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Abstract

Bridge construction has always been part of structural engineering, and has
been evolving throughout the years. New construction technologies have been
discovered to better use materials and construction techniques. Precast concrete is
one of these evolving techniques that are being utilized more and more nowadays.
The motivation behind this project is the use of prestressed precast concrete as a
realistic replacement to composite construction of bridges.

An existing composite overpass bridge, between the Austrian states of
Upper Austria and Salzburg, is taken as a starting point to find out if it is possible
to build a bridge with an equivalent bending stiffness with use of thin-walled
prestressed precast bridge girders. These bridge girders allow the slenderness of the
bridge to stay almost unchanged while decreasing the heavy weights having to be
moved around during the construction of the bridge.

The structural analysis of the bridge was carried out by first analyzing a 2-
dimensional model to better approximate the prestress needed on each construction
phase. Additionally a 3-D analysis was performed on a more accurate model to
give the final internal forces with help of the software RFEM from Dlubal and with
an excel spreadsheet programed to find the internal stresses on the girders of the
structure.

This research illustrates the plausibility of using prestressed precast
concrete as a technique in order to build an overpass bridge with a span of ca. 47
m. The design was achieved by modeling the construction of the bridge in 5
construction phases. These phases help illustrate the internal forces at different
points on the girders and the bridge’s slab due to self weight as well as the
prestressing loads being applied on the built in tendons.

The research performed for this project is an addition to ongoing research
on prestressed precast bridge construction at the Vienna University of Technology,
but it already shows great potential to use prestress precast concrete in order to

build structures as slender and stiff such as composite structures.
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1 Introduction

This master’s thesis explores the possibility of building an integral bridge, which
already exists, with use of prestressed thin-walled precast beams. The existing
overpass integral bridge, located on the A1 Westautobahn in the Austrian city of

Seewalchen, was built with steel beams and a concrete deck slab (Figure 1).

Figure 1: Existing Overpass bridge on the A1 Autobahn in Austria [1]

This thesis explores a different approach to designing an already built
overpass integral abutment bridge on the A1 Westautobahn in Austria by making

use of thin-walled precast prestressed bridge girders.

Figure 2: Composite Integral Bridge Cross-Section.

The previous figure (Figure 2) illustrates the cross-section of the already
built composite integral bridge. This cross-section has a very slender design limited
mostly only to composite construction; this thesis explores the possibility of using

the advantages of precast and prestressed concrete construction in order to achieve



concrete bridge with a comparable slenderness. In future chapters the subject of
prestress precast concrete will be explored more in depth to help understand the
advantages of using these construction techniques. And most importantly, the
research done at the institute for structural engineering of the Vienna University of
Technology on thin-walled prestressed precast bridge girders is the design

foundation on which this project is built on.

Figure 3: Reinforced Concrete Integral Bridge Cross-Section.

The thin-walled girders (see chapter 2.3 for design theory) replace the steel
girders as illustrated in Figure 3. The work in this thesis explains the design needed
in order to achieve a slender yet strong concrete construction. The design of the
bridge was performed with help of finite element method software analysis of 2D
and 3D models. These models simulate the construction of a bridge in construction
phases. The construction phases are used in order to simulate the different stresses

and internal forces resulting from the different steps involved in bridge design.

The approach taken in this thesis is to first define and give a theoretical
background of the different construction methods used to design the already built

overpass integral bridge. These methods are the following three:

» Integral Abutment Bridges
»  Precast and Prestress
» Thin-walled Precast Prestressed Bridge Girders



What is it implied when mentioning the term integral bridge / integral
abutment bridge? This definition is looked at from different sources, which all

conclude in the same definition for these type of bridges.

The scope of this thesis is very wide and it is based mainly on the use of
prestress and precast concrete. These two techniques are the main source of
inspiration for the bridge construction methodology reported in this thesis.
Therefore, it is imperative to define and explore different uses of prestress and

precast in other projects

The last theoretical background is given on the suggested approach to
build a similar integral bridge to replace the composite system used in the bridge
with use of thin-walled precast prestressed bridge girders developed by the
Research Center of Structural Concrete of the Vienna University of Technology [2]
[3] [4]. The development of thin-walled precast beam structures is also explored in
the following chapter to better understand the methodology used to design the

already built overpass integral bridge.

The theoretical backgrounds for the construction methods considered in
this thesis are very important to better understand this project. Additionally, it is
also imperative to understand what loading was considered while designing the
bridge. The software models used are also well documented in the following
chapters of this thesis. The software model chapter explores the different methods
used to analyze the bridge’s loads and stresses being a 2-Dimensional and a 3-

Dimensional analysis of the bridge.

The analysis chapter explores all the results of stress curves of the bridge’s
girders for both the 2D and 3D analysis, and includes the additional analysis for the
ultimate limit state. Additional information to this chapter, such as the complete
printouts of internal loads and stress curves for the 2D and 3D models is located in

the Appendices of this thesis.

Lastly, the summary and conclusions chapter of this thesis discusses the
results from the finite element models and calculations done throughout this

investigation.



2 Theoretical Background

2.1 Integral Bridges

To first understand the construction advantage and disadvantages of integral
bridges it is imperative to first define and explain what integral bridges are. There
are many definitions from different sources of which types of bridges may be

considered as integral bridges, here are some of these definitions:

An integral bridge may be defined as having no expansion joints or sliding
bearings, the deck is continuous across the length of the bridge. Integral bridges are
alternatively referred to as integral abutment bridges, jointless bridges, integral
bent bridges and rigid-frame bridges. Semi-integral or integral backwall bridges

typically have sliding bearings, but no expansion joints [5].

Integral abutment bridges can be described as bridges generally built with
their superstructures integral with the abutments, and without expansion or
contraction joints for the entire length of the superstructure. The abutments, being
cast integral with the superstructure, avoid expansion joints and movement

bearings that otherwise require regular maintenance [6].

As defined by Burke Jr., integral bridges refer to single- or multi-span
continuous bridges without movable deck joints at the superstructure/abutment
interface [7], being normally supported by embankments with sub-type abutments

on flexible piles [8].

Integral bridges have been around for many years but in recent years their use has
been more popular in the construction of new bridges as well as the refurbishment
of old ones because of its advantages. The work done in this project reflects the use
of an integral abutment bridge with a span of approximately 47 m. Figuring out
what is the maximum length of integral bridges has been a subject widely explored
by many researchers and engineers because of the advantages of building bridges

with this type of techniques.



In traditional bridges, the use of expansion joints, roller supports, abutment
bearings and other structural releases to account for cyclic thermal expansion and
contraction, creep and shrinkage. The use of all these joints has over the years
proven to be expensive to design, build, and maintain. During the 1960 when speed
and traffic loads were significantly higher, problems with joints emerged. The
continuous maintenance and replacement of expansion joints has been a big
problem in many of the current bridges. In order to avoid the problems created by
expansion joints, lack of maintenance and also high manufacturing costs, the use of
integral abutment bridges has been beneficial in the construction of new and

replacement bridges.

Figure 4. Comparison of Integral Abutment Bridge to other Jointless Bridges [8]



The use of jointless bridges is illustrated in Figure 4, and it shows how the roman
(masonry) arch bridge type has existed for now centuries. The idea of not having to
replace parts and reduce maintenance is one of the improvements in bridge
construction. [9]

Figure 5: Integral Bridges according to the Swiss Federal Roads Office [8]



Figure 6: Simplified Geometry of an Integral Abutment Bridge [9].

2.1.1 Advantages and Limitations of Integral abutment bridges [8] [9]

Integral bridges are nowadays growing in popularity in rural and urban highways
because of their many advantages. Originally, as a reaction to the destructive
effects of leaking movable deck joints and massive pavement pressures, it became
very clear that this type of bridge construction has more advantages and fewer

limitations than the classical bridge construction with joints.

Advantages

Reduced Substructure Cost

First and foremost, multiple span integral bridges with embankments and pile
supported stub-type abutments are composite structures. Whereas single span
jointed bridges with wall-type abutments must be designed to support
embankments, continuous multiple span integral bridges on the other hand are built
compositely with embankments and are supported by them. For jointed bridges,
expensive wall-type abutments and abutment foundations are needed to support
embankments. Integral abutment bridges receive much of their longitudinal and

lateral support from embankments.

No Bearing and Joints
One of the most noticeable differences is the lack of bearings and deck joints in
integral bridges. Not only does this result in savings in initial costs, the absence of

joints and bearings will reduce maintenance efforts. This is an important benefit



because presently available deck joint sealing devices have such short effective

service lives.

Simplified Construction

The simple characteristics of integral bridges make for rapid and economical
construction. For example, there is no need to construct cofferdams, make footing
excavations, place backfill, remove cofferdams, prepare bridge seats, place
bearings, backwalls, and deck joints. Instead, integral construction generally results
in just four concrete placement days. After the embankments, piles, and pile caps
have been placed and deck stringers erected, deck slabs, continuity connections,
and approach slabs can follow in rapid succession. In extreme cases, some multiple
span integral bridges have been completed with just two concrete placement days;

one for the structure itself, and one for the approach slabs.

Girder erected Deck concrete Backfill, deck slab,
(temporary seat) integral with approach slab
abutment

Pile Abutment

Figure 7: Typical construction phases of integral abutments. [8]

Minimized Deterioration

The most obvious reason why integral bridges have become so popular, especially
with transportation departments located in and above the Snow Belt, is their
outstanding resistance to deicing chemical corrosion and deterioration. Since these
bridges do not have movable deck joints at abutments (Figure 8), deck drainage
contaminated by deicing chemicals cannot penetrate bridge deck slabs and

adversely affect the primary bridge members.



Figure 8: Integral abutment. [10]

Simplified Bridge Replacement

When using multiple span integral bridges to replace single span structures with
wall-type abutments, the great adaptability of integral bridges allows them to span
across existing foundations, thus avoiding the need to remove them. Since small
bridges are usually replaced in 50-year cycles, use of integral bridges with their
simple pile foundations will considerably simplify future bridge replacements.
Also, the more durable integral bridges should help to increase the serviceable

bridge age and extend replacement cycles by two or more decades.

Extraordinary Resistance

One of the most important attributes of integral bridges, an attribute that is seldom
recognized, is their substantial reserve strength capacity. The integrity of their
unified structural system makes them extremely resistant to the potentially
damaging effects of illegal super-loads; pressures generated by the restrained

growth of jointed rigid pavements, earthquakes, and debris-laden flood flows.

Secondary Effects

Like most of their jointed bridge counterparts, integral bridges are subjected to
secondary effects due to shrinkage, creep, thermal gradients, differential
settlement, and differential deflections. They are also subjected to passive pressure

effects when abutment backfill is compressed during superstructure elongation, and
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to pavement relief joint pressures when moisture and sustained high temperatures
trigger pavement growth. The stress levels generated by these secondary effects are
generally understood but as yet not well quantified. However, they can be
controlled and be provided for to such an extent that except for continuity
connections at supports, they usually need not be considered when designing short
single span or multiple span continuous bridges less than 300 feet long (ca. 90 m).
This simplification is possible because design specifications usually permit higher
stresses when secondary stresses (shrinkage, creep, passive pressure, etc.) are
combined with primary stresses (dead load, live load, and impact) to determine
maximum allowable service stresses. Also, it should be emphasized that the

secondary effects do not alter the ultimate load capacity of the structure.

Limitations

Design of Continuous Spans

Although the characteristics of integral bridges provide many design
simplifications, their unified structural system does require the design of
continuous spans for multiple span bridges. However, with the help of computer
programs and design aids, the extra effort of designing continuous spans can be
minimized. With the development of State standard designs for a wide range of
three and four span continuous bridges, even this extra effort can be further

minimized.

Approach Slabs

Integral bridges should be provided with approach slabs to prevent vehicular traffic
from consolidating backfill adjacent to abutments, to eliminate live load
surcharging of backfill, and to minimize the adverse effect of consolidating backfill
and approach embankments on movement of vehicular traffic. For bridges with
closed decks (curbs, barriers, etc.), approach slabs should be provided with curbs to
confine and carry deck drainage across backfill to the approaches and prevent
erosion, or saturation and freezing of the backfill. Because of the continual cyclic
movement of integral bridges, approach slabs must be anchored to the bridges;
otherwise, continual bridge movement and joint infiltration will shift slabs toward

flexible approach pavement, away from abutments and off the approach slab seats.
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Joints off the Bridge

Cycle control joints, joints which facilitate longitudinal cycling of bridges and
approach slabs, should be provided between approach slabs and approach
pavement. For the shortest bridges, the usual pavement expansion joint should be
sufficient. For longer bridges, however, specially designed cycle control joints

should be devised and provided.

Pile Loading

One primary concern expressed about the construction of integral bridges with pile
supported flexible abutments is the uncertainty about abutment pile flexural
stresses. However, for typical two and three span bridges, the amount of thermal
movement is less than an inch. Consequently, these stresses generally can be
ignored. For longer bridges, actual bridge performance has shown that high pile

flexural stresses do not adversely affect bridge performance.

Buoyancy and Uplift.

Care must be exercised when using integral bridges for stream crossings because
most deck type integral bridges are buoyant. Consequently, for those bridges with
superstructures that can become submerged, air vents must be provided through the
top of beam webs, and anchorage to piers should be considered. For multiple span
bridges with short end-spans, deck slab concrete for the end-spans must be placed
first to prevent end-span uplift during deck slab placement. Once constructed,
however, integral bridges are more resistant to end-span uplift than their
continuous end-jointed bridge counterparts since the substantial weight of integral
abutments provides the necessary uplift restraint, even for end-to-center span

length ratios down to 0.5 and below.

Embankments

Since integral bridges receive significant support from embankments, such bridges
should be built only in conjunction with stable, well-consolidated embankments.
Consequently, integral bridge embankments must be constructed first to ensure that
embankments and sub-foundation soils are consolidated and stabilized before the

flexible pier and abutment piles are driven.
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2.2 Precast and Prestress

Figure 9: Walnut Lane Memorial Bridge in Philadelphia [11].

The single most important event leading to the launching of the
precast/prestressed concrete industry in North America was the construction in
1950 of the famed Walnut Lane Memorial Bridge Figure 9. By the time of
construction there was little published information and there was a total lack of

experience with linear prestressing in the US. [12].

The existence of precast is somehow the proof needed to see that it is a very
innovative construction type. In global terms, the market share of precast 'grey’
frames' (structural concrete with no architectural qualities’) is probably around 5
percent of the multistory business. However, for precast structures with an
integrated facade or other decorative features, the global market share is closer to
15 %, being as high as 70 % in the colder climates and/or where site labor is

expensive. [13]
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In some cases the use of precast concrete may not be as cost effective, such case is
when labor is not expensive, for example, where local labor policies demand high
levels of unskilled site labor, heavy concrete prefabricates create the potential for
new safety hazards due to transportation, handling and temporary stability.
Similarly in countries with a strong steel industry and widespread education in
steelwork design, the popular opinion is that precast cannot compete with structural

steelwork frames.

According to the PCI design book for Precast and Prestressed Concrete
[12] precast in PCI certified plants ensures the manufacture of high quality
architectural and structural products. Precasting also facilitates production of a
wide variety of shapes and sizes, and the use of prestressing substantially extends
the span capability of products. Similarly, prestressing, defined by ACI as
“...internal stresses (that) have been introduced to reduce potential tensile stresses
in concrete resulting from loads,” can be used to enhance structural capabilities of
a concrete member. These capabilities enable architects and engineers to achieve

highly innovative and economically competitive buildings and other structures.

The following are examples of some of the unique features of precast and

prestressed concrete:

» Construction speed.

» Plant-fabrication quality control.

»  Fire resistance and durability.

»  With prestressing: greater span-to-depth ratios, more controllable
performance, less material usage.

»  With architectural precast concrete: wide variety of highly attractive
surfaces, shapes, finishes and colors.

e Thermal and acoustical control.

»  All weather construction.

While precast and prestressed concrete can be manufactured in a variety of
customized sizes and shapes, maximum economy is achieved by using the common
products that have evolved in the industry. Some of the most prevalent products
can be seen in Figure 10, this figure also illustrates how the use of thin-walled
precast is not widely used, making this research very relevant in the construction

industry.
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Figure 10: Common precast and prestressed concrete products. [12]

The main goal of Prestressing structures is to cover the internal stresses
caused by the loading effects. Working against the stresses that appear during the
serviceability limit state and through prestressing avoidance of larger cracks is
possible.

During the normal use of a bridge, internal forces appear. These internal
forces can be resisted by the use of prestressing methods. The addition of prestress
to a bridge girder for example would not create additional strength to the structure
but it makes the structure stiffer and helps the structure to take the stresses created
during the serviceability limit state. By prestressing the concrete structure cracks
can be almost altogether avoided or in some cases just minimized to appear within
the normed limits. [14] [15]

There are three types of Prestressing:

e Prestressing with immediate bonding
e Prestressing with late bonding
e Prestressing without bonding (internal and also external)
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Figure 11 illustrates the steps required to prestress a structure while using a

center-hole jack.

Figure 11: Complete jacking sequence VSL corporation [16]
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2.3 Thin-Walled Precast Prestress Bridge Girders [2]

A research project conducted at the Institute for Structural Engineering at
the Vienna University of Technology applied the known technologies lattice-
girders floor slabs and double-wall elements in order to implement them in bridge
construction and civil engineering. This research makes use of semi-precast
elements of 5-7 c¢cm thick to use them as formwork to subsequently add in-situ
concrete and creates a bridge girder. The objective of this research was to create
precast girders, which could be then transported and erected easily by common
transportation and lifting equipment. These girders could then be used as formwork

reducing considerably the use of formwork and scaffolding.

One of the biggest advantages of this method is that much of necessary
reinforcement as well as the prestress tendons can be built into the girder at the
precast production plant, reducing construction time at the site as well as reducing
the times the roads have to be closed or rerouted. Additionally, weather stops being
a factor needed to be taken into consideration when casting concrete at a precast

plant with controlled environment, therefore achieving higher concrete quality.

The connection between the roadway slab and the girders is achievable
with conventional connecting reinforcement and avoids the need to use expensive
welded-on head-bolt dowels, which composite steel-concrete requires. All these
advantages show that reinforced concrete can start being successfully used in
bridge construction instead of steel and composite concrete-steel, which are usually

used for slender girder bridges.

Two production methods were examined in the course of this research producing

one 30-meter girder from each one of them. The methods were the following:

» Conventional lattice-girder floor slabs with strong base plate
e [17]Double-wall elements (Manufactured in a fully automated rotary
production system)
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The first manufacturing method made use of conventional lattice-girder
floor slabs and a base plate as seen in Figure 12. These precast floor plates with a
thickness between 5 and 7 cm were manufactured using a conventional method.
The plates were placed on a formwork table to serve as wall elements and stirrup
reinforcement was then installed at the bottom end of the slabs to supply the plates
with a concrete base of about 10 to 20 cm thick. In order to obtain a stiff cross-
section during the construction phase, a horizontal system of reinforcing bars was
welded to the upper side. Additional tendons for prestressing can be built into the
cross-section at the required height and location. The maximum transportation
length of this type of girders is 38 meters, but shorter girders may also be
assembled together on site by means of continuous tendons. This construction

method can be chosen for bridge structures with spans between 20 and 50 meters.

Figure 12: Conventional lattice-girder floor slab. [2]
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The second production method makes use of double-wall elements, further
increasing the degree of prefabrication and minimizing the complexity of the work
during manufacturing. This method eliminates the use of lattice-girders floor slabs.
The elements were manufactured on a fully automated rotary precast bed. The
sidewalls were cast first and then rotated into an upright position where a 10 to 20
cm thick slab was cast as the floor of the girder. Figure 13 illustrates the rotary
formwork table, which was used to cast the sidewalls of the girder, there it can be
seen that one side is cast first, then the whole cage is rotated to cast the other

sidewall and then the floor slab is cast.

Figure 13: Double-wall element Rotary table. [2]

The process limits the maximal width of the double-wall elements to 50 cm. This
width limitation also limits the use of this type of girders for short span bridges,

since the width limits the amount of tendons that fit in the cross-section.
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Both girders were tested at a large scale to provide insights on how to speed-up the

production and improve the structural properties of this new type of construction.

Figure 14: Complete double-wall element bridge
girder. [2]

Based on the results obtained
from  research  projects
performed to this date, it can
be seen that the use of
precast floor plates or
double-wall  elements is
technically  possible and
represents a cost-efficient
alternative for the
construction of bridges and
civil engineering structures.
This type of construction
represents an advancement
for concrete bridges with
short spans.

Compared to steel girders,
considerable cost-savings
can be gained just by
reducing the weight that
needed to be lifted during the
construction phase.

The through-shaped precast
concrete components
compared to the prestressed
concrete girders, have the
advantage of having of
considerably less weight,

while having the same load

bearing capacity, therefore allowing concrete to be considered for construction of

structures previously limited only to steel constriction. The research on thin-walled

precast prestressed girders is an ongoing project at the Institute for Structural

Engineering at Vienna University of Technology with opportunity to

improvements and innovation in the following years. [2]
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The use of KAP-STEEL-Waves as a replacement to lattice girders is a new

advancement for the constructing of thin-walled precast girders.

Figure 15: Double Wall Element (DWE) [17]

The use of the double-wall is increasing rapidly, because it substitutes cast-in-place
concrete walls. This type of construction is not only used for the high surface
quality, but also because of the exact production- and quality control as well as the
quick construction process. Double walls are widely used in construction
nowadays because of the high cost effectiveness and quality, and also because of
its flexibility, it can be used for industrial, and commercial buildings, basement
walls, floor walls, staircase walls fire-protection walls, and many other uses, such
as bridge girders. This flexibility allows a real use of double walls on construction

as a replacement to cast-in place concrete walls.

The thin-walled girders share a very similar design to double-walled elements

therefore; these new technology may also be utilized
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Figure 16: Double Wall View with KAP Steel [17].

The incorporation of the KAP-Steel-Waves during the construction of the double-
wall has revolutionized the industry. The KAPPEMA technology further enhances
the usability of the double wall. The wall system, manufactured with the new
innovative KAP-Wave elements, optimizes the handling during the onsite
production, and simplifies the everyday production and for the first time, it allows
changes during the installation of the double wall. The disadvantages of
conventional lattice girders are solved through the use of the KAP-STEEL-WAVE.

The wave, in connection with form rods made out of high-quality steel, withstand
high extraction forces, to overcome shear forces as well as to secure the join

compounds. Therefore, high amount of casting pressure can be absorbed.

With the conventional DWE-System the lattice girders remain in the reinforcement
layers, serving at the same time as a spacers and consequently influencing the wall
thickness.

Heavy concrete shells result from the use of conventional lattice girders, but the
KAPPEMA system does not need the usual 17 mm, specified by most construction

standards, to have enough pullout strength.
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Figure 17: Image comparing latice girders and KAP Steel

The KAP-STEEL-WAVE is very transportable and easy to install. The waves can
be stacked on EUR-pallets weighing approximately 300 kg for 700 m? of Double-
Wall-Elements. The Waves are then installed during casting every 80 cm. The use
of these Wave elements is much simpler than the lattice girders because the Waves

are very light, maneuverable and easy to store.

Figure 18: Image of Horizontal formwork table + EUR-pallet
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The KAP-STEEL-WAVE system is used as a replacement of lattice girders
because of its many advantages. The main advantage of the KAP system is the
location of the waves because it allows a more adequate position of the prestressed
ducts. On the other hand, the lattice girder were always on the way and had to be
cut or repositioned in order to allow the prestressing ducts to be placed into

position, adding time and effort to the construction of the beams.

Figure 19: Formwork table for production of Double-Wall-Elements (DWE)
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3 Approach

3.1 Construction Phases

For the modeling of this bridge 4 construction phases were considered with
an additional phase being the Load Model 1 modeled after the load model 1 found
in the Eurocode [18]. These five construction phases were chosen in order to
gradually increase the weight of the bridge as well as the amount of prestress on
the bridge main beams. With the equivalent bending stiffness cross-section it was

possible to start pre-dimensioning the bridge’s properties.

Figure 20: 2D Model Equivalent Cross-Section.

The equivalent cross-section seen in Figure 20 was used to calculate the bending
moments due to self-weight and prestresses as well as the normal forces due to

prestresses.

A very important requirement for the design of the bridge was to have compression
stresses throughout the structure (on the top and bottom of the beams) in order to
avoid tensile cracks on the concrete during the construction process. The
compressive stresses on the bridge beams were required to stay within a specific

stress range in order to not be over compressed and to not have any tensile stresses.
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3.1.1 Construction phase 1 — Transportation and Assembly

The first construction phase consisted on having the precast concrete beam with
already prestressed tendons built into it. These prestresses were large enough to
fight back the deformations due to the precast beam’s self-weight and any
additional deformations due to lifting the beams, as well as to have additional
prestress for the next construction phases. These prestresses allow the beams to be

lifted and put into place without suffering deformations due to self-weight.

Figure 21: Example of Transportation and Assembly of a 2 span girder bridge. [2]

Once the precast prestressed beams are placed onto the abutments there is no
access to the prestress tendons, therefore the first prestress loads in the beams has
to be large enough to resist the self-weight of the precast beam as well as the
additional weight due to the in-situ concrete. Because of the fact that the
prestressed tendons inside of the precast are not accessible after being mounted on
the abutments, the prestresses were positioned as close to the edge as possible to

increase the tensile strength of the beam. The prestress load for the construction
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phase was chosen based on the self-weight of the precast beam plus the self-weight
of construction phase 2, this prestress load has to be large enough to keep all
stresses in the beam in compression. The prestressed tendons are located at the
bottom of the precast beam at the midspan and once they reach the redirection
saddles the tendons then are anchored at the height of the center of mass of the

precast beam.
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3.1.2  Construction Phase 2 — Redirection Saddles

The second construction phase happens after the beams have been already
mounted on the abutments and in situ concrete starts being poured inside of the
precast. Additionally, to the construction phase 1 prestress, a second prestress is
applied. This second prestress is applied from the redirection point in the beam into
the abutment. This prestress acts as a direct connection between the abutment and
the beam, turning the statically determinate system into a statically indeterminate
system. The system being statically indeterminate is the main difference between
this construction phase and the previous one. As seen in (Figure 23) the tendons
are located from a redirection point on the beam to the beginning of the abutment.
By having rigid connections to the abutments the bridge is considered to be an

integral bridge.
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3.1.3 Construction Phase 3 Main Prestress

The third construction phase is vital for the bridge’s design because the largest
prestressing load is applied during this phase, here the beam’s cross-section is
already complete and is being loaded with the next pour of concrete being the
bridge slabs, the roadbed, and the barriers (including sidewalks). These loads being
applied on the completed beams are the final self-weight loads of the bridge, which
completes the cross-section of the bridge. Here the prestress load is applied onto
tendons situated in key locations of the beams. The prestressed tendons are located
at the bottom on the midspan of the beam and come out of the top of the beams
closer to the abutments. This location is chosen because the beams are in tension at
the bottom of the midspan of the beam and are also in tension at the top of the
beam at the abutments. The prestressed tendons follow a very smooth parabolic

curve avoiding any stress peaks.
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3.1.4 Construction Phase 4

The final construction phase takes part in an already complete cross-section of the
bridge. This last construction phase includes no self-weight load but only adds a
prestress load on the main tendons to guarantee compressive stresses throughout

the bridge as well as to reduce the deformations of the fully loaded bridge.

3.1.5 Construction Phase 5 (Load Model 1)

This construction phase consists on the Load Model 1 loading according to
the Eurocode (see Loading chapter for load distribution diagrams). [18] This
loading case consists of distributed loads as well as point loads. These loads were
included in the software analysis by creating one load case only for the distributed
loads applied on the lanes and the point loads were applied differently. The point
loads, as seen previously in the loading chapter, are four point loads applied
simulating the axial loads of a vehicle driving on top of the bridge. These four
point loads are then reapplied 1.2 m apart from the previous ones, and a load case
is created for each one of these groups of point loads. From these load cases a load
combination is then created in the RFEM software model in order to calculate the

internal forces from the governing load, which are then used find the stresses.
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4 Loads

The bridge loads were applied to the 2-D and 3-D software models as distributed
line loads. This is an approximation used in order to simplify the pre-analysis. The
loads applied to the bridge structure are divided into two main categories, dead and
live loads. In order to apply the loads correctly onto the simplified model, all loads
were calculated from the existing bridge geometry. This was done by multiplying

the specific weight with the cross-sectional area for each part of the structure.
Both, dead and live loads were applied as following:

The dead loads considered for the software model were the self-weight of the
different parts of the structure, such as, the abutment plus deck slab, the roadbed,
and the edge beams. These dead loads were applied on the software model
separately i.e. a load case was created for each one of these three previously
described parts of the bridge. This was done in order to be able to make quick

geometrical adjustments on the structure.



34

4.1 Self-weight distribution and modeling:

41.1 Abutment and Deck Slab

The abutment load was calculated from the following geometry in Figure 25.

Figure 25: Abutment Measurements

The geometry of the existing bridge was taken as guide to dimension the reinforced
concrete bridge. To calculate the distributed load to be applied in the FEM model,
the cross-sectional area, which in this case is always the 7.8 m width times the
thickness of the elements, is multiplied with the specific weight of concrete.

Ye = 25 kN /m3

kN
=12m-78m-25— =243 kN/m

m

kN
=15m-78m-25— =292kN/m

m

kN
=10m-78m-25—=195kN/m
m
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The geometry of the deck slab made it a not so straightforward task to calculate the

cross-sectional area. Therefore an excel calculation was used to calculate the area.

Ye = 25 kN /m3

Area = 2 m?

kN
Deck slab = 2 m? - 25$ =292 kN/m

4.1.2 Roadbed

Figure 26: Composite Bridge Cross-section

The distributed load on the roadbed was calculated according to the value y =24

kN/m3 found in EN 1991-1-1:2002 [19]. The roadbed has a constant height and

width of 11 cm and 6 m respectively.

Yroadbed = 24 kN/m3

24kN
Iroadbed = 0.11m -5.95m- 3 = 157kN/m
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4.1.3 Edge Beams and Sidewalks (Barriers)

The loads for the edge beams and sidewalks (Barriers) were calculated the same
way as the other bridge parts, first exact measurements were taken from bridge’s
cross-section to be able to calculate the area to then be able to multiply it with
concrete’s specific weight

Yeoncrete = 25 kN /m®

25kN
Ibarriers = 0.686 m?* - 3= 17.15kN/m

- ——
2 oo | Q
o 3 |
(9P
—&— —— n L
& & T T
T T

Figure 27: Edge Beam Measurements

4.2 Load Model 1 (Live Loads)

The live loads applied to the structure were taken as the load model 1
described in the Eurocode EN 1991-2-2002 [18]. The load model 1 (LM 1)
specifies a specific load for each car-axel, and these loads were calculated by using
the additional module moving loads in RFEM. The double-axle system is called a
tandem system. The live loads are applied as axle loads as seen in Figure 28. The
axle loads of Q=300 kN are applied on each axle of the main lane (Lanes are
defined to have a 3 m width), and Q=200 kN for the secondary lane with a 1.2 m
axle spacing. These live loads were applied simultaneously in the FEM model in

order to satisfy the LM 1. In order to find the governing load case, load cases was
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created for each moving load across the entire length of the bridge starting at one

end of the bridge and increasing every two meters until the end of the bridge.

Figure 28: Load Model 1 Axel Load Distribution [18]

Figure 28 illustrates the distribution of the axel loads with the tire spacing for the
main and secondary lanes, as well as the uniformly distributed load (UDL). Figure
29 and illustrates how the UDL was calculated for the 2D Model and how the UDL
load was applied to the RFEM 3D Model.

kN kN kN
UDL =2 (1.109 m- 2.5—2) + (3 m- 9—2) + (3 m- 2.5—2) ~ 40.10kN /m
m m m

Additionally to the uniformly distributed load, the axel loads from the load model 1
were applied on the 2D model as movable loads throughout the whole length of the

abutments and the bridge’s span. The point loads may be seen in
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Figure 29: Load Model 1 Load Distribution illustrated with RFEM [18]

Figure 30: UDL (40 kN/m) on the RFEM 2D Model [18]

Figure 31: Load Model 1 Movable Axel loads (300 and 200) kN with 1.2 m axel
spacing) in RFEM 2D model [18]
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5 Pre-modeling

The task at hand was to model an existing steel concrete bridge consisting
of steel beams and concrete slabs and roadbed, with a bridge consisting of
prestressed precast bridge beams. The motivation for this model was to illustrate
that a prestressed thin-walled precast beam could potentially replace a steel beam

Figure 26 in the construction of a bridge.

Figure 32: Equivalent cross-section

To do a pre-analysis model of the existing structure, an equivalent cross-
section of the bridge seen in Figure 32 above had to be calculated and from this
equivalent cross-section a 3D model was then used to create the following final

cross-section.

Figure 33: Reinforced Concrete final cross-section
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The first step to calculate an equivalent cross section (2D Model) was to
use the actual shape of the steel concrete bridge (Figure 26) and then figure out the

dimensions of it this is illustrated in Figure 32.

Once the final shape of the bridge was chosen to be four 1.1 m high 0.50 m
wide beams, a 2D model for analysis was prepared with help of the software
RFEM from Dlubal. This software gives the user the freedom to either calculate
the self-weight of a structure based on the properties of the cross-section these
being material type and shape, but it also allows the user to input a predefined
value for the self-weight. The latter option was the one chosen to use in order to
calculate the self-weight of the bridge. This was done in order to calculate the
center of gravity and the moment of inertia externally with use of an excel
spreadsheet to be able to double check the values calculated automatically by the
software RFEM as well as to optimize the geometry of the beams. A calculation of
the center of gravity as well as the moment of inertia was performed and can be
seen in the Appendix 1. The moment of inertia values calculated by the software

were the same as the ones calculated externally with the excel spreadsheet.

The internal forces were all calculated with the software RFEM because of
the complexity of the system, the end system was chosen to be a statically
indeterminate system, which would make hand calculations tedious and very prone
to mistakes. Although the end system was a statically indeterminate system, the
first phase of the analysis was actually a statically determinate system and the
calculation of the internal forces was performed by hand with help of construction
tables, at the end these values were used only to compare accurateness of the

software results, but the hand calculations are found in the Appendix 1.
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5.1 Software Modeling

As mentioned before, the software used to analyze and calculate the
internal forces of the integral bridge at hand was RFEM 4.10.2680 from the
software company Dlubal. This software offers the end-user different possibilities

to analyze two-dimensional as well as three-dimensional models.

RFEM makes use of load cases (LC), load groups (LG), as well as load
combinations (CO). These three different types of loadings help the user model
more accurately the loads acting on a structure. The software also has the
possibility of calculating the self-weight of the structure by itself, or allowing the
user to input a define load. This freedom allows the user to calculate and double-
check the loads externally, which is the case of this report. The software has also

built in algorithms and theories that accurately simulate real end results.

In order to better approximate reality, two different types of models of the integral
bridge were created. The first model was a 2-D model of an equivalent cross-
section, this cross-section allowed for a simple pre-dimensioning of the required
prestresses. The second model was a 3-D model that more accurately approximated
the cross-section of the bridge. Included in the 3-D software model were four
beams with the final cross-section of the bridge. Therefore, for the 3-D analysis an
individual calculation was performed for each of the beam’s internal forces. These
two models, were the core that allowed the calculation of internal forces, but the
stresses were not calculated with RFEM but with excel. Therefore, all the data
from the internal forces was exported to an excel spreadsheet were all the stress

formulas in all the desired locations of the cross-section of the beam.

The excel spreadsheet made use of the data calculated with RFEM for the 2-D and
3-D models for each one of the construction phases; the internal forces calculated
by RFEM were the moment due to self-weight and the normal force and moments
due to the prestress load. These internal forces were exported for the entire 28.8 m
length of the bridge with a spacing of 1.2 m between each value. Therefore the
bridge was divided into 24 (28.8 m / 1.2 = 24) even parts and these values were
used on the excel analysis to calculate and plot the stresses on the entire beam

allowing a better visual understanding of the stresses inside of the bridge.
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The stresses were calculated in the 2D analysis only for the top of the top and
bottom of the beam. The stresses were calculated at all points of contact between

the precast beam and the in-situ concrete. The stresses were calculated as

following:

O e Mself—weight & %

’ S; Ac S

Gic Concrete stress at a specific height in the bridge’s beam.
Meit-weight Moment due to self-weight load applied on each construction phase.
Si Elastic section modulus at the specified height.
Np Normal force due to prestress load applied on each construction phase.
Ac Concrete cross-sectional area at each construction phase.
Mp Moment due to prestress load applied on each construction phase.

The stresses were calculated for every construction phase at different locations of

the beam. The chosen locations to calculate the stresses were the following:

Abutment or support

This location is where the beam connects to the abutment and it is located at the
beginning and at the end of the bridge’s beams, this location was important to take
into consideration because the stresses were always very high being that the bridge
beams have a rigid connection to the abutment from the prestressed on the second

construction phase.

Redireciton of the tendons

This is located 7.2 m from the beginning of the bridge’s girder and 7.2 m from the
other end of the bridge’s girder. This location includes the change of direction of
the prestressed tendons inside of the initial thin-walled precast beam (redirection
saddle). In this part of the bridge are also located the tendons for the second
construction phase. Therefore, it was interesting to calculate the stresses in this

location as well.
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Midspan
Stresses located at the midspan of the bridge were also calculated and taken into
consideration for the dimensioning of the required prestress loads required to keep

compressive stresses throughout the bridge.

5.2 Two-Dimensional Model Equivalent Cross-Section

The 2-D model included the previously mentioned equivalent cross-section. This
equivalent cross-section approximates the bridge as having only one large beam
underneath the bridge slab, hence simulating all four of the bridge’s beams. This
was done in order to simplify the analysis of the bridge’s internal forces and to
easily export the data to excel for faster analysis. This model helped as a pre-

dimensioning basis and its results were later used to dimension the 3-D model.

For the 2-D analysis, the stresses were calculated at the top of the beam as well as
at the bottom for all three locations mentioned previously (support, redirection, and
midspan). Calculating the stresses for the top and the bottom of the bridge’s beam
is vital to be able to understand and illustrate which parts of the bridge are under
compressive or tensile stress. Additionally, stress curves were plotted to better

illustrate the progression of the stresses throughout the bridge’s length.

Figure 34: 2D Model RFEM.
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5.3 Three-Dimensional Model Prestressed Concrete Cross-Section

This model was the final and more accurate approximation of the actual bridge’s
cross-section. The analysis was more in-depth compared to the 2-D model, because
the stresses were calculated in various locations of the cross-section as well as for
all construction phases. From the internal forces calculated with the 3-D model,
more specific stresses were calculated. The stress analysis of the 3-D model
differentiates the stresses in the pre-cast beam from the stresses of the in-situ
concrete at any relevant location. Therefore, the stresses of the overall structure can
be looked at more specifically as well as more accurately. These stresses are vital
to understand if the whole structure is under tension or compression; therefore,
internal forces were calculated at significant locations of the beam (i.e. top and
bottom of the pre-cast beams as well ass for the top and bottom of the in-situ

concrete).

Figure 35: 3D Model RFEM.
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5.4 Falsework Loads Superposition

In addition to modeling the bridge with 2D and 3D models, the stresses were
also calculated with a third model with the same methodology as the other two.
This third model makes the assumption that the entire bridge girder is cast all at
once into an onsite falsework with all the prestress tendons built into it, that is, the
entire loads of the bridge are superimposed onto one construction phase. The
stresses on this falsework model reflect the internal stresses acting on the structure
and this was done in order to compare the stresses with the stresses of the fourth
construction phase (3D Model). The resulting stresses calculated with this model
help determine the stresses of a final stage taking into consideration the concrete
creep coefficient of the entire cross-section. This model simulates the calculation
of the difference in internal restraint forces through creep. More information about
the calculation of stresses and the creep factor can be found in section 6.3 and the

Appendix.

Figure 36: Tendon Layout for Falsework Phase.
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5.5 Eurocode

Limitation of concrete Stress

According to the EN 1992-1-1:2004 5.10.2.2

().

P Local concrete crushing or splitting at the end of pre- and post-tensioned
members shall be avoided.

Local concrete crushing or splitting behind post-tensioning anchors should
be avoided in accordance with the relevant European Technical Approval.
The strength of concrete at application of or transfer of prestress should not
be less than the minimum value defined in the relevant European
Technical Approval.

If prestress in an individual tendon is applied in steps, the required
concrete strength may be reduced. The minimum strength f.,(t) at the time
t should be k4 [%] of the required concrete strength for full prestressing
given in the European Technical Approval. Between the minimum strength
and the required concrete strength for full prestressing, the prestress may
be interpolated between ks [%] and 100% of the full prestressing.

Note: The values of k, and ks for use in a Country may be found in

its National Annex. The recommended values are 50 and 30

respectively.
The concrete compressive stress in the structure resulting from the
prestressing force and other loads acting at the time of tensioning or
release of prestress, should be limited to:

oc = 0.6 fer (1)

For pretensioned elements the stress at the time of transfer of prestress may
be increased to ks fk(t), if it can be justified by tests or experience that
longitudinal cracking is prevented.

Note: The value of ks for use in a Country may be found in its
Annex. The recommended value is 0.7.
If the compressive stress permanently exceeds 0.45 f(t) the non-linearity

of creep should be taken into account
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6 Analysis

The model of the structure was first done in a 2D representation of the bridge to
find the initial pre-dimensions, which helped do a more accurate representation of
the structure in a 3D model.

These two model types were then loaded with the appropriate dead and live loads
to represent the overpass bridge at hand. Once the pre-dimensioning was set, a
third model (falsework structure), also 3-dimensional (defined in the last chapter),
was created with all the pre-stresses from the construction phases in order to
calculate the final internal forces necessary to calculate the required reinforcement

and stress details.

6.1 Two-Dimensional Models

Four different construction phases and a live-load phase (construction phase 5)
were considered for the modeling of the bridge in order to reduce deformations and
to keep all internal stresses within the values specified in the Eurocode standards.
The 2-D Model assumes an equivalent cross-section, which sums all 4 beams of
the bridge into one large wide beam. This is an accurate approximation because the
center of gravity and the total cross-sectional area remain unchanged. This allows
for an easier software model for the pre-dimension process of the total structure.
The main goal of the four construction phases is to be able to load the structure
with enough prestress in order for the whole structure to be under compression, the
limits for these stresses are the ones described previously in the Eurocode chapter
of this Thesis. For the first four construction phases the maximum stress should not
exceed 0.45 fy(t) and the stresses during the load model 1 loading should not
exceed 0.60 f(t). The construction phases were used to calculate the internal
forces of the structure (normal forces and bending moments) from the self-weight
and pre-stressing loading cases.

All relevant printouts and calculations for the 2-D model are located on the

Appendix 1 of this report.
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6.1.1 Construction Phase 1 Assembly / Construction and Self-weight

Figure 37: 2D Equivalent cross-section construction phase 1.

The first construction phase of the bridge is considered to be when the pre-
fabricated C50/60 strength concrete beams are ready to be moved from the location
of fabrication to the construction site. The two dimensional beam is modeled with
tendons built into the bottom of the structure allowing the structure to be pre-
stressed. These prestressed tendons allow the beam to be lifted and moved around
without exceeding maximum stresses defined in the Eurocode chapter of this

report.

Figure 38: 2D Model Stress Locations.

Figure 38 shows the location on the beam where the stresses were calculated for
the first three construction phases. The last two construction phases have in
addition to the top and bottom stresses, the stresses on the very top of the bridge
slab. These stresses were not plotted in the following stress plots because they are
not relevant for the predesign. The stresses were calculated more into detail with

help of the 3D model analysis.
Omax = —ZOIF < fctm = 41@

MN MN
Omin = —12.05— < 045 - fy = —225—
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Figure 39: 2D Analysis Stresses Construction Phase 1.
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6.1.2 Construction Phase 2 Prestressing redirection and in-situ concrete

Figure 40: 2D Equivalent cross-section construction phase 2.

The second constitution phase is taken to be when the bridge's beam is
already mounted in position on the abutments. At this point the prestressed tendons
from the first construction phase are not accessible anymore because of where they
are supported on the abutments. Therefore the bridge's system requires additional
prestressed tendons that run from the redirection point on the beam (defined
earlier) all the way to the beginning of the abutments on both sides respectively.
The prestressed tendons in this construction phase fix the beams to both ends
turning the system from a statically determinate into a statically indeterminate
structure. This system change is clearly reflected in the graphical representation of

the moments for both self-weight and prestress.

MN
Omax = 4.49

MN
Py > form = 4.1 Py additional reinforcement considered

MN MN
Omin = —18.89—> < 045 fy = —225—
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Figure 41: 2D Analysis Stresses Construction Phase 2.
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6.1.3 Construction Phase 3 Main Prestressing and in-situ concrete

Figure 42: 2D Equivalent cross-section construction phase 3.

During this construction phase the main tendons of the bridge's cross-
section are prestressed. The largest prestress takes place during this phase,
therefore, the location of the main tendons was very critical in order to reinforce
the structure in places where it is more necessary. The location of the tendons as
seen in Appendix 1 was chosen to follow this path because in the midspan it is
clear the structure is under tension stresses at the bottom of the beam and
compression on the top, therefore the tendons are located as low as possible to
reinforce the structure's tensile area. On the supports the tensile stresses are located
on the top of the beam, therefore, the tendons are located as high as possible to
cover as much of the tensile area of the beam with reinforcement. The geometry of
the beam acts as the boundary condition for the location of the tendons. As
illustrated in Figure 33 (Cross-section of midspan phase 3) the tendon is located at
the lowest point possible on the pre-cast beam, this location is also convenient
while laying down the tendons, because it doesn't require any additional
construction, it just sits on the bottom of the precast beam. The tendons' location at
the support and redirection were as high as possible to reinforce the beam's tensile
area. In consequence, the tendons' location at the support was chosen to stick out of

the top of the beam but still be within the lower portion of the bridge's slab.

MN
Omax = —517F < fctm = 4-1?

MN MN
Omin = —19.68—> < 045 - fy = —225—
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Figure 43: 2D Analysis Stresses Construction Phase 3.
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6.1.4 Construction Phase 4 Final Prestressing

The final construction phase takes place when complete cross-section of the bridge
is already completed and then the final prestress is applied on the main tendons;
this allows the structure to increase the pre-stresses in order to stay within the

specified limits.

Figure 44: 2D Equivalent cross-section construction phase 4

MN
Omax = —S.BSF < fctm =41——-

MN MN
Omin = —18.56 — < 045 - fy = —225—
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Figure 45: 2D Analysis Stresses Construction Phase 4.
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6.1.5 Construction Phase 5 (Load Model 1)

The distributed and point loads described in the Load Model 1 of the Eurocode
[18] were applied to a model of the system with a complete cross-section. The
internal forces calculated on this model were used to analyze the stresses in the
structure for this phase, the following graph illustrates the stresses of the phase, for
this phase, the Eurocode allows the stresses to be 0.60 fy as seen in the figure the

stresses are within the specified limit.

Figure 46: 2D Equivalent cross-section Load Model 1

M MN
Omax = —4.75W > form = 4.1Fadditional reinforcement considered

MN MN
Omin = —27.14W < 0.60 'fck = _3()?
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Figure 47: 2D Analysis Stresses Load Model 1.
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6.2 Three-Dimensional Model

The prestressed tendons calculated in the 2D model were then applied to a
3D cross-section of the bridge to then calculate the stresses in the same manner
done previously. The tendons were modeled on each beam of the 3D cross-section
as a steel member with a very small cross-section with an axial load representing
the prestress being applied on the beam. The amount of prestress being allocated to
each beam was calculated with help of the excel spreadsheets, which helped
visualize as well as analyze the optimum amount of prestress. This analysis is in
the form of stress curves found in Appendix 2. The different stress curve plots for
all four-construction phases and the live load phase (load model 1) were used to

find the optimum amount of prestress staying within the allowable ranges.

Complementary analysis was performed on all three important locations of
the beams (support, redirection and midspan) in order to find out if additional
reinforcement was needed to satisfy the ultimate limit state. This analysis may be

found in the Appendix 3.

Figure 48: 3D Model Overview from RFEM.
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The following figure (Figure 49) illustrates the location on the beam’s
cross-section where the stresses were calculated for all of the five construction
phases. The stresses in these locations govern the design of the bridge girder
because of its crucial location. The locations of contact between precast and in-situ
concrete were inspected to see if tensile stresses existed, tensile stresses are not

favorable for the design during the construction phases.

Figure 49: Location of Stress Points in Cross-Section.
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6.2.1 Construction Phase 1

The first prestress load allows the precast beams to be moved to the
construction site without being deformed while being transported and assembled,
additionally, this initial prestress also helps the structure to resist some of the
construction loads being applied during the construction phases. In the RFEM
software model an initial support for the abutments is taken into consideration in
order to keep the beams in the right position at the time the beams are placed into
position. These additional supports are necessary to keep the abutments in an
upright position while the beams are being hoisted into position. The bridge's
structural system at this point is statically determinate, because it is not yet fixed at
both ends to the abutments. Since all the prestressing for this phase happens

elsewhere, there is no access to the tendons in order to modify the stresses.

As seen in the following figures the tendons are located at different locations to
reinforce the beam's tensile areas. The loads applied on the structure to calculate
the stresses were self-weight (MN) on each beam and the prestress on the tendons.
The amount of prestress applied during this construction phase was calculated to be
1.5 MN for each beam.

Support Recdlirection Midspan

Phase 1
+
+
+

MN
Omax = ~2.00— < form = 41—

MN MN
Omin = —12.05— < 045 - fy = —225—
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Figure 51: 3D Analysis Stresses Construction Phase 1.
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6.2.2 Construction Phase 2

During the second construction phase additional tendons are added to the
beams at a height of 1 meter as seen in Figure 52 to be able to connect the beams to
the abutments and avoid all types of joints. These tendons connect the abutments to
the beam from the edge of the abutment to the redirection location of the beam.
With the addition of these tendons the system is no longer statically determinate
but it is then statically indeterminate. The software RFEM takes into account the
change in system and automatically calculates the correct internal forces. The self-

weight considered in this phase was 9 KN/m on each beam and 0.25 MN prestress.

Support Redirection Midspan

Phose 2
+

Figure 52: Cross-section sketches for constriction phase 2.

Monostrands

The prestress from this construction phase is applied to eight monostrands (two per
girder) situated from the redirection points of the girder all the way to the end of
the abutment. These monostrands are anchored on the redirection construction and

are prestressed at the end of the abutment.

MN
Omax = 1.13';;;; <:f;ﬁn = 4L1;;;;

MN MN
Omin = —18.95— < 045 - fy = —225—
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Figure 53: 3D Analysis Stresses Construction Phase 2.
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6.2.3 Construction Phase 3

The largest amount of prestress is applied during this phase therefore it has
the largest amount of tendons. These tendons are prestressed with 2.875 MN and
are positioned throughout the entire length of the beam (see Figure 54). The
tendons' location is imperative to maintain the entire beam under compressive
stresses. Therefore, the tendons from this construction phase are laid where the
beams largest tensile stresses would show up. Additional tendons are put into the

same duct in order to be later prestressed during construction phase 4.

Figure 54: Cross-section sketches for construction phase 3.

Hole spacing

For this construction phase the hole spacing was taken to be the following:
During this construction phase all 19 tendons are prestressed to 89% of their

capacity, leaving the rest 11% for the next phase.

Figure 55: Hole spacing for 19 tendons. [20]

MN
Omax = 129@ < fctm = 4-1?

MN MN
Omin = _19'13W <045 f = —22.5?
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Figure 56: 3D Analysis Stresses Construction Phase 3.
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Figure 57: 3D Analysis In-Situ Concrete Stresses Construction Phase 3.
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6.2.4 Construction Phase 4

During this construction phase the last prestressing occurs because the
complete cross-section is by now finished. All dead loads have been applied to the
previous construction phases, and therefore most stresses have already been taken
into account. As mentioned before, the tendons share the same duct as the tendons
in the third construction phase but are prestressed at a later time. This last prestress
of 0.50 MN, on each girder, is then applied to the completed cross-section, which
has no extra self-weight loading, allowing the in-situ concrete as well as the precast
beams to get more compressive stresses.

Additionally, a surface was introduced into the software model in order to
simulate the bridge slab. The software model RFEM has an option (Ribs) to embed
members into surfaces to better simulate the interaction between surface and
members. Therefore, the internal forces calculated with the model simulate reality

more accurately than by just superimposing the results.

Figure 58: Cross-section sketches for construction phase 4.

Hole Spacing
During this phase, the last 11% of the tendon’s capacity are prestressed in order to

achieve 100% prestress on all 19 tendons.

Figure 59: Hole spacing for 19 tendons. [20]

Omax = 1.75 < fctm = 4-1?

m?2

MN MN
Omin = _19'61W <045 f = —22.5?
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Figure 60: 3D Analysis Stresses Construction Phase 4.
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Figure 61: 3D Analysis In-Situ Concrete Stresses Construction Phase 4.
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During the previous construction phase (No. 4), it can be seen that the
stresses at 2.4 m away from the support location surpass the limit of 0.45 * f =
13.5 MN/m2. The stress at this point is 14.08 MN/m?2, which is about 4% more than
the allowable stress value. This stress is located at the top surface of the in-situ
concrete. When looking into the stresses taking the creep value into account, it can
be seen that the final stress at this point is actually lower. Therefore, the stress is

taken into consideration but no further action is required.

6.2.5 Construction Phase 5 (Load Model 1)

This construction phase, as mentioned before, consists of the loading live loading
applied on the structure according to the load model 1 [18]. Therefore, the loads
applied to this phase are only the live loads specified in load model 1. This phase

doesn't include any self-weight loading or prestressing.

Figure 62: Cross-section sketches for Load Model 1.

MN
Omax = 4.23 > form = 4.1Wadditional reinforcement considered

m?2

MN MN
Omin = —22.43W <0.60-f. = —30.0?
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Figure 63: 3D Analysis Stresses Load Model 1.
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Figure 64: 3D Model In-Situ Concrete Stresses Load Model 1.
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6.2.6 Calculation of Tendons for each Construction Phase 3D Model

The previous chapter illustrates how much prestress is applied on each construction
phase. This section calculates the number of strands needed in order to satisfy the
stresses calculated for each of the construction phases. This was done according to

European Technical Approval No. ETA-06/0006

Prnax = Apo_p,mo
n = Prnax
Op,mo " Ap,i
Prax
N
mm?

n =

0.7 - 1860 - 150 mm?

Determining the number of tendons necessary for each beam on each construction
phase were determined from the stress applied to each construction phase in both

the 2D and 3D analysis. The final amount of pretensioning

Table 1: Tendons for each Construction Phase

Construction Phase P max Nr. Tendons
6 MN

1 T=1.5MN n=7.68=8
2MN

2 T=O.5MN n=256~4
11.5 MN

3 — = 2.87 MN n=1472~=15

2MN

4 T:O.SMN n=256=4
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The diameter of the ducts containing the tendons was also calculated with
the same European Technical Approval Ducting 2.2.1. But the final duct diameter
sizes were taken from the table in page 59 of the ETA-06/0006. Tendons in
construction phases 3 and 4 share the same duct, but are prestressed at different

times as mentioned before.

Table 2: Duct Diameter for each Construction Phase

Strands [-]
Phase , Dint Dext [Mm]
Ap [m ]
L n = 4 strands
Ap=600 mm? @ 45/50
n = 2 strands
2 ) @ 40/45
Ap=300 mm
n = 19 strands
3and 4 )
Ap=2850 mm @90/97

The prestressed tendons used in the bridge design were calculated from the excel
spreadsheet found in Appendix 1 and Appendix 2, which calculates the stresses in
the construction phases in order to determine the amount of prestress necessary to

keep the bridge’s stresses within the allowable norm values.

The following figure (Figure 65) illustrates the type of tendons and its position (not

to scale) inside of the girders.
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Prestress Locations Construction Phases

__ Construction Phase 2 2xVSL. Monostrand 1860 e
e Zh
. S 7557
Construction Phase 1 = 7 "
e — 77277 Construction Phases 3 & 4
_2xDuct45/50 2xVSLTYPE E 64 === — —_Dudt9087 VSL TYPE E 619

Indented Construction Joint
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6.3 Falsework Analysis

As mentioned in the previous chapter, an analysis was performed on a model
simulating the construction of the bridge being performed all with one single
construction phase. This falsework analysis was performed to find the stresses at
the same locations as with the 3D analysis consisting of 4 construction phases plus
the load model 1 phase. Therefore, the stresses were calculated with the same excel
calculation. In the following figures (Figure 66, Figure 67, Figure 68, and Figure
69) once can see the stress distribution on the specific locations of the cross-
section. The complete Excel analysis can be found in the Appendix 8.3. These
stress curves illustrate how larger tensile stresses appear compared to the 4 Phase
analyses. This falsework construction model helped the analysis of the internal
stresses to then compare them to the stresses calculated with the 4th construction
phase’s analysis. This was done to be able to compare how the restraint forces

inside of the structure change due to creep.

The falsework analysis as mentioned before, assumes all the prestresses as
well as the loading due to self-weight are applied all at once. The prestresses taken
into consideration were the ones at t=0 to then compare them to the stresses
calculated previously from the construction phases 4 and 5 (LM1). The stresses
were calculated and plotted on the same excel spreadsheets in order to compare the

stresses on the same locations of the girders.

The following section illustrates the cross-sectional stresses for the analysis

consisting of 5 phases as well as the analysis for the falsework
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Figure 66: Falsework Stresses
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Figure 67: Falsework Stresses
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Figure 68: Falsework Stresses Load Model 1.



80

Figure 69: Falsework Stresses Load Model 1.
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6.4 Stress Comparison (5 Phases vs. Falsework and Creep)

Precast concrete members are subject to air-drying as soon as they are
removed from molds or form. During exposure to the atmosphere, the concrete
slowly loses some of its original water causing a shrinkage volume change to
occur. [12]

When concrete is subjected to a sustained load, the deformation may be
divided into two parts the first on being an elastic deformation which occurs
immediately, and the second being a time-dependent deformation which begins
immediately and continues at a decreasing rate over time. This time-dependent
deformation is called creep. [12]

Creep and shrinkage strains vary with relative humidity, volume-surface
ratio (or ratio of area to perimeter), level of sustained load including prestress,
concrete strength at time of load application, and location of steel reinforcement,
and other characteristics of the material and design. When high strength concretes
are used, different values of shrinkage and creep may be needed. The joints
between recast members typically are detailed to relieve such strains. [12]

The volume changes due to temperature variations can be positive
(expansion) or negative (contraction), while volume changes from shrinkage and
creep are only negative. [12]

According to the EN 1992-1-1 when the compressive stress of concrete at
age t0 exceeds the value of 0,45 fi(to) then creep non-linearity should be
considered, therefore, during the stress analysis the stresses were kept under 0,45
fe(to) to avoid considering non-linearity. Such a high stress can occur as a result of
pretensioning, e.g. in precast concrete members at tendon level. [21]

The following formula was used to calculate the stresses at a later time
taking the creep coefficient for the entire cross-section and the stresses from the

falsework and the construction phases.

. Po Total
1+ X 9orotal

a(t) = op + (0, — 0p)

The following stress plots illustrate the cross-sectional stresses for the 3D
analysis with construction phases, the falsework analysis, and a stress
approximation using an analysis taking the creep coefficient into consideration,

which can be found in section 8.4.
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Figure 70: Stresses for all Construction Phases at the Support
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Figure 71: Stresses for all Construction Phases at Redirection Location
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Figure 72: Stresses for all Construction Phases at Midspan.
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Figure 73: Falsework Stresses at Support, Redirection and Midspan locations.
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Figure 74: Creep Stresses at Support, Redirection and Midspan locations.
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Figure 75: Stress Comparison at Support.

Figure 76: Stress Comparison at Redirection Location.
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Figure 77: Stress Comparison at Midspan.
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6.5 Ultimate Limit State Analysis

In order to finalize the analysis of the complete bridge girders, an ultimate limit
state analysis of the structure was performed to find the reinforcement needed for
all locations of the bridge. A more extended analysis for each of the three main
locations (support, redirection, and midspan) can be located in Appendix Section
8.6.

Longitudinal Reinforcement:

4026
Shear Reinforcement:

¢ 16/15
Slab Reinforcement:

$10/15

Figure 78: Typical Girder Cross-Section with Reinforcement.
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7 Summary and Conclusions

This research illustrates the plausibility of building bridge with use of precast
prestress thin wall girders. These girders built similarly to double wall elements,
are slender and may realistically be used to build bridges previously limited to

composite construction methods.

The construction phases’ method used in order model and design the
bridge helped better approximate how the bridge would really be built. The use of
construction phases allowed the design to take considerations in advance in order
to save construction time if the bridge were to be built as well as to simplify the

design as much as possible.

Being able to build such a slender bridge with an equivalent bending
stiffness to that of a composite bridge is big advantage, because a monolithic
construction consisting of only one material type is easier to handle. Additionally,
the way this bridge was designed it allows construction to happen without much
additional formwork on site. An approximate 77% of the bridge is in-situ concrete;
meaning only 33% of the weight has to be transported as an already built structure,
reducing logistic problems. Additionally, the precast girders and slabs act as
formwork reducing the construction time as well as the time the road needs to be
closed. These advantages justify and allow concrete to be used as a material to

build slender structures.

As mentioned before, this research is an ongoing project at the Vienna
University of Technology where different innovative techniques are being explored

in order to give another perspective to concrete construction methods.
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o B Construction Phases
oL Falsework
o C Creep
Construction Phase 4 (Falsework) X 0,8
Phi 2,34
Cross-Section 1-1 o B o L o C o B oL o C o B o L o C
Position Support | Support | Support |Redirection | Redirection | Redirection| Midspan | Midspan | Midspan
Height o [MN/m?]| o [MN/m?] | o [MN/m?]{ o [MN/m?] | o [MN/m?] | o [MN/m?] | o [MN/m?]| o [MN/m?]| o [MN/m?]
1 Slab -1,12 -8,00 -6,72 -0,12 -6,27 -5,13 0,22 -5,63 -4,55
2 Slab -0,76 -6,34 -5,31 -0,30 -5,31 -4,38 -0,15 -4,69 -3,85
1 Precast -11,74 -6,34 -7,34 -19,43 -5,31 -7,93 -17,14 -4,69 -6,99
2 Precast -16,24 0,11 -2,92 -14,91 -1,57 -4,04 -13,11 -1,01 -3,25
3 Precast -16,69 0,76 -2,47 -14,46 -1,19 -3,65 -12,70 -0,65 -2,88
Cross-Section 2-2 o B oL o C o B oL o C o B oL o C
Position Support | Support [ Support | Redirection | Redirection | Redirection| Midspan | Midspan | Midspan
Height o [MN/m?]| o [MN/m? | o [MN/m?]| ¢ [MN/m?] | o [MN/m?] | o [MN/m?] | g [MN/m?]| o [MN/m?| o [MN/m?]
1 Slab -1,12 -8,00 -6,72 -0,12 -6,27 -5,13 0,22 -5,63 -4,55
2 Slab -0,76 -6,34 -5,31 -0,30 -5,31 -4,38 -0,15 -4,69 -3,85
1 In-Situ -12,86 -6,34 -7,55 -6,69 -5,31 -5,57 -4,66 -4,69 -4,68
2 In-Situ 0,88 0,11 0,25 -5,43 -1,57 -2,28 -7,54 -1,01 -2,22
2 Precast -16,24 0,11 -2,92 -14,91 -1,57 -4,04 -13,11 -1,01 -3,25
3 Precast -16,69 0,76 -2,47 -14,46 -1,19 -3,65 -12,70 -0,65 -2,88
Construction Phase 5 (LM1-Falsework)
Cross-Section 1-1 o B o L g C o B o L o C o B o L g C
Position Support | Support | Support | Redirection | Redirection | Redirection| Midspan | Midspan Midspan
Height g [MN/m?]| o [MN/m?] [ o [MN/m?]| o [MN/m?] | d [MN/m?] | g [MN/m?] [ 6 [MN/m?]| o [MN/m?]| o [MN/m?]
1 Slab 1,68 -5,20 -3,92 -4,41 -10,57 -9,43 -5,27 -11,12 -10,03
2 Slab 0,43 -5,15 -4,12 -2,12 -7,14 -6,21 -2,48 -7,02 -6,18
1 Precast -10,55 -5,15 -6,15 -21,25 -7,14 -9,75 -19,46 -7,02 -9,32
2 Precast -21,35 -5,00 -8,03 -7,08 6,26 3,79 -3,10 8,99 6,75
3 Precast -22,43 -4,98 -8,21 -5,66 7,60 5,15 -1,46 10,59 8,36
Cross-Section 2-2 o B oL o C o B oL o C o B oL o C
Position Support | Support [ Support | Redirection | Redirection | Redirection| Midspan | Midspan | Midspan
Height o [MN/m?] [ 6 [MN/m?]| o [MN/m?]| o [MN/m?] | o [MN/m?] | 6 [MN/m?] | 6 [MN/m?]| 6 [MN/m?]| o [MN/m?]
1 Slab 1,68 -5,20 -3,92 -4,41 -10,57 -9,43 -5,27 -11,12 -10,03
2 Slab 0,43 -5,15 -4,12 -2,12 -7,14 -6,21 -2,48 -7,02 -6,18
1 In-Situ -11,67 -5,15 -6,36 -8,52 -7,14 -7,39 -6,99 -7,02 -7,01
2 In-Situ -4,23 -5,00 -4,85 2,40 6,26 5,55 2,47 8,99 7,78
2 Precast -21,35 -5,00 -8,03 -7,08 6,26 3,79 -3,10 8,99 6,75
3 Precast -22,43 -4,98 -8,21 -5,66 7,60 5,15 -1,46 10,59 8,36

140
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8.4 Creep Coefficient

The creep constant was calculated as an average of the three main parts of
the bridge. The first bridge part considered for the calculation of the creep constant
is the thin-walled precast beam; the second part is the in-situ concrete being poured
inside the thin-walled beams, and finally the bridge slab. The creep constant is then
calculated for each of these parts individually and then averaged with its
corresponding area values. The creep and shrinkage of the concrete depend on the
ambient humidity, the dimensions of the element and the composition of the
concrete. Creep is also influenced by the maturity of the concrete.

According to the Eurocode 1992-1-1 Shrinkage and creep are time-dependent
properties of concrete. Their effects should generally be taken into account for the
verification of serviceability limit states.

Annex B Creep and Shrinkage

Po = PrH :B(fcm) 'ﬁ(to)

1-RH/ 00

Opy = |1+ —————=— fom < 35 N/mm?
i 0.1-/h,

2

1—RH
Pru = 1+ﬂ'
o

N
0(1 'az ﬁm>35%

_ 16.8 _ 1
B(fem) = \/ﬁ B(t,) = 01459
35 0.7 35 0.2
a; = E a, = fc_m
24,
h, =
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Creep analysis for the entire bridge cross-section was performed accordingly to the
Eurocode 1991-1-1 Annex B

The three different parts of the bridge considered determining the creep coefficient
were the following:

e Precast Beam
e In-situ Concrete
» Bridge Slab

8.4.1.1 Creep Coefficient for the precast beam

C 50/60
RH=70%
fom =58 MPa
t, = 40 days
©o = Oru * B(fem) " B(ts)

1-7%100 N’
= |14+ ———=—-0.7022] - 0.9039 = 1.3595 > 35 —
PrH 0.1-373 fem mm

3 2-4-[(0.5m-1.1m) — (0.36m - 1m)]
" 4-(0.5m+ 1.1m + 0.07m + 1m + 0.36m + 1m + 0.07m + 1.1m

ho

_ 2:0.19m?
52m

h, =0.073m =73 mm

35 0.7 35 0.2
a, = [ﬁ] =07022 o, = [§] =0.9039

_16.8_221 _ 1 — 045
ﬂ(fcm)_ﬁ_ . ﬁ(to)—m—o- 6

¢, = 1.3595-2.21-0.456 = 1.37

8.4.1.2 Creep Coefficient for the in-situ concrete filling the precast beam

C 30/37
RH=70%
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fom= 38 MPa
t,=7 days
©o = Qru * B(fem) * B ()

2

1-7% 100

1
01265

Pry =

N
] = 1.467 fcm < 35 %

_2-4-(036m -1m)

h =
° 2:4-(036m+1m)

__072m?
o 2.72m

=0.265 m =265 mm

_ 168 _ 2.73 = ! = 0.6346
ﬂ(fcm)_ﬁ_ . ﬁ(to)—m— .

Por = 1.467 - 2.73-0.6346 = 2.54

8.4.1.3 Creep Coefficient for the bridge slab

C 30/37
RH=70%
fom = 38 MPa
t,=7 days
©o = Oru " B(fem) " B(ts)

1-70/ N?
100
= [1+ = 1.4775 <35
Pru [ 013248 fem

_2-(036m -1m)
°7 2-(0.256 m + 8 m)

_ 2.048m?
o 8.252m

=0.248 m =248 mm
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_ 168 _ 2.73 = ! = 0.6346
.B(fcm)_ﬁ_ . ﬁ(fo)—m— .

©, = 1.4775-2.73-0.6346 = 2.54

8.4.1.4 Total Creep Coefficient

Vo1 Ac1 + Qo2 " Acz + Qo3 " Ags
Aci + Ay + Acs

Po Total =

1.37-(0.19m? - 4) 4+ 2.54 - (0.36m? - 4) + 2.56 - 2.048m?

PoTotal = (0.19m2 - 4) + (0.36m?2 - 4) + 2.048m?2

®YoTotal = 2.34

Po Total

a(t) =03+(0L—UB)'W
oTota
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8.5 Effective Flange Width b

In order to do an Ultimate Limit State (ULS) analysis it is important to know the
effective geometry of the bridge’s beams. The first step is to calculate the effective
flange width. This is accomplished following the Eurocode EN 1991-1-1 5.3.2.1
(3) Tables 5.2 and 5.3.

h=085h |015(i+k)| hk=07k | h=015kL+kh
/1 I | I IZ I _|_ /3
I T 1

Figure 5.2: Definition of Iy, for calculation of effective flange width

beff = Z beff,i + bW < b
Where:  berr; =0.2-b;+0.1-1, <021,
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For the geometry of the bridge the values of Io,=0.7-1=0.7-28.8 m = 20.16 m
bers1 =0.2-0.975m +0.1-20.16 m = 2.21 < 0.2 20.16m = 4.03m

bos =2-221405=4.92m

bepri =492m >b=245m = byp =245m
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8.6 Ultimate Limit State Analysis of Beams

8.6.1 Midspan Center Beam Reinforcement Analysis

Mgg= 7.398 MNm
A, = 19 strands + 8 strands =2850+1200= 4050 mm?=0.00405 m?

2850 -0.952 4+ 1200 -1.03

= 0974
P 2850 + 1200 mn

MN MN MN

fore = 1860 —5 foo1 = 1674—3 foq = 1455
MN

Fy = Ap fpa = 0.00405 mm? - 1455 — = 5.893 MN

0.7 fpk } P(O)

Tpmo = min {0.8 fpoar) "0 = Tpmo " Ap = 5273 MN

with 15% Loss of Prestress

P,= PO (1-0.15) = 4.482 MN

% 5.893 — 4.482
= = 0.001786 %o

w_b-Fk _
E, 0.00405-195000

&y =7

p"

3.5-1.23

Xiim = 35+ 1786 = 0.8144 m xg;m = 0.6515
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Block Diagram

Xy = Ap - fyp _ 0.00405 - 1455
b-fea 2.45-20
xg < Xp1im = 0.149m < 0.6515m
Mra =xp D" feqa - (dp — 0.5 xp)
Mgq = 0.120-2.45-20-(1.23 — 0.5-0.120) = 6.903 MNm
Mgq = 6.88 MNm < Mgy = 7.398 MNm

= 0.120 m < hy = 0.256

Additional reinforcement required

Adapt moment to additional As; reinforcement
dy; =d—d, =1291-1.23=0.061m
Mggs1 = 7.398 4+ 0.061 - 5.893 = 7.757 MNm

2055 : MEdSl
x=1202-d—- [d?—————
( \] b fea

2.055-7.757
x =1.202- (1.23 - \]1.232 - —) =0.168m

2.45-20

08095 x b foy— Ay fra

s1 fyd
a 0.8095 - 0.168 - 2.45 - 20 — 0.00405 - 1455
s1 478.3

Az, = 0.00166 m? = 16.61 cm?
4026 or 3030
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Midspan Corner Beam Reinforcement Analysis

Mgg = 5.859 MNm
A, = 19 strands + 8 strands =2850+1200= 4050 mm?=0.00405 m?

_2850-0.95+1200-1.03

_ = 0974
P 2850 + 1200 m

MN MN MN
fore = 1860 — foo1x = 1674—3 foq = 1455

m?
, MN
Fy = Ap fpa = 0.00405 mm? - 1455 — = 5.893 MN

0.7
I } PO = Gymo - Ay = 5.273 MN

Opmo = min{
P 0.8 fpo.lk to

with 15% Loss of Prestress

_ p© -
P, = PY-(1-0.15) = 4.482 MN

% 5.893 — 4.482
= = 0.001786 %o

w_b-Fk _
p Ep  0.00405-195000

&y =

3.5-1.23

Xiim = m = 0.8144m XBlim — 6515
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Block Diagram

. _ A fyp _ 0004051455
B7 b fua 1.475 - 20

xp < Xjim = 0.200m < 0.8144m
Mra =xp D" feq - (dp — 0.5 xp)
Mgq = 0.200-1.475-20-(1.23 — 0.5-.200) = 6.649 MNm
Mpq = 6.67 MNm > Mg; = 5.859 MNm

= 0.200m < hy = 0.256

Additional reinforcement is not required
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Redirection:

Megg= 5.33 MNm
A, = 19 strands + 8 strands + 4 strands =2850+1200+600= 4650 mm?=0.00465 m*

2850 (0.256 + 0.63) + 1200 - (0.256 + 1.03) + 600 - (.256 + 0.10)
P 2850 + 1200 + 600

=092m

MN MN MN

fore = 1860 —5 foo1x = 1674— foq = 1455
MN

Fy = Ap fpa = 0.00465 mm” - 1455 — = 6.765 MN

0.7 fpk } P(O)

Opmo = min {08 fpo_lk to. = Opmo " Ap = 6.05 MN

with 15% Loss of Prestress

_ p© -
P, = PY-(1-0.15) = 5146 MN

v T4, E,  0.00465-195000 "
3.5-0.92

Xiim = 3541786 0.609 m and xp;j;m = 0487 m
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Block Diagram

Xy = Ap - fyp _ 0.00465 - 1455
b-fea 2.45-20
xgp < xgm = 0.138m < 0.0.487 m
Mra =xp D" feqa - (dp — 0.5 xp)
Mpg = 0.138-2.45-20-(0.92 - 0.5-0.138) = 5.75 MNm
Mgq = 5.75 MNm > Mgz = 5.33 MNm

= 0.138m < hy = 0.256

Additional reinforcement is not required
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Redirection Corner Beam:

Megq = 4.15 MNm
A, = 19 strands + 8 strands + 4 strands = 2850+1200+600 = 4650 mm?=0.00465 m*

2850 (0.256 + 0.63) + 1200 - (0.256 + 1.03) + 600 - (.256 + 0.10)
P 2850 + 1200 + 600

=092m

MN MN MN

fore = 1860 —5 foo1x = 1674— foq = 1455
MN

Fy = Ap fpa = 0.00465 mm” - 1455 — = 6.765 MN

0.7 fpk } P(O)

Opmo = min {08 fpo_lk to. = Opmo " Ap = 6.05 MN

with 15% Loss of Prestress

_ p© -
P, = PY-(1-0.15) = 5146 MN

v T4, E,  0.00465-195000 "
3.5-0.92

Xiim = 3541786 0.609 m and xp;j;m = 0487 m
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Block Diagram

. _ A fyp _ 0004651455
57 b fua 1.475 - 20

xgp < xgim = 0.229m < 0.0.487 m
Mra =xp D" feqa - (dp — 0.5 xp)
Mgq = 0.229-1.475-20-(0.92 — 0.5-0.229) = 5.44 MNm
Mpg = 544 MNm > Mg; = 4.15 MNm

=0.229m < hy = 0.256

Additional reinforcement is not required
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Support:

Megg=-2.68 MNm
A, = 19 strands + 8 strands + 4 strands = 2850+1200+600 = 4650 mm?=0.00465 m*

2850 (1.10 + 0.13) + 1200 - (1.10 — 0.64) + 600 - (1.1 — 0.10)
P 2850 + 1200 + 600
=1.00m

MN MN MN
fore = 1860 —5 foo1x = 1674— foq = 1455

m?
, MN
Fy = Ap fpa = 0.00465 mm” - 1455 — = 6.765 MN

Opmo = min {08 fpo_lk to. = Opmo " Ap = 6.05 MN

with 15% Loss of Prestress

_ p© -
P, = PY-(1-0.15) = 5146 MN

o 6.765 — 5.146
= = 0.001786 %o

w_kb-Fk _
p Ep  0.00465-195000

&y =

3.5-1.00

Xiim = m = 0.662 m and XBlim = 0.530m
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Block Diagram
XB = Xprecast T Xmixed

_ Ap 'fyp -b- Xprecast * fea
Xmixed = b

in—situ " fea + Pprecast * fea
0.00465-1455—-0.5-0.1-33.33
0.36-20+ 0.14-33.33
xp = 0.10 + 0.429 = 0.529 m

=0.429m

Xg < Xg1im = 0.529m < 0.530m
Mra =xp D" feqa - (dp — 0.5 xp)
Mgp4s = 0.529-0.50-20- (1.0 — 0.5-0.529) = 3.89 MNm
Mgz = 3.89 MNm > Mg; = 2.68 MNm

Additional reinforcement is not required
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Support Corner Beam:

Megg=-2.10 MNm
A, = 19 strands + 8 strands + 4 strands = 2850+1200+600 = 4650 mm?=0.00465 m*

2850 (1.10 + 0.13) + 1200 - (1.10 — 0.64) + 600 - (1.1 — 0.10)
P 2850 + 1200 + 600
=1.00m

MN MN MN
fore = 1860 —5 foo1x = 1674— foq = 1455

m?
, MN
Fy = Ap fpa = 0.00465 mm” - 1455 — = 6.765 MN

Opmo = min {08 fpo_lk to. = Opmo " Ap = 6.05 MN

with 15% Loss of Prestress

_ p© -
P, = PY-(1-0.15) = 5146 MN

o 6.765 — 5.146
= = 0.001786 %o

w_kb-Fk _
p Ep  0.00465-195000

&y =

3.5-1.00

Xiim = m = 0.662 m and XBlim = 0.530m
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Block Diagram
XB = Xprecast T Xmixed

_ Ap 'fyp -b- Xprecast * fea
Xmixed = b

in—situ * fea + Pprecast * fed
0.00465-1455-0.5-0.1-33.33
0.36-20+ 0.14-33.33
xp = 0.10 + 0.429 = 0.529 m

=0.429m

X < Xg1im = 0.529m < 0.530m
Mra =xp D" feqa - (dp — 0.5 xp)
Mgpg = 0.529-0.5-20-(1.0 —0.5-0.529) = 3.89 MNm
Mgg = 3.89 MNm > Mg; = 2.10 MNm

Additional reinforcement is not required
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8.6.2 Longitudinal Reinforcement in girders

According to EN 1992-1 (9.1N)
Assuming all concrete is concrete C30/37

fc””-bt-dzo.oms-bt-d

As,min = 0.26 - f B
y

2.9
Agmin = 0.26 'T5o 0.50 - 1.306 = 8.95 cm?

0.0013-0.50 - 1.306 = 8.49 cm?

Agmin = 8.95 cm? > 8.49 cm?

Agmin = 8.95 cm? < Ag chosen 4026 = 21.24 cm?
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8.6.3  Shear Reinforcement

Geometrical values:

a=90°

d = hgeck + hpeam — Rsnear stirrup = 1.306 m
z=09-d=09-1306m=1.18m

tan® = 0.60 cot® = 1.66

Values taken from RFEM:

Vmax=1500 kN

V,=300 kN

Ved = Vimax — Vp = 1500 KN - 300 kN = 1200 kN

Stirrup reinforcement for maximum shear
A Vid 1200 kN

aSW -

=12.81 cm?/m

S Z'fya-cot® 1.18m-47.8%-1.66

Minimum shear reinforcement

2.9
Jetm _ 0.15 - —— = 0.00091

in = 0.15 -
Pw,min fra 478

cm?
Gwmin = Puwmin  bw = 0.00091-0.50 = 4.55——

asw = 12.81 cm?/m = agymin = 4.55 cm?/m

agy = 016/15 cm?/m
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8.6.4 Slab Reinforcement:
According to EN 1992-1 (9.1N)

C30/37
Megq = 50 KNm
cm?
AS,l =475—
m
As,min =0.26 _fctm -b;-d > 0.0013-b; - d
fyk
2.9

Agmin = 0.26 - -1.0-0.226 = 3.09 cm?

550
0.0013-1.0-0.226 = 2.94 cm?

Agmin = 3.09cm? > 2.94 cm?

As1 =475 cm? < Agchosen ©10/15 = 5.24 cm?/m
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