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Einige schätzen die Bücher nach ihrer Dicke; als
seien sie geschrieben, die Arme, nicht die Köpfe
daran zu üben.
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Kurzfassung

Eine neuartig Schwimmplattform für Solarkraftwerke wurde vorgestellt. Die Schwimm-
plattform besteht aus einem plattenförmigen Rahmenwerk, das durch zylindrische Luft-
kammern getragen wird. Die Kammern werden durch die Plattform-Platte, eine flexible
Membran, und die Wasseroberfläche gebildet. Ballast am unteren Ende der Membran
sorgt auch bei Seegang für die Luftdichtheit der offenen Luftkammern.

Numerische Homogenisierung wurde verwendet um die ebene, periodische Rahmen-
struktur in eine äquivalente Plattenstruktur überzuführen, um die Komplexität des mech-
anischen Modells zu reduzieren. Ein Verfahren zur Bestimmung der Steifigkeit der äquiv-
alenten Platte basierend auf der Einheitszelle der periodischen Struktur wurde vorgestellt.
Die Berechnung lokaler Feldvariablen in den Einheitszellen basierend auf Analyseergeb-
nisse der homogenisierten Platte, die sogenannte Lokalisierung, wurde erläutert. Ein Ver-
fahren, um ein auf Einheitszellenebene definiertes Versagenskriterium in den Raum der
globaler Schnittkräfte zu übertragen wurde entwickelt. Dieses bietet eine Reduzierung
des Rechenaufwands durch die Anwendung einer vorab berechneten Versagensfläche der
Einheitszelle.

Das Verhalten der Schwimmplattform unter Wellenerregung wurde durch ein mech-
anisches Modell beschrieben. Eine numerisch effiziente Modellierung mit einer min-
imalen Anzahl an Eingabeparametern, welche dennoch alle wichtigen Effekte berück-
sichtigte, wurde spezielle für den Entwurf von Schwimmplattformen entwickelt. Die flex-
ible Platte wurde mittels der Methode der Finiten Elemente modelliert. Die Luftkam-
mern, welche Wasseroberfläche und der Platte koppeln, wurden durch lineare Federn
unter Berücksichtigung der Membranflexibilität und der Kompressibilität der Luft ideal-
isiert. Die durch Druckschwankungen in den Luftkammern auftretenden hydrodynamis-
chen Reaktionskräfte wurden durch ein akustisches Sub-Modell der umgebenden Flüs-
sigkeit mit freier Oberfläche bestimmt. Auf diese Weise konnte die komplexen Fluid-
Struktur-Interaktion über ein äquivalentes Feder-Masse-Dämpfer System berücksichtigt
werden. Die Erregerkräfte aufgrund von Oberflächenwellen wurden aus der linearen
Wellentheorie ermittelt. Die numerisch ermittelten Eigenschwingungsformen und Über-
tragungsfunktionen wurden durch Modellversuche validiert. Experimente in regelmäßigen
und unregelmäßigen Wellen dienten zur Ermittlung der Übertragungsfunktionen. Das
Ibrahim Zeitbereichsverfahren wurde eingesetzt, um die Eigenschwingungsformen, Eigen-
frequenzen und Dämpfungsfaktoren frei schwimmender Plattformen experimentell zu bes-
timmen.

Eine einzelne Luftkammer zeigt eine statische Instabilität: Es kommt zum globalen
Ausknicken, und damit zum Verlust der Tragfähigkeit, wenn ein kritischer Innendruck
überschritten wird. Diese Instabilität wurde rechnerisch und experimentell untersucht.
Als Grund für die Instabilität konnte die unsymmetrische Druckverteilung, die an der
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Wasserlinie einer leicht geneigten Luftkammern auftritt und ein Biegemoment erzeugt,
identifiziert werden.

Schließlich wurde ein Prototyp-Design für das Mittelmeer vorgestellt. Das Verhalten
der Plattform in unregelmäßigen Wellen wurde basierend auf Wahrscheinlichkeitstheorie
untersucht, um die Machbarkeit des vorgeschlagenen Entwurfs zu demonstrieren.



Abstract

A novel concept for a floating platform usable as a solar power plant was presented. The
floating platform consists of a plate-like frame structure which is supported by cylindrical
air chambers. The chambers are formed by the platform-plate, a flexible membrane,
and the water surface. Ballast weights at the bottom end of the membrane ensure the
air-tightness of the open air chambers even during conditions with high waves.

Computational homogenisation was used to reduce the plane-periodic frame structure
to an equivalent plate structure in order to reduce the complexity of the mechanical model.
Thick plate properties, were computed based on the unit cell of the periodic structure.
The localisation procedure for computing local field variables in the unit cells based on the
analysis results of the homogenised plate was explained. A procedure to directly evaluate
a failure criterion defined on unit cell level based on global section forces was developed.
This procedure offers a reduction of the computational cost by pre-computing the failure
surface of the unit cell.

A mechanical model of the floating platform under wave forcing was developed. The
model is computationally very efficient and has a minimal number of input parameters,
yet incorporates all important effects, making it suitable for preliminary design. The
finite element method was used to model the deformable platform-plate. The supporting
air chambers, coupling water surface and plate, were idealised by linear springs taking
the flexibility of the membrane and the compressibility of the air into account. The
hydrodynamic reaction forces arising due to pressure oscillations in the air chambers were
determined by an acoustic sub-model of the surrounding fluid with free surface. In this
way the complex fluid-structure-interaction could be accounted for by the use of equivalent
spring-mass-daspot elements. Excitation forces from surface gravity waves were obtained
from linear wave theory. The natural modes and transfer functions computed by the
developed model were experimentally validated by model tests. Tests were carried out
in regular and irregular waves to obtain transfer functions. The Ibrahim time domain
method was employed to determine free floating oscillation modes, natural frequencies
and damping factors experimentally.

A single air chamber shows a static instability: It globally buckles if a critical internal
pressure is exceeded, resulting in the loss of load carrying capacity. This instability
phenomenon was investigated computationally and experimentally. The reason for the
instability was determined to be the unsymmetrical pressure distribution arising at the
waterline of slightly inclined air chambers. This creates a bending moment which leads
to global buckling of the chamber.

Finally, a prototype design suitable for the Mediterranean Sea was presented. The
behaviour of the platform in irregular seas was evaluated based on probabilistic theory,
confirming the feasibility of the proposed design.
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Chapter 1

Introduction

Renewable energy sources are becoming increasingly important due to increases in energy
demand and the desire to replace fossil fuels [25, 32]. Solar power offers great potential
to satisfy this demand. To date, solar thermal electricity (STE) and solar photovoltaic
electricity (PV) are competitive against oil-fuelled electricity in sunny areas [31]. PV
systems are more flexible and have recently shown a dramatic decrease in price [51]. On
the other hand, STE is attractive because it allows time shifted electricity production by
the means of thermal storage [31]. STE systems today are based on concentrating solar
power (CSP), i.e. use optical devices to focus the sunlight. Thus, they require large areas
with high overall direct normal irradiation (DNI). As such areas are scare in Europe, the
idea of offshore solar power plants emerged. Compared to traditional land based systems,
such floating solar power plates promise additional advantages like ample available space,
sun tracking around a vertical axis, and efficient cooling.

1.1 Offshore Solar Power Plants
As general requirement for offshore solar power plants, large areas for the concentrator
fields must be provided by a floating platform. This floating platforms must be designed
in order to withstand the harsh ocean environment. State of the art offshore floating
platforms, as used for example as oil/gas drilling rigs or floating production, storage and
offloading units (FPSO) can be built in order to withstand even the most severe sea states.
However, typical dimensions of such platforms are a about 100x100m with area loads of
several tons per square meter. Therefore, such platforms are deemed too expensive for
floating solar power plants.

Floating platforms designed to cover large areas on the ocean, i.e. very large floating
structures (VLFS), have been a topic of interest for several decades. Traditional target
applications include floating airports or offshore cities [78, 80]. Again such structures
must be able to carry several tons per square meter and are, thus, expensive to build.

The payload requirements for solar collectors are fundamentally different, allowing
novel platform concepts. Parabolic pre-stressed concentrators [65, 69] or PV modules have
a mass per area of only about 25 kg/m2. This allows the use of large, flexible air chamber
to support the platform. It has been shown that air cushion support can substantially
decrease wave induced strains in offshore structures [75, 77]. However, previous research
was focused on the analysis of air chambers with comparatively stiff walls [10, 30, 41, 53],

1



CHAPTER 1. INTRODUCTION 2

(a) STE plant with four concentrator fields and
central power island

(b) Platform with PV modules

Figure 1.1: Possible designs for offshore floating power plants.

which are a necessity to sustain high payloads. A novel, patented [23] design for a light
weight floating platform supported by open, flexible air chambers is investigated in this
thesis. Figure 1.1 shows how solar power plants based on this novel design might look
like. A joint thesis by Diendorfer [13] describes the concept of offsore solar power plants
in more detail, also giving an extensive review of similar concepts. He also tackles issues
like optical and overall efficiency of concentrating systems, optimal sun tracking, and site
selection [13], for which this thesis gave input.

The floating platform carrying the concentrator system consists of a large, plate-like
structure supported by a number of cylindrical air cushions, which are attached below
the plate and are open to the water at the bottom. One such air cushion in formed
by the platform-plate, the wall of the cylindrical membrane and the water surface. The
cylindrical membrane, in the following termed skirt, is sufficiently ballasted and long to
stay submerged in all wave conditions. Figure 1.2 shows a cross section of such a platform.
In order to achieve static stability of the global structure at least three independent
chambers are necessary. The static air pressure in the chambers is self regulating and
determined by the weight of the platform and the area of the cut water plane. It provides
an homogeneous, continuous support for the plate-structure. Therefore, the structure
may be constructed in a very light and cost effective way. Another advantage of the air
chambers is the attenuation of wave forcing onto the platform-plate. The amount of air
in the chambers can be used to control the draught of the platform.

air

water

stiff plate

air chamber

flexible skirt

ballast mass

p

internal pressure

Figure 1.2: Sketch of an air chamber supported floating platform.
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1.2 Scope of the Thesis
The aim of this thesis is to shed light on the complex behaviour of floating platforms
supported by open, flexible air chambers. The prediction of wave induced motions and
forces is crucial for the design of the floating platform itself and for the design of a
concentrator system mounted on the platform as a payload.

Accurate predictions can only be expected of a mechanical model if all important
effects are accounted for. These include fluid flow with a free surface in an unbounded
domain, i.e. surface gravity waves, interacting with air chambers, formed of a highly flex-
ible membrane, containing a compressible fluid (air). Additionally, the air chambers are
interacting with a plate-like, periodic frame structure composed of several thousands of
beams. Techniques exist to tackle each of the mentioned phenomena separately in great
detail, but no solution which tackles all phenomena in combination is known to date.
Although this coupling is possible in principle, it would lead to a complicated, computa-
tionally very demanding model, which would not be useful for early design stages where
the impact of a lot of input parameters is still unknown. Therefore, a simplified model
with a minimal amount of input parameters, yet incorporating all important interaction
effects, is developed.

Computational homogenisation is used to reduce the periodic frame structure to a
mechanically equivalent plate. An air chamber supports the platform-plate by its internal
pressure, which depends on the volume of the air chamber. The volume (and, conse-
quently, pressure) change is governed by the position of the platform-plate, the water
surface inside the chamber, and the flexibility of the bounding membrane and can be
modelled by a linear spring. Rising pressure in an air chamber will lead to a displacement
of the free water surface inside the chamber. In order to quantify the resulting displace-
ment the hydrostatic and hydrodynamic reaction forces must be known. They may be
obtained by modelling the water as an acoustic fluid with a free surface, and can simply
be described by a combination of a spring, mass, and dashpot with frequency dependant
properties. The floating platform can, hence, efficiently be described by a deformable
plate coupled to a system of spring, mass and dashpot elements. The approaching wave
field may be described by linear wave theory and acts as a forcing to the mechanical sys-
tem. The resulting model can be used to describe the behaviour of the floating platform
in waves from an arbitrary direction though its transfer functions.

In order to validate the model predictions, experiments in wave tanks were performed.
Natural frequency measurements, as well as experiments in regular and irregular waves
to determine the transfer functions were performed and analysed. Despite the simplicity
of the mechanical model good agreement with experimental observations was obtained.

During the testing of the first models an unexpected static instability of a single air
chamber was discovered. If the vertical load on an air chamber, i.e. the internal pressure,
increases a critical limit the air chamber buckles sidewards and looses its load carrying
capacity. As such an instability can lead to a catastrophic failure of the overall platform
the instability phenomenon is investigated computationally and experimentally.

Finally, the developed dynamic model of the floating platform and the homogenisation
procedure is combined with probabilistic theory to describe a platform in irregular waves.
This allows the evaluation of a proposed design for a floating solar power plant in the
Mediterranean Sea.



Chapter 2

Dynamic Model

In the design process of the floating platform the impact of water waves on it’s behaviour
is of outermost interest. The wave induced motions impact the optical efficiency of a
concentrator system mounted on the platform. Therefore, the behaviour of the floating
platform in waves must be determined in order to allow for site-selection based on local
wave data and solar irradiation maps. For the structural design wave induced motions
and forces must be determined for the dimensioning of the platform elements. Especially
for the early design stage a model with a low number of input parameters, which correctly
describes the platform behaviour and allows for a determination of principal design pa-
rameters, like platform size, number and arrangement of air chambers, skirt and platform
stiffness, etc., is of interest.

2.1 Modelling Assumptions
In order to derive a simple dynamic model of the described floating platform strong
simplifications are necessary. For a fast and efficient model it is not possible to take the
complex interaction effects between flexible membrane, free water surface and pressurized
air into account. Nevertheless, if a simplified model that captures the basic properties
of the dynamic system can be found, such a model is of great value. The fundamental
assumptions used in the derivation of the dynamic model are

• linearity in terms of

– wave theory (i.e. Airy waves) and
– assumed small structural displacements and rotations,

• the volume of the air chambers is dependent on

– the internal water surface elevation and
– the circumferential stiffness of the skirt material,

• ideal gas in air chambers,
• chamber membrane is linear elastic,
• platform structure is treated as a homogeneous plate,
• only vertical forcing on the plate is considered.

Figure 2.1 shows an illustration of the modelling concept.

4
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Figure 2.1: llustration of the modelling concept.

Linear wave theory is a common and useful assumption in offshore engineering, which
is applicable for waves with small amplitudes compared with their wavelength [9]. Small
amplitude responses are expected, and the equations of motion are, therefore, posed as a
linearisation around the static equilibrium.

The volume of an air chamber is defined by an additional degree of freedom at the
waterplane, which describes the average water elevation of the chamber footprint. This
degree of freedom is forced by the approaching waves. The wave forcing based on linear
wave theory is detailed in Section 2.3. Hydrodynamic reaction forces are taken into ac-
count by the use of an added mass formulation, as described in more detail in Section 2.4.
The air in the chambers can, in the given pressure regime, be treated as an ideal gas. To-
gether with the assumption on the linear elastic behaviour of the membrane material, the
axial compressibility of the air chambers can be modelled by linear springs, as explained
in more detail in Section 2.2.

Only vertical forcing on the plate in considered, because especially the pitch and roll
motion are of interest for the optical efficiency of a concentrator system mounted on the
platform. The axial stiffness of the skirt is not taken into account, and the skirt is assumed
to remain in tension at all times. Therefore, the skirt mass and the additional mass at
the lower end of the skirt are treated as concentrated masses on the plate. The validity of
this assumption must be evaluated for each particular design and wave condition based
on the computation results, according to Section 2.6.5. If the membrane does not remain
in tension the amount of ballast on the lower end of the skirt must be increased.

In a first step the platform-plate will be treated as rigid, because this allows for a
semi-analytical treatment of the resulting four equations of motion. This simple model
already allows for valuable insights in the platform behaviour. In a next step the plate will
be discretised by means of the finite element method (FEM) and hence treated as flexible.
The homogenisation of the periodic frame structure into an equivalent deformable plate
is treated in Chapter 4.
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2.2 Axial Stiffness of the Air Chambers
The axial stiffness of an air chamber will be derived for a cylindrical chamber of linear
elastic material filled with an ideal gas. End effects are neglected, i.e. membrane theory
is used to prescribe the skirts behaviour, and the membrane is assumed to remain under
circumferential tension. The validity of this assumption must be checked once the com-
putation of the platform under specified wave conditions is complete (see Section 2.6.4).
All relations will be presented as linearised around an equilibrium position. The cylinder,
and the used symbols are depicted in Fig. 2.2.

Assuming a reversible adiabatic process the pressure change ∆p due to a change of
volume ∆V can be written as

∆p = p1 − p0 = p0

[(
V0

V0 + ∆V

)γ
− 1

]
≈ −p0γ

∆V

V0

, (2.1)

where indices donate the different states and γ is the ratio of specific heats. The relation
has been linearised for small volume changes. Using the stress strain relationship for
thin membranes with thickness ts, Youngs’s modulus Es and Poisson’s ratio νs in polar
coordinates

εφφ =
1

Es
(σφφ + νsσzz) , (2.2)

together with the relation for pressure vessels

∆σφφ ≈
r0

ts
∆p, (2.3)

and neglecting the axial tension, i.e. setting σzz = 0, one can write

∆r

r0

≈ 1

Es

r0

ts
∆p. (2.4)

Linearising the volume change for small changes of radius ∆r and small changes of
hight ∆h gives

∆V = r2
0π∆h+ 2r0h0 ∆r. (2.5)

Combining Eqs. (2.1), (2.4) and (2.5) yields the equation

∆p = −p0γ

(
1 +

2γr0p0

tsEs

)−1
∆h

h0

, (2.6)

h0

∆F

h1

r1

r0

∆p

∆σφφ
∆σφφ

water level

enclosed air

deformed configuration
due to load increase ∆F

reference configuration
for ∆F = 0

upper end of chamber

Figure 2.2: Axial stiffness of a cylindrical air chamber.
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which can be multiplied by the cylinder footprint area to obtain the desired axial spring
stiffness of a flexible air chamber

kc = p0γ

(
1 +

2γr0p0

tsEs

)−1
r2

0π

h0

. (2.7)

The term in parentheses in Eq. (2.7) accounts for the flexibility of the membrane. It can
decrease the axial stiffness of the chamber by several orders of magnitude, in comparison
to a cylinder with rigid walls, and approaches unity for high membrane stiffness.

2.3 Hydrodynamic Excitation by Waves
The water waves are assumed to travel underneath the platform without being impacted
by the presence of the flexible air chambers. As the air chamber is bounded by the water
surface, any surface displacement will change the volume of the chamber. The water
surface elevation can be described by an appropriate wave theory. Due to the assumption
of linear waves, one can use the so called Airy wave theory, derived in detail for example
by Holthuijsen [26] or briefly in Appendix A.1.

The vertical surface elevation η of a point x = [x, y]T at time t for Airy waves is
described by

η(x, t) = a cos(kx− ωt), (2.8)

where a is the wave amplitude and λ the wave length. The two-dimensional (2D) wave
number vector k will de defined as

k = k

[
cosα
sinα

]
, (2.9)

where α is the wave direction depicted in Fig. 2.3b. The classical one-dimensional wave
number k is the length of the 2D wave number vector k. For water depths larger than
two times the wave length, deep water assumptions can be used with good accuracy. The
dispersion relation between wave number and angular wave frequency ω for deep water
waves

ω2 = gk, (2.10)

connects both quantities by the acceleration of gravity g. The dynamic pressure in the
wave field is given by

pd(x, z, t) = aρge−kz cos(kx− ωt), (2.11)

where ρ is the water density.
Assuming vertical skirt walls which are immobile, but allow the waves to pass without

interaction, the volume in such an air chamber is dependant on the instantaneous water
surface elevation. The change in volume due to the travelling wave train can be calculated
by integrating the wave elevation over the footprint area of an air chamber yielding

∆V (t) =

∫∫
A

η(x, t) dA =

px+r∫
px−r

py+r∫
py−r

a cos(kx− ωt) dy dx, (2.12)
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Figure 2.3: Effective water elevation in an air chamber (a) and used coordinate systems
for integration of the free surface (b).

where r is the radius of the circular footprint area with its centre at p = [px, py]
T . One

can define an equivalent water elevation

η̄ =
∆V

r2π
, (2.13)

which is proportional to the volume change. The equivalent water elevation is depicted
in Fig. 2.3a.

In the following we will define a coordinate transformation into a cartesian system
with one axis parallel to the wave direction (see Fig. 2.3b), denoted by the prime symbol,
which simplifies the above integral in Eq. (2.12). The transformation equations in matrix
form are [

x
y

]
=

[
cosα sinα
− sinα cosα

] [
x′

y′

]
+

[
px
py

]
. (2.14)

Combining Eqs. (2.9) and (2.12) to (2.14) and some simplification yields

η̄(t) =

r∫
−r

√
r2−x′2∫
0

a cos
(
k x′ + k (px cosα + py sinα)︸ ︷︷ ︸

ϕp

−ωt
)
dy′ dx′. (2.15)

Abbreviating the position dependent phase shift in the cosine function as ϕp, carrying out
the integration for y′, and noting the symmetry of the integrand one obtains

η̄(t) =
2a

r2π

r∫
−r

√
r2 − x′2 cos(kx′ + ϕp − ωt) dx′

= a
2J1(kr)

kr
cos(ϕp − ωt)

= a h(kr) cos
(
ϕλ(kr) + ϕp − ωt

)
, (2.16)

where J1 is a Bessel functions of the first kind. The above equation describes the time
dependant equivalent surface elevation η̄ (see also Fig. 2.3a) of an arbitrarily located
circular air chamber with radius r. The function h defined as

h(kr) =

∣∣∣∣2J1(kr)

kr

∣∣∣∣ , (2.17)
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Figure 2.4: Height ratio and phase difference of the effective surface elevation inside an
air chamber.

represents a multiplication factor for the reference wave. Multiplying the reference wave
amplitude with h one obtains the oscillation amplitude of the equivalent surface elevation
in the chamber. The phase shift of the equivalent surface elevation with respect to the
reference wave is given by

ϕλ(kr) =

{
0, J1(kr) > 0

π, J1(kr) < 0
. (2.18)

The functions h and ϕλ can also be obtained by a numerical integration of Eq. (2.15) for a
range of time instances and wave frequencies with ϕp,i set to zero. The result is depicted
in Fig. 2.4.

The force required to obtain the effective surface elevation is equal to the integral of
the dynamic pressure on the water surface over the footprint area of the chamber. As the
water elevation, Eq. (2.8), and the dynamic pressure at the surface, Eq. (2.11) with z = 0,
are related by the constant factor ρg, the total vertical excitation force can be written
directly as

F (t) = ρg η̄(t) = a ρg h(kr) cos
(
ϕλ(kr) + ϕp − ωt

)
. (2.19)

The forcing is still harmonic with the angular frequency of the wave. The amplitude
is proportional to the amplitude factor h(kr), which is dependent on the ratio between
chamber radius and wavelength. It rapidly decreases from the limit value of one for waves
much longer than the chamber radius until it is almost negligible for waves shorter than
the chamber diameter (see Fig. 2.4a). The phase difference depends both on the position
of the air chamber with respect to the reference location of the wave and on the wavelength
which causes a jumps of the phase by π if J1(kr) < 0 (see Fig. 2.4b).

2.4 Hydrodynamic Reaction Forces
The elevation of the water surface inside an air chamber is prescribed by a degree of
freedom. Movement of this degree of freedom will cause reaction forces of the water.
For the sake of simplicity, let us imagine a massless, circular cylinder with vertical axis
and it’s lower end immersed in the fluid. Obviously, displacing the cylinder downwards
will result in an increase of the buoyancy force. This hydrostatic force can be simply
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obtained by integrating the hydrostatic pressure in the fluid over the wetted body surface.
Additionally, accelerating the cylinder in axial direction will cause reaction forces, despite
the cylinder being massless. These forces are caused by the surrounding fluid, and are
the hydrodynamic reaction forces being the topic of this section.

2.4.1 Acoustic Theory

As the hydrodynamic forces are of interest for steady state, periodic motion, they can be
obtained by using acoustic theory.

2.4.1.1 Governing Equations

If the fluid can be considered as inviscid the viscous terms of the Navier-Stokes equations
may be neglected. Considering only small motions the equilibrium equations for a fluid
particle can be written as

∂p

∂x
+ ρf üf = 0, (2.20)

where p is the dynamic pressure in the fluid, x is the spacial position of the particle,
üf is the acceleration of the particle and ρf is the density of the fluid. The convection
term has been neglected, which is usually considered sufficiently accurate for steady fluid
velocities up to Mach 0.1 [12]. The constitutive behaviour is considered as inviscid and
compressible relating the bulk modulus of the fluid, Kf , and the dynamic pressure by

p = −Kf
∂

∂x
·uf , (2.21)

where ∂
∂x
·uf = εV denotes the volumetric strain.

If the speed of sound is constant in the medium, the above equations can be combined
into a single equation, the acoustic wave equation,

∇2p− 1

c2
f

∂2p

∂t2
= 0 or, (2.22)

∂2u̇

∂t2
− c2

f∇2u̇ = 0, (2.23)

where cf =
√
Kf/ρf denotes the speed of sound in the acoustic medium. In above

equation ∇2 denotes the Laplace operator∗.
The acoustic equations are linear differential equations and can be solved by the finite

element method. In the current work the software package ABAQUS has been used. Here
the acoustic pressure at the finite element nodes is computed [12].
∗ The Laplace operator, also commonly denoted by ∆, is the divergence (∇ · ) of the gradient ∇f .

Thus, it may also be written as ∂
∂x1

+· · ·+ ∂
∂xn

, i.e. the sum of all unmixed second order partial derivatives
with respect to the Cartesian coordinates xi.
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2.4.1.2 Boundary Conditions

To solve the acoustic equations for a specific problem, appropriate boundary conditions
must be specified. Apart from cases where the nodal pressure is prescribed directly, the
boundary conditions are formulated in terms of the boundary traction defined as

T (x) = −n · üf , (2.24)

where n denotes the outward normal vector at the boundary.

Stationary Rigid Wall or Symmetry Plane: If nodal values are not constrained,
i.e. no boundary traction is specified, this corresponds to a stationary rigid wall or a
symmetry plane (Neumann condition). This can be seen from Eq. (2.24): zero traction
enforces zero outwards acceleration, hence an immobile wall or symmetry plane.

Acoustic Structural Boundary: If the acoustic medium should be directly coupled
to the motion of a solid, so called acoustic interface elements can be used. These elements
couple the accelerations of the structure directly to the acoustic pressure. For this pur-
pose they possess four degrees of freedom (DoF) per node (one pressure DoF and three
displacement DoFs). The coupling is accomplished by shared nodes between acoustic,
interface and structural elements.

Free Surface: On the free surface the restoring force due to gravity can be introduced by
the use of appropriate boundary conditions. This enables the modelling of low amplitude,
i.e. linear, surface gravity waves. The correct restoring force is enforced by setting the
surface traction in the normal direction to

Tfr(x) =
1

ρfg
p̈, (2.25)

where g denotes the acceleration of gravity. The above relation can be imposed directly on
faces of acoustic elements in ABAQUS by the specification of a boundary admittance and
respectively boundary impedance [12]. In order to directly obtain information on the dis-
placement of the free surface, acoustic interface elements, in conjunction with membrane
elements and appropriate boundary conditions to impose the surface tractions, can be
used. The surface traction formulated in terms of the displacement DoFs corresponds to
a displacement dependent pressure on the membrane face. This is enforced in ABAQUS
by the use of element foundations (see the *FOUNDATION keyword) [12].

Radiation Boundary: When modelling a structure oscillation in an unbounded fluid
domain, it is necessary to specify boundary conditions that permit the created waves to
pass unhindered into infinity. This is usually done by imposing a radiation condition of
the form

lim
x→∞

(
∂p

∂x
− i1

v

∂p

∂t

)
= 0, with v =

ω

k
. (2.26)

Here, i =
√
−1 stands for the imaginary quantity, and ω is the circular frequency of the

oscillation,and k the corresponding wave number. Above condition can be derived from
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the the general condition of radiation [84], which was first published by Sommerfeld [63].
It is implemented in ABAQUS for sound waves in so called infinite elements, which can
be placed on the appropriated boundaries. In this case the parameter v, termed real speed
of the radiation wave by Xing [84], is equal to the speed of sound (v = cf ).

However, for surface gravity waves, the condition must be adapted. The real speed of
the radiation wave in this case must correspond to the phase velocity of the surface waves

cp =
ω

k
=
g

ω
. (2.27)

In above relation the dispersion relation for deep water waves has been used. Setting the
speed of sound in the infinite medium equal to the required speed of radiation yields the
required bulk modulus on the infinite elements

Kf,inf = ρf

( g
ω

)2

. (2.28)

The density in the infinite elements remains equal to the density in the adjacent fluid
elements. The bulk modulus of the infinite elements is frequency dependent and must be
adapted to the excitation frequency in steady state dynamic procedures. With acoustic
infinite elements with material properties altered in the prescribed way, reflection coef-
ficients as low as 10% can be achieved in ABAQUS for two-dimensional surface gravity
waves.

2.4.2 Equivalent Model

For the case of a rigid body oscillating in a fluid the resulting fluid forces can be written
in the from

fh,k = Akj η̈j +Bkj η̇j, (2.29)

where ηj denotes the degrees of freedom of the rigid body [17]. The coefficients Akj and
Bkj are termed added mass and damping coefficients. In general they are functions of the
oscillation frequency and body shape, and other factors like the vicinity of a free surface
or finite water depth can have an impact too.

Observing the structure of the above equation, the equivalence to a mass-dashpot
system is apparent. The hydrostatic restoring forces, which are proportional to the dis-
placement of the rigid body, can be modelled as a linear spring. The fluid forces on
an oscillating immersed body can, therefore, be modelled by an equivalent mass-spring-
dashpot system for ever degree of freedom. Figure 2.5 shows a sketch of floating body
conducing vertical oscillations, and a mechanically equivalent mass-spring-dashpot sys-
tem.

In the current case the hydrodynamic forces of a body in vertical motion are of interest.
If the body is axially symmetric, only vertical forces will arise. Therefore, only two (A33

and B33) of the in general 2 × 36 coefficients are of interest. In order to illustrate the
similarity to the mass-spring-dashpot system they will be termedma and c in the following.

In order to compute the parameters of the equivalent system, i.e. the added mass and
damping coefficients, the following procedure can be used. An acoustic finite element
model of the fluid surrounding the floating body is created. Appropriate boundary condi-
tions at the free surface, the infinite boundaries and at the body surface are employed. A



CHAPTER 2. DYNAMIC MODEL 13

L1

L2

R

free surface
rigid body

fluid

z

(a)

z

kwpc

m+ma

f

(b)

Figure 2.5: Floating cylinder with its axis in the waterplane (a), and equivalent mass-
spring-dashpot system for vertical oscillatory motion (b).

forced oscillation of the body is prescribed and the resulting reaction forces are calculated
in a steady state dynamic analysis for all frequencies of interest. The prescribed harmonic
excitation can be written in the form

z(t) = Re
{
ẑeiωt

}
, (2.30)

where ẑ is the complex valued excitation. The equation of motion for the equivalent
system (depicted in Figure 2.5b) reads

(m+ma) z̈ + cż + kwpz = f, (2.31)

where m donates the structural mass of the body and f the reaction force. The steady
state solution is obtained by using the above Ansatz, Eq. (2.30), for the displacement
and an equivalent Ansatz for the reaction force. Inserting them into the equation and
regrouping the terms yields[

−ω2ma + iωc
]
ẑ = f̂ −

[
kwp −mω2

]
ẑ︸ ︷︷ ︸

f̂h

. (2.32)

It can be seen that the hydrodynamic force, f̂h, is obtained from the computed reaction
force, f̂ , by subtraction of the hydrostatic contribution, kwpẑ, created by a modelled
waterplane stiffness and the inertial contribution, −mω2ẑ, created by the structural mass,
m, of the rigid body. The added mass and damping constant determine the magnitude
of the real and imaginary part of the complex valued hydrodynamic force divided by the
complex valued excitation. They are related by

ma = Re

{
− 1

ω2

f̂h
ẑ

}
, (2.33)

c = Im

{
1

ω

f̂h
ẑ

}
. (2.34)

The hydrodynamic force is obtained from the computed reaction force, f̂ , by

f̂h = f̂ −
(
kwp −mω2

)
ẑ, (2.35)

where the hydrostatic contribution, kwpẑ, created by a modelled waterplane stiffness and
the inertial contribution, −mω2ẑ, created by the structural mass, m, of the rigid body
have been subtracted.
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2.4.3 Non-Dimensional Representation of Quantities

It is useful to represent results in a non-dimensional form in order to allow for their ap-
plicability to physically similar problems. The appropriate similarity law for the problem
class of surface gravity waves is the Froude scaling law [9]. As long as acoustic effects re-
main negligible, Froude scaling remains appropriate. To represent to oscillation frequency
f , the non-dimensional quantity R/λ is used. Here λ is the wavelength of linear surface
gravity waves in deep water. It is related to the wave frequency by the dispersion relation

ω2 = g
2π

λ
, with ω = 2πf. (2.36)

The added mass and damping constants are made non-dimensional by

Ca =
ma

ρfSf
, (2.37)

Cd =
c

ρfωSf
, (2.38)

to obtain the added mass coefficient Ca and the damping coefficient Cd. To comply with
the general three-dimensional case, the above relations are written in terms of a character-
istic volume, Sf , of the body. For the two-dimensional problem treated in Section 2.4.5.1
the characteristic volume, in this case a characteristic area, is chosen as πR2/4. For the
axially symmetric problem of a single air chamber treated in Section 2.4.5.2, the volume
of a semi-sphere with the same radius as the circular air chamber is used.

2.4.4 The Relation of the Damping Constant to the Radiated
Wave Energy

The damping in the acoustic system is the result of wave energy radiated to infinity. The
dashpot in the equivalent system should be designed such that the dissipated energy is
equal to the energy contained in the surface gravity waves. This energy based consid-
eration offers an alternate way to determine the damping parameter of the equivalent
system.

The energy per surface area contained in surface gravity waves is related to the wave
amplitude, a, by

Es =
ρfg

2
a2. (2.39)

New waves on the unperturbed water surface are created with the group velocity, which
equals the energy transport velocity. For the case of deep water waves the group velocity
is

cg =
cp
2

=
gT

2π
, (2.40)

where T denotes the wave period. Hence, the amount of energy dissipated per period can
be computed by the product of wave energy per surface area and created wave surface.

Another possibility to compute the dissipated energy is to evaluate the work done at
the boundary of the domain during one period. The work done during one period at the
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Figure 2.6: Comparison of the determination methods for the damping coefficient.

boundary surface A is

W =

T∫
0

∫
A

pu̇n dAdt, (2.41)

where u̇ is the fluid particle velocity, and n the outwards normal vector at the boundary†.
Comparison of the determination methods for the damping parameter showed excellent

agreement between the methods (see Fig. 2.6). The reason for the deviation of the values
obtained from the wave amplitude is the presence of reflected waves in the wave field.

2.4.5 Computational Models

2.4.5.1 Validation Model

As a validation model for the proposed computation approach the case of an infinite,
circular cylinder with its axis in the waterplane is chosen. The case of vertical oscillations
is considered. Results for this problem are given for example by Faltinsen [17].

A sketch of the problem and of the corresponding finite element model is shown in
Fig. 2.5a. The radius R of the cylinder was chosen as 1m and the size of the computational
domain L1 = L2 as 10m. As an acoustic medium water at room temperature with the
material properties ρf = 998.2 kg/m3 and Kf = 2.2GPa was assumed. Acoustic interface
elements and membrane elements were used at the free surface and at the body edge,
respectively. The bending stiffness and density of the membrane elements were chosen
so small that their impact on the overall system is negligible. The displacement degrees
of freedom of the nodes of the cylinder edge were constraint to the displacement of a
reference node, thereby creating a rigid body. The gravitational restoring force on the free
surface was modelled as a displacement dependent pressure, as described earlier. Due to
symmetry only one symmetric half has to modelled. The pressure DoFs in the symmetry
plane were left free, to create a symmetry boundary condition. On the other vertical
boundary infinite acoustic elements were placed with material properties set in order to
absorb surface gravity waves, as described earlier. On the lower horizontal boundary
standard acoustic infinite elements were placed.
†For a steady state dynamic analysis both p and u̇ are represented by complex values. See Ap-

pendix D.4 for a description on how to evaluate the integral over one oscillation period.
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The validation model was used to investigate the influence of the different model
parameters on the computed added mass and damping constants. Most of the results
will be presented in non-dimensional form, as described in Section 2.4.3. For the current
two-dimensional problem the characteristic volume is replaced by a characteristic area,
which is chosen as πR2/4.

Observing the diagram of the computed added mass coefficient in Fig. 2.7, a decaying
oscillation is visible. This oscillation is not present in the reference solution published by
Faltinsen [17]. The reason for the oscillations was identified to be the infinite boundary
condition. A portion of the free surface wave created by the oscillating structure is
reflected back into the domain. The resulting wave system is composed of an incident
wave travelling away from the structure towards the infinite boundary, and a reflected wave
travelling in the opposite direction. The amplitudes of both waves can be determined by
the spatially varying amplitude of the resulting wave system. The reflection coefficient
of the boundary, defined as the ratio between the amplitude of the reflected wave ar and
the amplitude of the incident wave ai, can be computed by

ar
ai

=
amax − amin
amax + amin

, (2.42)

where amax denotes the maximum, and amin the minimum amplitude of the compound
wave system. A reflection coefficient of 10 to 15% was determined throughout the inves-
tigated frequency range. The reflected wave influences the reaction force from which the
added mass coefficient is computed, causing the oscillations in the result. The frequencies
at which minima and maxima occur in the computed results could be identified as the
frequencies at which constructive and destructive interference between the incident and
radiated wave fields arise. The corresponding wavelengths for constructive and destructive
interference are

λc =
2

n
(L1 −R) and λd =

4

2n+ 1
(L1 −R) for n = 0, 1, . . . , (2.43)

where the indices c and d denote constructive and destructive interference, respectively.
The so computed frequencies are marked in Fig. 2.7 as continuous lines for construc-
tive interferences and dashed lines for destructive interference. It can be seen that they
correspond well with the minima and maxima.
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Figure 2.7: Comparison of the added mass computed from the acoustic model and the
solution published by Faltinsen [17].
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Figure 2.8: Added mass coefficient (a) and damping coefficient (b) for different sizes
(L1 × L2) of the computational domain.

The frequencies at which minima and maxima occur depend on the size of the compu-
tational domain, according to Eq. (2.43). Figure 2.8 shows a comparison of computation
results for different sizes of the computational domain. For a larger domain more inter-
ferences are present in the investigated frequency range. In fact the interferences are so
dense on the frequency axis that the oscillation can not be resolved, which explains the
edgy shape of the curve. The curve for the small domain size shows no oscillation at
all, but severely deviates from the other two curves. This can be explained by the close
vicinity of the infinite boundary, which perturbs the simulation results.

A remedy against the undesired oscillations is to fit a function to the computed results.
The fit is computed for the non-dimensional quantities. The fit functions for the added
mass and damping coefficients are

Ca(x) = a0 +
2∑
i=1

aix
− 1
i+1 ebix, (2.44a)

Cd(x) = c1x
c2ec3x. (2.44b)

The chosen function for the added mass coefficient satisfies the theoretical conditions

lim
x→0

Ca(x) =∞ and lim
x→∞

Ca(x) = a0 = const. (2.45)

For the damping coefficient the theoretical limits

lim
x→0

Cd(x) = 0 and lim
x→∞

Cd(x) = 0, (2.46)

are likewise met, ensuring that physically reasonable functions are computed. In the
non-linear fitting algorithm the weights correcting for an equal distribution of the data
values along the x-axis, i.e. the frequency-axis, are used. The computed parameters of the
fitting functions can be found in Table 2.1, whereas Fig. 2.9 shows a plot of the computed
fitting functions as well as the data from the finite element analysis and values from the
literature. It can be seen that excellent agreement can be obtained between the computed
fitting functions an the results from the literature.

The last phenomenon investigated is the impact of the bulk modulus of the acoustic
medium. It can be seen in Fig. 2.10 that no major differences exist if the bulk modulus
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(a)

a0 0.9272
a1 1.24
b1 -3.382
a2 -2.071
b2 -3.603

(b)

c1 1.747
c2 1.362e-06
c3 -9.148

Table 2.1: Computed parameters of the fitting functions: (a) Equation (2.44a) for the
added mass coefficient; (b) Equation (2.44b) for the damping coefficient.
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Figure 2.9: Comparison of the fit to the data computed by the FE analysis, with results
given by Faltinsen [17] for the added mass coefficient (a) and the damping coefficient (b).
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Figure 2.10: Computed added mass constant for different values of the bulk modulus.

is increased from the reference value of 2.2GPa, hence compressibility effects have no
impact. On the other hand, if the bulk modulus is decreased, differences, especially in the
high frequency regime, appear. This differences can be explained by standing acoustic
waves in the domain.

2.4.5.2 Model of a Single Air Chamber

The aim of this model is to determine the hydrodynamic forces acting onto the water
surface of a cylindrical air chamber. The air chamber is formed by a horizontal plane, a
cylindrical membrane, and the water surface. The internal pressure is only slightly above
the atmospheric pressure outside the chamber, so the static water level difference can be
neglected. Due to pressure oscillations in the chamber, the internal water surface will be
displaced. The magnitude of this displacement is governed by the hydrodynamic reaction
forces, which are computed by the acoustic finite element (FE) model. The parameters
of an equivalent spring-mass-dashpot system can be derived from the results of the FE
model, as described above.

Figure 2.11 shows a sketch of the structural acoustic finite element model of the in-
vestigated configuration. In order to reduce the modelling and computational effort an
axially symmetric model is used. At the bottom of the acoustic domain infinite acoustic
elements are used. The natural boundary condition in the symmetry axis is enforced
automatically by leaving the pressure degrees of freedom unconstrained. At the second
vertical boundary the material properties of the used infinite acoustic elements are modi-
fied in order to absorb surface gravity waves as described in Section 2.4.1.2. The restoring
forces at the free surface are modelled by a displacement dependent pressure onto massless
membrane elements which are coupled to the acoustic elements by acoustic interface ele-
ments as described in more detail in Section 2.4.1.2. For the acoustic structural interface
at the vertical skirt acoustic interface elements are used at both sides. In order to allow
for different pressure values at both sides of the membrane a second set of nodes is created
(at the same location), and only the displacements are coupled by constraint equations.
The skirt itself is modelled by shell elements of appropriate thickness with linear elastic
material properties. At the top end of the skirt, only the x-displacements are coupled
between the acoustic interface nodes and the shell nodes. In this way the vertical motion
of the shell elements can be constrained.

Linear steady state dynamic analyses are performed at specified frequencies. The
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Figure 2.11: Sketch of the finite element model of the air chamber showing all important
boundary conditions and coupling equations.

system is excited by defining the displacement of a reference node, which is coupled to
the internal surface in two different ways. In the first model the y-displacements are simply
set equal, thereby creating a rigid body. In the second model a constraint equation is used
which leaves the shape of the surface elevation free, but enforces constant pressure onto
the surface if the reference node is displaced.

In order to study the influence of the flexibility of the skirt, three different models are
investigated. In the first model represents an infinitely compliant, massless skit simply by
omitting the shell elements and coupling of the pressure degrees of freedom. The second
model represents the other extreme of a rigid skirt. It is created by omitting the shell
elements and leaving the pressure degrees of freedom free at both sides, thereby modelling
an immobile, rigid wall. The third model represents the actual skirt as described above
with a thickness of 4mm, and a linearly elastic material with a Youngs modulus of 1.0GPa
and Poissons ratio of 0.3, and a density of 1000 kg/m3.

Tow different models were created to investigate the scaling effects. The first model
was created in the model scale with an air chamber radius of R = 0.9m and a skirt
depth of h = 13.3 cm. For this model the infinite boundary was chosen as circular with
a radius of 15m, and the material properties were set to make it surface gravity wave
absorbing. Only the cases of rigid and infinitely compliant, massless skirt were computed.
The second model was created in the prototype scale with a chamber radius of 67.5m and
a skirt depth of 10m. The shape of the domain was chosen as depicted in Fig. 2.11 with
L1 = 200m and L2 = 150m.
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2.4.6 Results

In the first part of this section a number of results comparing the different modelling
strategies will be presented. A discussion more focused on the physical phenomena will
follow at a later point together with the determination of non-dimensional formulations
for the added mass and damping coefficients.

2.4.6.1 Differences between Modelling Strategies

The excitation method, i.e. prescribed harmonic forcing or prescribed harmonic displace-
ment, for the dynamical system does not influence the computed added mass and damping
coefficients. This can be seen from Fig. 2.12, where both forcing methods are compared
for a model with rigid internal surface and infinitely flexible, massless skirt.

The mesh size should be chosen in such a way that a minimum of 10 nodes per
wavelength are present. As the free surface waves have much smaller wavelength than
the acoustic waves they govern the mesh size. The mesh can be more coarse towards
the bottom of the domain. Figure 2.13 shows a comparison of results obtained on two
different meshes. It can be seen that the coarse mesh is already sufficiently fine.

Comparing results obtained on the model and on the prototype scale shows that the
used Froude scaling is appropriate. Figures 2.14 to 2.16 show a comparison of results
obtained for computations done on the prototype and model length scales. The curves
for the model scale show the characteristic oscillatory pattern caused by constructive
and destructive interferences of the reflected surface gravity waves (as explained in Sec-
tion 2.4.5.1). For the prototype scale this pattern shows a longer wavelength, which is
caused by the smaller non-dimensional domain size of this model. Furthermore, due to
the large absolute size of the domain, acoustic modes can also be present in the investi-
gated frequency regime. Due to this reason results on the model scale will be used in the
following fitting of analytic expressions for the added mass and damping coefficients.
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Figure 2.12: Comparison of force and displacement controlled excitation for a model on
the prototype scale with rigid internal surface and infinitely flexible, massless skirt. The
diagrams show the computed added mass coefficients (a) and damping coefficients (b).



CHAPTER 2. DYNAMIC MODEL 22

R/λ

C
a

0 0.5 1 1.5 2
0

0.5

1

1.5

fine
coarse

(a)

R/λ

C
d

0 0.5 1 1.5 2
0

0.5

1

fine
coarse

(b)

Figure 2.13: Comparison of different mesh sizes (2000 and 20,000 elements) for a model on
the prototype scale with rigid internal surface and infinitely flexible, massless skirt. The
diagrams show the computed added mass coefficients (a) and damping coefficients (b).
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Figure 2.14: Comparison of results obtained for models of different length scales with rigid
internal surface and infinitely flexible, massless skirt. The diagrams show the computed
added mass coefficients (a) and damping coefficients (b).
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Figure 2.15: Comparison of results obtained for models of different length scales with
rigid internal surface and rigid skirt. The diagrams show the computed added mass
coefficients (a) and damping coefficients (b).
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Figure 2.16: Comparison of results obtained for models of different length scales with free
internal surface and infinitely flexible, massless skirt. The diagrams show the computed
added mass coefficients (a) and damping coefficients (b).

2.4.6.2 Physical Phenomena

The flexibility of the skirt is a key parameter in the design of an air chamber supported
platform. The two limit cases, an infinitely flexible, massless skirt, and a rigid, immobile
skirt, are compared with a realistic, elastic skirt. In Fig. 2.17 it can be seen that the
elastic skirt is very close to the limit case of an infinitely flexible, massless skirt. This
might be explained by the high density of the acoustic medium, which causes the inertial
forces in the fluid to be large compared to the elastic forces in the skirt.
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Figure 2.17: Comparison of the impact of the skirt flexibility. Results were obtained on
the prototype scale for rigid internal surface. The diagrams show the computed added
mass coefficients (a) and damping coefficients (b).

Another interesting phenomenon concerns the free surface in the chamber. Comparing
the added mass and damping coefficients obtained by models with rigid internal surface
and free internal surface, as shown in Fig. 2.18 for the model scale and infinitely flexible,
massless skirt, large differences are visible. The added mass coefficient for a free inter-
nal surface shows poles, i.e. vertical tangents, at certain frequencies. Approaching this
frequencies the value of the added mass coefficient tends to positive or negative infinity,
depending on the direction. The damping coefficients show a similar behaviour; they tend
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Figure 2.18: Comparison of free internal surface and rigid internal surface. The results
were obtained on the model scale and the skirt was treated infinitely flexible and massless.
The diagrams show the computed added mass coefficients (a) and damping coefficients (b).

to infinity at the same frequencies. The frequencies of the poles can be identified as the
natural frequencies of a circular tank. More precisely, they correspond to the frequencies
of the axially symmetric modes. For the behaviour of the equivalent system infinite added
mass or damping coefficients mean that there will be zero response for forced excitation.
This behaviour is explained as follows: if the system is excited exactly at a natural fre-
quency it must respond at the corresponding natural mode shape. The axially symmetric
modes, however, show now effective displacement of the free surface, and, hence, no dis-
placement of the equivalent model degree of freedom. For an air chamber used to support
a floating platform this will mean that the air chamber will absorb the wave energy at
its natural frequencies and not transmit vertical forces via the pressurized air to the plat-
form. More information on the natural frequencies and mode shapes of liquid in circular
cylinders is presented in Appendix C.5.

2.4.6.3 Expressions for the Added Mass and Damping Coefficients

Analytic expressions for the added mass and damping coefficients were obtained by a
non-linear least squares fits to the computed results on the model scale. In this manner it
is possible to get rid of the oscillations caused by waves reflected by the infinite boundary.
The fits were computed in the non-dimensional space, with a constant density of data
points along the R/λ-axis. Except for very low frequencies it does not matter if the fit
is computed from data obtained from the model or from the prototype scale. In the
following, all fits will be computed from data obtained on the model scale.

Rigid Internal Surface: For the case of a rigid internal surface the expressions

Ca,r(x) = c+
2∑
i=1

aix
− 1
i+1 ebix, with bi ≤ 0, (2.47a)

Cd,r(x) =
2∑
i=1

kix
piedix, with di ≤ 0 ≤ pi, (2.47b)
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were used. The obtained coefficients are given in Table 2.2 for the case of an infinitely
flexible, massless skirt. For the case of the rigid skirt the coefficients are noted in Table 2.3.
The corresponding curves are depicted in Fig. 2.19.

Free Internal Surface: Different expressions are needed for the fitting functions in the
case of the free internal surface. The functions must represent the poles at the appropriate
locations. For the added mass coefficient the fit is computed for the difference between
the results for a rigid and a free internal surface as

Ca,f (x) = Ca,r(x)− C̄a(x). (2.48)

The used fitting function for the difference is

C̄a(x) =

N−1∏
i=1

x− zi
N∏
i=1

x− xi
kxp, (2.49)

where the parameters k and p were determined by the non-linear least squares algorithm,
and the locations of the zeroes zi and the locations of the poles xi were given. Both
are noted in Table 2.4. Together with the expressions from the previous section the
formulation for the added mass coefficient is now complete. The added mass coefficient
is shown in the graph in Fig. 2.19a.

For the damping coefficient the fit is computed directly to the data from the acoustic
model. The used fit function is

Cd,f (x) =

∣∣∣∣∣∣∣∣
N∏
i=1

x− zi
N∏
i=1

x− xi

2∑
i=1

kixe
dix

∣∣∣∣∣∣∣∣ , with di ≤ 0, (2.50)

where the parameters ki, pi and di were chosen to fit the expression to the data, and the
poles and zeroes were set according to their location. The obtained values can be found
in Table 2.5 and a graph of the curve is displayed in Fig. 2.19b.
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Figure 2.19: Comparison of result from models for different internal-surface/skirt com-
binations. The diagrams show the computed added mass coefficients (a) and damping
coefficients (b).

(a)

i ai bi c

0.5855
1 -0.1823 -8.149
2 -0.5561 -5.353

(b)

i ki pi di

1 7.621 0.7053 -1.575
2 -8.888 0.9557 -1.867

Table 2.2: Computed parameters of the fitting functions for the case of an infinitely
flexible, massless skirt: (a) Equation (2.47a) for the added mass coefficient; (b) Equa-
tion (2.47b) for the damping coefficient.

(a)

i ai bi c

0.9392
1 -0.2081 -0.4215
2 0.5854 -4.605

(b)

i ki pi di

1 9.543 0.7965 -3.275
2 -11.85 1.097 -3.624

Table 2.3: Computed parameters of the fitting functions for the case of a rigid skirt:
(a) Equation (2.47a) for the added mass coefficient; (b) Equation (2.47b) for the damping
coefficient.
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(a)

k 0.1625
p 1.219

(b)

i zi xi

1 1.0 0.67
2 1.52 1.17
3 2.1 1.695
4 2.56 2.196
5 3.1 2.68
6 3.61 3.18
7 4.11 3.96
8 4.617 4.2
9 5.12 4.7
10 5.123

Table 2.4: Parameters of the fitting function for the added mass, Eq. (2.49), for the case
of an infinitely flexible, massless skirt: (a) Fitted coefficients; (b) Locations of poles and
zeros.

(a)

i ki di

1 0.45 -0.6
2 10.0 -5.31

(b)

i zi xi

1 0.599 0.67
2 1.13 1.17
3 1.627 1.695
4 2.125 2.196
5 2.615 2.68
6 3.129 3.18
7 3.61 3.96
8 4.11 4.2
9 4.617 4.7
10 5.12 5.123

Table 2.5: Parameters of the fitting function for the damping coefficient, Eq. (2.50), for
the case of an infinitely flexible, massless skirt: (a) Fitted coefficients; (b) Locations of
poles and zeroes.



CHAPTER 2. DYNAMIC MODEL 28

2.5 Equations of Motion
The relations for the air chambers and the free surface must now be coupled with equations
of motion for the plate structure. For the sake of simplicity the plate will be assumed as
rigid in the first step. This results in a coupled system of three equations of motion (EoM)
for the plate and one EoM per air chamber. The system can then be solved directly in a
semi-analytical procedure.

In a second step a flexible plate will be modelled by the means of the finite element
method. The system matrices are generated and solved by the code ABAQUS. Air cham-
bers and hydrodynamics are taken into account by a combination of spring, mass and
dashpot elements.

2.5.1 Equations of Motion for a Rigid Plate

The equations of motions are defined by a balance of momentum for the plate, yielding
Eq. (2.51a) to Eq. (2.51c). Posing the momentum balance in vertical direction for the
effective water level in chamber i yields the remaining equations of motion, Eq. (2.51d).
The resulting coupled system is(

m+
∑
i

ms,i

)
z̈ =

∑
i

kc,i (z + py,irx − px,iry − zi) , (2.51a)(
Jx +

∑
i

py,ims,i

)
r̈x =

∑
i

py,i kc,i (z + py,irx − px,iry − zi) , (2.51b)(
Jy +

∑
i

px,ims,i

)
r̈y =

∑
i

px,i kc,i (z + py,irx − px,iry − zi) , (2.51c)

ma,i z̈i = Fi(t) + kc,i (z + py,irx − px,iry − zi)− kwp,izi − cd,iżi. (2.51d)

Refer to Fig. 2.20 for a description of the used symbols in above equations.

pi

zi

kwp

kc

zry
rx

m, J

ma

ms

Fi(t)
cd

Figure 2.20: The rigid plate with massm and moment of inertia J has three forces degrees
of freedom; vertical displacement z and the rotations rx and ry. The vector pi = [px,i, py,i]

T

defines the centre of a circular chamber, where the mass of the skirt ms is concentrated.
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The plate and the effective water level in the chambers are coupled by the pressure in
the chambers, modelled by linear springs with stiffness kc. The derivation of the spring
stiffness is described in Section 2.2. Inertial forces arising when changing the effective
water level are modelled via the added mass concept by a mass dashpot combination,
as explained in detail in Section 2.4. The buoyancy forces arising when displacing the
effective water level can be modelled as linear springs, using the water plane stiffness of a
floating body. For a circular air chamber with radius r the water plane stiffness is defined
as

kwp = ρwg r
2π, (2.52)

where ρw is the water density and g is the gravitational acceleration. The effective water
level is forced by the dynamic pressure at the free surface, F (t), which was calculated in
Section 2.3.

The equations of motion derived (2.51) can be written in matrix form giving

Mẍ+Dẋ+Kx = f(t), (2.53)

whereM is the mass matrix including added mass contributions,K is the stiffness matrix,
D is the damping matrix, and f(t) is a time dependant forcing vector. The vector of
unknowns x = [z, rx, ry, z1, . . . , zn]T contains the degrees of freedom.

2.5.2 Treatment of the Deformable Plate by Finite Elements

The deformable plate can be conveniently treated by the finite element method. In the
present work the code ABAQUS was used. The plate is assumed as quadratic and ho-
mogeneous. It was discretised using 4-noded thick shell elements, with mass and stiffness
properties defined explicitly in terms of a mass per area and stiffness matrices including
transverse shear terms.

An air chamber is modelled by a linear spring, subsequently called chamber-spring,
with appropriate stiffness (see Section 2.2). The node at the upper end is coupled to the
plate nodes within the radial distance in the following manner: The vertical displacement
of the spring node is coupled to the weighted mean of the vertical displacements of the
plate nodes. The weights are proportional to the ’nodal area’‡ resulting in a constant
pressure distribution onto the plate. The lower node of the chamber-spring represents the
mean water elevation in the chamber. Horizontal degrees of freedom are constrained (i.e.
set to zero) leaving the vertical DoF as the waterplane-DoF. Here a concentrated mass
and a spring and dashpot element against the inertial system are used to account for
hydrostatic and hydrodynamic forces, respectively. The water plane stiffness is computed
according to Eq. (2.52). The added mass and dashpot properties derived in Section 2.4
are frequency dependent. Therefore, a separate model is created for every considered
angular frequency. For the determination of the natural frequencies these properties are
updated in an iterative manner.

The system matrices created by the FE program are analogous to Eq. (2.51), however
the vector of unknowns now contains the nodal degrees of freedom. The equations of
motion can be solved in different routines to compute natural frequencies and oscillation
modes or the steady state response.
‡ The nodal area for a particular node is

∑
iAi/ni, where Ai is the area and ni the number of nodes.

The index i stands for the elements connected to the considered node.
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2.6 Model Output
The model can be used to compute the natural frequencies and mode shapes of floating
platforms with an arbitrary number and position of air chambers. In the FE model the
flexibility of the plate can be taken into account. The response of the platform in regular
waves can be computed for arbitrary wave directions and frequencies. Transfer functions
for all model DoFs, i.e. plate displacements and water plane displacements, are obtained
directly from the model. Additionally, these direct transfer functions can be used to
compute the transfer functions for derived quantities like chamber pressure, skirt tension
and plate velocities and accelerations.

2.6.1 Natural Frequencies and Oscillation Modes

2.6.1.1 Free Oscillation

The free oscillation eigenvalue problem is obtained by setting the forcing vector to zero
and disregarding the damping matrix in (2.53). Inserting a harmonic Ansatz like

x(t) = x̂eiωt, (2.54)

yields the free oscillation eigenvalue problem(
K − ω2M

)
z = 0, (2.55)

which can be solved for the eigenvalues ω2
j , representing the angular natural frequencies

ωj and the corresponding eigenvectors zj, representing oscillation mode shapes.

2.6.1.2 Complex Eigenvalue Extraction

The damped natural frequencies of the system can be computed by solving the eigenvalue
problem (

µ2M + µC +K
)
φR = 0, (2.56)

of the mechanical system. The above eigenvalue problem is solved by ABAQUS by a
subspace projection method. The system matrices are projected onto the subspace of
un-damped eigenvectors obtained from Eq. (2.55). The damped natural frequencies and
damping ratio§ can be computed from the k-th eigenvalue by

ωd,k = Imµk, (2.57)

ζk = − Reµk√
Reµk2 + Imµk2

. (2.58)

The natural frequencies of the un-damped system are related to the natural frequencies
of the damped system by ωd,k = ωn,k

√
1− ζ2

k , hence the un-damped natural frequency
can be directly obtained from the k-th eigenvalue of the damped system by

ωn,k =
√

Reµk2 + Imµk2. (2.59)

§The damping ratio reported by ABAQUS is defined differently: DAMPRATIO=−2Reµ
Imµ .
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Because the mass and damping matrix in Eq. (2.56) are frequency dependent, an
iterative procedure must be used to solve the eigenvalue problem: The system matrices
are evaluated for a starting frequency and the eigenvalues are computed. The damped
natural frequency of the k-th mode is used as a new starting frequency and the eigenvalue
problem is solved again. This is done until convergence is obtained. The procedure needs
to be applied to every mode separately.

2.6.2 Steady State Solution of the Equations of Motion

For harmonic forcing the right hand side of the equations of motion (2.53) can be written
in the form

fk(t) = fk cos(φk + ωt) = Re
{
f̂ke

iωt
}
, (2.60)

where f̂k is a complex valued quantity describing amplitude and phase of the oscillatory
force by its absolute value and argument, respectively. Commonly, it is implicitly assumed
that the actual time signal only consists of the real part of the complex valued expression
f̂ke

iωt. Adopting this convention, the forcing vector is written as

f(t) = f̂eiωt, (2.61)

where the complex valued components of the amplitude vector f̂ = [f̂1, . . . , f̂n]T represent
the magnitude and phase of the harmonic forces acting on the n DoFs of the model.
Inserting a harmonic Ansatz, like Eq. (2.54), into the differential equation (2.53) yields(

−ω2M + iωD +K
)
x̂ = f̂ , (2.62)

which can be solved for the steady state response x̂ by inversion of the system matrix.
The eigenvectors of the free oscillation eigenvalue problem (2.55), i.e. the oscillation

modes, can be used to express the displacement vector as

x =
n∑
j=1

qjzj, (2.63)

where n is the number of degrees of freedom of the system and q are the modal coordinates.
The above relation can be written in matrix notation as

x = Zq, (2.64)

which represents a change of coordinate basis from natural coordinates x to modal co-
ordinates q. The columns of the transformation matrix Z contain the eigenvectors zj.
Inserting the transformation relation into (2.53) and pre-multiplying by ZT leads to

ZTMZ︸ ︷︷ ︸
Mm

q̈ +ZTDZ︸ ︷︷ ︸
Dm

q̇ +ZTKZ︸ ︷︷ ︸
Km

q = ZTf(t), (2.65)

which can be solved equivalently to (2.53) to obtain the steady state solution. The
modal mass matrix, Mm, and the modal stiffness matrix, Km, are diagonal. Additional
damping, not modelled by the dashpot elements, may be taken into account by adding
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to the diagonal terms of the modal damping matrix. The modal damping matrix, Dm,
will not be diagonal except, if proportional damping is assumed. Its diagonal terms
2ωjζj are then defined by the modal damping factors ζj. The modal damping factors can
be determined experimentally, for example by the Ibrahim Time Domain Method [29].
Therefore, experiments can be used to check the validity of the damping matrix resulting
from the dashpot elements, and if necessary to correct it in a reasonable way.

Due to the frequency dependence of the forcing, the added mass and the hydrodynamic
damping, forcing vector, mass and damping matrix must be computed for each frequency.
For each wave frequency one inversion of the system matrix is necessary to obtain the
steady state response.

The equations of motion formulated in the modal degrees of freedom (2.65) can be
solved equivalently as described above for (2.53). For the case of rigid plate model, the
EoMs are solved in terms of modal coordinates. It should be noted, that the modal
basis can either be selected based on the free floating modes calculated with the mass
matrix corresponding to ω = 0, or based on the mass matrix corresponding to the wave
frequency. In the latter approach complex modes may arise due to negative added masses.
Both methods were compared for the rigid plate model in an example case which showed
no significant difference, as can be seen in Fig. 2.21.
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Figure 2.21: Comparison of the computed response for different formulations of the modal
basis and different damping values.

2.6.3 Transfer Functions

For a linear, time invariant system under harmonic forcing the Laplace variable can be
reduced to iω. Solving the EoMs by Laplace transformation is then equivalent to the
use of a harmonic Ansatz. The transfer function is obtained by dividing the complex
values output, i.e. the displacement vector, by the complex valued input, i.e. the complex
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representation of the reference wave. The reference wave with unit amplitude is evaluated
at the position [0, 0]T . Inserting into Eq. (2.8) and using a harmonic Ansatz (2.54) shows
that the complex representation is unity. Hence, the complex valued transfer function is
equal to the computed response for a reference wave with unit amplitude.

Commonly the complex valued transfer function is displayed if form of the so called
gain, i.e. the absolute value of the transfer function, and the phase shift, i.e. the argument
of the complex value. Both quantities are displayed in dependence of the excitation
frequency. In marine engineering the gain is commonly called response amplitude operator
(RAO) [3, 9].

2.6.4 Chamber Pressure

The pressure oscillations in the air chambers during steady state operation is represented
by the spring force in the dynamic model. For the model of the deformable plate the
spring forces can be output directly by ABAQUS. In the case of the semi-analytical, rigid
plate model, it can be calculated from the spring elongation prescribed by the model DoFs
by

∆pc,i(t) = ∆p̂c,ie
iωt =

kc,i
r2
i π

(ẑ + py,ir̂x − px,ir̂y − ẑi)︸ ︷︷ ︸
∆p̂c

eiωt, (2.66)

where ẑ, r̂x, r̂y, and ẑi are the complex valued steady state response amplitudes for
a wave with unit amplitude. For waves with different amplitudes the pressure can be
linearly scaled.

The amplitude of the pressure oscillation |∆p̂c|must be smaller than the static pressure
in the chamber for all relevant wave conditions. If the pressure oscillations were larger than
the static pressure in the chamber, the circumferential tension stress state in the membrane
would be lost. Compression stresses in the very thin membrane would immediately lead
to wrinkling.

2.6.5 Axial Tension in the Cylindrical Membrane

To prevent instabilities of the skirt deformation states, i.e buckling or wrinkling, the
cylindrical membrane must remain in tension in all space directions at all times. To
simplify the analysis, friction forces will not be considered. Considering the rather low
viscosity of water this simplifying assumption seems to be justified. A sketch of the
considered system is shown in Fig. 2.22. The equation of motion for a segment of length
r dϕ of the ballast ring reads

(dmb + dma) üb = −dmb

(
1− ρw

ρb

)
g + Fm, (2.67)

where dmb is the mass of the ring segment, dma is the hydrodynamic added mass associ-
ated with the ring segment, ρb is the mass density of the ballast material and Fm is the
axial tension force in the membrane per circumferential length unit. The added mass of
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Figure 2.22: Acceleration of the plate and added mass of the ballast.

the ring segment is assumed constant and calculated by

dma = ρw
mb

ρb2rπ2︸ ︷︷ ︸
r2b

π dl, (2.68)

where dl = r dϕ is the length of the ring segment.
If, for the moment, the membrane is assumed as axially rigid (for the sake of simplic-

ity), it follows that the membrane remains in axial tension if the downwards acceleration
of any point at the upper limit of the skirt (at the plate) is smaller than the maximum
downwards acceleration the ballast mass could reach, if it were free (Fm = 0). An axially
rigid membrane requires the vertical plate accelerations and the vertical accelerations of
the ballast mass to be equal (üp = üb). For the membrane to remain under axial tension
Fm > 0 must hold. Inserting those requirements into Eq. (2.67) yields the maximum
allowed plate acceleration for the membrane to remain in axial tension as

üp,max =
dmb

dmb + dma

(
1− ρw

ρb

)
g =

ρb − ρw
ρw + ρb

g, (2.69)

where Eq. (2.68) has been used to obtain the final expression. It can be seen that higher
mass density of the ballast material increases the maximum allowable acceleration. The
theoretical limit for infinite density is the gravitational acceleration.

For the semi-analytical, rigid-plate model the acceleration of the plate in vertical di-
rection at the intersection with the skirt can be computed for the solution of the equations
of motion, Eq. (2.53). It is determined by

üp = [ẑ + (py + r sinϕ) r̂x − (px + r cosϕ) r̂y]ω
2eiωt, (2.70)

where ϕ is an angle between 0 and 2π. The acceleration must be computed for all
chambers, and a sufficient number of angular positions ϕ. In the case of the FE model of
the deformable plate the accelerations can be output directly by the FE code or simply
computed from the displacements by

ü(t) =
d2

dt2
ûeiωt = −ω2û︸ ︷︷ ︸

â

eiωt. (2.71)
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2.7 Model Validation
In order to validate the developed computational model comparison with experimental
results is necessary. All comparisons are obtained with computational models directly
prescribing the experimental model. Therefore, scaling effects do not impact the valida-
tion. Two different models, a small 1x1m model and a larger 4x4m model, were built
and tested. The conducted experiments are described in more detail in Chapter 5 with
details about the models in Section 5.2.

Additionally to comparisons with experiments the impact of different input parameters
for the computational model, like modal damping, plate stiffness, etc., on the results are
discussed in the following.

2.7.1 Impact of Input Parameters

2.7.1.1 Added Mass Formulation

In Section 2.4 formulations for the hydrodynamic added mass were developed. Expressions
for two different cases were give. In the first case, the internal free surface was modelled as
free, which leads to infinite added mass and damping coefficients at the natural frequencies
of the free surface. If the hydrodynamic coefficients are obtained from a model where the
free surface is treated like a rigid disk, these natural frequencies do not arise. Figure 2.23
shows the computed rigid body response for the two different added mass formulations.
The response amplitude only shows minor differences, i.e. it has additional zeros at the
natural frequencies of the internal free surface for the respective added mass formulation.
The location of the zeros can be found more easily by looking for jumps in the phase.

2.7.1.2 Additional Modal Damping

The dashpot elements modelling the hydrodynamic reaction forces are the only source
of damping in the system. However, they only account for radiation damping arising if
the free surface in the chambers is displaced. The dashpot elements alone lead to modal
damping factors of about 0.25, which is lower than experimentally obtained values, espe-
cially for the heave mode. Additional sources of damping, like viscous effects or damping
in the air chambers, is accounted for by introducing an additional modal damping. Fig-
ure 2.24 shows the impact of additional modal damping on the rigid body response in
head waves. It can be seen, that with modal damping values of about 0.2 the measured
response is matched very well.

2.7.1.3 Rigid Plate Assumption

The rigid plate assumption can be used with good accuracy even for flexible plates as long
as the deformations remain small. This will be the case if not more than two chambers
are in line with respect to the wave direction, as for example for a four-chamber arrange-
ment under 0◦ wave heading. For this loading scenarios all chambers maintain a positive
pressure, counteracting the gravity forcing on the plate. Figure 2.25 shows a comparison
of the computed transfer functions for the rigid body response of the small model in head
waves (0◦ heading). No significant difference can be seen between rigid and deformable
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Figure 2.23: Comparison of the different added mass formulations for a simulation of
the small experimental platform. An additional modal damping of 10% was assumed.
Experimental results are shown in black with errorbars representing the 95% confidence
intervals computed form all measurement runs.
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Figure 2.24: Comparison of the different additional modal damping values for the small
model. The added mass formulation for rigid internal surface and infinitely flexible mem-
brane was used. Experimental results are shown in black with error bars representing the
95% confidence intervals computed form all measurement runs.
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Figure 2.25: Comparison of results obtained for a rigid plate and for a flexible plate for
the small model. Experimental results are shown in black with errorbars representing the
95% confidence intervals computed form all measurement runs.

plate model. However, for an arrangement with more than two chambers in line with re-
spect to the wave direction, the wave forcing can lead to severe bending moments on the
plate. If the plate is stiff enough to justify the assumption of a rigid plate, the dynamic
pressure oscillation amplitudes in the chambers are likely to exceed the static pressure,
and hence lead to a loss of the internal overpressure. If this is the case the modelling of
the air chambers by linear springs is not valid any more. For flexible chambers negative
internal pressure would lead to wrinkling of the membrane. Therefore, in reality negative
pressures in the chambers cannot arise. The plate should be modelled as flexible, espe-
cially for lightweight structures, for arrangements with more than three chambers. If a
rigid plate model is used, the computed amplitudes of the dynamic pressure oscillations
must be compared against the static pressure to ensure the validity of the linear model.

2.7.2 Natural Frequencies, Oscillation Modes and Damping Pa-
rameters

The Ibrahim time domain (ITD) method allows the measurement of natural frequencies,
mode shapes and modal damping parameters without the measurement of the excita-
tion [16]. It is described in more detail in Section 5.4, and was applied to the small
experimental model. The extracted mode shapes are displayed in Fig. 2.27, and the cor-
responding natural frequencies and damping parameters can be found in Table 2.6. An
equivalent computational model was used to calculate the complex eigenvalues of the
coupled system. The computed mode shapes are displayed in Fig. 2.28, and Table 2.7
contains the corresponding eigenvalues.

Generally good agreement between experiments and computations could be obtained.
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However, the computed natural frequencies differ by 20 to 30% for the modes dominated
by the added mass, i.e. the pitch/roll, heave and first bending mode. On the other hand,
the natural frequency of the second bending mode agrees very well with experimental data.
The computed damping ratios agree reasonably well with the experimentally determined
ones. They pass the t-test with a significance level of 1%. The boxplots in Fig. 2.26 show
a comparison between computed and experimentally determined natural frequencies and
damping ratios.
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Figure 2.26: Comparison of experimentally identified and computed modes in terms of
damped natural frequencies (a) and damping ratios (b). The experimental results are
shown as boxplots.
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Figure 2.27: Experimentally determined modes of the small experimental model; The
mode shapes were obtained by averaging all identified modes.

Mode Reµ Imµ fn in Hz ζ N

yaw -4.55 (±2.11) 6.09 (±3.19) 1.23 (±0.57) 0.62 (±0.13) 6
pitch/roll -1.97 (±2.22) 7.55 (±0.89) 1.28 (±0.22) 0.23 (±0.20) 35
heave -3.17 (±1.56) 6.91 (±1.49) 1.23 (±0.24) 0.40 (±0.18) 16

bending-1 -1.48 (±1.00) 10.04 (±0.63) 1.62 (±0.11) 0.14 (±0.10) 8
surge -6.59 (±4.97) 12.00 (±9.48) 2.21 (±1.67) 0.51 (±0.16) 26

bending-2 -14.89 (±4.37) 83.84 (±6.56) 13.56 (±1.15) 0.17 (±0.04) 3

Table 2.6: Mean eigenvalues of the identified modes of the small experimental model as
well as derived parameters (un-damped natural frequency and damping ratio). The values
in parentheses are the standard deviation of the N identified eigenvalues.
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Figure 2.28: Mode shapes for the small model computed by ABAQUS. The corresponding
natural frequencies and damping factors can be found in Table 2.7.

Mode Reµ Imµ fn in Hz ζ

pitch/roll -2.7888 9.6965 1.6058 0.2764
heave -2.8070 9.7228 1.6106 0.2774

bending-1 -3.1316 13.7650 2.2468 0.2218
bending-2 0.0 87.2424 13.8851 0.0
bending-3 0.0 107.9324 17.1780 0.0
bending-4 0.0 155.0185 24.6720 0.0

Table 2.7: Eigenvalues of the small model computed iteratively by ABAQUS. Correspond-
ing mode shapes are displayed in Fig. 2.28.
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2.7.3 Transfer Functions

2.7.3.1 Rigid Body Response

The computed and experimentally determined rigid body response for heave, pitch and
roll are compared in Figs. 2.29, 2.30 and 2.31, respectively. The computed heave response
matches the measured one, both in amplitude and phase, very well. Comparing the
measured rotational responses with computation results show an overestimation of the
response. The predicted response amplitudes are generally too low. The predicted phase
shift on the other hand again matches well. When comparing the phase shift it should
be taken into account that a difference of 2π between two values makes them appear far
apart in the graph, but actually means equal phase shift.

2.7.3.2 Pressure Response

The computed dynamic pressure oscillations in the chambers in response to wave forcing
is compared to experimentally measured values in Fig. 2.32. Generally the computational
model overestimates the pressure response. The pressure amplitudes are minimal for
wave headings of 0◦ and maximal for wave headings of 45◦. The difference in amplitude
is almost one order of magnitude. This somewhat puts the excellent agreement between
computation and experiments for the 0◦ case into perspective: In the experiment exact
placement of the platform at 0◦ heading is not possible, which leads to higher measured
pressures. The computed response amplitudes are qualitatively in good agreement with
the experimental results, both zeros and maxima are at the correct locations. The phase
response of all measured transfer functions agree reasonably well with the numerical sim-
ulations.

2.7.3.3 Deformation Response

Figure 2.33 shows a comparison of the computed and experimentally determined modal
deformation response. Again very good qualitative agreement is achieved, especially in the
amplitude response. The magnitude of the response amplitude is slightly overestimated
by the computational model in the case of a wave heading of 45◦. For this wave direction
the dominating deformation is represented by the first plate twist mode. In the analysis
of the experimental results also magnitudes of higher twist modes arise. As they are
almost in phase the amplitudes may be added to obtain the total amplitude. For the
case of 0◦ wave direction (see Fig. 2.33a) the response is dominated by the bending mode.
Due to inexact placement of the model in the tank, also twist deformations are measured
experimentally. Therefore, the measured deformations are higher.
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Figure 2.29: Normalised heave response of the large model for different wave headings.
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Figure 2.30: Normalised pitch response of the large model for different wave headings.
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Figure 2.31: Normalised roll response of the large model for different wave headings.
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Figure 2.32: Normalised pressure response in the four chambers (A,B,C,D) of the large
model for different wave headings. Experimentally obtained values are shown by markers.
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Figure 2.33: Normalised modal deformation response of the large model for different wave
headings. Simulation results are displayed as solid lines and measurements as dashed lines
with markers. Corresponding modes are shown in the same color.



CHAPTER 2. DYNAMIC MODEL 44

2.8 Conclusion
Since the proposed modelling strategy is based on carefully performed simplifications,
the amount of input parameters is minimal, and results can be obtained rapidly. It has
been shown that the model is able to predict the natural frequencies of an air cushion
supported floating platform reasonably well. The model can also accurately predict the
heave and pitch response of such a floating platform. Especially the extrema in the heave
response are located at the correct frequencies by the calculation model. This leads to
the conclusion that the computed vertical forcing is correct in terms of the dependence
of the force amplitude on the ratio between chamber size and wave length. The position
of minima in the pitch response depends on the chamber locations with respect to each
other, and will be correct if the dispersion relation holds. The pressure oscillations in the
chambers and the plate deformations can be predicted with reasonable accuracy. For all
predicted response quantities excellent qualitative agreement with measurement results
was obtained.

The main aim of the model is to calculate response amplitude operators that can be
used in the efficiency estimation of a concentrator system for a solar power plant. For
such a system the pitch/roll response of the platform is the main influence factor. The
sway motion also has an effect on the positioning accuracy of the mirrors and, therefore,
on the optical efficiency. It is not incorporated in the current model, however extensions
based on the current modelling strategy seem possible. Response amplitude operators can
be computed for arbitrary wave directions, which make a precise efficiency calculation for
the concentrator system based on wave directional wave spectra possible.



Chapter 3

Static Stability of a Single Air Chamber

Considering a single air chamber, the internal pressure is a function of the vertically
applied load. Due to the opening on the bottom of the air chamber the water level inside
is lower than outside. The vertical load on the platform can be increased up to a certain
level, at which the air chamber shows a global instability. The instability commences with
the formation of wrinkles a the upper support and finally results in a global buckling of
the air chamber, as depicted in Fig. 3.1. As the buckled configuration has lost all its load
carrying capacity such an instability could lead to the failure of an air chamber supported
floating platform. In the following this instability will be investigated theoretically as well
as experimentally.
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Figure 3.1: Sketch of a single air chamber in a pre-critical (a) and post-critical (b) con-
figuration.

3.1 Description of the Mechanical System
A thin flexible material is used to form a cylindrical air chamber. The flexible cylinder,
subsequently called skirt, is attached to a stiff plate at its upper end. The lower end
of the skirt is ballasted by weights and submerged in water. Thereby an air chamber is
formed. If the plate is translated downwards, the air in the chamber is compressed and
the water level inside the chamber changes to a value corresponding to the hydrostatic
pressure, while the outer water level remains the same. The skirt above the external water

45
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line is now in a state of constant internal pressure. The internal pressure at the external
water line linearly decreases with the depth to a value of zero at the internal water line.
Here the free water surface requires an equilibrium between air pressure in the chamber
and hydrostatic pressure in the fluid. The acting forces on the membrane are depicted in
Fig. 3.1a.

Instead of translating the top plate to increase the pressure, the same configuration
could be obtained by regulating the amount of air in the chamber. In fact, for the
investigated configuration, the stiffness of the water plane (ρwg) is much smaller than the
axial stiffness of the air in the chamber (p0/hu). This means, that the compressibility of
the air in the chamber can be neglected.

The stress state in the skirt will be dominated by the internal overpressure in the
air chamber, creating tensile stresses in circumferential direction. The magnitude of the
circumferential tensile stress depends on the internal pressure, the membrane thickness
and the radius of the chamber. The difference to a conventional pressure vessel is the
stress in axial direction. The air chamber is bounded by the free water surface at the
bottom. Therefore, no axial stresses are introduced into the membrane due to internal
pressure. The constant axial stress acting in the membrane is caused by the weights at
the bottom of the skirt.

The constrained deformations at the top of the skirt will cause a disturbance in the
otherwise uniform stress field on the membrane. This local disturbance decays with
increasing distance from the clamped boundary.

3.2 Simulation Model

3.2.1 Modelling Assumptions

The aim of the current study is to find the static stability limit of the skirt structure
loaded by internal pressure. Therefore, the mechanical problem is treated as a static
problem. Dynamic phenomena, as observed in the experiments after the stability limit
was exceeded, were not taken into account.

For the skirt material, high density polyethylene, linear elastic material behaviour with
a Young’s modulus of 1.0GPa, a Poisson’s ratio of 0.45, and a density of 950 kg/m3 is
assumed. The water has a very similar density of 998.2 kg/m3 at room temperature [14].

The compressibility of the air in the chamber is not taken into account. This is
possible because the stiffness of the water plane is much lower than the axial stiffness of
the air chamber. Therefore, the air in the chamber is modelled by an internal pressure
distribution. The internal pressure is increased in a static non-linear incremental iterative
analysis. It is modelled as a position dependent follower force onto the shell elements.
The pressure value is dependent on the vertical coordinate z and the artificial time t by

p(z, t) =


kpt, if z ≥ 0

kpt+ ρwgz, if − kpt

ρwg
< z < 0

0, otherwise
, (3.1)

where kp is a factor suitably chosen to linearly relate the artificial time to a pressure
value. The above relation can be implemented in the finite element code as an space and
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Figure 3.2: Pressure on the membrane depending on the vertical coordinate for different
internal pressure levels.

time dependent pressure force. The used pressure function from Eq. (3.1) is depicted in
Fig. 3.2.

Although the mass of the skirt is very small compared to the mass of the additional
weights, gravity is modelled as a mass dependent nodal force for all skirt nodes in the
negative z-direction. The buoyancy of completely submerged skirt parts is neglected
because of the small density difference between skirt material and water.

The additional weights are modelled as nodal forces acting in the negative z-direction
at nodes located at the original water line. This is necessary because convergence problems
arise if the vertical force is introduced at the end of the skirt in case of a initial plate
axis inclined with respect to the horizontal direction. This can be explained by local
instabilities in the skirt caused by compressive stresses in the thin shell. For the lead
weights the buoyancy forces are taken into account. The nodal force is computed by

Fm =
mg

Nc

(
1− ρw

ρm

)
, (3.2)

where Nc is the number of nodes around the circumference, m the mass of all weights,
and ρm their density.

Fig. 3.3 shows a sketch of the finite element model. The upper edge of the skirt is
clamped, i.e. all degrees of freedom of nodes located at the upper edge are constrained
to zero. All other nodes are left free. The length of the submerged part of the skirt hl
is limited to 70mm in the FE–model to decrease the number of nodes. This is possible
because totally submerged elements are unloaded. Furthermore the stability limit is
expected below an internal pressure of 700Pa, which corresponds to a water level difference
of approximately 70mm.
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Figure 3.3: Sketch of the finite element model.

3.2.2 Element Type and Mesh Size

The skirt is modelled as thin shell elements with bilinear interpolation function. The shell
thickness is 13 µm. Membrane elements cannot be used because no equilibrium solution
can be found by the solver. This is caused by the sharp change of loading at the water
line and by the fact that the skirt is not constrained in axial direction.

In order to find an appropriate mesh size a convergence study was conducted. The
model for this convergence study was as perfect circular cylinder with a radius of 196mm
and a height of 209mm. The upper end was clamped and the cylinder was loaded by
internal pressure. Loads due to gravity and the additional weights at the bottom of the
skirt were taken into account. A non-linear analysis with incrementally increasing internal
pressure was conducted. Shell elements with bilinear interpolation were used. The mesh
was refined towards the clamped edge in axial direction of the cylinder. Table 3.1 shows
details of the node numbers of investigated meshes.

The unloaded natural frequencies of the structure lightly decrease if the mesh is refined.
This can be explained by the more stiff behaviour of large elements compared to small
elements. The first five computed natural frequencies for the unloaded configuration for
the different meshes are depicted in Fig. 3.4a. The relative error with respect to the
finest mesh is depicted in Fig. 3.4b: It is smaller than 0.2% for meshes with more than
80,000 nodes. The computation time increases exponentially with the number of nodes.

Nc Nh total

Mesh 1 160 25 4,000
Mesh 2 200 32 6,400
Mesh 3 360 54 19,440
Mesh 32 720 108 77,760
Mesh 34 1,440 216 311,040
Mesh 4 600 75 45,000
Mesh 5 1080 120 129,600
Mesh 6 1200 154 184,800

Table 3.1: Number of nodes of the investigated meshes. The total number of nodes is the
product of the nodes along the circumference, Nc, and the number of axial nodes, Nh.
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Figure 3.4: Impact of the mesh size: (a) unloaded natural frequencies decrease when
refining the mesh; (b) error of the unloaded natural frequencies with respect to the finest
mesh; (c) computation time increases exponentially with the number of nodes.
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Figure 3.5: Dependence of the lowest natural frequency on the internal pressure for dif-
ferent meshes. The mesh parameters can be found in Table 3.1.

Therefore, the number of nodes should be as low as possible while maintaining sufficient
accuracy.

The natural frequencies increase if the structure is loaded by internal pressure. This
is shown for the lowest natural frequency for different meshes in Fig. 3.5. The differ-
ences between the meshes are increasing with increasing internal pressure. It can also be
observed that the natural frequency starts to decrease for internal pressure larger than
400Pa. This is an indication for an instability.

In the finite element model 720 nodes around the circumference and 181 nodes in axial
direction were chosen. This corresponds to Mesh 32 from Table 3.1. The node spacing in
axial direction is constant for elements below z = 15mm.

3.2.3 Imperfections

in order to trigger buckling, i.e. deviation from the trivial equilibrium path, imperfections
are introduced. Two types of imperfections, as well as a combination of both, were
investigated. The first imperfection is a rotation of the perfect cylinder around the y-axis.

The second imperfection is a deviation from the perfect circular cylinder in the form
of a combination of the free oscillation modes. Following Leissa [42], the oscillation mode
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Figure 3.6: Low-frequency mode shapes for thin walled, infinitely long circular cylin-
ders (a) for different values of n; and coordinate system used to compute the mode
shapes (b).

shapes for a thin walled, infinite cylinder are given by

u = C cos(nϕ) cos(ωt), (3.3)
v = B sin(nϕ) cos(ωt), (3.4)

where u and v are the radial and tangential coordinates of the coordinate system depicted
in Fig. 3.6b. The constants B and C for the different modes are obtained by solving[

n2 − Ω2 n

n 1 + h2

12R2 (1− n2)2 − Ω2

] [
B
C

]
=

[
0
0

]
, for n = 1, 2, . . . , (3.5)

where h is the thickness of the shell. Hence, they are the components of the eigenvector
corresponding to the eigenvalue Ω2, which is related to the natural frequency ω by

Ω =
ρ(1− ν2)

E
R2ω2. (3.6)

The mode shapes for the lower frequency modes for n = 2, 3, 4 are depicted in Fig. 3.6a.
For the analysis a linear combination of the 2nd and 3rd oscillation mode was used.

The combination ratio was kept constant as 5 to 1. The maximum modal displacement
was then scaled to different ratios of the radius R. Figure 3.7 shows the shape of the
linear combination as well as local radius and curvature.
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Figure 3.7: Shape of the cross section of the imperfect cylinder: (a) Linear combination
of mode 2 and 3 (5:1) scaled to a maximum modal displacement of 0.1R; (b) Radial
coordinate r and local curvature κ of at the cross section points for different scales.

3.2.4 Analysis Procedure

An static analysis in which the pressure was increased in an incremental iterative way.
The analysis was conducted up to internal pressure levels of 700Pa or terminated before
of no convergence could be obtained. This is usually the case at the stability limit.

3.3 Experiments
Experimental tests were performed with skirts manufactured from high density polyethy-
lene (PE-HD) bags. The bags had a thickness of 13 µm and were cylindrical with a
diameter of 1216mm and a height of 225mm when the bottom was cut off. The upper
end of the skirt was fixed onto a conical ring which was glued to a plate to ensure a
defined shape of the upper support. The position of the plate with respect to the hori-
zontal plane could be adjusted by three vertical screws. At the lower end of the skirt 16
lead weights were fixed around the circumference. Tests with two different masses (3 g
and 6.8 g) were performed. The pressure in the air chamber can be measured by a water
column as described in more detail in Appendix C.3. The hight of the water level was
measured visually on a scale with an accuracy of approximately 0.5mm. Fig. 3.8 shows
an annotated photo of the measurement setup and corresponding dimensions. The air
chamber was slowly pressurized trough a valve in the top plate by air from a compressor.
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Figure 3.8: Picture of the measurement setup (a) and corresponding dimensions (b).

3.4 Results

3.4.1 The Buckling Process

A first sign of the instability can be detected by observing the upper edge of the cylinder.
On one side small wrinkles appear. This local instability is followed by a global bending
of the cylinder around the upper support if the internal pressure is further increased.
The process is visualised in Fig. 3.9 for one FE-model and in Fig. 3.10 and Fig. 3.11 for
the experiments. Fig. 3.12 shows a sequence of photos from the global buckling process.
In the experiments the dynamic characteristic of the post buckling behaviour must be
taken into account. Due to the large amount of water that must be moved together with
the submerged membrane, the internal pressure can exceed the critical pressure if it is
increased too fast.

(a) (b) (c)

Figure 3.9: Contour plot of the maximum von-Mises equivalent stress in MPa for the
perfect cylinder inclined 3◦ at a waterline of 155mm at different values of the internal
pressure: (a) 75Pa; (b) 118Pa; (c) 148Pa. Displacements are displayed scaled by a factor
of 10.
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(a) (b) (c)

Figure 3.10: Photos of the experiment of a perfect cylinder inclined 2◦ at a waterline of
197mm ballasted with a mass of 48 g at the bottom at different pressure levels: (a) un-
pressurised; (b) subcritical; (c) supercritical.

(a) (b) (c)

Figure 3.11: Photos of the experiment of a perfect cylinder inclined 3◦ at a waterline of
134mm ballasted with a mass of 48 g at the bottom at different pressure levels: (a) low;
(b) high; (c) critical.

(a) t=0 s (b) t=0.3 s (c) t=0.6 s

Figure 3.12: Photos of the global buckling process of a perfect cylinder inclined 3◦ at
a waterline of 134mm ballasted with a mass of 48 g at the bottom at different pressure
levels.
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3.4.2 Critical Pressure

The critical pressure is defined as the internal pressure at which the global instability
occurs. It was experimentally measured for a number of configurations. In the FE-model
the critical pressure was obtained as the pressure at which the solver does not converge
any more. Comparisons between computational and experimental results are displayed
in Fig. 3.13. It can be seen that the critical pressure is predicted very well by the FE-
model. For perfect cylinders the critical pressure decreases with increasing inclination of
the cylinder and with increasing mass at the lower edge.
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Figure 3.13: Critical pressure depending on the angle of inclination. The water line was
at 155mm from the top. Experiments were carried out for perfectly circular cylinders (a),
and for cylinders with a mode shape type imperfection defined by mode 2 and mode 3
linearly combined at a ratio of 5:1 and then scaled to 0.03R (b). The skirt was ballasted
with different masses at the bottom.

The bifurcation from the trivial equilibrium path can be recognized in the load dis-
placement diagrams of Fig. 3.14. The initial slope of the curves is the same, but the
bifurcation pressure decreases with larger inclinations of the cylinder. A larger mass at
the bottom end of the skirt increases the bifurcation pressure.
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Figure 3.14: Load displacement curves for perfect cylinders with different masses at the
lower edge and inclinations of 1, 3, 4, and 5◦. The displacement is taken form the position
marked by N in Fig. 3.15.

3.4.3 Critical Bending Moment

The global instability, i.e. the sidewards bending of the cylinder, is caused by the unsym-
metrical pressure distribution at the water line. Fig. 3.15 shows a sketch of the considered
geometry. Due to the unsymmetrical geometry the internal pressure creates a bending
moment with respect to the centre of the calmed upper edge of the air chamber. The
constant internal pressure acting on the small wedge determined by the inclination angle
α creates the main part of the bending moment. The linearly decreasing pressure below
the water line has a comparatively small contribution. A counteracting bending moment
is created by the mass at the end of the skirt.

The bending moment can be computed for a circular cylinder inclined by an angle α
by integrating the moment of the pressure distribution on a differential area element over
the unsymmetrical surface area. The moment of force of the pressure distribution p(x)
onto a surface x with respect to an arbitrary location p is computed by

m =

∫∫
A

(x− p)× pn dA, (3.7)

where n denotes the normalized normal vector onto the surface. The pressure distribution
p is piecewise linear, as shown in Fig. 3.15. Therefore, the integration is split into two
parts, one for the area above the outer water level, and one for the area between inner and
outer water level. Due to the symmetry of the surface with respect to the ξ-ζ-plane only
a moment in η-direction, and y-direction, respectively, will arise. The moment will be
computed with respect to the centre of the upper support of the cylinder p = [0, hu, 0]T ,
denoted by P in Fig. 3.15.

For the first area, above the outer water level, the surface ψ of the cylinder can be
parametrized by cylindrical coordinates in the ξ, η, ζ-system

ψ(ϕ, ζ) =

ξη
ζ

 =

r cos(ϕ)
r sin(ϕ)

ζ

 , (3.8)
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Figure 3.15: Bending Moment

and hence, the normal vector onto the surface is obtained by

nψ =
∂ψ

∂ϕ
× ∂ψ

∂ζ
=

r cos(ϕ)
r sin(ϕ)

0

 . (3.9)

The internal pressure distribution is constant and the integral for the η-component of the
bending moment takes the form

mη,u =

π∫
−π

pr

r tanα∫
−r cosϕ tanα

(ζ − hu) cosϕdζ dϕ =

= pr2

π∫
−π

hu
(
cosϕ− cos2 ϕ

)
tanα +

r

2

(
cos3 ϕ− cosϕ

)
tan2 α dϕ =

= −πhupr2 tanα

(3.10)

which can be solved by elementary functions.
Considering the area below the outer water surface the linearly decreasing internal

pressure must be taken into account. A useful parametrisation for the surface is

φ =

xy
z

 = z

− sinα
cosα

0
1

+

 r cosu
cosα

r sinu
0

 , (3.11)

with u ∈ [0, 2π]. The normalized normal vector onto the surface is hence computed by

nφ =
φu × φz
|φu × φz|

=

cosα cosu
sinu

sinα cosu

 , (3.12)
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where the indices u and z donate the partial derivative with respect to the respective
parameter. The area element is computed as

dAφ = |φu × φz| =
r

cosα
. (3.13)

The integral for the bending moment of the lower surface is therefore

my,l =
r

cos2 α

0∫
− p
ρwg

2π∫
0

(ρwgz + p) (z − hu cosα− r sinα cosu) cosu du dz =

= −πr
2 sinα

cos2 α

0∫
− p
ρwg

(ρwgz + p) dz =

= − πp
2r2 sinα

2ρwg cos2 α
.

(3.14)

Finally, the contribution of an equally distributed mass along the lower end of the skirt
should be taken into account. In order to gain a conservative estimate for the reduction
of the bending moment it is assumed that the vertical force acts in the centre of the upper
waterline. This assumption is chosen because the lower part of the membrane will deform
considerably in areas without internal pressure. The mass then exerts a bending moment

my,m = m

(
1− ρw

ρm

)
g hu sinα, (3.15)

with respect to the centre of the upper support. In the above equation g denotes the
acceleration of gravity.

Summing up all term yields the total bending moment

my =my,u +my,l +my,m =

=− πhupr2 tanα− πp2r2 sinα

2ρwg cos2 α
+m

(
1− ρw

ρm

)
g hu sinα

. (3.16)

This result can be compared with the reaction moment computed by the FE model, which
is obtained by reducing the nodal reaction forces into the centre of the upper support.
The comparison shows excellent agreement between the analytical formulation and the
FE computation, as can be seen in Fig. 3.16. The total bending moment is dominated
by the contribution of the internal pressure above the outer water surface. This term
increases linearly with the internal pressure. The slope depends on the inclination angle
of the cylinder and the height of the water line. Larger values lead to larger slopes.

The x-displacement of the reference node (marked N in Fig. 3.15) is displayed in
relation to the total reaction moment at the upper support in Fig. 3.17. It can be seen
that for inclinations larger than 2◦ a critical bending moment is present. The bending
moment caused by the unsymmetrical pressure distribution is the reason for the global
instability. The stabilizing effect of the internal pressure can be seen when comparing the
deformation figures at the upper edge. The deformation figure of the cylinder with lower
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Figure 3.16: Bending Moment at the upper support versus internal pressure for circular
cylinders with different inclinations and different masses at the lower edge (waterline
155mm).
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Figure 3.17: Load displacement curves for perfect cylinders with different inclinations at
a waterline of 155mm and a mass of 48 g at the bottom. The internal pressure has a
stabilizing effect, the possible bending moment is higher.

(a) 1◦ at 461Pa (b) 4◦ at 121Pa

Figure 3.18: Deformation figures of inclined perfect circular cylinders at the critical pres-
sure (155mm waterline, 48 g at the bottom). The fringe color indicates the maximum
von-Mises equivalent stress in MPa.
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Figure 3.19: Axial reaction force at the upper edge along the circumference for the model
of a perfect cylinder inclined 3◦ at a waterline of 155mm at different values of the internal
pressure.

inclination (Fig. 3.18a) shows only one large wrinkle, whereas the one for the cylinder
with larger inclination (Fig. 3.18b) shows three wrinkles with decreasing amplitude and
constant wave length. The stabilizing effect of the internal pressure can also be observed
by looking at the distribution of the axial reaction force at the upper support along
the circumference. Fig. 3.19 shows the reaction force for different values of the internal
pressure. Thanks to the stabilizing internal pressure compressive stresses are possible and
the the cosine distribution can be maintained. The appearance of wrinkles can be clearly
recognized as a deviation from the cosine distribution.

3.5 Conclusion
The developed modelling strategy is able to predict the stability behaviour of the consid-
ered cylindrical, open air chambers. The reason for the global bending type instability
was found to be a bending moment caused by the unsymmetrical pressure distribution at
the waterline. This bending moment leads to compressive stresses in the membrane which
cause local wrinkling, and subsequently global buckling of the cylindrical air chamber. A
stabilizing effect of the internal pressure could be observed.

Imperfections, like the inclination of the upper support dramatically decrease the
critical load. As the post buckling behaviour of the air chamber is unstable, the prescribed
instability of the supporting structure can cause catastrophic failure of an air chamber
supported floating platform. Therefore, the described instability phenomenon should
be carefully investigated in the design process. In general lower chambers with larger
diameters are less likely to exhibit global buckling. As a mass located at he lower edge of
the skirt creates a counteracting bending moment, increasing the ballast can also improve
the stability behaviour.



Chapter 4

Treatment of the Periodic Platform
Structure by Homogenisation and
Localisation

The main load bearing structure of the floating platform is plate like. In order to achieve
a low structural weight at the required dimension of several hundred meters side length,
the structure is designed as a plain-periodic framework, i.e. the periodicity encompasses
two spacial directions. The global behaviour of such a periodic structure is defined by the
smallest periodic entity, i.e. a unit cell or representative volume element (RVE), of the
structure [66]. Figure 4.1 shows a sketch of the proposed framework. As the structure is
plane-periodic, it can be modelled globally by an equivalent plate structure.

A simple method to obtain global properties for a given periodic structure is to anal-
yse a sub-part of the structure. Constant tractions or displacements are then applied
on the boundaries of the sub-part to compute the resulting macroscopic strain or stress,
respectively. From results from a sufficient number of linearly independent load cases
the macroscopic stiffness properties can be computed. This method, termed window-
ing in the following, delivers the more accurate results the larger the analysed sub-part
gets [44]. Generally the macroscopic parameters determined by windowing will underes-
timate or overestimate the true macroscopic properties, depending on the use of constant
traction or constant deformation boundary conditions, respectively [39]. Windowing will
be used to determine the transverse shear stiffness of the periodic plate structure. While
more complex theories based on second-order homogenisation [37, 38] exist to obtain the
transverse shear properties of plain-periodic structures [20], windowing provides sufficient

unit cell

equivalent plate
plain-periodic truss

Figure 4.1: Periodic frame structure with unit cell and equivalent plate.
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accuracy in the present case.
The in-plain and bending properties of the equivalent plate structure will be gener-

ated by using previously developed computational homogenisation algorithms based on
unit cells with periodic boundary conditions [47, 48, 58]. In the following only a brief
explanation of these algorithms necessary for their application is given.

Once the stiffness properties of an equivalent plate structure are obtained, this struc-
ture can be analysed by standard FE methods under global loading. The resulting local
stresses in the unit cell(s) can be computed from the section force combinations arising in
the global model. This process is commonly termed localisation in the following. For the
design of a structure appropriate load cases and failure criteria must be defined. Failure
criteria like the exceedance of the yield limit must be evaluated in all material points of
every unit cell. To reduce the computational expense, a computational method to define
a global failure criterion, i.e. one formulated in terms of section forces, based on local
criteria is introduced.

4.1 Plate Theory
The principal difference between shell and plate is that the latter has no initial curvature.
A plate can, therefore, be considered as a special case of a shell. Shell theory is applicable
for structures with one dimension, the thickness, much smaller than the other dimensions.
The structure may then be described by a reference surface. The deformation of the refer-
ence surface, expressed as the three in-plane strain components in the reference surface γ
and three changes of curvature κ, can be calculated from the displacements and rotations
of the reference surface [45].

The relation between shell section forces and reference surface deformation for a thin
shell can be written in the form

n11

n22

n12

m11

m22

m12

 =


A11 A12 A13 B11 B12 B13

A22 A23 B21 B22 B23

A33 B31 B32 B33

D11 D12 D13

sym. D22 D23

D33




γ11

γ22

γ12

κ11

κ22

κ12

 , (4.1)

or equivalently in matrix notation[
n
m

]
=

[
A B

sym. D

] [
γ
κ

]
, (4.2)

where the vectors n andm contain the section forces per unit length, and section moments
per unit length, respectively [57]. For thick shells the above relations are augmented by
the relation between transverse section forces and shear deformations[

n13

n23

]
=

[
Kts

11 Kts
12

sym. Kts
22

] [
γ13

γ23

]
, (4.3)

where for a symmetric structure, the off-diagonal terms are zero [12]. Figure 4.2 shows
the section forces acting on a shell element.
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Figure 4.2: Section forces of a general shell element.

4.2 Equivalent Stiffness Properties for Plain Periodic
Structures

The stiffness properties of a plate mechanically equivalent to the periodic frame structure
can be obtained form the unit cell by the use of computational homogenisation. In general
Eqs. (4.1) and (4.3) contain 24 independent parameters. However, for the considered unit
cell, depicted in Fig. 4.3, only eight independent parameters arise due to symmetry.

A finite element model (for the software ABAQUS) of the unit cell was created. The
input generation was fully automatised in order to allow for rapid changes of discretisation,
unit cell size (l1, l2, l3), beam cross sectional parameters (R, t), or different material
properties (E, ν). Different cross sectional parameters for the pipe like cross section
of the top/bottom and diagonal beams are possible. The structure was discretised by
3-noded, second-order, shear flexible beam elements∗. If desired 8-noded, bi-quadratic,
general shell elements with reduced integration† can be added at the top and bottom face
of the unit cell.

4.2.1 Unit Cells with Periodic Boundaries

Periodic boundary conditions are applied automatically to the unit cell boundary nodes.
Six independent load cases need to be calculated in order to determine the effective plate
properties. The load cases correspond to the three in plane section forces and the three
section moments (in Eq. (4.1)) and are depicted in Fig. 4.4. To simplify the localisation
procedure, section forces of unit magnitude are applied in the homogenisation load cases.
∗ABAQUS element type: B32
†ABAQUS element type: S8R

Ri
η

ti
ξ ξ

η

l1 l2

l3
ld

Ei, νi, ρi

ts

ts

1

23

Figure 4.3: Unit cell geometry: Two different pipe-like cross sections are used for the
diagonal beams and for the beams in the top/bottom faces. Plates of uniform thickness
(depicted in gray) may be added in the top and bottom faces.
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Figure 4.4: Load cases for determination of the effective thin-plate properties.

4.2.2 Transverse Shear Stiffness

The equivalent transverse shear stiffness of the framework structure is obtained by win-
dowing. The corner nodes of the unit cell are constrained to ensure periodicity during
deformation, i.e. they are forced to form a parallelepiped. Additionally, constraints are im-
posed on the nodes on the boundary faces, forcing them to remain in their corresponding
parallel planes. Unit section forces n13 = N13

l2
= n23 = N23

l1
= 1 are applied to the reference

nodes of the respective faces. Approximating the transverse shear angle by γi3 ≈ ui3
li

leads
to

Kts
ii = Ni3

li
ui3

, (4.4)

from which the stiffness terms in Eq. (4.3) can be calculated. The above used symbols
are depicted in Fig. 4.5. Due to the symmetry of the unit cell the coupling term (off-
diagonal element) of the transverse shear stiffness matrix is zero, and only two load cases
are necessary to compute the remaining terms.

l1

1
2

3

u13

N13

γ13

(a) Plain shear in 1-3 direction.

1
2

3

N23

γ23 u23

l2

(b) Plain shear in 2-3 direction.

Figure 4.5: Load cases to calculate the equivalent transverse shear stiffness.

4.3 Localisation
Each cell in the global truss structure was represented by a single equivalent, i.e. homoge-
neous, shell element with effective stiffness properties. The FE analysis of the homogenised
shell structure then gives the global structural deformations, as well as the acting shell
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section forces. These eight shell section forces are calculated at the integration points of
the equivalent shell elements and can simply be averaged to get a single value for each
shell section force in each element.

Assuming linear theory, the value of any field variable x in the unit cell can be calcu-
lated by linearly superimposing the field values xi from the homogenisation FE analyses
according to

x =
n∑
i=1

sixi, (4.5)

where n donates the number of homogenisation load cases, and si are the shell section force
values obtained from the analysis of the shell structure. Care has to be taken, that the
corresponding field values xi are obtained from unit cells loaded with unit section forces.
This procedure can be applied for unit cell fields like displacements, member section
forces, stresses or strains. It is important to note, that the prescribed superposition
is not applicable for fields which are not linearly dependent on the section forces. For
example, the field of the von-Mises equivalent stress, can not be computed directly by
superposition. It must be obtained by superimposing all stress components, and then
computing the equivalent stress.

If the value of a field variable x should be computed in all k points of the unit cell,
the above relationship can be efficiently written in matrix form

x = Xs, (4.6)

where x = [x1, . . . , xm]T is the field of quantity x for all m points of the unit cell, and
the vector s = [s1, . . . , sn]T defines the combination of section forces. The columns of
the matrix X = [x1, . . . ,xn] are formed by fields of the quantity x computed from the
homogenisation load cases, and is hence of dimension m× n.

4.4 Failure Criteria Defined in Terms of Global Section
Forces

For the design of a homogenised structure under certain loading, one needs to translate
the arising combination of section forces to the localised field variables in the unit cell.
This, so called, localisation procedure is possible for any variable computed in the unit
cell for which linear superposition is allowed, e.g. stress components at the integration-
or section-points, nodal displacements, or section forces of continuum elements, and was
explained in the above section. The localised fields must then be evaluated based on
appropriate failure criteria.

For the strength design of the structure, a yield criterion is the appropriate failure cri-
terion. The field variable of interest is an equivalent stress (e.g. the von-Mises equivalent
stress), which may not be linearly superimposed – it must be computed from the localised
stress fields of the stress components, obtained by the above described localisation proce-
dure. The failure criterion, i.e. localised equivalent stress being smaller than the allowable
value, must be evaluated for the whole structure at every time instance. This means that
the direct localisation must be done for every arising combination of section forces, i.e.
every point at every time instance, in the homogenized structure. For the assessment of
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the global structure a failure criterion formulated in therms of section forces would be
desirable.

The failure criterion defines the set of section force combinations for which failure
occurs in the unit cell. It can be imagined as an n − 1 dimensional surface, that splits
the n dimensional space of section force combinations in two subspaces. One made up by
the section forces combinations which can be tolerated by the unit cell (i.e. points inside
the failure surface) and the other one composed of the section force combinations leading
to failure of the unit cell (i.e. outside of the failure surface). This is analogous to the
definition of the yield-surface describing the yield limit in the stress-space.

An analytical expression for the yield surface in the space of the unit cell section
forces, can be obtained by inserting the linear relation between section forces and unit
cell stresses into the yield criterion. This would represent a yield criterion for a single
point in the unit cell. This analytical expression must be derived and analysed for every
point in the unit cell. Therefore, no improvements in computational efficiency can be
expected.

In order make the assessment of a section force combination more efficient one needs
a quickly evaluable failure criterion for the unit cell defined in the space of the section
forces. If a set of points (i.e. section force combinations) on the failure surface was known,
an assessment could be done in form of an interpolation procedure. Of course, the yield
criterion used above as an example may not be the only failure criterion by which the
structure must be designed. Other criteria, like buckling of individual unit cell elements or
excessive displacements may be evaluated on the computed localised fields. By combining
all failure criteria in a straight forward manner an overall failure surface for multiple
failure criteria may be computed.

4.4.1 Using Radial Paths to Determine Points of the Failure Sur-
face

A point on the failure surface can be obtained by considering a single combination of
section forces s = [s1, . . . , sn]T . The stress state in the unit cell for this section force
combination can be computed by

σij =
n∑
k=1

σij,ksk = σTijs, (4.7)

where the vector σij = [σij,1, . . . , σij,n]T contains values of the stress state in the unit cell
homogenisation load cases. The von-Mises equivalent stress is computed according to

σv =
√
σ2

11 + σ2
22 + σ2

33 − σ11σ22 − σ22σ33 − σ33σ11 + 3 (σ2
12 + σ2

23 + σ2
31). (4.8)

For the sake of brevity the case of a plane stress state (i.e. σ33 = σ23 = σ13 = 0) will be
considered. Inserting the localised stress expressions into the von-Mises yield criterion for
a plane stress state yields

σv =
√

(σT11s) (σT11s)− (σT11s) (σT22s) + (σT22s) (σT22s) + 3 (σT12s) (σT12s) =

=
√
sT (σ11σT11 − σ11σT22 + σ22σT22 + 3σ12σT12) s

. (4.9)
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It can be seen, that if the section force combination is scaled by an arbitrary factor,
the resulting equivalent stress will be scaled by the same factor. The value of the highest
equivalent stress in the unit cell for a certain section force combination, σv,max, determines
the failure of the unit cell. The safety factor for a section force combination s is then
computed by

syield =
σv,lim
σv,max

, (4.10)

where σv,lim denotes the yield limit. The safety factor can be seen as the factor, by
which the vector representing the section force combination must be multiplied in order
to represent a point located exactly on the failure surface of the unit cell. Hence, the
point on the failure surface is

p = syields. (4.11)

4.4.2 Assessment of the Failure Criterion for a Section Force
Combination

Let us assume we are considering the space of n section forces, and we have already
determined a set of points pi located on the failure surface. We now want to obtain the
safety factor for a particular section force combination s = [s1, . . . , sn]T . Geometrically
this question corresponds to finding the intersection of the line defined by x = ts with the
surface Ω defined by the points pi. One approach for finding the intersection would be to fit
an analytical expression describing the surface to the data points, and then to compute the
intersection. However, finding a suitable form for the analytical expression seems difficult.
Additionally, the computation of the intersection would require an iterative procedure if
no closed form solution for the intersection can be found.

Two different approaches for computing the intersection are presented below. The first
one treats the surface as piecewise flat and is suitable for arbitrarily distributed points.
The second one is based on the transformation into polar coordinates and a multivariate
spline interpolation of the radius. It is only applicable to point sets pi whose polar angles
form a regular grid.

4.4.2.1 Arbitrarily Distributed Points

The surface defined by the points p = [p1, p2, . . . , pn]T will be approximated by a hyper-
plane spanned by n points. The considered line is then intersected with this approximating
hyperplane. The challenge in this approach is to suitably chose the n points defining the
approximating hyperplane. They should correspond to those points which most closely
surround the direction s. In the following the developed intersection procedure will be
explained. Figure 4.6 shows a visualization of the different steps in the intersection pro-
cedure for the tree-dimensional case. We consider the straight line with direction vector
s = [s1, . . . , sn]T (in the three-dimensional example: n=3) defined by

x = ts, t ∈ R. (4.12)

The normal plane, Ψ, to the considered straight line is a hyperplane (or a plane in space
in the tree-dimensional example) defined by the linear equation

xTs = 0. (4.13)
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It splits the n dimensional space of section forces into two parts: one above and one below
the hyperplane (see Fig. 4.6a). All points satisfying

pTi s ≥ 0, (4.14)

lie above the hyperplane and must be considered to find the intersection, all other points
can be discarded. The task now is to find those n points which most tightly surround the
straight line. The unit vectors describing the direction to the point p is defined by

p0 =
p

‖p‖
, with ‖p‖ =

√
pTp. (4.15)

These normalized directional vectors are projected into the hyperplane Ψ yielding the
points

p′ = p0 − sTp0s. (4.16)

The projected points lie in a n − 1 dimensional subspace of the space of section forces,
defined by the normal plane Ψ via Eq. (4.13). More precisely, the subspace is the nullspace
or kernel of sT , i.e. the solution of sTx = 0. The basis vectors of the nullspace can be
computed by using the single value decomposition of the matrix sT . The projected points
are then transformed into the new, n−1 dimensional, basis where a Delaunay triangulation
of the points is performed. The n vertices of the simplex containing the origin correspond
to the n directions most closely surrounding the straight line.

The Delaunay triangulation can be obtained by a convex hull algorithm with a perfor-
mance of the order k log k, where k is the number of points to triangulate [2]. For many
cases it is more efficient to triangulate the points incrementally. For this procedure the
points are sorted by their direction from the origin. The triangulation is started with
the N > n points closest to the origin; N points are added to the triangulation until a
simplex containing the origin can be found.
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Figure 4.6: Steps of the intersection procedure for irregularly distributed points in a three-
dimensional example: (a) Selection of points above the normal plane; (b) projection of
the point directions onto the normal plane; (c) triangulation of the projected points to
find the closest directions.
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Having identified the n failure surface points pi with directions most closely surround-
ing the direction of the straight line, one can construct a hyperplane containing these n
prints. The hyperplane is formed by the points x = [x1, . . . , xn]T satisfying the equation

xTn = d, (4.17)

where n denotes the normal vector of the hyperplane and d the distance to the origin.
The coefficients of the normal vector and the parameter d are obtained by solving the
linear system 

p1,1 p1,2 · · · p1,n −1
p2,1 p2,2 · · · p2,n −1
...

...
...

...
pn,1 pn,2 · · · pn,n −1


︸ ︷︷ ︸

A


n1

n2
...
nn
d

 = 0, (4.18)

where the rows in the coefficient matrixA contain the coordinates of the n selected closest
points pi = [pi,1, . . . , pi,n]T . The solution of (4.18) is obtained by computing the nullspace‡
of A. Finally the intersection of the straight line and the now known hyperplane can be
computed. Combining (4.12) and (4.17) and yields the intersection point

s̄ =
b

nTs︸︷︷︸
t

s. (4.19)

It can be seen, that the parameter t = b/(nTs) is the safety factor for the considered
section force combination.

Significant improvements in terms of accuracy can be obtained if a geometric scaling
is employed. Instead of working in the space of section forces, the above computations
can be done in equivalent manner in a normalized space. The coordinates of a point,
pi = [pi,1, . . . , pi,n]T , in the normalized space, p̃i,j, are obtained by scaling the spacial co-
ordinates, pi,j, with respect to the extent of the failure surface in the respective coordinate
directions, lj, according to

p̃i,j =
pi,j
lj
, for j = 1, . . . , n. (4.20)

The extent of the failure surface in the coordinate direction j is computed by

lj =
max(pj)−min(pj)

2
, (4.21)

where max(pj) and min(pj) denote the maximum and minimum, respectively, of the j-
coordinate of all known failure surface points. The geometric scaling is particularly useful
if the extent of the failure surface varies over several orders if magnitude between different
section forces and moments.

The above described interpolation procedure works well even for surfaces defined by
very few points. However, for typical unit cell geometries with about 3000 integration
‡see Appendix D.9 for details
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points and 5 considered section forces (n = 5), calculating a single intersection is com-
putationally more expensive than the direct computation of the failure surface point for
a given direction. The main part of the computation time it taken up by the Delaunay-
triangulation. Efficiency improvements of a factor of approximately 100 can be achieved
by an incremental procedure: The data points are sorted with respect to their distance
from the origin (see Fig. 4.6b); Only the 3n closest points are used for the triangula-
tion; If a surrounding triangle is found the computation can be terminated, otherwise
more points must be used for the triangulation. Even with incremental triangulation in
normalized space the intersection procedure is approximately 25 times more expensive
than the direct computation. Therefore, the intersection procedure will only be applied
in special cases: for example for a combined load case of a static base load, manifesting
in a constant section force combination at the considered location, and an superimposed
dynamic load, represented by an oscillating section force combination. To compute a
safety-factor for the amplitude of the dynamic load it is necessary to intersect a straight
line going through the point defined by the static load and the direction of the oscillating
load with the failure surface. This can be done by the above described procedure, if the
failure surface points are shifted to a new origin represented by the static section force
combination. Then intersections must be computed for a sufficient number of oscillating
section force combinations within one oscillation period.

4.4.2.2 Regular Point Distribution

If points with a regular distribution are used to define the failure surface the efficiency
of the intersection procedure can be dramatically improved. The polar angles of the
points defining the failure surface must form a structured grid. Then the intersection
of an arbitrary direction, represented by its polar angles, with the failure surface can
be computed by an n-dimensional interpolation in the dataset of the radii of the failure
surface points.

Every point in n-dimensional space may be represented by n-dimensional polar coor-
dinates, described in more detail in Appendix D.11. A point on the failure surface is then
defined by n− 1 polar angles, φ1, . . . , φn−1, and a radius, r. A structured grid is built by
discretising the n − 1 dimensional hyperrectangle which encompasses the space of polar
angles by

φ̃i =
kπ

Nπ

, with Nπ ∈ N, and k =

{
0, 1, . . . , Nπ for i = 1, . . . , n− 2

0, 1, . . . , 2Nπ for i = n− 1
. (4.22)

The full grid of direction vectors, φ̃ = [φ̃1, . . . , φ̃n−1]T , must be computed. This makes a
total of

Nc = (2Nπ − 1) (Nπ + 1)n−2 , (4.23)

combinations, for which points on the failure surface have to be obtained. Each grid point
corresponds to one radial path, and by setting r̃ = 1 defines one point on a hypersphere.

Typically the shape of the failure surface will deviate strongly from a perfect hyper-
sphere due to the different nature of section forces, e.g. in plane tension, bending, out of
plane shear. Therefore, a regular grid of polar angles can lead to a very poor characterisa-
tion of the shape of the failure surface. This is visualized for a case of three section forces
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Figure 4.7: Transformation into normalized space for three considered section forces.

in Fig. 4.7 and can also be seen in Fig. 4.11. In some areas the density of points is un-
necessarily large, whereas in other areas points are missing, leading to large interpolation
errors. This can be remedied by defining the structured grid in the space of normalised
section forces. The normalised coordinates of a failure surface point, p = [p1, p2, . . . , pn]T ,
are defined by

p̃j =
pj
pj,0

, (4.24)

where pj,0 denotes the failure surface coordinate in the direction of the jth section force,
subsequently termed pole distance. The pole distance for direction j, pj,0, is equal to the
safety-factor for the section force combination sj = [δ1j, . . . , δnj]

T , where δij denotes the
Kronecker delta. Hence, it can be computed according to Section 4.4.1. The shape of
the failure surface in normalised space is much closer to a hypersphere. Therefore, the
regular grid of polar angles defined in the normalised space gives a good approximation
of the shape of the failure surface. The radial paths in the space of section forces, si =
[si,1, . . . , si,n]T , must be computed through the geometric transformation

si,j = s̃i,j sj,0, (4.25)

from the points of the hypersphere in the normalised space, s̃ = [s̃i,1, . . . , s̃i,n]T . The
points of the hypersphere in Cartesian coordinates are obtained from the grid points of
polar angles by the transformation described in Appendix D.11. The polar angles of the
radial paths still form a structured grid, but the grid is not equidistant any more (see
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π

φ
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(b) Space of section forces

Figure 4.8: Shape of the grid of polar angles: Regular and equidistant as defined in
normalized space (a); Regular, but non-equidistant after transformation into the space of
section forces (b).
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Figure 4.9: Average interpolation error (a), and computational cost of the interpola-
tion (b) for a 5-dimensional (considered section moments and transverse shear forces)
failure surface for different discretisations.

Fig. 4.8). In total the failure surface will be defined by Nc radial paths, for which safety-
factors can be evaluated according to Section 4.4.1. The distance from the origin of each
failure surface point, i.e. its radius, is saved in the appropriate grid-location in an n − 1
dimensional matrix. The failure surface is now defined by Nc regularly distributed points.

In order to find the intersection of an arbitrary radial path defined by a section force
combination with the failure surface, the section force combination, s, is first normalized
according to (4.25) to obtain a corresponding combination, s̃, in normalised space. This
combination is then transformed into polar coordinates yielding a set of n−1 polar angles
φ̃. A multivariate spline interpolation in the previously computed, n − 1 dimensional
matrix of radii will yield the distance of the failure surface from the origin in the direction
defined by φ̃, s̃ and s. The multivariate spline interpolation can be used because the
pre-computed radii are defined on a regular, equally spaced grid of polar angles in the
normalised space. The used interpolation algorithm is part of the ndimage.interpolation
module of numpy [36]. Further details about multivariate spline interpolation are given,
for example, in the work of Unser [74]. Finally, the safety-factor, s, is computed by

s =
r

‖s‖
, (4.26)

where r donates the radius obtained by interpolation.
Several tests of the interpolation for failure surfaces in different dimensions were con-

ducted. Generally a higher interpolation order yields more accurate interpolation results,
as can be seen in Fig. 4.9a. However, the accuracy improvements are marginal for in-
terpolation orders larger than two. The computational cost on the other hand increases
dramatically, as can be seen in Fig. 4.9b. Therefore, an interpolation order of 2 is deemed
the optimal choice. All interpolation errors were computed as the mean error in the in-
terpolated safety-factor with respect to the directly computed safety-factor for 300,000
randomly distributed points. The interpolation error depends on the resolution of the
interpolation basis and on the dimensionality of the failure surface. The resolution of
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Figure 4.10: Performance of the 2nd order spline interpolation for different considered
section forces in dependence of the failure surface resolution: Mean interpolation error
with respect to exact computation of the safety-factor (a) and interpolation time per
section force combination (b).

the interpolation base, i.e. the discretisation of the hyperrectangle of polar coordinates
is defined by Nπ. Considering more section forces in the failure surface, i.e. a higher
dimension, requires a larger resolution, i.e. higher Nπ, to maintain the same interpolation
accuracy. Figure 4.10a shows the dependence of the interpolation error on the resolution
and the dimension of the failure surface.

Table 4.0a compares computational effort for direct computation and interpolation.
For the investigated unit cell with about 3000 integration points the evaluation of the
safety-factor by interpolation in the failure surface can be up to 300 times faster compared
to the direct computation. The effort for direct computation of a failure surface point, or
equivalently, for the safety-factor for a single section force combination depends almost
linearly on the number of integration points and increases with increasing dimensionality
of the failure surface.

The interpolation procedure is computationally very efficient with speed-up factors of
several orders of magnitude. It can be seen, that the effort for the multivariate spline
interpolation increases strongly with increasing dimension. For the assessment of the

(a) Computational effort

n tp in ms ti in µs speed-up tp/ti
3 0.441 1.376 320
5 0.463 4.515 102
6 0.487 7.590 64
8 0.506 37.2 13

(b) Break-even point N

n Nπ = 6 Nπ = 8 Nπ = 12

3 77 135 300
5 381 11,043 51,029
6 26,829 99,973 667,303
8 1,396,831 8,604,175 119,825,945

Table 4.1: Comparison of the computational effort for direct computation and interpola-
tion of order 2 (a), and break-even points for different resolutions of the failure surface
(b). Results obtained for a unit cell of about 3000 integration points.
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usefulness of the failure surface one must take into account the effort needed to pre-
compute the Nc failure surface points. The break-even point of section force combinations,
N , after which the speed-up of the interpolation outweighs the additional effort for the
computation of the interpolation base consisting of Nc points is computed by

N =
tp

tp − ti
Nc, (4.27)

where tp denotes the computation time for the direct calculation, and ti for the interpo-
lation, respectively, of one point. In Table 4.0b the break-even point for different failure
surface resolutions is computed using (4.27) and the numerical values from Table 4.0a. For
large speed-up factors the break-even point effectively equals the size of the interpolation
data base. For low dimensional failure surfaces (up to n = 5) using the failure surface
makes sense if more than a few thousand section force combinations need to be evaluated.
On the other hand, if higher dimensional failure surfaces are required, the speed-up de-
creases due to the larger effort for interpolation, and additionally more points are required
in the interpolation base. In the case of eight considered section forces already several
million section force combinations must be of interest in order to justify the use of the
failure surface. However, the demand to check so many section force combinations can
easily arise in the dynamic analysis of a large FE-model.

Figure 4.11 is provided to emphasise the importance of the definition of the equally
spaced grid in normalised space. It shows the failure surface for three considered section
forces for two different discretisations. Additionally, failure surface points for 30 random
directions were evaluated exactly and by interpolation. The true shape of the failure sur-
face is captured very poorly if the grid is defined in the space of section forces (Fig. 4.11a)
even if a very fine discretisation is used (Fig. 4.11c). If the regular grid is defined in the
normalised space, the shape of the failure surface is captured quite well even for coarse
grids (Fig. 4.11b) and the interpolation error is acceptable.



CHAPTER 4. HOMOGENISATION AND LOCALISATION 74

Bending-1

-10 -5 0 5 10
Tw
ist

-4
-2

0
2
4

Sh
ea
r-
13

-0.5

0.0

0.5

exact
interpolated

(a) section force, Nπ = 6

Bending-1

-10 -5 0 5 10
Tw
ist

-4
-2

0
2
4

Sh
ea
r-
13

-0.5

0.0

0.5

exact
interpolated

(b) normalised, Nπ = 6

Bending-1

-10 -5 0 5 10
Tw
ist

-4
-2

0
2
4

Sh
ea
r-
13

-0.5

0.0

0.5

exact
interpolated
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Figure 4.11: Failure surface for three considered section forces in different discretisations;
The equally spaced grid was defined in the space of section forces and in normalised space.
Based on 30 random directions, points on the failure surface were computed exactly and
by interpolation.
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Symbol Value in m Description

l1 10.0 cell size in 1-direction
l2 10.0 cell size in 2-direction
l3 7.071 cell size in 3-direction
R1 0.135 radius of the top/bottom beam cross section
t1 0.004 thickness of the top/bottom beam cross section
R2 0.135 radius of the diagonal beam cross section
t2 0.001 thickness of the diagonal beam cross section
ts no plate-faces used

Table 4.2: Dimensions of the unit cell geometry. The unit cell is depicted in Fig. 4.3.

4.5 Validation of the Homogenisation Method
To validate the above presented method, an analysis of the detailed, global frame structure
is compared with the analysis of a homogenised equivalent model and localised results in
the unit cells. The test case corresponds to a typical target application of the method; a
300x300m plate formed by 900, 10x10x7.07m sized cells. The edges of the structure are
simply supported. Uniform gravity loading is applied in a linear load step. The unit cell
geometry is chosen according to Fig. 4.3, and no plates in the top and bottom faces of the
cell were used. The used dimensions are given in Table 4.2. As material, a linear-elastic,
isotropic model for steel with Young’s modulus of 210GPa, Poisson’s ratio of 0.3 and
density of 7860 kg/m3 was used.

The homogenised shell model consists of four-node, linearly interpolated, shell elements
with reduced integration. Each unit cell is represented by one shell element. Equivalent
boundary conditions and loading is applied to the homogenised model.

4.5.1 Global Displacements

Figure 4.12 shows a comparison of the vertical displacement between the full model and
the homogenised model. The deformation shape shows excellent agreement. A more

(a) homogenized (b) full model

Figure 4.12: Comparison of the vertical displacement (in m) of homogenized and full
model.
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Figure 4.13: Comparison of deformed shape in the symmetry plane of the plate.

detailed comparison of the deformation of the structure in its symmetry plane is given
in Fig. 4.13. The deformations of homogenised model and full model match excellently.
However, if the transverse shear stiffness is not taken into account, the homogenised
structure is slightly too stiff.

4.5.2 Stress Localisation

The stress localisation procedure is validated by a comparison between the von-Mises
equivalent stress calculated with the full model and the homogenised model. For the
full model the stress values are reported directly in eight section points in the three
integration points of the beam elements. The corresponding values for the homogenised
structure are computed by the previously described localisation procedure. The maximum
arising stresses in the symmetry plane of the plate are compared. For the full model the
maximum stress is obtained by taking the maximum stress value found in any point up
to the distance of one half unit cell width from the symmetry plane. A plot of the stress
field is provided in Fig. 4.14. The maximum stress arises in the top/bottom beams at the
centre of the plate. Towards the edges of the structure, the stress in the top/bottom beams
decreases due to the lower bending moment in the plate. Close to the simply supported

Figure 4.14: von-Mises equivalent stress (in Pa ) in the full model.
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Figure 4.15: Maximum von-Mises stress in the unit cell obtained by localisation with
different considered section forces. Values are in MPa

edges, the maximum stresses arise in the diagonal beams, due to the dominating effect of
the transverse shear forces.

The maximum stress for the homogenised model is obtained by taking the maximum
von-Mises stress in the unit cell stress field obtained by localisation with the appropriate
section force combination. Different combinations of section forces are considered. Fig-
ure 4.15 shows a comparison between the field of the maximum localised stress in each unit
cell for different considered section forces. Considering only in-plane forces and section
moments, as in thin-plate theory, captures the maximum stress in the centre of the plate
well. However, the stresses close to the edges, which are dominated by the transverse
shear forces are not accurately represented. Including the transverse shear forces in the
localisation procedure leads to much better results in this area. A more detailed compar-
ison is offered in Fig. 4.16 for the maximum stresses around the symmetry plane of the
structure. The error in the stress values obtained by localisation with respect to the full
model is minimal (around 2%) in areas where the stress is dominated by bending. In areas
where the stresses are dominated by transverse shear, the transverse shear section forces
must be taken into account in the localisation procedure in order for the error to remain
small (<5%). If transverse shear forces are not taken into account, the error can get very
large (see Fig. 4.16a). The graphs also show, that disregarding in-plane section forces
leads to equivalent results. This can be explained by the absence of in-plane loading.
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Figure 4.16: Comparison of the maximum von-Mises equivalent stress around the sym-
metry plane computed by the full model, and the maximum von-Mises stress in the cor-
responding unit cells obtained by the localization procedure, with different combinations
of section forces (a) excluding, and (b) including, transverse shear forces.

4.6 Conclusion
The presented computational homogenisation theory is useful to model a complex, plain-
periodic structure by an equivalent shell model. Such shell models can significantly reduce
the number of degrees of freedom in a discretised model and, hence, the computational
effort. Additionally, the application of boundary conditions can be simplified. Localisation
can be used to obtain stress fields in the unit cells at arbitrary location in the global
structure.

A method to obtain a failure criterion defined in the space of the global, i.e. plate,
section forces, the so called failure surface, was presented. It was shown that the use of
such a failure surface to evaluate a failure criterion can offer significant reduction of the
computational effort if many different section force combinations have to be evaluated.



Chapter 5

Experimental Testing

5.1 Froude’s Scaling Law
In the case of water flow with a free surface Froude’s scaling law is most applicable, because
the gravitational effect predominates over viscous, surface tension, or other effects [9]. The
Froude number defined as

Fr =
v2

gl
, (5.1)

where v is a characteristic velocity, l is a characteristic dimension, and g is the acceleration
of gravity. It can be interpreted as the ratio between gravitational and inertial force acting
on a fluid element [9].

In order to preserve geometric similitude between the prototype and the scale model,
all dimensions are scaled by a scale factor c, relating the dimensions by

lp = clm, (5.2)

where the indices p andm denote prototype and model quantities. Maintaining a constant
Froude number for prototype and model under the constraint of constant gravitational
acceleration (gp = gm = g) requires the model speed to be

vm =
vp√
c
. (5.3)

The correct scaling of the model mass can be obtained by requiring the shape of the
displaced volume, equal to m/ρ, to be geometrically similar: The displaced volume will
be proportional to l3; The constraint of water with the same density in both model and
prototype environment, hence, requires:

mm = c−3mp. (5.4)

Table 5.1 sows the correct Froude scaling for selected quantities. It can be seen, that the
correct scaling for any derived quantity must follow from the scaling of the fundamental
quantities mass, length and time.

79
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Quantity Dimension Scaling

Length L c
Mass M c3

Time T c
1
2

Velocity LT−1 c
1
2

Frequency T−1 c−
1
2

Pressure ML−1T−2 c
Density ML−3 1
Energy ML2T − 2 c4

Spring stiffness MT−2 c2

Mass per area ML−2 c

Table 5.1: Scale factors for Froude scaling of different quantities.

5.2 Scale Models

5.2.1 Design of Equivalent Models

Building a Froude scale test model of the desired prototype structure, i.e. an air chamber
supported floating platform in a size range of 50-300m, requires rather high scale factors
for model tanks allowing model widths of several meters. The construction of an exact
scale model of the original frame structure would be very difficult due to this large scaling
factor.

As only the overall behaviour of the structure should be studied, a resolution of the
framework detail is not of interest in the model tests. Therefore, only the main properties,
bending stiffness and mass per area, have to be correctly reproduced by an equivalent
model structure. The design values for bending stiffness D, transverse shear stiffness Kts,
and mass per area w, of prototype framework can be computed from the geometry of the
unit cell by the homogenisation procedure described in Chapter 4. Values obtained for two
different prototype cells, which will be used in the following are given in Table 5.2. The
properties of the model plate can then be calculated form the prototype values according
to Froude’s law by

Kts
m = c−2Kts

p , (5.5a)
Dm = c−4Dp, (5.5b)
wm = c−1wp. (5.5c)

A sandwich composed of a core and thin faces of equal thickness allows the designer to

Prototype 1 Prototype 2

D in Nm 130.0 106 140.42 106

Kts in N/m 35.4 106 8.893 106

w in kg/m2 20.0 13.166

Table 5.2: Homogenised plate properties of the prototypes.
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Figure 5.1: Sandwich dimensions

choose two independent materials and their thickness. As the material density and the
Young’s modulus are determined for specified materials, the geometric dimensions remain
the only free parameters. The properties for a sandwich with thin faces (t� h), depicted
in Fig. 5.1, are calculated by

Kts = Gch, (5.6a)

D =
Efh

2t

2(1− ν2
f )
, (5.6b)

w = 2tρf + hρc. (5.6c)

The above equations were derived under the assumption that the transverse shear stiffness
is determined only by the core, and the bending stiffness only by the faces [57]. To take
the bending stiffness contribution of the core into account one can add the corresponding
term to Eq. (5.6b) giving

D =
Ech

3

12(1− ν2
c )

+
Ef th

2

2(1− ν2
f )
. (5.7)

To match the model properties to the desired values the three conditions, Eqs. (5.6a),
(5.6c) and (5.7), need to be satisfied, which is not possible with only two free parameters.
Matching the transverse shear stiffness of the model is considered less important. There-
fore, the condition Eq. (5.6a) is neglected in the following. A database containing the
properties of available face and core materials was set up. This allows the computation of
the bending stiffness and mass per area, by Eqs. (5.6c) and (5.7), for all possible material
combinations. The results can then be ranked according to the cumulative relative error
with respect to the desired values, identifying the best sandwich.

The axial stiffness of the air chambers is determined by the membrane stiffness of
the skirt and by the compressibility of the gas in the chamber, as derived in Section 2.2.
Recalling Eq. (2.7) the axial stiffness is

kc = pcγ

(
1 +

2γrpc
tE

)−1
r2π

h
, (5.8)

where pc denotes the absolute air pressure in the chamber, r the radius and h the hight of
the chamber, E the Young’s modulus and t the thickness of the membrane. The pressure
difference between internal chamber pressure and the atmospheric pressure is determined
by the mass of the platform and the geometry of the air chambers. It is several orders of
magnitude smaller than the atmospheric pressure (ca. 50Pa vs. 101.325Pa). Therefore,
the absolute pressure in the air chamber will be almost the same for the prototype and
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the model. The axial stiffness of the air chamber then does not scale like the Froude
scale requirement of c2, if the skirt is scaled geometrically. The axial stiffness of the air
chambers in the model will be generally too large. A possibility to achieve a correctly
scaled axial stiffness is to adjust the membrane stiffness of the model skirt accordingly:
The desired, i.e. Froude scaled, ratio between axial air chamber stiffness of prototype and
model is

kc,p
kc,m

= c2 (5.9)

To enforce above condition the membrane stiffness of the model skirt

Emtm =
2γrmpc

2γrmpc
Eptp

c2 + c− 1
, (5.10)

must be realised. For typical skirt materials and scale factors this condition leads to very
thin (<20 µm) membranes. Therefore, in practice the axial stiffness of the air chamber
will be too high. To come close to the desired stiffness, the skirt membrane should be as
thin and flexible as possible.

5.2.2 Description of the Scale Models

Two different models of different prototypes were built and tested. Both have an arrange-
ment of four cylindrical air chambers with circular cross section. The centres of the air
chambers coincide with the centres of the quarters of the quadratic plate. The main di-
mensions of the two models are noted in Table 5.3. Different composite sandwiches were
used as plates to obtain the desired plate properties [71, 72]. The skirt was manufactured
from polyethylene (PE) foil.

Model 1 (small) Model 2 (large)

Scale factor 60 75

P
la
te

Size in m 0.98 4.0
Bending stiffness in Nm 9.994 191.6
mass per area in kg/m2 0.448 0.864

Sk
ir
t

Diameter in m 0.169 1.8
Length in m 0.320 0.323

Chamber height in m 0.125–0.208 0.2
Membrane thickness in µm 13.0 10.0
Ballast per chamber in kg 0.096–0.448 0.848

Table 5.3: Data of the scale models.

5.3 Behaviour of the Platform in Waves
One of simplest methods to determine the steady state response of a system to harmonic
forcing, i.e. its transfer function, is to measure it directly: The system is exited with a
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single, harmonic input signal of known amplitude and frequency, and the steady state
output is measured. From this measurement one point of the transfer function can be
computed. This experiment needs to be repeated for all frequencies of interest. A disad-
vantage of this method is, that it may take a long time to determine the transfer function
in high resolution. On the other hand, the generation of harmonic forcing is simple, and
no assumptions about the model must be made in order to allow for its identification.

Another method to determine the transfer function is to use spectral analysis. Here
a linear system is excited with a signal with broadband frequency content. The fre-
quency content of the output signal, i.e. the output spectrum, is then compared to the
input spectrum yielding an estimate of the transfer function of the system. While this
method ideally only requires one experiment to determine the transfer function, in prac-
tise the generation of a sufficiently broadband wave spectrum is difficult. Furthermore,
the frequency resolution of the transfer function estimate depends on the length of the
measurement, requiring long measurement runs, which typically lead to reflections in a
wave tank.

Both methods were applied to determine the transfer functions of platform models.
Details of the analysis procedure will be given in the following.

5.3.1 Test Setup

A typical two-dimensional wave tank consists of a long channel and a wave making device
capable of producing waves travelling in one direction [9]. At the end of the channel, an
active or passive wave absorbing structure may be installed to prevent reflected waves
from impacting the measurement. The floating structure can be towed through the tank
in order to test its behaviour in the combination of forward speed and waves. However,
for the stationary floating platform under investigation here, towing is not necessary.

A test facility was built to test the small model. Two parallel separation walls were
inserted into a commercial swimming pool, creating a 2m wide, 9m long and 1m deep
wave tank. At one end a plunger type wave maker was created by a floating body across
the channel width. The body is excited to oscillate vertically by forces introduced by an
elastic connection to a electromechanical shaker. The side of the body facing into the
tank is inclined at 45◦ with respect to the water surface, thereby maximising the hight of
the produced waves [73, 79]. In this way it is possible to exploit the natural frequency of
the floating body. Regular waves with a frequency range of 1.2 to 5Hz can be produced
by this system. The lower limit in the frequency range is given by the operation range of
the shaker, and the upper by the response characteristic of the floating body. At the other
end of the channel an inclined (ca. 15◦) plate was installed, creating a wave absorbing
beach. Figure 5.2 shows some photos of the test facility.

The large model was tested in the 180m long 10m wide and 5m deep towing tank
of the Vienna Model Basin [76]. The tank was equipped with a flapper type wave maker
capable of producing both regular and irregular waves [76]. The water elevation was
measured at the side of the tank (approximately 30 cm from the wall) at one location
before the waves hit the model with a capacitive wave probe. Figure 5.3 shows a picture
of the model in the tank.
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(a) Water basin (b) Separation walls

(c) Wave maker (d) Beach

(e) Model (f) Wave probe

Figure 5.2: Images of the testing tank for the small model.
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Figure 5.3: Picture of the model in the towing tank. The wave generator is visible at the
end of the tank, the wave probe close to the right tank wall.

5.3.2 Measurement of Displacements and Deformations

In order to minimise the impact of the measurement system on the system behaviour,
optical measurement systems are employed to record the spacial position of markers fixed
to the platform. Two different commercially available 3D motion capture system using
infra-red markers were used [46, 56]. A third measurement system offering a larger spacial
resolution, i.e. a larger number of targets, developed by Rupnik and Jansa [60] was used
alongside the commercial systems.

All measurement systems output the spacial position of every target point at every
measured time frame. The output coordinates are defined in the frame of reference of the
measurement system, subsequently called camera frame and denoted with 0. The camera
frame might not be convenient for further processing of the data, because it might not
relate to the physical surroundings. Therefore, the data points are transformed into a
Cartesian coordinate system aligned with the water surface and wave direction. This
coordinate system will be termed ground frame, and denoted with g, in the following. In
order to define the position and orientation of the observed structure a coordinate system
moving with the structure, subsequently termed body frame and denoted with 2, will be
used. Figure 5.4a shows the different coordinate systems.

In general a Cartesian coordinate system can be defined by three, non-collinear points
in space, as described in detail in Appendix D.6. In order to define the relation of the
ground frame with respect to the camera frame the coordinates of this three defining points
must be known. They can, for example, be specified by markers placed in the measurement
space at physical points of interest. Now the transformation relation between the two
systems can be defined, as described in Appendix D.7. The body frame should move with
the observed floating platform and represent it’s rigid body motion. For the case of a
deformable body, the definition of a coordinate system by three points poses the problem
of coupling of deformation and rigid body movements. Therefore, all markers located at
the ideally plane plate are used to define the moving frame: The x–y plane of the body
frame is defined the plane

zg = k00 + k10xg + k01yg, (5.11)
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Figure 5.4: Sketch showing the different coordinate systems (a) and the definition of the
body frame by a surface fit to the platform markers (b).

with coefficients kmn obtained by a least squares fit to the marker positions gpi of the
platform. The origin of the body frame is the normal projection of the centre of all
markers of the platform onto the interpolation surface. By the vector from the origin to
the projection of an arbitrary marker of the platform onto the interpolation surface, the
x2-direction is defined. The z2-direction is defined by the normal vector of the interpo-
lation surface n = [−k10,−k01, 1]T . The whole process is visualized in Fig. 5.4b. The
orientation of the body frame with respect to the ground frame can be described by the
three Euler angles, defined in detail in Appendix D.8.

The measured positions of the platform markers displayed in the moving frame de-
scribe the deformation of the structure. However, this description is somewhat extensive,
especially if a lot of markers are measured on the platform. An efficient description
can be achieved if a model approach is used. In order to to characterise the defor-
mation figure a set of arbitrary deformation modes are chosen. The modal basis com-
prises the six rigid body displacement modes, two plate bending modes and one plate
twist mode. The rigid body rotation modes are included to check if the moving co-
ordinate system indeed follows the rotation of the plate. The modes are displayed in
Fig. 5.5. In order to compute the modal coordinates corresponding to a deformation vector
me = [mx1 ,mx2 , . . . ,mxM ,my1 , . . . ,myM ,mz1 , . . . ,mzM ]T , the linear system of equations

V η = me, (5.12)
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Figure 5.5: Modal basis used to characterise the deformation: (a) translation in the
x-direction; (b) translation in the y-direction; (c) translation in the z-direction; (d) ro-
tation around the x-axis; (e) rotation around the y-axis; (f) rotation around the z-axis;
(g) bending around the y-axis; (h) bending around the x-axis; (i) twist. The displaced
points (green circles) are connected with the original points (blue crosses) by the displace-
ment vectors (black arrows).
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has to be solved. The columns of the system matrix

V =



v1x1 v2x1 . . . vMx1

v1x2 v2x2 . . . vMx2
...

...
...

v1xN v2xN . . . vMxN

v1y1 v2y1 . . . vMy1
...

...
...

v1yN v2yN . . . vMyN

v1z1 v2z1 . . . vMz1
...

...
...

v1zN v2zN . . . vMzN


, (5.13)

contain the modal displacement vectors of the M arbitrary deformation modes vi =
[vix1 , vix2 , . . . , vixN , viy1 , . . . , viyN , viz1 , . . . , vizN ]T , which describe the modal displacements
of the N platform points. The modal displacement vectors are normalized to a maximum
point displacement of 1m. The vector of modal coordinates η = [η1, η2, . . . , ηM ]T contains
the M modal coordinates.

If the number of modes M is smaller than the number of degrees of freedom 3N the
linear system of equations (Eq. (5.12)) is overdetermined. It is then solved in the least
squares sense. The least square solution is unique if the system matrix is of full rank,
i.e. rank(V ) = M . This is the case for a set of linearly independent deformation modes.
The solution is computed in Matlab by the "\"-operator [67]. The experimentally deter-
mined deformation figure me is approximated by the corresponding modal coordinates
determined by the least squares solution of Eq. (5.12). The shape of the residual mode
mr defined by

mr = me − V η, (5.14)

can be used to determine the quality of the modal approximation. If significant defor-
mation modes were not included in the modal basis, they would show up in the residual
mode shape. Figure 5.6 shows the experimentally determined deformation at wave fre-
quency, the modal approximation, and the residual mode. It can be seen that the modal

x y

z

(a) exact measurement

x y

z

(b) modal approximation

x y

z

(c) residual

Figure 5.6: Comparison of the steady state deformation figures. The maximum displace-
ments of the deformation figures (a) 7.338mm, (b) 7.431mm, and (c) 0.845mm are scaled
to the same value for all cases to better visualize the deformation figure. The displaced
points (green circles) move on trajectories (black lines) around the original points (blue
crosses).
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Mode 1 2 3 4 5 6 7 8 9
participation in % 0.0 0.0 2.2 0.1 0.2 3.5 3.1 5.7 85.2

Table 5.4: Modal participation in the modal approximation of the deformation shown in
Fig. 5.6b. The corresponding modes are depicted in Fig. 5.5.

approximation is of very good quality. The total displacement is almost the same for the
modal approximation and the experimentally measured shape. The residual is very small
in comparison (ca. 11.5%), and its shape looks more or less random.

The participation of the individual modes in the modal approximation can be evaluated
by computing their modal participation factors

pηi =
|ηi|∑M
j=1 |ηj|

. (5.15)

The modal participation factors for the deformation mode depicted in Fig. 5.6b are de-
noted in Tab. 5.4.

5.3.3 Regular Wave Experiments

Each point of the transfer function is determined by one measurement run in regular
waves, where wave excitation and platform response are recorded over the measurement
time. Therefore, a sufficiently high number of experiments is necessary to obtain transfer
functions with acceptable frequency resolution. The transfer functions are defined by the
steady state amplitude and phasing of every measured quantity. Because the length of
the transient phase after starting the wave generator is not a priory known, and may
differ slightly from experiment to experiment, a sufficiently large time interval must be
measured. The system is assumed to be linear. A simple, one dimensional example for
the expected system behaviour is the damped spring mass system with harmonic forcing
with the equation of motion

mẍ+ cẋ+ kx = f̂ eiωt, (5.16)

where m denotes the oscillating mass, c the damping and k the spring constant. The
general solution of this linear ordinary differential equation is obtained as the sum of
its homogeneous and particular solution [21]. In Fig. 5.7a the exponentially decaying
oscillation of the transient phase as well as the steady state time interval can be clearly
recognized.

As the steady state signals are harmonic it appears straightforward to employ Fourier
analysis, which is briefly summarised in Appendix D.1. Fourier transformation offers an
efficient and robust way to extract the steady state oscillation amplitude as well as the
oscillation frequency and phase from the time signal. In the practical implementation
the discrete form of the Fourier transform, described in detail in Appendix D.2, is used.
The signal x(tj) = xj with N data points, equally spaced in time from t = 0 to t =
(N−1) ∆t is sampled with the sampling frequency 1/∆t. The maximum frequency which
may be present in the sampled signal is fc = 1/(2∆t), the so called Nyquist frequency,
which equals half the sampling frequency [61]. If higher frequencies are present aliasing
occurs. The frequency resolution ∆f = 1/(N∆t) obtainable with the discrete Fourier
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Figure 5.7: Total and homogeneous solution of Eq. (5.16) for m=1kg, k=100N/m,
c=2kg/s, f̂=10N, ωf=50.266 s−1 (a), and the absolute value of the Fourier coefficients
computed from different parts of the total solution (b).

transform (DFT) depends on the length of the signal. To determine the amplitude of a
harmonic with a specific frequency most accurately, the signal length should correspond
to an integer multiple of this frequency. Frequencies in the signal which do not lie exactly
on the discrete DFT frequencies cause leakage. Figure 5.7b shows the amplitude spectra
of two different parts of the signal depicted in Fig. 5.7a. The spectrum of the transient
phase shows a peak at the system’s natural frequency in addition to the smaller peak
caused by the harmonic forcing.

The phase difference between the wave signal and the output signals depends on the
relative position at which the water elevation is measured. In order to achieve comparable
measurements the position dependent phase difference must be accounted for. The phase
difference of the platform response should always be measured with respect to a reference
wave located in the centre of the platform. The geometry is depicted in Fig. 5.8. For the
sake of simplicity the xg-direction coincides with the propagation direction of the waves.
For a regular wave measurement the wave signal can be approximated by good accuracy
with a single harmonic. The phase velocity of this harmonic can be computed by

cp = λf =
g

2πf
, (5.17)

according to linear wave theory. In Eq. (5.17) g denotes the gravitational acceleration, f
the frequency of the harmonic, and λ the wave length. A wave measured at a position
∆x before the model position will arrive at the model with a time lag ∆t = ∆x/cp. The

zg

wave probe
x2

z2

xg

∆x

λ

model

Figure 5.8: Pase difference
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signal at the model position can be written as

wn(t) ≈ |Wn| cos

(
− arctan

Im(Wn)

Re(Wn)
− ωn (t−∆t)

)
= |Wn| cos

(
− arctan

Im(Wn)

Re(Wn)
+
ω2
n∆x

g︸ ︷︷ ︸
ϕx

−ωnt
)

= Re
(
Wne

−iϕxeiωn
)

, (5.18)

where ωn = 2πfn is the angular frequency of the considered harmonic. In order to correct
the phase of the Fourier coefficients of the measured wave signal they have to be multiplied
by e−iϕx , where ϕx is the position dependent phase angle computed by

ϕx =
(2πfn)2 ∆x

g
. (5.19)

The value of the transfer function for a single regular wave measurement is obtained
by dividing the Fourier coefficient of the output signal by the phase-corrected Fourier
coefficient of the wave signal. The so called response amplitude operator (RAO) is the
absolute value of the transfer function and describes the ratio between output and input
amplitude. The response amplitude operators for the translational degrees of freedom
should be normalised to the wave amplitude. For the rotational degrees of freedom the
response amplitude operators should be normalised to the wave slope [34]. The pressure
response is normalized to the dynamic pressure at the water surface, which can be com-
puted from the water elevation by multiplying by ρwg, where ρw is the water density. The
modal displacements are normalized to the wave amplitude. Regardless of the quantity
of normalization, i.e. wave amplitude, wave slope, and dynamic pressure, all phase differ-
ences are computed with respect to the phase-corrected water elevation signal. This is
important for the wave slope signal, which has in fact a phase shift of π with respect to
the wave elevation signal.

5.3.4 Experiments in Irregular Waves

In an irregular wave measurement the model is excited by a defined superposition of regu-
lar waves. The excitation follows a predefined wave spectrum. Time signals of excitation
and system response are recorded. Spectral estimates of the time signals can then used
to determine the transfer function of a linear system.

5.3.4.1 Spectral Analysis

Converting the measured time records of excitation x(t) and response y(t) into the fre-
quency domain, one can determine the transfer function of a linear system. The estimate
for the transfer function is

H(ω) =
Sxy(ω)

Sxx(ω)
, (5.20)

where Sxx(ω) is the (autospectral) energy density spectrum of the input, and Sxy(ω) is
the cross spectral density function between input and output. The absolute value of the
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transfer function, i.e. the RAO, can be estimated using only autospectral energy density
spectra of in- and output by

RAO(ω) = |H(ω)| =

√
Syy(ω)

Sxx(ω)
, (5.21)

where all phase information is lost. The energy density spectrum of the measured signal
can be obtained using different estimation methods.

5.3.4.2 Spectral Estimation

The mean square spectral density of a time signal can be estimated in various ways. The
different estimation methods can be categorized into

• Non-parametric methods,
• Parametric methods, and
• Subspace methods.

In non-parametric methods the mean square spectral density, or power spectral density
(PSD), is estimated directly from the time signal. The simplest non-parametric method
is the periodogram. The variance of the estimation can be reduced by more complex
methods like Welch’s method [81] or multitaper methods [68].

Parametric methods are built on the assumption that the signal is the output of a
linear system with white noise as input. The spectrum estimate is the generated by
means of system identification. This methods will not be treated in the following.

Subspace methods, also known as high-resolution methods or super-resolution meth-
ods, generate frequency component estimates for a signal based on an eigenanalysis or
eigendecomposition of the autocorrelation matrix. They are especially useful for the esti-
mation of line-spectra [67].

In the following different estimators are explained and tested on an example signal.
As an example a short therm wave record of a sea state with Pierson-Moskowitz spectrum
with Hs=3.06 cm and Tm=0.7 s is used. The signal is the sum of 2991 harmonics, equally
spaced in frequencies between 0.1Hz and 30Hz. The amplitudes are computed from the
spectrum according to Eq. (A.15). The phase angles are taken from a uniform distribution
between −π and π. The signal is then computed according to Eq. (A.14). Figure 5.9 shows
the total, 106 s long signal, and a detail. It can be seen that the sampling frequency of
60Hz is sufficient.

Periodogram: The periodogram of a realization of a random process, i.e. the discrete
series xn = x1, . . . , xN , is computed by

P̂xx(fk) =
1

N

∣∣∣∣∣
N∑
n=1

xne
−i2πnfk

∣∣∣∣∣
2

, (5.22)

where the sum can be identified as the discrete Fourier transform (DFT) of the series
(compare Eq. (D.6)). For real valued signals the one-sided periodogram is computed,
i.e. the DFT is evaluated at the frequencies fk = fsk/N where fs donates the sampling
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Figure 5.9: Time signal computed from 2991 harmonics with amplitudes generated from a
Pierson-Moskowitz spectrum with Hs=3.06 cm and Tm=0.7 s for equally spaced frequen-
cies between 0.1Hz and 30Hz and random phase angles. The sampling frequency is 60Hz
and the signal length 160 s.
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Figure 5.10: Periodogram of the signal in Fig. 5.9 (a); the 95%-confidence interval can
only be shown in logarithmic scale (b).

frequency of the data in xn, and k = 0, . . . , N/2. The periodogram is an asymptotically
unbiased estimator for the true PSD. For finite signals the estimate is biased. The peri-
odogram is not a consistent estimator of the true spectral density because the variance
of the periodogram does not decay to zero regardless of the sample size [67]. Further-
more, the variability of the periodogram is very high. Figure 5.10 shows a periodogram
computed from the example signal described above. It can be seen that the true PSD is
very badly estimated. Furthermore the 95% confidence bounds are very high, i.e. they
can only be displayed in logarithmic scale.

A possibility to decrease the bias of the periodogram is to use windowing [24]. The
data is multiplied by a suitable window function prior to computation of the so called
modified periodogram. Figure 5.11 shows different window functions for 21 samples as
well as their Fourier transforms. The rectangular window corresponds to no window at all,
i.e the original periodogram. The resolution of a periodogram is determined by the width
of the main lobe of the Fourier transform of the used window. In order to distinguish two
distinct harmonics, their frequency spacing must be grater than the width of the main
lobe. Figure 5.12 shows modified periodograms computed with different window functions
from the example signal described above. It can be seen that the prediction of the true
PSD is still very bad. The confidence levels are comparable to the periodogram.
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Figure 5.11: Different window functions (a) and their Fourier-transformation (b).
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Welch’s Method: A method to decrease the variance of the spectral estimator is
Welch’s method. The data is split into overlapping segments from which modified pe-
riodograms are computed. These modified periodograms are then averaged, thereby cre-
ating a consistent estimator for the true PSD [81]. The overlap should not exceed 30% of
the segment length. The segment length Ns can be computed by Ns = N(100 − p)/100
where N is the total number of data points and p is the overlap in percent. A small seg-
ment length yields bad frequency resolution but low variance, whereas estimations from
a few, long segments have better frequency resolution but high variance. For a practical
application this trade off must be considered. A possible approach is to try several seg-
ment lengths, beginning with short segments, and to compare the results. This procedure
is visualized in Fig. 5.13 for the example signal described above. For segments which
are too short, excessive frequency leakage occurs (see Fig. 5.13a). If the segments are
chosen too long the variance increases and the estimate becomes jagged (see Fig. 5.13d).
A suitable number of segments for the estimation of the PSD of the example signal seems
to be around 30. It can also be seen that the type of window does not have a major
impact. The Blackman-Harris window shows the largest leakage for short segments (see
Fig. 5.13a).
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Figure 5.13: Spectral estimation of the signal in Fig. 5.9 by Welch’s method: comparison
of different segment lengths and window functions. The total signal is split into Ns

segments which overlap 30%. The errorbars show the 95% confidence bounds.
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Figure 5.14: Spectral estimation of the signal in Fig. 5.9 by the Thomson multitaper
method: Comparison of different time-bandwidth products P . The 95% confidence
bounds are shown.

Thomson Multitaper Method: Another method for reducing the variance of a spec-
tral estimator is to use multitaper methods first introduced by Thomson [68]. Here mul-
tiple data tapers (i.e. windows), are used to compute a number of modified periodograms,
which are then averaged. It is possible to use an weighted average, so called adaptive
frequency-dependent average, to reduce the effects of frequency leakage [49, 68]. If data
tapers used are mutually orthogonal, the individual spectral estimates are approximately
uncorrelated, which efficiently decreases the variance of the estimate [50]. Furthermore,
tapers with minimal leakage are desired [49]. Both above requirements are fulfilled by
discrete prolate spheroidal sequences described by Slepian and Pollak [62] as tapers, also
referred to as prolate eingentapers. A prolate eigentaper with a time-bandwidth product
of P = NW is called a Pπ prolate taper; it concentrates spectral energy in frequency
bands of width 2W = 2P/N [49]. If a higher time-bandwidth product is used, more
tapers with wider main lobes can be used. It, therefore, represents a trade-off between
variance decrease and resolution increase. Figure 5.14 shows spectral estimates by the
Thomson multitaper method of the example signal described above for different values
of the time-bandwidth product. It can be seen that, for the analysed signal, an opti-
mal value of P is around 25. For too high values excessive frequency leaking occurs (see
Fig. 5.14a), whereas for too low values the estimate becomes jagged and the variance is
large (see Fig. 5.14c). Compared to Welch’s method, the multitaper method offers a much
better frequency resolution with lower variace at the same time (compare Fig. 5.13c and
Fig. 5.14b).

5.4 Measurement of Natural Frequencies and Oscilla-
tion Modes

The natural frequencies of a structure are an inherent system property and of great
importance when the dynamics of the system are investigated. For freely floating struc-
tures, the natural frequencies, and especially the corresponding damping factors play an
important role when the structure’s response to waves is considered. Therefore, it is de-
sirable to measure the natural frequencies and mode shapes of the platform. Most of
the experimental methods for estimating oscillation modes involve the the construction
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of transfer functions, which requires the measurement of excitation and response simul-
taneously [1, 16]. If no excitation data is available, the free response can be analysed by
the so called Ibrahim time domain method (ITD) [19, 29], which was originally proposed
by Ibrahim and Mikulcik [28]. The method allows the calculation of natural frequencies,
together with their corresponding damping factors and mode shapes.

In the following the concept of the ITD method is outlined, closely following Ibrahim
and Pappa [29]. Different strategies for the assessment of the identification accuracy are
presented. Finally, a new method for automatic processing and sorting of results obtained
from multiple experiments is presented.

5.4.1 Theory of the Ibrahim Time Domain Method

The equations of motion for a linear dynamic system are commonly written in the from

Mẍ+Cẋ+Kx = 0, (5.23)

withM , C andK as the mass, damping, and stiffness matrix, respectively. The response
of each degree of freedom contained in x if m modes are exited can be written as

x(tj) =
2m∑
k=1

ψke
λktj , (5.24)

where λk are the 2m eigenvalues of the characteristic equation of Eq. (5.23) and ψk are
the corresponding complex eigenvectors.

The response of a freely oscillating structure x(t) can be measured at n positions.
The signal is commonly sampled, which gives a matrix of measurement data which can
be related to the eigenvectors by Eq. (5.24) to form

x1(t1) x1(t2) · · · x1(tp)
x2(t1) x2(t2) · · · x2(tp)

...
...

...
xn(t1) xn(t2) · · · xn(tp)

 =


ψ11 ψ12 · · · ψ1,2m

ψ21 ψ22 · · · ψ2,2m
...

...
...

ψn,1 ψn,2 · · · ψn,2m



eλ1t1 · · · eλ1tp

eλ2t1 · · · eλ2tp
...

...
eλ2mt1 · · · eλ2mtp

 ,
(5.25)

or simply
X = ΨΛ. (5.26)

Writing the above relation for response data that occurs ∆t1 later in time yields

xi(tj + ∆t1) =
2m∑
k=1

ψik e
λk(tj+∆t1) =

2m∑
k=1

[
ψik e

λk∆t1
]
eλktj =

2m∑
k=1

ψ̂ik e
λktj , (5.27)

or again in matrix form
X̂ = Ψ̂Λ. (5.28)

It may be seen that, in the case of p ≥ 2m, the matrices Ψ and Ψ̂ are related through
Eq. (5.26) and Eq. (5.28) by

AΨ = Ψ̂. (5.29)
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The so called system matrix A can be obtained by solving

XTAT = X̂
T
, (5.30)

where the superscript T donates the matrix transpose. This can be done for example by
computing A = X̂XT (X̂XT )−1 or, in a least squares sense, by single value decompo-
sition of the coefficient matrix of Eq. (5.30). Recalling Eq. (5.27) it can be seen, that
the columns ψk of Ψ and the corresponding columns of Ψ̂ are related by ψ̂k = eλk∆t1ψk.
Therefore, using Eq. (5.29), one can write

Aψk = eλk∆t1︸ ︷︷ ︸
sk

ψk, (5.31)

which can be recognised as a standard eigenvalue problem. It can be seen that the
eigenvectors ψk ofA are the same as the eigenvectors of the dynamic system (described by
Eq. (5.23)). The eigenvalues sk = ak+ibk ofA and the desired eigenvalues λk = −δk±iωd,k
of the dynamic system are related by

δk = − 1

2∆t1
ln(a2

r + b2
r) (5.32a)

ωd,k =
1

∆t1
arctan

(
br
ar

)
(5.32b)

from which the un-damped natural frequencies ωn,k =
√
ω2
d,k + δ2

k and corresponding
damping ratios ζk = δk/ωn,k can be computed.

5.4.2 Assessment of the Identification Quality

The ITD algorithm produces as many modes as measurement stations are used. Most
of these modes are not physical modes of the structure, but so called computational
modes. The computational modes can be easily identified by visual inspection, as can
be seen in Fig. 5.15. Because visual inspection is very time consuming, it is desired
to sort out computational modes automatically. To separate the computational modes
from the desired structural modes the system matrix can be further enlarged by using so
called transformed measurement stations in the measurement matrix, which are created
by time shifting the actual measurement data by time ∆t2 and ∆t3. The assembly of
the measurement matrices is visualized in Fig. 5.16. The real measurement stations are
denoted a, b, and c. They can be time shifted by ∆t2 to create artificial measurement
stations to increase the number of degrees of freedom of the mathematical system in case
the number of structural modes contained in the response is higher than the number of
available measurement stations. The time shift ∆t3 is used to create the lower half of the
measurement matrices. It, therefore, only contains transformed measurement stations
and is used to distinguish between computational and structural modes, as well as to
calculate the modal damping in an alternative way.

The assessment of the calculated mode shapes is not always easy and various tech-
niques have been developed to help assessing the quality of identified modes. All of these
techniques rely on the fundamental time-shift relationship for perfect identification

lψik = uψik e
λk∆t3 , (5.33)
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Figure 5.15: Comparison between physical (a) and computational (b) modes extracted
by the ITD algorithm.

X =



a1 a2 · · · a30

b1 b2 · · · b30

c1 c2 · · · c30

a9 a10 · · · a38

b9 b10 · · · b38

c9 c10 · · · c38

a17 a18 · · · a46

a5 a6 · · · a34

b5 b6 · · · b34

c5 c6 · · · c34

a13 a14 · · · a42

b13 b14 · · · b42

c13 c14 · · · c42

a21 a22 · · · a50



X̂ =



a4 a5 · · · a33

b4 b5 · · · b33

c4 c5 · · · c33

a12 a13 · · · a41

b12 b13 · · · b41

c12 c13 · · · c41

a20 a21 · · · a49

a8 a9 · · · a37

b8 b9 · · · b37

c8 c9 · · · c37

a16 a17 · · · a45

b16 b17 · · · b45

c16 c17 · · · c45

a24 a25 · · · a53


∆t1

∆t2

∆t3

Figure 5.16: Assembly of the measurement matrices.

which relates the time shifted elements in the lower half of the response matrix with
the original data in the upper half connected with the calculated eigenvalues. In reality
Eq. (5.33) will not be exactly satisfied, and the ratio between expected values (right
hand side of Eq. (5.33)) and actually measured values (left hand side of Eq. (5.33)) is
the (complex valued) modal confidence factor MCF [27]. For well identified modes the
absolute value of the MCF will cluster around unity and its phase angle around 0. For
computational modes, absolute value and phase of are randomly distributed. A more
compact formulation, only one value per mode, is the so called overall modal confidence
factor OAMCF, which is the percentage of MCF values whose absolute value is at least
0.95 and whose phase difference is a maximum of 10◦ [27].

Similarly one can use the complex valued mode shape coherence and confidence factor

MSCCFk =
uψT

k
lψ∗k e

λk∆t3

lψT
k
lψ∗k

, (5.34)
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introduced by Gao and Randall [19] which has an absolute value of unity for a perfectly
identified mode.

Additionally to the straightforward method of calculating the damping from the eigen-
values of the system matrix (see Eq. (5.32)), the damping factors can be estimated by the
comparison of estimated eigenvectors (upper half) with the corresponding time-shifted
eigenvector (lower half). This is done via the so called modal amplitude ratio MAR

MARk =
|uψT

k
lψ∗k|

uψT
k
uψ∗k

, (5.35)

from which an alternate modal damping value,

δ2,k =
ln(MARk)

∆t3
, (5.36)

can be calculated [29]. The damping ratios calculated in this alternative way, ζ2,k =
δ2,k/ωn,k, should generally agree well with the ones calculated via the eigenvalues for
correctly identified modes. Comparison of both values can be used to assess to identify
computational modes.

5.4.3 Automatic Mode Sorting

Often it is necessary to conduct numerous free oscillation experiments of the same struc-
ture, for example with different excitations, to determine all structural modes. In theory
analysis of every single experiment should yield the same mode shapes at the natural
frequencies and damping ratios, providing they were sufficiently excited. Visually com-
paring the modes of all experiments can be very time consuming. Mathematically the
correlations between two mode shapes ψ1 and ψ2 can be described by the so called mode
shape correlation constant MSCC computed by

MSCC =
|ψT

1ψ
∗
2|

2(
ψT

1ψ
∗
1

) (
ψT

2ψ
∗
2

) (5.37)

which corresponds to the square of the correlation coefficient computed between two
sequences of complex numbers [29]. Sometimes also the term modal assurance criterion
MAC is used for the above factor [16].

The MSCCs for all computed modes can be arranged in a symmetric matrix. By
observing this matrix corresponding mode shapes can be found. For example, summing
all MSCC values greater than 0.75 column wise, gives a vector with the number of similar
mode shapes for every mode. The matrix of MSCCs can be combined with matrices
describing the difference in natural frequency, or damping between modes, to achieve
more complex criteria on mode similarity. By picking modes that are detected at least n
times as ’master modes’, and searching for all similar modes, graphs like Fig. 5.17 can be
produced automatically. It can be seen that all modes found by visual inspection were
also identified by the automatic grouping mechanism. The already grouped modes can be
further classified by visual inspection. The automatic sorting procedure makes the post
processing of measurements about 10 times faster.
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Figure 5.17: Comparison of modes assembled by visual inspection (a) and by automatic
grouping (b).

5.5 Summary
Two different approaches were described to determine the transfer functions of a linear
system. They were tailored towards the use for wave excited floating platform. A modal
approach, allowing a concise description of the deformation of the platform-plate was pre-
sented. The described methods were applied to two different scale models. The obtained
results were used to validate the computational model described in Chapter 2 and are
presented in Section 2.7.3 and Appendices B.1 and B.2.

The Ibrahim time domain method was employed to experimentally determine the
modes including corresponding natural frequencies and damping factors of a free floating
platform. An algorithm to efficiently process results obtained from numerous measure-
ments was presented above. Results from the conducted measurement campaigns are
presented in Section 2.7.2 where they were used to validate the developed computational
model.



Chapter 6

Geometric Non-Linear Effects in Plates

Linear theory may be applied to problems where the displacements and rotations remain
small. For plate like-structures linear plate theory is applicable if the displacements are
small with respect to the dimensions of the plate [7]. For homogeneous, isotropic plates
precise limits for the applicability of linear theory can be made. However, for plates made
from anisotropic material, or inhomogeneous plate-like structures the definition of such
limits is not straight-forward. Especially when plate-like structures are deformed such
that the deformed shape is non-developable with respect to the original shape, non-linear
effects may play an important role.

6.1 Equations for Large Deflections of Plates
A plate theory taking large deflections of the reference surface into account is von Kar-
man theory. It is briefly outlined here in order to illustrate the effect of geometric non-
linearities. The theory uses a non-linear strain measure to account for the in-plane stretch-
ing that results from finite transverse displacements and rotations [7]. However, the in
plane strains are still assumed small such that second order therms can be neglected, and
the transverse displacements are assumed small enough to use a linearised measure of
curvature. The in plane strain tensor and the curvature change tensor are then

γαβ =
1

2

(
∂uα
∂xβ

+
∂uβ
∂xα

+
∂u3

∂xα

∂u3

∂xβ

)
, (6.1a)

καβ = − ∂2u3

∂uα∂uβ
, (6.1b)

where u denotes the displacements with the indices α and β determining the in-plane
directions 1 and 2, respectively [7]. Using the Kirchhoff hypothesis the strain field in the
plate can be approximated by

εαβ = γαβ + x3καβ. (6.2)

Integrating above equation over the plate thickness h and using the stress strain relations
for a linear elastic, isotropic material with Young’s modulus E and Poisson’s ratio ν one

102



CHAPTER 6. GEOMETRIC NON-LINEAR EFFECTS IN PLATES 103

obtains the relation between section forces and reference surface deformation

nαβ =
Eh

1− ν2
[(1− ν)γαβ + νγλλδαβ] , (6.3a)

mαβ =
Eh3

12(1− ν2)
[(1− ν)καβ + νκλλδαβ] , (6.3b)

where δαβ denotes the Kronecker-delta [7, 70]. The directions of the section forces and
moments are depicted in Fig. 4.2. A corresponding matrix equation is given in Eq. (C.13).

The balance of forces in vertical direction posed for a plate element together with the
strain compatibility equation yield the von Karman plate equations

∂4u3

∂x4
1

+ 2
∂4u3

∂x2
1∂x

2
2

+
∂4u3

∂x4
2
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2
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∂x2
1
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∂2φ

∂x2
1

∂2u3

∂x2
2

− 2
∂2φ

∂x1∂x2

∂2u3

∂x1∂x2

, (6.4a)
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2
2
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∂x4
2
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[(
∂2u3

∂u1∂x2

)2

− ∂2u3

∂x2
1

∂2u3

∂x2
1

]
, (6.4b)

in which p denotes a force per area acting perpendicularly to the plate and A = Eh3

12(1−ν2)

the bending stiffness of the plate [57, 70]. The two coupled equations can be solved for
the out-of-plane displacements u3 and the stress function φ which is related to the section
forces by

nαβ = (2δαβ − 1)
∂2φ

∂xα∂xβ
. (6.5)

The stains in the plate can subsequently be obtained from Eq. (6.2) by inserting the
solutions into Eqs. (6.1b), (6.3a) and (6.5).

The von Karman plate equations as posed in the above form take into account mem-
brane forces due to out of plate deformations. If the second order term in Eq. (6.1a) is
neglected one directly arrives at a linear plate theory, in which out-of-plane deformations
have no influence on membrane forces. While some analytic results exist for the solution
of the von Karman plate equations [70] a geometrically non-linear finite element formula-
tion is used to solve a plate problem related to floating platforms with four chambers in
the following.

6.2 Homogeneous, Isotropic Plates
In order to illustrate the impact of geometric non-linearities the simple example of an
isotropic, homogeneous plate is chosen. The plate is loaded similarly to a loadcase typi-
cally arising for a floating platform with four air chambers: Four reference nodes at the
centres of the chambers are coupled to the plate nodes such that a vertical displacement
of the reference node leads to a constant pressure onto the plate in the chamber area. Two
diagonal chambers are displaced downwards and the other two are displaced upwards.

Figure 6.1 shows a sketch of the dimensions of the model. The air chamber centres are
located at ±0.25l, and the radius of the chambers is 0.225l, where the reference length l
was chosen as 1m. The plate material is homogeneous, isotropic and linear elastic with a
Young’s modulus of 120GPa and a Poisson’s ratio of 0.3. Plates with different thickness h
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Figure 6.1: Sketch of the model geometry.

of l/1000, l/200, l/100, l/50, and l/20 were investigated. These plates can all be assumed
as thin plates because the thickness is smaller than 1/16 of the characteristic dimension
[12].

The problem is treated by the finite element method in a formulation including ge-
ometrically non-linear effects. 900 shell elements with linear interpolation and reduced
integration∗ are used. The equilibrium is computed in an incremental iterative procedure
for prescribed z-displacements of the reference nodes.

Figure 6.2 shows the computed section forces in the plate. The section forces are
related to the deformation of the reference surface of the shell via the shell’s stiffness
matrix, as detailed in Section 6.1. The deformation of the reference surface is characterised
by the in-plane strain and the change of curvature. Observing Eq. (C.13) one notices that
in-plane strains are coupled to the section forces, and the changes of curvature are coupled
to the section moments. Due to geometrically non-linear effects, out of plane deformations
lead to in plane-strains and, therefore, membrane forces. The twist like deformation
induced by the anticipated load case creates membrane tension along the edges of the
plate and membrane compression in the centre (see Figs. 6.2a and 6.2b). Additionally,
membrane shear is induced in the quarters of the plate (see Fig. 6.2a). In a geometrically
linear analysis these membrane forces would not occur. The section moments on the other
hand can be accurately predicted by geometrically linear analysis, provided the curvature
remains small.

The membrane forces are intrinsically non-linear while the section moments remain
linear in until the transverse displacements reach about 3h. In Fig. 6.3 the maximum
membrane force (in 1-direction) and the maximum section moment (in 1-direction) are
displayed for plates of different thickness. The maximum membrane force is proportional
to the square of the transverse displacement, as it is the product of the geometrically
non-linear effects. A slight deviation of this behaviour is visible tor the thinnest plate at
the point at which plate buckling occurs due to membrane compression in the centre of
the plate.

Observing the load displacement curve of the structure depicted in Fig. 6.4a one can
see that the model behaves linearly up to displacements equalling the plate thickness. In
a linear formulation membrane forces due to transverse deformations are not taken into
∗ Reduced integration is chosen to simplify post-processing. Checking displacement results against

fully integrated elements shows good agreement.
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Figure 6.2: Section forces and moments in the plate for the model with h = l/100 at a
reference node displacement of 0.00875l = 0.875h. The deformation is displayed scaled
by a factor of 5. The 1 and 2-axes coincide with x and z, respectively.
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Figure 6.3: Maximum membrane force (a) and bending moment (b) in the plate depending
on the maximum transverse displacement u for plates of different thickness. The section
moment is normalised by m11,0 = m11|u/h=3 in order to show the proportionality.
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Figure 6.4: Vertical reaction force (a) and maximum von Mises equivalent stress (b)
in dependence of the maximum displacement u for plates of different thickness. The
load displacement curves show the vertical reaction force at the displaced reference node
normalised by the value at u = h; The von Mises stress is normalised by the absolute
maximum for each plate.

account. This can lead to a serious underestimation of the occurring stresses. A linear
stress prediction for the investigated load case is accurate for transverse displacements up
to 3h. For larger displacements, in-plane stresses due to transverse deformation start to
have an impact. The thicker the plate the larger the transverse deformations can be until
non-linear effects play a role (see Fig. 6.4b).

6.3 Periodic Plate-Like Structures
For periodic plate like structures it is difficult to determine up to which transverse dis-
placement magnitude linear theory is applicable. Generally, linear theory is applicable if
the stresses due to plate section moments dominate over stresses due to plate membrane
forces [45]. Thus, the determining quantity is the ratio of bending to membrane stiffness.
For homogeneous, isotropic plates this is equivalent to h2, and linear theory is applicable
for small transverse displacements compared to h [45, 70]. For plate like structure the
height of the structure can not be used to estimate a limit for the applicability of linear
theory.

In order to illustrate how deceiving the physical height of a structure can be, an
example is presented in the following. Quadratic, plate-like structures with a dimension l
of 300m based on the unit cell presented in Chapter 4 are considered. The centres of the
four supporting air chambers are located at ±0.25l=75m, and the radius of the chambers
is 0.225l=67.5m (see Fig. 6.1 for a sketch of the geometry). The boundary conditions are
chosen as for the homogeneous, isotropic plates above, i.e. the reference nodes of the four
air chambers are constrained.

In a first load case gravity loading is applied to the plate structure. The nodes mod-
elling the position of the water plane are constrained to 0. In a subsequent load step the
nodes modelling the water plane are displaced by the expected maximum wave amplitude
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Name l1 in m l2 in m l3 in m r1 in m t1 in m r2 in m t2 in m β in ◦

Thin 10.0 10.0 7.071 0.135 0.004 0.135 0.001 0
Thick 10.0 10.0 15.0 0.3 0.01 0.3 0.01 45

Table 6.1: Dimensions of the unit cells as depicted in Fig. 4.3. The angle β defines the
orientation of the unit cell.

of 7.5m. The most critical wave heading of 45◦ is assumed, displacing the water-plane
nodes of two diagonal chambers upwards and the other two nodes downwards, as depicted
in Fig. 6.1.

Two different unit cells with dimensions given in Table 6.1 are considered. The thin cell
has a mass per area of 13.17 kg/m2 and the thick cell has a mass of 154.9 kg/m2. The thick
cell is considered with it’s top and bottom beams oriented in the direction of the plate
diagonals. This is achieved by specifying an appropriate orientation for the homogenised
stiffness properties: The homogenised plate properties are defined with respect to the unit
cell’s local 1-2-3 coordinate system. For the shell elements of the plate the orientation
of the unit cell with respect to the global x-y-z system needs to be specified. The unit
cell’s 1-2-3 system is defined by rotating the x-y-z system by an angle β around the
z-axis. The section forces are reported by ABAQUS with respect to the 1-2-3 system [12].
Therefore, they can be directly used for the localisation procedure without any coordinate
transformations.

The gravity load specified in the first load step is not critical in comparison to the
forces displacement in the second step. This can be explained by the continuous support
by the air chambers. Figure 6.5 shows the maximum von Mises equivalent stress in any
beam element of the thin model in dependence of the maximum deformation of the plate.
The stresses obtained by the localisation procedure are compared against stress values
from a full model, already used in Section 4.5. Excellent agreement is obtained for both
models up to the point at which beam buckling of diagonal beams occurs in the full model,
which leads to a sudden increase of the equivalent stress. The good agreement suggests the
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Figure 6.5: Maximum von Mises equivalent stress in any beam element for the wave-type
load step in dependence of the maximum plate displacement. Stresses obtained from a
homogenised model are compared to stresses from a full beam model. Dashed lines show
the prediction of a geometrically linear model.
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Figure 6.6: Ratio of maximum equivalent stress computed using only section moments
to maximum equivalent stress computed from all section forces in dependence of the
maximum plate displacement u for the wave-type load case.

usability of the linear homogenisation approach even for geometrically non-linear analyses
on the global level. Of course, geometrically linear unit cells can only be used as long as
the local deformations remain sufficiently small. The stress predictions of geometrically
linear models seriously underestimate the actual stress, because they neglect membrane
forces due to transverse displacements. For the thin model, membrane forces become
significant already for transverse displacements of about 1.5m, which is only about 1/5th
of the structure height.

The significance of membrane forces can be visualized if the stress fields obtained
from homogenisation considering only bending moments are compared to the stress fields
obtained from all section forces. The so computed ratio of von Mises equivalent stresses is
displayed for both models in Fig. 6.6. The maximum stress in the thick model is dominated
by the stress originating from plate bending moments even up to large twist deformations.
For the thin model membrane forces have a significant impact (ca. 10%) even for no twist
deformation, i.e. at the start of the second load step. As the twist deformation in increased
the impact grows and eventually becomes the dominating factor.

A comparison of the maximum equivalent stress in each unit cell for the gravity load
step of the thin plate model obtained through geometrically linear and non-linear analyses
is shown in Fig. 6.7. While the stress stress levels are still in an acceptable range the linear
model seriously underestimates the arising stress state.
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Figure 6.7: Maximum von Mises equivalent stress in each unit cell of the homogenised
model of the thin plate for the gravity load step. Values are in in MPa.
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6.4 Conclusion
In plate-like structures membrane forces arising due to transverse displacements can only
be predicted by a geometrically non-linear treatment. The significance of these mem-
brane forces depends on the magnitude on the transverse displacements in relation to an
effective thickness of the structure. The effective thickness represents the ratio between
bending and membrane stiffness of the plate structure. The higher this ratio the more
important are stresses due to section moments, while stresses due to membrane forces de-
crease in importance. Thus, within certain limits, higher transverse displacements can be
accurately predicted with linear theory only if the effective structure thickness is higher.
Especially for structures with anisotropic effective plate properties the prediction of the
effective thickness is difficult and may vary depending on load case. In such cases a
geometrically non-linear computation is highly recommended as the physical size of the
plate-like structure may be very misleading.



Chapter 7

Design of a Prototype Platform

In this chapter a possible design for a platform supported by four cylindrical air chambers
will be presented as an example. The previously developed and experimentally validated
computational models will be applied to determine the dynamical behaviour of the plat-
form in waves, and, subsequently, to describe the behaviour of the platform under the
expected environmental conditions. For these conditions, expected stress, displacement
and force amplitudes are computed based on probabilistic theory and compared with the
allowable limits, demonstrating the feasibility of the design.

7.1 Environmental Conditions
Loads on offshore floating platforms may result from environmental impacts like wind,
water waves and currents as described by DNV [14]. Wind and currents are not taken
into account in the current analysis, mainly due to the focus of the project to deliver
information on the motion of the platform as a basis to the efficiency calculation of a
concentrator system. Forces originating from wind or currents, as well as the resulting
forces from mooring lines, may be modelled as static forces and incorporated into the
current model in a straightforward matter.

Wave conditions can be described by wave spectra (for more detail see Appendices A.2
and A.4). Typical input parameters for wave spectra are the wind speed (as a single
parameter) or a mean wave period and significant wave hight (for two-parameter spectra).
Wave conditions vary form day to day and throughout the year. A typical description
of this so called metocean conditions involves the probability for certain combinations of
significant wave height, mean wave period, and possibly wave direction.

Data for the Mediterranean Sea, used as an input to the following computations was
collected by Diendorfer [13] and, for the sake of completeness, is presented in Fig. 7.1
and Table 7.1 in concentrated form. The most probable sea state which is observed 25%
of the time has a significant wave height of 1–2m and a mean wave period of 3–4 s. The
most severe sea state in terms of wave height has a significant wave height of 8–9m with
a mean wave period of 7–9 s and arises with a probability of 0.3%.
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Figure 7.1: Probability for a specific sea state in the Mediterranean Sea (a) and corre-
sponding JONSWAP spectra (b). Graphic based on the data in Table 7.1

Tm / Hs 0–1m 1–2m 2–3m 3–4m 4–5m 5–6m 6–7m

0–3 s 0.0990 0.0034 0 0 0 0 0
3–4 s 0.2515 0.1288 0.0027 0 0 0 0
4–5 s 0.1185 0.1157 0.0464 0.0022 0 0 0
5–6 s 0.0393 0.0574 0.0232 0.0156 0.0013 0 0
6–7 s 0.0127 0.0211 0.0078 0.0050 0.0038 0.0006 0
7–8 s 0.0052 0.0106 0.0021 0.0010 0.0006 0.0006 0.0002
8–9 s 0.0023 0.0077 0.0010 0.0002 0.0001 0.0000 0.0001
9–10 s 0.0008 0.0054 0.0011 0.0001 0.0000 0 0
10–11 s 0.0002 0.0023 0.0011 0.0002 0 0 0
11–12 s 0 0.0004 0.0007 0.0001 0 0 0
12–13 s 0 0.0001 0.0001 0.0000 0 0 0
13–33 s 0 0 0 0 0 0 0

Table 7.1: Probability of occurrence of particular sea states classified by mean wave period,
Tm, and significant wave height, Hs, in the Mediterranean Sea. A graphical representation
of the data is given in Fig. 7.1.
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7.2 Overall Dimensions of the Floating Platform
The general dimensions of the platform are based on the calculation of the optical efficiency
in dependence of the wave excitation by Diendorfer [13], where a platform size of 300m
was determined as the smallest size with acceptable efficiency. The unit cell for the truss
is chosen according to the unit cell presented earlier (see Fig. 4.3). The two unit cell
geometries given in Table 6.1 are used. For the thin cell the length of all beams l was
fixed to 10m, which determines the dimensions of the unit cell by

l1 = l2 = ld = l, (7.1a)

l3 =

√
l2d −

1

4
(l21 + l22) =

√
2

2
l. (7.1b)

The dimensions of the thin cell are the same as used before in the validation of the
homogenisation procedure in Section 4.5. The thick cell is considerably higher in order to
obtain a higher bending stiffness. Additionally, the thick cell is considered rotated by 45◦
such that the top and bottom beams are oriented in the diagonal directions of the plate.

As a material steel was selected, modelled by a linear elastic, isotropic material with
a Young’s modulus E of 210GPa, Poisson’s ratio ν of 0.3, and density ρ of 7860 kg/m3.
The areal mass of the plate structure can be directly computed by

w =
2ρ

l1l2

[
A1 (l1 + l2) + 2A2

√
1

4
(l21 + l22) + l23

]
, (7.2)

where the cross sectional area of the beam is

Ai =
[
R2
i − (Ri − ti)2

]
π, (7.3)

with the index 1 for the top and bottom beams and the index 2 for beams oriented
diagonally. The proposed design has an areal mass of 13.166 kg/m2 for the thin cell and
154.9 kg/m2 for the thick cell. Hence, the total mass of the plate framework is 1,184,940 kg
and 13,941,000 kg, respectively.

The centre points of the cylindrical air chambers are located at the centres of the
quarters of the plate. For the radii of the chambers a value of 67.5m was selected, leaving
reasonable gaps between the air chambers themselves and also to the edge of the plate.
The total length of the skirt was selected to be 25m. With the design hight of the air
chamber of 15m the skirt extends 10m below the water surface. This leaves rather large
safety margins even with the maximum expected wave hight of 15m∗.

The membrane stiffness of the skirt in circumferential direction is an important pa-
rameter for the dynamic model, as it governs the axial stiffness of the air chambers. For
the thin plate model a membrane stiffness of 4,200 kN/m was assumed. This could for
example be achieved by a 6mm thick polymer foil with a typical Young’s modulus of
0.7GPa. Assuming a skirt density of 1100 kg/m3 the total skirt mass of per chamber
is 69,979 kg. For the thick plate model a membrane stiffness of 500 kN/m was assumed.
This value could be obtained with elastomer membranes or by geometric effects (e.g. wavy
structures). For the thick model a mass of 20,000 kg was assumed for the skirt.
∗Estimated hight of the 100-year return period wave in the Mediterranean sea.
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The static pressure in the skirt can now be estimated based on total platform mass
(including a payload of 30 kg/m2) and the cross sectional area of the chambers. This
gives a static pressure of 714Pa for the thin plate model and 2865Pa for the thick plate
model. As the membrane forces and, hence, stresses in the skirt are directly related to
the chamber pressure (as described in detail in Section 2.2) values for skirt will not be
explicitly reported in the following.

7.3 Load Cases
The different investigated load cases are described in the following. The same model was
used for static as well as dynamic load cases. In all cases the rotation around the z-axis
of one plate node was constrained in order to disable the corresponding rigid body mode.

For all load cases the arising plate deformations, normal stresses, beam normal forces,
and chamber pressures were computed. The stress state in all beam elements is domi-
nated by the normal forces, with a small contribution from bending moments. The shear
stresses originating for torsion moments are negligible. Therefore, only the normal stress
component is taken into account when evaluating the yield criterion. A yield stress of
250MPa will be assumed for computing safety factors.

The normal forces in the beams are computed in order to compute the buckling safety.
A conservative estimate for the buckling load is given by

F ∗i =
π3EiR

3
i ti

li
, (7.4)

where l is the length of the beam, E the Young’s modulus, and R the radius of the pipe-
like cross section with small wall thickness t [57]. The index i emphasises that there may
exist multiple buckling loads depending on material, cross section, and beam length. For
the current unit cell two different buckling loads exist. The top and bottom beams have a
critical load of 613 kN and the diagonal beams have a critical load of 158 kN for the thin
plate model. For the thick plate model the respective values are 16,721 kN and 6,080 kN.
In both cases both critical loads lie below the normal force leading to yielding in the cross
section, hence elastic buckling is expected.

7.3.1 Static Equilibrium

Here the vertical displacement of the upper air chamber reference nodes were constrained
in vertical direction. Gravity loading was applied to the plate. An additional pressure load
was specified in order to take into account a payload amounting to 30 kg/m2. The weight
of the skirt as well as its buoyancy were taken into account by specifying an appropriately
adapted gravity loading. This load step is also used as an initial step for the steady state
dynamic analyses used to compute the transfer functions for the dynamic model. Hence
it is of importance for computing the total loading.

7.3.2 Quasi-Static Wave

For a first approximation of the wave loading a quasi-static approach is used. This load
case corresponds to a wave with amplitude a, travelling at 45◦ heading. The displacement
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of the waterplane nodes is set to ±a depending on their location, resulting in a twist-type
deformation of the plate. The amplitude is chosen to resemble the assumed maximum
wave height of 15m. This resembles the expected maximum wave height in the most
serious conditions, i.e. significant wave heights of about 7m, reported in the Mediterranean
Sea. The analysis is conducted geometrically non-linear with two subsequent load steps:
A load step to apply the gravity loading, and a subsequent step in which the waterplane
nodes are displaced. The springs modelling the air chambers are defined as non-linear
springs with zero stiffness in the tensional regime. Therefore, the plate might only be
supported by two chambers while the two other chambers are ’hanging free’ and don’t
transmit tensional forces as linear springs would.

7.3.3 Irregular Wave Spectrum

Real ocean waves may be described as a superposition of an infinite number of regular
waves according to a wave spectrum Sη(ω). For completeness, a more detailed description
of the representation of an irregular seaway is given in Appendix A.2, and commonly used
sea spectra are described in Appendix A.4.

The floating platform is modelled as a linear, single-input (wave), multi-output (plate
displacements and section forces, chamber pressures, etc.) system, as described in detail
in Chapter 2. The output for a single output variable x can then be given in terms of the
output spectrum

Sx(ω) = |Hxη(ω)|2 Sη(ω), (7.5)

where Hxη is the transfer function for output x with respect to the wave signal η [9, 55].
As the input for the system may be regarded as a random process with its properties
defined by the wave spectrum, the output may be similarly regarded as the realisation of
a random process with its properties defined by the response spectrum. Using probabilistic
theory, predictions about the response can be made based on the response spectrum. Most
useful for design purposes is the statistic of the expected response maxima. For a time
signal following a narrow band spectrum, the peaks of the response follow the Rayleigh
probability density function

f(x) =
x

m0

e
− x2

2m0 , (7.6)

wherem0 is the zero order moment of the output spectrum†, i.e. the variance of the output
time signal [6, 55]. For some quantities, e.g. displacements, the dynamic model delivers
the transfer functions directly. Transfer functions for quantities on unit cell level, on the
other hand, have to be computed by the localisation procedure described in Section 4.3.

As common wave spectra are narrow band, Rayleigh statistics are applicable [55]. Fig-
ure 7.2 shows an example wave signal computed from a Pierson-Moskowitz wave spectrum
(depicted in Fig. A.1c). It also compares the statistics computed directly from the peaks
with the Rayleigh distribution according to Eq. (7.6). It can be seen that the direct peak
statistics are matched very well by the Rayleigh distribution. The agreement gets better
the more narrow-band the spectrum is.

† The nth order moment of a spectrum S(ω) is defined as mn =
∞∫
0

ωnS(ω) dω.



CHAPTER 7. DESIGN OF A PROTOTYPE PLATFORM 115

t in s

η
in

m

20 40 60
-0.5

0

0.5

(a) time signal

η in m

f
(η

)

0 0.5 1 1.5
0

1

2

3

(b) probability density function

η in m

F
(η

)

0 0.5
0

1

(c) cumulative distribution func-
tion

Figure 7.2: Statistics of the peaks of the wave signal: (a) part of the wave signal with
peaks; (b) probability density function; (c) cumulative distribution function. Statistics
computed directly from the peaks are displayed as bar-plots (red); Rayleigh statistics as
continuous lines (blue).

A design criterion for the quantity x may now be defined in a statistical sense. The
amplitude x which is not exceeded by a probability of p may be computed from the
Rayleigh distribution’s cumulative distribution function

F (x) = 1− e−
x2

2m0 , (7.7)

by setting F (x) = p and solving for η. The so obtained amplitude value xp must then be
combined with the static value of the quantity x0 to compute the total value

xt = x0 ± xp, (7.8)

which must lie within the design limits, i.e. it must pass an appropriate failure criterion
like a yield criterion or critical buckling load.

In order to evaluate Eq. (7.7) for a single quantity the output spectrum must be
computed and numerically integrated in order to obtain the zero order moment. For a
numerically efficient integration the points along the frequency axis should be well chosen:
due to the narrow-band nature of the excitation spectrum the output spectrum is narrow-
band as well, which allows for a rather small frequency interval. Intelligent choice of
the integration points can provide substantial computational improvements at constant
accuracy. A possible procedure to obtain integration points, also used in the current
computation, is described in detail in Appendix D.5. The output spectrum must only be
computed for the frequencies of the integration points. The numerical efficiency of above
described integration procedure is especially important as it needs to be carried out for
many points. It is necessary for every point in every unit cell at which some value should
be evaluated. To give an example: In the unit cell each beam element has two integration
points with eight section points each; for a platform model with 30x30 shell elements
representing homogenised unit cells with 88 beam elements each, this makes a total of
1,267,200 points to evaluate. Of course, a similar amount of points needs to be evaluated
in order to check the safety factors against beam bucking. A separate evaluation of each
point is necessary because the transfer functions, and hence the output spectra, of all
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points are different. A remedy to reduce the computational cost would be to group the
points in groups of transfer functions of similar shape and then only evaluate the integral
for the most critical, i.e. the one with the largest amplitude, transfer function of each
group. Unfortunately grouping the transfer functions by similarity is computationally
rather expensive because a similarity measure must be computed for each combination of
transfer functions.

Above described procedure was carried out for every wave spectrum with non-zero
probability given in Table 7.1. As the orientation of the platform with respect to the
wave direction is not known, each spectrum is evaluated for a range of 10 wave directions
form 0–45◦, for which platform transfer functions were pre-computed as described in
Chapter 2. This results in a total of 411 different sea states to evaluate.

7.4 Results and Discussion

7.4.1 Gravity Loading

Both models show a similar deformation figure under gravity loading as depicted in
Fig. 7.3. The deformation shape with the edges curved downwards results from the
overpressure in the chambers, which leads to the bending of the plate. As the individual
modules (one chamber with plate on top) are connected by the continuous plate, this local
curvature leads to a global curvature of the plate. This global curvature also leads to a
slight inclination of the air chambers, which will lead to an additional bending moment
on the plate, as described in Chapter 3. The additional bending moment is not taken into
account in the current analysis.

Figure 7.4 shows the maximum normal stresses and normal forces in each unit cell of
the thick plate model for the gravity load step. The stress values are in an acceptable
range and the normal forces are far below the critical buckling loads. Results from the
static load case will form the basis on which the dynamic amplitudes will be superimposed.
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Figure 7.3: Static deformation of the models under gravity loading. The deformation is
scaled by a factor of 50; scale bar values are in m.



CHAPTER 7. DESIGN OF A PROTOTYPE PLATFORM 117

x

y

2

18

34

49

65

(a) Normal stress

x

y

-1158

-875

-593

-310

-27

(b) Normal force (top+bottom)

x

y

-380

-290

-200

-109

-19

(c) Normal force (diagonal)

Figure 7.4: Maximum normal stress and beam normal normal forces in each unit cell of
the thick plate model for the gravity load case. Stress in MPa and force in kN.

7.4.2 Evaluation of the Irregular Wave Load Cases

The irregular wave load case was computed for all spectra with non-zero probability and
for 10 wave directions in the the range of 0–45◦. Oscillation amplitudes not exceeded
by a certain probability were computed for normal stress and beam normal force of all
elements of all unit cells. This large amount of data was automatically processed and
significant results are presented in the following.

7.4.2.1 Impact of the p-Value on the Oscillation Amplitude

The amplitude which is not exceeded by a certain probability p, for brevity just termed
oscillation amplitude in the following, is computed from the Rayleigh distribution via
Eq. (7.7). The higher the p value is chosen the higher the oscillation amplitudes get. The
dependence of a single oscillation amplitude on the required required probability of not-
exceedance can be best seen from Fig. 7.2c. It is highly non-linear. For design purposes
one needs to require reasonably high p-values, to ensure safe operation of the platform at
all times. Therefore, a probability of not-exceedance of 0.9999 is chosen. This means that
the computed oscillation amplitudes will only be exceeded with a probability of 0.01%.

7.4.2.2 Motions and Deformations

The expected motions and deformations can be computed from the modal transfer func-
tions by the above described procedure. Maximum expected amplitudes of the modal
coordinates are then obtained via probabilistic theory. The same modal basis was used
to evaluate the modal transfer functions for both model. The modal basis is composed
of the six rigid body plate modes and the first 20 plate deformation modes obtained via
natural frequency extraction from the thick plate model. The most active deformation
modes are displayed in Fig. 7.5.

Figure 7.6 shows the maximum amplitudes of the first five modes with maximum
average response. Large differences are visible between the thick and the thin plate
model. The rigid body response for waves shorter than 50m is not significant. The heave
response remains smaller than the maximum wave hight for all wave conditions, thus no
heave natural mode is excited. Amplitudes of the pitch/roll modes can reach up to 12m
depending on the wave direction. For a wave heading on 0◦ only the pitch mode has it’s
highest amplitude while the roll mode has zero amplitude. If the wave angle increases
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Figure 7.5: Most active deformation modes of the modal basis used to evaluate the plate
deformations.
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Figure 7.6: Amplitudes (p=0.9999) of the modes with the highest average response in
dependance of wave length (a) and wave heading (b). Full lines used for the thick, and
dashed lines for the thin plate model. Modes 3, 4, and 5 are rigid body heave, roll, and
pitch, respectively; Deformation modes are depicted in Fig. 7.5.
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Figure 7.7: Amplitudes (p=0.9999) of the deformation modes with the highest average
response in dependance of wave length (a) and wave heading (b). Full lines used for the
thick, and dashed lines for the thin plate model. Modes 3, 4, and 5 are rigid body heave,
roll, and pitch, respectively; Deformation modes are depicted in Fig. 7.5.
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the roll amplitude grows and the pitch amplitude declines until, at a wave heading of 45◦,
both amplitudes are equal. Although the phase information is lost, the rotation axis of
the plate must be parallel to the wave crests in this case. Combining the amplitudes, one
can compute a maximum angle of inclination of the plate yielding 3.2◦.

While the rigid body response of the thick plate model is slightly higher, the thin plate
model undergoes significant twist-type deformations with amplitudes up to 10m. Such
high deformations cannot be treated by geometrically linear theory for the thin plate as
was shown in Chapter 6. Thus, the linear dynamic model is not applicable for the thin
plate model. Therefore, only results for the thick plate model are shown in the further
discussion. The deformations of the thick plate model remain in an acceptable range with
a maximum amplitude of the first twist mode of about 0.8m, as shown in Fig. 7.7. This
is well within the applicability limit of geometrically linear theory. In fact, the first twist
mode (maximum amplitude <0.8m) is the only mode with significant deformation; all
other modes show a much smaller response.

7.4.2.3 Combination of Static and Wave Loading

Due to the application of the homogenisation technique a large reduction in the number of
degrees of freedom was achieved on the model level. The localisation procedure however
recreates the original amount of information, e.g. one stress value in every integration
point in every unit cell. This can lead to a large mount of data to be processed. Although
this task is easy to parallelise the question remains if all this information needs to be
processed. A compact visualization of the arising maximum field-value values in every
unit cell is given in Fig. 7.8 for the normal stress.

In order to evaluate the dynamic load case the superposition of the static load and
the dynamic load must be computed. This can be done exactly based on the localised
field values in the unit cell, possibly resulting in a large amount of data. The maximum
value for each unit cell can then be found from the total field in the each unit cell. A
conservative estimation of the total load can be obtained by an evaluation on the level of
the homogenised plate elements: The maximum amplitude per unit cell is added to the
maximum static value per unit cell. This allows a large reduction in the amount of data
to be handled. Figure 7.9 shows a comparison of results from both evaluation methods, as
well as the magnitude of the relative error. For the current case both methods agree quite
well. The maximum total loads are very similar, indicating that maximum static loads
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Figure 7.8: Maximum normal stress per unit cell for static load (a), and oscillation am-
plitudes for a spectrum with Hs=3.5m, Tm=11.5 s, and wave heading of 45◦ (b).
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Figure 7.9: Maximum total normal stress in each unit cell: (a) Evaluated exactly, on each
element in each unit cell; (b) Conservative estimate by combining maximum static values
and maximum amplitudes of each unit cell on the homogenised level; (c) Magnitude of
the relative error.

and maximum amplitudes arise in the same parts of the unit cells. Hence, the conservative
estimation can be applied without being over-conservative. Large errors only arise in areas
with low total loads, which are not critical. As the current model could be evaluated in an
exact manner on the available computational resources, the exact formulation was chosen.

Special care should be taken when combining static loads and oscillation amplitudes
of signed quantities like the beam normal force. In this case the largest total compressive,
i.e. negative, force must be compared to the buckling load. The largest total compressive
force is obtained by finding the minimum total force per unit cell, where the total force
is obtained by subtracting the amplitude from the static force.

7.4.2.4 Critical Wave Conditions

In order to evaluate which wave conditions are most critical for the structure the maximum
values of the field variables over the whole structure were computed in dependence of
the two parameters of the wave spectrum, significant wave height and mean wave period.
Figure 7.10 shows the maximum value in the whole structure for the oscillation amplitude
of the normal stress and the total normal stress. As expected the critical values appear
in the same area of wave conditions. The critical areas are the similar for the normal
forces shown in Fig. 7.11, the chamber pressures shown in Fig. 7.12a, and the vertical
plate displacements shown in Fig. 7.12b.

Large values (both amplitude and total) appear for mean wave periods larger than
8 s (which corresponds to a mean wave length of 100m) and significant wave heights
larger than 3m. The limit based on the wave period is much more pronounced than the
limit based on the wave height. This can be best seen in Fig. 7.13, where the maximum
oscillation amplitudes in dependence of wave height and wave period, i.e. the projections
of Fig. 7.10a onto its coordinate axes, are depicted. Here an important phenomenon can
be observed: Wave conditions with mean wave periods shorter than 8 s are never critical.
This limit is due to the ratio between chamber size and mean wave length (computed from
the mean wave period via the dispersion relation for deep water waves). If the wave length
is shorter than the chamber radius even high waves have a small impact, because they do
not change the volume of the air chamber significantly. The maximum amplitude of the
normal stress depends linearly on the significant wave height. The non-linear behaviour
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Figure 7.10: Maximum normal stress (in MPa) in the whole plate in dependence of the
wave conditions: (a) Dynamic stress amplitude; (b) Total stress.
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Figure 7.11: Maximum normal force oscillation amplitude (in kN) in the whole plate in
dependence of the wave conditions for different types of beams: (a) Top and bottom
beams; (b) Diagonal beams.
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Figure 7.12: Maximum oscillation amplitudes in dependence of the wave conditions:
(a) Chamber pressure (in Pa); (b) Vertical plate displacement (in m).
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in Fig. 7.13a is due to the fact that only wave conditions with non-zero probability were
incorporated in the analysis.
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Figure 7.13: Maximum value of the oscillation amplitude of the normal stress in the whole
plate in dependence of the significant wave height (a) and on the mean wave length (b).
The different lines indicate the different wave headings (from 0–45◦) with darker lines
corresponding to higher angles.

The maximum amplitudes of stresses and normal forces in the unit cell always appear
at a wave heading of 45◦, i.e. for waves propagating in the direction of a diagonal of
the square platform. This can be seen in Fig. 7.14. This is due to the resulting twist-
like deformation of the plate. When the wave propagates in the diagonal direction two
diagonal chambers are lifted up resulting in a twisting of the plate (i.e. bending around a
vertical axis).

Observing the maximum occurring pressure amplitudes in the air chamber, as depicted
in Fig. 7.15, shows that the oscillation amplitudes remain lower than the static pressure
in the chambers for the assumed wave conditions, resulting in a positive internal pressure.
Thus, the validity of the linear spring model for the air chambers can be confirmed. The
difference of the oscillation amplitudes of the four chambers suggests a dynamic interaction
between the comparatively stiff platform and the flexible air chambers. The corves show
a similar trend for diagonally opposite chamber pairs, i.e. chambers 1 and 3, and cambers
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Figure 7.14: Dependence of the maximum normal stress (total values and oscillation
amplitudes) in the whole structure on the wave heading. Values obtained by taking all
wave conditions with non-zero probability into account.



CHAPTER 7. DESIGN OF A PROTOTYPE PLATFORM 123

α in deg
P
re
ss
ur
e
in

Pa
0 10 20 30 40

200

400

600

800

1000

1
2
3
4

Figure 7.15: Dependence of maximum pressure amplitude in each chamber on the wave
heading. The maximum amplitudes appear for the wave spectrum with Hs=6.5m and
Tm=8.5 s.

2 and 4, respectively. For a wave heading of 45◦ the wave crest is parallel to the diagonal
on which chambers 2 and 4 are located, thus the plate rotates around this axis, creating
higher dynamic pressure oscillations in chambers 1 and 3. A similar explanation can be
given for the location of the maximum of the pressure amplitudes in chambers 2 and 4 at
a wave heading of 30◦. Here, the rolling motion of the plate is strongest (see Fig. 7.6).

7.4.2.5 Selected Results

An important case is obviously the wave condition at which the maximum total values
appear. Figure 7.16 shows the vertical displacement amplitudes for the sea states at which
the largest displacements and the largest stresses occur. The largest total displacements
occur at the spectrum with the longest waves at 0◦ heading. The largest stresses occur
when the deformations are highest; at a wave heading of 45◦ (compare Fig. 7.7).

The arising oscillation amplitudes, total values, and resulting safety factors for the
field variables of normal stress and beam normal force are depicted in Figs. 7.17 to 7.19.
The maximum total values arise at the same wave conditions as the maximum amplitude
values. The sea states leading to maxima in the field variables arise only with very low
probability (<0.5%) and correspond to serious storms. Because the platform is moored
offshore at a fixed location, it cannot be moved in the case of such an event, and must
withstand these harsh conditions. Observing the computed safety factors shows that the
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Figure 7.16: Vertical displacement amplitudes (in m) for the wave condition with maxi-
mum displacement amplitudes (a) and maximum total normal stress (b).
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Figure 7.17: Maximum normal stress amplitudes (a), total values (b) in each homogenised
unit cell, and corresponding safety factors for an assumed yield limit of 250MPa (b), for
a wave spectrum with Hs=4.5m, Tm=9.5 s, and a wave heading of 45◦. Stress values are
in MPa.
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Figure 7.18: Maximum normal force amplitude (a), total normal force (b), and corre-
sponding safety factors against buckling (c) in the top or bottom beams of each ho-
mogenised unit cell for a wave spectrum with Hs=6.5m, Tm=8.5 s, and a wave heading
of 45◦. Forces are in kN.
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Figure 7.19: Maximum normal force amplitude (a), total normal force (b), and corre-
sponding safety factors against buckling (c) in the diagonal beams of each homogenised
unit cell for a wave spectrum with Hs=6.5m, Tm=8.5 s, and a wave heading of 45◦. Forces
are in kN.
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computed values lie within acceptable limits.
Another interesting sea state is the one arising with the highest probability. The

spectrum with a significant wave height of 0–1m and mean wave period of 3–4 s arises
with a probability of about 25% and thus describes a typical operation condition of the
platform. Figures 7.20 and 7.21 show the oscillation amplitudes of normal stress and
vertical plate displacement, respectively, for this wave spectrum under different wave
headings. The amplitudes of the stresses is very small. Therefore, fatigue damage does
not seem critical for the truss structure. Arising displacement amplitudes are so small
that the efficiency of the concentrator system is not significantly impacted by the wave
induced motion.
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Figure 7.20: Maximum normal stress amplitudes (in MPa) in each homogenised unit
cell for the most probable wave spectrum with Hs=0.5m, Tm=3.5 s, and different wave
headings.
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Figure 7.21: Oscillation amplitudes of the vertical plate displacement (in m) for the most
probable wave spectrum with Hs=0.5m, Tm=3.5 s, and different wave headings.

7.4.3 Quasi-Static Wave Load Case

The quasi-static wave load case assumes a wave of 7.5m amplitude, which corresponds to
the maximum expected wave heights in a wave spectrum with a significant wave height
of about 7m. The resulting twist-type deformation of the plate is the most critical for
the structure. A main influence factor on the intensity of the twist-type deformation is
the axial stiffness of the air chambers (governed by the membrane stiffness of the skirt
material). If the chambers are too stiff, the plate will only be supported by two chambers,
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Figure 7.22: Vertical plate deformation (in m) of the quasi-static wave load case for models
with different circumferential skirt stiffness.

leading to the most critical situation. An estimation of this limit stiffness based on the
assumption of a stiff plate is given in Appendix C.2. The quasi-static wave load case
was evaluated for two models with different circumferential membrane stiffness of the
skirt. The first one, subsequently denoted soft skirt, corresponds to the value used in
the dynamic calculation (500 kN/m). For the other model, termed stiff skirt, a value of
2,500 kN/m is chosen; This value is close to the limit case at which the plate is only
carried by two chambers. Figure 7.22 shows a comparison between the computed vertical
deformations between the two models. For both models the quasi-static wave load case
overestimates the maximum deformation computed via the irregular wave load case (0.8m
amplitude in the twist-mode). This can be explained by the wave length of the expected
waves: They are longer than the distance between the centres of two diagonal chambers,
which means that the maximum amplitudes occur not at the same time but with a phase
difference. Furthermore, the change in the effective surface elevation, i.e. the change in
air volume of the chamber, is smaller than the wave amplitude due to the shape of the
wave.

The von-Mises equivalent stresses in different parts of the unit cell are depicted in
Figs. 7.23 and 7.24 for the soft and the stiff skirt model, respectively. In both cases
the overall maximum equivalent stress is dominated by the stress in the top and bottom
beams. Substantially larger values arise for the stiff skirt model, because large bending
moments are created by the weight of the plate only supported on two chambers. It can
be seen that more flexible chambers can reduce this load. The stresses computed in the
quasi-static case are overestimations compared to the maxima obtained in the analysis of
the irregular wave spectra (see Fig. 7.17). Therefore, the load case is conservative and
my be used to obtain a first estimate for the design of the structure.

The maximum compressive normal forces in the beams show the same pattern as the
equivalent stress and are, therefore, not explicitly given. All compressive normal forces
for are, for both models, well below the critical buckling loads.
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Figure 7.23: Maximum von-Mises equivalent stress (inMPa) in different areas of the unit
cell for the soft skirt model.
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Figure 7.24: Maximum von-Mises equivalent stress (inMPa) in different areas of the unit
cell for the stiff skirt model.

7.5 Conclusion
The developed dynamic model was used together with probabilistic theory to describe
the behaviour of a floating platform supported by flexible air chambers in real wave
conditions defined by wave spectra encountered in the Mediterranean Sea. Two different
designs were analysed with the linear dynamic model. Arising loads in static as well as
dynamic load cases were computed and evaluated. One of the designs, i.e. the thinner
structure, showed excessive deformations in some of the expected sea spectra. While the
forces predicted by the linear dynamic model remain in acceptable limits, the predicted
deformations exceed the applicability limits of geometrically linear theory. Large in-
plane-forces would arise due to geometrically non-linear effects, leading to failure of the
structure. The linear dynamic model is, therefore, not applicable for the thin model. The
predicted deformations for the other investigated design, the thick model, remain within
the applicability limits of linear theory.

Evaluation of the dynamic load cases identified the most critical wave conditions for
the structure. While the most critical significant wave height and mean wave period
differ for the different field variables like stresses, normal forces or displacements, the
largest amplitudes always arise at a wave heading of 45◦. Thus, the most critical wave
condition are waves travelling in the direction of a diagonal of the square platform. A
quasi-static load case resembling such wave conditions was presented and compared to
the fully dynamic computations. Due to the simplicity of this load case it is especially
useful for a quick pre-design. While the results of the quasi-static wave load case were
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conservative with respect to the fully dynamic model in the present case, this may not
be true for all models. Therefore, a fully dynamic computation should be carried out
for detailed analysis. This is especially important for wave conditions with wave lengths
differing from the distance between two diagonal chambers.

The computed values for normal stresses and beam normal forces were evaluated by
yield and buckling criteria, respectively. Computed values for the typical operating con-
ditions showed that dynamic effects can be a substantial part of the total load in severe
wave conditions. In the typical operation conditions the dynamic amplitudes remain neg-
ligible, so fatigue seems to be no major concern. Acceptable safety factors were obtained
for the presented design, even in the most severe storm conditions, showing the feasibility
of such or similar designs for offshore applications.
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Appendix A

Water Waves

A.1 Linear Surface Gravity Waves
Let us consider a domain of water with infinite depth. The x and y-axis are located
in the plane of the undisturbed water surface, i.e. in it’s equilibrium position, and the
z-axis points vertically upwards. The acceleration of gravity points in negative z direction.
Air with an ambient pressure of p0 is located above the water domain. The hydrostatic
pressure in the water, ph, can then be obtained by solving the static equilibrium equation

∇ph = ρg, (A.1)

where ρ denotes the density of the water [43]. Integration and insertion of the boundary
condition ph = p0 at z = 0 yields

ph(z) = p0 − ρgz. (A.2)

In the presence of water waves an excess pressure due to the disturbance, for brevity
denoted just p, will arise in the fluid. The total pressure in the water domain is then

pt = ph + p. (A.3)

Considering only small disturbances the momentum equation may be linearised yielding

−∇p = ρ
∂v

∂t
, (A.4)

where v denotes the velocity vector. The continuity equation for incompressible media
reduces to

∇2φ = 0, (A.5)

where the velocity potential φ is used to prescribe the velocity field by ∇φ = v. Equa-
tion (A.5) is recognised as the Laplace equation for the velocity potential. For domains
entirely bounded by stationary walls it cannot describe the propagation of waves. How-
ever, for the problem at hand we are dealing with a free surface.

The position of the free surface is defined by the function η(x, y). The total pressure in
the fluid at the free surface must equal the atmospheric pressure. This gives the dynamic
boundary condition

p = ρgη on η. (A.6)
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Additionally, the kinematic boundary condition at the free surface constrains the evolution
of the free surface to the motion of a liquid particle at the free surface, giving

∂η

∂t
+ v ·∇η =

[
∂φ

∂z

]
z=η

. (A.7)

Both boundary conditions can be linearized. Taking the gradient of Eq. (A.6) and com-
bining with Eq. (A.4) yields [

∂φ

∂t

]
z=η

= −gη (A.8)

Taking the time derivative and insertion into the linearised form of Eq. (A.7) finally gives

∂2φ

∂t2
= −g∂φ

∂z
on z = 0, (A.9)

which is the free surface condition formulated in terms of the velocity potential.
Considering the two-dimensional case, i.e. φ = φ(x, z, t) one solution to Eq. (A.5)

fulfilling the boundary condition Eq. (A.9) is

φ(x, z, t) = a
ω

k
ekz sin(kx− ωt), (A.10)

where a denotes the wave amplitude, k = 2π/λ the wave number, and ω the angular
wave frequency. Inserting above solution into the boundary condition Eq. (A.9) yields
the dispersion relation for deep water waves

ω2 = gk. (A.11)

The pressure field is related to the velocity potential directly by the momentum equation,
Eq. (A.4), yielding

p(x, z, t) = −ρ∂φ
∂t

= ρ g a ekz cos(kx− ωt). (A.12)

The velocity of a fluid particle can be computed by its relation to the velocity potential
by

v(x, z, t) = ∇φ =

[
∂φ
∂x
∂φ
∂z

]
= aω ekz

[
cos(kx− ωt)
sin(kx− ωt)

]
. (A.13)

A.2 Representation of an Irregular Seaway
An immediately recognisable property of real ocean waves is their irregularity. In the
following only two-dimensional waves are considered due to simplicity. However the gen-
eral concept may be extended in a straightforward matter by considering a distribution of
the wave direction as give by Price and Bishop [55], or DNV [14]. For the mathematical
treatment an irregular sea state is can be assumed as the sum of a large number of regular
waves, i.e. solutions of the linearised hydrodynamic equations for water waves, according
to

η(t) =
∞∑
j=1

aj cos(ϕj − ωjt). (A.14)
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Figure A.1: Example of a short therm wave record (a), its components with the largest
amplitudes (b), and the corresponding energy spectrum (c).

The amplitudes aj and corresponding angular frequencies ωj are deterministic and related
by the wave energy spectrum. The phase angles ϕj ∈ [0, 2π[ are considered as a random
variable with uniform probability density function [55]. Hence, the water elevation may
be thought of as the realisation of a random process. It can be shown that the so defined
random process of the wave hight is ergodic in the mean, mean square and autocorrelation
function statistics [55].

Some wave energy spectra for real sea conditions are presented in Appendix A.4. When
computing an example wave signal (see Fig. A.1a) for a specified wave spectrum Sη(ω)
only a finite number of harmonics can be taken into account. Doing so, care hast to
be taken that the total energy is conserved (see also Appendix A.3 for a more concise
description of wave energy). The frequency axis is discretised into N intervals of width
∆ω. The amplitudes are computed by

ai =
√

2Sη(ωi) ∆ω. (A.15)

The process is illustrated in Fig. A.1c.

A.3 Wave Energy
The wave energy per surface area

E =
ρg

2
〈η2〉, (A.16)

is is related to the variance of sea surface displacement 〈η2〉, which can be obtained by
averaging in time or space [64]. In Eq. (A.16) g denotes the acceleration of gravity and ρ
the fluid density. The energy relation can be obtained from the wave energy of a single
harmonic

Ej =
ρg

2
a2
j , (A.17)

by using Parseval’s equality, which states
∞∫

−∞

|η (t)|2 dt =

∞∫
−∞

|F{η(t)}|2 df, (A.18)
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where F denotes the Fourier transform [83].
The area under the spectrum curve

σ2 =

∞∫
0

Sη(ω) dω, (A.19)

is equivalent to the variance σ2 of the surface elevation. Because the variance of the
surface elevation determines the wave energy care has to be taken when expressions for
the spectrum given in terms of angular frequency are converted to expressions in terms
of frequency. To conserve the wave energy the relation

Sη(f) = 2πSη(ω), (A.20)

must hold.

A.4 Commonly Used Wave Spectra
A general form applicable to most sea spectra, sometimes termed Bretschneider spec-
trum [8], is

SB(ω) =
A

ω5
e
B
ω4 . (A.21)

The international towing tank conference (ITTC) recommends using A = 173H2
s/T1 and

B = 691/T1 with the average wave period T1 and significant wave hight Hs of the sea
state. This is equivalent to the Pierson-Moskowitz (PM) spectrum [52] for fully developed
seas

SPM(ω) =
5

16
H2
sω

4
pω
−5 exp

(
−5

4

(
ω

ωp

)−4
)
, (A.22)

where ωp = 2π/Tp is the angular spectral peak frequency.
An extension of the above spectra was developed in the joint north sea wave atmo-

sphere program (JONSWAP). The, so called, JONSWAP spectrum describes a developing
sea state in a fetch limited condition[14]. In the notation of Barltrop and Adams [4], it is
calculated by

SJ(f) =
k4
bH

2
skγ

4π(kpTz)4f 5
exp

(
− 1

πf 4

(
kb
kpTz

)4
)
γa, (A.23)

with

kb = 1.4085, (A.24a)
kp = 0.327 exp(−0.315γ) + 1.17, (A.24b)
kγ = 1− 0.285 ln(γ), (A.24c)

σ =

{
0.07 for f ≤ 1

kpTz

0.09 for f > 1
kpTz

, (A.24d)

a = exp

(
−(kpTzf − 1)2

2σ2

)
. (A.24e)
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The ITTC recommends using a peak shape parameter of γ = 3.3 [33], which was obtained
from measurements in the north sea [55].

The significant wave hight Hs is defined as the average hight of the highest one-third
waves in the indicated time period. The zero-up-crossing period Tz is the average time
interval between two successive up-crossings of the mean sea level [14].



Appendix B

Additional Experimental Results

B.1 Small Model
For the sake of completeness the test results for the small model are presented here.
Details of test conditions are given by Diendorfer [13]. The results in Fig. B.1 are an
average of all conducted test campaigns.
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Figure B.1: Experimentally obtained and simulated response amplitude operators for the
small model at a wave heading on 0◦. The error bars indicate the 0.05 and 0.95 quantiles
of all experiments.

B.2 Large Model
The large model was tested in the Vienna Model Basin. Tests in regular and irregular
waves were performed to determine the transfer functions for three different wave headings.
Two different wave spectra were modelled. The following test results are included here
for the sake of completeness. For more details the reader is referred to the test report[71].
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Figure B.2: Translational RAOs for a wave heading of 0◦ generated by a computational
model, regular wave experiments, and irregular wave experiments with two different spec-
tra. The response amplitude is normalized by the wave amplitude.
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Figure B.3: Rotational RAOs for a wave heading of 0◦ generated by a computational
model, regular wave experiments, and irregular wave experiments with two different spec-
tra. The response amplitude is normalized by the wave slope. For a legend see Fig. B.2.
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Figure B.4: Pressure RAOs for a wave heading of 0◦ generated by a computational model,
regular wave experiments, and irregular wave experiments with two different spectra. The
response amplitude is normalized by the dynamic pressure at the water surface. For a
legend see Fig. B.2.
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Figure B.5: Deformation RAOs for a wave heading of 0◦ generated by regular wave
experiments, and irregular wave experiments with two different spectra. The response
amplitude is normalized by the wave amplitude. For a legend see Fig. B.2.
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B.2.2 Wave Heading 22.5◦
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Figure B.6: Translational RAOs for a wave heading of 22,5◦ generated by a computational
model, regular wave experiments, and irregular wave experiments with two different spec-
tra. The response amplitude is normalized by the wave amplitude.
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Figure B.7: Rotational RAOs for a wave heading of 22,5◦ generated by a computational
model, regular wave experiments, and irregular wave experiments with two different spec-
tra. The response amplitude is normalized by the wave slope. For a legend see Fig. B.6.
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Figure B.8: Pressure RAOs for a wave heading of 22,5◦ generated by a computational
model, regular wave experiments, and irregular wave experiments with two different spec-
tra. The response amplitude is normalized by the dynamic pressure at the water surface.
For a legend see Fig. B.6.
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Figure B.9: Deformation RAOs for a wave heading of 22,5◦ generated by regular wave
experiments, and irregular wave experiments with two different spectra. The response
amplitude is normalized by the wave amplitude. For a legend see Fig. B.6.
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B.2.3 Wave Heading 45◦
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Figure B.10: Translational RAOs for a wave heading of 45◦ generated by a computational
model, regular wave experiments, and irregular wave experiments with two different spec-
tra. The response amplitude is normalized by the wave amplitude.
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Figure B.11: Rotational RAOs for a wave heading of 45◦ generated by a computational
model, regular wave experiments, and irregular wave experiments with two different spec-
tra. The response amplitude is normalized by the wave slope. For a legend see Fig. B.10.
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Figure B.12: Pressure RAOs for a wave heading of 45◦ generated by a computational
model, regular wave experiments, and irregular wave experiments with two different spec-
tra. The response amplitude is normalized by the dynamic pressure at the water surface.
For a legend see Fig. B.10.
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Figure B.13: Deformation RAOs for a wave heading of 45◦ generated by regular wave
experiments, and irregular wave experiments with two different spectra. The response
amplitude is normalized by the wave amplitude. For a legend see Fig. B.10.



Appendix C

Miscellaneous Mechanics

C.1 Static Air Pressure in the Chambers
To calculate the static pressure in the chambers of an air chamber supported floating
platform the mass of the platform and the acting buoyancy forces must be considered.
The total mass is divided into parts for the plate, m, for the skirt, ms, and the ballast
weights at the lower end of the skirt, mb, and can be calculated by

mt = m+
∑
i

2riπhs,its,iρs︸ ︷︷ ︸
ms,i

+
∑
i

mb,i, (C.1)

where r is the radius of the chamber, hs is the total height of the cylindrical skirt mem-
brane, ts is the thickness of the membrane, and ρs is the density of the skirt material.
The index i denotes the number of the air chamber. The total buoyancy force can be
computed by

B =
∑
i

2riπhl,itsρwg +
∑
i

mb,i
ρw
ρb
g, (C.2)

where hl is the submerged depth of skirt and ρb is the density of the ballast material.
The static pressure in the chambers needs to carry the total weight of the whole

platform less the buoyancy of submerged elements and can, hence, be calculated by

pc =
mtg −B∑
i

r2
i π

=
g∑

i

r2
i π

[
m+

∑
i

ms,i

(
1− hl,i

hs,i

ρw
ρs

)
+

(
1− ρw

ρb

)∑
i

mb,i

]
. (C.3)

The terms in round parentheses take into account the buoyancy effects. For a typical
platform configuration, this effect is small for the skirt, due to the low share of submerged
skirt mass in the total mass and due to the density ratio of about one. The buoyancy of
the ballast weight at the end of the skirt should be taken into account, because even for
lead ballast the buoyancy force is about 9% of its weight.

C.2 Chamber Stiffness and Wave Height
In order to describe the platform dynamics by a linear system, the forces in the linear
springs modelling the air chambers must remain compressive at all times, because the

150
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Figure C.1: Wave travelling along the diagonal of a platform with 4 chambers.

flecible air chambers cannot transmit tensional forces. This will be the case if the wave
amplitudes are sufficiently small. The allowable wave amplitude can be estimated based
on a quasi-static model. As a further simplification the plate is assumed as rigid. The
most critical load case, a wave travelling along the diagonal of the quadratic platform
with four chambers, is considered. The mechanical system is depicted in Fig. C.1.

The displacements of the water surface, i.e. the lower end of the chamber, equals the
wave amplitude a. The forces in the springs modelling the air chambers are

F1 = kc(a−∆h0), (C.4a)
F2 = −2kc(a+ ∆h0), (C.4b)

where kc denotes the axial stiffness of the air chamber. The the static depression of the
plate onto the air chambers due to its weight, denoted by ∆h0 in the above equation, can
be obtained by a balance of forces in vertical direction giving

∆h0 =
mg

4kc
, (C.5)

where g denotes the acceleration of gravity, and m the total mass of the plate. The
condition for the springs to remain in compression is Fi < 0. Inserting Eq. (C.5) into
Eq. (C.4) thus gives

|a| < mg

4kc
(C.6)

as the condition for all springs to remain in tension. It can be seen that the allowable
wave amplitude can be increased by lowering the axial stiffness of the air chamber, or by
increasing the platform mass.

C.3 Pressure Measurement by a Water Column
The pressure difference ∆p between a pressure vessel, i.e. a chamber, and the ambient air
is related to the water level difference ∆h in the connecting water column by

p2 − p1 = ∆p = ρwg∆h, (C.7)

where p2 is the pressure in the air chamber, p1 is the pressure in the surrounding air, ρw is
the density of the fluid, i.e. water, and g is the gravitational acceleration. For a description
of the used symbols see the sketch of the water column in Fig. C.2. Measuring the water
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Figure C.2: Sketch of the water column.

level distance is inconvenient, because two water levels must be observed simultaneously.
Using the assumption of an incompressible fluid

(h1 − h0)︸ ︷︷ ︸
∆h1

A1 = (h0 − h2)︸ ︷︷ ︸
∆h2

A2, (C.8)

the total level difference can be related to the level difference in the column with the
smaller cross section via

h1 − h2 = ∆h = ∆h1 +∆h2 = ∆h1

(
1 +

A1

A2

)
, (C.9)

where ∆hi is the water level difference in column i with respect to the initial water level,
i.e. the water level for the same pressure in both columns. Combining above equations
and assuming circular cross sections one finally obtains

∆p = ρw g

[
1 +

(
r1

r2

)2
]
∆h1, (C.10)

which reveals the usefulness of different diameters of the columns: it increases the measure-
ment resolution. For the same measured water level distance ∆p1 the pressure difference
is smaller for larger radius ratios.

When using different column diameters capillary effects can impact the measurement
result. The difference of the water level in a vertical pipe with radius r with respect to
an infinite basin can be calculated by

h =
2σ cos Θ

ρwgr
, (C.11)

where σ is the surface tension and Θ is the contact angle between water and pipe. The
level difference between columns with different radii is hence calculated by

∆h =
2σ cos Θ

ρwg

r2 − r1

r1r2

(C.12)

which yields a difference of 0.765mm for the used water column (r1=6.25mm, r2=9.5mm).
In the calculation a surface tension of 0.0728 J/m2 and a contact angle of 20◦ were assumed.
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The water level difference due to capillary effects can, therefore, lead to an error of 7.49Pa
if it were not taken into account and the measurement was based on the absolute water
level difference. If the pressure measurement is based on the water level difference between
the current water level and the one for equal pressure, surface tension has no effect on
the measurement.

C.4 Homogeneous, Isotropic, Linear-Elastic Shells
For a homogeneous shell of isotropic, linear elastic material with Young’s modulus E and
Poisson’s ratio ν and uniform thickness h the stiffness matrix takes the form

n11

n22

n12

m11

m22

m12

 =



Eh
1−ν2

νEh
1−ν2 0 0 0 0
Eh

1−ν2 0 0 0 0

Gh 0 0 0
Eh3

12(1−ν2)
νEh3

12(1−ν2)
0

sym. Eh3

12(1−ν2)
0
Gh3

12




γ11

γ22

γ12

κ11

κ22

κ12

 , (C.13)

where the expression Eh
1−ν2 is termed membrane stiffness, and Eh3

12(1−ν2)
bending stiffness

[5, 82].
The transverse shear stiffness Kts is direction independent and calculated by

Kts =
Eh

2(1 + ν)
= Gh, (C.14)

with G denoting the shear modulus of the shell material [82]. In the original publication
by Reissner, a value of 5

6
Gh is found. This value is also used by ABAQUS [12].

C.5 Natural Frequencies of a Cylindrical Domain
The low amplitude sloshing modes for fluid in a circular cylinder with radius R, height h
and vertical axis can be computed analytically [40]. The surface elevation ξ of the natural
modes take the form

ξ(r, ϕ, t) = AJm(kr) cos(mϕ) cos(ωt), (C.15)

where Jm donates the Bessel function of the first kind of order m. The amplitudes A are
arbitrary, and the admissible values of the wave number k = 2π/λ are obtained as the
solutions of

J ′m(kR) = 0. (C.16)

The corresponding natural frequencies are obtained from

ω2 = gk tanh(kh). (C.17)

Eq. (C.17) is recognised as the dispersion relation for surface gravity waves. The first ten
roots of Eq. (C.16) for m = 0, 1, . . . , 5 are given in Table C.1. A number of mode shapes
is depicted in Fig. C.3. The mode shapes for m = 0 show axial symmetry. Their surface
elevation with respect to the radius is depicted in Fig. C.4.
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(a) m = 0, n = 0 (b) m = 0, n = 1 (c) m = 0, n = 2 (d) m = 0, n = 3

(e) m = 1, n = 0 (f) m = 1, n = 1 (g) m = 1, n = 2 (h) m = 1, n = 3

(i) m = 2, n = 0 (j) m = 2, n = 1 (k) m = 2, n = 2 (l) m = 2, n = 3

(m) m = 3, n = 0 (n) m = 3, n = 1 (o) m = 3, n = 2 (p) m = 3, n = 3

Figure C.3: Mode shapes: The order of the Bessel function (m) governs the number of
nodal diameters whereas the number of the root of Eq. (C.16) governs the number of
nodal circles (n). Nodal diameters, and circles, respectively, are plotted in green in the
diagrams.
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m n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

0 0.610 1.117 1.619 2.121 2.621 3.122 3.622 4.123 4.623 5.123
1 0.293 0.849 1.359 1.863 2.366 2.867 3.368 3.869 4.370 4.870
2 0.486 1.067 1.587 2.096 2.602 3.106 3.608 4.110 4.612 5.113
3 0.669 1.276 1.806 2.321 2.831 3.338 3.843 4.347 4.849 5.352
4 0.846 1.477 2.018 2.541 3.055 3.565 4.073 4.579 5.083 5.587
5 1.021 1.674 2.226 2.755 3.275 3.788 4.299 4.807 5.313 5.819

Table C.1: Roots of Eq. (C.16) for different orders m of the Bessel function of the first
kind given as values of R/λ = kR

2π
.
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Figure C.4: Elevation profile for the first four axially symmetric modes.
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Miscellaneous Mathematics

D.1 Fourier Series and Fourier Transform
In general, the periodic function x(t) with period T > 0 can be expressed as an infinite
sum of harmonics

x(t) =
a0

2
+
∞∑
n=1

an cosnωt+
∞∑
n=1

bn sinnωt =
∞∑
−∞

cne
inωt, (D.1)

with ω = 2π/T [59]. Usually the complex notation is used and the coefficients are deter-
mined by

cn =
1

T

T/2∫
−T/2

x(t) e−inωt dt. (D.2)

A non-periodic function f(t) can only be represented as a Fourier series if the period
tends to infinity. Inserting Eq. (D.2) into Eq. (D.1) and remembering ω = 2π/T one
obtains

f(t) =
∞∑

n=−∞

(
1

T

T/2∫
−T/2

f(u) e−inωu du)einωt

=
1

2π

∞∑
n=−∞

einωt
T/2∫

−T/2

f(u) e−inωu duω.

(D.3)

As the period T tends to infinity the previous fundamental angular frequency ω becomes
the differential parameter ds and the product nω becomes the continuous frequency pa-
rameter s. Hence the sum in Eq. (D.3) becomes a Riemann integral and one can write

f(t) =
1

2π

∞∫
−∞

F (s) eist ds, (D.4)

with

F (s) =

∞∫
−∞

f(t) e−ist dt, (D.5)
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being the Fourier transform. Care has to be taken as to where the factor 2π is placed in
the definition as different conventions appear in the literature. The Fourier transform of
a function exists if

∫∞
−∞|f(t)| dt is finite [55].

D.2 Discrete Form of the Fourier Transform
The discrete form of the Fourier transform is useful for the precessing of data in computer
programs. Most implementations are based on the fast Fourier transform (FFT) algorithm
by Cooley and Tukey [11] which is especially easy to implement for series lengths of powers
of 2 [35]. In MATLAB the publicly available FFTW library by Frigo and Johnson [18] is
used [67].

For a signal x(tj) = xj with N data points, equally spaced in time from t = 0 to
t = (N − 1) ∆t the coefficients of the discrete Fourier transform (DFT) are computed by

Xk =
N∑
j=1

xj e
− 2πi

N
(j−1)(k−1). (D.6)

The original signal can then again be obtained by the inverse transform defined by

xj =
1

N

N∑
k=1

Xk e
2πi
N

(j−1)(k−1). (D.7)

The frequencies corresponding to the Fourier coefficients Xk are computed by

fk =
1

∆t

k − 1

N
. (D.8)

For a real valued input signal the Fourier coefficients are conjugate complex. Therefore,
only one half of the coefficients∗ contain the complete information. These single-sided
coefficients are conveniently scaled according to

Cm =

{
1
N
Xm, for m = 1,

2
N
Xm, otherwise,

(D.9)

so the original signal can be obtained by computing

x(t) =

N/2+1∑
m=1

|Cm| cos

(
arctan

Im(Cm)

Re(Cm)
+ 2πfmt

)
. (D.10)

From Eq. (D.10) it can be seen that the amplitudes of the single harmonics correspond to
the absolute values of the scaled Fourier coefficients, and that the phase of the harmonic
follows from their argument. The values |Cm| can, therefore, be regarded as the single
sided amplitude spectrum of the signal. In contrast the double sided amplitudes are
Xk/N .

∗ More precisely: The coefficient X1 =
∑N
k=1 xj is always real and corresponds to zero frequency; The

last non-redundant coefficient is the one for M = floor(N/2) + 1, corresponding to frequency 1/(2∆t).
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The discrete, single sided mean square spectral density is obtained from the FFT
coefficients by

Φm =

{
∆t
N
|Xm|2 , for m = 1,

2∆t
N
Xm, otherwise.

(D.11)

For signals with zeros mean, the area under the mean square spectral density, in discrete
form written as,

1

N∆t

M∑
m=1

Φm =
1

N

N∑
k=1

X2
k , (D.12)

equals the mean square value. Sometimes the mean square spectral density is termed
power spectral density (PSD), because of the relation of power and the mean square value
of a signal [55]. The power in the signal transmitted in a particular frequency band can,
therefore, be determined by the sum of the respective terms of the power spectral density
times the frequency spacing. In the continuous formulation, the power would equal the
definite integral over the PSD with limits defined by the frequency band of interest.

D.3 Power Spectral Density
If one wants to investigate a signal or random process in terms of frequency content, it
seems straightforward to employ the Fourier transform. However, this poses the problem
that a general signal might not posses a Fourier transform, because the criteria for its
existence are not fulfilled†. This can be overcome by considering the truncated signal

xT (t) =

{
x(t) for − T/2 < t < T/2

0 otherwise
, (D.13)

which has the Fourier transform

XT (ω) =

∞∫
−∞

xT (t) e−iωt dt. (D.14)

The mean value of the signal is thus obtained by

〈xT (t)〉 =
1

T

T/2∫
−T/2

xT (t) dt =
XT (0)

T
. (D.15)

† For example: If the signal x(t) is regarded as the realisation of a stationary random process,∫∞
−∞ |x(t)| dt is not finite [55].
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The mean square value of the signal is

〈
x2
T (t)

〉
=

1

T

T/2∫
−T/2

x2
T (t) dt

=
1

T

∞∫
−∞

xT (t)
1

2π

∞∫
−∞

XT (ω) eiωt dω dt

=
1

T

∞∫
−∞

XT (ω)
1

2π

∞∫
−∞

xT (t) eiωt dt dω

=
1

2πT

∞∫
−∞

XT (ω)X∗T (ω) dω,

(D.16)

where X∗T is the complex conjugate of XT . The mean square spectral density defined as

Sxx(ω) = lim
T→∞

{
|XT (ω)|2

2πT

}
, (D.17)

is related to the mean square value of the signal by

〈
x2
T (t)

〉
=

∞∫
−∞

Sxx(ω) dω. (D.18)

D.4 Integral over One Oscillation Period
An integral of the form

T∫
0

f(t)v(t) dt, (D.19)

is often of interest for computing quantities like work. If the integrands are harmonics
they can be written in the form

f(t) = Re
{
f̂ eiωt

}
, (D.20)

v(t) = Re
{
v̂eiωt

}
, (D.21)

where

f̂ = af + ibf , (D.22)
v̂ = av + ibv, (D.23)
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with af , bf , av, bv ∈ R and ω = 2π/T ∈ R. Inserting into the integral equation one obtains

T∫
0

f(t)v(t) dt =

T∫
0

(af cosωt− bf sinωt) (av cosωt− bv sinωt) dt

= afav

T∫
0

cos2 ωt dt

︸ ︷︷ ︸
=T/2

+bfbv

T∫
0

sin2 ωt dt

︸ ︷︷ ︸
=T/2

− (afbv + avbf )

T∫
0

cosωt sinωt dt

︸ ︷︷ ︸
=0

= (afav + bfbv)
T

2
. (D.24)

Hence the integral of the product of two harmonics over one oscillation period is obtained
by the sum of the product of the real and imaginary parts, multiplied with the half
oscillation period.

D.5 Numerical Integration of Narrow-Band Spectra
If the moments of a spectrum should be computed the spectrum must me numerically
integrated. For narrow-band spectra a clever choice of the integration points can lead
to large increases in computational performance. Typical wave spectra (e.g. the ones
described in Appendix A.4) are narrow band. A good procedure for the determination of
Nf integration points, suitable typical wave spectra is:

1. Compute a vector of pseudo-frequencies

f0,n =

n∫
0

∣∣∣∣ 2

1 + en/Nf−a
− 1

∣∣∣∣ dn, with 0 < a < 1 and n = 0, 1, . . . , Nf . (D.25)

2. From the pseudo-frequencies an efficient vector of integration points may be com-
puted by

fn = fp(1 + b
f0,n − f0,c

max(f0)
), with b > 0, (D.26)

where fp is the peak frequency of the spectrum and f0,c is the centre value of the
pseudo-frequency vector, i.e. the value at which the spacing between adjacent values
is minimal.

The parameter a governs the location of the peak in the frequency interval, and the pa-
rameter b controls the length of the frequency interval. The so obtained integration points
ensure a good resolution of the spectral peak. The length of the frequency interval must
be chosen sufficient to cover the significant part of the total spectral energy. Parameters
suitable for a JONSWAP spectrum with a peak enhancement factor of 3.3 are a = 0.3
and b = 2.5.
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D.6 Definition of a Cartesian Coordinate System
A coordinate system "1" can be defined by three points A, B and C in space, which must
not be located on the same straight line. The coordinates of this points in the ground
coordinate system (denoted with g) are known. The coordinates of the unit vectors of the
"1"-system are then computed by

gx1 =

−→
AB

‖
−→
AB‖

, (D.27)

gz1 =

−→
AB ×

−→
AC

‖
−→
AB ×

−→
AC‖

, (D.28)

gy1 = gz1 × gx1. (D.29)

As visualized in Fig. D.1, the unit vector for the x1-direction points from A to B, and
together with C the three points span the x1–y1 plane.

A

B

C

zg

xg

yg

z1

x1

y1

Figure D.1: Points defining the reference frame.

D.7 Coordinate Transformation
The change between two right handed coordinate systems "0" and "1", with coinciding
origins is accomplished via the matrix multiplication

0p = 01T 1p (D.30)

where the ip = [ip1,
i p2,

i p3]T is the same vector represented in coordinates of the system
i = 0, 1. The columns of the transformation matrix T01 contain the unit vectors of the
system "1" represented in coordinates of the system "0". The transformation matrix T
is orthogonal, i.e. T T T = T T T = E, and detT = 1. The transformation is, therefore,
a rotation in space. The rotation matrix for changing coordinate system in the other
direction is simply obtained by inverting Eq. (D.30).

In general, the two coordinate systems may not have the same origin (see Fig. D.2). In
this case the coordinate transformation from the "0"-system into the "1"-system is done
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in two steps. First points in coordinates of the "0"-system are translated to the origin of
the "1"-system, and then the system is rotated. This is done by

1p = 10T
(

0p− 0o1

)
(D.31)

where 10T = 01T T .

O1

P

z0

x0

y0 z1

x1

y1

0o1 1p

0p

Figure D.2: Change of reference frame.

D.8 Euler Angles
To better visualize a general rotation in space, the so called Euler angles can be used.
According to Euler’s rotation theorem, any rotation may be described using three an-
gles [15, 54]. The general rotation matrix is the product of the rotation matrices of the
successive rotations around the coordinate axes. The three rotation angles are called the
Euler-angles of the transformation. If the successive rotations are executed around the
new axes obtained by a preceding rotation, the rotation is called intrinsic. In the scope of
this text, intrinsic rotations will be used. In general there exist 12 different possibilities
of successive rotations. Therefore, the definition of the rotation sequence is important to
uniquely define the Euler-angles. In the following the rotation sequence z–y–x is used.
This is a common method in aerospace and marine engineering [22]. The rotation sequence
is explained in the following and depicted in Fig. D.3.

xg

yg

zg

α

γ

β

α

β

γ

y1

z1

x1

Figure D.3: Euler angles for the intrinsic rotation sequence z-y-x

To rotate the ground system "g" into the position of the body fixed system "1", the
ground system is first rotated by α ∈ ]−π, π] around its zg-axis until the x-axis coincides
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with the projection of the x1-axis onto the xg–yg plane. The angle α is the so called
heading or azimuth angle. Points in the ground system are then transformed into the new
α-system by the relation αp1

αp2
αp3

 =

 cosα sinα 0
− sinα cosα 0

0 0 1


︸ ︷︷ ︸

αT

gp1
gp2
gp3

 . (D.32)

Then the new axes are rotated by the angle β ∈
[
−π

2
, π

2

]
around the yα-axis until the final

x1 axis is reached. The angle β is the so called inclination angle. Points in the α-system
are transformed into the new β-system byβp1

βp2
βp3

 =

cos β 0 − sin β
0 1 0

sin β 0 cos β


︸ ︷︷ ︸

βT

αp1
αp2
αp3

 . (D.33)

To reach the final position the axes are rotated by the so called bank angle γ ∈ ]−π, π]
around the xβ-axis. Points in the β-system are transformed into the final "1"-system by1p1

1p2
1p3

 =

1 0 0
0 cos γ sin γ
0 − sin γ cos γ


︸ ︷︷ ︸

γT

βp1
βp2
βp3

 . (D.34)

The total rotation can now be written as

1p = γT βT αT︸ ︷︷ ︸
1gT

gp, (D.35)

with

1gT =

 cosα cos β cos β sinα − sin β
cosα sin β sin γ − sinα cos γ cosα cos γ + sinα sin β sin γ cos β sin γ
sinα sin γ + cosα sin β cos γ sinα sin β cos γ − cosα sin γ cos β cos γ

 . (D.36)

To extract the euler angles from a given transformation matrix T the relations

α = arctan2(T12, T11) , (D.37)
β = arcsin(−T13) , (D.38)
γ = arctan2(−T21, T22) (D.39)

can be used, where the function arctan2(a, b) is equivalent to arctan(a
b
), but delivering

values in the range ]−π, π], depending on the signs of the arguments. In case of a so called
gimbal-lock, i.e. β = ±π

2
, the transformation matrix takes the form

T ′ =

 0 0 ∓1
± cosα sin γ − sinα cos γ cosα cos γ ± sinα sin γ 0
sinα sin γ ± cosα cos γ ± sinα cos γ − cosα sin γ 0

 (D.40)
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where the remaining angles cannot be uniquely determined. Therefore, in the gimbal-lock
case, one remaining angel can be chosen arbitrarily. Commonly this is done by setting
α = 0, thereby fixing the three Euler angles to

α = 0 (D.41)

β = arcsin(−T13) = ±π
2

(D.42)

γ = ± arctan2(T21, T22), (D.43)

depending on the sign of the element T13. In marine engineering, when dealing with
ordinary ships, the gimbal-lock is unlikely to occur. It would mean, that the ship’s
longitudinal axis is in a vertical position.

D.9 Nullspace
The nullspace or kernel of a real valued, m× n matrix A is defined as the set of points

v ∈ Rn : Av = 0, (D.44)

where 0 denotes the zero vector with m components. The nullspace can be seen as an
(n−m) dimensional subspace, in which the m linear constraints defined by

a11v1 + a12v2 + . . . + a1nvn = 0
a21v1 + a22v2 + . . . + a2nvn = 0
...

...
... =

...
am1v1 + am2v2 + . . . + amnvn = 0

, (D.45)

are fulfilled. The coefficients aij in the above system of constraint equations are the
components of the matrix A.

We can now introduce a new set of coordinates, w, for the nullspace

v = Cw, (D.46)

whereC is an n×(n−m) matrix containing the n−m right singular vectors corresponding
to vanishing singular values of A. They form an orthogonal basis and can be obtained by
computing the singular value decomposition of A. Due to the orthogonality the backward
transformation can be done by

w = CTv. (D.47)

When solving a system of equations, for example Kv = f , under the set of linear
constraints Av = 0. it is convenient to project the system into a subspace where the
constraints are enforced, i.e. to solve CTKCw = CTf .

D.10 Single Value Decomposition
For a real valued, m× n matrix A there exists a decomposition

UΣV T = A, (D.48)
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such that U is an m × m orthogonal matrix, Σ is a m × n diagonal matrix with non-
negative real elements, and V is an n× n orthogonal matrix. The diagonal entries of Σ
are called the singular values of A. The columns of U and V contain the left and right
singular vectors of A, respectively.

The number of non-zero singular values corresponds to the rank of the matrix A. The
right singular vectors corresponding to vanishing singular values of A span the nullspace
of A. These vectors are not uniquely defined.

The singular value decomposition (SVD) has many useful applications like the compu-
tation of the pseudoinverse for solving least-squares minimization problems, the solution
of homogeneous linear equation systems, and the computation of the nullspace.

D.11 N-Dimensional Polar Coordinates
The classical (two-dimensional) polar coordinates can be extended for n dimensions. A
point in n-dimensional space may be represented by its radius r together with its n − 1
polar angles φ1, φ2, . . . , φn−2 ∈ [0, π] and φn−1 ∈ [0, 2π[. The Cartesian coordinates of the
point s = [s1, s2, . . . , sn]T are then computed according to

s1 = r cosφ1, (D.49a)
s2 = r cosφ2 sinφ1, (D.49b)
s3 = r cosφ3 sinp hi2 sinφ1, (D.49c)
... (D.49d)

sn−1 = r cosφn−1 sinφn−2 . . . sinφ1, (D.49e)
sn = r sinφn−1 sinφn−2 . . . sinφ1. (D.49f)

The inverse transformation is computed by

r =

√√√√ n∑
k=1

s2
k, (D.50a)

φ1 = arccos
s1√
n∑
k=1

s2
k

, (D.50b)

... (D.50c)

φn−2 = arccos
sn−2√
n∑

k=n−2

s2
k

, (D.50d)

φn−1 =

arccos sn−1√
s2n+s2n−1

if sn ≥ 0

2π − arccos sn−1√
s2n+s2n−1

if sn < 0
. (D.50e)

For the case of
sk+1 = 0 ∀ j = k + 1, . . . , n], (D.51)
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the above relations do not need to be computed. The polar angle is then defined by

φk =


π if sk < 0

0 if sk > 0

ambiguous if sk = 0

. (D.52)

For the case of sk = 0 the choice of phik is will be ambiguous, because the transformation
is not unique. In this case φk may be chosen as 0.
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