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Abstract

Quantum mechanical measurements inevitably induce a disturbance on the system. If the

interaction strength is weak enough, so called weak measurements are performed. Together with

pre and post selected states they allow to extract the weak value of an observable. Here we want

to determine the weak value using neutron matter waves with polarimeter and interferometer

setups. In particular, three different kinds of experiments are proposed: (i) the first allows to

measure the weak value of the spin operator using either an interferometer or a polarimeter,

(ii) the second experiment is designed to extract the path weak value in a neutron interferometer

and (iii) the combination of both experiments forms the third one, which allows to measure a

so called ’Cheshire Cat’. Furthermore, the polarimeter experiment designed to extract the spin

operator’s weak value was carried out at the TRIGA Mark II research reactor of the Institute

of Atomic and Subatomic Physics of the Vienna University of Technology. The results agree

very well with the theory and favor further investigation of weak values with neutrons.



Kurzfassung

Wird eine Messung an einem quantenmechanischen System durchgeführt, so bewirkt dies un-

weigerlich eine Störung dieses Systems. Ist die Stärke der Wechselwirkung dieser Messung klein

genug, so werden sogenannte ’weak measurements’, zu Deutsch ’schwache Messungen’, vorge-

nommen. Gemeinsam mit pre und post selektierten Ensembles erlauben diese den schwachen

Messwert (’weak value’) einer Observable zu messen. Mit Hilfe der Materiewellen von Neu-

tronen wollen wir den schwachen Messwert in Polarimeter und Interferometer Experimenten

bestimmen. Dazu werden drei verschiedene Arten von Experimenten vorgeschlagen: (i) das ers-

te erlaubt es den schwache Messwert des Spin Operators entweder mittels eines Polarimeters

oder eines Interferometers zu messen, (ii) das zweite ermöglicht es in einem Interferometer

Experiment den schwachen Messwert des Pfad Operators zu bestimmen und (iii) die Kombina-

tion dieser beiden bildet das dritte, welches dazu ausgelegt ist, das sogenannte ’Cheshire Cat’

Paradoxon nachzuweisen. Außerdem wurde das Polarimeter Experiment, welches so ausgelegt

wurde, dass man den schwachen Messwert des Spin Operators bestimmen kann, am TRIGA

Mark II Forschungsreaktor des Atominstituts der technischen Universität Wien durchgeführt.

Die Resultate dieser Messung stimmen sehr gut mit der Theorie überein und befürworten eine

weitere Untersuchung von schwachen Messwerten mit Neutronen.
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1. Introduction

Quantum mechanics is one of the most successful physical theories of the last century [1]. How-
ever, it is not at all intuitively conceivable. The theoretical physicist Michio Kaku put this the
following way:
’It is often stated that of all the theories proposed in this century, the silliest is quantum theory.
In fact, some say that the only thing that quantum theory has going for it is that it is unques-
tionably correct.’ [2]
One of the most problematic aspects of quantum mechanics is the measurement process [3].
It is well known that any system that gets measured, is disturbed in some way through the
measurement [4]. It is interesting to ask what happens if the disturbance on the system gets
smaller and smaller, i.e. if the interaction strength is reduced. To describe the evolution of a
system under the influence of a measurement with very little interaction strength, the theory
of weak measurements was developed [5]. In a so called weak measurement the disturbance of
the system is reduced to a minimal amount. A weak measurement is a slight change in the
particle’s impulse or a very small rotation of the particle’s spin. The theory predicts that, if
weak measurements are combined with well prepared und analyzed ensembles, surprising ef-
fects occur. This preparation is generally called pre selection of the ensemble, the analysis post
selection. One example for those strange effects are eigenvalues that lie outside the eigenvalue
range of an operator. Imagine for example to measure the value 100 for the spin of a spin-(1/2)
particle [5]. Such a large eigenvalue is called a weak value. Moreover, the weak value can be
interpreted as the ensemble’s eigenvalue between pre and post selection. This means that for
anything that interacts with the system in the weak regime it really looks like the ensemble has
the impossible large spin value. Strange as this may seem, it has already been experimentally
confirmed in an experiment using photons [6]. While performing experiments with weak values
it has also been found that they can be used as a mean of amplification.
All experiments involving weak measurements and weak values, that were performed so far,
used photons [6–8]. There are no experiments using matter waves. The use of massive particles
like electrons [9], neutrons [10], atoms or molecules [11] in experiments is of prime importance
to further develop the theory of weak measurements, since experiments involving photons only,
do not actually need quantum mechanics, but can be explained classically as well in many cases.
Since the neutron spin can be considered as a two level quantum system, it is possible to come
up with neutron polarimeter experiments to extract the weak value of the spin operator. If
an interferometer is used the spin can be combined with another two level quantum system:
the path. This allows to test how weak measurements come into play with the topic of com-
plementarity and wave particle duality. The path degree of freedom can be used to extract
the spin weak value and vice versa. Additionally it can be shown that the weak value itself
is accessible without a weak measurement using neutrons. This raises the question about the
meaning of the weak value outside the weak regime. While some say, that the weak value is
only defined through weak measurements, others claim, that it is simply a transition probability
amplitude [12]. To answer those questions novel experiments have to be carried out. How such
experiments could be designed is shown in the following chapters.
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2. Theoretical background

The first chapter of this thesis gives a short overview of the concept of measurements in quantum
mechanics. After that the idea and the theoretical treatment of so called weak measurements
are presented. To elucidate this unfamiliar concept several experiments dealing with it are
discussed.

2.1. Measurements in quantum mechanics

Let |a′〉 be the eigenket of a Hermitian operator Â that represents some observable, so that

Â|a′〉 = a′|a′〉, (2.1)

where a′ is called the eigenvalue of Â.a

An arbitrary ket |α〉 can now be expressed as a linear superposition of those eigenkets

|α〉 =
∑
a′

ca′ |a′〉 =
∑
a′

|a′〉〈a′|α〉. (2.2)

Similarly the operator itself can be expanded in the same basis

A =
∑
a′

a′|a′〉〈a′|. (2.3)

Therefore before a measurement of the observable Â is made, the system is assumed to be in a
superposition of many states [13].
Take for example a spin 1

2 particle, e.g. a neutron. The spin-wave function of such a particle can
be constructed by a superposition of the two states |Sz; +〉 and |Sz;−〉, where |Sz; +〉 describes
the spin state aligned parallel to the z-axis and |Sz;−〉 that anti parallel. These two states are
orthogonal and form a basis, which can be used to express arbitrary states in the spin space.
In this basis the Ŝz operator can be written as

Ŝz =
~σ̂sz
2

=
~
2

(|Sz; +〉〈Sz; +| − |Sz;−〉〈Sz;−|) , (2.4)

where σ̂sz is the Pauli spin matrix. The most general spin wave function is given by

|ψs〉 = |Ŝ · n̂; +〉 = cos

(
θ

2

)
e−iφ/2|Sz; +〉+ sin

(
θ

2

)
eiφ/2|Sz;−〉, (2.5)

aIf there are two (or more) linearly independent eigenkets of Â having the same eigenvalue, then the eigenvalues
of the two eigenkets are said to be degenerate. For the following considerations we assume that we are dealing
with nondegenerate systems.
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2. Theoretical background

where θ and φ describe the polar and the azimuth angle, with respect to the z-axis, respectively.
For φ = 0 and θ = 0 the spin state is aligned parallel to the z-axis.
Now the following question arises: What happens if a measurement takes place? A measurement
disturbs the quantum system in a way that the wave function collapses into a single state
[14]. More precisely, if the measurement yields the eigenvalue a′ then the system collapses
into the eigenstate |a′〉. Quantum mechanics does not allow us to predict the outcome of the
measurement in advance, i.e. we do not know in which state the wave function is going to
collapse. However, it is possible to calculate the probability P that a certain experimental
outcome will occur. The relation

P (a′) ≡ 〈a′|α〉〈α|a′〉 = |〈a′|α〉|2 (2.6)

states the probability that the outcome a′ is detected when the observable Â is measured. One
can further define the expectation value 〈Â〉 of the observable Â as

〈Â〉 ≡ 〈α|Â|α〉
〈α|α〉

, (2.7)

which can be regarded as the average value of the measurement, if many measurements of the
same observable Â are repeated. Often it is simply given by 〈Â〉 = 〈α|Â|α〉, but it is important
to bear in mind that this form is only valid as long as the state |α〉 is normalized.
Since this concept is very important let us consider an experimental example, that can be
realized easily using the techniques of neutron optics. Suppose some device prepares a quantum
state in a way that its wave function is given by

|ψ〉 = |Sx; +〉 =

√
1

2
(|Sz; +〉+ |Sz;−〉) . (2.8)

Now imagine that we perform a measurement of the spin’s z-component. The probability of
detecting neutrons with a (Sz; +)-spin component is

P (Sz; +) = 〈Sz; +|

(√
1

2
|Sz; +〉+

√
1

2
|Sz;−〉

)(√
1

2
〈Sz; +|+

√
1

2
〈Sz;−|

)
|Sz; +〉 =

1

2
, (2.9)

which means that we have a 50% chance of detection. Since the system is described only by a
superposition of two eigenstates, this also means, that we have an equal probability to detect a
neutron with (Sz;−)-spin component. The expectation value of σ̂sz is given by

〈σ̂sz〉 =

(√
1

2
〈Sz; +|+

√
1

2
〈Sz;−|

)
(|Sz; +〉〈Sz; +| − |Sz;−〉〈Sz;−|)×

×

(√
1

2
|Sz; +〉+

√
1

2
|Sz;−〉

)

=

(√
1

2
〈Sz; +|+

√
1

2
〈Sz;−|

)(√
1

2
|Sz; +〉 −

√
1

2
|Sz;−〉

)

=

(
1

2
− 1

2

)
= 0, (2.10)
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2. Theoretical background

which makes perfect sense. The z-component of the state |Sx; +〉 is zero. For each measurement
we have an equal chance of detecting the positive eigenvalue +1

2 and the negative one −1
2 . If

we perform many measurements our measurements will yield an average of zero.
To summarize, a quantum system can be described as a superposition of eigenstates. A mea-
surement yielding an eigenvalue disturbs it in a way, that its wave function collapses into the
corresponding eigenfunction. Such a measurement is called a ’strong’ measurement. Quantum
mechanics forbids us to predict the outcome of each measurement with certainty, however Eq.
(2.6) allows us to calculate the probability of a certain outcome and Eq. (2.7) yields the average
value when many measurements are performed.

2.2. Weak measurements

Quantum-mechanically a measurement of the observable Â can be described by an interaction
Hamiltonian Ĥi, between the quantum system and the measurement apparatus. This leads to
an evolution of the system according to

|ψ(t)〉 = U(t, t′)|ψ(t′)〉, (2.11)

with the time evolution operator U(t, t′), which is defined as

U(t, t′ = 0) ≡ U(t) = e−iĤit, (2.12)

with ~ = 1 for simplicities sake. The standard form of an interaction Hamiltonian is given by

Ĥi = −g(t)q̂Â, (2.13)

where q̂ is a canonical variable of the measuring device. p̂ is the conjugate momentum to q̂ and
g(t) is a normalized function such that its time integral is unity. The difference pf − pi between

the device’s final and initial value is called its pointer reading and registers the value of Â [3].
A real measuring device’s initial wave function |Φi〉 is a Gaussian with spread ∆p centered
around p = 0, i.e

|Φi〉 =

∫
dp e−∆2p2

, (2.14)

where ∆q ≡ ∆ and ∆p = 1
(2∆) are the spread in q and p space respectively. Again ~ was set

equal to one. According to Eq. (2.2), the quantum system’s initial state |Ψi〉 can be expanded
in a linear superposition of eigenstates of Â. Let the whole system’s wave function be |ψ〉. It
consists of the measuring device’s and the prepared systems’s initial wave function coupled by
the interaction Hamiltonian. It can be shown that it evolves into

|ψ′〉 = e−i
∫

dt Ĥi |ψ〉 = e−i
∫

dt Ĥi |Ψi〉|Φi〉 = ei
∫

dt g(t)q̂Â|Ψi〉|Φi〉

= eiq̂Â
∑
a′

ca′ |a′〉
∫

dq exp

(
−q2

4∆2

)
|q〉 =

∑
a′

ca′

∫
dp

∫
dq eiq(a

′−p) exp

(
−q2

4∆2

)
|a′〉|p〉

=
∑
a′

ca′

∫
dp e−∆2(p−a′)|a′〉|p〉 (2.15)
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2. Theoretical background

under the action of Ĥi [15]. Looking at Eq. (2.14) one has to distinguish between two cases:
For small ∆p the sum represents many single sharply peaked Gaussians, each centered around
one of the eigenvalues a′. A sketch of how the wave function would look like can be seen in
Fig. 2.1. The limit of ∆p→ 0 represents the case for an ideal measurement. The measurement
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Figure 2.1.: Sketch of Eq. (2.14) for small ∆p: Many single sharply peaked Gaussians around
the eigenvalues a′.

will always yield an eigenvalue a′ with the probability P (a′) = |ca′ |2 and the quantum state
collapses into |a′〉 if a′ is measured.
For large ∆p, i.e. for the case of a weak measurement, the single spikes become a sum of
strongly overlapping broad Gaussians, as can be seen in Fig. 2.2. The probability distribution
for such a system will approximate a single, broad Gaussian peaked at the mean value of Â. It
has to be stressed that a single measurement of this kind does not give any information about
the quantum system, since the measuring device’s initial spread in momentum space is much
bigger than 〈Â〉, and one cannot distinguish the results of the measurements. Nevertheless it is
possible, to obtain the whole probability distribution and find the mean value of Â, by repeating
the same experiment over and over again.
Before developing the theory of weak measurements further one should bear in mind the most
important point presented so far: One of the key characteristics of an ideal or ’strong’ measure-
ment is a small initial pointer spread in momentum space, i.e. the pointers are distinguishable.
In contrast to that, a weak measurement has a large, indistinguishable pointer spread. The
most important point is, that a strong measurement will yield an eigenvalue, while a single
weak measurement does not give any significant information about the system.
Very interesting effects arise, if a quantum system is post selected, i.e. if a strong measurement
is performed right after the weak one. This leads to a collapse of the wave function into a
certain eigenstate

|Ψf 〉 = |b′〉 =
∑
a′

c′a′ |a′〉, (2.16)
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Figure 2.2.: Sketch of Eq. (2.14) for big ∆p: The Gaussians are now very broad and overlap
strongly.

and therefore

|Φf 〉 = 〈Ψf |Φi〉 =
∑
a′

ca′c
′∗
a′

∫
dp e−∆2(p−a′)|p〉. (2.17)

With the wave function in Eq. (2.17), it is possible to calculate a probability distribution,
which is given by a sum of Gaussians with complex coefficients. This can lead to complicated
cancellation effects capable of producing a distribution, whose peak is shifted far to one side.
This shift makes it possible to measure eigenvalues far outside their range, in some cases.
This effect was first studied by Yakir Aharanov, David Albert and Lev Vaidman (AAV) in
1988 [5]. They showed that the effects of weak measurements can be understood by simply
Taylor expanding the quantum system’s evolution caused by the measuring process, which
leads to the definition of the weak value.

|Φf 〉 = 〈Ψf |Φi〉 = 〈Ψf |eiq̂Â|Ψi〉|Φi〉 ≈
(
〈Ψf |Ψi〉+ iq̂〈Ψf |Â|Ψi〉+ · · ·

)
|Φi〉

≡ 〈Ψf |Ψi〉
(

1 + iq̂〈Â〉w + · · ·
)
|Φi〉 ≈ 〈Ψf |Ψi〉

∫
dq eiq̂〈Â〉w exp

(
−q2

4∆2

)
|q〉

= 〈Ψf |Ψi〉
∫

dq e−i∆
2(p−〈Â〉w)

2

|p〉 (2.18)

Eq. (2.18) describes a single broad Gaussian centered on 〈Â〉w. It is defined as

〈Â〉w ≡
〈Ψf |Â|Ψi〉
〈Ψf |Ψi〉

(2.19)
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2. Theoretical background

and it can be interpreted as the ensemble’s eigenvalue between pre and post selection. If |Ψi〉
or |Ψi〉 are eigenstates of Â, the weak value is equal to the strong one. 〈Â〉w is not bound by
the eigenvalues and may yield very large outcomes [15].
In addition to that the weak value can in general be a complex quantity. What is the physical
meaning of the imaginary part of the weak value? It can be shown [16] that the weak mea-
surement causes a translation of the pointer wave function and there is a contribution to the
pointer’s mean position shift that is proportional to the imaginary part of 〈Â〉w and the rate at
which the pointer is spreading in space as it enters the measurement interaction.

2.2.1. Spin-(1/2) particles and weak measurements

In a theoretical consideration of weak measurements an experiment was found that yields very
surprising outcomes: AAV proposed to measure the weak spin value of a spin-(1/2) particle
using two sequential Stern-Gerlach magnets [5]. This experiment is now briefly explained:
A beam of spin-(1/2) particles is prepared so that their spins are aligned with the positive
z-axis.b The particle’s spin is now slightly rotated around the y-axis so that it encloses an angle
α with the x-axis. After this preparation of the ensemble (the pre selection) the particles spin
state is given by

|Ψi〉 = cos
(α

2

)
|Sx; +〉+ sin

(α
2

)
|Sx;−〉 (2.20)

Its spatial wave function shall have a Gaussian shape of width ∆ in the z-direction. Now a
weak measurement of the spin’s z-component is performed, using a Stern-Gerlach magnet. The
interaction Hamiltonian for such a device is represented by

Ĥi = −φσ̂sz ẑ, (2.21)

where the parameter φ describes the interaction strength, σ̂sz is the Pauli spin operator and ẑ
is the position operator. The condition for weak measurements is met by making φ very small.
Since the interaction strength of the first Stern-Gerlach apparatus is very small, the beam
splitting is also very small. The beam is not sufficiently separate, to distinguish the two spin
components. Immediately after the first measurement a second, strong measurement is per-
formed. The beam is split into two components corresponding to |Sx; +〉 and |Sx;−〉. The post
selection is performed by picking up only the |Sx; +〉 part, using a position sensitive detector.
With the definition of the weak value

〈σ̂sz〉w ≡
〈Ψi|σ̂sz|Ψf 〉
〈Ψi|Ψf 〉

=
〈Sx; +| [|Sz; +〉〈Sz; +| − |Sz;−〉〈Sz;−|]

[
cos
(
α
2

)
|Sx; +〉+ sin

(
α
2

)
|Sx;−〉

]
〈Sx; +|

[
cos
(
α
2

)
|Sx; +〉+ sin

(
α
2

)
|Sx;−〉

]
=
〈Sx;−|

[
cos
(
α
2

)
|Sx; +〉+ sin

(
α
2

)
|Sx;−〉

]
〈Sx; +|

[
cos
(
α
2

)
|Sx; +〉+ sin

(
α
2

)
|Sx;−〉

] =
sin
(
α
2

)
cos
(
α
2

) = tan
(α

2

)
(2.22)

and Eq. (2.18), one gets

|ψ′〉 = 〈p|Φf 〉 = cos
(α

2

)
exp

[
−∆2

(
pz − φ tan

(α
2

))2
]
, (2.23)

bThe coordinate system is chosen in the following way: The y-axis coincides with the direction of propagation,
the z-axis is parallel to the particle’s initial spin direction and the x-axis forms a right handed system with
the other two axes.
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2. Theoretical background

The distribution of pz is given by

P (pz) = |〈ψ′|ψ′〉|2 = |〈p|Φf 〉|2 = cos
(α

2

)2
exp

[
−2∆2

(
pz − φ tan

(α
2

))2
]
. (2.24)

The position sensitive detector makes it possible to measure this distribution, which will be
centered around the value 〈σ̂sz〉w. But if α approaches a value close to π, tan

(
α
2

)
can become

far larger than one and it is possible to obtain an arbitrary large value for the z-spin component
of a spin-(1/2) particle!
Not long after AAV published their first paper, a controversy about the physical sense of weak
measurements arose [17–19]. Does it really make sense to claim that one is able to measure,
say 100, for the a spin-component of a spin-(1/2) particle?
In 2010 Aharonov together with Sandu Popescu and Jeff Tollaksen elucidated the topic with a
gedankenexperiment involving spin-(1/2) particles [20]:
At time t0 it starts with an ensemble of particles whose spin is aligned parallel to the z-axis
(preselection). At some later time t1 a measurement of the x-spin component is performed and
only the particles with their spin aligned parallel to the x-axis, i.e. with the spin state |Sx; +〉,
are selected (post selection). Thus it seems that at any time t0 < t < t1 the spin of the post
selected particles has a well defined spin component in both the z- and the x-direction.
The whole problem becomes even more complicated if you ask what happens if you evaluate
σ̂sπ/4, the spin of one particle along a direction in the xy-plane making an angle of π

4 with the
axis. The operator for this a measurement is

σ̂sπ/4 =

√
1

2
(σ̂sx + σ̂sz) . (2.25)

In this case, both spin components seem to be well defined and therefore one could naively
think that the measurement result will be σ̂sπ/4 =

√
2: This is obviously wrong, since the spin

component in any direction can only be 1, if σ̂sj is evaluated. So where is the mistake?
The answer is rather simple. σ̂sx and σ̂sz are noncommuting observables and cannot be well
defined at the same time. It is impossible to measure both at the same time. If either σ̂sx or σ̂sz
are measured the quantum system will be disturbed and we will not find the large value, which
we expected.
However, weak measurements make it possible to measure the spin component of a large number
N of particles without significantly disturbing the system. Take for example N spin-(1/2)
particles all in the |Sz; +〉 state at t0 and thanks to a successful post selection all of them are
in the |Sx; +〉 state at some later time t1. At a time t0 < t < t1 a nondisturbing measurement
of σ̂sx and σ̂sz is performed. Since neither measurement disturbs the other, they can be done
simultaneously and we will get the result

σ̂sπ/4 =

√
1

2
(σ̂sx + σ̂sz) =

√
2 N ±

√
N. (2.26)

So what is the physical meaning of this result? Does it really mean that the ensemble has the
impossible large spin value?
The weak measurements are imperfect and hence they are afflicted with a large uncertainty.
What we are dealing with is really a measurement error. But, and here comes the interesting
point, this error is not random, it has to occur if the post selection succeeds and in every
interaction in the weak regime the system does behave as if is has the impossible large value.
In contrast to ideal measurements, weak ones are not able to give any significant information
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2. Theoretical background

about a single particle. All they can yield is the ensemble average. However, by choosing a
cleverly pre- and post selected ensembles, this ensemble average can behave unexpectedly. It can
even lie far outside the region of eigenvalues. At this point it is very important to emphasize, that
weak measurements do not contradict quantum mechanics. They are a necessary consequence
of quantum mechanic’s mathematical structure. As the next section shows, many experiments
have been performed, that confirm the predictions made by the theory of weak measurements.

2.3. Associated experiments

This section is devoted to three different experiments dealing with weak values. At the beginning
the first realization of a weak measurement is presented, which showed that weak measurements
can be used as a means of amplification. The second experiment shows such an amplified weak
value measurement. The third experiment makes use of weak measurements in order to extract
the average trajectory, i.e. practically the Pointing vector, of an ensemble of photons in a double
slit interferometer.

2.3.1. First realization of a weak measurement

In 1991 the first experiment, which was able to confirm the predictions made by the theory
of weak measurements was conducted by N. W. M. Ritchie, J.G. Story and Randall G. Hulet
at the University of Texas [6]. It is an optical analogue to the experiment proposed by AAV,
discussed in section 2.2.
Instead of a beam of spin-(1/2) particles a Gaussian mode laser beam was used. The pre- and
post selection are carried out using optical polarizers. The weak measurement was done by a
birefringent-crystalline quartz, which caused a very small beam splitting. A schematic diagram
of the setup can be seen in Fig. 2.3 The electric field vector of the laser beam after passing
through the first polarizer ~Ei (pre selection) is given by

~Ei (x, y) = E0 exp

(
−x

2 + y2

w2
0

)
[cos (α) êx + sin (α) êy] , (2.27)

where w0 describes the width of the laser beam. The coordinate system was chosen such that
the direction of propagation coincides with the z-axis, and the polarization is linear with at
angle α with respect to the x-axis. Together with the y-axis the two build a right handed
coordinate system.
Now the weak measurement is performed, by using a birefringent crystal. The crystal sepa-
rates the two orthogonal linear polarization components of the field. The condition of a weak
measurement is met by making the separation a of the beam very small compared to the beam
width, i.e. a � w0, making it impossible to distinguish the two beams.c. After the weak
measurement the electric field vector ~Ew becomes

~Ew (x, y) = E0 exp

(
−x2

w2
0

)[
cos (α) exp

(
− (y + a)2

w2
0

)
êx + sin (α) exp

(
−y2

w2
0

)
êy

]
. (2.28)

cThe beam width w0 was given by w0 = 55µm compared to a beam separation of a ≈ 0.64µm
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FIG. 1. Schematic diagram of the apparatus. The output of
a frequency-stabilized He-Ne laser is collimated, focused, and
polarized at an angle a relative to the x axis by telescope T,
lens L l, and polarizer P I, respectively. A birefringent-
crystalline quartz plate Q with optic axis (OA) aligned along
the x axis is located near the focus of the laser beam. Q per-
forms a weak measurement by spatially separating the ordi-
nary and extraordinary polarization components by a distance
small compared to the focused-beam waist wo. Polarizer P2,
whose axis makes an angle P with the x axis, postselects the
final polarization state. Lens L2 expands the image onto a pho-
todetector D. D is scanned along the y axis, recording the in-
tensity function 1(y )

sees only the extraordinary index, n, =1.55165, while an
orthogonally polarized beam sees only the ordinary in-
dex, n, =1.54261. Thus, the beam separation is given
simply by Snell's law and geometry:

sin(8 —0, )a =d cos(8, )
sin(8 —0, )
cos(0, ) (7)

where d is the crystal thickness, 0 is the incident angle,
sin(8, ) =sin(8)/n„and sin(8, ) =sin(8)/n, . In this case,
the Poynting vector and propagation vector are collinear.
0 is adjusted to match the phase P (modulo 2x) between
the two different polarizations due to their different opti-
cal path lengths. We used 0=30', which gives p/2m
=5. Equation (7) then gives a displacement a=0.64
pm.
Although the crystal faces are antireAective coated, a

small fraction of the incident light undergoes multiple
internal retlections and emerges from the crystal parallel
to, but displaced from, the single-passed beam. As the
beams diverge from the focus, this extraneous light in-
tensity may overlap and obscure the interference pattern.
Therefore, it was necessary to make wo small compared
to d and, in addition, to use a lens 1.2 (focal length=l0
mm) after Q to enlarge the image of the interference
pattern on the image plane before this overlap occurs.
P~ and P2 are Gian-Thompson polarizers which are

specified to produce a wave-front distortion of less than

0.0
70
60
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40
30
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0
3.0
2.5—
2.0—

I 1.5

0.5—
0.0 =—-100 —50 50 100

lo of a wavelength. Measured as a pair, their extinction
ratio is better than 1 part in 10 . Since the interference
occurs at polarizer P2, the beam waist at P2, wo, is the
critical dimension in determining the intensity of the in-
terference pattern [Eq. (6)]. P2 is located at the focus of
I ~ to within our experimental uncertainty. Finally, the
intensity profile is measured with a photodiode D located
behind a 76-pm-wide slit. The photodiode-slit assembly
is scanned across the y axis with a step size of 48 pm.
Data and theoretical fits to the data using Eq. (6) are

shown in Fig. 2. Figure 2(a) shows the resulting intensi-
ty distribution 1(J) for aligned polarizers, a =P =x/4.
In this case, the interference term in Eq. (6) (third term)

Position (pm)
FIG. 2. Data and fits to the data using Eq. (6). The hor-

izontal axis is scaled to measure y at the position of the focus
of the laser beam. (a) a=P =x/4, corresponding to aligned po-
larizers. The measured intensity profile is the result of the con-
structive addition of two approximately Gaussian distributions
separated by a distance much less than the Gaussian beam
waist. The dotted line, which almost perfectly overlaps the
data, is a fit by a single Gaussian. (b) a=n/4, P =3m/4+2. 2x10, corresponding to a measurement of the weak value.
The resulting intensity is due to destructive interference of the
two Gaussian distributions separated by a small distance
a=0.64 pm. The centroid of the distribution is shifted by=l2 pm or almost 20 times a. (c) a=a/4, P=3x/4, corre-
sponding to crossed polarizers, or orthogonal initial and final
states. In this case, 2 is undefined. The separation of the two
peaks is —120 times a.

1109

Figure 2.3.: A schematic diagram of the setup, that realized the first weak measurement: The
photons are produced by a He-Ne Laser, then collimated by a lens system (T,L1),
before they pass through the first polarizer (P1). The weak measurement is done
by a birefringent-crystalline quartz (Q). Finally the ensemble is post selected via
the second polarizer (P2) and detected (L2,D) [6].

Then the post selection is performed using the second polarizer, which is aligned at an angle β
withe respect to the x-axis. The electric field vector after post selection ~Ef is given by

~Ef (x, y) = E0 exp

(
−x2

w2
0

)[
cos (α) cos (β) exp

(
− (y + a)2

w2
0

)
+

+ sin (α) sin (β) exp

(
−y2

w2
0

)]
[cos (β) êx + sin (β) êy] (2.29)

Taking the absolute square of the Eq. (2.29) at x = 0 yields the intensity distribution along the
y-axis.

I (y) = I0

[
cos2 (α) cos2 (β) exp

(
−2 (y + a)2

w2
0

)
+ sin2 (α) sin2 (β) exp

(
−2y2

w2
0

)
+

+2 cos (φ) cos (α) cos (β) sin (α) sin (β) exp

(
− (y + a)2 + y2

w2
0

)]
(2.30)

Looking at Eq. (2.30), three different cases have to be distinguished.

1. If the first and the second polarizer are aligned in the same way, i.e α = β = π
2 , the

intensity profile is a single broad Gaussian centered at y = 0. This single broad profile is
really a superposition of two Gaussians that are shifted by the beam separation caused
by the birefringent crystal. However, the separation is much smaller than the beam width
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2. Theoretical background

and therefore not visible. This situation is plotted in Fig. 2.4.
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Figure 2.4.: Plot of Eq. (2.30) for α = β = π
2 : The intensity profile appears to be one single

Gaussian. The small beam separation a is not visible.

2. If the first polarizer is adjusted to an angle of α = π
4 and the second one to an angle of

β = 3π
4 + 0.022 a measurement of the weak value is performed. Initial and final state

are nearly orthogonal. The Gaussian distribution is visible in Fig. 2.5. It is caused by
a destructive interference of two Gaussian distributions and is centered around the weak
value. Note the small intensity that occur for this case. We will come back to that shortly,
but first we want to look at the last case we have to consider.

3. It occurs if α = π
4 and β = 3π

4 . Now the final and the initial state are orthogonal and the
weak value is no longer defined. As it is clearly visible from Fig. 2.6 the intensity profile
shows two separate Gaussians. The separation between the two distributions is much
bigger than the actual beam splitting, amplifying a by two orders of magnitude. This
behavior shows that the concept of weak measurements can be applied to amplify signals.
As with the previous case, the intensity is very low. This is due to the orthogonality of
the pre and post selected states and presents a general problem when dealing with weak
measurements. The interesting effects occur at very low intensities.

This experiment fully confirmed the predictions made by the theory of weak measurements. It
is an impressive demonstration of what this technique is capable of and showed new possibilities
for its applications for example as a means of amplification.
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Figure 2.5.: Plot of Eq. (2.30) for α = π
4 and β = 3π

4 + 0.022: This situation represents a weak
measurement. The intensity profile is a single Gaussian shifted to one side, with
a shift that is much greater than the beam separation caused by the birefringent
crystal. Note that the intensity is now much lower than compared to the previous
case.
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Figure 2.6.: Plot of Eq. (2.30) for α = π
4 and β = 3π

4 : Initial and final state are now exactly
orthogonal. The weak value is no longer defined. The intensity profile shows two
separated beams, with a separation much greater than the one caused by the bire-
fringent crystal, making it possible to use the technique of weak measurements for
amplification.
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2.3.2. Beam deflection measurement via interferometric weak value
amplification

In 2009 P. B. Dixon, D. J. Starling, A. N. Jordan and J. C. Howell from the University of
Rochester made use of the amplification effect discussed in the previous section to measure the
beam deflection in an interferometer experiment [7].
The experimental setup basically consisted of a Sagnac interferometer and a Piezo driven mirror,
that was used to slightly deflect the beams. This deflection is equal to a weak measurement.
A collimated laser beam entered the Sagnac interferometer through a polarizing 50/50 beam
splitter. Half of the beam will travel clockwise along path I and the other half counter clockwise
along path II. After the beam splitter the polarization is purely horizontal. In addition to that
a phase shifter was added into the interferometer. The experimental setup can be seen in Fig.
2.7.

between the paths, allowing one to continuously change
the dark port to a bright port. While the theory presented is
for single photons, the experiment was realized with mac-
roscopic beams. The effects described here can be under-
stood classically or quantum mechanically; however, the
amplification effects are identical. Indeed, this experiment
is a combination of classical shear, tilt, and lead interfer-
ometry. A detailed classical description with a comparison
to the quantum mechanical description will be presented in
a following work.

The beam travels through the interferometer, and the
spatial shift of the beam exiting the dark port is monitored.
We refer to the beam’s which-path information as the
system, described with the states fjui; jvig. The transverse
position degree of freedom of the beam, labeled by the
states jxi, is referred to as the meter. A slight tilt is given to
the mirror at the symmetric point in the interferometer.
This tilt corresponds to a shift of the transverse momentum
of the beam. Importantly, the tilt also breaks the symmetry
of the Sagnac interferometer, with one propagation direc-
tion being deflected to the left of the optical axis at the exit
of the beam splitter, and the other being deflected to the
right. In other words, the which-path observable is coupled
to the continuous transverse deflection.

This effect entangles the system with the meter via an
impulsive interaction Hamiltonian, leading to an evolution
operator expð"ixAkÞ, where x is the transverse position of
the meter, k is the transverse momentum shift given to the
beam by the mirror, and the system operator A ¼ jui%
huj" jvihvj describes the fact that this momentum shift is
opposite, depending on the propagation direction.

The splitting of the beam at the 50=50 beam splitter, plus
the SBC (causing the relative phase !) results in an initial
system state of jc ii ¼ ðiei!=2jviþ e"i!=2juiÞ= ffiffiffi

2
p

. The
entangling of the position degree of freedom with the

which-path degree of freedom results in the state

j!i ¼
Z

dxc ðxÞjxi expð"ixAkÞjc ii; (1)

where c ðxÞ is the wave function of the meter in the
position basis. This evolution is part of a standard analysis
on quantum measurement, where the above transformation
would result in a momentum-space shift of the meter,
"ðpÞ ! "ðp' kÞ, if the initial state is an eigenstate of A.
The weak value analysis then consists of expanding

expð"ixAkÞ to first order (assuming ka < 1, where a ¼ffiffiffiffiffiffiffiffi
hx2i

p
is the beam initial size) and postselecting with a final

state jc fi ¼ ðjviþ ijuiÞ= ffiffiffi
2

p
(describing the dark port of

the interferometer). This leaves the state as

hc fj!i ¼
Z

dxc ðxÞjxi½hc fjc ii" ikxhc fjAjc ii): (2)

We now assume that kajhc fjAjc iij< jhc fjc iij< 1, and
can therefore factor out the dominant state overlap term to
find

hc fj!i ¼ hc fjc ii
Z

dxc ðxÞjxi expð"ixAwkÞ; (3)

where we have reexponentiated to find an amplification of
the momentum shift by the weak value

Aw ¼ hc fjAjc ii
hc fjc ii

(4)

with a post-selection probability of Pps ¼ jhc fjc iij2 ¼
sin2ð!=2Þ. The new momentum shift kAw will be smaller
than thewidth of the momentum-space wave function, 1=a,
but the weak value can greatly exceed the ½"1; 1) eigen-
value range of A. In the case at hand, the weak value is
purely imaginary, Aw ¼ "i cotð!=2Þ * "2i=! for small
!. This has the effect of causing a shift in the position
expectation,

hxi ¼ 2ka2jAwj * 4ka2=!; (5)

assuming a symmetric spatial wave function.
We can extend this collimated beam analysis and con-

sider putting a lens with a negative image distance si before
the interferometer. This corresponds to a diverging beam.
Using paraxial beam propagation and assuming the initial
collimated beam radius a is significantly larger than the
wavelength of light used, the result analogous to Eq. (5) is
found to have an additional factor of F ¼ ‘imð‘im þ
‘mdÞ=s2i , where ‘im is the distance from the lens image to
the moving mirror, and ‘md is the distance from the moving
mirror to the detector [15].
From an experimental point of view, it is convenient to

express the deflection in terms of easily measurable quan-
tities. This can be done with the beam size at the detector
" ¼ að‘im þ ‘mdÞ=si and the initial beam size at the lens a
to eliminate si from the equation, and express it in terms of
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HWP
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50/50 
BS

Polarizing 
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Piezo 
Driven 
Mirror

10x 
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To Oscilloscope 
or Lock-In 
Amplifier

FIG. 1 (color online). Experimental Setup. The objective lens
collimates a 780 nm beam. After passing through polarization
optics, the beam enters a Sagnac interferometer consisting of
three mirrors and a 50=50 beam splitter arranged in a square. The
output port is monitored by both a quadrant detector and a CCD
camera. The SBC and half-wave plate in the interferometer
allow the output intensity of the interferometer to be tuned.
The piezo mirror gives a small beam deflection.

PRL 102, 173601 (2009) P HY S I CA L R EV I EW LE T T E R S
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Figure 2.7.: A schematic diagram of the setup of the experiment performed by P. B. Dixon
et al. [7]: After passing through polarization optics, the beam enters a Sagnac
interferometer consisting of three mirrors and a 50/50 beam splitter arranged in a
square. The piezo mirror gives a small beam deflection.

The preselected state is now

|ψ〉 = |Pi〉|X〉 =

√
1

2

(
e−iχ/2|I〉+ ieiχ/2|II〉

)
|X〉, (2.31)

where χ is the additional phase shift caused by the phase shifter and |X〉 describes the transverse
position degree of freedom.
The weak measurement is now performed by slightly tilting the mirror at the symmetric point
of the interferometer, using a piezo driven motor. This deflects the beams dependent on their
direction of propagation. The condition of a weak measurement is met by making this deflection
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very small. The interaction Hamiltonian for this process is given by

Ĥi = kx̂Π̂z (2.32)

with x̂ being the transverse position and k being the transverse momentum shift caused by the
mirror. The operator Π̂z is called path operator, which is represented by a Pauli matrix and
given by

Π̂z = |I〉〈I| − |II〉〈II|. (2.33)

The system’s wave function |ψ′〉 after the interaction is

|ψ′〉 = e−ikx̂Π̂pz |Pi〉|X〉 =
(

1− ikx̂Π̂p
z

)
|Pi〉|X〉. (2.34)

Because the condition ka� 1, with a being the initial beam size, is fulfilled, the measurement

is weak. At the exit of the interferometer a projection onto the state |Pf 〉 =
√

1
2 (i|I〉+ |II〉) is

performed. This is the step of post selection.

〈Pf |ψ′〉 = 〈Pf |
(

1− ikx̂Π̂p
z

)
|Pi〉|X〉 = 〈Pf |Pi〉

1− ikx̂
〈Pf |Π̂p

z|Pi〉
〈Pf |Pi〉︸ ︷︷ ︸
≡〈Π̂pz〉w

 |X〉
= 〈Pf |Pi〉e−ikx̂〈Π̂

p
z〉w |X〉 (2.35)

The first part in Eq. (2.35) describes the probability that post selection will succeed. It is given
by

Pps = |〈Pf |Pi〉|2 =

∣∣∣∣12 (eiχ/2〈I| − ie−iχ/2〈II|
)

(i|I〉+ |II〉)
∣∣∣∣2

=
1

4

∣∣∣ieiχ/2 − ie−iχ/2∣∣∣2 =
1

2
(1− cos (χ)) = sin2

(χ
2

)
. (2.36)

The second part describes a momentum shiftd, that depends on the weak value and on the shift
caused by the weak measurement. The weak value is

〈Π̂p
z〉w =

〈Pf |σ̂pz |Pi〉
〈Pf |Pi〉

=
(〈II| − i〈I|) (|I〉〈I| − |II〉〈II|)

(
e−iχ/2|I〉+ ieiχ/2|II〉

)
ieiχ/2 − ie−iχ/2

=
e−iχ/2 + eiχ/2

e−iχ/2 − eiχ/2
= i cot

(χ
2

)
≈ i 2

χ
, (2.38)

dWhy does the term e−ikx̂〈Π̂
p
z〉w describe a momentum shift? This is not obvious at first sight, but the proof

is really quite simple. k〈Π̂p
z〉w ≡ ζ has the dimension of a momentum. Let |p〉 be an arbitrary momentum

eigenket, then

e−ixζ |p〉 = (1 + ixζ + · · · ) |p〉 = |p〉 − ζ ∂
∂p
|p〉+ · · · = |p− ζ〉, (2.37)

which proves that e−ixζ is the translation operator in momentum space.
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which can become much bigger than unity for small values of χ.
Even though the beam deflection caused by the mirror is very small, it gets amplified two orders
of magnitude by the weak value. This setup made it possible to measure beam deflections of
400 ± 200frad. The travel of the piezo actuator was measured to be 14 ± 7fm, proving quite
impressively what weak values are capable of. The experimental results can also be seen in Fig.
2.8.

the dark port). The amplification factor was found by
driving the piezo with a 500 mV peak to peak signal and
comparing the measured beam deflection with the aligned
interferometer to the measured beam deflection with the
interferometer beam splitter removed. The piezo driving
voltage was varied over 5 orders of magnitude while the
output of the quadrant detector was sent to a lock-in
amplifier and the signal was observed. The smallest driving
voltage that yielded a measurable beam deflection was
220 nV corresponding to an expected angular deflection
of the mirror of 560! 40 frad, and a measured value of
400! 200 frad (the mirror angle is half the beam deflec-
tion angle). These measurements are shown in Fig. 3. At
smaller driving voltages, the lock-in amplifier was unable
to lock to the signal.

There are other, perhaps more interesting points. The
deflection indirectly measured the linear travel resolution
of the piezoelectric actuator. The expected travel of the
piezo actuator was 20! 2 fm, while the measured value
was 14! 7 fm. This distance is on the order of large
atomic nucleus diameters (Uranium is 15 fm) and is almost
6 orders of magnitude more resolution than the manufac-
turer’s specifications of 10 nm. Also, as Hosten and Kwiat
point out [10], weak value measurement techniques such as
the one described here reduce technical noise (thermal,
electrical, vibrational, etc.). We are further investigating
the topic of reduced technical noise and increased signal-
to-noise ratio. Further improvements to the system may

include: using a quadrant detector with a larger active area
which allows a larger beam size to be used, decreasing
stray light on the detector by carefully minimizing any
back reflections from optics, and aligning the interferome-
ter to have an improved dark port, possibly by using a
deformable mirror. As a note, this system may be used for
active feedback stabilization since the sinusoidal deflection
results in an in-phase sinusoidal amplified signal.
Concluding remarks.—In this Letter, we have described

and demonstrated a method of amplifying small beam
deflections using weak values. The amplification is inde-
pendent of the source of the deflection. In this experiment,
a small mirror deflection in a Sagnac interferometer pro-
vides the beam deflection. By tuning the interferometer and
monitoring the resulting small amount of light exiting the
interferometer dark port, weak value amplification factors
of over 100 are achieved. The weak value experimental
setup, in conjunction with a lock-in amplifier, allows the
measurement of 400! 200 frad of mirror deflection which
is caused by 14! 7 fm of piezo actuator travel.
This work was supported by DARPA DSO Slow Light, a

DOD PECASE grant, and the University of Rochester.
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FIG. 3 (color online). Angular displacement of the mirror is
plotted versus piezo driving voltage. Weak value signal ampli-
fication allows small deflections to be measured. The solid line
shows the expected deflection based on an extrapolation of
calibrated measurements of the piezo actuator’s linear travel at
higher voltages. These data were taken using a weak value
amplification of approximately 86.
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Figure 2.8.: Measurement results of the experiment performed by P. B. Dixon et al. [7]: Beam
deflections as small as 400± 200frad were measured.

2.3.3. Average trajectories of single photons

In 2011 a group around Aephraim Steinberg at the Centre for Quantum Information and Con-
trol and Institute for Optical Sciences of the University of Toronto performed an experiment
observing the average trajectories of single photons, i.e. the pointing vector, in a two-slit inter-
ferometer using weak measurements [8].
The basic experimental setup consisted of a quantum dot, that served as a source for single
photons, a double slit interferometer, a polarizer used for preparing the states, a birefringent
calcite crystal, which performed the weak measurement, a quarter wave plate to project the
polarization state onto a certain axis and finally a position sensitive detector. It can be seen in
Fig. 2.9.

A single photon was produced at the quantum dot. After passing through the double slit it was
sent through a polarizer preparing it in the diagonal polarization state

|D〉 =

√
1

2
(|H〉+ |V 〉) , (2.39)

where |H〉 coincides with the horizontal polarization axis and |V 〉 with the vertical one. Hence
the photon’s total wave function is given by

|ψ〉 = |D〉|P 〉, (2.40)
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where |P 〉 describes its path.
Now the weak measurement of the photon’s transverse moment kx was performed. The photon’s
direction of propagation coincided with the z-axis. This was done by inserting a birefringent
calcite crystal that changes the polarization of the photons passing through it by introducing
a phase shift dependent on kx. In agreement with the formalism introduced in section 2.2, the
Hamiltonian for this interaction is given as Ĥi = gk̂xŜx. Therefore the photon’s polarization
wave function after the weak measurement can be expressed ase

|ψ′〉 = e−igĤit|ψ〉 = exp

−igk̂xt
2

|H〉〈H| − |V 〉〈V |︸ ︷︷ ︸
σ̂sx

 |ψ〉
≈

(
1− igk̂xt

2
|H〉〈H| − |V 〉〈V |

)√
1

2
(|H〉+ |V 〉) |P 〉

=

√
1

2
(|H〉+ |V 〉) |P 〉 − igk̂xt

2
√

2
(|H〉 − |V 〉) |P 〉 =

(
|D〉 − igk̂xt

2
|A〉

)
. (2.41)

This way the weak measurement of the photon’s transverse momentum is carried out using the
polarization degree of freedom as a pointer. Now the post selection is performed. This is done
by performing a strong measurement of the position of the photon, which is of course nothing

e~ = 1
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Observing the Average
Trajectories of Single Photons
in a Two-Slit Interferometer
Sacha Kocsis,1,2* Boris Braverman,1* Sylvain Ravets,3* Martin J. Stevens,4 Richard P. Mirin,4

L. Krister Shalm,1,5 Aephraim M. Steinberg1†

A consequence of the quantum mechanical uncertainty principle is that one may not discuss
the path or “trajectory” that a quantum particle takes, because any measurement of position
irrevocably disturbs the momentum, and vice versa. Using weak measurements, however, it is
possible to operationally define a set of trajectories for an ensemble of quantum particles. We sent
single photons emitted by a quantum dot through a double-slit interferometer and reconstructed
these trajectories by performing a weak measurement of the photon momentum, postselected
according to the result of a strong measurement of photon position in a series of planes. The
results provide an observationally grounded description of the propagation of subensembles
of quantum particles in a two-slit interferometer.

In classical physics, the dynamics of a par-
ticle’s evolution are governed by its position
and velocity; to simultaneously know the

particle’s position and velocity is to know its past,
present, and future. However, the Heisenberg

uncertainty principle in quantum mechanics for-
bids simultaneous knowledge of the precise po-
sition and velocity of a particle. This makes it
impossible to determine the trajectory of a single
quantum particle in the same way as one would

that of a classical particle: Any information gained
about the quantum particle’s position irrevocably
alters its momentum (and vice versa) in a way that
is fundamentally uncertain. One consequence is
that in Young’s double-slit experiment one can-
not determine through which slit a particle passes
(position) and still observe interference effects on
a distant detection screen (equivalent to measur-
ing the momentum). Particle-like trajectories and
wavelike interference are “complementary” as-
pects of the behavior of a quantum system, and
an experiment designed to observe one neces-
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Fig. 1. Experimental setup for measuring the average photon trajectories.
Single photons from an InGaAs quantum dot are split on a 50:50 beam
splitter and then outcoupled from two collimated fiber couplers that act as
double slits. A polarizer prepares the photons with a diagonal polarization
|D〉 = 1ffiffi

2
p (|H〉 + |V〉). Quarter waveplates (QWP) and half waveplates (HWP)

before the polarizer allow the number of photons passing through each slit
to be varied. The weak measurement is performed by using a 0.7-mm-thick
piece of calcite with its optic axis at 42° in the x-z plane that rotates the

polarization state to 1ffiffi
2

p (e−iϕk/2|H〉þ eiϕk/2|V〉). A QWP and a beam dis-
placer are used to measure the polarization of the photons in the circular
basis, allowing the weak momentum value kx to be extracted. A cooled CCD
measures the final x position of the photons. Lenses L1, L2, and L3 allow
different imaging planes to be measured. The polarization states of the
photons are represented on the Poincaré sphere, where the six compass points
correspond to the polarization states |H〉,|V〉,|D〉,|A〉 = 1ffiffi

2
p (|H〉 − |V〉), |L〉 = 1ffiffi

2
p

(|H〉 + i|V〉), and |R〉 ¼ 1ffiffi
2

p (|H〉 − i|V〉).
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Figure 2.9.: Schematic drawing of the experiment performed by S. Kocsis et al. [8]: A quantum
dot served as a source for single photons. A double slit interferometer and a polar-
izer were used to prepare the states. The birefringent calcite crystal performed the
weak measurement and a quarter wave plate projected the polarization state onto
a certain axis, which allowed the position sensitive detector to pick up the photons.
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else than the detection of the photon on the CCD chip.

〈xf |ψ′〉 = 〈xf |P 〉|D〉 −
igt

2
〈xf |k̂x|P 〉|A〉 = 〈xf |P 〉

|D〉 − igt

2

〈xf |k̂x|P 〉
〈xf |P 〉︸ ︷︷ ︸
≡〈k̂x〉w

|A〉


≡ 〈xf |P 〉︸ ︷︷ ︸

ψ(xf )

(
|D〉 − igt

2
〈k̂x〉w|A〉

)

= ψ(xf )

[√
1

2
(|H〉+ |V 〉)− igt

2
√

2
〈k̂x〉w (|H〉 − |V 〉)

]

=
ψ(xf )√

2

(
|H〉 − igt

2
〈k̂x〉w|H〉+ |V 〉+

igt

2
〈k̂x〉w|V 〉

)
=
ψ(xf )√

2

[
e−igt/2〈k̂x〉w |H〉+ eigt/2〈k̂x〉w |V 〉

]
=
ψ(xf )√

2

[
e−iφ(kx)/2|H〉+ eiφ(kx)/2|V 〉

]
, (2.42)

where φ(kx) is defined as φ(kx) ≡ ζ
|k|〈k̂x〉w. ζ is a real parameter that describes the interaction

strength. Eq. (2.42) shows, that the weak measurement adds a phase to the wave function. To
measure this phase the projection onto the y-axis is performed. This is done using a quarter
wave plate. Mathematically this means

〈σ̂sy〉 =
|ψ(xf )|2

2

[
eiφ(kx)/2〈H|+ e−iφ(kx)/2〈V |

]
[|R〉〈R| − |L〉〈L|]︸ ︷︷ ︸

σ̂sy

×

×
[
e−iφ(kx)/2|H〉+ eiφ(kx)/2|V 〉

]
(2.43)

Using |R〉 =
√

1
2 (|H〉 − i|V 〉) and |L〉 =

√
1
2 (|H〉+ i|V 〉), basic algebra and the fact that ψ(xf )

is normalized to unity yield

〈σ̂sy〉 = − sin [φ(kx)] . (2.44)

〈σ̂sy〉 is now measured using a beam displacer, which spatially separates photons with right hand
side and left hand side polarization and allows to observe IR and IL separately. Because 〈σ̂sy〉
is defined as

〈σ̂sy〉 =
IL − IR
IL + IR

, (2.45)

the weak value is

〈k̂x〉w =
|k|
ζ

sin−1

(
IR − IL
IR +RL

)
. (2.46)

It is important to realize that the weak momentum value detected at the position x was already
measured at the calcite crystal. The Hamiltonian of a freely propagating particle commutes
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with the interaction Hamiltonian and the σ̂sj operator acts in a different Hilbertspace than the
momentum operator. Because of that kx is not changed in any way after the weak measurement
has taken place.
As mentioned previously one weak measurement alone does not yield significant information
about the system, because it is afflicted with a very large error. However, by repeating the same
weak measurement over and over again, the weak value can be determined by a high degree
of certainty. This is the reason why the experiment was performed with an ensemble of over
30,000 photons. The weak momentum value was mapped out for every x-position in a certain
z-plane. After that the detector was moved in positive z-direction and the same procedure was
performed again. By mapping out 〈kx〉w at different z-values and connecting the corresponding
weak momentum values it was possible to observe the average photon trajectories. The results
of this measurement can be seen in Fig. 2.10. It cannot be stressed enough that single particles

sarily gives up the option of observing the other
(1–6). However, it is possible to “weakly” mea-
sure a system, gaining some information about
one property without appreciably disturbing the
future evolution (7); although the information ob-
tained from any individual measurement is lim-
ited, averaging over many trials determines an
accurate mean value for the observable of interest,
even for subensembles defined by some subse-

quent selection (perhaps even on a complementary
observable). It was recently pointed out (8) that
this provides a natural way to operationally de-
fine a set of particle trajectories: One can ascer-
tain the mean momentum of the subensemble of
particles that arrive at any given position, and, by
thus determining the momentum at many posi-
tions in a series of planes, one can experimentally
reconstruct a set of average trajectories. We use
a modified version of this protocol to reconstruct
the “weak-valued trajectories” followed by single
photons as they undergo two-slit interference. In
the case of single-particle quantum mechanics,
the trajectories measured in this fashion repro-
duce those predicted in the Bohm–de Broglie
interpretation of quantum mechanics (9, 10).

Weak measurements, first proposed 2 decades
ago (7, 11), have recently attracted widespread
attention as a powerful tool for investigating fun-
damental questions in quantum mechanics (12–15)
and have generated excitement for their potential
applications to enhancing precision measurement
(16, 17). In a typical von Neumann measure-
ment, an observable of a system is coupled to a
measurement apparatus or “pointer” via its mo-
mentum. This coupling leads to an average shift
in the pointer position that is proportional to the
expectation value of the system observable. In a
“strong” measurement, this shift is large relative
to the initial uncertainty in pointer position, so
that significant information is acquired in a single
shot. However, this implies that the pointer mo-
mentum must be very uncertain, and it is this
uncertainty that creates the uncontrollable, irrevers-
ible disturbance associated with measurement.
In a “weak” measurement, the pointer shift is
small and little information can be gained on a
single shot; but, on the other hand, there may be
arbitrarily little disturbance imparted to the sys-
tem. It is possible to subsequently postselect the
system on a desired final state. Postselecting on

a final state allows a particular subensemble to
be studied, and the mean value obtained from
repeating the weak measurement many times is
known as the weak value. Unlike the results of
strong measurements, weak values are not con-
strained to lie within the eigenvalue spectrum of
the observable being measured (7). This has led
to controversy over the meaning and role of weak
values, but continuing research has made strides
in clarifying their interpretation and demonstrat-
ing a variety of situations in which they are clearly
useful (16–21).

In our experiment, we sent an ensemble of
single photons through a two-slit interferometer
and performed a weak measurement on each pho-
ton to gain a small amount of information about
its momentum, followed by a strong measure-
ment that postselects the subensemble of pho-
tons arriving at a particular position [see (22) for
more details]. We used the polarization degree
of freedom of the photons as a pointer that
weakly couples to and measures the momentum
of the photons. This weak momentum measure-
ment does not appreciably disturb the system,
and interference is still observed. The two mea-
surements must be repeated on a large ensemble
of particles in order to extract a useful amount
of information about the system. From this set
of measurements, we can determine the average
momentum of the photons reaching any partic-
ular position in the image plane, and, by repeat-
ing this procedure in a series of planes, we can
reconstruct trajectories over that range. In this
sense, weak measurement finally allows us to
speak about what happens to an ensemble of
particles inside an interferometer.

Our quantum particles are single photons
emitted by a liquid helium-cooled InGaAs quan-
tum dot (23, 24) embedded in a GaAs/AlAs mi-
cropillar cavity. The dot is optically pumped by a
CW laser at 810 nm and emits single photons at
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Fig. 2. Measured intensities (photon counts) of
the two circular polarization components of |y〉,
measured on the CCD screen (red and blue curves),
as well as the weak momentum values calculated
from these intensities (black) for imaging planes at
(A) z = 3.2 m, (B) z = 4.5 m, (C) z = 5.6 m, and (D)
z = 7.7 m. The red and blue data points are the
intensity data with constant background sub-
tracted. The errors for the momentum values were
calculated by simulating the effect of Poissonian
noise in the photon counts. The magenta curve
shows momentum values obtained from enforcing
probability density conservation between adjacent
z planes. Because of the coarse-grained averag-
ing over three imaging planes, the probability-
conserving momentum values are not as sensitive
as the measured weak momentum values to high-
ly localized regions in the pattern with steep mo-
mentum gradients.

Fig. 3. The reconstructed
average trajectories of an
ensemble of single photons
in the double-slit appara-
tus. The trajectories are re-
constructed over the range
2.75 T 0.05 to 8.2 T 0.1 m
byusing themomentumdata
(black points in Fig. 2) from
41 imaging planes. Here,
80 trajectories are shown.
To reconstruct a set of tra-
jectories, we determined the
weak momentum values for
the transverse x positions at
the initial plane. On the basis
of this initial position and
momentum information, the
x position on the subsequent
imaging plane that each
trajectory lands is calculated, and the measured weak momentum value kx at this point found. This
process is repeated until the final imaging plane is reached and the trajectories are traced out. If a
trajectory lands on a point that is not the center of a pixel, then a cubic spline interpolation between
neighboring momentum values is used.
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Figure 2.10.: Measurement results of the experiment performed by S. Kocsis et al. [8]: Weak
measurements made it possible to map out the average photon trajectories in a
double slit experiment.

are not constricted to these trajectories. It is impossible to follow the trajectories of a single
particle and observe the interference pattern at the same time. Any attempt to do so would
require a strong measurement and therefore alter the system in a way that destroys the inter-
ference. The weak momentum measurement does not disturb the system and the interference
is still observed, but one measurement alone does not yield any useful information about the
photon’s momentum. By performing the same measurement over and over again one can map
out the average particle trajectories and not more. One cannot simply trick quantum mechanics
using weak measurements.
Naturally the question arises what kind of additional information the weak measurement yields
that cannot be extracted from the final interference pattern itself. The interference patter alone
does not tell us anything about the way the photons took after passing the double slit. It just
shows where they are likely to be detected on the screen. The trajectories measured by Stein-
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berg and his group tell us where the photons are likely to move, in order to get to the screen
where they form the interference pattern. For example the experiment showed, that photons
that passed the lower slit are very unlikely to pass the symmetry axis to the upper half of the
screen.
As extraordinary the experiment performed by S. Kocsis et al. seems at the first look, there
are several issues that are not addressed by them. First of all they repeatedly claim to have
measured so called Bohmian trajectories for the photons. However, those trajectories are not
defined for bosons. This is due to the fact, that it is not possible to construct a relativistic
quantum mechanical theory for bosons with a conserved probability current density with a pos-
itive definite time component. All they did was to measure the pointing vector of the photons.
In addition to that the system is purely photonic. Quantum mechanics is not needed to perform
the calculations necessary for this experiment. Classical electrodynamics suffices. It would be
more interesting if the experiment was conducted with matter waves.
Finally S. Kocsis et al. omit the fact that the weak value can be complex. It is not clear whether
the real or imaginary part or the absolute of the weak value was measured.

2.4. Technique of neutron polarimeter optics

To gain further insight into the nature of weak measurements and weak values, for example how
they come into play with the topic of complementarity and wave particle duality, it is necessary
to perform experiments with matter waves. Optical experiments with neutrons are one of the
most ideal tool for this kind of studies. At this point a brief overview of the technique and
physics of neutron polarimeter optics is given.

2.4.1. Neutron spin

The neutron has a mass m of m = 1.6723 × 10−27 kg and a magnetic moment |~µ| of |~µ| =
9.66 × 10−27J/T that is coupled to its spin of ~S = ~

2 êi, where êi defines the quantization axis.
Its magnetic moment and its spin are related by

~µ = γ~S, (2.47)

where γ is the so called gyromagnetic ratio. It is equal to γ = −1.8301× 108 s−1T−1 [21].
If an external magnetic field ~B acts on the neutron’s magnetic moment, it tries to align it.
Doing that it exerts a torque, which yields the following equation of motion

d~S

dt
= −γ~S × ~B = ~S × ~ωL, (2.48)

where ~ωL = −γ ~B is the so called Larmor frequency. Equation (2.48) shows that the change of
~S in time is normal to both ~S and ~B. This means that ~S and therefore ~µ precesses around the
external field ~B.
When the majority of the spins in a neutron beam are aligned in one direction, one is dealing
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with polarized neutrons. In general the degree of polarization P is given by

P =
I+ − I−
I+ + I−

, (2.49)

where I+ is the intensity of neutrons with spin up and I− is the intensity of spin down neutrons.
Magnetic fields are necessary to either keep up or manipulate the direction of neutron’s spin
vector ~S. To prevent depolarizationf by the earth’s magnetic or other stray fields, either a field
free region has to be created or a magnetic field that is parallel to ~S has to be applied. Such a
field is called guide field.
So what happens if the external magnetic field changes? The answer to this question is rather
simple. If the field’s direction changes slowly enough the neutron’s spin follows the field direc-
tion. Slow means that the condition ∣∣∣∣∣ ddt

(
~B

| ~B|

)∣∣∣∣∣� | ~ωL| , (2.50)

has to be fulfilled. This type of spin change is called adiabatic. Fig. 2.11 shows a schematic
visualization of an adiabatic spin change. From (2.50) it is clear that the maximum rate of field

Figure 2.11.: Schematic visualization of an adiabatic spin change: The blue arrows represent the
external magnetic field, the red arrows the spin. To fulfill the adiabatic condition,
the distance L along which the field changes has to be sufficiently long.

change depends on the neutron’s velocity. For thermal neutrons and long distances, even the
earth’s field change of direction could lead to an adiabatic spin change. Therefore, magnetic
guide fields are required to prevent unwanted spin rotations and depolarization of the neutron
beam [22].

2.4.2. Polarizing supermirrors

In order to work with polarized neutrons it is first necessary to polarize the neutron beam. This
is done by filtering neutrons with one spin component out, which can be achieved by various
means. A possible way is to use so called polarizing supermirrors. Their functioning principle
is now briefly explained.
Neutrons can be reflected from smooth surfaces. The neutron index of refraction is given by

n2 = 1− V

E
, (2.51)

fi.e. to conserve the spin direction
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where E is the neutron’s kinetic energy and V is the potential experienced by them. It is given
by

V =
2π~2

mn
Nbc, (2.52)

where mn is the neutron’s mass, N is the density of nuclei and bc is the nuclear scattering
length. Since n depends on E, it is a function of the neutron’s wavelength.
For a lot of materials the index of refraction for neutrons is below one. Because of that, neutrons
can be totally reflected when they hit a boundary. Total reflection occurs up to a critical angle
θc, which is given by

θc = λ

√
Nbc
π
, (2.53)

where λ is the neutron wavelength [10, 23]. Beyond θc the neutron wave penetrates into the
material and is partially reflected at boundaries between layers of different materials which
usually have a different bc. In this way, a supermirror and its many layers represent an artificial
lattice at which Bragg reflection occurs. The layers are thickest on the surface and become
gradually thinner. Every layer adds a Bragg peak and therefore extends the critical angle θc.
To polarize neutrons using a supermirror one has to take magnetic scattering into account as
well. To put it simply the magnetic interaction adds a magnetic scattering length p to the
nuclear one. p depends on the relative orientation of the neutron spin to the magnetization.
This means, the total scattering length depends on the neutron spin as well. As we have already
seen, the critical angle depends on the scattering length and thus, for magnetic materials, also
on the neutron spin.
A supermirror with one type of layers being magnetic, neutrons with spins either parallel or anti
parallel to the layer magnetization have a different reflectivity. For the state of the neutron spin
parallel to the magnetization the total scattering length is enhanced, for the anti parallel one it
is reduced. If the reduced total scattering length is the same as the total scattering length of the
non magnetic layers, the total scattering length appears to be constant for one spin component.
The supermirror becomes transparent, because the neutrons of one spin component do not see
the boundaries any more. Thus only one spin component is reflected and the neutron beam
gets polarized [24].

2.4.3. DC-coils

DC-coils can be used to manipulated the neutron’s spin. They present an easy way to achieve a
neutron spin flip in an external magnetic field and simply consist of two rectangular coils. One
of them produces a field ~Bx in x-direction and the other produces a field ~Bc which points in the
opposite direction as the guide field in order to compensate it. Thus the total field inside the
coil will be ~BR = ~B0 + ~Bx + ~Bc. A schematic drawing of a DC-coil in an external guide field
is given by Fig. 2.12. The change of fields across the winding sheets happens so fast, that the
spin is left unaffected. In order to achieve a π-flip, the time for the neutron spent inside the
coil has to correspond to one full Larmor precession which gives the flip condition

d =
|~v|π
|~ωL|

=
|~v|π
|γ ~Br|

, (2.54)
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2. Theoretical background

Figure 2.12.: Schematic drawing a π-flip by a DC-coil in an external guide field B0. The neutron
spin (red) is inverted inside the coil. The neutron direction of propagation is
marked by v.

where d is the width of the coil, ~v is the neutron speed and ~ωL is the Larmor frequency. Thus,
for a given coil one can adjust the magnetic fields ~B0, ~Bx and ~Bc in order to perform a π-flip.
A spin flip by a DC-coil is only possible for monochromatic neutron beams, monochromatic
flippers, i.e. they can only flip the spin of the beam with one specific wavelength. It is also
noteworthy that they are not limited to a π-flip. They can be used to turn the neutron spin in
any given direction [25].

2.4.4. A polarimeter beamline

With the components described in the previous two subsections it is now possible to construct
an apparatus called neutron polarimeter. Such an apparatus is depicted in Fig. 2.13.

Figure 2.13.: Schematic drawing of a polarimeter beamline: A complete polarimeter beamline
consist of a monochromizing crystal (M), a polarizer to prepare the neutron beam
(P), at least two DC-coils (DC1 & DC2), a guide field (GF), an analyzer (A) and
a detector (D).

Neutrons are produced by some source, usually a nuclear reactor. The spectrum of such a
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2. Theoretical background

beam is usually polychromatic, i.e. the energy spreads in a wide range. As we saw, polarizing
supermirrors and DC-coils are in principle only available for monochromatic beams. They only
work with one specific wave length. It is therefore necessary to monochromize the beam. This
is done by a crystal, e.g. by a perfect Si crystal. The monochromator is put into the neutron
beam and reflects only neutrons with a certain wave length, that fulfills the Bragg condition.
By rotating the crystal and reducing the exit beam’s cross section, it is possible to align the
polarimeter in a way that only one specific wave length remains in the beam.
After the monochromator the first supermirror is placed. It selects neutrons with one spin
component, lets them pass and blocks the neutrons with the other spin component. This
supermirror is generally called polarizer. After that at least two DC-coils are placed in the
beam. They allow to pre and post select certain states. By mounting several coils on translation
stages and supplying them with bipolar power supplies, it is possible to create any initial and
final spin state.
At the end of the beamline a second supermirror is placed. It is called analyzer and is usually
identical to the polarizer, i.e. the first supermirror. As its name implies the analyzer enables
one to analyze the final spin state. It allows only a certain spin component to pass to the
detector at the end of the beamline.

27



3. Weak value measurements using neutrons

As section 2.3 showed, there have been plenty of experiments confirming the predictions by the
theory of weak measurements. Nevertheless, all of them used photons. To avoid the ambiguity
of the use of classical electrodynamics and to show genuine quantum mechanical treatment
by using neutron matter waves, several novel experiments, using neutrons for the extraction
of weak values as well as for weak measurements, are proposed in this chapter. With those
experiments the theory of weak values can be experimentally validated with matter waves of
massive particles for the first time.

3.1. Weak values of the spin operator

In this section several experimental ideas are presented that make it possible to determine the
spin operator’s weal value.

3.1.1. Determining the absolute of the spin operator’s weak value

Here a possibility is shown to extract the square of the absolute of the weak value using a
neutron interferometer setup, by making small path dependent spin rotations and observing
the intensities at O- and H-beam.
Fig. 3.1 shows a schematic drawing of the setup, which consists of a π

2 -spin turner, the inter-
ferometer itself, two spin rotators and a post selector. We start with a completely polarized

Figure 3.1.: Schematic drawing of neutron interferometer experiment for extracting the absolute
of the spin operator’s weak value: The complete setup consists of a π

2 -spin turner
(ST), the interferometer itself, two spin-rotators (SRI & SRII), a post selector [two
coils to select the azimuth and polar angle (A & P) and the red spin analyzer (SA)]
and a detector (D).
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3. Weak value measurements using neutrons

neutron beam, so that the neutron’s spin wave function is |Sz; +〉. Before entering the interfer-
ometer the spin is turned by π

2 , causing its wave function to become |Sx; +〉.
After the first beam splitter the system’s wave function |ψ〉 has to be extended by a part
describing the path:

|ψ〉 = |P 〉|S〉 =

√
1

2
(|I〉+ |II〉) |Sx; +〉, (3.1)

where |P 〉 and |S〉 represent the path and the spin part of the wave function. The wave function
given by Eq. (3.1) describes the state of the pre selected ensemble. Now a small spin rotation
around the z-axis is performed. Here we assume that the spin rotations are strictly positive
along path I and negative along path II. The condition of a weak rotation is met by making the
angle of rotation α small.

|ψ′〉 =

√
1

2
e−iασ̂

s
z/2|Sx; +〉|I〉+

√
1

2
eiασ̂

s
z/2|Sx; +〉|II〉 (3.2)

At the exit of the interferometer the beams are recombined. For the O-beam this yields

|Φo〉 = |Po〉〈Po|ψ′〉 =
1

2
(〈I|+ 〈II|)

[
e−iασ̂

s
z/2|I〉+ eiασ̂

s
z/2|II〉

]
|Sx; +〉|Po〉

=
1

2

[
e−iασ̂

s
z/2 + eiασ̂

s
z/2
]
|Sx; +〉|Po〉. (3.3)

Analogously the wave function for the H-beam becomes

|Φh〉 = |Ph〉〈Ph|ψ′〉 =
1

2
(〈I| − 〈II|)

[
e−iασ̂

s
z/2|I〉+ eiασ̂

s
z/2|II〉

]
|Sx; +〉|Ph〉

=
1

2

[
e−iασ̂

s
z/2 − eiασ̂

s
z/2
]
|Sx; +〉|Ph〉. (3.4)

Since α is very small, it is possible to expand the exponential functions in Eqs. (3.3) and (3.4):

|Φo〉 =
1

2

[
e−iασ̂

s
z/2 + eiασ̂

s
z/2
]
|Sx; +〉|Po〉

≈ 1

2

[(
1− iασ̂sz

2

)
+

(
1 +

iασ̂sz
2

)]
|Sx; +〉|Po〉 = |Sx; +〉|Po〉 ≡ |i〉 (3.5)

|Φh〉 =
1

2

[
e−iασ̂

s
z/2 − eiασ̂

s
z/2
]
|Sx; +〉|Ph〉

≈ 1

2

[(
1− iασ̂sz

2

)
−
(

1 +
iασ̂sz

2

)]
|Sx; +〉|Ph〉 =

−iασ̂sz
2
|Sx; +〉|Ph〉 ≡

−iασ̂sz
2
|i〉 (3.6)

Now the post selection is carried out for the O-beam, onto the general spin state

|Ŝ · n̂; +〉 = cos

(
θ

2

)
e−iφ/2|Sz; +〉+ sin

(
θ

2

)
eiφ/2|Sz;−〉, (3.7)
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3. Weak value measurements using neutrons

If we define |Ŝ · n̂; +〉 ≡ |f〉 and |Sx; +〉 ≡ |i〉, the intensities for the O- and H-beam are given
by

Io =
∣∣∣〈Ŝ · n̂; +|Φo〉

∣∣∣2 = |〈f |i〉|2 (3.8)

and

Ih =
∣∣∣〈Ŝ · n̂; +|Φh〉

∣∣∣2 =

∣∣∣∣〈f ∣∣∣∣−iασ̂sz2

∣∣∣∣ i〉∣∣∣∣2 =
α2

4
|〈f |σ̂sz| i〉|

2 . (3.9)

From the measurement of the Io and Ih intensities, it is possible to extract the absolute of the
spin operator’s weak value

|〈σ̂sz〉w| ≡
|〈f |σ̂sz|i〉|
|〈f |i〉|

=
2

α

√
Ih
Io

(3.10)

Instead of making the experientially difficult observation of Io and Ih intensities separately, it
is simpler to do intensity modulation measurements. For this an additional phase shifter is
inserted into the interferometer and the intensities for a phase shift of χ = 0 and χ = π are
measured. For fixed |f〉 and |i〉 the minimum and maximum intensities correspond to H-beam
and O-beam.
It is now possible to calculate the intensities Io and Ih. With the two matrix elements

〈Ŝ · n̂; +|Φo〉 =

[
cos

(
θ

2

)
eiφ/2〈Sz; +|+ sin

(
θ

2

)
e−iφ/2〈Sz;−|

]√
1

2
[|Sz; +〉+ |Sz;−〉] |Po〉

=

√
1

2

[
cos

(
θ

2

)
eiφ/2 + sin

(
θ

2

)
e−iφ/2

]
|Po〉 (3.11)

and

〈Ŝ · n̂; +|Φh〉 =

[
cos

(
θ

2

)
eiφ/2〈Sz; +|+ sin

(
θ

2

)
e−iφ/2〈Sz;−|

] [
− iασ̂

s
z

2

]√
1

2
[|Sz; +〉+ |Sz;−〉] |Ph〉

= − iα√
8

[
cos

(
θ

2

)
eiφ/2 − sin

(
θ

2

)
e−iφ/2

]
|Ph〉 (3.12)

the intensities can be calculated as

Io =
∣∣∣〈Ŝ · n̂; +|Φo〉

∣∣∣2 =
1

2

[
cos

(
θ

2

)
eiφ/2 + sin

(
θ

2

)
e−φ/2

] [
cos

(
θ

2

)
e−iφ/2 + sin

(
θ

2

)
eiφ/2

]
=

1

2

[
cos2

(
θ

2

)
+ sin

(
θ

2

)
cos

(
θ

2

)(
eiφ + e−iφ

)
+ sin2

(
θ

2

)]
=

1

2
[1 + cos (φ) sin (θ)] (3.13)

30



3. Weak value measurements using neutrons

and

Ih =
∣∣∣〈Ŝ · n̂; +|Φh〉

∣∣∣2 =

[
− iα√

8

] [
cos

(
θ

2

)
eiφ/2 − sin

(
θ

2

)
e−iφ/2

]
×

×
[
iα√

8

] [
cos

(
θ

2

)
e−iφ/2 − sin

(
θ

2

)
eiφ/2

]
=
α2

8

[
cos2

(
θ

2

)
− sin

(
θ

2

)
cos

(
θ

2

)(
eiφ + e−iφ

)
+ sin2

(
θ

2

)]
=
α2

8
[1− cos (φ) sin (θ)] (3.14)

Inserting Eqs. (3.13) and (3.14) into Eq. (3.10) yields

|〈σ̂sz〉w|
2 =

1− cos (φ) sin (θ)

1 + cos (φ) sin (θ)
(3.15)

With given |i〉 and |f〉 it is possible to find an analytic solution for 〈σ̂sz〉w:

〈σ̂sz〉w =
〈f |σ̂sz|i〉
〈f |i〉

=

[
〈Sz; +| cos

(
θ
2

)
eiφ/2 + 〈Sz;−| sin

(
θ
2

)
e−iφ/2

]
[|Sz; +〉 − |Sz;−〉][

〈Sz; +| cos
(
θ
2

)
eiφ/2 + 〈Sz;−| sin

(
θ
2

)
e−iφ/2

]
[|Sz; +〉+ |Sz;−〉]

=
cos
(
θ
2

)
eiφ/2 − sin

(
θ
2

)
e−iφ/2

cos
(
θ
2

)
eiφ/2 + sin

(
θ
2

)
e−iφ/2

= 1− 2

1 + eiφ cot
(
θ
2

) (3.16)

The absolute square of Eq. (3.16) is now given by Eq. (3.15), which shows that an experiment
designed as described above, will yield the absolute of the spin operator’s weak value, if the
pre- and post selection, as well as the small spin rotations, can be realized with high enough
precision.

Simplified Version

The experiment presented above can be carried out even easier. Instead of a neutron interfer-
ometer a 50:50 beam splitter would do to conduct the experiment, as can be seen in Fig. 3.2.
Pre selection is performed the same way as previously, i.e. we start with |Sz; +〉 and turn the

neutron spin by π
2 , to end up in the |Sx; +〉 state. At the beam splitter the beam is separated

in an upper and a lower part. The upper part is left unaltered and gets post selected onto the
state |Ŝ · n̂; +〉. As in the previous section we define |i〉 ≡ |Sx; +〉 and |f〉 ≡ |Ŝ · n̂; +〉. Therefore
the intensity measured at the end of the upper part is given by

Iu =
∣∣∣〈Ŝ · n̂; +|Sx; +〉

∣∣∣2 = |〈f |i〉|2 , (3.17)

which is of course the same as Eq. (3.8). Along the lower path the neutron spin is rotated by
π around the z-axis, which changes the state into

e−iσ̂
s
zπ/2|Sx; +〉 =

[
cos
(π

2

)
− iσ̂sz sin

(π
2

)]
|Sx; +〉 = −iσ̂sz|Sx; +〉. (3.18)
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Figure 3.2.: Simplified version of the neutron interferometer experiment for extracting the ab-
solute of the spin operator’s weak value: The interferometer is replaced by a 50:50
beam splitter (light blue). Only one spin rotator is necessary (SR). The same post
selection is performed on both paths [two coils to select the azimuth and polar angle
(A & P), the red spin analyzer (SA) and a detector (D)].

Here the exact formula

exp
(
iα σ̂sj · n̂

)
= 1 cos (α) + i σ̂sj · n̂ sin (α) (3.19)

where σ̂sj is a Pauli matrix and n̂ marks the axis of rotation, was used. Again post selection

onto the state |Ŝ · n̂; +〉 is done. The intensity measured at the end of the lower path is given
by

Il =
∣∣∣〈Ŝ · n̂; +|σ̂sz|Sx; +〉

∣∣∣2 = |〈f |σ̂sz|i〉|
2 , (3.20)

which is similar to Eq. (3.9). The absolute of the spin operator’s weak value can be obtained
by measuring the intensities for upper and lower path

|〈σ̂sz〉w| ≡

∣∣∣〈Ŝ · n̂; +|σ̂sz|Sx; +〉
∣∣∣∣∣∣〈Ŝ · n̂; +|Sx; +〉
∣∣∣ =

|〈f |σ̂sz|i〉|
|〈f |i〉|

=

√
Il
Iu

(3.21)

Again it is possible to evaluate the matrix elements 〈Ŝ ·n̂; +|σ̂sz|Sx; +〉 and 〈Ŝ ·n̂; +|Sx; +〉, which
are needed to calculate the intensities. They are given by

〈Ŝ · n̂; +|σ̂sz|Sx; +〉 =

√
1

2

[
cos

(
θ

2

)
eiφ/2 − sin

(
θ

2

)
e−iφ/2

]
(3.22)

and

〈Ŝ · n̂; +|Sx; +〉 =

√
1

2

[
cos

(
θ

2

)
eiφ/2 + sin

(
θ

2

)
e−iφ/2

]
(3.23)

which leads to the intensities

Il =
∣∣∣〈Ŝ · n̂; +|σ̂sz|Sx; +〉

∣∣∣2 =
1

2
[1− cos (φ) sin (θ)] (3.24)
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and

Iu =
∣∣∣〈Ŝ · n̂; +|Sx; +〉

∣∣∣2 =
1

2
[1 + cos (φ) sin (θ)] (3.25)

Inserting Eqs. (3.24) and (3.25) into Eq. (3.21) yields exactly the same solution as for the
calculations of the previous experiment, i.e. Eq. (3.15).
It is very interesting to note, that no weak measurement is performed in this experiment.
Nevertheless it is possible to extract the absolute of the spin operator’s weak value. This sheds
a new light onto the nature of the weak value. It was introduced within the context of weak
measurements. However, this experiment clearly shows that the weak value itself is accessible
without such.

3.1.2. Polarimeter experiment for the determination of the absolute of the spin
operator’s weak value

If the measurements are performed sequentially, not even a beam splitter is needed. A setup
consisting of a polarizer, a DC-coil to turn the spin by π

2 , a second coil to perform the π-rotation

around the z-axis and an analyzer that post selects the state |Ŝ · n̂; +〉, would be enough to
extract the absolute of the spin operator’s weak value. Fig. 3.3 shows such a setup. The

Figure 3.3.: Further simplified version of the neutron experiment for extracting the absolute of
the spin operator’s weak value: The interferometer is replaced by a polarimeter
setup, which consists of a polarizer (P), a π

2 -turner (ST), a π-rotator (SR) and a
post selector [two coils to select the azimuth and polar angle (A & P), the red spin
analyzer (SA) and a detector (D)].

absolute of the spin operator’s weak value would then be given by

|〈σ̂sz〉w| =
|〈f |σ̂sz|i〉|
|〈f |i〉|

=

√
Ion

Ioff
, (3.26)

where Ion is the intensity measured, when the π-rotator is turned on and Ioff when it is turned
off.
If the initial state is given by |Sx; +〉, it is also possible to perform a π-rotation around the
y-axis. Post selection on the |Ŝ · n̂; +〉 state would then yield the absolute of 〈σ̂sy〉w. Since the
operator σ̂sy is given by

σ̂sy = i|Sz;−〉〈Sz; +| − i|Sz; +〉〈Sz;−| (3.27)
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its weak value, for this particular set of initial and final state, is

〈σ̂sy〉w =
〈f |σ̂sz|i〉
〈f |i〉

=

[
〈Sz; +| cos

(
θ
2

)
eiφ/2 + 〈Sz;−| sin

(
θ
2

)
e−iφ/2

]
[i|Sz;−〉 − i|Sz; +〉][

〈Sz; +| cos
(
θ
2

)
eiφ/2 + 〈Sz;−| sin

(
θ
2

)
e−iφ/2

]
[|Sz; +〉+ |Sz;−〉]

=
i sin

(
θ
2

)
e−iφ/2 − i cos

(
θ
2

)
eiφ/2

cos
(
θ
2

)
eiφ/2 + sin

(
θ
2

)
e−iφ/2

(3.28)

It is interesting to note that Re(〈σ̂sz〉w) = − Im(〈σ̂sy〉w) and Im(〈σ̂sz〉w) = Re(〈σ̂sy〉w), i.e

Re(〈σ̂sz〉w) = − Im(〈σ̂sy〉w) =
1

sec (θ) + cos (φ) tan (θ)
(3.29)

and

Im(〈σ̂sz〉w) = Re(〈σ̂sy〉w) =
1

cot (φ) + csc (θ) csc (φ)
(3.30)

as well as

Abs (〈σ̂sz〉w) = Abs
(
〈σ̂sy〉w

)
. (3.31)

The weak value of σ̂sz is constant.
In order to gain a deeper insight into the calculations performed here, the weak value of σ̂sz is
plotted in Fig. 3.4 and that of σ̂sy in Fig. 3.5.a By comparing Figs. 3.4b and 3.5d, Figs. 3.4d
and 3.5b, as well as Figs. 3.4f and 3.5f, the statement made by Eqs. (3.29), (3.30) and (3.31)
become apparent.
It also possible to perform the experiment with different initial states, to determine other spin
operator’s weak values. Take for example a system with an initial state quantized along the
positive z-axis, so that it is given by |i〉 = |Sz; +〉. Now rotations around the x- and y-axis are
non trivial. Since the weak values become

〈σ̂sy〉w =
〈f |σ̂sy|i〉
〈f |i〉

=

[
〈Sz; +| cos

(
θ
2

)
eiφ/2 + 〈Sz;−| sin

(
θ
2

)
e−iφ/2

]
i|Sz; +〉[

〈Sz; +| cos
(
θ
2

)
eiφ/2 + 〈Sz;−| sin

(
θ
2

)
e−iφ/2

]
|Sz; +〉

=
i sin

(
θ
2

)
e−iφ/2

cos
(
θ
2

)
eiφ/2

= i tan

(
θ

2

)
e−iφ (3.32)

and

〈σ̂sx〉w =
〈f |σ̂sx|i〉
〈f |i〉

=

[
〈Sz; +| cos

(
θ
2

)
eiφ/2 + 〈Sz;−| sin

(
θ
2

)
e−iφ/2

]
|Sz;−〉[

〈Sz; +| cos
(
θ
2

)
eiφ/2 + 〈Sz;−| sin

(
θ
2

)
e−iφ/2

]
|Sz; +〉

=
sin
(
θ
2

)
e−iφ/2

cos
(
θ
2

)
eiφ/2

= tan

(
θ

2

)
e−iφ. (3.33)

the same relation as in the previous case can be found between them.

Re(〈σ̂sy〉w) = − Im(〈σ̂sx〉w) = sin (φ) tan

(
θ

2

)
(3.34)

aFor each case the initial state is given by |Sx; +〉, the final one by |Ŝ · n̂; +〉.

34



3. Weak value measurements using neutrons

(a) 3D plot of Re (〈σ̂s
z〉w) [real part of Eq.

(3.16)]
(b) Contour plot of Re (〈σ̂s

z〉w) [real part of
Eq. (3.16)]

(c) 3D plot of Im (〈σ̂s
z〉w) [imaginary part of Eq.

(3.16)]
(d) Contour plot of Im (〈σ̂s

z〉w) [imaginary
part of Eq. (3.16)]

(e) 3D plot of Abs (〈σ̂s
z〉w) [absolute of Eq.

(3.16)]
(f) Contour plot of Abs (〈σ̂s

z〉w) [absolute of
Eq. (3.16)]

Figure 3.4.: Visualization of 〈σ̂sz〉, for both, real and imaginary part, as well as its absolute

35



3. Weak value measurements using neutrons

(a) 3D plot of Re
(
〈σ̂s

y〉w
)

[real part of Eq.
(3.28)]

(b) Contour plot of Re
(
〈σ̂s

y〉w
)

[real part of
Eq. (3.28)]

(c) 3D plot of Im
(
〈σ̂s

y〉w
)

[imaginary part of
Eq. (3.28)]

(d) Contour plot of Im
(
〈σ̂s

y〉w
)

[imaginary
part of Eq. (3.28)]

(e) 3D plot of Abs
(
〈σ̂s

y〉w
)

[absolute of Eq.
(3.28)]

(f) Contour plot of Abs
(
〈σ̂s

y〉w
)

[absolute of
Eq. (3.28)]

Figure 3.5.: Visualization of 〈σ̂sy〉, for both, real and imaginary part, as well as its absolute
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and

Im(〈σ̂sy〉w) = Re(〈σ̂sx〉w) = cos (φ) tan

(
θ

2

)
, (3.35)

as well as

Abs(〈σ̂sz〉w) = Abs(〈σ̂sy〉w). (3.36)

Here 〈σ̂sz〉w is constant, since |i〉 is an eigenstate of σ̂sz.
For completeness sake it is worth looking into the last possible case, that is the initial state
quantized along the positive y-axis (|i〉 = |Sy; +〉). The weak values 〈σ̂sx〉w and 〈σ̂sz〉w then
become

〈σ̂sx〉w =
〈f |σ̂sx|i〉
〈f |i〉

=

[
〈Sz; +| cos

(
θ
2

)
eiφ/2 + 〈Sz;−| sin

(
θ
2

)
e−iφ/2

]
[i|Sz; +〉+ |Sz;−〉][

〈Sz; +| cos
(
θ
2

)
eiφ/2 + 〈Sz;−| sin

(
θ
2

)
e−iφ/2

]
[|Sz; +〉+ i|Sz;−〉]

=
sin
(
θ
2

)
e−iφ/2 + i cos

(
θ
2

)
eiφ/2

cos
(
θ
2

)
eiφ/2 + i sin

(
θ
2

)
e−iφ/2

=
2

i+ eiφ cot
(
θ
2

) + i (3.37)

and

〈σ̂sz〉w =
〈f |σ̂sz|i〉
〈f |i〉

=

[
〈Sz; +| cos

(
θ
2

)
eiφ/2 + 〈Sz;−| sin

(
θ
2

)
e−iφ/2

]
[|Sz; +〉 − i|Sz;−〉][

〈Sz; +| cos
(
θ
2

)
eiφ/2 + 〈Sz;−| sin

(
θ
2

)
e−iφ/2

]
[|Sz; +〉+ i|Sz;−〉]

=
cos
(
θ
2

)
eiφ/2 − i sin

(
θ
2

)
e−iφ/2

cos
(
θ
2

)
eiφ/2 + i sin

(
θ
2

)
e−iφ/2

=
2

ieiφ cot
(
θ
2

)
− 1

+ 1 (3.38)

It is not surprising to find

Re(〈σ̂sx〉w) = − Im(〈σ̂sz〉w) =
1

csc (θ) sec (φ) + tan (φ)
(3.39)

and

Im(〈σ̂sx〉w) = Re(〈σ̂sz〉w) =
1

sec (θ) + sin (φ) + tan (φ)
, (3.40)

as well as

Abs(〈σ̂sx〉w) = Abs(〈σ̂sz〉w) (3.41)

and 〈σ̂sy〉w = 1.
It would be very interesting to perform a polarimeter experiment test the validity of the relations
given by Eqs. (3.31), (3.36) and (3.41) within a limited degree of polarization in a practical
experiment. One might object that such an experiment would have the flaw that sequential
measurements would be needed. However, since the neutrons are indistinguishable from each
other, it can be argued that such measurements would still yield important information. In
addition it can be realized very easily from an experimental point of view and is therefore worth
looking into.
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3. Weak value measurements using neutrons

3.1.3. Determining the spin operator’s complete weak value

All of the above experiments have the limitation, that it is only possible to extract the absolute
of the spin operator’s weak value. So, it would be very interesting to measure its real and
imaginary part separately, to check out their relation, which was stated in the previous section.
If both experiments are combined in a clever way, theory predicts a possible measurement of
all the desired variables. The basic setup for such an experiment can be seen in Fig. 3.6. It

Figure 3.6.: Interferometer experiment for extracting the complete weak value of σ̂sz: The setup
consists of a π

2 -turner (ST), a neutron interferometer, a phase shifter (PS), a π-spin
rotator (SR) and a post selector [two coils to select the azimuth and polar angle (A
& P), the red spin analyzer (SA) and a detector (D)].

consists of a π
2 -turner, which pre selects the spin state, a neutron interferometer, a phase shifter,

a π-spin rotator, and an analyzer that performs the post selection onto the final spin state.
As in the previous experiments the initial spin state is prepared in |Sx; +〉. At the first beam
splitter the beam is separated into two paths.

|ψ〉 =

√
1

2
(|I〉+ |II〉) |Sx; +〉 (3.42)

Now a phase shifter shall be put into the beam only along path I. In addition to that a π-rotation
of the spin around the z-axis, also only on path I, is performed. This causes |ψ〉 to become

|ψ′〉 =

√
1

2

[
eiχeiσ̂

s
zπ/2|I〉+ |II〉

]
|Sx; +〉 (3.43)

At the second beam splitter the beams are recombined

|Φo〉 = |Po〉〈Po|ψ′〉 =
1

2
(〈I|+ 〈II|)

[
eiχeiσ̂

s
zπ/2|I〉+ |II〉

]
|Sx; +〉|Po〉

=
1

2

(
1− ieiχσ̂sz

)
|Sx; +〉|Po〉 (3.44)

After the recombination, the post selection onto the final spin state, which is given by Eq. (3.7),
is performed. Let this spin state be our final one, |Ŝ · n̂; +〉 ≡ |f〉, and |Sx; +〉 ≡ |i〉 our initial
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3. Weak value measurements using neutrons

one. Therefore the intensity for the O-beam of the interferometer becomes

Io =

∣∣∣∣12〈f | (1− ieiχσ̂sz) |i〉
∣∣∣∣2 =

1

4

∣∣〈f |i〉 − ieiχ〈f |σ̂sz|i〉∣∣2 (3.45)

In general 〈f |i〉 and 〈f |σ̂sz|i〉 are complex numbers, which can be written as

〈f |i〉 ≡ A1eiγ1 (3.46)

and

〈f |σ̂sz|i〉 ≡ A2eiγ2 . (3.47)

Using these two definitions, Eq. (3.45) becomes

Io =
1

4

∣∣A1eiγ1 − ieiχA2eiγ2
∣∣2 =

1

4

∣∣A1eiγ1
∣∣2 ∣∣∣∣1− A2

A1
iei[χ+(γ2−γ1)]

∣∣∣∣2
=

1

4
|A1|2

{
1− iA2

A1
ei[χ+(γ2−γ1)]

}{
1 + i

A2

A1
e−i[χ+(γ2−γ1)]

}
=
|A1|2

4

{
1 +

∣∣∣∣A2

A1

∣∣∣∣2 − iA2

A1
ei[χ+(γ2−γ1)] + i

A2

A1
e−i[χ+(γ2−γ1)]

}

=
|A1|2

4

{
1 +

∣∣∣∣A2

A1

∣∣∣∣2 + 2
A2

A1
sin [χ+ (γ2 − γ1)]

}

=
|A1|2

4

{
1 +

∣∣∣∣A2

A1

∣∣∣∣2 + 2
A2

A1
cos
[
χ+ (γ2 − γ1)− π

2

]}
(3.48)

For the empty interferometer, i.e. with the π-rotator turned off, the O-beam’s intensity is

Io =
1

4

∣∣〈f | (eiχ + 1
)
|i〉
∣∣2 =

1

4
|〈f |i〉|2

(
eiχ + 1

) (
e−iχ + 1

)
=
|A1|2

2
[1 + cos (χ)] (3.49)

Using Eqs. (3.46) and (3.47) the weak value is

〈σ̂sz〉w ≡
〈f |σ̂sz|i〉
〈f |i〉

=
A2

A1
ei(γ2−γ1). (3.50)

Combining Eqs. (3.48), (3.49) and (3.50) it is possible to extract the weak value. In comparison
to the empty interferometer, an additional phase shift of (γ2 − γ1) − π

2 is expected, when the

π-rotator is turned on. In addition to that the amplitude of the oscillation is modified by A2
A1

.
By making an intensity modulation measurement for a fixed |f〉, that is for fixed φ and θ, first
with the π-rotator turned on, and then turned off, and comparing both, it is possible to measure
(γ2 − γ1)− π

2 and A2
A1

and thus extract the weak value.
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3. Weak value measurements using neutrons

3.1.4. Experimental value range

To find the experimentally relevant values of φ and θ for all the experiments presented so farb,
one has to look at Fig. 3.4. The most interesting cases occur for the following sets of variables

1. Fixed θ at ±π
2 and a scan of φ.

2. Fixed φ at 0 and a scan of θ.

The first case represents the final spin state on which post selection is performed lying in the
xy-plane, rotated around the z-axis with angle θ. In the second one the final state is fixed in
the xz-plane and rotated around the y-axis by the angle φ. The singularities in the plots occur
whenever |f〉 and |i〉 become orthogonal. The two cases can also be plotted on the Bloch sphere,
as one can see in Fig. 3.7. The red circle represents the first case, the blue circle the latter one.
Two possible value ranges for an experiment can be found in Tab. 3.1. From the experimental

Figure 3.7.: Cases one and two on the Bloch sphere: The first case represents the final spin
state on which post selection is performed lying in the xy-plane, rotated around
the z-axis with angle θ (red circle). In the second one the final state is fixed in the
xz-plane and rotated around the y-axis by the angle φ (blue circle).

point of view one has to bear in mind, that for orthogonal states the detected intensity becomes
very low. It is proportional to:

Io ∝
1

2
[1 + cos (φ) sin (θ)] (3.51)

and plotted in Fig. 3.8. Comparing the regions of interest in Figs. 3.4a-3.4d to the intensities
in Figs. 3.8a-3.8b the dilemma appears: Physically interesting values of θ and φ are related

bIf initial and final state are given by |Sx; +〉 and |Ŝ · n̂; +〉.
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3. Weak value measurements using neutrons

to low intensities. Long measurement times and a stable experimental setup are necessary in
order to get statistically significant results.

(a) 3D plot of the detected intensity [Eq.
(3.51)]

(b) Contour plot of the detected intensity [Eq.
(3.51)]

Figure 3.8.: Visualization of the expected intensity given by Eq. (3.51).

3.2. Weak values of the path operator

All the novel experiments presented so far, extract the weak value of the spin operator. In
contrast to that, a different experiment is proposed in this section, which uses a weak spin
rotation to measure the weak value of the path operator. This would help to develop a new
insight of the complementarity relation and the wave-particle duality.
Fig. 3.9 shows the experimental setup. A neutron beam is prepared in a way that all neutron
spins are aligned parallel to the z-axis. After that the spin is turned by π

2 , aligning it along the
positive x-axis. The neutron beam is split into two paths as it enters the interferometer and

θ = π
2 = 90◦ φ = 0

φ = 0◦ θ = 90◦

φ = ±45◦
(
±π

4

)
θ = 90◦ ± 45◦

(
π
2 ±

π
4

)
φ = ±90◦

(
±π

2

)
θ = 90◦ ± 90◦

(
π
2 ±

π
2

)
φ = ±120◦

(
±2π

3

)
θ = 90◦ ± 120◦

(
π
2 ±

2π
3

)
φ = ±135◦

(
±3π

4

)
θ = 90◦ ± 135◦

(
π
2 ±

3π
4

)
φ = ±150◦

(
±5π

6

)
θ = 90◦ ± 150◦

(
π
2 ±

5π
6

)
φ = ±165◦

(
±11π

12

)
θ = 90◦ ± 165◦

(
π
2 ±

11π
12

)
φ = ±175◦

(
±35π

36

)
θ = 90◦ ± 175◦

(
π
2 ±

35π
36

)
Table 3.1.: Possible value ranges for an experiment
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3. Weak value measurements using neutrons

Figure 3.9.: Interferometer experiment for a weak measurement of the path operator: The setup
consists of the interferometer itself, a π

2 -turner (ST), two variable absorbers (ABSI

& ABSII), two spin rotators (SRI & SRII) and a spin analyzer [two coils to select
the azimuth and polar angle (A & P), the red supermirror (SA) and a detector
(D)].

experiences a path dependent phase shift. In addition to that, variable absorbers are placed in
both paths, which complete the pre selection of the ensemble. Now the weak measurement is
performed. This is done by rotating the spin in the xy-plane. By making the angle of rotation
very small, it is guaranteed that the system is not disturbed significantly. At the exit of the
interferometer the beams are recombined. This is equal to post selecting the ensemble. Finally
〈σ̂sx〉 is evaluated. Here it is explained, how this setup allows to perform a weak measurement
of the path operator.
As long as the neutron spin is aligned parallel to the z-axis its spin wave function is given by
|Sz; +〉. After the π

2 -turn it can be described by

|S〉 =

√
1

2
(|Sz; +〉+ |Sz;−〉) . (3.52)

When the neutron beam enters the interferometer, it is split into two paths. The spin wave
function has to be extended by a part describing the path, so that the combined wave function
|ψ〉 becomes

|ψ〉 = |P 〉|S〉 =

√
1

2
(|I〉+ |II〉)

√
1

2
(|Sz; +〉+ |Sz;−〉) , (3.53)

where |I〉 and |II〉 describe path I and path II respectively. After that a phase shifter is put
into the beam. This adds a path dependent phase (e−iχ/2 for path I and eiχ/2 for path II).
Additionally variable absorbers are placed in both paths. This enables the pre selection of the
ensemble. The normalized wave function |ψ〉 describing the system is now

|ψ〉 =
[
e−iχ/2

√
b|I〉+ eiχ/2

√
a|II〉

]
︸ ︷︷ ︸

|Pi〉

√
1

2
[|Sz; +〉+ |Sz;−〉]︸ ︷︷ ︸

|Sx;+〉

, (3.54)
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with a and b = 1− a describing the effect of the absorber present in the paths.c At this point
the pre selection of the ensemble is completed.
Now the weak measurement is performed. This is done by rotating the spin in the xy-plane.
By making the rotation path dependent, it is possible to ’mark’ the path the neutron took.
The angle of rotation is kept small. Therefore the system’s wave function is not disturbed
significantly and the condition for a weak measurement is fulfilled. The interaction Hamiltonian
for such a measurement is given by

Ĥi = −~µ ~BΠ̂z = −γŜ ~BΠ̂z ≡
−ασ̂szΠ̂z

2
, (3.55)

where ~µ is the neutron’s magnetic moment and ~B an externally applied magnetic field. ~µ is
directly proportional to the neutron’s spin via the so called gyromagnetic ratio γ. ~B and γ
can be combined into the parameter α, which describes the angle of rotation and therefore the
interaction strength of the measurement. σ̂sz is the operator describing the rotation around the
z-axis and Π̂z is the operator which represents the neutron’s path. It is given by a Pauli matrix
as Π̂z = |I〉〈I| − |II〉〈II|. This experiment is designed to extract the weak value of Π̂z. After
the weak measurement the wave function evolves.

|ψ′〉 = eiασ̂
s
zΠ̂z/2|ψ〉 ≈

(
1 +

iασ̂szΠ̂z

2

)
|ψ〉

= |Pi〉|Sx; +〉+
iαΠ̂z

2
|Pi〉σ̂sz|Sx; +〉

= |Pi〉|Sx; +〉+
iαΠ̂z

2
|Pi〉 (|Sz; +〉〈Sz; +| − |Sz;−〉〈Sz;−|) |Sx; +〉

= |Pi〉|Sx; +〉+
iαΠ̂z

2
|Pi〉|Sx;−〉. (3.56)

At the exit of the interferometer the neutrons are post selected by recombining the beams.
Mathematically this is done by multiplying the projector |Pf 〉〈Pf | with the the final state

ca ranges from 0 to 1. For a = 0 path II is completely blocked, for 1 path I. At a = 0.5 the absorber is equally
strong for path I and II.
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|Pf 〉 =
√

1
2 (|I〉+ |II〉) from the left onto |ψ〉.

|Φ〉 = |Pf 〉〈Pf |ψ′〉 = |Pf 〉〈Pf |Pi〉|Sx; +〉+
iα

2
|Pf 〉〈Pf |Π̂z|Pi〉|Sx;−〉

= 〈Pf |Pi〉

|Sx; +〉+
iα

2

〈Pf |Π̂z|Pi〉
〈Pf |Pi〉︸ ︷︷ ︸
≡〈Π̂z〉w

|Sx;−〉

 |Pf 〉

=

√
1

2

[√
1− a e−iχ/2 +

√
a eiχ/2

]
︸ ︷︷ ︸

≡ε

√
1

2

[
(|Sz; +〉+ |Sz;−〉) +

iα

2
〈Π̂z〉w (|Sz; +〉 − |Sz;−〉)

]
|Pf 〉

=
ε√
2

[(
1 +

iα

2
〈Π̂z〉w

)
|Sz; +〉+

(
1− iα

2
〈Π̂z〉w

)
|Sz;−〉

]
|Pf 〉

≈ ε√
2

(
eiα〈Π̂z〉w/2|Sz; +〉+ e−iα〈Π̂z〉w/2|Sz;−〉

)
|Pf 〉 (3.57)

The weak value is now defined as 〈Π̂z〉w and acts as an additional phase in the wave function.
After post selection 〈σ̂sx〉 is evaluated

〈σ̂sx〉 =
〈Φ |σ̂sx|Φ〉
〈Φ|Φ〉

=
〈Pf |Pf 〉

2

εε∗

〈Φ|Φ〉

(
e−iα〈Π̂z〉w/2〈Sz; +|+ eiα〈Π̂z〉w/2〈Sz;−|

)
×

× (|Sz; +〉〈Sz;−|+ |Sz;−〉〈Sz; +|)
(

eiα〈Π̂z〉w/2|Sz; +〉+ e−iα〈Π̂z〉w/2|Sz;−〉
)

=
1

2

|ε|2

〈Φ|Φ〉

(
e−iα〈Π̂z〉w/2〈Sz;−|+ eiα〈Π̂z〉w/2〈Sz; +|

)(
eiα〈Π̂z〉w/2|Sz; +〉+ e−iα〈Π̂z〉w/2|Sz;−〉

)
=

1

2

|ε|2

〈Φ|Φ〉

(
eiα〈Π̂z〉w + e−iα〈Π̂z〉w

)
=
|ε|2

〈Φ|Φ〉
cos
(
α〈Π̂z〉w

)
. (3.58)

Since

|ε|2 =

√
1

2

[√
1− a e−iχ/2 +

√
a eiχ/2

]√1

2

[√
1− a eiχ/2 +

√
a e−iχ/2

]
=

1

2
+
√
a (1− a) cos (χ) , (3.59)

and

〈Φ|Φ〉 =
〈Pf |Pf 〉

2

[√
1− a eiχ/2 +

√
a e−iχ/2

] [
〈Sz; +|e−iα〈Π̂z〉w/2 + 〈Sz;−|eiα〈Π̂z〉w/2

]
×

×
[
eiα〈Π̂z〉w/2|Sz; +〉+ e−iα〈Π̂z〉w/2|Sz;−〉

] 1

2

[√
1− a e−iχ/2 +

√
a eiχ/2

]
=

1

2
+
√
a (1− a) cos (χ) (3.60)

are equal, i.e. |ε|2 = 〈Φ|Φ〉, Eq. (3.58) becomes

〈σ̂sx〉 = cos
(
α〈Π̂z〉w

)
(3.61)
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The left hand side of Eq. (3.61) is now given by 〈σ̂sx〉 = I+−I−
I++I−

and the weak value can be
determined by measuring the two different intensities for I+ and I−.

〈Π̂z〉w (α, I+, I−) =
1

α
arccos

([
I+ − I−
I+ + I−

])
(3.62)

I+ and I− are the intensities for the neutron spin aligned parallel and anti parallel to the x-axis.
In Eq. (3.56) a Taylor expansion of the exponential function has been performed according to the
theory of weak measurements, making use of the fast that α� 1. Let us try a slightly different

approach now, which uses the exact formula exp
(
iα σ̂sj · n̂

)
=1cos (α) + i σ̂sj · n̂ sin (α)d.

|ψ′〉 = eiασ̂
s
zΠ̂z/2|ψ〉 =

[
cos
(α

2

)
+ iσ̂szΠ̂z sin

(α
2

)]
|Pi〉|Sx; +〉

= cos
(α

2

)
|Pi〉|Sx; +〉+ iσ̂szΠ̂z sin

(α
2

)
|Pi〉|Sx; +〉

= cos
(α

2

)
|Pi〉|Sx; +〉+ i sin

(α
2

)
Π̂z|Pi〉|Sx;−〉. (3.63)

Again post selection is performed.

|Φ〉 = |Pf 〉〈Pf |ψ′〉 = cos
(α

2

)
|Pf 〉〈Pf |Pi〉|Sx; +〉+ i sin

(α
2

)
|Pf 〉〈Pf |Π̂z|Pi〉|Sx;−〉

= 〈Pf |Pi〉

cos
(α

2

)
|Sx; +〉+ i sin

(α
2

) 〈Pf |Π̂z|Pi〉
〈Pf |Pi〉︸ ︷︷ ︸
≡〈Π̂z〉w

|Sx;−〉

 |Pf 〉

=

√
1− a e−iχ/2 +

√
a eiχ/2√

2

[
cos
(α

2

)
|Sx; +〉+ i sin

(α
2

)
〈Π̂z〉w|Sx;−〉

]
|Pf 〉

=

√
1− a e−iχ/2 +

√
a eiχ/2

2

{[
cos
(α

2

)
+ i sin

(α
2

)
〈Π̂z〉w

]
|Sz; +〉+

+
[
cos
(α

2

)
− i sin

(α
2

)
〈Π̂z〉w

]
|Sz;−〉

}
|Pf 〉, (3.64)

and finally 〈σ̂sx〉 is evaluated

〈σ̂sx〉 =
〈Φ |σ̂sx|Φ〉
〈Φ|Φ〉

=
〈Pf |Pf 〉

2

εε∗

〈Φ|Φ〉

[(
c− is〈Π̂z〉w

)
〈Sz; +|+

(
c + is〈Π̂z〉w

)
〈Sz;−|

]
×

× [|Sz; +〉〈Sz;−|+ |Sz;−〉〈Sz; +|]
[(

c + is〈Π̂z〉w
)
|Sz; +〉+

(
c− is〈Π̂z〉w

)
|Sz;−〉

]
=

1

2

|ε|2

〈Φ|Φ〉

[(
c− is〈Π̂z〉w

)2
+
(

c + is〈Π̂z〉w
)2
]

=
|ε|2

〈Φ|Φ〉

[
cos2

(α
2

)
− 〈Π̂z〉2w sin2

(α
2

)]
, (3.65)

dMathematically this means that we consider all orders of α, instead of just the first.
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where the abbreviations s ≡ sin(α2 ) and c ≡ cos(α2 ) were used. With the same abbreviations
the normalization factor 〈Φ|Φ〉 is

〈Φ|Φ〉 =
〈Pf |Pf 〉

2

[√
1− a eiχ/2 +

√
a e−iχ/2

] [
〈Sz; +|

(
c− is〈Π̂z〉w

)
+ 〈Sz;−|

(
c + is〈Π̂z〉w

)}
×

×
[(

c + is〈Π̂z〉w
)
|Sz; +〉+

(
c− is〈Π̂z〉w

)
|Sz;−〉

] 1

2

[√
1− a e−iχ/2 +

√
a eiχ/2

]
=
[
1 + 2

√
a (1− a) cos (χ)

] [
cos2

(α
2

)
+ 〈Π̂z〉2w sin

(α
2

)]
(3.66)

so that Eq. (3.65) simplifies to

〈σ̂sx〉 =
cos2

(
α
2

)
− 〈Π̂z〉2w sin

(
α
2

)
cos2

(
α
2

)
+ 〈Π̂z〉2w sin

(
α
2

) (3.67)

and the weak value 〈Π̂z〉w becomes

I+ − I−
I+ + I−

=
cos2

(
α
2

)
− 〈Π̂z〉2w sin2

(
α
2

)
cos2

(
α
2

)
+ 〈Π̂z〉2w sin2

(
α
2

)
⇒

∣∣∣〈Π̂z〉w
∣∣∣ =

√√√√cos2
(
α
2

)
− I+−I−

I++I−
cos2

(
α
2

)
sin2

(
α
2

)
+ I+−I−

I++I−
sin2

(
α
2

) =

√
I−
I+

cot2
(α

2

)
(3.68)

Per definition the weak value can be calculated as follows

〈Π̂z〉w ≡
〈Pf |Π̂z|Pi〉
〈Pf |Pi〉

=
[〈I|+ 〈II|]

[
e−iχ/2

√
1− a|I〉 − eiχ/2

√
a|II〉

]
[〈I|+ 〈II|]

[
e−iχ/2

√
1− a|I〉+ eiχ/2

√
a|II〉

]
=

√
1− a−

√
a eiχ√

1− a+
√
a eiχ

(3.69)

The plot of Eq. (3.69) in Fig. 3.10 exhibits very interesting features. In some sense the
information about the absorber is stored in the real part of 〈Π̂z〉w, whereas the information
about the phase shifter is found in the imaginary part.
For a = 0 path II is completely blocked and all neutrons have to go through path I. For this
case Re(〈Π̂z〉w) becomes 1. The opposite limit is a = 1. Now path I is completely blocked
and Re(〈Π̂z〉w) equals -1. For any case between those two limits, i.e. both parts are partially
blocked, Re(〈Π̂z〉w) is −1 < Re(〈Π̂z〉w) < 1.
It is also possible to model the absorber in a different way, using

|Pi〉 = e−iχ/2 cos (a) |I〉+ eiχ/2 sin (a) |II〉. (3.70)

Now a ranges from 0 to π
2 . Again, for a = 0 path II is completely blocked, for π

2 path I. At
a = π

4 the absorber is equally strong for path I and II. Equations (3.62) and (3.68) do not
change. However, the weak value itself becomes:

〈Π̂z〉w ≡
〈Pf |Π̂z|Pi〉
〈Pf |Pi〉

=
[〈I|+ 〈II|]

[
e−iχ/2 cos (a) |I〉 − eiχ/2 sin (a) |II〉

]
[〈I|+ 〈II|]

[
e−iχ/2 cos (a) |I〉+ eiχ/2 sin (a) |II〉

]
=

cos (a)− sin (a) eiχ

cos (a) + sin (a) eiχ
(3.71)
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3. Weak value measurements using neutrons

(a) 3D plot of Re(〈Π̂z〉w) [real part of Eq.
(3.69)]

(b) Contour plot of Re(〈Π̂z〉w) [real part
of Eq. (3.69)]

(c) 3D plot of Im(〈Π̂z〉w) [imaginary part of Eq.
(3.69)]

(d) Contour plot of Im(〈Π̂z〉w) [imaginary
part of Eq. (3.69)]

(e) 3D plot of Abs(〈Π̂z〉w) [absolute of Eq.
(3.69)]

(f) Contour plot of Abs(〈Π̂z〉w) [absolute
of Eq. (3.69)]

Figure 3.10.: Visualization of the weak value, for real and imaginary part, as well as for the
absolute of the weak value. The absorber is modeled as |Pi〉 = e−iχ/2

√
b|I〉 +

eiχ/2
√
a|II〉 with b = 1− a.
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3. Weak value measurements using neutrons

Real and imaginary parts of Eq. (3.71), as well as its absolute value are plotted in Fig. 3.11.
The different parametrization of the absorber in the calculation induces no big effect on the
weak value itself. The maxima and minima are more compact, but the overall shape stays
roughly the same.

3.2.1. Estimates of the measurement strength’s influence

To get a better understanding of the system it is possible to perform an analytical evaluation
of the factor I+−I−

I++I−
. For this we start with the system’s wave function which is given by Eq.

(3.54) and let the evolution operator Û = exp
(
iαΠ̂z σ̂sz

2

)
act upon it.

|ψ′〉 = eiαΠ̂z σ̂sz/2|ψ〉 = eiαΠ̂z σ̂sz/2
(

e−iχ/2
√

1− a|I〉+ eiχ/2
√
a|II〉

)√1

2
(|Sz; +〉+ |Sz;−〉)

=

√
1

2
eiαΠ̂z σ̂sz/2

(
e−iχ/2

√
1− a|I〉|Sz; +〉+ e−iχ/2

√
1− a|I〉|Sz;−〉+

+ eiχ/2
√
a|II〉|Sz; +〉+ eiχ/2

√
a|II〉|Sz;−〉

)
=

√
1

2

(
e−iχ/2

√
1− a eiα/2|I〉|Sz; +〉+ e−iχ/2

√
1− a e−iα/2|I〉|Sz;−〉+

+ eiχ/2
√
a e−iα/2|II〉|Sz; +〉+ eiχ/2

√
a eiα/2|II〉|Sz;−〉

)
(3.72)

Now we post select onto |Pf 〉〈Pf | with |Pf 〉 =
√

1
2 (|I〉+ |II〉) and get

|Φ〉 = |Pf 〉〈Pf |ψ〉 =
1

2

(
e−iχ/2

√
1− a eiα/2|Sz; +〉+ e−iχ/2

√
1− a e−iα/2|Sz;−〉+

+ eiχ/2
√
a e−iα/2|Sz; +〉+ eiχ/2

√
a eiα/2|Sz;−〉

)
|Pf 〉

=

{
1

2

[
e−i(χ−α)/2

√
1− a+ ei(χ−α)/2√a

]
|Sz; +〉+

+
1

2

[
e−i(χ+α)/2

√
1− a+ ei(χ+α)/2√a

]
|Sz;−〉

}
|Pf 〉 (3.73)

The next step is to perform the projection onto the negative and positive spin state, which
yields

〈Sx;−|Φ〉 =

√
1

2
{〈Sz; +| − 〈Sz;−|}

{
1

2

[
e−i(χ−α)/2

√
1− a+ ei(χ−α)/2√a

]
|Sz; +〉 +

+
1

2

[
e−i(χ+α)/2

√
1− a+ ei(χ+α)/2√a

]
|Sz;−〉

}
|Pf 〉

=

√
1

8

{[
e−i(χ−α)/2

√
1− a+ ei(χ−α)/2√a

]
−
[
e−i(χ+α)/2

√
1− a+ ei(χ+α)/2√a

]}
|Pf 〉

(3.74)
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3. Weak value measurements using neutrons

(a) 3D plot of Re(〈Π̂z〉w) [real part of Eq.
(3.71)]

(b) Contour plot of Re(〈Π̂z〉w) [real part
of Eq. (3.71)]

(c) 3D plot of Im(〈Π̂z〉w) [imaginary part of Eq.
(3.71)]

(d) Contour plot of Im(〈Π̂z〉w) [imaginary
part of Eq. (3.71)]

(e) 3D plot of Abs(〈Π̂z〉w) [absolute of Eq.
(3.71)]

(f) Contour plot of Abs(〈Π̂z〉w) [absolute
of Eq. (3.71)]

Figure 3.11.: Visualization of the weak value, for real and imaginary part, as well as for the
absolute of the weak value. The absorber is modeled as |Pi〉 = e−iχ/2 cos (a) |I〉+
eiχ/2 sin (a) |II〉
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3. Weak value measurements using neutrons

and analogously

〈Sx; +|Φ〉 =

√
1

8

{[
e−i(χ−α)/2

√
1− a+ ei(χ−α)/2√a

]
+
[
e−i(χ+α)/2

√
1− a+ ei(χ+α)/2√a

]}
|Pf 〉

(3.75)

With Eqs. (3.74) and (3.75) it is possible to calculate the intensities I− and I+

I− = |〈Sx;−|Φ〉|2 =
1

2

[
1− 2

√
a (1− a) cos (χ)

]
sin2

(α
2

)
(3.76)

I+ = |〈Sx; +|Φ〉|2 =
1

2

[
1 + 2

√
a (1− a) cos (χ)

]
cos2

(α
2

)
(3.77)

Finally we get

I+ − I−
I+ + I−

=
cos (α) + 2

√
a (1− a) cos (χ)

1 + 2
√
a (1− a) cos (α) cos (χ)

(3.78)

Now it is possible to directly evaluate the expectation value of the operator σ̂sx to check the
result.

〈σ̂sx〉 =
〈Φ| (|Sz; +〉〈Sz;−|+ |Sz;−〉〈Sz; +|) |Φ〉

〈Φ|Φ〉

=
〈Φ|Sz; +〉〈Sz;−|Φ〉+ 〈Φ|Sz;−〉〈Sz; +|Φ〉

〈Φ|Φ〉
(3.79)

With

〈Φ|Sz; +〉〈Sz;−|Φ〉 =
1

4

[
ei(χ−α)/2

√
1− a+ e−i(χ−α)/2√a

] [
e−i(χ+α)/2

√
1− a+ ei(χ+α)/2√a

]
+

=
1

4

[
cos (α) + 2

√
a (1− a) cos (χ) + i (2a− 1) sin (α)

]
, (3.80)

〈Φ|Sz;−〉〈Sz; +|Φ〉 =
1

4

[
ei(χ+α)/2

√
1− a+ e−i(χ+α)/2√a

] [
e−i(χ−α)/2

√
1− a+ ei(χ−α)/2√a

]
=

1

4

[
cos (α) + 2

√
a (1− a) cos (χ) + i (1− 2a) sin (α)

]
, (3.81)

and

〈Φ|Φ〉 =
1

4

[
ei(χ−α)/2

√
1− a+ e−i(χ−α)/2√a

] [
e−i(χ−α)/2

√
1− a+ ei(χ−α)/2√a

]
+

+
1

4

[
ei(χ+α)/2

√
1− a+ e−i(χ+α)/2√a

] [
e−i(χ+α)/2

√
1− a+ ei(χ+α)/2√a

]
=

1

4

[
1 + 2

√
a (1− a) cos (α− χ) + 1 + 2

√
a (1− a) cos (α+ χ)

]
=

1

4

{
2 + 2

√
a (1− a) [cos (α+ χ) + cos (α− χ)]

}
=

1

4

[
2 + 4

√
a (1− a) cos (α) cos (χ)

]
=

1

2
+
√
a (1− a) cos (α) cos (χ) , (3.82)
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we get

〈σ̂sx〉 =
1
2 cos (α) +

√
a (1− a) cos (χ)

1
2 +

√
a (1− a) cos (α) cos (χ)

=
cos (α) + 2

√
a (1− a) cos (χ)

1 + 2
√
a (1− a) cos (α) cos (χ)

, (3.83)

which is just the same as Eq. (3.78). The degree of polarization is plotted in Fig. 3.12. A fixed
value of a = 0.5 has been used. Having obtained this result, it is possible to further develop the

(a) 3D plot of the degree of polarization for a
fixed value of a = 0.5 [Eq. (3.83)]

(b) Contour plot of the degree of polarization
for a fixed value of a = 0.5 [Eq. (3.83)]

Figure 3.12.: Visualization of the degree of polarization. The absorber is set to a fixed value of
a = 0.5. As expected the degree of polarization ranges from 1 to -1 one.

theoretical analysis of the experiment. Eq. (3.62) now becomes

∣∣∣〈Π̂z〉w
∣∣∣ (a, α, χ) =

1

α
arccos

(
cos (α) + 2

√
a (1− a) cos (χ)

1 + 2
√
a (1− a) cos (α) cos (χ)

)
(3.84)

and Eq. (3.68) simplifies to

∣∣∣〈Π̂z〉w
∣∣∣ (a, χ) =

√
1− 2

√
a (1− a) cos (χ)

1 + 2
√
a (1− a) cos (χ)

. (3.85)

The same calculation can be performed for the second absorber model. For this case the
intensities I− and I+ become

I− = |〈Sx;−|Φ〉|2 =
1

2
[1− sin (2a) cos (χ)] sin2

(α
2

)
(3.86)

and

I+ = |〈Sx; +|Φ〉|2 =
1

2
[1 + sin (2a) cos (χ)] cos2

(α
2

)
. (3.87)
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The calculation using the approximation to extract the weak value then yields∣∣∣〈Π̂z〉w
∣∣∣ (a, α, χ) =

1

α
arccos

(
cos (α) + sin (2a) cos (χ)

1 + sin (2a) cos (χ) cos (α)

)
, (3.88)

whereas the one that considers all orders of α yields

∣∣∣〈Π̂z〉w
∣∣∣ (a, χ) =

√
1− sin (2a) cos (χ)

1 + sin (2a) cos (χ)
. (3.89)

At first glance it seems, that the exact calculation and the use of a Taylor expansion of the
exponential function lead to two fundamentally different results. Eqs. (3.84) and (3.88) depend
on α and their results can be a complex number. In comparison to that, Eqs. (3.85) and (3.89)
are independent of α and always real. For any given value of a and χ the result will never be
imaginary. But they are exactly the absolute of the analytic solutions given by Eqs. (3.69) and
(3.71)!
Now the question arises, if there exists a certain value of α, for which Eqs. (3.84) and (3.88)
reproduce the weak value’s analytic solution. First of all, one has to notice, that the solutions
obtained by using a Taylor expansion are practically the arccosine of the degree of polarization.
As we showed earlier the degree of polarization always varies between -1 and 1. So we have
〈Π̂z〉w (x) ∝ arccos (x) with −1 ≤ x ≤ 1. For this value range the arccosine function is always
real! This means that also the calculational method using approximations will never yield the
weak value’s imaginary part.
The next step is quite simple. We perform ’simulations’ of the actual measurement. Equations
(3.84) and (3.88) tell us what we will measure, if the experiment is performed at an ideal setup,
for given values of α, a and χ. All we have to do is to pick values and compare the analytic
solutions given by Eqs. (3.69) and (3.71) with what we expect from the experiment. The results
of such a ’simulation’ can be seen in Fig. 3.13 to 3.17. In Eq. (3.84) a has been set to 0.5 and
its result is plotted for four different values of α dependent on the phase shifter position χ.

Fig. 3.13 shows the plot of Eq. (3.84) for a = b = 0.5 and αa = π
4 . For −π

2 ≤ χ ≤ π
2 the two

curves match. However, for larger values of χ the analytic solution rises more steeply than the
measured solution.
If the angle of rotation is now reduced the curves begin to match better and better. This can be
seen in Fig. 3.14 to 3.16, in which the values of α are reduced to αb = π

8 , αc = π
20 and αd = π

36 .
For values of α that are smaller than π

36 , the curves are nearly identical.
This tells us several very important things. Firstly Eqs. (3.62) and (3.68) are equivalent for
small values of α, even though the first one is derived using an approximation and the second
one is obtained by using exact formulas only.
Moreover we now know what small values of α means. As soon as the Eq.(3.62) reproduces
the weak value’s absolute, α is small enough. Fig. 3.13 to 3.16 tells us, that this happens at
α ≤ π

36 , i.e. for a angles of rotation that are smaller than or equal than 5◦. This means that the
interaction strength, described by the parameter α is at the order of magnitude of α ∼ 0.1. This
also means that higher orders of α are already very small, i.e. O

(
α2
)
∼ 0.01. Clearly rotations

that are smaller than this fulfill the condition of a weak measurement and the approximations
made in Eq. (3.56) are justified.
In addition to that, it is now clear that the experiment will only yield the absolute of the path
operator’s weak value. This is a bit of a setback, because to this point it was believed that the
experiment would allow to extract ’which-way-information’ from the interferometer, but one
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Figure 3.13.: Simulation [Eq. (3.84)] and the absolute of the weak value’s analytic solution
[absolute of Eq. (3.69)]. The absorber is modeled as |Pi〉 = e−iχ/2

√
1− a|I〉 +

eiχ/2
√
a|II〉 with a = 0.5 and α = π/4.
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Figure 3.14.: Simulation [Eq. (3.84)] and the absolute of the weak value’s analytic solution
[absolute of Eq. (3.69)]. The absorber is modeled as |Pi〉 = e−iχ/2

√
1− a|I〉 +

eiχ/2
√
a|II〉 with a = 0.5 and α = π/8.
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Figure 3.15.: Simulation [Eq. (3.84)] and the absolute of the weak value’s analytic solution
[absolute of Eq. (3.69)]. The absorber is modeled as |Pi〉 = e−iχ/2

√
1− a|I〉 +

eiχ/2
√
a|II〉 with a = 0.5 and α = π/20.
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Figure 3.16.: Simulation [Eq. (3.84)] and the absolute of the weak value’s analytic solution
[absolute of Eq. (3.69)]. The absorber is modeled as |Pi〉 = e−iχ/2

√
1− a|I〉 +

eiχ/2
√
a|II〉 with a = 0.5 and α = π/36.
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does not know if the neutron took path I or II. The problem is made clear by Fig. 3.17e. The

 0

 0.2

 0.4

 0.6
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Figure 3.17.: Simulation and the weak value’s analytic solution [Eq. (3.84)] for χ = 0: It ranges
from 0 if both paths are equally blocked (a = 0.5) to 1 if one path is completely

blocked (a = 1 or a = 0). While Abs
(
〈Π̂z〉w

)
tells us that the ensemble went

through one path rather than another, it does not tell us which one and therefore
makes it impossible to extract pure ’which-way-information’. It is noteworthy
that the approximation made by Eq. (3.84) works very well for small values of χ.
The simulation was performed with an angle of α = 5◦ and there is no notable
difference to the analytic solution.

absolute of 〈Π̂z〉w ranges from 0 to 1. If both paths are equally blocked (a = 0.5), Abs
(
〈Π̂z〉w

)
becomes 0. One half of the ensemble goes through path I, the other through path II. If one
path is completely blocked (a = 1 or a = 0) the weak value becomes 1. This tells us that
the ensemble went through one path. However, it does not tell us which one. To extract pure
’which-way-information’, it is at least necessary to measure the real, or even better also the
imaginary part of 〈Π̂z〉w, as well as its absolute.

3.2.2. Influences of imperfect experimental circumstances

The calculations presented so far, are approximations for an ideal system. However, it would be
close to impossible to recreate this ideal system in an experiment and therefore some changes
have to be made to get a more realistic description.

eFor Fig. 3.17 and the considerations thereafter, let the absorber be modelled as in Eq. (3.54).
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For this the system’s pre selected wave function has to be

|ψ〉 =
1√
a+ b

[
e−iχ/2

√
b|I〉+ eiχ/2

√
a|II〉

]
︸ ︷︷ ︸

|Pi〉

√
1

1− 2p+ 2p2
[(1− p) |Sx; +〉+ p|Sx;−〉]︸ ︷︷ ︸

|S〉

. (3.90)

The factor p (0 ≤ p ≤ 1) takes into account, that the neutron beam’s polarization might not be
perfect. For p = 0 Eq. (3.90) describes a totally polarized beam along the positive x-axis. As p
becomes bigger the degree of polarization becomes smaller, till it becomes zero for p = 0.5. For
p = 1 the polarization is again complete, but now with respect to the anti parallel direction.
In addition to that the absorbers in path I and path II are now modeled completely arbitrary
using the two factors

√
b and

√
a, which can both vary between 0 and 1, i.e. 0 ≤

√
b ≤ 1 and

0 ≤
√
a ≤ 1.

For completeness sake the same calculations as above shall now be made using the system’s ’new’
wave function. Eq. (3.90) describes the system after pre selection. After the weak interaction
the system evolves into

|ψ′〉 = eiασ̂
s
zΠ̂z/2|ψ〉 ≈

(
1 +

iασ̂szΠ̂z

2

)
|ψ〉

=

(
1 +

iασ̂szΠ̂z

2

)
|Pi〉

√
1

1− 2p+ 2p2︸ ︷︷ ︸
≡
√
n

[(1− p) |Sx; +〉+ p|Sx;−〉]

= |Pi〉
√
n [(1− p) |Sx; +〉+ p|Sx;−〉] +

iα

2
Π̂z|Pi〉

√
n [(1− p) σ̂sz|Sx; +〉+ pσ̂sz|Sx;−〉]

= |Pi〉
√
n [(1− p) |Sx; +〉+ p|Sx;−〉] +

iα

2
Π̂z|Pi〉

√
n [(1− p) |Sx;−〉+ p|Sx; +〉]

= |Pi〉
√
n

2
[|Sz; +〉+ (1− 2p) |Sz;−〉] +

iα

2
Π̂z|Pi〉

√
n

2
[|Sz; +〉 − (1− 2p) |Sz;−〉] , (3.91)

where the exponential function has been Taylor expanded. The exact calculation shall be put
forward later. After the weak measurement the ensemble is post selected onto the final state

|Pf 〉 =
√

1
2 (|I〉+ |II〉), so that the system’s wave function becomes

|Φ〉 = |Pf 〉〈Pf |Pi〉
√
n

2
[|Sz; +〉+ (1− 2p) |Sz;−〉] +

iα

2
〈Pf |Π̂z|Pi〉

√
n

2
[|Sz; +〉 − (1− 2p) |Sz;−〉]

=

√
n

2
〈Pf |Pi〉︸ ︷︷ ︸
≡ε

{
[|Sz; +〉+ (1− 2p) |Sz;−〉] +

iα

2
〈Π̂z〉w [|Sz; +〉 − (1− 2p) |Sz;−〉]

}
|Pf 〉

= ε

√
n

2

[(
1 +

iα

2
〈Π̂z〉w

)
|Sz; +〉+ (1− 2p)

(
1− iα

2
〈Π̂z〉w

)
|Sz;−〉

]
|Pf 〉

= ε

√
n

2

[
eiα〈Π̂z〉w/2|Sz; +〉+ (1− 2p) e−iα〈Π̂z〉w/2|Sz;−〉

]
|Pf 〉 (3.92)

with

ε ≡ 〈Pf |Pi〉 =
1√

2 (a+ b)

[√
b e−iχ/2 +

√
a eiχ/2

]
(3.93)
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To extract the weak value, the expectation value of σ̂sx is evaluated. With

〈Φ|σ̂sx|Φ〉 = εε∗〈Pf |Pf 〉
n

2

[
e−iα〈Π̂z〉w/2〈Sz; +|+ (1− 2p) eiα〈Π̂z〉w/2〈Sz;−|

]
×

× [|Sz; +〉〈Sz;−|+ |Sz;−〉〈Sz; +|]
[
eiα〈Π̂z〉w/2|Sz; +〉+ (1− 2p) e−iα〈Π̂z〉w/2|Sz;−〉

]
=
n|ε|2

2

[
e−iα〈Π̂z〉w/2〈Sz; +|+ (1− 2p) eiα〈Π̂z〉w/2〈Sz;−|

]
×

×
[
eiα〈Π̂z〉w/2|Sz;−〉+ (1− 2p) e−iα〈Π̂z〉w/2|Sz; +〉

]
=
n|ε|2

2

[
e−iα〈Π̂z〉w (1− 2p) + eiα〈Π̂z〉w (1− 2p)

]
= |ε|2 (1− 2p)

1− 2p+ 2p2
cos
(
α〈Π̂z〉w

)
(3.94)

and

〈Φ|Φ〉 =
nεε∗

2

[
e−iα〈Π̂z〉w/2〈Sz; +|+ (1− 2p) eiα〈Π̂z〉w/2〈Sz;−|

]
×

×
[
eiα〈Π̂z〉w/2|Sz; +〉+ (1− 2p) e−iα〈Π̂z〉w/2|Sz;−〉

]
= |ε|2 (3.95)

we get

〈σ̂sx〉 =
〈Φ|σ̂sx|Φ〉
〈Φ|Φ〉

=
(1− 2p)

1− 2p+ 2p2
cos
(
α〈Π̂z〉w

)
, (3.96)

which leads to ∣∣∣〈Π̂z〉w
∣∣∣ =

1

α
arccos

[
1 + 2p (p− 1)

1− 2p

I+ − I−
I+ + I−

]
. (3.97)

In contrast the same calculation without using the Taylor expansion gives

|ψ′〉 = eiασ̂
s
zΠ̂z/2|ψ〉 = eiασ̂

s
zΠ̂z/2

√
n [(1− p) |Sx; +〉+ p|Sx;−〉] |Pi〉

=

√
n

2

{
(1− p)

[
eiασ̂

s
zΠ̂z/2|Sz; +〉+ eiασ̂

s
zΠ̂z/2|Sz;−〉

]
+

+ p
[
eiασ̂

s
zΠ̂z/2|Sz; +〉 − eiασ̂

s
zΠ̂z/2|Sz;−〉

]}
|Pi〉

=

√
n

2

{
(1− p)

[
eiαΠ̂z/2|Sz; +〉+ e−iαΠ̂z/2|Sz;−〉

]
+ p

[
eiαΠ̂z/2|Sz; +〉 − e−iαΠ̂z/2|Sz;−〉

]}
|Pi〉

=

√
n

2

[
eiαΠ̂z/2|Sz; +〉+ (1− 2p) e−iαΠ̂z/2|Sz;−〉

]
|Pi〉

=

√
n

2

{[
cos
(α

2

)
+ iΠ̂z sin

(α
2

)]
|Sz; +〉+ (1− 2p)

[
cos
(α

2

)
− iΠ̂z sin

(α
2

)]
|Sz;−〉

}
|Pi〉

=

√
n

2

{
cos
(α

2

)
[|Sz; +〉+ (1− 2p) |Sz;−〉] + iΠ̂z sin

(α
2

)
[|Sz; +〉 − (1− 2p) |Sz;−〉]

}
|Pi〉.

(3.98)
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After post selection the system’s wave function |Φ〉 becomes

|Φ〉 =

√
n

2

{
〈Pf |Pi〉 cos

(α
2

)
[|Sz; +〉+ (1− 2p) |Sz;−〉] +

+i〈Pf |Π̂z|Pi〉 sin
(α

2

)
[|Sz; +〉 − (1− 2p) |Sz;−〉]

}
|Pf 〉

= ε

√
n

2

{
cos
(α

2

)
[|Sz; +〉+ (1− 2p) |Sz;−〉] + i〈Π̂z〉w sin

(α
2

)
[|Sz; +〉 − (1− 2p) |Sz;−〉]

}
|Pf 〉.

(3.99)

Evaluating 〈σ̂sx〉, using

〈Φ|σ̂sx|Φ〉 = |ε|2n
2
〈Pf |Pf 〉

{
cos
(α

2

)
[〈Sz; +|+ (1− 2p) 〈Sz;−|]−

−i〈Π̂z〉w sin
(α

2

)
[〈Sz; +| − (1− 2p) 〈Sz;−|]

}{
cos
(α

2

)
[|Sz;−〉+ (1− 2p) |Sz; +〉] +

+i〈Π̂z〉w sin
(α

2

)
[|Sz;−〉 − (1− 2p) |Sz; +〉]

}
= |ε|2n

2

{
(1− 2p) cos2

(α
2

)
+ i〈Π̂z〉w (1− 2p) cos

(α
2

)
sin
(α

2

)
+ (1− 2p) cos2

(α
2

)
−

− i〈Π̂z〉w (1− 2p) cos
(α

2

)
sin
(α

2

)
+ i〈Π̂z〉w (1− 2p) cos

(α
2

)
sin
(α

2

)
−

− 〈Π̂z〉2w (1− 2p) sin2
(α

2

)
− i〈Π̂z〉w (1− 2p) cos

(α
2

)
sin
(α

2

)
−

−〈Π̂z〉2w (1− 2p) sin2
(α

2

)}
= |ε|2 1− 2p

1− 2p+ 2p2

[
cos2

(α
2

)
− 〈Π̂z〉2w sin2

(α
2

)]
(3.100)

and

〈Φ|Φ〉 = |ε|2n
2
〈Pf |Pf 〉

{
cos
(α

2

)
[〈Sz; +|+ (1− 2p) 〈Sz;−|]−

−i〈Π̂z〉w sin
(α

2

)
[〈Sz; +| − (1− 2p) 〈Sz;−|]

}{
cos
(α

2

)
[|Sz; +〉+ (1− 2p) |Sz;−〉] +

+i〈Π̂z〉w sin
(α

2

)
[|Sz; +〉 − (1− 2p) |Sz;−〉]

}
= |ε|2n

2

[
cos2

(α
2

)
− i〈Π̂z〉w cos

(α
2

)
sin
(α

2

)
+ (1− 2p)2 cos2

(α
2

)
+

+ i〈Π̂z〉w (1− 2p)2 cos
(α

2

)
sin
(α

2

)
+ i〈Π̂z〉w cos

(α
2

)
sin
(α

2

)
+

+〈Π̂z〉2w sin2
(α

2

)
− i〈Π̂z〉w (1− 2p)2 cos

(α
2

)
sin
(α

2

)
+ 〈Π̂z〉2w (1− 2p)2 sin2

(α
2

)}
= |ε|2

[
cos2

(α
2

)
+ 〈Π̂z〉2w sin2

(α
2

)]
(3.101)

yields

〈σ̂sx〉 =
2 (1− 2p)

1 + (1− 2p)2

cos2
(
α
2

)
− 〈Π̂z〉2w sin2

(
α
2

)
cos2

(
α
2

)
+ 〈Π̂z〉2w sin2

(
α
2

) , (3.102)
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which leads to the weak value

∣∣∣〈Π̂z〉w
∣∣∣ =

√√√√√cot2
(α

2

) 1− 1+(1−2p)2

2(1−2p)
I+−I−
I++I−

1 + 1+(1−2p)2

2(1−2p)
I+−I−
I++I−

=

√
cot2

(α
2

) (p− 1)2 I− − p2I+

(p− 1)2 I+ − p2I−
(3.103)

Since |Pi〉 has been altered the analytic solution for the weak value has to change as well.

〈Π̂z〉w =
〈Pf |Π̂z|Pi〉
〈Pf |Pi〉

=
[〈I|+ 〈II|]

[
e−iχ/2

√
b|I〉 − eiχ/2

√
a|II〉

]
[〈I|+ 〈II|]

[
e−iχ/2

√
b|I〉+ eiχ/2

√
a|II〉

] =

√
b−
√
a eiχ√

b+
√
a eiχ

(3.104)

As previously the next step is to calculate the expected intensities. Again we let the evolution
operator act upon the pre selected system to gain the wave function |Φ〉.

|ψ′〉 = eiασ̂
s
zΠ̂z/2|ψ〉 = eiασ̂

s
zΠ̂z/2

{√
n

(a+ b)

[
e−iχ/2

√
b|I〉+ eiχ/2

√
a|II〉

]
[(1− p) |Sx; +〉+ p|Sx;−〉]

}
=

√
n

2 (a+ b)

[
e−iχ/2

√
b eiα/2|I〉|Sz; +〉+ eiχ/2

√
a e−iα/2|II〉|Sz; +〉 +

+e−iχ/2 (1− 2p)
√
b e−iα/2|I〉|Sz;−〉+ eiχ/2 (1− 2p)

√
a eiα/2|II〉|Sz;−〉

]
, (3.105)

and post select onto |Pf 〉〈Pf | to get the final wave function |Φ〉

|Φ〉 = |Pf 〉〈Pf |ψ′〉 =
1

2

√
n

(a+ b)

[
e−iχ/2

√
b eiα/2|Sz; +〉+ eiχ/2

√
a e−iα/2|Sz; +〉 +

+e−iχ/2 (1− 2p)
√
b e−iα/2|Sz;−〉+ eiχ/2 (1− 2p)

√
a eiα/2|Sz;−〉

]
|Pf 〉

=
1

2

√
n

(a+ b)

[(
e−i(χ−α)/2

√
b+ ei(χ−α)/2√a

)
|Sz; +〉+

+
(

e−i(χ+α)/2
√
b+ ei(χ+α)/2√a

)
(1− 2p) |Sz;−〉

]
|Pf 〉. (3.106)

Using Eq. (3.106) we obtain the intensities I− and I+ by calculating 〈Sx;−|Φ〉 and 〈Sx; +|Φ〉.

〈Sx;−|Φ〉 =

√
n

8 (a+ b)
[〈Sz; +| − 〈Sz;−|]

[(
e−i(χ−α)/2

√
b+ ei(χ−α)/2√a

)
|Sz; +〉+

+
(

e−i(χ+α)/2
√
b+ ei(χ+α)/2√a

)
(1− 2p) |Sz;−〉

]
|Pf 〉

=

√
n

8 (a+ b)

[(
e−i(χ−α)/2

√
b+ ei(χ−α)/2√a

)
−

−
(

e−i(χ+α)/2
√
b+ ei(χ+α)/2√a

)
(1− 2p)

]
|Pf 〉 (3.107)
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and

〈Sx; +|Φ〉 =

√
n

8 (a+ b)
[〈Sz; +|+ 〈Sz;−|]

[(
e−i(χ−α)/2

√
b+ ei(χ−α)/2√a

)
|Sz; +〉+

+
(

e−i(χ+α)/2
√
b+ ei(χ+α)/2√a

)
(1− 2p) |Sz;−〉

]
|Pf 〉

=

√
n

8 (a+ b)

[(
e−i(χ−α)/2

√
b+ ei(χ−α)/2√a

)
+

+
(

e−i(χ+α)/2
√
b+ ei(χ+α)/2√a

)
(1− 2p)

]
|Pf 〉 (3.108)

lead to the intensities

I− = |〈Sx;−|Φ〉|2 =
n

8 (a+ b)

[(
e−i(χ−α)/2

√
b+ ei(χ−α)/2√a

)
−

−
(

e−i(χ+α)/2
√
b+ ei(χ+α)/2√a

)
(1− 2p)

] [(
ei(χ−α)/2

√
b+ e−i(χ−α)/2√a

)
−

−
(

ei(χ+α)/2
√
b+ e−i(χ+α)/2√a

)
(1− 2p)

]
=

1

4 (a+ b)

1

1− 2p+ p2

{
[a+ b]

[
1− 2p+ 2p2 − (1− 2p) cos (α)

]
−

−4
√
ab p [p− 1] sin (α) sin (χ) + 2

√
ab
[
2p− 1 +

(
1− 2p+ 2p2

)
cos (α)

]
cos (χ)

}
(3.109)

and

I+ = |〈Sx; +|Φ〉|2 =
n

8 (a+ b)

[(
e−i(χ−α)/2

√
b+ ei(χ−α)/2√a

)
+

+
(

e−i(χ+α)/2
√
b+ ei(χ+α)/2√a

)
(1− 2p)

] [(
ei(χ−α)/2

√
b+ e−i(χ−α)/2√a

)
+

+
(

ei(χ+α)/2
√
b+ e−i(χ+α)/2√a

)
(1− 2p)

]
=

1

4 (a+ b)

1

1− 2p+ p2

{
[a+ b]

[
1− 2p+ 2p2 + (1− 2p) cos (α)

]
−

−4
√
ab p [p− 1] sin (α) sin (χ) + 2

√
ab
[
1− 2p+

(
1− 2p+ 2p2

)
cos (α)

]
cos (χ)

}
(3.110)

Putting Eqs. (3.109) and (3.110) into Eq. (3.97), we get the experimentally expected weak
value, using the calculational method of the Taylor expansion including arbitrary absorbers and
taking into account a non perfect degree of polarization.

∣∣∣〈Π̂z〉w
∣∣∣ =

1

α
arccos

 [1− 2p]
[
(a+ b) cos (α) + 2

√
ab cos (χ)

]
(a+ b) [1 + 2p (p− 1)] +

√
ab
[
cos (α− χ) + (1− 2p)2 cos (α+ χ)

]
 .

(3.111)

For p = 0, that is for a perfect degree of polarization, it simplifies to

∣∣∣〈Π̂z〉w
∣∣∣ =

1

α
arccos

[
(a+ b) cos (α) + 2

√
ab cos (χ)

a+ b+ 2
√
ab cos (α) cos (χ)

]
, (3.112)
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which is just what we would expect considering the previous calculationsf. For the exact ap-
proach the weak value turns out to be∣∣∣〈Π̂z〉w

∣∣∣ =

√
cot2

(α
2

) N
D
, (3.113)

where N and D are given by

N = [a+ b]
[
1− 2p+ 2p2 + (2p− 1) cos (α)

]
+ 2
√
ab
[
2p− 1 +

(
1− 2p+ 2p2

)
cos (α)

]
cos (χ)−

− 4
√
ab(p− 1)p sin (α) sin (χ) (3.114)

and

D = [a+ b]
[
1− 2p+ 2p2 + (1− 2p) cos (α)

]
+ 2
√
ab
[
1− 2p+

(
1− 2p+ 2p2

)
cos (α)

]
cos (χ)−

− 4
√
ab (p− 1) p sin (α) sin (χ) (3.115)

which becomes ∣∣∣〈Π̂z〉w
∣∣∣ =

√
a+ b− 2

√
ab cos (χ)

a+ b+ 2
√
ab cos (χ)

(3.116)

for p = 0. This is the absolute of the weak value calculated in Eq. (3.104) and shows that the
calculations performed so far are consistent.
Unfortunately we are still not at our goal. We want to describe the real system as accurately
as possible. Because of that we have to take one more factor into account: the contrast of the
neutron interferometer. It was considered to be 100% in all calculations so far. In practice it
will not be unity, but less. To take this effect into account all intensity obtained by oscillations
dependent on χ have to be weighted by a factor C. Equation (3.111) then becomes

∣∣∣〈Π̂z〉w
∣∣∣ =

1

α
arccos

 [1− 2p]
[
(a+ b) cos (α) + 2

√
ab C cos (χ)

]
(a+ b) [1 + 2p (p− 1)] +

√
ab C

[
cos (α− χ) + (1− 2p)2 cos (α+ χ)

]


(3.117)

Equations (3.114) and (3.115) are then given by

N = [a+ b]
[
1− 2p+ 2p2 + (2p− 1) cos (α)

]
+ 2
√
ab
[
2p− 1 +

(
1− 2p+ 2p2

)
cos (α)

]
C cos (χ)−

− 4
√
ab(p− 1)p sin (α)C sin (χ) (3.118)

and

D = [a+ b]
[
1− 2p+ 2p2 + (1− 2p) cos (α)

]
+ 2
√
ab
[
1− 2p+

(
1− 2p+ 2p2

)
cos (α)

]
C cos (χ)−

− 4
√
ab (p− 1) p sin (α)C sin (χ) (3.119)

A closer look at Eq. (3.117) shows that the experimental imperfections have mainly two ef-
fects:

1. If the degree of polarization is not perfect, i.e. if p 6= 0, then the curve that one would

fSee for example Eq. (3.84).
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expect to measure for the path operators weak value becomes asymmetric. At one edge
the curve’s flank falls off more steeply than on the other side, which causes the minima
and maxima of the graph to shift into the negative direction of χ.

2. If the contrast of the interferometer is less than unity, the expected curve becomes damped.
The weak value does not reach zero any more and the points of discontinuities at which
the final and initial state are orthogonal vanish.

Figure 3.18 shows Eq. (3.84) and Eq. (3.117) for a = b = 0.5, C = 0.8, p = 0.02 and α = π/36.
The weak value’s curve, that can be retrieved by an experiment will look much more like the

 0

 1
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 6

-6 -4 -2  0  2  4  6
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Π
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Figure 3.18.: Plot of the expected measurement results for a perfect setup [Eq. (3.84)] and for
a realistic one [Eq. (3.117)] with a = b = 0.5, C = 0.8, p = 0.02 and α = π/36:
The imperfect degree of polarization causes the curve to become asymmetric, the
imperfect contrast causes a compression of the graph’s amplitude.

blue dashed line in Fig. 3.18 than the red solid one.

3.2.3. Other path operators

It is also worth looking at other path operators, for instance, Π̂x = |I〉〈II| + |II〉〈I| and

Π̂y = i|II〉〈I|− i|I〉〈II|. For the initial and final state, |Pi〉 = 1√
a+b

[
e−iχ/2

√
b|I〉+ eiχ/2

√
a|II〉

]
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and |Pf 〉 =
√

1
2 (|I〉+ |II〉), they are

〈Π̂x〉w =
〈Pf |Π̂x|Pi〉
〈Pf |Pi〉

=
[〈I|+ 〈II|]

[
e−iχ/2

√
b|I〉+ eiχ/2

√
a|II〉

]
[〈I|+ 〈II|]

[
e−iχ/2

√
b|I〉+ eiχ/2

√
a|II〉

]
=

√
b+
√
a eiχ√

b+
√
a eiχ

= const. = 1 (3.120)

and

〈Π̂y〉w =
〈Pf |Π̂y|Pi〉
〈Pf |Pi〉

=
[〈I|+ 〈II|]

[
ie−iχ/2

√
b|II〉 − ieiχ/2

√
a|I〉

]
[〈I|+ 〈II|]

[
e−iχ/2

√
b|I〉+ eiχ/2

√
a|II〉

]
=
i
√
b− i
√
a eiχ√

b+
√
a eiχ

(3.121)

As previously with the spin operator we find that

Im
(
〈Π̂z〉w

)
= −Re

(
〈Π̂y〉w

)
(3.122)

and

Re
(
〈Π̂z〉w

)
= Im

(
〈Π̂y〉w

)
, (3.123)

as well as

Abs
(
〈Π̂z〉w

)
= Abs

(
〈Π̂y〉w

)
. (3.124)

Naturally the question arises if 〈Π̂x〉w and 〈Π̂y〉w can be measured in a similar fashion as 〈Π̂z〉w.
Unfortunately the answer is not straight forward. |I〉 and |II〉 are not eigenstates of the x- and
y-operator any more. Therefore the interaction Hamiltonian cannot be constructed simply as
above. In other words: There is no spin rotation that can be performed in path I or II, so that
its influence on the system can be described by a Hamiltonian of the form

Ĥint ∝ Π̂x/yσ̂
s
i , (3.125)

with i = x, y, z. One cannot simply use path conditioned spin rotations any more.
However, it is possible to perform a weak spin rotation in only one of the paths, which enables one
to measure the weak value of Π̂I and Π̂II . The interaction Hamiltonian for such a measurement
is given by

Ĥj = −~µ ~BΠ̂j = −γŜ ~BΠ̂j ≡
−ασ̂szΠ̂j

2
. (3.126)
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where the index j can become either I or II depending on the path the rotation is performed
in. If only one path is marked by a weak rotation Eq. (3.61) changes intog

〈σ̂sx〉 = cos
(
α〈Π̂j〉

)
(3.127)

which leads to the weak value

〈Π̂j〉 =
1

α
arccos

(
Ij+ − I

j
−

Ij+ − I
j
−

)
(3.128)

where Ij+ and Ij− stand for the measured intensities of the |Sx; +〉 and |Sx;−〉 state, if the
rotation is performed in path j. To determine if we are really able to measure the weak value
of Π̂I and Π̂II , we now have to calculate those intensities:
If the rotation is performed along path I the system’s wave function changes into

|ψ′〉I = eiαΠ̂I σ̂
s
z/2|ψ〉 =

√
1

2 (a+ b)
eiαΠ̂I σ̂

s
z/2
(

e−iχ/2
√
b|I〉+ eiχ/2

√
a|II〉

)
(|Sz; +〉+ |Sz;−〉)

=

√
1

2 (a+ b)
eiαΠ̂I σ̂

s
z/2
(

e−iχ/2
√
b|I〉|Sz; +〉+ e−iχ/2

√
b|I〉|Sz;−〉 +

+ eiχ/2
√
a|II〉|Sz; +〉+ eiχ/2

√
a|II〉|Sz;−〉

)
=

√
1

2 (a+ b)

(
e−iχ/2

√
beiα/2|I〉|Sz; +〉+ e−iχ/2

√
be−iα/2|I〉|Sz;−〉 +

+ eiχ/2
√
a|II〉|Sz; +〉+ eiχ/2

√
a|II〉|Sz;−〉

)
, (3.129)

which becomes

|Φ〉I =

√
1

4 (a+ b)

{[
e−i(χ−α)/2

√
b+ eiχ/2

√
a
]
|Sz; +〉+

[
e−i(χ+α)/2

√
b+ eiχ/2

√
a
]
|Sz;−〉

}
|Pf 〉

(3.130)

after post selection on the final state |Pf 〉 =
√

1
2 (|I〉+ |II〉). To evaluate Eq. (3.128) we have

to calculate the matrix elements 〈Sx; +|Φ〉I and 〈Sx;−|Φ〉I .

〈Sx; +|Φ〉I =

√
1

8 (a+ b)

{[
e−i(χ−α)/2

√
b+ eiχ/2

√
a
]

+
[
e−i(χ+α)/2

√
b+ eiχ/2

√
a
]}
|Pf 〉

(3.131)

and

〈Sx;−|Φ〉I =

√
1

8 (a+ b)

{[
e−i(χ−α)/2

√
b+ eiχ/2

√
a
]
−
[
e−i(χ+α)/2

√
b+ eiχ/2

√
a
]}
|Pf 〉.

(3.132)

gThe calculation is exactly the same as before, except that Π̂z has to be replaced by Π̂j everywhere. Since this
is rather trivial, it is not repeated in detail here.
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This leads to the intensities

II+ = |〈Sx; +|Φ〉I |2 =
1

8 (a+ b)

{[
e−i(χ−α)/2

√
b+ eiχ/2

√
a
]

+
[
e−i(χ+α)/2

√
b+ eiχ/2

√
a
]}
×

×
{[

ei(χ−α)/2
√
b+ e−iχ/2

√
a
]

+
[
ei(χ+α)/2

√
b+ e−iχ/2

√
a
]}

=
1

4 (a+ b)

[
2a+ b+ b cos (α) + 4

√
ab cos

(α
2

)
cos (χ)

]
(3.133)

and

II− = |〈Sx;−|Φ〉I |2 =
1

8 (a+ b)

{[
e−i(χ−α)/2

√
b+ eiχ/2

√
a
]
−
[
e−i(χ+α)/2

√
b+ eiχ/2

√
a
]}
×

×
{[

ei(χ−α)/2
√
b+ e−iχ/2

√
a
]
−
[
ei(χ+α)/2

√
b+ e−iχ/2

√
a
]}

=
b

4 (a+ b)
[1− cos (α)] . (3.134)

With Eq. (3.128) we get the weak value of 〈Π̂I〉w∣∣∣〈Π̂I〉w
∣∣∣ =

1

α
arccos

{
1 +

b [cos (α)− 1]

a+ b+ 2
√
ab cos

(
α
2

)
cos (χ)

}
. (3.135)

If the weak rotation is performed in path II, the same calculation can be performed to obtain
the weak value of 〈Π̂〉II . Now the system’s wave function becomes

|ψ′〉II = eiαΠ̂II σ̂
s
z/2|ψ〉 =

√
1

2 (a+ b)
eiαΠ̂II σ̂

s
z/2
(

e−iχ/2
√
b|I〉+ eiχ/2

√
a|II〉

)
(|Sz; +〉+ |Sz;−〉)

=

√
1

2 (a+ b)
eiαΠ̂II σ̂

s
z/2
(

e−iχ/2
√
b|I〉|Sz; +〉+ e−iχ/2

√
b|I〉|Sz;−〉 +

+ eiχ/2
√
a|II〉|Sz; +〉+ eiχ/2

√
a|II〉|Sz;−〉

)
=

√
1

2 (a+ b)

(
e−iχ/2

√
b|I〉|Sz; +〉+ e−iχ/2

√
b|I〉|Sz;−〉 +

+ eiχ/2
√
aeiα/2|II〉|Sz; +〉+ eiχ/2

√
ae−iα/2|II〉|Sz;−〉

)
(3.136)

and

|Φ〉II =

√
1

4 (a+ b)

{[
e−iχ/2

√
b+ ei(χ+α)/2√a

]
|Sz; +〉+

[
e−iχ/2

√
b+ ei(χ−α)/2√a

]
|Sz;−〉

}
|Pf 〉

(3.137)

after post selection. The matrix elements 〈Sx; +|Φ〉II and 〈Sx;−|Φ〉II are

〈Sx; +|Φ〉II =

√
1

8 (a+ b)

{[
e−iχ/2

√
b+ ei(χ+α)/2√a

]
+
[
e−iχ/2

√
b+ ei(χ−α)/2√a

]}
|Pf 〉

(3.138)
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and

〈Sx;−|Φ〉II =

√
1

8 (a+ b)

{[
e−iχ/2

√
b+ ei(χ+α)/2√a

]
−
[
e−iχ/2

√
b+ ei(χ−α)/2√a

]}
|Pf 〉

(3.139)

leading to the intensities

III+ = |〈Sx; +|Φ〉II |2 =
1

8 (a+ b)

{[
e−iχ/2

√
b+ ei(χ+α)/2√a

]
+
[
e−iχ/2

√
b+ ei(χ−α)/2√a

]}
×

×
{[

eiχ/2
√
b+ e−i(χ+α)/2√a

]
+
[
eiχ/2

√
b+ e−i(χ−α)/2√a

]}
=

1

4 (a+ b)

[
a+ 2b+ a cos (α) + 4

√
ab cos

(α
2

)
cos (χ)

]
(3.140)

and

III− = |〈Sx;−|Φ〉II |2 =
1

8 (a+ b)

{[
e−iχ/2

√
b+ ei(χ+α)/2√a

]
−
[
e−iχ/2

√
b+ ei(χ−α)/2√a

]}
×

×
{[

eiχ/2
√
b+ e−i(χ+α)/2√a

]
−
[
eiχ/2

√
b+ e−i(χ−α)/2√a

]}
=

a

4 (a+ b)
[1− cos (α)] . (3.141)

So the weak value of Π̂II is given by

∣∣∣〈Π̂II〉w
∣∣∣ =

1

α
arccos

{
1 +

a [cos (α)− 1]

a+ b+ 2
√
ab cos

(
α
2

)
cos (χ)

}
. (3.142)

Again it is possible to simply calculate the analytic solution of 〈Π̂I〉w and 〈Π̂II〉w for given |Pi〉
and |Pf 〉.

〈Π̂I〉w ≡
〈Pf |Π̂I |Pi〉
〈Pf |Pi〉

=
[〈I|+ 〈II|]

[
e−iχ/2

√
b|I〉

]
[〈I|+ 〈II|]

[
e−iχ/2

√
b|I〉+ eiχ/2

√
a|II〉

]
=

√
b e−iχ/2√

b e−iχ/2 +
√
a eiχ/2

=

√
b√

b+
√
a eiχ

(3.143)

and

〈Π̂II〉w ≡
〈Pf |Π̂II |Pi〉
〈Pf |Pi〉

=
[〈I|+ 〈II|]

[
eiχ/2

√
a|II〉

]
[〈I|+ 〈II|]

[
e−iχ/2

√
b|I〉+ eiχ/2

√
a|II〉

]
=

√
a eiχ/2√

b e−iχ/2 +
√
a eiχ/2

=

√
a√

b e−iχ +
√
a

(3.144)

As is shown shortly, the relations derived above will give the individual weak values of Π̂I and
Π̂II .
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3.2.4. Expected results for the individual weak values of Π̂I and Π̂II

The first question that comes into mind is the following: Do Eqs. (3.135) and (3.142) match
Eqs. (3.143) and (3.144) for a certain value of α? If the absolute of 〈Π̂I〉w and 〈Π̂II〉w are
plotted, the answer becomes quite obvious. For small values of α, i.e for α ≤ 10◦, Eq. (3.135)
and Eq. (3.142) represent the absolute of the operators’ Π̂I and Π̂II weak value. As Figs. 3.19
to 3.22 show, the analytic solution of 〈Π̂j〉w and its simulations match up perfectly for small
values of α. Figure 3.19 shows the weak value of Π̂I for a fixed absorber value of a = 0.5. Figure
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Figure 3.19.: Simulation [Eq. (3.135)] and the absolute of the weak value’s analytic solution
[absolute of Eq. (3.143)]. The absorber is modeled as |Pi〉 = e−iχ/2

√
b|I〉 +

eiχ/2
√
a|II〉 with a = b = 0.5 and α = π/36. χ represents the phase shifter value.

3.20 shows the weak value of Π̂I once more, but now the phase shifter is held fixed at χ = 0 and
the absorber is varied. To compare 〈Π̂I〉w and 〈Π̂II〉w the same plots are made for Π̂II . Figure
3.21 shows the weak value of Π̂II for a fixed absorber value of a = 0.5. Note that 〈Π̂I〉w and
〈Π̂II〉w are equal if the absorber is set to a = 0.5 and only the phase shifter χ is varied. Finally,
Fig. 3.22 shows the weak value of Π̂II for a fixed phase shifter value of χ = 0. Now the weak
value is mirror inverted to 〈Π̂I〉w.

So we have found a way to measure not only the absolute of 〈Π̂z〉w, but also Abs
(
〈Π̂I〉w

)
and

Abs
(
〈Π̂II〉w

)
!

The weak measurement of Π̂I and Π̂II has two big advantages . Firstly Eq. (3.135) and (3.142)
are not as angle sensitive as Eq. (3.84), i.e. the equation used to calculate 〈Π̂z〉w. This seems
surprising, since all of the mentioned equations were practically derived in the same way. Why
should the same approximation work better for one operator than for another? The answer to
this question is simple. To measure Π̂z weakly it is necessary to perform a spin rotation along
both paths of the interferometer. Therefore a relative phase between path I and II is introduced,
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Figure 3.20.: Simulation [Eq. (3.135)] and the absolute of the weak value’s analytic solution
[absolute of Eq. (3.143)]. The absorber is modeled as |Pi〉 = e−iχ/2

√
b|I〉 +

eiχ/2
√
a|II〉 and the phase shifter is set to χ = 0. The interaction strength is

given by α = π/36. a represents the absorber value.

which is 2× α. In comparison to that, the relative phase between the paths is only α, if either
Π̂I or Π̂II are measured weakly. Hence the disturbance on the system is smaller if the spin is
only turned in one path and the condition of a weak measurement is fulfilled better.
There is another even bigger advantage when Π̂I and Π̂II are measured weakly instead of
Π̂z. Previously it was stated, that no pure ’which-way-information’ can be extracted from the
system, since the experiment only permits to measure the absolute of the operator’s weak value.
However, the weak measurement of Π̂I and Π̂II offers a workaround:

If the first path is blocked completely Abs
(
〈Π̂I〉w

)
becomes 0, which means that the whole

ensemble went through the second path. In comparison to that it becomes 1, if the second path

is blocked. More than that we can measure Abs
(
〈Π̂I〉w

)
and Abs

(
〈Π̂II〉w

)
for any combination

of a, b and χ, which allows us to determine the path the ensemble took in the interferometer.
Thanks to the nature of weak measurements we still observe the interference pattern, which
would not be possible if a strong measurement is performed.

By turning the spin in one path, measure
∣∣∣〈Π̂I〉w

∣∣∣, then turn the spin in the other path to obtain∣∣∣〈Π̂II〉w
∣∣∣, we can extract pure which way information from the measurement!

68



3. Weak value measurements using neutrons

 0

 1

 2

 3

 4

 5

 6

 7

 8

-3 -2 -1  0  1  2  3

|<
Π

II
>

w
| 
[a

.u
.]

χ [rad]

ANALYTIC

SIMULATION

Figure 3.21.: Simulation [Eq. (3.142)] and the absolute of the weak value’s analytic solution
[absolute of Eq. (3.144)]. The absorber is modeled as |Pi〉 = e−iχ/2

√
b|I〉 +

eiχ/2
√
a|II〉 with a = b = 0.5 and α = π/36. χ represents the phase shifter value.
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Figure 3.22.: Simulation [Eq. (3.142)] and the absolute of the weak value’s analytic solution
[absolute of Eq. (3.144)]. The absorber is modeled as |Pi〉 = e−iχ/2

√
b|I〉 +

eiχ/2
√
a|II〉 and the phase shifter is set to χ = 0. The interaction strength is

given by α = π/36. a represents the absorber value.
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3.2.5. Evaluation of σ̂sy and σ̂sz

The present experimental setup allows, to evaluate σ̂sx in order to extract the weak value, since
hardly any loss in the count rate is introduced, by the path weak measurement. But what
happens if σ̂sy is evaluated instead? For this we have to take the system’s wave function after
the weak measurement, which is given by Eq. (3.57) and calculate 〈σ̂sy〉.

〈σ̂sy〉 =
〈Φ|σ̂sy|Φ〉
〈Φ|Φ〉

=
1

2

εε∗

〈Φ|Φ〉

(
e−iα〈Π̂z〉w/2〈Sz; +|+ eiα〈Π̂z〉w/2〈Sz;−|

)
×

× i (|Sz;−〉〈Sz; +| − |Sz; +〉〈Sz;−|)
(

eiα〈Π̂z〉w/2|Sz; +〉+ e−iα〈Π̂z〉w/2|Sz;−〉
)
〈Pf |Pf 〉

=
i

2

|ε|2

〈Φ|Φ〉

(
e−iα〈Π̂z〉w/2〈Sz; +|+ eiα〈Π̂z〉w/2〈Sz;−|

)(
eiα〈Π̂z〉w/2|Sz;−〉 − e−iα〈Π̂z〉w/2|Sz; +〉

)
=
i

2

|ε|2

〈Φ|Φ〉

(
eiα〈Π̂z〉w − e−iα〈Π̂z〉w

)
= − sin

(
α〈Π̂z〉w

)
(3.145)

For this case the weak value becomes

〈Π̂z〉w =
1

α
arcsin

(
Iy− − I

y
+

Iy− + Iy+

)
(3.146)

To see if Eq. (3.146) yields the same results as previously, we have to calculate the intensities
Iy+ and Iy−. Taking the results from Eq. (3.74) and Eq. (3.75) we get the matrix elements

〈Sy; +|Φ〉 =

√
1

8 (a+ b)

{[
e−i(χ−α)/2

√
b+ ei(χ−α)/2√a

]
− i
[
e−i(χ+α)/2

√
b+ ei(χ+α)/2√a

]}
|Pf 〉

(3.147)

and

〈Sy;−|Φ〉 =

√
1

8 (a+ b)

{[
e−i(χ−α)/2

√
b+ ei(χ−α)/2√a

]
+ i
[
e−i(χ+α)/2

√
b+ ei(χ+α)/2√a

]}
|Pf 〉

(3.148)

which lead us to the intensities

Iy+ = |〈Sy; +|Φ〉|2 =
1

4 (a+ b)

[
a+ b+ 2

√
ab cos (χ) cos (α) + (a− b) sin (α)

]
(3.149)

and

Iy− = |〈Sy;−|Φ〉|2 =
1

4 (a+ b)

[
a+ b+ 2

√
ab cos (χ) cos (α) + (b− a) sin (α)

]
(3.150)

Hence, the weak value of Π̂z is given by

〈Π̂z〉w =
1

α
arcsin

(
(b− a) sin (α)

a+ b+ 2
√
ab cos (χ) cos (α)

)
(3.151)
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Equation (3.151) is now plotted for fixed values of α and χ and by assuming, that b = 1 −
a. Figure 3.23 shows a plot of 〈Π̂z〉w’s analytic solution compared to its simulation.one sees
immediately that analyzing 〈σ̂sy〉 yields the real part of 〈Π̂z〉w!

Let us check if we are able to measure the real part of 〈Π̂I〉w and 〈Π̂II〉w in the same way. If
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Figure 3.23.: Simulation [Eq. (3.151)] and the real part of the weak value’s analytic solution
[real part of Eq. (3.69)] for a fixed phase shifter value of χ = 4π

5 and an angle of
rotation of α = π/18, if 〈σ̂sy〉 is analyzed. a represents the absorber value.

〈σ̂sy〉 is evaluated, Eq. (3.128) changes into

〈Π̂j〉 =
1

α
arcsin

(
I
yj
− − I

yj
+

I
yj
− + I

yj
+

)
(3.152)

If the spin is turned along path I, evaluating the matrix elements

〈Sy; +|Φ〉I =

√
1

8 (a+ b)

{[
e−i(χ−α)/2

√
b+ eiχ/2

√
a
]
− i
[
e−i(χ+α)/2

√
b+ eiχ/2

√
a
]}
|Pf 〉

(3.153)

and

〈Sy;−|Φ〉I =

√
1

8 (a+ b)

{[
e−i(χ−α)/2

√
b+ eiχ/2

√
a
]

+ i
[
e−i(χ+α)/2

√
b+ eiχ/2

√
a
]}
|Pf 〉

(3.154)
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lead to the intensities

IyI+ =
a+ b+ 2

√
ab cos (χ)

[
cos
(
α
2

)
− sin

(
α
2

)]
− b sin (α)

4 (a+ b)
(3.155)

and

IyI− =
a+ b+ 2

√
ab cos (χ)

[
cos
(
α
2

)
+ sin

(
α
2

)]
+ b sin (α)

4 (a+ b)
, (3.156)

which tell us the expectation value of σ̂sy

〈σ̂sy〉I =
IyI− − I

yI
+

IyI− − I
yI
+

=
2
√
ab cos (χ) sin

(
α
2

)
+ b sin (α)

a+ b+ 2
√
ab cos

(
α
2

)
cos (χ)

(3.157)

Therefore we are expecting our measurements to yield the following result for the weak value

〈Π̂I〉w =
1

α
arcsin

[
2
√
ab cos (χ) sin

(
α
2

)
+ b sin (α)

a+ b+ 2
√
ab cos

(
α
2

)
cos (χ)

]
(3.158)

Equation (3.158) is now plotted for fixed values of α and χ and it is assumed that b = 1 − a
(as it was done in Fig. 3.24). It is not surprising to find, that we can measure the real part of

〈Π̂I〉w in the same way as Re
(
〈Π̂z〉w

)
. For completeness sake, we finally want to show that we
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Figure 3.24.: Simulation [Eq. (3.158)] and the real part of the weak value’s analytic solution
[real part of Eq. (3.143)] for a fixed phase shifter value of χ = 5π

6 and an angle of
rotation of α = π/18, as well as for b = 1− a, if 〈σ̂sy〉 is analyzed. a represents the
absorber value.
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can also measure the real part of 〈Π̂II〉. The matrix elements

〈Sy; +|Φ〉II =

√
1

8 (a+ b)

{[
e−iχ/2

√
b+ ei(χ+α)/2√a

]
− i
[
e−iχ/2

√
b+ ei(χ−α)/2√a

]}
|Pf 〉

(3.159)

and

〈Sy;−|Φ〉II =

√
1

8 (a+ b)

{[
e−iχ/2

√
b+ ei(χ+α)/2√a

]
+ i
[
e−iχ/2

√
b+ ei(χ−α)/2√a

]}
|Pf 〉

(3.160)

yield the intensities

IyII+ =
a+ b+ 2

√
ab cos (χ)

[
cos
(
α
2

)
− sin

(
α
2

)]
− a sin (α)

4 (a+ b)
(3.161)

and

IyII− =
a+ b+ 2

√
ab cos (χ)

[
cos
(
α
2

)
+ sin

(
α
2

)]
+ a sin (α)

4 (a+ b)
(3.162)

which lead to the weak value

〈Π̂II〉w =
1

α
arcsin

[
2
√
ab cos (χ) sin

(
α
2

)
+ a sin (α)

a+ b+ 2
√
ab cos

(
α
2

)
cos (χ)

]
(3.163)

Again we find that we can measure Re
(
〈Π̂II〉

)
, as can be seen by looking at Fig. 3.25, which

shows a plot of Eq. (3.163) for fixed values of α and χ (is assumed that b = 1− a).

Obviously we found a way to measure Re
(
〈Π̂z〉w

)
directly by evaluating 〈σ̂sy〉.

If the analysis of 〈σ̂sx〉 yields Abs
(
〈Π̂z〉w

)
and the one of 〈σ̂sy〉, Re

(
〈Π̂z〉w

)
, it immediately

suggests itself that the evaluation of 〈σ̂sz〉 will give us Im
(
〈Π̂z〉w

)
. However, we are going to

show that this is not the case: If the spin state lies within the xy-plane and is rotated only
around the z-axis, 〈σ̂sz〉 will always equal zero. Therefore the axis of rotation has to be changed
and our new interaction Hamiltonian is

Ĥi ≡ −
ασ̂syΠ̂z

2
. (3.164)
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Figure 3.25.: Simulation [Eq. (3.163)] and the real part of the weak value’s analytic solution
[real part of Eq. (3.144)] for a fixed phase shifter value of χ = 5π

6 and an angle of
rotation of α = π/18, as well as for b = 1− a, if 〈σ̂sy〉 is analyzed. a represents the
absorber value.

If we now let this Hamiltonian act on the system its wave function, given by Eq. (3.54),
becomes

|ψ′〉 = eiασ̂
s
yΠ̂z/2|ψ〉 ≈

(
1 +

iασ̂syΠ̂z

2

)
|ψ〉 = |Pi〉|Sx; +〉+

iαΠ̂z

2
|Pi〉σ̂sy|Sx; +〉

= |Pi〉
√

1

2
(|Sz; +〉+ |Sz;−〉) +

iαΠ̂z

2
|Pi〉i

√
1

2
(|Sz;−〉 − |Sz; +〉)

= |Pi〉
√

1

2
(|Sz; +〉+ |Sz;−〉)−

αΠ̂z

2
|Pi〉

√
1

2
(|Sz;−〉 − |Sz; +〉) . (3.165)

Once post selection onto the final path state |Pf 〉〈Pf | is performed, this simplifies to

|Φ〉 = |Pf 〉〈Pf |ψ′〉 =

〈Pf |Pi〉︸ ︷︷ ︸
≡ε

√
1

2
(|Sz; +〉+ |Sz;−〉)−

α

2
〈Pf |Π̂z|Pi〉

√
1

2
(|Sz;−〉 − |Sz; +〉)

 |Pf 〉
=

ε√
2

[
|Sz; +〉+ |Sz;−〉+

α

2
〈Π̂z〉w|Sz; +〉 − α

2
〈Π̂z〉w|Sz;−〉

]
|Pf 〉

=
ε√
2

[(
1 +

α〈Π̂z〉w
2

)
|Sz; +〉+

(
1− α〈Π̂z〉w

2

)
|Sz;−〉

]
|Pf 〉

=
ε√
2

(
eα〈Π̂z〉w/2|Sz; +〉+ e−α〈Π̂z〉w/2|Sz;−〉

)
|Pf 〉 (3.166)
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3. Weak value measurements using neutrons

Instead of an additional phase, the weak value now manifests itself change in the amplitude.
Equation (3.166) can now be used to evaluate 〈σ̂sz〉.

〈σ̂sz〉 =
|ε|2

2

〈Pf |Pf 〉
〈Φ|Φ〉

(
eα〈Π̂z〉w/2〈Sz; +|+ e−α〈Π̂z〉w/2〈Sz;−|

)(
eα〈Π̂z〉w/2|Sz; +〉 − e−α〈Π̂z〉w/2|Sz;−〉

)
=

1

2

|ε|2

〈Φ|Φ〉

(
eα〈Π̂z〉w − e−α〈Π̂z〉w

)
=
|ε|2

〈Φ|Φ〉
sinh

(
α〈Π̂z〉w

)
(3.167)

With

〈Φ|Φ〉 =
|ε|2

2

(
eα〈Π̂z〉w〈Sz; +|+ e−α〈Π̂z〉w〈Sz;−|

)(
eα〈Π̂z〉w |Sz; +〉+ e−α〈Π̂z〉w |Sz;−〉

)
〈Pf |Pf 〉

= |ε|2 cosh
(
α〈Π̂z〉w

)
(3.168)

we get

〈Π̂z〉w =
1

α
arctanh

(
Iz+ − Iz−
Iz+ + Iz−

)
(3.169)

To gain useful information from this equation we have to calculate the intensities Iz+ and Iz−,

for which we let Û = exp

(
iαΠ̂z σ̂sy

2

)
act upon the system.

|ψ′〉 = eiαΠ̂z σ̂sy/2|ψ〉 =

√
1

2 (a+ b)
eiαΠ̂z σ̂sy/2

(
e−iχ/2

√
b|I〉+ eiχ/2

√
a|II〉

)
(|Sz; +〉+ |Sz;−〉)

=

√
1

2 (a+ b)

(
e−iχ/2

√
b eiασ̂

s
y/2|I〉+ eiχ/2

√
a e−iασ̂

s
y/2|II〉

)
(|Sz; +〉+ |Sz;−〉)

=

√
1

2 (a+ b)

(
e−iχ/2

√
b eiασ̂

s
y/2|I〉|Sz; +〉+ e−iχ/2

√
b eiασ̂

s
y/2|I〉|Sz;−〉+

+ eiχ/2
√
a e−iασ̂

s
y/2|II〉|Sz; +〉+ eiχ/2

√
a e−iασ̂

s
y/2|II〉|Sz;−〉

)
=

√
1

2 (a+ b)

{
e−iχ/2

√
b
[
cos
(α

2

)
+ iσ̂sy sin

(α
2

)]
|I〉|Sz; +〉+

+ e−iχ/2
√
b
[
cos
(α

2

)
+ iσ̂sy sin

(α
2

)]
|I〉|Sz;−〉+

+ eiχ/2
√
a
[
cos
(α

2

)
− iσ̂sy sin

(α
2

)]
|II〉|Sz; +〉+

+ eiχ/2
√
a
[
cos
(α

2

)
− iσ̂sy sin

(α
2

)]
|II〉|Sz;−〉

)
=

√
1

2 (a+ b)

[
e−iχ/2

√
b cos

(α
2

)
|I〉|Sz; +〉 − e−iχ/2

√
b sin

(α
2

)
|I〉|Sz;−〉 +

+ e−iχ/2
√
b cos

(α
2

)
|I〉|Sz;−〉+ e−iχ/2

√
b sin

(α
2

)
|I〉|Sz; +〉+

+ eiχ/2
√
a cos

(α
2

)
|II〉|Sz; +〉+ eiχ/2

√
a sin

(α
2

)
|II〉|Sz;−〉+

+eiχ/2
√
a cos

(α
2

)
|II〉|Sz;−〉 − eiχ/2

√
a sin

(α
2

)
|II〉|Sz; +〉

]
(3.170)
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Now post selection onto |Pf 〉 is performed:

|Φ〉 = |Pf 〉〈Pf |ψ′〉 =

√
1

4 (a+ b)

{[
e−iχ/2

√
b cos

(α
2

)
+ e−iχ/2

√
b sin

(α
2

)
+ eiχ/2

√
a cos

(α
2

)
−

− eiχ/2
√
a sin

(α
2

)]
|Sz; +〉+

[
e−iχ/2

√
b cos

(α
2

)
− e−iχ/2

√
b sin

(α
2

)
+

+eiχ/2
√
a sin

(α
2

)
+ eiχ/2

√
a cos

(α
2

)]
|Sz;−〉

}
|Pf 〉

=

√
1

4 (a+ b)

{[
e−iχ/2

√
2b sin

(π
4

+
α

2

)
+ eiχ/2

√
2a sin

(π
4
− α

2

)]
|Sz; +〉+

+
[
e−iχ/2

√
2b sin

(π
4
− α

2

)
+ eiχ/2

√
2a sin

(π
4

+
α

2

)]
|Sz;−〉

}
|Pf 〉 (3.171)

Now we are able to calculate the matrix elements 〈Sz; +|Φ〉 and 〈Sz;−|Φ〉.

〈Sz; +|Φ〉 =

√
1

4 (a+ b)

[
e−iχ/2

√
2b sin

(π
4

+
α

2

)
+ eiχ/2

√
2a sin

(π
4
− α

2

)]
|Pf 〉 (3.172)

and

〈Sz;−|Φ〉 =

√
1

4 (a+ b)

[
e−iχ/2

√
2b sin

(π
4
− α

2

)
+ eiχ/2

√
2a sin

(π
4

+
α

2

)]
|Pf 〉 (3.173)

which leads to the intensities

Iz+ = |〈Sz; +|Φ〉|2 =
1

4 (a+ b)

[
a+ b+ 2

√
ab cos (α) cos (χ) + (b− a) sin (α)

]
(3.174)

and

Iz− = |〈Sz; +|Φ〉|2 =
1

4 (a+ b)

[
a+ b+ 2

√
ab cos (α) cos (χ) + (a− b) sin (α)

]
(3.175)

Therefore the weak value is now given by

〈Π̂z〉w =
1

α
arctanh

(
(b− a) sin (α)

a+ b+ 2
√
ab cos (χ) cos (α)

)
(3.176)

Performing the same analysis as previously shows, that Eq. (3.176) fails to give us the imaginary
part of 〈Π̂z〉w, but instead it yields the real part again!
Why our educated guess is wrong, is not clear at the moment. Let us summarize what we know
so far:
There are twelve different ways to conduct the experiment described above. For every initial
spin state there are three different possibilities. Once |Si〉 is prepared, it is possible to perform
rotations around two different axes and finally there are two different directions of analysis.
The results of the calculations performed so far are presented in Table 3.2.h It seems that, the
measurements are fundamentally restricted by the choice of axis of rotation and direction of
analysis and that it is possible to only measure the real part as well as the absolute values of

hAll of the results presented in Table 3.2 were minutely calculated, however not all of them are presented in
detail above.
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3. Weak value measurements using neutrons

Initial Spin State Axis of Rotation Direction of Analysis Weak Value

|Sx; +〉 z x Abs
(
〈Π̂z〉w

)
|Sx; +〉 z y Re

(
〈Π̂z〉w

)
|Sx; +〉 y x Abs

(
〈Π̂z〉w

)
|Sx; +〉 y z Re

(
〈Π̂z〉w

)
|Sz; +〉 x x Abs

(
〈Π̂z〉w

)
Table 3.2.: Summary of what the measurement will yield for certain initial spin state, axis of

rotation and direction of analysis.

〈Π̂〉w, but not its imaginary part. To be certain one would have to calculate all twelve possible
ways to perform the experiment.
Nevertheless, since

Abs
(
〈Π̂〉w

)
=
∣∣∣Re

(
〈Π̂〉w

)∣∣∣+
∣∣∣Im(〈Π̂〉w)∣∣∣ (3.177)

the experiment yields the imaginary part’s absolute, which can be extracted by measuring

Abs
(
〈Π̂〉w

)
and then subtract the real part’s absolute from that.

3.3. The ’Cheshire Cat’ - a quantum paradox

In this section a neutron interferometer experiment is proposed, in which weak spin rotations
are used to measure a so called ’Cheshire Cat’.
The ’Cheshire Cat’ is an experiment conceived by Y. Aharonov et al. [26] and aims to detangle
a physical property from the object it belongs to. For the case of a neutron interferometer
experiment this would mean to detangle neutron’s location from its spin. How this can be
done, is explained here:
Fig. 3.26 shows an experimental setup, that allows to measure such a ’Cheshire Cat’. The
neutron beam is prepared so that its polarization is parallel to the z-axis, i.e. the neutrons’
spin is in the |Sz; +〉 state. After the π

2 -turn the spin state is given by |Sx; +〉. As soon as the
neutrons enter the interferometer their wave function has to be extended by a path dependent
part |P 〉 so that it is given by |Ψ〉 = |S〉|P 〉. To complete the pre selection of the ensemble a
π-rotator is put into path II. The pre selected wave function then becomes

|i〉 = |S〉|Pi〉 =

√
1

2
|Sx; +〉|I〉+

√
1

2
|Sx;−〉|II〉 (3.178)

After the pre selection a weak measurement takes place. How this is done and how the interac-
tion Hamiltonian for such a system looks like, is described below. Finally the ensemble is post
selected onto the state

|f〉 = |Sx;−〉|Pf 〉 =
1

2
(|Sz; +〉 − |Sz;−〉) (|I〉+ |II〉) , (3.179)
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3. Weak value measurements using neutrons

Figure 3.26.: Experimental setup for measuring a Cheshire Cat: It consists of a π
2 -turner (ST)

and a π-rotator (SRI) to pre select the states, the neutron interferometer itself,
two spin rotators to perform the weak measurement (SRII & SRIII) and a post
selector [two coils to select the azimuth and polar angle (A & P), the red spin
analyzer (SA) and a detector (D)].

where |Pf 〉 is given by |Pf 〉 =
√

1
2 (|I〉+ |II〉). To understand the nature of the ’Cheshire Cat’

paradox we have to look at weak values of the products of the operators Π̂I , Π̂II , σ̂
s
+ and σ̂s−.

Those operators are the projectors onto the path I and II and the |Sz; +〉 and |Sz;−〉 spin states
respectively. They are given by

〈Π̂I σ̂
s
+〉w =

〈f |Π̂I σ̂
s
+|i〉

〈f |i〉
=

(〈Sx;−|〈Pf |) (|I〉〈I|) (|Sz; +〉〈Sz; +|) (|Sx; +〉|I〉+ |Sx;−〉|II〉)
(〈Sx;−|〈Pf |) (|Sx; +〉|I〉+ |Sx;−〉|II〉)

=
1

2

〈Π̂I σ̂
s
−〉w =

〈f |Π̂I σ̂
s
−|i〉

〈f |i〉
=

(〈Sx;−|〈Pf |) (|I〉〈I|) (|Sz;−〉〈Sz;−|) (|Sx; +〉|I〉+ |Sx;−〉|II〉)
(〈Sx;−|〈Pf |) (|Sx; +〉|I〉+ |Sx;−〉|II〉)

= −1

2

〈Π̂II σ̂
s
+〉w =

〈f |Π̂II σ̂
s
+|i〉

〈f |i〉
=

(〈Sx;−|〈Pf |) (|II〉〈II|) (|Sz; +〉〈Sz; +|) (|Sx; +〉|I〉+ |Sx;−〉|II〉)
(〈Sx;−|〈Pf |) (|Sx; +〉|I〉+ |Sx;−〉|II〉)

=
1

2

〈Π̂II σ̂
s
−〉w =

〈f |Π̂II σ̂
s
−|i〉

〈f |i〉
=

(〈Sx;−|〈Pf |) (|II〉〈II|) (|Sz;−〉〈Sz;−|) (|Sx; +〉|I〉+ |Sx;−〉|II〉)
(〈Sx;−|〈Pf |) (|Sx; +〉|I〉+ |Sx;−〉|II〉)

=
1

2

What do those operators mean? They represent occupations of a certain path and a certain
spin state, e.g. 〈Π̂I σ̂

s
+〉w represents the occupation of path one by the spin state |Sz; +〉.

The weak values of the operators above show a very interesting picture. The neutron has to
be in path II, since 〈Π̂II〉w is the sum of 〈Π̂II σ̂

s
+〉w and 〈Π̂II σ̂

s
−〉w and both equal 1

2 . At the

same time the sum of 〈Π̂I σ̂
s
+〉w and 〈Π̂I σ̂

s
−〉w vanishes, which means, that the neutron is not in

path I. Now 〈Π̂II σ̂
s
+〉w represents a |Sz; +〉 state in path II, while 〈Π̂II σ̂

s
−〉w represents a |Sz;−〉

state in the same path. Therefore there is no net weak spin in path II. 〈Π̂I σ̂
s
+〉w and 〈Π̂I σ̂

s
−〉w

both represent the |Sz; +〉 state in path I. Therefore the net weak spin is in path I while the
neutron’s weak location is in path II! For this pre and post selected system the neutron’s spin
and location are detangled and any interaction in the weak regime will show, that the particle
and its property are at two different locations [27].
To demonstrate this apparent paradox it would be necessary to measure the weak values of
σ̂szΠ̂I and σ̂szΠ̂II . While the first one equals 1 the latter one vanishes.
In principle the weak measurement can be performed using weak spin rotations. To measure
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〈σ̂szΠ̂I〉w, a weak and positive spin rotation is performed only along path I. The interaction
Hamiltonian for this measurement is

Ĥ1 = −~µ ~BΠ̂I = −γŜ ~BΠ̂I ≡ −
ασ̂szΠ̂I

2
(3.180)

By making the angle of rotation α small the condition for a weak measurement is fulfilled. The
evolution of the initial state caused by the weak measurement is given by

|i′〉 = eiασ̂
s
zΠ̂I/2|i〉 ≈

(
1 +

iα

2
σ̂szΠ̂I −

α2

8

[
σ̂szΠ̂I

]2
)
|i〉 = |i〉+

iα

2
σ̂szΠ̂I |i〉 −

α2

8
Π̂I |i〉 (3.181)

It is interesting to note that the formula exp (iσ̂ · n̂α) =1cos (α) + iσ̂ · n̂ sin (α) is not valid for

this calculation, since
(

Π̂I

)2
6=1. Because Π̂I is a projector, one gets

(
Π̂I

)2
= Π̂I .

Now the system is post selected onto the state 〈f |

〈f |i′〉 = 〈f |i〉+
iα

2
〈f |σ̂szΠ̂I |i〉 −

α2

8
〈f |Π̂I |i〉 (3.182)

which leads to the intensity at the O-detectori

Ion
1 = |〈f |i′〉|2 =

(
〈f |i〉+

iα

2
〈f |σ̂szΠ̂I |i〉 −

α2

8
〈f |Π̂I |i〉

)(
〈i|f〉 − iα

2
〈i|σ̂szΠ̂I |f〉 −

α2

8
〈i|Π̂I |f〉

)
= |〈f |i〉|2 +

iα

2
〈i|f〉〈f |σ̂szΠ̂I |i〉 −

α2

8
〈f |Π̂I |i〉〈i|f〉 −

iα

2
〈f |i〉〈i|σ̂szΠ̂I |f〉+

α2

4
|〈f |σ̂szΠ̂I |i〉|2+

+
α2

8

iα

2
〈f |Π̂I |i〉〈i|σ̂szΠ̂I |i〉 −

α2

8
〈f |i〉〈i|Π̂I |f〉 −

α2

8

iα

2
〈f |Π̂I |i〉〈i|σ̂szΠ̂I |i〉+

α4

64
|〈f |Π̂I |i〉|2

= |〈f |i〉|2 − α2

4
〈f |Π̂I |i〉〈i|f〉+

α2

4
|〈f |σ̂szΠ̂I |i〉|2 +O

(
α3
)

(3.183)

Eq. (3.183) can be further simplified, if its second term is evaluated using the definitions of |i〉
and |f〉

α2

4
〈f |Π̂I |i〉〈i|f〉 =

1

2
〈f |Π̂I |i〉

α2

4
= 0 (3.184)

Experimentally it can be verified easily that the matrix element 〈f |Π̂I |i〉 is zero. An absorber
has to be inserted into the interferometer, to check if the detected intensity changes or not.
So the intensity at the O-detector is really given by

Ion
1 = |〈f |i〉|2 +

α2

4
|〈f |σ̂szΠ̂I |i〉|2 (3.185)

If the weak spin rotation is turned off, the intensity at the O-detector becomes

Ioff
1 = |〈f |i〉|2 (3.186)

iThe following equation is valid, since all matrix elements are real and terms of the order O
(
α3

)
can be

neglected, because α� 1.
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By making a consecutive on and off measurement it is possible to extract the absolute square
of 〈σ̂szΠ̂I〉w which is then given by

∣∣∣〈σ̂szΠ̂I〉w
∣∣∣2 ≡

∣∣∣〈f |σ̂szΠ̂I |i〉
∣∣∣2

|〈f |i〉|2
=

4

α2

(
Ion

1

Ioff
1

− 1

)
(3.187)

To measure 〈σ̂szΠ̂II〉w a weak rotation only along path II is performed. The interaction Hamil-
tonian for this procedure is

Ĥ2 = −~µ ~BΠ̂II = −γŜ ~BΠ̂II ≡ −
ασ̂szΠ̂II

2
(3.188)

The same calculation as previously leads to the intensities for on and off-measurement

Ion
2 = |〈f |i〉|2 − α2

4
〈f |Π̂II |i〉〈i|f〉+

α2

4
|〈f |σ̂szΠ̂II |i〉|2 +O

(
α3
)

(3.189)

and

Ioff
2 = |〈f |i〉|2. (3.190)

Just as previously, Eq. (3.189) can be simplified by evaluating its second term

α2

4
〈f |Π̂II |i〉〈i|f〉 =

α2

4
〈f |Π̂II |i〉

1

2
=
α2

16
, (3.191)

which leads to the intensity.

Ion
1 = |〈f |i〉|2 − α2

16
+
α2

4
|〈f |σ̂szΠ̂I |i〉|2 (3.192)

The weak value of σ̂szΠ̂II becomes

∣∣∣〈σ̂szΠ̂II〉w
∣∣∣2 ≡

∣∣∣〈f |σ̂szΠ̂II |i〉
∣∣∣2

|〈f |i〉|2
=

4

α2

(
Ion

2

Ioff
2

− 1 +
α2

4

)
(3.193)

Thus it should be possible to extract absolute values of 〈σ̂szΠ̂I〉w and 〈σ̂szΠ̂II〉w by making four
consecutive measurements using weak spin rotations in each arm of the interferometer. In
addition to that absorber measurements in path I and II have to be performed, in order to
check the contributions of 〈f |Π̂I |i〉 and 〈f |Π̂II |i〉.
For the ’Cheshire Car’ paradox it does not matter that only the absolute of the weak value
is measured, since one has at most to distinguish where the cat, i.e. the physical object, and
where the grin, i.e. its property, are.
One might also object that the measurements are performed one after another and that not all
the relevant information is extracted at once. However, the very nature of weak measurement
guarantees that the system is not altered and it does not matter if the information is extracted
piece by piece in several measurements or all at once. The system stays the same and its
properties do not change.
As with previous experiments it is possible to analytically calculate the intensities that are
expected for small rotations of the spin. Instead of expanding the system’s evolution operator
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we let it act on |i〉 and get

|i′〉I = eiασ̂
s
zΠ̂I/2|i〉 =

1

2
eiασ̂

s
zΠ̂I/2 [|I〉 (|Sz; +〉+ |Sz;−〉) + |II〉 (|Sz; +〉 − |Sz;−〉)]

=
1

2

[
eiασ̂

s
z/2|I〉 (|Sz; +〉+ |Sz;−〉) + |II〉 (|Sz; +〉 − |Sz;−〉)

]
=

1

2

[
|I〉
(

eiα/2|Sz; +〉+ e−iα/2|Sz;−〉
)

+ |II〉 (|Sz; +〉 − |Sz;−〉)
]

(3.194)

when the weak rotation is performed along path I and

|i′〉II = eiασ̂
s
zΠ̂II/2|i〉 =

1

2
eiασ̂

s
zΠ̂II/2 [|I〉 (|Sz; +〉+ |Sz;−〉) + |II〉 (|Sz; +〉 − |Sz;−〉)]

=
1

2

[
|I〉 (|Sz; +〉+ |Sz;−〉) + eiασ̂

s
z/2|II〉 (|Sz; +〉 − |Sz;−〉)

]
=

1

2

[
|I〉 (|Sz; +〉+ |Sz;−〉) + |II〉

(
eiα/2|Sz; +〉 − e−iα/2|Sz;−〉

)]
(3.195)

when it is performed along path II. To get the intensities, we first have to calculate the matrix
elements 〈f |i′〉I , 〈f |i′〉II and 〈f |i〉.

〈f |i′〉I =
1

2
(〈Sz; +|〈I| − 〈Sz;−|〈I|+ 〈Sz; +|〈II| − 〈Sz;−|〈II|)×

× 1

2

(
eiα/2|Sz; +〉|I〉+ e−iα/2|Sz;−〉|I〉+ |Sz; +〉|II〉 − |Sz;−〉|II〉

)
=

1

4

(
eiα/2 − e−iα/2 + 1 + 1

)
=

1

4

(
2i sin

(α
2

)
+ 2
)

=
1

2

[
i sin

(α
2

)
+ 1
]

(3.196)

〈f |i′〉II =
1

2
(〈Sz; +|〈I| − 〈Sz;−|〈I|+ 〈Sz; +|〈II| − 〈Sz;−|〈II|)×

× 1

2

(
|Sz; +〉|I〉+ |Sz;−〉|I〉+ eiα/2|Sz; +〉|II〉 − e−iα/2|Sz;−〉|II〉

)
=

1

4

(
eiα/2 + e−iα/2 + 1− 1

)
=

1

4

(
eiα/2 + e−iα/2

)
=

1

2
cos
(α

2

)
(3.197)

〈f |i〉 =
1

2
(〈Sz; +|〈I| − 〈Sz;−|〈I|+ 〈Sz; +|〈II| − 〈Sz;−|〈II|)×

× 1

2
(|Sz; +〉|I〉+ |Sz;−〉|I〉+ |Sz; +〉|II〉 − |Sz;−〉|II〉)

=
1

4
(1− 1 + 1 + 1) =

1

2
(3.198)

From Eqs. (3.196), (3.197) and (3.198) we get the intensities

Ion
1 = |〈f |i′〉I |2 =

1

4

[
1 + i sin

(α
2

)] [
1− i sin

(α
2

)]
=

1

4

[
1 + sin2

(α
2

)]
(3.199)

Ion
2 = |〈f |i′〉II |2 =

1

4
cos2

(α
2

)
(3.200)

Ioff
1 = Ioff

2 =
1

4
(3.201)
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Equations (3.187) and (3.193) now become

∣∣∣〈σ̂szΠ̂I〉w
∣∣∣2 =

4

α2

(
Ion

1

Ioff
1

− 1

)
=
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(
1
4

[
1 + sin2

(
α
2

)]
1
4

− 1

)
≈ 4

α2

(
1 +

α2

4
− 1

)
= 1 (3.202)

and∣∣∣〈σ̂szΠ̂II〉w
∣∣∣2 =

4
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(
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2

− 1 +
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4

)
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4

α2

(
1
4 cos2

(
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1
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(
1− α2

4
− 1 +

α2

4

)
= 0

(3.203)

which is exactly what we would expect from the theory of weak measurements. Note that the
approximations made in Eqs. (3.202) and (3.203) are only valid for small values of α! If (3.202)
and (3.203) are not approximated and put into a computational program like Mathematica

it is possible to obtain actual values. For α = π
36 the results are

∣∣∣〈σ̂szΠ̂I〉w
∣∣∣ = 0.999683 and∣∣∣〈σ̂szΠ̂II〉w

∣∣∣2 = 0.0251885.

All calculations presented so far are for a perfect circumstances. For a more realistic descrip-
tion of an experiment the parameter p, which describes the degree of polarization, has to be
introduced. For a neutron beam, which is not completely polarized, the pre selected state is

|i〉 =

√
n

2
[(1− p) |Sx; +〉+ p|Sx;−〉] |I〉+

√
n

2
[p|Sx; +〉+ (1− p) |Sx;−〉] |II〉

=

√
n

2
[|Sz; +〉+ (1− 2p) |Sz;−〉] |I〉+

√
n

2
[|Sz; +〉 − (1− 2p) |Sz;−〉] |II〉 (3.204)

with 0 ≤ p ≤ 1 and n = 1
1−2p+2p2 . The post selected state |f〉 does not change. The products

of the operators Π̂I , Π̂II , σ̂
s
+ and σ̂s− then become

〈Π̂I σ̂
s
+〉w =

〈f |Π̂I σ̂
s
+|i〉

〈f |i〉
=

1

2

〈Π̂I σ̂
s
−〉w =

〈f |Π̂I σ̂
s
−|i〉

〈f |i〉
= −(1− 2p)

2

〈Π̂II σ̂
s
+〉w =

〈f |Π̂II σ̂
s
+|i〉

〈f |i〉
=

1

2

〈Π̂II σ̂
s
−〉w =

〈f |Π̂II σ̂
s
−|i〉

〈f |i〉
=

(1− 2p)

2

Of course 〈Π̂I σ̂
s
z〉w and 〈Π̂II σ̂

s
z〉w change accordingly

〈Π̂I σ̂
s
z〉w = 1− p (3.205)

〈Π̂II σ̂
s
z〉w = p (3.206)

This shows that an imperfect degree of polarization prevents a complete detanglement of the
particle and its spin. Nevertheless a paradoxical situation remains. While most of the neutrons
pass through path II most of their spin passes through path I.
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The matrix elements in Eqs. (3.184) and (3.191) change into

α2

4
〈f |Π̂I |i〉〈i|f〉 =

1

2
〈f |Π̂I |i〉

α2

4
=

α2p

16 (1− 2p+ 2p2)
(3.207)

and

α2

4
〈f |Π̂II |i〉〈i|f〉 =

α2

4
〈f |Π̂II |i〉

1

2
=

α2 (1− p)
16 (1− 2p+ 2p2)

(3.208)

Therefore the weak values of σ̂szΠ̂I and σ̂szΠ̂II are now given by

∣∣∣〈σ̂szΠ̂I〉w
∣∣∣2 ≡

∣∣∣〈f |σ̂szΠ̂I |i〉
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4
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(
Ion
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1
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α2p

4

)
(3.209)

and

∣∣∣〈σ̂szΠ̂II〉w
∣∣∣2 ≡

∣∣∣〈f |σ̂szΠ̂II |i〉
∣∣∣2

|〈f |i〉|2
=

4

α2

(
Ion

2

Ioff
2

− 1 +
α2 (1− p)

4

)
. (3.210)

For an imperfect degree of polarization we expect the intensities to change as well. Since Eqs.
(3.194) and (3.195) change into

|i′〉I =

√
n

2

{
|I〉
[
eiα/2|Sz; +〉+ e−iα/2 (1− 2p) |Sz;−〉

]
+ |II〉 [|Sz; +〉 − (1− 2p) |Sz;−〉]

}
(3.211)

and

|i′〉II =

√
n

2

{
|I〉 [|Sz; +〉+ (1− 2p) |Sz;−〉] + |II〉

[
eiα/2|Sz; +〉 − (1− 2p) e−iα/2|Sz;−〉

]}
,

(3.212)

the matrix elements 〈f |i′〉I and 〈f |i′〉II become

〈f |i′〉I =

√
n

2

[
i sin

(α
2

)
+ 1 + p e−iα/2 − p

]
(3.213)

〈f |i′〉II =

√
n

2

[
cos
(α

2

)
− p e−iα/2 + p

]
. (3.214)

This leads to the intensities

Ion
1 = |〈f |i′〉I |2 =

sin2
(
α
2

)
(1− 2p) + 2p2

[
1− cos

(
α
2

)]
+ 1− 2p+ 2p cos

(
α
2

)
4 (1− 2p+ p2)

(3.215)

Ion
2 = |〈f |i′〉II |2 =

cos2
(
α
2

)
(1− 2p) + 2p2

[
1− cos

(
α
2

)]
+ 2p cos

(
α
2

)
4 (1− 2p+ p2)

(3.216)

Ioff
1 = Ioff

2 =
1

4 (1− 2p+ p2)
(3.217)
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which finally yield the weak values∣∣∣〈σ̂szΠ̂I〉w
∣∣∣2 =

4

α2

{
sin2

(α
2

)
(1− 2p) + 2p2

[
1− cos

(α
2

)]
− 2p+ 2p cos

(α
2

)
+
α2p

4

}
(3.218)∣∣∣〈σ̂szΠ̂II〉w

∣∣∣2 =
4

α2

{
cos2

(α
2

)
(1− 2p) + 2p2

[
1− cos

(α
2

)]
+ 2p cos

(α
2

)
− 1 +

α2 (1− p)
4

}
(3.219)

If the values p = 0.02 and α = π
36 are inserted into Eq. (3.218) and (3.219) they yield∣∣∣〈σ̂szΠ̂I〉w

∣∣∣2 = 0.9598 and
∣∣∣〈σ̂szΠ̂II〉w

∣∣∣2 = 0.0010, where a theoretical value of 0.9604 for the

first and 0.0002 for the second one would be expected. The smaller the angle of rotation, the
better the results become. If the spin is rotate by only one degree, i.e. α = π

180 the results

improve to
∣∣∣〈σ̂szΠ̂I〉w

∣∣∣2 = 0.9634 and
∣∣∣〈σ̂szΠ̂II〉w

∣∣∣ = 0.0004.

In an actual experiment it would be difficult to control the spin rotation to such a small degree.
Rotation angles between α = 10◦ and α = 20◦ are more feasible. If p stays at p = 0.02 one

would get
∣∣∣〈σ̂szΠ̂I〉w

∣∣∣2 = 0.9580 and
∣∣∣〈σ̂szΠ̂II〉w

∣∣∣2 = 0.0028, when the angle of rotation is given

by α = 10◦ and
∣∣∣〈σ̂szΠ̂I〉w

∣∣∣2 = 0.9507 and
∣∣∣〈σ̂szΠ̂II〉w

∣∣∣2 = 0.0102, when the angle of rotation is

given by α = 20◦.
To summarize: A quantum paradox called the ’Cheshire Cat’ is considered here. The aim of the
paradox is to detangle a physical property from the object it belongs to. It turned out that an
experimental demonstration of this paradox is feasible: In a neutron interferometer experiment
it is in theory possible to measure a ’Cheshire Cat’, using small path dependent spin rotations
and absorbers. Theory predicts that it is possible to demonstrate, that the particle took one
path of the interferometer, while its spin went trough the other.
In an actual experiment great care has to be put into the preparation of the ensemble. As
the calculations above showed, it is necessary to have a high degree of polarization to arrive
at a paradoxical situation. In addition to that it is important that the spin rotation can be
controlled with high precision.
Nevertheless, those difficulties are not adamant and can be overcome, if enough care is taken
in the experiment.
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In chapter 3 several new experiments involving weak values are described. The theory of weak
measurements has been used to design experiments, which allow to extract the weak value. It
is of interest to perform those experiments to extract actual weak values.
The simplest of all proposed experiments in chapter 3, is the polarimeter experiment, because
a higher stability compared to an interferometer experiment is expected. In addition to that a
polarimeter setup is available at the Institute of Atomic and Subatomic Physics of the Vienna
University of Technology (ATI), while a setup for polarized neutron interferometry is only
available at the ILL in Grenoble.
Therefore a polarimeter experiment was carried out at the TRIGA Mark II at ATI. A very good
agreement between theory and experiment has been found.

4.1. The experimental setup

The experimental setup consists of a polarizing supermirror, two DC-coils, a magnetic guide
field, a second supermirror, which serves as analyzer and a detector. A schematic drawing of
the setup is displayed in Fig. 4.1.

Figure 4.1.: Schematic drawing of a polarimeter beamline: A complete polarimeter beamline
consist of a monochromizing crystal (M), a polarizer to prepare the neutron beam
(P), at least two DC-coils (DC1 & DC2), a guide field (GF), an analyzer (A) and
a detector (D).

A TRIGA Mark II research reactor is used as a neutron source. From the broad neutron energy
spectrum a monochromator crystal selects neutrons with a wave length of λ = 1.74 Å. A
Helium-3 counter tube served as a detector.

4.1.1. DC1 adjustment

To yield good results, it is important that the pre and post selection of the spin state is performed
well. Great care was take when the DC-coils were adjusted. This happens in three steps:
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(i) In order for the DC-coils to operate correctly one has to assure that the magnetic field that
points in the x-direction, ~Bx, is exactly perpendicular to the one pointing in z-direction,
~Bz. To do this, it is possible to tilt the coil in the xz-plane. After adjusting the tilt, a
varying current is applied to the coils in order to produce ~Bx. For every current value,
a measurement of the neutron count is performed. By plotting count rate versus applied
current, one sees that the results can be fitted with a sine function. However, when ~Bx
and ~Bz are not perpendicular to each other, the fit function will appear to be asymmetric:
One minimum will be deeper than the other and maximum will not be situated in the
middle. Therefore the tilt of the coil has to be readjusted and the whole measurement has
to be repeated, till a minimum asymmetry is found in the fit.

(ii) Once the optimum tilt of the coil is found, one has to tune the strength of the compensation
field. A current is applied to the coil producing ~Bc, while the current producing ~Bx is
turned on as well. Again, for every current value, the count rate is measured. It has a
minimum at the current value where the external guide field is compensated. A polynomial
fit through the data points is performed. By finding its minimum one can find the right
current value to compensate the external field.

(iii) Since ~Bc changes the z-component of the total magnetic field, one hast to readjust the tilt
of the DC-coil, once the compensating field is turned on. Basically, one has to redo the
first step until a minimum in phase shift and asymmetry is found.

Figure 4.2 shows the final result of this adjusment.
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Figure 4.2.: Currentscan of the DC1-coil: To adjust the first DC-coil the current, that produces
the magnetic field to flip the neutron spin, is scanned. For this scan the second coil
is turned off.
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Finally, we obtained the following parameters for the first coil (DC1):

• Flipping ratio: 41.9± 3.8

• Phase shift: 90.24◦ ± 0.15◦

• Contrast: 0.95± 0.004

4.1.2. DC2 adjustment

For the second coil the same procedure as described above was done as well. Again the final
result is presented here, which is shown in Fig. 4.3. The second coil showed the following
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Figure 4.3.: Currentscan of the DC2-coil: To adjust the second DC-coil the current, that pro-
duces the magnetic field to flip the neutron spin, is scanned. For this scan the first
coil is turned off.

properties:

• Flipping ratio: 24.3± 1.2

• Phase shift: 90.19◦ ± 0.14◦

• Contrast: 0.92± 0.004

Note that the flipping ratio of the second coil is much lower then the first one. Due to the
limited space of the polarimeter, the second coil always operated close to the analyzer. The
supermirror produces a large magnetic stray field, which lowers the coil’s efficiency and therefore
also its flipping ratio.
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4.1.3. Pre and post selection of the spin state

At the beginning of the polarimeter the neutrons have to pass through a polarizing supermirror,
which sorts out the |Sz;−〉 spin component. To finish the preparation of the initial state a DC-
coil is used to rotate the neutron spin by π

2 , so that it lies in the xy-plain. This is done by
applying the current found in adjusting the DC1. At this point the spin state is given by
|Sx; +〉.
Due to the magnetic guide field that points into the (z; +)-direction the spin starts Larmor
precessions around the z-axis. This precession is used to select the azimuth angle φ, by mounting
the second DC-coil on a translation stage. To scan φ, both DC1 and DC2 are adjusted to rotate
the spin by π

2 and the position of the DC2 coil is scanned. Figure 4.4 shows such a position
scan.
Flipping ratio and contrast of the position scan are

• Flipping ratio: 18.362± 0.689

• Contrast: 0.897± 0.0037

To complete the post selection of the final state, not only φ, but also θ has to be fixed. This is
done by fixing current to the second DC-coil.
The extra π-rotation that is necessary to extract the weak value is also done by moving the
second DC-coil along the direction of neutron propagation, using the spin’s Larmor precession.
After θ and φ are selected by the right current and position values, the neutrons have to pass
through a second supermirror, the analyzer, which performs the post selection.
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Figure 4.4.: Position scan of the DC2-coil: The position of the second DC-coil is varied, while
the applied current is held constant to achieve a π

2 -rotation. This makes it possible
to select the azimuth angle φ. Maximum intensity corresponds to φ = 0◦, minimum
to φ = 180◦.
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4.2. Raw data

All measurements are performed in the following manner: A certain value of φ is picked, by
choosing a position. Then the current value is set and the measurement is performed at the φ
and at the φ + π position. This is done for all current values. In this way it was possible to
record scans of the polar angle. Such scans can be seen in Figs. 4.5 to 4.7.
For every pair of angles φ and θ two points are recorded. They represent the π-rotator turned
on and off.
Note that for plots intensities varies around a common offset of ∼ 0.17. The only exception
are the measurements for the azimuthal angle φ = 0◦ and φ = 60◦. The explanation for this is
simple. For the azimuthal angle φ = 0◦ and φ = 60◦ two additional (unused) copper coils were
present in the beam. Since copper absorbs neutrons this lead to a loss in intensity.
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Figure 4.5.: Measurement data for fixed azimuth angle φ = 180◦. The variation of the current
scans the polar angel θ.
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(a) Thetascan for φ = 0◦.
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(b) Thetascan for φ = 15◦.
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(c) Thetascan for φ = 30◦.
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(d) Thetascan for φ = 45◦.
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(e) Thetascan for φ = 60◦.
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(f) Thetascan for φ = 75◦.

Figure 4.6.: Measurement data for fixed azimuth angle φ = 0◦, 15◦, 30◦, 45◦, 60◦, 75◦. The vari-
ation of the current scans the polar angel θ.
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(a) Thetascan for φ = 90◦.
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(b) Thetascan for φ = 105◦.
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(c) Thetascan for φ = 120◦.
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(d) Thetascan for φ = 135◦.
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(e) Thetascan for φ = 150◦.
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Figure 4.7.: Measurement data for fixed azimuth angle φ = 90◦, 105◦, 120◦, 135◦, 150◦, 165◦. The
variation of the current scans the polar angel θ.
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4. Spin weak values in a neutron polarimeter

4.3. Measurement results

For all measurements we set the initial spin state to |Sx; +〉, the final one by |Ŝ · n̂; +〉 =
cos
(
θ
2

)
e−iφ/2|Sz; +〉+sin

(
θ
2

)
eiφ/2|Sz;−〉. The π-rotation is performed around the z-axis, which

means that the weak value of σ̂sz is determined. From Eq. (3.16) one can easily find that the
absolute of the spin operators weak value is given by

|〈σ̂sz〉w| =

√
1− cos (φ) sin (θ)

1 + cos (φ) sin (θ)
(4.1)

There are several experimental imperfections:

(i) The neutron beam’s degree of polarization is practically about 96% which is lower than
the ideal of 100%.

(ii) The flipping ratioa of the DC-coils is limited to ∼ 35. This is of course mainly a conse-
quence of the low degree of polarization.

(iii) The efficiency of a spin manipulation by the coils, despite being quite high, is limited to
roughly 99%.

All those effects add up and decrease the polarimeter’s contrast, which is finally obtained by
∼ 90%. To take all imperfections into account, the measurement results have been fitted by the
function

f (θ, φ,C) =

√
1− C cos (φ) sin (θ)

1 + C cos (φ) sin (θ)
. (4.3)

This is simply the weak value given by Eq. (4.1), with its angle dependent part weighted by a
contrast factor C.
The measurement results for a set of φ = 0◦, 15◦, 30◦, · · · , 180◦ and θ = 0◦ are plotted in Figs.
4.8 to 4.10:

aThe flipping ratio R of a coil is defined by

R =
I

If
, (4.2)

where I and If are intensities with the spin flipper turned off and on.
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Figure 4.8.: Typical polarimeter measurement results of |〈σ̂z〉w| for a fixed azimuthal angle of
φ = 180◦. The fit has been performed with one parameter: the contrast. It was set
to c = 0.90± 0.006.

93



4. Spin weak values in a neutron polarimeter

 0

 1

 2

 3

 4

 5

-180 -135 -90 -45 0 45 90 135 180

|<
σ

z
>

w
| 
[a

.u
.]

Polar angle θ [°]

DATA

FIT

(a) φ = 0◦; c = 0.90± 0.001.
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(b) φ = 15◦; c = 0.92± 0.001.
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(c) φ = 30◦; c = 0.92± 0.002.
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(d) φ = 45◦; c = 0.88± 0.004.
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(e) φ = 60◦; c = 0.86± 0.006.
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(f) φ = 75◦; c = 0.90± 0.016.

Figure 4.9.: Polarimeter measurement results of |〈σ̂z〉w| for a fixed azimuthal angle φ =
0◦, 15◦, 30◦, 45◦, 60◦, 75◦. For all measurements the a fit with one parameter, the
contrast c, is performed.
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(a) φ = 90◦; c ≡ 1.
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(b) φ = 105◦; c = 0.89± 0.020.
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(c) φ = 120◦; c = 0.91± 0.009.
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(d) φ = 135◦; c = 0.92± 0.004.
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(e) φ = 150◦; c = 0.90± 0.003.
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(f) φ = 165◦; c = 0.88± 0.001.

Figure 4.10.: Polarimeter measurement results of |〈σ̂z〉w| for a fixed azimuthal angle φ =
90◦, 105◦, 120◦, 135◦, 150◦, 165◦. For all measurements the a fit with one parameter,
the contrast c, is performed.
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To sum the results up, Fig. 4.11 shows all results together with the expected behaviour (fit) in
a 3D view:
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Figure 4.11.: 3D Plot of all measurements: The data of all measurements has been put together.
The fitted curve uses a mean contrast of c=0.9. It is clearly visible that the
experiment is in excellent agreement with the theoryb.

4.4. Discussion of the measurement results and concluding
remarks

The measurement results of the previous section show an excellent agreement with the theory.
The contrast of the polarimeter is a very good fitting parameter. However, some curves are
fitted with a contrast lower than 90%. This is a systematic error: For larger values of φ the
second DC-coil moves closer to the supermirror. Now the supermirror produces an additional
field in the z-direction, which causes the spin to precess faster. It is difficult to select the azimuth
angle φ correctly. If φ is bigger then expected for one scan of the polar angle θ, then this will
manifest itself in a smaller C in the fit.
By introducing a contrast parameter the theoretical curve is matched with the measurement
results. However, a slightly different approach can be taken by normalizing the count rates and
therefore matching the measured weak values to the (unaltered) theoretical curve. For this the

bThe measurement error was not taken into account for this plot!
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4. Spin weak values in a neutron polarimeter

contrast of the whole polarimter has to be determined. This can be done in any measurement
that involves the same pre and post selection as the extraction of the weak value requires. To
take all systematic errors into account it would be best to use the contrast C measured with a
position scan of the second DC-coil. The normalized count rates are then given by

IN
off =

Ioff + Ion

2
+
Ioff − Ion

2C
(4.4)

and

IN
on =

Ioff + Ion

2
+
Ion − Ioff

2C
(4.5)

The weak value’s absolute can then be determined from the experimental data by

|〈σ̂sz〉w| =

√
IN

on

IN
off

(4.6)

The advantage of this method is that the contrast parameter C is independent from the post
selection angle φ.
Nevertheless, no matter how the systematic errors are dealt with, it does not change the fact
that the system behaves exactly as predicted in chapter 2. For nearly orthogonal initial and
final spin states the weak value becomes very large, and we report a maximum weak value of
the spin operator of |〈σ̂sz〉w| = 4.41± 0.25.
One of the aims of this work, is to confirm the validity of the weak value formulation for the
absolute of the spin weak value. A polarimter experiment was carried out at the ATI.
It contained some systematic imperfections that manifested themselfes in a limited contrast
of ∼ 90% at the polarimeter beamline. This was taken into account in the analysis of the
experiment.
The results agree perfectly with the theory which is described in chapter 3. This experiment
confirms once more, that neutron matter waves are useful to investigate the foundations of
quantum mechanics in general and in particular the weak value formalism.
The experimental success sparks hope that the other experiments described in the previous
chapter can be performed as well. Further developement of the topic of weak values and weak
measurements with neutrons can be expected.
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5. Conclusion

In this thesis, quantum theory has been used to analyse and develop experiments to extract
weak values, in particular those of the spin and the path operator. All those experiments allow
the use of neutron matter waves, which can only be understood by a purely quantum mechanical
treatment.
Three different experiments are proposed and analyzed:

(i) The first kind of experiment allows to extract the absolute of the spin operator’s weak
value. It can be performed using a polarimeter or an interferometer setup. In addition to
that it has been conclusively shown that the spin operator’s weak value itself is accessible
without a weak measurement. This is something that has not been considered in the
literature yet and raises the question about the meaning of the weak value outside of the
weak regime.

(ii) In the second experiment small spin rotations allow to extract the path operator’s weak
value in an interferometer experiment. The use of the neutron spin allows to measure not
only the absolute of the path operator’s weak value, but also its real part. In addition
to that pure ’which-way-information’ can be extracted by pre and post selecting the path
state using variable absorbers.

(iii) A clever combination of weak path and spin operator measurements makes it possible
to demonstrate a ’Cheshire Cat’ in a neutron interferometer experiment. The way how
such a measurement has to be performed has been shown in this thesis. This allows to
accomplish the first experimental realization of this quantum paradox ever.

In addition a polarimeter experiment was carried out at the TRIGA Mark II research reactor at
the Institute of Atomic and Subatomic Physics of the Vienna University of Technology. In this
experiment certain pre and post selected spin states are prepared. By performing consecutive
measurements of Ion and Ioff, it is possible to measure the absolute of the spin operator’s weak
valuea. The experimental results agree very well with the theory and spin weak values far outside
the eigenvalue range of the spin operator were measured. This is an impressive demonstration,
showing that neutron optics are a powerful tool to investigate weak values.
The success of this experiment sparks hope, that the other theoretically treated ones can be
performed equally well. It is of importance that the experiments concerning weak measurements
of the spin and the path operator are actually performed. Once this is accomplished and
potential experimental obstacles are overcome, a ’Cheshire Cat’ is within reach. A measurement
of this paradox would once more prove the strange nature of quantum mechanics.

aIon and Ioff are the intensities when an extra π-spin rotator is turned on and off.
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hard Mistelberger, Lukas Schrangel, Daniel Föger, Alexander Reismann, Andreas Eder, Lukas
Sölkner and Wolfgang Schlichtner.
Particular thanks goes to my colleagues Stephan Sponar and Hermann Geppert. They shared
their vast experience in theory and experiment with me, which came in handy more than once.
Moreover, they supported me with the measurements presented in chapter 4.
Very helpful discussions by letter with Alexandre Matzkin and Dibankar Home are acknowl-
edged was well.
I also want to express my deep gratitude towards my supervisor Yuji Hasegawa. He guided me
very well throughout the work on this thesis and helped me to gain a deeper and more funda-
mental understanding of physics. He showed me the right directions and made sure I stayed
focused, but he also gave me the freedom to follow my own ideas.
Finally I want to thank Anna Frauscher for being there for me.
To all that I might have mistakenly omitted: thank you!

99



Bibliography

[1] T. Folger, Is Quantum Mechanics Tried, True, Wildly Successful, and Wrong?, Science
324, 1512 (2009).

[2] M. Kaku, Hyperspace: A Scientific Odyssey Through Parallel Universes, Time Warps, and
the 10th Dimension, p. 263 (Oxford University Press, 1994).

[3] J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University
Press, 1955).

[4] J. Erhart, S. Sponar, G. Sulyok, G. Badurek, M. Ozawa and Y. Hasegawa, Experimental
demonstration of a universally valid error-disturbance uncertainty relation in spin mea-
surements, Nat. Phys. 8, 185 (2012).

[5] Y. Aharonov, D. Z. Albert and L. Vaidman, How the result of a measurement of a compo-
nent of the spin of a spin- 1/2 particle can turn out to be 100, Phys. Rev. Lett. 60, 1351
(1988).

[6] N. W. M. Ritchie, J. G. Story and R. G. Hulet, Realization of a measurement of a ”weak
value”, Phys. Rev. Lett. 66, 1107 (1991).

[7] P. B. Dixon, D. J. Starling, A. N. Jordan and J. C. Howell, Ultrasensitive Beam Deflection
Measurement via Interferometric Weak Value Amplification, Phys. Rev. Lett. 102, 173601
(2009).

[8] S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm and A. M.
Steinberg, Observing the Average Trajectories of Single Photons in a Two-Slit Interferom-
eter, Science 332, 1170 (2011).

[9] F. Hasselbach, Progress in electron- and ion-interferometry, Rep. Prog. Phys. 73, 016101
(2010).

[10] H. Rauch and S. A. Werner, Neutron Interferometry - Lessons in Experimental Quantum
Mechanics (Oxford at the Clarendon Press, 2000).

[11] A. D. Cronin, J. Schmiedmayer and D. E. Pritchard, Optics and interferometry with atoms
and molecules, Rev. Mod. Phys. 81, 1051 (2009).

[12] B. J. Hiley, Weak Values: Approach through the Clifford and Moyal Algebras, J. Phys.:
Conf. Ser. 361, 012014 (2012).

[13] J. J. Sakurai, Modern Quantum Mechanics, pp. 1–66 (Addison-Wesley, 2010).

[14] I.-O. Stamatescu, Compendium of Quantum Physics, pp. 813–822 (Springer Berlin / Hei-
delberg, 2009).

100



Bibliography

[15] I. M. Duck, P. M. Stevenson and E. C. G. Sudarshan, The sense in which a ”weak mea-
surement” of a spin-1

2 particle’s spin component yields a value 100, Phys. Rev. D 40, 2112
(1989).

[16] R. Jozsa, Complex weak values in quantum measurement, Phys. Rev. A 76, 044103 (2007).

[17] A. J. Leggett, Comment on ”How the result of a measurement of a component of the spin
of a spin-(1/2) particle can turn out to be 100”, Phys. Rev. Lett. 62, 2325 (1989).

[18] A. Peres, Quantum measurements with postselection, Phys. Rev. Lett. 62, 2326 (1989).

[19] Y. Aharonov and L. Vaidman, Aharonov and Vaidman reply, Phys. Rev. Lett. 62, 2327
(1989).

[20] Y. Aharonov, S. Popescu and J. Tollaksen, A time-symmetric formulation of quantum
mechanics, Physics Today 63, 27 (2010).

[21] W. H. Kraan, Instrumentation to handle thermal polarized neutron beams. Ph.D. thesis,
Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands (2004).

[22] F. Mezei, The principles of neutron spin echo. In F. Mezei, editor, Neutron Spin Echo,
volume 128 of Lecture Notes in Physics, pp. 1–26 (Springer Berlin / Heidelberg, 1980).

[23] V. K. I. Masahiko Utsuro, Handbook Of Neutron Optics (Wiley-VCH, 2010).

[24] D. J. Hughes and M. T. Burgy, Reflection of Neutrons from Magnetized Mirrors, Phys.
Rev. 81, 498 (1951).

[25] F. Mezei, Neutron spin echo: A new concept in polarized thermal neutron techniques, Z.
Phys. A 255, 146 (1972). 10.1007/BF01394523.

[26] Y. Aharonov, S. Popescu and P. Skrzypczyk, Quantum Cheshire Cats, arXiv:1202.0631
(2012).

[27] Y. Aharonov and D. Rohrlich, Quantum Paradoxes, pp. 251–253 (Wiley-VCH, 2005).

101


