
DISSERTATION

Test Driven Software Development for
Improving the Quality of Control

Software for Industrial Automation
Systems

Ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften (Dr.techn.)

unter der Leitung von
Univ.– Prof. Dipl.-Ing. Dr.sc. techn. Georg Schitter

E376
Institut für Automatisierungs– und Regelungstechnik

eingereicht an der
Technischen Universität Wien

Fakultät für Elektrotechnik und Informationstechnik

von
Dipl.-Ing. Reinhard Hametner

Matrikelnummer: 0125670
Schlossstrasse 13, 3250 Wieselburg, Österreich

Wien, im Oktober 2013

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

.

Dekan: Univ.–Prof. Dipl.-Ing. Dr.techn. Gottfried Magerl

Tag des Kolloquiums: 01. 10. 2013

Vorsitzender: Univ.–Prof. Mag.rer.nat. Dr.rer.nat. Gottfried Strasser

Erster Gutachter: Univ.–Prof. Dipl.-Ing. Dr.sc. techn. Georg Schitter

Zweiter Gutachter: Prof. Dr.-Ing. Georg Frey

Vorwort

Diese Arbeit wurde im Jahr 2009 im Rahmen meiner Tätigkeit als wissenschaft-
licher Mitarbeiter am Institut für Automatisierungs– und Regelungstechnik an
der Technischen Universität Wien begonnen. Im Oktober 2013 wurde die Ar-
beit in ähnlicher Form als Dissertation an der Fakultät für Elektrotechnik und
Informationstechnik an der Technischen Universität Wien eingereicht und er-
folgreich verteidigt.

Wien, im Oktober 2013 Dipl.-Ing. Reinhard Hametner

i

Acknowledgements

First of all I would like to thank the contributions of a large number of people,
who have provided in different ways invaluable support for the completion of
this thesis.

Most of all I would like to thank Professor Georg Schitter, who conducted
my thesis as supervisor during a long period of time. Under his supervision I
learned a lot according to scientific standards at a high level and be precise in
formulate scientific statements. I gratefully acknowledge Professor Georg Frey
from the Saarland University for co-supervising this work.

My special thanks are dedicated to Dr. Alois Zoitl for his support and fruit-
ful discussions during my work. He spent a lot of time and energy in discus-
sing my results. He teaches me to write scientific papers from the very begin-
ning as well as helping me to write scientific research grants. Furthermore, I
want to thank Professor Gerfried Zeichen for the discussions about industry
challenges during my work on different research projects.

This dissertation came to standing during my employment as a research as-
sistant at the Automation and Control Institute at Vienna University of Techno-
logy. I want to thank all colleagues for providing a highly innovative and pro-
ductive environment, especially Monika Wenger, Ingo Hegny, Martin Melik-
Merkumians, Michael Steinegger, Dr. Gottfried Koppensteiner, Wilfried Lepu-
schitz, Alexander Prostejovsky, and Dr. Munir Merdan.

Furthermore, I would like to thank Dietmar Winkler and Thomas Östrei-
cher from the Institute of Software Technology and Interactive Systems for the
fruitful discussions and the pleasant cooperation. Numerous scientific publi-
cations are the results of our cooperation which are presented on international
scientific conferences all over the world.

Many warm thanks go to my parents Maria and Franz Hametner and my
brother Christoph for their support during the long period of my education.
They frequently asking me about the status quo of my thesis with the state-

ii

iii

ment: “Und wie schauts aus?”
Finally and above all, I would like to thank my wonderful girlfriend Mela-

nie for her devoted love and her incessant patience when this thesis was at the
forefront of my thoughts. Thank you for supporting me during all these years
and for pursuing me to finish this thesis as soon as possible.

Parts of this work were funded by the Austrian Research Funding Agency
(FFG) grant logi.DIAG (Bridge7-196929).

REINHARD HAMETNER

Abstract

In today’s world the complexity of industrial automation systems increases
rapidly. Because of this complexity, the development of such automation sys-
tems becomes more time consuming and has to deal with adaptations of the
industrial automation code on short notice. The engineering efficiency has to
be increased in terms of reusability support of tested and testable software
components for upcoming projects in order to reduce the development time
and costs.

The intention of this thesis is to make a significant step towards an increase
in the quality of industrial automation software by providing a test infrastruc-
ture with appropriate testing techniques for industrial automation software.
To ensure the high software quality, testing processes are necessary which as-
sist the development engineers during the life-cycle of developing industrial
automation systems. Currently there is no systematic test process for testing
industrial control software in the industry. First steps are available in academia
to adapt testing techniques from the software engineering domain applied on
the industrial automation domain.

A new test framework is developed in this thesis which is able to sup-
port testing of industrial automation software, i.e. based on IEC 61131 and
IEC 61499, on various levels of detail and from different perspectives. New
criteria are proposed for selecting Unified Modeling Language (UML) mod-
els which are useable for specifying tests of industrial automation software.
According to the developed test framework, different testing techniques con-
sidering the different test levels are presented which are able to test industrial
automation software considering the Test-First Development (TFD) strategy.
Finally, a new automation component architecture and a new component de-
sign for developing industrial automation applications are introduced to sup-
port testability. Therefore, it is now possible to increase the quality of indus-
trial control software by using the newly developed test infrastructure.

iv

Kurzzusammenfassung

Der starke Konkurrenzdruck der Märkte lässt die Anforderungen heutiger in-
dustrieller Automatisierungssysteme rapide ansteigen. Dies führt zu einer Er-
höhung der Komplexität solcher Systeme. Darum steigt der Aufwand in der
Entwicklung, welche mit ständigen Adaptierungen des Software Codes ver-
bunden ist. Durch den Einsatz von wiederverwendbaren und testbaren Kom-
ponenten kann die Effizienz für zukünftige Projekte gesteigert werden. Zu-
sätzlich können die Entwicklungszeiten und Entwicklungskosten durch Ver-
wendung solcher Komponenten reduziert werden.

Die Intention dieser Doktorarbeit ist, einen signifikanten Schritt zur Stei-
gerung der Qualität von Steuerungssoftware beizutragen und eine Testinfra-
struktur mit geeigneten Techniken zum Testen einer solchen Software bereit-
zustellt. Um eine hohe Softwarequalität zu erreichen ist ein Testprozess not-
wendig, welcher dem/der Ingenieur/in während der ganzen Entwicklungs-
zeit unterstützend zur Verfügung stehen soll. Derzeit gibt es keine systemati-
schen Testprozesse für Software im Bereich der industriellen Steuerungstech-
nik. Erste Ansätze sind im akademischen Bereich erforscht. Hierzu werden
Techniken aus dem Bereich der Informatik, im Speziellen der Softwareent-
wicklung, adaptiert. Diese Doktorarbeit zeigt eine neue Teststruktur, die das
Testen von industrieller Steuerungssoftware nach dem Standard IEC 61131
und IEC 61499 an unterschiedlichen Testebenen mit unterschiedlichen Per-
spektiven unterstützt. Geeignete Unified Modeling Language (UML) Model-
le für die Testspezifikation werden vorgestellt. Weiters werden Testmethoden
und Techniken diskutiert, die für das Testen von Steuerungssoftware nach
der “Test-First Development” Strategie geeignet sind. Abschließend wird ei-
ne neue komponentenbasierte Architektur und ein neues Komponentendesign
für die Entwicklung testbarer Steuerungsapplikationen präsentiert. Nun ist es
möglich, die Qualität der industriellen Steuerungssoftware mithilfe der neu
entwickelten Testinfrastruktur zu erhöhen.

v

Contents

List of Figures ix

List of Tables xii

List of Listings xiii

Acronyms xiv

1 Introduction 1
1.1 Problem Statement . 2
1.2 Goal . 3
1.3 Software Testing . 3

1.3.1 Fundamental Terms . 4
1.3.2 Test Methods . 5
1.3.3 Testing vs. Verification . 8

1.4 Summary . 10
1.5 Contributions and Outline of the Thesis 10

2 Related Work 12
2.1 Modeling Languages for Industrial Automation Systems 15

2.1.1 IEC 61131 . 15
2.1.2 IEC 61499 - Distributed Event-based System 17

2.2 Testing Control Software . 20
2.2.1 Testing as Commissioning Support 21
2.2.2 Automatic Testing . 21
2.2.3 Simulation-based Testing 23
2.2.4 Analyzing Methods . 23

2.3 Model-Driven Development . 24

vi

CONTENTS vii

2.3.1 What is a Model? . 24
2.3.2 Model Specification . 25
2.3.3 Model Transformation . 26
2.3.4 Model-Driven Development for Control Applications . . 27

2.4 Testing in Software Engineering 28
2.4.1 Test Specification in Software Engineering 29
2.4.2 Test Processes, Test Strategies, and Test Levels 30

2.4.2.1 Development Processes 31
2.4.2.2 Individual Test Processes and Test Strategies . . 33
2.4.2.3 Test-First Development 34

2.4.3 Model-based Testing . 36
2.5 Testing of Embedded Systems Software 39
2.6 Comparison of the Different Domains 41
2.7 How Many Test Cases are Necessary? 42
2.8 Economical Aspects . 43
2.9 Research Questions . 45

3 New Test Framework for Industrial Automation Systems 47
3.1 Framework for Automated Testing 48
3.2 Test-Levels / Test-Layer Approach for Industrial Automation

Systems . 52
3.2.1 Unit Tests . 53
3.2.2 Integration Tests . 56
3.2.3 System Tests . 58

3.3 Summary . 60

4 Selecting UML Models for Test-Driven Development Along the Au-
tomation Systems Engineering Process 61
4.1 Model Specification . 61
4.2 UML in the Software Engineering Domain 62
4.3 Criteria for Model Selection in the Industrial Automation Domain 64
4.4 UML Diagrams Applied on a Sample Application 65

4.4.1 Systematic Definition of Requirements 66
4.4.2 Architecture and Structural Aspects 67
4.4.3 Definition of Functional and Temporal Behavior 68

4.5 Selecting UML Diagrams . 71
4.6 Test Case Extraction From State Chart Diagrams 74

4.6.1 Test Specification with State Chart Diagram 75
4.6.2 Test Case Extraction . 76

4.7 Summary . 80

Contents viii

5 Testing Techniques for Industrial Automation Systems 81
5.1 Manual Testing . 81
5.2 Keyword-driven Testing . 82

5.2.1 Test Framework for Keyword-driven Testing 83
5.2.2 Keyword Specification . 84

5.3 Unit Testing Technique . 86
5.3.1 Separated Test Component 87
5.3.2 Separated Test Specification 88
5.3.3 Integrated Test Specification 89
5.3.4 Evaluation of the Three Listed Unit Testing Approaches 90
5.3.5 Used Unit Test Framework 92

5.4 Model-based Testing of Industrial Control Applications 95
5.4.1 Test Specification Modeling 95
5.4.2 Model-based Test Case Generation Process 96

5.5 Summary . 103

6 Experiments, Evaluation, and Discussion of Results 104
6.1 Implementation and Evaluation of the Testing Techniques . . . 104

6.1.1 Keyword-driven Testing 104
6.1.2 Unit Testing with Service Sequences 111
6.1.3 Model-based Testing . 115

6.2 Resulting Comparison of the Testing Methods 120
6.3 Summary . 123

7 Resulting Design Rules for Application Structure 124
7.1 Overall Architecture Definition 125
7.2 Automation Component Model 126

7.2.1 Sub-Component Models 127
7.2.2 Interfaces . 129

7.3 Summary . 131

8 Conclusion and Outlook 132
8.1 Conclusion . 132
8.2 Outlook . 135

Bibliography 137

Curriculum Vitae 155

List of Figures

2.1 Software quality characteristics taxonomy. 14
2.2 Overview of the IEC 61131-3 software model. 16
2.3 Reference models according to IEC 61499. 18
2.4 Characteristic and interface design of an IEC 61499 Function

Block (FB). 20
2.5 Definition of the V-Model XT. 30
2.6 Definition of the W-Model. 32
2.7 Test Process based on Spillner. 33
2.8 Testing and development work-flow of the Test-First Develop-

ment (TFD) strategy. 36
2.9 Test case generation with model-based testing derived from the

UML diagram family. 37
2.10 Architecture of generic test-generation system. 38
2.11 Devils Square by Sneed [1]. 44
2.12 Devils Square including the innovation variable. 45

3.1 Process flow of the test process 48
3.2 Structure of a test suite, including test scenarios and test cases. . 49
3.3 General structure of a test framework 50
3.4 Analysis and reporting of the test framework 51
3.5 Bottom-up implementation design of the test levels in the au-

tomation systems domain . 53
3.6 Unit component based on IEC 61499 FB and IEC 61131 FB . . . 54
3.7 Part of an IEC 61131-3 implementation used for integration tests. 58
3.8 Part of an IEC 61499 system (sub-system) implementation used

for integration tests. 59

4.1 Picture of the bottle sorting machine 65

ix

LIST OF FIGURES x

4.2 Model of the Use Case Diagram of the bottle sorting machine.
Solid lines represent the connection with actors, e.g. sensors and
actuators, dashed lines represent the internal dependencies. . . 66

4.3 Activity Diagram of the bottle sorting machine. 67
4.4 Deployment Diagram of the bottle sorting machine. 68
4.5 Component Diagram of the conveyor 2 part. 69
4.6 System level State Chart Diagram of the bottle sorting machine. 70
4.7 State Chart Diagram of the stopper unit which is part of the bot-

tle sorting machine. 70
4.8 Sequence Chart Diagram of the Pickup&Place unit of the bottle

sorting machine. 71
4.9 Timing Diagram of the Pickup&Place unit from the bottle sort-

ing machine. 72
4.10 Example of a State Chart Diagram 75
4.11 Interface design of the SF_Equivalent FB from PLCopen 76
4.12 State chart diagram specification of the SF_Equivalent FB from

PLCopen . 77
4.13 New state chart diagram specification of the SF_Equivalent FB. 78

5.1 Overview of the test framework for Keyword-driven Testing . . 83
5.2 Overview of the function block test framework for unit testing . 93
5.3 UML state chart definition of control axis behavior 96
5.4 Overview of the transformation process to generate an automa-

tion control application . 97
5.5 The defined <Meta-Model-ecore> TestSuite definition. 98

6.1 FitNesse test case specification for IEC 61131-3 application. . . . 107
6.2 FitNesse test case specification for IEC 61499 application. 108
6.3 Part of an IEC 61131-3 FB network which shows the required

’force marker’. 109
6.4 Keyword-driven Testing (KDT) - Test history visualized in the

Test Management system FitNesse. 110
6.5 Taxonomy of observable function block execution features and

properties. 112
6.6 IEC 61499 standard library FBs interface definition. 112
6.7 E_CTU FB; Specification of a test sequence and test results. . . . 113
6.8 Visualization of the test results in 4DIAC-IDE. 114
6.9 Picture of the sorting machine . 116
6.10 State chart specification of the sorting machine. 117
6.11 Resulting interface of the generated test suite Basic Function

Block (BFB). 118
6.12 Results of the automatically generated Execution Control Chart

(ECC) test case. 119

LIST OF FIGURES xi

6.13 Results of the automatically generated ECC test scenario. 119

7.1 Hierarchical overview of an industrial automation application
by using defined Automation Components (ACs). 126

7.2 Structural overview of an AC. 127
7.3 Interface definition in AC networks. 130

List of Tables

2.1 Comparison of Industrial Automation - Software Engineering -
Embedded Systems . 41

4.1 UML diagrams in the industrial automation software engineer-
ing process . 73

4.2 Overview of development phases, UML model selection crite-
ria, relevant diagram types for industrial automation, and de-
fined test levels. 73

5.1 Overview of the used keywords for testing industrial automa-
tion systems. 86

5.2 Assessment of the presented specification and implementation
methods for tests . 91

5.3 Transformation rules for <Model> TestSuite. 100
5.4 Transformation rules for the <Model> IEC 61499 FB. 102

6.1 Overview of the resulting comparison of the presented testing
techniques. 122

xii

List of Listings

4.1 Output from a test case of the PLCopen SF_Equivalent. 79
4.2 Output from a test scenario of the PLCopen SF_Equivalent. . . . 79
6.1 Example of a test case definition in FitNesse. Test case specifica-

tion for the IEC 61131-3 KDT. 106
6.2 Example of a test case definition in FitNesse. Test case specifica-

tion for the IEC 61499 KDT. 106

xiii

Acronyms

A

AC Automation Component. xi, 125–131
AI Artificial Intelligence. 38

B

BFB Basic Function Block. x, 19, 27, 54–56, 59, 102, 116–120

C

CFB Composite Function Block. 19, 54–56, 59, 88, 120
CVS Concurrent Versions System. 22
CWM Common Warehouse Metamodel. 24

D

DCS Distributed Control System. 28
DES Discrete Event Simulator. 21
DSP Digital Signal Processors. 21

E

ECC Execution Control Chart. x, xi, 19, 27, 54, 55, 87, 88, 91, 101, 102, 116–119
ES Embedded System. 39–41

F

FB Function Block. ix, x, xii, 15, 17–20, 27, 28, 42, 46, 48, 54–56, 76–78, 86–89,
91, 92, 94–96, 98, 99, 101–104, 109–115, 118–121, 133

FBD Function Block Diagram. 17

xiv

Acronyms xv

FFA Federal Aviation Administration. 7
FMEA Failure Mode and Effects Analysis. 129
FSM Finite State Machine. 6, 7, 26, 30, 74

H

HAZOP Hazard and Operability. 129
HiL Hardware-in-the-Loop. 21, 41

I

IEC International Electrotechnical Commission. 15, 17, 31
IL Instruction List. 17
IPMCS Industrial Process Measurement and Control Systems. 17
ISO International Organization for Standardization. 12, 29

K

KDT Keyword-driven Testing. x, xiii, 81–84, 103–106, 109, 110, 120–122, 133

L

LD Ladder Diagram. 17
LOC Lines of Code. 135

M

M2C Model-to-Code. 26, 27
M2M Model-to-Model. 27, 99, 122, 123, 134
M2T Model-to-Text. 27
MBT Model-based Testing. 36–39, 41, 43, 95, 96, 115, 119–123, 133, 134
MDA Model-Driven Architecture. 24
MDD Model-Driven Development. 25, 27, 28
MDSD Model-Driven Software Development. 24
MiL Model-in-the-Loop. 41
MOF Meta Object Facility. 24

O

OCL Object Constraint Language. 28, 29
OMG Object Management Group. 24, 29

P

PIM Platform Independent Model. 24
PLC Programmable Logic Controller. 1, 9, 15, 16, 20–23, 27, 28, 39, 67, 75, 79,

107–109, 121–123

Acronyms xvi

POU Program Organization Unit. 15–17
PSM Platform Specific Model. 24

Q

QA Quality Assurance. 12, 61, 62

R

RUP Rational Unified Process. 26

S

SFC Sequential Function Chart. 17
SIFB Service Interface Function Block. 19, 27, 54, 55, 89, 94, 120
SiL Software-in-the-Loop. 41
ST Structured Text. 17, 48, 88, 101
SuT System under Test. 2, 5–8, 12, 13, 22, 25, 29, 33, 34, 37, 50, 74–76, 79–85, 96,

97, 101, 103, 105, 107–111, 119, 120, 122, 133, 135
SysML Systems Modeling Language. 27, 62

T

TDA Test-Diagnosis-Automation. 134, 135
TDD Test-Driven Development. 10, 34, 44, 46, 62, 64, 65, 72
TFD Test-First Development. iv, ix, 8, 30, 34–36, 41, 44, 46, 49, 51, 52, 54, 60, 83,

89, 95, 112, 114, 132–134
TPT Time Partition Testing. 41

U

UML Unified Modeling Language. iv, v, 10, 24–30, 36, 38, 39, 61, 62, 64–66, 71,
72, 74, 78, 80, 81, 88–92, 95, 96, 99, 103, 105, 115, 118–122, 133–135

CHAPTER 1

Introduction

The pressure of the competition in the global economy increases steadily. On-
going changing markets with decreasing product life cycles are a great chal-
lenge for manufacturing industries. To be competitive in the field of automa-
tion system development, companies must bring their innovative products
into the market faster than their competitors. The biggest challenge is to man-
age the increasing complexity of the requirements in industrial production
systems. A further challenge is to handle the ever-changing requirements of
produced goods during the development phase. A change of the mechanical
system also entails changes of the electrical, electronic, and the software part
of the control application. Therefore there is a need for an efficient develop-
ment process which handles the immediate reaction of changing requirements
during the development phase.

The functional requirements of nowadays’ industrial production systems
rapidly increases. There is the requirement in the industrial automation do-
main to shift functional implementations from hardware components to soft-
ware components to increase the flexibility. Such software components are
program parts which are used for the most important type of control devices
named Programmable Logic Controllers (PLCs). Software components (i.e., in-
dustrial automation code) become more important and allow to cope with the
ever increasing complexity of modern applications. The development of such
software components for industrial production systems becomes more time-
consuming and deals with adaptations of the control code on short notice.
Furthermore, the engineering efficiency has to be increased by a reusability
support of software components for upcoming projects to reduce the develop-
ment time.

In the automation systems domain there is an observation of a strong en-

1

1.1. Problem Statement 2

gineering focus on hardware development on the one side and limited expe-
rience in software engineering know-how on the other side. Usually tests are
only conducted with respect to hardware because software is still considered
a “by-product” of hardware development. Additionally, machines are in op-
eration for several decades but the control software is extended and adapted
in much shorter periods. However, low software quality and the increased
use of untested software in automation systems bears high risks to fulfill the
overall quality requirements, the robustness, and the reliability of the system.
Furthermore, the reuse of untested software components in multiple automa-
tion applications spreads this risk. Thus software tests can help to increase and
keep up the high software quality standards over several applications. Many
companies associate testing with additional labor costs, e.g. test engineers, and
set the test process to a low priority in the development phase to save project
costs. That bears a higher risk because failures are more expensive to be fixed
the later they are found in the development phase [2].

Future production systems and their control application software must be
flexible, adaptable, reusable, and quickly expandable with low financial and
temporal resources [3]. Major costs of such flexible production systems are
costs incorporated with down-times of production facilities, for instance, in
the case of changes or break-downs, e.g. continuous processes with long start-
up times. In order to support software quality assurance, the control code
has to be tested systematically, thereby the risks of fatal software failures are
reduced [4].

In this thesis the term “control code” is used in the context of software for
industrial automatic control. The quality of the control code has a significant
influence on the reliability and safety of machines as well as the quality of
the produced goods. To ensure the quality and reliability of the control code,
testing during the development phases is needed. With conventionally used
software testing techniques a high degree of human interaction is necessary to
check the System under Test (SuT) which is partly unmanageable at present
and harder in the future [5]. Therefore a systematic testing process is needed
to cope with complex industrial automation applications.

1.1 Problem Statement

Currently there is no systematic testing process and there are no approaches to
check the software quality for industrial applications in the field of automa-
tion systems. Often new projects and project parts are copied from previ-
ous projects and modified based on the new requirements. Each ’copy-and-
modify’ cycle reduces the software quality which results in numerous untested
software parts in new projects [6]. Furthermore, such software systems are
difficult to maintain which results in extremely time-consuming and long pro-

1.2. Goal 3

cesses. Through the high effort of the industrial applications development,
the test effort will be reduced, resulting in a low software quality. In order to
solve these issues a systematic test process with appropriate testing methods
applicable for the industrial automation domain are required.

1.2 Goal

The goal of this thesis is to develop methods for systematic testing of industrial
control code, in order to improve the software quality in industrial automation
applications. In order to achieve this, an infrastructure and environment for
support testing of industrial automation software is developed.

Current industrial applications are mostly implemented in IEC 61131-3, but
industrial implementations based on the IEC 61499 standard increase [7, 8].
Hence, a general testing approach for testing industrial applications in preva-
lent industrial modeling languages is needed and will be conceptualized. Also
a test environment is developed and supports testing of the desired functional
behavior of the control code during the development process.

1.3 Software Testing

“Testing is the process of operating a system or component under
specified conditions, observing or recording the results and mak-
ing an evaluation of some aspects of the system or component.” [9,
p. 76]

Software systems become more important in most aspects of production
systems and therefore the demand of software quality increases. This tends
to new technologies which support the development of high quality systems
in industrial applications. Without testing there is no way of establishing a
decent quality of a developed system. Faults can cause minor disturbances,
e.g. applications by using a keyboard for the input and a push-button does
not work, but others can be potentially life threatening, e.g. a fault in a pro-
duction system with human interaction [10]. There is the need to ensure the
software quality of developed systems. This can be achieved by testing which
is a method of quality assurance that verifies the behavior of a system towards
a set of requirements that are expressed as tests [11].

In this section fundamental terms from software testing are defined for
a clear understanding. Further, commonly used basic software testing tech-
niques are presented. Finally, software testing versus software verification
techniques are evaluated.

1.3. Software Testing 4

1.3.1 Fundamental Terms

In the following several fundamental terms that are important for testing soft-
ware are defined and explained in more detail. These terms are defined based
on [9, 12, 13]:

• A failure is the incorrect behavior of a program, observable during the
occurrence of a fault.

• A fault, also known as error or mistake, is a localized code artifact which
can result in a failure.

• A symptom is a non-intended program behavior and can result in a fail-
ure, e.g. memory leak.

• A bug refers to a symptom or a fault. Other used words for a bug are
defect, anomaly, problem, or issue.

• Debugging is an analyzing method for identifying a bug.

• Dead code is a code fragment or part of a code which will never be con-
sidered and executed.

• Verification is a process to prove if a program complies with its specifica-
tion by a mathematical prove, i.e. formal verification.

• Validation is the process of evaluating software to ensure compliance with
the requirements at the end of the development process.

Software faults occur through the following chain of events. The engineer
incidentally introduces a fault to the code during the implementation. If this
incorrect program is executed, the system will produce wrong results. Note
that not all defects will necessarily result in failures. For instance, defects in
dead code will never result in failures. A symptom can turn into a fault when
the run-time environment is changed.

Edsger W. Dijkstra [14] clearly stated the main drawback of software testing
in the early 1970’s.

“Program testing can be a very effective way to show the presence
of bugs, but is hopelessly inadequate for showing their absence!”
[14]

1.3. Software Testing 5

1.3.2 Test Methods

In the field of software testing a test procedure can be organized in static testing
and dynamic testing [15, 16]. The simplest static testing process is a compiler
sweep. The compliance with the formal criteria of the program guidelines
would also be a static test. In addition, a plausibility check of the hardware
can be done as a static test.

A dynamic test is when the program code is executed and then the test
code/process is executed and applied on the SuT in order to check the correct
behavior of the test reference.

Black-box testing, White-box testing, and Gray-box testing are three basic tech-
niques in the field of software testing. In the following the three testing meth-
ods are presented.

Black-box Testing is understood as functional testing to test the behavior of
the code against the specification without knowing the assumptions about the
internal structure of the software component.

The term “behavioral testing” is marginal different because the use of in-
ternal knowledge is not strictly forbidden. Classical Black-box tests evaluate
the pure input-output behavior of the SuT. Therefore the goal is to test the
software behavior towards the specification of the software.

In the following several test design techniques are presented and explained
in more detail based on [17–20], [13, p. 35ff], and [21, p. 11]:

Equivalence Class Testing is used to reduce the number of test cases. There-
fore each input parameter of a function is structured into equivalence classes
and only one representative test of the class needs to be tested.

A graph-based testing method is basically a hardware testing technique
adapted to software testing1. Testing begins with creating a graph which in-
cludes relations and nodes. Nodes are objects and can have a direct link which
represents a relation between objects. Additionally, node-weights can be de-
fined as attributes of the objects. Cause-Effect Graphing Technique is a well-
known graph based testing technique. A ’-Cause-’ represents a distinct input
condition to act as a change in the system. Further, an ’-Effect-’ represents an
output condition which results in a system transformation or a state resulting
from a combination of causes.

Tests against the limits like Boundary Value Analysis is another common test-
ing technique. Therefore extreme boundary values are chosen which include:
minimum value - 1, minimum value, minimum value + 1; maximum value - 1,
maximum value, maximum value + 1; typical values; error values.

Pairwise Testing and Orthogonal Testing are popular approaches to combina-
torial testing problems [22]. Therefore each pair of input parameters to a SuT

1http://www.softwaretestinggenius.com, visited: July 2012

1.3. Software Testing 6

tests all possible discrete combinations of those parameters. This technique is
based on the observation that most faults are caused by interactions of at most
two factors.

The Classification Tree Testing method is an approach to partition testing
which uses a descriptive tree-like notation. This testing method supports the
systematic design of black-box test cases. The input of the SuT is investigated
under various aspects which are relevant for the test. Therefore several classes
with different aspects are formed. Stepwise partition of the input domain by
means of classifications is represented graphically in the form of a tree and the
test cases are combined by different classifications [23, 24].

White-box Testing uses the knowledge of a SuT internal structure for the
testing process which is also named glass-box testing. Accurate examples for
models to be used for testing purposes are Finite State Machine (FSM), for-
mally defined by Petrenko and Yevtushenko [25].

An FSM is a 7-tuple (S, s0, X, Y, DA, δ, λ), where

• S is a finite set of states,

• s0 ∈ S is the initial state,

• X is a finite set of inputs,

• Y is a finite set of outputs,

• DA ⊆ S× X is a specification domain,

• δ : DA → S is a transition function,

• λ : DA → Y is an output function.

The FSM can be used to generate test cases for achieving test coverage [26].
Therefore, a Reachability Analysis is used which is the process of computing
the reachable states from the initial states [27]. There exists a set of desirable
properties for the testing of FSMs.

This method is used for checking test coverage of the program code to de-
termine unused code branches, data type errors, or a measurement of the code
performance. There exists a large variety of coverage metrics. In the following
a summary of fundamental metrics are presented.

Statement Coverage - All statements (e.g. if, for, switch) are executed in the
SuT. Implicit statements like ’return’ are not subject of the statement coverage.
This metric is the weakest criterion in the coverage testing family. Beizer [20,
p. 75] stated that testing less than this coverage method for new software is
unacceptable.

1.3. Software Testing 7

Decision Coverage - This metric reports the Boolean expressions tested in
control structures such as while- and if-statements evaluated both false and
true. The Federal Aviation Administration (FFA) [28, p. 13] provides safe and
efficient aerospace systems and stated that during the test every point of entry
and exit in the SuT has been invoked at least once and every decision in the
SuT has taken all possible outcomes at least once. The FFA makes a distinction
between branch coverage and decision coverage. Branch coverage is weaker
than decision coverage. The organization defined a decision as a Boolean ex-
pression composed of conditions and zero or more Boolean operators at which
a decision without a Boolean operator is a condition. Furthermore, if a condi-
tion appears more than once in a decision, each occurrence is a distinct condi-
tion.

Condition Coverage - This metric is similar to the decision coverage metric
but it has a better sensitivity to the control flow. Condition coverage reports
true or false results of each condition. Condition coverage measures the con-
ditions independently of each other.

Path Coverage - This metric executes all possible control flow paths through
the SuT. This is the strongest criterion in the coverage testing family and it
is generally impossible to achieve because of relationships of data [20, p. 74].
Fundamental path coverage analysis methods are:

• Branch Coverage traverses an FSM in order to visit each branch so that
the complexity of all possible paths reaching to infinity at worst can be
reduced.

• Switch Coverage describes a branch-to-branch tuple meaning that in- and
out-branches of a state are covered by test sequences [29].

• Boundary-Interior Coverage is described by Chow [30] which characterizes
test sequences causing loops to be traversed once without additional it-
erations .

• H-Language is a similar approach for Boundary-Interior Coverage loop
testing.

The non-descriptive name for Statement Coverage is C1, for Decision Cov-
erage it is C2, and other non-descriptive name for Path Coverage is C∞, see
[20, p. 75]. Those coverage analysis methods are powerful testing tools for
checking the correctness of the control structure at the design level of many
software systems [30]. Application examples of the coverage metrics are pre-
sented in [20, 28] and Bullseye Testing Technology 2.

2http://www.bullseye.com/coverage.html, visited: July 2012

1.3. Software Testing 8

Gray-box Testing is a software testing method which combines the Black-
box testing method and the White-box testing method [31, p. 27]. In the Black-
Box testing the internal structure of the item under test is unknown to the
tester and in the White-Box testing the internal structure is known. By using
the Gray-Box testing method the internal structure is partially known. This in-
volves having access to the internal data structure and algorithm for designing
the test cases.

A similarity of the Black-box and White-box testing is that the developer
will share the ignorance about the internal structure of the SuT at the begin-
ning of the testing because the Gray-box tests will be written before the SuT is
implemented. This means that Gray-box testing is usable for using the Test-
First Development (TFD) method which is explained late in Section 2.4.2, see
Figure 2.8.

A similarity of Gray-box and White-box tests is that the tests are written by
the same development engineer as the SuT.

Summarized, Gray-box tests are not a full alternative to Black-box tests. It
can be seen as a qualitative improvement of White-box tests.

The question is: “Do we need all these different testing techniques [31,
p. 27]”? Yes, because the White-box testing checks the code for its correct func-
tionality. The Black-box ensures that the requirements have been realized. The
Gray-box test is used for integration testing of a component-based architec-
ture. Therefore the source-codes as well as the monolithic parts are used for
the tests [31, p. 27].

Those fundamental terms are their understanding is required for further
steps in order for developing testing concepts.

1.3.3 Testing vs. Verification

A different approach for ensuring software quality and its correctness is formal
verification, e.g. model checking [32,33]. Model checking is an automatic tech-
nique for verifying concurrent finite state systems and was first used for ver-
ifying hardware components. Then it has been used for software component
verification, e.g. verifying complex sequential circuit designs, communication
protocols. Formal verification of industrial automation systems needs three
components to verify correctness and to detect a conflict [34]: (1) A model of
the controller, (2) a model of the uncontrolled plant, and (3) a specification of
the plant behavior.

In this approach control software is represented in form of formal mathe-
matical models. This one analyzes and checks if all requirements are fulfilled
at all times. Thus the correct behavior of the verified component can be certi-
fied. In contrast to the methods of formal verification, a formal model of the
application is not required for testing [35].

1.3. Software Testing 9

A major drawback of the verification process for software components is
the state-space-explosion-problem [36]. This problem occurs in systems with
many components which interact with each other. This means that the system
has a strong coupled behavior, i.e. dense matrix. Furthermore, systems with
data structures consist of many different values which are a big effort for the
system verification. Many realistic systems are still too large to be handled in
a verification process [33, p. 10].

Kormann et al. [5] presented an automatic test case generation approach
based on model checking models for control software. Loeis et al. [37] and
Pollmächer et al. [38] presented a formal modeling approach for IEC 61131
PLC programs to be used for verification by model checking. At the moment,
the test case generation needs too much time which is therefore less applicable
for testing of larger control systems.

Hurnaus and Prähofer [39] presented a combination of model checking and
artificial intelligence techniques to guide domain experts in building control
software. This software can be used to create a state and knowledge deduc-
tion process to allow deriving knowledge at a code position of the control code
which can be used to verify contracts and constraints. The programming lan-
guage is based on MONACO, a domain-specific language for building control
solutions.

Several approaches for performing formal verification on IEC 61499 appli-
cations have been presented in [40–42].

A critical part of executing control applications is the execution environ-
ment as well as the control hardware. Gerber and Hanisch [43] showed that
the execution environment can change the execution behavior and added it to
their verification models. However, Sünder and Vyatkin [44] showed that a
full mathematical model of the whole execution environment and the control
hardware leads to highly complex models, i.e. inefficient calculation effort. In
order to check also the components’ behavior on real control devices, using
software testing techniques can complement model checking methods for im-
proving software quality. Specified models for the model checking process as
presented in [45] can be used for the test specification, i.e. the components’ in-
tended behavior. In this respect, software testing can support model checking
as test cases which are executed on the real control devices but this thesis will
not focus on software verification processes.

Summarizing, the effort for verifying a control application is very high be-
cause of the changing requirements on short notice. This influences a change
of the verification model. Hussain and Frey [46] state that the models for the
verification process will require additional effort for building up the formal
model as well as huge computational power while realizing it.

1.4. Summary 10

1.4 Summary

In this section an introduction and motivation about software testing for in-
dustrial automation systems is given. The problem statement of testing control
systems is pointed out and the goal of this thesis is defined.

A basic overview on software testing methods is presented. Fundamental
terms are defined and basic testing methods from the software testing domain
are introduced. An overview on testing versus verification is presented.

1.5 Contributions and Outline of the Thesis

The remainder of this thesis is structured as follows:
Chapter 2 presents an introduction of the common industrial automation

programming languages IEC 61131 and IEC 61499. Related work on software
testing methods are investigated, such as testing control software of IEC 61131
and IEC 61499 applications. Common methods and the state of the art of test-
ing in the software engineering domain, software testing techniques in the em-
bedded systems domain are presented, and also a comparison of the different
testing domains is discussed. Furthermore, work on reducing the number of
test cases as well as the economical aspects of testing in general are discussed.

In Chapter 3 a new test framework for systematic automated testing of in-
dustrial automation applications is proposed. This test framework supports
testing on various levels in detail and from different perspectives. In the sec-
ond part of this chapter individual aspects for a testing process is shown and
how these aspects address various testing levels is presented.

Model-based specification techniques are useful to be flexible of changing
requirements. In Chapter 4 a selection of appropriate Unified Modeling Lan-
guage (UML) models for Test-Driven Development (TDD) is presented and
evaluated for the use in industrial applications. Furthermore a test case gen-
eration approach which extracts test case information from UML state chart
diagrams is presented.

In Chapter 5 four testing techniques are presented which are able to test
industrial automation software. The manual testing method, the keyword-
driven testing method, the unit testing method by using service sequence dia-
grams, and the model-based testing method are presented and explained.

Chapter 6 demonstrates the benefits and drawbacks of the proposed test-
ing techniques from Chapter 5. The testing methods are explained based on
the elected prototypical implementations. Finally, a comparison of the testing
methods is shown.

Chapter 7 presents a new automation component approach for a more
test friendly development of industrial automation applications. The pro-
posed component structure enables a reduction of valuable development time

1.5. Contributions and Outline of the Thesis 11

because the components are designed for reusability in different industrial
project applications.

The thesis is concluded with a discussion about the proposed approaches
in Chapter 8. Answers to all derived research questions that are defined in
Section 2.9 are given. The successful implementations of the proposed test-
ing techniques applied on different laboratory constructions is summarized.
Finally, an outlook on future research to ensure the quality of industrial au-
tomation software is presented.

CHAPTER 2

Related Work

Testing is defined as the execution of a SuT with the aim to find faults in the
system and verifies the behavior of the SuT towards a set of requirements that
are expressed as tests [11, p. 1]. Software should be without defects (zero de-
fects) and should guarantee correctness with construction implementations of
a complete specification. Complete in this case means that the full functional-
ity is considered and no constraint is left out [47, p. 6]. Nowadays industrial
control applications are mostly tested manually which results in limited Qual-
ity Assurance (QA) and the effort of such test process is enormous. Control
software for industrial plants are not tested within a systematic testing pro-
cess which results in an unmanageable task.

The history3 of software testing started in the 1950s. The software engi-
neering domain had the same challenges some decades ago as the industrial
automation domain has today. Currently several testing methods and tech-
niques are available. Some testing techniques were adopted from the software
engineering domain into the embedded systems domain. But the testing re-
quirements for industrial automation needs new approaches to ensure a high
software quality [48].

There is no universal definition of software quality, it is highly context de-
pendent [49]. To improve software quality, a definition of aspects of quality
that are of interest for the developer or tester has to be done. In the following,
six aspects are considered to ensure software quality based on Kitchenham and
Pfleeger [49], International Organization for Standardization (ISO) 9126 [50],
and [47, p. 81]:

3History of software testing, an overview:
http://www.testingreferences.com/testinghistory.php visited: September 2012

12

13

• Functionality - A set of attributes that bear on the existence of a set of
functions and their specified properties. The functions are those that sat-
isfy stated or implied needs.

• Reliability - A set of attributes that bear on the capability of software to
maintain its level of performance under stated conditions for a stated
period of time.

• Usability (Human Engineering) - A set of attributes that bear on the effort
needed for use and on the individual assessment of such use by a stated
or implied set of users.

• Efficiency - A set of attributes that bear on the relationship between the
level of performance of the software and the amount of resources used
under stated conditions.

• Portability - A set of attributes that bear on the ability of software to be
transferred from one environment to another.

• Maintainability - A set of attributes that bear on the effort needed to make
specified modifications.

The process to measure the software quality starts when the main func-
tionality of the software is achieved. After that the aspects of reliability, usabil-
ity, efficiency, and portability can be considered. Böhm et al. [51] presents an
evaluation of quality metrics to measure the software quality based on those
aspects. Indicators for measuring software quality are structuredness, robust-
ness, and self-descriptiveness. The resulting taxonomy of software quality
characteristics based on [51] is presented in Figure 2.1. In general, there can
be asked three questions which bring the requirements to the point [51]:

• How well can I use the system? - reliability, easily, efficiently

• How easy is the maintenance? - modify, understandability, re-test / testa-
bility

• Is it possible to change my environment? - portability

Figure 2.1 shows that portability, utility, and maintainability are necessary con-
ditions for the software quality characteristics. The utility requires a compo-
nent which is reliable, efficient, and useable but it does not require the user
to test the software component. Maintainability requires the user be able to
understand, modify, and test the SuT [51].

In the following an introduction of the common used modeling languages,
the IEC 61131 and the IEC 61499 standard is presented. Further, existing con-
cepts and existing work on software testing methods are investigated. First

14

Device-Independence
Self-Condainedness

Self-Condainedness
Accuracy

Completeness
Robustness/Integrety

Consistency

Accountability
Device Efficiency

Accessibility

Communicativeness
Accessibility

Structuredness
Self-Descriptiveness

Robustness/Integrety

Structuredness
Self-Descriptiveness

Consistency
Legibility

Structuredness
Augmentability

Accountability
Accessibility

Communicativeness
Structuredness

Portability

Reliability

Efficiency

Usability
(Human Engineering)

Testability

Understandability

Modifiability

Utility

Maintainability

S
of

tw
ar

e
Q

ua
lit

y
C

ha
ra

ct
er

is
tic

s
Ta

xo
no

m
y

Figure 2.1: Software quality characteristics taxonomy based on Böhm et
al. [51].

testing control software of IEC 61131 and IEC 61499 applications are discussed,
followed by common methods of testing in the software engineering domain
and finally software testing techniques in the embedded systems domain are
presented. Then a comparison of the different testing domains is discussed.
Furthermore, aspects on reducing the number of test cases is discussed as well
as the economical aspects of testing are presented.

2.1. Modeling Languages for Industrial Automation Systems 15

2.1 Modeling Languages for Industrial Automation
Systems

In this section an introduction on the common industrial automation program-
ming languages IEC 61131 and IEC 61499 is given which are mostly used to
model the desired behavior of applications in the field of automatic control. In-
dustrial automation is applied to control and optimize production processes.
It provides high quality and reliable products, for example in the following
domains [47, p. 35]: Machine and plant control, chemical process control, dis-
tributed production control, traffic control. Therefore safety critical behavior
and real-time constrains should be observed.

In order to achieve a high software quality of such control applications,
the software testing effort must be effective and efficient to be competitive in
the ever increasing market situation. For increasing the testing effort of the
IEC 61131 applications and the IEC 61499 applications, the fundamental struc-
ture of the those modeling languages are presented. An explanation and defi-
nition of a model is presented in Section 2.3.

2.1.1 IEC 61131

The International Electrotechnical Commission (IEC) provides the Internatio-
nal Standard IEC 61131 [52,53] which consists of a set of eight parts concerning
PLC. Part 3 of this standard is the currently most important one as it defines
programming languages, data types, and the software architecture used by
most PLCs vendors.

The main elements of the IEC 61131-3 software model are shown in Fig-
ure 2.2. The top element of the software model is the CONFIGURATION el-
ement and represents a PLC. The CONFIGURATION contains one or more
resource elements. Each of such RESOURCE contains one or more programs
executed under the control of zero or more tasks. A TASK unit is an execution
control element to schedule the execution of associated Program Organization
Units (POUs), e.g. periodically or event-triggered execution. Further, a PRO-
GRAM may contain zero or more Function Blocks (FBs) or other language ele-
ments as defined in this part. Additionally, IEC 61131 supports functions. The
difference between FBs and functions is that FBs contain internal state infor-
mation. The association between these elements is described by the execution
control path which is pictured by the dashed lines in Figure 2.2.

Data types: The IEC 61131-3 defines a set of elementary (pre-defined) data
types, e.g. integer, real, string, Boolean, real numbers. Additionally,
generic data types are defined for using such pre-defined data types to
overload functions. A mechanism for specifying additional data types is

2.1. Modeling Languages for Industrial Automation Systems 16

ACCESS PATH

RESOURCE

CONFIGURATION

TASK

PROGRAM

FB FB

PROGRAM

TASK

RESOURCE

TASK

PROGRAM

FB FB

PROGRAM

TASK

Global variables and directly represented variables
and Instance-specific initializations

FBExecution control path

Variable access path

Function block

Variable

Communication
function
(IEC 61131-5)

Figure 2.2: Overview of the IEC 61131-3 software model based on [52].

also defined. Elementary data types, a keyword for each data type, the
number of bits per data element, and a range of values for each elemen-
tary data type are shown in [52, Table 10] and [54].

Variables are data objects whose content may change, e.g. data associated
with the inputs, outputs, or memory of the PLC. A variable can be de-
clared to be one of the elementary data types or a derived data type.
There are several variants of variables which have an important influence
on the PLC program. In the following a full overview of the declared
variable keywords is presented which is documented in [52, Table 16a
and 16b].

• VAR and VAR_TEMP identify internal variables, the latter can be
used as temporary variable.

• VAR_INPUT, VAR_OUTPUT, and VAR_IN_OUT defines the inter-
face of a POU.

• VAR_GLOBAL defines variables which can be used within a whole
scope of the configuration. This means that variable values can
communicate between different programs which are in the same
configuration. Access definition of the variable is allowed by the

2.1. Modeling Languages for Industrial Automation Systems 17

use of READ_WRITE or READ_ONLY commands. Variables de-
fined by the CONSTANT command are automatically defined as
READ_ONLY.

• VAR_EXTERNAL constructs can be used to access a POU to a glob-
ally defined variable.

• VAR_ACCESS defines variables which can be used for remote ac-
cess via the communication service.

• VAR_CONFIG parameter is used to initial different values for dif-
ferent instances.

Modeling languages: IEC 61131-3 defines five modeling languages:

• Instruction List (IL) is a line-oriented textual language. Each line
includes a command and an operator which looks like an assembler
language.

• Structured Text (ST) is similar to a high level programming lan-
guage such as Pascal but with limited functionality.

• Ladder Diagram (LD) is a graphical language and comes from relay
ladder logic diagrams and provides a similar visual representation.

• The Function Block Diagram (FBD) language is used to describe a
function between input variables and output variables. A function
is described as a set of elementary blocks which can be connected to
blocks by input and output variables. Such connections are repre-
sented by connection lines.

• The Sequential Function Chart (SFC) elements are defined for struc-
turing the internal organization of the programmable controller, i.e.
programs and FBs.

Applications based on IEC 61131 for the automation domain are written
in one of these defined programming languages, see [52, Chapter 2.6].

A general difference of programming languages from the computer sci-
ences, such as C++, Java, is their execution behavior. The execution element
is a task element which can trigger POUs cyclic or event-based. Hence, the
POUs are executed in the context of these task executions. A cyclic triggered
execution is typically for a IEC 61131-3 application.

2.1.2 IEC 61499 - Distributed Event-based System

The IEC provides the International Standard IEC 61499 [55, 56] for Industrial
Process Measurement and Control Systems (IPMCS) defining a FB-oriented

2.1. Modeling Languages for Industrial Automation Systems 18

b) Device Model

d) Function Block
Types

Manages
Applications
Commands

create
initialise
start
stop
delete
query

Communication Network

Device 3 Device 4 Device 5

Controlled Process

a) System Model

Device
Management Resource B Resource C

Communication Interface

Process Interface

Resource A

Application 2

Device 1

Communication Interface

Process Interface

Scheduling function

c) Resource Model

Application 1

Application 3

Basic

STARTSTART

EX
1

INITINIT

INIT

1

IN IT IN ITOINITIN IT IN ITOINITO

EXOM AIN M AIN

Composite

Service
Interface

resourceapplication

STATUS

INITO(+)

STATUS

INITO(+)

startServicestartServicePARAMS

INIT(+)

PARAMS

INIT(+)

Device 2
Application 1

Application 3

Application 2

Figure 2.3: Reference models according to IEC 61499 [58].

paradigm for distributed control systems development. The standard includes
several models which are presented in Figure 2.3:
System model, device model, resource model, application model, and the FB
model. These models allow developing control applications by using graph-
ical development methods. A FB, the basis model of the IEC 61499 family, is
a software component which is self-contained and provides its functionality
through a determined interface.

There is the possibility to build simple or sophisticated solutions by using
FBs or parts of software. Each FB contains particular algorithms to config-
ure a solution without the need of programming and developing the appli-
cation from scratch [57]. The model interface has been expanded from the
IEC 61131-3 interface definition and consists of two parts: The event- and the
data-interface which are shown in Figure 2.4. The data-interface consists of
data input and outputs which are already presented in the FB interface defi-
nition in IEC 61131-3. The interface is extended with an additional event in-
terface. The execution and processing of the internal FB algorithms are started
if a trigger event to the event input is sent. During the execution process of
the FB, the input data will be processed and the output data will be generated.
Additionally, an event output can be triggered.

The IEC 61499 standard is organized hierarchically ranging from the sys-
tem model (top-most model layer) to the FB model (lowest model layer).

2.1. Modeling Languages for Industrial Automation Systems 19

The System model forms the highest abstraction layer and specifies the rela-
tion between applications and devices. Applications can be distributed
over several devices and are not restricted to a single device, e.g. appli-
cation 1, 2, and 3 over the devices 1 to 5 in Figure 2.3.

The Device model is composed of one or several resources to contain FBs and
enable their independent execution. The device model includes an inter-
face for communication services as well as a process interface to commu-
nicate with input or output ports of the physical device.

The Resource model contains a FB network and enables the execution by pro-
viding a scheduling function for their correct execution sequence of al-
gorithms. It also provides a communication interface as well as a process
interface.

The Application model consists of a FB network including event- and data-
connections. An application can be distributed over several devices and
resources.

The Function block model is defined as a functional unit of software parts
containing data and algorithms. It defines the design and the charac-
teristic of the FB (event- and data I/Os), as seen in Figure 2.4. Multiple
instances of a FB can create and be executed independently from each
other.

IEC 61499 supports different FB types: The Basic Function Block (BFB) type,
the Composite Function Block (CFB) type, and the Service Interface Function
Block (SIFB) type. The FB types describe the behavior and interface of instan-
tiated FBs.

• A BFB includes internal algorithms which are executed according to the
defined Execution Control Chart (ECC) in the FB. Only the BFB includes
an ECC which forms an internal state machine and maps input events to
algorithms for processing and creates output events at the occurrence of
state changes.

• The CFB encapsulates a network of FBs and their corresponding event-
and data- connections.

• SIFBs provide the necessary interface to communicate between FBs of
different networks, e.g. remote resource, or are used for direct hardware
access, e.g. hardware I/O elements.

2.2. Testing Control Software 20

Event flow

Data flow

Event
inputs

Data
inputs

Event
outputs

Data
outputs

EVENT

Type_Name

FB_Name

EVENT

DATA

DATA

EVENT

EVENT

DATA

DATA

DATADATA

Algorithms

Execution
Control

Internal data

Event flow

Data flow

Event/Data
Association

Figure 2.4: Characteristic and interface design of an IEC 61499 FB.

2.2 Testing Control Software

Industrial manufacturing and industrial automation system grow in complex-
ity and there is the need for control engineering support by testing. Several
years ago Seitz et al. [59] proposed that a complete testing of automatic control
systems including the documentation over the full development life cycle is
required.

Software testing is well established in the field of software engineering and
computer science (see Section 2.4). But the systematic and automated testing
of software modules and components in the automatic control domain is still
at an early stage. The reason is that the constraints of the general requirements
of industrial systems are much harder than in the field of classical software
development. Such general requirements are real-time conditions, interaction
with ’the real world’ by sensors and actuators or distributed control systems.

Testing of PLCs software is a time consuming and expensive item. In the
moment, there is no standard for a test process of industrial control software,
but with the introduction of the IEC 61508/61511 [60, 61], a similar approach
to the safety-critical processes will be extended in the manufacturing industry.
This section gives an overview of the related work and the state-of-the-art in
the field of testing control software.

2.2. Testing Control Software 21

2.2.1 Testing as Commissioning Support

Auinger et al. [62] and Schludermann et al. [63] proposed an approach to
test industrial control software by connecting a PLC to a commercial Discrete
Event Simulator (DES). This approach is called Soft-Commissioning which is
a Hardware-in-the-Loop (HiL)-based approach. The provided system reacts
similar to the behavior of real hardware like an industrial manufacturing line.
The methodology of HiL is that the inputs and outputs of a controller are con-
nected to a simulator of the controlled part. The interaction of the various parts
can be tested easier and a reproduction of the test conditions are given. The
biggest difference between Soft-Commissioning and other HiL systems are the
essential system reaction times. Soft-Commissioning is provided to work with
round trip times smaller than 100ms. While most HiL systems use fast Dig-
ital Signal Processorss (DSPs), Soft-Commissioning is executed on standard
PC workstations. Furthermore, Soft-Commissioning interacts with DES while
other HiL systems are based on continuous real-time simulations [63]. The
infrastructure communication between PLC and simulator is a first step for
testing the behavior of the control application. This approach is very extensive
and the simulator requires an appropriate specified simulation definition. A
systematic testing of the control software is not adequate with this approach.

A virtual commissioning process is proposed by Kabitzsch et al. [64]. They
used a combination of simulation, testing, and monitoring techniques for com-
missioning industrial manufacturing systems. For all fields of applications, i.e.
simulation, testing, and monitoring, different tools are used. The goal of the
project named OMSIS4 (On-the-fly-Migration und Sofort Inbetriebnahme von
automatisierten Systemen) was to develop a consistent integration of the three
application fields. In the case of testing, a test system manager named ECU-
Test by TraceTronic5 is available. This test manager is used in the automotive
domain. There is only a tool adapter between Siemens Simatic-S7 and ECU-
Test available to stop and restart the PLC, read and write selected signals [64].

2.2.2 Automatic Testing

Manual tests may find many defects in a software application but it is an ex-
hausting and time consuming process. Automatic test automation is the pro-
cess of defining an instruction to do testing that would otherwise need to be
done manually. The big advantage is that once tests have been automated they
can be run quickly and repeatedly. During the lifespan of the application fea-
tures may break which were working at an earlier point in time. Automatic
testing is often the most cost effective method for testing software that have a
long maintenance life.

4http://iai8292.inf.tu-dresden.de/omsis/de/index.html visited: August 2012
5http://www.tracetronic.de/ visited: August 2012

2.2. Testing Control Software 22

A universal architecture for efficient test automation is proposed by Ko-
rotkiy and Bender [65]. The focus of this architecture approach is based on
testing mechatronic products. This universal test system architecture can be
used as a basis for the realization of test systems and can be extended for an
architecture of testing control applications for improving the overall efficiency
of test automation. The following definitions are discussed: systematization
available tools, requirement analysis, tool selection, concept and realization,
and final evaluation. An implementation of this approach is not presented.

An application example of automatic daily-build tests for PLC programs
modeled in IEC 61131-3 are presented by Stetter and Erben [16]. A Concur-
rent Versions System (CVS), a built system, and a target system, i.e. PLC, are
necessary. Every day the developers have to check-in the source code into the
CVS. Note that the source code must be executable on the target system. The
built system compiles the source code into an executable program. Automatic
testing in combination with a CVS is most important for testing libraries. That
means that the approach from Stetter and Erben [16] is useful for testing units
or components but this approach is not applicable for testing system applica-
tions.

Hussain and Frey [46] presented a UML-based development process with
an automatic test case generation approach. First, several UML diagrams are
used for the specification of the functional behavior, i.e. state chart diagram,
component diagram, use case diagram, sequence diagram, and activity dia-
gram. For the testing process, the white box testing method is used under the
consideration of the state chart diagram and the activity diagram specification.
Further, the round-trip path coverage is applied on the SuT. The coverage of at
least every defined sequence of specified transitions that begin and end in the
same state is considered. This approach is not applicable for testing the SuT
against the specification because of using the white-box testing method and
the specification for the implementation is the same as the test specification.
Hence, only the transformation process is being tested and not the correctness
of the control software.

Hussain and Eschbach [66] proposed an automated fault tree generation
approach which is used for verification, i.e. model checking, and testing of
control systems. Therefore distinct modeling artifacts produced during the
earlier stages of the development life-cycle of the system are used to convey
results to drive the activities of later phases. After the analysis a fault tree is
generated. This is used to drive the design and development decisions as well
as the testing activities. A combination of verification and testing methods
are used. In order to compose formal models of the system automatically,
distinct modeling artifacts and information are used. Embedded hardware
and network failures are checked by model checking methods. Through model
checking, counterexamples can be found to satisfy particular properties which
can be used as test cases, e.g. testing a redundant system. This is an example

2.2. Testing Control Software 23

that testing and verification methods complement one another.

2.2.3 Simulation-based Testing

Traditionally simulations are used to help understand the behavior and per-
formance of complex systems [67]. Simulation however can also be used to
support testing.

Seitz et al. [59] describe a test process in which binary input-output (I/O)
signals are connected to a simulator which includes a simulation model (model
of the real system). The simulator automatically executes the test sequences to
the PLC by generating test signals through a plant simulation. The feedback is
controlled by the simulator as well. The test results are automatically recorded
and maintained, so that every time the test process can be repeated. This is
used to check the wire connection of patch panels and their hardware config-
uration in a test rig. Further, the behavior of the control software is tested by
external I/O test signals. Summarizing, it is useful for testing the hardware
configuration of PLCs and further the final implementation of the control soft-
ware can be tested.

Another simulation-based testing approach is presented by Greifeneder et
al. [68]. A simulation tool is presented which is able to generate a simulation
model on the basis of process control engineering data. Based on the semi-
automatically generated simulation model, the I/O behavior of the relevant
sensors and actuators as well as the physical process can be tested earlier in
the development phase.

Simulation-based testing is quite close to the commissioning phase and is
not applicable for testing in an early stage of the development process, i.e.
starting development of control code, but it is a powerful method for checking
the system in a later or closed to the final development phase.

2.2.4 Analyzing Methods

An approach for checking the software behavior of control applications is the
debugging technique. A comprehensive offline debugging solution for Soft-
PLCs based on IEC 61131 is presented by Prähofer et al. [69, 70]. All external
influences and sources of non-deterministic behavior in the original execution
run are recorded which can later be replayed deterministically without requir-
ing any connection to the original environment and any hard real-time con-
straints. This capture-replay technology approach is used for recording the
reactive behavior as well as for detailed analysis of a program run. A visual-
ization and exploration of the reactive behavior of PLC programs is presented
by Wirth et al. [71]. Such analyzing methods for industrial software can be

2.3. Model-Driven Development 24

combined with new testing methods to improve the quality of industrial sys-
tem solutions.

The methods which are used with classical software engineering are not di-
rectly applicable for testing control software. Therefore a special development
process for testing automatic control applications is needed.

Systematic testing processes including testing control software is uncom-
mon in the domain of industrial automation. Even in a recent state of the art
review [7] no evidence of testing can be found.

2.3 Model-Driven Development

In order to manage development of complex software systems, new develop-
ment processes for the software development are concerned [72, p. 21]. The
purpose of Model-Driven Software Development (MDSD) is to close the gap
between:

• The problem domain, i.e. user requirements,

• the solution domain, i.e. system requirements, design specification, and
design analysis,

• and the realization domain, i.e. system development, implementation,
and their analysis [73].

Nowadays software development processes are based on the Model-Driven
Architecture (MDA) standard. MDA is an open standard which is propagated
by the Object Management Group (OMG)6. The main goals of MDA are in-
teroperability, portability, and reusability through architectural separation of
concerns. A Platform Independent Model (PIM) represents functional require-
ments in a formal notation and is used as the basis for one or more Platform
Specific Models (PSMs). Each PSM is an abstract representation of one aspect
of the implementation. For creating an implementation one or more transfor-
mation steps from the PSM are progressed [11, p. 22].

Additionally, standards are used with MDA, such as Meta Object Facility
(MOF), UML, Common Warehouse Metamodel (CWM) [72, p. 14].

2.3.1 What is a Model?

“A model is a description of something.” [74]

6Object Management Group (OMG), Model-Driven Architecture (MDA),
http://www.omg.org/mda/ visited: August 2012

2.3. Model-Driven Development 25

In the following, the term model is understood as software model. The soft-
ware engineering domain traditionally defines a model referred to be an arti-
fact that is formulated in a modeling language, such as UML. There are dif-
ferent kinds of models, but not all model types are suitable for Model-Driven
Development (MDD) in the field of software engineering. Further, not every
model is a formal model, e.g. semi-formal model. A formal model is able to
describe an aspect of the software in a complete and unambiguous manner
for instance in a mathematical manner. A formal model has a distinct defined
grammar which includes its structure, e.g. syntax, as well as its meaning, e.g.
semantic. These requirements imply that a single model does not have to and
will not be able to describe the whole system. But it has to be clear what is
included and what is not included. Note that formal models must not neces-
sarily be defined by UML models [75, p. 11]. UML7 describes a system through
the help of various diagram types. In general, such software model descrip-
tions are graph-based and typically rendered visually. Several definitions of
the term model, i.e. software model, are explained by Kühne [74].

According to [76, p. 131-133], a model can be defined by three features:

• Mapping feature: A model is based on an original object and represents
a natural or imitation original which can be a model again.

• Reduction feature: A model reflects only a relevant selection of the orig-
inal’s properties.

• Pragmatic feature: A model needs to be usable in place of the original
with respect to some purpose, e.g. for special objects (who?), during a
special time interval (when?), under special conditions (why?).

2.3.2 Model Specification

An important issue of modeling a system is to define a good level of abstrac-
tion. Hence, it has to be decided which aspect of the SuT should be included
or omitted in the model [77, p. 60].

The ideal model specification should be easy to understand for testers. Fur-
ther, a large problem should be described as easily as a small system and the
model specification should be understood by a test generation tool. There is
no ideal modeling language for all purposes which include several notations.
Ideally the model can be generated from some representation of the require-
ments [78].

If the model is used only for test case generation purposes, it does not have
to specify the whole behavior of the system. Because the specification of test

7in the further UML and UML 2 is used as a synonym

2.3. Model-Driven Development 26

cases must not be complete such as a behavior description of a system which
is used for code generation.

Over the years several development processes have arised, for example
UML or the simultaneous process model Rational Unified Process (RUP) for
software development. RUP is a commercial product of Rational Software
which is a part of the IBM group. RUP uses the notation language of UML.
In recent years, UML has been very useful for the description of software, e.g.
starting from the technical analysis to the technical design [79,80]. The advan-
tages are clarity, comprehensibility, intensity of expression, the standardiza-
tion and acceptance, platform and language independence, and independence
of process models. They all are essential aids in the presentation of interim
results in a development process.

A practical example is to specify the requirements of a model by setting all
possible values, i.e. valid and invalid values, of a parameter and specifies a
test generation model for the testing process. The model includes the specific
constraints among the specified values. These constraints include semantic
information about the relationship between parameters, e.g. two parameters
which cannot be empty (null) at the same time. An overview of existing spec-
ification tools is presented by Micskei8.

Utting et al. [77, p. 62ff.] present several modeling notations for modeling
the functional behavior of systems. Pre/post (or state-based) notations and
the transition-based notations are the most popular. Pre/Post notation repre-
sents a snapshot of the internal state of the system as a collection of variables.
Therefore each operation is defined by a precondition and a postcondition.
The transition-based notation describes the transition between different states
of the system, such as FSMs. The nodes of a FSM represent the major states
of the system and the arcs represent the action of the system. Other notations
are: History-based notations, functional notations, operational notations, sta-
tistical notations, and data-flow notations. The selection of the most practical
notation depends on the application whether it is more data-oriented or con-
trol oriented.

After the model specification, the parameter has to be checked towards in-
correct data ranges which leads to test failures and therefore must be corrected.

2.3.3 Model Transformation

The transformation is the connector between the model and the execution plat-
form. Hence a formal model or a semi-formal model is transformed into some-
thing else. That can be a program code which is called Model-to-Code (M2C)
Transformation or the source model is transformed into another model which is

8http://mit.bme.hu/~micskeiz/pages/modelbased_testing.html visited: August 2012

2.3. Model-Driven Development 27

called Model-to-Model (M2M) Transformation or simply Model-Transformation
[75, p. 33].

• M2C Transformation / Model-to-Text (M2T) Transformation: M2C trans-
formation produces, based on the model definition, a source code which
is called code generation. This kind of transformation is needed for gen-
erating dependent artifacts from the model, i.e. source code of a pro-
gramming language like C++, C#, Java. It is possible to define several
different M2C transformations based on the same (semi)-formal model.
The results, i.e. generated code, can be used for different target platforms
such as different PLC platforms or different implementation standards
such as IEC 61131 or IEC 61499.

• M2M Transformation: M2M transformation is used to transform one or
several models into a new target model. This is needed if a model is
modified, extended, or used in different engineering domains.

Further information about model transformation is presented in [75, p. 33].
Model transformation applied in the field of industrial control software is
shown in [81–84]. The use of such model transformation methods are ap-
plicable to generate test cases from the (semi)-formal test case specification
automatically, see Section 5.4.

2.3.4 Model-Driven Development for Control Applications

MDD is widely used and accepted in the software engineering domain. In the
last years this development process has become more important in the field
of industrial control software development. The idea of this approach is that
models rather than software code are the primary artifacts of the software de-
velopment. In order to use MDD the complexity of industrial control applica-
tions can be handled easier by using an abstract view of the system’s issues to
solve industrial challenges.

Frey and Thramboulidis [85] state that the FB language can be seen as
a MDD approach in the automation domain. The abstraction level of the
IEC 61131-3 application modeling is very low and close to the implementation
level. The IEC 61499 is used for modeling because the level of the modeling is
more abstract from the implementation. This can be seen in the explicit spec-
ification of the control execution, i.e. ECC included in the BFB. Instead of the
direct hardware access by global variables in IEC 61131-3, the hardware access
in IEC 61499 is realized by a SIFB. Further, UML and Systems Modeling Lan-
guage (SysML) are considered as modeling language for the industrial control
domain. Frey and Thramboulidis [85, 86] state that the best condition for an
integrated MDD is provided by SysML.

2.4. Testing in Software Engineering 28

Panjaitan and Frey [73] propose a development process for Distributed
Control Systems (DCSs). In the development process UML is used in the first
stage and IEC 61499 in the later ones. Several design patterns for implement-
ing controller based functionality of mechatronic objects are presented [73].

A further combination of UML modeling and IEC 61499 FB network con-
cept in the field of DCSs is shown in [87].

The translation of UML artifacts to FB environments based on UML class
diagrams is proposed in [88]. This development approach supports the col-
laboration between designers from automation engineering and software en-
gineers.

Hussain and Frey [89] use an IEC 61499 compliance profile by using UML
combination with Object Constraint Language (OCL). Therefore, the OCL is
used to add additional constraint information into the modeling elements (e.g.
initial values, derived values) which helps with the mapping and analyzing
process.

Vogel-Heuser et al. [90] use an object-oriented approach by using UML as
modeling notation integrated into an IEC 61131-3 PLC programming environ-
ment. The focus lies on automation software development for the machine
and plant manufacturing industry. There is actually no support for testing, the
derivation of test cases and the automation of tests based on the structural and
behavioral description of the UML model in the development phase.

Thramboulidis [91] proposes an architecture for the development of indus-
trial manufacturing systems that promotes model integration not only for the
implementation artifacts but also for artifacts of the early analysis and design
phase of the development process. The model integrated development pro-
cess applies a domain specific modeling language for concurrent engineering
of mechanical, electronic, and software components of mechatronic systems.

MDD for industrial control applications is the right way to solve future
challenges in this domain. Techniques of this development method can also
used for testing control software which is presented in Section 5.4.

2.4 Testing in Software Engineering

The rising functionality of software based functions requires a significant in-
crease of test activities. Concurrently, because of the short time of develop-
ment, new challenges arise for the software developers. The quality of the
software has to be constant or has to be increasing by constant expense. This
increase in efficiency can be realized by testing. The goal is to reduce the neces-
sary test expense of the test process by reusability, automation, and optimiza-
tion. Software testing in the software engineering domain has been known
to consume about 50% of the development costs and spans about 50% of the
development time [92].

2.4. Testing in Software Engineering 29

Testing is an experimental process with two objectives: a) detect as many
errors within the SuT (destructive testing) and b) demonstrate the correctness
of the SuT (demonstrative testing)

The ISO 9126 [50] addresses software quality and defines how quality can
be measured. Reliability, performance, and security are quality targets which
are confirmed by testing.

2.4.1 Test Specification in Software Engineering

The first step of each entire development project is the requirement analysis.
The test specification for a component is not only used for the test process. It
also acts as a design and development guide to support the developer in better
understanding of the implementation problems [93].

There are four methods for system specification which can be used simi-
larly for test specifications [94, p. 22] and [95]:

• formal: An artificial language like Z or OCL is used and is propagated
by the OMG. This method has their strength in their ability to rigorously
define their requirements.

• semi-formal: Norm tables, drawing, and diagrams are used for the spec-
ification. This method is mostly used nowadays because semi-formal
specification is easier to understand and is more human-nature oriented.

• structured: Structured analysis has been mostly used in the 1980s. This
method is a combination of structured programs, data trees, and data
flow diagram, additional to tables and textual descriptions.

• informal: The description is only specified in a textual form and is not
applicable because it is hard to understand for test engineers.

There are many approaches to specify tests in the field of software engi-
neering. Dalal et al. [78] state that there is no ideal modeling language for
all purposes. Several notations are required and ideally the data model can
be generated from some representation of the requirements. An actual spec-
ification method is semi-formal by using the combination of UML and OCL.
The preferred approach for system requirements is a combination of diagrams,
tables, list of terms, and a formal description. Further information about com-
bination of (semi)-formal models is presented in Chapter 4.

UML 2.0 [96], as the dominant software modeling language, is a potential
language for describing and specifying functional and test behavior of com-
plex software systems. The UML state diagram, which is part of the UML
diagram family, is mostly used for structural test processes [97].

2.4. Testing in Software Engineering 30

Requirements Definition

Functional High-Level Design

Technical System Design

Component Specification Unit Testing

Integration Testing

System Testing

Acceptance Testing

co
st

 p
er

 fa
ul

t

Process phase

Implementation

Construction Phases
Tes

tin
g Phas

es

on the basis of

Figure 2.5: Definition of the V-Model XT and dependency between time to find
a fault and the resulting costs.

Swain et al. [98] use the combination of UML state chart diagrams and ac-
tivity models named state-activity-diagram for the test case specification and
generation because the combination provides control flow and event-oriented
state change information.

A test specification can be derived from business concepts, business docu-
ments, and predefined derivation rules to build test diagrams. A combination
of several specification parts can be built into a test suite which includes all
test cases [99].

The test specification can also consist of failures which can be checked.
Chow [30] describes a method for checking the correctness of control struc-
tures at the design level by FSMs. Therefore, state chart diagrams and the
automata theory are used for the software testing process.

2.4.2 Test Processes, Test Strategies, and Test Levels

Software processes define sequences of steps along the project life-cycle and
focus on specific requirements of the application context. Such software pro-
cesses are necessary to guide development engineers and testing engineers
during a project [100].

There is a wide range of flexible software processes, for example: The wa-
terfall model, the spiral model, the unified process, the V-model, the W-model,
Scrum, and TFD [31, 101].

2.4. Testing in Software Engineering 31

The standard IEC 29119 [102] defines vocabulary, processes, documenta-
tion, techniques and a process assessment model for software testing which
can be used within any software development life-cycle. In the future this
standard will replace several existing standards like: IEEE 829 Test Documen-
tation, IEEE 1008 Unit Testing, BS 7925-1 Vocabulary of Terms in Software Test-
ing, and BS 7925-2 Software Component Testing Standard.

The most effective possibility to reduce the development time is to avoid
specification and implementation faults. The investment can be reduced if
abnormalities of a specification and implementation are found early, which is
shown in Figure 2.5. For example, if the specification of a software part is not
unambiguous, the development engineer implement the wrong behavior of
the system. In order to correct this fault, additional costs and additional time
is used to get finally the high quality product. To find such faults, the test
procedure must be organized in different test levels. Each test level addresses
a specific group of requirements, functional, or technical specifications.

2.4.2.1 Development Processes

V-Model [103] was defined in the year 1992. The last update was in 1997 and
currently it is not maintained. Indeed, it has had a defined position in the field
of software development for business IT development. A significant benefit of
this approach is the definition of the communication between the stakeholders
and the development engineers to avoid misunderstandings. It becomes clear
that the ordering of activities in time sequence and with abstraction levels be-
tween the development and test activities. For example, the acceptance test is
carried out on the basis of the results of the requirement definition phase [101].
As an important extension of the V-Model, the V-Model XT9 was developed,
see Figure 2.5, which has been a mandatory process model for IT projects for
the development of software intensive systems since 2005.

V-Model XT defines several levels and phases in the development and test-
ing process. The levels of the V-Model XT are named based on [21, S. 8]. The
requirements definition, functional high level design, technical system design,
component specification, and implementation phase are defined in the de-
scending branch (shown on the left hand side in Figure 2.5) of the V-Model XT.
The ascending branch shown on the right hand side in Figure 2.5 in the V-
Model XT represents the testing phases in which the testing levels are executed
towards the requirements to prove the software to be working comply with
the specification. Various tests such as unit testing, integration and regression
testing, system testing, and acceptance testing are defined.

9http://www.v-modell-xt.de visited: August 2012

2.4. Testing in Software Engineering 32

Requirements

Specification

Architectural
Design

Detailed Design

Starting Test
Activities

Planning System
Test

Planning
Integration Test

Planning Unit
Test

Executing Unit
Tests

Executing
Acceptance Tests

Executing
System Tests

Executing
Integration Tests

Debugging and
Changing

Debugging and
Changing

Debugging and
Changing

Debugging and
Changing

Coding and Implementation

on the basis of Cyclic: testing, debugging,
changing, re-testing

Figure 2.6: Definition of the W-Model based on Spillner [101].

• The unit testing level [21, S. 51] is used when component implementations
are tested towards their specification.

• The integration testing level [21, S. 63] is used to check the harmonized
connection of the different components.

• The system testing level [21, S. 71] is the first test that checks if all compo-
nents are integrated and the complete system is ready for testing.

• The acceptance testing level is similar to the system testing level but adds
the perspective of the customers view.

The disadvantage of the model is the rough division into constructive work
including the implementation on the left-hand side of the V-Model and the
more destructive tasks on the right-hand side. A planned-in removal of defects
and regression test is not given [101]. A detailed explanation for testing levels
in software engineering is presented in [4].

W-Model is shown in Figure 2.6 and is an extension and refinement of the
V-Model XT. The testing aspect and the development activity are organized
parallel which supports an early testing activity. The testing process will start
after the implementation is complete. Further, the importance of the tests and
the ordering of the individual activities for testing processes are clear.

2.4. Testing in Software Engineering 33

Test Planning

Test Specification

Test Execution

Test Logging

Test Reporting

START

END

Figure 2.7: Test Process based on Spillner et al. [104].

2.4.2.2 Individual Test Processes and Test Strategies

Sneed et al. [94] presented a compilation of several testing processes based e.g.
on Spillner et al. [104], Kaner [13]. Spillner et al. [104] presented a test process
which is shown in Figure 2.7.

• The Test Planning provides a plan on how and which component of a SuT
will be tested.

• The Test Specification includes the definition of the test cases.

• After the Test Execution, the test results are logged.

• The Test Logging logs all actions during the test execution, e.g. trace list-
ings.

• The Test Reporting is an analyzing and a decision phase which results in
an additional test execution or a final analysis of the executed test case.

A similar definition of a test process from [104] is given by the IEEE Stan-
dard 829 [105] but with different namings:

2.4. Testing in Software Engineering 34

• Test Plan

• Test Design

• Test Specification

• Test Execution

• Test Reporting

There the Test Logging is combined with the Test Execution but an additional
phase, the design phase, is included after the test plan and before the test spec-
ification. The test design is a refinement of the test planning phase.

Kaner et al. [13] refuse a fixed test process and recommend a flexible test
process which will be adapted for the project situation. This basis test process
defined by Kaner et al. [13] is also used by Sneed et al. [94, p. 13ff] and is
defined as:

• The Test Requirements Analysis identifies the requirements of what should
be tested and how can the test improve the software quality.

• The Test Planning provides a plan for testing the SuT.

• The Test Case Specification defines the structure of the test cases and test
sequences without knowing the test data parameters.

• The Test Data Preparation is used when an extensive range or volume of
data is needed for testing. Test data must be created for each and every
test cases.

• The Test Execution executes the test cases to the SuT.

• The Test Reporting visualize the results of the executed tests.

2.4.2.3 Test-First Development

Another common technique to increase the software quality in the field of soft-
ware engineering is TDD or also called TFD. This test process method breaks
the traditional development process work-flow first coding then testing and is a
widespread development technique for agile development processes. Based
on system specifications and customer requirements, test cases are defined
prior to the implementation of the SuT. First the test cases will be developed
for a small increment of functionality, then the functionality is implemented
for a correct test run [106–108]. Early test case definitions enable early defect
detection in specification documents during test case construction, e.g. incon-
sistencies between requirements and missing and/or unclear requirements,

2.4. Testing in Software Engineering 35

and represent the foundation for frequent test runs [109]. This can be included
in a test strategy [110] which includes fast feedback on the current project state.
The implementation of the test case is based on the specification and documen-
tation of a program part that was defined by the stakeholders. TFD is used
in combination with a continuous integrated testing process, which can and
should be carried out in each development step, although the program com-
ponents are testing towards each other, i.e. integration test [93, 111, 112]. The
advantage of this development process is to achieve a better understanding of
the specification and definition of requirements and to obtain the knowledge
and individual requirements to test the control code. To use test cases in a test
process by the above mentioned testing techniques, they must first be defined
and implemented manually or generated automatically from the specification.
Usually the manual implementation of a test case is very time consuming and
very error prone, hence the trend goes towards to model-based test case gen-
eration [113].

Figure 2.8 presents the basic work flow of the TFD consisting of five phases:
Specification phase, test implementation phase, implementation phase of the
functional behavior, refactoring phase, and the final phase.

• In the specification phase all requirements for the software component will
be defined.

• Further the test will be implemented based on the previously defined
specification in the test implementation phase. This phase includes the first
test run. Because of the missing implementation this first test run has to
fail.

• At this stage, the implementation phase, the functional behavior will be
coded and the test case can be executed.

• If the test passes, the refactoring phase can be started. In this step the
functionality is already implemented but the quality and structure of the
software may not be high enough. Therefore, the implemented behavior
has to be optimized without changing the functionality of the code.

• After a successful validation of the refactored code with tests the final
phase is reached. Finally, if additional functionality is needed, the process
can be started all over from the beginning of the five phases.

Shull et al. [106] present a study about the evidence of effective TFD based
on a systematic literature review . They analyzed the influence of TFD on the
delivered quality, internal quality, and productivity. Madeyski [108] presents
an overview of the majority of empirical studies which have investigated the
TFD and pair programming versus the test-last and solo programming prac-
tice. Mattsson et al. [114] verified that TFD is a well applicable method for

2.4. Testing in Software Engineering 36

Specification
Behavior

Specification
Test

Implementation
Test Test fails Implementation

Behavior Test fails Refactoring Test fails

Correct Code

Working
Code

SPECIFICATION
PHASE

TEST IMPLEMENTATION
PHASE

IMPLEMENTATION
PHASE

REFACTORING
PHASE

FINAL
PHASE

yes

no

no

yes

yes

no

Figure 2.8: Testing and development work-flow of the TFD strategy.

the development of software projects as it provides a good improvement of
implementation efficiency with limited additional effort. These works support
the attempt for improving the software development process used for control
applications.

2.4.3 Model-based Testing

A common testing technique and a well-known approach for an automatic test
case generation in the field of software engineering is Model-based Testing
(MBT) [77, 113]. This testing method promises higher quality, better coverage,
and efficient change management [115]. Defined software models can be de-
rived from the requirement specifications as a foundation for automated test
case generation instead of hand-crafted individual tests [77, 78, 116]. Different
specification methods, e.g. UML diagrams, are available, but only a subset of
such UML diagram types are really suitable. A selection of suitable UML di-
agrams has been shown in Section 2.3.2 [87, 117]. The UML diagram family
supports several diagram types to address the system structure (6 diagrams),
the behavior (3 diagrams), and the interaction (4 diagrams) of entities.

• System structure diagrams present a static view of the system based on
components, distribution of components, or classes.

• Behavior diagrams include use cases, state machines, and activity dia-
grams to define work-flows.

• Interaction diagrams focus on communication and collaboration of com-
ponents.

Software models can be used to illustrate the structure and interaction between
components, furthermore it can support automated code and test case gener-
ation [118]. During test execution the set-behavior of the model is compared
with the actual-behavior of the test application. The complexity of the test
problem is abstracted to a comprehensible controllable level, i.e. test engineers
build a mental model of the system. This mental model is used to derive test

2.4. Testing in Software Engineering 37

System
Requirements

Test Scenarios

Static System
Structure System Behaviour

States Temporal
BehaviourUse Cases WorkflowsSystem

Components

Individual Test Cases

Figure 2.9: Test case generation with model-based testing derived from the
UML diagram family [119].

cases for the implementation of the SuT [113, p. 280]. The test specification is
the foundation for selecting test cases. Figure 2.9 gives a structured overview
for a generic test generation system. This figure represents that the system
requirements specification can be used for generating test scenarios which in-
clude several test cases. Individual test cases can be derived from the system
behavior specification, e.g. states, temporal behavior description, work-flow
description. Detail explanation about test case extraction is presented in Chap-
ter 4.

MBT uses abstract models to generate test cases for testing an implemen-
tation. Figure 2.10 shows the data flow in a generic test generation system.
The inputs of the software can be developed early in the cycle from the re-
quirements information. Individual test cases are summarized in test suites,
i.e. bundles of test cases with focus on a set of system requirements. The test
suite includes inputs, expected outputs, and necessary infrastructure param-
eters to run the test automatically. Test generation can be especially effective
for systems which are changed frequently. Testers can update the data model
at any time and generate a test suite automatically. The suite of editing hand-
crafted tests can be avoided. For validation, the generated test cases should
be checked manually in order to ensure that the model represents the system
requirements and their specification correctly. Finally, the model is used to
increase confidence in the understanding between customers and developers.
Model-based testing depends on three key technologies [78, 120]:

• Notation used for the data model, e.g. UML diagrams,

• test generation algorithm, i.e. deriving test cases from the models,

• tools that support test case generation and may provide a framework for
test execution.

There are several approaches for MBT as shown in a survey by Dias Neto
[121] that characterizes and analyzes MBT approaches . The result of this study

2.4. Testing in Software Engineering 38

Requirements

Test data
model

Test tuples

Test inputs Expected
outputs

System under
Test (SuT)

Actual outputs Results:
FailuresReporting

Results: OK

Figure 2.10: Architecture of generic test-generation system based on Dalal et
al. [78].

is that in 78 analyzed papers only a few describe approaches in an industrial
environment. Usually they have been developed for a specific context and do
not get introduced to the industry. Pretschner et al. [122] state that tests that
are derived without using a model detect fewer failures than using the MBT
technique. The number of detected programming errors is nearly equal but
the number of detected requirements errors is higher.

The test case generation part is a key technology included in the MBT pro-
cess. Sneed et al. [94, p. 49ff] present techniques for automatic test case speci-
fications based on defined software models.

In practice there are some combinations which are not valid and therefore
constraints must be considered when test tuples are generated. Broy et al. [113,
p. 356 ff] and Vigenschow [31, S. 283] give fundamental information about
Model-based Test Case Generation and test automation.

Chevalley and Thévenod-Fosse [116] describe a technique that adapts a
probabilistic method, called statistical functional testing, to the generation of
test cases from UML state diagrams, using transition coverage as the testing
criterion. Statistical functional testing involves exercising a program with in-
put values that are randomly generated according to a given probability distri-
bution over the input domain. A generic algorithm for the random generation
of input values is presented that allows to produce sequences of test cases that
trigger several times every transition for testing Java programs on sub-system
level.

Fröhlich and Link [123] explain how test cases can be automatically gener-
ated with the aid of Artificial Intelligence (AI) methods by testing on system

2.5. Testing of Embedded Systems Software 39

level. The transformation process is separated into two steps. First the trans-
formation from use case models into UML state diagrams is done. Then the
state diagrams are furthermore mapped to a planning language and then a
planning tool, which is called graphplan, produces the different test cases as
solutions to a planning problem. The testing criterion is the coverage of every
transition of the state diagram.

Kim et al. [124] propose a transformation method from UML state chart
diagrams into extended finite state machines and flow graphs. They showed
that conventional flow analysis techniques can be applied to test cases gener-
ation from UML state chart diagrams. Furthermore, using the transformation
approach it is possible to flatten the hierarchical and concurrent structure of
states to simplify complex UML structures. This testing technique is used for
class testing, i.e. unit test level.

Hussain and Frey [46] use the generation of a transition tree (set of test
cases) which is generated from each defined UML state chart diagram. Fur-
thermore activity diagrams are used as well to generate test scenarios. Infor-
mation about the test generation process is not presented.

A synoptic list of MBT tools and projects are presented by Micskei10.

2.5 Testing of Embedded Systems Software

The field of Embedded Systems (ESs) is wide, and there is no exact defini-
tion or description. A definition by Marwedel [125] is: “ESs can be defined
as information-processing systems that are integrated into a larger product”.
It describes a broad field of applications and products in which the structure
may be is different [126], e.g. telecommunication industry, automotive do-
main. Relevant to safety applications are, e.g. control systems in airplanes.
Further fields of applications are, e.g. refrigerators, toasters, or mobile phones.
Such ESs controller are included in a product of mass production instead of
industrial automation controller like a PLC which are used to control produc-
tion systems. Software of PLC controllers are changed permanently instead of
ESs software which are developed once per product.

Traditional software in the field of software engineering usually has no
real-time requirements or time influences from the outside. They are systems
whose functionality depends not only on the logical results of the calculation
but also have a time behavior called real-time systems. A real-time system is
a system that interacts with the real world and needs to produce its results
within a predefined time. Some time constraints are called hard real time con-
straints which are defined as:

10http://mit.bme.hu/~micskeiz/pages/modelbased_testing.html visited: August 2012

2.5. Testing of Embedded Systems Software 40

“A time constraint is called hard if not meeting that constraint could
result in a catastrophe.” [127]

All other real time constraints are called soft real time constraints [125]. Assum-
ing a hard real-time system, a wrong temporal behavior will result in major
system damages or even in injuries to humans. Soft real-time systems tolerate
a certain variation of durations and time spans. A wrong timing will only re-
sult in a degradation of the quality or performance of the system, depends on
the controlled system [128]. A detailed illustration of real-time constraints and
real-time systems is given in [113, 127–129].

ESs also react to external events which are called reactive systems. A reactive
embedded system is a computer system which interfaces the real world with
sensors and actuators. It is defined as:

“A reactive system is one that is in continual interaction with its
environment and executes at a pace determined by that environ-
ment.” [130]

Testing is a suitable method to ensure the aims of these properties for ES
software. Such software tests are different to tests in the field of software engi-
neering and industrial automation software. An ES should have the following
properties based on [125]:

• Reliability is the probability that a system does not fail.

• Maintainability is the probability that a failed system can be repaired
within a specified time interval.

• Availability is the probability that a system is operating correctly. Both
reliability and maintainability must be high in order to achieve a high
availability.

• Safety describes the property that a failing system avoids causing dam-
age.

• Integrity describes the property that confidential information is private
and that the authenticity of the communication is guaranteed.

In the following, several testing methods for ES software are presented.
Marwedel [125, p. 201] state that ESs are tested by so called test patterns which
are input patterns to test the behavior of the hardware system. Such test pat-
terns are generated based on fault models which are defined models of pos-
sible faults. These generated test patterns are applied to the real and already
manufactured systems.

Yu [131] presented a soft real time ES testing approach by analyzing the
data-flow to distinguish points of interaction. The most used testing method

2.6. Comparison of the Different Domains 41

properties IA SE ES
Real-time requirements yes no yes
Reactive control yes no yes
Real world interaction yes no yes
Testing software process available no yes little
Software duration of life high low middle

Table 2.1: Comparison of the properties from the different domains. Industrial
Automation (IA), Software Engineering (SE), and Embedded Systems (ES).

in ESs is MBT. Conrad [15] and Bringmann and Krämer [132] presents the MBT
method for testing ESs software in the automotive domain. Most of the MBT
methods are useable for testing control software such as testing techniques for
Model-in-the-Loop (MiL), Software-in-the-Loop (SiL), or HiL environment.

A testing technique for testing and verifying software of ESs in the auto-
motive industry based on MBT is Time Partition Testing (TPT). TPT defines
a test procedure for testing continuous behavior of ESs [132, 133]. The most
important approach of TPT is the continuity of the test process, which means
that the design flow of test case modeling as well as the following steps of test
execution, test validation, and test documentation is in a definite structure and
pretend a framework for all central test activities. The modeling language en-
ables the definition of test cases for continuous and reactive system behavior
and is mostly used for testing timing behavior of ESs. A TPT tool is available
at PikeTec11, other test tools for testing ESs are presented in [47, p. 83].

2.6 Comparison of the Different Domains

Testing is an appropriate method to reduce the risk of failure occurrence in op-
erating systems [31, S. 63]. In the following, a comparison of testing software
in different domains such as Industrial Automation (IA), Software Engineering
(SE), and Embedded System (ES) are considered. Table 2.1 shows an overview
of the required properties in the different domains.

There exists no systematic test process for testing industrial control soft-
ware. First steps are available in academia to adapt testing techniques from
the software engineering testing domain applied to industrial automation test-
ing [111].

In the software engineering domain many testing approaches are available
and used in practice. Several testing methods such as TFD combined with
MBT are common in the software engineering testing domain [11, 108].

In the field of ESs, the software is developed alongside their hardware com-

11http://www.piketec.com/ visited: September 2012

2.7. How Many Test Cases are Necessary? 42

ponents. Embedded software must often compensate the problems of the em-
bedded hardware. Several application and software testing methods are avail-
able, most in the field of the automotive industry.

Summarizing, to ensure the software quality of industrial automation soft-
ware, the different domains could be adapted to be use in the automation do-
main.

2.7 How Many Test Cases are Necessary?

“A major activity in software testing research is deriving criteria
that aid in selecting the smallest set of test cases that will uncover
as many errors as possible” [134].

In the software engineering domain numerous methods for reducing the
number of test cases are available. This field of research is completely new in
industrial automation. This thesis does not focus on methods for number of
test case optimization. This is beyond the framework of this thesis, but a short
encouragement is given.

It is nonsense to expect that the testing is measurable by the number of
test cases, but there is the need to keep the number of test cases as low as
possible. For instance, the E_CTU FB defined in the IEC 61499 standard [55, p. 64
Table A.1] is a stateful FB. There exist 217 possible input vectors, i.e. 2 non-
concurrent event inputs + 1×16-bit data input. This comprehensible example
already has 218 output interface states. Therefore, full testing of the E_CTU FB
would require 235, i.e. 217 × 218, test cases.

Bieman and Schultz [134] presented a tool that estimates the number of
test cases required to meet the all-du-paths testing criterion. The all-du-paths
software testing criterion is the most discriminating of the data flow testing cri-
teria which requires an exponential number of test cases in the worst case. The
results of this case study shows that the worst case scenario only occurs, for
instance, in one subroutine out of 143. 80% of the subroutines would require
ten or fewer test cases.

Sayre and Poore [135] state: “The decision to stop testing can be based on a
number of criteria, such as:

1. The confidence in a reliability estimate,

2. the degree to which testing experience has converged to the expected use
of the software, and

3. model coverage criteria based on a degree of state, arc, or path coverage
during crafted and random testing.

2.8. Economical Aspects 43

In practice it is best to use multiple stopping criteria.”
It absolutely depends on the test approach and testing technique which one

is used for the test case generation strategy. There is no method to know the
exact number of test cases before implementing it. It depends on the test ap-
proach which is used. In a first step, by considering the presented test methods
in Section 1.3.2, the number of test cases can be reduced.

2.8 Economical Aspects

“Economics is the study of of how people make decisions in re-
source limited situations.” [136].

The focus in this section is on the economical aspects in the field of testing
and not on the technical aspects.

The potential of improvements in testing methods and tools is enormous.
Bouyssounouse and Sifakis [47, p. 84] state that the cost of testing is estimated
to take up between 30% and 50% of the development costs of embedded sys-
tems.

Myers [92] states that software testing has been known to consume about
50% of the development costs and spans about 50% of the development time.
The most effective possibility to reduce the development time is to avoid spec-
ification faults and implementation faults. The earlier errors are found, the
lower the costs of correcting the errors and the higher the probability of cor-
recting them correctly [92]. Faults that are found early reduce the development
costs drastically, as shown in Figure 2.5.

Mlynarski et al. [115] state that software testing can take up to 37% of the
overall project costs, i.e. software engineering projects. According to this
study, the most cost-intensive activities in testing are the test design and re-
gression testing. Script-based test automation tries to improve the efficiency of
regression testing by automated test execution while MBT methods are used
especially to improve the efficiency of test design.

Hoffman [137] states that test automation is not always necessary, appro-
priate, or cost effective. If the benefit exists an expected return on investment
analysis has to be done to show the benefit.

Slaughter et al. [138] state that: “Software quality is an investment that
should provide a financial return relative to the initial and ongoing expendi-
tures in the software quality improvement initiatives.” They introduced three
metrics in the software engineering economics context: cost of software qual-
ity, return on software quality, and software quality profitability index. An
overview of the topic “Cost of Software Quality” is presented in [138] and [139,
p. 43ff].

2.8. Economical Aspects 44

Figure 2.11: Devils Square by Harry M. Sneed [1].

TFD is a significant step forward from the test-last approaches. Fraser et
al. [140] state that TDD works in practice because it helps to guide the de-
sign process from requirements into an actual running code. Madeyski [108]
presented a detailed evaluation of the effects by using the TFD of agile soft-
ware development practice with respect to the percentage of acceptance tests
passed, design complexity metrics, and the number of acceptance tests passed
per development hour which is an indicator of development speed and finally
in costs. Furthermore, a better modularization, easier reuse and testing of the
developed software products due to the TFD is suggested which also reduces
costs in the development process.

Harry M. Sneed [1] proposed a concept called “Devils Square” which de-
clares a fixed relation between the main factors of a software project. The main
factors of a software project are: Duration, costs, quality, and quantity. He
states that the change of one or more factors automatically influences the other
factors. For instance, if a project should be implemented more quickly and
cheaper, then the quality and the functionality, i.e. quantity are reduced when
maintaining a constant productivity, see Figure 2.11.

Within this thesis a further variable is added which is called innovation. In
order to use new testing methods and new testing techniques the devils square
can be increased. That means, by developing new testing methods the quality

2.9. Research Questions 45

Innovation

Quantity

CostDuration

more is better more is better

less is better less is better

+ +

--

Quality

+ +

--

Figure 2.12: Devils Square including the innovation variable.

can be increased while the duration of the project and the required costs can
be decreased. Note that the quantity variable cannot increase by testing and is
therefore constant. Figure 2.12 shows the enlargement from the original square
to the new increased square.

2.9 Research Questions

Most industrial control applications in the field of production systems and
batch process systems are realized in the modeling languages IEC 61131-3
and IEC 61499. To ensure high software quality, testing processes are neces-
sary which assist the development engineers during the whole life-cycle of
developing industrial automation system. In order to use testing processes
and testing methods for control software, changes can be done in a short time,
development cycles are reduced, and efficient repeatability of the test process
is possible while the quality of the control software is high.

In the following, four research questions which are derived from the related
work analysis will considered in this thesis:

2.9. Research Questions 46

1. Systematic testing of control code is not a common practice in the field of
industrial automation systems. Therefore it should be considered which
test method is useful for which application layer. From this follows that
test layers have to be identified first, e.g. system layer, unit layer. The
first research question is:
Which test method is suitable for the different application layers?
In Section 3.2, the test levels which are suitable for different application
layers are shown in Figure 3.5.

2. Developing high quality software requires a development process for in-
dustrial automation systems. A common development method from the
software engineering domain is the TFD or also called TDD method. TFD
is a significant step forward from the test-last approaches [108]. The TFD
technique can be the basis for the development of new test-driven auto-
mation software. The second research question is:
Is the test-first development approach from the software engineering domain a
suitable method for developing and testing industrial automation code?
The testing methods presented in Chapter 5 are used the TFD approach
which is evaluated in Section 6.1.

3. Current automatic control applications development is characterized by
an approach where control applications are individually developed for
each application. This results in a high development effort per plant as
there is only little reuse of software components between different appli-
cations which are hard to test. An important step towards an improved
development process is an architecture which defines constraints on the
control application structure. The third research question is:
How should control applications be designed to enable the testing of their func-
tionality in an easier way?
Resulting design rules for control applications are presented in Chapter 7
which present constraints and structure definitions.

4. Once developed control software components such as FBs are stored in
engineering libraries. Such components can be reused in new applica-
tions which should have a high software quality check by testing. The
fourth research question is:
Can testing improve the reusability of control software?
The combination of the TFD approach and a new development structure
definition enables the reusability of control software components. Sec-
tion 7.2 presents an automation model which supports reusable testable
control components.

CHAPTER 3

New Test Framework for Industrial Automation Systems

“Users like Lockheed Martin state that test is being reduced by
about 50% or more, while describing how early requirement anal-
ysis significantly reduces rework through elimination of require-
ment defects (i.e. contradiction, inconsistencies, and feature inter-
action problems.” [141]

A test process has to be prepared and planned carefully to increase the
quality of industrial control software. There is a need for a new test framework
for automated testing of industrial automation applications which is presented
in this chapter. Furthermore, a discussion of individual aspects for a testing
process is done and how these aspects address various testing levels is de-
scribed.

The test process for testing control software in an engineering process is
presented in Figure 3.1 and is defined by four major aspects. These aspects of
testing include:

1. Test Specification, i.e. test planning and organization,

2. Test Case Generation,

3. Test Case Implementation and Execution, and

4. Test Reporting on various levels.

The new test framework address these four aspects. Tests have to be struc-
tured hierarchically in order to increase their comprehensibility. A common
way for test structuring is to introduce the following layers [26, 77, 142]:

47

3.1. Framework for Automated Testing 48

Test
Specification

Test Case
Generation

Test Case
Implementation
and Execution

Test Reporting

Figure 3.1: Process flow of the test process. It starts with the test specification
process and finally shows the results of the test in a test reporting.

• Test suite is the topmost layer and consists of multiple test scenarios.

• Test scenarios are independent from each other and consist of one or a
number of test cases.

• The lowest layer defines individual test cases. These are contained in test
scenarios in a restricted order, based on dependencies that are defined in
the behavior specification.

An overview of the test structure is shown in Figure 3.2. Test cases are
separated in three kinds:

• Positive/normal test cases are necessary to test their intended (specified)
behavior.

• Special test cases represent a system’s behavior in the border area of reg-
ular system behavior, e.g. upper or lower limit, see Section 1.3.2.

• Error/negative test cases are used for testing the implementation in case
of error states as well as the behavior on wrong input.

3.1 Framework for Automated Testing

In practice, the high effort to run tests manually limits the testing intensity
[111]. Test automation encourages a high testing intensity for each reworked
software version. Nevertheless, the application of automated testing requires
an appropriate infrastructure and needs an additional effort of the setup of the
testing framework. Test managers have to find a tradeoff between manual test-
ing, i.e. high effort for every test run, and automated testing which results in a
higher effort for the test framework implementation and lower effort for every
additional test run. However, in the field of automation systems engineering
the current observed practice relies mainly on manual and limited testing in a
hierarchical systems design. Additionally, automatic control applications are
designed graphically by using FBs and textually by using ST to implement sys-
tem requirements. Based on these current practices, the test coverage seems to
be rather low because of insufficient testing tool support.

3.1. Framework for Automated Testing 49

Test Case 1

Test Case 2

Test Case n

Test Scenario 1

Test Case 1

Test Case 2

Test Case k

Test Scenario 2

Test Case 1

Test Case 2

Test Case j

Test Scenario m

Test Suite

Figure 3.2: Structure of a test suite, including test scenarios and test cases.

Enabling automated testing during automation systems development re-
quires a sound framework that enables early testing approaches such as TFD.
Further requirements of the test framework are:

• Automation supported systematic test case generation,

• test execution, and

• test reporting on various levels of detail and from different perspectives.

An important pre-condition is how individual test steps, i.e. definition, execu-
tion, and reporting, can be connected to each other.

The aim of an automatic testing process is to create a test environment to
bring up previously-specified input parameters, perform the test, and compare
the results returned to the expected values. Figure 3.3 presents a schematic
overview of the general test framework [143]. This proposed test framework
guides the test engineers in the automation systems domain to increase the test
intensity in a more efficient way.

This test framework consists of:

(A) The Test Case Definition is included in a test suite, which is based on cus-
tomer specifications. A test suite includes a number of individual test
cases and test scenarios. Such a test suite selects the required test case
or test scenario for a test run. Test scenarios include a set of test cases to
capture and test systems behavior by means of expected work-flows. A
detailed explanation is presented in Chapter 5. Based on structured and

3.1. Framework for Automated Testing 50

Test
Scenarios

Test
Case 1

Test
Case 2

(A) Test Case
Definition

(B) Test Management

Test Case Selection

Test Case ReportNext Test Case

(F) Analysis and Reporting
(C) Test Fixture

Test Suite

1

3

2
Results

Execution
Control

Coverage-Analysis
Red/Green Matrix
Testing/Diagnosis

Test Analysis & Reporting

Test Suite
4

Diagnosis
Log

(TXT)

Diagnosis Data

(E) Diagnosis Unit

5

IEC
61131-3
Fixture

IEC
61131-3

RTE

IEC
61499
Fixture

IEC
61499
RTE

(D) System
under Test

Requirements and
Specification Test Case Generation Implementation and

Test Case Execution

Requirement A Test Case A1

Test Case A2

Run 1 Run 4 Run 5...

ok

Requirement C Test Case C1

Test Case C2

Results of an individual test run

ok ok ok ok

ok

ok

ok

ok

Test Run during Continuous Integration

okok

Run 6Run 3

(F) Analysis and Reporting

Test Case B2

Test Case B1Requirement B ok ok

ok ok

Figure 3.3: General structure of a test framework. The test-flow is represented
by numbers starting from number 1 leading up to number 5. These numbers
represent the steps how tests are executed, based on [143].

prioritized customer requirements and specification aspects, test cases
are defined based on software models (see Chapter 4).

(B) The Test Management, also called Test Runner, is the core element of the
testing process and is responsible for a controlled test procedure. It en-
sures that the test case is sent to the SuT and executes the test. The Test
Management uses parameters for the test case initialization in order to
execute individual test cases based on defined test scenarios. Note that
capturing time stamps on the target systems enables measuring the tem-
poral behavior of test case execution. After the test case execution results
are captured on the individual test case level and will be aggregated to
test scenarios for reporting purposes.

(C) The Test Fixture is a required interface between the Test Management sys-
tem and the SuT. Every test configuration requires an appropriate test
fixture related to the implementation standard. Note that the implemen-
tation of the IEC 61131-3 fixture and the IEC 61499 fixture are different.

(D) The SuT refers to a system that is being tested for correct operation and
represents a configuration of the software and system products, e.g. com-
ponent versions and/or variants.

3.1. Framework for Automated Testing 51

Requirements and
Specification Test Case Generation Implementation and

Test Case Execution

Requirement A Test Case A1

Test Case A2

Run 1 Run 4 Run 5...

ok

Requirement C Test Case C1

Test Case C2

Results of an individual test run

ok ok ok ok

ok

ok

ok

ok

Test Run during Continuous Integration

okok

Run 6Run 3

(F) Analysis and Reporting

Test Case B2

Test Case B1Requirement B ok ok

ok ok

Figure 3.4: Analysis and reporting of the test framework, based on [143].

(E) The Diagnosis Unit logs all relevant data of the test environment which
can be used for the presentation of the test results. In addition, test diag-
nosis data derived from the target system are available in order to ana-
lyze the system’s behavior in more detail based on log-files, e.g. in error
cases.

(F) Finally, the Analysis and Reporting unit processes the results of the test
procedure which is organized by the Test Management system. It enables
the analysis of individual tests, e.g. on unit level, and test scenarios,
e.g. architecture and system level. The reporting unit evaluates the test
results and prepares the values for a clear and representative view, which
is shown in the test evaluation unit. The execution results of the test case
and the test scenario are linked to the customer and system requirements,
so that the project can be monitored as defined in a TFD development
process. Figure 3.4 (same as Figure 3.3(F) in detail view) present a sample
test report for a set of frequent test runs, e.g. during regression testing,
for a set of requirements and derived individual test runs. Note that the
Analysis and Reporting unit can include coverage analysis, i.e. share of
requirements covered by test cases and test scenarios.

Individual test scenarios and test cases are selected, e.g. based on value
contribution of corresponding requirements and are executed by the corre-

3.2. Test-Levels / Test-Layer Approach for Industrial Automation Systems 52

sponding test fixture (see item (1) in Figure 3.3). Results of one test run (2)
are collected by the Execution Control component of the Test Management
system. The Execution Control component included in the Test Management
system is responsible for coordinating and controlling individual test runs (3)
and also accounts for the preparation of test result analysis (4). Simultane-
ously additional diagnosis data is provided for the test analysis (5). Based on
the results, an analysis and reporting functionality is available for a more de-
tailed investigation, e.g. test coverage measures, quality metrics, and project
observations, which can be derived automatically [48].

The application of this test framework leads to an automated frequent test-
ing approach and can be included in a continuous integration strategy [110].
The combination of the continuous integration strategy and the proposed test
framework enables the TFD approach strategy. Figure 3.4 presents a sample
snapshot of the analysis and reporting part of the TFD process. Requirements
are split into test cases and implementation tasks which are tested in various
and frequent test runs. Because of this continuous integration strategy, the
current project state remains transparent along the product development life-
cycle. Even side effects, i.e. other test cases and/or requirements which are af-
fected by individual test runs negatively, can be easily identified. This means
that, if complex software parts are implemented in a nested way, every small
change may have a major impact on other functional requirements or imple-
mentation parts . For instance, test execution of test case C2 (Requirement C)
has a negative impact on test case B1 (Requirement B) in test run 6. Note that
these short iterations allow an early identification and removal of defects.

3.2 Test-Levels / Test-Layer Approach for Industrial
Automation Systems

In general, there are three testing levels observed in the automation systems
domain [119]:

• Component level tests for individual components, i.e., unit tests,

• architecture and sub-system specification with focus on integration tests,

• systems-level tests at the customer and developer site, i.e. acceptance,
factory, and system tests.

Figure 3.5 illustrates those three testing levels of automation systems ap-
plying a bottom-up design. It starts with a detailed view on individual com-
ponents and units on the lowest layer, a more abstract view on the sub-system

3.2. Test-Levels / Test-Layer Approach for Industrial Automation Systems 53

Function Block

Implementation

Test Case
Generation

Test Case
Execution

Function
Block &

Test Cases

Function
Block &

Test Cases

Subsystem
FB

FB

FB
Test Case
Generation

Test Case
ExecutionFB FB

Unit Test

Integration
Test

Sub
System &
Integration

Test

Sub
System &
Integration

Test

Component
Specification

Architecture &
Subsystem

Specification

System
Test

System
Specification

System
System &

Acceptance
Test

Customer
Requirements

Acceptance
TestsSystem &

Acceptance
Test

System
SubsystemSubsystem Subsystem

Component

Architecture level

System level

Unit level

Figure 3.5: Bottom-up implementation design of the test levels in the automa-
tion systems domain. Units on the lowest layer, architecture layer with focus
on the integration of components on the middle level, and the system level on
the highest layer [119].

and architecture level with focus on the interaction of components on the mid-
dle layer, and finishes with the system level as well as the business level (re-
quirements and systems) on the highest layer.

Depending on the field of application in automation systems development,
there is the need to capture system requirements, modeling the system’s struc-
ture, and modeling the interaction and communication between units, com-
ponents, and sub-systems. Program units are arranged in a unit, i.e., smallest
unit, a component, i.e. encapsulated functions, a module, i.e. combination and
integration of components, and into a system, i.e. complete system.

In the following the test levels, also called test layers, are explained in more
detail with the focus on industrial automation.

3.2.1 Unit Tests

The unit test is normally done by the developer of the software component to
expose local defects of the algorithm [144, p. 20]. It can be summarized that
unit testing can be seen as the smallest testable piece of software.

Software artifacts without external dependencies provide the basis for unit
testing. Their fitness for use is assessed with appropriate interface oriented
test cases, which check the units’ functional behavior. These units (units under
test) must have unambiguously testable behavior as well as the test specifica-
tion must be defined unambiguously.

The tested units form the basis for the application development. Hence, the
testing of as many units as possible shall be achieved. Therefore, an automatic

3.2. Test-Levels / Test-Layer Approach for Industrial Automation Systems 54

FB_Name

IEC 61499 FunctionBlockIEC 61131 FunctionBlock

REQ CNF

IN1

IN2
OUT1

IN1

IN2

OUT1

FB_Name

Figure 3.6: Unit component based on an IEC 61131 FB (left hand side). Unit
component based on IEC 61499 FB (right hand side) which can be a BFB or a
CFB.

test process implemented in a TFD process is desirable.
A case study of unit testing techniques is presented, evaluated, and clas-

sified in [145]. Unit testing is extensively used by agile programming meth-
ods, e.g. eXtreme Programming, and unit test frameworks, e.g. JUnit, have
constantly improved for several years. These unit test frameworks typically
require that the tests are implemented in the same language as the code to be
tested.

The greatest advantage of unit testing is gained if the units are used in dif-
ferent application contexts without a changed behavior. Only then the tests
guarantee that the false behavior and resulting errors only stem from the com-
bination of the units. Software components as defined in [146] feature this
characteristic. There a software component is defined as a unit of independent
deployment, of third-party composition, and with no (externally) observable
state. Another aspect of component orientation is that components shall be
usable without any knowledge of its internals. Figure 3.6 shows a unit of an
IEC 61131 FB and an IEC 61499 FB. In order to facilitate this aspect, this thesis
focuses on black box testing of control software in IEC 61131-3 and IEC 61499
control applications. This means that for the test specification and process no
knowledge and assumptions of the internals of the units are used. Solely the
public specified interface is used for the specification and execution of tests.

Sünder et al. [147] show that FBs in general are considered as software com-
ponents when applying the software component concept by [146] to IEC 61499.
This is especially valid for BFBs as they perfectly encapsulate the internal data.
The contained algorithms as well as the ECC are only allowed to access inter-
nal or interface data. For SIFBs the situation is different. SIFBs contain hidden
interfaces to the underlying device specific services. This violates the defini-
tion of software components. However, these services need to be controlled
by and interact with performing tests. This is typically done during the device
development by the device vendor and needs special knowledge of the device
or the service represented by the SIFB.

Finally, IEC 61499 provides the CFB as the third FB type. CFBs encapsu-

3.2. Test-Levels / Test-Layer Approach for Industrial Automation Systems 55

late a set of other FBs (BFB, CFB, or SIFB) and provide this combination as
a new unit to the application developer. Nevertheless the type of CFB is in-
distinguishable from any other FB for the application engineer, i.e. provided
FB interface. Therefore, CFBs can also be handled as units for the unit test
framework such as BFB. However, the use of FBs within CFBs to BFBs and
other CFBs, as SIFBs is restricted because it will break the software component
assumption. This is reasonable as CFBs with contained SIFBs will result in
device specific functionality which cannot be freely used in any application.
The development of reusable application components and I/O access is still
an open issue [148].

The software component concept by [146] is also applied to IEC 61131 FBs.
These FBs can include other FBs which encapsulate their functionality similar
to the proposed approach of IEC 61499.

IEC 61499 FBs are defined as passive elements, which execution can be
requested by input events. Associated data inputs will be sampled at the oc-
currence of the triggering input event. The encapsulated functionality will
take the data inputs, internal data as well as data outputs and performs its cal-
culations generating output data and zero or more event outputs, each again
with associated data outputs. This behavior is also the starting point for the
targeted black box unit tests. With these the observable behavior of the FB’s in-
terface are tested. This behavior is formalized to a transformation function FB.
It takes an input vector ~I = (eix, di1 · · · dir) and produces an output vector set
O. eix represents an input event and di1 · · · dir represents all data inputs [42].

FB : ~I 7→ O. (3.1)

O consists of zero or more output vectors ~Ox

O = (~O1 · · · ~Oy), O = ∅ : y = 0, (3.2)
~Ox = (eoz, do1 · · · dos). (3.3)

Similar to the input vector, eoz represents an output event and do1 · · · dos rep-
resent all expected data outputs. y represents the number of output vector
elements. Equation 3.2 means that if no output event and no output data exist
the number of output vectors ~Ox is zero, i.e. y = 0.

The formulation for IEC 61131 is similar to the IEC 61499 but the input
event eix and output event eoz have to be removed from the equations.

The mapping in Equation 3.1 is only one-to-one and onto if the FB has no
internal state, e.g. a simple sine function. However, as FBs may have internal
states, i.e. ECC states, internal variables, and the values of data outputs, the
history of previously applied input vectors (~I1, . . . ,~It) is required to determine
the according O. Therefore a sequence of ~I, O tuples is needed for describing
an FB’s observable behavior [149, p. 45ff]:

SIO = {{~I1, O1}, . . . , {~It, Ot}}. (3.4)

3.2. Test-Levels / Test-Layer Approach for Industrial Automation Systems 56

Typically unit tests are separated into test cases. Each test case checks a cer-
tain aspect of the component under test. This separation into test cases has the
advantage that tests are easier to develop and to maintain. Furthermore it is
easier to identify the reason for a failed test. Applying this to testing IEC 61499
FBs, a test sequence will be a SIO as defined in Equation 3.4. The full test suite
is represented by a set of these test sequences:

UT = {SIO,1, . . . , SIO,u}. (3.5)

A unit test execution system, i.e. Test Management system, will take this
data. For each test sequence entry the input data and input event to the FB
under Test (FBuT) is applied. Furthermore the Test Management system will
monitor the outputs (events and data) and compare them to the provided out-
put expectations. In order to simplify the development of test cases, each test
sequence assumes that the FBuT is in a defined initial state. The unit test exe-
cution system has to ensure that this prerequisite is met.

These test sequences can get very complicated and hard to define, espe-
cially with more complex FBs with many inputs and outputs, i.e. events and
data. Therefore means are necessary that allow the description of the behavior
of FBs in a way more intuitive for humans and which than can be transformed
into the unit test representation according to Equation 3.5. The presented equa-
tions are used to define the structure of the test cases and test sequences in a
formal way without having the guarantee of completeness.

3.2.2 Integration Tests

Integration testing is the phase in the testing process after the unit testing, in
which several units are combined and tested as a small network group, i.e. as
sub-system. The main focus of integration tests is to expose the defects of in-
teractions between different units. Therefore the execution behavior of several
units, i.e. FBs in a network, is tested. A main advantage of integration tests is
that the FB units can be developed by different engineers and the interaction
of the developed unit components can be tested for their correctness.

Figure 3.7 as well as Figure 3.8 present a small example part of an indu-
strial automation network designed in IEC 61131 and IEC 61499, respectively
FBs are connected to a part of the system implementation which is tested. Fig-
ure 3.7 shows five IEC 61131 FBs (FB1-FB5) and it connections. The FBs can
include several FB units. Similar to Figure 3.8 the FB network consists of five
IEC 61499 FBs (i.e., FB1 and FB4 are BFBs; FB2, FB3, and FB5 are CFBs that
include other FBs too). There exist four approaches in integration testing12, 13:

12http://softwaretestingfundamentals.com/integration-testing/ visited: March 2013
13http://www.iai.uni-bonn.de/III/lehre/vorlesungen/SWT/OOSC05/slides/15%20-

%20Testing%20%282-2%29.pdf visited: July 2013

3.2. Test-Levels / Test-Layer Approach for Industrial Automation Systems 57

Big Bang is an integration testing approach where all or most of the units are
combined together and tested at one go. This approach is taken when
the testing team receives the entire software in a bundle. The advantage
of this approach is that everything is finished before integration testing
starts but the major disadvantage is that this approach is time consum-
ing, because it is difficult to trace the cause of failures due to the late
integration. For example, see Figure 3.7, Test (FB1, FB2, FB3, FB4, FB5).

Bottom Up is an integration testing approach where bottom level units are
tested first and upper level units are tested step by step after that. This
approach is used when a bottom up development approach is followed.
For example, see Figure 3.7:

1. Test (FB5),

2. Test (FB4, FB5) and Test (FB3, FB5),

3. Test (FB3, FB4, FB5), Test (FB2, FB4, FB5), and Test (FB1, FB4, FB5)

4. Test (FB1, FB3, FB4, FB5) and Test (FB2, FB3, FB4, FB5)

5. Test (FB1, FB2, FB3, FB4, FB5).

Top Down is an integration testing approach where top level units are tested
first and lower level units are tested step by step after that. This approach
is used when a top down development approach is followed. Mock-up
objects are needed to simulate lower level units (i.e., not implemented
systems behavior) which are not available during the initial phases. For
example, see Figure 3.8:

1. Test (FB1),

2. Test (FB1, FB2, FB3),

3. Test (FB1, FB2, FB3, FB4),

4. Test (FB1, FB2, FB3, FB4, FB5).

Sandwich/Hybrid is an integration testing approach which is a combination
of the top down and bottom up approach. The system is viewed as hav-
ing three layers: The target layer in the middle, another layer above the
target layer (top layer), and the last layer below the target layer (bottom
layer). The testing converges in this approach towards the target layer.
For example, see Figure 3.8, Bottom Layer Test:

1. Test (FB5),

2. Test (FB3, FB4, FB5),

3. Test (FB2, FB3, FB4, FB5),

3.2. Test-Levels / Test-Layer Approach for Industrial Automation Systems 58

FB1

FB2

FB3

FB4

FB5

Inputs
Output

Figure 3.7: Part of an IEC 61131-3 implementation used for integration tests.

and Top Layer Test:

1. Test (FB1),

2. Test (FB1, FB2, FB3),

3. Test (FB1, FB2, FB3, FB4), and

finally, Test (FB1, FB2, FB3, FB4, FB5).

Summarized, the Big Bang approach is used when all or most of the de-
veloped units are connected together for a complete system or major part of
the system and then used for integration testing. This approach is a nonincre-
mental integration testing approach compared to the three other integration
testing approaches. The main advantage of the Bottom Up approach is that
bugs are more easily found because of the step by step integration testing. The
test conditions of this approach is easy to create and the observation of the test
data is well-arranged. With the Top Down testing approach, it is easier to find
a missing branch link but the need for Mock-up objects are essential which is
a major disadvantage of this approach.

3.2.3 System Tests

Following the individual levels of automation systems engineering (see Fig-
ure 3.5), the focus of system testing is on

• systems requirements as foundation for product development and

• technical design concepts, which can be refined successively on every
level.

3.2. Test-Levels / Test-Layer Approach for Industrial Automation Systems 59

FB1

BFB

FB3

CFB

FB4

BFB

FB5

CFB

FB2

CFB

Inputs

Output

Figure 3.8: Part of an IEC 61499 system (sub-system) implementation consists
of BFBs and CFBs used for integration tests.

The systems test level focuses on basic customer requirements and on sys-
tem, acceptance, and factory tests. The main purpose of system tests is to ex-
pose defects which are connected to the whole software code. System testing
of automatic control software is testing conducted on a complete, integrated
system in order to evaluate the system’s compliance with its specified require-
ments. Therefore, the scope lies on black box testing which requires no knowl-
edge of the inner design of the code or logic.

Testing the whole system, means that all of the “integrated” software com-
ponents have successfully passed integration testing. There is the need for
input- and output- parameters which are available to the tester based on the
requirements specification. In most cases, the system test can be done auto-
matically by using a simulated environment [144, p. 21].

Special types of system testing are acceptance testing and regression test-
ing. The acceptance testing is related to the system test and demonstrates that
all customers’ requirements are fulfilled [150]. Regression testing is applied to
modified software to detect new defects. The simplest regression test is to
re-run all test cases in the initial test suite which may need an unacceptable
amount of time. An alternative testing technique is the regression test selec-
tion whereas only a subset of the initial test suite will be executed. This method

3.3. Summary 60

has disadvantages but a trade-off between the time to select and run the test
cases and the fault detection ability of the test cases has to be done [151].

3.3 Summary

This section presents a test framework, which is applicable for automation
supported systematic test case selection, execution, and reporting on various
levels of detail. Further, the proposed test framework environment is suitable
for industrial automation and it is a basis for a TFD approach in this domain.

In general, three testing levels are defined which are appropriate in the
automation systems domain. Unit and component level, architecture and sub-
system level, and system-level are directly mapped to unit test level, integra-
tion test level and system test level.

By using the test framework as a basis with the knowledge of the different
test levels, a test specification is required which is usable for the industrial
automation domain. The next step is a selection of test specification models
for the industrial automation domain.

CHAPTER 4

Selecting UML Models for Test-Driven Development Along
the Automation Systems Engineering Process

An important issue is the identification of the most valuable test cases to focus
on key components of the system under development. There is the need for a
model-based specification approach for industrial automation systems specifi-
cation to be flexible to changing requirements. In the following, a selection of
appropriate UML models is presented and evaluated for the use in industrial
applications. For testing software components the test case definition as well
as the test case generation have to be specified.

4.1 Model Specification

Models can support engineers during design, construction, verification, and
validation of systems by systematically capturing static system structures such
as components and interaction between components, as well as systems dy-
namics, e.g. work-flow and behavior [113].

The application of models increases the capability of QA activities, read-
ability, and understandability of the requirement and behavior specification.
Because of a graphical representation of static system structures and system
dynamics, models aim at supporting engineers from various disciplines in
conducting such activities. In addition, models can support (semi-automated)
code and test case generation [113]. Typically, system engineers have to com-
prise a set of skills in a heterogeneous development environment. For in-
stance, automation systems engineering routinely includes mechanical, elec-
tric, and software components. Engineers from different disciplines have to

61

4.2. UML in the Software Engineering Domain 62

interact and collaborate during the development process. However, various
disciplines apply different sets of models within the individual scope of the
discipline, which may be unfamiliar and hard to understand for engineers
coming from another discipline.

Models such as UML [152] and SysML [153] promise to support the com-
munication and the collaboration between various stakeholders in the automa-
tion engineering process. Common models are able to support QA by doing
reviews and testing in order to increase systems quality. In addition, models
are the foundation for TDD because test cases can be systematically derived
from models in most instances automatically [21, 113]. There is a wide range
of models. In this thesis the focus is on the UML diagram family because it
is a well-known and well-investigated approach in software engineering de-
velopment. Using UML in the automation engineering domain is a promising
approach to increase the handling of the development processes and product
quality [154].

4.2 UML in the Software Engineering Domain

The UML diagrams [152], which are embedded within a software engineering
process, are widely used in the classical software engineering domain and help
to:

(a) Identify and define various aspects of the systems,

(b) enhance communication and collaboration between various stakehold-
ers, and

(c) enable automated code and test-case generation.

Depending on systems, component complexity and risk, various models
help to identify and model the system’s structure and the expected behav-
ior [119]. Because of the benefits in the software engineering development,
UML diagrams are promising approaches for an application in the industrial
automation domain. UML 2.0 consists of an overall number of 13 diagrams,
organized in structure diagrams and behavior diagrams. Behavior diagrams
include subsets of diagrams, i.e. interaction diagrams, focusing on interaction
and collaboration of system components. UML diagrams describe the system
under construction from various perspectives.

In the following the three main diagram types are presented:

• Structure diagrams,

• behavior diagrams, and

• interaction diagrams.

4.2. UML in the Software Engineering Domain 63

Structure Diagrams describe the static structure of a (distributed) system
which provides 6 diagrams:

1. Deployment Diagrams present the run-time configuration of a (distributed)
system including hardware and software components.

2. Component Diagrams help identifying the underlying architecture of sys-
tems with focus on interfaces on various levels, i.e. system, subsystem,
and individual components.

3. Class Diagrams describe data structures of systems on a detailed level
close to the implementation.

4. Object Diagrams are used to present instances and the static relationships
of instances at run-time.

5. Composite Structure Diagrams define the individual architectural compo-
nents and their interactions.

6. Package Diagrams enable structuring the models and related artifacts of
the UML diagram family.

Behavior Diagrams describe the dynamic behavior of the system and include
three diagram types:

1. Use Case Diagrams describe the functionality of a system from the user
perspective including the functional behavior without considering order
and sequence of actions.

2. State Chart Diagrams describe individual states and transitions of systems
and are applicable if system states change depending on system inputs,
e.g. emergency stop.

3. Activity Diagrams are based on business modeling and provide work-
flows (sequences of steps).

Interaction diagrams are a subset of behavior diagrams with focus on collab-
oration and communication between system components.

1. Sequence diagrams model the temporal behavior of work-flows and re-
lated objects (call and response) including timing information.

2. Timing diagrams describe the individual system states over time. Timing
diagrams are widely used in electronics to specify digital circuit design.

3. Interaction overview diagrams model sequences and interactions.

4.3. Criteria for Model Selection in the Industrial Automation Domain 64

4. Communication diagrams are based on messages and illustrate the com-
munication work-flow between components.

The construction of models requires additional effort. Thus it is necessary
to focus on the most valuable model diagrams and identify a subset of models
which are sufficient to support TDD in the context of industrial automation
software engineering. For such projects the key question is, which set of mod-
els, in this case UML diagrams, is suitable for industrial automation applica-
tions [154].

4.3 Criteria for Model Selection in the Industrial
Automation Domain

Lüder et al. [155] identify 6 information sets for model selection (architec-
ture, process of control decisions, signals and states, communication, control-
relevant data structures, and interaction and communication processes). These
are summarized into architecture and structural aspects (SA) and temporal behav-
ior (BE) criteria. Nevertheless, requirements (RE) and risks (RI) are additional
critical aspects from the business perspective. A detailed requirements analy-
sis and requirements specification are key aspects to reduce risks of complex
applications. A set of four criteria for model selection and application are iden-
tified:

1. Requirements (RE) systematically defined to derive test scenarios from the
user perspective. Such test scenarios can be related to integration tests,
systems tests, and factory tests.

2. Architecture and Structural Aspects (SA) describing the basic system struc-
ture to focus on individual parts of the system for construction and test-
ing purposes.

3. Temporal Behavior (BE) and functional behavior are defined by consid-
ering, i.e. states, activities, and timing aspects. Note that work-flows
represent sequences of steps of operations and can be used for test case
generation especially for generating test scenarios automatically.

4. Risk (RI) and Complexity. Depending on the risk and complexity of com-
ponents, e.g. failures and incorrect specification definition, specifically
focused models become reasonable to capture individual systems char-
acteristics, e.g. by using refined sequence charts, that help to understand
and mitigate risks.

4.4. UML Diagrams Applied on a Sample Application 65

Pickup&Place

Conveyor 1

Conveyor 2

Sensor and Gates

Figure 4.1: Bottle sorting machine used as an application for showing the spec-
ification method by using UML model diagrams.

4.4 UML Diagrams Applied on a Sample Applica-
tion

To evaluate the strengths and limitations of the model selection from Sec-
tion 4.3, an application of a bottle sorting machine by using the UML models
for TDD is presented. The main goal of the bottle sorting machine is to sort a
sequence of incoming bottles into two different boxes, depending to the color
of the bottles. The bottles arrive on Conveyor 1 and are transferred, one piece
at a time, to Conveyor 2 via a Pickup&Place unit. A color sensor, attached
to Conveyor 2, determines the color of the bottle and activates one gate for
sorting purposes according to the color. The bottle sorting machine is simple
enough to show the benefits of models and TDD application but is still rele-
vant to demonstrate the industrial automation engineering process approach
for research purposes. Figure 4.1 shows a picture of the bottle sorting machine.

Thus, this application represents a promising prototype application for in-
troducing UML models and the TDD approach. The bottle sorting machine is
simple enough to allow a detailed investigation and is still relevant to demon-
strate the industrial automation engineering process for research. The pro-
posed approach will also work with more complex systems.

4.4. UML Diagrams Applied on a Sample Application 66

Figure 4.2: Model of the Use Case Diagram of the bottle sorting machine. Solid
lines represent the connection with actors, e.g. sensors and actuators, dashed
lines represent the internal dependencies.

4.4.1 Systematic Definition of Requirements

Use Case Diagrams focus on user requirements to identify the related actors and
use cases according to the customer needs. Use case diagrams are used pri-
marily to capture functional requirements of a system or sub-system and iden-
tify related parts of the system or external resources required by the system
to fulfill its task. Use cases also enable decomposing functional requirements
into smaller and manageable tasks. Because of the graphical representation
of requirements, use cases are easy to understand by individual stakeholders
and support interaction with stakeholders who may not be very familiar with
technical details. Use cases support the identification of scenarios for testing
purposes. Scenarios are sequences of individual actions, e.g. moving the arm
from the start position to an arriving bottle at Conveyor 1. Note that scenarios
can consist of individual test cases, e.g. testing the starting position of the arm,
the movement, and the duration of a movement. Figure 4.2 presents a use case
diagram for the bottle sorting machine.

An Activity Diagram is a representative of a UML behavior diagram and
displays the work-flow behavior of a system by depicting basic activities and
dependencies between activities a system has performed. They describe data
and control flows within the system. Based on activity diagrams, test scenarios
and test cases can be derived directly from the model. Figure 4.3 presents an
activity diagram of the overall behavior of the bottle sorting machine.

A test scenario based on the activity diagram covers the overall bottle sort-
ing machine:

1. Starting the bottle sorting machine.

2. Waiting for a bottle.

4.4. UML Diagrams Applied on a Sample Application 67

3. Moving the bottle from Conveyor 1 to Conveyor 2.

4. Determining the color of the bottle.

5. Activates the related gate to sort the bottle according to the color in Box
1 or Box 2.

Note that individual test cases can be derived directly, e.g. testing the transfer
of the bottle from Conveyor 1 to Conveyor 2, by testing the Pickup&Place unit.

1

2

3

4 5

Figure 4.3: Activity Diagram of the bottle sorting machine.

4.4.2 Architecture and Structural Aspects

In industrial automation systems there are several (distributed) components
involved. Thus, it is necessary to identify related components and the inter-
action between components from an architectural point of view. Structural
diagrams enable the visualization of the static system structure as well as the
structuring of the system. Note that test cases cannot be derived directly be-
cause no behavioral information is available to test the sequences of steps.
Nevertheless, structural diagrams are required to keep an overview of the sys-
tem, determine test coverage, and prioritize test cases. Structural aspects help
to identify the components involved in test scenarios and individual test cases.

Deployment Diagrams provide an overview of the physical layout of the sys-
tem and identify communication paths between components of the system.
While the strongest benefit of deployment diagrams is observed in distributed
systems, where communication between (software-) components is essential.
It is applicable from small systems up to complex systems by providing an
overview of the hardware components. Figure 4.4 depicts a PLC connected
via a bus system with the various actuators and sensors comprising the bottle

4.4. UML Diagrams Applied on a Sample Application 68

Figure 4.4: Deployment Diagram of the bottle sorting machine.

sorting machine. Note that the deployment diagram enables the identification
of components and required mock-up functions, i.e. simplified simulation of
non-existing components, related to individual test cases early in the industrial
automation engineering process.

Component Diagrams provide a more detailed view of individual compo-
nents and the interaction to related components. They focus on interfaces for
a collaboration between different parts of the system. Such interfaces can be
software, mechanical, or electrical interfaces. Figure 4.5 presents the compo-
nents connected to a single conveyor and the logic component for controlling
purposes. Component diagrams support the definition of test cases for a man-
ageable part of the system in order to test interface definitions.

4.4.3 Definition of Functional and Temporal Behavior

The dynamic behavior of the system can be modeled and tested based on its
requirements and the static structure of the system. Note that use case di-
agrams and activity diagrams are assigned to high-level behavior diagrams.
Nevertheless, a more detailed view of the system (and individual parts of the
system) is required to test these components in an effective and efficient way.

State Chart Diagrams describe the behavior of a system regarding the states
and transitions in state-based systems. State chart diagrams depict the indi-
vidual states of systems, sub-systems, and components and their relationship
(transitions). Every state in a state chart diagram and their related state tran-
sition can be seen as an individual test case within a test scenario defined by
activity diagrams and use case diagrams. Figure 4.6 depicts the behavior of
the system as a whole. This diagram is used for generating test cases on sys-
tem level. Testing on unit level or sub-system level, an emergency stop causes

4.4. UML Diagrams Applied on a Sample Application 69

all activities within the system to stop immediately independent of the indi-
vidual states of all other components. To address highly complex and critical
systems, individual sub-systems can be identified, based on high-level models,
for a more detailed analysis and design and/or test. For instance, the stopper
unit may be identified by stakeholders as a highly critical component of the
system. In this case, the stopper unit is modeled in more detail. This state
chart diagram is used to generate test cases on unit level or sub-system level,
see Figure 4.7. Further information about test case generation from state chart
diagrams is presented in Section 4.6.

Sequence Chart Diagrams capture the temporal sequence of events and com-
munication between different parts of the system. Additionally, they give a
detailed view on an activity within a system. Sequence chart diagrams are ap-
plicable to illustrate complex processes and critical (sub-)systems. Figure 4.8
presents a sequence chart diagram of the Pickup&Place unit behavior. It de-
scribes the transfer process of a bottle from Conveyor 1 to Conveyor 2. Note
that every sequence of an activity can be used as a foundation for a (auto-
mated) test case generation, see Section 5.3.3. Based on the requirements and
the static structure of the system all related components can be identified and
tested.

Timing Diagrams depict the behavior of a system regarding time or a se-
quence of events. They are used to explore an exemplary run of a scenario
at a lower level, i.e. more detail view, rather than sequence diagrams or state
chart diagrams. Figure 4.9 presents the timing behavior of the Pickup&Place
unit while transporting a bottle from Conveyor 1 to Conveyor 2. After fin-
ishing the task, the unit returns to the starting position (Ready State). The

Figure 4.5: Component Diagram of the Conveyor 2 part excluding the
Pickup&Place unit of the bottle sorting machine.

4.4. UML Diagrams Applied on a Sample Application 70

Figure 4.6: System level State Chart Diagram of the bottle sorting machine.

Figure 4.7: State Chart Diagram of the stopper unit which is part of the bottle
sorting machine.

timing diagram addresses specific complex and critical aspects of the system
to be modeled on a highly detailed level. For instance, the movement from
move left to move right is measured in order to get the timing information
to model the timing diagram. The main difference from timing diagrams to
sequence chart diagrams is the absolute timing information in the diagram.
Therefore it is easier to detect time overlapping from different components
which can be considered during the testing. Nevertheless, modeling the over-
all system at the highest level of detail requires a considerable additional effort
for modeling.

4.5. Selecting UML Diagrams 71

Figure 4.8: Sequence Chart Diagram of the Pickup&Place unit of the bottle
sorting machine.

4.5 Selecting UML Diagrams

This section summarizes the results of the findings regarding the applicability
of UML diagrams with respect to development phases and various test levels,
see Section 3.2, applied for the industrial automation domain.

UML diagrams are analyzed based on their definition and the selection
criteria with focus on the different phases of the industrial automation devel-
opment process, based on [154]:

• (req) requirements definition phase,

• (sys) system definition,

• (arch) sub-systems architecture definition, and

• (unit) component and unit design which includes detailed design.

Table 4.1 presents a summary and highlights the most promising UML
models based on the findings from the bottle sorting machine application. This

4.5. Selecting UML Diagrams 72
P

ic
ku

p&
P

la
ce Turn Right

Turn Left

Move Gripper Up

Move Gripper Down

Move Left

Move Right

Open Gripper

Close Gripper

Wait

0s 1s 3s 5s2s 4s

Move to
Initial PositionTransfer Bottle

Figure 4.9: Timing Diagram of the Pickup&Place unit from the bottle sorting
machine.

table includes UML diagram types, selection criteria, and individual develop-
ment phases, i.e. (req),(sys),(arch), and (unit).

Experience gained during the development of the bottle sorting machine
results that:

(a) Requirements modeling using use case diagrams and high level activity
diagrams.

(b) Structure diagrams, such as deployment diagrams and component dia-
grams, are most reasonable to capture systems requirements and deter-
mine the static structure of the system.

Models for requirements (RE) enable the definition of test scenarios prior
to more detailed design and implementation for TDD applications. Structural
models (SA) enable the consideration of individual components and their in-
teraction to implement TDD. Behavior models (BE) can be applied to directly
derive test cases, e.g. in TDD, for implementation. Note that risks (RI) drive
the level of detail and the test case generation process. Table 4.2 presents an
overview of development phases, selection criteria, diagram types, and test
levels. This table shows which diagram type is adequate for the different test
levels.

4.5. Selecting UML Diagrams 73

Diagram Criteria (req) (sys) (arch) (unit)
Use Case (RE),(BE) x - - -
Activity (RE),(BE) x x x -
Deployment (SA) - x - -
Component (SA) - x - -
Timing (BE) - x x -
Class (SA) - - x x
Composite Structure (SA) - - x -
State Machine (BE) - - x x
Sequence (BE) - - - x
Communication (BE) - - - x
Interaction overview (BE) - - x x
Object (SA) - - - x
Package (SA) - - - -

Table 4.1: UML diagrams in the industrial automation software engineering
process, based on [154]; The highlighted diagram types are most applicable
for the industrial automation domain.

Phase Criteria Diagram Test Level
Requirements Defini-
tion (req)

(BE),(RE) Use Cases, System Testing /
Acceptance Testing(BE),(RE) Activity

System Design (sys)
(SA) Deployment, System Testing / In-

tegration Testing(SA) Component,
(BE) State Chart

Sub-System Archi-
tecture Specification
(arch)

(BE) State Chart,
Integration Testing(BE) Sequence Chart,

(BE) Timing
Unit and Component
Specification (unit)

(BE) State Chart, Component Testing
/ Unit Testing(BE) Sequence Chart

Table 4.2: Overview of development phases, UML model selection criteria,
relevant diagram types for industrial automation, and defined test levels.

4.6. Test Case Extraction From State Chart Diagrams 74

While investigating the application of the models in context of testing, three
test levels are considered which have been presented in Section 3.2. Addition-
ally, risks (RI) in all phases of the development and results in defining risk-
specific views with focus on more critical aspects of the system are addressed.
Depending on the risk, a more detailed view on parts of the system is a candi-
date for more detailed models and in-depth testing.

Regarding the systems dynamics, state charts and sequence charts are the
most reasonable option. State chart diagrams illustrate the relationship be-
tween individual system states, also including possible parallel states, e.g.
emergency stops, which are common scenarios in industry settings. Addition-
ally, sequence chart diagrams enable a focus on a specific (most critical) part
of the system to identify individual sequences of steps of the system and/or
critical and more complex sub-systems [154]. The use case diagrams and ac-
tivity diagrams focus on requirements (RE). Note that the package diagrams
organize the models and are not connected to the system structure or behav-
ior [154]. Diagram types such as class diagram, composite structure diagram,
communication diagram, interaction overview diagram, object diagram, and
the package diagram are not suitable for the test specification of SuT in the
industrial automation domain.

In contrast to traditional, late and isolated testing approaches, the individ-
ual selected models enable early test case generation on defined levels of detail
based on models [119]. Major benefits are:

• An increased understanding of the system under development and

• early test cases applicable in various phases of the development within
heterogeneous engineering environments.

4.6 Test Case Extraction From State Chart Diagrams

Semi-formal models such as state chart UML diagrams, which are selected for
industrial application specification from the UML diagram family, are suitable
for the test case specification, see Section 4.5. This diagram type enables be-
havior specification of the SuT which is most important for testing industrial
systems. One of the most time consuming and most critical part in the test-
ing process is the test case extraction and generation. The term “extraction”
describes the process of extracting the information from the test specification
which is needed for generating test cases.

State charts are commonly used in the field of software engineering for
specifying the software behavior and testing code. Chow [30] describes a
method for checking the correctness of control structures at the design level
by FSM. Swain et al. [98] use the combination of UML state chart diagrams

4.6. Test Case Extraction From State Chart Diagrams 75

State1

+ entry / Value1=true
+ entry / Value2=false

State2

+ entry / Value3=true

State3

+ entry / Value4=false
+ entry / Value5=true

Initial

[Param1 && !Param3][Param1 && Param2]

[Param0]

[Param1 && Param4]

Figure 4.10: Example of a State Chart Diagram. Information of the state pa-
rameters and condition parameters of the transitions are used for test case ex-
traction.

and activity models named state-activity-diagram for the test case specifica-
tion and generation. The combination of state chart diagrams and activity
models provides both control flow and event-oriented state change informa-
tion.

4.6.1 Test Specification with State Chart Diagram

The state-based way of thinking for automation engineers for developing PLC
programs have been common over several decades. Frey et al. [156] state that
state chart diagrams are also called automata are a useful method for speci-
fying non-complex behavior and implementing automatic control, do testing,
and verification for safety applications.

A Moore-Automata [3, 156] is used for the test specification and represents
a test case or/and a test sequence. The test specification can be done in an
early stage of the development phase by the development or test engineer and
include the information for testing the SuT. Therefore the test information,
i.e. pre-condition, action, and post-condition, is included in the state chart
diagram.

The state chart diagram consists of finite states with only one start state.
Figure 4.10 shows an overview of a simple state chart diagram definition. The
graphical representation of a state is a circle or rectangle with rounded edges,
see Figure 4.10: State1, State2, and State3. The initial state is a special state and
is in most cases represented by a double circle or a black filled circle. Transitions
are represented by arrows from the source state to the target state. A transition
consists of one or several conditions, see Figure 4.10: Param0, Param1, Param2,
Param3, and Param4. Such a condition is a Boolean expression or a continu-
ous value expression of the input variable. Each state in automata defines the
output variable. In safety applications only Boolean input and output vari-
ables are allowed. Continuous values can be represented as Boolean values by
checking the boundary value [156].

4.6. Test Case Extraction From State Chart Diagrams 76

 SF_Equivalent
Activate Ready
S_ChannelA S_EquivalentOut
S_ChannelB Error
DiscrepancyTime DiagCode

BOOL SAFEBOOL SAFEBOOL TIME

BOOL SAFEBOOL BOOL WORD

Figure 4.11: Interface design of the SF_Equivalent FB from PLCopen [157].

4.6.2 Test Case Extraction

Based on the state chart diagram in Figure 4.10, a test case is extracted with the
following information:

1. pre-condition: Includes all the information, i.e. initial parameter values,
at which the test case starts. Typically the parameters are included in
the source state, e.g. State1: Value1=true, Value2=false. If a pre-
condition is violated during the test execution, the test becomes unde-
fined and results in failures.

2. action: These are the parameters which are used for the execution of a test
case to the SuT. Typically the parameters are included in a transition and
the parameter values are the conditions, e.g. Param1 && Param2 from
State1 to State2.

3. post-condition: These are the expected result values of a test case. Typi-
cally this information is included in the target state,
e.g. State2: Value3=true.

An application to evaluate the demand of the test case generation for in-
dustrial software is used. A prototypical implementation of a safety FB from
PLCopen [157] is used to show the example application of the test case ex-
traction. Figure 4.11 shows the FB interface design of the PLCopen Safety
SF_Equivalent FB. This interface of the FB, i.e. input parameter and output
parameter are used for the test definition. The input parameters of the FB rep-
resent the condition parameters in a transition of the test specification in the
state chart diagram, i.e. the action. The output parameters of the FB represent
the state parameters of the test specification diagram, i.e. pre-condition and
post-condition.

The SF_Equivalent FB converts two equivalent SAFEBOOL inputs to one
SAFEBOOL output with Discrepancy Time monitoring. The main goal of this
FB is to check both input parameters S_ChannelA and S_ChannelB. If one chan-
nel signal changes from TRUE to FALSE, the output immediately switches off

4.6. Test Case Extraction From State Chart Diagrams 77

PLCopen
for efficiency in automation

TC5 - Safety Version 1.0 – Official Release © PLCopen – 2003 - 2006
Part 1 – Concepts and Function Blocks Jan. 31, 2006 Page 27/149

Discrepancy time monitoring: The discrepancy time is the maximum period during which both inputs may have different states
without the function block detecting an error. Discrepancy time monitoring starts when the status of an input changes. The
function block detects an error when both inputs do not have the same status once the discrepancy time has elapsed.
The inputs must be switched symmetrically. This means that monitoring is performed for both the switching on process as well
as the switching off process.

State Diagram

Idle
0000

Wait for
Channel B

8004 From Active
Wait
8005

Init
8001

Safety
Output

Enabled
8000

Error 3
C003

0

2

1

2

NOT Activate

Ready = FALSE

Ready = TRUE

S_EquivalentOut = FALSE
S_EquivalentOut = TRUE

Activate

S_ChannelA AND
NOT S_ChannelB

Discrepancy Time Expired

1

1

1

3

NOT S_ChannelA

S_ChannelB

3

S_ChannelA AND
S_ChannelB

NOT S_ChannelA AND
NOT S_ChannelB

2
S_ChannelA XOR
S_ChannelB

NOT S_ChannelA AND
NOT S_ChannelB

Error 1
C001

Error 2
C002

NOT S_ChannelA AND
NOT S_ChannelB

Discrepancy
Time Elapsed

NOT S_ChannelA AND
NOT S_ChannelB

Wait for
Channel A

8014

S_ChannelB AND
NOT S_ChannelA

2

NOT S_ChannelB

S_Channel A

3
1

Discrepancy
Time Elapsed

2

1

1

1

Note: The transition from any state to the Idle state due to Activate = FALSE is not shown. However these transitions have the
highest priority (0).

Figure 7: State diagram for SF_Equivalent
Figure 4.12: State chart diagram specification of the SF_Equivalent FB from
PLCopen [157].

for safety reasons which is S_EquivalentOut=FALSE. The Discrepancy Time is
the maximum period while both inputs may have different states without the
FB detecting an error. The monitoring of the Discrepancy Time starts when the
status of an input changes. The FB detects an error when both inputs do not
have the same status once the Discrepancy Time has elapsed. The FB output
shows the result of the evaluation of both channels. Figure 4.12 shows the state
chart diagram from the PLCopen documentation [157].

The PLCopen documentation includes additional text information which is
not included formally in the state chart model. Therefore, the test case gener-
ation of the PLCopen Safety SF_Equivalent FB is modeled in a new state chart
diagram in the Enterprise Architect14 tool which is shown in Figure 4.13. A
similar implementation of the state chart is presented in [156], at which the

14http://www.sparxsystems.de visited: July 2013

4.6. Test Case Extraction From State Chart Diagrams 78

Ready

Idle

+ entry / diagCode = 0x0000
+ entry / Ready = false
+ exit / Ready = true

Init

+ entry / diagCode = 0x8001

Waiting for Channel B

+ entry / diagCode = 0x8004 Waiting for Channel A

+ entry / diagCode = 0x8014

Equivalent Out

+ entry / diagCode = 0x8000
+ exit / SF_EquivalentOut = false
+ entry / SF_EquivalentOut = true

From Active Wait

+ entry / diagCode = 0x8005

Error1

+ entry / diagCode = 0xC001
+ exit / Error=False
+ entry / Error=True

Error2

+ entry / diagCode = 0xC002
+ exit / Error=False
+ entry / Error=True

Error3

+ entry / diagCode = 0xC003
+ exit / Error=False
+ entry / Error=True

[Activate && ChanA &&
!ChanB &&
DiscrepancyTime]

[Activate]

[!Activate]

[ChanA && ChanB &&
Activate &&
DiscrepancyTime]

[ChanB &&
!ChanA &&
Activate &&
DiscrepancyTime]

[ChanA &&
!ChanB &&
Activate &&
DiscrepancyTime]

[ChanA && ChanB &&
Activate &&
DiscrepancyTime]

[ChanA && ChanB &&
Activate &&
DiscrepancyTime]

[Activate && !ChanA &&
!ChanB &&
DiscrepancyTime]

[Activate && !ChanA &&
!ChanB &&
!DiscrepancyTime]

[!ChanA &&
!ChanB &&
Activate]

[!ChanA && !ChanB &&
Activate]

[!ChanA &&
!ChanB &&
Activate]

[ChanA &&
ChanB &&
Activate &&
!DiscrepancyTime]

[!ChanA && !ChanB &&
Acitvate &&
!DiscrepancyTime]

[ChanA && ChanB &&
Activate &&
!DiscrepancyTime]

[!ChanA && !ChanB
&& Acitvate &&
!DiscrepancyTime]

[Activate &&
!DiscrepancyTime]

[Activate && !ChanA
&& ChanB &&
DiscrepancyTime]

Figure 4.13: New state chart diagram specification of the SF_Equivalent FB.

implementation has additional priority parameters of the conditions and fo-
cuses on the Discrepancy Time in more detail. This model implementation
is different to the PLCopen implementation. That means, that the state chart
specification in Figure 4.13 includes only explicit transition definition. The Dis-
crepancy Time is defined as Boolean because of the safety requirements. The
DiscrepancyTime=TRUE means that the measured time is below the boundary
limit otherwise the measured time is above the limit which means that the
DiscrepancyTime=FALSE. Furthermore, the Error1 state and Error2 state are
separated into two new states. Through these adaptions of the state chart di-
agram from the PLCopen specification, the test specification is unambiguous
and an automatic test case extraction is possible.

In a first step the UML state chart specification has to be exported as a *.uml
file. In a next step the file is read by the developed Java-based XML parser
implementation. There all information of states, transitions, and conditions are
extracted from the UML state chart specification. Based on this information the
test cases can be generated automatically. The output of the test case extraction
are single test cases which can be implemented in the control environment.
An example of the output from an extracted single test case is presented in
Listing 4.1. Further, an example of a test scenario from the state “Idle” to the
state “Init” to the state “Waiting for Channel A” and then back to to the state
“Init” is presented in Listing 4.2.

4.6. Test Case Extraction From State Chart Diagrams 79

1 Pre: State = From Active Wait
2 Action: Activate = t r u e ; ChanA = f a l s e ; ChanB = f a l s e ;

DiscrepancyTime = f a l s e ;
3 Post: State = Error3; diagCode = 0xC003; Error=True;

Listing 4.1: Output from a test case of the PLCopen SF_Equivalent.

1 Pre: State = Idle
2 Action: Activate = t r u e ;
3 Post: State = Init; Ready = t r u e ; diagCode = 0x8001;
4

5 Pre: State = Init
6 Action: ChanB = t r u e ; ChanA = f a l s e ; Activate = t r u e ;

DiscrepancyTime = t r u e ;
7 Post: State = Waiting f o r Channel A; diagCode = 0x8014;
8

9 Pre: State = Waiting f o r Channel A
10 Action: ChanA = f a l s e ; ChanB = f a l s e ; Activate = t r u e ;
11 Post: State = Init; diagCode = 0x8001;

Listing 4.2: Output from a test scenario of the PLCopen SF_Equivalent.

Condition variables which are not used in every transition based on the
source state are called “free variables”. There is the need to find such free vari-
ables for creating additional test cases, e.g. negative test cases. Test specifica-
tions with no free variables are the best case. Therefore the test specification is
unambiguous for the test case extraction.

The path coverage testing criteria is used for the test case extraction from
state chart diagram, see Section 1.3.2. Therefore the white-box testing criteria is
used for the test case extraction and testing the behavior of a SuT as black-box
testing, because the information of the internal implementation of the SuT is
not used for the test case extraction but the separate test specification diagram.

After extraction and generation of the test information, the test cases can
be implemented and executed on the target system, e.g. SoftPLC, Hardware
PLC, etc. If the modeling of the test specification include failures the test cases
will also include these failures which results in errors and the test fails during
the execution on the target system. Therefore the test specification modeling
should be done carefully to avoid test specification failures and avoid not exe-
cutable test cases.

In further research the results and findings are used for the testing tech-
niques of control software, see Chapter 5.

4.7. Summary 80

4.7 Summary

In this chapter a UML model selection for specifying industrial automation
systems is presented. These selected model diagrams are applicable for spec-
ifying test cases for automatic control systems. During the implementation
phase use cases and high level activity diagrams are identified which are most
applicable for modeling requirements. Deployment diagrams and component
diagrams are most applicable for capture systems requirements and determine
the static structure of the system. Regarding the systems dynamics, state chart
diagrams and sequence chart diagrams are well suitable. In order to specify
tests for dynamic control systems, state chart diagrams and sequence chart
diagrams are used for the further test case specification.

A Java-based XML parser implementation is realized to automatically ex-
tract, based on the path coverage criteria, test case information from UML state
chart diagrams. Based on this criteria all possible control flow paths through
the SuT specification is considered. By using the knowledge of the selected
model diagrams for test specification as well as the results of the test case ex-
traction from the test specification, appropriate testing techniques for testing
control software are investigated. In the next chapter such testing techniques
for industrial automation systems are introduced.

CHAPTER 5

Testing Techniques for Industrial Automation Systems

Due to the potentially complex behavior of software components, complete
test specifications also can be extensive. In the following, the testing tech-
niques are separated into test case specification without a (semi)-formal model
and test case specification with (semi)-formal model specification. First, the
manual testing and the Keyword-driven Testing (KDT) are testing methods
without a (semi)-formal model specification for testing industrial automation
software. This means that the test case specification is done in textual form.
Then testing with semi-formal model test specification is presented. Here a
testing technique based on UML diagrams for the industrial automation do-
main is shown which is required and suitable for fully-automated test execu-
tion.

5.1 Manual Testing

The manual test case extraction is completely operated manually and was the
earlierst style of testing, but it is still widely used [77, p. 20-22]. The test case
specification has to be done manually by textual description or in a more for-
mal way like UML diagrams. Furthermore, by using this approach the extrac-
tion of test case information from test specification and requirements specifica-
tion has to be done manually. The manually constructed test cases for further
processing have to be included in the SuT, for instance in the control appli-
cation [26, 142]. The test result analysis have to be done manually as well.
Manual test case construction, implementation, and modification require ap-
propriate programming skills. Additional programming skills are also needed
if the test requirements are changed. Furthermore, changing the test require-

81

5.2. Keyword-driven Testing 82

ments will result in modifying the test case implementation which results in a
high maintenance effort.

The manual testing technique is time-consuming and does not ensure sys-
tematic coverage of the SuT functionality. In fact, the cost of manual test execu-
tion is so high that it is often necessary to cut corners by reducing the number
of test cases that are executed after each evolution of the SuT. This can result
in software which is incomplete tested, has significant risk regarding product
maturity, stability, and robustness [77, p. 20-22].

5.2 Keyword-driven Testing

Keyword-driven Testing (KDT) [158], also named as Table-Driven Testing or
Action-Word Testing, is a software testing method to support manual and au-
tomated testing processes in the field of software engineering. This technique
is an extended form of the Data-Driven Testing method.

KDT can be seen as a test language [158] and improves the communica-
tion between testers, avoids inconsistencies in test documents, and makes an
infrastructure for test automation available. Zylberman and Shotten [158] di-
vided the KDT process in two main layers–Infrastructure Layer (KDT Engine)
and the Logical Layer (KDT Test Case). The KDT framework in this thesis is
based on such layer design, see Figure 5.1. KDT is used as a testing technique
in the field of traditional software engineering [159] but it is a novel approach
to use this method in the field of testing industrial control software [48].

The main concept of this testing technique is to express each test case as
abstractly as possible while making it precise enough to interpret and execute
the test case via a test tool [48, 77].

KDT focuses on a higher abstraction level of individual test cases, i.e. based
on customer specifications. Also it is decoupled from traditional software test-
ing approaches, i.e. implementing unit tests on code level. The KDT approach
aims at supporting engineers from different domains or in defining test cases
more efficiently and effective from the user perspective without having highly
sophisticated skills in software testing. Applying a small set of keywords en-
ables non-programmers to read and write test cases without knowing details
of the implementation behavior of the SuT [13, p. 115]. Additional benefits
come from applying high-level tests, e.g. on systems, acceptance tests, or in-
tegration tests, which focus on customer and systems requirement without
considering concrete implementation approaches. Automation support of test
case execution enables regression tests, i.e. test runs after changes that become
applicable during systems maintenance and evolution and can be adjusted to
change requirements.

The KDT technique separates the task of the test case implementation from
the software development, i.e. separation of code implementation work and

5.2. Keyword-driven Testing 83

Test
Scenarios

Test
Case 1

Test
Case 2

IEC
61499

IEC
61131

(A) Test Case
Definition

(B) Test Management

Test Case Selection

Test Case ReportNext Test Case

IEC
61131-3
Fixture

IEC
61131-3

RTE

IEC
61499
Fixture

Keywords

(E) Analysis and Reporting

IEC
61499
RTE

(D) System under Test

Test Suite

Execution Control

1

43

2
Results

Test Result

Test Table(s)

(C) Fixture

Figure 5.1: Overview of the test framework for Keyword-driven Testing [48].

test case definition and generation. Note that test cases can be defined early
during a TFD approach. As the name KDT implies, “keywords”, which con-
trol the processing, are in the focus of this approach. These keywords are ded-
icated in functions and in group of functions which include the executed ac-
tions of the test cases. Therefore, one keyword is able to include one or more
test steps [160]. Once defined keywords can be used by the test engineer who
write the test description for the SuT.

5.2.1 Test Framework for Keyword-driven Testing

Figure 5.1 presents an overview of the test framework based on the frame-
work in Figure 3.3. The framework in Figure 5.1 is extended for KDT and
consists of keyword-driven test case definition, execution, and reporting. The
main difference between the general test framework in Figure 3.3 and the KDT
framework is the additional keyword definition which is used for the test case
definition. Furthermore, the Diagnosis Unit for the monitoring of all watched
values is not used in this case. The framework includes five different building
blocks based on [48]:

The test suite (see the defined structure of a test in Figure 3.2) is based
on customer specifications. Individual test cases and test scenarios are con-
structed manually by applying the defined keywords (see Section 5.2.2) and
test data. Each test suite consists of defined test cases and test scenarios which
are easy to configure and edit in the Test Management system. Note that mod-
els, e.g. as stated in [113], assist automation-supported generation of test suites
including test scenarios.

Individual test scenarios and test cases are selected based on value contri-

5.2. Keyword-driven Testing 84

bution of corresponding requirements and will be executed by the correspond-
ing test fixture, see item (1) at Figure 5.1. Every test configuration requires an
appropriate test fixture related to the implementation standard. The fixtures
of IEC 61131-3 and IEC 61499 are different at which the interface connection
to the SuT is implemented in detail. Item (2) presents the results of one test
run, which are collected by the Execution Control component of the Test Man-
agement system.

The Execution Control component included in the Test Management Sys-
tem is responsible for coordinating and controlling individual test runs (see
item (3)) as well as for preparation of test result analysis, see item (4). Based
on the results, an analysis and reporting functionality is available for more de-
tailed investigations, e.g. test coverage measures, quality metrics, and project
observations.

5.2.2 Keyword Specification

The KDT method supports readable test cases by using specially defined key-
words. These keyword-commands are used for executing a test case, e.g. set
value or get value. The test case description by the KDT technique should
be defined as formal as necessary so that test engineers can easily understand
and comprehend the test specification. Furthermore, the test cases should be
executed automatically.

An example keyword-command definition with two parameters is formu-
lated as:

|KEYWORD;|Parameter1|Parameter2|

There is the need for a number of pre-defined keywords at which the key-
word vocabulary should be framework independent. This means that the key-
word definition and specification should not be related to or included in a part
of the Test Management system. A separate interface between Test Manage-
ment system and SuT has to be defined. This interface is called “Fixture”. The
fixture consists of all keyword implementations related to the IEC implemen-
tation. In this case two different fixture implementations are needed for testing
applications based on the industrial standards IEC 61131 and IEC 61499.

General required functionality of the keywords are:

• Build up and close the connection between the Test Management system
and the SuT.

• Set values and send events, i.e. IEC 61499 events, from the Test Manage-
ment system to the SuT.

• Compare resulting output values and events, i.e. IEC 61499 events, with
the expected values and events.

5.2. Keyword-driven Testing 85

Based on these general requirements, keywords for the testing process have
to be defined. First, the keywords are defined for testing IEC 61131 applica-
tions which are used as basis keyword-set. This basis keyword-set is the min-
imum required keyword-set which is used for testing industrial automation
systems [48]. In a next step the keyword-set is extended for testing IEC 61499
implementations. Most of the defined keywords are applicable for both stan-
dards, but testing IEC 61499 applications additional keywords are used be-
cause of the different kind of execution of IEC 61131 and IEC 61499 applica-
tions.

The following keywords are the minimum required keyword-set, i.e. basis
keyword-set, for testing industrial automation systems based on [48]:

• startConn: establishes a connection to the target system - SuT (IEC 61131-
3 or IEC 61499)

• force: sets a new value to the variable with force-flag. The force command
is used in industrial automation to overwrite the value of a variable in
a control application. This forced value cannot be overwritten by the
application itself but rather by the Test Management system. The force
command is used in order to avoid influences from the control applica-
tion during an integration test or unit test without disconnecting data
connection in the SuT environment.

• set: sets a new value to the variable without force-flag

• sleep: pauses the test for a number of milliseconds

• get value: reads the value from a specified variable

• stopConn: closes the connection to the target system and stops the appli-
cation in the SuT

• create resource: creates an IEC 61499 resource, resource name is defined
by a parameter in the test case specification (available only in IEC 61499)

• create function block: creates a function block with a specified instance
name (available only in IEC 61499)

• start: starts the specified resource (available only in IEC 61499)

• create watch: creates a watch property for monitoring on an input/output
variable, on a specified resource (available only in IEC 61499)

• trigger event: triggers an event of a function block (only in IEC 61499
available)

5.3. Unit Testing Technique 86

Keywords IEC 61131-3 IEC 61499
startConn X X
force X X
set X X
sleep X
get value X X
stopConn X X
create resource X
create function block X
start X
create watch X
trigger event X
script* X X
check* X X

Table 5.1: Overview of the used keywords for testing industrial automation
systems, defined in [48] (*... internal keyword function of the Test Manage-
ment).

• script: internal keyword function of the Test Management system in order
to select the accurate fixture and additional target system parametriza-
tion for testing IEC 61131-3 and IEC 61499 applications

• check: internal keyword function of the Test Management system in order
to compare the resultant value with the stated value to present the result
with true or false

A combination of the basis keywords into grouped keywords is allowed
which can be used as a new keyword. For instance, the grouped keyword
SystemStartUp includes the following keywords:
startConn, create resource, create function block, and start.
Currently only a basis set of keywords is defined and used in Table 5.1, based
on [48], which is applicable for testing IEC 61131-3 and IEC 61499 implemen-
tations.

5.3 Unit Testing Technique

The unit test specification methods strongly depend on the developer of the
unit tests. A background of unit testing is explained in Section 3.2.1. Two
main target audiences are distinguished. On the one hand there are the control
application developers. They will develop and maintain specific FBs for their
applications. On the other hand there are FB library developers who provide

5.3. Unit Testing Technique 87

general FBs to the control application developer. Their work is mainly focused
on maintenance, refactoring, and functional improvement of FBs, which is an
elaborate task [161]. As both groups will do their development work with IEC
FB models. Taking this further, Baker et al. [21] state that the test specification
should be done with the same means as the target application, in order to be
effectively usable.

In the following, the unit testing concept is shown based on IEC 61499 and
can also be used in IEC 61131. The test specifications should be, in this case,
IEC 61499 models or derived models of IEC 61499 at best. Based on this, ex-
isting unit test frameworks and methods, e.g. JUnit, cannot be used because
of in this case the programming language is restricted to Java. However, they
can serve as a basis for the required features and functionality.

Based on the identified requirements, three potential methods for a unit
test process for IEC 61131 and IEC 61499 are identified and explained in the
following:

• Separated Test Component,

• Separated Test Specification, and

• Integrated Test Specification.

The main difference between these methods is the location of the test specifi-
cation and test implementation relatively to the FBuT.

5.3.1 Separated Test Component

The first natural approach for a unit test framework is to apply unit test frame-
work approaches from the software engineering domain like JUnit. There the
tests for Java classes are specified in form of Java classes again which con-
taining the test in the form of Java code. It can be shown that this is the way
how software developers in the software engineering domain specify their unit
test cases. When applying this approach to test cases for IEC 61499 FBs or
IEC 61131 FBs, unit test cases should be implemented as separated and related
test FBs. These test FBs would feature the mirrored interface of the FBuT, i.e.
inputs will get outputs and vice versa. When performing the tests, both FBs
would be connected and then the tests are executed. The whole development
and test process can be done in the original IEC 61499 development environ-
ment, e.g. 4DIAC [162], or IEC 61131 development environment, e.g. CodeSys
or logi.CAD, which would be natural for the automation control engineer.

With this approach all IEC 61499 / IEC 61131 FB language elements are
available and can be used for the test implementation. In case of IEC 61499 ap-
plications, the ECC provides a powerful means for defining the test cases for

5.3. Unit Testing Technique 88

the stateful behavior of the FBuT. The combination of the ECC with several al-
gorithms included in a FB can be used for specifying complex test procedures.
Furthermore, commonly required test procedures can be provided in separate
FBs. These can be reused in different test FBs in form of CFBs.

Well established testing frameworks, e.g. JUnit, automatically build test
applications. In contrast to the software engineering domain, test applica-
tions in the automation domain need to be developed manually and indepen-
dently from the targeted automation applications. This test application needs
an IEC 61499 / IEC 61131 execution container, e.g. a resource, for deployment
and test execution.

A disadvantage of this testing method is that the test is not directly linked
to the FBuT. If the implementation of the FBuT is used for other applications
and will be passed on, the test implementation may be lost. Because of the
separated components, i.e. test FB and FBuT, it is difficult and time-consuming
to maintain the changes in both FBs, e.g. interface changes in FBuT.

A further disadvantage is that IEC 61499 currently has no means for fulfill-
ing all necessary requirements for test specification, test result interpretation,
and test result reporting.

5.3.2 Separated Test Specification

The second approach which is identified is based on the model-based testing
method commonly used in the field of software engineering [77]. The model-
based testing method can also be adapted for testing industrial control com-
ponents like IEC 61499 and IEC 61131 FBs. In this approach a separated test
specification is used in the form of a software model which is derived from
the system requirements specifications, and enables automated code and test
case generation [77]. The aim of this method is to automatically implement
executable test cases for IEC 61131 FBs or IEC 61499 FBs from their test speci-
fication.

Several UML diagram types are applicable for the test specification, see
Section 4.5 for the selection of UML diagrams suitable for industrial automa-
tion domain. It is a powerful specification language and is widely used and
accepted in the software engineering domain. However, it is a challenge to
extract the information from the test specification to automatically generate
executable test cases. A restricting UML profile could provide the needed un-
ambiguity for the test case implementation. Similar to the proposed approach
above (Separated Test Component), this FB includes all executable test cases.
The ECC and algorithms in the ST language are used for the test implementa-
tion.

An advantage compared to the Separated Test Component approach is that
interface changes of the FBuT can be handled more easily as the executable test

5.3. Unit Testing Technique 89

cases are generated automatically. This approach supports regular changes of
the test specification, i.e. UML models. Hence, the effort for changing and
maintaining the test specification in parallel to the behavior specification is
reduced. Furthermore no programming skills are necessary for specifying and
maintaining the unit tests which may increase the acceptance of TFD in the
industrial automation domain.

One of the shortcomings of the Separated Test Component approach, the
separated maintenance for FBuT and the related test specification, is also a
drawback of this approach because the test specification is not directly linked
to the FBuT. This approach is presented and explained in more detail in Sec-
tion 5.4.

5.3.3 Integrated Test Specification

IEC 61499-1 defines a behavior specification method for SIFBs as well as for
Adapters [55, p. 39] by so-called service sequence diagrams. Although this
method is provided in IEC 61499-1 only for SIFBs and Adapters, IEC 61499-2
extends it to all FB types. In order to resolve this inconsistency, the second
edition of both standards (IEC 61499-1 and IEC 61499-2) allows that service se-
quence diagrams may be specified for all FB types and sub-applications. Ser-
vice sequence diagrams are well suited to specify the behavior of IEC 61499
FBs.

The sequence chart diagram is a powerful tool for specifying tests, e.g.
UML sequence chart diagram. Service sequence diagrams allow the specifi-
cation of sequences of input events and the resulting output events. Addi-
tionally, input data values can be used for FB test specification. Furthermore,
IEC 61499 allows the specification of multiple service sequences, each describ-
ing a certain execution aspect of the FB. This can be utilized for defining sev-
eral test sequences which will test different aspects of the interface behavior
of the FBuT in a predefined order. With service sequences a mean is available
that is rather similar to the general FB unit test description as defined in Equa-
tion 3.5. Furthermore, positive, special, and negative test cases can be specified
and used for the testing process.

The main advantage of this approach is that the test specification is di-
rectly included in the type definition of the FBuT. Therefore the dedicated test
specification is always part of the FB definition and thereby no inconsistencies
between different specification versions can occur. Furthermore the test spec-
ification method is a native IEC 61499 method and so no additional training
effort is required.

For FBs with complex interfaces, the service sequence diagrams can be-
come extensive. On the one hand, service sequences help to focus on spe-
cific aspects of the interface behavior, on the other hand, the potentially large

5.3. Unit Testing Technique 90

number of test cases makes the assessment of the test coverage hard. Further-
more, similar tasks needed in multiple test sequences, e.g. bringing the FBuT
in a predefined state, have to be included in each test sequence. In particular,
IEC 61499 does not allow the invocation of a sequence diagram from another
sequence diagram. Here extensions like sequence calls, loops, or conditions,
which have been introduced to UML sequence diagrams could also be helpful
for IEC 61499 service sequence diagrams in a future edition of the IEC stan-
dard.

5.3.4 Evaluation of the Three Listed Unit Testing Approaches

The identified requirements are fulfilled by the three listed approaches to a dif-
ferent extent. For the comparison of the presented approaches, seven criteria,
based on Böhm et al. [51], have been identified to be relevant for the industrial
automation domain:

• Flexibility in test specification,

• portability,

• readability,

• integrity,

• expressiveness,

• maintenance, and

• suitability for the IEC 61131-3 and the IEC 61499 standards implementa-
tion.

Table 5.2 presents the evaluation results for the seven selected properties.
In the following, the results will be discussed in more detail.

Comparing the three presented approaches, it can clearly identify the Sep-
arated Test Component (S.T.C) approach as the one with the greatest flexibil-
ity regarding the test specification. This approach resembles current unit test
approaches applied in the software engineering domain at best. UML dia-
grams are a powerful language but the needed restriction, i.e. UML Profile,
for an unambiguous test case execution also limits the flexibility. With respect
to flexibility, the service sequences in the Integrated Test Specification (I.T.S)
approach are definitely the most limited and only suitable for IEC 61499 due
to the definition in the IEC standard.

An advantage of the (S.T.C) and (I.T.S) approach is that the artifacts needed
for testing, i.e. test FB and test service sequences, can be accessed by all

5.3. Unit Testing Technique 91

Table 5.2: Assessment of the presented specification and implementation
methods for tests: Separated Test Component (S.T.C), Separated Test Speci-
fication (S.T.S), Integrated Test Specification (I.T.S).

Evaluated Property S.T.C S.T.S I.T.S
flexibility in test specification + o -

portability o - +
readability - + o

integrity - o +
expressiveness + o -

test maintenance - o +
IEC 61131 suitable + + -
IEC 61499 suitable + + +

IEC 61499 compliant engineering tools. Portability, the exchange of engineer-
ing data, e.g. FBs, between tools, is an important property defined in the
standard. However, exchanging UML diagrams between different engineer-
ing tools is problematic.

UML has been specified for the implementation of software. Therefore read-
ability is an important aspect to efficiently gain a good insight in the compo-
nents’ behavior specification. Service sequences are easy to grasp. However,
an overview of all test cases can hardly be gained for complex FBs. Test rele-
vant properties, e.g. ECC, algorithms, and FB interface, are distributed within
the test FB. Therefore, neither a single test case nor the full test suite can easily
be grasped at first glance.

In the (I.T.S) approach the test related information is part of the type def-
inition of the IEC 61499 FBuT. Therefore it cannot get lost or forgotten upon
transfer. Limited integrity is offered by the Separated Test Specification (S.T.S)
approach if the same UML model is also used for the specification of the FBs’
behavior like proposed in [163]. A major drawback of the (S.T.C) approach
is that the test specification and the implementation are completely separated
from the FBuTs which may lead to inconsistencies.

All means for the specification and implementation of FBs can be used in
the (S.T.C) approach. The (S.T.S) and (I.T.S) approach need a generic inter-
preter for the test specification because the test specification language is differ-
ent from the FBuT implementation language. In order to allow an unambigu-
ous interpretation of the test case specifications, the expressiveness has to be
limited. IEC 61499 service sequence diagrams, as used in the (I.T.S) approach,
only provide limited expressiveness. The limited expressiveness of service se-
quences can be overcome by potential improvements in IEC 61499, e.g. loops,
sequence calls, and conditions. Hence, the Test Runner / Test Management
system can easily reach an unambiguous interpretation of the specified test

5.3. Unit Testing Technique 92

cases.
Integrated modeling methods as proposed in the (I.T.S) and partly in the

(S.T.S) approach, if the FB behavior is also specified in UML, enable an easy
checking for inconsistencies between FBuT and the test specification, e.g. in-
terface changes. This test maintenance tasks are harder to fulfill with complete
separation of tests and FBuT as proposed in the (S.T.C) and partly in the (S.T.S)
approach.

The (S.T.S) approach is presented in Section 5.4 in more detail to show the
applicability for integration tests and system tests. The benefits of the (I.T.S)
approach - portability, integrity, and the easy test maintenance - outweigh its
disadvantages in unit testing. After assessing the evaluation criteria, the (I.T.S)
approach has been chosen as a basis for the IEC 61499 unit test framework.

5.3.5 Used Unit Test Framework

Based on the integrated test specification the test framework is implemented
as depicted in Figure 5.2. The tests in the form of service sequences are part of
the FB-Type file, like all other FB type specific definitions.

The Test Management / Test Runner is implemented and included in the
Eclipse based engineering environment 4DIAC-IDE [162,164] as an additional
open-source plug-in. The service sequences which specify the test cases and
the FB interface are parsed by the Test Runner. The gathered information is
interpreted as a set of test cases, each with an input vector and a set of expected
output vectors.

Based on the interface of the FBuT, a type specific test application is auto-
matically created and instantiated at the (remote) test device for the test proce-
dure. The IEC 61499 compliant run-time environment FORTE [162,164] is used
on the test device. The test application consists of the FBuT, FBs for the com-
munication with the Test Runner (Receiver, Sender) as well as Multiplexing
and De-Multiplexing FBs (MuX, DeMuX). MuX and DeMuX FBs are generic
FBs, this means that the run-time environment is able to instantiate FBs with a
variable number of event inputs and outputs according to the interface of the
FBuT. The encoding of the events as data allows a synchronous transmission
of the input set on a unidirectional connection from the Test Runner to the test
device. Also the synchronous transmission of the output vector which is sent
back from the test device to the Test Runner is facilitated [55].

For the communication between the Test Runner and the test device the
connection-based TCP/IP protocol is chosen. The numbers of inputs and out-
puts of the sender and receiver functionality are derived from the interface of
the FBuT. For the transmission of the encoded events an additional data input
is added for the sender and an additional data output for the receiver respec-
tively. The necessary interfaces are schematically shown in Figure 5.2c. In the

5.3. Unit Testing Technique 93

following the execution of the test procedure is shown:

1. The type specific test application is instantiated on the test device.

2. The Test Runner starts the evaluation of the specified test cases.

3. The Test Runner transfers the given input set of the test case to the test
device.

4. The execution of the FBuT is triggered by the specified input event.

5. The resulting output events and data are transferred back to the Test Run-
ner.

6. Finally, the Test Runner removes the test application from the device,
i.e. clean up phase, analyzes the replies from the test application and
evaluates the test results of the unit test.

Test
Specification

.fbt

Test
Results

Test Runner
Test-Case parsing Test execution Test evaluation

Test-Device

FBuT-Type

FBuT

EO_1

EO_n

DI_1

DI_r

DO_1

DO_s

E_Mux_n

MuX

L

EOEI_1

EI_n

E_DeMux_m

DeMuX

K

EI

EO_mComm-Receive

Receiver

IND

RD_1

RD_(r+1)

Comm-Send

Sender

REQ

SD_1

SD_(s+1)

EO_1 EI_1

EI_m

RD_2 SD_2

a)

b)

c)

d)

in
st

an
tia

te

cl
ea

n
up

Figure 5.2: Overview of the function block test framework for unit testing. a)
The Test Runner is the core element in the test framework concept. It handles
the test case parsing, selection, execution, and evaluation. b) The tests are
specified in the FB type file together with the interface and behavior. c) FB
type specific test application is instantiated and deployed to a target control
system. d) Test results are reported and visualized.

5.3. Unit Testing Technique 94

A specific test sequence passes the test if the set of the received output
vectors Or equals the expected output set Oe

∀SIO,s : ~Is,x 7→ Or,s,x = Oe,s,x, (5.1)

which is extracted from the test specification. The variable s represents the
number of test sequences, see Equation 3.5, and the vector x represents the
input-output set which is defined in Equation 3.4.

As soon as one of the following criteria is met, the given test sequence is
evaluated as failure:

• The number of received output vectors is not equal to the specified num-
ber,

• a wrong event is received in an output vector, or

• the output data does not match the expected values.

Upcoming tests within the same test sequence are not evaluated any more,
since pre-conditions might not have been fulfilled and therefore it cannot be
sure that the test results for the next test cases are correct. After the execution
of all tests, the test application is removed from the test device, i.e. clean up
phase, and the test results are reported and visualized by the engineering tool,
i.e. 4DIAC-IDE.

The separation of Test Runner and test device bears the following advan-
tages:

1. The tests are executed on the deployed run-time environment. Errors
and changes during the porting to new devices is tested.

2. Besides the FBuT, only standard FBs are needed for the instantiation of
the test application on the test device.

3. Any kind of FBs (including SIFB) are able to be tested on devices that an
implementation exists for.

4. The network based test execution enables also tests on platforms that
do not provide visualization capabilities or file system access (for report
saving). The test evaluation on the engineering system further reduces
the need to provide memory to gather the test results on the test device.
Thus tests can even be executed on small devices.

5. As long as standard compliant communication interfaces are provided
by the devices, also tests on devices from various vendors are possible.
The proposed test framework also consider the influence of different exe-
cution semantics on different target platforms which arise from different
interpretations of the standard [42, 165].

5.4. Model-based Testing of Industrial Control Applications 95

6. The TFD approach is applicable with this testing technique because of
the early test case definition and test execution as well as during the de-
velopment phase.

5.4 Model-based Testing of Industrial Control Ap-
plications

Automation supported test case generation based on UML models supports
flexibility of systems product development and enables immediate response
to changing requirements. Furthermore, such models enable automated code
generation of functional behavior and test cases. UML models represent a real
world setting and are used as a foundation for automated test case and code
generation [113].

A more comfortable way of getting a set of executable test cases for appli-
cations in automation systems development projects is the test case generation
by using model-transformation methods [75, p. 33]. The difference to the test
case generation approaches, which are presented in Section 4.6, is that this
method uses a meta-model definition instead of the parser functionality. With
the help of the meta-model definition, the test cases will be extracted from their
specification by model transformation rules.

MBT is a well-known approach for test case generation in the field of soft-
ware engineering [77]. Panjaitan and Frey [87] not only propose an approach
for modeling IEC 61499 applications by UML but also for the entire develop-
ment process of distributed control systems. In contrast, the approach in this
thesis deals with the extraction of information for the automated test case gen-
eration with their execution environment and does not concern the generation
of the system behavior itself from the UML specification.

In the following an automated derivation as well as an automated test case
generation for industrial automation applications from UML diagram models
is presented.

5.4.1 Test Specification Modeling

FBs are a common practice for modeling system behavior to encapsulate soft-
ware components for reusable applications in the industrial automation do-
main. Based on the selection of suitable UML diagrams in Section 4.5 and
in [87, 117, 154], state chart diagram definitions are used for the test case spec-
ification. Two different UML state chart diagram models are identified per
control component [26, 142]: The first model is the Plant Behavior Model and
the second model is the Control Behavior Model for the test case specification.
Hegny et al. [166] use this approach for the generation of IEC 61499 applica-

5.4. Model-based Testing of Industrial Control Applications 96

Sensor_X1=0 AND
Sensor_X0=0

Sensor_X0=1 AND
Sensor_X1=0

Sensor_X1=1 AND
Sensor_X0=0

moveIn=1 AND
delay=10ms

moveIn=0 AND
delay=10ms

moveIn=1 AND
delay=500ms

moveIn=0 AND
delay=500ms

Sensor_Vacuum=1 vacuum=1 AND
delay=1000ms

vacuum=0

blast=1 AND
delay=500ms

moveIn=1

moveIn=0

moveIn=1

VacuumWithObject

Moving

In Out

Sensor_X1=1 AND
Sensor_X0=0

Out

Sensor_X0=1 AND
Sensor_X1=0

In

moveIn=0

Sensor_Vacuum=1
Gripping

Sensor_Vacuum=0
Dropping

Sensor_Vacuum=0
StopBlast

Sensor_Vacuum=0
noObject

vacuum=0 AND blast=1

blast=0

vacuum=1

vacuum=0
AND blast=1

Figure 5.3: State Chart definition/specification by UML State Charts of a con-
trol axis behavior which moves IN and OUT [26, 142].

tions and simulate the plants behavior. Their concept of the simulation frame-
work is based on the coupling of control application and the plant simulation.
In contrast, here these UML state chart descriptions are used for the test spec-
ification of the industrial software .

The Plant Behavior Model describes the physical and mechanical behavior of
a component or a part of a system, e.g. a mechanical axis. Additional timing
information about the movements is included, such as the movement of axis
from one position to the other may take 500 ms. The UML state chart model is
adequately realistic like the real plant model. This specification is used for I/O
tests such as mechanical, electrical, and pneumatic equipment. This allows to
also test the basic control functionality.

The Control Behavior Model describes the logical behavior and defines se-
quences of a component and/or control system which have to be tested, see
Figure 5.3. This model definition is used to test the logical implementation of
the application.

5.4.2 Model-based Test Case Generation Process

The starting point of the MBT process is the UML specification of the SuT,
and finally the output of this process is an executable FB network which is
generated automatically. The FB network is based on the IEC 61131-3 or the
IEC 61499 standard depending on the individual SuT implementations. At the
beginning of the test process, the specification has to be done by using UML
diagrams. UML state chart diagram models for the test specification are used.
This UML specification model is the only one which has to be specified manu-
ally. The other models in this process are generated automatically. Figure 5.4a
shows the overall process flow for the test case generation.

The test generation aims at covering all branches of the specified state chart

5.4. Model-based Testing of Industrial Control Applications 97

<Model>
UML Specification

<MetaModel>
UML 2.0

<Model>
TestSuite

<Model>
IEC 61499 FB or
IEC 61131-3 FB

<Application>
IEC 61499 or
IEC 61131-3

<MetaModel-XSD>
IEC 61499 or
IEC 61131-3

instance of

Model to Model-
Transformation

instance of

instance of

Model to Model-
Transformation

Model Weaving or
generate New Application

a) Model Transformation Process

b) Test Suite Meta-Model

c) Generated IEC 61499 FB Network

<MetaModel-
ecore>

TestSuite

TestSuite

genTestSuite SuT

SuT

REPORTING

Reporting

Figure 5.4: Overview of the transformation process to generate an automation
control application including all test cases for the SuT a) Work-flow for auto-
mated test case generation; b) Test Suite meta-model definition, see Figure 5.5;
c) Function Block network based on IEC 61499 standard [26, 142].

diagram. In order to reduce complexity, the path coverage testing criteria is
used for the test case extraction from state chart diagram, see Section 1.3.2, so
that each branch is visited once by evaluating each transition. The resulting
test cases are formed into test sequences for testing the SuT.

A test case consists of pre-conditions, actions, post-conditions, expected
results, and actual results. The schematic overview of the defined test suite
meta-model is shown in Figure 5.5 which represents the structure of a test, see
also Figure 3.2.

• The pre-conditions are parameters which are used for the source test case
state.

• Then the parameters, which are defined as action parameters, will be
applied on the SuT to execute the test case.

• The post-conditions define parameters so that test cases end in a defined
state.

• The expected results are defined for the reporting process so that an ac-
tual theoretical comparison is possible.

5.4. Model-based Testing of Industrial Control Applications 98

Figure 5.5: The defined <Meta-Model-ecore> TestSuite definition [26, 142].

In most cases, post-conditions and expected results have the same parame-
ters. However, for safety-critical applications the expected results are not rep-
resenting a safe state of the system. For such cases the post-conditions, which
are different from the expected results, ensure a transition from the test result
state into a safe system state where the test case is finished. This safe system
state may be the starting point for other or/and next test cases. The post-
conditions may have additional parameters compared to the expected results.
Finally, these parameters will be used for the reporting process, for instance
using online feedback [26, 142].

In the following the model transformation process is split in three main
parts which is visualized in Figure 5.4a.

1. Generate <Model> TestSuite

2. Generate <Model> IEC 61499 FB or IEC 61131 FB

3. Generate <Application> IEC 61499 or IEC 61131

The transformation process generates the FB automatically, includes all test
cases extracted from the UML specification also automatically which is used
for the testing process.

5.4. Model-based Testing of Industrial Control Applications 99

Generate <Model> TestSuite: The defined <Meta-Model-ecore> TestSuite,
the specified UML Specification, and the <Meta-Model> UML 2.0 15 are re-
quired for the generation of the <Model> TestSuite which represents the basic
structure of the test suite. The <Model> TestSuite is automatically generated
through a M2M transformation and includes all test cases. A number of trans-
formation rules for the model transformation process have to be defined first.
These rules are defined in Xtend [167], a M2M transformation language pro-
vided by the Eclipse Modeling Project. Table 5.3 shows a detail overview of
the defined rules for the M2M transformation from the UML diagram into the
<Model> TestSuite.

The transformation rules for creating a <Model> TestSuite are split into
three parts:

1. Rules for creating a test case: Based on the <Meta-Model-ecore> TestSuite
definition the test case information is extracted and test cases are gener-
ated, see Table 5.3.

2. Rules for creating a test scenario as use case: The generated test cases are
linked by using a predefined order to create test sequences based on the
UML test specification model.

3. Rules for creating a test suite: The test cases and test sequences are ordered
and included in the <Model> TestSuite.

Generate <Model> IEC 61499 FB or IEC 61131 FB: Based on the generated
<Model> TestSuite, the <Model> IEC FB (<Model> IEC 61499 FB or <Model>
IEC 1131-3 FB) is also generated automatically by using the M2M transfor-
mation process. The goal of this transformation is to generate the FB which
includes the generated <Model> TestSuite. The same transformation language
for generating the <Model> FB as the <Model> TestSuite generation is used,
i.e. Xtend. The <Model> TestSuite, the <Meta-Model-ecore> TestSuite, and the
<Meta-Model-XSD> IEC are required for the transformation process to gener-
ate the test suite included in the <Model> IEC FB.

The <Meta-Model-XSD> IEC are required for generating the industrial au-
tomation application network. IEC 61131-3 does not provide a general Meta-
Model definition. Each IEC 61131 development tool uses its own Meta-Model
definition. The used Meta-Model definition for the IEC 61131-3 implemen-
tation is based on the PLCopen specification [168]. The IEC 61499 standard
organization provides a general Meta-Model definition. These Meta-Models
include the structure definition of the automation model which is necessary
for the transformation process.

15http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML - free
available, visited: March 2013

5.4. Model-based Testing of Industrial Control Applications 100

<Model> UML Specification <Model> TestSuite
Rules for creating a test case

name of initial state (Pseu-
dostate)

Name of initial state, i.e. “plant” or
“control”, if plant is true then control
is defined as false.

name of the state used for naming the test case
source state (parameters) parameters for the pre-condition
target state (parameter1) parameters for the post-condition
target state (parameter2) parameters for the expected results;

if parameter2 is not defined, the ex-
pected results are equal to the post-
condition parameters

transition (parameters) action for the test case
- automated generated identifier by a

numbered consecutively, i.e. ID
Rules for creating a test scenario as use case

source state and target state name of the use case
all names of the test cases name of test cases listed in a defined

order
initial state name, i.e. control name of initial state, i.e. “plant” or

“control”, if plant is true then control
is defined as false.

target state parameters is equal
to source state parameters from
a different test case

such test cases can combined for a test
scenario

Rules for creating a test suite
name of the state chart defined as name of the test suite

Table 5.3: Transformation rules for <Model> TestSuite. *-* ... no information is
used for this transformation rule from the UML specification diagram.

5.4. Model-based Testing of Industrial Control Applications 101

The rules for generating the <Model> IEC 61131 are similar to the <Model>
IEC 61499 but the <Model> IEC 61131 does not have an ECC. Therefore the
<Model> IEC 61131 solves this challenge by using simple commands defined
in the ST language, e.g. switch/case. Table 5.4 shows as example the transfor-
mation rules for generating the <Model> IEC 61499 FB.

The transformation rules for creating a <Model> IEC 61499 FB are split into
two parts:

1. Creating interface of the FB: The interface of the FB is created including
data/event inputs and outputs, based on the parameter from the UML
specification. Additional data/event inputs and outputs are included for
the FB parametrization, e.g. select test case or test sequence.

2. Create State Machine (ECC) in the FB: The internal ECC of the FB is created
which is used to select the appropriate test case or test sequence during
the test process.

Generate <Application> IEC 61499 or IEC 61131: The last step of the auto-
mated test generation is the creation of a test application. The generated FB,
the SuT, and the reporting component are connected by its data- and event
connections. If the test FB network is included in an existing application, the
generated test network will also be connected with the SuT automatically. This
process is called “model weaving”. If this is not the case, a new application will
be created which is done by a model transformation rule. The generated FB
network is ready for the testing which is presented in the schematic overview
in Figure 5.4c.

5.4. Model-based Testing of Industrial Control Applications 102

<Model> TestSuite <Model> IEC 61499 FB
Creating interface of the FB

name of the test suite name of the BFB “genTestSuite_” +
test suite name

- create event inputs and event out-
puts, i.e. INITgen, INITOgen, REQ,
CNF_TC, CNF_TS

- create input data, i.e. QI, TC_Select,
TS_Select, Mode_TC

- create output data, i.e. QO, Status
action parameters name of all action parameter are out-

put data parameters
pre-conditions one data output for pre-condition val-

ues, i.e. required for checking pre-
condition state

post-conditions one data output for post-condition
values, i.e. required for reporting
analysis

Create State Machine (ECC) in the FB
- create initialization part of the ECC
test case name create an algorithm in the ECC with

the test case name
test case fill in the test case parameters, i.e.

action, pre-condition, post-condition,
into the algorithm

test case ID and use case ID and
test case name

create state in the ECC and include ID
in the state name, i.e. for a single test
case: “TC” + TCID + “_” + test case
name; for a test scenario: “TS”+ TSID
+ “TC” + TCID + “_” + test case name

- generate the transitions in the ECC,
input parameters of the FB TC_Mode,
TC_Select, and TS_Select are used as
condition parameters

Table 5.4: Transformation rules for the <Model> IEC 61499 FB. *-* ... no infor-
mation is used for this transformation rule from the <Model> TestSuite.

5.5. Summary 103

5.5 Summary

In this chapter four testing techniques are presented which are classified in test
specification with semi-formal model specification and without (semi)-formal
model specification. Methods such as the manual testing and the KDT method
consist of no (semi)-formal model test case specification. The tests have to be
specified with a textual description. KDT uses the defined keywords for the
test case specification in a formal way. This testing method is suitable for non-
programmers in reading and writing test cases without knowing details of the
implementation behavior of the SuT.

A semi-formal model test specification is used in the unit testing technique
with sequence chart diagrams and in the model-based testing technique. Three
potential methods, i.e. Separated Test Component, Separated Test Specifica-
tion, and Integrated Test Specification, are identified for a unit test process. Af-
ter a concise evaluation the Integrated Test Specification is presented in more
detail for testing IEC 61499 FBs. Service sequence diagrams are defined by
IEC 61499 and allow the specification of sequences of input events and the
resulting output events. The sequence chart diagram is a powerful tool for
specifying tests and the main advantage of this approach is that the test spec-
ification is directly included in the type definition of the FBuT. Thereby no
inconsistencies between different specification versions can occur.

Model-based Testing is a well-known approach for test case generation in
the field of software engineering. An automated derivation as well as an auto-
mated test case generation for industrial automation applications from UML
diagram models is presented as the last testing technique in this chapter. By
using Meta-Model definitions, the test cases will be extracted from their spec-
ification by model transformation rules. These transformation rules are pre-
sented and discussed to complete the model-based testing process for testing
industrial control software.

In order to show the properties of the presented testing techniques, exper-
iments, an evaluation and a discussion of results of these testing techniques is
presented in the next chapter.

CHAPTER 6

Experiments, Evaluation, and Discussion of Results

A scientific evaluation of the proposed testing techniques from Chapter 5 re-
quire individual validation and analysis for the selection of the proper one.
Therefore three application implementations are presented and an evaluation
of these testing methods is discussed in order to show the benefits of the pro-
posed testing techniques. A resulting comparison of the testing techniques is
also presented.

6.1 Implementation and Evaluation of the Testing
Techniques

In this section the implementation and evaluation aspects of the presented con-
ceptual approaches from Chapter 5 are discussed. In order to show the benefits
of the KDT method, the Pickup&Place unit is used, which is a part of the bottle
sorting machine. The second part of this section presents the unit testing tech-
nique by using FBs from the IEC 61499 standard library. The last part of the
implementation and evaluation section presents the implementation of an in-
dustrial sorting machine. The used applications are typical components from
the field of discrete manufacturing and discrete production systems.

6.1.1 Keyword-driven Testing

A part of the bottle sorting machine is used in order to validate the presented
KDT approach for industrial automation systems. A detailed explanation of
the used machine is presented in [169] as well as in Section 4.4 for defining the

104

6.1. Implementation and Evaluation of the Testing Techniques 105

UML model selection. The selected part of the machine is the Pickup&Place
unit which is depicted in Figure 4.1. The Pickup&Place unit is used to trans-
port bottles from one conveyor belt to another conveyor belt.

The Pickup&Place unit is implemented in both industrial standards, with
the logi.CAD tool16 based on IEC 61131-3 and with the 4DIAC tool [162] which
is based on IEC 61499. An appropriate comparison of the two different test
case descriptions by KDT is carried out.

The tool called “FitNesse” as Test Management system infrastructure is
used. FitNesse17 is an open source testing tool based on FIT18 (Framework
for Integration Testing). It enables test case definition for acceptance tests and
integration tests, i.e. system test level, as well as unit tests, based on key-
words without requiring sophisticated skills in test case implementation [170].
FitNesse is a standalone WIKI19 based on Java and is appropriate for commu-
nication and collaboration of engineers and non-technical users. Each page of
this WIKI is a static WIKI page which is combined to test scenarios through a
predefined order for executing the tests/pages. The properties of the specified
tests can easily be changed by editing the page through using the included
’Properties’ link (define a test scenario by several pages), see Figure 6.1. A
test case itself is changed by the ’Edit’ link. The test case specification itself
is presented in Listing 6.1 for an IEC 61131 test specification and Listing 6.2
represents an IEC 61499 test specification.

These test case definitions are used for the communication between the Test
Management system and the SuT by using the developed “Fixture” imple-
mentation. The SuT is able to run on two environments, once on the SoftPLC
“logi.RTS” for IEC 61131-3 applications and once on the run-time environment
“4DIAC-RTE” also called “FORTE” for IEC 61499 applications.

16http://www.logicals.com/, visited January 2013
17FitNesse: http://fitnesse.org/, visited: December 2012
18FIT: http://fit.c2.com/, visited: December 2012
19WIKI is a hypertext-system for a website which allows its users to add, modify, or delete

its content via a web browser.

6.1. Implementation and Evaluation of the Testing Techniques 106

1 !| script|logicad fixture|${Testpath }|
2 |force;| HSPPUnit.FRC_SYS_ACTIVE |1|
3 |force;| HSPPUnit.FRC_BOTTLE_READY |1|
4 |force;| HSPPUnit.FRC_SA_POS_LI |1|
5 |force;| HSPPUnit.FRC_SA_POS_RE |0|
6 |force;| HSPPUnit.FRC_HSPP_POS_LI |1|
7 |force;| HSPPUnit.FRC_HSPP_POS_RE |0|
8 |sleep |1000|
9 |check|get value|HSPPUnit.RD_HSPP_OUT |0|

10 |check|get value|HSPPUnit.RD_HEBER_OUT |1|
11 |check|get value|HSPPUnit.RD_GREIFER_OUT |1|
12 |check|get value|HSPPUnit.RD_SCHWENKARM_OUT |0|

Listing 6.1: Example of a test case definition in FitNesse. Test case specification
for the IEC 61131-3 KDT.

1 |script|forte fixture|${host}|${port}|
2 |startConn|
3 |create watch;| HSPPUnit|gruppe2_logik_0.HSPP_POS|
4 |create watch;| HSPPUnit|gruppe2_logik_0.BLOCKER_POS|
5 |create watch;| HSPPUnit|gruppe2_logik_0.GREIFER_POS|
6 |create watch;| HSPPUnit|gruppe2_logik_0.SCHWENKARM_POS|
7 |force;| HSPPUnit|gruppe2_logik_0.SYS_AKT |1|
8 |force;| HSPPUnit|HSPP_LOGIK.SEN_LI |1|
9 |force;| HSPPUnit|HSPP_LOGIK.SEN_RE |0|

10 |force;| HSPPUnit|SCHWENKARM_LOGIK.SENS_LI |1|
11 |force;| HSPPUnit|SCHWENKARM_LOGIK.SENS_RE |0|
12 |trigger event ;| HSPPUnit|HSPP_LOGIK.INIT|
13 |trigger event ;| HSPPUnit|gruppe2_logik.REQ_SYS_AKT|
14 |trigger event ;| HSPPUnit|gruppe2_logik.REQ_FL_BEREIT|
15 |trigger event ;| HSPPUnit|HSPP_LOGIK.REQ_SENS|
16 |trigger event ;| HSPPUnit|SCHWENKARM_LOGIK.REQ_SENS|
17 |check|get value;| HSPPUnit|gruppe2_logik_0.HSPP_POS|TRUE|
18 |check|get value;| HSPPUnit|gruppe2_logik_0.BLOCKER_POS|

TRUE|
19 |check|get value;| HSPPUnit|gruppe2_logik_0.GREIFER_POS|

FALSE|
20 |check|get value;| HSPPUnit|gruppe2_logik_0.SCHWENKARM_POS|

FALSE|
21 |stopConn|

Listing 6.2: Example of a test case definition in FitNesse. Test case specification
for the IEC 61499 KDT.

6.1. Implementation and Evaluation of the Testing Techniques 107

Figure 6.1: Graphical user interface from the FitNesse test case specification
for IEC 61131-3 application based on [48]. Menu on the left side allows to start
the test, edit the test specification, and support additional configurations of the
Test Management.

Keyword-driven Testing of IEC 61131 applications: The communication be-
tween the Test Management system FitNesse and the IEC 61131-3 run-time
environment logi.RTS PLC is implemented by using COM20-libraries on the
local workstation, i.e. SoftPLC. This means that the testing process is executed
not on a hardware PLC, i.e. in the case of IEC 61131-3. However, a separate
hardware PLC is not necessary because SoftPLCs have the same execution be-
havior [48].

First of all, the SuT has to be run on the PLC or SoftPLC to test the im-
plementation behavior. Figure 6.1 presents one test case specification of an
IEC 61131-3 implementation. The test case specification is divided into four
parts:

1. The initialization starts with the keyword script. Therefore the ’logi-
cad fixture’ is selected which is connected to the PLC-Resource named
’OffSimulation/OffPLC’.

2. The input parameters are set, which means the variables are forced with
defined values. This is done by using the force keyword. Variables can

20Component Object Model (COM) is a binary-interface standard. It is used to enable inter-
process communication, mostly used in Microsoft frameworks.

6.1. Implementation and Evaluation of the Testing Techniques 108

Figure 6.2: Graphical user interface from the FitNesse test case specification
for IEC 61499 application based on [48]. Menu on the left side allows to start
the test, edit the test specification, and support additional configurations of the
Test Management.

only be forced if the IEC 61131-3 application has been extended by a so
called “force marker”, see Figure 6.3. Force markers are a logi.CAD spe-
cific feature to write values from external, i.e. outside from the PLC sys-
tem, into the application. A main drawback is that these force marker
objects have to be included in the SuT manually.

3. The sleep command has to be set. The Test Management system stops
the execution by using this keyword comment, in this case the waiting
time is set to 1000ms. This is necessary in IEC 61131-3 based testing pro-
cesses because of the cyclic execution. It guarantees that a state is reached
and will not be skipped by the execution machine of the run-time.

4. In the checking phase the result value is read by executing the get value
keyword and is than compared with the expected value by executing
the check keyword. For instance, HSPPUnit.RD_HSPP_OUT=0 is compared
with the get value output.

6.1. Implementation and Evaluation of the Testing Techniques 109

force marker

Figure 6.3: Part of an IEC 61131-3 FB network implemented in the logi.CAD
development tool, which shows the required ’force marker’ for writing set-
values in the KDT process. In this case 6 force marker are required.

Keyword-driven Testing of IEC 61499 applications: The communication be-
tween the IEC 61499 fixture implementation and the IEC 61499 SuT appli-
cations utilizes TCP/IP communication, which directly enables remote test-
ing. This enables testing of the SuT on several PLCs. That means, the KDT
process is applicable for testing on real hardware PLCs. In contrast to the
IEC 61131-3 test process, the IEC 61499 fixture has additional keywords de-
fined, see Figure 6.2 and Listing 6.2. The create watch keyword enables to
log variables of the IEC 61499 application which are used for checking the re-
sults. This feature is used for reading several variables which are watched at
the same time. IEC 61499 is characterized by an event-based execution model.
An additional trigger event keyword is implemented to trigger event inputs
of FBs, i.e. SuT, which enable a separate triggering of each event input. Fi-
nally the check and get value keywords are used to compare expected and re-
sult variables, e.g. gruppe2_logik_0.HSPP_POS=TRUE, in the defined IEC 61499
resource named ’HSPPUnit’. The resource name has to be defined because
IEC 61499 enables distributed control over several resources. This enables test-
ing of distributed FB networks over several resources.

Before the test gets started, the SuT has to be downloaded on the run-
time environment and must be in running mode. The implementation of the
IEC 61499 fixture enables an automatic download of the SuT. This means that
the IEC 61499 implementation is created on the 4DIAC-RTE, i.e. the appli-
cation is running on the PLC, before the test process will be started. Three
additional keywords are defined for this additional feature: create resource,
create function block, and start.

As an additional help, a wrapper21 has been developed which converts an
existing IEC 61499 boot-file into a FitNesse WIKI-syntax. This boot-file con-

21Wrapper is an adapter implementation of a software part which encapsulates a small func-
tionality of a software program.

6.1. Implementation and Evaluation of the Testing Techniques 110

Figure 6.4: KDT - Test history visualized in the Test Management system Fit-
Nesse. Last 20 results are presented at which the results leftmost are the latest.

sists of IEC 61499 XML compliant commands. However, this wrapper only
generates the test stub. An automatic conversion from control applications
which are modeled in an IEC 61499 development tool, e.g. 4DIAC-IDE, into
a WIKI-syntax, e.g. FitNesse Syntax, is possible by this wrapper. Only the
actual writing and reading values for the test have to be inserted by the user.
After that, the generated FitNesse syntax is used as a part for the KDT process,
i.e. SuT. This additional feature enables a fast execution flow of the testing
process [48].

KDT supports the continuous integration test strategy which supports au-
tomated frequent testing, see Section 3.1. In Figure 6.4 the test history is visual-
ized, which presents an overview of the executed test cases and test scenarios.
At any time, detailed information about the status of the SuT is available.

KDT is a valuable testing method for testing industrial automation appli-
cations. Based on the requirements for testing industrial control software, a
basis subset of keywords is defined. The outcome of this is that IEC 61131-3
needs less keywords than IEC 61499. This has two reasons:

1. The IEC 61131-3 has a cyclic execution model and therefore no keyword
such as trigger event is necessary.

2. The 4DIAC run-time environment (FORTE) enables a dynamic creation
of FB networks which require additional keywords like create resource
and create function block.

In order to validate the presented KDT technique, an industrial control ap-
plication, a Pickup&Place unit, is used to show its feasibility. To sum up, test-
ing IEC 61499 applications by the KDT method has more advantages because

6.1. Implementation and Evaluation of the Testing Techniques 111

the SuT does not need to be changed for the test process, whereas IEC 61131-
3 needs additional force markers in the SuT implementation. Because of the
standardized download interface of IEC 61499, the SuT environment is gen-
erated automatically by the IEC 61499 development tool, i.e. boot-file gen-
eration. By using the boot-file, an automatic WIKI-syntax is created by the
developed wrapper generator, which enables an easier test process because of
the generated FitNesse test template for the SuT.

This testing method is applicable for testing software units like IEC 61499
or IEC 61131-3 FB libraries because it is easy to connect the Test Management
to the SuT, in this case to FBuT. An additional effort for IEC 61131-3 FBs is
required by using force markers instead of IEC 61499 FBs. In the case of the
IEC 61499 FBs test, the Test Management is able to connect to the FBuT directly,
i.e. by using the IEC 61499 fixture. This testing method is also suitable for
testing complex industrial applications, e.g. integration tests, system tests. For
this purpose the test procedure is similar to the unit test.

6.1.2 Unit Testing with Service Sequences

For the validation of the function block test framework a selection of represen-
tative and comprehensible FBs is done. The selection of the FBs is performed
on the basis of typical, i.e. most used in application development, execution
features and FB properties that have to be considered for testing. A compre-
hensive taxonomy of the execution features and FB properties is presented in
Figure 6.5. This taxonomy shows that FBs consists of data, events, and data
types which have to be considered for testing.

As a result of the classification and evaluation process two well known FBs
are chosen which are defined in Annex A of IEC 61499-1 [55]. The E_PERMIT
and E_CTU FBs are apt to provide insight of the specification and execution of
unit tests for FB.

Testing a Stateless Function Block - E_PERMIT: The E_PERMIT FB provides
a permissive event propagation. As can be seen in Figure 6.6(a), the FB has
one event input EI and an associated Boolean data input PERMIT. Since the
behavior of the E_PERMIT FB is defined as stateless with respect to data and
events, only two distinctive input vectors ~I1 = (EI, f alse) and ~I2 = (EI, true)
exist. They differ in the value of the Boolean data input.

~I1 7→ O1 : O1 = ∅ (6.1)
~I2 7→ O2 : O2 = (~O2,1) : ~O2,1 = (EO) (6.2)

Since the two test cases in Equation 6.1 and 6.2 are independent from each
other, they are specified as separate test sequences. An additional test (Nega-

6.1. Implementation and Evaluation of the Testing Techniques 112

Function Block

data event

time-dependent

data type

statelessstateful

derivedelementary
bit
magnitude

string
date

time-independent
time-dependent
time-independent

statelessstateful

enumeration
subrange

array
struct

Figure 6.5: Taxonomy of observable function block execution features and
properties.

tive Test) is added which shall fail on execution to validate the functionality of
the test environment.

The specification of the test cases is created with the service sequence editor
of the 4DIAC-IDE, see Figure 6.7(a). All three mentioned test cases with the
respective input and output vectors are visible in the figure. As the service
sequences are included in the FB type definition and only IEC 61499 compliant
description methods are used, any FB type editor may be used to extend or
change the test cases. During the test process it can be required to edit the
test specification because of late changes in the behavior specification, but it
should not be the normal case by using the TFD strategy.

(a) E_PERMIT (b) E_CTU

Figure 6.6: IEC 61499 standard library FBs interface definition; (a) E_PERMIT
- Stateless FB (b) E_CTU - Stateful FB.

6.1. Implementation and Evaluation of the Testing Techniques 113

Count up and reset with PV=0

FB Interface Runtime
Environment

R
RO (Q:=FALSE; CV=0;)

CUO (Q:=TRUE;CV:=1;)
CU (PV:=0;)

RO (Q:=TRUE; CV=0;)

CUO (Q:=TRUE;CV:=1;)
CU (PV:=1;)

R

(a) Test Specification with a Sequence Diagram (b) Test Results of the Unit Test Execution
of 3 Test Scenarios

Figure 6.7: E_CTU FB: (a) Count up and reset with PV=0; Test specification
with service sequence diagram (b) Test results; Test scenario 1 and 3 are exe-
cuted successfully; Test scenario 2 failed due to test case 3 failed therefore test
case 4 is not executed.

Testing a Stateful Function Block - E_CTU: The second chosen FB is the
E_CTU FB. Its interface includes two input events (CU, R) and two output events
(CUO, RO), as well as one data input (PV of 16-bit unsigned integer type
UINT) and two data outputs (Q of Boolean type, CV of type UINT) as shown
in Figure 6.6(b).

The counter value CV is increased at the occurrence of a count-up event
CU and is reset to 0 on the occurrence of the reset event R. The behavior of the
FB is dependent on the counter value CV. Therefore the E_CTU FB is stateful,
because of the counter value is time-independent with respect to the counter
value data, i.e. no timing information is stored in this FB.

The use of magnitude data types as input as well as output data highly
increases the number of potential test cases, as stated in Section 2.7. There
exist 217 possible input vectors~Ix, i.e. 2 non-concurrent event inputs + 1×16-bit
data input. Furthermore, this comprehensible example already has 218 output
interface states. Therefore, full testing of the E_CTU FB would require 235, i.e.
217 × 218, test cases.

The requirement for a well-considered test case selection is evident. A rep-
resentative set of test cases (including special tests and negative tests) has been
specified for the E_CTU FB type, see Figure 6.7.

6.1. Implementation and Evaluation of the Testing Techniques 114

Figure 6.8: Visualization of the test results in 4DIAC-IDE; The left hand side
demonstrates the test results in textual description, the right hand side pictures
the test results in graphical form of the E_CTU FB, cf. Figure 6.7.

The test cases are parsed by the Test Management system, i.e. Test Runner,
and run when tests are triggered by the user in the user interface, i.e. realized
as plug-in in the 4DIAC-IDE. Within the same user interface, test results are
reported both textually (showing detailed information on failed tests) as well
as graphically (providing a good overview on test results), as presented in
Figure 6.8. At the occurrence of the first error, see negative test, a test sequence
is stopped and marked as failed, see cross mark in Figure 6.8. Further test cases
within the failed test sequence are marked as untested, see question mark in
Figure 6.7(b) and Figure 6.8.

This presented unit testing process is representative for a TFD approach.
Because of the fast response of the test results, this unit test framework is suit-
able for TFD of industrial automation applications. FBs are identified as the
software units to be tested in IEC 61499. Based on the semi-formal specification
of their external observable behavior, a unit test specification method, i.e. ser-
vice sequence diagrams, and an according unit test execution framework, see
Figure 5.2, are derived. The main advantages of the presented solution are that
it is fully IEC 61499 standard compliant and can be utilized in any IEC 61499
standard compliant environment. With two representative FBs taken from the
IEC 61499 standard library, the usage is demonstrated and the applicability of
the proposed approach is proven.

However, as expected the limitations of service sequence diagrams in case
of FBs with complex interfaces are identified. The sequences get very large and
only a subset can be efficiently specified. This selected subset has to be cho-

6.1. Implementation and Evaluation of the Testing Techniques 115

sen manually by the test engineer. A solution for such FBs could be to model
the test cases with UML and automatically generate the according service se-
quences as input for the unit test framework. This has the advantage that the
test cases can be developed more easily and that the tests are stored as part of
the FB. But this reduces the effort only for the initial test case generation. The
same effort is required for maintaining the test cases during the life cycle of
the FB.

To overcome the limitations of the presented approach a set of extensions to
the IEC 61499 service sequences are required that reduce the effort for specify-
ing tests as well as FB behavior by increasing their expressiveness. A first step
will definitely be the introduction of sub-service sequences and calling mecha-
nisms. By doing so, common tasks needed for several test cases. This is useful
for the FB preparation which can be defined once and reused afterwards for
other test sequences. Further required IEC 61499 extensions are control struc-
tures, conditional execution, and loops in order to implement repetitive test se-
quences. Finally, as control applications are real-time constrained applications,
the timing behavior is an important property and quality feature. Therefore it
should also be possible to specify the timing behavior in test sequences.

6.1.3 Model-based Testing

For the validation of the MBT technique a representative prototype implemen-
tation of a sorting machine is selected to demonstrate this approach for the
field of discrete production systems. The basic functionality of the sorting ma-
chine is the transportation of palettes via a conveyor belt. After that, the parts
are sorted from the palette into two boxes, depending to the color of the bot-
tles. The sorting part is done by two pneumatic axis that act as handling units,
a vacuum gripper, and a conveyor belt. Figure 6.9 shows a picture of the sort-
ing machine.

UML diagrams are used for the test specification of the control and plant
behavior. In this case, UML state chart diagrams include the required infor-
mation for the test case and the test sequence generation. As presented in
Section 4.6 and Section 5.4, UML state chart diagrams consist of states and
transitions. Individual test cases can be derived directly from transition pa-
rameters of the state charts for the test case generation. The specified state
chart description for testing needs not the complete information for a auto-
mated control code generation of the system implementation. Because if the
same state chart specification is used for the industrial control code genera-
tion and the test case generation, only the model transformation procedure is
verified [26, 142]. Therefore the specified test specification can be small UML
diagram parts which are used for the testing procedure. Figure 6.10 shows a
selection of the implemented and used UML state chart diagrams for the test

6.1. Implementation and Evaluation of the Testing Techniques 116

Figure 6.9: Picture of the sorting machine which consists of two pneumatic
horizontal axis, two vertical axis, a vacuum gripper, and one conveyor for
transporting pallets.

case generation process.
For identifying a test case or a test sequence, an explicit ID is generated,

e.g. the test case is represented by TC1.1 and the test sequence is represented
by TS1.1. A testing process which is only based on single test cases (TC1.1),
see Figure 6.12, is not sufficient for testing industrial control software. Because
system states are highly interwoven and the complexity of industrial automa-
tion systems tend to be immensely high. Such complexity cannot be tested
only with test cases. Therefore a combination of test cases to test sequences,
e.g. TS1.1, is required, see definition of test cases and test sequences in Chap-
ter 3. In order to generate such test sequences automatically, the combination
of single test cases has to fulfill the following rule: The post-condition param-
eters of a test case n has to be equal to the pre-condition parameters of the next
test case n+1 in the test sequence [26, 142].

In the example implementation, the test suite is included in one IEC 61499
BFB, see Figure 6.11. Therefore the interface of the BFB, the required algo-
rithms, and the internal state machine, i.e. ECC, are generated automatically.
An example implementation of a single test case and a test sequence is shown
in Figure 6.12 and Figure 6.13.

6.1. Implementation and Evaluation of the Testing Techniques 117

Sensor_X1=0 AND
Sensor_X0=0

Sensor_X0=1 AND
Sensor_X1=0

Sensor_X1=1 AND
Sensor_X0=0

moveIn=1 AND
delay=10ms

moveIn=0 AND
delay=10ms

moveIn=1 AND
delay=500ms

moveIn=0 AND
delay=500ms

Sensor_Vacuum=1 vacuum=1 AND
delay=1000ms

vacuum=0

blast=1 AND
delay=500ms

moveIn=1

moveIn=0

moveIn=1

VacuumWithObject

Moving

In Out

Sensor_X1=1 AND
Sensor_X0=0

Out

Sensor_X0=1 AND
Sensor_X1=0

In

moveIn=0

Sensor_Vacuum=1
Gripping

Sensor_Vacuum=0
Dropping

Sensor_Vacuum=0
StopBlast

Sensor_Vacuum=0
noObject

vacuum=0 AND blast=1

blast=0

vacuum=1

vacuum=0
AND blast=1

(a) Axis plant behavior

Sensor_X1=0 AND
Sensor_X0=0

Sensor_X0=1 AND
Sensor_X1=0

Sensor_X1=1 AND
Sensor_X0=0

moveIn=1 AND
delay=10ms

moveIn=0 AND
delay=10ms

moveIn=1 AND
delay=500ms

moveIn=0 AND
delay=500ms

Sensor_Vacuum=1 vacuum=1 AND
delay=1000ms

vacuum=0

blast=1 AND
delay=500ms

moveIn=1

moveIn=0

moveIn=1

VacuumWithObject

Moving

In Out

Sensor_X1=1 AND
Sensor_X0=0

Out

Sensor_X0=1 AND
Sensor_X1=0

In

moveIn=0

Sensor_Vacuum=1
Gripping

Sensor_Vacuum=0
Dropping

Sensor_Vacuum=0
StopBlast

Sensor_Vacuum=0
noObject

vacuum=0 AND blast=1

blast=0

vacuum=1

vacuum=0
AND blast=1

(b) Vaccum gripper plant behavior

Sensor_X1=0 AND
Sensor_X0=0

Sensor_X0=1 AND
Sensor_X1=0

Sensor_X1=1 AND
Sensor_X0=0

moveIn=1 AND
delay=10ms

moveIn=0 AND
delay=10ms

moveIn=1 AND
delay=500ms

moveIn=0 AND
delay=500ms

Sensor_Vacuum=1 vacuum=1 AND
delay=1000ms

vacuum=0

blast=1 AND
delay=500ms

moveIn=1

moveIn=0

moveIn=1

VacuumWithObject

Moving

In Out

Sensor_X1=1 AND
Sensor_X0=0

Out

Sensor_X0=1 AND
Sensor_X1=0

In

moveIn=0

Sensor_Vacuum=1
Gripping

Sensor_Vacuum=0
Dropping

Sensor_Vacuum=0
StopBlast

Sensor_Vacuum=0
noObject

vacuum=0 AND blast=1

blast=0

vacuum=1

vacuum=0
AND blast=1

(c) Axis control behavior

Sensor_X1=0 AND
Sensor_X0=0

Sensor_X0=1 AND
Sensor_X1=0

Sensor_X1=1 AND
Sensor_X0=0

moveIn=1 AND
delay=10ms

moveIn=0 AND
delay=10ms

moveIn=1 AND
delay=500ms

moveIn=0 AND
delay=500ms

Sensor_Vacuum=1 vacuum=1 AND
delay=1000ms

vacuum=0

blast=1 AND
delay=500ms

moveIn=1

moveIn=0

moveIn=1

VacuumWithObject

Moving

In Out

Sensor_X1=1 AND
Sensor_X0=0

Out

Sensor_X0=1 AND
Sensor_X1=0

In

moveIn=0

Sensor_Vacuum=1
Gripping

Sensor_Vacuum=0
Dropping

Sensor_Vacuum=0
StopBlast

Sensor_Vacuum=0
noObject

vacuum=0 AND blast=1

blast=0

vacuum=1

vacuum=0
AND blast=1

(d) Vaccum gripper control behavior

Figure 6.10: State chart specification of the sorting machine. Axis component
and the vacuum gripper component [26, 142].

The ECC is a finite state machine based on a Moore machine [162]. The
implementation of the ECC is split into two parts, one for test cases and one for
test scenarios. Figure 6.12 shows the ECC of a single test case implementation
with the test cases ID=1.1 and ID=1.2. This test case represents the transition
at the axis control behavior state chart in Figure 6.10(c). In the following the
test execution for the test case ID=1.1 is shown:

1. The test case mode has to be selected, e.g. Mode_TC=true,

2. and the test case ID has to be defined, e.g. TCselect=1.1.

3. After the BFB initialization an event trigger REQ occurs and the generated
algorithm of the BFB, e.g. Alg11_in_out, is executed.

4. The action parameter moveIn=0 triggers an activation from the state IN
to the state OUT.

5. An output event CNF_TC is sent.

6.1. Implementation and Evaluation of the Testing Techniques 118

Figure 6.11: Resulting interface of the generated test suite BFB, i.e. <Model>
IEC FB. This FB includes all test cases and test scenarios.

6. The results of the test case is positive or negative which is reported to the
“REPORTING” FB.

The second part of the ECC implementation is required for the test se-
quences, see Figure 6.13. A test sequence is defined by a specific set of test
cases which are executed in a predefined sequential order which is specified
in the test specification [26,142]. In the case of the presented ECC, the test case
mode has to be selected, e.g. Mode_TC=false, and the test sequence ID has to
be parametrized, e.g. TSselect=1.1. After initializing the generated FB through
an event trigger, the internal algorithms are executed in the following order:

1. Alg13_control_IN

2. Alg11_IN_OUT

3. Alg12_OUT_IN

When each algorithm is executed correctly, an output event CNF_TC is sent.
If all test cases are completely executed, an output event CNF_TS is sent. After
that the test sequence execution is finished and the next selected test case or
selected test sequence is ready for execution.

There are some limitations of the implementation. The specification of the
plant behavior state chart diagram includes timing information, for example:
How much time does the axis need from one end position to the other end
position? This information is not used because testing of timing behavior in
a control application is not supported at this moment. Further, the extracted
information and generated test cases from the UML state chart diagram are
only positive test cases. No negative test cases and special test cases are gener-
ated automatically. Such kind of test cases have to be specified separately and
will not be derived and extracted automatically from the specified positive test
cases. This aspects should be considered in future research.

6.1. Implementation and Evaluation of the Testing Techniques 119

genINIT genINIT genINITO+

genDINIT genDINIT genINITO-

START

INIT

1

INITAL
Alg11_in_out CNF_TC

1

INITgen & !QI
Mode_TC = true & TCselect=“1.1“ & REQ

TC11_IN_OUT
1

genINIT genINIT genINITO+

genDINIT genDINIT genINITO-

START

INIT

1

INITAL

Alg

1

INITgen & !QI Mode_TC = false & TSselect=“1.1“ & REQ
TS11TC13_control_IN

AlgTS11TC11_IN_OUT

AlgTS11TC12_OUT_IN

1

1
1

a) single Test Case, ID=1.1 and ID=1.2 b) Test Sequence / Use Case, i.e., Test Sequence 1.1 includes Test Case 1.3, Tes

Alg12_out_in CNF_TCTC12_OUT_IN
1

Mode_TC = true & TCselect=“1.2“ & REQ

Figure 6.12: Results of the automatically generated ECC test case, which is
included in one BFB and represents two single test case, i.e. test case ID=1.1
and test case ID=1.2 [26, 142].

genINIT genINIT genINITO+

genDINIT genDINIT genINITO-

START

INIT

1

INITAL
Alg11_in_out CNF_TC

1

INITgen & !QI
Mode_TC = true & TCselect=“1.1“ & REQ

TC11_IN_OUT
1

genINIT genINIT genINITO+

genDINIT genDINIT genINITO-

START

INIT

1

INITAL

Alg13_control_IN

1

INITgen & !QI Mode_TC = false & TSselect=“1.1“ & REQ
TS11TC13_control_IN

Alg11_IN_OUTTS11TC11_IN_OUT

Alg12_OUT_IN CNF_TCTS11TC12_OUT_IN

1

1
1

a) single Test Case, ID=1.1 and ID=1.2

b) Test Sequence / Use Case, i.e., Test Sequence 1.1 includes Test Case 1.3, Test Case 1.1, and Test Case 1.2

CNF_TC

CNF_TC

CNF_TS

Alg12_out_in CNF_TCTC12_OUT_IN
1

Mode_TC = true & TCselect=“1.2“ & REQ

Figure 6.13: Results of the automatically generated ECC test scenario, which is
included in one BFB and consists of a number of test case. The combination of
several test cases ensure a test sequence, i.e. test sequence ID=1.1 [26, 142].

The results of the MBT implementation have shown that a detailed specifi-
cation between the test suite interface, i.e. test suite FB and the SuT is of great
importance for the model transformation process. The specification by using
UML state chart diagrams is a suitable tool for the test specification of con-
trol applications. In order to split the specification into the control behavior
specification and the plant behavior specification is an excellent methodology.
Therefore the tests can be focused in more detail to test the SuT. This test ap-
proach is applicable for testing platform independent industrial automation
systems because of the implemented model transformation rules of both stan-
dards, i.e. IEC 61131 and IEC 61499. The test cases and test sequences are
included in one FB which allows to test in all application levels by instanti-
ation of the test suite FB according to the SuT application, i.e. unit level for
library tests, sub-system level, and system level. Note that the test suite FB in-
terface is different for testing different application levels because the test suite
FB interface is mirrored implemented to the SuT.

6.2. Resulting Comparison of the Testing Methods 120

6.2 Resulting Comparison of the Testing Methods

All three testing techniques, the KDT, the unit testing with service sequences,
and the MBT have their advantages and drawbacks.

All demonstrated testing techniques from Chapter 5 have not their strength
for testing at all testing levels as defined in Section 3.2.

The KDT method is suitable for testing in all testing levels as presented in
Section 6.1.1. The unit testing level is representative for testing a FB up to a FB
library. The definition of a sub-system is a FB network with a number of FBs in
a FB network, see Figure 3.8. Sub-system tests are also testable by using KDT
as well as test whole system applications.

The second proposed testing technique is the unit testing method with se-
quence chart diagrams which is evaluated in Section 6.1.2. This testing tech-
nique is only suitable for testing on unit level which means that FB like BFB,
CFB, SIFB are testable. IEC 61499 CFB can also be seen as sub-system because
of the internal number of FBs. In this case a CFB is defined as a unit.

The MBT technique evaluated in Section 6.1.3 is also applicable for testing
in all levels such as the KDT method. This method is not the best choice for
unit testing because of the increased test specification and test generation ef-
fort, but a unit test is also possible. In the case of the presented example imple-
mentation, MBT is a powerful method for integration testing of sub-systems
and the testing of whole system applications.

A significant difference occurs in the test specification method. The execu-
tion behavior has to be considered for testing IEC 61131 and IEC 61499 ap-
plications. IEC 61131 has a cyclic execution while an IEC 61499 applications
has an event-based execution. This property has to be considered in the test
specification process, for instance, add additional parameters for event trig-
ger. Furthermore, on the one hand, the effort to develop the test specification
is considered, such as formal test specification or textual and manual test spec-
ification and on the other hand, the test specification tool is considered. This
means, for instance which UML diagram is the best choice for the test specifi-
cation?

The test specification for the KDT method is done manually by using a
formal textual description. By applying a small set of the defined keywords,
non-programmers are able to read and write test cases without knowing de-
tails on the implementation behavior of the SuT. The test specification effort
is high, but the simple test execution and test reporting of the Test Manage-
ment system, i.e. FitNesse, makes this testing technique suitable for industrial
requirements.

Test specification for unit tests by using UML sequence charts is a power-
ful tool. IEC 61499 allows the specification of multiple service sequences which
are more restricted than UML sequence chart diagrams. Each IEC 61499 ser-
vice sequence diagram describes a certain execution aspect of the FB. The main

6.2. Resulting Comparison of the Testing Methods 121

advantage of this approach is that the test specification is directly included
in the type definition of the FB. Therefore, the dedicated test specification is
always part of the FB definition. No inconsistencies between different speci-
fication versions can occur and the test specification cannot be lost. The test
specification effort is acceptable and the test execution and test reporting of
the unit test is easy to handle because the Test Management system is directly
integrated into the development tool, in this case 4DIAC-IDE.

The UML diagram family is a powerful specification tool in different fields
of applications. The developed MBT technique for testing control software has
the most flexible test specification possibility. At present, only the state chart
diagram is used for the test specification, but also the whole UML diagram
family can be used for the test specification. For this purpose, the transforma-
tion rules have to be extended for the test case generation. Currently the test
execution has to be considered and done manually in the industrial control
application because of the non-existing systematic Test Management system.
Also the further processing of test reporting has to be carried out manually
because the test results are stored in the test reporting FB.

An advantage of all these proposed testing techniques is that the tech-
niques are suitable for testing on different target platforms. Real hardware PLCs
or SoftPLCs which are running on common used PCs or industrial PCs are
applicable. Hardware PLCs and SoftPLCs should possess the same execution
behavior.

Not all proposed testing techniques are suitable for testing both IEC 61131
and IEC 61499 applications. The proposed testing technique for unit testing
with sequence chart test specification is only applicable for IEC 61499 FBs.
IEC 61131 does not support any additional specification methods included in
the interface description such as sequence charts in IEC 61499, see [171–173].
Therefore the implementation of this testing technique is limited to IEC 61499
FB testing. Nevertheless, both testing techniques, KDT and MBT, are suitable
for both implementation standards which are presented in Section 6.1.

An overview of the resulting comparison of the discussed testing tech-
niques is presented in Table 6.1. The assessment of the different properties
are defined by the values: Good, middle, and bad.

• Good means that the property is fully suitable and fully compatible with
the testing technique.

• Middle means that the property is partly suitable and compatible with
the testing technique. A testing process is possible but with high effort.

• Bad means that the property is not suitable and not compatible with the
testing technique. Testing is not possible.

There are some limitations in the proposed concept of the test framework
and the testing techniques. The presented testing techniques in Chapter 5 are

6.2. Resulting Comparison of the Testing Methods 122

Properties KDT UTT MBT
Unit test level + + o
Sub-system test level + - +
Integration testing + - +
System test level + - +
Testing specification effort - o +
Test execution effort + + o
Testing on different target platforms + + +
Test Management system available + + -
IEC 61131 suitable + - +
IEC 61499 suitable + + +

Table 6.1: Overview of the resulting comparison of the presented testing tech-
niques; Keyword-driven Testing (KDT), Unit testing technique (UTT), Model-
based Testing (MBT); + ... good , o ... middle , - ... bad.

suitable for testing industrial automation software. These testing methods can
be enhanced by a combination of the presented testing techniques in order
to reduce the specification effort. For instance, service sequence test specifica-
tions based on the IEC 61499 standard can become very large. A solution could
be to model the test cases by UML sequence chart diagrams and generate the
according service sequence diagrams as an input for the unit test framework in
4DIAC-IDE automatically. Furthermore, the test specification of the presented
MBT technique currently uses state chart diagrams. The test specification of
this testing method can be extended by supporting other UML diagrams such
as sequence chart diagrams or other diagram types which are defined in Sec-
tion 4.5. Therefore, the M2M transformation has to be extended by adding
transformation rules.

In the current proposed approach the timing behavior of the SuT is not
considered. The presented test case specification based on models, i.e. UML,
supports timing specification but at the moment the test execution does not
consider this timing information from the test case specification. In order to
support the “timing” feature, the test framework has to be extended, which
means that the Test Management system has to communicate directly in the
depth with the run-time environment of the PLC, e.g. real-time measurements.
This leads to running the Test Management system on the PLC. The execution
behavior of PLCs on hardware and SoftPLCs related to testing real-time be-
havior requires future research.

The presented MBT method uses only Boolean data types, compared to
the KDT method and the unit testing method with service sequence diagrams
support continuous data values. Note that in safety application only Boolean
input and output variables are allowed as input and output parameters. Con-

6.3. Summary 123

tinuous values can be represented in Boolean values by checking the boundary
value [156]. Future applications of the MBT framework should support con-
tinuous test data values which can be achieved by extending the M2M trans-
formation rules.

6.3 Summary

In this chapter the implementations of the proposed testing techniques for test-
ing industrial automation software are presented. Each testing technique is
implemented in a different example applications in order to show the detailed
benefits of its testing property. The used applications are typical components
from the field of discrete manufacturing and discrete production systems. Af-
ter that, an evaluation and comparison of the implemented testing methods are
explained. The comparison is based on the different testing levels, the testing
effort of each testing technique, test execution review, and the testing on differ-
ent target platforms, e.g. hardware PLC, SoftPLC. Additionally, a comparison
for their suitability of the common development standards for industrial auto-
mation systems, i.e. IEC 61131 and IEC 61499, is given. Finally, the limitations
of the proposed testing methods is presented.

The application design is a key aspect for increasing the overall software
quality of industrial automation software. The next chapter will present re-
sulting design rules and design guidelines for structuring industrial automa-
tion applications, which enables easier testing of control software. Further,
reusability of automation components is achieved.

CHAPTER 7

Resulting Design Rules for Application Structure

In current industrial control applications, logical software code and testing
code - if it exists - is often intertwined in the code, which hinders efficient and
systematic testing [111]. Thus, the code is hard to read and modify during
development and maintenance. A systematic testing process within the de-
velopment phase is a significant benefit which reduces valuable development
time. An encapsulated, component-based development approach with diag-
nosis and testing functionality is required for the design of industrial control
software which supports an easy reuse for other industrial control applica-
tions. Such components need an easy method to be retested after changes.
These requirements need special design rules for the application structure.

Today’s state of the practice for the development of industrial automation
applications is characterized by an approach where control applications are
developed individually for each application. This results in a high develop-
ment effort per plant as there is only little reuse of software components be-
tween different applications. In most cases, the testing of the application is
typically performed rather late in the development cycle alongside the plant in
an ad-hoc manner. The final application often contains many late changes and
fixes which may break the overall application design. This leads to code clutter
and couplings between application parts which results in reduced reusability
of the application components [169]. The development time increases and fi-
nally it leads to high control application development costs. Therefore, means
are necessary to reduce the development effort as well as the development
uncertainty of industrial control applications [169].

124

7.1. Overall Architecture Definition 125

7.1 Overall Architecture Definition

An important step towards an improved design structure is an architecture
which defines properties in the industrial automation application structure.
First, the architecture has to be decomposed into independent parts. A key
feature for reducing the development effort is the reusability of application
parts [174]. A further key requirement for reusing application parts in different
applications is the decoupling of the application parts. There is the need that
independent application parts should interact with each other in a defined
way in order to clearly decouple the application parts. The application parts
have to behave the same independent way in the context they are used in.
This allows that once tested and validated components can be reused without
additional testing effort [169].

According to the definition of a unit and a component in Section 3.2.1, the
term Automation Component (AC) is used for reusable control parts. With the
AC in hand, a definition how applications are composed is possible. Previous
investigations have shown that a strong hierarchical approach is deemed to be
a necessity for industrial automation [169, 174]. In order to look at the func-
tional and mechanical view of production facilities for defining the hierarchy
structure, a strong modularization and compositional approach is noticed.

For instance, plants are structured in cells which themselves contain sev-
eral machines. The machines themselves are also built from mechanical as-
semblies and these are built from devices such as a cylinder or a pump. The
main advantage is that the components on each level can be reused in many
applications because they are independent from their usage. The second point
is that sub-components are replaced easily as long as the new ones meet the
mechanical and functional specifications. Furthermore, by mapping the me-
chanical structure of a plant to the structure of the control architecture also the
programming of large automation systems are greatly simplified.

Figure 7.1 shows a hierarchical structure of an industrial automation appli-
cation according to the mechanical and functional hierarchy of a plant. Each
of the ACs represents a mechanical or logical unit which specifies different
software-specific aspects for the implementation and execution of these units.
This means that a lower level AC provides the component functionality, e.g.
to rotate a pneumatic cylinder to the left or right. On a higher level, the AC
provides the functionality of a sub-system, e.g. to moving a part from one con-
veyor belt to a second conveyor belt. Higher level ACs are composed from two
or more of such ACs and aggregate the functionality of their contained ACs.

To utilize the full advantages of this concept three rules have to be consid-
ered, based on [169]:

7.2. Automation Component Model 126

AC

AC

AC

AC

AC AC

AC

AC

Figure 7.1: Hierarchical overview of an industrial automation application by
using defined Automation Components (ACs) based on [169].

Strict hierarchy: An AC does not know who is using its interface and cannot
make assumptions on the provider of an interface it is using. An AC is
aware of the ACs’ interface and the functionality of only one level below.
This is all the information it can use to provide its own functionality. It is
not allowed to use an ACs’ interface that is located in an AC lower than
one level below itself.

Single access point: ACs may interact only by means of the provided inter-
face. This implies that another AC serving the same kind of interface
can replace an AC and the user, i.e. upper level AC, of the AC can be
left untouched. There may be established AC profiles for typical com-
ponents in a similar way to existing device profiles for a field bus [175].
This especially will make a replacement of similar ACs easier.

Decoupling of ACs: ACs located on the same logical level in the plant may
not directly interact and may not interact through their interface. If this
functionality is needed, then it points to a design error because such a
direct interaction is clearly a coordinating function between the two ACs.
As stated in the first point, this is the task of an upper level AC.

7.2 Automation Component Model

An AC is defined as a collection of hardware, software, and properties, de-
scribing the interaction between different parts and specifying different soft-
ware specific aspects for the implementation and execution of these objects.

7.2. Automation Component Model 127

Automation Component

Figure 7.2: Structural overview of an AC component which includes functional
aspects and interaction via defined interfaces within a hierarchical systems
design. Diagnosis (D), Condition Monitoring (CM), Automation (A), Testing
(T) - Sub-Components [169].

7.2.1 Sub-Component Models

A structural overview of the AC including four sub-components is presented
in Figure 7.2. The sub-components are:

• A sub-component for automation aspects, e.g. logic, behavior, and im-
plementation.

• A sub-component that handles test aspects, e.g. unit tests, integration
tests, and factory acceptance tests.

• A sub-component for run-time fault analysis aspects, e.g. diagnosis, and
finally.

• A sub-component for run-time fault prediction aspects, e.g. condition
monitoring and data analysis.

Automation Sub-Component: The automation sub-component contains all
information which is required to realize the desired behavior as specified.
This sub-component must not depend on other sub-components and includes
all requested functionality in itself. An existence or functionality of other
sub-components is not necessary for the automation sub-component to ful-
fill its requirements. But other sub-components may influence the behavior

7.2. Automation Component Model 128

of the automation sub-component. For instance, the diagnosis component
may change the execution flow and internal states in case of errors, or the
test sub-component may change the state and data values due to an exter-
nal demand, e.g. from the Test Management system. The automation sub-
component, based on [169], contains:

• Automation components, e.g. sensors or actuators, to control the proce-
dural units.

• Specification documents, e.g. requirements, design definitions.

• Electrical plan for wiring and interface to the control system.

• Function plan (software) for the implementation of the industrial auto-
mation software, e.g. industrial programming languages as defined in
IEC 61131 or IEC 61499.

• The main (public) signal interface description.

All other sub-components can be removed or deactivated without changing
the functionality of the automation sub-component.

Diagnosis Sub-Component: The diagnosis sub-component of the AC con-
tains functionality which is responsible to check the correctness of the executed
program and validates processed data for damage avoidance. Additional fea-
tures in the diagnosis part handles already occurred errors in such a way, that
no subsequent errors will occur. The diagnosis sub-component supports the
automation sub-component in a way so that the AC is more robust against
hardware faults.

Condition Monitoring Sub-Component: Condition monitoring is a man-
agement technique which uses the regular evaluation of the actual operat-
ing condition of plant equipment, production systems, and plant management
function for optimizing the total plant operation. This technique is used to in-
crease the availability, performance, consequential damage, and machine life
as well as reduces consequential damage, spare parts inventories and break-
down maintenance of the machinery [176]. The information is monitored in
the form of raw data. By using modern signal processing and analysis tech-
niques, faults are detected early. The condition monitoring sub-component is
responsible for monitoring the condition of the industrial control system, i.e.
monitoring the hardware, and for predicting the future condition based on his-
torical data. This sub-component has no influence on the primary functionality
of the AC but it reduces down-times of the system by avoiding unscheduled
maintenance work.

7.2. Automation Component Model 129

Additional software functionality and hardware equipment may be needed
in order to add condition monitoring functionality [169]:

• Specification documents define required analysis methods, for instance
Failure Mode and Effects Analysis (FMEA) or Hazard and Operability
(HAZOP).

• Hardware, e.g. sensors, for measuring the condition of system elements.

• Wiring the new sensors in electrical plans and mapping the inputs to new
signal data.

• Add functionality to software parts for processing, recording, and visu-
alizing by using the new signal data.

Test Sub-Component: The functionality of the test sub-component is to sup-
port the testing process for testing the AC, in order to find systematic errors
during the development process.

The test sub-component, based on [169], contains:

• Code inspections, reviews, automatic code analysis such as LINT22 for
automation, and code verification (against specification).

• Test scripts for automatic execution and operation of tests.

• Additional software and interfaces to communicate with the Test Man-
agement system (test drivers, mock-ups, specification and implementa-
tion of simulation components).

• Requirements concerning the enhancement of functionality of the Test
Management system, e.g. interfaces, commands.

7.2.2 Interfaces

The AC has a three dimensional interface which is able to communicate with
other ACs. The defined interfaces are presented in Figure 7.3:

• Inter-Component Interface

• Intra-Component / Inter-Sub-Component Interface

• Inter-Tool Interface
22LINT is a white-box testing method (see Section 1.3.2) and can be used to check C

code for errors that may cause a compilation failure or unexpected results at run-time.
http://docs.oracle.com/cd/E19957-01/806-3567/lint.html, visited: March 2013

7.2. Automation Component Model 130

Component Interface - top

Automation Component

D
CM

A T

Component Interface - bottom
Component Interface - top

Automation Component

D
CM

A T

Component Interface - bottom

AC 1

AC 2

2

1
3

Figure 7.3: Interface definition in AC networks. (1) Inter-Component Interface,
(2) Intra-Component / Inter-Sub-Component Interface, (3) Inter-Tool Interface.

Inter-Component Interface: This interface is located between ACs for an ag-
gregation of components, see Figure 7.3 (1). The bottom interface of a higher
level AC is connected with the top interface of two or more lower level ACs.
The Inter-Component interface of ACs is defined by the top/bottom interface
of the ACs. The main (must have) interface in the AC is the automation sub-
component. The interfaces from the test sub-component and the diagnosis
sub-component are additionally used to control test functionality and read in-
ternal states via the diagnosis interface. The implementation of the interfaces
may result in hidden interfaces, e.g. direct access from the external Test Man-
agement system into a specific component [169].

Intra-Component / Inter-Sub-Component Interface: The location of this in-
terface is between sub-components of ACs, see Figure 7.3 (2). The interface
defines which sub-component is allowed to read and write (modify) data or
states in other sub-components.

Inter-Tool Interface: An interface between different tools is necessary and
used to describe the different aspects of an AC, see Figure 7.3 (3). This interface
is located orthogonal to the previous two interfaces. Note that this interface
allows only reading data from an AC. Write values from external tools to the
AC will break the overall application design.

7.3. Summary 131

7.3 Summary

In this chapter a new component architecture is specified which supports com-
ponent oriented design, reusability, and encapsulation of functional parts for
developing industrial automation applications. A validation of these design
rules is implemented in a example application presented in [169]. The AC
model and the hierarchical structure is a valuable approach for encapsulated
and reusable components. The encapsulation of the automation, diagnosis,
condition monitoring, and test sub-components allow other components to
monitor the condition of the system. Further, supported test functionality is
available for testing after changes have been made. The ACs interact by ex-
changing data via the defined interfaces. These interfaces allow the commu-
nication to higher-level ACs,to lower-level ACs as well as to external tools.
Because of the defined interfaces the component variants are seamlessly ex-
changeable.

CHAPTER 8

Conclusion and Outlook

8.1 Conclusion

Nowadays, the functional requirements of industrial automation systems in-
crease steadily. Industrial automation software becomes more important in
current and future industrial applications. Such software allows to cope with
the ever increasing complexity of modern applications. The development of
software components for industrial automation systems becomes more time
consuming and deals with adaptations of the industrial control code on short
notice. In order to address these challenges and reduce the development time
and costs for upcoming projects, the engineering efficiency needs to be in-
creased in terms of reusability support of tested and testable software compo-
nents. This thesis aims at the development of a test infrastructure with appro-
priate testing techniques for industrial automation software in order to make
a significant step towards increasing the quality of industrial automation soft-
ware.

In this thesis a new test framework is introduced which is able to support
testing of industrial automation software based on IEC 61131 and IEC 61499.
With the use of the new test framework and the test strategies such as Test-
First Development (TFD), the software quality can be increased to reduce the
faults in the developed software. An identification of three testing levels of
industrial automation systems is presented. Based on a bottom-up design,
one identifies a detailed view on individual components and units on level
one, a more abstract view on the sub-system with focus on the interaction of
components on level two, and the system level as well as business level on
level three.

132

8.1. Conclusion 133

With the knowledge of the identified test levels and by considering the
newly defined criteria, see Section 4.3, a selection of Unified Modeling Lan-
guage (UML) models useable for specifying tests in the industrial automation
domain is proposed. A model-based test specification approach enables flex-
ible changes of requirements. This model-based test specification, especially
the state chart diagram, is used in the test case extraction implementation.
Furthermore, this knowledge is used for the new developed testing technique
definitions.

Research Question 1: Which test method is suitable for the different appli-
cation layers? The classification of the testing technique to their testing levels
is presented in Section 3.2, especially in Figure 3.5. Furthermore, four testing
techniques are presented which are able to test industrial automation software
considering the TFD strategy.

1. First, the manual testing method is presented in which all processes have
to be done manually, i.e test case specification, test case generation, test
case execution, and test result analysis. The manual testing method is
suitable for testing at all testing levels, i.e. unit test level, sub-system test
level, system test level.

2. The second presented testing technique is the Keyword-driven Testing
(KDT) method. New defined keywords are used for the test case specifi-
cation which are automatically executed by the Test Management system
to the System under Test (SuT). This testing method is suitable for testing
at all testing levels. However, the benefits of this testing method are in
library tests and integration testing because of the direct access from the
Test Management system to the Function Block (FB) interfaces.

3. The third presented testing technique is the unit testing method with
service sequence diagrams. Service sequence diagrams, defined in the
IEC 61499 standard, are used for the test specification. A service se-
quence diagram is more restricted than the UML sequence chart dia-
gram. Both diagram types are suitable tools for the test specification of
industrial software components. The test infrastructure is directly in-
cluded in the IEC 61499 development environment 4DIAC-IDE and is
available as an open-source plug-in. This testing method is only suitable
in the unit testing level, i.e. testing of FBs and FB libraries, because of the
restricted Test Management system which allows only a test of one FB
interface.

4. The fourth and last presented testing technique is the Model-based Test-
ing (MBT) method for industrial applications. This presented testing

8.1. Conclusion 134

method is the most flexible technique because of the extended test speci-
fication possibility. Therefore, only selected UML model diagrams based
on the proposed criteria are suitable for the test specification. By using
the Model-to-Model (M2M) transformation, the test information is au-
tomatically extracted from the test specification. Finally, an executable
IEC 61131 or IEC 61499 test application is generated automatically. The
MBT method is suitable for testing at all testing levels. This method has
the most benefits in integration tests, i.e. sub-system test level, and sys-
tem tests, i.e. system test level, because of the dynamic generation of the
test application.

Research Question 2: Is the test-first development approach from the soft-
ware engineering domain a suitable method for developing and testing in-
dustrial automation code? The outcome of the comparison between the pre-
sented testing methods from Chapter 5 shows that all testing techniques are
suitable for the TFD strategies which is evaluated in Section 6.1.

Research Question 3: How should control applications be designed to en-
able the testing of their functionality in an easier way? In current industrial
automation applications, logical software code and testing code are often in-
tertwined in the code which hinders efficient and systematic testing. These re-
quirements need special design rules for the application structure. A new au-
tomation component architecture and a new component called Test-Diagnosis-
Automation (TDA) component for developing industrial automation applica-
tions is presented. The component consists of four internal sub-components,
i.e. automation, diagnosis, condition monitoring, and test sub-component to
monitor the condition of the automation system. The software quality can be
increased based on the component-based structure, the new defined architec-
tural design, and the presented design rules.

Research Question 4: Can testing improve the reusability of control soft-
ware? Reusability of developed software components is an important re-
quirement for efficient software development. Because of the need for high
software quality components that are easy to reuse for other industrial ap-
plications, the components have to be encapsulated and fully tested. These
components need an easy method to be retested after changes. A strict inter-
face description of such components is defined which enables efficient testing.
Also the components can easyly be exchanged in existing control applications.
The combination of the TFD approach and the new development architecture
definition for control applications enables the reusability of control software
components. Therefore tested components, such as the TDA component, im-
prove the reusability of control software.

8.2. Outlook 135

This work is an important step towards improving the software quality
for industrial automation systems. It is a new approach for testing industrial
automation systems on different levels of applications. With this approach,
control engineers are able to specify test cases and execute them during the
development phases. Furthermore, not only control engineers can use this test
framework support, but also test engineers are addressed, who test systems
on higher application levels. This test framework is one possible solution for
requirement changes on short notice in the development phase to keep the
software quality on a high level.

8.2 Outlook

The presented work is a first step towards improving the quality of industrial
automation software modeled in IEC 61131 and IEC 61499. The presented
implementation examples show that the approaches and concepts of this work
are feasible in practice. Nonetheless, some points remain open for discussion
and need a further investigation. In order to bring the here presented testing
techniques into industrial use.

A first step in future research are the presented limitations of the testing
methods which are introduced in Section 6.2. These limitations should be con-
sidered in order to optimize the specification effort by using different UML
diagrams. Furthermore, support testing of timing behavior of the SuT should
be considered.

Further research in the field of other and extended test specification meth-
ods such as the UML Testing Profile [21] should be considered. There is much
potential to simplify the test specification procedure.

The new automation component approach for developing industrial auto-
mation applications in a hierarchical manner is presented to support testability
and reusability of the industrial software components. This TDA component
design should be used in larger and more complex industry applications in
order to investigate the benefits in more detail. Furthermore, a refinement of
the the TDA component approach should be conducted.

This thesis is focused on black-box testing. Future research is needed in
White-box testing and Gray-box testing for the control software testing do-
main. Therefore available testing methods from the software engineering do-
main should be considered to adapt them to the industrial automation domain.

A further challenge is to provide information to support quantitative man-
agerial decision-making during the software life-cycle [177]. Software metrics
can support this challenge. There exist a lot of metrics which concentrate on
the structure of a program or code than on the contents itself [178], i.e. white-
box testing. The size metric is one of the mostly used metrics, i.e. Lines of
Code (LOC). Further metrics are the “Halstead Measure” and the “McCabe’s

8.2. Outlook 136

Cyclomatic Complexity”. The Halstead Complexity Measure focuses on the
software measurement by measure in terms of operators and operands [179].
This measure is computed statically from the code. Another complexity mea-
sure is the Cyclomatic Complexity from Thomas J. McCabe [180, 181] which is
related to the flow graph of a program. This metric was developed to indicate
the testability and understandability of a program. The effort for testing soft-
ware components can be determined by such metric calculations. Future work
should consider such calculation and measurement methods to determine the
quality of software.

Bibliography

[1] H. M. Sneed, Software-Projektkalkulation: Praxiserprobte Methoden der
Aufwandsschätzung für verschiedene Projektarten. Carl Hanser Verlag
GmbH & CO. KG, 2005.

[2] G. Tassey, “The economic impacts of inadequate infrastructure for soft-
ware testing,” National Institute of Standards and Technology, Tech.
Rep., 2002.

[3] B. Favre-Bulle and G. Zeichen, “Die Zukunft der Produktionswis-
senschaft,” 2005, a Study.

[4] T. Cleff, Basiswissen Testen von Software. W3L GmbH, 2010.

[5] B. Kormann, D. Witsch, and B. Vogel-Heuser, “Automatische Testfall-
generierung mittels Model-Checking für Steuerungsprogramme,” in
Tagungsband GMA-Kongress Automation, 2010.

[6] K. Stroggylos and D. Spinellis, “Refactoring–Does It Improve Software
Quality?” in Proceedings of the 5th International Workshop on Software
Quality, ser. WoSQ ’07. Washington, DC, USA: IEEE Computer Society,
2007, pp. 10–. [Online]. Available: http://dx.doi.org/10.1109/WOSQ.
2007.11

[7] V. Vyatkin, “IEC 61499 as Enabler of Distributed and Intelligent Auto-
mation: State-of-the-Art Review,” IEEE Trans. Ind. Informat., vol. 7, no. 4,
pp. 768 –781, Nov. 2011.

[8] I. Hegny, T. Strasser, M. Melik-Merkumians, M. Wenger, and A. Zoitl,
“Towards an Increased Reusability of Distributed Control Applications
Modeled in IEC 61499,” in Proceedings of 2012 IEEE 17th International

137

http://dx.doi.org/10.1109/WOSQ.2007.11
http://dx.doi.org/10.1109/WOSQ.2007.11

Bibliography 138

Conference on Emerging Technologies and Factory Automation (ETFA 2012),
2012, Krakow, Poland; 2012-09-17 – 2012-09-21. [Online]. Available:
http://publik.tuwien.ac.at/files/PubDat_209963.pdf

[9] IEEE Standards Board, “IEEE Standard Glossary of Software Engineer-
ing Terminology,” IEEE Std 610.12-1990, p. 85, Sep. 1990.

[10] H. Buwalda, D. Janssen, and I. Pinkster, Integrated Test Design and Au-
tomation: Using the TestFrame Method. Addison-Wesley, 2002. [Online].
Available: http://books.google.at/books?id=6IVQAAAAMAAJ

[11] S. Bärisch, “Domain-Specific Model-Driven Testing,” Ph.D. dissertation,
University Kiel, 2010.

[12] B. Hailpern and P. Santhanam, “Software Debugging, Testing, and
Verification,” IBM Syst. J., vol. 41, no. 1, pp. 4–12, Jan. 2002. [Online].
Available: http://dx.doi.org/10.1147/sj.411.0004

[13] C. Kaner, J. Bach, and B. Pettichord, Lessons Learned in Software Testing,
1st ed. Wiley Computer Publishing, 2002, iSBN-10: 0471081124, ISBN-
13: 978-0471081128.

[14] E. W. Dijkstra, “The Humble Programmer,” Commun. ACM, vol. 15,
no. 10, pp. 859–866, Oct. 1972. [Online]. Available: http://doi.acm.org/
10.1145/355604.361591

[15] M. Conrad, “Modell-basierter Test eingebetteter Software im Automo-
bil,” Ph.D. dissertation, University of Technology Berlin, 2004.

[16] R. Stetter and M. Erben, “Automatisches Testen bei SPS-
Steuerungssoftware,” atp edition, pp. 31–34, 2008.

[17] British Computer Society Specialist Interest Group in Software
Testing (BCS SIGiST), “Standard for Software Component Testing,”
British Computer Society, Apr. 2001. [Online]. Available: http:
//www.testingstandards.co.uk/

[18] G. E. Mogyorodi, “Requirements-Based Testing - Cause-Effect Graph-
ing,” Software Testing Services, 2005-2010. [Online]. Available:
http://softestserv.ca/RBT_Cause-Effect_Graphing2.pdf

[19] G. J. Myers, Methodisches Testen von Programmen. Oldenbourg Verlag,
1991.

[20] B. Beizer, Software Testing Techniques, 2nd ed. New York, NY, USA: Van
Nostrand Reinhold Co., 1990.

http://publik.tuwien.ac.at/files/PubDat_209963.pdf
http://books.google.at/books?id=6IVQAAAAMAAJ
http://dx.doi.org/10.1147/sj.411.0004
http://doi.acm.org/10.1145/355604.361591
http://doi.acm.org/10.1145/355604.361591
http://www.testingstandards.co.uk/
http://www.testingstandards.co.uk/
http://softestserv.ca/RBT_Cause-Effect_Graphing2.pdf

Bibliography 139

[21] P. Baker, Z. R. Dai, J. Grabowski, O. Haugen, I. Schieferdecker, and
C. Williams, Model-Driven Testing: Using the UML Testing Profile. Berlin,
Heidelberg: Springer-Verlag, 2007.

[22] J. Bach and P. J. Schroeder, “Pairwise testing: A best practice that isn’t,”
in 22nd Annual Pacific Northwest Software Quality Conference, 2004, pp.
180–196.

[23] M. Grochtmann and K. Grimm, “Classification Trees for Partition
Testing,” Software Testing, Verification and Reliability, vol. 3, no. 2,
pp. 63–82, 1993. [Online]. Available: http://dx.doi.org/10.1002/stvr.
4370030203

[24] M. Grochtmann, “Test Case Design Using Classification Trees,” in
STAR’94, 1994, 8 - 12 May 1994, Washington, D.C.

[25] A. Petrenko and N. Yevtushenko, “Testing from Partial Deterministic
FSM Specifications,” IEEE Trans. Comput., vol. 54, no. 9, pp. 1154–1165,
Sep. 2005. [Online]. Available: http://dx.doi.org/10.1109/TC.2005.152

[26] R. Hametner, B. Kormann, B. Vogel-Heuser, D. Winkler, and A. Zoitl,
“Automated Test Case Generation for Industrial Control Applications,”
in Recent Advances in Robotics and Automation, ser. Studies in
Computational Intelligence, G. Sen Gupta, D. Bailey, S. Demidenko, and
D. Carnegie, Eds. Springer Berlin Heidelberg, 2013, vol. 480, pp. 263–
273. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-37387-9_
20

[27] C. Meinel and C. Stangier, “Modular Partitioning and Dynamic Conjunc-
tion Scheduling in Image Computation,” in Proc. of the 2002 IEEE/ACM
Int. Workshop on Logic and Synthesis (IWLS02), 2002, pp. 391–396.

[28] Federal Aviation Administration (FAA), “Software Verification Tools
Assessment Study,” Air Traffic Organization Operations Planning Office
of Aviation Research and Development, Tech. Rep. DOT/FAA/AR-
06/54, 2007. [Online]. Available: actlibrary.tc.faa.gov

[29] R. Binder, Testing Object-Oriented Systems: Models, Patterns, and
Tools, ser. The Addison-Wesley Object Technology Series. Addison-
Wesley, 2000. [Online]. Available: http://books.google.at/books?id=
P3UkDhLHP4YC

[30] T. Chow, “Testing Software Design Modeled by Finite-State Machines,”
Transactions on Software Engineering, vol. SE-4, no. 3, pp. 178–187, 1978.

http://dx.doi.org/10.1002/stvr.4370030203
http://dx.doi.org/10.1002/stvr.4370030203
http://dx.doi.org/10.1109/TC.2005.152
http://dx.doi.org/10.1007/978-3-642-37387-9_20
http://dx.doi.org/10.1007/978-3-642-37387-9_20
actlibrary.tc.faa.gov
http://books.google.at/books?id=P3UkDhLHP4YC
http://books.google.at/books?id=P3UkDhLHP4YC

Bibliography 140

[31] U. Vigenschow, Testen von Software und Embedded Systems - Professionelles
Vorgehen mit modellbasierten und objektorientierten Ansätzen, 2nd ed.
dpunkt.verlag, Heidelberg, 2010.

[32] H. M. Hanisch, A. Lobov, J. L. Martinez Lastra, R. Tuokko, and V. Vy-
atkin, “Formal Validation of Intelligent Automated Production Systems
towards Industrial Applications,” Intl. J. of Manufacturing Technology and
Management, vol. 8, no. 1, pp. 75 – 106, 2006.

[33] E. M. Clarke, E. M. J. Clarke, and O. Grumberg, Model Checking. MIT
Press, 2000.

[34] V. Vyatkin and G. Bouzon, “Using Visual Specifications in Verification
of Industrial Automation Controllers,” EURASIP J. Embedded Syst., vol.
2008, pp. 5:1–5:9, Apr. 2008. [Online]. Available: http://dx.doi.org/10.
1155/2008/251957

[35] T. Hussain and R. Eschbach, “Statistical Testing of IEC 61499 Compli-
ant Software Components,” in Preprints of the 13th IFAC Symposium on
Information Control Problems in Manufacturing, Moscow, Russia, 2009.

[36] R. Pelánek, “Fighting State Space Explosion: Review and Evaluation,”
in Formal Methods for Industrial Critical Systems, ser. Lecture Notes
in Computer Science, D. Cofer and A. Fantechi, Eds. Springer
Berlin Heidelberg, 2009, vol. 5596, pp. 37–52. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-03240-0_7

[37] K. Loeis, M. Younis, and G. Frey, “Application of Symbolic and Bounded
Model Checking to the Verification of Logic Control Systems,” in Emerg-
ing Technologies and Factory Automation (ETFA 2005), 10th IEEE Conference
on, vol. 1, Sep. 2005, pp. 4 pp.–250.

[38] D. Pollmächer, W. Zimmermann, and H.-M. Hanisch, “Translation Val-
idation for Model-based Code-generators for PLCs,” in Emerging Tech-
nologies and Factory Automation (ETFA 2005), 10th IEEE Conference on,
vol. 1, Sep. 2005, pp. 113 –120.

[39] D. Hurnaus and H. Prähofer, “Programming Assistance Based on Con-
tracts and Modular Verification in the Automation Domain,” in Sympo-
sium On Applied Computing - SAC. ACM, 2010, pp. 2544–2551.

[40] S. Preusse and H.-M. Hanisch, “Verifying Functional and Non-
functional Properties of Manufacturing Control Systems,” in 3rd Intl.
Workshop on Dependable Control of Discrete Systems, Jun. 2011, pp. 41 –46.

http://dx.doi.org/10.1155/2008/251957
http://dx.doi.org/10.1155/2008/251957
http://dx.doi.org/10.1007/978-3-642-03240-0_7

Bibliography 141

[41] V. Dubinin, V. Vyatkin, and H.-M. Hanisch, “Modelling and Verification
of IEC 61499 Applications using Prolog,” in IEEE Conf. on Emerging Tech-
nologies and Factory Automation, Sep. 2006, pp. 774 –781.

[42] G. Čengić and K. Åkesson, “On Formal Analysis of IEC 61499 Applica-
tions, Part A: Modeling,” IEEE Trans. Ind. Informat., vol. 6, no. 2, pp. 136
–144, May 2010.

[43] C. Gerber and H.-M. Hanisch, “Does portability of IEC 61499 mean that
once programmed control software runs everywhere?” in 10th IFAC
Workshop on Intelligent Manufacturing Systems, 2010, pp. 29 – 34.

[44] C. Sünder and V. Vyatkin, “Functional and Temporal Formal Modelling
of Embedded Controllers for Intelligent Mechatronic Systems,” Intl. J. of
Mechatronics and Manufacturing Systems, vol. 2, no. 1/2, pp. 215 – 235,
2009.

[45] S. Preusse and H.-M. Hanisch, “Specification and Verification of Techni-
cal Plant Behavior With Symbolic Timing Diagrams,” in 3rd Intl. Design
and Test Workshop, Dec. 2008, pp. 313 –318.

[46] T. Hussain and G. Frey, “UML-based Development Process for IEC 61499
with Automatic Test-case Generation,” in Emerging Technologies and Fac-
tory Automation, 2006. ETFA ’06. IEEE Conference on, Sep. 2006, pp. 1277
–1284.

[47] B. Bouyssounouse and J. Sifakis, Eds., Embedded Systems Design-The
ARTIST Roadmap for Research and Development, ser. Lecture Notes in
Computer Science. Springer Verlag Berlin Heidelberg, Feb. 2005, vol.
3436/2005.

[48] R. Hametner, D. Winkler, and A. Zoitl, “Agile Testing Concepts Based
on Keyword-driven Testing for Industrial Automation Systems,” in 38th
Conference of the IEEE Industrial Electronics Society (IECON), Montreal,
Canada, 2012.

[49] B. Kitchenham and S. Pfleeger, “Software Quality: The Elusive Target
[special issues section],” Software, IEEE, vol. 13, no. 1, pp. 12–21, jan 1996.

[50] ISO/IEC 9126, Software engineering - Product quality. International Elec-
trotechnical Commission (IEC), 2001.

[51] B. W. Böhm, J. R. Brown, and M. Lipow, “Quantitative Evaluation
of Software Quality,” in Proceedings of the 2nd international conference
on Software engineering, ser. ICSE ’76. Los Alamitos, CA, USA:
IEEE Computer Society Press, 1976, pp. 592–605. [Online]. Available:
http://dl.acm.org/citation.cfm?id=800253.807736

http://dl.acm.org/citation.cfm?id=800253.807736

Bibliography 142

[52] IEC 61131-3, IEC 61131-3 Standard - Programmable controllers - Part 3: Pro-
gramming languages. International Electrical Commission, 2003.

[53] R. W. Lewis, Programming Industrial Control Systems Using IEC 1131-3 (I E
E Control Engineering Series). Stevenage, UK: Institution of Engineering
and Technology, 1998.

[54] C. Sünder, M. Wenger, C. Hanni, I. Gosetti, H. Steininger, and J. Fritsche,
“Transformation of Existing IEC 61131-3 Automation Projects Into Con-
trol Logic According to IEC 61499,” in Emerging Technologies and Factory
Automation (ETFA 2008), IEEE International Conference on, Sep. 2008, pp.
369 –376.

[55] IEC 61499-1, Function blocks – Part 1: Architecture. Geneva: International
Electrical Commission, 2005.

[56] R. Lewis, Modeling Control Systems Using IEC 61499 - Applying Function
Blocks to Distributed Systems. London: Institution of Engineering and
Technology, 2001.

[57] F. Xia, Z. Wang, and Y. Sun, “Towards Component-based Control System
Engineering With IEC 61499,” in Intelligent Control and Automation, 2004.
WCICA 2004. Fifth World Congress on, vol. 3, Jun. 2004, pp. 2711 – 2715
Vol.3.

[58] A. Zoitl, “Basic Real-Time Reconfiguration Services for Zero Down-Time
Automation Systems,” Ph.D. dissertation, Vienna University of Technol-
ogy, Automation and Control Institute, Vienna, Nov. 2007.

[59] M. Seitz, V. Ehret, M. Kiefer, A. Ziegler, E. Kruschitz, and E. Usselmann,
“Automatisches Testen von Automatisierungssystemen,” 2009. [Online].
Available: http://www.automatisierungs-region.de

[60] IEC 61508, Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-related Systems. International Electrical Commission, 2005.

[61] IEC 61511, Functional Safety - Safety Instrumented Systems for the Process
Industry Sector. International Electrical Commission, 2004.

[62] F. Auinger, M. Vorderwinkler, and G. Buchtela, “Interface Driven
Domain-independent Modeling Architecture for "soft-commissioning"
and "reality in the loop",” in Proceedings of the 31st conference on Winter
simulation: Simulation—a bridge to the future - Volume 1, ser. WSC ’99.
New York, NY, USA: ACM, 1999, pp. 798–805. [Online]. Available:
http://doi.acm.org/10.1145/324138.324504

http://www.automatisierungs-region.de
http://doi.acm.org/10.1145/324138.324504

Bibliography 143

[63] H. Schludermann, T. Kirchmair, and M. Vorderwinkler, “Soft-
commissioning: Hardware-in-the-loop-based Verification of Controller
Software,” in WSC ’00: Proceedings of the 32nd conference on Winter simu-
lation. San Diego, CA, USA: Society for Computer Simulation Interna-
tional, 2000, pp. 893–899.

[64] K. Kabitzsch, A. Gellrich, and J. Naake, “Automatisierte Steuerungstests
vereinfachen die virtuelle Inbetriebnahme in der Fabrikautomation,” atp
edition, vol. 4, pp. 14–16, Apr. 2012.

[65] D. Korotkiy and K. Bender, “Universelle Architektur zur Testautoma-
tisierung,” atp edition, vol. 5, pp. 26–31, May 2010.

[66] T. Hussain and R. Eschbach, “Automated Fault Tree Generation and
Risk-based Testing of Networked Automation Systems,” in Emerging
Technologies and Factory Automation (ETFA), 2010 IEEE Conference on, Sep.
2010, pp. 1 –8.

[67] M. J. Rutherford, A. Carzaniga, and A. L. Wolf, “Simulation-based Test-
ing of Distributed Systems,” University of Colorado, Department of
Computer Science, Tech. Rep., 2006.

[68] J. Greifeneder, P. Weber, M. Barth, and A. Fay, “Simulationsbasierte
Steuerfunktionstests,” atp edition, vol. 4, pp. 34–41, Apr. 2012.

[69] H. Prähofer, R. Schatz, C. Wirth, and H. Mossenbock, “A Comprehensive
Solution for Deterministic Replay Debugging of SoftPLC Applications,”
Industrial Informatics, IEEE Transactions on, vol. 7, no. 4, pp. 641–651, Nov.
2011.

[70] ——, “Deterministic Replay Debugging of IEC 61131-3 SoftPLC pro-
grams,” in Industrial Informatics (INDIN), 2010 8th IEEE International Con-
ference on, July 2010, pp. 1110–1117.

[71] C. Wirth, H. Prähofer, and R. Schatz, “A Multi-level Approach for Visu-
alization and Exploration of Reactive Program Behavior,” in Visualizing
Software for Understanding and Analysis (VISSOFT), 2011 6th IEEE Inter-
national Workshop on, Sep. 2011, pp. 1–4.

[72] G. Pietrek and J. Trompeter, Modellgetriebene Softwareentwicklung - MDA
und MDSD in der Praxis. ebtwickler.press, 2007.

[73] S. D. Panjaitan and G. Frey, “Development Process for Distributed
Automation Systems Combining UML and IEC 61499,” Int. J.
Manufacturing Research, vol. 2, no. 1, pp. 1–20, 2007. [Online]. Available:
http://dblp.uni-trier.de/db/journals/ijmr/ijmr2.html#PanjaitanF07

http://dblp.uni-trier.de/db/journals/ijmr/ijmr2.html#PanjaitanF07

Bibliography 144

[74] T. Kühne, “What is a model?” in Language Engineering for Model-Driven
Software Development, Number 04101 in Dagstuhl Seminar Proceedings,
Schloss Dagstuhl, 2005.

[75] T. Stahl, M. Völtner, S. Efftinge, and A. Haase, Modellgetriebene Softwa-
reentwicklung, 2nd ed. dpunkt.verlag, 2007.

[76] H. Stachowiak, Allgemeine Modelltheorie. Springer-Verlag, 1973. [On-
line]. Available: http://books.google.at/books?id=DK-EAAAAIAAJ

[77] M. Utting and B. Legeard, Practical Model-based Testing. Morgan Kauf-
mann, 2007.

[78] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C.
Patton, and B. M. Horowitz, “Model-based Testing in Practice,” in
Proceedings of the 21st international conference on Software engineering, ser.
ICSE ’99. New York, NY, USA: ACM, 1999, pp. 285–294. [Online].
Available: http://doi.acm.org/10.1145/302405.302640

[79] A. Korff, Modellierung von eingebetteten Systemen mit UML und SysML.
Springer, 2008, iSBN 978-3-8274-1690-2.

[80] T. Weilkiens, Systems Engineering mit SysML/UML - Modellierung, Anal-
yse, Design. dpunkt.verlag, Heidelberg, 2008, iSBN 978-3-89864-577-5.

[81] C. Pang and V. Vyatkin, “Automatic Model Generation of IEC 61499
Function Block Using Net Condition/Event Systems,” in 6th IEEE Inter-
national Conference on Industrial Informatics (INDIN), 2008, pp. 1133–1138.

[82] M. Wenger, A. Zoitl, C. Sünder, and H. Steininger, “Semantic Correct
Transformation of IEC 61131-3 Models Into the IEC 61499 Standard,” in
IEEE Conference on Emerging Technologies Factory Automation (ETFA), Sep.
2009, pp. 1 –7.

[83] ——, “Transformation of IEC 61131-3 to IEC 61499 Based on a Model
Driven Development Approach,” in 7th IEEE International Conference on
Industrial Informatics (INDIN), Jun. 2009, pp. 715 –720.

[84] M. Wenger, R. Hametner, and A. Zoitl, “IEC 61131-3 Control Applica-
tions vs. Control Applications Transformed in IEC 61499,” in IFAC Work-
shop on Intelligent Manufacturing Systems (IMS 10), vol. 10, 2010, pp. 30–
35.

[85] G. Frey and K. Thramboulidis, “Einbindung der IEC 61131 in modell-
getriebene Entwicklungsprozesse,” in Kongress Automation, Baden-Baden,
Germany. VDI-Berichte 2143, 2011, pp. 21–24.

http://books.google.at/books?id=DK-EAAAAIAAJ
http://doi.acm.org/10.1145/302405.302640

Bibliography 145

[86] K. Thramboulidis and G. Frey, “An MDD Process for IEC 61131-based
Industrial Automation Systems,” in Emerging Technologies Factory Auto-
mation (ETFA), 2011 IEEE 16th Conference on, Sep. 2011, pp. 1 –8.

[87] S. Panjaitan and G. Frey, “Combination of UML Modeling and the IEC
61499 Function Block Concept for the Development of Distributed Auto-
mation Systems,” in Emerging Technologies and Factory Automation, 2006.
ETFA ’06. IEEE Conference on, Sep. 2006, pp. 766 –773.

[88] V. Dubinin, V. Vyatkin, and T. Pfeiffer, “Engineering of Validatable Au-
tomation Systems Based on an Extension of UML Combined With Func-
tion Blocks of IEC 61499,” in Robotics and Automation, 2005. ICRA 2005.
Proceedings of the 2005 IEEE International Conference on, April 2005, pp.
3996 –4001.

[89] T. Hussain and G. Frey, “Defining IEC 61499 Compliance Profiles using
UML and OCL,” in Industrial Informatics, 2007 5th IEEE International Con-
ference on, vol. 2, Jun. 2007, pp. 1157 –1162.

[90] B. Vogel-Heuser, S. Braun, B. Kormann, and D. Friedrich, “Implementa-
tion and Evaluation of UML as Modeling Notation in Object Oriented
Software Engineering for Machine and Plant Automation,” in 18th IFAC
World Congress, 2011, pp. 9151–9157, Aug. 28 - Sep. 2, 2011.

[91] K. Thramboulidis, “Model-integrated Mechatronics - Toward a new
Paradigm in the Development of Manufacturing Systems,” Industrial In-
formatics, IEEE Transactions on, vol. 1, no. 1, pp. 54 –61, Feb. 2005.

[92] G. J. Myers, The Art of Software Testing, 2nd ed. Wiley, Jun. 2004.

[93] L. Crispin and J. Gregory, Agile Testing: A Practical Guide for Testers
and Agile Teams, 1st ed. Addison-Wesley Professional, 2009, iSBN-10:
0321534468, ISBN-13: 978-0321534460.

[94] H. M. Sneed, M. Baumgartner, and R. Seidl, Der Systemtest: Von den An-
forderungen zum Qualitätsnachweis, 2nd ed. München: Hanser, 2009.

[95] M. Gogolla and M. Richters, “On Combining Semi-formal and
Formal Object Specification Techniques,” in Recent Trends in Algebraic
Development Techniques, ser. Lecture Notes in Computer Science,
F. Presicce, Ed. Springer Berlin Heidelberg, 1998, vol. 1376, pp. 238–
252. [Online]. Available: http://dx.doi.org/10.1007/3-540-64299-4_37

[96] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language
Reference Manual. Addison-Wesley, 1999.

http://dx.doi.org/10.1007/3-540-64299-4_37

Bibliography 146

[97] S. Mouchawrab, L. Briand, Y. Labiche, and M. Di Penta, “Assessing,
Comparing, and Combining State Machine-Based Testing and Structural
Testing: A Series of Experiments,” IEEE Transactions on Software Engineer-
ing, vol. 37, no. 2, pp. 161–187, Mar. 2011.

[98] S. K. Swain, D. P. Mohapatra, and R. Mall, “Test Case Generation
Based on State and Activity Models,” Journal of Object Technology,
vol. 9, no. 5, pp. 1–27, Sep. 2010. [Online]. Available: http:
//www.jot.fm/contents/issue_2010_09/article1.html

[99] E. Essler, “Testfälle erfolgreich modellieren,” ObjectSpectrum, vol. Test-
ing, p. 4, 2008.

[100] D. Winkler, S. Biffl, and T. Östreicher, “Test-Driven Automation: Adopt-
ing Test-First Development to Improve Automation Systems Engineer-
ing Processes,” in European System and Software Process Improvement and
Innovation, 2009.

[101] A. Spillner, “The W-MODEL - Strengthening the Bond Between Devel-
opment and Test,” University of Applied Sciences Bremen, Tech. Rep.,
2002.

[102] ISO/IEC 29119, Software Testing. International Electrotechnical Com-
mission (IEC), May 2007.

[103] W. Droeschel and M. Wiemers, Das V-Modell 97: Der Standard für die En-
twicklung von IT-Systemen mit Anleitung für den Praxiseinsatz. Olden-
bourg Wissenschaftsverlag, 1999, iSBN-10: 3486250868, ISBN-13: 978-
3486250862.

[104] A. Spillner, T. Linz, and H. Schaefer, Software Testing Foundations. Hei-
delberg: dpunkt., 2005.

[105] Software and Systems Engineering Standards Committee, “IEEE Stan-
dard for Software and System Test Documentation,” IEEE Std 829-2008,
pp. 1 –118, 2008.

[106] F. Shull, G. Melnik, B. Turhan, L. Layman, M. Diep, and H. Erdogmus,
“What Do We Know About Test-Driven Development?” Software, IEEE,
vol. 27, no. 6, pp. 16 –19, Nov. 2010.

[107] L.-O. Damm and L. Lundberg, “Results From Introducing Component-
level Test Automation and Test-Driven Development,” J. Syst. Softw.,
vol. 79, pp. 1001–1014, Jul. 2006. [Online]. Available: http://dl.acm.
org/citation.cfm?id=1159517.1159528

http://www.jot.fm/contents/issue_2010_09/article1.html
http://www.jot.fm/contents/issue_2010_09/article1.html
http://dl.acm.org/citation.cfm?id=1159517.1159528
http://dl.acm.org/citation.cfm?id=1159517.1159528

Bibliography 147

[108] L. Madeyski, Test-Driven Development: An Empirical Evaluation of Agile
Practice. Springer, 2010.

[109] K. Beck, Test Driven Development by Example. Addison-Wesley, 2002.

[110] M. Duvall, S. Matyas, and A. Glover, Continuous Integration: Improving
Software Quality and Reducing Risk. Addison-Wesley, 2007.

[111] D. Winkler, R. Hametner, and S. Biffl, “Automation Component Aspects
of Efficient Unit Testing,” in IEEE International Conference on Emerging
Technologies and Factory Automation, Palma de Mallorca, Spain, Sep. 2009.

[112] M. Karlesky and G. Willams, “Mocking the Embedded World: Test-
Driven Development, Continuous Integration, and Design Patterns,” in
Proceeding of the Embedded Systems Conference, 2007.

[113] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner, Model-
Based Testing of Reactive Systems. Springer Berlin Heidelberg NewYork,
2005, iSBN-10 3-540-26278-4.

[114] A. Mattsson, B. Lundell, B. Lings, and B. Fitzgerald, “Linking Model-
Driven Development and Software Architecture: A Case Study,” IEEE
Transactions on Software Engineering, vol. 35, no. 1, pp. 83–93, Jan. 2009.

[115] M. Mlynarski, B. Güldali, M. Späth, and G. Engels, “From Design
Models to Test Models by Means of Test Ideas,” in Proceedings of the
6th International Workshop on Model-Driven Engineering, Verification and
Validation, ser. MoDeVVa ’09. New York, NY, USA: ACM, 2009, pp. 7:1–
7:10. [Online]. Available: http://doi.acm.org/10.1145/1656485.1656492

[116] P. Chevalley and P. Thevenod-Fosse, “Automated Generation of Statis-
tical Test Cases From UML State Diagrams,” in Computer Software and
Applications Conference, 2001. COMPSAC 2001. 25th Annual International,
2001, pp. 205 –214.

[117] C. Seidner and O. Roux, “Formal Methods for Systems Engineering Be-
havior Models,” Industrial Informatics, IEEE Transactions on, vol. 4, no. 4,
pp. 280 –291, Nov. 2008.

[118] F. A. M. do Nascimento, M. F. da S. Oliveira, M. A. Wehrmeister,
C. E. Pereira, and F. R. Wagner, “MDA-based Approach for Embedded
Software Generation From a UML/MOF Repository,” in Proceedings of
the 19th annual symposium on Integrated circuits and systems design, ser.
SBCCI ’06. New York, NY, USA: ACM, 2006, pp. 143–148. [Online].
Available: http://doi.acm.org/10.1145/1150343.1150383

http://doi.acm.org/10.1145/1656485.1656492
http://doi.acm.org/10.1145/1150343.1150383

Bibliography 148

[119] R. Hametner, D. Winkler, T. Östreicher, S. Biffl, and A. Zoitl, “The Adap-
tation of Test-Driven Software Processes to Industrial Automation En-
gineering,” in 8th IEEE International Conference on Industrial Informatics,
Osaka, Japan, 2010.

[120] K.-Y. Cai, “Optimal Software Testing and Adaptive Software Testing
in the Context of Software Cybernetics,” Information and Software
Technology, vol. 44, no. 14, pp. 841 –855, 2002. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0950584902001088

[121] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos,
“A Survey on Model-based Testing Approaches: A Systematic
Review,” in Proceedings of the 1st ACM international workshop on
Empirical assessment of software engineering languages and technologies:
held in conjunction with the 22nd IEEE/ACM International Conference
on Automated Software Engineering (ASE) 2007, ser. WEASELTech ’07.
New York, NY, USA: ACM, 2007, pp. 31–36. [Online]. Available:
http://doi.acm.org/10.1145/1353673.1353681

[122] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M. Baumgartner,
B. Sostawa, R. Zölch, and T. Stauner, “One Evaluation of Model-
based Testing and its Automation,” in Proceedings of the 27th
international conference on Software engineering, ser. ICSE ’05. New
York, NY, USA: ACM, 2005, pp. 392–401. [Online]. Available:
http://doi.acm.org/10.1145/1062455.1062529

[123] P. Fröhlich and J. Link, “Automated Test Case Generation from Dynamic
Models,” in Object-Oriented Programming 2000 - ECOOP, E. Bertino, Ed.
Springer Berlin Heidelberg, 2000.

[124] Y. Kim, H. Hong, D.-H. Bae, and S. Cha, “Test Cases Generation from
UML State Diagrams,” Software, IEE Proceedings -, vol. 146, no. 4, pp.
187–192, Aug. 1999.

[125] P. Marwedel, Embedded System Design: Embedded Systems Foundations
of Cyber-Physical Systems, ser. Embedded Systems. Springer, 2010.
[Online]. Available: http://books.google.at/books?id=EXboa4sXlRsC

[126] D. Simon, An Embedded Software Primer, ser. An Embedded Software
Primer. Addison Wesley, 1999, no. Bd. 1. [Online]. Available:
http://books.google.at/books?id=xG2ZD55_BJAC

[127] H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded
Applications. Boston: Kluwer Academic Publisher, 1997.

http://www.sciencedirect.com/science/article/pii/S0950584902001088
http://www.sciencedirect.com/science/article/pii/S0950584902001088
http://doi.acm.org/10.1145/1353673.1353681
http://doi.acm.org/10.1145/1062455.1062529
http://books.google.at/books?id=EXboa4sXlRsC
http://books.google.at/books?id=xG2ZD55_BJAC

Bibliography 149

[128] A. Zoitl, Real-Time Execution for IEC 61499. Durham, North Carolina,
USA: International Society of Automation (ISA), 2009.

[129] B. P. Douglass, Doing Hard Time: Devloping Real-Time Systems with UML,
Objects, Frameworks, and Patterns. Boston: Addison-Wesley, 1999.

[130] J.-M. Berge, O. Levia, and J. Rouillard, Eds., High-Level System Model-
ing: Specification and Design Methodologies. Norwell, MA, USA: Kluwer
Academic Publishers, 1997.

[131] T. Yu, “Testing Embedded Systems Applications,” Master’s thesis, The
Graduate College at the University of Nebraska, 2010.

[132] E. Bringmann and A. Krämer, “Model-Based Testing of Automotive Sys-
tems,” in Software Testing, Verification, and Validation, 2008 1st International
Conference on, Apr. 2008, pp. 485 –493.

[133] E. Lehmann, “Time Partition Testing - Systematischer Test des kon-
tinuierlichen Verhaltens von eingebetteten Systemen,” Ph.D. disserta-
tion, University of Technology Berlin, Nov. 2003.

[134] J. Bieman and J. Schultz, “Estimating the Number of Test Cases
Required to Satisfy the all-du-paths Testing Criterion,” SIGSOFT Softw.
Eng. Notes, vol. 14, no. 8, pp. 179–186, Nov. 1989. [Online]. Available:
http://doi.acm.org/10.1145/75309.75329

[135] K. Sayre and J. Poore, “Stopping Criteria for Statistical Testing,”
Information and Software Technology, vol. 42, no. 12, pp. 851 – 857, 2000.
[Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0950584900001105

[136] B. Böhm, “Software Engineering Economics,” Software Engineering, IEEE
Transactions on, vol. SE-10, no. 1, pp. 4–21, Jan. 1984.

[137] D. Hoffman, “Cost Benefits Analysis of Test Automation,” in STAR West
1999, 1999.

[138] S. A. Slaughter, D. E. Harter, and M. S. Krishnan, “Evaluating the Cost
of Software Quality,” Commun. ACM, vol. 41, no. 8, pp. 67–73, Aug.
1998. [Online]. Available: http://doi.acm.org/10.1145/280324.280335

[139] M. Voak, “Entwurf und Entwicklung einer parametrisierbaren
Steuerung eines Testfall-Generierungs-Tools auf Basis von datenorien-
tierten Testverfahren,” Master’s thesis, Vienna University of Technology,
Institut für Rechnergestützte Automation, Sep. 2007.

http://doi.acm.org/10.1145/75309.75329
http://www.sciencedirect.com/science/article/pii/S0950584900001105
http://www.sciencedirect.com/science/article/pii/S0950584900001105
http://doi.acm.org/10.1145/280324.280335

Bibliography 150

[140] S. Fraser, D. Astels, K. Beck, B. Böhm, J. McGregor, J. Newkirk, and
C. Poole, “Discipline and Practices of TDD: (Test Driven Development),”
in Companion of the 18th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, ser. OOPSLA
’03. New York, NY, USA: ACM, 2003, pp. 268–270. [Online]. Available:
http://doi.acm.org/10.1145/949344.949407

[141] M. Blackburn, R. Busser, and A. Nauman, “Interface-Driven Model-
Based Test Automation,” in International Conference On Software Testing
Analysis and Review, 2004.

[142] R. Hametner, B. Kormann, B. Vogel-Heuser, D. Winkler, and A. Zoitl,
“Test Case Generation Approach for Industrial Automation Systems,”
in The 5th International Conference on Automation, Robots and Automation,
Auckland, New Zealand, 2011.

[143] D. Winkler, R. Hametner, T. Östreicher, and S. Biffl, “A Framework for
Automated Testing of Automation Systems,” in IEEE International Con-
ference on Emerging Technologies and Factory Automation, Bilbao, Spain,
Sep. 2010.

[144] E. Komova, “Automated Software Testing in Machine Automation,”
Master’s thesis, Lappeenranta University of Technology, Faculty of En-
ergy Technology, 2011.

[145] S. Vegas, N. Juristo, and V. Basili, “Maturing Software Engineering
Knowledge through Classifications: A Case Study on Unit Testing Tech-
niques,” Software Engineering, IEEE Transactions on, vol. 35, no. 4, pp. 551
–565, Jul. 2009.

[146] C. Szyperski, Component Software: Beyond Object-Oriented Programming,
2nd ed. New York: ACM Press, 2002.

[147] C. Sünder, A. Zoitl, J. Christensen, H. Steininger, and J. Fritsche, “Con-
sidering IEC 61131-3 and IEC 61499 in the Context of Component Frame-
works,” in Industrial Informatics, 2008. INDIN 2008. 6th IEEE International
Conference on, Jul. 2008, pp. 277 –282.

[148] M. Wenger, M. Melik-Merkumians, I. Hegny, R. Hametner, and A. Zoitl,
“Utilizing IEC 61499 in an MDA Control Application Development Ap-
proach,” in IEEE Conf. on Automation Science and Engineering, Aug. 2011,
pp. 495 –500.

[149] H. Unbehauen, Regelungstechnik II - Zustandsregelungen, digitale und
nichtlineare Regelsysteme. Braunschweig/Wiesbaden: Vieweg Verlag,
2000, iSBN 3-528-73348-9.

http://doi.acm.org/10.1145/949344.949407

Bibliography 151

[150] G. Melnik, G. Meszaros, and J. Bach, Acceptance Test Engineering Guide,
Thinking about Acceptance. Microsoft, 2009, vol. 1.

[151] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel, “An
Empirical Study of Regression Test Selection Techniques,” ACM Trans.
Softw. Eng. Methodol., vol. 10, no. 2, pp. 184–208, Apr. 2001. [Online].
Available: http://doi.acm.org/10.1145/367008.367020

[152] S. Ambler, Elements of UML 2.0 Style. Cambridge University Press, 2005.

[153] S. Friedenthal, R. Steiner, and A. Moore, Practical Guide to SysML: The
Systems Modeling Language. Elsevier, 2008.

[154] R. Hametner, D. Winkler, T. Östreicher, N. Surnic, and S. Biffl, “Selecting
UML Models for Test-Driven Development Along the Automation Sys-
tems Engineering Process,” in IEEE International Conference on Emerging
Technologies and Factory Automation, Bilbao, Spain, 2010.

[155] A. Lüder, L. Hundt, and S. Biffl, “On the Suitability of Modeling Ap-
proaches for Engineering Distributed Control Systems,” in Industrial In-
formatics, 2009. INDIN 2009. 7th IEEE International Conference on, Jun.
2009, pp. 440 –445.

[156] G. Frey, R. Drath, B. Schlich, and R. Eschbach, “Entwicklung sicherer
Steuerungsapplikationen mit Safety-Automaten,” in Kongress Automa-
tion, Baden-Baden, Germany, 2012, pp. 47–50.

[157] PLCopen TC5: Safety Software Technical Specification, Part 1: Concepts
and Function Blocks, Online Available; http://www.plcopen.org, Feb.
2006. [Online]. Available: http://www.plcopen.org/

[158] A. Zylberman and A. Shotten, “Test Language - Introduction to
Keyword-Driven Testing,” Quality Assurance and Software Testing, pp. 1–
9, 2010.

[159] Rashmi and N. Bajpai, “A Keyword Driven Framework for Testing Web
Applications,” International Journal of Advanced Computer Science and Ap-
plications (IJACSA), vol. 3, no. 3, pp. 8–14, 2012.

[160] M. Fewster and D. Graham, Software Test Automation. Addison-Wesley
Professional, 1999.

[161] V. Vyatkin and V. Dubinin, “Refactoring of Execution Control Charts in
Basic Function Blocks of the IEC 61499 Standard,” IEEE Transactions on
Industrial Informatics, vol. 6, pp. 155–165, 2010.

http://doi.acm.org/10.1145/367008.367020
http://www.plcopen.org/

Bibliography 152

[162] A. Zoitl, T. Strasser, and A. Valentini, “Open Source Initiatives as Ba-
sis for the Establishment of new Technologies in Industrial Automation:
4DIAC a Case Study,” in IEEE International Symposium on Industrial Elec-
tronics (ISIE), Jul. 2010, pp. 3817 –3819.

[163] K. Thramboulidis, “Using UML in Control and Automation: A Model
Driven Approach,” in Industrial Informatics, 2004. INDIN ’04. 2004 2nd
IEEE International Conference on, Jun. 2004, pp. 587 –593.

[164] 4DIAC, “Framework for Distributed Industrial Automation and
Control.” [Online]. Available: http://www.fordiac.org

[165] G. Čengić and K. Åkesson, “On Formal Analysis of IEC 61499 Appli-
cations, Part B: Execution Semantics,” IEEE Trans. Ind. Informat., vol. 6,
no. 2, pp. 145 –154, May 2010.

[166] I. Hegny, M. Wenger, and A. Zoitl, “IEC 61499 Based Simulation Frame-
work for Model-Driven Production Systems Development,” in IEEE
Conference on Emerging Technologies and Factory Automation (ETFA), Sep.
2010, pp. 1 –8.

[167] The Eclipse Foundation, “Xtend,” Eclipse Documentation. [On-
line]. Available: http://help.eclipse.org/galileo/index.jsp?topic=/org.
eclipse.xpand.doc/help/ch01s05.html

[168] PLCopen Technical Committee 6, “XML Formats for IEC 61131-3, Ver-
sion 2.01 - Official Release,” PLCopen, Tech. Rep., May 2009.

[169] R. Hametner, A. Zoitl, and M. Semo, “Component Architecture for the
Efficient Development of Industrial Automation Systems,” in 6th IEEE
Conference on Automation Science and Engineering Proceedings, Toronto,
Canada, Aug. 2010.

[170] X. Wang and P. Xu, “Build and Auto Testing Framework Based on Sele-
nium and FitNesse,” in Proceedings of the Int. Conf on Information Technol-
ogy and Computer Science, 2009, pp. 436–439.

[171] IEC TC65/WG6, Programmable controllers – Part 3: Programming lan-
guages. Geneva: International Electrotechnical Commission (IEC), 1993.

[172] IEC 61131-5, Programmable controllers - Part 5: Communications. Geneva,
Switzerland: International Electrotechnical Commission (IEC), Nov.
2000.

[173] IEC TC65/WG6, IEC 61499: Function blocks for industrial-process measure-
ment and control systems – Parts 1 to 4. Geneva: International Electrotech-
nical Commission (IEC), 2004-2005.

http://www.fordiac.org
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.xpand.doc/help/ch01s05.html
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.xpand.doc/help/ch01s05.html

Bibliography 153

[174] C. Sünder, A. Zoitl, and C. Dutzler, “Functional Structure-based Mod-
elling of Automation Systems,” Int. J. Manufacturing Research, vol. 1,
no. 4, pp. 405–420, 2006.

[175] J. P. Thomesse, “Fieldbuses and Interoperability,” Control Engineering
Practice, vol. 7, no. 1, pp. 81 –94, 1999. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0967066198001403

[176] A. Davies, Handbook of Condition Monitoring: Techniques and Methodol-
ogy, 1st ed. Springer, Dec. 1997, iSBN-10: 0412613204, ISBN-13: 978-
0412613203.

[177] N. E. Fenton and M. Neil, “Software Metrics: Roadmap,” in Proceedings
of the Conference on The Future of Software Engineering, ser. ICSE ’00.
New York, NY, USA: ACM, 2000, pp. 357–370. [Online]. Available:
http://doi.acm.org/10.1145/336512.336588

[178] M. B. Younis, “Re-Engineering Approach for PLC Programs Based on
Formal Methods,” Ph.D. dissertation, University of Kaiserslautern, 2006.

[179] A. Fitzsimmons and T. Love, “A Review and Evaluation of Software
Science,” ACM Comput. Surv., vol. 10, no. 1, pp. 3–18, Mar. 1978.
[Online]. Available: http://doi.acm.org/10.1145/356715.356717

[180] T. McCabe, “A Complexity Measure,” Software Engineering, IEEE Trans-
actions on, vol. SE-2, no. 4, pp. 308–320, Dec 1976.

[181] T. J. McCabe and C. W. Butler, “Design Complexity Measurement and
Testing,” Commun. ACM, vol. 32, no. 12, pp. 1415–1425, Dec. 1989.
[Online]. Available: http://doi.acm.org/10.1145/76380.76382

http://www.sciencedirect.com/science/article/pii/S0967066198001403
http://www.sciencedirect.com/science/article/pii/S0967066198001403
http://doi.acm.org/10.1145/336512.336588
http://doi.acm.org/10.1145/356715.356717
http://doi.acm.org/10.1145/76380.76382

Erklärung

Hiermit erkläre ich, dass die vorliegende Arbeit ohne unzulässige Hilfe Dritter und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt wurde. Die aus
anderen Quellen oder indirekt übernommenen Daten und Konzepte sind unter Angabe
der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In– noch im Ausland in gleicher oder in ähnlicher
Form in anderen Prüfungsverfahren vorgelegt.

Wien, im Oktober 2013

Dipl.-Ing. Reinhard Hametner

Curriculum Vitae - Reinhard Hametner

Education
01/2009 – 10/2013 PhD-Student and scientific project assistant at the

Vienna University of Technology - Automation and
Control Institute

10/2001 – 11/2008 Study of Electrical Engineering at the Vienna Uni-
versity of Technology Main field: Automation and
Control, Degree: Dipl.-Ing.

09/1995 – 06/2000 HTL St. Pölten, Electrical Engineering

155

Curriculum Vitae 156

Awards
2012 Best Presentation Award at the 38th Annual Confer-

ence on IEEE Industrial Electronics Society (IECON
2012)

2011 Scholarship for short research visits from the Vienna
University of Technology

2010 Scholarship for short research visits from the Vienna
University of Technology

Work Experience
09/2013 – now Thales Austria GmbH, Safety Management
01/2009 – 08/2013 Research Assistant and Project Manager at Vienna

University of Technology, Automation and Control
Institute

01/2004 – 12/2008 T-Mobile Austria, Core Network Planning (part-
time)

06/2005 – 11/2008 BFI Vienna, Teaching Electrical Engineering

07/1996 – 08/2003 Summer jobs: Brauunion Österreich, Teufl & Co
GesmbH, Elektrik Lindwurm, and T-Mobile Austria

See detail information in:

• XING 23,

• LinkedIn 24, and

• ResearchGate 25.

23XING: https://www.xing.com/profile/Reinhard_Hametner
24LinkedIn: http://www.linkedin.com/in/reinhardhametner
25ResearchGate: https://www.researchgate.net/profile/Reinhard_Hametner

Curriculum Vitae 157

Talks with Proceedings Entry

Reinhard Hametner, Georg Schitter, Andreas Voigt, Alois Zoitl: “Implementa-
tion Guidelines for Closed Loop Control Algorithms on PLCs”; Talk: IEEE Interna-
tional Conference on Industrial Technology (ICIT), Cape Town, South Africa;
02-25-2013 - 02-28-2013, in: “ICIT 2013 - IEEE International Conference on Indu-
strial Technology”, 2013, ISBN: 978-1-4673-4568-2.

Reinhard Hametner, Dietmar Winkler, Alois Zoitl: “Agile Testing Concepts Based
on Keyword-driven Testing for Industrial Automation Systems”; Talk: 38th Annual
Conference on IEEE Industrial Electronics Society (IECON), Montreal, Canada;
10-25-2012 - 10-28-2012; in: “IECON 2012 - 38th Annual Conference on IEEE In-
dustrial Electronics Society”, 2012, ISBN: 978-1-4673-2420-5; 3707 - 3712.

Reinhard Hametner, Benjamin Kormann, Birgit Vogel-Heuser, Dietmar Win-
kler, Alois Zoitl: “Test Case Generation Approach for Industrial Automation Sys-
tems”; Talk: 5th International Conference on Automation, Robotics and Appli-
cations (ICARA), New Zealand, Wellington; 12-06-2011 - 12-08-2011; in: “Pro-
ceedings of the 5th International Conference on Automation, Robotics and Applica-
tions”, 2011, ISBN: 978-1-4577-0328-7; 57 - 62.

Gottfried Koppensteiner, Reinhard Hametner, Rene Paris, A. Moser Passani,
M. Merdan: “Knowledge Driven Mobile Robots Applied in the Disassembly Do-
main”; Talk: 5th International Conference on Automation, Robotics and Appli-
cations (ICARA), New Zealand, Wellington; 12-06-2011 - 12-08-2011; in: “Pro-
ceedings of the 5th International Conference on Automation, Robotics and Applica-
tions”, 2011, ISBN: 978-1-4577-0328-7; 52 - 56.

Benjamin Kormann, Birgit Vogel-Heuser, Reinhard Hametner, Alois Zoitl: “En-
gineering Process for an Online Testing Process of Control Software in Production
Systems”;
Talk: IEEE International Conference on Emerging Technologies and Factory
Automation, France, Toulouse; 09-05-2011 - 09-09-2011; in: “Proceedings of the
16th IEEE International Conference on Emerging Technologies and Factory Automa-
tion (ETFA)”, 2011, ISBN: 978-1-4577-0018-7; 4 pages.

Monika Wenger, Reinhard Hametner, Alois Zoitl, Andreas Voigt: “Industrial
Embedded Model Predictive Controller Platform”; Talk: IEEE International Con-
ference on Emerging Technologies and Factory Automation, France, Toulouse;
09-05-2011 - 09-09-2011; in: “Proceedings of the 16th IEEE International Confer-
ence on Emerging Technologies and Factory Automation (ETFA)”, 2011, ISBN: 978-
1-4577-0018-7; 4 pages.

Curriculum Vitae 158

Monika Wenger, Martin Melik-Merkumians, Ingo Hegny, Reinhard Hametner,
Alois Zoitl: “Utilizing IEC 61499 in an MDA Control Application Development Ap-
proach”; Talk: 2011 IEEE Conference on Automation Science and Engineering,
Trieste, Italy; 08-24-2011 - 08-27-2011; in: “2011 IEEE Conference on Automation,
Science and Engineering”, August 24-27,2011, Trieste, Italy, Proceedings, 2011,
ISBN: 978-1-4577-1731-4; 495 - 500.

Reinhard Hametner, Dietmar Winkler, Thomas Östreicher, Stefan Biffl, Alois
Zoitl: “The Adaption of Test-Driven Software Processes to Industrial Automation
Engineering”; Talk: IEEE International Conference on Industrial Informatics
(INDIN), Osaka, Japan; 07-13-2010 - 07-16-2010; in: “Proceedings 8th IEEE Inter-
national Conference on Industrial Informatics (INDIN)”, 2010, ISBN: 978-1-4244-
7299-4; 7 pages.

Reinhard Hametner, Alois Zoitl, Mario Semo: “Automation Component Archi-
tecture for the Efficient Development of Industrial Automation Systems”; Talk: 6th
International Conference on Automation Science and Engineering (IEEE CASE
2010), Toronto, Canada; 08-21-2010 - 08-24-2010; in: “6th annual IEEE Conference
on Automation Science and Engineering (CASE)”, 2010, ISBN: 978-1-4244-5448-8;
6 pages.

Reinhard Hametner, Dietmar Winkler, Thomas Östreicher, Natascha Surnic,
Stefan Biffl: “Selecting UML Models for Test-Driven Development Along the Auto-
mation Systems Engineering Process”;
in: “Proceedings IEEE Emerging Technologies and Factory Automation (ETFA)”,
2010, ISBN: 978-1-4244-6849-2, 4 pages.

Dietmar Winkler, Reinhard Hametner, Thomas Östreicher, Stefan Biffl: “A
Framework for Automated Testing of Automation Systems”; in: “Proceedings IEEE
Emerging Technologies and Factory Automation (ETFA)”, IEEE, 2010, ISBN: 978-1-
4244-6849-2, 4 pages.

Martin Melik-Merkumians, Monika Wenger, Reinhard Hametner, Alois Zoitl:
“Increasing Portability and Reuseability of Distributed Control Programs by I/0 Ac-
cess Abstraction”; Talk: IEEE International Conference on Emerging Technolo-
gies and Factory Automation (ETFA), Bilbao, Spain; 09-13-2010 - 09-16-2010; in:
“Proceedings IEEE Emerging Technologies and Factory Automation”, 2010, ISBN:
978-1-4244-6849-2; 4 pages.

Curriculum Vitae 159

Monika Wenger, Reinhard Hametner, Alois Zoitl: “IEC 61131-3 Control Ap-
plications vs. Control Applications Transformed in IEC 61499”; Talk: 10th IFAC
Workshop on Intelligent Manufacturing Systems, Lisbon, Portugal; 07-01-2010
- 07-02-2010; in: “Preprints 10th IFAC Workshop on Intelligent Manufacturing Sys-
tems (IMS)”, 2010, 6 pages.

Dietmar Winkler, Reinhard Hametner, Stefan Biffl: “Automation Component As-
pects for Efficient Unit Testing”; Talk: IEEE International Conference on Emerg-
ing Technologies and Factory Automation, Mallorca, Spain; 09-22-2009 - 09-26-
2009; in: “2009 IEEE Conference on Emerging Technologies and Factory Automation
(ETFA)”, 2009, 978-1-4244-2728-4/1946-0759; 8 pages.

Talks without Proceedings Entry

Reinhard Hametner:
“IEC 61131-3 Model for Model-Driven Development”; Talk: 38th Annual Confer-
ence on IEEE Industrial Electronics Society (IECON 2012), Montreal, Canada; 10-
25-2012 - 10-28-2012.

Reinhard Hametner:
“Building Hierarchical Automation Solutions in the IEC 61499 Modeling Language”;
Talk: IEEE International Conference on Industrial Informatics (INDIN 2011), Lis-
bon, Portugal; 07-26-2011 - 07-29-2011.

Book Chapters

Reinhard Hametner, Benjamin Kormann, Birgit Vogel-Heuser, Dietmar Win-
kler, and Alois Zoitl: “Automated Test Case Generation for Industrial Control Ap-
plications”, “In Recent Advances in Robotics and Automation”, ser. Studies in
Computational Intelligence, G. Sen Gupta, D. Bailey, S. Demidenko, and D.
Carnegie, Eds. Springer Berlin Heidelberg, 2013, vol. 480, pp. 263-273, ISBN:
978-3-642-37386-2, [Online]. Available: http://dx.doi.org/10.1007/978-3-642-
37387-9_20

Gottfried Koppensteiner, Christoph Krofitsch, Reinhard Hametner, David P.
Miller, Munir Merdan: “Application of Knowledge Driven Mobile Robots for Dis-
assembly Tasks”, “In Recent Advances in Robotics and Automation”, ser. Studies
in Computational Intelligence, G. Sen Gupta, D. Bailey, S. Demidenko, and D.
Carnegie, Eds. Springer Berlin Heidelberg, 2013, vol. 480, pp. 311-321, ISBN:
978-3-642-37386-2, [Online]. Available: http://dx.doi.org/10.1007/978-3-642-
37387-9_24

Curriculum Vitae 160

Diploma and Master Thesis

Reinhard Hametner: “Modellierung von Regelungsstrategien in einer event-
basierten Echtzeitsteuerungsumgebung”;
Supervisor: M. Vincze;
Technische Universität Wien, Institut für Automatisierungs- und Regelungs-
technik, 2008; final examination: 11-20-2008

	Vorwort
	Acknowledgements
	Abstract
	Kurzfassung
	Contents
	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Introduction
	Problem Statement
	Goal
	Software Testing
	Fundamental Terms
	Test Methods
	Testing vs. Verification

	Summary
	Contributions and Outline of the Thesis

	Related Work
	Modeling Languages for Industrial Automation Systems
	IEC 61131
	IEC 61499 - Distributed Event-based System

	Testing Control Software
	Testing as Commissioning Support
	Automatic Testing
	Simulation-based Testing
	Analyzing Methods

	Model-Driven Development
	What is a Model?
	Model Specification
	Model Transformation
	Model-Driven Development for Control Applications

	Testing in Software Engineering
	Test Specification in Software Engineering
	Test Processes, Test Strategies, and Test Levels
	Development Processes
	Individual Test Processes and Test Strategies
	Test-First Development

	Model-based Testing

	Testing of Embedded Systems Software
	Comparison of the Different Domains
	How Many Test Cases are Necessary?
	Economical Aspects
	Research Questions

	New Test Framework for Industrial Automation Systems
	Framework for Automated Testing
	Test-Levels / Test-Layer Approach for Industrial Automation Systems
	Unit Tests
	Integration Tests
	System Tests

	Summary

	Selecting UML Models for Test-Driven Development Along the Automation Systems Engineering Process
	Model Specification
	UML in the Software Engineering Domain
	Criteria for Model Selection in the Industrial Automation Domain
	UML Diagrams Applied on a Sample Application
	Systematic Definition of Requirements
	Architecture and Structural Aspects
	Definition of Functional and Temporal Behavior

	Selecting UML Diagrams
	Test Case Extraction From State Chart Diagrams
	Test Specification with State Chart Diagram
	Test Case Extraction

	Summary

	Testing Techniques for Industrial Automation Systems
	Manual Testing
	Keyword-driven Testing
	Test Framework for Keyword-driven Testing
	Keyword Specification

	Unit Testing Technique
	Separated Test Component
	Separated Test Specification
	Integrated Test Specification
	Evaluation of the Three Listed Unit Testing Approaches
	Used Unit Test Framework

	Model-based Testing of Industrial Control Applications
	Test Specification Modeling
	Model-based Test Case Generation Process

	Summary

	Experiments, Evaluation, and Discussion of Results
	Implementation and Evaluation of the Testing Techniques
	Keyword-driven Testing
	Unit Testing with Service Sequences
	Model-based Testing

	Resulting Comparison of the Testing Methods
	Summary

	Resulting Design Rules for Application Structure
	Overall Architecture Definition
	Automation Component Model
	Sub-Component Models
	Interfaces

	Summary

	Conclusion and Outlook
	Conclusion
	Outlook

	Bibliography
	Curriculum Vitae

