
Business Model Driven ERP
Customization

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Thomas Gürth, BSc
Matrikelnummer 0725326

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Mag.rer.soc.oec. Dr.rer.soc.oec. Christian Huemer
Mitwirkung: Dipl.-Ing. Mag. Dr.techn. Dieter Mayrhofer

Wien, 13.01.2014
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Business Model Driven ERP
Customization

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Thomas Gürth, BSc
Registration Number 0725326

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Mag.rer.soc.oec. Dr.rer.soc.oec. Christian Huemer
Assistance: Dipl.-Ing. Mag. Dr.techn. Dieter Mayrhofer

Vienna, 13.01.2014
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Thomas Gürth, BSc
Hubertusgasse 14, 2410 Hainburg

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
- einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

Finishing this thesis would not have been possible without the help of many other people. These
advisors and friends supported me with their opinions and inputs whenever I got stuck in a
problem or seeked their counsel.

My advisors Christian Huemer and Dieter Mayrhofer provided me with their help and
guidance during countless meetings and discussions. I would never have been able to finish a
thesis that meets my personal expectations without their dedicated supervision.

I am also grateful for the support of my family and friends. My parents Manfred and Anita
always provided me with valuable inputs and reminded me to relax when I spent too much
time working. My special thanks go to Johanna for the discussions about my proposal and her
suggestions on how to explain my thoughts to an audience that is not familiar with computer
science.

In particular, I would like to thank my girlfriend Christina for her help and understanding
whenever I was working late hours to achieve my goals. Without her dedication and love, writing
this thesis would not have been possible.

iii

Abstract

Enterprise Resource Planning (ERP) Systems encompass the administration of all information
about resources that are needed for companies to run their business. They support several
functional areas, like accounting, manufacturing, and sales in form of modules that are integrated
by a single database where all business relevant information is stored. In order to guarantee a
flawless and productive use of the system, the economic phenomena underlying the business of
the company have to be reflected in the user interface as well as the data structure itself. Usually
ERP systems are purchased by customers from vendors in form of standard software. Such a
software supports a predefined set of functionality and has to be further customized to the specific
needs of an enterprise, which is not a trivial task and often leads to additional costs. Furthermore
standard software only supports specific processes that are based on best-practice assumptions of
the vendors. Therefore adjusting ERP systems to changed market demands is hard since they
are missing a business semantic base. Changed business needs can often only be represented by
drastic changes in the data structure or the code which can lead to inconsistencies.

The REAlist project uses a model-driven approach to overcome the aforementioned problems
with existing ERP systems and enhance their adaptability. Business needs can be represented
in an easy and unambiguous way as business models. These models define the features and
look of the ERP system. REAlist uses the Resource-Event-Agent (REA) ontology as a business
modeling language since it was initially proposed to support the implementation of IT-Systems
and is related to data modeling. REA allows the specification of events that have happened or
are happening in the near future, resources affected by the events, and agents participating in the
events. Furthermore, policies and commitments can be defined which are both important concepts
of ERP systems. The underlying database of the REAlist project (REA DB) is based on REA
and holds the business models as well as the business data. Its main part is generic, meaning that
changed business needs can be applied to the ERP system without changing the data structure.
Instead of using the classic class-diagram-like representation of REA, a domain specific language
(REA-DSL) is used to simplify the creation of REA business models.

The aim of this thesis is to undertake the first steps of the REAlist project and create a mapping
from REA-DSL business models to the REA DB. Furthermore user interfaces are automatically
generated based on the saved models during runtime to reduce the effort that is needed for the
customization tasks in existing ERP systems.

v

Kurzfassung

Enterprise Resource Planning (ERP) Systeme umfassen die Verwaltung aller Informationen über
Ressourcen, die von Unternehmen zur Durchführung der Geschäftstätigkeiten benötigt werden.
Hierbei werden verschiedenste Geschäftsbereiche, wie Rechnungswesen, Produktion oder Verkauf
in Form von sogenannten Modulen unterstützt, die in einer gemeinsamen Datenbank integriert
werden, um auch abteilungsübergreifende Geschäftsprozesse unterstützen zu können. Um eine
problemlose Nutzung von ERP Systemen sicherzustellen ist es von großer Bedeutung, dass diese
Prozesse sowohl im User Interface, als auch in der zugrundeliegenden Datenstruktur abgebildet
werden. Da ERP Systeme heutzutage im Normalfall als Standardlösung implementiert werden, die
einen vordefinierten Funktionsumfang bietet, ist das nicht immer der Fall. Anbieter von Standard
Software basieren ihre Lösungen auf Erfolgsrezepten, die sich in der Vergangenheit bewährt
haben und vor dem Einsatz an individuelle, unternehmensspezifische Anforderungen angepasst
werden müssen. Derartige Anpassungen, die auch unter dem Begriff Customizing bekannt sind,
sind nicht trivial und können hohe Folgekosten nach sich ziehen. Abgesehen davon kann Software,
die im Moment funktioniert, oft nur sehr schwer an sich ändernde Marktanforderungen angepasst
werden.

Das REAlist Projekt versucht die zuvor genannten Nachteile einzudämmen und die Anpas-
sungsfähigkeit von ERP Systemen zu steigern. In diesem Zusammenhang wird ein modellgetrie-
bener Ansatz verfolgt, der es erlaubt Geschäftsanforderungen als Geschäftsmodelle darzustellen,
und diese zur automatischen Erzeugung der Benutzermasken so wie der Funktionen heranzuzie-
hen. Zur Beschreibung der Geschäftsmodelle kommt die Resource-Event-Agent (REA) Ontologie
zum Einsatz, die die Entwicklung von Softwareanwendungen unterstützen kann und ihre Wur-
zeln im Feld der Datenmodellierung hat. REA erlaubt die Definition von Events die bereits
stattgefunden haben oder zurzeit im Gange sind, Ressourcen die von diesen Events beeinflusst
werden, und Agenten die an den Events beteiligt sind. Weiters können Policies und Commitments
beschrieben werden, welche wichtige Konzepte von ERP Systemen darstellen. Die Datenbank des
REAlist Projektes (REA DB) basiert auf REA. Dadurch ist es möglich REA Geschäftsmodelle
(und damit jede Form von Geschäftsanforderungen sowie Geschäftsaktivitäten) in der Datenbank
abzuspeichern ohne deren Struktur abändern zu müssen. Um eine möglichst einfache Erstellung
der REA Modelle sicherzustellen, wird eine grafische domänenspezifische Sprache (REA-DSL)
verwendet.

Im Zuge dieser Arbeit soll ein Mapping der REA-DSL Geschäftsmodelle auf die REA DB
definiert werden, das es ermöglicht die Geschäftslogik in der Datenbank abzulegen. Weiters soll,
basierend auf den gespeicherten Modellen, eine automatische Generierung von Eingabemasken
erfolgen, um den großen Aufwand beim Customizing zu verringern.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Aim of the Work . 3
1.4 Methodological Approach . 4
1.5 Structure of the Thesis . 5

2 ERP Systems 7
2.1 Terminology . 7
2.2 Characteristics of ERP Systems . 9
2.3 Standardsoftware . 16
2.4 Adjusting Standard Software to Enterprise Needs 17
2.5 Adaptability of ERP Systems . 19

3 The REA Ontology 23
3.1 Business Models . 23
3.2 History of the Resource-Event-Agent (REA) Framework 27
3.3 The basic REA Framework . 28
3.4 Engineering Business Processes and Value Chains using REA 30
3.5 Advancement to the REA Ontology . 32
3.6 REA in Information Systems . 34

4 The REA-DSL 37
4.1 A dedicated REA Representation Format . 37
4.2 Graphical Syntax of the REA-DSL . 39
4.3 Using REA-DSL Models to create a Data Structure for AIS 47

5 The REAlist Project and REA DB 49
5.1 Scope of the REAlist Project . 49
5.2 The REA Database (REA DB) . 51

6 Mapping REA-DSL Models to the REA DB 59
6.1 Considerations for the Mapping Process . 59
6.2 Mapping Resources to the REA DB . 60

ix

6.3 Mapping Agents to the REA DB . 61
6.4 Mapping the Operational/Planning View to the REA DB 62
6.5 Generating Insert Statements for the REA DB 69

7 Generating User Interfaces based on Business Models 71
7.1 Overview . 71
7.2 Relevant REA DB Parts for administrating Business Cases 72
7.3 Scope of the UI-Generation Prototype . 74
7.4 Architecture and used Technologies . 76
7.5 Administration of Entities . 77
7.6 Conducting Business Cases . 79

8 Evaluation of the Artifact 83
8.1 Basic Concept of the Artifact Evaluation . 83
8.2 Evaluation of the Database Mappings . 85
8.3 Evaluation of the UI-Generation Prototype . 88

9 Conclusion and Future Work 91
9.1 Summary . 91
9.2 Evaluation Results . 92
9.3 Limitations and Future Work . 93

A Subparts of the REA DB 95
A.1 Resources . 95
A.2 Currency and Country . 96
A.3 Policy . 96
A.4 Pricelist . 97
A.5 Negotiation . 97
A.6 Status . 98
A.7 Location . 98

List of Figures 99

List of Tables 101

Bibliography 103

x

CHAPTER 1
Introduction

1.1 Motivation

Enterprise resource planning (ERP) encompasses the administration of all information about
resources that is necessary for a company in order to execute its business processes. Examples
for such resources may be material, employees, and finance. An ERP system covers multiple
business sectors since the administration of several resources should be integrated by it as
described in [24, 25]. Among several characteristics of ERP systems dataintegration might be
the most important. This means that all applications use a common database [66]. Therefore
modules like the ones offered by SAP (e.g., human resources, production planning, sales and
distribution) are not isolated from each other. They are integrated by a single database where all
applications have up-to-date information after an update occurred [54]. Current ERP systems
are often purchased as standard software that supports a predefined functionality based on best
practice assumptions of the vendors. For each customer an instance with a separate database,
tailored to the specific systems, exists [34].

After the installation of a business standard software it cannot be used immediately. It
first has to be adapted to the specific needs of the company. Two techniques are distinguished
by Weber [66]: configuration and development. Configuration encompasses the traditional
customizing (parameterization) where company specific configurations are done by setting
parameters in an user interface and no programming skills are needed. Unfortunately a huge
amount of customization possibilities exists and customizing cannot be done by everyone since it
requires knowledge of the standard software itself as well as knowledge of the business processes
of the company using the software. The customization of the systems has to be done by each tenant
on its own. If the configuration possibilities of customizing are not enough, the functionality of
standard software can be adapted by the development of own extensions.

Existing ERP systems are missing a business semantic base which would allow to define
business needs directly in the system. This means that applications only support selected business
processes of the industries and adjusting them to changing market demands is difficult.

1

Due to the aforementioned reasons companies struggle when trying to handle the complexity
and flexibility of the day-to-day operations since the need to adapt to changed conditions con-
stantly grows. Therefore the need for ERP systems with easier customization functions and the
possibility of adapting to changed business needs in an easy way becomes evident. In this thesis
we represent the business needs by business models that specify the economic phenomena on
which companies base their business. These business models customize the features and user
interface of the ERP system. Consequently, this thesis is titled Business Model Driven
ERP Customization.

1.2 Problem Statement

ERP systems should be customizable in an easier way. The reason for this is that current
customizing can be very complex and since a lot of the configurations cannot be changed
once they have been done, high follow-up costs can occur. If the possibilities offered by the
customization are not sufficient, own extensions of the system can be implemented. The drawback
of this approach is that programming skills are needed and the overall complexity of the system
is increased [66].

A system capable of adapting to changing requirements and needs in a more flexible way is
also desirable. Current ERP systems are not adaptive enough to support new business needs and
adjust to changed market demands. Often a serious change of the data structure or the code has to
take place. Such drastic changes can lead to inconsistencies and hinder the traceability of data.

The REAlist project intends to overcome this drawback as proposed in [34]. Instead of
providing separate instances of the ERP system to each customer, one single instance of the
software, with one underlying database (REA DB), is hosted in the cloud. All customers access
this single instance of the ERP system and consequently the same database which emphasizes the
need for multitenancy (cf. Figure 1.1).

Current State REAlist Solution

 ERP Customers ERP Customers

 Individually

 Implemented

 ERP-Systems

 Separate

 Databases

 Dynamic SaaS

 ERP-System

One generic

REA Database

Figure 1.1: Current State of ERP Systems and intended REAlist Solution [34]

The main data structure of the database is generic. Therefore even if new business require-
ments are recognized and persisted, it does not need to be changed. As basis for the data
structure the Resource-Event-Agent (REA) ontology is used. Introduced by McCarthy in 1982,

2

REA is a generalized accounting framework that was developed to conceptualize economic
phenomena [49].

Company specific business needs are described by graphical business models, which adapt
the user interface and functions of the ERP system during runtime. These models are described
by each company (tenant) of the ERP system using the REA-DSL. REA-DSL is a domain specific
language also based on the REA ontology that enables the user to create business models in a
clear and simple way [41]. The REA ontology includes important concepts of ERP systems and
since the data structure is based on REA, each REA business model can be stored in the database.
The feasibility of that approach has been shown in [44].

Existing business needs and requirements that are represented as REA-DSL models can be
changed in a simple way. Since these models adapt the user interfaces and functionality of the
system, the ERP’s overall flexibility is increased. Furthermore the needed effort for customization
is reduced.

1.3 Aim of the Work

Goal of the REAlist project is a cost-saving approach for company-specific adaptations or
customizations of a multitenant ERP system. In order to enable simple company-specific cus-
tomization a model driven approach is used. Since model engineering shifts the focus of software
development from coding to modeling as described in [38], the REA-DSL business models be-
come the main artifacts. Editing these models enables the user to quickly re-engineer its business
and save them to the REA based database. Furthermore the saved models act as foundation for
individual user interfaces that are automatically created. These user interfaces are used to record
actual business cases that are also saved in the generic part of the database. Not all of the intended
steps in [34] can be realized at once. Therefore only the parts described in Figure 1.2 will be
implemented in the scope of this thesis.

1. Creating database mappings based on the REA-DSL business models: As described
in [41] while developing the REA-DSL Dieter Mayrhofer mapped the models to a relational
model in order to create the necessary tables. Thus, the business model was represented by
the database schema. SQL files for the table creation were built using Microsoft Visual
Studios T4 text templates [7]. In contrast, this work builds upon an existing REA database
(REA DB) which can store the business models as well as the actual business data. We
therefore do not create a new database schema but provide SQL inserts for the REA-DSL
models that can be used to save them to the database. Since the REA DB and the business
models are both based on the REA ontology, storing the models to the database is possible.
During the development of the prototype the database that was proposed in [44] might be
revised several times.

2. Generating user interfaces based on the business models: The creation of user inter-
faces that are based on the designed REA-DSL business models will be realized with
the Google Web Toolkit (GWT)1. The emphasis of this task is not to generate extensive

1http://www.gwtproject.org/

3

and beautiful user interfaces. Instead it should be demonstrated, that the underlying REA
database can be used to create an UI adapted to specific business needs. This user interface
has to reflect all relevant concepts that are specified in the saved REA business models
and enable users to conduct business cases. However, usability issues are not of primary
interest. The entered business case data is stored in the generic part of the REA DB.

REA-DSL

(1)
Mapping to REA DB

RT ET AT

R E A

REA-based
Datastructure (REA DB)

Business
model part

Generic part with
actual business

case data

ERP

Event

Fish

Salesman

Resources

Agents

Submit

(2) UI creation

Record data /
display data

Description of tenant specific
business models for customizing

Figure 1.2: Thesis Contributions

The approaches practicability in terms of how the business models are saved in the REA
DB, as well as the completeness of the generated user interfaces should be evaluated. The main
research question that should be answered in the context of this thesis is: “how can REA-DSL
business models be mapped to the REA DB? “

1.4 Methodological Approach

The methodological approach that will be used in this thesis is design science. As Hevner et
al. [31] describe, knowledge and understanding of the problem domain and its solution are
achieved by the creation of an artifact. As suggested by Hevner, the two design processes build
and evaluate will be conducted.

1. Build process

a) Literature survey. A theoretical research of the important concepts used in this
thesis, like the REA ontology, ERP systems, customizing, and the REA-DSL, will be
done. Based on this research existing solutions regarding the usage of REA as basis
for information systems and especially ERP systems will be studied. This should help
to get a better understanding of the problem and build a foundation for the design of
the artifact.

4

b) Implementation. The artifact itself will be implemented as a prototype that should be
capable of the tasks defined in Chapter 1.3. To be more specific, based on predefined
business models, mappings to the REA DB are created and an automatic creation of
an user interface is performed.

2. Evaluation process

a) Evaluation of the artifact. The artifact is evaluated by testing the created database
inserts from the mappings and the user interfaces based on twelve different business
models that are used by McCarthy in his classes to demonstrate the various aspects of
the REA ontology. These models are based on real companies in the United States
and were already used by Mayrhofer [41] to demonstrate the functionality of the
REA-DSL. Furthermore, we evaluate if the generated user interfaces represent all the
concepts that are defined in the underlying business models and if they can be used
to record actual business cases. Based on these outcomes possible extensions to the
prototype and improvements, that could be performed in future work, will be pointed
out.

1.5 Structure of the Thesis

The thesis is structured as follows. Chapters 2 to 5 describe the state of the art. In Chapter 6 to 8,
the created artifact is explained and evaluated. Chapter 9 summarizes the work and points out
further directions.

Chapter 2 describes what ERP systems are. After a general classification of these software
types, their most important characteristics are examined, including their outstanding benefits,
the ERP market, and solution strategies to realize ERP systems. Since most ERP software
is purchased as standard software, this term is also described in greater detail. Furthermore,
adaptation and customization of such standard software is extensively discussed. Finally, the
significance of adaptability in the context of ERP systems is pointed out.

Chapter 3 explains the business model concept and the three most popular business models
e3value, BMO, and REA. Since the ontology that is used in the REAlist project is REA, it is
discussed in greater detail. Therefore the basic concepts of resources, events, and agents are
introduced. Built on this foundation, the concepts of value chains, commitments, types, and
policies are elaborated.

Chapter 4 gives an overview of the REA-DSL. In order to demonstrate its usage an example
company of a car producer is used. Based on the companies value adding activities, all the needed
steps to create meaningful REA-DSL models are illustrated. Starting with the definition of the
resources, agents, and their properties, the value chain is created. The included activities are
described in greater detail by the planning- and operational view. At the end of this chapter
readers should understand, what the important constructs of the REA-DSL are, why the REA-DSL
makes the modeling of REA business models much easier, and why it is used in the REAlist
project.

Chapter 5 presents the scope of the REAlist project. Since the REA based database (REA
DB) constitutes the cornerstone of the project, the major part of this chapter deals with this topic.

5

First the generic part of the REA DB is illustrated, followed by a detailed description of the part
that is capable of storing REA-DSL business models.

Chapter 6 deals with the storage of REA-DSL models in the REA DB. The mapping rules are
illustrated graphically to explain the intended mapping in a simple way. Furthermore, algorithms
are listed that describe the steps in greater detail. Based on the defined mappings, the creation of
SQL inserts using T4 text templates is discussed.

Chapter 7 illustrates an approach to generate user interfaces based on persisted business
model data. The GWT framework is used to implement the prototype which reflects the definitions
of the underlying REA-DSL model and can be used to save business case data in the REA DB.

Chapter 8 evaluates the created prototype. Since the artifact should be capable of mapping
REA-DSL business models to the REA DB and automatically generating user interfaces, both
conditions are tested. The created SQL inserts have to cover all concepts that are defined in the
business models. Furthermore, the statements have to execute flawlessly and populate the REA
DB without errors. On the other hand the generated user interfaces have to comprise all elements
that are needed to conduct business cases and give users the opportunity to save, update, or delete
data in the REA DB. To accomplish this, indicators are defined that facilitate the decision if
the demanded requirements for the generated SQL scripts and the user interfaces are met. The
UI-Generation prototype will be evaluated using the same approach.

Chapter 9 summarizes the main parts of this thesis. Furthermore, limitations of the created
artifact and further directions are discussed.

6

CHAPTER 2
ERP Systems

2.1 Terminology

ERP systems belong to the family of enterprise application standard software (or business standard
software) and can further be categorized as integrated function software. Meister [51] gives an
overview of different software types (cf. Figure 2.1) where she defines application systems as
complex software that enables users to work on specific tasks like processing an order, reading
emails, or recording data relevant for business cases. System software controls the computer
hardware and therefore builds the foundation for running the application software. Application
software is tailored to a specific domain. Enterprise application systems (EAS) therefore support
users in business related tasks. According to Fowler [12], they display, store, and manipulate
large amounts of data to support business processes. Such processes are partially ordered sets
of tasks or steps that are undertaken towards a specific goal [9]. According to Davenport [10],
they are a structured, measured set of activities designed to produce a specific output for a
particular customer or market. Examples for other application software are computer games,
image processing tools, or learning-programs. Application software for enterprises can either
be developed individually for the company and its specific requirements, or using off-the-shelf
solutions by vendors like SAP, that support a well defined application area and have to be adapted
by the customers to their detailed needs. Such a standard software can either be tailored to
commercial and administrative duties, or to other areas like CAD-modeling (Auto CAD) and
software development (eclipse, visual studio .net). In the first case standard software can be
divided into industry-, special-, and function software. While industry-software encompasses
solutions for specific industries like health care, manufacturing, or banking, examples for special-
software are office applications like Word, Excel, or PowerPoint. Function software either is
developed for single functions (accounting, human resources, purchasing, sales, production, and
logistics) or integrates business relevant tasks into ERP systems. These systems can support such
tasks in several business sectors and are investigated further in this thesis.

The acronym ERP stands for enterprise resource planning and can therefore be interpreted as
the planning and organization of all resources affecting a companies business. The first arising

7

Commercial and
Administrative Duties

Industry-SW Function-SW Special-SW

Single Function-SW
(MRP, MRPII)

Integrated
Function-SW (ERP)

Other Duties

Standard SW Individual SW

Enterprise Application
Systems

Other Application SW

Application SW System SW

Software (SW)

Figure 2.1: Classification of Softwaresystems [51]

question that needs to be answered in this context, is what such resources are. According to
Gronau [24] an ERP system encompasses the administration of information about raw material,
employees, production capacities (like used machines), or finances. He argues that, compared to
specific application systems like the aforementioned single function software tailored to areas
like production or accounting, an ERP system should administrate at least three of the named
resources. According to that definition resources are all objects that are needed to handle an
enterprises day-to-day business processes. ERP systems manage this mass of data and support
all functions and processes of a company [2]. Not only one functional area is supported. ERP
systems can encompass all, but at least the most important ones like finance, human resources,
logistics, and production [30]. The components of the ERP supporting these areas are called
modules. According to Grammer [23], four main modules exist: purchase & logistics, human
resources, finances, and sales. SAP, the ERP vendor with the largest market share, offers much
more like financial management, controlling, treasury, project system, production planning, plant
maintenance, sales and distribution, human resources, and materials management [54]. Due to
technological advancements like the internet, ERP systems can also be used inter-organizational
between enterprises.

Before the advent of ERP systems, software supporting business processes was implemented
as individual solution for specific companies. In the beginning such systems were mainly
developed for the accounting domain. In order to plan and manage manufacturing processes
the first standard software solutions were introduced in the late 1960s in form of MRP-Systems
(Material Requirement Planning). These systems enable managers to plan what resources are
needed to produce products according to bills of material at the right time [24, 39]. They support
companies to keep their inventory levels as low as possible while ensuring that enough material is
in stock to produce products for customers. Due to advanced hardware technology more functions
were integrated into MRP-Systems, which lead to the new term Manufacturing Resource Planning

8

(MRPII) [36]. Compared to MRP, that only focuses on material needed for manufacturing, MRPII-
Systems encompass the whole production line. They include functions like purchase, capacity
planning, and production planning and control [24]. As already explained ERP systems integrate
even more aspects that are not directly related to production but are necessary for a company to
do business.

2.2 Characteristics of ERP Systems

Typical characteristics of ERP systems are function-, process-, and data integration, intra-
enterprise processing and the focus on the daily business. The minimal scope of integration that
needs to be supported is data integration, which means that one common database is used by the
overall system to support cross-functional business processes and avoid data redundancy [24, 54].
The application domain of ERP systems encompasses, among others, purchasing, production
planning, inventory management, material requirements planning, order inflow, invoicing, sales
analysis, payables, receivables, general ledger, budgeting, financial consolidation, payroll, ben-
efits, and recruiting [24]. This listing of applications also emphasizes that ERP systems cover
multiple functional areas. Logistics is supported as well as human resources and accounting. Fig-
ure 2.2 shows another view of ERP application domains based on Grammers [23] interpretations.
The complete functionality of an ERP system can be summarized under four pillars: purchase &
logistics, human resources, finance, and sales. Data integration is achieved by using one common
database that stores all business relevant information and is used by all modules.

Database management system

Purchase &

Logistics

• Purchase,

disposition
• Inventory

management
• Bill of material

Human

Resources

• Payroll
• Administration of

unused holidays
• Administration of

times absent

Finance

• Payables
• Receivables
• Budgeting
• Liquidity

Sales

• Invoicing
• Bills of delivery
• Price lists
• Basic CRM

functionality

Database

Figure 2.2: Application Domain of ERP Systems [23]

9

Integration

As already indicated, data-, function-, and process integration are essential parts of ERP sys-
tems, that clearly distinguish them from isolated applications for a specific domain like the
aforementioned single function software for accounting, purchasing, or production.

Data integration was already explained and is defined as storing all business data into one
database that will be used by the integrated system. When enterprises use a variety of different
applications with their own data repositories, data has to be saved several times. Even slight
errors can therefore lead to inconsistent data. Exchanging and synchronizing the data among the
different systems can lead to duplicates and conflicts. Furthermore, reacting to changed business
data becomes difficult. Data integration builds the foundation of every system integration [51].

Function integration combines several functional areas. Examples are the management,
human resources, finance, distribution, purchase, production, logistics, and sales. While logistics,
purchase, production, sales, and distribution are parts of the basic business processes influencing
the day-to-day operations of an enterprise, human resources and finance handle administrative
tasks. The management defines rules and controls all other functional areas. Therefore three
different layers of functional areas can be identified: operational, administrative, and strategic (cf.
Figure 2.3). In order to integrate functions, an enterprise application system combines functional
areas from these layers. Horizontal integration happens on the same layer. If several functions
on different layers are combined we talk about vertical integration. ERP systems are at least
horizontally integrated. During the integration, functions are coordinated to enable that results of
preceding ones can be further processed by the succeeding functions [24]. To accomplish this,
several functional areas have to be based on the same database, which requires an already existing
data integration [51].

Management

Human
Resources

Finance

Distribution Purchase Production Logistics Sales

Horizontal Integration

V
er

ti
ca

l I
n

te
gr

at
io

n

O
p

e
ra

ti
o

n
al

La

ye
r

A
d

m
in

is
tr

at
iv

e

La
ye

r
St

ra
te

gi
c

La
ye

r

Figure 2.3: Function Integration in Application Software [51]

While function integration just requires that several functional areas are combined in one
system based on the same data, program integration is achieved when the modules of the ERP

10

system representing these areas are able to communicate with each other. Workflows define when
a request from one module to the other happens due to specific events. An example is the credit
check of a customer. If a customer buys an unusual large amount of finished goods the sales
module can request a check of the customers creditworthiness from the finance module [51].

Process integration couples business processes to an automated system-activity. This is
achieved by using standardized best-practice processes and cross-functional transaction automa-
tion. Process integration is the highest form of integration that can be achieved in an ERP
system [51].

Mertens [52] classifies data-, function-, and process integration as integration subjects and
proposes integration range, integration direction, and the scope of integration as additional
differentiation criteria.

The range determines if integration happens intra- or inter organizational, only in specific
functional areas, or between areas. Business processes can include information from several
functional areas. For each of these areas separate application systems can be used (e.g., single
function software for purchase, human resources, production, and logistics). The more application
systems are integrated based on the common database, the higher is the range of integration.
Inter-organizational integration can be achieved through extensions like customer relationship
management (CRM), e-procurement, and supply chain management (SCM), that enable a usage
of the ERP between companies and customers. ERP systems that offer such interfaces on the
buy- and sell side are termed ERPII [24]. Figure 2.4 illustrates this fact. While SCM facilitates
better operational and business planning by coordinating the flow of material and information
among supply chain partners, CRM provides an infrastructure to establish long-term relationships
with customers [29]. E-Procurement systems can be used on the buy side to purchase products
that are needed by the enterprise to perform its business. The emphasis of the actual ERP lies on
the internal business processes of the company. Systems with CRM, SCM, and e-procurement
extensions therefore have a higher integration range.

Company

Vendors Customers Purchase
Outbound
Logistics

Sales

Inbound
Logistics

Human
Resources

Production

ERP

E-Procurement

SCM

CRM

Figure 2.4: Extensions of ERP Systems [24] (adapted)

11

The direction of integration was already identified before in the scope of function integration
as horizontal and vertical. It determines if a system integrates functions only on one hierarchy
layer, or several ones (cf. Figure 2.3).

An ERP can either have a complete or a partial integration scope. Partially integrated systems
focus on specific functional areas or combinations thereof. Examples are finance and accounting,
or production and logistics. A completely integrated ERP system encompasses all functional
areas.

These specifications make clear that companies planning to implement an ERP have to define
what should be supported by it to what extent. Enterprises that focus their daily business only
on selected functional areas will not need to use all available modules. Extensions like SCM or
CRM will also not be needed by every customer. It therefore is important to clearly define what
the ERP system should integrate in order to support the individual processes of the company and
improve its business performance.

Benefits of ERP systems

When replacing legacy systems or single function software by enterprise application systems
like ERP systems, enterprises can benefit from it in several ways. Hendricks et al. [29] argue
that the integration of information is a key benefit of EAS since the replacement of poorly
connected legacy systems that only support specific functional areas reduces support costs for the
infrastructure. They furthermore state that due to the operational integration of the functional areas
the performance of the entire company can be positively affected. The replacement of complex
interfaces between legacy systems with standardized automated cross-functional transactions
reduces order cycle times and therefore increases the throughput, customer response time and
delivery speed [8, 46]. Furthermore, automating financial transactions reduces cash-to-cash
cycle times. Since data integration is a requirement in ERP systems all relevant data is only
stored once centrally in the database. Since all modules are based on this database they have
up-to-date information when an update occurs. This also affects the planning since plans can
be created that reflect current conditions of the business processes. Ensuring that operational
processes remain synchronized enables a company to provide customers with updated information
about their orders [3]. The standardized automated cross-functional transactions and the central
database, encompassing all relevant enterprise data, enables users to observe the performance of
the company and its parts. This gives managers the opportunity to identify potential improvements
and take advantage of these opportunities [29]. Gronau names a variety of benefits when using
ERP systems in [24]. His views are shown in Table 2.1.

One outstanding benefit of ERP systems is the standardization of business processes which can
enhance productivity. The coordination of tasks can be simplified and the risk of mistakes/failures
is reduced since the error source can be prevented in the first place by adopting best practices.
On the other hand standardization increases the risk that users can not appropriately react
to unexpected events since the possible actions in standard solutions can be too restricted.
Gronau [24] also warns that employees will experience motivation- and identification problems
when autonomous decisions are not possible. He argues that this could hinder the further
development of the employees. Chapter 2.3 will explain standard software in greater detail.

12

Without ERP usage With ERP usage
Throughput time
/ lead time

Cost-intensive bottlenecks Time reduction and lower costs due to
optimized business processes

Order Processing Processing needs data in sev-
eral legacy systems with own
databases (customers, prod-
ucts, orders)

Integrated database eases order pro-
cessing and saves time. Updates only
affect the common database

Financial
Situation

Costs due to long positions or
high receivables

Inventory control and dunning enhance
operative performance

Business
Processes

Multiple efforts in process ex-
ecution

Optimized business processes based on
best practices

Productivity Responding to supplier- and
customer needs takes a consid-
erable amount of time

Improvements through adapted, opti-
mized business processes, integration
of CRM and liquidity management

Supply Chain
Management

No integration with supply
chain partners

Coordination of material- and informa-
tion flow among supply chain partners

E-Business Web interfaces as isolated sys-
tems

Integrated web-interfaces form the
front-end of the ERP system. Usage
of E-Procurement systems on the buy-
side to purchase products from suppli-
ers

Information No efficient monitoring and
control of enterprise resources

Data integration enables cross-
functional access to the same database
for planning and control

Communication No efficient communication
with suppliers and customers

Enhanced communication between the
enterprise, suppliers, and customers
due to extensions like SCM and CRM

Table 2.1: Benefits of ERP Usage [24]

ERP Market

A great number of ERP vendors exists. Gronau [24] therefore categorizes the existing market into
the range of functions, the degree of specialization, the number of system users, and the regional
propagation. The function range of an ERP system encompasses the resource administration
of functional areas like finance, human resources, logistics, and production. Business processes
occurring in these functional areas are optimized and supported by the system. ERP systems
can either integrate a finance module for accounting purposes, or interconnect with external
systems that fulfill the needed purpose. This extends to human resource modules or CRM
functionality. While the number of system users describes if the software is used in single
enterprises, small or medium sized enterprises, or large corporate groups, regional propagation
depicts in which geographic regions the system is used. In this context especially ERP systems
for corporate groups can be very complex since this groups unite several subordinate enterprises

13

under the leadership of one company. Management seeks to steer the corporate group by financial
indicators that express the productivity of each subordinate enterprise. Therefore such ERP
systems encompass powerful solutions for finance, accounting, and controlling. Corporate groups
often use a variety of ERP systems that need to be coordinated and harmonized in order to reduce
the operating- and service costs. Compared to that, solutions for small companies only have a
small subset of that functionality. But even small businessmen frequently need to organize their
inventory invoices where an ERP system can be supportive. Finally the specialization degree
describes if the software focuses on a specific industry sector like energy, meat processing, or
plant manufacturing. Cross-industry solutions can be used in several industries.

The overall market for ERP systems is continually growing. According to [5] a growth of
2.2% was observed during the year 2012 and especially Software-as-a-Service (SaaS) applications
shows potential for further growth. The five outstanding vendors in this sector are SAP, Oracle,
Sage, Infor, and Microsoft. Together they hold 55% of the overall ERP market. SAP retained the
worldwide market share leadership with 25%. Figure 2.5 visualizes these facts.

Figure 2.5: Market Share of ERP Vendors [5]

The dominant vendors in each of the four aforementioned categories differ a lot. Large vendors
that are dominant in one category may be surpassed by smaller vendors in another category.
Especially highly specialized software for smaller companies can offer market opportunities
for smaller vendors. Since the big players do not intend leaving clients to competitors, they
adapt their portfolios to increase their market share. An example is SAP, that focused on large
companies and corporate groups with its ERP system SAP R/2 and the successors SAP R/3 and
SAP ERP 6.0. Since the functionality of this solutions was far to large for smaller companies, the
product range was extended for small and medium sized companies. SAP Business All-in-One,
SAP Business One, and SAP Business By Design can be named in this context [23].

According to [5], especially the revenues of SaaS-based ERP solutions are going to grow in
the upcoming years. Compared to on-premises software, that is installed on computers on the

14

premises of users, the ERP system is hosted in the cloud. Reasons for an increasing adoption of
that approach are that companies perceive its total cost of ownership (TCO) lower than of on-
premises software. Furthermore, it is thought to be easier and faster to deploy [6]. SAP Business
By Design is an example of an ERP system, that is offered as SaaS. It is an internet based
on-demand-software for medium sized companies, where hardware and software are located in
data centers anywhere in the world. Users access the software on demand via the internet [23].

Solution Strategies for Enterprise Application Systems/ERP systems

There is a variety of different ways to implement enterprise application systems, or more specif-
ically ERP systems. Meister [51] distinguishes between isolated solutions, proprietary client-
server solutions, web-based client-server solutions, browser-based solutions, and webservices.
Following her definitions a more detailed description is given in the following. In isolated solu-
tions the system is locally installed on a single workstation (or a small number of workstations)
of the enterprise. An integration with other application systems does not exist. Therefore such a
strategy will not be considered for modern ERP systems that integrate functions like SCM and
CRM. Client-sever solutions distribute functions that are located on one and the same computer
in isolated solutions (like user interface, data administration, and application logic) on several
computers (server and clients). Multiple forms of distribution are possible. For instance only the
graphical representation can be located on the clients, while the main part of the application is
located on the server. Another possibility is to locate the representation as well as the application
logic on the client and only locate the data management on the server side. In general, one can
argue that clients access the servers functionality and data over user interfaces. This enables
several users to access the same system and therefore manipulate the same data. Since this is
essential for ERP systems, Gronau [24] states the client-sever solution as traditional architecture
for them. Proprietary client-server solutions are completely installed in the internal network
(LAN, intranet) of the enterprise using the system. Therefore the enterprises are responsible for
tasks like data updates, backups, and data administration. Web-based client-server solutions
on the other hand outsource the server to a provider that hosts it. Only the clients remain in
the internal enterprise network. The provider is responsible for maintaining server operations,
data administration, and performance. Enterprises are only responsible for the access rights of
the clients and the maintenance of their internal network. Browser-based solutions are similar
to that, but compared to the aforementioned strategy a simple web browser acts as client. The
ERP system can be hosted in the cloud and users are able to access it via the internet. This
has the advantage that no additional software has to be installed locally on the computer. Such
an approach, where software like ERP systems is available as service in the internet, is called
Software-as-a-Service [34]. The webservice strategy seeks to reuse standardized software rou-
tines that are offered as service in the internet. Meister [51] argues, that very detailed specification
and modeling of the underlying business processes is mandatory for such a solution. Otherwise
similarities in the processes that can be supported by offered services are hardly identifiable.

15

2.3 Standardsoftware

The similarities between the business processes of different enterprises enabled the success of
business standard software in the first place since the reason for the development of such software
are customer groups that share common needs. In the case of ERP systems these needs are
the improvement of business processes and routines of the company. Furthermore, the process-
oriented communication between functional areas should be enhanced [23]. An example for that
is the value-added chain in the manufacturing industry where, regardless of the product type that
is manufactured, from an economic point of view the same processes and interdependencies can
be identified between purchasing, warehousing, production, finance, and sales. Figure 2.4 shows
this value-added chain as internal processes of a company. If the essential business processes
of several enterprises would not be quite common, the development of standard software never
would have happened to that extent [23, 30].

The functionality of ERP systems can also be implemented as individual solution, but there
are a lot of arguments that suggest the usage of standard software instead. Such a software is not
developed for an individual customer and its requirements, but the needs of as much customers (in
this case enterprises) as possible. Best practice processes are used as reference models, that build
the foundation for the development. Since the standard software therefore is able to fulfill the
needs of many enterprises, the development costs can be distributed between them, which enables
vendors to offer their solutions for little license costs (compared to individual solutions) [30].

Besides that, the main advantage might be that standard solutions by prestigious vendors
like SAP or Oracle are available very fast. Compared to individual solutions, enterprises just
have to specify what functionality (modules) should be supported by their system of choice
and purchase the product. Since vendors like SAP have already sold their product to a lot of
customers, a flawless usage of the system should be guaranteed. Therefore, compared to the
implementation of an individual solution, the threat of losing money is minimized. The range of
functionality that is supported by the standard solutions of the largest ERP vendors is widespread.
As mentioned in Chapter 2.1, SAP offers a great amount of modules that span all functional
areas of an enterprise. Existing solutions are integrated to a large extent. Achieving such an
integration level in individual solutions would take a huge amount of time and money. When
standard software is implemented a huge amount of documentation is delivered. Prestigious
vendors also hold additional trainings for the system usage and offer a hotline that can be called
when problems occur. Furthermore, all parts of a standard system have a common terminology.
Adaptations to such a system are also possible since vendors enable customers to extend the
solutions to their own needs (cf. Chapter 2.4).

The decision to use a standard software also has disadvantages, but these are usually out-
weighed by the advantages and opportunities that exist. It is not a trivial task to describe the
business processes of a specific enterprise in a standard software. Especially depicting extraor-
dinary process aspects and integrating external systems is difficult. Since standard software is
developed by external vendors, release-changes as well as as performance- or storage space prob-
lems can not be influenced and may hinder the functionality. When adapting standard software to
specific needs enterprises have to depend on external consultants. Furthermore, standardized user
interfaces can be hard to handle for the users which leads to problems of acceptance [24]. Some

16

of these disadvantages can already be compensated by available adaptation methods for standard
software that will be explained in the following.

2.4 Adjusting Standard Software to Enterprise Needs

An installed business standard software can not be used immediately. The reason therefore is that
the software is based on best practices that can be adopted in nearly every business. Although
standard software can have an extensive amount of functionalities, this does not mean that all
the individual requirements of an enterprise are covered by it. McNurlin et al. [50] argue that
the business processes that are supported represent the vendors assumption about the business.
If these assumptions greatly differ from the views of the customers, an implementation of the
ERP system will not be successful. The software first has to be tailored to the specific needs of
the customers. Vendors of standard software therefore include possibilities that reduce the effort,
needed to adapt the system, to a minimum [30]. This process is called customizing.

Customizing

Right after a standard software has been delivered to the customer, the first thing that has to be
done is setting up the client. In this context the static (the organizational structure) and dynamic
(the process operations) enterprise aspects are depicted in the standard software. Examples
are company specifications (banking connections, shipping address), country-specific settings
(currency, address code format), accounting parameters (tolerance limits, rounding methods), or
enterprise specific objects (chart of accounts, business year).

Such system configurations are called parameterization since parts of the standard software
are enabled or disabled by setting parameters in tables or other application objects and no
programming skills are needed. A huge amount of different settings exists for all modules of
a standard software like purchase, sales, production, or human resources. This leads to a large
number of customization possibilities. Since customizing has to be done for every customer,
vendors are interested in simplifying this task as much as possible and deliver checklists together
with the standard software that describe all the tasks that have to be carried out in detail. These
lists can be used as guidelines that help the customers to set up their purchased product and
guarantee a productive and flawless usage. Unfortunately these measures do not reduce the scope
of the customization tasks and especially adapting ERP systems with a wide functional range
(integrating a large number of modules) can be very complex and take a considerable amount
of time since a huge amount of tasks has to be carried out. Furthermore, setting up clients can
not be done by everyone. Knowledge of the standard software as well as the business processes
of the company is needed to set up clients. Therefore external consultants are often involved in
the customization process, leading to additional costs for the company. Costs for trainings and
release-changes also have to be taken into account.

Customizing in form of parameterization is the preferred way to adapt a standard software to
individual needs since the standard can not be affected in an unintended way. This guarantees
that the software will still work in the intended way after a release change by the vendor occurs.
While customizing encompasses tasks that need to be done in order to use the system and does

17

not require programming, there are other adaptation possibilities that are not necessary but can
help to increase the coverage degree of standard software. Such techniques demand programming
skills since own extensions are developed that fulfill highly specific company needs. Major ERP
vendors therefore include an integrated development environment (IDE) in their products that
enables customers to do so. Hesseler [30] distinguishes three different techniques: proprietary
developments, extensions, and modifications. These methods are explained in the following.

Proprietary Developments and Extensions

Proprietary developments are implemented when the standard software is not capable of support-
ing the needs of an enterprise and the customizing options are also unsatisfying. Such solutions
have the advantage that they are fully independent from the standard. This means that even when
new versions of the standard software are released, the proprietary developments do not collide
with it and can further be used. Proprietary developments should not happen too often since they
are comparable to individual solutions and are expensive. When too much functionality is added
in this way, implementing an individual solution in the first place might be the better choice.

Extensions are similar to proprietary developments but also influence the standard. Due to the
high integration degree of ERP systems, adapted application objects can have unintended effects
on functional areas they don’t belong to. Therefore, integration tests have to be conducted when
extensions are developed for standard software.

Modifications

Compared to the aforementioned adaptation techniques, modification is riskier and should be
avoided if possible. While proprietary developments and extensions include safety mechanisms
that ensure that no unintended changes of the standard are conducted, modifications can change
the entire software functionality. Another criteria for not using modifications is the fact that such
adaptations are lost when a release change happens. Extensions are normally still supported after
such a change.

Each of these adaptation techniques increases the coverage degree and causes additional costs.
Figure 2.6 visualizes the available techniques with respect to these two factors. Individual
Software has a high coverage of the company needs but also is very expensive. Proprietary
developments and extensions can significantly increase the coverage degree of standard solutions
for relatively low additional costs. On the other hand risky, complicated modifications seldom
increase the coverage degree a lot. Furthermore, the additional costs that can occur every time a
release change happens can hinder the return-on-investment of standard software and make it
even more expensive than individual software.

Personalizing

While customizing, proprietary developments, extensions, and modifications are functional
adaptations on the enterprise level, the goal of personalizing is to grant an efficient system usage
for individual users or user groups. The importance of this is obvious since software that is hard

18

Standard
Software

Standard
Software

Standard
Software Individual

Software

Standard
Software

Costs

Coverage
Degree

low

low

high

high

Company-neutral Standard

Customizing

Company-specific Standard

Proprietary
 Development /

Extension

Modification

Addititional Functionality

Changed Standard

Figure 2.6: Customizing Techniques of ERP Systems [30]

to use or understand will hardly be accepted by the people working with it. Personalizing can be
used to overcome this by achieving an individual look and feel of the user interface by shortcut
creation for user relevant tasks or disabling screens that are not needed by certain users. The
latter one even reduces the functionality of the software in exchange for a better usability.

Since personalizing is not necessary and its advantages can not directly be quantified due to
the fact that it has no influence on the business functionality, companies often refrain from using
this option to save costs, which leads to poorly adapted systems. Hesseler [30] argues, that role
based concepts are a promising approach to further reduce the effort needed for personalizing.
The concept is based on the definition of roles describing requirements, needed functionality,
tasks, and authorizations of positions in an enterprise. Based on these roles vendors of standard
software are able to adapt the software to specific users. If the role descriptions conform to the
actual roles in the enterprise, personalized user interfaces of individual end users only encompass
the functionality that is needed to conduct their work. Compared to previous solutions only slight
adaptations are needed to fulfill their specific needs. Furthermore, personalization settings can be
stored in the common database of the system. This grants that users have the same individual
user interface available after logging in, regardless of the workstation they use.

2.5 Adaptability of ERP Systems

When developing an ERP system it is of great importance to identify and specify the business
requirements of a company since these requirements are reflected in the business processes that are
conducted and supported by the ERP. In the case of standard software such processes are adopted

19

for a variety of companies based on best practice reference models since they show several
similarities from enterprise to enterprise as described in Chapter 2.3. In order to fulfill these
predefined requirements as best and efficient as possible, ERP systems are further customized
and personalized (cf. Chapter 2.4).

Business requirements can not be regarded as definite characteristics since market demands
can change over time. Enterprises therefore have to occasionally question the stability of their
processes. Sometimes conducting short-term reactions to changed needs is necessary, which
requires companies to be very flexible. The ability of adjusting to new conditions fast and
efficient can be a critical factor for the success of an enterprise. Due to that reasons, a versatile
enterprise architecture is required, where business processes, the information architecture, and
the application landscape are closely coupled [24].

When changes in the business processes occur, application systems that are used by the
company are also replaced when they are not capable of fulfilling the changed needs. Especially
ERP systems, that support a predefined set of resources and core processes, are often not flexible
enough to do so. Changes of business needs can often only be represented in an incomplete
and inefficient way, by changing the data structure or the code of the ERP systems. But such
drastic changes should be avoided since inconsistencies could be the consequence. ERP systems
therefore also need to be more adaptable and flexible with respect to future changes in the business.
Customizing is not sufficient since only processes that were predefined by the vendors of standard
software are affected.

Adaptable ERP systems overcome this pitfall and are capable of adjusting to changed needs.
Gronau [24] distinguishes two dimensions of adaptability: technical and enterprise-specific.
Technical adaptability describes the potential of a system to adapt to changes. Indicators for
that characteristic are interoperability, scalability, modularity, availability, independence, self-
organization, and self-alikeness. Scalability describes how a system can be designed in form of
capacity. This means that the system is able to efficiently adjust to an increasing or decreasing
amount of processed data, which can happen in form of hardware- or software adaptations.
Adding or removing storage- or computing performance should enable a flawless operation of the
system. The architecture of an ERP system should be structured in small autonomous subsystems
(or modules) and therefore be modular. These modules consist of interfaces describing their
functionality and a part implementing it. Because of these interfaces, modules can be removed and
substituted by modules with the same functionality quite easily. Modularity therefore facilitates
the efficient reuse, combination, and adaptability of applications. Availability depicts the need
for ERP systems that can be used from everywhere and every time. Platform independence is
also important. Furthermore, system failures should not have negative effects on other systems.
Interoperability describes how applications are capable of collaborating with each other. A better
intra- and inter operability can be achieved by following standards when planning, implementing,
and using application systems. The ability of a system to adjust its internal structure by self-
regulating mechanisms that are based on interactions with its environment (e.g., user inputs),
is called self-organization. Self-alike systems should look similar and show a reoccurring
operating philosophy, which eases the initial training effort for users. Compared to technical
adaptability, enterprise-specific adaptability specifies how well a system is able to reflect changes
in underlying business processes and to what extent it is possible to reconfigure the system at

20

runtime [24].
The adaptability of ERP systems can be increased by a variety of approaches and actions.

Gronau [24] names the model-view-controller software pattern, component based architectures,
and service oriented architectures as examples. He further argues that business process modeling
should be integrated in the systems to create or adapt an ERP and mentions modeling languages
like Business Process Model and Notation (BPMN) [27] as example. Instead of using business
process modeling techniques, business models might be a better choice to illustrate the business
needs of a company. Since not all tasks have to be specified in detail, these models can be
designed and interpreted more easily as described in the following chapter.

21

CHAPTER 3
The REA Ontology

3.1 Business Models

As explained in Chapter 2, a company’s ERP system can either be developed by its own IT-
department or by external companies. Besides that, already existing ERP solutions of small
vendors or big companies like SAP that need to be customized to the customers specific needs
are an option. Regardless of the chosen way to implement an ERP, its underlying data structure
and the user interface have to reflect the economic phenomena that build the foundation for
the business of the company using the system [41]. Otherwise it will be impossible to create
meaningful ERP systems and guarantee a productive use.

In order to create a data structure that is capable of reflecting the economic phenomena of
a business, business people have to be able to clearly formulate their needs and communicate
these requirements to IT-specialists that are implementing the system. Unfortunately this task is
not trivial since entrepreneurs or managers naturally understand how their business works, but
struggle when trying to explain it in a simple and unambiguous way.

Business models can increase the mutual understanding between the business and IT domain
[57] (cf. Figure 3.1 on page 24). They can contribute to requirements engineering of information
systems by gathering and representing high-level business goals [11]. Using a business model as
common language, business people can ensure that IT-professionals understand what economic
phenomena need to be represented in the information system and its data structure. Giving a
precise description of a business model is hard since research is mainly conducted in silos. Even
scholars do not agree on a consistent specification of the concept and adopt definitions fitting their
own research purpose [70]. Osterwalder et al. [57] describe a business model as a conceptual
tool that expresses the business logic of a specific firm by concepts and their relationships
to represent what value is provided to customers. Timmers [64] defines it as architecture for
the product, service-, and information flows, including a description of business actors and
their roles, a description of potential benefits for the actors, and a description of the sources of
revenue. According to Andersson [1] business models specify the main actors of the business,
their relationships, and the values that are exchanged between them. Zott et al. [69] name them

23

a system of interdependent activities that transcends the focal firm and spans its boundaries.
Magretta [40] entitles them as stories that explain how enterprises work and answer questions
like: Who is the customer? What is valuable to the customer? How does the company make
money? What is the underlying logic explaining how value is delivered to the customer? Another
popular definition is the one by Rappa [59], who describes a business model as the method of
doing business by which a company can generate revenue. He argues that the model states how
companies make money by specifying its position in the value chain. These definitions differ
a lot, but as Zott et al. [70] argue there are some reoccurring themes. Business models use a
holistic approach to describe how a company does business and try to explain how value is created
and captured. Furthermore, in business models not only the activities of the focal firm are of
importance, but also activities of partners that exchange value with the company.

Business
Model

Experts of a company‘s business
(managers, entrepreneurs,..)

IT specialists implementing information
sytems (database designers, programmers,..)

IT Business

Figure 3.1: Business Models as common Language for Business and IT

Business models have to be clearly distinguished from business process models. As stated
before the concept of value seems to be important in business models. Gordijn et al. [22] share
this opinion and point out that business models should describe who the value adding business
actors are, what elements these actors are offering to each other in return, what value-creating or
value-adding activities are producing or consuming the offerings, and which of these activities
are performed by which actors. In other words a business model describes who is offering what
to whom in return for what during which value creating activity, but they don’t explain how this
happens in detail. As mentioned in Chapter 2.1, business processes are partially ordered sets of
tasks or steps undertaken towards a specific goal [9]. The activity of constructing models that
represent such processes is called business process modeling (BPM) and can be used to create a
common approach for work that needs to be done or to improve existing processes [19]. Business
process modeling can therefore be used to describe how the aforementioned activities are carried
out [22]. Summarizing, a business model can be seen as a representation of a companies logic
to create value and exchange it with other actors. A business process model on the other hand
defines how concrete business cases are implemented in processes [57]. For the modeling of
business processes several tools and languages exist like the IDEF family, the business process
modeling notation (BPMN), petri nets, event process chains (EPC), or UML activity diagrams
as described in [53]. In the context of business model conceptualization the Business Model
Ontology (BMO) [55], e3-value [20], and the Resources-Events-Agents (REA) ontology [49] can
be named as the most popular examples. Following, we dwell on these different business models.

24

The Business Model Ontology (BMO)

BMO is an ontology that precisely allows to describe the business model of a firm. Comparable
to the four perspectives in the balanced scorecard approach (financial, customer, internal business
processes, learning and growth) [37], its concept is based on pillars representing facets that are
essential to a company’s business: product, customer interface, infrastructure management, and
financial aspects [55]. These pillars are further divided into nine building blocks that represent
concepts of business models that were mentioned by several authors in their work (cf. Table 3.1).
A more thorough description of these blocks can be found in [56].

Pillar Business Model
Building Block

Description

Product (1) Value Proposition Overall view of a company’s products and ser-
vices that are of value to the customer.

(2)Target Customer The segment of customers a company wants to
offer value to.

Customer
Interface (3) Distribution

Channel

Defines how companies can reach their cus-
tomers.

(4) Relationship The kind of link a company establishes between
itself and the customer.

(5) Value
Configuration

Describes the arrangement of activities and re-
sources that are necessary to create value for the
customer.

Infrastructure
Management (6) Capability

The ability to execute a repeatable pattern of
actions that is necessary in order to create value
for the customer.

(7) Partnership
A voluntarily initiated cooperative agreement be-
tween two or more companies in order to create
value for the customer.

Financial
Aspects (8) Cost Structure Representation in money of all the means em-

ployed in the business model.

(9) Revenue Model Describes the way a company makes money
through a variety of revenue flows.

Table 3.1: Four BMO Pillars and their respective Building Blocks [55]

Identifying these nine building blocks for a specific company helps to detect what products
are valuable to the customers (1), who the customers are (2), how these customers are reached
and what relationships to them exist (3)-(4), what is needed to create value for the customers
(5)-(6), which firms cooperate with the own company (7), what the cost structure is (8), and how
the company makes money (9). BMO can therefore assist domain experts when creating the
business model, but it does not conceptualize the elements that occur in the model.

25

e3-value

e3-value was developed to conceptualize e-business models. Before its introduction many
interpretations existed, increasing the risk of misunderstandings and failure of the models. The
focus of e3-value lies on the concept of value. Domain experts can model how actors in a network
create, exchange, and consume valuable objects [20, 21]. e3-value has an easy to understand
graphical syntax and comes with an editor that makes the creation of models rather simple1.

1

2

3

4

5

6

7

8

9

Figure 3.2: e3-value Model of a Car Producer

Figure 3.2 shows an e3-value model of a car producer who interacts with other actors in
a network and exchanges valuable objects. The model consists of several concepts. The car
producer itself and the factory are actors, illustrated as rectangles (1). Customers and Employees
are represented as stacked rectangles depicting them as actors belonging to market segments (2).
Between actors value objects (3) are exchanged. Examples are money and cars. Actors show
what value object they are requesting or provisioning using value ports (4). These value ports
are grouped together by value interfaces (5) that model economic reciprocity. This means that
value objects are not given away for free, actors expect something in return. In Figure 3.2 the car
producer sells cars in return for money and pays money to buy raw material. Value Transfers (6)
connect two value ports and illustrate trades of value objects that are possible. Scenario paths
start with a start stimulus (7) and end with an end stimulus (8). The fact that the money from
the car sales is used for buying raw material as well as acquiring labor is illustrated by the AND
fork (9). After the creation of the model, e3-value enables domain experts to assess its economic
sustainability in form of profitability sheets that can be created automatically. Guidelines on
creating value models from the scratch can be found in [21].

1http://e3value.few.vu.nl/tools/

26

http://e3value.few.vu.nl/tools/

A disadvantage of e3-value is that commitments and policies, both important concepts in ERP
systems, are not supported. Furthermore, actors only represent companies. Internal processes
can be depicted by value activities (not shown in Figure 3.2), but the company-intern employees
participating in those activities cannot be represented.

REA

Compared to the aforementioned business ontologies, REA has all the characteristics that are
preferable in order to build a data structure on it. Commitments are supported as well as
policies, model elements are clearly conceptualized, and its roots lie in the accounting discipline.
Additionally it was proposed to support the implementation of IT-Systems and is related to the
subject of data modeling. Due to that reason the database of the REAlist project is based on REA
as explained in Chapter 5. Since the concept should be well understood, the rest of this chapter is
entirely dedicated to REA.

3.2 History of the Resource-Event-Agent (REA) Framework

In order to integrate ideas of accounting theory and database systems, McCarthy [47] already
proposed in 1979 to use Chen’s [4] entity-relationship concept to create database models for
accounting systems without proposing the usage of specific database systems. McCarthy argues
that in a database environment accounting systems are modeled as real-world entities and rela-
tionships among them. As an example an accounting system for an enterprise is modeled. Instead
of using traditional accounting concepts like a chart of accounts or double-entry accounting
procedures, an entity-relationship model is used. In order to create the model McCarthy at first
identifies the sets of objects (later on resources), agents, and events that exist in the enterprise.
Furthermore, the relationships that connect these entities are identified. Based on this sets the
entity-relationship model for the accounting system is built. Relationships between two events
represent manifestations of double-entry accounting conventions which means that each change
in the resource set leads to a change in the related entity. McCarthy shows that, although the
developed entity-relationship data model differs from the traditional accounting paradigm (chart
of accounts and double-entry bookkeeping), such systems can accommodate conventions of
traditional accounting [47]. It is interesting to notice that despite the fact that the term Resource-
Event-Agent (REA) was not intended so far, McCarthy already envisioned agents, events and
objects as entity sets.

In 1980 McCarthy [48] criticized the traditional accounting model. One point of criticism is
that the classification schemes for data concerning economic transactions and objects, based on
the chart of accounts, are not appropriate. Another point is the limited dimension since accounting
measurements are primarily expressed in monetary terms. The integration with other areas of
an enterprise is also mentioned as a drawback since information concerning the same entities is
maintained separately by different people. McCarthy builds a basis for reevaluating traditional ac-
counting concepts. He therefore uses the aforementioned entity-relationship modeling techniques
for accounting systems. Compared to the conventional framework, elements can also include non-
accounting events and can have non-monetary characteristics. Again, entity-relationship sets are

27

used instead of journals and ledgers. As mentioned before, the entity-relationship methodology
starts by identifying existing entities in the modeled reality and relationships among them. In
this context the entity groups building accounting object systems are identified as (1) economic
events, (2) economic resources, and (3) economic agents. The term “economic“ will often be
omitted in the remainder of this thesis to ensure better readability. McCarthy also argues that the
entity-relationship accounting model enables non-accountants to add characteristics or entity sets
more easily than the conventional accounting model [48].

3.3 The basic REA Framework

Based on his previous work McCarthy finally introduced the actual REA Accounting Model
in 1982 [49]. REA was developed as a generalized accounting framework that can be used
during the database design process of accounting systems. Consequently, accounting can be
included as part of an enterprises database system that satisfies the needs of accountants as well
as non-accountants over shared access to an enterprise schema. The central unit of analysis are
economic exchanges. Due to McCarthy’s earlier work [47, 48], these exchanges are represented
by more intuitive concepts than debits, credits, and accounts. The reason for that is that these
artifacts are associated with journals and ledgers. In an accounting system, these concepts are
not essential. The things that are of interest to accountants are monetary stocks of an enterprises
goods or claims at a specific time. Furthermore, the monetary flows of these items that occur are
important. The stocks correspond to the balance sheet accounts of the general ledger whereas the
flows correspond to the income statement accounts. Therefore accounting phenomena can be
divided in two categories: stock objects and flow transactions. As already mentioned McCarthy
introduced a categorization of accounting phenomena into resources (or objects), events, agents
and the associations between them in [47]. The REA framework generalizes these concepts in
order to reflect the stock-flow aspects of accounting systems [49].

Economic
Resource

Economic
Event

Economic
Agent

duality
(exchange, conversion)

stock-flow

provide

receive

responsibility

Figure 3.3: REA Accounting Model based on [32, 49]

Figure 3.3 shows the basic REA accounting model. It consists of sets representing economic
resources (R), economic events (E), economic agents (A), stock-flows that illustrate which re-
source is incremented or decremented during which event, and participate relationships, depicting
which agents provide or receive resources. Before describing these sets and relationships in
greater detail, the meaning of a process in the REA context has to be clarified. Following the
definition of Geerts and McCarthy [16], in an economic sense, a process is a production function
where the entrepreneur exchanges specific input resources for some output resources that are
of greater value to the customer. This definition differs from the explanation that was given in

28

Chapter 3.1, defining processes as partially ordered sets of tasks. A REA business model does
not necessarily contain descriptions of the detailed tasks that need to be carried out during an
event. Nevertheless it is possible to do so and use REA as business process modeling language as
will be explained in Chapter 3.4. Similar to Geerts et al. [14], we often use the terms exchange,
process, and activity to mean the same thing. In this chapter the term process will be used to
describe compensating REA events, but in the remainder of this thesis we will use the term
business activity to clearly distinguish them from the classic definition of business processes.

Economic Resources are scarce objects or items. As Ijiri [35] explained, these objects are
important to an enterprise and are controlled by it. Examples for resources are goods, rights, or
services that need to be monitored and controlled due to their high relevance for enterprises.

Economic Events are phenomena that represent changes in these scarce objects (economic
resources). These changes can result from activities like production, exchange, consumption,
or distribution [67] that consist of at least two events. This fact is illustrated by the duality
relationship. Following the definitions of Ijiri [35], these relationships are described as the linkage
between the increments in the resource set of an enterprise and the corresponding decrements.
The increments and decrements are members of two different event entity sets. One of these two
entity sets is transferring in a resource. The other set is transferring out a resource. In other words,
the duality relationship combines distinct events to an economic process. An example for such a
process might be the buying of goods where a purchase event and a cash disbursement event are
connected. The purchase leads to an inventory increase. But since nothing is for free, something
has to be offered in exchange in accordance to the give-take principle. Therefore the related cash
disbursement event leads to a decrease of cash.

Economic Agents participate in events and therefore in the economic processes. Examples
for agents are persons, organizational units, or companies that have control of resources. These
resources are exchanged between agents during processes. McCarthy [49] distinguishes between
parties inside and outside of the company. In that sense inside agents are agents that work inside
the enterprise being accounted for (e.g., employees like salespersons, cashiers, or shop assistants).
They can be responsible for the participation of subordinates as indicated by the responsibility
relationship. Examples for outside agents are vendors and customers, that participate in a process
but do not belong to the company.

Hruby [32] distinguishes two different forms of economic processes: exchange and conversion.
As illustrated in Figure 3.3 dualities can either be exchange-dualities or conversion-dualities
depending on the processtype. An example of an exchange process is a purchase where cash
is exchanged for inventory. Exchanges occur between inside agents and outside agents (buying
inventory from a vendor). Contrary, during a conversion process resources are changed in form
or substance in order to generate greater value inside the company. An example for a conversion
process is pizza production, where ingredients are used to create pizza.

The remaining relationships that need to be described are stock-flow, provide, and receive
(the latter two are summarized as participation relationships [49]). A Stock-flow relationship
connects economic resources to economic events. It therefore defines what (resource) is ex-
changed (or used) when (event). Participation relationships relate an increment or decrement
event to an agent. Depending on the events agents receive resources during an event, or provide
them.

29

In its beginnings the REA Accounting Model was used as a framework to analyze the information
needs of an enterprise. Starting with an arbitrary identified resource that is of interest to the
enterprise, the designer of the database knows that two event sets are needed. One of those
representing an inflow, the other one an outflow of the resource. In each of these event sets
economic agents participate as defined in the model. Using this method database designers and
accountants can specify a conceptual schema of the enterprise.

Figure 3.4 shows an example of an exchange process instance. Again the car producing
company, whose flow of valuable objects was modeled using e3-value techniques (cf. Figure
3.2 on page 26), is used for illustration purpose. The process is modeled from the view of a
car producer who makes money by selling cars to customers. Therefore the resource Audi A4
is provided by the inside agent Hank during the sale decrement event on 30th
July 2013 to the outside agent Walt. In exchange for the received car the customer
provides 10.000 C to the salesperson during the cash receipt increment event
on 31st July 2013. This give-take relationship between the two events is emphasized by the
duality relationship. Since the car producing company gives up a resource to gain another
resource, the sales process is an exchange. Resources, events, and agents are all represented by
specific instances since the events have already happened or are happening right now. The sales
process illustrates a concrete business case.

Decrement Event

Sale
30th July 2013

Increment Event

Cash Receipt
31st July 2013

Duality (Exchange)

Resource

Car
Audi A4

Resource

Cash
10.000€

stock-flow

stock-flow

Inside Agent

Salesperson
Hank

Outside Agent

Customer
Walt

provide

provide

receive

receive

Figure 3.4: REA Sales Process of a Car Producer with Instance Data

3.4 Engineering Business Processes and Value Chains using REA

As explained in [16] the usage of REA was expanded from designing accounting information
systems to modeling economic phenomena in general. Therefore REA can be used to model

30

business processes. In an Enterprise Information System not only one process, where someone
gives up control of a resource in order to gain control of another resource, is of interest. Several
processes are forming an enterprise value chain as defined by Porter [58].

Since the resource outcome of one process can be used as input for another process, the
aforementioned stock-flow relationships combine processes to value chains as described by
Geerts and McCarthy [14]. In that case incremented resources that are the outcome of preceding
processes are used as input resources that are decremented in a succeeding process. An example
value chain of the car producer is shown in Figure 3.5. The value chain consists of four processes:
sales, purchase, labor acquisition, and car production. Inflowing and outflowing resources of
these processes are cash, labor, raw material, and cars. During the sales process cars are sold
for cash. This cash is used in the purchase process to buy raw material. Compared to these two
processes, where one resource is exchanged for another resource, the production of cars and the
labor acquisition are examples for a conversion. Cash is used to produce labor. This labor is used
and raw material is consumed to produce cars. Agents are omitted in the representation of the
value chain. Each one of the aforementioned processes can be represented in a more detailed
way using the concepts described in Chapter 3.3. Figure 3.4 on page 30 shows the detailed
representation of the sales process.

Sales Purchase Labor Aquisition

Car Production

Cars

Cash

Labor

Raw Material

Figure 3.5: REA Value Chain of a Car Producer

Besides the value chain specifications on enterprise level and the process descriptions based
on REA, Geerts et al. [16] introduced the task-level as third layer. They argue that a full REA
model often is not technologically attainable or useful and introduce tasks as a more detailed

31

segmentation that are needed to accomplish events. Compared to events, tasks don’t need to be
planed, designed, monitored, or evaluated. Furthermore, they cannot be paired with a counterpart
like events using the duality relationship. Tasks are individual steps that need to be carried out
during an event. The possibility of defining tasks makes REA a process modeling language
according to the definitions stated in Chapter 3.1.

3.5 Advancement to the REA Ontology

Gruber [28] describes an ontology as an “explicit specification of conceptualization“. While
upper-level ontologies define concepts shared by all domains, domain ontologies define things
that are only relevant to a specific domain [15]. Business ontologies therefore define things and
phenomena that occur in enterprises and businesses. In order to reuse accounting concepts in
different applications and systems, Geerts et al. [13] tried to make knowledge intensive use of
the REA framework and named it as candidate for a full domain ontology. REA can be used
to specify the conceptual schema of an enterprise based on occuring economic phenomena as
described in Chapter 3.3. Due to the fact that this perfectly fits the ontology description by
Gruber and REA’s foundations in the economic/accounting theory, extending REA to an business
ontology made sense.

Using REA to conceptualize economic phenomena underlies some restrictions that always
have to hold. Geerts and McCarthy [15] therefore defined three axioms to specify these rules:

• Axiom 1 - At least one increment event and one decrement event exists for each economic
resource in order to guarantee the modeling of a companies economic activities as a
sequence of exchanges.

• Axiom 2 - Events that effect an outflow of a resource must be paired with events affecting
an inflow and vice-versa. This concept has already been explained before using the term
“duality“.

• Axiom 3 - In an exchange inside agents and one outside agent participate, ensuring that
resources are exchanged between parties that have competing economic interests.

Taking into account the process distinctions proposed by Hruby [32], these axioms only hold
for exchange processes. For conversion processes the rules regarding the number of participating
agents differ. The same agent who provides resources that are used or consumed during the
process can receive the produced resources. Furthermore, only inside agents participate in a
conversion [33].

Apart from the axioms for REA modeling, Geerts et al. [15] proposed to extend REA vertically
and horizontally. The vertical extensions have already been discussed in Chapter 3.4, where
enterprise value chains and tasks were introduced besides the REA duality concept. Horizontal
extensions include the definition of an operational layer and a knowledge layer (also termed
policy layer). While the operational layer uses the basic REA concepts to specify what is actually
happening or will happen in the near future, the policy layer specifies constraints or guidelines
for business operations. Modelers can therefore define what could, should, or must be [18]. The

32

horizontal layers enable the analysis of economic activities at different points in time. This can
be done for value chains, duality specifications, as well as tasks. Figure 3.6 on page 33 shows the
extended REA ontology.

Commitment

Economic
Resource

Economic
Event

Economic
Agent

Economic
Resource

Type

Economic
Event
Type

Economic
Agent
Type

duality

fulfillment

reciprocity

reservation

reservation

stock-flow participation

typification typification typification

Policy

participation

participation

specification specification

specification

Contract /
Schedule

belongs-to

Figure 3.6: REA Ontology [32] (adapted)

The essential concepts introduced on the policy layer are types. Types are abstractions that
represent groups of entities [17] and describe intangible components of actual phenomena [15].
Types exist for all of the aforementioned entities (agenttypes, resourcetypes, and eventtypes).
The typification relationship links agents, events, or resources to their corresponding type entities.
Relationships between types can be defined to specify restrictions or guidelines. Geerts et al. [18]
name five patterns that are useful to model such policies. An example of such a restriction is
the relationship between two types specifying what kind of plane can be used for what kind of
flight. This policy has to be fulfilled by all instances of the type entities (flights and planes).
Furthermore, such relationships can also be defined between types and actual instances. For
example it therefore is possible to describe that an eventtype demands the participation of a
specific agent.

On the operational layer commitments were added. While events describe something that
is actually happening, commitments are an agreement to execute an event in the well-defined

33

future. This fact is represented by the fulfillment relationship in Figure 3.6, that determines
which event will be executed to fulfill the commitment. Like events, commitments also occur in
combination with at least one other commitment. The reason for that is that a commitment to
give up a resource is always accompanied by a promise to receive another resource instead. The
relationship between two commitments is called reciprocity and is described at a higher level
by the concept of agreements. Two types of agreements exist: contracts and schedules. While
contracts are a collection of commitments promising exchanges between agents, schedules are a
collection of conversion commitments. An example of a contract is a sales order consisting of
various sales. Schedules can be used to identify resources and plan their use in production orders
consisting of several production jobs [32]. Commitments involve agents and reserve resources
or resource types that will be used when events fulfill the commitments.

Custody and linkage are introduced as new relationships. Resources can consist of several
parts but since these parts can also be resources, a new entity in the model is not optimal. The
linkage relationship describes dependencies between resources as part-whole relationship. For
example the resource car consists of parts like wheels, doors, or windows. The specification of
such resource parts can be useful for scheduling conversion processes. Custody relates agents
to resources. Therefore it is possible to define which agent is responsible for what resource and
who can be contacted if a problem with the resource occurs. Examples are warehouse clerks
responsible for the material in the warehouse or cashiers responsible for the cash register. Custody,
linkage, and responsibility can also occur between type entities [32]. This fact is represented by
the specification relationship in Figure 3.6.

Due to these extensions of the basic REA framework, REA can be considered as a powerful
business ontology. It is capable of representing all data that is relevant for the conceptual design
of ERP systems [42].

Figure 3.7 shows the planned form of the sales process of the car producer with some exten-
sions. Compared to the process in Figure 3.4 on page 30, the resource exchange does not happen
right now but is planned instead. The sales commitment plans that salesman Hank
and a shop assistant will provide the resource Audi A3 to the customer Walt. It
therefore reserves the resource for the occurring transaction. The concrete shop assistant that
will participate in the event is not specified yet. Every shop assistant in the company can take part.
Therefore the agenttype is related to the commitment. The cash receipt commitment
plans the cash income and reserves the money that will be paid by the customer Walt to
the car producers cashier Rachel during the exchange. The commitments are in a reci-
procity relationship. Together the two commitments build a sales order contract.
The actual transaction will happen in the sale event on 30th July 2013 and the cash re-
ceipt event on 31st July 2013. The same four agents that were planned will participate in
the events that fulfill the corresponding commitments.

3.6 REA in Information Systems

David et al. [62] propose an REA information architecture as a normative model. This model
is used to compare ERP systems among each other and should give better indications on their

34

Contract

Sales Order

Decrement
Commitment

Sales
Commitment

Increment
Commitment

Cash Receipt
Commitment

Decrement Event

Sale
30th July 2013

Increment Event

Cash Receipt
31st July 2013

reciprocity

duality

fu
lf

ill
s

fu
lf

ill
s

Agent

Salesperson
Hank

provide

Agent

Customer
Walt

provide

re
ce

iv
e

provide provide

re
ce

iv
e

re
ce

iv
e

Resource

Car
Audi A3

Resource

Cash
10.000€

o
u

tf
lo

w
 r

e
se

rv
at

io
n

outflow

in
fl

o
w

 r
e

se
rv

at
io

n

inflow

(exchange)

(exchange)

Agenttype

Salesperson
Agenttype

Customer

Resourcetype

Car
Resourcetype

Cash

ty
p

if
ie

s

ty
p

if
ie

s

ty
p

if
ie

s

ty
p

if
ie

s

Eventtype

Sale

Eventtype

Cash
Receipt

ty
p

if
ie

s

ty
p

if
ie

s

Agenttype

Shopassistant

Agent

Cashier
Rachel

Agent

Shopassistant
Bob

Agenttype

Cashier

ty
p

if
ie

s

typifies

re
ce

iv
e

provide

provide

Figure 3.7: Planned REA Sales Process of the Car Producer

quality than a comparison at the implementation level. However, REA as basis for the data
structure of an ERP system is not mentioned.

O’Leary [54] investigates the relationships between the underlying data models in REA and
the dominant ERP system SAP. The findings illustrate that although several similarities exist,
SAP has some implementation compromises that prevent it from being fully REA.

Rosli et al. [60] applied the Resource-Event-Agent (REA) data model to specify and design
an accounting information system. A prototype based on the REA data model was implemented.
Compared to the REAlist project no database capable of storing all sorts of REA processes is
used. The prototype is limited to the revenue cycle scope.

There are several projects where REA was used as a data model for an information system but
the concept of the partly generic database as proposed in the REAlist project was never applied.
Furthermore, the approach of using a graphical modeling language to define and adapt REA
processes, storing these models in the database, and using them for ERP adaptation is also new.

35

CHAPTER 4
The REA-DSL

4.1 A dedicated REA Representation Format

As explained in Chapter 3, REA is a business modeling ontology that can be used to describe
important economic phenomena for the conceptual design of ERP systems. It enables the creation
of models by defining economic events that occur within and across enterprises using the concept
of value chains. Besides the representation of events that have already happened or are happening,
events that are scheduled or planned by commitments are important. Especially when designing
Accounting Information Systems (AIS) or ERP systems such things are crucial since they are
important tools for managers to not only keep track of past events but also to predict the financial
future of companies and take proper actions [41]. REA therefore seems to be a good choice for
defining business models and building the data structure of information systems on it.

Unfortunately using the class-diagram-like representation of REA is very vague and therefore
leaves space for misinterpretation. No multiplicities are defined on the relationships between
entities like resources, events, agents, or commitments. It is not clear how many resources can be
linked to events with stock-flow relationships, and the number of agents participating in events
is also undefined. Furthermore, it is not described what happens when resources that are given
away during an economic exchange are connected to increment events (what should clearly not
be the case). Domain experts therefore have to check created REA models in a very detailed way.
Such a task is especially cumbersome since REA models in class-diagram-like representation
can be very complex. Even a simple exchange process already consists of an increment event, a
decrement event, two resources, and two agents (cf. Figure 3.4 on page 30). When type entities
are included and commitments are occurring, the model grows even larger and more confusing
since all entities are represented in the same form as rectangles. Due to the missing dedicated
representation format of REA, users have problems defining models in an easy and understandable
way [63]. Therefore, its usage as common communication language between business experts
and IT-professionals during the design phase of Accounting Information Systems might lead to
unsatisfying results.

37

The REA-DSL tries to overcome these limitations by defining a dedicated graphical represen-
tation for the REA ontology. As the name intends, the REA-DSL is a domain-specific language
(DSL). Compared to general purpose languages like C, Java, or Python, DSLs are focused on (and
usually restricted to) particular domains and therefore cannot be applied to an arbitrary problem.
They can be designed to solve technical tasks as well as business tasks and their power lies in
their expressiveness for the domain at hand (in case of the REA-DSL: modeling of REA business
models). This is achieved through appropriate notations and abstractions for the domain the
DSL is tailored to [65]. DSLs are developed for users that are familiar with the problem domain
(domain experts). An example might be an accountant well aware of the business activities
occurring in an enterprise who uses the DSL to create REA business models. Solutions can be
expressed at an abstraction level of the problem domain, enabling domain experts to understand,
validate, and modify the artifacts created by the DSL more easily [45]. Developing graphical
domain specific languages for REA is a popular topic. Sedbrook [61] also specifies a DSL
meta-model and a prototype to create visual business models that conform to the REA ontology.
Similar to Mayrhofers approach, user interfaces to design operational- and policy level models
are provided. Using code generation techniques Sedbrook also transforms the designed models
into executable code that can support business applications.

During the development of the REA-DSL the approach introduced by Strembeck and Zdun
[68], consisting of four main activities (core language model definition, DSL behavior definition,
concrete syntax definition and platform integration), was used. The DSL was extracted from an
already existing system (the REA ontology). Therefore the core language model was created
by identifying the elements of the REA ontology (resources, events, agents, commitments,..),
relationships among them (stock-flow, participation,..), and defining constraints on that language
model (as indicated by the ontology constraints on page 32). The resulting meta-model was built
based on the multilevel modeling architecture Meta-Object Facility (MOF) as introduced by the
Object Management Group (OMG) in [26]. On its highest level (M3) MOF defines concepts that
can be used to create meta-models. Doing so lead to the development of three interlinked views
in the REA-DSL’s initial form: agent view, resource view, and operational view [45, 63]. This
model was later on extended by the value chain view and the planning view in order to capture
most of the REA ontology’s concepts [43]. Brief descriptions of the concepts described in each
view are given. A more thorough visualization of the meta-models is illustrated in [41]. The
agent view describes the concepts of agents, agenttypes, the typifications between them, and
generalization hierarchies. In the resource view resources, resourcetypes as well as typifications
and generalizations between those concepts are included. Furthermore, the concepts of labor
resources and bulk resources are introduced. As Mayrhofer [41] argues, labor is a special kind of
resource that occurs in almost every event. Bulk resources are resources that cannot be identified
individually or where individually tracking them makes no sense. Examples for bulk resources
are nails or water where only the quantity on hand is of interest. In the REA-DSL bulk resources
are a special kind of resourcetype since they also define characteristics that are common to a set
of resources. The rules for defining duality relationships where one event is compensated by
another event is specified in the operational view meta-model. Sonnenberg et al. already pointed
out in [63] that a duality does not only encompass one decrement event and one corresponding
increment event. Rather a set of increment entities can be compensated by a set of decrement

38

entities. The number of agents participating per event and resources that are incremented or
decremented is formalized in the operational view meta-model as well. The value chain view
corresponds to the concept of value chains as described in Chapter 3.4 and defines how many
processes can occur in a value chain. Furthermore, the number of possible inflows or outflows of
resources/resourcetypes is defined. Finally, the planning view meta-model builds the basis for the
definition of the commitment concept and defines the rules for valid relationships between all
included entities like commitments, the events fulfilling them, reserved resources/resourcetypes,
and involved agents.

The behavior of the DSL was defined by analyzing how the language elements interact with
each other to produce the intended behavior. Concrete syntax can either be textual or graphical.
The REA-DSL provides a graphical syntax in order to define a dedicated representation of the
REA ontology and also includes a modeling tool support for the DSL. This syntax, based on the
five aforementioned views, is discussed next.

4.2 Graphical Syntax of the REA-DSL

As mentioned before, the intention of the REA-DSL is to define a dedicated graphical repre-
sentation for the REA ontology. Based on the meta-models of the resource view, agent view,
operational view, value chain view, and the planning view a graphical syntax was created. Com-
pared to the class-diagram-like representation of REA models, the notation elements of the
REA-DSL are intuitive and simple and therefore easier to use for domain experts when creating
business models.

In order to explain the graphical syntax and use of the DSL as simple as possible the example
of the car producer will be used. The value chain, showing all value adding activities of the
company, was already stated in Chapter 3.4 (cf. Figure 3.5 on page 31). The car producer sells
cars to its customers to make money. This money is used to buy material for the car production
from a factory. Furthermore, the employees have to be paid. Four activities can be identified:
sales, purchase (which are exchange activities), labor acquisition, and car production (which are
both conversion activities). The resources flowing between the activities are also given: cash,
raw material, labor, and produced cars. Based on this information, users of the REA-DSL can
start to define the resources that are exchanged, used, consumed, or produced during the value
adding activities in the value chain.

Resource View

Using the REA-DSL, the aforementioned resources that occur in the value adding activities of
the car producer are modeled as drops. Solid drops represent resources that are individually
identifiable. Dashed drops represent resourcetypes or bulk resources where no tracking of
individual instances makes sense. The REA-DSL representation of the car producers resources is
shown in Figure 4.1.

Labor is, as already mentioned, a special kind of resource. Therefore it is not represented as
a solid/dashed drop as other resources but includes three stick figures inside the drop. According

39

Figure 4.1: REA-DSL Resources

to [41], labor is acquired during the payroll activity. It defines all the minutes agents participate
(and therefore provide work) in events.

Car is represented as a solid drop and therefore is an identifiable resource. As indicated
by the generalization hierarchy it has three subtypes: gasoline, diesel, and hybrid. Sub
resources are specializations of their super-resources and inherit their attributes.

Cash and raw material are bulk resources that cannot be individually identified. Not
every coin, banknote, or raw material is tracked. Instead the amount of types of those resources is
recorded. Steel, plastic, aluminium, rubber, and glass are specializations of raw
material. These resources are represented as dashed drops in the same way as bulk resources.

An important thing that can be represented using the REA-DSL are properties as indicated
by the green and yellow sections beneath each resource/resourcetype. Object properties are
visualized in green and are properties that differ from object to object (affecting the operational
layer). For example the serialnumber property of each individual car is unique. Type
properties (represented in yellow and affecting the policy layer) on the other hand stay the same
for types of objects. E.g. all types of hybrid cars have the same government_funded value
(hybrid cars are funded by the government since they are environmentally friendly). These
properties lead to a further distincition of resources that was proposed in the course of this thesis.
When a resource is identifiable but has object- and type properties, it is regarded as identifiable
resource. Such a resource can be tracked on its own but also shares common characteristics with
other resources like the aforementioned cars. A unique resource only has object properties. An
example is a painting of a famous painter that only was created once and therefore is unique.
Compared to unique resources, identifiable resources can be reordered by customers. Resources
and resourcetypes also have fixed attributes like their name. Additionally bulk resources have two
more fixed attributes QoH data type and QoH unit1. These attributes are important for
resources that cannot be tracked individually. While QoH unit defines the unit of the measured

1QoH stands for quantity on hand

40

resource (e.g., pounds of raw material), QoH data type is the data type of the resources (e.g.,
double for the amount of pounds).

The reason for the introduction of properties was the REA-DSL’s goal to not only provide a
modeling tool for business models but also to semi-automatically create an Entity-Relationship-
Diagram (ERD) for an AIS [41]. Giving the user the opportunity to define the aforementioned
properties enables the specification of columns for the tables and their datatypes.

Agent View

The agents participating in the activities of the car producer value chain have to be defined as
well. Using the REA-DSL, these agents are modeled as stick figures where white-headed figures
are inside agents and black-headed figures are outside agents. The following agents are defined:
employee, salesperson, shop assistant, cashier, clerk, manufacturer, factory, and customer (cf.
Figure 4.2).

Figure 4.2: REA-DSL Agents

Agents can have object- (green compartments) and type-properties (yellow compartments) like
the aforementioned resources. Salespersons, shopassistants, cashiers, clerks,
and manufacturers are specializations of employees and therefore inherit their properties
(name, age, address, wage, and employeeID). Furthermore, each of these five employee
subtypes defines a minimum startingWage. Such type properties on agents can define
properties for policies that must be fulfilled. For instance, the wage object property of a
cashier must not be lower than his startingWage type property that specifies a cashiers
starting wage.

Factory and customer are outside agents. The car producer buys the raw material
from the factory producing it. Customers are buying the produced cars. Both include
a name, an address, and an email object property. Customers additionally possess a
customerID.

41

Value Chain View

Agent view and resource view form the foundation for the other three views. The already defined
agents, agenttypes, resources, and bulk resources can therefore be used in the valuechain-, duality-
, and planning view. When modeling the value chain of the car producer only the resources are
used as can be seen in Figure 4.3.

Figure 4.3: REA-DSL Value Chain

The value chain modeled with the REA-DSL looks similar to the sketched value chain in
Figure 3.5 on page 31. The four business activities are modeled as rounded rectangles. Each one
of them can either be identified as transformation (conversion) or transfer (exchange) activity.

Resources flowing between the business activities are depicted as drops located on top of
the arrows pointing from one activity to the succeeding one. The direction of the arrow defines
the resource flow. These resources were already created in the resource view and are only
referenced now. Besides the solid or dashed drops that stand for resources and bulk resources,
also stacked drops (so called resourceseries or resourcetypeseries) can occur. An example is the
stacked resource car in Figure 4.3 flowing from car production to sales. During the
car production activity not only one car is produced. Instead multiple resources of the
same kind can be manufactured. The same happens in the sales activity where not only one
but multiple cars are sold.

A difference to the resource flow in Figure 3.5 on page 31 is the usage of labor. In contrast
to using it as input for the car production activity it is only defined as outcoming resource
of the payroll activity. The reason for this is that labor is not consumed or used during a
stock-flow relationship with a decrement event. Instead it is used when an inside agent participates
in an action which happens in nearly every event. Therefore, it is not explicitly modeled [41].

Operational View and Planning View

Each of the four business activities, depicted as rounded rectangles (cf. Figure 4.3), can be
modeled in more detail as duality between events or reciprocity between commitments. It is

42

possible to automatically create the events in the operational view or commitments in the planning
view as stubs. Since in our example there is no difference in the concepts of the planning-
and operational view, we just model the planning view and derive the operational view from it.
Events that will actually occur in the future are planned by commitments that are defined for
eventtypes. An example is a contract to buy raw material during the sales activity or a
schedule to produce cars in the car production activity. Therefore only planning views
will be created for each of the four activities by double clicking on them in the value chain view.
A planning view stub is created that consists of one increment and one decrement eventtype
and resources/resourcetypes reserved by them. Again resourceseries and resourcetypeseries are
also possible. For conversion activities one inside agent will be automatically created for each
eventtype. Exchange activities have one inside agent and one outside agent attached after the
creation. Only minor changes are needed for users of the REA-DSL in order to adapt the created
models to their expectations and needs by changing the names of participating agents or adding
more agents.

Figure 4.4 shows the planned REA-DSL sales activity that was illustrated in class-diagram
style in Chapter 3.5. Already at the first glance it becomes obvious that the class-diagram-like REA
format is much more complex (cf. Figure 3.7 on page 35). In REA-DSL models commitments
are depicted as scrolls. Each commitment has one agent that legally commits to it. Increment
commitments (2) are always in reciprocity with decrement commitments (1) and vice versa.
During the sales activity plan, the agent customer commits to pay the bulk resource cash
to the cashier during the cash receipt event. In contrast the salesperson commits
to provide the sold cars to the customer during the sale event. Shopassistants are
also participating in that event. Since not only one but several assistants (who are not known
at the moment) can be involved, they are modeled as stack of agenttypes which depicts them
as agenttypeseries. The planning view only shows dashed hexagons and therefore eventtypes
(3,4). The actual events are modeled in the operational views of the activities. Properties can
also be defined for the eventtypes. Event properties in green are set for each individual sale
when it occurs (saleNr, saleDate, receiptNr, receiptDate). Event type properties
in yellow define properties for a special kind of event (region defining in what region an
event with a specific saleNr happened). Additionally commitment properties can be defined in
purple that describe characteristics of what is planned or scheduled. Figure 4.4 has two eventtype
commitmentproperties: orderNr and orderDate. Both define properties of the selling
contract between car producer and the customer. The agents were already defined in the agent
view and are just referenced in planning view. The same applies to resources. The Stockflow-,
policy-, and reserve properties that are defined below resources (5) represent properties for the
stock-flow relationships. For example the actualPrice of the sold cars is the amount of
money received during the sale event. Type properties defined for stock-flow relationships can
be used to define policies. It therefore is possible to specify the standardPrice for products
sold during types of events (a car sold during a sale occurring in the austrian region). Commitment
properties can be used to define the price that was set in the contract between customer and seller
(committedPrice). Properties below agents (6) are defined for participate relationships. The
participate property customerSatisfaction therefore describes how satisfied the customer
was with the salesperson during the sales event and has to be set for each event individually. The

43

1 3
5

6

2 4

Figure 4.4: REA-DSL Planned Sales Activity

44

policy property qualifies is a policy describing which agents should be able to participate in
what type of events. DressCode is a reserve property describing characteristics of the contract
and can be used to define what sellers should wear when selling cars to the customer. The money
gained from the sales activity is used to pay employees (payroll activity) and to purchase raw
material (purchase activity). Again planning views are created to show these activities in a more
detailed way. Figure 4.5 shows the remaining three planned activities with collapsed properties.

In the planned payroll activity (cf. Figure 4.5a) a cashier commits to pay cash to an
employee during a cashdisbursement event. In exchange the employee commits to
provide labor to the clerk.

Figure 4.5b shows the planned activity where raw material is purchased for money. A clerk
commits to the contract that a cashier (the concrete cashier that will do the payment is not
known. Therefore an agenttype is used to indicate that every cashier can participate in the event)
will pay cash to the raw material producing factory during the materialpayment event.
The factory on the other hand commits to deliver the raw material (which can be steel,
plastic, aluminium, rubber, or glass as depicted in Figure 4.2 on page 41) to the
clerk2.

Finally in the car production activity (cf. Figure 4.5c) a clerk commits to the scheduled car
production where manufacturers consume raw material to produce cars.

(a) Planned Payroll Activity (b) Planned Purchase Activity (c) Planned CarProduction Activity

Figure 4.5: REA-DSL Planning Views of the Payroll, Purchase, and Car Production Activity

In the four aforementioned activities no properties are shown. Nevertheless these properties
do exist. When creating business models using the REA-DSL the properties can be hidden to
guarantee better readability of the model. Clicking on the small arrow on the top right of agents,
resources, events, commitments, participate relationships, or stock-flows enables the user to show
or hide the additional information.

2In this simple example it is assumed that one factory produces all the raw material necessary to produce a car

45

The operational views of the four activities (cf. Figure 4.4 and Figure 4.5) can easily be
derived from the planning layer by substituting eventtypes/eventtypeseries by events/eventseries
and removing commitments from the model. Figure 4.6 on page 46 shows these views for the
sales (4.6a), payroll (4.6b), purchase (4.6c), and the car production activity (4.6d).

(a) Sales Activity (b) Payroll Activity (c) Purchase Activity

(d) Carproduction Activity

Figure 4.6: REA-DSL Operational Views of the Carproducer Activities

As illustrated by the example company of the car producer, using the REA-DSL to create
business models is quite simple. The models are based on REA concepts and include resources
occurring in the activities of a company, events affecting them, agents participating in the events,
and commitments that describe what is planned or scheduled. Compared to the class-diagram-like
representation of McCarthy, the concepts are visualized in an intuitive way which makes them
more understandable. Furthermore, the created business models can be adapted easily.

46

4.3 Using REA-DSL Models to create a Data Structure for AIS

As mentioned in Chapter 4.2 the REA-DSL can also be used to create an Entity-Relationship-
Diagram (and therefore the relational data structure) of an AIS. Business experts and IT-
professionals can use the DSL together and define the conceptual model of the system. Instead of
remodeling REA-DSL constructs to a relational model that adheres to the rules of the REA ontol-
ogy, these model can automatically be created based on a mapping proposed by Mayrhofer [41].
The advantage of this approach is that errors, that might occur during the remodeling of the
constructs by the IT-professional, are avoided. Furthermore, time is saved since these steps are
carried out by the DSL itself.

The REA-DSL concepts, needed to make a mapping to the relational model possible, were
already identified in the previous chapter as object-, type-, event-, event type-, commitment-,
stockflow, participate, and reserve properties. Each of these concepts is specified by a name and
a type. Additionally they can be marked as primary key which identifies a property as unique
identifier for a REA-entity [42]. Since users of the REA-DSL are able to define primary keys and
properties, all the information that is necessary to describe the relational database schema of an
AIS is contained [41]. The mapping is done by the Microsoft Visual Studio T4 Text Templating
Engine [7]. These T4 text templates are used to create SQL files for the table creation and just
need to be executed by a database management system.

47

CHAPTER 5
The REAlist Project and REA DB

5.1 Scope of the REAlist Project

As explained in the previous chapters, ERP systems support enterprises to execute their business
activities. These activities might look similarly but the concrete realizations differ from business to
business. Therefore a business standard software cannot be used immediately after the installation
but has to be adapted to the specific needs of the company that uses the system. The major
drawbacks of current ERP systems (complicated customization leading to high follow-up costs
and missing business semantic base) already were extensively discussed in Chapter 2. In order to
overcome these problems the REAlist project was proposed by the Business Informatics Group
(BIG)1 at the Vienna University of Technology in [34]. The Eventus Marketingservice Gmbh2

acts as business partner.
The goal of the REAlist project is to provide a cost-saving approach for company-specific

ERP system adaptations and customizations. Compared to existing solutions, where separate
instances of the software are provided to every customer, the system is hosted as single instance
in the cloud (cf. Figure 1.1 on page 2). Multitenancy is a crucial point in the project since all
customers use the same instance of the application and therefore the same database.

The main data structure of the underlying database (REA DB) is generic. This means that
even if current business needs change or new requirements occur, they can be saved without
changing the structure. As mentioned in Chapter 3, business needs can be represented as business
models. One way to illustrate such business models is the REA ontology that encompasses all
concepts that are relevant in ERP-Systems, like types, policies, and commitments. The REA DB is
based on this ontology and therefore capable of saving all kinds of REA business models. Actual
business data is stored in the generic part of the database. This overcomes the aforementioned
drawback of existing ERP systems, where the data structure needs to be adapted when the market
demands change. As long as the adapted business models are based on REA concepts as well,

1http://www.big.tuwien.ac.at/
2http://www.eventus.at/

49

http://www.big.tuwien.ac.at/
http://www.eventus.at/

they can be saved to the REA DB. The feasibility of that REA-based database for ERP-Systems
is shown in [44] and will be discussed extensively in Chapter 5.2. The medium-term goal of the
REAlist project is to implement a prototype hosted on servers of cloud providers that can be
accessed by users over a website using an internet browser.

Persistency

Reference Models Business Models Policies Business Models
Policies

Business Data Business Data

Policy Editor Business- and Reference Model Editor Dynamic ERP UI Reports

ERP Frontend ERP Configuration

Administrator eventus ERP Customers

REA DB

Figure 5.1: Functional Scope of the REAlist Project [34]

The functional scope of the REAlist project is illustrated in Figure 5.1. In order to en-
able the company-specific customizations of the application, a model-driven approach is used.
Business needs, that might occur, are represented as REA business models. Customers
(tenants) or administrators of the ERP-System describe their models using the business-
and reference model editor. As modeling language the REA-DSL (cf. Chapter 4)
is proposed since it enables users to create business models in a clear and simple way
4. Furthermore, reference models can be defined and used as foundation for other mod-
els. Doing so saves time since modelers do not have to start from scratch when formulating
their business needs. The business models and reference models are persisted in the
REA DB. Since the database and the business models are both based on the REA ontology, a
mapping of the models to the database is possible. REA business operations can be restricted
by policies. Therefore a user-friendly way of applying such rules to the models, without
adapting the code or the data structure, is proposed. Policies specify guidelines or constraints
and declare what could, should, or must happen as already mentioned in Chapter 3.5. Geerts
et. al [18] proposed three different policy types: knowledge intensive descriptions describing
characteristics of objects, validation rules specifying thresholds for such characteristics, and
target descriptions describing planned objectives. The sales activity of the car producer that
was illustrated in the previous chapter (cf. Figure 4.4 on page 44) defined the region for sale
events as knowledge intensive description. The standard price of cars is a target description of
the actual price specifying what should be. A validation rule is illustrated in Figure 4.2, where
the minimum wage for employees is defined as type property. Another example for policies
are sales discounts in a sale event for new customers exceeding a certain bill amount. Using
the policy editor policies are defined by customers or the administrator with a

50

policy language that references REA objects and automatically checks the saved models for
correctness. The policies (and therefore the business case rules) are also persisted in the REA
DB. Based on the persisted business models and policies, user interfaces should be
generated automatically for the customers as dynamic ERP UI. The interface has to reflect
all the relevant parts that were specified in the REA business models. For example a saved model
consisting of resources, agents, and dualities should result in the generation of masks where
these entities can be created, updated, or deleted. When creating a duality of a specific type,
events, stockflows, and participations are appended in the interface according to the definitions
in the underlying business model. The same happens for additional attributes that are added
for entities. Customers can use the generated user interfaces to conduct business cases. The
entered business data is saved to the generic part of the database and can be checked against
the business models for validity. Furthermore, meaningful reports and statistics should be created
from the business data in the REA DB. Due to the REA based data structure it is possible
to completely reproduce which payments where transferred during which events [34]. The project
name REAlist already indicates the possibility to create balance lists based on a REA database.

5.2 The REA Database (REA DB)

The core of REAlist is the data structure based on REA concepts. The REA DB is divided in
two parts as shown in Figure 5.2. The business model part includes all tables that are necessary
to store the REA-DSL business models (1). The tables that are important for saving the actual
business cases (2) that are conducted by users are comprised in the generic part of the database.
Since it may store any kind of business data, this part is called generic. The validity of that
data can be checked against the business model data. During a feasibility study Mayrhofer et.
al [44] proved that such an approach can be realized. Several business cases were investigated
and represented with the REA data structure.

Sale Event
30.7.2013

Audi A3

Walter Hank

RT ET AT

R E A

REA DB

Business model
part

Generic part for
actual business data

1

2

Figure 5.2: Parts of the REA DB

The concept of the generic database is illustrated in Figure 5.3. Layer M2 represents the
core elements of the ERP data structure. These elements encompass all the concepts of the

51

Cash Receipt

31st July 2013

Sale

30th July 2013

Duality

Duality

Duality

Customer Walter

Salesperson Hank

10.000 Euro

Eventtype

Cash Receipt

Eventtype

Sale

Agenttype

Customer

Agenttype

Salesperson

Resourcetype

Cash

Resourcetype

Car

Resource Event Agent

Audi A3

ERP Functionality

ERP Configuration

ERP Data Structure

b
as

ed

o
n

b
as

e
d

o
n

b
as

e
d

o
n

Generic REA Data Structure
Core Elements of the Database

Schema

Tenant-specific REA Business Models

e.g. Carproducer Sales Process
where Cash is paid for Cars

Recording of conducted
Business Cases

e.g. Cash Receipt of 10.000 Euro for a

sold Audi A3 on the July 31st that
was sold on July 30th

Figure 5.3: Layers of the REA based Data Structure [44] (adapted)

REA ontology and therefore resources, events, agents, commitments, policies, types, and the
relationships between those entities. Therefore the economic principles of REA are bound to the
data structure permitting REA based business models and concrete business cases to be saved
without changing it. On M1 business- and reference models are stored that define how concrete
business cases are structured. In Figure 5.3 the simplified sales activity of the car producer is
illustrated (for a more detailed class-diagram-like REA representation of that activity cf. Figure
3.4 on page 30). From the car producers point of view, cars are sold by the salesperson
to the customer during the sale event. In exchange the customer pays cash during the
cash receipt event to the salesperson. The two events are in a duality relationship
(in this case an exchange-duality) since they are compensating each other. In these models
type entities of resources, events, and agents are used. M0 records the business cases that are
conducted. For the sales activity example a business case could look like the following. The
customer Walter decides to buy a car from the car producer. Hank, the salesperson, therefore
sells an Audi A3 to Walter during a sale on July 30th 2013. Walter pays 10.000
Euros for the acquired product to Hank on the following day.

Generic Part of the REA DB

The data structure of the REA DB consists of various entities, structured in ten subparts: REA-
Core, Resources, Location, REA-Constellations, Status, Negotiation, Policy, Currency and
Country, AdditionalAttributes ,and Price List [44]. Not all of these parts will be explained in
detail. Instead the most relevant ones are discussed and a brief overview of the remaining ones
will be given. The REA DB has been modeled using MySQL Workbench3. REA-Core consist of
two parts: one consisting of the most important REA ontology entities (resources, events, and
agents) and one extending them by the duality concept, commitments, contracts, and claims.

3http://www.mysql.com/products/workbench/

52

http://www.mysql.com/products/workbench/

Event Event_Has_Stockflow

Stockflow

Resource

Agent

Participation Event_Has_Participation

Figure 5.4: Core Elements of the generic REA DB

The core elements of the REA based data structure are shown in Figure 5.4 as entity-
relationship diagram. Resources, events, and agents are represented in the Resource, Event, and
Agent tables. Events have one agent that provides and one that receives resources. Furthermore,
several agents can participate in an event. This information is stored in the Participation and
Event_Has_Participation tables. The relationship between resources and the events, during
which they are affected, is represented in the Stockflow and Event_Has_Stockflow tables.

Contract

Commitment

Event

Fulfills

Duality

EventType

ClaimClaimType

DualityTypeEvent_Materializes_ClaimEvent_Settles_Claim

ContractType

Event_Has_Stockflow

Commitment_Has_Stockflow

StockflowResource

ResourceType

Figure 5.5: Extended Core Elements of the REA DB

53

Figure 5.5 illustrates the extensions to these core elements. The ERD includes a Duality table
that combines events to a business case. Events can be preceded by a commitment (represented
in the Commitment table). Entries of the Fulfills table relate commitments to the corresponding
events. Both entities are related to an Eventtype. The fact that resources are reserved by a com-
mitment is represented in the Commitment_Has_Stockflow table. A Claim describes which
event has not yet been compensated by an opposing event. Type entities for contracts, resources,
claims, and dualities are represented in the ContractType, ResourceType, ClaimType, and Du-
alityType tables. It has to be noted that entities for agents and their corresponding types are not
visualized in the ERD. Furthermore, the participation relationships between events/commitments
and the agents are omitted. The tables relevant for these concepts are Agent, Agenttype, Partic-
ipation, Event_Has_Participation, and Commitment_Has_Participation. In Figure 5.4 and
5.5 the attributes are hidden to ensure better readability.

The remaining parts of the generic REA DB extend the REA core concepts by all sorts of
information that is needed in ERP-Systems. The corresponding ERD’s are listed in Appendix A.
Details of resources are covered in the Resources part. Besides the already illustrated Resource
and Stockflow tables, IdentifiableResource is used to describe resources that are affected during
stockflows in greater detail. E.g., 100 iPads are exchanged during a stockflow. Each of these
iPads is represented as entry in IdentifiableResource with its appropriate serialnumber.
Taxes or discounts can be defined in the Tax and DiscountOrAddition table that relate resources
with stockflows. Resource_Composed_Of allows to specify that a resource consists of several
resources itself. It therefore defines the linkage relationships that where described in Chapter
3. In order to persist addresses in the REA DB, the Location subpart is used. A Location can
either be represented as entry in the Location_Address table, in form of a city, street, and
zip code, or as entry in the Location_Coordinates table, with X and Y coordinates. The
LocationType table is used to additionally categorize addresses (e.g., as shipment address).
Locations can be declared for all REA concepts (e.g., resources, events, agents, identifiablere-
sources, commitments). Since currencies are important for accounting, the Currency and Country
subset of the REA DB is dedicated to this concept. Entries of the Currency table are related
to Country table entries. Among others, currencies can be defined for events, commitments,
claims, and stockflows. In the Price List subpart, price lists can be defined for specific locations,
agenttypes, and time periods in the PriceList table. PricePolicy depicts the price of resources in
a pricelist. The Negotiation part is used to keep track of the negotiation status until a contract
is fulfilled. A Negotiation can represent the demand and supply cycle in form of proposals. A
Proposal defines who is proposing it (proposingAgent_Id) and if the offer is binding or
not (isBinding attribute). ValidDueDate specifies how long the offer is valid. Preceding
proposals can be specified with the ParentProposal_Id attribute. Proposals can include
several potential commitments that do not need to be entirely specified while the negotiation is
still ongoing. After a negotiation is finished, commitments are transferred to a Contract. To
enable a reconstruction of the contracts negotiation process, the Contract_Has_Negotiation
table relates contracts to negotiations. Information about the status of negotiations, contracts,
dualities, or claims is covered by the Status subpart. The REA DB also enables the saving of
policies. Therefore the Policy part can be used to define possible formations of resource-, event-,
and agenttypes. As argued in [44] only very simple policies are possible. Since one goal of the

54

REAlist project is to define a new policy language that can also be saved in the REA DB, this
subsection might only exist temporarily.

Business Model Part of the REA DB

The concepts of the business model part where the REA-DSL models will be saved are REA-
Constellations and AdditionalAttributes. REA-Constellations defines the formations of the REA
core concepts on a higher level. It therefore is possible to specify how an actual business case,
that will occur in the future, is structured. Tables for contract-, duality-, event-, resource-,
agenttypes, and the relationships between these concepts are included. AdditionalAttributes
encompasses tables for the attributes that can be defined for resources, events, agents, stockflow-,
and participation relationships. As explained in Chapter 4, these attributes are represented in a
REA-DSL model in form of properties. The possible manifestations of properties that can be
specified on entities were depicted as object-, type-, commitment-, event-, event type-, participate-,
stockflow-, policy- and reserve properties.

EventType

Id VARCHAR(150)

ParentEventType_Id VARCHAR(150)

Name VARCHAR(150)

IsIncrement BOOLEAN

IsResourceUsed BOOLEAN

IsExceptionEvent BOOLEAN

IsSeries BOOLEAN

ContractType

Id VARCHAR(150)

Name VARCHAR(150)

IsSchedule BOOLEAN

IncrementAgentType VARCHAR(150)

DecrementAgentType VARCHAR(150)

AgentType

Id VARCHAR(150)

ParentAgentType_Id VARCHAR(150)

Name VARCHAR(150)

IsExternal BOOLEAN

DualityType

Id VARCHAR(150)

Name VARCHAR(150)

IsConversion BOOLEAN

ClaimType

Id VARCHAR(150)

Name VARCHAR(150)

EventTypeStockflow

EventType_Id VARCHAR(150)

ResourceType_Id VARCHAR(150)

IsSeries BOOLEAN

IsIdentifiable BOOLEAN

EventTypeParticipation

EventType_Id VARCHAR(150)

AgentType_Id VARCHAR(150)

IsSeries BOOLEAN

IsIdentifiable BOOLEAN

ContractType_Allows_DualityType

ContractType_Id VARCHAR(150)

DualityType_Id VARCHAR(150)

DualityType_Allows_EventType

DualityType_Id VARCHAR(150)

EventType_Id VARCHAR(150)

DualityType_Allows_ClaimType

DualityType_Id VARCHAR(150)

ClaimType_Id VARCHAR(150)

ResourceType

Id VARCHAR(150)

ParentResourceType_Id VARCHAR(150)

Name VARCHAR(150)

IsBulk BOOLEAN

IsIdentifiable BOOLEAN

UnitOfMeasure VARCHAR(45)

Figure 5.6: REA Constellations

Figure 5.6 shows the entity-relationship diagram of the REA-Constellations including tables
and attributes. Since REA-DSL models only specify a blueprint for actual business cases that will
be conducted later on, elements of the models (e.g., events, affected resources, and participating
agents) are saved in type tables. The join tables between the REA types relate these elements
which allows us to save REA-DSL models in the REA DB.

55

All declared resources are saved to the ResourceType table including a Name and, since a
resource hierarchy can exist, a ParentResourceType_Id attribute. IsBulk and IsIden-
tifiable are used to differ between bulk resources, and identifiable resources.

AgentType is used to store the declared agents that can have superagents and a name
(ParentAgentType_Id and Name). Inside and outside agents can be distinguished with the
IsExternal attribute.

DualityType specifies the duality relationship that is defined in the REA-DSL model. The
fact that a duality can either be a conversion or an exchange is expressed in the IsConversion
attribute. Furthermore, a Name attribute specifies how the duality is named.

ContractType stores the contracts that also have a Name and can either be a contract or a
schedule (depicted by the IsSchedule attribute). Two agents are responsible that the contract is
fulfilled. Therefore one IncrementAgentType and one DecrementAgentType attribute
is included that references the corresponding agenttypes.

The EventType table is capable of storing the events that have been defined in the REA-
DSL’s operational- and planning view. Besides a Name and ParentEventType_Id attribute,
IsIncrement differs between increment and decrement events. IsResourceUsed depicts
if resources are used or consumed during the event, and IsSeries defines if the event/eventtype
is a series in the model or not.

The join tables (blue) in Figure 5.6 represent relationships between REA concepts. For
example DualityType_Allows_EventType defines what eventtypes occur in a specific duality.
In most of these tables only the IDs of the two connected tables are specified. Notable exceptions
are EventTypeStockFlow and EventTypeParticipation. Both include an IsIdentifiable
attribute since resources and agents can also occur as types in the REA-DSL operational- and
planning views. Additionally a IsSeries attribute exists for agent- or resource series in the
REA-DSL model.

Figure 5.7 shows the ERD including the additional tables of the REA DB, that are needed to
store all kinds of properties. EventTypeStockflow, EventTypeParticipation, Resource-, Event-,
and AgentType tables were already explained, but since these are the concepts that can have
properties, they are also visualized in the AdditionalAttributes.

Every property that has been defined in one of the REA-DSL views is stored in the Attribute
table with its defined Name and DataType.

The binding of these properties to the corresponding model elements is saved in the join
tables (blue) of Figure 5.7. Event- or Eventtype properties are saved in the EventType_-
Has_AdditionalAttribute table, where IsTypeProperty and IsCommitmentProperty
differ between type- and commitment properties. If each of the these attributes is set to
false, a property is identified as simple event property. EventTypeStockFlow_Has_Addi-
tionalAttribute and EventTypeParticipation_Has_AdditionalAttribute include similar at-
tributes (IsPolicyProperty, IsReserveProperty) and are used to store properties
of stockflow- and participation relationships. ResourceType_Has_AdditionalAttribute and
AgentType_Has_AdditionalAttribute only encompass an attribute to identify type properties
(IsBulkProperty, IsTypeProperty) since commitment properties can not be defined in
the agent- and resource view of the REA-DSL. IsOptional exists in each of these tables to
identify, if properties need to be defined or not.

56

Attribute

Id VARCHAR(150)

Name VARCHAR(150)

Datatype VARCHAR(45)

ResourceType_Has_AdditionalAttribute

ResourceType_Id VARCHAR(150)

Attribute_Id VARCHAR(150)

IsBulkProperty BOOLEAN

IsOptional BOOLEAN

ResourceType

Id VARCHAR(150)

ParentResourceType_Id VARCHAR(150)

Name VARCHAR(150)

IsBulk BOOLEAN

IsIdentifiable BOOLEAN

UnitOfMeasure VARCHAR(45)

AgentType

Id VARCHAR(150)

ParentAgentType_Id VARCHAR(150)

Name VARCHAR(150)

IsExternal BOOLEAN

EventType

Id VARCHAR(150)

ParentEventType_Id VARCHAR(150)

Name VARCHAR(150)

IsIncrement BOOLEAN

IsResourceUsed BOOLEAN

IsExceptionEvent BOOLEAN

IsSeries BOOLEAN

AgentType_Has_AdditionalAttribute

Attribute_Id VARCHAR(150)

AgentType_Id VARCHAR(150)

IsOptional BOOLEAN

IsTypeProperty BOOLEAN

EventType_Has_AdditionalAttribute

Attribute_Id VARCHAR(150)

EventType_Id VARCHAR(150)

IsOptional BOOLEAN

IsTypeProperty BOOLEAN

IsCommitmentProperty BOOLEAN

EventTypeParticipation

EventType_Id VARCHAR(150)

AgentType_Id VARCHAR(150)

IsSeries BOOLEAN

IsIdentifiable BOOLEAN

EventTypeStockflow

EventType_Id VARCHAR(150)

ResourceType_Id VARCHAR(150)

IsSeries BOOLEAN

IsIdentifiable BOOLEAN

EventTypeParticipation_Has_AdditionalAttribute

EventTypeParticipation_EventType_Id VARCHAR(150)

EventTypeParticipation_AgentType_Id VARCHAR(150)

Attribute_Id VARCHAR(150)

IsOptional BOOLEAN

IsPolicyProperty BOOLEAN

IsReserveProperty BOOLEAN

EventTypeStockflow_Has_AdditionalAttribute

EventTypeStockflow_EventType_Id VARCHAR(150)

EventTypeStockflow_ResourceType_Id VARCHAR(150)

Attribute_Id VARCHAR(150)

IsOptional BOOLEAN

IsPolicyProperty BOOLEAN

IsReserveProperty BOOLEAN

Figure 5.7: REA AdditionalAttributes

The mapping from the defined REA-DSL models to the generic database is described in
the next chapter. Chapter 7 deals with the creation of the user interface and the storage of the
conducted business cases in the REA DB. In this section, REA Core and the relevant subset of
AdditionalAttributes that is needed to persist business cases, will be investigated in greater detail.

57

CHAPTER 6
Mapping REA-DSL Models to the

REA DB

6.1 Considerations for the Mapping Process

The core of the REAlist project is the REA DB that consists of the business model part for storing
REA-DSL models and the generic part capable of saving actual business cases. This database
is based on REA concepts and was introduced in the previous chapter. The data structure of
the REA DB includes a lot of the concepts relevant for ERP systems and is capable of storing
economic phenomena that are specified using REA concepts. A system based on that structure
therefore does not need to be adapted drastically in order to fulfill new business needs. Since
these needs are represented as REA-DSL models, a mapping from these models to the REA DB
has to be defined. The parts of the database that are used to store the defined business models
were already identified and explained in Chapter 5.2.

In order to save REA-DSL models to the REA DB, insert statements have to be generated for
the database. These statements have to encompass all entities that were defined in the respective
business models. The database management system of choice for the purposes of this thesis
is MySQL1 since the REA DB database schema was modeled with MYSQL Workbench2. The
database can easily be created based on this schema and manipulations like populating the tables
can be achieved by using plain SQL. The mapping between the REA-DSL models and the REA
DB tables will be discussed next. Based on the defined models of the car producer in Chapter 4
mapping rules will be defined for the resources, agents, and the activities that were specified.

1http://www.mysql.com/
2http://www.mysql.com/products/workbench/

59

http://www.mysql.com/
http://www.mysql.com/products/workbench/

6.2 Mapping Resources to the REA DB

Saving REA-DSL resources to the REA DB demands that all elements are somehow mapped to
one of its tables. A model containing resources that are affected in the value chain of an enterprise
was already presented in Chapter 4 (cf. Figure 4.1 on page 40). This model contains, apart from
unique identifiable resources, all possible manifestations of resources that can be defined using
the REA-DSL: bulk resources (cash, raw material, and its subtypes), identifiable resources (car
and subtypes), and the labor resource (labor). Therefore parts of this model will be used to explain
the intended mapping. The tables that are relevant to store the aforementioned resources and their
properties are ResourceType, Attribute, and ResourceType_Has_AdditionalAttribute.

1

2

3

4 5 6

8

9

7

Figure 6.1: Resource Mapping

Figure 6.1 shows how REA-DSL resources are mapped to the REA DB. Algorithm 6.1
on page 61 describes this procedure in greater detail. All kinds of resources are represented
as entries of the ResourceType table. For labor (1) and cash (2) the IsBulk value has to
be true. The defined name and the unit for the quantity on hand are represented as Name
and UnitOfMeasure values in the table. Car (3), hybrid (4), diesel (5), and gasoline (6) are
identifiable resources since they have object- and type properties. Therefore they are distinguished
from bulk resources by only setting IsIdentifiable to true. Their name is represented as
Name value in the table entry. Hybrid (4), diesel (5), and gasoline (6) are subtypes of car. This
fact is indicated by the ParentResourceType_Id. The three aforementioned resources
therefore define a foreign key that identifies their supertype. The mapping of unique resources
is not shown in Figure 6.1, but such resources are also mapped to the ResourceType table with
IsBulk and IsIdentifiable values set to false. Type- and object properties are represented
in the Attribute table with their Name and Datatype. The relation between resources and
their properties is stored in the ResourceType_Has_AdditionalAttribute table. In case of type

60

properties like the account number (7) and government-funded (9), IsBulkProperty is true.
For object properties like serialNumber (8), IsBulkProperty is set to false. IsOptional is
defined as false for all attributes of resourcetypes since the REA-DSL currently does not provide
the possibility to declare properties as optional.

input :REA-DSL resource model rdsl_rm
output :Updated REA DB after inserting resourcetype entries re, attribute entries ae, and

resourcetype_has_additionalattribute entries rhaa

1 foreach Resource sr in rdsl_rm do
// setting attribute values for resourcetype entries

2 re.Name← <sr.Name>;
3 re.unitOfMeasure← null;
4 re.isBulk← false;
5 re.isIdentifiable← false;
6 re.parentResource← <sr.Super>;
7 if sr is a ResourceType then
8 re.isBulk← true;
9 re.unitofMeasure← <sr.QohUnit>;

10 INSERT the bulk resource entries re to the ResourceType table;
11 else
12 if sr has Type Properties then
13 re.isIdentifiable←true;
14 INSERT the identifiable resource entries re to the ResourceType table;
15 else
16 INSERT the unique identifiable resource entries re to the ResourceType table;
17 end
18 end
19 foreach Property p of Resource sr do
20 ae.Name← <p.Name>;
21 ae.Datatype← <p.Type>;
22 INSERT attribute entries ae to the Attribute table;
23 rhaa.ResourceType_Id← re.Id;
24 rhaa.Attribute_Id← ae.Id;
25 rhaa.IsOptional← false;
26 rhaa.IsBulkProperty← false;
27 if p is Type Property then
28 rhaa.IsBulkProperty← true;
29 end
30 INSERT rhaa to the ResourceType_Has_AdditionalAttribute table;
31 end
32 end

Algorithm 6.1: Resource Mapping Rules Algorithm

6.3 Mapping Agents to the REA DB

To illustrate the mapping of REA-DSL agents, the car producer example will be used again. As
indicated by Figure 4.2 on page 41, agents can be distinguished into inside- (white-headed stick
figures) and outside agents (black-headed stick figures). Similar to resources, they can have object-
(green compartments) as well as type properties (yellow compartments). The affected tables by
the agent mapping are AgentType, Attribute, and AgentType_Has_AdditionalAttribute.

The mapping of agents to the REA DB is illustrated in Figure 6.2. These rules are also shown
in Algorithm 6.2 on page 63. Basically agents are represented as entries in the AgentType table

61

1

2

4 3

6

7

5

Figure 6.2: Agent Mapping

with their Name. IsExternal is used to differentiate inside- from outside agents. Therefore
in the table entry for the external agent factory (1) IsExternal is true. For internal agents
like employee (2) this value is set to false. Agents can have supertypes which is represented
by the ParentAgentType_Id value. Examples in Figure 6.2 are clerks (3) and cashiers
(4). Mapping agent properties to the REA DB works the same way as for resources. They are
mapped to the Attribute table with their specified Name and Datatype. AgentType_Has_-
AdditionalAttribute binds the properties to their agenttypes. In case of type properties like
the startingwage (7), IsTypeProperty is set to true. For object properties like the factories
address (5) or the employees actual wage (6) the value is set to false. Properties of agents that are
inherited from supertypes have to be considered as well. The object properties of employees (5)
are inherited by all subtypes (clerk (3) and cashier (4)). Every property of agents is saved once as
entry in the Attribute table, but can be related to more than one agent in the Agenttype_Has_-
AddtionalAttribute table. E.g., the clerk (3) agenttype is related to object- and type properties
of its supertype (6,7). Since all properties that were specified in the REA-DSL agent model are
not optional at the time when this thesis was written, IsOptional is false for all entries in the
table.

6.4 Mapping the Operational/Planning View to the REA DB

As mentioned before, the operational view is derived from the planning view. Therefore, we
describe no explicit mapping for the operational view. The value activities that are defined
in the REA-DSL value chain view are also not explicitly mapped to the REA DB since they

62

input :REA-DSL agent model rdsl_am
output :Updated REA DB after inserting agenttype entries ae, attribute entries attre, and

agenttype_has_additionalattribute entries ahaa

1 foreach Agent sa in rdsl_am do
// setting attribute values for agenttype entries

2 ae.Name← <sa.Name>;
3 ae.isExternal← false;
4 ae.superAgent← <sa.Super>;
5 if sa is an OutsideAgent then
6 ae.isExternal← true;
7 INSERT the agent entries ae to the AgentType table;
8 else
9 INSERT the agent entries ae to the AgentType table;

10 end
11 foreach Property p of Agent sa do
12 attre.Name← <p.Name>;
13 attre.Datatype← <p.Type>;
14 INSERT attribute entries attre to the Attribute table;
15 ahaa.AgentType_Id← ae.Id;
16 ahaa.Attribute_Id← attre.Id;
17 ahaa.IsOptional← false;
18 ahaa.IsTypeProperty← false;
19 if p is Type Property then
20 ahaa.IsTypeProperty← true;
21 end
22 INSERT ahaa to the AgentType_Has_AdditionalAttribute table;
23 end
24 end

Algorithm 6.2: Agent Mapping Rules Algorithm

can be derived from the dualities. Instead all concepts of the defined planning view REA-DSL
models, that are referenced in the value chain, are mapped to the database. These concepts include
events/eventtypes, commitments, partcipation- and stockflow relationships, and defined properties.
To demonstrate the mapping, the sales activity of the car producer is used (cf. Figure 4.4 on page
44). Since this task is quite extensive, the mapping will at first be explained for events/eventtypes,
commitments, and the participation/stockflow relationships. Afterwards the mapping for the
various properties will be described. The rules for mapping REA-DSL planning view models are
illustrated in Algorithm 6.3 to 6.6. A description of the basic planning mapping (dualitytypes,
contracttypes, and eventtypes) is described in Algorithm 6.4. These rules are extended by the
additional attributes for the eventtypes in Algorithm 6.5. The rules for stockflows, participation
relationships, and the respective properties is stated in Algorithm 6.6 and 6.3.

Mapping of Events/Eventtypes, Commitments, and Relationships

The tables of the REA DB, that are needed for the mapping are ContractType, DualityType,
ContractType_Allows_DualityType, EventType, DualityType_Allows_EventType, Event-
TypeStockflow, and EventTypeParticipation. Agents and resources are just referenced in
the planning- or operational views of the REA-DSL. Therefore existing database entries for
agents and resources (based on the aforementioned mappings in Chapter 6.2 and 6.3) are also
reused.

Figure 6.3 illustrates how the mapping of a REA-DSL planning view model works in detail.

63

1

2

3

4

5

Figure 6.3: Event-, Commitment, and Relationship Mapping

The left side shows the sales activity, while the right side depicts the REA DB tables that are used
to store the concepts. The sales activity represents a duality between a decrement (sales eventtype)
and an increment event set (cashreceipt eventtype). Therefore an entry in the DualityType table
is created with a Name and an IsConversion value set to false since the sales activity is an
exchange. The decrement (1) and increment commitments (2), that are made to fulfill the events,
are mapped to the ContractType table as one single entry, defining a contract with its Name.
The IsSchedule value is set to false because exchanges are planned in form of a contract
and not a schedule. Agents that are legally committing to fulfill the decrement and increment
event sets are stored as IncrementAgentType (customer) and DecrementAgentType
(salesperson). The relationship between dualitytypes and their corresponding contracttypes is
represented in the ContractType_Allows_DualityType table by saving their Ids. Events or
eventtypes are stored in the EventType table with the Name and, if an event hierarchy exists, the
ParentEventType_Id (this functionality is currently not supported by REA-DSL though).
For the sale event (3) no parent element exists, but the IsIncrement and IsResourceUsed
value is set to false, because during a sale the resource is decremented and not used. IsSeries is
also false since a sale is not a resource series. Stockflows are mapped to the EventtypeStockflow
table. If the affected resource is a series, IsSeries is true. IsIdentifiable is true when
resourcetypes are affected. Since during the sale event a car resourceseries is decremented (4), this
stockflow is represented with IsSeries as true and IsIdentifiable as false. The mapping

64

of participations follows the same principle. The agenttypeseries that participates in the sale event
(5) is depicted in the EventtypeParticipation table with IsSeries and IsIdentifiable
values both true.

Mapping of Properties

Properties that were specified in the planning view are saved to the Attribute table of the REA
DB. Compared to the resource- and agent views, not only two kinds of properties exist. Event-,
event type-, and commitment properties can be specified for events/eventtypes. Stockflow re-
lationships can have stockflow-, policy-, and reserve properties. Participate relationships can
contain participate-, policy-, and reserve properties. The EventTypeStockflow_Has_Addition-
alAttribute, EventType_Has_AdditionalAttribute, and EventTypeParticipation_Has_Addi-
tionalAttribute tables are affected by the property mapping. These tables distinguish between
the aforementioned property types and relate attributes to events or eventtypes, stockflows, and
participations.

1 2

3

Figure 6.4: Planning View Attribute Mapping

Figure 6.4 shows an excerpt of the car producers sales activity to describe the mapping of
all relevant properties. Properties of the sale eventtype (1) are stored as Attribute entries. The
Names of these properties and their Datatype correspond to the defined values in the REA-
DSL. Therefore saleNr, saleDate, region, orderNr and orderData are all inserted as attributes. The
distinction between the different property types of events/eventtypes is made in the EventType_-
Has_Additional_Attribute table. For example the region property’s Id in the Attribute table
is stored together with the Id of the sale eventtype in EventType_Has_Additional_Attribute.
Since region is an event type property, the IsTypeProperty value is set to true. For the
orderNr and orderDate of the sale eventtype (1) only IsCommitmentProperty is set to true,
to identify them as commitment properties. The mapping of the participate- and stockflow prop-
erties works similar. ActualPrice, standardPrice, and committedPrice of the stockflow between

65

the car resourceseries and the sale eventtype (2) are stored as entries in the Attribute table.
Customersatisfaction, qualifies, and dresscode of the participate relationship (3) are saved in that
table as well. EventtypeStockflow_Has_AdditionalAttribute and EventtypeParticipation_-
Has_AdditionalAttribute relate the aforementioned properties to the corresponding eventtype.
IsPolicyProperty and IsReserveProperty are used to differentiate between policy-
and reserve properties, by defining one of the values as true. If both are false, the property
either is a stockflow or a participate property. E.g., actualPrice of the stockflow relation (2) is
mapped to the Attribute table with its defined Name and Datatype. Since actualPrice is a
stockflow property, IsReserveProperty and IsPolicyProperty are both false in the
EventtypeStockflow_Has_AdditionalAttribute table.

input :Eventtype et
output :Updated REA DB after inserting eventtypeparticipationentries pte, attribute entries attre, and

eventtypeparticipation_has_additionalattribute entries etphaa

1 foreach Agent a of Eventtype Resources et.Agents do
// inserting participations

2 pte.IsAgentIdentifiable← false;
3 pte.IsAgentSeries← false;
4 if a is AgentType or a is AgentTypeSeries then
5 pte.IsIdentifiable← true;
6 end
7 if a is AgentSeries or r is AgentTypeSeries then
8 pte.IsSeries← true;
9 end

10 INSERT pte to the EventTypeParticipation table;
// inserting participation propertes

11 foreach Property p of EventTypeParticipation do
12 attre.Name← <p.Name>;
13 attre.Datatype← <p.Type>;
14 INSERT attribute entries attre to the Attribute table;
15 etphaa.EventTypeParticipation_Id← pte.Id;
16 etphaa.Attribute_Id← attre.Id;
17 etphaa.IsOptional← false;
18 etphaa.IsPolicyProperty← false;
19 etphaa.IsReservementProperty← false;
20 if p is Policy Property then
21 etphaa.IsPolicyProperty← true;
22 end
23 if p is Reserve Property then
24 etphaa.IsReserveProperty← true;
25 end
26 INSERT etphaa to the EventTypeParticipation_Has_AdditionalAttribute table;
27 end
28 end

Algorithm 6.3: Mapping Rules Algorithm for Participations and Attributes

66

input :REA-DSL value chain model rdsl_vcm
output :Updated REA DB after inserting contracttype entries cte, contracttype_allows_dualitytype entries ctadt,

dualitytype entries dte, eventtype entries ete, dualitytype_allows_eventtype entries dtaet

1 foreach Business activity ba in rdsl_vcm do
2 dte.Name← <ba.Name>;
3 dte.IsConversion← false;
4 if ba.Type is Conversion then
5 dte.IsConversion← true;
6 end
7 INSERT the dualitytype entries dte to the DualityType table;
8 if ba defines Contract then
9 cte.IsSchedule← false;

10 cte.IncrementAgentType← ba.IncrementSet.Commitment.Agent;
11 cte.DecrementAgentType← ba.DecrementSet.Commitment.Agent;
12 INSERT the contracttype entries cte to the ContractType table;
13 ctadt.ContractType_Id← cte.Id;
14 ctadt.DualityType_Id← dte.Id;
15 INSERT ctadt to the Contracttype_Allows_Dualitytype table;
16 end
17 foreach Eventtype e of Business activity ba do
18 ete.Name← <e.Name>;
19 ete.IsIncrement← false;
20 ete.IsUsed← false;
21 ete.IsSeries← false;
22 if e is Íncrement Event then
23 ete.IsIncrement← true;
24 end
25 foreach Resource r in e.Resources do
26 if r is Used then
27 ete.IsUsed← true;
28 end
29 end
30 if e is EventSeries or e is EventTypeSeries then
31 ete.IsSeries← true;
32 end
33 INSERT ete to the EventType table;
34 dtaet.DualityType_Id← dte.Id;
35 dtaet.EventType_Id← ete.Id;
36 INSERT dtaet to the DualityType_Allows_Eventtype table;
37 end
38 end

Algorithm 6.4: Planning Mapping Rules Algorithm

67

input :Eventtype et
output :Updated REA DB after inserting attribute entries attre, and eventtype_has_additionalattribute entries ethaa

1 foreach Property p of Eventtype et do
// setting attribute values for additional attribute entries of event et

2 attre.Name← <p.Name>;
3 attre.Datatype← <p.Type>;
4 INSERT attribute entries attre to the Attribute table;
5 ethaa.EventType_Id← ete.Id;
6 ethaa.Attribute_Id← attre.Id;
7 ethaa.IsOptional← false;
8 ethaa.IsTypeProperty← false;
9 ethaa.IsCommitmentProperty← false;

10 if p is Type Property then
11 ethaa.IsTypeProperty← true;
12 end
13 if p isCommitment Property then
14 ethaa.IsCommitmentProperty← true;
15 end
16 INSERT ethaa to the EventType_Has_AdditionalAttribute table;
17 end

Algorithm 6.5: Mapping Rules Algorithm for Additional Attributes of Events

input :Eventtype et
output :Updated REA DB after inserting eventtypestockflow entries sfte, attribute entries attre,and

eventtypestockflow_has_additionalattribute entries etsfhaa

1 foreach Resource r of Eventtype Resources et.Resources do
// inserting stockflows

2 sfte.IsIdentifiable← false;
3 sfte.IsSeries← false;
4 if r is ResourceType or r is ResourceTypeSeries then
5 sfte.IsIdentifiable← true;
6 end
7 if r is ResourceSeries or r is ResourceTypeSeries then
8 sfte.IsSeries← true;
9 end

10 INSERT sfte to the EventTypeStockflow table;
// inserting stockflow propertes

11 foreach Property p of EventTypeStockflow do
12 attre.Name← <p.Name>;
13 attre.Datatype← <p.Type>;
14 INSERT attribute entries attre to the Attribute table;
15 etsfhaa.EventTypeStockflow_Id← sfte.Id;
16 etsfhaa.Attribute_Id← attre.Id;
17 etsfhaa.IsOptional← false;
18 etsfhaa.IsPolicyProperty← false;
19 etsfhaa.IsReserveProperty← false;
20 if p is Policy Property then
21 etsfhaa.IsPolicyProperty← true;
22 end
23 if p is Reserve Property then
24 etsfhaa.IsReserveProperty← true;
25 end
26 INSERT etsfhaa to the EventTypeStockflow_Has_AdditionalAttribute table;
27 end
28 end

Algorithm 6.6: Mapping Rules Algorithm for Stockflows and Attributes

68

6.5 Generating Insert Statements for the REA DB

Based on the predefined mapping, SQL inserts are generated for the REA-DSL models to save
them to the REA DB. Following the same approach as Mayrhofer [41] while developing the
REA-DSL, Microsoft’s T4 text template transformation toolkit (T4) [7] is used to accomplish
this task. The T4 toolkit is a model-to-code transformation tool where text templates are used to
generate text files. These templates contain directives specifying how it is processed, text blocks
that are copied to the output without further changes, and control blocks in form of C# or Visual
Studio .NET program code for conditional or repeated text parts. Furthermore, the code blocks
can reference elements of DSL models. Therefore the elements of the REA-DSL models can be
used and further processed in the text templates. The generated file can be text of any kind. It is
possible to generate HTML files as well as SQL files, as needed for the purpose of this thesis.

1

2

3

Figure 6.5: T4 Text Templates and generated SQL Inserts for an Agent

Figure 6.5 illustrates how SQL insert statements are generated for an agent in the REA-DSL
model. The outside agent factory has three additionally defined object properties: name,
address, and email (1). T4 text templates define how agents are transformed to insert
statements. Elements of the REA-DSL model can be referenced by variable names. In Figure
6.5, “a“ is an agent element in the REA-DSL model. Depending on the fact if this element
is an inside- or outside agent and whether superagents exists, insert statements with differing
values are generated (2). Since factory is an outside agent that has no parent agents (cf.
Figure 4.2 on page 41), the value of ParentAgentType_Id is null and IsExternal is
true. Generated inserts for the object properties of the factory are also shown. One statement
adds an attribute while the other statement relates the property to the agenttype (3). The T4

69

transformation from additional properties to SQL inserts is not shown in Figure 6.5. The created
statements are included for demonstration purpose to indicate the capabilities of the T4 text
template transformation toolkit. The generated SQL insert statements need to be loaded into
a relational data modeling tool. Using MySQL Workbench with an already running REA DB
enables a population of the database by simply executing the generated scripts.

70

CHAPTER 7
Generating User Interfaces based on

Business Models

7.1 Overview

Chapter 6 illustrated how to generate SQL insert scripts that can be used to save REA-DSL
business models in the REA DB. However, these models just represent a blueprint for business
events that can occur. In order to conduct actual business cases, a user interface has to be
generated based on the business model data that allows the specification of values for actual
events and saving them to the REA DB. Figure 7.1 shows this concept. The saved REA-DSL
models, consisting of agent-, resource-, value chain-, operational-, and planning views, are
represented as business model data in the REA DB and used for the generation of adapted user
interfaces (1). This masks can then be used to define actual business cases that are stored in the
generic part of the database (2).

REA DB

Sale Event
30.7.2013

Audi A3

Walter Hank

Generated UI

Event

Resource

Agent1

Resources

Agents

Submit

Agent2

(1) Generate UI

(2) Conduct
business case

Business model
part

Generic part
for business case data

Figure 7.1: Concept of the UI Generation

71

7.2 Relevant REA DB Parts for administrating Business Cases

Before going any further, the relevant tables of the REA DB’s generic part that are needed to
save business cases have to be identified. As briefly stated in Chapter 5, the REA-Core subpart
contains the majority of the needed tables. A subset of AdditionalAttributes is necessary to store
actual values of defined attributes.

Event

Id INT

EventType_Id VARCHAR(150)

Duality_Id INT

ReceiveAgent_Id INT

ProvideAgent_Id INT

TotalValue DOUBLE

TotalValueNet DOUBLE

Currency_Id VARCHAR(3)

DateStart DATETIME

DateEnd DATETIME

IsReconciled BOOLEAN

Event_Has_Stockflow

Event_Id INT

Stockflow_Id INT

Stockflow

Id INT

Resource_Id INT

Quantity DOUBLE

PricePerUnit DOUBLE

TotalValue DOUBLE

TotalValueNetto DOUBLE

Currency_Id VARCHAR(3)

Tax_Id INT

Resource

Id INT

ResourceType_Id VARCHAR(150)

Name VARCHAR(45)

IsBulk BOOLEAN

IsIdentifiable BOOLEAN

QoH DOUBLE

IsComposed BOOLEAN

TaxClass INT

Agent

Id INT

Name VARCHAR(45)

Participation

Participation_id INT

Agent_Id INT

Event_Has_Participation

Event_Id INT

Participation_Participation_id INT

AgentType

Agent_Has_AgentType

Agent_Id INT

AgentType_Id VARCHAR(150)

EventType ResourceTypeDualityType

Duality

Id INT

DualityType_Id VARCHAR(150)

ExternalAgent_Id INT

Date DATE

Status_Id INT

DualityStatus

Id INT

Status VARCHAR(45)

Figure 7.2: REA Core Subset relevant for Business Cases

Figure 7.2 shows the tables of REA-Core with the tables that are needed to represent a
business case (with visible attributes). Concrete agents, resources, and dualitystatuses are saved in
the Agent, Resource, and DualityStatus tables. While agents and dualitystatuses only possess
Ids and Names, resources also have specified values for IsBulk, IsIdentifiable, and
QoH. When an actual business case is specified, it is saved as an entry in the Duality table,
referencing a predefined status that already exists in the REA DB. The Date value represents the
creation date. Since a duality consists of several events, each one is represented as an entry of the
Event table with its referenced Duality_Id, Eventtype_Id, DateStart, and DateEnd.
The values for ProvideAgent and ReceiveAgent need to reference agents that are already
saved. Stockflows and participations that belong to an event are saved as entries in the Stockflow
and Participation tables with specified values and referenced agents or resources. A concrete
business case is always based on an underlying business model which defines its structure. In
Figure 7.2 this fact is illustrated by the Dualitytype, Agenttype, Eventtype, and Resourcetype

72

tables that hold the business model data (cf. Chapter 6). The creation of a business case is
therefore restricted to the activities that occur in the business model (only dualitytypes that are
defined by the model can be referenced when inserting values to the duality table). Furthermore,
the structure of events is predefined since dualitytypes only allow certain eventtypes. The same
holds for participating agents and affected resources that only allow agents/resources of a certain
type. Another important thing that has to be mentioned in this context are properties (e.g., object-
or event properties) that are defined on business model elements (e.g., agents, resources, or
events). A REA-DSL business model only defines that such properties exist and which datatype
they possess. For a business case the actual values of these properties also need to be persisted in
the database.

Attribute

Id VARCHAR(150)

Name VARCHAR(150)

Datatype VARCHAR(45)

Agent_Has_AdditionalAttributeValue

Agent_Id INT

Attribute_Id VARCHAR(150)

Numeric_Value DOUBLE

Textual_Value VARCHAR(45)

Boolean_Value BOOLEAN

Datetime_Value DATETIME

Event_Has_AdditionalAttributeValue

Event_Id INT

Attribute_Id VARCHAR(150)

Numeric_Value DOUBLE

Textual_Value VARCHAR(45)

Boolean_Value BOOLEAN

Datetime_Value DATETIME

Event

Id INT

EventType_Id VARCHAR(150)

Duality_Id INT

ReceiveAgent_Id INT

ProvideAgent_Id INT

TotalValue DOUBLE

TotalValueNet DOUBLE

Currency_Id VARCHAR(3)

DateStart DATETIME

DateEnd DATETIME

IsReconciled BOOLEAN

Resource

Id INT

ResourceType_Id VARCHAR(150)

Name VARCHAR(45)

IsBulk BOOLEAN

IsIdentifiable BOOLEAN

QoH DOUBLE

IsComposed BOOLEAN

TaxClass INT

Resource_Has_AdditionalAttributeValue

ResourceType_Id INT

Attribute_Id VARCHAR(150)

Numeric_Value DOUBLE

Textual_Value VARCHAR(45)

Boolean_Value BOOLEAN

Datetime_Value DATETIME

Agent

Id INT

Name VARCHAR(45)

Figure 7.3: Values of Additional Attributes for Business Cases

Figure 7.3 shows the tables that are necessary to store property values. Additional attributes
for agents are saved in the Agent_Has_AdditionalAttributeValue table. The values can either
be Numeric, Textual, Boolean- or Datetime_Values. For events and resources the
same approach is used by saving the data in the Event_Has_AdditionalAttributeValue or
Resource_Has_AdditionalAttributeValue table. The attributes that have to be defined for
entities are defined in the business model. For example when a new agent is saved, its agenttype

73

(the entry in the REA DB business model part) has to be referenced. If additional properties
are defined for that agenttype, the actual agent has to define values for them. These values are
also restricted by the business model. If a REA-DSL model specifies an agent with an object
property salary that has a double datatype, it is only possible to define the attribute value for the
corresponding property as numeric.

7.3 Scope of the UI-Generation Prototype

In order to support users in conducting business cases and persist them in the REA DB, we
provide a prototype that generates user interfaces adapted to the already stored business model
data. As already mentioned, specifications of the underlying model have to be represented in
the generated masks. Since already existing dualitystatus, agent, and resource records are a
mandatory requirement to specify business cases, the prototype has to provide the possibility to
create, update, or delete those entities. Users should only be able to create dualities for activities
that occur in the value chain of a stored business model. The status of a duality can be chosen
from an already persisted set of statuses in the REA DB. Depending on the selected dualitytype,
the number of events that need to be specified is predefined. For each event provide- and receive
agents have to be declared. The selection possibilities for these agents are already restricted by the
business model since only specific types are acceptable. The number of participating agents per
event is also represented in the model. Therefore, the generated user interface has to assure that
all needed participation relationships can be specified by the user. Since participating agenttypes
in an event are stated in the business model, the actual agents that can be chosen by the user are
restricted. The same conditions have to hold for stockflow relationships and affected resources.
A special case are participating agent(type)series and affected resource(type)series. When such
elements are defined, it depicts that at least one element is related to an event. For example a
participating agentseries illustrates that at least one agent of the corresponding type participates
in the event. But there also can be more participants (of the same type). The prototype therefore
has to grant users the opportunity to also specify such cases.

The intended functionality of the UI-Generation prototype is summarized in the following
and can be divided in two sections: the administration of all entities that are needed to specify
business events (1-3) and the actual business case creation (4-8) .

1. Administrating dualitystatuses. Create, update, and delete records in the dualitystatus
table of the REA DB. Before saving, user inputs should be validated to prevent errors.

2. Administrating agents. Create, update, and delete agents. Since agents need to reference
an existing agenttype, all existing types in the REA DB can be chosen by the user. Depend-
ing on that choice, the additional attributes are listed and have to be specified. All user
inputs need to be validated.

3. Administrating resources. Create, update, and delete resources. Resourcetypes are
chosen from existing records that were persisted as business model data. Similar to agents,
additional attribute values need to be defined and inputs are validated.

74

4. Creating business cases based for specific dualitytypes. Business cases can be specified
for all value activities that occur in the underlying business models value chain. Since
these activities are represented as entries of the dualitytype table, the prototype must allow
users to choose one of the existing entries. Based on that selection, masks for the detailed
specification of events are shown.

5. Definition of events. The number of events that occur in a business case is defined in
the planning- or dualityviews of a REA business model. When saved to the REA DB,
these events are persisted in the eventtype table. The prototype is capable of automatically
visualizing masks for all events that belong to the selected dualitytype. These masks should
encompass elements to define everything that is needed to save an event in the REA DB
(e.g., provide- and reveive agent, start- and enddate). Furthermore, it has to be possible
to specify values for additional attributes that are derivated from the business models. All
inputs should be accordingly validated.

6. Definition of participations. The number of participating agents is already reflected in the
saved business model data. The prototype should list all participations in the user interface
for each event and enable users to specify actual agents. Only agents that have the same
type as specified in the business model can be selected. If participation relationships possess
additional attributes, input fields should be generated to define the values. Participating
agent(type)series also need to be considered. It therefore has to be possible to define further
participations if a series occurs.

7. Definition of stockflows. The interface for an event should encompass a section to define
all stockflows that were specified in the business model. The concrete resources have to be
selected by the users. Again only resources that have the corresponding types are possible.
Similar to participations, the definition of affected resource(type)series during stockflows
has to be considered.

8. Saving business cases to the REA DB. After users filled in all the information that is
necessary, the business case should be persisted in the database without errors.

As illustrated, the generation of sections that can be used to specify commitments is
not included in the prototypes functionality. While the main goal of this thesis is to specify
a mapping to insert REA-DSL models to the REA DB, the UI-Generation prototype is
created to prove that the saved business model data can be used as foundation for adaptable
user interface creation. The masks for commitments basically would look similar to those
of actual events, but including them would not have provided us with additional insights on
how to generate user interfaces based on the persisted business models. Therefore this part
was excluded from the prototype’s scope.

75

7.4 Architecture and used Technologies

Figure 7.4 shows the technologies that are used to develop the UI-Generation prototype.

Java

Hibernate

RDBMS
MySQL Server

GWT

Sp
ri

n
g

Web
Browser

Figure 7.4: Used Technologies

MySQL

The foundation of the UI-Generation prototype is the database with the persisted business models.
As already mentioned in Chapter 6, MySQL Workbench was used to design the database. We
therefore stick to that decision and use MySQL as the database management system. A great
advantage in doing so is that the database schema of the REA DB can directly be adapted using
MySQL Workbench. The designed database can then be easily forward engineered and hosted
with MySQL Server. Furthermore, the SQL insert scripts that were generated for REA-DSL
business models can easily be loaded and executed to quickly populate the database.

Google Web Toolkit

For the creation of the user interfaces based on saved business models in the database, the Google
Web Toolkit (GWT) will be used. GWT is a toolkit for the development of web applications,
that possesses a Java to JavaScript compiler, a XML-Parser, internationalization support, and an
integration of the JUnit testing framework1. GWT also specifies an interface for asynchronous
calls to web servers using remote procedure calls (RPC) or JavaScript object notation (JSON) .
Since the long term goal of the REAlist project is an ERP system that can be hosted in the cloud
and used by tenants with a web browser, creating the prototype with a tool capable of this made
sense. The outstanding advantage of GWT is that due to the Java to JavaScript cross compiler
client- and server side code can be entirely written in Java. Therefore, a variety of well known
frameworks can be used.

1http://junit.org/

76

http://junit.org/

Hibernate and Hibernate Tools

Hibernate2 is a persistence framework for Java. It supports object relational mapping (ORM),
allowing to save Java objects in a relational database. Furthermore, retrieved records from
the database are transformed to objects and can be used in the Java application. Hibernate is
compatible with several databases. Therefore, we use it to extract and store data in the MySQL
REA DB. As illustrated in Chapter 5 and Appendix A, the REA DB consists of a lot of tables.
Manually coding Java classes for all subparts of the database that are needed for the prototype
creation would be cumbersome and error prone. Therefore we use Hibernate Tools3 to reverse
engineer the existing database and automatically create domain model classes, hibernate mapping
files, and annotated EJB3 entity beans. During development, the data structure of the REA DB
changed several times. Therefore Hibernate Tools proved very useful to quickly generate domain
classes after adaptations.

Spring

Another useful framework for Java platforms is Spring4. It provides a programming and con-
figuration model for Java enterprise applications. One of the core characteristics of the Spring
framework is the support of dependency injection.

7.5 Administration of Entities

The functionality of the prototype will be explained by the business model of the car producer
that was already used to explain the REA-DSL and the mappings to the REA DB. It consists of
a resource view defining all resources, an agent view specifying all agents, a value chain view,
operational-, and planning views (cf. Chapter 4). When creating a business case for this model,
resources, agents, and dualitystatuses already have to be persisted in the REA DB since events,
participations, and stockflows just reference these elements. Therefore, the prototype provides an
administration section that enables users to create these entities.

Dualitystatuses

Figure 7.5 shows the generated interface for the administration of dualitystatuses. Statuses that
are already saved in the REA DB are listed in the table on the left and can be updated or deleted.
When a new status is added to the database, id’s are generated automatically. However, the
statuscode has to be specified by the user. Since this value is mandatory and is stored as
VARCHAR with 45 characters at most (cf. Figure 7.2 on page 72), textboxes can be validated
for correctness before something is saved or updated. Validation errors display notifications to
the user. The generated user interface for the administration of dualitystatuses is not complex.
Statuses can not possess additional attributes and only fields for fixed attributes (in this case the
statuscode of the duality) are generated.

2http://hibernate.org/
3http://hibernate.org/tools/
4http://projects.spring.io/spring-framework/

77

http://hibernate.org/
http://hibernate.org/tools/
http://projects.spring.io/spring-framework/

Figure 7.5: Administrating Dualitystatuses

Agents

Figure 7.6 illustrates how the interface for the agent administration looks like.

Figure 7.6: Administrating Agents

Basically the UI looks similar to the administration of dualitystatuses. A table lists all entities
that are already persisted in the database and new agents can be created. Agents have an id that
is automatically generated when a record is saved and a name that has to be specified. Besides
that, each agent has an agenttype that is selected by the user. The possible manifestations
are already persisted in the REA DB and are derived from the saved agent view model of the
car producer (cf. Figure 4.2 on page 41). Furthermore, labels and textboxes for the definition

78

of attribute values are generated. For the selected agenttype (factory) these attributes are name,
address, and email. Each input field for attribute values is also validated before saving as
will be shown for resources in the next section.

Resources

The administration of resources is stated in Figure 7.7. For demonstration purposes several
resources were already created and are listed in the table to the left. The right side shows the
creation of a new resource where values for the fixed attributes (name and composed) have
to be declared. Furthermore, an existing resourcetype has to be chosen. Similar to the
agent administration, possible types are retrieved from the already stored business model data.
Since the model of the car producer is used, those resource types are labor, car, gasoline, diesel,
hybrid, cash, raw material, steel, plastic, aluminium, rubber, and glass (cf. Figure 4.1 on page
40). The QoH only is needed if the selected type is a bulk resource. Otherwise the textbox will
not be visible. When a type possesses properties, values have to be declared. The resource
that should be added in Figure 7.7 is a steel part. Therefore, the only additional property is
europricePerKilo. When trying to save the resource, the prototype recognizes that user
inputs were incorrect (QoH and europricePerKilo are undefined).

Figure 7.7: Administrating Resources

7.6 Conducting Business Cases

After inserting some records for dualitystatuses, agents, and resources, a concrete business case
can be defined for an existing dualitytype. The types that can be chosen are already persisted in
the business model data since each activity in the REA-DSL business models value chain is stored
as dualitytype. For the fictitious car producer four such activities exist: purchase, carproduction,
sales, and payroll (cf. Figure 4.3 on page 42). Therefore, the listbox in the section for business

79

1

2

3 4

Figure 7.8: Sales Business Case Conduction

case creation of Figure 7.8 offers these choices to the user (1). Depending on the users selection,
the masks for the detailed event definitions are shown. In Figure 7.8 the sales dualitytype (cf.
Figure 4.4 on page 44) was selected leading to an event panel with two tabs that represent the
events that have to be specified (sale and cashreceipt) (2). Since the sale event contains properties,
textboxes are generated for each single one, that allow the specification of the additional attribute
values. These attributes are saleNr, saleDate, and region. The remaining two (orderNr
and orderDate) are omitted since commitment properties are related to the commitments and
not the actual events. Since commitment definitions are not part of the UI-Generation prototype,
no textboxes for these attributes are generated. Each event has provide- and receive agents
that need to be defined. The prototype automatically recognizes which agents are qualified and
proposes them to the user. For example when an activity is an exchange, only inside agents
can provide resources during a decrement event (since a resource that has value to the company
is decreased which can only be done by inside agents). On the other hand if the event is an
increment, only external agents are providing while internal agents receive. The UI-Generation
prototype only offers applicable choices to the user. Since an event has a starting- and end
date, datepickers are generated that support users in the selection. Besides that, each event
has agents that participate (3) and resources that are affected in the event (4). Participations and

80

stockflows are also restricted by definitions in the business model, meaning that only specific
persisted agents or resources can be chosen. During the sale event, the car resource is decreased.
Therefore only resources that have resourcetype car (or one of its subtypes) can be selected.
In Figure 7.8 Ford Mustang, Audi A8, and Audi A3 are possible choices. Since the stockflow
decreasing a car is defined as series (cf. Figure 4.4 on page 44), users need to have the opportunity
to define several cars that are affected during the event. In Figure 7.8, this is indicated by the
additional button (“Add Stockflow“) in the stockflow section (4). Participations for the sale event
are generated the same way. Three participating agents exist: salesperson, shop assistant, and
customer. For shop assistants additional participations can be created since it is defined as series
in the business model. As explained in Chapter 7.3, the specification of commitments is not
supported by the UI-Generation prototype.

81

CHAPTER 8
Evaluation of the Artifact

8.1 Basic Concept of the Artifact Evaluation

In order to evaluate the work that has been conducted in this thesis, it is necessary to test the
functionality of the created artifact based on different scenarios. So far the business model of
the fictitious car producer was used to explain the REA-DSL itself (cf. Chapter 4), the mapping
to the REA DB (cf. Chapter 6), and the automated generation of user interfaces based on the
saved data (cf. Chapter 7). The intention behind that was to use an ongoing example that
comprises all possible concepts of the REA-DSL and facilitate readers of this thesis to follow the
explanations. However, in order to prove that the created artifact works, it is necessary to evaluate
its functionality and completeness for other business models as well.

When developing the REA-DSL, Dieter Mayrhofer used a similar approach [41]. In order
to evaluate the completeness of his tool, twelve REA class diagrams where redesigned with the
REA-DSL. These models were provided by McCarthy who used them in his classes to teach
the REA ontology and are based on real companies in the United States. The models vary in
complexity and structure and since they are used for teaching purposes they concentrate on
different concepts of REA. This was one of the main reasons for using McCarthy’s models instead
of sticking to smaller, simpler models that can be found in the internet or creating new ones from
the scratch. Utilizing them guarantees that all concepts of the REA ontology are included and
provides a solid basis for further investigations. Therefore taking these models as foundation for
the REA-DSL’s evaluation made perfect sense.

Since an existing REA-DSL business model is a mandatory requirement for the artifact that
is developed in the context of this thesis, we will use the same models for evaluation purposes as
Mayrhofer [41]. As mentioned before this ensures that all relevant concepts are covered. Besides
that, we can reuse the models that already have been remodeled with the REA-DSL. Based on
these models the functionality and completeness of (i) the insert statement generation for the
business models and (ii) the user interface generation prototype will be evaluated.

83

The twelve business models that will be used are described below. The REA concepts that
are used in the corresponding REA-DSL models are also briefly stated.

• University Slum Lords: acquisition of resources (value chain consisting of one leasing
exchange activity), inside- and outside agents, bulk resource, no hierarchies on agents and
resources, only object properties defined for agents and resources.

• Boston Bottle: acquisition and revenue cycle (value chain consisting of purchase- and
sale exchange activity), inside- and outside agents with specified hierarchy, bulk resources,
resourcetypeseries affected in stockflows.

• Marilyn Monroe Makeovers: acquisition and revenue cycle (value chain consisting of
purchase- and consultation exchange activity), inside- and outside agents, bulk resources,
no hierarchies on agents and resources, resourcetypeseries in stockflow, agentseries in
participation.

• Native Alaskan Aircraft Expeditions: value chain consisting of one expedition exchange
activity, inside- and outside agents with specified hierarchy, bulk resources with specified
hierarchy, several decrement eventtypes (one decrement eventtypeseries), resource- and
resourcetypeseries affected in stockflows, participating agentseries, defined event- and
commitment properties for events.

• Vivian’s fashion Factory I: value chain consisting of one purchase exchange activity,
inside- and outside agents, bulk resources, no hierarchies on agents and resources, event
properties for event, defined commitments.

• Brian’s Gemini Music: value chain consisting of one musicjob exchange activity, inside-
and outside agents, bulk resource, no hierarchies on agents and resources, several decrement
eventtypes (one decrement eventtypeseries), resourcetypeseries affected in stockflows,
participating agenttypeseries, defined commitments.

• Flint X-Ray: value chain consisting of one officevisit exchange activity, inside- and outside
agents, bulk resource, no hierarchies on agents and resources, several eventtypeseries,
participating agenttypeseries, defined commitments.

• South Shore Petroleum: acquisition and revenue (value chain consisting of refineryjob-
and customershipment activity), inside- and outside agents, bulk resources with specified
hierarchy, eventtypeseries, resourcetypeseries in stockflow, defined commitments.

• Western Michigan Office Furniture: using raw material to manufacture items (value
chain consisting of production conversion activity), inside agents, bulk resources, no
hierarchies on agents and resources, eventtypeseries, participating agenttypeseries, re-
sourcetypeseries in stockflow, defined commitments.

• Michigan Medical Equipment: value chain with one manufacturing conversion activity,
hierarchy on inside agents, resourcetypeseries in stockflow, participating agenttypeseries,
defined commitments.

84

• Nantasket Basket, Gasket, and Casket: value chain with purchase exchange and produc-
tion conversion activity, outside- and inside agents with hierarchy, bulk resources, several
decrement eventtypeseries, participating agenttypeseries, defined commitments.

• Vivian’s fashion Factory II: acquisition, manufacturing, and revenue cycle (value chain
consisting of purchase/sale exchange activity and production conversion activity), bulk
resources with hierarchy, several decrement eventtypeseries, resourcetypeseries affected in
stockflows, defined commitments.

8.2 Evaluation of the Database Mappings

In order to evaluate the REA DB insert statements that are generated for REA-DSL business
models, the completeness of the SQL script as well as its functionality has to be taken into account.
Therefore we define ten indicators that facilitate the decision if the demanded requirements for
the scripts are met or not. These indicators are explained in the following.

1. Agents: all existing agents that are defined in the agent view of the REA-DSL business
model also occur in the SQL script. The generated insert statements for agents contain
the correct values for IsExternal and ParentAgenttype_Id, Name, and Id (cf.
Figure 6.2 on page 62).

2. Resources: resources that are defined in the resource view of the REA-DSL business model
occur in the generated SQL script. Resource insert statements also contain the correct val-
ues for Id, ParentResourceType_Id, Name, IsBulk, IsIdentifiable, and
UnitOfMeasure (cf. Chapter 6.1 on page 60).

3. Dualities: each activity in the value chain view of the REA-DSL business model occurs in
the generated script as insert statement for the dualitytype table. Values for Id, Name, and
IsConversion are generated correctly.

4. Events: all events or eventtypes that are defined in the planning view of the REA-DSL
model occur in the SQL script. Values for Id, ParentEventType_Id, Name, IsIn-
crement, IsResourceUsed, and IsSeries are defined the right way. Furthermore,
each event is related to its corresponding duality as entry in the Dualitytype_Allows_-
Eventtype table with appropriate values for DualityType_Id and EventType_Id
(cf. Figure 6.3 on page 64).

5. Stockflows: for all stockflows of the events in the planning view, inserts for the Eventtype-
Stockflow table are generated. Events are correctly related to the resource that is affected
in the stockflow by EventType_Id and ResourceType_Id values. IsSeries and
IsIdentifiable values are also generated right (cf. Figure 6.3 on page 64).

6. Participations: all participation relationships occur in the SQL script with correct val-
ues for EventType_Id, AgentType_Id, IsSeries and IsIdentifiable (cf.
Figure 6.3 on page 64).

85

7. Commitments and Contracts: if commitments are included in the planning view of the
REA-DSL model, an insert statement for the Contracttype table is generated. Values for Id,
Name, IsSchedule, and the legally committing agents (IncrementAgentType and
DecrementAgentType) are specified correctly. The contract is related to the duality it
refers to as entry in the ContractType_Allows_DualityType table with proper values for
ContractType_Id and DualityType_Id (cf. Figure 6.3 on page 64).

8. Attributes: all additional attributes that are defined for agents, resources, events, stock-
flows, and participations occur in the SQL script with values for Id, Name, and Datatype.
They are appropriately related to their corresponding entities by insert statements for
the AgentType_Has_AdditionalAttribute, ResourceType_Has_AdditionalAttribute, Event-
Type_Has_AdditionalAttribute, EventTypeParticipation_Has_AdditionalAttribute, or Event-
TypeStockflow_Has_AdditionalAttribute table with respective values (cf. Figure 6.1, 6.2,
and 6.4).

9. Script Functionality: the generated SQL script executes flawlessly and inserts all data to
the corresponding tables of the REA DB.

10. Inserted records: the number of data records that are inserted in the database.

A
ge

nt
s

R
es

ou
rc

es

D
ua

lit
ie

s

E
ve

nt
s

St
oc

kfl
ow

s

Pa
rt

ic
ip

at
io

ns

C
om

m
itm

en
ts

/C
on

tr
ac

ts

A
tt

ri
bu

te
s

Sc
ri

pt
Fu

nc
tio

na
lit

y

In
se

rt
ed

re
co

rd
s

University Slum Lords 3 3 3 3 3 3 – 3 3 28
Boston Bottle 3 3 3 3 3 3 – – 3 30
Marilyn Monroe Makeovers 3 3 3 3 3 3 – – 3 27
Native Alaskan Aircraft Expeditions 3 3 3 3 3 3 – 3 3 31
Vivian’s fashion Factory I 3 3 3 3 3 3 3 3 3 20
Brian’s Gemini Music 3 3 3 3 3 3 3 – 3 23
Flint X-Ray 3 3 3 3 3 3 3 – 3 28
South Shore Petroleum 3 3 3 3 3 3 3 – 3 35
Western Michigan Office Furniture 3 3 3 3 3 3 3 – 3 14
Michigan Medical Equipment 3 3 3 3 3 3 3 – 3 24
Nantasket Basket, Gasket, and Casket 3 3 3 3 3 3 3 – 3 37
Vivian’s fashion Factory II 3 3 3 3 3 3 3 – 3 50

Table 8.1: Evaluation of REA DB Inserts for twelve different Business Models

86

Agents, resources, dualities, events, stockflows, particiaptions, commitments/contracts, and
attributes are indicators for the completeness of the generated SQL scripts. The functionality is
tested by running the script and populating the REA DB. In order to compare the complexity of
REA-DSL models that were inserted in the database, the number of inserted records is also listed.

The evaluation results for the twelve business models are represented in Table 8.1 on page
86. A checkmark (3) in a cell points out that an indicator was tested successfully and no errors
occurred. If a test failed the cell contains a 8. The hyphen (–) depicts that testing an indicator
was omitted since the corresponding elements are not represented in the REA-DSL model. As
indicated by the number of inserted records in the last column, the twelfth REA-DSL business
model (Vivian’s fashion Factory II) is the most complex one. This is not surprising since this
model has the largest number of activities which leads to an increased number of generated insert
statements. Only a few models define additional attributes on elements. Nevertheless it can
be concluded that properties are inserted correctly as additional attributes if they exist in the
REA-DSL business model.

D
ua

lit
ys

ta
tu

sa
dm

in
is

tr
at

io
n

A
ge

nt
ad

m
in

is
tr

at
io

n

R
es

ou
rc

e
ad

m
in

is
tr

at
io

n

D
ua

lit
ys

el
ec

tio
n

E
ve

nt
cr

ea
tio

n

Pa
rt

ic
ip

at
io

nc
re

at
io

n

St
oc

kfl
ow

cr
ea

tio
n

D
ua

lit
yv

al
id

at
io

n

Sa
vi

ng
du

al
ity

University Slum Lords 3 3 3 3 3 3 3 3 3

Boston Bottle 3 3 3 3 3 3 3 3 3

Marilyn Monroe Makeovers 3 3 3 3 3 3 3 3 3

Native Alaskan Aircraft Expeditions 3 3 3 3 3 3 3 3 3

Vivian’s fashion Factory I 3 3 3 3 3 3 3 3 3

Brian’s Gemini Music 3 3 3 3 3 3 3 3 3

Flint X-Ray 3 3 3 3 3 3 3 3 3

South Shore Petroleum 3 3 3 3 3 3 3 3 3

Western Michigan Office Furniture 3 3 3 3 3 3 3 3 3

Michigan Medical Equipment 3 3 3 3 3 3 3 3 3

Nantasket Basket, Gasket, and Casket 3 3 3 3 3 3 3 3 3

Vivian’s fashion Factory II 3 3 3 3 3 3 3 3 3

Table 8.2: Evaluation of the UI-Generation Prototype

87

8.3 Evaluation of the UI-Generation Prototype

The UI-Generation prototype was developed to prove that the business models that are saved
in the REA DB can act as foundation for the automatically creation of user interfaces. These
interfaces should not only reflect all information that was specified in the models, but also enable
users to record actual business cases and save them in the generic part of the REA DB. The
detailed scope and intended functionality of the UI-Generation prototype was already stated in
Chapter 7.3. Similar to the evaluation of SQL inserts, we define indicators that are derived from
these preceding thoughts.

1. Administration of dualitystatuses: the input for the statuscode is validated and informs
the user if unsupported formats were specified. Saving a dualitystatus is only possible if
correct values are specified. Apart from saving, dualitystatuses can be updated and deleted.

2. Administration of agents: agents can be saved, updated, and deleted without errors.
When saving or updating, only agenttypes that are already persisted in the REA DB can
be selected. When object- or type properties are defined for agents in the agentview, all
necessary forms for specifying the concrete values are generated. User inputs of fixed- and
additional attribute values are validated accordingly. User inputs that are not satisfying can
not be saved.

3. Administration of resources: saving, updating, and deleting existing resources in the
REA DB works correctly. Only applicable resourcetypes can be selected. Additional
properties are recognized and forms for value definitions are properly created.

4. Dualityselection: business cases can only be created for activities that occur in the value
chain of stored business models. The options that can be selected by the user reflect the
persisted dualitytypes in the REA DB.

5. Eventcreation: depending on the selected dualitytype, the user interface for the events is
created accordingly. For each event that was defined in the underlying business models
operational- or planning view, a tab is created. Furthermore, listboxes for the fixed event
attributes (provide- and receive agent) are generated and correctly populated (e.g. only
inside agents can receive resources during an increment event). For start- and end date,
datepickers are generated to assist the user. If an event has additional properties defined,
forms are properly created to enable the definition of additional attribute values.

6. Participationcreation: for each participation that was specified in the planning- or op-
erational view of the chosen dualitytype, a tab is created. The prototype only allows
the selection of agents that possess the same type (or a subtype) that was defined in the
business model. If additional properties exist, forms are created that allow the specification
of values. Participation(type)series are recognized and allow the user to create additional
participations of the corresponding type.

7. Stockflowcreation: similar to participations, the prototype recognizes defined stockflows
and creates user interfaces for their specification. The selection of resources is correctly

88

restricted based on the business model data and forms for all value definitions of additional
properties are generated. Furthermore, stockflow(type)series are recognized.

8. Dualityvalidation: when trying to save a new duality (with corresponding events, partici-
pations, stockflows, and attributes), all user inputs are validated. If values were not properly
defined, the prototype informs the user and ensures that nothing is saved in the REA DB.

9. Saving a duality: when the user inputs are satisfying, all records are correctly persisted in
the REA DB.

Table 8.2 on page 87 lists the results of the UI-Generation validations. The creation of user
interfaces worked as intended for all twelve models under investigation. However, it has to be
remarked that no commitments are supported by the prototype.

89

CHAPTER 9
Conclusion and Future Work

9.1 Summary

Customizing ERP systems to specific business demands can be a cumbersome and error-prone
task. If not done properly, high follow-up costs can occur. However, customizing is a mandatory
step since current ERP systems are often purchased as standard software that is not capable of
satisfying all enterprise needs without further adaptations. Furthermore, business requirements
can not be regarded as fixed characteristics. When the market changes over time it is critical
for the success of an enterprise that the used application systems are capable of adjusting to the
changed needs. Current ERP Systems are often not flexible enough to do so. Changed business
needs often lead to drastic changes in the data structure and the code, which is inefficient and
can cause inconsistencies. Gronau [24] names several techniques that can be used to increase the
adaptability of ERP systems and recommends the integration of business process modeling for
system creation or adaptation. However, the usage of business modeling languages seems to be
more promising to specify business needs. Since not all tasks have to be specified in detail, the
effort for model creation is reduced.

Thus, in this thesis, we illustrated an approach for business model driven ERP customization.
As business modeling language, the REA ontology was used that has its basis in economic theory
and allows the definition of resources, events, and agents. Additionally commitments and policies
can be specified which are both important concepts in ERP systems. To simplify the creation of
REA business models we used the REA-DSL, a domain specific language capable of defining
REA models in an easy and unambiguous way. REA-DSL models are semantically equivalent
to the REA class-like models, but grant a clear graphical representation for all REA concepts.
Therefore REA-DSL models can be easier understood by domain experts. Furthermore, a tool
supports the creation of such models which significantly decreases the model creation effort.

As proposed in the REAlist project, one single database (REA DB) was used to persist
business model- as well as business case data. In order to save the REA-DSL business models,
a mapping was defined that automatically creates SQL insert scripts and can be executed to
populate the REA DB. This data is then used for the definition of actual business cases. To

91

prove that the REA DB can be used as basis for an automatically generation of user interfaces
(and therefore reduce the needed customization efforts), a prototype was implemented. Its
functionality encompasses the administration of entities that are needed to conduct business cases
(dualitystatuses, resources, and agents). Furthermore, the creation of forms for duality-, event-,
stockflow-, and participation specification is supported. Users are also able to store the defined
business case data in the REA DB.

The main research question that was stated in the beginning of this thesis (“how can REA-
DSL business models be mapped to the REA DB? “), was answered by the mapping that was
defined between REA-DSL models and the database. The technical feasibility of that approach
was proven by the realized transformation with the T4 Text Templating Engine. The evaluation
results of the generated scripts and the developed UI-Generation prototype is discussed in the
next section.

9.2 Evaluation Results

The evaluation of the created artifacts was done with two aspects in mind: (i) the completeness
and (ii) the functionality of the generated SQL scripts and the UI-Generation prototype. During
development, the evaluation happened in several cycles where the artifacts were tested and, if
the results were not satisfying, properly adapted. Based on twelve different business models that
include all possible concepts of the REA-DSL and differ in complexity and structure, we defined
indicators which facilitate the decision if the generated artifacts satisfy all requirements or not. For
the SQL scripts these indicators mainly encompass the completeness of the generated statements
(e.g., all resources, events, and agents that are specified in the REA-DSL business model also
occur in the scripts). For each REA-DSL business model the insert script was generated and tested
based on the predefined indicators. The results of this tests look promising (cf. Table 8.1 on page
86). The generated SQL scripts include all concepts of the REA-DSL models. Commitments and
additional properties are only recognized if the business model actually includes those concepts.
Moreover, executing the scripts works and actually populates the REA DB with business model
data which proves the functionality of the artifact. The evaluation of the UI-Generation prototype
was based on the same principle. Again, indicators were defined that helped us to test the
completeness as well as the functionality. These indicators are based on the intended scope of the
UI-Generation prototype that was outlined in Chapter 7.3. Table 8.2 on page 87 shows the test
results for the twelve business models. As illustrated, the outcome of the prototype evaluation for
each indicator is satisfying. Dualities can be defined for each activity that occurs in the value
chain view of the underlying business model. The number of needed events is recognized and the
respective sections are included in the user interface. All participations and stockflows that were
defined in the planning view models are included in the generated masks. Furthermore, the user
interface can be used to define actual business cases. The entered data is stored in the respective
tables of the REA DB as intended which proves the functionality of the UI-Generation prototype.
The positive test results come by no surprise since the indicators are based on the predefined
scope of the prototype. Therefore, even if the evaluation for distinct indicators failed at some
point, the prototype was adapted until it fulfilled all the specified needs. Based on the evaluation
results of the generated SQL scripts and the UI-Generation prototype, we can conclude that using

92

our approach REA-DSL business models can be mapped to the REA DB. Moreover, we proved
that it is possible to base the generation of user interfaces on the persisted business model data
and use these masks to save actual business case data in the database.

9.3 Limitations and Future Work

Supporting commitments. The UI-Generation prototype currently does not support commit-
ments that were defined in REA-DSL models. The next step therefore should be to realize the
generation of masks for these concepts. This encompasses a section for specifying contracts with
an existing provide- and receive agent that legally commits to it. The date when the
contract is concluded also is persisted in the database and therefore has to be specified by the user.
Similar to dualities, contracts have a certain status. Therefore the entity administration part of
the UI-Generation prototype needs to be extended to support the creation, update, and removal of
contract statuses. Furthermore, masks for the definition of commitments that are fulfilled by the
actual events have to be generated. The structure of that user interface basically looks similar to
the masks that were created for the events at the operational level. Additional attribute values that
can be defined in the user interfaces of the commitment sections belong to the commitment- or
reserve properties that are specified for events, participations, and stockflows.

RTD

RT ET AT

R E A

RD
Business model part

(declaration)

Generic part
(type-level)

Generic part
(operational level)

ETD

ED

ATD

AD

Figure 9.1: Extending the REA DB by a Declaration Layer

Adapting the REA DB data structure to include a dedicated declaration part for busi-
ness models. During multiple meetings with Dieter Mayrhofer, the data structure of the REA DB
was discussed and revised several times. In its current form, no distinct tables for the business
model concepts are included. As illustrated in Chapter 5 and further discussed in Chapter 6,
type tables are used to store the business model data. Therefore, it is not clear if an entry in

93

such a table represents a model element or an actual type (as proposed by Geerts et al. [15, 17]).
However, type properties should only be defined for type entities. An example is the startingwage
of an employee (cf. Figure 4.2 on page 41). In its current form, it is not clear when this property
should be declared. We therefore allow the user to specify values for the startingwage for each
concrete agent with agenttype employee (or one of its subtypes). For further extensions of the
REA DB, a third layer should be introduced that distinguishes type entities from business model
elements. This idea is visualized in Figure 9.1. The advantage of doing so is that all the REA
elements are clearly separated from the business model data in the database. Tables for events,
resources, and agents exist as well as tables for their type entities. This allows us to define actual
values for the properties of types. For example, the value of the intended startingwage for an
employee type could be specified and evaluated against the actual wage of a concrete agent with
the corresponding type. All REA-DSL elements are persisted in tables of the declaration layer.

Including all parts of the generic REA DB in the UI generation. When developing the UI-
Generation prototype, only the necessary parts of the generic REA DB were used. As illustrated
in Appendix A, the database tables are strongly related with each other. E.g., resources also
possess a taxclass that is represented as entry in the Tax table. To demonstrate that the
business model data can be used for adapted user interface creation, this relation was omitted.
Of course, in further extensions users should be able to specify taxclasses as well. Therefore
an administration section for saving, updating, and deleting taxes has to be generated similar to
dualitystatuses, agents, and resources.

Optimization of the generated user interfaces. The generated masks to save business case
data are just prototypical. For future improvements, the look and feel of the user interfaces has to
be improved to guarantee a satisfying user experience. The Google Web Toolkit1 that was used to
create the prototype enables software developers to extensively use Cascading Style Sheets (CSS)
to apply styles on forms.

Multitenancy support. The medium-term goal of the REAlist project is to support multi-
tenancy for the ERP system. Therefore business models that are saved by tenants need to be
distinguishable somehow. One possibility is to add an identification column in the DualityType
table that specifies which activities belong to certain users. The duality selection part of the
generated interfaces could then only display business model data that was defined for a specific
company to the logged in user.

1http://www.gwtproject.org/

94

http://www.gwtproject.org/

APPENDIX A
Subparts of the REA DB

This section illustrates all parts of the REA DB that were not already extensively discussed in the
course of this thesis. To facility a better understanding, the tables are structured in subparts that
depict the needed functionality of an ERP system.

A.1 Resources

Subpart of the REA DB that contains tables for storing resources, identifiable resources, and
stockflows.

Resource

Id INT

ResourceType_Id VARCHAR(150)

Name VARCHAR(45)

IsBulk BOOLEAN

IsIdentifiable BOOLEAN

QoH DOUBLE

IsComposed BOOLEAN

TaxClass INT

Stockflow

Id INT

Resource_Id INT

Quantity DOUBLE

PricePerUnit DOUBLE

TotalValue DOUBLE

TotalValueNetto DOUBLE

Currency_Id VARCHAR(3)

Tax_Id INT

IdentifiableResource

Id INT

Resource_Id INT

SerialNumber VARCHAR(45)

IsOnStock BOOLEAN

Stockflow_Has_IdentifiableResource

IdentifiableResource_Id INT

Stockflow_Id INT

Tax

Id INT

Percentage DOUBLE

DiscountOrAddition

Id INT

Percentage DOUBLE

IsDicsount BOOLEAN

Position_Has_DiscountOrAddition

Position_Id INT

DiscountOrAddition_Id INT

95

A.2 Currency and Country

Subpart of the REA DB containing tables for currency and country specifications.

Currency

Id VARCHAR(3)

Fullname VARCHAR(45)

Country

Id VARCHAR(3)

Fullname VARCHAR(45)

Currency_Id VARCHAR(3)

Event CommitmentClaim

Stockflow

A.3 Policy

Subpart of the REA DB that allows the definition of very simple policies.

PolicyType

Id INT

Name VARCHAR(45)

Statement VARCHAR(200)

Policy

Id INT

PolicyType_Id INT

Policy_Outcome_Id INT

StartDate DATETIME

EndDate DATETIME

AgentType

EventType

Resource

Factor_AgentType

Id INT

Policy_Id INT

AgentType_Id VARCHAR(150)

Factor_EventType

Id INT

Policy_Id INT

EventType_Id VARCHAR(150)

Factor_ResourceType

Id INT

Policy_Id INT

ResourceType_Id VARCHAR(150)

Factor_ResourceTypecol VARCHAR(45)

Factor_PropertyConstraint

Id INT

Factor_AgentType_Id INT

Column VARCHAR(45)

Value VARCHAR(45)

Comparator VARCHAR(45)

Policy_Outcome

Id INT

Value VARCHAR(45)

ResourceType

Factor_Resource

Id INT

Policy_Id INT

Resource_Id INT

Agent

Factor_Agent

Id INT

Policy_Id INT

Agent_Id INT

96

A.4 Pricelist

Subpart of the REA DB that permits the definition of individual prices for agenttypes and locations
during specific timeframes.

Resource

PriceList

Id INT

Location_Id INT

AgentType_Id VARCHAR(150)

From DATETIME

To DATETIME

PricePolicy

Id INT

PriceList_Id INT

ResourceType_Id INT

Price DOUBLE

Location

AgentType

A.5 Negotiation

REA DB part that contains tables that allow to keep track of negotiations. The course of a
negotiation can be reproduced.

Negotiation

Id INT

ContractType_Id VARCHAR(150)

Status_Id INT

Contract

Id INT

ContractType_Id VARCHAR(150)

InternalAgent_Id INT

ExternalAgent_Id INT

Date DATETIME

Status_Id INT

Commitment

Id INT

EventType_Id VARCHAR(150)

Contract_Id INT

ReceiveAgent_Id INT

ProvideAgent_Id INT

TotalValue DOUBLE

TotalValueNet DOUBLE

Currency_Id VARCHAR(3)

IsCompletelyFulfilled BOOLEAN

DateCommitted DATETIME

DateStartExpected DATETIME

DateEndExpected DATETIME

Proposal

Id INT

Negotiation_Id INT

ProposingAgent_Id INT

IsBinding BOOLEAN

Date DATETIME

ValidDueDate DATETIME

ParentProposal_Id INT

Proposal_Has_Commitment

Proposal_Id INT

Commitment_Id INT

Contract_Has_Negotiation

Negotiation_Id INT

Contract_Id INT

Agent

Id INT

Name VARCHAR(45)

Contract_Has_Agents

Contract_Id INT

Agent_Id INT

Negotiation_Has_Agents

Negotiation_Id INT

Agent_Id INT

Proposal_Has_TargetAgent

Proposal_Id INT

Agent_Id INT

97

A.6 Status

Part of the REA DB specifying statuses of negotiation, claim, duality, or contract.

Contract

Id INT

ContractType_Id VARCHAR(150)

InternalAgent_Id INT

ExternalAgent_Id INT

Date DATETIME

Status_Id INT

Duality

Id INT

DualityType_Id VARCHAR(150)

ExternalAgent_Id INT

Date DATE

Status_Id INT

Claim

Id INT

ClaimType_Id VARCHAR(150)

MaterializeAgent_Id INT

SettleAgent_Id INT

Date DATE

DueDate DATE

TotalValue DOUBLE

Currency_Id VARCHAR(3)

IsReconciled BOOLEAN

Status_Id INT

ContractStatus

Id INT

Status VARCHAR(45)

DualityStatus

Id INT

Status VARCHAR(45)

ClaimStatus

Id INT

Status VARCHAR(45)

Negotiation

Id INT

ContractType_Id VARCHAR(150)

Status_Id INT

NegotiationStatus

Id INT

Status VARCHAR(45)

A.7 Location

Subpart of the REA DB that contains tables for locations that can be defined for various REA
concepts.

Location

Id INT

ParentLocation_Id INT

Name VARCHAR(45)

Location_Address

Id INT

Street VARCHAR(45)

City VARCHAR(45)

Zip VARCHAR(45)

Location_Coordinates

Id INT

X DOUBLE

Y DOUBLE

LocationType

Id INT

Name VARCHAR(45)

Location_Has_LocationType

Location_Id INT

LocationType_Id INT

98

List of Figures

1.1 Current State of ERP Systems and intended REAlist Solution [34] 2
1.2 Thesis Contributions . 4

2.1 Classification of Softwaresystems [51] . 8
2.2 Application Domain of ERP Systems [23] . 9
2.3 Function Integration in Application Software [51] 10
2.4 Extensions of ERP Systems [24] (adapted) . 11
2.5 Market Share of ERP Vendors [5] . 14
2.6 Customizing Techniques of ERP Systems [30] . 19

3.1 Business Models as common Language for Business and IT 24
3.2 e3-value Model of a Car Producer . 26
3.3 REA Accounting Model based on [32, 49] . 28
3.4 REA Sales Process of a Car Producer with Instance Data 30
3.5 REA Value Chain of a Car Producer . 31
3.6 REA Ontology [32] (adapted) . 33
3.7 Planned REA Sales Process of the Car Producer 35

4.1 REA-DSL Resources . 40
4.2 REA-DSL Agents . 41
4.3 REA-DSL Value Chain . 42
4.4 REA-DSL Planned Sales Activity . 44
4.5 REA-DSL Planning Views of the Payroll, Purchase, and Car Production Activity . 45

(a) Planned Payroll Activity . 45
(b) Planned Purchase Activity . 45
(c) Planned CarProduction Activity . 45

4.6 REA-DSL Operational Views of the Carproducer Activities 46
(a) Sales Activity . 46
(b) Payroll Activity . 46
(c) Purchase Activity . 46
(d) Carproduction Activity . 46

5.1 Functional Scope of the REAlist Project [34] . 50
5.2 Parts of the REA DB . 51

99

5.3 Layers of the REA based Data Structure [44] (adapted) 52
5.4 Core Elements of the generic REA DB . 53
5.5 Extended Core Elements of the REA DB . 53
5.6 REA Constellations . 55
5.7 REA AdditionalAttributes . 57

6.1 Resource Mapping . 60
6.2 Agent Mapping . 62
6.3 Event-, Commitment, and Relationship Mapping 64
6.4 Planning View Attribute Mapping . 65
6.5 T4 Text Templates and generated SQL Inserts for an Agent 69

7.1 Concept of the UI Generation . 71
7.2 REA Core Subset relevant for Business Cases . 72
7.3 Values of Additional Attributes for Business Cases 73
7.4 Used Technologies . 76
7.5 Administrating Dualitystatuses . 78
7.6 Administrating Agents . 78
7.7 Administrating Resources . 79
7.8 Sales Business Case Conduction . 80

9.1 Extending the REA DB by a Declaration Layer 93

100

List of Tables

2.1 Benefits of ERP Usage [24] . 13

3.1 Four BMO Pillars and their respective Building Blocks [55] 25

8.1 Evaluation of REA DB Inserts for twelve different Business Models 86
8.2 Evaluation of the UI-Generation Prototype . 87

101

Bibliography

[1] B. Andersson, M. Bergholz, A. Edirisuriya, T. Ilayperuma, P. Johannesson, J. Gordijn,
B. Grégoire, M. Schmitt, E. Dubois, S. Abels, A. Hahn, B. Wangler, and H. Weigand. To-
wards a Reference Ontology for Business Models. In Proceedings of the 25th International
Conference on Conceptual Modeling, pages 482–496. Springer, 2006.

[2] H. J. Appelrath and J. Ritter. R/3 Einführung. Springer Verlag, 1. edition, 2000.

[3] N. H. Bancroft, A. Sprengel, and H Seip. Implementing Sap R/3 : How to Introduce a Large
System into a Large Organization. Manning Publications Co., 2. edition, 1998.

[4] P. P. Chen. The Entity-Relationship Model - Toward a Unified View of Data. ACM
Transcactions on Database Systems, 1(1):9–36, 1976.

[5] L. Columbus. 2013 ERP Market Share Update: SAP Solidifies Market Lead-
ership. http://www.forbes.com/sites/louiscolumbus/2013/05/12/
2013-erp-market-share-update-sap-solidifies-market-leadership/,
2013. Online, last accessed: 13.01.2014.

[6] L. Columbus. SaaS Adoption Accelerates, Goes Global in the Enterprise.
http://www.forbes.com/sites/louiscolumbus/2012/10/31/
saas-adoption-accelerates-goes-global-in-the-enterprise/,
2013. Online, last accessed: 13.01.2014.

[7] S. Cook, J. Gareth, K. Stuart, and W. Alan Cameron. Domain-Specific Development with
Visual Studio DSL Tools. Addisom-Wesley, 1. edition, 2007.

[8] M. J. Cotteleer and E. Bendoli. Order Lead-time Improvement Following Enterprise-IT
Implementation: An Empirical Study. MIS Quarterlyt, 30(3):643–660, 2006.

[9] B. Curtis, M. I. Kellner, and J. Over. Process Modeling. Communications of the ACM,
35(9):75–90, 1992.

[10] T. H. Davenport. Process Innovation: Reengineering Work Through Information Technology.
Harvard Business School Press, 1. edition, 1993.

103

http://www.forbes.com/sites/louiscolumbus/2013/05/12/2013-erp-market-share-update-sap-solidifies-market-leadership/
http://www.forbes.com/sites/louiscolumbus/2013/05/12/2013-erp-market-share-update-sap-solidifies-market-leadership/
http://www.forbes.com/sites/louiscolumbus/2012/10/31/saas-adoption-accelerates-goes-global-in-the-enterprise/
http://www.forbes.com/sites/louiscolumbus/2012/10/31/saas-adoption-accelerates-goes-global-in-the-enterprise/

[11] V. De Casto and E. Marcos. Towards a Service-oriented Approach to the Alignment
of Business Processes with IT-Systems: From the Business Model to a Web Service
Composition Model. International Journal of Cooperative Information Systems, 18(2):225–
260, 2009.

[12] M. Fowler. Patterns of Enterprise Application Architecture. Addison Wesley, 1. edition,
2002.

[13] G. Geerts and W. E. McCarthy. Augmented Intensional Reasoning in Knowledge-Based
Accounting Systems. Journal of Information Systems, 14(1):127–150, 1993.

[14] G. Geerts and W. E. McCarthy. Modeling Business Enterprises as Value-Added Process
Hierarchies with Resource-Event-Agent Object Templates. In Proceedings of the Work-
shop on Business Object Design and Implementation in conjunction with the Conference
on Object-Oriented Programming Systems, Languages & Applications (OOPSLA 1995),
Atlanta, Georgia, pages 94–113. Springer-Verlag, 1997.

[15] G. Geerts and W. E. McCarthy. The Ontological Foundation of REA Enterprise Information
Systems. https://www.msu.edu/~mccarth4/Alabama.doc, 2000. Online, last
accessed: 13.01.2014.

[16] G. Geerts and W. E. McCarthy. Using Object Templates From The REA Accounting Model
To Engineer Business Processes And Tasks. The Review of Business Information Systems,
5(4):89–108, 2001.

[17] G. Geerts and W. E. McCarthy. Type-Level Specifications in REA Enterprise In-
formation Systems. https://www.msu.edu/user/mccarth4/UTS-seminar/
Type%20paper%20final%20submission.doc, 2004. Online, last accessed:
13.01.2014.

[18] G. Geerts and W. E. McCarthy. Policy-Level Specifications in REA Enterprise Information
Systems. Journal of Infrmation Systems, 20(2):37–63, 2006.

[19] C. Gerth. Business Process Models. Change Management. Springer, 1. edition, 1985.

[20] J. Gordijn and H. Akkermans. e3-value: Design and Evaluation of e-Businss Models. IEEE
Intelligent Systems, 16(4):11–17, 2001.

[21] J. Gordijn and H. Akkermans. Value Based Engineering: Exploring Innovative e-Commerce
Ideas. Requirements Engineering Journal, 8(2):114–134, 2003.

[22] J. Gordijn, H. Akkermans, and H. van Vliet. Business Modeling is not Process Modeling.
In Proceedings of the Workshop on Conceptual Modeling for E-Business and the Web
(ECOMO 2000)), pages 40–51. Springer, 2000.

[23] P. A. Grammer. Der ERP-Kompass: ERP-Projekte zum Erfolg führen. mitp-Verlag, 1.
edition, 2011.

104

https://www.msu.edu/~mccarth4/Alabama.doc
https://www.msu.edu/user/mccarth4/UTS-seminar/Type%20paper%20final%20submission.doc
https://www.msu.edu/user/mccarth4/UTS-seminar/Type%20paper%20final%20submission.doc

[24] N. Gronau. Enterprise Resource Planning. oldenbourg.verlag, 2. edition, 2010.

[25] N. Gronau and M. Lindemann. Einführung in das Informationsmanagement. gito.verlag, 1.
edition, 2010.

[26] Object Management Group. Meta Object Facility (MOF) Core Specification, Version
2.4. http://www.omg.org/spec/MOF/2.4.1/PDF/, 2011. Online, last accessed:
13.01.2014.

[27] Object Management Group. Business Process Model and Notation (BPMN), Version
2.0. http://www.omg.org/spec/BPMN/2.0/PDF/, 2013. Online, last accessed:
13.01.2014.

[28] T. Gruber. Towards Principles for the Design of Ontologies Used for Knowledge Sharing.
In Formal Ontology in Conceptual Analysis and Knowledge Representation, Deventer, The
Netherlands. Kluwer Academic Publishers, 1993.

[29] K. B. Hendricks, V. R. Singhal, and J. K. Startman. The impact of enterprise systems on
corporate performance: A study of ERP, SCM, and CRM system implementations. Journal
of Operations Management, 25(1):65–82, 2007.

[30] M. Hesseler. Customizing von ERP-Systemen. Rollenbasierte Konzepte bieten neue
Möglichkeiten für individualle Anpassungen. Controlling & Managemen Review, 53(3):48–
55, 2009.

[31] A. R. Hevner, S. T. March, and J. Park. Design Science in Information Systems Research.
MIS Quarterly, 28(1):75–105, 2004.

[32] P. Hruby. Model-Driven Design Using Business Patterns. Springer, 1. edition, 2006.

[33] P. Hruby. REA (Resources, Events, Agents) - Presentation at Vienna University of Technol-
ogy. http://www.ec.tuwien.ac.at/files/etrends2008/PavelHruby.
pdf, 2008. Online, last accessed: 13.01.2014.

[34] C. Huemer and D. Mayrhofer. REAlist - Mandantenfähiges ERP System in der Cloud: Ein
modellgetriebener Ansatz auf Basis der Resource-Event-Agent (REA) Ontologie, 2013.
FFG BRIDGE Projektantrag.

[35] Y. Ijiri. Theory of Accounting Measurement. American Accounting Association, 1. edition,
1975.

[36] R. Jacobs and T. Jr. Weston. Enterprise Resource Plannning (ERP) - A brief history. Journal
of Operations Management, 25(2):357–363, 2007.

[37] R. S. Kaplan and D. R. Norton. The Balanced Scorecard: Measures That Drive Perfermance.
Harvard Business Review, 83(7/8):172–180, 2005.

105

http://www.omg.org/spec/MOF/2.4.1/PDF/
http://www.omg.org/spec/BPMN/2.0/PDF/
http://www.ec.tuwien.ac.at/files/etrends2008/PavelHruby.pdf
http://www.ec.tuwien.ac.at/files/etrends2008/PavelHruby.pdf

[38] V. Kulkarni, S. Reddy, and A. Rajbhoj. Scaling up model driven engineering-experience
and lessons learnt. In Proceedings of the 13th International Conference on Model Drive-
nEengineering Languages and Systems: Part II (Berlin, Heidelberg, 2010), MODELS ’10,
pages 331–345. Springer-Verlag, 2010.

[39] P. Loos and T. Theling. Marktübersicht zu ERP-Literatur. http://www.econbiz.de/
archiv/mz/umz/winformatik/marktuebersicht_erp-literatur.pdf,
2003. Online, last accessed: 13.01.2014.

[40] J. Magretta. Why Business Models Matter. Harvard Business Review, 80(5):86–92, 2002.

[41] D. Mayrhofer. REA-DSL: Business Model Driven Data Engineering. PhD thesis, Vienna
University of Technology, 2012.

[42] D. Mayrhofer and C. Huemer. Business-Model-Driven Data Engineering Using the REA-
DSL. In Proceedings of the 6th International Workshop on Value Modeling and Business
Ontology (VMBO 2012), Vienna, Austria, 2012.

[43] D. Mayrhofer and C. Huemer. Extending the REA-DSL by the Planning Layer of the REA
Ontology. In Proceedings of the 7th International Workshop on Business/IT-Alignment and
Interoperability (BUSITAL 2012), in conjunction with the 24th International Conference on
Advanced Information Systems Engineering (CAiSE 2012), Gdansk, Poland. Springer, 2012.

[44] D. Mayrhofer and C. Huemer. REA based OnlineERP: FFG Feasibility Study - Endbericht,
2013.

[45] D. Mayrhofer, C. Sonnenberg, B. Hofreiter, and C. Huemer. A Domain Specific Modeling
Language for REA. In Proceedings of the 6th International Workshop on Value Modeling
and Business Ontologies (VMBO 2012), Vienna, Austria, 2012.

[46] A. McAfee. The Impact of Enterprise Information Technology Adoption on Operational
Performance: An Empirical Investigation. Productions and Operations Management,
11(1):33–53, 2002.

[47] W. E. McCarthy. An Entity-Relationship View of Accounting Models. The Accounting
Review, 54(4):667–686, 1979.

[48] W. E. McCarthy. Construction and Use of integrated Accounting Systems with Entity-
Relationship Modeling. In Proceedings of the 1st International Conference on the Entity-
Relationship Approach to Systems Analysis and Design, pages 625–637. ACM, 1980.

[49] W. E. McCarthy. The REA Accounting Model: A Generealized Framework for Accounting
Systems in a Shared Data Environment. The Accounting Review, 52(1):554–578, 1982.

[50] B. McNurlin and R. Sprague. Information Systemns Management in Practice. Pearson, 5.
edition, 2002.

[51] V. Meister. Grundlagen betrieblicher Anwendungssysteme. expert verlag, 1. edition, 2011.

106

http://www.econbiz.de/archiv/mz/umz/winformatik/marktuebersicht_erp-literatur.pdf
http://www.econbiz.de/archiv/mz/umz/winformatik/marktuebersicht_erp-literatur.pdf

[52] P. Mertens. Integrierte Informationsverarbeitung 1 - Operative Systeme in der Industrie.
Gabler Verlag, 17. edition, 2009.

[53] H. Mili, G. Bou Jaoude, É Lefebvre, G. Tremblay, and A. Petrenko. Business Process
Modeling Languages: Sorting Through the Alphabet Soup. ACM Computing Surveys,
43(1):4:1–4:56, 2010.

[54] D. E. O’Learyy. On the relationship between REA and SAP. International Journal of
Accounting Information Systems, 5(1):65–81, 2004.

[55] A. Osterwalder. The Business Model Ontology. A Proposition in a Design Science Approach.
PhD thesis, University of Lausanne, 2004.

[56] A. Osterwalder and Y. Pigneur. An ontology for e-business models. In W. L. Currie, editor,
Value Creation from e-Business Models, pages 65–97. Butterworth-Heinemann, 2004.

[57] A. Osterwalder, Y. Pigneur, and C. L. Tucci. Clarifying Business Models: Origins, Present,
and Future of the Concept. Communications of the Association for Information Systems,
15(1):1–40, 2005.

[58] M. E. Porter. Competitive Advantage. The Free Press, 1. edition, 1985.

[59] M. Rappa. Business Models on the Web. http://digitalenterprise.org/
models/models.html, 2005. Online, last accessed: 13.01.2014.

[60] K. Rosli, A. Ahmi, and L. Mohamad. Resource-Event-Agent (REA) Modeling in Revenue
Information System (RIS) Development: Smart Application for Direct-Selling Dealers and
SMEs. Journal for the Advancement of Science and Arts, 1(1):43–62, 2009.

[61] T. A. Sedbrook. Modeling the REA Enterprise Ontology with a Domain Specific Language.
Journal of Emerging Technologies in Accounting, 9(1):47–70, 2012.

[62] J. Smith David, C. L. Dunn, and W. E. McCarty. Enterprise resource planning systems
research: The necessity of explicating and examining patterns in symbolic form. In 1st
International Workshop on Enterprise Management and Resource Planning System. Venice,
Italy, 1999.

[63] C. Sonnenberg, C. Huemer, B. Hofreiter, D. Mayrhofer, and A. Braccini. The REA-DSL:A
Domain Specific Modeling Language for Business Models. In Proceedings of the 23rd
International Conference of Advanced Information Systems Engineering (CAiSE 2011),
London, UK, pages 252–266. Springer-Verlag, 2011.

[64] P. Timmers. Business Models for Electronic Markets. Journal on Electronic Markets,
2(2):3–8, 1998.

[65] A. van Deursen, P. Klint, and J. Visser. Domain-Specific Languages. ACM SIGPLAN,
35(6):26–36, 2000.

107

http://digitalenterprise.org/models/models.html
http://digitalenterprise.org/models/models.html

[66] R. Weber. Technologie von Unternehmenssoftware. Springer Vieweg, 1. edition, 2012.

[67] S. C. Yu. The Structure of Accounting Theory. The university Presses of Florida, 1. edition,
1976.

[68] U. Zdun and M. Strembeck. An Approach for the Systematic Development of Domain-
Specific Languages. Software - Practice and Experience (SPE), 39(15):1253–1292, 2009.

[69] C. Zott and R. Amit. Designing your future Business Model: An Activity System Perspective.
Long Range Planning, 37:216–226, 2010.

[70] C. Zott, R. Amit, and L. Massa. The Business Model: Recent Developments and Future
Research. Journal of Management, 37(4):1019–1042, 2011.

108

	Introduction
	Motivation
	Problem Statement
	Aim of the Work
	Methodological Approach
	Structure of the Thesis

	ERP Systems
	Terminology
	Characteristics of ERP Systems
	Standardsoftware
	Adjusting Standard Software to Enterprise Needs
	Adaptability of ERP Systems

	The REA Ontology
	Business Models
	History of the Resource-Event-Agent (REA) Framework
	The basic REA Framework
	Engineering Business Processes and Value Chains using REA
	Advancement to the REA Ontology
	REA in Information Systems

	The REA-DSL
	A dedicated REA Representation Format
	Graphical Syntax of the REA-DSL
	Using REA-DSL Models to create a Data Structure for AIS

	The REAlist Project and REA DB
	Scope of the REAlist Project
	The REA Database (REA DB)

	Mapping REA-DSL Models to the REA DB
	Considerations for the Mapping Process
	Mapping Resources to the REA DB
	Mapping Agents to the REA DB
	Mapping the Operational/Planning View to the REA DB
	Generating Insert Statements for the REA DB

	Generating User Interfaces based on Business Models
	Overview
	Relevant REA DB Parts for administrating Business Cases
	Scope of the UI-Generation Prototype
	Architecture and used Technologies
	Administration of Entities
	Conducting Business Cases

	Evaluation of the Artifact
	Basic Concept of the Artifact Evaluation
	Evaluation of the Database Mappings
	Evaluation of the UI-Generation Prototype

	Conclusion and Future Work
	Summary
	Evaluation Results
	Limitations and Future Work

	Subparts of the REA DB
	Resources
	Currency and Country
	Policy
	Pricelist
	Negotiation
	Status
	Location

	List of Figures
	List of Tables
	Bibliography

