Ottawa,
Canada, June 2012, pp. 6947 – 6952

[vii] S. Schwarz and M. Rupp, “Adaptive channel direction quantization for frequency selective
channels,” in 20th European Signal Processing Conference, Bucarest, Romania, Aug. 2012,
pp. 2536–2540

[viii] S. Schwarz, R. Heath, Jr., and M. Rupp, “Adaptive quantization on the Grassmann-manifold for
limited feedback multi-user MIMO systems,” in 38th International Conference on Acoustics,
Speech and Signal Processing, Vancouver, Canada, May 2013

[ix] S. Schwarz, R. Heath, Jr., and M. Rupp, “Adaptive quantization on a Grassmann-manifold for
limited feedback beamforming systems,” IEEE Transactions on Signal Processing, vol. 61,
no. 18, pp. 4450–4462, 2013

[x] S. Schwarz and M. Rupp, “Antenna combiners for block-diagonalization based multi-user
MIMO with limited feedback,” in IEEE International Conference on Communications, Work-
shop: Beyond LTE-A, Budapest, Hungary, June 2013

[xi] S. Schwarz and M. Rupp, “Subspace quantization based combining for limited feedback block-
diagonalization,” IEEE Trans. on Wireless Communications, vol. PP, no. 99, pp. 1–12, Oct.
2013

[xii] S. Schwarz and M. Rupp, “Distributed downlink multi-user MIMO-OFDM with limited
feedback,” Oct. 2013, submitted to IEEE Transactions on Wireless Communications

2The respective definition of “best” is given in Chapter 4.

11



Chapter 1. Introduction

Chapter 5: Performance Evaluation and Application Scenarios
In this chapter, the performance of the proposed limited feedback algorithms and antenna combining
techniques of Chapters 3 and 4 is compared and evaluated by means of Monte-Carlo simulations.
The simulations are conducted with an LTE-A compliant link level simulator [59]. For complexity
reasons only a small part of the cellular network, consisting of a few cells, can be simulated. A
statistical model of the interference from more distant base stations is used to emulate the effects of
this out-of-cell interference.The results are given in terms of the aggregated sum ASE of the cell.

One contribution of this chapter is to provide a cross-comparison of SU-MIMO and MU-MIMO with
limited feedback and perfect CSIT, respectively. It is demonstrated that MU-MIMO can exploit the
multiplexing capabilities of the base station, provided the CSIT is sufficiently accurate. On the other
hand, if the CSI accuracy is low, MU-MIMO is outperformed by SU-MIMO, due to the residual
multi-user interference caused by the CSI quantization error.

A performance comparison of different networking architectures is the second contribution of this
chapter, applying ZF beamforming and BD precoding based MU-MIMO as transmit strategies. In
these simulations a DAS, in which the transmit antennas are distributed over the cell area, is compared
to a classical CAS, having all transmit antennas at the central base station, and to a macro-small cell
overlay network, in which the macro network is augmented with additional autonomous small cell
access points. The potential of the DAS for improving the ASE of the cellular network, compared to
the other two networking architectures, is revealed in these investigations.

Similar results to those presented in this chapter, obtained with the same simulation methodology but
restricted to single-stream transmission per user, are published in:

[xiii] S. Schwarz, R. Heath, Jr., and M. Rupp, “Multiuser MIMO in distributed antenna systems
with limited feedback,” in IEEE 4th Int. Workshop on Heterogeneous and Small Cell Networks,
GLOBECOM, Anaheim, CA, Dec. 2012

[xiv] S. Schwarz, R. Heath Jr., and M. Rupp, “Single-user MIMO versus multi-user MIMO in
distributed antenna systems with limited feedback,” EURASIP Journal on Advances in Signal
Processing, vol. 2013, no. 1, p. 54, 2013

[xv] S. Schwarz, J. Ikuno, M. Simko, M. Taranetz, Q. Wang, and M. Rupp, “Pushing the limits of
LTE: A survey on research enhancing the standard,” IEEE Access, vol. 1, pp. 51–62, 2013
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Chapter 2.

Mathematical Description of Downlink
MIMO OFDM Transmission

If people do not believe that mathematics is sim-
ple, it is only because they do not realize how
complicated life is.

(John von Neumann)

In this chapter, the input-output relationship describing the downlink transmission between a base
station of a cellular network and an attached user is presented and the post-equalization signal to
interference and noise ratio (SINR) experienced by the user is derived. The broadband frequency
selective wireless channel is converted into a set of non-interfering frequency flat subcarriers by the
OFDM based physical layer (PHY) of the considered wireless technology [97, 98]. The cyclic-prefix
applied by the transmitter is assumed to be long enough to cover the multipath delay of the wireless
channel such that inter-symbol-interference is avoided. Also, inter-carrier-interference, e.g., due to
Doppler-shifts or a carrier frequency offset [99–101], is supposed to be negligible. Multiple users
are multiplexed in the time-frequency domain by means of OFDMA and/or in the spatial domain
using multi-user MIMO (MU-MIMO) techniques. Coordination of the scheduling decisions among
multiple base stations (i.e., coordinated scheduling) is not considered in this dissertation. Each base
station can be equipped with remote radio units (RRUs) to form a distributed antenna system (DAS).
All results in this dissertation are derived considering the presence of interference from other cells of
the network. Hence, such out-of-cell interference is explicitly treated in the presented system model.
A segment of an exemplary cellular network is shown in Figure 2.1. Each of the three autonomous
cells shown in the figure is equipped with a 120◦ sectorized antenna array at the central base station
and two RRUs. In the simulations of Chapter 5 such a network is investigated in detail.

This chapter is organized as follows: In Section 2.1, the input-output relationship of a user of
the downlink MIMO OFDM based cellular network is developed, considering in-cell interference
between the transmissions to different users of the same cell and out-of-cell interference caused
by other cells of the network. The instantaneous post-equalization SINR of the user is derived
in Section 2.2. In Section 2.3, the mathematical model employed to describe the effect of distributing
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Low-latency high-bandwidth dedicated connection

Base station Remote radio unit User

Figure 2.1.: Segment of an exemplary cellular network as considered in this dissertation.

transmit antennas over the cell area is introduced and in Section 2.4 the channel models employed to
generate channel realizations for the simulations presented throughout the thesis are detailed.

2.1. Input-Output Relationship of a Cellular User

A cellular network consisting of I + 1 cells is under consideration in this dissertation. In each cell
i ∈ {0, . . . , I}, the attached users are served via a central antenna array that is located at the macro
base station and consists of N0,i antenna elements. Additionally, the cell is supplied with Ri RRUs
that are distributed over the cell area, as illustrated in Figure 2.1. RRU r ∈ {1, . . . , Ri} is equipped
with an antenna array comprising Nr,i antenna elements. The total number of transmit antennas
available in cell i is denoted Ni =

∑Ri
r=0Nr,i.

In cell i, a total number of Ui users is served. The receive antenna array of user u ∈ Ui, Ui =
{1, . . . , Ui} is composed of Mu,i antennas. The channel between user u in cell i and RRU r in cell j
at OFDM subcarrier n and symbol-time k is described by anMu,i×Nr,j dimensional complex-valued
channel matrix Ξ(r,j)

u,i [n, k], employing the equivalent complex baseband representation of the OFDM
wireless communication system, see, e.g., [102–104]. The channels to the central antenna array of
cell j as well as all Rj RRUs are combined in the matrix

Ξ(j)
u,i[n, k] =

[
Ξ(0,j)
u,i [n, k], . . . ,Ξ(Rj ,j)

u,i [n, k]
]
∈ CMu,i×Nj . (2.1)

Instead of representing the channel with Ξ(j)
u,i[n, k], the Nj ×Mu,i dimensional cell channel matrix

H(j)
u,i[n, k], defined by

H(j)
u,i[n, k] = Ξ(j)

u,i[n, k]H, (2.2)
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Figure 2.2.: MIMO OFDM transceiver architecture as considered in this dissertation.

is employed in this thesis, to simplify and shorten derivations and descriptions of later chapters. To
simplify notation, the superscript (j) is omitted whenever in-cell channels, j = i, are considered.
Also, if the description of an algorithm or method is independent of the subcarrier index n and/or
the symbol-time index k, the respective index is dropped.1 Following Long Term Evolution (LTE)
notations, the subcarrier and symbol-time index pair [n, k] is denoted as a resource element (RE).

The set of users that is selected by the scheduling algorithm of cell i to be served on a given RE is
denoted Si[n, k] ⊆ Ui. The employed single-user MIMO (SU-MIMO) and MU-MIMO schedulers
are described in detail in Chapters 3 and 4, respectively. The number of served users in cell i on RE
[n, k] is given by Si[n, k] = |Si[n, k]|. The transmit symbol vector intended for user u ∈ Si[n, k]
is written as xu,i[n, k] ∈ C`u,i[k]×1, with `u,i[k] ≤Mu,i being the number of data-streams spatially
multiplexed to user u. In general, the number of streams per user `u,i[k] could potentially change
over subcarriers. With the considered LTE compliant transceiver architecture shown in Figure 2.2
this is not possible, because the mapping of the user data onto spatial streams (layer mapping) is
performed before the mapping onto REs. Hence, `u,i[k] can at most change from one OFDM symbol
to the next, provided that each OFDM symbol is coded individually.2

The total number of streams of cell i transmitted on RE [n, k] is denoted `i[n, k] =
∑
u∈Si[n,k] `u,i[k].

To account for the maximum possible spatial multiplexing capabilities of the base station in cell i, the
number of streams is constrained as `i[n, k] ≤ Ni. Although `u,i[k] is independent of the subcarrier
index, the total number of streams depends on n due to the frequency selective multi-user scheduling.
The transmit symbol vector is normalized as

E
(
xu,i[n, k] xu,i[n, k]H

)
= I`u,i[k]. (2.3)

1Such situations are particularly indicated in the text.
2In LTE the number of streams per user is constant for the duration of one slot consisting of seven OFDM symbols. It is

assumed that such restrictions are handled by the scheduler.
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Prior to transmission over the wireless channel, the user symbol vector xu,i[n, k] is precoded with a
precoding matrix Fu,i[n, k] ∈ CNi×`u,i[k], mapping the `u,i[k]-dimensional transmit symbol vector
onto the Ni transmit antennas. Notice that the allocation of the available transmit power Pi[n, k]
among users and spatial streams is considered in the precoding matrices, as detailed in Chapters 3
and 4. The precoders are obtained such that Pi[n, k] is conserved, irrespective of the number of users
and spatial streams. In the simulation results presented in this dissertation, power loading over REs is
not considered: Pi[n, k] = Pi, ∀n, k. Better performance can be achieved by allocating the available
transmit power over subcarriers following a water-filling power allocation policy [105], provided the
required channel state information (CSI) at the transmitter (CSIT) is available.

With this notation, the Mu,i-dimensional received signal vector of user u in cell i at RE [n, k] is

ru,i[n, k] = Hu,i[n, k]HFu,i[n, k]xu,i[n, k] + Hu,i[n, k]H
∑

s∈Si[n,k]
s 6=u

Fs,i[n, k]xs,i[n, k]

+
I∑

j=0,j 6=i
H(j)
u,i[n, k]H

∑
s∈Sj [n,k]

Fs,j [n, k]xs,j [n, k] + zu,i[n, k]

︸ ︷︷ ︸
z̃u,i[n,k]

, (2.4)

where the additive white Gaussian noise (AWGN) added at the receiver is denoted zu,i[n, k] ∈
NC

(
0, σ2

z IMu,i

)
. The intended signal of user u is represented by the first summand in this equation.

In-cell interference between the streams spatially multiplexed to several users in the same cell i is
captured in the second summand. Out-of-cell interference from other cells j 6= i of the cellular
network is taken into account in the third term on the right hand side of Equation (2.4). The sum of
out-of-cell interference and receiver noise is called the effective noise vector z̃u,i[n, k].

The users are assumed to employ linear receive filters to equalize their respective channels and to
separate the spatially multiplexed data-streams from each other and from the interference caused
by the transmission to other users. The `u,i[k]×Mu,i dimensional receive filtering matrix applied
by user u in cell i is written as Gu,i[n, k]H. Applying this matrix to the received signal vector, the
estimated symbol vector is obtained as

yu,i[n, k] = Gu,i[n, k]H ru,i[n, k] = (Hu,i[n, k]Gu,i[n, k])H Fu,i[n, k]xu,i[n, k]

+ (Hu,i[n, k]Gu,i[n, k])H ∑
s∈Si[n,k]
s 6=u

Fs,i[n, k]xs,i[n, k] + Gu,i[n, k]H z̃u,i[n, k]. (2.5)

The product of channel matrix and receive filter is referred to as effective channel matrix

Heff
u,i[n, k] = Hu,i[n, k]Gu,i[n, k]. (2.6)
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2.2. Instantaneous Post-Equalization SINR

Considering the transceiver architecture of Figure 2.2, all signal processing steps starting from the
spatial streams at the output of the layer mapper up to the received signal, obtained at the receiver after
the inverse OFDM processing and the equalization, are incorporated in the input-output relationship
of Equation (2.5). The non-linear mappings involved in the adaptive modulation and coding (AMC)
stage are not covered by the system model, but are considered in more detail in Chapter 3.

2.2. Instantaneous Post-Equalization SINR

The supported transmission rate of communication channels is frequently subject to significant
fluctuations over time and frequency. Such fading effects are especially pronounced in cellular com-
munication systems, where multipath propagation caused by reflections and refractions, shadowing of
the radio signal due to obstacles, and movement of the users and/or obstacles can result in variations of
the signal strength in the order of tens of decibels [106]. A common method to respond to these fading
effects is the application of transmission rate adaptation, e.g., by means of AMC as employed in LTE,
such as to match the current data rate to the channel conditions. As detailed throughout Chapter 3,
rate adaptation in practical systems can be based on the instantaneous per-stream SINR experienced
after the receive filter. Considering the input-output relationship of Equation (2.5), the instantaneous
post-equalization SINR of stream ν ∈ {1, . . . , `u,i[k]} of user u in cell i is obtained as

βν,u,i[n, k] = Sν,u,i[n, k]
Zν,u,i[n, k] + I

(self)
ν,u,i [n, k] + I

(in)
ν,u,i[n, k] + I

(out)
ν,u,i [n, k]

, (2.7)

Sν,u,i[n, k] =
∣∣∣gν,u,i[n, k]HHu,i[n, k]Hfν,u,i[n, k]

∣∣∣2 ,
Zν,u,i[n, k] = σ2

z ‖gν,u,i[n, k]‖2 ,

I
(self)
ν,u,i [n, k] =

`u,i[k]∑
µ=1,µ 6=ν

∣∣∣gν,u,i[n, k]HHu,i[n, k]Hfµ,u,i[n, k]
∣∣∣2 ,

I
(in)
ν,u,i[n, k] =

∑
s∈Si[n,k]
s 6=u

∥∥∥gν,u,i[n, k]HHu,i[n, k]HFs,i[n, k]
∥∥∥2
,

I
(out)
ν,u,i [n, k] =

I∑
j=0,j 6=i

∑
s∈Sj [n,k]

∥∥∥gν,u,i[n, k]HH(j)
u,i[n, k]HFs,j [n, k]

∥∥∥2
,

where gν,u,i[n, k] and fν,u,i[n, k] denote the ν-th column of Gu,i[n, k] and Fu,i[n, k], respectively.
Notice that the statistical independence of the data symbols of the streams of a user according
to Equation (2.3) has been exploited to obtain Equation (2.7), and that the symbols of different users
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Chapter 2. Mathematical Description of Downlink MIMO OFDM Transmission

are too assumed as statistically independent

E
(
xu,i[n, k]xs,j [n, k]H

)
= 0`u,i[k]×`s,j [k], whenever u 6= s ∨ i 6= j. (2.8)

In Equation (2.7), the useful signal power of stream ν is represented by the term Sν,u,i[n, k] in the
numerator. The residual interference power between the streams of the user after equalization is
given by I(self)

ν,u,i [n, k]. The in-cell interference power on stream ν from other users that are served in

parallel in the same cell i is denoted I(in)
ν,u,i[n, k], and the out-of-cell interference power from other

cells that operate at the same frequency is captured in the term I
(out)
ν,u,i [n, k]. Notice that depending

on the considered transmission and reception strategy, some of these terms are equal to zero, e.g.,
for SU-MIMO there is no in-cell interference. In Chapters 3 and 4 this general SINR expression is
further specialized to account for the considered transceiver architectures.

2.3. DAS Modeling

The most important effect that is caused by distributing antenna arrays over the cell area is the
introduction of pathloss differences with respect to the spatially separated antenna arrays, improving
the macro-diversity against shadow fading and reducing the average access-distance to the base
station [31]. To account for these large-scale effects, the cell channel matrix is decomposed as

H(j)
u,i[n, k] = C(j)

u,i

1/2
H̄(j)
u,i[n, k], (2.9)

where the channel gain matrix C(j)
u,i is diagonal and characterizes pathloss and large-scale shadow

fading, and the matrix H̄(j)
u,i[n, k] captures the time-frequency selective small-scale fading, with

E
(∣∣∣∣[H̄(j)

u,i[n, k]
]
l,m

∣∣∣∣2
)

= 1, ∀l,m. (2.10)

The channel gain matrix is assumed as constant over the time-frequency span of interest. For the
bandwidths supported by current cellular systems (≈ 100 MHz), the frequency independence of the
pathloss is satisfied with a high level of accuracy [107], although ultra-wideband systems may require
the consideration of the frequency dependence of C(j)

u,i. Similarly in the time-domain, accounting

for the time dependence of C(j)
u,i may be necessary in high-mobility scenarios, but the focus of this

dissertation lies on low to moderate mobility situations, in which updating C(j)
u,i on a time-scale much

larger than the duration of the data transmission is sufficient. The channel gain matrix is written as

C(j)
u,i = diag

(
γ

(1,j)
u,i , γ

(2,j)
u,i , . . . , γ

(Nj ,j)
u,i

)
, (2.11)

where the large-scale channel gain between all receive antennas of user u in cell i and the transmit
antenna k in cell j is denoted γ(k,j)

u,i . Notice, if multiple antenna elements are collocated at one RRU,
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then the corresponding large-scale channel gains are equal. The channel gains are determined by the
pathloss due to the distance between the transmitting and receiving antennas, by a possible shadow
fading loss and also by the transmit antenna gain if directional antennas are considered.

2.4. Simulation Relevant Channel Modeling

The time-frequency variation of the wireless channel as well as the spatial correlation properties
are captured in the small-scale fading channel matrices H̄(j)

u,i[n, k]. If not mentioned otherwise, no

specific assumptions are made about H̄(j)
u,i[n, k] during the derivations of the proposed algorithms and

techniques. In the conducted Monte-Carlo simulations, however, well defined models are employed to
generate channel matrices that represent realistic scenarios, which are introduced in the following.

The matrices H̄(j)
u,i[n, k] are representations of the transmission channel incorporating the OFDM

processing at transmitter and receiver. They are hence obtained by sampling the channel transfer
function, see [104]. Physical models of the wireless channel, as obtained from measurement
campaigns, however, exist for the time-domain representation of the channel. In the considered
simulation models, an L-tap finite impulse response (FIR) filter, as specified in [108, 109], is
employed to represent the multipath time-domain channel. The L channel matrices corresponding to
the multipath components are denoted T(j)

u,i,1(t), . . . ,T(j)
u,i,L(t), where (t) indicates their dependence

on time. Below, important statistical properties of the channel are summarized that are employed
throughout the thesis to characterize the simulation scenarios.

Frequency correlation: The correlation of the elements of the matrices H̄(j)
u,i[n, k] in the frequency

domain, i.e., over subcarriers n, is determined by the delay-spread of the channel impulse response
in the time-domain. Assuming a root mean square (RMS) delay spread of τRMS, the 50% coherence
bandwidth of the channel is defined as

BC = 1
κ τRMS

, (2.12)

with κ denoting a constant that depends on the environment [110]. The 50% coherence bandwidth
indicates the bandwidth over which the frequency correlation function of the elements of the matrices
H̄(j)
u,i[n, k] is above 0.5. Throughout this thesis, the value κ = 5 specified in [111] is employed to

obtain an order of magnitude estimate, facilitating comparison of different channel models.

Temporal correlation: The correlation of the elements of the matrices H̄(j)
u,i[n, k] in the time

domain, i.e., over OFDM symbols k, is determined by the Doppler-spread of the taps of the channel
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Chapter 2. Mathematical Description of Downlink MIMO OFDM Transmission

impulse response. Similarly to the definition of the coherence bandwidth above, the 50% coherence
time of the channel, assuming Clarke’s model [112], is defined as [111]

TC = 9
16πfd

, (2.13)

where fd is the maximum channel Doppler frequency. Again, TC should be interpreted as an order
of magnitude estimate. The constant multiplying the factor 1

fd
is determined by the shape of the

Doppler spectrum. In the considered simulations, a channel model following Jakes’ sum-of-sinusoids
approach [113] is employed to determine the temporal evolution of the wireless channel [114]. The
given constant 9

16π in (2.13) is valid for Jakes’ Doppler spectrum [113].

Spatial correlation: The spatial correlation between the elements of the matrices T(j)
u,i,`(t) is

determined in the presented simulations by a Kronecker correlation model [115]

T(j)
u,i,`(t) = R1/2

TX T̄(j)
u,i,`(t)R

1/2
RX , (2.14)

RTX = E
(
T(j)
u,i,`(t)T

(j)
u,i,`(t)

H
)
,

RRX = E
(
T(j)
u,i,`(t)

HT(j)
u,i,`(t)

)
.

Similarly to the channel gain matrix, the matrices RTX and RRX are assumed independent of time and
also independent of the FIR tap index `. The matrix T̄(j)

u,i,`(t) consists of independent and identically
distributed (i.i.d.) elements

E
(

vec
(
T̄(j)
u,i,`(t)

)
vec

(
T̄(j)
u,i,`(t)

)H
)

= INj ·Mu,i . (2.15)

Then the spatial correlation of T(j)
u,i,`(t) is obtained as

E
(

vec
(
T(j)
u,i,`(t)

)
vec

(
T(j)
u,i,`(t)

)H
)

= RRX ⊗RTX. (2.16)

The correlation matrices are generated according to the Third Generation Partnership Project (3GPP)
document [116, Appendix B.2.3] assuming uniform linear arrays; e.g., the user-side correlation
matrices for two and four receive antennas are

RRX =
[

1 αcorr

αcorr 1

]
, RRX =


1 α

1
9
corr α

4
9
corr αcorr

α
1
9
corr 1 α

1
9
corr α

4
9
corr

α
4
9
corr α

1
9
corr 1 α

1
9
corr

αcorr α
4
9
corr α

1
9
corr 1

 , (2.17)

with αcorr ∈ [0, 1] determining the strength of the correlation. The transmit correlation matrix is
always considered as an identity matrix, assuming transmit antennas at the base station that are
spaced sufficiently far apart from each other to achieve negligible correlation.
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Chapter 3.

Linear Transmission and CSI Feedback for
Single-User MIMO

The worthwhile problems are the ones you can
really solve or help solve, the ones you can really
contribute something to.

(Richard P. Feynman)

Since the introduction of single-user spatial multiplexing in radio communications in the early
nineties of the last century by A. Paulraj and T. Kailath [117], single-user MIMO (SU-MIMO)
is heavily adopted in commercial systems to leverage the theoretically established advantages of
multiple antennas at the transmitter and the receiver for improving the transmission rate (spatial
multiplexing) and the reliability (diversity) of the communication channel [35–37]. The highest
performance in MIMO communications is achieved if instantaneous channel state information (CSI)
is available at both, the transmitter and the receiver. A comprehensive overview of results on the
Shannon capacity of SU-MIMO with different assumptions about the availability of CSI at the
transmitter and the receiver is provided in [118]. The focus of this dissertation is hence on the
acquisition of instantaneous CSI. It is assumed that the receivers obtain CSI autonomously using
channel estimation, while the base station relies on finite rate feedback links from the users to obtain
instantaneous CSI at the transmitter (CSIT).

In this chapter, the most commonly implemented variant of SU-MIMO in commercial wireless
communications, that is, codebook based linear precoding [40], is considered. With codebook based
precoding efficient CSI feedback is facilitated, enabling reasonably close to optimal performance
with an acceptable feedback overhead [119]. The capacity of the point-to-point AWGN MIMO
channel with perfect instantaneous CSI at the transmitter and the receiver can be achieved by
singular value decomposition (SVD) based unitary precoding and reception along with power loading
across the eigenmodes of the channel [106]. In the considered wireless communication system,
motivated by the approach standardized in LTE, a coarse approximation of SVD based precoding is
implemented. In this approach the unitary precoders are restricted to a pre-specified set (codebook)
of matrices and the continuous power loading is replaced with an on-off switching of spatial data
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Chapter 3. Linear Transmission and CSI Feedback for Single-User MIMO

streams, effectively leading to a codebook of semi-unitary precoders.1 Based on this codebook, the
preferred precoder that optimizes a given performance criterion is determined by the users and this
information is efficiently conveyed to the base station by signaling the codebook index together with
the number of spatial streams that are switched on, i.e., the transmission rank. This idea of implicit
CSI feedback can be straightforwardly extended to MIMO OFDM, by providing feedback for each
resource element (RE) separately. To reduce the CSI feedback overhead, the correlation of the
wireless channel in the time-frequency domain can be exploited by means of clustered feedback [120]
or feedback interpolation [121]. Again motivated by the approach standardized in LTE, clustered
feedback is considered in this dissertation. Here, the optimal precoder is determined for a set of REs,
denoted as resource block (RB), effectively scaling down the feedback overhead by the size of the set
in the time domain and in the frequency domain. The feedback clustering considered in this chapter
is detailed in Section 3.2.

In addition to CSI feedback for MIMO precoding, feedback for transmission rate adaptation is
another important topic of this chapter. In this dissertation, transmission rate adaptation is achieved
by means of adaptive modulation and coding (AMC), supporting a set of pre-specified combinations
of modulation alphabets and coding rates of the forward error correction code (FEC), denoted as
modulation and coding schemes (MCSs), to cover the projected operating regime of the cellular
network. The binary channel coder and the modulation mapper are joined over a bit-interleaver,
forming a bit-interleaved coded modulation (BICM) architecture. BICM is employed by many
of today’s waveform communication systems, due to its high flexibility in allowing to combine
virtually any binary code with any modulation format, while providing performance close to Shannon
capacity [122, 123]. With the considered system architecture of Figure 2.2, the same MCS is applied
on all REs that are assigned to a user. Hence, an average channel quality measure must be defined
that realistically represents the achievable transmission rate over a multitude of OFDM subcarriers.
To this end, effective signal to interference and noise ratio (SINR) averaging, a technique commonly
employed for link to system level abstraction [11], is used in this dissertation to determine the average
channel quality, which is utilized as CSI feedback for transmission rate adaptation.

If multiple users are served in a cell, CSI about the achievable transmission rate can additionally
be exploited during multi-user scheduling to achieve a multi-user diversity gain. It has been shown
that the sum capacity over Rayleigh fading channels with opportunistic scheduling scales double
logarithmically with the number of users, due to the statistically independent fading of the different
users; see, e.g., [124]. Leveraging the multi-user diversity in OFDMA requires time-frequency
selective feedback from the users. Similarly to the precoder feedback, clustered feedback is useful to
reduce the CSI feedback overhead of the achievable rate feedback as well. The trade-off between the
feedback granularity and the achieved multi-user diversity gain is investigated in a simulation-based
study at the end of this chapter.

1A p× q matrix U with q ≤ p is called semi-unitary if UHU = Iq .
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3.1. Principles of Link Adaptation and Linear Precoding

This chapter is organized as follows: In Section 3.1, the concepts of AMC are described in more
detail and the principles of codebook based precoding and capacity achieving SVD based precoding
are reviewed, considering a system architecture in accordance with the LTE standard. Taking into
account the constraints mentioned above, a discrete joint-optimization problem for finding the optimal
feedback indicators for the achievable transmission rate, the precoders and the transmission rank is
defined in Section 3.2. To reduce the complexity of an exhaustive search, a suboptimal sequential
solution of the optimization problem is derived. Also, an antenna subset selection algorithm is
proposed that is useful for improving the performance of codebook based precoding in distributed
antenna systems (DASs). In Section 3.3, the throughput and block-error ratio (BLER) performance
of the proposed feedback selection algorithms is investigated by means of Monte-Carlo simulations.
Furthermore, the performance is compared to theoretical throughput bounds that take into account
the constraints imposed by the considered technology. The details of these bounds are provided
in Appendix D. The methods presented in this chapter are published in [61–64, 96].

3.1. Principles of Link Adaptation and Linear Precoding

3.1.1. Link Adaptation

In cellular communications, the quality of the transmission link is subject to significant variations
over time and frequency, due to macroscopic (pathloss, shadowing) and microscopic (multipath
interference) fading and due to interference from neighboring cells [106]. A common approach
to counteract these effects and to improve the reliability and data rate of the transmission is link
adaptation, where the transmission parameters of the communication link are adapted to account
for the current channel conditions. The preferred link adaptation method of early code division
multiple access (CDMA) systems is fast power control, where variations in the channel gain are
compensated by the transmit power of the base station. More recently, e.g., in High Speed Packet
Access (HSPA) and LTE, link adaptation is implemented through AMC, improving the network
capacity by exploiting the fading conditions of the wireless channel [125]. In all cases, link adaptation
is based on CSIT.

In this dissertation, link adaptation by means of AMC in accordance with the LTE standard [10, 126]
is considered. The corresponding BICM system architecture of LTE is illustrated in Figure 3.1,
presenting a more detailed block-diagram of the AMC part of Figure 2.2. The user input data is
processed according to the following steps:

• Mapping of payload bits onto codewords. In LTE, the number of codewords C`u,i[k] of a user
is restricted as C`u,i[k] ≤ 2 and is implicitly determined by the transmission rank, i.e., the
number of spatial data streams `u,i[k].
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Adaptive modulation and coding

channel
coding

modulation
mapping

user data bits

codeword
mapping

codewords coded bits

bit
interleaving

modulated symbols

Figure 3.1.: AMC based on a BICM architecture according to the LTE specifications.

• Channel coding of the codewords. The coding rate of each codeword can be chosen indepen-
dently in LTE, accounting for the varying channel quality over spatial streams.

• Bit interleaving of the coded bits. Independent interleaving is applied to each codeword in LTE.
Bit interleaving is employed to reduce the impact of error bursts due to channel fading [127],
improving the performance of the FEC.

• Mapping of the coded bits onto modulated symbols. In AMC, a set of modulation alphabets A
is supported to enable robust transmission in case of bad channel conditions and high spectral
efficiency in case of good channel quality. In LTE, 4 quadratur amplitude modulation (QAM),
16 QAM and 64 QAM are implemented.

Following the AMC stage, the modulated symbols corresponding to the codewords are mapped
onto the spatial streams by the layer mapping shown in Figure 2.2. In case that `u,i[k] > C`u,i[k], a
codeword is divided onto multiple spatial streams [10].

The capacity of BICM is derived for memoryless channels in [122]. In Figure 3.2, a comparison
between the capacity achieved with the BICM architecture and the Shannon capacity is shown
for a single-input single-output (SISO) AWGN channel. The three BICM curves correspond to
the performance of 4/16/64 QAM. The saturation of the BICM capacity at high signal to noise
ratio (SNR) occurs due to the finite number of symbols in the modulation alphabets. It can be
seen that the theoretical spectral efficiency obtained with BICM is close to the Shannon capacity
(implying Gaussian signaling) over a wide SNR range, explaining the popularity of BICM for
commercial implementations. Notice though that powerful channel codes and complex detection
algorithms are required in practice to achieve close to optimal performance with BICM, involving
soft-information exchange between the symbol demapper and the channel decoder and possibly
iterative detection [123, 128]. Also shown in the figure is the performance achieved with the MCSs
defined in the LTE specifications [126] as obtained from link level simulations employing the Vienna
LTE link level simulator [59]. No iterations between the soft-output symbol demapper and the
soft-input channel decoder are considered in these simulations and perfect CSI at the receiver is
assumed for data detection. The LTE efficiency curve is obtained as the maximum over the 15 MCSs
of LTE. The efficiency is calculated only from frequency bins that are used for data transmission,
i.e., the additional loss caused by the overhead for reference symbols is not taken into account. The
values at the saddle points of this curve are equal to the peak spectral efficiencies of the individual
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Figure 3.2.: Shannon capacity versus BICM capacity and the efficiency of LTE over an AWGN channel.

MCSs. A loss of approximately 2 dB is encountered by LTE compared to the BICM capacity. Over a
SISO AWGN channel the SNR range from −10 dB to 20 dB can effectively be covered by the link
adaptation of LTE. The incurred loss of LTE compared to the BICM capacity can be attributed to the
imperfect operation of the channel code.

3.1.2. Linear Precoding for SU-MIMO

In SU-MIMO transmission, only one user is served per cell on a given time-frequency resource.
Hence, the in-cell interference term I

(in)
ν,u,i[n, k] in the SINR expression (2.7) is equal to zero. In

this chapter it is assumed that the out-of-cell interference is treated as additional Gaussian noise by
the transmitter and the receiver, and that the users are able to estimate the power of the effective
noise defined in Equation (2.4). Notice that Gaussianity of the out-of-cell interference may not be
fulfilled in all cases, e.g., if there are only a few dominant interferers. Then better performance can
be achieved with receivers that estimate the interference statistics [129]. However, Gaussianity of
the out-of-cell interference can be justified by the central limit theorem, considering the increasing
density of cellular networks. With this simplifying assumption, the general input-output relationship
of user u in cell i according to Section 2.1 is reduced to a point-to-point AWGN MIMO channel,
possibly with distributed transmit antennas

yu,i[n, k] = (Hu,i[n, k]Gu,i[n, k])H Fu,i[n, k]xu,i[n, k] + Gu,i[n, k]H z̃u,i[n, k], (3.1)

where z̃u,i[n, k] ∼ NC
(
0, σ̃2

z IMu,i

)
.

SVD based precoding and equalization: The capacity of the point-to-point AWGN MIMO
channel with perfect CSI at the transmitter and the receiver can be achieved by SVD based precoding
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and equalization [106]. Although perfect CSI is unrealistic in practice, the method still provides
a good benchmark for comparing the performance of limited feedback techniques and it is hence
briefly reviewed.

The compact-form SVD of the channel matrix Hu,i[n, k] at RE [n, k] can be written as

Hu,i[n, k] = Uu,i[n, k]Σu,i[n, k]Vu,i[n, k]H, (3.2)

Σu,i[n, k] = diag
(
σ

(1)
u,i [n, k], . . . , σ(`max)

u,i [n, k]
)
,

where the semi-unitary matrices Uu,i[n, k] ∈ CNi×`max and Vu,i[n, k] ∈ CMu,i×`max denote the
matrices of left singular vectors and right singular vectors, respectively. The ν-th diagonal ele-
ment σ(ν)

u,i [n, k] of the singular value matrix Σu,i[n, k] is equal to the ν-th largest singular value of
Hu,i[n, k]. Assuming a full-rank channel, the maximum number of streams is `max = min (Ni,Mu,i).
By setting the precoder and the receive filter according to

Fu,i[n, k] = Uu,i[n, k]Pu,i[n, k]1/2, (3.3)

Gu,i[n, k] = Vu,i[n, k], (3.4)

with Pu,i[n, k] = diag (p1[n, k], . . . , p`max [n, k]) being a diagonal power loading matrix, the effective
channel is decomposed into `max parallel non-interfering AWGN SISO channels, denoted as spatial
modes. The input-output relationship simplifies to

[yu,i[n, k]]ν =
√
pν [n, k]σ(ν)

u,i [n, k] [xu,i[n, k]]ν + z̃u,i[n, k], ν ∈ {1, . . . , `max} , (3.5)

with z̃u,i[n, k] ∼ NC
(
0, σ̃2

z

)
because the receive filter is semi-unitary. To achieve the highest

transmission rate, the diagonal elements of Pu,i[n, k] have to be set according to the water-filling
power allocation policy over the squared singular values normalized by the effective noise variance.
The water level is equal to the transmit power Pi [106]. Assuming equal and spatially uncorrelated
out-of-cell interference on all receive antennas, the effective noise variance is calculated as

σ̃2
z = σ2

z + 1
Mu,i

I∑
j=0,j 6=i

∥∥∥(H(j)
u,i[n, k])HFj [n, k]

∥∥∥2
. (3.6)

Notice that knowledge of the out-of-cell channel matrices and the precoders applied in the other cells
is not required in practice to estimate the effective noise variance [130]. Due to the applied water
level, the total power constraint

‖Fu,i[n, k]‖2 = Pi (3.7)

is satisfied by the precoder. In this derivation independent per RE power constraints are assumed. If
power loading over REs is considered, the water-filling power allocation is calculated over spatial
streams and REs; see Appendix D.
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Codebook based precoding with linear equalization: In the previous paragraph it is shown
that the capacity achieving transmit strategy of the point-to-point AWGN MIMO channel involves
linear precoding and reception employing semi-unitary matrices. To calculate the precoder at the
base station, knowledge of the left singular matrix together with the SNR obtained on each spatial
mode is required. This suggests that with limited feedback these values should be quantized and fed
back by the users [131].

Nonetheless, with codebook based precoding a different approach is taken, which is shown to outper-
form direct quantization of the channel matrix in [40]. Instead of quantizing the channel, the optimal
precoder is determined by the user from a given precoder quantization codebook. In [40], criteria
for the selection of the optimal precoder and corresponding quantization codebook constructions
are proposed for single carrier systems. It is shown that the optimal quantization codebooks for the
transmission of ` spatial streams are maximally spaced subspace packings in the Grassmann manifold
of `-dimensional subspaces in the Ni-dimensional Euclidean space G (Ni, `); see Appendix C for a
short introduction of the Grassmann manifold. Depending on the considered performance criterion,
different distance metrics are employed for the construction of the Grassmannian codebooks, e.g.,
the projection two-norm, the Fubini-Study distance or the chordal distance [40]. The corresponding
codebooks can be represented by sets of semi-unitary matrices, i.e., orthonormal bases, spanning the
`-dimensional subspaces. Notice that this approach can also be interpreted as a high SNR approxima-
tion of direct channel quantization. At high SNR it is known that the water-filling power allocation
converges to equal power allocation over all spatial modes [132]. Therefore, quantization of the left
singular matrix only is sufficient, which can be efficiently achieved using a Grassmannian codebook.
Alternative codebook designs are based on vector quantization [133], discrete Fourier-transform
matrices [134], QAM [135] and other concepts [136].

Motivated by the gains promised by these investigations, codebook based precoding has been imple-
mented in commercial cellular technology, e.g., in LTE’s closed loop spatial multiplexing (CLSM)
transmission mode [137]. Hence, the precoder codebook employed for SU-MIMO transmission is
assumed as given in this dissertation. Specifically, the precoder codebook for the transmission of `
streams over Ni transmit antennas, consisting of semi-unitary precoders, is denoted

Q(Ni)
` ⊂

{
Q ∈ CNi×`

∣∣QHQ = I`
}
. (3.8)

Such precoder codebooks are defined for all possible numbers of data streams ` ∈ {1, . . . , Ni}.
Assuming that precoder Qu,i[n, k] ∈ Q(Ni)

`u,i[k] is selected as the preferred precoder of user u on RE
[n, k], the precoder applied for transmission in cell i is

Fu,i[n, k] =
√

Pi
`u,i[k]Qu,i[n, k], (3.9)

accounting for the power constraint Pi of the base station. The power is equally distributed over all
`u,i[k] spatial streams. Power allocation among spatial streams is restricted to an on-off switching of

27



Chapter 3. Linear Transmission and CSI Feedback for Single-User MIMO

spatial modes, by selecting the preferred transmission rank `u,i[k]. Hence, the continuous trade-off
between MIMO beamforming and spatial multiplexing, which is achieved with the water-filling
power allocation employed with SVD based precoding, is coarsely approximated in this case. The
capacity loss of SU-MIMO with limited feedback is known to decrease exponentially in the number
of feedback bits b [131]. The number of feedback bits b is related to the codebook size as

b = log2
(
Q

(Ni)
`

)
, Q

(Ni)
` =

∣∣∣Q(Ni)
`

∣∣∣ . (3.10)

To separate the spatial data streams at the receiver, a linear equalizer filter Gu,i[n, k] is employed
in this dissertation. Specifically, in the presented simulations zero forcing (ZF) and minimum
mean-squared error (MMSE) equalization are considered, with the corresponding receive filtering
matrices

G(ZF)
u,i [n, k] = Hu,i[n, k]HFu,i[n, k]

(
Fu,i[n, k]HHu,i[n, k]Hu,i[n, k]HFu,i[n, k]

)−1
, (3.11)

G(MMSE)
u,i [n, k]=Hu,i[n, k]HFu,i[n, k]

(
Fu,i[n, k]HHu,i[n, k]Hu,i[n, k]HFu,i[n, k] + σ̃2

zI`u,i[k]
)−1

.

(3.12)

In the presented simulations, the precoder codebooks proposed in the LTE specification [10] are
employed. Instead of applying maximally spaced Grassmannian subspace packings, these codebooks
are designed having computational and implementation complexity in mind, e.g., by minimizing
the amount of complex multiplications involved in precoding or by changing only the phase of the
transmit signal and not its amplitude, reducing the requirements posed on amplifier linearity [138].
In case of two transmit antennas, only seven possible precoders are defined by the LTE standard.
With four and eight transmit antennas, 64 and 621 precoders are supported, respectively [10]. Other
transmit antenna configurations are currently not considered by the standard.

3.2. Implicit CSI Feedback Algorithms

The aim of the CSI feedback selection algorithms proposed in this section is to maximize the
instantaneous user throughput, given the CSI available at the receiver as obtained from channel
estimation using, e.g., training symbols [39]. Naturally, instantaneous CSI feedback is reasonable
only if the current channel estimate at the receiver, employed for calculating the feedback, is
representative for the time when the feedback is utilized to adapt the data transmission. Hence, the
delay experienced in the feedback path must be sufficiently small compared to the coherence time of
the channel to ensure similar channel conditions; see Section 3.3 for a more detailed investigation on
the impact of a feedback delay on the proposed algorithms. If this cannot be guaranteed, statistical
(or long-term) CSI feedback should be employed instead, as proposed, e.g., in [139].
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Figure 3.3.: OFDM time-frequency resource grid and clustering of REs into RBs.

3.2.1. Feedback Clustering

Before going into the details of the proposed feedback selection algorithms, some useful notation is
introduced in this section to capture the concept of feedback clustering. As mentioned above, feedback
clustering is a technique for reducing the CSI feedback overhead, by exploiting the correlation of
the wireless channel in the time-frequency domain. With feedback clustering, the optimal CSI
feedback is determined not for each RE individually, but for a set of consecutive time instants
and subcarriers. The intuition behind this approach is that the best precoder stays constant over a
specific time-frequency interval, due to the restricted size of the precoder codebook Q(Ni)

` and the
correlation of the channel. Therefore, the size of this interval is determined by the coherence time
and bandwidth of the channel, but also by the size of the codebook; see [140] for an overview of
different clustering approaches for precoder feedback. Similarly, due to the restricted set of supported
MCSs, the achievable transmission rate does not change arbitrarily fast. But even if this assumption
is not fulfilled and significant variations of the channel occur over the cluster size, optimal feedback
indicators can still be determined using appropriate averaging as explained in Section 3.2.2, though
for the price of a reduced throughput as investigated in Section 3.3.3.

The idea of clustering is illustrated in Figure 3.3. This figure shows the time-frequency resource
grid spanned by the OFDM subcarriers and symbols. The pair [n, k] of subcarrier index and
symbol-time index is denoted as RE, as already introduced before. With clustering, a set of N (f)

clust

subcarriers and N (t)
clust time instants is combined to a so called RB.2 The number of REs per cluster

2Notice the slight abuse of LTE notation; the RBs considered in this thesis can have variable size, while those of LTE
consist of exactly 12 subcarriers and 7 OFDM symbols.
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is NRE = N
(f)
clustN

(t)
clust. The time axis is divided into slots by the time domain clustering. The

feedback is calculated for each slot κ individually. Similarly, the frequency axis is divided into
clusters by the frequency domain clustering. A specific RB is indexed with the pair [η, κ] of cluster
index and slot index. The number of RBs per time slot is NRB = Ntot

N
(f)
clust

, with Ntot denoting the total

number of subcarriers. To index the REs of a specific RB [η, κ], the single RB specific RE index
ρ ∈ {1, . . . , NRE} is employed, which relates to the index pair [n, k] as

k = (κ− 1)N (t)
clust +

⌈
ρ

N
(f)
clust

⌉
, n = (η − 1)N (f)

clust + ρ− (k − 1)N (f)
clust, (3.13)

η =
⌈

n

N
(f)
clust

⌉
, κ =

⌈
k

N
(t)
clust

⌉
, (3.14)

ρ =
(
n−N (f)

clust(η − 1)
)

+
(
k −N (t)

clust(κ− 1)− 1
)
N

(f)
clust. (3.15)

This is equivalent to indexing the REs within an RB along subcarriers one time instant after the other,
as illustrated in Figure 3.3.

With clustering, the same precoder is applied for all REs within an RB. Hence, the RB index [η, κ] is
employed in that case to index the precoders instead of the RE index [n, k], i.e, Qu,i[n, k] is replaced
with Qu,i[η, κ]. Similarly, the transmission rank is indexed with the time slot index [κ] instead of the
OFDM symbol index [k], i.e., `u,i[κ].

3.2.2. Feedback Selection Algorithm

With the support of AMC and codebook based precoding with a variable transmission rank, the
assumed transceiver architecture is able to adapt the parameters of the SU-MIMO transmission to
the current channel conditions such as to maximize the MIMO gain and to ensure a reliable data
transmission. This is achieved with the provision of CSIT for each time slot κ using the following
three feedback indicators:

• The preferred MCSs mu,i[η, κ] ∈ MC` , ∀η ∈ {1, . . . , NRB} are signaled with the channel
quality indicators (CQIs). The set of supported MCSs of the considered technology is denoted
M. As the MCS determines the spectral efficiency of the data transmission, the CQI is
equivalent to the achievable transmission rate over RB [η, κ]. RB and codeword specific CQI
feedback is considered to enable exploitation of the multi-user diversity during scheduling.

• The preferred transmission rank `u,i[κ] is signaled with the rank indicator (RI). With rank
adaptive transmission, a trade-off between the SNR gain provided by beamforming and the
spatial multiplexing gain of the MIMO system is enabled, adjusting the transmission to the
current SINR experienced by a user.
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3.2. Implicit CSI Feedback Algorithms

• The precoding matrix indicator (PMI) is employed for MIMO precoding, selecting the fa-
vored precoders Qu,i[η, κ], ∀η ∈ {1, . . . , NRB} from the quantization codebooks Q(Ni)

` , ` ∈
{1, . . . , `max}. The maximum number of spatial streams is `max = min (Ni,Mu,i).

The selection of the preferred feedback indicators is based on maximizing the achievable throughput.
Due to the finite block-length of the codewords cu,i[κ] ∈ {1, . . . , C`u,i[κ]} and other imperfections
of the channel code, a vanishing BLER is in general not achieved. The system is rather designed to
operate below a target BLER P

(t)
b that is commonly determined by the application driving the data

transmission. This target BLER is considered in the proposed feedback selection algorithm as an
implicit constraint of the optimization problem.

In the following, feedback clustering with a cluster size of N (f)
clust in the frequency domain and N (t)

clust
in the time domain is assumed. The same cluster size is applied for CQI and PMI feedback to simplify
the exposition, although different cluster sizes can be accommodated with an extended notation;
see [64]. The RI is a wide band feedback value that is valid for all REs of a time slot κ. The CSI
feedback is determined for each slot κ individually; hence, κ is assumed as fixed in the following.

Assuming that precoder Q[η] ∈ Q(Ni)
` is employed during transmission on RB [η, κ], the post-

equalization SINR of data stream ν ∈ {1, . . . , `} on RE [n, k] equals

βν,u,i[n, k] =
Pi
`

∣∣∣gν,u,i[n, k]HHu,i[n, k]Hqν [η]
∣∣∣2

Pi
`

∑`
µ=1,µ6=ν |gν,u,i[n, k]HHu,i[n, k]Hqµ[η]|2 + σ̃2

z ‖gν,u,i[n, k]‖2
, (3.16)

with gν,u,i[n, k] = [Gu,i[n, k]]:,ν , qν [η] = [Q[η]]:,ν and σ̃2
z from Equation (3.6). Due to SU-MIMO

transmission, the in-cell interference term of the more general instantaneous SINR defined in (2.7)
does not appear in Equation (3.16). Also, the semi-unitary precoder Q is employed in (3.16) instead
of its scaled version F from (3.9) as in Equation (2.7), to express the dependency of the SINR on the
precoder codebook more clearly.

In order to determine the achievable transmission rate over an RB comprising NRE REs, mutual
information effective SINR mapping (MIESM) is employed in this work to average the corresponding
post-equalization SINRs [141]. The idea of MIESM is to identify the time-frequency selective channel
experienced over the NRE REs, with an AWGN channel that achieves the same average spectral
efficiency in terms of the BICM capacity. Assuming transmission with MCS m[η] ∈ M on RB
[η, κ], this is achieved with the following averaging function

β
(m[η])
ν,u,i [η, κ] = B−1

m[η]

 1
NRE

NRE∑
ρ=1

Bm[η] (βν,u,i[ρ])

 , (3.17)
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where the absolute RE index [n, k] has been replaced with the implicit RB specific RE index [ρ]
using Equation (3.15). In Equation (3.17), the function Bm[η](β) is defined as

Bm[η](β) = BAm[η]

(
β

φm[η]

)
, (3.18)

with BAm[η](β) denoting the BICM capacity of the modulation alphabet Am[η] ∈ A that is associated
with the MCS m[η]. The scalar φm[η] is employed for calibration purposes, to adapt the MIESM
averaging to the performance of the different MCSs; see Appendix E for more details on MIESM and
the calibration of the method. The inverse of the bijective function Bm[η](β) is denoted B−1

m[η](·).

The RB specific AWGN equivalent effective SNR β
(m[η])
ν,u,i [η, κ] is dependent on the spatial stream

index ν. As mentioned in Section 3.1.1, in LTE the data of multiple spatial streams can be jointly
coded, that is, a codeword c ∈ {1, . . . , C`} is mapped onto several streams ν ∈ {1, . . . , `}. If this is
the case, it is sufficient to provide CQI feedback for each codeword only, instead of for each stream.
To accommodate this case, MIESM averaging is applied to determine the average SNR not only over
REs, but also over spatial streams. Denoting the set of spatial streams associated with codeword c as
Lc ⊆ {1, . . . , `}, the codeword dependent effective SNR is defined as

β
(m[η])
c,u,i [η, κ] = B−1

m[η]

 1
NRE |Lc|

∑
ν∈Lc

NRE∑
ρ=1

Bm[η] (βν,u,i[ρ])

 . (3.19)

The AWGN equivalent SNR β
(m[η])
c,u,i [η, κ] is employed to estimate the BLER achieved with MCS

m[η] on RB [η, κ], using precomputed AWGN look-up tables that quantify the performance of the
considered technology; see Figure E.1b in Appendix E for the AWGN BLERs attained with the
MCSs of LTE, which are employed as look-up tables in the simulations presented throughout this
thesis. Denoting the relationship between the SNR β of an AWGN channel and the corresponding
BLER of MCS m[η] as gm[η](β), the estimated BLER of codeword c over RB [η, κ] equals

P
(m[η])
c,u,i [η, κ] = gm[η]

(
β

(m[η])
c,u,i [η, κ]

)
. (3.20)

To account for the target BLER P
(t)
b , a function hm[η](P, P

(t)
b ) is defined that outputs the spectral

efficiency em[η] of MCS m[η] if the BLER P is less than the target BLER and zero otherwise

hm[η](P, P
(t)
b ) =

{em[η], P ≤ P
(t)
b

0, P > P
(t)
b

. (3.21)

With this function, the spectral efficiency of codeword c using MCS m[η] for the transmission over
RB [η, κ] is estimated as

e
(m[η])
c,u,i [η, κ] =

(
1− P (m[η])

c,u,i [η, κ]
)
hm[η]

(
P

(m[η])
c,u,i [η, κ], P (t)

b

)
. (3.22)
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In this equation, the success probability of the data transmission is taken into account in the first
term, and the achieved spectral efficiency in case of successful transmission is quantified with the
second term. Hence, e(m[η])

c,u,i [η, κ] corresponds to the expected value of the spectral efficiency. Notice
though that zero spectral efficiency is output in case that the BLER target is not satisfied, preventing
these MCSs to be selected by the optimization problem defined below. The target BLER is hence
implicitly considered as a hard constraint of the optimization problem.

The optimal feedback values at time slot κ are jointly determined from the following optimization
problem maximizing the achievable throughput, i.e., the sum spectral efficiency over all RBs and
codewords

{`u,i[κ],Qu,i[η, κ],mu,i[η, κ]} = argmax
`,Q[η],m[η]

NRB∑
η=1

C∑̀
c=1

e
(mc[η])
c,u,i [η, κ] (3.23)

subject to: ` ≤ min (Ni,Mu,i) ,

Q[η] ∈ Q(Ni)
` , ∀η ∈ {1, . . . , NRB}

m[η] = [m1[η], . . . ,mC` [η]]T ∈MC` , ∀η ∈ {1, . . . , NRB} .

In general, a joint optimization over all NRB RBs is required to solve this problem, because the
individual summands of the sum over η are coupled over the transmission rank `. Only if ` is fixed,
the summands in (3.23) decouple and the optimal precoder and MCSs for each RB can be determined
independently. Based on this observation, the most efficient way for solving the joint optimization
problem (3.23) is

• Fix the transmission rank ` and solve the decoupled optimization problem for each η{
Q(`)
u,i[η, κ],m(`)

u,i[η, κ], e(`)
u,i[η, κ]

}
= argmax

Q[η],m[η]

C∑̀
c=1

e
(mc[η])
c,u,i [η, κ] (3.24)

subject to: Q[η] ∈ Q(Ni)
` ,

m[η] ∈MC` .

Here, the optimized efficiency on RB [η, κ] when transmitting ` streams is denoted e(`)
u,i[η, κ].

• Maximize the sum of the optimized efficiencies with respect to the transmission rank `

`u,i[κ] = argmax
`∈{1,...,`max}

NRB∑
η=1

e
(`)
u,i[η, κ], (3.25)

Qu,i[η, κ] = Q(`u,i[κ])
u,i [η, κ],

mu,i[η, κ] = m(`u,i[κ])
u,i [η, κ].
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A closed-form solution of this optimization problem is not possible, because the variables are confined
to pre-specified codebooks and are hence discrete. As soon as the optimization problem is solved, the
feedback indicators are obtained as the codebook indices corresponding to the optimal solutions, i.e.,
the PMIs are the indices of the precoders Qu,i[η, κ] in the codebook Q(Ni)

`u,i[κ], the RI is equal to the
transmission rank `u,i[κ] and the CQIs are determined by the indices of mu,i[η, κ] withinM.

3.2.3. Approximate Sequential Solution

The complexity involved in the exhaustive search required to obtain the optimal solution of Equa-
tion (3.23) may often be too high for practical implementations. For example, finding the optimum
of only one RB in an LTE compliant system with eight transmit antennas and four receive antennas
already requires a search over almost 10 000 options, which may not be feasible within the strict
delay requirements of instantaneous CSI feedback.

To reduce the complexity of the exhaustive search, an approximate sequential solution is proposed,
selecting the precoders independently of the MCSs by employing a coarser estimation of the achiev-
able throughput. This estimation is obtained from the BICM capacity. To make the calculation
independent of the modulation alphabet A ∈ A and hence of the MCS, the BICM system capacity is
defined as the envelope of the modulation alphabet dependent capacities

B (β) = max
A∈A

BA (β) . (3.26)

The RB specific estimated achievable throughput using precoder Q[η] ∈ Q(Ni)
` is obtained as

B
(Q[η])
u,i [η, κ] =

∑̀
ν=1

NRE∑
ρ=1

B (βν,u,i[ρ]) , (3.27)

with βν,u,i[ρ] from Equation (3.16). Maximizing this value with respect to the precoders, the
transmission rank dependent optimal precoders are obtained{

Q(`)
u,i[η, κ], B(`)

u,i [η, κ]
}

= argmax
Q[η]∈Q(Ni)

`

B
(Q[η])
u,i [η, κ], (3.28)

with B(`)
u,i [η, κ] denoting the transmission rank dependent optimized achievable throughput. The

solutions for the precoders can then be employed as a-priori knowledge in Equation (3.23) to obtain
the corresponding transmission rank and MCSs.

If this is still too complex, the transmission rank ` can also be selected independently of the MCSs
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by maximizing the sum of B(`)
u,i [η, κ] over the RBs

`u,i[κ] = argmax
`∈{1,...,`max}

NRB∑
η=1

B
(`)
u,i [η, κ], (3.29)

Qu,i[η, κ] = Q(`u,i[κ])
u,i [η, κ].

Utilizing these solutions as a-priori knowledge in Equation (3.23) the corresponding MCSs are
obtained. The optimization of the MCSs cannot be further simplified to ensure that the upper bound
on the BLER specified by P (t)

b is satisfied.

The most expensive step involved in solving these optimization problems is the calculation of the post-
equalization SINR in (3.16) for every precoder, because it involves matrix inversions to determine
the equalizer Gu,i[n, k]. This can be avoided by employing the pre-equalization mutual information
achieved with Gaussian signaling to estimate the achievable throughput according to [142]

Iu,i[n, k] = log2 det
(

IMi + Pi
σ̃2
z`

Hu,i[n, k]HQ[η]Q[η]HHu,i[n, k]
)
. (3.30)

Replacing
∑`
ν=1B (βν,u,i[ρ]) in Equation (3.27) with Iu,i[n, k], the same optimization steps as

in Equations (3.28) and (3.29) can again be performed to calculate suboptimal solutions for the
precoders and the transmission rank. Then, the post-equalization SINR hast to be calculated only
once, for the optimization of the MCSs. The precoder selection based on the mutual information is
also proposed in [40]. The performance of the different methods is compared in Section 3.3.2.

3.2.4. Antenna Subset Selection for DASs

The available transmit power Pi of cell i is distributed uniformly over all Ni transmit antennas by the
precoders of the considered semi-unitary codebook (3.8). In case of distributed transmit antennas,
when pathloss differences between the remote radio units (RRUs) become significant, it is beneficial
to concentrate the transmit power on those antenna arrays that experience good channel quality,
thus employing only a subset of the antennas for transmission. To transmit the data from Ñi ≤ Ni

antennas, the reduced size codebook Q(Ñi)
` is employed to distribute the signal onto the Ñi activated

antennas, while the other antenna elements are deactivated.

The preferred antenna subset can be determined by solving the optimization problem (3.23) for all
possible antenna subset choices, amounting in

Ni∑
Ñi=1

(
Ni

Ñi

)
= 2Ni − 1 (3.31)

possibilities and thus in an additional feedback overhead of roughly Ni bits.
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To enable efficient transmit antenna subset selection, with minimal extra CSI feedback overhead, it is
assumed that the in-cell channel gain matrix Cu,i from (2.9) is known by both, the base station and the
user. This is a reasonable, often made assumption in DASs, because the large-scale statistics change
only very slowly over time and frequency, and can thus be learned either from the uplink [143],
provided the duplex distance is not too large, or via a very low rate feedback link (e.g., during
connection setup). The CSI feedback overhead can then be reduced by considering only the antenna
subsets with the largest channel gains as possible candidates for antenna subset selection. Thus, e.g.,
if Ñi = 4, the optimization problem (3.23) is only solved for the four strongest distributed antennas,
reducing the additional CSI feedback overhead to log2 (Ni) bits. The performance-investigation of
this method is postponed until Chapter 5, when DASs are evaluated.

As an alternative to antenna subset selection, power loading over transmit antennas can be em-
ployed [144], which requires accurate knowledge of the instantaneous channel gain at the transmitter,
thus increasing the CSI feedback overhead significantly.

3.3. Performance Investigation

In this section, the performance of the proposed CSI feedback selection algorithms is investigated
by means of Monte-Carlo simulations. Due to the involved non-linear functions (MIESM, BICM
capacity) and the discrete nature of the proposed optimization problem, an analytic performance
investigation was not successful. Instead, the theoretical throughput bounds developed in Appendix D
are applied in Section 3.3.1 to evaluate the performance of LTE using the proposed CSI feedback
algorithms, and to identify the dominant sources of the observed throughput loss with respect to the
Shannon capacity. In Section 3.3.2, the performance of the individual feedback indicators, i.e., the
RI, CQI and PMI, is scrutinized and the impact of a delay in the feedback path is evaluated. Finally,
in Section 3.3.3, the impact of the CSI feedback granularity applied with feedback clustering on the
achieved throughput is examined.

The simulations presented in this dissertation are mostly obtained with the Vienna LTE-A link level
simulator [49, 59]. This open source MATLAB based LTE compliant link level simulator is publicly
available for download, pursuing the goal of facilitating reproducibility in wireless communications
research. The link level simulator is augmented with a system level simulator enabling the simulation
of large cellular networks with reasonable complexity. Single cell simulations are considered in
this section; multiple cells causing out-of-cell interference are treated in Chapter 5. The results are
presented in dependence of the equivalent average transmit SNR defined as

SNR = Pi
σ2
z

= Ei
N0

, (3.32)

with Ei denoting the symbol energy and N0 being the noise power spectral density.
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Table 3.1.: Simulation parameters of the SU-MIMO performance investigation.

Parameter Value
Carrier bandwidth {1.4, 10}MHz
Carrier frequency fc = 2 GHz

Signal to noise ratio SNR ∈ [−10, 40] dB
Number of subcarriers Ntot ∈ {72, 600}

Channel models power delay profile based:
vehicular A, pedestrian B [108]
typical urban [109]

Number of receive antennas Mu,i ∈ {4, 8}
Number of transmit antennas Ni ∈ {4, 8}

Number of users Ui ∈ {1, 2, 4, . . . , 64}
Spatial correlation parameter αcorr ∈ {0, 0.9}

Maximum channel Doppler frequency fd ∈ [10, 500] Hz
CSI feedback delay τd ∈ [0, 8] TTIs

Multi-user scheduling proportional fair
MIMO receiver ZF

Centralized antenna systems, without RRUs, are studied in the simulations presented in this section;
see Chapter 5 for results on DASs. Pathloss and shadow fading are not considered, the instantaneous
SNR observed by a user is rather determined by the microscopic channel fading realization and the
variance of the receiver noise. In case of multi-user simulations, the average SNR of all users is
equal. A block fading channel model is assumed with a temporally constant channel for the duration
of one LTE transmission time interval (TTI), denoted as subframe (1 ms or 14 OFDM symbols).
The channel realizations of consecutive subframes are either statistically independent or correlated
according to Clarke’s model; see Section 2.4 for details. CSI feedback is provided for each TTI. In
most simulations a feedback delay of zero is assumed, meaning that the CSIT is acausally available
before the transmission. The impact of a feedback delay is separately investigated. Proportional fair
multi-user scheduling is applied [56] utilizing the LTE optimized scheduling framework of [145].
Important simulation parameters are summarized in Table 3.1.3

3.3.1. Comparison of LTE to Theoretical Throughput Bounds

In this section, a single user scenario employing the largest LTE compliant antenna configuration of
Ni = 8 transmit antennas and Mu,i = 8 receive antennas is assumed, transmitting over a bandwidth
of 1.4 MHz (72 subcarriers). The spatial correlation parameter of the receive antenna array is
optimistically assumed as αcorr = 0. The performance of LTE’s CLSM transmission mode, utilizing
PMI, RI and CQI feedback, is compared to the throughput bounds derived in Appendix D. CSI
feedback clustering is applied with N (t)

clust = 14 and N (f)
clust = 12. The performance with perfect

3Parameter sets are specified by curly brackets {·}; intervals are defined by square brackets [·].
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Figure 3.4.: Comparison of the achieved throughput to channel capacity and the proposed throughput bounds withNi×Mu,i = 8× 8.

and estimated channel knowledge at the receiver is simulated, employing a least-squares channel
estimator [39]. The additional noise caused by the channel estimator has to be considered in the
post-equalization SINR βν,u,i[n, k] used for the calculation of the feedback indicators to ensure an
accurate CQI estimation [62]. This is achieved by employing the first-order Taylor approximation
proposed in [146] together with the analytic expression of the channel estimation error variance of
the least-squares channel estimator derived in [147].

The results of the investigation are shown in Figure 3.4 in terms of the absolute throughput and
the relative throughput with respect to channel capacity. As detailed in Appendix D, the proposed
throughput upper bounds shown in the figure account for the throughput loss due to the system
overhead for guard bands and reference symbols (achievable capacity), the restriction to codebook
based precoding (closed loop mutual information (CLMI)), the application of a linear receiver (CLMI
with linear receiver (CLMI LR)) and the BICM architecture (BICM with linear receiver (BICM LR)).
It can be seen in Figure 3.4b that each of these factors entails a throughput loss in the order of
10− 20 % of channel capacity, amounting in an achievable throughput of approximately 35− 45 %
of channel capacity (BICM LR). The simulated optimum performance of LTE with perfect channel
knowledge at the receiver, obtained by exhaustive search, is found another 3 − 7 % below the
BICM LR bound. With the proposed feedback selection algorithms close to optimal performance
is attained (feedback method). The loss of approximately 1 % can be explained by the non-zero
BLER achieved with the proposed CQI selection. With imperfect channel knowledge at the receiver
a further throughput reduction to 20− 30 % of channel capacity is experienced (feedback method
with LS channel est.).

Notice that the performance of LTE is pessimistically represented in these results due to some
assumptions of the simulation. With all other LTE compliant carrier bandwidths (3/5/10/20 MHz),
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Figure 3.5.: Comparison of the proposed rank adaptive scheme to fixed rank transmission and simulated BLER achieved with the
proposed feedback algorithms.

the guard band overhead is reduced from 23 % to 10 %. The bandwidth of 1.4 MHz was chosen
for complexity reasons to be able to determine the optimal performance of LTE with an exhaustive
search. The channel estimator performance can be improved, e.g., by means of linear MMSE channel
estimation providing close to perfect performance [39]. Also, significantly improved MIMO detection
is possible, e.g., with successive interference cancellation [106]. Still, it is questionable whether such
highly complex algorithms are feasible in practice in the near future, particularly in mobile phones.

3.3.2. Evaluation of the Feedback Algorithms

The performance of the individual feedback indicators is evaluated in the following in more detail.
In the first scenario, an Ni ×Mu,i = 4× 4 antenna configuration is investigated assuming strongly
correlated receive antennas, i.e., αcorr = 0.9 in Equation (2.17). Other simulation parameters are set
as in the previous section considering perfect channel estimation at the receiver. The corresponding
throughput versus SNR is shown in Figure 3.5a, comparing the performance of fixed rank trans-
mission (`u,i ∈ {1, 2, 3, 4}) to rank adaptation by means of the proposed joint feedback selection
algorithm of Equation (3.23). These results show that the proposed feedback selection algorithm
is able to determine the optimal transmission rank in dependency of the channel conditions, and
automatically trades-off the MIMO beamforming gain for the MIMO multiplexing gain to achieve
the best performance. The corresponding BLER of the two codewords is shown in Figure 3.5b
demonstrating that the target BLER P

(t)
b = 0.1 is observed by the proposed CQI selection. Due

to the limited set of only 15 MCSs supported in LTE the achieved BLER is markedly below the
constraint P (t)

b = 0.1. Notice that the second codeword is activated just in case `u,i ≥ 2; hence the
BLER curve starts only at 14 dB SNR.
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Figure 3.6.: Performance of approximate sequential CSI feedback selection schemes compared to the joint optimization.

The same scenario is considered in the results presented in Figure 3.6a to investigate the performance
of the approximate sequential solutions (3.28) and (3.29) of the joint CSI feedback selection prob-
lem (3.23). The figure shows that the best performance is achieved with the accurate rate estimation
considered in the joint selection algorithm. If the PMI and RI are selected from the BICM capacity
as in Section 3.2.3 almost equally good performance is achieved, with a complexity that is approxi-
mately a factor of ten below the joint selection in case of LTE. Similar throughput is attained if the
pre-equalization mutual information of Equation (3.30) is employed instead of the BICM capacity for
the PMI selection to avoid the calculation of the post-equalization SINR. Notice though that the RI
selection based on the pre-equalization mutual information leads to a significant throughput reduction,
because the performance of higher rank transmission is obviously overestimated. For comparison
the achieved transmission rate with random precoder selection is also shown in Figure 3.6a. It can
be seen that a gain of approximately 5− 10 dB in SNR is obtained with optimal precoder selection.
Similar behavior is observed in Figure 3.6b for the case of eight transmit antennas. Notice that the
LTE precoder codebook for eight antennas is four times larger than the four antenna codebook.

Next, the impact of a delay in the feedback path on the transmission rate obtained with the proposed
instantaneous CSI feedback algorithms is investigated. Again, the Ni ×Mu,i = 4× 4 configuration
is assumed, this time with uncorrelated receive antennas, i.e., αcorr = 0. The effect of the feedback
delay is determined by the strength of the temporal correlation of the wireless channel. Hence,
the performance of the system is evaluated in terms of the maximum channel Doppler frequency
fd, defining the channel coherence time according to Equation (2.13). The results are plotted in
dependency of the normalized channel Doppler frequency

νd = fd Ts, (3.33)
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Figure 3.7.: Sensitivity of the proposed instantaneous CSI feedback algorithms with respect to a delay in the feedback path.

with Ts = 1 ms being the temporal sampling rate of the channel, i.e., the CSI feedback interval. The
throughput degradation due to the feedback delay is shown in Figure 3.7a. With a delay of 1 TTI, i.e.,
τd = 1 ms, optimal performance is achieved up to a normalized Doppler frequency of ν(c)

d = 0.025,
corresponding to a user speed of

v = ν
(c)
d

Ts fc
c ≈ 15 km/h, (3.34)

with fc = 2 GHz denoting the carrier frequency and c being the speed of light. With τd = 4 ms
a further reduction to 5 km/h is incurred. Hence, without any delay-compensation, the proposed
algorithms are suitable for quasi-stationary situations. The reason for the performance degradation
can be seen in Figure 3.7b. Due to the mismatch between the channel observed during CSI feedback
calculation and the channel for which the outdated CSIT is employed for rate adaptation, the BLER
is severely increased and the target BLER is not satisfied. A simple means to overcome this problem
is the inclusion of an adaptive link margin to account for the channel mismatch [148].

Alternatively, channel prediction can be employed to compensate for the feedback delay. To demon-
strate the capabilities of this approach, finite impulse response (FIR) filter based channel prediction
is implemented. For simplicity, each column of the channel matrix Hu,i[n, k] is independently
predicted. Also, each RB [η, κ] is represented by the single channel matrix in the center of the
RB for CSI feedback calculation, utilizing the channel sub sampling approach of [61]. The FIR
filter coefficients are trained by means of the recursive least squares (RLS) algorithm [149]. The
corresponding results, labeled with RLS prediction, are shown in Figure 3.7. The delay sensitivity
is significantly reduced with channel prediction, enabling optimal performance up to user speeds
of 100 km/h and 40 km/h at delays of 1 TTI and 8 TTIs, respectively. Interestingly, the throughput
reduction at high Doppler frequencies is not caused by an increased BLER. It is rather a consequence
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Figure 3.8.: Cell throughput with proportional fair scheduling versus CSI feedback granularity, codebook size and number of users.

of the reduction of the gain of the predicted channel matrix, due to diminishing magnitudes of the
FIR filter coefficients with decreasing channel correlation. Hence, the SINR is automatically reduced
with decreasing channel correlation, entailing a more conservative CQI estimation.

3.3.3. Impact of CSI Feedback Granularity

The SU-MIMO CSI feedback indicators investigated in this chapter can be exploited in a twofold
way to improve the downlink data rate of cellular networks. Firstly, the single user throughput is
increased through the optimized selection of the precoders, transmission rank and MCSs enabled by
the proposed feedback selection algorithm of Equation (3.23). Secondly, the CQI feedback is useful
in multi-user scheduling to achieve a multi-user diversity gain and hence to improve the sum data
rate in a multi-user scenario [145, 150]. In both cases, the potential gain is larger with a smaller CSI
feedback cluster size. The downside of reducing the cluster size is an increase in the CSI feedback
overhead. This trade-off is investigated below by means of a simulation based study.

In the first scenario the improvement of the single user throughput with reducing PMI feedback cluster
size and with increasing precoder codebook size is evaluated. To enable a variable precoder codebook
size, which is not considered in LTE, a random codebook of independent and isotropically distributed
semi-unitary matrices is generated [46]. Such random codebooks are known to be asymptotically
optimal in the case of independent and identically distributed (i.i.d.) channel matrices; hence αcorr is
set equal to zero. The results are averaged over random codebook realizations. An Ni×Mu,i = 8×1
antenna configuration is considered. The typical urban channel model [109] is employed, having
a 50 % coherence bandwidth of BC = 400 kHz. A carrier bandwidth of 10 MHz is assumed. The
precoder codebook size is varied from one element to 212 elements corresponding to a feedback
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overhead of zero to 12 bits per cluster. The number of feedback clusters per TTI is varied from one to
50. The results of the simulation are shown in Figure 3.8a. A significant throughput improvement
from 14 Mbit/s without precoder feedback to 34 Mbit/s with a feedback overhead of 12 · 50 bit/ms
= 600 kbit/s is obtained. Such investigations are also useful to determine the optimal trade-off
between cluster size and codebook size for a fixed amount of CSI feedback bits. For example, the
best performance with 10 bits per TTI is obtained with a single cluster using a precoder codebook of
size 210, amounting in 22 Mbit/s downlink throughput. On the contrary, with 10 clusters each using a
codebook of size two only 17 Mbit/s are achieved. Naturally, these results depend on the channel
coherence bandwidth.

In the second scenario the impact of the CQI cluster size on the achievable multi-user scheduling gain
is investigated. A 10 MHz SISO system is assumed to eliminate the effect of the precoder feedback.
The pedestrian B channel model [108] with a coherence bandwidth of BC = 267 kHz is employed.
The number of users Ui is varied from one to 64 and the number of CSI feedback clusters is increased
from one to 50. The simulation results are plotted in Figure 3.8b, visualizing the improvement of
the multi-user gain with an increasing number of feedback clusters. With one feedback cluster, only
temporal multi-user diversity can be exploited, leading to a throughput improvement by a factor of
two when increasing the number of users form one to 64. With 50 feedback clusters a threefold
throughput gain is obtained because the frequency diversity can additionally be exploited during
scheduling. With 64 users the cell throughput grows by 6 Mbit/s when increasing the number of
clusters from one to 50. Notice though that this downlink improvement is outweighed by the increased
CQI feedback overhead, scaling from 4 · 64 bit/ms = 256 kbit/s up to 4 · 64 · 50 bit/ms = 12.8 Mbit/s,
if 4 bits per CQI are employed as in LTE. Solutions for this problem of increasing feedback overhead
with a growing number of users have been published in literature, e.g., K-significant scheduling [151]
and thresholding, i.e., providing feedback only in case a threshold is exceeded [152].

3.4. Summary

In this chapter, limited feedback SU-MIMO transmission in wireless communications is investigated.
Following the approach that is currently implemented in most commercial systems, the transmission
parameters of the single user link are adapted by means of AMC and codebook based precoding to
ensure reliable and spectrally efficient data transmission. This is achieved by the provision of CSIT
using feedback indicators for the selection of the optimal transmission rate, transmission rank and
precoders. The best performance is achieved with instantaneous CSIT enabling the exploitation of
the space, time, frequency and multi-user diversity inherent in wireless communication systems.

By deriving an accurate estimate of the achievable user data rate, based on the post-equalization
SINR, the optimization problem for the joint-selection of the optimal CSI feedback indicators is
derived in this chapter. The performance of this method is investigated by means of simulations,
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demonstrating that close to optimal throughput is achieved with the proposed algorithm. Several
simplifying approximations are considered to reduce the complexity of the exhaustive search. A
promising trade-off between complexity and performance is obtained by selecting the precoders
based on the pre-equalization mutual information and considering the post-equalization SINR only
for transmission rank and rate adaptation, significantly reducing the amount of matrix inversion.

The sensitivity of instantaneous CSI feedback with respect to a delay in the feedback path is
investigated. The obtained results show that this kind of feedback is restricted to quasi-stationary
situations if no delay compensation is incorporated. The scope of the algorithms can be extended to
moderate mobility (∼ 50 km/h) if delay compensation by means of channel prediction is implemented.
The achievable throughput with limited feedback is strongly dependent on the granularity of the
feedback indicators in the OFDM time-frequency grid, requiring a careful choice of the feedback
parameters to achieve a good trade-off between the uplink overhead and the downlink throughput.
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Chapter 4.

Linear Transmission and CSI Feedback for
Multi-User MIMO

When you see something that is technically sweet,
you go ahead and do it and you argue about what
to do about it only after you have had your tech-
nical success.

(J. Robert Oppenheimer)

Spatial multiplexing of multiple users, i.e., multi-user MIMO (MU-MIMO), is considered as a
promising technique in multi-antenna broadcast systems to achieve high spectral efficiencies by
serving multiple users in parallel over the same time-frequency resources [44, 67]. In contrast to
single-user MIMO (SU-MIMO), the potential multiplexing gain of MU-MIMO is only confined
by the capabilities of the transmitter. Hence, with MU-MIMO the need for multiple antennas at
the users is eliminated, facilitating the development of small and cheap user equipments. Another
important advantage of MU-MIMO over SU-MIMO is the reduced sensitivity to channel impairments
such as line-of-sight propagation and antenna correlation, which cause an increase in the singular
value imbalance of the single-user channel and hence effectively limit the transmission rank of
SU-MIMO [153, 154]. Unfortunately, these advantages come at the cost of significantly increased
susceptibility of the achievable multi-user throughput with respect to the accuracy of the channel
state information (CSI) at the transmitter (CSIT), due to residual multi-user interference incurred
with imperfect channel knowledge [45, 46, 155, 156].

The literature on MU-MIMO precoding can be coarsely partitioned into two main concepts, that
is, linear precoding and non-linear precoding. While non-linear techniques based on Tomlinson-
Harashima precoding [155] and vector perturbation [156, 157] provide an advantage in terms of
the achievable throughput, linear strategies such as zero forcing (ZF) beamforming [68] and block
diagonalization (BD) precoding [69] are considered as practically important for complexity reasons.
In addition to their complexity advantage, ZF and BD precoding have the benefit that partial CSIT,
specifically channel subspace information, is sufficient for the calculation of the precoders, reducing
the burden on the feedback channel. Notice that BD precoding can be viewed as a generalization
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of ZF beamforming to multiple data stream transmission per user; hence in the sequel mostly BD
precoding is used to refer to both methods.

For the reasons mentioned above, MU-MIMO transmission based on BD precoding is investigated in
this dissertation. Although codebook based precoding as in SU-MIMO is an option for MU-MIMO
as well [72], the precoders employed with BD precoding are not confined to a codebook but are
calculated during operation from explicit channel knowledge at the base station. Correspondingly,
the implicit CSI feedback of SU-MIMO is replaced with direct quantization of the channel matrix
in MU-MIMO. To this end, memoryless and predictive CSI quantization algorithms are proposed
in this chapter, building upon the concepts of Grassmannian quantization [158, 159]. The temporal
correlation of the wireless channel (see Section 2.4) can be exploited by the proposed predictive
quantizer to achieve high fidelity quantization in low to moderate mobility scenarios, i.e., when the
channel coherence time is large. In case of distributed antennas, knowledge of the channel gain
matrix (2.11) is utilized during quantization to further improve the accuracy.

Similar to SU-MIMO, channel quality indicator (CQI) feedback is employed in MU-MIMO as well,
for transmission rate adaptation and multi-user scheduling. In contrast to single-user transmission, the
achievable rate with MU-MIMO cannot be estimated accurately by the users ahead of scheduling due
to the unknown precoders. Exploiting the precoder construction of BD precoding, a lower bound on
the expected SINR of a user with imperfect CSIT is derived, facilitating estimation of the achievable
transmission rate. This bound is proposed as CQI feedback for multi-user scheduling.

In case the number of data streams per user is less than the number of receive antennas, interference
cancellation by means of BD is only achieved over a subspace of a users’ channel matrix. Ideally,
joint user subspace selection and scheduling must be performed at the transmitter to maximize the
achievable throughput, requiring full channel knowledge for all users at the base station. To reduce
the CSI feedback overhead, it is, however, proposed to perform a pre-selection of the preferred
channel subspace by the users based on selfish arguments, effectively decreasing the dimensionality
of the Grassmannian quantization problem. To filter-out the interference-free subspace at the users,
semi-unitary antenna combiners are employed. It is shown how the degrees of freedom (DoF)
provided by the excess antennas can be utilized to trade-off the residual multi-user interference, due
to imperfect CSI, for the effective channel gain experienced by a user.

The proposed CSI feedback algorithms are extended to frequency selective OFDM systems employing
the same concepts as in SU-MIMO, i.e., by means of CSI feedback clustering and interpolation. The
performance of these two methods is evaluated in this chapter using simulations, with the result that
interpolation is only reasonable if the distance between CSI pilots is small compared to the channel
coherence bandwidth, challenging its value for practical implementations.

This chapter is organized as follows: In Section 4.1, the ZF beamforming and BD precoding
constructions are introduced, providing the motivation for the proposed Grassmannian quantization
algorithms. The memoryless and predictive CSI quantizers are detailed in Sections 4.2.1 and 4.2.2,
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respectively. In Section 4.3, the proposed antenna combiners are derived. Finally, in Section 4.4,
the feedback methods are extended to frequency selective systems by means of interpolation and
clustering, and the lower bound on the SINR for CQI feedback is presented in Section 4.4.2. The
performance of the methods and algorithms is investigated in Section 4.4.3 through extensive Monte-
Carlo simulations. Relevant background information on the Grassmann manifold, useful for the
understanding of the proposed Grassmannian quantizer, is provided in Appendix C. Proofs and
derivations related to the antenna combiners and the SINR lower bound proposed in this chapter are
presented in Appendices F and G. The MIMO minimum mean-squared error (MMSE) equalizer that
is employed in some of the simulations presented in Section 4.4.3 is derived in Appendix H. The
impact of the residual multi-user interference due to CSIT inaccuracies is effectively reduced by this
equalizer by exploiting the BD construction to estimate the multi-user interference. The material
presented in this chapter is published in parts in [87–96].

4.1. Zero-Forcing and Block-Diagonalization Precoding

In this section, an overview of ZF and BD precoding is provided and the relevant CSIT for precoder
calculation is identified. It is shown that channel subspace information is sufficient if uniform power
allocation over spatial streams and users is considered, which is known to be a asymptotically optimal
in the limit of high SNR [71]. Although not considered in this dissertation, optimal power allocation
by means of water-filling can be facilitated with additional channel magnitude feedback [69].

4.1.1. Transmit Strategy

The input-output relationship of user u in cell i on resource element (RE) [n, k] assuming MU-MIMO
transmission is

yu,i[n, k] = Heff
u,i[n, k]HFu,i[n, k]xu,i[n, k]

+ Heff
u,i[n, k]H

∑
s∈Si[n,k]
s 6=u

Fs,i[n, k]xs,i[n, k] + Gu,i[n, k]H z̃u,i[n, k], (4.1)

with the effective channel Heff
u,i[n, k] ∈ CNi×`u,i[k] being specified in Equation (2.6) and z̃u,i[n, k] ∼

NC
(
0, σ̃2

z IMu,i

)
, hence the out-of-cell interference is treated as additional Gaussian noise. To

simplify notations, the user set Ui is re-ordered after scheduling such that the served users Si[n, k]
can be indexed as Si[n, k] = {1, . . . , Si[n, k]}. The goal of BD precoding is to calculate the
precoders Fs,i[n, k],∀s such that the interference at each user due to all other users is perfectly
eliminated. BD was originally proposed for the case that each user is served over `u,i[k] = Mu,i

streams. Then no antenna combiner Gu,i[n, k] is required at the users. If the number of data streams
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`u,i[k] is less than the number of receive antennasMu,i, the BD precoder is calculated for the effective
channel Heff

u,i[n, k]. Hence the multi-user interference is only canceled in the `u,i[k]-dimensional
subspace of span (Hu,i[n, k]) that is spanned by Heff

u,i[n, k]. The precoders are obtained from the
following conditions

Heff
u,i[n, k]HFs,i[n, k] = 0`u,i[k]×`s,i[k], ∀u, s ∈ Si[n, k] and s 6= u, (4.2)

rank
(
Heff
u,i[n, k]HFu,i[n, k]

)
= `u,i[k], ∀u ∈ Si[n, k]. (4.3)

Notice the similarity of this formulation of BD to interference alignment [160, 161], with the
difference that there is only a single transmitter in BD that has access to the data of all users.1 Certain
feasibility conditions on the number of streams per user and the total number of spatial streams
`i[n, k] have to be fulfilled to assure that a solution to this problem exists, such as `u,i[k] ≤Mu,i and
`i[n, k] ≤ Ni [69]. Provided these feasibility conditions are satisfied, the solution is obtained from

Fu,i[n, k] ∈ null
(
Hu,i[n, k]

)
, rank (Fu,i[n, k]) = `u,i[k], ∀u ∈ Si[n, k], (4.4)

Hu,i[n, k] =
[
H̃1,i[n, k], . . . , H̃u−1,i[n, k], H̃u+1,i[n, k], . . . , H̃Si[n,k],i[n, k]

]H
, (4.5)

span
(
H̃s,i[n, k]

)
= span

(
Heff
s,i[n, k]

)
, (4.6)

H̃s,i[n, k]HH̃s,i[n, k] = I`s,i[k], H̃s,i[n, k] ∈ CNi×`s,i[k], ∀s ∈ Si[n, k]. (4.7)

Here, the matrices H̃s,i[n, k] form orthonormal bases for the respective effective channels Heff
s,i[n, k]

and can, e.g., be obtained from a QR or a singular value decomposition (SVD) of Heff
s,i[n, k]. The

precoder of user u lies in the left null space of all other users’ effective channels. Hence, after antenna
combining, the transmission to user u does not interfere with the transmission to any of the other
users. As the same holds true for every u ∈ Si[n, k], interference-free transmission to all users is
achieved. To satisfy the rank constraint (4.3), rank (Fu,i[n, k]) = `u,i[k] must be fulfilled.

As mentioned above, to maximize the SINR of the users, a joint optimization of the precoders
Fs,i[n, k] and the antenna combiners Gs,i[n, k] at the base station, based on perfect knowledge of
Hs,i[n, k],∀s, is required; see, e.g., [162]. With the proposed approach, however, it is sufficient to
feed back the subspace span

(
Heff
s,i[n, k]

)
, ∀s, effectively reducing the feedback overhead, facilitating

independent design of the transmit- and receive-filters and enabling the application of Grassmannian
quantization, as detailed Section 4.1.2. Useful selections of Heff

s,i[n, k] are proposed in Section 4.3.

In case of ZF beamforming, transmitting a single stream per user `u,i[k] = 1, ∀u, the effective
channel matrix Heff

u,i[n, k] of user u is reduced to the effective channel vector heff
u,i[n, k] and the

1When applied for coordinated multi-point (CoMP) transmission, BD is hence classified as a joint transmission strategy.
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precoding matrix Fu,i[n, k] is obtained as the column-vector fu,i[n, k] ∈ CNi×1. Combining the
normalized effective channel vectors (channel directions)

h̃u,i[n, k] =
heff
u,i[n, k]∥∥∥heff
u,i[n, k]

∥∥∥ (4.8)

of all served users in the so-called cell channel direction matrix

H̃i[n, k] =
[
h̃1,i[n, k], . . . , h̃Si[n,k],i[n, k]

]H
∈ CSi[n,k]×Ni , (4.9)

a closed-form solution of the cell ZF precoding matrix Fi[n, k] of all users is obtained as

Fi[n, k] = H̃i[n, k]H
(
H̃i[n, k]H̃i[n, k]H

)−1
Pi[n, k]1/2 = F̃i[n, k]Pi[n, k]1/2, (4.10)

Fi[n, k] =
[
f1,i[n, k], . . . , fSi[n,k],i[n, k]

]
, Pi[n, k] = diag

(
p1,i[n, k], . . . , pSi[n,k],i[n, k]

)
,

where the precoding vectors fu,i[n, k] are obtained as the columns of Fi[n, k]. Considering equal
power allocation, the powers pu,i[n, k] are calculated as

pu,i[n, k] = Pi

Si[n, k]
∥∥∥[F̃i[n, k]]:,u

∥∥∥2 , ∀u ∈ {1, . . . , Si[n, k]} , (4.11)

with Pi denoting the instantaneous total power constraint of the base station.

With the BD condition (4.2), the input-output relationship with perfect CSIT simplifies to

yu,i[n, k] = Heff
u,i[n, k]H Fu,i[n, k] xu,i[n, k] + Gu,i[n, k]H z̃u,i[n, k]. (4.12)

The precoder Fu,i[n, k] obtained from (4.4) is unique only up to right-multiplication with any
full-rank `u,i[k]× `u,i[k] matrix, as this multiplication has no impact on span (Fu,i[n, k]).

In [69], this ambiguity is removed by treating the interference-free input-output relationship (4.12) as
a SU-MIMO system (cf. Equation (3.1)), and additionally performing SVD based precoding with
water-filling power allocation over the obtained single-user channel. Hence, if F̃u,i[n, k] denotes an
arbitrary semi-unitary solution of (4.4), the unambiguous precoder according to [69] is obtained as

Heff
u,i[n, k]H F̃u,i[n, k] = Uu,i[n, k]Σu,i[n, k]Vu,i[n, k]H, (4.13)

Fu,i[n, k] = F̃u,i[n, k]Vu,i[n, k]Pu,i[n, k]1/2, (4.14)

with (4.13) denoting an SVD of
(
Heff
u,i[n, k]H F̃u,i[n, k]

)
and Pu,i[n, k] being the diagonal power

allocation matrix obtained form the water-filling solution; see Section 3.1.2.

This, however, is not a reasonable approach with the subspace CSI feedback proposed below, because
the feedback only provides an arbitrary orthonormal basis for Heff

u,i[n, k] that neither matches the
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individual orientations of the eigenmodes of the effective channel nor contains information on their
magnitude. Instead, semi-unitary precoding with equal power allocation is considered, enforcing the
following additional precoder constraint

Fu,i[n, k]HFu,i[n, k] = Pi
Si[n, k] `u,i[k] F̃u,i[n, k]HF̃u,i[n, k] = Pu,i[n, k]I`u,i[k]. (4.15)

The corresponding solution is unique up to right-multiplication with any unitary matrix, which has no
impact on the achievable per user transmission rate with perfect CSIT and equal power allocation

RBD = E log2 det
(
I`u,i[k] + ρHeff

u,i[n, k]HF̃u,i[n, k]F̃u,i[n, k]HHeff
u,i[n, k]

)
, ρ = Pu,i[n, k]

σ̃2
z

.

(4.16)

4.1.2. Limited Feedback Model

With the assumption of equal power allocation, the BD precoders can be calculated at the base
station if knowledge of the `u,i[k]-dimensional subspace span

(
Heff
u,i[n, k]

)
is available for every

u ∈ Si[n, k]. This subspace can be interpreted as a point on the Grassmann manifold of `u,i[k]-
dimensional subspaces in the Ni-dimensional Euclidean space, denoted as G (Ni, `u,i[k]). In general
it can be represented equivalently by any matrix S spanning the subspace

S ≡ Heff
u,i[n, k]⇔ span (S) = span

(
Heff
u,i[n, k]

)
. (4.17)

In this dissertation the most common approach to represent points on the Grassmann manifold is
employed, using orthonormal bases as in Equations (4.6) and (4.7). A more detailed introduction to
the Grassmannian is given in Appendix C.

Perfect knowledge of H̃u,i[n, k], ∀u ∈ Si[n, k] from (4.6) is required at the base station to achieve
zero multi-user interference. With limited feedback, however, a quantized version Ĥu,i[n, k] of the
subspace is fed back to the transmitter. To convey the CSI to the transmitter, a quantization codebook
Qu,i[n, k] of size 2b is employed by user u, with b denoting the number of feedback bits

Qu,i[n, k] =
{
Qj ∈ CNi×`u,i[k]∣∣QH

j Qj = I`u,i[k], j ∈ {1, . . . , 2b}
}
. (4.18)

The codebook is known by the base station. The quantized channel subspace is obtained by minimiz-
ing the subspace chordal distance [46] between Heff

u,i[n, k] and the elements of the codebook

Ĥu,i[n, k] = argmin
Qj∈Qu,i[n,k]

d2
c

(
Heff
u,i[n, k],Qj

)
, (4.19)

d2
c

(
Heff
u,i[n, k],Qj

)
= `u,i[k]− tr

(
H̃u,i[n, k]HQjQH

j H̃u,i[n, k]
)
, (4.20)

d2
c,min = d2

c

(
Heff
u,i[n, k], Ĥu,i[n, k]

)
= `u,i[k]−

`u,i[k]∑
`=1

cos
(
ϕ

(q)
`

)2
. (4.21)
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In this equation, the `u,i[k] principal angles between span
(
Heff
u,i[n, k]

)
= span

(
H̃u,i[n, k]

)
and

span
(
Ĥu,i[n, k]

)
are denoted ϕ(q)

` . When the chordal distance is employed as quantization metric
the expected value of the residual multi-user interference, due to the CSI quantization error, is
minimized. This is investigated in more detail in Sections 4.3 and 4.4.2, when considering the
theoretical performance of BD precoding with limited feedback and deriving the lower bound on the
expected SINR. The quantization problem (4.19) is well known as Grassmannian quantization on the
Grassmann manifold G (Ni, `u,i[k]) [158].

It is assumed that the base station treats the quantized subspaces Ĥu,i[n, k] as the actual subspaces
H̃u,i[n, k], and calculates the precoders from (4.4), replacing Hu,i[n, k] with

Ĥu,i[n, k] =
[
Ĥ1,i[n, k], . . . , Ĥu−1,i[n, k], Ĥu+1,i[n, k], . . . , ĤSi[n,k],i[n, k]

]H
. (4.22)

The effective channel Heff
u,i[n, k] can be decomposed into its range space component Heff,r

u,i [n, k] and

its left null space component Heff,n
u,i [n, k], with respect to the orthonormal basis Ĥu,i[n, k]

Heff
u,i[n, k] = Ĥu,i[n, k]Ĥu,i[n, k]H Heff

u,i[n, k] +
(
INi − Ĥu,i[n, k]Ĥu,i[n, k]H

)
Heff
u,i[n, k]

= Ĥu,i[n, k]Ĥu,i[n, k]H Heff
u,i[n, k]︸ ︷︷ ︸

Heff,r
u,i [n,k]

+ Ĥ⊥u,i[n, k]Ĥ⊥u,i[n, k]H Heff
u,i[n, k]︸ ︷︷ ︸

Heff,n
u,i [n,k]

, (4.23)

with Ĥ⊥u,i[n, k] ∈ CNi×Ni−`u,i[k] being an orthonormal basis for the orthogonal complement of
span

(
Ĥu,i[n, k]

)
. Using this notation and recalling that Ĥu,i[n, k]HFs,i[n, k] = 0, ∀s 6= u, due to

the BD construction, the input-output relationship with quantized CSIT is

yu,i = Heff
u,i[n, k]HFu,i[n, k]xu,i[n, k]

+ Heff,n
u,i [n, k]H

Si[n,k]∑
s=1,s 6=u

Fs,i[n, k]xs,i[n, k] + Gu,i[n, k]H z̃u,i[n, k]. (4.24)

Thus, with quantized CSIT perfect interference cancellation is not achieved. The residual interfer-
ence is determined by the quantization error of H̃u,i[n, k], captured by the null space component
Heff,n
u,i [n, k]. The per-user transmission rate with quantized CSIT is [46]

RBD-Quant = E log2 det

I`u,i[k] +
Si[n,k]∑
s=1

Heff
u,i[n, k]HFs,i[n, k]Fs,i[n, k]HHeff

u,i[n, k]



− E log2 det

I`u,i[k] +
Si[n,k]∑
s=1,s 6=u

Heff
u,i[n, k]HFs,i[n, k]Fs,i[n, k]HHeff

u,i[n, k]

 , (4.25)

where the expectation is taken with respect to channel and corresponding precoder realizations.
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4.2. Explicit CSI Feedback Algorithms

In interference limited multi-user precoding systems, such as MU-MIMO and interference alignment,
strict requirements are placed on the CSIT accuracy, because CSI imperfections directly impact the
residual multi-user interference and strongly deteriorate the throughput performance [45, 46, 74].
Therefore, efficient CSI quantization is central in such systems to obtain sufficiently accurate CSIT
with a reasonable feedback overhead. As mentioned above, for the calculation of the BD precoders
with equal power allocation channel subspace information is sufficient.2 This information can
efficiently be conveyed by the Grassmann manifold, putting Grassmannian quantization at the center
of this section. In Section 4.2.1, memoryless quantization of channel subspaces is studied, where the
CSI at each transmission time interval (TTI) is independently quantized, i.e., without considering
the past. Efficient memoryless quantization in distributed antenna systems (DASs) is achieved by
taking into account the channel gain matrix (2.11) during construction of the quantization codebook,
to match the spatial distribution of the channel matrix. Still, often sufficient CSIT accuracy cannot be
obtained with an acceptable feedback overhead employing memoryless techniques. To circumvent
this problem, predictive quantization is proposed in Section 4.2.2, exploiting the temporal channel
correlation to improve the quantizer’s fidelity. The performance of the quantizers is investigated
numerically by evaluating the quantization mean-squared error (MSE) in Section 4.2.3. The derivation
of channel quality feedback for transmission rate adaptation and multi-user scheduling is postponed
until Section 4.4.2 when frequency selective systems are treated.

The methods proposed in this section are designed for CSI quantization on a single frequency flat
subcarrier. Efficient extensions to multi-carrier OFDM are proposed in Section 4.4, considering
feedback clustering and interpolation. Also, antenna combining is not considered in Sections 4.2.1
and 4.2.2; hence, `u,i[k] = Mu,i and Gu,i[n, k] = IMu,i is assumed. Excess receive antennas, i.e.,
the case `u,i[k] ≤Mu,i, and antenna combining are covered in Section 4.3. Notice that it is possible
to apply the predictive quantization proposed in Section 4.2.2 in the frequency domain as well, i.e.,
over OFDM subcarriers. This is not treated in this thesis, although it has been investigated by myself
in [89] and by others, e.g., in [86]. With sufficiently dense placement of CSI pilots in the frequency
domain, a substantial prediction gain can be achieved, especially if large system bandwidths are
considered. The interpolation and clustering methods proposed in this dissertation, however, facilitate
a significant reduction of the required CSI pilots in the frequency domain.

4.2.1. Memoryless Grassmannian Quantization

With memoryless quantization, the temporal correlation of the source to be quantized is neglected
and the quantization is performed independently at each time instant k, employing a pre-specified

2The same holds true for other concepts as well, e.g., interference alignment [53] and signal to leakage and noise ratio
beamforming [54].
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quantization codebook Qu,i[n, k]. Possibly different codebooks are used by different users to avoid
situations in which users feed back the same CSI, excluding them from being spatially multiplexed
with each other. The average quantization distortion in terms of the chordal distance MSE

D = E
(
d2

c,min

)
(4.26)

is critically determined by the construction of the quantization codebook.

Codebooks for isotropic subspaces If the channel subspace span
(
H̃u,i[n, k]

)
is uniformly

distributed on the Grassmann manifold G (Ni,Mu,i), i.e., the channel matrix Hu,i[n, k] is isotropi-
cally distributed (e.g., independent and identically distributed (i.i.d.) Rayleigh fading), the minimum
average quantization distortion is achieved by maximally spaced Grassmannian subspace packings
with respect to the chordal distance [40]. These packings are essentially uniform on the Grassmann
manifold in terms of the chordal distance. Unfortunately, finding good codebooks is in general hard
except for special cases; an algorithm for obtaining good codebooks is provided, e.g., in [163].

More suitable for analytical investigations, however, are random quantization codebooks, con-
sisting of elements Qj ∈ Qu,i[n, k] that are chosen independently and uniformly distributed on
G (Ni,Mu,i) [46]. The elements of such codebooks can be obtained as the compact left singular
matrices of i.i.d. Gaussian matrices H ∈ CNi×Mu,i , [H]m,n ∼ NC (0, 1). Such a codebook con-
struction, denoted as random vector quantization (RVQ), is applied in this dissertation whenever
memoryless quantization is evaluated. In that case, the results are averaged over codebook realizations
by employing independent quantization codebooks at each time instant k. Bounds on the average
distortion achieved with random isotropically distributed Grassmannian quantization codebooks are
derived in [159], and the codebooks are shown to perform asymptotically optimal in a number of
applications, e.g., [164].

Codebooks for correlated subspaces In case the channel subspace to be quantized is not
obtained from an isotropically distributed channel matrix, better quantization performance can be
achieved if knowledge of the spatial channel correlation is exploited. An efficient heuristic codebook
construction is proposed in [165] for single-user multiple-input single-output beamforming systems,
which effectively “colors” a Grassmannian line packing according to the channel correlation matrix.
This approach is extended here for Grassmannian subspace packings to exploit the pathloss differences
experienced in DASs. Considering the DAS model of Equation (2.9), a random Grassmannian
codebook that is statistically matched to the distribution of the channel subspace can be obtained as

Q(corr)
u,i [n, k] =

{
Q(corr)
j

∣∣∣∣Q(corr)
j ΣVH = C1/2

u,i H̄ ∈ CNi×Mu,i , [H̄]m,n ∼ NC (0, 1)
}
. (4.27)

Here, Q(corr)
j ΣVH represents a compact SVD of the matrix C1/2

u,i H̄. The codebook construction is
denoted as correlated RVQ. An analytic performance characterization of this construction was not yet
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successful. Simulations demonstrating the performance gain achieved in DASs with this codebook
are provided in Section 5.2 (see also [95, 96]). The method can be applied to account for the spatial
correlation between the entries of the channel matrix as well. Alternative approaches to consider
the pathloss differences in DASs or the spatial channel correlation exist in literature, e.g., in [166] a
quantization codebook for ZF beamforming based on estimated channel statistics is proposed, and
in [167] a feedback bit allocation scheme for DASs is derived.

4.2.2. Predictive Grassmannian Quantization

MU-MIMO techniques are mostly considered for situations in which users are either static or moving
slowly through the cell. If this is the case, the temporal correlation of the wireless channel is often
high, which can be exploited to improve the CSI quantization accuracy and to reduce the feedback
overhead. A common approach in quantization and source coding for exploiting the correlation
of the source signal is vector quantization [76], where multiple consecutive samples of the source
signal are combined to a vector and are jointly coded/quantized. Although such techniques are rate-
distortion optimal, they cannot be applied for CSI quantization in wireless communications, because
the throughput performance of MU-MIMO with outdated CSI degrades in a similar way as with a
quantization error [75]. Hence, the delay of vector quantization caused by gathering and processing
the data cannot be tolerated. Instead, predictive quantization on the Grassmann manifold is proposed
in this section to achieve efficient subspace quantization. Predictive quantizers are able to leverage
the temporal correlation of the source signal at consecutive time instants to provide higher fidelity at
a given quantization rate. The prediction of points on the Grassmannian is realized by translating the
problem to the tangent space associated with the manifold. The statistics of the prediction error in
the tangent space are approximated with a Gaussian distribution, which is valid for sufficiently small
prediction errors. Based on this approximation, a Grassmannian quantization codebook is generated
to quantize the prediction error. The performance of the proposed algorithm is evaluated by means of
Monte Carlo simulations of the quantization MSE in Section 4.2.3. An application of the proposed
quantizer for CSI quantization in limited feedback MU-MIMO is investigated in Section 4.4.3. Basic
concepts and relationships associated with the Grassmann manifold that are exploited in the following
derivation are detailed in Appendix C. To shorten notations, the RE index [n, k] is partly omitted for
intermediate steps and auxiliary variables of the derivation.

Predictive quantization model: The predictive Grassmannian quantizer derived below explicitly
considers the effect of distributing antenna arrays over the cell area, by employing the decomposition
of the channel matrix into a temporally constant channel gain matrix Cu,i and a small-scale fading
matrix H̄u,i[n, k] according to Equation (2.9). The channel gain matrix Cu,i is supposed to be known
by the transmitter and the receiver. The temporal variation of the channel due to the movement of
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obstacles and/or users is hence captured in H̄u,i[n, k]. In the derivation of the quantizer, a general
model for the temporal evolution of H̄u,i[n, k] is considered

H̄u,i[n, k] = G
(
H̄u,i[n, k − 1], H̄u,i[n, k − 2], . . .

)
+ J̄u,i[n, k] = H̄(d)

u,i [n, k] + J̄u,i[n, k].
(4.28)

Here, the deterministic dependence of the current channel on the past is described with H̄(d)
u,i [n, k]

and the random innovation is captured in the matrix J̄u,i[n, k], which is assumed as i.i.d. Gaussian

vec
(
J̄u,i[n, k]

)
∼ NC

(
0, σ2

j [n, k]INi·Mu,i

)
. (4.29)

No specific assumptions are made about the nature of the deterministic function G (·) in (4.28),
because the behavior of the wireless channel is strongly dependent on the surrounding environ-
ment [168]. In [169] it is shown that Rayleigh fading processes can be accurately modeled using
auto-regressive relations, fitting well to the considered decomposition in (4.28).

In the proposed quantizer, a prediction algorithm is implemented to provide an estimate of the
deterministic evolution H̄(d)

u,i [n, k], based on previously quantized channel observations. Assuming

that a prediction H̄(p)
u,i [n, k] of H̄(d)

u,i [n, k] is available, the channel can be expressed as

Hu,i[n, k] = C1/2
u,i

(
H̄(p)
u,i [n, k] + Ē(p)

u,i [n, k] + J̄u,i[n, k]︸ ︷︷ ︸
Ēu,i[n,k]

)
= H(p)

u,i [n, k] + C1/2
u,i Ēu,i[n, k], (4.30)

with Ē(p)
u,i [n, k] denoting the prediction error. The prediction error is assumed as independent of

the innovation and i.i.d. Gaussian: vec
(
Ē(p)
u,i [n, k]

)
∼ NC

(
0, σ2

p[n, k]INi·Mu,i

)
. Thus, the total error

Ēu,i[n, k] is distributed as

vec
(
Ēu,i[n, k]

)
∼ NC

(
0, σ2

e [n, k]INi·Mu,i

)
, σ2

e [n, k] = σ2
p[n, k] + σ2

j [n, k]. (4.31)

Given the prediction H̄(p)
u,i [n, k] at both ends of the CSI feedback link, the channel can be reproduced

from knowledge of the error Ēu,i[n, k]. With an accurate prediction (σ2
p[n, k]� 1) and a smoothly

varying channel (σ2
j [n, k] � 1), the variance of the signal to be quantized can thus be reduced by

quantizing Ēu,i[n, k] instead of H̄u,i[n, k].

By taking advantage of the CSIT invariances introduced in Section 4.1.2, the required feedback
information can further be reduced. Using orthonormal bases H̃u,i[n, k] and H̃(p)

u,i [n, k] for the actual

channel Hu,i[n, k] and the predicted channel H(p)
u,i [n, k], as defined by Equation (4.7), the channel

matrix can be written as

Hu,i[n, k] = H̃u,i[n, k]Du,i[n, k] = H̃(p)
u,i [n, k]D(p)

u,i [n, k] + C1/2
u,i Ēu,i[n, k], (4.32)

Du,i[n, k] = H̃u,i[n, k]HHu,i[n, k], D(p)
u,i [n, k] = H̃(p)

u,i [n, k]HH(p)
u,i [n, k]. (4.33)
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The channel subspace, represented by the orthonormal basis H̃u,i[n, k], is thus obtained as

H̃u,i[n, k] =
(
H̃(p)
u,i [n, k]D(p)

u,i [n, k] + C1/2
u,i Ēu,i[n, k]

)
Du,i[n, k]−1. (4.34)

Exploiting the differential geometry associated with the Grassmannian, it is possible to describe the
error between the predicted subspace span

(
H̃(p)
u,i [n, k]

)
and the observed subspace span

(
H̃u,i[n, k]

)
with the error tangent

Tu,i[n, k] = T
(
H̃(p)
u,i [n, k], H̃u,i[n, k]

)
∈ T

(
H̃(p)
u,i [n, k]

)
⊂ CNi×Mu,i , (4.35)

according to Equation (C.9), where T
(
H̃(p)
u,i [n, k]

)
denotes the tangent space associated with the

prediction H̃(p)
u,i [n, k]. The shortest path on the manifold between the predicted subspace and the actual

subspace, which is denoted as the geodesic Γ
(
H̃(p)
u,i [n, k],Tu,i[n, k], p

)
, defined by Equation (C.11),

is specified by the tangent Tu,i[n, k]. Having knowledge of H̃(p)
u,i [n, k] and Tu,i[n, k], it is hence

possible to obtain an equivalent representation of span
(
H̃u,i[n, k]

)
from

H̃u,i[n, k] ≡ H̃(e)
u,i[n, k] = Γ

(
H̃(p)
u,i [n, k],Tu,i[n, k], 1

)
, (4.36)

span
(
H̃u,i[n, k]

)
= span

(
H̃(e)
u,i[n, k]

)
, H̃(e)

u,i[n, k]HH̃(e)
u,i[n, k] = IMu,i . (4.37)

In general, the two orthonormal bases H̃u,i[n, k] and H̃(e)
u,i[n, k] are not equal but equivalent repre-

sentatives of the same point on the Grassmann manifold G (Ni,Mu,i) in terms of the equivalence
relationship (C.2). For the purpose of precoder calculation for BD MU-MIMO either matrix can be
employed; an explicit distinction between H̃u,i[n, k] and H̃(e)

u,i[n, k] is hence omitted in the follow-
ing. To calculate the subspace span

(
H̃u,i[n, k]

)
at the base station, it is sufficient to feed back the

error tangent Tu,i[n, k]. Notice that this tangent lies in the (Ni −Mu,i)-dimensional tangent space
associated with H̃(p)

u,i [n, k]. Therefore, compared to quantization of Ēu,i[n, k], the dimensionality of
the quantization problem is reduced from Ni to Ni −Mu,i.

Approximation of the error tangent statistics: To derive an efficient quantizer for the error
tangent knowledge about the statistics of Tu,i[n, k] is required. Due to the nonlinear operations
involved in the calculation of the tangent, obtaining a closed-form statistical description is hard.
Therefore, an approximation is employed in the following that is valid if the channel correlation is
sufficiently large.

According to the definition in Equation (C.9), the tangent Tu,i[n, k] is obtained as

Tu,i[n, k] = UΦVH, U tan (Φ) VH = Θu,i[n, k], (4.38)

Θu,i[n, k] =
(

INi − H̃(p)
u,i [n, k]H̃(p)

u,i [n, k]H︸ ︷︷ ︸
Pu,i[n,k]

)
H̃u,i[n, k]

(
H̃(p)
u,i [n, k]HH̃u,i[n, k]

)−1
. (4.39)

56
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Here, the diagonal matrix Φ = diag
(
ϕ

(p)
1 , . . . , ϕ

(p)
Mu,i

)
is composed of the principal angles between

the subspaces spanned by H̃(p)
u,i [n, k] and H̃u,i[n, k], which are obtained from the arctangent of the

singular values of Θu,i[n, k]. Under the assumption ϕ(p)
i ≤ 0.35 =̂ 20◦ an error that is below 4% is

caused by the approximation

atan
(
ϕ

(p)
i

)
≈ ϕ(p)

i . (4.40)

With this approximation, the tangent simplifies to

Tu,i[n, k] ≈ Θu,i[n, k] = Pu,i[n, k]H̃u,i[n, k]
(
H̃(p)
u,i [n, k]HH̃u,i[n, k]

)−1
, (4.41)

where the matrix Pu,i[n, k], which is defined in Equation (4.39), can be identified as a projection
onto the orthogonal complement of H̃(p)

u,i [n, k]. Substituting H̃u,i[n, k] from Equation (4.34) the
approximated tangent can be written as

Tu,i[n, k] ≈ Pu,i[n, k]C1/2
u,i Ēu,i[n, k]

(
H̃(p)
u,i [n, k]HHu,i[n, k]

)−1
, (4.42)

where the first term from (4.34) vanishes due to the projection Pu,i[n, k] and the matrix Du,i[n, k]−1

is pulled inside the brackets. The tangent matrix is hence obtained as the product of the left null
space component of the channel matrix with respect to the predicted subspace span

(
H̃(p)
u,i [n, k]

)
,

and the inverse of the term H̃(p)
u,i [n, k]HHu,i[n, k] that is determined by the range space component.

Applying an SVD to the term in brackets

H̃(p)
u,i [n, k]HHu,i[n, k] = Yu,i[n, k]Λu,i[n, k]Wu,i[n, k]H, (4.43)

Yu,i[n, k],Λu,i[n, k],Wu,i[n, k] ∈ CMu,i×Mu,i ,

the approximated tangent can be formulated as

Tu,i[n, k] ≈ Pu,i[n, k]C1/2
u,i Ēu,i[n, k]

(
Wu,i[n, k]Λu,i[n, k]−1Yu,i[n, k]H

)
. (4.44)

Assuming H̃(p)
u,i [n, k]HHu,i[n, k] as fixed/observed, the distribution of the tangent is determined by

the null space component Pu,i[n, k]C1/2
u,i Ēu,i[n, k]. This term is obtained as the projection of the

zero-mean Gaussian error C1/2
u,i Ēu,i[n, k] onto the orthogonal complement of span

(
H̃(p)
u,i [n, k]

)
and

is therefore itself Gaussian distributed. The distribution of Tu,i[n, k] is hence obtained as

vec (Tu,i[n, k]) ∼ NC
(
0,C(t)

u,i[n, k]
)
, (4.45)

C(t)
u,i[n, k] = σ2

e [n, k]
(

Yu,i[n, k]Λu,i[n, k]−2Yu,i[n, k]H︸ ︷︷ ︸
CM∈CMu,i×Mu,i

⊗Pu,i[n, k]Cu,iPu,i[n, k]︸ ︷︷ ︸
CN∈CNi×Ni

)
. (4.46)
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Notice that the correlation matrix (4.46) is obtained from a Kronecker product. It is therefore possible
to derive a statistically matched quantization codebook for the error tangent Tu,i[n, k] by correlating
i.i.d. Gaussian matrices

Q(t,corr)
u,i [n, k] =

{
C1/2
N QjC1/2

M

∣∣∣Qj ∈ CNi×Mu,i , [Qj ]l,m ∼ NC
(
0, σ2

e [n, k]
)}

. (4.47)

The correlation matrix CN can be calculated by the transmitter and the receiver, because both have
knowledge of the predicted subspace and of the channel gain matrix. Unfortunately, CM is not
known a-priori and can therefore not be exploited to improve the quantization efficiency. Hence,
the codebook is designed under the assumption that CM is a scaled identity, which is the case if
Λu,i[n, k] in (4.46) is a scaled identity. The error tangent correlation matrix is then obtained as

C(t)
u,i[n, k] ≈

(
σe[n, k]
λu,i[n, k]

)2 (
IMu,i ⊗CN

)
. (4.48)

To further motivate this approach, two special cases are considered below that enable a more detailed
investigation of the factor λu,i[n, k].

Error tangent statistics with Mu,i = 1: When the users are equipped with single receive
antennas, the channel matrix is reduced to the channel vector hu,i[n, k] and CM is obtained as

CM = 1
‖hu,i[n, k]‖2 cos

(
ϕ(p))2 , cos

(
ϕ(p)

)2
=
∣∣∣h̃(p)
u,i [n, k]Hh̃u,i[n, k]

∣∣∣2 , (4.49)

with 0 ≤ ϕ(p) ≤ π/2 denoting the principal angle of the subspace prediction error. In this case,
CM is reduced to a scalar and has an impact only on the variance of the error tangent. Notice that
the variance is increased in fading dips, i.e., when ‖hu,i[n, k]‖2 is small, and in case the subspace
prediction error is large.

Error tangent statistics for i.i.d. Gaussian channels: When the channel matrix is i.i.d. Gaus-
sian distributed [Hu,i[n, k]]l,m ∼ NC (0, γu,i), it is possible to determine the expected value of the ma-

trix CM with respect to the unknown range space component of Hu,i[n, k] within span
(
H̃(p)
u,i [n, k]

)
.

This is achieved by considering the inverse of CM

C−1
M = Yu,i[n, k]Λu,i[n, k]2Yu,i[n, k]H = H̃(p)

u,i [n, k]HHu,i[n, k]Hu,i[n, k]HH̃(p)
u,i [n, k]. (4.50)

With a compact SVD of the channel matrix Hu,i[n, k] = UΣVH, this product can be written as

C−1
M = H̃(p)

u,i [n, k]HUΣ2UHH̃(p)
u,i [n, k]. (4.51)

Notice that U is an isotropically distributed unitary matrix that is statistically independent of the
singular value matrix Σ, due to the assumption that the channel is i.i.d. Gaussian and hence also
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isotropic [170, Theorem 1]. Applying an SVD to the product H̃(p)
u,i [n, k]HU = Q cos (Φ) WH, the

inverse of CM is obtained as

C−1
M = Q cos (Φ)

(
WHΣ2W

)
cos (Φ) QH. (4.52)

Due to the isotropy of U, its projection onto span
(
H̃(p)
u,i [n, k]

)
is isotropically distributed within the

subspace. Hence, the Mu,i ×Mu,i matrices Q, cos (Φ) and W are statistically independent, and
Q and W are isotropically distributed unitary matrices [170, Theorem 1]. Furthermore, cos (Φ) is
composed of the cosines of the principal angles between span

(
H̃(p)
u,i [n, k]

)
and span

(
H̃u,i[n, k]

)
cos (Φ) = diag

(
cos

(
ϕ

(p)
1

)
, . . . , cos

(
ϕ

(p)
Mu,i

))
. (4.53)

Because of the isotropy of W and its statistical independence of Σ, it follows that

WHΣ2W ∼ WC
Mu,i

(
Ni, γu,i IMu,i

)
, (4.54)

with WC
Mu,i

(
Ni, γu,i IMu,i

)
denoting a central complex Wishart distribution of dimension Mu,i,

having Ni DoF. With this notation, the correlation matrix CM is obtained as

CM = Q cos (Φ)−1
(
WHΣ2W

)−1
cos (Φ)−1 QH, (4.55)

where the inverse matrix in the center is distributed according to the inverse Wishart distribution
W−CMu,i

(
Ni, γ

−1
u,i IMu,i

)
. Correspondingly, the expected value of CM can be calculated as [171]

E (CM ) =
E
(
Q cos (Φ)−2 QH

)
γu,i (Ni −Mu,i)

= 1
γu,i (Ni −Mu,i)

 1
Mu,i

Mu,i∑
j=1

1
cos

(
ϕ

(p)
j

)2
 IMu,i , (4.56)

where the second equality follows from the isotropy of Q. Hence, averaging out the unknown
orientation of the range space component of Hu,i[n, k] within span

(
H̃(p)
u,i [n, k]

)
and the unknown

singular values, a scaled identity matrix is obtained. The exact scaling is determined by the distribution
of the chordal distance prediction error among the subspace dimensions. Notice that the expected
value of (4.49) in case of i.i.d. Rayleigh fading is obtained from (4.56) by setting Mu,i = 1.

Quantization algorithm: Based on the observations of the previous paragraphs, a predictive
Grassmannian quantizer is proposed that generates at each time instant k a quantization codebook,
according to the tangent statistics derived in Equations (4.45) and (4.48). To determine the correlation
matrix C(t)

u,i[n, k] in (4.48), a subspace prediction H̃(p)
u,i [n, k] is required at the CSI encoder and the

decoder. In this paragraph the prediction is assumed to be given; subspace prediction algorithms are

proposed in the next paragraph. In general the scaling
(
σe[n,k]
λu,i[n,k]

)2
of C(t)

u,i[n, k] is time-dependent; a
tracking algorithm is proposed to adapt the scaling of the quantization codebook correspondingly.
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As described in Section 4.1.2, the chordal distance is employed as quantization metric. The chordal
distance cannot be evaluated directly in the tangent space associated with the Grassmannian. It
is therefore necessary to project the tangent codebook onto the manifold to obtain an equivalent
Grassmannian codebook that enables the quantization. The quantization algorithm is described in the
following steps:

-2. Initialize the codebook scale parameter su,i[n, 0] = 0 and the scale growth rate g > 1. These
parameters are used to track the scaling of C(t)

u,i[n, k].

-1. Initialize a Gaussian quantization codebook Q(0)
u,i of size 2b for a standard normal random

matrix of size Ni ×Mu,i. In this dissertation this codebook is randomly generated as

Q(0)
u,i =

{
Q(0)
j

∣∣∣ [Q(0)
j

]
l,m
∼ NC (0, 1)

}
. (4.57)

0. Correlate the elements of Q(0)
u,i to match the correlation of the prediction error C1/2

u,i Ēu,i[n, k]

Q(corr)
u,i =

{
C1/2
u,i Q(0)

j

∣∣ ∀Q(0)
j ∈ Q

(0)
u,i

}
. (4.58)

Repeat the following steps for each k > 0:

1. Predict the current subspace and calculate the projection matrix Pu,i[n, k] in Equation (4.39).

2. Project the correlated codebook onto the orthogonal complement of span
(
H̃(p)
u,i [n, k]

)
to

determine the tangent codebook matching the structure of the error tangent correlation matrix
C(t)
u,i[n, k] defined in (4.48)

Q(t)
u,i[n, k] =

{
Pu,i[n, k]Qj

∣∣∣ ∀Qj ∈ Q(corr)
u,i

}
⊂ T

(
H̃(p)
u,i [n, k]

)
. (4.59)

3. Calculate two scaled codebooks to track the scaling of C(t)
u,i[n, k]

Q(t)
−,u,i[n, k] =

{
gs− Q(t)

j

∣∣ ∀Q(t)
j ∈ Q

(t)
u,i[n, k]

}
, (4.60)

Q(t)
+,u,i[n, k] =

{
gs+ Q(t)

j

∣∣ ∀Q(t)
j ∈ Q

(t)
u,i[n, k]

}
, (4.61)

s− = su,i[n, k − 1]− 1, s+ = min (su,i[n, k − 1] + 1, 0) . (4.62)

4. Project the obtained tangent codebooks onto the manifold to obtain two Grassmannian code-
books Q−,u,i[n, k] and Q+,u,i[n, k]. This is achieved with the geodesic Γ (·) defined in (C.11)

Q−,u,i[n, k] =
{

Γ
(
H̃(p)
u,i [n, k],Q(t)

j , 1
) ∣∣∣∣∀Q(t)

j ∈ Q
(t)
−,u,i[n, k]

}
, (4.63)

Q+,u,i[n, k] =
{

Γ
(
H̃(p)
u,i [n, k],Q(t)

j , 1
) ∣∣∣∣∀Q(t)

j ∈ Q
(t)
+,u,i[n, k]

}
. (4.64)
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5. Quantize the observed subspace H̃u,i[n, k] with respect to both Grassmannian codebooks

Q− = argmin
Qj∈Q−,u,i[n,k]

d2
c

(
H̃u,i[n, k],Qj

)
, d− = d2

c

(
H̃u,i[n, k],Q−

)
, (4.65)

Q+ = argmin
Qj∈Q+,u,i[n,k]

d2
c

(
H̃u,i[n, k],Qj

)
, d+ = d2

c

(
H̃u,i[n, k],Q+

)
. (4.66)

6. Determine the ”winning” codebook, i.e., the one with minimum quantization error

w = argmin
i∈{−,+}

di. (4.67)

7. Determine the quantized channel subspace and update the codebook scale parameter

Ĥu,i[n, k] = Qw ∈ Qw,u,i[n, k], su,i[n, k] = sw. (4.68)

8. Feedback the indices of Qw and sw.

The tangent codebook obtained in step 2 of the algorithm is equal in distribution to the error tangent
specified by Equations (4.45) and (4.48), despite a scaling factor. The codebook scale parameter

su,i[n, k] is employed to track the scaling
(
σe[n,k]
λu,i[n,k]

)2
of C(t)

u,i[n, k], by determining the appropriate
up- or down-scaling of the codebook scale parameter in steps 3 and 6 of the algorithm. The ratio of
the scaling between two consecutive time instants is given by

gsu,i[n,k]

gsu,i[n,k−1] = g±1. (4.69)

Thus, the tracking speed of the algorithm is determined by the variance growth rate g; increasing g
causes a faster tracking speed, but also a larger steady state tracking error. The optimal value of g is
determined by means of simulations in my corresponding publication [91], where it is shown that the
optimum depends on the subspace dimension, but the sensitivity of the algorithm to the calibration of
g is not strongly pronounced. In this publication also the accuracy of the approximation of the error
tangent statistics in (4.45) is evaluated, demonstrating that the estimated tangent variance fits well to
the observed variance up to very high channel Doppler frequencies.

The feedback overhead of the proposed quantization algorithm is b+ 1 bits per quantization instant.
The 1 bit overhead is caused by the codebook scale parameter that must be signaled to the decoder
as additional side-information. The same prediction algorithm is employed at the encoder and at
the decoder, such that both sides are able to calculate the two scaled codebooks Q−,u,i[n, k] and
Q+,u,i[n, k]. With the feedback information, i.e., the indices of Qw and sw, the quantized channel
subspace Ĥu,i[n, k] and the scale parameter su,i[n, k] can therefore be reproduced by the decoder.
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Prediction algorithm: The Grassmannian quantization algorithm proposed in the previous para-
graph is based on the availability of a prediction H̃(p)

u,i [n, k] of the current channel subspace, to
calculate a quantization codebook that is matched to the temporal evolution of the subspace. The
prediction algorithm must be based on quantized CSI to enable the prediction at the encoder and
at the decoder. Trivially, the previously quantized subspace can be employed as a prediction
H̃(p)
u,i [n, k] = Ĥu,i[n, k − 1], leading to a differential quantizer as proposed in [78]. Better perfor-

mance can be achieved with a more sophisticated prediction. One possibility is to implement the
prediction directly on the Grassmann manifold, e.g., by means of a linear predictor

H̃(p)
u,i [n, k] =

Np∑
j=1

Ĥu,i[n, k − j] aj . (4.70)

In general, the obtained prediction H̃(p)
u,i [n, k] is not compatible with the considered semi-unitary

matrix representation of points on G (Ni,Mu,i), which could be resolved by applying an SVD
decomposition after linear prediction to determine the corresponding subspace. With this approach,
however, an optimal solution for the filter coefficients is hard to obtain.

This difficulty can be avoided by predicting the tangent T
(
Ĥu,i[n, k − 1], H̃u,i[n, k]

)
between the

quantized subspace Ĥu,i[n, k − 1] at time instant k − 1 and the observed subspace H̃u,i[n, k] at
time instant k. With the geodesic defined by this predicted tangent, a subspace prediction H̃(p)

u,i [n, k]
can indirectly be obtained. In the tangent space well known prediction algorithms from Euclidean
geometry can be reused. Although statistical models for the temporal evolution of the channel matrix
exist, there are no corresponding models for the temporal evolution of tangents available. Due to the
highly nonlinear relationship between subspaces and tangents, it is difficult to derive such a model.
Instead, predictors that are not based on an underlying channel model are proposed in this dissertation.
For one-dimensional subspaces adaptive finite impulse response (FIR) filters are employed, while a
regression model is considered for higher dimensional subspaces. The adaptive filtering approach is
not used for higher dimensional subspaces, due to the large number of filter coefficients required to
achieve an accurate prediction and the corresponding slow filter convergence speed.

The basic idea of regression based prediction is proposed by Zhang et.al. for one-dimensional
subspaces in [82] under the name robust Grassmannian prediction. Its extension to higher dimensional
subspaces is straightforward and is conducted in my publication [90]; the interested reader is referred
to this publication for details. The basic idea is to apply a linear regression to the tangents observed
over multiple time instants and to predict the current tangent based on this regression. Compared to
the adaptive filter based approach proposed below, the regression has the advantage that the filter
convergence phase of the adaptive filter is omitted, despite a slightly reduced prediction performance
as shown in Section 4.2.3.

Adaptive filter based prediction of one-dimensional subspaces: The following predictor is
derived for a prediction on the Grassmann manifold G (Ni, 1). An auto-regressive model of order
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Np is considered to describe the temporal evolution of the tangent random process. The prediction
is based on quantized CSI. The tangent describing the geodesic between the quantized channel
subspaces ĥu,i[n, k − 1] and ĥu,i[n, k] at consecutive time instants is denoted

t(q)
u,i [n, k] = T

(
ĥu,i[n, k − 1], ĥu,i[n, k]

)
∈ T

(
ĥu,i[n, k − 1]

)
. (4.71)

At time instant k, a prediction h̃(p)
u,i [n, k] of the subspace h̃u,i[n, k] is required by the quantizer to

calculate the quantization codebook. This prediction is obtained indirectly by first predicting the
tangent tu,i[n, k] = T

(
ĥu,i[n, k − 1], h̃u,i[n, k]

)
using a linear predictor of order Np

t(p)
u,i [n, k] =

Np∑
j=1

t̄(q)
u,i [n, k − j] a

(j)
u,i[n, k] = T(q)

u,i [n, k]au,i[n, k], (4.72)

T(q)
u,i [n, k] =

[
t̄(q)
u,i [n, k − 1], . . . , t̄(q)

u,i [n, k −Np]
]
∈ T

(
ĥu,i[n, k − 1]

)
, (4.73)

au,i[n, k] =
[
a

(1)
u,i [n, k], . . . , a(Np)

u,i [n, k]
]T
. (4.74)

A linear combination of tangent vectors as in (4.72) is only meaningful if the tangents are defined
in the same tangent space. Hence, the tangents t(q)

u,i [n, k − i], i ∈ {1, . . . , Np} cannot directly
be employed in (4.72). Instead, it is necessary to transport the geometric information contained
in t(q)

u,i [n, k − i] from the respective tangent space T
(
ĥu,i[n, k − i − 1]

)
to the current position

T
(
ĥu,i[n, k − 1]

)
. This is enabled by means of parallel transport as defined in Equation (C.12).

Thus, parallel transported versions t̄(q)
u,i [n, k − i] of the previously observed tangents t(q)

u,i [n, k − i]
are employed in (4.72). This is achieved by updating the matrix T(q)

u,i [n, k] at each time instant k, as
soon as ĥu,i[n, k] is observed, as follows:

1. Circularly shift the columns of T(q)
u,i [n, k] by one to the right.

2. Calculate the tangent t(q)
u,i [n, k] and replace the first column of T(q)

u,i [n, k] with t(q)
u,i [n, k].

3. Parallel transport the columns of T(q)
u,i [n, k] along the geodesic defined by t(q)

u,i [n, k] from
T
(
ĥu,i[n, k − 1]

)
to T

(
ĥu,i[n, k]

)
, using (C.12).

[
T(q)
u,i [n, k + 1]

]
:,j

= Π
(

ĥu,i[n, k − 1], ĥu,i[n, k],
[
T(q)
u,i [n, k]

]
:,j

)
. (4.75)

The predictor coefficients au,i[n, k] are trained with a stochastic gradient algorithm, namely the
normalized least mean squares algorithm [149]. Defining the tangent prediction error at time k as

e(p)
u,i [n, k] = t(q)

u,i [n, k]− t(p)
u,i [n, k] = t(q)

u,i [n, k]−T(q)
u,i [n, k]au,i[n, k], (4.76)
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Figure 4.1.: Structure of the Grassmannian subspace quantizer visualizing the different components.

the filter coefficient update rule is obtained as

au,i[n, k + 1] = au,i[n, k] + µ
T(q)
u,i [n, k]H∥∥∥T(q)
u,i [n, k]

∥∥∥2 e(p)
u,i [n, k]. (4.77)

The step size µ, determining the trade-off between the filter convergence speed and the steady-state
MSE, has to satisfy 0 < µ < 2 for convergence [149]. Notice that the error (4.76) is calculated
with the tangent t(q)

u,i [n, k] obtained from the quantized subspace ĥu,i[n, k] and not from the actual
subspace h̃u,i[n, k]. Therefore, the accuracy of the prediction of h̃u,i[n, k] is impacted by the
quantization error. This approach is necessary to enable the prediction at the decoder, which has only
access to quantized CSI.

In Figure 4.1, a schematic of the concatenation of the proposed quantization, prediction and codebook
generation methods is illustrated, visualizing the interplay between the different components. The
quantized subspace is passed from the quantizer to the predictor at both ends of the feedback link
to enable the prediction of the next subspace. Based on this prediction and on information about
the previously employed codebook scaling, a new quantization codebook is calculated that spans a
certain volume on the Grassmann manifold around the predicted subspace. Over a dedicated feedback
channel the quantized CSI is passed from the encoder to the decoder in form of the codebook index
and the scale index. This information is sufficient for the decoder to reconstruct the quantized channel
subspace and to prepare the codebook for the next time instant.

4.2.3. Evaluation of the Quantization MSE

In this section, the performance of the proposed Grassmannian quantization algorithms is investigated
by means of Monte-Carlo simulations. The chordal distance MSE as defined in Equation (4.26),
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Figure 4.2.: MSE performance comparison of the proposed predictive Grassmannian quantizer using different prediction algorithms.

providing a natural distance measure for points on the Grassmannian, is employed as performance
metric. The chordal distance also determines the achievable rate loss of BD based MU-MIMO with
quantized CSIT compared to perfect CSIT; see Section 4.3 for details.

In the first simulation, predictive Grassmannian quantization on G (4, 1) is considered using the
quantization codebook sizes Q ∈ {8, 32, 128} which translates to a CSI feedback overhead of
b ∈ {3, 5, 7}+ 1 bit, due to the 1 bit overhead caused by the codebook scale index. The performance
of differential quantization [78], robust Grassmannian prediction [82] and the adaptive filter based
prediction proposed in the previous section is compared. The temporal correlation is determined by
Clarke’s model as described in Section 2.4. The results are plotted in dependency of the normalized
channel Doppler frequency νd defined in Equation (3.33). The appropriate lengthNp of the prediction
filter is determined by the channel correlation according to Clarke’s model. The length is set as

Np = min
(⌈ 1.5

2πνd

⌉
, 20
)
, (4.78)

employing past values with a correlation of ≥ 0.5 for prediction, where the argument of the Bessel
function determining the correlation in Clarke’s model is approximately 1.5 [112]. The maximum
filter length is restricted to 20 taps to achieve moderate complexity and a reasonable filter convergence
speed. The channel gain matrix (2.11) is assumed as an identity matrix.

The results of the simulation are shown in Figure 4.2a. The performance of the quantizer is strongly
dependent on the Doppler frequency, which determines the channel correlation according to (2.13).
With increasing Doppler frequency the channel correlation is reduced, leading to a larger prediction
error and thus to an increased variance of the error tangent Tu,i[n, k]. It can be seen that the slope
of the MSE achieved with the adaptive filter based predictor and the robust predictor is similar.
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Differential quantization is significantly outperformed by predictive quantization if the channel
correlation is sufficiently large, i.e., at low Doppler frequencies. Notice though that this observation
depends on the considered channel model. In [78] it is observed that quantizers using higher order
prediction do not achieve a gain over differential quantizers in case the temporal channel evolution is
determined by an autoregressive model of order 1. This is evident, because in this case the current
channel is obtained by adding i.i.d. noise to the previous channel realization; as the i.i.d. noise cannot
be predicted, the best approach is to use the previous quantized observation as prediction. Comparing
adaptive prediction and robust prediction, it can be seen that the adaptive filter is able to extract a
prediction gain already at higher Doppler frequencies. With a similar or even slightly improved slope,
this gain is maintained over the full range of considered Doppler frequencies. The gain is achieved
because the adaptive filter adjusts to the temporal statistics of the tangents, in contrast to the tangent
regression model employed by [82], which does not exploit any statistical information.

Similar observations are obtained if quantization of higher dimensional subspaces is investigated.
In Figure 4.2b, the quantization performance on G (8, 2) is shown. In this case, a CSI feedback
overhead of 7 bit and 11 bit is considered. A comparison of differential quantization and predictive
quantization is conducted. The predictive quantizers employ the robust prediction algorithm of [90].
Again it is observed that a larger MSE slope is achieved with predictive quantization compared
to differential quantization, leading to a significantly reduced quantization error at low Doppler
frequencies. The gain obtained by jointly quantizing all subspace dimensions (denoted as matrix
quantization) is investigated by comparing to an individual quantization of the subspace dimensions
(vector quantization). In case of matrix quantization, a matrix codebook of size Qm ∈ {64, 1024}
is employed, while with vector quantization the codebook size has to be reduced to Qv ∈ {6, 23}
to achieve the same feedback overhead of log2 (64) + 1 ≈ 2 (log2 (6) + 1) ≈ 7 bit respectively
11 bit. Due to the reduced codebook size, individual quantization of the subspace dimensions is
outperformed by joint quantization. With a growing subspace dimension the performance difference
is also increased.

In the next simulation, the effect of different channel gains experienced in a DAS on the quantization
performance is considered, by assuming a channel gain matrix of the form

Cu,i = diag (1, 1, 1, 1, γs, γs, γs, γs) ,

with γs ∈ [0, 1]. Effectively this causes a gradual switching from the quantization on G (4, 1) to
G (8, 1). A codebook size ofQ = 16 is assumed. The performance of memoryless quantization, using
the correlated RVQ codebook proposed in Equation (4.27), is compared to the MSE of predictive
quantization, employing adaptive filter based prediction. The obtained quantization MSE is shown
in Figure 4.3. It can be seen how the quantizers adapt to the varying channel gains. With decreasing
γs the quantization MSE is improved from the pure 8× 1 performance at γs = 1 to the pure 4× 1
curve at γs = 0. Also, the performance improvement of predictive quantization over memoryless
quantization at low to moderate Doppler frequencies is demonstrated in Figure 4.3.
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4.3. Extension to Systems with Excess Antennas

The performance of ZF beamforming and BD precoding based MU-MIMO with quantized CSIT has
been studied thoroughly in the literature, for the case that the number of data streams per user `u,i[k]
is equal to the number of receive antennas Mu,i. It is shown in [45] that the CSI feedback overhead
of ZF beamforming must be scaled linearly with the logarithmic SNR (the SNR in [dB]) to achieve
the same multiplexing gain as in a system with perfect CSIT. A similar bit-scaling law is determined
in [46] for BD precoding to multiple users, if the number of data streams per user is equal to the
number of receive antennas. In [85], the results of [45] on ZF beamforming are extended to the case
that the users are equipped with multiple receive antennas. An efficient antenna combining algorithm
denoted as quantization based combining (QBC) is proposed, which exploits the excess antennas
to minimize the CSI quantization error. With this strategy a significant reduction of the residual
multi-user interference is achieved, implying a reduced slope of the feedback bit-scaling law.

In this section, the QBC algorithm of [85] is extended to multiple data-streams per user via BD
precoding, for the case that the number of data streams per user is less than or equal to the number of
receive antennas, i.e., `u,i[k] ≤Mu,i. The performance of the obtained subspace quantization based
combining (SQBC) algorithm is investigated analytically by deriving the statistics of the Gramian of
the effective channel when including the antenna combiner. An upper bound on the rate loss of a
BD system employing SQBC with quantized CSIT compared to a BD system with perfect CSIT is
derived. It is shown that this bound generalizes the previous results [45, 46, 85]. The corresponding
scaling law of the feedback overhead to achieve the same multiplexing gain as a system with perfect
CSIT is calculated. Depending on the number of data streams per user, the slope of the bit-scaling
law is significantly reduced compared to BD without antenna combining.

To set the basis for the proposed antenna combining algorithm, previous results on the rate loss of ZF
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and BD precoding systems with quantized CSIT are summarized in Section 4.3.1. The SQBC strategy,
derived and analyzed in Section 4.3.2, is compared to a conventional antenna combining method,
namely maximum eigenmode transmission (MET), which considers maximization of the effective
channel gain of a user. The performance of MET with quantized CSIT is evaluated in Section 4.3.3
by deriving an upper bound on the rate loss with respect to perfect CSIT. Although MET provides an
advantage in case of perfect CSIT, a significant throughput improvement is obtained with SQBC in
interference-limited scenarios if a reasonable CSI feedback overhead is considered. The RE index
[n, k] is partly omitted for intermediate steps and auxiliary variables to shorten notations.

4.3.1. Summary of Previous Results

Important results that assess the sensitivity of special cases of BD based MU-MIMO systems with
respect to the CSI quantization error are summarized below under the assumption of i.i.d. Rayleigh
fading channels, i.e., [Hu,i[n, k]]n,m ∼ NC (0, γu,i), with γu,i denoting the macroscopic fading loss.
A symmetric system is investigated where all users have the same number of antennas and receive an
equal number of data streams `u,i = L, ∀u. The schedule Si[n, k] is supposed to be time independent,
constantly serving the same set of Si = Ni

L users in parallel (supposed to be integer-valued). CSI
quantization is achieved with an RVQ quantization codebook.

ZF beamforming with L = Mu,i = 1: The gap between the per-user transmission rate achieved
with ZF beamforming based on perfect CSIT (see Equation (4.16)) and the rate of ZF beamforming
with quantized CSIT (see Equation (4.25)) employing RVQ is upper-bounded by [45]

RZF −RZF-Quant ≤ log2

(
1 + Pi γu,i

σ̃2
z

D

)
, D = 2−

b
Ni−1 , (4.79)

with D being the average distortion achieved with RVQ. To maintain a bounded rate gap, the number
of feedback bits b must be scaled linearly with the logarithmic SNR, with a slope that is determined
by the number of transmit antennas Ni.

BD precoding with L = Mu,i ≥ 1: The performance of “pure” BD precoding without antenna
combining is investigated in [46]. The number of streams L per user is here equal to the number
of receive antennas Mu,i. The per-user rate gap between BD precoding with perfect CSIT and BD
precoding with quantized CSIT is upper-bounded by

RBD −RBD-Quant ≤Mu,i log2

(
1 + Pi γu,i

σ̃2
zMu,i

D

)
, D = CBD 2−

b
Mu,i(Ni−Mu,i) . (4.80)

As before it is observed that the number of feedback bits must be scaled linearly with the SNR in [dB]
to maintain a bounded rate gap, with a slope that depends on both Ni and Mu,i. The constant CBD is
specified in [159]. Setting L = Mu,i = 1 this bound reduces to the result of [45].
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ZF beamforming with L = 1,Mu,i ≥ 1 and receive antenna combining: ZF beamforming
with multiple receive antennas is considered in [85]. The QBC antenna combiner proposed in [85]
results in an effective channel that can be quantized with minimal quantization error, given the
quantization codebook Qu,i. In that way, the expected residual multi-user interference is minimized
without requiring knowledge about the interference statistics. On the downside, the gain of the
effective channel is reduced when applying QBC, causing a loss in the received power of the intended
signal. Still, in interference limited scenarios this power-loss is outweighed by the reduction of the
multi-user interference. The rate gap between ZF beamforming with M (ZF)

u,i = 1 and perfect CSIT
and ZF beamforming with Mu,i > 1 employing QBC and quantized CSIT is bounded by

RZF −R
(Mu,i)
QBC ≤ log2

(
1 + Pi γu,i

σ̃2
z

Ni −Mu,i + 1
Ni

D

)
+ log2 (e)

Ni−1∑
`=Ni−Mu,i+1

1
`
, (4.81)

with D being proportional to 2−
b

Ni−Mu,i as specified in [85]. Hence, with Mu,i > 1, the distortion is
reduced compared to Equation (4.79). The superscript (Mu,i) is employed to highlight the important
dependency of the performance of QBC on the number of available receive antennas. In contrast to
the other bounds considered above, a constant residual rate loss (the second summand) is caused
by the application of QBC, which does not depend on the quantization accuracy and thus cannot be
reduced by increasing the feedback overhead. This loss is caused by the reduced channel gain of
QBC compared to the single receive antenna system. With Mu,i = 1 the result of [45] is recovered.

4.3.2. Subspace Quantization based Combining

Considering the list of previous work on theoretical performance bounds for ZF and BD MU-MIMO
with limited feedback presented in the previous section, it is noticed that the general case of BD
precoding with 1 ≤ `u,i[k] ≤ Mu,i and receive antenna combining is not evaluated. This general
case is investigated below by first extending the QBC method to multi-stream transmission per user
and then deriving an upper-bound on the rate loss compared to perfect CSIT, generalizing the results
of [45, 46, 85] presented above.

SQBC algorithm: The proposed antenna combiner is designed such as to generate an effective
channel that can be quantized with minimal subspace quantization error, given the quantization
codebook Qu,i[n, k] and the number of streams `u,i[k], that is,{

G(SQBC)
u,i [n, k], Ĥ(SQBC)

u,i [n, k]
}

= argmin
G,Qj

d2
c

(
Heff
u,i[n, k],Qj

)
= argmin

G,Qj

d2
c (Hu,i[n, k]G,Qj) ,

subject to: G ∈ CMu,i×`u,i[k], GHG = I`u,i[k],

Qj ∈ Qu,i[n, k] =
{
Qj ∈ CNi×`u,i[k]|QH

j Qj = I`u,i[k], j ∈ {1, . . . , 2b}
}
.
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Considering any Qj ∈ Qu,i[n, k], a decomposition into its range space and left null space components
with respect to Hu,i[n, k] can be applied, using an orthonormal basis Bu,i for span (Hu,i[n, k])

Qj = Q(R)
j + Q(N)

j , (4.82)

Q(R)
j = Hu,i[n, k]

(
Hu,i[n, k]HHu,i[n, k]

)−1
Hu,i[n, k]HQj = Bu,iBH

u,iQj , (4.83)

Q(N)
j =

(
INi −Bu,iBH

u,i

)
Qj , (4.84)

span (Bu,i) = span (Hu,i[n, k]) , Bu,i ∈ CNi×Mu,i , BH
u,iBu,i = IMu,i . (4.85)

As Q(R)
j is in the range space of Hu,i[n, k], it is possible to find an antenna combiner Gu,i[n, k]

such that the effective channel spans the same space as Q(R)
j , i.e., span

(
Hu,i[n, k]Gu,i[n, k]

)
=

span
(
Q(R)
j

)
. On the other hand, the subspace distance to the component Q(N)

j in the orthogonal
complement of span

(
Hu,i[n, k]

)
cannot be reduced with antenna combining. Hence, with appropriate

antenna combining, the subspace quantization error is only determined by Q(N)
j , and the minimal

quantization error is obtained with that Qj that is closest to the range space of Hu,i[n, k].

Theorem 4.1 (Subspace Quantization Based Combining). An `u,i[k] ≤Mu,i dimensional subspace
of a channel matrix Hu,i[n, k] ∈ CNi×Mu,i is to be quantized with a given quantization codebook

Qu,i[n, k] =
{
Qj ∈ CNi×`u,i[k]|QH

j Qj = I`u,i[k], j ∈ {1, . . . , 2b}
}
. (4.86)

Applying an antenna combiner to generate an effective channel of dimensionNi×`u,i[k], the minimal
quantization error that can be obtained and the corresponding quantized channel subspace are

d2
c,SQBC[n, k] = min

Qj∈Qu,i[n,k]

∥∥Q(N)
j

∥∥2 = min
Qj∈Qu,i[n,k]

tr
(
(Q(N)

j )HQ(N)
j

)
= min

Qj∈Qu,i[n,k]
`u,i[k]− tr

(
BH
u,iQjQH

j Bu,i

)
= min

Qj∈Qu,i[n,k]
d2

c (Hu,i[n, k],Qj) , (4.87)

Ĥ(SQBC)
u,i [n, k] = argmin

Qj∈Qu,i[n,k]
d2

c (Hu,i[n, k],Qj) , (4.88)

with span (Bu,i) = span (Hu,i[n, k]) , BH
u,iBu,i = IMu,i . The corresponding receive antenna

combiner, generating the effective channel that achieves this error, is obtained from the conditions

span
(
Hu,i[n, k]G(SQBC)

u,i [n, k]
) != span

(
(Bu,iBH

u,i)Ĥ
(SQBC)
u,i [n, k]

)
, (4.89)

(G(SQBC)
u,i [n, k])HG(SQBC)

u,i [n, k] != I`u,i[k]. (4.90)

A formal proof of this theorem is provided in Appendix F.1. Notice that the quantization metric (4.88)
is independent of the antenna combiner. Hence, it is not necessary for CSI quantization to calculate
the combiner for each Qj , providing an advantage in terms of computational complexity.
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A solution for the antenna combiner obtained from the conditions stated in Theorem 4.1 is unique only
up to right-multiplication with any unitary `u,i[k]× `u,i[k] matrix. In the following a specific solution
is derived that enables further investigations on the channel statistics; an equivalent alternative
solution is provided in my publication [92]. The condition (4.89) can be written as

Hu,i[n, k]G(SQBC)
u,i [n, k] = (Bu,iBH

u,i)Ĥ
(SQBC)
u,i [n, k]K̃u,i, (4.91)

with an appropriate full-rank matrix K̃u,i ∈ C`u,i[k]×`u,i[k]. The orthonormal basis Bu,i can be chosen
such that the first `u,i[k] columns of Bu,i correspond to the range space component of Ĥ(SQBC)

u,i [n, k]
with respect to Hu,i[n, k] and the remainingMu,i−`u,i[k] columns are orthogonal to Ĥ(SQBC)

u,i [n, k]

BH
u,iĤ

(SQBC)
u,i [n, k] = Wu,iRu,i =

[
I`u,i
0

]
Ru,i, (4.92)

Wu,i ∈ CMu,i×`u,i[k], Ru,i ∈ C`u,i[k]×`u,i[k].

The channel Hu,i[n, k] is decomposed in terms of Bu,i, resulting in Hu,i[n, k] = Bu,iDu,i with
Du,i = BH

u,iHu,i[n, k] ∈ CMu,i×Mu,i . With these decompositions the solution for G(SQBC)
u,i [n, k] is

obtained as

G(SQBC)
u,i [n, k] = Hu,i[n, k]†Bu,iWu,i Ru,iK̃u,i︸ ︷︷ ︸

Ku,i

= D−1
u,iWu,iKu,i. (4.93)

The undetermined matrix Ku,i of size `u,i[k]× `u,i[k] is obtained by invoking condition (4.90)

(G(SQBC)
u,i [n, k])HG(SQBC)

u,i [n, k] = KH
u,i

(
WH

u,i

(
Du,iDH

u,i

)−1
Wu,i

)
Ku,i

!= I`u,i[k], (4.94)

⇒ Ku,i =
(

WH
u,i

(
BH
u,iHu,i[n, k]Hu,i[n, k]HBu,i

)−1
Wu,i

)−1/2
∈ C`u,i[k]×`u,i[k]. (4.95)

With this solution, the effective channel employing SQBC is given by

Heff
u,i[n, k] = Hu,i[n, k]G(SQBC)

u,i [n, k] = Bu,iWu,iKu,i = H̃u,i[n, k]Ku,i. (4.96)

Channel statistics: To derive statements about the statistics of the effective channel obtained with
SQBC, and to develop the throughput bound of the rate loss incurred with quantized CSIT compared
to perfect CSIT, it is necessary to impose additional assumptions on the channel Hu,i[n, k] and the
quantization codebook Qu,i[n, k]. Specifically, in the following two paragraphs the channel matrix
is assumed as i.i.d. Rayleigh fading, i.e., [Hu,i[n, k]]n,m ∼ NC (0, γu,i), and RVQ is employed for
channel subspace quantization. Also, the number of streams per user is assumed as time independent
`u,i[k] = `u,i.
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Lemma 4.1. The subspaces spanned by the effective channels Heff
u,i[n, k], ∀u are statistically inde-

pendent and isotropically (uniformly) distributed on G (Ni, `u,i).

Proof. From (4.89) it is known that the subspace spanned by Heff
u,i[n, k] is determined by the pro-

jection of the best quantization matrix Ĥu,i[n, k] onto span (Hu,i[n, k]). Since the quantization
matrices are isotropically distributed on G (Ni, `u,i), their projections onto span (Hu,i[n, k]) are
isotropically distributed within this subspace. This holds also true for the best quantization matrix,
since it is chosen based solely on the Frobenius norm of the null space component. Furthermore, the
subspace span (Hu,i[n, k]) itself is isotropically distributed on G (Ni,Mu,i), since we assume i.i.d.
Rayleigh fading. Therefore, span

(
Heff
u,i[n, k]

)
is isotropically distributed on G (Ni, `u,i). Finally,

the quantization codebooks and channels of different users are statistically independent, implying
statistical independence of Heff

1,i[n, k], . . . ,Heff
Si,i

[n, k].

Lemma 4.2. The Gramian of the effective channel (Heff
u,i[n, k])HHeff

u,i[n, k] is complex Wishart
distributed of dimension `u,i, with Ni −Mu,i + `u,i degrees of freedom and identity scale matrix

(Heff
u,i[n, k])HHeff

u,i[n, k] ∼ WC
`u,i

(
Ni −Mu,i + `u,i, γu,i I`u,i

)
. (4.97)

The proof of this lemma is provided in Appendix F.2.

Throughput analysis: Utilizing the results of the previous paragraph, it is possible to derive an
upper bound on the rate loss of BD precoding with quantized CSIT and excess receive antennas
Mu,i ≥ `u,i, with respect to BD precoding with perfect CSIT but having no excess antennas at the
receivers, i.e., M (BD)

u,i = `u,i. In case of excess antennas, it is assumed that the users employ SQBC
antenna combining to determine the channel subspace feedback according to the quantization metric
in Theorem 4.1. The quantized CSIT is used by the base station to calculate the precoders from (4.4)
and (4.22), respectively. The same symmetric scenario as in Section 4.3.1 is considered, i.e., all Si
users are equipped with the same number of Mu,i receive antennas and are served over the same
number of `u,i = L data streams. An RVQ quantization codebook is employed for quantization of
the effective channel subspace.

According to (4.16), the achievable user rate of BD with perfect CSIT and no excess antennas is

R
(L)
BD = E log2 det

(
IL + ρHu,i[n, k]HF̃u,i[n, k]F̃u,i[n, k]HHu,i[n, k]

)
, ρ = Pi

σ̃2
z Si L

, (4.98)

with Hu,i[n, k] = Heff
u,i[n, k] because M (BD)

u,i = L. The expected value is calculated with respect to
the channel and the precoder. Similarly, with quantized CSIT, L ≤Mu,i data streams and application
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of SQBC antenna combining, the achievable rate is obtained as

R
(L,Mu,i)
SQBC = E log2 det

IL + ρ
Si∑
s=1

Heff
u,i[n, k]HF̃s,i[n, k]F̃s,i[n, k]HHeff

u,i[n, k]



−E log2 det

IL + ρ
Si∑

s=1,s 6=u
Heff
u,i[n, k]HF̃s,i[n, k]F̃s,i[n, k]HHeff

u,i[n, k]

 , ρ = Pi
σ̃2
z Si L

, (4.99)

with Heff
u,i[n, k] being determined by Equation (4.96). Here, the expected value is additionally

calculated over quantization codebook realizations. Similar to the bounds proposed in [45, 46, 85],
i.e., Equations (4.79) to (4.81), the throughput loss R(L)

BD −R
(L,Mu,i)
SQBC can be upper bounded:

Theorem 4.2 (SQBC rate loss). Consider a broadcast system with Ni transmit antennas, Mu,i

receive antennas per user and transmit power Pi. The system serves Si users with L ≤Mu,i streams
each, over i.i.d. Rayleigh fading channels with additive Gaussian receiver noise of variance σ̃2

z . The
per-user throughput loss of BD precoding employing SQBC with quantized CSIT compared to BD
precoding with perfect CSIT, but having only M (BD)

u,i = L receive antennas, is upper bounded by

R
(L)
BD −R

(L,Mu,i)
SQBC ≤ L log2

(
1 + ρ γu,i

Ni −Mu,i + L

Ni − L
(Si − 1)D

)

+ log2 (e)
L−1∑
k=0

Ni−1∑
`=Ni−Mu,i+L

1
`− k

, ρ = Pi
σ̃2
z Si L

. (4.100)

Here, the average quantization distortion in terms of subspace chordal distance achieved with RVQ
is denoted D and the macroscopic pathloss is considered in γu,i.

The proof of this theorem is provided in Appendix F.3. As can be seen from (4.87), the relevant
distortion D for SQBC is the distortion achieved when quantizing subspaces from G (Ni,Mu,i)
using a quantization codebook with entries from G (Ni, L). This quantization problem is considered
in [159]. It is shown in [159], that the average distortion with random isotropically distributed
quantization codebooks, i.e., RVQ, is obtained as

D = E
(
d2

c,SQBC

)
≈ CSQBC 2−

b
L(Ni−Mu,i) , (4.101)

with CSQBC being a function of L, Ni and Mu,i as specified in [159, Eqs. (8) and (11)]3, and 2b being
the size of the codebook. By setting appropriate values for L, Ni and Mu,i and considering the case
Si = Ni

L it can be verified that (4.79), (4.80) and (4.81) are contained in (4.100).

3For random quantization the upper bound of [159, Eq. (11)] is relevant; the O(1) term is omitted.
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Discussion of the bound: The upper bound on the rate loss in (4.100) is composed of two sum-
mands capturing distinct effects of the SQBC antenna combiner. The second summand, which is ab-
breviated by ∆a, is independent of the quantization accuracy D. From the argumentation in the proof
in Appendix F.3, it follows that ∆a gives a tight upper bound on the rate loss R(L)

BD −R
(L,Mu,i)
SQBC for the

case of perfect CSIT (b→∞, D → 0) and ρ γu,i →∞, i.e., at high SINR. This high SINR rate loss
is caused by the reduction of the effective channel gain due to the antenna combiner. Specifically, for
BD with M (BD)

u,i = L, the term Heff
u,i[n, k]HHeff

u,i[n, k] is distributed according toWC
L (Ni, γu,i IL),

while it is shown in Lemma 4.2 that it is distributed asWC
L (Ni −Mu,i + L, γu,i IL) for SQBC. This

loss in DoF of the Wishart distribution is the cause for the constant rate offset ∆a. Hence, SQBC
is disadvantageous if the CSI quantization accuracy is already very high. In this case, it is better to
invest the available DoF provided by the Mu,i ≥ L antennas to obtain a large effective channel gain,
instead of further reducing the quantization error.

The more important insights for limited feedback systems are captured in the first summand of (4.100)
(abbreviated by ∆b). If b is fixed, this term grows to infinity as the SNR increases, meaning that the
system becomes interference limited. If b is scaled with the SNR, however, the rate gap can be kept
constant and a multiplexing gain of Ni can be achieved. Assuming Si = Ni

L the necessary feedback
bit scaling is determined by setting ∆b equal to a constant rate loss ∆R in [bits/s/Hz]

b = L (Ni −Mu,i)
(

log2

(
Pi
σ̃2
z

γu,i
Ni

)
+ log2

(
Ni −Mu,i + L

L
CSQBC

)
− log2

(
2

∆R
L − 1

))
.

(4.102)

The important insight is the growth-rate of the number of feedback bits with the SNR βdB in [dB]

db

dβdB
= L (Ni −Mu,i)

log2 (10)
10 ≈ L (Ni −Mu,i)

3 , βdB = 10log10

(
Pi
σ̃2
z

)
.

It can be seen that the slope of the feedback overhead with SNR grows linearly with the number
of streams L, and reduces with the number of receive antennas Mu,i. Hence, having more receive
antennas with a fixed L the CSI feedback overhead can be decreased. Still, this does not give the full
picture, because varying L and/or Mu,i also impacts the absolute achievable throughput.

To investigate this influence, the high SINR sum rate difference between two SQBC systems with
the same Ni and L, but different Mu,i ∈ {M1,M2} is determined. This rate difference is obtained
from (4.100) by considering the bound on R(L)

BD −R
(L,M2)
SQBC −

(
R

(L)
BD −R

(L,M1)
SQBC

)
at high SINR

∆R(M1,M2) = Ni

L

(
R

(L,M1)
SQBC −R(L,M2)

SQBC

)
= Ni

L
log2 (e)

L−1∑
k=0

Ni−M1+L−1∑
`=Ni−M2+L

1
`− k

, (4.103)

which results in a positive rate loss if M2 > M1. Thus, in contrast to most conventional antenna
combining strategies, if SQBC is employed with perfect CSIT, a rate reduction is incurred at high
SINR with growing number of receive antennas Mu,i. Similarly, it can be shown that the sum rate
of SQBC is improved if the number of streams per user is increased and the number of users is
correspondingly decreased; see [93] for details.

74



4.3. Extension to Systems with Excess Antennas

4.3.3. Maximum Eigenmode Transmission

In this section, the performance of an alternative interference-unaware receive antenna combining
algorithm, namely MET, is investigated. With MET the effective channel generated by a user is
composed of the L maximum eigenmodes of the channel matrix. Hence, with perfect CSIT the
L-dimensional dominant subspace of each users’ channel is kept free of interference, providing a
potentially large channel gain. On the other hand, the CSI quantization error achieved with MET
is significantly larger than with SQBC, and thus the residual multi-user interference has a much
stronger impact on the performance of MET. The main reason for considering MET as an alternative
strategy to SQBC is that it enables an instructive investigation on the trade off between investing
the provided DoF of having Mu,i ≥ L excess antennas to maximizing the signal power by means
of MET, in contrast to minimizing the CSI quantization error (and hence the expected interference
power) utilizing SQBC. Also, the complexity and CSI feedback requirements (subspace information)
of MET are very similar to those of SQBC. In [172], MET is combined with a coordinated eigenmode
selection by the base station, such that users with close to orthogonal channels are served in parallel.
In the following investigation, scheduling is not explicitly considered.

MET algorithm: The goal of MET is to generate an L-dimensional effective channel that maxi-
mizes the achievable transmission rate of a user in the absence of multi-user interference, by applying
a semi-unitary antenna combiner. This is achieved, if the transmission to the user takes place over the
L-dimensional dominant subspace of the channel matrix Hu,i[n, k]. Consider an SVD of the channel
matrix Hu,i[n, k] in compact form

Hu,i[n, k] = Uu,i[n, k]Σu,i[n, k]Vu,i[n, k]H (4.104)

Uu,i[n, k] ∈ CNi×Mu,i , Σu,i[n, k] ∈ CMu,i×Mu,i ,Vu,i[n, k] ∈ CMu,i×Mu,i .

Notice that Uu,i[n, k], Σu,i[n, k] and Vu,i[n, k] are statistically independent, and Uu,i[n, k] and
Vu,i[n, k] are isotropic for i.i.d. Rayleigh fading. The channel subspace to be quantized is chosen as
the first L columns of Uu,i[n, k], corresponding to the L largest singular values of Hu,i[n, k]. The
quantized subspace is obtained as

Ĥ(MET)
u,i [n, k] = argmin

Qj∈Qu,i[n,k]
d2

c

(
[Uu,i[n, k]]:,1:L ,Qj

)
. (4.105)

As with SQBC, the quantized channel subspace can be obtained without having to calculate the
antenna combiner for each Qj . The codebook index of the quantized channel subspace is fed back
to the base station by the users, and the BD precoder is calculated from quantized CSIT. With
the provided subspace feedback power loading over the eigenmodes is not reasonable, because
no information about the magnitude of the singular values is available at the base station. The
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corresponding MET antenna combiner and the effective channel are given by

G(MET)
u,i [n, k] = [Vu,i[n, k]]:,1:L , (4.106)

Heff
u,i[n, k] = [Uu,i[n, k]]:,1:L [Σu,i[n, k]]1:L,1:L = U(L)

u,i [n, k]Σ(L)
u,i [n, k] = H(L)

u,i [n, k]. (4.107)

Throughput analysis: The performance of BD precoding with MET antenna combining and
quantized CSIT can be evaluated in a similar way as the performance of SQBC under the same
assumptions (symmetric scenario, i.i.d. Rayleigh fading, RVQ), by deriving an upper bound on
the rate loss with respect to perfect CSIT. With the effective channel from Equation (4.107), the
achievable per-user rate with perfect CSIT according to Equation (4.16) is

RMET = E log2 det
(
IL + ρH(L)

u,i [n, k]HF̃u,i[n, k]F̃u,i[n, k]HH(L)
u,i [n, k]

)
. (4.108)

Similarly to (4.99), with quantized CSIT the achievable per-user rate is obtained as

RMET-Quant = E log2 det

IL + ρ
Si∑
s=1

H(L)
u,i [n, k]HF̃s,i[n, k]F̃s,i[n, k]HH(L)

u,i [n, k]



−E log2 det

IL + ρ
Si∑

s=1,s 6=u
H(L)
u,i [n, k]HF̃s,i[n, k]F̃s,i[n, k]HH(L)

u,i [n, k]

 . (4.109)

Theorem 4.3 (MET rate loss). Consider a multi-user broadcast system with Ni transmit antennas,
Mu,i receive antennas per user and transmit power Pi. The system serves Si users with L ≤Mu,i

spatial streams each, over i.i.d. Rayleigh fading channels with additive Gaussian receiver noise of
variance σ̃2

z . The per-user throughput loss of BD precoding employing MET antenna combining with
quantized CSIT compared to perfect CSIT is upper bounded by

RMET −RMET-Quant ≤
L∑
`=1

log2

(
1 + ρ σ̄2

`,u,i

Si − 1
Ni − L

D

)
, ρ = Pi

σ̃2
z Si L

. (4.110)

Here, the average quantization distortion in terms of subspace chordal distance achieved with RVQ is
denoted D. The set

{
σ̄2

1,u,i . . . , σ̄
2
L,u,i

}
is composed of the expected values of the L largest squared

singular values of the channel matrix Hu,i[n, k]. Hence, σ̄2
`,u,i is equal to the expected value of the

`-th largest eigenvalue of Hu,i[n, k]HHu,i[n, k] ∼ WC
Mu,i

(
Ni, γu,i IMu,i

)
, with γu,i denoting the

macroscopic pathloss.

The proof of this theorem is provided in Appendix F.4. Notice that the macroscopic pathloss
γu,i does not appear explicitly in (4.110) but is captured in the squared singular values. Closed
form expressions for the expected eigenvalues of Hu,i[n, k]HHu,i[n, k] are known [173], but the
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expressions are involved and do not provide further analytical insights. In contrast to the distortion D
in (4.101) achieved with SQBC, the average distortion D with MET is determined by quantizing an
isotropically distributed subspace from G (Ni, L) with a random codebook of isotropically distributed
entries from G (Ni, L) [159]

D ≈ CMET 2−
b

L(Ni−L) . (4.111)

It is hard to derive a closed form solution for b in dependency of the rate loss as in (4.102), but the
required number of bits can be evaluated numerically. The important fact to note is that with MET
the exponent of the distortion scales inversely proportional to L(Ni−L) in contrast to L(Ni−Mu,i),
which is achieved with SQBC. Hence, with SQBC having Mu,i > L leads to a reduction of the
average quantization error, which is not the case with MET.

4.3.4. Achievable Rate Comparison of SQBC and MET

Whether SQBC or MET is considered as the preferred receive antenna combining strategy in combi-
nation with BD precoding is determined by the available CSI feedback resources. This is investigated
and explained in more detail in this section. For that purpose, the achievable transmission rates
of the two strategies in the limiting case of perfect CSIT, i.e., b → ∞ is evaluated. The rates are
calculated from the corresponding achievable rate equations (4.98), (4.99) by estimating the expected
value by means of Monte-Carlo simulations. The achievable rate is calculated for a single OFDM
subcarrier, assuming frequency flat Rayleigh fading with [Hu,i[n, k]]l,m ∼ NC (0, 1). The result
is shown in Figure 4.4a for the case Ni = 6, L = 2 and Mu,i ∈ {2, 3, 4, 5}. As scheduling is not
considered in this investigation, it is supposed that the set of scheduled users Si is composed of all
Ui = 3 users in the cell (hence also Si = 3).

It is observed in Figure 4.4a that the achievable sum rate of SQBC decreases with increasing number
of receive antennas, while the throughput of MET improves. This is in conformance with our
theoretical investigation of Section 4.3.2. More specifically, the throughput loss of SQBC at high
SNR is given by the value ∆R(M1,M2) calculated in (4.103), e.g., ∆R(2, 5) = 8.08 bits/s/Hz
according to (4.103). Hence, with perfect CSIT, SQBC is not a reasonable choice. This behavior can
be explained by considering the channel statistics provided in Lemma 4.2. According to this lemma,
the DoF of the Wishart distribution defining the statistics of Heff

u,i[n, k]HHeff
u,i[n, k] are reduced with a

growing number of receive antennas Mu,i. Correspondingly, the eigenvalues of this Wishart matrix
are decreased on average, causing a reduction of the average effective channel gain. On the other hand,
with MET the channel gain is determined by the L maximum eigenvalues of a matrix with Wishart
distributionWC

Mu,i

(
Ni, IMu,i

)
according to Theorem 4.3. It is well known that these eigenvalues

increase on average with growing dimension Mu,i.

The advantage of SQBC is visualized in Figure 4.4b. In this figure the sufficient number of CSI
feedback bits to achieve a per-user rate loss of 1 bits/s/Hz compared to perfect CSIT is shown. With
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Figure 4.4.: Evaluation of the achievable rate performance and CSI feedback overhead requirement of BD precoding with SQBC and
MET antenna combining. Three users are served over six transmit antennas via two streams per user.

MET, the slope of the feedback overhead versus the SNR for a given number of data streams L per
user is independent of the number of receive antennas Mu,i and the required feedback overhead is
significantly larger than in case of SQBC. With SQBC, the feedback overhead can be substantially
reduced by increasing the number of receive antennas Mu,i, for the cost of a moderate SNR offset
in the achievable throughput. This reduction is due to the decreasing exponent in the average
distortion (4.101) with increasing Mu,i, obtained from the degree of freedom to select the best
L-dimensional subspace within an Mu,i-dimensional space during CSI quantization.

In Figure 4.5, the validity of the bit-scaling law derived in (4.102) is investigated. In the results shown
in Figure 4.5a the base station is equipped with Ni = 6 transmit antennas. Si = 3 users are served in
parallel over L = 2 streams each. The CSI feedback overhead is scaled such as to achieve a sum
rate loss of 1.5 bits/s/Hz for the case of SQBC with Mu,i = 5. At an SNR of βdB = 0 dB, a feedback
overhead of b = 0 bits is required to maintain the intended rate loss, which is increased to b = 17 bits
at βdB = 30 dB. The other configurations considered in Figure 4.5a are simulated with the same
number of feedback bits. It is observed that the actually achieved rate loss is equal to 1.3 bits/s/Hz,
which is close to the desired value. With the same feedback overhead a significant reduction in
throughput is incurred when Mu,i is decreased. This reduction is caused by the increased residual
multi-user interference due to the CSI quantization error. If MET is employed with Mu,i = 5 and the
same feedback overhead, a much worse performance compared to SQBC is observed if βdB > 10 dB.
At low SNR, however, SQBC is outperformed by MET, because the transmission rate is limited by
the noise rather than the multi-user interference. In this case, the interference reduction capabilities
of SQBC are outweighed by the channel gain improvement of MET.

In Figure 4.5b, the performance of SQBC with Ni = 6, Mu,i = 5 and L ∈ {1, 2, 3} is shown. The
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Figure 4.5.: Achievable sum rate of BD-based MU-MIMO systems employing SQBC with quantized and perfect CSIT and Ni = 6.

feedback overhead is scaled such as to achieve a sum rate loss of 2 bits/s/Hz with respect to perfect
CSIT. This is obtained with an overhead of b ∈ [0, 8] bits/user for L = 1, b ∈ [0, 16.1] bits/user for
L = 2 and b ∈ [0, 18.3] bits/user for L = 3. With decreasing number of streams L per user a sum
rate reduction is observed. This is because the interference between a larger number of users must be
canceled by the BD precoder when the number of streams per user is reduced and the total number of
streams is kept constant, leading to an SNR loss of the effective user channel [71].

Further simulation results investigating the tightness of the proposed bounds on the rate loss are
provided in [93]. A trade-off between SQBC and MET can be achieved by restricting the SQBC
algorithm to finding the best subspace within only a subset of the eigenmodes of the channel. This is
explained in Section 4.4 when extending the method to frequency selective channels.

4.3.5. Adjustment of the Grassmannian CSI Feedback

In Section 4.2, memoryless and predictive Grassmannian quantization codebooks are proposed
under the assumption that the number of data streams per user `u,i[k] is equal to the number of
receive antennas Mu,i, rendering the application of an antenna combiner obsolete. In this case, the
quantization metric is given by the chordal distance between the Mu,i-dimensional subspace defined
by the channel matrix Hu,i[n, k] and the Mu,i-dimensional subspaces spanned by the elements Qj

of the codebook Qu,i[n, k]; see Equation (4.19).

With the antenna combiners of the previous section the quantization metric is modified, which can
be considered in correlated RVQ to improve the quantizer efficiency. Specifically, with SQBC the
chordal distance between the Mu,i-dimensional channel subspace and each of the `u,i[k]-dimensional
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subspaces defined by the elements of the codebook is minimized according to Equation (4.88).
The minimum is achieved with that element of the codebook, that has the smallest left null space
component with respect to the channel matrix. As the null space component of the codebook
elements is the decisive factor during quantization, there exists no preferred subspace orientation
within the range space of the channel matrix. Hence, efficient memoryless quantization is enabled if
the quantization codebook is matched to the distribution of any `u,i[k]-dimensional subspace of the
channel matrix. With correlated RVQ, the quantization codebook can be generated according to

Q(SQBC)
u,i [n, k] =

{
Q(SQBC)
j = Q(corr)

j U|Q(corr)
j ∈ Q(corr)

u,i [n, k],

UΣVH = H̄ ∈ CMu,i×`u,i[k], [H̄]m,n ∼ NC (0, 1)
}
. (4.112)

Here, the codebook defined in (4.27) is employed to obtain semi-unitary matrices Q(corr)
j of size

Ni×Mu,i whose span is matched in distribution to the subspace span (Hu,i[n, k]). The multiplication
with the isotropic semi-unitary matrix U ∈ CMu,i×`u,i[k] then generates an orthonormal basis Q(SQBC)

j

that spans a uniformly distributed subspace within span
(
Q(corr)
j

)
.

With MET, the quantization metric (4.105) is determined by the chordal distance between the
subspace spanned by the `u,i[k] maximum eigenmodes of the channel matrix and the elements of
the codebook. Efficient memoryless quantization is hence enabled by matching the quantization
codebook to the distribution of these eigenmodes. This can, e.g., be achieved by modifying the
codebook construction in Equation (4.27) to select only the first `u,i[k] columns of the matrix of left
singular vectors

Q(MET)
u,i [n, k] =

{
Q(MET)
j =

[
Q(corr)
j

]
:,1:`u,i[k]

∣∣∣∣Q(corr)
j ∈ Q(corr)

u,i [n, k]
}
. (4.113)

In case of predictive quantization, deriving the tangent statistics when MET or SQBC is applied was
not successful. The tangent codebook is therefore generated assuming the channel subspace to be
uniformly distributed on G (Ni, `u,i[k]). This is not a critical issue, because the predictive quantizer
automatically adjusts to the statistics of the subspace spanned by the effective channel using the
adaptive codebook construction described in Section 4.2.2.

4.4. Extension to Frequency-Selective Systems

The CSI feedback algorithms and channel subspace selection methods proposed in Sections 4.2
and 4.3 are derived for frequency flat channels and are hence applicable to OFDM on a per-subcarrier
basis. Providing CSI feedback for each RE, however, implies a large feedback overhead, which
cannot be sustained in practical systems. The CSI feedback overhead can be reduced by employing
the same approaches as in SU-MIMO, i.e., CSI feedback clustering and interpolation. CSI feedback
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interpolation for ZF and BD based MU-MIMO is considered, e.g., in [86, 89, 174, 175]. Linear
subspace interpolation on the Grassmannian is possible by sampling the geodesic between neighboring
CSI pilots. Geodesic interpolation is reviewed in Section 4.4.1 for completeness. Higher order spline
interpolation on the unit-sphere has been proposed in [176] in the context of graphics and animations.
These algorithms are applicable to CSI interpolation for ZF beamforming, but suffer from high
computational complexity. An issue of interpolation based methods is the high density of CSI pilots
required to achieve sufficiently accurate results; see Section 4.4.3. If this cannot be sustained due to
limitations on the feedback overhead, better performance is possible with suitable feedback clustering.
To this end, a clustering approach is proposed in Section 4.4.1, in which a single representative
subspace is determined for each resource block (RB) such that the average chordal distance is
minimized. This method can be viewed as a natural extension of the SQBC idea to multiple REs,
providing a significant performance improvement especially in systems with excess antennas. With
the SQBC clustering approach, it is possible to exploit the time-frequency channel correlation within
each RB separately. The residual interference in-between RBs, on the other hand, is utilized by
the predictive quantizer proposed in Section 4.2.2. Combining the two methods, efficient CSI
quantization is achieved, as demonstrated in Section 4.4.3.

In Section 4.4.2, channel quality feedback for transmission rate adaptation and multi-user scheduling
in the space, time and frequency domain is considered. A combination of the semi-orthogonal user
selection (SUS) algorithm [58] with proportional fair scheduling [56] is employed to determine the
multi-user resource allocation. The scheduling is based on a proposed estimate of the achievable
user data rate with BD precoding. The performance of the proposed techniques is evaluated by
means of simulations in Section 4.4.3. Notice that the notation introduced for feedback clustering
in Section 3.2.1 is reused in this section.

4.4.1. Grassmannian Interpolation and Clustering

Geodesic interpolation: Interpolation on the Grassmannian can be achieved by exploiting the
differential geometry associated with the manifold. The concept of a straight line in the Euclidean
space is generalized to curved spaces and manifolds with the geodesic, which is introduced in Ap-
pendix C.3. Linear interpolation on the manifold is possible by equidistantly sampling the geodesic
between neighboring CSI pilots.

When CSI interpolation is employed, it is assumed that the OFDM time-frequency resource grid is
partitioned into RBs as visualized in Figure 3.3. With the notation introduced in Section 3.2.1, the
index pair [η, κ] is employed to indicate the RBs. The channel matrix observed on the RE in the
center of the RB is quantized and fed back by the users, employing the Grassmannian quantizers
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of Section 4.2. The corresponding subcarrier index and symbol-time index are denoted as

nη = (η − 1)N (f)
clust +

⌊
N

(f)
clust
2

⌋
, kκ = (κ− 1)N (t)

clust +
⌈
N

(t)
clust
2

⌉
. (4.114)

The quantized subspace on RB [η, κ] is thus obtained as

Ĥu,i[η, κ] = argmin
Qj∈Qu,i[η,κ]

d2
c

(
H̃u,i[nη, kκ],Qj

)
. (4.115)

Because CSI feedback is provided only once per RB, the quantization codebookQu,i[η, κ] is adapted
on a per-RB basis. To simplify the exposition, block fading is considered in this section; hence,
the channel is assumed as temporally constant within each RB. Then 1D interpolation in the
frequency domain is sufficient. A trivial extension to time-frequency selective channels is possible
by consecutive 1D interpolation in time and frequency (or vice versa); more sophisticated multi-
dimensional manifold interpolators are proposed in [177].

Considering two neighboring quantized channel subspaces Ĥu,i[η, κ] and Ĥu,i[η + 1, κ] the tangent
defining the geodesic is obtained according to Equation (C.9)

Tu,i[η, κ] = T
(
Ĥu,i[η, κ], Ĥu,i[η + 1, κ]

)
∈ T

(
Ĥu,i[η, κ]

)
. (4.116)

The linearly interpolated subspace between span
(
Ĥu,i[η, κ]

)
and span

(
Ĥu,i[η + 1, κ]

)
at distance

∆f = N
(f)
clust p, p ∈ [0, 1] from span

(
Ĥu,i[η, κ]

)
can be calculated from the geodesic Γ (·) defined

in Equation (C.11)

Ĥu,i[nη + ∆f, kκ] = Γ
(
Ĥu,i[η, κ],Tu,i[η, κ], p

)
, (4.117)

with N (f)
clust denoting the number of subcarriers in-between Ĥu,i[η, κ] and Ĥu,i[η + 1, κ]. At the

boundaries of the system bandwidth CSI extrapolation is necessary. Considering, e.g., the upper
boundary, CSI extrapolation is achieved by extending the tangent between Ĥu,i[NRB − 1, κ] and
Ĥu,i[NRB, κ] beyond the subcarrier nNRB , using Equation (4.117) with p > 1.

SQBC clustering: As an alternative to CSI interpolation, feedback clustering is considered,
avoiding the need for an interpolator at the base station. The clustering approach is suitable when the
distance N (f)

clust between CSI pilots is large compared to the channel coherence bandwidth, entailing
unsatisfactory performance of linear interpolation because of significant channel variations within the
RBs. For such situations it is proposed that the users determine the best `u,i[κ]-dimensional subspace
representation for each RB, assuming zeroth-order interpolation. The best subspace representation
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H̃u,i[η, κ] of RB [η, κ] is defined by minimizing the average chordal distance over the RB

H̃u,i[η, κ] = argmin
H̃

1
NRE

NRE∑
ρ=1

d2
c

(
Uu,i[n, k], H̃

)

= argmin
H̃

1
NRE

NRE∑
ρ=1

`u,i[κ]− tr
(
H̃H(Uu,i[n, k]Uu,i[n, k]H

)
H̃
)
, (4.118)

subject to: H̃ ∈ CNi×`u,i[κ], H̃HH̃ = I`u,i[κ],

with Uu,i[n, k] being obtained from an SVD of the channel matrix as in (4.104), and the RE index
[n, k] being implicitly determined by [η, κ] and ρ as specified in (3.13). Notice the similarity of this
optimization problem to the SQBC optimization in Equation (4.88). In fact, (4.118) can be combined
with SQBC to not only finding the best subspace representation in terms of zeroth-order interpolation,
but minimizing both, the interpolation and the quantization error

Ĥu,i[η, κ] = argmin
Qj

1
NRE

NRE∑
ρ=1

d2
c (Uu,i[n, k],Qj) , (4.119)

subject to: Qj ∈ Qu,i[η, κ] =
{
Qj ∈ CNi×`u,i[κ]∣∣QH

j Qj = I`u,i[κ]
}
.

The solution to problem (4.118) is obtained according to

H̃u,i[η, κ] =
[
Ūu,i[η, κ]

]
:,1:`u,i[κ]

= Ū(`u,i[κ])
u,i [η, κ], (4.120)

Ūu,i[η, κ]Λ̄u,i[η, κ]Ūu,i[η, κ]H = R̄u,i[η, κ], (4.121)

R̄u,i[η, κ] = 1
NRE

NRE∑
ρ=1

Uu,i[n, k]Uu,i[n, k]H, (4.122)

with (4.121) denoting an eigendecomposition of R̄u,i[η, κ]. Matrix R̄u,i[η, κ] can be interpreted as
a subspace correlation matrix. Notice that the eigenvalues in Λ̄u,i[η, κ] are assumed in decreasing
order. Similarly, the solution of (4.119) is determined by the quantization metric

Ĥ(SQBC)
u,i [η, κ] = argmin

Qj∈Qu,i[η,κ]
`u,i[κ]− tr

(
Λ̄u,i[η, κ]

(
Ūu,i[η, κ]HQjQH

j Ūu,i[η, κ]
))
,

∆= argmin
Qj∈Qu,i[η,κ]

d2
c,w

(
Ūu,i[η, κ],Qj , Λ̄u,i[η, κ]

)
, (4.123)

d2
c,SQBC[η, κ] = min

Qj∈Qu,i[η,κ]
d2

c,w

(
Ūu,i[η, κ],Qj , Λ̄u,i[η, κ]

)
. (4.124)
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Here, d2
c,w

(
Ūu,i[η, κ],Qj , Λ̄u,i[η, κ]

)
can be viewed as a weighted chordal distance with weighting

matrix Λ̄u,i[η, κ]. The importance of the individual eigenmodes of the subspace correlation matrix in
the quantization metric (4.123) is specified by the diagonal weighting matrix.

By applying the SQBC antenna combiner of Section 4.3.2 to generate the effective channel on RE
[n, k] based on the quantized subspace Ĥ(SQBC)

u,i [η, κ], the quantization error (4.124) is obtained.

Dimensionality adaptation: As observed in Section 4.3.4, SQBC is subject to the problem that
all Mu,i modes of the channel matrix Hu,i[n, k] are equally treated in the quantization metric (4.88),
potentially causing a weak channel gain of the effective channel matrix. This is also the case with
SQBC clustering and its corresponding quantization metric (4.123). When the transmission is noise
limited, rather than interference limited, the effective channel gain is of greater importance than the
CSI quantization error. A trade-off between MET and SQBC can be achieved by considering only
the subset of d maximum eigenmodes of the channel during quantization, with `u,i[κ] ≤ d ≤Mu,i.
Then, the weighted chordal distance quantization metric (4.123) is replaced with

Ĥ(d)
u,i [η, κ] = argmin

Qj∈Qu,i[η,κ]
d2

c,w

(
Ū(d)
u,i [η, κ],Qj , Λ̄

(d)
u,i [η, κ]

)
, (4.125)

Ū(d)
u,i [η, κ]Λ̄(d)

u,i [η, κ]Ū(d)
u,i [η, κ]H = R̄(d)

u,i [η, κ], (4.126)

R̄(d)
u,i [η, κ] = 1

NRE

NRE∑
ρ=1

U(d)
u,i [n, k]U(d)

u,i [n, k]H, (4.127)

U(d)
u,i [n, k] = [Uu,i[n, k]]:,1:d . (4.128)

With this metric, the best `u,i[κ]-dimensional subspace representation in the quantization codebook
Qu,i[η, κ] is determined, with respect to the average chordal distance to the d maximum eigenmodes
of the channel matrices within the RB [η, κ].

The natural question that arises when considering the quantization metric (4.125) is how to select the
dimension d. To answer this question, an estimate of the pre-equalization achievable data rate with
BD precoding and quantized CSIT is employed. The corresponding pre-equalization input-output
relationship is given in Equation (2.4). According to [178], the instantaneous mutual information
between the channel input and output, determining the achievable transmission rate, is

R
(d)
u,i [n, k] = log2 det

(
IMu,i + Hu,i[n, k]HSu,i[n, k]Hu,i[n, k]

(
σ̃2
z IMu,i + R(d)

u,i [n, k]
)−1

)
,

(4.129)

with Su,i[n, k] denoting the covariance matrix of the channel input and R(d)
u,i [n, k] being the interfer-

ence covariance matrix. During the calculation of the CSI feedback, the precoders are unknown to

84



4.4. Extension to Frequency-Selective Systems

the users. To determine an estimate of the mutual information, the precoders are hence considered as
random and are taken into account in the covariance matrices

Su,i[n, k] = E
(
Fu,i[n, k]xu,i[n, k](Fu,i[n, k]xu,i[n, k])H

)
= E

(
Fu,i[n, k]Fu,i[n, k]H

)
, (4.130)

R(d)
u,i [n, k] =

Si[n,k]∑
s=1,s 6=u

Hu,i[n, k]HE
(
Fs,i[n, k]Fs,i[n, k]H

)
Hu,i[n, k], (4.131)

with the expectation being taken with respect to the transmit signals and the precoders and considering
the statistical independence of transmit signals corresponding to different streams and users. The
precoder Fu,i[n, k] is determined by the channels of the other users according to Equation (4.4). As
these channels are unknown to user u, Fu,i[n, k] is assumed as isotropically distributed, implying

Su,i[n, k] = Pu,i[n, k]E
(
F̃u,i[n, k]F̃u,i[n, k]H

)
= Pu,i[n, k] `u,i[κ]

Ni
I`u,i[κ] = Pi

Ni Si[n, k] I`u,i[κ], (4.132)

with F̃u,i[n, k] as defined in Equation (4.15). Due to the BD construction, the precoders Fs,i[n, k]
of the other users are restricted to the left null space of Ĥ(d)

u,i [η, κ]. Considering this knowledge in

the calculation of R(d)
u,i [n, k], as in Appendix H.2, and assuming that Si[n, k] = Ni

`u,i[κ] users are
served in parallel each over `u,i[κ] streams, the interference covariance matrix is obtained as (see
also (H.11))

R(d)
u,i [n, k] = Pi

Ni
Hu,i[n, k]H

(
IMu,i − Ĥ(d)

u,i [η, κ]Ĥ(d)
u,i [η, κ]H

)
Hu,i[n, k]. (4.133)

The preferred dimensionality du,i[η, κ] is selected by maximizing the sum rate over the RB [η, κ]

du,i[η, κ] = argmax
`u,i[κ]≤d≤Mu,i

NRE∑
ρ=1

R
(d)
u,i [n, k], (4.134)

where the RE index [n, k] is implicitly determined by ρ and [η, κ], according to Equation (3.13).
Notice that knowledge of du,i[η, κ] is not required at the base station; hence the dimensionality
adaptation does not imply an additional feedback overhead.

The sum rate in (4.134) could potentially also be considered as quantization metric for the channel
subspace. This is not followed up in this dissertation for two reasons. Firstly, calculating (4.134)
for all quantization matrices is computationally expensive. The second reason is only relevant
for predictive quantization. The performance of the prediction algorithm in the proposed quantizer
of Section 4.2.2 is strongly impacted by the chordal distance quantization error, because the prediction
is based on quantized CSI. Not choosing the quantized subspace according to the minimal chordal
distance can entail a significant degradation of the prediction accuracy.
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4.4.2. Channel Quality Feedback and Multi-User Scheduling

CQI feedback for limited feedback BD: To determine the multi-user resource allocation in the
time, frequency and spatial domain, it is necessary to calculate the achievable data rate of a given
schedule at the base station. In the spatial domain this rate is dependent on the number of users
that is served in parallel, because the available transmit power is equally distributed among users
and spatial streams according to Equation (4.15). Therefore, it must be possible to update the CQI
feedback at the base station to account for the number of users served in parallel. For this reason, the
pre-equalization mutual information estimated in the previous paragraph in Equation (4.129) is not
employed as channel quality feedback, because the power allocation is hidden within the log2 det (·)
and cannot be updated subsequently.

The achievable data rate of a realistic communication system is determined by the post-equalization
SINR, as argued in Section 3.2.2. It is therefore proposed to employ an estimate of the post-
equalization SINR, achieved with limited feedback based BD precoding, as CQI feedback. An
accurate SINR estimate cannot be obtained during feedback calculation, because the applied precoders
are unknown at that time, in contrast to SU-MIMO with codebook based precoding. To circumvent
this problem, a lower bound on the expected value of the SINR is utilized instead, similar to the
proposal in [179] for ZF beamforming. The derivation of this lower bound is provided in Appendix G.
According to Equation (G.19), the lower bound on the expected SINR of stream ν is expressed as

β̃ν,u,i[n, k] =
cS [n, k]σeff

ν,u,i[n, k]2

σ̃2
z + cI [n, k]σeff

ν,u,i[n, k]2
, (4.135)

Σeff
u,i[n, k] = diag

(
σeff

1,u,i[n, k], . . . , σeff
`u,i,u,i[n, k]

)
,

cS [n, k]= Pi

Si[n, k](Ni − ¯̀
i[n, k])

(
1−

d2
c
(
Ĥu,i[n, k],Bu,i[n, k]

)
`u,i[k]

)(
1−

d2
c
(
H̃u,i[n, k], Ĥu,i[n, k]

)
`u,i[k]

)
,

cI [n, k] = Pi
Ni `u,i[k] d2

c
(
H̃u,i[n, k], Ĥu,i[n, k]

)
.

with Σeff
u,i[n, k] denoting the matrix of singular values of the effective user channel Heff

u,i[n, k],
H̃u,i[n, k] as defined in (4.6), Ĥu,i[n, k] being the quantized channel subspace, Bu,i[n, k] denoting
an orthonormal basis for the orthogonal complement of the other served users’ effective channels
(see Equation (G.5)) and ¯̀

i[n, k] =
∑
s∈Si[n,k],s 6=u `s,i[k].4 The residual multi-user interference

due to imperfect CSI feedback is determined by the chordal distance quantization error in cI [n, k],
justifying the application of the chordal distance as CSI quantization metric.

4Notice that the orthonormal basis Ueff
u,i[n, k] in Equations (G.11) and (G.17) has been replaced with the equivalent

orthonormal basis H̃u,i[n, k] in Equation (4.135) for the calculation of the chordal distance.
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Considering the constant cS [n, k], the first two factors cannot be determined by the user u during
feedback calculation, because neither the number of served users Si[n, k] nor the number of interfering
streams ¯̀

i[n, k] is known, and also the other users’ quantized effective channels are unknown. The
last term, however, depending on the quantization error, can be calculated by the user. Also, the
constant cI [n, k] and the singular values in Σeff

u,i[n, k] are available at the user, because they depend on
local CSI only. It is therefore proposed to employ the following value as per-stream CQI feedback

CQIν,u,i[n, k] =
σeff
ν,u,i[n, k]2

(
1− d2

c

(
H̃u,i[n,k],Ĥu,i[n,k]

)
`u,i[k]

)
σ̃2
z + Pi

Ni `u,i[k] d2
c
(
H̃u,i[n, k], Ĥu,i[n, k]

)
σeff
ν,u,i[n, k]2

. (4.136)

With this CQI feedback, it is possible to obtain an estimate of the achievable user rate Ru,i[n, k]
according to Equation (G.18) for a given schedule Si[n, k], because the remaining two factors of
cS [n, k] can be calculated by the base station, enabling the calculation of the SINR

β̃ν,u,i[n, k] = Pi

Si[n, k](Ni − ¯̀
i[n, k])

(
1−

d2
c
(
Ĥu,i[n, k],Bu,i[n, k]

)
`u,i[k]

)
CQIν,u,i[n, k], (4.137)

Ru,i[n, k] ≈
`u,i[k]∑
ν=1

log2
(
1 + β̃ν,u,i[n, k]

)
. (4.138)

In case of feedback clustering or interpolation, CQI feedback is provided only once per RB. In
the proposed SU-MIMO feedback algorithms of Section 3.2.2, mutual information effective SINR
mapping (MIESM) is applied to obtain a single SNR that represent the average channel quality of
an RB. This approach is not applicable here, because the CQI in (4.136) represents only a scaled
version of the SINR (4.135), and MIESM is not a linear function; hence, without the correct scaling
the application of MIESM is pointless. Instead, it is proposed to calculate an average CQI for RB
[η, κ], by linearly averaging the chordal distance quantization error and the squared singular values

CQIν,u,i[η, κ] =
σ̄eff
ν,u,i[η, κ]2

(
1− d̄2

c [η,κ]
`u,i[κ]

)
σ̃2
z + Pi

Ni `u,i[κ] d̄2
c [η, κ] σ̄eff

ν,u,i[η, κ]2
, (4.139)

σ̄eff
ν,u,i[η, κ]2 = 1

NRE

NRE∑
ρ=1

σeff
ν,u,i[n, k]2, d̄2

c [η, κ] = 1
NRE

NRE∑
ρ=1

d2
c
(
H̃u,i[n, k], Ĥu,i[n, k]

)
,

with [n, k] being determined by [η, κ] and ρ as specified in Equation (3.13).

The performance of the proposed CQI feedback for multi-user scheduling is evaluated in Section 4.4.3,
demonstrating reasonably close to optimal results with quantized CSIT. Notice though that the CQI
is not sufficiently accurate for transmission rate adaptation. As the CQI is based on a lower bound
on the expected value of the SINR, the instantaneous SINR achieved with a given schedule can
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be considerably above or below this value. It is therefore proposed to employ (4.136) only as an
initial CQI for multi-user scheduling. As soon as the schedule is fixed, the users are able to estimate
the instantaneous SINR defined in (2.7). Using this instantaneous SINR in combination with the
CQI feedback algorithm of Section 3.2.2, accurate transmission rate adaptation can be achieved.
Naturally this approach is only useful if the schedule is kept fixed for several TTIs, implying a loss
of temporal multi-user diversity. However, accounting for the downlink signaling overhead involved
in changing the multi-user resource allocation, the performance loss is negligible in the considered
low to moderate mobility scenarios.

Multi-user scheduling: The sum throughput achieved with ZF beamforming and BD precoding
is very much dependent on the selected set of users that is served in parallel [58]. If the channels of
the selected users are orthogonal, the signal energy of the user can be steered into the user’s channel
subspace without causing any interference. This effect is also observable in the term cS [n, k] of
the proposed SINR lower bound in Equation (4.135): when the channels of the selected users are
orthogonal, the chordal distance d2

c
(
Ĥu,i[n, k],Bu,i[n, k]

)
is equal to zero, implying no reduction of

the channel gain by the precoder. In principal, the schedule can hence be obtained from an exhaustive
search employing the achievable rate (4.138) as the scheduling metric. To avoid the complexity of
an exhaustive search, greedy scheduling based on the SUS algorithm is instead considered in this
dissertation. To achieve some level of fairness among the users in the cell and to avoid user starvation,
proportional fairness is utilized as scheduling metric [56]. Scheduling is applied on an RB basis,
due to the availability of RB-specific CQI feedback. The scheduling procedure is summarized below
for RB [η, κ]; the same approach is applied on all RBs. To simplify the presentation, it is assumed
that `s,i[η, κ] = L,∀s ∈ Ui and that NiL is integer-valued. Otherwise, an explicit validation of the
feasibility conditions of BD precoding must be performed by the scheduler.

0. Initialize the weighted sum rate Ri[η, κ] = 0, the set of scheduled users Si[η, κ] = {}, the set
of potential users Pi[η, κ] = Ui and the number of scheduled users Si[η, κ] = 0.
Repeat the following steps until the maximum number of Si[η, κ] = Ni

L users is served:

1. Calculate an orthonormal basis Bi[η, κ] for the space spanned by the channels of the served
users in Si[η, κ].

2. Find the semi-orthogonal user set S̃i[η, κ], by determining all users s ∈ Pi[η, κ] for which the
SUS condition is fulfilled:

tr
(
Ĥs,i[η, κ]HBi[η, κ]Bi[η, κ]HĤs,i[η, κ]

)
≤ αSUS L. (4.140)

3. If the SUS user set is empty, stop the algorithm and serve the users in Si[η, κ].
4. For all users s ∈ S̃i[η, κ], calculate the estimated achievable rateRs,i[η, κ] in (4.138) (replacing
β̃ν,s,i[n, k] with β̃ν,s,i[η, κ] as obtained from CQIν,s,i[η, κ]) under the assumption that user s is
served in parallel with the users in Si[η, κ].
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5. Determine the user s ∈ S̃i[η, κ] that achieves the largest weighted rate

ŝ = argmax
s∈S̃i[η,κ]

Rs,i[η, κ]
Ts,i

, (4.141)

with Ts,i denoting the average throughput of user s achieved over the past.

6. Update the estimated achievable rates Rs,i[η, κ] of the users s ∈ Si[η, κ], assuming that ŝ is
served in addition to the users in Si[η, κ].

7. Calculate the weighted sum rate of the schedule {Si[η, κ], ŝ}

R =
∑

s∈{Si[η,κ],ŝ}

Rs,i[η, κ]
Ts,i

. (4.142)

8. If R ≥ Ri[η, κ], add user ŝ to Si[η, κ] and update Si[η, κ], set Ri[η, κ] = R and remove ŝ
from Pi[η, κ]. Otherwise, stop the algorithm and serve the users in Si[η, κ]

In step 2 of the scheduling algorithm, a pre-selection of users is performed, based on their subspace
distance to the already served users. Only if a user is close to orthogonal to the previously served
users, he is considered as a potential additional user. The exact meaning of “close to orthogonal” is
determined by the choice of the SUS parameter αSUS; see [58] for details on the selection of this
parameter. In the presented simulations, the parameter αSUS = 0.35 turned out as a good choice.

4.4.3. Performance Investigation

In this section, the performance of CSI feedback using subspace clustering and interpolation for
BD precoding based MU-MIMO transmission over a frequency-selective OFDM broadcast channel
is investigated. Monte-Carlo simulations of the quantization MSE are conducted and the corre-
sponding throughput achieved in the downlink of a single LTE compliant cell is evaluated. The
frequency-selectivity of the wireless channel is characterized by the coherence bandwidth defined
in Equation (2.12) or equivalently by the root mean square (RMS) delay spread τRMS of the channel
multipath power delay profile. When the sensitivity of the proposed methods with respect to the
frequency-selectivity of the channel is investigated, the simulation results are presented in dependence
of the normalized sampling bandwidth

Bs = ∆fs N (f)
clust τRMS, (4.143)

with ∆fs [Hz] being the OFDM subcarrier spacing (∆fs = 15 kHz in case of LTE) and N (f)
clust

denoting the size of a feedback cluster in the frequency domain in multiples of subcarriers. The
advantage of SQBC clustering in terms of the chordal distance quantization MSE is demonstrated,
but also its downside, i.e., the implied channel gain reduction, is highlighted, which can cause a
significant throughput degradation, especially in case of strongly correlated receive antennas. In order
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to enable efficient CSI feedback operation, channel prediction, subspace clustering and Grassmannian
quantization are combined at the user. The MSE contribution of the individual components is
investigated to reveal the corresponding limitations and operating regimes of the proposed feedback
algorithms. Finally, the performance achieved with the proposed SUS based multi-user scheduler,
utilizing the derived CQI feedback, is evaluated by comparing to the throughput attained with the
optimal schedule, as determined from an exhaustive search.

Chordal distance MSE evaluation: In the first simulation, the chordal distance MSE obtained
with MET subspace selection, according to Section 4.3.3, in combination with zeroth- and first-order
interpolation, as detailed in Section 4.4.1, is compared to SQBC clustering. The channel matrix
is of size Ni ×Mu,i = 8 × 4, and an `u,i = 1-dimensional subspace is selected as CSI feedback.
Unquantized feedback of this representative subspace is considered; hence the error is caused only by
the subspace clustering and the interpolation, respectively. In case of MET, the maximum eigenmode
of the channel matrix experienced in the center of each RB is used as feedback information, while with
SQBC clustering the subspace feedback is determined by solving the optimization problem (4.118).
The MSE is estimated by means of Monte-Carlo simulations as

D ≈ 1
Ntot

1
K

Ntot∑
n=1

K∑
k=1

d2
c

(
Ĥu,i[n, k],Hu,i[n, k]

)
, (4.144)

where the interpolated subspace Ĥu,i[n, k] ∈ CNi×`u,i is obtained from Equation (4.117) in case of
first-order interpolation, while Ĥu,i[n, k] = H̃u,i[η, κ] is employed with zeroth-order interpolation
and SQBC clustering ([η, κ] is defined in Equation (3.14)).

The effect of dimensionality adaptation, as defined in Equation (4.125), on the MSE performance
of SQBC clustering is investigated. A system bandwidth of 5 MHz is assumed and the power delay
profile of the channel is determined by the SCME urban micro channel model [180], having a
coherence bandwidth of BC = 680 kHz.

The results of the simulation are shown in Figure 4.6a. Considering MET subspace selection
with CSI interpolation, it is observed that zeroth-order interpolation is outperformed by first-order
(linear) geodesic interpolation, as soon as the distance between the CSI pilots is sufficiently small.
With SQBC clustering, a substantial MSE reduction is achieved by increasing the dimensionality
d of the optimization problem (4.125), which determines the subspace selection. Notice that the
dimensionality d has no impact on the dimension `u,i of the subspace feedback; it is rather the
dimension of the search space in the optimization problem (4.125) that is specified with d. Comparing
CSI interpolation and clustering, a significant MSE improvement is observed with clustering when a
small density of CSI pilots, i.e., a large sampling bandwidth Bs, is applied. This MSE improvement,
however, is obtained at the cost of a channel gain reduction of the effective channel, causing a
throughput loss at low SNR, as demonstrated below.
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Figure 4.6.: Chordal distance MSE investigation of the proposed CSI feedback methods for frequency-selective channels.

In the next simulation, predictive CSI quantization and Grassmannian subspace clustering are
combined to enable efficient limited feedback operation. Additionally, the effect of a delay in
the feedback path is investigated. To compensate for this delay, FIR based channel prediction, as
described in Section 3.3.2, is employed by the user. Notice that this channel predictor is only required
at the user and not at the base station and it can therefore be based on perfect CSI. Channel prediction
for delay compensation is not related to the operation of the predictive quantizer; the quantizer is
working independently on top of the channel predictor output. Feedback of an `u,i = 2-dimensional
subspace of an Ni ×Mu,i = 8 × 2 dimensional channel matrix is considered. The PedA channel
model [108], with BC = 4.4 MHz, is employed and a single feedback cluster is applied to represent
the 1.4 MHz system bandwidth, resulting in a feedback overhead of 7 bit per TTI (7 kbit/s assuming
the LTE subframe duration of 1 ms).

The results of the investigation are shown in Figure 4.6b. The individual MSE contributions of the
channel prediction, the subspace clustering and the quantization, as well as the performance of the
concatenated system are separately plotted. At low normalized Doppler frequencies (see (3.33)),
i.e., when the channel variation over time is slow, the overall MSE is dominated by the subspace
representation error, due to feedback clustering. In this case, the adaptive codebook construction
of the predictive quantizer is able to track the channel variation very well, causing a negligible
quantization error. A reduction of the observed error floor is only possible by reducing the cluster
size, implying an increased feedback overhead. At intermediate Doppler frequencies, the overall
MSE is determined by the quantization error. This error can be reduced by enlarging the quantization
codebook, for the cost of increasing the feedback rate. Only at high Doppler frequencies and with
a large feedback delay, the error caused by the channel prediction comes into play. In the region
of interest for predictive quantization (νd ≈ 10−2), even a feedback delay of 20 TTIs is irrelevant;
hence, the feedback delay is not further considered in the remaining simulations of this thesis.
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Figure 4.7.: Sum throughput achieved with ZF beamforming and SQBC feedback clustering in an Ni ×Mu,i = 8× 4 system, serving
Si = 8 users over `u,i = 1 spatial stream each. The impact of dimensionality adaptation is investigated.

Throughput evaluation: Next, the throughput performance of BD based MU-MIMO is investi-
gated, when the proposed limited feedback algorithms are applied to provide CSIT. In the first simula-
tion, the transmission rate reduction with respect to perfect CSIT, due to the subspace representation
error caused by SQBC clustering, is evaluated, demonstrating the effect of dimensionality adaptation
on the achieved throughput in dependence of the equivalent average transmit SNR (3.32).

The base station is equipped with Ni = 8 transmit antennas; Si = 8 users, having Mu,i = 4
receive antennas, are served in parallel, each over a single spatial stream `u,i = 1. The power
delay profile of the channel is specified by the rural area model [109], which has a coherence
bandwidth of BC = 2 MHz. The carrier bandwidth of 1.4 MHz is represented with a single CSI
feedback cluster, using unquantized CSI feedback. Correlated receive antennas are assumed according
to Equation (2.17) with αcorr ∈ {0, 0.9}. The interference-averaged MMSE equalizer proposed
in Appendix H.2 is applied by the users to detect their data streams. The throughput simulations are
conducted with the standard compliant Vienna LTE link level simulator [59].

The obtained simulations results are shown in Figure 4.7. At low SNR, the best performance is
achieved with a dimensionality of d = 1. With d = 1, only the maximum eigenmodes of the channels
experienced over the subcarriers of an RB are taken into account for the calculation of the subspace
representation according to Equation (4.125). The calculated subspace is kept free of interference by
the BD precoder; hence, the interference-free subspace has a potentially large channel gain. Due to
clustering, however, the single subspace representation is imperfect for a given RE, implying residual
multi-user interference after precoding. Therefore, an interference-limitation is observed at high
SNR. The strength of the residual multi-user interference is impacted by the dimensionality d of
the feedback clustering. By increasing d the search space for the subspace representation in (4.125)
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Figure 4.8.: Sum throughput achieved with BD precoding and the proposed limited feedback clustering and quantization algorithms in
an Ni ×Mu,i = 8× 4 system, serving Si = 4 users over `u,i = 2 spatial streams each.

is extended, enabling a reduction of the chordal distance error, as shown in Figure 4.6a, which
implies reduced residual multi-user interference according to (4.135). The optimal dimensionality is
dependent on the SNR. The proposed dimensionality adaptation (4.134) is able to identify the optimal
dimensionality, as demonstrated in Figure 4.7. Comparing Figures 4.7a and 4.7b, it is observed
that the throughput difference between different dimensionalities is increased with growing antenna
correlation. This behavior is due to the increased singular value spread of the channel matrix with
larger αcorr. Notice the similarity of the performance observed with dimensionality adaptation and
with transmission rank adaptation, as shown in Figure 3.5a. In the current simulations, however, the
transmission rank is not changed; the total number of data streams is always equal to eight.

In Figure 4.8a, a similar scenario is evaluated where four users are served over `u,i = 2 streams each.
The throughput of SQBC clustering with dimensionality adaptation is compared to MET subspace
selection with linear geodesic interpolation. The number of feedback clusters is varied from NRB = 1
to NRB = 6 and uncorrelated receive antennas, αcorr = 0, are assumed. It is observed that MET
is outperformed by SQBC at high SNR if the feedback cluster size is large, because the residual
multi-user interference achieved with SQBC is smaller due to the improved subspace representation.
SQBC clustering is never surpassed by MET feedback, not even at low SNR when the throughput is
determined by the effective channel gain, due to the application of dimensionality adaptation, which
trades-off the effective channel gain for the residual multi-user interference depending on the SNR.

Finally, in Figure 4.8b, the performance of the combination of feedback clustering and quantization is
evaluated. The 1.4 MHz channel generated with the PedA model [108], assuming strongly correlated
receive antennas, αcorr = 0.9, is quantized with a single feedback cluster. Nine and eleven bit
of feedback per TTI are considered, corresponding to a feedback rate of 9 kbit/s and 11 kbit/s,
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Two configurations are considered: Ni ×Mu,i = 4× 1 with `u,i = 1 and Ni ×Mu,i = 8× 4 with `u,i = 2.

respectively. A maximum normalized Doppler frequency of νd = 0.01 is assumed, representing, at a
center frequency of 2 GHz, a walking user with a speed of approximately 5 km/h.

With these parameters, a negligible throughput degradation is caused by the subspace clustering,
compared to perfect CSIT, up to an SNR of approximately 15 dB. Above this value, a throughput loss
is observed, due to the residual multi-user interference induced by the frequency selectivity of the
channel. When the SQBC subspace selection is conveyed to the base station by means of predictive
quantization, close to optimal performance is achieved with 11 bit of feedback per TTI over a large
SNR range. Naturally, a throughput deterioration is incurred when the quantization codebook size is
reduced. Considering memoryless quantization, however, the obtained CSIT accuracy is insufficient
to ensure reliable transmission to four users in parallel, each being served over `u,i = 2 streams. In
this case, better performance is possible by employing a multi-user scheduler to select only a subset
of the users for transmission, implying reduced multi-user interference.

Multi-user scheduling: In this section, the efficiency of the SUS based greedy multi-user sched-
uler, proposed in Section 4.4.2, is investigated by comparing the achieved sum throughput to the
optimal schedule, as obtained from an exhaustive search. Two different antenna configurations are
considered, i.e., Ni ×Mu,i = 4× 1 and Ni ×Mu,i = 8× 4. In the 4× 1 system, a single stream is
transmitted per user, `u,i = 1, while with 8× 4 antennas `u,i = 2 streams per user are employed. At
most four users can thus be spatially multiplexed in both cases. The rural area channel model [109]
is used and the antenna correlation parameter αcorr is set equal to zero. In case of imperfect CSIT,
unquantized feedback of a single feedback cluster is considered for the total system bandwidth of
1.4 MHz using SQBC clustering. All users are simulated with the same SNR of 20 dB.

The simulation results are presented in Figure 4.9, in terms of the sum throughput achieved in
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the downlink of the cell versus the number of served users. It can be seen that a similar multi-
user diversity is attained with the exhaustive search scheduler and the proposed greedy scheduling
algorithm, albeit an approximately constant rate loss that is dependent on the settings of the system.
Especially in the realistic situation of imperfect CSIT, the throughput obtained with the greedy
algorithm is close to the rate achieved with the optimal schedule.

Additional simulation results, involving distributed transmit antennas, multi-cell networks causing
out-of-cell interference and users that experience different SNRs (determined by a macroscopic fading
model), are provided in Chapter 5, when comparing several cellular networking architectures.

4.5. Summary

In this chapter, limited feedback algorithms for MU-MIMO transmission in wireless communications
are proposed and evaluated. The focus is put on linear transceiver architectures, employing BD
precoding at the transmitter to orthogonalize the transmissions to several users, and semi-unitary
antenna combining at the receivers to separate the interference-free subspace, occupied by the
intended signal, from the interference-contaminated subspace. To achieve orthogonal transmissions,
the base station must be informed about the subspaces spanned by the users’ channel matrices with
very high precision. Efficient feedback of the required CSI from the receiver to the transmitter is
enabled with the proposed predictive quantization algorithm that exploits the structure of the subspace
information by operating on the underlying Grassmannian manifold. Close to optimal performance
is demonstrated in low to moderate mobility scenarios, in terms of the subspace quantization error.
When applied for CSIT acquisition in wireless communications, virtually perfect performance is
observed with a reasonable feedback overhead at practically relevant SNRs (≤ 30 dB).

When users are equipped with excess antennas, that is, when the number of user antennas is larger
than the number of data streams per user, it is proposed to perform BD precoding over appropriate
subspaces of the users’ channel matrices, which are selected by the users based on selfish arguments.
Although better performance is possible with a joint optimization of the precoders and the antenna
combiners at the base station, the proposed approach can help reducing the required feedback
information. Specifically, instead of requiring knowledge of the full channel matrix of all users
at the base station, information about the selected subspace is sufficient, which can be conveyed
efficiently using Grassmannian quantization. With channel subspace feedback, the obtained user
throughput is strongly dependent on the selection of the subspace within the space spanned by the
channel matrix. Depending on the SNR of the user, the achieved data rate is determined either by
the channel gain experienced over the selected subspace, or by the error that is incurred during CSI
quantization, causing residual multi-user interference. To this end, two extremes of the subspace
selection are proposed that either put all focus on maximizing the channel gain of the subspace or on
minimizing its quantization error. The corresponding antenna combiners generating these subspaces
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are derived. The performance of both strategies is investigated analytically by deriving upper bounds
on the amount of feedback information necessary to achieve a given rate loss with respect to perfect
CSIT. A trade-off between the two strategies is proposed using an estimate of the achievable user
rate given a specific subspace selection. In that way, efficient CSI feedback and data transmission is
enabled over the full range of considered SNRs.

The CSI feedback algorithms and subspace selection strategies are extended to frequency-selective
OFDM by means of feedback clustering and interpolation. Especially with a large cluster size, corre-
sponding to a low density of CSI pilots, it is shown that interpolation is significantly outperformed by
the proposed clustering approach, minimizing the CSI quantization error obtained over a cluster of
OFDM subcarriers. To enable efficient multi-user scheduling, channel quality information is required
in addition to the channel subspace feedback at the transmitter, to facilitate estimation of the achiev-
able throughput. For this purpose, a lower bound on the expected per-stream post-equalization SINR
is derived, which quantifies the channel quality of a user without requiring a-priori knowledge of the
multi-user schedule and the applied precoders. The efficiency of the resource allocation obtained
from this SINR lower bound is determined by means of Monte-Carlo simulations, demonstrating the
same multi-user diversity as attained with an optimal schedule based on perfect CSIT.

Considering the proposed methods self-critically, the following assumptions may be worth rethinking:
The out-of-cell interference is treated as additional Gaussian noise by the receivers. In case the
interference is determined by a few dominant sources, this assumption may be violated and better
performance can be achieved by incorporating the actual interference distribution in the derivation of
the algorithms. The approximate out-of-cell interference model provided in Appendix I may be a
valid starting point for such investigations.

When treating predictive quantization in Section 4.2.2, it is assumed that the innovation noise (the
non-deterministic part of the channel evolution) and the prediction error in the Euclidean space are
both Gaussian distributed. This assumption can be justified in case of Rayleigh fading, when the
channel matrix is itself Gaussian distributed [169, 181], but may be violated otherwise. The most
significant part of the performance improvement compared to memoryless quantization, however, is
not so much obtained by matching the quantization codebook to the error distribution, but rather by
fitting the variance of the prediction error, i.e., the volume of the Grassmann manifold that is covered
by the quantization codebook. This is achieved with the proposed variance tracking algorithm, which
can be used to track the variance of any distribution.

The theoretical performance investigation of SQBC and MET antenna combining in Section 4.3 is
based on the assumption that the channel matrix is i.i.d. Gaussian distributed. Hence, the correlation
of the wireless channel in the spatial, temporal and frequency domain is not taken into account in this
analysis. Extending the investigation to correlated channels is hard and was not yet successful, mostly
because theoretical results on the performance of RVQ with correlated channels are not available,
which I consider as a worthwhile problem for future research.
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Chapter 5.

Application Scenarios

It doesn’t matter how beautiful your theory is, it
doesn’t matter how smart you are. If it doesn’t
agree with experiment, it’s wrong.

(Richard P. Feynman)

In this chapter, the proposed single-user MIMO (SU-MIMO) and multi-user MIMO (MU-MIMO)
feedback algorithms and transceiver architectures of Chapters 3 and 4 are applied to obtain a realistic
performance comparison of three different concepts of cellular networking architectures, which are
currently in the focus of many research papers. In the first part of this simulation based study, the
area spectral efficiency (ASE) achieved in a centralized antenna system (CAS) is contrasted to the
efficiency attained with distributed antennas. The impact of several parameters, such as the number
of users per cell, the temporal and spatial channel correlation as well as the feedback overhead, on
the performance of SU- and MU-MIMO is evaluated. A similar investigation is then conducted with
small cells as well, considering only MU-MIMO transmission. To obtain a fair comparison, the total
number of transmit antennas as well as the total transmit power are the same in all scenarios. The
simulations are carried out with an extended version of the Vienna LTE link level simulator [59],
supporting a pathloss model to determine the SINR experienced by the users. For complexity reasons,
only a single cell of the cellular network, as illustrated in Figure 5.1, is explicitly simulated. Inter-cell
interference between the three sectors of the cell, including the remote radio units (RRUs) and small
cells within the nominal cell area, is accurately simulated. Out-of-cell interference from other cells
surrounding the cell of interest is generated with the interference model proposed in Appendix I. To
this end, two tiers of interfering macro base stations, which are identical copies of the cell of interest
in terms of radio equipment and geometry, are taken into account.

This chapter is organized as follows: In Section 5.1, the considered networking architectures are
introduced and the simulation assumptions are specified. Furthermore, the holistic performance
metric applied to quantify the efficiency of the networks, i.e., the area spectral efficiency [182], is
defined. In Section 5.2, the comparison between the CAS and the distributed antenna system (DAS)
is provided, employing SU- and MU-MIMO transmission. The ASE obtained with MU-MIMO in
small cells is presented in Section 5.3 and concluding remarks are provided in Section 5.4.
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Low-latency high-bandwidth dedicated connection

Base station Remote radio unit User

Distributed antenna systemCentralized antenna system Small cell system

Access point

Figure 5.1.: Investigated cellular networking architectures.

5.1. Cellular Networking Architectures

In the simulations presented in this chapter, the three cellular networking architectures illustrated
in Figure 5.1 are considered, assuming a 2D propagation model. The networking architectures are
characterized as follows:

• The centralized antenna system, shown in the left part of Figure 5.1, is employed to represent
the classical hexagonal tessellation of the network area using macro base stations only. In the
simulations, sectorization of the cell area into 120◦ sectors is considered. The 2D antenna
gain pattern of the applied model is defined in [183], having a 3 dB beam width of 65◦ and
a maximum attenuation of 20 dB. In the main pointing direction of the sectorized antenna, a
gain of 15 dB over the isotropic radiator is achieved. Each sector has a total transmit power of
43 dBm and is equipped with eight transmit antennas.

• In the distributed antenna system, the macro base station is augmented with two RRUs per
sector, which are connected to the macro base station via low-latency high-bandwidth dedicated
links, facilitating coherent transmission from all antenna arrays within the sector. The RRUs
are regularly placed on a ring of radius 2/3 rc, with rc = 500 m denoting the cell radius, as
shown in the center part of Figure 5.1. The RRUs are equipped with two omni-directional
antennas each. To conserve the total number of transmit antennas, the macro base station has
only four antennas per sector available. The distribution of the total transmit power of 43 dBm
among the antenna arrays within each sector is determined by the applied precoder.

• In the small cell system, the RRUs of the DAS are replaced with autonomous micro base
stations (access points), as shown in the right part of Figure 5.1. The micro base stations are
equipped with two omni-directional antennas each and have a transmit power of 37 dBm. The
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Table 5.1.: Simulation parameters applied for the cellular networking architecture comparison.

Parameter Value
System bandwidth 1.4 MHz
Carrier frequency fc = 2 GHz

Noise power spectral density −174 dBm/Hz
Channel model pedestrian A [108]

Number of receive antennas Mu,i ∈ {2, 4}
Number of transmit antennas Ni = 8

Number of users Ui ∈ [2, 32]
Number of feedback clusters NRB = 1

Number of feedback bits b ∈ [1, 10]
Spatial correlation parameter αcorr ∈ [0, 0.95]

Maximum channel Doppler frequency fd ∈ [10, 500] Hz
Multi-user scheduling proportional fair (SUS)

MIMO receiver MMSE (interference averaged)

transmit power of the sectors of the macro base station is reduced to 40 dBm and the number
of transmit antennas is decreased to four. Thus, the total transmit power per sector is equal to
43 dBm and the total number of transmit antennas is equal to eight.

Shadow fading is not considered in the presented simulations. This simplifies the simulations, because
the region of interest is clearly delimited by the geometry of the cell. Due to the regular placement
of the RRUs and the small cells, the hexagonal tessellation of the CAS is also valid with the other
architectures. Users are uniformly placed within the nominal cell area of the macro base station. To
simplify the calculation of the ASE, the hexagonal cell is approximated with a circle of radius

rn = rc + rc/ cos (30◦)
2 ≈ 538 m, (5.1)

i.e., the arithmetic mean between the incircle and the circumcircle of the hexagon is employed as the
nominal cell radius. In the small cell system, the users within a sector are associated either with the
macro base station or with one of the micro base stations, depending on the received signal strength.
As shadow fading is not simulated, the received signal strength and the channel gain matrix (2.11)
are determined by the user position dependent pathloss and the antenna gain. The assumed pathloss
model is specified in [183, Section 4.5.2]; see also [95]. Load balancing between the base stations is
not considered. This is not a significant restriction here, because mostly small user populations are
investigated. A review of load balancing methods is provided in [184]. Receive antenna correlation
according to Equation (2.17), with varying correlation parameter αcorr, is assumed. Further simulation
parameters are summarized in Table 5.1.

With these assumptions, the sum ASE can be estimated from Monte-Carlo simulations as in [32]

ASE ≈ 1
r2
nπ

K∑
k=1

T̄u(rk)
(
U
r2
k − r2

k−1
r2
n

)
, (5.2)
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with rn = 538 m as defined in Equation (5.1), T̄u(rk) denoting the average user throughput at a
distance to the macro base station between rk and rk−1 and U being the total number of users in
all three sectors. Notice that the last term in brackets is equal to the expected number of users
within the ring between rk−1 and rk, because the probability to find a user within a certain area
of the cell is proportional to the size of that area, due to the assumed uniform user distribution.
The sum is calculated over all such rings within the cell area from r0 = 0 to rK = rn. The value
of T̄u(rk) is estimated from 240 random positions per user.1 For each position realization, the
throughput is averaged over 150 LTE subframes. The ASE is calculated assuming a radius increment
of ∆r = rk − rk−1 = 2 m.

The simulations are conducted with perfect and quantized channel state information (CSI) at the
transmitter (CSIT). The following transmit modes and CSI feedback configurations are considered:

• SU-MIMO according to Chapter 3:

– Perfect CSIT: singular value decomposition (SVD) based precoding, as detailed in Sec-
tion 3.1.2, is employed.

– Quantized CSIT: codebook based precoding is applied, using LTE’s closed loop spatial
multiplexing (CLSM) codebooks [8]. The CSI feedback is determined as described
in Section 3.2.2. The MMSE equalizer defined in Equation (3.12) is utilized to separate
the spatial streams of the user. If RRUs are considered, CLSM is combined with antenna
selection as described in Section 3.2.4.

• MU-MIMO according to Chapter 4, employing block diagonalization (BD) precoding:

– Perfect CSIT: maximum eigenmode transmission (MET) is employed to determine the
unquantized subspace feedback for each resource element (RE); see Section 4.3.3.

– Quantized CSIT: subspace quantization based combining (SQBC) feedback clustering,
according to Section 4.4.1, is applied with a cluster size of NRB = 1 to determine a
single subspace representation for the full system bandwidth of 1.4 MHz. Dimensionality
adaptation, as proposed in Section 4.4.1, is considered to maximize the achievable
throughput of the multi-user transmission.

∗ Memoryless quantization: random vector quantization (RVQ), according to Sec-
tion 4.2.1, is employed to quantize the subspace determined by SQBC clustering.
With RRUs, correlated RVQ is applied as well, to improve the quantization accuracy.

∗ Predictive quantization: the predictive quantizer proposed in Section 4.2.2 is used to
quantize the subspace determined by SQBC clustering.

1E.g., with eight users per sector a total of 240 · 8 · 3 = 5760 user positions is simulated.
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Figure 5.2.: Area spectral efficiency achieved in the CAS and the DAS in dependence of the number of users per sector. AnNi×Mu,i =
8 × 4 antenna configuration is considered, transmitting a single stream per user, `u,i = 1, to at most eight users in parallel in case of
MU-MIMO, and up to `u,i = 4 streams with SU-MIMO.

In case of MU-MIMO transmission, either `u,i = 1 or `u,i = 2 spatial streams per user are transmitted.
Notice that per-user transmission rank adaptation is not considered for MU-MIMO, i.e., the number
of data streams per user is fixed. Only the number of users served in parallel is adapted, employing
the scheduler of Section 4.4.2. With SU-MIMO, on the other hand, the per-user transmission rank is
adapted. The interference-averaged MMSE equalizer, derived in Appendix H.2, is applied by the
users, to separate their intended data streams from the residual multi-user interference, and to cancel
interference in-between the intended streams.

5.2. Centralized versus Distributed Antenna Systems

In this section, a systematic comparison between the CAS and the DAS illustrated in Figure 5.1 is
provided. The impact of important system parameters on the performance of SU- and MU-MIMO
transmission in both networking architectures is evaluated. In all simulations presented in this section
the users are equipped with Mu,i = 4 receive antennas.

The improvement of the ASE with the number of users per sector is investigated in the first simulation,
shown in Figure 5.2. A feedback overhead of 8 bit per subframe is considered and a normalized
Doppler frequency of νd = 0.01 as well as uncorrelated receive antennas αcorr = 0 are assumed.
Comparing SU-MIMO (dashed) to MU-MIMO (solid), it is observed that single-user spatial mul-
tiplexing is outperformed by multi-user spatial multiplexing, as soon as the number of users is
large enough and the CSIT accuracy is sufficiently good to achieve a higher multiplexing gain with
MU-MIMO, irrespective of the networking architecture. In the CAS, the MU-MIMO performance
attained with memoryless quantization, employing the RVQ codebook described in Section 4.2.1, is
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Figure 5.3.: Area spectral efficiency achieved in the CAS and the DAS in dependence of the receive antenna correlation. An Ni ×
Mu,i = 8× 4 antenna configuration is considered, serving Ui = 8 user over `u,i ∈ {1, 2} streams per user in case of MU-MIMO, and
over up to `u,i = 4 streams in case of SU-MIMO.

significantly below the efficiency obtained with perfect CSIT as well as with predictive quantization,
using the quantizer of Section 4.2.2. In the DAS, this gap is reduced if the pathloss differences
experienced with respect to the RRUs are utilized during CSI quantization, by means of the correlated
RVQ codebook proposed in Section 4.2.1. A similar effect, albeit not as significant, is noticed with
SU-MIMO. Here, the performance of CLSM is improved in the DAS if antenna subset selection,
as proposed in Section 3.2.4, is employed. Comparing the ASE of the CAS and the DAS, a sub-
stantial improvement of the MU-MIMO performance in the DAS is observed, while the SU-MIMO
efficiency is very similar in both systems. Considering MU-MIMO with memoryless quantization,
an improvement of approximately 100 % is achieved with the DAS over the CAS, if the number of
users Ui is larger than four. In the following simulations Ui = 8 is assumed.

Next, in Figure 5.3, the impact of the antenna correlation parameter αcorr on the SU- and MU-MIMO
throughput is investigated. In case of MU-MIMO, zero forcing (ZF) beamforming with `u,i = 1
as well as BD precoding with `u,i = 2 are considered, assuming perfect CSIT and predictive
quantization. A strong performance degradation of BD precoding with growing antenna correlation
is observed in both, the CAS and the DAS. This is in line with theoretical investigations, e.g., [185],
and is caused by the increased imbalance between the singular values of the channel matrix with
stronger antenna correlation [153]. The same effect leads to an improvement of the ASE achieved
with ZF beamforming, because the magnitude of the maximum singular value grows with the antenna
correlation. With uncorrelated antennas, αcorr = 0, very similar efficiency is attained with ZF
beamforming and BD precoding. Theoretically, ZF should be outperformed by BD at this point.
This is not observed here, because the multiplexed data streams of a user are independently detected
using linear MMSE equalization, instead of joint maximum likelihood detection. To optimize the
performance of the MU-MIMO transmission, the per-user transmission rank `u,i should hence be
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Figure 5.4.: Area spectral efficiency achieved in the CAS and the DAS in dependence of the feedback overhead. AnNi×Mu,i = 8×4
antenna configuration is considered, serving Ui = 8 user over `u,i = 2 streams per user employing BD based MU-MIMO.

adapted to the channel conditions, which is not considered in this thesis. The impact of the antenna
correlation on the SU-MIMO performance is not significant, because mostly low rank transmission
is employed in this case, due to the low SINR experienced by the users.

In the remaining simulations, the focus is put on MU-MIMO, due to the similar performance of
SU-MIMO in the CAS and the DAS. Also, αcorr = 0 is optimistically assumed from now on. The
improvement of the ASE achieved with BD precoding (`u,i = 2) and increasing feedback overhead
is evaluated in Figure 5.4. In the CAS, even 10 bit of feedback per subframe is by far insufficient to
achieve close-to-optimal performance with memoryless quantization. This observation applies to the
DAS as well, if the gain differences between the RRUs are not exploited during quantization (RVQ).
The important observation from Figure 5.4 is that the gap between perfect CSIT and memoryless
quantization is substantially reduced in the DAS, if knowledge of the channel gain matrix (2.11) is
exploited during quantization (corr. RVQ), to improve the quantization accuracy of those RRUs that
are received strongly.

Finally, the impact of the temporal channel correlation on the ASE obtained with predictive quan-
tization is investigated for the case of ZF beamforming in Figure 5.5. The temporal correlation is
quantified with the normalized channel Doppler frequency (3.33). As shown in Figure 5.5, perfect
performance is achieved by the predictive quantizer at low Doppler frequencies. With reducing
temporal channel correlation, i.e., with growing Doppler frequency, the efficiency is deteriorated
to that of memoryless quantization. The actual Doppler frequency at which this transition occurs
is determined by the size of the quantization codebook (5 bit of feedback per transmission time
interval (TTI) are considered here). Very similar behavior is observed in the CAS and in the DAS. In
the DAS, however, the performance of predictive quantization is only reduced to that of correlated
RVQ at high Doppler frequencies. Hence, even if the channel is temporally uncorrelated, the spatial
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Figure 5.5.: Area spectral efficiency achieved in the CAS and the DAS in dependence of the channel Doppler frequency. An Ni ×
Mu,i = 8×4 antenna configuration is considered, serving Ui = 8 user over `u,i = 1 stream per user employing ZF based MU-MIMO.

correlation is still exploited by the predictive quantizer, because the quantizer automatically adjusts
to the statistics of the channel using the adaptive codebook construction described in Section 4.2.2.

5.3. Distributed Antenna Systems versus Small Cells

Small cells are considered as one of the most promising tools to cope with the exponentially
increasing demand on network capacity, by placing autonomous access points (micro, pico or femto
base stations) at user hot spot locations, to offload traffic from the macro cellular network. This
approach is advantageous if the small cells are well isolated from the macro network (e.g., through
walls of a building), such that the access points do not cause excessive interference to the macro base
stations. If such isolation is not in place, coordination of the macro and micro layers of the cellular
network may be required to handle the out-of-cell interference. Compared to DASs, small cells can be
deployed cheaper and more flexible, because the dedicated low-latency high-bandwidth connection to
the macro network is not required. The access points, however, are autonomous base station and are
thus composed of more complex and expensive signal processing hardware. Considering these points,
it can be difficult for network operators to make a sensible decision on hardware investments.

In this section, a performance comparison between the DAS and the small cell system shown
in Figure 5.1 is conducted. It is assumed that there is no isolation, e.g., in the form of a wall loss,
between the small cells, respectively the RRUs, and the macro network. The considered access
points can be classified as micro base stations [186], due to their relatively high transmission power.
There are two sides to this investigation: firstly, it can help making decisions on investments into
new radio equipment. Secondly, and maybe even more importantly, the investigation can be viewed
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Figure 5.6.: Area spectral efficiency achieved in the DAS and the small cell system in dependence of the number of users per sector. An
Ni ×Mu,i = 8× 2 antenna configuration is considered, transmitting `u,i = 1 stream per user employing ZF based MU-MIMO.

as a comparison between non-cooperative transmission and joint transmission coordinated multi-
point (CoMP) between the macro and micro layers of an already existing network, hence, evaluating
the potential of coordinated transmission in the downlink of cellular networks. Notice though that
the power constraints in the small cell system and the DAS are not the same. In the DAS, a total
power constraint of 43 dBm is considered, irrespective of how this power divides onto the individual
antennas; in the small cell system, however, individual power constraints are invoked per base station
to ensure the same total power consumption (see Section 5.1 for details).

The focus in this section is put on MU-MIMO, because the gain achieved with distributed anten-
nas and SU-MIMO is relatively small, as shown in the previous section. ZF beamforming based
MU-MIMO is considered with users that are equipped with Mu,i = 2 receive antennas. In the small
cell system, feedback is provided by the users only to that micro or macro base station they are
attached to. Based on this CSIT, the precoders are calculated individually for each access point and
each sector of the macro base station. A normalized Doppler frequency of νd = 0.01 is considered.

The ASE in dependence of the number of users per sector is shown in Figure 5.6, assuming a feedback
overhead of 8 bit per subframe, i.e., 8 kbit/s. It can be observed that the difference between perfect
CSIT and memoryless quantization in the small cell system is even smaller than in the DAS. This
is because the channel matrix is of smaller dimensions.2 Also, the ASEs attained with predictive
quantization and perfect CSIT are overlapping. Comparing the two networking architectures with
perfect CSIT, a gain of approximately 40− 45 % is achieved with the DAS, enabling coherent data
transmission from multiple non-colocated antenna arrays. With memoryless quantization, this gain is
reduced to 15− 25 %, depending on the number of served users. Therefore, the ASE of the cellular

2The small cell channel matrix is either 4× 2 or 2× 2, depending on whether the user is attached to a macro or micro
base station. The DAS channel, on the other hand, is of size 8× 2.
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MU-MIMO.

network can be improved by implementing joint transmission CoMP. Whether the attained gain pays
off is determined by the expenditure involved in facilitating coherent data transmission from multiple
base stations. To provide a more comprehensive answer, the improvement of the cell edge throughput
should be evaluated as well, which is considered as the main application scenario of CoMP.

In the second simulation, the impact of the feedback overhead on the ASE is determined, to evaluate
if the gains observed above are robust with respect to the accuracy of the CSIT. The simulation results
are shown in Figure 5.7, assuming eight users per sector. In the small cell system, almost perfect
performance is achieved with memoryless quantization and 10 bit of feedback per TTI; the same
performance is obtained with predictive quantization using only 3 bit of feedback in the considered
low mobility scenario. In the DAS, the difference between memoryless quantization and perfect CSIT
is larger, thus requiring a larger feedback overhead to get equally close-to-optimal. The important
observation from Figure 5.7 is that the efficiency achieved in the DAS is always above that of the
small cell system, provided the pathloss differences of the channel gain matrix are exploited during
quantization, i.e., with correlated RVQ and predictive quantization.

5.4. Summary

In this chapter, the ASE obtained with the transceivers and limited feedback algorithms proposed
in Chapters 3 and 4 is compared, assuming three different cellular networking architectures. In
the presented simulations, the worst performance is observed in the classical CAS, consisting of
macro base stations only. The efficiency of the network can be improved by augmenting the macro
base stations with either RRUs, to generate a DAS, or with autonomous small cells. If the small
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cells are not well isolated from the macro network, excessive interference between the layers of the
network is the consequence. In this case, it is possible to improve the network efficiency by enabling
coordination among several transmission points. This is investigated in this chapter by comparing the
small cell system to the DAS, demonstrating ASE gains in the order of 20− 40 % with distributed
antennas. In conclusion, the best performance is attained with the DAS, facilitating coherent data
transmission from several non-colocated antenna arrays. This gain, however, comes at the significant
cost of providing low-latency high-bandwidth dedicated connections between the RRUs and the
macro base station to enable data and CSI exchange.

Although the performance of practical communication systems can be represented more realistically
with sophisticated link and system level simulations compared to achievable rate calculations, often
important variables and factors cannot be represented accurately by the physical layer models and
by the applied abstractions. Important restrictions of the employed simulation environment, which
should be kept in mind when evaluating the results, are noticed below.

The presented investigations are conducted with a hybrid of link and system level simulations. With
this approach, the physical layer details of the cell of interest, consisting of three macro cellular sectors
plus additional radio equipment such as RRUs and access points, are fully covered by the employed
simulator to facilitate application of the proposed transceivers and limited feedback algorithms.
Out-of-cell interference from other cells of the network, however, is only modeled, utilizing the
interference model described in Appendix I. This approach, albeit greatly reducing computational
complexity compared to full link level simulations, has the disadvantage that the mutual coupling in
the scheduling decisions of the cell of interest and the other cells is not considered, i.e., the other
cells are assumed as fully loaded all the time, causing maximal interference.

Another important influence of the wireless channel, which has not been considered in the presented
simulations, is macroscopic fading due to shadowing, caused by obstacles such as buildings. Shad-
owing has been neglected to limit the size of the network that has to be simulated by means of link
level simulations, because without shadow fading the area served by each cell is purely determined
by the geometry of the network. RRUs and small cells are actually considered as important tools to
mitigate the impact of shadowing, by providing additional macro-diversity. When shadow fading is
taken into account, also the placement of the additional radio equipment should be optimized such as
to maximize, e.g., the capacity or the coverage of the network. Such effects, however, are not in the
scope of the presented simulations, which rather focus on the advantage provided by RRUs and small
cells in terms of CSI requirements and network efficiency.

A possible point of criticism is the regular structure of the investigated networks. Especially when
considering the increasing heterogeneity of cellular networks, the relevance of such a hexagonal
network tessellation is decreasing; cf. [187]. In general, the applied out-of-cell interference model
can be used with any network geometry. As with shadowing, the regular structure is considered to
obtain a simple geometric boundary between the cells. It is not the intention of my simulations to
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represent the performance of a typical cell of a real wireless network, but rather to demonstrate the
advantage of MU-MIMO transmission in DASs and small cell systems compared to CASs.

Finally, a few remarks to the applied physical layer models: the correlation of the wireless channel
in space and frequency is determined by power delay profile based channel models in connection
with a spatial correlation matrix in Kronecker form (see Section 2.4). These models are parametrized
by a few variables and facilitate interpretation of the obtained simulations results. More realistic
models have been published that account for the antenna geometry at the transmitter and the receiver,
e.g., [188]. With these models, however, the correlation parameters are implicitly determined by the
antenna geometry and the considered surrounding environment, complicating the evaluation of the
simulation outcome. Also, the applied models are only two-dimensional; hence, three-dimensional
signal propagation, enabling 3D MIMO and elevation beamforming, is not covered.
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Chapter 6.

Conclusions
There is a single light of science, and to brighten
it anywhere is to brighten it everywhere.

(Isaac Asimov)

Life without ubiquitous possibilities to connect to the Internet is hard to imagine nowadays. Wireless
access is provided even in the most remote places by cellular networks. Consumer acceptance of novel
mobile devices, such as tablet computers and smartphones, and associated multimedia and Internet
driven applications is high, causing an immense growth in mobile data traffic and forcing network
providers, standardization bodies as well as researcher to react and to devise feasible solutions, in
order to improve the quality of service of wireless communication systems.

The basic cellular networking technology for the next ten years at least is specified by 3GPP’s LTE
and is currently being globally deployed by mobile operators. Accordingly, viable short- and mid-
term technological improvements have to be compatible with the standardized design underlying LTE.
Often such restrictions are disregarded by researchers for the sake of generality and mathematical
tractability, hampering the consideration of state-of-the-art research in the standardization process.

The main contribution of this dissertation is the development of limited feedback algorithms and
transceiver architectures to enable the implementation of advanced single-user (SU-) and multi-user
MIMO (MU-MIMO) techniques in LTE compliant cellular networks. Even though the concepts
underlying the proposed methods are derived having generality of the obtained solutions and analytical
tractability in mind, their practical relevance and applicability is considered of equal value. Below, a
summary of the most significant contributions and findings of this thesis is provided.

6.1. Summary of Contributions

The proposed SU-MIMO limited feedback algorithms are designed to optimize the downlink through-
put achieved with the currently prevalent implementation of single-user spatial multiplexing in
standardized communication technologies, such as LTE, WiMAX and WiFi. In such systems, a
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combination of codebook based precoding and transmission rank adaptation is employed to trade-off
the beamforming capabilities of the transmitter for the spatial multiplexing gain achieved with MIMO,
depending on the SNR operating regime. In combination with adaptive modulation and coding, a
flexible transceiver is obtained that supports a wide range of SNRs and is able to exploit the diversity
provided by the wireless channel.

In Chapter 3 of this thesis, SU-MIMO transmission in compliance with LTE’s closed-loop spatial-
multiplexing transmission mode is considered. Dynamic adjustment of the transmission parameters to
the instantaneous channel quality is enabled by the proposed limited feedback algorithms. Although
instantaneous feedback is prone to a delay in the feedback path, it is demonstrated that reasonable
lags can be compensated in low to moderate mobility scenarios, using channel prediction at the
receivers. Without delay compensation, the proposed instantaneous channel state information (CSI)
feedback is restricted to quasi-stationary situations.

LTE’s single-user transmission capabilities, employing the proposed feedback algorithms, are evalu-
ated by means of detailed link level simulations of the LTE physical layer (PHY). A comparison of
the downlink throughput of LTE and the MIMO channel capacity is conducted, revealing a throughput
loss of 60− 70 %, even without consideration of impairments caused by the signal-processing (e.g.,
channel estimation, synchronization) and the hardware (e.g., I/Q imbalance, amplifier nonlinearities).
The reasons of the performance degradation are investigated by deriving upper bounds on the achiev-
able throughput, accounting for the constraints imposed by the standard. The throughput loss cannot
be attributed to a single dominant source, but rather divides evenly among signaling overhead and
architectural restrictions. Hence, significant improvements of the LTE PHY are possible only with a
comprehensive revision of the standard. With the proposed feedback algorithms a throughput within
1 % of the optimal performance of LTE, as obtained from exhaustive search, is achieved.

The second major part of this thesis is devoted to spatial multiplexing of several users. MU-MIMO
has several important benefits over SU-MIMO, which make it attractive for practical implementations.
Most importantly, the potential spatial multiplexing gain in the downlink of the cellular network is
not confined by the number of receive antennas per user, as in SU-MIMO. Therefore, the hardware
complexity of the communication system can be offloaded to the base stations of the access network,
facilitating cheap and small user equipments. MU-MIMO operation is not yet standardized in LTE,
although the foundation has been set with the incorporation of non-codebook based precoding in
Rel’10 of the standard specifications. In Chapter 4, a viable transceiver architecture for limited
feedback based MU-MIMO in LTE is proposed, encompassing multi-user scheduling and precoding
at the base station, as well as antenna combining and CSI feedback calculation at the users.

At the transmitter, block diagonalization (BD) precoding is employed to orthogonalize the trans-
missions to multiple users. The subspace spanned by the user’s channel matrix is identified as
the feedback information required at the base station for precoder calculation. Accurate CSI at
the transmitter (CSIT) is critical to minimize the residual multi-user interference observed by the
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users. Efficient quantization of the subspace is enabled with the proposed predictive Grassmannian
quantizer, exploiting the temporal correlation of the wireless channel and the invariances of the
subspace information to achieve high fidelity quantization in low to moderate mobility scenarios with
a reasonable feedback overhead.

When additional degrees of freedom (DoF) are provided by the users via excess receive antennas, the
residual multi-user interference (or the feedback overhead) can further be reduced by applying the
proposed subspace quantization based combining (SQBC) subspace selection and antenna combining
strategy. It is shown that a linear reduction of the slope of the feedback bit scaling law, governing
the feedback overhead to obtain a constant loss with respect to perfect CSIT, with the number of
excess antennas is achieved by application of SQBC antenna combining. Subspace selection based
on SQBC is also an effective approach for extending the feedback methods to OFDM by means of
subcarrier clustering. Combining feedback clustering with predictive quantization, close to optimal
throughput performance is demonstrated with a reasonable feedback overhead over the practically
relevant SNR range from 0 dB to 30 dB.

The proposed methods are applied in Chapter 5 to evaluate the performance of LTE, utilizing three
different concepts of cellular networking architectures. In this simulation based study, the highest
area spectral efficiency (ASE) is achieved with the distributed antenna system (DAS), enabling
coherent data transmission from all transmit antennas within the cell, provided sufficiently accurate
CSIT is available. Both, the centralized antenna system (CAS) as well as the small cell system,
are significantly outperformed by the DAS when predictive quantization is considered. Only when
the CSIT in the DAS is not sufficiently accurate to enable efficient MU-MIMO operation, the best
performance is achieved with the small cell system. Correspondingly, with accurate CSIT it is possible
to improve the operation of small cells within the macro network by applying joint transmission
coordinated multi-point (CoMP), effectively transforming the small cell network into a DAS.

6.2. Open Issues and Outlook

Despite the effort put in the work on this dissertation, there are still a few issues left that require
some further investigations and research work to enable practical implementations of the proposed
methods. One issue, considering the practical applicability of the derived limited feedback algorithms,
is computational complexity. Complexity has not been taken into account during the development of
the proposed techniques; the focus was instead put on the achieved performance. Complex operations,
such as matrix inversions and singular value decompositions (SVDs), are extensively employed in
the methods, despite their feasibility in practical realizations. Hence, potentials for savings in terms
of algorithmic complexity have to be investigated to enable efficient implementations.

Another issue that is not sufficiently researched yet is the determination of the required feedback
overhead to achieve sufficiently accurate CSIT in case of feedback clustering, predictive quantization
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and correlated random vector quantization (RVQ). Only for RVQ of independent and identically
distributed (i.i.d.) Rayleigh fading channels, it was possible to derive the feedback bit scaling law
versus the SNR, because bounds on the average chordal distance quantization distortion are available
in literature. Deriving similar bounds for spatially correlated channels was not yet successful.
Similarly, it is unknown how large the theoretical potential of predictive Grassmannian quantization
of temporally correlated subspaces is. Hence, the question how close-to-optimal the proposed
quantizer performs cannot be answered yet. Information theoretic results on the rate-distortion
trade-off of this Grassmannian quantization problem would be valuable.

The impact of impairments in the feedback channel has to be further investigated. Specifically,
feedback errors are problematic in case of predictive quantization, because the prediction operation
causes error propagation, similar to the effects observed in video codecs. Such errors can be resolved
with a simple cyclic-redundancy-check in combination with a selective-repeat automatic repeat-
request protocol or with a synchronized reset of the quantizers at the encoder and the decoder.
Alternatively, a concept similar to the I-frame in video coding [189] can be employed to periodically
provide a valid reference. In either case, the additional feedback and signaling overhead must be
taken into account.

Finally, the BD precoding strategy itself has to be scrutinized. Albeit the fact that block diagonaliza-
tion is DoF optimal for the MIMO broadcast channel, a performance loss is incurred at low SNR,
when the multi-user interference is dominated by the noise. Precoding approaches that are less
susceptible to the receiver noise have been proposed, e.g., regularized block diagonalization [190]. It
is unclear if such methods can be adjusted to operate with subspace feedback or if full feedback of the
channel matrix is required. Alternatively, an approach similar to shape-gain vector quantization [76]
is conceivable, in which subspace quantization is combined with an independent quantization of the
singular values of the channel matrix, to additionally provide information about the channel gain.

6.3. Conclusion

Despite the fact that already Shannon in 1956 showed that feedback does not increase the capacity of
memoryless point-to-point channels with infinite code block length [191], feedback has still proved
to be one of the most successful tools in wireless communications to enable robust and efficient data
transmission. With feedback it is possible to adapt the transmission parameters to the varying channel
conditions, thereby exploiting the diversity of the wireless channel and improving the achievable data
rate with finite code block length [192]. Even more important, the capacity of multi-point channels
is substantially increased with feedback, see, e.g., [193], [194]. I am therefore confident that this
dissertation provides a valuable contribution towards advancing limited feedback based single- and
multi-user MIMO communications, to improve the efficiency and capacity of cellular networks.
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Appendix A.

List of Abbreviations

3GPP Third Generation Partnership Project
AMC adaptive modulation and coding
ASE area spectral efficiency
AWGN additive white Gaussian noise
BD block diagonalization
BER bit-error ratio
BICM bit-interleaved coded modulation
BICM LR bit-interleaved coded modulation (BICM) with linear receiver
BLER block-error ratio
CAS centralized antenna system
CDMA code division multiple access
CLMI closed loop mutual information
CLMI LR CLMI with linear receiver
CLSM closed loop spatial multiplexing
CoMP coordinated multi-point
CQI channel quality indicator
CSI channel state information
CSIT CSI at the transmitter
DAS distributed antenna system
DoF degrees of freedom
DPC dirty paper coding
EDGE Enhanced Data Rates for GSM Evolution
EESM exponential effective SINR mapping
ESM effective SINR mapping
ETSI European Telecommunications Standard Institute
FDD frequency division duplex
FEC forward error correction code
FIR finite impulse response
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GPRS General Packet Radio Service
GSM Global System for Mobile Communications
HARQ hybrid automatic repeat request
HetNets heterogeneous networks
HSPA High Speed Packet Access
IEEE Institute of Electrical and Electronics Engineers
i.i.d. independent and identically distributed
IMT-A International Mobile Telecommunications-Advanced
ITU International Telecommunications Union
LDPC low-density parity-check code
LTE Long Term Evolution
LTE-A LTE advanced
MCS modulation and coding scheme
MET maximum eigenmode transmission
MIMO multiple-input multiple-output
MIESM mutual information effective SINR mapping
MMSE minimum mean-squared error
MSE mean-squared error
MU-MIMO multi-user MIMO
OFDM orthogonal frequency division multiplexing
OFDMA orthogonal frequency division multiple access
PHY physical layer
PMI precoding matrix indicator
PSK phase shift keying
QAM quadratur amplitude modulation
QBC quantization based combining
RB resource block
RE resource element
RI rank indicator
RLS recursive least squares
RMS root mean square
RRU remote radio unit
RVQ random vector quantization
SINR signal to interference and noise ratio
SISO single-input single-output
SNR signal to noise ratio
SQBC subspace quantization based combining
SU-MIMO single-user MIMO
SUS semi-orthogonal user selection
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SVD singular value decomposition
TTI transmission time interval
UMTS Universal Mobile Telecommunications System
WCDMA wideband code division multiple access
ZF zero forcing
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Appendix B.

Notation

The following notation is used throughout this dissertation:

Table B.1.: Definition of the employed mathematical notation.

Symbol Meaning
a,A ∈ C (R) complex-valued (real-valued) scalars

a ∈ Cn×1 (Rn×1) length n complex-valued (real-valued) column vector
A ∈ Cn×m (Rn×m) complex-valued (real-valued) matrix with n rows and m columns

A set of numbers or other elements
In n× n dimensional identity matrix

0n×m n×m dimensional matrix with all entries equal to zero
|a| magnitude of a scalar
‖a‖ l2 norm of a vector
‖A‖ Frobenius norm of a matrix
|A| size of a set
AT transpose of a matrix
AH conjugate-transpose of a matrix

A1/2 square root of a matrix
A−1 inverse of a matrix

A† Moore-Penrose pseudo inverse of a matrix
E (a) expected value of a

var (a) variance of a
tr (A) trace of a matrix

det (A) determinant of a matrix
diag (a) diagonal matrix whose main diagonal entries equal a
logb (a) base b logarithm of a
vec (A) column vector consisting of the stacked columns of A
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Notation (continued from previous page)

Symbol Meaning
span (A) space spanned by the columns of A
null (A) kernel (null space) of A

d2
c (Q1,Q2) squared chordal distance between span (Q1), span (Q2)

d2
c,w (Q1,Q2,Λ)

squared weighted chordal distance between span (Q1), span (Q2)
with diagonal weighting matrix Λ

[A]m:n,i:j selects the submatrix of A consisting of rows m to n and columns i to j
[A]:,i selects the i-th column of A

[A]m,: selects the m-th row of A
β (a, b) beta distribution with parameters a and b
Γ (k, θ) gamma distribution with shape k and scale θ

NC (m,R)
circularly symmetric complex Gaussian distribution
with mean m and covariance R

WC
n (m,S)

central complex Wishart distribution of dimension n
with m degrees of freedom and scale matrix S

W−Cn (m,S)
inverse central complex Wishart distribution of dimension n
with m degrees of freedom and scale matrix S

G (n,m)
Grassmann manifold of m-dimensional subspaces
in the n-dimensional complex Euclidean space (m ≤ n)

Un group of n× n unitary matrices
T (A) tangent space of the matrix A
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Grassmann Manifold Basics

In the limited feedback algorithms proposed in this dissertation symmetry and invariance properties
of the cost functions and constraints underlying the considered optimization problems are exploited
to minimize the required feedback information exchange between the user and the base station, and to
improve the efficiency of the derived algorithms and methods. Specifically, the considered precoding
strategies are based on channel subspace information, facilitating transmission of the data over a
preferred subspace of the channel matrix in SU-MIMO (see Section 3.1.2), or enabling multi-user
interference-nulling over certain subspaces of the channel matrices in MU-MIMO (see Section 4.1).
Subspace information can efficiently be represented and conveyed using the Grassmann manifold.

The Grassmann manifold has been successfully employed in several areas of MIMO wireless
communications, including capacity evaluations of non coherent multiple-antenna channels [70],
codebook design for limited feedback single- and multi-user MIMO as well as interference align-
ment [40, 81, 195], space-time code design [196, 197] and many others. Therefore, in this chapter
a short introduction to the Grassmann manifold is provided, covering its matrix representation and
a few necessary notions of geometry utilized in this thesis. For a more detailed discussion of the
Grassmannian and other related manifolds the interested reader is referred to [198, 199].

C.1. Definition of the Grassmann Manifold

A manifold in general is defined as a topological space that resembles Euclidean space in a neighbor-
hood around each point, i.e., there exists a neighborhood around each point that is homeomorphic
to an open subset of the Euclidean space; see, e.g., [200] for a rigorous formal definition. Familiar
examples are circles, spheres, parabolas and so on. The Grassmann manifold, also known as the Grass-
mannian, G (m,n,K) with n ≤ m is the set of all n-dimensional subspaces in the m-dimensional
vector space Km, for example with K = C. The Grassmannian can also be defined as a quotient
manifold. Consider the non compact Stiefel manifold of full-rank m× n matrices defined as

S(m,n,K) :=
{
S ∈ Km×n : det

(
SHS

)
6= 0

}
, (C.1)
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and the equivalence relation between points S and T on S(m,n,K)

S ≡ T⇔ S = TM, M ∈ GL(n,K), (C.2)

GL(n,K) :=
{
N ∈ Kn×n : det (N) 6= 0

}
, (C.3)

with GL(n,K) denoting the general linear group of degree n. Elements of the Grassmann manifold
are equivalence classes of matrices S ∈ S(m,n,K) with respect to the equivalence relation ≡. Thus,
the Grassmann manifold is identical to the quotient space [199]

G(m,n,K) ∆= S(m,n,K)/GL(n,K). (C.4)

In this dissertation, the vector space K underlying the considered Grassmannian is the Euclidean
space of complex numbers; for simplicity it is written as G (m,n) = G (m,n,C).

A point H ∈ G (m,n) on the Grassmann manifold can be represented by any matrix H ∈ Cm×n

whose columns span the subspace defined by H , i.e., H = span (H). To unify this representation,
orthonormal bases (semi-unitary matrices) are employed throughput this thesis to identify points on
the Grassmannian

H̃ ∈ G (m,n)⇔ H̃HH̃ = In. (C.5)

Notice that H̃ represents an entire equivalence class in the sense of Equation (C.2). This matrix
representation was advocated in [198] and is commonly employed in the corresponding scientific
literature.

C.2. Distance Measures on the Grassmannian

When designing quantization codebooks for the Grassmann manifold it is necessary to determine
the distance between points on the manifold. Several distance measures have been defined in the
literature. In limited feedback MIMO wireless communications the most important distances between
two subspaces H̃1, H̃2 ∈ G (m,n) are [40]:1

• The chordal distance

d2
c

(
H̃1, H̃2

)
= n− tr

(
H̃H

1 H̃2H̃H
2 H̃1

)
. (C.6)

• The projection two-norm

d2
p

(
H̃1, H̃2

)
=
∥∥∥H̃1H̃H

1 − H̃2H̃H
2

∥∥∥2

F
. (C.7)

1Notice that H̃1 and H̃2 must be orthonormal bases, as in (C.5).
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• The Fubini-Study distance

d2
f

(
H̃1, H̃2

)
=
(
arccos

∣∣∣det H̃H
1 H̃2

∣∣∣)2
. (C.8)

These distances have been related to different optimization criteria for the design of SU-MIMO
precoder codebooks for codebook based precoding in [40]. In more recent work investigating limited
feedback based MU-MIMO and MIMO interference alignment [45, 46, 53], the importance of the
chordal distance as CSI quantization metric is recognized, because it determines the residual multi-
user interference experienced by the users. Hence, the MU-MIMO feedback algorithms proposed
in Chapter 4 are based on the chordal distance.

C.3. Geometry on the Grassmannian

The predictive CSI quantizer developed in Section 4.2 is based on geometric concepts associated
with the differentiable (smooth) Grassmann manifold, which are specified and described below.

Two points H̃1, H̃2 ∈ G (m,n) on the Grassmannian can be related using the concept of a tangent
T1 [198, 199, 201]

T1 = T
(
H̃1, H̃2

)
= UΦVH, (C.9)

U tan (Φ) VH = Θ, U ∈ Cm×n, Φ ∈ Cn×n, V ∈ Cn×n,

Θ =
(
Im − H̃1H̃H

1

)
H̃2

(
H̃H

1 H̃2
)−1
∈ Cm×n.

Here, the tangent T1 ∈ T
(
H̃1
)

is determined by the matrices U, Φ and V, which are obtained
from the compact-form SVD of the auxiliary matrix Θ. Notice that the diagonal matrix tan (Φ) is
composed of the singular values of Θ. The matrix Φ is obtained by calculating the arctangent of the
diagonal elements of tan (Φ). The Euclidean tangent space associated with the point H̃1 ∈ G (m,n)
is defined as [198]

T
(
H̃1
)

:=
{
T ∈ Cm×n

∣∣H̃H
1 T = 0n×n

}
. (C.10)

The shortest path between the two points H̃1, H̃2 ∈ G (m,n) that lies entirely on G (m,n), also
known as the geodesic, is specified by the tangent T1 of Equation (C.9). Geodesics on manifolds
are a generalization of the concept of straight lines in the Euclidean space. A straight line is defined
as a curve with zero acceleration. This can be generalized to curves on surfaces or manifolds by
requiring that the acceleration lies only in the normal space of the manifold [198]. Intuitively, this
means that the curve only changes direction to stay on the manifold and not to move sideways along
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the manifold. The geodesic defined by the tangent T1 in (C.9) parametrized by p ∈ [0, 1] is obtained
as [198]

Γ1(p) = Γ
(
H̃1,T1, p

)
= H̃1V cos (Φ p) VH + U sin (Φ p) VH. (C.11)

Notice that Γ1(0) = H̃1 and that Γ1(1) ≡ H̃2 in the sense of Equation (C.2). It can also be verified
that the derivative of the geodesic at p = 0 is equal to the tangent: d

dpΓ1(p)
∣∣∣
p=0

= T1. In the

proposed predictive CSI quantizer of Section 4.2 the prediction of points on the Grassmannian is
achieved by translating the problem to the tangent space, thereby avoiding the explicit manifold
constraint and facilitating reuse of well-known prediction algorithms from the Euclidean geometry.

For that purpose, it is necessary to transport the geometric information contained in a tangent
T ∈ T

(
H̃1
)

from one point H̃1 ∈ G (m,n) on the manifold to another point H̃2 ∈ G (m,n), which
can be achieved by parallel transport. Parallel transport is a means to move the base of a tangent
along a smooth curve on the manifold, such that a valid tangent is obtained at each point along the
curve, preserving the inner product with respect to the curve. Parallel transport of T ∈ T

(
H̃1
)

from H̃1 to H̃2 along the geodesic defined in (C.11) is achieved with [198]

Π(p) = Π
(
H̃1, H̃2,T, p

)
= −H̃1V sin (Φp) UHT + U cos (Φp) UHT +

(
Im −UUH

)
T.

(C.12)

Here, U, Φ and V are obtained from the tangent T1 of Equation (C.9). With this approach, a valid
tangent Π(1) ∈ T

(
H̃2
)

is calculated that can be utilized to smoothly extend the geodesic between

H̃1 and H̃2 beyond H̃2. This approach has been exploited in [81] to achieve a simple one step ahead
prediction. In this thesis this idea is extended to an arbitrary prediction order, by interpreting the
tangents describing the evolution of the channel subspace over time as a stochastic process that is
predicted by means of linear filtering; see Section 4.2.
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Performance Bounds for MIMO OFDM

In this chapter, several increasingly tight and restrictive performance bounds for single user single
cell MIMO OFDM wireless communication systems are developed. Since many years the channel
capacity of multi-antenna Gaussian channels is well known [38], but still current wireless communi-
cation technology is far from achieving throughputs close to capacity. Although modern turbo codes
and low-density parity-check codes (LDPCs) are performing close to ideal Shannon codes [202],
there are several other sources of performance loss that all together accumulate to a large fraction of
the theoretically possible throughput. The most dominant factors of performance degradation are
systematically identified below. Starting from Shannon’s channel capacity of multi-antenna Gaussian
channels, tighter upper bounds on the achievable throughput are derived gradually, incorporating
design constraints encountered in practical implementations, such as the system overhead, the restric-
tion to codebook based precoding and the application of BICM instead of Gaussian signaling. These
bounds are derived for a system architecture according to Figure 2.2. Closed form expressions for
the bounds are not available, but they can be evaluated by Monte Carlo simulations similar to the
water-filling solution of the Shannon capacity. Such simulations are performed in Section 3.3 of this
thesis, where the derived throughput bounds are applied to investigate the performance of LTE and to
analyze the potential sources of the significant throughput loss observed with respect to the Shannon
capacity. The presented throughput bounds are a subset of the bounds proposed in my corresponding
publication [63], accounting for the most dominant factors of performance degradation. The additive
noise is assumed to be i.i.d. Gaussian distributed with variance σ̃2

z . The user and cell indices are
omitted for brevity, as only a single cell single user scenario is considered.

Channel capacity: The amount of information that any communication system can transmit
reliably over a given channel is upper bounded by the well known Shannon channel capacity [203].
In MIMO OFDM, channel capacity can be achieved by SVD based precoding and reception on
each OFDM subcarrier n, along with water-filling power allocation among spatial modes and
subcarriers [106]. Power allocation over time is not considered, i.e., an instantaneous power constraint
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per OFDM symbol is assumed. According to Equation (2.5), the post-equalization MIMO input-
output relationship of the system is

y[n, k] = (H[n, k]G[n, k])HF[n, k]x[n, k] + G[n, k]Hz̃[n, k]. (D.1)

The SVD of the channel matrix H[n, k] at subcarrier n and OFDM symbol k is written as

H[n, k] = U[n, k]Σ[n, k]V[n, k]H, (D.2)

Σ[n, k] = diag (σ1[n, k], . . . , σ`max [n, k]) ,

where the number of spatial modes is bounded as `max ≤ min (N,M) and is determined by the
rank of the channel matrix (it is assumed that `max does not change over subcarriers). Provided the
precoder and the receive filter are set as

F[n, k] = U[n, k]P[n, k]1/2, (D.3)

G[n, k] = V[n, k], (D.4)

with P[n, k] = diag (p1[n, k], . . . , p`max [n, k]) being a diagonal power loading matrix, the MIMO
channel is decomposed into a set of `max non-interfering AWGN SISO channels

[y[n, k]]ν =
√
pν [n, k]σν [n, k] [x[n, k]]ν + z̃[n, k], ν ∈ {1, . . . , `max} , (D.5)

with z̃[n, k] ∼ NC
(
0, σ̃2

z

)
. The optimal power distribution over subcarriers and spatial streams is

obtained from the water-filling power allocation policy [106], solving the optimization problem

C[k] = max
pν [n,k]

`max∑
ν=1

Ntot∑
n=1

log2

(
1 + pν [n, k](σν [n, k])2

σ̃2
z

)
(D.6)

subject to:
`max∑
ν=1

Ntot∑
n=1

pν [n, k] = NtotP, (D.7)

with P being the average transmit power per subcarrier and Ntot denoting the total number of OFDM
subcarriers.

Achievable capacity: The channel capacity does not consider the most obvious performance loss
encountered in practical systems, due to overhead such as the transmission of the OFDM cyclic
prefix to avoid inter symbol interference [106], the insertion of reference symbols for timing- and
frequency-synchronization [204] as well as channel estimation [39], and the inclusion of guard
bands to ensure negligible interference to other frequency bands. Knowing the specifications of
the considered technology, these constraints can easily be accounted for by multiplying the channel
capacity with an efficiency factor assessing the loss of available bandwidth for data transmission
caused by the technology [59].
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Closed loop mutual information: With codebook based precoding, the precoders that can be
applied at the base station are restricted to a predefined set (codebook) Q(N)

` , e.g., as defined in (3.8).
Also, the variability of the precoding in the time-frequency domain is often confined by clustering,
in order to reduce the CSI feedback overhead (see Section 3.2). With clustering, the same precoder
is used for a set of N (f)

clust consecutive subcarriers n and a set of N (t)
clust consecutive time instants k,

dividing the time-frequency resource grid into a set of NRB resource blocks (RBs) per time slot κ, as
detailed in Section 3.2. The same transmission rank `[κ] is thereby applied over all frequency domain
clusters η ∈ {1, . . . , NRB} per time slot. In that case, an optimum power allocation cannot be found
by means of water-filling, because the applied precoder does in general not diagonalize the channel.
Hence, uniform power allocation is commonly applied in practice and is assumed in the following
for simplicity. The bound can easily be accommodated for other forms of power allocation, e.g., to
consider pathloss compensation.

Taking these restrictions into account, the achievable transmission rate on resource element (RE)
[n, k], assuming the application of precoder Q[η, κ] ∈ Q(N)

`[κ] , is determined by the mutual informa-
tion [142]

I[n, k] = log2 det
(

IM + P

σ̃2
zN

H[n, k]HQ[η, κ]Q[η, κ]HH[n, k]
)
, (D.8)

which can be obtained by applying a maximum likelihood MIMO detector at the receiver.1 The
precoder Q[η, κ] is here indexed by the RB index [η, κ] instead of the RE index [n, k] to take the
clustering into account. The relationship between these index pairs is defined in Equation (3.14). For
simplicity the same notation is employed in both cases; the correct interpretation follows from the
context. Similarly, the transmission rank `[κ] is indexed by the slot index κ instead of the OFDM
symbol index k.

The closed loop mutual information (CLMI) bound is defined as the maximum sum mutual infor-
mation over clusters η, with respect to the precoders and with respect to the transmission rank
`[κ] ∈ {1, . . . , `max}

I(CL)[κ] = max
`[κ]

NRB∑
η=1

max
Q[η,κ] ∈Q(N)

`[κ]

NRE∑
ρ=1

log2 det
(

IM + P

σ̃2
zN

H[n, k]HQ[η, κ]Q[η, κ]HH[n, k]
)
.

(D.9)

Here, the RB specific RE index ρ, defined in Section 3.2.1, is employed to simplify notations. The
corresponding absolute RE index [n, k] is implicitly determined by Equation (3.13). Comparing the
channel capacity and the CLMI bound, the following inequality holds

I(CL)[κ] ≤ C[κ] =
κN

(t)
clust∑

k=(κ−1)N(t)
clust+1

C[k], (D.10)

1Notice the application of the semi-unitary precoder Q here, instead of its scaled version F as in (3.9).
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with C[k] from Equation (D.6), and the sum going over all symbol indices k that correspond to slot
index κ; cf. Section 3.2.1.

Closed loop mutual information with linear receiver: In practical implementations, maximum
likelihood detection at the users is often too complex. Instead, linear receive filters are frequently
employed to separate the spatial data streams, followed by independent decoding of the individual
streams. If the precoder Q[n, k] and the receive filter G[n, k] are applied on RE [n, k], the per-stream
post-equalization SINR is obtained from Equation (2.7). In the considered single cell single user
case, the post-equalization SINR of stream ν with equal power allocation among streams is

βν [n, k] =
P
`[k]

∣∣∣gν [n, k]HH[n, k]Hqν [n, k]
∣∣∣2

P
`[k]

∑`[k]
µ=1,µ6=ν |gν [n, k]HH[n, k]Hqµ[n, k]|2 + σ̃2

z ‖gν [n, k]‖2
, (D.11)

with gν [n, k] = [G[n, k]]:,ν and qν [n, k] = [Q[n, k]]:,ν . Assuming Gaussian signaling, the achiev-
able transmission rate on RE [n, k] with linear receiver is hence given by

R[n, k] =
`[k]∑
ν=1

log2 (1 + βν [n, k]) . (D.12)

Taking into account the precoder clustering and the constant transmission rank per time slot as before,
the CLMI with linear receiver (CLMI LR) throughput bound is obtained by maximizing the sum rate
over clusters with respect to the precoders and the transmission rank

R(CL,LR)[κ] = max
`[κ]

NRB∑
ν=1

max
Q[ν,κ] ∈Q(N)

`[κ]

NRE∑
ρ=1

`[κ]∑
ν=1

log2 (1 + βν [n, k]) ≤ I(CL)[κ], (D.13)

with [n, k] from Equation (3.13).

Bit-interleaved coded modulation with linear receiver: To achieve the channel capacity and
mutual information bounds derived above, it is required to apply Gaussian signaling for data transmis-
sion [132]. Hence, the information theoretic correct approach of modulation and coding is to apply
signal-space coding, which was first considered in Ungerböck’s work on coded modulation [205].
Still, for complexity reasons, separate modulation and coding is preferred in practice. Since the
discovery of strong binary forward error correction codes (FECs) such as turbo codes and LDPCs,
performance close to Shannon capacity is nevertheless possible provided the coding and modulation
stages are joined over a powerful bit-interleaver, forming a BICM architecture [123]. The capacity
of BICM is derived in [122] and is compared in Figure 3.2 to Shannon capacity assuming a SISO
AWGN channel, illustrating the good performance of BICM over a wide SNR range.
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In the following, a BICM architecture is assumed that supports a set A of modulation alphabets.
Denoting the SISO AWGN BICM capacity achieved with modulation alphabet A ∈ A in dependence
of the SNR β as BA (β) (cf., Figure 3.2), the BICM system capacity is defined as

B (β) = max
A∈A

BA (β) . (D.14)

The throughput bound of BICM with linear receiver (BICM LR) is obtained by replacing the Shannon
capacity log2 (1 + β) in Equation (D.13) with the BICM system capacity B (β)

B(CL,LR)[κ] = max
`[κ]

NRB∑
η=1

max
Q[η,κ] ∈Q(N)

`[κ]

NRE∑
ρ=1

`[κ]∑
ν=1

B (βν [n, k]) ≤ R(CL,LR)[κ]. (D.15)

As before, codebook based precoding with equal power allocation and precoder clustering with a
constant transmission rank over clusters is assumed.

To summarize, the following practical constraints are incrementally incorporated in the proposed
throughput bounds:

• The throughput loss caused by the system overhead is considered in the achievable capacity.

• The restrictions imposed by codebook based precoding and feedback clustering are taken into
account by the CLMI bound.

• The performance degradation due to the application of a linear receiver instead of a maximum
likelihood MIMO detector is considered in the CLMI LR bound.

• The loss caused by the BICM architecture is accounted for in the BICM LR bound.

Notice, these restrictions are added on top of each other, i.e., the BICM LR bound accounts for all of
the constraints.
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Appendix E.

Overview and Calibration of ESM

The limited feedback algorithms proposed in this dissertation for the selection of the channel quality
indicator (CQI) rely on effective SINR mapping (ESM) to estimate the block-error ratio (BLER) and
the corresponding achievable data rate of a user over a fading channel; see, e.g., Section 3.2.2. In
literature, ESM is mostly employed for PHY layer abstraction in system level evaluations to simplify
the simulation of large cellular networks [206,207]. In this chapter, an overview of the ESM methods
considered in this thesis is given and the calibration issue related with such techniques is discussed.
The optimal calibration parameters for mutual information effective SINR mapping (MIESM) and
exponential effective SINR mapping (EESM) are determined for the modulation and coding schemes
(MCSs) utilized by LTE. Simulation results illustrating the accuracy of the obtained BLER prediction
are provided.

In a wireless channel, the instantaneous SINR of RE [n, k], defined in Equation (2.7), is in general
subject to significant variations over frequency n and time k, due to multipath interference caused by
reflections/refractions in the environment and due to movement of the transmitter, receiver and/or
obstacles. While in a static AWGN channel the link performance of a coded digital communications
system can be characterized by the BLER versus the SNR, this is not possible in a fading environment
as the SINR does not remain constant over a block of coded symbols. Determining the average BLER
over a fading channel from the linear average SINR is not effective, because the diversity order of
the channel is not taken into account with this approach. Higher order moments of the SINR can
be considered to estimate the diversity order, leading to multi-dimensional sets of parameters that
must be accurately calibrated. Alternatively, to reduce the number of parameters involved, ESM has
been proposed in [141, 208] to map the varying SINRs of different REs to a single effective SNR
corresponding to an AWGN channel that achieves the same BLER as the fading channel.

Assuming transmission over NRE REs with corresponding SINRs {β[1], . . . , β[NRE]}, the MCS
m ∈M dependent mapping employed by ESM to determine the effective SNR is

β(m) = φmf
−1
m

 1
NRE

NRE∑
ρ=1

fm

(
β[ρ]
φm

) . (E.1)

129



Appendix E. Overview and Calibration of ESM

2.52.2521.751.51.2510.750.5

100

10-1

10-2

10-3

Calibration parameter

W
ei

gh
te

d 
M

SE

SISO_1.4MHz_CQI695% confidence interval95% confidence interval

MIESM

EESM

(a) Weighted MSE of MIESM and EESM.

2520151050-5-10
SNR [dB]

B
lo

ck
 e

rr
or

 ra
tio

SISO_1.4MHz_AWGN_TU100

10-1

10-2

10-3

SISO AWGN BER
MIESM estimation

(b) MIESM SNR averaging accuracy.

Figure E.1.: Calibration of effective SNR mapping and comparison of the MIESM abstraction for a 1.4 MHz typical urban channel to
the average BLERs of the 15 LTE defined MCSs achieved over a 1.4 MHz AWGN channel.

Here, the averaging function fm(·) is determined by the considered ESM method; its inverse is
denoted f−1

m (·). EESM is based on the Chernoff upper bound for the error probability of binary
phase shift keying over an AWGN channel [209]. In that case, fm(·) turns out to be the exponential
function: fm(·) = e(·). In case of MIESM, the modulation alphabet dependent BICM capacity,
shown in Figure 3.2, is used as averaging function [141]. The scalar parameters φm are required for
calibration purposes to adapt ESM to the performance of the different MCSs.

The calibration of the parameters φm is based on extensive link level simulations as detailed in [210]
applying the weighted error function defined in [211]. The basic idea is to simulate the average
BLERs of the considered communication technology for many different channel realizations, using
different fading channel models. Then, the error between the calculated effective SNR β(m) for each
channel realization and the SNR of an AWGN channel achieving the same BLER is minimized by
tuning the parameter φm. The outcome of such a simulation is shown in Figure E.1a for MCS 6
of LTE (4 QAM with a coding rate of 0.59 [11]). Irrespective of the MCS, the optimal calibration
parameters of MIESM are always found to be close to one in my simulations (between 0.85 and
1.2) while those of EESM vary significantly with the MCS (from 0.8 to 35), suggesting that MIESM
provides a more natural representation of the performance of LTE than EESM. Hence, MIESM is
employed throughout this dissertation. The abstraction performance of MIESM obtained for the 15
different MCSs of LTE is shown in Figure E.1b. In this figure, the AWGN BLERs of the 15 MCSs are
represented by the solid lines, while the dots are pairs of simulated BLERs and calculated effective
SNRs as obtained from MIESM for a typical urban channel model [109]. As these pairs lie mostly
close to the AWGN BLERs, accurate BLER estimation can be achieved by mapping the effective
SNR calculated with MIESM to the corresponding BLER via AWGN BLER look-up tables.

130



Appendix F.

Derivations and Proofs of SQBC

In this appendix, the detailed proofs and derivations of the theorems and lemmas related to the SQBC
method of Section 4.3.2 are provided. The RE index [n, k] is omitted for brevity.

F.1. Derivation of the SQBC Condition

The goal of the SQBC antenna combiner is to minimize the chordal distance quantization error
between the obtained effective channel Heff

u,i = Hu,iGu,i ∈ CNi×`u,i and the subspace spanned by
the orthonormal basis Qj ∈ Qu,i. The effective channel is therefore considered as a starting point for
the derivation of the corresponding condition that must be fulfilled by the antenna combiner Gu,i

Heff
u,i = Hu,iGu,i = Bu,iBH

u,iHeff
u,i = Bu,iWGRG, (F.1)

WG ∈ CMu,i×`u,i , WH
GWG = I`u,i .

Here, an orthonormal basis Bu,i ∈ CNi×Mu,i of span
(
Hu,i

)
is employed to express the projection of

Heff
u,i onto span

(
Hu,i

)
in terms of a QR decomposition BH

u,iHeff
u,i = WGRG. Hence, an orthonormal

basis for span
(
Heff
u,i

)
is given by (Bu,iWG). The chordal distance quantization error, according

to (4.20), between span
(
Heff
u,i

)
and any Qj ∈ Qu,i can therefore be written as1

d2
c

(
Heff
u,i,Qj

)
= `u,i − tr

(
(Bu,iWG)HQjQH

j Bu,iWG

)
= `u,i − tr

(
WH

GBH
u,iQ

(R)
j (Q(R)

j )HBu,iWG

)
, (F.2)

Q(R)
j = Bu,iBH

u,iQj .

1Notice that the chordal distance is calculated using orthonormal bases specifying the subspaces.
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Here, the range space component of Qj with respect to span
(
Hu,i

)
is introduced. This is possible

because Bu,i is defined as an orthonormal basis; hence BH
u,iBu,i = IMu,i . Next, a QR decomposition

is applied to BH
u,iQj

Q(R)
j = Bu,iBH

u,iQj = Bu,iWQRQ, (F.3)

WQ ∈ CMu,i×`u,i , WH
QWQ = I`u,i .

With this, the quantization error is obtained as

d2
c

(
Heff
u,i,Qj

)
= `u,i − tr

(
WH

GWQRQRH
QWH

QWG

)
. (F.4)

Since both, WG and WQ, are orthonormal bases of `u,i-dimensional subspaces of the Mu,i-
dimensional Euclidean space, it holds that

d2
c

(
Heff
u,i,Qj

)
= `u,i − tr

(
WH

GWQRQRH
QWH

QWG

)
≥ `u,i − tr

(
RQRH

Q

)
, (F.5)

with equality if and only if

WH
QWG(WH

QWG)H = I`u,i . (F.6)

The lower bound is therefore achieved if and only if WG and WQ define the same subspace.
Consequently, the minimal quantization error is obtained when

span (Bu,iWG) = span (Bu,iWQ)⇔ span (Hu,iGu,i) = span
(
Q(R)
j

)
. (F.7)

The corresponding minimal quantization error is

d2
c,min = `u,i − tr

(
RQRH

Q

)
= `u,i − tr

(
RH
QRQ

)
= tr

(
I`u,i − (Q(R)

j )HQ(R)
j

)
= tr

(
(Q(N)

j )HQ(N)
j

)
. (F.8)

It follows that the best quantization matrix Qj ∈ Qu,i, in terms of the chordal distance quantization
error, is the one that has the smallest left null space component Q(N)

j with respect to span
(
Hu,i

)
.

F.2. Proof of Lemma 4.2

The following proof is provided under the essential assumptions that the channel matrix Hu,i is i.i.d.
Rayleigh fading, i.e., [Hu,i]m,n ∼ NC (0, γu,i) , ∀m,n, and that the quantization codebook Qu,i
consists of statistically independent semi-unitary matrices Qi ∈ Qu,i that are uniformly distributed
on G (Ni, `u,i).
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To proof lemma 2 the effective channel generated by the SQBC antenna combiner according to Equa-
tion (4.96) is considered

Heff
u,i = Bu,iWu,iKu,i, (F.9)

Bu,i ∈ CNi×Mu,i , Wu,i ∈ CMu,i×`u,i Ku,i ∈ C`u,i×`u,i ,

where both, Bu,i and Wu,i, are semi-unitary matrices (orthonormal bases). Using the solution of
Ku,i from Equation (4.95) the channel Gramian (Heff

u,i)HHeff
u,i is obtained as

(Heff
u,i)HHeff

u,i = KH
u,iKu,i =

(
WH

u,i

(
BH
u,iHu,iHH

u,iBu,i

)−1
Wu,i

)−1
. (F.10)

To proceed with the proof, an SVD in compact form is applied to the channel matrix Hu,i

Hu,i = Uu,iΣu,iVH
u,i, (F.11)

Uu,i ∈ CNi×Mu,i , Σu,i ∈ CMu,i×Mu,i ,Vu,i ∈ CMu,i×Mu,i ,

Remember that Bu,i is defined as an orthonormal basis of span
(
Hu,i

)
. Throughout this proof, the

basis Bu,i specified by Equation (4.92) is employed. Since both, Bu,i and Uu,i, are orthonormal
bases for the same subspace, it is possible to express Uu,i in terms of Bu,i with an appropriate unitary
rotation matrix Θu,i ∈ CMu,i×Mu,i

Uu,i = Bu,iΘu,i. (F.12)

With this equality and with (F.11) the center term of Equation (F.10) can be written as

BH
u,iHu,iHH

u,iBu,i = Θu,iΣ2
u,iΘH

u,i. (F.13)

Notice that the diagonal matrix Σu,i contains the non-zero singular values of anNi×Mu,i dimensional
matrix consisting of i.i.d. Gaussian elements of variance γu,i.

Since the quantization codebook consists of isotropically distributed matrices on G (Ni, `u,i) and
because the best quantization matrix Ĥu,i is solely determined by its component in the orthogonal
complement of span

(
Hu,i

)
according to Theorem 4.1, it follows that the range space component

of Ĥu,i with respect to span
(
Hu,i

)
is isotropically distributed within span

(
Hu,i

)
. Hence, also the

basis Bu,i, which is determined by this range space component according to (4.92), is isotropically
distributed in the subspace span

(
Hu,i

)
. It follows that Θu,i ∈ CMu,i×Mu,i is uniformly distributed on

the unitary group UMu,i . Also, Θu,i is independent of Σu,i, since Uu,i is independent of Σu,i for i.i.d.
Rayleigh fading. Hence, the statistical properties of Θu,i and Σu,i correspond to the properties of the
right singular vector matrix and the singular value matrix of an i.i.d. Gaussian matrix X ∈ CNi×Mu,i

with elements of variance γu,i. Therefore the product

Θu,iΣ2
u,iΘH

u,i = XHX (F.14)
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is distributed according to a central complex Wishart distributionWC
Mu,i

(
Ni, γu,iIMu,i

)
[212] of

dimension Mu,i and with Ni DoF. Consequently, the inverse
(
Θu,iΣ2

u,iΘH
u,i

)−1
follows an inverse-

Wishart distribution with parametersW−CMu,i

(
Ni, γ

−1
u,i IMu,i

)
. The product

WH
u,i

(
BH
u,iHu,iHH

u,iBu,i

)−1
Wu,i

=
[
I`u,i ,0

] (
Θu,iΣ2

u,iΘH
u,i

)−1
[

I`u,i
0

]
=
[(

Θu,iΣ2
u,iΘH

u,i

)−1
]

1:`u,i,1:`u,i
, (F.15)

with Wu,i from Equation (4.92), consists of the first `u,i rows and columns of the inverse-Wishart
matrix. It is known that the marginal distribution of this `u,i × `u,i upper-left block is itself inverse-
Wishart distributed, with reduced DoF compared to the full matrix [213], i.e.,[(

Θu,iΣ2
u,iΘH

u,i

)−1
]

1:`u,i,1:`u,i
∼ W−C`u,i

(
Ni −Mu,i + `u,i, γ

−1
u,i I`u,i

)
. (F.16)

Hence, the matrix (Heff
u,i)HHeff

u,i is distributed as

(Heff
u,i)HHeff

u,i =
([(

Θu,iΣ2
u,iΘH

u,i

)−1
]

1:`u,i,1:`u,i

)−1

∼ WC
`u,i

(
Ni −Mu,i + `u,i, γu,i I`u,i

)
.

(F.17)

Although a specific basis Bu,i is employed throughout this proof such that the well-known marginal-
ization result can be applied in Equation (F.16), the result holds for arbitrary bases, which can easily
be seen by applying a change of coordinates.

F.3. Proof of Theorem 4.2

In this section, the proof of Theorem 4.2, stating an upper bound on the per-user rate loss of BD
using SQBC with quantized CSIT and Mu,i ≥ L receive antennas, compared to BD with perfect
CSIT and M (BD)

u,i = L, is provided. This proof relies on the validity of Lemma 4.2; hence, the same
assumptions as in Appendix F.2 apply here as well. Also, to simplify notations, the number of data
streams per user is assumed as equal for all served users `u,i = L, ∀u ∈ Si.

The achievable rate of SQBC with quantized CSIT, as defined in (4.99), is used as a starting point of
this proof. The first summand of the achievable rate can be lower bounded, by applying Minkowski’s
determinant theorem [214] to remove the positive definite interference terms from this summand

E log2 det

IL + ρ
∑
s∈Si

(Heff
u,i)HF̃s,iF̃H

s,iHeff
u,i

 ≥ E log2 det
(
IL + ρ (Heff

u,i)HF̃u,iF̃H
u,iHeff

u,i

)
,

(F.18)
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which is tight in case of perfect CSIT, due to the construction of the BD precoders: (Heff
u,i)HFs,i = 0

with perfect CSIT.

Next, the effective channel is decomposed by applying an SVD

Heff
u,i = Xu,iΛu,iYH

u,i = H̃u,iΦu,iΛu,iYH
u,i, (F.19)

Xu,i ∈ CNi×L, Λu,i ∈ CL×L,Yu,i ∈ CL×L,

with Φu,i uniformly distributed on UL, because H̃u,i is a random isotropically distributed basis of
span

(
Heff
u,i

)
. Using the notation from Equation (4.23), H̃u,i can be written in terms of the quantized

channel subspace as

H̃u,i =
(
Ĥu,iĤH

u,i

)
H̃u,i + Ĥ⊥u,i(Ĥ⊥u,i)HH̃u,i, (F.20)

Ĥ⊥u,i(Ĥ⊥u,i)HH̃u,i = Su,iRu,i. (F.21)

Here, Su,i ∈ CNi×L is an orthonormal basis for an isotropically distributedL-dimensional plane in the
(Ni − L)-dimensional orthogonal complement of Ĥu,i, and Ru,i ∈ CL×L satisfies tr

(
RH
u,iRu,i

)
=

d2
c

(
Heff
u,i, Ĥu,i

)
. This follows from [46, Lemma 1], which is valid here as well, because Heff

u,i is

isotropic according to Lemma 4.1, and can be proved by applying a QR decomposition to (Ĥ⊥u,i)HH̃u,i.
Plugging Equations (F.19) to (F.21) into the second summand of Equation (4.99), and remembering
that ĤH

u,iFs,i = 0,∀s 6= u due to BD, the following expression is obtained

E log2 det

IL + ρ
∑

s∈Si,s 6=u
(Heff

u,i)HF̃s,iF̃H
s,iHeff

u,i



= E log2 det

IL + ρ
∑

s∈Si,s 6=u
RH
u,iSH

u,iF̃s,iF̃H
s,iSu,iRu,i Φu,iΛ2

u,iΦH
u,i

 , (F.22)

where the order of the matrices has been rearranged in accordance with Sylvester’s determinant
theorem [214]. Equation (F.22) is abbreviated as ∆b.

With Equation (F.18) and Equation (F.22), the rate loss between SQBC with quantized CSIT and
Mu,i = M (SQBC)

u,i ≥ L and BD with perfect CSIT and M (BD)
u,i = L is upper bounded as

R
(L)
BD −R

(L,Mu,i)
SQBC

≤ E log2 det
(
IL + ρHH

u,iF̃u,iF̃H
u,iHu,i

)
− E log2 det

(
IL + ρ (Heff

u,i)HF̃u,iF̃H
u,iHeff

u,i

)
︸ ︷︷ ︸

∆a

+∆b.

(F.23)
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The proceed with the proof, the term ∆a is considered in more detail. Using the decompositions
from Equations (F.11), (F.12) and (F.19)) and applying Sylvester’s determinant theorem, ∆a can be
rewritten as

∆a = E log2 det
(
IL + ρBH

u,iF̃u,iF̃H
u,iBu,i Θu,iΣ2

u,iΘH
u,i

)
−E log2 det

(
IL + ρ H̃H

u,iF̃u,iF̃H
u,iH̃u,i Φu,iΛ2

u,iΦH
u,i

)
. (F.24)

Notice that the precoders F̃u,i in both summands are in general not the same (the first summand
corresponds to the precoders obtained with BD and perfect CSIT; the second summand is obtained
with quantized CSIT and SQBC). Still, in terms of distribution they are equivalent, because Fu,i is
determined solely by the subspaces spanned by the channels of the other users, which are isotropically
distributed on G (Ni, L) for both summands.

The matrices Uu,i = Bu,iΘu,i and Σu,i are statistically independent because Hu,i is i.i.d. Gaussian
distributed and thus distribution-invariant with respect to left-multiplication by an arbitrary unitary
matrix. Also, Bu,i and Θu,i are independent, because Bu,i is a randomly chosen basis for span

(
Hu,i

)
.

Similar arguments can be applied to show that H̃u,i, Λu,i and Φu,i are independent as well.

Furthermore, Bu,i and H̃u,i are both isotropic on G (Ni, L), because Hu,i (i.i.d. Gaussian) as well as
Heff
u,i (see Lemma 4.1) are isotropically distributed. Hence, the product CH

u,iCu,i = BH
u,iF̃u,iF̃H

u,iBu,i

is equivalent in distribution to H̃H
u,iF̃u,iF̃H

u,iH̃u,i, and in the calculation of the expectation one can be
substituted for the other.

Since Σ2
u,i and Λ2

u,i contain the eigenvalues of L-dimensional Wishart matrices with a scale matrix
that is a scaled identity and Ni respectively Ni −Mu,i + L DoF, and since Θu,i as well as Φu,i are
both isotropic unitary matrices, it can be concluded that

Tu,i = Θu,iΣ2
u,iΘH

u,i ∼ WC
L (Ni, γu,i IL) , (F.25)

T̄u,i = Φu,iΛ2
u,iΦH

u,i ∼ WC
L (Ni −Mu,i + L, γu,i IL) . (F.26)

With these results the term ∆a can be developed as

∆a = E log2 det
(
IL + ρCu,iTu,iCH

u,i

)
− E log2 det

(
IL + ρCu,iT̄u,iCH

u,i

)
= E log2

det Tu,i

det T̄u,i

+
(
E log2 det

(
(Cu,iTu,iCH

u,i)−1 + ρ IL
)
− E log2 det

(
(Cu,iT̄u,iCH

u,i)−1 + ρ IL
) )
, (F.27)

where Cu,i can be removed from the first summand, due to the multiplicativity of the determinant.
Considering the expected value with respect to Tu,i and T̄u,i, it can be seen that the difference
in brackets is negative, since (Cu,iTu,iCH

u,i)−1 and (Cu,iT̄u,iCH
u,i)−1 are both inverse Wishart
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distributed with the same scale matrix Cu,iCH
u,iγu,i, but the first term has smaller eigenvalues on

average then the second term, because it has more DoF. Hence, ∆a can be upper bounded as

∆a ≤ E log2 det (Tu,i)− E log2 det
(
T̄u,i

)
= log2 (e)

L−1∑
k=0

Ni−1∑
`=Ni−Mu,i+L

1
`− k

. (F.28)

Notice that this bound is tight for ρ γu,i →∞, since then IL is negligible compared to ρCuTuCH
u .

The closed form solution is obtained from basic results about Wishart matrices, e.g., [212].

To find an upper bound on ∆b, Jensen’s inequality is applied

∆b ≤ log2 det

IL + ρ
∑

s∈Si,s 6=u
E
(
RH
u,iSH

u,iF̃s,iF̃H
s,iSu,iRu,i

)
E
(
T̄u,i

) . (F.29)

According to [46, Lemma 1], Ru,i and Su,i are statistically independent. Furthermore, Su,i and
F̃s,i, ∀s 6= u are isotropically distributed in the (Ni−L)-dimensional left null space of Ĥu,i, due to the
BD construction. Hence, it is possible to express them in the same orthonormal basis Ĥ⊥u,i, i.e., Su,i =
Ĥ⊥u,iS̄u,i, F̃s,i = Ĥ⊥u,iF̄s,i, and thus SH

u,iF̃s,i = S̄H
u,iF̄s,i. The matrices S̄u,i, F̄s,i ∈ CNi−L×L are

semi-unitary, statistically independent and isotropically distributed on G (Ni − L,L).

With these results the first expectation in Equation (F.29) can be evaluated as follows

E
(
RH
u,iSH

u,iF̃s,iF̃H
s,iSu,iRu,i

)
= E

(
RH
u,iS̄H

u,iE
(
F̄s,iF̄H

s,i

)
S̄u,iRu,i

)
= L

Ni − L
E
(
RH
u,iS̄H

u,iS̄u,iRu,i

)
= L

Ni − L
E
(
RH
u,iRu,i

)
= L

Ni − L
1
L
D IL, (F.30)

where the first equality follows from the independence of F̄s,i from the other matrices, the second
equality is due to the isotropy of F̄s,i on G (Ni − L,L), i.e., E

(
F̄s,iF̄H

s,i

)
= L

Ni−L INi−L, and

the third equality is obtained from the semi-unitarity of S̄u,i. The last equality is reasoned in [46,
Appendix B], with D denoting the average chordal distance quantization distortion, where it is argued
that the distortion on average distributes equally over all L dimensions of the quantized subspace.

Finally, the expected value of the Wishart matrix T̄u,i can be evaluated as E
(
T̄u,i

)
= γu,i (Ni −

Mu,i + L)IL. Thus, the upper bound for ∆b is obtained as

∆b ≤ L log2

(
1 + ρ γu,i

Ni −Mu,i + L

Ni − L
(Si − 1)D

)
. (F.31)

The factor Si − 1 accounts for the summation over all other users in Equation (F.29). Plugging (F.28)
and (F.31) into (F.23) completes the proof.
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F.4. Proof of Theorem 4.3

The following proof is very similar in nature to the derivation in Appendix F.3. For a better
understanding of the steps involved in this proof, it is recommended to first work through the details
of Appendix F.3. Also, the assumptions of the proof are the same as in the previous section.

Similar to the previous section, Minkowski’s determinant theorem is employed to find a lower bound
on the first summand of the achievable rate of maximum eigenmode transmission (MET) based BD
with quantized CSIT, as defined in Equation (4.109)

E log2 det

IL + ρ
∑
s∈Si

(H(L)
u,i )HF̃s,iF̃H

s,iH
(L)
u,i

 ≥ E log2 det
(
IL + ρ (H(L)

u,i )HF̃u,iF̃H
u,iH

(L)
u,i

)
.

(F.32)

Plugging this result into Equation (4.109) and subtracting from Equation (4.108), the rate gap between
MET based BD with perfect and quantized CSIT can be upper bounded as

RMET −RMET-Quant ≤ log2 det

IL + ρ
∑

s∈Si,s 6=u
(H(L)

u,i )HF̃s,iF̃H
s,iH

(L)
u,i

 . (F.33)

Applying Jensen’s inequality and exploiting the independence of U(L)
u and Σ(L)

u , defined in Equa-
tion (4.107), which is satisfied for an i.i.d. Gaussian channel matrix, the rate loss can further be
bounded as

RMET −RMET-Quant ≤ log2 det

IL + ρ
∑

s∈Si,s 6=u
E
(
(U(L)

u,i )HF̃s,iF̃H
s,iU

(L)
u,i

)
E
(

Σ(L)
u,i

2
) .

(F.34)

The same argumentation as in Appendix F.3, Equations (F.21) and (F.30), can be applied to evaluate
the first expectation

RMET −RMET-Quant ≤ log2 det
(

IL + ρ
Si − 1
Ni − L

DE
(

Σ(L)
u,i

2
))

. (F.35)

The matrix Σ(L)
u,i

2
is diagonal and contains the L largest squared singular values σ2

1,u,i, . . . , σ
2
L,u,i of

Hu,i. The determinant is hence obtained as the product of the diagonal elements

RMET −RMET-Quant ≤
L∑
`=1

log2

(
1 + ρ

Si − 1
Ni − L

DE
(
σ2
`,u,i

))
, (F.36)

completing the proof.
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Appendix G.

SINR Lower Bound for Block Diagonalization

In this appendix, the derivation of the SINR lower bound for limited feedback based BD is provided,
which is considered as CQI feedback in Section 4.4.2. The RE index [n, k] is omitted for brevity.

Signal term: The post-equalization input-output relationship of BD MU-MIMO with limited
feedback, given in Equation (4.24), is considered as starting point in the derivation. With (4.24) and
the precoder normalization in (4.15), the covariance matrix of the intended signal of user u is

Su,i = E
(
(Heff

u,i)HFu,ixu,ixH
u,iFH

u,iHeff
u,i

)
= Pu,i E

(
(Heff

u,i)HF̃u,iF̃H
u,iHeff

u,i

)
= Pu,i E

(
(Heff,r

u,i + Heff,n
u,i )HF̃u,iF̃H

u,i

(
Heff,r
u,i + Heff,n

u,i

))
, (G.1)

where the channel decomposition of Equation (4.23) has been employed. At the time the CQI
feedback is calculated, the precoder F̃u,i is unknown. Because the precoder is determined solely by
the channels of the other served users according to (4.4), which are unknown to user u, the precoder
is assumed as isotropically distributed. With this assumption, the expected value of the mixed terms
between Heff,r

u,i and Heff,n
u,i with respect to the precoder are equal to zero, e.g.,

(Heff,r
u,i )HE

(
F̃u,iF̃H

u,i

)
Heff,n
u,i = `u,i

Ni
(Heff,r

u,i )HHeff,n
u,i = 0, (G.2)

⇒ Su,i = Pu,i E
(
(Heff,r

u,i )HF̃u,iF̃H
u,iH

eff,r
u,i

)
+ Pu,i E

(
(Heff,n

u,i )HF̃u,iF̃H
u,iH

eff,n
u,i

)
. (G.3)

Neglecting the signal power received over Heff,n
u,i , the covariance matrix is lower bounded as

Su,i � S̃u,i = Pu,i E
(
(Heff,r

u,i )HF̃u,iF̃H
u,iH

eff,r
u,i

)
, (G.4)

in the sense that Su,i − S̃u,i is positive semidefinite. Notice that this bound is tight in case of
unquantized feedback or if the scheduled users have orthogonal channels, because then F̃u,i = Ĥu,i.
Also, the achievable rate obtained with Su,i is lower bounded by the rate calculated with S̃u,i, due to
Minkowski’s determinant theorem on the sum of positive semidefinite matrices [214].
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According to the BD construction in (4.4) and (4.22), the precoder of user u is found in the left null
space of the other users’ quantized channels. Considering an orthonormal basis Bu,i for this space,

Ĥ
H
u,iBu,i = 0, Bu,i ∈ CNi×Ni−¯̀

i , (Bu,i)HBu,i = INi−¯̀
i
, (G.5)

with Ĥu,i from (4.22) and ¯̀
i =

∑
s∈Si,s 6=u `s,i, the precoder can be expressed as

F̃u,i = Bu,iQu,i, Qu,i ∈ CNi−¯̀
i×`u,i , QH

u,iQu,i = I`u,i . (G.6)

With the assumption that F̃u,i is isotropically distributed, the same holds true for Qu,i. Also, Qu,i is
statistically independent of Bu,i. Therefore, the expected value of S̃u,i with respect to Qu,i is

S̃u,i = Pu,i
`u,i

Ni − ¯̀
i

E
(
(Heff,r

u,i )HBu,iBH
u,iH

eff,r
u,i

)

= Pu,i
`u,i

Ni − ¯̀
i

E
(
(Heff

u,i)HĤu,iĤH
u,iBu,iBH

u,iĤu,iĤH
u,iHeff

u,i

)
, (G.7)

where Heff,r
u,i has been substituted from (4.23). Next, Bu,i is decomposed with respect to the quantized

subspace Ĥu,i ∈ CNi×`u,i

Bu,i = Ĥu,iĤH
u,iBu,i +

(
INi − Ĥu,iĤH

u,i

)
Bu,i

= Ĥu,iUu,i cos (Φu,i) VH
u,i +

(
INi − Ĥu,iĤH

u,i

)
Bu,i, (G.8)

where the second equality follows from a compact SVD of ĤH
u,iBu,i. The CSI feedback of

the other users and the schedule Si are unknown to user u during feedback calculation; hence,
Bu,i cannot be determined by the user and is therefore assumed as uniformly distributed on
G
(
Ni, Ni − ¯̀

i

)
. Correspondingly, Uu,i, cos (Φu,i) and Vu,i are statistically independent, and

the `u,i × `u,i dimensional matrix Uu,i is isotropically distributed unitary [170, Theorem1]. Diag-
onal matrix Φu,i is composed of the principal angles between span

(
Ĥu,i

)
and span

(
Bu,i

)
; hence,

tr
(

cos (Φu,i)2 ) = `u,i − d2
c
(
Ĥu,i,Bu,i

)
. Plugging (G.8) into (G.7), S̃u,i is obtained as

S̃u,i = Pu,i
`u,i

Ni − ¯̀
i

E
(
(Heff

u,i)HĤu,i

(
Uu,i cos (Φu,i)2 UH

u,i

)
ĤH
u,iHeff

u,i

)

= Pu,i
`u,i

Ni − ¯̀
i

E
(
(Heff

u,i)HĤu,iĤH
u,iHeff

u,i

)1−
d2

c

(
Ĥu,i,Bu,i

)
`u,i

 , (G.9)

where the second equality is due to the isotropy of Uu,i. Finally, an SVD is applied to the effective
channel Heff

u,i = Ueff
u,iΣeff

u,i(Veff
u,i)H, and Ĥu,i is decomposed with respect to Ueff

u,i ∈ CNi×`u,i

Ĥu,i = Ueff
u,i(Ueff

u,i)HĤu,i +
(
INi −Ueff

u,i(Ueff
u,i)H

)
Ĥu,i

= Ueff
u,iYu,i cos (Θu,i) WH

u,i +
(
INi −Ueff

u,i(Ueff
u,i)H

)
Ĥu,i, (G.10)
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with the second equality being obtained from a compact SVD of (Ueff
u,i)HĤu,i, similar to (G.8). For a

fixed quantized subspace Ĥu,i, this expression cannot further be simplified. However, considering
the randomness of the quantization codebook, it is reasonable to argue that for a fixed subspace
quantization error d2

c
(
Ueff
u,i, Ĥu,i

)
= `u,i − tr

(
cos (Θu,i)2 ) the range space component of Ĥu,i

within span
(
Ueff
u,i

)
is isotropically distributed, implying that Yu,i is an isotropic unitary matrix.

Using (G.10) in (G.9) and exploiting the isotropy of Yu,i, the covariance matrix is

S̃u,i = Pu,i
`u,i

Ni − ¯̀
i

(
1−

d2
c
(
Ĥu,i,Bu,i

)
`u,i

)(
1−

d2
c
(
Ueff
u,i, Ĥu,i

)
`u,i

)
︸ ︷︷ ︸

cS

Veff
u,i

(
Σeff
u,i

)2
(Veff

u,i)H.

(G.11)

In this equation, the overlap between the quantized user subspace Ĥu,i and the other users’ channels
is measured by the first term in brackets. If Ĥu,i is in the null space of the other users, i.e.,
d2

c
(
Ĥu,i,Bu,i

)
= 0, the transmit signal of user u can be steered completely into the subspace

span
(
Ĥu,i

)
without causing any interference to the other users. Hence, the channel gain of the user

is not reduced by the precoder. The term involving d2
c
(
Ueff
u,i, Ĥu,i

)
is just a consequence of the lower

bound (G.4).

Interference term: Next, the covariance matrix of the interference is determined. To obtain a
single CQI per spatial stream, it is necessary to consider additional assumptions on the interference.
As the user u does not have any knowledge about the number of streams of the other users, it
is assumed that all users are served over `s,i = `u,i streams, implying that the transmit power
Ps,i = Pu,i is the same for all users. Also, the worst case number of users Si = Ni

`u,i
, in terms of

residual multi-user interference, is considered. Without these assumptions separate feedback of the
signal power and the interference power would be required.

Due to the statistical independence of the transmit signals of different users, the inference covariance
matrix is obtained as the sum of the individual covariance matrices caused by the transmissions to
the interfering users. From the input-output relationship (4.24), the sum interference is obtained as

Ru,i = Pu,i
∑

s∈Si,s 6=u
E
(
(Heff,n

u,i )HF̃s,iF̃H
s,iH

eff,n
u,i

)
= Pu,i

∑
s∈Si,s 6=u

R(s)
u,i . (G.12)

Notice that due to the BD construction the interference is not effective over Heff,r
u,i . With an orthonor-

mal basis Ĥ⊥u,i ∈ CNi×Ni−`u,i of the orthogonal complement of Ĥu,i, a single interference term can
be written as

R(s)
u,i = E

(
(Heff

u,i)HĤ⊥u,i(Ĥ⊥u,i)H
(
Ĥ⊥u,iQs,iQH

s,i(Ĥ⊥u,i)H
)

Ĥ⊥u,i(Ĥ⊥u,i)HHeff
u,i

)
, (G.13)

where Heff,n
u,i has been substituted from (4.23) and the BD construction has been exploited to express

F̃s,i in terms of the basis Ĥ⊥u,i using the semi-unitary matrix Qs,i ∈ CNi−`u,i×`s,i . Due to the
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Appendix G. SINR Lower Bound for Block Diagonalization

unknown precoders, Qs,i is assumed as uniformly distributed on G (Ni − `u,i, `s,i). With an SVD of
Heff
u,i, as applied in (G.10), the covariance matrix is equal to

R(s)
u,i = Pu,i

`s,i
Ni − `u,i

Veff
u,iΣeff

u,i E
(
(Ueff

u,i)HĤ⊥u,i(Ĥ⊥u,i)HUeff
u,i

)
Σeff
u,i(Veff

u,i)H. (G.14)

To determine the expected value in the center, Ĥ⊥u,i(Ĥ⊥u,i)H is replaced with (INi − Ĥu,iĤH
u,i)

E
(
(Ueff

u,i)HĤ⊥u,i(Ĥ⊥u,i)HUeff
u,i

)
= INi − E

(
(Ueff

u,i)HĤu,iĤH
u,iUeff

u,i

)
. (G.15)

Applying the decomposition and argumentation from (G.10) and below, the expected value is

E
(
(Ueff

u,i)HĤ⊥u,i(Ĥ⊥u,i)HUeff
u,i

)
= INi − INi

(
1−

d2
c
(
Ueff
u,i, Ĥu,i

)
`u,i

)
=

d2
c
(
Ueff
u,i, Ĥu,i

)
`u,i

INi .

(G.16)

With the assumptions `s,i = `u,i, Ps,i = Pu,i and Si = Ni
`u,i

, the sum interference is obtained as

Ru,i = Pu,i
`u,i

Ni − `u,i

(
Ni

`u,i
− 1

)
d2

c
(
Ueff
u,i, Ĥu,i

)
`u,i︸ ︷︷ ︸

cI

Veff
u,i

(
Σeff
u,i

)2
(Veff

u,i)H. (G.17)

SINR lower bound: Assuming that a semi-unitary antenna combiner, as proposed in Section 4.3,
is applied by the user, the post-equalization noise is i.i.d. Gaussian of variance σ̃2

z . Using the
covariance estimates derived above, the achievable user rate is lower bounded as [178]

Ru,i = log2 det
(

I`u,i + Su,i
(
σ̃2
zI`u,i + Ru,i

)−1
)
≥ log2 det

(
I`u,i + S̃u,i

(
σ̃2
zI`u,i + Ru,i

)−1
)
.

(G.18)

Notice that both S̃u,i and Ru,i are multiplied with Veff
u,i and (Veff

u,i)H from the left and right, respec-
tively. These unitary matrices hence cancel out in the achievable rate lower bound. Based on this
observation, the per stream post-equalization SINR lower bound of user u is defined as

E (βν,u,i) ≥ β̃ν,u,i =
cS
(
σeff
ν,u,i

)2

σ̃2
z + cI

(
σeff
ν,u,i

)2 , Σeff
u,i = diag

(
σeff

1,u,i, . . . , σ
eff
`u,i,u,i

)
. (G.19)

Thus, with scalar feedback of these SINRs, the lower bound on the achievable user rate can be
calculated by the base station, facilitating efficient multi-user scheduling.
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Appendix H.

MMSE Equalizers for BD based MU-MIMO

The channel subspace selection methods and the corresponding antenna combiners proposed in Sec-
tion 4.3 for BD precoding with excess antennas at the users are based on knowledge of the channel
matrix Hu,i[n, k] only, requiring neither any information about the precoders nor about the residual
multi-user interference. This is an appropriate approach for the selection of the preferred subspace
span

(
Heff
u,i[n, k]

)
that is kept free of interference by the BD precoder (see Section 4.1), because the

residual multi-user interference is unknown ahead of time an can therefore not be considered during
feedback calculation. However, as soon as the transmission takes place, the users may be able to deter-
mine instantaneous or statistical information about the residual multi-user interference. Then, instead
of simply applying the SQBC or MET antenna combiner to filter-out the subspace span

(
Heff
u,i[n, k]

)
,

more sophisticated equalizers can be applied to reduce the impact of the multi-user interference.
Two MIMO minimum mean-squared error (MMSE) equalizers, which are published in [92], are
derived below exploiting in one case full knowledge of the interfering precoders and in the other
case knowledge of the BD precoder construction to estimate the average interference. To simplify
notations the RE index [n, k] is omitted.

H.1. Interference-Aware MMSE Equalizer

As a benchmark combiner, an interference-aware MMSE receiver [11, 215] for BD precoding with
imperfect CSIT is proposed, which is based on the assumption of full knowledge of the interfering
precoders at the user. For that purpose, the channel matrix is decomposed in terms of the quantized
channel subspace Ĥu,i as

Hu,i =
(
Ĥu,iĤH

u,i + (IMu,i − Ĥu,iĤH
u,i)
)

Hu,i = H(r)
u,i + H(n)

u,i , (H.1)

with H(r)
u,i and H(n)

u,i denoting the component of the channel in the range-space and the left null space
of Ĥu,i, respectively. With (H.1) the input-output relationship for BD with imperfect CSIT can be
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Appendix H. MMSE Equalizers for BD based MU-MIMO

written as

ru,i = HH
u,iFu,ixu,i + (H(n)

u,i )
H

Si∑
s=1,s 6=u

Fs,ixs,i + z̃u,i, (H.2)

where the range-space component in the multi-user interference term vanishes due to BD. The
interference-aware MMSE receiver is obtained from the optimization problem

G(MMSE-IA)
u,i = argmin

Gu,i∈CMu,i×`u,i
Exu,i,xs,i,z̃u,i

(∥∥∥xu,i −GH
u,iru,i

∥∥∥) , (H.3)

with the expectation being taken with respect to the transmit signals and the additive noise. The
solution is obtained as

G(MMSE-IA)
u,i =

(
σ̃2
zIMu,i + HH

u,iFu,iFH
u,iHu,i

+
Si∑

s=1,s 6=u
(H(n)

u,i )
HFs,iFH

s,iH
(n)
u,i

)−1
HH
u,iFu,i, (H.4)

where the transmit signal normalization of Equation (2.3) is exploited.

This interference-aware receiver cannot be implemented with the signaling structure of LTE, because
the users are not able to estimate the interfering precoders. An extension of the user-specific reference
symbol structure of LTE is hence required to facilitate advanced receivers.

H.2. Interference-Averaged MMSE Equalizer

If the interfering precoders are assumed as unknown, an alternative MMSE optimization problem
can be considered by averaging the mean squared error over the unknown interferers as well. Then
it is not necessary for the users to estimate the interfering precoders, reducing the complexity of
the receiver and the downlink signaling overhead considerably. The MMSE receiver for averaged
interference is obtained from the optimization problem

G(MMSE)
u,i = argmin

Gu,i∈CMu,i×`u,i
EFs,i,xu,i,xs,i,z̃u,i

(∥∥∥xu,i −GH
u,iyu,i

∥∥∥) . (H.5)

To solve this optimization problem it is necessary to calculate the interference covariance matrix

Ru,i = EFs,i,xs,i

(HH
u,i

Si∑
s=1,s 6=u

Fs,ixs,i
)
(HH

u,i

Si∑
s=1,s 6=u

Fs,ixs,i)H


=
Si∑

s=1,s 6=u
EFs,i

(
HH
u,iFs,iFH

s,iHu,i

)
, (H.6)
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H.3. Performance Comparison

which is obtained by considering the statistical independence of the transmit signals of different users.
With (H.1) and considering the BD construction, the terms in the sum can be rewritten as

EFs,i

(
HH
u,iFs,iFH

s,iHu,i

)
= (H(n)

u,i )
HE

(
Fs,iFH

s,i

)
H(n)
u,i . (H.7)

For a given quantized channel subspace Ĥu,i, the precoders Fs,i are chosen in the left null space of
Ĥu,i due to the BD construction (4.4). Without further knowledge of the precoders, it is assumed
that each Fs,i is isotropically distributed in the orthogonal complement of span

(
Ĥu,i

)
, leading to the

decomposition

Fs,i = Ĥ⊥u,iCs,i, Cs,i ∈ C(Ni−`u,i)×`s,i , (H.8)

Ĥ⊥u,i(Ĥ⊥u,i)H = I− Ĥu,iĤH
u,i. (H.9)

Here, the orthogonal complement of span
(
Ĥu,i

)
is spanned by the orthonormal basis Ĥ⊥u,i. The

coordinate matrix Cs,i is composed of `s,i independent and isotropically distributed vectors c(j)
s,i

in the (Ni − `u,i)-dimensional left null space of Ĥu,i. With these assumptions the expected value
in (H.7) can be evaluated as

E
(
Fs,iFH

s,i

)
= Ĥ⊥u,iE

(
Cs,iCH

s,i

)
(Ĥ⊥u,i)H

= Ĥ⊥u,i
`s,i∑
j=1

E
(
c(j)
s,i (c

(j)
s,i )

H
)

(Ĥ⊥u,i)H = Pi
`s,i Si

`s,i
Ni − `u,i

Ĥ⊥u,i(Ĥ⊥u,i)H. (H.10)

Here, the first fraction is due to the assumption of uniform power allocation over users and spatial
streams, and the second term is obtained from the isotropy of the `s,i vectors c(j)

s,i in the (Ni − `u,i)-
dimensional orthogonal complement of span

(
Ĥu,i

)
. Substituting (H.7), (H.9) and (H.10) into (H.6)

and exploiting the idempotence of the projection matrix (H.9), the interference covariance matrix is
obtained as

Ru,i = Pi
Si(Ni − `u,i)

(Si − 1)HH
u,i

(
IMu,i − Ĥu,iĤH

u,i

)
Hu,i. (H.11)

With this result the MMSE receiver for averaged interference is

G(MMSE)
u,i =

(
σ̃2
zIMu,i + HH

u,iFu,iFH
u,iHu,i + Ru,i

)−1
HH
u,iFu,i, (H.12)

which can be calculated from local CSI only.

H.3. Performance Comparison

In this section, the throughput performance of the proposed interference-aware and interference-
averaged MMSE equalizers is compared to the interference-unaware SQBC and MET antenna
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Figure H.1.: Comparison of different combinations of channel subspace feedback strategies and receive equalizers.

combiners followed by single-user MIMO MMSE equalization to separate the streams of a user.
The interference-aware/averaged MMSE receivers are combined with either SQBC or MET channel
subspace feedback.

A system with Ni = 8 transmit antennas, Mu,i = 6 receive antennas and Si = 4 served users, receiv-
ing `u,i = 2 streams each, is considered. Memoryless CSI quantization with a random Grassmannian
codebook of size 10 bit is assumed. The channel matrices are generated according to Section 2.4,
assuming a receive antenna correlation parameter of αcorr = 0.9, temporally independent channel
realizations and frequency flat fading.

The results are shown in Figure H.1. Solid lines correspond to results obtained with SQBC feedback
and dashed lines correspond to MET feedback. Different colors are used to distinguish between
different receiver strategies.1 Irrespective of the applied equalizer, it can be observed that MET
feedback outperforms SQBC feedback in the low SNR regime. In this range, the residual multi-
user interference is dominated by the noise and a large channel gain is important to maximize the
power of the desired signal. In the high SNR regime, however, the achievable rate is determined by
the multi-user interference. As the interference experiences the same channel gain as the desired
signal, the achievable rate is maximized by minimizing the interference, which is achieved with
SQBC feedback. As expected, the best performance is obtained with the interference-aware MMSE
equalizer. Especially in the high SNR regime the other proposals are significantly outperformed by
the interference-aware receiver, justifying the increased signaling overhead required to determine the
interfering precoders at the users. A large performance gain compared to the interference-unaware
receivers can also be attained with the interference-averaged MMSE combiner, without posing a
significant burden on interference estimation and downlink signaling, hence providing a reasonable
trade-off that is compatible with the LTE standard.

1Notice that the combination of color and line-style specifies the applied feedback and receiver strategy in Figure H.1.
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Appendix I.

Out-Of-Cell Interference Models

The simulation results presented in Chapter 5 are obtained with a hybrid of link and system level
simulations. When simulating a DAS, it is important to consider multiple cells of the cellular network,
because the out-of-cell interference landscape is significantly impacted by distributing RRUs over
the cell area. For complexity reasons it was not possible to perform system level simulations of
multi-cell DASs, because detailed modeling of the physical layer of the wireless channel is required
for the proposed transceivers and feedback algorithms, entailing heavy requirements on memory
and computational power. To circumvent this problem, a statistical interference model is employed
to generate the interference caused by other cells of the network, reducing the necessary link level
simulations to a single cell only. The out-of-cell interference gamma distribution model of [32] is
employed and generalized to represent the interference from other cells.

In this appendix, the parameters of the out-of-cell interference gamma distribution model are derived,
generalizing the results of [32] to multi-stream transmission per user. The derived model is applicable
to SU-MIMO as well as ZF and BD based MU-MIMO. The pre-equalization out-of-cell interference
is generated for each receive antenna individually, following the same distribution. Hence, in the
following the out-of-cell interference is derived for an arbitrary receive antenna r ∈ {1, . . . ,Mu,i}.
The calculations are obtained under the assumption that the small-scale fading is Rayleigh distributed,
implying that the squared magnitude of each individual interfering channel is chi-squared distributed,
which is a special case of the gamma distribution. Due to the different pathloss characteristics of
the RRUs, the sum interference is in general not gamma distributed, but it can be reasonably well
approximated with a gamma distribution following the approach of [32], as detailed below.

From Equation (2.4), the received signal on the r-th antenna is given by1

ru,i = hH
u,iFu,ixu,i + hH

u,i

∑
s∈Si
s 6=u

Fs,ixs,i +
I∑

j=0,j 6=i
h(j)
u,i

H ∑
s∈Sj

Fs,jxs,j + zu,i, (I.1)

ru,i = [ru,i]r , hu,i =
[
Hu,i

]
:,r, h(j)

u,i =
[
H(j)
u,i

]
:,r

1The RE index is suppressed to shorten notations.
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The out-of-cell interference model of [32] is based on a moment matching approach. The basic
idea is to match the first- and second-order moments of the power of each out-of-cell interference
term, i.e., each summand of the third term in Equation (I.1), to a gamma distribution. Then,
employing [32, Lemma 7], the first- and second-order moments of the sum of these gamma random
variables are calculated. These moments are matched to yet another gamma random variable by
applying [32, Proposition 8], resulting in the approximate statistics of the out-of-cell interference.

Exploiting the statistical independence of the transmit symbols of different users (2.8), the instanta-
neous out-of-cell interference power is obtained as

Iu,i = Exs,j


∥∥∥∥∥∥

I∑
j=0,j 6=i

h(j)
u,i

H ∑
s∈Sj

Fs,jxs,j

∥∥∥∥∥∥
2
 =

I∑
j=0,j 6=i

∑
s∈Sj

∥∥∥∥h(j)
u,i

H
Fs,j

∥∥∥∥2
. (I.2)

A single interference term of Equation (I.2) can be written as

I
(s,j)
u,i =

∥∥∥∥h(j)
u,i

H
Fs,j

∥∥∥∥2
=
∥∥∥FH

s,jh
(j)
u,i

∥∥∥2
. (I.3)

To further proceed with this term, the precoder Fs,j is assumed to be an isotropically distributed scaled
semi-unitary matrix specifying a point on the Grassmann manifold of `s,j-dimensional subspaces in
the Nj dimensional Euclidean space G (Nj , `s,j), with

FH
s,jFs,j = Pj

`s,j Sj
I`s,j , (I.4)

where Pj is the transmit power of cell j and Sj is the number of served users in cell j. Utilizing
results of [216] (after generalization to the complex-valued case), it can be shown that the term

`s,j Sj
Pj

∥∥∥FH
s,jh

(j)
u,i

∥∥∥2

∥∥∥h(j)
u,i

∥∥∥2

is beta distributed with parameters β (`s,j , Nj − `s,j) for a fixed channel h(j)
u,i . Using the properties

of a beta distribution, the conditional mean and variance of each interference term are obtained as

µ|h(j)
u,i

(
I

(s,j)
u,i

)
:= E

(∥∥∥∥h(j)
u,i

H
Fs,j

∥∥∥∥2 ∣∣∣h(j)
u,i

)
= Pj
`s,j Sj

∥∥∥h(j)
u,i

∥∥∥2
E (β (`s,j , Nj − `s,j))

= Pj
`s,j Sj

∥∥∥h(j)
u,i

∥∥∥2 `s,j
Nj

= Pj
Sj Nj

∥∥∥h(j)
u,i

∥∥∥2
, (I.5)

σ2
|h(j)
u,i

(
I

(s,j)
u,i

)
:= var

(∥∥∥∥h(j)
u,i

H
Fs,j

∥∥∥∥2 ∣∣∣h(j)
u,i

)

=
(

Pj
`s,j Sj

)2 ∥∥∥h(j)
u,i

∥∥∥4 `s,j(Nj − `s,j)
N2
j (Nj + 1)

= Nj − `s,j
`s,j(Nj + 1)µ|h(j)

u,i

(
I

(s,j)
u,i

)2
. (I.6)
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Notice that the conditional mean is independent of the number of data streams `s,j , due to the
assumption of equal power allocation over streams. Removing the conditioning on h(j)

u,i by employing
the result in [32, Proposition 11], the unconditional moments are calculated as

µu,i
(
I

(s,j)
u,i

)
= 1
Nj

Nj∑
n=1

Pj
Sj
γ

(n,j)
u,i = 1

Nj

Nj∑
n=1

σ
(n,j)
u,i

2
, (I.7)

σ2
u,i

(
I

(s,j)
u,i

)
= Nj − `s,j
N2
j `s,j(Nj + 1)

2
Nj∑
n=1

σ
(n,j)
u,i

4
+

Nj∑
n=1

Nj∑
l=1,l 6=n

σ
(n,j)
u,i

2
σ

(l,j)
u,i

2
 . (I.8)

with γ
(n,j)
u,i being defined in Equation (2.11). This result is a generalization of the out-of-cell

interference models presented in [96] for the special cases of SU-MIMO and ZF beamforming based
MU-MIMO to BD with an arbitrary number of users per cell and an arbitrary number of streams
per user. Utilizing [32, Lemma 7], the second-order gamma match of a single interference term is
obtained as

I
(s,j)
u,i ∼ Γ

(
k

(s,j)
u,i , θ

(s,j)
u,i

)
, (I.9)

k
(s,j)
u,i =

µu,i
(
I

(s,j)
u,i

)2

σ2
u,i

(
I

(s,j)
u,i

) , θ(s,j)
u,i =

σ2
u,i

(
I

(s,j)
u,i

)
µu,i

(
I

(s,j)
u,i

) , (I.10)

with Γ
(
k

(s,j)
u,i , θ

(s,j)
u,i

)
denoting the gamma distribution with shape k(s,j)

u,i and scale θ(s,j)
u,i . Notice that

the number of streams per user `s,j must be strictly less than the total number of transmit antennas
Nj to obtain a useful match. With [32, Proposition 8] the gamma match of the sum interference
defined in Equation (I.2) can be calculated as

Iu,i ∼ Γ (ku,i, θu,i) , (I.11)

ku,i =

(∑I
j=0,j 6=i

∑
s∈Sj k

(s,j)
u,i θ

(s,j)
u,i

)2

∑I
j=0,j 6=i

∑
s∈Sj k

(s,j)
u,i θ

(s,j)
u,i

2 , θu,i =
∑I
j=0,j 6=i

∑
s∈Sj k

(s,j)
u,i θ

(s,j)
u,i

2

∑I
j=0,j 6=i

∑
s∈Sj k

(s,j)
u,i θ

(s,j)
u,i

. (I.12)

In the presented simulations, the number of data streams per user `s,j is equal for all users s of a cell
j, entailing that I(s,j)

u,i is independent of the user index s. Then the parameters of the gamma match of
the sum interference simplify to

k̃u,i =

(∑I
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)2
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2

∑I
j=0,j 6=i Sj k
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, (I.13)

with k(s,j)
u,i and θ(s,j)

u,i taken from an arbitrary user s of cell j.
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Appendix I. Out-Of-Cell Interference Models
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Figure I.1.: Cumulative probability of the mean and variance of the out-of-cell interference power of a single interferer receiving one or
four spatially multiplexed data streams.

Compared to the results in [32], the novel part of this derivation are the conditional moments (I.5)
and (I.6). To demonstrate the validity of these moments, empirical cumulative distribution functions
of µu,i

(
I

(s,j)
u,i

)
and σ2

u,i

(
I

(s,j)
u,i

)
are compared in Figure I.1 to the calculated values according to (I.5)

and (I.6). The Monte-Carlo simulations of the out-of-cell interference are conducted for a single
non-sectorized interfering cell comprising one base station and six single antenna RRUs, transmitting
either one or four parallel data streams. It can be seen that a perfect match of the body of the
calculated and simulated cumulative distribution functions is obtained.2 It is observed in Figure I.1
that the mean interference is independent of the number of transmitted data streams, while the
variance decreases with a growing number of data streams. The accuracy of the remaining parts of
the considered moment matching approach is investigated in detail in [32].

Notice that the tail probability of the conditional moments is not investigated here, because it is not
of significant importance in this thesis. In the conducted performance investigations the focus is put
on average throughputs and mean spectral efficiencies. These average values are only marginally
impacted by the tail probabilities of the interference.

2The results are normalized to the maximum observed value.
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