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Abstract

In this thesis, the computational implementation of the well-known Atomic-Orbital Close-

Coupling method was improved so that the calculation of partial cross sections for charge ex-

change reactions involving heavy, highly charged ions with relevance to fusion plasma diagnostics

is feasible.

Accurate partial cross sections for charge exchange reactions are needed for the analysis of

data measured by Charge Exchange Spectroscopy, an important tool within the field of fusion

plasma diagnostics. This method makes use of the visible light emitted during electronic tran-

sitions within plasma particles. These electronic transitions follow a charge exchange reaction

between highly charged plasma ions and particles from a neutral beam. Ions in a fusion plasma

may originate either from an intrinsic or an artificial source. The latter come in play when

using the Radiative Plasma Edge Cooling technique with which the peak power loads on the

plasma facing components can be mitigated through inelastic collisions of plasma particles with

a selected impurity gas. Currently, mostly Nitrogen and Neon are used for this purpose while

the next fusion experiment ITER is planned to use Argon.

Describing large ions such as Argon within the framework of the Atomic-Orbital Close-

Coupling method requires the inclusion of a large number of atomic basis states (of order 103).

Such large basis sets not only pose computational difficulties like numerical errors during the

evaluation of matrix elements, they also put great demand on the used hardware. In this thesis,

the current limits of the computational implementation were tested when using large collisional

systems, e.g. Ar18+ +H, and suggestions to extend those limits were proposed.

In order to find potential sources of numerical errors, a detailed and systematic study of

the matrix elements which describe the interaction between the two colliding particles was

conducted. As a result, numerical instabilities and inaccuracies could be significantly reduced

by implementing more accurate basic mathematical functions and using quadruple precision

numbers for the complex coefficients involved in the calculation.

The code described in this thesis is a parallel program designated to be executed on cluster

computers like the Vienna Scientific Cluster (VSC-2). Using a large basis set entails the pro-

duction of enormous amounts of data which need to be available during the entire calculation.

However, each computing node on a cluster has a certain fixed memory limit. In this thesis,

guidelines were developed on how to efficiently distribute the data over all available computing

nodes. Furthermore, suggestions on how to reduce idle times to ensure a more efficient use of

the computational resources are presented.

Finally, a detailed quantitative and qualitative analysis of the collisional system B5+ +H(1s)

is given. This may serve as a benchmark system for further developments of the code.
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Kurzfassung

Das Ziel dieser Arbeit war es, die numerische Implementierung der Atomic-Orbital Close-

Coupling Theorie zur Berechnung partieller Wirkungsquerschnitte von Ladungsaustauschprozes-

sen zu verbessern, damit auch Stoßsysteme mit schweren, hoch geladenen Ionen berechnet wer-

den können.

Solche Wirkungsquerschnitte sind für die Auswertung von Messdaten der Ladungsaustausch-

spektroskopie (”charge exchange spectroscopy”) von großer Bedeutung. Diese wichtige Methode

der Plasmadiagnostik nützt jenes sichtbare Licht, welches von angeregten Ionen im Plasma nach

einem Ladungsaustausch mit den Atomen eines neutralen Diagnostik- oder Heizstrahls emittiert

wird. Ionen in einem Plasma können entweder eine intrinsische Quelle haben oder künstlich

eingebracht werden. Die Methode der strahlenden Randschichtkühlung (”radiative plasma edge

cooling”) versucht die Plasmarandschicht durch inelastische Stöße der Plasmateilchen mit einem

künstlich eingebrachten Verunreinigungsgas zu kühlen, bevor diese auf die Wand des Reaktors

trifft. Für ITER wurde Argon als Kühlgas vorgeschlagen, daher sind Daten zu Stößen zwischen

Argon-Ionen und Wasserstoffatomen von besonderem Interesse.

Will man Argon im Rahmen der Atomic-Orbital Close-Coupling Methode beschreiben, so

muss man eine beachtliche Anzahl an Basiszuständen (in der Größenordnung von 103) berücksicht-

igen. Eine so große Basis birgt nicht nur eine größere Gefahr für numerische Fehler während der

Auswertung von Matrixelementen, sondern erhöht auch den Aufwand der Berechnung und die

Anforderungen an die Hardware enorm. In dieser Arbeit wurden daher aktuelle Grenzen der

numerischen Implementierung bei der Berechnung größerer Stoßsysteme, wie z.B. Ar18+ + H,

untersucht und es wurden Vorschläge erarbeitet, wie man diese Grenzen noch ausweiten kann.

Um potentielle Fehlerquellen in der numerischen Genauigkeit zu finden, wurde zunächst

die Berechnung der Matrixelemente welche die Wechselwirkungen zwischen den Stoßpartnern

beschreiben untersucht. Durch die Implementierung von genaueren mathematischen Funktionen

und das Einführen von quad-precision Zahlen für die komplexen Koeffizienten in der Berechnung,

ist es gelungen numerische Instabilitäten und Ungenauigkeiten stark zu reduzieren.

Der in dieser Arbeit besprochene Code wurde konzipiert um parallel auf großen Cluster-

Rechnern, wie etwa dem Vienna Scientific Cluster (VSC-2), zu laufen. Hat man eine große

Basis für die Berechnung, so generiert man riesige Mengen an Daten, die noch dazu während der

gesamten Rechnung auf den Nodes verfügbar sein müssen. Nun hat aber der Arbeitsspeicher

auf jedem Node nur eine begrenzte Größe. Es wurden daher Leitlinien entwickelt, wie man

die verfügbare Größe des Arbeitsspeichers möglichst effizient ausnützt. Zeitgleich werden auch

Vorschläge gemacht, wie man Leerläufe im Programm noch weiter reduzieren kann, um die

vorhandenen Rechenressourcen möglichst optimal zu nutzen.

Am Ende der Arbeit wird noch eine ausführliche quantitative und qualitative Analyse des

Stoßsystems B5+ +H(1s) durchgeführt. Dieses Stoßsystem kann bei zukünftigen Weiterentwick-

lungen des Codes als Benchmark-System herangezogen werden.
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Chapter 1

Introduction

One of the most challenging problems for current and future generations will be to secure a

sufficient supply of energy to meet the demands of an ever growing world population. While

several renewable energy sources such as wind or solar energy are constantly improved and have

proven to be a valuable part of a future energy mix, they still seem insufficient to fully substitute

fossil fuels on a larger scale. Nuclear fission could present a stable backbone of world energy

production, but due to the accidents in Chernobyl and more recently Fukushima in 2011 it is

becoming increasingly politically unwanted. In this context, nuclear fusion has reclaimed some

attention as a possible future source of energy. However, it has proven to be very hard to keep

the fusion plasma stable and to achieve the extreme temperature, pressure and charge density

needed in order for a controlled nuclear fusion to take place (see [1]).

There are multiple fusion experiments currently in operation, most notably the experiments

Joint European Torus (JET), which is operational in the UK since 1983 and ASDEX-Upgrade

running since 1991 near Munich in Germany. Both JET and ASDEX-Upgrade are so-called

tokamak reactors. The stellarator experiment Wendelstein 7-X aims at further developing and

testing an alternative concept to the more well-known tokamak reactors and will be finished in

2015.

Currently, most of the attention and financial effort is focussed on the large project ITER,

a tokamak being built in Cadarache in southern France. ITER has a total budget of roughly

15 billion euros (see [2], retrieved in Aug. 2013) financed by the European Union (EU), India,

Japan, China, Russia, South Korea and the United States and will be by far the largest fusion

experiment in the world. The construction of ITER is scheduled to be finished by 2022.

A lot of scientific research has been devoted to the study of the formation of a fusion plasma,

its confinement and also the behavior of impurities inside the plasma. Such impurities can either

be intrinsic (see [3]) or artificially induced (see [4]).

Intrinsic impurities mainly originate from sputtering of the plasma facing components, which

are basically the inner wall of the reactor and (only for a reactor using the tokamak principle)

a divertor plate where most of the heat load from the plasma is deposited. The most common

elements for these plasma facing components are Carbon, Beryllium and Tungsten (see [3]). The

wall and especially the divertor have to withstand an enormous heat load and particle flux from

the core plasma. If the peak power load deposited on the wall is too high, then erosion might

become too significant and the intrinsic impurities could extinguish the burning plasma (see [3]).

In order to reduce the burden on the plasma facing components and also to improve confine-
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1. INTRODUCTION

ment of the plasma, a technique called plasma edge radiative cooling (see [4]) using artificially

induced impurities was developed. In this method, an impurity gas (mainly Nitrogen, Neon or

Argon) is puffed into the plasma edge. The impurity ions form a highly radiative layer around

the plasma edge, absorb heat by inelastic collisions with plasma particles and then distribute

the power load more uniformly over the wall (see [4]). While it is sufficient to use Nitrogen as

an impurity gas in ASDEX-Upgrade, ITER will have to use Neon or even Argon for plasma

edge radiative cooling to be able to sufficiently reduce peak power loads. Since Argon has more

electrons which can be ionized, it forms a thicker layer around the plasma edge resulting in

better cooling properties in comparison to Nitrogen or Neon.

The diagnostic method charge exchange spectroscopy (CXS) (see [5]) makes use of electronic

transitions following a charge exchange (CX) reaction between impurity ions and particles from

a neutral heating or diagnostic beam in order to diagnose a plasma. Diagnosing usually in-

cludes, among other things, determining the density of the induced impurity ions, estimating

the velocity of plasma rotation and calculating the effective charge of the plasma as well as the

ion temperatures (see [5]). To be able to do all these calculations for the artificially induced

Argon gas at ITER, it is necessary to have accurate underlying atomic data for the partial cross

sections of a CX reaction (sometimes also referred to as CX excitation) like

Ar18+ +H → Ar17+(n, l)∗ +H+ ,

with Ar17+ being in an excited state (denoted by *) with quantum numbers (n, l).

After the CX reaction, the excited hydrogen-like Ar17+ ion will radiate light while its elec-

tron de-excites into lower energy levels. Since spectroscopic measurements using CCD cameras

are most sensitive in the visual range of the spectrum, it is advantageous to use transitions

which radiate light within this energy range. In the case of Ar17+, these are transitions between

higher n-shells, around n = 14 to n = 18.

This thesis discusses how partial cross sections for CX reactions including such high quantum

numbers n can be calculated. To this end, chapter 2 first briefly outlines the theoretical de-

scription of ion-atom collisions within the well established atomic-orbital close-coupling (AOCC)

theory before explaining the computational implementation of the theory into the parallel FOR-

TRAN code ”sic3ma”. Chapter 3 first lists some of the problematic issues when calculating

larger collisional systems in section 3.1. The main aspects under consideration in this chapter

are ways to improve the numerical accuracy of the calculations (sections 3.2 and 3.3) as well as

the computational performance of the code (section 3.4). Chapter 4 finally gives some detailed

results for the much smaller collisional system B5+ +H(1s). They can serve as benchmark re-

sults for any future changes to the code sic3ma, when trying to achieve the calculation of larger

collisional systems. The results and observations of this thesis lay the foundation and outline

the path to be followed towards implementing the calculation of larger collisional systems such

as Ar18+ +H.

Atomic units (~ = 1, e = 1, me = 1) are used throughout this entire thesis unless stated

otherwise. The computational results presented have been achieved using the Vienna Scientific

Cluster (VSC-2).
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Chapter 2

Calculating Ion-Atom Collisions

In this chapter, we want to describe the calculation of cross sections for ion-atom collisions.

Section 2.1 will deal with the AOCC theory, while section 2.2 will discuss the computational

implementation of the theoretical method in the parallel FORTRAN-code ”sic3ma”.

2.1 Atomic-Orbital Close-Coupling Theory

We consider a collision of a neutral projectile atom P (composed of an ionic core P+ and a

single electron e−) with a target ion T q+. To analyze this collisional system the close-coupling

description of atomic collisions (for more details refer to [6], [7]) is used.

At the beginning of our considerations, we can introduce a couple of approximations to

simplify the given problem:

1. For projectile energies above a few eV/amu, the deBroglie wavelength of the core is consid-

erably small in comparison to the region of interaction between target and projectile. The

movement of the core can thus be assumed to go along a classical trajectory, while the elec-

tron will still be described quantum mechanically. This gives a semiclassical formulation

of the problem. (compare [8], section 3.2)

2. In addition to that, the so-called impact parameter approximation will be used, where elas-

tic scattering of the core is neglected. At sufficiently high energies, the classical trajectory

of the core can be taken to be a straight line traversed at the constant speed v (see [9],

p.132). Introducing the impact parameter ~b as the vector of the closest distance between

the two cores along a given trajectory, the internuclear separation ~R at a given velocity ~v

can be written as (see [9], (3.167) in section 3.7)

~R(~v,~b, t) = ~vt+~b . (2.1)

The movement of the electron in the potential Vp(~rp) of the projectile core, respectively Vt(~rt)

of the target core, is described quantum mechanically by the Schrödinger equation

i
∂

∂t
Ψ(~r, t) = He(t)Ψ(~r, t) . (2.2)

The independent variables in this equation are the time t and the coordinate ~r of the electron.

The electronic Hamiltonian He in (2.2) is given by (see [10], (2.1) on p.7)

He(t) = −1

2
∇2
r + Vp(~rp(~r, t)) + Vt(~rt(~r, t)) , (2.3)

5



2.1. Atomic-Orbital Close-Coupling Theory 2. CALCULATING ION-ATOM COLLISIONS

where the vectors ~rp and ~rt refer to the coordinate system of the projectile or respectively the

target, whereas ~r refers to a chosen inertial system. Bransden and McDowell explain, that in

the impact parameter approximation, the cores are unaccelerated, so that any point on the

internuclear line, for example the mid-point, can be employed as origin, since all such points

define inertial frames (see [9], p.132). We choose the origin to be situated on the target. The

geometry of the collisional system can be seen in fig. 2.1.

T

P

e−
x

y

z

~v

~R

~b

~rt

~rp

Figure 2.1: Geometry of the collisional system in the impact parameter approximation: the

(x,z) collision plane is defined by the projectile velocity ~v and the target. ~b is the impact

parameter, ~R the internuclear separation vector. ~rt and ~rp are the position vectors of the active

electron in the coordinate system of the target center, respectively the projectile center. (graphic

from [8])

In the described ion-atom collision, the following reactions are possible (compare [9], p.39):

1. final state of the electron is equal to initial state of the electron:

P + T q+ → P + T q+

2. excitation:

P + T q+ → P ∗(n, `) + T q+

3. charge exchange:

P + T q+ → P+ + T (q−1)+(n′, `′)

4. ionization:

P + T q+ → P+ + T q+ + e−

In order to account for all these possible reactions, Fritsch and Lin explain that the motion of the

electron is constrained to a configuration space which is given by a finite set of basis functions

ψk(~r, t) with k = 1, ..., N . The time-dependent electronic wavefunction is then approximated by

the (truncated) expansion (see [10], p.7)

Ψ(~r, t) =
N∑
k=1

ak(t)ψk(~r, t) , (2.4)

6



2. CALCULATING ION-ATOM COLLISIONS 2.1. Atomic-Orbital Close-Coupling Theory

where ak(t) are time-dependent complex probability amplitudes for the occupation of a certain

state ψk. The value of the index k can be associated with a state on either the projectile P

or target T , depending on how many states are defined on the respective centers. Fritsch and

Lin continue to elaborate: Clearly, the decomposition (2.4) is introduced in order to reduce

the problem of determining the full electron wavefunction (as function of a continuum of values

for coordinate ~r) to the problem of determining a finite set of amplitudes ak(t) (see [10], p.8).

The states ψk have to sufficiently describe all possible reaction channels listed above. There

are a number of different basis sets that can be used, depending on the system, that needs

to be described. In the AOCC method, atomic orbitals are used to describe initial and final

states on both centers. There are also other techniques available. The molecular-orbital close-

coupling (MOCC) method, for example, uses molecular orbitals (for details refer to [10], section

3.2.1.), while for certain applications Sturmian basis functions ([10], section 3.2.3.) or Gaussian

orbitals ([11], section 2.6) may be more suited. In general, all basis sets have to meet some basic

requirements (see [10], p.7):

• The basis set should include the initial state of the electron and all significantly populated

final states.

• Intermediate states, which might interact with the initial or final states during the collision,

should also be included.

• The basis states should be easy to generate and allow for convenient evaluation of matrix

elements, which might be needed later on in (2.18).

Additionally, the movement of projectile and target poses some difficulties that have to be

considered: If we take a look at bound states on either target or projectile at infinite separations

R→∞, we can write them as (see [10], (3.1) in section 3.1):

φ̂Tk (~r, t) = φTk (~rT ) exp

(
i~vT · ~r −

i

2

∫ t

dt′~v2
T − iεTk t

)
φ̂Pk (~r, t) = φPk (~rP ) exp

(
i~vP · ~r −

i

2

∫ t

dt′~v2
P − iεPk t

)
,

(2.5)

where ~v(T,P ) is the velocity of the moving target/projectile and ε
(T,P )
k is the atomic energy of

the state k of the respective atom/ion:

H(T,P )φ
(T,P )
k = ε

(T,P )
k φ

(T,P )
k . (2.6)

The states in (2.5) obey the time-dependent Schrödinger equation(
i
d

dt
−H

)
φ̂T,Pk (~r) = 0 . (2.7)

The factor exp(i~vT,P~r − i
2

∫
dt′~v2

T,P ) in expression (2.5) accounts for the fact, that for R → ∞,

the electron is attached to either target or projectile and thus carries a linear momentum and a

kinetic energy. As Fritsch and Lin point out: Neglect of this factor leads to non-travelling states

that are not stationary at infinite separations (see [10], p.10), i.e.(
i
d

dt
−H

)
φTk (~r)exp(−iεTk t) = −i~vT · ∇φTk (~r)exp(−iεTk t) . (2.8)

7



2.1. Atomic-Orbital Close-Coupling Theory 2. CALCULATING ION-ATOM COLLISIONS

We do of course usually assume the target to be at rest, yielding ~vT = 0, which fixes the problem

at least for the states on the target but then ~vP 6= 0, since not both centers can rest in a common

coordinate system. To account for this motion of the center, which is ”dragging” the electron

wavefunction with it, Bates and McCarroll (see [6]) already proposed the use of various types of

so-called electron translational factors (ETF) f(~R,~r), yielding basis states consisting of product

functions

ψk(~r, t) = χk(~r, t) · f(~R,~r) , (2.9)

where χk(~r, t) denotes a ”normal” non-traveling basis function for the state k. Since we want to

be able to give a direct physical interpretation of the basis states in (2.4), the ψk(~r, t) at infinite

past or future have to represent bound states on either target or projectile, thus obeying the

boundary conditions

ψk(~r, t)
t→±∞−−−−−−→ φ̂T,Pk (~r) . (2.10)

To make this possible, the various ETF have to approach the proper linear momentum at large

seperations

f(~R,~r)
R→+∞−−−−−−−→ exp(i~v(T,P )~r) . (2.11)

The initial amplitude Ai and the transition amplitude Af for populating a given final state φf
are then simply given by the coefficients in expansion (2.4),

Ai = 〈φ̂i(−∞)|Ψ(−∞)〉 = ai(−∞), Af = 〈φ̂f (+∞)|Ψ(+∞)〉 = af (+∞) . (2.12)

The choice of a suitable basis set is not trivial. As Bransden and McDowell put it: In

applications of the model, the key decisions are (a) the nature of the basis functions, (...) (b)

the size of the basis, and (c) the type of translation factors to be employed (see [9], p.133). In

our calculations we model the atomic orbital basis states χk(~r, t) as Hydrogen wavefunctions,

when describing the hydrogen atom projectile and as so-called Rydberg states when describing

the wavefunction of the electron at the ion target. ETF are only applied to the projectile, while

the target is assumed to be at rest. A Rydberg state wavefunction for a given charge Z and

quantum numbers (n, l,m) in spherical coordinates (r, θ, φ) is given by (compare [12], p.436,

B.1.3, using the Bohr radius in atomic units a0 = 1):

|Z, n, l,m〉 =

√(
Z

n

)3 4 (n− l − 1)!

n · (n+ l)!
·
(2Z

n
r
)l
· e−

Z
n
r · L2l+1

n−l−1

(2Z

n
r
)
· Ylm(θ, φ) (2.13)

The definition (compare [12], p.435, B.1.2) of the associated Laguerre polynomials Lkp(x) in

(2.13) is given by 1:

Lkp(x) =

p∑
s=0

(−1)s
(p+ k)!

(p− s)!(k + s)! s!
xs (2.14)

1Note, that our definitions (2.13) and (2.14) differ slightly from the one used by Messiah in [12]. Messiah

defines the Laguerre polynomial Lkp(z) in (B.13) with an additional factor of (p + k)! in the numerator. For the

Laguerre polynomial L2l+1
n−l−1(x) used in (B17/2), we can see that this factor (p+ k)! = (n+ l)! and thus will be

compensated by the additional factor (n+ l)! in the denominator of (B.17/1), which we do not have in (2.13).
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2. CALCULATING ION-ATOM COLLISIONS 2.1. Atomic-Orbital Close-Coupling Theory

Having set up the suitable basis states to span the truncated Hilbert space in (2.4), we can

insert the expansion of Ψ into the Schrödinger equation (2.2), which yields(
i
∂

∂t
−He(~r, t)

) N∑
k=1

ak(t)|ψk(~r, t)〉 = 0 . (2.15)

We can now fix the amplitudes ak(t) by requiring the approximate wavefunction (2.4) to obey

the time-dependent Schrödinger equation within the space of basis functions (see [10], p.8), in

other words: We project an arbitrary basis state ψj from the left to get

〈ψj |
(
i
∂

∂t
−He(~r, t)

) N∑
k=1

ak(t)|ψk〉 = 0 , (2.16)

which, after performing the time derivation, yields the equation

N∑
k=1

〈ψj |ψk〉 i
d ak(t)

dt
=

N∑
k=1

〈ψj |
(
He(~r, t)− i

∂

∂t

)
|ψk〉 · ak(t) . (2.17)

In the above equation, one can identify the elements Sjk of the N ×N overlap matrix and the

elements Mjk of the N ×N coupling matrix as

Sjk = 〈ψj |ψk〉 and Mjk = 〈ψj |
(
He(~r, t)− i

∂

∂t

)
|ψk〉 . (2.18)

Both matrices consist of one-center and two-center parts. (compare [8], section 3.2) The

term ”one-center” implies that only states defined on the same center of impact are used in the

calculation of the respective matrix element, whereas ”two-center” indicates states on opposing

centers. The indices j and k of the matrices can be associated with either the target or the

projectile, depending on which basis states in (2.4) are involved. The basis sets are diagonalized

on each center separately leading to two independent orthonormal systems. After the diagonal-

ization the one-center overlap matrix elements form the unit matrix and the two-center overlap

matrix elements fulfill

SPT = S†TP . (2.19)

The indices PT indicate that the index j of the matrix corresponds to a state on the projectile,

while k corresponds to a target state. Put in a more descriptive way, the overlap and coupling

matrices look like

Ŝ =

(
1 STP

S†TP 1

)
M̂ =

(
MTT MTP

MPT MPP

)
. (2.20)

Using the fact that the states |ψ〉 in (2.18) are eigenstates of the total electronic Hamilton He

(2.3), as well as eigenstates on the respective centers T and P, the two-center coupling (TWC)

matrix elements can be further simplified

MTP = T 〈ψ|
(
He(~r, t)− i

∂

∂t

)
|ψ〉P = T 〈ψ|

−1

2
∇2 + VP︸ ︷︷ ︸
HP

+VT − i
∂

∂t

 |ψ〉P
= T 〈ψ|HP |ψ〉P︸ ︷︷ ︸

εP |ψ〉P

− T 〈ψ| i
∂

∂t
|ψ〉P︸ ︷︷ ︸

εP |ψ〉P

+ T 〈ψ|VT |ψ〉P

= T 〈ψ|VT |ψ〉P
MPT = P 〈ψ|VP |ψ〉T

(2.21)
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2.1. Atomic-Orbital Close-Coupling Theory 2. CALCULATING ION-ATOM COLLISIONS

The one-center coupling (ONC) matrix elements can be simplified in the same way by following

the steps in (2.21):

MTT = T 〈ψ|VP |ψ〉T
MPP = P 〈ψ|VT |ψ〉P

(2.22)

This gives rise to three different types of matrix elements that occur during the calculation:

1. two-center overlap matrix elements STP and SPT

P 〈ψ|ψ〉T = T 〈ψ|ψ〉†P

2. TWC matrix elements MTP and MPT

T 〈ψ| VT |ψ〉P and P 〈ψ| VP |ψ〉T

3. ONC matrix elements MPP and MTT

P 〈ψ| VT |ψ〉P and T 〈ψ| VP |ψ〉T

The involved potentials are simply given by the Coulomb potential V = Z/r of the respective

core, i.e. (using the charge ZP/T )

VP =
ZP
|~rP |

and VT =
ZT
|~rT |

, (2.23)

with |~rP | and |~rT | giving the magnitude of the position vector of the active electron in the co-

ordinate system of the projectile center, or target center respectively.

With the definitions (2.18) and writing all expansion coefficients (i.e. probability amplitudes)

ak(t) into the vector ~a

~a(t) =



a1(t)
...

ak(t)
...

aN (t)


, (2.24)

we can rewrite (2.17) into a matrix equation

i Ŝ
d

dt
~a = M̂ ~a (2.25)

d

dt
~a = −iŜ−1M̂︸ ︷︷ ︸

M̂eff

~a ,

where the effective matrix M̂eff is defined. These equations are the so-called coupled-channel

equations, which are a set of coupled ordinary differential equations of first order. To solve for the

probability amplitudes ak, (2.25) has to be integrated along the classical trajectory describing

the motion of the projectile core. As we have stated above, the basis functions ψi(~r, t) and

ψf (~r, t) represent the initial state i and a given final state f of the electron. The initial values

of the respective probility amplitudes are thus given by

ai(t = −∞) = eiα and af (t = −∞) = 0 , (2.26)

10



2. CALCULATING ION-ATOM COLLISIONS 2.1. Atomic-Orbital Close-Coupling Theory

with α being an arbitrary real phase. After the collision the transition probability is given by

Pi→f (~v,~b) = |af (t = +∞)|2 , (2.27)

yielding the integrated partial cross section as (see [10], (2.5) on p.8)

σi→f (~v) = 2π

∫ ∞
0

db bPi→f (~v,~b) . (2.28)

This of course means that for a given value of ~v, the amplitudes ak(t) have to be calculated for

all (relevant) values of ~b in order to be able to calculate the integral (2.28).
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2.2. Computational Implementation 2. CALCULATING ION-ATOM COLLISIONS

2.2 Computational Implementation

The AOCC theory described in section 2.1 is implemented in the parallel FORTRAN code

”sic3ma”. The current version of the code described in this section was mainly written by Igen-

bergs during her PhD thesis [8] and complemented by Wallerberger in the scope of his Master

thesis [11].

To obtain nl-resolved cross sections the probability amplitudes anl(b) for the population of

a given final state (at t = +∞) with quantum numbers n and l at a given impact parameter b

have to be calculated. Then the quadratic norm of these complex amplitudes anl(b) has to be

integrated over all impact parameters b, as described in (2.28). This can be done for various

impact velocities (i.e. impact energies of the projectile). The needed probability amplitudes

anl(b) can be obtained by solving the coupled-channel equation (2.25) for every given impact

parameter b. The calculation is started with an initial condition anl(b, t = −∞), but since we are

interested in the final amplitude anl(b, t = +∞), we need to solve the coupled-channel equation

step by step from t = −∞ to t = +∞. This is equivalent to calculating anl(b, t) along the core’s

straight classical trajectory, which is parameterized by r3. For each impact parameter b, there

is a different trajectory as can be seen in fig. 2.2. The projectile moves along the trajectory

with the constant given impact velocity v. In the computational implementation the trajectory

obviously does not stretch from −∞ to +∞, but from a reasonably distant point at negative

r3 to a reasonably distant point at positive r3. Additionally a finite mesh over all interesting

values of b and v is chosen.

b = b1

T

P

classical trajectory
of the core

R1

b1

r3

b = b2

T

P

classical trajectory
of the core

R2

b2

r3

Figure 2.2: Geometry for the code ”sic3ma” for two different values of b: The projectile core P

moves along its classical trajectory (parameterized by r3) with a constant given impact velocity.

In theory, the trajectory would be infinite but this is approximated by choosing some finite

maximum value rmax for the parameter r3. This yields a range for r3 of −rmax ≤ r3 ≤ +rmax .

Every value bi in the b-mesh yields a different trajectory and thus a different R for a given point

r3 on the trajectory.

To calculate anl(t) at every point along a given trajectory, the matrices M̂ and Ŝ need to

be known (in order to calculate the effective matrix M̂eff) at each of the trajectory’s points r3.
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2. CALCULATING ION-ATOM COLLISIONS 2.2. Computational Implementation

It is possible to use time symmetry and detailed balance [13] in order to get a relationship for

both matrices M̂ and Ŝ between points +r3 and points −r3 (see [8], p.28, section 4.2).

Mij(−r3) = (−1)li+mi+lj+mjMij(+r3) Sij(−r3) = (−1)li+mi+lj+mjSij(+r3) (2.29)

This means, the matrices only have to be calculated for half the trajectory and (2.29) can be

used to get the second half. Still, every impact parameter b gives a different trajectory which

is travelled through at different speeds for every impact velocity v and thus the elements of M̂

and Ŝ need to be calculated for all relevant values of r3, b and v. This yields a huge amount

of matrices, making parallel algorithms necessary. The code ”sic3ma” implements the AOCC

method described in section 2.1 in various separate steps (a very detailed description of this

implementation can be found in [8], chapter 4 and [11], chapter 3):

1. Creation of symbolic structures for the matrix elements

2. Evaluation of the matrix elements of M̂ and Ŝ

3. Calculation of the effective matrix M̂eff

4. Calculation of the probability amplitudes anl(b)

5. Calculation of the nl-resolved cross sections

These five steps will now be explained in more detail:

2.2.1 Step 1: Creation of Symbolic Structures for the Matrix Elements

As explained above, the elements of M̂ and Ŝ are calculated for all relevant values of r3, b and

v. To this end, they are stored in so-called symbolic structures, meaning that an equation rather

than a number is stored. Storing an equation makes it easy and fast to subsequently evaluate

the symbolic structures for all necessary points r3 on every trajectory (one trajectory for every

value of b) and for all needed values of v (this evaluation will be described in step 2). The

symbolic structures are calculated using the Fourier transform method originally suggested by

Shakeshaft [14], but in a more modern implementation [15]. With this method, the symbolic

structures are calculated and stored in one file for each matrix element separately. The files for

elements of the coupling matrix M̂ carry the extension ”-.rbM ixj”, with 1 ≤ i ≤ nstat and

1 ≤ j ≤ nstat, while elements of the overlap matrix Ŝ carry the extension ”-.rbS ixj”, with

1 ≤ i ≤ ntarg and j > ntarg. Only one quadrant of the overlap matrix Ŝ has to be calculated,

since the other quadrants can then be obtained using (2.19) and (2.20). To have the elements

written into files is beneficial, since the code ”sic3ma” is a parallel code and the size of all

these structures can become too large to efficiently broadcast them between parallel processors.

With all structures being stored in a file, they can be accessed later by different parallel cores,

whenever this is needed.

We now want to get a rough estimate of how much space these structures might take up for

larger calculations. Symbolic structures for all coupling matrix elements and for the two-center

overlap matrix elements (as seen in (2.20), the one-center overlap matrix elements simply give

the unit matrix) need to be calculated and stored. This yields n2
stat symbolic structures for the
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matrix elements of M̂ and ntarg · nproj for the matrix Ŝ, with ntarg and nproj being the number

of target (respectively projectile) states and nstat = ntarg +nproj being the total number of basis

states. This yields n2
stat + ntargnproj ≈ n2

stat symbolic structures in total. The average size of

such a structure is roughly 500 KB. To describe a large system like e.g. Ar17+ sufficiently, one

needs at least nstat = 103 basis states, which leads to an average size of 103 · 103 · 5 · 102 KB

= 5 · 102 GB.

In order to make the calculation of such huge amounts of symbolic structures efficient, Igen-

bergs has implemented an elaborate algorithm featuring an event dispatch loop that reduces

idle times to a minimum. The main processes (rank 0) tells the secondary processes (rank ≥
1) to calculate the symbolic structure for a specified matrix element. The secondary processes

perform the calculation, write a file with the symbolic structure, report back to the distributor

main rank, and receive a new assignment. This goes on until the symbolic structures for all

matrix elements have been calculated. (see [8], p.28, section 4.2)

The amount of parallel ranks that can be used in this step is basically unlimited, one must

however consider the phenomenon of parallel file I/O, where performance is heavily impaired

due to too many ranks simultaneously opening files, writing to files or reading from files. In

oder to at least partially circumvent this problem for the following step 2 in the calculation, the

files ”.rbM ixj” and ”.rbS ixj” are combined to one file per column of the matrices M̂ and Ŝ.

This means that all rbM-files and rbS-files with a given j are written into one single file, which

then carries the extension ”-.rbcj” (c for column), where 1 ≤ j ≤ nstat. The file ”.rbc1” then

holds the first column for the matrix M̂ , while the file ”rbc.ntarg + 1” holds the first column

of matrix Ŝ and column number ntarg + 1 of matrix M̂ . Combining the single rbM-files and

rbS-files into rbc-files is beneficial for reading those files in before evaluation in step 2, since only

nstat rather than nstat2 single files have to be read in.

2.2.2 Step 2: Evaluation of the Matrix Elements of M̂ and Ŝ

Once all the symbolic structures for the elements of M̂ and Ŝ are obtained by step 1, they

are then evaluated for all points on all given trajectories and for all impact velocities. Due

to the limited memory available on one single parallel process, it is not possible to store all

structures on a single rank as they can account for several GB (see estimation above). Hence,

the symbolic structures are distributed over all ranks using a column-wise distribution, where

each rank is only responsible for a subset of the rbc-files described above. It will be shown

in section 3.4.1, that a simple column-wise distribution will not suffice for larger systems and

a more optimized distribution of the symbolic structures over all available ranks has to be found.

After distributing all symbolic structures an elaborate mechanism for the evaluation is used,

where each rank is responsible for only its subset of the symbolic structures. The rank evaluates

its assigned matrix elements for all given values of b and v before continuing with step 3.

In the code step 2 and 3 are actually implemented together inside a loop over the parameter

r3, so that all necessary values are calculated. (see [8], section 4.2)
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2.2.3 Step 3: Calculation of the Effective Matrix M̂eff

In step 2 each rank evaluated a certain amount of symbolic structures for all values of b and v.

Once this is done, each rank is assigned a pair of (b,v) for which it will calculate the effective

matrix M̂eff. In oder to do so, the ranks need to ”collect” all evaluated matrix elements for their

assigned pair (b,v). This is achieved by an MPI broadcast scheme in the following way (see [8],

section 4.2):

1. Each rank has its subset of matrix elements evaluated for all possible pairs (b,v) and now

broadcasts those evaluated elements to the ranks responsible for each given pair (b,v).

2. Each rank keeps its evaluated subset of matrix elements for its own pair (b,v).

3. Each rank gradually receives all other subsets of evaluated matrix elements for its pair

(b,v), eventually having a complete matrix M̂ and one quadrant of the matrix Ŝ.

Then each rank first builds the complete matrix Ŝ using (2.19) together with (2.20) and then

subsequently calculates the effective matrix M̂eff

M̂eff = −iŜ−1M̂ (2.30)

by matrix inversion of Ŝ and matrix multiplication with M̂ . In the code this step is actually

combined with step 2, as has already been mentioned above. These two steps are then again

within a loop over every point r3 on the trajectory, making it possible to split the calculation

into several junks of values r3 for scheduling purposes on cluster computers.

In a realistic calculation there are 400 trajectory points r3 and on each of these 400 points

one matrix M̂eff is calculated for each pair (b,v). Roughly nv = 12 different impact velocities

v and nb = 24 impact parameters b will be used, which yields 288 matrices for each trajectory

point and 1, 152 · 105 matrices in total. Each matrix is written into a file. These files of course

take up a considerable amount of space on the hard disc. With an estimated 103 basis states,

each matrix is of size 103 x 103 and each matrix element is a complex*16 number, requiring

16 bytes, yielding 16 · 106 bytes per matrix file. The total required hard disc capacity is then

1, 152 · 105 · 16 · 106 ≈ 2 · 1012 byte ≈ 2 TB.

The amount of parallel ranks that can be used in step 2 and 3 are basically again unlimited,

however one must consider that during step 3 only those ranks assigned with a pair (b,v) will

calculate M̂eff, while all others (those with rank > nv · nb) will be idle. The optimal number of

parallel ranks would thus be nv · nb, provided that this number of ranks is sufficiently high to

accommodate all symbolic structures for step 2. If this is not the case and step 2 needs a higher

number of ranks to have enough memory for all structures (memory needs during step 2 will be

discussed in more detail in section 3.4.1), then one simply has to accept some idle time for all

those ranks not involved in step 3.

In the end the calculated matrices M̂eff are written into files, so that they are available in

step 4. The files carry the extensions ”-.l.k”, where l counts the pair (b,v) and k gives the
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number of the trajectory point r3. The number l counts in the following way:

l = 0 → (b1, v1)

l = 1 → (b1, v2)

... →
...

l = nv − 1 → (b1, vnv)

... →
...

l = nv · nb− 1 → (bnb, vnv)

(2.31)

2.2.4 Step 4: Calculation of the Probability Amplitudes anl(b, v)

The probability amplitudes are computed for every given impact parameter and every given im-

pact velocity by numerically integrating the coupled ordinary differential equations of first order

(2.25) stepwise along the given trajectory (there is one trajectory for every impact parameter

b, see fig. 2.2). To speed up the computation in this step, the code uses a simple parallel algo-

rithm. Similar to step 3, each rank is assigned a pair (b,v) and integrates along the trajectory

(defined by b) using its assigned impact velocity v. During the integration, all needed values

for the matrix elements of M̂eff are interpolated using the values calculated during step 3. It

is therefore very important for the values of the matrix elements to be continuous along the

trajectory (compare to section 4.3). The results of this step are probability amplitudes anl(b, v)

for every given b and v. (see [8], chapter 4)

The total number of parallel ranks therefore has to be nv · nb.

2.2.5 Step 5: Calculation of the nl-resolved Cross Sections

Following (2.28) this calculation is done by integrating |anl(b, v)|2 over all values of b, yielding

the nl-resolved cross section σnl(v) for a given impact velocity. Since this integration is signif-

icantly less complex than all previous steps of the computation, it can simply be done locally

using cubic splines (see [8], chapter 4).
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Chapter 3

Improvement of the Computation

This chapter will describe efforts to optimize the computational implementation with respect to

numerical accuracy as well as computational performance. These optimizations become neces-

sary when studying larger collisional systems. In this chapter, we focus on the system Ar18+ +H

as an example of such a large system.

Section 3.1 will first outline some of the limits of the current code ”sic3ma” and suggest

ways to push these limits further. Section 3.2 and section 3.3 are dedicated to the study and

improvement of the numerical calculation of the matrix elements (2.18). To identify and reduce

numerical instabilities in these calculations, a profound systematic study was conducted. As

discussed in section 2.1, the matrix elements are classified, depending on the states involved

in their computation, as one-center (will be discussed in section 3.2) and two-center elements

(treated in section 3.3). Several improvements could be achieved which pushed the sic3ma code’s

previous limitations.

Finally, section 3.4 will discuss hardware requirements for the calculations, computational

considerations and performance optimization.

3.1 Ways to Push the Limits of sic3ma

This section will give an overview over some of the limits and problems of the current imple-

mentation of sic3ma and suggest ways to overcome them. Section 3.1.1 starts by discussing the

problem of cancellation errors, while section 3.1.2 talks about the effect of changing the precision

of the involved numbers. Section 3.1.3 then outlines ways to get reference values for the matrix el-

ements and section 3.1.4 shows the improvement of the implementation of the Gamma Function.

In order to sufficiently describe a collisional system like Ar18+ + H, an appropriate basis

set has to be determined. While it is enough to have bound states up to n = 3 (to account

for excitation) and some unbound pseudo states (modeling ionization into the continuum) on

the Hydrogen center, it is necessary to include eigenstates for much higher n on the Argon ion.

The visible spectral lines of Ar17+ most suitable for CXS are n = 18 → 17, 17 → 16, 16 → 15

and 15 → 14. In order to realistically estimate the transition probabilities for de-excitation

from an initial state (e.g. n = 18) to a final state (e.g. n = 17), one has to consider that the

population of the initial state not only originates from a direct CX into this state, but also from

electrons de-exciting by cascade effects from higher n-shells into the initial state. It is therefore

advisable to include one or two higher n-shells than the initial state of interest. For example,
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if one would like to estimate the transition from n = 18 → 17, one should include states up

until n = 20 to account for cascade effects. Unfortunately, such high quantum numbers n pose

some computational difficulties. In her PhD thesis, Igenbergs therefore calculated the system

Ar18+ +H(1s) including only states up to n = 15 (see [8], section 5.6) on the Argon ion and the

so-called ”H19” basis expansion on the Hydrogen atom including Hydrogen states for 1 ≤ n ≤ 3

and a few unbound pseudo states (see [8], section 5.5). For higher values of n, the cross sections

did not compute to a reasonable value or the computation failed entirely, because the integra-

tion of (2.25) along the trajectory did not converge. The reason for these numerical stabilities

was soon suspected to be the evaluation of the matrix elements. When the matrix elements do

not evaluate to a reasonably correct value, neither can the cross sections or, even worse, the

computation fails completely, since numerical boundaries are hit.

3.1.1 Cancellation Errors and Various Precisions

Once source for errors in numerical evaluations are so-called cancellation errors (see [16], page

41, Bsp. 2.38). These occur, when a small value is calculated as a sum of very large numbers

with opposite signs. If these very big numbers are not accurate enough, then the result will be

wrong. As an example, one can take a look at the following summation:

100000004,226

−100000004,224

0,002

(3.1)

Here, the two large numbers have to be accurate to the last digits in order for the result to be

correct. If the accuracy is reduced by rounding the last digit, the result is already wrong by

almost an order of magnitude:

100000004,23

−100000004,22

0,01

(3.2)

To circumvent such errors, one possibility is to increase the precision (i.e. size of the memory)

for the involved numbers. A single precision number has a size of 4 bytes = 32 bits and can

store ≈ 7 digits. If the result of a summation like (3.1) is of the order 10−3, then terms with

alternating signs in the sum must not be greater then 103, otherwise the digits do not fit into

the 7 digits of a single precision number and the accuracy is lost as in the example (3.2). If one

increases the precision to a 8 bytes = 64 bits double precision number, one can store ≈ 15 digits

while a 16 bytes = 128 bits quadruple precision number can store ≈ 34 digits. In this case, the

terms in the sum may be as large as 1030. Of course not only the mere amount of digits (i.e.

type of precision) is of importance but also the accuracy of the involved calculations, as will be

seen in section 3.2.1 and section 3.2.5.

3.1.2 Changing the Precision of the Involved Numbers

Since a lot of sums of large numbers with alternating signs occur during the evaluation of the

matrix elements in sic3ma, cancellation errors are significant and it can thus be expected that
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changing the precision of the real numbers involved in the calculation might have a huge impact

on the quality and stability of the computation. To get an idea of the involved matrix elements

in the calculation of the system Ar18+ +H(1s), we quickly want to repeat them:

1. two-center overlap matrix elements:

〈Ar18+|H〉 = 〈H|Ar18+〉†

2. TWC matrix elements:

〈Ar18+| VAr |H〉 and 〈H| VH |Ar18+〉

3. ONC matrix elements:

〈Ar18+| VH |Ar18+〉 and 〈H| VAr |H〉

Using (2.23) the Coulomb potentials of the respective centers are given by

VH =
1

|~rH |
and VAr =

18

|~rAr|
. (3.3)

It is obvious, that the calculation of 〈H| VAr |H〉 will never reach the critical quantum number

around n = 15, since there are only states up to n = 3 included in the basis expansion on the

hydrogen center. All other elements do however include Argon states and since Argon should be

included up to n = 20, we can suspect errors to arise there. For a quick overview, where numer-

ical problems might occur, all three kinds of matrix elements were evaluated for some selected

states, namely Argon s-states |Z, n, l,m〉 = |18, n, 0, 0〉 with 1 ≤ n ≤ 26 and the Hydrogen 1s

state. The impact parameter b and the point on the trajectory r3 were arbitrarily chosen to be

b = 5 and r3 ≈ −5, yielding an internuclear distance |~R| =
√
b2 + r2

3 ≈ 7 (compare with the

geometry in fig. 2.2).

In the original implementation of sic3ma all real values involved in the evaluation of the

matrix elements were defined as double precision numbers. Since new versions of compilers sup-

porting quad (quadruple) precision numbers are available, implementing quad precision numbers

in the evaluation seems like a reasonable path to go forward. To see if this is indeed promis-

ing, quick evaluations were done using first single precision numbers and then double precision

numbers for the involved real numbers. If there is an improvement by changing from single to

double precision, it is justified to extrapolate this and expect an improvement also for a change

from double to quad precision.

In fig. 3.1, it can be seen how the change from single to double precision improves the

calculations of ONC elements 〈Ar(n, 0, 0)| VH |Ar(n, 0, 0)〉. When single precision is used, the

values only remain stable up to the element for n = 6, while when using double precision the

values still seem reasonable for the element with n = 12. In the same way, fig. 3.2 shows the

effect of changing from single to double precision for the two-center overlap matrix elements

in fig. 3.2(a) and for the TWC matrix elements in fig. 3.2(b). The limit for single precision

is n = 11, while the limit when using double precision is pushed as high as n = 20. Thus,

the calculation of two-center elements seems already good enough for double precision numbers.

However, it needs to be considered here that the calculations yielding fig. 3.1 and fig. 3.2 only

give a quick overview into where numerical problems might occur. They serve no purpose other

then to show that it is indeed justified to expect an improvement in the calculations when

changing the precision from double to quad precision.
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Figure 3.1: Calculation of ONC matrix elements 〈Ar(n, 0, 0)| VH |Ar(n, 0, 0)〉 for 1 ≤ n ≤ 16

and b = 5, r3 ≈ −5, R ≈ 7 (compare with geometry in fig. 2.2) using single and double precision

numbers. The dashed vertical lines show for which n the calculations start to become unstable

and yield wrong results. This limit is at n = 6 for single precision and at n = 12 for double

precision. When calculating the collisional system Ar18+ + H states up to n = 20 should be

included and thus this limit is not high enough. However, since it is pushed from n = 6 to

n = 12 when changing from single to double precision, implementing quad precision numbers

seems a reasonable path to further push the limit towards higher values of n.
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Figure 3.2: Fig. 3.2(a) shows the calculation of the two-center overlap elements

〈H(1, 0, 0)|Ar(n, 0, 0)〉 with n ≤ 26, while fig. 3.2(b) shows the TWC matrix elements

〈Ar(n, 0, 0)| VAr |H(1, 0, 0)〉 for n ≤ 25. All results were calculated using single and double

precision numbers and the values b = 5, r3 ≈ −5, R ≈ 7 (compare with geometry in fig. 2.2).

The dashed vertical lines show for which n the calculations start to become unstable and yield

wrong results. In both figures, the limit is at n = 11 for single precision and at n = 20 for

double precision.
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Furthermore, it remains to be determined, which of the steps in calculating the matrix el-

ements (as they are described in section 2.2) need to be conducted in which precision. Is it

enough to calculate the symbolic structures (step 1) using quad precision or does the evaluation

of the symbolic structures for given values of b, r3 and v itself (step 2) also require a higher

precision? Also, in which precision do the symbolic structures have to be stored, before they

are used to evaluate the matrix elements? As discussed in section 2.2, the symbolic structures

for a system like Ar17+ need ≈ 102 GB and having to store them in quad precision instead of

double precision would double the required amount of space. To answer these questions, a more

detailed and systematic study on the effects of changing the precisions are given in section 3.2.4.

3.1.3 Compare Calculated Results to Reference Values

The first quick evaluations of matrix elements, like the ones shown in fig. 3.1 and fig. 3.2, simply

served the purpose of assessing whether numerical instabilities occur and where they might be

encountered. Even though the correct values for the matrix elements in fig. 3.1 and fig. 3.2 are

unknown, it is safe to assume that all values larger then ≈ 10 are certainly wrong. In addition,

it seems wrong that the values for higher n suddenly differ so significantly from those for lower

n. Still, for a more detailed analysis and to actually check the calculated values, it is necessary

to find other means of evaluating the matrix elements.

There were two ways used to calculate reference values: using the computational software

program ”Mathematica” and making an analytical calculation. The analytic calculation is done

using a subroutine called ”onc coupling” (explained in more detail in section 3.2.1), which is

however limited to ONC matrix elements involving only s-states. Mathematica on the other

hand is in principal able to calculate all needed matrix elements to arbitrary accuracy, as long

as one figures out the geometrical description of the two centers in a common coordinate system.

Unfortunately, the calculation in mathematica is far too slow to actually use it in the compu-

tation. It takes mathematica in the order of 102 seconds to evaluate a typical matrix element,

while the implementation in sic3ma needs in the order of 10−2 seconds.

3.1.4 New Implementation of the Gamma Function

In the existing code sic3ma, the normalized lower incomplete gamma function P (s, x) and the

gamma function Γ(s) were implemented following the Numerical recipes (see [17], p. 160). The

two functions P (s, x) and Γ(s) are defined as:

P (s, x) =
1

Γ(s)

∫ x

0
dt ts−1e−t with Γ(s) =

∫ ∞
0

dt ts−1e−t (3.4)

It turned out, that the precision of the implementation of the gamma function was not sufficient

to avoid cancellation effects becoming significant and since Γ(s) is used to normalize P (s, x),

the inaccuracies were passed on. Thus, a more precise implementation of Γ(s) was needed. If

the gamma function’s argument is an integer value n, then Γ(n) can easily be calculated as

Γ(n) = (n− 1)! , ∀ n ∈ N (3.5)

The occurring values of s in the calculation of (3.4) are in fact always integer values. In ad-

dition to that, the implementation of the normalized lower incomplete gamma function actually
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did not use Γ(n) to normalize the value, but the natural logarithm ln[Γ(n)]. Using the definition

(3.5) and the well known relation ln(a · b) = ln a+ ln b, the logarithm of the gamma function for

integer arguments can easily be calculated:

ln
[
Γ(n)

]
= ln

[
(n− 1)!

]
= ln

[
(n− 1) · (n− 2) · ... · 3 · 2

]
=

=
[

ln(n− 1) + ln(n− 2) + ... + ln 3 + ln 2
]

=

n−1∑
i=2

ln i

(3.6)

The above result was implemented to calculate the logarithm of the gamma function as a sum

of logarithms of integer values and this enormously improved the accuracy of ln[Γ(n)] and

subsequently the normalized incomplete gamma function as seen in table 3.1. For comparison

the values were also calculated with Mathematica.

x=11.0453610171872607742109138433443

s Mathematica new P (s, x) old P (s, x)

14 0.22292622186022405 0.22292622186022405 0.222926221 90685377

13 0.31627727947036229 0.31627727947036229 0.316277279 53626034

12 0.42614817885005818 0.42614817885005818 0.426148178 93822726

11 0.54551510497449724 0.54551510497449724 0.54551510 508613021

10 0.66439181577875837 0.66439181577875837 0.66439181 571117034

9 0.77201773277620342 0.77201773277620342 0.7720177327 3131158

8 0.85971366697606819 0.85971366697606819 0.8597136669 4929352

7 0.92323060159751117 0.92323060159751117 0.9232306015 8347947

6 0.96348447303351467 0.96348447303351467 0.9634844730 2723372

5 0.98535095872286390 0.98535095872286390 0.98535095872 055467

4 0.99524945169893033 0.99524945169893033 0.995249451698 27295

Table 3.1: Improving the accuracy of the implementation P (s, x) of the normalized lower

incomplete gamma function. The new implementation agrees with the exact solution from

mathematica up to the 33rd digit (not shown here, as there is not enough space). The old

implementation on the other hand only agrees up to the 10th digit, as indicated by the bold

digits in the last column. Such a low accuracy is of course quite problematic as far as cancellation

errors are concerned.

The new P (s, x) agrees with the exact solution from mathematica up to the 33rd digit (not

shown here for space reasons), which are all available digits for a quad precision number. Thus

it is as precise as possible. However, the old implementation only agrees up to the 10th digit (as

indicated by the bold digits in the last column), which is by far not enough to avoid cancellation

errors.
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3.2 One-center Coupling Matrix elements

In this section we will focus on the improvement of calculating ONC matrix elements, where

states on the center A couple to the potential of center B. The centers A and B can then be

substituted with either the target or the projectile, depending on which matrix element is of

interest. The general form of such elements, which are always given by real numbers, is the

following:

A〈φα| VB |φβ〉A = A〈ZA, nα, lα,mα|
ZB
|~rB|

|ZA, nβ, lβ,mβ〉A (3.7)

A

B

e−

x

y

z

r3

~R

b

~rA

~rB

γ

Figure 3.3: The geometry of ONC matrix elements. In the given considerations, the elements

are calculated using states on center A and the potential from center B. Everything is expressed

in terms of spherical coordinates (r, θ, φ) in coordinate system A. The element is thus given by

A〈ZA, nα, lα,mα| ZB
|~rA−~R|

|ZA, nβ, lβ,mβ〉A.

From very simple geometric considerations in fig. 3.3, we can see that ~rB = ~rA − ~R and can

thus express the matrix elements only in terms of coordinates on center A.

Mαβ = A〈ZA, nα, lα,mα|
ZB

|~rA − ~R|
|ZA, nβ, lβ,mβ〉A (3.8)

There are various ways to calculate Mαβ. An analytical calculation for the special case when

only s-states are involved is described in section 3.2.1, while section 3.2.2 elaborates how refer-

ence values can be obtained using mathematica. Section 3.2.3 then explains the implementation

within the code ”sic3ma”. In section 3.2.4, it is determined which precision is required for the

individual steps in the calculation and section 3.2.5 finally summarizes the achieved improve-

ments and discusses the current limits of calculating ONC matrix elements using ”sic3ma”.

3.2.1 Analytical Calculation for s-states

In the special case that both states in (3.8) are s-states (i.e. lα/β = mα/β = 0), the ma-

trix element can be calculated analytically. This calculation is implemented in the subroutine

”onc coupling” and will be used to obtain reference values and compare those values to results

given by sic3ma as well as calculations done with mathematica. The calculation is only briefly
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described here, for more detail refer to Appendix A.

Spherical coordinates on center A are chosen, i.e. ~rA = ~rA(r, θ, φ) and ~R = ~R(r, θ, φ). We

then follow the steps taken in [18] (section 3.3) and first expand the s-states |φα〉 and |φβ〉 into

so-called Slater Orbitals in the following way (see [18], eq.(3.3.4)):

|φα〉 = |ZA, nα, 0, 0〉 =
∞∑
i=1

Nα
i r

aαi e−b
α
i r · Y00

|φβ〉 = |ZA, nβ, 0, 0〉 =
∞∑
j=1

Nβ
j r

aβj e−b
β
j r · Y00

(3.9)

Here r denotes the radial distance, N
α/β
i/j are normalization coefficients, a

α/β
i/j and b

α/β
i/j are co-

efficients determining the radial shape of the wavefunction and Y00 = 1/
√

4π is the spherical

harmonic for s-states. We also expand VB using Legendre-Polynomials Pk and the angle θ

between the two vectors ~rA and ~R (see [18], eq.(3.3.12)):

VB =
ZB

|~rA − ~R|
=

{
ZB
r

∑∞
k=0

(
R
r

)k
Pk(cos θ), r > R

ZB
R

∑∞
k=0

(
r
R

)k
Pk(cos θ), r < R

(3.10)

The expansions (3.9) and (3.10) are then inserted into (3.8) and some orthogonality relations 1,

as well as the lower incomplete gamma function γ(s, x) and the upper incomplete gamma function

Γ(s, x) are used. The incomplete gamma functions are defined as:

γ(s, x) =

∫ x

0
dt ts−1e−t

Γ(s, x) =

∫ ∞
x

dt ts−1e−t
(3.11)

This finally gives the expression

Mαβ = ZB ·
∑
ij

Nα
i N

β
j

(
1

R

1

gh1
γ(h1, R · g) +

1

gh2
Γ(h2, R · g)

)
, (3.12)

where h1 = (aαi +aβj + 3), h2 = (aαi +aβj + 2) and g = (bαi + bβj ). The coefficients N
α/β
i/j , a

α/β
i/j and

b
α/β
i/j need to be determined by comparing the expansions in (3.9) with the general expression of

a hydrogen-like wave function in (2.13).

Equation (3.12) is quite easily evaluated, provided one has highly accurate incomplete gamma

functions. The needed functions (3.11) are implemented in the subroutine as

γ(s, x) = Γ(s) · P (s, x)

Γ(s, x) = Γ(s) ·
[
1− P (s, x)

]
,

(3.13)

1 Using the polar angle θ of the coordinate system on center A in (3.10) is only possible, because we are dealing

with s-states on center A. Only then are the states independent of the angles θ and φ and we can turn the z-axis

of the coordinate system in fig. 3.3 in alignment with ~rA (see fig. A.1). Then we can identify the angle between

~rA and ~R with the polar angle θ of the spherical coordinates on center A. If the states were not s-states and we

could not turn the z-axis, we would have to use a different angle θ′ as the angle between the vectors ~rA and ~R

and the entire calculation would not be possible since the orthogonality relations would not be applicable. For

further detail see APPENDIX A.
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where the normalized lower incomplete gamma function P (s, x) and the gamma function Γ(s)

for integer values of s were defined in (3.4) and (3.5) to be:

P (s, x) =
1

Γ(s)

∫ x

0
dt ts−1e−t

Γ(s) = (s− 1)! , s ∈ N
(3.14)

This means that in fact only Γ(s) and subsequently P (s, x) are calculated and then used to

determine γ(s, x) and Γ(s, x) according to (3.13). The implementations of both P (s, x) and

Γ(s) were explained in section 3.1.4, where it was already mentioned that cancellation errors

might occur if P (s, x) is not accurate enough. As is shown in fig. 3.4, this is exactly what

happens within the sum in (3.12).
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Figure 3.4: The effects of different implementations (see section 3.1.4) of the normalized

lower incomplete gamma function P (s, x) on the calculations in the subroutine onc coupling.

When a less accurate implementation is used, cancellation errors occur within the sum in (3.12)

and lead to obvious numerical instabilities above n = 12. With the new implementation these

instabilities vanish and the results calculated by the subroutine onc coupling agree perfectly with

reference values calculated by mathematica (mathematica implementation see section 3.2.2).

The calculations were done for the arbitrary value R ≈ 7.

3.2.2 Mathematica Implementation

In this section we briefly outline the mathematica calculation, for detailed mathematica codes

refer to Appendix B. The values of the elements (3.8) are calculated by integrating in spherical

coordinates (r, θ, φ) on center A. Thus we need to express the potential VB = ZB
|~rB | from center

B in terms of (r, θ, φ). From very simple geometric considerations in fig. 3.3, we already learned
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that ~rB = ~R− ~rA. We can easily give ~rA in terms of (r, θ, φ):

~rA(r, θ, φ) =

 r sin θ cosφ

r sin θ sinφ

r cos θ

 (3.15)

We still need ~R as ~R(r, θ, φ). The angle γ between the z-axis on center A and the vector ~R is

given by

γ = arcsin
|~b|
|~R|

. (3.16)

This angle γ is the polar angle θ in the coordinate system on center A. Since our collision only

takes place in the x-z plain, we can set the azimuth angle φ = 0 for the vectors ~R and ~rA.

~R(r, θ, φ) =

 R sin γ

0

R cos γ

 (3.17)

The potential VB in terms of (r, θ, φ) is then given by

VB(r, θ, φ) =
ZB
|~rB|

=
ZB

|~R− ~rA|
=

ZB∣∣∣∣∣∣∣
 R sin γ

0

R cos γ

−
 r sin θ

0

r cos θ


∣∣∣∣∣∣∣ (3.18)

We now express the states |ψ〉A in terms of (r, θ, φ), compare to (2.13)

|ψ〉A = |ZA, n, l,m〉 = Rnl(ZA, r) · Ylm(θ, φ)

A〈ψ| = 〈ZA, n, l,m| = Rnl(ZA, r) · Y ∗lm(θ, φ)
(3.19)

This finally yields the general expression of the integral Mαβ:

Mαβ =

∫ ∞
0

r2dr

∫ π

0
sin θdθ

∫ 2π

0
dφ Rnαlα(ZA, r) · Y ∗lαmα(θ, φ) ×

× VB(r, θ, φ) ·Rnβ lβ (ZA, r) · Ylβmβ (θ, φ)

(3.20)

Equation (3.20) can then be solved by Mathematica. Check with Appendix B for Mathematica

codes.

3.2.3 sic3ma Implementation

The code ”sic3ma” implements all matrix elements using a method proposed by Shakeshaft [14]

which was implemented in a more modern version by Wallerberger [15]. This is described in

more detail in Wallerberger’s Master Thesis (see [11], chapter 3).

The method uses the possibility to expand the involved state on center A/B in powers of

rA/B, in terms of the form (~rA/B)
~l (this notation will be introduced later in (3.24)) and an

exponential factor exp(αA/B · rA/B). This expansion can be seen in (3.25). The potential

V (R, rA, rB) is also expanded in powers of rA/B, terms of the form (~rA/B)
~l and an exponential
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phase exp[i (~a~rA +~b~rB)], which can be seen later on in (3.26). All occuring matrix elements can

then be described by a general Shakeshaft exchange integral I(n1,~l1, n2,~l2) (see [14]), which is

of the form:

I(n1,~l1, n2,~l2) =

∫
d3rA rn1−2

A rn2−2
B (~rA)

~l1(~rB)
~l2 exp (i~a~rA + i~b~rB − crA − drB) (3.21)

We now want to see, how (3.21) can be used to express a ONC matrix element. The basic

form of a hydrogen-like wavefunction (2.13) is given by

|φ〉 = |Z, n, l,m〉 = Nnl ρ
l e−ρ/2 L

(2l+1)
n−l−1 Ylm , (3.22)

where Nnl is a normalization constant and ρ = 2Zr/n is the reduced radius in atomic units. As

was done in (3.9), the radial part of (3.22) can be expressed in terms of slater orbitals, while

the spherical harmonics Ylm may be written in Cartesian coordinates as

Ylm(~r) = r−l
∑
i

Ci · (~r)
~li with li,1 + li,2 + li,3 = l , (3.23)

where we introduced vector powers defined as follows

(~r)
~l = rl11 r

l2
2 r

l3
3 = xl1yl2zl3 (3.24)

to shorten the notation. The wavefunction (3.22) then takes the following form (see [11], (A.1)

on page 69):

〈~r |φ〉 = |α, n,~l 〉 = e−αr
∑
i

χi r
ni−2(~r)

~li (3.25)

The potential is assumed to be radial-symmetric and is expanded as

V (r) =
∑
i

ai r
ρ̃i exp(−fir) . (3.26)

Using (3.25) and (3.26), the one-center coupling matrix elements can be written as

A〈φ1|VB|φ2〉A = A〈α, n,~l |VB|β,m,~k 〉A =

∫
d3rA

A〈α,n,~l|︷ ︸︸ ︷
e−αrA

∑
p

χ∗pr
np−2
A (~rA)

~lp ×

×
∑
i

ai r
ρ̃i
B exp(−firB)︸ ︷︷ ︸
V (rB)

· e−βrA
∑
q

ξq r
mq−2
A (~rA)

~kq

︸ ︷︷ ︸
|β,m,~k〉A

=
∑
p,q,i

χ∗pξqai

∫
d3rA r

np+mq−4
A rρ̃iB · (~rA)

~lp+~kq exp (−(α+ β)rA − firB) .

(3.27)

By comparing the expression (3.27) for a one-center coupling matrix element to the form of a

general exchange integral in (3.21), we can see that the one-center coupling matrix element can

be written as

A〈φ1|VB|φ2〉A =
∑
p,q,i

χ∗pξqai · I(np +mq − 2,~lp + ~kq, ρ̃i + 2,~0) , (3.28)
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and also that c = α + β, d = fi as well as ~a = ~b = 0. Shakeshaft has shown, that the integral

I in (3.28) can be simplified to a one dimensional integral. Using this simplification in (3.28)

yields the expression

A〈φ1|VB|φ2〉A =
∑
i

aiR
ρiRφi1 R

ψi
3

∫ 1

0
dy
√
yσiexp(−cR√y) , (3.29)

where R denotes the internuclear distance, R1 = b gives the impact parameter and R3 = r3

gives the point on the trajectory. Making a variable substitution u = cR
√
y finally gives the

following sum for the ONC matrix element (for more detail refer to [11], section 3.1.3):

A〈φ1| VB |φ2〉A =
∑
i

2aiΓ(σi + 2)

cσi+2
Rρi−(σi+2)Rφi1 R

ψi
3︸ ︷︷ ︸

= Ωi

·P (σi + 2, cR) (3.30)

The symbolic structures of ONC matrix elements are implemented in the code sic3ma as a

Fortran type called ”coulombint”. This type includes the matrix elements (3.29) as a polynomial

in 4 variables, namely
√
y,R,R1, R3. In step 1 of the implementation (see section 2.2), such

a ”coulombint” is produced and stored into files for every matrix element. In the subsequent

evaluation of the matrix elements (step 2), the values of the variables are inserted and the

coefficient Ωi of the resulting polynomial (which has no more variables then) is multiplied with

the normalized lower incomplete gamma function P (σi+ 2, cR) = P (s, x) for every term i in the

sum (3.30).

It is here, where cancellation errors may occur and numerical instabilities similar to the ones

seen in fig. 3.4 may appear. Since the coefficients Ωi include the gamma function Γ(σi+2), they

become very large numbers up to order 1012, while the value of the normalized lower incomplete

gamma function P (s, x) always stays between 0 and 1, as the name normalized suggests. The

final result A〈φ1| VB |φ2〉A is of order 10−2, which means that the accuracy of P (s, x) has to be

at least to the 14th digit in order for the result to be calculated correctly (compare section 3.1.4).

This was not the case with the old implementation of P (s, x) (compare table 3.1) and numerical

instabilities can in fact be observed in fig. 3.5.

3.2.4 Precision Scenarios

Besides the accuracy of the function P (s, x), the precision of the involved coefficients is of major

importance and has a huge impact on the numerical stability of the calculations. It is therefore

necessary to determine, which precision is required for each step of the calculations. The critical

steps are (see more detail in section 2.2) creating the symbolic structures (step A), writing them

into files (step B) and then reading the symbolic structures and evaluating the matrix elements

(step C). To determine which precision is required for each of these steps, four different scenarios

where calculated:

• scenario 8 - 8 - 8: This is the old version of the code. Everything is calculated using

only double precision numbers. This scenario is only used as a reference to the old results.

• scenario 16 - 8 - 8: The symbolic structures are created in quad precision (16 bytes

number), then stored in files as double precision (8 bytes) numbers and also read in and

used to evaluate the matrix elements in double precision.
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• scenario 16 - 8 - 16: The creation of the symbolic structures is done in quad precision,

but they are stored as double precision numbers. Then there is a cast from double to

quad precision after reading the structures and the evaluation is again conducted in quad

precision.

• scenario 16 - 16 - 16: Every single step A to C is done in quad precision.

An overview over the calculated scenarios is given in the following table:

Precision Scenarios

8 - 8 - 8 16 - 8 - 8 16 - 8 - 16 16 - 16 - 16

step A double precision quad precision quad precision quad precision

(producing) (8 bytes) (16 bytes) (16 bytes) (16 bytes)

step B double precision double precision double precision quad precision

(writing) (8 bytes) (8 bytes) (8 bytes) (16 bytes)

step C double precision double precision quad precision quad precision

(evaluating) (8 bytes) (8 bytes) (16 bytes) (16 bytes)

The results of the calculation for all four scenarios compared to reference values calcu-

lated by mathematica and onc coupling can be seen in fig. 3.5. The ONC matrix elements

〈Ar(n, 0, 0)|VH |Ar(n, 0, 0)〉 were calculated for the same internuclear distance R as in sec-

tion 3.1.2, namely R ≈ 7. Since scenario 8-8-8 is basically the old version of the code, where

everything is calculated using double precision numbers, it is obvious that this scenario only

gives reasonable results up to n = 12 (this limit is indicated by the solid vertical line in fig. 3.5).

The same limit could already be observed in fig. 3.1.

However, changing the precision from double to quad precision does improve the calculations

considerably. The calculated values are still not correct and there are obviously numerical

instabilities above n = 12, as the values oscillate around the reference values. Still, in contrast

to scenario 8-8-8 the results at least remain within a few orders of magnitude around the reference

values even far beyond n = 12. Scenario 16-8-8 yields roughly correct values up until n = 24,

while scenarios 16-8-16 and 16-16-16 reach n = 25, before the values grow up to order ≈ 106 at

n = 30 in all three scenarios. This approximate limit at n = 25 (after which the values grow

enormously large) is indicated by the dotted vertical line in fig. 3.5.

Seeing as there are no considerable differences between all three scenarios involving quad

precision numbers, one might assume that the calculation of ONC matrix elements only requires

step A to be conducted in quad precision, while all other steps in the calculation may be done

using double precision numbers. When taking a closer look though, one can see that scenarios

16-8-16 and 16-16-16 show a slightly better performance, since their limit is at n = 25, while

scenario 16-8-8 only manages the limit n = 24. It must also be considered that the calculations

shown in fig. 3.5 are conducted for R ≈ 7 and there is a chance for problems to occur at higher

values of R. In addition to that, we will see in section 3.3.3, that two-center matrix elements

are only calculated correctly when using scenario 16-16-16. For these reasons and simply to be

on the safe side, it was chosen to do all calculations using scenario 16-16-16.
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Figure 3.5: Fig. 3.5 shows the investigation of the four different scenarios compared to reference

values (calculated by mathematica and independently also by onc coupling). The ONC matrix

elements 〈Ar(n, 0, 0)|VH |Ar(n, 0, 0)〉 were calculated for the arbitrary value R ≈ 7. Scenario

8-8-8 only gives reasonable results up to n = 12 (indicated by the solid vertical line). All other

scenarios remain within a few orders of magnitude around the mathematica reference values up

until n = 24 in case of scenario 16-8-8 and n = 25 for scenarios 16-8-16 and 16-16-16. This limit

is indicated by the dotted vertical line at n = 25. However, there are still considerable numerical

instabilities above n = 12 as the values oscillate around the reference values.
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Figure 3.6: Fig. 3.6(a) shows the final improvements of the calculation of the ONC matrix

elements 〈Ar(n, 0, 0)|VH |Ar(n, 0, 0)〉. The internuclear distance was chosen to be R ≈ 7. It can

be seen that by changing to quad precision and using a new implementation of the normalized

lower incomplete gamma function P (s, x), the limit of sic3ma could be pushed from previously

n = 12 to n = 24, making it possible to include a lot more states than before. As is shown in

fig. 3.6(b), similar improvements could be achieved for the elements 〈Ar(n, 1, 0)|VH |Ar(n, 1, 0)〉
involving p-states on the Argon center. Making the same changes in the code, the previous limit

at n = 12 could even be pushed as far as n = 25. For elements involving p-states there are only

mathematica reference values available, since onc coupling only works for s-states.
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3.2.5 Achieved Improvements

Now that it is determined to use scenario 16-16-16, the calculations can be further improved and

refined. As seen in fig. 3.5, the values of the calculated ONC matrix elements show considerable

instabilities above n = 12 even when using quad precision numbers during all involved steps

(scenario 16-16-16). These instabilities are produced by cancellation errors in the sum (3.30)

during the evaluation of the matrix elements due to an insufficiently accurate normalized lower

incomplete gamma function P (s, x) (compare to section 3.1.4 and section 3.2.3). A very similar

effect was already observed for the calculations of the subroutine onc coupling in fig. 3.4.

The improvements of the results when using the new implementation of P (s, x) are shown

in fig. 3.6. Using the same internuclear distance R ≈ 7 as before, the ONC matrix elements

involving s-states on the Argon center 〈Ar(n, 0, 0)|VH |Ar(n, 0, 0)〉 were calculated in fig. 3.6(a),

while fig. 3.6(b) shows the calculation of elements involving p-states on the Argon center

〈Ar(n, 1, 0)|VH |Ar(n, 1, 0)〉. In both cases, numerical instabilities vanish when using the new

implementation of P (s, x) and the limits could thus be pushed from n = 12 (full vertical lines in

the respective figures) to n = 24 for s-states and n = 25 for p-states. Fig. 3.6(b) also shows that

the numerical instabilities when using the old P (s, x) are in general smaller for matrix elements

involving p-states.
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3.3 Two-Center Matrix Elements

In this section, we will investigate the calculation of two-center overlap and TWC matrix ele-

ments. Both elements involve an integral over states defined on two different centers. Fig. 3.7

shows the geometry for a two-center system.

A

B

e−

~R

r

r′

r3
~v

b

γ

θ

θ′

Figure 3.7: The geometry for TWC matrix elements. The z-axis of center A was turned to

be in alignment with ~R, while the z-axis of center B was turned to be antiparallel to ~R. The

coordinate system on center A is then determined by (r, θ), while the coordinate system on

center B is determined by (r′, θ′). It is then possible to use the shown general triangle A-B-e−

to express the coordinates (r′, θ′) on center B via the coordinates (r, θ) from center A, i.e. to

obtain the functions r′ = r′(r, θ) and θ′ = θ′(r, θ). The collisional geometry is also shown, where

b is the impact parameter, ~v is the impact velocity and r3 defines the point on the trajectory.

Obviously, one has to deal with coordinates (r, θ, φ) on center A and coordinates (r′, θ′, φ′)

on center B. The TWC matrix elements have the general form

Mαβ = A〈φα(r, θ, φ)| VA(r, θ, φ) |φβ(r′, θ′, φ′)〉B

= A〈ZA, nα, lα,mα|
ZA
|~rA|

|ZB, nβ, lβ,mβ〉B ,
(3.31)

while the two-center overlap matrix elements are given by

Sαβ = A〈φα(r, θ, φ)|φβ(r′, θ′, φ′)〉B
= A〈ZA, nα, lα,mα|ZB, nβ, lβ,mβ〉B

(3.32)

Centers A and B may be substituted with either the target or the projectile to obtain the wanted

matrix element.

Section 3.3.1 will describe how reference values can be obtained from Mathematica, sec-

tion 3.3.2 explains how the matrix elements are implemented in the code sic3ma, before sec-

tion 3.3.3 finally explores which precision scenario should be used during the calculations and

also shows the achieved improvements for the calculation of two-center matrix elements.
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3.3.1 Mathematica Implementation

To use Mathematica for evaluating the two-center matrix elements, we want to solve the integral

on center A in spherical coordinates (r, θ, φ). To this end, we need to find the relations between

the coordinate system on center B and the coordinate system on center A. For reasons of

simplicity, we restrict these considerations to matrix elements, where only s-states are involved.

In this case, everything is independent of the angle φ (which we can set to zero) and we may

turn the z-axis of center A in line with ~R, while the z-axis of center B is turned to be antiparallel

to ~R. Taking a look at the triangle in fig. 3.7, we can get θ′ = θ′(r, θ) and r′ = r′(r, θ) by using

the cosine formula

r′2 = R2 + r2 − 2Rr cos θ → r′ =
√
R2 + r2 − 2Rr cos θ (3.33)

and the sine law

r′

sin θ
=

r

sin θ′
→ sin θ′ =

r sin θ

r′
=

r sin θ√
R2 + r2 − 2Rr cos θ

. (3.34)

This yields the relations between coordinates on center A and coordinates on center B:

r′(r, θ) =
√
R2 + r2 − 2Rr cos θ

θ′(r, θ) = arcsin

[
r sin θ√

R2 + r2 − 2Rr cos θ

] (3.35)

Additionally, an expression for the ETF, which will be applied to projectile state A according

to (2.9), needs to be implemented. It will take the form

ETF (~r,~v) = exp(i~v~r) . (3.36)

The angle γ between ~R and ~v is given by

γ = arcsin
b

|~R|
(3.37)

and can be used to give ~v in terms of coordinates on center A (we can set φ = 0):

~v(r, θ, φ) =

 v sin γ

0

v cos γ

 . (3.38)

The vector multiplication between ~v and ~r thus gives

~v · ~r =

 v sin γ

0

v cos γ

 ·
 r sin θ

0

r cos θ

 = rv(sin θ sin γ + cos θ cos γ) (3.39)

From this follows the expression for the ETF

ETF (r, θ) = exp
[
irv(sin θ sin γ + cos θ cos γ)

]
(3.40)

The matrix elements Mαβ and Sαβ are then obviously given in an analogous way to the calcu-

lation in section 3.2.2 as

Mαβ =

∫ ∞
0

r2dr

∫ π

0
sin θdθ

∫ 2π

0
dφ Rnαlα(ZA, r) · Y ∗lαmα(θ, φ = 0) ×

× ETF (r, θ) · VA(r, θ, φ = 0) ·Rnβ lβ (ZB, r
′) · Ylβmβ (θ′, φ′ = 0)

(3.41)
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and

Sαβ =

∫ ∞
0

r2dr

∫ π

0
sin θdθ

∫ 2π

0
dφ Rnαlα(ZA, r) · Y ∗lαmα(θ, φ = 0) ×

× ETF (r, θ) ·Rnβ lβ (ZB, r
′) · Ylβmβ (θ′, φ′ = 0) ,

(3.42)

where in both equations the primed coordinates have to be substituted by unprimed coordinates

according to (3.35). Since our considerations are independent of the azimuthal angles, we can

set φ = φ′ = 0. Equations (3.41) and (3.42) can then again be solved by Mathematica. Check

with Appendix B for Mathematica codes.

3.3.2 sic3ma Implementation

The two-center matrix elements are implemented using the general Shakeshaft exchange integral

(3.21), which is of the form:

I(n1,~l1, n2,~l2) =

∫
d3rA rn1−2

A rn2−2
B (~rA)

~l1(~rB)
~l2 exp (i~a~rA + i~b~rB − crA − drB) (3.43)

According to Shakeshaft [14] the integral above can be rewritten into a one dimensional integral

(see also [11], section 3.1.2)

I = 2π(−i)l1+l2(∇~a)
~l1(∇~b)

~l2

(
− ∂

∂c

)n1−1(
− ∂

∂d

)n2−1 ∫ 1

0
dy

exp(i ~B ~R−AR)

A
, (3.44)

where ~R = ~rA − ~rB is the internuclear distance. The newly introduced quantities A and ~B are

given by A2 := y(1− y)|~a+~b|2 + yc2 + (1− y)d2 and ~B = y~a− (1− y)~b. For our given collisional

system we get ~a = v · ~ez and ~b = 0.

The two-center matrix elements (3.44) are stored as a symbolic structure in 7 variables dur-

ing step 1 (see section 2.2.1) of the computation and are subsequently evaluated during step 2

(see section 2.2.2). For further details refer to [11], section 3.1.

3.3.3 Precision Scenarios

Using the precision scenarios described in 3.2.4, the TWC matrix elements 〈H(1, 0, 0)|VH |Ar(n, 0, 0)〉
and the two-center overlap matrix elements 〈H(1, 0, 0)|Ar(n, 0, 0)〉 were calculated using states

having main quantum number 1 ≤ n ≤ 25. In both cases numerical instabilities leading to a

rapid increase in the values around n = 20 could be overcome when using precision scenario

16-16-16. There are no more numerical inconsistencies as far as n = 25. There is some deviation

from reference values calculated by Mathematica, but the differences are reasonably small. It

is clear that the precision scenario 16-16-16 is needed to calculate two-center matrix elements.

Even if the accuracy limit for scenario 8-8-8 is at or above n = 20 for the specific chosen values

of R and v, it is not safe to assume, that this will be the case for all values of R and v. It should

thus be calculated using scenario 16-16-16 to avoid any potential problems.
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Figure 3.8: Fig. 3.8(a) shows the various precision scenarios in calculating the TWC matrix

elements 〈H(1, 0, 0)|VH |Ar(n, 0, 0)〉, showing that the scenario 16-16-16 clearly produces the best

results. The internuclear distance was again chosen to be R ≈ 7 and the velocity was v = 0.5.

In fig. 3.8(b) similar improvements could be achieved for the two-center overlap matrix elements

〈H(1, 0, 0)|Ar(n, 0, 0)〉. Both matrix elements fit reasonably close to reference values calculated

by mathematica.
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3.4 Computational considerations

This section is dedicated to hardware and performance requirements which need to be consid-

ered when executing the various steps of sic3ma as outlined in 2.2. Hardware requirements (i.e.

memory needs on the computing nodes) will de discussed in section 3.4.1, where we will show

that a more elaborate distribution of all symbolic structures onto the available computing nodes

is necessary to have all symbolic structures available in the memory. In addition to that, sec-

tion 3.4.2 will discuss performance considerations and explain that, in order to avoid or at least

reduce idle time, the distribution also has to be optimized to factor in evaluation time needed

at each rank.

3.4.1 Memory Needs per Node

It has already been discussed at the beginning of section 3.1 that a lot of basis states need to be

included to accurately describe a collisional system like Ar18++H. We now assume that we want

to describe the Hydrogen projectile with bound states up to n = 3 (to account for excitation)

and some unbound pseudo states (modeling ionization into the continuum), giving in total

nproj = 73 states. The Argon ion target should be modeled with eigenstates for 7 ≤ n ≤ 20,

yielding ntarg = 1484 states. This gives a system size of nstat = 1557, which means that there

will be nstat2 = 2 424 249 single rbM-files and nproj · ntarg = 108 332 single rbS-files. The

total size of all rbc-files is roughly 850 GB, which means that enough computing nodes have to

be used in order for all rbc-files to fit onto the memory at once during the calculations in step 2

(see 2.2.2) and step 3 (see 2.2.3). The Vienna Scientific Cluster-2 (VSC-2) has 16 processors per

computing node with a total shared memory of 32 GB RAM per node. Besides the rbc-files there

are several other things that need to fit onto one node during step 2 and 3 of the computation:

1. Results of the Evaluation in step 2 ≈ 1.6 GB

The results of the evaluation of the matrix elements have to be kept in memory until

they are broadcasted during the MPI broadcast (see 2.2.3). Each rbc-file has either 1557

elements (if there is only a column of M̂) or 1557 + 73 = 1630 elements (if there is a

column of M̂ and a column of Ŝ) stored in it. To be safe, we want to calculate with

1630. Each rank will evaluate all its elements for all given values of (b,v). In accordance

with our estimations in 2.2.3, we choose nb = 24 impact parameters and nv = 12 impact

velocities. This gives a factor of nv · nb = 12 · 24 ≈ 300. The evaluated matrix elements

are complex*16 numbers taking up 16 bytes. Finally, the amount of rbc files per column

has to be estimated. This depends of course on the distribution, but a rough estimate

would be a maximum of 200 rbc-files on one node. This yields a generous estimate of

1630 · 300 · 200 · 16 bytes ≈ 1.6 GB for the result arrays.

2. Matrices M̂ , Ŝ and M̂eff during step 3 ≈ 4 GB

During step 3 each rank will first gradually fill one entire matrix M̂ and receive one

quadrant of the matrix Ŝ during the MPI broadcast. After the broadcast is completed,

each rank will built one full matrix Ŝ, invert it and then calculate one matrix M̂eff. All

three matrices M̂ , Ŝ and M̂eff are of size nstat2 = 15572 and each matrix element is a

complex*16 number. This gives ≈ 40 MB per matrix. Using the evaluated matrices M̂ and

Ŝ at a point −r3 and the time symmetry relation (2.29), each rank can directly calculate

M̂ and Ŝ at the point +r3. Subsequently M̂eff at +r3 can also be calculated and thus three
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more matrices need to be stored. For the entire node with 16 ranks and 6.25 matrices per

rank this gives a needed memory of 16 · 6.25 · 40 MB ≈ 4 GB.

We have now estimated, that approximately 6 GB per node are needed elsewhere. This leaves

26 GB free for the rbc-files. To be on the safe side, the limit for the symbolic structures should

be 25 GB, leaving some free memory available. With a total memory need of 850 GB, it can now

be estimated that 34 nodes will be needed to accommodate all rbc-files during one calculation.

In the original version of the code the rbc-files were simply distributed evenly among all

available ranks. However, this did not account for the fact that the sizes of the rbc-files vary

considerably, from a few MB to as much as 8 GB for the largest files. If a simple even distribution

were to be applied to the system Ar18+ + H, node number 29 would have to store almost 100

GB. This is of course not possible, since the maximum available memory per node is 32 GB.

Thus a new and optimized distribution had to be found, driven by memory needs per node.

In this new distribution, a shell-script first checks the sizes of all rbc-files. It then starts assigning

the rbc-files to the 16 ranks within one node, beginning with a few large files before filling up

the node with smaller files. As soon as the limit of 25 GB is reached, the next node is gradually

filled up. Fig. 3.9 clearly shows the difference in memory needs per node between the old and

the new distribution. Both distributions accommodate the same total amount of data, but the

optimized distribution equally fills all nodes with roughly 25 GB, making it possible to store all

850 GB.
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Figure 3.9: This figure shows the difference between an even distribution (green line) and

an optimized distribution (blue line) of rbc-files. An even distribution over all available nodes

results in a very unequal distribution of memory, making it impossible to accommodate the

entire amount of data. The new and optimized distribution stores the same total amount of 850

GB, but spreads the data more evenly over all available nodes. This way, the maximum memory

of 32 GB per node is not exceeded.
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In order to achieve an equal distribution of memory, the number of rbc-files per node will

most likely be different on each node, depending on whether a certain rbc-file is large in size or

very small. This can be seen in fig. 3.10, where node 1 is assigned over 100 small rbc-files, while

node 2 obviously only holds a few very large rbc-files.
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Figure 3.10: Given the fact, that the sizes of the rbc-files vary greatly, the number of rbc-files

per node has to be very unevenly distributed in order to achieve an almost even distribution of

memory. This is clearly shown in fig 3.10, where node number 1 holds over a hundred files, while

node number 2 only accommodates a few large files. Nonetheless, both nodes roughly store 25

GB of data, as can be seen by looking at fig. 3.9.

40
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3.4.2 Evaluation Time per Rank

In addition to hardware requirements which need to be met during the calculation, one should

also consider performance aspects. One such aspect is how much time one rank needs for the

evaluation of its assigned matrix elements in step 2 (see 2.2.2). Due to the conception of the

code all ranks must be finished with the evaluation in step 2 before the MPI broadcast scheme

can start in step 3 (compare 2.2.3). This can lead to considerable idle times when those ranks

already finished with the evaluation have to wait for the others to finish.

To fit all rbc-files (as discussed before in section 3.4.1) and also to reduce evaluation time, it

would be beneficial to use as many parallel cores as possible, since then every core has to eval-

uate less elements. However, during the building of the matrices M̂ and Ŝ and the subsequent

calculation of the effective matrix M̂eff only nv · nb ranks will be used. The rest will be idle. It

is obvious that there will always be a trade-off between these two aspects.
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Figure 3.11: Using the initial distribution of rbc-files the evaluation time for rank 2 is as high

as 20 000 seconds. This can be reduced to roughly 10 000 seconds when limiting the amount of

files to one single file for the first node (rank 1 to 16). But even with this limitation and some

reorganization of the rbc-files, the evaluation times are still much higher for the ranks on node

1 comparing to all other ranks.

When analyzing the evaluation time needed per rank it becomes clear that certain rbc-files

need much, much longer than others and thus certain ranks take a very long time to finish with

the evaluation while all other ranks are idle. This evaluation time correlates roughly with the

size of the rbc-file, which seems obvious.
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In fig. 3.11, the evaluation time for each rank is plotted. In the initial distribution of rbc-files

on the ranks, it can be seen that rank 2 needs almost 20 000 seconds to evaluate, while those

around rank 100 roughly need one order of magnitude less time. Once the ranks taking so much

time to evaluate were identified, those ranks were only assigned one single rbc-file and the rest

of the files were distributed over more parallel ranks. This way, the maximum evaluation time

could be reduced, but even when evaluating only one single rbc-file, ranks 1 to 9 still need much

more time than all the other ranks.

To really optimize this evaluation process, it will be necessary to reconsider the use of a

column-wise distribution and maybe apply a distribution which is more suited to ease this

problem concerning the evaluation time, while still considering memory needs (section 3.4.1).
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Chapter 4

Benchmark-Results

In this chapter, we want to give benchmark results for the collisional system B5+ + H (1s).

These results can be used to benchmark any further improvements and optimizations of the

code sic3ma.

4.1 Cross Sections for B5+ + H (n = 1)

In this section we analyze the calculated CX and ionization (ION) cross sections for the collision

of a fully stripped Boron ion B5+ with atomic Hydrogen. The calculations were conducted in

the energy range of 1 to 300 keV using the following basis set:

• all complete capture channels from n = 1 to n = 11 on the Boron ion (= 286 states)

• the n = 2 and n = 3 excitation channels on the Hydrogen atom (= 10 states)

• 63 pseudostates on the Hydrogen atom modeling ionization channels

This gives a total of 359 states.

The initial condition H(n = 1) is of course equivalent to the electron being in the 1s state

on the Hydrogen atom when entering the collision. In fig. 4.1 the total cross section for a CX

reaction into any state at the Boron ion is shown by the full line ( ), while the ION cross

section is indicated by the dotted line ( ). Fig. 4.3 on the other hand displays the n-resolved

cross section, enabling us to analyze the various contributions from different n-shells.

4.1.1 Total Charge Exchange Cross Section

We compare our results to various theoretical and some experimental data:

In fig. 4.1 we see a good agreement between our calculations and CTMC data by Illescas

et al. (1999) [19]( ). The same can be said for CDW-EFS data by H. Busnengo et al.

(1997) [20]( ), which are available in the high energy region of 100 to 300 keV.

AOCC data calculated by J. Hansen et al. in 1996 [21]( ) agree with our results below 6

keV, before dropping below our values for the rest of their energy range (up to 200 keV). This can

most likely be attributed to the fact that J. Hanses et al. included as capture channels 2 ≤ n ≤ 4

and the states 5s and 5p (see [21], Table III.). This basis set is significantly smaller than our
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Figure 4.1: The full line ( ) shows our AOCC calculations of the total cross section for

electron capture from an H(1s) target to B5+. Theoretical reference data for the total cross

section: AOCC [21]( ), [22]( ) and [23]( ); MOCC [24]( ), [25]( ) and [26]( );

CTMC [19]( ), CDW-EFS [20]( ) and EDWA [27]( ). Experimental reference data

for the total cross section [28] are for collisions with B5+( ), C5+( ) and N5+( ). A

zoom into the low energy region E ≤ 30 keV is given in fig. 4.2. The dotted line ( ) shows

the calculated ionization cross section. Reference data for ionization are AOCC [23]( ) and

CTMC [19]( ). Results are discussed in more detail in the text.
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basis set and thus obviously did not contain all important capture channels for E > 6keV .

Therefore the total cross section is too low in this energy region.

The exact same effect can be observed when comparing to results from the AOCC calculations

by W. Fritsch and C.D. Lin [22]( ). They were limited to a basis of only 41 states back in 1984

and explain: ”In this study, electron transfer in B5++H collisions has been calculated mainly

with a 41-AO+ basis set consisting, at the B center, of the n=3,4,5 B4+orbitals and, at the H

center, of the n=1 H and the 4f, 5g UA orbitals.” (see [22], section III,D)

In 1994, Toshima included in his AOCC calculations [23]( ) bound states with 1 ≤ n ≤ 5

and several unbound states on the Boron ion (see [23], TABLE V.). Toshima also explains his

excitation channels on the H-atom: ”The basis set used for the atomic hydrogen is larger (...)

in that the bound states with n = 3 and 4 are added.” (see [23], section III.) These data still lie

a little lower than our present results in the energy regions above 10 keV.
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Figure 4.2: The low energy region E ≤ 30 keV of the total cross section for electron capture

from an H(1s) target to B5+. Our AOCC calculations are given by the full line ( ). Theoretical

reference data for the total cross section: AOCC [21]( ), [22]( ) and [23]( ); MOCC [24](

), [25]( ) and [26]( ); CTMC [19]( ) and EDWA [27]( ). Experimental reference

data for the total cross section [28] are for collisions with B5+( ), C5+( ) and N5+( ).

Results are discussed in more detail in the text.

Calculations using the MOCC method conducted by H. Lüdde et al. in 1982 [26]( )

deviate from our above 10 keV. The authors explain that the ”number of basis states involved is

optimised during the collision process. In the energy range considered it proved to be sufficient to

choose different basis sets within three ranges of the internuclear separation.” (see [26], section

2). Their largest basis set arises from this selection for the ranges of the quantum numbers nlm:

45



4.1. Cross Sections for B5+ + H (n = 1) 4. BENCHMARK-RESULTS

0 ≤ m ≤ 3, 0 ≤ n ≤ 8, m ≤ l ≤ m + 3 at the nucleaur separation R ≤ 1a0. This set is still

significantly smaller than ours, since it only includes shells up to n = 8 and within those shells

only certain l and m values.

To explain the argument given above more elaborate: for energies above ≈ 10 keV contri-

butions from other channels (i.e. capture into higher n-shells, excitation to n = 2 or n = 3 and

ionization) become significantly large to influence the total cross section. The different contri-

butions at the given energy region can be seen when looking at the ION cross section in fig. 4.1

or at the contributions from higher n shells in fig. 4.3. It is obvious, that a sufficiently large

basis sets needs to include all those channels.

Data from L. Errea et al. (1996) [25]( ) match perfectly for their 9 keV and 25 keV value,

but for 50 keV show higher values than our calculations. They used a basis set of 96 molecular

orbits. They employed ”very large basis sets (96 states for both calculations), including capture

channels up to n=9 as well as the n=2 excitation channel. All the sublevels up to the n=6 capture

channel were included, whereas only 12 sublevels (4σ, 4π and 4δ substates) were included for

the n=7, 8 and 9 capture channels;” (see [25], section 3.1). Since MOCC calculations do not

include so-called ETF, they are known to overestimate CX for higher energies.

MOCC data from C. Harel et al. (1998) [24]( ) agree precisely over their entire energy

range from 1 up to 25 keV, which is surprising, since their molecular basis was rather small

and only ”includes all states correlating to excitation and capture channels up to n = 2 and 7,

respectively, totaling 88 states.” (see [24], page 283) Nevertheless, their value at 25 keV still fits

to ours. One possible explanation could be that overestimating the cross section due to the lack

of ETF was compensated by underestimating it by not including enough capture channels.

Calculations from 1984 using the EDWA approach [27]( ) significantly underestimate the

cross section over their entire low energy range.

As a conclusion we can say, that our calculations agree very well with various other calcula-

tions using different theoretical approaches and different computational methods in the region

below 10 keV. Above this energy, older MOCC and AOCC calculations using smaller basis sets

typically underestimate the CX cross section.

In 1979 D. Crandall et al. [28] measured CX for various types of ions. The available value

for the collision of atomic Hydrogen with B5+( ) is at ≈ 5.7 keV and coincides only with the

significantly too low EDWA results [27], but not with any other AOCC or MOCC data.

The same paper by D. Crandall et al., however also includes measurements for collisions

with C5+ and N5+. The passive electron at the C5+ ion and the two passive electrons at the

N5+ ion are very strongly bound to the nucleus and thus can be seen as a simple shielding of the

core, having no significant influence on the active electron being captured into the outer shells.

Igenbergs et al. [29] have conducted a numerical study on the effect of a strongly bound passive

electron by comparing collisions with N6+ (one passive e−) to those with C6+ (fully stripped).

They found no significant difference in the CX cross sections for those two reactions and thus

conclude, that ”it is, nevertheless, a reasonable assumption that the influence of closely bound

core electrons on the active electron that captures into very high n-shells is negligible.” (see [29],

section 4.) In other words: the active electron undergoing a charge exchange reaction can hardly

distinguish between a bare Boron nucleus having a charge of 5+ or another core (including one

46



4. BENCHMARK-RESULTS 4.1. Cross Sections for B5+ + H (n = 1)

or two strongly bound passive electrons) also having the charge 5+.

Therefore the CX process for ions having the same charge will be similar and we may also

use the measurements of C5+ and N5+ for comparison. This becomes even more accurate with

higher charge, since then the main capture channel is even higher and thus even further away

from the passive electron(s). Following these considerations, it may be legitimate to doubt the

accuracy of the B5+ measurement. However, all calculations lie within the error margin of the

measurements for C5+( ) and N5+( ), except the 8.6 keV value for N5+ which is slightly

lower than our calculations.

4.1.2 Ionization Cross Section

Our calculated data agree reasonably with both reference data above 100 keV. Below this energy,

our calculations still roughly agree with CTMC [19]( ), but are an order of magnitude lower

than Toshima [23]( ). This can be explained by the fact, that we included much more high n

capture channels (up until n=11) on the Boron ion in our calculations than Toshima was able

to include in 1994 (only up until n=5). These high n channels compete with ionization. This

means that within Toshima’s basis set the ION cross section is being overestimated at lower

energy regions, since electrons that would actually be captured into higher n shells (see e.g. the

n=6 or n=7 contributions at lower energies in fig. 4.3), can only choose the ionization channel.

4.1.3 n-resolved Charge Exchange Cross Section

In fig. 4.3 we see a n-resolved analysis of the CX reaction B5+ + H (n = 1)→ B4+(n) + H+. The

classical over-barrier model (see [30], [11], section 4.1 and [31]) gives an equation to estimate

which n-shell will be predominantly populated by the charge transfer reaction. It will be the

n-shell with the largest integer np ≤ n

n = q

√
2
√
q + 1

2|It|(q + 2
√
q)

= q

(
2|It|

[
q − 1

2
√
q

+ 1

])−1/2

, (4.1)

q is the charge of the ion and |It| is the binding energy of the electron at the Hydrogen atom.

Plugging in the relevant values for the given system into (4.1) yields n ≈ 3.8, making the n=4

shell the main capture channels closely followed by the n=3 shell. This can be seen in fig. 4.3.

Reference data is available for n=3,4,5 and 6.

Data from C. Harel et al. (1998) [24] (available between 1 and 25 keV) fit perfectly to our

results for n=4( ) and n=5( ), while they slightly deviate for n=3( ) and n=6( ).

In their 1996 publication L. Errea et al. [25] calculated n-resolved cross sections up until 50

keV using the MOCC method. Their results are identical to those of C. Harel et al. and above

30 keV also fit to ours for n=4( ) and n=3( ). In this intermediate energy region, they are

however a bit higher than our data for n=5( ).

AOCC calculations by J. Hansen et al. (1996) [21] overestimate the n=3( ) shell for

energies below 10 keV, but give a good description for n=4( ). Above 10 keV, n=4 is slightly

too low, while n=3 fits accurately.

Finally, we can compare to W. Fritsch and C.D. Lin [22] whose 1984 calculations agree very

well with ours for n=4 ( ), while results for both n=3 ( ) and n=5 ( ) do not fully

coincide with our data.
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Figure 4.3: n-resolved cross section for electron capture from an H(1s) target to B5+. Our

calculations: full line with ( ) gives the total cross section, dotted lines give the n resolved

values for n=2 ( ), n=3 ( ), n=4 ( ), n=5 ( ), n=6 ( ), n=7 ( ), n=8 ( ),

n=9 ( ), n=10 ( ) and n=11 ( ). Reference data: MOCC [24] n=3( ), n=4( ),

n=5( ), n=6( ); MOCC [25] n=3( ), n=4( ), n=5( ); AOCC [21] n=3( ),

n=4( ); AOCC [22] n=3 ( ), n=4 ( ), n=5 ( ) Results are discussed in more detail

in the text.
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4.2 Symbolic Structures

In this section, we want to give some benchmark data for selected symbolic structures. The

polynomial of the symbolic structure stored in step 1 (compare section 2.2.1) will be given in

a table to allow for comparison to newly calculated data. For each type of matrix element one

selected symbolic structure is presented. Note that all involved coefficients in these structures

are defined as double precision numbers.

4.2.1 One-Center Coupling Matrix Elements

The polynomial describing ONC matrix elements has four variables and section 3.2.3 explains

in more detail how it can be obtained. One example of a symbolic structure (i.e. polynomial)

describing such an element involving only states on the Boron ion is given in the following table.

This is the polynomial describing the element 〈B(n = 4, l = 0,m = 0)| VH |B(9, 0, 0)〉:

Target−t a r g e t coup l ing matrix element ( c =1.806 , d =0.000) :

Linear−l ayout polynomial in 4 v a r i a b l e s (13 terms ) :

Qy R R1 R3 c o e f f i c i e n t

11 −1 0 0 1.180883109567105E+00, 0.000000000000000E+00

10 −1 0 0 −1.118558723230468E+01, 0.000000000000000E+00

9 −1 0 0 4.567820873374881E+01, 0.000000000000000E+00

8 −1 0 0 −1.059155725780084E+02, 0.000000000000000E+00

7 −1 0 0 1.551770487223557E+02, 0.000000000000000E+00

6 −1 0 0 −1.518309083220407E+02, 0.000000000000000E+00

5 −1 0 0 1.022480658540163E+02, 0.000000000000000E+00

4 −1 0 0 −4.779049136675845E+01, 0.000000000000000E+00

3 −1 0 0 1.529921944473309E+01, 0.000000000000000E+00

2 −1 0 0 −3.195802004697277E+00, 0.000000000000000E+00

1 −1 0 0 3.738209072306331E−01, 0.000000000000000E+00

0 −1 0 0 −1.944263392625372E−02, 0.000000000000000E+00

−1 −1 0 0 −1.944263391722017E−02, 0.000000000000000E+00

As an example for an element involving only states on the Hydrogen atom, the symbolic structure

describing the element 〈H(2, 0, 0)| VB |H(2, 0, 0)〉 is given in the following table:

P r o j e c t i l e−p r o j e c t i l e coup l ing matrix element ( c =1.000 , d =0.000) :

Linear−l ayout polynomial in 4 v a r i a b l e s (4 terms ) :

Qy R R1 R3 c o e f f i c i e n t

2 −1 0 0 −3.749999999903124E+00, 0.000000000000000E+00

1 −1 0 0 1.250000000000000E+00, 0.000000000000000E+00

0 −1 0 0 −1.250000000042938E+00, 0.000000000000000E+00

−1 −1 0 0 −1.250000000098003E+00, 0.000000000000000E+00

Note that all coefficients for ONC matrix elements are real numbers (i.e. the imaginary part of

the coefficient is zero).
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4.2.2 Two-Center Coupling Matrix Elements

The form of the symbolic structures describing two-center coupling matrix elements is explained

in more detail in section 3.3.2. For reference we give the element 〈H(1, 0, 0)| VH |B(3, 1, 0)〉 in

the following table:

P r o j e c t i l e−t a r g e t coup l ing matrix element ( c =1.667 , d =1.000) :

Linear−l ayout polynomial in 7 v a r i a b l e s (28 terms ) :

my y A R R1 R3 V3 c o e f f i c i e n t

2 3 −5 4 0 0 1 0.000000000000000E+00, 3.765476942846007E+01

2 3 −6 3 0 0 1 0.000000000000000E+00, 3.765476942846007E+02

2 3 −7 2 0 0 1 0.000000000000000E+00, 1.694464624280703E+03

2 3 −8 1 0 0 1 0.000000000000000E+00, 3.953750789988308E+03

2 3 −9 0 0 0 1 0.000000000000000E+00, 3.953750789988308E+03

2 2 −4 3 0 0 1 0.000000000000000E+00 ,−4.066715098273687E+01

2 2 −5 2 0 0 1 0.000000000000000E+00 ,−2.440029058964212E+02

2 2 −6 1 0 0 1 0.000000000000000E+00 ,−6.100072647410531E+02

2 2 −7 0 0 0 1 0.000000000000000E+00 ,−6.100072647410531E+02

1 3 −4 3 0 1 0 3.765476942846007E+01, 0.000000000000000E+00

1 3 −4 3 0 0 1 0.000000000000000E+00, 2.711143398849125E+01

1 3 −5 2 0 1 0 2.259286165707604E+02, 0.000000000000000E+00

1 3 −5 2 0 0 1 0.000000000000000E+00, 1.626686039309475E+02

1 3 −6 1 0 1 0 5.648215414269011E+02, 0.000000000000000E+00

1 3 −6 1 0 0 1 0.000000000000000E+00, 4.066715098273688E+02

1 3 −7 0 0 1 0 5.648215414269011E+02, 0.000000000000000E+00

1 3 −7 0 0 0 1 0.000000000000000E+00, 4.066715098273688E+02

1 2 −3 2 0 1 0 −4.066715098273687E+01, 0.000000000000000E+00

1 2 −3 2 0 0 1 0.000000000000000E+00 ,−2.928034870757055E+01

1 2 −4 1 0 1 0 −1.220014529482106E+02, 0.000000000000000E+00

1 2 −4 1 0 0 1 0.000000000000000E+00 ,−8.784104612271166E+01

1 2 −5 0 0 1 0 −1.220014529482106E+02, 0.000000000000000E+00

1 2 −5 0 0 0 1 0.000000000000000E+00 ,−8.784104612271166E+01

0 3 −3 2 0 1 0 2.711143398849125E+01, 0.000000000000000E+00

0 3 −4 1 0 1 0 8.133430196547376E+01, 0.000000000000000E+00

0 3 −5 0 0 1 0 8.133430196547376E+01, 0.000000000000000E+00

0 2 −2 1 0 1 0 −2.928034870757055E+01, 0.000000000000000E+00

0 2 −3 0 0 1 0 −2.928034870757055E+01, 0.000000000000000E+00
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The symbolic structure describing the two-center coupling matrix element 〈B(3, 1, 0)| VB |H(1, 0, 0)〉
is given in the following table:

Target−p r o j e c t i l e coup l ing matrix element ( c =1.667 , d =1.000) :

Linear−l ayout polynomial in 7 v a r i a b l e s (21 terms ) :

my y A R R1 R3 V3 c o e f f i c i e n t

2 3 −5 4 0 0 1 0.000000000000000E+00, 1.355571699424562E+01

2 3 −6 3 0 0 1 0.000000000000000E+00, 1.355571699424562E+02

2 3 −7 2 0 0 1 0.000000000000000E+00, 6.100072647410531E+02

2 3 −8 1 0 0 1 0.000000000000000E+00, 1.423350284395790E+03

2 3 −9 0 0 0 1 0.000000000000000E+00, 1.423350284395790E+03

2 2 −4 3 0 0 1 0.000000000000000E+00, 6.669412761168847E+01

2 2 −5 2 0 0 1 0.000000000000000E+00, 4.001647656701308E+02

2 2 −6 1 0 0 1 0.000000000000000E+00, 1.000411914175327E+03

2 2 −7 0 0 0 1 0.000000000000000E+00, 1.000411914175327E+03

2 1 −3 2 0 0 1 0.000000000000000E+00, −5.856069741514110E+01

2 1 −4 1 0 0 1 0.000000000000000E+00, −1.756820922454233E+02

2 1 −5 0 0 0 1 0.000000000000000E+00, −1.756820922454233E+02

1 3 −4 3 0 1 0 1.355571699424562E+01, 0.000000000000000E+00

1 3 −5 2 0 1 0 8.133430196547375E+01, 0.000000000000000E+00

1 3 −6 1 0 1 0 2.033357549136844E+02, 0.000000000000000E+00

1 3 −7 0 0 1 0 2.033357549136844E+02, 0.000000000000000E+00

1 2 −3 2 0 1 0 6.669412761168847E+01, 0.000000000000000E+00

1 2 −4 1 0 1 0 2.000823828350654E+02, 0.000000000000000E+00

1 2 −5 0 0 1 0 2.000823828350654E+02, 0.000000000000000E+00

1 1 −2 1 0 1 0 −5.856069741514110E+01, 0.000000000000000E+00

1 1 −3 0 0 1 0 −5.856069741514110E+01, 0.000000000000000E+00
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4.2.3 Two-Center Overlap Matrix Elements

The symbolic structures describing two-center overlap matrix elements are stored in the same

form as for two-center coupling matrix elements (see section 3.3.2). Here, we give the element

〈B(3, 1, 0)|H(1, 0, 0)〉:

Target−p r o j e c t i l e over lap matrix element ( c =1.667 , d =1.000) :

Linear−l ayout polynomial in 7 v a r i a b l e s (16 terms ) :

my y A R R1 R3 V3 c o e f f i c i e n t

2 3 −5 4 0 0 1 0.000000000000000E+00 ,−2.711143398849125E+01

2 3 −6 3 0 0 1 0.000000000000000E+00 ,−2.711143398849125E+02

2 3 −7 2 0 0 1 0.000000000000000E+00 ,−1.220014529482106E+03

2 3 −8 1 0 0 1 0.000000000000000E+00 ,−2.846700568791582E+03

2 3 −9 0 0 0 1 0.000000000000000E+00 ,−2.846700568791582E+03

2 2 −4 3 0 0 1 0.000000000000000E+00, 2.928034870757055E+01

2 2 −5 2 0 0 1 0.000000000000000E+00, 1.756820922454233E+02

2 2 −6 1 0 0 1 0.000000000000000E+00, 4.392052306135582E+02

2 2 −7 0 0 0 1 0.000000000000000E+00, 4.392052306135582E+02

1 3 −4 3 0 1 0 −2.711143398849125E+01, 0.000000000000000E+00

1 3 −5 2 0 1 0 −1.626686039309475E+02, 0.000000000000000E+00

1 3 −6 1 0 1 0 −4.066715098273688E+02, 0.000000000000000E+00

1 3 −7 0 0 1 0 −4.066715098273688E+02, 0.000000000000000E+00

1 2 −3 2 0 1 0 2.928034870757055E+01, 0.000000000000000E+00

1 2 −4 1 0 1 0 8.784104612271166E+01, 0.000000000000000E+00

1 2 −5 0 0 1 0 8.784104612271166E+01, 0.000000000000000E+00
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4. BENCHMARK-RESULTS 4.3. Continuity of the Elements of M̂eff

4.3 Continuity of the Elements of M̂eff

After the effective matrices M̂eff have been calculated in the computational step 3 (compare 2.2.3),

it is advisable to check the calculated results. However, one is usually limited to making a check

for plausibility, since it is computationally not feasible to calculate an entire matrix for a larger

system by hand or even using Mathematica. Mathematica already needs a lot of time for evalu-

ating a single matrix element (as briefly described in section 3.1.3), let alone an entire 1500×1500

matrix.

A good way to do such a plausibility check, is to check the change of any given matrix element

of the effective matrices M̂eff along the trajectory. Both real and imaginary part of the matrix

elements have to be continuous along r3. This continuity is important, because during step 4 (see

section 2.2.4), matrix elements have to be interpolated for all the values of r3 needed during the

integration along the trajectory. An interpolation is only possible if the elements are continuous.

In fig. 4.4 we have plotted the first element (1, 1) of the effective matrix for two different

energies 1 keV and 25 keV . The impact parameter determining the trajectory is given by b = 1.

Fig. 4.5 shows the continuity of the imaginary part of the element (1, 1), using the same values

for b and impact energy.
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Figure 4.4: The dependency of the real part of M̂eff(1, 1) along the trajectory points r3. The

values are given for one certain impact parameter b and two different impact energies E.
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Figure 4.5: The imaginary part of M̂eff(1, 1) as it changes along the trajectory. The impact

parameter is given by b = 1 and defines the given trajectory according to fig. 2.2 . The plot

was done for two different impact energies E. The values of M̂eff(1, 1) are clearly continuous,

making it possible to interpolate intermediate values in the subsequent integration during step

4 (see section 2.2.4).

54



Chapter 5

Conclusion and Outlook

In the first chapters of this thesis we outlined the theoretical foundation for the calculations of

cross sections for ion-atom collisions, namely the well established semi-classical AOCC theory.

We continued to explain in detail how the underlying theory is implemented into the parallel

FORTRAN code ”sic3ma” and how each computational step is performed.

In the following chapter, we gave an overview on current limits of the code ”sic3ma” as far as

numerical accuracy in the calculation of matrix elements is concerned and then suggested ways to

push these numerical limits further. We have shown that numerical instabilities could be reduced

by implementing a new and more accurate gamma function and by using quadruple precision

instead of double precision numbers for the complex coefficients involved in the evaluation.

Furthermore, we were able to correctly calculate matrix elements involving states with quantum

numbers as high as n = 25, while the previous limit for these calculations was at n = 12. Along

with this detailed numerical study of the evaluation of matrix elements in the context of the

AOCC theory, we also presented codes for the computational software program ”Mathematica”

and the small subroutine ”onc coupling” which can both be used to obtain reference values for

most of the considered matrix elements. To show the achieved improvements, these reference

values were compared to the code’s calculated results.

Besides improvements of the numerical accuracy of the calculations, we also discussed hard-

ware requirements which have to be met in order for the calculation to be possible. The memory

which is available per computing node on a cluster computer becomes a very problematic lim-

iting factor for computations producing and calculating with huge amounts of data. We have

shown that this memory limit needs to be considered and an appropriate distribution of all data

needed during the calculation must be found. In addition to that, we also suggested enhance-

ments to the computational performance with a special emphasis on the reduction of idle time

during the calculation.

Finally, a detailed analysis of the results calculated for the collisional system B5+ + H(1s)

was given. This analysis not only includes the final results (i.e. partial cross sections for the

various channels of the reaction) but also gives intermediate results, both quantitatively and

qualitatively. These results can be used in the future as a benchmark for further developments

of the code ”sic3ma”.

Using the work done in this thesis as a guideline for overcoming numerical and computational

difficulties arising during the calculation of large collisional systems, one can now analyze a

system like Ar18+ + H including Argon states as far as n = 20. With the current version of
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the code, the calculation of partial cross sections for this system at 12 different impact energies,

including 73 basis states on the Hydrogen atom and 24 impact parameters (this represents a very

detailed study of the collisional system) will approximately need the following computational

resources1:

• approx. 3 TB of hard disc for the symbolic structures and the matrix files

• approx. 950 000 CPU-h

Given the fact that both computational power and hard disc memory on cluster computers keep

getting cheaper, even a rather expensive calculation like the one above becomes more and more

feasible. Most of the numerical difficulties could be solved within the scope of this work, but

there are still some performance issues (e.g. reducing idle time during the evaluation of the ma-

trix elements) which need to be addressed in order to use the available computational resources

more efficiently.

This thesis shows that the AOCC method and its implementation into the code ”sic3ma”

is suitable to describe collisional systems with ions such as Ar18+, although the computational

efforts are quite considerable. Using a basis set including roughly 1500 basis states (to describe

the Argon ion using n = 1 to 20) implies that the matrices involved in the calculations are of size

1500× 1500. From a numerical point of view, the matrix elements could currently be calculated

using states with quantum numbers as high as n = 25. However, the rest of the computational

steps become increasingly unfeasible with a growing basis set. It seems very difficult to push the

limit much further than n = 25, since the description of larger, heavier ions will require huge

basis sets. For example, it takes roughly 5000 basis states to include all states up to n = 30

in the description of the ion. Such a huge basis set will make computation times far too long

and it will basically become impossible to meet hardware requirements such as memory limits.

In addition to that, it also seems difficult to push the numerical limit further than n = 25,

since that would require higher precision numbers for the involved coefficients than the current

highest possible quadruple precision.

Tungsten will probably be the main component of ITER’s wall and the collisional system

W q+ +H (with a multitude of charge states q+) would thus be of great interest. Tungsten has

an atomic number of Z = 74, which means that one would have to include states up until n = 76

to sufficiently describe its fully stripped ion. This yields a basis set of roughly 76 000 states.

Seeing as this is simply impossible to calculate within the framework of the AOCC method, it

seems as though different theoretical approaches (e.g. CTMC methods or using different types

of basis states, such as Gaussian orbitals, within a close-coupling theory) will have to be used

to calculate a collisional system involving Tungsten.

1We estimated 1 TB for the symbolic structures and 2 TB for the matrix files to get the memory needs on

the hard disc. The computation time is obtained by the following estimate: It takes roughly 100 000 CPU-h to

calculate all symbolic structures and roughly 70 000 CPU-h for each impact energy to evaluate the matrix files

along a 400-point trajectory. Assuming 12 impact energies, we get 70 000 × 12 = 840 000. Evaluation time can

definitely be reduced considerably by implementing the suggestions made at the end of section 3.4.2.
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Appendix A

The subroutine ”onc coupling”

We shall give the general analytic calculation of ONC matrix elements, which have the form

Mαβ =A 〈φα| VB |φβ〉A = 〈ZA, nα, lα,mα|
ZB

|~r − ~R|
|ZA, nβ, lβ,mβ〉 , (A.1)

for arbitrary s-states |Z, n, 0, 0〉 in section A.1. We will ignore ZB during this calculation since

it can simply be pulled in front of the entire expression and thus can be multiplied with the

result at the very end. We then explicitly evaluate the matrix elements 〈1, 1, 0, 0|VB|1, 1, 0, 0〉
and 〈1, 2, 0, 0|VB|1, 2, 0, 0〉 for ZB = 1 in A.2.

A.1 Analytical Calculation

The calculations are done in the coordinate system A, which is turned in alignment with the

vector ~r. The geometry is shown in fig. A.1. Turning the z-axis is possible, because the states

on center A are s-states and thus have have spherical symmetry allowing an arbitrary choice of

the z-axis.

A.1.1 Expansion of |φα〉, |φβ〉 and |~r − ~R|−1

To calculate the expression (A.1) analytically, we follow the steps taken in [18], section 3.3. The

first step is to expand the s-states |φα〉 and |φβ〉 into so-called Slater Orbitals in the following

way (see [18], eq.(3.3.4)):

|φα〉 =

∞∑
i=1

Nα
i r

aαi e−b
α
i r · Y00 (A.2)

|φβ〉 =

∞∑
j=1

Nβ
j r

aβj e−b
β
j r · Y00 (A.3)

Here Y00 is the spherical harmonic determining the angular shape of an s-state wavefunction, r

denotes the radial distance, N
α/β
i/j are normalization coefficients, a

α/β
i/j and b

α/β
i/j are coefficients

determining the radial shape of the wavefunction. In subsection A.1.3 we will see how they can

be calculated. When looking at the general form of a Hydrogen-like wavefunction in (2.13),

it can be seen, that these coefficients will always be real, since the only imaginary part would

come from the spherical harmonic Y00 (which is incidentally also a real). This means, that the

coefficients do not change when we built the bra-vector 〈φα|.
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A

B

e−

x

y

z

~R ~r

~r − ~R

θ

Figure A.1: The geometry used in ”onc coupling”. The elements are calculated using states

on center A and the potential from center B. Everything is expressed in terms of spherical

coordinates (r, θ, φ) in coordinate system A, but this system is tilted to align the z-axis with

the vector ~r in order to be able to use the polar angle θ as the angle between ~r and ~R. This is

needed to expand the expression V = |~r − ~R|−1 in terms of Legendre-Polynomials using θ.

Knowing this, we can rewrite (A.1) in the following way:

Mαβ =

∫
dr r2

∫
dΩ
∑
i

Nα
i r

aαi e−b
α
i r Y ∗00

1

|~r − ~R|

∑
j

Nβ
j r

aβj e−b
β
j r Y00

=

∫
dr r2

∫
dΩ
∑
ij

Nα
i N

β
j ra

α
i +aβj e−r(b

α
i +bβj ) Y ∗00

1

|~r − ~R|
Y00

(A.4)

Now we expand V = |~r− ~R|−1 using Legendre-Polynomials and the angle θ between the vectors

~r and ~R 1 (see [18], eq.(3.3.12)):

V =
1

|~r − ~R|
=

{
1
r

∑∞
k=0

(
R
r

)k
Pk(cos θ), r > R

1
R

∑∞
k=0

(
r
R

)k
Pk(cos θ), r < R

(A.5)

By inserting this expansion into (A.4) we can separate the integral into a radial part and an

angular part.

Mαβ =
∞∑
k=0

[∫
dΩ Y ∗00 Pk Y00 ·

∑
ij

Nα
i N

β
j

(
1

Rk+1

∫ R

0
r(aαi +aβj +k+2)e−r(b

α
i +bβj ) dr

+Rk
∫ ∞
R

r(aαi +aβj−k+1)e−r(b
α
i +bβj ) dr

)] (A.6)

We now define the quantities

Akαβ =

∫
dΩ Y ∗00(Ω) Pk(cos θ) Y00(Ω) (A.7)

1 It is of importance to mention here, that using the polar angle θ of the coordinate system A as the angle

between ~r and ~R in (A.5) is only possible, because we are dealing with s-states on center A. Only then, are the

states independent of the angles θ and φ and we can turn the z-axis in alignment with ~r allowing us to use the

angle θ in the expansion (see fig. A.1). If the states were not s-states and we could not turn the z-axis, we would

have to use a different angle θ′ in (A.5) and then the integrant in (A.11) would read Y ∗00(Ω′) Yk0(Ω) and the

orthonormality would be not applicable, since Y ∗00 and Yk0 would have different arguments Ω′ and Ω.
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Rkαβ =
∑
ij

Nα
i N

β
j

(
1

Rk+1

∫ R

0
r(aαi +aβj +k+2)e−r(b

α
i +bβj ) dr

+Rk
∫ ∞
R

r(aαi +aβj−k+1)e−r(b
α
i +bβj ) dr

) (A.8)

and can use them to write (A.6) in a very compact way:

Mαβ =
∞∑
k=0

[
Akαβ ·Rkαβ

]
(A.9)

A.1.2 Angular Integration

The integral (A.7) can be be solved easily by rewriting Pk(cos θ) in terms of a spherical harmonic,

using the relation Pk =
√

4π/(2k + 1) · Yk0 (see [18], p.43). This yields:

Akαβ =

√
4π

2k + 1

∫
dΩ Y ∗00(Ω) Yk0(Ω) Y00(Ω) (A.10)

By evaluating Y00 = 1/
√

4π (see [32], p.600) and using the orthonormality of spherical harmonics,

we get

Akαβ =

√
4π

2k + 1

∫
dΩ Y ∗00(Ω) Yk0(Ω)︸ ︷︷ ︸

=δ0k

1√
4π

=

√
1

2k + 1
δ0k , (A.11)

from where we can see that

Akαβ =

{
1 , k = 0

0 , all other k
(A.12)

This implies two important things:

1. The sum over k in (A.9) is not infinite, but actually only consists of one term, namely the

term with k = 0.

2. For s-states, the angular integral is always 1 and independent from the value of n.

A.1.3 Radial Integration

The radial integration can be solved by making a variable transformation t = r(bαi + bβj ), which

allows us to rewrite both integrals in (A.8) to the form (we already use k = 0)

R0
αβ =

∑
ij

Nα
i N

β
j

(
1

R

1

(bαi + bβj )(aαi +aβj +3)

∫ R(bαi +bβj )

0
t(a

α
i +aβj +2)e−t dt︸ ︷︷ ︸

γ{(aαi +aβj +3), R(bαi +bβj )}

+
1

(bαi + bβj )(aαi +aβj +2)

∫ ∞
R(bαi +bβj )

t(a
α
i +aβj +1)e−t dt︸ ︷︷ ︸

Γ{(aαi +aβj +2), R(bαi +bβj )}

)
,

where we can identify the first integral with the lower incomplete gamma function γ(s, x) and

the second integral with the upper incomplete gamma function Γ(s, x) which are defined as

γ(s, x) =

∫ x

0
dt ts−1e−t (A.13)

59



A.2. Evaluation of Some Matrix Elements A. THE SUBROUTINE ”ONC COUPLING”

Γ(s, x) =

∫ ∞
x

dt ts−1e−t (A.14)

This yields the pretty manageable expression

R0
αβ =

∑
ij

Nα
i N

β
j

(
1

R

1

gh1
γ(h1, R · g) +

1

gh2
Γ(h2, R · g)

)
, (A.15)

where h1 = (aαi + aβj + 3), h2 = (aαi + aβj + 2) and g = (bαi + bβj ). To solve this, we need to know

the coefficients N
α/β
i/j , a

α/β
i/j and b

α/β
i/j . They can be determined by comparing the expansions

(A.2) and (A.3) respectively, which are of the form

|Z, n, 0, 0〉 =
∑
i/j

N
α/β
i/j r

a
α/β
i/j e

−bα/β
i/j

r · Y00 , (A.16)

to the general expression of a s-state hydrogen-like wavefunction. Such a wavefunction is given

by (2.13). With the definition (2.14) of the Legendre Polynomials and if we set l = m = 0 in

(2.13), we can always identify the coefficient b
α/β
i/j from (A.16) with Zα/β/nα/β, since Z/n is the

exponent of the exponential in (2.13) and the expression (2.14) will not add any terms with an

exponential in it. The coefficients a
α/β
i/j and N

α/β
i/j must be found by additionally inserting the

given values Z and n into (2.13) and then making a direct comparison of coefficients to (A.16).

A.2 Evaluation of Some Matrix Elements

We now want to explicitly calculate the values of the expressions 〈H(1s)|VHydrogen|H(1s)〉 and

〈H(2s)|VHydrogen|H(2s)〉.

A.2.1 〈H(1s)|VHydrogen|H(1s)〉

For the expression 〈1, 1, 0, 0|V |1, 1, 0, 0〉, we get |φα〉 = |φβ〉 and ZA = ZB = nα = nβ = 1. From

(A.12), we know that the angular part of the integral is 1 and k = 0, so we only need to calculate

the radial part R0
αα.

To evaluate expression (A.15), we need to determine the values of Ni/j , ai/j and bi/j by

comparing (A.16) to the wavefunction of the H(1s) state, which (in atomic units) is given by

(compare [33], chapter 5.1.3)

|1, 1, 0, 0〉 =
e−r√
π

= e−r · 2 · 1√
4π︸ ︷︷ ︸
Y00

= 2 · r0 · e−r · Y00 .

It is obvious that i and j only take the value 1, with N
α/β
1 = 2, a

α/β
1 = 0 and b

α/β
1 = 1. Entering

all this into (A.15) yields

R0
αα = 4 ·

(
1

R

1

23
γ(3, 2R) +

1

22
Γ(2, 2R)

)
.

For our chosen value of R ≈ 7 and by using WolframAlpha to compute

γ(3, 14) ≈ 1.9998 , Γ(2, 14) ≈ 0.00001
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we get

R0
αα ≈ 0.1429 .

With A0
αα = 1, we finally get:

〈1, 1, 0, 0|VHydrogen|1, 1, 0, 0〉 ≈ 0.1429 (A.17)

A.2.2 〈H(2s)|VHydrogen|H(2s)〉

For the expression 〈1, 2, 0, 0|V |1, 2, 0, 0〉 we have again |φα〉 = φβ〉, ZA = ZB = 1, while nα =

nβ = 2 in the case of the 2s state. The angular part is of course again A0
αα = 1.

For the radial integral, we again compare (A.16) to the 2s wavefunction (compare [33],

chapter 5.1.3)

|1, 2, 0, 0〉 =
1

4
√

2π

(
2− r

)
e−

1
2
r =

( 1√
2
e−

1
2
r − 1

2
√

2
r e−

1
2
r
)
· Y00 .

This gives us N
α/β
1 = 1/

√
2, a

α/β
1 = 0, b

α/β
1 = b

α/β
2 = 1/2, N

α/β
2 = −1/(2

√
2) and a

α/β
2 = 1.

The indices i and j now run from 1 to 2 and we thus get 4 terms in the sum of (A.15). However,

the expression for i = 1, j = 2 is the same as for i = 2, j = 1, thus we only need to compute 3

terms. We again take R ≈ 7 and get

R0
αα =

2∑
i=1

2∑
j=1

NiNj

(
1

7
γ(ai + aj + 3, 7) + Γ(ai + aj + 2, 7)

)

=
1

2

(
1

7
γ(3, 7) + Γ(2, 7)

)
+

1

8

(
1

7
γ(5, 7) + Γ(4, 7)

)

+ 2 · (−1

4
)

(
1

7
γ(4, 7) + Γ(3, 7)

)
≈ 0.135 .

This eventually yields:

〈1, 2, 0, 0|VHydrogen|1, 2, 0, 0〉 ≈ 0.135 (A.18)
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Appendix B

Mathematica codes

B.1 One-Center Coupling Matrix Elements

In this section we give mathematica codes for ONC matrix elements. Refer to section 3.2.2 for

documentation.

Radial [ Z , n , l , r ] :=

Sqrt [ ( Z/n ) ˆ ( 3 ) (4 (n − l − 1 ) ! ) / ( ( n (n + l ) ! ) ) ] Eˆ(−((Z r )/

n ) ) ( (2 Z r )/n)ˆ l LaguerreL [ n − l − 1 , 2 l + 1 , (2 Z r )/n ] ;

s t a t e [ Z , n , l , m , r , theta , ph i ] =

Radial [ Z , n , l , r ] SphericalHarmonicY [ l , m, theta , phi ] ;

d = S e t P r e c i s i o n [7 .01189060464296098902228613040914 , 3 2 ] ;

b = S e t P r e c i s i o n [ 5 . 0 , 3 2 ] ;

alpha = ArcSin [ b/d ] ;

a [ r , theta , ph i ] := { r Sin [ theta ] Cos [ phi ] , r Sin [ theta ] Sin [ phi ] ,

r Cos [ theta ] } ;

V[ r , theta , ph i ] := 1/(Norm [ a [ r , theta , phi ] − a [ d , alpha , 0 ] ] ) ;

Do [ Pr int [ n ] Pr int [

NIntegrate [ ( r ˆ2 Sin [ theta ] s t a t e [ 1 8 , n , 1 , 0 , r , theta , phi ] V[ r ,

theta , phi ] s t a t e [ 1 8 , n , 1 , 0 , r , theta , phi ] ) , { r , 0 ,

I n f i n i t y } , { theta , 0 , Pi } , {phi , 0 , 2 Pi } ,

Method −> {” GlobalAdaptive ” ,

” S ingu la r i tyHand l e r ” −> ” DuffyCoordinates ” ,

Method −> ” MultiDimensionalRule ” , MaxErrorIncreases −> 10000} ,

Prec i s i onGoa l −> 10 , WorkingPrecis ion −> 3 0 ] ] , {n , 23 , 23 , 1} ]
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B.2 Two-Center Coupling Matrix Elements

In this section we give mathematica codes for TWC matrix elements. Refer to section 3.3.1 for

documentation. This code only works for matrix elements involving s-states.

Radial [ Z , n , l , r ] :=

Sqrt [ ( Z/n ) ˆ ( 3 ) (4 (n − l − 1 ) ! ) / ( ( n (n + l ) ! ) ) ] Eˆ(−((Z r )/

n ) ) ( (2 Z r )/n)ˆ l LaguerreL [ n − l − 1 , 2 l + 1 , (2 Z r )/n ] ;

s t a t e [ Z , n , l , m , r , th e ta ] :=

Radial [ Z , n , l , r ] SphericalHarmonicY [ l , m, theta , 0 ] ;

d = S e t P r e c i s i o n [7 .01189060464296098902228613040914 , 3 2 ] ;

b = S e t P r e c i s i o n [ 5 . 0 , 3 2 ] ;

vv = S e t P r e c i s i o n [0 .531293320774880406070933573639680 , 3 2 ] ;

gamma = ArcSin [ b/d ] ;

r2 [ r , t h e ta ] := Sqrt [ dˆ2 + r ˆ2 − 2 r ∗d∗Cos [ theta ] ] ;

theta2 [ r , th e ta ] :=

ArcSin [ ( r ∗ Sin [ theta ] ) / ( Sqrt [ dˆ2 + r ˆ2 − 2 r ∗d∗Cos [ theta ] ] ) ] ;

ETF[ r , th e ta ] :=

Eˆ(− I ∗vv∗ r ∗( Cos [ theta ]∗ Cos [gamma] + Sin [ theta ]∗ Sin [ gamma ] ) ) ;

a [ r , t h e ta ] := { r Sin [ theta ] , 0 , r Cos [ theta ] } ;

V[ r , th e ta ] := 18/(Norm [ a [ r , theta ] ] ) ;

Do [ Pr int [ n ] Pr int [

Abs [ NIntegrate [ ( r ˆ2 Sin [ theta ] Conjugate [

s t a t e [ 1 , 1 , 0 , 0 , r2 [ r , theta ] , theta2 [ r , theta ] ] ] ETF[ r ,

theta ] V[ r , theta ] s t a t e [ 1 8 , n , 0 , 0 , r , theta ] ) , { r , 0 ,

I n f i n i t y } , { theta , 0 , Pi } , {phi , 0 , 2 Pi } ,

Method −> {” GlobalAdaptive ” ,

” S ingu la r i tyHand l e r ” −> ” DuffyCoordinates ” ,

Method −> ” MultiDimensionalRule ” , MaxErrorIncreases −> 10000} ,

Prec i s i onGoa l −> 10 , WorkingPrecis ion −> 3 0 ] ] ] , {n , 10 , 14 , 1} ]
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B.3. Two-Center Overlap Matrix Elements B. MATHEMATICA CODES

B.3 Two-Center Overlap Matrix Elements

In this section we give mathematica codes for two-center overlap matrix elements. Refer to

section 3.3.1 for documentation. This code only works for matrix elements involving s-states.

Radial [ Z , n , l , r ] :=

Sqrt [ ( Z/n ) ˆ ( 3 ) (4 (n − l − 1 ) ! ) / ( ( n (n + l ) ! ) ) ] Eˆ(−((Z r )/

n ) ) ( (2 Z r )/n)ˆ l LaguerreL [ n − l − 1 , 2 l + 1 , (2 Z r )/n ] ;

s t a t e [ Z , n , l , m , r , th e ta ] :=

Radial [ Z , n , l , r ] SphericalHarmonicY [ l , m, theta , 0 ] ;

d = S e t P r e c i s i o n [7 .01189060464296098902228613040914 , 3 2 ] ;

b = S e t P r e c i s i o n [ 5 . 0 , 3 2 ] ;

v = S e t P r e c i s i o n [0 .531293320774880406070933573639680 , 3 2 ] ;

gamma = ArcSin [ b/d ] ;

r2 [ r , t h e ta ] := Sqrt [ dˆ2 + r ˆ2 − 2 r ∗d∗Cos [ theta ] ] ;

ETF[ r , th e ta ] :=

Eˆ(− I ∗v∗ r ∗( Cos [ theta ]∗ Cos [gamma] + Sin [ theta ]∗ Sin [ gamma ] ) ) ;

theta2 [ r , th e ta ] :=

ArcSin [ ( r ∗ Sin [ theta ] ) / ( Sqrt [ dˆ2 + r ˆ2 − 2 r ∗d∗Cos [ theta ] ] ) ] ;

Do [ Pr int [ n ] Pr int [

Abs [ NIntegrate [ ( r ˆ2 Sin [ theta ] Conjugate [

s t a t e [ 1 , 1 , 0 , 0 , r2 [ r , theta ] , theta2 [ r , theta ] ] ] ETF[ r ,

theta ] s t a t e [ 1 8 , n , 0 , 0 , r , theta ] ) , { r , 0 ,

I n f i n i t y } , { theta , 0 , Pi } , {phi , 0 , 2 Pi } ,

Method −> {” GlobalAdaptive ” ,

” S ingu la r i tyHand l e r ” −> ” DuffyCoordinates ” ,

Method −> ” MultiDimensionalRule ” , MaxErrorIncreases −> 10000} ,

Prec i s i onGoa l −> 10 , WorkingPrecis ion −> 3 0 ] ] ] , {n , 1 , 26 , 1} ]
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Appendix C

Data Tables for B5+ + H (n = 1)

Table C.1: Data for B5+ + H(1s)

impact energies [kev/amu]

1.0 5.0 7.0 10.0 25.0 30.0 45.0 90.0 100.0 150.0 200.0 300.0

total cross sections [10−16 cm2]

CX 1.97E+01 3.31E+01 3.57E+01 3.68E+01 3.26E+01 3.04E+01 2.29E+01 6.55E+00 4.86E+00 1.27E+00 4.55E-01 7.83E-02

ION 4.34E-04 1.27E-02 3.93E-02 7.24E-02 4.27E-01 9.24E-01 4.20E+00 1.53E+01 1.60E+01 1.57E+01 1.42E+01 1.12E+01

state resolved CX cross sections [10−16 cm2]
n `

1 9.19E-08 6.42E-08 3.96E-08 2.52E-08 1.89E-08 5.73E-08 2.53E-08 4.37E-07 5.89E-07 2.55E-06 6.37E-06 1.45E-05

1 0 9.19E-08 6.42E-08 3.96E-08 2.52E-08 1.89E-08 5.73E-08 2.53E-08 4.37E-07 5.89E-07 2.55E-06 6.37E-06 1.45E-05

2 1.61E-08 6.04E-04 2.98E-03 1.04E-02 8.83E-02 1.13E-01 1.58E-01 1.54E-01 1.43E-01 7.43E-02 3.57E-02 1.01E-02

2 0 3.55E-09 1.52E-04 7.35E-04 3.87E-03 3.56E-02 4.49E-02 5.95E-02 4.85E-02 4.20E-02 1.33E-02 3.96E-03 5.20E-04

2 1 1.26E-08 4.51E-04 2.24E-03 6.51E-03 5.28E-02 6.85E-02 9.87E-02 1.05E-01 1.01E-01 6.09E-02 3.18E-02 9.58E-03

3 1.36E+00 8.53E+00 9.53E+00 9.96E+00 8.58E+00 7.50E+00 4.74E+00 1.19E+00 8.94E-01 2.55E-01 8.91E-02 1.57E-02

3 0 3.63E-01 1.63E+00 1.37E+00 1.02E+00 4.68E-01 3.55E-01 1.98E-01 5.74E-02 4.52E-02 1.01E-02 2.81E-03 2.99E-04

3 1 7.56E-01 4.04E+00 4.41E+00 4.03E+00 2.33E+00 1.87E+00 9.11E-01 1.13E-01 8.94E-02 4.08E-02 2.10E-02 5.89E-03

3 2 2.40E-01 2.86E+00 3.76E+00 4.91E+00 5.78E+00 5.28E+00 3.63E+00 1.02E+00 7.60E-01 2.04E-01 6.53E-02 9.48E-03

4 1.76E+01 2.25E+01 2.32E+01 2.35E+01 1.46E+01 1.19E+01 6.54E+00 1.37E+00 9.97E-01 2.51E-01 8.82E-02 1.36E-02

4 0 9.15E-01 9.52E-01 7.48E-01 5.17E-01 2.32E-01 1.91E-01 1.36E-01 4.36E-02 3.36E-02 6.35E-03 2.38E-03 2.78E-04

4 1 2.98E+00 3.30E+00 2.97E+00 1.98E+00 1.03E+00 8.83E-01 4.85E-01 9.41E-02 7.75E-02 3.18E-02 2.18E-02 4.69E-03

4 2 5.14E+00 7.40E+00 7.18E+00 6.32E+00 3.09E+00 2.58E+00 1.66E+00 5.69E-01 4.38E-01 1.25E-01 4.30E-02 6.52E-03

4 3 8.52E+00 1.08E+01 1.23E+01 1.47E+01 1.03E+01 8.23E+00 4.26E+00 6.61E-01 4.48E-01 8.79E-02 2.10E-02 2.15E-03

5 7.49E-01 1.83E+00 2.42E+00 2.77E+00 5.68E+00 5.78E+00 4.37E+00 1.07E+00 7.85E-01 1.97E-01 6.61E-02 1.01E-02

5 0 1.13E-01 5.39E-02 5.57E-02 7.13E-02 9.82E-02 9.73E-02 9.30E-02 2.83E-02 2.22E-02 5.07E-03 1.26E-03 2.13E-04

5 1 1.72E-01 1.30E-01 1.68E-01 1.84E-01 3.63E-01 3.71E-01 2.83E-01 7.81E-02 6.39E-02 2.72E-02 1.13E-02 3.07E-03

5 2 2.00E-01 3.43E-01 3.05E-01 2.89E-01 1.07E+00 1.06E+00 8.99E-01 3.48E-01 2.79E-01 8.44E-02 2.85E-02 4.62E-03

5 3 1.82E-01 7.36E-01 9.47E-01 8.70E-01 2.04E+00 2.11E+00 1.61E+00 4.21E-01 2.98E-01 6.12E-02 1.99E-02 1.84E-03

5 4 8.23E-02 5.73E-01 9.41E-01 1.36E+00 2.11E+00 2.14E+00 1.48E+00 1.91E-01 1.21E-01 1.91E-02 5.06E-03 3.43E-04

6 1.97E-02 1.54E-01 2.90E-01 3.34E-01 1.97E+00 2.48E+00 2.60E+00 7.77E-01 5.76E-01 1.40E-01 4.70E-02 7.23E-03

6 0 1.47E-03 1.33E-02 2.03E-02 1.39E-02 3.96E-02 5.03E-02 5.63E-02 2.13E-02 1.53E-02 3.05E-03 8.24E-04 1.98E-04

6 1 2.58E-03 2.22E-02 3.77E-02 3.48E-02 1.59E-01 1.75E-01 1.78E-01 6.62E-02 5.30E-02 2.00E-02 8.52E-03 2.12E-03

6 2 3.36E-03 2.37E-02 2.94E-02 5.15E-02 3.99E-01 4.90E-01 4.98E-01 2.37E-01 1.84E-01 5.10E-02 1.87E-02 3.09E-03

6 3 4.63E-03 4.06E-02 5.12E-02 7.30E-02 5.76E-01 7.31E-01 8.34E-01 2.60E-01 1.97E-01 4.50E-02 1.28E-02 1.42E-03

6 4 4.49E-03 3.43E-02 7.79E-02 5.70E-02 5.24E-01 7.12E-01 7.45E-01 1.55E-01 1.04E-01 1.78E-02 4.30E-03 3.31E-04

6 5 3.16E-03 1.95E-02 7.37E-02 1.04E-01 2.77E-01 3.24E-01 2.86E-01 3.68E-02 2.18E-02 3.23E-03 1.88E-03 7.48E-05

7 2.98E-03 4.51E-02 1.01E-01 1.06E-01 7.95E-01 1.17E+00 1.61E+00 5.79E-01 4.22E-01 1.07E-01 3.66E-02 5.65E-03

7 0 1.60E-04 3.25E-03 1.05E-02 5.58E-03 2.00E-02 2.67E-02 4.22E-02 1.84E-02 1.16E-02 2.63E-03 9.63E-04 2.06E-04

7 1 5.58E-04 6.56E-03 1.75E-02 1.22E-02 7.51E-02 9.80E-02 1.11E-01 5.36E-02 4.40E-02 1.55E-02 8.48E-03 1.76E-03

7 2 3.79E-04 9.18E-03 1.15E-02 1.59E-02 1.72E-01 2.37E-01 3.24E-01 1.81E-01 1.29E-01 3.96E-02 1.31E-02 2.20E-03

7 3 3.20E-04 1.32E-02 1.85E-02 1.59E-02 2.05E-01 3.12E-01 4.65E-01 1.74E-01 1.31E-01 3.12E-02 8.18E-03 1.07E-03

7 4 4.49E-04 5.98E-03 2.02E-02 2.39E-02 1.84E-01 2.95E-01 4.26E-01 1.06E-01 7.88E-02 1.34E-02 3.71E-03 2.85E-04

7 5 5.44E-04 4.28E-03 1.23E-02 1.11E-02 1.14E-01 1.64E-01 1.99E-01 3.88E-02 2.42E-02 3.66E-03 1.61E-03 1.04E-04

7 6 5.70E-04 2.64E-03 1.06E-02 2.10E-02 2.47E-02 3.74E-02 4.39E-02 6.31E-03 3.05E-03 8.70E-04 6.14E-04 3.46E-05

Table continues on next page.
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C. DATA TABLES FOR B5+ + H (N = 1)

Data for B5+ + H(1s) (cont.)

impact energies [kev/amu]

1.0 5.0 7.0 10.0 25.0 30.0 45.0 90.0 100.0 150.0 200.0 300.0

state resolved CX cross sections [10−16 cm2]
n `

8 5.85E-04 1.92E-02 4.81E-02 5.06E-02 3.80E-01 6.18E-01 1.04E+00 4.55E-01 3.23E-01 7.97E-02 3.05E-02 4.81E-03

8 0 5.07E-05 1.29E-03 4.63E-03 3.07E-03 1.11E-02 1.62E-02 3.02E-02 1.62E-02 1.01E-02 2.11E-03 8.04E-04 1.95E-04

8 1 9.83E-05 2.93E-03 8.16E-03 6.43E-03 4.21E-02 5.86E-02 7.87E-02 4.14E-02 3.73E-02 1.26E-02 5.87E-03 1.52E-03

8 2 7.46E-05 4.13E-03 5.88E-03 6.53E-03 7.93E-02 1.29E-01 2.04E-01 1.44E-01 9.87E-02 2.64E-02 1.12E-02 1.78E-03

8 3 6.05E-05 4.83E-03 8.94E-03 8.42E-03 9.39E-02 1.51E-01 3.00E-01 1.36E-01 9.03E-02 2.30E-02 7.05E-03 8.49E-04

8 4 1.06E-04 2.21E-03 7.87E-03 8.69E-03 8.21E-02 1.46E-01 2.50E-01 7.44E-02 5.89E-02 1.12E-02 2.31E-03 2.61E-04

8 5 9.12E-05 1.78E-03 5.75E-03 6.75E-03 5.25E-02 8.61E-02 1.26E-01 3.19E-02 2.23E-02 2.85E-03 1.10E-03 1.06E-04

8 6 6.32E-05 1.12E-03 4.26E-03 5.02E-03 1.69E-02 2.60E-02 3.75E-02 8.84E-03 4.58E-03 7.53E-04 1.98E-03 7.29E-05

8 7 3.99E-05 8.71E-04 2.61E-03 5.72E-03 2.36E-03 4.85E-03 9.42E-03 1.71E-03 5.36E-04 7.18E-04 1.86E-04 1.73E-05

9 2.16E-04 9.07E-03 2.68E-02 3.16E-02 2.07E-01 3.60E-01 7.26E-01 3.71E-01 2.61E-01 6.46E-02 2.58E-02 4.22E-03

9 0 5.59E-06 4.45E-04 2.20E-03 1.84E-03 7.62E-03 1.11E-02 2.26E-02 1.34E-02 9.85E-03 1.74E-03 5.99E-04 1.69E-04

9 1 2.28E-05 1.20E-03 4.23E-03 3.59E-03 2.35E-02 3.59E-02 5.91E-02 3.13E-02 3.22E-02 9.05E-03 3.92E-03 1.27E-03

9 2 3.33E-05 2.01E-03 3.29E-03 3.40E-03 4.53E-02 7.48E-02 1.34E-01 1.12E-01 8.18E-02 2.19E-02 9.56E-03 1.55E-03

9 3 2.71E-05 2.07E-03 4.02E-03 4.74E-03 4.78E-02 8.53E-02 2.21E-01 1.17E-01 6.69E-02 1.88E-02 6.58E-03 7.31E-04

9 4 1.50E-05 8.40E-04 3.88E-03 4.73E-03 4.35E-02 7.71E-02 1.64E-01 5.89E-02 4.43E-02 8.46E-03 2.16E-03 2.53E-04

9 5 3.77E-05 7.72E-04 3.47E-03 4.82E-03 2.63E-02 5.22E-02 8.51E-02 2.54E-02 1.97E-02 3.04E-03 9.10E-04 1.02E-04

9 6 3.69E-05 6.75E-04 2.92E-03 2.74E-03 9.74E-03 1.80E-02 2.94E-02 9.23E-03 5.37E-03 5.43E-04 8.40E-04 9.18E-05

9 7 2.13E-05 6.05E-04 1.52E-03 3.14E-03 2.51E-03 3.86E-03 6.57E-03 3.43E-03 1.17E-03 4.12E-04 8.15E-04 4.37E-05

9 8 1.61E-05 4.57E-04 1.26E-03 2.64E-03 1.05E-03 1.55E-03 4.59E-03 6.93E-04 1.28E-04 6.55E-04 3.62E-04 7.34E-06

10 1.51E-04 5.09E-03 1.54E-02 2.06E-02 1.37E-01 2.45E-01 5.54E-01 3.12E-01 2.29E-01 5.41E-02 1.98E-02 3.67E-03

10 0 1.06E-05 1.65E-04 9.15E-04 1.13E-03 5.38E-03 7.88E-03 1.92E-02 1.06E-02 1.06E-02 1.91E-03 4.58E-04 1.42E-04

10 1 1.54E-05 5.37E-04 2.13E-03 2.15E-03 1.67E-02 2.83E-02 5.22E-02 2.51E-02 2.97E-02 9.02E-03 3.07E-03 1.02E-03

10 2 1.10E-05 9.95E-04 1.87E-03 2.37E-03 2.76E-02 4.60E-02 9.79E-02 8.31E-02 7.40E-02 1.78E-02 6.56E-03 1.34E-03

10 3 1.45E-05 9.34E-04 2.02E-03 2.95E-03 3.13E-02 5.68E-02 1.62E-01 1.03E-01 5.49E-02 1.41E-02 4.85E-03 6.41E-04

10 4 1.62E-05 4.43E-04 1.96E-03 2.94E-03 2.76E-02 5.06E-02 1.23E-01 5.32E-02 3.42E-02 7.22E-03 1.87E-03 2.36E-04

10 5 1.08E-05 5.51E-04 2.20E-03 3.00E-03 1.68E-02 3.38E-02 6.15E-02 2.14E-02 1.74E-02 2.31E-03 4.97E-04 9.59E-05

10 6 1.08E-05 4.39E-04 1.98E-03 2.09E-03 6.94E-03 1.41E-02 2.45E-02 8.85E-03 5.93E-03 6.01E-04 4.17E-04 9.75E-05

10 7 1.14E-05 4.55E-04 9.55E-04 1.93E-03 2.21E-03 4.44E-03 8.35E-03 4.59E-03 1.81E-03 1.13E-04 1.60E-03 7.01E-05

10 8 1.93E-05 3.43E-04 8.71E-04 1.65E-03 1.04E-03 1.43E-03 4.46E-03 1.89E-03 3.92E-04 4.74E-04 2.94E-04 2.16E-05

10 9 3.13E-05 2.27E-04 4.68E-04 4.10E-04 1.18E-03 1.28E-03 1.54E-03 2.86E-04 3.27E-05 5.76E-04 2.11E-04 2.49E-06

11 8.42E-05 3.03E-03 9.17E-03 2.12E-02 1.47E-01 2.27E-01 5.26E-01 2.78E-01 2.27E-01 4.62E-02 1.61E-02 3.23E-03

11 0 1.93E-06 9.92E-05 4.27E-04 9.28E-04 8.39E-03 1.14E-02 2.24E-02 8.46E-03 1.27E-02 1.66E-03 4.58E-04 1.19E-04

11 1 2.74E-06 2.07E-04 1.13E-03 2.07E-03 2.26E-02 3.12E-02 6.72E-02 2.26E-02 3.10E-02 7.09E-03 2.79E-03 8.13E-04

11 2 6.57E-06 5.02E-04 1.28E-03 2.72E-03 3.22E-02 4.86E-02 9.24E-02 6.14E-02 7.48E-02 1.47E-02 4.68E-03 1.17E-03

11 3 5.37E-06 4.46E-04 1.13E-03 3.32E-03 3.32E-02 4.86E-02 1.44E-01 9.16E-02 5.21E-02 1.26E-02 3.61E-03 5.86E-04

11 4 8.76E-06 3.20E-04 9.68E-04 3.14E-03 2.52E-02 4.14E-02 1.12E-01 5.32E-02 2.87E-02 6.14E-03 1.75E-03 2.25E-04

11 5 6.53E-06 3.27E-04 1.16E-03 2.72E-03 1.50E-02 2.70E-02 5.29E-02 2.05E-02 1.66E-02 2.19E-03 5.51E-04 9.21E-05

11 6 5.70E-06 2.79E-04 1.12E-03 2.16E-03 6.14E-03 1.12E-02 2.19E-02 9.21E-03 7.09E-03 5.54E-04 2.48E-04 8.98E-05

11 7 8.00E-06 3.06E-04 6.78E-04 1.77E-03 2.69E-03 4.17E-03 6.71E-03 5.91E-03 2.70E-03 2.74E-04 7.13E-04 8.24E-05

11 8 1.03E-05 2.70E-04 5.91E-04 1.34E-03 7.63E-04 1.05E-03 1.86E-03 3.55E-03 8.05E-04 4.83E-05 6.05E-04 4.06E-05

11 9 1.29E-05 1.84E-04 5.05E-04 6.19E-04 3.40E-04 9.76E-04 4.14E-03 1.05E-03 1.22E-04 4.85E-04 7.01E-04 1.01E-05

11 10 1.55E-05 9.33E-05 1.77E-04 4.70E-04 8.89E-04 1.09E-03 4.10E-04 1.16E-04 7.72E-06 4.48E-04 3.16E-05 7.76E-07
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Appendix D

Acronyms

sthso

AOCC atomic-orbital close-coupling

CX charge exchange

CXS charge exchange spectroscopy

ETF electron translational factors

ION ionization

JET Joint European Torus

MOCC molecular-orbital close-coupling

VSC-2 Vienna Scientific Cluster-2

ONC one-center coupling

TWC two-center coupling
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