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Abstract

Estimation of causal effects of participation in a program or treatment on some

outcome of interest can play an important role in many areas including economics.

In this paper I consider methods for estimation of average treatment effects that

assume that treatment assignment is unconfounded with outcomes conditional

on the set of relevant covariates. I present the estimators based on weighting by

propensity score, the conditional probability of receiving the treatment and the

estimator that combines weighting with the regression approach, called a doubly-

robust estimator, because it is consistent even if one of the underlying models

used for regression or weighting is misspecified. Along with the outlined estima-

tion methods I describe the theoretical properties of the estimators that lead to

the asymptotic standard error estimation. I then apply these methods to esti-

mate the average treatment effect of participation in two types of active labour

market programs in Austria, active job-search programs and training programs,

on the future employment of individuals after four years following the program

start. I use an individual administrative data set from the analysis of Hofer,

Sellner and Weber (2007). According to the results of doubly-robust estimator

active job-search programs perform better than the training programs particularly

for women, where estimated effects are significantly positive for both programs.

For men a negative treatment effect is estimated in case of training programs.

The results suggest the presence of the stronger lock-in effect of training programs

comparing to job-search programs, especially for men, that is due to the initial

reduction in the job search effort during the training program participation. Fi-

nally I look at the average treatment effect estimated in each quarter up to twenty

quarters after the program start what provides a further evidence for the later

occurrence of the positive treatment effect for training programs compared to the

active job-search programs.
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1 Introduction

Estimation of causal effects of programs or policies plays an important role in eco-

nomics and other social sciences. The main interest lies in evaluating the effect

of participation of units (individuals, households, states etc.) in a program or in

a treatment on some outcome of interest. A crucial feature is that each unit, in

principle, can be either exposed to treatment or not, and we observe the outcome

only for one situation, nevertheless our interest is in comparison of the two out-

comes for the same unit when exposed, and when not exposed, to the treatment.

In order to evaluate the effect of treatment we compare the outcomes from two

distinct groups, the treated group and the control group. This approach requires

an assumption that adjusting treatment and control groups for differences in

some observed covariates, pretreatment variables, removes the biases in compar-

ison of the two groups, referred to as unconfoundedness assumption. A popular

approach to estimate the causal difference is to adjust for this confounding by

using a propensity score, the conditional probability of receiving the treatment.

Various methods for treatment effect estimation has been proposed1 and I will

particularly focus on methods using weighting based on propensity score and the

combination method using both weighting and regression approach. I will dis-

cuss three inverse probability weighted estimators as reviewed in Lunceford and

Davidian (2004) along with one estimator that combines weighting with regres-

sion, so-called doubly-robust estimator, that essentially provides some robustness

against misspecification in a sense that the parameter estimator remains con-

sistent even in case of misspecification of one of the underlying models for the

regression or for the weighted method.

In this paper, I estimate the impact of active labour market programs on the fu-

ture employment of individuals. I use an individual administrative data set from

the analysis of Hofer, Sellner and Weber (2007). Data set combines information

from Austrian social security records, labour market history and labour market

program participation, with personal characteristics of individuals. Following the

research of Hofer, Sellner and Weber (2007) I focus on two types of programs,

1Imbens and Wooldridge (2008) review the recent development in program evaluation.
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active job-search programs and training programs and estimate the average treat-

ment effect of the program participation using propensity score weighting ap-

proach. Active labour market programs are generally considered a tool to reduce

an unemployment, however differences across the programs raise the question of

effectiveness of particular types of programs. Job-search assistance programs are

shown to perform better over traditional training programs in several studies such

as Kluve (2006) who considers hundred European evaluation studies and shows

better outcome of job-search programs on post-program employment rates. Also

Weber and Hofer (2004), who use time-of-events method, show that participation

in the active job-search programs significantly reduces an unemployment duration

compared to the training programs which show a negative effect on employment

in the short run. This might be a result of what is considered to be an important

drawback of the traditional programs that they lead unemployed individuals to

reduce their search effort during participation, referred to as lock-in effect. On

the contrary, active job-search programs aim to increase search effort and search

efficiency by activating and encouraging the participants to move out of unem-

ployment. Another evidence present in the studies is the male-female difference

in the effects of the programs. Lechner and Wiehler (2011) argue that better

outcome of active labour market programs for women in terms of increased em-

ployment is due to their effect on reduction of share of women leaving the labour

force and come with the reduction or postponement of pregnancies.

Hofer, Sellner and Weber (2007) analyse the two groups of programs, active

job-search programs and training programs, separately for males and females and

by estimating the average treatment effect on treated provide evidence that in

the medium run (4 years) active job-search programs are more effective than

the traditional training programs. However, for both types of programs, a sig-

nificant effect on post-employment was found only for the female participants.

Using an alternative method of propensity score weighting and a doubly robust

method I estimate the average treatment effect of participating in programs on

a future employment of individuals after four years following the program start.

Analyzing the two program types separately for females and males I find, in accor-

dance with the previous findings, that active job-search programs perform better
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than training programs. For female participants are the effects of both programs

significantly positive, however bigger for the active job-search programs when fol-

lowing the results from doubly-robust estimation. On the contrary participating

of males in training programs results in the significantly negative treatment ef-

fect. Estimated average treatment effect results suggest the higher effectiveness

of active job-search programs compared to training programs for female partic-

ipants and support the assumption of strong lock-in effect of training programs

in the medium run for male participants.

In Section 2, I discuss a basic framework of potential outcomes, that allows to

define a causal effect, or treatment effect, and assumptions necessary for adjust-

ment for confounding. I describe the average treatment effect estimation under

unconfoundedness using weighting approach based on propensity score and the

combination of weighting and regression approach and outline the theoretical

properties of the estimators that allow for asymptotic standard errors estima-

tion. Section 3 describes the data and presents the empirical results of the paper.

Section 4 concludes the paper.
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2 Theoretical framework

2.1 Basic setup and average treatment effect

Current approach to program evaluation builds on the notion of potential out-

comes introduced by Rubin (1974). Consider a random sample of size N from

a large population. Let Ti ∈ {0, 1} indicate the participation of individual i in the

program and let Yi(0) denote the outcome for an individual i if he did not partic-

ipate in the program and Yi(1) outcome for the individual i if he did participate

in the program. Since each individual can either participate or not participate in

the program, but not both, we can observe only one of these potential outcomes

and the other becomes counterfactual. The response Yi that is actually observed

is then

Yi = Yi(0)(1− Ti) + Yi(1)Ti =

Yi(0), if Ti = 0

Yi(1), if Ti = 1.

(1)

The potential outcome framework provides a definition of a causal effect, or treat-

ment effect, for unit i as Yi(1)−Yi(0), which is not identifiable. Particularly, under

some assumptions, we can identify a population average treatment effect:

τ ≡ E[Yi(1)− Yi(0)]. (2)

Another frequently used estimand is the population average treatment effect on

the treated:

τ treat ≡ E[(Yi(1)− Yi(0))|Ti = 1]. (3)

To solve the identification problem following from nonobservability of both Yi(0)

and Yi(1) at the same time we need to take into account the relationship between

treatment assignment and the potential outcomes. In case that the assignment

to treatment is randomized in such a way that it is independent of covariates as

well as the potential outcomes, estimator for the average treatment effect can be

obtained as a difference of means of treated and control group. However data

from the observational studies can rarely be treated as randomized experiments.

Comparing the average outcome of treated with the average outcome of the non-

treated would not give a reasonable estimate, because groups of participants and
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non-participants are likely to be subject to self-selection with different outcomes

even in the absence of the program participation. Therefore to estimate the

causal effects an unconfoundedness is required for identification. An unconfound-

edness assumption (Rosenbaum and Rubin 1983) states that the treatment is

independent of the potential outcomes conditional on the observed covariates, or

pretreatment variables. Formally:

Assumption 1 (Unconfounded Treatment Assignment) 2

T ⊥ (Y (0), Y (1)) | X. (4)

To satisfy this assumption, assignment to the treatment needs to be dependent

only on the observed variables and we assume there are no unobservable charac-

teristics that influence both the treatment assignment and the potential outcomes.

Under unconfoundedness assumption we can estimate the average treatment ef-

fect conditioned on the covariates, τ(x) = E[Y (1)− Y (0)|X = x], by comparing

a group of treated individuals and a group of non-treated individuals with the

same value of covariates:

τ(x) =E[Y (1)− Y (0)|X = x]

=E[Y (1)|T = 1, X = x]− E[Y (0)|T = 0, X = x]

=E[Y |T = 1, X = x]− E[Y |T = 0, X = x]. (5)

By averaging τ(x) over the distribution of X we then obtain the population

average treatment effect:

E[τ(x)] =E[E[Y (1)− Y (0)|X = x]]

=E[Y (1)− Y (0)] (6)

=µ1 − µ0 = τ, (7)

where µ1 and µ0 denote unconditional means of outcomes for treated and non-

treated respectively. Dimension of X can be large and instead of conditioning on

all covariates, Rosenbaum and Rubin (1983) show that unconfoundedness implies

that treatment and potential outcomes are also independent conditioning on the
2Here and in the following I omit the subscript i to simplify the notation.
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propensity score p(x) ≡ Pr(T = 1|X = x) = E[T |X = x], the conditional

probability of receiving treatment given covariates:

T ⊥ (Y (0), Y (1)) | p(X). (8)

We will assume that for all values of covariates, propensity score is bounded

away from zero and one.

Assumption 2 (Overlap)

0 < Pr(T = 1|X = x) < 1. (9)

It is called an overlap assumption, as it implies that the support of the con-

ditional distribution of X given T = 1 overlaps completely with that of the

conditional distribution of X given T = 0. If there are values of covariates for

which the probability of receiving the treatment is zero or one, this means that

we observe only treated or control units for these values and we therefore cannot

compare treated and control units at such values.

There are several methods used in the literature for estimation of average treat-

ment effects under unconfoundedness. Among them regression methods that

estimate the conditional expectations, E[Y (t)|X], for t ∈ {0, 1}, from which un-

conditional expectations µt are obtained, other use the propensity score in various

ways, either by weighting treated and control outcomes or by matching treated

units to control units, using the values of covariates or propensity score to match.

In the paper I will particularly pay attention to the weighted methods and the

combination of weighted and regression methods.
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2.2 Weighting using the propensity score

To obtain an unbiased estimator of τ , we estimate µ1 and µ0 by reweighting of

treated and control observations in the following way. Consider

E
[
TY

p(X)

]
= E

[
TY (1)

p(X)

]
(10)

= E
[
E
[
TY (1)

p(X)

∣∣∣∣X]] (11)

= E
[
E(T |X)E(Y (1)|X)

p(X)

]
(12)

= E[E[Y (1)|X]] (13)

= E[Y (1)] = µ1, (14)

where the first equality follows from (1) together with T (1− T ) = 0, second and

final equality are by the low of iterated expectations, the third by unconfound-

edness and fourth by E[T |X] = p(X). Similarly, E
[

(1−T )Y
1−p(X)

]
= E[Y (0)] = µ0.

Together it implies:

E
[
TY

p(X)
− (1− T )Y

1− p(X)

]
= E[Y (1)− Y (0)] = µ1 − µ0 = τ, (15)

what suggests the estimator for τ that is due to Horvitz and Thompson (1952):

τ̂IPW1 = N−1

N∑
i=1

TiYi
p̂(Xi)

−N−1

N∑
i=1

(1− Ti)Yi
1− p̂(Xi)

, (16)

where p̂(Xi) denotes the estimated propensity score. To estimate the conditional

probability of treatment we usually employ a parametric model, p̂(Xi) = p(Xi, α̂)

where α denotes the vector of parameters. Typically probit or logit models are

used where the parameters of the model are estimated by maximum likelihood

estimation. Given that the parametric model for the propensity score is cor-

rectly specified the estimator of average treatment effect is consistent and
√
N

asymptotically normally distributed. This follows by application of the general-

ized method of moments estimation, in this framework also often referred to as

M-estimation (see Lunceford and Davidian 2004). The estimator weights the ob-

servations in each group by the inverse of the probability of being in that group,

hence denoted IPW, “inverse probability weighted” estimator. By weighting the
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treatment and the control group we essentially obtain the unconditional expecta-

tions of response variable under treatment and non-treatment, respectively. Esti-

mating their sample counterparts and taking the difference then directly leads to

the average treatment effect estimation. If the propensity score is well-specified,

the weights of the estimator should approximately add up to one. However, for

finite samples for some data generating processes, the sum of the weights can de-

part substantially from one (see Busso, DiNardo and McCrary 2009). Therefore,

another commonly used estimator in which the weights are normalized so that

they add up to one in each group (see Imbens 2004) is:

τ̂IPW2 =
N∑
i=1

TiYi
p̂(Xi)

/
N∑
i=1

Ti
p̂(Xi)

−
N∑
i=1

(1− Ti)Yi
1− p̂(Xi)

/
N∑
i=1

1− Ti
1− p̂(Xi)

. (17)

Note that E
[

T
p(X)

]
= E

[
E(T |X)
p(X)

]
= 1 and E

[
1−T

1−p(X)

]
= 1 so the term in (17)

estimates the difference of the unconditional expectations as in the previous case

furthermore let the weights add up to one. However, as shown in Robins and

Rotnitzky (1995), and Hahn (1998), even if we know the true propensity score,

IPW1 and IPW2 lead in general to inefficient estimates. In fact, it is better, in

terms of large sample efficiency, to weight using the estimated rather than the true

propensity score. Rubin and Thomas (1996) conclude that using the estimated

rather than known propensity score can improve the efficiency of the estimator

when the propensity score belongs to a parametric family. Hirano, Imbens and

Ridder (2003) show that in a special case, when the propensity score is estimated

nonparametrically, the resulting estimate is asymptotically efficient.

Lunceford and Davidian (2004) provide another estimator that is an asymp-

totically optimal variance minimizing combination of the former two estimators,

IPW1 and IPW2:

τ̂IPW3 =
N∑
i=1

TiYi
p̂(Xi)

(
1− C1

p̂(Xi)

)/{
N∑
i=1

Ti
p̂(Xi)

(
1− C1

p̂(Xi)

)}

−
N∑
i=1

(1− Ti)Yi
1− p̂(Xi)

(
1− C0

p̂(Xi)

)/{
N∑
i=1

1− Ti
1− p̂(Xi)

(
1− C0

p̂(Xi)

)}
,

(18)

where C1 =
∑N

i=1
Ti−p̂(Xi)
p̂(Xi)

/
∑N

i=1

{
Ti−p̂(Xi)
p̂(Xi)

}2

and C0 =
∑N

i=1
Ti−p̂(Xi)
1−p̂(Xi)

/
∑N

i=1

{
Ti−p̂(Xi)
1−p̂(Xi)

}2

.
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It is derived using the equalities
N∑
i=1

{
Ti(Yi − µ1)

p(Xi)
+ η1

(
Ti − p(Xi)

p(Xi)

)}
= 0, (19)

N∑
i=1

{
(1− Ti)(Yi − µ0)

1− p(Xi)
− η0

(
Ti − p(Xi)

1− p(Xi)

)}
= 0, (20)

that both τ̂IPW1 and τ̂IPW2 solve with (η0, η1) = (µ0, µ1) and (η0, η1) = (0, 0), re-

spectively. Identifying η0 and η1 minimizes the large sample variance of solutions

to the equations (19) and (20) and improves upon τ̂IPW1 and τ̂IPW2. They are

estimated solving
N∑
i=1

{
Ti(Yi − µ1)

p(Xi)2
+ η1

(
Ti − p(Xi)

p(Xi)

)2
}

= 0, (21)

N∑
i=1

{
(1− Ti)(Yi − µ0)

(1− p(Xi))2
− η0

(
Ti − p(Xi)

1− p(Xi)

)2
}

= 0. (22)

Solving these equations the estimator in (18) can be obtained. Lunceford and

Davidian (2004) argue that particularly for small N , inverse weighting of obser-

vation by a very small value of propensity score can result in numerical instability,

what is in IPW3 estimator taken care of by the proper scaling of each weight.

2.3 Doubly-robust estimator

Compared to weighting methods that estimate the average treatment effects by

estimating the propensity score p(X) and use it to weight the treated and control

outcomes, regression methods are based on estimating the two conditional means

µ1(x) = E[Y (1)|X = x] and µ0(x) = E[Y (0)|X = x]. As shown in (5),

µ1(x) = E[Y (1)|X = x] = E[Y |T = 1, X = x], (23)

µ0(x) = E[Y (0)|X = x] = E[Y |T = 0, X = x], (24)

and we can estimate µ0(.) using regression methods for the untreated subsam-

ple and µ1(.) for the treated subsample. Given consistent estimators µ̂1(x) and

µ̂0(x) we obtain a consistent estimator for unconditional means µ1, µ0 and their

difference, average treatment effect τ = µ1 − µ0, by averaging them

τ̂REG = N−1

(
N∑
i=1

µ̂1(Xi)−
N∑
i=1

µ̂0(Xi)

)
. (25)
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To estimate µ1(x) and µ0(x) we can specify the parametric models m1(X, β1) and

m0(X, β0) which in the simplest case can be linear functions of parameters:

µ1(x) = m1(X, β1) = Xβ1,

µ0(x) = m0(X, β0) = Xβ0,

where X ∈ RN×(k+1) includes k covariates and the vector of ones and βt for

t ∈ {0, 1} is the k-dimensional vector. This model is relevant in case the outcome

variable takes continuous values. Alternatively X can be replaced by any other

function ofX to describe the structure of the outcome data better, or we can use a

different model for example a logit model which is more appropriate in case of the

binary outcome variable. We can also go beyond the parametric models and use

nonparametric methods when modeling the propensity score. For the discussion

on regression methods used in the literature see Imbens and Wooldridge (2008).

For both methods, weighting and regression, the estimation greatly depends on

the parametric models that we choose to approximate the means of the potential

outcomes or the propensity score, and the estimators can suffer from inconsistency

in case of the model misspecification. Very desirable in these cases would be an

approach that uses a combination of regression and the propensity score weighting

method to achieve some robustness against model misspecification. This approach

is adopted by Robins, Rotnitzky and Zhao (1995) who develop the so-called

doubly-robust estimator3 relying on the combination of the two methods:

τ̂DR =N−1

N∑
i=1

(
TiYi
p̂(Xi)

−
(

Ti
p̂(Xi)

− 1

)
m1(Xi, β̂1)

)

−N−1

N∑
i=1

(
(1− Ti)Yi
1− p̂(Xi)

−
(

1− Ti
1− p̂(Xi)

− 1

)
m0(Xi, β̂0)

)
, (26)

where β̂t, for t ∈ {0, 1} comes from the regression model estimation of condi-

tional means µt(x) by models mt(X, βt). Each term in τ̂DR has the form of the

weighted estimator but “augmented” by the expression involving the regression

what increases the efficiency of the weighted estimator. But it is particularly a

so-called “double-robustness” property that motivates this estimator, which says
3There are several ways of combining the two estimation approaches, I focus only on this
specific one.
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that the estimator remains consistent if either the propensity score model is cor-

rectly specified but the two regression models m0 and m1 are not or the two

regression models are correctly specified but the propensity score model is not

and is automatically consistent for the correct specification of all models. Consis-

tency of the estimator for the two cases of misspecification is shown in Appendix.

Nevertheless, in case of misspecification of one of the two models the estimator

need no longer be more efficient than the weighted estimator (Lunceford and

Davidian 2004). But neither weighted estimators need be consistent if p(X) is

incorrectly specified. Also in case of the correctly specified regression models the

variance of the estimator may be larger in large samples compared to the regres-

sion estimator, it only offers the protection in case of misspecification (Davidian

2007).

2.4 Asymptotic properties of estimators

Large sample properties of weighted and doubly-robust estimators can be ob-

tained directly from the theory of generalized method of moments estimation.

Using the notation of Wooldridge (2001) let Wi ∈ RM ; i = 1, ..., N be a vector

of observations and θ a P -dimensional vector of parameters. Assume that for a

known function ψ(Wi, θ) ∈ RL, the parameter θ0 ∈ Θ ⊂ RP satisfies the moment

conditions

E[ψ(Wi, θ0)] = 0. (27)

To identify θ0, moment conditions must satisfy L ≥ P . In a simple case when

L = P , a method of moments estimator, θ̂, solves the sample counterpart of (27),

1

N

N∑
i=1

ψ(Wi, θ̂) = 0. (28)

If there is a unique θ0 for which E[ψ(Wi, θ0)] = 0, then by the weak law of large

numbers θ̂ p→ θ0 as n→∞. Under standard regularity conditions, the estimator

is asymptotically normally distributed,

√
N(θ̂ − θ0)

d→ N(0, A(θ0)−1B(θ0)(A(θ0)−1)′), (29)

where A(θ0) = E
[
−∂ψ(Wi, θ0)

∂θ′0

]
and B(θ0) = E[ψ(Wi, θ0)ψ(Wi, θ0)′].
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In this framework, we can specify the vectors of parameters θ and functions

ψ(Wi, θ) for each estimator of τIPW1, τIPW2, τIPW3 and τDR that become zero

in expectation and thus satisfy the moment conditions. General properties of

method of moments estimator then imply the consistency of the estimators and

the asymptotic variance of the estimators can be derived in the following way4.

First weighting estimator τ̂IPW1 involves estimating µ̂1, µ̂0 and α̂, the param-

eter vector of estimated propensity score. In the following I assume a probit

estimation of propensity score p(X) = p(X,α) = Φ(Xα), where Φ denotes the

cumulative distribution function of the standard normal distribution. The esti-

mated parameter vector θ̂IPW1 = (α̂, µ̂1, µ̂0) then solves the following moment

condition

1

N

N∑
i=1

ψ(Wi, θ̂IPW1) =
1

N

N∑
i=1

ψ((Yi, Xi), (α̂, µ̂1, µ̂0)) = 0, (30)

where

ψ((Yi, Xi), (α, µ1, µ0)) =


ψ1((Yi, Xi), (α, µ1, µ0))

ψ2((Yi, Xi), (α, µ1, µ0))

ψ3((Yi, Xi), (α, µ1, µ0))

 =


Ti−Φ(X′

iα)

Φ(X′
iα)(1−Φ(X′

iα))

∂Φ(X′
iα)

∂α

TiYi
Φ(X′

iα)
− µ1

(1−Ti)Yi
1−Φ(X′

iα)
− µ0

 .

(31)

The first moment condition, E[ψ1] = 0, follows from the maximum likelihood

estimation of α and is a score for a probit model. The other two equations come

from the weighting identification of µ1 and µ0. Applying (29) we have

√
N(θ̂IPW1 − θ0)

d→ N(0, A−1
IPW1BIPW1(A−1

IPW1)′) = N(0, AV arIPW1), (32)

where

AIPW1 = −E


∂ψ1(Wi,θIPW1)

∂α′
∂ψ1(Wi,θIPW1)

∂µ1

∂ψ1(Wi,θIPW1)
∂µ0

∂ψ2(Wi,θIPW1)
∂α′

∂ψ2(Wi,θIPW1)
∂µ1

∂ψ2(Wi,θIPW1)
∂µ0

∂ψ3(Wi,θIPW1)
∂α′

∂ψ3(Wi,θIPW1)
∂µ1

∂ψ3(Wi,θIPW1)
∂µ0

 (33)

4See Uysal (2011) and Lunceford and Davidian (2004) for further reference.
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and

BIPW1 = E




ψ1(Wi, θIPW1)

ψ2(Wi, θIPW1)

ψ3(Wi, θIPW1)

 (
ψ1(Wi, θIPW1)′ ψ2(Wi, θIPW1)′ ψ3(Wi, θIPW1)′

)  .
(34)

The asymptotic distribution of τ̂IPW1 is then
√
N(τ̂IPW1− τ0)

d→ N(0, AV arIPW1(µ̂1) +AV arIPW1(µ̂0)− 2ACovIPW1(µ̂1, µ̂0)),

(35)

where the asymptotic variance of τ̂IPW1 uses the 2×2 submatrix of the AV arIPW1

matrix that carry an information on the asymptotic variances and covariance of

µ̂1 and µ̂0 estimators. This finally allows to compute the asymptotic standard

errors of τ̂IPW1. Formula (35) applies to all the remaining estimators and I there-

fore list only the relevant moment conditions for joint vector of parameters in

each case.

For the estimator τ̂IPW2 estimator the following moment conditions hold:

1

N

N∑
i=1

ψ(Wi, θ̂IPW2) =
1

N

N∑
i=1

ψ((Yi, Xi), (α̂, µ̂1, µ̂0)) = 0, (36)

where

ψ((Yi, Xi), (α, µ1, µ0)) =


ψ1((Yi, Xi), (α, µ1, µ0))

ψ2((Yi, Xi), (α, µ1, µ0))

ψ3((Yi, Xi), (α, µ1, µ0))

 =


Ti−Φ(X′

iα)

Φ(X′
iα)(1−Φ(X′

iα))

∂Φ(X′
iα)

∂α

Ti(Yi−µ1)
Φ(X′

iα)

(1−Ti)(Yi−µ0)
1−Φ(X′

iα)

 .

(37)

The third weighted estimator τ̂IPW3 can be estimated using the moment con-

ditions:

1

N

N∑
i=1

ψ(Wi, θ̂IPW3) =
1

N

N∑
i=1

ψ((Yi, Xi), (α̂, µ̂1, µ̂0)) = 0, (38)

ψ((Yi, Xi), (α, µ1, µ0)) =


ψ1((Yi, Xi), (α, µ1, µ0))

ψ2((Yi, Xi), (α, µ1, µ0))

ψ3((Yi, Xi), (α, µ1, µ0))

 =


Ti−Φ(X′

iα)

Φ(X′
iα)(1−Φ(X′

iα))

∂Φ(X′
iα)

∂α

Ti(Yi−µ1)
Φ(X′

iα)
+ η1

Ti(Yi−Φ(X′
iα))

Φ(X′
iα)

(1−Ti)(Yi−µ0)
1−Φ(X′

iα)
− η0

Ti(Yi−Φ(X′
iα))

1−Φ(X′
iα)

 ,

(39)
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where η1 and η0 are estimated by solving (21) and (22).

The method of moments estimation of the doubly-robust estimator includes

two additional moment conditions related to the estimation of coefficients β1 and

β0 of the regression models for conditional means.

1

N

N∑
i=1

ψ(Wi, θ̂DR) =
1

N

N∑
i=1

ψ((Yi, Xi), (α̂, β̂1, β̂0, µ̂1, µ̂0)) = 0 (40)

ψ((Yi, Xi), (α, β1, β0, µ1, µ0)) =



Ti−Φ(X′
iα)

Φ(X′
iα)(1−Φ(X′

iα))

∂Φ(X′
iα)

∂α

TiXi(Yi −X ′iβ1)

(1− Ti)Xi(Yi −X ′iβ0)

TiYi
Φ(X′

iα)
−
(

Ti
Φ(X′

iα)
− 1
)
m1(Xi, β1)

(1−Ti)Yi
1−Φ(X′

iα)
−
(

1−Ti
1−Φ(X′

iα)
− 1
)
m0(Xi, β0)


,

(41)

where the second and the third moment conditions come from the minimization

problem related to the regressions m1 and m0, in case of the linear regression

models it is the minimization of the sum of squared residuals.
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3 Empirical analysis

3.1 Data description

In the paper I estimate an impact of active labour market programs in Austria

using an administrative data set from a study of Hofer, Sellner and Weber (2007).

Data set was obtained at the Applied Research Department of the Institute for

Advanced Studies, Vienna. Data combines an information from the social security

records and from the registers of the Austrian public employment office (AMS).

This data set includes individuals who entered unemployment from March to Au-

gust 1999. The spring-summer season was chosen to avoid differences caused by

a seasonal unemployment. For the selected sample, authors collected all active

labour market program spells during the period 1997 to 2004 and various relevant

personal characteristics of the individuals. In the paper I focus on two particular

types of programs, active job-search programs and training programs and evalu-

ate their impact on the change in employment measured by days of employment

in four years after the program start. Participants of either active job-search

programs or training programs form a treatment group, unemployed not par-

ticipating in any active labour market program form a control group, whereas

participants of unclassified and other programs are excluded. Also participants

younger than 20 and older than 50, unemployed less than 15 days when their

first program spell started and those who participated in the program after 2000

are dropped from a sample. Table 1 shows the distribution of respective program

types by gender.

Program type Male Female Total

Active job-search programs 3 339 3 583 6 922

Training programs 1 904 2 913 4 817

Non-participants 23 275 26 883 50 158

Total 28 518 33 379 61 897

Table 1: Number of observations by program type and gender
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In order to construct an outcome variable for the control group, number of

employment days for non-participants was calculated from hypothetical program

starts generated according to the procedure suggested by Lechner et al. (2004)

and for this dataset described in details in Hofer, Sellner and Weber (2007).

3.2 Empirical results

I evaluate the average treatment effect active labour market programs have on the

post-program employment using methods based on propensity score weighting as

described in the previous section. In the initial study, Hofer, Sellner and Weber

(2007) estimate the average treatment effect on treated for two program types,

active job-search programs and training programs using propensity score match-

ing approach. They find, that in the medium run (4 years), active job-search

programs are more effective than the traditional training programs. However, for

both types of programs, a significant effect on post-employment was found only

for females and amount to 85.7 days for active job-search and 62 days for training

programs.

In their analysis they matched participants and non-participants on the propen-

sity score basis applying nearest neighbor matching. I use an alternative approach

in this paper and estimate the average treatment effects based on the propensity

score weighting methods and doubly-robust approach which combines weighting

with the regression. All these estimators rely on the propensity score estimation.

I use a probit model to estimate the propensity score. Explanatory variables

used to model the probability of receiving a treatment are pre-treatment vari-

ables such as personal characteristics, education, last occupation, geography and

labour market history. I include the regional dummies to account for regional

labour market situation, also dummies for month of entry into unemployment

to control for seasonality and other interaction dummies. Furthermore, data for

treatment group and control group come from the same dataset measured at

the same point of time. This rich dataset then makes the unconfoundedness as-

sumption more plausible. To justify the overlap assumption visual inspection

of propensity score distribution is used. For each program type for females and
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males separate histograms are plotted for treated and control group to make sure

there is a sufficient overlap in the support of the conditional distribution between

the two groups. Within all subgroups the overlap seems satisfactory, nevertheless

for some parts of the distribution we may observe the cases where there is a very

low density especially for the values of the propensity score above 0.7. The over-

lap is however important for the estimation because weighting by the values that

are close to zero in denominator for some units may cause difficulties to obtain

the precise estimate for treatment effect (Imbens and Wooldridge 2008, section

5.4). Several methods have been suggested to determine the common support

region. They involve dropping the units that have no counterpart in the other

group what guarantees we will estimate only on the region with the common

support where both treated and control units are available. I apply the Minima

and Maxima comparison criterion as described in Caliendo and Kopeinig (2005)

and drop the individuals whose propensity score is above the highest propensity

score value of the control group and below the lowest value of the treated group.

The resulting histograms are shown in Figures 1- 4. When reading the graphs

it is important to notice that the scale for the treated and for the control group

differs significantly as the proportion of untreated individuals is much higher in

all subsamples. All the covariates used in the specification of propensity score

are listed in the Table 4. Suggested set of variables coincides with the one in the

original paper. Probit estimation results are reported in the Table 5.

Given the estimated propensity score I first use three weighted estimators to

estimate the average treatment effects of two types of programs separately for

men and women. The first three columns of Table 2 report the results for each

of the four groups considered. There is a positive treatment effect for both fe-

males and males participating in active job-search programs, but only the first

estimates of τIPW1 are significant on the 5% significance level in both cases. It

suggests that the treatment effect of the program, in terms of days employed

four years after the program entry, is 98.72 days and 82.33 days for females and

males respectively. However, other estimates considered in the literature more

often, IPW2 and IPW3, differ from the first estimate in both cases and are not

significant. On the other hand, for male participants, there is an unambiguously

17



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1000

2000

3000
Propensity score for untreated

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

20

40

60

80

100
Propensity score for treated

Figure 1: Histograms of propensity scores estimated for Female - Active job-
search programs
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Figure 2: Histograms of propensity scores estimated for Female - Training pro-
grams
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Figure 3: Histograms of propensity scores estimated for Male - Active job-search
programs
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Figure 4: Histograms of propensity scores estimated for Male - Training programs
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negative treatment effect estimated for group of training program participants.

For IPW1, IPW2 and IPW3 estimators it ranges from -58.36 to -68.08 and is

significant in all three cases.

τ̂IPW1 τ̂IPW2 τ̂IPW3 τ̂DR

Female

Active job search programs 98.718∗∗ 35.549∗ 25.439 50.887∗∗

(48.886) (20.463) (21.891) (24.389)

Training programs 27.211 26.230 26.193 32.621∗∗

(30.424) (17.861) ( 17.866) (16.412)

Male

Active job search programs 82.333∗∗ -17.205 -22.594 -13.085

(36.625) (17.738) (20.776) (18.598)

Training programs -68.077∗∗∗ -58.355∗∗∗ -58.836∗∗∗ -37.895∗∗∗

(19.931) ( 16.804) ( 17.257) (13.544)

Table 2: Estimated average treatment effects. Asymptotic standard errors in
parentheses. *, ** and *** denote significance at 10%, 5% and 1% signif-
icance level.

Next I estimate the treatment effect of the programs using doubly-robust esti-

mator which provides some robustness against possible misspecification of para-

metric models for either the conditional mean in the regression part or the propen-

sity score for weighting. Results are reported in the last column of Table 2. It

estimates positive significant treatment effects of both active job-search and train-

ing programs for females of the size 50.89 days in the first case and 32.62 days in

the second case. Significant is also a negative effect of training programs for males

that amounts to 37.90 days decrease in employment. From the results we see that

in terms of the size, the estimates indicate that active job-search programs are

followed by a larger increase in employment (or milder decrease of employment)

compared to training programs for both men and women. This may support the

argument, that participants of training programs are subject to stronger lock-

in effect. Compared to active job-search programs they cannot search for a job

during the program. In the short run a negative treatment effect can therefore

20



occur, as we observe in case of males, and is expected to be positive rather in the

long run. Also the difference in effects between men and women can be found as

it is documented in the similar studies and can reflect the fact that the higher

increase in the female employment may be a result of the reduction of share of

women leaving the labour force due to pregnancy.

For comparison I list the results of average treatment effects in all subgroups

estimated by the nearest neighbor matching in the Appendix. Significant treat-

ment effect is reported only for the group of male participants in the training

programs that amounts to 64.19 days decrease in employment. Results of other

groups are, compared with the doubly-robust estimator, smaller but all are not

significant. Matching estimators assign for the missing potential outcomes the

outcomes of a few (in this case one) nearest neighbors of the opposite treatment

group where matching is commonly done on the values of propensity score. Av-

erage treatment effect is then computed as an average of the outcomes for the

matches. This estimator can however be biased due to possible discrepancies

between the covariates of the matched observations and their matches (Imbens

and Wooldridge 2008, section 5.5). Abadie and Imbens (2006) also show that

matching estimators are generally not efficient and even in the case where the

bias is of low enough order to be dominated by the variance, the estimators do

not reach the efficiency bound given a fixed number of matches.

Finally I provide also the basic difference between the treatment and the con-

trol group (Table 3), that does not adjust for any covariates, expressed by the

difference in the average outcomes in the two groups. We see that outcomes in

groups of treated versus nontreated individuals differ and except for the group

of females in the training programs, difference is negative. This would suggest,

that by ignoring the dependence of potential outcomes and treatment assignment

Treatment group Female Male

Active job-search programs -6.273 -89.157

Training programs 45.230 -86.224

Table 3: Mean difference of outcomes between the treated and the control group
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on the covariates, particularly in three treatment groups is outcome, number of

employment days for treated, lower than for the group of not treated.

To inspect the effect of the program participation on the future employment

over time, for each subgroup the average treatment effect is estimated in each of 20

quarters following the program entry. For this analysis, I use the last estimator

due to its favorable double robustness property. The results are depicted in

Figure 5. The analysis supports the argument that the lock-in effect is stronger

in case of the training programs and we can observe that a positive treatment

effect occurs much later especially in case of men where the positive effect of the

training programs is estimated for the first time in the eighth quarter after the

program start. On the other hand very prompt reaction for females in active job-

search programs is reported who experience the positive treatment effect already

in the second quarter following the entry into the program.
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Figure 5: Average treatment effects over time. Estimated using doubly-robust
method. Asymptotic standard errors used.
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4 Conclusion

In the paper, I estimate the impact of two types of active labour market pro-

grams on the future employment using propensity score weighting estimators

and the estimator that combines weighting and regression for estimating average

treatment effect under unconfoundedness assumption. I consider three weighting

estimators as proposed in Lunceford and Davidian (2004) and one doubly-robust

estimator that combines regression with the weighting approach and has a useful

property that the estimated parameter stays consistent even in cases when either

estimated model for conditional mean functions in the regression or the model for

propensity score used for weighting are misspecified. In a theoretical part I define

the estimators and show their asymptotic distribution derivation using method

of moments estimation what leads to the asymptotic standard errors estimation.

I then apply the estimation procedure to evaluate the effects of two types of

labour market programs, active job-search programs and training programs, in

terms of the future employment following four years after the program start. I

use an informative individual dataset from the study of Hofer, Sellner and Weber

(2007) on unemployed individuals, their personal characteristics, labour market

history and their potential participation on labour market programs. I evaluate

the effect of participation in the two types of programs for females and males.

I find a better performance of active job-search programs compared to training

programs considering the future employment increase for females. Both active

job-search programs and training programs have significantly positive treatment

effects for females of 50.89 days and 32.62 days, respectively, when estimated

using doubly-robust estimator. In case of male participants I find the significant

negative effect of training programs participation. This result is obtained using

all three weighted estimators, and ranges from -58.36 to -68.08, and also by

doubly-robust estimator that estimates a decrease of 37.90 days in employment

after program participation. Due to the fact, that I analyse the medium run

employment effect of the programs, this might be the result of stronger lock-

in effect traditional training programs have compared to the active job search

programs. Further evidence can be found in the additional analysis of quarterly
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treatment effects estimated for the time period up to 20 quarters after the program

start. For training programs positive treatment effect is reported only after eighth

period for men and fourth period for women whereas job-search programs report

it in earlier periods, fourth period for men and second period for women.
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Appendix

A Consistency of doubly-robust estimator

By the law of large numbers, estimator τ̂DR = µ̂1,DR − µ̂0,DR defined in (26)
estimates the following mean:

τDR =E
[

TY

p(X,α)
−
(

T

p(X,α)
− 1

)
m1(X, β1)

]
− E

[
(1− T )Y

1− p(X,α)
−
(

1− T
1− p(X,α)

− 1

)
m0(X, β0)

]
, (42)

where p(X, α̂), m1(X, β̂1) and m0(X, β̂0) are replaced by the terms they estimate.
Then µ̂1,DR estimates

E
[
TY (1)

p(X,α)
−
(

T

p(X,α)
− 1

)
m1(X, β1)

]
= E

[
Y (1) +

(
T

p(X,α)
− 1

)
(Y (1)−m1(X, β1))

]
= E[Y (1)] + E

[(
T

p(X,α)
− 1

)
(Y (1)−m1(X, β1))

]
. (43)

For µ̂1,DR to estimate E[Y (1)], the second term in (43) must be zero.

Specified models p(X,α) and m1(X, β1) may or may not equal to the true
propensity score and true conditional expectation. Consider the following two
situations in which one of the two models is misspecified:

Situation 1: Model p(X,α) is correctly specified, what means

p(X,α) = p(X) = E[T |X] = E[T |Y (1), X],

but the regression model is misspecified:

m1(X, β1) 6= E(Y |T = 1, X)

Then the second term in (43) is

E
[(

T

p(X)
− 1

)
(Y (1)−m1(X, β1))

]
= E

[
E
[(

T

p(X)
− 1

)
(Y (1)−m1(X, β1))

∣∣∣∣Y (1), X

]]
= E

[
(Y (1)−m1(X, β1))E

[(
T

p(X)
− 1

)∣∣∣∣Y (1), X

]]
= E

[
(Y (1)−m1(X, β1))

(
E[T |Y (1), X]

p(X)
− 1

)]
= E

[
(Y (1)−m1(X, β1))

(
p(X)

p(X)
− 1

)]
= 0,
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and so µ̂1,DR estimates E[Y (1)]. Analogously µ̂0,DR estimates E[Y (0)] and τ̂DR
estimates the average treatment effect τ .

Situation 2: Model m1(X, β1) is correctly specified and

m1(X, β1) = E(Y |T = 1, X) = E(Y (1)|X)

but the propensity score model is misspecified:

p(X,α) 6= p(X) = E[T |X].

In this case the second term in (43) is

E
[(

T

p(X,α)
− 1

)
(Y (1)− E(Y |T = 1, X))

]
= E

[
E
[(

T

p(X,α)
− 1

)
(Y (1)− E(Y |T = 1, X))

∣∣∣∣T,X]]
= E

[(
T

p(X,α)
− 1

)
E [(Y (1)− E(Y |T = 1, X))|T,X]

]
= E

[(
T

p(X,α)
− 1

)
(E (Y (1)|T,X)− E(Y |T = 1, X))

]
= 0,

where the last equality is by unconfoundedness:

E(Y |T = 1, X) = E(Y (1)|T = 1, X) = E(Y (1)|X) = E(Y (1)|T,X).

Again µ̂1,DR estimates E[Y (1)]. Similarly µ̂0,DR estimates E[Y (0)] and τ̂DR esti-
mates τ .

If both models are correctly specified, clearly τ̂DR estimates τ . In case of
the misspecification in both models, τ̂DR does not estimate τ and is therefore
inconsistent (Davidian 2007).
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B List of covariates

Table 4: Covariates
Variable Description
personal characteristics
age99 age at the program start or unemployed start in 1999
age3645 age 35-45
age46 age above 45
foreign foreigner
famdiv dummy divorced
famsin dummy single
education
edbasic basic
edhbb higher education
edaka university
occupation
jehc health, education, culture
jjur legal, administration
jtech technology
jtou tourism
jodl other services
jtt trade and transportation
jcon construction
jporo other production
last job industry
indmf manufacturing
indcon construction
indtra trade
indtou tourism
indtc transport, communication
indsd business activities
indst public administration
indehc education, health
emp109 <10
emp499 100-499
emp1000 >499
last employment, wage
lwage wage in last job (log)
lwagemi wage missing
lwagel wage below median
federal states dummies
wie Vienna (regional dummy)
noe Lower Austria
sbg Salzburg
tir Tyrol
bgl Burgenland
stm Styria
ktn Carinthia
regional variables

Continued on next page
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Table 4 – continued
Variable Description
bigr big cities: Vienna, Graz, Klagenfurt, Linz, Salzburg, Innsbruck
tour tourism region
indr industrial area
fq99 share of foreign employment
albq99 unemployment rate
jalb99 share of youth unemployment
lalb99 rate of long-term unemployed (>6 months)
history 2 years before program start
mb2 share employed
mal2 share unemployed
mdolf2 share out of labour force
ep_p2 number of programs
d_p2 duration of programs
k_dt days on maternity leave
k5_dt days on maternity leave 5 years before program start
btvf days employed before program start
altvf days unemployed before program start
dalb1 receipt of unemployment benefits
dblvm1 duration of last employment (in days)
blvm1 days from last job to program start
sstart sample entry date
program type
dm1lp training program
dm2lp active job search program
dm4lp other program
entry in employment
dmon4 dummy for beginning of unemployment in April
dmon5 dummy for beginning of unemployment in May
dmon6 dummy for beginning of unemployment in June
dmon7 dummy for beginning of unemployment in July
dmon8 dummy for beginning of unemployment in August
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C Propensity score estimation

Table 5: Estimation of propensity score using probit model
Female Male

Active job-s. Training Active job-s. Training
age99 -0.020439 ∗∗∗ 0.017332 ∗∗ -0.026191 ∗∗∗ -0.01085
age3645 0.11943 ∗∗∗ -0.015577 0.068304 0.010956
age46 0.12034 -0.18171 ∗∗ 0.025458 -0.078069
foreign -0.18856 ∗∗∗ -0.28097 ∗∗∗ -0.24977 ∗∗∗ -0.43999 ∗∗∗

fq99 -0.0034745 -0.066078 ∗∗∗ -0.021762 ∗∗ -0.038208 ∗∗∗

famdiv 0.21465 ∗∗∗ 0.1104 -0.036088 -0.034212
famsin 0.12668 ∗∗∗ 0.17775 ∗∗∗ 0.12213 ∗∗∗ 0.051369
jehc -0.23663 ∗∗ -0.02938 -0.047663 0.1006
jjur -0.068075 0.50224 ∗∗∗ 0.22857 ∗∗ 0.47828 ∗∗∗

jtech 0.037155 0.3939 ∗∗ 0.18645 ∗ 0.66493 ∗∗∗

jtou -0.42763 ∗∗∗ -0.15833 -0.16325 0.0075297
jodl -0.26723 ∗∗ -0.40674 ∗∗∗ -0.0074707 -0.011812
jtt -0.11573 0.055537 0.090419 0.13049
jcon -0.41967 0.16674 -0.05692 -0.0078798
jporo -0.077249 -0.018746 0.17062 ∗ 0.10964
albq99 -0.0025027 -0.083357 ∗∗∗ -0.054216 ∗∗∗ -0.058839 ∗∗∗

jalb99 0.019827 ∗∗∗ 0.01316 0.009346 0.020296 ∗

lalb99 -0.0046391 -0.0050289 -0.0037634 0.0088468 ∗

bigr -0.089019 ∗ 0.21679 ∗∗∗ -0.14298 ∗∗ 0.074243
tour 0.03947 -0.11249 ∗ -0.030525 -0.074026
indr 0.15609 0.019587 -0.47965 ∗∗ 0.28758
wie 0.56676 ∗∗∗ 0.80558 ∗∗∗ 0.75465 ∗∗∗ 0.28631 ∗

noe -0.017585 -0.25876 ∗∗∗ -0.032587 -0.22081 ∗∗∗

sbg -0.25082 ∗∗∗ -0.44261 ∗∗∗ -0.26932 ∗∗∗ -0.19842 ∗∗

tir -0.11155 ∗ -0.80515 ∗∗∗ -0.070576 -0.65724 ∗∗∗

bgl -0.29814 ∗∗∗ -0.048583 -0.44065 ∗∗∗ -0.073666
stm 0.51571 ∗∗∗ -0.29036 ∗∗∗ 0.43036 ∗∗∗ -0.25367 ∗∗∗

ktn -0.40699 ∗∗∗ -0.13865 ∗∗ -0.34246 ∗∗∗ -0.038512
edbasic -0.032377 -0.08895 ∗∗ 0.05126 -0.049079
edhbb -0.27292 ∗∗∗ -0.021746 -0.14053 ∗∗ -0.14038 ∗∗

edaka -0.17471 ∗∗ -0.22047 ∗∗∗ -0.10437 -0.23108 ∗∗

btvf -0.00012197 ∗∗ 3.6166e-005 -0.00018209 ∗∗∗ -4.5599e-005
altvf -9.0995e-005 0.00041011 ∗∗∗ -0.00015715 0.00020728
mb2 -0.34729 ∗ 0.34689 ∗ -0.00014281 -0.23147
mal2 1.0129 ∗∗∗ 0.35472 ∗∗∗ 0.99642 ∗∗∗ 0.50447 ∗∗

mdolf2 -0.65236 ∗∗∗ 0.035895 -0.83412 ∗∗∗ -0.46649 ∗

dalb1 -0.49037 -0.5286 -0.22141 -0.40734
indmf 0.36013 0.27168 -0.29302 -0.19579
indcon 0.65974 ∗ 0.50125 -0.29008 -0.19184
indtra 0.34714 ∗ 0.42186 ∗ -0.29772 -0.40354
indtou 0.01647 0.67737 ∗∗∗ -0.24733 -0.35449
indtc 0.20741 0.22046 -0.26347 -0.15502
indsd 0.21679 0.20002 -0.37819 -0.28071
indst 0.46436 0.36383 -0.7444 ∗ -0.87358 ∗
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Continued on next page
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Table 5 – continued
Female Male

Active job-s. Training Active job-s. Training
indehc 0.33234 0.44734 -0.63995 ∗ -0.61986
emp109 -0.054594 ∗∗ 0.002631 0.014253 -0.01786
emp499 0.033415 -0.056332 0.093772 ∗ 0.19401 ∗∗∗

emp1000 -0.050855 0.29617 ∗ 0.34135 ∗∗ 0.06408
dblvm1 3.2902e-005 ∗∗ 2.581e-005 ∗ 3.5719e-005 ∗∗ 1.9386e-005
lwage 0.048643 0.053018 0.04522 -0.098944
lwagemi 0.15417 0.50093 0.12999 -0.66299
lwageb 1.1918e-006 -1.3291e-005 -1.3931e-005 3.0117e-005 ∗

lwagediv -0.0085529 0.015193 0.02158 ∗ 0.0046592
wiebtvf 4.4157e-005 ∗ -9.409e-008 7.9711e-005 ∗∗∗ -1.1067e-005
wiefamsin 0.041602 -0.10567 ∗ -0.052965 -0.011636
wiefamdiv -0.04251 -0.13108 ∗ -0.097531 -0.022223
wiemb2 0.34199 ∗∗∗ -0.044927 0.504 ∗∗∗ 0.061415
wieedbasic 0.054324 -0.0011896 -0.062678 -0.032108
wieedhbb 0.15918 0.10564 0.22794 ∗∗ 0.18611 ∗

wieedaka 0.26453 ∗∗ 0.17182 0.29492 ∗∗ 0.0095352
blvm1 0.00024594 ∗∗∗ 0.00020543 ∗∗∗ 0.00036723 ∗∗∗ 5.031e-005
ep_p2 0.018414 0.15299 ∗∗∗ 0.046947 0.14235 ∗∗∗

d_p2 6.1368e-005 -0.0003325 0.00029529 -0.00010206
dm2lp 0.069657 0.052262 0.68085 ∗∗∗ 0.19904
dmon4 -0.4653 ∗∗∗ -0.33286 ∗∗∗ -0.96574 ∗∗∗ -0.52421 ∗∗∗

dmon5 -0.15729 ∗∗∗ -0.25814 ∗∗∗ -0.29303 ∗∗∗ -0.35228 ∗∗∗

dmon6 -0.12478 ∗∗∗ -0.25272 ∗∗∗ -0.068223 -0.32922 ∗∗∗

dmon7 -0.20726 ∗∗∗ -0.4292 ∗∗∗ -0.048303 -0.36756 ∗∗∗

dmon8 -0.17662 -0.57706 ∗∗∗ -0.1474 -0.25515 ∗

wieblvm1 -0.00016267 ∗∗∗ -0.0001418 ∗∗∗ -0.00024994 ∗∗∗ 5.3723e-005
stmblvm1 -0.00016631 ∗∗∗ -0.0001725 ∗∗∗ -0.0003056 ∗∗∗ 4.7159e-005
mb2blvm1 0.0048887 ∗∗∗ 0.0035328 ∗∗∗ 0.0055088 ∗∗∗ 0.003684 ∗∗∗

edbasicblvm1 -2.1069e-006 -6.3212e-005 ∗ -0.00016179 ∗∗∗ -3.3762e-005
mdolf2blvm1 -0.00021434 ∗∗∗ 3.1387e-005 -0.00017105 -9.1492e-005
dm2lpblvm1 -7.806e-005 0.00021863 -0.00050711 0.00024974
mb2age99 -0.0024296 -0.0021125 -0.013383 ∗∗ 5.9294e-005
btvfage99 3.2726e-006 ∗∗ -5.8181e-007 5.1556e-006 ∗∗∗ 1.8085e-006
altvfage99 1.0329e-006 -1.1737e-005 ∗∗∗ 3.9011e-006 -7.8066e-006 ∗∗

dalb1lwage 0.062011 0.076555 0.027314 0.053359
dalb1lwagemi 0.29323 0.43774 0.038062 0.32089
mb2indst -0.48275 ∗∗∗ -0.32027 ∗∗ -0.4305 ∗ -0.19762
mb2indehc 0.12999 -0.14067 0.25258 0.38571
mdolf2bigr 0.087354 0.022704 0.15347 0.080896
mdolf2lwagemi 0.67272 ∗∗∗ 0.12887 0.90444 ∗∗∗ 0.33807 ∗∗

mdolf2indtc 0.28029 0.25886 0.47602 ∗∗ 0.092132
mdolf2tour -0.0035803 0.17216 0.40679 ∗ 0.20521
age99indmf -0.0033369 -0.0054374 0.014858 ∗∗ 0.0087726
age99indtra -0.0040041 -0.0080937 0.017073 ∗∗∗ 0.015787 ∗∗

age99indtou 0.0014072 -0.018404 ∗∗ 0.011471 0.012449
age99indtc -0.0025791 -0.007808 0.0099227 0.0030106
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Continued on next page
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Table 5 – continued
Female Male

Active job-s. Training Active job-s. Training
age99indsd -0.0016432 -0.002934 0.015281 ∗∗ 0.0097267
age99indst -0.0050633 -0.0054222 0.026385 ∗∗ 0.025271 ∗∗

age99indehc -0.0074748 -0.0084604 0.016336 0.012567
age99indcon -0.016536 -0.010959 0.0060087 0.0050848
dmon4indmf 0.17614 -0.070287 0.49285 ∗∗∗ 0.088902
dmon4indtra 0.20682 ∗ 0.037096 0.31375 ∗ 0.21724
dmon4indsd -0.22677 0.15894 0.42155 ∗∗ 0.12091
dmon4indehc 0.06757 -0.078919 0.59592 ∗

dmon4indcon 0.40718 0.15634 0.46621 ∗∗ 0.033956
dmon8indmf -0.22046 0.03339 -0.31447 ∗ -0.073148
dmon8indtra -0.37191 ∗∗ 0.19707 -0.53963 ∗∗∗ -0.12734
dmon8indtou -0.22425 0.042746 -0.37365 ∗∗ -0.39217 ∗

dmon8indtc -0.70195 ∗∗∗ 0.22887 -0.52276 ∗∗∗ -0.083298
dmon8indsd -0.42488 ∗∗∗ 0.10828 -0.443 ∗∗∗ -0.025092
dmon8indst -0.5453 ∗∗ 0.091265 -0.50633 -0.23373
dmon8indehc -0.26307 0.15746 -0.38001 -0.048732
dmon8indcon -0.24868 0.054023 -0.26344 -0.033882
dmon5indtou -0.29309 ∗∗∗ -0.42817 ∗∗∗ -0.24274 ∗∗ -0.5904 ∗∗∗

dmon5indst -0.071877 0.070431 0.59457 ∗∗∗ -0.30253
dmon6indtra 0.035237 -0.15521 ∗ -0.17045 ∗∗ 0.018079
dmon6indtou -0.12201 -0.40151 ∗∗∗ -0.26448 ∗∗ -0.21792
dmon7indehc 0.14062 -0.19319 0.40454 ∗∗ 0.6265 ∗∗∗

dmon7indcon 0.24219 0.20514 0.19401 ∗∗ -0.13824
dmon4indr 0.099055 0.12896 0.12999 0.114
dmon5indr -0.096841 0.089914 0.25031 ∗∗∗ -0.088967
dmon6indr -0.25249 ∗∗∗ 0.044469 -0.056945 0.088712
dmon7indr -0.33897 ∗∗∗ -0.15061 ∗ -0.28857 ∗∗∗ -0.085882
dmon6dm1lp 0.17682 -0.26982 -0.21701 0.15497
dmon7dm1lp -0.1502 -0.31405 -0.27378 -0.051653
dmon5dm2lp 0.5114 -0.83441 -0.46681 -0.05478
lwageljtou 0.06483 -0.0038595 0.03934 -0.073788
lwagelmb2 0.095668 -0.18466 ∗ -0.37916 ∗∗∗ 0.016467
dalb1dm2lp -0.47085 0.25869 -0.57907 ∗ 0.083958
wiedalb1 0.31702 ∗∗∗ -0.07394 0.32042 ∗∗∗ 0.10847 ∗

indralbq99 -0.011151 0.0056817 0.048202 ∗ -0.0066864
indrfq99 0.0078006 -0.011302 0.026305 ∗∗ -0.023241 ∗∗

indredbasic 0.098006 ∗ 0.060452 -0.1511 ∗∗ -0.14112 ∗∗

d_p2dm1lp 0.0004956 0.00047572 0.0012174 ∗∗ -0.0001426
lwagel -0.040647 0.15538 ∗ 0.22815 ∗∗∗ -0.090561
k_dt -9.4864e-006 -4.905e-005
k5_dt 1.1877e-006 0.00015629 ∗∗

dm1lp -0.01002 0.079692 0.0032667 0.36421 ∗∗∗

dm4lp 0.1299 ∗∗∗ 0.17926 ∗∗∗ 0.012189 0.22199 ∗∗∗

sstart 2.9902e-005 2.2643e-005 5.0624e-005 ∗∗ 3.3656e-005
_cons -1.7696 ∗∗∗ -2.0607 ∗∗∗ -1.5268 ∗∗ -0.70184
N 30430 28453 25958 23343
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D Matching estimation results

τ̂MATCH

Female

Active job search programs 26.739

(19.699)

Training programs 20.035

(20.622)

Male

Active job search programs -27.338

(23.985)

Training programs -64.187∗∗

(25.634)

Table 6: Average treatment effects estimated using nearest neighbor matching.
In parentheses heteroskedasticity-consistent analytical standard errors
according to Abadie and Imbens (2006). *, ** and *** denote significance
at 10%, 5% and 1%.
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E Matlab code 
 

%%===================== FEMALE ajsp program ===================== 

 

global T X y 
load('f_ajsp.mat') 
y = obj4c; 
n = size(T,1); 
X= [ ones(n,1) age99 age3645 age46 foreign fq99 famdiv famsin ...       

jehc jjur jtech jtou jodl jtt jcon jporo albq99 jalb99 lalb99 ... 

bigr tour indr wie noe sbg tir bgl stm ktn  edbasic edhbb edaka ... 

btvf altvf mb2 mal2  mdolf2 dalb1 indmf indcon indtra indtou ... 

indtc indsd indst indehc emp109 emp499 emp1000 dblvm1 lwage ...  

lwagemi lwageb lwagediv wiebtvf wiefamsin wiefamdiv wiemb2 ...  

wieedbasic wieedhbb wieedaka  blvm1  ep_p2 d_p2  dm2lp  dmon4 ...  

dmon5 dmon6 dmon7 dmon8   wieblvm1  stmblvm1 mb2blvm1 ...  

edbasicblvm1 mdolf2blvm1 dm2lpblvm1 mb2age99  btvfage99 ... 

altvfage99 dalb1lwage dalb1lwagemi mb2indst mb2indehc mdolf2bigr ... 

mdolf2lwagemi mdolf2indtc  mdolf2tour age99indmf age99indtra ... 

age99indtou age99indtc age99indsd age99indst age99indehc ... 

age99indcon dmon4indmf dmon4indtra  dmon4indsd  dmon4indehc ... 

dmon4indcon dmon8indmf dmon8indtra dmon8indtou dmon8indtc ... 

dmon8indsd dmon8indst dmon8indehc  dmon8indcon    dmon5indtou ... 

dmon5indst dmon6indtra dmon6indtou dmon7indehc  dmon7indcon ... 

dmon4indr dmon5indr dmon6indr dmon7indr dmon6dm1lp dmon7dm1lp ... 

dmon5dm2lp lwageljtou lwagelmb2 dalb1dm2lp wiedalb1 indralbq99 ... 

indrfq99 indredbasic d_p2dm1lp lwagel k_dt k5_dt dm1lp dm4lp ... 

sstart]; 

k = size(X,2); 

init = [initalpha initmu1 initmu0]; 

 

%% -------------------------- Trimming -------------------------- 
% estimation of propensity score for trimming 
thet = fsolve(@psi_ps1,init'); 

alpha = thet(1:(end-2)); 

 

prop=normcdf( X*alpha' ); 

prop1=prop(T==1); 

prop0=prop(T==0); 

  

X((prop<min(prop1))|(prop>max(prop0)),:)=[]; 

y((prop<min(prop1))|(prop>max(prop0)))=[]; 

T((prop<min(prop1))|(prop>max(prop0)),:)=[]; 

n = size(T,1); 

 

%% ---------------------------- IPW1 ---------------------------- 

[thet_ps1,fval,exitflag,output,Aps1] = fsolve(@psi_ps1,init'); 

   
alpha = thet_ps1(1:(end-2)); 
mu1 = thet_ps1(end-1); 
mu0 = thet_ps1(end); 

% tau_ps1 (tau_IPW1) 
tau_ps1 = mu1-mu0 

  
% matrix V_ps1 (B_IPW1) 
v11= 1/(n) * X' * ( X.*(((T - normcdf( X*alpha) ) ./  ... 
            (normcdf( X*alpha ).*( 1-normcdf( X*alpha ))) ... 
            .* normpdf(X*alpha)).^2*ones(1,k)) ); 

psi2 = T.*y ./ normcdf( X*alpha )- mu1; 
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psi3 = (1-T).*y ./ ( 1-normcdf( X*alpha ) ) - mu0; 
 

v12= 1/(n) * X' * (((T - normcdf( X*alpha) ) ./  ... 
            (normcdf( X*alpha ).*( 1-normcdf( X*alpha ))) ... 
            .* normpdf(X*alpha).*psi2)); 
v13= 1/(n) * X' * (((T - normcdf( X*alpha) ) ./  ... 
            (normcdf( X*alpha ).*( 1-normcdf( X*alpha ))) ... 
            .* normpdf(X*alpha).*psi3));         
v33= 1/(n) *[ psi2'*psi2, psi2'*psi3; psi2'*psi3, psi3'*psi3  ]; 
V_ps1 = [v11,v12,v13; [v12';v13'],v33]; 

  
% estimation of SE for theta_ps1 
thetaavar = inv(Aps1)*V_ps1*inv(Aps1)'; 
muavar = thetaavar((end-1):end,(end-1):end); 
tauavar = muavar(1,1)+muavar(2,2)-2*muavar(1,2); 
% asymptotic SE for tau_ps1 (tau_IPW1) 
tausd_ps1 = sqrt(tauavar/n) 
t_ps1 = tau_ps1/tausd_ps1 

 

%% ---------------------------- IPW2 ---------------------------- 

[thet_ps2,fval,exitflag,output,Aps2] = fsolve(@psi_ps2,init'); 

   
alpha = thet_ps2(1:(end-2)); 
mu1 = thet_ps2(end-1); 
mu0 = thet_ps2(end); 

% tau_ps2 (tau_IPW2) 
tau_ps2 = mu1-mu0 

  
% matrix V_ps2 (B_IPW2) 
v11= 1/(n) * X' * ( X.*(((T - normcdf( X*alpha) ) ./  ... 
            (normcdf( X*alpha ).*( 1-normcdf( X*alpha ))) ... 
            .* normpdf(X*alpha)).^2*ones(1,k)) ); 
psi2 = T.*(y- mu1) ./ normcdf( X*alpha ); 
psi3 = (1-T).*(y- mu0)./ ( 1-normcdf( X*alpha ) ); 
v12= 1/(n) * X' * (((T - normcdf( X*alpha) ) ./  ... 
            (normcdf( X*alpha ).*( 1-normcdf( X*alpha ))) ... 
            .* normpdf(X*alpha).*psi2)); 
v13= 1/(n) * X' * (((T - normcdf( X*alpha) ) ./  ... 
            (normcdf( X*alpha ).*( 1-normcdf( X*alpha ))) ... 
            .* normpdf(X*alpha).*psi3));         
v33= 1/(n) *[ psi2'*psi2, psi2'*psi3; psi2'*psi3, psi3'*psi3  ]; 
V_ps2 = [v11,v12,v13; [v12';v13'],v33]; 

  
% estimation of SE for theta_ps2 
thetaavar = inv(Aps2)*V_ps2*inv(Aps2)'; 
muavar = thetaavar((end-1):end,(end-1):end); 
tauavar = muavar(1,1)+muavar(2,2)-2*muavar(1,2); 
% asymptotic SE for tau_ps2 (tau_IPW2) 
tausd_ps2 = sqrt(tauavar/n) 

t_ps2 = tau_ps2/tausd_ps2 

 

%% ---------------------------- IPW3 ---------------------------- 

[thet_ps3,fval,exitflag,output,Aps3] = fsolve(@psi_ps3,init'); 

  
alpha = thet_ps3(1:(end-2)); 
mu1 = thet_ps3(end-1); 
mu0 = thet_ps3(end); 

% tau_ps3 (tau_IPW3) 
tau_ps3 = mu1-mu0 
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% matrix V_ps3 (B_IPW3) 
v11= 1/(n) * X' * ( X.*(((T - normcdf( X*alpha) ) ./  ... 
            (normcdf( X*alpha ).*( 1-normcdf( X*alpha ))) ... 
            .* normpdf(X*alpha)).^2*ones(1,k)) ); 

         
    eta1_nom = -1/n * ( T.*(y-mu1))' * ... 
            (ones( n,1)./(normcdf( X*alpha)).^2); 
    eta1_den = 1/n * ((T-normcdf( X*alpha)).^2 )' * ... 
            (ones( n,1)./(normcdf( X*alpha)).^2); 
    eta1 = eta1_nom/eta1_den; 

     
    eta0_nom = -1/n * ( (1-T).*(y-mu0) )' * ... 
            (ones( n,1)./(1-normcdf( X*alpha)).^2); 
    eta0_den = 1/n * ( (T-normcdf( X*alpha)).^2 )' * ... 
            (ones( n,1)./(1-normcdf( X*alpha)).^2); 
    eta0 = eta0_nom/eta0_den; 

         
psi2 = T.*(y- mu1) ./ normcdf( X*alpha ) ... 
    + eta1 * (T- normcdf( X*alpha )) ./ normcdf( X*alpha ); 
psi3 = (1-T).*(y- mu0) ./ (1-normcdf( X*alpha )) ... 
    - eta0 * (T- normcdf( X*alpha )) ./ (1-normcdf( X*alpha )); 

  
v12= 1/(n) * X' * (((T - normcdf( X*alpha) ) ./  ... 
            (normcdf( X*alpha ).*( 1-normcdf( X*alpha ))) ... 
            .* normpdf(X*alpha).*psi2)); 
v13= 1/(n) * X' * (((T - normcdf( X*alpha) ) ./  ... 
            (normcdf( X*alpha ).*( 1-normcdf( X*alpha ))) ... 
            .* normpdf(X*alpha).*psi3));         
v33= 1/(n) *[ psi2'*psi2, psi2'*psi3; psi2'*psi3, psi3'*psi3  ]; 
V_ps3 = [v11,v12,v13; [v12';v13'],v33]; 

  
% estimation of SE for theta_ps3 
thetaavar = inv(Aps3)*V_ps3*inv(Aps3)'; 
muavar = thetaavar((end-1):end,(end-1):end); 
tauavar = muavar(1,1)+muavar(2,2)-2*muavar(1,2); 

% asymptotic SE for tau_ps3 (tau_IPW3) 
tausd_ps3 = sqrt(tauavar/n) 
t_ps3 = tau_ps3/tausd_ps3 

 

%% ----------------------------- DR ----------------------------- 

thetainit = [init(1:k) initb1 initb0 init(end-1:end)]; 

  
[thet_dr,fval,exitflag,output,Adr] = fsolve(@psi_dr,thetainit'); 

  
alpha = thet_dr(1:k); 
beta1 = thet_dr(k+1:k+k); 
beta0 = thet_dr(2*k+1:3*k); 
mu1 = thet_dr(end-1); 
mu0 = thet_dr(end); 

tau_dr = mu1-mu0 

 
% matrix V_dr (B_DR) 
v11= 1/(n) * X' * ( X.*(((T - normcdf( X*alpha) ) ./  ... 
            (normcdf( X*alpha ).*( 1-normcdf( X*alpha ))) ... 
            .* normpdf(X*alpha)).^2*ones(1,k)) ); 
v12= -1/(n) * X' * ( X.*(((T - normcdf( X*alpha) ) ./  ... 
           (normcdf( X*alpha ).*( 1-normcdf( X*alpha ))) .* ... 
           normpdf(X*alpha)).*( T .* (2*(y-X*beta1)) )*ones(1,k))); 
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v13= -1/(n) * X' * ( X.*(((T - normcdf( X*alpha) ) ./  ... 
           (normcdf( X*alpha ).*( 1-normcdf( X*alpha ))) .* ... 
           normpdf(X*alpha)).*( (1-T).*(2*(y-X*beta0)))*ones(1,k))); 
 

psi4 = T.*y ./ normcdf( X*alpha ) - (T./ normcdf( X*alpha )-1).* ...     

       (X*beta1) - mu1; 
psi5 = (1-T).*y ./ (1-normcdf( X*alpha )) - ((1-T)./ ...  

      (1-normcdf( X*alpha )) -1).* (X*beta0) - mu0; 
v14= 1/(n) * X' * (((T - normcdf( X*alpha) ) ./  ... 
            (normcdf( X*alpha ).*( 1-normcdf( X*alpha ))) ... 
            .* normpdf(X*alpha).*psi4)); 
v15= 1/(n) * X' * (((T - normcdf( X*alpha) ) ./  ... 
            (normcdf( X*alpha ).*( 1-normcdf( X*alpha ))) ... 
            .* normpdf(X*alpha).*psi5));    
v22= 1/(n) * X' * ( X.*(( T .* (2*(y-X*beta1) )).^2*ones(1,k)) ); 
v23= 1/(n) * X' * ( X.*(( T .* (2*(y-X*beta1) )).* ...  

     ( (1-T) .* (2*(y-X*beta0)) )*ones(1,k)) ); 
v24= -1/(n) * X' * ((( T .* (2*(y-X*beta1) )).*psi4)); 
v25= -1/(n) * X' * ((( T .* (2*(y-X*beta1) )).*psi5)); 
v33= 1/(n) * X' * ( X.*(( (1-T) .* (2*(y-X*beta0))).^2*ones(1,k)) ); 
v34= -1/(n) * X' * ((( (1-T) .* (2*(y-X*beta0)) ).*psi4)); 
v35= -1/(n) * X' * ((( (1-T) .* (2*(y-X*beta0)) ).*psi5)); 
v55= 1/(n) *[ psi4'*psi4, psi4'*psi5; psi4'*psi5, psi5'*psi5  ]; 
V_dr = [v11, v12, v13,v14,v15; ... 
        v12',v22, v23,v24,v25; ... 
        v13',v23',v33,v34,v35; ... 
        [v14';v15'],[v24';v25'],[v34';v35'],v55]; 

     
% estimation of SE for theta_dr 
thetaavar = inv(Adr)*V_dr*inv(Adr)'; 
muavar = thetaavar((end-1):end,(end-1):end); 
tauavar = muavar(1,1)+muavar(2,2)-2*muavar(1,2); 

% asymptotic SE for tau_ps3 (tau_IPW3) 
tausd_dr = sqrt(tauavar/n) 
t_dr = tau_dr/tausd_dr 

 
%% --------------------- Function for IPW1 ---------------------- 

moment conditions for IPW1 

function mpsi = psi_ps1(theta) 

  
    global T X y   
    k = size(X,2); 
    n = size(T,1); 
    alpha = theta(1:(end-2)); 
    mu1 = theta(end-1); 
    mu0 = theta(end); 
    mpsi1 = (1/n)* X' * ((T - normcdf( X*alpha) ) ./  ... 
            (normcdf( X*alpha ).*( 1-normcdf( X*alpha ))) ... 
            .* normpdf(X*alpha)); 
    psi2 = T.*y ./ normcdf( X*alpha )- mu1; 
    psi3 = (1-T).*y ./ ( 1-normcdf( X*alpha ) ) - mu0; 
    mpsi2 = mean(psi2); 
    mpsi3 = mean(psi3); 

       
    mpsi = [mpsi1' mpsi2 mpsi3];   

     

end 
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%% --------------------- Function for IPW2 ----------------------   

% moment conditions for IPW2 

function mpsi = psi_ps2(theta) 

  
    global T X y   
    k = size(X,2); 
    n = size(T,1); 
    alpha = theta(1:(end-2)); 
    mu1 = theta(end-1); 
    mu0 = theta(end); 

          
    mpsi1 = (1/n)* X' * ((T - normcdf( X*alpha) ) ./  ... 
            (normcdf( X*alpha ).*( 1-normcdf( X*alpha ))) ... 
            .* normpdf(X*alpha)); 
    psi2 = T.*(y- mu1) ./ normcdf( X*alpha ); 
    psi3 = (1-T).*(y - mu0) ./ ( 1-normcdf( X*alpha ) ); 
    mpsi2 = mean(psi2); 
    mpsi3 = mean(psi3); 

       
    mpsi = [mpsi1' mpsi2 mpsi3];      
end 
 

%% --------------------- Function for IPW3 ----------------------   

% moment conditions for IPW3 

function mpsi = psi_ps3(theta) 

  
    global T X y   
    k = size(X,2); 
    n = size(T,1); 
    alpha = theta(1:(end-2)); 
    mu1 = theta(end-1); 
    mu0 = theta(end); 

          
    mpsi1 = (1/n)* X' * ((T - normcdf( X*alpha) ) ./  ... 
            (normcdf( X*alpha ).*( 1-normcdf( X*alpha ))) ... 
            .* normpdf(X*alpha)); 
    eta1_nom = -1/n * ( T.*(y-mu1) )' * ... 
            (ones( n,1)./(normcdf( X*alpha)).^2); 
    eta1_den = 1/n * ((T-normcdf( X*alpha)).^2 )' * ... 
            (ones( n,1)./(normcdf( X*alpha)).^2); 
    eta1 = eta1_nom/eta1_den; 

     
    eta0_nom = -1/n * ( (1-T).*(y-mu0))' * ... 
            (ones( n,1)./(1-normcdf( X*alpha)).^2); 
    eta0_den = 1/n * ( (T-normcdf( X*alpha)).^2 )' * ... 
            (ones( n,1)./(1-normcdf( X*alpha)).^2); 
    eta0 = eta0_nom/eta0_den; 

     
    mpsi2 = 1/n*(T.*(y- mu1))'*(ones( n,1)./(normcdf(X*alpha))) ... 
            + 1/n * eta1 * (T - normcdf( X*alpha))' * ...  

            (ones( n,1)./(normcdf( X*alpha))); 
    mpsi3 = 1/n * ((1-T).*(y- mu0))' * (ones( n,1)./ ... 

            (1-normcdf( X*alpha))) - ... 
            1/n * eta0 * (T - normcdf( X*alpha))' * ... 
            (ones( n,1)./(1-normcdf( X*alpha))); 

     

    mpsi = [mpsi1' mpsi2 mpsi3];       
end 
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%% ---------------------- Function for DR ----------------------- 

% moment conditions for DR 

function mpsi = psi_dr(theta) 

  
    global T X y   
    k = size(X,2); 
    n = size(T,1); 
    alpha = theta(1:k); 
    beta1 = theta(k+1:k+k); 
    beta0 = theta(2*k+1:3*k); 
    mu1 = theta(end-1); 
    mu0 = theta(end); 

          
    mpsi1 = (1/n)* X' * ((T - normcdf( X*alpha) ) ./  ... 
            (normcdf( X*alpha ).*( 1-normcdf( X*alpha ))) ... 
            .* normpdf(X*alpha)); 
    mpsi2 = -(1/n)*X' * ( T .* (2*(y-X*beta1)) ); 
    mpsi3 = -(1/n)*X' * ( (1-T) .* (2*(y-X*beta0)) ); 
    psi4 = T.*y ./ normcdf( X*alpha ) - ...  

          (T./ normcdf( X*alpha )-1).* (X*beta1) - mu1; 
    psi5 = (1-T).*y ./ (1-normcdf( X*alpha )) - ...  

           ((1-T)./ (1-normcdf( X*alpha ))-1).* (X*beta0) - mu0; 
    mpsi4 = mean(psi4); 
    mpsi5 = mean(psi5); 

       
    mpsi = [mpsi1' mpsi2' mpsi3' mpsi4 mpsi5];     
end 
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