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Abstract

Climate change represents a prime example of a negative externality on a global

scale. The failure of existing international agreements points out the need for

treaties to be self-enforcing. In the language of game theory, this corresponds

to a subgame perfect Nash equilibrium in an underlying climate change game.

A dynamic game introduced by Dutta and Radner (2004) is used to model the

situation. In the basic version, countries only choose emission levels every period,

which yield immediate private benefits through their production functions but

future global costs by increasing the level of greenhouse gases.

Besides a review of the model as well as of existing extensions, my own contri-

butions are threefold: First, I show that certain properties of this dynamic game

stem from the fact that there exists an associated repeated game which is strate-

gically equivalent. In particular, equilibrium strategy profiles are equivalent up

to a simple transformation that accounts for the different strategy domains in

the dynamic and in the repeated game. Furthermore, equilibrium payoff sets are

equivalent up to a linear transformation reflecting the exogenously given green-

house gas level in period zero (which is not accounted for in the repeated game).

Second, I investigate numerically how the benchmark outcome, a myopic Markov

equilibrium, changes once linearity of the climate change cost function is replaced

by convexity. By approximating the value function with Chebyshev polynomials,

I find that equilibrium emissions are no longer constant but convex and decreasing

in the greenhouse gas level.

Third, I introduce trade decisions into the model in order to allow for trade

sanctions as punishment device instead of sharp emission increases, which might

not be feasible due to short-term irreversibilities. I characterize the best equilib-

rium under trade sanctions and show under which conditions trade sanctions can

achieve a better equilibrium outcome than emission increases.
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Chapter 1

Introduction

This thesis discusses game theoretic perspectives on climate change. There is

broad scientific consensus that climate change poses a significant threat to mankind

and that this is very likely due to the observed and projected increase in anthro-

pogenic greenhouse gas (GHG) concentrations (see IPCC, 2007). Determining the

level of globally optimal emission levels has been subject to extensive economic

analysis, an excellent overview is Stern (2007)1. As these estimates are subject

to a considerable amount of uncertainty and ethical questions such as how to

discount future generations’ utility, the extent of Pareto optimal abatement is

debatable. However, there is general consent that current emission levels are too

high.

Climate change represents a prime example of a negative externality on a global

scale. While benefits from emissions are private, associated costs are global. The

question that arises is how to design an international treaty that mitigates or

even solves this dilemma. The failure of existing agreements has pointed out the

need for treaties to be self-enforcing. At this point, game theory gets into the

focus of analysis. Climate change is modeled as a non-cooperative game, where

the world’s countries are the players of the game and a self-enforcing treaty refers

to a subgame perfect Nash equilibrium. While some authors (see Barrett, 2003;

Finus, 2001) modeled the situation as static one-shot or pure repeated game,

1There is a large literature dealing with the economics of climate change, other prominent
examples are Nordhaus (2008) and Fankhauser (1995).
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Chapter 1. Introduction

the dynamic nature of the problem calls for a representation as a stochastic or

dynamic game. Over the last decade, Dutta and Radner (2004, 2006a,b, 2009,

2012) presented variants of a dynamic climate change game. The GHG level in the

atmosphere, measured in CO2 equivalents, is a state variable. Every period, the

sum of all countries’ emissions is added to the stock and a constant small fraction

of this stock dissolves (a crude approximation of actual physical processes). Each

country benefits from its emissions through a concave production function, the

costs stemming from climate change are represented through a cost function that

is linear in the stock of GHG2.

The thesis is structured as follows: Chapter 2 presents the benchmark dynamic

game introduced by Dutta and Radner (2004), in which the costs associated with

climate change are linear for the sake of analytical tractability. The case of fixed

technology is explored in detail; I show that in this case one can equivalently

represent this dynamic game as a repeated game. Furthermore, exogenous popu-

lation and capital growth are analyzed following Dutta and Radner (2006b, 2012).

In Chapter 3, I illustrate numerical results on the convex cost case. A particular

myopic equilibrium, where countries do no coordinate their behavior, is analyzed

numerically. Based on these results, an attempt is made on answering the ques-

tion, what an increase in the convexity of the climate change cost function implies

for emissions and payoffs. In Chapter 4, I introduce trade decisions in order to

allow for trade sanctions as an alternative mechanism to enforce cooperation.

The best equilibrium under trade sanctions is characterized and possible Pareto

improvements due to the introduction of trade sanctions are assessed. Finally,

Chapter 5 presents a conclusion and discussion of the results. Lengthy proofs are

dislocated to Appendix A.

2A similar class of dynamic games that covers global warming has been treated by Dockner
et al. (1996). There, costs associated with the stock (in this case the GHG level) are convex
and the benefits from emissions linear. A literature in its own right has developed around the
study of differential games, i.e. dynamic games in continuous time. Important contributions
applicable to climate change are Dockner and van Long (1993), Rowat (2006) and Wirl (2007).
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Chapter 2

Climate Change as a Dynamic

Game: the Linear Cost Case

2.1 The Basic Model

The structure of the basic model introduced by Dutta and Radner (2004) is

as follows: There are n players of the game, denote the set of players by N =

{1, 2, ..., n}1. Time is discrete and the game is infinite-horizon, hence t = 0, 1, 2, ....

Each period, every country i = 1, ..., n decides upon the (nonnegative) amount of

energy ei(t) ≥ 0 it uses for its economic activities. This implies immediate private

benefits through a twice differentiable and strictly concave production function

Yi(ei(t)), where Yi : R+ → R+. Yi is strictly increasing up to a point ēi > 0 (at

that point, the price of energy exceeds its marginal benefits)2. This production

function implicitly reflects for each level of ei(t) the corresponding optimal level of

other inputs; in this section, capital, production technology (except as it relates

to energy usage) and population are constant. Given a country’s current emission

factor fi(t), its emission of GHG is represented as

ai(t) = fi(t)ei(t), i = 1, .., n. (2.1)

1One can think of them either as countries of the world or of regions. In both cases, this
model does not consider the decision-making process within a country/ region.

2All the results would also hold if Y ′i (ei) > 0 ∀ei ∈ R+ and limei→∞ Y ′i (ei) = 0.

3



Chapter 2. Climate Change as a Dynamic Game: the Linear Cost Case

One can consider reductions in fi(t) as using cleaner energy, equivalently, one can

think of a smaller emission factor as using energy more efficiently or simply as an

increase in the share of less energy-intensive goods and services in gross domestic

product (GDP). Global emissions z(t) are simply the sum of every country’s

emissions:

z(t) =
n∑
i=1

ai(t).

The current stock of GHG in the atmosphere is denoted by g(t) ∈ G = R+. This

refers to the excess GHG due to human activities, the total amount of GHG is

then given by g(t) + ḡ, where ḡ is the level of GHG around 1800. The law of

motion for GHG is given by a linear difference equation,

g(t+ 1) = ηg(t) + z(t), (2.2)

where 0 < η < 1. This is of course just an approximation to actual physical

processes, see IPCC (2007) for details. It is assumed that costs stemming from

climate change are linear in the GHG stock for each country: cig(t), where ci >

0 for i = 1, .., n. This is a critical and questionable assumption, as a convex

cost function seems to be a better approximation to reality (see Stern, 2007).

Nevertheless, the linear cost case is a good starting point. In particular, it allows

for closed-from solutions.

A country may reduce its emission factor every period (the reduction will be

effective in the following period), the associated costs are linear in the change,

i.e. equal to ki[fi(t) − fi(t + 1)], where ki > 0 ∀i. Again, the linearity is chosen

mainly for the sake of analytical tractability as increasing marginal abatement

costs are probably more realistic. There is also a lower bound mi for technological

improvement, hence the constraint on the emission factor is given by

0 < mi ≤ fi(t+ 1) ≤ fi(t) ∀ t = 0, 1, 2, ... (2.3)

4



Chapter 2. Climate Change as a Dynamic Game: the Linear Cost Case

The stage-game payoff for a country is

vi(t) = Yi[ei(t)]− cig(t)− ki[fi(t)− fi(t+ 1)].

Assuming a common discount factor δ, the total payoff for a country is then given

by

Vi = (1− δ)
∞∑
t=0

δtvi(t), i = 1, .., n.

Thus, a country’s current utility depends positively and directly on its current

energy usage through its production function, while past emissions (which incor-

porate energy usage and past emission factors) of all countries have a negative

impact on its current utility through the cost associated with the stock of GHG.

The state of the system at the beginning of period t is characterized by the (n+1)-

dimensional vector s(t) = [f(t), g(t)], where f(t) = [f1(t), ..., fn(t)]. In general,

a strategy for a country is a map from the entire set of ex post histories (past

actions and states as well as the current state) to the set of feasible actions (by

(2.3), the set of feasible emission factors depends on the current state). A Nash

equilibrium is, as usual, a profile of strategies such that no country can gain by

deviating unilaterally. It is subgame-perfect, if it induces a Nash equilibrium in

every subgame, i.e. also at nodes that will never be reached given the strategy

profile. A strategy profile is referred to as a Markov strategy if players condi-

tion only on the current period and the current state of the system; a stationary

Markov strategy is a map from the set of states to the set of actions (i.e. addi-

tionally, players do not condition on the current period). A (stationary) Markov

Perfect Equilibrium (MPE) is subgame perfect Nash equilibrium (SPNE), where

all players use (stationary) Markov strategies (see Mailath and Samuelson, 2006).

Finally, the concept of a global Pareto optimum (GPO) is introduced as a bench-

mark. Let x = (x1, ..., xn)′ be a vector of strictly positive numbers. A GPO

corresponding to x is then a profile of strategies that maximizes the weighted

sum of total country payoffs, v =
∑n

i=1 xivi, which can be regarded as global

welfare.

5



Chapter 2. Climate Change as a Dynamic Game: the Linear Cost Case

2.2 Benchmark Outcomes

In this section, two benchmark outcomes are analyzed and compared: the myopic

Nash equilibrium, denoted by BAU (Business As Usual), and the GPO.

2.2.1 Business As Usual

The BAU equilibrium is a stationary MPE3, where in addition energy usage and

emission factors are constant after the first period. The name is chosen since it

appears to correspond to what we currently observe in the world. It will be shown

that BAU equilibrium strategies are of the form:

ei(t) = Ei[fi(t)], fi(t+ 1) = Fi[fi(t)], t ≥ 0, i = 1, .., n.

Thus, countries condition their actions only on their own emission factor, neither

on other players’ emission factors nor on the GHG stock. Every country follows

a myopic strategy, equating private marginal benefits and costs. Intuitively, the

marginal benefit of using an extra unit of energy today is Y ′i [ei(t)], the marginal

cost equals ciδfi(t)(1+δη+(δη)2+ ...). Formally, define the function Ei implicitly

by

Y ′i [Ei(fi)] = δwifi, wi =
ci

1− δη
. (2.4)

To ensure that Ei(·) is indeed a well-defined function, a version of the Inada

conditions is imposed4:

lim
ei→0

Y ′i (ei) > δfi(0)

∑n
i=1 xiwi
xi

3Note that although it is assumed that players choose (stationary) Markov strategies in
equilibrium, the result is a strategy profile that is optimal in the full strategy set - there are
no superior strategies, Markov or otherwise. We are thus not calculating an equilibrium in the
game in which players are restricted to Markov strategies but Markov strategies that are an
equilibrium of the full game (Mailath and Samuelson, 2006).

4This will be needed to ensure existence of an interior solution for the GPO. It implies that
limei→0 Y

′
i (ei) > δfi(0)wi, which is needed here.
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Chapter 2. Climate Change as a Dynamic Game: the Linear Cost Case

Note that since Y ′i (·) is strictly decreasing, Ei(fi) is strictly decreasing in fi. For

the choice of emission factor, define an auxiliary function Zi(y) and the function

Fi(fi):

Zi(y) = kiy +
δ

1− δ
(Yi[Ei(y)]− δwiyEi(y)) (2.5)

Fi(fi) = arg max
y
{Zi(y) : mi ≤ y ≤ fi} (2.6)

If there is more than one (in fact, there will be at most two) maximizing value, pick

the lowest. Differentiating (2.5) and using (2.4) yields Z ′i(y) = ki − δ2wi
1−δ Ei(y),

hence Z ′i(y) is strictly increasing. The maximizer of a strictly convex function

defined on a closed interval must be one of the two endpoints, hence Fi(fi) ∈

{mi, fi}. If Z ′i(mi) ≥ 0, then Fi(fi) = fi ∀ fi ≥ mi. If Z ′i(mi) < 0, then

∃y0i > mi s.t. Fi(fi) = mi for mi ≤ fi ≤ y0i and Fi(fi) = fi for fi > y0i . In other

words, Fi(fi) is a ”bang-bang” policy, the emission factor is constant after the

first period.

Definition 1. The profile (E,F ) = (Ei, Fi)
n
i=1 is called a BAU strategy profile,

with associated emissions denoted by a?i = fiEi(fi).

Let Vi(f, g) denote country i’s total discounted payoff when the system is at state

(f, g) and each country uses its BAU strategy.

Theorem 1 (Dutta and Radner, 2004). The BAU strategy profile is a stationary

MPE. After the first period, each country i’s emission factor and energy input

are constant, and the emission factor is equal to either mi or fi(0). The value

function for country i is

Vi(f, g) = (1− δ)

(
Yi[Ei(fi)]− wig − ki[fi − Fi(fi)] + ui − δwi

n∑
j=1

fjEj(fj)

)
,

ui =
δ

1− δ

(
Yi[Ei(Fi(fi))]− δwi

n∑
j=1

Fj(fj)Ej[Fj(fj)]

)
. (2.7)

Proof. See Appendix A.

7



Chapter 2. Climate Change as a Dynamic Game: the Linear Cost Case

2.2.2 Global Pareto Optimum

The GPO strategy profile is very similar to the BAU strategy profile as energy

usage and emission factors are constant after the first period. Furthermore, every

emission factor fi(t) ∈ {mi, fi(0)} ∀ t ≥ 0. However, externalities are accounted

for according to the weighting vector x, where xi > 0 for i = 1, ...n. Let w =

(w1, ..., wn)′ and define Êi (implicitly), Ẑi and F̂i:

Y ′i [Êi(fi)] =
δ(x · w)fi

xi
, where w · x =

n∑
i=1

xiwi =

∑n
i=1 xici

1− δη

Ẑi(y) = kiy +
δ

1− δ

(
Yi[Êi(y)]− δx · w

xi
yÊi(y)

)
(2.8)

F̂i(fi) = arg max
y

{
Ẑi(y) : mi ≤ y ≤ fi

}
Again, differentiating (2.8) shows that Ẑi is strictly convex, thus F̂i(fi) ∈ {mi, fi},

depending on whether Ẑi(mi) or Ẑi(fi) is greater.

Definition 2. The profile (Ê, F̂ ) = (Êi, F̂i)
n
i=1 is called a GPO strategy profile,

with associated emissions denoted by âi = fiÊi(fi).

Theorem 2 (Dutta and Radner, 2004). Given a strictly positive weighting n-

vector x, the global Pareto optimum is achieved by the GPO strategy profile. After

the first period, each country i’s energy usage and emission factor are constant,

the emission factor is ∈ {mi, fi}. The value function is given by

V (f, g) = (1− δ)
n∑
i=1

(
Yi[Êi(fi)]− wig − ki[fi − F̂i(fi)] + ûi − δwi

n∑
j=1

fjÊj(fj)

)
,

ûi =
δ

1− δ

(
Yi[Êi(F̂i(fi))]− δwi

n∑
j=1

F̂j(fj)Êj[F̂j(fj)]

)
.

Proof. The proof works the same way as the proof for the BAU equilibrium and

is thus omitted here.

8
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2.2.3 Comparison of BAU and GPO profiles

Are GPO emissions always lower than BAU emissions? Intuitively, internalizing

the negative externality should lead to lower emissions. However, it will be shown

that this is not necessarily true since a lower emission factor has two opposing

implications. Nevertheless, for a fixed emission rate (hence for the first period),

the answer is always yes as the next lemma shows:

Lemma 1. ∀ strictly positive x, ∀ fi > 0, ∀ i = 1..., n: Ei(fi) > Êi(fi).

Proof.

xiwi <
n∑
j=1

xjwj

⇐⇒ Y ′i [Ei(fi)] = δfiwi < δfi
x · w
xi

= Y ′i [Êi(fi)]

⇐⇒ Ei(fi) > Êi(fi)

The last equivalence statement holds because Yi is strictly concave.

Corollary 1. A BAU equilibrium is not globally Pareto optimal.

Proof. Suppose we are looking for a constrained GPO, in which we have to pick

the BAU emission factors in every period. By Lemma 1, every country would use

strictly less energy every period. This would correspond to a strictly higher global

welfare as the interior solution Êi(fi) is unique. The value of the unconstrained

GPO is clearly higher as the value of the constrained GPO since the objective

function is the same and the constraint set of the former problem is a superset of

the constraint set of the latter problem. Thus, a BAU equilibrium is not globally

Pareto optimal.

On the one hand, a lower emission factor leads directly to lower emissions for

fixed energy use; however, on the other hand, it also promotes higher energy use

as the associated costs are smaller. Formally these opposing effects are captured

9



Chapter 2. Climate Change as a Dynamic Game: the Linear Cost Case

by the following equation:

dâi
dfi

=
d
(
fiÊi(fi)

)
dfi

= Êi(fi) + fiÊ
′
i(fi)

Recall that Ê ′i(fi) < 0 ∀fi. If follows that:

dâi
dfi

> 0⇔ d log Êi(fi)

d log fi
= Ê ′i(fi)

fi

Êi(fi)
> −1 (2.9)

Note that this condition is an upper bound for the elasticity of Êi with respect to

fi (the elasticity refers to the absolute value of this expression). It turns out that

if the elasticity of the globally optimal energy use is < 1 (inelastic), then GPO

emissions are always lower than BAU emissions.

Theorem 3. Suppose that (2.9) holds. Then Fi(fi) = mi ⇒ F̂i(fi) = mi. Hence,

given the same initial state, GPO emission factors are equal or lower than BAU

emission factors in every period.

Proof. See Dutta and Radner (2004).

Recall that Fi(fi) ∈ {mi, fi} (the same holds for F̂i). Hence, the only other

possibility is Fi(fi) = fi, in which case either F̂i(fi) = mi or F̂i(fi) = fi may

hold.

Corollary 2. If (2.9) holds and given the same initial state, GPO emissions are

lower than BAU emissions in every period.

Proof. Since (2.9) holds, we know from Theorem 3 that the GPO emission factor

is equal to or lower than the BAU emission factor. In the first case, Lemma 1

proves the result. In the second case, the GPO emissions would be even lower

than in the first case by (2.9), hence the positive gap between BAU and GPO

emissions even larger.

10
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2.3 Fixed Technology

The case of fixed emission technology, explored by Dutta and Radner (2006a,

2009), allows for a complete characterization of the set of SPNE. It is a special

case of the model described in Section 2.1 (fi(0) = mi), thus the results of Section

2.2 do hold here as well. Notation can be simplified by letting countries chose

their emissions ai directly and by defining hi(ai(t)) = Yi(
ai(t)
fi

), because fi is just a

constant now. In order to characterize the full SPNE set, it is necessary to restrict

action spaces to compact intervals Ai = [0, āi], i.e. to impose an upper bound on

emissions (energy usage). It makes sense to require āi ≥ fiēi (thus h′i(āi) ≤ 0)

- as the technological/ physical upper bound on emissions āi is approached, the

price of energy5 is expected to eventually exceed the marginal benefit of energy

usage.

I will follow an approach alternative to the one pursued by Dutta and Radner

(2009): For fixed emission technology, I will show that one can equivalently rep-

resent this dynamic game (referred to as D(δ)) as pure repeated game (R(δ)).

Once this has been proven, solving the model is a simpler task as repeated games

with perfect monitoring have been extensively explored6. To do so, define the

stage game payoff for R(δ) by

u :
n∏
j=1

Aj → Rn, ui(a) = hi(ai)− δwi
n∑
j=1

aj, i = 1, ..., n, (2.10)

where wi = ci
1−δη as usual. Note that the stage game payoff depends on the

discount factor δ (this is not the case in the canonical repeated game). Thus

one cannot immediately apply all the results on repeated games. The unique

Nash equilibrium of the stage game is a?, where each country i emits its BAU

level implicitly defined by h′i(a
?
i ) = δwi. The GPO emission level â is implicitly

defined by h′i(âi) = δ x·w
xi

. BAU and GPO emissions are decreasing in the discount

factor δ, the climate change cost coefficient ci and the fraction of GHG remaining

5Remember that the price of energy is incorporated into hi(·), not to confuse with the
constant marginal cost associated with climate change (ci).

6See e.g. Mailath and Samuelson (2006) for results on repeated games with perfect moni-
toring
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in the atmosphere η. A country i’s min-max value is clearly given by

ui ≡ min
a−i∈A−i

max
ai∈Ai

ui(a) = hi(a
?
i )− δwi(a?i +

∑
j 6=i

āj).

A strategy σRi for a country i in R(δ) is then a mapping from the set of histories

HR = ∪∞t=0Ht
R, where Ht

R = At and H0
R = {∅}, to the action space Ai, and

σR = ×ni=1σ
R
i . The total payoff induced by σR is

Ui(σ
R) = (1− δ)

∞∑
t=0

δtui(a
t(σR)).

In the dynamic game D, the set of period t ex post histories Ht
D = (A×G)t×G

appears to be much larger. However, since the game is deterministic, the set of

feasible nodes in the dynamic game reduces to At×G, where G is the set of period

0 ex post histories (the initial GHG levels) and the dependence on Gt has been

dropped because ∀ 0 < s ≤ t, it holds that g(s) is a function of past emissions

and the initial GHG level, to be precise g(s) = ηsg(0) +
∑s−1

k=0 η
s−k−1z(k)7. In

particular, at any ex post history htD, the tree of feasible nodes for the continuation

game is characterized by ∪∞t=0A
t = HR. Denote a strategy profile in D by σD :

HD → A. The payoffs are the fixed-technology analogs of Section 2.1 and restated

here for convenience (the GHG law of motion leads directly to line (2.11)):

vi(σ
D, t) = hi(ai(σ

D, t))− cig(σD, t), where

g(σD, t) = ηtg(0) +
t−1∑
s=0

ηt−1−sz(σD, s) and z(σD, s) =
n∑
j=1

aj(σ
D, s), (2.11)

Vi(σ
D) = (1− δ)

∞∑
t=0

δtvi(σ
D, t) and V (σD) = (Vi(σ

D))ni=1.

Theorem 4 will state that it suffices to analyze the equilibria of the pure repeated

game as this is strategically equivalent to the dynamic game. Before stating the

result, the notion of applying a strategy profile in D(δ) to R(δ) is made precise.

Definition 3. For a fixed strategy profile σD and any ex post history htD (and

7This is the solution of the linear difference equation (2.2). Recall the expression for global
emissions, z(k) =

∑n
j=1 aj(k).
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associated GHG level gt), define the projection of the continuation strategy profile

σD|htD on HR, denoted by σR
htD

, such that ∀ hτ = (a(s))τ−1s=0 ,

σRhtD
(hτ ) = σD|htD

(
(a (s))τ−1s=0 ,

(
ηsgt +

s−1∑
k=0

ηs−k−1z(k)

)τ

s=1

)
.

This definition implies that for a given single strategy profile in D(δ), every ex

post history in D(δ) defines a separate strategy profile for R(δ). Hence a single

strategy profile in D(δ) leads via projection to as many strategy profiles in R(δ)

as there are ex post histories in the dynamic game. Though this might seem

complicated, it will be subsequently shown that it is actually very simple to use

the following theorem to get a SPNE strategy profile in D(δ) from a single SPNE

strategy profile in R(δ), and vice versa.

Theorem 4. A strategy profile σD is a SPNE in the dynamic game D if and only

if for all ex post histories htD and associated GHG level gt, the projection of the

continuation strategy profile σD|htD on HR, denoted by σR
htD

is a Nash Equilibrium

in the pure repeated game R(δ). Furthermore,

V
(
σD|htD

)
= U(σRhtD

)− (1− δ)wgt. (2.12)

Proof. To simplify notation, let a = (a(t), a(t + 1), ...) be the outcome path

induced by the strategy profile σD|htD (equivalently, by σR
htD

) and gt the associated

GHG level.

Vi

(
σD|htD

)
= (1− δ)

∞∑
s=t

δs−t (hi(ai(s))− cig(s))

= (1− δ)
∞∑
s=t

δs−t

(
hi(ai(s))− ci

(
ηs−tgt +

s−1∑
k=t

ηs−1−kz(k)

))

= (1− δ)
∞∑
s=t

δs−t (hi(ai(s))− δwiz(s))− (1− δ)wigt (2.13)

= Ui(σ
R
htD

)− (1− δ)wigt.
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To get the second term of (2.13), note that

∞∑
s=t

δs−tci

s−1∑
k=t

ηs−1−kz(k) = ci

∞∑
k=t

z(k)
∞∑

s=k+1

δs−tηs−1−k

=
∞∑
k=t

z(k)δk−t+1 ci
1− δη

= wi

∞∑
s=t

δs−t+1z(s).

The theorem then follows from (2.12) and the definition of a SPNE.

Remark. Two things should be noted: First, although σR
htD

is required to be only

a plain Nash equilibrium in the repeated game, the characterization holds if and

only if σR
htD

is a SPNE in R(δ), as σR
htD

must induce a Nash equilibrium in every

subgame of R(δ). Second, the crucial point of this dynamic game is the linearity

of the cost and transition function. The theorem fails once linearity is abandoned.

Theorem 4 directly implies that for any SPNE strategy profile σD in D(δ) and any

initial GHG level g0, there exists an associated SPNE strategy profile σR in R(δ)

such that outcome paths are equivalent and payoffs related by (2.12). Corollary

3 shows that the converse is also true.

Corollary 3. Suppose σR is a SPNE strategy profile in R(δ). Then there exists

an associated SPNE strategy profile σD in D(δ) such that for any initial GHG

level g0 the induced outcome paths a in R(δ) and D(δ) are equivalent and total

payoffs are a linear translate, i.e. V
(
σD
)

= U(σR)− (1− δ)wg0.

Proof. Fix a SPNE strategy profile σR in R(δ). Define σD such that for all initial

GHG levels and all feasible nodes in the tree of the supergame, the two strategy

profiles agree and for all nodes that are not feasible, prescribe BAU play. Observe

that all nodes in the subgame starting at a node that is not feasible are themselves

not feasible. Formally, let

σDi

((
(aj(s))

n
j=1

)t−1
s=0

, (g(s))ts=0

)
=


σRi

((
(aj(s))

n
j=1

)t−1
s=0

)
, if F holds,

a?i , else,

where F is the statement: ∀ s = 1, ..., t, g(s) = ηsg(0) +
s−1∑
k=0

ηs−k−1z(k).
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By definition, no player can push play off the feasible nodes, where subgame

perfection holds because of Theorem 4. At any history that is not feasible, σD

prescribes BAU play forever, which obviously constitutes an equilibrium.

Corollary 4 immediately follows and states the properties of the set of SPNEs.

Corollary 4. The SPNE payoff correspondence Ξ : G → Rn of D is given by

Ξ(g) = E−{(1−δ)wg}, where E is the compact set of SPNE of R. In particular,

consider any SPNE, any period t and any history htD, then the payoff vector for

the continuation strategies must be of the form u− (1− δ)wg(t), where u ∈ E and

g(t) is the GHG level in period t.

Proof. Follows immediately from Theorem 4, compactness is a standard result

(see e.g. Mailath and Samuelson, 2006, p.39).

Dutta and Radner (2006a, p.198) proved a similar result8 directly for the dynamic

game, commenting on the structure of the SPNE payoff correspondence Ξ(g), i.e.

that it is a linear translate of Ξ(0), as being of ”surprising simplicity”. The proof

of Theorem 4 shows that this structure is a direct consequence of linear climate

change costs.

2.3.1 BAU Reversion

While the second best problem refers to finding the SPNE that maximizes u ∈ E

given a weighting vector x, the third best problem corresponds to maximizing u

given x under the restriction that u is an element of a certain subset (referred to

as T ) of the set of SPNE E. Grim trigger, i.e. playing the myopic stage game

Nash equilibrium forever in case of defection, is a particularly simple strategy. In

this context, define the third best optimum (TBO) as a profile of strategies such

that u given x is maximized subject to BAU reversion. T is non-empty, i.e. the

TBO exists, since a? (the unique stage-game Nash equilibrium) with associated

8They did not show that this compact set E is actually the set of SPNE payoffs of the
repeated game.
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payoff u? is clearly sustainable as a SPNE under the threat of BAU reversion.

Formally, the maximization problem is given by:

max
a∈A,u∈T⊆E

n∑
i=1

xi

(
(1− δ)

(
hi(ai)− δwi

n∑
j=1

aj

)
+ δui

)

s.t. for i = 1, ..., n :(1− δ)

(
hi(ai)− δwi

n∑
j=1

aj

)
+ δui

≥ (1− δ)

(
hi(a

?
i )− δwi

(
a?i +

∑
j 6=i

aj

))
+ δu?i (2.14)

Note that the incentive constraint (2.14) must hold for all ai ∈ Ai, not only for a?i ,

but it is clear that BAU emissions maximize the deviation profit (the right-hand

side). Furthermore, the BAU reversion payoff is u?i = hi(a
?
i ) − δwi

∑n
j=1 a

?
j . It

follows that the solution to the problem is given by a vector of emissions ã, with

ũ denoting the resulting payoff, that is constant over time. Using the definition

of ũ and u?, the constraint can be simplified to

hi(ãi)− δwi

(
ãi + δ

∑
j 6=i

ãj

)
≥ hi(a

?
i )− δwi

(
a?i + δ

∑
j 6=i

a?j

)
.

Is it possible to sustain the GPO emissions under the threat of BAU reversion, at

least asymptotically (i.e. when countries are sufficiently patient)? As the discount

factor is now varying, the dependence of GPO (â(δ)) and BAU (a?(δ)) emission

levels as well as of the stage game payoffs on δ is stressed. Moreover, note that

wi(δ) = ci
1−ηδ is also a (continuous) function of δ. The constraint can be written

as

ui (â(δ), δ) ≥ (1− δ)ui (a?i (δ), â−i(δ), δ) + δui (a
?(δ), δ) . (2.15)

Note that the incentive constraint itself, as a function of δ, is continuous (also

at δ = 1) as â(δ), a?(δ) as well as u (·, δ) are. To see this, observe that h′i(·)

is a C1 function and apply the implicit function theorem. Hence, a necessary

condition for asymptotic sustainability of the GPO is that the GPO solution

weakly Pareto-dominates the BAU outcome at δ = 1, i.e. that the asymptotic
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incentive constraint

ui (â(1), 1) = hi (âi(1))− ci
1− η

n∑
j=1

âj(1)

≥ ui (a
?(1), 1) = hi (a

?
i (1))− ci

1− η

n∑
j=1

a?j(1) (2.16)

holds ∀ i. If there was a country i such that ui (â(1), 1) < ui (a
?(1), 1), then

the constraint would clearly be violated for sufficiently patient countries, i.e. for

δ ∈ [δ, 1) for some δ < 1. On the other hand, suppose that (2.16) is fulfilled with

strict inequality, then the incentive constraint (2.15) will hold for sufficiently high

δ by continuity of the constraint in δ.

Theorem 5. Suppose the GPO emission level â(δ) strictly Pareto dominates

the BAU level a?(δ) asymptotically (when δ = 1), i.e. (2.16) holds with strict

inequality. Then the GPO is sustainable as SPNE (subject to BAU reversion) for

sufficiently patient countries, i.e. ∃δ < 1 s.t. ∀δ ∈ [δ, 1) the result holds.

Proof. Follows directly from above considerations (i.e. from continuity of the

incentive constraint).

Remark. In general, it is not sufficient that the GPO weakly Pareto dominates the

BAU equilibrium asymptotically. Whether this weaker condition suffices depends

on the specific production functions and parameters used. If the constraint holds

asymptotically with equality for some country, it is unclear whether the difference

between the left-hand and the right-hand side of the inequality turns positive or

negative if the discount factor is decreased. Note that this contrasts with the

intuition from repeated games analysis, where less patience always makes it more

difficult to sustain an efficient outcome subject to Nash reversion.

2.3.2 Best Equilibria

Although the dynamic game can be represented as a repeated game, one cannot

employ any of the standard folk theorems for asymptotic analysis since the stage

game payoff depends on the discount factor. Hence, a payoff that is feasible
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for a fixed discount factor, say δ0, might not be feasible anymore for some δ′ >

δ0. In particular, the more patient countries are, the lower will be the efficient

payoffs. However, at the same time, higher patience facilitates achieving the

efficient frontier in an equilibrium.

The second-best optimum (SBO), given a weighting vector x, is similar to the

TBO except that punishment strategies need not be of the BAU reversion form.

Of course, the punishments itself must be equilibria. The most efficient punish-

ments are those that give the deviator, say i, its lowest equilibrium payoff vi. The

maximization problem is similar to the TBO problem (the constraint has been

simplified as it is clear that BAU maximizes the deviation profit and i’s worst

equilibrium serves as best punishment):

max
a∈A,u∈E

n∑
i=1

xi

(
(1− δ)

(
hi(ai)− δwi

n∑
j=1

aj

)
+ δui

)
s.t. ∀i :

(1− δ) (hi(ai)− δwiai) + δui ≥ (1− δ) (hi(a
?
i )− δwia?i ) + δvii.

It follows that the SBO has a simply structure: It is generated by a vector of

constant emissions ã independent of the GHG level. According to Dutta and

Radner (2006a, p.199), the punishment for i consists of all other countries j 6= i

emitting an amount aHj that is higher than the BAU level for one period, followed

by a constant rate a(x−i) that is the solution to an i-less SBO (i.e. the best

equilibrium when the weight of country i is set to zero). In general, it is not clear

whether the high rate aHj coincides with the min-max action profile (the upper

bound on emissions āj).

2.4 Population Change

A natural generalization of the basic model, covered by Dutta and Radner (2006b),

is the introduction of population change. In this section, technology is treated as

fixed for simplicity.
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Let Pi(t) denote the population of country i in period t. Assume further that the

population evolves according to a linear difference equation,

Pi(t) = λiPi(t) + (1− λi)Si,

where the parameter λi ∈ (0, 1) indicates the speed of adjustment and Si is i’s

asymptotically approached (”steady state”) population level. It follows immedi-

ately that the solution to this linear difference equation is given by

Pi(t) = λtiPi(0) + (1− λti)Si.

Note that more complicated (exogenous) population dynamics can also be covered

by this approach, however the case treated here is more tractable. The payoff in

period t for i is given by

vi(t) = hi[ai(t), Pi(t)]− ciPi(t)g(t),

where hi has the same properties as defined previously (C2, strictly concave,

strictly increasing up to a certain point) for every fixed Pi(t). Note that the

climate change cost is proportional to the population in a country i. The state of

the system at the beginning of period t is now given by the (n + 1)-dimensional

vector s(t) = [P (t), g(t)], where P (t) = [P1(t), ..., Pn(t)] and g(t) is the GHG

level.

2.4.1 BAU with Population Change

The BAU equilibrium is a stationary MPE, where each country conditions only

on its own population level. The marginal benefit of emitting an extra unit is

given by hi1(ai, Pi(t)), where hi1(·, ·) denotes the derivative of hi with respect to
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its first argument. The marginal cost is

δci
(
Pi(t+ 1) + δηPi(t+ 2) + (δη)2Pi(t+ 3) + ...

)
= δci

∞∑
s=1

(δη)s−1Pi(t+ s)

= δci

∞∑
s=1

(δη)s−1
(
λs−1i Pi(t+ 1) + (1− λs−1i )Si

)
= δci

(
Si

1− δη
− Si − Pi(t+ 1)

1− λiδη

)
≡ δwi(Pi(t+ 1)). (2.17)

The cumulative cost function wi(·) is the analogue to the constant wi in the fixed

population case, its argument is the population level of country i when the climate

change costs start to become effective (one period after the emissions that cause

them are produced). The cumulative costs are increasing in the discount factor

δ, the GHG dissolving rate η and in current as well as in steady state population.

If the population is growing (Pi(0) < Si), then faster adjustment (low λi) leads

to higher cumulative costs (and vice versa). All of that is intuitive.

Theorem 6. Let (g, P ) be the state of the system 9 . Let each i use its Markovian

strategy a?i (Pi) (that conditions only on own population) defined by

hi1(a
?
i (Pi), Pi) = δwi(P

′
i ). (2.18)

Then this is a MPE (referred to as BAU) and the value function for i is given by

V ?
i (g, P ) = ui?i (Pi) +

∑
j 6=i

uj?i (Pi, Pj)− (1− δ)wi(Pi)g,

where ui?i (Pi) = (1− δ) (hi (a
?
i (Pi), Pi)− δwi(P ′i )a?i (Pi)) + δui?i (P ′i ) (2.19)

and uj?i (Pi, Pj) = (1− δ)
(
−δwi(P ′i )a?j(Pj)

)
+ δuj?i (P ′i , P

′
j). (2.20)

Proof. By the one-shot deviation principle for MPE, it must hold that

V ?
i (g, P ) = max

ai

{
(1− δ) (hi(ai, Pi)− ciPig) + δV ?

i

(
ηg +

∑
j 6=i

a?j(Pj) + ai, P
′

)}
.

9The prime will denote the subsequent period.
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The only terms involving ai are (1 − δ)hi(ai, Pi) and −(1 − δ)δwi(P
′
i )ai, hence

(2.18) holds. Furthermore, (2.19) and (2.20) hold (writing out the value functions

immediately leads to the result). The remaining terms determine the cumulative

costs,

wi(Pi) = ciPi + δηwi(P
′
i ). (2.21)

The cumulative marginal cost function (2.17) fulfills this equation: Total marginal

costs are current marginal cost plus discounted future marginal costs.

It is noteworthy that any profile of strategies with the property that a country’s

current action depends only on its own population is of the BAU form.

2.4.2 GPO with Population Change

The GPO profile is straightforward given the previous results and the fact that

the marginal costs are given by

w(P ) =
n∑
i=1

xiwi(Pi).

Theorem 7. Given a strictly positive welfare vector x, the GPO strategy for each

i is a function âi(P ) defined by10

xihi1(âi(P ), Pi) = δw(P ′)

and the associated GPO value function is given by

V̂ (g, P ) =
n∑
i=1

xiui(P )− (1− δ)w(P )g,

where ui(P ) = (1− δ)

(
hi(âi(P ), Pi)− δwi(P ′i )

n∑
j=1

âj(P )

)
+ δui(P

′).

Proof. The proof is omitted as it uses the same method as in the BAU case.

10To be precise, one has to assume that the functions hi are such that this solution exists for
Pi ∈ [Pi(0), Si].
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As in the fixed population case (Lemma 1), it follows that BAU emissions strictly

exceed GPO emissions.

2.4.3 Effect of Population Size on Emissions

How do BAU and GPO emission levels change in population size? To answer this

question, first recall that hi(·, ·) is a C2 function and note that hi12(·, ·) denotes

its cross-partial derivative.

Theorem 8. The BAU emission function a?i (Pi) is C1, the sign of its derivative

is equal to the sign of

hi12(a
?
i (Pi), Pi)−

ciλiδ

1− λiδη
. (2.22)

Likewise, the GPO emission function âi(P ) is C1 and it is increasing (decreasing)

in own population size if and only if the BAU emission function is increasing

(decreasing). Moreover, GPO emissions are always strictly decreasing in any

another country j 6= i’s population.

Proof. See Appendix A.

Note that a country’s BAU strategy prescribes the same emission level regard-

less of the population levels of other countries. The introduction of exogenous

population change does not pose a specific extra difficulty in finding the ”good

equilibria”, i.e. the ones that one would want to support through a self-enforcing

treaty. As i’s population approaches the steady-state level Si, the incentive con-

straint converges monotonically to the one in the fixed population case.

2.5 Capital Growth

In this section, the introduction of exogenous capital accumulation is investigated.

The material presented in this section is based on Dutta and Radner (2012). The
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motivation of this extension stems from the observed difficulty of getting fast-

growing economies (e.g. China and India) to sign a climate-change treaty.

Let Ki(t) denote country i’s capital level in period t and K(t) the vector of capital

levels. Imposing again fixed emission technology (and fixed population), the state

of the system is thus given by the (n + 1)-dimensional vector s(t) = [g(t), K(t)].

The utility for country i in period t is given by

vi(t) = ai(t)
βiKi(t)

γi − cig(t), (2.23)

where the production function11 takes an explicit form. The coefficients βi and

γi are both ∈ (0, 1) and not required to sum to one (the constant returns to scale

case). Crucially, capital is assumed to grow geometrically at a constant rate:

Ki(t+ 1) = θiKi(t), (2.24)

where θi > 1. The capital stock will thus grow unboundedly and one has to

impose a condition to preserve boundedness of the solution: δθ
γi

1−βi
i < 1 ∀i12.

2.5.1 BAU and GPO with Capital Growth

The derivation of the two benchmark solutions, namely the myopic MPE referred

to as BAU and the GPO, can be conducted by the same techniques used in the

earlier sections of this chapter. In the BAU equilibrium, each country conditions

only on its own capital level. This is similar to the population change BAU

equilibrium, where each country only conditions on its own population level.

11This production function does not have a maximum, contrary to the description of the basic
model in Section 2.1, as there is no term subtracted that represents the price of energy. This
slight modification does not affect the outcome of the model, see footnote 2 on p. 3.

12The BAU solution, derived in the following, is a?i (K) = constant∗K
γi

1−βi . Plugging it back
in the production function and substituting (2.24) for next period’s capital gives an undiscounted

growth rate of θ
γi

1−βi
i . One has to require that this term, discounted with the common discount

factor, is strictly smaller than one for boundedness of the solution.
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Theorem 9. Let (g,K) be the state of the system. Let each i use its Markovian

strategy a?i (Ki) (that conditions only on own capital level) defined by

a?i (Ki) =

(
βi
δwi

) 1
1−βi

K
γi

1−βi
i . (2.25)

Then this is a MPE (referred to as BAU) and the value function for i is given by

V ?
i (g,K) = φiiK

γi
1−βi
i −

∑
j 6=i

φjiK

γj
1−βj
j − (1− δ)wig,

where φii and φji are strictly positive constants ∀ i, j.

Proof. See Appendix A.

The proof implies that BAU is the unique equilibrium with the property that a

country conditions only on its own capital level. Moreover, the form of the value

function indicates that if there is a country i growing at a rate strictly higher than

the growth rate of any other country, this country i will eventually dominate in

terms of utility (both its own and all other countries’ utility functions). This

observation is crucial; it will turn out to be impossible - without changing the

rules of the game - to support a cooperative solution as an equilibrium. The next

theorem states the GPO solution under capital growth.

Theorem 10. Let (g,K) be the state of the system, let x be a strictly positive

n-vector. Then in the GPO solution, given weighting vector x, every country i’s

optimal choice âi(Ki) is a function of i’s current capital level only,

âi(Ki) =

(
xiβi
δx · w

) 1
1−βi

K
γi

1−βi
i ,

and the GPO value function is given by

V̂ (g,K) =
n∑
i=1

φ̂iK
γi

1−βi
i − (1− δ)x · wg,
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where φ̂i is a strictly positive constant ∀ i,

φ̂i =
(1− δ)(1− βi)xi

(
xiβi
δx·w

) βi
1−βi

1− δθ
γi

1−βi
i

.

Proof. Omitted (similar to the BAU equilibrium proof).

Again, BAU emission levels are strictly higher than GPO emission levels. Indeed,

given the explicit production function, an exact ratio for these two quantities can

be derived easily:

âi(Ki)

a?i (Ki)
=
( xiwi
x · w

) 1
1−βi ∈ (0, 1). (2.26)

Observe that this ratio is independent of the capital stock, hence GPO emissions

are a constant fraction of BAU emissions. Put another way, a uniform emission

cut would be required to move from the myopic equilibrium to the GPO solution.

This leads to the next definition:

Definition 4. A uniform cut in emissions is a capital-dependent emission policy

ãi(Ki) that is a constant fraction of the BAU emission policy, i.e.

ãi(Ki) = κia
?
i (Ki), where κi ∈ (0, 1).

Does the presence of capital growth exacerbate the tragedy of the commons? As

(2.26) shows, the relative difference between the two benchmark solutions does

not dependent on the capital level. Yet, the absolute difference of GPO and BAU

emissions is growing at a rate of θ
γi

1−βi
i .

2.5.2 Uniform Emission Cuts under Capital Growth

The simplest way of supporting a Pareto-improving outcome (Pareto improving

relative to the stage game Nash equilibrium, which is in this case the BAU equi-

librium) as an equilibrium payoff is through the threat of Nash reversion (here

BAU reversion). Theorem 11 is a negative result: if there is one country i such
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that its effective growth rate θ
γi

1−βi
i > θ

γj
1−βj
j ∀j 6= i, then it is not possible to

support any uniform emission cut that involves i. The reason for this negative

finding is that at one point in time, far enough in the future, country i’s utility

will be dominated by a term that depends only on its own actions, hence the

other countries simply cannot provide any incentive to detain i from playing its

BAU action.

Theorem 11. Suppose there is a unique country i that features the maximal

effective growth rate, i.e. θ
γi

1−βi
i > θ

γj
1−βj
j ∀j 6= i. Then no uniform emission cut

that involves i can be supported as a SPNE under the threat of BAU reversion.

Proof. See Appendix A.

As a consequence of Theorem 11, the GPO cannot be supported as a SPNE under

the threat of BAU reversion. Furthermore, note that the proof of this theorem

also implies that no uniform emission cut policy - that involves the unique country

featuring the maximal effective growth rate - can be supported as a SPNE even

if punishments are more severe than BAU reversion (thus possibly not credible

anymore) but do not become unboundedly large compared to the BAU levels: For

any fixed κj ∈ R+, i.e. even for κj > 1 (country j suffers itself from punishing

i), not even the threat of reverting to the severe κj-policy (that may not be an

equilibrium strategy for j) forever can deter i from deviating. It seems reasonable

to assume that feasible emissions are bounded from above by a multiple of BAU

emissions (that depend on own capital level). Given this reasonable assumption, it

follows that there does not exist a SPNE where i emits less than in the ”bad” BAU

equilibrium, as not even the prospect of being min-maxed forever discourages i

from playing its BAU strategy.

2.5.3 Foreign Aid

The last subsection showed that capital growth makes it difficult to support equi-

libria that are better than the BAU equilibrium. If the threat of increasing

emissions cannot deter the country featuring the maximal effective growth rate
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from playing its BAU strategy, can better equilibria be sustained by the intro-

duction of foreign aid? First, define a feasible foreign aid policy in this context

by requiring that all transfers sum to zero in each period. One can think of an

international aid agency (e.g a United Nations institution) that conducts these

transfers.

Definition 5. A feasible foreign aid policy is a sequence of emission levels

((µi (t))
n
i=1)

∞
t=0 s.t.

n∑
i=1

µi (t) = 0 ∀t.

For a country i, µi (t) is added to its utility in period t given by (2.23). It will

be shown that for sufficiently patient countries and equal country weighting, an

aid-induced GPO strategy profile can be sustained as a SPNE.

Definition 6. An aid-induced GPO strategy profile has two components:

1. At period 0 and in every period t with no previous unilateral deviation

(in any period s < t), each country i plays it GPO strategy âi(Ki(t)) and

receives/ transfers an amount of µi (t).

2. In the event of a unilateral deviation in period s, each country i plays its

BAU strategy a?i (Ki(t)) for all future periods t > s without any transfers.

Recall that a discount factor is feasible if it is low enough to ensure boundedness

of the solution, i.e. if δθ
γi

1−βi
i < 1 holds ∀i. A GPO profile with equal country

weighting refers to equal country weights, i.e. xi = 1/n ∀i.

Theorem 12. There is a cut-off discount factor δ̂ < maxi

{
θ

γi
βi−1

i

}
and a fea-

sible foreign aid policy such that the aid-induced GPO strategy profile with equal

country weighting constitutes a SPNE for all feasible discount factors above δ̂.

Furthermore, for every country i, donor as well as recipient, lifetime payoffs in-

clusive of foreign aid strictly Pareto dominate BAU lifetime payoffs.

Proof. The proof will only be sketched here, the algebraic details can be found

in Dutta and Radner (2012): The key to the result is the observation that the

27



Chapter 2. Climate Change as a Dynamic Game: the Linear Cost Case

individual incentive constraints (that include transfers in case of no deviation) can

be replaced by a single aggregate incentive constraint that excludes transfers since

they sum to zero. This simplification works because of the foreign aid mechanism

that allows arbitrary ”utility transfers” between countries, given that they sum to

zero in every period. Reducing the proof to its essence, the theorem is true because

the GPO strategy profile with equal country weighting is by definition better from

a global perspective than the BAU strategy profile. Hence the aggregate incentive

constraint is fulfilled, in turn the individual incentive constraints by a transfer

scheme that does not have to be explicitly derived to prove the theorem.

Three observations should be noted: First, once equal country weighting is aban-

doned, the theorem does not hold anymore in general. Problems emerge if the

weight of a high-growth country (thus high BAU emissions) is lower than 1/n,

since the transfers than simply cannot make up for the loss stemming from the

emission cut. Second, one can equivalently prove (see Dutta and Radner, 2012)

that equal country weighting and sufficient patience imply that a convex com-

bination of BAU and GPO emissions can be sustained. Third, the foreign aid

mechanism has to be taken with a grain of salt. It implies that high-growth

countries have to be subsidized by low-growth countries. Given that high-growth

countries will eventually feature an economy that is arbitrarily large compared

to low-growth countries in this model, this mechanism might not even be feasible

from an economic point of view, not to mention the political aspects.
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Chapter 3

The Convex Cost Case

In Chapter 2, the costs associated with the current level of GHG g in the atmo-

sphere were assumed to be linear in g. While the linearity allows for closed-form

solutions, a convex cost function might be a better approximation to reality ac-

cording to Stern (2007). Therefore, I numerically investigate the structure of the

BAU equilibrium (and the GPO solution) in the general model with one-period

payoff given by

vi(t) = ai(t)
αi − cig(t)βi , where αi ∈ (0, 1), βi ≥ 1.

3.1 Numerical Solutions of Dynamic Games

When analyzing dynamic games numerically, it is common to focus on MPE as

this reduces computational complexity considerably. In this case, players condi-

tion their actions only on the current state, i.e. strategies are functions from the

set of states to the set of actions. By the one-shot deviation principle, a MPE

equilibrium is characterized by a set of simultaneously satisfied Bellman equations

(one for each player i = 1, ..., n):

Vi(g) = max
ai∈Ai

{
ai(t)

αi − cig(t)βi + δVi

(
ηg +

n∑
j=1

aj

)}
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In the terminology of computational methods, the unknowns are the policy func-

tions ai(g) and associated value functions Vi(g). Following Fackler and Miranda

(2002), for continuous value functions this setup can be exploited by approximat-

ing the value function with linear combinations of known basis functions φk(·),

Vi(g) ≈
m∑
k=1

rikφk(g).

This solution concept is known as collocation method, belonging to the class of

projection methods. It stems from the Weierstrass Theorem, which says that any

continuous real-valued function defined on a bounded interval can be uniformly

approximated as closely as desired by a polynomial function. One requires the

in total n ∗ m unknown coefficients rik to satisfy the Bellman equations at m

states g1, ..., gm, the collocation nodes. In practice, one first specifies the basis

functions φk and the number of collocation nodes m. In this example, eight

standard Chebyshev polynomial basis functions and collocation nodes are used

to form the approximant1. Furthermore, the relevant state space interval has to

be specified. I use a numerical routine provided by Fackler and Miranda (2002)

to find the BAU equilibrium in the case of convex costs associated with the level

of GHGs.

3.2 Solving for the BAU Equilibrium

In the linear cost case (chaper 2), the BAU equilibrium is a particularly simple

MPE in the sense that BAU emissions are constant (independent of the GHG level

g). However, there are also other MPE, a simple example is given by Dutta and

Radner (2009): below some critical GHG level g̃, countries emit only as much

such that g̃ is not exceeded; above g̃, countries emit BAU levels. Hence, the

numerical solution may provide us with a MPE, but we might not know whether

1Both numerical theory and empirical experience suggest that instead of evenly spaced nodes
and monomials, Chebyshev polynomials and collocation nodes should be used. Chebyshev
polynomials are given by φ1(g) = 1, φ2(g) = g, φ3(g) = 2g2−1, ..., φk(g) = 2gφk−1(g)−φk−2(g)
and Chebyshev nodes are more closely spaced near the endpoints of the state space interval.
For details see Fackler and Miranda (2002).
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this corresponds to the BAU equilibrium that equates private marginal benefits

and private marginal costs. I resolved this problem by starting with the linear

cost case (β = 1), where we have an analytic solution, a?i (g) = a?i =
(

α
δwi

) 1
1−α

and Vi(g) =
(a?i )

α−δwina?i
1−δ − wig. Providing the numerical routine with this policy

and value function as initial guesses, the routine stops after the first iteration

as expected (of course, as the initial guess is already the solution). Figure 3.1

illustrates BAU emissions and the BAU value function in the relevant GHG region.

Note that the dotted line represents the steady state relationship ai = 1−η
n
g, thus

the point where the BAU emission function and the dotted line cross is the steady

state of the system.
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Figure 3.1: BAU Emissions (Left) and Value Function (Right), β = 1

Starting with the linear cost case does not only serve as a check for the numer-

ical routine, but also achieves another purpose: The numerical routine is quite

sensitive to the initial guesses of policy and value functions. Neither the naive

guess of zeros nor the steady state values of the GPO2 work as initial guesses for

the convex cost case, in both cases the numerical routine does not converge. Ap-

parently, the initial guesses are not close enough to the solution. However, using

the solution from the linear cost case as initial guess for the case with a small

amount of convexity (β = 1.05) and iterating this procedure in small increments

of increasing convexity (i.e., use the β = 1.05 - solution as initial guess for the

β = 1.10 - case and so on) does the job. Figures 3.2 and 3.3 show that for various

levels of convexity, the BAU emissions appear to be decreasing and convex in the

2The steady state of the GPO can be easily computed, as the Envelope Theorem applies to
this single function maximization problem.

31



Chapter 3. The Convex Cost Case

GHG level. Moreover, BAU value functions seem to be decreasing and concave

in g. Note that the respective intervals around the steady state are plotted - the

scales are not comparable, higher convexity leads to lower BAU emissions (and

thus a lower steady state GHG level).

0 20 40 60 80 100 120 140 160

0.35

0.4

0.45

0.5

0.55

0.6

MPE Emissions (beta= 1.10)

Greenhouse Gas Level g

M
P

E
 E

m
is

si
on

s 
of

 P
la

ye
r 

i

 

 
MPE Emissions
Steady State Relationship

0 20 40 60 80 100 120 140 160
−160

−140

−120

−100

−80

−60

−40

−20

0

20
MPE Value Function (beta= 1.10)

Greenhouse Gas Level g

M
P

E
 V

al
ue

 F
un

ct
io

n 
fo

r 
P

la
ye

r 
i

Figure 3.2: BAU Emissions (Left) and Value Function (Right), β = 1.1
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Figure 3.3: BAU Emissions (Left) and Value Function (Right), β = 2

To assess accuracy of the numerical solution, the residuals of this approximation

are computed on a refined grid. For the linear case, these residuals are of order

10−14 - a pure numerical error, as the solution is indeed correct. For the convex

cost case, the residuals are still acceptably low. The choice of a high discount fac-

tor (δ = 0.99) and a large fraction of GHG surviving in the atmosphere (η = 0.99)

leads to residuals of order 10−3, respectively 10−5 (see Figure 3.4), lower discount

factors and higher dissolving rates would lead to even smaller residuals. Note

that the approximation error must equal zero at the Chebyshev nodes by design

of this method and exhibits similar oscillations between the nodes, a property
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that is typical of Chebyshev residuals when the underlying model is smooth and

effectively unconstrained.
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Figure 3.4: Approximation Error for β = 1.1 (Left) and β = 2 (Right)

Figure 3.5 illustrates BAU emissions and value functions for various levels of

convexity. As β increases, BAU emissions appear to be decreasing, irrespective

of the current level of GHGs. The total discounted payoff stemming from BAU

behavior and current GHG level g exhibits an interesting feature: It seems that,

given any two different exponents βH > βL, if g is close enough to zero, then

the BAU payoff is higher for βH . One could interpret that as a mitigation of

the tragedy of the commons for faster increasing marginal costs associated with

climate change. However, there exists a GHG level ḡ(βH , βL) > 0 such that for

all g > ḡ(βH , βL), the BAU payoff is higher for βL. Above a threshold GHG level,

the drastically higher costs of climate change that are due a greater exponent are

not compensated anymore by lower emissions.
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Figure 3.5: Comparison of BAU Emissions (Left) / Value Functions (Right)
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Chapter 4

Trade Sanctions

In this chapter, I explore the introduction of trade decisions in order to allow for

trade sanctions. We have seen that with sufficiently patient actors, any GPO can

be supported as a SPNE, at least provided that the GPO is preferred to the BAU

equilibrium. However, the most effective sanction for a deviating country i seems

to be unrealistic: For one period, all other countries j 6= i emit at a very high rate

(higher then the BAU emission rate!), before proceeding to a quota that allows

the other countries j 6= i to emit at a rate moderately higher than the GPO rate

at the expense of country i forever. In reality, these sharp increases and decreases

in emissions might not be feasible due to short-term irreversibilities. I propose

trade sanctions as an alternative mechanism to enforce cooperation.

4.1 A Simple Climate Change Model with Trade

A standard result in economics says that free trade is mutually beneficial, at least

at the countrywide level (see Dixit and Norman, 1980). There might be groups

within a country that actually lose from trade; however, I abstract from these

issues by looking at every country i’s aggregate welfare1.

1”Domestic redistributive instruments weaker than lump sum transfers (...) suffice for supe-
riority of free trade over autarky.” (Dixit and Norman, 1980, p. 80)
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Suppose the baseline model from Chapter 2, for simplicity without technological

change, already incorporates the gains from trade2. Each country i ∈ N =

{1, 2, ..., n} chooses two actions simultaneously every period t = 0, 1, 2, ...: Besides

specifying its emissions ai(t) for the current period, it also announces a subset

pi(t) ⊆ N \ {i}3 of all other countries, where j ∈ pi if and only if i is willing to

trade with j without any barriers in addition to those that might be already in

place4. Equivalently, one can interpret j ∈ pi as the absence of additional trade

barriers imposed by i on j, hence j /∈ pi does not necessarily imply that there

is no trade at all between i and j. Formally, action pairs, which are elements of

state-independent action sets, are given by

(pi, ai) ∈ P(N−i)× R+, ∀ i ∈ N.

For each country i, define a trading partner set pi (not to confuse with pi):

pi = {j ∈ N−i | j ∈ pi ∧ i ∈ pj}

Trade between i and j stops if either country choses to stop trading, j ∈ pi ⇔

i ∈ pj. Furthermore, assume that output hi(ai) is multiplied by a trade factor

Ti(p
i) ∈ (0, 1]. The trade factor should be weakly increasing with respect to

set inclusion, trading with the whole world should give maximum value one and

complete autarky should hurt each country (of course, output cannot be forced

to equal zero). To summarize,

0 < Ti(∅) < 1, Ti(N−i) = 1 and

pi ⊆ p̂i ⇒ Ti(p
i) ≤ Ti(p̂

i), ∀ pi, p̂i ⊆ N−i, ∀ i ∈ N.

2Dutta and Radner (2009) calibrated this model such that the BAU equilibrium path matches
available data and estimates. The model is meant to describe the current situation in the world,
hence it should already include the benefits of free trade as we currently observe them. Note
that the term free trade does not refer to complete trade liberalization here in the sense that
there are no barriers to trade at all, but rather to the present conditions in the real world.

3In the following, the notation N−i will be used to denote N \ {i}.
4Of course, one could represent the trade decision as a continuum or as discrete choice with

more than just two options to allow for gradual trade sanctions. Nevertheless, the binary choice
is a good starting point and enhances both analytical tractability and intuitive understanding.
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Simplifying notation to Ti(p
i(p)) = Ti(p), where p = (p1, ..., pn), the payoff in

period t given actions (p, a) and GHG level g(t) is

vi(t) = Ti(p(t))hi(ai(t))− cig(t).

In contrast to the model without trade, i’s payoff is now directly (i.e. in the

current period) affected by the other countries’ actions through p−i. Moreover,

asymmetric punishments are possible in the sense that if i wants to punish j by

a trade sanction, all other countries k 6= i, j are not affected.

Remark. Additive trade factors would constitute an intuitive special case, i.e.

∀ i ∈ N , hi(ai) would decrease by a fraction φi,j ∈ [0, 1) if trade between country

i and j were to stop. Then Ti(p) = (1−
∑

j∈N−i\pi φi,j), where 0 <
∑

j∈N−i φi,j <

1 ∀ i ∈ N is required. φi,j = φj,i will not hold in general as this would only make

sense if all countries are of equal size. However, this special case is naive in the

sense that it ignores substitution effects: If i stops trading with j, it will probably

compensate by trading more with a country k that is similar to j.

That the introduction of trade sanctions actually increases the scope of action,

meaning that all the equilibria of the basic game are also equilibria in the game

including trade decisions, is made precise in Lemma 2. However, note that in the

following the focus will be on equilibria that can be sustained by the threat of

trade sanctions as these punishments might be considered to be more credible.

Lemma 2. The set of SPNE payoffs of the climate change game with trade Ξ̄(g)

contains the set of SPNE payoffs of the climate change game without trade Ξ(g)

for all GHG levels g.

Proof. Fix any g, v ∈ Ξ(g) and let σ be the associated strategy profile such that

V (σ, g) = v. Define a strategy σ̄ for the game with trade in the obvious way: For

any history h̄t in the game with trade, there is a unique history ht of the game

without trade such that ht agrees with h̄t on past emission levels as well as on

past and current states. Let σ̄i(h̄
t) = (σi(h

t), N−i) ∀ i and all histories h̄t, i.e.

choose the same emission strategy and in addition free trade with all countries.

This is clearly a SPNE: The choice of pi does not affect the continuation value.
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Trading with all countries maximizes the stage game payoff for any emission level

ai, thus the maximization problem is the same as in the game without trade.

Hence there is no profitable one-shot deviation, v ∈ Ξ̄(g).

4.1.1 The Stage Game

Analogously to Section 2.3, it suffices to analyze the repeated game (a straight-

forward modification of Definition 3, Theorem 4 as well as Corollaries 3 and 4

proves this). The stage game payoff is given by

ui(p, a, δ) = Ti(p)hi(ai)− δwi
n∑
j=1

aj.

There are now more stage game Nash equilibria: Look at i’s best reply to p−i

(i’s best reply does not depend on a−i). A higher trade factor is always better,

hence setting pi = N−i always constitutes an element of a best reply. Excluding a

group of countries S ⊆ N−i from pi is a best reply if and only if Ti(N−i \S, p−i) =

Ti(N−i, p−i). In particular, this equality will hold if i /∈ pj ∀ j ∈ S, i.e. if

excluding S does not change the trading partner set (but it may also hold if i

does not gain from trading with j). It follows that for fixed p−i (and δ), there

might be more than one optimal pi but only one optimal a?i (p−i, δ)
5 implicitly

defined by Ti(p)h
′
i(a

?
i ) = δwi as all optimal pi give the same trade factor. Hence,

a Nash equilibrium is an action profile (a, p) such that no country can improve its

trade factor by adding more countries to pi and emissions are given by a?(p, δ) =

(a?i (p−i, δ))
n
i=1. In particular, any p such that i ∈ pj ⇔ j ∈ pi ∀ i, j with the

associated a?(p, δ) is a stage game Nash equilibrium. Note that best response

emissions are strictly increasing in the trade factor and weakly increasing (with

respect to set inclusion) in the trading partner set. As in the previous chapters,

they are strictly decreasing in the discount factor. Furthermore, I will continue

referring to them as BAU emissions. The GPO action profile is such that GPO

emissions â(δ) are defined by h′i(âi) = δ x·w
xi

(as in Section 2.3) and free trade

prevails.

5In the sequel, the notation a?i (pi, δ) will also be used, where pi is the argument of the trade
factor (the trading partner set), e.g. pi = N−i or pi = ∅.
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4.2 Best Equilibria under Trade Sanctions

Define the TBO with respect to trade sanctions as the optimal equilibrium (rela-

tive to a weighting vector x) subject to the constraint that the punishment for a

unilateral deviation of i only involves changes in p−i, i.e. that the other countries

do not change their prescribed emission levels. Hence, the most severe punish-

ment for the defecting country i is that all other countries stop trading with i

forever. Formally, the optimal strategy profile then consists of n+ 1 phases:

• Norm: each country i emits ãi and trades with all other countries.

• Punishment of i: i emits its best response a?i (∅, δ) and is not willing to

trade with any country (pi = ∅). All other countries j 6= i continue emitting

ãj and only trade with each other, i.e. pj = N−j−i.

Whenever there is a unilateral deviation of i in any state, play switches to pun-

ishing i. First, note that there is no incentive to change the trade decision in

any phase, since i ∈ pj ⇔ j ∈ pi ∀ i, j holds. Second, i cannot gain from devi-

ating when already being punished (this follows trivially because i is playing a

best response). Third, optimal deviations for i are (N−i, a
?
i (N−i, δ)) in the norm

phase and (N−i−j, a
?
i (N−i−j, δ)) when j is punished. It follows that i’s incentive

constraint corresponding to a deviation from the norm is given by6

ui(N−i, ã) ≥(1− δ)ui(N−i, a?i (N−i), ã−i) + δui(∅, a?i (∅), ã−i)

⇐⇒ hi(ãi)− δwiãi ≥(1− δ)
[
hi (a

?
i (N−i))− δwia?i (N−i)

]
+ δ
[
Ti(∅)hi (a?i (∅))− δwia?i (∅)

]
(4.1)

and i’s incentive constraint referring to j’s punishment phase is

ui(N−i−j, ã−j, a
?
j(∅)) ≥ (1− δ)ui(N−i−j, a?i (N−i−j), a?j(∅), ã−i−j) + δui(∅, a?i (∅), ã−i)

⇐⇒ Ti(N−i−j)hi(ãi)− δwi
(
ãi + a?j (∅)

)
≥ (1− δ)

[
Ti(N−i−j)hi (a

?
i (N−i−j))

− δwi
(
a?i (N−i−j) + a?j (∅)

) ]
+ δ
[
Ti(∅)hi (a?i (∅))− δwi (a?i (∅) + ãj)

]
. (4.2)

6For clarity of exposure, the dependence of ui and a?i on δ is omitted and ui(p
i, a) refers to

i’s utility resulting from emissions a and i’s trading partner set pi.
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Asymptotically, the constraints reduce to

hi(ãi)−
ci

1− η
ãi ≥ Ti(∅)hi(a?i (∅))−

ci
1− η

a?i (∅) and

Ti(N−i−j)hi(ãi)−
ci

1− η
(ãi + a?j(∅)) ≥ Ti(∅)hi(a?i (∅))−

ci
1− η

(a?i (∅) + ãj).

The constraints are again continuous functions of δ (as in Section 2.3), hence

for sufficiently patient countries it suffices that the asymptotic constraints are

fulfilled with strict inequality. This gives rise to an intuitive observation, stating

a minimum amount of emission reductions that is asymptotically sustainable:

Lemma 3. There exists a cut-off discount factor δ < 1 such that for all δ ∈ [δ, 1),

every norm emission profile ã such that ãi ∈ [a?i (∅, 1), a?i (N−i, 1)] ∀ i ∈ N is a

SPNE supported by trade sanctions.

Proof. Let ãi ∈ [a?i (∅, 1), a?i (N−i, 1)] ∀i ∈ N . That a deviation from the norm is

not profitable follows from

ui(N−i, ã, 1) ≥ ui(N−i, a
?
i (∅, 1), ã−i, 1) > ui(∅, a?i (∅, 1), ã−i, 1). (4.3)

The first inequality holds since ui is increasing in ai up to a?i (N−i, 1), the last

inequality since Ti(N−i) = 1 > Ti(∅) by assumption. That a deviation from

punishing j is not profitable follows from

ui(N−i−j, ã−j, a
?
j(∅, 1), 1) ≥ ui(N−i−j, a

?
i (∅, 1), a?j(∅, 1), ã−i−j, 1)

≥ ui(∅, a?i (∅, 1), a?j(∅, 1), ã−i−j, 1) ≥ ui(∅, a?i (∅, 1), ã−i, 1).

The first two inequalities hold for reasons similar to those explained above. The

last inequality follows since a?j(∅, 1) ≤ ãj by assumption. To be precise, one needs

strict inequalities in the asymptotic incentive constraints such that the constraints

hold also for some high δ < 17. The lemma follows directly from continuity of

the incentive constraints (at δ = 1).

7This can be assured for example by requiring that Ti(N−i−j) > Ti(∅) ∀i, j. It is hard to
imagine a situation where this is not the case (i.e. where equality holds), as this would impose
that there is a country in the world that does not gain from starting to trade with the whole
world, except for a single country.
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Remark. Without additional assumptions, one cannot go further: For all ã such

that ãi < a?i (∅, 1) for some i, there exist trade factors close enough to one such that

ã is not a SPNE for any discount factor. To see this, observe that in (4.3) this im-

plies that ui(N−i, ã, 1) < ui(N−i, a
?
i (∅, 1), ã−i, 1), whereas ui(N−i, a

?
i (∅, 1), ã−i, 1)→

ui(∅, a?i (∅, 1), ã−i, 1) as Ti(∅)→ 1 . Hence, the asymptotic incentive constraint is

violated, which implies that such a norm emission profile ã is not a SPNE for any

δ ∈ (0, 1).

Computing the best equilibrium under trade sanctions is a cumbersome task for

heterogeneous countries, as the optimization exercise involves n incentive con-

straints for each country. In particular, without further assumption, whether i’s

incentive to deviate is greater in the norm phase or in the punishment phase

of another country j is undetermined: The short-term gain from deviating is

(weakly) greater under the norm regime, since the optimal deviation is larger

(a?i (N−i) ≥ a?i (N−i−j)) and pays off more (Ti(N−i) ≥ Ti(N−i−j)). On the other

hand, the long-term incentives8 to deviate for i cannot be ranked - if some other

country j is punished, the threat of no trade hurts i less (since it has already

stopped trading with j), but i might be additionally threatened by the rever-

sion of j to its norm strategy (if and only if ãj > a?j(∅)). Nevertheless, we learn

something from this analysis: if low norm strategy emissions are sustainable (i.e.

ãj ≤ a?j(∅), which is reasonable for patient countries by Lemma 3), then i’s in-

centives to deviate are asymptotically greater in the punishment phase of another

country and the constraint corresponding to a deviation from the norm can be

ignored. In the next subsection, it will be shown that the restriction to homo-

geneous countries allows for a simpler characterization of the best equilibrium

under trade sanctions.

4.2.1 Symmetric Countries

In this subsection, I assume symmetric countries and equal country weighting.

Define h0 = hi, c0 = ci, w0 = wi as well as T0 = Ti and let the argument of the

8Of course, a necessary condition for a norm profile to be sustainable as a SPNE is that there
are long-term losses from deviating in every phase, i.e. all asymptotic constraints are fulfilled.
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trade factor and of BAU emissions be the cardinality of the trading partner set

(e.g. n − 2 instead of N−i−j). While BAU levels a?0(p
i) and the GPO level â0 is

symmetric, a priori it is not clear whether the optimal equilibrium ã is symmetric.

It turns out, however, that this is actually the case:

Lemma 4. For symmetric countries and equal country weighting, the TBO with

respect to trade sanctions (ã) is symmetric.

Proof. Let a′ be any asymmetric SPNE emission vector, w.l.o.g. a′1 6= a′2 and

define a′′ such that a′′1 = a′2, a
′′
2 = a′1 and a′′i = a′i ∀i ≥ 3. Clearly, a′′ is also

a SPNE emission vector that gives the same sum of total country payoffs as a′.

Let ã be a strictly convex combination of a′ and a′′. Then the sum of total

country payoffs under ã is strictly greater by strict concavity of the objective

function (follows from strict concavity of h0(·)), it remains to show that ã fulfills

the incentive constraints. Recalling that a?0(·) is a fixed function of the cardinality

of the trading partner set, the norm constraint (4.1) can be written as

h0(ai)− δw0ai ≥ constant

and the constraint (4.2) for i when j is currently punished as

T0(n− 2)h0(ai)− δw0(ai − δaj) ≥ constant.

The left-hand sides of these inequalities are concave functions of a. Since these

inequalities must hold for a = a′ and a = a′′ (otherwise they would not be

equilibrium emissions), they must also hold for any convex combination of them,

hence for a = ã. It follows that the TBO under trade sanctions is necessarily

symmetric.

This observation considerably simplifies the procedure of pinning down the op-

timal equilibrium, as there are now just two incentive constraints in total (in

the general asymmetric case, there are n2), one corresponding to the norm phase

and one to the punishment phase. Any candidate a0 for the TBO must satisfy
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these two constraints. Rewriting them such that all terms involving a0 are on the

left-hand side and defining functions fN and fP
9, this gives

fN(a0) ≡ h0(a0)− δw0a0 ≥ κN , where (4.4)

κN ≡ (1− δ) [h0 (a?0 (n− 1))− δw0a
?
0 (n− 1)] + δ [T0(∅)h0 (a?0 (0))− δw0a

?
0 (0)] ,

and fP (a0) ≡ T0(n− 2)h0(a0)− (1− δ)δw0a0 ≥ κP , where

κP ≡ (1− δ) [T0(n− 2)h0 (a?0 (n− 2))− δw0a
?
0 (n− 2)] + δT0(0)h0 (a?0 (0)) .

If the GPO value â0 fulfills these two constraints, then trivially it is the TBO

under trade sanctions. If not, pick the lowest a0 such that both constraints are

fulfilled.

Theorem 13. For symmetric countries and equal country weighting, the TBO

with respect to trade sanctions ã is

(i) the GPO value, i.e. ãi = â0 ∀i, if fN(â0) ≥ κN and fP (â0) ≥ κP .

(ii) If this is not the case, then ãi = max{aN0 , aP0 } ∀i, where aN0 is implicitly

defined by fN(aN0 ) = κN and aP0 by fP (aP0 ) = κP .

Proof. The theorem follows from Lemma 4 and above considerations. To see that

aN0 and aP0 are well-defined, note that fj(0) < κj, fj(a
?
0(n − 2)) > κj

10 and that

fj(a0) is continuous and strictly increasing for a0 ∈ [0, a?0(n− 2)], j = N,P .

For symmetric countries and equal country weighting, in the model without trade

the GPO is a SPNE for sufficiently patient countries, even if the set of equilibria

is restricted to those supported by BAU reversion. Is this also true under the

restriction to trade sanctions as a punishment device? The answer is no, in

9The subscript N (P ) corresponds to the norm (punishment) constraint.
10To be precise, for the norm constraint we only know that fN (a?0 (n− 1)) > κN and have

to impose that this holds for a?0(n− 2) as well as an assumption. However, a close look at (4.4)
reveals that this is just a technical assumption that holds for all reasonable functional forms
and parameter values.
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general. However, for sufficiently patient countries Theorem 13 can be further

simplified. Corollary 5 says that it suffices to look at the punishment constraint.

Corollary 5. For symmetric countries and equal country weighting, there exists

a cut-off discount factor δ̄ < 1 such that for all δ ∈ [δ̄, 1), the TBO with respect

to trade sanctions ãi = ã0 ∀i, where

ã0 =

â0(δ), if fP (â0(δ)) ≥ κP (δ),where â0(δ) is the GPO value,

aP0 , if fP (â0(δ)) < κP (δ),where aP0 is defined by fP (aP0 ) = κP .

Proof. See Appendix A.

Note that by Lemma 3, â0(δ) ≥ a?0(0, δ = 1) implies that the GPO value is a

SPNE under trade sanctions. Hence, fP (â0(δ)) ≥ κP (δ) is guaranteed to hold

in that case (again, only asymptotically) and one does not have to check this

inequality. In other words, Corollary 5 is useful if the countries exhibit sufficient

patience and if, additionally, the GPO emission level â0(δ) is smaller than the

asymptotic BAU level under full trade sanctions a?0(0, δ = 1).

4.3 Pareto Improving Trade Sanctions

The use of trade sanctions to enforce cooperation was justified by the claim that

sudden emission increases may not be technologically feasible and thus trade sanc-

tions may be considered to be a more credible punishment device. Yet, one might

also ask whether the threat of trade sanctions can lead to a Pareto improvement

relative to the threat of emission increases. To answer this question, I compare

the TBO under trade sanctions with the TBO with respect to BAU reversion.

BAU reversion is a particularly simple special case of using the threat of emission

increases to enforce the cooperative outcome. However, the strategy profiles cor-

responding to the trade sanction equilibria are of comparable simplicity. In this

regard, it makes sense to compare these two types of TBOs.
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To foster understanding of the key factors and parameters affecting this question,

I will assume that countries are symmetric in this subsection. Moreover, I will

use an explicit functional form for the production function:

h0(a0) = aα0 , where α ∈ (0, 1).

First, the possibility of a Pareto improvement necessitates that the GPO solution

cannot be achieved by the threat of BAU reversion. This means that the incentive

constraint (see Section 2.3.1) fails for â0:

ui(â) < (1− δ)ui(a?i , â−i) + δui(a
?),

which yields by homogeneity of countries,

fB(â0) < fB(a?0), where fB(a0) ≡ h0(a0)− δw0 (1 + δ (n− 1)) a0. (4.5)

Clearly, countries must be impatient, otherwise the GPO will be achieved by the

threat of BAU reversion (this inequality is violated). Furthermore, numerical

computations revealed that (4.5) tends to hold if there are rather few countries

(n is low) and if the output elasticity of energy is low (α closer to zero than to

one). The more countries there are, the more a country’s own utility depends on

what other countries emit: if n is large, a?0 will be far away from â0 and hence

u0(a
?) from u0(â); this discrepancy cannot be compensated for by the one-shot

gain term u0(a
?
i , â−i), even if δ is quite low11, because private utility is mainly

driven by other countries actions â−i. Similarly, the larger the exponent α, the

larger is the gap between a?0 and â0. Figure 4.1 illustrates this observation: in

the shaded region, parameters are such that (4.5) holds, i.e. that the GPO is

not achieved by the threat of BAU reversion. The region is shrinking towards

the origin as the number of countries increases, but is still non-empty for large

n. Although there are nearly 200 countries in the world, one might also think of

climate change negotiations being conducted by groups of countries.

11Of course, for every parameter constellation, one can pick a δ close enough to zero such that
the GPO cannot be sustained as SPNE. However, letting δ → 0 is unrealistic in the context of
this model.
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Figure 4.1: Parameter Region where GPO Is not Achieved by BAU Reversion

If the GPO cannot be achieved by BAU reversion, the BAU reversion TBO (de-

noted by ã0) is such that fB(ã0) = fB(a?0) for some ã0 < a?0. To see that ã0 is well

defined, note that fB is strictly concave and has its unique maximum ∈ (â0, a
?
0)

(follows by definition of the BAU and GPO emission levels). In that case, the use

of trade sanctions leads to a Pareto improvement if and only if the two constraints

corresponding to deviations from the prescribed emission levels are fulfilled with

strict inequality for ã0, i.e. fN(ã0) > κN and fP (ã0) > κP . This follows because

if both the punishment and the norm constraint hold with strict inequality for ã0,

then they must also hold for some a0 ∈ [â0, ã0), which leads to a strictly higher

payoff for each country. Formally, the use of trade sanctions leads to a Pareto

improvement relative to BAU reversion if and only if

fN(ã0) > κN , which simplifies to (4.6)

h0(a
?
0(n− 1))− δw0na

?
0(n− 1) > T0(0)h0(a

?
0(0))− δw0 (a?0(0) + (n− 1) ã0) ,

and fP (ã0) > κP . (4.7)

The interpretation of (4.6) is straightforward: Deviating from the norm phase

is punished harder under trade sanctions than under BAU reversion. The latter

condition (4.7) says that this must also be true for i when another country j
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is currently being punished. For large n, it may be reasonable to assume that

T0(n− 2)→ 1, in which case (4.7) simplifies to

fN(ã0) > κN + δw0 (a?0 (0)− ã0) .

This is very similar to (4.6), but can hardly be justified for small n. Hence, I

did not use this simplification for the numerical analysis. Figures 4.2, 4.3 4.4

display the parameter regions where the use of trade sanctions leads to a Pareto

improvement compared to BAU reversion, this area is painted green. While in

the dark green region, trade sanctions can even achieve the GPO, in the light

green region they cannot do so (but they can still lead to a better SPNE than

BAU reversion). On the other hand, in both blue areas the TBO under BAU

reversion is better than the best SPNE under trade sanctions. Again, whereas

dark blue indicates that the GPO can be achieved by BAU reversion, in the light

blue (cyan) region this is not the case (but BAU reversion is still better than

trade sanctions)12. Finally, in the gray region the GPO can be sustained by both

methods13. Table 4.1 summarizes the illustration.

GPO achieved?

trade sanctions achieve better equilibrium
yes
no

BAU reversion achieves better equilibrium
yes
no

BAU reversion and trade sanctions do equally well yes

Table 4.1: Legend for BAU Reversion and Trade Sanctions Comparison

This visualization illustrates the following points:

• The more a country (region) suffers from autarky (the lower T0(0) is), the

more likely it is that trade sanctions lead to a Pareto improvement (com-

pared to BAU reversion). Of course, the deterrence is higher if punishments

are more severe.

12Hence, the black region in Figure 4.1 corresponds to the union of the light blue and the
light as well as dark green area in Figures 4.2, 4.3 and 4.4.

13The attentive reader might ask what happened to the missing sixth region, where the TBO
is the same for BAU reversion and trade sanctions but the GPO is not achieved. This region
seems to be a one-dimensional line at the border between the light green and the light blue
zone and is thus not visible.
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Figure 4.2: Pareto Improvement by Trade Sanctions: n = 3, T0(0) = 0.6
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Figure 4.3: Pareto Improvement by Trade Sanctions: n = 3, T0(0) = 0.9

• For fixed losses from autarky, the more a country suffers from losing just

one trade partner (the lower T0(n − 2) is), the less likely it is that trade

sanctions lead to a Pareto improvement, as a deviation by i when j is

currently punished leads to a less severe punishment of i.

• The higher the output elasticity of energy (α), the less likely it is that trade

sanctions lead to a Pareto improvement. When α is high, BAU and GPO

emissions are far apart. Thus, the incentive to deviate is high under trade

sanctions as the gain from increasing own emissions is more likely to exceed

the loss stemming from a lower trade factor. On the other hand, BAU
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Figure 4.4: Pareto Improvement by Trade Sanctions: n = 10

reversion is actually more likely to achieve the GPO when α is high (as

discussed earlier).

• Contrary to intuition, the more countries there are in a trade agreement,

the less likely it is that trade sanctions lead to a Pareto improvement. This

observation stems from the specification of the payoff function: as n gets

larger, a country’s utility is more and more dominated by other countries’

emissions, the influence of the trade factor diminishes.

By increasing n to 193 (the current number of United Nations member states), the

possibility for a Pareto improvement ceases to exist. Yet, one should not conclude

from this simple numerical example that trade sanctions are unnecessary. First,

as pointed out above, one can as well think of regions of the world as actors in this

global game. Second, this elementary model represents a thought experiment; it

is not intended to serve as a quantitative approximation of the real world. Third,

the introduction of trade sanctions was initially justified because the alternative

punishment device, sharp and sudden emission increases and decreases, might not

be technologically feasible.
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Conclusion

This thesis addressed the question on how to design a self-enforcing international

climate change treaty. In the language of game theory, the situation is modeled

as a dynamic game following approaches by Dutta and Radner. In addition to a

review of their contributions, I showed that in the special case of fixed emission

technologies, this dynamic game can equivalently be represented as a repeated

game. This observation simplifies equilibrium analysis considerably. Further-

more, I explored numerically how a benchmark myopic equilibrium (BAU) that

equates private marginal benefits and costs changes once linearity of the climate

change cost function is replaced by convexity. While there is a high degree of

uncertainty in climate change cost estimates, convexity instead of linearity might

be a better approximation to the real world according to existing literature. I

found that BAU emissions are no longer constant, but decreasing and convex in

the GHG level g; total BAU payoffs are decreasing and concave in g. Finally,

I expanded the scope of action by allowing for trade decisions (and thus trade

sanctions). Motivated mainly due to the fact that the alternative punishment

device, sharp emission increases and decreases, might not be technologically fea-

sible, I characterized the best equilibrium under trade sanctions. Moreover, I

specified parameter constellations that yield a Pareto improvement due to the

use of trade sanctions relative to the use of emission increases as a threat to

enforce cooperation.
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In order to preserve analytic traceability, the model used in this thesis is simplistic.

Hence, one should rather regard it as a thought experiment than as an appropriate

approximation to reality. Nevertheless, if one approves of the view that the world

is currently in a bad equilibrium, this game-theoretic analysis may demonstrate

the following points: Those countries in the world that would benefit from a move

from the current myopic equilibrium to a new cooperative equilibrium featuring

lower emission quotas should be able to design a self-enforcing treaty that either

enforces or at least shifts emissions towards the GPO. Since the structure of

the new equilibrium strategies would be very simple, the fact that only little

progress is made towards such international agreements may point to issues within

countries. For example, short-term horizons of policy makers, implying a low

discount factor δ, aggravate the tragedy of the commons.

As there is a vast amount of uncertainty in estimates of consequences due to

anthropogenic climate change, one of the most important issues for further re-

search is to augment this model with uncertainty. This amounts to modeling the

situation not as a dynamic game, but as a non-degenerate stochastic game. In

particular, uncertainty in the evolvement of the level of GHGs in the atmosphere

(the transition function) as well in climate change cost coefficients and possi-

bly exponents should be explored. Furthermore, the implication of abandoning

linearity in emission technology improvement costs represents another area for

future research.
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Appendix A

Proofs

Proof of Theorem 1. The one-shot deviation principle applies to stationary

MPE, hence we have to show that the following equation holds for i = 1, .., n:

Vi(f, g) = max
ei∈R+

f ′i∈[mi,fi]

{
(1− δ) [Yi(ei)− cig − ki(fi − f ′i)] + δVi

(
f ′, ηg +

n∑
j=1

fjej

)}
,

where Vi(f, g) is given by (2.7) and the BAU strategy is a maximizer. Simple

algebra reveals that the expression inside the curly brackets can be split in two

additive terms, where the first depends only on ei and the second only on fi.

Dropping constants and dividing by (1 − δ), the first part reduces to Yi(ei) −

δwieifi, which is clearly maximized by setting ei = Ei(fi) (2.4). Again, dropping

constants, dividing by (1− δ)2 and rearranging, the second term is given by

kif
′
i +

δ

1− δ
(Yi[Ei(f

′
i)]− δwif ′iEi(f ′i))

+
δ

1− δ

(
kiFi(f

′
i) +

δ

1− δ
(Yi[Ei(Fi(f

′
i))]− δwiFi(f ′i)Ei(Fi(f ′i)))

)
= Zi(f

′
i) +

δ

1− δ
Zi(Fi(f

′
i)) (A.1)

We have to prove that the maximizer f ′i of the last expression, subject to the

constraint f ′i ∈ [mi, fi], equals Fi(fi). Using (2.5), (2.6) and the subsequent

discussion of its properties, this can be proved by exhaustive case distinction:
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i Suppose Z ′i(mi) ≥ 0: Since mi ≤ f ′i , Fi(f
′
i) = f ′i . But then (A.1) reduces to(

1 + δ
1−δ

)
Zi(f

′
i), which is maximized by definition (2.6) by Fi(fi) = fi.

ii Suppose Z ′i(mi) < 0, fi ≤ y0i : Since f ′i ≤ fi ≤ y0i , Fi(f
′
i) = Fi(fi) = mi. Then

(A.1) equals Zi(f
′
i) + δ

1−δZi(mi), which is again maximized by definition (2.6)

by Fi(fi) = mi.

iii Suppose Z ′i(mi) < 0, fi > y0i : (A.1) is a strictly convex function, because Zi

is strictly convex and Fi is either a constant or an increasing step function.

Thus the maximizer must be ∈ {mi, fi}. Now, fi clearly maximizes the first

term Zi(f
′
i), since Fi(fi) = fi ( Zi(fi) > Zi(mi) in this case). But fi also

maximizes the second term since Zi(Fi(fi)) = Zi(fi) > Zi(mi) = Zi(Fi(mi)).

This proves that the maximizer of (A.1) equals Fi(fi) in all cases. Hence, the

BAU strategy profile (E,F ) maximizes the value function. Simple algebra shows

that acting according to (E,F ) forever indeed gives the value function (2.7). The

theorem is proved.

Proof of Theorem 8. The function f : R2 → R that is evaluated at zero in the

first order condition,

hi1(ai, Pi)− δwi(P ′i ) = 0,

is C1 and its partial derivative w.r.t. its first argument is not zero (anywhere) by

the strict concavity assumption on hi(·, Pi) for any fixed Pi. Hence the implicit

function theorem can be applied, this leads to

∂a?i (Pi)

∂Pi
=

1

hi11(a?i (Pi), Pi)

(
ciλiδ

1− λiδη
− hi12(a?i (Pi), Pi)

)
(A.2)

Recall that hi11 is strictly negative, this gives (2.22). Equivalently, the implicit

function theorem implies expression (A.2) for ∂âi(P )
∂Pi

. For any j 6= i it follows that

∂âi(P )

∂Pj
=

1

hi11(âi(P ), Pi)

(
xj
xi

cjλjδ

1− λjδη

)
.

This expression is always strictly negative, again because of strict concavity.
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Proof of Theorem 9. Again, we look at the Bellman equation given by

V ?
i (g,K) = max

ai

{
(1− δ)

(
aβii K

γi
i − cig

)
+ δV ?

i (g′, K ′)
}
, (A.3)

where (g′, K ′) =

(
ηg + ai +

∑
j 6=i

a?j(Kj), (θiKi)
n
i=1

)
. (A.4)

Collecting terms that involve ai and differentiating gives as a necessary condition

for an optimum that βia
βi−1
i Kγi

i = wiδ, (2.25) follows immediately. Substituting

(2.25) for ai and equating all Ki-terms gives

φiiK
γi

1−βi
i = (1− δ)

((
βi
δwi

) βi
1−βi

K
γi

1−βi
i − δwi

(
βi
δwi

) 1
1−βi

K
γi

1−βi
i

)
+ δφiiθ

γi
1−βi
i K

γi
1−βi
i .

Dividing both sides by K
γi

1−βi
i and rearrenging yields

φii =
(1− δ)(1− βi)

(
βi
δwi

) βi
1−βi

1− δθ
γi

1−βi
i

. (A.5)

Applying the same steps to the Kj-terms results in

φjiK

γj
1−βj
j = (1− δ)

(
−δwi

(
βj
δwj

) 1
1−βj

K

γj
1−βj
j

)
+ δφjiθ

γj
1−βj
j K

γj
1−βj
j ,

and φji =
(1− δ)δwi

(
βj
δwj

) 1
1−βj

1− δθ
γj

1−βj
j

. (A.6)

The denominators in (A.5)and (A.6) are strictly positive by the boundedness

assumptions. The only terms left are

−(1− δ)wig = (1− δ)(−cig) + δ(1− δ)(−wiηg),

which lead to the definition of the discounted marginal cost expression wi =

ci
1−δη .

Proof of Theorem 11. Let (ãi(Ki) = κia
?
i (Ki))

n
i=1 be a uniform emission cut

policy involving i, i.e. κi ∈ (0, 1). By arguments very similar to the ones made
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precise in the proof of Theorem 9, the value for i stemming from such a uniform

emission cut policy, characterized by the n-vector κ, is

Ṽi(κ, g,K) = φ̃ii(κi)K
γi

1−βi
i −

∑
j 6=i

φ̃ji (κj)K

γj
1−βj
j − (1− δ)wig,

where φ̃ii(κi) =
(1− δ)(κβii − βiκi)

(
βi
δwi

) βi
1−βi

1− δθ
γi

1−βi
i

and φ̃ji (κj) =
(1− δ)δwiκj

(
βj
δwj

) 1
1−βj

1− δθ
γj

1−βj
j

∀j 6= i.

Note that i maximizes its total discounted payoff by setting κi = 1, i.e. by playing

its best response that is independent of other countries’ actions and equals i’s BAU

strategy. The threat of BAU reversion means that a punishment of i would consist

of playing the BAU equilibrium for all future periods, i.e. all other countries j

punishing i by setting κj = 1. The net difference in total discounted payoffs for i

between acting according to a uniform emission cut policy κ, where κi < 1, and

deviating by playing its BAU strategy (the most profitable deviation) equals

(
φ̃ii(1)− φ̃ii(κi)

)
︸ ︷︷ ︸

constant >0

K
γi

1−βi
i − δ

∑
j 6=i

(
φ̃ji (1)− φ̃ji (κj)

)
︸ ︷︷ ︸

constant >0

K

γj
1−βj
j .

As K
γi

1−βi
i grows at a higher rate than all other countries’ effective capital levels by

assumption, i.e. θ
γi

1−βi
i > θ

γj
1−βj
j ∀j 6= i, the last expression will eventually become

positive, i.e. there is a period t where deviating is profitable for i.

Proof of Corollary 5. By Lemma 3, ∃δ < 1 s.t. ∀δ ∈ [δ, 1), any a0 ∈ [a?0(0, δ =

1), a?0(n − 1, 1)] is a SPNE under trade sanctions, which implies that both con-

straints are fulfilled. Hence, to prove the Corollary it suffices to prove existence

of a δ̄ ∈ [δ, 1) s.t. ∀δ ∈ [δ̄, 1), fP (a0) ≥ κP ⇒ fN(a0) ≥ κN , ∀a0 ∈ (0, a?0(0, 1)).
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Thus, take any a0 ∈ (0, a?0(0, 1)) and suppose fP (a0) ≥ κP . Then

fN(a0) = h0(a0)− δw0a0 = fP (a0) + (1− T0(n− 2))h0(a0)− δ2w0a0

≥ κP + (1− T0(n− 2))h0(a0)− δ2w0a0 = κN

+ (1− T0(n− 2))h0(a0) + δ2w0(a
?
0(0, δ)− a0) (A.7)

+ (1− δ) [u0 (n− 2, a?0 (n− 2, δ))− u0 (n− 1, a?0 (n− 1, δ))] . (A.8)

There are two cases:

• T0(n − 2) = 1 (recall that T0(n − 1) = 1 by assumption): Then fN(a0) ≥

κN + δ2w0(a
?
0(0, δ) − a0) > κN , since for δ < 1 it holds that a?0(0, δ) >

a?0(0, 1) > a0. Hence we can simply set δ̄ = δ.

• T0(n − 2) < 1: Then line (A.7) is strictly positive and line (A.8) strictly

negative. Asymptotically (for δ = 1), we get

fN(a0) ≥ κN + (1− T0 (n− 2))h0(a0)︸ ︷︷ ︸
λ1>0

+
c0

1− η
(a?0(0, 1)− a0)︸ ︷︷ ︸

λ2>0

.

Note that while λ1 → 0 as a0 → 0 and is strictly increasing in a0, λ2 → 0

as a0 → a?0(0, 1) and is strictly decreasing in a0. As a consequence of this

observation and by continuity of the constraints in δ, there exists a δ′ < 1

s.t. for all δ ≥ δ′ and for all a0 ∈ (0, a?0(0, 1)), fN(a0) ≥ κN . Defining

δ̄ = max{δ, δ′} finishes the proof.
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