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Abstract

Term rewriting is a purely syntactical method to replace subterms of a term by other terms. This
way, terms can be simplified until they are in normalform. Such syntactical replacements are
used in many areas, for theoretical and practical purposes. Term rewriting therefore has been
investigated in research for a long time and its theory is well-understood.

There are many extensions of term rewriting. One of them, conditional term rewriting comes
up in many applications like for instance functional programming. Although adding conditions
is an intuitive and natural approach, it makes such systems much harder to analyze. Many
properties change their intuitive meaning and many criteria for properties of rewriting (like con-
fluence or termination) do not hold anymore.

Transformations have been developed to eliminate the conditions in such conditional term
rewrite systems in order to use criteria and properties of unconditional rewriting and adapt them
for conditional rewriting. This approach has been used successfully for theoretical and practical
purposes, yet it comes with a price.

A rewrite sequence in the transformed system should correspond to a rewrite sequence in
the original system. This property is called soundness. Without soundness, the analysis of
transformed systems leads to results that differ from those of the original system.

The reason why we do not obtain soundness in general is as follows: A transformation in-
troduces some framework to encode conditions. Because of this encoding, transformed systems
might give rise to different evaluation paths than the original system.

Counterexamples for soundness are usually syntactically very complex. It turns out that
many of these syntactical properties are crucial for unsoundness. [14] already proves that for a
certain class of conditional term rewrite systems left-linearity is a sufficient criterion to obtain
soundness.

This thesis mainly deals with the question for which other syntactical properties we obtain
soundness. For this purpose we present several examples that illustrate and explain in detail why
we obtain unsoundness.

We then provide two different proof ideas for soundness properties. Using this approach we
prove soundness for some syntactical properties, yet ince these results have strong preconditions
these property might be of limited use.

In the second proof approach we prove soundness for a strategy that we call U-eager rewrit-
ing. We then show how complex rewrite sequences can be transformed into such U-eager rewrite
sequences. Using this approach we will prove soundness for certain linearity conditions.
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Finally we will present some applications of soundness results, discuss differences of sound-
ness properties for different transformations and provide a detailed overview of results in this
thesis.
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CHAPTER 1
Introduction

1.1 Term Rewriting

Term rewriting is a formal framework that has many applications in computer science. It is used
for algebraic data types, in programming languages, especially functional-logic programming
languages, for every kind of symbolic computation or also in theorem provers.

In term rewriting, subterms of terms are replaced by new terms according to some given
set of rules, usually to simplify expressions and eventually obtain a normalform. Such repeated
reductions of expressions are used to simplify mathematical expressions like (1+2)∗3. In order
to obtain a result, we use the equation 1 + 2 = 3 and therefore replace the subterm (1 + 2) in the
original expression by 3: (1 + 2) ∗ 3 = 3 ∗ 3. Now we apply the equation 3 ∗ 3 = 9 and obtain
9. This last expression 9 cannot be simplified anymore, hence it is a normalform.

In the reduction sequence, (1 + 2) ∗ 3 = 3 ∗ 3 = 9, we used the equations 1 + 2 = 3 and
3 ∗ 3 = 9 only from left to right to obtain a simpler expression. We would not apply it in the
other direction, e.g., to “simplify” the term (1 + 2) ∗ 3 into (1 + 2) ∗ (1 + 2). We denote the
direction in which we apply equations by →. (1 + 2) ∗ 3 rewrites to 3 ∗ 3 using the directed
equation or rule 1 + 2→ 3, and finally 3 ∗ 3→ 9.

We can define more general rules by using placeholders or variables for which we can insert
arbitrary terms. In order to simplify logic formulas we use the rule ¬¬A → A to eliminate
double negation. A here is a placeholder or variable for some arbitrary formula. We can simplify
more complex expressions like ¬¬(P ∨Q) using this rule and obtain P ∨Q.

If in an expression more than one rule is applicable or more than one subterm is reducible,
term rewriting does not impose any kind of determinism which subterm should be replaced or
which rule should be applied. Consider the following example stemming from logic:

Example 1. In order to convert logic expressions into conjunctive normalform we need to prop-
agate negation inwards. By combining De Morgan’s law with the rule to eliminate double
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negation we obtain the following set of rules to simplify logic formulas (A and B are variables):

¬¬A→ A (¬¬)

¬(A ∨B)→ ¬A ∧ ¬B (DM∨)

¬(A ∧B)→ ¬A ∨ ¬B (DM∧)

There are several rules that we can apply to the formula ¬¬(P ∧ ¬Q): By eliminating
the double negation we obtain P ∧ ¬Q. This term is a normalform because no other rule is
applicable.

We can also apply De Morgan’s law and obtain ¬(¬P ∨ ¬¬Q). Again, more than one rule
can be applied. All possible rewrite paths are illustrated in Figure 1.1.

¬¬(P ∧ ¬Q)

¬(¬P ∨ ¬¬Q)

¬(¬P ∨Q) ¬¬P ∧ ¬¬¬Q

P ∧ ¬¬¬Q¬¬P ∧ ¬Q

P ∧ ¬Q

¬¬

DM∧

¬¬ DM∨

DM∨ ¬¬¬¬

¬¬¬¬

Figure 1.1: Possible rewrite paths in Example 1

Although ¬(¬P ∨ ¬¬Q) cannot be reduced to P ∧ ¬Q directly, we always obtain the same
normalform for this set of rules.

The previous example satisfies the following two interesting properties:

1. It is terminating (strongly normalizing), i.e., for all terms we will always reach a normal-
form within a finite number of steps.

2. It is confluent, i.e., if there are multiple possibilities to reduce a term, all results will
eventually yield the same result.
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Confluence and termination are very important and they are not always satisfied. Consider
the set of rules of Example 1. If we remove the rule DM∨, the start term ¬¬(P ∧ ¬Q) can be
reduced to P∧¬Q and to ¬(¬P∨¬¬Q). The latter term can be further simplified to ¬(¬P∨Q),
yet we cannot reduce this term any further, in particular we cannot simplify ¬(¬P ∨ Q) to
P ∧ ¬Q. Hence, the reduction system defined by these two rules is not confluent.

Concerning termination, consider a ruleA∨B → B∨A. Given a term P ∨Q, we can always
apply the rule: P ∨Q → Q ∨ P → P ∨Q → · · · and we do not reach a normalform within a
finite number of steps. Therefore, this single rule and any TRS containing it is not terminating.

We will focus on term rewriting for untyped first-order terms. Such systems have been
studied for a long time and their theory is well-explored. In the past, some extensions of term
rewriting have been defined for several reasons. In this thesis, we will focus on a particular
extension, conditional term rewriting.

1.2 Conditional Term Rewriting

Conditional term rewriting is an extension of term rewriting in which rules are bound to cer-
tain conditions. Such conditions arise naturally, e.g. in the specification of algebraic datatypes
and also in functional-logic programming. Conditional rules have a higher expressiveness than
unconditional ones.

Example 2 (Positive integers [3]). We can generate all integers using the constant 0, the suc-
cessor function s and the predecessor function p. For these functions we obtain the following
rules:

s(p(x))→ x

p(s(x))→ x

Our goal is to define a function pos that returns true for any positive integer, otherwise
false . Using conditional rules we obtain the following intuitive rules:

pos(0)→ false pos(s(x))→ true if pos(x) = true

pos(s(0))→ true pos(p(x))→ false if pos(x) = false

We can apply a conditional rule only if a condition is satisfied. pos(s(s(0))) rewrites to true
because the condition positive(s(0 )) = true is satisfied.

The term pos(s(p(0))) cannot be reduced using a conditional rule because the condition of
the first conditional rule pos(p(0)) = true is not satisfied.

Although conditional rewrite rules resemble unconditional ones the condition has many con-
sequences. In the previous example, the term pos(p(s(0))) matches the left-hand side of the
conditional rule pos(s(x)) → true if pos(x) = true , yet we cannot apply this rule because
pos(p(0)) 6= true . In general, it is undecidable whether a condition is satisfiable or not (see
e.g. [11]).

In the following we will use left-implication⇐ instead of if.
While conditions arise in many applications, they also are an additional source of problems.

There are different possibilities how to interpret equality in the conditions. In this thesis we will
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usually use reducibility, meaning that s is equal to t if there is a reduction from s to t, denoted as
s →∗ t. Furthermore, conditions may introduce variables that have not been used before. Such
extra variables can be used to simulate let- or where-statements in functional programming.

Example 3 (Division with remainder). The functional program in Listing 1.1 divides two inte-
gers and returns the quotient and remainder.

divr :: Int -> Int -> (Int, Int)

divr x y | x < y = (0, x)
divr x y | x >= y = (q + 1, r)

where (q,r) = (divr (x - y) y)

Listing 1.1: Division with remainder in Haskell

We can encode this functional program using conditional rewrite rules. The arithmetic op-
erations of − and < for positive integers can be defined using unconditional rules:

x− 0→ x x < 0→ false

0− y → 0 0 < s(y)→ true

s(x)− s(y)→ x− y s(x) < s(y)→ x < y

The functional program itself is equivalent to the following conditional rewrite rules:

divr(x, y)→ 〈0, x〉 ⇐ x < y →∗ true
divr(x, y)→ 〈s(q), r〉 ⇐ x < y →∗ false, divr(x− y, y)→∗ 〈q, r〉

Observe that the variables q and r in the second conditional rule do not occur on the left-
hand side of the rule but instead are defined in the second condition.

In order to obtain the normalform for divr(s(s(s(0))), s(s(0))) we first need to evaluate
the conditions. s(s(s(0))) < s(s(0)) rewrites to true , therefore we cannot apply the first con-
ditional rule. In the second conditional rule, divr(s(s(s(0))) − s(s(0)), s(s(0))) rewrites to
divr(s(0), s(s(0))) which rewrites to 〈0, s(0)〉 using the first conditional rule. This corresponds
to 〈q, r〉 using the variable binding 0 for q and s(0) for r. Therefore, divr(s(s(s(0))), s(s(0)))
rewrites to 〈s(0), s(0)〉.

Many results of unconditional rewriting do not hold in the presence of conditions and many
properties change their intuitive meaning. The Haskell program itself gives rise to an infinite
recursion for the term divr 0 0. Nonetheless, the conditional rules in the previous example
are in fact terminating because for the term divr(0, 0) the conditions are not satisfiable.

In order to rewrite the term divr(0, 0) using the conditional rewrite rules we first evaluate
the first condition. The term 0 < 0 evaluates to false . Hence we can apply only the second
conditional rule. The second condition therefore is divr(0− 0, 0)→∗ 〈q, r〉. Although it is easy
to prove that this condition is unsatisfiable a rewrite engine would usually try to rewrite the term
divr(0, 0). We then obtain an infinite recursion as in the Haskell program.

For this reason we are usually only interested in operational termination ([13]) meaning that
the whole proof tree for the conditions must be finite.
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1.3 Elimination of Conditions

The analysis of conditional term rewriting is much more involved because we need to consider
properties of the conditions. Also, its implementation is far from trivial because of the inherent
recursion. On the other hand, unconditional term rewriting is well-understood and has many
nice properties. Using transformations to map conditional rules into unconditional ones we can
benefit from this fact and obtain new results for conditional rewriting and also use unconditional
rewrite engines.

Several such (purely syntactical) transformations have been defined in the past for this pur-
pose. For instance, [4] introduces a transformation to analyze confluence properties of condi-
tional term rewriting. [5] introduces a transformation that resembles the transformations used
in [14]. The latter paper analyzes a class of transformations, so-called unravelings and proves
various results for this transformation.

A different class of transformations stems from [35], and is subsequently improved in [1],
[32] and [6]. The latter work also presents a unified framework for properties of transformations.

In all these approaches, conditional rules are split into several unconditional rules and the
conditions itself are encoded inside these unconditional rules.

Example 4. In Example 2 we defined a function pos that returns true if an integer is positive
and otherwise false, using the following rules:

pos(0)→ false

pos(s(0))→ true

pos(s(x))→ true ⇐ pos(x)→∗ true
pos(p(x))→ false ⇐ pos(x)→∗ false

For the successor and predecessor function we defined the following rules:

s(p(x))→ x

p(s(x))→ x

Consider some term that matches the left-hand side pos(s(x)) of the first conditional rule.
Before applying a conditional rule we need to verify the conditions. Therefore, pos(s(x)) starts
a rewrite sequence of the corresponding left-hand side of the condition, pos(x). We need to keep
evaluations in the conditions separated from other rewrite steps, therefore we wrap them into a
new function symbol Cond. Hence, we introduce a new unconditional rule

pos(s(x))→ Cond(pos(x))

If the conditional argument rewrites to true , then we reproduce the right-hand side:

Cond(true)→ true

In total we transform the conditional rules into the following unconditional rules:

pos(p(x))→ false ⇐ pos(x)→∗ false

{
pos(p(x))→ Cond(pos(x))

Cond(false)→ false

pos(s(x))→ true ⇐ pos(x)→∗ true

{
pos(s(x))→ Cond(pos(x))

Cond(true)→ true

5



We now can simulate conditional rewrite sequences using these unconditional rewrite rules:

pos(s(s(0)))→ Cond(pos(s(0)))→ Cond(true)→ true

Eliminating conditions is useful to improve the understanding of conditional rewriting. For
instance, a conditional rewrite system with some infinite recursion immediately leads to a non-
terminating unconditional rewrite system. Consider the rule a → b ⇐ f(a) →∗ b from [29,
Section 7.2.1]. This rule is terminating because the condition is unsatisfiable but it leads to
infinite recursion and therefore is not operationally terminating.

Eliminating the conditions as in Example 4 yields the following rules:

a→ Cond(f(a))

Cond(b)→ b

The transformed rule gives rise to the following infinite derivation:

a→ Cond(f(a))→ Cond(f(Cond(f(a))))→ · · ·Cond(f(· · ·Cond(f(a)) · · · ))→ · · ·

Therefore, the transformed rules are not terminating although the original rule is terminating.

1.4 Soundness of Transformations

In order to use transformations to analyze conditional term rewriting we need two properties:

1. For every conditional rewrite sequence on original terms, there is also a corresponding
rewrite sequence using the transformed rules.

2. Every rewrite sequence between original terms in the transformed rewrite system corre-
sponds to a rewrite sequence using the conditional rules.

The first property is called completeness (for reducibility) and is usually easy to prove. It
might be surprising and counterintuitive that the second property, soundness (for reducibility),
is not satisfied in general. In fact it turns out to be quite difficult to prove in which cases it is
satisfied. We focus in this thesis on the question when a transformation is sound, in particular
the transformation of [29] and [23].

One source of unsoundness are terms that represent partially evaluated conditions such that
the condition is not satisfied:

Example 5 ([8, Example 32]). The following conditional rule and its transformed rules repre-
sent a partial definition of the logical or:

or(x, y)→ true ⇐ x→∗ true

{
or(x, y)→ Cond(x)

Cond(true)→ true

The terms or(false, true) and or(false, false) cannot be reduced using the conditional
rule because the condition x →∗ true is not satisfied for the variable binding x 7→ false .

6



If we add the rule eq(x, x) → true that defines a function for (syntactic) equality, the term
eq(or(false, true), or(false, false)) cannot be simplified, in particular we cannot rewrite it to
true .

In the transformed system, we need to verify (or disprove) the conditions by introducing the
conditional arguments:

or(false, true)→ Cond(false)

or(false, false)→ Cond(false)

The term Cond(false) cannot be reduced any further because the condition is not satisfi-
able. Yet, although both or -terms are different and do not have a common successor using the
original rules, they have a common successor using the transformed rules.

Using the rule eq(x, x)→ true , the transformed unconditional rules give rise to the follow-
ing derivation:

eq(or(false, true), or(false, false))→ eq(Cond(false), or(false, false))

→ eq(Cond(false),Cond(false))→ true

Using the conditional rules we cannot repeat this equality proof. Therefore the transforma-
tion is not sound.

Even without the non-left-linear rule eq(x, x)→ true we obtain another unsoundness prop-
erty, unsoundness w.r.t. joinability, because both or -terms have a common successor if we apply
the transformed rules. Nevertheless using the conditional rules, both of them are already irre-
ducible.

We introduced the function symbol Cond in order to wrap the condition and thereby dis-
tinguish the evaluation of a condition from non-conditional rewrite steps. Mostly, we do not
know in advance whether a condition is satisfiable or not. In the previous example, the condi-
tions are not satisfied and we obtain some garbage Cond-terms that give rise to unsoundness in
connection with a non-left-linear rule.

We cannot avoid failed rewrite attempts in the conditional arguments. Yet, we can avoid
that terms that represent failed attempts contain less information than the term that initiated
the conditional evaluation. For this purpose, we replace the Cond-symbol by a new symbol U
(after the name of this class of transformations, unravelings [14, Definition 3.1]). We extend this
symbol by a unique labeling for every conditional rule and add all variable bindings of the left-
hand side of the conditional rule as arguments. We then obtain a transformation that resembles
the unraveling of [14, Definition 6.1].

The conditional rule of Example 5 then is transformed into the following rules (α is a unique
label for this conditional rule):

or(x, y)→ true ⇐ x→∗ true

{
or(x, y)→ Uα(x, x, y)

Uα(true, x, y)→ true

The first argument of Uα contains the condition while the other arguments store the variable
bindings.

7



Using the transformed rules we obtain the following derivations:

or(false, true)→ Uα(false, false, true)

or(false, false)→ Uα(false, false, false)

Both U-terms are irreducible, but they are not syntactically equal. Hence we cannot repro-
duce unsoundness as in Example 5.

If the U-terms contain all variable bindings of the left-hand side of a conditional rule, we
can use them to map a U-term to an original term: We extract these variable bindings from the
U-term and insert it into the left-hand side of the conditional rule. For instance, the U-symbolUα
is introduced by transforming the conditional rule or(x, y) → true ⇐ x →∗ true . Therefore,
by extracting the variable bindings of the U-term Uα(false, false, true) and inserting them into
the left-hand side or(x, y) of the conditional rule we obtain or(false, true). We will refer to
this mapping as translation-backwards or backtranslation.

Such mappings will play an important role in our soundness proofs because we can translate
U-terms into original terms. Yet, translating rewrite sequences in a transformed system using
this approach might not yield valid derivations of the original system in general because of
incompatible rewrite steps in the condition and the variable binding:

Example 6. Consider the unconditional rules

a→ c

a→ d

s(c)→ t(k)

and the following conditional rule and its transformation using our previous unraveling:

f(x)→ z ⇐ s(x)→∗ t(z)

{
f(x)→ Uα(s(x), x)

Uα(t(z), x)→ z

The U-symbol has two arguments: The first one contains the conditional evaluation, the
second one the variable binding.

We obtain the following derivation using the transformed rules:

f(a)→ Uα(s(a), a)→ Uα(s(c), a)→ Uα(t(k), a)→ Uα(t(k), d)→ k

The second argument contains the variable binding used in the left-hand side of the condi-
tional rule. Replacing U-terms by the corresponding left-hand side of the conditional rule by
inserting the variable binding yields the following sequence:

f(a) → Uα(s(a), a)︸ ︷︷ ︸
f(a)

→ Uα(s(c), a)︸ ︷︷ ︸
f(a)

→ Uα(t(k), a)︸ ︷︷ ︸
f(a)

→ Uα(t(k), d)︸ ︷︷ ︸
f(d)

→ k

The last rewrite step of the derivation would correspond to the rewrite step f(d)→ k using
the conditional rules. Yet, the condition s(d)→∗ t(k) is not satisfied. Therefore this rewrite step
is not possible in the original system.

Observe, that the whole derivation is not unsound because of f(a) →∗ k using the condi-
tional rules.
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We can exploit such incompatibilities of the conditional argument and the variable bindings
with a sophisticated combination of non-linear rewrite rules. [14] provides such a counterexam-
ple for soundness (Example 20).

In [31] it was shown that we obtain soundness (and completeness) by preventing rewrite
steps in the variable bindings. For unrestricted rewriting, we can prove that certain syntactical
properties prevent such inconsistencies that cause unsoundness. In [14] and [29] it was shown
that left-linearity of all transformed rules is sufficient for soundness for a certain unraveling. We
showed and disproved soundness for several other properties in [7], in particular we proved that
for certain conditional rewrite systems confluence, non-erasingness and weak left-linearity are
sufficient for soundness. Especially the latter result was a major improvement of other soundness
results. We managed to adapt some of our results in [8] for another unraveling ([29], based on
[15]) for so-called deterministic conditional term rewrite systems, a class of conditional rewrite
systems that allow extra variables to a certain extend.

Based on this unraveling, [24] introduces an unraveling that optimizes the use of variable
arguments. It is shown that for this optimized unraveling a combination of context-sensitive
rewriting and membership conditions is sufficient for soundness. In [25] it is shown that also
left-linearity, and right-linearity and non-erasingness are sufficient for soundness. Another result
is that soundness of this optimized unraveling implies soundness of the unraveling in [29].

Further soundness properties and similar properties for other transformations are shown in
e.g. [32].

From a practical point of view, soundness plays an important role whenever conditional
rewrite sequences are simulated using unconditional rules:

• In [24] unravelings are used to (partially) invert functions that are defined as a term rewrite
system. For this application, soundness is highly desirable since otherwise the inverted
function may return wrong results.

• Related to the last paper, [22] provides results on proving injectivity of functions by com-
pletion of unraveled conditional rewrite systems.

• In [32] a transformation is introduced that yields “computational equivalence, i.e., that can
be used to simulate conditional rewrite sequences without the need for backtracking.

• In [9] we prove confluence of conditional rewrite systems using unravelings. In order to
do this we need to prove soundness first.

1.5 Contributions

The main contribution of our work is the detailed analysis of soundness properties of the unrav-
eling of [29].

• We analyze counterexamples for soundness in detail. We show that the variables in the
conditions of conditional rules must be distributed in a certain way (Example 18). This
leads to the definition of a variable property, sortedness. Although it is not sufficient
for soundness it is an important precondition to avoid unsoundness in many cases. We
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then analyze the unsoundness example of [14] and present a new unsoundness example
in which we show various unsoundness properties and how they depend on each other
(Example 21).

• Based on these counterexamples we show in which cases we can prove soundness using
just syntactic term translations. We prove soundness for right-separated 2-DCTRSs if the
transformed system is non-erasing for the unraveling of [24] (Theorem 1). This result is
in particular interesting because it is not satisfied for other transformations (see e.g. Ex-
ample 43). We then also prove soundness for left-separated CTRSs (Theorem 2). This
result corresponds to the case of ultra-right-linear CTRSs in [7] and [8]. Using the same
proof idea we finally prove soundness w.r.t. joinability for confluent, sorted DCTRSs.

• We introduce the class of U-eager derivations in which terms that encode conditions must
be immediately rewritten until the condition is satisfied. We then prove soundness of this
class for the transformation of [24] (Lemma 14). By converting other derivations into such
U-eager derivations we obtain further soundness properties.

• We show that we obtain soundness also for the transformation of [29] using our previous
approach. We prove a not yet published soundness result for right-linear DCTRSs (The-
orem 6). Finally we show a new proof for our main result of [8], soundness of weakly
left-linear DCTRSs 8.

Finally we will discuss applications of transformations. Parts of this work are based on
[9] where we showed how to prove confluence of CTRSs using unravelings. For this purpose,
another soundness property, soundness w.r.t. joinability (Theorem 3, Theorem 7, Theorem 9) is
of importance.

Finally, we provide examples to illustrate differences to soundness properties of other trans-
formations, discuss related work and summarize our results.

1.6 Outline

In Chapter 2 we will provide an overview on notions and notations in abstract and (conditional)
term rewriting where we mostly follow [3] and [29].

In Chapter 3 we introduce the simultaneous unraveling of [14], the sequential unraveling of
[29] and the optimized unraveling of [24]. We introduce the notion of ultra-properties and term
translations for these unravelings.

Our main chapter, Chapter 4, is divided into several sections. In the beginning we will
provide examples for unsoundness and define the notion of sortedness that restricts variable
occurrences in the conditions. We show that although sortedness is not sufficient for soundness
it avoids many trivial examples.

After presenting a new unsoundness example we prove soundness properties by translating
derivations in transformed systems directly. This approach allows us to prove soundness for
many examples, yet it requires severe syntactical restrictions.
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Then we show soundness for a certain rewrite strategy, U-eager rewrite sequences. This
result will be the foundation for all further soundness results. By shifting rewrite steps in deriva-
tions we will show how to transform other rewrite sequences into such U-eager derivations.

We will show the usefulness of this approach at the end of Chapter 4. There we will introduce
a mapping from the sequential unraveling of [29] to the optimized unraveling. We will prove
that for certain linearity properties we can apply this mapping and thereby prove soundness for
the sequential unraveling. Finally we present confluence results for conditional term rewrite
systems based on our results.

In Chapter 5 we will provide further applications of soundness results. We also discuss
related work and provide counterexamples for soundness of other transformations. Finally we
provide an overview of the most important results in this thesis.
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CHAPTER 2
Preliminaries

2.1 Abstract Reduction Systems (ARSs)

An abstract reduction system (ARS) is a pair A = (A,→) of some set A and a binary relation
→ over A. We usually write a → b instead of (a, b) ∈ →, which means that a is reduced to b.
→ is the reduction or rewrite relation.

By composing multiple (possibly infinitely many) reduction steps we obtain a reduction
sequence or derivation a1 → a2 → · · · . If a reduces to b using a reduction sequence of length
n+ 1, then a→n+1 b. The relation→n+1 is defined as→n ◦ → where→0= {(a, a) | a ∈ A}
is the identity on A.
→≤n =

⋃n
i=0 →i is the union of all compositions of length n or less. The reflexive closure

of → is denoted as →≤1 or →=. The transitive closure is →+ =
⋃
i>0 →i, the reflexive

transitive closure is→∗ =→0 ∪ →+.
The inverse of→ is← = {(b, a) | (a, b) ∈ →}.
The symmetric closure of→ is↔ =← ∪ →.
The reflexive, transitive and symmetric closure is↔∗ = (↔)∗.
If a→+ b (a→ b), then b is a (direct) successor of a, and a is a (direct) predecessor of b.
Some a ∈ A is reducible if there is a b ∈ A such that a→ b. It is irreducible or a normalform

if there is no such b. b is a normalform of a if a→∗ b and b is a normalform.
a and b are joinable (a ↓ b) if there is a c ∈ A such that a→∗ c and b→∗ c.
An ARS is strongly normalizing or terminating if for all a0 ∈ A there is no infinite reduction

sequence a0 → a1 → · · · .
It is confluent if a →∗ b and a →∗ c implies b ↓ c. It is weakly confluent if c ← a → b

implies b ↓ c. Newman’s Lemma states that weak confluence and termination imply confluence.
We call an ARS convergent if it is confluent and terminating.
We will refer to relation→∗ as reducibility, to ↓ as joinability and to↔∗ as convertibility.
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2.2 Terms and Substitutions

2.2.1 Terms

A signature F is a set of function symbols that are associated with a non-negative integer. This
integer represents the arity of a function symbol f , denoted as ar(f). The set of all function
symbols with arity n in the signature F is F (n).

A function symbol with arity 0 is a constant. We will usually denote constants as a, b, c, . . .
and other functions as f, g, h, . . .. In the following we will keep the arity of function symbols
implicit.
V is a countably infinite set of variables. We assume that F ∩ V = ∅. We denote variables

usually as x, y, z, . . ..
A term is a tree structure in which nodes are labelled by function symbols and variables.

In this thesis, variables only can appear as leaf nodes. The number of children of a node is
equivalent to the arity of its labelling function symbol. T (F ,V) is the set of terms over the
signature F and inductively defined as follows:

V ⊆ T (F ,V)

f(t1, . . . , tn) ∈ T (F ,V) where f ∈ F (n) and t1, . . . , tn ∈ T (F ,V)

The mapping root : T (F ,V) 7→ F ∪ V returns the root symbol of a term

root(s) =

{
s if s ∈ V
f if s = f(s1, . . . , sn)

We will call terms with root symbol f f -terms. The child nodes of a term are its arguments.
The set of all variables in a term Var(s) is

Var(s) =

{
{s} if s ∈ V⋃n
i=1 Var(si) if s = f(s1, . . . , sn)

A term s is ground if Var(s) = ∅.
The number of occurrences of a variable x ∈ Var(s) is

|s|x =


1 if s = x

0 if s 6= x and s ∈ F0 ∪ V
Σn
i=1|si|x if s = f(s1, . . . , sn)

A term s is linear if for all x ∈ Var(s), |s|x = 1. If |s|x > 1, then x is a non-linear variable
in s, otherwise it is a linear variable.

2.2.2 Term Positions

The set of all term positions of a term s is a set of strings over the alphabet of positive integers:

Pos(s) =

{
{ε} if s ∈ V ∪ F0

{i.pi | 1 ≤ i ≤ n, pi ∈ Pos(si)} if s = f(s1, . . . , sn)
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The subterm of the term s at position p ∈ Pos(s) denoted as s|p is defined recursively:

s|p =

{
s if p = ε

si|p′ if p = i.p′ and s = f(s1, . . . , sn)

The set of all variable positions in s is VPos(s) = {p ∈ Pos(s) | s|p ∈ V}. The set of non-
variable positions of s is FPos(s) = Pos(s) \ VPos(s). We sometimes refer to a non-variable
position p in s as an f -position if f = root(s|p).
|p| denotes the length of the string. The empty string ε represents the root position.
The position p is above the position q (p, q ∈ Pos(s)) if there is a p′ such that p.p′ = q. It

is strictly above q if p′ 6= ε. If p is (strictly) above q, then p is a (proper) prefix of q, denoted as
p ≤ q (p < q). If p ≥ q (p > q), p is (strictly) below q.

p and q are parallel positions, p ‖ q, if p 6= q and neither p is above q nor p is below q.
s[t]p is the term in which the subterm at position p in s has been replaced by t:

s[t]p =

{
t if p = ε

f(s1, . . . , si−1, si[t]p′ , si+1, . . . , sn) if p = i.p′ and s = f(s1, . . . , sn)

This notion is extended to sets of positions: s[t]{p1,...,pk} = s[t]p1 . . . [t]pk (pi ‖ pj for all 1 ≤
i, j ≤ k and i 6= j). We furthermore shorten multiple consecutive replacements s[t1]p1 . . . [tn]pn
to s[t1, . . . , tk]p1,...,pk .

A context C is a term over the signature F plus a special constant � 6∈ F ∪ V called hole,
C ∈ T (F ∪ {�},V). C[t1, . . . , tk] denotes the term in which all holes in C from left to right
(relative to the tree representation of C) have been replaced by t1, . . . , tk.

For a finite set of terms M ⊂ T ,
−→
M is a sequence of all terms in M in an unspecified but

fixed order.
−→
M [i] is the ith term in this sequence.

2.2.3 Substitutions

A substitution σ is a function V → T (F ,V) such that σ(x) 6= x for finitely many x ∈ V . The
domain of a substitution σ is the set of these variables Dom(σ) = {x ∈ V | σ(x) 6= x}.

Given a substitution σ and a set of variables X ⊂ V , σ/X denotes the substitution

σ/X(x) =

{
σ(x) if x ∈ X
x otherwise

In the following we will use the common postfix notation xσ instead of σ(x).
The range of a substitution is the set of all images of σ, Ran(σ) = {xσ | x ∈ Dom(σ)}.

The variable range is the set of all variables in the range VRan(σ) =
⋃
x∈Dom(σ) Var(xσ). In

the following we usually assume w.l.o.g. that Dom(σ) ∩ VRan(σ) = ∅.
The composition of substitutions σ ◦ τ is defined as x(σ ◦ τ) = (xσ)τ .
A substitution σ is more general than a substitution τ if there is a substitution σ′ such that

σ ◦ σ′ = τ .
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Substitutions are extended homomorphically to terms.

sσ =

{
xσ if s = x and x ∈ V
f(s1σ, . . . , snσ) if s = f(s1, . . . , sn)

A term s matches a term t if there is a substitution σ such that sσ = t. In this case, t is an
instance of s and σ is a matcher.

Two terms s, t are unifiable if there is a substitution σ such that sσ = tσ; σ is called a unifier
of s and t. σ is a most general unifier if it is more general than all other unifiers of s and t.

2.3 Term Rewrite Systems (TRSs)

A term rewrite rule (or simply rewrite rule) is a pair of terms l, r, denoted as l → r, such that l
is not a variable and Var(r) ⊆ Var(l).

A term rewrite system (TRS) is a pair of a signature F and a set of rewrite rules R, R =
(F , R). By abuse of notation we will useR and R interchangeably and usually leave the signa-
ture implicit.

A rule l → r is left-linear if l is linear, and right-linear if r is linear. It is non-erasing if
Var(l) \ Var(r) = ∅, and erasing otherwise. In the latter case, all variables in Var(l) \ Var(r)
are erased variables and terms that are bound to these variables are erased. A rule is collapsing
if its right-hand side is a variable (r ∈ V), otherwise it is non-collapsing.

A TRS is left-linear (right-linear, non-erasing, non-collapsing) if all its rules are left-linear
(right-linear, non-erasing, non-collapsing). It is erasing (collapsing) if one of its rules is erasing
(collapsing).

The set of defined symbols D = {root(l) | l→ r ∈ R} is the set of all function symbols in
F that are at the root position of some rule. All other function symbols are constructor symbols
C = F \ D. T (C,V) is the set of constructor terms. A TRS is a constructor system if the
left-hand side of every rule has the form f(s1, . . . , sn) where s1, . . . , sn ∈ T (C,V).

Let R = (F , R) be a term rewrite system. An instance of some left-hand side of a rule is
a reducible expression (redex). The rewrite relation →R of a TRS R is defined as follows: If
(s, t) ∈ →R, then there is a rule l → r and a position p ∈ Pos(s) such that s|p = lσ is a redex.
The redex is replaced by (contracted into) the corresponding instance of the right-hand side in
t, and in t = s[rσ]p. t is a reduct of s. The rewrite relation→R is the reduction relation of the
ARS (T (F ,V),→R).

We usually denote a rewrite step as s → t where we annotate → with some additional
information like the position of the redex and the applied rule if necessary.

In the parallel rewrite relation ‖→ we may apply multiple rewrite steps at once provided that
all redexes occur in parallel positions:

s ‖→∅ s
s ‖→{q}∪P t if s→q u, u ‖→P t and q ‖ p for all p ∈ P
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We trace term positions in derivations using descendants and ancestors. In a rewrite step
s→p,l→r t, the set of one-step-descendants of some q ∈ Pos(s) is

{q} if q ‖ p or q < p
{p.p3.q2 | r|p3 = l|p1} if q = p.p1.p2 where p1 ∈ VPos(l)
∅ otherwise

If o is a one-step-descendant of q, then q is a one-step-ancestor of o. Observe that the
contracted redex is not a one-step-descendant of the redex.

By slight abuse of notation, we will sometimes refer to t|q as the one-step-descendant of the
term s|p if q is the one-step descendant of p.

The descendant relation (ancestor relation) is defined as the reflexive, transitive closure of
the one-step-descendant (one-step-ancestor) relation.

Let α : l1 → r1 and β : l2 → r2 be two rules in a TRS where all variables in β have been
renamed such that Var(α) ∩ Var(β) = ∅. α and β are overlapping if there is a p ∈ FPos(l1)
such that l1|p and l2 are unifiable, i.e., l1|pσ = l2σ. An overlap is a self-overlap if α and β are
instances of the same rule.

The pair (r1σ, r2σ) is a critical pair if l1|p and l2 give rise to an overlap with the most
general unifier σ and furthermore it is not a self-overlap at root position.

A TRS is weakly confluent if all its critical pairs are joinable.
A TRS is overlapping if its rules give rise to critical pairs. It is an overlay system if all

non-variable overlaps are at root position.
A TRS is orthogonal if it is non-overlapping and left-linear. Every orthogonal TRS is con-

fluent.

2.3.1 Context-sensitive term rewriting

A mapping µ : F 7→ P(N) is a replacement map if for all f ∈ F , µ(f) ⊆ {1, . . . , ar(f)}. The
set of µ-replacing positions is defined as follows:

Posµ(s) =

{
{ε} if s is a variable
{ε} ∪

⋃
i∈µ(root(s)) {i.p | p ∈ Posµ(s|i)} otherwise

In context-sensitive term rewriting[12] a rewrite step s →p,R t is also a µ-rewrite step
s ↪→µ t if s|p is a µ-replacing redex, i.e., p ∈ Posµ(s).

2.3.2 Membership-conditional term rewriting

In membership-conditional term rewriting [34] rules are bound to membership conditions:

α : l→ r ⇐ x1 ∈ T1, . . . , xk ∈ Tk

We can apply this rule to a redex lσ if the variable bindings satisfy the membership condition,
xiσ ∈ Ti for all i ∈ {1, . . . , k}.

We will use a simplified membership condition that is also used in [19]: Given a TRSR and
a set of terms T ′ ⊆ T (F ,V), a rewrite step s →p,l→r,R t satisfies the membership condition
∈ T ′, denoted as s ↪→∈T ′ t, ifRan(σ) ⊆ T ′ where σ is the matcher of the redex s|p = lσ.
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2.3.3 Conditional Term Rewrite Systems (CTRSs)

A conditional term rewrite rule is a triple (l, r, c) where l, r ∈ T (F ,V). We will denote con-
ditional rules as l → r ⇐ c. The condition c of is usually a (possibly empty) conjunction of
equations l→ r ⇐ s1 = t1, . . . , sk = tk.

A conditional term rewrite system (CTRS) consists of conditional rules. The underlying
TRS of a CTRS R is Ru = {l→ r | l→ r ⇐ c ∈ R}. A CTRS is left-linear, right-linear,
(non-)erasing, (non-)overlapping, an overlay system, (non-)collapsing, a constructor system or
orthogonal ifRu is.

In contrast to unconditional term rewrite systems, conditional rewrite rules may introduce
new variables in the conditions and on their right-hand side. Variables in a conditional rule that
do not occur in the left-hand side are extra-variables, EVar(l→ r ⇐ c) = Var(r, c) \ Var(l).

We can classify conditional rewrite rules according to the distribution of extra variables as
in [16]. Table 2.1 shows all types of conditional rules.

Table 2.1: Types of the conditional rewrite rule l→ r ⇐ c [16]

Type 1 If Var(r) ∪ Var(c) ⊆ Var(l) (no extra variables)
Type 2 If Var(r) ⊆ Var(l) (extra variables may only occur in conditions)
Type 3 If Var(r) ⊆ Var(l) ∪ Var(c) (all extra variables occur in the conditions)
Type 4 No restrictions

A CTRS is an n-CTRS if all its rules are of type n.
Depending on the interpretation of equality we obtain different rewrite relations. Table 2.2

contains possible interpretations ([4]). We use the notions that are used in [29]. In this thesis we
will mostly focus on oriented CTRSs.

Table 2.2: Classes of conditional rewrite rules [29]

Semi-equational CTRS s = t is equivalent to s↔∗ t
Join CTRS s = t is equivalent to s ↓ t

Oriented CTRS s = t is equivalent to s→∗ t
Normal CTRS s = t is equivalent to s→∗ t

and t is an irreducible ground term w.r.t.Ru

A CTRS is right-stable if Var(l, s1, . . . , si, t1, . . . , ti−1) ∩ Var(ti) = ∅ and all t1, . . . , tk
are linear constructor terms for all rules l→ r ⇐ s1 →∗ t1, . . . , sk →∗ tk.

An extra variable z in a rule α : l → r ⇐ s1 →∗ t1, . . . , sk →∗ tk is a determin-
istic extra variable, if it first occurs on the right-hand side of a condition: z ∈ Var(ti) \
Var(s1, t1, . . . , si−1, ti−1, si) for some i ∈ {1, . . . , k}.

A conditional rewrite rule is deterministic if all its extra variables are deterministic, i.e.,

Var(si) ⊆ Var(l, t1, . . . , ti−1) and Var(r) ⊆ Var(l, t1, . . . , tk)

A deterministic CTRS (DCTRS) is an oriented 3-CTRS such that every rule is deterministic.
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The rewrite relation of an oriented CTRS R is defined inductively. We define the uncondi-
tional TRSsRn:

R0 = ∅

Rn+1 =

{
lσ → rσ | l→ r ⇐ s1 →∗ t1, . . . , sk →∗ tk ∈ R

and siσ →∗Rn tiσ for all i ∈ {1, . . . , k}

}

The rewrite relation→R of the CTRSR is→R=
⋃
n∈N →Rn .

The depth of a conditional rewrite step s →R t is the smallest n such that s →Rn t.
depth(s→∗R t) is the maximum depth of all rewrite steps in the rewrite sequence s→∗ t.
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CHAPTER 3
Unravelings

3.1 Transformations of CTRSs into TRSs

3.1.1 Introduction

Conditional term rewrite systems (CTRSs) are a natural extension of unconditional ones (TRSs).
Yet, the inherent complexity that is caused by the recursive evaluation of the conditions makes it
difficult to analyze them because most non-syntactic properties depend on whether a conditional
rule is applicable or not. Several properties that are satisfied for unconditional TRSs are therefore
not satisfied for CTRSs.

Example 7 ([4, Example 3.6]). The following join 1-CTRS that is based on [4, Example 3.6] is
non-overlapping and left-linear and therefore orthogonal.

R =

{
f(x)→ b⇐ f(x) ↓ x

a→ f(a)

}

Yet, it is not confluent: f(a) rewrites to b because the condition f(a) ↓ a is satisfiable.
Furthermore, f(a) → f(f(a)) → f(b). Yet, f(b) is irreducible because the condition f(b) ↓ b
is not satisfiable. Therefore, b and f(b) are not joinable. Hence,R is not confluent.

Other properties of unconditional term rewriting depend on the decidability whether a rule is
applicable or not. These properties do not properly take into account the additional complexity
of evaluating the conditions. Termination only implies the absence of infinite rewrite paths until
we reach a normalform. In unconditional rewriting this implies that we will reach a normalform
by continuous rewriting using finitely many rewrite steps. In conditional rewriting a rewrite
sequence might consist of finitely many conditional rewrite steps, yet one single conditional
rewrite step might cause infinitely many rewrite steps in the conditions or infinite recursion steps.
Termination therefore does not imply that we reach a normalform in finite time for conditional
rewriting.
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Example 8 ([13]). Consider the single conditional rule a → b ⇐ f(a) →∗ b. The condition
is obviously not satisfied, therefore the rewrite relation of this single rule is empty. The CTRS
is therefore terminating. It is even effectively terminating as is pointed out in [29] which means
that the rewrite relation is effectively computable.

Practically, in order to show that a is irreducible we would attempt to rewrite a using the
only rewrite rule. Therefore, we need to evaluate the condition f(a) →∗ b. Yet, when we try to
evaluate f(a) we immediately end up trying to rewrite a and therefore we obtain a loop.

For CTRSs termination loses its intuitive meaning of the absence of infinite evaluation parts.
In [13] it is therefore proposed to introduce a new termination notion, so-called operational
termination that implies that all proof attempts must terminate successfully or fail within a finite
number of steps. This notion therefore also includes recursive steps and rewrite steps in the
conditions.

From a practical point of view, implementing conditional term rewriting is far from being
trivial, not only because of the recursive evaluations of conditions but also because we should
somehow cache failed conditional evaluations for efficiency reasons.

Transforming systems into equivalent, simpler ones is a common approach in many fields for
both theoretical and practical reasons. It is therefore intuitive to try to develop a transformation
from conditional rewrite systems into unconditional ones.

In order to benefit from such a transformation we need to prove properties of these transfor-
mations themselves. [4] contains one such transformation that slightly resembles the unraveling
for normal CTRSs that is introduced in [14], yet it is only used to construct counterexamples for
confluence properties.

3.1.2 Overview

In the following we will mainly consider oriented CTRSs. This is due to the fact that we can
simulate a join CTRS by an oriented CTRS by translating join conditions s ↓ t into two oriented
conditions s→∗ z, t→∗ z where z is a new extra variable.

Unravelings

Although transformations of CTRSs have been used before (e.g. [4][5] [10]), [14] is the first
work known to us that mainly focuses on properties of transformations of conditional term
rewrite systems. In this work, so-called unravelings are introduced, a class of transformations.

In [14, Definition 3.1], a transformation is an unraveling U if it is complete for joinability
(↓R⊆↓U(R)) and modular w.r.t. unconditional rules (U(R ∪ T ) = U(R) ∪ T where T is a set
of unconditional rules).

We will refer to all transformations as unravelings that preserve the original signature (F ⊆
U(F) where F is the original signature while U(F) is the signature of the transformed system).

In [14], two unravelings are presented, one for join 1-CTRSs and one for normal 1-CTRSs.
In both unravelings, one new function symbol is introduced for each conditional rule. In this
function symbol, all conditions of the rule are encoded simultaneously, along with some vari-
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ables to avoid extra variables in the transformed system. In the following we will call this
transformation simultaneous unraveling.

In [15] this approach is extended to deterministic CTRSs, yet without formal proofs. The
definition of the transformation considers the iterative nature of deterministic extra variables and
therefore encodes the conditions not simultaneously but sequentially instead. For this purpose,
one new function symbol is introduced for every condition. Again, some variable bindings are
also encoded to avoid extra variables in the transformed system. The unraveling is slightly re-
fined in [27]. In the following we will call this refined transformation the sequential unraveling.

In [7] we have proven several new interesting results for this unraveling.
In [25], this sequential unraveling is optimized by minimizing the number of variable bind-

ings. Here, we will refer to this transformation as optimized unraveling.
In [8] we extend our analysis results of [7] to the sequential unraveling and the optimized

sequential unraveling or disproved them.

Other Transformations

In [1] a transformation is introduced that is based on [35]. In this transformation, root symbols of
the left-hand side of conditional rules are replaced by new function symbols with a higher arity.
These additional arguments are then used to encode the conditions. Since multiple conditions
are encoded in parallel positions we can evaluate them in parallel.

In this transformation we need to replace unconditional rules by equivalent rules using the
new signature so that the transformation does not satisfy the condition U(R ∪ T ) = U(R) ∪ T .
Hence this transformation and transformations that are based on this approach are not unravel-
ings.

Example 9 ([1, Example 5]). The following conditional rules define the function abs that returns
the absolute value of a number:

abs(x)→ x⇐ x ≥ 0→∗ true
abs(x)→ −x⇐ x < 0→∗ true

The symbol abs is the root symbol of both conditional rules. We therefore replace every oc-
currence of the unary function abs inR by a new ternary function abs ′ that holds two additional
conditional arguments. In the first conditional argument we encode the condition of the first con-
ditional rule, in the second conditional argument the one of the second conditional rule. It is
therefore possible to evaluate multiple conditions in parallel. Indeed the main motivation for the
transformation is to apply parallel narrowing to functional logic programs that are represented
by a CTRSs.

An uninitialized conditional argument contains the special constant ⊥. This constant indi-
cates that we can can insert the corresponding condition.

The transformation returns the following unconditional rules

abs ′(x,⊥,⊥)→ abs ′(x, x ≥ 0, x < 0)

abs ′(x, true, y2)→ x

abs ′(x, y1, true)→ −x
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The transformation of [1] is only suitable for overlay CTRSs because overlapping rewrite
steps might leave “garbage” terms from outdated evaluation attempts that can cause unsound-
ness:

Example 10 ([1, Example 6]). Consider the following non-overlay CTRS and its transforma-
tion:

R =

{
f(g(x))→ x⇐ x→∗ s(0)

g(s(x))→ g(x)

}
T[1](R) =


f ′(g(x),⊥)→ f ′(g(x), x)

f ′(g(x), s(0))→ x

g(s(x))→ g(x)


In the CTRSR, f(g(s(0))) rewrites to s(0) and to f(g(0)). The latter term is irreducible be-

cause the condition 0 →∗ s(0) is not satisfiable. Nevertheless we obtain the following unsound
derivation in T[1](R):

f ′(g(s(0)),⊥)→ f ′(g(s(0)), s(0))→ f ′(g(0), s(0))→ 0

To overcome this limitation for non-overlay systems, some extensions have been presented
in the past.

In [30] and [32], the transformation is extended by an additional circumfix symbol { } that
adds layers around contracted redexes. This additional symbol is syntactically complex. The
CTRS of Example 10 is transformed into the following unconditional rules:

T[32](R) =



f ′(g(x),⊥)→ f ′(g(x), {x})
f ′(g(x), {s(0)})→ {x}

g(s(x))→ {g(x)}
f ′({x}, y)→ {f ′(x,⊥)}

g({x})→ {g(x)}
s({x})→ {s(x)}
{{x}} → {x}


We do not obtain the unsound derivation anymore:

f ′(g(s(0)),⊥)→ f ′(g(s(0)), {s(0)})→ f ′({g(0)}, {s(0)})
→ {f ′(g(0),⊥)} → {f ′(g(0), {0})}

where the last term is irreducible.
In [6] we introduced another transformation that encodes the conditional arguments in func-

tion symbols that overlap with other rules. We then encode the condition not in f but in g instead
and obtain the following transformed TRS:

T[6](R) =


f(g′(x,⊥))→ f(g′(x, x))

f(g′(x, s(0)))→ x

g′(s(x), y)→ g′(x,⊥)


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f(g′(s(0),⊥))→ f(g′(s(0), s(0)))→ f(g′(0,⊥))→ f(g′(0, 0))

Similar to [32] we do not obtain unsoundness anymore.

The transformation of [32] is computationally equivalent for many confluent CTRSs, i.e.,
every normalizing rewrite sequence in the transformed TRS corresponds to a normalizing rewrite
sequence in the original CTRS. The transformation of [6] also yields computational equivalence
for some non-overlay CTRSs, yet although it has syntactically better properties than [32], the
latter is computational equivalent for more CTRSs.

In this thesis we will focus on unravelings because of their simple nature. We will also
provide examples that the unraveling of [29] is sound for certain CTRSs for which other trans-
formations are not sound (see e.g. Example 42 or Example 43).

3.2 Unravelings

Unravelings represent the simplest class of transformations of CTRSs into TRSs. They stem
from [14] and have been refined for various purposes ([15,24,29]). Unravelings differ from
other transformations mainly by preserving the original signature which enables them to keep
unconditional original rules. Other transformations like e.g. [1] require a transformation of
terms.

The main idea of simulating conditional rewrite sequences using unravelings is as follows:
An oriented conditional rule α : l → r ⇐ s →∗ t is applicable to a term lσ if there is a
derivation sσ →∗ tσ. From this we derive the basic idea of transformations: If a term matches
the left-hand side of a conditional rule l, then we wrap the left-hand side of the condition in some
term. If after some rewrite steps this wrapped conditional argument rewrites into the right-hand
side of the condition we reproduce the right-hand side of the conditional rule:

l→ r ⇐ s→∗ t =⇒

{
l→ C[s] introduction rule

C[t]→ r elimination rule

The conditional rule is therefore split into two unconditional rules. The rewrite step in which
the conditional argument is introduced is the introduction step, the corresponding rule is the
introduction rule. In the second rewrite step the conditional argument is eliminated, therefore the
rule is the elimination rule and a rewrite step in which this rule is applied is an elimination step.
If an elimination rule is applied to a term containing a conditional term, the term is eliminated.

For this approach it is necessary to introduce new function symbols to avoid overlaps with
existing rules. Hence, the signature of the transformed system is a superset of the original
signature F . We denote the mapping in the following way: U(R) = (U(F),U(R)).

We simulate a conditional rewrite step lσ →R rσ in unravelings in the following way:

lσ →U(R) C[sσ]→∗U(R) C[tσ]→U(R) rσ

We will refer to terms in T (F ,V) (short T ) as original terms, the set of terms in the trans-
formed system is T (U(F),V) (short U(T )) and terms in T (U(F),V) \ T (F ,V) are mixed
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terms. In unravelings, new symbols are introduced to wrap the conditional argument(s). We call
symbols in U(F) \ F U-symbols. Terms that are rooted by a U-symbol are U-terms.

3.2.1 Simultaneous Unraveling

In [14], two unravelings are defined, one for join-1-CTRSs Ujoin and one for oriented 1-CTRSs
Usim. In the unraveling Usim, we introduce a new function symbol Uα for each conditional rule
α and then encode the conditions simultaneously in it.

Definition 1 (simultaneous unraveling Usim [14]). Let α be the conditional rule l→ r ⇐ s1 →∗
t1, . . . , sk →∗ tk, (k ≥ 1), then

Usim(α) =


l→ Uα(

conditions︷ ︸︸ ︷
s1, . . . , sk,

variables︷︸︸︷−→
X ) introduction rule

Uα(t1, . . . , tk︸ ︷︷ ︸
conditions

,
−→
X︸︷︷︸

variables

)→ r elimination rule


where X = Var(l).1

Unconditional rules remain unchanged: Usim(l→ r) = {l→ r}.
The unraveled TRS Usim(R) of some CTRSR is

Usim(R) =
⋃
α∈R

Usim(α)

The unraveling for join systems corresponds to the unraveling Usim if we replace a join-
condition s ↓ t by two oriented conditions s→∗ z, t→∗ z where z is a new variable.

In this unraveling, every conditional rule is split into two unconditional rules. In the first
rule, a term rooted by a U-symbol (a U-term) is introduced along with the left-hand sides of the
conditions.

The right-hand sides of the rule and the conditions might contain variables that do not occur
in the right-hand side of the conditions. In order to avoid extra variables in U(R), we need
to preserve the variable bindings of the left-hand side of the introduction rule. Hence, we can
partition the arguments of U-symbols into two groups: The conditions are inside conditional
arguments while the variable bindings are inside variable arguments.

Conditions are verified in the following way: If a term matches the left-hand side of the
conditional rule we rewrite it to the U-term containing all left-hand sides of the conditions. If the
left-hand sides of the conditions rewrite to the corresponding right-hand sides, then we reproduce
the right-hand side of the conditional rule, using the variable bindings stored in the variable
arguments. The simulation of conditional rewrite steps using the simultaneous unraveling is
illustrated in Figure 3.1.

1At some points in [14] r is used instead of l. Furthermore, in [14, Definition 6.1] all variables are encoded from
left to right so that for non-left-linear conditional rules there are multiple variable arguments for the same variable.
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lσ Uα(s1σ, . . . , skσ,
−→
Xσ)

Uα(t1σ, . . . , tkσ,
−→
Xσ)rσ

introduction step

U(R)

U(R)∗

elimination step

U(R)

R

Figure 3.1: Simulation of conditional rewrite steps using simultaneous unraveling

Example 11. Consider the normal 1-CTRS of Example 2:

R =


s(p(x))→ x

p(s(x))→ x

pos(0)→ false

pos(s(0))→ true

pos(s(x))→ true ⇐ pos(x)→∗ true
pos(p(x))→ false ⇐ pos(x)→∗ false


The conditional rules are unraveled in the following way:

Usim(pos(s(x))→ true ⇐ pos(x)→∗ true) =

{
pos(s(x))→ Uα(pos(x), x)

Uα(true, x)→ true

}

Usim(pos(p(x))→ false ⇐ pos(x)→∗ false) =

{
pos(p(x))→ Uβ(pos(x), x)

Uβ(false, x)→ false

}
We can simulate a conditional rewrite sequence starting from pos(s(s(0))) in Usim(R):

pos(s(s(0)))
(1)−→ Uα(pos(s(0)), s(0))→ Uα(true, s(0))

(2)−→ true

The rewrite step (1) is the introduction step and (2) the elimination step.
Observe, that although R is confluent Usim(R) is not. For instance, pos(p(s(0))) has two

normalforms:
pos(p(s(0)))→ pos(0)→ false

pos(p(s(0)))→ Uβ(pos(s(0)), s(0))→ Uβ(true, s(0))

The simultaneous unraveling can be applied to oriented 1-CTRSs and also to deterministic
CTRSs provided the left-hand sides of the conditions do not contain any extra variables.

3.2.2 Sequential Unraveling

The definition of deterministic CTRSs implies that in every conditional rule l → r ⇐ s1 →∗
t1, . . . , sk →∗ tk the variables in the conditions are arranged in the following way:

Var(si) ⊆ Var(l, t1, . . . , ti−1) for all i ∈ {1, . . . , k} and Var(r) ⊆ Var(l, t1, . . . , tk)
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We therefore obtain all possible variable bindings for deterministic extra variables by se-
quentially evaluating the conditions. Hence, in the unraveling that is introduced in [15] the con-
ditions are also evaluated in a sequential way. For this purpose it introduces one new U-symbol
and one new unconditional rule for each condition.

The first argument in these sequential unravelings is the conditional argument while all other
arguments contain variable arguments. Apart from introduction and elimination rules we obtain
switch rules in which we switch to the next condition.

The following unraveling stems from [15] with a slight modification in [29].

Definition 2 (sequential unraveling Useq [29, Definition 7.2.33]). Let α be the deterministic
conditional rule l→ r ⇐ s1 →∗ t1, . . . , sk →∗ tk, then Useq(α) is defined as follows:

Useq(α) =



l→ Uα1 (s1,
−→
X1) introduction rule

Uα1 (t1,
−→
X1)→ Uα2 (s2,

−→
X2) switch rule

...
...

...
...

Uαk−1(tk−1,
−−−→
Xk−1)→ Uαk (sk,

−→
Xk) switch rule

Uαk (tk,
−→
Xk)→ r elimination rule


where Xi = Var(l, t1, . . . , ti−1).

Unconditional rules remain unchanged: Useq(l→ r) = {l→ r}.
The unraveled TRS Useq(R) of some CTRS is

Useq(R) =
⋃
α∈R

Useq(α)

Conditions are verified one by one. If a condition is satisfied we apply a switch rule and
evaluate the next condition, until all conditions are satisfied. Figure 3.2 illustrates the verification
of conditions in the sequential unraveling.

Example 12. Consider the following deterministic CTRS:

R =


x+ 0→ x

x+ s(y)→ s(x+ y)

quad(x)→ z ⇐ x+ x→∗ y, y + y →∗ z


Although R is a 3-CTRS all extra variables are deterministic. Therefore Useq(R) returns

an unconditional TRS without extra variables. Using the sequential unraveling, the conditional
rule is unraveled into three unconditional rules:

Useq(quad(x)→ z ⇐ x+ x→∗ y, y + y →∗ z) =


quad(x)→ Uα1 (x+ x, x)

Uα1 (y, x)→ Uα2 (y + y, x, y)

Uα2 (z, x, y)→ z


quad(s(0)) rewrites to s(s(s(s(0)))) inR because the condition x+x→∗ y is satisfied for

x = s(0) and y = s(s(0)), and y + y →∗ z for z = s(s(s(s(0)))).
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lσ Uα1 (s1σ,
−→
X1σ)

Uα2 (s2σ,
−→
X2σ)

Uα3 (s3σ,
−→
X3σ)

Uα1 (t1σ,
−→
X1σ)

Uα2 (t2σ,
−→
X2σ)

Uαk (tkσ,
−→
Xkσ)rσ

introduction step

U(R)
U(R)

∗

switch step

U(R)

U(R)

∗

switch step

U(R)

elimination step

U(R)

R

Figure 3.2: Simulation of conditional rewrite steps in the sequential unraveling

In Useq(R), this corresponds to the following rewrite sequence:

quad(s(0))→ Uα1 (s(0) + s(0), s(0))→∗ Uα1 (s(s(0)), s(0))

→ Uα2 (s(s(0)) + s(s(0)), s(0), s(s(0)))→∗ Uα2 (s(s(s(s(0)))), s(0), s(s(0)))

→ s(s(s(s(0))))

Observe that we can simulate Usim using Useq by grouping the terms on the left-hand side
and right-hand side of the conditions of the conditional rule l → r ⇐ s1 →∗ t1, . . . , sk →∗ tk
into one term l→ r ⇐ (s1, . . . , sk)→∗ (t1, . . . , tk) before applying the unraveling.

3.2.3 Sequential Optimized Unraveling

In Usim and Useq we encode all variable bindings that occur during the simulation of a conditional
rewrite step. In [24], the variable arguments are optimized, meaning that only those variable
bindings are stored that are still required in the remaining conditions in the right-hand side of
the conditional rule. For instance, in Example 12 all variables are immediately used in the
condition and then never used again. We therefore do not need to store any variable arguments
in the U-terms in order to obtain a TRS without extra variables.

We refer to this unraveling as the sequential optimized unraveling Uopt:

Definition 3 (sequential optimized unraveling Uopt [17]). Let α be the deterministic conditional
rule l→ r ⇐ s1 →∗ t1, . . . , sk →∗ tk, then Uopt(α) is defined in the following way:

29



Uopt(α) =



l→ Uα1 (s1,
−→
X1) introduction rule

Uα1 (t1,
−→
X1)→ Uα2 (s2,

−→
X2) switch rule

...
...

...
...

Uαk−1(tk−1,
−−−→
Xk−1)→ Uαk (sk,

−→
Xk) switch rule

Uαk (tk,
−→
Xk)→ r elimination rule


where Xi = Var(l, t1, . . . , ti−1) ∩ Var(ti, si+1, ti+1, . . . , sk, tk, r).

For unconditional rules Uopt(l→ r) = {l→ r}.
The unraveled TRS Uopt(R) for some CTRSR is defined as

Uopt(R) =
⋃
α∈R

Uopt(α)

Unraveling the CTRS of Example 12 with Uopt yields a simpler TRS than Useq:

Example 13. Consider the DCTRS of Example 12. Unraveling the conditional rule of Exam-
ple 12 using Uopt yields the following unconditional rules:

Uopt(quad(x)→ z ⇐ x+ x→∗ y, y + y →∗ z) =


quad(x)→ Uα1 (x+ x)

Uα1 (y)→ Uα2 (y + y)

Uα2 (z)→ z


The U-terms in the unraveled TRS do not encode the variables x and y because they are not

used in the right-hand side of the conditional rule or any of the following condition.
The rewrite sequence of Example 12 is simulated in Uopt(R) in the following way:

quad(s(0))→ Uα1 (s(0) + s(0))→∗ Uα1 (s(s(0)))→ Uα2 (s(s(0)) + s(s(0)))

→ Uα2 (s(s(s(s(0)))))→ s(s(s(s(0))))

3.3 Ultra-Properties

Transformations allow us to simulate conditional rewrite sequences using unconditional rewrite
steps. Furthermore, we can analyze properties of the transformed TRS and thereby obtain a
better understanding of CTRSs. In [14], the notion of ultra-properties was introduced for this
purpose:

Definition 4 (ultra-properties [14, Definition 3.2]). A CTRS R has the ultra-property U-P for
some unraveling U, if U(R) has the property P .

Ultra-properties can describe certain properties of CTRSs better than the original defini-
tion of these properties for CTRSs because they flatten the structure of conditional rules and
therefore also consider properties that are hidden in the conditions. We can explain why cer-
tain CTRSs do not satisfy certain criteria of unconditional TRSs by analyzing the corresponding
ultra-properties:
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Example 14. Example 7 presented a join-1-CTRS that is not confluent although it is orthogonal.
The join CTRS of Example 7 corresponds to the following - also orthogonal - deterministic
CTRS:

R =

{
f(x)→ b⇐ f(x)→∗ z, x→∗ z

a→ f(a)

}

Unraveling the conditional rule gives rise to the following unconditional rules:

Useq(f(x)→ b⇐ f(x)→∗ z, x→∗ z) =


f(x)→ Uα1 (f(x), x)

Uα1 (z, x)→ Uα2 (x, x, z)

Uα2 (z, x, z)→ b


The unraveled TRS is still non-overlapping, yet it is not orthogonal because of the non-left-

linear rule Uα2 (z, x, z)→ b.

The notion of ultra-properties depends on the concrete unraveling that is used. We obtain dif-
ferent ultra-properties for different unravelings. By analyzing the definitions of the unravelings,
we can show that Useq-left-linearity and Uopt-left-linearity are equivalent, but for right-linearity
and non-erasingness they differ:

Example 15. Consider the conditional rule

α : f(x)→ g(y)⇐ x→∗ y.

It is unraveled in the following way using Useq and Uopt:

Useq(f(x)→ g(y)⇐ x→∗ y) =

{
f(x)→ U1

α(x, x)

U1
α(y, x)→ g(y)

}

Uopt(f(x)→ g(y)⇐ x→∗ y) =

{
f(x)→ U1

α(x)

U1
α(y)→ g(y)

}

The conditional rule is right-linear and erasing. Furthermore, it is Uopt-right-linear and
Uopt-non-erasing, but not Useq-right-linear and not Useq-non-erasing, i.e., Useq-erasing.

3.4 Term Translations

In derivations of an unraveled CTRS we obtain U-terms that represent intermediate evaluation
steps in conditions. These terms correspond to a meta-state in the CTRS. For theoretical and
also practical purposes it is preferable to be able to map such intermediate evaluations into terms
in the original CTRS. For all original terms, such term mappings must be the identity of terms.
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Backtranslation tb

In an ongoing derivation it is unknown, whether a conditional argument in some U-term is
eventually satisfied. In such cases it is intuitive to replace the U-term by the corresponding
left-hand side of the conditional rule. We can extract the variable arguments of the U-term
and insert them into the left-hand side of the conditional rule. We refer to this mapping as the
backtranslation tb:

Definition 5 (backtranslation). The mapping tb : U(T )→ T is defined as

tb(t) =


x if t = x ∈ V
f(tb(t1), . . . , tb(tar(f))) if t = f(t1, . . . , tar(f)) and f ∈ F
l tb(σ) if t = Uαj (u,

−→
Xjσ)

where l is the left-hand side of the rule α. We extend tb to substitutions in the following way:
x tb(σ) = tb(xσ).

Observe that tb cannot always be defined in a satisfying way for Uopt because Uopt does not
preserve all variable bindings of the left-hand side of a conditional rule:

Example 16. Consider the conditional rule of Example 5 and its unraveled TRS using Uopt:

Uopt(or(x, y)→ true ⇐ x→∗ true) =

{
or(x, y)→ Uopt,α

1 (x)

Uopt,α
1 (true)→ true

}

We obtain the derivation or(false, false) → Uopt,α
1 (false). Backtranslating the U-term

using tb yields the following term:

tb(Uopt,α
1 (false)) = or(x, y) tb(σ) = or(x, y)

where σ is the empty substitution because the U-term does not encode any variable arguments.
Using Useq we obtain the following rules:

Useq(or(x, y)→ true ⇐ x→∗ true) =

{
or(x, y)→ U seq,α

1 (x, x, y)

U seq,α
1 (true, x, y)→ true

}

Useq(R) gives rise to the derivation or(false, false) → U seq,α
1 (false, false, false). Back-

translating the U-term using tb now yields the following original term:

tb(U seq,α
1 (false, false, false)) = or(x, y) tb(σ) = or(false, false)

where σ = {x 7→ false, y 7→ false}.

Since Useq encodes all variables of the left-hand side in U-terms, tb is properly defined for
all Useq(R).
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Translation Forward tf

If we know that the condition of a U-term is satisfied we can use the translation forward tf
that replaces U-terms by the corresponding right-hand side of the conditional rule where we
extract the variable arguments from the U-term similar to tb. This will be in particular useful for
non-erasing CTRSs:

Definition 6 (translation forward). The mapping tf : U(T )→ T is defined as

tf(t) =


x if t = x ∈ V
f(tf(t1), . . . , tf(tar(f))) if t = f(t1, . . . , tar(f)) and f ∈ F
r tf(σ) if t = Uαj (u,

−→
Xjσ)

where r is the right-hand side of the rule α and (by abuse of notation) we extend tf to substitu-
tions in the following way: x tf(σ) = tf(xσ).

Similar to tb, tf is not always properly defined. In particular 3-CTRSs contain extra variables
in the right-hand side. These variables are not encoded in all corresponding U-terms. Therefore,
there is no term to which these variable arguments could be mapped.

Example 17. Consider the conditional rule of Example 12 that is unraveled into the following
rules using Uopt:

Uopt(quad(x)→ z ⇐ x+ x→∗ y, y + y →∗ z) =


quad(x)→ Uα1 (x+ x)

Uα1 (y)→ Uα2 (y + y)

Uα2 (z)→ z


Consider the rewrite step quad(0) → Uα1 (0 + 0) in Uopt(R). Translating the contracted

redex tf(Uα1 (0 + 0)) yields z because the U-term does not contain a variable argument z.

tf is properly defined for Useq(R) and Uopt(R) if Var(r) ⊆ Var(l), i.e., for 2-CTRSs for
Useq and Uopt.

33





CHAPTER 4
Soundness

4.1 Introduction

In order to prove properties like (operational) termination or confluence using unravelings we
need to prove equivalence properties of the rewrite relation of the transformed TRS and the
original CTRS. One major challenge is that U(R) has a richer signature than R. In derivations
in U(R) we not only obtain terms in T (F ,V) but also terms with new symbols in U(F) \ F .
Therefore, the rewrite relation of the transformed TRS usually contains the rewrite relation of
the CTRS. This direction is called completeness.

Soundness is usually not satisfied. In fact we obtain different soundness properties for dif-
ferent transformations. Nevertheless, we need soundness to prove properties like confluence
or (operational) non-termination. The reason for unsoundness are terms that represent partially
evaluated conditions, i.e., U-terms. In the transformed CTRS, U-terms may be “crossed” with
other U-terms in rewrite steps using non-linear rules, and also may rewrite variable arguments
inside U-terms.

In the past soundness properties of unravelings have been investigated several times:

• In [14] an example is presented that is a counterexample for soundness of Usim. The
normal 1-CTRS contains a sophisticated combination of non-linear rules. It is then shown
that left-linearity is sufficient for soundness of normal 1-CTRSs for Usim, where some
flaws of the proof are corrected in [29].

• In [24] it is shown that a combination of context sensitive rewriting and rewriting using
the membership condition is sufficient for soundness of the optimized unraveling Uopt for
deterministic CTRSs.

• In [31], it is proven that Useq is sound for context-sensitive rewriting using the replacement
map µ(Uαj ) = {1} for all U-symbols Uαj ∈ U(F) \ F , and µ(f) = {1, . . . , ar(f)} for all
original symbols f ∈ F .
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• In [25], it is shown that left-linearity is sufficient for soundness of Uopt for DCTRSs. This
result also implies soundness for Uopt-right-linear and Uopt-non-erasing CTRSs. In [25]
it is also shown that soundness for Uopt implies soundness for Useq. The reverse does not
hold. Example 5 is in fact a counterexample.

• In [7] we improved the results of [14] by proving that we even obtain soundness for non-
left-linear CTRSs in which all non-left-linear variables are erased. We call this property
weak left-linearity. We also proved soundness for Usim-non-erasing normal 1-CTRSs,
Usim-right-linear normal 1-CTRSs and confluent normal 1-CTRSs while providing coun-
terexamples for many other syntactic criteria.

• In [8] we adapt some of our results in [7] to DCTRSs, yet the case of deterministic TRSs is
significantly more complex. Hence, we obtained many negative results, like unsoundness
for non-erasing DCTRSs and unsoundness for confluent DCTRSs. Nonetheless we proved
weaker soundness results for these cases.

In this chapter we will investigate soundness properties and analyze which syntactic prop-
erties are sufficient for soundness. For this purpose we will in detail analyze possible sources
for unsoundness, providing an in-depth-analysis of counterexamples. We will provide two ap-
proaches to prove soundness: First we define syntactic criteria for which we can prove soundness
directly using the term translations tb and tf. Since this approach is of only limited use we will
define a rewrite strategy that implies soundness. We finally prove that every derivation in weakly
left-linear and also weakly right-linear DCTRSs can be translated into such a U-eager rewrite
sequence, thus proving soundness.

4.2 Soundness Properties

The terminology of soundness and completeness properties differs in the literature. Soundness is
sometimes called simulation-completeness or simulation-soundness while complete unravelings
are sometimes called simulation-preserving. In order to avoid confusion we introduced a unified
framework for transformations of CTRSs into TRSs that also covers unravelings in [6]. We
therefore follow the notions of this paper where, for the sake of readability, we skip the mapping
of terms that is required for transformations that are not unravelings.

In order to show that we actually can simulate conditional rewrite sequences in U(R) we
define completeness for reduction or simply completeness.

Definition 7 (complete w.r.t. reducibility [6]). An unraveling U is complete w.r.t. reducibility
(or simply complete) for a CTRS R if for every derivation u →∗R v such that u, v ∈ T also
u→∗U(R) v.

In [14, Theorem 4.2] it is shown that Usim is complete. The proof itself can be adapted to
the unravelings Uopt and Useq.

Completeness is important to prove termination properties because using completeness we
can prove that an infinite derivation in the original CTRS must translate into an infinite deriva-
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tion in the transformed system. Therefore, termination of the transformed system implies (oper-
ational) termination of the original CTRS.

For transformations we usually obtain completeness because transformations increase the
power of the rewrite relation by adding new symbols, yet they do not decrease it.

The other direction, that u→∗U(R) v implies u→∗R v for all u, v ∈ U(T ) is usually not sat-
isfied because we cannot rewrite mixed terms in R. We therefore restrict this notion to original
terms, and obtain soundness w.r.t. reducibility:

Definition 8 (soundness w.r.t. reducibility [6]). An unraveling U is sound w.r.t. reducibility (or
simply sound) for a CTRSR if for all u, v ∈ T such that u→∗U(R) v also u→∗R v.

The notions of soundness and completeness are not symmetric because in both notions we
only consider original terms. Mixed terms represent an unfinished attempt to verify some con-
dition, hence we do not consider them in the original CTRS.

Nonetheless, we obtain such terms in derivations and they might reveal some unexpected
behaviour. We therefore do not obtain soundness for reductions in general.

Another soundness property that we are interested in is soundness w.r.t. joinability:

Definition 9 (soundness w.r.t. joinability). An unraveling U is sound w.r.t. joinability for a CTRS
R if for all u, v ∈ T such that u ↓U(R) v then u ↓R v.

Soundness w.r.t. joinability is important to prove confluence of CTRSs using unravelings
because we can prove that two terms are joinable in the conditional rewrite system by proving
that they are joinable in the transformed TRS.

Our original notion of soundness requires that the last term in a reduction is a term without
U-terms. Nonetheless, we can use the backtranslation to translate U-terms that occur in the last
term of a reduction and thereby obtain a more strict soundness property.

Definition 10 (soundness w.r.t. the backtranslation tb). An unraveling U is sound w.r.t. tb for a
CTRSR if for all u ∈ T such that u→∗U(R) v also u→∗R tb(v).

Soundness w.r.t. tb is stronger than soundness, and since tb is total for all terms in the
transformed system we can use it to prove further soundness properties. There is the following
important connection between soundness w.r.t. tb and soundness for joinability:

Lemma 1. If an unraveling U is sound w.r.t. tb for a CTRS R, then it is also sound w.r.t. join-
ability.

Proof. Let u, v ∈ T be two terms such that u ↓U(R) v. This implies that there is a w ∈ U(F)
such that u →∗U(R) w and v →∗U(R) w. If U is sound w.r.t. tb then therefore u →∗R tb(w) and
v →∗R tb(w). Therefore, u ↓R v.

We will show in Example 23 that the reverse of this result does not hold.
Observe that soundness w.r.t. tb does not imply tb(u)→∗ tb(v) for all u, v ∈ U(T ). Exam-

ple 6 is a counterexample.
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4.3 Sortedness

We encode variable bindings and conditional arguments in U-terms. Therefore, one source of
soundness are rewrite steps in variable bindings that modify the status of satisfiability of the
conditional argument.

Example 18. Consider the following CTRS and its unravelled corresponding system (the un-
ravelings Usim, Useq and Uopt are equivalent in this case):

R =


f(x)→ x⇐ s(x)→∗ t(x)

s(a)→ t(b)

a→ b

 U(R) =


f(x)→ Uα1 (s(x), x)

Uα1 (t(x), x)→ x

s(a)→ t(b)

a→ b


The unraveled TRS gives rise to the following derivation:

f(a)→ Uα1 (s(a), a) ‖→ Uα1 (t(b), b)→ b

In R, f(a) does not rewrite to b. In fact, we cannot apply the conditional rule to any term
because the condition s(x)→∗ t(x) is unsatisfiable.

Observe that by adding one rule we obtain the CTRSR ∪ {t(b)→ s(b)} which is confluent.
Still, we obtain unsoundness by the same argument as above.

In the unsound derivation of Example 18, the conditional argument rewrites to a matching
right-hand side of the condition although the condition is unsatisfiable. Still it seems that the
condition is satisfied because of rewrite steps in variable arguments that intercept rewrite steps
in the conditional arguments.

We obtain derivations like in Example 18 only if certain conditions are met. Let α : l →
r ⇐ s →∗ t be some conditional rewrite rule. We might obtain unsoundness if there are two
substitutions σ and τ such that xσ →∗ xτ for all x ∈ Var(α), and sσ →∗R tτ . In this case we
obtain the following derivation in U(R):

lσ →U(R) U
α
1 (sσ, ~Xσ)→∗U(R) U

α
1 (tτ, ~Xτ)→ rτ

This derivation is unsound if lσ 6→∗R rτ . Since lσ →∗R lτ and rσ →∗R rτ this is equivalent
to the requirement that lσ 6→∗R rσ and lτ 6→∗R rτ , i.e., that the conditions are not satisfied for
neither σ nor τ .

Figure 4.1 illustrates all possible derivations inR in the conditions.
In order to avoid unsoundness in this case we need to restrict the distribution of variables in

the conditions. We need to make sure that if sσ →∗ tτ and xσ →∗ xτ , then also sσ →∗ tσ or
sτ →∗ tτ .

In many practically relevant cases this is trivially satisfied. For instance, for normal 1-CTRSs
t is a ground term so that tτ = tσ = t.

In general, it is enough to ensure that the left-hand side of a condition and its right-hand
side do not share variables. We call this property sortedness because it depends on the order of
variables in conditions and, as we will show later, also on the order of conditions.
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Figure 4.1: Derivations in non-sorted conditions

For the terms in Figure 4.1, sortedness implies Var(s) ∩ Var(t) = ∅. In this case, sσ =
sσ/Var(s) = s (σ/Var(s)◦τ/Var(t)) and tτ = tτ/Var(t) = t (σ/Var(s)◦τ/Var(t)). The rewrite sequence
sσ →∗ tτ is therefore equivalent to s (σ/Var(s) ◦ τ/Var(t))→∗ t (σ/Var(s) ◦ τ/Var(t)).

Hence, the condition is satisfied for the matcher (σ/Var(s) ◦ τ/Var(t)) inR such that we obtain
the following rewrite sequence inR:

lσ →∗ l (σ/Var(s) ◦ τ/Var(t))→ r (σ/Var(s) ◦ τ/Var(t))→∗ rτ

Therefore, the rewrite sequence lσ →∗U(R) rτ is sound.
For general deterministic CTRSs sortedness is defined as follows:

Definition 11 (sortedness). A CTRS is sorted if for all rules l → r ⇐ s1 →∗ t1, . . . , sk →∗
tk ∈ R, Var(s1, . . . , si) ∩ Var(ti, . . . , tk) = ∅ for all i ∈ {1, . . . , k}.

The following example shows that sortedness and therefore soundness depends on the order
of conditions:

Example 19. Consider the following CTRS and its unraveling (Uopt and Useq return the same
TRS).

R =


c←

a ←d
f(x)→ x⇐ x→∗ c, d→∗ x

 U(R) =



c←
a ←d

f(x)→ Uα1 (x, x)

Uα1 (c, x)→ Uα2 (d, x)

Uα2 (x, x)→ x


The condition of the conditional rule is unsatisfiable: The only term that satisfies the second

condition d→∗ x is d itself, yet the first condition d→∗ c is not satisfiable.
The CTRS is not sorted because Var(s1) ∩ Var(t2) = {x}. In the transformed DCTRS we

obtain the following unsound derivation:

f(a)→ Uα1 (a, a)→ Uα1 (c, a)→ Uα2 (d, a)→ Uα2 (d, d)→ d

If we transform the conditional rule using the simultaneous unraveling Usim we obtain the
rules:

Usim(f(x)→ x⇐ x→∗ c, d→∗ x) =

{
f(x)→ Uα(x, d, x)

Uα(c, x, x)→ x

}
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We obtain a similar unsound derivation:

f(a)→ Uα(a, d, a)→ Uα(c, d, a)→ Uα(c, d, d)→ d

We can convertR into a sorted CTRS by switching positions of the conditions:

U(f(x)→ x⇐ d→∗ x, x→∗ c) =


f(x)→ Uα1 (d, x)

Uα1 (x, x)→ Uα2 (x, x)

Uα2 (c, x)→ x


Now, in order to apply the rule Uα1 (x, x)→ Uα2 (x, x), xmust be bound to some successor of

d, yet the only candidate is d itself. Since d does not rewrite to c we cannot apply the elimination
rule. Therefore, we do not obtain the unsound derivation anymore.

4.4 Negative Results

Sortedness implies that a satisfied conditional argument in the transformed TRS actually cor-
responds to a satisfiable condition in the original CTRS if the unraveling is sound. Since the
rewrite sequence that we can extract from the conditional argument is shorter than the original
rewrite sequence itself this gives us the possibility to prove soundness using induction on the
length of derivations. We will therefore prove soundness for sorted CTRSs (or some stricter
property).

4.4.1 Non-Linear CTRSs

In Example 18 and Example 19 we obtain unsoundness for non-sorted CTRSs. Sortedness itself
is not sufficient to obtain soundness. We showed unsoundness of Uopt for the (sorted) CTRS in
Example 5.

For the unraveling Usim (and therefore also Useq) [14] presents an unsound normal 1-CTRS.
Since the right-hand sides of the conditions are ground terms this CTRS is also sorted accord-
ing to our definition. In the following we will analyze unsoundness examples to give a better
intuition for sufficient criteria for soundness.

The following example is a slight simplification of this CTRS:

Example 20 (Unsoundness-Example of [14]). Consider the following CTRS and its unraveling
(that is equivalent for Useq, Uopt and also for Usim):

R =



a→ c→ e
↗↘ ↘

b→ d→ k

f(x)→ x⇐ x→∗ e
g(x, x)→ h(x, x, f(k))

h(d, x, x)→ A


U(R) =



a→ c→ e
↗↘ ↘

b→ d→ k

f(x)→ Uα1 (x, x)

Uα1 (e, x)→ x

g(x, x)→ h(x, x, f(k))

h(d, x, x)→ A


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We obtain the following derivation in U(R):

g(f(a), f(b))→∗ g(Uα1 (a, a), Uα1 (b, b))→∗ g(Uα1 (c, d), Uα1 (c, d))

→ h(Uα1 (c, d), Uα1 (c, d), f(k))→∗ h(d, Uα1 (c, d), f(k))

→∗ h(d, Uα1 (k, k), Uα1 (k, k))→ A

Yet, in R there is no such derivation in R: We can apply the non-linear rule g(x, x) →
h(x, x, f(k)) only if x is bound to a common reduct of f(a) and f(b). In order to apply the
rule h(d, x, x) → A this common reduct must rewrite to d. Additionally, this common reduct
must have a common reduct with f(k). In U(R), the terms Uα1 (c, d) and Uα1 (k, k) satisfy this
condition. The corresponding derivations are shown in Figure 4.2.

f(a)

Uα1 (c, d)

f(b)

d Uα1 (k, k)

f(k)

∗ ∗

∗ ∗ ∗

Figure 4.2: Derivations leading to unsoundness in Example 20

Yet, inR there are no such terms. Figure 4.3 shows all common reducts of f(a) and f(b) in
R and all rewrite steps between them. It is easy to see that there is no term that rewrites to d
and has a common reduct with f(k).

f(c)

c f(k)f(e) d

f(d)

ke

Figure 4.3: Common reducts of f(a) and f(b) inR in Example 20

Observe that this example is also a counterexample for soundness of joinability because
g(f(a), f(b)) ↓U(R) A but g(f(a), f(b)) 6↓R A.

In order to better understand how non-linear rules give rise to unsoundness we incrementally
construct a similar counterexample for all soundness properties that we defined above.
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Example 21 (new unsoundness example). Consider the following CTRS and its unraveling:

R1 =


c←

a ←d
f(x)→ x⇐ x→∗ c

 U(R1) =


c←

a ←d
f(x)→ Uα1 (x, x)

Uα1 (c, x)→ x


The unraveled TRS gives rise to the following derivation:

f(a)→ Uα1 (a, a)→∗ Uα1 (c, d)→ d

The variable argument in the U-term Uα1 (c, d) for x is d. Hence, although this derivation is
sound w.r.t. tb this derivation contradicts a similar property: we cannot backtranslate all single
rewrite steps using tb because tb(Uα1 (c, d)) = f(d) and tb(d) = d, yet f(d) 6→∗R1

d.
Now, consider the CTRSR1 ∪ R2 whereR2 is defined as follows:

R2 =


c←

b ←d
g(x, x)→ h(x, x)


By a similar argument as above, the following derivation in U(R1 ∪ R2)

f(b)→ Uα1 (b, b)→∗ Uα1 (c, d)→ d

is also sound for tb because f(b) →R1∪R2 b →R1∪R2 d, although the backtranslation of the
rewrite step Uα1 (c, d)→ d does not return a valid derivation in the original CTRS:

f(d) 6→∗R1∪R2
d

Now consider the following derivation in U(R1 ∪ R2):

g(f(a), f(b))→∗ g(Uα1 (a, a), Uα1 (b, b))→∗ g(Uα1 (c, d), Uα1 (c, d))

→ h(Uα1 (c, d), Uα1 (c, d))→ h(d, Uα1 (c, d))→ h(d, d)

This derivation is sound too because both arguments in the initial term rewrite to d:

g(f(a), f(b)) ‖→R g(a, b) ‖→R g(d, d)→R h(d, d)

Nevertheless, if we skip the last rewrite step we obtain a derivation that is not sound for tb:
InR, the only term that is a common reduct of f(a) and f(b) that rewrites to d is d itself. In the
unraveling there is also the term Uα1 (c, d) that can be reduced to d in a later rewrite step. Since
tb(Uα1 (c, d)) = f(d), the derivation

g(f(a), f(b))→∗ g(Uα1 (c, d), Uα1 (c, d))→ h(Uα1 (c, d), Uα1 (c, d))→ h(d, Uα1 (c, d))

is unsound for tb because g(f(a), f(b)) does not rewrite to h(d, f(d)) inR.
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Next we want to develop a counterexample for soundness w.r.t. joinability. Since the terms
f(d) and Uα1 (c, d) are not joinable in U(R1 ∪ R2) this derivation is not a counterexample for
soundness w.r.t. joinability.

In order to force these two terms to become joinable in the unraveling we introduce two new
constants k,m using the following rewrite rules:

R3 =

 c ←k←
d ←m


Now, f(d) and Uα1 (c, d) are joinable in U(R1 ∪ R2 ∪ R3):

f(d)→ Uα1 (d, d) ‖→ Uα1 (k,m) ‖← Uα1 (c, d)

Furthermore, Uα1 (c, d) is a common reduct of f(a) and f(b) that is joinable with d.
Therefore, g(f(a), f(b)) and h(d, f(d)) are joinable in U(R1 ∪ R2 ∪ R3). Yet f(c) is a

common reduct of f(a), f(b) that is joinable with d (f(c) →∗ k ∗← d) in R1 ∪ R2 ∪ R3.
Nonetheless, Uα1 (c, d) is also joinable with m (Uα1 (c, d)→ d→ m) but f(c) 6↓ m.

Therefore, the successor h(m, f(k)) of h(d, f(d)) is not joinable with g(f(a), f(b)) in R
but it is in U(R1 ∪ R2 ∪ R3):

g(f(a), f(b))→∗ h(d, Uα1 (c, d))→∗ h(m,Uα1 (k, k))←∗ h(m, f(k))

Hence the unravelings are not sound w.r.t. joinability for R1 ∪ R2 ∪ R3. Observe that
R1 ∪ R2 ∪ R3 is ultra-non-erasing.

By adding the rule eq(x, x)→ true we then obtain unsoundness as in Example 5.
Since the right-hand side of the conditional rule is not an irreducible ground term anymore,

we also add a rule c → e and update the conditional rule accordingly. In total, we obtain the
following CTRS and its unraveling:

R =



e←
a→ c ←↗↘ k←
b→ d ←m

f(x)→ x⇐ x→∗ e
g(x, x)→ h(x, x)

eq(x, x)→ true


U(R) =



e←
a→ c ←↗↘ k←
b→ d ←m
f(x)→ Uα1 (x, x)

Uα1 (e, x)→ x

g(x, x)→ h(x, x)

eq(x, x)→ true


The following derivation in U(R) is unsound for the reasons that we stated above:

eq(g(f(a), f(b)), h(m, f(k)))→∗ eq(g(Uα1 (c, d), Uα1 (c, d)), h(m, f(k)))

→∗ eq(h(Uα1 (c, d), Uα1 (c, d)), h(m, f(k)))

→∗ eq(h(d, Uα1 (c, d)), h(m, f(k)))

→∗ eq(h(m,Uα1 (k, k)), h(m,Uα1 (k, k)))→ true

By modifying the example, especially simplifying the unsound derivation, we obtain the
CTRS of Example 20.
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In the previous example we see that although the conditional arguments and variable argu-
ments might become incompatible a sorted CTRS must satisfy several syntactical properties so
that we obtain unsoundness. The unsound CTRS is non-left-linear and non-right-linear, further-
more it is erasing (also for the corresponding ultra-properties).

Without the erasing rule eq(x, x) → true , we cannot remove U-terms in a derivation if
the condition is not satisfied. Although we do not obtain soundness for non-erasing systems in
general we will later prove soundness of certain non-erasing CTRSs, based on this observation.

4.4.2 Non-Erasing CTRSs

U-terms are used to simulate conditional rewrite steps. In 5 we have shown that U-terms are
potentially dangerous if they represent an unfinished evaluation because they might have differ-
ent properties than original terms. In rewrite sequences in ultra-non-erasing CTRSs that start
and end in an original term all U-terms are eliminated and therefore the conditional argument
was successfully verified. Hence, ultra-non-erasing CTRSs are one possible candidate to obtain
soundness.

In fact, we have proven soundness for ultra-non-erasing normal 1-CTRSs for Usim in [7],
although we do not obtain soundness w.r.t. tb (and therefore neither soundness w.r.t. joinability)
(see Example 21). Yet, for DCTRSs we do not obtain soundness. We presented the following
counterexample in [8]:

Example 22 ([8, Example 3]). Consider the following DCTRS and its unraveling (again Useq

and Uopt are equivalent)

R =



a→ c
↗↘

b→ d

t(k)←
s(c) ←t(l)

g(x, x)→ h(x, x)

f(x)→ 〈x, y〉 ⇐ s(x)→∗ t(y)


U(R) =



a→ c
↗↘

b→ d

t(k)←
s(c) ←t(l)

g(x, x)→ h(x, x)

f(x)→ Uα1 (s(x), x)

Uα1 (t(y), x)→ 〈x, y〉


f(a) and f(b) have the common reducts 〈d, k〉 and 〈d, l〉, yet, there is no term u that is a

common reduct of f(a) and f(b) that rewrites to 〈d, k〉 and 〈d, l〉 (see Figure 4.4).
In the unraveling, f(a) and f(b) rewrite to Uα1 (s(c), d). This term also rewrites to 〈d, k〉

and 〈d, l〉. Figure 4.5 shows the rewrite steps.
In order to apply the non-linear rule g(x, x)→ h(x, x) in R we need some common reduct

of f(a) and f(b) that rewrites to 〈d, k〉 and 〈d, l〉. As we have shown in Figure 4.4, there is no
such term. We therefore obtain the following unsound derivation in U(R):

g(f(a), f(b)) ‖→ g(Uα1 (s(a), a), Uα1 (s(b), b)) ‖→ g(Uα1 (s(c), a), Uα1 (s(c), b))

‖→ g(Uα1 (s(c), d), Uα1 (s(c), d))→ h(Uα1 (s(c), d), Uα1 (s(c), d))

‖→ h(Uα1 (t(k), d), Uα1 (t(l), d)) ‖→ h(〈d, k〉, 〈d, l〉)
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f(a) 〈a, l〉

〈a, k〉

f(b) 〈b, k〉

〈d, k〉

〈b, l〉

〈d, l〉

Figure 4.4: Rewrite steps inR in Example 22

f(a) Uα1 (s(a), a)

Uα1 (s(c), d)

Uα1 (t(k), d) 〈d, k〉

Uα1 (s(b), b)f(b) Uα1 (t(l), d) 〈d, l〉

∗

∗

Figure 4.5: Rewrite steps in U(R) in Example 22

In [7] we furthermore showed soundness of Usim for confluent normal 1-CTRSs. Again, this
result does not hold for DCTRSs:

Example 23 (Unsoundness for confluent DCTRSs). Consider the following DCTRS that is an
extension of the DCTRS in 22. Like in the previous example Useq and Uopt return the same TRS.

R =



a→ c
←↗↘ e←

b→ d

k
←e←

l
t(k)←

s(c)
←t(l)

s(e)→ t(e)

g(x, x)→ h(x, x)

f(x)→ 〈x, y〉 ⇐ s(x)→∗ t(y)



U(R) =



a→ c
←↗↘ e←

b→ d

k
←e←

l
t(k)←

s(c)
←t(l)

s(e)→ t(e)

g(x, x)→ h(x, x)

f(x)→ Uα1 (s(x), x)

Uα1 (t(y), x)→ 〈x, y〉


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The CTRS is confluent but the derivation g(f(a), f(b)) →∗ h(〈d, k〉, 〈d, l〉) is still unsound
by the same argument as in Example 22. Yet, this does not contradict soundness w.r.t. joinability:

g(f(a), f(b))→∗ g(f(e), f(e))→∗ h(f(e), f(e))→∗ h(〈e, e〉 , 〈e, e〉)
h(〈d, k〉, 〈d, l〉)→∗ h(〈e, e〉 , 〈e, e〉)

4.5 Extraction of Rewrite Sequences

In order to prove soundness of derivations we have to translate rewrite steps in arguments of
U-terms into evaluations of conditions in conditional rewrite steps. For this purpose, we must
extract rewrite steps from the conditional argument and the variable arguments of U-terms and
additionally show that rewrite steps inside variable arguments do not change the status of the
satisfiability of the conditions.

For this purpose we need to find all introduction and elimination steps of a U-term in a
derivation. Therefore we define two mappings ti (for “trace introduction”) and te (for “trace
elimination”).

For a given rewrite sequence A : u1 →∗ un, the mapping ti returns in which rewrite step
of A and at which position an introduction step is applied to an ancestor of a U-term, i.e., if
um|p is the U-term Uαj (v,

−→
Xjσ), then ti(A,m, p) returns an index i and position q such that

ui|q →∗ um|p and the i − 1st rewrite step in A is an introduction step of which ui|q is the
contracted redex. Therefore, ui|q = Uα1 (s1τ,

−→
X1τ) and ui−1|q = lτ where l is the left-hand side

of α. Observe that there may be multiple introduction steps because of non-linear rules.
We also introduce an auxiliary mapping tia that traces U-terms to the closest preceding

switch or introduction step(s), i.e., if (i, q) ∈ tia(A,m, p) then ui|q = Uαj (sjθ,
−→
Xjθ).

Definition 12 (ti). The mapping ti(A,m, p) of a derivation A : u1 →p1 u2 · · · →pn un+1,
an index m ∈ {1, . . . , n+ 1} and a position p maps the U-term at the given position to all
preceding introduction steps:

ti(A,m, p) =


undefined if um|p is not a U-term
{(m, p)} if pm = p and root(um−1|p) is not a U-symbol
ti(A,m− 1, p) if pm = p and root(um−1|p) is a U-symbol⋃
q∈Q ti(A,m− 1, q) otherwise where Q are all one-step ancestors of p

The auxiliary mapping tia maps the U-term to all immediately preceding switch or introduc-
tion steps:

tia(A,m, p) =


undefined if um|p is not a U-term
{(m, p)} if pm = p⋃
q∈Q tia(A,m− 1, q) otherwise where Q are all one-step ancestors of p

The mapping te is the symmetric counterpart of ti: It returns the index and position of
the succeeding elimination step for a U-term in a derivation. Therefore, if um|p is the U-term
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Uαj (v,
−→
Xjσ) and (i, q) ∈ te(A,m, p), then ui|q = Uαk (tkτ,

−→
Xkτ) and ui+1|q = rτ . Observe

that there may be multiple elimination steps or none at all because of non-linear and erasing
rules. We also introduce the auxiliary mapping tea that returns the closest succeeding switch or
elimination step.

Definition 13 (te). The mapping te(A,m, p) of a derivation A : u1 →p1 u2 · · · →pn un+1,
an index m ∈ {1, . . . , n+ 1} and a position p maps the U-term at the given position to all
succeeding elimination steps:

te(A,m, p) =


undefined if um|p is not a U-term
{(m, p)} if pm+1 = p and root(um+1|p) is not a U-symbol
te(A,m+ 1, p) if pm+1 = p and root(um+1|p) is a U-symbol⋃
q∈Q te(A,m+ 1, q) otherwise where Q are all one-step descendants of p

The auxiliary mapping tea maps the U-term to all immediately succeeding switch or elimi-
nation steps:

tea(A,m, p) =


undefined if um|p is not a U-term
{(m, p)} if pm+1 = p⋃
q∈Q tea(A,m+ 1, q) otherwise where Q are all one-step descendants of p

In derivations in DCTRSs that start from an original term, all U-terms must be preceded
by at least one introduction step. Therefore |ti(A,m, p)| ≥ 1 for all U-terms um|p in such a
derivation. If |ti(A,m, p)| = 1, then um|p is uniquely introduced.

If te(A,m, p) = ∅ for a U-term um|p, then the U-term is erased, if |te(A,m, p)| ≥ 1 it is
eliminated, and if |te(A,m, p)| = 1 it is uniquely eliminated.

We call ui−1|q = lσ the introduction term for all (i, q) ∈ ti(A,m, p). Dually, for all (i, q) ∈
te(A,m, p), ui+1|q = rτ is the elimination term. The redexes of switch rules are switch terms.

Example 24. The unraveled TRS of Example 12 is

Useq(R) =



x+ 0→ x

x+ s(y)→ s(x+ y)

quad(x)→ Uα1 (x+ x, x)

Uα1 (y, x)→ Uα2 (y + y, x, y)

Uα2 (z, x, y)→ z


In the following derivation we can trace all U-terms. For better readability we label the

positions of U-terms in the following derivation:

quad(s(0))→

(1)︷ ︸︸ ︷
Uα1 (s(0) + s(0), s(0))→∗

(2)︷ ︸︸ ︷
Uα1 (s2(0), s(0))

→ Uα2 (s2(0) + s2(0), s(0), s2(0))︸ ︷︷ ︸
(3)

→ Uα2 (s4(0), s(0), s2(0))︸ ︷︷ ︸
(4)

→ s4(0)
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tia of the U-term at (2) returns (1) because it is the first introduced U-term. tia of (4) returns
(3), the first U-term after the switch step. tea of (1) is (2), and tea of (3) is (4).

ti of (4) returns the U-term at (1), therefore quad(s(0)) is the introduction term of (4), and
(4) is uniquely introduced.

te for (1) returns (4) so that s4(0) is the elimination term. (1) therefore is uniquely elimi-
nated.

For the unsound derivation of Example 20 tracing U-terms is complex because some U-terms
have multiple one-step descendants and one-step ancestors, and some are erased:

Example 25. The unsound derivation of Example 20 contains U-terms that have multiple one-
step ancestors and one-step descendants:

g(f(a), f(b))→ g(

(1)︷ ︸︸ ︷
Uα1 (a, a), f(b))→ g(Uα1 (a, a),

(2)︷ ︸︸ ︷
Uα1 (b, b))→∗ g(

(3)︷ ︸︸ ︷
Uα1 (c, d),

(4)︷ ︸︸ ︷
Uα1 (c, d))

→ h(Uα1 (c, d)︸ ︷︷ ︸
(5)

, Uα1 (c, d)︸ ︷︷ ︸
(6)

, f(k))→ h(d, Uα1 (c, d), f(k))→∗ h(d, Uα1 (k, k)︸ ︷︷ ︸
(7)

, Uα1 (k, k))→ A

ti of the U-term at (3) is {(1)}, and ti of (4) is {(2)}. ti of (5), (6) and (7) returns {(1), (2)}.
Therefore, these U-terms are not uniquely introduced.

The U-terms at (6) and (7) are erased while the U-term at (5) (and therefore also (1), (2),
(3) and (4)) is eliminated. te of (6) and (7) therefore is the empty set and te of (5) is (5) itself.

After we traced derivations of U-terms we can extract subderivations from the conditional
argument and the variable arguments:

Lemma 2. Let U(R) be the unraveling of some DCTRS R and A : u1 →p1 u2 · · · →pn un+1

be a derivation in U(R). Let um|p = Uαj (v,
−→
Xjτ) and (i, q) ∈ tia(A,m, p). Then ui|q =

Uαj (sjσj ,
−→
Xjσj) and ui|q →∗U(R) um|p.

Dually, if (i, q) ∈ tea(A,m, p), then ui|q = Uαj (tjσj+1,
−→
Xjσj+1) and um|p →∗U(R) ui|q.

Proof. This result is an immediate consequence of Definition 12 and Definition 13, and the
definition of one-step ancestors and one-step descendants.

The following lemma shows how we can extract derivations in conditional arguments and
variable arguments in U-terms using ti and te.

Lemma 3. Let U(R) be the unraveling of some DCTRS R and A : u1 →p1 u2 · · · →pn

un+1 be a derivation in U(R). Let um|p = Uαj (v,
−→
Xjτ), (i, q) ∈ tia(A,m, p) and ui|q =

Uαj (sjσj ,
−→
Xjσj). Then sjσj →∗U(R) v and xσj →∗U(R) xτ for all x ∈ Xj .

Dually, if (i, q) ∈ tea(A,m, p) and ui|q = Uαj (tjσj+1,
−→
Xjσj+1), then v →∗U(R) tjσj+1 and

xτ →∗U(R) xσj+1 for all x ∈ Xj .
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Proof. Let (i, q) ∈ tia(A,m, p). We proof this lemma by induction on m− i for tia.
If m − i = 0, then tia(A,m, p) = {(m, p)}, Uαj (v,

−→
Xjτ) = Uαj (sjσj ,

−→
Xjσj) and therefore

by Lemma 2 v = sjσj and xτ = xσj for all x ∈ Xj .
Otherwise, m − i ≥ 1. In this case pi−1 6= p and tia(A,m, p) =

⋃
p′∈P tia(A,m − 1, p′)

where P are all one-step ancestors of p.
Let p′ ∈ P be a one-step ancestor of um|p such that (i, q) ∈ tia(A,m−1, p′) and um−1|p′ =

Uαj (v′,
−→
Xjτ

′). By the inductive hypothesis we obtain sjσj →∗U(R) v
′ and xσj →∗U(R) xτ

′.

By the definition of one-step ancestors we obtain Uαj (v′,
−→
Xjτ

′) →≤1U(R) U
α
j (v,

−→
Xjτ), there-

fore v′ →≤1U(R) v and xτ ′ →≤1U(R) xτ for all x ∈ Xj .
For tea, the proof is analogously. Let (i, q) ∈ tea(A,m, p). By induction on i − m: If

i−m = 0, then tea(A,m, p) = {(m, p)}.
Otherwise, let p′ be a one-step descendants p such that (i, q) ∈ tea(A,m + 1, p′). By the

inductive hypothesis, v′ →∗ tjσj+1 and xτ ′ →∗ xσj+1 where um+1|p′ = Uαj (v′,
−→
Xjτ

′) and

ui|q = Uαj (tjσj+1,
−→
Xjσj+1).

Since also v →≤1U(R) v
′ and xτ →≤1U(R) xτ

′ for all x ∈ Xj our result holds.

We can immediately extend this result to entire rewrite sequences from induction terms to
elimination terms:

Lemma 4 (extraction of arguments in U-terms). Let U(R) be the unraveling of some DCTRS
R and A : u1 →p1 u2 · · · →pn un+1 be a derivation in U(R). Let um|p be a U-term of the
conditional rule α : l → r ⇐ s1 →∗ t1, . . . , sk →∗ tk, let (i, q) ∈ ti(A,m, p) such that
ui−1|q = lσ1 is the introduction term, and let (j, o) ∈ te(A,m, p) such that uj+1|o = rσk+1 is
the elimination term of um|p.

Then there are matchers σ2, . . . , σk such that xσ1 →∗ xσ2, . . . , xσk →∗ xσk+1, and
s1σ1 →∗ t1σ2, . . . , skσk →∗ tkσk+1 in U(R).

Proof. By repeated application of Lemma 2 and Lemma 3, we obtain a derivation

ui−1|q = lσ1 → Uα1 (s1σ1,
−→
X1σ1))

→∗ Uα1 (t1σ2,
−→
X1σ2)→ Uα2 (s2σ2,

−→
X2σ2)

→∗ Uα2 (t2σ3,
−→
X2σ3)→ Uα3 (s3σ4,

−→
X3σ3)

...
...

→∗ Uαk (tkσk+1, ~Xkσk+1)→ rσk+1 = uj+1|o

and hence the derivations siσi →∗Uopt(R) tiσi+1 and xiσi →∗Uopt(R) xσi+1 for all x ∈ Xi (i ∈
{2, . . . , k}).

Observe that the sum of the length of all extracted derivations is smaller than the number of
rewrite steps between the introduction term and the U-term.

The previous lemmata prove that we can extract derivations from the conditional and the
variable arguments of U-terms. This will play an important role in our soundness proofs.
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4.6 Term Translations

One approach is to prove soundness using the backtranslation tb and the translation forward
tf. For this purpose we need to prove that we can translate all rewrite steps in a derivation in
a transformed CTRS into valid conditional rewrite sequences. This is not possible in general.
Example 21 and Example 6 are counterexamples for tb. Also for tf this is not possible:

Example 26. Consider the following CTRS and its unraveling:

R =


a ←c←
b

f(x)→ x⇐ a→∗ x

 U(R) =


a ←c←
b

f(x)→ Uα1 (a, x)

Uα1 (x, x)→ x


Consider the derivation

f(b)→ Uα1 (a, b)→ Uα1 (c, b)→ Uα1 (c, c)→ c.

This derivation is sound because f(b) →R f(c) →R c. The first rewrite step of the deriva-
tion f(b)→ Uα1 (a, b) is translated into f(b)→ b using tf, yet this is not a valid rewrite step in
R because the condition a→∗ b is not satisfied.

Nevertheless we will analyze in the following in which cases we obtain valid derivations in
the original CTRS if we translate rewrite steps in derivations using tf and tb.

4.6.1 Right-Separate CTRSs

Consider a derivation u1 → u2 → · · ·un in some transformed TRS U(R). In general translating
all single rewrite steps tf(ui)→∗ tf(ui+1) does not yield valid derivations in the original CTRS
R, in particular not if ui contains a U-term for which the condition is not satisfied.

Example 27. Consider the CTRS of Example 5 and its unraveled TRS using Uopt:

Uopt(or(x, y)→ true ⇐ x→∗ true) =

{
or(x, y)→ Uα1 (x)

Uα1 (true)→ true

}
We obtain the following rewrite step in the transformed TRS:

or(false, false)→ Uα(false)

We cannot translate this rewrite step into a valid conditional rewrite step with tf because
tf(Uα(false)) = true .

In order to apply tf the conditional argument must be satisfiable for all U-terms, i.e., we
must apply an elimination rule to for all U-terms. This is satisfied ifR is ultra-non-erasing, and
in fact we have shown in [7] that Usim is sound for (ultra-)non-erasing normal 1-CTRSs. Yet for
DCTRSs we obtain unsoundness for ultra-non-erasingness and sortedness (see Example 22).
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tf is not properly definable for 3-CTRSs because the right-hand side of conditional rules may
contain extra variables that are not encoded in all U-terms (see Example 17). tf is therefore only
properly defined for 2-CTRSs. Yet, we obtain unsoundness even for sorted, ultra-non-erasing
2-DCTRSs:

Example 28. Consider the following sorted, ultra-non-erasing, deterministic 2-CTRS and its
unraveled TRS using Uopt:

R =



a→ c
↗↘

b→ d

s(k) ←t(a)←
s(l)

g(x, x)→ h(x, x)

f(x, y)→ y ⇐ s(x)→∗ t(y)


Uopt(R) =



a→ c
↗↘

b→ d

s(k) ←t(a)←
s(l)

g(x, x)→ h(x, x)

f(x, y)→ Uα1 (s(x), y)

Uα1 (t(y), y)→ y


Consider the following derivation in Uopt(R):

g(f(k, b), f(l, b)) ‖→ g(Uα1 (s(k), b), Uα1 (s(l), b)) ‖→ g(Uα1 (t(a), b), Uα1 (t(a), b))

→ h(Uα1 (t(a), b), Uα1 (t(a), b)) ‖→ h(Uα1 (t(c), c), Uα1 (t(d), d)) ‖→ h(c, d)

This derivation is unsound for the following reason: Consider some f -rooted term f(u, v).
The condition is only satisfiable if u ∈ {k, l}, and v is a or some successor of a.

Consider the term g(f(k, b), f(l, b)). Before applying the non-linear rule we need to apply
the conditional rule to both f -rooted terms since k and l do not have a common reduct.

The condition in both f -terms is not satisfiable because a 6→∗ b. Yet, we can rewrite b to c
and d. Both of these terms are also successors of a, hence the conditions are satisfiable.

In both f -terms, b must rewrite to the same term because otherwise we cannot apply the
non-linear rule. Therefore the only possible rewrite sequences inR are

g(f(k, b), f(l, b))→∗ g(f(k, c), f(l, c))→∗ g(c, c)→ h(c, c)

g(f(k, b), f(l, b))→∗ g(f(k, d), f(l, d))→∗ g(d, d)→ h(d, d)

g(f(k, b), f(l, b))→∗ g(f(k, c), f(l, d))→∗ g(c, d) 6→ h(c, d)

Therefore, the derivation is unsound.

In the previous example the term g(Uα1 (t(a), b), Uα1 (t(a), b)) contains two equal U-terms.
Yet, their introduction terms are different: f(k, b) and f(l, b). This is not a problem if they give
rise to the same elimination term, yet the condition only becomes satisfiable after the variable
argument has been rewritten to c or d. In the elimination step, it therefore seems that the variable
argument in the introduction term already contained c or d while it was b.

We need to avoid this asynchronicity between the conditional argument and the variable
arguments. For this purpose we define a variable condition that is stronger than sortedness: If a
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condition in a conditional rule α is not satisfied for some σ, then it must remain unsatisfied for
all τ where xσ →∗ xτ for all x ∈ Var(α).

This is only satisfied if the left-hand side of a conditional rule does not share variables with
the right-hand sides of the conditions since otherwise one rewrite step in the variable argument
can flip the status of satisfiability. If variables in the right-hand sides of conditions do not occur
in variable arguments this is not possible.

In order to also preserve the bindings of variables on the right-hand side of the conditional
rule the right-hand sides of the conditions also must not share variables with the right-hand side
of the rule. We call this property right-separateness because the variables on the right-hand
sides of the conditions must be separate from all other variables:1

Definition 14 (right-separateness). A CTRS R is right-separate if for all conditional rules α :
l → r ⇐ s1 →∗ t1, . . . , sk →∗ tk ∈ R, ti ∩ Var(l) = ∅, Var(ti) ∩ Var(r) = ∅ and
Var(ti) ∩ Var(tj) = ∅ if i 6= j for all i, j ∈ {1, . . . , k}.

Using right-separateness, we know that if a U-term is eliminated, then its conditions are
already satisfied for the variable bindings used in the introduction step. Furthermore, right-
separateness of a deterministic CTRS implies that all variables on the right-hand side of a con-
ditional rule already occur on the left-hand side and that the CTRS is sorted.

Because of ultra-non-erasingness, all U-terms are eventually eliminated. We therefore can
replace all U-terms by the corresponding original term using the translation-forward tf.

The CTRS in Example 28 is not right-separate because for the conditional rule Var(t(y)) ∩
Varr 6= ∅:

f(x, y)→ y ⇐ s(x)→∗ t(y)

Applying tf to all U-terms in the unsound derivation in this example returns the derivation:

g(f(k, b), f(l, b))→∗ g(b, b)→∗ h(b, b)→∗ h(c, d)

Yet, f(k, b) does not rewrite to b in the original CTRS.
In order to prove soundness of Uopt for right-separate, ultra-non-erasing DCTRSs we follow

the proof structure of [8]:
First we prove a monotony property of tf.

Lemma 5 (monotony property of tf [8, Lemma 15]). Let u→p v be a rewrite step in a deriva-
tion of some unraveled CTRS U(R). Let furthermore tf(u|p) →∗R tf(v|p). Then tf(u|q) →∗R
tf(v|q′) for all one-step-descendants v|q′ of u|q.

Proof. By case distinction on p and q: The case p = q is trivial.
If p ‖ q, then the only one-step descendant of q is q itself and u|q = v|q, hence tf(u|q) =

tf(v|q).
If p < q, then for all one-step descendants q′ of q u|q = v|q′ and therefore also tf(u|q) =

tf(v|q).
Finally, if q < p, then q = q′. We use induction on |p| − |q|. If |p| − |q| = 0 our result holds

vacuously.
1In [8] we called this property almost-right-stability.
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For the inductive step let p = q.i.o where i ∈ N. We distinguish two cases:
If u|q = f(u1, . . . , un) where f ∈ F is an original symbol then

v|q = f(u1, . . . , ui−1, vi, ui+1, . . . , un).

Furthermore, ui →Uopt(R) vi. By the inductive hypothesis, tf(ui)→∗R tf(vi), which implies

tf(f(u1, . . . , un))→∗R tf(f(u1, . . . , ui−1, vi, ui+1, . . . , un))

If otherwise u|q = Uαj (u′,
−→
Xjσ) is a U-term, then v|q = Uαj (v′,

−→
Xjτ) where α is the rule

l→ r ⇐ c. In this case tf(u|q) = r tf(σ) and tf(v|q) = r tf(τ). We therefore need to show that
r tf(σ)→∗R r tf(τ).

We distinguish two cases whether i is a conditional or a variable position. If i = 1, then
the rewrite step is inside the conditional argument and therefore σ = τ . Therefore also tf(σ) =
tf(τ) and tf(u|q) = tf(v|q).

Otherwise, the rewrite step is inside a variable argument so that xσ →Uopt(R) xτ for x =
−→
Xj [i− 1] and yσ = yτ for all y ∈ Xj \ {x}. By the inductive hypothesis, x tf(σ)→∗R x tf(τ).
Therefore, for all P =

{
p′ ∈ VPos(r) | r|p′ = x

}
r tf(σ) ‖→R r tf(σ)[x tf(τ)]P = r tf(τ)

Next we prove that we can translate single rewrite steps in derivations:

Lemma 6 (technical key result [8, Lemma 16]). Let R be an Uopt-non-erasing and right-
separate DCTRS and let A : u1 →p1 u2 · · · →pn un+1 be a derivation such that un+1 ∈ T .
Then tf(um|pm)→∗R tf(um+1|pm) for all m ∈ {1, . . . , n}.

Proof. We prove this result by induction on the length n of A.
If A has length 1, then we distinguish two cases:
If the rule applied in the last rewrite step is an original rule l → r, then un|pn = lσ and

un+1|pn = rσ. Since l→ r ∈ R also l tf(σ)→R r tf(σ).
If the applied rule is an elimination rule, then un+1|pn = rσ and un|pn = Uαk (tkσ,

−→
Xkσ).

By the definition of tf, tf(un|pn) = r tf(σ) = tf(un+1|pn).
For the inductive step observe that by the inductive hypothesis tf(um|pm)→∗R tf(um+1|pm)

for all m ∈ {2, . . . , n}. Therefore, Lemma 5 holds for these rewrite steps.
We use a case distinction on the first rewrite step of A:
If the applied rule is an original rule l → r, then u1|p1 = lσ and u2|p1 = rσ. Since

l→ r ∈ R also l tf(σ)→R r tf(σ).
If the applied rule is a switch- or elimination rule, then tf(u1|p1) = tf(u2|p1). Observe that

in the case of switch rules all variable bindings of r are preserved.
Finally, if it is an introduction rule, then u1|p1 = lσ1, u2|p1 = Uα1 (s1σ1,

−→
X1σ1), tf(u1|p1) =

l tf(σ1) and tf(u2|p1) = r tf(σ1) where α is the rule l→ r ⇐ s1 →∗ t1, . . . , sk →∗ tk.
Let (m, q) ∈ te(A, 2, p1). By Lemma 4 the derivation A contains the derivations siσi →∗

tiσi+1 and xσi →∗ xσi+1 (x ∈ Xi) for all i ∈ {1, . . . , k} from A.
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By repeated application of the inductive hypothesis and Lemma 5, si tf(σi)→∗R ti tf(σi+1)
and x tf(σi)→∗R x tf(σi+1).

Let in the following σ = σ1 ◦ σ2 ◦ · · · ◦ σk+1 be a combination of all substitutions from left
to right. Observe that lσ1 = lσ, siσ →∗ siσi and by right-separateness and the definition of
deterministic extra variables tiσi+1 = tiσ.

We therefore obtain the following derivations inR:

si tf(σ)→∗R si tf(σi)→∗R ti tf(σi))→∗R ti tf(σ) for all i ∈ {1, . . . , k}

Therefore, the conditions are satisfied for tf(σ) so that l tf(σ) →R r tf(σ). Therefore
tf(u1|p1)→R tf(u2|p1).

Using the two previous technical lemmata we can prove soundness:

Lemma 7 (soundness for ultra-non-erasing, right-separate DCTRSs [8, Lemma 17]). Let R be
a Uopt-non-erasing, right-separate 2-DCTRS, and A : u →∗Uopt(R) v, v ∈ T be a derivation in
its unraveled TRS, then tf(u)→∗R v.

Proof. Let A be the derivation u1 →p1 u2 · · · →pn un+1. By Lemma 6, tf(ui|pi) →∗R
tf(ui+1|pi) for all i ∈ {1, . . . , n}. By Lemma 5, tf(ui|ε) →∗R tf(ui+1|ε). Since tf(un+1) =
un+1, this implies tf(u1)→∗R un+1.

Theorem 1 (soundness for ultra-non-erasing, right-separate DCTRSs [8, Theorem 18]). Let R
be an Uopt-non-erasing and right-separate 2-DCTRS, then Uopt is sound.

Proof. Straightforward from Lemma 7.

Observe that this result does not imply soundness w.r.t. joinability (see Example 21).

4.6.2 Left-Separated CTRSs

In right-separate CTRSs the conditions are satisfied for the variable bindings in the introduction
term. We therefore can replace all succeeding U-terms by the corresponding right-hand side of
the conditional rule using tf.

If the conditions are satisfied for the variable bindings in the elimination term (but not neces-
sarily for the introduction term), then we can replace all U-terms by the corresponding left-hand
side of the conditional rule using tb. In order to ensure that this is possible, conditions must
remain satisfied even after rewrite steps in the variable arguments.

Consider the unsound derivation of Example 22:

g(f(a), f(b))→ g(Uα1 (s(a), a), Uα1 (s(a), a)

→∗ h(Uα1 (t(k), d), Uα1 (t(l), d)→ h(〈d, k〉 , 〈d, l〉)

We can extract the derivation f(a) → Uα1 (s(a), a) →∗ Uα1 (t(k), d) → 〈d, k〉 from the
unsound derivation. The conditional rule is f(x) → 〈x, y〉 ⇐ s(x) →∗ t(y). The condition
s(x) →∗ t(y) is satisfied for the variable binding of the introduction term, s(a) →∗ t(k), but
not for the elimination term s(d) 6→∗ t(k).
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In order to avoid such cases we need to ensure that the left-hand sides of the conditions
do not share variables with other left-hand sides of the conditions or the right-hand side of the
conditional rule. This property is the symmetric counterpart of right-separateness, therefore we
refer to it as left-separateness:

Definition 15 (left-separateness). A CTRS is left-separate if for all conditional rules α : l →
r ⇐ s1 →∗ t1, . . . , sk →∗ tk ∈ R, ti ∩ Var(r) = ∅, Var(si) ∩ Var(l) = ∅ and Var(si) ∩
Var(sj) = ∅ if i 6= j for all i, j ∈ {1, . . . , k}.

This case subsumes the soundness proof of ultra-right-linear DCTRSs in [8].
Furthermore, all U-terms must contain all variable bindings of the left-hand side. This is

not satisfied for Uopt in general, therefore we will use Useq instead. Since tb does not imply
that the condition of a U-term must be satisfied we can also drop the requirement for ultra-non-
erasingness.

Yet, left-separate systems have one major disadvantage: We cannot use variables of the left-
hand side of a conditional rule in the left-hand side of a condition. Such systems are therefore
of only limited practical use because we cannot apply any functions to variables of the left-hand
side in the conditions. In fact, this class of deterministic CTRS is the extension of ultra-right-
linear normal 1-CTRSs for which we have shown soundness in [7].

The proof is completely analogous to the proof of soundness for right-separate systems. We
first prove monotony of tb:

Lemma 8 (monotony property of tb). Let u →p v be a rewrite step in some derivation of an
unraveled CTRS U(R). Let furthermore tb(u|p) →∗R tb(v|p), then tb(u|q) →∗R tb(v|q′) for all
one-step-descendants v|q′ of u|q.

Proof. The proof is identical to the one of Lemma 5 except for the use of tb and the left-hand
side of the rule l instead of the right-hand side.

Next, we prove that we can translate every rewrite step using tb:

Lemma 9 (technical key result). Let A : u1 →p1 u2 · · · →pn un+1, u1 ∈ T , be a derivation
in Useq(R) where R is a left-separate DCTRS. Then tb(um|pm) →∗R tb(um+1|pm) for all m ∈
{1, . . . , n}.

Proof. The proof is very similar to the proof of Lemma 6: We prove this result by induction on
the length n of A.

For the induction base |A| = 1, we either apply an unconditional rule so that u1|p1 and u2|p1
are original terms, or an introduction rule so that tb(u2|p1) = u1|p1 .

By the inductive hypothesis, tb(ui|pi)→∗R tb(ui+1|pi) for i ∈ {1, . . . , n− 1}.
For the inductive step we distinguish several cases depending on the rule applied in the last

rewrite step of A:
If the rule is an introduction- or switch rule, then tb(un|pn) = tb(un+1|pn).
If it is an original rule, un|pn = lσ and un+1|pn = rσ, l → r ∈ R and hence l tb(σ) →R

r tb(σ).
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If it is an elimination rule, un|pn = Uαk (tkσk+1,
−→
Xkσk+1), un+1|pn = rσk+1, tb(un|pn) =

l tb(σk+1) and tb(un+1|pn) = r tb(σk+1) where α is the rule l→ r ⇐ s1 →∗ t1, . . . , sk →∗ tk.
It remains to show that the conditions are satisfied for σk+1: We obtain the following

subderivations of A by Lemma 4: siσi →∗ tiσi+1 and xσi →∗ xσi+1 (x ∈ Xi) for all
i ∈ {1, . . . , k}. We can apply our inductive hypothesis to these subderivations: si tb(σi) →∗R
ti tb(σi+1) and x tb(σi)→∗R x tb(σi+1).

Let in the following σ = σk+1 ◦σk ◦ · · · ◦σ1 be a combination of all substitutions from right
to left, therefore rσ = rσk+1. Left-separateness implies siσi = siσ.

We obtain the following derivations in R: si tb(σ) →∗R ti tb(σi) →∗R ti tb(σ) for all i ∈
{1, . . . , k}, i.e., the conditions are satisfied for tb(σ) inR. Therefore, l tb(σ)→R r tb(σ).

Using the two previous technical lemmata we can prove soundness for left-separate DC-
TRSs:

Lemma 10 (soundness of left-separate DCTRSs). Let R be a left-separate DCTRS, and let
A : u→∗Useq(R) v, u ∈ T be a derivation in its unraveled TRS, then u→∗R tb(v).

Proof. The proof is analogous to the proof of Lemma 7, via Lemma 9 and Lemma 8.

Theorem 2 (soundness of left-separate DCTRSs). Let R be a left-separate DCTRS. Then Useq

is sound.

Proof. Straightforward from Lemma 10.

For left-separate DCTRSs we even obtain soundness w.r.t. joinability:

Lemma 11 (soundness w.r.t. joinability of Useq for left-separate DCTRS). Let R be a left-
separate DCTRS, and let u, v ∈ T be two original terms such that u ↓Useq(R) v, then u ↓R tb(v).

Proof. Straightforward from Lemma 1 and Lemma 10.

Theorem 3 (soundness w.r.t. joinability of Useq for left-separate DCTRS). Let R be a left-
separate DCTRS. Then Useq is sound w.r.t. joinability.

Proof. Straightforward from Lemma 11.

4.6.3 Confluent CTRSs

Although confluence is a property that we would like to prove using unravelings it is interesting
to see that confluence is sufficient to obtain soundness for normal 1-CTRSs, yet not for DCTRS.

For non-sorted 1-CTRSs we immediately obtain unsoundness as we have shown in Exam-
ple 18. Also for sorted deterministic CTRSs we obtain unsoundness (Example 23).

By adding a rule in which the condition corresponds to the unsound derivation of Example 23

A→ B ⇐ g(f(a), f(b))→∗ h(〈d, k〉, 〈d, l〉)

we even obtain unsoundness w.r.t. joinability for a sorted CTRS: The condition is not satisfied
inR, hence A 6↓R B, yet, A ↓U(R) B.
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In this case the right-hand side of a condition is reducible. In right-stable CTRSs such
conditions are not allowed and in fact we proved soundness w.r.t. joinability for these systems
in [8]. The proof is similar to the proof of Theorem 2, yet instead of reducibility we prove
joinability.

Lemma 12 (technical key result [8, Lemma 6]). Let R be a confluent, right-stable DCTRS and
let A : u1 →p1 u2 · · · →pn un+1, u1 ∈ T be a derivation in Useq(R). Then tb(um|pm) ↓R
tb(um+1|pm) for all m ∈ {1, . . . , n}.

Proof. We prove this result by induction on the length n of A.
For the induction base |A| = 1, we either apply an unconditional rule so that u1|p1 and u2|p1

are original terms, or an introduction rule so that tb(u2|p1) = u1|p1 .
By the inductive hypothesis, tb(ui|pi) ↓R tb(ui+1|pi) for i ∈ {1, . . . , n− 1}.
For the inductive step we distinguish several cases depending on the rule applied in the last

rewrite step on A:
If the rule is an introduction- or switch rule, then tb(un|pn) = tb(un+1|pn).
If it is an original rule, un|pn = lσ and un+1|pn = rσ, l → r ∈ R and hence l tb(σ) →R

r tb(σ).
If it is an elimination rule, un|pn = Uαk (tkσk+1,

−→
Xkσk+1), un+1|pn = rσk+1, tb(un|pn) =

l tb(σk+1) and tb(un+1|pn) = r tb(σk+1) where α is the rule l→ r ⇐ s1 →∗ t1, . . . , sk →∗ tk.
We can again extract derivations from A by Lemma 4: siσi →∗ tiσi+1 and xσi →∗ xσi+1

(x ∈ Xi) for all i ∈ {1, . . . , k}. We can apply our inductive hypothesis to these subderivations:
si tb(σi) ↓R ti tb(σi+1) and x tb(σi) ↓R x tb(σi+1).

SinceR is confluent this implies si tb(σk+1) ↓ ti tb(σk+1).
By right-stability this implies that there is a τ such that xσk+1 →∗ xτ and siτ →∗ tiτ for

all i ∈ {1, . . . , k}. Therefore l tb(σk+1)→∗ lτ , lτ →R rτ and r tb(σk+1)→∗ rτ .

Hence we obtain soundness w.r.t joinability for confluent, right-stable DCTRSs:

Lemma 13 (soundness w.r.t. joinability of confluent, right-stable DCTRSs [8, Lemma 7]). Let
R be a confluent, right-stable DCTRS, and let A : u →∗Useq(R) v, u ∈ T be a derivation in its
unraveled TRS, then u→∗R tb(v).

Proof. Straightforward from Lemma 12 and Lemma 8.

Theorem 4 (soundness w.r.t. joinability of confluent, right-stable DCTRSs [8, Theorem 8]). Let
R be a confluent, right-stable DCTRS. Then Useq is sound.

Proof. Straightforward from Lemma 13.

Note, that several methods exist to prove confluence of DCTRSs ([2], [33]).
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4.7 Transforming Derivations

Mapping U-terms to original terms is an intuitive approach to prove soundness, yet we can only
apply it if we demand very strict syntactic restrictions for conditional rules. For many practically
relevant cases we cannot prove soundness using this approach.

We will therefore define properties of derivations that imply soundness and then prove that
other derivations can be transformed into derivations that satisfy such properties. We will first
use Uopt because it encodes less information and therefore allows more general results. Yet, we
need to consider that Uopt may give rise to unsoundness if U-terms are erased.

In [14] soundness is proven by showing that so-called balanced reductions are sound. The
notion of balanced reductions is not used uniformly in the literature. [29] defines balanced re-
ductions as reductions in which the introduction terms may not contain U-symbols and U-terms
are always eliminated. It therefore resembles the membership condition ∈ T . The definition in
[14] is more restrictive and also forbids rewrite steps in variable arguments similar to context-
sensitive rewriting. Soundness for left-linear CTRSs is shown in [29] and [14] by converting
every derivation of a left-linear CTRSs into a balanced derivation.

The unsound derivation in Example 22 is a balanced reduction (following the definition of
[29]). Balanced reductions are therefore not necessarily sound for non-left-linear CTRSs.

We therefore need to define a property that implies soundness of a derivation. One candidate
is context-sensitive rewriting: In [31] it is shown that derivations in the sequential unraveling
Useq(R) of some DCTRS R are sound if they use the replacement map µ(U) = {1}, U ∈
U(F)\F and µ(f) = {1, . . . , ar(f)}, f ∈ F . We could therefore prove soundness for a rewrite
sequence by translating it into a context-sensitive rewrite sequence.

Yet, for Uopt, context-sensitive rewriting is not sufficient for soundness. In fact, Example 5
is a counterexample. Even if all U-terms are eliminated we obtain unsoundness:

Example 29 (Unsoundness for context-sensitive rewriting in Uopt). Consider the following
sorted DCTRS and its unraveling:

R =


t(c)←

a ←t(d)

f(x, y)→ z ⇐ x→∗ t(z)
g(x, x)→ h(x, x)

 Uopt(R) =



t(c)←
a ←t(d)

f(x, y)→ Uα1 (x)

Uα1 (t(z))→ z

g(x, x)→ h(x, x)


Consider the terms f(a, k) and f(a, l). Both terms rewrite to the term Uα1 (a) that rewrites

to c and d. We therefore can apply the non-linear rule after some rewrite steps:

g(f(a, k), f(a, l)) ‖→ g(Uα1 (a), Uα1 (a))→ h(Uα1 (a), Uα1 (a))

‖→ h(Uα1 (t(c)), Uα1 (t(d))) ‖→ h(c, d)

In R, the only common reducts of the terms f(a, k) and f(a, l) are c and d. Therefore,
g(f(a, k), f(a, l)) only rewrites to h(c, c), h(d, d) and also g(c, d) but not h(c, d).

We also obtain the unsound derivation using context-sensitive rewriting because the U-terms
do not contain any variable argument.
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For Useq, proving soundness using context-sensitivity is complex because we cannot trans-
late every rewrite sequence u →∗ v in some Useq(R) into a context-sensitive rewrite sequence
u→∗ v, even if Useq is sound:

Example 30 (Reachable U-terms in context-sensitive rewriting). Consider the following CTRS
and its unraveling:

R =

{
a→ b

f(x)→ x⇐ x→∗ b

}
Useq(R) =


a→ b

f(x)→ Uα1 (x, x)

Uα1 (b, x)→ x


Consider the following derivation in Useq(R):

f(a)→ Uα1 (a, a)→ Uα1 (a, b)

The rewrite step Uα1 (a, a) → Uα1 (a, b) does not satisfy the condition of context-sensitivity
for the replacement map µ(Uα1 ) = {1}. In fact, there is no context-sensitive derivation f(a) ↪→∗µ
Uα1 (a, b).

We will therefore define a different rewrite strategy for our soundness proofs.

4.7.1 U-Eagerness

In [14] soundness of left-linear normal 1-CTRSs is shown using balanced reductions. We in-
troduce a similar but more strict strategy: If we introduce a U-term in a derivation, then all
succeeding rewrite steps must be (not strictly) below this U-term until it is eliminated. We even
forbid rewrite steps in parallel positions. We call such derivations U-eager:

Definition 16 (U-eagerness). A derivation A : u1 →p1 u2 →p2 · · · →pn un+1 in some unravel-
ing U(R) is U-eager if all U-terms are immediately rewritten, i.e., for all U-terms um|p, p ≤ pm
(m ∈ {1, . . . , n+ 1}).

This definition implies two important facts:

• If a derivation u →∗U(R) v is U-eager and u, v are original terms, then all U-terms are
uniquely eliminated in this derivation.

• If a derivation u →∗Uopt(R) v →
∗
Uopt(R) w is U-eager and u, v, w are original terms, then

u→∗Uopt(R) v and v →∗Uopt(R) w are U-eager.

In the following, we will refer to rewrite steps above U-terms as non-U-eager rewrite steps.
U-eagerness allows us to easily extract rewrite sequences from the variable and conditional

arguments because they must be connected. Since U-eagerness implies that introduction terms,
switch terms and elimination terms do not contain U-terms we can use an inductive argument to
prove soundness for sorted CTRSs (for non-sorted CTRSs Example 18 is a counterexample).
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Lemma 14 (soundness of U-eagerness). Let u→∗Uopt(R) v, u, v ∈ T be a U-eager derivation in
the unraveling of a sorted DCTRSR, then u→∗R v.

In the following, we assume w.l.o.g. VRan(σ) ∩ Dom(σ) = ∅ for all substitutions σ.

Proof. Let A : u1 →p1 u2 →p2 · · · →pn un+1 (u1, un+1 ∈ T ) be a U-eager derivation in
Uopt(R).

We prove by induction on the length n of the derivation that u1 →∗R un+1.
If n = 1, then the applied rule in u1 →l→r u2 is an unconditional rule in R so that also

u1 →R u2.
For the inductive step, we distinguish two cases:
First, if there is some um (m ∈ {2, . . . , n}) such that um ∈ T , then the derivations u1 →+

um and um →+ un+1 are U-eager, and by the inductive hypothesis u1 →∗R um and um →∗R
un+1.

Second, if there is no such um, the first rewrite step inA is the introduction step of some rule
α : l→ r ⇐ s1 →∗ t1, . . . , sk →∗ tk, the last rewrite step inA is the corresponding elimination
step, p1 = pn and all rewrite steps are below p1, p1 ≤ pm for all m ∈ {1, . . . , n}.

Let the introduction term be lσ1 = u1|p and the elimination term rσk+1 = un+1|p (p =
p1 = pn).

By Lemma 4 we obtain derivations s1σ1 →∗ t1σ2, . . . , skσk →∗ tkσk+1 and xσi →∗ xσi+1

for all x ∈ Var(α) and i ∈ {1, . . . , k}. The range of the substitutions σ1, . . . , σk+1 only contains
original terms because they are the matchers in switch terms and A is U-eager. Furthermore, the
length of these derivations is less than n. Therefore, the inductive hypothesis holds for all these
subderivations.

We now combine these substitutions in the following way:

σleft = {x 7→ xσi | i is the minimum i such that x ∈ Var(si)}
σright = {x 7→ xσi+1 | i is the maximum i such that x ∈ Var(ti)}

These two substitutions give rise to the following derivations in Uopt(R) and by the inductive
hypothesis also inR: xσi →∗ xσright for all {i | x ∈ Var(tj), i ≤ j} and xσleft →∗ xσi for all
{i | x ∈ Var(sj), j ≤ i}. Furthermore, by the definition of sortedness xσleft = xσright for all
x ∈ Dom(σleft) ∩ Dom(σright).2

The substitution σ = σleft ◦σright ◦σ1 is defined as the combination of these two substitutions
and the matcher σ1 of the introduction term.

We now obtain the following derivations in Uopt(R) and by the inductive hypothesis also in
R: lσ1 →∗ lσ and rσ →∗ rσk+1. Furthermore, siσ →∗ siσi and tiσi+1 →∗ tiσ. The latter
implies that also siσ →∗ tiσ.

Therefore, the conditions are satisfied for σ so that lσ →R rσ, and finally

lσ1 →∗R lσ →R rσ →∗R rσk+1.

2 In the non-sorted CTRS of Example 18, xσleft = a and xσright = b.
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The following example illustrates the previous soundness proof:

Example 31. Consider the following sorted CTRS and its unraveling.

R =


c←

a ←d
f(x, y)→ z ⇐ c→∗ x, y →∗ z

 Uopt(R) =



c←
a ←d

f(x, y)→ Uα1 (c, x, y)

Uα1 (x, x, y)→ Uα2 (y)

Uα2 (z)→ z


We obtain the following U-eager derivation in Uopt(R):

f(a, a)→ Uα1 (c, a, a)→ Uα1 (c, c, a)→ Uα2 (a)→ Uα2 (d)→ d

The substitutions used in the induction step of the proof of Lemma 14 are as follows:

σ1 = {x 7→ a, y 7→ a}
σ2 = {x 7→ c, y 7→ a}
σ3 = {z 7→ d}

σleft = {y 7→ a}
σright = {x 7→ c, z 7→ d}

σ = {x 7→ c, y 7→ a, z 7→ d}

Observe that the conditions are not satisfied for σ1 because s1σ1 = c, t1σ1 = a but c 6→∗R a.
Yet, s1σ = c, t1σ = c and c →∗R c. Furthermore s2σ = a, t2σ = d and a →∗R d, hence the
conditions are satisfied for σ and we obtain the following derivation inR:

f(a, a)→ f(c, a)→ a→ d

4.7.2 Membership Condition

In [18] it is shown that a combination of rewriting using the membership condition ∈ T and
context-sensitive rewriting is sufficient to obtain soundness for Uopt. [31] proves that context-
sensitive rewriting is sufficient for Useq.

Yet, we do not obtain soundness for context-sensitive rewriting for Uopt. The unsound
derivation of Example 5 is a counterexample. The membership condition ∈ T is also not suf-
ficient in general: By the definition of U-eagerness, every U-eager derivation also satisfies the
membership condition, but U-eagerness only implies soundness for sorted CTRSs.

Nevertheless, for sorted CTRSs we can prove soundness for derivations that satisfy the mem-
bership condition ∈ T . Such derivations allow rewrite steps in positions that are parallel to
U-terms. The definition of U-eagerness dose not allow such rewrite steps. Yet, the next lemma
shows that every membership derivation can be transformed into a U-eager derivation by group-
ing rewrite steps below the same U-term:
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Lemma 15. Let R be a DCTRS R and A : u ↪→∗∈T v, u, v ∈ T be a derivation in Uopt(R).
Then, there is a U-eager derivation u→∗Uopt(R) v.

Proof. Let A be the derivation u1 ↪→∈T ,p1 u2 · · · ↪→∈T ,pn un+1 where u1, un+1 ∈ T . Observe
that the membership condition ∈ T implies that all um|pm.q (q ∈ Pos(um|pm)\{ε}) are original
terms, and furthermore that all U-terms are (uniquely) eliminated.

We show by induction on the number of non-U-eager rewrite steps that we can remove all
non-U-eager rewrite steps:

If A does not contain any non-U-eager rewrite step, our results holds vacuously.
Otherwise, let first m be the smallest value and second p be the innermost position such that

um|p is a U-term and p < pm or p ‖ pm, i.e., the mth rewrite step is not U-eager. This implies
that for all U-terms um|q, q ≤ p.

Let j be the smallest value such that p ≤ pm+j , i.e., the m+ jth rewrite step in A is the next
rewrite step in which a descendant of um|p is rewritten. We obtain following derivation:

u1 →∗ um →pm+j um[um+j+1|p]p

This derivation is U-eager because p ≤ pm+j and for all U-terms um|q, q ≤ p ≤ pm+j .
By the membership condition, p is parallel to the positions pm+1, . . . , pm+j−1. We therefore

obtain the following derivation

um[um+j+1|p]p →pm um+1[um+j+1|p]p · · · →pm+j−1 um+j [um+j+1]p

where um+j [um+j+1]p = um+j+1.
By combining this derivation with the U-eager derivation we obtain

u1 →∗ um →pm+j um[um+j+1]p →pm um+1[um+j+1]p · · ·
→pm+j−1 um+j [um+j−1]p = um+j−1 →∗ un+1

that contains less non-U-eager rewrite steps than A. Therefore we can apply our inductive
hypothesis.

Since U-eager derivations are sound we also obtain soundness for derivations that satisfy the
membership condition:

Lemma 16 (soundness for the membership condition). Let u ↪→∗∈T ,Uopt(R) v, u, v ∈ T be a
derivation in the unraveled TRS of some sorted DCTRSR, then u→∗R v.

Proof. By Lemma 15 there is a U-eager derivation u →∗Uopt(R) v. Lemma 14 yields u →∗R
v.

Theorem 5 (soundness for the membership condition). Uopt is sound for derivations using the
membership condition for sorted DCTRSs.

Proof. Straightforward from Lemma 16.
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4.7.3 U-Right-Linear Derivations

In U-eager derivations, we must rewrite U-terms immediately. We do not allow any rewrite steps
outside of U-terms. In derivations that satisfy the membership condition ∈ T we weaken this
requirement and allow rewrite steps in parallel positions.

In the following we show that we can weaken this requirement even further and prove sound-
ness of derivations in which all U-terms are eliminated and have at most one one-step descen-
dant. This rewriting strategy is equivalent to rewriting using another membership condition

l→ r ⇐
∧

x∈Var(l)∧|l|x>1

x ∈ T .

In such derivations we can trace every introduction term to a unique elimination term. By in-
ductively extracting these derivations and recombining them we obtain a derivation that satisfies
the membership condition.

We will refer to derivations in which all U-terms have at most one one-step descendant as
U-right-linear derivations in the following.

We first prove that we can split up derivations that satisfy the membership condition. This
will be necessary in the induction step of our key result.

Lemma 17. Let R be a sorted DCTRS and A : u1 ↪→∗∈T un+1, un+1 ∈ T be a derivation
in Uopt(R). Let furthermore u1|p be a U-term. Then, there are derivations u1|p ↪→∗∈T rσ
and u1[rσ]p ↪→∗∈T un+1 in Uopt(R) where te(A, 1, p) = {(m, p)} and rσ = um+1|p is the
elimination term of u1|p.

Proof. We prove this lemma by induction on m:
If m = 1, then u2 = u1[rσ]p and p1 = p. u1|p →ε u2|p and u2 →∗ un+1 satisfy the

membership condition by assumption.
Otherwise, u2|p is a U-term and te(A, 2, p) = te(A, 1, p) = {(m, p)}. By the inductive

hypothesis, there are two derivations u2|p ↪→∗∈T rσ and u2[rσ]p ↪→∗∈T un+1. Since the com-
bination of two rewrite sequences that satisfy the membership condition also satisfies the mem-
bership condition it remains to show that u1[rσ]p ↪→∗∈T u2[rσ]p and u1|p ↪→∗∈T u2|p.

p1 is the position of the redex in u1. We distinguish three cases based on the position p1 and
p:

The case p1 < p contradicts the membership condition because u1|p is a U-term.
If p1 ‖ p, then u1|p = u2|p. Since u1|p1 → u2|p1 satisfies the membership condition ∈ T ,

so does u1[rσ]p →p1 u2[rσ]p.
Finally, assume p ≤ p1. In this case, u1[rσ]p = u2[rσ]p, therefore u1[rσ]p ↪→∗∈T un+1.

Since u1|p → u2|p also satisfies the membership condition ∈ T so does u1|p →∗ rσ.

We can transform U-right-linear derivations into derivations that satisfy the membership
condition by repeatedly applying the previous lemma:

Lemma 18. Let A : u →∗Uopt(R) v, v ∈ T be a derivation in the unraveled TRS of a sorted
DCTRS R, such that all U-terms are eliminated and have at most one one-step descendant.
Then, there is a derivation u ↪→∗∈T v in Uopt(R).
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Proof. Let A be the derivation u1 →p1 u2 · · · →pn un+1 where un+1 ∈ T and u1 is a possibly
mixed term. We show this lemma by induction on the length n of the derivation.

If n is 1, then u2 ∈ T . Since all U-terms in A are eliminated u1 can only contain a U-term
at position p1. Therefore, A satisfies the membership condition.

Otherwise by the inductive hypothesis there is a derivation A∈T : u2 ↪→∗∈T un+1 in
Uopt(R).

We prove that we obtain a derivation u1 ↪→∗∈T un+1 by induction on the number of U-terms
u2|q such that p1 < q.

If there are no such U-terms then u1|p1 → u2|p1 satisfies the membership condition because
all U-terms in A (and therefore also those in u1|p1) are eliminated.

Otherwise let u2|q be a U-term of the conditional rule l → r ⇐ c such that there is no other
U-term below u2|q.

Since A∈T satisfies the membership condition u2|q has the unique elimination term rτ in
A∈T . Observe that the matcher τ does not contain any U-terms because the elimination step of
u2|q in A∈T satisfies the membership condition. rτ is therefore an original term.

We can apply Lemma 17 to A∈T and obtain derivations u2[rτ ]q ↪→∗∈T un+1 and u2|q ↪→∗∈T
rτ .

Let Q be the positions of all one-step ancestors of u2|q in u1.
Since all U-terms have at most one one-step descendant, u2|q is the only one-step descendant

of u1|q′ for all q′ ∈ Q. Therefore also u1[rτ ]Q →p1 u2[rτ ]q.
In the rewrite step u1[rτ ]Q →p1 u2[rτ ]q there is one U-term less below u2|p1 than in

u1|p1 → u2|p1 . Hence, we can apply the inductive hypothesis to u1[rτ ]Q →p1 u2[rτ ]q →∗ un+1

and obtain u1[rτ ]Q ↪→∗∈T un+1.
Finally, since u2|q ↪→∗∈T rτ and u1|q′ = u2|q for all q′ ∈ Q, u1 ‖↪→∗∈T ,Q u1[rτ ]Q.

In the following example we show how to construct a derivation that satisfies the membership
condition out of a U-right-linear derivation:

Example 32. Consider the following CTRS and its unraveled TRS:

R =


a→ b

f(x)→ A⇐ x→∗ b
g(x, x)→ h(x)

h(x)→ i(x)

 Uopt(R) =



a→ b

f(x)→ Uα1 (x)

Uα1 (b)→ A

g(x, x)→ h(x)

h(x)→ i(x)


In the following derivation all U-terms are eliminated and have at most one one-step de-

scendant:

g(f(a), f(a)) ‖→ g(Uα1 (a), Uα1 (a))→ h(Uα1 (a))→ h(Uα1 (b))→ h(A)→ i(A)

The last rewrite step in the derivation that does not satisfy the membership condition is
g(Uα1 (a), Uα1 (a))→ h(Uα1 (a)).

We can therefore apply Lemma 17 to the rest of the derivation h(Uα1 (a)) → h(Uα1 (b)) →
h(A)→ i(A) and split this derivation into two derivations Uα1 (a)→ Uα1 (b)→ A and h(A)→
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i(A). The right-hand side of the conditional rule is A so that we obtain g(A,A) → h(A) (this
corresponds to the rewrite step u1[rτ ]Q ‖→ u2[rσ]q in the proof of Lemma 18).

The rewrite step g(A,A) → h(A) satisfies the membership condition. Finally we append
the other extracted derivation:

g(Uα1 (a), Uα1 (a)) ‖→ g(Uα1 (b), Uα1 (b)) ‖→ g(A,A)→ h(A)→ i(A)

Using Lemma 18 and our soundness result for membership rewriting we now can prove
soundness of Uopt for U-right-linear derivations:

Lemma 19 (soundness for U-right-linear derivations). Let u→∗Uopt(R) v, u, v ∈ T be a deriva-
tion such that all U-terms are eliminated and all U-terms have at most one-step descendant.
Then, u→∗R v.

Proof. By Lemma 18 we can transform all such derivations into a membership derivation. By
Lemma 16 all such derivations are sound.

Lemma 19 implies soundness of Uopt-non-erasing and Uopt-right-linear DCTRSs because
in such systems all derivations are U-right-linear. This result has already been shown in [25].
Yet, in our result we focus on properties of rewrite sequences instead of syntactic properties of
the DCTRS. We can therefore use Lemma 19 to prove soundness also for other CTRSs.

4.7.4 Erased and Eliminated U-Terms w.r.t. Junk Terms

The unravelings Uopt and Useq both sequentially encode the conditions of conditional rules. Yet,
in Uopt, we only encode those variable arguments that we “need” in potential further rewrite
steps. Although this more efficient way of encoding is more efficient, it causes unsoundness if
U-terms are erased (see Example 5).

In the soundness result for U-right-linear derivations we therefore can only prove soundness
for derivations in which all U-terms are eliminated (for U-eager derivations and derivations
that satisfy the membership condition this is always satisfied). This is an important restriction
because in a rewrite engine that uses Uopt we need to know that the condition is satisfiable before
introducing the U-term itself.

In Useq, we encode all variable arguments of the left-hand side. Therefore the backtranslation
tb is always properly defined. We therefore can translate intermediate results of conditional
evaluations even if the condition is not satisfied.

Yet, compared to Uopt we now encode “too much”. If we prove soundness in a derivation
in which a U-term is erased, it does not matter whether the condition is satisfiable or not. We
can therefore ignore rewrite steps in the conditional argument of this erased U-term. On the
other hand, if a U-term is eliminated, we only need the conditional argument and those variable
arguments that we also encode in Uopt because we would not translate the U-term to an original
term.

This distinction of necessary arguments and unnecessary arguments in U-terms is essential
for the following results because we translate rewrite sequences in an unraveled TRS into condi-
tional rewrite sequences. For this purpose we must distinguish erased U-terms (that are replaced
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by the corresponding left-hand side) from eliminated U-terms (the rewrite sequence that is ex-
tracted from the conditional argument is replaced by rewrite steps in the conditions). Yet, for
Useq we obtain the paradox situation that a U-term that is eliminated in an unnecessary argument
might actually be erased.

Example 33. Consider the following CTRS and its unraveled TRS using Useq:

R =


f(x)→ x⇐ x→∗ a
g(x)→ C ⇐ A→∗ B
A→ B

 Useq(R) =



f(x)→ Uα1 (x, x)

Uα1 (a, x)→ x

g(x)→ Uβ1 (A, x)

Uβ1 (B, x)→ C

A→ B


In the following derivation in Useq(R), all U-terms are eliminated:

g(f(a))→ g(Uα1 (a, a))→ Uβ1 (A,Uα1 (a, a))→ Uβ1 (A, a)→ Uβ1 (B, a)→ C

We apply an elimination step to the U-term that is introduced by the transformed g-rule.
Hence, we extract the subderivation A → B from the conditional argument. Replacing the
elimination step and the rewrite step in the conditional argument by a conditional rewrite step
therefore yields the following derivation:

g(f(a))→ g(Uα1 (a, a))
⇐A→∗B
−−−−−→β C

Although the second U-term Uα1 (a, a) was eliminated in the initial derivation, it now is
erased. Since Uα1 (a, a) does not have any one-step descendants anymore it is actually erased
and not eliminated.

We therefore replace this U-term by its corresponding introduction term using the current
variable bindings. Hence, translating the derivation into the original CTRS yields the following
derivation:

g(f(a))→R C

Instead of translating derivations in some Useq(R) into derivations in R we rather translate
them into derivations in Uopt(R) so that we can apply the soundness result of Lemma 19.

We cannot prove soundness for derivations in Uopt(R) that contain erased U-terms, therefore
we need to replace these U-terms by original terms. Yet again we need to analyze which terms
are eliminated or erased in such unnecessary arguments.

Before transforming the derivation we therefore mark all terms in such unnecessary argu-
ments as junk terms. Such junk terms will be ignored in our translation. After transforming a
derivation in Useq(R) into a derivation in Uopt(R) in which all U-terms are eliminated there are
no unnecessary arguments and therefore no junk terms.

In order to analyze which U-term is actually erased and eliminated we need to distinguish
junk terms and non-junk-terms. Since therefore the notion of junk terms depends on whether a
U-term is eliminated or erased, we adapt the notion of erased and eliminated terms.

66



The rewrite step g(Uα1 (a, a)) → Uβ1 (A,Uα1 (a, a)) puts a U-term into an unnecessary ar-
gument in a U-term. Therefore, Uα1 (a, a) is erased w.r.t. junk terms term even though it is
eliminated in the initial derivation.

The formal definition of such junk terms is more complicated because the notions of junk
terms, eliminated and erased U-terms are self-referring. For the sake of readability, we will refer
to terms um|p as junk terms although we refer to an index and position in some derivation A.

Definition 17 (junk terms). Let A : u1 →∗Useq(R) un+1 be a derivation in some unraveled CTRS.
We assume that all U-terms in un+1 are erased w.r.t. junk terms.

Let um|p be a U-term Uαj (v,
−→
Xjσ). A term um|q (p < q) is a junk term if

• um|p is erased w.r.t. junk terms and um|q is below the conditional argument, p.1 ≤ q.

• um|p is erased w.r.t. junk terms and um|q is below an extra variable argument, i.e., if
p.i ≤ q for i ∈ N then

−→
Xj [i− 1] 6∈ Var(l).

• um|p is eliminated w.r.t. junk terms and um|q is inside a variable argument that is not
needed for the evaluation of the conditions, i.e., if p.i ≤ q for i ∈ N then

−→
Xj [i − 1] 6∈

Var(tj , sj+1, tj+1, . . . , tk, r)

A one-step descendant um+1|q′ of q is a non-junk one-step descendant if um+1|q′ is not a
junk term.

The U-term um|p is erased w.r.t. junk terms if it has no non-junk one-step descendants, or if
all its non-junk one-step descendants are also erased w.r.t. junk terms.

It is eliminated w.r.t. junk terms if it has one non-junk one-step descendant that is not a
U-term, or if (at least) one one-step descendant is eliminated w.r.t. junk terms.

It is fully eliminated w.r.t. junk terms if it has one non-junk one-step descendant (m+ 1, p′)
that is not a U-term, or if it all its non-junk one-step descendants are fully eliminated w.r.t. junk
terms.

By applying this definition to the last term in a derivation and iteratively progressing to
the first term we mark all U-terms as either erased or eliminated w.r.t. junk terms and identify
all junk terms. Observe that all descendants and subterms of junk terms are also junk terms.
Furthermore, all junk terms are subterms of U-terms.

In the remainder of this section, we will sometimes use the notion “w.r.t. junk terms” im-
plicitly.

We will in the following attempt to translate rewrite sequences in some Useq(R) into rewrite
sequences in Uopt(R) of which we already have proven soundness. For this purpose we will
replace erased (w.r.t. junk terms) U-terms by the corresponding left-hand side of the conditional
rule. All other U-terms are replaced by the corresponding U-term in Uopt(R). In this process,
all junk terms are deleted. In the resulting derivation in Uopt(R) all U-terms are eliminated,
therefore it contains no no junk terms.

Yet, we cannot translate all derivations in Useq(R). There are derivations in which we cannot
replace erased U-terms with the corresponding left-hand side because one of their ancestors is
eliminated w.r.t. junk terms:
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Example 34. Consider the following CTRSR and its unraveled TRS

R =


a→ c
↗↘

b→ d

g(x, x)→ h(x, x)

f(x)→ x⇐ x→∗ c

 Useq(R) =



a→ c
↗↘

b→ d

g(x, x)→ h(x, x)

f(x)→ Uα1 (x, x)

Uα1 (c, x)→ x


Now consider the following derivation:

g(f(a), f(b))→∗ g(Uα1 (a, a), Uα1 (b, b))→∗ g(Uα1 (c, d), Uα1 (c, d))

→ h(Uα1 (c, d), Uα1 (c, d))→ h(d, Uα1 (c, d))

In the last term of the derivation h(d, Uα1 (c, d)), the U-term is not eliminated. We treat it as
an erased U-term because it has no one-step descendants. In order to translate this derivation
into a derivation in Uopt(R) without erased U-terms we therefore replace this U-term by the
corresponding left-hand side of the rule f(d).

In order to apply the non-linear rule g(x, x)→ h(x, x) we need a common reduct u of f(a)
and f(b) such that u rewrites to f(d) and d, but there is no such term in Uopt(R). Hence, there
is no derivation g(f(a), f(b))→∗Uopt(R) h(d, f(d)).

In the term g(Uα1 (c, d), Uα1 (c, d)) both U-terms have one one-step descendant that is elim-
inated (w.r.t. junk terms) and one that is erased (w.r.t. junk terms). They are therefore not fully
eliminated. In this case we cannot translate derivations in Useq(R) into derivations in Uopt(R).

Hence, we can only translate derivations in which all eliminated U-terms are also fully elim-
inated.

In order to translate these derivations we need to map terms from the signature of Useq(R)
into the signature of Uopt(R). We will replace fully eliminated (w.r.t. junk terms) U-terms by the
corresponding U-term in Uopt(R) and translate erased U-terms into the corresponding left-hand
side of the conditional rule:

Definition 18 (topt). Let A be a derivation u1 →∗ un+1 in some Useq(R) such that all U-
term are either erased or fully eliminated w.r.t. junk terms. Then the mapping topt is defined as
follows:

topt(A,m, p) =



x if um|p = x is a variable

f(topt(A,m, p.1), . . . , topt(A,m, p.ar(f)) if root(um|p) = f and f ∈ F

lσopt if um|p = U seq,α
j (v,

−−→
Xseq
j σ) is

erased w.r.t. junk terms where
l is the left-hand side of α

Uopt,α
j (topt(A,m, p.1),

−−→
Xopt
j σopt) if um|p = U seq,α

i (v,
−−→
Xseq
j σ) is

eliminated w.r.t. junk terms
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where σopt =
{
x 7→ topt(A,m, p.(i+ 1)) | x ∈ Xopt

j , x =
−−→
Xseq
j [i]

}
, α is the rule l → r ⇐ c

and Xseq
j and Xopt

j are the variable sets defined in the ith rewrite rule in Useq(α) and Uopt(α).

Example 35. Consider the CTRS of Example 33 and its unraveled TRS using Useq and Uopt:

R =


f(x)→ x⇐ x→∗ a
g(x)→ C ⇐ A→∗ B
A→ B



Useq(R) =



f(x)→ U seq,α
1 (x, x)

U seq,α
1 (a, x)→ x

g(x)→ U seq,β
1 (A, x)

U seq,β
1 (B, x)→ C

A→ B


Uopt(R) =



f(x)→ Uopt,α
1 (x, x)

Uopt,α
1 (a, x)→ x

g(x)→ Uopt,β
1 (A)

Uopt,β
1 (B)→ C

A→ B


We translate the following derivation to Uopt(R) using topt:

g(f(a))→ g(Uα1 (a, a))→ Uβ1 (A,Uα1 (a, a))→ Uβ1 (A, a)→ Uβ1 (B, a)→ C

First we mark all junk terms. Since all Uβ1 -rooted terms are eliminated w.r.t. junk terms,
all terms in their variable arguments are junk terms. Hence, the Uα1 -rooted terms are erased
w.r.t. junk terms so that its conditional argument contains junk terms.

The rewrite sequence is therefore translated into the following derivation (junk terms are
underlined):

g(f(a))→ g(U seq,α
1 (a, a)︸ ︷︷ ︸

f(a)

)→ U seq,β
1 (A,Uα1 (a, a))︸ ︷︷ ︸

Uopt,β
1 (A)

→ U seq,β
1 (A, a)︸ ︷︷ ︸
Uopt,β
1 (A)

→ U seq,β
1 (B, a)︸ ︷︷ ︸
Uopt,β
1 (B)

→ C

Since all U-terms in the last term of a derivation are considered to be erased they are replaced
by the corresponding left-hand side of the conditional rule. Therefore, we obtain the following
interesting connection between topt and tb:

Lemma 20 (topt and tb). LetR be some CTRS and A : u1 →∗Useq(R) un+1 be a derivation such
that all U-terms are either fully eliminated or erased. Then, topt(A,n+ 1, ε) = tb(un+1).

Proof. Since all U-terms in the last term of a derivation are erased (w.r.t. junk terms), all U-terms
are replaced by the corresponding left-hand side of the conditional rule which corresponds to the
definition of tb.

In the following we prove that topt is an appropriate way to translate derivations from
Useq(R) into derivations in Uopt(R). Since we need to translate U-terms from Useq into Uopt

these proofs are syntactically challenging.
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First we prove that terms that match the same variable in a rule application are mapped
to syntactically equal terms in topt. This is not trivially satisfied because topt depends on the
derivation and not on the syntactic structure of terms as tb or tf. This property is only satisfied
if all U-terms are fully eliminated or erased (w.r.t. junk terms).

Lemma 21. Let A : u1 →p1 u2 · · · →pn un+1 be a derivation in Useq(R) such that all U-terms
are either erased or fully eliminated w.r.t. junk terms. Let um →l→r um+1 be a rewrite step in
A such that um|pm is not a junk term. Let x ∈ Var(l) and q1, q2 ∈ VPos(l) such that l|q1 =
l|q2 = x. Then topt(A,m, pm.q1) = topt(A,m, pm.q2). Furthermore, topt(A,m, pm.q1) =
topt(A,m+ 1, pm.q

′) for all non-junk one-step descendants q′ of um|pm.q1 .

Proof. We prove this by induction on the number of U-terms strictly below um|pm .
If there are no such U-terms our result holds by the definition of topt and Lemma 20.
Otherwise there is one non-junk U-term um|pm.q1.q. Let Q be all non-junk one-step de-

scendants of um|pm.q1.q and therefore also of um|pm.q2.q. For all non-junk terms um|pm.q1.q.i,
topt(A,m, pm.q1.q.i) = topt(A,m, pm.q2.q.i), and for all q′ ∈ Q topt(A,m, pm.q1.q.i) =
topt(A,m+ 1, pm.q

′.q.i) by the inductive hypothesis.
We distinguish the following cases: If um|pm.q1.q is erased (w.r.t. junk terms), then also

um|pm.q2.q is erased. Therefore, topt(A,m, pm.q1.q) = topt(A,m, pm.q2.q). In this case either
Q = ∅, or um+1|pm.q′.q is also erased for all q′ ∈ Q, hence topt(A,m, pm.q1.q) = topt(A,m +
1, pm.q

′.q).
If um|pm.q1.q is fully eliminated (w.r.t. junk terms), then so is um|pm.q2.q. Therefore, also

topt(A,m, pm.q1.q) = topt(A,m, pm.q2.q). In this case um+1|pm.q′.q is also fully eliminated for
all q′ ∈ Q, therefore topt(A,m, pm.q1.q) = topt(A,m+ 1, pm.q

′.q).3

Therefore topt(A,m, pm.q1.q) = topt(A,m, pm.q2.q) = topt(A,m, pm.q
′.q) for all non-

junk U-terms um|pm.q1.q and its non-junk one-step descendants q′ ∈ Q and therefore also
topt(A,m, pm.q1) = topt(A,m, pm.q2) = topt(A,m+ 1, pm.q

′).

This previous lemma implies that for unconditional rules lσ →Useq(R) rσ in a derivation we
can translate the matcher σ into a matcher σopt using topt so that lσopt →Uopt(R) rσopt even if l
or r are non-linear.

Hence, we can translate rewrite steps from Useq(R) into rewrite steps in Uopt(R):

Lemma 22 (technical key result). Let A : u1 →p1 u2 · · · →pn un+1 be a derivation in Useq(R)
such that all non-junk U-terms are either erased or fully eliminated w.r.t. junk terms. If um|pm
is not a junk term then topt(A,m, pm)→∗ topt(A,m+ 1, pm).

Proof. We use a case distinction on the rule l → r ∈ U(R) that is applied in the mth rewrite
step um|pm →pm um+1|pm , i.e., um|pm = lσ and um+1|pm = rσ.

If l→ r is a (not necessarily linear) original rule, then by Lemma 21 topt(A,m, pm) = lσopt
and topt(A,m+ 1, pm) = rσopt. Since l→ r ∈ Uopt(R) also lσopt →Uopt(R) rσopt.

If l→ r is an introduction rule of the conditional rule α : lα → rα ⇐ s1 →∗ t1, . . . , sk →∗

tk, then rσ = U seq,α
j (s1σ,

−−→
Xseq

1 σ) and lσ = lασ.
3Observe that if um|pm.q1.q is eliminated, one of its non-junk one-step descendants might be erased while the

other one is eliminated.
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If the introduced U-term is erased, then (by the definition of topt) topt(A,m + 1, pm) =
topt(A,m, pm) = lσopt (by Lemma 21).

Otherwise the introduced U-term is fully eliminated. In this case topt(A,m + 1, pm) =

Uopt,α
j (s1σopt,

−−→
Xseq

1 σopt) and um|pm = lσopt. We therefore can apply the introduction rule of α
in Uopt(R).

The case of switch rules is dual to the case of introduction rules.
Finally, if lσ → rσ is an elimination step, then um|pm is a fully eliminated U-term and

topt(A,m, pm) = Uopt,α
k (tkσopt,

−−→
Xopt
k σopt). We can apply the corresponding elimination rule

in Uopt(R) of α: Uopt,α
k (tkσopt,

−−→
Xopt
k σopt)→ rασopt where rασopt = topt(A,m+ 1, pm).

Next we prove a monotony property of topt:

Lemma 23. LetA : u1 →p1 u2 · · · →pn un+1 be a derivation in Useq(R) such that all non-junk
U-terms are either erased or fully eliminated w.r.t. junk terms. Then topt(A,m, ε) ‖→ topt(A,m+
1, ε).

Proof. Let q ≤ pm. We prove topt(A,m, q)→∗Uopt(R) topt(A,m+ 1, q) by induction on |pm| −
|q|.

The base case pm = q holds by Lemma 22.
Otherwise, by the inductive hypothesis topt(A,m, q.i) ‖→Uopt(R) topt(A,m+1, q.i) for q.i ≤

pm where i ∈ N.
We distinguish two cases based on the root symbol of um|q.
If root(um|q) = f and f ∈ F is an original symbol, then also root(topt(A,m, q)) is an

original symbol. By the definition of topt,

topt(A,m, q) = f(topt(A,m, q.1), . . . , topt(A,m, q.ar(f))), and

topt(A,m+ 1, q) = topt(A,m, q)[topt(A,m+ 1, q.i)]i

Since topt(A,m, q.i) ‖→Uopt(R) topt(A,m+1, q.i) also topt(A,m, q) ‖→Uopt(R) topt(A,m+1, q).

Otherwise, root(um|q) is a U-symbol, hence um|q = U seq,α
j (v,

−−→
Xseq
j σ) is a U-term.

We distinguish two cases based on i. First, if i = 1 is inside the conditional argument,
then the U-term is fully eliminated because otherwise um|q.i would be a junk term. Let v =
topt(A,m, q.1) and v′ = topt(A,m + 1, q.1). By the inductive hypothesis v ‖→Uopt(R) v

′. Now

topt(A,m, q) = Uopt,α
j (v,

−−→
Xopt
j σopt) and topt(A,m + 1, q) = Uopt,α

j (v′,
−−→
Xopt
j σopt), therefore

topt(A,m, q) ‖→Uopt(R) topt(A,m+ 1, q).

Otherwise i > 1. Let x =
−−→
Xseq
j [i− 1] be the variable that is modified in this rewrite step.

There are two possible cases:

If um|q is fully eliminated then topt(A,m, q) = Uopt,α
j (v,

−−→
Xopt
j σopt). Then topt(A,m +

1, q) = Uopt,α
j (v,

−−→
Xopt
j τopt) where xσopt ‖→Uopt(R) xτopt by the inductive hypothesis, and

yσopt = yτopt for all y 6= x. Hence, also in this case topt(A,m, q) ‖→Uopt(R) topt(A,m+ 1, q).
Finally, if um|q is erased (w.r.t. junk terms) let l be the left-hand side of the conditional

rule α. Then, topt(A,m, q) = lσopt and topt(A,m + 1, q) = lτopt. We apply the rewrite steps
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xσopt ‖→Uopt(R) xτopt to all occurrences of x in lσopt and therefore obtain and yσopt = yτopt
topt(A,m, q) ‖→Uopt(R) topt(A,m+ 1, q).

Finally, we can translate complete derivations:

Lemma 24 (translations using topt). Let A : u →∗ v be a derivation in Useq(R) such that all
U-terms are either fully eliminated w.r.t. junk terms or erased w.r.t. junk terms. Then, Aopt :
topt(A, 1, ε)→∗Uopt(R) topt(A, |A|+ 1, ε) is a derivation in Uopt(R).

Proof. By Lemma 23 topt(A,m, ε)→∗Uopt(R) topt(A,m+ 1, ε) for all m ∈ {1, . . . , n}.

One interesting class of derivations are derivations in which all U-terms have at most one
non-junk one-step descendant (i.e. U-right-linear derivations (w.r.t. junk terms)). All U-terms
are either erased or fully eliminated and therefore can be translated into derivations in Useq(R)
using topt.

Lemma 25. Let A : u →∗ v, u ∈ T be a derivation in Useq(R) such that all U-terms have at
most one non-junk one-step descendant. Then, all U-terms are either erased or fully eliminated
w.r.t. junk terms.

Proof. If A would contain a U-term that is neither erased nor fully eliminated, then there must
be a U-term with two non-junk one-step descendants one of which is erased and the other one is
eliminated. Yet, this contradicts our original assumption.

Lemma 26. Let A : u1 →p1 u2 →p2 · · · → un+1 be a derivation in some UseqR such that
u1 ∈ T and all U-terms have at most one non-junk one-step descendant. Then in the derivation
Aopt : topt(A, 1, ε) →∗Uopt(R) topt(A, 2, ε) →∗Uopt(R) · · · topt(A,n + 1, ε) all U-terms have at
most one one-step descendant.

Proof. By Lemma 25 we can translate A into a derivation in Uopt(R) using topt.
Consider the rewrite step ui →pi ui+1 and let um|p be a non-junk U-term that is eliminated.
topt(A,m, p) returns a term that might occur in multiple positions in topt(A,m, ε) because

erased U-terms are translated into the possibly non-linear left-hand side of the corresponding
conditional rule. We show that all occurrences of topt(A,m, p) have at most one one-step de-
scendant in the translated derivation.

We distinguish the following cases based on the rule applied inA in the rewrite step um →pm

um+1. First, if p ‖ pm or p ≤ pm then our result holds.
Otherwise, pm < p. We distinguish the following cases based on the rule applied.
If the applied rule is a switch rule or an introduction of an erased (w.r.t. junk terms) U-term

then topt(A,m, pm) = topt(A,m + 1, pm). In this case we repeat our argument for um+1|p′
where p′ is the unique non-junk one-step descendant of um|p.

Finally, if it is a an elimination rule, a switch rule or introduction rule applied to an eliminated
(w.r.t. junk terms) U-term or an original rule then the corresponding rule of Uopt(R) is applied
in Aopt. Since p has at most one non-junk descendant in A, all its corresponding positions in
Aopt therefore also have at most one descendant.

We now can prove soundness for derivations in Useq using our soundness results for Uopt:
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Lemma 27 (soundness for U-right-linear derivations). Let R be a sorted DCTRS and A :
u →∗UseqR v be a derivation such that u ∈ T and all U-terms have at most one non-junk
one-step descendant. Then u→∗R v.

Proof. By Lemma 24 and Lemma 20 we obtain a derivationAtopt : u→∗UoptR tb(v) such that all
U-terms are eliminated. By Lemma 26 all U-terms have at most one one-step descendant. Since
R is sorted we finally can apply Lemma 19 and obtain u→∗R v.

4.7.5 Weakly Right-Linear DCTRSs

Useq is sound for Useq-right-linear DCTRSs. This is a consequence of Theorem 2 because every
Useq-right-linear DCTRS is also left-separate. Left-separateness is a very restrictive property and
Useq-right-linearity is even more restrictive. Therefore, this result is of less practical relevance.
Yet we can prove soundness for an weaker right-linearity-property.

In [7] we introduced the notion of weak left-linearity to allow non-left-linear rules to a
certain extend. We can define a dual property for right-linearity, weak right-linearity.

The symmetric equivalent of weak left-linearity allows non-right-linear switch and elimina-
tion rules, provided that the extra variables have not been used before. This is not possible for
deterministic rules. By restricting such systems to deterministic CTRSs we obtain the following
definition:

Definition 19 (weak right-linearity). A conditional deterministic rule α : l → r ⇐ s1 →∗
t1, . . . , sk →∗ tk is weakly right-linear, if for all x ∈ Var(α), |s1, . . . , sk, r|x ≤ 1.

This definition allows non-right-linear switch rules if the non-linear variable is not used
in any other conditional argument or the right-hand side of the conditional rule. In Uopt, this
implies that the variable would not be encoded anymore provided that the DCTRS is sorted.
Therefore, Uopt-right-linearity is equivalent to weak right-linearity for sorted DCTRSs.

Example 36. The following CTRS resembles the “bubble-sort”-Example of [32] and defines a
sorted list data structure in which multiple occurrences of the same argument are removed.4

R =


x :: y :: rest → z1 :: z2 :: rest ⇐ orient(x, y)→∗ 〈z1, z2〉
x :: x :: rest → x :: rest

orient(s(x), s(y))→ 〈s(z1), s(z2)〉 ⇐ orient(x, y)→∗ 〈z1, z2〉
orient(s(x), 0)→ 〈0, s(x)〉


4Observe that the CTRS in [32] is not weakly right-linear. We therefore replace the comparison by the new

partial orient-function that switches position of two elements if the first element is greater than the second.
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R is weakly right-linear and also sorted. The transformed CTRS using Useq is the following:

Useq(R) =



x :: y :: rest → U seq,α
1 (orient(x, y), x, y, rest)

U seq,α
1 (〈z1, z2〉 , x, y, rest)→ z1 :: z2 :: rest

x :: x :: rest → x :: rest

orient(s(x), s(y))→ U seq,β
1 (orient(x, y), x, y)

U seq,β
1 (〈z1, z2〉 , x, y)→ 〈s(z1), s(z2)〉

orient(s(x), 0)→ 〈0, s(x)〉


Observe that Useq(R) is not right-linear. The transformed CTRS using Uopt is:

Uopt(R) =



x :: y :: rest → Uopt,α
1 (orient(x, y), rest)

Uopt,α
1 (〈z1, z2〉 , rest)→ z1 :: z2 :: 〈rest〉

x :: x :: rest → x :: rest

orient(s(x), s(y))→ Uopt,β
1 (orient(x, y))

Uopt,β
1 (〈z1, z2〉)→ 〈s(z1), s(z2)〉

orient(s(x), 0)→ 〈0, s(x)〉


Weak right-linearity does not imply sortedness for deterministic CTRSs, and hence we ob-

tain unsoundness for non-sorted weakly right-linear DCTRSs.

Example 37. Consider the following weakly right-linear CTRS that resembles the CTRS of
Example 18:

R =


a→ b

s(a)→ t(b)

f(x)→ c⇐ s(x)→∗ t(x)

 Useq(R) =


a→ b

s(a)→ t(b)

f(x)→ Uα1 (s(x), x)

Uα1 (t(x), x)→ c


The unraveled TRS now gives rise to the following derivation that is unsound by the same

argument as the derivation in Example 18:

f(a)→ Uα1 (s(a), a) ‖→ Uα1 (t(b), b)→ c

Observe that the CTRS is not Uopt-right-linear:

Useq(R) =


a→ b

s(a)→ t(b)

f(x)→ Uα1 (s(x), x)

Uα1 (t(x), x)→ c


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In [25] it was shown that Uopt is sound for Uopt-right-linear and Uopt-non-erasing DCTRSs.
Lemma 19 implies soundness for derivations in some Uopt(R) provided all U-terms are elim-
inated. Since topt replaces all erased U-terms by an original term we first prove that we can
translate derivations in weak right-linear DCTRSs into derivations in Uopt and then show that
these derivations satisfy the assumptions of Lemma 19.

Weakly right-linear DCTRSs are usually not Useq-right-linear. Therefore, terms might have
multiple one-step descendants. Yet, if a U-term has more than one one-step descendant, then at
least one of them is a junk term:

Lemma 28. LetA : u→∗ v be a derivation in Useq(R) whereR is a weakly right-linear, sorted
DCTRS. Then, every U-term in A has at most one non-junk one-step descendant.

Proof. Let A be the derivation u1 →p1 u2 →p2 · · · →pn un and let the mth rewrite step be
um →pm,l→r um+1 such that there is a U-term um|pm.q with more than one one-step descendant.

By the definition of weak right-linearity, l → r is either an introduction or switch rule,
therefore um|pm = rσ = U seq,α

j (sjσ,
−−→
Xseq
j σ).

Let x ∈ Var(r) be the variable that contains the binding containing the U-term, i.e., x =
r|q′ and q′ ≤ q. Then |sj |x = 1 and |sj+1, . . . , sk, r|x = 0. Because of sortedness also
|tj , . . . , tk|x = 0. Furthermore, x ∈ Xseq

j , therefore um|pm.q has two one-step descendants, one
in the variable arguments and one in the conditional arguments.

We distinguish two cases: If the U-term at um|pm.q is eliminated w.r.t. junk terms, then the
variable argument containing x is a junk term since |sj , . . . , sk, tj+1, . . . , tk, r|x = 0.

Otherwise, if the U-term is erased, then the conditional argument is a junk term. Therefore,
only one of these one-step descendants is not a junk term.

We now combine our results for Uopt with our translation of derivations and obtain the
following soundness result:

Lemma 29 (soundness of weakly right-linear, sorted DCTRSs). Let A : u→∗ v be a derivation
in Useq(R) where R is a weakly right-linear, sorted DCTRS. Then there is a derivation u →∗R
tb(v).

Proof. By Lemma 28 all U-terms in the derivation A have at most one non-junk one-step de-
scendant. By Lemma 27 we therefore obtain u→∗R tb(v).

Theorem 6 (soundness of weakly right-linear, sorted DCTRSs). Useq is sound w.r.t. tb for
weakly right-linear, sorted DCTRSs.

Proof. Straightforward from Lemma 29.

We also obtain soundness w.r.t. joinability:

Theorem 7 (soundness w.r.t. joinability of weakly right-linear, sorted DCTRSs). Useq is sound
w.r.t. joinability for weakly right-linear, sorted DCTRSs.

Proof. Straightforward from Lemma 29 and Lemma 1.
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4.7.6 Weakly Left-Linear DCTRSs

In [7] we introduced the notion of weak left-linearity that allows non-left-linear rules provided
all non-linear variables one the left-hand side of the rule are erased. Such systems are practically
relevant because they can contain rules like eq(x, x) → true . In [8] we extended the notion of
weak left-linearity to DCTRSs:

Definition 20 (weak left-linearity [8, Definition 19]). A conditional deterministic rule α : l →
r ⇐ s1 →∗ t1, . . . , sk →∗ tk is weakly left-linear, if |l, t1, . . . , tk|x > 1⇒ |s1, . . . , sk, r|x = 0
for all x ∈ Var(α).

In contrast to weak right-linearity, weak left-linearity implies sortedness for deterministic
CTRSs:

Lemma 30. LetR be a weakly left-linear DCTRS. Then,R is sorted.

Proof. Let x ∈ Var(si) be a variable in the left-hand side of a condition. The definition of
deterministic CTRSs implies that x ∈ Var(l, t1, . . . , ti−1). Definition 20 then implies that
x 6∈ Var(ti, . . . , tk).

The class of weakly left-linear DCTRS is of high interest because every left-linear join 1-
CTRS can be simulated using a weak left-linear DCTRS. Therefore, soundness for an unraveling
of weakly left-linear DCTRSs implies soundness for (weakly) left-linear join 1-CTRSs.

In weakly left-linear DCTRSs, non-left-linear variables can be used to a certain extend, but
the syntactic restriction ensures that their variable binding and all terms derived from them are
always wrapped inside a U-term:

Example 38. Consider the following weakly left-linear DCTRS and its unraveled TRS:

R =



up(x)→ x

down(x)→ x

up(x)→ up(s(x))

down(s(x))→ down(x)

between(x, y, z)→ true ⇐ up(x)→∗ y, down(z)→∗ y



Useq(R) =



up(x)→ x

down(x)→ x

up(x)→ up(s(x))

down(s(x))→ down(x)

between(x, y, z)→ Uα1 (up(x), x, y, z)

Uα1 (y, x, y, z)→ Uα2 (down(z), x, y, z)

Uα2 (y, x, y, z)→ true


Observe that although Useq(R) is not weakly left-linear, the binding of the non-linear vari-

able y cannot be propagated to any term outside of the U-term.
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In order to prove soundness of a weakly left-linear DCTRS R we translate derivations in
Useq(R) into derivations of which we know that they are sound. In order to apply our translation
topt, we need to ensure that all U-terms are fully eliminated or erased. Yet, even for left-linear
systems we cannot ensure this property in general:

Example 39. Consider the left-linear DCTRSR and its unraveled TRS

R =


f(x)→ x⇐ x→∗ a
g(x)→ h(x, x)

h(x, y)→ i(x)

 Useq(R) =


f(x)→ Uα1 (x, x)

Uα1 (a, x)→ x

g(x)→ h(x, x)

h(x, y)→ i(x)


Consider the following derivation:

g(f(a))→ g(

(1)︷ ︸︸ ︷
Uα1 (a, a))→ h(

(2)︷ ︸︸ ︷
Uα1 (a, a),

(3)︷ ︸︸ ︷
Uα1 (a, a))→ h(a,

(4)︷ ︸︸ ︷
Uα1 (a, a))→ i(a)

The U-term at (2) is eliminated while the U-term at (3) is erased. Therefore, the term at (1)
is both eliminated and erased.

We therefore use a different proof attempt than for weakly right-linear CTRSs. We show that
we can transform derivations so that all U-terms have at most one one-step descendants. Since
this implies that the derivation has at most one non-junk one-step descendant we then can prove
soundness using Lemma 27. We therefore do not rely on the notion of junk terms for weakly
left-linear CTRSs.

Observe that weak left-linearity of a DCTRS does not imply weak left-linearity of its unrav-
eled TRS because switch rules and introduction rules also contain non-left-linear variables on
their left-hand sides. These variables are preserved on the right-hand sides of such rules. Since
these variables play an important role in our soundness proof we will refer to a variable argument
x in a U-term Uαj (. . . , x, . . .) as non-left-linear variable argument if there is an introduction or
switch rule l → Uαi (. . . , x, . . .) such that i ≤ j and |l|x > 1. All other variable arguments are
left-linear variable arguments. Observe that a variable argument can be a left-linear variable
argument and become a non-left-linear variable argument in some later switch rule.

The following observations are essential for our proof and directly derive from the definition
of weak left-linearity and non-left-linear variable arguments:

Observation 1. All descendants of terms inside a non-left-linear variable argument are also
inside a non-left-linear variable argument.

Observation 2. All non-left-linear variable arguments x are linear on the right-hand side of
introduction and switch rules.

In the following we will prove that we can convert rewrite sequences in weakly left-linear
CTRSs into rewrite sequences in which all U-terms have at most one one-step descendant.
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Let in the following v be a U-term and u be its introduction term. Consider the derivation
l[u] → l[v] → r[v, v]. The U-term v has two one-step descendants. We can move the intro-
duction step past the non-right-linear rule, thus avoiding that v is duplicated: l[u] → r[u, u] ‖→
r[v, v]. In detail, we can shift the introduction steps behind so that the introduction term is
duplicated instead of the U-term.

Yet, for this shift-behind, every U-term must have a unique introduction term. Since we
allow non-left-linear introduction and switch rules there may be multiple introduction terms:

s[l[u1], l[u2]]→∗ s[l[v], l[v]]→ t[l[v]]→ t[r[v, v]]

Observe that in this case t is a U-rooted term and l[v] is inside a non-left-linear variable
argument in t.

In the second part of the derivation s[l[v], l[v]]→ t[l[v]]→ t[r[v, v]] we can delay the switch
or introduction step s[l[v], l[v]]→ t[l[v]] and obtain

s[l[v], l[v]] ‖→ s[r[v, v], r[v, v]]→ t[r[v, v]]

Now, the introduction terms are unique for all U-terms and we can shift behind the introduc-
tion step twice:

s[l[u1], l[u2]]→∗ s[r[u1, u1], r[u2, u2]] ‖→ s[r[v, v], r[v, v]]→ t[r[v, v]]

Using these shifts of rewrite steps we can transform all derivations in weakly left-linear DC-
TRSs into a derivation in which U-terms have at most one one-step descendant. In the following
example we illustrate how to apply these shift steps.

Example 40. Consider the following DCTRS and its unraveled TRS:

R =



a→ c→ e
↗↘ ↘

b→ d→ k

f(x)→ x⇐ x→∗ e
g(x, x)→ C ⇐ A→∗ B
h(x)→ i(x, x)


Useq(R) =



a→ c→ e
↗↘ ↘

b→ d→ k

f(x)→ Uα1 (x, x)

Uα1 (e, x)→ x

g(x, x)→ Uβ1 (A, x)

Uβ1 (B, x)→ C

h(x)→ i(x, x)


Observe, thatR is weakly left-linear while Useq(R) is not. Useq(R) gives rise to the follow-

ing derivation:

A : g(h(f(a)), h(f(b))) ‖→ g(h(Uα1 (a, a)), h(Uα1 (b, b)))→∗ g(h(Uα1 (c, d)), h(Uα1 (c, d)))

→ Uβ1 (A, h(Uα1 (c, d)))→ Uβ1 (A, i(Uα1 (c, d), Uα1 (c, d)))

→∗ Uβ1 (A, i(Uα1 (e, d), Uα1 (k, k)))→ Uβ1 (A, i(d, Uα1 (k, k)))
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We want to show that there is an equivalent derivation such that all U-terms have at most one
one-step descendant. In A, the inner U-term in the term Uβ1 (A, h(Uα1 (c, d))) has two one-step
descendants. We cannot shift behind the introduction step of the inner U-term because it has two
introduction terms in A. We first need to delay the application of the non-left-linear introduction
rule and thereby prevent rewrite steps inside non-left-linear variable arguments. We therefore
apply all rewrite steps inside the non-left-linear variable argument before the introduction step
(in all parallel positions) and obtain

g(h(Uα1 (c, d)), h(Uα1 (c, d)))→∗ g(i(Uα1 (c, d), Uα1 (c, d)), i(Uα1 (c, d), Uα1 (c, d)))

→∗ g(i(d, Uα1 (k, k)), i(d, Uα1 (k, k)))

Only then we apply the introduction rule to the g-rooted term:

g(i(d, Uα1 (k, k)), i(d, Uα1 (k, k)))→∗ Uβ1 (A, i(d, Uα1 (k, k)))

Figure 4.6 illustrates the transformation of the derivation along with the successor relation
of all U-terms.

g(h(f(a)), h(f(b)))

g(h(Uα1 (a, a)), h(Uα1 (b, b)))

g(h(Uα1 (c, d)), h(Uα1 (c, d)))

Uβ1 (A, h(Uα1 (c, d)))

Uβ1 (A, i(Uα1 (c, d), Uα1 (c, d)))

Uβ1 (A, i(Uα1 (e, d), Uα1 (k, k)))

Uβ1 (A, i(d, Uα1 (k, k)))

g(h(Uα1 (c, d)), h(Uα1 (c, d)))

g(i(Uα1 (c, d), Uα1 (c, d)), i(Uα1 (c, d), Uα1 (c, d)))

g(i(Uα1 (e, d), Uα1 (k, k)), i(Uα1 (e, d), Uα1 (k, k)))

g(i(d, Uα1 (k, k)), i(d, Uα1 (k, k)))

Uβ1 (A, i(d, Uα1 (k, k)))

Figure 4.6: Delaying the introduction step in Example 40

Now, we eliminated all rewrite steps inside non-left-linear variable arguments. Therefore,
all U-terms have one unique introduction term and we can shift the corresponding introduction
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steps behind the application of the non-right-linear rule h(x)→ i(x, x):

g(h(f(a)), h(f(b)))→∗ g(i(f(a), f(a)), i(f(b), f(b)))

→∗ g(i(Uα1 (a, a), Uα1 (a, a)), i(Uα1 (b, b), Uα1 (b, b)))

This step is illustrated in Figure 4.7.

g(h(f(a)), h(f(b)))

g(h(Uα1 (a, a)), h(Uα1 (b, b)))

g(h(Uα1 (c, d)), h(Uα1 (c, d)))

g(i(Uα1 (c, d), Uα1 (c, d)), i(Uα1 (c, d), Uα1 (c, d)))

g(i(Uα1 (e, d), Uα1 (k, k)), i(Uα1 (e, d), Uα1 (k, k)))

g(i(d, Uα1 (k, k)), i(d, Uα1 (k, k)))

Uβ1 (A, i(d, Uα1 (k, k)))

g(h(f(a)), h(f(b)))

g(i(f(a), f(a)), i(f(b), f(b)))

g(i(Uα1 (a, a), Uα1 (a, a)), i(Uα1 (b, b), Uα1 (b, b)))

g(i(Uα1 (c, d), Uα1 (c, d)), i(Uα1 (c, d), Uα1 (c, d)))

Figure 4.7: Shifting behind the introduction steps in Example 40

In total we obtain the derivation

g(h(f(a)), h(f(b)))→∗ g(i(f(a), f(a)), i(f(b), f(b)))

→∗ g(i(Uα1 (a, a), Uα1 (a, a)), i(Uα1 (b, b), Uα1 (b, b)))

→∗ g(i(Uα1 (c, d), Uα1 (c, d)), i(Uα1 (c, d), Uα1 (c, d)))

→∗ g(i(Uα1 (e, d), Uα1 (k, k)), i(Uα1 (e, d), Uα1 (k, k)))

→∗ g(i(d, Uα1 (k, k)), i(d, Uα1 (k, k)))→ Uβ1 (A, i(d, Uα1 (k, k)))

Now, all U-terms have at most one one-step descendant.

In order to prove that we can remove all rewrite steps in non-left-linear variable arguments
we extract derivations in U-terms from other derivations and then rebuild these extracted deriva-
tions. We first show that we can group rewrite steps in U-terms in derivations without rewrite
steps in non-left-linear variable arguments. This corresponds to one shift-behind step.
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Lemma 31. Let A : u →∗ v, u ∈ T be a derivation in Useq(R) where R is a weakly-left-
linear DCTRS and there are no rewrite steps in non-left-linear variable arguments in A. Let v|p
be a U-term that is not inside a non-left-linear variable argument. Then, there is a derivation
A′ : u→∗ w →q v in Useq(R) such that p ≤ q, and such that A′ does not contain rewrite steps
in non-left-linear variable arguments.

Proof. Let A be the derivation u1 →p1 · · · →pn un+1 where un+1|p is a U-term. Let m be the
largest m such that q ≤ pm where um+1|q is an ancestor of un+1|p.5 Observe that m and q are
unambiguous in A because un+1|p is not inside a non-left-linear variable argument.

We prove by induction on n −m that we can shift the rewrite step um → um+1 to the end
of the derivation A.

If n = m, then p = q, pm = pn and therefore p ≤ pn.
Otherwise, we show by case distinction on q and pm+1 that we can switch the mth and

m+ 1st rewrite step. If q ‖ pm+1, then um = C[um|q]q[um|pm+1 ]pm+1 and

um+2 = C[um+1|q]q[um+2|pm+1 ]pm+1 .

Let u′m+1 = C[um|q]q[um+2|pm+1 ]pm+1 . We obtain the derivation um →pm+1 u
′
m+1 →pm

um+2 and in total
u1 →∗ um →pm+1 u

′
m+1 →pm um+2 →∗ un+1

Now, the last rewrite step in which the U-term is rewritten is u′m+1 →pm um+2. Since the
length of u′m+1 →∗ un+1 is n − (m + 1) we can apply the inductive hypothesis. The case
q ≤ pm+1 is not possible by assumption.

Finally, if pm+1 < q, then um = um+1[um|q]q, um+1 = um+1[um+1|q]q and um+2 =
um+2[um+1|q]Q where Q are all one-step descendants of q.

First we show that no q′ ∈ Q is inside a non-left-linear variable argument. Observe that
all rules introducing non-left-linear variable arguments (introduction and switch rules) are right-
linear for these variables by the definition of weak left-linearity and that um|q is not inside a
non-left-linear variable argument. Therefore, also um+1|q is not inside a non-left-linear variable
argument. Hence, if there is one one-step descendant of um+1|q inside a non-left-linear variable
argument, then this term is the only one-step descendant of um+1|q. Yet, this one-step descen-
dant also must be an ancestor of un+1|p which contradicts the assumption that un+1|p is not
inside a non-left-linear variable argument. Hence, no one-step descendant of um+1|q is inside a
non-left-linear variable argument.

Let Q = {q1, . . . , qk} such that qk is the (unique) ancestor of un+1|p in um+2. Then we can
apply the m− 1st rewrite step already to um:

um+1[um|q]q →pm+1 um+2[um|q]Q
Let pm = q.q′, then we apply the rewrite step um|q → um+1|q to all one-step-descendants of
the U-term:

um+2[um|q]{q1,...,qk} →q1.q′ um+2[um+1|q]q1 [um|q]{q2,...,qk}
→q2.q′ um+2[um+1|q]{q1,q2}[um|q]{q3,...,qk} · · ·
→qk−1.q′ um+2[um+1|q]{q1,...,qk−1}[um|q]qk →qk.q′ um+2[um+1|q]Q

5By the common definition of ancestors, um|q is not an ancestor of un+1|p if q = pm.
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We therefore obtain in total the following derivation:

u1 →∗ um+2[um+1|q]{q1,...,qk−1}[um|q]qk →qk.q′ um+2 →∗ un+1

Now, the last rewrite step in which the U-term is rewritten is

um+2[um+1|q]{q1,...,qk−1}[um|q]qk →qk.q′ um+2.

Since the length of um+2[um+1|q]{q1,...,qk−1}[um|q]qk →
∗ un+1 is n− (m+ 1) we can apply the

inductive hypothesis.
Since no qi.q′ (i ∈ {1, . . . , k}) is inside a non-left-linear variable argument the final deriva-

tion also does not contain any rewrite step in a non-left-linear variable argument.

Next, we use this result to isolate derivations in U-terms from the rest of the derivation.

Lemma 32. Let A : u →∗ v, u ∈ T be a derivation in Useq(R) where R is a weakly-left-
linear DCTRS and there are no rewrite steps in non-left-linear variable arguments in A. Let v|p
be a U-term that is not inside a non-left-linear variable argument. Then, there are derivations
A′ : u →∗ v[lσ]p and B : lσ →∗ v|p in Useq(R) such that A′ and B do not contain rewrite
steps in non-left-linear variable arguments where lσ is the (unique) introduction term of v|p.

Proof. Let A be the derivation u1 →p1 · · · →pn un+1 where un+1|p is a U-term. We assume
that p ≤ pn because of Lemma 31.

Let ti(A,n + 1, p) = {(m+ 1, q)} (since un+1|p is not inside a non-left-linear variable
argument there is only one introduction term), i.e, um|q = lσ is the unique introduction term of
un+1|p.

By induction on n −m, if n = m, then pn = p, A′ is the derivation u1 →∗ un and B only
contains the introduction step lσ → un+1|p.

Otherwise, un|p is also a U-term (since p ≤ pn). We therefore can apply the inductive
hypothesis to u1 →∗ un and un|p and obtain derivations u1 →∗ un[lσ]p and lσ →∗ un|p →
un+1|p.

We can split derivations into two derivations and thereby isolate rewrite steps in U-terms.
Next we show that we can move rewrite steps in non-left-linear variable arguments into these
isolated derivations and thereby eliminate these rewrite steps. This corresponds to the delaying
of switch and introduction steps that rise rise to non-left-linear variable arguments. Figure 4.6
illustrates multiple applications of this step.

Lemma 33. Let A : u →∗ v, u ∈ T be a derivation in Useq(R) where R is a weakly-left-
linear DCTRS. Then, there is a derivation A′ : u →∗ v such that there are no rewrite steps in
non-left-linear variable arguments.

Proof. Let A be the derivation u1 →p1 · · · →pn un+1. We prove this result by induction on the
length n of A. If n = 1 there are no rewrite steps in non-left-linear variable arguments because
u1 does not contain any U-terms and therefore also no non-left-linear variable arguments.

Otherwise, by the inductive hypothesis, there are no rewrite steps in non-left-linear variable
arguments in u1 →∗ un. If pn is not inside a non-left-linear variable argument we are done.
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Otherwise, there is a U-term un|p such that un|p.i (i ∈ N) is a non-left-linear variable argu-
ment and p.i.p′ = pn. In case of nested non-left-linear variable arguments let p be the innermost
such U-term and let d be the number of nested non-left-linear variable arguments. We use an
inductive argument on d in the following.

Let lσ be the introduction term of un|p. We can apply Lemma 32 to the derivation u1 →∗ un
and the U-term un|p and obtain derivations A′ : u1 →∗ un[lσ]p and lσ →∗ un|p without rewrite
steps in non-left-linear variable arguments.

Let in the following for better readability B : v1 →∗q1 · · · vk →qk vk+1 be the derivation
lσ →∗ un|p → un+1|p where qk = i.p′. Observe that the only rewrite step inside a non-left-
linear variable argument in B is the last rewrite step vk →qk vk+1.

We prove that we can transform B into a derivation without rewrite steps in non-left-linear
variable arguments by induction on the length k of B.

The base case is B : v1 →l→r v2 →i.p′ v3 where v1 → v2 is the introduction step that
introduces the non-left-linear variable argument. Let r|i = x be the corresponding variable.
Then |l|x > 1 and |r|x = 1. Therefore, v1 = lσ, v2 = rσ and v3 = rσ′ where xσ′ =
xσ[v3|i.p′ ]p′ and yσ = yσ′. Since xσ → xσ′ we obtain the following derivation:

lσ ‖→ lσ′ → rσ′

This derivation now does not contain rewrite steps in non-left-linear variable arguments.
For the induction step we use a case distinction on qk−1 and i where qk = i.p′.
The case i ≤ qk−1 is not possible because v1 →∗ vk does not contain rewrite steps in

non-left-linear variable arguments.
If i ‖ qk−1, we can simply swap the k − 1st and the kth rewrite step and then apply the

inductive hypothesis, dual to the corresponding case in the proof of Lemma 31.
The only remaining case is qk−1 = ε. In this case the k − 1st rewrite step in B is a switch

step, i.e., vk−1 = Uαj (tjτ,
−→
Xjτ), vk = Uαj+1(sj+1τ,

−−−→
Xj+1τ) and vk+1 = Uαj+1(sj+1τ

′,
−−−→
Xj+1τ

′)
where xτ ′ = xτ [vk+1|i.p′ ]p′ and yτ = yτ ′ for all y 6= x.

In this case, x 6∈ Var(sj+1) by the definition of weak left-linearity.
We distinguish two cases. If x 6∈ Xj we obtain the derivation

v1 →∗ Uαj (tjτ,
−→
Xjτ)→ Uαj (tjτ

′,
−→
Xjτ)→ Uαj+1(sj+1τ

′,
−−−→
Xj+1τ

′)

which does not contain rewrite steps in non-left-linear variable arguments.
Otherwise, x ∈ Xj and we obtain the derivation

v1 →∗ Uαj (tjτ,
−→
Xjτ)→ Uαj (tjτ,

−→
Xjτ

′)

If x is a non-left-linear variable argument inXj we can apply the inductive hypothesis and obtain
a derivation v1 →∗ Uαj (tjτ,

−→
Xjτ

′) without rewrite steps in non-left-linear variable arguments.
Since xτ → xτ ′ does not contain rewrite steps in non-left-linear variable arguments (because

of the assumption that un|p.i is the innermost such argument), also the following derivation does
not contain such rewrite steps

Uαj (tjτ,
−→
Xjτ

′) ‖→ Uαj (tjτ
′,
−→
Xjτ

′)→ Uαj+1(sj+1τ
′,
−−−→
Xj+1τ

′)
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We therefore obtain a derivation B′ : v1 →∗ vk+1 without rewrite steps in non-left-linear
variable arguments.

We conclude the proof by recombining the derivations A′ : u1 →∗ un[v1]p and B′ : v1 →∗
vk+1. Both derivations do not contain rewrite steps in non-left-linear variable arguments. There-
fore, the rewrite steps

un[v1]p →p.q1 un[v2]p →p.q2 · · · →p.qk un[vk+1]p

are nested in at most d−1 non-left-linear variable arguments so that for the following derivation
the inductive hypothesis for d holds:

u1 →∗ un[v1]p →∗ un[vk+1]p = un+1

Hence, we can eliminate all rewrite steps in non-left-linear variable arguments. We fi-
nally eliminate all U-terms with multiple one-step descendants by repeatedly applying the shift-
behind.

Lemma 34. Let A : u→∗ v, u ∈ T be a derivation in Useq(R) whereR is a weakly-left-linear
DCTRS. Then, there is a derivationA′ : u→∗ v such that all U-terms have at most one one-step
descendant.

Proof. We assume that the derivation A : u1 →p1 u2 →p2 · · ·un+1 does not contain rewrite
steps in non-left-linear variable arguments because of Lemma 33.

We prove by induction on the number of U-terms with more than one one-step descendant
that there is an equivalent derivation such that all U-terms have at most one one-step descendant.

If there are no such U-terms in A we are finished. Otherwise, let um|p be the first in A and
in case of nested U-terms innermost U-term such that |P | > 1 where P is the set of one-step
descendants of um|p.

By Lemma 32 there are derivations lσ →∗ um|p and u1 →∗ um+1[lσ]P where l is the
left-hand side of the corresponding conditional rule.

The derivation lσ →∗ um|p only contains U-terms with at most one one-step descendants
because it only consists of rewrite steps in u1 →∗ um. Since the root symbol of lσ is not a U-
symbol the following derivation contains less U-terms with multiple one-step descendants than
A:

u1 →∗ um+1[lσ]P ‖→∗ um+1[um|p]P →∗ un+1

We therefore can apply the inductive hypothesis to this derivation.

After eliminating all rewrite steps that duplicate U-terms we can use our previous results to
prove soundness:

Lemma 35 (soundness of weakly left-linear DCTRSs). Let u →∗ v, u ∈ T be a derivation in
Useq(R) whereR is a weakly left-linear DCTRS. Then, u→∗R tb(v).
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Proof. By Lemma 34 we obtain a derivation A′ : u→∗ v in Useq(R) such that all U-terms have
at most one one-step descendant and therefore also at most one non-junk one-step descendant.
This implies that all U-terms are either fully eliminated or erased w.r.t. junk terms.

By Lemma 26 and Lemma 30 there is a derivation u→∗R tb(v).

Using this new proof we can repeat the result of [8, Theorem 31]

Theorem 8 (soundness of weak left-linear DCTRSs for Useq). Useq is sound for weakly left-
linear DCTRSs.

Proof. Straightforward from Lemma 35.

Since we obtain soundness w.r.t. the backtranslation tb we also obtain soundness w.r.t. join-
ability:

Theorem 9 (soundness of weak left-linear DCRTSs for joinability). Useq is sound w.r.t. join-
ability for weakly left-linear DCTRSs.

Proof. Straightforward from Lemma 35 and Lemma 1.

The proof of Theorem 8 differs significantly from the proof that we gave in [8]. In fact this
proof resembles the approach that we used to prove soundness of derivations that satisfy the
membership condition.

In the proof of Theorem 8 we shift rewrite steps in order to obtain a U-right-linear derivation.
In [8] we also need to shift rewrite steps and in fact we use the same shift steps. Yet, we
only eliminate rewrite steps in non-left-linear variable arguments and then use the same proof
structure that is already used in [29] to proof soundness of left-linear normal 1-CTRSs.

4.8 Confluence of CTRSs

One main motivation to develop transformations is to prove properties of conditional rewrite
systems using the well-investigated framework of unconditional rewriting.

Proving or disproving confluence of CTRSs using transformations was already a motivation
for the transformation of [4]. This paper presents counterexamples for confluence properties
using a simple transformation.

In [9] we presented first results for confluence of CTRSs using unravelings. In order to
prove confluence of a conditional rewrite system via the transformed system we need to prove
that if two terms are joinable in the transformed system then they are also joinable in the original
system.

In general, soundness w.r.t. joinability is essential to prove confluence:

Lemma 36 (confluence and soundness). R is confluent if U(R) is confluent and sound w.r.t. join-
ability.

Proof. Let t1, t2 ∈ T be two terms in the original CTRS R such that t1 ↔∗R t2. By com-
pleteness of U we obtain t1 ↔∗U(R) t2. Since U(R) is confluent this implies t1 ↓U(R) t2. By
soundness w.r.t. joinability then also t1 ↓R t2.

85



Using this previous lemma we now can prove confluence for many DCTRSs provided that
the unraveled DCTRS is confluent:

Lemma 37 (confluence for left-separated DCTRSs). LetR be a left-separated DCTRS such that
Useq(R) is confluent, thenR is confluent.

Proof. Straightforward from Theorem 3 and Lemma 36.

Lemma 38 (confluence for weakly left-linear DCTRSs). LetR be a left-separated DCTRS such
that Useq(R) is confluent, thenR is confluent.

Proof. Straightforward from Theorem 9 and Lemma 36.

Lemma 39 (confluence for weakly right-linear and sorted DCTRSs). LetR be a left-separated
DCTRS such that Useq(R) is confluent, thenR is confluent.

Proof. Straightforward from Theorem 7 and Lemma 36.

Since there are automated tests to prove confluence of unconditional term rewrite systems
we can use them directly to prove confluence of CTRSs. Since Lemma 36 does not depend on a
specific transformation we can also prove soundness w.r.t. joinability for other transformations
that have better properties w.r.t. confluence, like e.g. the unraveling of [9].
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CHAPTER 5
Conclusion

5.1 Related Work

5.1.1 Comparison to Other Transformations

Many different transformations have been defined in the past. The first work that specifically
addresses properties of transformations known to us is [14]. In this paper the class of unravelings
is introduced. Transformations of this class keep the original signature but add new function
symbols to encode conditional arguments in which the condition is evaluated.

This first unraveling in [14] has been extended in [15] to the case of deterministic CTRSs
in which certain extra variables are allowed. In [28] and [29] this unraveling is slightly refined.
These unravelings encode the conditions sequentially, hence we refer to them as sequential
unraveling in this thesis (Useq).

Based on the unraveling of [29], another unraveling is introduced in [24]. This optimized
sequential unraveling Uopt only encodes variable bindings if they are used in conditions that are
not yet evaluated or the right-hand side of the conditional rule.

Another class of transformations stem from [35]. Based on this approach transformations
have been presented in [1], [32] and [6]. In these transformations the original signature is mod-
ified: Some function symbols are replaced by function symbols with higher arity. In these
additional arguments the condition is encoded and evaluated. Since in these transformations the
original symbols are kept, rules that are overlapping in the original CTRS are transformed into
overlapping rules. Therefore, these transformations show a better behaviour towards properties
like confluence or computational equivalence ([32]).

Although all these transformations split conditional rules into multiple unconditional ones
in a similar way we obtain different soundness properties. In the following we want to present
counterexamples to show that soundness of Useq does not imply soundness for other transfor-
mations in general.

In [25] it is shown that soundness of Uopt is sufficient for soundness of Useq. The reverse of
this result, soundness of Useq implies soundness of Uopt, does not hold: We have pointed out in
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[7] that Uopt gives rise to unsoundness for rewrite sequences in which U-terms are erased (see
also Example 5). In the optimized unraveling terms terms in which conditions are evaluated
encode less information than the term that initiated the conditional evaluation. We therefore
may obtain joinability for terms in the transformed system that are not joinable in the original
system, in particular if a condition is not satisfied. Combined with non-left-linear rules this leads
to unsoundness.

Yet in these unsound derivations the terms that encode the conditions must be erased. Other-
wise they remain as witnesses for an unsuccessful conditional evaluation and cannot be removed.
Therefore, in non-erasing systems these garbage terms are kept, hence although we still obtain
unsoundness for joinability such terms are preserved in derivations so that we do not obtain a
term of the original conditional term rewrite system.

Yet, also for Uopt-non-erasing systems we obtain unsoundness even if Useq is sound:

Example 41. Consider the following DCTRS and its unraveling using Uopt:

R =


s(a) t(k)

← ←
c← ←s(b) t(l)

f(x)→ z ⇐ s(x)→∗ t(z)
g(x, x)→ h(x, x)

 Uopt(R) =



s(a) t(k)
← ←
c← ←s(b) t(l)

f(x)→ Uα1 (s(x))

Uα1 (t(z))→ z

g(x, x)→ h(x, x)


Consider the following derivation in Uopt(R)

g(f(a), f(b))→ g(Uα1 (s(a)), Uα1 (s(b))) ‖→ g(Uα1 (c), Uα1 (c))

→ h(Uα1 (c), Uα1 (c)) ‖→ h(Uα1 (t(k)), Uα1 (t(l))) ‖→ h(k, l)

This derivation is unsound because f(a) and f(b) do not have a common reduct that rewrites
to k and l. The derivation is therefore unsound although the CTRS is Uopt-non-erasing.

Consider the unraveled TRS using Useq:

Useq(R) =



s(a) t(k)
← ←
c← ←s(b) t(l)

f(x)→ Uα1 (s(x), x)

Uα1 (t(z), x)→ z

g(x, x)→ h(x, x)


Now, we cannot apply the non-linear rule because there is no common reduct of a and b:

g(f(a), f(b))→ g(Uα1 (s(a), a), Uα1 (s(b), b)) ‖→ g(Uα1 (c, a), Uα1 (c, b))

In fact, a and b are irreducible. Every rewrite sequence in Useq starting from g(f(a), f(b))
therefore satisfies the soundness condition for context-sensitive rewriting.
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Other transformations are usually only defined for normal 1-CTRSs ([1], [32] and [6]).
These transformations replace existing function symbols by symbols with a higher arity. There-
fore, terms encoding conditional arguments still resemble original terms, yet since the trans-
formed system changed some function symbols they are not covered by the original definition
of unravelings of [14]. Still, these transformations resemble the unraveling Useq because they
keep all variable bindings of the term that starts the conditional evaluation (in fact the whole
term is kept). We introduced a framework to describe properties of transformations of CTRSs
into TRSs in [6] that covers these transformations and also unravelings.

It is surprising that soundness properties of Useq do not carry over to these other transfor-
mations, even if we do not consider CTRSs as in Example 10. Even for normal 1-CTRSs, we
obtain different soundness results for the transformation of [1] and therefore also for the trans-
formations of [32] or [6].

Example 42. Consider the following normal 1-CTRS and its transformed TRS using the trans-
formation of [1]:

R =



a→ c
↗↘

b→ d

f(x)→ x⇐ x→∗ c
g(x, x)→ h(x, x)

h(x, f(x))→ x


T[1](R) =



a→ c
↗↘

b→ d

f ′(x,⊥)→ f ′(x, 〈x〉)
f ′(x, 〈c〉)→ x

g(x, x)→ h(x, x)

h(x, f ′(x, z))→ x


The root symbol of the left-hand side of the conditional rule f is replaced by a new function

symbol f ′ with an additional argument to encode the conditional argument. If the conditional
argument is not initialized it contains ⊥. The term g(f(a), f(b)) therefore corresponds to the
term g(f ′(a,⊥), f ′(b,⊥)) in the transformed TRS.

In all rules we need to replace f -terms by f ′-terms. In order to avoid that partial condi-
tional evaluations block derivations the conditional argument is mapped to a new variable and
therefore ignored.

Now consider the following derivation:

g(f ′(a,⊥), f ′(b,⊥))→∗ g(f ′(a, 〈a〉), f ′(b, 〈b〉))→∗ g(f ′(d, 〈c〉), f ′(d, 〈c〉))
→ h(f ′(d, 〈c〉), f ′(d, 〈c〉))→ h(d, f ′(d, 〈c〉))→ d

We already explained in Example 21 that the derivation g(f(a), f(b))→∗ h(d, f(d)) is not
possible in R. Therefore, also the above derivation is unsound. Therefore, T[1] is unsound in
this case although Uopt is sound by Theorem 1.

Since the transformation of [1] is not sound for non-overlay systems (see Example 10) and
the refinements in [32] and [6] are syntactically very complex we introduced an unraveling in
[9] that combines some properties of both classes of transformations.

This unraveling Uconf shows better properties w.r.t. confluence for overlay CTRSs in which
conditional rules depend on similar rules, yet it still satisfies the original definition of unrav-
elings. Such overlaying rules arise very often when modeling pattern matching of functional
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programming languages similar to in Example 3. This new unraveling is already hinted in
[29, Example 7.2.49].

In this unraveling we do not use the rule as a label for U-symbols but only the left-hand
side of the condition and the rule (independent of a renaming of the variable). We also obtain
different properties w.r.t. soundness for this transformation:

Example 43. Consider the following Uopt-non-erasing 1-CTRS and its transformation using the
unraveling of [9]:

R =



f(x)→ A⇐ s(x)→∗ t
f(x)→ B ⇐ s(x)→∗ t
s(a) ←t←s(b)

a ←c←b

g(x, x)→ h(x, x)


Unew(R) =



f(x)→ Uf(x),s(x)(s(x), x)

Uf(x),s(x)(t, x)→ A

Uf(x),s(x)(t, x)→ B

s(a) ←t←s(b)

a ←c←b

g(x, x)→ h(x, x)


Observe that we obtain one rule less in Unew(R) than in Uopt(R) or Useq(R) because the

introduction rules of both conditional rules are identical.
In the unraveled CTRS we obtain the following derivation:

g(f(a), f(b))→∗ g(Uf(x),s(x)(s(a), a), Uf(x),s(x)(s(b), b))

→∗ g(Uf(x),s(x)(t, c), Uf(x),s(x)(t, c))

→∗ h(Uf(x),s(x)(t, c), Uf(x),s(x)(t, c))→∗ h(A,B)

Yet, this derivation is unsound because there is no common descendant of f(a) and f(b) that
rewrites to A and B inR.

It will be part of our future work to provide soundness results also for these transformations.

5.1.2 Applications

Since conditional term rewrite systems are more complex than unconditional ones there has
been many efforts to adapt properties and results of unconditional term rewrite systems using
transformations. For this purpose, soundness properties are essential. We already presented
some confluence results for CTRSs that may lead to automated confluence proofs for conditional
term rewrite systems. In the recent literature there are further applications of soundness results.

Inversion of Functions

In [17] a method is shown to invert functions by inverting the term rewrite system that repre-
sents the function. The method returns a conditional rewrite system. In order to eliminate the
conditions of these CTRSs unravelings are used.
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In [24] this method is investigated in more detail, along with some soundness results. Un-
ravelings are used in [24] to (partially) invert functions. In [21] this method is also used to prove
injectivity of functions, and in [26] inversion is presented for tail-recursive functions.

In this inversion approach unravelings are used. The analysis of soundness is therefore of
major interest and addressed to in [25]. Although the authors focus on the optimized unraveling
their results immediately carry over to the sequential unraveling as it is shown in [25].

Operational Termination of CTRSs

In [31] it is shown that we obtain soundness if we use context-sensitive rewriting in the trans-
formed system. Based on this result new results on operational termination of CTRSs are proven,
for instance it is shown that non-termination of the transformed system implies non-operational
termination. Using unravelings, provers for termination for unconditional term rewrite systems
can be used to prove (operational) termination of conditional term rewrite systems.

Computational Equivalence

In [1] a transformation is introduced that is based on the transformation of [35]. The main pur-
pose of this transformation is to simplify conditional narrowing and to allow parallel evaluation
of conditions. The transformation itself has better properties for preserving confluence than
unravelings, yet it also is unsound for many non-overlay systems.

In [32] a new property for transformations is introduced, computational equivalence. This
property implies that the transformed TRS of a confluent CTRS is confluent and sound. We
called this property soundness for preserving normalforms in [6]. The benefit of this property is
that we can use the transformed TRS to simulate all normalizing conditional rewrite sequences
and thereby use unconditional rewrite engines for the conditional case. The usefulness of this
approach is shown by comparing various experimental results of transformed CTRSs. Nonethe-
less the transformed TRS are syntactically complex (see Example 42). For instance, they do not
preserve important properties like being a constructor system or being an overlay system.

In [6] we therefore investigated in detail why the transformation of [1] is unsound for certain
CTRSs. This lead to the definition of a transformation that also is computationally equivalent for
many CTRSs (yet not for all cases in which [32] is computationally equivalent) and has better
syntactical properties.

5.2 Summary

Conditional term rewrite systems arise naturally in many applications, yet many notions of un-
conditional rewriting change their intuitive meaning and many criteria for proving properties
like confluence or termination are not valid after adding conditions. For this reason, transform-
ing conditional systems into unconditional ones is an intuitive approach to analyze conditional
rewrite systems.

In order to prove properties of conditional term rewrite systems using transformations into
unconditional ones we need to know whether rewrite sequences in the original system corre-
spond to rewrite sequences in the transformed system. This property is called completeness
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(for reducibility). It is usually satisfied because transformations add some additional symbols to
encode the conditions and are therefore more powerful than conditional rewrite systems.

It is much harder to prove whether rewrite sequences in the transformed system correspond
to rewrite sequences in the original system. This property is called soundness (for reducibil-
ity). Transformations are not sound in general because the increased power may give rise to
new derivations in the transformed system. Yet, in order to benefit from the well-understood
framework of unconditional rewriting for conditional rewrite systems soundness (or a similar
property) is essential.

There are many practical and theoretical applications for soundness properties, some of
which are the following:

• In order to prove that a conditional term rewrite system is not operationally terminating
we need to prove that an infinite rewrite sequence in the transformed system corresponds
to a computable infinite rewrite sequence in the original system. This is investigated in
detail in [31].

• In order to prove confluence of conditional term rewrite systems using transformations we
need to prove joinability of terms. For this purpose we need to translate rewrite sequences
in the transformed system into conditional rewrite sequences (see Lemma 36 and [9]).

• From a practical point of view, implementing conditional term rewriting is far from trivial.
Transformations can be used to benefit from features of unconditional rewriting. In [32]
the notion of computational equivalence is introduced for this purpose. We investigated
this approach in [6] along with other transformations.

• Another practical application is given by the fact that (deterministic) conditional term
rewrite systems are an intuitive way to encode functional programs. Therefore, any kind
of syntactic transformation of functional programs can be implemented in conditional
rewriting. [24] provides such a transformation in order to invert functions. In the last step
of the inversion the conditional rewrite system is unraveled. For this purpose, unravelings
are used.

In [14], a class of transformations, unravelings, is introduced. It is shown that a certain un-
raveling is not sound (see Example 20). Nonetheless it is shown that the unraveling is sound
for left-linear normal 1-CTRSs, a simple class of conditional term rewrite systems. In [15],
[27] and [29] a refinement of this unraveling is presented that is also applicable to conditional
rewrite systems with deterministic extra variables. Based on this transformation, [24] presents
an unraveling that optimizes the use of variables. [25] proves soundness for left-linear determin-
istic conditional rewrite systems, and soundness for non-erasing and right-linear deterministic
conditional rewrite systems for this unraveling. Furthermore it is shown that soundness of this
optimized unraveling implies soundness for the unraveling of [29].

We investigated soundness properties in [7] for normal 1-CTRSs, based on the unraveling of
[14] and proved and disproved many new results. We proved soundness also for a class of non-
left-linear systems, so-called weakly left-linear systems. In weakly left-linear conditional term
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rewrite systems we allow non-left-linear rules like eq(x, x) → true in which non-left-linear
variables are erased.

In [8] we extended our analysis and results to deterministic conditional term rewrite systems
and obtained many new results, yet we also could prove that many results of [7] do not hold in
presence of extra variables. Parts of this thesis are based on our results in [8].

In this thesis we first motivate the use of unravelings and sketch reasons for unsoundness in
Chapter 1. In conditional rewriting the evaluation of conditions is separated from other rewrite
steps and only if the conditions are satisfied we continue rewriting of the term that initiated
the conditional evaluation. Therefore, the term that initiated the conditional evaluation and the
conditional evaluation itself are strictly separated and synchronized.

In unconditional rewriting, conditional evaluations are encoded along with the variable bind-
ings of the term that initiated the conditional evaluation. Therefore, we can continue rewriting
inside the variables of this term and therefore obtain rewrite sequences in which the conditional
argument is outdated because of further rewrite steps in the variable bindings.

One way to avoid such inconsistencies is to use a strategy that avoids that the variable bind-
ings can be rewritten. This is sufficient for soundness as is shown in [31]. Yet, in general it is
not possible to avoid such inconsistencies. We therefore focus in this thesis which properties
imply that there either are no such inconsistencies or under which circumstances they do not
cause unsoundness.

In Chapter 3 we repeat the definition of the unravelings of [14] (Definition 1), [29] (Defini-
tion 2) and [24] (Definition 3). In all unravelings conditions are encoded in terms that are rooted
by a new function symbol, along with some variable bindings. We then define translations of
such U-terms into terms in the original system. Such term translations are used to map terms
that represent partly evaluated conditions in the transformed system into terms in the original
system. We discuss two possibilities:

• The backtranslation tb maps a partly evaluated condition to the corresponding left-hand
side of the conditional rule. This corresponds to the assumption that the condition might
not be satisfied.

• The translation forward tf maps a U-term to the corresponding right-hand side. We use
this translation when we know that the condition is satisfied.

In Chapter 4, our main chapter, we first define soundness properties. Since the literature is
not consistent in notions of soundness we introduced a unified framework for transformations of
CTRSs into TRSs in [6]. Our soundness notions are based on this paper.

One reason for unsoundness is that rewrite steps in the variable bindings in a U-term might
flip the status of satisfiability of the conditions. Yet, by imposing some restriction on how vari-
ables are distributed in the conditions we can avoid such cases of unsoundness (see Example 18).

We called the corresponding property sortedness (Definition 11). Sortedness is important to
avoid unsoundness, yet it is not sufficient to obtain soundness. This is shown in some counterex-
amples.

In order to prove soundness of sorted CTRSs we then presented two different approaches. In
the first approach we translate derivations in the transformed system into derivations in the orig-
inal system using term translations. We then prove that right-separateness and non-erasingness
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are sufficient for soundness of 2-DCTRSs (Theorem 1). This class of CTRSs does not allow
extra variables on the right-hand side of the conditional rules but they are allowed inside the
conditions. Nonetheless, we do not obtain other soundness properties like soundness w.r.t. join-
ability.

The symmetric counterpart to this result is soundness for left-separate DCTRSs (Theorem 2).
Yet since this property is syntactically very strict this property is of limited practical use. Similar
to the last property we prove soundness w.r.t. joinability for confluent CTRSs. This case is
interesting because we do not obtain soundness.

For other cases we cannot directly translate derivations of the transformed system into con-
ditional rewrite sequences. Instead, we introduce a new class of derivations, so-called U-eager
derivations, and prove that they are sound..

Using this approach we prove that membership rewriting is sufficient for soundness of the
optimized unraveling, provided that the CTRS is sorted (Theorem 5). This result is remarkable
because in [20] it is shown that context-sensitivity and membership rewriting are sufficient for
soundness. We even can weaken the membership condition and restrict it to non-right-linear
variables, i.e., variables that have more than one one-step descendant. This last result is then the
source for soundness proofs for further soundness results in the sequential unraveling.

For this purpose we present a mapping from derivations in the sequential unraveling into the
optimized sequential unraveling, topt (Definition 18). Using this mapping we show that weak
right-linearity (Definition 19) is sufficient for soundness. This is an important improvement
of other soundness results: In [7] we have shown that we obtain soundness if the transformed
system is right-linear (using the simultaneous unraveling). This result actually resembles our
result on left-separate CTRSs. In [25] it was shown that we obtain soundness for right-linear
and non-erasing systems.

We then repeat a result of [8] and prove that we also obtain soundness for weakly left-linear
DCTRSs (see Definition 20). The proof of this result (Theorem 8) is simpler than the one in [8].

Finally we show that we also obtain soundness w.r.t. joinability in both cases and show that
we can prove confluence of CTRSs by proving soundness w.r.t. joinability and confluence of the
transformed system. We published a similar result in [9].

Summarizing, we have shown several new results for soundness and disproven many other.
First we provided many counterexamples for soundness for the unravelings of Uopt and Useq.

• Example 5: Uopt is unsound for erased CTRSs. This example also disproves soundness
w.r.t. joinability of Uopt for most CTRSs.

• Example 18: Uopt and Useq are unsound for non-sorted CTRSs.

• Example 20: Counterexample for soundness of [14].

• Example 21: In-depth analysis of unsoundness example.

• Example 22: Example for unsoundness of sorted non-erasing DCTRSs from [8]. Using a
similar CTRS in Example 23 we even disprove soundness for confluent sorted non-erasing
DCTRSs.
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In [7] soundness is shown by translating mixed terms into original terms. Using this ap-
proach we proved several results for normal 1-CTRSs already in [7] and extended them to DC-
TRSs [8].

• Theorem 1: Soundness of Uopt for right-separate, Uopt-non-erasing 2-DCTRSs. Exam-
ple 21 disproves soundness w.r.t. joinability in this case. This result is not valid for many
other transformations including the unraveling of [9] (Example 41).

• Theorem 2: Soundness for left-separated DCTRSs. We also obtain soundness w.r.t. join-
ability (Theorem 3). This case is an extension of our result for ultra-right-linear CTRSs in
[7] and [8].

• Theorem 4: Useq is sound w.r.t. joinability for confluent, right-stable CTRSs. We also have
shown this result already in [8]. In [7] we even obtain soundness for normal 1-CTRSs.
For DCTRSs, Example 23 is a counterexample.

Translating derivations showed its limitations for more complex syntactic properties. We
therefore use a proof approach that is already hinted in [8] to proof further soundness properties:
We define a class of derivations of which we know that they are sound and show that we can
convert derivations of certain CTRSs into such derivations, thus proving soundness.

In [29] and [14] so-called balanced reductions are used for this case. We use a different class
of derivations, so-called U-eager derivations. This strategy can be described as “U-terms first”,
meaning that if we introduce a term that encodes a condition the condition must be satisfied
and eliminated before we may apply other rewrite steps. We prove soundness for sorted CTRSs
of such U-eager derivations in Lemma 14 (for Uopt). Based on this result we obtain further
soundness results:

• Theorem 5: Soundness of Uopt for derivations that satisfy the membership condition ∈ T
for sorted CTRS. This result is interesting because in [18] it is shown that Uopt is sound
for context-sensitive derivations that satisfy the membership condition. In [31] it is shown
that Useq is sound for context-sensitive derivations, yet Example 29 shows that Uopt is not
sound for such derivations, even for sorted CTRSs.

• Lemma 19: Soundness of Uopt for derivations in which all U-terms have at most one one-
step descendant and no U-term is erased. One implication of this result has been shown
already in [23], that is soundness of Uopt for non-erasing, Uopt-right-linear CTRSs.

• Lemma 27: Soundness of Useq for derivations in which all U-terms have at most one (non-
junk) one-step descendant. This result is an extension of Lemma 19 to Useq. Since Useq

encodes more information than Uopt we can drop the requirement for non-erasingness of
U-terms. Furthermore, the overhead of the encoding (that we called junk terms) can be
ignored.

• Theorem 6: Soundness of Useq for weakly right-linear, sorted DCTRSs. For this class of
CTRSs we also obtain soundness w.r.t. joinability (Theorem 7).
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• Theorem 8: Soundness of Useq for weakly left-linear DCTRSs. Here we used a different
proof approach than in [8]. Weak left-linearity also implies soundness w.r.t. joinability
(Theorem 9).

In this thesis we mostly discuss soundness the sequential unravelings Uopt and Useq. There
are some examples that show that we cannot simply adapt all soundness results to other trans-
formations, most notably transformations stemming from [1].

These transformations have some advantages concerning confluence properties because they
do not block derivations when a condition is evaluated. It therefore is of some interest to inves-
tigate in which cases our results of this thesis carry over to other transformations.

A related topic to proving properties of conditional rewrite systems using transformations is
reachability analysis: Not all terms in the transformed system represent a valid state of con-
ditions because they are not reachable from original terms. Nonetheless they lead to non-
confluence or non-operational termination ([29, Example 7.2.51]). We therefore should not
consider such unreachable terms ([6]) in the analysis of properties.

Of major interest is also the possibility to implement conditional rewriting using transfor-
mations. In [32] some experimental results are provided, and in [6] we compare two transfor-
mations.

From a practical point of view, our soundness results may also lead to new applications of
syntactic transformations of CTRSs. Inversion of functions has been a subject of interest for
some time (e.g. [24], [26]) and we hope that our work contributes to ongoing efforts in this area
of research.

Another practical application is the implementation of conditional term rewriting. Using
transformations we can benefit from current efficient implementations. Related to this we can
use transformations to prove confluence of conditional rewrite systems automatically. We hope
that this thesis will be a useful contribution for this purpose.
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