
Towards Software Model
Checking in the Context of
Model–Driven Engineering

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom–Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Robert Bill
Matrikelnummer 0727135

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: o.Univ.-Prof. Dipl.-Ing. Mag. Dr. Gerti Kappel
Mitwirkung: Mag. Dr. Petra Kaufmann, Dipl.-Ing. Sebastian Gabmeyer

Dipl.-Ing. Dr. Martina Seidl

Wien, 19.03.2014
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien ‚ Karlsplatz 13 ‚ Tel. +43-1-58801-0 ‚ www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Robert Bill
Lichnowskygasse 12, 1110 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-
wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Danksagung

Einen besonderen Dank möchte ich an meine Betreuerinnen und meinen Betreuer für
die Hilfestellung bei Formulierung, Strukturierung und Formatierung geben. Sie haben
mich nicht nur auf die Idee gebracht, diese Arbeit zu schreiben und aktiv während
der gesamten Arbeit begleitet, sondern waren auch immer für Fragen offen, stellten
einen ruhigen Platz zur Verfügung und ermöglichten ein reibungsloses Ablaufen der
Evaluierung. So konnte auch ein Teil der Arbeit für ein Workshop–Paper1 verwendet
werden, das auf dem 13th International Workshop on OCL, Model Constraint and Query
Languages (OCL 2013) veröffentlicht wurde.

Ich möchte auch allen, die sich teilweise viel Zeit für die Evaluierung genommen
haben, danken, denn ohne sie wäre ein großer Teil der Arbeit nicht möglich gewesen und
viele kleinere Verbesserungen im Tool nicht zustandegekommen.

Großer Dank geht auch an meine Eltern, die mir mein Studium nicht nur finanziell
ermöglicht haben, sondern mich in meinen Entscheidungen auch unterstützten.

Weiters bedanke ich mich bei allen, die mich während des Studiums und der Arbeit
moralisch unterstützt haben; insbesondere bei meiner Großmutter Gertrude und meiner
Bekannten Christa, die sich für die Arbeit interessierten, obwohl sie sich selbst nicht
tiefergehend mit Computern beschäftigen.

1http://publik.tuwien.ac.at/files/PubDat_221651.pdf

iii

http://publik.tuwien.ac.at/files/PubDat_221651.pdf

Abstract

The aim of this master thesis is to reduce the conceptual gap between software modeling
and model checking. While model checking is successfully applied for hardware verifica-
tion, it is not widespreadly used in model–driven engineering (MDE). Thus, we tried to
reduce this gap by combining modeling and model checking concepts.

This thesis first describes the history and basic idea of both MDE and model checking
with a focus on the technologies used in this thesis. Before presenting our new approach,
existing solutions are compared. Most approaches propose to extend the Object Con-
straint Language (OCL) by temporal aspects. This allows to describe the behavior of
a software system additionally to various properties of static models. However, one of
the main missing features in general seems to be a user–friendly representation of the
verification result helpful for debugging. Often, the technical spaces are changed.

With our solution we provide (i) a temporal OCL extension based on the Compu-
tational Tree Logic (CTL) and (ii) an OCL extension that introduces path selectors to
extract interesting system configurations from the state space. Both OCL extensions
were formally defined and implemented. We describe systems in terms of state spaces
consisting of EMOF–model states and state transitions containing a mapping between
model elements of different states. The system behavior is specified using an initial Ecore
model and graph transformations based on the Henshin tool2. The approach, however,
is designed to be flexible enough to allow an easy integration of any kind of behavior
specification as long as a suitable state space can be derived thereof. Our model checking
framework is developed with a focus on delivering not only the results, but also making
the system behavior leading to the result comprehensible by providing a suitable tool
including a web interface.

The implementation was evaluated in terms of performance to find out the maximum
evaluable model size and query complexity. Further, a qualitative user study was con-
ducted for evaluating the CTL extension and the tool. The results of this study indicate
that both the CTL–based extension of OCL as well as the tool are a promising first step
to integrate model checking in the MDE life cycle.

2https://www.eclipse.org/henshin/

v

https://www.eclipse.org/henshin/

Kurzfassung
Das Ziel dieser Diplomarbeit ist, die Welten von Modellprüfung und Softwaremodel-
lierung anzunähern. Während Modellprüfungstechniken inzwischen erfolgreich für die
Verifikation von Hardware und Software eingesetzt werden, konnten sie in der modell-
getriebenen Softwareentwicklung (MDE) noch nicht Fuß fassen. Eine Ursache dafür kön-
nte sein, dass sich die Begrifflichkeiten in beiden Bereichen noch zu stark unterscheiden.
Daher wird in dieser Arbeit versucht, Modellierungs– und Modellprüfungskonzepte zu
verbinden. Zunächst werden Geschichte und grundlegende Konzepte von MDE und Mod-
ellprüfung mit einem Fokus auf die in dieser Arbeit benutzten Technologien beschrieben.
Schließlich werden existierende Ansätze in diesem Bereich verglichen. Die meisten An-
sätze schlagen vor, die Object Constraint Language (OCL) um temporale Aspekte zu
erweitern. Denn OCL ist zwar gut für die Abfrage von Eigenschaften aus statischen
Modellen geeignet, bietet aber kaum Möglichkeiten, ein sich im Zeitverlauf verändern-
des Modell zu behandeln. Es gibt aber bislang keine Realisierung dieser Ansätze, bei der
die Präsentation der Verifikationsausgabe hilfreich für das Debuggen des Modells ist.

Die in der Diplomarbeit erarbeitete Lösung bietet (i) eine OCL–Erweiterung um
zeitliche Aspekte, die auf der Computational Tree Logic (CTL) basiert und (ii) eine
OCL–Erweiterung, die Pfadselektoren zur Auswahl interessanter Systemkonfiguratio-
nen bereitstellt. Beide OCL–Erweiterungen wurden formal spezifiziert und implemen-
tiert. Wir beschreiben Systeme durch Zustandsräume, in denen Zustände aus Ecore–
Modellen bestehen. Zustandsübergänge enthalten eine Abbildung zwischen Modellele-
menten eines Zustands und dessen Nachfolgezustands. Das Systemverhalten wird durch
ein Anfangsmodell und Graphtransformationen in Henshin3 beschrieben. Der Ansatz
wurde entworfen, flexibel genug für andere Verhaltensspezifikationen zu sein, die einen
geeigneten Zustandsraum liefern. Unser Modellprüfungsframework wurde entwickelt, um
das Systemverhalten, das zu einem Zustand geführt hat, verständlich zu machen. Dazu
wurde ein geeignetes Werkzeug mit einer Webschnittstelle entwickelt.

Die Implementierung wurde hinsichtlich Skalierbarkeit im Bezug auf Eingabemo-
dellgröße und Ausdruckskomplexität überprüft. Ebenso wurde eine qualitative Benut-
zungsstudie durchgeführt, um die Benutzbarkeit der CTL–Erweiterung und der Web-
schnittstelle zu überprüfen. Die Ergebnisse zeigen, dass die OCL–Spracherweiterung auf
Basis von CTL sowie das entwickelte interaktive Werkzeug einen vielversprechenden
Schritt in Richtung Integration von Modellprüfung in den MDE-Lebenszyklus darstellt.

3https://www.eclipse.org/henshin/

vii

https://www.eclipse.org/henshin/

Contents

1 Introduction 1
1.1 Problem statement . 1
1.2 Motivating Scenario . 3
1.3 Outline . 4

2 Model–Driven Engineering at a Glance 7
2.1 Model–Driven Engineering . 7
2.2 Models and Metamodels . 9
2.3 Model Transformations . 29
2.4 Summary . 33

3 Model Checking 35
3.1 Software Verification . 35
3.2 Historical Background of Model Checking 36
3.3 Basic Idea . 37
3.4 Computational Tree Logic . 38
3.5 Summary . 44

4 Related Work 47
4.1 Languages . 47
4.2 Tools . 55
4.3 Summary . 63

5 MoCOCL: A Framework for Model Checking OCL 65
5.1 Design Rationale . 65
5.2 OCL Semantics . 66
5.3 CTL Extension of OCL . 69
5.4 OCL Extension Using Selectors . 73
5.5 Implementation . 78
5.6 User Interface . 90
5.7 Summary . 94

6 Evaluation 95
6.1 Pacman Evaluation Scenario . 95

ix

6.2 Usability Study . 98
6.3 Performance Evaluation . 101
6.4 Discussion . 105
6.5 Summary . 106

7 Conclusion 109

A Graph Transformations 111

B Questionnaire 119

Bibliography 125

x

CHAPTER 1
Introduction

While the idea that model checking could be helpful for debugging software models by
providing examples of invalid software behavior has been around for more than a decade,
there is still no tool providing a complete integration of model checking and model–
driven engineering (MDE) [17]. The common term model occludes that the underlying
modeling concepts are quite different. This chapter contains a short description of the
interconnection between MDE and model checking, the issues occurring when integrating
both areas, and the contributions provided in this thesis.

1.1 Problem statement

With software projects getting larger and more complex, there has been a rising de-
mand for structuring such projects adequately. Software models have been identified
as powerful structure and abstraction mechanism [30] reducing the gap between prob-
lem and implementation. First, models mainly served as design artifacts used in early
project stages when traditional software engineering techniques are applied. The code
was manually derived from these models. Later, in the context of model–driven engineer-
ing (MDE), software models became the core artifacts to specify and develop a system.
They play an important role during the complete development process and often pro-
vide the basis for the automatic generation of executable code. Here, abstract software
models are used as basis for describing different, more concrete, fine–grained artifacts.
While these artifacts might be other models or code and are either (semi-)automatically
generated or constructed by hand, errors in the abstract models might propagate to the
more concrete models. Thus, the correctness even of the abstract models is a prerequisite
for the correctness of the system that is presented to the end user [65].

Today, the correctness of software is ensured by various software quality assurance
techniques. For this purpose, either incomplete techniques like testing or complete tech-
niques like formal verification approaches are applied. In the area of formal verification,

1

the technique of model checking has been extremely successful over the last decades [12].
Several attempts have been made to use formal verification techniques in MDE, however,
it has been recognized that the technological gap hinders the successful adoption.

Typically, a modeling environment provides some language to express constraints
that a model has to satisfy. For example, the Object Constraint Language (OCL) [36],
which is based on classical first–order logic, is a widely adopted language to express
invariants and pre- and postconditions over a static model. While it is possible to check
certain properties of behavioral models using OCL, OCL cannot check properties with
respect to the model’s evolution, e.g. during the execution of the system. Thus, it might
be used to check properties of any single execution snapshot, but it is not possible to
assert that an object fulfills a certain property during its whole lifetime or that a certain
system state is never reached.

Properties which have to hold during the system execution, however, are typically
properties to be verified by model checking. Model checking requires a formal represen-
tation of the system and a specification that is often expressed in terms of a temporal
logic formula [4]. Common choices are the computation tree logic (CTL) [14] and the
linear temporal logic (LTL) [58] that are used to express constraints over the lifetime of
a system.

The integration of model checking into MDE faces three challenges. The first chal-
lenge is that model checkers need precise semantics which current modeling standards like
UML lack [48]. The second challenge is to integrate these languages operating on prim-
itive, hardware–oriented, values with modeling languages offering rich object–oriented
concepts. Part of this challenge is the technological gap between model checking and
MDE. The third challenge is to actually evaluate these properties in a high–performance
way [31].

In the past, there have already been attempts to integrate model checking techniques
into MDE processes to help detect and avoid errors in models (cf. [31] for a survey).
Recent works and tools, for example Hugo [45] and Groove [43], show that various
kinds of software models can be suitably verified with model checking. Many approaches
translate the software model into the input format of an off–the–shelf model checker.
This again tends to result in two main challenges. The correctness of the translation
from the original model to the model checker model must be ensured as well as the
model checker output must be translated back to give information about the original
model. For achieving easier translation, many approaches sacrifice usability. First, the
properties of a specification might be expressed in a language similar or even equal to
the language of the target model checker which is different to the languages available
in the modeling environment. In particular, the properties are not expressed on the
modeling layer but on the (lower) model checking layer. Secondly, the back–translation
of the model checker output might be omitted diminishing its value for debugging found
errors. The aim of this thesis is to develop an approach which overcomes these issues.

2

Fork

TablePhilosopher
+status: PState

Plate

{XOR} left right

philosophers
plates

0..1 0..1

1 right

left1
*

*

1

1

*

forks

1

plate
1

«enum»
PState
thinking
hungry
eating

Figure 1: Dining philosophers model

1.2 Motivating Scenario
We motivate this work by an adaption of the widely known dining philosophers problem.
The dining philosophers problem was initially described by Dijkstra [43] for showing
issues of concurrent algorithms, in particular deadlocks and starvation. A deadlocked
system cannot proceed as a whole while in starvation certain processes are never able to
do work.

Figure 2: Problem set-
ting of dining philoso-
phers

Figure 2 illustrates the initial scenario of the dining
philosophers problem. There are n philosophers sitting around
a table with a plate in front of them. Initially, there are two
forks beside each plate, which are shared between neighbors.
The actions of each philosopher consist of repeated sequences
of thinking, being hungry, picking up the left fork, picking up
the right fork and eating. A philosopher is thus not able to
pick up the left fork if his/her left neighbor has already picked
up his/her right fork and is not able to pick up the right fork if
his/her right neighbor has already picked up his/her left fork.

The model shown in Figure 1 represents the dining philoso-
phers problem in terms of a UML class diagram.1 The model contains one table, an
arbitrary number of philosophers, plates and forks. The behavior of the model could be
expressed for example by means of state diagrams or model transformations. For the
moment, an informal description of the behavior is sufficient. Later in this thesis we
will use graph transformations. Philosophers initially have no fork in their hands and
are thinking. In arbitrary order, they may expose the following behavior: A thinking
philosopher may get hungry. A hungry philosopher may take the left fork if it is free.
A hungry philosopher having a left fork may take the right fork if it is free and starts
eating. An eating philosopher may put back both forks onto the table and start thinking
again.

In Figure 3, an instance of the dining philosophers problem with three philosophers
is shown and the lifecycle of philosopher P1 is demonstrated. Starting with the initial

1Note, due to technical restrictions of the Henshin tool [59], each non–root object must have a
container. For forks, this is the plate object.

3

?

release

lefthungry

?

?

?

P1

P2 P3

??

P1

P2
P3

?

P1

P2 P3

??

P1

P2

P3

right

Figure 3: Philosopher P1’s lifecycle

?

hungry

?

?

?

P1

P2 P3

??

P1

P2
P3

left

P1

P2
P3

hungry

left

hungry

left

P2
P3

P1

Figure 4: Deadlock scenario

configuration in state S1 where all philosophers are thinking, philosopher P1 is hungry
in state S2, has a left fork in S3 and is eating with an additional right fork in state S4.
As soon as S3 is reached, P2 cannot finish eating until P1 has finished eating. In state
S4, P3 cannot even start taking a fork. Thus, this cycle already presents a simple case
of possible starvation of P2 and P3. If P1 always immediately manages to regrab the
forks after putting them on the table, the other philosophers will never be able to eat
something even though P2 might pick the left fork. Still, P1 may decide at any time to
stop being too greedy and let the others eat something. This is different in the deadlock
situation depicted in Figure 4. All philosophers got hungry at about the same time and
picked up the left fork. Now the only action for every philosopher is to pick up the right
fork, but this is possible for no one. Thus, the system has stopped working.

The main question is: how can we find out such problematic behavior? The idea
of this thesis is to use semantically well–defined model transformations together with a
CTL extension of OCL and a custom extension of OCL.

Note that the dining philosophers problem will guide us as running example through
this thesis.

1.3 Outline

The three main contributions of this thesis are (1) a formal semantics of a CTL–based
extension and a custom selector extension of OCL, (2) a prototypical implementation
thereof as extension of the Eclipse OCL Engine2 and a custom web interface displaying

2http://wiki.eclipse.org/MDT/OCL/Plugins_and_Features

4

http://wiki.eclipse.org/MDT/OCL/Plugins_and_Features

evaluation results, and (3) an evaluation of this approach. This thesis is structured as
follows.

In Chapter 2, we discuss some foundations of model–driven engineering (MDE). A
brief historical tour of MDE is given illustrating challenges and opportunities in that area.
In the same way system structures are described by models, models themselves adhere to
a certain structure, the metamodel. The relation between both of them is explained in
the next section. Additional properties of models might be expressed using the Object
Constraint Language, whose syntax and semantics is explained then. OCL serves as
basis of this thesis. A short overview of different approaches to model transformation
is presented. Then, we give an overview of graph transformations usable for model
transformations.

Chapter 3 discusses basic concepts of model checking. At first, an overview of general
model checking concepts is given, then the computational tree logic (CTL) is explained
in detail as it plays an important role in the rest of this thesis.

Related work is discussed in Chapter 4. Different tools and OCL extensions are
described and compared to give an overview of existing approaches related to this work.

Chapter 5 presents the own approach. In particular, we present MocOCL, an exten-
sion of OCL with temporal operators. Formal semantics are given for both the CTL
extension and the custom selector extension. The implementation of both extensions is
discussed and an overview of the web interface is given.

Chapter 6 introduces the evaluation of the approach. A usability study of the CTL
extension and the web interface and their results are discussed. Performance test results
give an overview of the scalability of the presented approach.

Chapter 7 concludes this thesis with an outlook to future work.

5

CHAPTER 2
Model–Driven Engineering at a

Glance

Since the early days of computer science, effort has been put in specifying more what to
do instead of how to do. For example, in 1969 Dijkstra put up the question “What can
we do to shorten the conceptual gap between the static program text (spread out in “text
space”) and the corresponding computations (evolving in time)” and proposed to deal
with program composition. Programs should first be described in an abstract way, then
iteratively refined by making decisions [18]. Abstraction was continuously raised by the
development of machine code, simple programming languages, structured programming
languages, and object oriented programming. Model–driven engineering (MDE) is a
continuation of these efforts to let the developer not have to specify every single detail of
the system, but instead model the required functionality and overall architecture. MDE
automates routine programming tasks like system persistence and interoperability, and
allows the developer to focus on creative and non–trivial tasks [3, 63].

2.1 Model–Driven Engineering

Until the late 1960s, software projects were often not conduced in a systematic man-
ner; instead, just after the requirements were specified informally the programming
began [54]. This resulted in code which is hard to maintain and a huge gap between the
expectations of the user and the final program. For improving methodical approaches,
structured programming was employed allowing a standardized and disciplined way of
programming code. Ideas of that time included to explore interfaces where typed code
skeletons should help finding components which are as independent from each other as
possible [54]. This allowed easier maintenance, debugging and modularization, but did
not help much improving fitting the program to the user’s needs [11]. Thus, techniques
were introduced for defining requirements of the system to be built, for example data flow

7

diagrams. While these techniques were successful in the sense that the resulting system
was closer to the system specified and as well more easily maintainable, projects took
longer. Thus, these techniques increased the development quality but not the productiv-
ity because of increased effort of specifying requirements which was not supported well
by tools [11]. Computer–aided software engineering (CASE) in the 1980s was supposed
to help programmers develop software faster. CASE tools allow an automated delivery
and execution of software engineering methods, procedures and tools with assistance for
all software engineering aspects and contain a set of highly integrated tools. They con-
tain a user–friendly interface to all tools in the system including development tools like
editors, for specifications as well as programs, management tools, a help subsystem and
a database management system [11]. CASE tools gained remarkable success in research,
but were not wildly used in practice.

While CASE tools already allowed to generate executable systems directly from
visual models, manual customization and debugging was thwarted by the difficult trans-
formation caused by the poor mapping between the employed general purpose modeling
language and the target platform [63]. Additionally, team work was not supported prop-
erly because only one person could work on a system at a time. The lack of middleware
made it hard to integrate CASE tool generated code with other software. Thus, in
fact even in the cases where CASE tools were used, they were plainly used for draw-
ing diagrams as specification for manual implementations without direct relation to the
diagrams [63].

Program languages themselves have also continuously gained more abstraction mech-
anisms to ease inclusion of other software including middleware, for example for fault
tolerance and security. Still, the platform complexity has risen faster then the language
advancement could handle resulting in some effort required for considering small side
effects and dependencies of the used frameworks and with code having to be updated
for new platform versions [63]. Additionally, activities like system development, config-
uration and quality assurance is harder using these programming language concepts and
still hard when using common XML–based deployment descriptor notations resulting
from a high discrepancy in design intent specified in a few lines and the implementation
requiring hundreds of lines [63].

Mode–driven engineering [35] nowadays is a promising approach addressing this com-
plexity. It allows the specification of domain–specific modeling languages (DSML) to
close the gap between the modeled system and the target platform. DSMLs formal-
ize application structure, behavior and requirements and provide generators analyzing
models and generating various artifacts including XML deployment descriptors. The au-
tomated generation ensures consistency between implementation and specification [63].
This has the potential to increase developers’ productivity. Software might change during
its lifetime, for example by adding new features or changing portions of the architecture.
If models are not synchronized with the implementation, they get useless. Models need
to outlive their personal creator which might leave the company and thus must be de-
scribed using a concise and tailorable notation to be understood by all involved people.
Changing requirements should have low impact on the system as a whole, especially

8

M3

M2:

M1:

M0:

Meta-metamodel
MetamodelModel

System

Meta-Metamodel

Model

System

conformsTo
conformsToconformsTo

representedBy

Meta-metamodel
UMLModel
System

MOF

Class diagram

Object diagram

conformsTo
conformsToconformsTo

representedBy
MOFModel
System

EMOF diagram

Object diagram

conformsTo
conformsTo
representedBy

General MDE Organization UML Organization Running example
Organization

Metasyntax

Syntax

Program

System

conformsToconformsTo
representedBy

EBNF

Java syntax

Java program

Execution state

conformsToconformsTo
representedBy

conformsToconformsTo

Classical Program
Organization

Java Program
Organization

Figure 5: Metamodels and Metasyntax, adapted from [6]

at the running phase. Thus, new types must be addable at runtime. To be able to
change the development platform, they need to support high interoperability levels for
the software artifacts. Also the deployment platform could change; thus the retrieval
of platform specific artifacts from platform independent ones should be as automatic as
possible. Still, user–defined tailorization should always be possible [3].

The domain–specific modeling languages of MDE differ from the models used in
CASE tools in the sense that they are less general but can be tailored to the specific
needs of the domain, not only in terms of syntax and semantics, but also in terms of
visual representation [63]. Since errors get more expensive late in the project cycle, MDE
tools check domain–specific constraints and provide verification tools to find problems
as early in the life cycle as possible [63].

2.2 Models and Metamodels

While domain–specific modeling languages are necessary in order to increase productiv-
ity as explained in the section above, the need for general solutions also requires the
domain–specific modeling languages being described in a standardized way. Thus, the
Object Management Group (OMG)1 developed a standard for the modeling of modeling
languages called Meta–Object Facility (MOF) [37]. MOF was designed to allow defin-
ing and extending metamodels and metadata models as easy as extending usual object
models. It should be reusable and platform independent. Complete MOF (CMOF) is de-
signed to be used as metamodel to specify other metamodels. Essential MOF (EMOF)
is a subset of CMOF allowing to express features found in object–oriented program-
ming languages. Both EMOF and CMOF are completely specified by themselves [37] as
specification language.

Figure 5 shows the layered architecture proposed by the OMG. Each abstraction
step results in a dedicated layer and is described by a modeling artifact. The lowest
layer M0 describes the real system. The model layer M1 describes the elements of this
real system. The metamodel layer M2 describes the elements of the model. The meta–

1http://www.omg.org

9

metamodel layer M3 describes the elements of the metamodel. For example, a Unified
Modeling Language (UML) [38] object diagram at layer M0 might correspond to real
objects in the system. The structure of this system might be described using an UML
class diagram at layer M1. The class diagram conforms to UML which itself is specified in
MOF. Principally, the number of layers is not fixed for a language specified using MOF.
MOF allows any amount of layers larger than one. In the case of two layers, MOF is
used as class diagram to specify object diagrams. The dining philosophers example used
in this thesis is specified in MOF. A certain situation in the dining philosophers problem
is specified using an instance of this model, the layer M0. The dining philosophers model
itself is thus in layer M1. MOF is used as metamodel of the dining philosophers model,
thus in layer M2. Since MOF is specified in itself, there are no more different layers and
thus in total, there are three different layers for the running example of this thesis.

The basic concept of having multiple layers of representation is not new to MDE. In
fact, a similar structure is exposed in classical programming. The metalanguage used to
specify programming languages is the Extended Backus–Naur Form (EBNF) [29] which
itself is defined in EBNF. The syntax definition of a programming language like Java can
be written in EBNF. The program itself then is written in this programming language.
When the program executes, its state can be represented as being in a certain point in
the program with specific variable assignments including the stack elements.

Ecore

Ecore is an implementation close to the MOF standard and is commonly referred to
as reference implementation of MOF. Ecore is the main metamodel language used in
the Eclipse Modeling Framework (EMF) [10] which unifies Java, XML and UML by
providing a common high–level representation.

Since Ecore is the basis for not only the running example, but also the metamodel
language for defining models or metamodels used in the approach of this thesis, a de-
scription of Ecore follows. Figure 6 shows the general types used in Ecore. An Element
is used as common superclass for all metaclasses in EMOF. Comments allow attach-
ing remarks to elements useful for modelers. Their body attribute, a string, defines
the actual comment. The annotatedElement reference specifies the Elements which are
commented. A NamedElement is an element with a name used for identification of the
element within the namespace, i.e. the container it is defined in. Its visibility may be
public(+), private(-), protected(#) or package(~). Public elements are visible to all
elements which can access the owning namespace. Private elements are visible only
within their namespace. Protected elements are visible to elements having a generaliza-
tion relationship to the owning namespace. Elements with visibility package are visible
to elements within the nearest enclosing package. A package contains types specified by
the ownedType association and packages specified by the nestedPackage association. It
may have an URI string as universally unique identification. The named element Type
is used as type for a TypedElement. A DataType is an abstract class acting as supertype
for instances identified only by their value. These instances have type PrimitiveType if

10

Type

Classifier

DataType

PrimitiveType Enumeration

InstanceSpecification

EnumerationLiteral
+enumeration
0..1

+ownedLiteral
0..* {ordered}

PackageableElement
+visibility: VisibilityKind

Package
+uri: String[0..1]

TypedElement

Element

NamedElement
+name:
+visibility:
+/qualifiedName:

String[0..1]
VisiblityKind[0..1]
String[0..1]

Comment
+body: String[0..1]

+owningPackage
0..1

+packagedElement
 0..*

+type
0..1

+typedElement
0..*

+comment
0..*

+ownedComment
0..*

+owningElement
0..*

+annotatedElement
0..*

Figure 6: General overview of types and packages in EMOF, adopted from [37]

they are Integers, Booleans, Strings or UnlimitedNaturals or Enumeration if their value
is contained in a finite set of values specified as EnumerationLiteral.

Figure 7 shows the basic classes contained in EMOF. Objects of type Class may have
instances. Classes have a type and an arbitrary number of superclasses. They inherit
from Classifier and thus can be abstract. Abstract classes cannot have direct instances,
but every direct instance of a class is an indirect instance of all its superclasses. The
superclasses attribute in class redefines the general attribute of the classifier. Classes
have slots for their direct and inherited attributes. Objects allow the invocation of
their class’ operations and the operations of the superclasses with the context of the
invoked object. Operations have an ordered set of parameters and exceptions they can
raise. Parameters specify arguments for passing information in the context of operation
invocations. The direction attribute defines whether the information is passed into or out
of the operation with possible values in, inout, out and return. Parameters inherit from
MultiplicityElements, which define an inclusive interval of non–negative integers with
lower and (possibly infinite) upper bound. MultiplicityElements might also be ordered

11

Type

Generalization

Class

Association

TypedElement

Feature

MultiplicityElement
+isOrdered:
+isUnique:
+upper
+lower:

Boolean = false
Boolean = false
UnlimitedNatural = 1 [0..1]
Integer = 1[0..1]

StructuralFeature
+isReadOnly: Boolean = false

Classifier
+isAbstract: Boolean = false

Operation Parameter
+direction: ParameterDirectionKind

Property
+isDerived:
+aggregation:
+/isComposite:
+isId:

Boolean = false
AggregationKind ='none'
Boolean = false
Boolean = false

+general
1

+specific
1

+generalization
0..*

+generalization
0..*

+class
0..1

+class
0..1

ownedAttribute
0.. * {ordered}

+raisedException
0..*

+operation
0..*

ownedParameter
0..* {ordered}

+operation
0..1

+association
0..1

+owningAssociation
0..1

+memberEnd
2..* {ordered}

+ownedEnd
0..* {ordered}

+class
0..*

+/superClass
0..*

+property
0..1

+/opposite
0..1

Figure 7: General overview of classes included in EMOF, adapted from [37]

or unique.
Properties are representing attributes of a class. Composite properties are contained

in the object and have an aggregation of ’composite’, else they have an aggregation of
’none’. Derived attributes are calculated from information elsewhere. For any property
p1 of object o1 which is opposite to another property p2 of object o2, it holds that o1.p1
refers to o2 iff o2.p2 refers to o1, so they are bidirectionally navigable. A property
which is an ID uniquely identifies an instance of the containing class. Properties are
StructuralFeatures and thus can be defined to be read only and multiplicities can be
defined like for operation parameters. Association instances are links with one value for
each end of the association. The property of the end of the association is navigable.
Member ends refer to instances connected by the classifier. Owned ends are owned by
the association itself and are a subset of member ends.

Figure 8 shows an EMOF model of the dining philosophers problem setting. In many
cases, attribute values can be omitted because they are equal to the default values. The
actually used Ecore model of the dining philosophers problem looks similar with the
main difference that there is a distinction between attributes (the status property) and
references (all other properties). Note that there are different possible representations
for models. For example, the model depicted in Figure 1 is the same as in Figure 8.
The concrete syntax specifying the surface representation is different in these cases. The
abstract syntax specifying the real, internal, structure stays the same. Figure 8 shows a
more or less trivial concrete syntax allowing easy reasoning on the abstract syntax while
Figure 1 shows a concrete syntax making the model easier to read but possibly forcing
the reader to think about the abstract syntax of the model a bit.

12

Philosopher: Class
+name = "Philosopher"
+visibility = public

status: Property
+name = "status"
+aggregation = composite

ownedAttributeclass
+visibility = public

Fork: Class
+name = "Fork"
+visibility = public

Plate: Class
+name = "Plate"
+visibility = public

Table: Class
+name = "Table"
+visibility = public

type
leftF: Property

+name = "left"
+visibility = public

rightF: Property
+name = "right"
+visibility = public

classownedAttribute ownedAttributeclass
+lowerBound = 0+lowerBound = 0

typetype
left: Property

+name = "left"
+visibility = public
+aggregation = composite

right: Property
+name = "right"
+visibility = publictypetype

ownedAttributeclass
ownedAttributeclass

forks: Property
+name = "forks"
+visibility = public
+upperBound =*ownedAttribute

class

type

plates: Property
+name = "plates"
+visibility = public
+aggregation = composite
+upperBound = *

classownedAttribute

type

plate: Property
+name = "plate"
+visibility = public

type

class ownedAttribute
phils: Property

+name = "philosophers"
+visibility = public
+aggregation = composite
+upperBound = *

classownedAttribute
type

PState: Enumeration
+name = "PState"
+visibility = public

thinking: EnumerationLiteral
+name = "thinking"
+visibility = public

hungry: EnumerationLiteral
+name = "hungry"
+visibility = public

eating: EnumerationLiteral
+name = "eating"
+visibility = public

ownedLiteral:enumeration
ownedLiteral:

ownedLiteral:enumeration

Figure 8: EMOF model of the dining philosophers problem as depicted in Figure 1

Beside having the syntax, a clearly defined semantics is important as well, especially
for software model verification. All the constructs used in the model must have clearly
defined semantics and there may be no semantically relevant information for the model
outside the scope of defined semantics, e.g. in comments. A commonly known early
compromise between expressibility and checkability in the past were petri nets [57].
Today, UML is more often used in modeling. Since the UML semantics are partly
specified in an informal way, struggles have been made to define subsets of UML with
formally defined semantics, for example Foundational UML (fUML) [39]. The behavioral
semantics of our approach are based on graph transformations and discussed in detail
in Chapter 5 .

Object Constraint Language

When models and metamodels have constraints wich cannot be formulated in the context–
free (meta–)meta–modeling language alone, additional constraint specification languages
are required. For example, the Object Constraint Language (OCL) [36] supplements
MOF and provides a textual language for specifying expressions on UML and other
MOF based models which enhances the metamodel’s constraint specification facilities
with first–order logic. OCL thus combines the advantage of being easier to be read
by a modeler than typical formal languages constraining models as the modeler does
not have to leave his/her technical space but still being formal enough to be evaluated
automatically. OCL is a specification language and thus side–effect–free [36].

In the following, we describe the semantics of Essential OCL, the minimal OCL
subset required to work with EMOF. Additionally, some selected parts of Complete
OCL, the full OCL language, which are relevant for this thesis, are explained as well.
A formal semantics for Essential OCL is listed in Definition 30 where we enhance OCL
with temporal operators.

13

p2: Philosopher
+status = hungry

f1: Fork

philosophers
plates

forks

left
right

right

philosophers philosophersplatesleft

leftright

plate

plate platep3: Philosopher
+status = thinking

plates
p1: Philosopher
+status = eatingright left

f2: Fork

f3: Forkd1: Plate

d2: Plate d3: Plate

Figure 9: Object diagram of three dining philosophers where one is eating, one is hungry
and one is thinking

Context Complete OCL provides the context for specifying the scope of an OCL
expression. The invariants are general constraints on objects which hold forever. For
operations, pre– and postconditions can be specified as well as their return (or body)
value. For attributes, constraints can be specified that must hold initially only or all the
time. In the following, these concepts will be discussed in detail.

Definition 1 (Context). A context of an expression specifies where and how the ex-
pression is used in the (meta)model. The special expression self refers to the contextual
instance on which the OCL expression is evaluated. In complete OCL, the context
can be specified for types and operations and any other kind of behavioral feature.

context (n:)?t inv: e

This construct specifies an invariant, that is, the boolean expression e must evaluate to
true for all instances of the type t. The self expression refers to the specific instance of
the specified type on which the expression is evaluated. A different name for self may
be defined using n. self may be omitted if the context is clear.
context t::n (pn1:pt1,...):tr pre: epre post: epost

This construct specifies pre– and postconditions of a certain operation. Whenever the
precondition holds prior to the operation invocation, the postcondition must hold after
the operation invocation. In a postcondition, ep@pre can be used to refer to the result of
the expression ep at the beginning of the operation call. All further properties accessed
give the new values. The self expression refers to object on which the operation was
called. The special variable result is used to represent the return value.

Figure 9 shows the model used for the following examples. It depicts a situation oc-
curring in the dining philosophers problem. There are three philosophers sitting around a

14

table with one philosopher thinking and one philosopher hungry having no forks and one
philosopher eating having two forks. The fork which does not belong to any philosopher
belongs to the table.

The context of every example expression is, unless otherwise noted, the highlighted
table object t. For every expression we assume that variables f1, f2, f3 are defined for
each of the objects f1 , f2 , p1 , ... in the diagram to allow easier representation of return
values. In the examples and definitions, purple text in italics denotes types, blue text
denotes constants, brown text objects and object access, except for variables in black
text. Keywords are bold.
Example 1 (Context). The following expressions illustrate different application sce-
narios of context.
context p:Philosopher inv: p.status <> null

The philosopher status must always be set.

context Philosopher ::getHungry()
pre: self.status = PState ::thinking and left = null and right = null
post: self.status = PState ::hungry and left = null and right = null
When the operation getHungry is called, the philosopher must be thinking and have no
fork in his/her hands. After the operation call, the philosopher must be hungry and still
has no fork in his/her hands.

... post: self.status <> self.status@pre

The status after the operation call should be different from the status before the opera-
tion call.
... post: self.status <> self @pre.status

The status of the philosopher referred to by self at the end of the operation call is
different from the status at the end of the operation call of the philosopher referred to
by self at the beginning of the operation call. This implies that the philosopher referred
to by self has changed.

context Philosopher ::guessStatus() post: if self.right <> null then result
= PState ::eating else if self.left <> null then result = PState ::hungry else
result <> PState ::eating endif endif

A guess of the status from the forks owned will result in eating if there are two forks
in the philosopher’s hands and hungry if there is one fork in his/her hands. If the
philosopher has no fork, he/she does surely not eat.

For query operations returning a value, a body expression might be used to return the
result. The initial value of an attribute or association end can be specified with init and
derive is used as derivation constraint, who must hold at all time [36].

15

Example 2 (Body). The following expression uses the body attribute to define the
return value of the philosopher operation isHungry().
context Philosopher ::isHungry() body: self.status = PState ::hungry

The function isHungry returns true iff the philosopher’s status is hungry.

Definition 2 (Init, Derive).
context t::an:at init/derive: e

This specifies the value of an attribute or association end named an with type at of the
class t. Its initial value is the result of the evaluation of e after init, the derive constraint
m must hold all the time.

Example 3 (Init, Derive). The following examples illustrate the use of the init and
derive keywords to specify the value of philosopher attributes at certain points in time.

context Philosopher ::left:Fork init: null

The left fork of a philosopher is initially null.
context Philosopher ::right:Fork derive:
if self.status = PState ::eating then plate.right else null endif

The philosopher always has a right Fork in his/her hands if his/her status is eating.
In Essential OCL, there is no context definition. Thus, the context or rather the value
of the self attribute has to be provided to any Essential OCL evaluation engine.

Classifier

Class VoidTypeAnyType
OclVoidOclAny

InvalidType
OclInvalid

DataType

TupleTypePrimitiveTypeCollectionType
Tuple

elementType 1

*
OrderedSetType SequenceType BagType SetType

Collection(T)

OrderedSet(T) Sequence(T) Bag(T) Set(T)

Figure 10: Partial OCL type hierarchy, adapted from [36]

Types There are basically two kinds of types in OCL: Basic types, which are predefined
in OCL, and types of the metamodel the OCL expressions are attached to. The type
is usually specified using a colon. For example, n : Integer refers to a variable n with

16

type Integer. Figure 10 shows a part of the OCL type hierarchy. As in MOF, all types
inherit from the common supertype classifier. A type A conforms to a type B if A can be
used anywhere where B can be used.

There are three special OCL types: AnyType, written as OclAny (i.e. AnyType is the
metaclass of OclAny) is a type to which all other types conform. InvalidType, written
as OclInvalid, represents invalid values and does conform to all types except OclVoid.
Its only instance is invalid. VoidType, written as OclVoid, is used for specifying the
absence of any value and conforms to all types except OclInvalid. Its only instance is
null.

The primitive types of OCL are UnlimitedNatural, Integer, Real, String and Boolean.
Real represents a real number (e.g. 3.14). Integer represents an integer and conforms
to Real. UnlimitedNatural represents a natural number including * denoting infinity. It
conforms to Integer except for * which is replaced by invalid in expressions. Boolean
represents the common truth values true and false. String represents a character se-
quence, e.g. ’hungry’.

Each collection type is parameterized by the type of elements in the collection. Thus,
there are potentially infinitely collection types. Collections may contain elements of any
type including collections. The subtypes of collection are Set containing elements only
once, OrderedSet having an order defined and containing elements only once, Bag allow-
ing duplicates and Sequence, having an order defined and allowing duplicates. Collec-
tions literals are defined using curly brackets, for example Sequence {1,2,3} defines the
sequence containing the numbers 1, 2 and 3. This could also be written als Sequence
{1..3}. Collections conform to each other if their elements obey the same type or a
super type.

The typical struct construct is represented using TupleValues. It contains name/value–
pairs declared like a variable with potentially distinct types.
Example 4 (Tuples). The following example shows a tuple definition.

Tuple {status:String = ’hungry’, numForks:Integer = 1}

This tuple contains an attribute status of type String with value ’hungry’ and an
attribute numForks of type Integer with value 1.

Users can define custom enumeration types including a name and a set of liter-
als. They define a finite variable domain. Enumeration literals are accessed using
<EnumType> ::<EnumLiteral>.
Example 5 (Enums). The following example shows the basic use of enums.

Enum PState {thinking, hungry, eating}

This constructor creates an Enum containing all possible philosopher’s status val-
ues. The elements can be accessed using PState ::thinking, PState ::hungry and
PState ::eating.

Since the exact dynamic OCL type is sometimes not known for an OCL object, there
are methods for type checking and type conversation.

17

Definition 3 (Type Related Methods). The following methods are defined on all in-
stances of any type.
obj.oclIsTypeOf(t:Classifier):Boolean /obj.oclIsKindOf(t:Classifier):Boolean

These methods check if obj has exactly type t or rather type t or a subtype.
obj.oclAsType(t:Classifier):t

Change the known type of the instance obj to the type t. This may as well be used to
access overridden properties of supertypes. If casting is not possible, i.e. the type of obj
does not conform to t, invalid is returned.
obj.oclIsUndefined():Boolean

Returns true iff obj is null or invalid
t.allInstances():Collection(t)

Gives a collection of all instances of the specific type.
The only operations defined on enumeration types are the test of equality and the

operation allInstances().

For the following examples, we use the notion of <Expression> ret
ùñ <Value> to denote

that the evaluation result of <Expression> is <Value>.
Example 6 (Type Related Methods). The following examples illustrate certain kinds
of type relationships. The expressions are evaluated on the highlighted table object of
Figure 9.

self.oclIsTypeOf(Table) ret
ùñ true

self.oclIsTypeOf(OclAny) ret
ùñ false

self.oclIsKindOf(OclAny) ret
ùñ true

self.oclAsType(Fork) ret
ùñ invalid

self.oclAsType(OclAny) ret
ùñ self

It is not possible to access Table–specific properties any longer.

self.oclAsType(OclAny .oclAsType(Table)) ret
ùñ self

It is again possible to access Table–specific properties

p2.left.oclIsUndefined() ret
ùñ true

Fork .allInstances() ret
ùñ Set{f1,f2,f3}

Navigation Attributes and association ends can be retrieved using a dot separating
object and attribute or association end name. The returned value is the value of the
corresponding attribute; if the multiplicity is greater than one, a set is returned. The

18

dot operator can be chained. If the dot operator is applied to a collection, its result is
the flattened collection
Example 7 (Navigation). The following examples illustrate examples of navigation in
objects.
self.forks ret

ùñ Set{f2}

self.philosophers ret
ùñ Set{p1,p2,p3}

self.philosophers.status ret
ùñ Set{PState ::eating, PState ::hungry,

PState ::thinking}

Operations defined on OCL objects can be accessed using a dot followed by the oper-
ation name and the parameters in parenthesis. If an operation is called on a collection,
it is applied to all elements of the collection.

OCL has a number of predefined operations including simple mathematical oper-
ations like basic arithmetical and rounding operations as well as comparison methods
including maximum and minimum operations.

Definition 4 (Operation on Numeric Primitive Types).
a +/-/*///</>/<=/<>/>=/=/div/mod b

The numeric operations have their usual meaning with the only exception that / of two
integers or UnlimitedNatural values instances returns a real value. div is the integer
division. All operations can be written either in infix notation or using the operation
notation a._’+’(b).
The expressions max/min Return the greater/smaller values of both numbers.
There are some additional operations on real values. The expression round rounds
half up to integers, i.e. if the fractional part is 0.5, the greater value is chosen. The
expression floor returns the greatest integer value not larger than the given value.
Doing any mathematical operation with the UnlimitedNatural * results, like dividing by
0, to invalid.

Example 8 (Numerical Functions). The following examples show the use of typical
numerical functions in OCL.
1.max(1.5) ret

ùñ 1.5; (-5).min(3) ret
ùñ -5; (-1.1).min(-0.9) ret

ùñ -1.1

(2.5).round() ret
ùñ 3; (2.9).floor() ret

ùñ 2; (-2.1).floor() ret
ùñ -3

Sequence{1,3,-1,-5}.div(3) ret
ùñ Sequence{0,1,0,-1}

There are also predefined operations on Strings in OCL. These include concatenation
and query operations for length and characters or substrings at specific positions, but
also operations for searching substrings and basic string conversation operations. Strings
can also be compared lexicographically and parsed into Integers and Booleans.

19

Definition 5 (Operations on Strings).
a.concat(b:String):String and a + b

These operations concatenate two strings.
The operation a.size():Integer returns the number of characters in a string.
The operation a.at(i:Integer):String returns the i–th character of the string (start-
ing with 1).
a.substring(lower:Integer ,upper:Integer):String

This operation returns the sub string starting at character lower up to, including, upper.
The operation a.indexOf(s:String):Integer returns the index of the first occurrence
of s in a or 0 if there is no such index.
The operation a.characters():Sequence(String) converts a string into a sequence
of characters.

a.toLowerCase():String and a.toUpperCase():String

These operations convert the string to lower– and upper case according to the set
oclLocale.
a.equalsIgnoreCase(s:String):Boolean

This operation checks if a and s are equal if both are converted to upper case.

a < / > / >= / <= b

These operations compare the string lexicographically considering oclLocale.
The operation a.toBoolean():Boolean converts a string to a boolean which is true if
the string is ’true’, else false.
The operations a.toInteger():Integer and a.toReal() convert a string to an Integer
and a Real, respectively. If the string cannot be represented as such type, invalid is
returned.

Example 9 (Operations on Strings). The following examples show the use of typical
string functions in OCL.
concat(’The philosopher is ’,’hungry’) ret

ùñ ’the philosopher is hungry’
’10’ <= ’9’ ret

ùñ true
The following operations are all evaluated on the string ’hungry’:
self.size() ret

ùñ 6; self < ’eating’ ret
ùñ false; self.at(2) ret

ùñ ’u’

self.substring(2,4) ret
ùñ ’ung’; self.indexOf(’ung’) ret

ùñ 2

self.toUpperCase() ret
ùñ ’HUNGRY’; self.characters() ret

ùñ

Sequence{’h’,’u’,’n’,’g’,’r’,’y’}

’TRUE’.toBoolean() ret
ùñ false; ’3.4’.toInteger() ret

ùñ invalid; ’3.5’.toReal() ret
ùñ

3.5

The basic operations on booleans are also supported as well in OCL.

20

Definition 6 (Operations on Booleans).
a and/or/xor/not/implies b

These operations have their usual meaning.

Example 10 (Operations on Booleans). The following examples show the use of
boolean operators in OCL.
true xor true ret

ùñ false; false implies true ret
ùñ true; true implies false ret

ùñ

false

There are also various operations on collections predefined in OCL. The simplest
operations allow to check whether some objects are in a collection or not, how many
objects are in a collection and some simple aggregate collection functions. Collection
operations are accessed using the arrow syntax col->op() instead of the dot syntax. For
every collection, we assume the collection contains elements of type T.

Definition 7 (Operations on Collections I). The expression col->size():Integer
returns the size of the collection.
col->includes(obj:T):Boolean , col->excludes(obj:T):Boolean

These expressions determine whether obj is contained for includes or rather not con-
tained for excludes in col.
col->includesAll(c2:Collection(T)):Boolean

This expression determines if all objects in c2 are included in col.
col->excludesAll(c2:Collection(T)):Boolean

This expression determines if no object in c2 is included in col.
The expression col->count(obj:T):Integer returns the number of objs in the collec-
tion. The expression col->isEmpty():Boolean (col->notEmpty():Boolean) returns
true (false) if the collection is empty.
For numeric elements, the expressions col->max():T and col->min():T returns the
biggest or rather smallest element of the collection. col->sum():T returns the sum of
all elements in the collection.

Example 11 (Operations on Collections I). The following examples illustrate the use
of operations providing information about collections in OCL.

self.philosophers->size() ret
ùñ 3; self.forks->includes(f1) ret

ùñ false

Table only has an association to the fork f2.

self.philosophers->includesAll(Philosopher .allInstances()) ret
ùñ true

The table in fact contains all philosophers.

self.forks->excludesAll(self.philosophers.left) ret
ùñ true

The table contains in fact only forks not held by philosophers, whereof
self.philosophers.left is a subset.

21

Set{1,2,2}->count(2) ret
ùñ 1

2 is only contained once in each set.

Sequence{1,2,2}->count(2) ret
ùñ 2; Set{1,2,2}->max() ret

ùñ 2

Set{1,2,2}->sum() ret
ùñ 3; Sequence{1,2,2}->sum() ret

ùñ 5

As well as types can be converted, the type of Collections can be also converted to
other collection types.

Definition 8 (Operations on Collections II).
col->asSet():Set(T) , col->asSequence():Sequence(T) , col->asBag():Bag(T) ,
col->asOrderedSet():OrderedSet(T)
These expressions convert the collection to the specified type. The c1 = c2 (c1 <> c2)
operator returns true (false) iff both sets contain the same elements equally often and,
if the collections are ordered, in the same order.

Example 12 (Operations on Collections II). The following examples illustrate the use
of collection type conversion operations in OCL.
Bag{1,2,3}->asSet() = Bag{1,2}->asSet() ret

ùñ true Bag{1,2} = Set{1,2} ret
ùñ false

Set{1,2,2} = Set{1,2} ret
ùñ true; Bag{1,2,2} = Bag{1,2} ret

ùñ false

After multiple processing steps, collections might be deeply nested. In these cases, it
is sometimes useful to get a single collection containing all the values stored in the most
deeply nested collections. This is provided by the flatten operation.

Definition 9 (Operations on Collections III).
The operation col->flatten():Collection(T2) returns the recursively flattened

out collection. This is, it returns the same collection if the contained elements are not
collections, else the collection containing all elements e P c of the flattened elements
c P col of the collection col. The operation col->product(c2:Collection(T2)):
Set(Tuple(first:T,second:T)) returns the cartesian product of both collections.

Example 13 (Operations on Collections III). The following examples illustrate the
use of collection transformation operations in OCL.
Set{Set{1,2,3},Set{2,3,4}}->flatten() ret

ùñ Set{1,2,3,4}

Sequence{Set{1,2,3},Set{2,3,4}}->flatten() ret
ùñ Sequence{1,2,3,2,3,4}

Sequence{1,2}->product(Sequence{2,3}) ret
ùñ Set{Tuple{first: 1, second: 2},

Tuple{first: 1, second: 3}, Tuple{first: 2, second: 2}, Tuple{first: 2,
second: 3}}

The classical set operations are also implemented in OCL including union, intersec-
tion, set difference and symmetric difference.

22

Definition 10 (Operations on Collections IV). The operations col->union(col2) and
col->intersection(col2) are defined for both Set and Bag as each of their operands.
The operation union returns a Bag retaining all multiplicities of both collections if at
least one collection is a Bag, else a Set. The operation intersection returns a Bag con-
taining the minimum amount of both collections if they are Bags, else a Set. The opera-
tion col->including(obj:T):Set(T) returns a Set with the specified element added.
col->excluding(obj:T):Bag(T) returns a Bag with all occurrences of the specified
element removed.

The operation col->symmetricDifference(s:Set(T)) defined on sets return a set
of all elements included in exactly one set and col - (s:Set(T)) returns all elements
contained in the first, not in the second set.

Example 14 (Operations on collections IV). The following examples illustrate the use
of set operations in OCL.
Set{1,2,3}->union(Bag{1,4}) ret

ùñ Bag{1,2,3,1,4}

Bag{1,2,2}->intersection(Set{2,2}) ret
ùñ Set{2}

Bag{1,2,2}->intersection(Bag{2,2}) ret
ùñ Bag{2,2}

Set{1,2}->including(3) ret
ùñ Set{1,2,3}

Bag{1,2,2}->excluding(2) ret
ùñ Bag{1}

Set{1,2}->symmetricDifference(Set{2,3}) ret
ùñ Set{1,3}

Set{1,2,3}-Set{3,4} ret
ùñ Set{1,2}

Simple operations on sequences are also predefined in OCL. Elements can be added
to the beginning, to the end or somewhere inbetween. The first and last elements
of a collection can be retrieved and the position of an Element can be figured out.
Additionally, sequences can be reversed.

Definition 11 (Operations on collections V). Operations defined for OrderedSets and
Sequences are the following: col->append(obj:T):Collection(T) adds obj as last
element to the collection. The operation col->append is equivalent to col->including.
The expression col->prepend(obj:T) adds obj as first element to the collection.
The expressions col->first():T and col->last():T retrieving the first or rather last
element of the collection. The expression col->insertAt(index:Integer , obj:T)
inserts obj at the specified position and moves the other elements backwards. The
expression col->at(i:Integer):T retrieves the element at the specified index while
col->indexOf(obj:T):Integer returns the position of obj and invalid if obj is not
found. The expression col->reverse() reverses the order of the collection.

Example 15 (Operations on Collections V). The following examples illustrate the use
of element access and sequence modification operations in OCL.
Sequence{1,2}->append(5) ret

ùñ Sequence{1,2,5}

23

Sequence{1,2}->prepend(5) ret
ùñ Sequence{5,1,2}

OrderedSet{3,2,1}->first() ret
ùñ 3

Sequence{1,8,9}->insertAt(2,5) ret
ùñ Sequence{1,5,8,9}

OrderdSet{1,2,3}->indexOf(5) ret
ùñ invalid; Sequence{4,5,6}->indexOf(5) ret

ùñ 2

Sequence{1,2,3}->reverse() ret
ùñ Sequence{3,2,1}

For both sequences and ordered sets, subcollections can be determined by providing
indices or values, respecively, of first and last element.

Definition 12 (Operations on Collections VI).
col.subOrderedSet(lower:Integer , upper:Integer):OrderedSet(T)

col.subSequence(lower:Integer , upper:Integer):Sequence(T)

These expressions give the subsequence starting with the lower element up to, including,
the upper element.

Example 16 (Operations on Collections VI). The following examples illustrate the
use of subsequence access operations in OCL.
Sequence{3,4,5,6,7}->subSequence(2,4) ret

ùñ Sequence{4,5,6}

OrderedSet{1,1,2,3,4,5,6}->subOrderedSet(2,4) ret
ùñ OrderedSet{2,3,4}

OCL also provides collection operations called iterator operations. They provide
more flexible information retrieval for sets. It is possible to check whether every, at least
one or exactly one element of a set meets a specific condition, to select elements in a
set matching a condition and to recursively select elements. It is also possible to define
custom iteration functions in a limited way.

Iterator operations have the form col->operation(iterVar | <boolean expression
in iterVar>) and are evaluated as follows: For each element in the collection, the iter-
ator iterVar gets assigned to this element and the boolean expression on the right–hand
side of the | symbol is evaluated. The exact accumulation of these expressions is de-
pending on the actual iteration operation. The iteration variable definition iterVar may
be omitted in case the context object equals to the collection object. Iterators may
be typed using iterVar: iterType. Single objects behave as sets containing only the
relevant object. The iterator operations forAll and exists support multiple iterators,
where each combination of values is tried.

24

Operation Description
forAll Returns true iff for all elements, the boolean expression evaluates to

true.
exists Returns true iff for at least one element, the boolean expression evalu-

ates to true.
one Returns true iff for exactly one element, the boolean expression evalu-

ates to true.
select Returns a collection containing all elements of the collection with the

boolean expression evaluating to true.
reject Returns a collection containing all elements of the collection with the

boolean expression evaluating to false.
any Returns an object with the boolean expression evaluating to true. If

none exists, invalid is returned.
Table 1: Table of important collection iteration operations

Example 17 (Collection Operations VII). The following examples illustrate the use
of iteration operations in OCL.
self.philosophers->forAll(p | p.status <> PState ::thinking implies

p.left <> null) ret
ùñ false

The implication that if a philosopher is not thinking he/she has a left fork is checked for
all philosophers. The philosopher p2 is hungry but has no fork. Thus, false is returned.

self.philosophers->forAll(p,q | p.status <> q.status implies p.left <> q.left)
ret
ùñ false
The implication that if two philosophers have different status values, exactly one of them
has a fork in his/her left hand is checked. The philosopher p2 is hungry and p1 thinking,
so their status values are different, but both have no fork.

self.philosophers->select(p | p.status <> PState ::thinking
implies p.left <> null) ret

ùñ Set{p1,p3}
The selection of all philosophers which have a left fork if they are not thinking. This is
the philosopher p1 who has a left fork, and p3 who is not thinking.

self.philosophers->any(p | p.left = null) ret
ùñ p2 or ret

ùñ p3

The selection of any philosopher who has no fork. Both p2 and p3 have no fork and it is
not guaranteed which one is given.

self.philosophers->one(p | p.status = PState ::thinking) ret
ùñ true

Whether there is exactly one philosopher thinking. This is true since just the philosopher
p3 is thinking.

There are three important collection operations with slightly different syntax.

25

Definition 13 (Iteration collection operations).
col->collect(iterVar:Type | <expression in iterVar>)

This expression calculates the specified expression in iterVar for all elements of the collec-
tion. A collection containing all these evaluation results is returned.
col->closure(iterVar:Type | <expression in iterVar>)

This expression calculates the transitive closure of the specified expression which is the
union of the collection and all elements returned by any evaluation of the expression on
an element of this union.
col->iterate(iterVar:Type , acc:Type = <init expression> | <acc expression in
iterVar and acc>)
This expression provides generic means of describing collection operations like the ones
mentioned above. Initially, acc is assigned the value of <init expression>. Then, for
each element, acc is assigned the value of the <acc-expression> with iterVar containing
an element of the collection. If the collection does not contain any more elements, the
current value of acc is returned.

OCL provides two kinds of control structures: If and let. The control structure if
evaluates different expressions depending on a conditions, the structure let allows to
define variables with specific value which can be used evaluating an OCl expression.

Definition 14 (If Expression).
if ec then et else ee endif

This expression returns the value of et if ec evaluates to true, else the value of ee.

Example 18 (If Expression). The following example illustrates the use of if to find
out whether there are forks picked by philosophers.
if self.forks->size() < Fork .allInstances()->size() then ’sometaken’ else

’nonetaken’ endif
ret
ùñ ’sometaken’

There is only one fork associated to the table, but there are three fork instances in the
model altogether. Thus, the string ’sometaken’ is returned.

Definition 15 (Let Expression). The expression let n: t = e in en declares a variable
with the name n of type t with the value of e. n must not be already used as variable
name. The result of this expression is the result of en.

Example 19 (Let Expression). The following examples illustrate the use of the let
expression to reduce the expression length.
let usedforks = self.philosophers.left->union(self.philosophers.right)
in self.plates->select(p | usedforks->includes(p.left) or
usedforks->includes(p.right) ret

ùñ Set{d1,d2,d3}
This expression selects the plates which have forks taken by philosophers. All plates are
returned because d1 has f1 and f2 used by p1, d2 has f1 used by p1 and d3 has f3 used

26

t5: Table
+phil1 = "thinking"
+phil2 = "hungry"

t6: Table
+phil1 = "hungry"
+phil2 = "hungry"

t7: Table
+phil1 = "left"
+phil2 = "hungry"

t8: Table
+phil1 = "eating"
+phil2 = "hungry"

t9: Table
+phil1 = "thinking"
+phil2 = "left"

t10: Table
+phil1 = "hungry"
+phil2 = "left"

t11: Table
+phil1 = "left"
+phil2 = "left"

t12: Table
+phil1 = "thinking"
+phil2 = "eating"

t13: Table
+phil1 = "hungry"
+phil2 = "eating"

t1: Table
+phil1 = "thinking"
+phil2 = "thinking"

t2: Table
+phil1 = "hungry"
+phil2 = "thinking"

t3: Table
+phil1 = "left"
+phil2 = "thinking"

t4: Table
+phil1 = "eating"
+phil2 = "thinking"

hungry
hungry
hungry
hungry

hungry
left
right

hungry
left
right

hungry
left

hungry
release
release

releaserelease

left
left
left

right
right

Figure 11: Possible configurations for two dining philosophers

by p1.
For the following examples, we will use the model depicted in Figure 11. The model

contains several table elements with all possible configurations of two dining philoso-
phers. The references between the table elements reflect the modification from one
configuration to another. We start with both philosophers thinking, which then can get
hungry, have a left fork in their hands and then take the right fork and start eating.
Each table consists just of two attributes describing the different philosopher states. In
order to distinguish between the state ’hungry’ with no and one fork, the state hungry
with one fork is called ’left’.
Example 20 (Collection Operations VIII). The following examples illustrate the use
of advanced iteration operations in OCL.
Table .allInstances()->collect(t:Table | t.phil1.status + ’/’ + t.phil2.
status) ret

ùñ Collection{’thinking/thinking’,’hungry/thinking’,’hungry/left’,...}
This expression calculates string representations of states and includes every existing
combination of two philosopher statuses.

self->closure(t | t.hungry) ret
ùñ Set{t1,t2,t5,t6}

This expression collects all tables reached directly or indirectly via the hungry reference.
In the first step, only t1 is in the set. Then, t1.hungry is evaluated and t2 and t5 are
added to the result set. For each of the new elements, t.hungry is evaluated again and
thus t6 would be added two times, but since the closure operation does not add elements
twice to avoid some infinite calculations, t6 is only once in the result set.

27

Table .allInstances()->iterate(t:Table , acc: Integer = 0 | acc + if
t.phil1.status = ’eating’ then 1 else 0 endif + if t.phil2.status = ’eating’
then 1 else 0 endif) ret

ùñ 4
This expression calculates the total number of eating occurrences in the configurations.

The following example uses the concepts introduced above for reasoning over the pos-
sible philosopher configurations. It serves as basic witness that the combination of model
checking and modeling is possible. While most if not all existing approaches of combin-
ing model checking with OCL enhance the OCL language using special constructs, this
example shows that using a suitable model structure, Essential OCL itself can be used for
model checking. To be more precise, this example formulates the property A phil1 <>
’eating’ and phil2 <> ’eating’ U phil1 = ’eating’ or phil2 = ’eating’, i.e. that
in every case, there will be a philosopher eating and before this happens the first time,
no philosopher will be eating. See Section 3.4 for more details on model checking. Note
that this approach has several serious drawbacks: (1) Essential OCL might not be the
best choice for writing a model checker because due to the nature of OCL, it is not
possible to interrupt loops. Thus, it is not possible to finish the evaluation as soon as
the result is known. (2) All philosopher configurations have to be known when start-
ing the evaluation process. This might be suboptimal for queries requiring only a few
configurations. (3) In order to trace model elements, many additional model elements
would have to be added to the model and it might be cumbersome to actually use these
elements for tracing objects in different states.
Example 21 (Complex Example). We want to find out whether we will surely find a
philosopher eating by traversing tables where no philosopher is eating starting from the
self table.
let phi = self->closure(t | t.hungry->union(t.left)->union(t.right)
->union(t.release)->select(t.phil1 <> ’eating’ and t.phil2 <> ’eating’) ret

ùñ

Set{t1,t2,t3,t5,t6,t7,t9,t10,t11}
This expression gives us all tables reachable from the initial table from the closure of the
union of all association ends which continuously have no philosopher eating. Initially,
only t1 is in the closure. The associated tables are t2 and t5 both having no philosopher
eating. Then we continue with t2 and find t3 and t6 being addable to the set. This is
continued until all tables except the ones with philosophers eating are selected.

Now we can select border tables phineighbor which are tables where there is a philoso-
pher eating not in the set phi.
let phineighbor = phi->collect(t | t.hungry->union(t.left)->union(t.right)->
union(t.release)->select(t.phil = ’eating’ or t.phil2 = ’eating’))->flatten()
in let psi = phineighbor->reject(t | phi->includes(t)) ret

ùñ Set{t4,t8,t12,t13}
This gives us a set phi where we first collect all associated tables of phi which fulfill the
eating–condition, then we flatten this collection of collections and then we exclude all
elements in phi. The result of phineighbor is every table except for t1 because this is
the only table not reachable by a state in phi. If we exclude all states phi, we get the

28

four border states t4, t8, t12 and t13.
psi->union(phi)->includesAll(psineighbor) ret

ùñ true

If we want to be sure to find a philosopher eating, then, there may be no associated
table of psi neither in psi nor phi. This returns true because psi->union(phi) covers
in fact all tables.
phi->forAll(t | t->closure(t.hungry->union(t.left)->union(t.right)->
union(t.release)->intersection(phi))->excludes(t)) ret

ùñ true
There must not be a possibility that we traverse only table associations in phi without
ever getting to psi. This can be expressed as that there may be no navigation possibility
from any table in phi through tables in phi to itself. This is the case because there is
no cycle within our phi set.
phi->forAll(t | t.hungry->union(t.left)->union(t.right)->union(t.release)
->notEmpty()) ret

ùñ false
We have to be able to actually get to some neighbor from each table in phi. This is not
the case because we cannot reach any table from t11. Thus, we will not surely find a
philosopher eating by traversing tables with no philosopher eating.

OCL offers various features and functions for evaluating properties of static models.
It allows easy navigation and collection handling. However, the only support for dy-
namic model properties are pre– and postconditions which do not allow to reason over
longer model behavior. While dynamic models can be converted into static models, the
access of properties occurring in specific situations gets difficult. OCL also is not turing
complete [50] so maybe some properties used in model checking cannot be expressed at
all.

2.3 Model Transformations

Model transformations rewrite a source model into a target model. Both Czarnecki and
Helsen [16] and Mens and Gorp [51] provide an overview of model transformation. Basi-
cally, a transformation engine reads a source model conforming to a source metamodel,
executes the transformation definition referring to source and target metamodel and
writes the target model conforming to the target metamodel. They can be classified
in various ways, for example, whether they are endogenous, which means source and
target models are in the same language or exogenous where the source model is rewrit-
ten into a model of a different language. If source and target models are the same, the
changes are called in–place, else, they are called out–place. Note that this can only be
the case for endogenous transformations. Horizontal transformations have source and
target models which are on the same abstraction level while vertical transformations
have them at different abstraction layers. Syntactical transformations only change the
form, while semantical transformations also change the meaning of a model. Other im-
portant characteristics include whether manual intervention is needed, how complex the
transformations are, which aspects of the model are preserved during the transformation

29

and whether the transformation is uni– or bidirectional, i.e. whether the transformation
can be executed in only one direction or in both directions.

There are declarative or imperative approaches to model transformation. Declarative
approaches describe what should be done to transform the model. They are useful be-
cause an underlying reasoning engine can be used for source model navigation and target
model creation. Further, the control flow of the rule applications has not be given explic-
itly and thus the transformations are easier to write and understand. If these declarative
approaches, however, are not sufficient, imperative approaches are used. They are re-
quired especially when transformation application order needs to be controlled explicitly
or to adjust the model after being changed by the transformation tool. In any case, a
precise metamodel is required for automated model transformation .

Typical ingredients of model transformations include transformation rules, the small-
est units of transformations. Typically these are rewrite rules with left–hand side (LHS)
and right–and side (RHS), but also functions can be used as transformation rules. Rule
application conditions controls the order of transformations as well as the model elements
which are transformed.

In this thesis, we need model transformations for defining the behavior of the system
to be verified. In particular, we use graph transformations because of their well defined
semantics.

Graph Transformations

In the following, the core concepts and usage of graph transformations as one approach
of model transformation are discussed. We give an informal introduction to graph trans-
formations like given by Heckel [41], as it is sufficient to get a basic understanding.
However, a more formal approach regarding the execution of graph transformations in
an algebraic manner [22] can be found in the Appendix A.

:Philosopher
+status = "hungry"

:Fork

Philosopher

Fork
left

"hungry"

left status

Figure 12: EMOF model and corresponding
graph

Graphs are defined in rather different
ways in literature. For simplicity, we re-
gard graphs here as valued nodes con-
nected by labeled edges. Each edge has
a source and target node. EMOF models
are considered as graphs here by regarding
attributes as associations to their values.
Figure 12 shows an example. Graphs may
also be typed. Each node and edge of a
graph is connected to their type node or
edge in a type graph. The type graph of a graph corresponds to the metamodel of a
model. For example, the type graph of the graph in Figure 12 could look similar to the
dining philosophers model in Figure 1.

Graph transformation rules may abstract the behavior of a system modeled by graphs
by concentrating on the relevant subgraphs for changes [41]. Typical graph transforma-
tion rules consist of a left–hand side (LHS) and a right–hand side (RHS) where the graph
of the left hand side is converted to the graph of the right hand side. A graph trans-

30

formation application consists of two phases: First, a matching between the LHS of a
graph transformation rule and the graph must be established. Then, the rule must be
applied.

"hungry"

Philosopher Philosopher
status

m
LHS RHS

status

"thinking"

(a) Classical notation

Philosopher

status

"thinking"

status

"hungry"

«create»

«delete» «create»

(b) Storyboard notation I

:Philosopher
status = "thinking"→

"hungry"

(c) Storyboard II

Figure 13: Graph transformation described in different ways

There are multiple notations of graph transformations for the visual representation.
A classical notation displays LHS and RHS of a graph and the mapping function as-
signing at most one element of the RHS to every element of the LHS. The storyboard
notation described in [27] and [55], on the other hand, shows only a single graph where
graph changes are described using symbols for deletion, creation and update. The sto-
ryboard notation is more expressive then the simple, classical notation. Objects may be
displayed weakly to show that the match is optional. An object may be displayed as
staple to indicate that a set of multiple objects may be matched to this object. Changes
are applied to every object in this set. There also exists a notion of negative objects,
i.e. objects where no mapping is allowed. Figure 13 shows both the classical notion of
a graph transformation rule in Figure 13a together with a variation of the storyboard
notation in Figure 13b and another variant of the storyboard notation used for the
transformation in this thesis in Figure 13c. In this rule, a philosopher’s status changes
from thinking to hungry. Thus, the LHS consists of a node depicting a Philosopher with
status attribute being thinking, the RHS depicts the same philosopher having a status
attribute which is hungry. The graph transformation written in storyboard notation in
the middle shows the different syntax for the creation and deletion of objects. Objects
and transitions are created using «create» in green and deleted using «delete» in blue.
The storyboard notation allows an even more concise representation when used together
with models instead of simple attributed graphs. Here, an attribute value change is
represented using an Ñ.

A graph transformation is performed in two steps. At first, an occurrence of the
LHS has to be found in the host graph, i.e. the graph the rule is applied to. A match
describes the relation between LHS and LHS occurrence in the host graph. In the
most simple case, such a match connects each element of the LHS to a corresponding
element of the host graph. This correspondence can be established in multiple ways of
complexity. The simplest way is to look if the LHS graph occurs as part of the whole
graph. More sophisticated methods include elements from the storyboard notation with
one element allowing multiple (or no matches) and forbidding the occurrence of certain

31

p1: Philosopher
status = thinking

:Fork:Fork

:Philosopher
status = eating →

thinking

philosophers:Table

philosophers philosophers
p2: Philosopher

status = →eating

philosophers

:Table

thinkingthinking

p4: Philosopher
status = →eating

thinking

:Philosopher
status = eating →

thinking

:Fork:Fork

:Fork

:Fork

:Fork

:Fork

p3: Philosopher
status = hungry

Figure 14: Mapping example of the finish eating rule. Purple arcs connect objects,
flesh–colored arcs connect transitions

elements. In some approaches, it can be specified that node values of different nodes have
to be equal or being in a certain relation. Groove [60] supports even more advanced
concepts like specifying that two nodes are connected not by a single edge, but by a
certain regular expression of edges. In fact, there seem to be nearly no limits in the
specification of matching conditions. A common, general differentiation of matchings is
between injective and non–injective matchings. Injective matchings require that at most
one element of the LHS is mapped to an element of the graph. This allows, on the one
hand, easier algorithms as seen in Section A and on the other hand, it also matches the
intuition that different elements in the LHS are actually different elements in the graph.

After the mapping has been found, the graph transformation has to be executed
in the second step. Elements occurring only in the LHS, but not in the RHS have to
be deleted. Elements occurring only in RHS, but not in the LHS are created. While
this seems trivial, there are some corner cases which need special handling, e.g. when
deleting a node and adding an edge to the node at the same time. In these cases, deletion
typically takes precedence. Figure 14 shows an example of a mapping for the finish
eating rule. The upper part of the Figure shows the transformation rule, a part of the
host graph is shown in the bottom and the mapping is defined by the connecting arcs.

The finish eating rule makes all philosophers finish eating. In the graph, two philoso-
phers have eating as their status value. Since the rule covers multiple philosophers, both

32

philosophers are matched. The other two philosophers have different status values and
thus are not considered. The rule deletes the connections between both philosophers
and their forks and adds connections between these forks and the table.

:Philosopher
status = hungry

:Plate

:Table

:Fork

forks
«delete»

left

«create»
left

plate

:Philosopher
«forbid»

:Plate
«forbid»

«forbid»
plate

«forbid»
left

«forbid»
right

:Fork
«forbid»

Figure 15: Rule for taking the left
fork safely

In case multiple rules exist for transforming
a system, the control flow of rule applications
should be specified in some way. One way of
specifying control flow are application conditions
defining that a rule may only be applied if the
application condition is fulfilled. Habel et al. [40]
introduce negative application conditions (NACs).
NACs forbid the existence of certain nodes and
edges. Figure 15 shows an example for such a
NAC. The rule shows, that a philosopher may
only take the left fork if the philosopher left to
him/her, characterized by this left fork being the
left philosopher’s right fork does not hold any
fork. A NAC is only fulfilled if the whole graph specified by the NAC is matched.
The rule may still be executed if only a part of the NAC matches. In fact, the same rule
could be specified with all of the NAC except of the fork being in the LHS instead of
the NAC, but then, a left philosopher would have to be matched or rather exist.

A second approach is to describe the control flow directly by programmed graph
transformations. Graph transformations might be applied in a specific order, a certain
number of times or with other restrictions. Larger graph transformations can be created
by using multiple other graph transformations in loops, conditions or sequences [41].
Of course, the effort for determining whether such a large rule is applicable might be
considerable higher than for a single rule because all application conditions for any rule in
the graph have to be fulfilled. For example, a rule direct eating could be constructed
by concatenating the left, right and release rule. This rule can only be applied if
both the right fork of the left philosopher and the left fork of the right philosopher are
available. This application condition is stronger than the one of the left rule where only
the left fork has to be available.

2.4 Summary

MDE started with general purpose modeling tools which were not suited well for the
problems developers had and thus were merely used for drawing models, the actual im-
plementation was done in the classical way. DSMLs have narrower purpose and thus
can be tailored to the problems of the domain. These languages can be described us-
ing metamodeling languages like MOF. MOF and EBNF are similar in the sense that
both are top level languages to describe systems and mainly differ in how the system
descriptions are done. MOF models consist of classes having typed attributes and la-
beled associations with defined multiplicity. Advanced properties on MOF metamodels
are specified using OCL, a query language with finite–domain first–order logic seman-

33

tics. OCL properties can be declared on attributes and operations. While OCL is not
turing–complete it could be used for model checking purposes on suitable models, but
requires the model to be completely available. The dynamic behavior of software can be
described using model transformations. Models specified as graphs can be transformed
using graph transformations. Common graph transformation rules describe the part of
the graph being transformed. At first, a suitable part of the graph is searched, then
other rule application conditions are evaluated and then the part is transformed.

34

CHAPTER 3
Model Checking

Model Checking is one of the most successful techniques in software and hardware verifi-
cation [20] because it allows fully automated proofing that certain properties in a system
hold. Thus, it is especially successful in areas where bugs impose great risks or are hard
to fix. However, in MDE it has not found such a widespread adoption yet. In this thesis,
a goal is to increase the usability of model checking in the area of MDE. To this end,
model checking is introduced in detail. At first, the general idea behind model check-
ing is explained, then a short note on the historical development of model checking is
given. Furthermore, CTL is introduced which is the language used in the approach of
this thesis. Other important languages are briefly described.

3.1 Software Verification

One major goal of software engineering is to deliver software that matches the user’s
needs. One way to achieve this goal and to fulfill functional an non–functional require-
ments is the application of testing and formal verification technologies. Adrion et al. [1]
and D’Silva et al. [20] give an overview over software verification techniques.

The usual method for ensuring the quality of software is software testing. Programs
are tested by executing the program with multiple test inputs and checking if the actual
result matches the expected one. Various techniques explained by Zeller [68] are used in
practice to increase software reliability. Therefore, testing values have to be chosen
carefully. Typical test data includes valid and invalid inputs with a focus on data
requiring special handling by the tool. Test automation reduces the costs for a single
test; thus it allows to test more input values and many different versions of programs.
Often, it is important to reason about the quality of the testing used so far. With
respect to this, code coverage metrics give a hint about what parts of the program have
been tested. For example, the path coverage is the fraction of the number of possible
branching paths considering the program flow, but many different coverage metrics have

35

been defined. If the location of found bugs is stored, this information can be used to
derive locations of higher bug density. Another estimation of the number of errors in
the program can be given by artificially introducing errors in the code after testing with
some test data and counting the percentage of found errors. Under the assumption that
artificially introduced and accidental errors are equally findable, this percentage should
be about the same.

Tests are not only used for showing that a program contains defects to uncover details,
but also for debugging. Thus, tests not only need to provide information about whether a
program is correct, but also support for finding the location of bugs. Debuggers execute
the code step–by–step, allowing to follow each program statement. The origin of an
offending value can be traced back by looking at what was assigned to the value and
what conditions made this assignments execute [68].

Unfortunately, testing has a major problem. It can only show the presence of bugs,
not their absence [18]. A complete verification process, however requires that exhaustive
testing is used, i.e., the test process is executed for every possible program environment
and every possible input. Unfortunately, even for rather simple, finite, domains, this
is often infeasible [1]. Another approach, where the code is not run but is analyzed
itself, is static analysis [1]. Typically, the concern is to be able to guarantee certain
properties are fulfilled. It is acceptable that in some cases, properties are fulfilled even if
the static analysis does not discover that, but any property static analysis determines to
be fulfilled must be really fulfilled. Flow analysis uses the structure of the program. The
control flow represents the program as graph with nodes being statements or program
segments. Edges represent the allowed control flow. Data flow considers statements as
nodes, the edges represent the control flow. A typical example for control flow analysis is
unreachable code detection while typical examples of data flow analysis are uninitialized
or unused variable detection. Abstract interpretation [15] uses an abstract domain whose
elements represent sets of concrete values instead of actual data values. Additionally, ab-
stract operations define the behavior of the concrete operations on the abstract domain.
Simple abstract domains are e.g. negative, positive or zero for numerical values. Model
checking is used to determine if a system model satisfies a given (partial) specification
and further explained in the sections below as it plays an important role in this thesis.

3.2 Historical Background of Model Checking

Clarke [13] gives a short historical overview of model checking. Model checking originated
from solving the problem of concurrent program verification as automation of manual
proof construction using specialized logics like Hoare logic. In the 1980s, people started
working on computing the reachable state space of a system for protocol verification.
Temporal logics were developed in the 1970s and were first used for concurrency in
1977 by Pnueli [58]. Lamport showed that linear–time logics like LTL and branching–
time logics like CTL can express different sets of properties in 1980. Temporal model
checking algorithms were provided in the early 1980s for CTL by Emerson and Clarke.
They suggested an improved version in 1982 using fixpoints. In 1986, LTL algorithms

36

were provided. This algorithm was implemented in a model checker with about 104 to
105 states being searchable. In 1985, model checking was used in hardware verification.
Other model checking approaches in the 1980s were based on automata.

In order to handle the state space explosion problem, several approaches were pro-
posed. In 1987, McMillan used a symbolic representation of the state graph using ordered
BDDs handling about 1020 states. A symbolic model checker was implemented in 1992,
but other symbolic model checking algorithms have been presented a few years before.
With asynchronous software, often different events are independent of each other. Many
approaches in the early 1990s exploited this characteristic to perform an a partial order
reduction [13]. Other techniques include exploiting composition in the late 1990s, data
value abstraction in the early to middle 1990s, symmetry reduction in the early to mid-
dle 1990s and allowing to reason about some sets of system families in the late 1990s.
Bounded model checking was introduced in the late 1990s.

The Pentium FDIV Bug [8] resulted in slightly wrong floating point division results
in certain cases. Starting with this bug, hardware verification became extremely impor-
tant [33]. Intel developed a specification language, FSL, a linear temporal logic inspired
by LTL, which led to the detection of many bugs which would have only been found later
or not at all without model checking. Later, more model checking techniques were in-
troduced [28]. Model checking of cache protocols now is routine in processor design [47].
The SLAM toolkit [5] of Microsoft is used as part of the static driver verifier for Windows
drivers using model checking. Today, model checking is also used in the verification of
aircraft systems [52] and in various other areas like legal contracts, processes in living
organisms and e-business processes [24] but success stories are mainly written in the area
of hardware model checking [47].

3.3 Basic Idea

Christel Baier and Joost–Pieter Katoen [4] provide a good overview about basic model
checking concepts used on which we base the short introduction given in this section.
Roughly, we consider model checking as evaluating whether a formal property holds for
a certain state in a finite–state model of a system.

In model checking, the system’s specification describes the requirements for the sys-
tem. A system is considered correct if it fulfills all requirements occuring in this specifi-
cation. The model describing the system itself has to be specified in a precise manner.
Often, the process of formalizing the system’s description and its specification already
helps discovering inconsistencies.

The process of model checking can be described as follows:

• Modeling: The model of the system and the property is described using the input
language of the model checker

• Running: The validity of the property is asserted

37

• Analysis: If the property is violated, the generated counterexample is analyzed,
the model is corrected and the property is checked again. If the model checker
cannot check the property, the model needs to be simplified.

Model checker models are often expressed as finite–state automata consisting of a set
of states and transitions between states. The states are characterized by properties of
the system at a specific time and the transitions describing how the states are related to
each other. Properties to be checked are often specified in terms of a temporal logic, a
propositional logic extended by temporal operators. In contrast to classical propositional
or first–order logic, which allows to check properties of single states, temporal operators
allow reasoning over multiple states connected by transitions.

Note, however, that even though model checking provides means to guarantee that
a system fulfills a property, this does not mean that the system behaves as expected. In
other words, model checking can help solving the verification problem, i.e. whether the
system fulfills the specification, but not the validation problem, i.e. whether the system
fulfills the actual needs. Providing model checking on layers closer to the actual modeling
layers might reduce the validation problem because the gap between the system modeled
for the model checker and for humans is reduced.

A property falsified by model checking may have different causes: A modeling error
occurs when the model is not describing the design right. Then, the model has to be
changed and all properties revalidated. A property error, on the other hand occurs if the
property does not describe the requirement right. If both modeling and property errors
can be excluded, a falsified property means a design error has been found in which case
the design has to be improved. In many cases, errors found by model checking are errors
occurring from unforeseen interleaving of processes.

The state space describing the execution of a system can be represented either in an
explicit or in a symbolic way. Whereas the explicit representation directly captives the
behavior of a system, it easily gets too large. Symbolic approaches provide a compressed
form by considering sets of states.

3.4 Computational Tree Logic

CTL, the computational tree logic [14], is a branching–time temporal logic for specifying
properties in a world consisting of a set of discrete states. Each state is characterized
by a set of propositional properties. Transition relations describe connections between
states, i.e., they describe when it is possible to go from one state to the next state. For
introducing CTL, at first a state transition system allowing us to specify the system to
be verified has to be introduced.

In the following, a weather forecast example depicted in Figure 16 is used. Principally,
we could have also considered the dining philosophers problem, but for the ease of
presentation, we show a smaller example. The weather for today is known. For every
day, the weather of the next day depends on the direction of the wind and the current
weather. For example, if there is south wind, then on Monday it will have 22°C and it

38

22° 24°

18° 18°

22° 26°

20°

Mon Tue Wed Thu

20°

Fri

26°

20°

20°

Today

18°

24° 20° 26°

18°
sw

nw

c
sw south wind
nw north wind
c calm

sw
sw sw sw

nw nw nw nw

c c c
c

nw sw

c
sw

c

c

sw

c

sinit smo1 stu1 swe1 sth1

smo2 stu2 swe2 sth2

smo3 stu3 swe3 sth3

nw

sfr1

sfr2

sfr3

sfin

Figure 16: Weather forecast transition system
will be cloudy. A sequence of wind directions thus induces a certain weather sequence.
If there is south wind today and on Monday, then it is calm and then there is north
wind, it will be cloudy or raining all of the time as depicted in the highlighted path.

In general, the typical context for CTL statements is a transition system. There are
various types of transition systems in the literature. Here, we follow the definition of a
transition system given by Baier [4].

Definition 16 (Transition System). A transition system TS “ pS ,Act,Ñ, I ,AP,Lq is a
tuple with a set of states S , a set of actions Act, a transition relation Ñ Ď S ˆAct ˆ S ,
a set of initial states I Ď S , a set of atomic propositions AP and a labeling function
L : S Ñ 2AP . A transition system is called is called finite if it has a finite number of
states, actions and atomic propositions. A transition relation is called total iff that there
is at least one outgoing transition for each state.

Example 22 (Transition system). The transition system in Figure 16 represents a
weather forecast where temperature and cloudiness depend on the wind direction. Ev-
ery circle represents a state, the three actions are nw, sw and c, the arrows depict the
transition relation and the today state is the single initial state. The assigned atomic
propositions describing the weather are cloudy, raining and sunshine. The temperature
properties are tempX with X being equal to the temperature. The transition relation
of this transition system is total only if the state sfin is in the transition system.

A simple way to traverse a transition system is to start from a state and successively
go to next states. For this purpose, the next function is defined.

Definition 17 (Next function). Let TS “ pS ,Act,Ñ, I ,AP,Lq be a transition system.
The successor function nextpsq “ tst|Da : ps, a, stq P Ñu is defined as the set next states
of a state s, i.e. the states occurring as target states of the transition relation for a given
source state.

Example 23 (Next function). This example illustrates the next function. The notation
of fpxq ret

ùñ y indicates that the the function f with parameter x has result y.
When starting from the state swe2, we can reach the state sth2 by a transition labeled

nw and the state sth3 by a transition labeled c. Thus, nextpswe2q
ret
ùñ tsth2, sth3u

39

The sequence of states and transitions of a traversal of the transition system is
described by paths and path fragments and execution paths. They differ in whether
transitions are included in the description of the traversal and

Definition 18 (Paths and path fragments). Let TS “ pS ,Act,Ñ, I ,AP,Lq be a tran-
sition system. A path fragment π “ s0s1...sn with @ 0 ď i ă n : Dai : psi, ai, si`1q P Ñ
is a sequence of states connected by transitions. The length of a path length(π) is n for
finite paths and 8 for infinite paths. A path fragment π is called finite if lengthpπq P N,
else it is called infinite. A path π is called maximum path, iff lengthpπq “ 8 _ Ea, t :
pslengthpπq, a, tq P Ñ, i.e. it is infinite or the last state has no outgoing transition. The
projection function πpiq “ si returns the i–th state of a path fragment π. A path frag-
ment is called initial, iff πp0q P I , i.e. the first state of the path fragment is an initial
state. An initial, maximal path fragment is called path. An execution path fragment
f “ s0a0s1a1...sn with @ 0 ď i ă lengthpπq : psi, ai, si`1q P Ñ is a sequence of states
connected by the given transitions. All definitions for path fragments also apply for
execution path fragments.

Example 24 (Paths). In the transition system depicted in Figure 16 the highlighted
path fragment is sinitsmo1stu1swe2sth2. The highlighted execution path fragment is
sinitswsmo1swstu1cswe2nwsth2. The path fragment could be extended by the state sfr2
to form the path sinitsmo1stu1swe2sth2sfr2 if the sink is not added to the statespace, else
a path could be sinitsmo1stu1swe2sth2sfr2sfinsfin....

Syntax and Semantics The syntax of CTL is described with respect to a transition
system TS “ pS ,Act,Ñ, I ,AP,Lq [4].

Definition 19 (CTL formulae). Given a set of atomic propositions AP, the maximal
set L of syntactically valid CTL formulas is defined as follows:

• J, K P L.

• If p P AP, then p P L.

• If φ P L, then pφq P L

• If φ1, φ2 P L then, pφ1 ^ φ2q, pφ1 _ φ2q, pφ1 Ñ φ2q P L

• If φ P L, then pE X φq, pA X φq, pE F φq, pA F φq, pE G φq, pA G φq P L

• If φ1, φ2 P L then pEφ1Uφ2q, pAφ1Uφ2q, pEφ1Wφ2q, pAφ1Wφ2q P L

The literal J is read as true, K is read as false. The operators X,F,G,U and W are
called state operators and read as follows: X is read as next, G as globally, F as finally
or eventually, U as until and W as weak until. The operators A and E are called path
operators and read as follows: A is read as always or for all and E as exists. Parentheses

40

are be omitted if no ambiguities arise using the usual boolean operator precedence with
Ñ binding weaker than _ binding weaker than ^.
Example 25 (Syntactically valid and invalid CTL expression:).

Syntactically valid CTL expressions are:
cloudy _ raining, pA X rainingq ^ pE X sunshineq, A X psunshine Ñ pA G rainingqq

Syntactically invalid CTL expressions are: A sunshine W temp22 is not a valid CTL
expression because cold does not occur in AP . A ppX sunshineq _ cloudyq is not a valid
CTL expression because _ may only be used for CTL state expressions but pX sunshineq
is a CTL path expression.

Definition 20 (Semantics of CTL expressions [4]). Let TS “ pS ,Act,Ñ, I ,AP,Lq be
a transition system, L the set of syntactically valid CTL formulae, s P S, a P AP ,
Φ,Ψ P L. Then, the satisfaction relation s (φ with the intended meaning that φ holds
in a state s is defined as follow:

1. s (a iff a P Lpsq

2. s (φ iff s * φ.

3. s (φ^ ψ iff ps (φq and ps (ψq

4. s (E X φ iff there exists a path π with πp0q “ s such that lengthpπq ą 0 and
πp1q (φ.

5. s (A X φ iff for all paths π with πp0q “ s, the conditions lengthpπq ą 0 and
πp1q (φ hold.

6. s (E φ U ψ iff there exists a path π with πp0q “ s such that Dj P N, πp0q “
lengthpπq ě j ě 0 : pπpjq (ψ ^ p@0 ď k ă j : πpkq (φqq

7. s (A φ U ψ iff for all paths with πp0q “ s, the condition Dj P N, πp0q “ lengthpπq ě
j ě 0 : pπpjq (ψ ^ p@0 ď k ă j : πpkq (φqq holds.

Note that because s (A G φ ô s (A φ W K, s (A F φ ô A J U φ and
s (A φ W ψ ô A pφ ^ ψq U p ψ ^ ψq and all these equivalences hold with E
instead of A as well, it is sufficient to provide semantics for one of these expression types.

Definition 21 (Satisfiability). Let TS “ pS ,Act,Ñ, I ,AP,Lq be a transition system.
Then, a CTL expression φ is called satisfiable iff @ s0 P I : s0 (φ, i.e. φ holds in all
initial states.

41

Expression Intended Meaning
s (A G φ In all paths starting with s, φ holds.
s (E G φ In at least one path starting with s, φ holds.
s (A F φ In all paths starting with s, φ holds at some point in the future.
s (E F φ In at least one path starting with s, φ holds at some point in the

future.
s (A X φ In all states having a transition from s, φ holds.
s (E X φ In at least one state having a transition from s, φ holds.
s (A φ1 U φ2 In all paths starting with s, φ2 holds at some point in the future and

φ1 before.
s (E φ1 U φ2 In at least one path starting with s, φ2 holds at some point in the

future and φ1 before.
s (A φ1 W φ2 In all paths starting with s, either φ1 holds forever or φ2 holds at

some point in the future and φ1 before.
s (E φ1 W φ2 In at least one path starting with s, either φ1 holds forever or φ2

holds at some point in the future and φ1 before.
Table 2: Meaning of CTL expressions in natural language

Table 2 shows the 10 basic CTL expression types. All CTL expressions have CTL
path expressions directly enclosed by a CTL state operator. Table 3 shows CTL expres-
sions which are satisfiable w.r.t. the weather forecast of Figure 16.
Example 26 (CTL expression formulation and evaluation).

22°

Mon

20°

20°

Today

18°
sw

nw

c

sw

nw

c
nw

sunshine

sw

sw

AX s
EX s
AX a
EX a

¬raining

swsunshine
¬raining

swsunshine
¬raining

Figure 17: Next states of
the initial state

The expression Is it ok to go for picnic tomorrow? as
defined as that there is maybe sunshine and no rain, can
be formulated as pE X sunshineq ^ pA X rainingq

To evaluate this expression, in principle we have
to check all paths starting with sinit, for exam-
ple the path sinit, smo1, stu1, swe2, sth2, sfr2, but also
sinit, smo1, stu1, swe1, sth2, sfr2 and other paths. We, how-
ever, can conclude that after the states smo1, smo2 or smo3
the remainder of the path does not matter any longer and
thus can be ignored. If all next states fulfill the condition,
then nothing may happen in the remainders to invalidate
the formula. If there exists one next state fulfilling the con-
dition, then there might be many, many paths all starting
with the initial state and this one next state fulfilling the
condition, but there at least is one. If, how ever, no next state fulfills the condition,
then there is surely no path fulfilling the condition. Thus, we only have to check the
next states as depicted in Figure 17 where a denotes raining and s denotes sunshine.
We see that the statement is false because there is a next state where it is raining and
additionally there is no next state where there is sunshine.

42

Expression State space

A G psunny Ñ ptemp24 _ temp26qq holding
not holding

sunny →
temp24 temp26∨

E G cloudy _ temp18 holding
not holding

cloudy temp18∨
A X p sunshineq holding

not holding

¬sunshine

E X prainingq holding
not holding

raining

A F raining holding
not holding

¬raining

E F psunny ^ temp26q holding
not holding

sunny temp26∨
A p cloudy _ temp26q U ptemp20q

¬cloudy ¬temp26temp20yes no yesno
∨

E raining U sunshine
raining sunshineyes no yesno

A ptemp18_temp20q W ptemp22_temp26q
temp18 temp20temp22temp26yes no yesno ∨∨

E sunhine W ptemp18 _ temp20q
¬sunshine temp18temp20yes no yesno ∨

Table 3: Examples of CTL expressions

43

Example 27 (CTL expression formulation and evaluation II). The expression Is it al-
ways raining before it gets sunny can be formulated in different ways based on what is
exactly meant. If formulated as A raining W sunshine if we do not need to know that it
will get sunny or using U if it must get sunny at some point in time. Note that even if
using weak until, it is required that it is raining all the time if there is no hope for sun. If
we want to specify that it has only to be raining before it is sunny but nothing is required
if it does not get sunny, we can express this as A pE F sunshineq Ñ rainingq W sunshine.
This expression is a bit more complicated since the thing we want to express is no CTL
base expression. It means that unless we have hit a state where it is sunny, it has to
rain if it might be sunny in the future because if it would not rain, we would have found
a path where it does not always rain, but gets sunny later on.

In our state space, neither expression is true.

Example 28 (CTL expression formulation and evaluation III). The expression If it is
sunny, it will not rain for the rest any longer can be formulated as A G psunshine Ñ
pA G rainingqq. It is true because we have only two states where it is sunny, namely
swe3 and sth1. There are only two paths starting at these states, namely, swe3, sth3, sfr3
and sth1, sfr1 and it is always cloudy there.

Extensions and Alternatives to CTL

Commonly used alternatives to CTL are the Linear Temporal Logic (LTL) [58] and
CTL* [25]. While CTL is a branching–time logic, i.e. it considers all possible paths,
LTL is a linear–time logic, i.e., it considers the execution of a specific single path. An
LTL expression defines that all possible execution traces must fulfill some condition.
This condition is specified by the quantifiers X,F,G,U and W in arbitrary combination.
Since all paths must fulfill this condition, a single A is prepended to the formula, and E
is not allowed. Since there are both CTL expressions not expressible in LTL and vice
versa, a superset of CTL and LTL, CTL* has been defined. It allows all operators to be
used in arbitrary order. Another language, even more expressive than CTL*, is the µ–
calculus [26]. It operates on a set of states fulfilling a condition including the greatest and
smallest fixpoint operator. Fixpoint operators in fact are used for the implementation
of CTL in this thesis. CTL is used in this thesis because it is an easy to implement
branching–time logic suitable for expressing many interesting verification tasks.

3.5 Summary

While testing is an easy and fast method for finding bugs, the absence of bugs cannot
be guaranteed. Manual proof methods are applicable to infinite state systems but are
cumbersome while model checking allows to give fully automated guarantees of finite–
state programs. Model checking consists of formulating the system under consideration
in a concise way, running the analysis and interpreting the result. Quite a lot of re-
search has been conducted to combat the state space explosion problem to be able to

44

handle real–world problems. Nowadays, model checking is successfully applied in in-
dustry. However, model checking requires to transform the models used in MDE to a
representation suitable for model checkers. Further, the properties to be checked have to
be formulated upon these transformed models, requiring to change techonological space.
In the following, we present an approach to reduce this gap by integrating MDE and
model checking technologies.

45

CHAPTER 4
Related Work

There are several works in the context of integrating MDE with model checking. We
survey related literature and (1) give an overview on approaches which specify a clear
semantics for languages for model checking of software models, and (2) we review existing
tools implementing model checking facilities for MDE. Finally, we define certain criteria
for comparing and evaluating related approaches and select a suitable candidate for
integrating our ideas.

4.1 Languages
A first requirement for model checking is a temporal language with clearly defined se-
mantics. Thus, OCL based model checking extensions have been proposed using different
kinds of techniques for balancing usability and expressiveness. Some of these languages
which seemed to be most promising are described here. Additionally, mCRL2 [34] is
discussed because of its great expressiveness, even though it is not an OCL extension.

TOCL

Gogolla and Ziemann [69, 71] proposed a formal foundation for an LTL extension of
OCL called Temporal OCL (TOCL) using linear state sequences of UML object models.
The basic idea is that while OCL can be used to express global invariants and properties
regarding a single transition, it cannot be used for reasoning over multiple transitions.
LTL allows reasoning over multiple transitions, so it is used to extend OCL.

The TOCL syntax extends the OCL syntax by ExprBooleanY “ next e | always e
| sometime e | always e1 until e2| sometime e1 before e2 and ExprtY “ ω@nextpe1, ..., enq
with ω P Exprt.

TOCL expressions are evaluated in environments τ “ pσ̂, i, βq with σ̂ being a state se-
quence, i being the state reference index and β being the variable assignment. Unusually
for LTL, all state sequences have finite length |σ̂|.

47

The semantics of TOCL as given in Definition 2 in [71] and [70] is as follows. The
first rules are used from Definition 2 in [62] and can be also found as first rules of our
cOCL extension in Section 30.

vii. IJnext eKpτq ô pi “ |σ̂| ´ 1q _ IJeKpσ̂, i ` 1, βq. The operator next evaluates to
true if there is no next state or e evaluates to true in the next state. This operator
corresponds to the next (X) operator in LTL.

viii. IJalways eKpτq ô @i ď j ă |σ̂| : IJeKpσ̂, j, βq. The operator always evaluates to true
if e evaluates to true for all states of the path starting with a given reference state.
This operator corresponds to the globally (G) operator in LTL.

ix. IJsometime eKpτq ô Di ď j ă |σ̂| : IJeKpσ̂, j, βq. The operator sometime evaluates
to true if e evaluates to true for at least one state of the path starting with the
reference state. This operator corresponds to the finally (F) operator in LTL.

x. IJalways e1 until e2Kpτq ô @i ď j ă minttk ě i | IJe2Kpσ̂, k, βqu Y t|σ̂|uu :
IJeKpσ̂, j, βq. The operator always ... until evaluates to true if, as long as e2 does
not evaluate to true, e1 does evaluate to true. This operator corresponds to the
weak until (W) operator in LTL.

xi. IJsometime e1 before e2Kpτq ô Di ď j ă minttk ě i | IJe2Kpσ̂, k, βqu Y t|σ̂|uu :
IJeKpσ̂, j, βq. The operator sometime ... before evaluates to true if e1 evaluates to
true somewhere before e2 evaluates to true for the first time. This operator has no
direct translation to an LTL operator, but is equivalent to pp e1qW e2q in LTL.

xii. IJw@nextpe1, ..., enqKpτq “

#

Ipσ̂, i` 1qpωqpIJe1Kpτq, ..., IJenKpτqq if|σ̂| ą i` 1
K otherwise

This operator has the intended meaning of evaluating the parameter values e1, e2,
..., en in the current state, but then evaluating ω in the next state.

Additionally, semantics for the past temporal operators previous, always ... since are
defined analogously.

The variable assignment is not changed when switching between different states, but
the current state affects object operations like attribute access or navigation. Further,
invariants and pre– and postconditions can be specified using TOCL.

Temporal OCL

Kanso and Taha [42] extend OCL by an adaption of patterns introduced by Dwyer [21]
which are translated into other formalisms like CTL, LTL or the µ–calculus. Their idea
is that temporal logic is too complicated to use in practice and they wanted to provide
a user friendly OCL extension usable in automated testing.

A temporal property is specified by a pattern <pattern> and a scope <scope>, where
one of eight predefined occurrence patterns Absence, Existence, BoundedExistence, Uni-
versality, Precedence, Response, ChainPrecedence and ChainResponse may be combined

48

with one of the five scopes Globally, Before Q, After Q, Between Q and R and After
Q until R

These patterns are evaluated on finite sequences of atomic events. These atomic
events e P Σ “ O ˆ E ˆ E are defined over a set of operations O and a set of pre– and
postcondition expressions E. The events isCalled and becomesTrue are subsets of the
set of all atomic events:

• isCalledpop, pre, postq “ tpop, pre1, post1q P Σ | pre1 ñ pre, post1 ñ postu

• becomesTruepP q “ tpop, pre, postq P Σ | op P O, preñ P, postñ P u

The event isCalled occurs on operation calls or state changes where op specifies the
operation of the event and anyOp specifies that no specific operation is required. The
expressions pre and post are pre– and postconditions necessary to make the event fire.
Additionally, the disjunction operator | and the exclusion operator z are operators on
events.

A scenario σ “ pσp0q, ...σpn ´ 1qq P Σ˚ is defined as sequence of length n of atomic
events describing a temporal order of events. σpiq denotes the atomic event at index i
and σpi : jq identifies the subsequence of atomic events between indices i and j.

Scopes s P S specify the part of the scenario where the pattern should hold and are
defined as follows.

• JgloballyKspσq “ tσu. This operator evaluates to the set containing the full scenario.

• Jbefore EKspσqtσp0 : i ´ 1q | σpiq P E and @k, 0 ď k ă i, σpkq R Eu. This operator
evaluates to the set containing the largest subscenario where the event E does not
yet occur.

• JAfter EKspσq “ tσpi ` 1 : n ´ 1q | σpiq P E and @k, 0 ď k ă i, σpkq R Eu. This
operator evaluates to the set containing the subscenario after the first occurrence
of the event E.

• Jbetween E1 and E2Kspσq “ tσpik ` 1 : jk ´ 1q | @k ě 0, ik ă jk ă ik`1, σpikq P
E1, σpjkq P E2,@m, ik ď m ă jk, σpmq P E2 and @l, jk ă l ă ik`1, σplq R E1u. This
operator evaluates to the set containing all subscenarios starting after E1 occurred
and ending just before the next occurrence of E2.

• Jafter E1 unless E2Kspσq “ tσpik ` 1 : jk ´ 1q | @k ě 0, ik ă jk ă ik`1, σpikq P
E1, σpjkq P E2,@m, ik ď m ă jk, σpmq R E2 and @l, jk ă l ă ik`1, σplq R E1u Y
tσpi : n ´ 1q | σpiq P E1,@m ě i, σpmq R E2u. This operator evaluates to the set
containing all subscenarios starting after E1 and ending before the next occurrence
of E2 or the scenario end.

The concrete syntax of TOCL extends the afore mentioned scopes by an additional when
P scope selecting subsequences where an OCL expression holds. Ranges can be specified
in– or exclusive borders and for between and after, it is possible to select the last event
only, but no exact semantics is given.

49

Patterns p P P describe properties which have to hold at the scope s.

• Jnever EKppσq ô @i ě 0, σpiq R E. This operator evaluates to true if and only if E
does not occur in the scenario.

• Jalways P Kppσq ô JneverpisCalledpanyOp,_, P qqKppσq. This operator evaluates
to true if and only if P holds as postcondition in every atomic event.

• JE1 preceding E2Kppσq ô @i ě 0, pσpiq P E2 ñ Dk ď i, σpkq P E1q. This operator
evaluates to true if and only if there is an occurrence of E1 before (or at) every
occurrence of E2.

• JE1 following E2Kppσq ô @i ě 0, pσpiq P E2 ñ Dk ě i, σpkq P E1q. This operator
evaluates to true if and only if there is an occurrence of E2 after (or at) every
occurrence of E1.

• Jeventually E α timesKppσq ô |ti | σpiq P Eu| “

$

’

&

’

%

“ k if α “ k

ě k if α “ at least k
ď k if α “ at most k

This operator evaluates to true if and only if E occurs as often as specified.

Kanso and Taha provide a tool for their language extension based on the Eclipse OCL
plugin. However, instead of using their temporal OCL expressions for model checking,
they translate them into regular expressions, which are used to generate test cases.

EOCL

Extended OCL (EOCL) [53] is an extension of OCL with CTL. EOCL is one of the
first OCL extensions implemented in a tool for evaluating temporal properties on UML
models. The EOCL syntax is shown in Figure 18.

It consists of two strictly separated parts: On the top level, there is CTL with OCL
being on the level below. It is not possible to directly transfer information from one
state to another. The semantics for the EOCL constructs are the usual semantics as
defined for OCL and CTL. The semantics of EOCL expressions is defined over an Object–
Oriented Transition System (OOTSUML) which is a structure OT “ xS, EOCLR, s0y. S
is a set of states with associated functions ρs, σs, γs and hs. The function ρs : V Ñ Val
associates values to attributes and method parameters (variables) in a state s. The
function σs : CÑ rV Ñ Vals associates a collection of attribute/method associations to
each class, i.e., the object instances for a class. The function γs : M Ñ rrV Ñ Vals Ñ

epP Pexpq ::“ x | v e.a | ωpe1, ..., enq | e1 Ñ iterate tx1;x2 “ e3 | e3 u | eq |
e@pre | e.owner | actpeq
φpP Fexpq ::“ e | φ | φ^ ψ|@z $ τ : φ | EXφ | ErφUψs | ArφUψs

Figure 18: EOCL syntax [53]

50

ValKs associates a collection of method instances to the methods defined for each class
including the method parameters. The function hs : M Ñ S ˆ t◦,•u associates to
each method the state where this method has been called together with • indicating
that s is the last state for the instance before being returned and ◦ otherwise. The
set R Ď S ˆ S is a transition relation and s0 P S is the initial state. A class instance
ci “ pc, iq P C Ď Σc ˆ N is defined by a class name c P Σc and an index i P N . A
method instance m “ pc, i,m, jq P M Ď C ˆΣmˆN is defined by a class instance pc, iq,
a method name m P Σm and a method index j P N .

The function J_K : Pexp Ñ rSÑ ValKs is defined as follows.

• JvKs “ v. The evaluation of a constant value returns the same value.

• JxKs “ ρspxq. The evaluation of an attribute or method parameter in a state is the
corresponding value defined in the transition system.

• Jωpe1, ..., enqKs “ ωpJe1Ks, ..., JenKsq. An operation is evaluated by first evaluating
its parameters and then evaluating the operation.

• e.fs “

#

σsppc, iqqpfq ifJeKs “ pc, iq
γsppc, i, j,m, jqq.f ifJeKs “ pc, i,m, jq

The evaluation of an attribute access is the value of the attribute function for object
number i of type c for a class instance or or the value of the method function for a
method of object number i of class c named m with parameter number j, i.e., the
value of parameter j of this method instance.

• Je.ownerKs “ pc, IqforJeKs “ pc, i,m, jq. The owner of a method instance is the
corresponding class.

• JactpeqKs “ true iff JeKs P Cs`Ms. An expression is considered to be active if the
object or method instance it evaluates to is active in the state s.

• Je1 Ñ iteratetx1;x2 “ e2|e3uKs “ Jfor x1 P Je1Ks do x2 :“ e3Kρsrx2 ÞÑJe2Kss. For
this, the evaluation of Jfor x1 P rs do x2 :“ eKs “ Jx2Ks and the evaluation of
Jfor x1 P h :: w do x2 :“ eKs “ Jfor x1 P w do x2 :“ eKρsrx2 ÞÑJeKρsrx1 ÞÑhss

. Thus,
the evaluation of an iteration is done by first evaluating the expression e1 to get
the source set. Initially, the accumulator variable x2 contains the evaluation of e2.
The evaluation of an iteration for the empty list is the value of the accumulator
variable. The evaluation of a non–empty list is provided by first updating the
accumulator variable with the expression e3 where x1 is the first element of the
list and then evaluating the iteration for the rest of the list.

• Je@preK “
#

JeKs1 if pc, i,m, jq P dompγsq and hspc, i,m, jq “ ps1,•q
K otherwise

The value of an expression at the beginning of a method instance is the value of
the expression in state s1 which is stored in the history of method instance.

51

EOCL expressions are evaluated in a context as invariant or, in the case of methods,
as pre– and postcondition. EOCL is heavily inspired by BOTL [19], a CTL–based logic
for model checking object–oriented systems. BOTL, however, does not extend OCL by
temporal operators. Yet, OCL invariants and pre– and postconditions are translated to
BOTL. The syntax of a context in EOCL is defined as follows:

κpP Cexpq ::“ context C inv e | context C :: M pre e1 post e2
Invariants have to be fulfilled whenever an instance of or a class inherited from the

context is active and no method of self is executing. Postconditions have to hold for every
method M instance of the class C if the preconditions held. Both of these operations
can be expressed using EOCL constraints.

The semantics of temporal formula is given by the relation , Ď Sˆ Fexp.

• s , e ô JeKs “ true. An OCL expression holds in a state if the OCL expression
evaluates to true in this state.

• s , φ1 ô s . φ1. The negation of an expression φ1 holds in a state if the
expression φ1 does not hold in the state.

• s , φ1 ^ φ2 ô ps , φ1q and ps , φ2q. An expression combined with and holds in
a state if both subexpressions hold in that state.

• s , @z $ τ : φ1 ô s (φ1rz ÞÑ vs for all v P Valτ . A forall expression holds in a
state if the subexpression φ1 holds in the state no matter which value the variable
z has.

• s (E X φ1 ô DrPRunspOT qrr1s (φ1. A next expression holds in a state if there is
a run in the transition system starting with s where in the second state of the run
the expression φ1 holds.

• s (Erφ1 U φ2s ô DrPRunspOT qDjě0rrjs (φ2 ^ @0ďkăjrrks (φ1. An exists ... until
expression holds if there exists a run in the transition system starting with s where
φ2 holds in some state and φ1 holds in all states before.

• s (Arφ1 U φ2s ô @rPRunspOT qDjě0rrjs (φ2^@0ďkăjrrks (φ1. An always ... until
expression holds if for all runs in the transition system starting with s φ2 holds in
some state and φ1 holds in all states before.

Thus, the semantics of EOCL corresponds to CTL semantics with OCL expressions
usable as propositional formulas with the addition of a forall operator on the CTL level.

mCRL2

The Micro Common Representation Language 2 (mCRL2) [34] is a specification language
for distributed systems and protocols. The idea of mCRL2 is to design a process algebra
containing the machine independent data types one expects when writing specifications
including sets and functional data types. Model checking in mCRL2 uses an extension

52

of the µ–calculus. mCRL2 is a large and feature rich language, so only a small subset
considered as most important to model checking combined with MDE is presented.
While mCRL2 does not extend OCL, it is considered because it is the only language
which supports temporal operators and object–oriented features at the same level. All
other languages only allow to use OCL expressions to calculate the value of properties
in the temporal language. The language reasons over so–called sorts which behave like
types and are defined using constructors and equations.

State formulas of mCRL2 have the following form [23]:

StateFrm :“ DataValExpr | pStateFrmq | true | false
| pmu|nuq IdppId:SortExpr“DataExprp,Id:SortExpr“DataExprq˚qq? . StateFrm
| pStateFrm p“ą | || | &&q StateFrmq | rRegFrms StateFrm | ăRegFrmą StateFrm
| ! StateFrm | Id p DataExprList q| pforall | existsq VarsDeclList . StateFrm

The elements RegFrm are regular expressions, including nil, of Action formulas. These
have the following form:

ActFrm :“ ptau | Actionp| Actionq˚q |p ActFrm q | valpDataExprq | true | false
| ! ActFrm | pforall | existsq VarsDeclList . ActFrm | ActFrm p&& | || | “ąq ActFrm

The elements DataExpr are any kind of expressions of sort elements. The elements
DataExprList contain a variable number of DataExpr. The construct VarDeclList con-
tains a list of variable names of the form Id together with the sort type and a value. Single
actions are transition names. Variables can be put into parameters of the transition to
restrict the possible transitions. It is also possible to access model properties [46].

The expression val is used to get the value of a boolean expression. The logical
operators ||, && and ! have their usual meaning, => is the implication. forall and
exists specify that the relevant ActForm must hold for all or for some of the elements
declared in the VarDeclList.

The operator nu X.<ExprInX> returns true if and only if the current state is in the
greatest fixpoint of <ExprInX>, the operator mu X.<ExprInX> returns true if and only if
the current state is in the least fixpoint of <ExprInX>.

The must operator [Expr1]Expr2 returns true if all paths that start in the current
state and satisfy Expr1 do satisfy Expr2 as well. The may operator <Expr1>Expr2 is true
if there exists a path starting in the current state which satisfies Expr1 and where Expr2
is valid.

Oµ

Oµ [9] is an extension of OCL with the observational µ–calculus. Their idea is that
while OCL allows to specify contracts between system parts designed in UML, more
feature–rich contracts should be provided. It should be possible to define the behavior
of a system in dynamic interaction. Temporal logics provide a possibility for describing
dynamic properties only, OCL provides a possibility for describing static properties only,
the combination allows to describe both static and dynamic properties. Oµ is defined

53

Φ “ ψ | T | F | X | Φ1 _ Φ2 | Φ1 ^ Φ2 | x l, C, φyΦ | rl, C, φsΦ | ν X.Φ | µ X.Φ
Figure 19: Oµ syntax

on a transition systems where transitions are not only labeled by a name, but also by
structured data. These transitions contain OCL messages with an identifier and source
and target of the message.

The syntax of Oµ is shown in Figure 19. The operators µ and ν denote the least
and greatest fixpoints. The must operator rl, C, φsΦ and may operator xl, C, φyΦ differ
slightly from the corresponding operators in mCRL2. There are no regular expressions
for path specification allowed, just a single transition. C specifies a set of mutable OCL
variables, l is a pattern matching the transition and φ is an OCL constraint holding
at the target state of the transition referring to variables in C. The formal semantics
of the may operator is as follows. Let ρ : C Ñ V be a function assigning variables
to their values, then A $ xl, C, φyΦ if and only if Dρ1 : c R C ñ ρ1pcq “ ρpcq, so the
new cell values are equal to the old ones except for the mutable ones and Da,A1 with
A

a
ùñ A1, with a matching l in the context ρ1 and ρ, ρ1 $ Φ and A1 $V,ρ1 Φ, so there

is a transition matching the requirement and φ is fulfilled using both the values of the
variables at source and target state of the transition and the target state fulfills Φ. The
must operator is defined in a dual way, i.e., @ instead of D.

Comparison

Table 4 compares the different approaches with respect to various language features.
The logics differ in their expressibility and understandability. The Dwyer patterns used
by Temporal OCL are specifically designed to be easy to understand [21], but are at
the same time the least expressive. LTL and CTL have incomparable expressiveness,
but in general, LTL is preferred because a single program execution trace is linear, CTL
is thought to be unintuitive and most CTL formulas used in practice can be expressed
using LTL [66]. CTL is typically found in model checkers because it is simpler to verify.
The µ–calculus can express both CTL and LTL–formulas, but the fixpoint semantics is
even harder to understand than temporal logics. Except for mCRL2, which is completely
independent from OCL, every language extends OCL is some way. While BOTL is just
“inspired“ by OCL, it rather acts as extension of a subset of OCL. All OCL extensions

TOCL Temp. OCL EOCL mCRL2 Oµ
Underlying logic LTL Dwyer pat. CTL µ–calc. µ–calc.
Relation to OCL Ext. Ext. Ext. None Ext.
Support of
mixture of
conceptsa

No No No Yes No

Implementation No Yes Yes Yes No

Table 4: Features of various languages
aWhether it is possible to trace objects in time

54

however do not allow mixing temporal logics and OCL expressions in arbitrary way:
There is a temporal logic layer on top and the OCL layer below. The problem of state
space generation is left open for all languages, but for the languages EOCL and mCRL2,
the problem has obviously been solved. TOCLs severe restriction is that the language
can only be applied to finite paths.

None of the described languages are found to be directly usable because they either
do not offer a direct way of implementation like TOCL and Oµ, have no publicly available
implementation like EOCL or use the hard to understand µ–calculus.

4.2 Tools

Since the idea of combining MDE with model checking is not new, there exist some tools
in this area.

The tools were evaluated in a way to figure out a suitable candidate for extension.
A modeler should be able to model with his/her usual modeling tools and knowledge.
Thus, an off the shelf modeling tool should be usable. It is uncomfortable to have
to switch between multiple tools, so the model checker should be integrated into the
modeling environment. Learning new languages is difficult, so the modeling language
should be similar or equal to common modeling languages like UML. Likewise, the
modeler’s property specification knowledge should be reusable. Thus, the language used
in model checking should be as similar as possible to common property specification
languages like OCL. In the process of modeling, verification is used as debugging. In
order to help debugging, the verification output has to help the modeler. Thus, the
result should be readable and point to errors in the model.

There are also a few nonfunctional requirements. To allow debugging well, the result
should not take too long to compute so performance is important. Adaptability might
have some advantage in general, but for this thesis it is absolutely required because we
aim to select a candidate tool for integrating extensions.

Five tools are selected for different reasons. Groove and Henshin are open source
tools for visual graph model checking. SOCLe and Hugo/RT on the other hand promise
to do model checking on UML models and CheckVML is able to handle arbitrary models.

Groove

Groove [60] is an open source model checker written in Java allowing to specify graph
transformations and to evaluate CTL and LTL expressions.

Graph transformations may be entered interactively using the integrated editor which
combines graphical and textual input where editing is done mostly in textual fashion
but then is visualized. The graph transformation is displayed in storyboard notation
(see Section 2.3) and many operators can be used for matching nodes and edges in-
cluding exists and forall operators which also allow to specify the number of matching
elements, regular expressions for paths with multiple edges and matching node values
with arbitrary expressions.

55

(a) Hungry rule in graphics and text mode (b) Release rule

(c) Left rule (d) Right rule

Figure 20: Dining philosopher rules as implemented in Groove.

Figure 20 shows the graph transformations for our dining philosophers example as
implemented in Groove.

CTL and LTL properties here correspond to possible graph transformation applica-
tions (true and false can be used as special properties). Graph transformations which
do not change the graph can thus always be used as properties without influencing the
state space. For example, the CTL expression E G hungry specifies that there is an in-
finite path where the rule hungry can be applied all the time. This expression is true
because there is a cycle (hungry, left, right, release) in which for every state the hungry
rule may be applied as shown in Figure 21b. The red cycle path and cyan paths were
added to the Groove screenshot.

Thus, E G hungry does not refer to actual rule executions, i.e., a path where only
the rule hungry is executed, but to potential rule applications. Note how Groove
automatically normalizes entered expressions as seen in the dialogue box.

The state space can be created stepwise or in a single step and for each state, the
graph found in this state can be viewed. Isomorphic states are automatically collapsed.
The graph layout used there resembles the layout used for the initial graph. Figure 21a
shows the initial state of the state space as generated by Groove, it exactly matches
the initial model in its layout.

56

(a) Initial state (b) Evaluation of the property E G hungry
Figure 21: Initial state and full statespace of a property in Groove.

CheckVML

CheckVML [64] is another tool for verifying models whose behavior is specified using
graph transformations. In contrast to Groove, its intended application is different.
While in Groove, graphs and graph transformations are directly used as models, in
CheckVML, only the dynamic behavior is modeled as graph transformations in the meta-
model layer; there is no direct necessity to use graph transformations for the modeler.

At first, CheckVML derives a transition system out of the provided instance model,
the metamodel and its graph transformation rules. Then, a PROMELA description for
SPIN is generated and formal verification is done using LTL as provided by SPIN.

Henshin

Henshin [2] is an open source Ecore model transformation language implementing the
double pushout approach (see Section A) including verification. There is a visual editor
for graph transformations for Eclipse using the storyboard notation. Like in Groove,
some of the editing is done textually and then represented in a different form, but the
differences are smaller than in Groove; e.g., quotes are automatically added to asso-
ciation stereotypes. The visual editor’s graph matching functionality is more restricted
than in Groove, some not commonly used functions are only available using the tree
editor.

Figure 23 shows graph transformations for the dining philosophers problem.
The state space shown in Figure 22 can be fully or partially created with interactive

layouting. While inspecting states is possible, more clicks are needed to display states in
Henshin than in Groove. Verification is possible using various external model checkers
like CADP and mCRL2 providing support for the µ–calculus, and PRISM, a probabilistic

57

Figure 22: State space in Henshin

Figure 23: Dining philosopher rules in Henshin

58

model checker. OCL invariants may be evaluated on each state of the state space.
However, no temporal properties may be checked therewith.

SOCLe

SOCLe [53] is a model checking tool for checking EOCL constraints on UML models.
Unfortunately, it seems to be not available to the public any longer. EOCL (see the
section above) extends OCL by CTL operations and some first–order logic features. Ab-
stract State Machine (ASM) semantics are used to define semantics for class, statechart
and object diagrams.

The verification of UML models is done by first translating the UML model into the
ASM specification and then generating an execution graph from the ASM specification
where the OCL constraints are verified on the fly. An ArgoUML integration provides
some text window including verification results and an execution diagram.

Hugo/RT

Hugo/RT [44] is a model checking tool for a subset of UML. Properties can then be
expressed using interaction diagrams where it is checked whether some interaction may
happen or not or using assertions in the form of CTL and LTL expressions.

Classes of the class diagram subset have attributes of type integer, boolean, clock
or can refer to other classes. Arrays are supported, but there are no other collection
types. Operations and signals with input parameters can be declared. Their behavior
is expressed using state diagrams. Simple states can be connected using transitions
reacting on triggers equivalent to method calls with boolean guards allowing to use
mathematical functions, the ternary operator and access to object attributes. Transition
effects include sending signals or method invocations, assertions, conditions and both
sequential, parallel and non–deterministic behavior. Behavior executed on state entry
and exit can be defined. Hugo/RT allows as well the use of composite and concurrent
states and supports pseudo–states like fork and join nodes.

Collaborations specify potential behavior using initial objects and their interactions.
Many types of interaction fragments are supported including loop, not, seq, strict, par,
alt, opt, ignore and loop. The maximum time between two messages can be specified.
Assertions are defined either as LTL or CTL expressions without next operator. Like in
EOCL, CTL and LTL can only be used at the top of an expression, e.g., it cannot be
used inside the ternary operator.

The tool accepts either the proprietary UTE format as input or ArgoUML files, as
it does not provide any GUI integration itself. It then transforms the input model for
the use of multiple model checkers like UPPAAL, SPIN, KIV etc.

Comparison

As a first note, there are some threats to a fair evaluation regarding CheckVML, SO-
CLe and Hugo/RT. The first two tools could not be evaluated as they are not publicly

59

Groove CheckVML Henshin SOCLe Hugo/RT
Entry barrier Medium Medium? High Medium? High
Visual Editor Yes No Partiallya External External
Model Graphs Graphs Ecore UML UML

Property CTL, LTL LTL
mCRL2, OCL
inv., PRISM,
CADP

EOCL
CTL, LTL,
Model con-
sistency

Tool output Boolean SPIN outp. Differentb Eval. tree SPIN outp.
Platform Java Java, SPIN Java, MCs ?, ASM J., MCs
Extensibility Mediumc — High — Lowd

Table 5: Comparison of selected tools

aModel generation is not integrated with verification, but both are integrated into Eclipse
bCounterexamples are supported for OCL invariants and CADP
cNo API, but open source java
dNot open source

available any more. Hugo/RT has a rather high entry barrier and the available docu-
mentation does not help to fully understand the usage of the tool. Thus, some evaluation
criteria are assessed based on literature. An overview of the tool comparison is given in
Table 5.

Entry Barrier SOCLe allows the user to model using UML and to specify the prop-
erties in an extension of OCL, thus the entry barrier should be low. CheckVML is able
to handle any kinds of models as long as their metamodel is specified in a certain way,
so it should be possible to use UML or UML–like models, thus the entry barrier is also
assumed to be low. While UML is common to software modelers, the documentation
of Hugo/RT is lacking. The description of the UTE language format on their home-
page1 seems to be outdated making it difficult to write the models in their format; also
there is no description on how to write ArgoUML models Hugo/RT accepts as input.
Groove needs some training to be used efficiently, but there is a nice documentation [60]
available.

Visual Editor While models are represented visually in Groove, they quite strongly
differ from models used in software modeling. Sometimes the error output when using
wrong syntax for specifying nodes or edges is not helpful, e.g., if del:string:"eating"

new:string:"eating"
is used instead of del:"eating"

new:"eating"the error output includes Conflicting node aspects

1http://www.pst.informatik.uni-muenchen.de/projekte/hugo/. Note that there is a
newer Hugo/RT version on http://www.informatik.uni-augsburg.de/lehrstuehle/swt/sse/hugort/
usage/ available, but without description of the UTE format

60

http://www.pst.informatik.uni-muenchen.de/projekte/hugo/
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/sse/hugort/usage/
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/sse/hugort/usage/

del: and new: which might lead to the wrong conclusion that del: and new: can-
not be used in the same node. If the expression is written on one instead of two lines,
the error output is Unable to parse expression "thinking" new:"hungry" as regular
expression, again not catching the real problem. This might be partially pushed by
the huge amount of possible constructs for specifying nodes, edges and graph transfor-
mations. Syntax errors in CTL or LTL formulas are usually helpful for correcting the
formula. Henshin’s visual representation of graph transformations matches the user’s
expectations, but there are some bugs and non–intuitive behavior, e.g., for specifying
multiple NACs and their definition of injective matching which could increase the entry
barrier for modelers. It should also be considered that graph transformations are not
typically used by modelers. Groove allows an import of Ecore models while Henshin
allows to use Ecore models directly. Our experiments showed that Groove was easier
to use than Henshin. Hugo/RT was not usable at all.

Model While SOCLe and Hugo/RT are restricted to UML models, Groove, Check-
VML and Henshin allow to define custom modeling languages based on their integrated
metamodel. Groove supports typed attributed graphs, CheckVML uses the terms
classes, associations and attributes and Henshin is based on Ecore.

Property specification The properties are typically specified in some sort of tempo-
ral logic. Groove uses CTL or LTL and properties specified using graph transforma-
tions. The graph rule operations are powerful, but some kinds of contstraints are hard
to specify, for example constraints using sets. Some languages supported by Henshin are
more powerful than CTL or LTL. OCL constraints can be integrated in the expression in
PRISM, albeit in a non–intuitive way. mCRL2 (see Section 4.1) can be used for checking
paths of parameterized actions and is the only logic able to propagate variables from one
state to another. In SOCLe, EOCL (see section 4.1) is used. OCL constraints might be
familiar to software modelers, but in EOCL, the concepts of model checking have to be
understood as well. In Hugo/RT, CTL and LTL without next operator is supported for
assertions. Sets seem to be not usable, but traversal of associations should be possible.
Henshin together with mCRL2 clearly has the most powerful language available, but
it is also hard to use. EOCL seems to be a better compromise between expressibility
and usability because it is the only language with direct integration of OCL and model
checking.

Tool output The tool output seems to be a problem for most tools. Groove presents
the full state space to the user. When an expression is evaluated, only the evaluation
result (whether it is true or false) as shown in Figure 21b is returned, but there is no hint
on why the evaluation result is the way it is. Thus, the tool is helpful in verifying that
the software model fulfills some standard but does not help fixing the error. Henshin
provides some information about the result dependent on the language used. The states
where an OCL invariant fails to hold are shown. CADP, a language similar to mCRL2
in the sense that it also uses the µ–calculus provides counterexamples. mCRL2 itself,

61

however, does not provide counterexamples. It is difficult to judge about SOCLe’s tool
output from the papers alone. It might be very helpful with clickable states in the
execution diagram where states correspond to state chart execution steps, but not that
helpful, if the execution diagram results cannot be easily mapped to the state chart.
The tool output of Hugo/RT seems to be hard to understand. The evaluation result
is printed, but there is little information available to interpret the result, especially
when locating the error source. However, it should be possible to retranslate trails from
UPPAAL or the SPIN model checker to UML runs. Beside the tool output itself, the
time for generating the output also has to be considered. Since Hugo/RT transforms to
SPIN and SPIN is fast, Hugo/RT should be fairly fast as well. In a simple example, the
transformation time for Hugo/RT to SPIN exceeded the time needed for SPIN checking
the model. Still, it can be assumed that for larger models which are more complicated to
check, the time SPIN needs for model checking is dominant. A performance evaluation
of Groove against CheckVML and SPIN was done by Rensink et al. [61] showing
that Groove has comparable performance to CheckVML and SPIN, its performance
could then be considered as quite good.2 The version of Henshin used in the course
of the thesis tends to be somewhat slower than Groove, but recent versions include
performance improvements. While SOCLe’s performance is not directly compared to
other tools, it seems to be at least sufficient for a case study [56] where the evaluation
took only 50ms.

Platform Most if not all are implemented in Java. Groove, CheckVML, Henshin
and Hugo/RT are surely implemented in Java while the platform for SOCLe is unknown.
CheckVML, Henshin and Hugo/RT use model checkers as backend. SOCLe uses a custom
on–the–fly model checker whose semantics is based on ASMs and Groove uses a custom
model checker as well.

Extensibility The most adaptable tools are Groove and Henshin. Groove is com-
pletely open source as well as Henshin, which additionally offers an easy–to–use API.
The CADP model checker used by Henshin is not open source, but mCRL2, PRISM
and the OCL invariant check are. Hugo/RT is not open source, but the source code can
be obtained by asking the developer. SOCLe and CheckVML seem to be not publicly
available and thus cannot be adapted and used for further extensions.

Possible extensions Possible extensions for Henshin include a language which is more
simple to use then mCRL2 and CADP yet more expressive than OCL constraints alone
and improved tool output. Groove could be extended to allow OCL constraints in CTL
and LTL formulas since some properties are not easily expressible using graph transfor-

2Note, however, that the numbers in this paper are at least partially wrong for the dining philosophers
problem. While the exact rules of the Groove dining philosopher example were not given, they could be
reconstructed by the number of states and transitions; in fact, the row which should display 12 entities
in Groove displays the result for 11 entities.

62

mations. The tool output could be improved as well by showing a (counter)example–path
if available, which could be given for every LTL formula and at least some CTL formulas.

Decision The decision fell to extend Henshin. SOCLe and CheckVML are not available
and thus are no candidate for extension. Hugo/RT was too difficult to understand
ruling it out as extension candidate as well. Groove has a fully integrated GUI, but a
completely new OCL evaluation engine on the graph structure used by Groove would
have to be written. Henshin is less integrated, but the provided OCL engine proved to
be easily extensible. While originally it was planned to extend the existing state space
visualisation, this turned out to be more difficult than expected, so a web interface was
generated.

4.3 Summary
Many model checking approaches use ad–hoc formalizations of models. Different kinds
of model checking paradigms have been brought to the modeling world trading off ex-
pressibility for complexity. The simplest approach is OCL invariant checking requiring
no model checking knowledge, the most expressive approach does not use any OCL
features. Many languages have been defined but never implemented into tools, many
promising tools are not publicly available. Currently the most usable integrations of
model checking in MDE are the least sophisticated ones using graph transformations for
state space generation. All approaches able to use UML transform the used model into
representations suitable for other model checkers. The most relevant issue seems to be
helpful output. Henshin has been selected as most suitable candidate for extension.

63

CHAPTER 5
MoCOCL: A Framework for

Model Checking OCL

In this chapter, MoCOCL, a framework for OCL model checking, is presented. At first
a rationale behind the design is given, then the temporal OCL language extensions are
described in terms of formal syntax and semantics. Finally, an overview of the actual
implementation of our model checker is given and the visualization of the result returned
by the model checker implementation is discussed.

5.1 Design Rationale

The main requirement for the language and tool integrating MDE and model checking is
usability in terms of property specification and the presentation of the result returned by
the model checker. Performance issues were not considered when designing the frame-
work. Existing knowledge should be reusable and the approach should be suitable for
software models.

Many approaches, as described in Chapter 4, regard OCL as suitable base for a
language extension with temporal operators because OCL is likely to be known by mod-
elers. Thus, the approach presented in this chapter extends Essential OCL as well. Pure
Essential OCL formulas are valid formulas in the presented language. This allows to
separate learning a new language for defining constraints on models and learning a new
environment for verification.

We chose CTL over other temporal logics because it is both understandable and easy
to implement. The µ–calculus is thought to be hard to understand [9], so it was not
regarded as a candidate. While LTL has the advantage of giving a single linear coun-
terexample, which can be reported back easily, its operators would spread throughout
the OCL formula making it either necessary to allow LTL only on the top level and OCL
on the bottom level or to quite strongly modify existing OCL engines like the Eclipse

65

OCL Engine.1 CTL, as discussed in Chapter 3, on the other hand, is easy to implement
with no great hassles occurring when mixing temporal operators with OCL constructs.
The second OCL extension allows to specify an OCL expression evaluated in certain
states. It was tried out what can be implemented easily and straightforwardly and what
can be expressed with it.

A clear requirement of our tool is that the modeler should be able to see a counterex-
ample which helps debugging if a property is violated. Thus, the used search algorithm
must concentrate on the relevant model parts. Relevant parts are parts of the model af-
fecting the evaluation result. Thus, all relevant information is calculated in the formula
evaluation. The output should also be integrated into the usual modeler’s workflow.
Thus, it was aimed for an integration into Eclipse. The graph transformation framework
Henshin (see Chapter 4) provides a state space visualisation, so the first idea was to
just extend this visualisation. Unfortunately, there were problems doing this, so an own
visualization using web–technology was implemented. This has the advantage of being
easily accessible from other computers.

5.2 OCL Semantics
The syntax and semantics defined for this framework are an extension of the formal
semantics of OCL [36, 62] with only slight adaptions needed for the existing definitions.
At first, a formal definition of Essential OCL syntax and semantics from Richter and
Gogolla [62] is reproduced which serves as basis for our OCL extension.

The object model M used in OCL contains classes, attributes, associations, opera-
tions and a subtype hierarchy. The set N denotes the set of names.

Definition 22 (Object model [62]). The structure of an object model is defined as
M “ pClass,AttC ,OpC ,Assoc, associates, roles,multiplicities,ăq.

• Class is a set of class names
• AttC is a set of operation signatures for functions mapping an object of class c to

an associated attribute value
• OpC is a set of signatures for user–defined operations of a class c without side

effects
• Assoc is a set of association names

– assoicates is a function mapping each association name to a list of participating
classes

– roles is a function assigning each end of an association a role name
– multiplicities is a function assigning each end of an association a multiplicity

specification

• ă is a partial order on Class reflecting the generalization hierarchy of classes
1http://wiki.eclipse.org/MDT/OCL/Plugins_and_Features

66

http://wiki.eclipse.org/MDT/OCL/Plugins_and_Features

Example 29 (Object model). An object model for a slightly adapted dining philoso-
phers problem could be specified as follows:
M “ pClass,AttC ,Assoc, associates, roles,multiplicities,ăq.

• Class“tPhilosopher,Fork,Plate,Table, Status,Thinking,Hungry,Eating,Stringu
• AttC “ tstatus : Philosopher Ñ Statusu
• OpC “ tu
• Assoc “ tphils, forks, plates, leftF, rightF, left, rightu
• associates “ tphils ÞÑ xPhilosopher,Tabley, forks ÞÑ xFork,Tabley, plates ÞÑ

xPlate,Tabley, leftF ÞÑ xPlate,Forky, rightF ÞÑ xPlate,Forky, left ÞÑ

xPhilosopher,Forky, right ÞÑ xPhilosopher,Forkyu
• roles “ tphils ÞÑ xphil, tably, forks ÞÑ xforks, tabl2y, plates ÞÑ xplates, tabl3y,

leftF ÞÑ xplate, leftforky, rightF ÞÑ xplate2, rightforky, left ÞÑ xlfphil, lefty,
right ÞÑ xrfphil, rightyu

• multiplicities “ tphils ÞÑ xN`, t1uy, forks ÞÑ xN0, t1uy, plates ÞÑ xN`, t1uy,
leftF ÞÑ xt1u, t1uy, rightF ÞÑ xt1u, t1uy, left ÞÑ xt1u, t0, 1uy, right ÞÑ

xt1u, t0, 1uyu
• ă“ tpThinking,Statusq, pHungry, Statusq, pEating,Statusqu
For building OCL expressions, a data signature is defined over object models. It

includes types, their subtype relationship and methods for accessing attributes and nav-
igation.

Definition 23 (Data signature [62]). A data signature ΣM “ pTM ,ď,ΩM q for an object
model consists of a set of types TM , a relation ď on types reflecting the type hierarchy
and a set of operations ΩM .

Example 30 (Signature). A data signature ΣM “ pTM ,ď,ΩM q for
the dining philosophers problem is defined with the type set TM “

tPhilosopher , Fork, Table, Plate, Thinking, Hungry, Eating, Status, Stringu
consisting of the primitive type String and the object types Philosopher, Fork,
Table and Plate (see Figure 1 in Section 1.2). The philosopher’s status is a Status,
which can be either Thinking, Hungry or Eating. Thus, the subtype relation is
ď“ tpThinking,Statusq, pHungry,Statusq, pEating,Statusqu. The operation set
ΩM “ tstatus : Philosopher Ñ Status, phils : Table Ñ SetpPhilosopherq, ...u includes
an operation for accessing the Status of a Philosopher, an operation for retrieving all
Philosophers of a table and some more.
This data signature is used to define the syntax of OCL expressions. The set of free
variables of an expression denotes the variables that are assigned a value during the
evaluation of the OCL expression. Collection operations are denoted using an arrow
(->) instead of the usual dot (.).

67

Definition 24 (OCL Syntax [62]). The syntax of base OCL expressions is defined as
follows:

1. If v P Vart, then v P Exprt and freepvq :“ tvu.

2. If v P Vart, e1 P Exprt1 , e2 P Exprt2 then let v “ e1 in e2 P Exprt2 and
freeplet v “ e1 in e2q :“ freepe2q ´ tvu.

3. If ω : t1 ˆ . . . ˆ tn Ñ t P ΩM and ei P Exprti for all i “ 1, . . . , n then
ωpe1, . . . , enq P Exprt and freepωpe1, . . . , enqq :“ freepe1q Y . . .Y freepenq.

4. If e1 P ExprBoolean and e2, e3 P Exprt then if e1 then e2 else e3 endif P Exprt
and freepif e1 then e2 else e3 endifq :“ freepe1q Y freepe2q Y freepe3q.

5. If e P Exprt and t1 ď t or t ď t1 then (e asType t1) P Exprt1 ,
(e isTypeOf t1) P ExprBoolean, (e isKindOf t1) P ExprBoolean and freeppe asType t1qq :“
freepeq, freeppe isTypeOf t1qq :“ freepeq, freeppe isKindOf t1qq :“ freepeq.

6. If e1 P ExprCollectionpt1q, v1 P Vart1 , v2 P Vart2 , and e2, e3 P Exprt2 then e1 Ñ

iterate(v1; v2 “ e2 | e3) P Exprt2 and freepe1 Ñ iteratepv1; v2 “ e2|e3qq :“
pfreepe1q Y freepe2q Y freepe3qq ´ tv1, v2u.

A state σ P S is used to retrieve object, associations and attributes of an object model
M via the projection functions σ|Class, σ|Att, and σ|Assoc which retrieve all objects,
attributes and associations for a system state [62], repsectively.

Definition 25 (System state [67]). The structure of a system state over an object model
M is defined as σpMq “ pσ|Class, σ|Att, σ|Assocq:

• σ|Classpcq contains all objects o of the class c.

• σ|Att,a returns a function for the value of attribute a of class c. oAtt,apoq retrieves
the value of the attribute a for the object o.

• σ|Assocpasq assigns a list of participating objects xo1, ..., ony to each association as.

A variable assignment is a function β : Var t Ñ Valt that, given a variable name,
returns the current value of the associated variable, where t is the type of the associ-
ated variable. An environment τ “ pσ, βq consists of a system state σ and a variable
assignment β.
Now, we have all components for defining the semantics of OCL.

68

Definition 26 (OCL semantics [62]). Let Env be the set of environments τ “ pσ, βq.
The semantics of an expression e P Exprt is a function IJ e K : Env Ñ Iptq that is defined
as follows.

i. IJvKpτq “ βpvq

ii. IJlet v “ e1 in e2Kpτq “ IJe2Kpσ, βtv{IJe1Kpτquq.
iii. IJωpe1, . . . , enqKpτq “ IpωqpτqpIJe1Kpτq, . . . , IJenKpτqq.

iv. IJ if e1 then e2 else e3 endifKpτq “

$

’

&

’

%

IJe2Kpτq ifIJe1Kpτq “ true
IJe3Kpτq ifIJe1Kpτq “ false
K otherwise

v. IJpe asType t1qKpτq “
#

IJeKpτq ifIJeKpτq P Ipt1q,
K otherwise.

IJpe isTypeOf t1qKpτq “
#

true ifIJeKpτq P Ipt1q ´ Yt2ăt1Ipt2q,
false otherwise

IJpe isKindOf t1qKpτq “
#

true ifIJeKpτq P Ipt1q,
false otherwise

vi. IJe1 Ñ iteratepv1; v2 “ e2|e3qKpτq “ IJe1 Ñ iterate1pv1|e3qKpτ 1q where τ 1 “ pσ, β1q
and τ2 “ pσ, β2q are environments with modified variable assignments:
β1 :“ βtv2{IJe2Kpτqu, β2 :“ β1tv2{IJe3Kpσ, β1tv1{x1uqu

5.3 CTL Extension of OCL
CTL, as described in Section 3.4, is a temporal logic using branching–time semantics
and provides the temporal concepts which we will integrate in OCL. In this thesis, this
language extension of OCL is called cOCL.

Definition 27 (Syntax of cOCL). Let ΣM “ pTM ,ď,ΣM q be a data signature over
an object model M , Var “ tVartutPTM be a family of variable sets where each variable
set is indexed by a type t. The syntax over the signature ΣM is given by a set Expr “
ExprtPTM of state expressions, a temporary set PExpr of path expressions and a function
free : Expr Ñ FpVarq denoting the set of free variables. It is defined as follows:

1. Each OCL expression of Definition 24 is in cOCL;

2. if φ P ExprBoolean then A X φ, E X φ, A G φ, E G φ, A F φ, E F φ in cOCL, where
ExprBoolean are expressions of type Boolean. Let e denote this expression, then
freepeq “ freepφq.

3. if φ, ψ P ExprBoolean then A φ W ψ, E φ W ψ, A φ U ψ, E φ U ψ P ExprBoolean
in cOCL, where ExprBoolean are expressions of type Boolean. Let e denote this
expression, then freepeq “ freepφq Y freepψq.

69

Because CTL is used, A and E must be directly be followed by some X, G, F, W
or U. Path formulas alone are not valid cOCL expressions. To enhance readability, the
concrete syntax of cOCL uses the expanded form of the operators. The operator A is
written as Always, E as Exists, X as Next, G as Globally, F as Finally, W as Unless and
U as Until.

Example 31 (Syntactically valid and invalid cOCL formulas). This example illus-
trates some syntactically valid and invalid formulas.
let s = self.philosophers->size() in Always Globally self.philosophers->size()
= s
A syntactically valid cOCL formula with the intention to specify that the number of
philosophers should always remain constant.

Always Globally Exists Next true

A syntactically valid cOCL formula with the intention to specify that there should be no
deadlock.

Always self = null or Finally self.philosophers->size() > 0

A syntactically invalid cOCL formula with the intention to specify that unless there is
no root object in the model, there will be a philosopher sometimes in the future. This
expression is invalid because Always is not followed by a temporal operator and Finally
is not preceded by Always or Exists. This would be a formula valid in an LTL extension
of OCL.

To define the semantics of cOCL, we first define the term state space. An approach
for generating such a state space is discussed in Section 5.5.

Definition 28 (State space). The state space KM “ pS, ι, T ,B, Eq of a modelM consists
of a set of states S, a single initial state ι P S, a transition relation T Ď E ˆ E , a set of
variable assignments B, and the environment relation E Ď S ˆB. An environment τ P E
is a pair pσ, βq with state σ P S and variable assignment β P B.

Due to the richness of OCL, its state space is more complex than typical statespaces
used by CTL model checking. Typically, the transition relation connects states, not envi-
ronments. An equivalent version of a typical CTL model checking state space compliant
with the state space generation described in the implementation section would consist of
just a single object containing boolean attributes equivalent to the atomic propositions
of that state. The transition relation collapses to the relation transforming the single
object of the current state into the single object of the next state and thus equals the
state transition relation found usually in CTL model checking.

70

Example 32 (State space). Consider the state space KM “ pS, ι T ,B, Eq of the
simple dining philosophers problem with one philosopher. Assume the data signa-
ture ΣM to be the data signature defined in Example 30. It contains the states
S “ pσthinking, σhungrynofork , σhungryleftq. These states correspond to the states where
the philosopher is thinking, is hungry, but has no fork and the state where he/she
is hungry and has a left fork in his/her hands. The thinking state σthinking|Class “
tp1, f1, d1, t1, thinku has five objects: A philosopher p1, a fork f1 a plate d1, a ta-
ble t1 and a status object think. The only attribute status associates p1 with think.
σthinking|Att “ tstatus : p1 ÞÑ thinku. There are associations between table and forks,
plates and philosophers. Additionally, there are two associations from the plate to the
fork. σthinking|Assoc “ tphils ÞÑ txp1, t1yu, forks ÞÑ txf1, t1yu, plates ÞÑ txd1, t1yu,
leftF ÞÑ txd1, f1yu, rightF ÞÑ txd1, f1yu, left ÞÑ tu, right ÞÑ tuu. The other
states have similar objects and associations with the only exception that the status of
p2 (resp. p3) refers to hungry2 (resp. hungry3) and, in the last state, there is an asso-
ciation between philosopher and fork instead of table and fork. σhungrynofork|Class “
tp2, f2, d2, t2, hungry2u and σhungryleftfork|Class “ tp3, f3, d3, t3, hungry3u. Note that
there is no state σeating, since it is not possible to eat with only one fork. The initial state
ι is σthinking. Assume the only variable possible is p of type Philosopher corresponding to
the philosopher or null. then, B “ tb0 : p ÞÑ null, b1 : p ÞÑ p1, b2 : p ÞÑ p2, b3 : p ÞÑ p3u.
There are six possible environments. E “ tε0 “ pσthinking, b0q, ε1 “ pσthinking, b1q, ε2 “
pσhungrynofork , b0q, ε3 “ pσhungrynofork , b2q, ε4 “ pσhungryleftfork , b0q, ε5 “ pσhungryleftfork , b3qu.
Other environments are not possible because we restrict the environments of a specific
state to only allow variable assignments assigning to objects of the same state. The
transition relation is given by T “ tτ0 “ pε0, ε2q, τ1 “ pε2, ε4q, τ2 “ pε1, ε3q, τ3 “ pε3, ε5qu.

The notation of a state space introduced above allows us to define paths on the state
space.

Definition 29 (Path). Let KM “ pS, ι, T ,B, Eq be the state space of a model M . A
path π is a finite or infinite sequence of environments pτ1, τ2, . . .q with τi P E such that
pτi, τi`1q P T . For a path π “ pτ1, τ2, . . .q, we define the projection function πpiq “ τi
and πi “ pτi, τi`1, . . .q. The length of a path |π| “ n for finite paths π “ pτ1, . . . , τnq,
and |π| “ 8 for infinite paths π “ pτ1, τ2, . . .q. A path π is called maxpath, if |π| “ 8 or
Eτ̃ : pπp|π|q, τ̃q P T

Example 33 (Path). Consider the state space of Example 32. There are only four
possible paths starting in the initial state in this statespace. These paths are π1 “ pτ0, τ1q
moving from the state thinking to hungry with a left fork where the variable is assigned to
null, π2 “ pτ2, τ3q doing the same with the variable p being assigned to the philosopher,
π3 “ pτ0q and π4 “ pτ2q moving from state thinking to hungry with no fork. Path π1
and π2 are maxpaths. There are no paths of infinite length because the state space does
not include a cycle in T .

71

Definition 30 (Semantics of cOCL). Let KM be a state space of model M . The seman-
tics of a cOCL expression is defined by the rules i.–vi. of Definition 2 from [62] plus the
following rules for the temporal extension.

vii. IJAφUψKpτq “ true ô @paths π with πp0q “ τ : Dn P N, n ď |π| : IJψKpπpnqq “
true^ @ 0 ď i ă n : IJφKpτiq “ true

viii. IJEφUψKpτq “ true ô Dpath π with πp0q “ τ : Dn P N, n ď |π| : IJψKpπpnqq “
true^ @ 0 ď i ă n : IJφKpτiq “ true

ix. IJAφWψKpτq “ true ô @ paths π with πp0q “ τ : @n P N, n ď |π| : IJφKpπpnqq “
false Ñ Di P N, i ď n : IJψKpπpiqq “ true

x. IJEφWψKpτq “ true ô D path π with πp0q “ τ : @n P N, n ď |π| : IJφKpπpnqq “
false Ñ Di P N, i ď n : IJψKpπpiqq “ true

xi. IJE XφKpτq “ true ô Dpath π with πp0q “ τ, |π| ě 1 : IJφKpπp1qq “ true

xii. IJA XφKpτq “ true ô @paths π with πp0q “ τ, |π| ě 1 : IJφKpπp1qq “ true

The expression K refers to the invalid value. The intuition of the path formulas E
and A is that E is true, if there is a path starting from the current state where the
remaining formula is true, otherwise false. Likewise, A is true if the remaining formula
is true for all paths starting at the current state. The X operator evaluates the following
subexpression in the next state.

The expression φ U ψ means that when considering a single path, ψ must hold at
some state, the n–th state in the path, in the future and before that (excluding the state
where ψ holds), φ has to hold. If one only wants to ensure ψ holding somewhere in the
future, φ can be replaced with true. This is abbreviated as F ψ.

The expression φ W ψ is true if whenever φ evaluates to false, ψ must have held
at some previous point. In other words, as soon as ψ holds, φ needs not to hold any
longer, but before that, φ must evaluate to true. The difference to U lies in that ψ is
not required to hold eventually. If one just wants that φ holds forever, one could express
this with φ W false. This is abbreviated as G φ.
Example 34 (Semantics of cOCL). Now let us consider the applications of this seman-
tics to a simple starvation check on the statespace depicted in Figure 24 with the environ-
ment transformation rule that the first/second philosopher always stays the first/second
philosopher in the according state. The expression philosophers->exists(p | Exists
Finally Exists Globally p.status = PState ::hungry) checks the possibility that
a philosopher may at some point start getting hungry but stays hungry all the time, i.e.,
is not able to eat anything in the future. The initial state is the top left state with both
philosophers thinking.

For evaluating the exists collection operation, we need to check whether for any
element in the philosophers set {P1,P2}, the body condition is true. We start with

72

? ?

?

? ?

hungry left right

hungry left right

hungry left

hungry

hungry
left

right

hungry
left

right

hungry
left

hungry

re
le

as
e

release

release

?

?

?

P2P1

P2P1

P2P1

P2P1

P2P1

P2P1

P2P1

P2P1

P2P1

P2P1

P2P1

P2P1

P2P1

P1 starvation
cycle

re
le

as
e

Figure 24: Full state space of the dining philosopher problem with 2 philosophers

P1 and now check the condition that Exists Finally Exists Globally p.status =
PState ::hungry. For the exists collection operation to hold, we need a path start-
ing at the current state where the remaining formula holds. This is, we need a path,
where somewhere in the future Exists Globally p.status = PState ::hungry holds.
Thus, we might start looking for a path where P1’s status is always hungry. We can
find a cycle leading to the path in column 2: pS12, S22, S32, S42q gives a cycle where
P1 is always hungry. Thus, when being in any of these states, we can find an infinite
path where P1 is always hungry by traversing this cycle. Now we need to find a path
leading to some of these states. S12 can be reached by the hungry transition for the
first philosopher. Thus, we have found a philosopher with a path leading to a possibly
infinite sequence of being hungry and the result of this cOCL expression is true.

We define a cOCL expression satisfiable as follows.

Definition 31 (Satisfiability). A cOCL expression φ is satisfiable w.r.t. a state space
KM iff IJφKpιq is true w.r.t. KM .

Example 35 (Satisfiability). The expression of Example 34 is satisfiable.

5.4 OCL Extension Using Selectors

While CTL expressions allow to verify behavioral properties, they can only give infor-
mation about whether the property is fulfilled or not. Still, often in modeling, one wants
to know some information about the model. Thus, the selectors have been developed
allowing the evaluation of OCL expressions in a specified set of states. More specifically,

73

selectors evaluate expressions on the last state of matching paths. For example, it is
possible to retrieve all deadlock states and look at certain properties of them.

Definition 32 (Syntax of selector expressions). Let ΣM “ pTM ,ď,Σmq be a data
signature (see Definition 29). The syntax for selector expressions is given by:

i. If e P Exprt and r P RExpr then (e)@(r) P Exprt

Definition 33 (Syntax of range expressions). The syntax for range expressions RExpr
is as follows:

i. If e P ExprBoolean , then while e, where e, before e and from e P RExpr.

ii. If eb, eu P ExprInt , eh P ExprBoolean then next, next between eb upto eu, next eb, next
having eh, next eb having eh, next between eb upto eu having eh P RExpr

iii. If eh P ExprBoolean then current, current having eh P RExpr.

iv. If ec, eh P ExprBoolean then range ec upto eh P RExpr.

v. If r1, r2 P RExpr then pr1q with r2, pr1q intersect r2, pr1q without r2 and pr1q then
r2 P RExpr.

For simplicity, the abstract syntax exactly matches the concrete syntax for the selector
expressions.

The intuition of the semantics is that the result of a selector expression (e)@(r) is
the value of e evaluated in the last states of all paths selected by r. All range expressions
themselves select a set of paths. The intention of the expression while e is that paths are
selected where e is fulfilled in all states of the path while where e selects paths where e is
fulfilled in at least the last state of the path. The expression before is the counterpart of
while and selects paths where e is not fulfilled in any state of the path. The expression
from e selects paths where e is fulfilled in at least one state of the path. The expression
range eb upto eu combines both operators mentioned before. It selects paths where eb
is fulfilled in some state, and eu is never fulfilled after the first fulfillment of eb. The
expression current selects the path consisting of the current state, next selects all paths
with specified length, possibly meeting some condition. The expressions pr1q with r2,
pr1q intersect r2 and pr1q without r2 perform the corresponding set operations on the
selected paths. The expression pr1q then r2 selects paths matching r2 starting from any
end state of a path selected by r1.

For defining the semantics, we introduce a helper function pfspτq generating all paths
starting from an environment. This function is defined as pfspτq “ tπ|π path, πp1q “ τu.

74

Definition 34 (Selector Semantics). Let KM “ be a state space of model M . The
semantics of a selector expression is defined by the following rules.

i. IJe@rKpτq “
Ť

πiPIJrK IJeKpπplengthpπiqq

ii. IJnext between e1 upto e2 having e3Kpτq “ tπ|π P pfspτq : Di P N, IJe1Kpτq ă i “
lengthpπq ď IJe2Kpτq ` 1 : IJe3Kpπpiqq “ trueu with e3 “ true if the having clause
is not specified.

iii. IJnext e1 having e2Kpτq “ IJnext between 1 upto e1 having e2Kpτq

iv. IJcurrent having eKpτq “ IJnext between 0 upto 0 having eKpτq

v. IJwhile eKpτq “ tπ|π P pfspτq,@1 ď j ď lengthpπq : IJeKpπpjqq “ trueu

vi. IJwhere eKpτq “ tπ|π P pfspτq, IJeKpπplengthpπqq “ trueu

vii. IJrange e1 upto e2Kpτq “ tπ|π P pfspτq, i “ lengthpπq, Dj P N : 1 ď j ď i :
IJe1Kpπpjqq “ true,@k P N : minptj|IJe1Kpπpjqq “ trueuq ď k ď i : IJe2Kpπpkqq “
falseu

viii. IJbefore eKpτq “ IJrange true upto eKpτq

ix. IJfrom eKpτq “ IJrange e upto falseKpτq

x. IJr1 with r2Kpτq “ IJr1Kpτq Y IJr2Kpτq

xi. IJr1 without r2Kpτq “ IJr1Kpτq z IJr2Kpτq

xii. IJr1 intersect r2Kpτq “ IJr1Kpτq X IJr2Kpτq

xiii. IJr1 then r2Kpτq “
Ť

πiPIJr1Kpτq IJr2Kpπiplengthpπiqq

The paths π used here may be finite and not ending in a deadlock, i.e., not maxpaths.

In the following, we clarify the selectors’ syntax and semantics with the help of
some examples using the state space shown in Figure 24. Unless otherwise noted, the
expressions are evaluated in the State S11.

Current The current range selects the path consisting only of the current state. The
expression current having e selects the current state only if e evaluates to true.

Example 36 (Current). This example illustrates the usage of the current expression.

(self.philosophers)@(current having self.philosophers->exists(p | p.left <>
null))
If this expression is evaluated in S11, it will return the empty set because there is no
philosopher having a fork in its left hand. If it is, however, evaluated in state S13, it will
return the set of both philosophers.

75

Next The next range covers paths with certain length as specified using the between
and upto, inclusively, attributes. These paths then are filtered for having a last state
fulfilling the having attribute.
Example 37 (Next). This example illustrates the usage of the next expression.

(self.philosophers.status)@(next between 1 upto (self.philosophers->size())
having self.philosophers->exists(p | p.status = PState ::hungry and p.left =
null))
This expression returns the status of philosophers in the next n states with n being the
number of philosophers, but only if there is at least one philosopher hungry who also
has no fork. When evaluated in the state S11, the paths pS11, S12q and pS11, S21q of
length 2 are returned all having a philosopher hungry who has no fork leading to the re-
sult set tthinking, hungryu and thungry, thinkingu. Additionally, the paths pS11, S12, S13q
and pS11, S21, S31q are considered, but since the philosophers are either thinking or hav-
ing a fork in S13 or S31, the states are not returned. The paths pS11, S12, S22q and
pS11, S21, S22q both have both philosophers being hungry and having no fork, but have
the same last state S22; thus the result set includes the element thungry, hungryu for this
state only once.

While The while range covers all paths where the specified expression is true all the
time. In other words, expr@(while e2) returns expressions evaluated in a state reachable
by a path with the expression e2 being true all the time.
Example 38 (While). This example illustrates the usage of the while expression.

self@(while (self.philosophers->exists(p,p2 | p.status = PState ::thinking or
(p <> p2 and p.status = p2.status and p.left = p2.left))))
This expressions returns the tables of the states where one philosopher is thinking, which
are S11, S12, S13, S14, S21, S31, S41 and the state where both philosophers are hungry and
have no fork, which is S22. The table of the state S33 where both philosophers have a
fork in the left hand, however, is not returned because there are only paths from S32
and S23 to this state which both do not fulfill the condition specified in the range.

Where The where range covers all paths with the last state fulfilling the expression.
In other words, e@(where e2) includes the results of e evaluated in all states where e2
holds.
Example 39 (Where). This example illustrates the usage of the where expression.

self@(where (self.philosophers->exists(p,p2 | p.status = PState ::thinking or
(p <> p2 and p.status = p2.status and p.left = p2.left))))
The result of the expression includes the table of all states of the while expression above
and additionally the table of the state S33 because it matches the condition specified.

76

Range Upto The expression range e1 upto e2 covers all paths where e1 evaluates to
true for some state in the path but e2 does not evaluate to true in that path after the
first evaluation of e1 to true.
Example 40 (Range Upto). This example illustrates the usage of the range ... upto
expression.
self@(range (self.philosophers->exists(p | p.status = PState ::hungry))
upto (self.philosophers->forAll(p | p.status = PState ::hungry or p.status =
PState ::eating)))
This expression returns the tables of the states S12, S13, S14, S21, S31, S41 and S11. S11
is returned because at state S14 or S41, after the release action is executed, state S11 is
reached.

Before The expression before e1 covers all paths where e1 does never evaluate to
true. Thus, e@(before e1) includes expressions in states reachable by a path without e1
evaluating to true.
Example 41 (Before). This example illustrates the usage of the before expression.

self@(before self.philosophers->exists(p | p.left <> null))

This expression returns the tables of the states S11, S21, S12 and S22.

From The expression from e covers all paths where e has evaluated to true before.

Example 42 (From). This example illustrates the usage of the from expression.

self@(from (self.philosophers->exists(p | p.left <> null)))

This expression returns the tables of all states because all states are reachable by a path
starting from S11 which is reachable by the path S11, S12, S13, S14, S11.

With The expression r1 with r2 covers all paths which are in at least one of the ranges
specified in both expressions.
Example 43 (With). This example illustrates the usage of the with expression.

self@((next 1) with (current))

This expression returns the tables of the states S11, S12 and S21.

77

Without The expression r1 without r2 covers all paths which are in the range r1 but
not in r2.
Example 44 (Without). This example illustrates the usage of the without expression.

self@((while true) without (current))

This expression returns the tables of all states. This is because only the path pS11q is
excluded, but not e.g. the path pS11, S12, S13, S14, S11q leading to the same state.

Intersect r1 intersect r2 covers all paths with are in both the ranges r1 and r2.
Example 45 (Intersect). This example illustrates the usage of the intersect expression.

self@((while self.philosophers->exists(p | p.status = PState ::thinking))
intersect (next 2))
This expression returns the tables of the states S12, S13, S21 and S31. These are all states
having a path of length two or three where there is a path of arbitrary length where in
each state at least one philosopher is thinking.

Then The expression r1 then r2 returns all paths starting with a path in r1 and con-
tinuing then with a path in r2

Example 46 (Then). This example illustrates the usage of the then expression.

self@((next 1) then (before self.philosophers->forAll(p | p.status =
PState ::thinking)))
This expression returns the tables of all states except S11. Initially, the two states S12
and S21 are selected by next 1. Starting from these states, all states from paths starting
from any of these states are returned as long as there are not all philosophers thinking
in the path.

5.5 Implementation

We call the implemented framework MocOCL, the short name for Model Checking OCL.
Its implementation is based on the existing Eclipse OCL Plugin.2 The basic architecture
is shown in Figure 25. It consists of an XText3 based OCL parser used to convert input
strings into the concrete syntax tree. The pivot parser then builds the abstract syntax
tree resolving references and types, the pivot evaluator then traverses this tree to evaluate
the result providing additional information about the evaluation for easier understanding
of what caused the result.

The syntactical augmentation of OCL by CTL operators was relatively straightfor-
ward. A new CTLOperationExp was introduced and the generated parsers were updated
to handle this new operation as well.

2http://wiki.eclipse.org/MDT/OCL/Plugins_and_Features
3http://www.eclipse.org/Xtext/

78

http://wiki.eclipse.org/MDT/OCL/Plugins_and_Features
http://www.eclipse.org/Xtext/

XText OCL
Parser

ocl
xtext
file

ocl
cmof
model

other
cmof
models

cOCL
String

cOCL
concrete Syntax

cOCL
abstract Syntax

Pivot OCL
Parser

Pivot OCL
Evaluator

evaluation
result

initial
model

model transformation
rules

Statespace
generation

statespace
evaluation

result
cause

Figure 25: Architecture of the XText OCL plugin. Modified parts are highlighted blue,
added parts green

The evaluation of CTL formulas in the pivot evaluator requires the ability to traverse
the state space. This ability is provided by the StateTraverser. It allows to calculate
all next states for a state and provide information about some state. A StateTraverser
implementation is provided using Henshin. For generating all next states, it executes all
applicable rules to the current state graph, checks if the generated state exists already by
doing an isomorphism check to existing states and calculates the mapping between the
old and the new state. The pivot evaluator uses the state space generator to iteratively
retrieve the next states and required evaluation environment transformations.

The type definitions Sequenceptq, Setptq, and Bagptq and the function definitions
mkSequencet, mkSett, and mkBagt that we use in the following definitions are those
introduced by Richters and Gogolla [62]. For example, IpSequenceptqq defines the set
of all possible sequences of type t. We define IpCollectionptqq “ pIpSequenceptqq Y
IpSetptqq Y IpBagptqqq.

In MocOCL, the state space consists of a set of graphs. Each graph corresponds
to an instance of the system and thus represents a system’s state at a discrete point
in time. Given a graph transformation system KG “ pR, ιq with graph rewrite rules
R and an initial state ι, the function stategenR: S Ñ P pS ˆ Mq4 handles the gen-
eration of the state space. It expects as input a state σs and returns a set of pairs
pσt,mq where σt denotes the successor state of σs and m : σClass Ñ σClass Y tKu
is a morphism that maps objects in σs to corresponding objects in σt, or to K if no
such object exists. The successor state σt is obtained from σs by applying a rewrite
rule r P R to the graph represented by σs. We write σs

r
ñ σt to denote that σs is

rewritten to σt by rule r P R. The state space generation function is then defined as

stategenRpσsq “
ď

rPR
tpσt,mq|σs

r
ñ σt^DmPM : @cPσs|Class : mpcqPσt|Class_mpcq “ Ku

The helper function succ: E Ñ P pEq returns all environments reachable by a transi-
tion from the source environment τs “ pσs, βsq and is defined by

4P pXq is the set of all finite subsets of X.

79

succppσs, βsqq :“ tpσt, βtq|pσt,mq P stategenRpσsq, βt “ mapvarpβs,mqu
The mapping m corresponds to the vector mapping function fV of the graph mor-

phism s for the single pushout approach and mpvq :“ f´1pvq for the double pushout
approach using the definitions of Section A.

The mapvar : B ˆM Ñ B function takes a variable assignment βs of state σs and
a mapping m P M and updates βs with respect to m resulting in a variable assignment
βt for the successor state σt. It is defined by

mapvarpβpvq,mq : v ÞÑ

$

’

&

’

%

mapcolpβpvq,mq if Dt : βpvq P IpCollectionptqq
mpβpvqq if βpvq P Dompmq, i.e., βpvq P σclass

βpvq otherwise.

A collection is mapped by the mapcol : Collectionptq ˆ M Ñ Collectionptq function,
which applies mapvar recursively to all elements of the collection:

mapcolpX,mq “

$

’

&

’

%

mkSequencetpmapvarpx,mq|x P Xq X P Sequenceptq
mkSettpmapvarpx,mq|e P Xq X P Setptq
mkBagtpmapvarpx,mq|e P Xq X P Bagptq

This implementation gives us a state space KM “ pS, ι, T ,B, Eq with initial state ι P G
and pτs, τtq P T ô τt P succpτsq, E being the transitive closure of applying the succ
function to the initial environment pι, βιq, and S and B being all states and variable
assignments occurring in an environment.

Currently, the implementation of the stategenR function uses Henshin’s graph rewrite
engine [2]. Also note that the context object (self) is used to determine the cur-
rent state making it impossible to use CTL or selector formulas for contexts not be-
ing objects of a certain state, e.g., the formula Set{self.philosophers->at(1).left,
self.philosophers->at(1).right}->forAll(x | Always Next self = x) is currently not
evaluable since the left and right fork of any philosopher in the initial state are null.
This could be solved by adding a special context variable storing the current state.

In the following, the algorithms used for the CTL extension and the selector extension
will be described. To simplify algorithms, the implementation uses a cache to store
already evaluated function values where it is used that IJφKppσ1, β1qq “ IJφKppσ2, β2qq if
σ1 “ σ2 and @u P usedvarpφq : β1puq “ β2puq with usedvar being the set of variables
used in the expression φ. The cache stores the value for each σ, φ and β|usedvarpφq. While
this cache does not completely remove the need for efficient algorithms, it is simple to
use, especially regarding the need of integrating the CTL expressions and the selector
expressions with arbitrary cOCL expressions as sub– and superexpressions.

CTL Extension Implementation

The evaluation of cOCL expressions of the form pExists|Alwaysq ϕ pUntil|Unlessq ψ is
shown in Figure 26. The algorithm constructs the sets Φ and Ψ that contain all environ-
ments where ϕ and ψ hold, and a third set η that contains all environments reachable

80

/*Evaluates the given CTL expression on the start environment τι.
Returns true if the expression holds, otherwise false.*/
function evaluateCTLpτι, pt “ Always|Existsq φ pr “ Until|Unlessq ψqq : Bool
ω “ tτιu; /*Initialize the set of unclassified environments to the initial environment*/
Ψ “ H; /*Environments known to fulfill ψ, i.e. being border nodes*/
Φ “ H; /*Environments known to fulfill φ, but not ψ, i.e. being inner nodes*/
η “ H; /*Environments known to fulfill neither φ nor ψ, i.e. being outer nodes*/
while ω ‰ H /*Stop as soon as there are no more unclassified environments*/

pick τ “ pσ, βq P ω; /*Select an unclassified environment*/
ω :“ ωztτu; /*and unmark it as unclassified*/
if IJφKpτq or IJψKpτq then

if IJψKpτq then
/*All paths to border environments passing only inner environments fulfill the
expression so there is no more evaluation necessary*/
Ψ :“ ΨY tτu;

else
Φ :“ ΦY tτu; /*Environments fulfilling only ψ are inner environments, so*/
ω :“ ω Y succpτqzpΦYΨY ηq; /*add all not yet classified successor*/

end if/*environments to the set of unclassified environments */
else
η :“ η Y tτu; /*Environments fulfilling neither ψ nor φ are outer environments*/

end if
end while
∆ “ ∆l “ H; /*Set of inner environments not being in inner environment cycles*/
repeat

∆l :“ ∆;
/*An inner environment is not in an inner environment cycle, if all its inner envi-
ronment successors are not in inner environment cycles*/
∆ :“ tτ P Φ | succpτq X pΦz∆lq “ Hu;

until ∆ “ ∆l /*Stop if there is no more change*/
Z :“ tτ P Φ | succpτq “ Hu; /*Deadlock environments have no successor*/
if t “ Always and r “ Until then

/*Inner environments contain neither deadlocks nor cycles and border environments
must block reaching outer environments*/
return φ “ ∆ and Z “ H and η “ H;

elseif t “ Always and r “ Unless then
return η “ H; /*Border environments must block reaching outer environments*/

elseif t “ Exists and r “ Until then
/*Some border environments must be reachable through inner environments only*/
return ψ ‰ H;

elseif t “ Exists and r “ Unless then
/*Some border environments must be reachable through inner environments only or
there are inner environment cycles or deadlocks*/
return ψ ‰ H or Z ‰ H or φ ‰ ∆;

end if
Figure 26: Until/Unless algorithm pseudo code

81

Exists Always
φ Until ψ Ψ ‰ H η empty, ∆ “ Φ, no deadlock in Φ
φ Unless ψ Ψ ‰ H, ∆ ‰ Φ or a deadlock in Φ η empty

Table 6: Result criteria for different cOCL expressions
from ϕ but where neither ϕ nor ψ hold. The worklist ω contains all environments that
need to be processed. The algorithm sets the worklist to the initial environment τι and
uses the succ function to iteratively expand the set of reachable environments. It eval-
uates ϕ and ψ in each environment τ and assigns τ to the corresponding sets Φ and Ψ,
or to η if neither ϕ or ψ hold.

The set ∆ contains environments of Φ not being usable for constructing a cycle in Φ.
Thus, initially it contains only those environments of Φ having no next environments in
Φ. Then, iteratively environments of Φ containing no next states in Φ or being unusable
for constructing a cycle, thus being in ∆, are added until the set does not change any
longer. There is thus a cycle in Φ if and only if there is Φ ‰ ∆. A deadlock (in Φ) occurs
if there is an environment in Φ having no successor environment (no matter whether the
successor environment is in Φ or not).

Considering only subformulas that return true and false (not invalid), the satisfia-
bility conditions of each CTL expression is provided in Table 6. Since by construction
all states of Ψ are reachable by a finite series of environments in Φ, a nonempty Ψ gives
us the knowledge that at least one path with ϕ U ψ holds. In practice, this path can
be retrieved by storing a predecessor environment for every environment. Such a path
is sufficient for Exists Until and Exists Unless expressions. For the CTL expression
Unless, it is also sufficient to find an maxpath of Φ. Such a maxpath can be found iff
there either is a cycle in Φ by visiting this cycle infinitely often and thus get an infinite
path or if there is no successor state of an environment in Φ because then the path ending
in this deadlock environment is a maxpath. Likewise, a path not fulfilling φ W ψ can be
found by looking at an environment in η because by construction such an environment
is reachable by a finite series of environments in Φ and thus gives a counterexample of
the Always quantifier. In the case of φ U ψ, a path not ending in a Ψ node also is a
counterexample. These paths are the cycle and deadlock paths.
Example 47 (CTL extension expression I).

S11
φ ψ

S21

S31

S41

S12

S22

S32

S42

S13
φ
S23

S33

S14

S24

Φ set
Ψ set
η set

φ ψ

φ ψ

φ ψ φ ψ

φ ψ

φ ψ

φ ψ φ ψ

ψ

φ ψ

φ ψ

φ ψ

Figure 27: State space evalu-
ated by the algorithm

Always philosophers->exists(status = PState ::
thinking) Until philosophers->exists(status =
PState ::eating) ret

ùñ false

The state space generated for this expression is
shown in Figure 27. The expression φ equals
philosophers->exists(status = PState ::thinking),
the expression ψ is philosophers->exists(status =
PState ::eating). The set Φ contains all expressions
where the expression φ, but not ψ, evaluates to true,
starting from the initial state. The set Ψ contains all

82

expressions where the expression ψ evaluates to true. The set η contains all expressions
where neither φ nor ψ evaluates to true. Some states are not in any set, these are the
states which do not get generated by the algorithm. In the end, since η is not empty,
the expression evaluates to false. Any path from the initial state S11 to any state in η,
for example pS11, S12, S22q gives a counter example.

The implementation of the Always Next φ expression is simpler. It is evaluated as
IJA X φKppσ, βqq “ @n P succpσ, βq : IJφKpnq P ttrue,nullu and Exists Next φ is evalu-
ated as IJE X φKppσ, βqq “ Dn P succpσ, βq : IJφKpnq “ true

Example 48 (CTL extension expression II).

Always Next philosophers->exists(status = PState ::thinking)
loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

φ

ret
ùñ true

If we look again at the state space in Figure 27, we see that all states reachable from
S11, which are S12 and S21, have φ evaluating to true. Thus, the expression evaluates
to true as well.

Selector Implementation

The implementation of the selectors is depicted in Figure 28. The algorithm constructs
three sets from the initial evaluation environment τι, the initial selector state init and
the expression to be evaluated for the result ev: The worklist set ω includes the open
evaluation informations, the set η includes finished evaluation informations and the set
Φ includes the results. Each evaluation info consists of the evaluation environment τ
and a selector state s. A selector state in an evaluation info combines all paths leading
to equivalent results in terms of the selector used. For a certain state, a selector state
decides, based on the evaluation result of the expressions in the selector, whether the
current state is the end of an accepted path (a), whether there cannot be any further
accepted path (f) and the next selector state x. If the current state is the end of an
accepted path, it is added to the result set Φ. If there might be further accepted paths,
all the evaluation environments directly reachable from the current one are added to the
set of remaining evaluation informations if they have not been evaluated before. At the
end, a list of all evaluation results for matching end states of accepted paths is returned.

Each selector can be described by a state diagram where node transitions may emit
ADD or FINAL to indicate that the current state should be added or that no further
evaluation is necessary. Since the selectors are put in a map, every selector may only
contain a finite number of states. Figure 29 shows the state diagrams for some basic
selector range expressions.

The current selector shown in Figure 29a selects only the current state if the expres-
sion evaluates to true, otherwise it selects nothing. In both cases, since no states beside
the first one can be selected, the selector emits FINAL in both cases. It contains two
states.

83

/*Evaluates the given selector expression et@r on the start environment τι.
Returns a collection of the evaluation results of e in the last state of the paths matched
by r.*/
function evaluateSelectorpτι, et@rq : Collectionptq
ω “ tpτι, initqu /*Initialize the worklist ω with τι and an initial selector state init for
r*/
η “ H /*Initialize the set of processed worklist elements with the empty set.*/
Φ “ H /*Initialize the set of worklist elements with matching paths with the empty
set.*/
while ω ‰ H /*If the worklist is empty, we are finished*/

pick ρ “ pτ, sq P ω /*Pick some element from the worklist ... */
ω :“ ωztρu /*..., remove it from there ...*/
η :“ η Y tρu /* ... and add it to the set of processed elements*/
l :“ rIJeKpτq|e P s.exprpqs /*Evaluate the selector parameters*/
/*And then decide what to do next. f is true iff the evaluation of any paths starting
with the current path is not sensible any longer. a is true iff this path matches the
range r. x is a collection of successor selector states.*/
pf, a, xq :“ s.evalplq
if a then /*Add the current worklist element to to the set of returned ... */
Φ :“ ΦY ρ /*... worklist elements if the path matches*/

end if
if not f then

/*If it is sensible to process paths starting with the current path, add all successor
environments with their respective successor states to the worklist*/
ω :“ ω Y

Ť

xiPx
ptpτi, xiq|τi P succpτquzηq

end if
end while
/*Return the evaluation of et for every matching worklist element*/
return rIJetKpτiq|pτi, sq P Φs

Figure 28: Main selector algorithm pseudocode

The next selector shown in Figure 29b initially calculates the minimum path length
of acceptance a and the maximum path length of acceptance b. During the first a ´ 1
transitions, no state will be added so the given expression e3 does not matter. Then,
during the next b ´ a transitions, a path is accepted if e3 evaluates to true, otherwise
it is not accepted. After the last transition, no more nodes can be added so FINAL is
emitted. It contains b` 1 states.

The while selector shown in Figure 29c selects states as long as the given expression is
fulfilled. As soon as the expression is not fulfilled, it emits FINAL and does not add the
state any longer. The before selector shown in Figure 29d is a similar selector selecting
states as long as the given expression is not fulfilled. It contains two states.

The from selector shown in Figure 29e starts selecting states as soon as the specified

84

current having eI[[e]](τ) = true/ADD, FINAL
I[[e]](τ) = false/ADD_NOT, FINAL

(a) current selector

next between e1 upto e2 having e3

/ADD_NOTa := I[[e1]](τ)b := I[[e2]](τ)
... }a - 1 times

...I[[e3]](τ) = false/ADD_NOT
I[[e3]](τ) = true/ADD }b - a times

I[[e3]](τ) = false/ADD_NOT, FINAL
I[[e3]](τ) = true/ADD, FINAL

(b) next selector

while eI[[e]](τ) = true/ADD
I[[e]](τ) = false/ADD_NOT, FINAL

(c) while selector

before eI[[e]](τ) = false/ADD
I[[e]](τ) = true/ADD_NOT, FINAL

(d) before selector

from eI[[e]](τ) = false/ADD_NOTI[[e]](τ) = true/ADD
/ADD

(e) from selector

I[[e]](τ) = true/ADD
I[[e]](τ) = false/ADD_NOT
where e

(f) where selector

range e1 upto e2I[[e1]](τ) = false/ADD_NOTI[[e1]](τ) = true/ADD
I[[e2]](τ) = false/ADDI[[e2]](τ) = false/ADD_NOT, FINAL

(g) range/upto selector

Figure 29: State diagrams for different primitive selector operations

condition is fulfilled. In contrast to the while and before selectors before it however cannot
stop as soon as the condition is (not) fulfilled but has to continue emitting values. It
contains two states.

The range ... upto selector shown in Figure 29g starts selecting states as soon as
the first condition is fulfilled and stops as soon as the second condition is fulfilled, then
FINAL is emitted. It contains three states.

Set operation selectors combine two subselectors each as shown in Figure 30. The
selector with contains paths of both subselectors so it emits ADD whenever at least one
subselector emits ADD. Likewise, it only knows that no further paths will be accepted
if this is known for both subselectors and it emits FINAL only if both subselectors emit
it. The selector intersect contains only paths found in both subselectors so it emits ADD

85

....

....r1 substate r2 substate

r1 with r2ADDADD_NOT ADD ADD_NOT r1 intersect r2 r1 without r2ADD ADD ADD_NOT ADD ADD_NOTADD ADD_NOTADD ADDADD_NOT ADD_NOTADD_NOT ADD_NOTADD_NOT ADD_NOTADDr1 r2
FINALNOT_FIN FINAL NOT_FINFINALNOT_FIN NOT_FINNOT_FINr1 r2 FINAL NOT_FINFINALFINAL NOT_FINFINAL FINAL NOT_FINFINALNOT_FIN NOT_FINFINAL

(a) With, intersect and without selectors

....

....r1 substate r2 substater1 then r2

/ADD
/ADD_NOT

/ADD
spill

/ADD
(b) Then operator

Figure 30: State diagrams for different compound selector operations

when both subselectors emit ADD. As soon as one subselector is FINAL intersect knows
it is finished and emits FINAL as well. The selector without contains paths found in
the first, but not the second subselector so it emits ADD when the first, but not the
second subselector emits ADD. As soon as the first subselector is FINAL it knows that
no further paths will be accepted and emits FINAL.

The then operator accepts path starting with an accepted path for r1 and continuing
with an accepted path for r2. Whenever the first subselector r1 emits ADD, a new fresh
subselector r2 is returned for the state which would otherwise have been added. Thus,
for each ADD in fact the returned x contains two values: A then selector with updated
first subselector and a new r2 subselector. If r1 does not emit ADD, only the updated
subselector r1 is returned. FINAL is emitted as soon as r1 emits FINAL.
Example 49 (Selector operation).
self@((while self.philosophers->exists(p | p.status = PState ::thinking))
intersect (next 2))
This operation selects the tables of all states where there is a path of arbitrary length
with at least one philosopher thinking which are also reachable by a path of length two

86

or three. Figure 31 shows the automata for the while and next subexpressions as well
as the combined automata for the whole expression. The automaton for the next range
has four nodes. The first state is not added, the second and third state are added. Since
there are no optimizations done, the next automaton and thus the combined automaton
as well have redundant information. Because the having attribute is not specified, it is
assumed to be true. This expression can obviously not evaluate to false, thus the second
and third transition with ADD_NOT of the next 2 automaton can never be taken.
This, however, does not hurt so much since it only increases the size of the generated
automaton a bit. It does not increase the number of evaluated states.

The actually taken transitions are marked with the state leading to the transition
with red states not being added to the result set and green states being added to the
result set. The first state S11 has at least one philosopher thinking, so the transition to
R21 is taken and the successor states of S11, which are S12 and S21 are added to this
state. Each of these states has one philosopher thinking, so again the transition to R31
is taken for both states. Since this transition has an ADD marker, both states are added
to the result state set. Again, the successor states of these three states are added to the
state R31. These are the states S31 and S22 for S21 and S13 and S22 for S12. Due to the
worklist being a set, there are three states, namely S13, S22 and S31 in R31. The state
S22 has no philosopher thinking, so the transition to R32 is taken. Since this transition
is marked as FINAL, the successor states of S22 are not added to the worklist. Since it
is also marked as ADD_NOT, S22 is as well not added to the result set. S31 and S13
however have one philosopher thinking, so the transition to R41 is taken and they are
added to the result set. Since this transition as well is marked as ADD_NOT, their
successor states are not added to the worklist.

Thus, the result set contains the evaluation of self on the states S12, S21, S31 and
S13.

Reporting Information

Especially in case of model checking formulas we are not only interested in the actual
result, but also in the reason for the result w.r.t. the model, e.g. an example or a coun-
terexample. Thus, any evaluation of a cOCL expression yields a report that, besides
returning the result of the evaluation, contains a cause or explanation for the result. A
cause is like an evaluation tree in the sense that it stores results of partial expressions
of the full cOCL expression, but different in the sense that it stores only the results for
the expression parts it considers relevant. A sub–expression is relevant if it influences
the result of its super–expression.

In general, the cause contains all information of subexpressions except for those cases
in which it knows only a subset of the information is necessary. For expressions of the
form Exists φ Until/Unless ψ, these are the states of a maxpath fulfilling the expression
if available. For expressions of the form Always φ Until/Unless ψ, these are the states
of a maxpath not fulfilling the expression. For boolean operations, this is any expression
evaluating to true for an or or exists operation and any expression evaluating to false
for an and or forAll operation. For selector expressions, the cause always returns all

87

/ADD_NOT
I[[true]](τ) = true/ADD

I[[true]](τ) = false/ADD_NOT, FINAL
I[[true]](τ) = true/ADD, FINAL

I[[true]](τ) = false/ADD_NOT next 2I[[ew]](τ) = true/ADD
I[[ew]]](τ) = false/ADD_NOT, FINAL

while ew = self.philosophers->exists(p | p.status = PState::thinking)

(while ...) intersect (next 2)

I[[ew]](τ) = true/ADD_NOT I[[ew]](τ) = true,I[[true]](τ) = false/ADD_NOTI[[ew]]](τ) = false
/ADD_NOT, FINAL

I[[ew]](τ) = true,I[[true]](τ) = false/ADD

I[[ew]](τ) = true,I[[true]](τ) = false/ADD_NOT, FINAL
I[[ew]](τ) = true,I[[true]](τ) = true/ADD, FINAL
I[[ew]](τ) = falseI[[true]](τ) = true/ADD_NOT, FINALI[[ew]](τ) = false,I[[true]](τ) = false/ADD_NOT, FINAL

R11 S11 S12 S13S21 S31
S22

R1 R1R2 R1 R2 R3 R4

R31R21 R41

R12 R32R22 R42
Figure 31: Automata of the example selector subexpressions and the combined automa-
ton

evaluated values. Of course there often are multiple possible selections for the cause of an
expression, e.g. multiple counter example paths. Currently, in those cases an arbitrary
selection is done, but in principle some kind of optimization criterion like finding the
smallest cause could be considered.

Conceptually, the cause for any expression is returned additionally to the usual return
value. For every expression, the cause consists of the expression, its evaluated value and,
as subcauses the causes of all subexpressions considered relevant. Except for specific
implementations in the CTL algorithm, the boolean operations and some collection
operations, all subexpressions are considered relevant. In order to not break the existing
interface, the causes are stored on a separate stack and not passed as return values. The
cause structure for standard OCL expressions directly matches the expression structure.
The cause structure for CTL and selector expressions is more complicated, since their
subexpressions are evaluated multiple times in different states. Thus, these expressions
do not directly contain causes of their subexpressions, but special causes representing
individual states. Each of this special cause contains information about the state name,
incoming and outgoing transitions if calculated and the expression result of the CTL
or selector subexpressions. For convenience, in the case of a single (counter)example

88

S13

Always φ Unless ψ

S11 S21 S31 S12 S41 S14 S22 S23 S32

φ: true true

ψ: false false

P1 P2 P1 P2context P1 P2

false

philosophers P1 P2 P1 P2 P1 P2

status = thinking true true truefalse falsefalse

P1 P2 P1 P2context P1 P2

philosophers P1 P2 P1 P2 P1 P2

status = eating false false falsefalse falsefalse

false

thinking hungrystatus thinking thinking hungry hungry

thinking thinking hungry thinkingstatus hungry hungry

thinking thinkingthinking thinking thinking thinkingthinking

eating eating eating eating eating eatingthinking

S11

hungry(P1) hungry(P2)

Figure 32: Cause result (transparent parts are not part of the cause)

path, only the end state of this path is directly returned as cause with the possibility to
retrieve the previous states of this path.

In case of cOCL expressions the report generation becomes expensive fast. For ex-
ample, the number of generated sub-causes for a counter-example trace of a E F ϕ
formula, where ϕ is a propositional formula without set operations, has as upper bound
Op|KM | ¨ |ϕ|q, the size of the state space times the size of the formula ϕ.
Example 50 (Cause). This example illustrates the generation process of a cause.

Always philosophers->exists(p | p.status = PState ::thinking) Unless

philosophers->exists(p | p.status = PState ::eating) ret
ùñ false

This expression asks whether if a philosopher is eating, there always is a philosopher
thinking before as seen in Subsection CTL Extension Implementation. Figure 32 shows
a representation of a possible cause for this expression. Only the fully opaque states are
part of the cause even though all transparent states might have been generated when
evaluating the expression. These three states show a clear trace to a state where no
philosopher is thinking but no philosopher is eating as well because both philosophers
are hungry. The root cause for this expression is the Always φ Until ψ expression itself.
Since there is a single example showing a state leading to this expression evaluating to
false, the cause for the single state S22 is returned as single subcause of this expression.

89

It contains information about the state name, but also information that this cause was
reached via hungry and the previous state was S12 together with S12’s cause. The causes
for the expressions φ and ψ evaluated in S22 are as well subcauses of this cause. The
source of the exists operation is philosophers, thus the set of the two philosophers
P1 and P2 is a subcause of this exists operation. The evaluation of the expression
p.status = PState::thinking is relevant for both philosophers, thus the cause for this
expression is given for both philosophers. The subcauses for each philosopher look the
same. The expression p.status = PState::thinking is false because p.status is hungry
which is different to thinking. When considering the same expression φ in S12, on the
other hand, we can see that only a single subcause is relevant. The operation exists is
true because the status for P2 is thinking. Thus, the status of P1 is not relevant. The
same holds for the expression φ in S11. Since exists is true because the the status of
P1 or P2 is true, only one subcause is necessary. In this case, however, both subcauses
are candidates for being included in the reported cause. For all states, the cause for the
expression ψ is the full subcause of the exists operation since the operation evaluates
to false.

5.6 User Interface

The user interface for the tool is written in HTML/CSS/JavaScript using a Tomcat 7
servlet. Figure 33 shows an example of the tool output for the cause also shown in
Figure 32. Figure 34 shows the tool output for an expression selecting states potentially
leading to a deadlock state. Initially, the user chooses his/her model by selecting the
Ecore file, the Henshin file, and the initial model file in (1). Then, the rules he/she
wants to use in the state space exploration can be chosen in the select field on the right
or written in the text box in (6). The cOCL expression is written in the textbox in (5).
Then, the user needs to choose whether to generate a detailed report or just evaluate
the expression by (un)checking the checkbox in (3). Not generating a cause does not
severely improve performance, but might decrease memory requirements. Then, the
Evaluate–Button in (7) is pressed.

During this interaction, two AJAX requests are generated. One request is sent after
the Ecore file and the Henshin file have been selected to let the server determine the
rules in the Henshin file. The second, larger, request is sent when the evaluation button
is pressed and includes all information entered in the form. The server then evaluates
the expression using the given files and transforms the result including the cause, time
and possible error information into a JSON representation. This JSON object then is
parsed in the client and displayed.

If no cause is requested, then the only result displayed is the evaluation value and
some timing information found near the evaluation button. For the special results true
and false, the output Property fulfilled and Property not fulfilled is given, oth-
erwise just a small string representation is given. Additionally, the time spent for the
evaluation excluding parsing the Henshin and the Ecore files and the expression and
transforming the cause to JSON is given. Generating the JSON cause can take signifi-

90

Ecore file: diningphils.ecoreDatei auswählen Henshin file: diningphil…e.henshinDatei auswählen

Initial model: 2philsInit.xmiDatei auswählen

Used rules:

hungry
left
release
right

Partial statespace Trace

State 2 to state 3 by hungry

CTL checker

Ignore root:

With cause:

Display Weak: Connected

Expression: Always philosophers>exists(p | p.status = 'thinking') Unless philosophers>exists(p | p.status = 'eating')

Used rules: hungry;left;release;right

Evaluate Property not fulfilledTook 232 ms with cold start for 8 states

+

+

.

.

+

+

+

+

root: Always condUpto range
returns false

Show
:part: State6

returns EXIT
Show

cond: exists body in source
returns false

Show
source: source .philosophers

returns [[Philosopher (Id 596)],
[Philosopher (Id 603)]]
Show
var0:

returns <CARRY_ON>
Show

cond: source = it1
returns false

Show
source: source .status

returns hungry
Show
it0: string : 'thinking'

returns thinking
Show
p: Variablep

returns [Philosopher (Id 596)]
Show
var1:

returns <CARRY_ON>
Show
range: exists body in source

returns false
Show
:predecessor: State3 from hungry

returns CONTINUE
Show
:predecessor: State4 from hungry

returns CONTINUE
Show

2

hungry

hungry

3

hungry

hungry

6 6

3

hungry

2

hungry

left

right

left

right

pl
at
e

pl
at
e

id:
:Fork

0

id:
:Fork

1

id:
:Plate

0

id:
:Plate

1

id:
left:
right:
status:

:Philosopher
0
null
null
thinking

id:
left:
right:
status:

:Philosopher
1
null
null
thinking → hungry

Figure 33: Sample tool output for the expression Always philosophers->exists(p |
p.status = PState ::thinking) Unless philosophers->exists(p | p.status =
PState ::eating) 91

Ecore file: diningphils.ecoreDatei auswählen Henshin file: diningphil…e.henshinDatei auswählen

Initial model: 2philsInit.xmiDatei auswählen

Used rules:

hungry
left
release
right

Partial statespace Trace

State 10 to state 13 by left

CTL checker

Ignore root:

With cause:

Display Weak: Connected

Expression: self@(where (Exists Next (Always Next false)))

Used rules: hungry;left;release;right

Evaluate [object Object],[object Object]Took 394 ms with cold start for 13 states

.

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

root: source@ range
returns [[Table (Id 1236)], [Table (Id

1346)]]
Show

:part: source@ range
returns ADD;UNKNOWN

Show
source: Variable self

returns [Table (Id 1346)]
Show
par1: ExistsNext cond

returns true
Show
:predecessor: source@ range from
left
returns ADD_NOT;UNKNOWN

Show
:predecessor: source@ range from
left
returns ADD_NOT;UNKNOWN

Show
:sub: source@ range

returns ADD_NOT;UNKNOWN
Show
:sub: source@ range

returns ADD_NOT;UNKNOWN
Show
:part: source@ range

returns ADD;UNKNOWN
Show
:part: source@ range

returns ADD_NOT;UNKNOWN
Show
:part: source@ range

returns ADD_NOT;UNKNOWN
Show
:part: source@ range

returns ADD_NOT;UNKNOWN
Show
:part: source@ range

returns ADD_NOT;UNKNOWN
Show
:part: source@ range

returns ADD_NOT;UNKNOWN
Show
:part: source@ range

returns ADD_NOT;UNKNOWN
Show
:part: source@ range

returns ADD_NOT;UNKNOWN
Show
:part: source@ range

returns ADD_NOT;UNKNOWN
Show
:part: source@ range

returns ADD_NOT;UNKNOWN
Show
:part: source@ range

returns ADD_NOT;UNKNOWN

10

left
left

13

13 ε

10

left

13

left
right

lef
t

right

plat
e

left

plate

le
ft

plates

plates

philosophers
philosophers

forks

id:
:Fork

1id:
:Plate

0

id:
:Fork

0

id:
:Plate

1

id:
right:
status:

:Philosopher
0
null
hungry

id:
left:
right:
status:

:Philosopher
1
null
null
hungry

:Table

Figure 34: Sample tool output for the expression self@(where (Exists Next (Always
Next false)))

cant time, especially if the generated result is large, e.g. if no single counterexample can
be given.

Everything displayed is generated out of this JSON cause. The tree view seen in (8)
is a direct translation of the cause into a tree view. Every field contains the evaluated
(sub)expression on the top. In order to save space, not the full expression is given,
but just the top–level expression, the sub–expression is condensed to a parameter name.
For every expression, this parameter name is used in the top left corner. The full
subexpression is stored as tooltip of this parameter. Note however that only the abstract
syntax is available from the OCL Engine lacking some information like parenthesis. Thus,
the expression in the tooltip does not fully equal the entered expression. Additionally,
the return value is given. Subexpressions can be accessed with clicking on the +–sign at
the top left. A gray dot indicates that this expression cannot be expanded any more.

For any CTL expression, there are special part subexpressions including relevant
states. The return values of these states have three special values: EXIT, STOP and
CONTINUE. EXIT indicates that the evaluation ended at this state and the evaluation re-
sult was known, STOP indicates that the mentioned state was not expanded any longer and

92

CONTINUE indicates that the mentioned state was expanded. All states have predecessors,
which are states from which this state was reached. Additionally, states can have
substates. A state is a substate if there is a transition to this state. Selector expres-
sions are handled similarly with the only exception that the return values consist of
ADD, ADD_NOT or UNKNOWN for the current and future states. ADD_NOT for future states is
equivalent to STOP for CTL expressions. Examples for CTL part subexpressions can be
seen in (8) of Figure 33. Examples for selector part subexpressions can be seen in (8b)
of Figure 34.

These expressions can be visualized by clicking on the Show link. If this link is clicked,
two state spaces are generated. The partial statespace is displayed on the left side (9). It
includes all states occurring somewhere in the cause together with all available transitions
for these states. Note that since the evaluation may abort early, some transitions from
a potential full statespace are missing in this partial statespace because they have not
been generated during the evaluation. The trace on the right side (10) contains the exact
evaluation tree and only the relevant transitions. Initial states are marked in yellow,
deadlock states in orange. The selection in (4) allows to choose whether to display sub–
CTL–expressions as well. If the display is set to Connected, then all additional states and
transitions are directly added to the partial statespace partially transparent. They are as
well connected using an ε–edge in the trace. The transparent states in (10b) of Figure 34
correspond to the inner expression Always Next false. There is only one transparent
state in the example shown because the expression Always Next false evaluated to false.
If the display option is set to None, then these expressions are not shown. If a state is
selected either on the left tree view or in one of the state spaces, this state is shown
in the window below. It contains all model elements of this state. Transitions may be
selected as well. In this case, the concrete model transition is displayed in storyboard
notation ([27], see Section 2.3) with green arrows indicating added transitions, and blue
arrows indicating removed transitions and attribute changes as well indicated by arrows
as shown in (11b) of Figure 34. Attribute changes are represented by an arrow connecting
old and new value as shown in (11) of Figure 33. All model elements occurring as result
of subcauses of the selected expression — the relevant elements — are highlighted in
violet as shown in (11) of Figure 33. Typically, the root element is not necessary for
understanding the model, but makes the graph unnecessarily complex. Thus it can be
omitted using the ignore root checkbox in (2).

The model layout is done iteratively using a force–directed algorithm similar to the
one used by the Henshin state space visualisation. Objects repel each other and are
attracted to other objects to which they have a transition except if these other objects
are too close. The ε–transition has high attraction and states with the same name have
no repelling. To ease interaction, the layout algorithm is suspended if the mouse is
hovered over the corresponding state space.

As depicted in Figure 35, all objects are displayed without attributes and having
only their initial letter as name together with a color coming from a hash function if
the model gets too large. All attributes can be seen by hovering over the corresponding
object.

93

Figure 35: Model view of too many objects for detailed display

5.7 Summary
The MocOCL framework provides two extensions of OCL: On the one hand, a CTL
extension of OCL allows to verify dynamic properties of software models. On the other
hand, a custom selector extension of OCL allows to retrieve general information about
the software by evaluating OCL queries on a specific set of states determined by the
selector ranges. We formally introduced syntax and semantics of both extensions and
showed how they are implemented in the MocOCL framework. With this extension, we
have an OCL–based language for both static and dynamic property specification and
with MocOCL the tool for evaluating these specifications in an interactive user–friendly
manner.

94

CHAPTER 6
Evaluation

In this chapter, we evaluate the MoCOCL framework. A focus of this thesis was to
improve the usability of a model checking language in the context of MDE and the
understandability of the result returned by the model checker. For evaluating the us-
ability, a qualitative user study was conducted using a custom Pacman–like setting. The
Pacman example and the rest of the experimental setup is explained first. Then, the
study results are given. For evaluating the performance, three different queries were
used on multiple Pacman scenarios with varying number of ghosts and fields. Addition-
ally, expressions for finding deadlocks and generating the whole state space were used
on the dining philosophers problem with a varying number of philosophers. Finally, the
evaluation results are discussed.

6.1 Pacman Evaluation Scenario

1 2

43

Figure 36: Initial field

Besides the dining philosophers problem presented in Sec-
tion 1.1, we consider a variant of the game Pacman1 in our
evaluation. Pacman is one of most well-known games in video
game history. In the original game, Pacman is on a board
with dots, ghosts and power–ups. Pacman’s task is to collect
all dots in a level without getting touched by a ghost. When-
ever Pacman eats a power–up, the ghosts reverse direction.
The main advantage of Pacman in comparison to the dining
philosophers problem is that it has many interesting properties
and yet is commonly known and easy enough for being used
in a user study. Even though it was not a selection criterion, it offers the possibility to
easily influence the state space size making it a suitable candidate for performance evalu-
ation. An upper bound for the state space size is ng`1 with n being the number of game

1http://en.wikipedia.org/wiki/Pac-Man

95

http://en.wikipedia.org/wiki/Pac-Man

Field
id : Integer
treasure : Boolean

0..*neighbor
Pacman

Ghost

Game

1 on1on 0..*ghostsfields0..*1 pacman

Figure 37: Pacman class diagram

p:Pacman

g:Ghost
on
on f1: Field

id = 1
treasure = false

f3: Field
id = 3
treasure = false

f4: Field
id = 4
treasure = true

f2: Field
id = 2
treasure = falseneighbor neighbor

neigh-bor
neigh-bor

Figure 38: Partial object diagram of the initial field.
All objects are contained in the game object

:Field
treasure = false

:Field
neighbor

:Pacman

on
«delete» «create»

on

:Ghost
«forbid»

«forbid»
on

Figure 39: Pacman move rule

:Field
treasure = false

:Field
neighbor

:Ghost

on
«delete» «create»

on

:Pacman
«forbid»

«forbid»
on

Figure 40: Ghost move rule used in the evaluation,
with error

fields and g being the number of ghosts since any ghost and Pacman can potentially be
on any field.

In the following, the game variant and its model representation are introduced shortly.
The game is simplified and modeled using graph transformations inspired by Heckel [41].
In the simplified version used, there are no dots, but treasures on the board. Pacman
does not need to collect all treasures, but just reach one treasure not occupied by a
ghost. There are no power–ups. The board consists of multiple fields. While typically
each field is a square, this restriction is lifted in this simplification. We will see below
that in each round, either Pacman or a ghost may move to an adjacent field (diagonally
adjacent fields are not considered adjacent). Thus, it might be the case that Pacman
moves multiple times without the ghost moving in between.
The static structure of the game is shown in Figure 37. A game consists of multiple
fields, but at least one, with an integer id. Some fields contain a treasure indicated by a
boolean flag. Each field has up to four neighboring fields with the intention that Pacman
or a ghost can move to neighboring fields in a single step. There is one Pacman and zero
or more ghosts which are on a certain field each.

The dynamic behavior of Pacman as used in the user study is shown in Figure 39.
A move occurs by changing the on reference of Pacman or a ghost to a field next to the
original field. If the game is over, no more moves may happen. Thus, Pacman may only
move if not currently on a treasure and there are no ghosts on Pacman’s field. The first
condition is expressed using the attribute treasure = false excluding that Pacman is
on a field with a treasure. The second condition is formulated as NAC (see Section 2.3):

96

:Field
treasure = true :Fieldneighbor

:Ghost

on
«delete» «create»

on
«forbid#1»

on

:Pacman

:Field:Ghost
«forbid#2»

«forbid#2»
on

:Field
«forbid#2»«forbid#2»

on

Figure 41: Correct ghost move rule

1 2

43

>

1 2

43

1 2

43

Field

id =
treasure =

2
false

movePacman movePacman

>

p: Pacman

g:Ghost

on
f1: Field

id = 1
treasure = false

f3: Field
id = 3
treasure = false

f4: Field
id = 4
treasure = true

f2: Field
id = 2
treasure = false

neighbor neighbor

neighbor

on

neighbor >

>

g:Ghost

on
f1: Field

id = 1
treasure = false

f3: Field
id = 3
treasure = false

f4: Field
id = 4
treasure = true

f2: Field
id = 2
treasure = false

neighbor neighbor

neighbor

on

neighbor >

>

g:Ghost

on
f1: Field

id = 1
treasure = false

f3: Field
id = 3
treasure = false

f4: Field
id = 4
treasure = true

f2: Field
id = 2
treasure = false

neighbor neighbor

neighbor

on

neighbor

:Field
id = 2
treasure = false

:Field
id = 4
treasure = true

neighbor

«create»
on

on
«delete»

Field

id =
treasure =

2
false

:Field
id = 1
treasure = false

:Field
id = 2
treasure = false

neighbor

«create»
on

on
«delete»

p: Pacman p: Pacman

:Pacman :Pacman

Figure 42: Example graph transformation

If a ghost is on the same field Pacman is, the rule cannot be executed.
The dynamic behavior of the ghost as used in the user study is shown in Figure 40.

A ghost may move to an adjacent field as well, but only if there is neither Pacman on
the field the ghost is nor Pacman has found the treasure. Like in the Pacman move rule,
there is a NAC forbidding that the ghost moves if Pacman is on the same field as the
the ghost. But for evaluation purposes, an error in our model is deliberately introduced:
The rule has no NAC to forbid that the game is over because another ghost is on the
same field as Pacman and no NAC to forbid that the game is over because Pacman has
found the treasure. There were two main reasons for working with the erroneous rule.
On the one hand, the error was intended to be found while using the tool. On the other
hand, the correct rule is much more complicated and harder to understand. The correct
dynamic behavior is shown in Figure 41. The right part just makes the ghost move to a
neighboring field. The left part contains NACs. There are two different NACs, namely
the one with ID 1 and another one with ID 2. The rule is only executable if neither
NAC matches. Thus, it may not be that Pacman is on a field with a treasure (NAC #1)
and there may be no ghost on the field Pacman is (NAC #2).

An example also used in the evaluation setting for applying graph transformations
is shown in Figure 42. A game is shown where Pacman finds the treasure in two steps
from Field 1 to Field 2 to Field 4.

97

Expression
type

Natural language expr. cOCL expression

Simple boolean
expression

It is possible that the game is
over

sometimes eventually (always
next false)2

Non–boolean
expression

The set of all ghosts imposing
a potential danger to Pacman

self.ghosts->select(g |
sometimes eventually g.on =
self.pacman.on

Complex
expression

As long as the game is not
over, every ghost may move
to at least two different
positions

always self.ghosts->forAll(g |
g.on.neighbour->select(field |
sometimes next g.on =
field)->size() >= 2 unless
(always next false)

Table 7: Some examples presented in the evaluation setting

6.2 Usability Study

The purpose of the usability study was to evaluate the usability of the CTL extension
of OCL described in Section 5.3; especially how hard it is to read and write it and the
usability of the tool. More specifically, it was evaluated how helpful the tool was to find
out why an evaluation failed or succeeded.

Participants were invited to a single–person semi–structured interview using the ques-
tionnaire found in Appendix B. The participants included researchers from software en-
gineering and modeling mostly with one single participant from the logics field. Some of
them had used model checkers already, some others had not. An interview took about
one hour, but up to two hours in some cases. Note that the questionnaire was adapted
a bit during the course of the interviews for better introduction to the problem and
clarification of the tasks.

At first, after a short introduction of the problem tackled with MoCOCL, each per-
son had to provide a self–assessment of previous skills regarding their modeling, graph
transformation and model checking skills. The assumption was that persons good in
all of these areas could handle the language better than those without, but the model
checking experience should not be absolutely necessary.

Then, the example was introduced with a short explanation of the class diagram, the
transformations and the example provided. In the next step, the language was explained
as an extension of OCL to be able to cover the system behavior. The language features
were described using a mixture of CTL semantics and reference to the actual example,
e.g. the term “game run” was partially used instead of “path”. Afterwards, several
examples were provided to give a feeling of the language. Some of these examples are
listed in Table 7, the others can be found in Appendix B.

98

Task Nr. Expression

re
ad

cO
CL

2a sometimes next sometimes next self.pacman.on.treasure =
true

2b sometimes eventually self.ghosts->exists(ghost | ghost.on =
self.pacman.on)

2c self.ghosts->exists(g | g.on.treasure) and
sometimes eventually (self.pacman.on.treasure and
self.ghosts->forAll(ghost | ghost.on <> self.pacman.on))

w
rit

e
cO

CL

3a After three turns, Pacman maybe has found the treasure.
3b A rule of the game: The game is over if Pacman has found the

treasure.

Table 8: Reading and writing tasks of the user study

Some tasks were presented to the test persons regarding the understandability of
cOCL expressions and the tool output as well as the easiness to write cOCL expressions.
Task 1 was to find natural language expressions matching cOCL expressions which should
serve primarily as further introduction to cOCL. The following tasks listed in Table 8
were dedicated to reading and writing cOCL expressions and using the tool. In Task 2,
the natural language meaning of the expressions presented in cOCL had to be given,
in Task 3, cOCL expressions had to be written. The tasks were sorted in ascending
difficulty. The first expression in Task 2a closely resembled the example sometimes
next self.pacman.on.treasure = true used to introduce cOCL. The expression in Task
2b contained a more complex OCL expression, but only a single, simple CTL part.
The expression in Task 2c combined two different temporal aspects, namely a property
holding in the initial state only and a property holding in the future. In Task 3, cOCL
expressions for natural language expressions had to be constructed. Task 3a again was
rather easy: The expression that Pacman has maybe found the treasure in one turn
was an cOCL introduction example, the expression that Pacman has maybe found the
treasure in two turns was found in Task 2a and now this task just consisted in having
three instead of two turns. Task 3b was more complicated. This expression cannot
be directly inferred from previous expressions and a suitable temporal operator has to
be found. Additionally, for each expression in the Tasks 2 and 3, the result of this
expression evaluated on the example had to be determined and an explanation, like a
matching game, had to be given. The participants were encouraged to use the tool.
Task 3a revealed the expected result true, but with an unexpected explanation given
by the tool: Pacman moves to the treasure first, then the ghost makes a move. This
is a behavior not compatible with the game description. The expression in Task 3b
formalizes this violated property.

After these tasks, the test persons were asked to give their opinion on the language
and the tool and provide further recommendations. That included a subjective eval-
uation whether reading and writing cOCL and interpreting the tool output was easy,
medium, difficult or infeasible.

99

Preknowledge Task result Subjective Evaluation
Low Medium High Low Medium High

Structural Models 12 8 10.5 8 7.5 7
Behavioral Models 8 10.1 11 7 7.7 6
OCL 12 9.6 11.5 8 6.9 8
Graph transform. 10 9.4 11.7 8 6.9 8
Standard Logics 9.5 10.3 10.4 5 7.4 8
Temporal Logics 10.4 9.9 — 6.8 8.3 —
Model checkers 10 – 10.4 6.5 – 6.7

Table 9: Evaluation results based on self–estimated proficiency

Table 9 shows the average points reached on the tasks on the left and the difficulty
points in the subjective evaluation on the right. For each area, the participants were
aggregated in groups with low, medium or high proficiency. These groups were created
by forming the average of the proficiencies in the corresponding subareas with the pro-
ficiency None yielding 0 points, Little yielding 1 point, Significant yielding 2 points
and Expert yielding 3 points. The question, whether model checkers were used before
allowed only Yes and No, so Yes were awarded 3 points and No 0 points. A participant’s
proficiency is assumed to be low for at most 1 point, medium for at most 2 points and
high else. A completely correct solution for a task yielded 2 points, a partially correct
solution or a solution found with help yielded 1 point and a wrong or no solution yielded
0 points. In total, there were 12 points reachable. For the subjective evaluation, for
each of the aspects “Reading cOCL”, “Writing cOCL” and “Tool output interpretation”,
0 points were given for the answer “infeasible”, 1 for “difficult”, 2 for “medium” and 3
for “easy”. In total, there were 9 points reachable. The simple tasks (1, 2a, 2b, 3a) could
be solved by all the participants, even though there was one surprising answer for 3a
(always next instead of sometimes next) caused by an ambiguity of the question “After
three turns, Pacman has found the treasure” which did not specify whether Pacman has
surely or maybe found the treasure. To avoid this ambiguity, the question was changed
to “After three turns, Pacman has maybe found the treasure”.

Despite the small sample size, we got a first impression how personal experiences
and background influence language and tool usage. However, a larger user study is
out of scope of this thesis and subject to future work. For example, for modeling and
OCL there is just one person each with low proficiency. If low and medium proficiency
groups are put together, the results indicate that experience in modeling helps quite a
lot for solving the cOCL tasks. It does, however, not help people feeling that using cOCL
is easier. Graph transformation knowledge seems to have no influence on either task
solving or subjective easiness.

Knowledge in logics seems to be helpful. The more knowledge in logic is available,
the subjectively easier task solving is for the participants. People with previous ex-
perience in model checking also performed better than people without model checking

100

knowledge. Both groups are about equally big: There were six persons without model
checker experience and five with, thus the results are explained in detail. Only one per-
son without previous experience in model checking could solve all exercises while two
persons completely failed at Task 3b and two could solve it partially. In contrast, two
persons with model checking experience could completly solve Task 3b, two could solve it
partially and only one person failed. Errors were quite mixed, often confusing the CTL
operators, e.g. Always Eventually instead of Always Globally or boolean operators, e.g.
and instead of implies. The distribution of Task 2b was equal between persons with and
without previous model checking usage, with three persons finding the correct and two
a wrong solution. There was no one who could not solve Task 2b but Task 3b completely
correct. Interestingly though, temporal logic knowledge seemed to help not at all. There
were only three persons who considered themselves to have significant temporal logic
knowledge, so it might be a statistical artifact, but since two of them failed at Task 2c, it
might be that they just are not used to expressions evaluated on a known, initial state.

People found using cOCL and the tool easy to medium. Reading cOCL expressions was
found to be easy by eight persons, medium by two and difficult by one. Writing cOCL
expressions was found to be medium by seven persons, easy by three and difficult by
one. Interpreting the tool output was found to be easy and medium by five persons each,
and difficult by one. Interestingly enough, there was no strong correlation between
number of solved tasks and subjective evaluation. Out of four persons not being able to
solve the reading Task 2c, three found reading easy and one medium. Two people who
could solve the writing Task 3c found reading the tool output to be medium and only one
found it to be easy while two of the people who could not solve this task at all found
reading the tool output to be easy and one to be difficult.

The visualization of traces was generally reported as useful, even though the ε–
transition connecting identical states in different internal evaluation stages was reported
to be confusing for some. Some people would like to have a more detailed explanation
and a comparison with other tools. The tree view, on the left, however, was considered as
complicated to understand in the first place even though the meaning became clear after
some tool usage for some people. Several suggestions for the tool were made, with some
smaller changes implemented in between the interviews. One larger, yet unimplemented
suggestion was to include different counterexamples. Currently, the tool provides only
one counterexample.

6.3 Performance Evaluation

The goal of the performance evaluation was to find out about the model sizes which
the evaluation engine could handle. Since there was no focus on performance as our
implementation should serve as proof of concept, it was not expected that the results
would be good. The evaluation setup consisted of evaluating various queries on different
initial models for Pacman and the dining philosophers problem. These queries were
evaluated using a simple program executing the query on the model multiple times
and calculating the average. Only the time for building and evaluating the query was

101

measured, the time for transforming the cause into a JSON format suitable for the web
interface was not taken into account.

Since the generated state space can be reused, all queries were executed two times
in a row: In the first execution, the state space was generated and the expression was
evaluated. Thus, the time needed for evaluating the query consisted of both state space
generation and expression evaluation. On a subsequent run, the state space does not
need to be generated any more, so the time needed equals the time for the expression
evaluation alone. The difference between both times yield the state space generation
time.

All performance results were evaluated on a Intel i5-2410M Machine with 2.30 GHz
and 8 GB RAM.

Pacman

0 1

43

2

5

76 8

Figure 43: 3x3 test game
field

For Pacman, three queries and five different game boards
varying in size and number of ghosts were used. At first, the
game boards used will be explained, then the queries will be
described.

The first example board is the board shown in Figure 36.
It contains four fields, a ghost and a Pacman. All the 16
configurations of Pacman and the ghost being on a field can
occur, so there are 16 states altogether. Pacman may simply
move to the treasure in two steps.

The second example board as shown in Figure 43 contains
nine instead of four fields. The challenge for the evaluation
here is that the ghost has to perform a certain sequence of
steps in order to allow Pacman to reach the treasure. Specifically, the ghost has to move
away from the field next to the treasure to some field in the right corridor.

Figure 44: Large test game field

The third example board shown in Figure 44
is an abstraction of a real Pacman game board
in a way that only crossing nodes are considered.
While there are no problems for Pacman to reach
the treasure here, the large state space might im-
pose a problem to the evaluation engine. It was
tested how many ghosts could be added to the
game field without the evaluation engine not be-
ing able to finish any longer. For the one test
case, no ghost was used, for another test case
only the left ghost was used and finally, it was
tried to use both ghosts. In order to be able to
evaluate the large state space with two ghosts,
more memory was given to the JVM.

The performance evaluation was conducted
using three queries, namely Always Globally

102

Field Ghosts States gen.time eval. time total
avg std avg std avg std

st
at
e

sp
ac
e

ge
ne

ra
tio

n small 1 16 25 6.1 20 5.9 46 7
medium 2 405 1051 623.3 114 42.6 1165 657.6
large 0 34 128 63.8 20 5.1 148 68.9
large 1 1156 7712 381.4 258 68.6 7970 437.4
large 2 20230 213k 16.3k 5164 432.6 218k 16.4k

Pa
cm

an
on tr
ea
su
re

small 1 10 19 21.3 29 2.4 48 22.4
medium 2 120 124 18.3 63 19.9 188 36.2
large 0 34 85 9.9 28 0.4 113 10
large 1 631 1932 57.8 114 28.9 2046 38.9
large 2 6920 30685 167.9 1819 34.5 32504 187.3

Pa
cm

an
w
in
s

small 1 10 15 19.7 65 9.7 80 19
medium 2 176 128 115.4 266 94.8 393 128.3
large 0 34 88 18.1 45 7.4 133 18.9
large 1 631 2095 223.5 316 66.3 2411 224.6
large 2 6920 22878 557.8 10772 16.2 33650 566.1

Table 10: Runtimes of MocOCL for the Pacman example (times are given in ms)

true for exploring the full state space with a simple OCL query giving a hint
about state space generation performance, Exists Eventually pacman.on.treasure, the
expression indicating that Pacman has found the treasure, and Exists Eventually
pacman.on.treasure and ghosts->forAll(g | g.on <> pacman.on), the expression that
Pacman has won the game. The two similar expressions are used check the performance
if only a part of the state space is needed.

Table 10 shows the benchmark results from five runs for running the evaluation
without generating the cause. The evaluation time increases about linearly with the
number of states if the model is not accessed from the OCL engine like in the state
space generation query. There is a bit stronger increase if the model is accessed, like
in the Pacman on treasure query. The even stronger increase for the Pacman wins query
comes from the fact that the OCL evaluation engine used does no optimizations on
boolean operations. In this case, it always evaluates both parameters for and even if the
first is false. Thus, the time needed for evaluation of the part of the query checking that
Pacman has won the game in a state increases with the number of ghosts. For some
queries, the evaluation time differs quite strongly as indicated by the large standard
deviation. This might be due to the JVM optimizing some of the evaluation code during
the subsequent evaluation. In general, for small state spaces and complex OCL queries,
the time for OCL expression evaluation is dominating. For larger state spaces and simple
OCL queries, the time for state space generation is dominating. Realistic model sizes,
for example including every possible position for Pacman and ghosts and four ghosts,
could not be checked.

103

Fork

TablePhilosopher

+status: String

Plate

{XOR} left right

philosophers
plates

0..1 0..1

+id : IntegerInteger 1 right

left1
*

*

1

1

*

forks

1

plate
1

+id : Integer

+id :

Figure 45: Dining philosophers benchmark metamodel

Dining Philosophers Problem

The dining philosophers problem is described in detail in Section 1.2. There are n
philosophers sitting around in a table with a plate and two forks in front of them. The
forks are all shared between neighbors. The most important property in the dining
philosophers problem is a deadlock occurring if every philosopher takes one fork. As
model for the dining philosophers scenario we use an adaption of the running example
shown in Figure 45. Like in the running example, there are plates on the table with a
plate having a left and a right fork. Philosophers are sitting in front of the table. A fork
might be on the table or in the left or right hand of a philosopher. The difference to the
running example is that IDs have been added for technical reasons and the philosopher
status is a string to allow writing shorter queries.

Like the Pacman model’s size increases linearly with the number of states, this
model’s size increases linearly with the number of philosophers. An additional philoso-
pher induces three more objects necessary: a philosopher, a plate and a fork. The effect of
the number of philosophers on the initial model size can be seen by looking at Figure 45,
an object diagram of six dining philosophers. More philosophers just mean more model
elements. Except from having more associations from the table object, the readability is
not affected. The number of objects or associations does not change for different states
in the state space since no rule changes the number of objects or associations. The state
space size increases fast. There are four possible states for each philosopher, thus an
upper bound for the state space size is 4n. A simple lower bound for the state space
size is 3n, since philosophers may be thinking, hungry with no fork or hungry with one
fork without interfering with each other in terms of these three states. Thus, in any
case the state space grows exponentially with the number of philosophers.

There were two expressions evaluated in the dining philosophers setting. The first
expression is Always Globally true and generates the whole state space. The second
expression is Always Globally (Exists Next true), an expression checking for deadlock–
freeness.

Table 11 shows the results for both state space generation and deadlock freeness
checking. In all cases, the time for state space generation is dominating since the evalu-
ated queries are rather simple. A big problem is not the runtime, which is under a minute

104

:Table

:Plate

:Philosopher
+status = "thinking"

Plate:Plate

:Philosopher
+status = "thinking"

leftright:Fork :Fork:Fork Plate:Plate leftright

Plate:Plate leftright:Fork :Fork:Fork Plate:Plate leftright

Plate:Plate
:Philosopher

+status = "thinking"

:Philosopher
+status = "thinking"

forks

forksforks forks

left

leftright
plate plateplatesforks forksplates

philosophers philosophersphilosophers philosophers
:Philosopher

+status = "thinking"
:Philosopher

+status = "thinking"

philosophersphilosophers

plate plate

platesplates

rightplatesplates

plate plate
Figure 46: Object diagram of six dining philosophers

even for the largest state space handleable, but the memory requirements. Even though
the benchmark was run on a machine with 8 GB of memory, the full state space could
not be generated for eight philosophers. The cause generation did not affect runtime
much because for many expressions, the cause was generated whether cause generation
was enabled or not and later discarded in case of no cause requested. In fact, the results
indicate that generating the cause lowers the required time which might be an artifact
due to the JVM automatically optimizing code. Still, disabling cause significantly lowers
memory requirements and thus made at least the deadlock check for eight philosophers
possible.

6.4 Discussion

The results are a cause for cautious optimism. While the objective and subjective reports
were somehow contradictory, there were some people interested in playing around with
the tool. Positive comments about the tool mostly regarded the ability to see example
traces including the state visually. Yet, there were little positive comments on the
language alone and no one was interested to try out formulating custom properties.
Thus, the language seems to be too difficult to understand to be able to try it out
quickly. This, however, might be partly caused by the time constraints. Even though
about one hour for a single interview seems to be much, a new language with concepts
new to some people and the example itself had to be explained and some time was needed
for asking the participants about their opinion on the tool. There was no comparison
with other tools/languages like Groove done either. Thus, the question of whether
this language might be more usable than existing, implemented, languages could not be
answered. While most participants found out that the specified behavior did not match
the actual behavior, it cannot be said for sure that this is an improvement over existing
tools.

105

Phils Cause States gen.time eval. time total
avg std avg std avg std

St
at
e
sp
ac
e
ge
ne

ra
tio

n
2 no 13 51 13.7 26 7.0 77 14.8
2 yes 13 22 3.5 17 4.0 39 7.0
3 no 45 76 19.5 31 7.7 107 26.1
3 yes 45 44 7.6 21 2.1 65 6.8
4 no 161 183 3.0 32 .8 215 2.7
4 yes 161 172 2.4 32 .2 204 2.6
5 no 573 1115 38.9 93 2.8 1208 38.1
5 yes 573 1084 2.8 97 2.5 1181 2.5
6 no 2041 5610 265.8 355 20.0 5965 285.5
6 yes 2041 5242 43.2 507 36.8 5749 8.9
7 no 7269 25501 2664.6 4788 1304.7 30289 1374.7
7 yes 7269 28264 1150.6 1526 8.4 29790 1142.3
8 no — — — — — — —

D
ea
dl
oc
k
fre

en
es
s

2 no 13 49 16.2 36 5.3 85 19.6
2 yes 13 22 2.8 21 5.0 43 4.2
3 no 40 70 15.9 29 5.7 99 17.4
3 yes 40 45 11.1 47 8.1 92 15.0
4 no 154 165 7.9 39 1.3 204 7.7
4 yes 154 142 9.4 47 3.2 189 8.2
5 no 307 322 15.4 53 1.9 374 16
5 yes 307 242 4.7 55 1.7 297 3.7
6 no 713 896 29.4 106 13.4 1002 16.2
6 yes 713 814 5.2 108 4.8 921 2.7
7 no 2199 3661 9.4 282 4.4 3943 7.7
7 yes 2199 3509 4.6 454 1.7 3962 4.4
8 no 14415 45715 919.0 3048 97.0 48762 823.0

Table 11: Runtimes of MocOCL for the dining philosophers problem (times are given in
ms)

Our tool’s performance is of multiple magnitudes worse than the one of comparable
solutions like Groove [61]. Yet, that was not the focus of this tool and sensible toy
examples are possible for evaluating its usability.

6.5 Summary

Our tool MoCOCL was evaluated in terms of usability and performance. For evaluating
the usability, a simple variant of the Pacman game using erroneous graph transfor-
mations was presented. Eleven test persons were given a short introduction into the
language and had to solve tasks including understanding the meaning of cOCL expres-

106

sions, writing cOCL expressions and interpreting the tool output. Then, they had to give
their subjective opinion on the language and the tool. While further evaluation would
be necessary to give a definite answer to whether this tool is easier to use than existing
solutions, the user study results give rise to some optimism about that. The approach
scales quite acceptably. Like Groove [61], it runs in super–linear time in the number
of states, but since an on–the–fly model checking approach is used, queries only needing
a small subset of the state space can be answered fast.

107

CHAPTER 7
Conclusion

In this thesis, the formal syntax and semantics of cOCL consisting of two temporal
OCL extensions are presented. We showed on the one hand, that our CTL extension
allows a modeler to check various temporal properties on a system described using an
initial model and graph transformations. The selector extension of OCL, on the other
hand, provides means to evaluate OCL expressions on interesting system configurations.
Further, both extensions were implemented including a web interface allowing to evaluate
cOCL expressions and to explore (counter)examples. Two benchmarks demonstrate that
our solution scales acceptably and provides sufficient performance for small toy examples.
A small user study illustrates the practical usability of cOCL and the web interface.

The research prototype implemented in this thesis shows that integrating model
checking with MDE is feasible and makes sense. First evaluation results indicate that
our approach is a promising step for integrating model checking in MDE environments.

However, there are many ways of improving the tool’s performance in the future.

• OCL Evaluation: The Eclipse OCL engine used is really slow. A switch to a faster
OCL engine, e.g., the UML–based specification environment (USE) [32], would
help in this regard.

• CTL Evaluation: A simple, naive, CTL algorithm is used. Consecutive CTL
subexpressions could be combined and evaluated in an optimized way.

• State Space Generation: The isomorphism checks take a long time. This is wors-
ened by the fact that currently even the mapping between source graph and target
graph of a graph transformation has to be retrieved using an isomorphism check.
Thus, up to half of the time spent in isomorphism checks could be avoided by
having some way to directly get this mapping.

• State Space Storage: Currently, every graph of a state is stored explicitly leading
to huge memory requirements. This could be avoided by using differential states
like in Groove.

109

• Evaluation State Storage: For every transition, the whole evaluation environment is
copied resulting in low performance and high memory requirements. There might
be ways to reduce the necessity of explicit evaluation environment transformation.

The tool’s usability can be improved as well.

• Eclipse Integration: Currently, there is only a web interface for the tool making
it necessary to specify the transformations and to view the result in completely
different environments.

• Layout Algorithm: The layout algorithm often leads to suboptimal results. It can
be improved, manual intervention might be sensible.

• Expression Input: The cOCL expression has to be specified without any automated
aid like syntax highlighting and term completion.

• Relevant Object Display: For large models, too much unnecessary information is
presented. The part of the model displayed could be restricted to the parts relevant
for the expression.

• Path Exploration: For counterexamples, it might be sensible to explore different
paths.

110

APPENDIX A
Graph Transformations

Graph transformations are used for some definitions and as mechanism to describe the
behavior of models throughout this thesis. While a basic understanding of graph trans-
formations is sufficient to get the general idea, we summarize the used concepts of formal
graph transformation executions for the interested reader in the following.

Graph transformation is a technique to transform a graph A into a graph B. As
models are built upon the same basic concepts, graphs are often used to formalize their
structure. EMF models are thus formally described as attributed graphs with inher-
itance and containment [7]. Similarly, graph transformation is considered as formal
counterpart to model transformation. While there are many approaches for graph trans-
formations, in the following we consider the algebraic approaches, namely the single–
pushout approach [49] and the double–pushout approach [22]. The general idea of graph
transformation is that a transformation rule, called production, is specified by graphs.
The left–hand side graph (LHS) describes the search pattern, i.e. the part of the graph
which should be changed and the right–hand side graph (RHS) describes the replace-
ment pattern, i.e., the actual change. The mapping of elements of both pattern graphs
might also be specified by a graph.

The following definitions are based on Ehrig et al. [22].

Definition 35 (Graph). A graph G “ pV,Eq consists of a set of vertices v P V and a
set of edges e “ pes, etq P E. The functions s, t : E Ñ V with speq “ es, tpeq “ et return
source and target vertices of each edge.

A graph G2 “ pV2, E2q is called subgraph of a graph G1 “ pV1, E1, s2, t2q if V2 Ď V1
and E2 Ď E1.

A simple way to describe the mapping between two graphs is a function relating
vertices and edges from one graph to vertices and edges from another graph. This is
called a graph morphism.

111

Definition 36 (Graph morphism). Let G1 “ pV1, E1q and G2 “ pV2, E2q be two graphs.
Let GA “ pVA, EAq be a subgraph of G1. A (partial) graph morphism m : GA Ñ G2
consists of a pair pmV : VA Ñ V2,mE : EA Ñ E2q of mapping functions mapping vertices
and edges from G1 to G2. The domain of a graph morphism is the subgraph it is defined
on, i.e. GA. These functions are structure preserving, i.e. fV pspeqq “ spfEpeqq and
fV ptpeqq “ tpfEpeqq. A graph morphism is called total if its domain is the whole graph,
i.e. GA “ G1.

Let m1 “ pmV,1,mE,1q,m2 “ pmV,2,mE,2q be two graph morphisms. The graph
morphism composition m “ m1 ˝m2 is defined as m “ pmV1 ˝mV2 ,mE1 ˝mE2q and is a
graph morphism.

p2p1 f2f1
G1

t1,1

p2,1p1,1 f2,1f1,1
p2p1 f2f1 t1,2
p2,2p1,2 f2,2f1,2

G2fV
fVe1,1 e2,1 e1,2 e2,2fE

Figure 47: Example
graph

t
p2p1 f2

G
t

p2p1 f2f1
G

e2
philforktabletypeV

typeV

typeE
typeE

TG
e1
Figure 48: Typed
graph G and type
graph TG

t1,1
p2,1p1,1 f2,1f1,1

G1

t1,2
p2,2p1,2 f2,2f1,2

G2
e1,1 e1,2e2,2e2,2
Figure 49: Isomor-
phism changing phi-
losophers

p1f1
G

t
p1f1

G
t

p2p1 f2f1 p2p1 f2f1
G'

e1 e1 e2
m1,Vm2,V

Figure 50: Mono–
and epimorphisms
m1, m2

Example 51 (Graph). The graph Gi“t1,2u “ pVi“t1,2u, Ei“t1,2uq with Vi“t1,2u “
tp1,i, p2,i, f1,i, f2,i, t1,iu, Ei“t1,2u “ te1,i “ pt1,i, f1,iq, e2,i “ pt1,i, f2,iqu describes the
graphs of a simplified dining philosophers problem with the intuition that there are two
forks on the table and two philosophers. The graph morphism m “ pfV , fEq : G1 Ñ G2
with fV pp1,1q “ p1,2, fV pp2,1q “ p1,2, fV pt1,1q “ t1,2, fV pf1,1q “ f1,2, fV pf2,1q “ f1,2,
fEpe1,1q “ e1,2, fEpe2,1q “ e2,2 is visualized in Figure 47. The partial graph mor-
phism f 1 “ pf 1V , f

1
Eq : G1 Ñ G2 with fV pp1,1q “ p1,2, fV pf1,1q “ f1,2, fV pt1,1q “ t1,2,

fEpe1,1q “ e1,2 is visualized in the same figure when considering only the fully opaque
mappings.

In order to be able to formalize the intuition that the p vertices are philosophers,
the f vertices are vertices and the t vertices are tables, a type graph is used. This type
graph corresponds to the metamodel in modeling. Mappings between graph and type
graph specify the has–type relation.

Definition 37 (Type Graph). A type graph is a graph TG “ pVTG, ETGq. A typed graph
GT “ pG, typeq over a type graph TG is a graph with an associated graph morphism
type : GÑ TG. A typed graph morphism m : GT1 Ñ GT2 is a graph morphism m : G1 Ñ
G2 which is type preserving, i.e. type2 ˝m “ type1.

112

Example 52 (Type graph). A type graph shown in Figure 48 of the simplified dining
philosophers problem is TG “ pVTG, ETGq with VTG “ tphil, fork, tableu, ETG “ tetg1 “
pphil, forkq, etg2 “ ptable, forkqu. The corresponding typed graph GT “ pG, typeq includes
the morphism type “ ptypeV , typeEq with typeV pp1q “ typeV pp2q “ phil, typeV pf1q “
typeV pf2q “ fork, typeV ptq “ table, typeEpe1q “ typeEpe2q “ ptable, forkq

The definition and algorithms for the graph transformations discussed require some
further definitions which are given next.

Definition 38 (Special Morphisms). A morphism m : B Ñ C is called monomorphism
if it is left-cancellative, so m ˝ f “ m ˝ g ñ f “ g @f, g : AÑ B P MorC . A morphism
m : B Ñ C is called epimorphism if it is right–cancellative, so f ˝m “ g ˝m ñ f “ g
@f, g : AÑ B P MorC . A morphism m : B Ñ C is called isomorphism if there exists an
inverse morphism m´1 : B Ñ A P MorC with i ˝ i´1 “ idB and i´1 ˝ i “ idA.

In all the examples above, mono–, epi– and isomorphisms correspond to injective,
surjective and bijective morphisms, respectively.
Example 53 (Special morphisms). The morphism depicted in Figure 47 is neither
mono–, epi– nor isomorphism. The morphism depicted in Figure 49 is an isomorphism,
thus as well a mono– and epimorphism. The blue morphism m1 : G Ñ G1 depicted in
Figure 50 is a monomorphism. The purple morphism m2 : G1 Ñ G in this figure is an
epimorphism.A B

C P
X

f
f'g g' hk x

Figure 51:
Pushout struc-
ture

f1f2 f'1 p'1p1

f''1p'''1 f''2
f'2

p''2
p'1 p'''1f'1 f''1 f''2f'2

p''2

A B

C P
f

f' g'g

Figure 52: Set push out ex-
ample

{p1'',p'1}{f1'',f'1}{t1'',t'1}
p''2f''2{ }{ }{e''2}{e3'}

A B

C P
fVfVfVgV gE

f'V f'E

g'Eg'V

Figure 53: Graph push out example

The first approach we discuss is the single pushout approach whose structure is shown
in Figure 51. In this approach, a single (partial) morphism f connects the LHS A to the
RHS B. A second mapping g given is the mapping from the LHS to the source graph
C. It is required to determine the target graph P from the source graph, the LHS, its
mapping to the RHS and its mapping to the source graph. The pushout determines a
sensible target graph.

113

Definition 39 (Pushout). A pushout C f 1

ÝÑ P
g1

ÐÝ B over a morphism f : A Ñ B and
a total morphism g : A Ñ C consists of an object P and two morphisms f 1 : C Ñ P
and g1 : B Ñ P which commute, i.e. f 1 ˝ g “ g1 ˝ f . It has the universal property that
for all objects X and morphisms h : B Ñ X, k : C Ñ X with k ˝ g “ h ˝ f there is a
unique morphism x : P Ñ X with x ˝ g1 “ h and x ˝ f 1 “ k. This structure is depicted
in Figure 51.

The main special property of the target graph P is that there is exactly one homo-
morphism x to any other target graph candidate X. This means that the target graph is
constructed in a way that it is as large as possible without having elements not mapped
by f 1 or g1 and being consistent with f 1 ˝ g “ g1 ˝ f . If it is smaller than this, than no
homomorphism x exists for the largest such constructed graph. If it contains elements
neither mapped by f 1 nor g1, these elements can be mapped to arbitrary elements by x,
so x is not unique any more.

Initially, the set of all objects which can be mapped by both f 1˝g and g1˝f called the
gluing object f

`
g is determined. This set can only contain elements which both f and

g map. But if g maps multiple objects x1, x2, ..., xn to a single object y, then we know
that y is either mapped by f 1 to a single object in P or not mapped. If it is mapped,
then f 1 ˝ g is defined for all x1, ..., xn. If it is not mapped, then f 1 ˝ g is not defined for
any of these elements. If f does not map any of x1, ..., xn, then g1 ˝ f cannot be defined
for this element. Since both f 1 ˝ g and g1 ˝ f are equal, they must be defined for the
same elements. Thus, if f does not map a single element out of x1, ..., xn, then neither
of these elements is in f

`
g. As well, if a vertex is not mapped, any edge connected

to this vertex may as well not be mapped. All elements mapped by both f and g not
rejected by both properties are taken.

In the next step, the domains of the morphisms f 1 and g1 are determined. The
domains should be as large as possible without conflicting with g1 ˝ f “ f 1 ˝ g. Thus,
the only objects which may not be mapped are the objects which are mapped by f or
g, but cannot be mapped by both f 1 ˝ g and g1 ˝ f . The target graph should be as large
as possible, so elements in domains of f 1 and g1 are mapped to distinct elements unless
they share a common preimage in f or g because pg1 ˝ fqpeq “ pf 1 ˝ gqpeq.

The pushout construction is unique modulo isomorphism. Formally, the pushout can
be constructed in four steps [49]:

• Construct the gluing object f
`
g as largest subalgebra with f

`
g Ď Af (Af is

the domain of the morphism f) where @x P f
`
g, y P A : fpxq “ fpyq _ gpxq “

gpyq ùñ y P f
`
g.

• Construct the domains Cf 1 of f 1 and Bg1 of g1. Cf 1 is the largest subalgebra of C
contained in pC ´ gpAqq Y gpf

`
gq. Likewise, Bg1 is the largest subalgebra of B

contained in pB ´ fpAqq Y fpf
`
gq.

• Build the gluing construction of P = pBg1 Y Cf 1q” with x ” y ô Dz P f
`
g : x “

fpzq, y “ gpzq1.
1Or any other combination of f and g, but we assume here that x is from Bgf and y is from Cfg

114

• Construct the pushout homomorphisms f 1 : C Ñ P with domain Cf 1 which is
defined for all x P Cf 1 by f 1pxq “ rxs” and likewise, g1 : B Ñ P on scope Bg1 .

In sets, the pushout C f 1

ÝÑ P
g1

ÐÝ B of the partial morphism f : AÑ B and the total
morphism g : AÑ C is constructed as follows:

• The gluing object f
`
g is constructed iteratively. Initially, f

`
0 g “ Af . Then,

f
`
i`1 g “ tx P f

`
i g|f

´1pfpxqqYg´1pgpxqq Ď f
`
i gu. The gluing object f

`
g “

f
`
n g if a fixpoint has been reached, i.e. f

`
n g “ f

`
n`1 g. The gluing object

is the largest common subdomain of the domains of f and g suitable for pushout
construction. The gluing object equals to Af for injective morphisms and A for
total morphisms.

• The domain Cf 1 of f 1 is pC ´ gpAqq Y gpf
`
gq. The domain Bg1 of g1 is pB ´

fpAqq Y fpf
`
gq. If the morphism is total, the scopes are C and B, respectively.

• Then, the pushout graph D is constructed by building equivalence classes2 of the
relevant scopes P “ pBg1 YCf 1q” with a ” bô Dz P f

`
g : x “ fpzq, y “ gpzq, i.e.

f´1pxq X g´1pyq ‰ H, i.e. both elements share a common preimage.

Example 54 (Set Pushout). This example illustrates a simple set pushout. As exam-
ple, consider the set of two forks and one philosopher in Figure 52. Both f and g are
total, so the domain of f ˝g1 and g˝f 1 is A, the domain of f 1 is C and the domain of g1 is
B. P contains equivalence classes built from BYC. All forks f1, f2 of set A are mapped
to the same fork f 11 in set B, thus in the pushout P , the forks f 11, f21 and f22 build a single
class. Fork f 12, however, has no preimage and thus builds a single equivalence class, like
philosopher p22. p1 gets mapped to p11 and p21, so they form an equivalence class.

Example 55 (Single Graph Pushout). This example illustrates the application of the
single pushout approach.

In (typed) graphs, pushouts can be constructed component-wise for their vertex and
edge sets except that edges are not in the scope if one of their source or target vertices
are not in the scope. Figure 53 shows an example of a graph pushout where an edge is
removed from the table to a fork and an edge is added from the fork to a philosopher in
f : AÑ B while a philosopher and a fork are added in g : AÑ C.

Initially, the set ṼA “ VAf X VAg contains all vertices since they are all mapped by
both fG and gV . The set EAf X EAg, however contains no edge since this edge is not
mapped by fE . The scope of B, Bfg includes everything. The preimages of p11, f 11 and t1
are all in ṼA and e13 has no preimage. Likewise, in Cgf , p21, f21 and t2 are included because
their preimages are in ṼA and p22, f22 , e22 because they have no preimage. e21, however, is
not included because it has a preimage, e1, but this preimage is not in ṼA because it
is not mapped by fE . p21 and p11 share a common preimage and thus are in the same

2This construction is also called coequalizer application.

115

L K R
HDG

l r
f gm k n(1) (2)

Figure 54: Double pushout

f1e1 t'
p'1f'1e3'L

t
p1f1

RK

t
p2p1 f2f1e1 e2

~ ~~~~ ~~
G

lll

t
p2p1 f2f1 e2

~ ~~~ ~~ t
p2p1 f2f1 e2

~ ~~~ ~~

rrrm k n
f g
D He3~

Figure 55: Double push out example

equivalence class. The same applies for f21 , f22 and t1, t2. p22, f22 , e22, e13 have no preimage
and thus get an own equivalence class each.
The pushout definition is easier if both morphism f and g are total. Then, there is
no need to figure out different scopes. The double pushout operates on total morphisms
only. There are two total, injective, morphisms l and r connecting the LHS L to the
RHS R as in pL l

ÐÝ K
r
ÝÑ Rq. The intermediate graph K contains all objects which

are not changed. L contains some additional objects which are deleted from the source
graph, R contains additional objects added to the source graph.

Definition 40 (Double Pushout transformation). A double pushout transformation rule
p “ pL

l
ÐÝ K

r
ÝÑ Rq for transforming graphs G to graphs H consists of (typed) graphs

L, K and R and injective (typed) graph morphisms l and r. A direct (typed) graph
transformation G

p,m
ñ H is given by the pushouts (1) and (2), a production p and a

match m : LÑ G.
The gluing points GP are those vertices and edges in L not deleted by p: GP “ lpKq.

The identification points IP are all vertices and edges where m does not map injectively,
i.e. IP “ tv P VL|Dw P VL, w ‰ v : mV pvq “ mV pwqu Y te P EL|Df P EL, f ‰ e :
mEpeq “ mEpfqu. The dangling points are all vertices of L mapped to a vertex in G
having an edge not in the image of m, i.e. DP “ tv P VL|De P EGzmEpELq : mV pvq P
tsGpeq, tGpequu.

A production is applicable if the gluing condition is fulfilled, i.e. IP YDP Ď GP . If
this gluing condition is fulfilled, G p,m

ñ H is constructed in two steps:

• All corresponding vertices and edges of L not reached from K are deleted from G,
so D = pGzmpLqq Y mplpKqq so that G “ L `K D, i.e. G is the corresponding
pushout.

116

• All nodes and edges in R not in K are added, i.e. H “ DŸpRzrpKqq such that
H “ R`K D

Example 56 (Double Pushout). Let us again consider the rule handing a fork from
the table to a philosopher depicted in Figure 55. We define the match to be mpp1q “
p̃1,mpf1q “ f̃1, fptq “ t̃. At first we want to check whether the production is applicable.
The gluing points are all vertices and edges having a pre–image in K which are thus
p1, f1 and t. There are no identification points because the mapping m is injective. The
edge ẽ2 is the only edge not mapped by m, thus t̃ is the only dangling point. Thus,
DP Y IP Ď GP and the production is applicable. For constructing D, we have to
remove ẽ1 since it has a preimage in L but none of that preimages has a preimage in K.
Then, we see e13 is in R but not in rpKq, thus we add it to D.

117

APPENDIX B
Questionnaire

The questionnaire used in the user study contains four sections. At first, there is a self
assessment considering various topics considered as important for the user study. Then,
an introduction to the problem is given. Since the user study was done in interviews,
this introduction is not extensive. Depending on the participant’s experience in various
topics, these topics were explained in more or less detail during the user study. Both
pages 2 and 3 also served as reference during the comprehensibility evaluation. The
fourth page contains tasks the participants were encouraged to solve using the tool.
The last page contained the subjective evaluation with lots of space for comments and
recommendations. Note that the language syntax was changed after the user study. The
operator sometimes equals the operator Exists, all other operators are simply written in
full lowercase instead of being capitalized.

119

COCL Questionnaire

1 Self assessment of previous knowledge
Please tick the boxes best matching your experience.

Scope Type None Little Signi-
ficant

Expert

Modelling Reading structural models

Writing structural models

Reading behavioural models

Writing behavioural models

Reading OCL queries

Writing OCL queries

Graph
transformations

Reading graph transformations

Writing graph transformations

Executing graph transformations (using tools)

Model Checking Propositional logic (e.g. p∧q)

Predicate logic (e.g. ∀ x:P(x)→Q(s))

Temporal logics (e.g. AG(p→X q))

CTL

I have used any model checkers: Yes No .

The model checkers I used are:

Main field of interest: Software Engineering

 Modeling

 Logic

 Other: ____________

I am a practitioner researcher

Reference:

None Never heard of that topic, never used it

Little Heard of it once or used it, but forgotten most

Significant Limited knowledge/use of basic concepts

Expert In-depth knowledge/use

2 Problem introduction

2.1 Setting
In the following we will consider a variant of the game Pacman modelled using
graph transformation. The game is over, i.e. no further turns are possible, if
Pacman has found the treasure or collides with a ghost.

The expression self.fields->exists(f | f.treasure) for example
indicates that there must be a field with a treasure

2.2 Language concepts
The language is an extension of OCL. The language extends OCL by structures of the form ((always|
sometimes) (globally|eventually|next) <OCL Condition>) and ((always|sometimes) <OCL
condition #1> (until|unless) <OCL condition#2>) which can be used everywhere an OCL boolean
could be used.

Expression Meaning

always globally <#1> Surely, #1 is true all the time

sometimes globally <#1> There is a possibility that #1 is true all the time (there is at least a
certain rule sequence where it is true all the time, but it might be false
for other rule sequences)

always eventually <#1> Surely, #1 is true eventually in the future (but it is unknown when)

sometimes eventually <#1> There is a possibility that #1 is true eventually in the future

always next <#1> Surely, #1 is true after a single turn or there is no next turn

sometimes next <#1> There is a possibility that #1 is true after a single turn

always <#1> until <#2> Surely, #2 is true somewhere in the future and before it is true, #1 is
true.

sometimes <#1> until <#2> There is a possibility that #2 is true somewhere in the future and
before #2 is true, #1 is true

always <#1> unless <#2> Surely, either #2 is true somewhere in the future and before it is true,
#1 is true or #1 is true all the time

sometimes <#1> unless <#2> There is a possibility that either #2 is true somewhere in the future
and before it is true, #1 is true or #1 is true all the time

All these statements may of course be mixed, for example sometimes next sometimes next <OCL
condition> may be used to refer to something two rule executions away.

Figure 3: Pacman class diagram

Figure 5: Ghost move turn ruleFigure 4: Pacman move turn rule

Figure 2: Partial object diagram of the initial field. All
objects are contained in the game object.

2.3 Example
We might want to ask questions about the model, for example, whether Pacman will find the treasure in
all cases. Pacman finds the treasure by moving on a field with treasure attribute true. For example,
Pacman might find the treasure by moving two times: From field 1 to field 2, from field 2 to field 4 as
shown in Fig. 6.

We can formulate many natural language expressions into equivalent COCL expressions

Natural language expression COCL expression

Initially, there is a field containing a
treasure

self.fields->exists(field | field.treasure)

The game is over/not over always next false/sometimes next true

Pacman will find the treasure in all cases. always eventually (self.pacman.on.treasure = true)

It is possible that a ghost reaches a
treasure.

sometimes eventually self.ghosts->exists (ghost |
ghost.on.treasure = true)

It is possible that the game is over. sometimes eventually (always next false)

The game will surely be over sometimes. always eventually (always next false)

The set of all ghosts imposing a potential
danger to Pacman

self.ghosts->select(g | sometimes eventually g.on
= self.pacman.on)

If two ghosts share the same location,
their location will be different after the next
turn

always globally self.ghosts->forAll(g1,g2 | g1 <>
g2 implies ((g1.on = g2.on) implies ((sometimes
next true) and (always next g1.on <> g2.on))))

If the treasure is next to Pacman, he can
find it the next turn

always globally self.pacman.on.neighbour-
>exists(field | field.treasure) implies (sometimes
next self.pacman.on.treasure)

As long as not all fields next to Pacman
are occupied by ghosts, there is a
possibility that the game is not over the
next turn

always globally self.pacman.on.neighbour-
>exists(field | self.ghosts->forAll(g | field <>
g.on) implies (sometimes next (sometimes next
true)))

As long as the game is not over, every
ghost may move to at least two different
positions

always self.ghosts->forAll(g | g.on.neighbour-
>select(field | sometimes next g.on = field)-
>size() >= 2) unless (always next false)

Figure 6: Pacman finds the treasure by moving two times. Afterwards, he cannot move any longer since
the treasure-attribute of the field where he is on is true (cf. Fig. 4)

3 Comprehensibility evaluation
We now want to know whether it is possible to understand the meaning of COCL expressions.

1. Please connect the corresponding COCL expressions to their natural language equivalent.

sometimes next
self.pacman.on.treasure =
true

Ghosts never share locations

sometimes globally (sometimes
next true)

There is a situation where
Pacman collides with a ghost
no matter which turn is taken

always globally self.ghosts->
forAll(g1,g2| (g1 <> g2)
implies g1.on <> g2.on)

The game may last indefinitely

self.pacman.on.treasure =
true

Pacman can find the treasure
in a single step

sometimes eventually
(sometimes next true) and
(always next self.ghosts-
>exists(g | g.on =
self.pacman.on))

Initially, Pacman is on a
treasure

2. Please try to find out the natural language equivalent of the following COCL expressions and
give an example game or other explanation for the result

a) sometimes next sometimes next self.pacman.on.treasure = true

b) sometimes eventually self.ghosts->exists(ghost | ghost.on = self.pacman.on)

c) self.ghosts->exists(g | g.on.treasure) and sometimes eventually
(self.pacman.on.treasure and self.ghosts->forAll(ghost | ghost.on <> self.pacman.on))

3. Please try to find out an equivalent COCL expression for these properties and and give an
example game or other explanation for the result

a) After three turns, Pacman maybe has found the treasure.

b) A rule of the game: The game is over if Pacman has found the treasure.

Pacman might find the treasure in two steps. This is true because Pacman might first go to field 2, then to
field 4.

The game might end with Pacman losing. This is true because Pacman might at first go to field 3 to the
ghost.

While initially a ghost is on the treasure, Pacman might still win the game. This is true since initially, no ghost is
on a treasure.

sometimes next sometimes next sometimes next self.pacman.on.treasure = true

This is true since Pacman might at first move to the treasure by going to field 2, then to field 4 and then
the ghost might move.

always globally self.pacman.on.treasure implies (always next false)

This is false, see the result of 3a

4 Subjective Evaluation

Task Easy Medium Difficult Infeasible

Reading COCL expressions

Writing COCL expressions

Interpreting the tool output

In which way was the tool helpful/non-helpful for understanding the meaning of COCL
expression results?

Do you have any recommendations regarding further language concepts (e.g. for easier
specification)?

Do you have any recommendations regarding the tool (e.g. for enhancing usability)?

Do you have any further comments regarding COCL, the tool or this questionnaire?

Bibliography

[1] W. Richards Adrion, Martha A. Branstad, and John C. Cherniavsky. Valida-
tion, Verification, and Testing of Computer Software. ACM Computing Surveys,
14(2):159–192, 1982.

[2] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and Gabriele
Taentzer. Henshin: Advanced Concepts and Tools for In-Place EMF Model Trans-
formations. In MoDELS, volume 6394 of LNCS, pages 121–135. Springer, 2010.

[3] Colin Atkinson and Thomas Kühne. Model-driven development: a metamodeling
foundation. Software, IEEE, 20(5):36–41, 2003.

[4] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press
Cambridge, 2008.

[5] Thomas Ball, Ella Bounimova, Rahul Kumar, and Vladimir Levin. SLAM2: Static
Driver Verification with Under 4% False Alarms. In Proceedings of the 2010 Con-
ference on Formal Methods in Computer-Aided Design, FMCAD ’10, pages 35–42.
FMCAD Inc, 2010.

[6] Jean Bézivin. On the unification power of models. Software & Systems Modeling,
4(2):171–188, 2005.

[7] Enrico Biermann, Claudia Ermel, and Gabriele Taentzer. Formal foundation of
consistent EMF model transformations by algebraic graph transformation. Software
& Systems Modeling, 11(2):227–250, 2012.

[8] Stefan Rosenegger Boris Ljepoja, Thomas Pfenning. Der Pentium-
bug. http://www5.in.tum.de/lehre/seminare/semsoft/unterlagen_02/
pentiumbug/website/.

[9] Julian Bradfield, Juliana Filipe Küster, and Perdita Stevens. Enriching OCL Using
Observational Mu-Calculus. In Fundamental Approaches to Software Engineering,
volume 2306 of LNCS, pages 203–217. Springer, 2002.

[10] Franck Budinsky, David Steinberg, and Raymond Ellersick. Eclipse Modeling
Framework : A Developer’s Guide. Addison-Wesley Professional, 2003.

125

http://www5.in.tum.de/lehre/seminare/semsoft/unterlagen_02/pentiumbug/website/
http://www5.in.tum.de/lehre/seminare/semsoft/unterlagen_02/pentiumbug/website/

[11] Albert F. Case. Computer-aided software engineering (CASE): technology for im-
proving software development productivity. ACM SIGMIS Database, 17(1):35–43,
1985.

[12] Alessandro Cimatti. Industrial Applications of Model Checking. In Modeling and
Verification of Parallel Processes, volume 2067 of LNCS, pages 153–168. Springer,
2001.

[13] Edmund M. Clarke. 25 Years of Model Checking. chapter The Birth of Model
Checking, pages 1–26. Springer, 2008.

[14] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. Springer, 1982.

[15] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation of Fix-
points. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Princi-
ples of Programming Languages (POPL ’77), pages 238–252. ACM, 1977.

[16] Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model transforma-
tion approaches. IBM Systems Journal, 45(3):621–645, 2006.

[17] Maria del Mar Gallardo, Pedro Merino, and Ernesto Pimentel. Debugging UML
designs with model checking. Journal of Object Technology, 1(2):101–117, 2002.

[18] Edsger Wybe Dijkstra. Notes on structured programming. Technological University
Eindhoven Netherlands, 1970.

[19] Dino Distefano, Joost-Pieter Katoen, and Arend Rensink. Towards model checking
OCL. In Proceedings of the ECOOP Workshop on Defining a Precise Semantics for
UML, 2000.

[20] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A Survey of Automated
Techniques for Formal Software Verification. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 27(7):1165–1178, 2008.

[21] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property
specifications for finite-state verification. In Proceedings of the 1999 International
Conference on Software Engineering (ICSE ’99), pages 411–420. IEEE, 1999.

[22] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamentals
of algebraic graph transformation, volume 373. Springer, 2006.

[23] Technische Universiteit Eindhoven. µ–calculus — mcrl2 201310.0 documen-
tation. http://www.mcrl2.org/release/user_manual/language_reference/
mucalc.html, 2011.

126

http://www.mcrl2.org/release/user_manual/language_reference/mucalc.html
http://www.mcrl2.org/release/user_manual/language_reference/mucalc.html

[24] E. Allen Emerson. 25 Years of Model Checking. chapter The Beginning of Model
Checking: A Personal Perspective, pages 27–45. Springer, 2008.

[25] E. Allen Emerson and Joseph Y. Halpern. «Sometimes» and «Not Never» Revisited:
On Branching Versus Linear Time Temporal Logic. Journal of the ACM, 33(1):151–
178, 1986.

[26] E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistla. On model checking
for the µ-calculus and its fragments. Theoretical Computer Science, 258(1–2):491 –
522, 2001.

[27] Thorsten Fischer, Jörg Niere, and Lars Torunski. Konzeption und Realisierung einer
integrierten Entwicklungsumgebung für UML, Java und Story-Driven-Modeling,
chapter Story–Driven Modeling (SDM). Master’s thesis, University of Paderborn,
Department of Mathematics and Computer Science, Paderborn, Germany, 1998.

[28] Limor Fix. 25 Years of Model Checking. chapter Fifteen Years of Formal Property
Verification in Intel, pages 139–144. Springer, 2008.

[29] International Organization for Standardization and International Electrotechni-
cal Comission. Information Technology—Syntactic Metalanguage—Extended BNF
1.0. http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_
ISO_IEC_14977_1996(E).zip, December 1996.

[30] Robert France and Bernhard Rumpe. Model-driven Development of Complex Soft-
ware: A Research Roadmap. In Workshop on the Future of Software Engineering
(FOSE ’07), pages 37–54. IEEE Computer Society, 2007.

[31] Sebastian Gabmeyer, Petra Brosch, and Martina Seidl. A Classification of Model
Checking-Based Verification Approaches for Software Models. In Proceedings of the
2013 STAF Workshop on Verification of Model Transformations (VOLT ’13), 2013.

[32] Martin Gogolla, Fabian Büttner, and Mark Richters. USE: A UML-based specifica-
tion environment for validating UML and OCL. Science of Computer Programming,
69(1–3):27 – 34, 2007. Special issue on Experimental Software and Toolkits.

[33] Kanchi Gopinath, Jon Elerath, and Darrell Long. Reliability Modelling of Disk
Subsystems with Probabilistic Model Checking. Technical report, UCSC-SSRC-09-
05, University of California, Santa Cruz, 2009.

[34] Jan Friso Groote, Aad Mathijssen, Michel Reniers, Yaroslav Usenko, and Muck
Van Weerdenburg. The Formal Specification Language mCRL2. In Proceedings of
the 2007 Dagstuhl Seminar on Methods for Modelling Software Systems (MMOSS
’07), volume 06351 of Dagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

[35] Object Management Group. Model Driven Architecture (MDA) Guide V1.0.1.
http://www.omg.org/mda/, January 2006.

127

http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://www.omg.org/mda/

[36] Object Management Group. Object Constraint Language (OCL) V2.2. http://
www.omg.org/spec/OCL/2.2/, February 2010.

[37] Object Management Group. OMG Meta Object Facility (MOF) Core Specification
V2.4.1. http://www.omg.org/spec/MOF/2.4.1/, August 2011.

[38] Object Management Group. OMG Unified Modeling Language (OMG UML), Su-
perstructure V2.4.1. http://www.omg.org/spec/UML/2.4.1/, August 2011.

[39] Object Management Group. Foundational UML (FUML). http://www.omg.org/
spec/FUML/1.1, August 2013.

[40] Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph grammars with neg-
ative application conditions. Fundamenta Informaticae, 26(3):287–313, 1996.

[41] Reiko Heckel. Graph Transformation in a Nutshell. Electronic Notes in Theoretical
Computer Science, 148(1):187–198, 2006.

[42] Bilal Kanso and Safouan Taha. Temporal Constraint Support for OCL. In Software
Language Engineering, volume 7745 of LNCS, pages 83–103. Springer, 2013.

[43] Harmen Kastenberg and Arend Rensink. Model Checking Dynamic States in
GROOVE. In Model Checking Software, volume 3925 of LNCS, pages 299–305.
Springer, 2006.

[44] Alexander Knapp. Hugo/RT. http://www.pst.informatik.uni-muenchen.de/
projekte/hugo/#Publications, August 2008.

[45] Alexander Knapp and Jochen Wuttke. Model Checking of UML 2.0 Interactions. In
Proceedings of the 2006 MoDELS Workshops, volume 4364 of LNCS, pages 42–51.
Springer, 2006.

[46] Christian Krause and Stefan Neumann. Instance-Aware Model Checking of Graph
Transformation Systems using Henshin and mCRL2. https://www.eclipse.org/
henshin/documents/henshin_mcrl2.pdf, 2010.

[47] Robert P. Kurshan. 25 Years of Model Checking. chapter Verification technology
transfer, pages 46–64. Springer, 2008.

[48] Shuang Liu, Yang Liu, Étienne André, Christine Choppy, Jun Sun, Bimlesh Wad-
hwa, and Jin Song Dong. A formal semantics for complete UML state machines
with communications. In Integrated Formal Methods, volume 7940 of LNCS, pages
331–346. Springer, 2013.

[49] Michael Löwe. Algebraic approach to single-pushout graph transformation. Theo-
retical Computer Science, 109(1–2):181 – 224, 1993.

[50] Luis Mandel and Maria Victoria Cengarle. On the expressive power of the Object
Constraint Language OCL. http://www.fast.de/projeckte/forsoft/ocl, 1999.

128

http://www.omg.org/spec/OCL/2.2/
http://www.omg.org/spec/OCL/2.2/
http://www.omg.org/spec/MOF/2.4.1/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/FUML/1.1
http://www.omg.org/spec/FUML/1.1
http://www.pst.informatik.uni-muenchen.de/projekte/hugo/#Publications
http://www.pst.informatik.uni-muenchen.de/projekte/hugo/#Publications
https://www.eclipse.org/henshin/documents/henshin_mcrl2.pdf
https://www.eclipse.org/henshin/documents/henshin_mcrl2.pdf
http://www.fast.de/projeckte/forsoft/ocl

[51] Tom Mens and Pieter Van Gorp. A taxonomy of model transformation. Electronic
Notes in Theoretical Computer Science, 152:125–142, 2006.

[52] Steven P. Miller, Michael W.Whalen, and Darren D. Cofer. Software model checking
takes off. Communications of the ACM, 53(2):58–64, 2010.

[53] John Mullins and Raveca Oarga. Model Checking of Extended OCL Constraints
on UML Models in SOCLe. In Formal Methods for Open Object-Based Distributed
Systems, volume 4468 of LNCS, pages 59–75. Springer, 2007.

[54] Peter Naur and Brian Randell, editors. Software Engineering: Report of a Confer-
ence Sponsored by the NATO Science Committee, Garmisch, Germany, 7-11 Oct.
1968, Brussels, Scientific Affairs Division, NATO. 1969.

[55] Norbisrath, Ultrich and Zündorf, Albert and Jubeh, Ruben. Story Driven Modeling.
CreateSpace Independent Publishing Platform, 2013.

[56] Frédéric Painchaud, Damien Azambre, Matthieu Bergeron, John Mullins, and
Raveca M Oarga. Socle: Integrated design of software applications and security.
Technical report, DTIC Document, 2005.

[57] Carl Adam Petri and Wolfgang Reisig. Petri net. http://www.scholarpedia.org/
article/Petri_net, 2008.

[58] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science, 1977, pages 46–57, 1977.

[59] Henshin Project. Henshin. https://www.eclipse.org/henshin.

[60] Arend Rensink, Iovka Boneva, Harmen Kastenberg, and Tom Staijen. User manual
for the groove tool set. Department of Computer Science, University of Twente,
2010.

[61] Arend Rensink, Ákos Schmidt, and Dániel Varró. Model Checking Graph Trans-
formations: A Comparison of Two Approaches. In Graph Transformations, volume
3256 of LNCS, pages 226–241. Springer, 2004.

[62] Mark Richters and Martin Gogolla. OCL: Syntax, Semantics, and Tools. In Object
Modeling with the OCL, volume 2263 of LNCS, pages 42–68. Springer, 2002.

[63] Douglas C. Schmidt. Guest editor’s introduction: Model-driven engineering. Com-
puter, 39(2):0025–31, 2006.

[64] Ákos Schmidt and Dániel Varró. CheckVML: A Tool for Model Checking Visual
Modeling Languages. In «UML» 2003 - The Unified Modeling Language. Modeling
Languages and Applications, volume 2863 of LNCS, pages 92–95. Springer, 2003.

[65] Bran Selic. What will it take? A view on adoption of model-based methods in
practice. Software & Systems Modeling, 11(4):513–526, 2012.

129

http://www.scholarpedia.org/article/Petri_net
http://www.scholarpedia.org/article/Petri_net
https://www.eclipse.org/henshin

[66] Moshe Vardi. Branching vs. Linear Time: Final Showdown. In Tools and Algorithms
for the Construction and Analysis of Systems, volume 2031 of LNCS, pages 1–22.
Springer, 2001.

[67] Jos Warmer, Anneke Kleppe, Tony Clark, Anders Ivner, Jonas Högström, Martin
Gogolla, Mark Richters, Heinrich Hussmann, Steffen Zschaler, and Simon Johnston.
Response to the UML 2.0 OCL RfP-Revised Submission. http://deptinfo.cnam.
fr/Enseignement/CycleSpecialisation/MAI/OCL_2.pdf, 2003.

[68] Andreas Zeller. Why programs fail: a guide to systematic debugging. Morgan Kauf-
mann Publishers Inc., 2009.

[69] Paul Ziemann and Martin Gogolla. An Extension of OCL with Temporal Logic. In
Critical Systems Development with UML, pages 53–62. Technical Report, Technical
University of Munich, 2002.

[70] Paul Ziemann and Martin Gogolla. An OCL Extension for Formulating Temporal
Constraints. Technical report, Universität Bremen, 2003.

[71] Paul Ziemann and Martin Gogolla. OCL Extended with Temporal Logic. In Per-
spectives of System Informatics, volume 2890 of LNCS, pages 351–357. Springer,
2003.

130

http://deptinfo.cnam.fr/Enseignement/CycleSpecialisation/MAI/OCL_2.pdf
http://deptinfo.cnam.fr/Enseignement/CycleSpecialisation/MAI/OCL_2.pdf

	Introduction
	Problem statement
	Motivating Scenario
	Outline

	Model–Driven Engineering at a Glance
	Model–Driven Engineering
	Models and Metamodels
	Model Transformations
	Summary

	Model Checking
	Software Verification
	Historical Background of Model Checking
	Basic Idea
	Computational Tree Logic
	Summary

	Related Work
	Languages
	Tools
	Summary

	MoCOCL: A Framework for Model Checking OCL
	Design Rationale
	OCL Semantics
	CTL Extension of OCL
	OCL Extension Using Selectors
	Implementation
	User Interface
	Summary

	Evaluation
	Pacman Evaluation Scenario
	Usability Study
	Performance Evaluation
	Discussion
	Summary

	Conclusion
	Graph Transformations
	Questionnaire
	Bibliography

