
D I P L O M A R B E I T

Tree-Decomposition
Graph Minor Theory and Algorithmic Implications

Ausgeführt am Institut für

Diskrete Mathematik und Geometrie
der Technischen Universität Wien

unter Anleitung von

Univ.Prof. Dipl.-Ing. Dr.techn. Michael Drmota

durch

Miriam Heinz, B.Sc.
Matrikelnummer: 0625661

Baumgartenstraße 53
1140 Wien

Datum Unterschrift

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





Preface

The focus of this thesis is the concept of tree-decomposition. A tree-decomposition of a
graph G is a representation of G in a tree-like structure. From this structure it is possible
to deduce certain connectivity properties of G. Such information can be used to construct
efficient algorithms to solve problems on G. Sometimes problems which are NP-hard in
general are solvable in polynomial or even linear time when restricted to trees. Employing
the tree-like structure of tree-decompositions these algorithms for trees can be adapted to
graphs of bounded tree-width. This results in many important algorithmic applications
of tree-decomposition.

The concept of tree-decomposition also proves to be useful in the study of fundamental
questions in graph theory. It was used extensively by Robertson and Seymour in their
seminal work on Wagner’s conjecture. Their Graph Minors series of papers spans more
than 500 pages and results in a proof of the graph minor theorem, settling Wagner’s
conjecture in 2004. However, it is not only the proof of this deep and powerful theorem
which merits mention. Also the concepts and tools developed for the proof have had a
major impact on the field of graph theory. Tree-decomposition is one of these spin-offs.
Therefore, we will study both its use in the context of graph minor theory and its several
algorithmic implications.

A complete survey of the many theoretical and practical applications of tree-decom-
position would go beyond the scope of this thesis. We therefore chose several interesting
aspects making no claim to be exhaustive.

The first chapter contains a brief introduction to graph theory and summarises the
basic definitions and concepts needed for this thesis. Main source for this chapter was
the textbook on graph theory by Diestel [16].

In the second chapter we take a closer look at the graph minor theorem and its graph
theoretic context. We introduce the most important terms such as minors and well-quasi-
orders and state the graph minor theorem. The results presented are mainly taken from
[16, 35, 37]. Two theorems by Kuratowski [34] and Kruskal [33] and a proof technique
created by Nash-Williams [37] give insight into the topic of graph minor theory.

Tree-decomposition is discussed in detail in the third chapter. First, we introduce
the concepts of tree-decomposition and tree-width. We also explain the connectivity
properties a graph G shares with its tree-decompositions [16, 41]. Then we examine
several notions closely related to tree-decomposition. A different representation of a
graph G of bounded tree-width can give insight into different properties of G. We discuss
clique-sums, (partial) k-trees and chordal graphs. For sources, see [11, 12, 16, 35, 49, 50],
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amongst others. Last, we present a few excluded minor theorems employing some of the
notions defined before. Here, we refer to [18, 30].

The intention of the fourth chapter is to present an example how tree-decomposition
is employed to prove the graph minor theorem. Hence we discuss one of the main parts
of the proof, namely the exclusion of a planar graph H. We describe the class of graphs
not containing H as a minor. The results of this chapter can be combined to prove a
weaker version of the graph minor theorem. The main sources are [17] and [23].

The fifth chapter is dedicated to some of the many algorithmic applications of tree-
decomposition. We introduce the k disjoint paths problem which is closely related to the
problem of H minor containment. Both problems have already been shown to be solvable
in polynomial time by Robertson and Seymour [45]. We present an improved version of
their algorithm [29]. Then we discuss the usage of tree-decomposition for solving complex
problems on graphs of bounded tree-width. We explain a generic approach utilising a
given tree-decomposition [10]. As a last example we introduce a pursuit-evasion game on
graphs studied by Seymour and Thomas [53].

The sixth chapter gives some additional information about related research and open
problems.

Apart from [16], the introductory surveys [8], [30], and [35] provided useful information
for most of the topics discussed in this thesis.
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Chapter 1

Preliminaries

This chapter is a brief introduction to some basic graph theoretic terms and concepts
used in this thesis. It should also avoid possible notational confusion. Most definitions
are standard and can be found in textbooks like [16] or [14]. In case of discrepancies
we will mostly refer to [16]. However, a basic knowledge of graph theory is assumed
throughout this thesis.

1.1 Graph structure
An undirected graph G = (V,E) consists of a set V of vertices and a set E of edges
between these vertices, also denoted by V (G) and E(G), respectively. We denote an edge
e ∈ E(G) between two vertices u, v ∈ V (G) by {u, v} or simply uv (or vu as orientation
does not matter). e joins u and v and u, v are called endvertices of e. A loop is an edge
vv.

Furthermore, a graph can have multiple edges between two vertices and more than one
loop at a vertex. We call a graph a multigraph if loops and multiple edges are allowed,
otherwise simple graph.

In case of simple graphs, E is usually seen as a subset of [V ]2, the set of all subsets
of V with cardinality 2. For multigraphs this definition is not sufficient, with multiple
edges a multiset E would be more suitable. [16, p. 28], for example, defines a map
E 7→ V ∪ [V ]2 to assign endvertices to each edge in E. Since it is not crucial for this
work, in this thesis E will be seen as a multiset. As aforementioned, an edge will be
represented by its endvertices, even if with this representation uniqueness may be lost.

Figure 1.1: undirected graph with loops and multiple edges

A vertex v is incident to an edge e if v is an endvertex of e. Equivalently, e is called
incident to v. We will also write v ∈ e. The vertex degree dG(v), or simply d(v), of a
vertex v is the number of edges incident to v, loops counting twice. We say that G has
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maximum degree ∆(G) if ∆(G) is the maximum over all vertex degrees of vertices in G.
Two vertices u, v ∈ V are adjacent if there exists an edge uv ∈ E. u and v are called
neighbours and

N(v) = NG(v) = {w ∈ V | ∃e ∈ E : e = vw}

is the neighbourhood of v in G. In case of loops v can be its own neighbour. The
neighbourhood of a set W ⊆ V is defined by N(W ) = ⋃

w∈W N(w) \W . A vertex set
W ⊆ V where no two vertices are adjacent is a stable set of vertices in G.

The order of a graph G = (V,E) is the cardinality |V | of its vertex set. A finite graph
has order |V | = n ∈ N. If not otherwise declared, the graphs in this thesis will be finite
undirected multigraphs.

A complete graph is a graph G where any two vertices u, v ∈ V (G) are adjacent. In a
complete simple graph with n vertices every vertex has degree d(v) = n− 1. We denote
this graph by Kn.

G = (V,E) is called bipartite if its vertex set can be partitioned into two sets V1, V2
such that V1∪V2 = V , V1∩V2 = ∅ and @e ∈ E : e ⊆ V1∨e ⊆ V2 holds. In other words, the
vertices of a bipartite graph can be coloured with two colours, such that the endvertices
of each edge do not have the same colour. A (simple) bipartite graph G is called complete
if no new edge can be added to G without losing its property of being bipartite. The
complete bipartite graph Km,n is the complete bipartite graph with |V1| = m and |V2| = n.

Figure 1.2: complete bipartite graph K3,2

1.2 Graph operations and subgraphs
There are several ways to modify a graph obtaining a new graph. We present different
operations on graphs and possible relations between two graphs.

In the following, let G = (V,E) be the graph considered.

Definition 1.2.1 (edge deletion) Deleting an edge results in a graph with same vertex
set V and edge set E \ {e}. This graph is denoted by G− e. In general, for a set of edges
F , the graph G− F = (V,E \ F ) is obtained.

Definition 1.2.2 (vertex deletion) If a vertex v is deleted it is necessary to delete all
edges incident to v as well. Thus, we have G − v = (V \ {e}, E \ {e ∈ E | v ∈ e}) and,
more generally, G−W = (V \W,E \ {e ∈ E | ∃v ∈ W : v ∈ e}) for W ⊆ V .

Definition 1.2.3 (edge contraction) Contraction of an edge e = uv yields a graph G/e
with a new vertex ve that replaces e. u and v are deleted and ve is adjacent to all
their neighbours. More formally, every edge uw ∈ E or vw ∈ E is replaced by an edge
vew ∈ E(G/e). Edges not incident to u or v remain unchanged. In a multigraph multiple
edges may become loops. Loops can not be contracted, only deleted.
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Definition 1.2.4 (subdivision of an edge) Subdivision of an edge e = uv inserts a new
vertex w of degree 2 into e that divides e into uw and wv. More generally, e can be
replaced by a uv-path whose inner vertices all have degree 2.

Definition 1.2.5 (suppression of a vertex) Suppressing a vertex is the inversion of sub-
dividing an edge, that is, deleting a vertex of degree 2 and adding an edge between its
neighbours. In the case of multiple edges, this can create loops. A vertex with a loop is
simply deleted.

v

e

f

g

Figure 1.3: deletion of edge e and vertex v, contraction of f and subdivision of g

Definition 1.2.6 (subgraph) A subgraph G′ = (V ′, E ′) of G is a graph with V ′ ⊆ V and
E ′ ⊆ E. We write G′ ⊆ G. G is a supergraph of G′.

Definition 1.2.7 (induced subgraph) A subgraph G′ = (V ′, E ′) of G is induced by W ⊆
V if V ′ = W and E ′ = {uv ∈ E | u, v ∈ W}. The subgraph of G induced by the vertex
set W is denoted by G[W ]. Analogously, we define the subgraph G[F ] of G induced by
a set F ⊆ E of edges as G[F ] = ({v ∈ V | ∃e ∈ F : v ∈ e}, F ).

Remark 1.2.8 Note that an edge-induced subgraph cannot contain isolated vertices (ver-
tices with degree 0).

Definition 1.2.9 (spanning subgraph) If V (G′) = V , a subgraph G′ of G is called
spanning subgraph.

Definition 1.2.10 (clique) A maximal complete subgraph C of a graph G is called a
clique of G. That means that C is not contained in any other complete subgraph of G of
higher order. The clique number ω(G) is the maximal order taken over all cliques of G.

Definition 1.2.11 (union, intersection and difference of graphs) The union of two graphs
G and G′ is a graph with vertex set V (G) ∪ V (G′) and edge set E(G) ∪ E(G′). Their
intersection G ∩G′ = (V (G) ∩ V (G′), E(G) ∩ E(G′) is defined similarly.

Two graphs possibly intersect. Their difference G−G′, or G \G′, denotes the graph
obtained from G by deleting all vertices and edges which are contained in G′ as well.

Definition 1.2.12 Two subgraphs are called disjoint if they have no vertex in common.
Otherwise they are meeting.
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1.3 Connectivity
For the rest of this section let G = (V,E) be a graph and u, v ∈ V two vertices of G.

A path P uv
G from u to v, or uv-path, is a (finite) sequence of distinct vertices and edges

v0e0v1e1 . . . vn−1en−1vn

of G with v0 = u, vn = v and ei = vivi+1 for i = 0, . . . , n− 1. u and v are the endvertices
of P uv

G , the other vertices are called inner vertices. A path has to have at least one vertex.
The length of a path is its number of edges. Sometimes it is sufficient to note P uv

G as
a sequence of vertices, if the choice of edges is clear from the context or not important.
Also the index G can be omitted if the reference is clear.

A path P in G is also seen as a subgraph of G consisting exactly of the vertices and
edges from its defining sequence. We will mostly use this interpretation. Therefore, we
will use graph operations on paths as well.

Two paths meet if they have at least one vertex in common. They are (internally)
disjoint if the sets of their (internal) vertices are disjoint.

A path P uw between two sets U,W ⊆ V with U ∩ P uv = {u} and W ∩ P uv = {w}
is called UV -path. In case of U = {u} or W = {w} we write uW -path or Uw-path,
respectively. A cycle is a uv-path with the only difference that u equals v. We define a
cycle to have at least one edge. Therefore a path consisting of only one vertex is not a
cycle.

A graph is called connected if there exists an uv-path for every two vertices u, v. A
connected component of a graph G is a maximal connected subgraph G′ of G. Maximal
meaning that no vertex or edge of G−G′ can be added to G′ without losing the property
of connectedness. The number of connected components of a graph G is denoted by c(G).

A tree is a connected graph without cycles, a forest a graph whose connected com-
ponents are trees. For two vertices u, v in a tree T there always exists one unique path
between them. We denote it by T uv. Sometimes it is useful to mark one vertex of a tree
T as special, the root r(T ), or simply r, of the tree. Since there is a unique path between
the root and any vertex of T , we can define a partial order on the set of vertices of T by

u ≤T v ⇐⇒ u ∈ T rv.

A rooted tree can also be interpreted as a directed graph, in which all edges have a head
and a tail and are directed away from the root. That way every vertex has exactly one
predecessor, except for the root, which has none. A vertex with no successor is called
leaf of T . The term leaf is also used for vertices of degree 1 in undirected trees. Let
v ∈ V (T ) \ r(T ) be an arbitrary vertex and e the edge whose head is v. We call the
connected component of T − e containing v the branch of T at v. It is a tree with root v
and its vertices and edges are ordered and directed as they are in T .

If a spanning subgraph of a graph G is a tree it is called a spanning tree of G. If G is
not connected but every connected component has a spanning tree the set of these trees
is a spanning forest of G.

An edge e ∈ E whose deletion increases the number of connected components of G
is called a bridge. In a tree every edge is a bridge. Analogously, a vertex with the same
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Figure 1.4: graph with a spanning tree (marked by thick edges)

property is called cutvertex. In the case of multigraphs a vertex with a loop is seen as
a cutvertex. More generally, a separator is a set S ⊆ V whose deletion increases the
number of connected components. We say, S separates G. A set S ⊆ V separates two
sets of vertices U,W ∈ V if U \ S and W \ S lie in different components of G − S.
A graph G = (V,E) is called n-connected if G −W is connected for all W ⊆ V with
|W | < n, provided that n < |V |. The connectivity of G is the greatest k ∈ N such
that G is k-connected. It is denoted by κ(G), κ(G) ≥ 1 meaning that G is connected,
κ(G) = 0 that G is disconnected. The vertex connectivity κG(u, v) between two vertices
u and v in G equals |S| − 1, where S ⊆ V is a set of minimum cardinality such that S
separates {u} from {v}. G is n-edge-connected if n < |E| and G− F is connected for all
F ⊆ E with |F | < n. λ(G) is the greatest integer n for which G is n-edge-connected, the
edge-connectivity of G.

A famous theorem of Menger explains the relation between separating sets and disjoint
paths in a graph.

Theorem 1.3.1 (Menger’s theorem) Let G = (V,E) be a graph and U,W ⊆ V two vertex
sets. Then the minimum number of vertices separating U from W in G is equal to the
maximum number of disjoint UW -paths in G.

Proof. G has to contain at least as many vertices separating U from W as there exist
disjoint UW -paths, at least one vertex from each path.

To show the converse we use induction on the number |E| of edges. For |E| = 0,
U ∩W is a set of minimal cardinality separating U from W and we also have U ∩W
trivial UW -paths, each consisting of exactly one vertex.

Now let G contain at least one edge e = xy and let s be the minimum number of
vertices separating U from W in G. Assume that there are at most l < s disjoint UW -
paths in G. As a consequence, G/e also contains at most l disjoint U ′W ′-paths, where U ′
andW ′ differ from U andW inasmuch as they contain ve if U respectivelyW contains an
endvertex of e. By induction hypothesis, there is a set S ′ ⊆ V (G/e) of cardinality at most
l separating U ′ from W ′. S ′ has to contain ve, otherwise it would be an UW -separating
set in G. S = S ′ \ ve∪{x, y} is an UW -separating set in G and therefore we have |S| ≥ s
and

l + 1 ≥ |S| ≥ s ≥ l + 1.

Furthermore, we can easily construct s = l + 1 disjoint UW -paths. Look at G − e.
Every set separating U from S also separates U from W and therefore contains at least
s vertices. Thus we can find s disjoint US-paths and analogously s disjoint SW -paths in
G− e. As |S| = s and these paths can only meet in S, we can combine them to s disjoint
UW -paths in G which contradicts our choice of l.
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Chapter 2

Graph Minor Theory

Tree-decompositions are extensively used in the context of graph minor theory. Intro-
duced by Robertson and Seymour within their Graph Minors series of papers [41] the
concept of tree-decomposition proved to be useful in many ways. The Graph Minors
series spans over more than 20 papers and more than 500 pages altogether. Its main
purpose was to prove an important open conjecture, often called Wagner’s conjecture.

In this chapter we introduce the basic terms needed to state this conjecture and
some of their properties. Then we give a brief overview of the context behind Wagner’s
conjecture and its relation to minor-closed classes of graphs. We also state some well-
known results by Kuratowski [34] and Kruskal [33] which are closely related to Wagner’s
conjecture. The definitions and results presented in this chapter can be found in [16, 35,
37].

2.1 Well-quasi-order and minors

Definition 2.1.1 (isomorphism) An isomorphism between two graphs G and H is a map
f : V (G) → V (H) such that an edge uv is in E(G) if and only if the edge f(u)f(v) is
in E(H). Regarding multigraphs, also the number of multiple edges and loops has to
coincide. Two graphs G,H are called isomorphic, denoted by G ' H, if there exists an
isomorphism between them.

Usually, we speak of a graph meaning its isomorphism class. For example, we speak
of the complete bipartite graph Km,n. But for the discussion of graph minor theory, we
will not identify two isomorphic graphs and always make clear if a (minor) relation is
defined up to isomorphism.

Definition 2.1.2 (graph invariant) A graph invariant is a function which, taking graphs
as input, assigns the same value to isomorphic graphs. Examples are functions giving the
order of a graph or stating if it is simple/connected/loop-free.

We have already introduced the subgraph relation between two graphs. A subgraph
H of G arises from edge and vertex deletion. Similarly, we will define subdivisions and
(topological) minors.
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Definition 2.1.3 (subdivision) A graph H is a subdivision of a graph G if H is obtained
from G by subdivision of edges.

Definition 2.1.4 (topological minor) A topological minor H of G is obtained from G by
deletion of edges and vertices and suppression of vertices.

If a graph H is isomorphic to a topological minor of a graph G we say G topologically
contains H.

Definition 2.1.5 (minor) If not only deletion of edges and vertices but also contraction
of edges is allowed the resulting graph is called a minor of the initial graph. A minor of
G that is not isomorphic to G is called a proper minor of G.

We will denote the minor-relation “H is isomorphic to a minor of G” by H . G and
say that H is a .-minor of G.

A topological minor H of G is also a minor of G, since suppression of a vertex is
the same as contracting an edge with an endvertex of degree 2. The converse is not
necessarily true.

Definition 2.1.6 A class of graphs G is called minor-closed if it contains for every graph
in G all its .-minors as well.

G Htop Hminor

Figure 2.1: graph G with topological minor Htop and minor Hminor

Definition 2.1.7 (well-quasi-order) A quasi-order is a reflexive and transitive relation ≤.
A quasi-ordered set (S,≤) is well-quasi-ordered if in every infinite sequence s0, s1, s2 . . .
of elements of S there exist indices i, j such that i < j and si ≤ sj. According to [37],
we call such a pair (si, sj) a good pair of the sequence. An infinite sequence is good if it
contains at least one good pair, otherwise it is a bad sequence.

Lemma 2.1.8 A quasi-ordered set (S,≤) is well-quasi-ordered if and only if there exists
neither an infinite strictly descending chain nor an infinite antichain of elements of S.

Proof. ⇒: By definition of well-quasi-order, S cannot have an infinite strictly descending
chain nor an infinite antichain.
⇐: Conversely, let s0, s1, s2, . . . be an infinite sequence of elements of S. Assume it

is a bad sequence.
Let Ss0≥ denote the set of all sj ∈ s1, s2, . . . with s0 ≥ sj. Ss0≥ has to be finite because

S contains neither an infinite strictly descending chain nor an infinite antichain. So the
subsequence t1, t2, . . . of s1, s2, . . . , containing only the elements not in Ss0≥, consists
only of elements incomparable to s0. Choose a maximal subsequence (t0 = ti0), ti1 , ti2 , . . .
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of t1, t2, . . . where each ij is the smallest possible index such that ti0 , . . . , tij−1 , tij is an
antichain. This sequence itself is an antichain and therefore finite. Let in be the maximal
occurring index. The union ⋃nj=0 Stij

≥ is a finite union of finite sets and therefore finite
which is a contradiction to s0, s1, s2, . . . being infinite.

Definition 2.1.9 Given an infinite sequence s0, s1, s2, . . . of elements of a quasi-ordered
set (S,≤), we call an element si terminal if there exists no sj with i < j and si ≤ sj.

Lemma 2.1.10 If (S,≤) is well-quasi-ordered the number of terminal elements in an
infinite sequence is finite. Furthermore, every infinite sequence of elements of S has an
infinite ascending subsequence.

Proof. Infinitely many terminal elements would contain either an infinite strictly descend-
ing chain or an infinite antichain which is contradictory to S being well-quasi-ordered.

Thus, for an arbitrary infinite sequence s0, s1, s2, . . . , there is an index N such that
all terminal elements of this sequence have an index smaller than N . So, starting with
si0 , i0 ≥ N , we can choose si1 such that i0 < i1 and si0 ≤ si1 . We continue with si2 such
that si1 ≤ si2 , i1 < i2 and by analogously adding elements we create an infinite ascending
subsequence si0 , si1 , si2 , . . . .

Lemma 2.1.11 If (S,≤S) and (T,≤T ) are well-quasi-ordered sets then S × T is well-
quasi-ordered by the relation ≤ defined by

(s1, t1) ≤ (s2, t2) ⇐⇒ s1 ≤S s2 ∧ t1 ≤T t2 .

Proof. Let (s0, t0), (s1, t1), (s2, t2), . . . be an infinite sequence of elements of S × T . Since
S is well-quasi-ordered we can find an infinite ascending subsequence si0 , si1 , si2 . . . of
s0, s1, s2, . . . . The sequence ti0 , ti1 , ti2 . . . has to contain two elements tk and tl with
tk ≤T tl and k < l, as T is well-quasi-ordered. So we found elements (sk, tk), (sl, tl) such
that (sk, tk) ≤ (sl, tl) and k < l.

For an ordered set (S,≤S) we denote the class of finite subsets of S by [S]<ω and
define a quasi-order ≤ω on [S]<ω by

A ≤ω B ⇐⇒ ∃ injective mapping f : A→ B such that a ≤S f(a) ∀a ∈ A.

f is called a non-descending mapping.

Lemma 2.1.12 If (S,≤) is well-quasi-ordered then ([S]<ω,≤ω) is well-quasi-ordered.

Proof. Assume [S]<ω is not well-quasi-ordered.
Consider a sequence S0, S1, S2, . . . such that every Si, i ≥ 0 is a set with minimal

cardinality such that S0, S1, . . . , Si are the first members of a bad sequence in [S]<ω.
This sequence itself is a bad sequence and contains only non-empty subsets of S. Set
Ti = Si\{si}, for i ≥ 0 and arbitrary elements si ∈ Si. There cannot exist a bad sequence
consisting of sets Ti since then there would be a (bad) subsequence Ti0 , Ti1 , Ti2 , . . . with
i0 ≤ ij for all j. As a consequence, the sequence

S1, S2, . . . , Si0−1, Ti0 , Ti1 , Ti2 , . . .

9



would be bad since a good pair (Sj, Tij ) would imply Sj ≤ω Tij ≤ω Sij for j ≤ ij which
is not possible. This is a contradiction to the choice of Si0 . Therefore, the class T of
sets Ti is well-quasi-ordered and by Lemma 2.1.11 also S×T is well-quasi-ordered. That
implies that the sequence

(s0, T0), (s1, T1), (s2, T2), . . .

contains a good pair ((si, Ti), (sj, Tj)). But this would mean that Si ≤ω Sj which is a
contradiction.

Lemma 2.1.13 The minor relation . is a quasi-order on the class of finite graphs.

Proof. This is easy to see since every graph is a minor of itself and a minor of a minor of
G is also a minor of G.

Identifying two isomorphic copies of a graph would make . a partial order. Since an
infinite strictly descending chain of .-minors is not possible, . is a well-quasi-order if
and only if no infinite antichain exists.

2.2 The graph minor theorem
We have now defined everything we need to state Wagner’s conjecture. It is nowadays
also known as graph minor theorem or Robertson-Seymour theorem after it was proven
by Robertson and Seymour in 2004 [47]. Throughout their papers of the Graph Minors
series it is referred to as Wagner’s conjecture, although apparently Wagner did not state
this conjecture; see [16, p. 373].

Theorem 2.2.1 (graph minor theorem) The class of finite graphs is well-quasi-ordered
by the minor relation ..

To interpret this theorem in another context, we can look at graph properties that
can be described by excluded minors.

Definition 2.2.2 (excluded minor) We call a graph H an excluded minor from a class
of graphs G if no graph in G contains H as a .-minor.

Lemma 2.2.3 A minor-closed class of graphs G can be characterised by its excluded
minors.

This can easily be achieved by taking all graphs not in G. We can also go further and
only consider the minimal elements KG of this set, that is, graphs with no proper minor
not in G. Conversely, by defining a set of excluded minorsM, we get a minor-closed class
of graphs. Such a class will be denoted by Forb(M), the set of all graphs not containing
any of the graphs inM as a .-minor.

Now it follows from the graph minor theorem that a finite list of graphs suffices to
describe a graph property that is inherited by minors.

Corollary 2.2.4 (of Theorem 2.2.1) Every minor-closed class of graphs G can be described
by a finite set KG of (pairwise incomparable) excluded minors.
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Proof. Let G be Forb(M). Such a set M always exists, just take all graphs not in G.
If M is an infinite set of graphs, then by Theorem 2.2.1 a graph in M exists that is a
minor of another graph inM. If we now only consider graphs that are .-minimal inM,
we obtain a finite set KG of excluded minors.

The setKG is sometimes called Kuratowski set for G. Indeed, K. Kuratowski stated one
well-known characterization theorem that can be rewritten in terms of excluded minors
[34]. It applies to planar graphs.

Definition 2.2.5 (planarity) A graph G is called planar if it can be drawn in the plane
without crossings. We also say that G is embeddable in the plane. A graph without this
property is called nonplanar.

Adding loops and multiple edges to a given graph does not change its (non)planarity.
Obviously, the property of planarity is inherited by minors.

Lemma 2.2.6 The class of planar graphs P is minor-closed.

Theorem 2.2.7 (Kuratowski) A graph is planar if and only if it contains no topological
minor isomorphic to the complete graph K5 or the complete bipartite graph K3,3.

Figure 2.2: the complete graph K5 and the complete bipartite graph K3,3

We can formulate Theorem 2.2.7 with minors as well. Since K5 and K3,3 are not
planar and planarity is inherited by (topological) minors, a planar graph cannot have K5
nor K3,3 as a (topological) minor. Conversely, if a graph does contain neither K5 nor K3,3
as a minor it can contain neither one of them as a topological minor. Those two graphs
are both minimally nonplanar, that is, they contain no proper minor that is nonplanar.
Furthermore, any other excluded minor would have to contain either one of them as a
topological minor by Theorem 2.2.7. So the Kuratowski set KP consists only of K5 and
K3,3.

Theorem 2.2.8 A graph is planar if and only if it contains no minor isomorphic to the
complete graph K5 or the complete bipartite graph K3,3.

Kruskal proved another important minor theorem [33]. It can be interpreted as a
graph minor theorem for trees.

Theorem 2.2.9 (Kruskal) The class of finite trees is well-quasi-ordered by the relation
of topological containment.

Here, we present a proof which is due to Nash-Williams [37] and whose proof-technique
will also be used in other proofs related to the graph minor theorem. For example,
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their concept of finding a “minimal bad sequence” was already utilised in the proof of
Lemma 2.1.12.

Now we consider rooted trees and a relation ≤ such that T ≤ T ′ means that there
exists an injective function f mapping V (T ) to V (T ′) such that

v ≤T u⇔ f(v) ≤T ′ f(u)

holds for all vertices u, v ∈ V (T ). This is obviously a quasi-order. If we show that the
class of finite rooted trees R is well-quasi-ordered by this relation ≤, this also implies
Theorem 2.2.9.

Proof of Theorem 2.2.9. Assume R is not well-quasi-ordered by ≤. We construct a min-
imal bad sequence as in the proof of Lemma 2.1.12. Let T0, T1, T2, . . . be such a sequence
and each Ti, i ≥ 0 be a rooted tree of minimal cardinality such that T0, . . . , Ti is the be-
ginning of a bad sequence of elements of R. Now, for each Ti consider the set of branches
Bi of Ti at all neighbours of r(Ti). Let B be the union of all these sets Bi. If there existed
a bad sequence B0, B1, B2, . . . with Bi ∈ Bf(i) and f(0) ≤ f(j)∀j, then the sequence

T0, T1, . . . , Tf(0)−1, B0, B1, B2, . . .

would also be a bad sequence since Ti ≤ Bj would imply Ti ≤ Tf(j). As this would be con-
tradictory to the choice of Tf(0) we conclude that B is well-quasi-ordered. Lemma 2.1.12
assures the existence of a good pair (Bi,Bj), i < j, since we can construct a sequence
containing only sets of the form Bk ∈ B<ω. Bi ≤ω Bj means that the branches of Ti can
be mapped onto (different) branches of Tj. By mapping r(Ti) onto r(Tj), this results in
Ti ≤ Tj and we have a contradiction. Therefore R is well-quasi-ordered.
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Chapter 3

Tree-Decomposition

The focus of this chapter is on tree-decomposition and some of its applications in graph
minor theory. In this context we will introduce tree-width which has already been studied
by Halin under a different name [24]. Apparently, this went unnoticed by Robertson and
Seymour who reintroduced this concept for their proof of the graph minor theorem [41].

First, we will present the notions of tree-decomposition and tree-width and some of
their basic properties. Then it is shown how tree-width measures the connectivity of a
graph. These properties can be found in [41, 16, 8, 32].

Second, there exist several equivalent representations of tree-decomposition. We
present the concepts of clique-sums, partial k-trees and chordal graphs and explain their
connection to tree-decomposition. Bodlaender discussed several characterisations in [11]
and [12]. Clique-sums are defined in [30] and [35]. Partial k-trees are covered, for example,
in [2, 4, 50, 55]. For chordal graphs see [16, 22, 49].

Furthermore, we show how the exclusion of some specific minor H can affect the
structure of the graphs contained in Forb(H). In many cases this can be expressed in the
context of tree-decompositions. We present some excluded minor theorems which can be
found in [30, 18, 35].

In their Graph Minors series of papers, Robertson and Seymour studied the structure
of graphs not containing some planar graph G. This and the general case of excluding
an arbitrary graph H play an important part in the proof of the graph minor theorem.
In chapter 4, we therefore discuss the exclusion of a planar graph in detail.

3.1 Tree-decomposition
Definition 3.1.1 A tree-decomposition of a graph G = (V,E) is a pair (T,V) consisting
of a tree T and a family V = (Vt)t∈V (T ) of subsets of V and satisfying the following
properties:

(TD1) ⋃t∈V (T ) Vt = V

(TD2) ∀uv ∈ E : ∃t ∈ V (T ) with u, v ∈ Vt

(TD1) ∀t1, t2, t3 ∈ V (T ) : t2 ∈ T t1t3 ⇒ Vt1 ∩ Vt3 ⊆ Vt2
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b, c, e
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c, e, h

e, f, h c, g, h

Figure 3.1: tree-decomposition of width 2

We call the sets Vt, and sometimes also their induced subgraphs G[Vt], the parts of
the tree-decomposition (T,V). If T is a path, we call (T,V) a path-decomposition. For
the rest of this section, let (T,V) be a tree-decomposition of G = (V,E) as defined above.

Definition 3.1.2 The width of a tree-decomposition is

max
t∈V (T )

(|Vt| − 1).

The tree-width of a graph G is the minimum width over all possible tree-decompositions
of G.

Tree-width is a graph invariant and describes how “tree-like” the structure of a graph
is. More precisely, it gives information about the connectivity of the graph. This is due
to the fact that the tree T of (T,V) has separation properties similar to those of the
corresponding graph G.

A tree-composition can also be seen as a union of subtrees, since by (TD3) the vertices
of T containing a certain vertex v ∈ V (G) form a subtree Tv of T . If E contains an edge
uv then (TD2) ensures that the subtrees Tu and Tv intersect.

a
b b

d c

c

c
c

e
e

e f

g

h

h h

Figure 3.2: subtrees formed by vertices of V (G)

Remark 3.1.3 Trees and forests have tree-width at most 1. The complete graph Kn has
tree-width n− 1.
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Definition 3.1.4 Graphs obtained from one single edge by subdivision and by addition
of parallel edges to already existing edges are called series-parallel. Figure 3.1 shows a
tree-decomposition of a series-parallel graph.

Lemma 3.1.5 Series-parallel graphs have tree-width at most 2.

Proof. This can be seen by observing that K2 has tree-width 1 and duplicating edges
does not increase tree-width. And that, for a graph G′ obtained from a graph G by
subdivision of an edge uv by a new vertex w, a tree-decomposition (T,V) of G can easily
be transformed into a tree-decomposition for G′ by adding a new part {u, v, w} and
connecting it to a part containing the edge uv.

Lemma 3.1.6 If H is a subgraph of a graph G then H has tree-width at most tw(G).

Proof. Let (T,V) be a tree-decomposition of G of width tw(G). We can construct from
(T,V) a tree-decomposition (T,W) of H with parts

Wt = Vt ∩ V (H).

Obviously, (T,W) has width at most tw(G).

Lemma 3.1.7 G has tree-width at most k if and only if all connected components of G
have tree-width at most k.

Lemma 3.1.8 If H is a minor of a graph G then H has tree-width at most tw(G).

Proof. As can easily bee seen, deleting vertices or edges can not increase the tree-width
of a graph. Now we examine contraction of an edge. Let (T,V) be a tree-decomposition
of G = (V,E) of width w and e = uv ∈ E the edge to be contracted to a vertex ve. Set
Wi to be the part Vi, with the only difference that every occurrence of u or v is replaced
by ve and set T̄ = T . We now show that (T̄ ,W) is a tree decomposition of H with width
at most w since replacing u and v by ve can not increase the tree-width w.

Intuitively, it is clear that we have found a tree-decomposition of H. Tu and Tv were
subtrees of T meeting in at least one vertex t. From this follows that T̄ve will be connected
and since T̄ contains no cycles T̄ve will also be a subtree of T̄ .

To be more accurate, we prove (TD1)-(TD3) for (T̄ ,W). (TD1) is clear from (TD1)
for (T,V) and the replacement of u, v by ve. For every edge wu, w ∈ V , there exists t′
with w, u ∈ Vt′ by (TD2), so Wt′ contains wve. The same follows for edges wv, w ∈ V ,
and this implies (TD2) for (T̄ ,W). Now let t1, t2 ∈ E(T̄ ) with ve in Wt1 ∩Wt2 . That
means that either u ∈ Vt1 ∩Vt2 or v ∈ Vt1 ∩Vt2 or (without loss of generality) u ∈ Vt1 \Vt2
and v ∈ Vt2 \ Vt1 . The first two cases, together with (TD3) for (T,V), imply

∀t ∈ T t1t2 : ve ∈ Wt

for (T̄ ,W). Concerning the third case, we know that, by (TD2) and (TD3) for (T,V),
there has to exist t ∈ T t1t2 such that both u, v are in Vt. (TD3) for (T,V) now tells us
that u is a member of every set Vt′ between Vt1 and Vt, and v is contained in the other
parts of the path T t1t2 . Thus ve is included in every Wt′′ with t′′ ∈ T̄ t1t2 , which completes
the proof.
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Bodlaender proved the following two lemmata in [11]. They are not difficult to un-
derstand but are useful for finding an upper bound for the tree-width of a given graph.

Lemma 3.1.9 Let G = (V,E) be a graph and W ⊆ V a set of vertices. If G −W has
tree-width at most k then G has tree-width at most k + |W |.

Proof. Let (T,V) be a tree-decomposition of G −W of width at most k. Then (T,W)
with parts

Wt = Vt ∪W, t ∈ V (T )
is a tree-decomposition of G of width at most k + |W |.

Lemma 3.1.10 Let G = (V,E) be a graph and F ⊆ E a set of edges. If G − F has
tree-width at most k then G has tree-width at most k + |F |.

Proof. Let VF ⊆ be a set of vertices of cardinality at most |F | containing at least one
endvertex of every edge in F . As G−VF is a subgraph of G−F , we know by Lemma 3.1.6
that

tw(G− VF ) ≤ tw(G− F ) ≤ k.

Therefore, by Lemma 3.1.9, G has tree-width at most k + |VF | ≤ k + |F |.

3.2 Tree-decomposition and connectivity
Given a tree-decomposition (T,V) of a graph G, it is possible to read off certain informa-
tion about the connectivity of G. The vertices contained in a part Vt separate the sets
of vertices of G characterised by the components of T − t. Therefore, the subgraphs of
G induced by these sets can only “communicate” through Vt. So G and T have similar
connectivity properties. This knowledge is used to develop fast algorithms for graphs of
bounded tree-width. We will later present such algorithms.

In this section we will always assume that we have given a tree-decomposition (T,V)
of a graph G.

Definition 3.2.1 The connected components of T − t are called the branches of T at
t ∈ V (T ).

Lemma 3.2.2 Let t ∈ V (T ) and v ∈ V , then v ∈ Vt or v is only contained in vertex sets
Vu of exactly one branch of T at t, denoted by Tt(v).

Proof. v has to be an element of one of the vertex sets Vt′ , t′ ∈ V (T ) by (TD1). Suppose,
v /∈ Vt and there are t1, t2 ∈ V (T ) with v ∈ Vi, i = 1, 2, that are separated by t. Then
t ∈ T t1t2 and together with (TD3) it follows that v ∈ Vt, which is a contradiction.

Lemma 3.2.3 If uv ∈ E and u and v are not elements of Vt, then Tt(u) = Tt(v).

Proof. By (TD2), u and v are in Vt′ for some t′ 6= t. This part Vt′ is in Tt(u) and Tt(v),
which implies their equality.

Lemma 3.2.4 If v, v′ ∈ V are not elements of a part Vt and are not separated in G by
Vt, then Tt(v) = Tt(v′).
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Proof. Let P vv′
G = vu1u2 . . . unv

′ be a vv′-path such that no vertex of P vv′
G is an element

of Vt. Lemma 3.2.3 implies
Vt(v) = Vt(u1) = Vt(u2) = · · · = Vt(un) = Vt(v′) .

Corollary 3.2.5 Let t ∈ V (T ) and let T1, T2, . . . , Tk be the branches of T at t. Denote
the subgraph of G induced by the vertex set⋃

l∈V (Ti)
Vl

by Gi, for i = 1, . . . , k. Then the subgraphs
G1 − Vt, G2 − Vt, . . . , Gk − Vt

have neither a vertex in common nor edges between them.
Lemma 3.2.6 Let e = t1t2 be an edge of T and denote the vertex sets of the two com-
ponents of T − e by Nt1, Nt2 respectively. Then Vt1 ∩ Vt2 separates Ut1 = ⋃

t∈Nt1
Vt and

Ut2 = ⋃
t∈Nt2

Vt in G.

Proof. For v ∈ Ut1 ∩ Ut2 it follows from (TD3) that v is also an element of Vt1 and Vt2 ,
therefore v ∈ Vt1 ∩ Vt2 .

Let v1 ∈ Ut1 \ Ut2 and v2 ∈ Ut2 \ Ut1 . Suppose that v1 and v2 are separated by
neither Vt1 nor Vt2 . Then, by Lemma 3.2.4 we have Vt1(v1) = Vt1(v2) and analogously
Vt2(v1) = Vt2(v2), which is a contradiction to the choice of v1 and v2. So every v1v2-path
has vertices in Vt1 and Vt2 . Moreover at least one of its edges is an element of Vt1 or Vt2 ,
so Vt1 ∩ Vt2 contains at least one vertex of each v1v2-path.
Lemma 3.2.7 Given a set W ⊆ V , there is either t ∈ T such that W ⊆ Vt or there exist
w1, w2 ∈ W and t1t2 ∈ E(T ) such that w1, w2 /∈ Vt1 ∩ Vt2 and w1 is separated from w2 by
Vt1 ∩ Vt2 in G.

Proof. Let f = tt′ be an edge of T . If we can find w1, w2 ⊆ W as desired, there is nothing
more to prove. If not, one of the sets Ut, Ut′ contains W . We denote this set by Uf and
look at the next edge. Provided that we have not found w1, w2, t1, t2 as described above
after examining all edges of T , there has to be some t̄ ∈ V (T ) such that

Vt̄ =
⋂

e∈E(T )
Ue

holds, since T is connected and acyclic. Furthermore, we have W ⊆ Vt̄.

Lemma 3.2.7 provides us with some useful information about the tree-decomposition
of a graph G. It follows that the tree-width of G is affected by the cliques contained in
G.
Lemma 3.2.8 The vertex set of any complete subgraph of G is contained in some part
of (T,V).

Proof. Let K be a complete subgraph of G. Since the vertices of K are pairwise adjacent,
Lemma 3.2.7 ensures the existence of a part Vt in V containing V (K).
Corollary 3.2.9 For the clique number ω(G) of G we have

ω(G)− 1 ≤ tw(G).
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3.3 Other representations of tree-decomposition
An alternative representation can sometimes be more suitable to study a given problem.
There exist several notions which are closely related to tree-decomposition. We present
clique-sums, partial k-trees and chordal graphs and how they are linked to tree-decom-
position.

3.3.1 Clique-sums

We have already seen how a tree-decomposition (T,V) of a graph G gives us information
about the separation properties of G. For an edge tt′ ∈ V (T ), we know that X = Vt ∩Vt′
separates the two vertex sets Ut and Ut′ in G. We could also depict G as the result of
“gluing” together the two subgraphs induced by Ut and Ut′ at X. Therefore the entire
graph is composed of such subgraphs and a tree-decomposition provides us with “gluing
instructions” for these parts. We state this precisely by introducing clique-sums.

Definition 3.3.1 Let G = (V,E) be a graph. A set C ⊆ V of k mutually adjacent
vertices is called a k-clique in G.

Definition 3.3.2 Let G1, G2 be graphs and C1 and C2 be k-cliques in G1 and G2,
respectively. The graph G is a k-clique-sum of G1 and G2 if G is obtained from G1 and
G2 by identifying the vertices of C1 with the vertices of C2 and possibly deleting some
edges between these k vertices. We also say that G is obtained by pasting the graphs G1
and G2 together along C1 and C2, or that G is a clique-sum of order k.

a

b

c

d

e

f
g

h

Figure 3.3: Graph of tree-width 2 and a pasting structure for clique-sums of graphs of
cardinality ≤ 3 given by the tree-decomposition in fig. 3.1

Lemma 3.3.3 If the graphs G1 and G2 have both tree-width at most n then every graph
obtained by a clique-sum of G1 and G2 of order at most n also has tree-width at most n.

Proof. Let C1, C2 be k-cliques of G1 and G2 for an integer k ≤ n and let G be the k-
clique-sum of G1 and G2 obtained without deleting any edge. If (T1,V1) and (T2,V2) are
tree-decompositions of G1 and G2, respectively, we know from Lemma 3.2.8 that there
exist parts V1 ∈ V1 and V2 ∈ V2 such that C1 ⊆ V1 and C2 ⊆ V2. We now combine the two
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tree-decompositions to a tree-decomposition of G by adding an edge e between the parts
V1 and V2 and relabeling appropriately. The tree corresponding to this tree-decomposition
consists of T1, T2 and e.

Lemma 3.3.4 Let G be a graph of tree-width n. Then G can be obtained by pasting
together graphs of cardinality at most n+ 1.

Proof. The pasting structure and graphs needed for this construction are given by any
tree-decomposition of G of width n.

3.3.2 Partial k-trees
Partial k-trees are an equivalent notion to graphs of tree-width at most k. Rose studied
k-trees in the context of perfect elimination graphs and their connection to sparse linear
systems [49, 50]. Arnborg et al. examined partial k-trees for their interesting property
that many combinatorial problems can be solved in polynomial time when restricted to
partial k-trees [2, 4]. Bodlaender covers this topic in surveys such as [12] and [11]. For
the sake of simplicity, we will assume all graphs to be simple graphs for the rest of this
section.

Definition 3.3.5 We define k-trees recursively:
(1) The complete graph Kk is a k-tree.
(2) Given a k-tree G, we can construct a k-tree by adding a new vertex v and edges from

v to k mutually adjacent vertices of G.

Remark 3.3.6 Note that by this definition every vertex in a k-tree G has degree at least
k − 1. If V (G) ≥ k + 1 then at least one vertex has exactly degree k. A k-tree with k + 1
vertices is the complete graph Kk+1.

Definition 3.3.7 A partial k-tree is a subgraph of a k-tree.

Rose showed the following characterisation of k-trees in [50].

Theorem 3.3.8 A graph G is a k-tree if and only if it has the following three properties:
(1) G is connected.
(2) G contains a k-clique but no k + 2-clique.
(3) For every two vertices v, w ∈ V (G) every minimal vw-separator in G is a k-clique.

Corollary 3.3.9 For a k-tree G and for every two vertices v, w ∈ V (G) every minimal
vw-separator in G is also a minimal separator of G.

Proof. Choose v, w ∈ V (G) arbitrarily. Let Svw be a minimal vw-separator in G. From
Theorem 3.3.8 we know that Svw is a k-clique. Suppose that Svw is not a minimal
separator of G. Then there exists a separator S of G of cardinality |S| < |Svw| = k. By
definition S separates some vertices v1, v2 in G. By Theorem 3.3.8 we have a contradiction
as S cannot be both a k-clique and of order at most k − 1.

Definition 3.3.10 A vertex v of a graph G is simplicial if its neighbourhood NG(v)
induces a complete subgraph in G.
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Definition 3.3.11 Let G = (V,E) be a graph with n = |V |. An elimination ordering
(vi)ni=1 is an ordering of the vertices in V . Set G0 = G. Applying (vi)ni=1 to G is the
procedure of
(1) removing the vertex vi from Gi−1 and
(2) adding edges between non-adjacent vertices in NGi−1(vi) until they induce a complete

subgraph in the now remaining graph Gi.
And this for i from 1 to n, in the order given by the elimination ordering.
Definition 3.3.12 A graph G = (V,E) is a perfect elimination graph if it has an elim-
ination ordering such that every vertex v ∈ V is simplicial at the time of its removal.
That is, if v is the ith vertex to be removed, v is simplicial in the graph

G[V \ {v1, . . . , vi−1}].

Such an ordering is called perfect elimination ordering. Note that no edges are added to
G in the process of applying a perfect elimination ordering.

10

98
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6

5

4

3

2

1

Figure 3.4: 3-tree with labels indicating a perfect elimination ordering

We can deduce from the recursive definition of k-trees that every k-tree has a perfect
elimination ordering. Therefore the k-trees form a subclass of the class of perfect elimi-
nation graphs. Perfect elimination graphs are exactly the chordal graphs which we will
study in the next section.
Definition 3.3.13 Define G as before. The width of an elimination ordering (vi)ni=1 is

max
i∈{1,...,n}

|Ni|

where Ni denotes the set of neighbours NGi−1(vi) of vi at the time of its removal.
Theorem 3.3.14 A graph G is a partial k-tree if and only if it has an elimination
ordering of width at most k.

Proof. Let G be a partial k-tree. Without loss of generality we can assume that G is
a k-tree. The perfect elimination ordering implicitly given by the recursive definition of
k-trees is of width at most k.

Conversely, let G = (V,E) have an elimination ordering of width at most k. Assume
that it is perfect. Therefore we can construct G recursively, starting with vn and adding
the other vertices in inverse order to our perfect elimination ordering. When we add a
vertex vi, we also add edges to the vertices in Ni which form a |Ni|-clique with |Ni| ≤ k.
From this construction we can easily deduce that G is a partial k-tree.
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The following theorem can be found for example in [11] or [55].

Theorem 3.3.15 A graph G = (V,E) is a partial k-tree if and only if G has tree-width
at most k.

Proof. Let G be a partial k-tree. Assume that G is even a k-tree. We apply induction
on the number of vertices of G. For |V | ≤ k + 1 it is obvious that G has tree-width at
most k. Now let |V | > k + 1. There exists at least one vertex v ∈ V of degree k whose
neighbourhood N(v) forms a k-clique in G. By induction hypothesis, there exists a tree-
decomposition (T,V) of G− v of width at most k. Lemma 3.2.8 assures the existence of
a part Vt ∈ V such that N(v) ⊆ Vt. Expanding (T,V) by a new part

Vt′ = N(v) ∪ v

and adding an edge between t and t′ in T results in a tree-decomposition of G of width
at most k.

Conversely, let (T,V) be a tree-decomposition of G of width at most k. Again, we
apply induction on the number of vertices in V . If |V | ≤ k + 1 then G is definitely a
partial k-tree. If |V | > k + 1 we examine a leaf t of T . Let t′ be the neighbour of t in T .
If Vt ⊆ Vt′ then we delete Vt from (T,V) and work with the resulting tree-decomposition
of G of width at most k. So, let there be a vertex v ∈ Vt \ Vt′ . This vertex v is not
contained in any other part than Vt and is therefore adjacent to at most |Vt| − 1 ≤ k
vertices in G. By induction hypothesis, G− v is a partial k-tree. Adding v and at most
k edges preserves this property for G as well.

Corollary 3.3.16 A graph G has tree-width at most k if and only if it has an elimination
ordering of width at most k.

Proof. Corollary 3.3.16 follows from Theorem 3.3.14 and Theorem 3.3.15.

Lemma 3.3.17 Every graph G of tree-width at most k contains a vertex of degree at
most k.

Proof. Suppose not. That is, all vertices have degree at least k + 1. This contradicts
the fact that, by Theorem 3.3.15, G is a partial k-tree and as such can be constructed
recursively by adding vertices of degree at most k.

Arnborg et al. studied the complexity of deciding whether a given graph is a partial
k-tree or not. They published the following result in [2].

Theorem 3.3.18 Given an arbitrary graph G = (V,E) and an arbitrary integer k, the
problem of deciding if G is a partial k-tree is NP-complete.

If k is not part of the input but fixed then there exists an algorithm solving the afore-
mentioned problem in time polynomial in |V |.

This applies for the complexity of testing for tree-width k as well. We will readdress
this problem in a later chapter.
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3.3.3 Chordal graphs
Chordal graphs have interesting properties with respect to their tree-decomposition as
they exhibit a certain regular structure. They belong to the well-studied class of perfect
graphs. Perfect elimination graphs and hence also k-trees are chordal graphs.

The following results about chordal graphs can be found in [16, 49, 22, 12, 11].

Definition 3.3.19 A graph G is chordal if every cycle C in G of length at least four
contains a chord, that is, an edge between two vertices of C not adjacent in C.

Every induced subgraph G[W ], W ⊆ V , of a chordal graph G that forms a cycle is
therefore a triangle. We call this an induced cycle of G. Chordal graphs are also called
triangulated graphs.

Lemma 3.3.20 Let G = (V,E) be a chordal graph and let W ⊆ V be a set of vertices in
G. Then the induced subgraph G[W ] is chordal as well.

Proof. Lemma 3.3.20 directly follows from the definition of chordal graphs. Clearly, every
induced cycle in G[W ] is an induced cycle in G as well and therefore a triangle.

Proposition 3.3.21 Complete graphs are chordal.

Proof. Since every set of three vertices of a complete graph G induces a triangle in G, G
obviously is a chordal graph.

Lemma 3.3.22 A graph is chordal if and only if it can be constructed recursively by taking
clique-sums, starting from complete graphs and without deleting edges in the process.

Proof. Let G1 and G2 be two complete graphs which are pasted together along some
complete subgraphs C1 ⊆ G1 and C2 ⊆ G2. When no edges are deleted to form the
resulting graph G then every induced cycle of G has to be contained in either G1 or G2.
Since G1 and G2 are chordal every such induced cycle is a triangle. We conclude that G
is chordal. Moreover, every graph recursively constructed as described above is chordal
as well.

Conversely, let G = (V,E) be a chordal graph. We apply induction on the number
of vertices |V |. If G is a complete graph then there is nothing more to show. If not, let
u, v ∈ V be two non-adjacent vertices of G. Let S ⊆ V \{u, v} be a minimal uv-separator
in G. Denote by Cu the component of G− S containing u. Set

G1 = G[V (Cu) ∪ S]

and
G2 = G− V (Cu).

Then G is a clique-sum of G1 and G2 along S. By induction hypothesis, G1 and G2 are
constructed as stated above. We now have to show that S is complete. Suppose not.
Then there exist two vertices x, y ∈ S which are not adjacent. Since S is minimal each of
them has a neighbour in G1 and there exists an xy-path P1 with internal vertices in G1.
Likewise, there exists an xy-path P2 with internal vertices in G2. P1 ∪ P2 forms a cycle
of length at least four in G, without a chord between x and y. This is a contradiction to
G being chordal.
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Theorem 3.3.23 A graph G = (V,E) is chordal if and only if there exists a tree-
decomposition of G into complete parts, that is, every part induces a complete subgraph
in G.

Proof. Let G be a chordal graph. We apply induction on the number of vertices in G. If
G is complete then a tree-decomposition of G consisting of only one part V (G) has the
desired property. Suppose that G is not complete. From Lemma 3.3.22 it follows that
G can be seen as a clique-sum G1 ∪ G2 of two graphs with G1 ∩ G2 being a complete
subgraph of G. By induction hypothesis, G1 and G2 both have a tree-decomposition into
complete parts. Denote them by (Ti,Vi), for i = 1, 2. Since G1 ∩ G2 is complete there
have to exist parts Vt1 ∈ V1 and Vt2 ∈ V2, each containing V (G1 ∩ G2). Set T to be the
union of the two trees T1 and T2 together with an edge t1t2 between t1 and t2. Then
(T,V1 ∪ V2) forms a tree-decomposition of G into complete parts.

We prove the other direction with induction on |V | as well. Let (T,V) be a tree-
decomposition of G into complete parts such that |T | is minimal. If it consists of only
one part then G is complete and hence chordal. Otherwise, let t1t2 be an edge of T . Using
the same notation as in Lemma 3.2.6, we setG1 = G[U1] andG2 = G[U2]. BothG1 andG2
have smaller order than G since otherwise |T | would not be minimal. Therefore it follows
from induction hypothesis that G1 and G2 are chordal. According to Lemma 3.3.22 both
parts Vt1 and Vt2 induce complete subgraphs in G, hence G1 ∩G2 is complete. So G can
be obtained by a clique-sum of G1 and G2 along G1 ∩ G2 ⊆ G. From Lemma 3.3.22 it
follows that G is chordal.

Theorem 3.3.23 gives us information about the tree-width of a chordal graph. We
already know from Corollary 3.2.9 that for every graph G

ω(G)− 1 ≤ tw(G)

holds. Here, ω(G) denotes the clique number of G. If a graph G is chordal then The-
orem 3.3.23 assures the existence of a tree-decomposition of width at most ω(G) − 1.
Hence we deduce the following result.

Corollary 3.3.24 Let G be a chordal graph. Then G has tree-width ω(G)− 1.

Corollary 3.3.25 Let G = (V,E) be a graph. Then we have

tw(G) = min{ω(H)− 1 | G ⊆ H,H chordal }.

Proof. By Corollary 3.3.24, every chordal supergraph H of G has tree-width ω(H) − 1.
And from Lemma 3.1.6 we know that since G is a subgraph of H its tree-width tw(G) is
bounded from above by ω(H)− 1.

Conversely, let (T,V) be a tree-decomposition of G of width tw(G). Consider the
graph H = (V,E ′), consisting of the vertex set V and an edge uv ∈ E ′ whenever there
exists a part Vt ∈ V such that u, v ∈ Vt. By (TD2), the graph H is a supergraph of
G. Furthermore, (T,V) is a tree-decomposition of H of width tw(G) where every part
induces a complete subgraph in H. From Theorem 3.3.23 we can deduce that H is chordal
and its tree-width ω(H)− 1 is at most tw(G).
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In the proof of Corollary 3.3.25 we constructed a chordal supergraph H of a graph
G by adding edges until every part of a given tree-decomposition (T,V) of G induced a
complete subgraph in H. In our representation of (T,V) as a union of subtrees this would
mean that for every two vertices in H their corresponding subtrees intersect if and only
if there exists a part of (T,V) containing both vertices.

Definition 3.3.26 Let S be a finite family of non-empty sets. The intersection graph of
S is the graph with vertex set S and an edge between two vertices S1 and S2 if the two
sets intersect.

Definition 3.3.27 A subtree graph is the intersection graph of a family of subtrees of a
tree.

We see that an intersection graph corresponds to a tree-decomposition into complete
parts. Gavril described this relation between chordal graphs and subtree graphs in [22].

Theorem 3.3.28 A graph is a subtree graph if and only if it is a chordal graph.

Rose proved the following characterisation of chordal graphs.

Theorem 3.3.29 Given a graph G the following three statements are equivalent.
(1) G is chordal.
(2) G is a perfect elimination graph.
(3) For every two vertices v, w ∈ V (G) every minimal vw-separator in G is a complete

subgraph of G.

The k-trees therefore form a subclass of the chordal graphs. We can even define a
recursive constructing scheme for chordal graphs similar to our definition of k-trees.
(1) A complete graph is chordal.
(2) Given a chordal graph G, we can construct a chordal supergraph of G by adding a

new vertex v and edges from v to all vertices of a complete subgraph H of G.
This recursive construction scheme is consistent with our previous results about chordal
graphs and their particular structure regarding clique-sums and tree-decomposition.

3.4 Excluded minor theorems
We already know from Lemma 2.2.3 that we can describe every minor-closed class of finite
graphs by means of excluded minors. For example, if we restrict the graphs considered
to simple graphs, then the family of forests is minor-closed and consists of all graphs not
containing the triangle K3 as a minor. Equivalently, we could call it Forb(K3).

Conversely, it is also interesting to ask what excluding a certain graph H as a minor
means for the structure of the graphs in Forb(H). In the following we will present some
excluded minor theorems. The case of excluding a planar graph plays an important part
in the proof of the graph minor theorem and will be discussed in detail later on.

Theorem 2.2.8 tells us that excluding K5 and K3,3 as minors generates exactly the
family of planar graphs. But what if we only forbid one of these graphs as a minor?
Wagner stated the following two theorems concerning the structure of graphs in Forb(K5)
and Forb(K3,3) [56, 30].
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Theorem 3.4.1 A graph is in Forb(K5) if and only if it can be obtained by clique-sums
of order at most 3 of planar graphs and subgraphs of the Wagner graph V8 (shown in
figure 3.5).

Remark 3.4.2 Here, the complexity lies in the only if direction. The if direction is easily
seen. We know that planar graphs do not contain a K5 minor, and V8 does not either. A
clique-sum of order at most three of graphs not containing a K5 minor cannot have a K5
minor.

Figure 3.5: the Wagner graph V8

Theorem 3.4.3 A graph is in Forb(K3,3) if and only if it can be obtained by clique-sums
of order at most 2 of planar graphs and copies of K5.

Fellows and Langston studied the structure of graphs not containing a cycle of length
at least k [18].

Theorem 3.4.4 Let k ≥ 3 be fixed. Every graph G = (V,E) not containing a cycle of
length k as a minor has tree-width at most k − 2.

Proof. Mark one arbitrarily chosen vertex r ∈ V as the root for a depth-first spanning
tree of G. This is a spanning tree T obtained by depth-first search starting from the root
r = r(T ). We will construct a tree-decomposition of width at most k − 2 using T . Note
that E consists only of edges used for T and of back edges. A back edge is an edge not in
T joining a vertex v ∈ V to a vertex w ∈ V lying on the path T vr between v and r in T .

r

Figure 3.6: a graph G excluding a cycle of length 5 and a depth-first spanning tree T of
G marked by thick edges; all unmarked edges are back edges

Recall the interpretation of T as a directed graph. Denote by p(w) the predecessor of
w ∈ V \ {r} in T and set p(r) = r. For every v ∈ V , we define p0(v), p1(v), . . . , pk−2(v)
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recursively by

p0(v) = v

pi(v) = p(pi−1(v)) for i = 1, . . . , k − 2.

Now we construct a tree-decomposition (T,V) of G by setting

Vv = {p0(v), p1(v), . . . , pk−2(v)}

for every v ∈ V = V (T ). Property (TD1) is satisfied because every vertex w ∈ V is
contained in the part Vw. Since G contains no cycle of length k or more any back edge
vw ∈ E joins two vertices such that T vw is of length at most k− 2. Therefore (T,V) has
property (TD2) as well. Furthermore, the structure of (T,V) implies (TD3). We have
therefore found a tree-decomposition of G of width at most k − 2.
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Chapter 4

Tree-Decomposition in Graph Minor
Theory

Tree-decompositions are a useful tool for the proof of the graph minor theorem. One of
the main parts of the proof deals with the case of excluding a planar graph as a minor. In
this chapter, we will discuss this part in detail. For this, we introduce brambles and grids
and some of their important properties regarding tree-width. See also [16, 5, 8]. Then
we present simplifications of the proofs given by Robertson and Seymour in [42] and [43]
which can be found in [17] and [23]. We also explain how the results of this chapter can
be expanded to graphs embeddable in higher surfaces and we state a generalisation of
Kuratowski’s theorem.

Tree-decompositions are also used by Robertson and Seymour to describe the general
structure of graphs excluding an arbitrary but fixed graph G as a minor. In this thesis,
however, we will focus our attention on the special case that G is planar.

4.1 A weaker version of the graph minor theorem

In this chapter, we study the implications of excluding a planar graph as a minor. Robert-
son and Seymour showed in [42] that, given a planar graph H, all graphs in Forb(H) have
bounded tree-width. Together with the fact (which was proven in [43]) that graphs of
bounded tree-width are well-quasi-ordered this implies the following weaker version of
the graph minor theorem.

Theorem 4.1.1 Let G0, G1, G2, . . . be a countable sequence of graphs and let G0 be pla-
nar. Then there exist indices 0 ≤ i < j such that Gi . Gj.

The proofs given in [42] and [43] are long and technical and since their publication
they have been greatly simplified. Here, we present shorter proofs for which we need the
notions of grids and of brambles.
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4.2 Grids and brambles
Both grids and brambles allow to deduce certain information about the tree-width of a
graph G due to the specific regular structure they exhibit. Large grid minors and large
brambles pose obstructions to small tree-width. In the following, we use brambles to
determine the tree-width of grids.

Definition 4.2.1 The r-grid is the graph with vertex set V = {1, . . . , r}2 and edge set

E = {(i, j)(k, l) | |i− k|+ |j − l| = 1}.

Figure 4.1: 3-grid

Grids are obviously planar graphs. On the other hand, every
planar graph G is a minor of a (sufficiently large) grid. This
can be seen by constructing a graph G(3) from G by splitting up
vertices such that every vertex of G(3) has degree ≤ 3. For G(3)

we find a sufficiently fine grid containing G(3) as a topological
minor; see [6].

In general, it is not easy to determine the tree-width of a
given graph G = (V,E) . But there are certain obstructions to small tree-width, one
of them are large brambles. Bellenbaum and Diestel give some useful proofs concerning
brambles [5].

Definition 4.2.2 Two sets A,B ∈ V touch if they have a vertex in common or there
exists an edge in G with endvertices in A and B. A bramble is a set B ⊆ P(V ) of mutually
touching connected vertex sets. A cover of a bramble B is a set S ⊆ V such that every
set in B contains at least one vertex of S. The cardinality of a vertex-minimal cover of
B is called the order of the bramble B.

Lemma 4.2.3 Any set separating two covers of a bramble B is also a cover of B.

Proof. Every set B ∈ B is connected and contains a vertex of each cover, therefore also
a path between them. So every set separating the two covers contains at least one vertex
of B.

Definition 4.2.4 G has bramble number β(G) = n if n is maximal such that G contains
a bramble of order n.

Like complete subgraphs, the brambles contained in a given graph affect its tree-width.

Theorem 4.2.5 Let G = (V,E) be a graph. Then we have

tw(G) = β(G)− 1.

Proof. Let (T,V) be a tree-decomposition of G. First, we show that every bramble B of
G is covered by some part Vi and we thus have tw(G) ≥ β(G)− 1.

Like in the proof of Lemma 3.2.7 we examine every edge tt′ of T . If Vt ∩ Vt′ covers B
there is nothing more to show. If not, at least one of the sets Ut, Ut′ covers B because
the sets in B are connected and touch; see Lemma 3.2.3 and Lemma 3.2.4. We delete tt′
and from now on we examine only edges in the component of T − tt′ containing B. We
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continue with this procedure until we have found a covering set in the form of Vt ∩ Vt′ or
have no edges left to examine in the remaining component. In the last case we have only
one part left, this part covers B.

Now we assume that G has tree-width ≥ k but contains no bramble of order > k. For
this we need the notion of a B-admissible tree-decomposition for a given bramble B in G.
This is a tree-decomposition of G such that no part of order > k covers B. If we find a
B-admissible tree-decomposition for every bramble B in G (including the empty bramble
∅) we have the desired contradiction and therefore tw(G) ≤ β(G)− 1.

We apply induction on the number of sets contained in a bramble of G, starting with a
bramble of maximal cardinality (this is bounded from above by 2|V |). Let B be a bramble
and let there be, by induction, a B′-admissible tree-decomposition for every bramble B′
with more sets than B. B has order l ≤ k and let X be a set of cardinality l covering B. It
now suffices to find, for every component C of G−X, a B-admissible tree-decomposition
of G[V (C) ∪ X] with X as a part. By identifying the X-parts these tree-compositions
form a B-admissible tree-decomposition of G.

So we examine B′ = B ∪ V (C), where C is a given component of G − X. Let W
denote the set V (C) ∪X. If B′ is not a bramble then V (C) does not touch all sets of B
and V (C) ∪N(C) and X are the parts of a B-admissible tree-decomposition of G[W ].

If B′ is a bramble it contains more sets than B since V (C) is not covered by X.
Thus there has to be a B′-admissible tree-decomposition (T,V) of G. If (T,V) is not
already B-admissible we use it to form a tree-decomposition (T,W) of G[W ] as desired.
We know that there exists s ∈ T such that Vs covers B but has cardinality |Vs| > k ≥ l.
Lemma 4.2.3 allows us to use Menger’s theorem to assure the existence of l vertex-disjoint
paths Px, x ∈ X, between Vs and X. Since Vs does not cover B′, it has to be part of
G − C and we can also choose the paths Px, x ∈ X, to lie in G − C. We now select for
every x in X a tx such that x ∈ Vtx and define the parts

Wt = (Vt ∩W ) ∪ {x ∈ X | t ∈ T txs}

for (T,W). (T,W) is a tree-decomposition of G[W ] with |Wt| ≤ |Vt| because for every
y ∈ Wt \ Vt ⊆ X we know that y ∈ G − C and that, by Lemma 3.2.6, Vt separates
Vs and Vtx and therefore contains a vertex of the path Py ⊆ G − C that cannot be an
element of Wt. But this also says that Vt separates the connected set B ∈ B with y ∈ B,
hence covers B. From this it follows that no Wt can cover a set from B that Vt does not
cover. Furthermore, every Wt with |Wt| > k ≥ l = |X| has to contain a vertex from C.
Such a set covering B, and therefore B′, would be a contradiction to the B′-admissible
tree-decomposition (T,V).

As we have Ws = X, we can form a B-admissible tree-decomposition of G.

We can use Theorem 4.2.5 to determine the tree-width of the r-grid. The set of crosses

Cij = {(i, k) | k = 1, . . . , r} ∪ {(l, j) | l = 1, . . . , r},

with i, j ∈ {1, . . . , r}, forms a bramble of order r since at least r vertices are needed to
cover all rows and columns. To construct a bramble of order r + 1, we use the crosses of
the (r − 1)-grid and add the sets

{(r, k) | k = 1, . . . , r − 1} and {(l, r) | l = 1, . . . , r}.
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On the other hand, the tree-width of the r-grid can be bounded from above by r. We
show this by giving a path-decomposition of order r; see [8]. Its parts are the sets

Vr(i−1)+j = {(i, k) | k = j, . . . , r} ∪ {(i+ 1, l) | l = 1, . . . , j}

for i = 1, . . . , r − 1 and j = 1, . . . , r. This proves the following lemma.

Lemma 4.2.6 The r-grid has tree-width r.

4.3 Excluding a planar graph
Lemma 4.2.6 tells us that large grids have large tree-width. As grids are planar, they
cannot contain non-planar minors. From this it follows that, for any non-planar graph
H, the set Forb(H) contains graphs of arbitrarily large tree-width. We conclude that the
following lemma holds.

Lemma 4.3.1 Let H be a given graph. If the graphs in Forb(H) have bounded tree-width
then H has to be planar.

Interestingly, the converse also holds. It suffices to show that graphs not containing a
certain grid have bounded tree-width since every planar graph is a minor of some grid. In
[17], Diestel et al. give a proof of the following theorem that is not as long and technical
as the initial proof given by Robertson and Seymour in their paper of the Graph Minors
series [42].

Theorem 4.3.2 For every integer r there is an integer g(r) such that every graph of
tree-width at least g(r) has an r-grid minor.

This chapter is dedicated to the proof of Theorem 4.3.2 which roughly runs as follows.
We introduce k-meshes which partition a given graph into two subgraphs of relatively
small intersection while maintaining some good connection properties between them.
Then we show that every graph G of sufficiently large tree-width has to contain a certain
k-mesh. Such a k-mesh implies the existence of some minor of G of particularly regular
structure. In our case, we will use a k-mesh to find a complete subgraph or an r-grid
minor in G. As every sufficiently large complete graph contains an r-grid minor this will
complete our proof.

With Theorem 4.3.2 it is not difficult to prove the converse of Lemma 4.3.1.

Theorem 4.3.3 Let H be a given graph. If H is planar then the graphs in Forb(H) have
bounded tree-width.

Proof. Let r be an integer such that the r-grid contains H as a minor. Now let G be
a graph in Forb(H). Suppose that G has tree-width at least g(r). Then it follows from
Theorem 4.3.2 that G contains an r-grid minor. Hence G contains H as a minor as
well, which is a contradiction. Therefore, all graphs in Forb(H) have tree-width less than
g(r).
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4.3.1 Separations and k-meshes
Definition 4.3.4 For a graph G and a set S ⊆ V (G) we define S̄ to be the set

S̄ = G[V (S) ∪N(S)]− E(G[N(S)]).

Definition 4.3.5 We call a set S ⊆ V externally k-connected in G = (V,E) if |S| ≥ k
and if for all sets U,W ⊆ S with |U | = |W | = l ≤ k there exist l disjoint UW -paths in G
that meet S only in their endvertices.

Definition 4.3.6 (separation) A pair (A,B) of subgraphs of G such that A∪B = G and
E(A) ∩ E(B) = ∅ is a separation of G. |A ∩B| is called order of (A,B).

Definition 4.3.7 (premesh) A separation (A,B) such that E(G[A ∩ B]) ⊆ E(A) and
such that there exists TA ⊆ A with the properties
(i) TA is a tree of maximum degree ∆(TA) ≤ 3 and
(ii) ∀v ∈ V (A ∩B) : (v ∈ TA) ∧ (dTA

(v) ≤ 2) and
(iii) ∃v ∈ V (A ∩B) : dTA

(v) = 1
is called premesh.

Definition 4.3.8 (k-mesh) A k-mesh is a premesh (A,B) with the additional property
that V (A ∩B) is externally k-connected in B.

Lemma 4.3.9 Let G = (V,E) be a graph and let h ≥ k ≥ 1 be integers. If G has no
k-mesh of order h then G has tree-width less than h+ k − 1.

Proof. Without loss of generality, see Lemma 3.1.7, we may assume that G is connected.
We want to show that G has a tree-decomposition of width < h + k − 1. Suppose not.
Then let W $ V be a set of maximal cardinality such that
(1) G[W ] has a tree-decomposition (T,V) of width < h+ k − 1
(2) for every component C of G−W

(2.1) N(C) ⊆ W is contained in some part Vt.
(2.2) (G− C, C̄) is a premesh of order at most h.

W 6= ∅ since every vertex of G could be chosen as singleton W = {v}.
Let C be a connected component of G−W . We now show that N(C) has cardinality

h. Suppose not. Then we can expandW by one vertex v ∈ C that is a neighbour of a leaf
of TG−C . W ′ = W ∪{v} has properties (1) and (2) since (T,V) expanded by an additional
part N(C)∪{v} is a tree-decomposition of G[W ′] of width less than h+k−1. Moreover,
we have v ∈ N(C ′) ⊆ N(C) ∪ {v} for every component C ′ ⊆ C of G −W ′ because C
is connected. This contradicts the maximality of W , hence we have |N(C)| = h for all
connected components of G−W .

As G contains no k-mesh of order h, N(C) cannot be externally k-connected in C for
any connected component C of G−W . So, there exist Y, Z ⊆ N(C) with |Y | = |Z| ≤ k
and only l ≤ |Y | disjoint Y Z-paths with internal vertices in C. Menger’s theorem now
tells us that there is a set S of cardinality l that separates Y from Z. Set W ′ = W ∪ S.
Every connected component C ′ of G−W ′ that touches S has neighbours in at most one
of the sets Y \ S and Z \ S. Assume that it does not touch Z \ S. Then we have

N(C ′) ⊆ (N(C) \ Z) ∪ S
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and therefore
|N(C ′)| ≤ |N(C)|︸ ︷︷ ︸

=h

−|Z|+ |S|︸ ︷︷ ︸
<0

< h.

Let Ps, s ∈ S ∩ N(C ′), denote those subpaths of the l Y Z-paths that connect Z and
S ∩N(C ′). Then, together with

TG−W ′ = TG−W ∪ {Ps | s ∈ S ∩N(C ′)},

(G−W ′, W̄ ′) is a premesh of order at most h. If we set V ′ = V ∪{S∪N(C)}, and enlarge
T accordingly, we have found a tree-decomposition (T ′,V ′) of G[W ′] of width

|N(C)|+ |S| − 1 < h+ k − 1.

Since S \N(C) contains at least one vertex (C is connected and touches Y and Z), W ′

contradicts the maximality of W .
We conclude that W = V and that G has tree-width less than h+ k − 1.

4.3.2 Finding an r-grid minor
Lemma 4.3.10 Every tree T of order at least r(r − 1) has an r-tuple (v1, . . . , vr) of
vertices such that T vivi+1 contains no other vertex except vi and vi+1 of this r-tuple, and
this for i = 1, . . . , r − 1. We call this a good r-tuple of T .

Proof. A set of r leaves has the desired property. If T has less than r leaves, it has at
least r(r − 1) − (r − 1) = (r − 1)2 inner vertices connecting its leaves. Therefore, there
exists a path of r vertices in T which can also be used to form a good r-tuple.

We want to find a grid minor in a sufficiently large graph. One possibility is to
construct it from a set of paths that already have a suitable structure.

Lemma 4.3.11 Let d, r ≥ 2 be integers such that d ≥ r2r+2. Let G = (V,E) be a graph
containing a set H of r2 − 1 disjoint paths H1, . . . , Hr2−1 and a set V of d disjoint paths
V1, . . . , Vd such that each of them meets every path in H. In addition, assume that each
path H ∈ H consists of d consecutive vertex-disjoint segments such that Vi meets H only
in its ith segment, for every i = 1, . . . , d. Then G has an r-grid minor.

Proof. The paths of H and V intersect in such a way that we can use them to form an
r-grid minor of G. We will denote the vertices of this grid minor by

(i, j)G, for i, j = 1, . . . , r.

The crucial part is to find subpaths of paths from H and V that do not intersect with
too many others. Then the rows of our grid will be provided by H and by using paths of
V we will construct its columns.

To find suitable paths to form our rows and columns we define graphs Gi, one for each
Vi, i ∈ {1, . . . , d}, consisting of H as vertex set and of an edge between two paths Hj and
Hk whenever Vi contains a subpath meeting H exactly in its endvertices from Hj and
Hk. Every graph Gi has a spanning tree Ti of order ≥ r(r− 1) and therefore with a good
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r-tuple. As there do not exist more than (r2)r different r-tuples of paths fromH, we know
some r2 of the initial d ≥ r2(r2)r trees Ti to have a good r-tuple (H1, . . . , Hr) in common.
These trees Ti1 , . . . , Tir2 (ordered by ascending index) tell us which paths from V to use to
form our columns. The edge between (j, k)G and (j+1, k)G from our grid will be obtained
by suppressing the internal vertices of a path V j

k . Let i = (k − 1)r + j. We know that
there exists a sequence of subpaths of Vi that connects Hj and Hj+1 without meeting any
H ∈ H in its internal vertices. V j

k consists of these subpaths and, if necessary, of parts of
some paths from H\{H1, . . . , Hr} to connect them. All edges constructed in this fashion
are disjoint since they are obtained from distinct, and therefore disjoint, paths from V .

Now it suffices to contract all edges contained in the minimal subpath H − kj of Hj

that contains the ith segment of Hj for all i with i(k−1)r+1 ≤ i ≤ ikr, to create the vertex
(j, k)G of our grid minor. Segments with an index greater than r2 will not be needed.

Lemma 4.3.12 Let G = (V,E) be a bipartite graph with partitioning sets A and B,
|A| = α, |B| = β, and let γ ≤ α and δ ≤ β be positive integers. If |E| ≤ (α−γ)(β−δ)

δ
then

there exist vertex sets C ⊆ A and D ⊆ B such that |C| = γ, |D| = δ and the set C ∪D
is stable in G.

Proof. Choose d vertices from B such that each vertex has at most (α− γ)/δ neighbours
in A (less than β − δ vertices can have more than (α − γ)/δ neighbours). D touches at
most α − γ vertices in A. Hence there exist at least γ vertices that can be used to form
C ⊆ A such that C ∪D is independent in G.

Lemma 4.3.13 Let T be a tree of maximum degree ∆(T ) ≤ 3 and W be a vertex set
W ⊆ V (T ). For every integer k ≥ 2 there exists a set of edges F ⊆ E(T ) such that all
components of T − F have between k and 2k − 1 vertices in W , except for one possibly
containing less than k vertices.

Proof. We prove this lemma by induction on the number of vertices in W . Induction
starts with a set W with |W | ≤ 2k − 1, where we can use F = ∅. For |W | ≥ 2k,
we choose an edge e ∈ E(T ) and a component C of T − e of minimal order such that
|C ∩W | ≥ k. This minimality, together with ∆(T ) ≤ 3, implies |C ∩W | ≤ 2k − 1. Our
desired set F consists of e and the set F ′ that we know, by induction hypothesis, exists
for T − C.

Obviously, the r-grid is a minor of Kr2 . Therefore the following theorem implies
Theorem 4.3.2.

Theorem 4.3.14 Let r,m be positive integers and let G = (V,E) be a graph of tree-with
at least r4m2(r+2). Then G contains either Km or the r-grid as a minor.

Proof. For the same reason as aforementioned we can assume that 2 ≤ m ≤ r2. The
theorem obviously holds for r = 1, so from now on we will assume r ≥ 2 as well.

By using the preceding lemmata we want to find a suitable k-mesh of G that will
provide us with sufficiently many paths to form either a Km minor or an r-grid minor.
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For this, set c = r4(r+2) and k = cm(m−1). Then we have c ≥ 216, cm ≥ 2m + 3 and
therefore

tw(G) ≥ r4m2(r+2) = cm
2 = cmk ≥ (2m+ 3)k − (m+ 2)

= (m+ 1)(2k − 1) + k − 1.

Lemma 4.3.9 guarantees us the existence of a k-mesh (A,B) of order (m+ 1)(2k − 1).
If TA is a corresponding tree, we know that V (A∩B) ⊆ V (TA), and we use Lemma 4.3.13
to partition TA into

|V (A ∩B)|
2k − 1 − 1 = (m+ 1)(2k − 1)

(2k − 1) − 1 = m

disjoint subtrees T1, . . . , Tm, each with at least k vertices from V (A∩B). Set Ai = V (Ti),
for i = 1, . . . ,m. As V (A ∩ B) is externally k-connected in B there exists a set Pij of k
disjoint AiAj-paths that meet A only in their endpoints, and this for 1 ≤ i < j ≤ m. By
fixing an arbitrary bijection

σ : {ij | 1 ≤ i < j ≤ m} → {0, 1, 2, . . . ,
(
m
2

)
− 1},

we can order these sets of paths. We will use them either to construct a Km minor -
where the sets Ai will play the part of vertices - or to find two sets Ppq and Pij that
satisfy the preconditions of Lemma 4.3.11.

For this purpose, let l∗ ≤
(
m
2

)
be the maximal integer such that for all 1 ≤ i < j ≤ m

and all 0 ≤ l < l∗ there exist sets P lij that satisfy the following five conditions that impose
a suitable structure on the set of all these paths. The value of l∗ will tell us which kind
of minor we will be able to form.
(1) First of all, P lij 6= ∅ is a set of disjoint AiAj-paths such that only their endvertices

lie in A.
Secondly, we set limits on the size of the sets P lij in order to maintain our desired structure
and to assure |P lij| ≥ c2 for σ(ij) ≥ l.
(2) For σ(ij) < l, P lij consists of precisely one AiAj-path that has no intersections with

any path from ⋃
st 6=ij P lst.

(3) In the case of σ(ij) = l, P lij contains exactly k
c2l paths.

(4) If σ(ij) > l, then we have |P lij| = k
c2l+1 .

Finally, we force the sets H l
ij = ⋃P lij to coincide as much as possible. This last condition

will later help us to construct an r-grid minor.
(5) For l = σ(pq) and all e ∈ E(H l

ij)\E(H l
pq) the graph (H l

ij∪H l
pq)−e does not contain

k
c2l+1 disjoint AiAj-paths.

We prove l∗ > 0 by defining sets P0
ij, for all 1 ≤ i < j ≤ m, that fulfil all five

conditions. Set P0
pq = Ppq for pq = σ−1(0). If σ(ij) > 0, set Hij to be the union of all

paths in Pij and let Fij be a maximal set of edges from Hij \P0
pq such that (Hij∪P0

pq)−Fij
still contains a set of k

c
disjoint AiAj-paths - which we set to be P0

ij. Thus, we know that
l∗ is strictly greater than 0.

In the case of l∗ =
(
m
2

)
, we can easily form a Km minor by merging the sets A1,

A2, . . . , Am to vertices v1, v2, . . . vm and by contracting the single path Pij in P l
∗−1
ij to be

the edge vivj, for all pairs ij.
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For l∗ <
(
m
2

)
, we have to find two sets of paths with a suitable structure to utilise

Lemma 4.3.11. Let l = l∗ − 1 and pq = σ−1(l).
Suppose that there is a path P ∈ P lpq that avoids, for all ij with σ(ij) > l, a set Qij

of some 1
c
|P lij| of the paths in P lij. Then we could set

P l+1
ij := P lij, for σ(ij) < l,

P l+1
pq := P,

P l+1
st := Qst, for σ(st) = l + 1,

and for σ(ij), like before, set Fij to be a maximal set of edges from E (⋃Qij) \ E(H l+1
st )

such that the graph (⋃
Qij ∪H l+1

st

)
− Fij

still contains a set P l+1
ij of 1

c2 |P lij| disjoint AiAj-paths.
As this would contradict the maximality of l∗, for every path P ∈ P lpq there exists

a pair ij with σ(ij) > l and P fails to meet at most 1
c
|P lij| − 1 paths of P lij. We can

conclude that there is a set P ⊆ P lpq of at least d|P lpq|/
(
m
2

)
e paths that have the same

pair ij in common. We fix ij for the rest of the proof and have now the two sets of paths
P and P lij from where we will pick the sets V and H for Lemma 4.3.11. For this purpose,
we define a bipartite graph GB with partitioning sets P and P lij and edge set

{PQ | P ∈ P , Q ∈ P lij, P ∩Q = ∅}.

If we set γ = d1
2 |P|e and δ = r2, we know that there exist sets V ′ ⊆ P and H ⊆ P lij with

|V ′| = γ and |H| = δ such that every path V ∈ V ′ meets all paths in H. This follows
from Lemma 4.3.12 and the fact that dGB

(P ) < 1
c
|P lij| for all P ∈ P and that therefore

E(GB) < |P| · 1
c
|P lij|

≤
⌊

1
2 |P|

⌋
1

2r2 |P lij|

≤
⌊

1
2 |P|

⌋ (
1
r2 |P lij| − 1

)
=

(|P| − d1
2 |P|e)(|P

l
ij| − r2)

r2

holds. Our last task is now to choose paths from V ′ that meet the paths of H in exactly
the right way to form an r-grid minor.

We set d = b
√
c/mc and start by partitioning one fixed path Q ∈ H into d segments

Q′1, Q
′
2, . . . , Q

′
d, each meeting sufficiently many paths from V . Thinking of Q as a path

from Ai to Aj, we find a partitioning point between Q′k and Q′k+1 in the first edge
ek ∈ Q \H l

pq on Q such that the first component of Q − ek meets at least kd|P lij| paths
from V . For k = 1, . . . , d − 1, denote this first component by Qk and set Qd = Q and
Q0 = ∅. Since the paths in V are pairwise disjoint, every segment Q′k = Qk − Qk−1,
k = 1, . . . , d, meets at least d|P lij| paths from V . This construction is possible, as we have

|V| ≥ 1
2P ≥

1
2 ·

2|P lpq|
m(m− 1) ≥

c

m2 |P
l
ij| ≥ d2|P lij|
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by condition (3) and (4).
In order to segment all paths in H, we have to find a set S of partitioning vertices.

For k = 1, . . . , d − 1, we know from condition (4) and (5) that H l
pq ∪ H l

ij − ek contains
at most |P lij| − 1 disjoint AiAj-paths. So we find a set Sk of |P lij| − 1 vertices such that
there exists no AiAj-path in H l

pq ∪H l
ij − ek − Sk. Since

S =
⋃

k∈{1,...,d−1}
Sk

contains less than d|P lij| vertices, every segment Q′k of Q meets a path Vk ∈ V that avoids
S.

Every path P ∈ P \ {Q} contains exactly one vertex vk from each Sk. Set P0 = ∅,
Pd = P and denote by Pk the initial segment of P − vk. We partition P into segments

P ′k = Pk − Pk−1, k = 1, . . . , d.

Now consider Vk ∈ V . Vk cannot meet Pk−1 as this would result in an AiAj-path
contained in Pk−1∪Vk∪(Q−Qk−1) avoiding both ek−1 and Sk−1, contradicting our choice of
Sk−1. Analogously, Vk cannot meet P −Pk. Therefore every path Vk ∈ {V1, . . . , Vd} meets
each path from H \ {Q} exactly in its kth segment and we can apply Lemma 4.3.11.

The lower bound of r4m2(r+2) used for the last theorem is by no means optimal but
it suffices to show the correctness of Theorem 4.3.2. Robertson, Seymour and Thomas
suspect that a bound of order O(r2 log r) might be closer to the right answer [48].

4.4 Well-quasi-ordering graphs of bounded tree-width
The main goal of this section is to prove that the graphs of bounded tree-width are well-
quasi-ordered by the minor relation .. For this, we will introduce a new term called
branch-width which, like tree-width, measures the connectivity of a graph. One of the
papers discussing branch-width is [25]. In [44], Robertson and Seymour showed that
branch-width and tree-width are closely related. More precisely, if bw(G) denotes the
branch-width of a graph G, the following proposition holds.

Proposition 4.4.1 For any graph G we have

bw(G) ≤ tw(G) + 1 ≤ 3
2 bw(G).

Therefore, if graphs of bounded branch-width are well-quasi-ordered the same holds
for graphs of bounded tree-width. The latter was proved within the graph minor series by
Robertson and Seymour [43]. We will, however, present a proof by Geelen et al. utilizing
branch-width [23].

More generally, branch-width is defined not only for graphs, but for symmetric sub-
modular functions. Therefore, we define branch-decompositions at first in general for
symmetric submodular functions and then in the context of graph theory. To prove that
for every integer n the family Gn of graphs of branch-width at most n is well-quasi-ordered
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we take an approach similar to the technique introduced by Nash-Williams in [37]. For
this, we utilise branch-decompositions of the graphs in Gn and additionally define a spe-
cific labeling of their edges establishing a useful order on subgraphs of graphs in Gn.
Finally, the results of this section are used to prove Theorem 4.1.1.

4.4.1 Symmetric submodular functions and branch-width

Definition 4.4.2 Let S be a finite set. A function ϕ defined on the set P(S) is symmetric
if

∀A ⊆ S : ϕ(A) = ϕ(S \ A),

and submodular if

∀A,B ⊆ S : ϕ(A ∪B) + ϕ(A ∩B) ≤ ϕ(A) + ϕ(B)

holds. For A,B ⊆ S with A ∩B = ∅ we additionally define

ϕ(A,B) = min{ϕ(X) | A ⊆ X,X ∩B = ∅}.

We call S ground set of ϕ and denote it by Sϕ.

Definition 4.4.3 A tree T is cubic, or binary, if all vertices in T have a degree of either
1 or 3.

Definition 4.4.4 A branch-decomposition of a symmetric submodular function ϕ is a
cubic tree T where the elements of Sϕ are injectively identified with leaves of T . To
simplify notation, we will assume Sϕ ⊆ V (T ) in the following.

Remark 4.4.5 T is also allowed to have unlabeled leaves, as they are easy to remove if
a branch-decomposition without unlabeled leaves is needed.

Definition 4.4.6 A subset S ′ϕ of Sϕ is displayed by a subtree T ′ of T if T ′ ∩ Sϕ = S ′ϕ.
The sets displayed by an edge e of T are the sets displayed by the components of T − e.
The symmetric function ϕ assigns the same value to these two sets, we call this the width
ϕ(e) of e.

We denote by Tk the subgraph of T induced by the set of edges that have width at
least k.

Definition 4.4.7 The maximum occurring width of an edge in T is the width of the
branch-decomposition T .

The branch-width of a symmetric submodular function ϕ is the minimum integer n
such that there exists a branch-decomposition of ϕ of width n.

Definition 4.4.8 Let G = (V,E) be a graph and E ′ ⊆ E. The connectivity function γG
assigns to E ′ the cardinality of ΓG(E ′), where ΓG(E ′) is the set of vertices incident with
both an edge in E ′ and an edge in E \ E ′.

The connectivity function is symmetric and submodular. We use it to define branch-
width of graphs.
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Figure 4.2: branch-decomposition T of width 2 of a series-parallel graph G, where all
unlabeled edges have width 2

Definition 4.4.9 The branch-width of a graph G = (V,E) is the branch-width of its con-
nectivity function γG with ground set E. Analogously, we call the branch-decompositions
of γG the branch-decompositions of G.

Lemma 4.4.10 If H is a minor of a graph G with branch-width bw(G) then H has
branch-width at most bw(G).

Proof. We can assume that |E(H)| ≥ 2, or else we have bw(H) = 0. Let T be the tree
belonging to a branch-decomposition of G of minimal width and let T ′ be the smallest
subtree of T such that E(H) ⊆ T ′. It is possible that T ′ has inner vertices with degree
2. By taking T ′ and adding an edge with an unlabeled leaf to all of these vertices , we
obtain a branch-decomposition of H with width at most bw(G).

Lemma 4.4.11 For a connected graph G = (V,E) the following holds:
(i) bw(G) = 0 if and only if |E| ≤ 1.
(ii) bw(G) ≤ 1 if and only if there exists at most one vertex v with d(v) ≥ 2.

Proof. (i) The first statement simply follows from our definition of branch-width.
(ii) The triangle K3 and a path consisting of 4 vertices both have branch-width 2.

Hence, from Lemma 4.4.10 we know that if bw(G) ≤ 1 then G contains neither of
these two graphs as a minor and this ensures our desired property. The converse
obviously holds.

It is easy to expand Lemma 4.4.11 to non-connected graphs simply by applying the
given restrictions to all connected components.

Now consider two arbitrary different edges f and h of a tree T corresponding to
a branch-decomposition of a symmetric submodular function ϕ. Denote by F the set
displayed by the component of T − f that does not contain h, and define H analogously.
We call f and h linked if the minimum width over all edges in the edge-minimal path P
in T containing f and h equals ϕ(F,H). In any case, the width of every edge of P is at
least ϕ(F,H).

Definition 4.4.12 A branch-decomposition T is linked if every possible pair of edges of
T is linked.
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Definition 4.4.13 Let A and B be two sets. If neither A ∩ B nor B \ A is empty, then
A splits B.

Theorem 4.4.14 Let ϕ be a symmetric submodular function with width n. Then ϕ has
a linked branch-decomposition of width n.

Proof. In order to find a linked branch-decomposition of ϕ, we define a partial order ≺
on the set of branch-decompositions of ϕ. For two branch-decompositions T and T ′ of ϕ,
we say that T ′ ≺ T if there exists an integer k such that

|E(T ′k)| < |E(Tk)| or |E(T ′k)| = |E(Tk)| ∧ c(T ′k) > c(Tk)

and such that
∀l > k : |E(T ′l )| = |E(Tl)| ∧ c(T ′l ) = c(Tk).

As ϕ has branch-width n, all minimal elements in this partial order are branch-decom-
positions of width n. We choose one of them and denote it by T . Now, we want to show
that this branch-decomposition T is linked. Suppose not. Then there exists a pair (f, h)
of edges that are not linked. By forming a new branch-decomposition T̂ of ϕ we will get
the desired contradiction.

T̂ is constructed as follows: Let A ⊆ Sϕ be a set containing F , but disjoint to H, such
that ϕ(A) = ϕ(F,H). In addition, A should split as few subsets of Sϕ displayed by edges
in T as possible. Set T uv to be the (unique) path containing exactly one endvertex from
each f and h, with u ∈ f and v ∈ h. T̂ consists of a copy T+ of the component of T − h
containing f , a copy T− of the component of T − f containing h and an edge a joining
the copies of u and v of degree 2. This duplicates exactly the component of T − {f, h}
containing u and v. If every element of Sϕ is identified with its copy in T+ if it is also an
element of A, and with its copy in T− otherwise, then T̂ is a branch-decomposition of ϕ.

For every edge e ∈ T and a copy ê of e in T̂ we have ϕ(ê) ≤ ϕ(e). To see this, let
ê be element of T+ and denote by W the set displayed by the component of T − e not
containing v. Thus, we have ϕ(e) = ϕ(W ) and ϕ(ê) = ϕ(W ∩A). The submodularity of
ϕ together with the fact that W ∪ A contains F , but no vertex from H, and therefore
has width ϕ(W ∪ A) ≥ ϕ(F,H) = ϕ(A) gives us

ϕ(ê) + ϕ(W ∪ A) ≤ ϕ(e) + ϕ(A) ≤ ϕ(e) + ϕ(W ∪ A)

and thus ϕ(ê) ≤ ϕ(e).
Assume that equality holds here. Then we have ϕ(W ∪ A) = ϕ(A) = ϕ(F,H). Since

A splits as few sets displayed by edges in T as possible, W ∪A splits at least as many as
A. Furthermore, W is displayed by e, so A contains either all or none of the vertices of
W . It follows that A does not split W and one of the sets W \ A and W ∩ A is empty.
As we have

ϕ(A) = 1
2 (ϕ(A) + ϕ(Sϕ \ A)) ≥ 1

2 (ϕ(Sϕ) + ϕ(∅)) = ϕ(∅)

for our symmetric and submodular function ϕ, we know that either ϕ(W \A) ≤ ϕ(A) or
ϕ(W ∩ A) ≤ ϕ(A) holds. We want to examine the structure of T̂ϕ(A)+1. If there exists
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another copy e∗ of e in T̂ , it is of width

ϕ(e∗) =

ϕ(W \ A), if e /∈ T uv

ϕ(W ∪ A), if e ∈ T uv.

So, for e ∈ E with ϕ(e) = ϕ(ê), and therefore ϕ(W ∪ A) = ϕ(A), we have either
ϕ(ê) ≤ ϕ(A) or the width of its second copy is bounded above by ϕ(A). Hence, T̂ϕ(A)+1
contains at most one copy of e.

This implies |E(Tk)| ≥ |E(T̂k)| for all k ≥ ϕ(A) + 1. Moreover, we know for k ≥
ϕ(A) + 1 that ϕ(a) = ϕ(A) and therefore c(T̂k) ≥ c(Tk) in the case of |E(Tk)| = |E(T̂k)|.
T is ≺-minimal by definition, hence we cannot have T̂ ≺ T and conclude that

∀k ≥ ϕ(A) + 1 : |E(Tk)| = |E(T̂k)| ∧ c(T̂k) = c(Tk)

holds. As a separates the component of Tϕ(A)+1 containing T uv ∪ {f, h} in T̂ , we have a
contradiction.

4.4.2 Well-quasi-ordering graphs of bounded branch-width
To show that the family G of graphs of bounded branch-width is well-quasi-ordered, we
will use their branch-decompositions and a lemma on trees using a similar proof technique
as for Kruskal’s Theorem 2.2.9 on finite trees.

We have already defined rooted trees and how a rooted tree T can be interpreted as
a directed graph, where each edge has a head and a tail and is directed away from the
root r(T ). Now we additionally define rooted forests.

Definition 4.4.15 A rooted forest F contains countably many rooted trees. The set of
the roots (leaves) of all these trees is the set of roots (leaves) of F . Edges incident with
a root or a leaf are called root edges, or leaf edges respectively.

If S ⊆ E(F ) be a set of edges, then uF (S) denotes the set of edges whose tail is head
of an edge in S.

A collection of countably many branch-decompositions can be interpreted as a binary
forest (F, l, r).

Definition 4.4.16 A binary forest (F, l, r) consists of a rooted forest F containing only
cubic trees such that every root has exactly one outgoing edge. Moreover, l and r are
functions labeling for each nonleaf edge e its two succeeding edges by l(e) and r(e).

Definition 4.4.17 A map ψ assigning numbers from 0 to n to the edges of a graph G is
called n-edge labeling of G.

If G is a rooted forest, an edge e of G ψ-precedes another edge f if ψ(e) = ψ(f) and
there exists a directed path P in G with first edge e and last edge f such that ψ(g) ≥ ψ(e)
for every edge g on P . We also say that f ψ-succeeds e.

Lemma 4.4.18 Let F be a rooted forest, ψ an n-edge labeling on F and � a quasi-order
on E(F ) with no infinite strictly descending sequence and such that e � f if f ψ-precedes
e. If � does not well-quasi-order E(F ), then there exists an infinite antichain A of edges
such that uF (A) is well-quasi-ordered by �.

40



Proof. We prove this theorem by contradiction and assume that n is minimal such that
we can find an n-edge labeling ψ of a forest F contradicting the theorem. Fix n, F and
ψ for the rest of the proof. The set N ⊆ E(F ) of edges with label 0 is neither empty nor
well-quasi-ordered since otherwise it would be possible to form an (n − 1)-edge labeled
counterexample by removing N and relabeling E(F ) \N . Like in the proof of Kruskal’s
theorem on trees, Theorem 2.2.9, we construct a bad sequence a0, a1, a2, . . . of edges from
N such that
(1) for all k ≥ 0 there exists a bad sequence starting with a0, a1, . . . , ak−1, ak, and
(2) there is no bad sequence starting with a0, a1, . . . , ak−1, e where e is an edge in N \{ak}

ψ-succeeding ak.
Since infinite strictly descending chains are impossible, our sequence contains an infinite
antichain A and by assumption, uF (A), and hence uF ({a0, a1, . . . }), cannot be well-quasi-
ordered. We form another counterexample with forest R that consists of all edge-maximal
subtrees of F with root edges in uF ({a0, a1, . . . }). R inherits this property from F
because of the fact that uR(S) = uF (S) for all S ⊆ E(R). Hence, we find a bad sequence
b0, b1, b2, . . . in N ∩ E(R). Every edge bl of this sequence ψ-succeeds exactly one edge
as(l) from a0, a1, . . . . Let s(k) be minimal such that there exists an edge bk ψ-succeeding
as(k). Then the sequence

a0, a1, . . . , as(k)−1, bk, bk+1, . . .

is bad since a good pair (ai, bj) would imply ai � bj � as(j) with i < s(k) ≤ s(j), which
is a contradiction.
Lemma 4.4.19 Let F , ψ and � be given as in Lemma 4.4.18 with the only extension
that (F, l, r) is an infinite binary forest. If the leaf edges of F are well-quasi-ordered by
� but the set of root edges is not, then there exists an infinite antichain e0, e1, e2, . . . of
nonleaf edges with the following two properties:
(1) l(e0) � l(e1) � l(e2) � . . .
(2) r(e0) � r(e1) � r(e2) � . . .

Proof. Lemma 4.4.18 ensures us the existence of an antichain A such that the set uF (A)
is well-quasi-ordered by �. As an antichain, A can only contain finitely many leaf edges.
Omitting them and repeatedly applying Lemma 2.1.10 to find suitable ascending se-
quences yields the desired result.

We are now ready to prove the main theorem of this section. We will want to describe
subgraphs from graphs and the vertices where they attach to their supergraphs. For this,
we use the notion of rooted graphs.
Definition 4.4.20 A pair (G,R) is a rooted graph if G is a graph and R a subset of
V (G).

A minor of a rooted graph (G,R) is a rooted graph (G′, R′). G′ is a minor of G
obtained by deletion of edges and vertices not in R, and by contracting edges. R′ equals
R, except that if an edge uv ∈ E(G) containing a vertex from R′ is contracted while
constructing G′, then R′ changes to (R′ \ {u, v}) ∪ {vuv}.
Lemma 4.4.21 Let G = (V,E) be a graph and E1 ⊆ E2 ⊆ E. Denote by G1 and G2 the
subgraphs of G induced by E1 and E2 respectively. If

γG(E1) = γG(E1, E \ E2) = γG(E2)
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holds, then the rooted graph (G1,ΓG(E1)) is a minor of (G2,ΓG(E2)).

Proof. G1 already is a minor of G2. Menger’s theorem guarantees the existence of γG(E1)
disjoint paths in G2 from ΓG(E1) to ΓG(E2). By contracting these paths, we obtain
(G1,Γ(E1)) as a minor of (G2,Γ(E2)).

Theorem 4.4.22 The family Gn of graphs with branch-width at most n is well-quasi-
ordered by the minor relation ..

Proof. For every graph G ∈ Gn, let TG be a linked branch-decomposition of G of width
at most n. Without loss of generality, we can assume that TG contains an unlabeled leaf.
If not, we simply subdivide an edge and add a leaf edge with an unlabeled leaf to the
new vertex. The set F of all these linked branch-decompositions becomes a binary forest
(F, l, r) by fixing l and r arbitrarily such that each nonleaf edge e is incident to exactly
one left edge l(e) and one right edge r(e), both having the head of e as a tail.

We define a quasi-order � on E(F ) and an n-edge labeling ψ of F that fulfil the
preconditions of Lemma 4.4.19. For every edge e ∈ TG′ of some G′ ∈ Gn we denote by Ee

the set of edges displayed by the component of TG′ − e not containing r(TG′). Ge is the
graph induced by Ee, and Re the set ΓG′(Ee). Let f and h be edges from E(F ). Then
f � h if the rooted graph (Gf , Rf ) is a minor of the rooted graph (Gh, Rh). The function
ψ defined by ψ(e) = |Re| for e ∈ E(F ) is an n-edge labeling of F and we have e � e′

whenever an edge e′ ψ-precedes another edge e.
E(F ) cannot contain an infinite strictly descending chain. Moreover, the root edges

are not well-quasi-ordered by � as this would imply that the set Gn is well-quasi-ordered
by the minor relation .. For every leaf edge e ∈ E(F ) the graph Ge contains at most
one edge. Therefore, the set of leaf edges is well-quasi-ordered by � and we can apply
Lemma 4.4.19 on (F, l, r), � and ψ. This gives us an infinite antichain e0, e1, e2, . . .
of nonleaf edges with properties (1) and (2). For every edge e in F , (Gl(e), Gr(e)) is a
separation of Ge of order |Rl(e) ∩Rr(e)|. As Rl(e) and Rr(e) both have cardinality at most
n, we can find a subsequence E ′ of e0, e1, e2, . . . such that all sets Rl(e′) with e′ ∈ E ′ have
the same cardinality and the sets in {Rr(e′) | e′ ∈ E ′} have this property too. There are
only finitely many combinations for mapping the vertices of a set Rl(e′) to the vertices
in Rr(e′). Due to properties (1) and (2) of E ′, there exist edges ei and ej in E ′ such
that l(ei) � l(ej), r(ej) � r(ej) and (Gei , Rei) is a minor of (Gej , Rej ). As this means
that ei � ej and E ′ is an antichain, we have a contradiction. Therefore, the set Gn is
well-quasi-ordered.

4.4.3 Implications of excluding a planar graph as a minor
We can deduce an analogous result to Theorem 4.4.22 for graphs of bounded tree-width.

Theorem 4.4.23 The family of graphs with tree-width at most n is well-quasi-ordered by
the minor relation ..

Proof. This follows from Theorem 4.4.22 and Proposition 4.4.1.

Together with the result from Theorem 4.3.3, that excluding a planar graph yields
graphs of bounded tree-width, we can now prove Theorem 4.1.1.
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Proof of Theorem 4.1.1. Suppose that the sequence

G0, G1, G2, . . .

is a bad sequence of graphs. Therefore there cannot exist any j ≥ 1 such that G0 . Gj.
Hence all graphs Gj with j ≥ 1 are in Forb(G0). Since G0 is planar, it follows from
Theorem 4.3.3 and Theorem 4.4.23 that the graphs in Forb(G0) are well-quasi-ordered
by the minor relation .. The sequence

G1, G2, . . .

is a countable sequence of graphs of Forb(G0), hence there have to exist indices 1 ≤ i < j
such that Gi . Gj. This is a contradiction to our assumption that the initial sequence is
a bad sequence. We conclude that Theorem 4.1.1 is true.

4.5 A generalisation of Kuratowski’s theorem
From Theorem 2.2.8 we already know that the list of excluded minors is finite for the
family of planar graphs. But what if we consider graphs embeddable in another surface
than the plane? Theorem 4.4.23 and Theorem 4.3.2 can be used to derive a generalisation
of Kuratowski’s Theorem 2.2.7.

Theorem 4.5.1 For every surface S the family GS of the graphs embeddable in S can be
described by a finite list of excluded minors.

The Graph Minor Theorem, Theorem 2.2.1, implies the above theorem. It is, however,
possible to prove Theorem 4.5.1 directly. For this, we note that the family of graphs
embeddable in a certain surface S is minor-closed. Furthermore, the graphs contained in
the Kuratowski set KGS for GS cannot contain arbitrarily large grid minors [16]. Hence,
it follows from Theorem 4.3.2 that the graphs in KGS have bounded tree-width and using
Theorem 4.4.23 we conclude that Theorem 4.5.1 holds.
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Chapter 5

Algorithmic Implications

The results published in the Graph Minors series of papers by Robertson and Seymour
have a great impact on algorithmics concerning graphs, both from a theoretical and
practical point of view. They proved the existence of a polynomial-time algorithm to
decide if a given graph G contains a fixed graph H as a minor [45]. Together with the
graph minor theorem, more precisely Corollary 2.2.4, this implies that membership in a
minor-closed class of graphs can be decided in polynomial time, as there is only a finite
number of minor testings to execute. This is, however, a purely theoretical bound on the
time complexity of such an algorithm. Neither does it provide us with the actual list of
excluded minors, nor does it say anything about the practicality of this algorithm. The
list of excludes minors could be huge, as are the constants in the O(n3) running time of
the minor-testing algorithm of Robertson and Seymour. But it does give us information
about the complexity of certain problems which can be proved to be minor-closed, even
if a polynomial time algorithm has not yet been found.

In this chapter we will present some results concerning the computation of the tree-
width of a given graph G [2, 9, 38].

We will further address improvements made in minor testing and examine a recent
algorithm by Kawarabayashi et al. for the k disjoint paths problem. The main sources
for this section were [45] and [29].

Then we show how the concept of tree-decomposition is used to make progress in
solving (NP-hard) problems in polynomial time on graphs of bounded tree-width. We
give a brief overview of the topic and then present a generic approach for the construction
of a polynomial time algorithm discussed by Bodlaender in [10].

Finally, we demonstrate the application of previously given results about brambles in
the field of graph searching. A pursuit-evasion game discussed by Seymour and Thomas
is presented [53].

5.1 Computing tree-width
In general, it is NP-complete to compute the tree-width of a given graph G [2]. However,
testing for a tree-width of at most a fixed integer k is less complex. Bodlaender proved
the following theorem in [9].
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Theorem 5.1.1 Let k be a fixed integer. Then there exists an algorithm which
given a graph G

outputs
either a tree-decomposition of G of width k
or the result that tw(G) > k

in O(|V (G)|) time.

Later, Perković and Reed improved Bodlaender’s algorithm to give additional infor-
mation in the case of tw(G) > k [38]. This is useful for an improved algorithm solving
the disjoint paths problem which we will discuss in the following section.

Theorem 5.1.2 Let k be a fixed integer. Then there exists an algorithm which
given a graph G

computes
either a tree-decomposition of G of width k
or a subgraph G′ of G of tree-width greater than k and a tree-decomposition of G′ of

width at most 2k
in O(|V (G)|) time.

It is desirable to have an algorithm that computes tree-width in an acceptable time
as there are many problems that can be implemented efficiently for graphs of bounded
tree-width. We will later present such problems.

5.2 Minor testing and the k disjoint paths problem

The question if a given graph G contains a fixed graph H as a minor arises naturally, not
least due to the results obtained by N. Robertson and P. D. Seymour regarding the graph
minor theorem. Within their framework of the Graph Minors series they introduced an
algorithm to solve the k disjoint paths problem on a graph G in O(|V (G)|3) time [45].
This fundamental problem is closely related to the problem of H minor containment.
More precisely, Robertson and Seymour designed their algorithm to deal with δ-folios, a
concept generalising the two aforementioned problems. Recently, in [29], Kawarabayashi,
Kobayashi and Reed improved the complexity to O(|V (G)|2) by optimizing the algorithm
given in [45]. For planar graphs and graphs of bounded tree-width linear time algorithms
exist, see [1, 39] for example.

Definition 5.2.1 (disjoint paths problem) Let G = (V,E) be a graph. The disjoint paths
problem deals with the question if, for given pairs (s1, t1), (s2, t2), . . . (sk, tk) of vertices of
G, there exist k internally vertex-disjoint paths P1, P2, . . . , Pk in G, each Pi connecting si
and ti. If k is fixed, we also call it k disjoint paths problem. The vertices to be connected
are named terminals.

For k not fixed, the disjoint path problem is NP-complete, even for planar graphs
[28, 29].
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Definition 5.2.2 (disjoint connected subgraphs problem) Given a graph G = (V,E)
and non-empty subsets Z1, . . . , Zk ⊆ V with ∑k

i=1|Zi| ≤ t, we want to know if there
exist pairwise disjoint connected subgraphs G1, . . . , Gk of G such that Zi ⊆ V (Gi) for
i ∈ {1, . . . , k}. Here, t is fixed.

To obtain the disjoint paths problem from the disjoint connected subgraphs problem,
we only have to set Zi to be the set {si, ti}.

Definition 5.2.3 (H minor containment problem) Let H be a fixed graph. Given a
graph G, we ask if G contains H as a minor.

Definition 5.2.4 Let (G,R) be a rooted graph, but now we order the vertices in R. We
have

R = (v1, v2, . . . , vk) ∈ V (G)k

as roots and write (G, v1, . . . , vk) for our graph (G,R). A graph (H, u1, . . . , uk) is a minor
of (G, v1, . . . , vk) if there exists a mapping φ of H to G such that:
• Distinct edges of H are mapped to distinct edges of G.
• Every vertex u ∈ V (H) is mapped to a non-empty connected subgraph φ(u) of G.
• For all i ∈ {1, . . . , k} the root vi is contained in V (φ(ui)).
• For all u ∈ V (H), φ(u) does not contain any edge that is an image of an edge of H

under φ.
• For different vertices u,w ∈ V (H) the subgraphs φ(u) and φ(w) are disjoint.
• If there exists an edge e joining u and w in H, then φ(e) has endvertices in φ(u)

and in φ(w).

Definition 5.2.5 The set of all minors of a rooted graph (G, v1, . . . , vk) is its folio.

Definition 5.2.6 The δ-folio of a rooted graph (G, v1, . . . , vk) is a subset of the folio
which contains all minors (H, u1, . . . , uk) such that
(1) |E(H)| ≤ δ and
(2) |V (H)− {v1, . . . , vk}| ≤ δ.

Definition 5.2.7 For a set Z ⊆ V (G) of cardinality k the δ-folio of G relative to Z is
the δ-folio of (G, v1, . . . , vk) for v1, . . . , vk arbitrarily chosen from Z = {v1, . . . , vk}. The
δ-folio of every other possible k-tuple of vertices from Z is thereby determined.

Definition 5.2.8 (folio problem) Given a graph G = (V,E) , δ ≥ 0 and Z ⊆ V , we want
to determine the δ-folio of G relative to Z.

In [45], N. Robertson and P. D. Seymour give an algorithm solving the folio problem in
O(|V |3) time. To apply it to our problem of H minor containment, we simply have to set
Z = ∅ and δ = max{|V (H)|, |E(H)|}. By running the 0-folio algorithm for G relative to
Z1∪· · ·∪Zt, we obtain a solution for the disjoint connected subgraphs problem described
above. Therefore the folio problem also applies to the k disjoint paths problem.

Kawarabayashi et al. mostly stick to the structure of the algorithm given in [45], but
restrict their paper to the case of solving the k disjoint paths problem. Algorithms for
the other problems follow from adapting their proof to the δ-folio concept.
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5.2.1 An O(|V (G)|2) time algorithm for the k disjoint paths prob-
lem

In this section we will present the algorithm introduced by Kawarabayashi et al. in [29].
It is based on the algorithm and results given by Robertson and Seymour in [45] and
improves the running time to O(|V (G)|2).

The algorithm given by Robertson and Seymour for the k disjoint paths problem
roughly runs as follows. Either the input graph G has bounded tree-width, then it is
possible to solve the problem on G in linear time by dynamic programming. Or G
has large tree-width. Then they search for a large t-clique minor that can be used to
connect the terminals by disjoint paths. If there exists no such t-clique minor or if it can
be separated from the terminals by a sufficiently small separation and is therefore not
useful, they search for a vertex v that is irrelevant for the given problem. More precisely,
the problem can be solved for G if and only if it can be solved in G− v. Removing such
a vertex reduces the input graph for the next iteration step.

The proof of correctness of this algorithm needs numerous results from papers of the
Graph Minors series. However, a shorter proof was developed just recently [31].

In this chapter we will sometimes denote the cardinality |V (G)| of the input graph G
by n. Analogously, we set m to be the number of edges.

5.2.1.1 Walls and t-certificates

Definition 5.2.9 An elementary wall of height r is a graph consisting of bricks, that is,
cycles of length six, which are arranged in r rows of r bricks each. A wall of height r,
or r-wall, is a subdivision of an elementary wall of height r. Obviously, walls are planar
graphs and all vertices have degree at most 3. Four specific vertices are distinguished
and called corners, see figure 5.1.

Figure 5.1: elementary wall of height 4 with marked corners

Remark 5.2.10 Elementary walls have a structure very similar to the structure of grids.
Elementary walls, however, have an advantage. Their vertices have a degree of at most
three, in contrast to vertices of grids which mostly have degree four.

Definition 5.2.11 The vertices of degree 3 in a wall W are called nails of W . Given a
planar embedding of W , the perimeter per(W ) of W is the boundary of the unique face
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in this embedding which contains 4(r − 1) nails. If W is contained in a graph G, there
exists a unique component C of G − per(W ) which contains W − per(W ). We call the
induced subgraph G[V (C) ∪ V (per(W ))] compass of W and denote it by comp(W ).

Definition 5.2.12 A subwall W ′ of a wall W is a subgraph of W which is a wall. If
it consists of h(W ′) consecutive bricks in h(W ′) consecutive rows of W it is a proper
subwall. It is dividing in G if W −W ′ is disjoint from the compass of W ′ in G.

Walls are closely related to grids. Every graph G containing an r-wall as a minor also
contains an (r + 1)-grid minor. Conversely, if G contains an r-grid minor, it contains an
br/2c-wall minor as well.

Theorem 5.2.13 For every integer r there is an integer f1(r) such that every graph of
tree-width at least f1(r) has an r-wall minor.

Proof. This follows from Theorem 4.3.2 and the relation between grids and walls men-
tioned above.

Theorem 5.2.14 For every integer r and a graph G with tw(G) ≥ f1(r), we can find an
r-wall in G in linear time.

Proof. We use the algorithm described in Theorem 5.1.2 to find a subgraph G′ of G whose
tree-width fulfils

f1(r) ≤ tw(G′) ≤ 2f1(r).
From Theorem 5.2.13 follows that G′ contains an r-wall minor which can be found in
linear time by applying dynamic programming to the given tree-decomposition of G′ of
width at most f1(r).

Definition 5.2.15 We call a wall W flat if there do not exist two vertex disjoint paths
in comp(W ) joining diagonally opposite corners. This rather imprecise description refers
to a representation of W as shown in figure 5.1.

Definition 5.2.16 LetW be a wall in a graph G. We say that comp(W ) can be embedded
into a plane up to 3-separations if there exist attached vertex sets

A1, A2, . . . , Al ⊆ V (comp(W ))

such that the following conditions hold.
(1) The sets A1, . . . , Al are pairwise disjoint and contain no corners of W .
(2) For all i ∈ {1, . . . , l} the neighbourhood N(Ai) of Ai has cardinality |N(Ai)| ≤ 3.
(3) For all i, j ∈ {1, . . . , l} with i 6= j we have N(Ai) ∩ Aj = ∅.
(4) Let W ′ denote the graph obtained from comp(W ) by deleting Ai and adding new

edges joining every pair of distinct vertices in N(Ai) for all i ∈ {1, . . . , l}. Then W ′

can be drawn in a plane such that all corners of W are on the outer (unbounded)
face boundary. We call this a flat embedding.

Seymour showed in [51] that flat walls can be characterised by such embeddings.

Theorem 5.2.17 A wall W in G is flat if and only if comp(W ) can be embedded into a
plane up to 3-separations.
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To improve the overall running time of the Robertson-Seymour-algorithm it is crucial
to improve running times of subroutines that are of order O(m). As m is of order O(n2),
we try to bound the number of edges of the graph considered by O(n). Useful tools are
t-certificates and a result by Nagamochi and Ibaraki.

Definition 5.2.18 Let G = (V,E) be a graph. A t-certificate of G is a subgraph Gt =
(V,Et) of G with the properties that
(1) |Et| is of order O(|V |) and
(2) for all u, v ∈ V we have a vertex connectivity of κGt(u, v) ≥ min{t, κG(u, v)}.

Note that G′ is a spanning subgraph of G. Nagamochi and Ibaraki developed an
algorithm which finds a t-certificate of G in O(|E|) time [36]. It will be the first step of
the algorithm by Kawarabayashi et al.

Theorem 5.2.19 There exists an algorithm to compute a t-certificate G′ of a graph G
in time O(m).

5.2.1.2 Finding a large t-clique minor or an irrelevant vertex

Like the Robertson-Seymour-algorithm, our algorithm will use large t-clique minors to
construct the desired paths or reduce the order of the graph considered. The question is
whether we can find a large t-clique minor in G or not. The following theorem by Reed
and Wood, published in [40], gives a sufficient condition for finding such a minor in linear
time.

Theorem 5.2.20 Given a graph G = (V,E) with |E| ≥ 2l−3|V | for some positive integer
l, a Kl minor can be found in O(l(|V |+ |E|)) time.

Remark 5.2.21 To find a Kl minor using Theorem 5.2.20 it suffices to use only 2l−3|V |
edges of the graph G. Hence, in practice, we have an actual running time of order O(n).

Given a sufficiently large wall in a graph G, we can also follow a different approach
to find a t-clique minor.

Theorem 5.2.22 Let t, h ≥ 2 be fixed integers. Then there exists a computable constant
f2(t, h) and an algorithm which

given a graph G and a wall W of height at least f2(t, h)
computes

either a t-clique minor of G
or a subset X ⊆ V (G) of order at most

(
t
2

)
and t2 disjoint proper subwalls

W1,W2, . . . ,Wt2

of height h. Each subwall is dividing and flat in G−X and the algorithm returns a flat
embedding for every subwall as well
in O(m) time.
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Theorem 5.2.22 was already stated by Robertson and Seymour in [45], but with run-
ning time in O(nm). Kawarabayashi et al. improve this running time to O(m) by
employing a different algorithm for the most expensive part. They use a test for flatness
by Kapadia, Li and Reed which runs in O(m) time [27].

When we have found a sufficiently large t-clique minor, its usefulness depends on
its position in the graph relative to the terminals. If it is not “too far away” from the
terminals it will be possible to construct the desired paths. Robertson and Seymour used
the following theorem.

Theorem 5.2.23 Let s1, . . . , sk, t1, . . . , tk be terminals and K a |K|-clique minor of order
at least 3k in a graph G. If there does not exist a separation (A,B) of G of order at most
2k − 1 such that
(1) A contains all terminals and
(2) B − A contains at least one node of K
then k paths solving the k disjoint paths problem for the given terminals can be found in
O(m) time.

By using t-certificates, Kawarabayashi et al. improve the running time to O(n).

Theorem 5.2.24 Let k be a fixed integer.
Given a graph G = (V,E) with terminals s1, . . . , sk, t1, . . . , tk
and a 3k-clique minor K in G
and a 2k-certificate G2k = (V,E2k) of G

we can
either find k disjoint paths P1, . . . , Pk, each Pi joining si and ti, for i = 1, . . . , k, in

O(|V |) time,
or construct a graph G′ = (V ′, E ′) with |V ′| ≤ |V | − 1 and a 2k-certificate G′2k =

(V ′, E ′2k) for G′ such that V ′ contains all terminals and the k disjoint paths problem in
G′ is equivalent to the original problem. And this in O(|V |+ |E \ E2k|) time.

Proof. We search for a separation fulfilling the properties 1 and 2 from Theorem 5.2.23.
If the smallest such separation is of order at least 2k, then we can utilise Theorem 5.2.23
to find k paths as desired.

Any such separation (A,B) of order at most 2k − 1 can be found by a simple flow
algorithm applied to K∪G2k. Deleting B−A from G and adding new edges joining every
pair of distinct vertices in A ∩ B diminishes G to G′ without changing the solvability of
the given problem by Theorem 5.2.23. To obtain a 2k-certificate of G′, we execute the
same procedure on G2k. We then apply the algorithm of Theorem 5.2.19 in O(|V |) time
since we have |E2k|+

(
2k−1

2

)
edges.

From the last theorem it follows that, given a large t-clique minor in G, we can either
solve the k disjoint paths problem or reduce it to a smaller instance by deleting vertices
irrelevant for our problem. What if we do not have such a minor at our disposal? If G has
bounded tree-width, Robertson and Seymour adapt a method introduced by Arnborg and
Proskurowski in [4] to solve the δ-folio problem on G. Kawarabayashi et al. concentrate
on the subproblem of finding realisable partitions, a problem corresponding to the disjoint
connected subgraphs problem, and to 0-folio respectively.

51



Definition 5.2.25 Let G = (V,E) be a graph and Z ⊆ V . A partition {Z1, Z2, . . . , Zp}
of Z is realisable if there exist disjoint trees T1, T2, . . . , Tp in G such that Zi ⊆ V (Ti) for
i = 1, . . . , p.

Furthermore, Kawarabayashi et al. modify the results used by Robertson and Seymour
in that they assume the set of edges E to be of order O(|V |). This is due to the fact
that their algorithm starts by repeatedly applying Theorem 5.2.20 and Theorem 5.2.24
to either solve the problem using a 3k-clique minor or to reduce the number of edges in
the graph considered. Therefore, the following theorems may state linear running times
in n even if, in general, they are of order O(m).

Theorem 5.2.26 Let w and k be fixed integers. Then there exists an algorithm which
given a graph G = (V,E) with |E| of order O(n) and a tree-decomposition of width

at most w
and a set Z ⊆ V of order at most 2k

enumerates all realisable partitions of Z in G. And this in O(f(k, w) · n) time, for some
function f of k, w.

Obviously, Theorem 5.2.26 solves the k disjoint paths problem for graphs of bounded
tree-width. In the case that the input graph G has too large tree-width to apply Theo-
rem 5.2.26 efficiently and no 3k-clique minor can be found, the algorithm will search for
an irrelevant vertex and remove it.

Kawarabayashi et al. extract the following theorem from [45] by combining several
results and adapting them to the terminology used in their paper.

Theorem 5.2.27 For a fixed integer k there exists a computable constant f(k) such that
given a graph G and a subset X ⊆ V (G) of order |X| ≤

(
3k
2

)
and a flat wall W of height f(k) in G−X

there exists an irrelevant vertex v ∈ V (W ). Furthermore,
given a flat embedding of comp(W ) with attached vertex sets A1, . . . , Al
and, for i = 1, . . . , l, all realisable partitions of Zi in A′i where

A′i = Ai ∪X ∪ (N(Ai) ∩ V (comp(W ))) and
Zi = X ∪ (N(Ai) ∩ V (comp(W )))

an irrelevant vertex v can be found in linear time.

They further improve Theorem 5.2.27 by replacing the condition concerning realisable
partitions by adding restrictions to the attached vertex sets A1, . . . , Al.

Theorem 5.2.28 For any fixed integer k there exist computable constants f(k), g(k) and
an algorithm which

given a graph G and a subset X ⊆ V (G) of order |X| ≤
(

3k
2

)
and a flat wall W of height f(k) in G−X
and a flat embedding of comp(W ) with attached vertex sets A1, . . . , Al such that all

the components G[A1], . . . , G[Al] have tree-width at most g(k)
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finds an irrelevant vertex v in O(n) time.

Proof. We want to utilise Theorem 5.2.27. For every attached vertex set Ai with i ∈
{1, . . . , l}, the induced subgraph G[Ai] of G has bounded tree-width. Thus the same
holds for A′i defined as in Theorem 5.2.27. So we can use Theorem 5.1.1 to find a tree-
decomposition of G[A′i] in O(|A′i|) time. Then, by Theorem 5.2.26, we can enumerate all
realisable partitions of Zi in A′i, in O(|V |) time as well. From |N(Ai)∩V (comp(W ))| ≤ 3
and |X| ≤ 9k2 it follows that

l∑
i=1
|A′i| ≤

l∑
i=1
|Ai|+ (|X|+ 3)l

which is in O(n). Thus, combined with Theorem 5.2.27, the algorithm runs in O(n)
time.

What is missing so far is the confirmation that we can find X and W as required by
Theorem 5.2.28. Kawarabayashi et al. show that this is possible in linear time.

Theorem 5.2.29 For any fixed integer k there exist computable constants h(k) and g(k)
and an algorithm which

given a graph G = (V,E) of tree-width at least h(k)
computes

either a 3k-clique minor of G
or a pair (X,W ) satisfying the conditions for Theorem 5.2.28.

in O(n) time.

Proof. Set h(k) ≥ f1(f2(3k, f(k))) with f(k) as in Theorem 5.2.28, f1(k) as in Theo-
rem 5.2.13 and f2(k) as in Theorem 5.2.22. Furthermore, set g(k) ≥ h(k).

If G has at least 23k−3|V | edges, then, by Theorem 5.2.20, we can find a 3k-clique
minor.

If not, Theorem 5.2.14 tells us that we can find a wall W of height f2(3k, f(k)) in
G in linear time. Now Theorem 5.2.22 either gives us a 3k-clique minor of G or a set
X ⊆ V of order |X| ≤

(
3k
2

)
and 9k2 disjoint proper subwalls of height f(k) as described

in Theorem 5.2.22. We still have an overall running time linear in n, as |E| is of order
O(n).

In the case that we have not yet found a 3k-clique minor, we choose two of the subwalls
and denote them by W1 and W2. For both of them we have given a flat embedding as
well. Let

Ai,1, Ai,2, . . . , Ai,li , for i = 1, 2,

denote the corresponding attached vertex sets. By Theorem 5.1.1, we can test in linear
time if for j = 1 or j = 2 all subgraphs G[Ai] with i = 1, . . . , li have tree-width at most
h(k). If so, the conditions for Theorem 5.2.28 are satisfied.

Otherwise, we may assume that tw(G[Aj,1]) > h(k) holds for j = 1, 2. As A1,1 and
A2,1 are disjoint, one of these two sets, let us say A1,1, has cardinality at most |V |/2.
Furthermore, A1,1 is one of the components of G−X −N(A1,1).
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Now we start all over with G[A1,1 ∪X ∪N(A1,1)] and repeat the previous procedure.
When we come to the point of choosing two subwalls of height f(k) there will exist two
subwalls that do not contain any vertex of X ∪N(A1,1), since we have

|X ∪N(A1,1)| ≤
(

3k
2

)
+ 3 < 9k2 − 2.

The next iteration step will only consider G[A1,1], hence reduce the size of the input
graph by half.

From this it follows that the overall running time is of order O(n). To see this, denote
the running time of the above procedure by T (n). The running times of the individual
iterations sum up to

T (n) +O(n) + T
(
n

2

)
+ T

(
n

4

)
+ . . . ,

which is of order O(n).

5.2.1.3 The algorithm

The algorithm roughly runs as follows. First, a 2k-certificate is computed and the number
of edges is reduced to O(n) by repeatedly applying Theorem 5.2.20 and Theorem 5.2.24.
If the k disjoint paths have not yet been found, a test for tree-width determines if it is
possible to solve the problem directly by Theorem 5.2.26. If not, we can either find a
suitable 3k-clique minor or remove at least one irrelevant vertex. The latter produces
a smaller input graph for the next iteration step. The algorithm terminates when the
desired k paths have been found or when Theorem 5.2.26 returns that this is not possible.

Algorithm 5.2.30 (k disjoint paths problem)
Input: A graph G = (V,E) with |V | = n and terminals s1, . . . , sk, t1, . . . , tk
Output: either k disjoint paths P1, . . . , Pk in G, each Pi connecting si and ti

or the answer that this is not possible.
Description: The algorithm consists of four steps.

Step 1. Use the algorithm from Theorem 5.2.19 to compute a 2k-certificate G2k.
Then go to Step 2.

Step 2. While |E| ≥ 23k−3|V|, apply Theorem 5.2.20 to find a 3k-clique minor.
Then, by Theorem 5.2.24,
either solve the problem and terminate
or remove some vertices and update G and G2k.

Then go to Step 3.
Step 3. Set h(k) as in Theorem 5.2.29 and test for tree-width at most h(k).

If tw(G) ≤ h(k), use the tree-decomposition obtained by Theorem 5.1.1
to solve the problem by applying Theorem 5.2.26.

Else go to Step 4.
Step 4. Apply Theorem 5.2.29.

Either a 3k-clique minor is obtained, then utilise Theorem 5.2.24 to ei-
ther terminate or remove vertices.
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Or use (X,W ) and Theorem 5.2.28 to find an irrelevant vertex and re-
move it.

Then go to Step 3.
Running time: O(n2)

Proof (of running time).
Step 1 takes time O(m), which is of order O(n2).
Step 2 is executed at most O(n) times. It takes O(n) time to find a 3k-clique minor by

Theorem 5.2.20 and Theorem 5.2.24 runs in at most O(n+ m
n

) time.
Hence, we have a total running time of O(n2 +m).

Step 3 tests for a tree-width of at most h(k). This is possible in O(n) time by Theo-
rem 5.1.1 which already returns a suitable tree-decomposition if it exists. As the
number of edges is of order O(n), Theorem 5.2.26 takes O(f(k, h(k))n) time.

Step 4 applies Theorem 5.2.29 in O(n) time. Solving the problem by Theorem 5.2.24
or finding an irrelevant vertex by Theorem 5.2.24 or Theorem 5.2.28 takes O(n)
time. This is due to the fact that we work with a graph with a number of edges
in O(n).

In total, the algorithm removes at most O(n) vertices from G. As this is an upper
bound for the number of iterations, we get a total running time of O(n2).

5.2.1.4 Remarks

It should be mentioned that the running time of order O(n) depends, amongst others,
on an algorithm by Kapadia et al. presented in [27]. [27] is a paper under submission.
Without this result the running time of the algorithm by Kawarabayashi et al. would
increase to O(n2α(n, n)), where α is the inverse of the Ackermann function. This comes
from an alternative test for flatness by Tholey which has an O(m + nα(n, n)) running
time [54].

Second, the algorithm found by Robertson and Seymour is highly impractical. The
constants hidden in the O-notation are computable but huge. Moreover, in Theo-
rem 5.2.29 some of those functions depending only on k are even combined to give a
possible lower bound for h(k). Since the algorithm of Kawarabayashi et al. is based on
the results of Robertson and Seymour, it suffers from the same shortcomings. So, even
if improvements have been made, it remains a challenging problem to further reduce the
complexity of the general k disjoint paths problem.

5.3 Algorithmic implications for NP-hard problems
The work of Robertson and Seymour had an enormous impact on the study of problems
of unknown or NP-hard complexity. On the one hand, their non-constructive proof of
the existence of a finite list of excluded minors for every minor-closed class of graphs
made it possible to deduce polynomial time decidability of problems for which no or only
complex algorithms were previously known. It implies that polynomial time decidability
of a problem P can be shown simply by proving that the class CP of graphs satisfying P
is minor-closed.
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Amongst others, Fellows and Langston studied non-constructive tools for proving
polynomial time decidability and how they could be made constructive [19, 18]. They
also presented some problems which can be shown to be polynomial. Examples of such
problems are linkless and knotless embeddability of graphs in 3-space, the gate matrix
layout problem, the vertex cover problem and the longest path problem.

On the other hand, many NP-hard problems can be shown to be polynomial time
decidable when restricted to graphs of a certain regular structure, like graphs of bounded
tree-width.

Bern, Lawler and Wong presented a systematic approach for solving a subgraph con-
tainment problem on a graph G satisfying certain composition properties [7]. There a
subgraph corresponding to an optimum solution for a problem onG was sought. Problems
to which this approach is applicable (on certain classes of graphs) include the minimum
dominating set problem and the travelling salesman problem.

Furthermore, Courcelle and Arnborg et al. studied graph properties which can be
formulated in monadic second-order logic. Problems expressible in such a way can be
decided in linear time for graphs of bounded tree-width. See [3] and, for example, the
series of papers starting with [15].

Arnborg and Proskurowski showed that many NP-hard problems like finding a max-
imal independent set in a graph or colouring a graph can be solved in polynomial time
when restricted to partial k-trees [4]. They used a dynamic programming approach com-
puting partial solutions for subgraphs of a graph G induced by the partial k-tree structure
of G. An analogous approach for graphs given together with a tree-decomposition was
discussed by Bodlaender in [10]. This technique is presented in this chapter.

5.3.1 A generic approach for graphs of bounded tree-width

We want to examine a technique to solve a problem P on a graph G of bounded tree-
width. If G is of relatively small width k, this technique helps to solve P efficiently
by exploiting the connectivity properties of a tree-decomposition (T,V) of width k of
G. These properties allow us to take a dynamic programming approach where partial
solutions are computed while traversing T . By using a tree-decomposition of a specific
structure we simplify the design of our algorithms and the proofs of their correctness as
well. This might also reduce the constant factors of running times of such algorithms.

5.3.1.1 Nice tree-decompositions

Definition 5.3.1 A nice tree-decomposition of a graphG = (V,E) is a tree-decomposition
(T,V) of G such that
(1) T is a rooted tree and
(2) every t ∈ V (T ) is of one of the following four types:

Leaf node: t is a leaf in T and |Vt| = 1.
Introduce node: t has exactly one successor t′ in T and Vt = Vt′ ∪ {v} holds for some

vertex v ∈ V \ Vt′ .
Forget node: t has exactly one successor t′ in T and Vt′ = Vt ∪ {v} holds for some

vertex v ∈ V \ Vt.
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Join node: t has exactly two successors t1 and t2 in T and Vt = Vt1 = Vt2 holds.
From now on, we will call the vertices of T nodes, consistent with the definitions above.

Given a tree-decomposition (T,V) of width k of a graph G, it is possible to transform
it into a nice tree-decomposition of G of same width k in linear time [10].

In the following, for a tree-decomposition (T,V) and a vertex t ∈ V (T ), we denote by
Tt the set of all vertices

{t′ ∈ V (T ) | t′ ≥T t}
of T succeeding t in the tree order induced on T by a fixed root r(T ). Tt is the subtree
of T rooted at t. We additionally set

Yt =
⋃
t′∈Tt

Vt′ and Gt = G[Yt].

5.3.1.2 Main steps of the generic algorithm

Suppose we have given a graph G = (V,E) of tree-width tw(G) bounded from above
by an integer k. Our approach to decide a given problem on G generally executes the
following steps:
(1) A tree-decomposition of G of width at most k is computed. We know from Theo-

rem 5.1.1 that this is possible in linear time.
(2) This tree-decomposition is used to construct a nice tree-decomposition (T,V) whose

width is also bounded from above by k.
(3) T is traversed in postorder (with respect to its tree order), that is, from the leaves

to an arbitrarily fixed root r(T). For every node t ∈ V (T ) a partial solution to
our problem is computed for Gt. This step combines information about the partial
solutions computed for the successors of t with local information about the vertices
in Vt. Depending on the type of node t, a predefined computing scheme is employed.

(4) The (partial) solution computed for the root r(T ) then yields an answer to the global
problem given for G.
This procedure applies to a decision problem on G. The corresponding search problem

can be solved with an additional step. In this step a solution is constructed by using
information obtained in the previous steps.

5.3.1.3 The necessary components in more detail

For every problem P given for a graph G, we have to define certain notions and techniques
specifically adapted to P .

This includes the exact definition of a solution for G and a partial solution for a
subgraph of G. In our case, this is always a subgraph of the form Gt for a node t ∈ V (T ).
A solution for G should always provide a partial solution for each subgraph Gt of G. It
is also necessary to define a valid extension of a partial solution to a supergraph.

For every node t ∈ V (T ) we define the characteristic of a partial solution for Gt.
It concentrates the information about the partial solution needed for the rest of the
procedure. The full set of characteristics for Gt, or full set for t, consists of the different
characteristics of all partial solutions for Gt.
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It it also important to assure that a full set for a node t can be computed efficiently
if the full sets for all successors of t in T are given. And, additionally, that a full set for
the root r(T ) is sufficient to efficiently decide P for G.

Therefore, it is necessary to define for every type of node how the full sets for nodes of
this type are computed. This yields a construction scheme combining the full sets for the
existing successors with local information about the node considered. It is important that
this scheme can be implemented efficiently. Often, good upper bounds can be obtained
due to the bound given for the tree-width of G.

5.3.1.4 An example: l-colouring of vertices

To illustrate the information given above we examine the decision problem for a valid
l-colouring of the vertices of a given graph G = (V,E) of bounded tree-width tw(G) ≤ k.
That is, deciding if it is possible to colour each vertex v ∈ V with one of l colours such
that no edge in E has two endvertices coloured with the same colour. We define an
l-colouring of G as a function

f : V → {1, . . . , l}
mapping every vertex to one of l numbered colours.

Let (T,V) be a nice tree-decomposition of G of width at most k. A solution for G is
an l-colouring f of G such that

∀vw ∈ E : f(v) 6= f(w).

We call this a valid l-colouring of G. A partial solution f for a subgraph Gt of G is
a solution for Gt. It can be extended to a supergraph G′ of Gt if there exists a valid
l-colouring g of G′ with g|Yt = f .

For a node t ∈ V (T ) the characteristic of a partial solution f for Gt is the restriction
f |Vt of f to the set Vt. Therefore, if two partial solutions have the same characteristic
one of them can be extended to a solution for G if and only if the other can be extended
as well.

The full set for t is the set of all possible valid l-colourings of Vt. As we have |Vt| ≤
k+ 1, the full set for t contains at most lk+1 possible l-colourings, which is a constant for
k and l fixed. For each type of node (defined as above), we now describe how to compute
the full set.
Leaf node t: The set of partial solutions for Vt = {v} simply consists of the l possible

colourings of v, as does the full set for t.
Introduce node t: The partial solutions for the single successor t′ of t with Vt = Vt′ ∪ {v}

have already been computed when t is visited. Since v is not contained in Vt′
its only neighbours in Gt are vertices from Vt. We simply need to determine for
every characteristic in the full set for t′ with which possible colourings of v it is
compatible. Therefore the full set for t consists of all such combinations yielding a
valid l-colouring of Vt.

Forget node t: All information needed to compute the full set for t is already implied in
the full set for the only successor t′ in T . Since Vt′ = Vt ∪{v} holds for some vertex
v ∈ V \ Vt we simply have to restrict the given characteristics to Vt. Every valid
l-colouring of Gt′ is a valid l-colouring of Gt as well.
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Join node t: We have Vt = Vt1 = Vt2 for the two successors t1 and t2 of t. The full set of
characteristics for t therefore corresponds to the intersection of the full character-
istics given for t1 and t2.

Hence, if the full set for the root r(T ) is non-empty we know that there exists at least
one valid l-colouring of the vertices of G.

Moreover, we see that the complexity of our algorithm might be exponential in k but
is linear in the order of T and therefore in |V |. As many real-world applications handle
graphs of huge size but small tree-width, an approach similar to the one presented above
can have significant advantages in practice.

5.4 Graph searching
In this section we present a possibility to use already introduced concepts like tree-width
and brambles for a game on graphs. We will focus on a pursuit-evasion game discussed
by Seymour and Thomas in [53].

In this game, a fixed number k of cops search for a robber that is hiding in the vertices
of a graph G. Let C denote the set of vertices occupied by cops. The cops always know
in which component R of G − C the robber lingers and direct their steps towards him.
They travel by helicopter, so at all times a cop is either occupying a vertex of G or in a
helicopter. A move of the cops consists of some cops getting on a helicopter or of some
cops returning to the graph. More formally, after their move we have a new set of vertices
C ′ guarded by cops such that C ′ ⊆ C or C ⊆ C ′ holds. The robber can try to evade the
cops by running at any time to another vertex that he can reach from his current position
along a path in G on which no vertex is taken by a cop. Therefore it is only of interest
in which component R′ of G− C ′ he resides. R′ has to fulfil either R ⊆ R′ or R′ ⊆ R.

Definition 5.4.1 We say that the graph G can be searched by < k cops if k − 1 cops
suffice to corner any robber at some vertex and then capture him. If they never have to
search any vertex twice, then < k cops can monotonously search the graph G. On the
other hand, if there exists an escape strategy for the robber such that the cops cannot
guarantee to catch him (with a monotone search strategy), we say that < k cops cannot
(monotonously) search G.

Definition 5.4.2 A graph G has search number n if n is minimal with the property that
n cops can search G.

We look at a small example (taken from [8]). The graph in fig. 5.2 has search number
3. Two cops are not sufficient to corner the robber and also capture it. He can always hide
in one of the vertices b, c and d. The tree-decomposition gives a strategy to monotonously
search the graph with 3 cops.

In [53], Seymour and Thomas showed that if < k cops can search a graph G, they can
also monotonously search it. And that, if a robber is able to elude capture, we can easily
describe his escape strategy using brambles. Even if we give the cops more flexibility and
allow them to jump-search the graph G.

Definition 5.4.3 Jump-searching differs from the searching method already described
only in that in one step the k− 1 cops can arbitrarily choose their next position C ′ from
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Figure 5.2: graph with search number 3 and a tree-decomposition of width 2

[V (G)]<k. Then, as before, the robber may flee to a component R′ of G−C ′ that touches
his last refuge R.

We will try to describe the ideal escape plan of a robber in a graph G with a function
that tells him in which component to hide.

Lemma 5.4.4 A graph G = (V,E) cannot be jump-searched by < k cops if and only if
there is a function σ mapping each C ∈ [V ]<k to a non-empty union σ(C) of components
of G− C, such that every component R in σ(C) touches σ(C ′) for all C,C ′ ∈ [V ]<k.

Proof. If there is such a function σ and the robber chooses for every placement C of
the cops a component from σ(C) to hide, he will always find a new hiding place after
the following step of the cops by choosing a component touching the component he is
currently in.

Now, if < k cops cannot jump-search the graph, there will be configurations (C,R)
such that k − 1 cops cannot guarantee to win. Let σ(C) consist of all components R of
G− C with this property.

Definition 5.4.5 Let G = (V,E) be a graph. A haven of order k in G is a function τ
that assigns to every set C in [V ]<k a component τ(C) of G−C such that τ(C) touches
τ(C ′) for all C ′ ∈ [V ]<k.

Interestingly, the brambles in G pose a possibility of finding a haven in G, hence we
can use their properties to draw conclusions about graph searching.

Lemma 5.4.6 A graph G = (V,E) contains a haven of order ≥ k if and only if G
contains a bramble of order ≥ k.

Proof. Let τ be a haven of order k in G. Then the set B of all sets V (τ(C)) with C in
[V ]<k forms a bramble of order k. This is due to the fact that for every potential cover
S of B with cardinality < k there exists at least one member of B, namely τ(S), not
covered by S.

Every bramble B naturally causes the existence of a haven τ in G. For every set
C ∈ [V ]<k there exists a B ∈ B not covered by C. Set τ(C) to be the component of
G−C containing B. As the sets of B are mutually touching, we obtain a haven of order
≥ k.
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Combining the past two lemmata with our knowledge about brambles results in the
following main statement of [53].

Theorem 5.4.7 For a graph G and an integer k ≥ 1 the following are equivalent:
(1) G contains a bramble of order ≥ k.
(2) G contains a haven of order ≥ k.
(3) < k cops cannot jump-search G.
(4) < k cops cannot search G.
(5) < k cops cannot monotonously search G.
(6) G has tree-width ≥ k − 1.

Proof. According to Lemma 5.4.6 the first two statements are equivalent and Lemma 5.4.4
tells us that (3) follows from (2). It is obvious that (3) implies (4) which in turn implies
(5).

Now assume that G has tree-width tw(G) < k − 1 and let (T,V) be a corresponding
tree-decomposition. Then, with at most k− 2 cops we can start by occupying all vertices
contained in one part Vt1 from V . Let Vt2 be its neighbour in the component where the
robber hides. Vt2 is the next choice of placement for the cops. As Vt1 ∩ Vt2 separates G,
the cops can proceed in this manner to corner the robber in smaller and smaller segments
of G and finally capture him without returning to a vertex a second time. Therefore we
have (5)⇒ (6).

The missing implication (6)⇒ (1) is given by Theorem 4.2.5, hence that a tree-width
of tw(G) ≥ k − 1 implies a bramble number β(G) of at least k.

Corollary 5.4.8 Let sn(G) denote the search number of a graph G. Then we have

sn(G) = β(G) = tw(G) + 1.

61



62



Chapter 6

Related Work and Further Research

The intention of this chapter is to give some additional information about the topics
touched in this thesis and rounding it off by referring to related research and open ques-
tions.

6.1 The graph minor theorem
In this thesis, we focused on the case of excluding a planar graph. This is the first part
of the proof of the graph minor theorem. Now, we roughly sketch the complete proof.

Suppose we have given a countable sequence of graphs

G0, G1, G2, . . .

and suppose that no graph Gj with index j ≥ 1 contains G0 as a .-minor, otherwise
we have already found a good pair. Thus, all these graphs are elements of Forb(G0).
We have settled the case that G0 is planar in Theorem 4.1.1. Robertson and Seymour
showed for every non-planar graph H that every graph G not containing H as a .-minor
can be constructed by taking clique-sums of graphs which are “nearly embeddable” in
surfaces in which H is not embeddable [46]. A technique similar to the one introduced
by Nash-Williams for the proof of Kruskal’s Theorem 2.2.9 on trees is then used to find
a good pair.

While for the first part of the proof several simplifications have been found, the same
does not hold for the general case. There do exist simpler proofs for the generalisation
of Kuratowski’s Theorem 2.2.8 that we mentioned in section 4.5. But still it would be of
great interest to find simplifications for all parts of the proof. Moreover, a constructive
approach would probably have considerable advantages in practice.

A good introduction to graph minor theory and the graph minor theorem in particular
can be found in Diestel’s textbook on graph theory [16]. Kawarabayashi and Mohar wrote
a survey with a focus on the excluded minor theorem for a general graph and some of
its variations [30]. Other surveys on the graph minor theorem and its implications are
[8, 35].

One open question concerning countably infinite graphs worth mentioning was for-
mulated by Seymour.
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Conjecture 6.1.1 (Seymour’s self-minor conjecture) Every countably infinite graph is a
proper minor of itself.

6.2 On computing tree-width
We already know that the general problem of computing tree-width is NP-hard [2]. For
fixed k, Theorem 5.1.1 states the existence of a linear time algorithm to compute the
tree-width of a graph of tree-width at most k.

Designing fast algorithms computing tree-width exactly is a challenging problem. It
is even an open question if there exist algorithms approximating tree-width within a con-
stant factor [21]. Concerning exact algorithms for tree-width, the best bound currently
known for the running time is O(1.7347n) which is based on a paper of Fomin and Vil-
langer [20]. However, the implementation of this algorithm may prove to be difficult due
to necessary computations of potential maximal cliques [13]. Additionally, this algorithm
requires an exponential amount of space. Algorithms using only polynomial space exist
as well. Here, we refer to [13] and [21] for exact algorithms using polynomial space and
having a running time of order O(2.9512n) and O(2.6151n), respectively. Still, they are
of little practical use.

With regard to this thesis, we want to remark that the different characterisations
given in section 3.3 prove to be useful for the computation of tree-width. Many algorithms
exploit the close relation between tree-width and elimination orderings. Other approaches
utilise minimal separators.

As we have seen in section 4.2, brambles can be employed to find lower bounds for the
tree-width of a graph. Computing the order of a given bramble is, however, NP-hard.
Nevertheless, Bodlaender states that this approach can be useful for planar graphs or
graphs that are close to being planar [12].

The possibility of approximating the tree-width of a planar graph within a factor of
3/2 in polynomial time was assured by Seymour and Thomas. They showed that the
computation of branch-width is polynomial for planar graphs but NP-hard for general
graphs [52].

6.3 On graph searching
In section 5.4 we presented only the pursuit-evasion game studied by Seymour and
Thomas in [53]. However, there exist many other similar games and problems.

If, for instance, the game is only changed inasmuch that the robber is invisible the
search number would significantly rise: We know that two cops are able to monotonously
search a tree for a visible robber and finally arrest him. If they have no information about
his hiding place they can not guarantee to ever catch him.

There also exist differences concerning the movement of the robbers and how they
can make sure that some portion of the graph is “robber-free”. In the case of an invisible
robber, this game is also interpreted as clearing an entirely contaminated graph from
a plague, or immunizing a network against a computer virus. Edge searching means
that the cops expand the cleared portion of a graph by sliding along an edge. When
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node searching, they clear an edge by occupying both its endvertices. There also exist
mixed searching versions of this game. It can be shown that the search number for node
searching equals the pathwidth of the graph considered plus one.

Seymour and Thomas give a quick overview on related research in the field of graph
searching [53]. Other surveys can be found in [12] and [8].

6.4 Further research
As we have already mentioned, one major topic of interest is simplifying the proof of the
graph minor theorem and making it more accessible.

Furthermore, it is necessary to reduce the actual running time of algorithms related to
the topics touched in this thesis. Huge constants often render polynomial algorithms un-
employable in practice. Examples are the algorithms presented for computing tree-width
or solving the k disjoint paths problem. For some thoughts on complexity concerning
questions related to the work of Robertson and Seymour see for example [26].

We conclude with one last example concerning the implications of the graph minor
theorem for minor-closed classes of graphs. Showing that a graph property is inherited
by minors gives a deep insight into the complexity of membership testing for that class.
Moreover, if some planar graph is excluded as a .-minor then we have even more knowl-
edge about the graphs contained in this class. We can further draw conclusions about
the complexity of some algorithms on graphs in this class. Therefore, the search for
minor-closed classes of graphs and also for some of their possibly yet unknown properties
will have its benefits.
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