
Bounds for Variables and Loops:
Better Together

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Fabian Souczek
Matrikelnummer 0728541

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ass.Prof. Dipl.-Math. Dr.techn. Florian Zuleger
Mitwirkung: Univ.Ass. Moritz Sinn MSc

Wien, 02.12.2014
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Bounds for Variables and Loops:
Better Together

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Fabian Souczek
Registration Number 0728541

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ass.Prof. Dipl.-Math. Dr.techn. Florian Zuleger
Assistance: Univ.Ass. Moritz Sinn MSc

Vienna, 02.12.2014
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Fabian Souczek
Hauptstraße 44, 2126 Ladendorf

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Danksagungen

Mein großer Dank gebührt meinen Betreuern Moritz Sinn und Florian Zuleger. Erst durch ihren
Glauben an mich, bekam ich die Möglichkeit eine Arbeit im Bereich der Programmanalyse zu
schreiben. Die Erfahrungen meiner beiden Betreuer in diesem Gebiet halfen mir enorm, eine
starke und praxisrelevante Programmanalyse zu entwickeln.

Florian, deine Betreuung ließ keine Wünsche offen. Du hast immer das Big-Picture vor
Augen, und es war somit ein Leichtes für mich den richtigen Fokus beizubehalten. Ich freute
mich auf jedes der zahlreichen Treffen mit dir, da ich immer wusste, ich würde gestärkt und mit
neuen Impulsen herauskommen.

Moritz, du weißt selbst, wie viel Dank dir gehört. Die unzähligen Probleme und Prob-
lemchen von der Konzeptualisierung, der Implementierung bis hin zur Formalisierung, die wir
besprochen haben, könnten eine zweite Diplomarbeit füllen. Danke!

Ich hoffe, dass all die zukünftige wissenschaftliche Arbeit meiner beiden Betreuer die An-
erkennung und Aufmerksamkeit bekommt, die sie verdient hat.

Ladendorf, Dezember 2014
Fabian Souczek

iii

Abstract

A great part of today’s used software has one point in common: software programs are running
in an environment inherently constrained by physical resources such as power, network-traffic,
time and memory. A mobile device has a limited amount of energy; a real-time system has to
fulfill its tasks within a fixed time; and an embedded system is equipped with minimal memory.

Automatic resource-usage analyses have become an attractive area of research. Such an
analysis can be started periodically within software development phases and is able to detect
performance problems early and hidden to the engineers. Resource-usage analysis tools can
help to mitigate the problem that mobile app stores are flooded by apps disregarding any fair
resource usage and cloud providers may use them to predict the resource consumption of a
served program.

How much of a resource a program may consume can often be reduced to the question how
many times a loop is executed that contains a program location using this resource.

Recent techniques aim to compute loop bounds in a modular way. At first, a bound is
computed for each loop that is expressed in terms of program variables defined immediately
before the loop. To estimate the runtime complexity of the entire procedure, the next task is to
translate each such bound into an expression over the procedure inputs. This task can be reduced
to the problem of computing for each variable within that bound a specific kind of invariant that
upper (or lower) bounds the possible value at a given location.

As experience shows, state-of-the-art invariant generation techniques are mostly insufficient
for the purpose of bound analysis; they do not scale to non-linear or disjunctive invariants, which
are required to shape bounds in presence of nested loops or loops with complex control flow.

We propose a bound analysis that connects loop and variable bound computation. The un-
derlying observation is that loop and variable bounds can be expressed in terms of each other -
they build a mutual recursion.

For example, if a program variable is incremented in every iteration of a loop by two, the
overall increase of the variable’s value due to that loop is bounded by the loop bound multiplied
by two.

We demonstrate the efficacy of our new bound analysis by a thorough experimental evalua-
tion. We implement a bound algorithm for the existing tool Loopus, which is developed at TU
Vienna by Sinn and Zuleger and computes loop bounds of C programs.

We show that our method works effectively on patterns typically occurring in real-world
programs and on examples posed in related literature. We show in comparison with other recent
approaches that our method achieves promising results and outperforms existing techniques.

v

Kurzfassung

Ein Großteil heutzutage eingesetzter Software läuft in Umgebungen, die nur einen eingeschränk-
ten Verbrauch von physischen Ressourcen (z.B. Speicher, Energie, Netzwerkverkehr, Zeit) er-
lauben. Mobilgeräte haben eine beschränkte Kapazität an Energie; Echtzeitsysteme führen Auf-
gaben in beschränkter Zeit aus; und eingebettete Systeme erhalten minimalen Speicher.

Die automatische Analyse von Software bezüglich ihres Ressourcenverbrauchs ermöglicht
eine periodische Überprüfung der Einhaltung bekannter Schranken, sodass Performanceproble-
me bereits früh im Entwicklungsprozess festgestellt werden. Weiters könnten Ressourcenanaly-
sen von mobilen App-Store- und Cloud-Providern eingesetzt werden, um auf Apps mit hohem
Ressourcenverbrauch hinzuweisen bzw. um genügend Ressourcen für Cloud-Programme bereit-
zustellen.

Die Frage nach dem Ressourcenverbrauch eines Programms kann oft auf das Problem redu-
ziert werden, wie oft eine Schleife, die eine gegebene Ressource verbraucht, durchlaufen wird.

Jüngste Methoden berechnen Schleifenschranken in modularer Art. Zuerst werden Schran-
ken über Programmvariablen ausgedrückt, die am Schleifenkopf definiert sind. Um eine Aussage
über die Laufzeitkomplexität des ganzen Programms treffen zu können, werden diese Schran-
ken anschließend in Ausdrücke über den Programmparametern zurückübersetzt. Diese Aufgabe
kann wiederum auf die Berechnung von Invarianten zurückgeführt werden, welche die mögli-
chen Werte von Variablen nach oben hin beschränken.

Aktuell eingesetzte Methoden der Invariantengenerierung sind unzureichend für die Analyse
von Schranken; sie skalieren nicht für nicht-lineare und disjunktive Invarianten, welche notwen-
dig sind im Falle von verschachtelten Schleifen und Schleifen mit komplexem Kontrollfluss.

Wir empfehlen Schranken für Schleifen und Variablen gemeinsam zu berechnen. Die zu-
grundeliegende Beobachtung ist, dass Schleifenschranken mittels Variablenschranken ausge-
drückt werden können und umgekehrt - sie bilden eine wechselseitige Rekursion.

Zum Beispiel kann der Wertzuwachs einer Variable in einer Schleife, die in jeder Wiederho-
lung die Variable um den Wert zwei inkrementiert, abgeschätzt werden, indem man die Schlei-
fenschranke mit zwei multipliziert.

Wir demonstrieren die Leistungsfähigkeit unseres Ansatzes durch umfassende Experimente.
Dazu wurde unsere Schrankenanalyse in das Analysetool LOOPUS integriert, welches an der TU
Wien von Sinn und Zuleger entwickelt wird, um Schleifenschranken zu berechnen.

Unsere Methode ist für Programme effektiv, die in der Praxis eingesetzt werden oder in ver-
wandter Literatur zu finden sind. Wir zeigen im Vergleich mit anderen Schrankenanalysen, dass
unsere Entwicklung vielversprechende Resultate erreicht und andere Techniken an Leistungsfä-
higkeit übertrifft.

vii

Contents

1 Introduction 1
1.1 Problem Definition . 1
1.2 Variable Bounds for Loop Bound Computation 1
1.3 Variable Bounds as Program Invariants . 2
1.4 Loop and Variable Bounds: Better Together 2
1.5 Contributions . 6
1.6 Previous and Related Work . 7

2 Program Model and Main Definitions 11
2.1 Program Model . 11
2.2 Difference Constraint Program . 12
2.3 Abstraction of a Program . 14
2.4 Loop-path and Variable Bound Definitions . 15
2.5 Examples . 15

3 Bound Computation 17
3.1 Loop-path and Variable Bound Algorithms . 17
3.2 Examples . 18
3.3 Termination and Soundness of the Bound Algorithms 20
3.4 Extensions . 26

4 Implementation 35
4.1 Abstracting programs to DCPs . 36
4.2 Program Transformations . 39
4.3 Termination Analysis . 50
4.4 Bound Computation . 50

5 Evaluation 55
5.1 Comparison to Tools from the Literature . 55
5.2 Evaluation on Real-World Code . 60
5.3 Evaluation on Challenging Loop Classes . 63

6 Conclusion and Future Work 73
6.1 Future Work . 74

ix

Bibliography 75

x

CHAPTER 1
Introduction

Computer programs consume physical resources like power, bandwidth, memory and CPU time.
In many situations during software development and software verification, quantitative informa-
tion about the resource usage provides helpful feedback for developers.

Memory bounds can ensure the reliability of embedded systems [17, 20]. Prior informa-
tion about the power consumption is critical for mobile devices and cloud platforms [19, 25].
Real-time multimedia streaming requires bandwidth-intensive delivery, which happens nowa-
days often over mobile wireless networks that are typically bandwidth-limited. The amount of
leaked data and the accuracy of programs running on unreliable hardware depends on the num-
ber of times a certain operation is used [16, 54]. The validation of real-time systems requires an
upper bound of the execution time in the worst-case [63].

In general, many problems appearing in quantitative program analysis can be reduced to the
question how many times a loop is executed that operates on a resource of special interest.

1.1 Problem Definition

Loop Bound A loop bound expresses the maximal number of iterations of a loop during exe-
cution of the program.

Variable Bound A variable bound is an expression that upper- (or lower-) bounds the possible
value of a variable when the control flow reaches a specific program location.

A formal problem definition is stated in Chapter 2.

1.2 Variable Bounds for Loop Bound Computation

We demonstrate the need for variable bounds during loop bound computation on the examples
depicted in Figure 1.1. We are looking in each example for a loop bound in terms of procedure
inputs for the bottommost loop. We deduce that the value of variable x at the header of each

1

bottommost loop is a loop bound for each bottommost loop. As we want to estimate the runtime
complexity of the entire procedure and x is not a procedure parameter, we have to compute a
variable bound for x in terms of procedure inputs.

1.3 Variable Bounds as Program Invariants

Finding a variable bound is an instance of the invariant generation problem, where invariants [29]
are of the structure variable ≤ expression. Although the automatic construction of invariants
is provably intractable in the general case [11], methods exist that are able to obtain at least
partial or conservative solutions. For example, techniques based on abstract interpretation [22]
attempt to find invariants within a given domain like conjunctions of linear inequalities. How-
ever, as argued below, invariants generated by state-of-the-art tools are mostly insufficient for
the purpose of bound analysis.

1.3.1 Insufficiency of State-of-the-Art Invariant Generation Tools

Applying abstract interpretation over the octagon abstract domain [56], which computes in-
equality relationships between two variables with unit coefficients, in example Ex2 reveals the
invariant x ≤ j ∧ j ≤ n at location 5 (i.e., header of the inner loop), which suffices to infer
the upper bound n for x. Though this analysis scales well, it is not able to bound any of the
remaining examples. In procedure Ex3, the polyhedron abstract domain [24], which consists
of linear inequalities between multiple variables, establishes the invariant x −m ≤ 2i ∧ i ≤ n
at location 3, which leads to the bound m + 2n for the variable x. However, this analysis does
not scale and is restricted to linear relationships between variables. Non-linear invariants are
needed in procedures Ex1 and Ex6. They can be generated by an abstract interpretation based
analysis [31], but requires the user to list non-linear expressions that should be tracked. Other
approaches supporting non-linearity are based on Gröbner basis computation and only scale to
small programs [58, 59]. A further challenge is the need for disjunctive invariants. For exam-
ple in Ex4, the disjunctive invariant (0 ≤ y < 50 ∧ x = 50) ∨ (50 ≤ y ≤ 100 ∧ x = y) at
location 3 suffices to deduce the bound x ≤ 100. Unfortunately, standard abstract interpretation-
based techniques support only conjunctive invariants and techniques capable to infer disjunctive
invariants are mostly complex and inefficient or require user input [23, 33, 34, 39].

1.4 Loop and Variable Bounds: Better Together

A principal challenge in invariant inference is the reasoning about loops. Loop constructs in-
troduce notorious difficulties as they enable indefinite iterations of loops and infinite ranges of
values a variable may take. Fortunately, our analysis has one advantage: loops are bounded (if
the analysis is able to prove it). So, we can compute variable bounds by using loop bounds to
approximate the value a variable may possess after execution of a loop. The same scheme can
also be applied for loop bounds, which paves the way to an integrated loop and variable bound
computation.

2

1 Ex1 (i n t n) {
2 i n t x =0 , i , j ;
3 f o r (i =0 ; i <n ;++ i) {
4 f o r (j =0 ; j <n ;++ j)
5 x ++;
6 }
7 whi le (x >0)
8 x−−;
9 }

1 Ex2 (i n t n) {
2 i n t x , i , j ;
3 f o r (i =0 ; i <n ;++ i) {
4 x =0;
5 f o r (j =0 ; j <n ;++ j)
6 x ++;
7 }
8 whi le (x >0)
9 x−−;

10 }

1 Ex3 (i n t n ,m) {
2 i n t x=m, i ;
3 f o r (i =0 ; i <n ;
4 ++ i) {
5 x=x + 2 ;
6 }
7 whi le (x >0)
8 x−−;
9 }

x ≤ n2 x ≤ n x ≤ m+ 2n

1 Ex4 () {
2 i n t y =0 , x =50;
3 whi le (y <100) {
4 i f (y <50)
5 y ++;
6 e l s e {
7 y ++;
8 x ++;
9 }

10 }
11 whi le (x >0)
12 x−−;
13 }

1 Ex5 (i n t n) {
2 i n t x =0 , i , j =0 ;
3 f o r (i =0 ; i <n ;++ i) {
4 j ++;
5 whi le (j >0 && ?) {
6 j−−;
7 x ++;
8 }
9 }

10 whi le (x >0)
11 x−−;
12 }

1 Ex6 (i n t n ,m) {
2 i n t x , y , i , j ;
3 i f (?) x=n ;
4 e l s e x=m;
5 f o r (i =0 ; i <n ;
6 ++ i) {
7 y=x + i ;
8 f o r (j =0 ; j <n ;
9 ++ j)

10 y=y + 1 ;
11 x=y ;
12 }
13 whi le (x >0)
14 x−−;
15 }

x ≤ 100 x ≤ n x ≤ max(m,n) + 2n2

Figure 1.1: Examples illustrating the challenging task of computing upper bounds of variables.
The sign ’?’ denotes non-determinism. Examples 1-3 are motivating examples of [35]. Example
4 is a prominent example for disjunctive invariants [34]. Example 5 shows why we model
increments not as resets. If we approximate the increment of j at line 4 by an assignment to n
(as n is an upper bound for j), we would get the quadratic invariant x ≤ n2. Example 6 is hard
as the variable x is assigned the value of variable y (line 11) and vice versa (line 7), such that a
naive recursive bound computation would fail.

3

1.4.1 Loop Bounds for Variable bound Computation

We have already discussed the need for variable bounds during loop bound computation in Sec-
tion 1.2. We close the circle by integrating loop bounds into variable bound computation. The
mutual recursive dependencies between loop and variable bounds are best explained on an ex-
ample. Consider function Ex6 depicted in Figure 1.1.

We see that the loop at line 11 can run as often as the ac-
tual value of variable x at location 11. We write LB(l11)
to denote the loop bound for the loop at line 11 and
V B(x) to denote the (upper) variable bound for variable
x.

LB(l11) = V B(x)

To formulate the variable bound of x, we take into ac-
count that x is either initialized to n at line 3 or to m
at line 4 by summarizing those two initializations with a
maximum-expression. We spot a cyclic dependency be-
tween the variables x and y, as variable y is assigned the
value of x at line 6 (plus the value of variable i) and at line
8 variable x is assigned ’reversely’ the value of y. Nev-
ertheless, the variable bound of x can be defined without
requiring the variable bound of y by adding the increment
of variable y at line 8 directly to the variable bound of x
and by regarding the assignment at line 6 as an increment
of x by i.

V B(x) =
max(n,m)
+LB(l7) ∗ 1
+LB(l5) ∗ V B(i)

The bound of the loop at line 7 depends on how often j
is set back to 0 by the outer loop at line 5, which enables
the loop to iterate n more times.

LB(l7) = LB(l5) ∗ n

The loop at line 5 iterates at most n times. LB(l5) = n
The variable bound of i depends solely on how often the
increment of i by 1 at line 5 can be executed as i is ini-
tialized to 0.

V B(i) = LB(l5) ∗ 1

We can easily resolve all remaining recursive definitions:

V B(i) = n, LB(l7) = n2, and LB(l11) = V B(x) = max(n,m) + n2 + n2.

1.4.2 Main Steps of our Bound Analysis

We envision the main steps of our analysis on procedure Ex6 depicted in Figure 1.1:

1. Program Abstraction: We abstract a given program to a difference-constraint program
(DCP) [8]. We introduce DCPs in Chapter 2. The main characteristic of a DCP is that
transitions are annotated by constraints of the form x ≤ y + c, where x, y are variables
and c is a constant. We explain in Chapter 4 how to extract DCPs from a C program.

A DCP representing procedure Ex6 is depicted in Figure 1.2.

4

2. Termination Analysis: We compute an order on all loops of the DCP such that there
is a variable for every loop, which decreases towards 0 on that loop and which does not
increase on the loops that are lower in the order. As a result we get a lexicographic ranking
function (as pioneered by Bradley et al. [12]). We give an algorithm that computes a
lexicographic ranking function in Section 4.3.

In our running example, we enumerate following loops: π0 = l5 → l7 → l5
1, π1 = l7 →

l7 and π2 = l11 → l11. We compute the lex. ranking function 〈zn−i, zn−j , x〉 for the loops
π0, π1, π2.

3. Bound Analysis: We compose a bound for a loop π or for variable x by adding for every
loop τ how often and by how much τ increases the variable of π resp. the variable x.
If this increase is expressed in terms of variables that are not procedure parameters, we
compute an upper bound for them. A formal algorithm that computes loop and variable
bounds is given in Chapter 3.

We deduce that variable x is incremented during execution of the outer loop π0 (= l5 →
l7 → l5) by i plus the increment of y within the inner loop π1 (= l7 → l7) by 1. As i
is not constant, we compute recursively an upper bound, i.e., n. Assuming that we have
already computed the bound n for π0 and n2 for π1, we conclude the upper bound for x
to be max(n,m) + 2n2, which is simultaneously the loop bound for π2 (= l11 → l11).

1.4.3 Comparison to State-of-the-Art Invariant Generation Tools

In Section 1.3.1, we noted the insufficiency of state-of-the-art invariant generation tools for
bound analysis. In summary, we identify following two main challenges that are not solved by
standard tools.

(C1) Nested loops. If a variable is modified inside a nested loop, then non-linear invariants
are required. For example, in Ex1 variable x is incremented by 1 on the path of the nested loop
going from location 5 to 5. The corresponding upper bound for x is non-linear, i.e., n2.

(C2) Multi-path loops. If a variable is modified inside a loop with multiple paths (arising
from conditional statements), then an invariant generation tool has to compute path-sensitive
disjunctive invariants. In example Ex4, variable x is only incremented by the loop at location
3 when taking the else-branch, which happens only in 50 out of the total 100 iterations of that
loop. The disjunctive invariant (0 ≤ y < 50 ∧ x = 50) ∨ (50 ≤ y ≤ 100 ∧ x = y) at location 8
enables the deduction of bound x ≤ 100 at line 8.

In contrast, our bound analysis solves the challenges (C1) and (C2): We obtain non-linear
bounds by integrating already computed bounds with arithmetic operations like ∗ and max
(defined as in common over the natural numbers). As we enumerate all paths of a loop and
ask how every loop influences a bound, we accomplish path-sensitive bounds without having to
compute explicitly disjunctive invariants.

1 We write li → lj for a path from location at line i to the location at line j.

5

l1

l5

x′ ≤ n
z′n−i ≤ n

i′ ≤ 0

x′ ≤ m
z′n−i ≤ n

i′ ≤ 0

l7

y′ ≤ x + i
z′n−j ≤ n

x′ ≤ y
z′n−i ≤ zn−i −1

i′ ≤ i + 1

y′ ≤ y + 1
z′n−j ≤ zn−j − 1

l11 x′ ≤ x − 1

Figure 1.2: We illustrate the difference-constraint program obtained by abstraction from exam-
ple Ex6 in Figure 1.1. We heuristically determine variables (e.g, x) and expressions (e.g., n− i
and n− j) that are in consequence represented in the DCP (e.g., zn−i models n− i). Nodes cor-
respond to the loop-headers and are labeled by the corresponding line number. Each transition
is annotated by a set of difference constraints. If a variable v is not part of such a set, then that
set contains implicitly v′ ≤ v. A transition predicate y′ ≤ y+ 1 means that the value of variable
y after taking the transition is incremented by 1, stays equal or is less than the value of y before
taking the transition.

1.4.4 Comparison to other Related Work

The idea to harness loop bounds to compute an upper bound of a variable is already applied by
other bound analysis tools [15, 35].

In contrast to our approach, [15] is only able to deduce the quadratic bound n2 for the
bottommost loop at location 10 in example Ex5, because the increment of j at line 4 is ap-
proximated by an assignment to n (as n is an upper bound for j). An experimental comparison
between our tool and the tool of [15] can be found in Chapter 5.

The method in [35] concentrates on the definition of a variable bound algorithm and lacks
therefore a solution incorporating variable and loop bound computation. Further, the resulting
bounds are more conservative than those established by our method. In detail, the tool of [35]
computes the asymptotically greater bound x ≤ m+n+n2+n3. They do not incorporate a max-
operator and they multiply the sum of the bounds for the loops modifiying x (i.e., `5 → `7 → `5
with bound n and `7 → `7 with bound n2) with a unified increment (i.e., n as n ≥ i and n ≥ 1)
instead of multiplying each loop bound with the increment actually happening on that loop (i.e.,
n for `5 → `7 → `5 and 1 for `7 → `7).

1.5 Contributions

We list our main contributions to the area of bound analysis [5, 7, 15, 35, 37, 60, 64].

6

• We provide a program analysis that integrates loop and variable bound computation in a
simple abstract program model with decidable properties.

• We state a method to compute program invariants of the form variable ≤ expression,
which outperforms existing invariant generation tools in presence of nested loops and
loops with complex control flow.

• In line with earlier instances of Loopus but in contrast to other approaches [5, 7, 37, 64],
our method does not rely on elaborate computations like abstract interpretation, computer
algebra, linear optimization or software model checking.

• We thoroughly experiment with our new tool on several benchmarks with more than
200.000 lines of code consisting of real-world applications written in C and of exam-
ples found in related literature. We show the scalability of our method, that we can bound
more loops and that we get preciser bounds than related tools. The experimental results
can be found in Chapter 5.

1.6 Previous and Related Work

Recent work of Sinn and Zuleger [60] constitutes the basis of this work. They propose a well
separated analysis consisting of four phases: program abstraction, control-flow abstraction, gen-
eration of a lexicographic ranking function and bound computation. Their ambitious program
abstraction results in a system called lossy vector addition system with states (lossy VASS) that
does not allow any interaction between variables (i.e., the value of a variable is never reset and
cannot be added to another variable). A lossy VASS is further simplified during control-flow
abstraction by a transition system that consists only of one location and contains for each simple
loop-path one transition. So, in contrast to former work [38, 64] the handling of inner-loops
is much easier as it is not necessary to add summaries of inner loops on the outer loop. Next,
the termination algorithm creates a lexicographic ranking function consisting of one variable for
each transition, such that the variable decreases on the transition towards 0. Finally, the bound
algorithm computes a bound based on the lexicographic order. They extract lossy VASSs from
programs using invariant generation based on proof-rules and symbolic execution techniques.
We elaborate those proof-rules and present an integrated solution for the generation of run-time
bounds and invariants.

Former work by Sinn and Zuleger encompasses the set-up of a theory for the use in bound
analysis called size-change abstraction [64]. They name it ’size-change’ as the abstraction mod-
els a possible change of the size of a variable after taking a transition by means of inequality
constraints. First, they compute a disjunctive transition system for a given location. The main
obstacle here results from the circumstance that inner loops are handled by computing their
transitive hull. So, the hull of an inner loop is inserted to the path of the outer loop. Due to
the disjunctiveness of the hull this leads to an exponential blow-up. Second, they compute for
each strongly connected component of the control flow graph a local bound and finally com-
pose them to a global bound. As a local bound can contain variables that are modified during
run-time, abstract interpretation is applied to substitute such variables with global invariants.

7

Gulwani and Zuleger came up with a proof-rule based approach [38] tackling the problem of
finding a bound on the number of times a specific program location can be reached during run-
time - they call it accordingly the reachability-bound problem. Their algorithm computes first
a transition system for a given location that over-approximates the state relations between any
two consecutive visits to that location. Inner loops are inserted on a transition by their transitive
closure computed by abstract interpretation. They use a powerset abstract domain lifted from a
conjunctive abstract domain like octagon or polyhedra, which introduces termination problems
as such a domain is of infinite height. The next step is to find a ranking function for each
transition by looking for patterns commonly used by programmers that disallow an infinite trace.
The final step is to compose the ranking functions to a bound by means of proof rules, which
take into account the different ways how two transitions can interact with each other.

1.6.1 Related Work

Abstract-interpretation based solutions

Several publications corresponding to symbolic program complexity were worked out in the
course of the SPEED project initiated by Microsoft Research. In [31], Gulavani and Gulwani
describe an abstract-interpretation based timing analysis. They instrument the program with a
monitor variable that increases in each loop iteration and is then bounded by abstract interpreta-
tion. To extend the precision, they lift a given linear abstract domain (e.g. difference constraints,
polyhedra, . . .) such that non-linear and disjunctive (incorporating a max-operator) bounds can
be computed. Limitations are that it requires the user or some not specified heuristic to describe
the kind of non-linear expressions to track.

In Gulwani’s next approach [37], counter variable instrumentation is elaborated in such a
way that the need for disjunctive and non-linear invariants is avoided making abstract interpreta-
tion an easier task. The trick is to add multiple counter variables such that the individual bound
on each counter is linear. A global bound is composed from that individual bounds and can be
non-linear or disjunctive. Their strategy where to place counter variables is provable optimal for
achieving a precise bound. They state that fewer counters and less dependencies between them
lead to more precise bounds. Additionally, they can also handle non-arithmetic programs, if the
user provides quantitative functions for abstract data-structures.

In Gulwani’s next work [33], two new concepts useful for bound analysis are presented.
The work does not describe how to compute a loop bound (it requires an external function to
do that), but provides helpful hints how to handle more and achieve more precise bounds for
practical patterns. For a better handling of multi-path loops they suggest to refine the control
flow making interleavings more explicit, which often results that the analyzed object is much
simpler as infeasible paths are eliminated. Our tool LOOPUS applies a transformation with a
similar effect called contextualization, which is out of scope of this thesis. For more information,
please see the article [64]. The second novel concept is called progress invariants that allows to
reason about the progress of one particular loop with respect to another loop. We employ such
information as an extension to our upper bound algorithm (see the Restarting-Increment Rule
in Section 3.4.2). It helps in cases where a variable is incremented in an inner loop but reset in
the outer one such that the upper bound is not the increment multiplied with the total number of

8

iterations of the inner loop but with the number of iterations the inner loop can be executed for
each outer loop transition.

Alias et al [7] outlines a bound analysis for flowchart programs with transitions described by
affine expressions (x′ = Ax + a). Our abstract model is a special case of it if A is the identity
matrix. So, their model is more expressible, but it requires an expensive abstract interpretation
over polyhedron abstract domain to construct an abstract program. Our evaluation shows that
our simpler abstraction suffices for many common programs. We can also use our abstraction
for the example programs given in the article [7]. A nice point of their work is that they proved
their ranking function algorithm to be complete even though it is greedy (like our algorithm),
meaning that it always finds a ranking function if at least an affine one exists. A comparison of
their tool RANK with our tool LOOPUS can be found in Chapter 5.

Variable bounds computed by loop bounds

Gulwani formulated the problem of translating arithmetic expressions back to the procedure
header [35]. The solution follows the idea to use already computed loop bounds during the
backward translation to estimate the computation of a loop. We reuse the idea, but we integrate
it at the heart of the bound algorithm. In Gulwani’s work, loop bounds are assumed to be already
given at the header of the strongly connected component (SCC) containing the loop, and the goal
is to bound the variables of the bound by backward translating them to the header. In contrast, our
method also computes loop bounds within an SCC and uses for that also dynamically computed
variable bounds.

Recently, Brockschmidt et al [15] worked out how to compute variable and loop bounds in an
alternating fashion. Similarly to our method, they use loop bounds to compute variable bounds
and vice versa. In contrast to us, they support polynomial instead of linear ranking functions. We
argue that our approach offers a simpler representation. Our evaluation (see Chapter 5) shows
that we can derive more bounds by a greater precision in less time.

Linear Programming based solutions

A type-based amortized analysis for the estimation of resource usage in first-order functional
programs is given by Hofmann et al. [45]. They reduce the problem to linear constraint solv-
ing. Later they advanced their method to polynomial bounds [44], multivariate polynomial
bounds [43] and higher-order programs [48].

Inspired by the work of Hofmann et al., Carbonneaux et al. published recently an amoritzed
resource analysis framework for C programs [18]. They extend Hoare-logic by rules for potential
functions, which enables reasoning about resource usage. The potential functions are of a fixed
shape such that it becomes possible to use linear programming to compute a derivation in the
logic. The main restriction of their method is that they can only deduce linear bounds. A
comparison of their tool with LOOPUS on more than 30 examples is given in their paper [18].

9

Recurrence Solving based solutions

The COSTA project [4, 5] aims a cost analysis and studies for that goal the extraction of cost
recurrence relations from source code and computer algebra methods to solve them. Our method
can easily be extended for cost analysis if we annotate each transition by a cost measure. For a
comparison of their tool RANK with our tool LOOPUS see Chapter 5.

The ABC system of Kovács et al. [10] aims to compute symbolic bounds for nested loops,
but not for sequences of loops. They start by finding a variable for each loop that in- or decreases
towards a bound. Then they create for such a variable a polynomial recurrence equation that
models the assignments to that variable in all other loops. A closed form of this recurrence
equation is computed by symbolic summation algorithms and constitutes a loop bound for the
corresponding loop.

A similar approach is taken by the tool r-TuBound by Kovács et al. [49], which has the
advantage against [10] to support sequences of loops and multi-path loops. Unlike [10], they
are restricted to linear recurrences with constant coefficients, which have the advantage that they
are always solvable. They point out that such linear recurrences are sufficient to describe the
behavior of most loops in their benchmarks. In contrast to us, they do not support nested-loop
structures.

WCET Analysis

The worst-case execution time (WCET) is a long-standing problem in the embedded and real-
time system community. WCET analysis happens usually on two levels. A low-level analysis
models the target architecture and estimates the execution time of a program instruction. A
high-level analysis works platform-independent and aims for example to compute a parametric
WCET for a program given in source code [51]. A parameter represents for example the concrete
input value of a variable or the maximal iteration count for a loop. Automated methods for
inferring loop bounds developed by the WCET community can be grouped into pattern based
loop-counter detection [52] and solutions based on abstract-interpretation [28,51,55] or abstract
execution [41]. All those methods work usually only for loops with relatively simple flow and
arithmetic [46]. For complex examples, loop iteration counts are considered to be given by the
user [63].

10

CHAPTER 2
Program Model and Main Definitions

In this chapter, we formally define difference constraint programs (DCPs), which we will ab-
stract from concrete programs and on which our loop and variable bound algorithms are defined.

As we know by Alan Turing that the halting problem, which asks the question if a given
program terminates on all inputs, is undecidable, every attempt for termination analysis and
therefore also for bound analysis ends up in solving only a subproblem. We identify such a sub-
problem formally by defining difference constraint programs for which termination is decidable.
Our approach stands in contrast to many other recent bound analyses [3, 15, 37, 38], which do
not separate between the abstract and concrete program and formulate bound algorithms on a
general for example C-like language.

A difference constraint program does not contain any programming-language specific fea-
ture. So, we can define loop and variable bound algorithms (as done in Chapter 3) independently
from the programming language such that a new language is supported if a front-end abstract-
ing a given program into a difference constraint program is provided. Such a front-end for C is
described (on a high level) in Chapter 4.

Clearly, abstraction has an inherent loss of precision (the abstract program can arrive in a
state not reachable by the concrete program) as not all features of a language fit into the abstract
model. We claim that difference constraint programs retain enough information for an effective
bound analysis of real-world code (as shown by our evaluation in Chapter 5).

This chapter is organized in the following way: we start by defining the concrete program
model, our abstract program model (difference constraint programs) and the relation between
them. Afterwards, we formally define loop and variable bounds. We complete this chapter with
examples of difference constraint programs.

2.1 Program Model

We use a common program representation by a directed graph. The nodes of a program are
called control locations. The edges of a program are labeled with relations over a set of states.

11

Definition 2.1 (Program). Let Σ be a set of states. The set of transition relations Γ = 2Σ×Σ is
the set of relations over Σ. A program is a tuple P = (L,E), where L is a finite set of locations,
andE ⊆ L×Γ×L is a finite set of transitions. We write l1

ρ−→ l2 to denote a transition (l1, ρ, l2).

Definition 2.2 (Program Path). A path of a program P is a sequence l0
ρ0−→ l1

ρ1−→ · · · ρn−1−−−→ ln
with li

ρi−→ li+1 ∈ E for all 0 ≤ i < n, where n denotes the length of the path. A path is cyclic,
if it has the same start- and end-location. A path is simple, if it does not visit a location twice
except for start- and end-location. We write π = π1 · π2 for the concatenation of two paths π1

and π2, where the end-location of π1 is the start-location of π2. We say π′ is a subpath of a path
π, if there are (possibly empty) paths π1 and π2 with π = π1 · π′ · π2.

Definition 2.3 (Trace of a Program). A trace of a program P is a sequence (l0, σ0)
ρ0−→ (l1, σ1)

ρ1−→ · · · such that l0
ρ0−→ l1

ρ1−→ · · · is a path of P , and (σi, σi+1) ∈ ρi for all i ≥ 0.

Definition 2.4 (Program Termination). A program P is terminating, if there is no infinite trace
of P .

2.2 Difference Constraint Program

In this thesis, we use difference constraint programs as an abstract program model. The main
characteristic is the structure of the abstract transitions, which are specified by a conjunction of
predicates of the form x′ ≤ y+ c with variables x, y ∈ N and a constant c ∈ Z, which are called
difference constraints in standard computer science literature [21]. Such a formula describes
how a variable x (we write x′ to denote the value after taking the transition) can change its value
by taking the transition in respect to y and c.
Although such constraints only allow increments, decrements and assignments, we claim that
difference constraint programs are well-suited for the purpose of bound analysis. This is con-
firmed by our experiments on real-world code.

Definition 2.5 (Difference Constraint Program). A Difference Constraint Program (DCP) is a
tuple ∆P = (L,E), where L is a finite set of locations, E ⊆ L× (Var ×Z)n×L is a finite set
of transitions with n variables in Var .
We write l1

u−→ l2 to denote an edge (l1, u, l2) for some vector u ∈ (Var × Z)n. The ith element
of u is u(i) = (xj , c) and refers to the predicate x′i ≤ xj + c where the primed version x′i
belongs to the value of xi after taking the transition.
The set of valuations of Var is the set ValVar = Var → N of mappings from Var to the natural
numbers, including 0.

Examples of difference-constraint programs can be found in Section 2.5. Note that a DCP
is a program by definition.

Definition 2.6 (Trace of a Difference Constraint Program). A trace of a difference constraint
program ∆P with variables Var is a sequence (l0, σ0)

u0−→ (l1, σ1)
u1−→ · · · such that l0

u0−→
l1

u1−→ · · · is a path of ∆P , σi ∈ ValVar and σi+1(x) ≤ σi(y) + c for all i ≥ 0, x, y ∈ Var and
c ∈ Z s.t. x′ ≤ y + c ∈ ui.

12

We define now some common terminologies.

Definition 2.7 (Resets and Increments). Let ∆P(L,E) be a DCP over variables Var , and let
v ∈ Var .

1. C(v) = {l1
u−→ l2 ∈ E | v ′ ≤ v + c ∈ u}

2. R(v) = {l1
u−→ l2 ∈ E | v ′ ≤ v1 + c ∈ u ∧ v 6= v1}

Let τ = l1
u−→ l2 ∈ R(v) be a transition, and let t = (l1, σ1)

u−→ (l2, σ2) be a trace of
length 1. If v ′ ≤ v1 + c ∈ u, then we call v1 a reset of v and we say that τ resp. t resets v . We
denote by γτ (v) resp. γt(v) the variable v1.

Let τ = l1
u−→ l2 ∈ C(v) be a transition, and let t = (l1, σ1)

u−→ (l2, σ2) be a trace of
length 1. If v ′ ≤ v + c ∈ u, then we call c the increment of v on τ and we say that τ resp. t
increments v by c. We denote by δτ (v) resp. δt(v) the increment c.

2.2.1 Decidability of Termination of DCPs

For the general class of difference constraint programs defined by Ben-Amram, termination is
undecidable [8]. As our programs belong by definition to the restricted class of fan-in free
programs, termination becomes decidable [8].

A program is fan-in free, if for every transition it holds that a variable of the target state
has only one variable of the input state constraining it. Our definition describes only fan-in free
programs, because a target variable x′i is only part of one transition predicate x′i ≤ xj + c and
xj does not yield a transitive constraint to x′i on another variable as xj is not constrained by any
variable (xj is only implicitly constraint by the fact that xj is a natural number).

2.2.2 Reducibility

We introduce the notion of a reducible program, which allows us to precisely identify loops
within a program. This restriction does not limit our approach, because every irreducible pro-
gram can be transformed into a reducible one (see for example the program transformation
in [47]). Our current implementation fails if a program is irreducible.

A C program is always reducible, if no goto-statements are used. Irreducible control flow is
very rare in practice due to the influential idea of structured programming, as recently studied
in [61]. The authors analyzed open-source projects written in C containing 10427 functions and
discovered that only five functions are irreducible and that no irreducible loop have been added
in the last ten years. Also, our experiments with C code confirm that the vast majority of loops
is reducible.

We define reducibility in the following solely as a graph theoretic property of the control
flow graph like presented in common compiler literature [1]. Let G = (V,E) be a directed
graph with a unique entry point such that all nodes are reachable from the entry point.

Definition 2.8 (Dominator relation). Let a, b ∈ V . Node a dominates a node b, if every path
from entry to b includes a.

13

Definition 2.9 (Back edge). An edge b→ a ∈ E is a back edge, if a dominates b.

Definition 2.10 (Reducible graph). G is reducible, if G becomes acyclic after removing all back
edges.

Definition 2.11 (Loop header). A node is a loop header, if it is the target of a back edge.

Definition 2.12 (Natural loop). The natural loop of a loop header h in a reducible graph is the
maximal set of nodes L such that for all x ∈ L (1) h dominates x and (2) there is a back edge
from some node n to h such that there is path from x to node n that does not contain h.

We list some consequence of the above definition: Every natural loop is uniquely defined by
its loop header. Two natural loops A and B are either disjoint (i.e., A ∩B = ∅) or nested inside
each other (i.e., A ⊆ B or B ⊆ A). Further, in case of A ⊆ B, set containment is strict if and
only if A and B have different loop headers.

Definition 2.13 (Loop-path). A loop-path π is a simple cyclic path, which starts and ends at
some loop header l, and visits only locations inside the natural loop of l.

In the following we define common terminologies used in the rest of this thesis.

Definition 2.14 (Loop-path sets). Let P (L,E) be a program, and let T ⊆ E.

1. L(P) is the set of all loop-paths π of P .

2. L∨(P, T) is the set of all loop-paths π of P which contain at least one edge from T .

We write L and L∨(T) if it is clear which program is used.

Definition 2.15 (Instance of a loop-path). Let π = l1
u1−→ l2

u2−→ · · · ln−1
un−1−−−→ l1 be a loop-

path. A path ν is an instance of π iff ν is of the form l1
u1−→ l2 ∗ l2

u2−→ l3 ∗ l3 · · · ln−1 ∗ ln−1
un−1−−−→

ln = l1, where li ∗ li denotes any (possibly empty) path starting and ending at location li which
does not contain l1. A path p contains an instance ν of π iff ν is a subpath of p. Let ν be an
instance of π contained in p; a transition t on p belongs to ν, if t is on ν and t = li

ui−→ li+1 for
some i.

Observation 2.16. Every transition in a given path belongs to at most one instance of a loop-
path. Every transition in a given cyclic path belongs to exactly one instance of a loop-path.

2.3 Abstraction of a Program

We introduce the notion of a norm and define invariants of a program to relate the concrete
program with the abstract one. We assume in the following that a program has a unique entry
location linit.

Definition 2.17 (Reachable States). A state σ is reachable at location l if and only if there is a
trace (l0, σ0)

ρ0−→ (l1, σ1)
ρ1−→ (l2, σ2)

ρ2−→ · · · ρn−1−−−→ (ln, σn) with l0 = linit and σn = σ. We
denote by Reach(l) the set of all states that are reachable at location l.

14

Definition 2.18 (Program Invariant). Let P = (L,E) be a program, and let Σ be a set of states.
Let e1, e2 ∈ Σ→ Z be integer-valued expressions over the states, and let c ∈ Z be some integer.
We say e1 ≥ 0 is invariant for l, if e1 ≥ 0 holds for all states σ ∈ Reach(l).
We say e′2 ≤ e1 + c is invariant for l1

ρ−→ l2, if e2(σ2) ≤ e1(σ1) + c holds for all (σ1, σ2) ∈ ρ
with σ1 ∈ Reach(l1).

Definition 2.19 (Norm). A norm x is a function that maps the states to the natural numbers, i.e.,
x ∈ Σ→ N, including 0.

In the following, we define under which conditions a DCP is an abstraction of a program.

Definition 2.20 (Abstraction of a Program). A difference constraint program ∆P = (L,E′)
with variables Var is an abstraction of a program P = (L,E) if and only if

(1) every x ∈ Var is a norm of P , and

(2) for each transition l1
ρ−→ l2 ∈ E there is a transition l1

u−→ l2 ∈ E′ such that every x′ ≤
y + c ∈ u is invariant for l1

ρ−→ l2.

2.4 Loop-path and Variable Bound Definitions

Definition 2.21 (Loop-path Bound). Given a program P over variables Var with entry location
l0, an expression b over Var is a loop-path bound for a loop-path π of P if for every trace
(l0, σ0)

ρ0−→ (l1, σ1)
ρ1−→ (l2, σ2)

ρ2−→ · · · ρn−1−−−→ (ln, σn) of P the path l0
ρ0−→ l1

ρ1−→ · · · ρn−1−−−→ ln
contains at most σ0(b) instances of π.

Similarly, Gulwani and Zuleger stated the problem of bounding the number of times a given
control-location is visited during program execution and called it the reachability-bound prob-
lem [38]. Note that the sum of all bounds of those loop-paths on which the given control location
lies, build a reachability-bound.

Further, loop-path bounds can be used to obtain the computational complexity of a program
by summing up the bounds of all loop-paths of all loops. A loop bound can be established by
adding the bounds of all loop-paths of a loop.

Definition 2.22 (Upper Bound of a Variable). Given a program P over variables Var with entry
location l0, an expression b over Var is an upper bound for a variable v ∈ Var if for every trace
(l0, σ0)

ρ0−→ (l1, σ1)
ρ1−→ (l2, σ2)

ρ2−→ · · · ρn−1−−−→ (ln, σn) of P it holds that σn(v) ≤ σ0(b).

2.5 Examples

In Figure 2.1, we see a DCP for exampleEx4 depicted in Figure 1.1 in the introduction section,
and Figure 2.2 shows a DCP representing example Ex5.

To obtain the precise variable bound 100 for variable x in example Ex4, we have to use
the complex norm zy≥50 := max(0, 50 −max(0, y − 50)), which cannot be generated by our
current implementation.

15

l1

l3

z′y<50 ≤ 50

z′y≥50 ≤ 50

x′ ≤ 50

l5

z′y<50 ≤ zy<50 − 1
z′y≥50 ≤ zy≥50 − 1

x′ ≤ x+ 1

l8 x′ ≤ x− 1

zy<50 := max(0, 50− y)

zy≥50 := max(0, 50−max(0, y − 50))
x := x

Figure 2.1: A DCP representing example Ex4 given in the introduction 1.1. On the right top,
norms for the original program are defined. We omit transition predicates of the form x′ ≤ x for
better readability.

l1

l3

z′n−i ≤ n
j′ ≤ 0
x′ ≤ 0

l5

j′ ≤ j + 1z′n−i ≤ zn−i − 1

j′ ≤ j − 1
x′ ≤ x+ 1

l8 x′ ≤ x− 1

zn−i := n− i
n := n
j := j
x := x

Figure 2.2: A DCP representing example Ex5 given in the introduction 1.1. On the right top,
norms for the original program are defined. We omit transition predicates of the form x′ ≤ x for
better readability.

16

CHAPTER 3
Bound Computation

This chapter is organized in the following way: We state the loop-path and variable bound
algorithms in Section 3.1. We give an example evaluation of the bound algorithms in Section 3.2.
We show termination and soundness of the algorithms in Section 3.3. Further, we show some
possible extensions improving the precision of the bounds computed by our bound algorithms
in Section 3.4.

3.1 Loop-path and Variable Bound Algorithms

We assume to have given a difference constraint program ∆P(L,E) over a set of variables Var
with entry location l0 and exit location le. Further, we have given for every variable v ∈ Var
the transition sets R(v) (i.e., all transitions resetting v) and C(v) (i.e., all transitions in- or
decrementing v) as described in Definition 2.7.

Our bound algorithm is based on the assumption that for each loop-path π there exists a
variable v which strictly decreases on π thereby limiting the number of consecutive executions
of π. We therefore assume a mapping ζ to be given which assigns each loop-path a variable with
the aforementioned property. We explain in Chapter 4 how to compute the mapping ζ.

Definition 3.1 (Local Ranking Mapping). Let ζ : L → Var be a mapping from the loop-paths of
∆P to the variables. The mapping ζ is a local ranking mapping if and only if for all loop-paths
π of ∆P it holds that

(i) ∀τ ∈ π : τ ∈ C(ζ(π)) and

(ii)
∑
τ∈π

δτ (ζ(π)) < 0.

Definition 3.2 (Variable Upper Bound VB and Loop-path Bound PB). Let ζ be a local ranking
mapping. We define
VBζ : Var 7→ Expression(Var) and PBζ : L 7→ Expression(Var) as:

17

VBζ(v) = Increment(v) + max(v , max
τ∈R(v)

Reset(τ, v))

PBζ(π) = Increment(ζ(π)) + ζ(π) +
∑

τ∈R(ζ(π))

TB(τ)× Reset(τ, ζ(π))

where

• Increment(v) =
∑

τ∈C(v)

TB(τ)×max(δτ (v), 0)

• Reset(τ, v) = VBζ(γτ (v)) + δτ (v)

• TB(τ) =
∑

π∈L∨(τ)

PBζ(π)+

{
1 if τ is part of a simple path l0

u0−→ . . .
un−→ le

0 otherwise

3.2 Examples

3.2.1 Solving Example Ex1

As an example, we want to compute a loop-path bound for the loop at line 7 in Ex1 given in
Figure 1.1 in the introduction section. Figure 3.1 depicts a DCP which represents exampleEx1.
By Definition of PBζ 3.2, if we assume that ζ(πl7) = x1, then we can start with:
PBζ(πl7) = Increment(x1) + x1 +

∑
τ∈R(x1)

TB(τ)× Reset(τ, x1).

We set in sub-definitions.
PBζ(πl7) =

∑
τ∈C(x1)

TB(τ)×max(δτ (x1), 0) + x1+∑
τ∈R(x1)

TB(τ)× (VBζ(γτ (x1)) + δτ (x1))

We observe from the DCP seen in Figure 3.1, that C(x1) = {l7→ l7} andR(x1) = {l3→ l7}.
PBζ(πl7) = TB(l7→ l7)×max(−1, 0) + x1+

TB(l3→ l7)× (VBζ(x) + 0)
= x1 + TB(l3→ l7)× VBζ(x)

We see in Figure 3.1 that l3 → l7 is not part of any loop-path and lies on a simple path l1 →
l3→ l7→ le from the start to the end-location. We conclude TB(l3→ l7) = 1.
PBζ(πl7) = x1 + VBζ(x)

We start a sub-computation to compute a variable bound for x.
VBζ(x) = Increment(x) + max(x, max

τ∈R(x)
Reset(τ, x))

=
∑

τ∈C(v)

TB(τ)×max(δτ (x), 0)+

max(x, max
τ∈R(x)

(VBζ(γτ (x)) + δτ (x)))

We observe from the DCP seen in Figure 3.1, that C(x) = {l4 → l4} and R(x) = {l1 → l3}.
Further, we see that l4→ l4 is not part of any simple path from the start to the end.
VBζ(x) = TB(l4→ l4)×max(1, 0) + max(x, VBζ(0) + 0)

= TB(l4→ l4) + max(x, 0)
= PBζ(l4→ l4) + max(x, 0)

18

l1

l3

z′n−i ≤ n
x′ ≤ 0

l4

z′n−j ≤ n
z′n−i ≤ zn−i − 1

z′n−j ≤ zn−j − 1

x′ ≤ x+ 1

l7
x′1 ≤ x

x′1 ≤ x1 − 1

le

zn−j := n− j
x := x
x1 := x

zn−i := n− i

Figure 3.1: A DCP representing example Ex1 given in the introduction 1.1. We omit transition
predicates like x′ ≤ x. On the right top, the used norms are defined.

We start a second sub-computation to compute a loop-path bound for the loop at line 4. We
assume that ζ(πl4) = zn−j . We observe from the DCP seen in Figure 3.1, that C(zn−j) =
{l4→ l4} andR(zn−j) = {l3→ l4}.
PBζ(πl4) = TB(l4→ l4)×max(−1, 0) + zn−j+ TB(l3→ l4)× (VBζ(n) + 0)

We see in Figure 3.1 that l3→ l4 is part of the loop-path l3→ l4→ l3 and that l3→ l4 is not
part of any simple path from the start to the end. So, we have L∨(l3→ l4) = {l3→ l4→ l3}.
PBζ(πl4) = zn−j + PBζ(l3→ l4→ l3)× n

We start a third sub-computation to compute the loop-bound for the loop πl3 at line 3. We assume
that ζ(πl3) = zn−i. We observe from the DCP seen in Figure 3.1, that C(zn−i) = {l4 → l3}
andR(zn−i) = {l1→ l3}.
PBζ(πl3) = TB(l4→ l3)×max(−1, 0) + zn−i+ TB(l1→ l3)× (VBζ(n) + 0)

We see in Figure 3.1 that l1 → l3 is not part of any loop-path and lies on a simple path l1 →
l3→ l7→ le from the start to the end-location. So, we have TB(l1→ l3) = 1.

PBζ(πl3) = zn−i + n
PBζ(πl4) = zn−j + (zn−i + n)× n
VBζ(x) = zn−j + (zn−i + n)× n+ max(x, 0)
PBζ(πl7) = x1 + zn−j + (zn−i + n)× n+ max(x, 0)

We set x, x1, zn−j , and zn−i to 0 as they are not defined at the function header.

PBζ(πl7) = n2

3.2.2 Example motivating the definition of TB

The bound algorithms VBζ and PBζ use the function TB to get a transition bound for a given
transition. Intuitively, a bound for a transition τ is the sum of all bounds of loop-paths containing
τ . In addition, we have to add 1 to that sum if τ is part of a simple path from the entry to the

19

exit location. A formal proof showing that TB correctly computes a transition bound is given in
Section 3.3.

The example depicted in Figure 3.2 shows why we have to add 1 to the sum of the corre-
sponding loop-bounds to get a correct transition bound. We want to compute an upper bound
for the variable j. Manual investigation observes that the bound for j is n+ 1, because the edge
l6→ l4, which contains the increment of j, can be executed as often as the back-edge from line
7 to line 4 can be taken and this can happen n times. Further, the edge l6 → l4 is taken one
additional time before i gets 1 at line 7. So, we get n + 1 as the transition bound for l6 → l4
and the variable bound for j.

We evaluate VBζ(j) in the following.
VBζ(j) = Increment(j) + max(j, max

τ∈R(j)
Reset(τ, j))

=
∑

τ∈C(v)

TB(τ)×max(δτ (j), 0)+ max(x, max
τ∈R(j)

(VBζ(γτ (j)) + δτ (j)))

We observe from the DCP seen in Figure 3.2 on the right, that C(j) = {l4→ l6, l6→ l4, l6→
le} andR(x) = {l1→ l4}.
VBζ(j) = TB(l4→ l6)×max(1, 0) + TB(l6→ l4)×max(0, 0)

+ TB(l6→ le)×max(0, 0) + max(j, VBζ(0) + 0)
= TB(l4→ l6) + j

The transition l4 → l6 is part of the loop-path l4 → l6 → l4 and lies on the simple path
l1→ l4→ l6→ le from the entry to the end location.
VBζ(j) = PBζ(l4→ l6→ l4) + 1 + j

We start a sub-computation to compute a loop-path bound for the loop πl4 = l4 → l6 → l4.
We assume that ζ(πl4) = i. We observe from the DCP seen in Figure 3.2, that C(i) = {l4 →
l6, l6→ l4, l6→ le} andR(i) = {l1→ l4}.
PBζ(πl4) = TB(l4→ l6)×max(0, 0) + TB(l6→ l4)×max(−1, 0)

+ TB(l6→ le)×max(0, 0) + i+ TB(l1→ l4)× (VBζ(n) + 0)
= i+ TB(l1→ l4)× n

The transition l1 → l4 is not part of any loop, but lies on the simple path l1 → l4 → l6 → le
from the entry to the end location.
PBζ(πl4) = i+ n
VBζ(j) = PBζ(πl4) + 1 + j = i+ n+ 1 + j

We set i and j to 0 as they are not defined at the function header.
VBζ(j) = n+ 1

3.3 Termination and Soundness of the Bound Algorithms

3.3.1 Termination of the Bound Algorithms

The loop-path and variable bound algorithms given in Definition 3.2 obviously do not terminate
if there exists a variable v such that during computation of VBζ(v) a recursive call to VBζ(v) is
done or there exists a loop-path π such that during computation of PBζ(π) a recursive call to
PBζ(π) is done. In the following, we will formulate the recursive dependencies between VBζ and

20

1 exTB (u i n t n) {
2 i n t i = n ;
3 i n t j = 0 ;
4 do {
5 j ++;
6 } whi le (i− − > 0) ;
7 }

l1

l4

i′ ≤ n
j′ ≤ 0

l6

i′ ≤ i
j′ ≤ j + 1

i′ ≤ i− 1
j′ ≤ j

le
i′ ≤ i
j′ ≤ j

i := max(0, i)
j := j
n := n

Figure 3.2: Example motivating the definition of the transition bound TB. On the right top, we
list the used norms.

PBζ , and we will define the requirements a program has to fulfill such that a computation VBζ or
PBζ cannot depend on itself (i.e. the computation must terminate).

Given a DCP ∆P(L,E) over variables Var , the corresponding transition setsR and C, and
a mapping ζ : L 7→ Var , we identify the following recursive dependencies between the bound
computations VBζ and PBζ according to the definition of the bound algorithms.

(1) To compute an upper bound (i.e., VBζ) for a variable v ∈ Var or a loop-path bound (i.e.,
PBζ) for a loop-path π where ζ(π) = v , we have to compute an upper bound for each reset
of v . So, VBζ(v) and all PBζ(π) where ζ(π) = v depend on the computation VBζ(v1) if there
exists a transition l1

u−→ l2 ∈ R(v) such that v ′ ≤ v1 + c ∈ u.

(2) The computations VBζ(v) and all PBζ(π) where ζ(π) = v depend on the computation
PBζ(π1) where ζ(π1) = v1 if variable v is incremented on a transition l1

u−→ l2 ∈ π1

(i.e., v ′ ≤ v + c ∈ u and c > 0).

(3) Given a variable v ∈ Var such that there exists a loop-path π where ζ(π) = v , then PBζ(v)
computes a loop-path bound for each loop-path containing a transition that resets v . So,
PBζ(v) depends on all PBζ(π1) where ζ(π1) = v1 if there exists a transition τ ∈ π1 such
that τ ∈ R(v).

According to the recursive dependencies between the computations VBζ and PBζ described
above, we define the binary relation R in Definition 3.3, which reflects the points (1− 3) of the
list above one to one.

Definition 3.3 (The Relation R). We define the binary relation Rζ(∆P) ⊆ Var × Var such
that (v1, v) ∈ Rζ(∆P) if and only if

21

(1) ∃l1
u−→ l2 ∈ R(v) : v ′ ≤ v1 + c ∈ u or

(2) ∃l1
u−→ l2 ∈ C(v) : v ′ ≤ v + c ∈ u ∧ c > 0 ∧ ∃π ∈ L∨(l1

u−→ l2) : ζ(π) = v1 or

(3) (∃π ∈ L : ζ(π) = v) ∧ (∃π ∈ L∨(R(v)) : ζ(π) = v1).

We denote by Rζ(∆P)∗ the transitive closure of Rζ(∆P). We often write Rζ and R∗ζ if it is
clear which program is used.

According to Definition 3.3, a pair of variables (v1, v) ∈ R exists if and only if either

(i) VBζ(v) recursively calls VBζ(v1) or

(ii) VBζ(v) recursively calls PBζ(π1) where ζ(π1) = v1 or

(iii) PBζ(π) where ζ(π) = v recursively calls VBζ(v1) or

(iv) PBζ(π) where ζ(π) = v recursively calls PBζ(π1) where ζ(π1) = v1.

Definition 3.4 (Strict Partial Order). A strict partial order is a binary relation R over a set S
which satisfies for a, b, and c ∈ S:

(i) (a, a) 6∈ R (irreflexive),

(ii) (a, b) ∈ R ∧ (b, c) ∈ R =⇒ (a, c) ∈ R (transitive), and

(iii) (a, b) ∈ R =⇒ (b, a) 6∈ R (asymmetric).

Definition 3.5 (Cycle-free Variable Dependencies). We say that a program ∆P(L,E) has cycle-
free variable dependencies under mapping ζ if and only if R∗ζ is a strict partial order.

Theorem 3.6 (Termination). If R∗ζ is a strict partial order, then VBζ and PBζ are total functions,
i.e., the computations VBζ and PBζ terminate.

3.3.2 Soundness of the Bound Algorithms

We structure the soundness proof of the bound algorithms in the following way. At first, we
restrict the soundness to valid traces (see Definition 3.7) of amenable programs (see Defini-
tion 3.8). Next, we show the soundness of the transition bound function TB used by the bound
algorithms. Finally, we prove the soundness of the loop and variable bound algorithms.

Valid Traces

A DCP allows traces that are infeasible for a ’normal’ program. For example, a C function
cannot stuck halfway through at a location different to the end-location (except for run-time
errors). We give an example in Figure 3.3. We show the soundness of our bound algorithms
only for traces that do not stuck at a location different to the end-location, which we call valid
traces.

22

1 n o t g e t s t u c k (i n t n) {
2 i n t i = n ;
3 whi le (i > 0) {
4 i−−;
5 }
6 }

l1

l3

i′ ≤ n

l4

i′ ≤ ii′ ≤ i− 1

le

Figure 3.3: The DCP on the right may stuck at location l4 if i has value 0 at l3. In contrast, the
original program never stucks at location l4.

Definition 3.7 (Valid Trace). We call a finite trace t = (l0, σ0)
u0−→ (l1, σ1)

u1−→ (l2, σ2)
u2−→

· · · un−1−−−→ (ln, σn) of ∆P valid, if and only if ln = le or there exists a trace t2 = (ln, σn)
un−→

(ln+1, σn+1)
un+1−−−→ (ln+2, σn+2)

un+2−−−→ · · ·
un+k−−−→ (le, σe).

Amenable Programs

We summarize the requirements that a program has to fulfill such that the loop and variable
bound algorithms are sound in Definition 3.8. We say that a program is amenable if it is reducible
and has a single, acyclic entry location and a single, acyclic exit location. We say a location is
acyclic, if the location is not part of any loop.

Definition 3.8 (Amenable DCP). A DCP is amenable if and only if

(i) has a single, acyclic entry location l0 and a single, acyclic exit location le, and

(ii) is reducible (see Definition 2.10).

Soundness of the Transition Bound

In our bound algorithms, the function TB aims to return transition bounds for a given transition.
Next, we formally define the notion of a transition bound and prove that TB(τ) is a transition
bound for a transition τ .

Definition 3.9 (Transition Bound). Given a program P (L,E) over variables Var with entry
location l0, an expression b over Var is a transition bound for a transition τ ∈ E such that on
every trace (l0, σ0)

ρ0−→ (l1, σ1)
ρ1−→ (l2, σ2)

ρ2−→ · · · ρn−1−−−→ (ln, σn) of P the transition τ appears
at most σ0(b) times.

Lemma 3.10. Let ∆P(L,E) be an amenable DCP over variables Var , and let τ ∈ E be
a transition. If for all π ∈ L∨(τ), the expression PBζ(π) is a loop-path bound for π, then

23

∑
π∈L∨(τ)

PBζ(π)+

{
1 if τ is part of a simple path l0

u0−→ . . .
un−→ le

0 otherwise
is a transition bound for

τ on all valid traces of ∆P .

Proof. Let tv = (l0, σ0)
u0−→ (l1, σ1)

u1−→ (l2, σ2)
u2−→ · · · un−1−−−→ (ln, σn) be a valid trace of

∆P , and let t = tv · te be a trace finishing tp to the end-location le, i.e., te = (ln, σn)
un−→

(ln+1, σn+1)
un+1−−−→ (ln+2, σn+2)

un+2−−−→ · · · un+k−−−→ (le, σe).
Let](τ, t) denote the total number of occurrences of the transition τ on trace t . Clearly, we

have](τ, tv) ≤](τ, t). We show the stronger proposition that

](τ, t) ≤ σ0(
∑

π∈L∨(τ)

PBζ(π))+

{
1 if τ is part of a simple path l0

u0−→ . . .
un−→ le

0 otherwise

assuming that](π, t) ≤ σ0(PBζ(π)) for all π ∈ L∨(τ), where](π, t) denotes the number of
instances of loop-path π on trace t .

We can fully decompose the path l0
u0−→ l1 · · ·

un+k−−−→ (le, σe) into segments t1 ·C1 ·t2 · · ·Cm ·
tm such that each Ci is a cyclic (non-empty) path, and the concatenation ti · t2 · · · tm is a simple
path with start-location l0 and end-location le.

Case 1: W.l.o.g. let τ be part of t2, then τ cannot be part of any other ti where i 6= 2, because
otherwise ti·t2 · · · tm would not be simple, as the start- and end-location of τ would appear twice

on it. We conclude that]case1(τ, t) =

{
1 if τ is part of a simple path l0

u0−→ . . .
un−→ le

0 otherwise
.

Case 2: Let τ be part of a cyclic path Ci. Then τ is part of a loop-path, L∨(τ) 6= ∅. By the
reducibility of ∆P and observation 2.16, τi must belong to exactly one instance of a loop-path
π ∈ L∨(τ). So, we conclude]case2(τ, t) =

∑
π∈L∨(τ)

](π, t).

Summing up both cases and applying our initial assumption results in

](τ, t) =
∑

π∈L∨(τ)

](π, t)+

{
1 if τ is part of a simple path l0

u0−→ . . .
un−→ le

0 otherwise

≤
∑

π∈L∨(τ)

σ0(PBζ(π))+

{
1 if τ is part of a simple path l0

u0−→ . . .
un−→ le

0 otherwise
.

Theorem 3.11 (Soundness). If R∗ζ is a strict partial order, then we have for all valid traces of
∆P that PBζ(π) is a loop-path bound for any π ∈ L and VBζ(v) is a variable upper bound for
any v ∈ Var .

Proof. Let π be a loop-path of ∆P , let v ∈ Var , and let t = (l0, σ0)
u0−→ (l1, σ1)

u1−→
(l2, σ2)

u2−→ · · · un−1−−−→ (ln, σn) be a valid trace of ∆P . We have to show](π, t) ≤ σ0(PBζ(π))
and σn(v) ≤ σ0(VBζ(v)), where](π, t) denotes the number of instances of π on trace t .

We assume that R∗ζ is a strict partial order. We proceed by induction over (Var ,R∗ζ).
Base Case 1: Let v be minimal in (Var ,R∗ζ), i.e. there is no v1 ∈ Var s.t. (v1, v) ∈ R∗ζ .

As v is minimal, we get by Definition 3.3 that there exists no l1
u−→ l2 ∈ E s.t. it would hold

that v ′ ≤ v + c ∧ c > 0 or v ′ ≤ v1 + c ∧ v 6= v1. Hence, we have by Definition 2.7 that
R(v) = ∅ and Increment(v) = 0, and therefore VBζ(v) = v by Definition 3.2. According to

24

Definition 3.3 of R, we can also say that there exists no l1
u−→ l2 ∈ E s.t. u |= v ′ > v . So, we

have σn(v) ≤ σ0(v) = σ0(VBζ(v)).
Base Case 2: Let v = ζ(π) be minimal in (Var ,R∗ζ). Reasoning in the same way as for base

case 1 leads to PBζ(π) = v . By the Definition 3.1 of ζ, variable v must be decremented by at
least 1 during an iteration of π. As we have the invariant v ≥ 0 at every location by Definition 2.5
of a DCP , the number of times π can be executed is bounded by the initial value of v , if v is
not increased on any transition τ ∈ E not part of π. Like in base case 1, we conclude from
Definition 3.3 that v is not increased on any τ ∈ E. So, we have](π, t) ≤ σ0(v) = σ0(PBζ(π)).

Step Case 1: Let v be not minimal in (Var ,R∗ζ), i.e. there exists some v1 ∈ Var s.t.
(v1, v) ∈ R∗ζ . The value of v by valuation σn is bounded by some base value increased by all
increments along the trace since v have got assigned that base value. We make a case distinction
if the base value is either the initial value of v or some reset of v .

If the base value of v is the initial value of v , then we can say that
σn(v) = σ0(v) +

∑
tj∈t

δtj (v).

If τr = lr
ur−→ lr+1 is the last transition that appears on trace t and resets v , i.e. we can

partition t = t1 · tr · t2 s.t. t2 does not reset v and tr = (lr, σr)
ur−→ (lr+1, σr+1). We can say

that σn(v) = σr(γτr(v)) + δτr(v) +
∑
tj∈t2

δtj (v).

By the semantics of maxima and because t2 is a subtrace of t , we can merge the two cases
of different base values and we get that
σn(v) ≤ max(σ0(v), σr(γτr(v)) + δτr(v)) +

∑
tj∈t

max(δtj (v), 0).

Let pt be the underlying path of trace t . Then we get by logical reasoning:
σn(v) ≤ max(σ0(v), σr(γτr(v)) + δτr(v)) +

∑
τ∈pt2

](τ, pt)×max(δτ (v), 0)

By Definition ofR and C, we have τr ∈ R(v) and {τ ∈ E | τ ∈ pt} ⊆ C(v). So, we get σn(v)
≤ max(σ0(v), max

τ∈R(v)
σr(γτ (v)) + δτ (v)) +

∑
τ∈C(v)

](τ, pt)×max(δτ (v), 0)

≤ σ0(max(v, max
τ∈R(v)

VBζ(γτ (v)) + δτ (v)) +
∑

τ∈C(v)

TB(τ)×max(δτ (v), 0)).

By Lemma 3.10 (Soundness of the Transition Bound):
σn(v) ≤ σ0(max(v, max

τ∈R(v)
VBζ(γτ (v)) + δτ (v))+

∑
τ∈C(v)

max(δτ (v), 0)×

(
∑

π∈L∨(τ)

PBζ(π)+

{
1 if τ is part of a simple path l0

u0−→ . . .
un−→ le

0 otherwise
))

By Definition 3.2 of VBζ :
= σ0(VBζ(v)).
As for every τr ∈ R(v) and τc ∈ C(v) s.t. δτc(v) > 0, we have (γτr(v), v) ∈ R∗ζ resp.
(ζ(π), v) ∈ R∗ζ for all π ∈ L∨(τc). Hence, the inequalities hold by assuming the induction
hypothesis.

Step Case 2: Let v = ζ(π) be not minimal in (Var ,R∗ζ). By Definition 3.1 of ζ, variable v
must be decremented by at least 1 during an iteration of π. As we have the invariant v ≥ 0 at
every location by Definition 2.5 of a DCP , the number of times π can be executed is bounded
by the initial value of v plus all increasing assignments to v . Hence,

25

](π, t) ≤ σ0(var) +
∑

tj∈t ,tjnot resets v
max(δtj (v), 0) +

∑
tj∈t ,tj resets v

σj(γtj (v)) + δtj (v).

Let pt be the underlying path of trace t . Then we get by logical reasoning:
](π, t) ≤ σ0(var) +

∑
τ∈pt ,τnot resets v

](τ, t)×max(δτ (v), 0)+∑
τ∈pt ,τ resets v

](τ, t)× (
n

max
j=0

σj(γτ (v)) + δτ (v)).

By Definition of R and C, we have that every τ ∈ pt that resets v is in R(v) and that every
τ ∈ pt that not resets v is in C(v).
](π, t) ≤ σ0(var) +

∑
τ∈C(v)

](τ, t)×max(δτ (v), 0)+
∑

τ∈R(v)

](τ, t)× (
n

max
j=0

σj(γτ (v)) + δτ (v))

≤ σ0(var +
∑

τ∈C(v)

TB(τ)×max(δτ (v), 0)+
∑

τ∈R(v)

TB(τ)× (VBζ(γτ (v)) + δτ (v)))

By Lemma 3.10 (Soundness of the Transition Bound):
](π, t) ≤ σ0(var+∑
τ∈C(v)

(
∑

π∈L∨(τ)

PBζ(π)+

{
1 if τ is part of a simple path l0

u0−→ . . .
un−→ le

0 otherwise
)

×max(δτ (v), 0)+∑
τ∈R(v)

(
∑

π∈L∨(τ)

PBζ(π)+

{
1 if τ is part of a simple path l0

u0−→ . . .
un−→ le

0 otherwise
)

×(VBζ(γτ (v)) + δτ (v)))
By Definition 3.2 of PBζ :
= σ0(PBζ(π)).
For every τ ∈ C(v) s.t. δτ (v) > 0, we have ∀π ∈ L∨(τ) : (ζ(π), v) ∈ R∗ζ . For every τ ∈ R(v),
we have (γτ (v), v) ∈ R∗ζ and ∀π ∈ L∨(τ) : (ζ(π), v) ∈ R∗ζ . Hence, the inequalities hold by
assuming the induction hypothesis.

3.4 Extensions

In this section, we present three extensions for our bound algorithms improving the precision of
the computed bounds.

3.4.1 Non-Monotonic In- or Decrease

The bound algorithms given in Definition 3.2 are imprecise (even asymptotical) if a variable is
increased on a transition of a loop-path π but decreased on another transition of π. We give a
formal definition of a variable with non-monotonic in- or decrease in Definition 3.12.

Definition 3.12 (Non-Monotonic In- or Decrease). Let ∆P(L,E) be a DCP over variables
Var . A variable v ∈ Var is non-monotonic in- or decreasing if there exists a loop-path π ∈ L
containing two transitions τ1 = l1

u1−→ l2 and τ2 = l3
u2−→ l4 such that τ1 6= τ2, (v ′ ≤ v + c1 ∈

u1 ∧ c1 > 0) ∨ (v ′ ≤ v1 + c1 ∈ u1 ∧ v 6= v1), and (v ′ ≤ v + c2 ∈ u2 ∧ c2 < 0) ∨ (v ′ ≤
v1 + c1 ∈ u1 ∧ v 6= v1).

In Figure 3.4, an example is depicted which contains variable i which is non-monotonic
in- or decreasing, because i is increased by 100 on the edge l3 → l5, decreased by 100 on

26

the edge l5 → l3, and the transition l3 → l5 together with l5 → l3 are part of the loop-path
l3 → l5 → l3. Our original bound algorithms compute the loop-path bound n ∗ 100 for the
loop at line 5, because the increment by 100 of i on edge l3 → l5 can happen n times and the
decrement of 100 is not considered.

We give a modified version of our bound algorithms mitigating the problems due to non-
monotonic in- or decrease in Definition 3.14. We require some additional sets of paths given
in Definition 3.13. In the following, we assume to have given a difference constraint program
∆P(L,E) over a set of variables Var with entry location l0 and exit location le.

Definition 3.13 (Additional Path Sets). Let T ⊆ E, and v ∈ Var .

1. L∧(∆P, T) is the set of all loop-paths of ∆P taking only edges in T

2. A(∆P, l1
u−→ l2, T) is the set of all simple acyclic paths starting at l2 and taking only

edges in T

3. L+(∆P, v) = {π ∈ L∧(C(v)) |
∑
τ∈π

δτ (v) > 0}

4. S(∆P, v) = {τ ∈ C(v) | τ is part of a simple path l0
u0−→ . . .

un−→ le}

We write L∧(T), A(l1
u−→ l2, T), L+(v) and S(v) if it is clear which program is used.

Definition 3.14 (Extension of VB and PB). Let ζ : L → Var be a local ranking mapping. We
define
VBζ : Var 7→ Expression(Var) and PBζ : L 7→ Expression(Var) as:
VBζ(v) = Increment(v) + max(v , max

τ∈R(v)
Reset(τ, v))

PBζ(π) = Increment(ζ(π)) + ζ(π) +
∑

τ∈R(ζ(π))

TB(τ)× Reset(τ, ζ(π))

where

• Increment(v) =
∑

π∈L+(v)

PBζ(π)×
∑
τ∈π

δτ (v) +
∑

τ∈S(v)

max(δτ (v), 0)

• Reset(τ, v) = VBζ(γτ (v)) + δτ (v) + max
p∈A(τ,C(v))

∑
τ∈p

δτ (v)

• TB(τ) =
∑

π∈L∨(τ)

PBζ(π)+

{
1 if τ is part of a simple path l0

u0−→ . . .
un−→ le

0 otherwise

Example

We want to compute a loop-path bound for the loop πl5 = l5 → l5 at line 5. We assume that
ζ(πl5) = i+100.
PBζ(πl5) = Increment(i+100) + i+100 +

∑
τ∈R(i+100)

TB(τ)× Reset(τ, i+100)

We observe from the DCP seen in Figure 3.4, that C(i+100) = {l3 → l5, l5 → l3, l3 → le}
and R(i+100) = {l1 → l3} and that there exists no loop-path out of the edges C(i+100) such

27

1 exNonMono (u i n t n) {
2 i n t i = 0 ;
3 whi le (n > 0) {
4 i += 100 ;
5 whi le (i > 0 && ?)
6 i−−;
7 i −= 100 ;
8 }
9 }

l1

l3

i′+100 ≤ 100

l5

i′+100 ≤ i+100 + 100i′+100 ≤ i+100 − 100

i′+100 ≤ i+100 − 1

le
i′+100 ≤ i+100

i+100 := i+ 100
n := n

Figure 3.4: Example showing variable i with a non-monotonic in- or decrease. On the right top,
we list the used norms.

that i+100 is increased if taking the entire loop-path. Hence, L+(i+100) = ∅. Further, we see
that only the edge l3 → le out of C(i+100) is lying on a simple path from the start to the end
location. Hence, S(v) = {l3→ le}.
PBζ(πl5) = max(δl3→le(i+100), 0) + i+100+ TB(l1→ l3)× Reset(l1→ l3, i+100)

= i+100 + TB(l1→ l3)× Reset(l1→ l3, i+100)

As the transition l1 → l3 is not part of any loop but lies on a simple path from the entry to the
exit location, we have TB(l1→ l3) = 1. Now, we set in the new definition for Reset.
PBζ(πl5) = i+100 + VBζ(100) + 0 + max

p∈A(l1→l3,C(i+100))

∑
τ∈p

δτ (i+100)

We see in the DCP seen in Figure 3.4, that there are two simple acyclic paths starting from l3
and taking only edges of C(i+100): l3→ l5 and l3→ le. So, we have A(l1→ l3, C(i+100)) =
{l3→ l5, l3→ le}.
PBζ(πl5) = i+100 + 100 + max(δl3→l5(i+100), δl3→le(i+100))

= i+100 + 100 + max(100, 0)
= i+100 + 200

As i+100 is not defined at the function header, we assume it to be 0. So, we get finally the
constant bound 200 instead of the linear bound n ∗ 100.
PBζ(πl5) = 200.

In fact, the loop-path bound for πl5 in the original program is 100. This imprecision comes
from our abstraction, as we have to use the norm i+100 := i + 100 such that i+100 is always
positive. In our implementation we get the bound 100, as we allow norms to map to the integers
(see Chapter 4).

3.4.2 Restarting-Increment Rule

Example Ex2 given in Figure 1.1 in the introduction section needs an extension for the bound
algorithms given in Definition 3.2, such that we infer the linear bound n for the loop at line 8

28

l1

l3

z′n−i ≤ n

l5

z′n−j ≤ n
x′ ≤ 0z′n−i ≤ zn−i − 1

z′n−j ≤ zn−j − 1

x′ ≤ x+ 1

l8
x′1 ≤ x

x′1 ≤ x1 − 1

le

zn−j := n− j
x := x
x1 := x

zn−i := n− i

Figure 3.5: A DCP representing example Ex2 given in the introduction 1.1, which requires
the Restarting-Increment Rule to obtain the linear bound n for the loop at line 8 instead of the
quadratic bound n2. We omit transition predicates like x′ ≤ x. On the right top, the used norms
are defined.

instead of the quadratic bound n2, which would be the result given by function PB.
In Figure 3.5, we show the abstract program model for example Ex2. The original function

PB computes a quadratic bound, because the increment x′ ≤ x+ 1 on edge l5→ l5 can happen
n2 times. If we consider that x is reset to 0 on the edge from l3→ l5, then we conclude that the
upper bound for x is only n.

The Restarting-Increment Rule says that if there is an increment of a variable inside a loop
and that variable is reset every time before reentering that loop (i.e. restarted), then we can
multiply the increment by a modified loop-path bound such that the edge, which resets the
variable, is considered to be taken only one time.

So, in our example we are allowed to multiply the increment 1 of variable x with a modified
loop-path bound of loop at line 5 (i.e., the loop incrementing x by 1) such that the edge l3→ l5
with reset x′ ≤ 0 is considered to be taken only one time. As a result, we get the modified
loop-path bound n of loop at line 5 and further the loop-path bound n for loop at line 8.

We give a formal implementation of the Restarting-Increment Rule in Definition 3.15. We
assume to have given a difference constraint program ∆P(L,E) over a set of variables Var
with entry location l0 and exit location le.

Definition 3.15 (Restarting-Increment Rule extension to VB). Let ζ : L → Var be a local
ranking mapping. We define
VBζ : Var 7→ Expression(Var) and PBζ : (L × (Var ∪ {ε})) 7→ Expression(Var) as:
VBζ(v) = IncrementVB(v) + max(v , max

τ∈R(v)
Reset(τ, v))

PBζ(π, v) = IncrementPB(ζ(π), v) + ζ(π) +
∑

τ∈R(ζ(π))

TBPB(τ, v)× Reset(τ, ζ(π))

where

• IncrementVB(v) =
∑

τ∈C(v)

TBVB(τ, v)×max(δτ (v), 0)

29

• IncrementPB(v , vi) =
∑

τ∈C(v)

TBPB(τ, vi)×max(δτ (v), 0)

• Reset(τ, v) = VBζ(γτ (v)) + δτ (v)

• LRestart(τ, vi) = {π ∈ L∨(τ) | vi 6= ε ∧ π resets vi}

• TBVB(τ, v) =
∑

π∈L∨(τ)

PBζ(π, v)

+

{
1 if τ is part of a simple path l0

u0−→ . . .
un−→ le

0 otherwise

• TBPB(τ, vi) = max(1,
∑

π∈L∨(τ)\LRestart(τ,vi)
PBζ(π, ε))

+

{
1 if τ is part of a simple path l0

u0−→ . . .
un−→ le

0 otherwise

Example

We apply the bound algorithms given in Definition 3.15 on the abstract program model for
example Ex2 1.1 given in Figure 3.5. We want to compute a loop-path bound for the loop
πl8 = l8→ l8 at line 8.
PBζ(πl8, ε) = IncrementPB(ζ(πl8), ε) + ζ(πl8)+

∑
τ∈R(ζ(πl8))

TBPB(τ, ε)× Reset(τ, ζ(πl8))

We assume that ζ(πl8) = x1.
PBζ(πl8, ε) = IncrementPB(x1, ε) + x1+

∑
τ∈R(x1)

TBPB(τ, ε)× Reset(τ, x1)

We set in sub-definitions.
PBζ(πl8, ε) =

∑
τ∈C(x1)

TBPB(τ, ε)×max(δτ (x1), 0) + x1+∑
τ∈R(x1)

TBPB(τ, ε)× (VBζ(γτ (x1)) + δτ (x1))

We observe from the DCP seen in Figure 3.5, that C(x1) = {l8→ l8} andR(x1) = {l3→ l8}.
PBζ(πl8, ε) = TBPB(l8→ l8, ε)×max(−1, 0) + x1+ TBPB(l3→ l8, ε)× (VBζ(x) + 0)

As we see in Figure 3.5 that l3→ l8 is not part of any loop, i.e., L∨(l3→ l8) = ∅, but lies on a
simple path l1→ l3→ l8→ le from the start to the end-location. So, TBPB(l3→ l8, ε) = 1.
PBζ(πl8, ε) = x1 + VBζ(x)

We start a sub-computation to compute an upper bound for x.
VBζ(x) = IncrementVB(x) + max(x, max

τ∈R(x)
Reset(τ, x))

We set in sub-definitions.
VBζ(x) =

∑
τ∈C(x)

TBVB(τ, x)×max(δτ (x), 0)+ max(x, max
τ∈R(x)

(VBζ(γτ (x)) + δτ (x))

We observe from the DCP seen in Figure 3.5, that C(x) = {l5 → l5} and R(x) = {l3 → l5}.
Further, we note that l5→ l5 is not part of a simple path form the start to the end.

30

VBζ(x) = TBVB(l5→ l5, x)×max(1, 0)+ max(x, VBζ(0) + 0)
= PBζ(l5→ l5, x) + max(x, 0)

We start a second sub-computation to compute a ’partial’ loop bound for the loop πl5 = l5→ l5
at line 5, such that loop-paths, which reset both ζ(πl5) and x, are considered to be taken only
one time. We assume that ζ(πl5) = zn−j .
PBζ(πl5, x) = IncrementPB(zn−j , x) + zn−j +

∑
τ∈R(zn−j)

TBPB(τ, x)× Reset(τ, zn−j)

We set in sub-definitions.
PBζ(πl5, x) =

∑
τ∈C(zn−j)

TBPB(τ, x)×max(δτ (zn−j), 0) + zn−j+∑
τ∈R(zn−j)

TBPB(τ, x)× (VBζ(γτ (zn−j)) + δτ (zn−j))

We observe from the DCP seen in Figure 3.5, that C(zn−j) = {l5 → l5} and R(zn−j) =
{l3→ l5}. Further, we note that l3→ l5 is not part of a simple path from the start to the end.
PBζ(πl5, x) = TBPB(l5→ l5, x)×max(−1, 0) + zn−j+ TBPB(l3→ l5, x)× (VBζ(n) + 0)

= zn−j + max(1,
∑

π∈L∨(l3→l5)\LRestart(l3→l5,x)

PBζ(π, ε))× n

We observe from the DCP seen in Figure 3.5, that l3 → l5 is part of the loop-path l3 →
l5 → l3, on which also x is reset. Hence, we get: L∨(l3 → l5) = {l3 → l5 → l3} and
LRestart(l3→ l5, x) = {l3→ l5→ l3}.
PBζ(πl5, x) = zn−j + max(1,

∑
π∈∅

PBζ(π, ε))× n

= zn−j + n

We continue our variable bound computation for x.
VBζ(x) = zn−j + n+ max(x, 0)

We continue our loop-path bound computation for loop at line 8.
PBζ(πl8, ε) = x1 + zn−j + n+ max(x, 0)

We eliminate x, x1, and zn−j by setting them to 0, because they are not defined at the function
header. We get finally the desired linear bound n for the loop at line 8.
PBζ(πl8, ε) = n

3.4.3 Lost-Increment-Of-Reset Rule

In Figure 3.6, we see on the left an example that requires an extension of the bound algo-
rithms 3.2. The loop at line 8 has a linear bound n, but as the original bound algorithm multiplies
the reset of r1 to r0 on line 7 by the transition bound n of the edge l8→ l12, we get the quadratic
bound n2 as n is the upper bound of r0. The key to a linear bound is to infer that r0 is reset to 0
on the same loop-path that resets r1 to r0. So, the increment of r0 at line 5 is lost after the loop
at line 8, and we do not have to multiply it by the transition bound n of l3 → l8 containing the
reset r0′ ≤ r1.

In Definition 3.16, we give an extended PB function, that in contrast to the original version
does not multiply an entire variable bound of a reset of a loop variable by the transition bound
of the reset edge, but instead splits a reset into its reset and increment parts.

31

1 r r u l e (i n t n) {
2 i n t r0 = 0 , r1 ;
3 whi le (n > 0) {
4 i f (?)
5 r0 ++;
6 e l s e {
7 r1 = r0 ;
8 whi le (r1 > 0 && ?)
9 r1−−;

10 r0 = 0 ;
11 }
12 n−−;
13 }
14 }

l1

l3

r0′ ≤ 0

l8

r1′ ≤ r0

r1′ ≤ r1− 1

l12

r0′ ≤
r0 + 1

r0′ ≤ 0

n′ ≤ n− 1

r1 := r1
r0 := r0
n := n

Figure 3.6: By the Lost-Increment-Of-Reset Rule, we get a linear bound for the loop at line 8.
The increment of r0 at line 5 ’reaches’ r1 only one time, as r0 is reset to 0 after the loop at line
8. We omit transition predicates like r0′ ≤ r0. On the right top, the used norms are defined.

Consider the example in Figure 3.6, the loop variable r1 of the loop at line 8 is reset to r0 on
the reset edge τr = l3→ l8. The upper bounds of the resets of r0 (i.e., 0 and the initial value of
r0), are multiplied by the transition bound of the reset edge τr like in the original PB function. In
contrast to the original PB, the increment of r0 by 1 on edge l3→ l12 is only multiplied with the
entire transition bound of the reset edge τr, if τr is not part of any loop resetting the reset r0. As
the only loop-path l3→ l8→ l12→ l3 going over τr resets r0 to 0 (i.e., on edge l8→ l12), we
only add the increment n (as r0 is incremented n times by 1 on edge l3→ l12) to the loop-path
bound of loop at line 8, without multiplying it by the transition bound of edge τr.

We assume to have given a difference constraint program ∆P(L,E) over a set of variables
Var with entry location l0 and exit location le.

Definition 3.16 (Lost-Increment-Of-Reset Rule extension to PB). Let ζ : L → Var be a local
ranking mapping. We define
VBζ : Var 7→ Expression(Var) and PBζ : L 7→ Expression(Var) as:
VBζ(v) = Increment(v) + max(v , max

τ∈R(v)
Reset(τ, v))

PBζ(π) = Increment(ζ(π)) + ζ(π)+∑
τ∈R(ζ(π))

TB(τ)× ResetsOfReset(τ, ζ(π))+∑
τ∈R(ζ(π))

TBRule(τ, ζ(π))× IncrementOfReset(τ, ζ(π))

where

• Increment(v) =
∑

τ∈C(v)

TB(τ)×max(δτ (v), 0)

32

• Reset(τ, v) = VBζ(γτ (v)) + δτ (v)

• TB(τ) =
∑

π∈L∨(τ)

PBζ(π)+

{
1 if τ is part of a simple path l0

u0−→ . . .
un−→ le

0 otherwise

• ResetsOfReset(τ, v) =
∑

τ0∈R(γτ (v))

Reset(γτ0(γτ (v))) + δτ (v)

• IncrementOfReset(τ, v) = Increment(γτ (v))

• LRule(τ, v) = {π ∈ L∨(τ) | π resets γτ (v)}

• TBRule(τ, v) = max(1,
∑

π∈L∨(τ)\LRule(τ,v)

PBζ(π))

+

{
1 if τ is part of a simple path l0

u0−→ . . .
un−→ le

0 otherwise

Example

We apply Definition 3.16 on the example in Figure 3.6 to compute a bound for the loop πl8 =
l8→ l8 at line 8.
PBζ(πl8) = Increment(ζ(πl8)) + ζ(πl8)+∑

τ∈R(ζ(πl8))

TB(τ)× ResetsOfReset(τ, ζ(πl8))+∑
τ∈R(ζ(πl8))

TBRule(τ, ζ(πl8))× IncrementOfReset(τ, ζ(πl8))

We assume that ζ(πl8) = r1.
PBζ(πl8) = Increment(r1) + r1+∑

τ∈R(r1)

TB(τ)× ResetsOfReset(τ, r1)+∑
τ∈R(r1)

TBRule(τ, r1)× IncrementOfReset(τ, r1)

We set in sub-definitions.
PBζ(πl8) =

∑
τ∈C(r1)

TB(τ)×max(δτ (r1), 0) + r1+∑
τ∈R(r1)

TB(τ)× (
∑

τ0∈R(γτ (r1))

Reset(γτ0(γτ (r1))) + δτ (r1))+∑
τ∈R(r1)

TBRule(τ, r1)× Increment(γτ (r1))

We observe from the DCP seen in Figure 3.6, that C(r1) = {l8→ l8} andR(r1) = {l3→ l8}.
PBζ(πl8) = TB(l8→ l8)×max(−1, 0) + r1+

TB(l3→ l8)× (
∑

τ0∈R(r0)

Reset(γτ0(r0)) + 0)+

TBRule(l3→ l8, r1)× Increment(r0)
= r1+
TB(l3→ l8)×

∑
τ0∈R(r0)

Reset(γτ0(r0))+

TBRule(l3→ l8, r1)× Increment(r0)

33

We set in sub-definitions for Reset and Increment.
PBζ(πl8) = r1+

TB(l3→ l8)×
∑

τ0∈R(r0)

(VBζ(γτ0(r0)) + δτ0(r0)+

TBRule(l3→ l8, r1)×
∑

τ∈C(r0)

TB(τ)×max(δτ (r0), 0)

We observe from the DCP seen in Figure 3.6, that C(r0) = {l3 → l12} and R(r0) = {l1 →
l3, l8→ l12}.
PBζ(πl8) = r1+

TB(l3→ l8)× (VBζ(0) + 0 + VBζ(0) + 0)+
TBRule(l3→ l8, r1)× TB(l3→ l12)×max(1, 0)
= r1 + TBRule(l3→ l8, r1)× TB(l3→ l12)

We observe from the DCP seen in Figure 3.6, that l3 → l8 is part of the loop-path l3 → l8 →
l12 → l3, which contains the transition l8 → l12 that resets the reset of r1, i.e., γl8→l12(r1) =
r0. Hence, we get: L∨(l3 → l8) = {l3 → l8 → l12 → l3} and LRule(l3 → l8, r1) = {l3 →
l8→ l12→ l3}.
Further, we note that l3 → l8 is not part of a simple path from the start to the end-location. So,
TBRule(l3→ l8, r1) = max(1,

∑
π∈∅

PBζ(π)) + 0 = 1.

PBζ(πl8) = r1 + TB(l3→ l12)

Assume that we have computed TB(l3→ l12) = n, then we finally get
PBζ(πl8) = r1 + n

As r1 is not defined at the function header, we set it to 0 and we obtain the linear bound n for
the loop at line 8.
PBζ(πl8) = n

34

CHAPTER 4
Implementation

We implemented our proposed algorithm as new bound procedure for the tool LOOPUS, which
determines worst-case runtime bounds of loops written in C in terms of procedure inputs, where
recursion is disregarded. A version of this tool already equipped with the new bound computa-
tion is available online1.

C is a natural choice because it is still the most widely used language for system develop-
ment. C is also standard for the development of safety-critical embedded and real-time systems,
for which resource bounds are of special interest.

LOOPUS is originally developed by Sinn and Zuleger at TU Vienna and is based on their
work on size-change abstraction [64] and lossy vector addition systems with states [60]. See
Section 1.6 for more information about previous work.

LOOPUS is built on top of the modern compiler infrastructure LLVM2 in version 2.9 origi-
nally authored by Lattner [50]. For logical reasoning we apply Z33, a high-performance theorem
prover being developed at Microsoft [27].

To analyze a source file written in C, the first step is to compile it to the LLVM intermediate
language (LLVM IR). This task can be done by tools like clang4. Starting LOOPUS on such a
compiled file with a function name as parameter, the following main computation steps will be
taken, which are explained in the next sections.

1. Program abstraction (Section 4.1)

2. Program transformations (Section 4.2)

3. Termination analysis (Section 4.3)

4. Bound computation (Section 4.4)

1http://forsyte.at/software/loopus/
2http://llvm.org/
3http://z3.codeplex.com/
4http://clang.llvm.org/

35

http://forsyte.at/software/loopus/
http://llvm.org/
http://z3.codeplex.com/
http://clang.llvm.org/

4.1 Abstracting programs to DCPs

In this section we describe how to abstract a program to a difference-constraint program (DCP).
Note that we only support reducible programs, so we first make a reducibility check of the given
procedure. If a program is reducible, we start with the abstraction process.

4.1.1 Extended DCP

Definition 2.5 of a DCP was defined with the aim to keep the loop and variable bound algorithms
as simple as possible. However, in order to ease the abstraction of C programs given in three-
address-code [1] into DCPs, we extend Definition 2.5.

For example, if we have to abstract an assignment of the form x = y+z where x, y and z are
variables, we need an upper bound for either y or z in advance in order to abstract the assignment
into the form of a difference constraint (i.e., x′ ≤ y + c). As we cannot use our variable bound
algorithm before we actually have constructed the abstract program, we extend Definition 2.5 of
a DCP such that the increment c in a transition predicate v ′2 ≤ v1 + c can also be a variable.
So, we proceed in a two-phase approach: First, we abstract the C program to a related notion of
a DCP (i.e., extended DCP). We then define loop and variable bound algorithms such that the
second abstraction step from extended DCPs to DCPs with constant increments is done on the
fly during bound computation.

We extend DCPs to extended DCPs defined in Definition 4.1 such that

(i) the increment c in a transition predicate v ′2 ≤ v1 + c can be either a constant (i.e., Z) or a
variable (i.e., Var),

(ii) variables are allowed to have negative values, i.e. the set of valuations of variables Var is
the set ValVar = Var → Z of mappings from Var to the integers,

(iii) each transition l1
u−→ l2 ∈ E is annotated with a (possibly empty) set of conditions of the

form v > 0 where v ∈ Var , and

(iv) the number of transition predicates given on a transition is arbitrary, but there is at most
one predicate for each variable.

Definition 4.1 (Extended Difference Constraint Program). An Extended Difference Constraint
Program (DCP) is a tuple ∆P = (L,E), where L is a finite set of locations, E ⊆ L ×
2Var × 2Var×Var×(Var∪Z) × L is a finite set of transitions with variables in Var . A transition
(l1, C, T, l2) ∈ E consists of a start location, a set of conditions, a set of predicates and an end
location. A transition contains at most one predicate for each variable, i.e., if (l1, C, T, l2) ∈
E ∧ v ′ ≤ v1 + c1 ∈ T ∧ v ′ ≤ v2 + c2 ∈ T , then v1 = v2 ∧ c1 = c2.

The set of valuations of Var is the set ValVar = Var → Z of mappings from Var to the

integers. We write (l1, σ1)
C,u−−→ (l2, σ2) as part of a trace, if there is a transition l1

C,u−−→ l2 ∈ E,
σ1, σ2 ∈ ValVar , σ1 |=

∧
v∈C

v > 0, and σ2(v2) ≤ σ1(v1) + σ1(c) for all (v2, v1, c) ∈ u. We

write also v ′2 ≤ v1 + c if (v2, v1, c) ∈ u.

36

Loop and variable bound algorithms based on extended DCPs are stated in Section 4.4.
As the variables of an extended DCP are allowed to have negative values, we also extend the

range of a norm to the integers. The domain of an extended norm now consists also the program
locations, which helps us to show the soundness of Algorithm 4.2 given in Section 4.2.2.

Definition 4.2 (Extended Norm). An extended norm x is a function that maps a pair of a location
and a state to the integers, i.e., x ∈ (Σ×L)→ Z. If x is not defined for a pair (σ, l) of a location
and a state, then we write x(σ, l) =∞.

4.1.2 Data structures

We abstract programs using pointers, arrays and data structures by approaches like presented
in [36, 53]. We introduce appropriate norms such as the length of a list, the size of an array
or the number of elements in a tree. We make the following optimistic assumptions, which are
reported to the user but not checked for their validity. This check could be accomplished by
standard tools for shape analysis.

• Pointers do not alias.

• A recursive data structure is acyclic if a loop iterates over it.

• An array of characters is finite if an inequality check on the string termination character
’\0’ is found.

4.1.3 Guessing norms

We set up an initial set of norms built up by conditions used inside a loop which limit the number
of times a loop-path can be executed. We consider loop-conditions e of ’while(e)’-statements,
’for (. . . ; e; . . .)’-statements and of ’ if (e)’-statements when they are used within a loop.

So, we compute the set of all loop-paths (see Definition 2.13) and we add an expression e to
the set of norms N , if e is a local ranking function (see Definition 4.4) for some loop-path.

Definition 4.3 (Guard). Let p = l0
ρ0−→ l1

ρ1−→ · · · ρn−1−−−→ ln be a path. We call an expression
e > 0 a guard of p if and only if there exists at least one ρi such that ρi |= e > 0.

Definition 4.4 (Local ranking function). Let π = l
ρ0−→ l1

ρ1−→ · · · ρn−1−−−→ l be a simple cyclic
path, and let rel(π) = ρ0 ◦ρ1 ◦ · · · ◦ρn−1 be the concatenation of all transition relations along
π. An expression r is a local ranking function for π if and only if

(i) r > 0 is a guard (Definition 4.3) of π and

(ii) r − r′ > 0, where r′ denotes the expression r where every variable x is replaced by
expression e according to the update x′ = e of rel(π).

We make global assumptions during the process of guessing norms, if we have extracted a
condition e 6= 0. We require that either e > 0 or −e > 0 holds. We assume that e > 0 holds,
if all loop-paths that contain e 6= 0 imply that e decreases on that loop-paths. If this is not the

37

1 void neq (i n t a , i n t b) {
2 whi le (a != b) {
3 a−−;
4 }
5 }

Figure 4.1: Example where we have to make assumptions such that termination is guaranteed.

1 void nd (i n t a , i n t b) {
2 whi le (a > 0) {
3 a ++;
4 i f (?) {
5 f o r (i n t i =0 ; i < n ; i ++)
6 ;
7 }
8 }
9 }

Figure 4.2: Variable i is not defined in the outer loop-path which skips the if-branch.

case, but e increases on the loop-paths containing e 6= 0, we assume −e > 0. Otherwise, the
norm e is not used. The resulting set of assumptions is reported to the user.

Figure 4.1 depicts function neq, where our heuristics establish the condition a− b 6= 0. As
a− b decreases on the loop-path that contains a− b 6= 0, we generate the assumption a− b > 0.

4.1.4 Abstracting transition conditions

In contrast to the initial definition of a DCP , an extended DCP has no implicit condition how
often a transition can be executed, because the variables are over the integers instead of the
natural numbers. We have to add therefore conditions to a transition. Our conditions are of the
form v > 0.

Let l1
ρ−→ l2 be a transition of the original program, and let l1

C,u−−→ l2 be its abstraction. We
add a transition condition v > 0 for a given norm v ∈ N to the set of transition conditions C if
v > 0 is a guard of l1

ρ−→ l2.

4.1.5 Abstracting transition predicates

Starting with an initial set of guessed norms N , we construct for each norm x ∈ N transition
predicates of the form x′ ≤ y + z, describing for a transition τ = l1

ρ−→ l2, how l1
ρ−→ l2 may

change the value of x. During that process, we have to add new norms to N , for which we also
start our abstraction process.

38

We give concrete abstraction rules for simple norms, i.e., norms that contain only one vari-
able, in Table 4.1. We assume that the program that we want to abstract is given in three-address
code.

We list explanations for some rules stated in Table 4.1:

1) We derive the predicate x′ ≤ x+y− for an assignment x = x−y where y− := −y is a norm.
To check if this derivation is correct, we have to make sure that x′ ≤ x + (−y) is invariant
on the transition, which is obviously true as we have according to the assignment x′ = x− y
and so we have that x′ ≤ x+ (−y) = x− y is true.

2) Currently, we do not support assignments of the form x = y − x or x = −x. If we would
abstract x = y − x resp. x = −x to x′ ≤ zy−x resp. x′ ≤ x− where zy−x := y − x and
x− := −x are norms, then we would get a cyclic dependency between the upper bounds
VBζ(x) and VBζ(zy−x) resp. VBζ(x−), because we get the transition predicates z′y−x ≤ x
resp. x′− ≤ x for the assignments x = y − x resp. x = −x.

3) We support the assignments x = x ∗ c and x = x ∗ y on a transition τ only if τ is not part
of a loop. If τ is not part of a loop, then we can add a new variable x1 representing x in the
control flow before transition τ . We add x1∗c := x1 ∗ c and x1∗y := x1 ∗ y to the set of
norms.

4) We abstract the assignments x = y ∗ c and x = y ∗ z to x′ ≤ y∗c resp. x′ ≤ y∗z , where
y∗c := y ∗ c resp. y∗z := y ∗ z are new norms.

5) We abstract the assignment x = a[i] to x′ ≤ aU , where aU denotes an upper bound for all
values in array a, i.e., ∀i ≥ 0 : a[i] ≤ aU . We require that the variable a and the entire array
(i.e., all a[i] where i ≥ 0) are constant.

6) We abstract the field dereference x = y.f to x′ ≤ yf , where yf := y.f is a new norm. We
require that the variable y is constant.

In Table 4.2 we state abstraction rules for a complex norm of the form n − i, which is
obtained commonly from loop conditions of the form i < n.

If there is a variable v within a complex norm x such that v is not defined by τ , i.e.,
∀(σi, σi+1) ∈ ρ : v(σi+1, l2) = ∞, then we derive no transition predicate. Consider func-
tion nd depicted in Figure 4.2. As variable i is not defined in the outer loop-path which skips
the if-branch, we do not derive a transition predicate for the norm n− i for that loop-path.

4.2 Program Transformations

The program that we abstract has to be amenable (see Definition 3.8) such that our loop and vari-
able bound algorithms are sound. We check reducibility of the program, as already noted, before
we actually start the program abstraction. We can also be sure that the program has a unique,
not-cyclic entry-location, because we use the function-header as entry-location. However, a
program can have several exit-locations. We give in Section 4.2.1 an algorithm transforming a
program with several exit-locations to a program with one exit-location.

39

Assignment to x
on transition τ

Abstract
Predicate

Additional Norms Restriction

x = c x′ ≤ c - -
x = y x′ ≤ y y -

x = x+ c x′ ≤ x+ c - -
x = y + c x′ ≤ y + c y -
x = x+ y x′ ≤ x+ y y -
x = y + z x′ ≤ y + z y, z -
x = x− y x′ ≤ x+ y−

1) y− := −y -
x = y − z x′ ≤ y + z− y, z− := −z -
x = −x x′ ≤ x|| 2) x|| := |x| -
x = −y x′ ≤ y− y− := −y -
x = y − x not implemented 2)

x = x ∗ c x′ ≤ x1∗c
3) x1∗c := x1 ∗ c 6 ∃π ∈ L : τ ∈ π

x = x ∗ y x′ ≤ x1∗y
3) x1∗y := x1 ∗ y 6 ∃π ∈ L : τ ∈ π

x = y ∗ c x′ ≤ y∗c 4) y∗c := y ∗ c -
x = y ∗ z x′ ≤ y∗z 4) y∗z := y ∗ z -
x = x/c x′ ≤ x− 1 - τ |= x > 0 ∨ c > 0

x = x/y x′ ≤ x− 1 - τ |= x > 0 ∨ y > 0

x = a[i] x′ ≤ aU 5) aU := max
0≤i

a[i] a and all a[i] are constant

x = y.f x′ ≤ yf 6) yf := y.f y is constant

Table 4.1: The table shows rules for abstracting transition predicates for a simple norm x. The
possible updates of x are assumed to be given in three-address code. The symbol c denotes a
constant. The variables x and y are assumed to be different. In column “Additional Norms”, we
list the norms that are added to the set N .

We also have to make sure that the loop and variable bound algorithms terminate. As dis-
cussed in Section 3.3, a variable bound computation VBζ(x) does not terminate if it depends on
itself. This can be the case if VBζ(x) depends another variable bound computation VBζ(y) where
VBζ(y) depends also on VBζ(x). In Section 4.2.2 we discuss a program transformation which
dissolve such kinds of dependencies.

4.2.1 Unique Exit Location

Algorithm 4.1 translates a program into semantically equivalent program with a unique exit
location. In line 1 of Algorithm 4.1, a set is constructed which contains all exit locations of the
input program. Next, the algorithm creates a new location and adds an edge from all previous
exit-locations to that location such that the new location is the new unique exit location.

40

Assignments on
transition τ

Abstract
Predicate

Additional Norms

n = n, i = 0 x′ ≤ n n

n = n, i = j x′ ≤ zn−j zn−j := n− j
n = n, i = i+ c x′ ≤ x− c -
n = y, i = i x′ ≤ zy−i zy−i := y − i

n = n+ c, i = i x′ ≤ x+ c -
n = y, i = j x′ ≤ zy−j zy−j := y − j

n = y, i = i+ c x′ ≤ zy−i − c zy−i := y − i
n = n+ c, i = j x′ ≤ zn−j + c zn−j := n− j

n = n+ c1, i = i+ c2 x′ ≤ x+ c3 c3 := c1 − c2

Table 4.2: The table shows rules for abstracting transition predicates for norms x of the form
n − i. The symbol c denotes a constant. The variables j and y are assumed to be different. In
column “Additional Norms”, we list the variables that are added to the set of norms N .

Procedure: UniqueExit(P)
Input: a program P (L,E)
Output: P with a unique exit location

1 exitLocations := {l ∈ L |6 ∃l u−→ l1 ∈ E : l1 6= l}
2 create new location le, add le to L
3 foreach l ∈ exitLocations do
4 add l→ le to E
5 end
6 return P

Algorithm 4.1: UniqueExit transforms a program into a program with a unique exit location.

4.2.2 Cycle-free Variable Dependencies

The program transformation that we explain in the following aims to dissolve dependencies be-
tween variable bound computations. We formally define dependencies between variable bound
computations in Definition 4.5.

Definition 4.5 (Variable Bound Dependencies). Let ∆P = (L,E) be a DCP over variables
Var . We define relation R1 ⊆ Var × Var as: (v1, v2) ∈ R1 iff there exists a transition
τ = l1

u−→ l2 ∈ E such that v ′2 ≤ v1 + c ∈ u∧ v1 6= v2. Let R1∗ be the transitive closure of R1.
We say that a variable bound computation VBζ(v1) depends on VBζ(v2) where v1, v2 ∈ Var ,

if and only if (v1, v2) ∈ R1∗.
We say that two variable bound computations VBζ(v1), VBζ(v2) where v1, v2 ∈ Var have cyclic
dependencies if and only if (v1, v2) ∈ R1∗ and (v2, v1) ∈ R1∗.

Algorithm 4.2 applies a program transformation such that the resulting program contains no
two variables v1, v2 ∈ Var such that VBζ(v1) and VBζ(v2) have cyclic dependencies with each

41

other, i.e., they are recursively calling each other (see Definition 4.5). We say that the gained
program is cycle-free.

To keep the Algorithm 4.2 as simple as possible, we assume that each increment c in a
predicate v ′2 ≤ v1 + c is a constant (note that an extended DCP does not require this), However,
the algorithm could be easily extended to support variables as increments.

We show that Algorithm 4.2 is sound in Section 27, which means that a variable bound for
any variable or a loop-path bound for any loop of the transformed program is also a bound of
the corresponding variable resp. loop-path, We assume that an input program for Algorithm 4.2
is stratifiable (see Section 27) and fully-defined (see Section 27).

Stratifiability

The term stratifiability was first introduced in the field of termination analysis by Ben-Amram
and Lee [9]. They worked out common forms of size-change graphs where size-change termina-
tion can be decided in polynomial time. One such form is stratifiability. Size-change termination
relies on the fact that a program must terminate if there is a continuous decrease of a variable
taking values on a well-founded domain. Stratifiability eases the analysis, because it disallows
variables (defined at the same location) to swap their values during computation, which would
require a more complex termination criterion. For example in Figure 4.3, the variable x in-
creases towards n only in each second iteration. The program is unstratifiable, because x and y
are defined at the same location and are swapping their values.

We give a formal definition of stratifiability of a program in Definition 4.8, which requires
the notion of a data-flow graph (see Definition 4.6) and of a strongly connected component (see
Definition 4.7).

Definition 4.6 (Data-flow graph of a DCP). Let ∆P = (L,E) be a DCP over variables Var .
The data-flow graph (DFG) of ∆P is the graph G = (V L,Edfg) where V L = Var × L and
Edfg = {(v1, l1)

u,c−−→ (v2, l2) | l1
u−→ l2 ∈ E, v ′2 ≤ v1 + c ∈ u}.

Definition 4.7 (Strongly connected component). A strongly connected component (SCC) of a
graph G(V,E) is a maximal set of nodes {n1, ...nk} ⊆ V such that for all 1 ≤ i, j ≤ k there is
a path from ni to nj in G or ni = nj .

Definition 4.8 (Stratifiable program). A program ∆P is stratifiable if and only if for each SCC
of the data-flow graph of ∆P it holds, that each location li of ∆P appears at most one time.

Examples. The most simple pattern of unstratifiability appears if a program swaps the value
of two variables either on one loop-path (see example in Figure 4.3) or on two loop-paths with
the same header (see example in Figure 4.4).

In Figure 4.3, we see that (x, l3) and (y, l3) build an SCC within the data-flow graph depicted
on the right. Thus, the program is not stratifiable, because location l3 appears twice in one SCC.

In Figure 4.4, the variable x and y are interchanged over two paths and location l4 appears
twice in one SCC. In our experiments, among the few cases of unstratifiability this pattern is the
most frequent one, as it models a simple backtracking mechanism.

42

Procedure: CycleBreak(∆P)
Input: a stratifiable difference-constraint program ∆P
Data: a map SubstitutedV ariable : (Var2 × L) 7→ (Var ∪ {ε})
Output: a cycle-free difference-constraint program ∆P2

1 ∆P2(L2, E2) := “copy of ∆P over variables Var2”
2 DFG(V L,Edfg) := “data-flow graph of ∆P2”
3 SCCsdfg := “set of all SCCs of DFG”
4 foreach scc ∈ SCCsdfg do
5 create new variable vs, add vs to Var2

// redirect flows from outside of the SCC to vs

6 foreach (v0, l0)
u,c−−→ (v , l) ∈ Edfg : (v , l) ∈ scc ∧ (v0, l0) 6∈ scc do

7 add v ′s ≤ v0 + c to u
8 remove update of v in u
9 end

// let flows from inside of the SCC starting from vs

10 foreach (v , l)
u,c−−→ (v1, l1) ∈ Edfg : (v , l) ∈ scc ∧ (v1, l1) 6∈ scc do

11 set update of v1 in u to v ′1 ≤ vs + c
12 end

// redirect all inner flows of the SCC to vs

13 foreach (v1, l1)
u,c−−→ (v2, l2) ∈ Edfg : (v1, l1) ∈ scc ∧ (v2, l2) ∈ scc do

14 add v ′s ≤ vs + c to u
15 remove update of v2 in u
16 end

// update conditions

17 foreach (v , l) ∈ scc and l
C,u−−→ l1 ∈ E2 do

18 if v > 0 ∈ C then
19 add vs > 0 to C
20 remove v > 0 from C

21 end
22 end

// remember substituted variables
23 foreach (v , l) ∈ scc do
24 SubstitutedV ariable(vs, l)← v
25 end
26 end
27 return ∆P2

Algorithm 4.2: CycleBreak transforms a stratifiable difference-constraint program into a
cycle-free one. We need the map SubstitutedV ariable only for the soundness proof, such
that we can reconsider, which variable was substituted by which variable at which location.

43

1 void s t r a t 1 (i n t n) {
2 i n t x = 0 , y = 0 , tmp ;
3 whi le (x < n) {
4 tmp = y ;
5 y = x + 1 ;
6 x = tmp ;
7 }
8 }

0

y, l3 x, l3

1

Figure 4.3: Function strat1 shows the most simple pattern for unstratifiability: two variables are
swapping their values. On the right we see the corresponding data-flow graph 4.6 with the SCC
{(y, l3), (x, l3)}. For the sake of convenience, we do not annotate the edges with the transition
predicates.

1 void s t r a t 2 (i n t n) {
2 i n t i = n ;
3 i n t x = 0 , y = 0 , tmp ;
4 whi le (i > 0) {
5 i f (∗)
6 y = x + 1 ;
7 e l s e
8 x = y ;
9 }

10 }

0

y, l4 x, l4

1

Figure 4.4: Function strat2 depicts another simple pattern for unstratifiability: one variable
stores the value of another variable, which is used later on for a possible backtracking. On the
right we see the corresponding data-flow graph with the SCC {(y, l4), (x, l4)}. For the sake of
convenience, we do not annotate the edges with the transition predicates.

Another pattern of unstratifiability is shown in Figure 4.5. Location l5 appears twice in one
data-flow SCC. The problem is the non-deterministic choice allowing i either to be decremented
or reset to j. As it is quite unintuitive how often the inner loop may be executed, a programmer
rarely produces such a program. In our evaluation, we experienced only a few examples of this
pattern.

Fully-Defined Program

To further ease the soundness proof of Algorithm 4.2 given in the next section, we exclude
programs that are not considered to be analyzed. We define a fully-defined DCP (see Defini-
tion 4.9), such that we ensure that the computation of an extended DCP is based solely on the

44

1 void s t r a t 3 (i n t n) {
2 i n t i = n , j ;
3 whi le (i > 0) {
4 j = i − 1 ;
5 whi le (j > 0)
6 j−−;
7 i f (∗)
8 i = j ;
9 e l s e

10 i−−;
11 }
12 }

n

i, l3 i, l5
−1

j, l5

−1

−1

Figure 4.5: Function strat3 shows us a more advanced pattern for unstratifiability: variable
i of the outer loop can either hold its value (decremented by 1) or is reset to j, which al-
ready depends on i. On the right we see the corresponding data-flow graph 4.6 with the SCC
{(i, l3), (i, l5), (j, l5)}. For the sake of convenience, we do not annotate the edges with the
transition predicates.

1 void u n d e f i n e d () {
2 i n t x ;
3 whi le (x > 0)
4 x−−;
5 }

l1

l3 x′ ≤ x− 1

Figure 4.6: Variable x has no initial value. So, the DCP on the right is not fully-defined.

given start-values of the variables. A ’normal’ DCP (see Definition 2.5) like we have defined in
Section 2.2 is by definition fully-defined, as each transition must have one transition predicate
per variable. As an extended DCP does not require one transition predicate for each variable,
we exclude meaningless programs like in Figure 4.6 where the variable x has no initial value.

Definition 4.9 (Fully-defined DCP). Let ∆P(L,E) be a DCP with a unique start-location l0
that is not part of any loop. We say that ∆P is fully-defined, if and only if for each predicate
v ′2 ≤ v1 + c1 of every transition l1

u−→ l2 ∈ E we have that ∀l3
u3−→ l1 ∈ E : ∃v3, c3 : v ′1 ≤

v3 + c3 ∈ u3.

Soundness of the Cycle-breaking Program Transformation

In the following, we assume to have given a stratifiable, fully-defined extended DCP ∆P(L,E)
over variables Var with a unique entry location l0 that is not part of any loop. Further, let

45

CycleBreak(∆P) be the program returned by Algorithm 4.2, with variables Var2, locations L,
and edges E2. Let DFG2(V L2, Edfg2) be the data-flow graph of CycleBreak(∆P).

Lemma 4.10. If ∆P is stratifiable, then SubstitutedV ariable is only one time updated by
algorithm 4.2 for a pair of a variable vs ∈ Var2 and a location l ∈ L.

Proof. Let vs ∈ Var2. Let scc be the SCC of the data-flow graph of ∆P for that Algo-
rithm 4.2 created vs. Assume that there are two nodes within scc s.t. (x, l1), (y, l1). Then
SubstitutedV ariable would be updated twice for the pair (vs, l1), but l1 would appear twice
within scc, which would mean that ∆P is not stratifiable.

Observation 4.11. Given an edge l1
u2−→ l2 ∈ E2, and a predicate v ′2 ≤ v1 + c ∈ u2,

we observe that SubstitutedV ariable(v2, l2) 6= ε and SubstitutedV ariable(v1, l1) 6= ε.

Theorem 4.12. CycleBreak(∆P) is cycle-free.

Proof. W.l.o.g. assume that there are two variables v1, v2 ∈ Var such that VBζ(v1) and VBζ(v2)
are cyclic with each other. This means according to the Definition 4.5, that v1 6= v2, that there
exists an edge l1

u−→ l2 ∈ E2 s.t. v ′2 ≤ v1 + c ∈ u, and that there exists an edge l3
u−→ l4 ∈ E2

s.t. v ′1 ≤ v2 + c ∈ u.
By Observation 4.11, we get that SubstitutedV ariable(v2, l2) 6= ε,

SubstitutedV ariable(v2, l3) 6= ε, SubstitutedV ariable(v1, l1) 6= ε, and
SubstitutedV ariable(v1, l4) 6= ε.
By Lemma 4.10, we get that SubstitutedV ariable(v2, l2), SubstitutedV ariable(v2, l3),
SubstitutedV ariable(v1, l1) and SubstitutedV ariable(v1, l4) map to exactly one variable.
W.l.o.g. let x1 = SubstitutedV ariable(v2, l2), x2 = SubstitutedV ariable(v2, l3), y1 =
SubstitutedV ariable(v1, l1) and y2 = SubstitutedV ariable(v1, l4).

(i) By definition of Algorithm 4.2, we easily see that SubstitutedV ariable is only updated
for v2 and locations l2, l3 if (x1, l2) and (x2, l3) are part of an SCC of the DFG of ∆P . So
similarly, also (y1, l1) and (y2, l4) are part of an SCC of the DFG of ∆P .

(ii) By definition of Algorithm 4.2, we easily observe from l1
u−→ l2 ∈ E2 s.t. v ′2 ≤ v1 + c ∈

u that there must be an edge l1
u−→ l2 ∈ E s.t. x′1 ≤ y1 + c ∈ u. Similarly, we get by the fact that

l3
u−→ l4 ∈ E2 s.t. v ′1 ≤ v2 + c ∈ u that there must be an edge l3

u−→ l4 ∈ E s.t. y′2 ≤ x2 + c ∈ u.
So, we have the edges (y1, l1)→ (x1, l2) and (x2, l3)→ (y2, l4) within the DFG of ∆P .

By (i) and (ii) we have that (x1, l2), (x2, l3), (y1, l1) and (y1, l4) are part of the same SCC
of the DFG of ∆P . But as Algorithm 4.2 creates only one variable per SCC, v1 and v2 cannot
be different, which stands in contrast to our assumption that v1 6= v2.

Similarly to our original Definition 2.20 under which conditions a DCP is an abstraction of
a program, we define now the conditions under an extended DCP is an abstraction of a program.

Definition 4.13 (Extended Abstraction of a Program). An extended DCP ∆P = (L,E′) with
variables Var is an abstraction of a program P = (L,E) if and only if

(1) every x ∈ Var is an extended norm of P , and

46

(2) for each transition l1
ρ−→ l2 ∈ E there is a transition l1

C,u−−→ l2 ∈ E′ such that every
x′ ≤ y + c ∈ u and x > 0 ∈ C is invariant for l1

ρ−→ l2.

Theorem 4.14 (Soundness). CycleBreak(∆P) is an abstraction of ∆P according to Defini-
tion 4.13, if we interpret each variable vi ∈ Var2 as an extended norm 4.2 of ∆P such that

vi(σ, l) =

{
σ(v) if SubstitutedV ariable(vi, l) = v ∧ v 6= ε
∞ otherwise

where σ ∈ Σ is a state of ∆P , l ∈ L, and SubstitutedV ariable is created by calling algorithm
CycleBreak(∆P).

Proof. Every variable vi ∈ Var2 is an extended norm of ∆P . Hence, condition 1 of Defini-
tion 4.13 is satisfied.

Let l1
C,u−−→ l2 ∈ E be an arbitrary transition of ∆P , and let l1

C2,u2−−−→ l2 ∈ E2 be the
corresponding transition of CycleBreak(∆P), which must exist as the edges of ∆P2 are a copy
of ∆P (see line 1 of Algorithm 4.2). We have to show that each vi ≤ vj + c ∈ u2 and each

vi ∈ C2 is invariant for l1
C,u−−→ l2. Let (l1, σ1)

C,u−−→ (l2, σ2) be an arbitrary trace of ∆P .
Let v ′2 ≤ v1+c ∈ u2. We have to make sure that v2(σ2, l2) ≤ v1(σ1, l1)+c holds. By Obser-

vation 4.11, we get that SubstitutedV ariable(v2, l2) 6= ε and SubstitutedV ariable(v1, l1) 6=
ε. By Lemma 4.10, we get that SubstitutedV ariable(v2, l2) and SubstitutedV ariable(v1, l1)
map to exactly one variable. W.l.o.g. let x = SubstitutedV ariable(v2, l2) and
y = SubstitutedV ariable(v1, l1). We get by definitions of the norms v2 and v1: v2(σ2, l2) =
σ2(x) and v1(σ1, l1) = σ1(y). So, we have to show that σ2(x) ≤ σ1(y) + c. By definition of
Algorithm 4.2 there must be a predicate x′ ≤ y + c ∈ u, as otherwise v ′2 ≤ v1 + c would not
have been created. Hence, σ2(x) ≤ σ1(y) + c and v2(σ2, l2) ≤ v1(σ1, l1) + c hold.

It remains to show that each vi ∈ C2 is invariant for l1
C,u−−→ l2. Let v1 ∈ C2. We have to

make sure that v1(σ1, l1) > 0. By Observation 4.11, we get that SubstitutedV ariable(v1, l1) 6=
ε. By Lemma 4.10, we get that SubstitutedV ariable(v1, l1) maps to exactly one variable.
W.l.o.g. let x = SubstitutedV ariable(v1, l1). By definition of the norm v1, we have v1(σ1, l1) =
σ1(x). So, we have to show that σ1(x) > 0. By definition of Algorithm 4.2 there must be a
condition x > 0 ∈ C, as otherwise v1 > 0 would not have been created. Hence, σ1(x) > 0 and
v1(σ1, l1) > 0 hold.

Corollary 4.15. Following Theorem 4.14, a loop-path bound for a loop in CycleBreak(∆P) is
a loop-path bound for that loop in ∆P .

Examples and Localization

In Figure 4.7, we show two possible abstract programs for exampleEx6 given in Figure 1.1. We
see on the top a version before running Algorithm 4.2 and below after running it. In the version
below the variable bound computations VBζ(x) and VBζ(y) are not depending on each other.

In Figure 4.8, we show two examples, where Algorithm 4.2 does not have to resolve cyclic
variable bound computations, but we get more precise bounds than on the original abstract pro-
gram. We benefit from the property that in the transformed program a variable represents one
original variable only at a specific set of locations and that an upper bound for such a ’localized’
variable may be lower than the upper bound for the variable in the entire program.

47

l1

l5

z′n−i ≤ n
x′ ≤ n
i′ ≤ 0

z′n−i ≤ n
x′ ≤ m
i′ ≤ 0

l7

[zn−i > 0]
y′ ≤ x+ iu

z′n−j ≤ n, z′n−i ≤ zn−i
i′ ≤ i

x′ ≤ y
i′ ≤ i+ 1

z′n−i ≤ zn−i − 1

[zn−j > 0]
z′n−j ≤ zn−j − 1

y′ ≤ y + 1

i′ ≤ i

l11
x′ ≤ x[x > 0]

x′ ≤ x− 1

l1

l5

z′n−i ≤ n
xy′ ≤ n
i′1 ≤ 0

z′n−i ≤ n
xy′ ≤ m
i′1 ≤ 0

l7

[zn−i > 0]
xy′ ≤ xy + iu

z′n−j ≤ n, z′n−i ≤ zn−i
i′1 ≤ i1

xy′ ≤ xy
i′1 ≤ i1 + 1

z′n−i ≤ zn−i − 1

[zn−j > 0]
z′n−j ≤ zn−j − 1

xy′ ≤ xy + 1

i′1 ≤ i1

l11
x′1 ≤ xy[x1 > 0]

x′1 ≤ x1 − 1

Figure 4.7: On the top, we see an abstract program for function Ex6 given in Figure 1.1 before
running Algorithm 4.2 and below we see the abstract program after running Algorithm 4.2 on
it. Note that in the program transformed by Algorithm 4.2 no two variables v1 and v2 exist such
that the variable bound computations for v1 and v2 are depending on each other.

48

1 void ml oc a l (i n t n , m) {
2 i n t r = n ;
3 i f (r > m) {
4 r = m;
5 whi le (r > 0)
6 r−−;
7 }
8 }

l1

l3

r′1 ≤ n

l5

r′2 ≤ m

[r2 > 0] r′2 ≤ r2 − 1

r1 := r
r2 := r

1 void l i n (i n t n , m) {
2 i n t x = 0 ;
3 whi le (n > 0 && ?) {
4 x = n ;
5 n−−;
6 }
7 whi le (x > 0)
8 x−−;
9 }

l1

l3

x′1 ≤ 0

n′1 ≤ n [n1 > 0]
n′1 ≤ n1 − 1

x′1 ≤ n1

l7

x′2 ≤ x1

[x2 > 0] x′2 ≤ x2 − 1

x1 := x
x2 := x
n1 := n

Figure 4.8: Examples which show that variables are ’localized’ after applying Algorithm 4.2,
and that bounds for localized variables are more precise. If we would consider in example
mlocal the assignment r = n as a reset for r at location 5, then we would get the bound
max(n,m) instead of m. If we would consider in example lin the assignment x = n as a direct
reset of x at location l2, then we would get a quadratic bound n2 instead of n, because the reset
for x to n can happen n times. On the right top, the used norms are defined.

49

4.3 Termination Analysis

We use Algorithm 4.3 as an heuristic to establish a mapping ζ from the loop-paths of ∆P to the
variables Var such that ζ satisfies for every loop-path π that

(i) π |= ζ(π) > 0 (Bounded) and

(ii) π |= ζ(π)′ < ζ(π) (Ranking).

I.e., π cannot be taken infinitely often without taking other loop-paths. However, there can still
exist an infinite trace of the program, if there are two loop-paths π1 and π2 alternately increasing
their loop variables ζ(π1) and ζ(π2), i.e., π1 |= ζ(π2)′ > ζ(π2) and π2 |= ζ(π1)′ > ζ(π1). So,
the loop-path bound computations PBζ(π1) and PBζ(π2) are recursively calling each other and
the bound computation does not terminate. In order to eliminate such kind of nonterminating
loop-path bound computation, we establish a lexicographic order between the loop-paths such
that

(iii) 〈x1, . . . , xn〉 is an n-tuple of variables and for j < i where ζ(πi) = xi we have that
∀τ ∈ πi : τ |= x′j ≤ xj (Unaffecting).

In fact, Algorithm 4.3 constructs a lexicographic ranking function (see Definition 4.16). A
lexicographic ranking function witnesses the termination of a program [12]. I.e., Algorithm 4.3
establishes a termination analysis.

Definition 4.16 (Lexicographic Ranking Function). A Lexicographic Ranking Function for a
difference-constraint program ∆P over variables Var is an n-tuple of variables 〈x1, . . . , xn〉
where xi ∈ Var , such that for each loop-path π of ∆P for some i ∈ {1, . . . , n},

• (Bounded) π |= xi > 0;

• (Ranking) π |= x′i < xi;

• (Unaffecting) for j < i, ∀τ ∈ π : τ |= x′j ≤ xj .

4.4 Bound Computation

In our implementation, we use the loop and variable bound algorithms for extended DCPs
given in Definition 4.18. We integrated the extensions (see Section 3.4) for non-monotonic in-
or decrease, the “Restarting-Increment” rule and the “Lost-Increment-Of-Reset” rule.

As already noted in Section 4.3, we get a mapping ζ from the loop-paths of ∆P to the
variables by Algorithm 4.3. However, also if Algorithm 4.3 returns a lexicographic ranking
function, our bound algorithm may not terminate.

Figure 4.9 shows a function that terminates on all inputs and we get the lexicographic ranking
function 〈a, x, y〉 for the loop-paths π1 = l1 → l2 → l3 → l1, π2 = l2 → l2 and π3 = l3 → l3
in that order. Anyway, our bound algorithm does not terminate, because we have that loop-path
bound PBζ(π2) depends on VBζ(b), variable bound VBζ(b) depends on PBζ(π3), and loop-path

50

Procedure: Ranking(∆P)
Input: a difference-constraint program ∆P
Output: a lexicographic ranking function l , which has one component for every

loop-path π of ∆P; a mapping ζ from the loop-paths to the variables such that
ζ(π) is the component of π in l

1 L := “set of all loop-paths of ∆P”
2 l := “lexicographic ranking function with no components”
3 ζ := “mapping from the loop-paths to the variables”
4 while there is a π ∈ L and a variable x such that π |= x′ < x ∧ x > 0 and for all π′ ∈ L

we have ∀τ ∈ π : τ |= x′ ≤ x ∨ x is not defined on τ do
5 L := L \ π
6 l := l .append(x)
7 ζ(π) := x
8 end
9 if L = ∅ then return l , ζ

10 else return “P maybe non-terminating”
Algorithm 4.3: Ranking computes a lexicographic ranking function for a given difference-
constraint program.

bound PBζ(π3) depends on PBζ(π2). So, we have to maintain a stack registering calls to PBζ and
VBζ , and we fail if there was already a call to a computation PBζ or VBζ .

4.4.1 Bounds for extended DCPs

In contrast to our original Definition 2.5 of a DCP , an extended DCP (see Definition 4.1)
enables the following three pitfalls, which we have to handle in the bound algorithm (see Defi-
nition 4.18) for extended DCPs.

• In contrast to the variable and loop bounds that we defined for our original DCPs, we have
to encapsulate recursive bounds within max(0, . . .)-expressions, because variables (and
so their upper bounds) can also have negative values in an extended DCP , and negative
bounds can falsify loop-path bounds. Namely, the definition of PBζ requires to sum up the
variable bounds for all resets multiplied by the corresponding transition bounds. If such a
variable bound is negative, then it would falsely equalize that sum.

• An extended DCP does not require that every transition must constrain each variable. So,
a variable v of an extended DCP may not have a symbolic upper bound. We require that
a DCP is fully-defined (see Definition 4.9). So, the value of a variable v at some location
l1 where v is used as a constraint (i.e., there exists a predicate v ′1 ≤ v + c on a transition
starting at l1), can be expressed by the input values of a set of variables (i.e., initial state).

Let v be variable, and let VBζ(v) be its variable bound by Definition 4.18. We claim that
VBζ(v) is a variable bound of v for traces that

(i) are valid (see Definition 3.7), and

51

1 void t e rmina teButNoBound (i n t a , i n t b) {
2 i n t x , y ;
3 l 1 : whi le (a > 0) {
4 a−−;
5 x = b ;
6 y = 0 ;
7 l 2 : whi le (x > 0) {
8 x−−;
9 y ++;

10 }
11 l 3 : whi le (y > 0) {
12 y−−;
13 b ++;
14 }
15 }
16 }

Figure 4.9: The function ’terminateButNoBound’ terminates on all inputs, but the bound algo-
rithm does not terminate on the function.

(ii) end at a location l such that ∀l1
u−→ l ∈ E : ∃v1 : v ′ ≤ v1 + c ∈ u. So, variable

v is constrained by a variable v1 on all ingoing edges l1
u−→ l and as the DCP is

fully-defined, v1 must also be constrained on all ingoing edges to l1.

Let π be a loop-path, and let PBζ(v) be its loop-path bound by Definition 4.18. We claim
that PBζ(π) is a loop-path bound of π for traces that are valid.
We restrict our bounds to hold only on valid traces for the same argument as for our
original DCPs (see Section 3.1): DCPs and also extended DCPs allow traces that are
infeasible for ’normal’ programs.

• Extended DCPs allow the increment c of a predicate v ′2 ≤ v1 + c to be a variable. So, we
have to compute an upper bound for such a variable c.

In the following, we assume to have given an extended DCP ∆P(L,E) over a set of vari-
ables Var with entry location l0 and exit location le.

Definition 4.17 (Parameters of an extended DCP). A variable v ∈ Var is a parameter of ∆P
if and only if there exists an edge l0

u−→ l1 ∈ E and a variable v1 such that v ′1 ≤ v + c ∈ u.

Definition 4.18 (Variable Upper Bound VB and Loop-path Bound PB for extended DCPs). Let
ζ : L → Var be a local ranking mapping (Definition 3.1). We define
VBζ : Var 7→ Expression(Var) and PBζ : L 7→ Expression(Var) as:
VBζ(v) = Increment(v) + max(Init(v), max

τ∈R(v)
Reset(τ, v))

52

1 foo (i n t x , i n t y) {
2 whi le (x < y)
3 x ++;
4 }

l1

l2

z′ ≤ z

z′ ≤ z − 1

z := y − x

Figure 4.10: Concrete program has bound y − x. Abstract program has bound z.

PBζ(π) = Increment(ζ(π))+max(0, Init(ζ(π)))+
∑

τ∈R(ζ(π))

TB(τ)×max(0, Reset(τ, ζ(π)))

where

• Init(v) =

{
v if v is a parameter of ∆P
∅ otherwise

• Increment(v) =
∑

τ∈C(v)

TB(τ)×max(VBζ(δτ (v)), 0)

• Reset(τ, v) = VBζ(γτ (v)) + VBζ(δτ (v))

• TB(τ) =
∑

π∈L∨(τ)

PBζ(π)+

{
1 if τ is part of a simple path l0

u0−→ . . .
un−→ le

0 otherwise

4.4.2 Bounds for Original Program

To get bounds for the original program, we have to adapt a bound given by Definition 4.18 in
the following way.

We have to substitute each variable in the bound by the corresponding norm definition. For
example, we get the abstract bound z for the loop in the abstract program shown on the right in
Figure 4.10. To get a bound in terms of the original program inputs, we have to substitute z with
its norm definition. Hence, we get a bound for the original program of y − x.

Also, if we abstracted operations on data structures (see Section 4.1.2), we have to substi-
tute variables by its norm definitions. For example, we get the abstract bound z for the loop
in the abstract program shown on the right in Figure 4.11. We obtain a bound for the origi-
nal program by substituting z by its norm definition, i.e., length(lst, next, 0). We denote by
length(lst, next, 0) the length of the list that (1) starts from pointer lst, (2) has elements that
are connected together by the field next (i.e., the next element of a pointer lst is lst->next), and
(3) ends at the element lst where lst->next = 0.

53

1 t r a v e r s e (L i s t ∗ l s t) {
2 whi le (l s t != 0)
3 l s t = l s t −>n e x t ;
4 }

l1

l2

z′ ≤ z

z′ ≤ z − 1

z := length(lst, next, 0)

Figure 4.11: Concrete program has bound length(lst, next, 0). Abstract program has bound z.

54

CHAPTER 5
Evaluation

In this chapter, we present our experimental results obtained with our tool LOOPUS.

5.1 Comparison to Tools from the Literature

We compare LOOPUS against the tools KoAT [15], PUBS [2, 6] and RANK [7].

KoAT The KoAT tool was recently published and uses (similar to this work) runtime bounds
to deduce variable bounds.

PUBS PUBS extracts cost recurrence relations out of the programs and tries to solve them by
enhanced computer algebra systems.

RANK The tool RANK iteratively constructs loop bounds by solving linear constraint systems.
Variable bounds are computed by abstract interpretation over the polyhedron abstract do-
main.

5.1.1 Benchmark Setup

We refer by the name KoAT benchmark to the set of programs that was assembled to evaluate
the bound analysis tool KoAT [15]. The suite is available at their website [14] and contains
examples from related literature about bound analysis [3, 6, 7, 10, 15, 32, 33, 37, 38, 64] and
termination analysis [13, 30].

The benchmark is given originally in form of integer transition systems. As LOOPUS expects
C programs, we translated the transition systems by script to C or by hand when the script was
not sufficient. Our script failed in the case of recursive programs, but we translated them by hand
if they were tail-recursive (which would be an easy extension to LOOPUS). Instead of translating
the examples gathered from the T2-project, we used the goto-programs from [13], which were
created from the transition systems used as input for the T2 termination prover [30] (the original
sources from which the transition systems were created are not available).

55

The original KoAT benchmark consists of 682 examples. We excluded the 13 RAML pro-
grams from the benchmark, because we do not see a meaningful way to compare C translations
to functional programs. The remaining 669 examples are left to be analyzed by the tools KoAT
and PUBS. As 37 example programs are recursive and RANK does not support recursion, RANK

can analyze 632 examples. We found for 27 out of the 37 recursive programs Java sources on
the original web source [3]. 15 Java programs were actually not recursive and 5 tail-recursive.
Hence, we translate 20 programs to non-recursive C code and we ended up with 652 example
programs that can be analyzed by LOOPUS.

5.1.2 Results and Discussion

Table 5.1 states the overall results for each of the four tools. The results of our tool LOOPUS

were obtained on a Linux desktop computer with 4 GB RAM and an Intel Pentium Dual-Core
CPU clocked at 3.2 GHz. The results of the tools KoAT, PUBS and RANK were taken from [15]
using an equally powerful machine (3.07 GHz Intel i7 CPU, 6 GB RAM). All four tools were
executed with a limited time of 60 seconds for each example.

We see in the column “Bounded” of the Table 5.1 that our tool LOOPUS can bound more
loops than the other tools on this benchmark. LOOPUS finishes each example, for which it
computed a bound, in an average time of 0.5 seconds, which is less or equal the time needed
by any other tool. As LOOPUS breaks the time-out limit of 60 seconds only for two examples,
LOOPUS has also a very low average running-time in case of failed bound computations in
contrast to the tools KoAT and PUBS.

Figure 5.1 shows how many examples, which are solved by LOOPUS, are also bounded by
the tools KoAT, PUBS, and RANK. LOOPUS can deduce bounds for 79 examples (12 % of all
669 examples), for which no other tool was able to compute a bound. For more than 90 % of all
examples bounded by any other tool than LOOPUS, LOOPUS inferred also a bound.

Table 5.2 separates the obtained bounds according to their corresponding asymptotic class.
We see that the greater the asymptotic class the more loops can be bounded by LOOPUS in
relation to the other tools. For example, LOOPUS computed 20 more quadratic bounds than
KoAT but only 8 more constant bounds. We conclude that LOOPUS is able to handle more
complex examples, because a greater asymptotic loop bound may indicate a more complex loop
pattern.

In Table 5.2, we see that in contrast to PUBS our tool LOOPUS is not able to infer logarithmic
or exponential bounds, but we could easily extend LOOPUS to support also such kind of bounds.

We compare the precision of the bounds generated by the four analysis tools on the asymp-
totical level in Table 5.3. The first sub-table shows for each asymptotic class of bounds that
KoAT computed, how many fall into which class when the bound is computed by LOOPUS.
We conclude that LOOPUS has inferred 21 bounds that are asymptotical more precise than the
bounds from KoAT and 94 bounds for examples which KoAT was actually not able to solve.
KoAT has computed 10 more precise bounds in comparison to LOOPUS and 18 bounds where
LOOPUS failed. The next section will give a detailed look on those examples.

In the middle sub-table in Table 5.3 we compare LOOPUS with the tool PUBS. We conclude
that LOOPUS has computed 9 bounds that are asymptotical more precise than the bounds from
PUBS and 137 bounds which PUBS was actually not able to compute. PUBS has inferred 16

56

Figure 5.1: Diagram showing how many examples, which are solved by LOOPUS, are also
bounded by the tools KoAT, PUBS, and RANK. Note that the graphic does not show the inter-
section between more than two tools.

57

Analyzed Bounded Success
Avg-Time
Success Timeout

Failed
w.o. Timeout

Avg-Time
Failed

LOOPUS 652 389 60 % 0.5 s 2 261 1.3 s
KoAT 669 321 50 % 1.1 s 279 69 48.9 s
PUBS 669 279 40 % 0.8 s 58 332 10.9 s
RANK 632 84 10 % 0.5 s 6 542 0.9 s

Table 5.1: The table shows how many of the examples from the set assembled to evaluate [15]
are analyzed and successfully bounded by each tool. In the column “Avg-Time Success” resp.
“Avg-Time Failed”, we give the average time each tool was running on those example where the
respective tool succeeded resp. failed. The number of timeouts (60 s) is given in the column
“Timeout”. The number of examples, where the tool failed to compute a bound before reaching
the timeout-limit is given in the column “Failed w.o. Timeout”.

Bounded 1 logn n nlogn n2 n3 n4 n>=5 EXP
LOOPUS 389 129 0 173 0 74 6 6 1 0
KoAT 321 121 0 143 0 54 0 1 2 0
PUBS 279 116 5 129 5 15 4 0 0 5
RANK 84 56 0 19 0 8 1 0 0 0

Table 5.2: The table shows how often each tool inferred a bound of a specific aymptotic class for
the examples from [15]. The column headers 1, logn, n, nlogn, n2, n3, n4 and n>=5 represent
the corresponding asymptotic complexity classes. EXP is the class of exponential functions.

bounds where LOOPUS failed and 37 bounds which are more precise in comparison to LOOPUS.
We analyzed those 37 examples manually and explored that 10 out of them result from the fact
that PUBS supports logarithmic expressions and that 27 bounds are actually not correct for the
Java programs from which the transition systems are gained. Probably, the transition systems
do not coincide with the Java programs. We are not able to verify if the transition systems are
correct, as the transition systems are not human-readable without enormous effort.

In the third sub-table in Table 5.3 we compare LOOPUS with the tool RANK. We conclude
that LOOPUS has inferred 294 bounds which RANK was actually not able to compute. RANK has
computed 8 bounds where LOOPUS failed and 3 more precise bounds in comparison to LOOPUS.
Two examples are from the T2 benchmark and one was actually not correct computed by RANK.

5.1.3 Detail comparison between LOOPUS and KoAT

As the results of the tool KoAT are closer to the results of LOOPUS than the results of PUBS and
RANK, we choose KoAT for a more detail comparison against LOOPUS.

KoAT has computed 10 more precise bounds in comparison to LOOPUS, which can be
inferred from the first sub-table of Table 5.3.

• We explored manually that 5 out of those 10 bounds were actually not correctly computed

58

LOOPUS

1 logn n nlogn n2 n3 n4 n>=5 EXP No result

KoAT

1 111 0 3 0 0 0 0 0 0 5
logn 0 0 0 0 0 0 0 0 0 0
n 2 0 118 0 4 3 0 0 0 11

nlogn 0 0 0 0 0 0 0 0 0 0
n2 0 0 16 0 35 0 0 0 0 2
n3 0 0 0 0 0 0 0 0 0 0
n4 0 0 0 0 0 1 0 0 0 0
n>=5 0 0 0 0 0 0 2 0 0 0
EXP 0 0 0 0 0 0 0 0 0 0

No result 16 0 36 0 35 2 4 1 0 245

LOOPUS

1 logn n nlogn n2 n3 n4 n>=5 EXP No result

PUBS

1 108 0 1 0 2 0 0 0 0 4
logn 0 0 3 0 0 0 0 0 0 1
n 3 0 87 0 21 5 0 0 0 10

nlogn 0 0 3 0 2 0 0 0 0 0
n2 0 0 3 0 10 0 0 0 0 1
n3 0 0 0 0 0 1 3 0 0 0
n4 0 0 0 0 0 0 0 0 0 0
n>=5 0 0 0 0 0 0 0 0 0 0
EXP 0 0 0 0 0 0 0 0 0 0

No result 18 0 76 0 39 0 3 1 0 247

LOOPUS

1 logn n nlogn n2 n3 n4 n>=5 EXP No result

RANK

1 51 0 1 0 1 0 0 0 0 3
logn 0 0 0 0 0 0 0 0 0 0
n 0 0 14 0 1 0 0 0 0 4

nlogn 0 0 0 0 0 0 0 0 0 0
n2 0 0 0 0 7 0 0 0 0 1
n3 0 0 0 0 0 1 0 0 0 0
n4 0 0 0 0 0 0 0 0 0 0
n>=5 0 0 0 0 0 0 0 0 0 0
EXP 0 0 0 0 0 0 0 0 0 0

No result 77 0 149 0 60 1 6 1 0 254

Table 5.3: In the main diagonal of each table, the number of bounds are shown that fall into
the same asymptotic class. Upper the main diagonal, the number of bounds are counted where
the tool noted on the left side of the table (KoAT, PUBS, and RANK) computed a more precise
bound than LOOPUS. The same applies for LOOPUS under the main diagonal.

59

by KoAT. In 4 out of those 5 cases, the transition system analyzed by KoAT probably
does not represent our C program, because we gained those 4 programs by translating the
original source code (written in Java), whereas KoAT translated the transition systems
used by PUBS. Interestingly, the outcome of this translation leaded to recursive programs
whereas the original Java-programs are non-recursive.

• 4 out of the 10 examples where KoAT inferred a more precise bound than LOOPUS come
from the T2 test suite. It is difficult to tell the reason why LOOPUS is not able to compute
a more precise bound, because the goto-programs and the integer transition systems, from
which the goto-programs were generated, are not human-readable.

• Another uncommon pattern can be found in the remaining example where KoAT performs
better than LOOPUS. That example contains the loop

“while(a>b) { tmp=a; a=b; b=tmp; }’,

which body runs only one time. LOOPUS computes the loop bound a − b and KoAT
the bound 2. We think that this example is uncommon, because a programmer usually
does not introduce a loop-construct that actually does not loop. However, by techniques
like contextualization [64] or loop unrolling [1], we would be able to compute a constant
bound.

We see in Table 5.3 that LOOPUS has inferred 21 bounds that are asymptotical more precise
than the bounds from KoAT and 94 bounds which KoAT was actually not able to compute.
Out of those 115 examples, 67 are from the T2 test suite, which contains as already mentioned
curious goto-loops.

After looking for some simple syntactic patterns which describe the examples where LOO-
PUS performs better, we found out that all those examples have at least one loop with more than
one path. KoAT timed out in most of the multi-path examples. We conclude that LOOPUS scales
better than KoAT on the used benchmark.

5.2 Evaluation on Real-World Code

We evaluated our tool LOOPUS on three benchmarks from different areas consisting of more
than 1.000.000 lines of code.

5.2.1 Benchmark Setup

cBench [26] The Collective Benchmark (cBench) is a collection of open-source sequential pro-
grams, assembled for research in program and architecture optimization.

SPEC CPU2006 [42] SPEC CPU is a set of compute-intensive benchmarks designed to test the
CPU performance (we only consider those written in C).

Mälardalen WCET [40] The Mälardalen WCET benchmarks are collected by the WCET com-
munity for experimental evaluations.

60

5.2.2 Overall Results

Our results were obtained on a Linux desktop computer with 4 GB RAM and an Intel Pentium
Dual-Core CPU clocked at 3.2 GHz. We set a timeout of 420 seconds for each example.

Table 5.4 shows how many of the analyzed loops could be bounded by LOOPUS. We dis-
tinguish between the task of computing a bound whose variables are defined at the SCC-header
and whose variables are defined at the function header.

Loops Bound at Function header Bound at SCC header
cBench 4301 3024 70 % 3174 74 %

SPEC 15392 11204 73 % 11481 75 %

WCET 262 238 91 % 243 93 %

Table 5.4: The table shows how many loops are contained within each benchmark and for how
many loops our tool LOOPUS is able to compute a bound in terms function parameters. Addi-
tionally, we state how many bounds can be computed that are defined at the SCC header.

In Table 5.5 we see that more than 80 % of all loops are handled by LOOPUS in less than 1
second no matter if computing a bound for the function or the SCC header. Unsurprisingly, we
see that reasoning about the entire function at once takes clearly more time. We think that there
is still a great potential of a possible runtime optimization in future work.

Avg-Time Avg-Time Avg-Time Time Time Time TimeoutSuccess Failed ≤ 1 s > 1 s > 1 min
cBench

Bound at SCC header
0.7 s 4.3 s 1.6 s 4002 285 23 0

cBench
Bound at Function header

3.2 s 7.3 s 4.5 s 3568 733 83 0

SPEC
Bound at SCC header

1.5 s 6.0 s 2.5 s 13674 1362 151 0

SPEC
Bound at Function header

3.3 s 10.8 s 5.3 s 12070 3115 322 3

WCET
Bound at SCC header

0.5 s 0.5 s 0.5 s 262 0 0 0

WCET
Bound at Function header

0.8 s 0.6 s 0.7 s 262 0 0 0

Table 5.5: In the column “Avg-Time”, we give the average running time of LOOPUS on one
example. The column “Avg-Time Success” resp. “Avg-Time Failed” shows the average running
time of LOOPUS on the examples which LOOPUS solved resp. failed. The columns “Time ≤ 1
s”, “Time> 1 s” and “Time> 1 min” state the number of examples, where LOOPUS needed less
or equal than one second, more than one second or more than one minute to give a result (i.e., a
bound or a failure message). The number of timeouts (420 s) is given in the column “Timeout”.

61

Discussion about errors

We show in Table 5.6 reasons why LOOPUS failed to compute a bound for the examples found
in our benchmarks.

The most common reason for failure is that LOOPUS cannot establish a local ranking func-
tion. We list some common shortcomings of our method in the following, which are illustrated
by the examples shown in Figure 5.3.

1. Our modelling of C programs is incomplete for example in the case of bit vector arithmetic
(e.g., function bit_count in Figure 5.3).

2. As described in the previous Chapter 4 about the implementation of our tool, we have to
make assumptions about the variables and data structures of a program. For example, we
have to know the sign of an integer or that a list is acyclic. Our current assumption gener-
ator is still work in progress and misses possible assumptions (e.g., functions mainsort
and main1 in Figure 5.3).

3. The termination of a loop may depend on side effects or return values of a function call.
We already support such examples by inlining called functions. However, this feature is
currently applied very restrictive (e.g., function handle_compress in Figure 5.3).

LOOPUS is also not able to compute a bound if a loop is irreducible. Further, LOOPUS exits
on some examples anomalously due to segmentation faults, not enough memory or exceptions
raised by Z3 or LLVM.

We investigated 90 examples of cBench where the bound computation of LOOPUS actually
failed and found out two main reasons for failures, which are counted up in Table 5.7.

1. Bound computation fails if the original program cannot be abstracted into our abstract
program model by our current implementation. Those examples include assignments in-
side of loops of the form x = x ◦ c, where ◦ is a bit operation, multiplication or division.
Examples can be found in Figure 5.4.

Repetitive assignments of the form x = x ∗ y lead to an exponential grow of x. Hence, it
is impossible to find a constant that overestimates the increase of x in each loop iteration.
For binary operations like x = x|y there exists also no constant c, such that we could
abstract the assignment to a predicate like x′ ≤ x+ c.

Further, “self-depending” pointer arithmetic like “p += ∗p” fails to be abstracted.

2. As a knock-on effect, bound computations fail if the bound depends on another failed
example.

Most of the remaining examples could be bounded by taking another local ranking function,
by modelling of system calls or by introducing invariants about arrays and data structures. For
example, to bound the loop at line 5 in the example depicted in Figure 5.2, we would have to
generate the invariant that each element of the array a is not greater than 10 at line 5.

62

1 void a r r a y _ l o c a l (i n t n) {
2 i n t a [1 1] ;
3 f o r (i n t i = 0 ; i < 1 1 ; ++ i)
4 a [i] = i ;
5 f o r (i n t j = 0 ; j < a [i] ; ++ j)
6 ;
7 }

Figure 5.2: Example for array invariants.

Loops Failed Failed
Termination

Irredu-
cible Timeout Error

Failed
Bound

cBench
Bound at Function header

4301 1277 30 % 962 22 % 144 3 % 0 81 2 % 90 2 %

SPEC
Bound at Function header

15392 4188 27 % 3534 23 % 160 1 % 3 204 1 % 287 2 %

WCET
Bound at Function header

262 24 9 % 17 6 % 0 0 0 7 3 %

Table 5.6: The table shows how many loops are contained within each benchmark and for how
many loops LOOPUS is not able to compute a bound (column “Failed”). Column “Failed” sums
up all reasons for failed computations listed on the right part of the table. The column “Failed
Termination” shows for how many examples termination could not be proven by LOOPUS. In the
next column, the number of irreducible control flow graphs are shown (which cannot be analyzed
by LOOPUS). Note that we count all loops of a function as irreducible, if we compute a bound
over the function parameters and there exists one irreducible loop in that function. The column
“Error” notes the number of examples where LOOPUS terminates abruptly without result. In the
last column, we show the amount of examples where bound computation actually failed.

Failed Bound Failed Abstraction Depends on Failed
cBench

Bound at Function header
90 32 37

Table 5.7: The table counts the number of examples falling into one of the two main reasons
of failed bound computations. One reason for failure is that a bound computation depends on
another failed bound. Such examples are counted up in the column “Depends on Failed”. The
second main reason for failure are examples that could not be abstracted into our scheme.

5.3 Evaluation on Challenging Loop Classes

We specify in the following syntactic loop classes, which are of special interest to us as they
exclude standard for-loops “for (i=0;i<n;i++)’ and include cases hard for bound analysis.

63

1 / / a u t o m o t i v e _ b i t c o u n t /
2 / / b i t c n t _ 1 . c
3 i n t b i t _ c o u n t (long x) {
4 i n t n = 0 ;
5 i f (x)
6 do
7 n ++;
8 whi le (0 !=
9 (x = x & (x − 1))) ;

10 re turn (n) ;
11 }

1 / / b z i p 2 d / b l o c k s o r t . c
2 void m a i n s o r t () {
3 i n t h = 1 ;
4 do
5 h = 3 ∗ h + 1 ;
6 whi le (h <= 2 5 6) ;
7 do {
8 h = h / 3 ;
9 } whi le (h != 1) ;

10 }

Enhanced modelling of bit vectors
Enhanced assumption generation

h >= 3 at line 8

1 / / a u t o m o t i v e _ q s o r t 1 /
2 / / q s o r t _ l a r g e . c
3 void main1 () {
4 i n t i , c o u n t = 0 ;
5 whi le (no nd e t () &&
6 c o u n t < 60000)
7 c o u n t ++;
8 f o r (i =0 ; i < c o u n t ;
9 i += c o u n t / 1 0 0)

10 ;
11 }

1 / / b z i p 2 d / b l o c k s o r t . c
2 t y p e d e f s t r u c t e s t a t e {
3 i n t a v a i l _ i n ;
4 } E s t a t e ;
5 void c o p y _ o u t p u t _ u n t i l _ s t o p (
6 E s t a t e ∗ s) {
7 whi le (s−> a v a i l _ i n > 0
8 && no nde t ())
9 s−>a v a i l _ i n −−;

10 }
11 void h a n d l e _ c o m p r e s s (
12 E s t a t e ∗ s) {
13 whi le (1) {
14 c o p y _ o u t p u t _ u n t i l _ s t o p (s) ;
15 i f (s−> a v a i l _ i n == 0)
16 break ;
17 }
18 }

Enhanced assumption generation
count ≥ 100 at line 9

Enhanced function inlining at line 14

Figure 5.3: Examples illustrating the challenging task of computing local ranking functions.
The examples are taken from cBench (in sliced version). We note below each function how our
method could be enhanced to establish a ranking function.

64

1 / / o f f i c e _ g h o s t s c r i p t / i scannum . c
2 void scan_number (i n t decode , i n t c , i n t d ,
3 i n t ∗ sp , i n t ∗ e) {
4 i n t exp10 = c , i e x p = decode ;
5 f o r (; ; i e x p = 10 ∗ i e x p + d)
6 i f (sp ++ >= e)
7 break ;
8 exp10 += i e x p ;
9 whi le (exp10 > 6)

10 exp10 −= 6 ;
11 }

Exponential grow of iexp at line 5

1 / / s e c u r i t y _ p g p _ d / f i l e i o . c
2 i n t c o p y f i l e (FILE ∗ f , FILE ∗ g , i n t l o n g c o u n t) {
3 i n t c o u n t ;
4 do {
5 i f (l o n g c o u n t < 4096) c o u n t = l o n g c o u n t ;
6 e l s e c o u n t = 4096 ;
7 c o u n t = f r e a d (t e x t b u f , 1 , count , f) ;
8 f o r (i n t i =0 ; i < c o u n t ; i ++)
9 ;

10 l o n g c o u n t −= c o u n t ;
11 } whi le (c o u n t == 4 0 9 6) ;
12 }

(Partial) modelling of system call fread
would allow to deduce that count is never increased at line 7

and would allow to introduce a norm representing the remaining bytes of stream f .

1 / / s e c u r i t y _ p g p _ d / z i n f l a t e . c
2 void i n f l a t e _ s t o r e d (i n t k , i n t bb , i n t ∗ i n p t r) {
3 i n t n = k & 7 , b = bb ;
4 whi le (k < 16) {
5 b | = ∗ i n p t r ++;
6 k += 8 ;
7 }
8 n = b & 0 x f f f f ;
9 whi le (n−− > 0)

10 ;
11 }

The assignment at line 5 cannot be abstracted into the form of our
abstract transition predicates x′ ≤ x+ c.

Figure 5.4: Examples that cannot be abstracted into our abstract program model by the current
version of LOOPUS. The examples are taken from cBench (in sliced version).

65

1 exAmor (i n t m) {
2 i n t i =m, n = 0 ; / / s t a c k = e m p t y S t a c k () ;
3 whi le (i > 0) {
4 i−−;
5 i f (?) / / push
6 n ++; / / s t a c k . push (e l e m e n t) ;
7 e l s e / / popMany
8 whi le (n > 0 && ?)
9 n−−; / / e l e m e n t = s t a c k . pop () ;

10 }
11 }

Figure 5.5: Example for amortized complexity analysis

5.3.1 Amortized Complexity Analysis

Bound analysis is challenging for loops that are amortized in the sense that they have an asymp-
totically lower bound than one would expect from the loop-nesting depth of the loop. In such
cases, we would not get a precise bound if we just multiply the bound of the immediate parent
loop with the number of iterations of the loop per iteration of the parent loop.

Amortized analysis was motivated by Robert Endre Tarjan [62] by using the example of a
stack, which supports two operations: push, which adds a new item to the top of the stack, and
popMany, which removes several items from the stack. Consider an initially empty stack and a
sequence of m stack operations. If we assume that push has cost 1 and the cost of popMany is
the number of removed elements, then a single operation can have a cost up tom, which happens
if m − 1 push operations are followed by a call to popMany removing all items on the stack.
However, as each removed element corresponds to one pushed element, we have an amortized
running time of 2m.

Tarjan gives a possible view of amortization by the use of a potential function. In our stack
example, we have that each push increases the potential cost for a following popMany operation
by one. Consider function ’exAmor’ depicted Figure 5.5, which models a possible interaction
with a stack. Our bound method achieves amortization by using variable n as a potential function
for the loop in line 8. The potential number of iterations of that loop is increased by one for each
push operation (if-branch). As the if-branch is bounded by m, the loop bound for the loop in
line 8 is m and we have an overall computational complexity of 2m.

5.3.2 Definition of challenging Loop Classes

We describe five loop classes which are challenging for bound analysis. We distinguish four
different syntactic loop patterns (i.e., AmortA1-3 and InfluencesOuter) which are typical for
loop constructs with an overall amortized complexity.

We use the helper function LoopCounters(l) to denote the set of variables, which are
maybe involved in the termination of the loop at location l. A formal definition for the set

66

of LoopCounters is given in Pani’s thesis [57].

AmortA1 Given a nested loop at location l1 with its parent loop at location l0, we say that loop
l1 is part of loop class AmortA1, if and only if there is a variable x ∈ LoopCounters(l1)
that is not modified on a simple path going from l0 to l1. For example, the inner loop
of the amortization example depicted in Figure 5.5 and the inner loop of the following
example fall into this category.

1 f o r (i =0 ; i <n ; i ++)
2 f o r (; j <n && n ond e t () ; j ++) ;

AmortA2 Given a nested loop at location l1 with its parent at location l0, we say that loop l1 is
part of loop class AmortA2, if and only if there is a variable x ∈ LoopCounters(l1) that
is not reset on a simple path going from l0 to l1. In contrast to class AmortA1, AmortA2
includes also the inner loop of the following example.

1 f o r (i =0 ; i <n ; i ++){
2 j ++;
3 f o r (; j <n && n ond e t () ; j ++)
4 ;
5 }

AmortA3 Given a nested loop at location l1 with its parent at location l0, we say that loop l1
is part of loop class AmortA3, if and only if there is a variable x ∈ LoopCounters(l1)
that is not reset to a constant expression on a simple path going from l0 to l1. In contrast
to class AmortA1 and AmortA2, AmortA3 includes also the inner loop of the following
example.

1 f o r (i =0 ; i <n ; i ++){
2 j = x ;
3 f o r (; j <n && n ond e t () ; j ++)
4 ;
5 x = j ;
6 }

InfluencesOuter Given a nested loop at location l1 with its parent at location l0, we say that
loop l1 is part of loop class InfluencesOuter if and only if there is a variable
x ∈ LoopCounters(l0) that is modified within loop l1. For example, the inner loop of
the following example falls into this category, as the loop counter i of the outer loop is
incremented during the inner loop.

1 f o r (i =0 ; i <n ; i ++)
2 f o r (; i <n && n ond e t () ; i ++)
3 ;

67

Total Bounded Terminate
Bounded /
Terminate

AmortA1 136 69 51 % 72 53 % 96 %
AmortA2 w.o. AmortA1 99 42 42 % 50 51 % 84 %
AmortA3 w.o. AmortA2 159 92 59 % 96 60 % 96 %

InfluencesOuter 658 259 39 % 292 44 % 87 %
Paths>1 1276 719 56 % 752 59 % 96 %

Table 5.8: The table shows how many loops contained within the cBench are falling into which
loop class and for how many loops LOOPUS could infer termination and bounds.

Total Bounded Terminate
Bounded /
Terminate

AmortA1 99 57 58 % 59 60 % 97 %
AmortA2 w.o. AmortA1 77 36 47 % 36 47 % 100 %
AmortA3 w.o. AmortA2 277 173 63 % 188 68 % 92 %

InfluencesOuter 847 439 52 % 468 55 % 94 %
Paths>1 4297 2735 64 % 2790 65 % 98 %

Table 5.9: The table shows how many loops contained within the SPEC2006 benchmark are
falling into which loop class and for how many loops LOOPUS could infer termination and
bounds.

Paths>1 Given a loop at location l, we say that loop l is part of loop class Paths>1 if and only
if the loop ls, which is the sliced version of loop l such that it contains only variables of
LoopCounters(l), has more than one simple path going from location ls to ls.

Related Work on Syntactic Loop Classes

Thomas Pani systematically studies and describes syntactic loop patterns that are hard for pro-
gram analysis in his master thesis [57]. He developed the tool SLOOPY, which automatically
categorizes loops. We use a version of SLOOPY adapted to our described loop classes, which
are inspired from Pani’s work on classes of nested loops interesting for bound analysis, but our
classes are more restrictive.

Our loop classes resemble the categories defined within the recent work to LOOPUS [60].
The loop class ’Inner Dependent’ is equivalent to ’AmortA2’ and the class ’Outer Dependent’ is
similar to our class ’InfluencesOuter’, but includes the outer loop whereas we include the inner
loop, because the bound of the inner loop is probably amortized.

5.3.3 Overall Results for Challenging Loop Classes

We give the results of LOOPUS on the examples of cBench, SPEC and WCET falling in one of
the five loop classes in Table 5.8, Table 5.9 resp. Table 5.10. We denote by ’A w.o. B’ all loops

68

Total Bounded Terminate
Bounded /
Terminate

AmortA1 0 0 0 -
AmortA2 w.o. AmortA1 7 4 57 % 4 57 % 100 %
AmortA3 w.o. AmortA2 4 1 25 % 2 50 % 50 %

InfluencesOuter 20 14 70 % 15 75 % 93 %
Paths>1 24 16 66 % 16 66 % 100 %

Table 5.10: The table shows how many loops contained within the WCET benchmark are falling
into which loop class and for how many loops LOOPUS could infer termination and bounds.

Bounded Amortized
All (No Class) 3174 147 5 %

AmortA1 69 6 9 %

AmortA2 w.o. AmortA1 42 6 14 %

AmortA3 w.o. AmortA2 92 2 2 %

InfluencesOuter 259 26 10 %

Table 5.11: The table shows for how many loops of each loop class found in the cBench our tool
LOOPUS could infer an amortized bound.

falling into class A but not in class B.
We see for example in Table 5.8 that the success rates on the cBench in all five loop classes

are significantly reduced compared to the overall success rate of 74% seen in Table 5.4 for
bounds defined at the header of the comprising SCC. We are interested only in bounds at SCC-
level, because otherwise we cannot conclude from the asymptotic class of a bound if the bound
is amortized.

The reduced success rates seen in the Tables 5.8, 5.9, and 5.10 show that we have discovered
loop patterns that challenges bound analysis. However, success rates are high enough to say
that LOOPUS is also able to manage complex loop patterns. Especially, since we observe that
LOOPUS can compute a bound in most of the cases where termination was proven.

5.3.4 Results for Amortized Examples

Loops falling into one of the loop classes AmortA1, AmortA2, AmortA3 or InfluencesOuter are
possibly amortized, which means that the degree of the asymptotical class is smaller than the
nesting depth of the loop. Figure 5.6 shows some amortized examples.

In Table 5.11, Table 5.12, and Table 5.13 we give for each benchmark an overview for
how many of the bounded loops, LOOPUS actually computed an amortized bound. We see that
LOOPUS allows to compute amortized bounds and that those amortized bounds are more likely
computed for loops described by one of our loop classes.

69

1 / / consumer_ jpeg_c / j c h u f f . c
2 void encode_one_b lock () {
3 r =0;
4 f o r (k =1; k <64; k ++) {
5 i f (no nd e t ()) {
6 r ++;
7 } e l s e {
8 whi le (r >15) {
9 r −=16;

10 }
11 r =0;
12 }
13 }
14 }

1 / / o f f i c e _ i s p e l l / t r e e . c
2 void t r e e o u t p u t () {
3 s t r u c t d e n t ∗ c e n t ;
4 s t r u c t d e n t ∗ l e n t ;
5 . . .
6 f o r (l e n t = c e n t ; l e n t ! = 0 ;
7 l e n t = l e n t −>n e x t) {
8 whi le (l e n t −>mask [0] &
9 (1 << 3 0))

10 l e n t = l e n t −>n e x t ;
11 }
12 }

Amortized loop of class AmortA1
at line 8

Amortized loop of class InfluencesOuter
at line 8

1 / / c o n s u m e r _ t i f f 2 b w /
2 / / t i f _ l u v . c
3 i n t LogL16Decode (
4 TIFF ∗ t i f) {
5 cc = t i f −> t i f _ r a w c c ;
6 f o r (i =0 ; i < n p i x e l s &&
7 cc > 0 ;) {
8 cc −= 2 ;
9 whi le (−−cc &&

10 no nde t ())
11 i ++;
12 }
13 }

1 / / o f f i c e _ i s p e l l / dump . c
2 void subse tdump () {
3 i n t cnum ;
4 i n t r a n g e s t a r t ;
5 f o r (cnum =0; cnum <128;
6 cnum ++){
7 f o r (r a n g e s t a r t =cnum ;
8 cnum <128; cnum++)
9 ;

10 whi le (r a n g e s t a r t <cnum)
11 r a n g e s t a r t ++;
12 }
13 }

Amortized loop of class AmortA2
at line 9

Amortized loop of class AmortA3
at line 10

Figure 5.6: Examples from the cBench for that LOOPUS computed an amortized bound.

70

Bounded Amortized
All (No Class) 11481 1140 10 %

AmortA1 57 19 33 %

AmortA2 w.o. AmortA1 36 5 14 %

AmortA3 w.o. AmortA2 173 41 24 %

InfluencesOuter 439 114 26 %

Table 5.12: The table shows for how many loops of each loop class found in the SPEC2006
benchmark our tool LOOPUS could infer an amortized bound.

Bounded Amortized
All (No Class) 243 16 7 %

AmortA1 0 0
AmortA2 w.o. AmortA1 1 0
AmortA3 w.o. AmortA2 4 0

InfluencesOuter 14 4 29 %

Table 5.13: The table shows for how many loops of each loop class found in the WCET bench-
mark our tool LOOPUS could infer an amortized bound.

71

CHAPTER 6
Conclusion and Future Work

Bounds on the number of times loops may iterate have important applications in resource bound
analysis. Defining a loop bound requires to establish variable bounds (upper or lower bounds on
the value of a variable during execution of a program).

We motivated the problem of computing variable bounds, because state-of-the-art invariant
generation tools are mostly insufficient for the purpose of bound analysis. They do not scale to
non-linear or disjunctive invariants, which are required to shape bounds in cases of nested loops
or loops with complex control flow.

Based on the observation that loop and variable bounds can be expressed in terms of each
other, we elaborated an integrated bound analysis where the loop and variable bound algorithms
are calling each other recursively. Our method does not involve expensive computations like
abstract interpretation or computer algebra in contrast to related tools.

Our bound algorithms are defined for a simple abstract program model called difference
constraint program (DCP), such that the formal definitions of the algorithms are short, clear
and free from any programming-language specific constructs. The choice for DCPs is also
justified by the fact that termination is decidable for DCPs.

We have shown methods to abstract a given C program into a DCP and implemented those
methods and our bound algorithms into the tool LOOPUS. We think that C is a natural choice
for resource bound analysis because many applications for embedded systems are written in that
language.

We evaluated LOOPUS on three real-world benchmarks, where we were able to bound more
than 70% of all ∼20, 000 loops. More than the half of all loops could be bounded in less than
one second. We have also shown that LOOPUS outperforms existing bound tools in respect to
the total number of bounded examples, precision of computed bounds and running time of the
analysis. Further, we defined syntactical loop-patterns indicating amortized running time, and
we have shown that LOOPUS really computed significantly more amortized bounds for those
classes of loops.

73

6.1 Future Work

We point out several directions for future work:

Recursive Procedures and Functional Programs
A naive support for recursive programs would be the transformation to programs using
imperative loop-constructs. For tail-recursive examples, such an approach may be suf-
ficient. Transformations of other patterns of recursion must maintain a call stack. The
question is how well DCPs can be extended by a stack. An inspiration could be push-
down automatons.

Concurrent programs
Common properties of models (e.g., petri nets) of concurrent systems are their nonde-
terminism and - clearly - their ability of concurrent executions. A difference-constraint
program also has the nondeterminic choice which transition out of the enabled ones (i.e.,
transitions that predicates and conditions are satisfied) should be taken next. An interest-
ing opportunity for future work would be the computation of loop and variable bounds for
DCPs extended with concurrent executions.

Data Structures
LOOPUS is able to compute bounds for loops iterating over some data structure (e.g.,
linked list, array, etc.). However, we currently have to make assumptions like that a list
is acyclic or that a specific element is contained in a list. Those assumptions could be
proven by methods like shape analysis. Such methods could also be used to establish
invariants of values stored in a data structure and to determine properties (e.g, length) of
a data structure.

Software Verification and Invariant Generation
Variable bounds have a natural application in software verification and invariant gener-
ation. A typical example is the verification of the absence of array buffer overflows.
Another application for invariant generation would be in LOOPUS itself: LOOPUS makes
assumptions about the sign of variables (see Section 4.1). Checking the correctness of
those assumptions constitutes a possible extension to LOOPUS.

74

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

[2] Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla. Automatic inference of
upper bounds for recurrence relations in cost analysis. In SAS, pages 221–237, 2008.

[3] Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla. PUBS: A practical upper
bounds solver. http://costa.ls.fi.upm.es/pubs/, 2008.

[4] Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla. Closed-form upper bounds
in static cost analysis. J. Autom. Reasoning, 46(2):161–203, 2011.

[5] Elvira Albert, Puri Arenas, Samir Genaim, Germán Puebla, and Damiano Zanardini. Cost
analysis of object-oriented bytecode programs. Theor. Comput. Sci., 413(1):142–159,
2012.

[6] Elvira Albert, Samir Genaim, and Abu Naser Masud. On the inference of resource usage
upper and lower bounds. ACM Trans. Comput. Log., 14(3):22, 2013.

[7] Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord. Multi-dimensional
rankings, program termination, and complexity bounds of flowchart programs. In SAS,
pages 117–133, 2010.

[8] Amir M. Ben-Amram. Size-change termination with difference constraints. ACM Trans.
Program. Lang. Syst., 30(3), 2008.

[9] Amir M. Ben-Amram and Chin Soon Lee. Program termination analysis in polynomial
time. ACM Trans. Program. Lang. Syst., 29(1), 2007.

[10] Régis Blanc, Thomas A. Henzinger, Thibaud Hottelier, and Laura Kovács. ABC: Algebraic
bound computation for loops. In LPAR, pages 103–118, 2010.

[11] Andreas Blass and Yuri Gurevich. Inadequacy of computable loop invariants. ACM Trans.
Comput. Log., 2(1):1–11, 2001.

[12] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Linear ranking with reachability.
In CAV, pages 491–504, 2005.

75

http://costa.ls.fi.upm.es/pubs/

[13] Marc Brockschmidt, Byron Cook, and Carsten Fuhs. Better termination proving through
cooperation. In CAV, pages 413–429. 2013.

[14] Marc Brockschmidt, Fabian Emmes, Claßen Falke, Carsten Fuhs, and Jürgen
Giesl. Empirical evaluation of: Alternating runtime and size complexity analysis
of integer programs. http://aprove.informatik.rwth-aachen.de/eval/
IntegerComplexity/.

[15] Marc Brockschmidt, Fabian Emmes, Claßen Falke, Carsten Fuhs, and Jürgen Giesl. Al-
ternating runtime and size complexity analysis of integer programs. In TACAS, pages
140–155, 2014.

[16] Michael Carbin, Sasa Misailovic, and Martin C. Rinard. Verifying quantitative reliability
for programs that execute on unreliable hardware. In OOPSLA, pages 33–52, 2013.

[17] Quentin Carbonneaux, Jan Hoffmann, Tahina Ramananandro, and Zhong Shao. End-to-
end verification of stack-space bounds for c programs. In PLDI, page 30. ACM, 2014.

[18] Quentin Carbonneaux, Jan Hoffmann, and Zhong Shao. Compositional certified resource
bounds. Technical report, 2014. Yale University.

[19] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a smartphone. In
USENIXATC, pages 21–21, 2010.

[20] Wei-Ngan Chin, Huu Hai Nguyen, Corneliu Popeea, and Shengchao Qin. Analysing mem-
ory resource bounds for low-level programs. In ISMM, pages 151–160, 2008.

[21] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduc-
tion to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[22] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In POPL, pages
238–252, 1977.

[23] Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks. In
POPL, pages 269–282, 1979.

[24] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL, pages 84–96, 1978.

[25] Fábio Coutinho, Luís Alfredo V. de Carvalho, and Renato Santana. A workflow scheduling
algorithm for optimizing energy-efficient grid resources usage. In DASC, pages 642–649,
2011.

[26] cTuning. Collective Benchmark (cBench). http://cTuning.org/cbench.

[27] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In TACAS,
pages 337–340, 2008.

76

http://aprove.informatik.rwth-aachen.de/eval/IntegerComplexity/
http://aprove.informatik.rwth-aachen.de/eval/IntegerComplexity/
http://cTuning.org/cbench

[28] Andreas Ermedahl, Christer Sandberg, Jan Gustafsson, Stefan Bygde, and Björn Lisper.
Loop Bound Analysis based on a Combination of Program Slicing, Abstract Interpretation,
and Invariant Analysis. In WCET, 2007.

[29] Robert W. Floyd. Assigning meanings to programs. Mathematical aspects of computer
science, 19(19-32):1, 1967.

[30] Carsten Fuhs, Jürgen Giesl, Martin Plücker, Peter Schneider-Kamp, and Stephan Falke.
Proving termination of integer term rewriting. In RTA, pages 32–47, 2009.

[31] Bhargav S. Gulavani and Sumit Gulwani. A numerical abstract domain based on expression
abstraction and max operator with application in timing analysis. In CAV, pages 370–384,
2008.

[32] Sumit Gulwani. SPEED: Symbolic complexity bound analysis. In CAV, pages 51–62,
2009.

[33] Sumit Gulwani, Sagar Jain, and Eric Koskinen. Control-flow refinement and progress
invariants for bound analysis. SIGPLAN Not., 44(6):375–385, 2009.

[34] Sumit Gulwani and Nebojsa Jojic. Program verification as probabilistic inference. In
POPL, pages 277–289, 2007.

[35] Sumit Gulwani and Sudeep Juvekar. Bound analysis using backward symbolic execution.
Technical report, 2009. Microsoft Research.

[36] Sumit Gulwani, Tal Lev-Ami, and Mooly Sagiv. A combination framework for tracking
partition sizes. In POPL, pages 239–251, 2009.

[37] Sumit Gulwani, Krishna K. Mehra, and Trishul M. Chilimbi. SPEED: precise and efficient
static estimation of program computational complexity. In POPL, pages 127–139, 2009.

[38] Sumit Gulwani and Florian Zuleger. The reachability-bound problem. In PLDI, pages
292–304, 2010.

[39] Ashutosh Gupta and Andrey Rybalchenko. InvGen: An efficient invariant generator. In
CAV, pages 634–640, 2009.

[40] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The Mälardalen WCET
Benchmarks: Past, Present and Future. In WCET, pages 136–146, 2010.

[41] Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, and Björn Lisper. Automatic
derivation of loop bounds and infeasible paths for WCET analysis using abstract execu-
tion. In RTSS, pages 57–66, 2006.

[42] John L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH Computer Archi-
tecture News, 34(4):1–17, 2006.

77

[43] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate amortized resource anal-
ysis. In POPL, pages 357–370, 2011.

[44] Jan Hoffmann and Martin Hofmann. Amortized resource analysis with polynomial poten-
tial. In ESOP, pages 287–306, 2010.

[45] Martin Hofmann and Steffen Jost. Static prediction of heap space usage for first-order
functional programs. In POPL, pages 185–197, 2003. ACM SIGPLAN Notices 38(1),
January 2003.

[46] Niklas Holsti, Jan Gustafsson, Guillem Bernat, Clément Ballabriga, Armelle Bonenfant,
Roman Bourgade, Hugues Cassé, Daniel Cordes, Albrecht Kadlec, Raimund Kirner, Jens
Knoop, Paul Lokuciejewski, Nicholas Merriam, Marianne de Michiel, Adrian Prantl, Bern-
hard Rieder, Christine Rochange, Pascal Sainrat, and Markus Schordan. WCET 2008 –
report from the tool challenge 2008. In WCET, pages 149–171, 2008.

[47] Johan Janssen and Henk Corporaal. Making graphs reducible with controlled node split-
ting. ACM Trans. Program. Lang. Syst., 19(6):1031–1052, 1997.

[48] Steffen Jost, Kevin Hammond, Hans-Wolfgang Loidl, and Martin Hofmann. Static de-
termination of quantitative resource usage for higher-order programs. In POPL, pages
223–236, 2010.

[49] Jens Knoop, Laura Kovács, and Jakob Zwirchmayr. Symbolic loop bound computation for
WCET analysis. In Ershov Memorial Conference, pages 227–242, 2011.

[50] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In CGO, page 75, 2004.

[51] Björn Lisper. Fully automatic, parametric worst-case execution time analysis. In WCET,
pages 77–80, 2003.

[52] Tidorum Ltd. Bound-T - a time and stack analyser. http://www.bound-t.com/.

[53] Stephen Magill, Ming-Hsien Tsai, Peter Lee 0001, and Yih-Kuen Tsay. Automatic numeric
abstractions for heap-manipulating programs. In POPL, pages 211–222, 2010.

[54] Pasquale Malacaria. Assessing security threats of looping constructs. In POPL, pages
225–235, 2007.

[55] Marianne De Michiel, Armelle Bonenfant, Hugues Cass, and Pascal Sainrat. Static loop
bound analysis of C programs based on flow analysis and abstract interpretation. In RTCSA,
pages 161–166, 2008.

[56] Antoine Miné. The octagon abstract domain. Higher Order Symbol. Comput., 19(1):31–
100, 2006.

[57] Thomans Pani. Loop Patterns in C. Master’s thesis, Vienna University of Technology,
Austria, 2014.

78

http://www.bound-t.com/

[58] Enric Rodriguez-Carbonell and Deepak Kapur. Automatic generation of polynomial loop
invariants: Algebraic foundations. In ISSAC, 2004.

[59] Sriram Sankaranarayanan, Henny Sipma, and Zohar Manna. Non-linear loop invariant
generation using grbner bases. In POPL, pages 318–329, 2004.

[60] Moritz Sinn, Florian Zuleger, and Helmut Veith. A simple and scalable approach to bound
analysis and amortized complexity analysis. In CAV, pages 743–759, 2014.

[61] James Stanier and Des Watson. A study of irreducibility in c programs. Softw., Pract.
Exper., 42(1):117–130, 2012.

[62] R.E. Tarjan. Amortized computational complexity. SIAM Journal on Algebraic and Dis-
crete Methods, 6(2):306–318, 1985.

[63] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David B. Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mi-
tra, Frank Mueller, Isabelle Puaut, Peter P. Puschner, Jan Staschulat, and Per Stenstrm. The
Worst-Case Execution Time Problem - overview of methods and survey of tools. ACM
Trans. Embedded Comput. Syst., 7(3), 2008.

[64] Florian Zuleger, Sumit Gulwani, Moritz Sinn, and Helmut Veith. Bound analysis of imper-
ative programs with the size-change abstraction. In SAS, pages 280–297, 2011.

79

	Introduction
	Problem Definition
	Variable Bounds for Loop Bound Computation
	Variable Bounds as Program Invariants
	Loop and Variable Bounds: Better Together
	Contributions
	Previous and Related Work

	Program Model and Main Definitions
	Program Model
	Difference Constraint Program
	Abstraction of a Program
	Loop-path and Variable Bound Definitions
	Examples

	Bound Computation
	Loop-path and Variable Bound Algorithms
	Examples
	Termination and Soundness of the Bound Algorithms
	Extensions

	Implementation
	Abstracting programs to DCPs
	Program Transformations
	Termination Analysis
	Bound Computation

	Evaluation
	Comparison to Tools from the Literature
	Evaluation on Real-World Code
	Evaluation on Challenging Loop Classes

	Conclusion and Future Work
	Future Work

	Bibliography

