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Abstract

This work considers a continuous time pure exchange economy where

the agents have heterogeneous beliefs about the aggregate dividend pro-

cess and also care about relative wealth concerns. It is shown, analytically,

that in the special case where the agents have logarithmic utility, the rel-

ative wealth concerns do not influence the equilibrium. Another special

case is considered where the agents’ risk aversion parameter is 2 and it is

shown that the Sharpe ratios are time-dependent and the final wealth state

dependent.
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1 Introduction

“Men do not desire merely to be rich, but to be richer than other

men. The avaricious or covetous man would find little or no satisfac-

tion in the possession of any amount of wealth, if he were the poorest

amongst all his neighbours or fellow-countrymen.”

- John Stuart Mill (1907)

Standard economic models assume that an individual derives utility from one’s

own consumption. However, economists have long acknowledged the importance

of incorporating relative concerns into individual utility. Veblen (1912) brings

to the readers attention the point that as the society becomes wealthier, the

amount of consumption of an individual also increases in order to maintain his

social standing. Frank (1993) makes a very similar point about incorporating

relative wealth concerns in the determination of social status. Abel (1990) was

the first to incorporate “catching up with the Joneses” utility specification into a

standard asset pricing model.1 Cole et al. (1992) use the idea of relative wealth

concerns in a different setup. They develop a model where the agents compete

for mates, and the rate of their success is dependent upon their relative wealth

with respect to other competitors. Becker et al. (2005) consider the effects of

the assumption that acquiring a higher social position increases marginal utility

on the risk taking behaviour and the equilibrium wealth distributions. DeMarzo

et al. (2008) explore the idea that relative wealth concerns can explain financial

bubbles. They develop a finite horizon overlapping generations model in which the

competition on future investment opportunities induces an endogenous concern

on relative wealth among the agents. This results in the agents herding towards

the risky assets and driving down the expected returns.

1Other works in a similar vein include Gali (1994), Abel (1999), and Chan and Kogan
(2002)
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Another important application of relative wealth concerns can be seen in the fund

management industry. The “salaries” of these managers depends on the assets

they are holding. If an investor were to walk into one of these fund management

offices, her decision would rightly depend on the fund managers’ rankings. Em-

pirical evidence to support this has been provided by Sirri and Tufano (1998) and

Huang et al. (2007), they establish a positive and convex relationship between

fund flows (the net of all cash inflows and outflows in and out of various finan-

cial assets) and relative performances. In this present work, the this convexity is

modelled as an exogenously given bonus/penalty.

Most asset pricing models build upon a representative-agent framework. While

this setup gives us the convenience of getting analytically tractable results, it

turns a blind eye towards the fact that the agents in the economy might not be

the same and can hold heterogeneous expectations of future economics conditions.

Analysing the findings from the Livingston Survey and the Survey of Professional

Forecasters, Mankiw et al. (2004) find that interquartile range of inflation expec-

tations among the general public varies from 0% to 5% while among professional

economists, it varies from 1.5% to 2.5%. Clearly, the data does not agree with

the assumption that the agents in the economy hold homogeneous beliefs about

future economic conditions, and as these survey values suggest, the heterogeneity

is substantial.

Belief heterogeneity among agents can induce speculative behaviour which can

cause endogenous wealth fluctuation. This can be used to account for excess

volatility, time varying Sharpe-ratios and high equity premia which cannot be

explained by standard representative-agent models with smooth aggregate en-

dowment processes.

In their seminal work, Harrison and Kreps (1978) showed that in a market where

agents have heterogeneous beliefs, speculative behaviour can lead to asset price

bubbles. In a market in which agents hold heterogeneous beliefs about an as-

set’s fundamental, an asset owner is willing to pay a price higher than her own
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expectation of the asset’s fundamental because she expects to resell the asset

to a future optimist at an even higher price. Such speculative behaviour leads

to a bubble component in asset prices. They achieved this behaviour using an

extremely simple finite-state Markov chain market structure.

Chen and Kohn (2011) achieve similar results using more sophisticated machin-

ery by considering an asset whose dividend follows a mean-reverting stochastic

process. The agents in the economy have the same beliefs about the volatility but

disagree upon the mean-reversion parameter. They show that with this market

structure, there exists a permanent asset price bubble. However their main focus

is purely mathematical, to determine the minimum equilibrium price explicitly as

a unique solution to a certain differential equation. The takeaway message from

an economic perspective is that in such a market structure, there exists a unique

minimum equilibrium price and a permanent price bubble, that is the asset is

always priced higher than the minimal equilibrium price.

Basak (2000, 2005) establish equilibrium price dynamics in the presence of in-

vestor heterogeneity. The model presented in these papers incorporated the het-

erogeneity as a difference in opinion about the drift parameter of the dividend

process and highlight the mechanism through which this disagreement influences

asset prices. Kogan et al. (2006) and Yan (2008) analyse a framework in which

one of the agents perceives the correct model of the dividend process while the

other agent perceives an incorrect model of the dividend process (the correctness

of the models is measured by the perception of the drift parameter, i.e. one

agent knows the correct value of the drift while the other agent does not). They

show that the irrational agent can affect the equilibrium asset prices. Xiong and

Yan (2010) present a dynamic equilibrium model where the agent heterogeneity

is modelled as different learning models which the agents use to estimate the

unobservable inflation target. This difference in opinion leads to speculative be-

haviour and it is shown that it can help to explain the “excess volatility” of the

bond yields and also the failure of the expectation hypothesis.
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Allen (2001) points to the importance of institutional investors (such as fund

managers, investment bankers etc.) in the modern day financial market. The

literature took this cue and has since extensively studied the effect of these in-

stitutional investors on the asset prices. Work in this field include, and are not

restricted to, Vayanos and Woolley (2013) and He and Krishnamurthy (2013).

These papers consider models with one representative investor and thus con-

cerns of relative performance is nugatory. Recently, there has been an increasing

amount work which incorporates relative performance into continuous time asset

pricing models. The work by Cuoco and Kaniel (2011), and Basak and Pavlova

(2013) belong to this strand of literature. These works compare the performance

of institutional investors relative to an external benchmark, like the S&P 500.

However, the work by Weinbaum (2009) and Kaniel and Kondor (2013) consid-

ers effect of the relative performance within a peer group has on the risk-taking

behaviour of the investors. To the best of my knowledge, the first paper to con-

sider the effects of relative wealth concerns on the speculative trading caused by

investors’ heterogeneous beliefs was Huang et al. (2013). They present a model

with two types of agents who hold heterogeneous beliefs about the drift parame-

ter and care about relative wealth concern. With this setup, they show that the

agents’ concern about relative performance affects their stock holdings, and stock

prices. Using the same setup, I first provide an analytic proof that if the agents

have logarithmic utilities, then the concern on relative performance does not in-

fluence the equilibrium. I also look at the Sharpe ratios of the agents and show,

analytically, that they are time-varying and the final wealth state dependent.
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2 The Economy

The setup of the economy is a standard adaptation of Lucas (1978) type of aggre-

gate dividends, which follow a geometric Brownian motion process. Specifically,

consider a pure-exchange, continuous time economy with a finite horizon [0, T ].

There is only one source of uncertainty in the economy and the agents trade in

securities to share risk. The uncertainty is represented by a filtered probabil-

ity space (Ω,F , {Ft} ,P) where Ω is the state space and a standard Brownian

motion Bt is defined on it. This process, {Bt, 0 ≤ t ≤ T} induces the filtration

{Ft, 0 ≤ t ≤ T}, Ft has the standard interpretation of the set of information

available at time t.

There are two groups of risk-averse agents in the economy who allocate their

wealth optimally between a risky asset, which is stock in positive net supply, and

a risk-free asset, a zero net supply bond. The agents only consume at the end

of the period. We also assume that each group has an infinite number of agents

that form a continuum with measure 1. We index these groups by i and j.2

The stock experiences risk in the form of the standard Brownian motion denoted

by Bt. The stock price St is assumed to follow :

dSt
St

= µS,tdt+ σS,tdBt (1)

with σS,t > 0. The mean return µS and volatility σS are equilibrium objects. The

risk-free asset, interpreted as a bond, is in zero net supply and has a constant

return r. I assume r = 0, which is equivalent to using the bond as the numeraire

good. Since the agents in this model only consume at the end of the trading

period, there is no intermediate choice which can be used to pin down the interest

rate. There is one share of stock, the risky security, which is a claim to a single

exogenous dividend DT at time T , and thus ST = DT . DT is the terminal value

2With a slight abuse of notation from now on, by agent i, we will mean an agent belonging
to group i and by agent j, an agent belonging to group j.
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of the process given by

dDt

Dt

= µDdt+ σDdBt (2)

where µD and σD > 0 are exogenously given constants. Equation Equation 2

implies that DT is log-normally distributed, this structure is assumed for algebraic

convenience.

As mentioned before, there are two groups of risk-averse agents who optimally

allocate their wealth between the two assets. Each agent invests a fraction θi,t of

their wealth in the stock. The wealth process of agent i, Wi,t then follows :

dWi,t = θi,tWi,t [µS,tdt+ σS,tdBt] (3)

Assume that all agents start out with the same initial wealth, which means Wi,0 =

Wj,0.

Agents in the economy are concerned about relative wealth, i.e. they care about

how good/bad the other agent is doing. To quantify this notion, define :

Ri,T =
Wi,T/Wi,0

Wj,T/Wj,0

=
Wi,T

Wj,T

(4)

as the relative wealth index of agent i with respect to agent j. Here, Wi,T denotes

the aggregate wealth of agent i′s portfolio at time T .

After the trading is closed and before the utilities are realized, each agent gets a

transfer from the other agent, which depends on the agents’ own wealth and also

upon the relative wealth. This transfer is introduced as a bonus/penalty function

defined by

BPi,T = Wi,T

[
Rκ
i,T − 1

]
(5)
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With this formulation, if Wi,T > Wj,T , then Ri,T > 1 and hence BPi,T > 0 so that

agent i receives a bonus, while if Wi,T < Wj,T , then Ri,T < 1 and hence BPi,T < 0

so that agent i incurs a penalty.

The total wealth for agent i is then the sum of investment returns and

bonus/penalty :

Wi,T +BPi,T = Wi,TR
κ
i,T (6)

The agents in the economy derive utility over terminal wealth and their utility

function takes the form

U (Wi,T ) =
W 1−γ
i,T

1− γ

where the argument is the total wealth for agent i from Equation 6.

The agents in this economy disagree on the drift parameter in the processes.

Agent i perceives the expected growth rate of the aggregate dividend process to

be µi. Hence, agent i lives in a filtered probability space (Ω,Fi, {Fi,t} ,Pi) in

which the dividend process follows :

dDt

Dt

= µidt+ σDdBi,t (7)

with constant µi. Define ηi ≡= µD−µi
σD

and dBi,t = dBt + ηidt. By Girsanov’s

theorem, dBi,t is a Brownian motion with respect to agent i’s probability measure

Pi.

The stock prices, in i’s filtered probability space, follow :

dSt
St

= µi,tdt+ σS,tdBi,t (8)
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Define µ̄ ≡ µ1−µ2

σD
. This captures the agents’ disagreement on the drift of the

dividend process. µ̄ > 0 would imply that the agent 1 is more optimistic than

agent 2, and µ̄ < 0 would imply that the agent 2 is more optimistic than agent 1.

The trading occurs continuously in the two securities, the risky stock and the risk-

less bond. The market is dynamically complete in the sense that any contingent

claims can be replicated. Dynamic completeness and no arbitrage then imply the

existence of a unique state price density πi,t given by

dπi,t
πi,t

= −ωi,tdBi,t (9)

where ωi,t =
µi,t
σS,t

is agent i’s Sharpe ratio. The state price density is the price of a

security that pays one unit of consumption good if a given state of nature arises,

and zero otherwise. The advantage of this structure of the state price density

process is that it follows the martingale property, i.e. πi,t = Et [πi,T ] which shall

be of use later in the analysis.
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3 The Benchmark Case

We first analyse the benchmark case where there are no bonus/penalties, i.e. the

agents do not care about relative performance. This happens when κ = 0 and

then the optimization problem for the agent i is

max
Wi,T

Ei
[
W 1−γ
i,T

1− γ

]

subject to the dynamic budget constraint

dWi,t = θi,tWi,t [µi,tdt+ σS,tdBi,t]

This dynamic optimization problem can be restated as a static problem using the

martingale methodology of Cox and Huang (1989), and Karatzas et al. (1987).

The equivalent static problem then is

max
Wi,T

Ei
[
W 1−γ
i,T

1− γ

]

subject to the static constraint

Ei [πi,TWi,T ] = Wi,0

The equivalence of the dynamic optimization problem and the static one is also

intuitive. As argued before, the markets are dynamically complete in the pre-

sented model. Given the market completeness, we know that any contingent

payoff can be perfectly financed by a trading strategy in the existing assets. This

means that the agent accounts for the wealth required at the end of the trading

period (for all possible realizations of the state) subject only to the affordability

constraint which is instantiated by the static budget constraint.

Solving this problem, we get optimal final wealth and state prices at time T which

are summarized in the following Theorem.
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Theorem 1. When κ = 0, the optimal final wealth of the two agents are

W1,T =
DT

1 + α (T )
1
γ

W2,T =
α (T )

1
γ DT

1 + α (T )
1
γ

The state prices at time T are

π1,T =

(
1 + α (T )

1
γ

)γ
λ1D

γ
T

π2,T =

(
1 + α (T )

1
γ

)γ
λ2D

γ
Tα (T )

where

α (t) =
λ1π1,t

λ2π2,t

(10)

where λi is the Lagrange multiplier in agent i’s optimization and πi,t is the state

price density as perceived by agent i, and i = 1, 2.

Proof. The Lagrangian to the static problem is given by

L = Ei
[
W 1−γ
i,T

1− γ

]
+ λi

[
Wi,0 − Ei [πi,TWi,T ]

]
The first order condition with respect to terminal wealth Wi,T gives us

W−γ
i,T = λiπi,T

=⇒ Wi,T =
1

λ
1
γ

i π
1
γ

i,T

(11)

where the Lagrange multipliers λi can be obtained by plugging in the optimal

wealth choice into the budget constraint. The market clearing condition in this
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economy is given by

W1,T +W2,T = DT (12)

Combining the first order condition for both agents, we get

W1,T

W2,T

=
λ

1
γ

2 π
1
γ

2,T

λ
1
γ

1 π
1
γ

1,T

The market clearing condition Equation 12 can be re-written as

W1,T

W2,T

+ 1 =
DT

W2,T

Combining the previous two results, we get

W2,T =
λ

1
γ

1 π
1
γ

1,T

λ
1
γ

1 π
1
γ

1,T + λ
1
γ

2 π
1
γ

2,T

DT

W1,T =
λ

1
γ

2 π
1
γ

2,T

λ
1
γ

1 π
1
γ

1,T + λ
1
γ

2 π
1
γ

2,T

DT

Plugging this into the first order condition Equation 11, we get the state price

density at time T as

π2,T =
1

λ2D
γ
T

λ 1
γ

1 π
1
γ

1,T + λ
1
γ

2 π
1
γ

2,T

λ
1
γ

1 π
1
γ

1,T

γ

π1,T =
1

λ1D
γ
T

λ 1
γ

1 π
1
γ

1,T + λ
1
γ

2 π
1
γ

2,T

λ
1
γ

2 π
1
γ

2,T

γ

Define

α (t) =
λ1π1,t

λ2π2,t
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Then, the final wealth of the two agents are

W1,T =
DT

1 + α (T )
1
γ

W2,T =
α (T )

1
γ DT

1 + α (T )
1
γ

and the state prices at time T are

π1,T =

(
1 + α (T )

1
γ

)γ
λ1D

γ
T

π2,T =

(
1 + α (T )

1
γ

)γ
λ2D

γ
Tα (T )

The above theorem establishes that the agents share the final dividend according

to a sharing rule which depends on α (T )
1
γ .

The final dividend sharing rule in this setup is the same as the one demonstrated

by Weinbaum (2009). The only difference in the results arise from the fact that

in this model, the agents have the same coefficient of risk aversion whereas in

Weinbaum (2009), the agents vary in their risk aversion parameters. If the two

agents had the same risk aversion parameters, then this result would conform

with theirs. This equivalence serves as a good robustness check of the model

under consideration here.

To characterize the equilibrium, the explicit expression of the state price den-

sity at all intermediate time, i.e, for πi,t is needed. Given the structure of the

state price process Equation 9, this can be calculated using πi,t = Eit [πi,T ] from

its martingale property. However, this task is not trivial because of the term
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(
1 + α (T )

1
γ

)γ
. But, if we assume γ to be an integer3, then,

(
1 + α (T )

1
γ

)γ
=

γ∑
i=0

(
γ

i

)
α (T )

i
γ

=⇒ π1,T =

∑γ
i=0

(
γ

i

)
α (T )

i
γ

λ1D
γ
T

π2,T =

∑γ
i=0

(
γ

i

)
α (T )

i
γ

λ2D
γ
Tα (T )

With this, the state prices can be characterized as in the following Theorem,

which can be arrived at after some algebra. Using Itō’s Lemma on the state price

densities and comparing coefficients with the Equation 9, the Sharpe ratios are

also characterized.

Theorem 2. Under the assumption that γ is an integer, the state prices at time

t are given by

π1,t =
1

λ1D
γ
t

γ∑
i=0

(
γ

i

)
α (t)

i
γ e

(
− µ̄

2

2
i
γ
−γ

(
µ1−

σ2
D
2

)
+ 1

2 [ iγ µ̄+γσD]
2
)

(T−t)

π2,t =
1

λ2D
γ
t

γ∑
i=0

(
γ

i

)
α (t)

i−γ
γ e

(
µ̄2

2
i−γ
γ
−γ

(
µ2−

σ2
D
2

)
+ 1

2 [ i−γγ µ̄+γσD]
2
)

(T−t)

The Sharpe ratios for the two agents are given by

ω1,t = γσD +

∑γ
i=0

(
γ

i

)
α (t)

i
γ e

(
− µ̄

2

2
i
γ
−γ

(
µ1−

σ2
D
2

)
+ 1

2 [ iγ µ̄+γσD]
2
)

(T−t)
i
γ∑γ

i=0

(
γ

i

)
α (t)

i
γ e

(
− µ̄2

2
i
γ
−γ

(
µ1−

σ2
D
2

)
+ 1

2 [ iγ µ̄+γσD]
2
)

(T−t)

ω2,t = γσD +

∑γ
i=0

(
γ

i

)
α (t)

i−γ
γ e

(
− µ̄

2

2
i−γ
γ
−γ

(
µ2−

σ2
D
2

)
+ 1

2 [ i−γγ µ̄+γσD]
2
)

(T−t) i−γ
γ∑γ

i=0

(
γ

i

)
α (t)

i−γ
γ e

(
− µ̄2

2
i−γ
γ
−γ

(
µ2−

σ2
D
2

)
+ 1

2 [ i−γγ µ̄+γσD]
2
)

(T−t)

3This approach is similar to the one used by Yan (2008).
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The two previous theorems establish the benchmark case where the agents do

not have concerns about relative wealth, this shall be used to gauge the next two

special cases.
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4 A Special Case

In this section, we now introduce relative wealth concerns in our model. Solving

the the general model where the agents have CRRA utility is algebraically cum-

bersome, so we focus on a special case where the agents have logarithmic utility,

i.e. γ = 1.

In this special case where the agents have log utility and care about relative

performance (κ 6= 0), we solve the optimization problem to get the final wealth

distribution and state price density at time T in the following Theorem.

Theorem 3. In the special case when the agents have log utility (γ = 1) and have

concerns over relative performance (κ 6= 0), the optimal final wealth of the two

agents are

W1,T =
DT

1 + α (T )

W2,T =
α (T )DT

1 + α (T )

The state prices at time T are

π1,T =
1 + α (T )

λ1DT

π2,T =
1 + α (T )

λ2DTα (T )

Proof. Then, agent i’s maximization problem now becomes

max
Wi,T

Ei
[
log
(
Wi,TR

κ
i,T

)]
subject to

Ei [πi,TWi,T ] = Wi,0
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The Lagrangian now is given by

L = Ei
[
log
(
Wi,TR

κ
i,T

)]
+ λi

[
Wi,0 − Ei [πi,TWi,T ]

]
Using the definition of Ri,T from equation Equation 4, the Lagrangian can be

rewritten as

L = Ei
[

log

(
Wi,T

W κ
i,T

W κ
j,T

)]
+ λi

[
Wi,0 − Ei [πi,TWi,T ]

]
= Ei

[
log
(
W κ+1
i,T

)
− log

(
W κ
j,T

)]
+ λi

[
Wi,0 − Ei [πi,TWi,T ]

]
= Ei [(κ+ 1) log (Wi,T )− κ log (Wj,T )] + λi

[
Wi,0 − Ei [πi,TWi,T ]

]
The FOC now gives us

κ+ 1

Wi,T

= λiπi,T (13)

The same market clearing condition Equation 12 holds

W1,T +W2,T = DT

Since the FOC holds for both agents, we get

W1,T

W2,T

=
λ2π2,T

λ1π1,T

We therefore get the wealth distribution as

W2,T =
λ1π1,T

λ1π1,T + λ2π2,T

DT

W1,T =
λ2π2,T

λ1π1,T + λ2π2,T

DT

17



Plugging the optimal wealth back into the first order condition Equation 13 we

get the state prices at time T as

π2,T =
κ+ 1

λ2DT

(
λ1π1,T + λ2π2,T

λ1π1,T

)
π1,T =

κ+ 1

λ1DT

(
λ1π1,T + λ2π2,T

λ2π2,T

)

Using

α (t) =
λ1π1,t

λ2π2,t

the final wealth of the two agents are

W1,T =
DT

1 + α (T )

W2,T =
α (T )DT

1 + α (T )

and the state prices at time T are

π1,T =
1 + α (T )

λ1DT

π2,T =
1 + α (T )

λ2DTα (T )

The structure of the state price density at time T in this special case conforms

perfectly with the previous section where the characterization of the state price

density at intermediate time t was possible when γ is an integer (because here we

have γ = 1). Therefore, we find an explicit solution for the state price densities

at all intermediate times t and also a closed form expression for the Sharpe ratios

as below :

Theorem 4. In the special case when the agents have log utility (γ = 1) and have

concerns over relative performance (κ 6= 0), the agents’ state price density for all

18



intermediate time t is given by

π1,t =
κ+ 1

λ1Dt

·
{
e(σ

2
D−µ1)(T−t) + α (t) e(σ

2
D−µ1+µ̄σD)(T−t)

}
π2,t =

κ+ 1

λ2Dt

·
{

1

α (t)
e(σ

2
D+µ̄2−µ2−σDµ̄)(T−t) + e(σ

2
D−µ2)(T−t)

}

The Sharpe ratios for the two agents are given by

ω1,t = σD + µ̄
α (t)

α (t) + e−µ̄σD(T−t)

ω2,t = σD − µ̄
1

1 + α (t) e−µ̄σD(T−t)

Proof. Consider first agent 1. With the definition of α (T ) as in equation Equa-

tion 10, for the special case we have

W1,T =
DT

1 + α (T )

Together with the first order condition, this gives us

π1,T =
κ+ 1

λ1

· 1 + α (T )

DT

(14)

Using Itō’s lemma on Equation 10, we get the following dynamics of α (·):

dα (t)

α (t)
= −µ̄dB1,t

=⇒ ln

(
α (T )

α (t)

)
= − µ̄

2

2
(T − t)− µ̄ (B1,T −B1,t)

=⇒ α (T ) = α (t) e−
µ̄2

2
(T−t)−µ̄(B1,T−B1,t) (15)

The dividend process, under agent 1’s subjective measure looks like

dDt

Dt

= µ1,Ddt+ σDdB1,t

=⇒ ln

(
DT

Dt

)
=

(
µ1 −

σ2
D

2

)
(T − t) + σD (B1,T −B1,t)
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=⇒ DT = Dte

(
µ1−

σ2
D
2

)
(T−t)+σD(B1,T−B1,t)

(16)

Plugging in Equation 15 and Equation 16 into Equation 14, we get

π1,T =
κ+ 1

λ1Dt

· 1 + α (t) e−
µ̄2

2
(T−t)−µ̄(B1,T−B1,t)

e

(
µ1−

σ2
D
2

)
(T−t)+σD(B1,T−B1,t)

=
κ+ 1

λ1Dt

·

{
e

(
σ2
D
2
−µ1

)
(T−t)−σD(B1,T−B1,t)

+

α (t) e

(
σ2
D
2
− µ̄

2

2
−µ1

)
(T−t)−(µ̄+σD)(B1,T−B1,t)

}

To establish the equilibrium, we need to find an explicit expression of π1,t, which

is calculated as π1,t = E1
t [π1,T ] from its martingale property :

π1,t = E1
t [π1,T ]

=
κ+ 1

λ1Dt

·

{
e

(
σ2
D
2
−µ1+

σ2
D
2

)
(T−t)

+

α (t) e

(
σ2
D
2
− µ̄

2

2
−µ1+

(µ̄+σD)2

2

)
(T−t)

}

=
κ+ 1

λ1Dt

·
{
e(σ

2
D−µ1)(T−t) + α (t) e(σ

2
D−µ1+µ̄σD)(T−t)

}
(17)

Uing Itō’s lemma on this, we get

dπ1,t =
κ+ 1

λ1

·
(
− 1

D2
t

dDt +
1

2
· 2

D3
t

·D2
t σ

2
Ddt

)
· e(σ2

D−µ1)(T−t)

+
κ+ 1

λ1

(
1

Dt

· −α (t) µ̄dB1,t + α (t)

(
− 1

D2
t

dDt +
1

2
· 2

D3
t

·D2
t σ

2
Ddt

))
e(σ

2
D−µ1+µ̄σD)(T−t)

=
κ+ 1

λ1Dt

(
−µ1,Ddt− σDdB1,t + σ2

Ddt
)
· e(σ2

D−µ1)(T−t)

+
κ+ 1

λ1Dt

(
−α (t) µ̄dB1,t − α (t)µ1,Ddt− α (t)σDdB1,t + α (t)σ2

Ddt
)

e(σ
2
D−µ1+µ̄σD)(T−t)

=⇒ dπ1,t =
κ+ 1

λ1Dt

·
{((

σ2
D − µ1

)
dt− σDdB1,t

)
· e(σ2

D−µ1)(T−t)
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+
(
α (t)

(
σ2
D − µ1

)
dt− α (t) (σD + µ̄) dB1,t

)
· e(σ2

D−µ1+µ̄σD)(T−t)
}

Dividing this by Equation 17, and comparing the coefficients with equation Equa-

tion 9, we get agent 1’s Sharpe ratio :

ω1,t = σD +
α (t) e(σ

2
D−µ1+µ̄σD)(T−t)

e(σ
2
D−µ1)(T−t) + α (t) e(σ

2
D−µ1+µ̄σD)(T−t)

µ̄

= σD + µ̄
α (t)

α (t) + e−µ̄σD(T−t)

Now consider agent 2. With the definition of α (T ) as in equation Equation 10,

for the special case we have

W2,T =
α (T )DT

1 + α (T )

Together with the first order condition, this gives us

π2,T =
κ+ 1

λ2

· 1 + α (T )

α (T )DT

(18)

Using Itō’s lemma on Equation 10, we get the following dynamics of α (·):

d
1

α (t)
=

1

α (t)
µ̄dB2,t

ln

(
α (T )

α (t)

)
= − µ̄

2

2
(T − t)− µ̄ (B2,T −B2,t)

=⇒ α (T ) = α (t) e−
µ̄2

2
(T−t)−µ̄(B2,T−B2,t) (19)

The dividend process, under agent 2’s subjective measure looks like

dDt

Dt

= µ2,Ddt+ σDdB2,t

=⇒ ln

(
DT

Dt

)
=

(
µ2 −

σ2
D

2

)
(T − t) + σD (B2,T −B2,t)

=⇒ DT = Dte

(
µ2−

σ2
D
2

)
(T−t)+σD(B2,T−B2,t)

(20)
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Plugging in Equation 19 and Equation 20 into Equation 18, we get

π2,T =
κ+ 1

λ2Dt

· 1 + α (t) e−
µ̄2

2
(T−t)−µ̄(B2,T−B2,t)

α (t) e

(
µ1−

σ2
D
2
− µ̄2

2

)
(T−t)+(σD−µ̄)(B2,T−B2,t)

=
κ+ 1

λ2Dt

·

{
1

α (t)
e

(
σ2
D
2

+ µ̄2

2
−µ2

)
(T−t)−(σD−µ̄)(B2,T−B2,t)

+

e

(
σ2
D
2
−µ2

)
(T−t)−σD(B2,T−B2,t)

}

Again, to completely characterize the equilibrium, we need to find an explicit

expression of π2,t, which is calculated as π2,t = E2
t [π2,T ] from its martingale

property :

π2,t = E2
t [π2,T ]

=
κ+ 1

λ2Dt

·

{
1

α (t)
e

(
σ2
D
2

+ µ̄2

2
−µ2+

(σD−µ̄)2

2

)
(T−t)

+

e

(
σ2
D
2
−µ2+

σ2
D
2

)
(T−t)

}

=
κ+ 1

λ2Dt

·
{

1

α (t)
e(σ

2
D+µ̄2−µ2−σDµ̄)(T−t) + e(σ

2
D−µ2)(T−t)

}
(21)

Uing Itō’s lemma on this, we get

dπ2,t =
κ+ 1

λ2

·
(
− 1

D2
t

dDt +
1

2
· 2

D3
t

·D2
t σ

2
Ddt

)
· e(σ2

D−µ2)(T−t)

+
κ+ 1

λ2

(
1

Dt

· 1

α (t)
µ̄dB2,t +

1

α (t)

(
− 1

D2
t

dDt +
1

2
· 2

D3
t

·D2
t σ

2
Ddt

))
e(σ

2
D+µ̄2−µ2+µ̄σD)(T−t)

=
κ+ 1

λ2Dt

[
−µ2dt− σDdB2,t + σ2

Ddt
]
· e(σ2

D−µ2)(T−t)

+
κ+ 1

λ2Dt

(
1

α (t)
µ̄dB2,t −

1

α (t)
µ2dt−

1

α (t)
σDdB2,t +

1

α (t)
σ2
Ddt

)
e(σ

2
D+µ̄2−µ2+µ̄σD)(T−t)

=⇒ dπ2,t =
κ+ 1

λ2Dt

·
{((

σ2
D − µ2

)
dt− σDdB2,t

)
· e(σ2

D−µ2)(T−t)
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+

(
1

α (t)

(
σ2
D − µ2

)
dt− 1

α (t)
(σD − µ̄) dB2,t

)
· e(σ2

D+µ̄2−µ2+µ̄σD)(T−t)
}

Dividing this by Equation 21, and comparing the coefficients with equation Equa-

tion 9, we get agent 2’s Sharpe ratio :

ω2,t = σD −
1
α(t)

e(σ
2
D+µ̄2−µ2−σDµ̄)(T−t)

1
α(t)

e(σ
2
D+µ̄2−µ2−σDµ̄)(T−t) + e(σ

2
D−µ2)(T−t)

µ̄

= σD − µ̄
1

1 + α (t) e−µ̄σD(T−t)

One can easily see that the final wealth distribution in this special case does not

depend on the relative wealth parameter κ and is the same as the benchmark case

as discussed in the previous section (with γ = 1). However, one may be inclined

to conclude that the state price densities are not the same any more as there is

an explicit dependence on κ. But, from Equation 13, we see that the Lagrange

multipliers are linearly dependent on κ and thus the effect of κ on the state prices

vanishes once the Lagrange multipliers are substituted out for.

Then, combining the above discussion and the previous theorems, we get the

following result.

Theorem 5. If the agents have logarithmic utility, then the relative wealth con-

cerns are inconsequential.
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5 Next Step Forward

Now that it has been established that the case when the agents have logarithmic

utility the relative wealth concerns do not play a role in equilibrium, we move on

and take γ = 2.

The results of the agents’ optimization problem are summarized in Theorem 6

below.

Theorem 6. When γ = 2 and κ 6= 0, the optimal final wealth sharing rule among

the agents is given by

W1,T =
1

1 + α (T )
1

2κ+2

DT

W2,T =
α (T )

1
2κ+2

1 + α (T )
1

2κ+2

DT

The state prices at time T are

π1,T =
κ+ 1

λ2

(
1 + α (T )

1
2κ+2

)2

D2
T

α (T )
κ

2κ+2

π2,T =
κ+ 1

λ2

(
1 + α (T )

1
2κ+2

)2

D2
T

α (T )
−(κ+2)
2κ+2

Proof. In this case, agent i’s optimization problem is

max
Wi,T

Ei
[
−1

Wi,TRκ
i,T

]

subject to

Ei [πi,TWi,T ] = Wi,0

The Lagrangian to this static problem is given by

L = Ei
[
−1

Wi,TRκ
i,T

]
+ λi

[
Wi,0 − Ei [πi,TWi,T ]

]
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= Ei
[
−W κ

j,T

W κ+1
i,T

]
+ λi

[
Wi,0 − Ei [πi,TWi,T ]

]
The FOC w.r.t Wi,T gives us

(κ+ 1)
W κ
j,T

W κ+2
i,T

= λiπi,T

The same market clearing condition Equation 12 holds

W1,T +W2,T = DT

Since the FOC holds for both agents, we get

α (T ) =
W 2κ+2

2,T

W 2κ+2
1,T

(22)

We therefore get the wealth distribution as

W1,T =
DT

1 + α (T )
1

2κ+2

W2,T =
α (T )

1
2κ+2 DT

1 + α (T )
1

2κ+2

Plugging the optimal wealth back into the first order condition Equation 22 we

get the state prices at time T as

π1,T =
κ+ 1

λ2

(
1 + α (T )

1
2κ+2

)2

D2
T

α (T )
κ

2κ+2

π2,T =
κ+ 1

λ1

(
1 + α (T )

1
2κ+2

)2

D2
T

α (T )
−(κ+2)
2κ+2

In this case, to find an explicit expression for the state price densities, we expand

the square terms and get the following result.
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Theorem 7. The state price density at all intermediate times is given by

π1,t =
κ+ 1

λ1D2
t

(
1β1 + 1β2 + 1β3

)
π2,t =

κ+ 1

λ2D2
t

(
2β1 + 2β2 + 2β3

)
where 1β1,

1β2,
1β3,

2β1,
2β2,

2β3 are functions of α (t).

The Sharpe ratio of the agents is given by

ω1,t = 2σD + µ̄

1β2 ·
(
κ+1
2κ+2

+ 1
2

(
κ+1
2κ+2

)2
µ̄
)

+ 1β1 ·
(

κ
2κ+2

+ 1
2
κ(κ+2)

(2κ+2)2 µ̄
)

+ 1β3 ·
(
κ+2
2κ+2

+ 1
2
κ(κ+2)

(2κ+2)2 µ̄
)

1β1 + 1β2 + 1β3

ω2,t = 2σD − µ̄

2β2 ·
(
κ+1
2κ+2
− 1

2

(
κ+1
2κ+2

)2
µ̄
)

+ 2β1 ·
(

κ
2κ+2
− 1

2
κ(κ+2)

(2κ+2)2 µ̄
)
− 2β3 ·

(
κ+2
2κ+2

+ 1
2
κ(κ+2)

(2κ+2)2 µ̄
)

2β1 + 2β2 + 2β3

Proof. Consider first agent 1. Expanding the square terms we get

π1,T =
κ+ 1

λ1

1

D2
T

α (T )
κ

2κ+2

[
1 + 2α (T )

1
2κ+2 + α (T )

2
2κ+2

]
=
κ+ 1

λ1

1

D2
T

[
α (T )

κ
2κ+2 + 2α (T )

κ+1
2κ+2 + α (T )

κ+2
2κ+2

]

Using Equation 16 and Equation 15,

π1,T =
κ+ 1

λ1

[
α (T )

κ
2κ+2 + 2α (T )

κ+1
2κ+2 + α (T )

κ+2
2κ+2

]
D2
T

=
κ+ 1

λ1

[
α (T )

κ
2κ+2

D2
T

+
2α (T )

κ+1
2κ+2

D2
T

+
α (T )

κ+2
2κ+2

D2
T

]

=
κ+ 1

λ1

α (t)
κ

2κ+2 e−
κµ̄2

2(2κ+2)
(T−t)− κµ̄

2κ+2(B1,T−B1,t)

D2
t e

(2µ1−σ2
D)(T−t)+2σD(B1,T−B1,t)

+

2α (t)
κ+1
2κ+2 e−

(κ+1)µ̄2

2(2κ+2)
(T−t)− (κ+1)µ̄

2κ+2 (B1,T−B1,t)

D2
t e

(2µ1−σ2
D)(T−t)+2σD(B1,T−B1,t)

+
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α (t)
κ+2
2κ+2 e−

(κ+2)µ̄2

2(2κ+2)
(T−t)− (κ+2)µ̄

2κ+2 (B1,T−B1,t)

D2
t e

(2µ1−σ2
D)(T−t)+2σD(B1,T−B1,t)


=
κ+ 1

λ1D2
t

[
α (t)

κ
2κ+2 e

(
σ2
D−2µ1− κµ̄2

2(2κ+2)

)
(T−t)−(2σD+ κµ̄

2κ+2)(B1,T−B1,t)
+

2α (t)
κ+1
2κ+2 e

(
σ2
D−2µ1− (κ+1)µ̄2

2(2κ+2)

)
(T−t)−(2σD+

(κ+1)µ̄
2κ+2 )(B1,T−B1,t)

+

α (t)
κ+2
2κ+2 e

(
σ2
D−2µ1− (κ+2)µ̄2

2(2κ+2)

)
(T−t)−(2σD+

(κ+2)µ̄
2κ+2 )(B1,T−B1,t)

]

Again, as before, to completely characterize the equilibrium, we need to find

an explicit expression of π1,t, which is calculated as π1,t = E1
t [π1,T ] from its

martingale property :

π1,t = E1
t [π1,T ]

=
κ+ 1

λ1D2
t

[
α (t)

κ
2κ+2 e

(
σ2
D−2µ1− κµ̄2

2(2κ+2)
+ 1

2(2σD+ κµ̄
2κ+2)

2
)

(T−t)
+

2α (t)
κ+1
2κ+2 e

(
σ2
D−2µ1− (κ+1)µ̄2

2(2κ+2)
+ 1

2(2σD+
(κ+1)µ̄
2κ+2 )

2
)

(T−t)
+

α (t)
κ+2
2κ+2 e

(
σ2
D−2µ1− (κ+2)µ̄2

2(2κ+2)
+ 1

2(2σD+
(κ+2)µ̄
2κ+2 )

2
)

(T−t)
]

(23)

To find the Sharpe ratio, we use Itō’s lemma on Equation 23 :

dπ1,t =
κ+ 1

λ1

[
e

(
σ2
D−2µ1− κµ̄2

2(2κ+2)
+ 1

2(2σD+ κµ̄
2κ+2)

2
)

(T−t)
·[

α (t)
κ

2κ+2

(
−2

D3
t

dDt +
1

2

6

D2
t

σ2
Ddt

)
+

1

D2
t

(
κ

2κ+ 2
α (t)

−(κ+2)
2κ+2 dα (t)− 1

2

κ (κ+ 2)

(2κ+ 2)2α (t)
κ

2κ+2 µ̄2dB1,t

)]
+

2e

(
σ2
D−2µ1− (κ+1)µ̄2

2(2κ+2)
+ 1

2(2σD+
(κ+1)µ̄
2κ+2 )

2
)

(T−t)
·[

α (t)
κ+1
2κ+2

(
−2

D3
t

dDt +
1

2

6

D2
t

σ2
Ddt

)
+

1

D2
t

(
κ+ 1

2κ+ 2
α (t)

−(κ+1)
2κ+2 dα (t)− 1

2

(
κ+ 1

2κ+ 2

)2

α (t)
κ+1
2κ+2 µ̄2dB1,t

)]
+

e

(
σ2
D−2µ1− (κ+2)µ̄2

2(2κ+2)
+ 1

2(2σD+
(κ+2)µ̄
2κ+2 )

2
)

(T−t)
·
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[
α (t)

κ+2
2κ+2

(
−2

D3
t

dDt +
1

2

6

D2
t

σ2
Ddt

)
+

1

D2
t

(
κ+ 2

2κ+ 2
α (t)

−κ
2κ+2 dα (t)− 1

2

κ (κ+ 2)

(2κ+ 2)2α (t)
κ+2
2κ+2 µ̄2dB1,t

)]]

=⇒ dπ1,t =
κ+ 1

λ1D2
t

[
e

(
σ2
D−2µ1− κµ̄2

2(2κ+2)
+ 1

2(2σD+ κµ̄
2κ+2)

2
)

(T−t)
·

[
α (t)

κ
2κ+2

((
3σ2

D − 2µ1,D

)
dt− 2σDdB1,t

)
−
(

κ

2κ+ 2
α (t)

κ
2κ+2 µ̄dB1,t +

1

2

κ (κ+ 2)

(2κ+ 2)2α (t)
κ

2κ+2 µ̄2dB1,t

)]
+

2e

(
σ2
D−2µ1− (κ+1)µ̄2

2(2κ+2)
+ 1

2(2σD+
(κ+1)µ̄
2κ+2 )

2
)

(T−t)
·[

α (t)
κ+1
2κ+2

((
3σ2

D − 2µ1,D

)
dt− 2σDdB1,t

)
−

(
κ+ 1

2κ+ 2
α (t)

κ+1
2κ+2 µ̄dB1,t +

1

2

(
κ+ 1

2κ+ 2

)2

α (t)
κ+1
2κ+2 µ̄2dB1,t

)]
+

e

(
σ2
D−2µ1− (κ+2)µ̄2

2(2κ+2)
+ 1

2(2σD+
(κ+2)µ̄
2κ+2 )

2
)

(T−t)
·[

α (t)
κ+2
2κ+2

((
3σ2

D − 2µ1,D

)
dt− 2σDdB1,t

)
−
(
κ+ 2

2κ+ 2
α (t)

κ+2
2κ+2 µ̄dB1,t +

1

2

κ (κ+ 2)

(2κ+ 2)2α (t)
κ+2
2κ+2 µ̄2dB1,t

)]]

=⇒ dπ1,t =
κ+ 1

λ1D2
t

[
α (t)

κ
2κ+2 e

(
σ2
D−2µ1− κµ̄2

2(2κ+2)
+ 1

2(2σD+ κµ̄
2κ+2)

2
)

(T−t)
·

[(
3σ2

D − 2µ1,D

)
dt

−
(

κ

2κ+ 2
µ̄+

1

2

κ (κ+ 2)

(2κ+ 2)2 µ̄
2 + 2σD

)
dB1,t

]
+

2α (t)
κ+1
2κ+2 e

(
σ2
D−2µ1− (κ+1)µ̄2

2(2κ+2)
+ 1

2(2σD+
(κ+1)µ̄
2κ+2 )

2
)

(T−t)
·[(

3σ2
D − 2µ1,D

)
dt

−

(
κ+ 1

2κ+ 2
µ̄+

1

2

(
κ+ 1

2κ+ 2

)2

µ̄2 + 2σD

)
dB1,t

]
+

α (t)
κ+2
2κ+2 e

(
σ2
D−2µ1− (κ+2)µ̄2

2(2κ+2)
+ 1

2(2σD+
(κ+2)µ̄
2κ+2 )

2
)

(T−t)
·
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[(
3σ2

D − 2µ1,D

)
dt

−
(
κ+ 2

2κ+ 2
µ̄+

1

2

κ (κ+ 2)

(2κ+ 2)2 µ̄
2 + 2σD

)
dB1,t

]]

Define

1β1 = α (t)
κ

2κ+2 e

(
σ2
D−2µ1− κµ̄2

2(2κ+2)
+ 1

2(2σD+ κµ̄
2κ+2)

2
)

(T−t)

1β2 = 2α (t)
κ+1
2κ+2 e

(
σ2
D−2µ1− (κ+1)µ̄2

2(2κ+2)
+ 1

2(2σD+
(κ+1)µ̄
2κ+2 )

2
)

(T−t)

1β3 = α (t)
κ+2
2κ+2 e

(
σ2
D−2µ1− (κ+2)µ̄2

2(2κ+2)
+ 1

2(2σD+
(κ+2)µ̄
2κ+2 )

2
)

(T−t)

Dividing this by Equation 23, and then comparing the coefficients with Equa-

tion 9, we get agent 1’s Sharpe ratio as

ω1,t = 2σD + µ̄

1β2 ·
(
κ+1
2κ+2

+ 1
2

(
κ+1
2κ+2

)2
µ̄
)

+ 1β1 ·
(

κ
2κ+2

+ 1
2
κ(κ+2)

(2κ+2)2 µ̄
)

+ 1β3 ·
(
κ+2
2κ+2

+ 1
2
κ(κ+2)

(2κ+2)2 µ̄
)

1β1 + 1β2 + 1β3

Consider now agent 2. Expanding the square terms we get

π2,T =
κ+ 1

λ2

1

D2
T

(
1

α (T )

) κ+2
2κ+2 [

1 + 2α (T )
1

2κ+2 + α (T )
2

2κ+2

]
=
κ+ 1

λ1

1

D2
T

[(
1

α (T )

) κ+2
2κ+2

+ 2

(
1

α (T )

) κ+1
2κ+2

+

(
1

α (T )

) κ
2κ+2

]

Using Equation 20 and Equation 19,

π2,T =
κ+ 1

λ2

[(
1

α(T )

) κ+2
2κ+2

+ 2
(

1
α(T )

) κ+1
2κ+2

+
(

1
α(T )

) κ
2κ+2

]
D2
T

=
κ+ 1

λ2


(

1
α(T )

) κ+2
2κ+2

D2
T

+
2
(

1
α(T )

) κ+1
2κ+2

D2
T

+

(
1

α(T )

) κ
2κ+2

D2
T


=
κ+ 1

λ2


(

1
α(T )

) κ+2
2κ+2

e
(κ+2)µ̄2

2(2κ+2)
(T−t)+ (κ+2)µ̄

2κ+2 (B2,T−B2,t)

D2
t e

(2µ2−σ2
D)(T−t)+2σD(B2,T−B2,t)

+

29



2
(

1
α(T )

) κ+1
2κ+2

e
(κ+1)µ̄2

2(2κ+2)
(T−t)+ (κ+1)µ̄

2κ+2 (B2,T−B2,t)

D2
t e

(2µ2−σ2
D)(T−t)+2σD(B2,T−B2,t)

+(
1

α(T )

) κ
2κ+2

e
κµ̄2

2(2κ+2)
(T−t)+ κµ̄

2κ+2(B2,T−B2,t)

D2
t e

(2µ2−σ2
D)(T−t)+2σD(B2,T−B2,t)


=
κ+ 1

λ2D2
t

[(
1

α (T )

) κ+2
2κ+2

e

(
σ2
D−2µ2+

(κ+2)µ̄2

2(2κ+2)

)
(T−t)+( (κ+2)µ̄

2κ+2
−2σD)(B2,T−B2,t)

+

2

(
1

α (T )

) κ+1
2κ+2

e

(
σ2
D−2µ2+

(κ+1)µ̄2

2(2κ+2)

)
(T−t)+( (κ+1)µ̄

2κ+2
−2σD)(B2,T−B2,t)

+(
1

α (T )

) κ
2κ+2

e

(
σ2
D−2µ2+ κµ̄2

2(2κ+2)

)
(T−t)+( κµ̄

2κ+2
−2σD)(B2,T−B2,t)

]

Again, as before, to completely characterize the equilibrium, we need to find

an explicit expression of π2,t, which is calculated as π2,t = E2
t [π2,T ] from its

martingale property :

π2,t = E2
t [π2,T ]

=
κ+ 1

λ2D2
t

[(
1

α (T )

) κ+2
2κ+2

e

(
σ2
D−2µ2+

(κ+2)µ̄2

2(2κ+2)
+ 1

2( (κ+2)µ̄
2κ+2

−2σD)
2
)

(T−t)
+

2

(
1

α (T )

) κ+1
2κ+2

e

(
σ2
D−2µ2+

(κ+1)µ̄2

2(2κ+2)
+ 1

2( (κ+1)µ̄
2κ+2

−2σD)
2
)

(T−t)
+(

1

α (T )

) κ
2κ+2

e

(
σ2
D−2µ2+ κµ̄2

2(2κ+2)
+ 1

2( κµ̄
2κ+2

−2σD)
2
)

(T−t)
]

(24)

To find the Sharpe ratio, we use Itō’s lemma on Equation 24 :

dπ2,t =
κ+ 1

λ2

[
e

(
σ2
D−2µ2+

(κ+2)µ̄2

2(2κ+2)
+ 1

2( (κ+2)µ̄
2κ+2

−2σD)
2
)

(T−t)
·[(

1

α (T )

) κ+2
2κ+2

(
−2

D3
t

dDt +
1

2

6

D2
t

σ2
Ddt

)

+
1

D2
t

(
κ+ 2

2κ+ 2

(
1

α (T )

) −κ
2κ+2

d

(
1

α (t)

)
− 1

2

κ (κ+ 2)

(2κ+ 2)2

(
1

α (T )

) κ+2
2κ+2

µ̄2dB2,t

)]
+

2e

(
σ2
D−2µ2+

(κ+1)µ̄2

2(2κ+2)
+ 1

2( (κ+1)µ̄
2κ+2

−2σD)
2
)

(T−t)
·
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[(
1

α (T )

) κ+1
2κ+2

(
−2

D3
t

dDt +
1

2

6

D2
t

σ2
Ddt

)

+
1

D2
t

(
κ+ 1

2κ+ 2

(
1

α (T )

)−(κ+1)
2κ+2

d

(
1

α (T )

)
− 1

2

(
κ+ 1

2κ+ 2

)2(
1

α (T )

) κ+1
2κ+2

µ̄2dB2,t

)]
+

e

(
σ2
D−2µ2+ κµ̄2

2(2κ+2)
+ 1

2( κµ̄
2κ+2

−2σD)
2
)

(T−t)
·[(

1

α (T )

) κ
2κ+2

(
−2

D3
t

dDt +
1

2

6

D2
t

σ2
Ddt

)

+
1

D2
t

(
κ

2κ+ 2

(
1

α (T )

)−(κ+2)
2κ+2

d

(
1

α (T )

)
− 1

2

κ (κ+ 2)

(2κ+ 2)2

(
1

α (T )

) κ
2κ+2

µ̄2dB2,t

)]]

=⇒ dπ2,t =
κ+ 1

λ2D2
t

[
e

(
σ2
D−2µ2+

(κ+2)µ̄2

2(2κ+2)
+ 1

2( (κ+2)µ̄
2κ+2

−2σD)
2
)

(T−t)
·[(

1

α (T )

) κ+2
2κ+2 ((

3σ2
D − 2µ2,D

)
dt− 2σDdB2,t

)
+

(
κ+ 2

2κ+ 2

(
1

α (T )

) κ+2
2κ+2

µ̄dB2,t −
1

2

κ (κ+ 2)

(2κ+ 2)2

(
1

α (T )

) κ+2
2κ+2

µ̄2dB2,t

)]
+

2e

(
σ2
D−2µ2+

(κ+1)µ̄2

2(2κ+2)
+ 1

2( (κ+1)µ̄
2κ+2

−2σD)
2
)

(T−t)
·[(

1

α (T )

) κ+1
2κ+2 ((

3σ2
D − 2µ2,D

)
dt− 2σDdB2,t

)
+

(
κ+ 1

2κ+ 2

(
1

α (T )

) κ+1
2κ+2

µ̄dB2,t −
1

2

(
κ+ 1

2κ+ 2

)2(
1

α (T )

) κ+1
2κ+2

µ̄2dB2,t

)]
+

e

(
σ2
D−2µ2+ κµ̄2

2(2κ+2)
+ 1

2( κµ̄
2κ+2

−2σD)
2
)

(T−t)
·[(

1

α (T )

) κ
2κ+2 ((

3σ2
D − 2µ2,D

)
dt− 2σDdB2,t

)
+

(
κ

2κ+ 2

(
1

α (T )

) κ
2κ+2

µ̄dB2,t −
1

2

κ (κ+ 2)

(2κ+ 2)2

(
1

α (T )

) κ
2κ+2

µ̄2dB2,t

)]]

=⇒ dπ2,t =
κ+ 1

λ2D2
t

[(
1

α (T )

) κ+2
2κ+2

e

(
σ2
D−2µ2+

(κ+2)µ̄2

2(2κ+2)
+ 1

2( (κ+2)µ̄
2κ+2

−2σD)
2
)

(T−t)
·
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[(
3σ2

D − 2µ2,D

)
dt

+

(
κ

2κ+ 2
µ̄− 1

2

κ (κ+ 2)

(2κ+ 2)2 µ̄
2 − 2σD

)
dB2,t

]
+

2

(
1

α (t)

) κ+1
2κ+2

e

(
σ2
D−2µ2+

(κ+1)µ̄2

2(2κ+2)
+ 1

2( (κ+1)µ̄
2κ+2

−2σD)
2
)

(T−t)
·

[(
3σ2

D − 2µ2,D

)
dt

+

(
κ+ 1

2κ+ 2
µ̄− 1

2

(
κ+ 1

2κ+ 2

)2

µ̄2 − 2σD

)
dB2,t

]
+

(
1

α (t)

) κ+2
2κ+2

e

(
σ2
D−2µ2+ κµ̄2

2(2κ+2)
+ 1

2( κµ̄
2κ+2

−2σD)
2
)

(T−t)
·

[(
3σ2

D − 2µ2,D

)
dt

+

(
κ

2κ+ 2
µ̄− 1

2

κ (κ+ 2)

(2κ+ 2)2 µ̄
2 − 2σD

)
dB2,t

]]

Define

2β1 =

(
1

α (t)

) κ
2κ+2

e

(
σ2
D−2µ2+

(κ+2)µ̄2

2(2κ+2)
+ 1

2( (κ+2)µ̄
2κ+2

−2σD)
2
)

(T−t)

2β2 = 2

(
1

α (t)

) κ+1
2κ+2

e

(
σ2
D−2µ2+

(κ+1)µ̄2

2(2κ+2)
+ 1

2( (κ+1)µ̄
2κ+2

−2σD)
2
)

(T−t)

2β3 =

(
1

α (t)

) κ+2
2κ+2

e

(
σ2
D−2µ2+ κµ̄2

2(2κ+2)
+ 1

2( κµ̄
2κ+2

−2σD)
2
)

(T−t)

Dividing this by Equation 24, and then comparing the coefficients with Equa-

tion 9, we get agent 2’s Sharpe ratio as

ω2,t = 2σD − µ̄

2β2 ·
(
κ+1
2κ+2
− 1

2

(
κ+1
2κ+2

)2
µ̄
)

+ 2β1 ·
(

κ
2κ+2
− 1

2
κ(κ+2)

(2κ+2)2 µ̄
)

+ 2β3 ·
(
κ+2
2κ+2
− 1

2
κ(κ+2)

(2κ+2)2 µ̄
)

2β1 + 2β2 + 2β3

As the previous two results demonstrate, the final wealth sharing rule, state price

densities, and Sharpe ratios are affected by the relative wealth concerns.
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Comparing these results to the benchamrk case, if αT is sufficiently small, the

final wealth of the optimistic group is less than what they had in the benchmark

case and the pessimistic group gets more wealth than what they would have had

in the benchmark case. The opposite holds when αT is sufficiently small.

Observe that the final dividend sharing rule depends on α
1
γ

T . Thus, the agents’

share, the final wealth, varies with the realized state. For example, the optimistic

group receives a larger portion of the final dividend than the pessimistic group

when αT is small.

Looking at the Sharpe ratios of the agents, it is easy to observe that the pessimistic

agents shift some risk to the optimistic agents, because ω1,t − ω2,t = µ̄. This is a

standard result in literature and it is shown that it still holds in this expanded

set of models with relative wealth concerns. If the economy is good, i.e. the

optimistic agents expect to receive a greater portion of the final dividend, then

the Sharpe ratio is higher when there are relative wealth concerns than when

there are no such concerns. Also, the Sharpe ratios increase with an increase in

the relative wealth concern. A similar result holds when the economy is bad, the

Sharpe ratio is lower in the presence of relative wealth concerns and they are a

decreasing function of relative wealth concerns.

From an economic perspective, in a good state of the economy, the optimists

have less wealth when they care about relative wealth than when they do not.

Although the optimists still dominate the market, the stock is less overvalued

and hence the market price of risk is higher in the presence of relative wealth

concerns than in the case when there are none. Similarly, in the bad state of the

economy, the Sharpe ratios are lower in the case when there are relative wealth

concerns.
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6 Conclusions

This work considers a model where agents have heterogeneous beliefs about the

drift parameter of the aggregate dividend process and also have concerns over

relative wealth. The aggregate dividend process is modelled as a geometric Brow-

nian motion while the relative wealth concerns are modelled as an exogenously

given convex function. This works provides an analytic proof of a special case

that when the agents have logarithmic utility, the relative wealth concerns do not

affect the equilibrium at all. The other focus of this work was on the perceived

Sharpe ratios of the agents. A closed form expression for the Sharpe ratios for

both agents is characterized in two cases, one when the agents have logarithmic

utility and one when the agents’ risk aversion parameter is 2. In both cases, the

conclusion is that the Sharpe ratios are time-varying and the final wealth state

dependent. This work also demonstrates that even in broader set of models where

the agents have relative wealth concerns, the expected results that the Sharpe

ratios are time-varying and final wealth state dependent still holds.

Avenues where this research could go further are numerous. It would be inter-

esting to check whether the results are robust to a change in the structure of

the dividend process. For example, if the dividend process were to be modelled

as a mean-reverting process instead of a geometric Brownian motion, and the

heterogeneity as a disagreement on the mean reversion parameter as in Chen and

Kohn (2011), the effect on Sharpe ratios and the asset prices and the mechanism

through which this effect occurs will be interesting to know. Also, the introduc-

tion of learning into this model, as implemented by Xiong and Yan (2010), might

have some implications on the trading behaviour similar to what they achieved

in the model without relative wealth concerns.
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7 Appendix

Some Mathematical Definitions

Definition 1. A filtration {Ft}t≥0 on a probability space (Ω,F ,P) is a collection

of sub-sigma-algebras of F satisfying Fs ⊆ Ft whenever s ≤ t. The probability

space taken with the filtration
(
Ω,F , {Ft}t≥0 ,P

)
is called a filtered probability

space.

Definition 2. A stochastic process X = {Xt : 0 ≤ t ≤ T} is said to be adapted

to a filtration {Ft}t≥0, if Xt is Ft-measurable for every t ≥ 0.

Definition 3. Consider a complete probability space
(
Ω,F , {Ft}t≥0 ,P

)
where the

filtration {Ft}t≥0 satisfies the following properties

1. F0 contains all the P-negligible sets (and so does every Ft).

2. The filtration {Ft}t≥0 is right-continuous, i.e., Ft = Ft+ = ∩s>tFs.

Then, an adapted process X = (Xt,Ft) is said to be a martingale with respect

to the filtration {Ft}t≥0 if it is integrable, and

E [Xt|Fs] = Xs

almost surely, for all 0 ≤ s ≤ t.

Definition 4. A stochastic process X = {Xt : 0 ≤ t ≤ T} given on the proba-

bility space (Ω,F ,P) is called a Brownian motion if it satisfies the following

properties :

1. X0 = 0 (P− a.s.)

2. X has stationary independent increments. That is, for s, t ∈ [0,∞) with

s < t, the distribution of Xt −Xs has the same distribution as Xt−s.
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3. Increments Xt −Xs have a Gaussian normal distribution with

E [Xt −Xs] = 0, V [Xt −Xs] = σ2|t− s|

4. For almost all ω ∈ Ω, the functions Xt = Xt (ω) are continuous on 0 ≤ t ≤

T .

In the case σ2 = 1, the process X is called the standard Brownian motion process.

Definition 5. A stochastic process Xt is said to follow a geometric Brownian

motion if it satisfies the following stochastic differential equation :

dXt

Xt

= µdt+ σdBt

where Bt is a Brownian motion and µ (’the drift’) and σ (’the volatility’) are

constants.

Theorem (Itō’s Lemma). Suppose you are given an Itō process

dXt = µtdt+ σtdBt

where µt is the drift parameter, σt is the diffusion parameter, and Bt is a Brown-

ian motion. Also, suppose that you have a twice continuously differentiable scalar

function f (X, t) of the real variables t and the Itō process X described above.

Then, f (X) is also an Itō process satisfying

df (Xt) = f ′ (Xt) dXt +
1

2
f ′′ (Xt)σ

2
t dt

Example 8. As a demonstration of Itō’s Lemma, consider a geometric Brownian

motion as above

dXt

Xt

= µdt+ σdBt
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Applying Itō’s lemma with f (X) = logX we get

d logXt = f ′ (Xt) dXt +
1

2
f ′′ (Xt)σ

2
t dt

=
1

Xt

(µXtdt+ σXtdBt)−
1

σ2
dt

= σdB +

(
µ− σ2

2

)
dt
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