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Abstract

The amount of data stored in today’s information systems is increasing rapidly. Most widely
used for this task are relational database management systems. However, alternative data for-
mats, like XML documents or graph databases, continue to become more and more popular. In
all these data formats database design is an important task to avoid redundancies arising from
badly designed schemata. Therefore, Normal Forms were developed. Most prominently, Boyce-
Codd Normal Form (BCNF) is used for relational models. Arenas and Libkin introduced 2004
XML Normal Form for XML documents. So far, a normal form for graph databases has not
been considered yet. Our goal is to define a normal form that captures the intuition of BCNF for
graph databases.

We will recall Boyce-Codd Normal Form and XML Normal Form and will then use ideas from
these to define a normal form for graph databases. Description Logics (DLs) are ideally suited
as a formal model for graph databases. Since BCNF is formulated over functional dependencies
(FDs), we need to express FDs over DL knowledge bases (KBs). A first candidate are path-based
identification constraints introduced by Calvanese in 2008. However, we show that path-based
identification constraints are not powerful enough to model functional dependencies. Therefore,
we propose tree-based identification constraints as an extension of path-based identification con-
straints. Based on tree-based identification constraints we look at redundancy in DLs.

The main result of this thesis is a definition of Description Logic Normal Form, which is a
faithful translation of BCNF to Description Logics. Additionally, we introduce a direct mapping
from relational schemas to DL KBs and show that if a relational schema is in BCNF, then the
DL KB, directly mapped from this schema, is in DLNF and vice versa.
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Kurzfassung

Die Menge an von Informationssystemen gespeicherten Daten wächst stetig. Für diesen Zweck
werden vorwiegend Datenbanksysteme eingesetzt. Jedoch gewinnen alternative Datenformate,
wie XML Dokumente und Graph-basierte Datenbanken, immer mehr an Einfluss. In all diesen
Datenformaten ist es wichtig, mit Hilfe des Datenbankdesigns Redundanzen zu vermeiden. Sol-
che können bei einem schlecht konzipierten Datenmodell auftreten. Deshalb wurden Normalfor-
men entwickelt, um Datenmodelle zu schaffen, welche keine vermeidbaren Redundanzen mehr
enthalten. Für das relationale Datenmodell wird Boyce-Codd Normalform (BCNF) verwendet.
Arenas und Libkin entwickelten 2004 XML Normalform für XML Dokumente. Normalformen
für Graph-basierte Datenbanken wurden bisher nicht untersucht. Unser Ziel ist es, diese Lücke
zu schließen. Wir wollen eine Normalform definieren, welche die Eigenschaften von BCNF auf
Graph-basierte Datenbanken überträgt.

Zuerst werden wir Boyce-Codd und XML Normalform betrachten. Ideen aus diesen Normalfor-
men verwenden wir dazu, um eine Normalform für Graph-basierte Datenbanken zu entwickeln.
Beschreibungslogiken (DLs) sind als formales Modell für Graph-basierte Datenbanken über-
aus passend. Da BCNF mittels funktionaler Abhängigkeiten definiert ist, muss es uns möglich
sein solche auch über DL Wissensbasen (DL KBs) auszudrücken. Ein naheliegender Kandidat
sind die von Calvanese et al. 2008 eingeführten path-based identification constraints verwen-
den. Allerdings zeigen wir, dass path-based identification constraints nicht ausdrucksstark genug
sind, um funktionale Abhängigkeiten in DLs zu modellieren. Deshalb erweitern wir path-based
identification constraints zu tree-based identification constraints. Mittels diesen untersuchen wir
Redundanzen in DL KBs.

Der Hauptbeitrag dieser Arbeit ist eine Definition der Beschreibungslogik Normalform (DLNF),
welche eine sinnesgetreue Erweiterung der BCNF zu DLs ist. Zusätzlich stellen wir eine direkte
Abbildung von relationalen Schemata auf DL KBs vor. Wir zeigen, dass jedes relationale Sche-
ma genau dann in BCNF ist, wenn auch die direkte Abbildung dieses Schemas auf eine DL KB
in DLNF ist und umgekehrt.
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CHAPTER 1
Introduction

Database Management Systems (DBMS) are among the most widely used information systems.
Their importance is unquestioned. The amount of data in DBMS is increasing rapidly. This
success is largely due to the simplicity and elegance of the relational model. In the relational
model [31], data is stored in relations or simply, tables. In addition to the relational data, other
data models have been established over the past decade. With the development of the World
Wide Web, the Extensible Markup Language (XML) has become a popular data model. In
XML, data is stored in a tree-like structure [66, 67]. In recent years yet another data model,
graph databases [50, 51], has gained popularity. Graph databases capture the inherent graph
structure of data used in many different applications [2] such as the Semantic Web [45] as well
as social and biological networks [11].

The same information is representable in different data models. For example, consider an
application that manages information on conference articles. For each article we want to store
the name, the conference proceedings it appeared in, and the year of its publication. The choice
of the data model clearly depends on the application. For example, a relational table or database
as shown in Figure 1.1a is the most traditional form of data storage. If we aim at a Web-based
application an XML document, depicted as a tree in Figure 1.1b, is an option. Another possibil-
ity is to use a graph database as shown in Figure 1.1c.

Regardless of the data model, the design of a data store is not a trivial task. Database design is a
research area of its own and well-studied in the relational model. One of the main questions in
database design is: “How to maintain the consistency of data?”. This question directly comes
into play when we consider consistency in the context of data dependencies, which add semantic
information to data. The most prominent kinds of problems associated with data dependencies
are the following [1]:

• Incomplete Information: If one needs to insert incomplete information into a database,
this might not be possible due to a data dependency, which leads to an insertion anomaly.
The deletion of information needed by a data dependency may lead to a deletion anomaly.
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proc article year

PODS13 NF 2013
PODS13 DLNF 2013

(a) Data stored in a table.

p1:proc

a2:article

@year
2013

@name
DLNF

a1:article

@year
2013

@name
NF

@name
PODS13

(b) Data stored in a tree.

p1 : proc

a1 : article

a2 : article

2013

PODS13

NF

DLNF

has_artic
le

has_article

appeared

appea
red

name

name

name

(c) Data stored in a graph.

Figure 1.1: Information on conference articles stored in different data models.

• Redundancy: Updates to redundantly stored data must be applied to all instances of it.
Updating only one data instance leads to an update anomaly.

Figure 1.1 shows redundant information in all three data models. Articles that appear in the
same conference proceedings should have the same year of publication. For example, the two
articles used in Figure 1.1 appeared in the conference proceedings of “PODS13”. Both were
published in 2013. In our simple example, the year is stored redundantly in each data model.
Intuitively, this is due to the fact that year is modeled as a “property” of each article. Instead, it
should be treated as an attribute of conference only. In the following we want to show how we
can avoid and repair such redundancies.

For the relational model most of the research to eliminate such problems was conducted in
the 1970s [32, 33]. The normalization process [18] was developed to make data models as
redundancy-free as possible. Such models are said to be in a particular normal form. Today the
most widely used normal form is Boyce-Codd Normal Form (BCNF) [34].

As we have seen in Figure 1.1b, XML documents may contain redundancies as well. Arenas
and Libkin analyzed redundancies in XML data. This led to the introduction of “A Normal Form
for XML documents” [6], called XML Normal Form (XNF). They showed that XNF is a faithful
extension of BCNF, using a mapping from relational data to XML documents. Under such a
mapping, an XML document is in XNF if the underlying relational schema is in BCNF and vice
versa.

2



proc article proc year
PODS13 NF PODS13 2013
PODS13 DLNF

(a) Data stored in tables.

p1:proc

a2:article

@name
DLNF

a1:article

@name
NF

@year
2013

@name
PODS13

(b) Data stored in a tree.

p1 : proc

a1 : article

a2 : article

2013

PODS13 NF

DLNF

has_article

has_article
appeared

name
name

name

(c) Data stored in a graph.

Figure 1.2: Information on conference articles stored in different data models.

So far, redundancies in graph databases have not yet been investigated. This thesis aims
at filling this gap. Therefore, our goal is to introduce a normal form for graph databases.
Graph databases in this normal form avoid the storage of redundant information. Similar to
Arenas and Libkin, we want to justify the naturalness of such a normal form as an extension to
BCNF. When we translate a relational schema into a graph database we will show that then this
graph database is in our new normal form whenever the relational schema is in BCNF and vice
versa.

In order to achieve this goal, we need to understand the normalization process in the relation
model as well as in XML. The success of the normalization process is due to its generality. It
does not aim at removing redundant data from a database, but rather it reorganizes the underlying
structure to avoid storing redundant information. The structure for relational data is given by
a relational schema [31]. A relational schema consists of tables and their columns. Several
constraints, known as data dependencies, can be specified to add semantic information to the
columns in a table. One type of data dependencies are functional dependencies (FDs). An
FD specifies that one or more columns uniquely determine the value of another column in a
relation. For example, we can specify that the data in the proc column determines the data in
the year column. Such information leads to redundancies. We can then adapt the relational
schema to make it redundancy-free. In the example, this means creating an additional table (see
Figure 1.2a) that stores the information year together with the proc column.

XML documents can be represented as trees. The structure of these trees is determined
by a Document Type Definition (DTD) [66] or some other form of XML schema (eg. [68]).
Arenas and Libkin focused on DTDs [8] and introduced data dependencies over DTDs, called

3



XML Functional Dependencies (XFDs). XFDs are used to specify that one or more nodes in
an XML tree uniquely determine another node. Therefore, XFDs are the analogue to FDs in
XML documents. For example, we can specify that the proc element in the tree in Figure 1.1b
determines the year attribute of all its article child elements. This leads to redundancies and
can be repaired, as depicted in Figure 1.2b, by changing the DTD, such that year is an attribute
of the proc element rather than the article element.

Redundancies in graph databases seen from a relational or XML perspective have not been
investigated so far. Several models exist for graph databases. We want to focus on a particu-
lar well-suited data model, which should allow us to express constraints over graph databases.
Description Logics (DLs) are an ideal choice as a constraint language for graph databases, be-
cause their models can be represented as graphs. DLs are a fragment of first-order logic. In DLs
there is always a trade-off between expressivity and computational complexity. We are look-
ing for a DL that is expressive enough to allow us to formulate FD-like constraints. For this,
DL-LiteA [24] is an ideal candidate as a formal model. DL-LiteA is tightly related to conceptual
modeling formalisms and is actually able to capture their most important features [12].

DLs and especially DL-LiteA already allow to express constraints over the models. But, in order
to establish a normal form for DL-LiteA that resembles BCNF and XNF, we need data dependen-
cies that are similar to FDs and XFDs. Therefore, we want to express that one or more nodes in
a graph uniquely determine another node. Calvanese et al. proposed an extension to DL-LiteA,
called path-based identification constraints [27], that allows such expressions. However, we
will show that path-based identification constraints are not powerful enough to capture FDs
in DLs. Therefore, we introduce tree-based identification constraints. With these constraints
we can specify, in the example given in Figure 1.1c, that every node of type proc determines
the node reachable via a path that traverses a “has_article” and an “appeared” edge. Such a
constraint leads to a redundancy. After moving the “appeared” edge to the proc element, the
graph-database is redundancy-free.

As we saw in our simple example, redundancies in graph databases can occur when a node
is determined by another node, which is reachable via two or more different paths. We will
generalize this idea and define a normal form for DL-LiteA, called Description Logic Normal
Form (DLNF).

Since BCNF is the most prominent normal form in the relational model, we want to show
that DLNF generalizes BCNF. As Arenas and Libkin used a mapping from relational schemas
to XML, we want to translate relational schemas to DL-LiteA knowledge bases (KB). It does not
suffice to use the mapping from relational data into RDF graphs [5], because it lacks means of
translating the semantic information given in the relational schema. We will extend, similar to
Sequeda et al. [63], the mapping from relational data into RDF graphs and introduce the Rela-
tional to Description Logic Direct Mapping (R2DM). We can show for our direct mapping that
any model of the translated KB corresponds to an instance of the relational schema. Our exten-
sion allows us then to show that this translated KB is in DLNF if the corresponding relational
schema is in BCNF and vice versa.
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Contributions. The main contributions of this thesis are the following:

• Relational to Description Logic direct mapping: The direct-mapping of relational data
to RDF [5] lacks means of mapping the semantic information available in the relational
schema. Sequeda et al. already extended this direct mapping with semantic information
[63]. We will transfer their ideas to DLs and introduce in Section 4.2.2 the relational
to Description Logic direct mapping (R2DM). The R2DM translates relational schemas
into DL-LiteA KBs. Then it is possible to translate models of such KBs into instances
of relational schemas and vice versa. We will show that any model of such a KB can be
translated into an instance of the relational schema and vice versa.

• Tree-based identification constraints: In order to establish a normal form that is related
to BCNF, we need to express dependencies over DL-LiteA KBs that resemble FDs over
relational schemas. Calvanese et al. introduced path-based identification constraints [27]
as such a formalism. In Section 4.3.2 we will show that these do not properly capture FDs.
Therefore, we introduce tree-based identification constraints as a solution in Section 4.3.3.
Additionally, we will show that any FD of a relational schema can be translated into a tree-
based identification constraint over a DL-LiteA KB and vice versa.

• Description Logic Normal Form: In Section 4.4 we will investigate redundancies in
graph databases and establish a normal form for DLs. A DL-LiteA KB in Description
Logic Normal Form avoids redundancies. Additionally, we will compare in Section 4.5
DLNF to BCNF. We will show that whenever a relational schema is in BCNF its translated
DL-LiteA KB is in DLNF and vice versa.

State of the Art.

• Most of the research on the normalization of schemas in the relational model has been
conducted in the 1970s and 1980s. In 1970 Codd introduced the relational model [31].
In this seminal paper he also coined the concept of normalization by giving a defini-
tion of what we today know as “First Normal Form” (1NF). Since then normal forms
for relational data have been investigated. Codd developed Second and Third Normal
Form (2NF and 3NF) [32, 33]. Additionally, Boyce-Codd Normal Form (BCNF) was
introduced [34]. So far, all normal forms have used functional dependencies for specify-
ing semantic information on the data. Fagin introduced Fourth and Fifth Normal Form
(4NF and 5NF) that avoid redundancies when multivalued and join dependencies are
used [38, 39]. Today even more normal forms exist. Among them are Domain/Key Nor-
mal Form (DKNF) [40], Sixth Normal Form (6NF) [36] and more recently, Essential
Tuple Normal Form (ETNF) [35]. We will give a thorough introduction to the relational
model, FDs, 3NF and BCNF in Chapter 2.

• In 1998 the World Wide Web Consortium (W3C) introduced XML as a human- and
machine-readable data format for the WWW [66, 67]. A first normal form for XML was
developed by Embley and Mok [37]. This normal form is more restrictive than the normal
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form later introduced by Arenas and Libkin [4, 6, 8]. To further investigate redundan-
cies in relational data and XML documents Arenas and Libkin looked at these from an
information-theoretic perspective [7]. Embley and Mok as well as Arenas and Libkin de-
veloped their own functional dependency language for XML documents. Additionally,
both groups showed how to convert poorly designed into well-designed XML schemas.
An additional language for functional dependencies in XML documents has been devel-
oped [52]. However, the authors have not considered the normalization problem with
respect to the introduced dependencies. The model for XML documents together with
XFDs and XNF as introduced by Arenas and Libkin will be recapitulated in Chapter 3.

• Graph databases, introduced in the late 1980s [50, 51], are an active field of research
today [14, 15, 55]. They play an important role in today’s applications, for example the
Semantic Web [20,64]. The development of the Semantic Web started in 2001. Since then
the Resource Description Framework (RDF) [44] has emerged as a standard for storage
of Web data as a graph database. RDF Schema (RDFS) [22] and the Web Ontology
Language (OWL) [16, 65] make it possible to attach more semantic information to RDF
data. The semantics of OWL2 [65] is given by an extension of the semantics of the DL
SROIQ [59]. In addition to the standard semantics of OWL2, the W3C defined OWL2
profiles tailored for specific purposes [58]. OWL2 QL was defined to be used with large
volumes of instance data, as nowadays available in DBMS. At the core of OWL2 QL
is the description logic DL-LiteA [24], a member of the DL-Lite family [10]. This makes
description Logics [13] well-suited for managing data repositories [53]. In particular, DLs
are a natural language for constraints over graph databases [30]. Many extensions [27,29]
to classic DLs are available that are tailored towards specific applications [25].

Several formalisms for expressing functional dependencies have been investigated in DLs.
Among them, Calvanese et al. introduced identification constraints [29] and extended
them with path-based identification constraints [27]. A more restrictive form of FDs in
DLs is investigated in [61]. They only consider FDs in DLs over functional paths. To the
best of our knowledge there is no research on normal forms regarding these types of FDs
in DLs.

Organization. This thesis is organized as follows. We will investigate redundancies and nor-
mal forms in each of the three introduced data models. Therefore, this thesis has three chapters,
each of which focuses on a particular data model. Chapter 2 discusses normal forms for the rela-
tional model, chapter 3 summarizes the normal form for XML documents introduced by Arenas
and Libkin [8]. In Chapter 4 we will finally present a new normal form for DLs. Each chapter
has the following sections: First, we will introduce the “Preliminaries” for the particular data
model. Then, we show how to map relational schemas to schemas of the particular model. Next,
we investigate data dependencies. Then, we will introduce normal forms and show their correla-
tion to BCNF. Finally, the last section of each chapter is devoted to a short summary. Chapter 5
will then review this work and give an outlook to further work in this area.

6



CHAPTER 2
Existing Normal Forms

For Relational Data

This chapter summarizes the foundations of Database Design Theory. This summary is similarly
structured as in [1, 3, 56]. Section 2.1 gives a short introduction to the relational model. Then,
Section 2.2 introduces one type of data dependencies for the relational model, called functional
dependencies. Finally, Section 2.3 introduces the two most prominent normal forms for the
relational model, Third Normal Form and Boyce-Codd Normal Form.

2.1 Preliminaries

Codd introduced in [31] the relational model which is used by most database management sys-
tems (DBMS) today. Such a DBMS stores data in relations (or tables). Figure 2.1 shows an
example relation storing information about courses of universities. A tuple (or row) of course
stores a lecture, its type and the room together with the rooms’ location.

As we have seen, each relation consists of two parts: the actual data, which varies over time, and
the part considered to be fixed, the relational schema. A schema, denoted as R[U ], consists of a
schema name (R) and a set of attributes U = {A1, . . . , An}. The values stored in each attribute
A ∈ U are of a particular domain denoted as Dom(A). We assume the domains to be infinite.
The schema shown in Figure 2.1 is course[U ], where U = {lecture, type, room, building}
and Dom(lecture) = Σ∗, i.e. the set of all strings. A tuple is a function with domain U that
assigns to each attribute of a relation a value of the domain. An instance I of a relation consists
of a set of tuples. For example, the instance depicted in Figure 2.1 is I(course) = {t1, t2, t3},
where t1(lecture) = “Algebra I”, and so on. Let X ⊆ U , we denote with t[X] the tuple
restricted to the attributes in X . Given a set of tuples T , e.g. I(course), we denote with
T [X], the set of tuples restricted to the attributes in X . A database schema S consists of
several relational schemas, i.e. S = {R1[U1], . . . Rn[Un]}. Additionally, constraints might
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lecture type room building

Algebra I VO HS1 Main
Algebra I UE SEM1 Dep
Economics I UE SEM1 Dep

Figure 2.1: Relation course

be imposed over a relational schema. Such constraints restrict the possible relational schema
instances. For example, the instance in Figure 2.1 depicts that one room is associated to a
building. In order to express such constraints, we need to add data dependencies to a relational
schema. Different classes of data dependencies will be considered in Section 2.2. A relational
schema R[U ] together with some set of dependencies Σ, denoted by (R[U ],Σ), is, for the sake
of simplicity, also called relational schema [3]. We denote by Inst (R [U ]) the set of all possible
instances of the relational schema R [U ].

2.2 Data Dependencies

Data dependencies impose constraints over an instance of a relational schema. Let us first in-
troduce two concepts common to all classes of data dependencies, dependency implication and
dependency inference. Let ϕ denote a dependency and Σ a set of dependencies. A set of de-
pendencies Σ implies a dependency ϕ, denoted by Σ � ϕ, if for every database instance I that
satisfies all constraints in Σ, it is the case that I satisfies ϕ. The set of all dependencies implied
by Σ is denoted by Σ+. Dependency implication can be decided using different methods. On
the one hand, there are algorithms, on the other hand we can try to construct a proof for the
implication of a FD by using an inference system. Such an inference system consists of a set of
inference rules I. Let C be a class of dependencies, e.g. the class of Functional Dependencies.
We say a set of rules I is complete for a class of dependencies C, if for every set Σ ∪ {ϕ}, if
Σ � ϕ, then Σ `I ϕ, i.e. ϕ is provable from Σ using I. Furthermore, I is sound for C if Σ `I ϕ
implies Σ � ϕ. The three most important classes of dependencies are Functional Dependencies,
Multi-Valued Dependencies and Join Dependencies. Boyce-Codd Normal Form uses Functional
Dependencies. Since in this work we primarily focus on BCNF, we only introduce Functional
Dependencies here. We exhibit the implication problem for Functional Dependencies and estab-
lish a set of sound and complete inference rules.

2.2.1 Functional Dependencies

Functional Dependencies (FDs) are the most important class of dependencies in schema design.
Key dependencies, a special type of FDs, are supported by most DBMS today. Let U be a set
of attributes, and let X,Y ⊆ U . A Functional Dependency over U is an expression of the form
X → Y . If Y = U then X → Y is called a key dependency. An FD is called trivial if Y ⊆ X .
An instance I of R[U ] satisfies an FD X → Y , denoted by I � X → Y , if for every pair of
tuples t1, t2 in I , whenever t1[X] = t2[X], then t1[Y ] = t2[Y ]. Intuitively, an FD says that if
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two tuples agree on the values of X they must also agree on the values of Y .

Now consider the relation course in Figure 2.1. We already noted that each room is associated
to a building. Therefore, room → building is an FD over the relation course. Additionally,
a lecture together with its type determines the room they can be held in. Also, rooms can only
serve lectures of a particular type. Therefore the set of FDs Σcourse over the relation course is:

room→ building (2.1)

lecture, type→ room (2.2)

room→ type (2.3)

We have now specified the relational schema (course[U ],Σcourse), with
U = {lecture, type, room, building}. Notice, that the relation in Figure 2.1 is a valid instance
of this schema.

2.2.1.1 Implication of FDs

The implication of a particular FD ϕ by a set of FDs Σ can be determined by computing the
closure of a set of attributes X . Let X ⊆ U be a set of attributes. The closure of X , denoted by
X+, are all attributes implied by X , i.e. X+ = {A | Σ � X → A∧A ∈ U}. A naive algorithm
computes X+ in O(n2), where n is the length of Σ and X . Algorithm 2.1 developed by Beeri
and Bernstein [17,21] computes X+ in linear time. We can now check if an FD ϕ = X → Y is
implied by a set of FDs Σ, since Σ � X → Y if and only if Y ⊆ X+. Therefore, implication of
FDs can be decided in linear time.

As an example, consider the FDs Σcourse and the FD ϕcourse = lecture, type→ building. We
want to check if Σcourse � ϕcourse. First, we use Algorithm 2.1 to compute {lecture, type}+ =
{lecture, type, room, building}. Then ϕcourse is implied by the FD Σcourse, since building ∈
{lecture, type}+.

2.2.1.2 Axiomatization for FDs

An alternative to the implication problem is to provide a proof for an FD. Such a proof is con-
structed using inference rules. Armstrong introduced in [9] the following sound and complete
set of inference rules, also called Armstrong Axioms:

FD1 (Reflexivity): If Y ⊆ X , then X → Y (2.4)

FD2 (Augmentation): If X → Y , then XZ → Y Z (2.5)

FD3 (Transitivity): If X → Y and Y → Z, then X → Z (2.6)

For example, ϕcourse can be inferred by applying transitivity (FD3) to lecture, type → room
and room→ building.
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input : A set U of attributes, a set Σ of functional dependencies over U , and a set
X ⊆ U .

output: The closure X+ of X with respect to Σ

1 unmark all members of X;
2 foreach ϕ = Y → Z ∈ Σ do
3 count(ϕ)← |Y |;
4 foreach A ∈ Y do
5 add ϕ to the list L(A);
6 end
7 end
8 CL← X;
9 while CL contains an unmarked element A do

10 mark A;
11 foreach ϕ ∈ L(A) do
12 count(ϕ)← count(ϕ)− 1;
13 if count(ϕ) = 0 then
14 let ϕ = Y → Z;
15 CL← CL ∪ Z;
16 end
17 end
18 end

Algorithm 2.1: Linear time algorithm to compute the closure X+ of a set of attributes X
(from [56])

2.3 Normal Forms

Normal forms are one of database theory most important contributions to schema design. The
goal of normal forms is to formulate criteria for “good” relational schemas. Intuitively, such
“good” schemas should help to avoid redundant information, and update, insertion and deletion
anomalies.

Before we define normal forms, we need some auxiliary definitions. Let (R [U ] ,Σ) be a rela-
tional schema with the functional dependencies Σ. We call X ⊆ U a superkey if Σ � X → U .
A key is a minimal superkey. The attributes A in X , where X is a key of R, are called key
attributes [1].

We only study Third Normal Form (3NF) and Boyce-Codd Normal Form (BCNF) here. For
completeness, First Normal Form (1NF) states that attributes in relations are atomic [56], which
is an assumption already made by the relational model. Second Normal Form (2NF) demands
that all non-key attributes should depend on the whole key of a relation [56]. All normal forms
require the relation to be in the weaker normal form, i.e. 3NF requires that the relation is in 2NF
and 1NF.
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2.3.1 Third Normal Form

Third Normal Form was first proposed in [32, 33] in order to avoid update anomalies.

Definition 2.1. (Third Normal Form [1, 69]) Let (R [U ] ,Σ) be a relational schema, where Σ is
a set of functional dependencies. (R [U ] ,Σ) is in third normal form (3NF) if whenever X → A
is a nontrivial FD implied by Σ, then X is a superkey or A is a key attribute. /

In other words, Definition 2.1 states that whenever an attribute A is functionally dependent on
another set of attributes X , then X is a superkey or A is part of the key of R. We will now
illustrate 3NF with the following example.

Example 2.1. Consider the relational schema (course[U ],Σcourses) introduced in Section 2.1
and extended with FDs in Section 2.2. Now consider the FD room→ building. Neither room
is a superkey, since room → lecture is not a valid FD in the relational schema, nor building
is part of the key of R, which is lecture, type, room. Therefore, this schema is not in 3NF. We
can split the relation course into a relation course with attributes lecture, type, and room and
into a relation rooms with attributes room and building. Notice, that this new set of relations
course and room is in 3NF. /

2.3.2 Boyce-Codd Normal Form

Boyce-Codd Normal Form (BCNF) was introduced in [34] and can be summarized with “Do
Not Represent the Same Fact Twice” [1], which eliminates redundancies and update anomalies.
BCNF is defined as follows:

Definition 2.2. (Boyce-Codd Normal Form [1] Let (R [U ] ,Σ) be a relational schema, where
Σ is a set of functional dependencies. (R[U ],Σ) is in Boyce-Codd normal form (BCNF) if
Σ � X → U whenever X → Y is a nontrivial FD implied by Σ. A database schema (R,Σ) is
in BCNF if each of its relation schemas is. /

Put differently, a schema is in BCNF if for every nontrivial functional dependency X → A ∈
Σ+, X is a superkey [56]. Thus, compared to 3NF, BCNF drops the condition that A might be
part of the key. The algorithm for testing BCNF works as follows: For every FD X → Y ∈ Σ,
we compute X+ using Algorithm 2.1. If X+ = U then we continue with the next FD. Since
Algorithm 2.1 runs in linear time, we can decide if a relational schema is in BCNF in quadratic
time. Example 2.1 shows a relational schema that is in 3NF. Next, we show that this relational
schema is not in BCNF:

Example 2.2. Let course(lecture, type, room) be the relational schema obtained after decom-
position into 3NF. The FDs for the relational schema course are
(lecture, type → room) and (room → type). This schema is not in BCNF since room →
lecture is not implied by the above FDs. An instance of this schema is presented in Figure 2.2.
Let us explain at this example the BCNF intuition “Do Not Represent the Same Fact Twice”.
We extract the columns used in the FD that leads to the violation of BCNF. Those are room and
type. The instance in Figure 2.2 restricted to room and type consists of three rows, where two
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lecture type room

Algebra I VO HS1
Algebra I UE SEM1
Economics I UE SEM1

Figure 2.2: Relation course in 3NF

rows appear twice (those are (UE ,SEM1 )). Since the instance in Figure 2.2 is a valid instance
we have stored twice the information that in the room SEM1 courses of the type UE can be
taught. /

Relational schemas that are not in BCNF can be repaired. We call such a repair algorithm a
decomposition. The basic idea of a BCNF decomposition algorithm is, to find a FD X → Y
which leads to a BCNF violation. Notice that Y have to be all attributes implied by X . We
then create a new relation for the attributes X and Y and remove the attributes Y from the
original relation. Therefore, we have repaired the BCNF violation, that has originated from
the FD X → Y . Such a decomposition should preserve data and dependencies. The BCNF
decomposition algorithm preserves the data, but, unfortunately, is not dependency preserving
(see Theorem 11.2.8 of [1]). The next example illustrates the loss of a dependency due to the
BCNF decomposition algorithm.

Example 2.3. Consider the relational schema and instance given in Figure 2.2 of Example 2.2.
Since the FD room→ type leads to a BCNF violation, we create a new relation rooms with the
attributes room and type. We remove the attribute type from the relation course. Additionally,
we need to drop the FD lecture, type → room, since type does not belong to the relation
course anymore. Therefore, the algorithm does not preserve the FD lecture, type → room.
The result is the database schema in BCNF consisting of the relations:

(course(lecture, room), ∅) (rooms(room, type), {room→ type})

The resulting database instance with the same information as in Figure 2.2 is given in Figure 2.3.
Unfortunately, there is no BCNF decomposition of course that preserves dependencies. /

course rooms
lecture room room type

Algebra I HS1 HS1 VO
Algebra I SEM1 SEM1 UE
Economics I SEM1

Figure 2.3: Relation course and rooms in BCNF
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2.4 Summary

In this chapter we have introduced the relational model as a formal model of relational databases.
Then, we established functional dependencies as a formalism for data dependencies over a rela-
tional schema. We have investigated the implication problem for FDs. The presented algorithm
decides the implication problem for FDs in linear time. Additionally, we can use Armstrong
Axioms to prove the implication of FDs.

Then, we introduced two different normal forms for the relational model. A relational schema
R is in Third Normal Form if for every attribute A that is functionally dependent on some other
attributes X , then X is a superkey or A is a key attribute. This normal form avoids update
anomalies. Boyce-Codd Normal Form eliminates redundancies and update anomalies. BCNF
drops the condition that A might be a key attribute. Therefore, BCNF is more restrictive than
3NF. If a relational schema is in BCNF can be checked in quadratic time. Clearly, every schema
that is in BCNF is also in 3NF. At the end of this chapter we have showed that we can repair
relational schemas that are not in BCNF, such that the resulting relational schema is in BCNF.

13





CHAPTER 3
Existing Normal Form

For XML Data

XML documents are increasingly used in today’s applications for storing and exchanging data.
The data in those XML documents is retrieved, updated and inserted. XML documents have
their own structure, determined by a Document Type Definition (DTD) [66] or some other form
of XML schema (eg. [68]). Arenas and Libkin looked for an analogon to BCNF in the XML
context [8]. As a summary they answered the following questions:

(1) What is a redundancy and an update anomaly in XML?

(2) What do functional dependencies in XML look like?

(3) What are “bad” functional dependencies?

(4) Is there an algorithm to convert an arbitrary DTD into one without “bad” functional de-
pendencies?

This chapter summarizes the answers to questions (1)-(3), given in the publications of Arenas
and Libkin [4, 6–8]. Section 3.1 introduces the XML document and schema model. We then
show how to map relational data to XML documents and DTDs in Section 3.2. Section 3.3
defines XML functional dependencies (XFD) and finally, Section 3.4 introduces XML Normal
Form.

XML Documents. An XML document is hierarchically structured and built of elements. An
element contains a string or a sequence of further elements. Elements start with a start-tag,
e.g. <course>, and end with an end-tag, e.g. </course>. Elements might also include
attributes given in the start-tag, e.g. the attribute type in the element course (<course
type=’VO’>). The top element of a document is called the document or root element. An
XML document with the same information as in Figure 2.1 is given in the next example.
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<courses>
<course type="VO">

<lecture>Algebra I</lecture>
<room building="Main">HS1</room>

</course>
<course type="UE">

<lecture>Algebra I</lecture>
<room building="Dep">SEM1</room>

</course>
<course type="UE">

<lecture>Economics</lecture>
<room building="Dep">SEM1</room>

</course>
</courses>

Figure 3.1: An XML document with the same information as in Figure 2.1.

Example 3.1. The root element of the document in Figure 3.1 is courses, which stores several
course elements. Each course element has as attribute a course type. The name of the
course is stored in a lecture element, and its location in a room element. The room element
has a building attribute. /

Document Type Definitions (DTDs). A schema of an XML document defines the allowed
trees. This structure is defined using a schema language, which is most often given by a DTD
(defined in [66]) or an XML Schema (XSD) [68]. In the following we focus on DTDs as a
schema language. The next example gives a possible schema to the XML document in Figure 3.1

Example 3.2. The DTD given in Figure 3.2 allows for XML documents with the root element
courses. Each course element has zero or more course child elements. Each course
element has a child of type lecture and room. Additionally, the course element has a
required attribute type. The lecture and room elements contain strings (#PCDATA). The
room element has a building attribute. /

3.1 Preliminaries

In this section we formally introduce XML documents. For XML documents and DTDs we use
the same formal model as in [3] originally introduced by Fan and Libkin [42, 43]. We have the
following disjoint sets: El representing element names, Att attribute names, Str possible values
of string-valued attributes, and Vert node identifiers. We assume that all attribute names Att
start with the symbol @ (an no others are starting with @). The symbols S and ⊥ are not part
of the previous sets. An XML document can be represented as a tree, formalized as follows.
Notice that we do not allow mixed content in XML trees.
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<!DOCTYPE courses [
<!ELEMENT courses (course*)>
<!ELEMENT course (lecture, room)>
<!ATTLIST course

type CDATA #REQUIRED>
<!ELEMENT lecture (#PCDATA)>
<!ELEMENT room (#PCDATA)>
<!ATTLIST room

building CDATA #REQUIRED>
]>

Figure 3.2: A DTD representing courses

Definition 3.1. (XML tree T [8]) An XML tree T is defined to be a tree (V, lab, ele, att, root),
where

• V ⊆ Vert is a finite set of vertices (nodes).

• lab . . .V → El, is a function that assigns element types to vertices.

• ele . . .V → Str ∪ V ∗, is a function that assigns to vertices its child vertices, which is
either an ordered set of vertices or a string.

• att . . . a partial function V × Att → Str, such that for each v ∈ V , the set {@l ∈ Att |
att(v,@l) is defined } is finite.

• root ∈ V is called the root of T

The parent-child edge relation on V , {(v1, v2) ∈ V × V | v2 occurs in ele (v1)}, is required to
form a rooted tree. /

Example 3.3. The XML document in Figure 3.1 is represented by the XML tree in Figure 3.3.
This tree contains a set of nodes V = {vi | i ∈ [0, 9]}. The nodes are of the following element
types:

lab (v0) = courses lab (v1) = course lab (v2) = lecture

lab (v3) = room lab (v4) = course lab (v5) = lecture

lab (v6) = room lab (v7) = course lab (v8) = lecture

lab (v9) = room.

ele assigns to all nodes its children:

ele (v0) = [v1, v4, v7] ele (v1) = [v2, v3] ele (v2) = “Algebra I”

ele (v3) = “HS1” ele (v4) = [v5, v6] ele (v5) = “Algebra I”

ele (v6) = “SEM1” ele (v7) = [v8, v9] ele (v8) = “Economics”

ele (v9) = “SEM1”.
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The attributes in T are the following:

att (v1,@type) = “VO” att (v3,@building) = “Main”

att (v4,@type) = “UE” att (v6,@building) = “SEM1”

att (v7,@type) = “UE” att (v9,@building) = “SEM1”.

Moreover, the root of the tree T is v0. /

Let T1 and T2 be two XML trees. Then T1 is subsumed by T2, denoted as T1 � T2, if T2 contains
T1 as a subtree (up to reordering of child nodes). Let T be an XML tree and let w1. · · · .wn be a
string, with w1, . . . , wn−1 ∈ El and wn ∈ El ∪Att ∪ {S}.

Definition 3.2. (Paths in T ). We call w1 · · ·wn a path in T if there exists vertices v1, . . . , vn,
such that

• v1 = root and lab(v1) = w1

• vi+1 is a child of vi and lab(vi+1) = wi+1, for each i ∈ [1, n− 2]

• If wn ∈ El, then vn is a child of vn−1 and lab(vn) = wn

• If wn = @l, then att(vn−1,@l) is defined

• If wn = S, then vn−1 has a child in Str

paths(T ) denotes the set of all paths in T. /

For example, courses.course.@type and courses.course.room.S are paths in the
XML tree of Figure 3.3. Next, we define the formal model for DTDs.

Definition 3.3. (DTD [8]) A Document Type Definition is defined to be D = (E,A, P,R, r),
where:

• E ⊆ El . . . finite set of element types

• A ⊆ Att . . . finite set of attributes

• P . . . a mapping from E to element type definitions, i.e. let τ ∈ E, then P (τ) = S or a
regular expression α defining the child elements of τ ∈ E, where

α := ε | τ ′ | α|α | α, α | α∗.

The symbol ε denotes the empty sequence; τ ′ is an element of E; “|” denotes union, “,”
concatenation and “∗” the Kleene closure.

• R . . . a mapping fromE to the powerset ofA, i.e. attributes that are available at an element
τ ∈ E.

• r ∈ E . . . the element type of the root /
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The next example shows the translation of the DTD in Figure 3.2 into the definition given above.
Notice that the symbol S represents the element type declaration #PCDATA.

Example 3.4. The DTD in Figure 3.2 describes the same information as given in Figure 2.1. By
Definition 3.3, we represent the DTD given in Figure 3.2 as Dc = (Ec, Ac, Pc, Rc, courses),
where

• Ec = {courses, course, lecture, room};

• Ac = {@type,@building};

• the mapping Pc is defined as:

– Pc(courses) = course∗,

– Pc(course) = lecture, room,

– Pc(lecture) = S,

– Pc(room) = S;

• the mapping Rc is defined as:

– Rc(courses) = ∅,
– Rc(course) = {@type},
– Rc(lecture) = ∅,
– Rc(room) = {@building}. /

In order to navigate through an XML tree we introduce the notion of paths in a DTD D.

Definition 3.4. (Paths in D) A path w is a sequence of elements or attributes, i.e.

w = w1 . . . wn.

A path is in a DTD D if

• w1 = r,

• wi is in the alphabet of P (wi−1), for each i ∈ [2, n− 1], and

• wn is in the alphabet of P (wn−1) or wn = @l for some @l ∈ R(wn−1). /

The length of a path w = w1 . . . wn is denoted by length(w) = n. We denote by paths(D) the
set of all paths in a DTD D, and with EPaths(D) the set of all paths that end with an element
type, rather than an attribute, i.e. EPaths(D) = {p ∈ paths(D) | last(p) ∈ E}, where
last(p) = wn. If the set paths(D) is infinite, then we call the DTD D recursive.
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Example 3.5. Let Dc be the DTD introduced in Example 3.4. Then, the set of paths in Dc is

paths (Dc) = {courses,
courses.course,

courses.course.@type,

courses.course.lecture,

courses.course.lecture.S,

courses.course.room,

courses.course.room.S,

courses.course.room.@building},

and the set

EPaths (Dc) = {courses,
courses.course,

courses.course.lecture,

courses.course.room}. /

Since a DTD determines the allowed XML tree, we need to define these. An XML tree T
conforms to a DTD D, denoted by T � D, if the following holds:

Definition 3.5. (T � D [8]) Given a DTD D = (E,A, P,R, r) and an XML tree T =
(V, lab, ele, att , root), we say that T conforms to D (T � D) if

• lab is a mapping from V to E.

• For each v ∈ V ,

– if ele(v) = s, where s ∈ Str, then P (lab(v)) = S.

– if ele(v) = [v1, . . . , vn], then the string lab (v1) · · · lab (vn) must be in the regular
language defined by P (lab(v)).

• att is a partial function from V ×A to Str, s.t. for any v ∈ V and @l ∈ A, att (v,@l) is
defined iff @l ∈ R(lab(v)).

• lab (root) = r.

/

For example, the XML tree shown in Figure 3.3 conforms to the DTD shown in Figure 3.2.
Additionally, we say that T is compatible with D, denoted by T /D, iff paths(T ) ⊆ paths(D).
Notice that a tree T is compatible with a DTD D if T conforms to D but not vice-versa.
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<!DOCTYPE db [
<!ELEMENT db (course*)>
<!ELEMENT course EMPTY>
<!ATTLIST course

lecture CDATA #REQUIRED
type CDATA #REQUIRED
room CDATA #REQUIRED
building CDATA #REQUIRED>

]>

Figure 3.4: A DTD mapped from the relational schema course

3.2 A Direct-Mapping From Relational Data To XML Documents

Relational data is easily mapped into XML documents. In this section we introduce the direct-
mapping of relational data into XML documents as defined in [8]. Let G(A1, . . . , An) be a
relational schema. The direct-mapping into an XML representation outputs a DTD. Such a
DTD DG = (E,A, P,R, db) is defined as follows:

• E = {db,G}.

• A = {@A1, . . . ,@An}.

• P (db) = G∗ and P (G) = ε.

• R(db) = ∅ and R(G) = {@A1, . . . ,@An}.

Notice, that this DTD allows for duplicate representation of tuples (two elements of type G with
the same attributes). This is inconsistent with the set semantics of the relational model. After we
have introduced data dependencies for DTDs, we will extend this mapping to avoid this problem.
Additionally, we also add a translation of FDs to data dependencies in XML. The next example
shows the DTD Dcourse translated from the relational schema introduced with Figure 2.1.

Example 3.6. The relational schema course(lecture, type, room, building) is mapped into the
DTD listed in Figure 3.4. Notice that this directly-mapped DTD is different from the DTD given
in Figure 3.2. /

3.3 Data Dependencies

In this section we will summarize data dependencies for XML documents, called XML Func-
tional Dependencies (XFDs), introduced in [8]. First, we need the notion of tree tuples, which
gives us a natural representation of XML trees as sets of tuples. This allows us to find a natural
definition for FDs in XML documents.
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3.3.1 Tree Tuples

A tuple in relational databases is a total mapping from the set of attributes to domain values [1].
Tree tuples should extend the notion of relational tuples. Therefore, the function t is called a
tree tuple in a DTD D, if it assigns to each path in D a value in Vert ∪ Str ∪ {⊥}. Each path in
D occurs at most once in t.

Definition 3.6. (Tree Tuples [8]) Let D = (E,A, P,R, r) be a DTD. A tree tuple t in D is a
function from paths (D) to Vert ∪ Str ∪ {⊥}, such that:

• For p ∈ EPaths(D), t(p) ∈ Vert ∪ {⊥}, and t(r) 6= ⊥.

• For p ∈ paths(D)− EPaths(D), t(p) ∈ Str ∪ {⊥}.

• If t(p1) = t(p2) and t(p1) ∈ Vert , then p1 = p2.

• If t(p1) = ⊥ and p1 is a prefix of p2, then t(p2) = ⊥.

• {p ∈ paths(D) | t(p) 6= ⊥} is finite. /

T (D) denotes the set of all tree tuples in D. For a tree tuple t and a path p, we write t.p for
t(p). Also note that no path p occurs twice in a tree tuple, i.e. a tree tuple assigns to every path
in paths(D) exactly one value.

Example 3.7. Suppose thatD is the DTD shown in Example 3.2. Then a tree tuple inD assigns
values (taken from the XML tree in Figure 3.1) to each path in paths(D) (listed in Example 3.5):

t(courses) = v0

t(courses.course) = v1

t(courses.course.@type) = “VO”

t(courses.course.lecture) = v2

t(courses.course.lecture.S) = “Algebra I”

t(courses.course.room) = v3

t(courses.course.room.S) = “HS1”

t(courses.course.room.@building) = “Main” /

Notice that we only assign to finitely many paths a value different from ⊥. Thus, even for
recursive DTDs, where paths(D) is infinite, we can represent the non-null values of tree tuples
as XML trees as follows:

Definition 3.7. (treeD [8]) Let D = (E,A, P,R, r) be a DTD and let t be a tree tuple, where
t ∈ T (D). The function treeD(t) outputs an XML tree (V, lab, ele, att, root) as follows: Let
root = t.r be the root of this XML tree and

• V = {v ∈ Vert | ∃p ∈ paths(D) such that v = t.p}.
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v0:courses

v1:course

@type
“VO”

v2:lecture

“Algebra I”

v3:room

“HS1”
@building

“Main”

Figure 3.5: The XML tree treeD(t).

• If v = t.p and v ∈ V , then

– lab(v) = last(p), and

– ele(v) is defined to be the list containing {t.p′ | t.p′ 6= ⊥ and p′ = p.τ, τ ∈
E, or p′ = p.S}, and, since an XML tree must be ordered, this list is ordered lexi-
cographically.

• If v = t.p, @l ∈ A and t.p.@l 6= ⊥, then att(v,@l) = t.p.@l. /

Example 3.8. LetD be the DTD from Example 3.2, and let t be the tree tuple from Example 3.7.
Then, treeD(t) outputs the XML tree shown in Figure 3.5. /

The tree in Figure 3.5 conforms to the DTD D, which is not necessarily the case in general,
since, for example, tree tuples disregard the ordering of child elements. But, by the definition of
tree tuples, if t ∈ T (D) then the XML tree treeD(t) is compatible with D, i.e. treeD(t) / D. It
is possible to capture the total amount of information in an XML tree with tree tuples. For this,
we select only those tree tuples that contain the maximal amount of information. The notion of
the maximal amount of information in tree tuples is defined via an ordering (denoted as v) on
tuples. Let t1 and t2 be two tree tuples, then t1 v t2 if whenever t1.p is defined, then so is t2.p,
and t1.p 6= ⊥ implies t1.p = t2.p [8]. We now can define the set of tree tuples of an XML tree
T .

Definition 3.8. (tuplesD [8]) Given a DTD D and an XML tree T such that T /D, tuplesD(T )
is defined to be the set of maximal, with respect tov, tree tuples t such that treeD(t) is subsumed
by T ; that is:

maxv{t ∈ T (D) | treeD(t) � T}. /

Example 3.9. In Example 3.7 one tree tuple for the DTD in Example 3.2 was given. The set of
tree tuples tuplesD(T ) calculated from the tree in Figure 3.1 is:

{(v0, v1, “VO”, v2, “Algebra I”, v3, “HS1”, “Main”),

(v0, v4, “UE”, v5, “Algebra I”, v6, “SEM1”, “Dep”),

(v0, v7, “UE”, v8, “Economics”, v9, “SEM1”, “Dep”)} /
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Notice that the tree tuples in Example 3.9 resemble the tuples given in the relational table shown
in Figure 2.1. This gives evidence that tree tuples are a natural extension of tuples for XML
documents. With the direct-mapping of relational data to XML documents introduced in Sec-
tion 3.2 we can establish a one-to-one correspondence between the tuples in an instance I and
the tree tuples of the XML tree TI translated from I [3]. With the notion of tree tuples, it is now
possible to define functional dependencies for XML.

3.3.2 XML Functional Dependencies

In this section we will define FDs for XML documents. Additionally, we inspect the implication
problem of such FDs. We also show that FDs for XML documents are not axiomatizable. Last,
we give a translation of relational FDs into XML FDs.

For a DTD D, an XML functional dependency (XFD) over D is an expression of the form
S1 → S2, where S1, S2 are finite nonempty subsets of paths(D). The set of all FDs over D is
denoted by FD(D). Let S ⊆ paths(D), and let t, t′ ∈ T (D), then t.S = t′.S means t.p = t′.p
for all p ∈ S.

Let D be a DTD and let T be an XML tree such that T /D. Then, T satisfies S1 → S2, denoted
as T � S1 → S2, if for every t1, t2 ∈ tuplesD(T ), t1.S1 = t2.S1 and t1.S1 6= ⊥ imply
t1.S2 = t2.S2.

Example 3.10. Let D be the DTD introduced in Example 3.2. We now want to state XFDs that
capture the semantic information of the FDs Σcourse introduced in Section 2.2.1:

• Equation 2.1 - Each room is associated to a building:

courses.course.room.S→ courses.course.room.@building (3.1)

• Equation 2.2 - A lecture together with its type determine the room they can be held in:

{courses.course.lecture.S,courses.course.type.S} →
courses.course.room.S (3.2)

• Equation 2.3 - Rooms can only serve lectures of a particular type:

courses.course.room.S→ courses.course.type.S (3.3)

Notice that the XML tree in Figure 3.1 satisfies all three XFDs. An XML tree T2 that violates
the XFD listed in Equation 3.1 is shown in Figure 3.6. This is because of the following:

The set tuplesD(T2) is:

{(v0, v4, “UE”, v5, “Algebra I”, v6, “SEM1”, “Dep”),

(v0, v7, “UE”, v8, “Economics”, v9, “SEM1”, “Main”)}.
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v0:courses

v4:course

@type
“UE”

v5:lecture

“Algebra I”

v6:room

“SEM1”
@building

“Dep”

v7:course

@type
“UE”

v8:lecture

“Economics”

v9:room

“SEM1”
@building

“Main”

Figure 3.6: The XML tree T2 that violates the XFD given in Equation 3.1.

Let t1 denote the first tuple from above and t2 the second tuple. Now,

t1.courses.course.room.S = t2.courses.course.room.S = “SEM1”,

but then

t1.courses.course.@building = t2.courses.course.@building,

which is not the case, since t1.courses.course.@building = “Dep” and
t2.courses.course.@building = “Main”. /

As with FDs we define some additional notions. Let D be a DTD, let Σ ⊆ FD(D), and let
ϕ ∈ FD(D). A DTD D together with a set of XFDs σ, denoted by (D,Σ), implies ϕ, denoted
by (D,Σ) ` ϕ, if for any tree T , with T � D and T � Σ, it is the case that T � ϕ. We denote
with (D,Σ)+ the set of all XFDs implied by (D,Σ). We call an XFD ϕ trivial if (D, ∅) ` ϕ.
For example, let p ∈ paths(D) and p.@l ∈ paths(D), then the XFD p→ p.@l is a trivial.

3.3.2.1 Implication of XFDs

In this section we summarize the results on the complexity of the implication problem for XFDs.
Remember that the implication problem for relational FDs can be decided in linear time (see
Section 2.2.1.1). The implication problem of XFDs is much harder. In principle, checking if an
XFD ϕ is not implied by a set of XFDs Σ, involves the construction of an XML tree, such that
T � (D,Σ), but T 2 ϕ. A proof for the existence of such a tree is a proof for the complement
of the implication problem, which is the proof idea of the following theorem:

Theorem 3.1. (Implication Problem for XFDs [3])
The implication problem for XML functional dependencies over DTDs is solvable in
co-NEXPTIME.

The high complexity is not due to the XFDs, but rather due to the complexity of DTDs. If we
restrict the type of DTDs the implication problem can be solved more efficiently. We will give
the results established by Arenas and Libkin in [3, 8] for two different types of DTDs.
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Simple DTDs. The complexity of DTDs can be restricted through the complexity of the regu-
lar expressions in the production rules P . For this we define trivial regular expressions, which
are, given an alphabet A, of the form s1, . . . , sn, such that for each si there is a different letter
ai ∈ A and si is either ai or ai? or a+

i or a∗i . If the words of a regular expression are a permuta-
tion of a trivial regular expression, then this regular expression is called simple. All production
rules in simple DTDs use simple regular expressions. Most real world DTDs are of this type [8].

Theorem 3.2. (Implication Problem for XFDs over simple DTDs [8])
The implication problem for XFDs over simple DTDs is solvable in quadratic time.

Relational DTDs. The second class of DTDs we introduce are relational DTDs. As we will
see, the implication problem for this class is not tractable. A DTD D is called relational if for
each XML tree T , such that T � D, then for any nonempty subset X of tuplesD(T ), we can
construct a set of trees TX such that TX � D. For example, the DTD <!ELEMENT a (b,b)>
is not relational [8], because the tree built from just one of the tree tuples {(v0, v1), (v0, v2)}
does not satisfy the given DTD.

Theorem 3.3. (Implication Problem for XFDs over relational DTDs [8])
The implication problem for XFDs over relational DTDs is coNP-complete.

3.3.2.2 Nonaxiomatizability of XFDs

In Section 2.2.1.2 we gave an axiomatic system for relational FDs. Unfortunately, it is not
possible to give an axiomatization for XFDs. First, we introduce some additional terms. Let D
be a DTD and let Σ be a set of XFDs over D. (D,Σ) is closed under implication if for every ϕ
over D such that (D,Σ) ` ϕ, then ϕ ∈ Σ. Moreover, (D,Σ) is closed under k-ary implication
if for every ϕ over D, if there exists Σ′ ⊆ Σ such that |Σ′| ≤ k and (D,Σ′) ` ϕ, it is the case
that ϕ ∈ Σ [8]. An axiomatization contains rules of the form if Γ then γ, where Γ and γ are
FDs. Let k be an integer. If |Γ| ≤ k, for any Γ that appears in the left-hand side of a rule, then
we say that this set of rules is a k-ary axiomatization. The next proposition gives a necessary
condition for the existence of a k-ary axiomatization.

A proof for the contrapositive of the next proposition, altered for XFDs, shows that the
implication problem for XFDs does not admit a finite axiomatization.

Proposition 3.1. (Proposition 7.5 of [8]) For every k ≥ 0, if there is a k-ary ground axioma-
tization for the implication problem of XFDs, then for every DTD D and a set of XFDs over Σ
over D, if (D,Σ) is closed under k-ary implication then (D,Σ) is closed under implication.

This proposition was already proven in [1]. If we now want to show that there is no ax-
iomatic system for XFDs, we use Proposition 3.1 and show that the necessary conditions for
a k-axiomatic system are not fulfilled. This can be done by finding a DTD D and a set of
functional dependencies Σ, which have the following properties:

• (D,Σ) is closed under k-ary implication, and

• (D,Σ) is not closed under implication.
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Arenas and Libkin use this idea in order to establish a proof for the next theorem.

Theorem 3.4. (Nonaxiomatizability of XFDs)
The implication problem for XML functional dependencies is not finitely axiomatizable.

3.3.2.3 The Direct-Mapping of XFDs

We will now extend the direct mapping introduced in Section 3.2 with the translation of FDs
into XFDs. Let FD be a set of FDs over the schema G(A1, . . . , An), such that, without loss of
generality, all FDs are of the form X → A, where A is an attribute. Then the set ΣFD of XFDs
is defined as follows [8]:

• For each FD Ai1 , . . . , Aim → Ai ∈ FD,

{db.G.@Ai1 , . . . , db.G.@Aim} → db.G.@Ai ∈ ΣFD .

• Additionally, to avoid duplicates,

{db.G.@A1, . . . , db.G.@An} → db.G ∈ ΣFD .

Definition 3.9. (Direct-Mapping of XFDs)
Let (G,FD) be a relational schema, then the direct-mapping to XML FDs is (DG,ΣFD) as
previously defined. /

Example 3.11. We extend Example 3.6 to include the FDs given in Equations 2.1-2.3. The set
ΣΣcourse of XFDs is defined as:

db.courses.@room→ db.courses.@building (3.4)

{db.courses.@lecture,db.courses.@type} → db.courses.@room (3.5)

db.courses.@room→ db.courses.@type (3.6)

{db.courses.@lecture,db.courses.@type,
db.courses.@room,db.courses.@building} → db.courses (3.7)

/

3.4 Normal Forms

So far we have established the preliminaries to define a normal form for XML documents. In
general, the goal is to generalize BCNF, which says that we should not represent the same fact
twice. Therefore, we will first look at what a “redundancy” is in the context of XML documents
and then, based on those insights, study XML Normal Form as defined in [8].
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3.4.1 Redundancy in XML Documents

Let us consider the XML tree given in Figure 3.3. Each room has a name and is located in a
specific building. Suppose a new course is added to this XML document. This course is also
located in the seminar room “SEM1”. Then, because of the XFD in Equation 3.1, we have to
store the associated building “Dep” twice in this XML tree. Thus, the DTD together with the
XFD in Equation 3.1 leads to redundancy. Such a redundancy is closely related to redundancies
in relational data and can also be repaired in such a manner. We create new elements that store
the rooms together with their building attribute. The lecture now just stores a reference to the
room element. The resulting XML tree is illustrated in Figure 3.7. The next example illustrates
a redundancy more closely related to the hierarchical structure of XML documents.

Example 3.12. (Example 1.2 from [8]) The DTD in Figure 3.8 is a part of the DBLP database
[54] and stores data about conferences. In particular, this DTD stores the information of papers,
which appeared in conference proceedings. Conference proceedings are in general distributed
into several issues. Each issue contains several papers, stored in inproceedings ele-
ments. Those have a @year attribute. Now consider the following XFD, which says that any
two inproceedings children of the same issue must have the same year:

db.conf.issue→ db.conf.issue.inproceedings.@year. (3.8)

This XFD leads to a redundancy. The @year attribute is stored several times per issue. This
can be easily repaired by moving the @year attribute to the issue element. /

3.4.2 XML Normal Form

XML Normal Form (XNF) generalizes BCNF for XML documents [8]. Thus, it tries to avoid
redundancies as described in the previous section. We need to express that we do not want to
store implied data several times in an XML tree. This is captured by the following definition:

Definition 3.10. (XML Normal Form [8]) Given a DTD D and a set Σ ⊆ FD(D) of XFDs
over D, (D,Σ) is in XML Normal Form (XNF) iff for every nontrivial XFD ϕ ∈ (D,Σ)+, of
the form S → p.@l or S → p.S, it is the case that S → p is in (D,Σ)+. /

Intuitively, this definition says that for all trees T conforming to a DTD D, whenever some set
of paths S determines an attribute @l of an element p, this attribute should only be stored once at
exactly this element p. It is important that we only consider nontrivial XFDs, because the trivial
FD p.@l→ p.@l is always in (D,Σ)+, but often p.@l→ p /∈ (D,Σ)+. We will now revisit the
examples of the previous section.

Example 3.13. Let us first consider the DTD given in Figure 3.8 together with the XFD given
in Equation 3.8. This DTD is not in XNF, because the XFD

db.conf.issue→ db.conf.issue.inproceedings (3.9)
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<!DOCTYPE db [
<!ELEMENT db (conf*)>
<!ELEMENT conf (title, issue+)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT issue (inproceedings+)>
<!ELEMENT inproceedings (author+, title)>
<!ATTLIST inproceedings

key ID #REQUIRED
pages CDATA #REQUIRED
year CDATA #REQUIRED>

<!ELEMENT author (#PCDATA)>
]>

Figure 3.8: Part of the DTD from the DBLP database [54], taken from [8]

is not in (D,Σ)+. The above XFD would imply that each issue element has only one
inproceedings child element. The DTD, resulting from repair proposed in Example 3.12,
is in XNF. During the repair, the XFD from Equation 3.8 is not altered but dropped, since
db.conf.issue→ db.conf.issue.@year is a trivial XFD. /

Example 3.14. We consider the DTD in Figure 3.4, which is translated from the relational
schema given in Figure 2.1. The translated XFDs ΣΣcourse are listed in Equations 3.4-3.7. The
DTD together with its XFDs is not in XNF. There are two XNF violations:

• First, consider the XFD in Equation 3.4. The XFD db.courses.@room →
db.courses is not in (Dcourse,ΣΣcourse)

+, which would imply that two different courses
cannot be in the same room. If we store the rooms and their building separately, as illus-
trated in Figure 3.7, the XFD in Equation 3.4 no longer violates XNF.

• Additionally, also the XFD in Equation 3.6 leads to an XNF violation, because the XFD
db.courses.@room → db.courses is not in (Dcourse,ΣΣcourse)

+. Notice that the
original FD of the relational schema also leads to a BCNF violation.

As we have seen in Example 2.2, a repair of the corresponding relational schema changes the
FDs, since lecture, type → room cannot be stated any longer. In XML we can use the hier-
archical structure of XML documents to achieve a DTD that keeps all XFDs [4]. Such a DTD
DXNF , generated by the approach proposed in [49], is listed in Figure 3.9.
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<!DOCTYPE db [
<!ELEMENT db (t*,r*)>
<!ELEMENT t (l*)>
<!ATTLIST t

type CDATA #REQUIRED>
<!ELEMENT l (loc*)>
<!ATTLIST l

lecture CDATA #REQUIRED>
<!ELEMENT loc EMPTY>
<!ATTLIST loc

room CDATA #REQUIRED>
<!ELEMENT rooms EMPTY>
<!ATTLIST rooms

room CDATA #REQUIRED
building CDATA #REQUIRED>

]>

Figure 3.9: A DTD originally mapped from the relational schema course, which is repaired to
be in XNF

Let ΣXNF be the following XFDs over DXNF :

db.t.@type→ db.t (3.10)

{db.t,db.t.l.@lecture} → db.t.l (3.11)

{db.t.l,db.t.l.loc.@room} → db.t.l.loc (3.12)

{db.t.l.@lecture,db.t.@type} → db.t.l.loc.@room (3.13)

db.t.l.loc.@room→ db.t.@type (3.14)

db.rooms.@room→ db.rooms (3.15)

db.rooms.@room→ db.rooms.@building (3.16)

The idea of the DTD DXNF together with the XFDs ΣXNF is to first group together all courses
of a particular type (see Equation 3.10). Then, we store the different lecture names with their
locations (Equations 3.11 and 3.12). Equations 3.13 and 3.14 correspond to the original FDs
lecture, type → room and room → type, respectively. Equation 3.14 enforces that the same
room cannot appear in different t subtrees. Finally, Equations 3.15 and 3.16 store that a room is
located in a specific building.

It can be easily verified that the XFDs {db.t.l.@lecture,db.t.@type} → db.t.l.loc,
db.t.l.loc.@room → db.t and db.rooms.@room → db.rooms are in (DXNF ,ΣXNF )+.
Therefore (DXNF ,ΣXNF ) is in XNF. The redundancy-free XML tree with the same information
as in Figure 2.1 is illustrated in Figure 3.10. /
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The next theorem shows that BCNF and XNF are equivalent.

Theorem 3.5. (BCNF and XNF, Proposition 5.5 of [8]) Let G(A1, . . . , An) be a relational
schema, FD be a set of functional dependencies over G. DG is the DTD and ΣFD is the set of
XFDs, which are translated by the direct-mapping of relational schemas to XML. Then, (G,FD)
is in BCNF iff (DG,ΣFD) is in XNF.

Proof. The proof can be found in [8]. It follows from the fact that we can encode nested relation
schemas into XML trees and that a normal form for nested relation schemas (NNF-FD) [57]
coincides with XNF [8].

The Complexity of Testing XNF. By definition, testing XNF involves checking a condition on
all XFDs implied by a DTD D and a set of XFDs Σ. Since Σ contains a finite number of paths,
we can restrict every recursive DTD to a finite number of “unfoldings” of recursive rules [4].
Therefore it is possible to assume, without loss of generality, that DTDs are non-recursive. Then,
we know that testing XNF is decidable. This follows from Theorem 3.1. If we restrict the class
of DTDs we can first prove the following property.

Proposition 3.2. [8] Given a relational DTD D and a set Σ of XFDs over D, then (D,Σ) is in
XNF iff for each nontrivial XFD of the form S → p.@l or S → p.S in Σ, S → p ∈ (D,Σ)+.

This proposition restricts the number of XFDs we have to check. Together with the complexity of
the implication problem of simple and relational DTDs (see Theorems 3.2 and 3.3 respectively)
the following follows:

Corollary 3.1. [8] Testing if (D,Σ) is in XNF can be done in cubic time for simple DTDs, and
is coNP-complete for relational DTDs.

3.5 Summary

In this chapter we have introduced a normal form for XML documents. First, we presented a
formal model for XML documents. We used DTDs to define the structure of an XML docu-
ment. We showed that we can directly map relational schemas to DTDs and relational instances
to XML documents. The information containted in an XML document can be represented using
tree tuples. XML functional dependencies formulated over DTDs are evaluated over tree tuples.
We can translate FDs over a relational schema to XFDs over a DTD, that is generated through
the direct mapping from the relational schema. Such XFDs capture the semantic information of
the original FDs. The implication problem for arbitrary DTDs is in co-NEXPTIME, in quadratic
time for simple DTDs and coNP-complete for relational DTDs. Furthermore, we have shown
that XFDs are nonaxiomatizable.

XFDs lead to redundancies in XML documents. A DTD in XML normal form tries to avoid
redundancies. A DTD is in XNF if for every element e in an XML document that is implied by
some other elements X it is the case that also the parent element of e is implied by the elements
X . This generalizes the idea that these elements X must be a superkey. We have shown that a
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schema together with a set of FDs is in BCNF if and only if the DTD and a set of XFDs, both
generated by the direct-mapping from the relational schema and FDs, is in XNF. This result
shows that XNF is a generalization of BCNF. For relational it is possible to show that XNF
testing is coNP-complete and for simple DTDs it can be done in cubic time.
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CHAPTER 4
A New Normal Form

For Description Logics

So far we have introduced and studied normal forms for relational data and XML documents.
Both are technologies to store and exchange information. XML documents are mainly used in
the World Wide Web. As the World Wide Web evolves to the Semantic Web [20, 64], infor-
mation evolves as well. Information stored with the relational model is represented as tables,
information stored in XML documents as trees, and the information stored in the Semantic Web
as a graph. Therefore, the data models used in the Semantic Web can be seen as graph databases.

The W3C consortium started an initiative to standardize data models in the Semantic Web. As
a result the Resource Description Framework (RDF) [44] was created as a formal language for
describing structured information [45]. An RDF document can be viewed as a directed, labeled
graph. Each resource is identified by a node. Nodes can be linked by directed edges. These
edges are labeled, and describe the relationship between two nodes. The edge label is in RDF
called predicate. Such a binary relationship between two resources is denoted in RDF by a triple.
A triple consists of a subject s connected by a predicate p to an object o, which is denoted by
(s, p, o). For example, the resource p1 in Figure 1.1c is connected via the has_article relation
to the resource a1, which is denoted by the RDF triple:

(p1, has_article, a1)

Additionally, semantic information can be attached to the nodes by means of an ontology. The
most simple form of semantic information is to “type” resources. That is, we associate to a
resource a specific class. This form of reasoning is already available in the RDF standard via
the relation rdf:type, e.g. (p1,rdf:type, proc). In all figures we use UML like annota-
tions of class membership, i.e. instead of a binary relation to a node denoting the class, we write
resource : type. For example, in Figure 1.1c we write p1 : proc to denote that the resource p1
is of type proc.
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A simple ontology language is RDF Schema (RDF(S)) [22]. With RDF(S) we can attach even
more semantic information to resources and roles. For example, we can specify that a resource
is a class, e.g. (proc,rdf:type,rdfs:class). Furthermore, we can type predicates, i.e.
we can specify domain and range of predicates. For example, the predicate has_article has the
domain proc and the range article:

(has_article,rdfs:domain, proc)

(has_article,rdfs:range, article)

Such information enables us to infer new information. For example, the above together with the
triple (p1, has_article, a1) infers:

(p1,rdf:type, proc)

(a1,rdf:type, article)

Even more semantic information can be attached to the data with the Web Ontology Language
OWL [65] and OWL2 [59]. For example, OWL allows to state class disjointness. The seman-
tics of these languages is best captured by Description Logics (DLs). Description Logics are a
decidable fragment of first-order predicate logic and well-suited as a dependency language for
graph databases. In this chapter we will discuss and introduce a normal form for DLs. We want
to view redundancies and normal forms from a relational perspective. Therefore, we choose the
DL DL-LiteA. DL-LiteA is the formal model for the OWL2 profile OWL2 QL [58], which is
particular well-suited to query data stored in relational databases. Additionally, DL-LiteA has
just enough expressivity for conceptual modeling [19, 23].

We will introduce in Section 4.1 the Description Logic DL-LiteA as a formal model for graph-
databases. Section 4.2 will then extend the “Direct Mapping of Relational Data to RDF” to map
relational data into DL-LiteA KBs. Data dependencies for DL-LiteA are discussed in Section 4.3.
Finally, a normal form for DL-LiteA extended with data dependencies is proposed in Section 4.4
and Section 4.5 shows that this normal form is a generalization of BCNF.

4.1 Preliminaries

4.1.1 The Description Logic DL-LiteA
Description Logics (DLs) [13] were developed as a formal language for structured knowledge
representation (KR). The goal of KR is to “develop formalisms for providing high-level descrip-
tions of the world that can be effectively used to build intelligent applications” [12, 13]. DLs
try to fulfill this goal. First, DLs provide us with a method to model important notions of a
domain in terms of concept descriptions. The basic components of DLs are concepts, repre-
senting sets of objects and roles, which establish relationships between (instances of) concepts.
The knowledge in DLs is separated into terminological knowledge, stored in an TBox and asser-
tional knowledge, represented by an ABox. The TBox specifies general properties of concepts
and roles. The ABox describes individual objects and their relationship. Second, the logic-based
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semantics of DLs allows us to infer new knowledge. These reasoning services include concept
and role subsumption, knowledge base satisfiability and instance checking. The study of DLs in
terms of expressivity and computational complexity of reasoning is one of the most important
issues in DL research.

We will introduce DL-LiteA [24, 60], a DL of the DL-Lite family [10, 26, 28]. The advantage
of the DL-Lite family is its low complexity of reasoning. For example, instance checking and
query answering can be done in LOGSPACE with respect to data complexity. Still it is possible
to capture conceptual data models and object-oriented formalisms [24].

4.1.1.1 Syntax of DL-LiteA

In comparison to the other DLs in the DL-Lite family, DL-LiteA distinguishes between objects
and values. Therefore, our domain of interest is represented in terms of concepts and roles.
Additionally, we introduce value-domains which denote a set of (data) values and attributes,
which denote a binary relation between objects and values. The building blocks of DL-LiteA
are atomic concepts A,A1,. . .,An, atomic roles P ,P1,. . .,Pn and atomic attributes U ,U1,. . .,Un.
All of them are denoted by a name. All names of attributes, and no other names, start with an
@. From these we build complex concepts, roles, value-domains and attributes according to the
following syntax:

atomic basic arbitrary
concept A B → A | ∃Q | δ(U) C → B | ¬B

role P Q→ P | P− R→ Q | ¬Q
value-domain E → ρ(U) F → >D | T1 | . . . | Tn

attribute U V → U W → V | ¬V

We denote by B,B1,. . .,Bn basic concepts. A basic concept is either an atomic concept, the
domain of a role Q (∃Q), also called unqualified existential restriction, or the domain of an at-
tribute U (δ(U)). An arbitrary concept, denoted by C,C1,. . .,Cn, is built from a basic concept
or its negation.

A basic role, denoted by Q,Q1,. . .,Qn, is either an atomic role or the inverse of an atomic role
(P−). An arbitrary role can in addition to a basic role also be the negation of a basic role. In
the following, when Q is a basic role, the expression Q− stands for P− when Q = P , and for P
when Q = P−.

A basic value-domain E is given by the range of an atomic attribute U . Arbitrary value-
domains are either the universal value-domain >D, or one of n pairwise disjoint unbounded
value-domains T1, . . . , Tn, which correspond to RDF data types, such as xsd:string, etc.

Example 4.1. Let us model the same information given in Figure 2.1. We need the following
atomic concepts: course represents a course, type a course type, room a room, and building a
building. We connect these atomic concepts using the atomic roles: located , has_room and for .
With the atomic attribute @name we attach a name value to different concepts. /
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With those expressions it is possible, like in any other DL, to represent the domain of discourse
in terms of a knowledge baseK. The KBK has two components. The TBox T consists of a finite
set of intensional assertions. Intensional assertions describe the world in more general terms, for
example “Birds can fly.”. The ABox A consists of a finite set of extensional assertions, which
describe individuals, for example “Tweety is a bird”. Therefore, we often write K = 〈T ,A〉.
The TBox T consists of assertions of the form:

B v C concept inclusion
Q v R role inclusion
E v F value-domain inclusion
U v V attribute inclusion
(funct Q) role functionality
(funct U) attribute functionality

Intuitively, the above inclusion assertions state that each instance of the concept, role, value-
domain or attribute on the left-hand side is also an instance of the right-hand side. We call
inclusion assertions without negation (“¬”) on the right-hand side positive inclusions (PIs),
and the others negative inclusions (NIs). For example, the RDF triple <has_article>
rdfs:domain <proc> would be represented by the assertion proc v ∃has_article .

Functionality assertions ((funct Q) or (funct U)) express that in every model of T the first
component of a role (or attribute) determines the second component, i.e. this binary relation is a
function.

The following conditions must be satisfied by every DL-LiteA TBox T . These are crucial for
the tractability of reasoning in DL-LiteA [60]:

• for each atomic role P , if either (funct P ) or (funct P−) occurs in T , then T does not
contain assertions of the form Q′ v P or Q′ v P−, where Q′ is a basic role.

• for each atomic attribute U , if (funct U) occurs in T , then T does not contain assertions
of the form U ′ v U , where U ′ is an atomic attribute.

Example 4.2. Let us model a TBox Tc for the information given in Figure 2.1. We will use the
concepts and roles given in Example 4.1.

room v ∃for ∃for v room ∃for v type

course v ∃located ∃located v course ∃located− v room

room v ∃has_room− ∃has_room v building ∃has_room− v room

course v ¬room course v ¬type course v ¬building

room v ¬building room v ¬type building v ¬type

course v δ(@name) type v δ(@name) ρ (@name) v xsd : string

room v δ(@name) building v δ(@name)
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(funct for) (funct located)(
funct has_room−

)
(funct @name) /

So far we have defined expressions and assertions that represent the domain of discourse in
general. The DL-LiteA ABox allows us to express properties about different individuals. First,
we need to define constants that represent such individuals. Let this set of constants be denoted
by Γ. Γ is partitioned into two sets, ΓV (for the set of constant symbols for values) and ΓO (for
the set of constant symbols for objects). A DL-LiteA ABox consists of a finite set of membership
assertions of the form

A(a), P (a, b), U(a, v),

where A, P , and U are an atomic concept, atomic role and atomic attribute, respectively. The
constant symbols a and b are from ΓO and v is from ΓV .

We will denote by signC (K) the set of all atomic concepts in a KB K and by signR (K) the set
of all atomic roles. We call sign (K) = signC (K) ∪ signR (K) the signature of a KB K.

Example 4.3. We continue Example 4.2 and specify membership assertions to represent the
information given in Figure 2.1. We have the following sets of constant symbols:

• {c1, c2, c3, t1, t2, r1, r2, b1, b2} ⊆ ΓO

• {“Algebra I”, “Economics I”, “VO”, “UE”, “SEM1”, “HS1”, “Main”, “Dep”} ⊆ ΓV

The DL-LiteA ABox Ac consists of the following assertions:

course (c1) type (t1) room (r1)
course (c2) type (t2) room (r2)
course (c3) building (b1) building (b2)
@name (c1, “Algebra I”) @name (t1, “VO”) @name (r1, “HS1”)
@name (c2, “Algebra I”) @name (t2, “UE”) @name (r2, “SEM1”)
@name (c3, “Economics I”) @name (b1, “Main”) @name (b2, “Dep”)
located (c1, r1) located (c2, r2) located (c3, r2)
for (r1, t1) for (r2, t2)
has_room (b1, r1) has_room (b2, r2)

The DL-LiteA ABox Ac can also be represented as a graph. Such a graph is depicted in Fig-
ure 4.1. The KB Kc = 〈Tc,Ac〉 is a representation of the same information as given in Fig-
ure 2.1. /
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c1 : course c2 : course c3 : course

t1 : type t2 : typer1 : room r2 : room

b1 : building b2 : building

“Algebra I” “Economics I”

“VO” “UE”

“HS1” “SEM1”

“Main” “Dep”

for for

located

located

loca
ted

has_room has_room

@n
am

e @name @name

@name @name

@name
@name

@name @name

Figure 4.1: A graph representation of the ABox Ac.

4.1.1.2 Semantics of DL-LiteA

Now that we have fully defined the syntax of DL-LiteA we need to add meaning to the expres-
sions and assertions. We define the semantics of DL-LiteA in terms of interpretations, which
are first order structures. A DL-LiteA interpretation I = (∆I , ·I) consists of an interpretation
domain ∆I and an interpretation function ·I . The interpretation domain ∆I is the disjoint union
of two non-empty sets: the domain of objects ∆IO and the domain of values ∆IV . The interpre-
tation function ·I assigns an element of ∆I to each constant in Γ, such that for all a ∈ ΓO,
aI ∈ ∆IO and for all c ∈ ΓV , cI ∈ ∆IV . The DL DL-LiteA adopts the unique name assumption
(UNA), therefore we also assume that for each pair a1, a2 ∈ Γ, whenever a1 6= a2, we have that
aI1 6= aI2 . Additionally, the interpretation function ·I maps

• atomic concepts to subsets of the interpretation domain of objects, i.e.

AI ⊆ ∆IO,

• atomic roles to subsets of the crossproduct of the interpretation domain of objects, i.e.

P I ⊆ ∆IO ×∆IO,

• atomic attributes to subsets of the crossproduct of the interpretation domain of objects and
values, i.e.

UI ⊆ ∆IO ×∆IV ,

• value-domains to subsets of the interpretation domain of values, i.e.

T Ii ⊆ ∆IV >ID = ∆IV .
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All interpretations of a particular KB agree on the semantics of each value-domain Ti and each
constant in ΓV . That is, each value domain Ti is interpreted as the set of values val (Ti) corre-
sponding to the RDF data type, and each constant ci ∈ ΓV is interpreted as one specific value,
denoted by val (ci), in val (Ti).

For complex concepts, complex roles and complex attributes the interpretation has to satisfy the
following conditions (given that o, o′ ∈ ∆IO and v ∈ ∆IV ):

(∃Q)I = {o | ∃o′.
(
o, o′

)
∈ QI}

(
P−
)I

= {
(
o, o′

)
|
(
o′, o

)
∈ P I}

(δ (U))I = {o | ∃v. (o, v) ∈ UI} (¬Q)I =
(
∆IO ×∆IO

)
\ QI

(¬B)I = ∆IO \ BI (¬V )I =
(
∆IO ×∆IV

)
\ V I

(ρ (U))I = {v | ∃o. (o, v) ∈ UI}

We now turn our attention to the assertions in a KB TBox and ABox. Let α be a TBox assertion.
Then, we say an interpretation I satisfies the TBox assertion α, denoted by I � α, as follows:

• let α = α1 v α2, then I � α1 v α2, if αI1 ⊆ αI2 ,

• let α = (funct β), where β is either P, P−, U . Then, I � (funct β), if (o, e1) ∈ βI and
(o, e2) ∈ βI implies e1 = e2, for each o ∈ ∆IO, and e1, e2 in either ∆IO or ∆IV .

Let α be an ABox assertion. Then, we say an interpretation I satisfies the ABox assertion α,
denoted by I � α, as follows:

• let α = A(a), then I � A(a), if aI ∈ AI ,

• let α = P (a, a′), then I � P (a, a′), if (aI , a′I) ∈ P I ,

• let α = U(a, c), then I � U(a, c), if (aI , cI) ∈ UI .

We say an interpretation I is a model of a DL-LiteA KB K = 〈T ,A〉, denoted by I � K, if I
satisfies all the assertions in T and A.

Example 4.4. We will give an interpretation Ic for the KB given in Example 4.3. The inter-
pretation I is constituted from a domain ∆Ic and an interpretation function ·Ic . The domain
consists of:

• Domain of objects ∆IcO = {c1, c2, c3, t1, t2, r1, r2, b1, b2}, and

• Domain of values ∆IcV = {“Algebra I”, “Economics I”, “VO”, “UE”,
“SEM1”, “HS1”, “Main”, “Dep”}.

The interpretation function ·Ic maps all constant symbols in Γ to the corresponding values in
∆Ic , i.e. eIc = e for all e ∈ Γ. It is easily verified that this interpretation satisfies the KB Kc,
i.e. Ic � Kc. /
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We will now introduce the notion of an ABox seen as an interpretation, denoted by DB (A).

Definition 4.1. (ABox interpretation DB (A) [23]) Let A be a DL-LiteA ABox. We denote by
DB (A) =

〈
∆DB (A) , ·DB (A)

〉
the interpretation defined as follows:

• ∆DB (A) is the non-empty set consisting of the union of the set of all object constant
occurring in A and the set val (c), such that c is a value constant that occurs in A,

• aDB (A) = a, for each object constant a,

• ADB (A) = {a | A (a) ∈ A}, for each atomic concept A,

• PDB (A) = {(a1, a2) | P (a1, a2) ∈ A}, for each atomic role P ,

• UDB (A) = {(a, val (c)) | U (a, c) ∈ A}, for each atomic attribute U . /

It is clear that such an interpretation satisfies all ABox assertions, i.e. DB (A) � A. Notice that
the interpretation Ic given in Example 4.4, is exactly the ABox interpretation DB (Ac), where
Ac is the ABox given in Example 4.3.

4.1.1.3 Queries over DL-LiteA KB

We introduce here queries of DL-LiteA KBs. A first-order query q over a DL-LiteA KB K is a,
possibly open, first-order logic formula (FOL) ϕ (x). Such a query is built from atoms, which
are in the case of queries over a DL-LiteA KB the following:

• atomic concepts, written as A (x),

• value-domains, written as D (x),

• atomic roles, written as P (x, y),

• atomic attributes, written as U (x, y), or

• equality of variables, i.e. x = y.

The variables x, y are either variables in x or constants in Γ. The free variables x of ϕ (x) form
a tuple of (pairwise distinct) variables. The arity of a query is given by the arity of x. A boolean
query is a query with arity 0. We will only consider conjunctive (CQ) and union of conjunctive
(UCQ) queries, which are of the form:

q (x)← ∃y1.conj 1 (x,y1)

...

q (x)← ∃yn.conj n (x,yn)

where conj k (x,yk) is a conjunction of atoms. The free variables x are also called distinguished
variables and the existentially quantified variables y1, . . . , yn are called non-distinguished vari-
ables. A CQ is a UCQ with no disjunction.
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Let I be an interpretation over a DL-LiteA KB. The answer to a UCQ q = ϕ (x) is the set qI of
tuples o = ∆I × · · · ×∆I such that the formula ϕ evaluates to true in I under the assignment
that assigns each object in o to the corresponding variable in x [23]. The set of tuples qI is
called the answers to q over I.

Example 4.5. Consider the KB from Example 4.3 and let Ic be the interpretation given in
Example 4.4. The following query asks for the room and the type of a course:

q1(r, l)← ∃c.is_of _type (c, t) ∧ located (c, l) .

The answers to q1 are:

qIc1 = {(r1, t1) , (r2, t2)}. /

The above notion of CQs only considers queries over a particular model of a KB. If we query
a KB, we rather look for an answer over all possible interpretations. Such answers are called
certain and we define them as follows.

Definition 4.2. (Certain answers [23]) Let K be a DL-LiteA KB and q a UCQ over K. A tuple c
of constants appearing in K is a certain answer to q over K, written c ∈ cert (q,K), if for every
model I of K, we have that cI ∈ qI . /

4.1.1.4 Reasoning in DL-LiteA

DLs provide different reasoning services. Among them, the most important, also for DL-LiteA
KB, are [23]:

• KB satisfiability: Given a KB K, verify whether K admits at least one model

• Concept and role satisfiability: Given a TBox T and a concept C (resp. a role R), verify
whether T admits a model I such that CI 6= ∅ (resp. RI 6= ∅).

• Logical implication of an assertion: A KB K logically implies an assertion α, denote
K � α, if every model of K satisfies α. Different types of assertions give different sub-
problems: instance checking (K � C(a) or K � R(a1, a2)), subsumption of concepts or
roles (K � C1 v C2 or K � R1 v R2) or checking functionality (K � (funct Q)).

Notice that in DL-LiteA concept and role satisfiability, and logical implication of an assertion
can be reduced to KB satisfiability (see [23] for details). Additionally, we are interested in:

• Query answering: Given a KB K and a query q over K, compute the set cert (q,K).
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4.1.2 Reasoning over DL-LiteA KB

In DLs reasoning is an important task. We have presented several reasoning services, all of
which, except of query answering, can be reduced to KB satisfiability. Therefore, we will pro-
vide an introduction to KB satisfiability in DL-LiteA as it is introduced in [23]. However, for the
ease of presentation, we will make some simplifying assumptions. Those assumptions do not
affect the generality of the presented results. First, we will not distinguish between concepts and
values. Thus, our KBs contain only object constants, concepts and roles. Second, we will dis-
card inclusion assertions of the form B v >. They do not have an impact on the semantics [23].

We will define the notion of a canonical interpretation of a DL-LiteA KB. Such an interpretation
is constructed according to the notion of restricted chase [1, 47]. This is done by first defining
the notion of applicable assertions, then we define the chase for a DL-LiteA KB, and finally,
we use the chase to define the canonical interpretation. In this thesis, we will make use of the
following simplifying notation for a basic role Q and two constants a1, a2:

Q (a1, a2) denotes

{
P (a1, a2) , if Q = P,

P (a2, a1) , if Q = P−.

Definition 4.3. (Applicable PIs [23]) Let S be a set of DL-LiteA membership assertions. Then,
a PI α is applicable in S to a membership assertion β ∈ S if

• α = A1 v A2, β = A1(a), and A2(a) /∈ S;

• α = A v ∃Q, β = A(a), and there does not exist any constant a′ such that Q (a, a′) ∈ S;

• α = ∃Q v A, β = Q(a, a′) for some a′, and A(a) /∈ S;

• α = ∃Q1 v ∃Q2, β = Q1(a1, a2) for some a2, and there does not exist any constant a′2
such that Q2(a1, a

′
2) ∈ S;

• α = Q1 v Q2, β = Q1(a1, a2), and Q2(a1, a2) /∈ S. /

Applicable PIs can be used to extend a DL-LiteA model in order to satisfy all positive inclusion
assertions of a DL-LiteA TBox. The chase consists of a possibly infinite number of chase steps.
It starts with a DL-LiteA ABox A. In each step a PI α is applied to a membership assertion β.
Thus, we add a new membership assertion toA, such that the PIα is not applicable to β anymore.
It is clear that this process strongly depends on the order of the applied PIs. We will assume the
order to be fixed. This can be done by assuming an infinite set ΓN of lexicographically ordered
constant symbols not occurring inA and a lexicographic ordering on the set of PIs. Now we can
introduce the notion of the chase.

Definition 4.4. (The DL-LiteA chase [23]) Let K = 〈T ,A〉 be a DL-LiteA KB, let Tp be the set
of positive inclusion assertions in T , let n be the number of membership assertions in A, and
let ΓN be the set of lexicographically ordered constants not in A. Assume that the membership
assertions in A are numbered from 1 to n following their lexicographic order, and consider the
following definition of sets Sj of membership assertions:
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• S0 = A

• Sj+1 = Sj ∪ {βnew}, where βnew is a membership assertion numbered with n+ j + 1 in
Sj+1 and obtained as follows:

– let β be the first membership assertion in Sj such that there exists a PI α ∈ Tp
applicable in Sj to β

– let α be the lexicographically first PI applicable in Sj to β
– let anew be the constant of ΓN that follows lexicographically all constants in Sj
– case α, β of

(cr1) α = A1 v A2 and β = A1(a) then βnew = A2(a)
(cr2) α = A v ∃Q and β = A(a) then βnew = Q(a, anew)
(cr3) α = ∃Q v A and β = Q(a, a′) then βnew = A(a)
(cr4) α = ∃Q1 v ∃Q2 and β = Q1(a, a′) then βnew = Q2(a, anew)
(cr5) α = Q1 v Q2 and β = Q1(a, a′) then βnew = Q2(a, a′)

Then, we call chase of K, denoted chase (K), the set of membership assertions obtained by the
infinite union of all Sj , i.e.,

chase (K) =
⋃
j∈N
Sj . /

It is now possible to define the canonical interpretation of a DL-LiteA KB.

Definition 4.5. (Canonical interpretation (can (K))) The canonical interpretation can (K) =〈
∆can(K), ·can(K)

〉
is the interpretation where:

• ∆can(K) = ΓO ∪ ΓN ,

• acan(K) = a, for each constant a occurring in chase (K),

• Acan(K) = {a | A(a) ∈ chase (K)}, for each atomic concept A, and

• Qcan(K) = {(a1, a2) | P (a1, a2) ∈ chase (K)}, for each atomic role P . /

The following property, proven in [23], holds for can (K).

Lemma 4.1. (Lemma 4.5 of [23]) Let K = 〈T ,A〉 be a DL-LiteA KB and let Tp be the set of
positive inclusion assertions in T . Then, can (K) is a model of 〈Tp,A〉.

Since can (K) is a model of 〈Tp,A〉, we can conclude that each KB, with only PIs in the TBox, is
satisfiable. We now need to extend satisfiability to account for functional assertions and negative
inclusion assertions. For functionality assertions satisfiability is easy to check. The following
lemma says that we just need to verify if the interpretation DB (A) satisfies the functionality
assertions.
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Lemma 4.2. (Lemma 4.6 of [24]) Let K = 〈T ,A〉 be a DL-LiteA KB, and let Tf be the set of
functionality assertions in T . Then, can (K) is a model of 〈Tf ,A〉 if and only if DB (A) is a
model of 〈Tf ,A〉.

Proof sketch.

(⇒) Follows from the fact that A ⊆ chase (K).

(⇐) In each chase step we choose an applicable PI α. Only rules cr2, cr4 and cr5 can lead
to a violation of a functionality assertion. Due to the restriction on DL-LiteA KBs, rule
cr5 cannot lead to a violation of a functional dependency. Assume the new constant anew
introduced by rule cr2 or cr4 leads to a violation of a functionality assertion. This is only
the case if there is a constant symbol a′ such that Q(a, a′) ∈ S or Q2(a, a′) ∈ S. But
then α would not have been applicable. Thus, the chase never introduces a violation of a
functionality assertion.

We will now consider negative inclusion assertions. Ideally, we want to extend the previous
lemma to negative inclusion assertions. But, it must not be the case that even if DB (A) satis-
fies all NIs, can (K) may not satisfy them. This is due to an interaction between NIs and PIs.
Consider, for example, the PI A1 v A2 and the NI A2 v ¬A3. These two inclusion assertions
logically imply the NI A1 v ¬A3. An ABox A might satisfy both inclusion assertions sepa-
rately but violates the implied NI. This interaction is captured by closing the negative inclusion
assertions with respect to the positive inclusion assertions as defined next.

Definition 4.6. (Closure of NIs cln (T ) [23]) Let T be a DL-LiteA TBox. We call NI-closure
of T , denoted by cln (T ), the TBox defined inductively as follows:

• all functionality assertions in T are also in cln (T );

• all negative inclusion assertions in T are also in cln (T );

• if B1 v B2 is in T and B2 v ¬B3 or B3 v ¬B2 is in cln (T ), then also B1 v ¬B3 is in
cln (T );

• if Q1 v Q2 is in T and ∃Q2 v ¬B or B v ¬∃Q2 is in cln (T ), then also ∃Q1 v ¬B is
in cln (T );

• if Q1 v Q2 is in T and ∃Q−2 v ¬B or B v ¬∃Q−2 is in cln (T ), then also ∃Q−1 v ¬B
is in cln (T );

• if Q1 v Q2 is in T and Q2 v ¬Q3 or Q3 v ¬Q2 is in cln (T ), then also Q1 v ¬Q3 is in
cln (T );

• if one of the assertions ∃Q v ¬∃Q, ∃Q− v ¬∃Q−, or Q v ¬Q is in cln (T ), then all
three such assertions are in cln (T ). /

Notice that cln (T ) does not imply new negative inclusion assertions or functionality assertions
not implied by T . The next lemma, proven in [23], shows that we can use the ABox minimal
model to check satisfiability of negative inclusions.
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Lemma 4.3. (Lemma 4.9 from [23]) Let K = 〈T ,A〉 be a DL-LiteA KB. Then, can (K) is a
model of K if and only if DB (A) is a model of 〈cln (T ) ,A〉.

Now that we can check satisfiability of functionality and negative inclusion assertions we need to
establish satisfiability of a DL-LiteA KB. A DL-LiteA KB K is satisfiable if can (K) is a model
ofK and vice versa (see Lemma 4.11 of [23]). Unfortunately, the construction of can (K) might
not be convenient or even possible. If we combine the previous observations, we can show that
satisfiability of a KB can be checked by looking at DB (A). This is captured by the following
theorem, which follows from the previous established observations and lemmas.

Theorem 4.1. (Theorem 4.12 from [23]) Let K = 〈T ,A〉 be a DL-LiteA KB. Then, K is satisfi-
able if and only if DB (A) is a model of 〈cln (T ) ,A〉.

We can verify whether DB (A) is a model of 〈cln (T ) ,A〉 by evaluating a suitable boolean
UCQ with inequalities over DB (A). We define such a boolean UCQ via a translation δ from
the assertions in cln (T ) as follows [23]:

δ ((funct P )) = ∃x, y1, y2.P (x, y1) ∧ P (x, y2) ∧ y1 6= y2

δ
((

funct P−
))

= ∃x1, x2, y.P (x1, y) ∧ P (x2, y) ∧ x1 6= x2

δ (B1 v ¬B2) = ∃x.γ1 (B1, x) ∧ γ2 (B2, x)

δ (Q1 v ¬Q2) = ∃x, y.Q1 (x, y) ∧Q2 (x, y)

where in the last two equations

γi (B, x) =


A (x) , if B = A,

∃yi.P (x, yi) , if B = ∃P,
∃yi.P (yi, x) , if B = ∃P−,

Notice that the queries ask for a violation of an assertion. Therefore, if the evaluation of the
UCQ ⋃

α∈cln(T )

δ(α)

over DB (A) returns the empty set then K is satisfiable (see Lemma 4.13 of [23]). Hence, KB
satisfiability in DL-LiteA can be reduced to query evaluation over a database.

4.1.3 Universal Model

In the previous section we have established the notion of the DL-LiteA chase and as a result we
have defined the canonical interpretation can (K). The question is, whether such an interpre-
tation is a representation of all possible interpretations of K. Such an interpretation is called a
universal model. We will show that can (K) is indeed a universal model. But first, we need to
define universal models. These are defined in terms of homomorphisms as follows.
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Definition 4.7. Let K be a DL-LiteA KBs; I and J be interpretations of the KB.

1. A homomorphisms h : I → J is a mapping from ∆I to ∆J such that:

(i) for all a ∈ ∆I and for each atomic concept C ∈ concepts (K): if a ∈ CI then
h (a) ∈ CJ ,

(ii) for all (a, b) ∈ ∆I × ∆J and for each atomic role P ∈ roles (K): if (a, b) ∈ P I
then (h (a) , h (b)) ∈ PJ .

2. I is homomorphically equivalent to J if there is a homomorphism h : I → J and a
homomorphism h′ : J → I. /

Definition 4.8. (Universal model [1,48]) Let K be a DL-LiteA KB. A universal model forK is a
model U � K such that for every model I � K, there exists a homomorphism h : ∆U → ∆I . /

With this definition we can show that can (K) is indeed a universal model for K.

Theorem 4.2. (Theorem 4 of [48]) Let K be a DL-LiteA KB. If K is satisfiable, then can (K) is
a universal model for K.

Proof idea. Since K is satisfiable, can (K) is a model of K. It remains to show that for any
model I of K it holds that there exists a homomorphism from can (K) to I. It is easy to see,
that for each model I of K it holds that there is a homomorphism h from DB (A) to I. As we
extend the interpretation in each chase step, we can extend the homomorphism h in each chase
step to the (possible) new introduced constants, resulting in a homomorphism h′. Finally, at the
end of the chase, we have constructed a homomorphism from can (K) to I, which proves that
can (K) is a universal model of K.

4.1.4 Query Answering over finite interpretations

Query answering in DL-LiteA is an important task. Several methods for query answering in
DL-LiteA KBs exist. It is possible to evaluate a query over the canonical model of the KB (see
Theorem 6 and Corollary 3 of [48]). The drawback of this method is that the canonical model
might be infinite. In this section we will show a syntactic criterion that ensures a finite chase.
We will present sets of weakly-acyclic positive inclusion assertions, which are a DL version of
weakly-acyclic tuple-generating dependencies introduced by Fagin et al. [41]. We can show that
any chase of a KB with weakly-acyclic PIs is polynomial in the size of the KB.

Let K be a DL-LiteA KB. We denote with BK the set of all basic concepts occurring in K. The
set BK consists of atomic concepts and concepts of the form ∃R or ∃R−, where are R is an
atomic role. A dependency graph is defined as follows.

Definition 4.9. (Dependency graph [48]) Let K be a DL-LiteA KB. A dependency graph for K,
denoted as GK, is a directed edge-labeled graph, such that:

1. the set of nodes of GK is BK;
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Figure 4.2: A dependency graph GK′ with a cycle (in red) that contains a ∗-labeled edge

2. the set of non-labeled edges of GK is defined as follows:

(a) For every PIB v B′ inK, whereB andB′ are basic concepts, there is a non-labeled
edge from B to B′, denoted by B −→ B′.

(b) For every PI Q1 v Q2 in K, where Q1 and Q2 are basic roles, there are non-labeled
edges ∃Q1 −→ ∃Q2 and ∃Q−1 −→ ∃Q

−
2 .

3. the set of ∗-labeled edges of BK is defined as follows: Let B and B′ be two nodes in GK.
If it holds that

(a) there is an edge B −→ B′,
(b) B′ = ∃R or B′ = ∃R′, and
(c) ∃R− ∈ BK or ∃R ∈ BK respectively,

then there is a ∗-labeled edge B −→∗ ∃R− or B −→∗ ∃R in GK. /

Definition 4.10. (Weak-acyclicity) A set of PIs is weakly-acyclic if its dependency graph has
no cycles that contain a ∗-labeled edge. A KB is weakly-acyclic if the set of all its inclusion
assertions is weakly-acyclic. /

Example 4.6. Let us consider the DL-LiteA KB K′ consisting of the following set of PIs:

B v ∃R A v ∃Q− ∃R− v A Q− v R

The dependency graph consists of the nodes BK = {A,B,∃R,∃R−,∃Q,∃Q−} and is depicted
in Figure 4.2.
Since the dependency graph has a cycle that contains a ∗-labeled edge, the KB K′ is not weakly-
acyclic. /

The intuition of a dependency graph is that each non-labeled edge keeps track of the fact that
a constant may be propagated during the chase from the concept at the origin to the concept at
the end of the edge. Edges labeled with a ∗ keep track of newly introduced constants. If now a
cycle goes through a labeled edge, then the newly introduced constant introduces again another
new constant at a later chase step. Therefore, the chase continues forever and leads to an infinite
interpretation. It is possible to show the following:
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Theorem 4.3. (Theorem 7 in [48]) For a satisfiable weakly-acyclic DL-LiteA KB its chase has
depth which is polynomial in the size of the KB.

Proof. The proof is similar to the proof of Theorem 3.9 in [41].

It immediately follows that for a satisfiable weakly-acyclic DL-LiteA KB, we can compute the
chase and evaluate any query over the canonical model.

4.1.5 Query Answering over infinite interpretations

A more general method for query answering was introduced in [23]. This method separates
the intensional and extensional level of the DL-LiteA KB. First, the query is processed and
reformulated based on the assertions in the TBox. Then, the reformulated query is evaluated
over the ABox. This is similar to the presented method for KB satisfiability.

4.1.5.1 Query Reformulation

We are going to present the query reformulation algorithm as introduced in [23]. First, we define
some preliminary notions. We distinguish between bound and unbound arguments of an atom
in a query. Bound variables correspond to distinguished or shared variables, which are variables
that either occur at least twice in the queries body or are a constant. The other variables are
called unbound. The symbol ’_’ is used to represent non-distinguished non-shared, i.e. unbound,
variables.

Next we define when a PI is applicable to an atom g [23]:

• A PI α is applicable to an atom A (x), if α has A in its right-hand side.

• A PI α is applicable to an atom P (x1, x2), if one of the following conditions holds:

(i) x2 = _ and the right-hand side of α is ∃P ; or
(ii) x1 = _ and the right-hand side of α is ∃P−; or

(iii) α is a role inclusion assertion and its right-hand side is either P or P−.

The function gr (g, α) returns the atom obtained from g by applying the applicable inclusion α
as defined by the following table:

Atom g Positive inclusion α gr(g, α)

A(x) A1 v A A1(x)
A(x) ∃Q v A Q(x, _)
Q(x, _) A v ∃Q A(x)
Q(x, _) ∃Q1 v ∃Q Q1(x, _)
Q(x1, x2) Q1 v Q Q1(x1, x2)

Table 4.1: The result gr(g, α) of applying a positive inclusion α to an atom g (Fig. 12 adapted
from [23])
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input : UCQ q, DL-LiteA TBox T
output: UCQ pr

1 pr ← q;
2 repeat
3 pr′ ← pr;
4 foreach CQ q′ ∈ pr′ do
5 foreach atom g in q′ do
6 foreach PI α in T do
7 if α is applicable to g then
8 pr ← pr ∪ {q′ [g/gr (g, α)]};
9 end

10 end
11 end
12 foreach pair of atoms g1, g2 in q′ do
13 if g1 and g2 unify then
14 pr ← pr ∪ {anon (reduce (q′, g1, g2))};
15 end
16 end
17 end
18 until pr′ = pr;
19 return pr

Algorithm 4.1: The algorithm PerfectRef that computes the perfect reformulation of a CQ
w.r.t. a DL-LiteA TBox (Fig. 13 from [23])

The algorithm PerfectRef, given as Algorithm 4.1, reformulates a UCQ by taking into account
the PIs of a TBox T . As a first step (line 5 of Algorithm 4.1), the algorithm reformulates the
atoms of each CQ g′ ∈ q′, and produces a new query for each atom reformulation. This is
denoted by q′ [g/gr (g, α)], which means that we replace in q′ each atom g with a new atom g′,
obtained by gr (g, α). As a second step (line 12 of Algorithm 4.1), we look for pairs of atoms
g1 and g2 that unify. The function reduce then returns a new CQ by applying the most general
unifier to the atoms g1 and g2. Therefore, variables that are bound may become unbound in the
new CQ. The function anon then replaces each unbound variable by the symbol ’_’.
Notice that the reformulation only depends on the PIs of a DL-LiteA TBox. Actually it is the case
that once we have established KB satisfiability, we can discard NIs and functionality assertions
for query answering. It has been shown that the algorithm PerfectRef terminates [23].

Example 4.7. Consider the DL-LiteA TBox Tc given in Example 4.2. Now consider the CQ q
over Tc:

q(x)← located (x, y) , has_room (_, y) ,

which queries for courses that are located in a room that belongs to a building. We will go
through the steps of the algorithm PerfectRef({q}, Tc). In the first iteration the algorithm applies
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to the atom has_room (_, y) the PI room v ∃has_room− and adds to pr the new query:

q(x)← located (x, y) , room (y) .

In the next iteration, the PI ∃located− v room is applied to the atom room(y) and the following
query is inserted in pr:

q(x)← located (x, y) , located (_, y) .

Notice that there are now two atoms located (x, y) and located (_, y) that can be unified. The
function reduce (q, located (x, y) , located (_, y)) returns the atom located (x, y). Since y is un-
bound, the function anon replaces y by _. Therefore, the algorithm inserts in pr the new query:

q(x)← located (x, _) .

In the next iteration, it is, due to unification, possible to apply the PI course v ∃located to
located (x, _). This inserts in pr the new query

q(x)← course (x) .

At a further iteration, the algorithm applies the PI ∃is_of_type v course to course(x) and
adds to pr the new query

q(x)← is_of _type (x, _) .

Finally, the set of the five queries from above and the original query is returned by the algorithm
PerfectRef({q}, Tc). /

Given that a DL-LiteA KB K is satisfiable, the query returned by PerfectRef can be evaluated
over the ABoxA considered as a relational database, denoted by DB (A). The returned answers
are correct and coincide with the certain answers cert (q,K) (see Theorem 5.14 of [23]). The
query returned by PerfectRef({q}, T ) is called the perfect rewriting of q.

4.1.6 Additional Notions

In this section we further need the notion of isomorphisms and bisimulations as defined as fol-
lows. Isomorphisms and bisimulations help us to establish a relationship between two structures,
which are in our case DL-LiteA interpretations.

Definition 4.11. (Isomorphism) Let I and J be two models of a DL-LiteA KB. I and J are
isomorphic denoted as I ∼= J if there exists a bijective function h : ∆I → ∆J , s.t.

• for all a ∈ ∆I and for each atomic concept C ∈ concepts(T ): a ∈ CI if and only if(
aI
)
∈ CJ , and

• for all (a, b) ∈ ∆I ×∆I and for each atomic role R ∈ roles(T ):
(
aI , bI

)
∈ RI if and

only if
(
h
(
aI
)
, h
(
bI
))
∈ PJ . /

Notice that an isomorphism is a bijective homomorphism.

54



Definition 4.12. (Bisimulation (adapted to DL-LiteA from [62])) A bisimulation ∼B between
two DL-LiteA interpretations I and J is a relation in ∆I × ∆J such that, for every pair of
objects o1 ∈ ∆I and o2 ∈ ∆J , if o1 ∼B o2 then the following hold:

• for every atomic concept A: o1 ∈ AI if and only if o2 ∈ AJ ;

• for every atomic role P :

– for each o′1 with (o1, o
′
1) ∈ P I , there is an o′2 with (o2, o

′
2) ∈ PJ such that o′1 ∼B o′2;

– for each o′2 with (o2, o
′
2) ∈ PJ , there is an o′1 with (o1, o

′
1) ∈ P I such that o′1 ∼B o′2;

• for every atomic role P (inverse property):

– for each o′1 with (o′1, o1) ∈ P I , there is an o′2 with (o′2, o2) ∈ PJ such that o′1 ∼B o′2;

– for each o′2 with (o′2, o2) ∈ PJ , there is an o′1 with (o′1, o1) ∈ P I such that o′1 ∼B
o′2; /

Let π, π′ be two sets of objects, such that π ⊆ ∆I and π′ ⊆ ∆J . We say π bisimulates π′,
denoted by π ∼B π′, if every object o ∈ π bisimulates every object in π′ and vice versa. That is,
for every o ∈ π, it holds that o ∼B o′ for all o′ ∈ π′ and for every o′ ∈ π′, it holds that o ∼B o′
for all o ∈ π.

4.2 A Direct Mapping of Relational Data to Description Logic
Knowledge Bases

In this section we will show how to map relational data to DL-LiteA KBs. First, we will review
the direct mapping of relational data to RDF as presented by the W3C [5] and Sequeda et al.
[63]. We will discuss their weaknesses regarding the lack of means to capture all semantic
information of the relational model. We will therefore introduce a direct mapping of relational
data to DL-LiteA knowledge bases that overcomes the limitations of the previous translations.

4.2.1 A Direct Mapping of Relational Data to RDF

Most of the data in information systems is stored in relational databases. It is important for the
success of the Semantic Web to utilize the information stored in relational databases. There-
fore an automatic translation of relational data to RDF is needed. The W3C consortium intro-
duced such a translation, called “A Direct Mapping of Relational Data to RDF” (RDB-direct-
mapping) [5]. This direct mapping defines an RDF graph representation of the data in a relational
database. Such an RDF graph can then be further processed, for example it can be queried using
an RDF query language or it can be merged with other RDF graphs to add further information
to the information specified in a relational table.

The RDB-direct-mapping specifies that a relational database is translated into an RDF graph,
which is called direct graph. Such a direct graph is the union of the table graphs for each table
in a relational schema. A table graph is the union of row graphs for each row in a table. A row
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(course/lecture=AlgebraI;type=VO,rdf:type, course) (4.1)
(course/lecture=AlgebraI;type=VO,course#ref-room,rooms/room=HS1) (4.2)
(course/lecture=AlgebraI;type=VO,course#lecture, “Algebra I”) (4.3)
(course/lecture=AlgebraI;type=VO,course#type, “VO”) (4.4)
(course/lecture=AlgebraI;type=VO,course#room, “HS1”) (4.5)
(course/lecture=AlgebraI;type=UE,rdf:type, course) (4.6)
(course/lecture=AlgebraI;type=UE,course#ref-room,rooms/room=SEM1) (4.7)
(course/lecture=AlgebraI;type=UE,course#lecture, “Algebra I”) (4.8)
(course/lecture=AlgebraI;type=UE,course#type, “UE”) (4.9)
(course/lecture=AlgebraI;type=UE,course#room, “SEM1”) (4.10)
(course/lecture=EconomicsI;type=UE,rdf:type, course) (4.11)
(course/lecture=EconomicsI;type=UE,course#ref-room,rooms/room=SEM1)

(4.12)

(course/lecture=EconomicsI;type=UE,course#lecture, “Economics I”) (4.13)
(course/lecture=EconomicsI;type=UE,course#type, “UE”) (4.14)
(course/lecture=EconomicsI;type=UE,course#room, “SEM1”) (4.15)

Figure 4.3: The RDF triples obtained by the RDB-direct-mapping [5] from the relational table
in Figure 2.2. In red are the triples that are in the result of the RDB-direct-mapping but not in

the result of the direct mapping DM [63], which will be introduced next.

graph is an RDF representation of a row of a relational table. Each row is identified by a row
node. The row node has as name, its table’s name and the values of all primary key columns, for
example course/lecture=AlgebraI;type=VO. If a table does not have a primary key,
then a fresh blank node is used as a row node. For each row of a table, the row graph consists of
the following:

• A row type triple which specifies the type (table) of a row node (see number 4.1, 4.6 and
4.11 in Figure 4.3).

• Reference triples represent the foreign keys of a table. For this a special predicate is used.
This predicate’s label consists of the tables name, the keyword ref and the columns name,
for example course#ref-room (see numbers 4.2, 4.7 and 4.12 in Figure 4.3).

• Literal triples store the value of the row’s columns. The predicate that is used for literal
triples contains the table’s name and the column’s name, for example course#room
(see numbers 4.3-4.5, 4.8-4.10 and 4.13-4.15 in Figure 4.3).

The RDB-direct-mapping does not add any further information on the semantics of the data in
the relational database. This allows to specify information that cannot be present in any relational
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database. Consider for example the triple

(course/lecture=AlgebraI;type=VO,rdf:type, rooms) ,

which extends the RDF triples given in Figure 4.3. Such a triple would infer that the row, which
is identified by the row node course/lecture=AlgebraI;type=VO is also a row in the
“rooms” table. But, the relational model does not allow for rows that belong to different tables.
Hence, the RDB-direct-mapping does not preserve the semantics of the relational model.

For a direct mappingM it would be desirable to preserve the semantics of the relational model.
Additionally, a direct mapping should have other fundamental and desirable properties. These
are introduced in [63] and are defined as follows:

Fundamental properties

• Information preservation guarantees that the mapping does not loose any information.
Formally, a direct mapping is information preserving if we can define a computable func-
tion N , such that N translates RDF graphs to instances of a relational schema R. Addi-
tionally, the result of N , applied to an RDF graph directly mapped from an instance I of
a relational schema, should return the same instance I , i.e. N (M (R, I )) = I .

• Query preservation guarantees that everything that can be extracted from a relational
database, can also be extracted from the translated RDF graph via a suitable query lan-
guage. That is, we can translate queries over the relational database into equivalent queries
over RDF graphs.

Notice that neither of the two properties includes the other. Thus, we can have a direct mapping
that preserves information, but maps this information such that a more powerful query language
has to be used. On the other side, if, for example, the instances are mapped, but not the schema,
it might be the case that the mapping is query preserving but not information preserving.

Desirable properties

• Monotonicity: Let I1 and I2 be instances of a relational schema, such that I1 is contained
in I2. Then a direct mapping is monotone, if the direct mapping of I2 is contained in I1.
Therefore, with a monotone direct mapping whenever we add new data to the relational
database, we only have to map the new data and not the whole database.

• Semantics preservation guarantees that data dependencies are encoded in the translation
process. Let I be an instance of a relational schema R and Σ a set of data dependencies.
Then, a direct mappingM is called semantics preserving, if I � Σ if and only ifM (R, I)
is a model of the translated data dependencies.

The direct mapping DM introduced by Sequeda et al. [63] extends the RDB-direct-mapping in
such a way that it is information and query preserving. DM translates the relational schema
and the relational instances via Datalog rules into an RDF graph. This process is similar to
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the direct mapping introduced previously. We will present here the differences from the RDB-
direct-mapping. Additionally, for the ease of presentation, we will ignore the fact that the direct
mapping DM reverse engineers binary relations that result from modeling n : m-relationships
of the conceptual model. Therefore, we will discuss the direct mapping from a database con-
sisting of a single relation, and compare the result with the result from the RDB-direct-mapping
depicted in Figure 4.3. The direct mapping DM translates a relational schema R[A1, . . . , An]
as follows:

Relational instances are translated as in the RDB-direct-mapping, except:

• Columns that are foreign keys directly refer to the row node of the referenced table. We do
not store a tuple with a predicate having the “#ref” keyword. For example, in Figure 4.4
triples numbered 4.27, 4.31 and 4.35 are added, and the triples drawn in red of Figure 4.3
are not in the result of the translation.

• Binary relationships between two tables are directly modeled with a single predicate (not
considered here).

Relational schema is translated as follows:

• The RDF representation of a table is of type owl:Class (see triple 4.16 in Figure 4.4).

• The columns of a table are represented as OWL properties. Columns that represent foreign
keys are object properties and the others are datatype properties (see triples 4.17, 4.19 and
4.21 in Figure 4.4).

• The predicates are typed, i.e. we specify domain and range of each object property and
domain of each datatype property (see triples 4.18, 4.20, 4.22 and 4.23 in Figure 4.4).

The direct mappingDM is information preserving, query preserving and monotone, but it is not
semantics preserving [63]. Consider an instance consisting of two rows with the same primary
key, but in the other columns the rows have different values. Such an instance is clearly incon-
sistent. The result of the direct mappingDM of such an instance is a consistent RDF graph. We
have not yet mapped the restrictions enforced by primary and foreign keys. The problem is that
OWL does not have a method to specify primary keys. One solution is to encode the violation
of a primary key constraint into the mapping. This is done as follows. A datalog rule is defined,
which detects a primary key constraint violation. Then, the tuple a owl:differentFrom
a is added to the set of RDF triples. This tuple makes the RDF graph inconsistent. This new
direct mapping is called DMpk. For this direct mapping the following proposition holds.

Proposition 4.1. (Proposition 2 from [63]) The direct mapping DMpk is information preserv-
ing, query preserving, monotone, and semantics preserving if one considers only primary keys.
That is, for every relational schema R, set Σ of (only) primary keys over R and instance I of R:
I � Σ iff DMpk (R,Σ, I ) is consistent under OWL semantics.

The direct mapping DMpk can be extended with the same idea also to consider foreign keys.
Unfortunately, this extension leads to a non-monotone direct mapping. This is because a for-
eign key inconsistency can be repaired by adding new tuples. But then, the introduced triple a
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(course,rdf:type,owl:Class) (4.16)
(course#lecture,rdf:type,owl:DatatypeProperty) (4.17)
(course#lecture,rdfs:domain, course) (4.18)
(course#type,rdf:type,owl:DatatypeProperty) (4.19)
(course#type,rdfs:domain, course) (4.20)
(course#room,rdf:type,owl:ObjectProperty) (4.21)
(course#room,rdfs:domain, course) (4.22)
(course#room,rdfs:range, rooms) (4.23)
(course/lecture=AlgebraI;type=VO,rdf:type, course) (4.24)
(course/lecture=AlgebraI;type=VO,course#lecture, “Algebra I”) (4.25)
(course/lecture=AlgebraI;type=VO,course#type, “VO”) (4.26)
(course/lecture=AlgebraI;type=VO,course#room,rooms/room=HS1) (4.27)
(course/lecture=AlgebraI;type=UE,rdf:type, course) (4.28)
(course/lecture=AlgebraI;type=UE,course#lecture, “Algebra I”) (4.29)
(course/lecture=AlgebraI;type=UE,course#type, “UE”) (4.30)
(course/lecture=AlgebraI;type=UE,course#room,rooms/room=SEM) (4.31)
(course/lecture=EconomicsI;type=UE,rdf:type, course) (4.32)
(course/lecture=EconomicsI;type=UE,course#lecture, “Economics I”) (4.33)
(course/lecture=EconomicsI;type=UE,course#type, “UE”) (4.34)
(course/lecture=EconomicsI;type=UE,course#room,rooms/room=SEM1) (4.35)

Figure 4.4: The RDF triples obtained by the direct mapping DM [63] from the relational table
in Figure 2.2. In green are the triples that are in the result of the direct mapping DM but not in

the RDB-direct-mapping.

owl:differentFrom a has to be removed from the RDF graph. Hence, the previous model
is not a submodel of the new model, thus violating monotonicity.

4.2.2 A Direct Mapping of Relational Data to DL-LiteA Knowledge Bases

The direct mapping introduced in the previous section lays the foundations of the mapping we
will introduce in this section. This direct mapping translates relational schemas and instances to
DL-LiteA KBs. We do not consider primary and foreign keys as data dependencies, we rather
focus on functional dependencies. We will show that our mapping is semantics preserving with
respect to functional dependencies. First, we will define a mapping from a relational schema to
a DL-LiteA KB, and will later extend this definition with a mapping from functional dependen-
cies to dependencies for DL-LiteA. We will call the combination of both mappings relational to
Description Logic direct mapping (R2DM).

In the following, let R [A1, . . . , An] be a relational schema. For the mapping we will use con-
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cepts R, R_Ai and roles R#Ai . Tuples occurring in database instances of R are represented by
instances of R concepts, a value in a column is represented by an instance of an R_Ai concept,
and the value is then specified by the value value-domain. Without loss of generality, we assume
that each column is of the domain xsd:string. The following definition uses dependencies
for KBs in form of identification constraints (IdCs) to be defined in the later Section 4.3. The
semantics of the particular IdC is given directly in the definition.

Definition 4.13. (Schema to DL direct mapping (sm)) Let R[U ] be a relational schema with
attributes U = A1, . . . , An. The function sm (R[U ]) outputs a DL-LiteA T-Box TR[U ] with an
IdC σR[U ] as follows:

• The first set of assertions ensures that the all concepts are disjoint from each other, e.g. an
attribute cannot also denote a tuple:

R v ¬R_Ai ∀1 ≤ i ≤ n
R_Ai v ¬R_Aj ∀1 ≤ i < j ≤ n

• Next, we add assertions that express domain and range of a role, mandatory participation
to a role as well as domain of an attribute:

∃R#Ai v R ∃R#A−i v R_Ai ∀0 < i ≤ n
R v ∃R#Ai R_Ai v ∃R#A−i ∀0 < i ≤ n

R_Ai v δ (value) ∀0 < i ≤ n
R v ¬δ (value) ρ (value) v xsd:string

• Last, we add functionality assertions to express that each tuple can only have one of each
attribute:

(funct R#Ai) ∀0 < i ≤ n
(funct value)

• Additionally, since in the relational model set semantics is assumed, i.e. no tuple can occur
twice, we add an identification constraint:

σR[U ] = (id R R#A1, . . . , R#An) .

This IdC says, that for any two instances of the R concept, if they agree on the instances
connected by the R#A1, . . . , R#An roles, then these two instances must be the same.

The function sm (R[U ]) outputs
〈
TR[U ], σR[U ]

〉
. /

Example 4.8. We will now translate the relational schema course(lecture, type, room) given
in Example 2.2 to a DL-LiteA KB using the schema-direct mapping, i.e.
sm (course(lecture, type, room)) outputs the following DL-LiteA TBox:
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• Concept disjointness assertions:

course v ¬course_lecture course v ¬course_type
course v ¬course_room course_lecture v ¬course_type

course_lecture v ¬course_room course_type v ¬course_room

• Role and attribute property assertions:

∃course#lecture v course ∃course#lecture− v course_lecture
∃course#type v course ∃course#type− v course_type
∃course#room v course ∃course#room− v course_room

course v ∃course#lecture course_lecture v ∃course#lecture−

course v ∃course#type course_type v ∃course#type−

course v ∃course#room course_room v ∃course#room−

course_lecture v δ (value)

course_type v δ (value)

course_room v δ (value)

course v ¬δ (value) ρ (value) v xsd:string

• Functionality assertions:

(funct course#lecture)

(funct course#type)

(funct course#room)

(funct value)

• Identification constraint:

(id course course#lecture, course#type, course#room) /

The function sm maps relational schemas to DL-LiteA T-Boxes. Given such a mapping we can
translate each model of the KB into an instance of the relational schema and vice versa. We now
define such translations. Ideas for the translation and the upcoming proof were taken from [19].
The function i2mR[U ] (I ) translates an instance I of a relational schema R[U ] into a model of
the KB created by the function sm .

Definition 4.14. (Instance to model mapping (i2m)) Let I = (domI , T I ) be an instance of
R[U ]. Let

〈
TR[U ], σR[U ]

〉
denote the result of the function sm (R[U ]). Then, we build the

interpretation J = (∆J , ·J ) of
〈
TR[U ], σR[U ]

〉
as follows:

• ∆J = domI ∪{cv,Ai | Ai ∈ U ∧ v ∈ T I [Ai]}∪ {t〈d1,...,dn〉 | 〈d1, . . . , dn〉 ∈ T I }, where
cv,Ai and t〈d1,...,dn〉 are new elements not yet in domI
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• RJ = {t〈d1,...,dn〉 | 〈d1, . . . , dn〉 ∈ T I },

• R_AJi = {cv,Ai | v ∈ T I [Ai]} for all attributes Ai in the relation R,

• valueJ = {(cv,Ai , v) | v ∈ T I [Ai]} for all attributes Ai in the relation R,

• R#AJi = {(t〈d1,...,dn〉, cv,Ai) | 〈d1, . . . , dn〉 ∈ T I ∧ v = 〈d1, . . . , dn〉 [Ai]} for all
attributes Ai in the relation R.

The function i2mR[U ] (I ) returns J . /

Notice, that for each tuple we create new domain elements t〈d1,...,dn〉, which uniquely identify
each tuple in the returned model J . We will call such domain elements t〈d1,...,dn〉 tuple iden-
tifiers. For each value appearing in a column we create new domain elements cv,Ai , which we
will call value identifiers.

Example 4.9. We use the instance of Figure 2.2 and the relational schema of Example 2.2. We
translate the relational schema into a TBox TR[U ] with the IdC σR[U ] according to the function
sm (see Example 4.8). Now we will map the instance given in Figure 2.2 into an interpretation
of
〈
TR[U ], σR[U ]

〉
. This interpretation is depicted in Figure 4.5. We depict in red the tuple

identifiers and in blue the value identifiers. Values are drawn in violet. /

Lemma 4.4 shows that the model returned by i2mR[U ] (I) is indeed a valid model of TR[U ] and
the IdC σR[U ].

Lemma 4.4. Let R[U ] be a relational schema,
〈
TR[U ], σR[U ]

〉
be the result of sm (R[U ]), and I

be an instance of R[U ]. Let J be the interpretation returned by i2mR[U ] (I ). Then J is a model
of
〈
TR[U ], σR[U ]

〉
, i.e. J � TR[U ] and J � σR[U ].

Proof. In order to show that J is a model of TR[U ] and σR[U ] we need to show that J satisfies
all assertions in TR[U ] and the IdC σR[U ].

• By the definition of sm (R[U ]) the following assertions appear in TR[U ]:

– R v ¬R_Ai: Since RJ contains only the domain elements not in dom, this asser-
tion is satisfied.

– R_Ai v ¬R_Aj : For all i ∈ [1 . . . n], R_AJi contains new domain elements not in
any other R_AJj .

– ∃R#Ai v R, R v ∃R#Ai: All tuples are in the interpretation of both concepts.

– ∃R#A−i v R_Ai, R_Ai v ∃R#A−i : All attributes are in the interpretation of both
concepts.

– (funct R#Ai): For each tuple we construct a single role interpretation.

– (funct value): A column of a relational tuple cannot be occupied by two values.

• σR[U ] contains the following IdC:
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t〈Algebra I, VO, HS1〉 :
course

t〈Algebra I, UE, SEM1〉 :
course

t〈Economics I, UE, SEM1〉 :
course

clecture,Algebra I :
course_lecture

clecture,Economics I :
course_lecture

ctype,VO :
course_type

ctype,UE :
course_type

croom,HS1 :
course_room

croom,SEM1 :
course_room

Algebra I

Economics I

VO

UE

HS1

SEM1

course#lecture

course#lecture

course#lecture

course#type

course#type course#type

course#room

course#room course#room

value

value

value

value

value

value

Figure 4.5: An interpretation translated by the function i2m from the instance given in
Figure 2.2.

– (id R R#A1, . . . , R#An): Since each tuple is unique, also the identification as-
sertion is satisfied by J .

Hence, all assertions in
〈
TR[U ],Σ

〉
are satisfied, i.e. J is a valid model of TR[U ].

The function m2iTR[U ]
(I) translates a model I of a KB created by sm (R[U ]) into an instance

of the relational schema R[U ].

63



Definition 4.15. (Model to instance mapping (m2i )) I = (∆I , ·I) is a model of sm (R [U ]) =〈
TR[U ], σR[U ]

〉
. Then we can build a pair J =

(
domJ , T J

)
of R[U ] as follows:

• domJ = ∆I \
(
RI ∪

⋃n
i=1R

I
Ai

)
,

• T J = {〈v0, . . . , vn〉 | ∃t ∈ RI s.t.
∧n
i=0(t, ti) ∈ R#AIi ∧

∧n
i=0(ti, vi) ∈ valueI}.

The function m2iTR[U ]
(I) returns J . /

Lemma 4.5 shows that the pair J =
(
domJ , T J

)
returned by m2iTR[U ]

(J ) is indeed an instance
of R[U ].

Lemma 4.5. Let R[U ] be a relational schema,
〈
TR[U ], σR[U ]

〉
be the result of sm (R[U ]), and

I be a model of TR[U ]. J =
(
domJ , T J

)
is the pair returned by m2iTR[U ]

(I). Then J is an
instance of R[U ], i.e. J � R[U ].

Proof. We need to check if J is an instance of R[U ]. Notice that T J are the tuples of the
relation R. Because of (id R R#A1, . . . , R#An) a tuple cannot be represented twice in I,
and therefore each tuple in T J is unique. Because of the mandatory role participation assertions
(∃R#A−i v R_Ai) we have at least one value for every attribute of each tuple. Since all roles
R#Ai are functional, we have at most one value for every attribute of each tuple. Hence, each
tuple of T J is a tuple of R[U ]. Therefore, J is an instance of R[U ].

So far we have seen that i2m and m2i generate instances and models. The next lemma will show
that the translation of instances to models and back to instances does not lose any information.

Lemma 4.6. LetR[U ] be a relational schema and let
〈
TR[U ], σR[U ]

〉
be the result of sm (R[U ]).

Let I be an instance of R[U ], then I = m2iTR[U ]

(
i2mR[U ] (I )

)
.

Proof. By Lemma 4.4 i2mR[U ] (I ) outputs a model J of TR[U ]. Additionally, each tuple of I
is identified by a unique tuple identifier t〈d1,...,dn〉 and no other tuple identifiers are generated.
Each tuple identifier has n associated value identifiers, each connected to a single value. Since by
Lemma 4.5, m2iTR[U ]

(J ) outputs an instance which has exactly the same tuples as I . Therefore,
I = m2iTR[U ]

(
i2mR[U ] (I )

)
.

It is also possible to translate models to instances and back to models. But, we will then loose
some information. During the translation from models to instances we drop the domain ele-
ments which represent tuple and value identifiers. Then, when we translate the instance back
to a model, we generate new domain elements for tuple and value identifiers. Those are not
necessarily the same as before. But, it is possible to map to each tuple and value identifier from
the original model an identifier of the new model. Thus, we can show in the next lemma that the
two models are isomorphic.

64



Lemma 4.7. LetR[U ] be a relational schema and let
〈
TR[U ], σR[U ]

〉
be the result of sm (R[U ]).

Let I be a model of TR[U ], then I ∼= i2mTR[U ]

(
m2iR[U ] (I)

)
.

Proof. By Lemma 4.5 m2iR[U ] (I) outputs an instance J of R[U ]. The function i2mTR[U ]
(J )

then outputs a model I ′. In order to show that I ∼= i2mTR[U ]

(
m2iR[U ] (I)

)
, we are going to

construct an isomorphism between I and I ′, therefore we define a bijective function h : ∆I →
∆I
′
. Since, m2i and i2m only change the tuple and value identifiers we map all other domain

element to themselves:

• for all d ∈ ∆I \ {RI ∪
⋃n
i=1R

I
Ai
}: h (d) = d

It remains to map the tuple and value identifiers, which are the domain elements in RI and
R_AIi . Since I is a valid model of TR[U ], each t ∈ RI is connected by an R#Ai role to
an R_Ai concept ci. These ci objects are connected to values di, which are used in i2m to
generate the tuple identifier t〈d1,...,dn〉. Therefore, we map each t ∈ RI to the corresponding
tuple identifier t〈d1,...,dn〉, and each ci ∈ R_AIi to the corresponding value identifier.

• for all Ai ∈ U and for all ci ∈ R_AIi : h (ci) = cv,Ai
I′ , such that (ci, v) ∈ valueI ,

• for all t ∈ RI : h (t) = t〈d1,...,dn〉
I′ , such that for all di it holds that (t, ci)

I ∈ R#Ai and
(ci, di) ∈ valueI .

Since each t object in RI is connected to the same di object as the tuple identifiers in I ′, it
holds that for all roles R ∈ roles(T ) and for all (a, b) ∈ ∆I ×∆I : (a, b) ∈ RI if and only if
(h (a) , (b)) ∈ RI

′
. Additionally, since every t ∈ RI has a corresponding tuple identifier

t〈d1,...,dn〉
I′ ∈ RI

′
and all other domain elements are mapped to the same elements, also for

all concepts C ∈ concepts(T ) and for all a ∈ ∆I : a ∈ CI if and only if h (a) ∈ CI′ holds.
Therefore, I ∼= i2mTR[U ]

(
m2iR[U ] (I)

)
.

Example 4.10. We use the relational schema course of Example 2.2. Let Tcourse be the KB
given in Example 4.8. The model M in Figure 4.6 is a valid model of the KB Tcourse. The
function m2iTcourse (M) returns the instance given in Figure 2.2. The application of the function
i2m to that instance returns the model given in Figure 4.5 (see Example 4.9). Let us denote this
model withM′. We will now show that these two models are isomorphic. We map the domain
elements ofM andM′ as follows:

• First, we map all domain elements not in courseM, course_lectureM, course_typeM

and course_roomM to themselves:

h(AlgebraIM) = AlgebraIM
′

h(EconomicsM) = EconomicsM
′

h(VOM) = VOM
′

h(UEM) = UEM
′

h(HS1M) = HS1M
′

h(SEM1M) = SEM1M
′
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t1 :
course

t2 :
course

t3 :
course

cl1 :
course_lecture

cl2 :
course_lecture

ct1 :
course_type

ct2 :
course_type

cr1 :
course_room

cr2 :
course_room

Algebra I

Economics I

VO

UE

HS1

SEM1

course#lecture

course#lecture

course#lecture

course#type

course#type cou
rse

#typ
e

course#room

cou
rse

#roo
m course#room

value

value

value

value

value

value

Figure 4.6: The modelMcourse.

• Then, we map all tuple identifiers:

h
(
tM1
)

= tM
′

〈Algebra I, VO, HS1〉

h
(
tM2
)

= tM
′

〈Algebra I, UE, SEM1〉

h
(
tM3
)

= tM
′

〈Economics I, UE, SEM1〉,

• and the value identifiers in course_lectureM, course_typeM and course_roomM:

h
(
clM1

)
= cM

′
lecture,Algebra I h

(
ctM1

)
= cM

′
type,VO h

(
crM1

)
= cM

′
room,HS1

h
(
clM2

)
= cM

′
lecture,Economics I h

(
ctM2

)
= cM

′
type,UE h

(
crM2

)
= cM

′
room,SEM1

It is easy to verify that h (·) is indeed an isomorphism. /

We can now associate the set of instances to the set of valid models of a KB created by the
function sm . As a result the next corollary directly follows from Lemma 4.6 and 4.7.
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Corollary 4.1. Let R[U ] be a relational schema and let
〈
TR[U ], σR[U ]

〉
be the result of

sm (R[U ]). Then

Inst (R[U ]) = {m2iTR[U ]
(I) | I � TR[U ] ∧ I � σR[U ]}

and

Mod
(〈
TR[U ], σR[U ]

〉)
= Closure∼=

(
{i2mR[U ] (I ) | I ∈ Inst (R[U ])}

)
.

4.3 Data Dependencies

In this section we will investigate data dependencies in DLs. DLs already include different types
of data dependencies. For example, concept inclusions are a form of data dependencies. Even
though functionality assertions exist for DLs, it is so far not possible to model FD-like con-
straints over DL KBs. Functional dependencies express identification properties. In particular,
in conceptual modeling it is often needed to specify that an object is uniquely identified by some
of its properties. For example, a person is identified by its social security number. Thus, it is
important to extend DLs with such dependencies.

Calvanese et al. introduce path-based identification constraints (pIdCs) as a mechanism for func-
tional dependencies in DL-LiteA [27]. We will introduce pIdCs in Section 4.3.1. We will inves-
tigate if we can find a direct mapping of FDs to pIdCs, such that the direct-mapping is semantics
preserving. Unfortunately, in Section 4.3.2 we show that we cannot extend the direct-mapping
with pIdCs such that it is semantics preserving. Therefore, we will introduce in Section 4.3.3 an
extension to pIdCs, called tree-based identification constraints (tIdCs), which allows us to give
a semantics preserving relational to Description Logic direct-mapping.

4.3.1 Path-based identification constraints

Path-based identification constraints (pIdCs) were introduced by Calvanese et al. [27] for various
DLs. We focus on pIdCs for DL-LiteA KBs. A (path-based) identification constraint states that
a concept can be identified by some particular properties. These properties are paths. A path π
over a DL-LiteA KB is given by the following expression:

π → S | D? | π ◦ π,

where S denotes a basic role or attribute, D denotes a basic concept or value-domain and π ◦ π
denotes the composition of paths. D? is a test relation, which represents the identity relation on
instances of D. Test relations can be used to formulate paths over instances of a specific class.
For example, the path HAS -CHILD ◦Woman? connects someone with his/her daughters.

A path can be seen as a complex property for an object o. An object that is reachable by π from
o is called a π-filler for o. An object o can have several or no π-fillers. The length of a path π,
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denoted by length (π) is inductively defined:

length (π) =


0 if π = D?,

1 if π = S,

length (π1) + length (π2) if π = π1 ◦ π2.

We are now able to give a definition for path-based identification constraints.

Definition 4.16. (pIdC [23, 27]) A path-based identification constraint (pIdC) over a DL-LiteA
KB is an assertion of the form

(id C π1 . . . πn)

where C denotes a basic concept, n ≥ 1, and π1 . . . πn (called the components of the identifier)
are paths over DL-LiteA such that length(πi) ≥ 1 for all i ∈ [1 . . . n]. /

Such a pIdC intuitively states, that if there two objects o and o′, such that they share a πi-fillers
for every i ∈ [1 . . . n], then these two objects must be the same. For example, we can say that no
two men can have the same daughters with the pIdC (id Man HAS -CHILD ◦Woman?). We
will call a pIdC local, if at least one path πi has the length of one. We can now define DL-LiteA
with pIdCs:

Definition 4.17. (DL-LiteA,id KB with pIdCs [27]) A KB in DL-LiteA,id, that is DL-LiteA with
pIdCs, is a pair 〈T ,A〉, where A is a DL-LiteA ABox, and T is the union of two sets TA and
Tid, where TA is a DL-LiteA TBox, and Tid is a set of pIdCs such that

• all concepts in a pIdC of Tid are basic concepts;

• for each pIdC α in Tid, every role or attribute that occurs (in either direct or inverse direc-
tion) in a path of α does not appear in the right-hand side of assertions of the formQ v Q′
or U v U ′. /

Notice that the last constraint is a generalization of the constraint already imposed over func-
tionality assertions in DL-LiteA KBs.

We now need to define the semantics of pIdCs. First, we define the semantics of a path π, which
is given by an extension πI in an interpretation I as follows:

• if π = S, then πI = SI ,

• if π = D?, then πI =
{

(o, o) |o ∈ DI
}

,

• if π = π1 ◦π2, then πI = πI1 ◦πI2 , where ◦ denotes the composition operator on relations.

We denote with πI (o) the set of π-fillers for o in I. A π-filler is every object that is reachable
from o in I by means of π, i.e. πI (o) =

{
o′ | (o, o′) ∈ πI

}
. Then, an interpretation I satisfies

the IdC (id C π1 . . . πn) if for all o, o′ ∈ CI , πI1 (o)∩πI1 (o′) 6= ∅∧ · · · ∧πIn (o)∩πIn (o′) 6= ∅
implies o = o′.
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4.3.1.1 KB satisfiability with pIdCs

We will investigate DL-LiteA KB satisfiability with pIdCs in the presence of weakly-acyclic
KBs. It has been shown that DL-LiteA,id KB satisfiability with arbitrary pIdCs is NLOGSPACE

-hard with respect to the ABox (see Theorem 6 of [27]), whereas KB satisfiability with local
pIdCs is LOGSPACE -complete with respect to the ABox. The second is proven by a perfect
reformulation of a query that asks for the violation of some pIdC in a DL-LiteA,id KB. If such a
query returns false, i.e. no pIdC is violated, then the DL-LiteA,id KB is satisfiable. We will show
that we can also evaluate such a query over the canonical model of a satisfiable weakly-acyclic
DL-LiteA KB.

First, we will define a translation of a pIdC α to a CQ with an inequality δ (α) that encodes the
violation of α. We will use the following translation function where B is a basic concept and x
is a variable [23]:

γ (B, x) =


A (x) , if B = A,

P (x, ynew) , if B = ∃P, where ynew is a fresh variable,
P (ynew, x) , if B = ∃P−, where ynew is a fresh variable.

Let the IdC α be of the form (id B π1, . . . , πn). Then, we define a CQ with an inequality

δ (α)
(
x, x′

)
= ∃x.γ (B, x) ∧ γ

(
B, x′

)
∧ x 6= x′ ∧

∧
1≤i≤n

(
ρ (πi, x, xi) ∧ ρ

(
πi, x

′, xi
))
,

where x are all variables appearing in the atoms of δ (α) except for x and x′. The translation
function ρ (π, x, y) is inductively defined on the structure of the path π as follows:

(1) If π = B1? ◦ · · ·Bh? ◦Q ◦B′1? ◦ · · · ◦B′k? (with h ≥ 0, k ≥ 0), then

ρ (π, x, y) = γ (B1, x) ∧ · · · ∧ γ (Bh, x) ∧Q (x, y) ∧ γ
(
B′1, y

)
∧ · · · ∧ γ

(
B′k, y

)
.

(2) If π = π1 ◦ π2, where length (π1) = 1 and length (π2) ≥ 1, then

ρ (π, x, y) = ρ (π1, x, z) ∧ ρ (π2, z, y) ,

where z is a fresh variable symbol not occurring elsewhere in the query.

Intuitively, the query δ (α) (x, x′) asks for two different individuals x, x′, such that for all i ∈
[1 . . . n] the path πi starting from x and x′ end at the same individual xi. If the query returns
such individuals then these two witness a violation of α. Now consider a DL-LiteA,id KB K =
〈T ∪ Tid,A〉, where T is a DL-LiteA TBox and Tid is a set of pIdCs. Then, the boolean UCQ

qTid =
⋃
α∈Tid

∃xα, x′α
{
δ (α)

(
xα, x

′
α

)}
,

asks for a violation of some pIdC in Tid. If the query qTid is true then there is one query
δ (α) (xα, x

′
α) that returns two individuals xα and x′α, that witness the violation of some pIdC

α. We can now show the following:
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Theorem 4.4. Let K = 〈T ,A〉 be a satisfiable weakly-acyclic DL-LiteA KB, let Tid be a set of
pIdCs, and let qTid be a UCQ as defined above. Then the DL-LiteA,id KB Kid = 〈T ∪ Tid,A〉 is
satisfiable if and only if qcan(K)

Tid = ∅.

Proof.

(⇒) Suppose Kid is satisfiable. We need to show that then qcan(K)
Tid = ∅. Assume towards a

contradiction that qcan(K)
Tid returns true. But then, there exists a pIdC α such that there

are two constants x, x′ that witness the violation of α in can (K). Therefore, Kid is
unsatisfiable, which contradicts our assumption.

(⇐) Suppose qcan(K)
Tid = ∅. We need to show that thenKid is satisfiable. Since no pIdC violates

can (K), can (K) is also a model of Kid.

4.3.1.2 Implication of pIdCs

We will now look at the implication problem for pIdCs. That is, given a weakly-acyclic DL-LiteA
TBox T , a set of pIdCs Tid and a pIdC α, check whether {T ∪ Tid} � α, i.e. every model of T
and Tid also satisfies α.

Additionally, we define the notion of trivially implied pIdCs. An FD X → Y is trivially im-
plied if Y ⊆ X . Intuitively, this means that X → Y is trivially holds if X uniquely de-
termines a subset of attributes of itself. We can generalize this notion for pIdCs. Consider
the pIdC ϕ = (id C π) where π is an arbitrary path. Then, the pIdC (id C π ◦ π− ◦ C?)
is trivially implied by ϕ. This can be generalized to the following, if both (id C π) and
(id B π1 ◦ C? ◦ π), where π and π1 are arbitrary paths, are in the set of implied pIdCs, then the
pIdC (id B π1 ◦ C? ◦ π ◦ π− ◦ C?) is trivially implied. Trivial implication in pIdCs follows
from the fact, that if a concept C is uniquely determined by a path π, we can walk back the path
π to the concept C. We will end at the same individual. Hence, at the concept we started from.
Since, C trivially implies itself, the above holds.

We can decide implication of pIdCs by, first, creating a DL-LiteA,id ABox Aα that violates the
pIdC α. Then, we chase the DL-LiteA KB K = 〈T ,Aα〉, i.e. we add all membership assertions
implied by T . Finally, we use the pIdCs in Tid and the functionality assertions in T , denoted by
Tf , to merge constants in chase (K), in order to verify the violation of α. This is implemented
by the algorithm IdCImpl, illustrated in Algorithm 4.2.
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input : DL-LiteA TBox T , a set of pIdCs Tid, a pIdC α
output: true if T ∪ Tid � α

1 T idf → ∅;
2 create the counter-model ABox Aα from α;
3 A ← chase (〈T ,Aα〉);
4 foreach functionality assertion (funct Q) do
5 T idf ← T idf ∪ {(id > Q−)};
6 end
7 repeat
8 A′ ← A;
9 foreach pIdC β ∈ Tid ∪ T idf do

10 if (x, x′) ∈ δ (β)A then
11 if x = x0 ∧ x′ = y0 then
12 return true;
13 else
14 A ← A[x/z][x′/z], where z is a fresh object not yet in A;
15 end
16 end
17 end
18 until A′ = A;
19 return false

Algorithm 4.2: The algorithm IdCImpl for deciding the implication of pIdCs

For the illustration of Algorithm 4.2 we will use the following running example.

Example 4.11. Let us consider the DL-LiteA TBox T over the concept A, and the roles P, F, S.
The TBox T contains the concept inclusion

A v ∃P.

Let the set of pIdCs Tid be the following:(
id ∃P− P− ◦ F ◦ P

)
,

(
id ∃P− P− ◦ S ◦ P

)
.

We want to check if the above implies the pIdC

α =
(
id A P− ◦A? ◦ F ◦A? ◦ S ◦A?

)
,

i.e. T ∪ Tid � α. /
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x0 : A

y0 : A

x1 : A

y1 : A

x2 : A

y2 : A

z1 : A

P

P

F

F

S

S

Figure 4.7: The counter-model ABox Aα.

As a first step in Algorithm 4.2 we define an ABox Aα, which we will call counter-model
ABox. Given a pIdC α = (id B π1, . . . , πn), such an ABox Aα consists of the following set
of membership assertions:

Aα = {γ(B, x0), γ(B, y0)} ∪
⋃

1≤i≤n
{% (πi (x0, zi)) ∪ % (πi (y0, zi))} ,

where γ(B, x) is the translation function as defined in Section 4.3.1.1 and the translation func-
tion % is defined on the structure of the path π as follows:

(1) If π = B1? ◦ · · ·Bh? ◦Q ◦B′1? ◦ · · · ◦B′k? (with h ≥ 0, k ≥ 0), then

% (π (x, y)) = γ (B1, x) ∪ · · · ∪ γ (Bh, x) ∪Q (x, y) ∪ γ
(
B′1, y

)
∪ · · · ∪ γ

(
B′k, y

)
.

(2) If π = π1 ◦ π2, where length (π1) = 1 and length (π2) ≥ 1, then

% (π (x, y)) = % (π1 (x, z)) ∪ % (π2 (z, y)) ,

where z is a fresh variable symbol not occurring elsewhere in the ABox.

Next, we use the chase to materialize the missing membership assertions, i.e. chase (K) of the
KB K = 〈T ,Aα〉.

Example 4.12. This example continues Example 4.11. The ABox Aα built from the pIdC α
is depicted in Figure 4.7. Then we chase the KB K = 〈T ,Aα〉, which adds the membership
assertions as shown in Figure 4.8. /

We will now chase the membership assertions in chase (K) with the pIdCs in Tid and the func-
tionality assertions in T as follows:

(1) First, we create a pIdC for each functionality assertion in Tf as follows:

if (funct Q) ∈ Tf then
(
id > Q−

)
.

We will denote by T idf this newly created set of pIdCs.

(2) Then, we translate each pIdC β in Tid ∪ T idf to the CQ δ(β), which asks for a violation of
β.
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x0 : A

y0 : A

x1 : A

y1 : A

x2 : A

y2 : A

z1 : Ax′
0 y′

0 x′
2 y′

2 z′
1

P

P

F

F

S

S

P

P

P

P

P

Figure 4.8: The chase of the KB K = 〈T ,Aα〉 adds the membership assertions drawn in red.

x0 : A

y0 : A

x1 : A

y1 : A

x2 : A

y2 : A

z1 : Ax′
0 y′

0 z′
1z′

2

P

P

F

F

S

S

P

P

P
P

P

Figure 4.9: The ABox after we have applied the pIdC (id ∃P− P− ◦ S ◦ P ).

(3) If the query δ(β) evaluated over DB (chase (Aα)) returns a tuple of objects (x, y) that
witnesses a violation of a pIdC, we substitute the objects x and y in chase (Aα) with a
new object z not yet in Aα.

(4) We repeat (3) until

(a) either the objects x0 and y0 are returned by a CQ δ(β), which means that the pIdC
α is implied by T ∪ Tid or

(b) no further CQ returns a tuple, which means that α is not implied by T ∪ Tid.

Example 4.13. We continue Example 4.12. We have translated each pIdC in Tid ∪ T idf to a
CQ. The CQ of the pIdC (id ∃P− P− ◦ S ◦ P ) evaluated over the ABox in Figure 4.8 returns
the tuples {(x′2, y′2), (y′2, x

′
2)}. Therefore, the objects x′2 and y′2 are removed and substituted

with a new object z′2. The resulting ABox is illustrated in Figure 4.9. This new ABox violates
the pIdC (id ∃P− P− ◦ F ◦ P ). The corresponding CQ returns the tuples {(x′0, y′0), (y′0, x

′
0)}.

Therefore, the algorithm IdCImpl returns true. Hence, T ∪ Tid � α. /

We will now show the correctness of Algorithm 4.2.

Theorem 4.5. Let T be a weakly-acyclic satisfiable DL-LiteA TBox, let Tid be a set of pIdCs
and let α be a pIdC. Then, IdCImpl returns true if and only if T ∪ Tid � α.

Proof idea. Notice that the algorithm IdCImpl mimics the chase with weakly-acyclic tuple-
generating dependencies (tgds) and equality-generating dependencies (egds) [1, 41], i.e. we can
view the counter-model ABox as a database, positive inclusion dependencies in the TBox as
tgds and identification constraints as egds. Then, IdCImpl and the chase coincides, therefore
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A B
t1 a1 b1

(a) Instance I1: I1 � A→ B

A B
t′1 a′1 b′1
t′2 a′1 b′2

(b) Instance I2: I2 2 A→ B

t1 : R

a1 : R_A b1 : R_B

R#A R#B

(c) ModelM1 = i2mR[U ] (I1):
M1 � (id R_B R#B− ◦R#A)

t′1 : R

a′
1 : R_A

t′2 : R

b′1 : R_B

b′2 : R_B

R#A

R#A

R#B

R#B

(d) ModelM2 = i2mR[U ] (I2):
M2 2 (id R_B R#B− ◦R#A)

Figure 4.10: Instances and their mapping into DL-LiteA interpretations.

soundness and completeness of the algorithm IdCImpl can be proved similarly as soundness and
completeness of the chase with weakly-acyclic tgds and egds [1, 41].

4.3.1.3 Path-based IdCs as a formalism to model functional dependencies in DL-LiteA

We will show how to model unary functional dependencies with path-based identification con-
straints in DL-LiteA. LetR[A,B] be a relational schema, and letA→ B be an FD overR[A,B].
We can map the relational schema to a DL-LiteA KB using the schema to DL direct mapping
introduced in Definition 4.13. We can extend this DL-LiteA KB with pIdCs to express the FD
A→ B, which is translated to the pIdC:(

id R_B R#B− ◦R#A
)
.

Let us now consider two different instances of the relational schema R[A,B]. Instance I1 given
in Figure 4.10a satisfies the FD A → B, where the instance I2 in Figure 4.10b does not satisfy
this FD. If we now look at the translated models given in Figures 4.10c and 4.10d, we observe
the same. That is, the model M1 satisfies the translated pIdC and the model M2 does not.
Unfortunately, a natural generalization for such a translation to n-ary FDs fails. This will be
investigated in the upcoming section.

4.3.2 FDs and pIdCs are semantically different

We have seen how to model unary FDs in DL-LiteA KBs with pIdCs. However, this can not be
generalized to non-unary FDs. We will show that two instances of a relational schema can be
distinguished by FDs, i.e. one instance satisfies the FD and the other does not, but the translated
pIdCs can not distinguish the translated models. The next example illustrates such a case.
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A B C
t′1 a′1 b′2 c′1
t′2 a′2 b′1 c′1
t′3 a′3 b′1 c′2
t′4 a′1 b′3 c′2

(a) Instance I1: I1 � σ

A B C
t1 a1 b1 c1

t2 a1 b1 c2

(b) Instance I2: I2 2 σ

c′1 : R_C

t′1 : R

a′
1 : R_A

t′2 : R

c′2 : R_C

t′3 : R

b′1 : R_B

t′4 : R

R#C

R#A

R#A

R#CR#C

R#B

R#B

R#C

a′
2 : R_A

a′
3 : R_A b′2 : R_B

b′3 : R_B

R#B

R#BR#A

R#A

(c) ModelM1 = i2mR[U ] (I1):M1 2 δ

c1 : R_C

t1 : R

a1 : R_A

t2 : R

c2 : R_C

b1 : R_B

R#C

R#A

R#A

R#C

R#B

R#B

(d) ModelM2 = i2mR[U ] (I2):M2 2 δ

Figure 4.11: Instances and their mapping into RDF graphs. The FD AB → C can distinguish
the two structures I1 and I2, whereas the pIdC (id R_C R#C− ◦R#A,R#C− ◦R#B)

cannot distinguish the two modelsM1 andM2.

Example 4.14. Consider the FD σ := AB → C and the pIdC
δ := (id R_C R#C− ◦R#A,R#C− ◦R#B) translated from σ. We will now show that σ
and δ distinguish different relational instances and DL-LiteA models. In Figure 4.11 we give two
instances of a relational schemaR [A,B,C]. The instance I1 is a valid instance satisfying the FD
σ, whereas the instance I2 is not a valid instance for the FD σ. If we now translate σ into a pIdC
δ and also use i2m to map the instances I1 and I2 to the modelsM1 andM2 respectively, we get
two models that both violate the translated pIdC δ (see Figure 4.11c and 4.11d). Notice that the
modelM1, without the objects and roles given in red, viewed as an ABox, is the counter-model
ABox for the implication of the pIdC δ. /

Example 4.14 just shows that δ is not a correct translation of the FD σ, s.t.M1 � δ andM2 2 δ.
In order to show that pIdCs are indeed not able to capture the differences inM1 andM2, we
need to prove that for any set of IdCs Σ it holds that wheneverM1 � Σ, thenM2 � Σ. Such a
proof is established in Theorem 4.6.
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Theorem 4.6. There is a set FD of functional dependencies over a relational schemaR[U ], and
a pair of relational instances I1 and I2 of R[U ], s.t. for any set Σ of pIdCs the following holds:

(a) I1 � FD and I2 2 FD , and

(b) i2mR[U ] (I1) 2 Σ or i2mR[U ] (I2) � Σ.

Before we proof Theorem 4.6 we need some preliminary notions. Let us first consider the
following claim, which establishes the relationship between objects that are in bisimulation and
their π-fillers.

Claim 4.1. Let π be an arbitrary path in DL-LiteA, let o1 ∈ ∆I and o2 ∈ ∆J . If o1 ∼B o2 then
πI (o1) ∼B πJ (o2).

The proof of Claim 4.1 directly follows from Definition 4.12 (Bisimulations). In order to prove
Theorem 4.6, we need to have established a bisimulation between the two models in Exam-
ple 4.14.

Claim 4.2. The models M1 and M2 of Example 4.14 are in bisimulation to each other, i.e.
M1 ∼BM2.

Proof. Table 4.2 shows the domain elements that bisimulate each other in the corresponding
structures. It is easily verified that the relation in Table 4.2 is indeed a bisimulation ofM1 and
M2.

H
HHH

HHM2

M1 t′1 t′2 t′3 t′4 a′1 a′2 a′3 b′1 b′2 b′3 c′1 c′2

t1 ∼B ∼B ∼B ∼B
t2 ∼B ∼B ∼B ∼B
a1 ∼B ∼B ∼B
b1 ∼B ∼B ∼B
c1 ∼B ∼B
c2 ∼B ∼B

Table 4.2: Bisimulation relation ofM1 ∼BM2

With a proof for the bisimulation ofM1 andM2 we are ready to prove Theorem 4.6.

Proof. (of Theorem 4.6) Let AB → C be the only functional dependency in the set FD . Sup-
pose Σ is an arbitrary set of pIdCs. Let I1 and I2 be the two instances of Example 4.14. We now
show based on the pIdCs contained in Σ that (a) and (b) hold.

• Suppose Σ = ∅:

(a) As illustrated in Example 4.14, I1 � FD and I2 2 FD .
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(b) Clearly, i2mR[U ] (I2) � Σ holds.

• Suppose there is an arbitrary pIdC σC ∈ Σ, which is of the form (id R_C π1, . . . , πn)
in Σ:

(a) As illustrated in Example 4.14, I1 � FD and I2 2 FD .

(b) Let M1 denote i2mR[U ] (I1) and let M2 denote i2mR[U ] (I2). Observe that by
Claim 4.2 M1 ∼B M2. Suppose i2mR[U ] (I2) 2 σC , i.e. M2 2 σC . We need
to show that then i2mR[U ] (I1) 2 σC , i.e.M1 2 σC . SinceM2 2 σC there are two
C-objects (c′1 & c′2), s.t. π1

M2(c′1)∩π1
M2(c′2) 6= ∅∧. . .∧πnM2(c′1)∩πnM2(c′2) 6= ∅.

Since c′1 ∼B c1 and c′2 ∼B c2, we will show that c′1 and c′2 also violate σC .
In addition to Claim 4.2, we observe the following property in M1 and M2. For
any object o inM2 and any path π, if o′ ∼B o and o ∈ πM2 (c1) and o ∈ πM2 (c2),
then o′ ∈ πM2 (c′1) and o′ ∈ πM2 (c′2).
Let us now denote, for an arbitrary j ∈ [1 . . . n], with x ∈ ∆M2 an arbitrary object in
πj
M2(c′1)∩ πjM2(c′2). Since for every object o ∈ ∆M2 , there is also an object o′ ∈

∆M1 , such that o ∼B o′, there is also an object y ∈ ∆M1 such that x ∼B y. Since
x ∈ πM2 (c1) and x ∈ πM2 (c2) and the previous observation, we can conclude that
y ∈ πM2 (c1) and y ∈ πM2 (c2). Therefore, y ∈ πjM1(c′1) ∩ πjM1(c′2). Hence,
πj
M1(c′1) ∩ πjM1(c′2) 6= ∅ for all j ∈ [1 . . . n], which proves thatM1 2 σC .

• Suppose there is an arbitrary IdC σAB ∈ Σ, which is of the form
(
id X πi1, . . . , π

i
n

)
in

Σ, where X is either R_A or R_B:

(a) As illustrated in Example 4.14, I1 � σ and I2 2 σ.

(b) LetM2 denote i2mR[U ] (I2).M2 has only one instance of an R_A (R_B) concept,
thereforeM2 � σAB trivially holds.

We have now shown in Theorem 4.6, that it is possible to have two instances of a relational
schema, s.t. in one instance an FD is satisfied and in the other the FD is violated. If we now
translate these two instances by the schema direct mapping into models of DL-LiteA, we cannot
find an IdC such that this IdC is satisfied in one model and violated in the other. Thus the
following corollary follows from Theorem 4.6.

Corollary 4.2. The schema direct mapping to DL-LiteA KB (sm) extended with a mapping from
FDs to pIdCs is not semantics preserving.

The problem in the translation of the FD AB → C in Example 4.14 comes from the fact that
the attributes A, B and C only refer to the columns in exactly one row. The pIdC allows one to
talk about different rows. Consider the pIdC (id R_C R#C− ◦R#A,R#C− ◦R#B). The
object reachable by R#C− in the path R#C− ◦ R#A and in the path R#C− ◦ R#B might
be different, as illustrated in Figure 4.11c. In order to achieve a semantics preserving mapping
we need to ensure that this object is the same in all paths. In the next section we propose a
syntactic and semantic extension of pIdC which allows for such expressions. This extension is
called tree-based identification constraints.
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4.3.3 Tree-based identification constraints

In order to correctly capture the semantics of FDs, we extend path-based identification con-
straints to tree-based identification constraints. Let τ denote a tree built by the following syntax,
where S denotes a role andD denotes a concept, and π denotes a path as defined in Section 4.3.1:

τ → π | π ◦ (τ, . . . , τ)

A tree τ evaluates over instances of concepts as follows: Let o be an object in an interpretation
I. The tuple representing the objects at the leaves of a tree τ starting from o in I , is called a
τ -filler for o. If the tree τ has just one leaf, i.e. it is a path, then the τ -filler coincides with the
definition of a π-filler given in [27]. For convenience if (τ, . . . , τ) has just one path π we do not
write the brackets, i.e. instead of π ◦ (τ) we write π ◦ τ . Analogously to paths, we define the
depth and the width of a tree. The depth is the equivalent to the length of paths, and inductively
defined as follows:

depth (τ) =

{
length (π) if τ is a path π
length (π) + max (depth (τ1) , . . . , depth (τn)) if τ is a tree π ◦ (τ1, . . . , τn)

The width of a tree is the number of leaves and is inductively defined as follows:

width (τ) =

{
1 if τ is a path π∑n

i=1 width (τi) if τ is a tree π ◦ (τ1, . . . , τn)

Tree-based identification constraints (tIdCs) are an extension to pIdCs and are defined as follows.

Definition 4.18. (Tree-based identification constraints (tIdC)) A tree-based identification con-
straint over a DL-LiteA KB is an assertion of the form

(id C τ1, . . . , τn)

where C is a basic concept in DL-LiteA, n ≥ 1, and τ1, . . . , τn (called the components of the
identifier) are trees over a DL-LiteA KB such that depth (τi) ≥ 1 for all i ∈ [1 . . . n]. /

We adapt the definition of a DL-LiteA,id KB to include tree-based identification constraints.

Definition 4.19. (DL-LiteA,tid KB with tIdCs) A KB in DL-LiteA,tid, that is DL-LiteA with
tIdCs, is a pair 〈T ,A〉, where A is a DL-LiteA ABox, and T is the union of the two sets TA and
Ttid, where TA is a DL-LiteA TBox, and Ttid is a set of tIdCs such that

• all concepts identified in Ttid are basic concepts;

• all concepts appearing in the test relations in Ttid are basic concepts, or basic value-
domains;
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• for each tIdC α in Ttid, every role or attribute that occurs (in either direct or inverse
direction) in a path of α does not appear in the right-hand side of assertions of the form
Q v Q′ or U v U ′. /

The semantics of a tree τ is given by an extension τI in an interpretation I as follows:

• if τ = π, then τI = πI

• if τ = π ◦ (τ1, . . . , τn), then

τI =
{(
o,
〈
o1

1, . . . , o
1
k, · · · , on1 , . . . , onl

〉)
|∃o′.

(
o, o′

)
∈ πI∧(

o′,
〈
o1

1, . . . , o
1
k

〉)
∈ τI1 ∧

...(
o′, 〈on1 , . . . , onl 〉

)
∈ τIn

}
,

where πI is the extension already defined by pIdCs. The τ -filler for an object o and a tree τ ,
denoted by τI (o), is a set of tuples with arity width (τ). Intuitively, the interpretation of a tree
τ maps the root node of the tree with its leaves.

An interpretation I satisfies the tree-based identification constraint (id C τ1, . . . , τn) if for all
o, o′ ∈ CI , τI1 (o) ∩ τI1 (o′) 6= ∅ ∧ . . . ∧ τIn (o) ∩ τIn (o′) 6= ∅ implies o = o′. Example 4.15
illustrates tree-based identification constraints.

Example 4.15. Let us show how to distinguish the two models given in Example 4.14 with
tIdCs. The translation of the FD AB → C to tIdCs is as follows:(

id R_C R#C− ◦ (R#A,R#B)
)

(4.36)

The evaluation of above IdC over the interpretation given in Figure 4.11c is given in Table 4.3.
We first write the binary tuples that are in the interpretation of the rolesR#A,R#B andR#C−.
We then, after the vertical line, combine these to tuples of objects according to the semantics of
tIdCs.

Notice that the tuples in Table 4.3 correspond to the tuples in the relational instance given in
Figure 4.11a. Let us check for the violation of the tIdC given in Equation 4.36. The only two
different objects of type R_C are c′1 and c′2. The τ -filler for c′1 is the set (〈a′1, b′3〉 , 〈a′2, b′1〉)
and the τ -filler for c′2 is the set (〈a′1, b′2〉 , 〈a′3, b′1〉). The intersection of the two sets is empty,
therefore the tIdC is not violated. It is easy to see that

M1 �
(
id R_C R#C− ◦ (R#A,R#B)

)
. /

In comparison to pIdCs, tIdCs allows us to specify that several paths must walk through common
nodes, and split afterwards. In this sense, every pIdC can be represented a tIdC, but not vice
versa. Therefore, tIdCs are more expressive than pIdCs.
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R#C− ◦ ( R#A , R#B )

(c′1, t
′
1) (t′1, a

′
1) (t′1, b

′
3)

(c′1, t
′
4) (t′4, a

′
2) (t′4, b

′
1)

(c′2, t
′
2) (t′2, a

′
1) (t′2, b

′
2)

(c′2, t
′
3) (t′3, a

′
3) (t′2, b

′
1)

(c′1, 〈a′1, b′3〉)
(c′1, 〈a′2, b′1〉)
(c′2, 〈a′1, b′2〉)
(c′2, 〈a′3, b′1〉)

Table 4.3: Evaluation of the tIdC given in Equation 4.36 over the interpretation in Figure 4.11c

4.3.3.1 KB satisfiability with tIdCs

We will investigate DL-LiteA KB satisfiability with tIdCs in the presence of weakly-acyclic KBs.
We will extend the method introduced for pIdCs in Section 4.3.1.1. First, we will define a trans-
lation of a tIdC α to a CQ with an inequality δt (α) that encodes the violation of α. For paths
we will use the translation ρ defined in Section 4.3.1.1.

Let the tIdC α be of the form (id B τ1, . . . , τn). Then, we define a CQ with inequality

δt (α)
(
x, x′

)
= ∃x.γ (B, x) ∧ γ

(
B, x′

)
∧ x 6= x′∧∧

1≤i≤n
ρt
(
τi, x,

〈
xi1, . . . x

i
width(τi)

〉)
∧ ρt

(
τi, x

′,
〈
xi1, . . . , x

i
width(τi)

〉)
,

where x are all variables appearing in the atoms of δt (α) except for x and x′. The translation
function ρt (τ, x, 〈x1, . . . , xk〉) is inductively defined on the structure of the tree τ as follows:

(1) If τ = π, then

ρt (τ, x, 〈y〉) = ρ (π, x, y)

(2) If τ = π ◦ (τ1, . . . , τl), then

ρt (τ, x, 〈x1, . . . , xk〉) =ρ (π, x, z)∧
ρt
(
τ1, z,

〈
x1, . . . , xwidth(τ1)

〉)
∧

...

ρt
(
τl, z,

〈
x1+

∑l−1
j=1 width(τl)

, . . . , xk

〉)
,

where z is a fresh variable symbol not occurring elsewhere in the query.
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The query has the following intuition. First, we ask for two different individuals x and x′. These
individuals must be instances of B. Additionally, they share for every tree τ in the tIdC a tuple
at the leafs of τ starting in x and x′. If δt (α) (x, x′) returns two such individuals then the tIdC α
is violated. Now consider a DL-LiteA,tid KB K = 〈T ∪ Ttid,A〉, where T is a DL-LiteA TBox
and Ttid is a set of tIdCs. Then, the boolean UCQs

qTtid =
⋃

α∈Ttid

∃xα, x′α
{
δt (α)

(
xα, x

′
α

)}
,

where x are the variables in the UCQ qTtid , asks for a violation of any tIdC in Ttid. We can now
show the following:

Theorem 4.7. Let K = 〈T ,A〉 be a satisfiable weakly-acyclic DL-LiteA KB, let Ttid be a set of
tIdCs, and let qTtid be a UCQs as defined above. Then the DL-LiteA,tid KBKtid = 〈T ∪ Ttid,A〉
is satisfiable if and only if qcan(K)

Ttid = ∅.

Proof. The proof is similar to the proof of Theorem 4.4 for pIdCs.

4.3.3.2 Implication of tIdCs

The implication problem for tIdCs can be solved using the algorithm IdCImpl, established in
Section 4.3.1.2. We just need to adapt the construction of the counter-model ABox for tIdCs.

Given a weakly-acyclic DL-LiteA TBox T , a set of tIdCs Ttid and a tIdC
α = (id B τ1, . . . , τn), we want to check whether {T ∪ Ttid} � α. We define a counter-model
ABox Aα of α consisting of the following set of membership assertions:

Aα = {γ(B, x0), γ(B, y0)}∪⋃
1≤i≤n

{
%t
(
τi

(
x0,
〈
zi1, . . . , z

i
width(τi)

〉))
∪ %t

(
τi

(
y1,
〈
zi1, . . . , z

i
width(τi)

〉))}
,

where γ(B, x) is the translation function as defined in Section 4.3.1.1 and the translation func-
tion %t is defined on the structure of the tree τ as follows:

(1) If τ = π, then

%t (π (x, 〈y〉)) = % (π (x, y))

(2) If τ = π ◦ (τ1, . . . , τl), then

%t (τ (x, 〈x1, . . . , xk〉)) =% (x, z)∪
%t
(
τ1

(
z,
〈
x1, . . . , xwidth(τ1)

〉))
∪

...

%t
(
τl

(
z,
〈
x1+

∑l−1
j=1 width(τj), . . . , xk

〉))
,

where z is a fresh variable symbol not occurring elsewhere in the query.
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Theorem 4.8. Let T be a weakly-acyclic satisfiable DL-LiteA TBox, let Ttid be a set of tIdCs
and let α be a tIdC. Then, IdCImpl, adapted to tIdCs, returns true if and only if T ∪ Ttid � α.

Proof. This proof is similar to the proof of Theorem 4.5 for pIdCs.

4.3.3.3 The Direct-Mapping of FDs to IdCs

We will now extend the schema direct mapping with a mapping from functional dependencies
to tree-based identification constraints. In this section we will then prove that this mapping is
semantics preserving. First, let us translate FDs to tIdCs.

Definition 4.20. (FD-direct mapping (dm)) Let U be a set of attributes A1, . . . , An. Given
a relational schema R [U ], and a set of functional dependencies FD over R [U ], the function
dm (R [U ] ,FD) outputs a set of DL-LiteA tree-based identification assertions ΣFD as follows:

Let X be a set of attributes Ai1 , . . . , Aik . For each FD X → Ai ∈ FD we add a tIdC to ΣFD :(
id R_Ai R#A−i ◦R? ◦ (R#Aj1 ◦Aj1?, . . . , R#Ajk ◦Ajk?)

)
The function dm (R [U ] ,FD) outputs ΣFD . /

Example 4.16. The functional dependencies in Example 2.2 are translated with the FD-direct
mapping into the following tIdCs,
i.e. dm (course[lecture, type, room], {(lecture, type→ room) , (room→ type)}) outputs:

(
id course_room course#room− ◦ course? ◦ ( course#lecture ◦ course_lecture?,

course#type ◦ course_type? ))(
id course_type course#type− ◦ course? ◦ ( course#room ◦ course_room? )) /

We now combine the FD-direct mapping with the schema direct mapping to define a direct
mapping from a relational schema to a DL-LiteA,tid TBox.

Definition 4.21. (Relational to Description Logic direct mapping (R2DM)) Given a relational
schema R [A1, . . . , An] and a set of FDs over R, the function rdm (R[U ],FD) outputs on the
schema (R [U ] ,FD) a DL-LiteA,tid T-Box TR[U ] with tIdCs Σ as follows:

(1) First, we call sm (R [U ]), which outputs
〈
TR[U ], σR[U ]

〉
.

(2) Then, we call dm (R [U ] ,FD), which outputs ΣFD .

The function rdm (R [U ] , FD) outputs
〈
TR[U ], {σR[U ]} ∪ ΣFD

〉
. /

Example 4.17. rdm (course[lecture, type, room], {(lecture, type→ room) , (room→
type)}) outputs all assertions specified in Example 4.8 and Example 4.16. /
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o : R_Ai t : R

dj1
: R_Aj1

t′ : Ro′ : R_Ai

djk
: R_Ajk

R#Ai

R#Aj1

R#Aj1

R#Ai

R#Ajk

R#Ajk

· · ·

Figure 4.12: Submodel ofM, which violates ϕ

We have established a connection between instances of relational schemas and models of the
TBox generated by the R2DM. Now, we turn our attention to the FDs. The R2DM already
defines a translation of FDs to tIdCs. We want to show that our direct mapping is semantics
preserving. For this, we will prove the following theorem.

Theorem 4.9. Let I be an instance of a relational schemaR [U ], let
〈
TR[U ], σR[U ]

〉
be the result

of sm (R[U ]), and let FD be a set of functional dependencies over R[U ]. Then,

I � FD iff i2mR[U ] (I ) � dm (R[U ],FD)

Proof.

(⇒) Suppose I � FD and assume towards a contradiction that i2mR[U ] (I ) 2 dm (R[U ],FD).
Then there exists some IdC ϕ ∈ dm (R[U ],FD), for which it holds that i2mR[U ] (I ) 2 ϕ.
By the definition of dm , ϕ is of the form(

id R_Ai R#A−i ◦R? ◦ (R#Aj1 ◦Aj1?, . . . , R#Ajk ◦Ajk?)
)
,

representing the functional dependency Aj1 , . . . , Ajk → Ai. Let π denote the tree in the
IdC ϕ. Since i2mR[U ] (I ) 2 ϕ, the modelM outputted by i2mR[U ] (I ) has two distinct
R_Ai objects o, o′, with πM (o)∩ πM (o′) 6= ∅. Let {dj1 , . . . , djk} ∈ πM (o)∩ πM (o′).
Figure 4.12 illustrates the submodel ofM, which leads to a violation of ϕ.

We now apply m2i to M and by Lemma 4.6 m2iTR[U ]
(M) = I . This instance I has

two tuples t and t′, s.t. t[Ai] = o and t′[Ai] = o′. Additionally t[Aji ] = t[Aji ], for all
i ∈ [1 . . . k]. Therefore,Aj1 , . . . , Ajk → Ai is not valid in I , i.e. I 2 FD, a contradiction.

(⇐) Suppose i2mR[U ] (I ) � dm (R[U ],FD) and assume towards a contradiction that I 2 FD .
Then, there is an FD σ ∈ FD , s.t. I 2 σ, where σ = Aj1 , . . . , Ajk → Ai. Therefore,
I has two tuples t, t′ with different values in the Ai columns, but the tuples agree on
the values in the Aj1 , . . . , Ajk columns, i.e. t[Ai] 6= t′[Ai] and t[Aji ] = t′[Aji ] for all
i ∈ [1 . . . k]. i2mR[U ] (I ) outputs a modelM, with two tuple identifiers t and t′, s.t. t and
t′ are connected to the same R_Aj1 , . . . , R_Ajk objects, but to different R_Ai objects
(compare to Figure 4.12). The function dm also translates σ into the IdC

ϕσ :=
(
id R_Ai R#A−i ◦R? ◦ (R#Aj1 ◦Aj1?, . . . , R#Ajk ◦Ajk?)

)
.
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Since the submodel of M depicted in Figure 4.12 violates ϕσ, also M 2 ϕσ. This
contradicts the assumption that i2mR[U ] (I ) � dm (R[U ],FD). Therefore, I � FD

Corollary 4.3. Let (R [U ] ,FD) be a relational schema, let
〈
TR[U ],Σ

〉
be the result of

drm (R[U ],FD) and letM be a model of
〈
TR[U ],Σ

〉
. Then,

M � Σ iff m2iTR[U ]
(M) � FD

Proof. Corollary 4.3 follows from Theorem 4.9 and Corollary 4.1

From Theorem 4.9 and Corollary 4.3 it follows that the R2DM is semantics preserving.

4.4 Normal Forms

In the previous section we have established tree-based identification constraints for modeling
functional dependencies in DL-LiteA knowledge bases. We will now look for a generalization
of BCNF, similar to XNF, for DL-LiteA,tid KBs. BCNF describes redundancy based on FDs,
XNF uses XFDs and we will look for redundancies based on tIdCs. In this section we will first
look at what a “redundancy” is in the context of DL-LiteA,tid KBs. Based on those insights, we
will define Description Logic Normal Form (DLNF). In Section 4.5 we will prove that whenever
a relational schema is in BCNF, then the DL-LiteA KB, translated from this schema, is in DLNF.

4.4.1 Redundancy in DL-LiteA,tid KBs

Let us first look at the redundancy in the relational instance depicted in Figure 2.2, which is not
in BCNF, as it is illustrated in Example 2.2. The FD room → type violates BCNF, thus room
is not a superkey of the relation course. The translation of this instance via the R2DM is given
in Figure 4.5. The translated tIdC is

σ :=
(
id course_type course#type− ◦ course? ◦ course#room ◦ course_room?

)
.

(4.37)

We can query the information expressed by this tIdC using a modified CQ, generated by the
translation of tIdCs to CQ. Such a query asks for all course types and rooms in a model and
looks as follows:

qσ (t, x, r)←course_type (t) , course#type (t, x) , course (x) , (4.38)

course#room (x, r) , course_room (r) (4.39)

The query qσ over the model given in Figure 4.5 returns the following tuples:

t x r
ctype,VO t〈Algebra I, VO, HS1〉 croom,HS1

ctype,UE t〈Algebra I, UE, SEM1〉 croom,SEM1

ctype,UE t〈Economics I, UE, SEM1〉 croom,SEM1
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The information that each room can only host courses of a particular type, enforced by the tIdC
σ, is stored redundantly. If we now want to specify that the only lecture type in room “SEM1” is
“VO”, we need to update the role membership assertions of course#type several times. Thus,
updating just one role membership assertion leads to an update anomaly.

How can we avoid such a redundancy? BCNF asks if the left-hand side of an FD is a superkey of
the relation. XML Normal Form asks that if some attribute a is uniquely determined by another
set of attributes, then the parent element of a should also be uniquely determined by the same
set of attributes. In DL-LiteA,tid KBs we neither have a flat structure as in the relational model
nor a hierarchical structure as in XML documents. The graph-like structure of DL-LiteA,tid
allows us to talk about the neighbors of an object. If we view XML documents as graphs,
the parent element of an attribute can also be considered as neighbor. Therefore, we want to
define DL-LiteA,tid normal form based on the neighbors of an object, i.e. for each object a
that is uniquely determined by a set of objects reachable via a tree its neighboring objects are
also uniquely determined by the same set of objects. We will formalize this notion in the next
section.

4.4.2 DL-LiteA,tid Normal Form

Before we define DL-LiteA,tid Normal Form, we need some preliminary notions. In particular,
we need to define the set neighbors of a tree τ and the subtrees of a tree τ .

Definition 4.22. (subtrees of τ ) Let τ be a tree. Then, we denote by subtrees (τ, i) the subtrees
of τ starting at depth i, where 0 ≤ i ≤ depth (τ)− 1. /

Definition 4.23. (neighbors of τ ) Let τ be a tree. Then, we denote by neighbors (τ) the concepts
appearing at depth 1 in τ . If this is a concept test B?, then B is in the set neighbors (τ). If this
is a role R then ∃R is in the set neighbors (τ). /

Let σ be a tIdC. Then, we denote by Π (σ) the components of σ. The neighbors of a tIdC σ,
denoted by neighbors (σ), is the set of neighbors of all trees in Π (σ).

Example 4.18. Let τ be the first component of the tIdC σ given in Equation 4.37. Then,
subtrees (τ, 1) is the tree course?◦course#room◦course_room?. Since σ has only one com-
ponent, the neighbors of σ are the same as the neighbors of τ , i.e. neighbors (τ) = {course}.

/

We are now ready to define Description Logic Normal Form for DL-LiteA,tid KBs.

Definition 4.24. (Description Logic Normal Form (k-DLNF)) Let T be a DL-LiteA TBox and
let Φ be a set of tIdCs over T . Then 〈T ,Φ〉 is in k-DLNF if and only if for every nontrivial tIdC
ϕ, s.t. 〈T , φ〉 � ϕ and the depth of every component in ϕ is at most k, it is the case that for each
C ∈ neighbors(ϕ) it holds that 〈T ,Φ〉 � (id C Π′(C)), where

Π′(C) = {subtrees (τ, 1) | neighbors (τ) = C ∧ depth (τ) > 1 ∀τ ∈ Π (ϕ)} . /
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If k is arbitrarily large we simply say that a KB with tIdCs is in DLNF. Notice that, every TBox
T with tIdCs Φ is in 1-DLNF. k-DLNF captures the intuition of a normal form for DLs given
in the previous section. We said that if a concept C is uniquely determined by another set of
concepts, the neighbors of C must be uniquely determined by the same set of concepts. Since
tIdCs translated by the FD-direct mapping are of depth 2, we consider 2-DLNF as an equivalent
notion for BCNF in DLs. In Section 4.5 we will show that this is indeed the case.

It is important to talk only about nontrivial tIdCs, since every functional dependency (funct R)
implies the tIdC (id > R− ◦R). Then, it might not be the case that also (id ∃R R) is implied.
If we would force that (id ∃R R) is implied, then it would not be possible for two different in-
dividuals to be connected with an R role to the same individual. For example, let us assume that
the role firstname connects a concept person with its first name, hence firstname is functional.
If we also include trivial tIdCs this would imply, that all people with the same first name have to
be the same persons.
We will now look at several examples. The first example shows a KB translated by the R2DM
from a relational schema that is not in BCNF.

Example 4.19. Let us consider the relational schema course (lecture, type, room) as intro-
duced in Example 2.2. This relational schema is not in BCNF. We will show that the translation
of this schema is also not in 2-DLNF. The FD room→ type leads to a violation of BCNF. The
translated tIdC is given in Equation 4.37. We need to show that

σ′ = (id course course? ◦ course#room ◦ course_room?)

is also implied by the TBox Tcourse given in Example 4.8 and the set of tIdCs Σcourse given in
Example 4.16. We have seen in Example 4.9 that the interpretation depicted in Figure 4.5 is a
model of 〈Tcourse,Σcourse〉. Hence, it should also be a model of σ′. Unfortunately, this is not the
case. The objects t〈Algebra I, UE, SEM1〉 and t〈Economics I, UE, SEM1〉 are both identified by the object
croom,SEM1. Therefore, course is not in 2-DLNF.

In the relational model a repair of the relational schema that is dependency preserving is not
possible. In Example 3.14 we have seen a XML document of the same information that is both
information and dependency preserving. The same information on courses was already modeled
with the TBox Tc given in Example 4.2. The translation of the FDs room → type and room →
building are already covered by the functionality assertion (funct for) and(
funct has_room−

)
, respectively. Therefore, we only need to specify a tIdC that models the

FD lecture, type→ room, which is:

(
id room located−, for

)
. (4.40)

We will now check if Tc is in 2-DLNF. Additionally, to the tIdC in Equation 4.40 the function-
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Figure 4.13: Diagrammatic representation of the football leagues KB [27].

ality assertions in Tc imply the following tIdCs:(
id > for−

)
(4.41)

(id > has_room) (4.42)(
id > located−

)
(4.43)(

id > @name−
)

(4.44)

Furthermore, this set of tIdCs implies the following tIdCs of depth 2:(
id > for− ◦ located−

)
(4.45)(

id > has_room ◦ located−
)

(4.46)(
id room located−, for ◦ for−

)
(4.47)

It is easy to see that for this set of tIdCs the condition imposed by 2-DLNF holds, i.e. the tIdCs(
id ∃located− located−

)
and

(
id ∃for− for−

)
are also implied by the above set of tIdCs.

Notice that the ABox Ac given in Figure 4.1 viewed as an interpretation is a model of Tc and
does not contain any redundant information. /

The second example shows how to check DLNF for an arbitrary DL-LiteA,tid KB. Additionally,
it recapitulates the intuition of DLNF.

Example 4.20. (Football league [27])
Consider the football leagues KB from [27] depicted in Figure 4.13. Over this KB a possible
tree-based identification assertion is(

id league year,BELONGS -TO− ◦ PLAY ED-IN− ◦HOME
)
,

which says that no home team plays in different leagues in the same year [27]. In order to test if
the ontology in Figure 4.13 is in DLNF, we have to prove that(

id round PLAY ED − IN− ◦HOME
)

is implied by the IdCs of the ontology. Such IdC states that no home team plays in different
rounds, which is an implausible constraint. Therefore, the above ontology is not in DLNF. Now
consider the BCNF intuition “Do Not Represent the Same Fact Twice” and the valid (up to the
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l y t

l1 2013 t1
l1 2013 t1

Table 4.4: Answers to the CQ 4.48 over the ontology instance in Figure 4.14.

l1 : league

r1 : round m1 : match

m2 : matchr2 : round

t1 : team2013
year

BELONGS-TO

BELONGS-TO

PLAY ED-IN

PLAY ED-IN

HOME

HOME

Figure 4.14: Diagrammatic representation of an ABox of the football leagues ontology.

missing concepts) instance of the ontology depicted in Figure 4.14. Now consider again the
tIdC (id league year, BELONGS-TO− ◦ PLAY ED-IN− ◦HOME). As we have seen,
during the chase for implication of tIdCs, we can formulate a tIdC as a conjunctive query. Let
us now consider the answer to the CQ 4.48 over the ABox illustrated in Figure 4.14 viewed as
an interpretation. These answers are given in Table 4.4. We notice, that we have as answers
two times the same information, which, having the BCNF intuition in mind, coincides to our
intuition that the tIdC stated above leads to a violation of DLNF. /

league_id(l, y, t)←league(l) ∧ year(l, y) ∧BELONGS-TO−(l, x)∧
PLAY ED-IN−(x, y) ∧HOME(y, t) (4.48)

These examples give us the following intuition for DLNF. Whenever a concept is uniquely de-
termined by another set of concepts, then these concepts have to be reachable by a unique path
or tree. With this observation one can conclude that for a DL-LiteA,tid KB if all roles appearing
in tIdCs are functional then this KB is in DLNF.

4.5 BCNF - DLNF

Finally, we want to show that our definition of DLNF corresponds to BCNF in the relational
model. This means that if a relational schema is in BCNF then also the DL-LiteA,tid KB gener-
ated by the R2DM is in 2-DLNF and vice versa. This is captured by the following theorem.

Theorem 4.10. Let R[U ] be a relational schema and FD a set of functional dependencies over
R[U ]. Let

〈
TR[U ],Σ

〉
denote the output of the function drm (R[U ],FD). Then (R[U ],FD) is in

BCNF iff
〈
TR[U ],Σ

〉
is in 2-DLNF.
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Before we start with the proof for the theorem we observe the following. According to the
relational-direct mapping we only have the two types of tIdCs in the set ΣFD :

•
(
id R_Ai R#A−i ◦ (R#Ai1 , . . . , R#Ain)

)
,

• (id R R#A1, . . . , R#An).

Also notice that, because of (funct R#Ai) in the TBox of the R2DM the tIdCs

(
id > R#A−i ◦ (R#Ai1 , . . . , R#Ain)

)
and (

id R_Ai R#A−i ◦R#Ai1 , . . . , R#A−i ◦R#Ain
)

are equivalent. Additionally, because of concept disjointness, we never encounter in a tree an
inverse role only after either the same forward role, or at the beginning of a path or tree. For
example,

(
id R R#A1 ◦R#A−2

)
is satisfied in all models of the created TBox, since the ob-

ject after R#A1 would be inferred to be an instance of the concept R_A1 and R_A2, which
contradicts the TBox assertion: R_A1 v ¬R_A2. We also need the following lemma:

Lemma 4.8.
A1, . . . , Ak → B ∈ (R[U ],FD)+

if and only if

〈
TR[U ],ΣFD

〉
�
(
id R_B R#B− ◦R? ◦ (R#A1, . . . , R#Ak)

)
.

Proof. Follows from Theorem 4.9 and Corollary 4.3.

And finally, we can establish a proof for Theorem 4.10:

Proof.

(⇐) Suppose 〈TR,ΣFD〉 is in DLNF. We have to show that (R[U ],FD) is in BCNF. Suppose
that there are attributes {Ai1 , . . . , Ain , Ai} ⊆ U , s.t. Aj1 , . . . , Ajk → Ai is a nontriv-
ial functional dependency in (R[U ],FD)+. We have to prove that Aj1 , . . . , Ajk → U ∈
(R[U ],FD)+. By Lemma 4.8 we know that
〈TR,ΣFD〉 �

(
id R_Ai R#A−i ◦ (R#Aj1 , . . . , R#Ajk)

)
. Since, 〈TR,ΣFD〉 is in 2-

DLNF and neighbors(R_Ai) = {R}, also 〈TR,ΣFD〉 � (id R R#Aj1 , . . . , R#Ajk).
Since (funct R#Ai) �

(
id > R#A−i

)
also 〈TR,ΣFD〉 �

(
id Ai R#A−i ◦

(R#Aj1 , . . . , R#Ajk)) for all Ai ∈ U . By Lemma 4.8 also Ai1 , . . . , Aik → Ai for
all Ai ∈ U , which proves that (R[U ],FD) is in BCNF.
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(⇒) Suppose (R[U ],FD) is in BCNF. We have to show that 〈TR,ΣFD〉 is in 2-DLNF. We
distinguish two cases:

– Let ϕ1 =
(
id R_Ai R#A−i ◦ (R#Ai1 , . . . , R#Aik)

)
, such that 〈TR,ΣFD〉 � ϕ1:

We need to show that 〈TR,ΣFD〉 � (id R R#Ai1 , . . . , R#Aik). By Lemma 4.8
Ai1 , . . . , Aik → Ai ∈ (R[U ],FD)+. Since (R[U ],FD) is in BCNF, also
Ai1 , . . . , Aik → U ∈ (R[U ],FD)+, i.e. for all Al ∈ U Ai1 , . . . , Aik → Al ∈
(R[U ],FD)+. Therefore, by Lemma 4.8, for all R_Al,

〈TR,ΣFD〉 �
(
id R_Al R#A−l ◦ (R#Ai1 , . . . , R#Aik)

)
.

This IdC together with the IdC (id R R#A1, . . . , R#An) imply that

〈TR,ΣFD〉 � (id R R#Ai1 , . . . , R#Aik) ,

which proves that 〈TR,ΣFD〉 is in 2-DLNF.

– Let 〈TR,ΣFD〉 �
(

id R R#Aj1 ◦R#A−j1 , . . . , R#Ajk ◦R#A−jk

)
:

We need to show for all i ∈ [1 . . . k] that 〈TR,ΣFD〉 � (id R_Aji R#Aji). Since
(funct R#Ai) is in TR and is equivalent to

(
id > R#A−i

)
, the IdCs

(id R_Aji R#Aji) are trivially implied by TR. Therefore 〈TR,ΣFD〉 is in 2-
DLNF.

4.6 Summary

In this chapter we have recalled the Description Logic DL-LiteA as a formalism for graph
databases. A DL-LiteA KB is constituted of a DL-LiteA TBox T , which specifies general knowl-
edge of a domain of interest, and a DL-LiteA ABox, which specifies knowledge of individuals
in a domain. The models of a DL-LiteA KB are given in terms of interpretations. We have con-
sidered different reasoning services in DL-LiteA, among them are KB satisfiability and query
answering. For KB satisfiability we have introduced the notion of a DL-LiteA chase. We have
seen that the chase terminates if the PI in the KB are weakly-acyclic. For query answering we
have given two different methods. On the one hand, the chase can be used to materialize the
canonical model, which then allows one to directly query this model. On the other hand, the
perfect rewriting method allows one to include all assertions of a TBox into the query, which is
then evaluated over the ABox.

We have then introduced a direct-mapping from a relational schema to a DL-LiteA TBox. Ad-
ditionally, we can also translate instances of a relational schema to models of such a DL-LiteA
TBox. Since an equivalent to functional dependencies is missing in DL-LiteA, we introduced
path-based identification constraints. We have investigated KB satisfiability and implication
of pIdCs in DL-LiteA. Unfortunately, pIdCs are not the ideal candidate. It was shown that
the direct-mapping extended with pIdCs is not semantics preserving. Therefore, we introduced
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tree-based identification constraints as an extension to pIdCs. KB satisfiability and implication
of tIdCs can be solved similar as with pIdCs. We have then shown that the direct-mapping ex-
tended with tIdCs, called relational to Description Logic direct-mapping (R2DM) is semantics
preserving.

Finally, we investigated redundancies in DL-LiteA and established k-DLNF as an analogon to
BCNF in DL-LiteA with tIdCs. We have shown that if a relational schema is in BCNF then
the DL-LiteA KB, translated by the R2DM from the relational schema, is in 2-DLNF and vice
versa.
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CHAPTER 5
Conclusion

5.1 Discussion

In this thesis we have investigated database design in different data models: the relational model,
XML documents and Description Logic Knowledge Bases. One important goal of database de-
sign is to avoid redundancies arising from badly designed models. In the relational model we
have focused on FDs. Normal Forms, especially Boyce-Codd Normal Form, avoid redundancies
arising from FDs. For XML documents we have summarized the work by Arenas and Libkin [8].
They have introduced XFDs and XML Normal Form.

As the data available in graph databases, especially in the Semantic Web, grows, it is needed
to focus on consistency and redundancy in such data models. Therefore, data design must also
play an important role in graph databases. We have used ideas from the work on normal forms
in the relational model and XML documents in order to find a normal form for graph databases.

First, we have fixed DL-LiteA as a formal model for graph databases. We introduced the re-
lational to Description Logic direct mapping for translating relational schemas to DL-LiteA
KBs. We considered path-based identification constraints [27] as a formalism to model FDs in
DL-LiteA KBs. We then showed that the direct-mapping extended with pIdCs is not semantics
preserving. Therefore, we extended pIdCs and introduced tree-based identification constraints.
We showed that the direct-mapping extended with tIdCs is indeed semantics preserving.

Tree-based identification constraints allowed us to introduce Description Logic Normal Form
(k-DLNF). DLNF tries to avoid redundancies in DL KBs analogously to BCNF in relational
databases. As we have shown in Section 4.4, a relational schema is in BCNF if and only if the
DL-LiteA KB, translated from this relational schema, is in 2-DLNF.
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5.2 Future Work

As an extension of this work in the future we will focus on at least three major topics:

• First, it is needed to thoroughly investigate further properties of tree-based identification
constraints. We have given an algorithm to decide the implication problem for tIdCs
over weakly-acyclic KBs. It remains to show, if there is an algorithm for the implication
problem of tIdCs over arbitrary KBs. The same also holds for pIdCs. Another open
question is, whether there exists an inference system, similar to Armstrong Axioms, for
pIdCs.

• Second, we need to extend the theory for DLNF. We have defined DLNF as a faithful
translation of BCNF to DLs. The most important question is, if there is an algorithm that
efficiently checks if a DL-LiteA KB is in DLNF. This involves the computation of the
closure of tIdCs, which is also a problem open to be solved. Furthermore, it is interesting
to look for a decomposition algorithm that repairs DL-LiteA KBs which are not in DLNF.

• In this work we have extensively studied the relationship between the relational model
and DL KBs. It remains to study also the relationship between XML documents and DL
KBs. Therefore, it would be interesting to find a direct-mapping from XML documents to
DL-LiteA KBs. We can then ask if it also holds that whenever an XML document is in
XNF, the DL-LiteA KB, translated from this XML document, is in DLNF and vice versa.
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