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Abstract

Due to the fact that poverty estimations on regional level on basis of EU-SILC samples
is not of adequate accuracy, the quality of the estimations should be improved by ad-
ditionally incorporating Micro Census data for estimation. In comparison to EU-SILC,
the Micro Census survey data consists of more observations. However, income is not
questionaired but necessary to estimate poverty.

The aim is to find the “best” method for the estimation of poverty in terms of small
bias and small variance. Therefor an artificial “close-to-reality” population is simulated
in order to know the “true” parameter values. To make an assessment of the quality,
considering the respective sample designs, EU-SILC and Micro Census samples are drawn
repeatedly. Variables of interest are imputed into the Micro Census data sets with the
help of the EU-SILC samples through regression models including selected unit-level small
area methods and statistical matching methods and poverty indicators are estimated in
the following. The bias and variance for the direct estimator and the several methods are
evaluated and compared. The variance is desired to be reduced by the larger sample size
of the Micro Census. In conclusion, the result is that it doesn’t exist only one method
performing by far best in terms of bias and variance among the used models. Concerning
the bias, most often the statistical matching methods perform better than the regression
methods, but regarding the variances, the regression models do a better job in general.
In terms of the average mean squared error of states the direct estimator performs best,
followed by logistic (mixed) regression models and all the statistical matching methods.
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1. Introduction

This thesis deals with methods for the improvement of the quality of estimations of re-
gional indicators using EU-SILC and Micro Census data sets.

The classical approach of estimating poverty is to estimate poverty indicators on basis
of EU-SILC data sets. In the EU-SILC surveys information on income components are
collected from which the equivalised household income is derived. In addition, the at-
risk-of-poverty threshold and rate is estimated using the equivalised household income.
Because of the relativ small sample size of EU-SILC, the variances of the estimates on
regional level are large. Surveys from the Micro Census consists of more individuals and
households, but income is not questionaired but necessary to estimate poverty.

However, if the equivalised household income can be transmitted on the Micro Cen-
sus, the aim will be that the precision (in terms of mean squared or absolute errors) of
estimating poverty on the basis of the EU-SILC data sets should be improved by using
the larger sample size of the Micro Census. This is as much as to say, that thereby the
uncertainty of the estimation respectively the variance should be reduced.

This is in particular important, in order to receive secured information at regional level.
If this aim can be achieved, so among others the try to reduce the mean squared error
(MSE) is successful, better results on regional level will be noticed and the quality of
estimations on small domains will be higher.

Several methods of small area estimation, statistical matching and bootstrapping are
used to impute the variables “equivalised household income” and “at-risk-of-poverty” into
the (simulated) Micro Census data sets with the help of (simulated) EU-SILC-samples
and to estimate poverty indicators in the following.

After diligent examination of the data, several models and methods, about 20 different
small area models and statistical matching methods are applied to estimate the indicators
of interest.

The intention is, to find the “best” method in matters of small bias and small variance.

First of all, an artificial “close-to-reality” population is simulated (containing both EU-
SILC and Micro Census variables) to make it possible to compare the estimation results
with the true parameter values.

In order to make an assessment of the bias and variance of the various estimation meth-
ods, considering the sample design of the surveys, Micro Census and EU-SILC samples
are drawn repeatedly from this simulated population.

This approach is called design-based simulation, because from the simulated population
samples are drawn considering the different sample designs. The alternative would be
model-based simulation, where directly the samples, in this case the EU-SILC and Micro
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Census samples, get simulated repeatedly. The advantage of the design-based simulation
is that any design could be used, i.e. it is of interest to look how the estimators behave
under different sampling designs.

The outline of the thesis is as follows: In the first chapter (Chapter 2) all the theoretical
basics concerning the methods and models used are introduced. In the second chapter
(Chapter 3) the problem, the set-up and the used quality criteria are outlined. In the
third main chapter (Chapter 4) the methods are demonstrated on an concrete example.
The underlying data set is explained, then the already explained methods and models
are applied and the quality criteria are used for evaluation. In the end the results are
summarized and in Chapter 5 prospects are given. The Appendix contains the R-Code
used for the computations.
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2. Mathematical Background

To explain some methods for combining two data sets consider the following situation:
Let A and B be two sample surveys. The number of observations are different and not all
variables in the two data sets are the same. Moreover some of the variables are observed
in both surveys, some are observed in the sample survey A und some other variables are
only available in the sample survey B. The idea is now to estimate the missing variables
in one survey, lets say in A. Assume that this variable of interest has been observed in the
survey B. Many different possibilities to perform this estimation exists. In this chapter
the following kind of methods are considered:

1. Regression Models including selected unit-level Small Area Methods

2. Statistical Matching

For (1) linear regression, robust linear regression, logistic regression, linear mixed models
and generalized linear mixed models (logistic mixed models) are evaluated.

For (2) random hot deck, sequential random hot deck and weighted random hot deck
methods are regarded.

Before the structure of the data sets and the setting is explained, some details on the
methods used and evaluated are given in the following.

2.1. Definitions

Since the equivalised household income and the at-risk-of-poverty rate are of crucial
importance, they are described in detail in the following.

• equivalised household income: It can be seen as the income standardized on a single-
person household. Following the description from Statistics Austria on http://

www.statistik.at/web_en/statistics/social_statistics/poverty_and_social_

inclusion/index.html it “is obtained by dividing the available household income
by the number of consumption equivalents in the household. It is assumed that, as
the size of the household increases and depending on the age of the children, cost
savings are achieved in the household through joint budgeting (economies of scale).
For weighting purposes, the EU scale (modified OECD scale) is used to calculate a
household’s resource requirements. An adult living on his or her own is taken as the
reference point (= consumption equivalent), with an allocated weighting of 1. For
each additional adult, the assumed resource requirement increases by 0.5 consump-
tion equivalents. Each child under the age of 14 is weighted with a consumption
equivalent of 0.3. So a household comprising a father, mother and child would have
a calculated consumption equivalent of 1.8 compared with a single-person house-
hold.”
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• risk-of-poverty : Again Statistics Austria defines: “The at-risk-of-poverty is calcu-
lated on the basis of the equivalised household income. People are considered to be
at-risk-of-poverty or affected by the risk of poverty if their equivalised household
income is below an at-risk-of-poverty threshold of 60% of the median.” (see http://
www.statistik.at/web_en/statistics/social_statistics/poverty_and_social_

inclusion/index.html).

Of particular interest is the at-risk-of-poverty rate, i.e. the portion of all households
that are considered to be at-risk-of-poverty.

So in a mathematical notation the estimation of the at-risk-of-poverty rate from a
sample is defined as [see, e.g., Alfons et al., 2013]

arpr :=

∑
i∈I<arpt wi∑n
i=1wi

· 100 ,

where I<arpt := {i ∈ {1, . . . , n} : xi < arpt}, x := (x1, . . . , xn)T with x1 ≤ . . . ≤ xn,
is the equivalised household income, w := (w1, . . . , wn)T are the corresponding
sample weights, n the number of observations and arpt is the estimated at-risk-
of-poverty threshold, arpt = 0.6 · q̂0.5, where q̂0.5 is the weighted median defined
as

q̂0.5 = q̂0.5(x,w) =

{
1
2
(xj + xj+1) if

∑j
i=1wi = 0.5 ·

∑n
i=1wi

xj+1 if
∑j

i=1wi < 0.5 ·
∑n

i=1wi <
∑j+1

i=1 wi
.

The threshold in 2010 was at a equivalised income of 12371 euros per year (or
about 1031 euros a month (12 times)) for a single-person household [see Glaser and
Heuberger, 2012].

2.2. Distance Measures

Distance measures are of great importance for statistical matching methods. Therefore
some popular distance measures get described, because they are mentioned and used later
on (see also Chapter 2.4).

Let x1, x2, . . . , xn be p-dimensional vectors. In general a real-valued distance function
d fulfills the following properties [see, e.g., D’Orazio et al., 2006]:

1. for any two vectors xk and xl the function d is symmetric, i.e. d(xk,xl) = d(xl,xk),

2. for any two vectors xk and xl the function d is nonnegative, i.e. d(xk,xl) ≥ 0, and

3. for any vector xk holds, that d(xk,xk) = 0 (property of identity).

Looking at a data set X with n observations and p variables for each observation, in order
to compute the distances it is necessary to distinguish between the several types of the
variables, i.e. to consider if the variables are continuous, categorical (maybe binary) or
semi-continous.
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Minkowsky distance
A common class of distance measures is based on the Minkowsky distance, which is
defined in D’Orazio et al. [2006] as

d(xk,xl) =

[
p∑
j=1

cλj |xkj − xlj|λ
] 1
λ

,

with λ ≥ 1 and cj a scaling factor for the jth entry. Note that the Minkowsky distance
is often defined without the scaling factor cj, that is cj = 1. It is used for continuous
variables.

Manhattan distance
A representative of the Minkowsky distance is for example the Manhattan distance. The
parameter λ is defined as 1 and this distance function looks like [see, e.g., D’Orazio et al.,
2006]

d(xk,xl) =

p∑
j=1

cj|xkj − xlj| .

Euclidean distance
Another distance function based on the Minkowsky distance is the Euclidean distance. λ
is set to 2, so the distance function is defined as [see, e.g., D’Orazio et al., 2006]

d(xk,xl) =

√√√√ p∑
j=1

c2j(xkj − xlj)2 .

maximum distance
The last mentioned representative of the Minkowsky distance is the maximum distance,
also called Chebyshev distance. It results letting λ converge to infinity and therefore
looks like [see, e.g., D’Orazio et al., 2006]

d(xk,xl) = max
j∈{1,...,p}

{cj|xkj − xlj|} .

Mahalanobis distance
A distance measure including the covariance matrix of the vectors, ΣXX, and also used
for continuous data, is the Mahalanobis distance. It is defined as [see, e.g., D’Orazio
et al., 2006]

d(xk,xl) = (xk − xl)
′ΣXX

−1(xk − xl) .

Gower distance
An adequate distance measure for mixed type variables is the Gower distance. It looks
like [see, e.g., D’Orazio et al., 2006]

d(xk,xl) =
1

p

p∑
j=1

cjd(xkj, xlj) ,
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where cj is set to 1 for binary variables and cj = 1
Rj

, with Rj defined as the range of

the jth variable, Rj = maxk{xkj} − mink{xkj}, for continuous and categorical ordinal
variables. d(xkj, xlj) is usually defined as |xkj − xlj|, see D’Orazio et al. [2006].

2.3. Regression Models Including Selected Small Area Methods

2.3.1. Linear Regression

Regression analysis is used to predict some values of one or more so-called dependent
variables with known (independent) variables. In linear regession a linear relationship
between the independent and dependent variables is tried to be found.

In the rest of the chapter, only the case of one dependent variable is described.

Multiple Linear Regression

Multiple linear regression means that one dependent variable Y, the response, is tried
to get explained with one or more (independent) predictor variables x1, . . . ,xq. q + 1
is equal to the number of variables in the model matrix (see also the next page for
further explanations). For instance the dependent variable Y could be the income and
the independent variables could be the age, the state, the highest completed level of
education and the occupational status.

In the multiple linear model Y is a linear combination of the x1, . . . ,xq including
maybe a constant term, referred to as the intercept, and a random error εεε. The values
of the predictors x1, . . . ,xq are fixed. The error εεε includes the influence of other latent
variables missing in the model. It is treated as a random variable with special properties,
hence also Y is random. So now given n independent observations of Y and the associated
x1, . . . , xq the linear regression model looks like [see, e.g., Johnson and Wichern, 1998]

Y1 = β0 + β1x11 + . . .+ βqx1q + ε1

Y2 = β0 + β1x21 + . . .+ βqx2q + ε2
...

Yn = β0 + β1xn1 + . . .+ βqxnq + εn ,

or using matrix notation
Y = Xβββ + εεε , (1)

whereas Y is a random vector of dimension n, X the matrix of dimension n × (q + 1)
with ones in the first column, βββ the (q+ 1)-vector (β0, β1, . . . , βq) and εεε a random vector
of dimension n. In the following Y stands for the random vector and y stands for the
vector with concrete realisations.

There are some assumptions to the random vector εεε: The expected value of εi is 0
∀i = 1, . . . , n, the variance of the errors is equal and constant ∀i = 1, . . . , n (this is called
“homoscedasticity”) and the errors are uncorrelated. This can be written as [see, e.g.,
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Johnson and Wichern, 1998]

1. IE(εεε) = 000 and

2. Cov(εεε) = IE(εεεεεεT ) = σ2In
(2)

In case of ordinary least squares (OLS) the normal assumption of (Y,X) is necessary
to test hypothesis or to estimate confidence intervals when using the classical method.

Ordinary Least Squares (OLS) Estimation

In general, the parameters βββ (i.e. β0, β1, . . . , βq) and σ2 are unknown and they have
to be estimated to predict the response with given predictor variables. There are lots of
possibilities to perform the estimation. One of the best known methods is the Ordinary
Least Quares (in the following also denoted by OLS). The idea is to minimize the sum of
the squared differences yi−β0−β1xi1− . . .−βqxiq. These differences are called residuals
and are denoted by εi.

n∑
i=1

(yi − β0 − β1xi1 − . . .− βqxiq)2 = (y −Xβββ)′(y −Xβββ) = εεε′εεε→ min

The obtained OLS estimates of βββ is denoted by β̂̂β̂β and it is expressed by the matrix
multiplication β̂̂β̂β = (X′X)−1X′y [see, e.g., Johnson and Wichern, 1998]. If X hasn’t full
rank q + 1, for the inverse (X′X)−1 a generalized inverse of X′X is used. The so-called

fitted values of y are given as the estimation of y: ŷ = Xβ̂̂β̂β = X(X′X)−1X′y. Also the
estimated residuals can be calculated using only simple matrix operations of X and y,
ε̂̂ε̂ε = y − ŷ = (In −X(X′X)−1X′)y [see, e.g., Johnson and Wichern, 1998].

In this context it is important to declare a model matrix. It has ones in the first column
for the intercept. The rest of the matrix is built by the predictor variables. In the case of
a continuous variable the corresponding column of the model matrix contains simply the
several values of the observations. In the case of a factor variable the group membership
is distinguished by more than one column in the model matrix. So in the case of k groups
for a factor, the model matrix gets added k − 1 columns, whereas the first group is the
reference group. If an observation belongs to the first group, the k − 1 added columns
will have the value 0 (influence included in the intercept) and if an observation belongs
to one of the other k − 1 groups, the corresponding column will have a 1 as entry and
the remaining columns again 0. [see, e.g., Sachs and Hedderich, 2009]

Quality measure

A common measure for the quality of the estimation is the coefficient of determination
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R2, which is given as [see, e.g., Johnson and Wichern, 1998]

R2 = 1−

n∑
j=1

ε̂2j

n∑
j=1

(yj − y)2
=

n∑
j=1

(ŷj − y)2

n∑
j=1

(yj − y)2

whereas y is the arithmetic mean of the yi, so y = 1
n

∑n
i=1 yi. It describes the (by the

predictor variables) explained proportion of the total variance of the yi. R
2 takes values

from 0 to 1. A value of 1 means that all estimated residuals are 0 (perfect linear relation-
ship) and on the other side a value of 0 means, that all regression coefficients except the
intercept β0 are 0, so the predictor variables x1, . . . , xq have no bearing on the response
(no linear relationship). Generally the higher the value, the better the fit. But caution
is required, because sometimes it leads to false conclusions. With increasing number of
predictor variables also R2 takes a higher value. In this context the so-called adjusted
R-squared has to be mentioned, the number of predictor variables are taken into account
here [see, e.g., Sachs and Hedderich, 2009].

Some properties

The estimations β̂̂β̂β and ε̂̂ε̂ε of the classical regression model (1) with the assumptions (2)
have some desirable properties [see, e.g., Johnson and Wichern, 1998]:

1. IE(β̂̂β̂β) = βββ and Cov(β̂̂β̂β) = σ2(X′X)−1

2. IE(ε̂̂ε̂ε) = (0) and Cov(ε̂̂ε̂ε) = σ2(In −X(X′X)−1X′)

3. β̂̂β̂β and ε̂̂ε̂ε are uncorrelated.

4. The OLS-fit of β̂̂β̂β is the best linear unbiased estimator (BLUE)(when X has full
rank).

Normal distributed errors

Under the assumption of normal distribution of the residuals εεε with mean vector 0
and covariance matrix σ2In, e.g. εεε ∼ N (0, σ2In), in case of the classical linear re-

gression model (1) where X has full rank q + 1, the OLS estimator β̂̂β̂β is distributed as
N (βββ, σ2(X′X)−1) [see, e.g., Johnson and Wichern, 1998].

Weighted linear regression (WLS)

In the case of heterogeneity of variance of the residuals (i.e. if the second assumption of
(2) of the classical linear regression model is violated), the OLS estimator will no longer
be the “BLUE”, because there is loss of efficiency [see, e.g., Heeringa et al., 2010]. But
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there is the possibility to put things right if “weights” will be used. The properties

1. IE(εεε) = 000 and

2. Cov(εεε) = σ2ΣΣΣ ,

whereas ΣΣΣ is not the identity matrix, but a n × n diagonal matrix, are considered. The
diagonal of σ2ΣΣΣ contains the reciprocal values of the weights, what are the residuals
variances. A transformation of the original model

Y = Xβββ + εεε

to
(ΣΣΣ−1/2Y) = (ΣΣΣ−1/2X)βββ + (ΣΣΣ−1/2εεε)

results in a model that fulfills the “classical” assumptions (2), because Cov(ΣΣΣ−1/2εεε) =
ΣΣΣ−1/2Cov(εεε)ΣΣΣ−1/2 = ΣΣΣ−1/2σ2ΣΣΣΣΣΣ−1/2 = σ2In [see, e.g., Heeringa et al., 2010]. So the WLS
estimator, which is at the same time the OLS estimator of this transformed model, is
BLUE again and looks like [see, e.g., Heeringa et al., 2010]

β̂̂β̂β = ((ΣΣΣ−1/2X)′ΣΣΣ−1/2X)−1(ΣΣΣ−1/2X)′ΣΣΣ−1/2y =

= (X′(ΣΣΣ−1/2)′ΣΣΣ−1/2X)−1X′(ΣΣΣ−1/2)′ΣΣΣ−1/2y =

= (X′ΣΣΣ−1X)−1X′ΣΣΣ−1y .

So with the denotation of W for the matrix of the weights, that is W = σ2ΣΣΣ−1, the WLS
estimator is written as (X′WX)−1X′Wy [see, e.g., Heeringa et al., 2010].

Working with complex sample survey data it is necessary to use weights in order to
include the differences in sample inclusion probabilities, unit nonresponse and so on.
The weight of a unit specifies the number of people that are represented by the partic-
ular observation. These sampling weights can be integrated in the regression model via
the WLS estimation. So the weighted least squares estimation results in the formula
β̂̂β̂β = (X′WX)−1X′Wy for the regression parameters, where W is the diagonal matrix of
the weights.

2.3.2. Robust Linear Regression

By reason of the high sensibility to outliers of the linear regression method, the interest
is in methods that can deal properly with data containing outliers. The so called “break-
down point” is a measure for the robustness, which indicates the minimum proportion
of the data contaminated with outliers that can make the estimator “useless” (e.g. the
estimator takes arbitrarily large values) [see, e.g., Rousseeuw and Leroy, 2003]. OLS
estimators has a breakdown point of 1

n
. 1
n

converges to zero for increasing sample size n
and hence it can be said that OLS estimation has a breakdown point of 0%.

There are several methods to increase the breakdown point of regression estimators,
but in this contribution only the idea of so called “M”-estimators is explained. Instead of
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minimizing the sum of the squared residuals, the aim is to minimize the sum of another
function ρ of the residuals [see, e.g., Rousseeuw and Leroy, 2003],

n∑
i=1

ρ(yi − β0 − β1xi1 − . . .− βqxiq) =
n∑
i=1

ρ(εi)→ min

For logical reasons this function ρ is a symmetric function, i.e. ρ(t) = ρ(−t) ∀t, and it has
a unique minimum at zero [see, e.g., Rousseeuw and Leroy, 2003]. A well known version
of M-estimators is Huber’s M-estimator, where the equation

n∑
i=1

min(c,max(
εi
σ̂
,−c))xi = 0

with xi = (xi1, . . . , xip) and 0 = (0, . . . 0) has to be solved. Details can be found in the
book “Robust Regression and Outlier Detection” of Rousseeuw and Leroy [2003].

2.3.3. Logistic Regression

The intention is to model and predict a binary variable. Due to the fact that linear
regression models require a continuous response variable, they can’t be used for the
estimation. A popular technique to consider binary responses is logistic regression.

The solution is to work with the posterior probabilities P(Y = 0|X = x) and P(Y =
1|X = x), so the probability that the response of one observation belongs to category 0
or 1 given the corresponding predictor variables. The idea is that a transformation of the
posterior probabilities is linear in x. The model looks like [see, e.g., Hastie et al., 2009]

log
P(Y = 1|X = x)

P(Y = 0|X = x)
= β0 + β1x1 + . . .+ βqxq .

One can show that

P(Y = 1|X = x) =
exp(β0 + β1x1 + . . .+ βqxq)

1 + exp(β0 + β1x1 + . . .+ βqxq)
and

P(Y = 0|X = x) =
1

1 + exp(β0 + β1x1 + . . .+ βqxq)
.

The used transformation is the monotone logit-transformation: logit(p) = log
(

p
1−p

)
.

Note that the posterior probabilities sum up to 1.
The estimation of the parameter vector β is usually made with the maximum likeli-

hood method and the solving is done iteratively [see, e.g., Hastie et al., 2009]. There is
no closed form of the solution as it is the case in linear regression models.

Again it is necessary to work with weights if it is handled with real sample survey data.
The weights get incorporated in the logistic regression model in the weighted (pseudo-
)(log-)likelihood function used for the calculation of the parameters. For details on the
weighted logistic regression see Heeringa et al. [2010].
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2.3.4. Linear Mixed Regression

The idea of mixed regression models is, in addition to fixed effects, the inclusion of so
called “random effects”. While the regression coefficients of the previous sections are now
noted as fixed effects, random effects are added to the model. Every unit of a sample
survey belongs to a certain domain. A domain is a subset of the population U such as
for example the people of a federal state, another geographical area population or also a
class defined by age and gender. If it was worked as before only with fixed effects so as
to incorporate these differences between the classes or domains, there would be too many
parameters that would have to be estimated. So now random effects get added in order
that possible differences between the different domains get considered in a model.

A mixed effects model can be formulated as [see, e.g., Christensen, 2011]

Y = Xβββ + Zu + εεε ,

where u is a vector of domain-specific random effects ud ∼ N (0, σ2
u) for domain Ud and

Z a matrix. For a single observation k ∈ Ud ⊂ U the model for domain-specific random
intercepts is given by

Yk = x′kβββ + ud + εk ,

with εk ∼ N (0, σ2).
First, the values of βββ, σ2

u and σ2 have to be estimated. Afterwards the values of the
random effects are estimated.

For estimated samples from complex surveys, weights should be included in the model.
Details can be found in the resources of the AMELI project 2011 [see, e.g., Lehtonen
et al., 2011].

2.3.5. Logistic Mixed Regression

Analogous to linear mixed effects regression models, random effects can be included in
the logistic mixed effects model as well. Hence the mixed logistic model is given by [see,
e.g., Lehtonen et al., 2011]

P(Yk = 1|ud) =
exp(β0 + β1x1 + . . .+ βqxq + ud)

1 + exp(β0 + β1x1 + . . .+ βqxq + ud)
,

with unit k ∈ Ud, βββ the vector of the fixed effects und ud the domain-specific random
effect.

Again weights can be included in the model working with sample survey data [see
Lehtonen et al., 2011].

2.3.6. The Transmission of the Model

The procedure is to use regression methods for the estimation of the variable of interest in
sample survey A. For that reason the model observed for sample survey B is transmitted
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to the sample survey A. For this purpose a regression model is built in the sample survey
B using predictor variables that are observed in both sample surveys A and B, and
using the variable of interest as response, i.e., regarding for example linear regression,
β̂B̂βB̂βB = (XB

′XB)−1XB
′yB with XB the model matrix built by intercept and predictor

variables from survey B (here: EU-SILC) and yB the response variable in survey B.

The estimated parameter vector β̂B̂βB̂βB is now used as parameter vector in the model for
A, more precisely, in the model ŷA = XAβ̂B̂βB̂βB, where in ŷA are the estimated values for the
variable of interest, that is initially missing in A, and XA is the model matrix of survey
A, including ones in the first column and the corresponding interaction and contrasts for
the common variables of A and B (used for the model estimation in survey B) in the other
columns. Note that the (common) variables in XA have to be in the same order as in XB,
the model matrix (with ones in the first column) used in the estimated model for survey B.

2.4. Statistical Matching

In general two approaches in statistical matching exists: the micro and the macro ap-
proach. In the following only the micro approach is considered. This is the version where
in the survey A an additional variable is simulated, i.e. values (of the variable observed
in survey B and not observed in survey A) get imputed, so that a “synthetic” data set
results. The survey A is called “recipient” file and survey B the “donor” file. [see, e.g.,
D’Orazio et al., 2006]

Table 1: Survey A and B in one data set: the variables Xj, j = 1, . . . , f , are observed
only in survey A, the variables Zj, j = 1, . . . , h, are observed only in survey B
and the variables Yj, j = 1, . . . , g are observed both in A and B.

survey X1 X2 . . . Xf Y1 Y2 . . . Yg Z1 Z2 . . . Zh

A

xA11 xA12 . . . xA1f yA11 yA12 . . . yA1g

xA21 xA22 . . . xA2f yA21 yA22 . . . yA2g
...

... · · · ...
...

... · · · ...

xAnA1 xAnA2 . . . xAnAf yAnA1 yAnA2 . . . yAnAg

B

yB11 yB12 . . . yB1g zB11 zB12 . . . zB1h

yB21 yB22 . . . yB2g zB21 zB22 . . . zB2h
...

... · · · ...
...

... · · · ...

yBnB1 yBnB2 . . . yBnBg zBnB1 zBnB2 . . . zBnBh

Different possibilities to perform the imputation are available, for example, the non-
parametric techniques “nearest neighbor distance hot deck imputation” (in the following
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also denoted as NND), the “random hot deck imputation” (in the following also denoted
as RND), the “sequential hot deck procedure” (in the following also denoted as SEQ)[see,
e.g., Madow et al., 1983, Madow and Olkin, 1983] or the “rank hot deck imputation” (in
the following also denoted as RNK) [see D’Orazio, 2012].

To explain the methods first the term “matching variables” is described: These are
some (or all) of the variables, say Yj, observed in A as well as in B, usually the most
relevant ones [compare Table 1]. They are used for the matching procedure (for the
measurement of the distance) and the choice of the matching variables should be based
on statistical selection criteria. Some of the methods could be the computation of the
pairwise correlation or association measures, Cramer’s V, “proportional reduction of the
variance” measures, ranks, the (adjusted) R2 from a regression model and much more.
[see also D’Orazio, 2012]

The ideas of the above mentioned methods are as follows [see also D’Orazio, 2012]:

1. NND: Distances between the matching variables of either all or just a subset of units
get measured and the closest donor unit is chosen to the given recipient unit. In the
case of subsets it is spoken of donation classes. The advantage of them is the lower
computational effort. Possible distance measures are - depending on the type of
variables (continuous, categorical, semi-continuous) - for example the Manhattan
distance, the maximum distance, the Euclidean, the Mahalanobis distance or, if
variables of different type are considered, the Gower distance. If there are more
than one closest unit, one of them is chosen at random.

2. RND: Here a donor unit is chosen completely at random out of a appropriate subset
of units. This subset can be performed in several ways. One possibility is to take
all units with the same particular characteristics as the regarded recipient unit
(for example the same geographical area and the same gender)(compare “donation
classes” explained for NND). Other possibilities can be implemented with the help
of the matching variables. For example to pick a unit at random out of the k nearest
units, out of units with maximal distance i or out of a proportion j (0 < j < 1) of
the closest donors.

3. SEQ: The idea of sequential hot deck is to sort the data on the basis of some
defined “ordering variables” before the imputation is done. If classification groups
(donation classes) are used, the ordering will happen within each group. Then for
every recipient unit, the previous reported unit out of the donor data set is used as
donor. For further details on this method see Madow et al. [1983] and Madow and
Olkin [1983].

4. RNK: Again distances between the matching variables get computed and the unit
with the minimum distance is picked as donor for a given recipient. The distances
get computed on the empirical cumulative distribution functions of the single (con-
tinuous) considered matching variable. If the estimated cumulative distribution
function of the matching variable of the recipient file is denoted with F̂A and the
one of the donor file with F̂B, the unit b∗ of B with

|F̂A(xa)− F̂B(xb∗)| = min
1≤b≤nB

|F̂A(xa)− F̂B(xb)|
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will be chosen as donor for the regarded record a of A, whereas xa (xb) denotes
the value of the matching variable of the unit a (b) of the data set A (B) and nB
the number of records in B. Again donation classes may be used. In this case the
distribution function gets estimated for each class separately.

For the methods NND and RNK an alternative is to use a “constrained” method. Gener-
ally a unit can be choosen several times as donor. “Constrained” means that every unit
is chosen only once as a donor. Here the overall matching distance gets minimized and
this overall distance is greater than the overall distance in the unconstrained case, but
it may end in better results. A constraint for the constrained method is clearly that the
donor file has to be equal or greater than the record file. [see, e.g., D’Orazio, 2012]

An important and interesting approach is to take the (sampling) weights into account.
In combination with RND this is done in the way that the donors get picked with propa-
bility proportional to the weights corresponding to the donors. On the other hand in
combination with RNK the weights wi are used to calculate the empirical cumulative
distribution function:

F̂ (x) =

∑n
i=1wiI(xi ≤ x)∑n

i=1wi

with I(.) as the indicator function. [see also D’Orazio, 2012]
In the literature you can find some statistical methods that explicitly include the sam-

pling design and weights (for example an approach with calibration), see D’Orazio [2012]
and D’Orazio et al. [2006].

2.5. Bootstrap Methods

Bootstrap methods are replication-based methods for the evaluation of the variance of a
quantity calculated on the basis of a data set. Several possibilities to perform bootstrap-
ping exists [see, e.g., Wolter, 2010, Hastie et al., 2009]. In the following one bootstrap
method is described.

The basis of the calculation is the original data set, lets say D, a n × (q + 1) matrix
with (Yi, Xi1, . . . , Xiq) the i-th observation.

Bootstrap samples (also called bootstrap replicates) of size n∗ = n (in the original
bootstrap method; other sizes, for example n − 1, can be used) get drawn of D with
simple random sampling with replacement. The (large) number of bootstrap samples
is denoted with R and one bootstrap sample with D(∗r), so there are D(∗1), D(∗2), . . . ,
D(∗R). Every of the D(∗r), r = 1, . . . , R, is of dimension n∗ × (q + 1). [see, e.g., Wolter,
2010]

Now the above described methods can be used for each bootstrap sample D(∗r). In
detail R bootstrap replicates of the data set A and also R bootstrap samples of the
data set B are drawn. In connection with the model transmission methods, the model is
estimated for the r-th bootstrap sample of B and it gets transmitted to the r-th bootstrap
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sample of A. On the other hand, in combination with statistical matching, in the r-th
bootstrap sample of A are imputed values received from the r-th bootstrap sample of B.

The quantity of interest S(D) get calculated of every D(∗r), so there result S(D(∗1)), . . . , S(D(∗R))
and the distribution of S(D) can be estimated. For example the variance could be of
interest [see, e.g., Hastie et al., 2009]:

V̂ ar(S(D)) =
1

R− 1

R∑
r=1

(S(D(∗r))− S̄∗)2 with S̄∗ =
1

R

R∑
r=1

S(D(∗r))

For this thesis beside of the variance estimation the mean of the bootstrap results, S̄∗,
is of interest.

An alternative bootstrap method in context with regression would be bootstrapping
residuals. The background therefor is that the regressors are treated as fixed and not as
random as it is the case if the bootstrapping concerns the observations. It has compara-
bly good properties, the information in the predictor variables gets retained. [see, e.g.,
Efron and Tibshirani, 1993]
Due to comparability aspects with statistical matching procedures this method is not
used and evaluated in this thesis.

Furthermore, the calibrated weights bootstrap method [see, e.g., Alfons and Templ,
2013] is a reasonable alternative and extension to the naive bootstrap approach used
in this thesis. “While the naive bootstrap does not modify the weights of the bootstrap
samples, a calibrated version allows to calibrate each bootstrap sample on auxiliary infor-
mation before deriving the bootstrap replicate estimate. [. . . ] While the naive bootstrap
is faster to compute, the calibrated bootstrap in general leads to more precise results.”
[Templ and Alfons, 2013] However, due to the fact, that the method is computationally
intensive, it is not used in this thesis.
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3. Design of the Simulation Study

3.1. Problem

As already mentioned, the topic of this thesis is the evaluation and comparison of several
methods concerning the estimation of regional indicators.

An obvious approach of estimating poverty is to estimate poverty indicators simply
on basis of a survey A that includes information on variables, that can be used for the
calculation of the indicators (here on the basis of an EU-SILC data set). However, due
to the small sample size of EU-SILC, variances can be large when estimating indicators
on regional level.

Maybe transmission of information to a larger survey B, in this context a Micro Census
data set, can lead to a significant decrease of variances.

3.2. Set-Up of the Design-Based Simulation Study

For the purpose described in Chapter 3.1 a close-to-reality population U has been sim-
ulated that contains information on all variables of interest. This population set is the
basis and it includes all variables that appear in both sample surveys A and B or in either
one of them.

This approach is called design-based simulation, because from the simulated population
samples are drawn considering the different sample designs. The other method would be
model-based simulation: the samples itself, i.e. the EU-SILC and Micro Census samples,
get simulated. This alternative is not as flexible as the design-based variant, because not
any design could be used here to draw samples.

The simulation of the population is done in R [R Core Team, 2013] using among others
the package simPopulation [see Alfons and Kraft, 2012]. The process is divided in more
steps. First the household structure is constituted (by simulating some basic categorical
variables that specify the household structure), then the categorical variables get simu-
lated and afterwards the simulation of the (semi-)continuous variables is done. Impor-
tant functions for this purpose are simStructure, simCategorical and simContinuous,
which can be found in the package simPopulation [Alfons and Kraft, 2012]. The weights
are included in every step. Details can be found in Alfons and Kraft [2012] and Alfons
et al. [2011].

Thus with the information of the EU-SILC and Micro Census data sets the artificial
population U is simulated, compare also Figure 1.
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Figure 1: The idea of constructing the artificial samples and evaluating the estimators.

Following the initial denotation, the (artificial) sample survey Micro Census equates
sample survey A and the (simulated) sample survey EU-SILC equates sample survey B.

Now the two data sets A and B are repeatedly drawn, say J times, from the population
U considering the particular sample designs p(s), see Figure 1. Details on them can be
found in the description of the data, see Chapter 4.1. So one sample with the number of
records of A and the variables observed in A and analogous another sample with the num-
ber of records of B and the variables observed in sample survey B are drawn. The number
of housholds sampled for each state for the simulation of data set A and B, respectively,
can be seen in Figure 2 and Figure 3, respectively. It has to be noted that the sample
sizes for the EU-SILC data in small states such as Burgenland or Vorarlberg is rather
small and large variances of estimates can be expected for those states. In comparison,
due to the sampling design and absolute number of respondents, the Micro Census data
include much more observations as EU-SILC, especially for small states.

Some versions of the above explained methods in Chapter 2.3 and in Chapter 2.4 get
applied to every pair of the two data sets. In other words, the variable of interest is
imputed for all observations of each simulated data set A using the known values in the
corresponding simulated data set B.

External auxiliary information which is not asked in the questionaire, like for example
the internal migration balance rate, the age standardized index of the mortality ratio
from 25-54 years, the first quartile of the net income or the portion of non-employed
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Figure 2: The sample design of Micro Census / data set A.

Figure 3: The sample design of EU-SILC / data set B.
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persons of women/men aged between 30-49 (see Chapter 4.1.3: the described covariates),
is partially used.

Because of the knowledge of the “true” values it becomes easy to evaluate and compare
the performance of the techniques.

Very important therefor will be some bootstrap methods (see Chapter 2.5).

Assuming that the interest is in a quantity calculated from the (estimated) variable of
interest. The “true” quantity is denoted with θ (based on the artificial data set U) and
the respective estimation gained from the imputations in the data set A with θ̂A and the
calculated value of θ for the data set B with θ̂B (compare Figure 1). All in all, J values
for θ̂A and θ̂B result, because the data sets A and B get simulated J times as mentioned
above. The results are denoted with θ̂A,j and θ̂B,j and all these results are stored.

Furthermore for every pair of A and B bootstrap samples, denoted by A(∗) and B(∗),
get drawn. The symbol (∗) signifies the bootstrap version. The number of bootstrap
replicates let be labelled with R.

To each of the bootstrap sample pair again some versions of the above explained meth-
ods in Chapter 2.3 and in Chapter 2.4, namely the same as for A and B, get applied. So
the variable of interest is imputed in every bootstrap sample A(∗) with the help of the
corresponding bootstrap sample B(∗).

Again a quantity based on the (estimated) variable of interest is calculated. There

result θ̂
(∗)
A,r and θ̂

(∗)
B,r with r = 1, . . . , R for every pair of A and B. The mean and the

variance of that values are stored for every A and B.

3.3. Quality Criteria

The comparison and evaluation of the investigated methods is of interest. The aim is
to find the “best” method for the estimation of the quantity. Therefore different quality
criteria are computed. Interesting are things like the bias, the variance and also the
combination of these two quantities, the mean squared error of the estimator, because
it is looked for the “best” estimator in matters of small bias and small variance. So the
above described repeated drawing of the samples seems to make sense in order to enable
an assessment of the bias, variance and MSE of the different methods.

The bias is defined as the difference of the expected value of the estimator and the true
value of the quantity [see, e.g., Rinne, 2003]:

Bias(θ̂) = IE(θ̂)− θ . (3)

Within our simulation study, IE(θ̂) is replaced with the mean of the parameter estimates
θ̂j, j = 1, . . . , J ,

¯̂
θ =

1

J

J∑
j=1

θ̂j . (4)

19



The variance of the estimator θ̂ is defined as [see, e.g., Rinne, 2003]

Var(θ̂) = IE[(θ̂ − IE(θ̂))2] . (5)

Again in our case the variance is replaced with the sample variance [compare, e.g., Rinne,
2003]

1

J − 1

J∑
j=1

(θ̂j − ¯̂
θ)2 . (6)

The (sample) standard deviation results by taking the root of the (sample) variance and
is denoted with the symbols “SD”.

The mean squared error (referred to as MSE) is the expectation of the squared difference
of the estimator and the true value of the parameter and it can be written as the sum of
the squared bias and the variance of the estimator [see, e.g., Rinne, 2003]:

MSE(θ̂) = IE[(θ̂ − θ)2] = IE[(θ̂ − IE(θ̂))2] + (IE(θ̂)− θ)2 = Var(θ̂) + Bias(θ̂). (7)

The MSE of an unbiased estimator (i.e. Bias(θ̂) = 0) is identical with the variance. Again
the sample bias and sample variance is used.

Reliability of the Bootstrap

Furthermore, the reliability of the bootstrapping is checked for every method by com-
paring the standard deviation gained from the repeated sampling of A and B with the
standard deviation computed as the mean of the standard deviation received from the
bootstrap replications.

DSDA =
1

J

J∑
j=1

ŜD(θ̂
(∗)
A )j − ŜD(θ̂A) , (8)

where ŜD(θ̂
(∗)
A )j =

√
1

R−1
∑R

r=1(θ̂
(∗)
Aj,r −

¯̂
θ
(∗)
Aj )

2 with θ̂
(∗)
Aj,r, r = 1, . . . , R, being the R boot-

strap estimations for the jth sample of A. The formula for sample B is analogously,

DSDB =
1

J

J∑
j=1

ŜD(θ̂
(∗)
B )j − ŜD(θ̂B) , (9)

with ŜD(θ̂
(∗)
B )j =

√
1

R−1
∑R

r=1(θ̂
(∗)
Bj,r −

¯̂
θ
(∗)
Bj )

2.

In addition the difference in the mean of the at-risk-of-poverty rates from the bootstrap
replicates (of all drawn samples) and the mean of the at-risk-of-poverty rates estimated on
the basis of the results of the repeated sample drawing will be computed and evaluated.
So

DMA =
1

J

1

R

J∑
j=1

R∑
r=1

θ̂
(∗)
Aj,r −

1

J

J∑
j=1

θ̂A,j (10)
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is computed for sample A and analogously for sample B

DMB =
1

J

1

R

J∑
j=1

R∑
r=1

θ̂
(∗)
Bj,r −

1

J

J∑
j=1

θ̂B,j (11)

is considered.

Moreover the mean of the bootstrap replications is computed and used for the compu-
tation of the bias and the MSE in order to receive in a sense a bias corrected version.

Bias(∗)(θ̂
(∗)
A ) =

1

J

1

R

J∑
j=1

R∑
r=1

θ̂
(∗)
Aj,r − θ (12)

Bias(∗)(θ̂
(∗)
B ) =

1

J

1

R

J∑
j=1

R∑
r=1

θ̂
(∗)
Bj,r − θ (13)
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4. Application to Poverty Estimation Using EU-SILC and
Micro Census Data

4.1. Data

The background of these thoughts is the following: Considering the sample surveys Micro
Census and EU-SILC, one can detect a large difference regarding the number of obser-
vations, the sample fractions in strata and the number of variables. In the Micro Census
sample survey much more people are asked, more precisely 23000 households and about
40000 persons get interviewed every quarter. The EU-SILC data set has “only” about
6000 households and 15000 persons. A rough overview of the sampling fractions can be
obtained with Figure 2 and Figure 3. As previously mentioned, Burgenland, for example,
include much more observations in the Micro Census data set than in the EU-SILC data
set. The Micro Census data set doesn’t include the variable “at-risk-of-poverty” (for
explanation see Chapter 4.1.3) or something equivalent, such as income. However, such a
variable is needed to estimate the at-risk-of-poverty rate. The EU-SILC data set includes
this information. The idea for gaining information generally, is to gain information in
the greater and therefore lets say “better” data set Micro Census (more observations give
more information, especially on regions with small sample fraction) and hence to combine
both data sets to the effect that such a variable gets estimated with the above-mentioned
and explained methods in the Micro Census data set.

In this thesis the indicator calculated from the (for the Micro Census imputed) variable
of interest (compare Chapter 3.2) is the at-risk-of-poverty rate (see Chapter 2.1). It gets
calculated either with the variable at-risk-of-poverty or on the basis of the equivalised
household income (for explanation see again Chapter 2.1). This variable is denoted with
arpr.

4.1.1. Details on Micro Census

The Micro Census gives information on the employment and unemployment as well as
on housing stock and housing conditions.

The sample design is quite simple. It is a stratified (by 9 regions, i.e. states of Austria)
simple random sample with (almost) equal size in each strata. Only Vienna has a higher
und Burgenland has a lower sample size. The total sample size per quarter is about 23000
households. The samples are drawn out of all private households recorded in the central
population register.

All persons (mainly aged 15 years or older) of a sampled household get interviewed 4
times a year (it is a panel design). The participation is compulsory.

The interviewing is operated with CAPI- (Computer Assisted Personal Interviewing
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- first interview) and CATI- (Computer Assisted Telephone Interviewing - the following
interviews) techniques, respectively.

More details on the Micro Census is given in Moser et al. [2013].

4.1.2. Details on EU-SILC

EU-SILC is the abbreviation for “European Statistics on Income and Living Conditions”
and it gives information on people and private households in Europe. The aim is to
obtain comparable data on the social position and the income for all EU countries. On
the European Union scale it is widely used to report on poverty and social inclusion.

In Austria it was carried out the first time in 2003 by Statistics Austria. It is an
annual sample survey where about three-fourths of the households get interviewed again
in the following year and one fourth is new, so (since 2004) it is a cross-sectional and
longitudinal data collection (thus 2007 the first complete longitudinal sample (over 4
years) was available).

The sample gets drawn from the central population register und its minimum size
is 4500 housholds. For example, in 2010 the sample involved 14085 persons in 6188
households.

The deepest used regional stratification is NUTS 2. NUTS is a common classification of
territorial units for statistics based on Regulation 1059/2003 of the European Parliament
and of the Council. The level NUTS 2 corresponds to the 9 states of Austria.

The sample sizes for the several states are different (proportional to the inhabitants),
therefore it is approximately a self-weighting design.

All persons of a household aged 16 years or older get interviewed personally and fur-
thermore some information on children gets collected. The participation is voluntary.

The interviewing is operated with CAPI- and CATI-techniques, respectively.

More details on EU-SILC is given in Glaser and Heuberger [2012].

4.1.3. Variables in the Population

In this section the variables of U (the population) used for the estimations get described.
Concerning the choice of these variables the decision is based on Bauer et al. [2013]
(Statistics Austria).

The estimated variables are the binary variable at-risk-of-poverty and the equivalised
household income. The definitions of these two variables can be found in Chapter 2.1.

The used breakdown variable is the state. This means that the analyses are done seper-
ately for every domain, so splitted by the factor state. All the variables are considered
at household levels. For the definitions of the variables see also Bauer et al. [2013]. The
notation of the variables used later on in the models and the R-Code is given in brackets.

• at-risk-of-poverty (ARPT60i): This variable has the values 0 if there is no risk of
poverty and 1, if the persons of the household are at-risk-of-poverty.
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• equivalised household income (EQ INC): This variable is continuous and contains
the calculated equivalised household income.

• state (strat): This factor variable indicates the households state of Austria, so
there are 9 several levels. (originally NUTS 2 code)

• household type (htyp): Some different types of households are considered, namely
single men, single women, multiperson households without children, single parents,
multiperson households with one child, multiperson households with two children,
multiperson households with three or more children. These 7 levels of the factor
variable are coded with 4 to 10, in the same order as they are listed in the previous
phrase. (Somebody is classified as a child, if the person is under 16 years old or
if the person is under 27 years old, lives in the same household with at least one
parent and is not employed.)

• foreign origin of the household (migration): It get distinguished between three
factors: 1 for households where at least one person aged 16 years or older has a
non-EU nationality or is born in a non-EU country, 2 for households that do not
fulfill the conditions for 1, but at least one person aged 16 years or older is born
in an EU foreign country or has an EU citizenship and 3 for households where all
persons aged 16 and above are Austrian nationals and are born in Austria.

• work intensity of the household (workint): First the number of people of a house-
hold that are capable of work gets determined. That are people aged between 18
and 59 years, except a) military and civil service personnel and b) people from 18
to 24 years in education. The work intensity of a household is the mean of the work
intensity of all capable of work household members. The work intensity of a person
who is fit for work is the ratio of the number of working hours per week and 40. If
a person has more than 40 working hours per week, his work intensity is set to 1.
The factor variable is divided in 6 levels: −3 for households without persons who
are capable of work, 0 for 0% (no work intensity), 1 for 0− 25%, 2 for 25− 50%, 3
for 50− 75% and 4 for 75% or more.

• population density (urb): The factor is divided into populous (this corresponds to
Vienna)(level 1) and other areas (level 0).

• legal relationship of the dwelling (dwell): The several levels of this factor vari-
able first distinguish between for valuable consideration (rent, sublease) and free
of charge (freehold, rentfree, related/related by marriage with the owner). Fur-
thermore there is the differentiation in aided flats and other (if for valuable con-
sideration) respectively owner and other (if free of charge). The denotation is 1
for house or apartment owner, 2 for other free of charge legal relationship of the
dwelling, 3 for council home (technical term; “Gemeindewohnung”) or cooperative
flat (technical term; “Genossenschaftswohnung”) and 4 for main rental and other
for valuable consideration legal relationship.
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• Category of the equipment of the apartment (equipm): The level 1 of this factor
variable stands for dwelling with bath/shower, WC and central heating, level 2 for
the category with bath/shower, WC and single stove heating, 3 for the category
with WC and waterconnection inside and 4 for dwellings with only water or without
installation.

In addition to pure household characteristics some characteristics evaluated at personal
level are of interest. They get built on household level with the help of a reference person.
As reference person the person with the highest estimated income is elected. For this
person the following characteristics get considered:

• professional branch (rp branch): This factor variable is splitted into 9 levels and
describes the actual (if employed) or former (if unemployed) sector. If the reference
person has never been employed it is coded with −3, otherwise the coding is 1 for
agriculture and forestry, 2 for manufacturing sector without building industry, 3 for
the building industry, 4 for trade, 5 for the accomodation and restaurant industry,
6 for the credit and insurance industry, 7 for public administration, public health
and educational system and 8 for other services.

• occupational status (rp occstat): This factor variable with 8 different levels char-
acterizes the actual (if employed) or former (if unemployed) occupation. Again
persons who have never been employed are coded with−3. The other levels are sum-
marized as 1 for manual: unskilled or semi-skilled labour (technical terms; “Hilfs-
oder angelernte Arbeit”), 2 for manual: skilled labour, preparatory work, foreman/-
master (technical terms; “Facharbeit”, “Vorarbeit”, “Meister”), 11 for non-manual:
unskilled labour (technical term; “Hilfsarbeit”), 12 for non-manual: average skilled
occupation (technical term; “mittlere (gelernte) Tätigkeit”), 13 for non-manual:
higher, highly qualified, leading occupation, 21 for self-employed/assisting in agri-
culture and forestry and 22 for self-employed/assisting outside of agriculture and
forestry.

• living (rp living): The three-category factor obtaines the level 1 for unemployed
persons who are no retirees, level 2 for retirees and level 3 for employees.

• highest completed level of education (rp heduc): This factor has 4 levels and is
coded as follows: 1 for compulsory school (inclusive without compulsory school
graduation), 2 for apprenticeship or vocational school, 3 for grammar school and
vocational school with higher education entrance qualification (inclusive course of
lectures) and 4 for university and college of higher education.

• family status (rp famst): For the factor the level 1 stands for unmarried, 2 for
married, 3 for widowed and 4 stands for divorced.

• age groups (rp age): This variable has 7 different levels, namely 10 for reference
persons aged younger than 20, 20 for persons from 20 − 29 years, 30 for persons
from 30−39, 40 for persons from 40−49, 50 for persons from 50−59, 60 for persons
from 60− 69 and 70 for persons aged 70 or older.
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Furthermore in some models covariates are added to the so far listed variables. The used
covariates get calculated at federal state level and are in detail as follows:

• internal migration balance rate (migrbal): This numeric variable is the difference
between the internal moving in und the internal departure, standardized to 1000
of the population of the respective region. A value > 0 signifies internal migration
gains and a value < 0 internal migration loss.

• portion of non-employed persons of men aged between 30− 49 (nonempm): This is
the rate (in %) of the persons, who are neither employed nor unemployed, but “out
of labor force”, in which students are excluded from the calculation.

• portion of non-employed persons of women aged between 30 − 49 (nonempw): The
continuous variable is defined as nonempm, but for women instead of men.

• portion of the live births with a birth weight below 2500 gram (birth): This co-
variate is expressed as a percentage. Note that multiple births are excluded from
the calculation.

• age standardized index of the mortality ratio from 25 − 54 years (mort): This
variable gets calculated as the ratio of the number of observed deaths of persons
prime-aged between 25 and 54 and the expected number of such deaths. The
expected value results from the population size of this age group (composed of
gender und five-year age groups) and the death rate for Austria. It is an index
value, i.e. a value of 116 means, that in a region has been recorded 16% more
deaths than would have been expected in Austria with same death rate.

• first quartile (25%) of the net income (in EUR)(quinc): This value seperates the
25% lowest-income income recipients of a region from the other 75%. In this con-
text income recipients are defined as wage earners, self-employed persons and re-
tirees. Here income contains beside the earned and self-employment net income also
pension and some transfer payments as unemployment benefit and social benefits
(technical term; “Notstandshilfe”).

• portion of cars with small cylinder capacity (carscc): In details it is the portion of
the passanger cars/estate cars in the cylinder capacity class lower than 1250 ccm
(rate (in %) of all passanger/estate cars). Note that electromotor-actuated cars or
cars powered by fuel cells are excluded from the calculation.

• unemployment rate (unemp): It is expressed as a percentage.

• extramural social assistance recipients (technical term; “Bezieher von offener Sozial-
hilfe”) respectively means-tested guaranteed minimum income recipients (technical
term; “Bezieher von bedarfsorientierter Mindestsicherung”) (socass): Regarded is
the annual sum per 1000 of the population in private households.

• recipients of compensatory allowances (technical term; “Ausgleichszulagenbezieher”)
in % of the pension stock (compall): Notice, that the number of pensions is not
the same as the number of retirees and that officials are excluded.
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• unemp lag: just like unemp, but in relation to the previous year

• socass lag: just like socass, but in relation to the previous year

• compall lag: just like compall, but in relation to the previous year

4.2. The Models

Now some models with the methods described in Chapter 2 are implemented. For details
on the programming code just have a look at the Appendix A.1 R-Code.

4.2.1. Regression Models Including Selected Small Area Methods

Due to the fact that the aim is to estimate the at-risk-of-poverty rate, which is estimated
with the equivalised household income or with the binary variable at-risk-of-poverty, two
possibilities exist:

1. A model on sample B (equates to EU-SILC) where the response is the equivalised
household income is fitted and the model is applied to sample A (equates to the
Micro Census) to estimate the needed variable for estimating the at-risk-of-poverty
rate. This version corresponds to linear regression models.

Note:

• Because (the equivalised household) income is right-skewed, a transformation
of the equivalised household income is used to make it more symmetric: it is
transformed by the logarithm function as is usually the case.

• Due to the fact that in the data some zeros for the variable EQ INC occur, these
entries are replaced with ones. So there is no definition problem in connection
with the logarithm transformation.

2. First the at-risk-of-poverty is calculated, a model where the dependent variable
is the dichotomous variable at-risk-of-poverty is constructed and this model gets
transmitted. From the imputed values of the variable at-risk-of-poverty the at-risk-
of-poverty rate gets estimated. This variation corresponds to the logistic regression
models.

Because of the large number of available variables in the data sets, huge amount of
different models can be fitted. Several models using the above described variables are
considered (in Chapter 4.1.3). The models described in the following are noted in “R
notation”. On the left side (left to ∼) the response is written and on the right side (right
to ∼) the predictor variables are listed, separated by “+” signs.
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(a) Linear Regression (compare Chapter 2.3.1)

(i) First a model with the response variable equivalised household income EQ INC

and the predictor variables rp age, dwell, htyp, migration, equipm,

rp living, rp famst, workint, rp heduc, rp occstat, rp branch and
urb is considered. In the process some of the factors, namely rp age, equipm,

workint and rp heduc, are used as ordered. The regression is calculated taking
into account the weights. So the linear regression model for the income looks
like:

log(EQ INC) ∼ rp age + dwell + htyp + migration + equipm

+ rp living + rp famst + workint + rp heduc

+ rp occstat + rp branch + urb

(14)

The model gets estimated for the simulated EU-SILC data set. Then the
predictions for the simulated Micro Census data set are estimated and re-
transformed in the following with the exponential function. Then the at-risk-
of-poverty rate is estimated with these values, on the one hand for Austria and
on the other hand also for every of the nine provinces.

(ii) In the second model some of the above mentioned covariates are added as pre-
dictor variables to this model. Everything else, meaning the other predictor
variables, the use of some ordered factors and the inclusion of weights, re-
mains the same as in the first model. The decision regarding the choice of this
covariates is based on an in-depth analysis. Determining factors are the sig-
nificance of the covariates in the model, the linear dependence of the variables
(singularity) and my subjective assessment, which covariates have more or less
influence on income and at-risk-of-poverty. So the following model, estimated
for the simulated EU-SILC data set and transmitted to the artificial Micro
Census data set, results:

log(EQ INC) ∼ rp age + dwell + htyp + migration + equipm

+ rp living + rp famst + workint + rp heduc

+ rp occstat + rp branch + urb + migrbal + nonempm

+ nonempw + quinc + carscc + unemp + compall

(15)

The retransformed values are used again for the estimation of the at-risk-of-
poverty rate for Austria and the nine regions.

(b) Robust Linear Regression (compare Chapter 2.3.2)

Now also some robust methods get considered. The response variable is again
the equivalised household income EQ INC.
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(i) The first robust model corresponds to the first mentioned model with the
socio-demographic variables rp age, dwell, htyp, migration, equipm,

rp living, rp famst, workint, rp heduc, rp occstat, rp branch and
urb as predictors. Again the same four variables are treated as ordered factors
and the regression is calculated taking into account the weights. So the robust
linear regression model for the income looks like in (14):

log(EQ INC) ∼ rp age + dwell + htyp + migration + equipm

+ rp living + rp famst + workint + rp heduc

+ rp occstat + rp branch + urb

Again the model gets estimated for the simulated EU-SILC data set and the
calculated predictions for the simulated Micro Census data set are retrans-
formed in the following with the exponential function. With these values once
again the at-risk-of-poverty rate is estimated on the one hand for Austria and
on the other hand also for every of the nine provinces. The difference to (a)(i)
is in the estimation of the model, because in the actual case it is done using
Huber’s M-estimator instead of the ordinary least squares estimator.

(ii) As might be reasonably expected the next regarded model is the same as in
(a)(ii), with the only difference, that the model is fitted by robust regres-
sion using an M-estimator, namely again Huber’s M-estimator. Everthing else
remains the same, so the model looks equally as in (15)

log(EQ INC) ∼ rp age + dwell + htyp + migration + equipm

+ rp living + rp famst + workint + rp heduc

+ rp occstat + rp branch + urb + migrbal + nonempm

+ nonempw + quinc + carscc + unemp + compall

With the same steps as above, the at-risk-of-poverty rate gets estimated for
Austria and the nine states.

In general there exists far more methods concerning the robust linear regression,
like the “MM”-estimators or the “S”-estimators, but these methods are not used,
because the implementations of these methos lead to computational problems and
crashes of the code.

(c) Logistic Regression (compare Chapter 2.3.3)

Henceforward the dependent variable is not the equivalised household income, but
the binary variable ARPT60i. Analogous to the linear regression models two dif-
ferent models are regarded, the first one with only socio-demographic variables as
predictors, the other one with additionally covariates.
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(i) The first considered logistic regression model is similarly structured as the
first OLS model (compare (a)(i)). Thus the variables rp age, dwell, htyp,

migration, equipm, rp living, rp famst, workint, rp heduc,

rp occstat, rp branch and urb are the predictor variables and the four fac-
tors rp age, equipm, workint and rp heduc are treated as ordered. But in
contrast to the above mentioned model, the response is now the binary variable
ARPT60i. So the model for the dichotomous variable results in:

ARPT60i ∼ rp age + dwell + htyp + migration + equipm

+ rp living + rp famst + workint + rp heduc

+ rp occstat + rp branch + urb

Again weights are included in the model estimation and the model is calcu-
lated based on the simulated EU-SILC data set. As can be seen above, it gets
transmitted to the artificial Micro Census data set. These imputed values of
the dichotomous variable are the basis for the calculation of the at-risk-of-
poverty rate for Austria and the nine provinces. The rates are calculated as
weighted means.

(ii) As mentioned above, in context with logistic regression also a model with the
just now used socio-demographic variables and some of the covariates explained
in Chapter 4.1.3 is established. Again, not merely due to singularity problems
and so on, but rather to provide comparability with the other methods and
models, the same choice is included into the model, namely the covariates
migrbal, nonempm, nonempw, quinc, carscc, unemp and compall. The
same four factors as in the other so far considered models are treated as ordered
and weights are incorporated in the model estimation. So the second model
for the dichotomous variable ARPT60i as response results in:

ARPT60i ∼ rp age + dwell + htyp + migration + equipm

+ rp living + rp famst + workint + rp heduc

+ rp occstat + rp branch + urb + migrbal + nonempm

+ nonempw + quinc + carscc + unemp + compall

In the same way as above the model is estimated using the simulated EU-SILC
data set and then it is transmitted to the simulated Micro Census data set.
Of some and all, respectively, of the predicted values the weighted mean is
calculated to get the at-risk-of-poverty rate for the nine regions and Austria,
respectively.

The following implemented models refer to mixed regression. On the one side again
models with the equivalised household income as respone are regarded and on the other
side models with the factor at-risk-of-poverty as dependent variable get considered. For
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both alternatives one version exists with the above described and already used socio-
demographic variables and one version with additionally covariates.

(d) Linear Mixed Regression (compare Chapter 2.3.4)

Concerning the linear mixed models, the response is again the equivalised household
income EQ INC.

(i) The same factors as in the previous models are concerned as ordered and due
to comparableness the same socio-demographic variables as before are used
to build the first model in this vein. In mixed effects models the idea is to
include some random effects to the fixed effects. So it is worked with a model
where the socio-demographic variables are treated as the fixed effects and the
variable strat, that belongs to the region of Austria, as the random effect with
notation (1|strat), see below. Weights are included in the model estimation.
The resulting model for linear mixed regression with EQ INC as dependent
variable calculated on the simulated EU-SILC data set, where of course the
log-transformed values of the income are taken, looks like

log(EQ INC) ∼ rp age + dwell + htyp + migration + equipm

+ rp living + rp famst + workint + rp heduc

+ rp occstat + rp branch + urb + (1|strat)

The obtained model is used for the imputation of the values of log(EQ INC)
into the Micro Census data set and these values get retransformed with the
exponential function. Then the at-risk-of-poverty rate is estimated for Austria
and the nine regions out of these values using the corresponding weights.

(ii) Following the above listed models, now a model is regarded, where some
of the covariates are added to the model explained in (d)(i). So the inde-
pendent variables rp age, dwell, htyp, migration, equipm, rp living,

rp famst, workint, rp heduc, rp occstat, rp branch and urb in collab-
oration with the choice of covariates migrbal, nonempm, nonempw, quinc,

carscc, unemp and compall are seen as the fixed effects where the factors
rp age, equipm, workint and rp heduc are used as ordered again. As ran-
dom effect again the variable strat is chosen. For the estimation of the model,
using the artificial EU-SILC data set, weights are included once again. So now
the model for log(EQ INC) is written as

log(EQ INC) ∼ rp age + dwell + htyp + migration + equipm

+ rp living + rp famst + workint + rp heduc

+ rp occstat + rp branch + urb + migrbal + nonempm

+ nonempw + quinc + carscc + unemp + compall + (1|strat)

This model gets transmitted to the simulated Micro Census data set and the
obtained values are naturally retransformed. Afresh the at-risk-of-poverty rate
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of Austria and every of the nine provinces is estimated with these values in-
corporating the weights.

(e) Logistic Mixed Regression (compare Chapter 2.3.5)

Unlike linear mixed regression models regarding logistic mixed regression the re-
sponse is no longer the equivalised household income, but the factor at-risk-of-
poverty. Apart from that the implemented models are structured in the same way.

(i) Also for the last regarded regression method the factors rp age, dwell,

htyp, migration, equipm, rp living, rp famst, workint, rp heduc,

rp occstat, rp branch and urb are incorporated as the fixed effects in the
model (whereby the same four factors are treated as ordered factors) and the
variable strat as random effect. As a result the first logistic mixed regression
model looks like

ARPT60i ∼ rp age + dwell + htyp + migration + equipm

+ rp living + rp famst + workint + rp heduc

+ rp occstat + rp branch + urb + (1|strat)

By analogy with the other models weights are used for the estimation of the
model based on the EU-SILC data set. The model gets transmitted to the
Micro Census data set and the values are used for the calculations of the at-
risk-of-poverty rates for Austria and the nine states, which are done in form
of a weighted means.

(ii) For the second model of the last regression method the covariates migrbal,

nonempm, nonempw, quinc, carscc, unemp and compall are added as fixed
effects in comparison to (e)(i). The rest - i.e. the factor at-risk-of-poverty as
dependent variable, the other fixed effects (partially as ordered factors), the
single random effect and the usage of weights - remains the same. So the model
looks like

ARPT60i ∼ rp age + dwell + htyp + migration + equipm

+ rp living + rp famst + workint + rp heduc

+ rp occstat + rp branch + urb + migrbal + nonempm

+ nonempw + quinc + carscc + unemp + compall + (1|strat)

Again it is estimated on the EU-SILC data set and gets transmitted to the ar-
tificial Micro Census data set. The imputed values of the dichotomous variable
are the basis for the calculation of the at-risk-of-poverty rate for Austria and
the nine provinces. These rates are calculated once again as weighted means.
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4.2.2. Statistical Matching

As already mentioned and described above, due to the fact, that the aim is to estimate
the at-risk-of-poverty rate, which is calculated with the equivalised household income or
with the binary variable at-risk-of-poverty, there are two possibilities:

1. Values for the equivalised household income get imputed in the simulated Micro
Census data sets and then the at-risk-of-poverty rate is estimated.

2. First the variable at-risk-of-poverty is calculated for the observations in the artificial
EU-SILC data sets and these values are taken as basis for the imputation of at-risk-
of-poverty in the Micro Census data set. Then out of this dichotomous variable the
at-risk-of-poverty rate gets calculated.

Because of the large number of available variables in the data sets and the variety of
different methods, there are a lot of possibilities to perform the imputation. Several ap-
proaches get considered using the above described variables (in the Chapter 4.1.3). So
artificial Micro Census und EU-SILC data sets with the variables rp age, dwell, htyp,

migration, equipm, rp living, rp famst, workint, rp heduc, rp occstat,

rp branch, urb, the covariates migrbal, nonempm, nonempw, birth, mort, quinc,

carscc, unemp, socass, compall, unemp lag, socass lag, compall lag, the state
state and the weight gew are considered. The EU-SILC data set includes furthermore the
variables EQ INC and ARPT60i, that are used for the calculation of the at-risk-of-poverty
rate.

(f) Random Hot Deck

The first considered method is random hot deck using diverse imputation variables
and donation classes.

(i) First of all the factor ARPT60i is imputed in the artificial Micro Census data set
with the EU-SILC data set as donor file. For that reason the variable strat,
i.e. the state of Austria, is used for building domains and it get imputed
within these groups. The imputed values are the basis for the computation of
the at-risk-of-poverty rates (in form of weighted means) for Austria and every
of the nine states.

(ii) For the second model the same donation class strat is used, but now values
for the numeric variable EQ INC are imputed in the artificial Micro Census
data set. With these values the at-risk-of-poverty rates for Austria and the
nine provinces are estimated incorporating the weights.

(iii) The next considered model is the same as in (i) with the difference that strat
and migration, i.e. the foreign origin of the household (divided in 3 levels:
Austria, rest of EU and non-EU), are used as variables for building domains.
So for the variable ARPT60i the missing values should be imputed and after
that they are used for the calculation of the at-risk-of-poverty rates.
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(iv) As may be assumed the following imputation concerns the variable EQ INC

with the variables strat and migration used for the formation of donation
classes. Again out of the imputed values with the assistance of weights the
at-risk-of-poverty rates for Austria and the states are estimated.

(g) Sequential Random Hot Deck

Furthermore 4 versions using the sequential random hot deck algorithm are con-
sidered. In distinction from the models considered in (f) “Random Hot Deck”
additional ordering variables are defined.

(i) The first version is arranged as follows: The variable where missing values
should be imputed is the factor at-risk-of-poverty and the used donation classes
are configured with the variables strat and migration. As ordering variables
rp occstat, workint, rp heduc, rp living, rp age and equipm are cho-
sen. Just as a quick reminder, these variables are the occupational status,
the work intensity of the household, the highest completed level of education,
the living, the age class and the category of the equipment of the apartment.
With the imputed values as basis the at-risk-of-poverty rates get calculated as
weighted means for Austria and the nine states seperately.

(ii) The second version is distinct from the last regarded model (i.e. the first
version (i) in (g) “Sequential Random Hot Deck”) only to the effect that
instead of the dichotomous factor ARPT60i the variable equivalised household
income EQ INC is imputed and these values are used for the calculation of the
rates for Austria and the states.

(iii) Next again the factor at-risk-of-poverty gets imputed in the simulated Micro
Census data set. The domain groups remain the same. The used ordering
variables are nearly all in the simulated data sets occuring variables, namely
rp age, dwell, htyp, migration, equipm, rp living, rp famst,

workint, rp heduc, rp occstat, rp branch, migrbal, nonempm,

nonempw, birth, mort, quinc, carscc, unemp, socass, compall,

unemp lag, socass lag, compall lag and strat. So the result of the impu-
tation with these conditions is used for the calculation of the weighted means,
i.e. of the at-risk-of-poverty rates.

(iv) The last considered version related to sequential random hot deck imputes
values for the numeric variable EQ INC. Here once again strat and migration

play the role of the variables for building domains and impute within these
domains. As ordering variables the same 25 as in the most recently version
are used. Out of the imputed values the at-risk-of-poverty rates for Austria
and the nine states are calculated.
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(h) Weighted Random Hot Deck

The last applied method in the context of estimating the at-risk-of-poverty rate
for Austria and the nine states is the weighted random hot deck method. As distin-
guished from the “normal” random hot deck, the choice is no longer completely at
random, but the weights are used to pick a donor with corresponding proportional
propabilities.

(i) In the first version of weighted random hot deck models the factor at-risk-
of-poverty gets imputed. The variable strat, i.e. the state of Austria, is
employed to identify donation classes. There is no use of matching variables,
so all the units in the same donation class are possible donors. As a result
one of them is selected with probability proportional to its weight. After the
imputation of the values in the artificial Micro Census data set the at-risk-of-
poverty rate gets estimated in form of a weighted mean for Austria as well as
for every of the nine states.

(ii) The next version distinguishes from (i) only in the variable that should be
“donated”, so the variable that should be imputed. Here it is defined as the
numeric variable EQ INC, the equivalised household income. Hence again the
states mould the donation classes, no matching variables get incorporated and
the weights provide the probabilities of the donors to be chosen. The imputed
values are the basis for the calculation of the at-risk-of-poverty threshold, the
factor at-risk-of-poverty and the at-risk-of-poverty rate for Austria and the
states.

(iii) Now again the factor at-risk-of-poverty gets imputed with the method of
weighted random hot deck. Again no matching variables are used and hence
all observations of one domain are considered as possible donors. In this ver-
sion domains are built with the factor variable strat, i.e. the state of Austria,
and the factor variable migration, i.e. the foreign origin of the household.
Weighted means of the imputed at-risk-of-poverty values result in the estima-
tions of the at-risk-of-poverty rates for Austria and the nine provinces.

(iv) As might be reasonably expected the last used method looks as follows: The
numeric variable EQ INC, i.e. the equivalised household income, is imputed
again, the variables strat and migration are used to define donation classes,
no matching variables are used and as a result a donor is selected with proba-
bility proportional to its weight. The at-risk-of-poverty rates for Austria and
the nine states are computed out of the imputed values.

Due to the high computation time, no further models are employed in the context
of weighted random hot deck.

(i) Constrained methods

Due to the fact, that the donor file (equates to the EU-SILC data set) is smaller
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than the record file (equates to the Micro Census data set), it is not possible to
use constrained methods. Naturally one could not impute every value maximal one
time, if there are more missing values than available values.

4.3. Results

In this chapter the results of the several methods get evaluated and compared in terms
of bias and variance (see Chapter 3.3).

The aim is to find the “best” method in the sense of small bias and small variance.

Furthermore the reliability of the bootstrapping is checked for all methods.

The corresponding R-Code can be found in the Appendix A.1. The different models
are explained in Appendix A.1.1 and A.1.2, the additional R-Code and the computation
of the quality criteria is in Appendix A.1.3.

4.3.1. Reliability of the Bootstrapping

For the check of the reliability of the bootstrapping, the difference in the mean of the
standard deviations yielded from the bootstrap replicates and the standard deviation es-
timated on the basis of the results of the J drawn samples is computed, see also Equation
8 and Equation 9. It should be nearly 0. Furthermore, the differences in the mean of
the at-risk-of-poverty rates from the bootstrap replicates (of all drawn samples) and the
mean of the at-risk-of-poverty rates estimated on the basis of the results of the repeated
sample drawing are computed and evaluated, see also Equation 10 and Equation 11.

Austria Burgenland Lower Austria Vienna Carinthia
DSDS (Eq. 9) 0.03851 -0.03389 0.04235 0.04125 0.10708

Styria Upper Austria Salzburg Tyrol Vorarlberg
DSDS (Eq. 9) 0.03112 -0.00669 0.04332 0.11300 0.09736

Table 2: Difference in the mean of the standard deviations yielded from the bootstrap
replicates and the standard deviation calculated on the basis of the results of
the repeated EU-SILC sample drawing [in %].

As can be seen in the resulting figures in Table 2, Table 3 and Table 4, the boot-
strapping regarding the variance works reliably. For Austria the absolute value of the
difference concerning the standard deviation ranges from 0.01330535% (−0.01330535%
for the robust linear regression model (b)(i)) to 0.4412739% (logistic regression model
(c)(i)).

For the several states similar figures are obtained, see Table 2, Table 3 and Table 4.
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Austria Burgenland Lower Aus. Vienna Carinthia
(a)(i) Linear Regression 0.05574 0.12990 0.05123 0.03500 0.13485

(a)(ii) Linear Regression 0.05025 0.09615 0.00903 0.04285 0.21817
(b)(i) Robust Lin.Reg. -0.01331 0.01891 -0.02310 -0.04582 0.01644
(b)(ii) Robust Lin.Reg. -0.01405 -0.16265 -0.05007 -0.03349 -0.06676

(c)(i) Logistic Reg. 0.44127 0.53477 0.48001 0.52845 0.47652
(c)(ii) Logistic Reg. 0.33996 0.29944 0.30813 0.42043 0.55253

(d)(i) Linear Mixed Reg. 0.05608 0.13458 0.05565 0.05798 0.13323
(d)(ii) Linear Mixed Reg. 0.05025 0.09615 0.00903 0.04285 0.21817

(e)(i) Logistic Mix.Reg. 0.40088 0.57513 0.40499 0.50224 0.45202
(e)(ii) Logistic Mix.Reg. 0.38181 0.38591 0.24537 0.48611 0.56691
(f)(i) Random Hot Deck 0.10759 0.35070 0.18465 0.08930 0.33142

(f)(ii) Random Hot Deck 0.09021 0.07959 0.19268 0.18025 0.27532
(f)(iii) Random Hot Deck 0.07879 0.06130 0.15268 0.20184 0.43642
(f)(iv) Random Hot Deck 0.08058 0.29505 0.20936 0.27124 0.12309

(g)(i) Sequential R.H.D. -0.03280 -0.30341 -0.30457 -0.34157 -0.14682
(g)(ii) Sequential R.H.D. -0.06330 -0.31657 -0.25072 -0.32082 -0.14923

(g)(iii) Sequential R.H.D. 0.05341 -0.16091 -0.01933 0.04860 0.00408
(g)(iv) Sequential R.H.D. -0.01632 -0.11299 0.00315 0.09634 -0.00250

(h)(i) Weighted R.H.D. 0.06206 0.09661 0.09740 0.15023 0.15009
(h)(ii) Weighted R.H.D. 0.08935 0.05727 0.22385 0.21695 0.23609
(h)(iii) Weighted R.H.D. 0.06245 0.12738 0.12139 0.18943 0.20686
(h)(iv) Weighted R.H.D. 0.09098 0.14992 0.17686 0.19363 0.31405

Table 3: Difference in the mean of the standard deviations yielded from the bootstrap
replicates and the standard deviation calculated on the basis of the results of
the repeated Micro Census sample drawing [in %] - part 1: Austria, Burgenland,
Lower Austria, Vienna, Carinthia.

In most of the cases the robust linear regression models (b)(i) and (b)(ii) have the
minimal absolute difference. Only for Lower Austria and Carinthia the sequential random
hot deck model (g)(iv) and for Styria the linear regression model (a)(ii) result in the
minimal absolute difference.

The maximal absolute difference is attained by the logistic regression model (c)(i) for 7
states. Furthermore for any state the maximum is obtained once with the logistic mixed
regression model (e)(i) and also once with the logistic mixed regression model (e)(ii).

Looking at the average difference of the nine states for every model (see Appendix
A.2, Table 30), the following ascending order of the absolute values results: robust linear
regression model (b)(i), sequential random hot deck model (g)(iv), sequential random
hot deck model (g)(iii), robust linear regression model (b)(ii), linear mixed regression
model (d)(ii), linear regression model (a)(ii), linear regression model (a)(i), linear mixed
regression model (d)(i), weighted random hot deck model (h)(i), weighted random hot
deck model (h)(iii), random hot deck model (f)(iii), weighted random hot deck model
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Styria Upper Aus. Salzburg Tyrol Vorarlberg
(a)(i) Linear Regression 0.11172 0.10002 0.09942 0.11096 0.14065

(a)(ii) Linear Regression 0.00312 0.03206 0.07465 0.12355 0.03817
(b)(i) Robust Lin.Reg. 0.03433 0.00323 0.02067 0.02352 0.02652

(b)(ii) Robust Lin.Reg. -0.01054 -0.04672 -0.05828 -0.01395 -0.16344
(c)(i) Logistic Reg. 0.47334 0.48715 0.49260 0.54641 0.59075
(c)(ii) Logistic Reg. 0.25917 0.23568 0.30706 0.45995 0.39907

(d)(i) Linear Mixed Reg. 0.11294 0.10029 0.10247 0.10475 0.14594
(d)(ii) Linear Mixed Reg. 0.00312 0.03206 0.07465 0.12355 0.03817

(e)(i) Logistic Mix.Reg. 0.40316 0.43480 0.48941 0.51678 0.53866
(e)(ii) Logistic Mix.Reg. 0.38369 0.27552 0.27349 0.49271 0.47551
(f)(i) Random Hot Deck 0.21074 0.03128 0.24224 0.39059 0.11930

(f)(ii) Random Hot Deck 0.25550 0.19996 0.25417 0.33911 0.11208
(f)(iii) Random Hot Deck 0.18976 0.08615 0.15332 0.19226 0.12113
(f)(iv) Random Hot Deck 0.03009 0.11951 0.23191 0.27614 0.21715

(g)(i) Sequential R.H.D. -0.37705 -0.28186 -0.26749 -0.31527 -0.24625
(g)(ii) Sequential R.H.D. -0.27716 -0.21371 -0.20734 -0.29053 -0.25798
(g)(iii) Sequential R.H.D. -0.09930 -0.06890 -0.04540 -0.08076 0.05448
(g)(iv) Sequential R.H.D. -0.01533 -0.05296 0.03698 -0.05079 -0.04208

(h)(i) Weighted R.H.D. 0.15378 0.07067 0.13458 0.15680 0.17799
(h)(ii) Weighted R.H.D. 0.18495 0.09668 0.22891 0.23099 0.15175

(h)(iii) Weighted R.H.D. 0.12874 0.16629 0.11398 0.11500 0.20837
(h)(iv) Weighted R.H.D. 0.18137 0.15932 0.20786 0.29199 0.19385

Table 4: Difference in the mean of the standard deviations yielded from the bootstrap
replicates and the standard deviation calculated on the basis of the results of
the repeated Micro Census sample drawing [in %] - part 2: Styria, Upper Austria,
Salzburg, Tyrol, Vorarlberg.

Austria Burgenland Lower Austria Vienna Carinthia
DMS (Eq. 11) 0.051859 0.102556 0.036913 0.054772 0.083648

Styria Upper Austria Salzburg Tyrol Vorarlberg
DMS (Eq. 11) 0.044448 0.040111 0.035370 0.060470 0.093183

Table 5: Difference in the mean of the at-risk-of-poverty rates from the bootstrap repli-
cates (of all drawn samples) and the mean of the at-risk-of-poverty rates calcu-
lated on the basis of the results of the repeated EU-SILC sample drawing [in
%].

(h)(ii), random hot deck model (f)(iv), weighted random hot deck model (h)(iv), random
hot deck model (f)(ii), random hot deck model (f)(i), sequential random hot deck model
(g)(ii), sequential random hot deck model (g)(i), logistic regression model (c)(ii), logistic
mixed regression model (e)(ii), logistic mixed regression model (e)(i), logistic regression
model (c)(i).
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Now the difference in the mean of the at-risk-of-poverty rates yielded from the bootstrap
replicates (of all drawn samples) and the mean of the at-risk-of-poverty rates calculated
on the basis of the results of the repeated sample drawing are considered, see also Equa-
tion 10 and Equation 11.

For Austria the absolute value of this difference ranges from 0.02049814% (logistic
mixed regression model (e)(i)) to 0.56678441% (−0.56678441% for the robust linear re-
gression model (b)(i)), see Table 5 and Table 6. For the direct estimator the difference is
0.05185870%, see Table 5.

Austria Burgenland Lower Aus. Vienna Carinthia
(a)(i) Linear Regression 0.26395 0.31577 0.28685 0.23596 0.29775

(a)(ii) Linear Regression 0.28993 0.44871 0.28174 0.22534 0.43336
(b)(i) Robust Lin.Reg. -0.56678 -0.43937 -0.40755 -0.87697 -0.41559
(b)(ii) Robust Lin.Reg. -0.56283 -0.21234 -0.43276 -0.90465 -0.43530

(c)(i) Logistic Reg. 0.05659 0.13478 0.07019 0.05562 0.06660
(c)(ii) Logistic Reg. 0.04910 0.18107 0.06709 0.03760 0.07548

(d)(i) Linear Mixed Reg. 0.25391 0.31020 0.28485 0.18629 0.30894
(d)(ii) Linear Mixed Reg. 0.28993 0.44871 0.28174 0.22534 0.43336

(e)(i) Logistic Mix.Reg. 0.02050 -0.05069 0.01035 0.04193 -0.04296
(e)(ii) Logistic Mix.Reg. 0.05372 0.14271 0.03000 0.08492 0.04863
(f)(i) Random Hot Deck 0.07591 0.04709 0.02906 0.05034 0.06165

(f)(ii) Random Hot Deck 0.06245 0.41971 0.00350 0.05257 0.05880
(f)(iii) Random Hot Deck 0.09359 0.11748 -0.01468 -0.05792 0.32790
(f)(iv) Random Hot Deck 0.06180 0.05835 0.07464 0.05382 0.26390

(g)(i) Sequential R.H.D. -0.27523 -0.16305 -0.44558 -0.17605 -0.61723
(g)(ii) Sequential R.H.D. -0.19993 -0.04772 -0.40149 -0.02482 -0.48056

(g)(iii) Sequential R.H.D. 0.02071 0.03945 -0.01087 -0.02060 0.07587
(g)(iv) Sequential R.H.D. 0.03166 0.02343 0.00789 0.02267 0.09755

(h)(i) Weighted R.H.D. 0.06571 0.08417 0.04203 0.03412 0.06039
(h)(ii) Weighted R.H.D. 0.05825 -0.04667 0.06149 0.08569 0.03203
(h)(iii) Weighted R.H.D. 0.02663 0.04784 0.01508 0.06876 0.00888
(h)(iv) Weighted R.H.D. 0.08320 0.09992 0.09827 0.08854 0.07930

Table 6: Difference in the mean of the at-risk-of-poverty rates from the bootstrap repli-
cates (of all drawn samples) and the mean of the at-risk-of-poverty rates calcu-
lated on the basis of the results of the repeated Micro Census sample drawing
[in %]- part 1: Austria, Burgenland, Lower Austria, Vienna, Carinthia.

The absolute value of the difference for any state or Austria ranges from 1.203364e-
07% (−1.203364e-07% is obtained by the logistic regression model (c)(i) for Vorarlberg)
to 0.9046489% (−0.9046489% is obtained by the robust linear regression model (b)(ii)
for Vienna), see Table 5, Table 6 and Table 7.
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Styria Upper Aus. Salzburg Tyrol Vorarlberg
(a)(i) Linear Regression 0.24156 0.22372 0.30429 0.31102 0.28487
(a)(ii) Linear Regression 0.24158 0.23935 0.33375 0.35035 0.46133

(b)(i) Robust Lin.Reg. -0.45358 -0.60929 -0.46923 -0.45393 -0.70151
(b)(ii) Robust Lin.Reg. -0.46321 -0.64427 -0.46608 -0.30444 -0.63876

(c)(i) Logistic Reg. 0.04783 0.02494 0.12334 0.04750 -1.203e-07
(c)(ii) Logistic Reg. -0.01032 0.05070 0.13434 5.155e-04 0.03878

(d)(i) Linear Mixed Reg. 0.25022 0.22857 0.29655 0.30192 0.26476
(d)(ii) Linear Mixed Reg. 0.24158 0.23935 0.33375 0.35035 0.46133

(e)(i) Logistic Mix.Reg. 0.02899 0.04568 0.04138 -0.00534 0.00980
(e)(ii) Logistic Mix.Reg. -0.00227 0.02437 0.00350 0.14272 0.14942
(f)(i) Random Hot Deck 0.15132 -0.00557 0.08937 0.18069 0.08870

(f)(ii) Random Hot Deck 0.20775 -0.03060 0.19824 -0.03240 -0.02441
(f)(iii) Random Hot Deck 0.08956 0.02350 0.07702 0.06298 0.29897
(f)(iv) Random Hot Deck -0.02124 0.04532 0.01960 0.08294 0.09147

(g)(i) Sequential R.H.D. -0.26049 -0.41729 -0.23185 -0.05709 -0.06525
(g)(ii) Sequential R.H.D. -0.17880 -0.33420 -0.14213 0.06380 0.04525

(g)(iii) Sequential R.H.D. -0.01805 0.05462 -0.02229 0.02516 0.08354
(g)(iv) Sequential R.H.D. 0.00694 0.05943 -0.00349 0.02887 0.11047

(h)(i) Weighted R.H.D. 0.05238 0.08000 0.06604 0.03540 0.15897
(h)(ii) Weighted R.H.D. 0.08276 0.04792 0.02253 0.06592 0.03480
(h)(iii) Weighted R.H.D. 0.01226 0.05752 0.02756 -0.05032 0.05090
(h)(iv) Weighted R.H.D. 0.05636 0.07725 0.06373 0.10355 0.08487

Table 7: Difference in the mean of the at-risk-of-poverty rates from the bootstrap repli-
cates (of all drawn samples) and the mean of the at-risk-of-poverty rates calcu-
lated on the basis of the results of the repeated Micro Census sample drawing
[in %] - part 2: Styria, Upper Austria, Salzburg, Tyrol, Vorarlberg.

Table 8 shows for every state the models that take the minimal and maximal absolute
value of the difference in the means of the at-risk-of-poverty rates.

Detailed analysis of the figures and accordingly computing the mean of the several
models for the nine states (see also Appendix A.2, Table 31) show that the absolute
difference is greater for smaller states, like for example Burgenland, Vorarlberg or Tyrol,
than for the bigger states, like Lower Austria, Styria, Vienna or Upper Austria. Fur-
thermore the attention is attracted by the sign of this mean: the greater states (Upper
Austria, Vienna and Lower Austria) have a negative mean of the differences of the models.

All in all the bootstrap-error is very small and it decreases by increasing the number
of samples and the number of bootstrap replicates. It can be concluded that no bias is
introduced by the bootstrap used in the simulations.
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minimum maximum
Austria (e)(i) Logistic Mixed Regr. (b)(i) Robust Lin. Regr.

Burgenland (g)(iv) Sequential R. H. D. (a)(ii) Linear Regression
Lower Austria (f)(ii) Random Hot Deck (g)(i) Sequential R. H. D.

Vienna (g)(iii) Sequential R. H. D. (b)(ii) Robust Lin. Regr.
Carinthia (h)(iii) Weighted R. H. D. (g)(i) Sequential R. H. D.

Styria (e)(ii) Logistic Mixed Regr. (b)(ii) Robust Lin. Regr.
Upper Austria (f)(i) Random Hot Deck (b)(ii) Robust Lin. Regr.

Salzburg (g)(iv) Sequential R. H. D. (b)(i) Robust Lin. Regr.
Tyrol (c)(ii) Logistic Regr. (b)(i) Robust Lin. Regr.

Vorarlberg (c)(i) Logistic Regr. (b)(i) Robust Lin. Regr.

Table 8: Models with the minimum / maximum absolute value of the difference in the
mean of the at-risk-of-poverty rates from the bootstrap replicates (of all drawn
samples) and the mean of the at-risk-of-poverty rates calculated on the basis of
the results of the repeated sample drawing for Austria and the nine states.

4.3.2. Bias

For the computation of the bias, the “true” at-risk-of-poverty rate is calculated first based
on the close-to-reality simulated population U, once for Austria and also for every of the
9 states separately, see Listing 25 in Appendix A.1.3 and Table 9.

Austria Burgenland Lower Austria Vienna Carinthia
arprPOP 12.563 16.447 9.626 16.523 17.434

Styria Upper Austria Salzburg Tyrol Vorarlberg
arprPOP 11.040 8.930 11.145 14.395 14.223

Table 9: At-risk-of-poverty rates of the artificial population [in %].

Furthermore, the bias gets estimated on the basis of the EU-SILC samples and also on
basis of the estimated values of the Micro Census data sets (see also Equation 3 and 4).
Thus, two approaches are considered.

(1) The bias is estimated by the mean of the at-risk-at-poverty rates obtained from the
repeated sampling of EU-SILC minus the “true” at-risk-at-poverty rate (obtained from
U). This is done for Austria and also for each state.

(2) The same as in (1) but using the (equivalized income extended) Micro Census data.
See also Listing 24 and Listing 25 in Appendix A.1.3.

Looking at the bias obtained from the EU-SILC samples someone notices that it ranges
between 0.03731879% and 0.30632906% (compare Table 10). It should be nearly 0, be-
cause it is based on the direct extrapolation.
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Austria Burgenland Lower Austria Vienna Carinthia
BiasS 0.12682 0.12085 0.07772 0.28307 0.03732

Styria Upper Austria Salzburg Tyrol Vorarlberg
BiasS 0.10101 0.03782 0.08581 0.09420 0.30633

Table 10: Bias on basis of the EU-SILC samples [in %].

Comparing the bias obtained from the different methods for the Micro Census samples
with the bias obtained from the EU-SILC samples it can be noticed that some of the
methods do well, better than the direct estimation, and some other methods don’t perform
as good as the direct estimation using EU-SILC samples, see Tables 11 and 12.

Regression Models:

The linear regression models (a)(i) and (a)(ii) as well as the robust linear regression
models (b)(i) and (b)(ii) result in a larger absolute value of the bias for Austria (see
Table 11) than direct estimation (in Table 10). This higher bias is due to the fact that
the equivalised household income cannot be predicted satisfactorily and therefore the
at-risk-of-poverty threshold and rates (estimated on basis of these predicted values) are
biased.

The logistic regression models (c)(i) and (c)(ii) perform much better, the absolute
value of the bias for Austria (see Table 11) is even lower than the absolute value of the
bias for Austria received from the EU-SILC samples (see Table 10). The binary variable
at-risk-of-poverty can be predicted better.

The same pattern is found regarding the mixed regression models: By comparison the
linear mixed regression models (d)(i) and (d)(ii) do worse and the logistic mixed regres-
sion models (e)(i) and (e)(ii) perform better for whole Austria, although model (e)(i)
doesn’t better than the direct estimation.

An interesting fact is that the linear regression models and the linear mixed regression
models underestimate the “true” at-risk-of-poverty rate of Austria, as can be recognised
by the minus-sign. The other regression models overestimate the rate, because the bias
is positive, see Table 11 and Table 12. Similar observations are made looking at the
several states, in the majority of cases the bias for the linear (mixed) regression models
are negative and the bias for the logistic (mixed) regression models are positive. The
underestimations result from the shift of the thresholds used for the estimations of the
at-risk-of-poverty rates.

It turns out that in terms of the bias of Austria the logistic mixed regression model
(e)(ii) performs best out of the investigated regression methods. This model results in
a smaller absolute value of the bias than the direct estimator (based on the EU-SILC
samples). Looking at the several states it is noticed that the absolute value of the bias of
model (e)(ii) is also the smallest absolute value of the bias among the different regression
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Austria Burgenland Lower Aus. Vienna Carinthia
(a)(i) Linear Regression -2.51227 -9.35414 -1.57561 -0.90658 -8.53200

(a)(ii) Linear Regression -2.39992 -10.38204 -1.45135 -0.79622 -5.18893
(b)(i) Robust Lin.Reg. -4.53377 -11.11499 -3.20755 -3.94370 -10.36583
(b)(ii) Robust Lin.Reg. -4.45744 -11.96826 -3.09081 -3.85080 -9.50906

(c)(i) Logistic Reg. 0.11519 -5.64719 1.49070 0.22229 -5.34074
(c)(ii) Logistic Reg. 0.12005 0.09956 0.02278 0.23882 0.06426

(d)(i) Linear Mixed Reg. -2.43169 -9.33726 -1.56030 -0.62823 -8.56516
(d)(ii) Linear Mixed Reg. -2.39992 -10.38204 -1.45135 -0.79622 -5.18893

(e)(i) Logistic Mix.Reg. 0.80373 -4.78267 2.34431 0.21658 -4.50181
(e)(ii) Logistic Mix.Reg. 0.11349 0.14370 0.05289 0.19400 0.08196
(f)(i) Random Hot Deck 0.73664 0.17357 0.08154 0.28538 0.07408

(f)(ii) Random Hot Deck 0.17477 -0.08806 0.14203 0.35558 0.13251
(f)(iii) Random Hot Deck 0.73301 0.12423 0.13846 0.40459 -0.19045
(f)(iv) Random Hot Deck 0.17297 0.23459 0.08352 0.35535 -0.06897

(g)(i) Sequential R.H.D. 2.08358 0.82601 1.94299 1.59166 2.23548
(g)(ii) Sequential R.H.D. 0.74147 -0.02920 1.45624 0.56233 1.27195

(g)(iii) Sequential R.H.D. 0.69910 0.07207 0.18890 0.47653 -0.27892
(g)(iv) Sequential R.H.D. 0.20893 0.24757 0.24397 0.58107 -0.12740

(h)(i) Weighted R.H.D. 0.75486 0.15279 0.07877 0.29924 0.06932
(h)(ii) Weighted R.H.D. 0.14752 0.30579 0.07085 0.28596 0.12597
(h)(iii) Weighted R.H.D. 0.79221 0.16945 0.11046 0.26850 0.09980
(h)(iv) Weighted R.H.D. 0.12011 0.14262 0.03823 0.28818 0.05995

Table 11: Bias for the several models calculated on basis of the Micro Census data sets
[in %] - part 1: Austria, Burgenland, Lower Austria, Vienna, Carinthia.

models for the states Vienna and Tyrol. The model estimation results again in a smaller
absolute value of the bias than the direct estimation. The logistic regression model (c)(ii)
performs best for the states Burgenland, Lower Austria, Carinthia, Upper Austria and
Salzburg, the logistic mixed regression model (e)(i) does best for Vorarlberg and the
logistic regression model (c)(i) performs best for Styria. The best model estimator for
Burgenland, Lower Austria, Salzburg and Vorarlberg has a smaller absolute value of the
bias than the bias received from the EU-SILC samples.

A further possibility of comparing the regression models is to evaluate the average of
the bias of the nine states for every method (see also Appendix A.2, Table 32). It appears
that now the logistic mixed regression model (e)(ii) performs best among the regression
models, followed by the logistic regression model (c)(ii), the logistic mixed regression
model (e)(i) and then the logistic regression model (c)(i).

Taking the absolute values for the computation of the average the result changes only
a little bit (see also Appendix A.2, Table 32): Now again the logistic mixed regression
model (e)(ii) performs best, followed by the logistic regression model (c)(ii), then by the
logistic regression model (c)(i) and the logistic mixed regression model (e)(i).
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After careful analysis it seems as if there is a “regression to the middle”, so that the
states with a higher at-risk-of-poverty rate, as for example Vienna or Carinthia, tend to
get a lower rate and the states with a lower at-risk-of-poverty rate, as for example Lower
Austria or Upper Austria, tend to get a higher rate. Hence the differences between the
several states get underestimated.

Statistical Matching Methods:

Comparing the bias for Austria among the statistical matching models, the weighted
random hot deck model (h)(iv) has the smallest absolute value (see Table 11). Moreover,
the absolute value of the bias is smaller as the one from the direct estimator of the at-
risk-of-poverty rate for Austria. The other statistical matching models result in a higher
absolute value of the bias (for Austria) than the one received from the EU-SILC samples.

Styria Upper Aus. Salzburg Tyrol Vorarlberg
(a)(i) Linear Regression -2.92145 0.23570 -2.61513 -5.38656 -3.43526

(a)(ii) Linear Regression -1.02419 -0.60208 -3.98952 -5.69513 -6.52459
(b)(i) Robust Lin.Reg. -4.80327 -1.49916 -4.18729 -6.92337 -6.05512
(b)(ii) Robust Lin.Reg. -2.83822 -2.28936 -5.38743 -6.92675 -7.44453

(c)(i) Logistic Reg. 0.11999 2.74800 0.91722 -2.04878 -0.97900
(c)(ii) Logistic Reg. 0.14773 0.05903 -0.02546 0.17203 0.35063

(d)(i) Linear Mixed Reg. -2.94049 0.28383 -2.54029 -5.32041 -3.28325
(d)(ii) Linear Mixed Reg. -1.02419 -0.60208 -3.98952 -5.69513 -6.52459

(e)(i) Logistic Mix.Reg. 0.94116 3.65465 1.86695 -1.24110 -0.02816
(e)(ii) Logistic Mix.Reg. 0.13349 0.08535 0.11394 0.01901 0.25238
(f)(i) Random Hot Deck -8.753e-04 0.07551 0.02189 -0.04276 0.28806

(f)(ii) Random Hot Deck 0.00482 0.16245 -0.02590 0.23380 0.51546
(f)(iii) Random Hot Deck 0.05416 0.06195 0.07321 0.08614 0.10253
(f)(iv) Random Hot Deck 0.23951 0.08349 0.13761 0.08882 0.37998

(g)(i) Sequential R.H.D. 1.64611 1.28486 1.18498 0.87267 1.25327
(g)(ii) Sequential R.H.D. 0.87188 0.57497 0.50183 -0.02499 0.27323

(g)(iii) Sequential R.H.D. 0.05266 -0.08960 -0.06089 -0.10340 0.27818
(g)(iv) Sequential R.H.D. 0.14908 0.01024 0.01160 0.00815 0.44054

(h)(i) Weighted R.H.D. 0.09795 -0.00558 0.06424 0.11421 0.24342
(h)(ii) Weighted R.H.D. 0.09030 0.04852 0.11952 0.12013 0.41242
(h)(iii) Weighted R.H.D. 0.13184 0.01768 0.10511 0.19417 0.36917
(h)(iv) Weighted R.H.D. 0.11354 0.01742 0.08218 0.06160 0.35712

Table 12: Bias for the several models calculated on basis of the Micro Census data sets
[in %] - part 2: Styria, Upper Austria, Salzburg, Tyrol, Vorarlberg.

Looking at the several states it is noticed that as best model of the statistical match-
ing methods concerning the bias of Burgenland emerges the sequential random hot deck
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model (g)(ii). It has a respectively smaller absolute value of the bias than the direct
estimator. The absolute value of the bias for Salzburg and Tyrol is smallest for the
estimations based on the sequential random hot deck model (g)(iv) and the respective
absolute value of the bias is again smaller than the one received from the EU-SILC
samples. The best statistical matching estimator in terms of the bias for Vienna is the
weighted random hot deck model (h)(iii), in terms of the bias for Styria it is the random
hot deck model (f)(i), in terms of the bias for Upper Austria it is the weighted random
hot deck model (h)(i) and in terms of the bias for Vorarlberg the random hot deck model
(f)(iii) is best. Once again the models result in a particular smaller absolute value of the
bias than the direct estimator. For Lower Austria and Carinthia the weighted random
hot deck model (h)(iv) performs best. Here can be found the sole exception regarding
the comparison of the best statistical matching estimators for the different states with
the direct estimator: The absolute value of the bias of the best estimator for Carinthia
is higher than the absolute value of the bias received from the EU-SILC samples, but it
is necessary to notice that the comparison concerns the fourth decimal place.

Figure 4: Bar chart of the bias [in %] for the direct estimator (calculated on basis of the
EU-SILC data sets)(denoted by S) and the several models (calculated on basis
of the Micro Census data sets) using the example of Burgenland and Lower
Austria.

Looking again at the average of the nine states (see also Appendix A.2, Table 32) the
sequential random hot deck model (g)(iii) performs best, followed by the random hot
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deck model (f)(iii), the random hot deck model (f)(i) and then by the weighted random
hot deck models (h)(i) and (h)(iv).

Taking the absolute values the result changes again (see also Appendix A.2, Table
32): the random hot deck model (f)(i) does best, followed by the weighted random hot
deck models (h)(i) and (h)(iv), then by the random hot deck model (f)(iii), the weighted
random hot deck models (h)(iii), (h)(ii) and the sequential random hot deck model (g)(iii).

Comparison: Regression Models and Statistical Matching Methods:

It is striking that in general there is not such a great difference between the (absolute
values of the) bias for the several statistical matching methods as can be found comparing
the regression models among themselves (see Table 11 and Table 12).

In contrast to the regression models, the statistical matching models where values for
the variable equivalised household income are imputed do even better regarding the bias
for Austria than those where the factor at-risk-of-poverty is imputed.

Supplementary in Figure 4 the bias is plotted on the example of one small and one
large state, namely Burgenland and Lower Austria, in order to gain a better view.

The best models concerning the absolute value of the bias for Austria and the nine
states among all used methods can be found in Table 13.

Austria logistic mixed regression model (e)(ii)
Burgenland sequential random hot deck model (g)(ii)

Lower Austria logistic regression model (c)(ii)
Vienna logistic mixed regression model (e)(ii)

Carinthia weighted random hot deck model (h)(iv)
Styria random hot deck model (f)(i)

Upper Austria weighted random hot deck model (h)(i)
Salzburg sequential random hot deck model (g)(iv)

Tyrol sequential random hot deck model (g)(iv)
Vorarlberg logistic mixed regression model (e)(i)

Table 13: Models with the smallest absolute value of the bias for Austria and the nine
states.

So in 4 of 10 cases the regression methods do better than the statistical matching
methods. Maybe it is remarkable, that the sequential random hot deck models emerge
as best model 3 times. But this result may be random and therefore has to be handled
with caution.

4.3.3. Variance

On the one hand the variance is computed of the at-risk-of-poverty rates for Austria and
the nine states that are estimated on the basis of the drawn EU-SILC samples, see also
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Equation 5 and Equation 6. On the other hand for Austria and every of the nine regions
it is calculated on basis of the estimated values in the drawn Micro Census data sets for
every model seperately.

Concerning the variances calculated from the repeated sampling of EU-SILC samples
it is conspicuously, that the estimations for the small states are more inaccurately than
those for the bigger ones (see Table 14). The following order of the states corresponds
to the variance in ascending order: Lower Austria, Upper Austria, Vienna, Styria, Tyrol,
Salzburg, Carinthia, Vorarlberg, Burgenland. The standard deviation of the states ranges
from 0.8361802% (Lower Austria) to 2.6507095% (Burgenland). For Austria the variance
received from the EU-SILC samples is 0.4310486%.

Austria Burgenland Lower Austria Vienna Carinthia
SDS 0.431049 2.650709 0.836180 1.032131 1.785996

Styria Upper Austria Salzburg Tyrol Vorarlberg
SDS 1.093533 0.911877 1.503958 1.452394 2.184948

Table 14: Standard deviation on basis of the EU-SILC samples [in %].

Comparing the variance of the direct estimator with the variance of the model estima-
tors it can be noticed that the variance for Austria is not undercut by any of the different
models, see Table 14 and Table 15. This is due to the nature of these methods that
should allow for smaller variances on regional level but the Micro Census data set is not
that much bigger that this gets effective.

The comparison of the variances for the nine states shows - at least for the regression
models - a different picture (see Table 14, Table 15 and Table 16):

Regression Models:

Regarding as a start only the variances of the regression models for Burgenland, Salzburg,
Tyrol or Vorarlberg it appears, that the logistic (mixed) regression models (c)(ii) and
(e)(ii) have a larger variance than the direct estimator, but all the 8 other regression
models have a smaller one. For Carinthia and Styria, respectively, the 4 models (a)(ii)
and (d)(ii) as well as (c)(ii) and (e)(ii) have a larger variance, the other 6 regression
models have a smaller one. Looking at Lower Austria or Upper Austria 5 regression
models perform better in terms of the variance and 5 performs worse. For Vienna only 2
regression models do better than the direct estimator. So the advantage of the regression
models can be found particularly in the estimations of the at-risk-of-poverty rates for the
smaller states.
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Austria Burgenland Lower Aus. Vienna Carinthia
(a)(i) Linear Regression 0.643894 0.915786 0.805230 1.358796 0.830726

(a)(ii) Linear Regression 0.638561 1.735226 0.956579 1.348708 2.146662
(b)(i) Robust Lin.Reg. 0.455394 0.722326 0.648617 0.968362 0.689105
(b)(ii) Robust Lin.Reg. 0.451170 1.326309 0.741637 0.960381 1.108700

(c)(i) Logistic Reg. 0.519291 0.934264 0.729721 1.146252 0.862655
(c)(ii) Logistic Reg. 0.571466 2.911612 0.951076 1.204009 1.806076

(d)(i) Linear Mixed Reg. 0.641850 0.908475 0.799034 1.353469 0.828877
(d)(ii) Linear Mixed Reg. 0.638561 1.735226 0.956579 1.348708 2.146662

(e)(i) Logistic Mix.Reg. 0.608307 0.950801 0.871373 1.161652 0.941897
(e)(ii) Logistic Mix.Reg. 0.545751 2.842273 1.029850 1.158870 1.810080
(f)(i) Random Hot Deck 0.755507 3.651918 1.324693 1.723281 2.634175

(f)(ii) Random Hot Deck 0.708858 3.991881 1.349583 1.692774 2.751299
(f)(iii) Random Hot Deck 0.774372 3.850094 1.329489 1.580216 2.477023
(f)(iv) Random Hot Deck 0.709823 3.670203 1.309551 1.575223 2.848268

(g)(i) Sequential R.H.D. 0.851690 3.743581 1.835122 2.055633 2.805323
(g)(ii) Sequential R.H.D. 0.797239 3.750846 1.793504 2.044954 2.799569

(g)(iii) Sequential R.H.D. 0.690674 3.434548 1.271276 1.463391 2.452313
(g)(iv) Sequential R.H.D. 0.708064 3.480521 1.299959 1.491434 2.538129

(h)(i) Weighted R.H.D. 0.565343 2.799847 1.066875 1.242310 2.011388
(h)(ii) Weighted R.H.D. 0.527145 2.923010 0.992332 1.261184 2.014868
(h)(iii) Weighted R.H.D. 0.566486 2.717812 1.030578 1.197595 1.929699
(h)(iv) Weighted R.H.D. 0.522036 2.768013 1.031744 1.264949 1.907838

Table 15: Standard deviation for the several models calculated on basis of the Micro
Census data sets [in %] - part 1: Austria, Burgenland, Lower Austria, Vienna,
Carinthia.

Statistical Matching Methods:

For the statistical matching methods the following holds again. No matter which state
is considered, every of the statistical matching models results in a greater variance than
the variance received from the EU-SILC samples. A remarkable fact is, that especially
for the smaller states the weighted random hot deck models have a lower variance than
the random hot deck or sequential random hot deck models.

Comparison: Regression Models and Statistical Matching Methods:

As done for the bias and in order to gain a better view, the standard deviation is plotted
on the example of one small and one large state, namely Burgenland and Lower Austria,
in Figure 5. Due to the fact that both, the bias and the standard deviation, are desired
to be small for one model and state, for the diagram the same states as above are selected
deliberately.

48



Styria Upper Aus. Salzburg Tyrol Vorarlberg
(a)(i) Linear Regression 0.829204 0.860510 0.835867 0.873983 1.103230

(a)(ii) Linear Regression 1.215587 1.020118 1.258288 1.269461 1.643167
(b)(i) Robust Lin.Reg. 0.627094 0.719934 0.675125 0.689733 0.822512

(b)(ii) Robust Lin.Reg. 0.888965 0.809586 0.911399 0.971983 1.323511
(c)(i) Logistic Reg. 0.791311 0.821617 0.893532 0.823094 0.934868
(c)(ii) Logistic Reg. 1.273035 1.088053 1.559762 1.529829 2.311870

(d)(i) Linear Mixed Reg. 0.826503 0.862319 0.836952 0.883440 1.108039
(d)(ii) Linear Mixed Reg. 1.215587 1.020118 1.258288 1.269461 1.643167

(e)(i) Logistic Mix.Reg. 0.926384 0.947702 0.959364 0.916694 1.054924
(e)(ii) Logistic Mix.Reg. 1.166038 1.060178 1.611479 1.508483 2.254460
(f)(i) Random Hot Deck 1.649661 1.469261 2.165907 2.096122 3.336729

(f)(ii) Random Hot Deck 1.696115 1.368381 2.215134 2.207942 3.434193
(f)(iii) Random Hot Deck 1.652477 1.408134 2.243846 2.255994 3.333223
(f)(iv) Random Hot Deck 1.890050 1.441082 2.215710 2.245211 3.294990

(g)(i) Sequential R.H.D. 2.315136 1.825121 2.449775 2.526301 3.253550
(g)(ii) Sequential R.H.D. 2.204776 1.766810 2.403209 2.513961 3.243946
(g)(iii) Sequential R.H.D. 1.644768 1.339885 1.975818 2.117027 2.889652
(g)(iv) Sequential R.H.D. 1.643382 1.391087 1.968525 2.157239 3.061581

(h)(i) Weighted R.H.D. 1.264378 1.096634 1.642210 1.663267 2.299018
(h)(ii) Weighted R.H.D. 1.321136 1.142284 1.609067 1.671752 2.423293

(h)(iii) Weighted R.H.D. 1.280591 0.998503 1.640461 1.695679 2.271055
(h)(iv) Weighted R.H.D. 1.314752 1.067349 1.618298 1.595950 2.375946

Table 16: Standard deviation for the several models calculated on basis of the Micro Cen-
sus data sets [in %] - part 2: Styria, Upper Austria, Salzburg, Tyrol, Vorarlberg.

A possibility to evaluate the different methods and models is again the examination
of the average of the nine states (see also Appendix A.2, Table 33). The average of the
variances is lowest for the robust linear regression model (b)(i), followed by the logistic
regression model (c)(i), the linear mixed regression model (d)(i), the linear regression
model (a)(i) and the logistic mixed regression model (e)(i). These 5 models as well as
the robust linear regression model (b)(ii), the linear regression model (a)(ii) and the lin-
ear mixed regression model (d)(ii) have a lower average than the direct estimator. The
logistic (mixed) regression models (e)(ii) and (c)(ii) have already a higher average, but
still a lower one than almost all the statistical matching models. Here the same picture
as described above can be found: every of the four weighted random hot deck models
have a lower average of variances than the random hot deck or sequential random hot
deck models.

Which models emerge as the best models concerning the variance for Austria and the
nine states among all used methods can be found in Table 17.

So in terms of the variance the robust linear regression models perform best quite
clearly. Equally which state or Austria is considered, they do best in every case.
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Figure 5: Bar chart of the standard deviation [in %] for the direct estimator (calculated on
basis of the EU-SILC data sets)(denoted by S) and the several models (calcu-
lated on basis of the Micro Census data sets) using the example of Burgenland
and Lower Austria.

Austria robust linear regression model (b)(ii)
Burgenland robust linear regression model (b)(i)

Lower Austria robust linear regression model (b)(i)
Vienna robust linear regression model (b)(ii)

Carinthia robust linear regression model (b)(i)
Styria robust linear regression model (b)(i)

Upper Austria robust linear regression model (b)(i)
Salzburg robust linear regression model (b)(i)

Tyrol robust linear regression model (b)(i)
Vorarlberg robust linear regression model (b)(i)

Table 17: Models with the smallest variance for Austria and the nine states.

4.3.4. Mean Squarred Error

For the calculation of the MSE for both, the EU-SILC and (enhanced) Micro Census
data sets, the respective bias and variances get combined for Austria and every of the
nine states, respectively (see also Equation 7).
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Looking as a start at the MSE calculated for the estimations based on the EU-SILC
data sets it is remarkable that there results the same ascending order as for the vari-
ances of the EU-SILC estimations, that is to say Lower Austria, Upper Austria, Vienna,
Styria, Tyrol, Salzburg, Carinthia, Vorarlberg, Burgenland (see Table 18). Again the di-
rect estimator performs better for the bigger states. The MSE for the states ranges from
7.052380e-05 (Lower Austria) to 7.040865e-04 (Burgenland). The estimation for Austria
has the lowest MSE with 2.018856e-05.

Austria Burgenland Lower Austria Vienna Carinthia
MSES 2.019e-05 7.041e-04 7.052e-05 1.145e-04 3.191e-04

Styria Upper Austria Salzburg Tyrol Vorarlberg
MSES 1.206e-04 8.329e-05 2.269e-04 2.118e-04 4.868e-04

Table 18: MSE on basis of the EU-SILC samples.

Austria Burgenland Lower Aus. Vienna Carinthia
(a)(i) Linear Regression 6.726e-04 0.008834 3.131e-04 2.668e-04 0.008834

(a)(ii) Linear Regression 6.167e-04 0.011080 3.021e-04 2.453e-04 0.003153
(b)(i) Robust Lin.Reg. 0.002076 0.012406 0.001071 0.001649 0.010793
(b)(ii) Robust Lin.Reg. 0.002007 0.014500 0.001010 0.001575 0.009165

(c)(i) Logistic Reg. 2.829e-05 0.003276 2.755e-04 1.363e-04 0.002927
(c)(ii) Logistic Reg. 3.410e-05 8.487e-04 9.051e-05 1.507e-04 3.266e-04

(d)(i) Linear Mixed Reg. 6.325e-04 0.008801 3.073e-04 2.227e-04 0.007405
(d)(ii) Linear Mixed Reg. 6.167e-04 0.011080 3.021e-04 2.453e-04 0.003153

(e)(i) Logistic Mix.Reg. 1.016e-04 0.002378 6.255e-04 1.396e-04 0.002115
(e)(ii) Logistic Mix.Reg. 3.107e-05 8.099e-04 1.063e-04 1.381e-04 3.283e-04
(f)(i) Random Hot Deck 1.113e-04 0.001337 1.761e-04 3.051e-04 6.944e-04

(f)(ii) Random Hot Deck 5.330e-05 0.001594 1.842e-04 2.992e-04 7.587e-04
(f)(iii) Random Hot Deck 1.137e-04 0.001484 1.787e-04 2.661e-04 6.172e-04
(f)(iv) Random Hot Deck 5.338e-05 0.001353 1.722e-04 2.608e-04 8.117e-04

(g)(i) Sequential R.H.D. 5.067e-04 0.001470 7.143e-04 6.759e-04 0.001287
(g)(ii) Sequential R.H.D. 1.185e-04 0.001407 5.337e-04 4.498e-04 9.455e-04

(g)(iii) Sequential R.H.D. 9.658e-05 0.001180 1.652e-04 2.369e-04 6.092e-04
(g)(iv) Sequential R.H.D. 5.450e-05 0.001218 1.749e-04 2.562e-04 6.458e-04

(h)(i) Weighted R.H.D. 8.894e-05 7.862e-04 1.144e-04 1.633e-04 4.050e-04
(h)(ii) Weighted R.H.D. 2.996e-05 8.637e-04 9.897e-05 1.672e-04 4.076e-04
(h)(iii) Weighted R.H.D. 9.485e-05 7.415e-04 1.074e-04 1.506e-04 3.734e-04
(h)(iv) Weighted R.H.D. 2.869e-05 7.682e-04 1.066e-04 1.683e-04 3.643e-04

Table 19: MSE for the several models calculated on basis of the Micro Census data sets
- part 1: Austria, Burgenland, Lower Austria, Vienna, Carinthia.

51



The MSE for Austria is not untercut by any of the models, see Table 18 and Table 19.
Nor for the states Burgenland, Lower Austria, Vienna, Carinthia or Tyrol any method
succeed in resulting in a lower MSE than the direct estimator. However, for Styria and
Salzburg the estimations of the logistic regression model (c)(i) have a lower MSE. Further
the estimator for Upper Austria based on the linear regression model (a)(i) or the linear
mixed regression model (d)(i) untercuts the direct estimator for Upper Austria. Moreover
the logistic regression model (c)(i) as well as the logistic mixed regression model (e)(i)
performs better than the direct estimator regarding Vorarlberg. For details see Table 18,
Table 19 and Table 20.

None of the statistical matching models has a lower MSE than the direct estimator,
neither for Austria nor for any of the states. As already seen for the variances it appears
that especially for the smaller states the weighted random hot deck models have a lower
MSE than the random hot deck or sequential random hot deck models, see Table 19 and
Table 20.

Styria Upper Aus. Salzburg Tyrol Vorarlberg
(a)(i) Linear Regression 9.222e-04 7.960e-05 7.538e-04 0.002978 0.001302

(a)(ii) Linear Regression 2.527e-04 1.403e-04 0.001750 0.003405 0.004527
(b)(i) Robust Lin.Reg. 0.002346 2.766e-04 0.001799 0.004841 0.003734
(b)(ii) Robust Lin.Reg. 8.846e-04 5.897e-04 0.002986 0.004892 0.005717

(c)(i) Logistic Reg. 6.406e-05 8.227e-04 1.640e-04 4.875e-04 1.832e-04
(c)(ii) Logistic Reg. 1.642e-04 1.187e-04 2.434e-04 2.370e-04 5.468e-04

(d)(i) Linear Mixed Reg. 9.330e-04 8.242e-05 7.154e-04 0.002909 0.001201
(d)(ii) Linear Mixed Reg. 2.527e-04 1.403e-04 0.001750 0.003405 0.004527

(e)(i) Logistic Mix.Reg. 1.744e-04 0.001425 4.406e-04 2.381e-04 1.114e-04
(e)(ii) Logistic Mix.Reg. 1.377e-04 1.131e-04 2.610e-04 2.276e-04 5.146e-04
(f)(i) Random Hot Deck 2.721e-04 2.164e-04 4.692e-04 4.396e-04 0.001122

(f)(ii) Random Hot Deck 2.877e-04 1.899e-04 4.907e-04 4.930e-04 0.001206
(f)(iii) Random Hot Deck 2.734e-04 1.987e-04 5.040e-04 5.097e-04 0.001112
(f)(iv) Random Hot Deck 3.630e-04 2.084e-04 4.928e-04 5.049e-04 0.001100

(g)(i) Sequential R.H.D. 8.070e-04 4.982e-04 7.406e-04 7.144e-04 0.001216
(g)(ii) Sequential R.H.D. 5.621e-04 3.452e-04 6.027e-04 6.321e-04 0.001060

(g)(iii) Sequential R.H.D. 2.708e-04 1.803e-04 3.908e-04 4.492e-04 8.427e-04
(g)(iv) Sequential R.H.D. 2.723e-04 1.935e-04 3.875e-04 4.654e-04 9.567e-04

(h)(i) Weighted R.H.D. 1.608e-04 1.203e-04 2.701e-04 2.779e-04 5.345e-04
(h)(ii) Weighted R.H.D. 1.754e-04 1.307e-04 2.603e-04 2.809e-04 6.042e-04
(h)(iii) Weighted R.H.D. 1.657e-04 9.973e-05 2.702e-04 2.913e-04 5.294e-04
(h)(iv) Weighted R.H.D. 1.741e-04 1.140e-04 2.626e-04 2.551e-04 5.773e-04

Table 20: MSE for the several models calculated on basis of the Micro Census data sets
- part 2: Styria, Upper Austria, Salzburg, Tyrol, Vorarlberg.

In conclusion the mean squared error is plotted in Figure 6 using the same states as
above, Burgenland and Lower Austria.
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Figure 6: Bar chart of the mean squared error for the direct estimator (calculated on basis
of the EU-SILC data sets)(denoted by S) and the several models (calculated
on basis of the Micro Census data sets) using the example of Burgenland and
Lower Austria.

Considering the average of the nine states for the direct estimator and the models (see
Appendix A.2, Table 34) someone realizes again that the direct estimator performs best
in terms of the mean squared error. It is followed by the logistic mixed regression model
(e)(ii), the logistic regression model (c)(ii), the weighted random hot deck models (h)(iii),
(h)(iv), (h)(i) and (h)(ii). In the further order the sequential random hot deck models
and the random hot deck models appear and then the other regression models follow.

Austria logistic regression model (c)(i)
Burgenland weighted random hot deck model (h)(iii)

Lower Austria logistic regression model (c)(ii)
Vienna logistic regression model (c)(i)

Carinthia logistic regression model (c)(ii)
Styria logistic regression model (c)(i)

Upper Austria linear regression model (a)(i)
Salzburg logistic regression model (c)(i)

Tyrol logistic mixed regression model (e)(ii)
Vorarlberg logistic mixed regression model (e)(i)

Table 21: Models with the smallest MSE for Austria and the nine states
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Interesting is the result of the search for the best model concerning the MSE for Austria
and the nine states among all used methods. The finding is summarized in Table 21.

Only in one case the statistical matching methods can keep up with the regression
models, namely for Burgenland. In other respects the logistic (mixed) regression models
emerge as best model many times (more precisely in 8 of 10 cases).

4.3.5. Bias Corrected Version

Using the mean of the bootstrap replicates (of all drawn EU-SILC and Micro Census
samples, respectively) for the computation of the bias instead of the mean of the at-risk-
of-poverty rates obtained only from the repeated sampling of EU-SILC and Micro Census
data sets, respectively, an in some sense “corrected” version of the bias is calculated, see
also Equation 12 and Equation 13.

The new bias obtained from the EU-SILC samples is a little bit higher than the one
described above (see Table 22).

Austria Burgenland Lower Austria Vienna Carinthia
BiasBS (Eq. 13) 0.17868 0.22340 0.11464 0.33785 0.12097

Styria Upper Austria Salzburg Tyrol Vorarlberg
BiasBS (Eq. 13) 0.14546 0.07793 0.12118 0.15468 0.39951

Table 22: Corrected bias on basis of the EU-SILC samples [in %].

Regression Models:

The results for the regression models are very similar (see Table 23 and Table 24):
The (robust) linear regression models perform worse than the direct estimator and

the logistic regression models do better than (robust) linear regression. Furthermore the
same pattern regarding the mixed regression models can be observed.

Also the circumstance that the linear (mixed) regression models result mostly in neg-
ative figures and the logistic (mixed) regression models in positive ones is preserved.

As best model concerning the corrected bias for Austria among the regression models
emerges again the logistic mixed regression model (e)(ii) and again it results in a smaller
bias than the direct estimator. The previously calculated absolute value of the bias of the
logistic mixed regression model (e)(ii) has been the smallest of all regression models for
the states Vienna and Tyrol - this fact changes in this setup: the logistic mixed regression
model (e)(ii) performs best for the states Lower Austria, Carinthia, Styria, Upper Austria
and Tyrol. The logistic regression model (c)(ii) does best for Burgenland and Salzburg
and the logistic mixed regression model (e)(i) performs again best for Vorarlberg, but
also for Vienna. The absolute value of the smallest bias among the regression models is
lower than the respective bias obtained from the EU-SILC samples for Lower Austria,
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Austria Burgenland Lower Aus. Vienna Carinthia
(a)(i) Linear Regression -2.24832 -9.03837 -1.28876 -0.67062 -8.23425

(a)(ii) Linear Regression -2.11000 -9.93333 -1.16961 -0.57087 -4.75556
(b)(i) Robust Lin.Reg. -5.10056 -11.55437 -3.61510 -4.82066 -10.78143
(b)(ii) Robust Lin.Reg. -5.02027 -12.18061 -3.52358 -4.75545 -9.94436

(c)(i) Logistic Reg. 0.17178 -5.51241 1.56089 0.27791 -5.27414
(c)(ii) Logistic Reg. 0.16916 0.28062 0.08987 0.27642 0.13974

(d)(i) Linear Mixed Reg. -2.17778 -9.02706 -1.27545 -0.44194 -8.25622
(d)(ii) Linear Mixed Reg. -2.11000 -9.93333 -1.16961 -0.57087 -4.75556

(e)(i) Logistic Mix.Reg. 0.82422 -4.83336 2.35466 0.25851 -4.54477
(e)(ii) Logistic Mix.Reg. 0.16721 0.28641 0.08288 0.27892 0.13058
(f)(i) Random Hot Deck 0.81255 0.22066 0.11060 0.33572 0.13572

(f)(ii) Random Hot Deck 0.23722 0.33165 0.14553 0.40815 0.19131
(f)(iii) Random Hot Deck 0.82660 0.24171 0.12378 0.34667 0.13745
(f)(iv) Random Hot Deck 0.23477 0.29294 0.15816 0.40916 0.19494

(g)(i) Sequential R.H.D. 1.80835 0.66296 1.49741 1.41561 1.61825
(g)(ii) Sequential R.H.D. 0.54154 -0.07693 1.05475 0.53751 0.79139

(g)(iii) Sequential R.H.D. 0.71980 0.11153 0.17803 0.45593 -0.20306
(g)(iv) Sequential R.H.D. 0.24059 0.27100 0.25186 0.60374 -0.02985

(h)(i) Weighted R.H.D. 0.82057 0.23697 0.12080 0.33336 0.12970
(h)(ii) Weighted R.H.D. 0.20577 0.25912 0.13233 0.37166 0.15800
(h)(iii) Weighted R.H.D. 0.81884 0.21729 0.12554 0.33727 0.10868
(h)(iv) Weighted R.H.D. 0.20331 0.24254 0.13650 0.37672 0.13925

Table 23: Corrected bias for the several models calculated on basis of the Micro Cen-
sus data sets [in %] - part 1: Austria, Burgenland, Lower Austria, Vienna,
Carinthia.

Vienna, Styria, Salzburg and Vorarlberg. For details have a look at Table 22, Table 23
and Table 24.

The ordering of the models regarding the average of the bias of the nine states (see
Appendix A.2, Table 32) changes also a little bit: Now the logistic mixed regression model
(e)(i) performs best among the regression models, followed by the logistic mixed regression
model (e)(ii), the logistic regression model (c)(ii) and then the logistic regression model
(c)(i).

Taking the absolute values for the computation of the average (see Appendix A.2, Table
32) there can be obtained the same ordering as above: the logistic mixed regression model
(e)(ii) performs best, followed by the logistic regression model (c)(ii), then by the logistic
regression model (c)(i) and the logistic mixed regression model (e)(i).

Statistical Matching Methods:

Comparing the corrected bias for Austria among the statistical matching models one
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Styria Upper Aus. Salzburg Tyrol Vorarlberg
(a)(i) Linear Regression -2.67989 0.45942 -2.31085 -5.07554 -3.15039

(a)(ii) Linear Regression -0.78260 -0.36273 -3.65577 -5.34478 -6.06326
(b)(i) Robust Lin.Reg. -5.25685 -2.10845 -4.65652 -7.37730 -6.75663

(b)(ii) Robust Lin.Reg. -3.30143 -2.93363 -5.85351 -7.23120 -8.08329
(c)(i) Logistic Reg. 0.16782 2.77294 1.04055 -2.00128 -0.97900
(c)(ii) Logistic Reg. 0.13741 0.10973 0.10888 0.17255 0.38940

(d)(i) Linear Mixed Reg. -2.69027 0.51239 -2.24374 -5.01850 -3.01849
(d)(ii) Linear Mixed Reg. -0.78260 -0.36273 -3.65577 -5.34478 -6.06326

(e)(i) Logistic Mix.Reg. 0.97015 3.70033 1.90834 -1.24644 -0.01836
(e)(ii) Logistic Mix.Reg. 0.13122 0.10971 0.11744 0.16173 0.40179
(f)(i) Random Hot Deck 0.15045 0.06994 0.11126 0.13793 0.37676

(f)(ii) Random Hot Deck 0.21258 0.13186 0.17234 0.20140 0.49105
(f)(iii) Random Hot Deck 0.14372 0.08545 0.15023 0.14912 0.40150
(f)(iv) Random Hot Deck 0.21826 0.12881 0.15721 0.17176 0.47145

(g)(i) Sequential R.H.D. 1.38562 0.86757 0.95313 0.81558 1.18801
(g)(ii) Sequential R.H.D. 0.69308 0.24077 0.35970 0.03881 0.31848
(g)(iii) Sequential R.H.D. 0.03461 -0.03498 -0.08318 -0.07824 0.36171
(g)(iv) Sequential R.H.D. 0.15602 0.06967 0.00811 0.03702 0.55101

(h)(i) Weighted R.H.D. 0.15033 0.07442 0.13027 0.14961 0.40239
(h)(ii) Weighted R.H.D. 0.17305 0.09644 0.14206 0.18606 0.44722

(h)(iii) Weighted R.H.D. 0.14410 0.07520 0.13267 0.14385 0.42007
(h)(iv) Weighted R.H.D. 0.16990 0.09467 0.14590 0.16515 0.44199

Table 24: Corrected bias for the several models calculated on basis of the Micro Census
data sets [in %] - part 2: Styria, Upper Austria, Salzburg, Tyrol, Vorarlberg.

will notice that again the weighted random hot deck model (h)(iv) has the smallest abso-
lute value, see Table 23. However, now the bias of the weighted random hot deck model
(h)(iv) is larger than the bias of the direct estimator for Austria (see Table 22 and Table
23).

Comparing the statistical matching models for the several states, similar results are
obtained (see Table 23 and Table 24): Again for Burgenland the sequential random
hot deck model (g)(ii) performs best and the absolute value of the bias for Salzburg and
Tyrol is again smallest for the estimations based on the sequential random hot deck model
(g)(iv). In contrast to above the best statistical matching estimator in terms of the bias
for Lower Austria is the random hot deck model (f)(i) (instead of (h)(iv)), in terms of
the bias for Vienna is the weighted random hot deck model (h)(i) (instead of (h)(iii)),
in terms of the bias for Carinthia it is the sequential random hot deck model (g)(iv)
(instead of (h)(iv)), in terms of the bias for Styria and Upper Austria, respectively, it is
the sequential random hot deck model (g)(iii) (instead of (f)(i) and (h)(i), respectively)
and in terms of the bias for Vorarlberg it is the sequential random hot deck model (g)(ii)
(instead of (f)(iii)).

Every of these 9 (best) methods results in a absolute value of the bias comparable in
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quality to the direct estimator (see also Table 22).

Looking again at the average of the nine states (see Appendix A.2, Table 32) the
ordering changes a little bit: sequential random hot deck model (g)(iii) performs best,
followed by the random hot deck model (f)(i) and then by the weighted random hot deck
models (h)(iii) and (h)(i). Taking the absolute values the result looks again different:
the sequential random hot deck model (g)(iii) does best, followed by the random hot
deck model (f)(i), the weighted random hot deck models (h)(iii) and (h)(i), then by the
random hot deck model (f)(iii), the weighted random hot deck models (h)(iv), (h)(ii) and
the sequential random hot deck model (g)(iv).

Comparison: Regression Models and Statistical Matching Methods:

The models that emerge as the best models concerning the absolute value of the cor-
rected bias for Austria and the nine states among all used methods can be found in Table
25. There is a column indicating which model does best regarding the bias calculated
and evaluated in Chapter 4.3.2.

corrected bias “old” bias
Austria logistic mixed regression model (e)(ii) (e)(ii)

Burgenland sequential random hot deck model (g)(ii) (g)(ii)
Lower Austria logistic mixed regression model (e)(ii) (c)(ii)

Vienna logistic mixed regression model (e)(i) (e)(ii)
Carinthia sequential random hot deck model (g)(iv) (h)(iv)

Styria sequential random hot deck model (g)(iii) (f)(i)
Upper Austria sequential random hot deck model (g)(iii) (h)(i)

Salzburg sequential random hot deck model (g)(iv) (g)(iv)
Tyrol sequential random hot deck model (g)(iv) (g)(iv)

Vorarlberg logistic mixed regression model (e)(i) (e)(i)

Table 25: Models with the smallest absolute value of the (corrected) bias for Austria and
the nine states.

In 4 of 10 cases the regression methods do better than the statistical matching methods.
It is remarkable, that the sequential random hot deck models emerge as best model 6
times.

Comparing the above introduced bias and the corrected version in 5 of 10 cases there
results the same models.

Regarding the absolute values of the two different versions of the bias for every model
for Austria/every state it is prominent, that the linear (mixed) regression models (a)(i),
(a)(ii), (d)(i) and (d)(ii) have a lower corrected bias almost always, only for Lower Austria
the models (a)(i) and (d)(i) result in a higher new bias. For the other regression models
in only 5 occurrences the absolute value of the corrected bias is lower than the old one
(All in all, 55 times the absolute bias introduced in Chapter 4.3.2 is lower).
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Similar results are obtained looking at the statistical matching methods: The sequen-
tial random hot deck models (especially model (g)(i), (g)(ii) and (g)(iii)) have more often
than not a lower new bias, but the random hot deck models and the weighted random
hot deck models result only in 10 of 80 cases in a lower corrected bias.

This corrected bias can now be used for the computation of the MSE for once the
EU-SILC samples and once the Micro Census data sets in order to get a bias corrected
version of the MSE.

Austria Burgenland Lower Austria Vienna Carinthia
MSEBS 2.177e-05 7.076e-04 7.123e-05 1.179e-04 3.204e-04

Styria Upper Austria Salzburg Tyrol Vorarlberg
MSEBS 1.217e-04 8.376e-05 2.277e-04 2.133e-04 4.934e-04

Table 26: Bias corrected MSE on basis of the EU-SILC samples.

Looking at the bias corrected version of the MSE (see Table 26) calculated for the
estimations based on the EU-SILC data sets someone notices that there results the same
ascending order as obtained before for the variances or the MSE calculated in Chapter
4.3.4, i.e. Lower Austria followed by Upper Austria, Vienna, Styria, Tyrol, Salzburg,
Carinthia, Vorarlberg and Burgenland. The bias corrected MSE for the states ranges
from 7.123386e-05 (Lower Austria) to 7.076170e-04 (Burgenland). The estimation for
Austria has the lowest MSE with 2.177282e-05. The bias corrected mean squared errors
are a little bit higher than the values of the MSE dealed with in Chapter 4.3.2 based on
the EU-SILC data sets.

Also the bias corrected MSE for Austria is not undercut by any of the models, see
Table 26 and Table 27.

Concerning the bias corrected MSE for the states nearly the same dimensions as for
the MSE of Chapter 4.3.4 result (see Table 26, see Table 27 and Table 28):

Again nor for the states Burgenland, Lower Austria, Vienna, Carinthia or Tyrol any
method succeed in resulting in a lower MSE than the direct estimator. Afresh for Styria
and Salzburg the estimations of the logistic regression model (c)(i) have a lower MSE and
the logistic regression model (c)(i) as well as the logistic mixed regression model (e)(i)
performs better than the direct estimator regarding Vorarlberg. The only change is, that
for Upper Austria also none of the models can undercut the bias corrected MSE of the
direct estimator.

Again none of the statistical matching models has a lower MSE than the direct estima-
tor, neither for Austria nor for any of the states. As already seen and described further
up for the variances and the old MSE it appears, that especially for the smaller states
the weighted random hot deck models have a lower MSE than the random hot deck or
sequential random hot deck models.
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Austria Burgenland Lower Aus. Vienna Carinthia
(a)(i) Linear Regression 5.470e-04 0.008253 2.309e-04 2.296e-04 0.006849

(a)(ii) Linear Regression 4.860e-04 0.006849 2.283e-04 2.145e-04 0.006849
(b)(i) Robust Lin.Reg. 0.002622 0.013403 0.001349 0.002418 0.011671
(b)(ii) Robust Lin.Reg. 0.002541 0.015013 0.001297 0.002354 0.010012

(c)(i) Logistic Reg. 2.992e-05 0.003126 2.969e-04 1.391e-04 0.002856
(c)(ii) Logistic Reg. 3.552e-05 8.556e-04 9.126e-05 1.526e-04 3.281e-04

(d)(i) Linear Mixed Reg. 5.155e-04 0.008231 2.265e-04 2.027e-04 0.006885
(d)(ii) Linear Mixed Reg. 4.860e-04 0.010168 2.283e-04 2.145e-04 0.002722

(e)(i) Logistic Mix.Reg. 1.049e-04 0.002427 6.304e-04 1.416e-04 0.002154
(e)(ii) Logistic Mix.Reg. 3.258e-05 8.161e-04 1.067e-04 1.421e-04 3.293e-04
(f)(i) Random Hot Deck 1.231e-04 0.001339 1.767e-04 3.082e-04 6.957e-04

(f)(ii) Random Hot Deck 5.588e-05 0.001605 1.843e-04 3.032e-04 7.606e-04
(f)(iii) Random Hot Deck 1.283e-04 0.001488 1.783e-04 2.617e-04 6.155e-04
(f)(iv) Random Hot Deck 5.590e-05 0.001356 1.740e-04 2.649e-04 8.151e-04

(g)(i) Sequential R.H.D. 3.996e-04 0.001445 5.610e-04 6.230e-04 0.001049
(g)(ii) Sequential R.H.D. 9.289e-05 0.001407 4.329e-04 4.471e-04 8.464e-04

(g)(iii) Sequential R.H.D. 9.951e-05 0.001181 1.648e-04 2.349e-04 6.055e-04
(g)(iv) Sequential R.H.D. 5.592e-05 0.001219 1.753e-04 2.589e-04 6.443e-04

(h)(i) Weighted R.H.D. 9.930e-05 7.895e-04 1.153e-04 1.654e-04 4.063e-04
(h)(ii) Weighted R.H.D. 3.202e-05 8.611e-04 1.002e-04 1.729e-04 4.085e-04
(h)(iii) Weighted R.H.D. 9.914e-05 7.434e-04 1.078e-04 1.548e-04 3.736e-04
(h)(iv) Weighted R.H.D. 3.139e-05 7.721e-04 1.083e-04 1.742e-04 3.659e-04

Table 27: Bias corrected MSE for the several models calculated on basis of the Micro Cen-
sus data sets - part 1: Austria, Burgenland, Lower Austria, Vienna, Carinthia.

The average of the nine states for the direct estimator and every model (see Appendix
A.2, Table 34) yields the same ordering as for the old MSE with the exception of the
change of the models (c)(ii) and (h)(iii) as well as the change of the models (g)(i) and
(e)(i). So the direct estimator performs best in terms of the bias corrected mean squared
error and it is followed by the logistic mixed regression model (e)(ii), the weighted ran-
dom hot deck model (h)(iii), the logistic regression model (c)(ii), the weighted random
hot deck models (h)(iv), (h)(i) and (h)(ii). In the further order the sequential random
hot deck models and the random hot deck models are found again and then the other
regression models follow.

The result of the search for the best model concerning the bias corrected MSE for
Austria and the nine states among all used method is summarized in Table 29. Moreover a
column indicates which model emerges as the best one concerning the old MSE calculated
in Chapter 4.3.4.

The same models re-emerge as best models for Austria and the 9 states. In other words
again only in one case the statistical matching methods can keep up with the regression
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Styria Upper Aus. Salzburg Tyrol Vorarlberg
(a)(i) Linear Regression 7.869e-04 9.515e-05 6.039e-04 0.002652 0.001114

(a)(ii) Linear Regression 2.090e-04 1.172e-04 0.001495 0.003018 0.003946
(b)(i) Robust Lin.Reg. 0.002803 4.964e-04 0.002214 0.005490 0.004633
(b)(ii) Robust Lin.Reg. 0.001169 9.262e-04 0.003509 0.005323 0.006709

(c)(i) Logistic Reg. 6.543e-05 8.364e-04 1.881e-04 4.683e-04 1.832e-04
(c)(ii) Logistic Reg. 1.639e-04 1.196e-04 2.445e-04 2.370e-04 5.496e-04

(d)(i) Linear Mixed Reg. 7.921e-04 1.006e-04 5.735e-04 0.002597 0.001034
(d)(ii) Linear Mixed Reg. 2.090e-04 1.172e-04 0.001495 0.003018 0.003946

(e)(i) Logistic Mix.Reg. 1.799e-04 0.001459 4.562e-04 2.394e-04 1.113e-04
(e)(ii) Logistic Mix.Reg. 1.377e-04 1.136e-04 2.611e-04 2.302e-04 5.244e-04
(f)(i) Random Hot Deck 2.744e-04 2.164e-04 4.704e-04 4.413e-04 0.001128

(f)(ii) Random Hot Deck 2.922e-04 1.890e-04 4.937e-04 4.916e-04 0.001203
(f)(iii) Random Hot Deck 2.751e-04 1.990e-04 5.057e-04 5.112e-04 0.001127
(f)(iv) Random Hot Deck 3.620e-04 2.093e-04 4.934e-04 5.070e-04 0.001108

(g)(i) Sequential R.H.D. 7.280e-04 4.084e-04 6.910e-04 7.047e-04 0.001200
(g)(ii) Sequential R.H.D. 5.341e-04 3.180e-04 5.905e-04 6.322e-04 0.001062

(g)(iii) Sequential R.H.D. 2.706e-04 1.797e-04 3.911e-04 4.488e-04 8.481e-04
(g)(iv) Sequential R.H.D. 2.725e-04 1.940e-04 3.875e-04 4.655e-04 9.677e-04

(h)(i) Weighted R.H.D. 1.621e-04 1.208e-04 2.714e-04 2.789e-04 5.447e-04
(h)(ii) Weighted R.H.D. 1.775e-04 1.314e-04 2.609e-04 2.829e-04 6.072e-04
(h)(iii) Weighted R.H.D. 1.661e-04 1.003e-04 2.709e-04 2.896e-04 5.334e-04
(h)(iv) Weighted R.H.D. 1.757e-04 1.148e-04 2.640e-04 2.574e-04 5.840e-04

Table 28: Bias corrected MSE for the several models calculated on basis of the Micro
Census data sets - part 2: Styria, Upper Austria, Salzburg, Tyrol, Vorarlberg.

bias corrected MSE “old” MSE
Austria logistic regression model (c)(i) (c)(i)

Burgenland weighted random hot deck model (h)(iii) (h)(iii)
Lower Austria logistic regression model (c)(ii) (c)(ii)

Vienna logistic regression model (c)(i) (c)(i)
Carinthia logistic regression model (c)(ii) (c)(ii)

Styria logistic regression model (c)(i) (c)(i)
Upper Austria linear regression model (a)(i) (a)(i)

Salzburg logistic regression model (c)(i) (c)(i)
Tyrol logistic mixed regression model (e)(ii) (e)(ii)

Vorarlberg logistic mixed regression model (e)(i) (e)(i)

Table 29: Models with the smallest (bias corrected) MSE for Austria and the nine states.

models, namely for Burgenland and in other respects the logistic (mixed) regression
models emerge as best model many times (more precisely in 8 of 10 cases).
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5. Conclusion

In conclusion it doesn’t exist only one method performing by far best in every sense,
and using the Micro Census gives hardly any improvement over the direct estimator on
EU-SILC in terms of the mean squared error.

However, when comparing the methods used for the estimation of the at-risk-at-poverty
rate based on the Micro Census data, some interesting conclusions can be made. In
addition we have shown that the variance decreases for various regression models for
small states in comparison to the direct estimator, but the bias may increase in such a
manner, so that the mean squared error is still lowest for the direct estimator.

In more detail, concerning the bias, the logistic (mixed) regression models stand out in
a positive manner among the regression models. The statistical matching methods differ
not much in their performance. Apart from that it is worth noting that for the states
Burgenland, Salzburg and Tyrol one of the sequential random hot deck models does best
(once model (g)(ii) and twice model (g)(iv)). For Austria the logistic mixed regression
model (e)(ii) performs best. For 7 of the 9 states the statistical matching methods do
better than the regression methods.

Regarding the variances in general the regression models have better performance than
the statistical matching methods. But the two models (c)(ii) and (e)(ii) proved to be
quite good in terms of the bias have a higher variance. The robust linear regression mod-
els perform best quite clearly. This is in contrast to the result yield from the evaluation
of the bias. Among the statistical matching methods, especially for the smaller states,
the weighted random hot deck models have a lower variance than the random hot deck
or sequential random hot deck models.

The combination of the bias and the variance in the MSE shows the problem described
at the beginning of the thesis: due to the sample sizes a clear ascending order results.
The smaller the number of respondents in the states, the larger the uncertainty. The
ordering is Lower Austria, Upper Austria, Vienna, Styria, Tyrol, Salzburg, Carinthia,
Vorarlberg, Burgenland.

Looking at the model with the lowest MSE for every state seperately only in one
case the statistical matching methods can keep up with the regression models, namely
for Burgenland. In other respects the logistic regression models and the logistic mixed
regression models emerge as best model many times (more precisely in 8 of 10 cases). But
for Austria and for 5 of the 9 states the MSE of the direct estimator can’t be undercut
by any of the models. For the other 4 states only one or two models perform better
than the direct estimator. This may result because the available variables are not the
most appropriate variables for the estimation of the equivalised household income or the
variable at-risk-of-poverty. Furthermore the majority of the variables are factors (with
only a few categories) and not continuous variables. Another reason is that the Micro
Census incorporates “only” about 23000 households, but Austria has about 3.65 million
households [see, e.g., Moser et al., 2013]. Thus using census data or register data the
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bias would possibly remain the same, but the variance and hence the mean squared error
would decrease.

Considering the average of the nine states for the direct estimator and every model one
can realize that the direct estimator performs best in terms of the mean squared error.
It is followed by the logistic mixed regression model (e)(ii), the logistic regression model
(c)(ii) and the 4 weighted random hot deck models. Further the sequential random hot
deck models and the random hot deck models follow in quality before the other regression
models.

The reliability of the bootstrapping can be verified for every of the methods and mod-
els. Furthermore the bias corrected versions yield similar results.

An application of additional methods and models may be future work. On the one
side it is interesting whether the results will change by increasing the number of boot-
strap replicates or the number of sample drawing and on the other side other models and
methods may perform better.

Furthermore, another interesting approach would be to apply the described and used
methods and models for other countries and data. Due to the fact that it is worked with
design-based simulation, the adaption would take place straightforwardly. The analysis
of the change caused by the usage of several sample designs could provide important and
informative findings. It is possible that a particular sample design has strong influence
on the quality of the methods and the results. Working with census data or register data
(that are much larger than the Micro Census) lower variances and consequently lower
MSE are expected and so the methods with small bias but high variance, like for exam-
ple model (c)(ii) or model (e)(ii), would perform much better.
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A. Appendix

A.1. R-Code

All the results are obtained with the statistical environment R [R Core Team, 2013].
Partly commands and functions from base R [R Core Team, 2013] and from the libraries
laeken [Alfons et al., 2013], sampling [Tillé and Matei, 2012], survey [Lumley, 2012, 2004],
robustbase [Rousseeuw et al., 2013, Todorov and Filzmoser, 2009], MASS [Venables and
Ripley, 2002], lme4 [Bates et al., 2013], VIM [Templ et al., 2013], StatMatch [D’Orazio,
2012], snow [Tierney et al., 2013] and rlecuyer [Sevcikova and Rossini, 2012] are used.

Special thanks are due to Alexander Kowarik, the cooperation, particularly concerning
the R-Code, has been a great help.

Important functions for the sampling of the EU-SILC data set, denoted in the following
also by S, and the Micro Census data set, denoted in the following also by MZ, out of
U are strata and getdata.

Furthermore the symbols S(∗) and MZ(∗), respectively, signify a bootstrap sample of S
and MZ, respectively.

The two samples S and MZ get combined by creating a list of two with MZ as the
first entry and S as the second list entry. So later on the access to MZ or S is done via
the operator . . . [[1]] or . . . [[2]].

In Listing 1 stands the code used for the sampling of S and MZ out of U using the
respective sample designs.

Listing 1: Sampling of S and MZ.

samples <- function(eusilcP , smhv_2_2011, seednr=FALSE){

ziehsilc <- function(eusilcP , smhv_2_2011, seednr=FALSE){

if (seednr!=FALSE){

set.seed(seednr)

}

size_silc <- data.frame(table(smhv_2_2011$strat[smhv_2_

2011$silc ==1]))$Freq

str_silc <- strata(eusilcP[order(eusilcP$strat),],

stratanames="strat", size=size_silc , method=c("

srswor"))

silcsim <- getdata(eusilcP , str_silc)

silcsim

}

ziehmz <- function(eusilcP , smhv_2_2011, seednr=FALSE){

if (seednr!=FALSE){

set.seed(seednr)

}

63



size_mz <- data.frame(table(smhv_2_2011$strat[smhv_2_

2011$silc ==0]))$Freq

str_mz <- strata(eusilcP[order(eusilcP$strat),],

stratanames="strat", size=size_mz, method=c("srswor"

))

mzsim <- getdata(eusilcP , str_mz)

mzsim

}

s <- list(mzsim = ziehmz(eusilcP , smhv_2_2011) , silcsim =

ziehsilc(eusilcP , smhv_2_2011))

s

}

The function argument and input for the functions performed and explained below (see,
e.g., Listing 2) is a so called samp. This is a list including two elements, the simulated
Micro Census and the simulated EU-SILC data set (or a bootstrap sample of the simu-
lated Micro Census and EU-SILC data set). For MZ and S generally speaking this will
be a list obtained from the function samples (compare Listing 1), so the first list entry
samp[[1]]) equates to MZ and the second entry samp[[2]]) to S.

A.1.1. Regression Models Including Selected Small Area Methods

For the estimation of the linear regression models it is worked with the function lm. This
function gets the model via the formula syntax and it gives the possibility to incorporate
weights via the argument weights. The underlying data set is passed to the function via
the argument data.

To impute the values in MZ and MZ(∗), respectively, the function predict helps a
lot. It needs the result of lm as input, as well as newdata, what is defined as MZ and
MZ(∗), respectively, in this case.

Out of the predicted and with the exponential function exp retransformed values get
calculated the at-risk-of-poverty rate with the function arpr. This function needs the
equivalised household income as input and it gives also the possibility to incorporate
weights for the computation (argument weights). Furthermore it computes the at-risk-
of-poverty rate for Austria and also separately for every state by defining the argument
breakdown as strat.

In Listing 2 can be found the code for the estimation and transmission of the weighted
OLS regression model with only socio-demographic variables and the estimation of the
at-risk-of-poverty rate.

In Listing 3 stands the corresponding code using both, socio-demographic variables
and some covariates, as predictor variables.
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Listing 2: Ordinary Least Squares Regression: model estimation on the basis of EU-SILC
(S or S(∗) equates to samp[[2]]), transmission to Micro Census (MZ or MZ(∗)

equates to samp[[1]]) and calculation of arpr out of the imputed values: with
socio-demographic variables.

gewlmreg_soz <- function(samp){

samp [[2]]$rp_age <- (as.ordered(samp [[2]]$rp_age))

samp [[2]]$workint <- (as.ordered(samp [[2]]$workint))

samp [[2]]$rp_heduc <- (as.ordered(samp [[2]]$rp_heduc))

samp [[2]]$equipm <- (as.ordered(samp [[2]]$equipm))

samp [[1]]$rp_age <- (as.ordered(samp [[1]]$rp_age))

samp [[1]]$workint <- (as.ordered(samp [[1]]$workint))

samp [[1]]$rp_heduc <- (as.ordered(samp [[1]]$rp_heduc))

samp [[1]]$equipm <- (as.ordered(samp [[1]]$equipm))

var0 <- c("rp_age", "dwell", "htyp", "migration", "equipm", "rp

_living", "rp_famst", "workint", "rp_heduc", "rp_occstat", "

rp_branch", "urb")

# in EQ_INC some 0 occur --> set to 1

# (to make it possible to use log(EQ_INC))

samp [[2]]$EQ_INC[samp [[2]]$EQ_INC ==0] <- 1

# estimate the model

form0 <- as.formula(paste("log(EQ_INC)~", paste(var0 ,collapse="

+",sep=""), sep=""))

mod0 <- lm(form0 , data=samp [[2]], weights=samp [[2]]$gew)

# transmit the model to MZ and retransform

samp [[1]]$EQ_INCe_0 <- exp(predict(mod0 , newdata=samp [[1]]))

# estimate the at -risk -of-poverty rate for Austria + 9 states

ARPR_0 <- c(arpr("EQ_INCe_0", weights = "gew", breakdown = "

strat", data = samp [[1]])$value , arpr("EQ_INCe_0", weights =

"gew", breakdown = "strat", data = samp [[1]])$

valueByStratum$value) /100

ARPR_0

}

Listing 3: Ordinary Least Squares Regression: model estimation on the basis of EU-SILC
(S or S(∗) equates to samp[[2]]), transmission to Micro Census (MZ or MZ(∗)

equates to samp[[1]]) and calculation of arpr out of the imputed values: with
socio-demographic variables + covariates.

gewlmreg_rV <- function(samp){

samp [[2]]$rp_age <- (as.ordered(samp [[2]]$rp_age))

samp [[2]]$workint <- (as.ordered(samp [[2]]$workint))

samp [[2]]$rp_heduc <- (as.ordered(samp [[2]]$rp_heduc))

samp [[2]]$equipm <- (as.ordered(samp [[2]]$equipm))

samp [[1]]$rp_age <- (as.ordered(samp [[1]]$rp_age))

samp [[1]]$workint <- (as.ordered(samp [[1]]$workint))

samp [[1]]$rp_heduc <- (as.ordered(samp [[1]]$rp_heduc))

samp [[1]]$equipm <- (as.ordered(samp [[1]]$equipm))

var0 <- c("rp_age", "dwell", "htyp", "migration", "equipm", "rp

_living", "rp_famst", "workint", "rp_heduc", "rp_occstat", "
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rp_branch", "urb")

var1 <- c(var0 , "migrbal", "nonempm", "nonempw", "quinc", "

carscc", "unemp", "compall")

# in EQ_INC some 0 occur --> set to 1

# (to make it possible to use log(EQ_INC))

samp [[2]]$EQ_INC[samp [[2]]$EQ_INC ==0] <- 1

# estimate the model

form1 <- as.formula(paste("log(EQ_INC)~", paste(var1 ,collapse="

+",sep=""), sep=""))

mod1 <- lm(form1 , data=samp [[2]], weights=samp [[2]]$gew)

# transmit the model to MZ and retransform

samp [[1]]$EQ_INCe_1 <- exp(predict(mod1 , newdata=samp [[1]]))

# estimate the at -risk -of-poverty rate for Austria + 9 states

ARPR_1 <- c(arpr("EQ_INCe_1", weights = "gew", breakdown = "

strat", data = samp [[1]])$value , arpr("EQ_INCe_1", weights =

"gew", breakdown = "strat", data = samp [[1]])$

valueByStratum$value) /100

ARPR_1

}

Concerning the robust linear regression methods it is worked with the function rlm out
of the package MASS, see Listing 4 and Listing 5. It is to handle in a similar way like
the function lm concerning the formula syntax, the data and weights arguments. By
defining the method as ‘‘M’’ it is possible to incorporate weights. Using this method a
linear model is fitted by robust regression via Hubers M-estimator. It is the default for
this function. Another possibility would be to work with method=‘‘MM’’, but weights
are not supported for this version, so it isn’t used for estimation.

The function predict works in connection with rlm, so it is used and the next steps
are the same as for the ordinary linear regression method (function exp for the retrans-
formation and the function arpr for the calculation of the at-risk-of-poverty rate).

See Listing 4 and Listing 5, respectively, for the code of the estimation and transmis-
sion of the robust linear regression models using once only socio-demographic variables
and once socio-demographic variables and covariates, respectively, and the accordingly
estimation of the at-risk-of-poverty rates of Austria and the nine regions.

Listing 4: Robust Linear Regression: model estimation on the basis of EU-SILC (S or
S(∗) equates to samp[[2]]), transmission to Micro Census (MZ or MZ(∗) equates
to samp[[1]]) and calculation of arpr out of the imputed values: with socio-
demographic variables.

gewlmreg_sozrob <- function(samp){

samp [[2]]$rp_age <- (as.ordered(samp [[2]]$rp_age))

samp [[2]]$workint <- (as.ordered(samp [[2]]$workint))

samp [[2]]$rp_heduc <- (as.ordered(samp [[2]]$rp_heduc))

samp [[2]]$equipm <- (as.ordered(samp [[2]]$equipm))

samp [[1]]$rp_age <- (as.ordered(samp [[1]]$rp_age))
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samp [[1]]$workint <- (as.ordered(samp [[1]]$workint))

samp [[1]]$rp_heduc <- (as.ordered(samp [[1]]$rp_heduc))

samp [[1]]$equipm <- (as.ordered(samp [[1]]$equipm))

var0 <- c("rp_age", "dwell", "htyp", "migration", "equipm", "rp

_living", "rp_famst", "workint", "rp_heduc", "rp_occstat", "

rp_branch", "urb")

# in EQ_INC some 0 occur --> set to 1

# (to make it possible to use log(EQ_INC))

samp [[2]]$EQ_INC[samp [[2]]$EQ_INC ==0] <- 1

# estimate the model

form0 <- as.formula(paste("log(EQ_INC)~", paste(var0 ,collapse="

+",sep=""), sep=""))

mod2 <- rlm(form0 , data=samp [[2]], weights=samp [[2]]$gew)

# transmit the model to MZ and retransform

samp [[1]]$EQ_INCe_r0 <- exp(predict(mod2 , newdata=samp [[1]]))

# estimate the at -risk -of-poverty rate for Austria + 9 states

ARPR_r0 <- c(arpr("EQ_INCe_r0", weights = "gew", breakdown = "

strat", data = samp [[1]])$value , arpr("EQ_INCe_r0", weights

= "gew", breakdown = "strat", data = samp [[1]])$

valueByStratum$value) /100

ARPR_r0

}

Listing 5: Robust Linear Regression: model estimation on the basis of EU-SILC (S or
S(∗) equates to samp[[2]]), transmission to Micro Census (MZ or MZ(∗) equates
to samp[[1]]) and calculation of arpr out of the imputed values: with socio-
demographic variables + covariates.

gewlmreg_rVrob <- function(samp){

samp [[2]]$rp_age <- (as.ordered(samp [[2]]$rp_age))

samp [[2]]$workint <- (as.ordered(samp [[2]]$workint))

samp [[2]]$rp_heduc <- (as.ordered(samp [[2]]$rp_heduc))

samp [[2]]$equipm <- (as.ordered(samp [[2]]$equipm))

samp [[1]]$rp_age <- (as.ordered(samp [[1]]$rp_age))

samp [[1]]$workint <- (as.ordered(samp [[1]]$workint))

samp [[1]]$rp_heduc <- (as.ordered(samp [[1]]$rp_heduc))

samp [[1]]$equipm <- (as.ordered(samp [[1]]$equipm))

var0 <- c("rp_age", "dwell", "htyp", "migration", "equipm", "rp

_living", "rp_famst", "workint", "rp_heduc", "rp_occstat", "

rp_branch", "urb")

var2 <- c(var0 , "migrbal", "nonempm", "nonempw", "quinc", "

carscc", "unemp", "compall")

# in EQ_INC some 0 occur --> set to 1

# (to make it possible to use log(EQ_INC))

samp [[2]]$EQ_INC[samp [[2]]$EQ_INC ==0] <- 1

# estimate the model

form2 <- as.formula(paste("log(EQ_INC)~", paste(var2 ,collapse="

+",sep=""), sep=""))
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mod3 <- rlm(form2 , data=samp [[2]], weights=samp [[2]]$gew)

# transmit the model to MZ and retransform

samp [[1]]$EQ_INCe_r2 <- exp(predict(mod3 , newdata=samp [[1]]))

# estimate the at -risk -of-poverty rate for Austria + 9 states

ARPR_r2 <- c(arpr("EQ_INCe_r2", weights = "gew", breakdown = "

strat", data = samp [[1]])$value , arpr("EQ_INCe_r2", weights

= "gew", breakdown = "strat", data = samp [[1]])$

valueByStratum$value) /100

ARPR_r2

}

Regarding the logistic regression, thus fitting a model for a binary response, it is worked
with the function glm (see Listing 6 and Listing 7). The argument family is defined as
quasibinomial, as described in the R help [compare R Core Team, 2013] of the function
glm and of family, it is the same as the binomial family, just “the dispersion parameter
is not fixed at one”, so it is possible to “model over-dispersion”. The binomial family cor-
responds to the above described logistic regression, meaning to the logit-transformation
(compare Chapter 2.3.3). For further details have a look in Sachs and Hedderich [2009].
It is again possible to incorporate weights with the function glm. They are passed to the
argument weights of the function.

The function predict is also implemented for a glm-object, so it is used to estimate the
values for the simulated Micro Census data sets. If a glm-object is passed to this function,
it is necessary to define the argument type. Because of the choice of type=“response”,
the predicted probabilities are retrieved. To estimate one of the two parameter-values
at-risk-of-poverty or not at-risk-of-poverty, samples according to these probabilities are
drawn, see Listing 6 and Listing 7.

To estimate the at-risk-of-poverty rate out of this dichotomous variable at-risk-of-
poverty a weighted mean is calculated with the function weighted.mean. On the one
hand it is calculated for all values of one simulated MZ or MZ(∗), and on the other hand
it is calculated for subsets of them, namely for every of the nine states, see again Listing
6 and Listing 7.

The complete code concerning the logistic regression models (including the estimation
and transmission of the model and the calculation of the at-risk-of-poverty rates with the
estimated values) is written in Listing 6 and Listing 7. The difference of the two Listings
is in the choice of the predictor variables; once again only socio-demographic variables
are used, the other time is worked with socio-demographic variables and some covariates.

Listing 6: Logistic Regression: model estimation on the basis of EU-SILC (S or S(∗)

equates to samp[[2]]), transmission to Micro Census (MZ or MZ(∗) equates
to samp[[1]]) and calculation of arpr out of the imputed values: with socio-
demographic variables.

logreg_soz <- function(samp){

samp [[2]]$rp_age <- (as.ordered(samp [[2]]$rp_age))
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samp [[2]]$workint <- (as.ordered(samp [[2]]$workint))

samp [[2]]$rp_heduc <- (as.ordered(samp [[2]]$rp_heduc))

samp [[2]]$equipm <- (as.ordered(samp [[2]]$equipm))

samp [[1]]$rp_age <- (as.ordered(samp [[1]]$rp_age))

samp [[1]]$workint <- (as.ordered(samp [[1]]$workint))

samp [[1]]$rp_heduc <- (as.ordered(samp [[1]]$rp_heduc))

samp [[1]]$equipm <- (as.ordered(samp [[1]]$equipm))

var0 <- c("rp_age", "dwell", "htyp", "migration", "equipm", "rp

_living", "rp_famst", "workint", "rp_heduc", "rp_occstat", "

rp_branch", "urb")

# estimate the model (ARPT60i is a factor)

form0 <- as.formula(paste("ARPT60i~", paste(var0 ,collapse="+",

sep=""), sep=""))

mod0 <- glm(form0 , family=quasibinomial , data=samp [[2]],

weights=samp [[2]]$gew)

# transmit the model to MZ

# in ARPT_0p: probabilities for at-risk -of-poverty = 1

# in ARPT_0: 0 or 1

samp [[1]]$ARPT_0p <- predict(mod0 , type="response", newdata=

samp [[1]])

samp [[1]]$ARPT_0 <- unlist(lapply(samp [[1]]$ARPT_0p, function(x

) sample(c(0,1),size=1,prob=c(1-x,x))))

# estimate the at -risk -of-poverty rate for Austria + 9 states

ARPR_0 <- weighted.mean(samp [[1]][ ,"ARPT_0"], samp [[1]]$gew)

for (b in 1:9){

bb <- levels(samp [[1]]$strat)[b] # state name

# limit the data set and weight vector with samp [[1]]$

strat ==bb

ARPR_0 <- c(ARPR_0, weighted.mean(samp [[1]][ samp [[1]]$

strat ==bb,"ARPT_0"], samp [[1]]$gew[samp [[1]]$strat ==

bb]))

}

ARPR_0

}

Listing 7: Logistic Regression: model estimation on the basis of EU-SILC (S or S(∗)

equates to samp[[2]]), transmission to Micro Census (MZ or MZ(∗) equates
to samp[[1]]) and calculation of arpr out of the imputed values: with socio-
demographic variables + covariates.

logreg_rV <- function(samp){

samp [[2]]$rp_age <- (as.ordered(samp [[2]]$rp_age))

samp [[2]]$workint <- (as.ordered(samp [[2]]$workint))

samp [[2]]$rp_heduc <- (as.ordered(samp [[2]]$rp_heduc))

samp [[2]]$equipm <- (as.ordered(samp [[2]]$equipm))

samp [[1]]$rp_age <- (as.ordered(samp [[1]]$rp_age))

samp [[1]]$workint <- (as.ordered(samp [[1]]$workint))

samp [[1]]$rp_heduc <- (as.ordered(samp [[1]]$rp_heduc))
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samp [[1]]$equipm <- (as.ordered(samp [[1]]$equipm))

var0 <- c("rp_age", "dwell", "htyp", "migration", "equipm", "rp

_living", "rp_famst", "workint", "rp_heduc", "rp_occstat", "

rp_branch", "urb")

var1 <- c(var0 , "migrbal", "nonempm", "nonempw", "quinc", "

carscc", "unemp", "compall")

# estimate the model (ARPT60i is a factor)

form1 <- as.formula(paste("ARPT60i~", paste(var1 ,collapse="+",

sep=""), sep=""))

mod1 <- glm(form1 , family=quasibinomial , data=samp [[2]],

weights=samp [[2]]$gew)

# transmit the model to MZ

# in ARPT_0p: probabilities for at-risk -of-poverty = 1

# in ARPT_0: 0 or 1

samp [[1]]$ARPT_1p <- predict(mod1 , type="response", newdata=

samp [[1]])

samp [[1]]$ARPT_1 <- unlist(lapply(samp [[1]]$ARPT_1p, function(x

) sample(c(0,1),size=1,prob=c(1-x,x))))

# estimate the at -risk -of-poverty rate for Austria + 9 states

ARPR_1 <- weighted.mean(samp [[1]][ ,"ARPT_1"], samp [[1]]$gew)

for (b in 1:9){

bb <- levels(samp [[1]]$strat)[b] # state name

# limit the data set and weight vector with samp [[1]]$

strat ==bb

ARPR_1 <- c(ARPR_1, weighted.mean(samp [[1]][ samp [[1]]$

strat ==bb,"ARPT_1"], samp [[1]]$gew[samp [[1]]$strat ==

bb]))

}

ARPR_1

}

In context of linear mixed models it is worked with the function lmer out of the package
lme4 (see Listing 8 and Listing 9). This function expects as input a formula where on the
left side of the sign ∼ the response stands and on the right side the predictor variables.
As can be read in the R help of this function, compare Bates et al. [2013], “The vertical
bar character | separates an expression for a model matrix and a grouping factor.” Fur-
thermore the data is passed to the function via the argument data and the weight vector
via the argument weights as it is common for this type of functions. Generally and es-
pecially in the above introduced models, the weight for those observations not appearing
in a bootstrap sample is set to zero (compare further down in Listing 24). So they are
excluded in the model estimation, because in every method the weights are incorporated
in the calculation. In connection with the function lmer this is not possible, because
there must not be zeros in the weight vector. So the data set has to be restricted before
by removing the non appearing observations, i.e. observations with weight 0, see Listing
8 and Listing 9. The output is an object of class mer.
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The function predict is not implemented for objects of class mer, so it can’t be used as
done in the above introduced models. As a consequence, the prediction is done by hand.
For this purpose information on the model is extracted in form of the “terms” object
for the fixed-effects terms in the model formula with the command terms, see Listing 8
and Listing 9. With the function model.matrix a model matrix is created based on the
information received from terms and the data, in this case the Micro Census data set.
The command fixef applied to the model (i.e. to the output from lmer) returns the
estimations of the parameters of the fixed effects. So the predictions are obtained via the
matrix multiplication of the model matrix with the output of fixef. The result has to
be retransformed again with the exponential function. (See Listing 8 and Listing 9.)

The at-risk-of-poverty rate gets calculated as usual with the function arpr (in connec-
tion with linear mixed models again the equivalised household income is estimated).

For the entire code used in context of linear mixed effects regression models, i.e. the
model estimation, the transmission of the model and the estimation of the at-risk-of-
poverty rates for Austria and the nine regions, have a look at Listing 8 and Listing 9,
respectively. Listing 8 contains the version of the model where socio-demographic vari-
ables are used as fixed effects and state as random effect and Listing 9 contains the
alternative with socio-demographic variables and some covariates as fixed effects and
state as random effect.

Listing 8: Linear Mixed Regression: model estimation on the basis of EU-SILC (S or S(∗)

equates to samp[[2]]), transmission to Micro Census (MZ or MZ(∗) equates
to samp[[1]]) and calculation of arpr out of the imputed values: with socio-
demographic variables as fixed effects and state as random effect.

mixed_lm_inc_soz <- function(samp){

samp [[2]]$rp_age <- (as.ordered(samp [[2]]$rp_age))

samp [[2]]$workint <- (as.ordered(samp [[2]]$workint))

samp [[2]]$rp_heduc <- (as.ordered(samp [[2]]$rp_heduc))

samp [[2]]$equipm <- (as.ordered(samp [[2]]$equipm))

samp [[1]]$rp_age <- (as.ordered(samp [[1]]$rp_age))

samp [[1]]$workint <- (as.ordered(samp [[1]]$workint))

samp [[1]]$rp_heduc <- (as.ordered(samp [[1]]$rp_heduc))

samp [[1]]$equipm <- (as.ordered(samp [[1]]$equipm))

var0 <- c("rp_age", "dwell", "htyp", "migration", "equipm", "

rp_living", "rp_famst", "workint", "rp_heduc", "rp_occstat",

"rp_branch", "urb")

# in EQ_INC some 0 occur --> set to 1

# (to make it possible to use log(EQ_INC))

samp [[2]]$EQ_INC[samp [[2]]$EQ_INC ==0] <- 1

# restriction of the data set

# because there must not be zeros in the weight vector in lmer

samp [[2]] <- samp [[2]][ samp [[2]]$gew!=0,]

samp [[1]] <- samp [[1]][ samp [[1]]$gew!=0,]

# estimate the model

form0 <- as.formula(paste("log(EQ_INC)~", paste(var0 ,collapse="
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+",sep=""), "+ (1| strat)", sep=""))

mod0 <- lmer(form0 , data=samp [[2]], weights=samp [[2]]$gew)

# transmit the model to MZ and retransform

samp [[1]]$EQ_INCe_0 <- exp(model.matrix(terms(mod0),samp [[1]])

%*% fixef(mod0))

# estimate the at -risk -of-poverty rate for Austria + 9 states

ARPR_0 <- c(arpr("EQ_INCe_0", weights = "gew", breakdown = "

strat", data = samp [[1]])$value , arpr("EQ_INCe_0", weights =

"gew", breakdown = "strat", data = samp [[1]])$

valueByStratum$value) /100

ARPR_0

}

Listing 9: Linear Mixed Regression: model estimation on the basis of EU-SILC (S or S(∗)

equates to samp[[2]]), transmission to Micro Census (MZ or MZ(∗) equates
to samp[[1]]) and calculation of arpr out of the imputed values: with socio-
demographic variables + covariates as fixed effects and state as random effect.

mixed_lm_inc_rV <- function(samp){

samp [[2]]$rp_age <- (as.ordered(samp [[2]]$rp_age))

samp [[2]]$workint <- (as.ordered(samp [[2]]$workint))

samp [[2]]$rp_heduc <- (as.ordered(samp [[2]]$rp_heduc))

samp [[2]]$equipm <- (as.ordered(samp [[2]]$equipm))

samp [[1]]$rp_age <- (as.ordered(samp [[1]]$rp_age))

samp [[1]]$workint <- (as.ordered(samp [[1]]$workint))

samp [[1]]$rp_heduc <- (as.ordered(samp [[1]]$rp_heduc))

samp [[1]]$equipm <- (as.ordered(samp [[1]]$equipm))

var0 <- c("rp_age", "dwell", "htyp", "migration", "equipm", "rp

_living", "rp_famst", "workint", "rp_heduc", "rp_occstat", "

rp_branch", "urb")

var1 <- c(var0 , "migrbal", "nonempm", "nonempw", "quinc", "

carscc", "unemp", "compall")

# in EQ_INC some 0 occur --> set to 1

# (to make it possible to use log(EQ_INC))

samp [[2]]$EQ_INC[samp [[2]]$EQ_INC ==0] <- 1

# restriction of the data set

# because there must not be zeros in the weight vector in lmer

samp [[2]] <- samp [[2]][ samp [[2]]$gew!=0,]

samp [[1]] <- samp [[1]][ samp [[1]]$gew!=0,]

# estimate the model

form1 <- as.formula(paste("log(EQ_INC)~", paste(var1 ,collapse="

+",sep=""), "+ (1| strat)", sep=""))

mod1 <- lmer(form1 , data=samp [[2]], weights=samp [[2]]$gew)

# transmit the model to MZ and retransform

samp [[1]]$EQ_INCe_1 <- exp(model.matrix(terms(mod1),samp [[1]])

%*% fixef(mod1))

# estimate the at -risk -of-poverty rate for Austria + 9 states
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ARPR_1 <- c(arpr("EQ_INCe_1", weights = "gew", breakdown = "

strat", data = samp [[1]])$value , arpr("EQ_INCe_1", weights =

"gew", breakdown = "strat", data = samp [[1]])$

valueByStratum$value) /100

ARPR_1

}

Concerning logistic mixed regression models the used important function is glmer out
of the package lme4 [see Bates et al., 2013], see Listing 10 and Listing 11, respectively.
This function works in the same way as lmer, the used function in context of linear
mixed regression. The only difference is, that a family has to be defined. The family is
defined as binomial, what comes up to the above described method (see Chapter 2.3.5).
Furthermore again a formula is passed to the function as input, the data is alloted to
the function via the argument data, the weight vector via the argument weights and
there must not be zeros in the weight vector. So the data set gets restricted before by
removing the non appearing observations, i.e. observations with weight 0, see Listing 10
and Listing 11, respectively. The output is again an object of class mer.

As mentioned above, the function predict is not implemented for objects of class mer,
so it can’t be used. So afresh the prediction is done by hand. For this purpose the
commands terms, model.matrix and fixef are used one-to-one as for the linear mixed
models (see Listing 10 and Listing 11), but contrary to linear mixed regression, the
matrix multiplication of the model matrix with the output of fixef clearly doesn’t yield
the definite predictions. The result is in fact the prediction associated with the linear
model as described in Chapter 2.3.5 (i.e. logit of the probabilities). The function plogis

is used to retransform it and so to get the predicted probabilities (plogis is called the
“inverse logit”). Again the probabilities are discretised by drawing samples with these
probabilities in order to get one of the two parameter values at-risk-of-poverty or not
at-risk-of-poverty as prediction of the dichotomous factor, see Listing 10 and Listing 11,
respectively.

To estimate the at-risk-of-poverty rate out of these values of the dichotomous variable
at-risk-of-poverty a weighted mean is calculated again with the function weighted.mean,
on the one hand for all predicted values of one simulated MZ or MZ(∗) and on the other
hand for subsets of them, namely for every of the nine states.

In Listing 10 can be found the code for the estimation and transmission of the logistic
mixed regression model with only socio-demographic variables as fixed effects (and state
as random effect) and the estimation of the at-risk-of-poverty rate.

In Listing 11 stands the corresponding code using both, socio-demographic variables
and some covariates, as fixed effects (and state as random effect).
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Listing 10: Logistic Mixed Regression: model estimation on the basis of EU-SILC (S
or S(∗) equates to samp[[2]]), transmission to Micro Census (MZ or MZ(∗)

equates to samp[[1]]) and calculation of arpr out of the imputed values: with
socio-demographic variables as fixed effects and state as random effect.

mixed_logm_arpt_soz <- function(samp){

samp [[2]]$rp_age <- (as.ordered(samp [[2]]$rp_age))

samp [[2]]$workint <- (as.ordered(samp [[2]]$workint))

samp [[2]]$rp_heduc <- (as.ordered(samp [[2]]$rp_heduc))

samp [[2]]$equipm <- (as.ordered(samp [[2]]$equipm))

samp [[1]]$rp_age <- (as.ordered(samp [[1]]$rp_age))

samp [[1]]$workint <- (as.ordered(samp [[1]]$workint))

samp [[1]]$rp_heduc <- (as.ordered(samp [[1]]$rp_heduc))

samp [[1]]$equipm <- (as.ordered(samp [[1]]$equipm))

var0 <- c("rp_age", "dwell", "htyp", "migration", "equipm", "

rp_living", "rp_famst", "workint", "rp_heduc", "rp_occstat",

"rp_branch", "urb")

# restriction of the data set

# because there must not be zeros in the weight vector in lmer

samp [[2]] <- samp [[2]][ samp [[2]]$gew!=0,]

samp [[1]] <- samp [[1]][ samp [[1]]$gew!=0,]

# estimate the model (ARPT60i is a factor)

form0 <- as.formula(paste("ARPT60i~", paste(var0 ,collapse="+",

sep=""), "+ (1| strat)", sep=""))

mod0 <- glmer(form0 , family=binomial , data=samp [[2]], weights=

samp [[2]]$gew)

# transmit the model to MZ

# in ARPT_0lo: logit of the probabilities for at-risk -of-

poverty

# in ARPT_0p: probabilities for at-risk -of-poverty = 1

# in ARPT_0: 0 or 1

ARPT_0lo <- model.matrix(terms(mod0),samp [[1]]) %*% fixef(mod0)

samp [[1]]$ARPT_0p <- plogis(ARPT_0lo)

samp [[1]]$ARPT_0 <- unlist(lapply(samp [[1]]$ARPT_0p, function(x

)sample(c(0,1),size=1,prob=c(1-x,x))))

# estimate the at -risk -of-poverty rate for Austria + 9 states

ARPR_0 <- weighted.mean(samp [[1]][ ,"ARPT_0"], samp [[1]]$gew)

for (b in 1:9){

bb <- levels(samp [[1]]$strat)[b] # state name

# limit the data set and weight vector with samp [[1]]$

strat ==bb

ARPR_0 <- c(ARPR_0, weighted.mean(samp [[1]][ samp [[1]]$

strat ==bb,"ARPT_0"],samp [[1]]$gew[samp [[1]]$strat ==

bb]))

}

ARPR_0

}
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Listing 11: Logistic Mixed Regression: model estimation on the basis of EU-SILC (S
or S(∗) equates to samp[[2]]), transmission to Micro Census (MZ or MZ(∗)

equates to samp[[1]]) and calculation of arpr out of the imputed values: with
socio-demographic variables + covariates as fixed effects and state as random
effect.

mixed_logm_arpt_rV <- function(samp){

samp [[2]]$rp_age <- (as.ordered(samp [[2]]$rp_age))

samp [[2]]$workint <- (as.ordered(samp [[2]]$workint))

samp [[2]]$rp_heduc <- (as.ordered(samp [[2]]$rp_heduc))

samp [[2]]$equipm <- (as.ordered(samp [[2]]$equipm))

samp [[1]]$rp_age <- (as.ordered(samp [[1]]$rp_age))

samp [[1]]$workint <- (as.ordered(samp [[1]]$workint))

samp [[1]]$rp_heduc <- (as.ordered(samp [[1]]$rp_heduc))

samp [[1]]$equipm <- (as.ordered(samp [[1]]$equipm))

var0 <- c("rp_age", "dwell", "htyp", "migration", "equipm", "

rp_living", "rp_famst", "workint", "rp_heduc", "rp_occstat",

"rp_branch", "urb")

var1 <- c(var0 , "migrbal", "nonempm", "nonempw", "quinc", "

carscc", "unemp", "compall")

# restriction of the data set

# because there must not be zeros in the weight vector in lmer

samp [[2]] <- samp [[2]][ samp [[2]]$gew!=0,]

samp [[1]] <- samp [[1]][ samp [[1]]$gew!=0,]

# estimate the model (ARPT60i is a factor)

form1 <- as.formula(paste("ARPT60i~", paste(var1 ,collapse="+",

sep=""), "+ (1| strat)", sep=""))

mod1 <- glmer(form1 , family=binomial , data=samp [[2]], weights=

samp [[2]]$gew)

# transmit the model to MZ

# in ARPT_1lo: logit of the probabilities for at-risk -of-

poverty

# in ARPT_1p: probabilities for at-risk -of-poverty = 1

# in ARPT_1: 0 or 1

ARPT_1lo <- model.matrix(terms(mod1),samp [[1]]) %*% fixef(mod1)

samp [[1]]$ARPT_1p <- plogis(ARPT_1lo)

samp [[1]]$ARPT_1 <- unlist(lapply(samp [[1]]$ARPT_1p, function(x

)sample(c(0,1),size=1,prob=c(1-x,x))))

# estimate the at -risk -of-poverty rate for Austria + 9 states

ARPR_1 <- weighted.mean(samp [[1]][ ,"ARPT_1"], samp [[1]]$gew)

for (b in 1:9){

bb <- levels(samp [[1]]$strat)[b] # state name

# limit the data set and weight vector with samp [[1]]$

strat ==bb

ARPR_1 <- c(ARPR_1, weighted.mean(samp [[1]][ samp [[1]]$

strat ==bb,"ARPT_1"],samp [[1]]$gew[samp [[1]]$strat ==

bb]))

}

ARPR_1

}
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A.1.2. Statistical Matching

In connection with statistical matching it is mainly worked with two different packages,
namely with the packages VIM [see Templ et al., 2013] and StatMatch [see D’Orazio,
2012].

As can be read above there are implemented three different methods in the context of
statistical matching. For two of them, namely random hot deck and sequential random
hot deck, it is worked with a function out of the package VIM and for the last one, namely
weighted random hot deck, functions out of the package StatMatch are used.

The main used function to implement random hot deck is hotdeck out of the package
VIM [see Templ et al., 2013]. For this purpose the data sets are edited in the sense that
one data set is constructed containing both, the Micro Census and the EU-SILC data
set, whereas the values for ARPT60i and EQ INC are missing in the Micro Census data set.
This single data set is passed to the function hotdeck in the first place, see Listing 12,
Listing 13, Listing 14 and Listing 15. Via the argument variable the variable, where
missing values should be imputed, is defined. Furthermore the names of the variables,
that should be used for the building of donation classes, are passed to the argument
domain var. Within these domains the imputation happens. The output of the function
is the previously passed data set, but now with the imputed values.

In the case of the imputation of the factor variable ARPT60i again with the function
weighted.mean the at-risk-of-poverty rate is calculated out of this dichotomous variable
at-risk-of-poverty. On the one hand it is computed for all imputed values of one simulated
MZ or MZ(∗), and on the other hand it is computed for subsets of them, namely for every
of the nine states. (See Listing 12 and Listing 14.)

On the other side, in the case of the imputation of the numeric variable EQ INC the
calculation of the at-risk-of-poverty rates is done again out of the imputed values with
the function arpr (see Listing 13 and Listing 15). As a quick reminder, this function
needs the equivalised household income as input and via the argument weights the
weights are incorporated for the computation. It computes the at-risk-of-poverty rate for
Austria and also separately for every state by defining the argument breakdown as strat.

Listing 12 contains the R-Code for random hot deck imputation of ARPT60i using the
states for building donation classes and the R-Code for the estimation of the at-risk-of-
poverty rates.

Listing 13 is the analogue for the imputation of EQ INC.
In Listing 14 (imputation of ARPT60i) and Listing 15 (imputation of EQ INC) are the

R-Codes of alternatives hereof using the variables state and foreign origin of the house-
hold for the building of donation classes.
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Listing 12: Random Hot Deck: imputation of ARPT60i in the Micro Census (MZ or
MZ(∗) equates to samp[[1]]) with the usage of EU-SILC (S or S(∗) equates to
samp[[2]]) and calculation of arpr out of the imputed values: with the states
as donation classes.

match_strat_arpt <- function(samp){

samp [[1]]$ARPT60i <- NA samp [[1]]$EQ_INC <- NA

# combine the data sets MZ and S (MZ* and S*)

data <- rbind(samp [[1]], samp [[2]])[,c("rp_age", "dwell", "htyp"

, "migration", "equipm", "rp_living", "rp_famst", "workint",

"rp_heduc", "rp_occstat", "rp_branch", "EQ_INC", "ARPT60i",

"urb", "migrbal", "nonempm", "nonempw", "birth", "mort", "

quinc", "carscc", "unemp", "socass", "compall", "unemp_lag",

"socass_lag", "compall_lag", "strat", "gew")]

# exclude observations with weight 0

data <- data[data$gew!=0,]

group.v1 <- "strat" # variable for building domains

# imputation of ARPT60i within the domains:

dataI.1 <- hotdeck(data , variable="ARPT60i", domain_var=

group.v1)

# estimate the at -risk -of-poverty rate for Austria + 9 states

ARPR <- weighted.mean(as.numeric(dataI.1$ARPT60i [1: sum(samp

[[1]]$gew >0)]), weights="gew")

for (b in 1:9){

bb <- levels(samp [[1]]$strat)[b] # state name

# limit the data set and weight vector with samp [[1]]$

strat ==bb

ARPR <- c(ARPR , weighted.mean(as.numeric(dataI.1 [1: sum(

samp [[1]]$gew >0) ,][dataI.1 [1: sum(samp [[1]]$gew >0) ,]$

strat ==bb ,]$ARPT60i), weights="gew"))

}

ARPR

}

Listing 13: Random Hot Deck: imputation of EQ INC in the Micro Census (MZ or MZ(∗)

equates to samp[[1]]) with the usage of EU-SILC (S or S(∗) equates to samp[[2]])
and calculation of arpr out of the imputed values: with the states as donation
classes.

match_strat_inc <- function(samp){

samp [[1]]$ARPT60i <- NA

samp [[1]]$EQ_INC <- NA

# combine the data sets MZ and S (MZ* and S*)

data <- rbind(samp [[1]], samp [[2]])[,c("rp_age", "dwell", "htyp"

, "migration", "equipm", "rp_living", "rp_famst", "workint",

"rp_heduc", "rp_occstat", "rp_branch", "EQ_INC", "ARPT60i",

"urb", "migrbal", "nonempm", "nonempw", "birth", "mort", "

quinc", "carscc", "unemp", "socass", "compall", "unemp_lag",

"socass_lag", "compall_lag", "strat", "gew")]

# exclude observations with weight 0
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data <- data[data$gew!=0,]

group.v1 <- "strat" # variable for building domains

# imputation of EQ_INC within the domains:

dataI.1 <- hotdeck(data , variable="EQ_INC", domain_var=group.v1

)

# estimate the at -risk -of-poverty rate for Austria + 9 states

ARPR <- c(arpr("EQ_INC", weights = "gew", breakdown = "strat",

data = dataI.1 [1: sum(samp [[1]]$gew >0) ,])$value , arpr("EQ_INC

", weights = "gew", breakdown = "strat", data = dataI.1 [1:

sum(samp [[1]]$gew >0) ,])$valueByStratum$value) /100

ARPR

}

Listing 14: Random Hot Deck: imputation of ARPT60i in the Micro Census (MZ or
MZ(∗) equates to samp[[1]]) with the usage of EU-SILC (S or S(∗) equates to
samp[[2]]) and calculation of arpr out of the imputed values: with the usage
of the variables state and foreign origin of the household for the building of
donation classes.

match_stratmigr_arpt <- function(samp){

samp [[1]]$ARPT60i <- NA

samp [[1]]$EQ_INC <- NA

# combine the data sets MZ and S (MZ* and S*)

data <- rbind(samp [[1]], samp [[2]])[,c("rp_age", "dwell", "htyp"

, "migration", "equipm", "rp_living", "rp_famst", "workint",

"rp_heduc", "rp_occstat", "rp_branch", "EQ_INC", "ARPT60i",

"urb", "migrbal", "nonempm", "nonempw", "birth", "mort", "

quinc", "carscc", "unemp", "socass", "compall", "unemp_lag",

"socass_lag", "compall_lag", "strat", "gew")]

# exclude observations with weight 0

data <- data[data$gew!=0,]

group.v2 <- c("strat", "migration") # variables for building

domains

# imputation of ARPT60i within the domains:

dataI.2 <- hotdeck(data , variable="ARPT60i", domain_var=

group.v2)

# estimate the at -risk -of-poverty rate for Austria + 9 states

ARPR <- weighted.mean(as.numeric(dataI.2$ARPT60i [1: sum(samp

[[1]]$gew >0)]), weights="gew")

for (b in 1:9){

bb <- levels(samp [[1]]$strat)[b] # state name

# limit the data set and weight vector with samp [[1]]$

strat ==bb

ARPR <- c(ARPR , weighted.mean(as.numeric(dataI.2 [1: sum(

samp [[1]]$gew >0) ,][dataI.2 [1: sum(samp [[1]]$gew >0) ,]$

strat ==bb ,]$ARPT60i), weights="gew"))

}
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ARPR

}

Listing 15: Random Hot Deck: imputation of EQ INC in the Micro Census (MZ or MZ(∗)

equates to samp[[1]]) with the usage of EU-SILC (S or S(∗) equates to samp[[2]])
and calculation of arpr out of the imputed values: with the usage of the
variables state and foreign origin of the household for the building of donation
classes.

match_stratmigr_inc <- function(samp){

samp [[1]]$ARPT60i <- NA

samp [[1]]$EQ_INC <- NA

# combine the data sets MZ and S (MZ* and S*)

data <- rbind(samp [[1]], samp [[2]])[,c("rp_age", "dwell", "htyp"

, "migration", "equipm", "rp_living", "rp_famst", "workint",

"rp_heduc", "rp_occstat", "rp_branch", "EQ_INC", "ARPT60i",

"urb", "migrbal", "nonempm", "nonempw", "birth", "mort", "

quinc", "carscc", "unemp", "socass", "compall", "unemp_lag",

"socass_lag", "compall_lag", "strat", "gew")]

# exclude observations with weight 0

data <- data[data$gew!=0,]

group.v2 <- c("strat", "migration") # variables for building

domains

# imputation of EQ_INC within the domains:

dataI.2 <- hotdeck(data , variable="EQ_INC", domain_var=group.v2

)

# estimate the at -risk -of-poverty rate for Austria + 9 states

ARPR <- c(arpr("EQ_INC", weights = "gew", breakdown = "strat",

data = dataI.2 [1: sum(samp [[1]]$gew >0) ,])$value , arpr("EQ_INC

", weights = "gew", breakdown = "strat", data = dataI.2 [1:

sum(samp [[1]]$gew >0) ,])$valueByStratum$value) /100

ARPR

}

For sequential random hot deck methods it is worked again with the function hotdeck

out of the package VIM. What makes the only difference in the code of the random hot
deck models and the one of the sequential random hot deck models is the additional
definition of the argument ord var in the function hotdeck, see Listing 16, Listing 17,
Listing 18 and Listing 19, respectively. This argument gets the names of the variables
used for the sorting of the data set before the imputation step. As described above, the
ordering happens within every donation class. Hence the building of one data set for the
input of the function in the first place, the definition of variable and domain var and
the output constituted by the imputed data set pass off analogously to the random hot
deck models.
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Again the at-risk-of-poverty rate is calculated as weighted mean in the case of the im-
putation of the factor variable (see Listing 16 and Listing 18) or with the function arpr

in the case of the imputation of the numeric variable (see Listing 17 and Listing 19) as
can be seen already further up.

In Listing 16 and Listing 17, respectively, can be found the R-Code concerning the im-
putation of ARPT60i and EQ INC, respectively, with sequential random hot deck methods
using the variables state and foreign origin of the household for the building of dona-
tion classes and using the variables occupational status, work intensity of the household,
highest completed level of education, living, age class and category of the equipment of
the apartment as ordering variables and the R-Code for the estimation of the at-risk-of-
poverty rates for Austria and the nine regions.

Listing 18 and Listing 19 contains basically the same, but with the usage of more or
less all appearing variables as ordering variables now.

Listing 16: Sequential Random Hot Deck: imputation of ARPT60i in the Micro Census
(MZ or MZ(∗) equates to samp[[1]]) with the usage of EU-SILC (S or S(∗)

equates to samp[[2]]) and calculation of arpr out of the imputed values: with
the usage of the variables state and foreign origin of the household for the
building of donation classes and with the usage of the variables occupational
status, work intensity of the household, highest completed level of education,
living, age class and category of the equipment of the apartment as ordering
variables.

match_stratmigr_arpt_feklaw <- function(samp){

samp [[1]]$ARPT60i <- NA

samp [[1]]$EQ_INC <- NA

# combine the data sets MZ and S (MZ* and S*)

data <- rbind(samp [[1]], samp [[2]])[,c("rp_age", "dwell", "htyp"

, "migration", "equipm", "rp_living", "rp_famst", "workint",

"rp_heduc", "rp_occstat", "rp_branch", "EQ_INC", "ARPT60i",

"urb", "migrbal", "nonempm", "nonempw", "birth", "mort", "

quinc", "carscc", "unemp", "socass", "compall", "unemp_lag",

"socass_lag", "compall_lag", "strat", "gew")]

# exclude observations with weight 0

data <- data[data$gew!=0,]

group.v2 <- c("strat", "migration") # variables for building

domains

# imputation of ARPT60i within the domains using the listed

ordering variables:

dataI.2 <- hotdeck(data , variable="ARPT60i", domain_var=

group.v2 , ord_var=c("rp_occstat","workint", "rp_heduc", "rp_

living", "rp_age", "equipm"))

# estimate the at -risk -of-poverty rate for Austria + 9 states

ARPR <- weighted.mean(as.numeric(dataI.2$ARPT60i [1: sum(samp

[[1]]$gew >0)]), weights="gew")

for (b in 1:9){

bb <- levels(samp [[1]]$strat)[b] # state name
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# limit the data set and weight vector with samp [[1]]$

strat ==bb

ARPR <- c(ARPR , weighted.mean(as.numeric(dataI.2 [1: sum(

samp [[1]]$gew >0) ,][dataI.2 [1: sum(samp [[1]]$gew >0) ,]$

strat ==bb ,]$ARPT60i), weights="gew"))

}

ARPR

}

Listing 17: Sequential Random Hot Deck: imputation of EQ INC in the Micro Census
(MZ or MZ(∗) equates to samp[[1]]) with the usage of EU-SILC (S or S(∗)

equates to samp[[2]]) and calculation of arpr out of the imputed values: with
the usage of the variables state and foreign origin of the household for the
building of donation classes and with the usage of the variables occupational
status, work intensity of the household, highest completed level of education,
living, age class and category of the equipment of the apartment as ordering
variables.

match_stratmigr_inc_feklaw <- function(samp){

samp [[1]]$ARPT60i <- NA

samp [[1]]$EQ_INC <- NA

# combine the data sets MZ and S (MZ* and S*)

data <- rbind(samp [[1]], samp [[2]])[,c("rp_age", "dwell", "htyp"

, "migration", "equipm", "rp_living", "rp_famst", "workint",

"rp_heduc", "rp_occstat", "rp_branch", "EQ_INC", "ARPT60i",

"urb", "migrbal", "nonempm", "nonempw", "birth", "mort", "

quinc", "carscc", "unemp", "socass", "compall", "unemp_lag",

"socass_lag", "compall_lag", "strat", "gew")]

# exclude observations with weight 0

data <- data[data$gew!=0,]

group.v2 <- c("strat", "migration") # variables for building

domains

# imputation of EQ_INC within the domains using the listed

ordering variables:

dataI.2 <- hotdeck(data , variable="EQ_INC", domain_var=group.v2

, ord_var=c("rp_occstat","workint", "rp_heduc", "rp_living",

"rp_age", "equipm"))

# estimate the at -risk -of-poverty rate for Austria + 9 states

ARPR <- c(arpr("EQ_INC", weights = "gew", breakdown = "strat",

data = dataI.2 [1: sum(samp [[1]]$gew >0) ,])$value , arpr("EQ_INC

", weights = "gew", breakdown = "strat", data = dataI.2 [1:

sum(samp [[1]]$gew >0) ,])$valueByStratum$value) /100

ARPR

}
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Listing 18: Sequential Random Hot Deck: imputation of ARPT60i in the Micro Census
(MZ or MZ(∗) equates to samp[[1]]) with the usage of EU-SILC (S or S(∗)

equates to samp[[2]]) and calculation of arpr out of the imputed values: with
the usage of the variables state and foreign origin of the household for the
building of donation classes and with the usage of more or less all appearing
variables as ordering variables.

match_stratmigr_arpt_ALLE <- function(samp){

samp [[1]]$ARPT60i <- NA

samp [[1]]$EQ_INC <- NA

# combine the data sets MZ and S (MZ* and S*)

data <- rbind(samp [[1]], samp [[2]])[,c("rp_age", "dwell", "htyp"

, "migration", "equipm", "rp_living", "rp_famst", "workint",

"rp_heduc", "rp_occstat", "rp_branch", "EQ_INC", "ARPT60i",

"urb", "migrbal", "nonempm", "nonempw", "birth", "mort", "

quinc", "carscc", "unemp", "socass", "compall", "unemp_lag",

"socass_lag", "compall_lag", "strat", "gew")]

# exclude observations with weight 0

data <- data[data$gew!=0,]

group.v2 <- c("strat", "migration") # variables for building

domains

# imputation of ARPT60i within the domains using the listed

ordering variables:

dataI.2 <- hotdeck(data , variable="ARPT60i", domain_var=

group.v2 , ord_var=names(data)[-c(which(names(data)=="EQ_INC"

), which(names(data)=="ARPT60i"), which(names(data)=="urb"),

which(names(data)=="gew"))])

# estimate the at -risk -of-poverty rate for Austria + 9 states

ARPR <- weighted.mean(as.numeric(dataI.2$ARPT60i [1: sum(samp

[[1]]$gew >0)]), weights="gew")

for (b in 1:9){

bb <- levels(samp [[1]]$strat)[b] # state name

# limit the data set and weight vector with samp [[1]]$

strat ==bb

ARPR <- c(ARPR , weighted.mean(as.numeric(dataI.2 [1: sum(

samp [[1]]$gew >0) ,][dataI.2 [1: sum(samp [[1]]$gew >0) ,]$

strat ==bb ,]$ARPT60i), weights="gew"))

}

ARPR

}

Listing 19: Sequential Random Hot Deck: imputation of EQ INC in the Micro Census
(MZ or MZ(∗) equates to samp[[1]]) with the usage of EU-SILC (S or S(∗)

equates to samp[[2]]) and calculation of arpr out of the imputed values: with
the usage of the variables state and foreign origin of the household for the
building of donation classes and with the usage of more or less all appearing
variables as ordering variables.

match_stratmigr_inc_ALLE <- function(samp){
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samp [[1]]$ARPT60i <- NA

samp [[1]]$EQ_INC <- NA

# combine the data sets MZ and S (MZ* and S*)

data <- rbind(samp [[1]], samp [[2]])[,c("rp_age", "dwell", "htyp"

, "migration", "equipm", "rp_living", "rp_famst", "workint",

"rp_heduc", "rp_occstat", "rp_branch", "EQ_INC", "ARPT60i",

"urb", "migrbal", "nonempm", "nonempw", "birth", "mort", "

quinc", "carscc", "unemp", "socass", "compall", "unemp_lag",

"socass_lag", "compall_lag", "strat", "gew")]

# exclude observations with weight 0

data <- data[data$gew!=0,]

group.v2 <- c("strat", "migration") # variables for building

domains

# imputation of EQ_INC within the domains using the listed

ordering variables:

dataI.2 <- hotdeck(data , variable="EQ_INC", domain_var=group.v2

, ord_var=names(data)[-c(which(names(data)=="EQ_INC"), which

(names(data)=="ARPT60i"), which(names(data)=="urb"), which(

names(data)=="gew"))])

# estimate the at -risk -of-poverty rate for Austria + 9 states

ARPR <- c(arpr("EQ_INC", weights = "gew", breakdown = "strat",

data = dataI.2 [1: sum(samp [[1]]$gew >0) ,])$value , arpr("EQ_INC

", weights = "gew", breakdown = "strat", data = dataI.2 [1:

sum(samp [[1]]$gew >0) ,])$valueByStratum$value) /100

ARPR

}

In context of weighted random hot deck models it is mainly worked with two functions
out of the package StatMatch.

The first one is RANDwNND.hotdeck. This function requires as input the recipient data
set and the donor data set. They are passed to the arguments data.rec and data.don,
respectively. Furthermore the argument match.vars gets the names of the variables that
should be used for the computation of the distances between the observations of the donor
and the recipient data set. As done here, it can be defined as NULL, i.e. no matching
variables are considered, with the consequence that all the units in the same donation
class can be chosen as donors, see Listing 20, Listing 21, Listing 22 and Listing 23. The
selection of one donor passes off with probability proportional to its weight by defining
the argument weight.don with the name of the variable, that contains the weights of the
donors. The domains are built by defining the argument don.class with the names of
the variables that should be used therefor. To the arguments dist.fun, cut.don and k

could be passed the distance function that should be used, the method that should be used
to form the nearest donor oberservations and a number whose meaning depends on the
choice of cut.don. For example, the distance function is defined as Gower, indicating that
the Gower distance is used, and cut.don is defined as k.dist, indicating that possible
donors are those observations with distance from the recipient less or equal to the value
specified with the argument k. The output of this function is a list containing among
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others a matrix indicating the row names/numbers of the units of the recipient data set
with the corresponding row names/numbers of the selected donor units. This matrix is
accessed via the list element mtc.ids.

The second important function is create.fused. This function needs again the re-
cipient data set and the donor data set as input. Once again they are passed to the
arguments data.rec and data.don, respectively. Further arguments that have to be
specified are mtc.ids and z.vars. mtc.ids requires exactly that kind of a 2-column
matrix as obtained in the output of RANDwNND.hotdeck (list element mtc.ids of the out-
put). To the argument z.vars are passed the names of those variables where the missing
values should be imputed, hence the names of variables available only in the donor data
set. The output is the imputed recipient data set.

The rest of the coding regarding weighted random hot deck passes off analogously to
the other implemented model: The at-risk-of-poverty rates for Austria and the nine states
get computed as weighted means or with the help of the function arpr.

The R-Code regarding weighted random hot deck imputation of ARPT60i and EQ INC,
respectively, can be found in Listing 20, Listing 22 and Listing 21, Listing 23, respectively.
Listing 20 and Listing 21 correspond to the versions where the variable state is used for the
building of donation classes and Listing 22 and Listing 23 correspond to the versions with
the usage of variable state and foreign origin of the household for the building of domains.

Listing 20: Weighted Random Hot Deck: imputation of ARPT60i in the Micro Census
(MZ or MZ(∗) equates to samp[[1]]) with the usage of EU-SILC (S or S(∗)

equates to samp[[2]]) and calculation of arpr out of the imputed values: with
the usage of the variable state for building donation classes

match_smr_strat_arpt <- function(samp){

names(samp [[1]])[which(names(samp [[1]]) =="ARPT60i")] <- "

ARPT60iorig"

# exclude observations with weight 0 in both data sets

samp [[1]] <- samp [[1]][ samp [[1]]$gew!=0,]

samp [[2]] <- samp [[2]][ samp [[2]]$gew!=0,]

group.v1 <- "strat" # variable for building domains

X.mtc <- NULL # no matching variables

# imputation of ARPT60i within the domains using weights:

rnd.1 <- RANDwNND.hotdeck(data.rec=samp [[1]] , data.don=samp

[[2]] , match.vars=X.mtc , don.class=group.v1 , dist.fun="Gower

", cut.don="k.dist", k=1, weight.don="gew")

fA.knnd1 <- create.fused(data.rec=samp [[1]], data.don=samp

[[2]] , mtc.ids=rnd.1$mtc.ids , z.vars="ARPT60i")

# estimate the at -risk -of-poverty rate for Austria + 9 states

ARPR <- weighted.mean(as.numeric(fA.knnd1$ARPT60i)-1, weights="

gew")

for (b in 1:9){

bb <- levels(samp [[1]]$strat)[b] # state name

# limit the data set and weight vector with samp [[1]]$

strat ==bb
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ARPR <- c(ARPR , weighted.mean(as.numeric(fA.knnd1[

fA.knnd1$strat ==bb ,]$ARPT60i) -1, weights="gew"))

}

ARPR

}

Listing 21: Weighted Random Hot Deck: imputation of EQ INC in the Micro Census (MZ
or MZ(∗) equates to samp[[1]]) with the usage of EU-SILC (S or S(∗) equates
to samp[[2]]) and calculation of arpr out of the imputed values: with the usage
of the variable state for building donation classes

match_smr_strat_inc <- function(samp){

names(samp [[1]])[which(names(samp [[1]]) =="EQ_INC")] <- "EQ_

INCorig"

# exclude observations with weight 0 in both data sets

samp [[1]] <- samp [[1]][ samp [[1]]$gew!=0,]

samp [[2]] <- samp [[2]][ samp [[2]]$gew!=0,]

group.v1 <- "strat" # variable for building domains

X.mtc <- NULL # no matching variables

# imputation of EQ_INC within the domains using weights

rnd.1 <- RANDwNND.hotdeck(data.rec=samp [[1]] , data.don=samp

[[2]] , match.vars=X.mtc , don.class=group.v1 , dist.fun="Gower

", cut.don="k.dist", k=1, weight.don="gew")

fA.knnd1 <- create.fused(data.rec=samp [[1]], data.don=samp

[[2]] , mtc.ids=rnd.1$mtc.ids , z.vars="EQ_INC")

# estimate the at -risk -of-poverty rate for Austria + 9 states

ARPR <- c(arpr("EQ_INC", weights = "gew", breakdown = "strat",

data = fA.knnd1)$value , arpr("EQ_INC", weights = "gew",

breakdown = "strat", data = fA.knnd1)$valueByStratum$value)

/100

ARPR

}

Listing 22: Weighted Random Hot Deck: imputation of ARPT60i in the Micro Census
(MZ or MZ(∗) equates to samp[[1]]) with the usage of EU-SILC (S or S(∗)

equates to samp[[2]]) and calculation of arpr out of the imputed values: with
the usage of the variables state and foreign origin of the household for building
donation classes

match_smr_stratmig_arpr <- function(samp){

names(samp [[1]])[which(names(samp [[1]]) =="ARPT60i")] <- "

ARPT60iorig"

# exclude observations with weight 0 in both data sets

samp [[1]] <- samp [[1]][ samp [[1]]$gew!=0,]

samp [[2]] <- samp [[2]][ samp [[2]]$gew!=0,]
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group.v2 <- c("strat", "migration") # variables for building

domains

X.mtc <- NULL # no matching variables

# imputation of ARPT60i within the domains using weights:

rnd.2 <- RANDwNND.hotdeck(data.rec=samp [[1]] , data.don=samp

[[2]] , match.vars=X.mtc , don.class=group.v2 , dist.fun="Gower

", cut.don="k.dist", k=1, weight.don="gew")

fA.knnd2 <- create.fused(data.rec=samp [[1]], data.don=samp

[[2]] , mtc.ids=rnd.2$mtc.ids , z.vars="ARPT60i")

# estimate the at -risk -of-poverty rate for Austria + 9 states

ARPR <- weighted.mean(as.numeric(fA.knnd2$ARPT60i)-1, weights="

gew")

for (b in 1:9){

bb <- levels(samp [[1]]$strat)[b] # state name

# limit the data set and weight vector with samp [[1]]$

strat ==bb

ARPR <- c(ARPR , weighted.mean(as.numeric(fA.knnd2[

fA.knnd2$strat ==bb ,]$ARPT60i) -1, weights="gew"))

}

ARPR

}

Listing 23: Weighted Random Hot Deck: imputation of EQ INC in the Micro Census (MZ
or MZ(∗) equates to samp[[1]]) with the usage of EU-SILC (S or S(∗) equates
to samp[[2]]) and calculation of arpr out of the imputed values: with the usage
of the variables state and foreign origin of the household for building donation
classes

match_smr_stratmig_inc <- function(samp){

names(samp [[1]])[which(names(samp [[1]]) =="EQ_INC")] <- "EQ_

INCorig"

# exclude observations with weight 0 in both data sets

samp [[1]] <- samp [[1]][ samp [[1]]$gew!=0,]

samp [[2]] <- samp [[2]][ samp [[2]]$gew!=0,]

group.v2 <- c("strat", "migration") # variables for building

domains

X.mtc <- NULL # no matching variables

# imputation of EQ_INC within the domains using weights

rnd.2 <- RANDwNND.hotdeck(data.rec=samp [[1]] , data.don=samp

[[2]] , match.vars=X.mtc , don.class=group.v2 , dist.fun="Gower

", cut.don="k.dist", k=1, weight.don="gew")

fA.knnd2 <- create.fused(data.rec=samp [[1]], data.don=samp

[[2]] , mtc.ids=rnd.2$mtc.ids , z.vars="EQ_INC")

# estimate the at -risk -of-poverty rate for Austria + 9 states

ARPR <- c(arpr("EQ_INC", weights = "gew", breakdown = "strat",

data = fA.knnd2)$value , arpr("EQ_INC", weights = "gew",

breakdown = "strat", data = fA.knnd2)$valueByStratum$value)

/100
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ARPR

}

All the so far listed functions, beginning with sampling (see Listing 1) and ending with
match smr stratmig inc (see Listing 23) are saved in the file “functions.R”. This file
will be used further down in the rest of the R-Code.

A.1.3. Additional R-Code

Due to the computational complexity, the computations are done in parallel on 15 proces-
sors. Thus a file has been written with code for the computation of the at-risk-of-poverty
rates for the different EU-SILC and Micro Census samples as well as for all the bootstrap
samples. This code is saved in “overall.R” (see Listing 24) and the file is called later
for the parallel computation, so it is applied to all 15 processors, see Listing 25.

In Listing 24 the needed packages and the data are loaded first. There is a outer loop,
the looping concerning the repeated drawing of the artificial samples S and MZ and a
inner loop, the looping concerning the bootstrapping of an EU-SILC and a Micro Census
sample. The number of drawing samples (corresponding to the outer loop) is set to 21
and the number of bootstrap replicates is set to 125.

In the outer loop one sample pair (MZ and S) is drawn with the above listed function
sampling (see Listing 1), the weights are calculated for both samples and the variable
at-risk-of-poverty is calculated for S out of the variable EQ INC (again with the function
arpr). Then for MZ the at-risk-of-poverty rates for Austria and the nine states get
estimated using all the above described methods and models (see inter alia Listings 2 -
23).

For the inner loop the number of repetitions of the observations in the several boot-
strap samples are chosen with the help of the function subbootweights out of the package
survey [see Lumley, 2012, 2004], more precisely the weights are returned from this func-
tion. So in the inner loop an adjustment of the weights is necessary for the samples and
the at-risk-of-poverty rates get calculated and estimated afresh.

Then the variance and the mean of the at-risk-of-poverty rates from the bootstrap
replicates are calculated once for every EU-SILC data set and once for every Micro
Census data set for every estimation (obtained from the several methods and models).

Furthermore the computation time gets saved.
The output of overall.R contains then the names of the several used methods and

models, the at-risk-of-poverty rates estimated on the basis of the different samples of S,
the at-risk-of-poverty rates estimated on the basis of the estimated values of the different
samples of MZ, the variances and the means of the results from the bootstrap samples
of S as well as of MZ (for every model) and the elapsed time for the computation.
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Listing 24: overall.R: the R-Code for every node: The output contains the names of
the several used methods and models, the arpr estimated on the basis of the
different samples of S, the arpr estimated on the basis of the estimated values
of the different samples of MZ, the variances and the means of the results
from the bootstrap samples of S as well as MZ (for every model) and the
elapsed time for the computation.

library(laeken)

library(sampling)

library(survey)

library(robustbase)

library(MASS)

library(lme4)

library(VIM)

library(StatMatch)

load("pop_manip.RData")

load("smhv_2.RData")

smhv_2_2011 <- smhv_2[smhv_2$year ==2011 ,]

REPSAMPLE <- 21 # number of drawing samples

REPBOOT <- 125 # number of bootstrap replicates

s <- arprS <- arprMZ <- varBS <- meanBS <- varBMZ <- meanBMZ <- vector(

REPSAMPLE , mode = "list")

arprSb <- arprMZb <- vector(REPBOOT , mode = "list")

ModSch <- list(gewlmreg_soz=gewlmreg_soz , gewlmreg_rV=gewlmreg_rV ,

gewlmreg_sozrob=gewlmreg_sozrob , gewlmreg_rVrob=gewlmreg_rVrob ,

logreg_soz=logreg_soz , logreg_rV=logreg_rV , mixed_lm_inc_soz=mixed_

lm_inc_soz , mixed_lm_inc_rV=mixed_lm_inc_rV , mixed_logm_arpt_soz=

mixed_logm_arpt_soz , mixed_logm_arpt_rV=mixed_logm_arpt_rV, match_

strat_arpt=match_strat_arpt , match_strat_inc=match_strat_inc , match_

stratmigr_arpt=match_stratmigr_arpt , match_stratmigr_inc=match_

stratmigr_inc , match_stratmigr_arpt_feklaw=match_stratmigr_arpt_

feklaw , match_stratmigr_inc_feklaw=match_stratmigr_inc_feklaw , match

_stratmigr_arpt_ALLE=match_stratmigr_arpt_ALLE , match_stratmigr_inc_

ALLE=match_stratmigr_inc_ALLE , match_smr_strat_arpt=match_smr_strat_

arpt , match_smr_strat_inc=match_smr_strat_inc , match_smr_stratmig_

arpr=match_smr_stratmig_arpr , match_smr_stratmig_inc=match_smr_

stratmig_inc)

modnames <- c("gewlmreg_soz", "gewlmreg_rV", "gewlmreg_sozrob", "

gewlmreg_rVrob", "logreg_soz", "logreg_rV", "mixed_lm_inc_soz", "

mixed_lm_inc_rV", "mixed_logm_arpt_soz", "mixed_logm_arpt_rV", "

match_strat_arpt", "match_strat_inc", "match_stratmigr_arpt", "match

_stratmigr_inc", "match_stratmigr_arpt_feklaw", "match_stratmigr_inc

_feklaw", "match_stratmigr_arpt_ALLE", "match_stratmigr_inc_ALLE", "

match_smr_strat_arpt", "match_smr_strat_inc", "match_smr_stratmig_

arpr", "match_smr_stratmig_inc")

ptm <- proc.time ()

for (i in 1: REPSAMPLE){

s[[i]] <- samples(eusilcP_manip , smhv_2_2011) # contains a

list of 2 (MZ equates s[[i]][[1]] und S equates s[[i]][[2]])
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for every i

# computation of the weights:

s[[i]][[1]]$gew <- 1/(s[[i]][[1]]$Prob)

s[[i]][[2]]$gew <- 1/(s[[i]][[2]]$Prob)

# computation of the thresholds for the computation of the

variable at-risk -of-poverty:

ts1 <- arpr("EQ_INC", weights="gew", breakdown="strat", data=s

[[i]][[1]])$threshold

ts2 <- arpr("EQ_INC", weights="gew", breakdown="strat", data=s

[[i]][[2]])$threshold

# computation of the variable at-risk -of-poverty:

s[[i]][[1]]$ARPT60i <- as.factor(as.numeric(s[[i]][[1]]$EQ_INC

< ts1))

s[[i]][[2]]$ARPT60i <- as.factor(as.numeric(s[[i]][[2]]$EQ_INC

< ts2))

# estimation of arpr for S (for Austria and the 9 states):

arprS [[i]] <- c(weighted.mean(as.numeric(s[[i]][[2]][ ,"ARPT60i"

]) -1,s[[i]][[2]]$gew), arpr("EQ_INC", weights="gew",

breakdown = "strat", data = s[[i]][[2]])$valueByStratum$

value /100 )

# estimation of arpr for MZ with every described method/model (

for Austria and the 9 states):

arprMZ [[i]] <- lapply(ModSch , function(x) x(s[[i]]))

# number of repetitions of the observations in a bootstrap

sample:

anz_in_bsamp_s <- data.frame(subbootweights(s[[i]][[2]]$strat ,

s[[i]][[2]]$ID_unit , replicates = REPBOOT , compress=FALSE)

[[1]])

anz_in_bsamp_mz <- data.frame(subbootweights(s[[i]][[1]]$strat ,

s[[i]][[1]]$ID_unit , replicates = REPBOOT , compress=FALSE)

[[1]])

for (j in 1: REPBOOT){

sb <- s[[i]]

# adaption of the weights for the different bootstrap

runs

sb[[1]]$gew <- s[[i]][[1]]$gew*anz_in_bsamp_mz[,j]

sb[[2]]$gew <- s[[i]][[2]]$gew*anz_in_bsamp_s[,j]

# new computation of the thresholds and the variable at

-risk -of -poverty:

ts1 <- arpr("EQ_INC", weights="gew", breakdown="strat",

data=sb [[1]])$threshold

ts2 <- arpr("EQ_INC", weights="gew", breakdown="strat",

data=sb [[2]])$threshold

sb[[1]]$ARPT60i <- as.factor(as.numeric(sb [[1]]$EQ_INC

< ts1))

sb[[2]]$ARPT60i <- as.factor(as.numeric(sb [[2]]$EQ_INC

< ts2))

# estimation of arpr for S and MZ (for every method/

model) (for Austria and the 9 states):
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arprSb [[j]] <- c(weighted.mean(as.numeric(sb[[2]][ ,"

ARPT60i"]) -1,sb [[2]]$gew), arpr("EQ_INC", weights="

gew", breakdown = "strat", data = sb [[2]])$

valueByStratum$value /100)

arprMZb [[j]] <- lapply(ModSch , function(x) x(sb))

}

varBS [[i]] <- apply(matrix(unlist(arprSb), nrow =10) ,1,var)

meanBS [[i]] <- apply(matrix(unlist(arprSb), nrow =10) ,1,mean)

varBMZ [[i]] <- vector(length(ModSch), mode="list")

meanBMZ [[i]] <- vector(length(ModSch), mode="list")

names(varBMZ [[i]]) <- modnames

names(meanBMZ [[i]]) <- modnames

for (k in 1: length(ModSch)){

varBMZ [[i]][[k]] <- apply(matrix(unlist(lapply(arprMZb ,

function(x) x[[k]])), nrow =10) ,1,var)

meanBMZ [[i]][[k]] <- apply(matrix(unlist(lapply(arprMZb

, function(x) x[[k]])), nrow =10) ,1,mean)

}

}

verstrichen <- (proc.time () - ptm)["elapsed"]

par_erg <- list(modnames=modnames , arprS=arprS , arprMZ=arprMZ , varBS=

varBS , varBMZ=varBMZ , meanBS=meanBS , meanBMZ=meanBMZ , verstrichen=

verstrichen)

par_erg

The parallelization (see Listing 25) is done with functions from the packages snow [see
Tierney et al., 2013] and rlecuyer [see Sevcikova and Rossini, 2012].

With the function makeCluster (out of the package snow) a “SNOW Cluster” is started
and in the end the cluster gets shut down with the function stopCluster (out of the same
package snow). The input of the function makeCluster is among others the number of
slaves nodes and this number is set to 15 here. The used cluster type is SOCK, see Listing
25.

The function clusterEvalQ out of the package snow is a function for computing on
a SNOW cluster and it becomes as input a cluster object and an expression to evaluate
[see Tierney et al., 2013]. The used expression is source(‘‘... .R’’), so the R-File
‘‘... .R’’ is loaded and executed on each cluster node.

The function clusterSetupRNG loads the package rlecuyer and handles the uniform
random number generation in SNOW Clusters.

The function system.time is used to determine the elapsed time.
Then the results obtained for all nodes are combined and quality criteria as the vari-

ance and the bias, the MSE, a bias corrected version of the bias and the MSE (by using
the mean of the bootstrap replicates for the computation of the bias), the difference in
the mean of the variances yield from the bootstrap replicates and the variance calculated
on the basis of the results of the repeated sample drawing and the difference in the mean
of the at-risk-of-poverty rates yield from the bootstrap replicates (of all drawn samples)
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and the mean of the at-risk-of-poverty rates calculated on the basis of the results of the
repeated sample drawing are computed (see Listing 25).

Listing 25: Parallelization of the R-Code of overall.R and computing of the different
quality criteria.

library(snow)

CLREP <- 15 # number of nodes

cl <- makeCluster(CLREP , type = "SOCK") # start SNOW cluster

# load all the functions

clusterEvalQ(cl , source("/home/verena/functions.R"))

set.seed (826296)

library(rlecuyer)

clusterSetupRNG(cl, seed =12345)

# load and execute the R-Code of overall.R:

system.time(g <- clusterEvalQ(cl, source("/home/verena/overall.R")))

stopCluster(cl) # stop SNOW cluster

modnames <- g[[1]][[1]][[1]]

# combination of the results obtained from the several nodes:

arprS <- arprMZ <- varBS <- varBMZ <- meanBS <- meanBMZ <- verstrichen

<- NULL

for (i in 1: CLREP){

arprS <- c(arprS , g[[i]][[1]][[2]])

arprMZ <- c(arprMZ , g[[i]][[1]][[3]])

varBS <- c(varBS , g[[i]][[1]][[4]])

varBMZ <- c(varBMZ , g[[i]][[1]][[5]])

meanBS <- c(meanBS , g[[i]][[1]][[6]])

meanBMZ <- c(meanBMZ , g[[i]][[1]][[7]])

verstrichen <- c(verstrichen , g[[i]][[1]][[8]])

}

# calculation of the standard deviation/variance of the arpr

estimations

varS <- apply(matrix(unlist(arprS), nrow =10), 1, var)

SDS <- sqrt(varS)

varMZ <- SDMZ <- vector(length(modnames), mode="list")

names(varMZ) <- names(SDMZ) <- modnames

for (k in 1: length(modnames)){

varMZ [[k]] <- apply(matrix(unlist(lapply(arprMZ , function(x) x

[[k]])), nrow =10), 1, var)

SDMZ[[k]] <- apply(matrix(unlist(lapply(arprMZ , function(x) x[[

k]])), nrow =10), 1, sd)

}

# calculation of the bias of the arpr estimations

library(laeken)

load("pop_manip.RData")

arprPOP <- c(arpr("EQ_INC", breakdown="strat", data=eusilcP_manip)$

value , arpr("EQ_INC", breakdown="strat", data=eusilcP_manip)$

valueByStratum$value) /100

BiasS <- apply(matrix(unlist(arprS), nrow =10), 1, mean) - arprPOP

BiasMZ <- vector(length(modnames), mode="list")
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names(BiasMZ) <- modnames

for (k in 1: length(modnames)){

BiasMZ [[k]] <- apply(matrix(unlist(lapply(arprMZ , function(x) x

[[k]])),nrow =10), 1, mean) - arprPOP }

# calculation of the MSE

MSES <- BiasS^2 + varS

MSEMZ <- vector(length(modnames), mode="list")

names(MSEMZ) <- modnames

for (k in 1: length(modnames)){

MSEMZ [[k]] <- BiasMZ [[k]]^2 + varMZ [[k]]

}

# proofing the reliability of bootstrapping

DiffSDBSquerSDS <- apply(matrix(sqrt(unlist(varBS)), nrow =10), 1, mean)

- SDS

DiffSDBMZquerSDMZ <- vector(length(modnames), mode="list")

names(DiffSDBMZquerSDMZ) <- modnames

for (k in 1: length(modnames)){

DiffSDBMZquerSDMZ [[k]] <- apply(matrix(sqrt(unlist(lapply(

varBMZ , function(x) x[[k]]))), nrow =10), 1, mean) - SDMZ[[k

]]

}

DiffMeanBSquerArprSquer <- apply(matrix(unlist(meanBS), nrow =10), 1,

mean) - apply(matrix(unlist(arprS), nrow =10), 1, mean)

DiffMeanBMZquerArprMZquer <- vector(length(modnames), mode="list")

names(DiffMeanBMZquerArprMZquer) <- modnames

for (k in 1: length(modnames)){

DiffMeanBMZquerArprMZquer [[k]] <- apply(matrix(unlist(lapply(

meanBMZ , function(x) x[[k]])), nrow =10), 1, mean) - apply(

matrix(unlist(lapply(arprMZ , function(x) x[[k]])), nrow =10),

1, mean)

}

# calculation of a "corrected" version of the bias

BiasBS <- apply(matrix(unlist(meanBS), nrow =10), 1, mean) - arprPOP

BiasBMZ <- vector(length(modnames), mode="list")

names(BiasBMZ) <- modnames

for (k in 1: length(modnames)){

BiasBMZ [[k]] <- apply(matrix(unlist(lapply(meanBMZ , function(x)

x[[k]])), nrow =10), 1, mean) - arprPOP

}

# calculation of a bias corrected version of the MSE

MSEBS <- BiasBS ^2 + varS

MSEBMZ <- vector(length(modnames), mode="list")

names(MSEBMZ) <- modnames

for (k in 1: length(modnames)){

MSEBMZ [[k]] <- BiasBMZ [[k]]^2 + varMZ[[k]]

}
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A.2. Additional Tables

In this chapter the tables refered to in Chapter 4.3 concerning the averages (of the nine
states or of the several models) for the several quality criteria are listed. For comments
and reading it is refered to Chapter 4.3.

(a)(i) Linear Regression 0.10153 (f)(i) Random Hot Deck 0.21669
(a)(ii) Linear Regression 0.07086 (f)(ii) Random Hot Deck 0.20985
(b)(i) Robust Lin.Regr. 0.00830 (f)(iii) Random Hot Deck 0.17721
(b)(ii) Robust Lin.Regr. -0.06732 (f)(iv) Random Hot Deck 0.19706

(c)(i) Logistic Regr. 0.51222 (g)(i) Sequential R.H.D. -0.28714
(c)(ii) Logistic Regr. 0.36016 (g)(ii) Sequential R.H.D. -0.25378

(d)(i) Linear Mixed Regr. 0.10532 (g)(iii) Sequential R.H.D. -0.04083
(d)(ii) Linear Mixed Regr. 0.07086 (g)(iv) Sequential R.H.D. -0.01558
(e)(i) Logistic Mixed Regr. 0.47969 (h)(i) Weighted R.H.D. 0.13202

(e)(ii) Logistic Mixed Regr. 0.39836 (h)(ii) Weighted R.H.D. 0.18083
(h)(iii) Weighted R.H.D. 0.15305
(h)(iv) Weighted R.H.D. 0.20765

Table 30: Average (of the nine states) of the difference in the mean of the standard devia-
tions yield from the bootstrap replicates and the standard deviation calculated
on the basis of the results of the repeated sample drawing (see also Equation 8
and Equation 9) for the several models [in %].

Austria 0.01324
Burgenland 0.08966

Lower Austria -0.00136
Vienna -0.01986

Carinthia 0.03576
Styria 0.01511

Upper Austria -0.02082
Salzburg 0.03632

Tyrol 0.05698
Vorarlberg 0.06006

Table 31: Mean (of the several models) of the difference in the mean of the at-risk-of-
poverty rates yield from the bootstrap replicates (of all drawn samples) and
the mean of the at-risk-of-poverty rates estimated on the basis of the results of
the repeated sample drawing (see also Equation 10 and Equation 11) for the
nine states and Austria [in %].
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method Av.bias Av.abs.bias Av.corr.bias Av.abs.corr.bias
(a)(i) Linear Regression -3.83234 3.88471 -3.55436 3.65645
(a)(ii) Linear Regression -3.96156 3.96156 -3.62650 3.62650
(b)(i) Robust Lin. Regr. -5.78892 5.78892 -6.32526 6.32526

(b)(ii) Robust Lin. Regr. -5.92280 5.92280 -6.42301 6.42301
(c)(i) Logistic Regr. -0.94639 2.16821 -0.88297 2.17633

(c)(ii) Logistic Regr. 0.12549 0.13114 0.18940 0.18940
(d)(i) Linear Mixed Regr. -3.76573 3.82880 -3.49547 3.60934

(d)(ii) Linear Mixed Regr. -3.96156 3.96156 -3.62650 3.62650
(e)(i) Logistic Mixed Regr. -0.17001 2.17527 -0.16121 2.20388

(e)(ii) Logistic Mixed Regr. 0.11963 0.11963 0.18897 0.18897
(f)(i) Random Hot Deck 0.10627 0.11596 0.18323 0.18323

(f)(ii) Random Hot Deck 0.15919 0.18451 0.25399 0.25399
(f)(iii) Random Hot Deck 0.09498 0.13730 0.19774 0.19774
(f)(iv) Random Hot Deck 0.17043 0.18576 0.24474 0.24474
(g)(i) Sequential R. H. D. 1.42645 1.42645 1.15602 1.15602

(g)(ii) Sequential R. H. D. 0.60647 0.61851 0.43973 0.45682
(g)(iii) Sequential R. H. D. 0.05950 0.17791 0.08248 0.17125
(g)(iv) Sequential R. H. D. 0.17387 0.20218 0.21318 0.21981

(h)(i) Weighted R. H. D. 0.12382 0.12506 0.19198 0.19198
(h)(ii) Weighted R. H. D. 0.17550 0.17550 0.21844 0.21844
(h)(iii) Weighted R. H. D. 0.16291 0.16291 0.18941 0.18941
(h)(iv) Weighted R. H. D. 0.12898 0.12898 0.21251 0.21251

Table 32: In the second column the average (of the nine states) of the bias for every model
[in %] and in the third column the average (of the nine states) of the absolute
values of the bias for every model [in %] are listed. In the fourth column the
average (of the nine states) of the corrected bias for every model [in %] and in
the fifth column the average (of the nine states) of the absolute values of the
corrected bias for every model [in %] are listed.
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direct estimator (EU-SILC) SDS 1.49464 (f)(i) Random Hot Deck 2.22797
(a)(i) Linear Regression 0.93481 (f)(ii) Random Hot Deck 2.30081

(a)(ii) Linear Regression 1.39931 (f)(iii) Random Hot Deck 2.23672
(b)(i) Robust Lin. Regr. 0.72920 (f)(iv) Random Hot Deck 2.27670

(b)(ii) Robust Lin. Regr. 1.00472 (g)(i) Sequential R. H. D. 2.53439
(c)(i) Logistic Regr. 0.88192 (g)(ii) Sequential R. H. D. 2.50240
(c)(ii) Logistic Regr. 1.62615 (g)(iii) Sequential R. H. D. 2.06541

(d)(i) Linear Mixed Regr. 0.93412 (g)(iv) Sequential R. H. D. 2.11465
(d)(ii) Linear Mixed Regr. 1.39931 (h)(i) Weighted R. H. D. 1.67621
(e)(i) Logistic Mixed Regr. 0.97009 (h)(ii) Weighted R. H. D. 1.70655

(e)(ii) Logistic Mixed Regr. 1.60463 (h)(iii) Weighted R. H. D. 1.64022
(h)(iv) Weighted R. H. D. 1.66054

Table 33: Average (of the nine states) of the standard deviation for the direct estimator
and every model [in %].

method av.MSE av.corr.MSE
direct estimator (EU-SILC) 2.597e-04 2.619e-04

(a)(i) Linear Regression 0.00253 0.00231
(a)(ii) Linear Regression 0.00276 0.00246
(b)(i) Robust Lin. Regr. 0.00432 0.00494
(b)(ii) Robust Lin. Regr. 0.00459 0.00515

(c)(i) Logistic Regr. 9.263e-04 9.066e-04
(c)(ii) Logistic Regr. 3.030e-04 3.047e-04

(d)(i) Linear Mixed Regr. 0.00251 0.00229
(d)(ii) Linear Mixed Regr. 0.00276 0.00246
(e)(i) Logistic Mixed Regr. 8.498e-04 8.665e-04

(e)(ii) Logistic Mixed Regr. 2.930e-04 2.957e-04
(f)(i) Random Hot Deck 5.590e-04 5.610e-04

(f)(ii) Random Hot Deck 6.115e-04 6.136e-04
(f)(iii) Random Hot Deck 5.715e-04 5.735e-04
(f)(iv) Random Hot Deck 5.852e-04 5.877e-04
(g)(i) Sequential R. H. D. 9.025e-04 8.233e-04

(g)(ii) Sequential R. H. D. 7.264e-04 6.968e-04
(g)(iii) Sequential R. H. D. 4.806e-04 4.805e-04
(g)(iv) Sequential R. H. D. 5.078e-04 5.094e-04

(h)(i) Weighted R. H. D. 3.147e-04 3.172e-04
(h)(ii) Weighted R. H. D. 3.321e-04 3.336e-04
(h)(iii) Weighted R. H. D. 3.033e-04 3.044e-04
(h)(iv) Weighted R. H. D. 3.101e-04 3.130e-04

Table 34: In the second column the average (of the nine states) of the mean squared error
for the direct estimator and every model and in the third column the average
(of the nine states) of the bias corrected mean squared error for the direct
estimator and every model are listed.
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