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Abstract 
 

Sleep is an important topic in the lives of human beings because it is necessary for survival. Other 

than its general known function of revitalizing the human body sleep can also be associated with 

various pathologic conditions. Therefore sleep has been subject of studies for many of years. It can 

be analyzed using Polysomnography (PSG). In PSG multiple instruments (including 

electroencephalography, electromyography, electrooculography and electrocardiography (ECG)) are 

required to record various biosignals in order to identify and analyze different sleep phases and sleep 

stages. Additionally the recorded signals have to be assessed visually by an expert. It is desirable to 

reduce the amount of instrumentation required for the analysis of sleep quality. During sleep the 

autonomous nervous system (ANS) regulates various bodily functions. Besides for example 

respiration, digestion, vasomotor activity and reflex actions the ANS also effects cardiac regulation. 

There is close relation between autonomic control of heart rate and the central nervous system, 

especially during sleep when ambient factors do not dominate [1].  

 

The variation in time intervals of consecutive heart beats is called heart rate variability (HRV) and 

reflects the activity of the ANS. Therefore it might be possible to analyze sleep quality using HRV. Our 

objective was to assess a new method to identify sleep stages by using HRV in order to evaluate sleep 

without the use of multiple devices required by traditional PSG. There are various linear and 

nonlinear methods to analyze HRV. Each method has its advantages, disadvantages and limitations.  

 

We used spectrum weighted mean frequencies of the total HRV spectrum (  
 ) of the power spectral 

density (PSD) to identify different sleep stages and assessed how they correlate to somnograms 

recorded by multiple devices of PSG. The correlation was analyzed by calculating corresponding cross 

correlation coefficients. For our analysis we acquired 22 datasets of raw ECG signals from a sleep 

laboratory and their somnograms recorded by conventional PSG. Because of baseline drift and noise, 

preprocessing of the ECG signals was necessary in order to ensure a good R-peak detection. Because 

of their effect on PSD, outliers originating from ectopic beats and falsely identified R-peaks had to be 

corrected. We used different options (Removal of sleep stages of short periods of time, combination 

of sleep stages, different inversion methods and different filter options) to analyze and improve 

calculated cross correlation coefficients.  

 

Our results showed that some somnograms, especially those from healthy subjects, had a high 

correlation with our HRV based sleep estimation. Semi‐periodic somnograms provide better results 

in terms of the HRV‐based sleep prediction than fragmented somnograms. The combination of sleep 

stages (Wake + Rapid eye Movement, S1 + S2, S3 + S4) seems to improve the HRV‐based estimation 

of somnograms, whereas the combination of only S3+S4 seems to weaken this estimation in most 

cases. The removal of sleep stages with the duration of only a few minutes does not seem to alter 

our results significantly. We found that the negation of the weighted mean frequency (   
 ) tends to 

yield better sleep prediction than its inversion (    
 ). The preprocessing methods we used did not 

significantly influence our results.  

 

We conclude that HRV can be used to assess sleep quality in many cases, especially in rather healthy 

somnograms. However, further research is needed to improve sleep prediction in fragmented 

somnograms. 
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 Abstrakt 
 

Schlaf ist notwendig um zu überleben und deshalb ein wichtiges Thema und Forschungsgebiet der 

Menschheit. Zusätzlich zur Funktion der Revitalisierung des menschlichen Körper wird Schlaf auch 

mit unterschiedlichen Erkrankungen in Verbindung gebracht. Unteranderem deshalb ist 

Schlafforschung wichtig und wird bereits seit längerem verfolgt. Die Standardmethode um Schlaf zu 

erforschen ist die sogenannte Polysomnographie (PSG). Bei der PSG werden mehrere Geräte 

(Elektroenzephalographie, Elektromyographie, Elektrookulographie und Elektrokardiographie (EKG)) 

dazu verwendet, verschiedene Biosignale aufzuzeichnen um unterschiedliche Schlafstadien zu 

identifizieren und zu analysieren. Zusätzlich müssen die Signale von einem Experten visuell 

ausgewertet werden. Es ist wünschenswert die Anzahl der verwendeten Geräte zu verringern um die 

Analyse der Qualität des Schlafes zu vereinfachen. Das autonome Nervensystem (ANS) steuert 

verschiedene Körperfunktionen während des Schlafes. Neben Atmung, Verdauung, vasomotorischen 

Aktivitäten und Reflexen beeinflusst das ANS auch unseren Herzrhythmus. Es besteht eine enge 

Verbindung zwischen unserem zentralen Nervensystem und der autonomen Kontrolle unserer 

Herzrate, vor allem während des Schlafens, wenn äußere Einflüsse minimal sind.  

 

Die Variation der Länge der Intervalle zwischen den einzelnen Herzschlägen nennt man 

Herzratenvariabilität (HRV). HRV reflektiert die Aktivität des ANS und deshalb kann es möglich sein 

Schlafqualität mit Hilfe der HRV zu analysieren. Unser Ziel war die Anwendung und Beurteilung einer 

neuen Methode um Schlaf durch HRV zu evaluieren, um die Anzahl der benötigten Gerätschaften die 

bei der traditionellen PSG zum Einsatz kommen zu verringern. Es gibt einige lineare und nichtlineare 

Methoden um HRV zu analysieren. Jede einzelne Methode hat seine Stärken, Schwächen und Limits. 

 

Für unsere Analyse verglichen wir gewichtete mittlere Frequenzen der spektralen Leistungsdichte 

(PSD) des gesamten HRV-Spektrums (  
 ) mit Somnogrammen, die mit Hilfe verschiedener Geräte 

der PSG aufgenommen und erstellt wurden. Dazu errechneten wir die jeweiligen 

Kreuzkorrelationskoeffizienten. Für unsere Arbeit erhielten wir 22 EKG Datensätze und deren 

Somnogramme, aufgenommen mit konventioneller PSG, von einem Schlaflabor. Da die EKG-Signale 

verrauscht und von Basisliniendrifts durchzogen waren mussten sie zuerst vorverarbeitet werden um 

die verschiedenen R-Zacken des EKGs optimal detektieren zu können. Ausreißer aufgrund von 

Extrasystolen und falsch erkannte R-Zacken wurden manuell entfernt da sie die PSD sehr stark 

beeinflussen können. Um die errechneten Kreuzkorrelationskoeffizienten zu analysieren und zu 

verbessern, verwendeten wir verschiedene Optionen (Kurze Schlafphasen entfernen, Schlafphasen 

kombinieren, unterschiedliche Inversionsmethoden und unterschiedliche Filteroptionen).  

 

Unsere Ergebnisse zeigen, dass eine hohe Korrelation zwischen manchen Somnogrammen (vor allem 

von gesunden Personen) und unserer HRV basierenden Schlafschätzung besteht. Semiperiodische 

Somnogramme korrelierten besser als fragmentierte Somnogramme. Die Kombination von 

Schlafphasen (Wach + Schnelle Augenbewegungen, S1 + S2, S3 + S4) verbesserte die Schlafschätzung, 

während die Kombination von nur S3 + S4 sie in den meisten Fällen schwächte. Die Entfernung von 

kurzen Schlafphasen schien unsere Resultate nicht signifikant zu beeinflussen. Wir stellten fest, dass 

die negation der gewichtenten mittleren Frequenz (   
 ) eine bessere Schlafvorhersage darstellte als 

ihre Inversion (    
 ). Verwendete Vorverarbeitungsmethoden der EKG Signale beeinflussten unsere 

Ergebnisse nicht signifikant. 
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Wir schließen daraus, dass HRV dazu verwendet werden kann Schlafqualität in vielen Fällen, vor 

allem in gesunden Somnogrammen, zu beurteilen. Um Schlafvorhersage in fragmentierten 

Somnogrammen zu verbessern ist noch weitere Forschung notwendig.  
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1. Introduction 
 

Sleep is an important topic in the lives of human beings because it is necessary for survival. Other 

than its general known function of revitalizing the human body sleep can also be associated with 

various pathologic conditions. Therefore sleep has been subject of studies for many of years. It can 

be analyzed using Polysomnography (PSG). In PSG multiple instruments (including 

electroencephalography (EEG), electromyography (EMG), electrooculography (EOG) and 

electrocardiography (ECG)) are required to record various biosignals in order to identify and analyze 

different sleep phases and sleep stages. Additionally the recorded signals have to be assessed visually 

by an expert. It is desirable to reduce the amount of instrumentation required for the analysis of 

sleep quality. During sleep the autonomous nervous system (ANS) regulates various bodily functions. 

Besides for example respiration, digestion, vasomotor activity and reflex actions it also effects 

cardiac regulation. There is close relation between autonomic control of heart rate and the central 

nervous system, especially during sleep when ambient factors do not dominate [1].  

 

The variation in time intervals of consecutive heart beats is called heart rate variability (HRV) and 

reflects the activity of the ANS. Therefore it might be possible to analyze sleep quality using HRV. It 

has been suggested by Kaniusas et al. [2] that spectrum weighted mean frequencies    of HRV can 

be used to assess the sleep structure using only ECG (as a single biosignal). ECG is available from 

portable devices, which would facilitate an easy sleep assessment. It could be useful for people in 

remote areas, people who are traveling a lot (businessmen, sportsmen,…) as well as for elderly 

people or people with limited mobility. The resulting HRV data could be analyzed locally or remotely 

to get an instant assessment of the night’s sleep right after waking up. It could also be useful for 

assessment of different kinds or different doses of sleep medication.  

 

This thesis covers the basics of electrical biosignals, linear and nonlinear analysis methods of HRV, 

sleep and HRV based sleep estimation by comparing weighted mean frequencies of PSD to 

somnograms, recorded by conventional PSG. 
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1.1. Genesis of electrical biosignals 
 

To understand how electrical biosignals are generated we have to start by looking at them at a cell 

basis. There are cells in the human body which can create electrical activity (pacemaker or action 

potentials) without any external stimulation. These cells are called pacemaker cells. Pacemaker cells 

maintain a rhythmic pacemaker potential instead of a constant resting membrane potential (Figure 

1.1). A slow membrane depolarization occurs in these cells towards their threshold level in order to 

generate an action potential by opening voltage-gated channels for     (Sodium) and    

(Potassium) ions. The inflow of     ions predominates the outflow of     ions, which leads to 

depolarization until the threshold is reached. As soon as the threshold is reached, voltage-gated 

     (Calcium) channels in the membrane open, which leads to an accelerated depolarization and to 

the creation of an action potential. In response to the rapid depolarization,      channels are opened 

allowing an outflow of     ions and thus a repolarization of the cell membrane until the    channels 

close again. After a certain period of hyperpolarization, the voltage gated    and     channels 

open again and a new period of the rhythmic pacemaker potential begins.  

 

The inflow and outflow of ions can be influenced by parasympathetic and sympathetic axons of the 

ANS. Parasympathetic axons can slow the rate of the diastolic depolarization by facilitating an 

outflow of    ions of pacemaker cells while sympathetic axons can accelerate the heart rate by 

increasing an inflow of      ions into pacemaker cells.  

 

 

 

 

 
 

Figure 1.1: Action potential of a pacemaker cell including depolarization phases and Repolarization 

phases in millivolts over time in seconds. [3] 
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a) 

 

b) 

 
 

Figure 1.2: a) Schematic drawing of electrical conduction system of the heart consisting of different 

nodes and in internodal pathways. b) Schematic drawing of how the electrical conduction system is 

situated in the heart. 1. Sinoatrial node, 2. AV node,3. Bundle of His, 4. Left bundle branch, 5. Left 

posterior fascicle, 6. Left-anterior fascicle, 7. Left ventricle, 8. Ventricular septum, 9. Right ventricle, 

10. Right bundle branch  [4]  

 

These cells are concentrated in different nodes of the human heart. Together with internodal 

pathways they form the electrical conduction system of the heart (Figure 1.2a-b) which is responsible 

for the generation and propagation of action potentials. The Sinoatrial node (SA node or Sinus node) 

acts as the spontaneous primary pacemaker, whereas the Atrioventricular node (AV node), the 

Bundle of His and the Purkinje fibers act as secondary pacemakers. The conduction system 

coordinates the pumping action of each of the heart’s chambers so that the heart can efficiently 

pump blood through the pulmonary circulation loop (blood gets oxygenated) and the systemic 

circulation loop (oxygenated blood gets provided to the rest of the body). 

 

The different nodes create action potentials with different firing rates which can be measured in 

beats per minute (bpm): 

 

SA node  AV node  Bundle of His and Purkinje 

fibers 

about 70 bpm about 50 bpm about 30 bpm 

Table 1.1: Firing rates of different nodes of the heart 

 

Besides pacemaker cells the heart also contains cardiac muscle cells or cardiomyocytes. 

Cardiomyocytes are short branched, elastic cells which are interconnected with each other at the end 

of each cell via numerous mechanical and electrical gap junctions. The potentials created and 

propagated by the heart’s electrical conduction system then spread to cardiac muscle cells causing 

them to depolarize and therefore contract (Figure 1.3). The rapid depolarization happens because of 

an influx of     ions through voltage-gated channels in the membrane of cardiomyocytes (Phase 0). 

After depolarization,      channels close and additional     channels open to allow the outflow of 

   ions resulting in a slight repolarization (Phase 1). Following Phase 1,      starts leaking in. The 

balance between the outflow of     ions and the inflow of      ions creates a “plateau” like phase  
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Figure 1.3: Schematic drawing of the action potential of a cardiomyocyte cell and their depolarization 

and repolarization phases. [3]  

 

(Phase 2). After a certain amount of time     channels close while there is still an outflow of    

ions leading to a repolarization (Phase 3). The cells then have a resting membrane potential until 

they are stimulated again (Phase 4).     

 

ECG can register electrical excitation of cardiac muscle. It uses electrodes attached to the surface of 

the skin to measure and record depolarization and repolarization of hearts muscle by detecting and 

amplifying small potential differences on the skin. The spread of depolarization and repolarization 

determines the waveform of the ECG. ECG is a non-invasive method. One way to measure electrical 

excitation of the heart muscle is called Einthoven derivation. One electrode is attached to the left 

arm, one to the right arm and one to the left leg (Figure 1.4). The depolarization of the cardiac 

muscle can be detected as rise and downfall of Voltage between two electrodes. The output from 

each pair of electrodes is known as a lead.      

 
 

Figure 1.4: Einthoven derivation with one electrode attached to each arm and one attached to the left 

leg forming different leads. [3] 
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In a healthy heart each beat begins in the right atrium with an action potential from the SA node. The 

signal spreads across the right and left atria causing the muscle cells to depolarize and contract. (P-

wave). After the signal leaves the Atrium it enters the ventricles through the AV node. It then 

propagates through the Bundle of His and down the Purkinje fibers, which causes both ventricles to 

contract. (QRS-complex).  When the action potential leaves the ventricles the ventricular walls start 

to relax and repolarize  (T-wave). A schematic drawing of a normal sinus rhythm of the human heart 

can be seen in figure 1.5. 

 

 
Figure 1.5: Schematic drawing of a normal Sinus rhythm of a human heart consisting of a P-wave, the 

QRS-complex, the T-wave and different segments between them [5] 
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1.2. Heart rate variability  
 

Heart rate variability describes the variation in time intervals of consecutive heart beats. It is 
measured in milliseconds (ms). For practical and signal processing reasons the intervals get measured 
from one R-peak to the following one. The signals gained from the ECG’s R-peaks (Figure 1.6a) are 
called RR-interval series or RR-intervals (RR) and can then be used for analysis of HRV (Figure 1.6b). 
The analysis of HRV has been found to be a powerful tool to identify healthy conditions [1] and 
particular pathological conditions. [6] [7] There are various linear and nonlinear methods to analyze 
HRV. It has been proposed that HRV can be better described through nonlinear analysis rather than 
linear analysis due to missing signal stationarity and diverse conditioning requirements. [8] The HRV 
signal analysis is influenced by a lot of different factors such as time and amplitude resolution of the 
ECG recordings, duration of the recordings, stationarity of the recording, present trends, ectopic 
beats, arrhythmias, and noise. [9] Therefore the method of HRV analysis and their parameters have 
to be chosen very carefully.  
 

 

a)              Filtered ECG data and identified R-peaks 

 
 

 

b)    RR-intervals 

 
 

 

Figure 1.6: ECG data and RR corresponding RR-interval series. a) Filtered ECG data and identified R-

peaks over time in seconds (s). b) RR-intervals (ms) over time in seconds (s) 
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Another way of visualizing RR-interval series are so called rhythmograms (or tachograms) which also 

show the different lengths of RR-intervals. (Figure 1.7) 

 

 

 
 

Figure 1.7: Rhythmogram/Tachogram. RR-intervals in milliseconds (ms) over time in seconds (s) 
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1.2.1. Linear analysis  
 

Linear analysis methods of HRV can be grouped into various categories. There are time domain 

methods, frequency domain methods, geometric methods, time frequency methods and methods 

derived from fractal geometry. This chapter includes a short summary of chosen methods of linear 

analysis. Since there are so many different methods this thesis cannot cover them all and we had to 

focus on a couple of well known and widely used ones. The summaries include a basic description of 

the method, stability and improvements and applications. We chose following methods, each having 

its advantages and disadvantages:   

   

 Advantages Disadvantages 

Time domain analysis   

Standard deviation of 

RR-intervals (SDNN) 

Simple to calculate [10] SDNN is not a well defined statistical quantity 

because of its dependence of length of the 

signal [10].  

Time domain measures in general do not 

reliably distinguish between distinct biological 

signals. There are many different data series 

with identical means and standard deviations, 

but with different underlying rhythms. [11].  

Sensitive to artifacts (e.g. stationarity of the 

signal) [11] 

Root mean square of 

successive differences 

of RR-intervals (RMSSD) 

 Can be affected by artifacts and outliers [12] 

Frequency domain 

analysis 

  

Power spectral density 

(PSD) 

Useful to evaluate 

relationship to 

mechanisms [11] 

Requires periodicity and stationarity [11]. 

Altered by posture, sleep, activity [13]. 

Sensitive to artifacts [11]. 

Geometric analysis   

HRV triangular index 

and triangular 

interpolation of the RR 

interval histogram 

(TINN) 

Insensitivity to 

analytical quality of RR-

interval series [10]. 

Simple measure of HRV 

[14] 

Need reasonable number of RR intervals. 

(recordings which last at least 20 minutes, 

preferably 24 hours) [10] 

Poincare plots Poincare Plots are a 
simple visualization tool 
of HRV [15]. 
Outlier (ectopic beats or 
artifacts) can be easily 
identified [16]. 
Possible insights into 
short-term and long-
term variability [15] 

Derived statistics are not independent from 
other classical time domain measures [17] 

Table 1.2: Methods of linear analysis of HRV plus their advantages and disadvantages  
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Standard deviation of RR-intervals (SDNN) 

 

SDNN is the standard deviation of normal to normal RR intervals. It is a measurement of variability or 

dispersion of a data set that can be calculated very easily. SDNN reflects all the cyclic components 

responsible for variability and can be seen as global marker of HRV. [18]  

 

Method: 

 

First we calculate the arithmetic mean of the RR values: 

 

   
 

 
    

 

   

                                                                            

 

The standard deviation of a discrete random variable is the root mean square of its values from the 

mean: 

 

       
 

 
          
 

   

                                                                  

 

Where    is the arithmetic mean of RR-intervals (   ) and   denotes the number of    . The index 

  ranges from 1 to  . 

 

Applications: 
 

SDNN as predictive value of mortality within one year after acute myocardial infarction (AMI) [18]: 

 

Balanescu et al. concluded that the SDNN has a prognostic value independent from left ventricular 

ejection fraction and spontaneous ventricular arrhythmias one year after acute myocardial infarction 

and that the reduction of mortality risk by reperfusion therapy does not decrease the prognostic 

value of HRV after AMI.   

  

Heart rate variability as marker of subclinical inflammation of middle aged and elderly subjects 

[19]: 

 

Sajadieh et al. assessed HRV as a marker for subclinical inflammation in patients without prior history 

of cardiovascular disease or strokes. They found that HRV was negatively associated with smoking, C-

reactive protein, white blood cell count, blood sugar, triglyceride concentration, female gender and 

diabetes. In contrast, physical activity was strongly associated with higher HRV. They concluded that 

reduced HRV was associated with subclinical inflammation in healthy middle-aged and elderly 

subjects. 
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Association of depression with reduced heart rate variability in coronary artery disease (CAD) [20]: 

 

Carney et al. tested if depressed patients with CAD have decreased HRV compared with non-

depressed CAD patients. The depression patients were compared according to age, sex and smoking 

status. They found that the SDNN was significantly lower in depressed than in non-depressed 

patients and concluded that decreased HRV may help explain the increased risk for cardiac mortality 

and morbidity in depressed CAD patients.   

 

Stability and improvements: 

 

Since the SDNN value changes with signal length it is not possible to compare signals with different 

signal lengths. Therefore the Task Force of The European Society of Cardiology and The North 

American Society of Pacing and Electrophysiology have suggested to use recordings of same lengths 

(e.g. 5 minutes or 24 hours). [10] 
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Root mean square of successive differences of RR-intervals (RMSSD) 

 

RMSSD is the root mean square of successive differences of RR-intervals. It can be used to evaluate 

components that have a short-term effect on HRV, corresponding to parasympathetic activity. [18] 

 

Method: 

 

As shown by Chamchad et al. [21]: 

        
 

   
            

 

   

   

                                                       

    are RR-intervals with an index   ranging from 1 to the total number ( ) of RR-intervals minus 1. 

 

Applications: 

 

Detection of irregular pulses in patients with Atrial fibrillation (AF) [22] : 

 

McManus et al. tested the hypothesis that a smart phone based application could detect an irregular 

pulse from AF using RMSSD and Shannon entropy as analysis methods. RMSSD and Shannon entropy 

were significantly higher in participants in AF than they were in normal sinus rhythm. They concluded 

that their method accurately distinguished pulse recordings during AF from sinus rhythm.   

 

Change of HRV during treatment for depression in patients with coronary heart disease [23]: 

 

Carney et al. tried to determine whether treatment for depression with cognitive behavior therapy 

(CBT) is associated with increased HRV. They classified mildly to severely depressed patients, and 

compared them to a control group. They found that RMSSD (reflecting mostly parasympathetic 

activity) improved significantly in the severely depressed patients, but remained unchanged in the 

mildly depressed and the control patients. Carney et al. concluded that treating depression with CBT 

may increase short-term HRV and thus it may have a beneficial effect on a risk factor for mortality in 

depressed patients with coronary heart disease. 

 

 Assessment of HRV in fibromyalgia patients [24]: 

 

Mork et al. investigated HRV in fibromyalgia (FM) patients and healthy control subjects during 

different sleep stages to examine the association with pain and sleep quality. Their results showed 

that RMSSD was lower in patients with FM compared to the control group during NREM-2 sleep and 

during REM sleep.  RMSSD showed modes positive correlations with sleep quality and modes 

negative correlations with neck/shoulder pain. They concluded that RMSSD is attenuated in FM 

patients compared to the control group during NREM-2 and REM sleep.  

 

Stability and improvements: 

 

All time domain HRV indices can be affected by artifacts and outliers (e.g. ectopic beats) and 

therefore require clean datasets. [12] 
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Power spectral density (PSD) 

 

The power spectral density gives a visual and quantitative representation of how contributing 

frequencies to an underlying signal are distributed.  The spectral ranges of HRV (Table 1.3) can be 

observed between 0.01 Hz and 0.5 Hz with different frequencies in between corresponding to 

particular physiological activity or sleep states [2]: 

 

Very low frequency (VLF) 

Humoral activity 

Low frequency (LF) 

Sympathetic activity 

High frequency (HF) 

Parasympathetic activity 

0.01-0.06 Hz 0.06-0.15 Hz 0.15-0.4 Hz 

Table 1.3: Frequency ranges of HRV 

 

In case or RR-intervals which have a physical unit of 1 millisecond, the spectral density has the unit of  

        . (Figure 1.8) 

 

Method: 

 

As shown by Rieke et al. [25]: 

 

Calculation of truncated Fourier transform       : 

 

       
 

  
             

 

 

                                                               

 

Where      , the RR-interval series over time ( ), is integrated in the finite interval       and    

denotes the angular frequency.  

 

 

 

 
 

Figure 1.8: Example of power spectral density of HRV during sleep 
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The power spectral density can then be defined as: 

 

          
   

                                                                              

 

Where   denotes the expected value. 

 

The power of the signal in a given frequency band         can be calculated by integrating over 

positive and negative frequencies: 

 

                              
  

  

                                           

 

Where   is the integrated spectrum whose derivative is    . 

 

Applications: 

 

Power spectral density as prognostic tool of HRV for patients with chronic heart failure (CHF) [26]: 

 

Guzzetti et al. found that the power of the LF spectral component was significantly lower in the CHF 

patients compared to the control subjects. They concluded that spectral analysis methods of HRV 

have a prognostic value independently from time-domain measures.  

 

Quantitative marker of autonomic dysfunction in patients with renal failure (RF) [27]: 

 

Axelrod et al. found that the power spectrum in all frequencies was reduced in patients with RF. They 

concluded that spectral analysis of HRV makes it possible to quantitate autonomic dysfunction in 

patients who suffer from RF.   

 

Assessing depth of Anesthesia [28]: 

 

Toweill et al. assessed the depth of propofol anesthesia in patients by analyzing the response to 

painful stimuli in short-duration procedures. They found that the low-frequency power of the heart 

rate increased and concluded that power spectral analysis of HRV may be an accurate measure of 

depth of propofol anesthesia.  

 

 

Stability and improvements: 

 

Long-term spectral analysis may hide information which is contained in shorter term recordings. 

Therefore long-term and short-term analysis should be clearly distinguished. Physiological 

mechanisms of HRV can influence spectral analysis and should therefore be controlled. It was also 

suggested to perform statistical tests for stationarity of the signal before using spectral analysis. [10]  
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HRV triangular index and triangular interpolation of the RR interval histogram 

(TINN) 

 

The HRV triangular index is the total number of all RR intervals divided by the height of the histogram 

of all RR intervals measured on a discrete scale with bins of 7.8125 ms. TINN (triangular interpolation 

of the RR interval histogram) can be described as the baseline width of the minimum square 

difference triangular interpolation of the highest peak of the histogram of all RR intervals [10]. 

 

Method: 

 

As shown by the Task Force of the European Society of Cardiology and the North American Society of 

Pacing and Electrophysiology [10]: 

 

To perform geometric measures on the RR interval histogram we have to construct a sample density 

distribution  . It assigns the number of equally long RR-intervals to each value of their lengths. Then 

the most frequent RR-interval length is established (maximum of the sample density distribution  ). 

(Figure 1.9) 

 

                                                                                        

 

Calculation of HRV index: 

 

 

           
                                

 
                                             

 

Calculation of TINN: 

 

We construct a multilinear function   with: 

 

       
        
        

                                                                      

 

 
Figure 1.9: Sample density distribution of RR-intervals ( ), where   is the maximum of   and   is the 

most frequent RR-interval length.   and   are the upper and lower bounds [10]. 
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and 

 

                                                                                        

 

such that 

 

               
  

 

                                                                    

 

is the minimum among all selections of all values   and   . 

 

                                                                                  

 

Applications: 

 

HRV triangular index as measurement of clinical status and prognosis in patients with chronic 

congestive heart failure (CHF) [14]: 

 

Wijbenga et al. found that patients with CHF who had a restrictive transmitral flow pattern had lower 

HRV index values compared to patients with CHF and a non-restrictive transmitral flow pattern. They 

also showed that a low HRV index and diminished left ventricular ejection fraction were the only 

independent predictors of the occurrence of cardiac death or heart transplantation. They concluded 

that the HRV index provides independent information on clinical status and prognosis in patients 

with chronic congestive heart failure.  

 

Analysis of HRV in obese and eutrophic children [29]: 

 

Vanderlei et al. investigated the autonomic modulation of eutrophic and obese children by applying 

geometric HRV analysis methods. Their results showed that TINN was reduced in obese children. 

They concluded that obese children presented changes in the autonomic nervous system 

characterized by decreases in parasympathetic activity and overall variability. 

  

Prognosis of Type 2 Diabetic Autonomic Neuropathy [30]: 

 

Tale et al. analyzed HRV signals of patients with Type 2 Diabetic Autonomic Neuropathy. The TINN 

values and other time and frequency domain values were significantly decreased in the diabetes 

mellitus group. They concluded that the reduction in parameters of HRV shows clinical expression of 

autonomic neuropathy in diabetes mellitus.  
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Poincare plots 

Poincare plots portray the nature of RR interval fluctuations. Each RR interval is plotted as a function 

of the previous RR interval. The resulting graph provides a qualitative picture of both overall and 

beat-to-beat RR behavior. The shape of the plot is categorized into functional classes that indicate, 

for example, the degree of heart failure. [31] 

 

Points above the line of identity (see Figure 1.10) indicate RR intervals that are longer than the 

preceding RR interval, whereas points below the line of identity indicate shorter RR intervals than the 

previous one. Accordingly, the dispersion of points perpendicular to the line of identity (width) 

reflects the short-term variability    . The dispersion of points along the axis of the line of identity 

(length) reflects the long-term variability    . [32] 

 

Method: 

Calculation of the two descriptors     and     [33] 

 

We have a time series of RR-intervals 

 

                                                                                         

 

and the same time series shifted by 1: 

 

                                                                                         

   : 

   
         

  
                                                                         

   : 

 

    
         

  
                                                                         

 

Where     denotes the variance. 

 

Furthermore we can calculate the ratio between     and     which seems to be a powerful 

predictor of post operative myocardial ischemia (see below). [34] There are various techniques for 

geometric analysis of Poincare plots. A common method is the ellipse fitting technique.  

 

Ellipse fitting technique [16]: 

 

To characterize the shape of the plot a set of axis - oriented with the line of identity - is defined. The 

axes of the Poincare plot (Figure 1.10) are related to the new set of axes by a rotation of    
 

 
    : 
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Figure 1.10: An example of Poincaré plot detailing the ellipse fitting process. The coordinate system 

   and    is established at 45° to the normal axis. The standard deviation of the distance of the points 

from each axis determines the width (   ) and length (   ) of the ellipse.     and       are the 

RR-interval series and its time shifted copy [35] 

 

    and     can be related to standard HRV measures. For example to the standard deviation of 

successive differences of RR-intervals (SDSD): [16] 

 

                 
 

  
    

 

  
       

 

 
               

 

 
                     

 

or the SDNN: 

 

                                                                              

 

Both of those Indices are related themselves: 

 

            
 

 
                                                                  

 

Applications: 

Poincare plots as predictor of post operative ischemia [34]: 

 

The results of Laitio et al. showed an increased ratio between the short-term variability     and the 

long-term variability     of the first postoperative day in the univariate analysis of HRV. In the 

multivariate model, the increased ratio         of the first post operative day was the most 

powerful independent predictor of all possible confounding variables for the occurrence of 

postoperative ischemia.  

 

 

 

    

 
 

 
 
 

 

Poincare plot 

Line of identity 
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Assessment of the effect of endurance training on HRV [36]: 

 

Mourot et al. stated that together with changes in HRV due to acute maneuvers or disease, the 

Poincare plot could discriminate altered HRV due to short- and/or long-term endurance training. The 

Poincare scatter grams were wider in the trained state. Standard deviations of the Poincare plot 

(especially    ) correlated significantly with the main parameters of the time-domain and 

frequency-domain analyses, especially concerning the parasympathetic indicators. Their results 

suggested that the Poincare plot parameters as well as the width of the scatter gram could be 

considered as surrogates of time and frequency-domain analysis to assess training-induced changes 

in HRV.  

 

Heart rate analysis in normal subjects of various age groups [37]: 

 

        shows the ratio of short interval variation to the long interval variation. Acharya et al. 

concluded that this ratio is higher in the case of child and old male subjects, indicating lesser RR 

variability in the short time. This ratio is reduced in the middle aged subjects, indicating higher RR 

variability.  

 

Assessment of the level of sedation in sedated cardiac surgery patients [38]: 

 

Korhonen et al. compared linear and nonlinear analysis of HRV in sedated cardiac surgery patients. 

Their results showed that     was strongly related to the square root of the mean squared 

difference of successive RR intervals (     ) and HF power. In addition, the standard deviation and 

SD2 were strongly correlated. All the parameters except the ratios (LF/HF and        ) correlated 

significantly with the mean RR interval. They confirm that the level of sedation modifies the HRV and 

hence HRV is a potential tool for the assessment of the level of sedation in critical care.   

 

Stability and improvements: 

 

To improve the quality of the RR data and the Poincare plot itself we can apply some pre-filtering. 

Filters also allow us to access the information on the sinus rhythm, which is usually mixed with some 

other information. Piskorsky et al. [33] applied a couple of filtering methods (annotation filter, 

square filter and quotient filter), showed the correct way of filtering data and presented a few results 

of not-filtering or even incorrect filtering. They also demonstrated how proper filtering helps to 

extract interesting information from the data. [33] 

Kim et al. [39] studied effects of missing RR intervals on the Poincare analysis and came to the 

conclusion that the parameters     and     can be recommended for an accurate nonlinear HRV 

analysis with missing RR intervals. [39] 

The standard descriptors     and     do not directly quantify the nonlinear temporal variations in 

the time series contained in the Poincare plot. When applied to data sets that form multiple clusters 

in a Poincare plot due to complex dynamic behaviors, the         statistics yield mixed results. 

This is because the technique relies on the existence of a single cluster or a defined pattern. 

Therefore Karmakar et al. [35] proposed the complex correlation measure (CCM) to overcome the 

limitation of the standard descriptors and confirmed the hypothesis that CCM measures the 

temporal variation in the Poincare plot. [35] 
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1.2.2. Nonlinear analysis  
 

It has been proposed that HRV can be better described through nonlinear analysis rather than linear 

analysis. There are various nonlinear methods to analyze HRV. Some of them quantify the fractal 

scaling characteristics or RR-interval series, some of them measure the likelihood through 

incremental comparisons between data patterns of a certain length and some of the methods 

measure sensitive dependence to initial conditions. Each method has its strengths and weaknesses: 

 

 Advantages Disadvantages 

Detrended 

fluctuation 

analysis 

(DFA) 

Can be applied to non-stationary time series 
[40]. 
Avoids the spurious detection of apparent 
long-range correlations that are an artifact 
of non-stationarity [40]. 
Could be used for on-line monitoring of 
changes in patient status in order to help 
surgeons diagnose patients in Surgical 
intensive care units more rapidly in the 
future [41]. 

It has been suggested to include at 
least 8000 data points. [40] 
It does not relate the derived 
parameters to specific neuro-
autonomic control mechanisms. [40] 
 

Lyapunov 

exponents 

(λ) 

Discriminates correctly between chaos and 
non chaos [42]. 
Relatively robust to noise [42]. 

Misclassifies high-dimensional chaos 
[42]. Unreliable for small data sets 
[43]. Computationally intensive [43]. 

Approximate 

entropy 

(ApEn) 

Robust against noise contamination below 
 .  [44] 
ApEn is resistant to short strong transient 
interference. [45] 
It is applicable for stochastic, deterministic, 
and mixed processes. [46] 

ApEn is dependent on the record 
length and is uniformly lower than 
expected for short records. [47] 
It lacks relative consistency (If ApEn 
of one data set is higher than that of 
another, it should, but does not, 
remain higher for all conditions. E.g. 
for different choices of   and  ). [47] 
Outliers (missed beat detections, 
artifacts) may affect the entropy 
values. [17] 
It counts “self-matches” which leads 
to bias (improved in Sample Entropy 
(SampEn)) [17] 
Stationarity is required. [17] 

Sample 

entropy 

(SampEn) 

It does not count “self-matches” [17] 
SampEn provides a more reliable estimate of 
complexity of a signal compared to ApEn [9] 

Stationarity is required [17] 
Higher pattern length requires an 
increased number of data points [17] 

Multiscale 

entropy 

(MSE) 

Accounts for the multiple time scales in 
biological signals [48] 
It yields consistent findings when applied to 
assess the complexity of cardiac interbeat 
intervals under healthy and pathologic 
conditions. [49] 
MSE is statistically independent from 
conventional linear measures (e.g. RMSSD, 
SDRR). [50] 

In order to have a good statistical 
reliability at higher scales, the 
number of data points must be 
greater than 10000 [9] 

Table 1.4: Nonlinear methods of analysis of HRV plus their advantages and disadvantages 



28 
 

Detrended fluctuation analysis (DFA) 

The Detrended fluctuation analysis is a method that permits the detection of long-range correlations 

embedded in non-stationary time series and at the same time avoids the spurious detection of 

apparent long-range correlations that are an artifact of non-stationarity. [40] 

 

Method: 

Method as shown by Peng et al. [40]: 

 

First, we have to integrate the RR interval time series (of total length  ): 

 

                    

 

   

                                                              

 

Where      is the  -th value of integrated series,       denotes the  -th RR interval and       is 

the average RR-interval over the entire series. 

 

Next the integrated time series is divided into boxes of equal length,   (     for short-term 

scaling,      for long-term scaling). (Figure 1.11)  

 

Then we detrend the integrated time series,     , by subtracting the local trend,      , in each box. 

The rootmean-square fluctuation of this integrated and detrended time series is calculated by 

 

       
 

 
              
 

   

                                                             

 

This computation is repeated over all time scales (box sizes) to provide a relationship between     , 

the average fluctuation as a function of box size, and the box size   (I.e. the number of beats in a box 

 

 

 
 

Figure 1.11: In each box of length  , a least-squares line is fit to the data (representing the trend in 

that box). The y coordinate of the straight line segments is denoted by      . The vertical dotted lines 

indicate the box size. [40] 

Local detrending in the DFA Algorithm 
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Figure 1.12: Plot of         vs.     . Arrows indicate “crossover” Points in scaling. [40] 

 

which is the size of the window of observation). Typically,       will increase with box size  . A linear 

relationship on a double log graph indicates the presence of scaling. Scaling refers to the self-

similarity of the HRV. From a general point of view, it corresponds to the fact that a certain scale-

dependent quantity behaves as a power-law of the scale. Under such conditions, the fluctuations can 

be characterized by a scaling exponent  , the slope of the line relating        , to     . (Figure 

1.12) 

 

We can distinguish between the short-term scaling index    (computed for      samples) and the 

long-term scaling index    (computed for     ).  

 

 =0.5 White noise (If there are only short-term correlations, the initial slope may be 
different from 0.5, but a will approach 0.5 for large window sizes.) [7] 

        Indicates persistent long-range power-law correlations such that a large (compared 
to the average) interbeat interval is more likely to be followed by large interval and 
vice versa. 

        Indicates a different type of power law correlation such that large and small values 
of the time series are more likely to alternate. 

    Corresponds to     noise. 

      Indicates Brown noise, the integration of white noise. 

Table 1.5: Different ranges for scaling index   

 

Applications: 

Comparison between healthy subjects and subjects with congestive heart failure (CHF) [40]: 

 

Peng et al. applied DFA to the nonstationary heart beat time series from healthy subjects and those 

with severe heart disease (congestive heart failure). They showed that DFA is capable of identifying 

crossover behavior (change of dynamics when going from short to long time scales).  

 

Prediction of progressive ventricular enlargement in dilated cardiomyopathy patients [51]: 

 

Mahon et al. concluded, that the short-term scaling component (  ) is abnormal in asymptomatic 

relatives of dilated cardiomyopathy patients who have left ventricular enlargement (LVE). In addition 

they state that (  ) is a predictor of progressive ventricular enlargement in dilated cardiomyopathy 

patients.  
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Separation of sleep stages and identifying Sleep Apnea [52]: 

 

Penzel et al. compared DFA to Spectral Analysis to determine the best method for the separation of 

sleep stages and sleep apnea severity. They concluded that changes in HRV are better quantified by 

the scaling analysis than by spectral analysis.  

 Analysis of short-term heart rate variability in late pregnant women [53]: 

 

Yeh et al. found that late pregnant women have an elevated global scaling exponent, an elevated 

short-term scaling exponent  and lower heart rate variability measures in the low and high frequency 

ranges than those of the healthy controls and 3 months after delivery. Their study suggested that the 

global and short term detrended fluctuation scaling exponents might be new and independent 

measures of heart rate variability in late pregnancy, in addition to the conventional time and 

frequency domain measures.  

 

Distinguishing pathologic states in surgical intensive care units [41]: 

 

The   index derived from the DFA method was applied to patients in a surgical intensive care unit 

(SICU). The results have shown that it can clearly distinguish pathologic states in the SICU from the 

healthy group and white noise signals. However, the variation of   in the SICU group was still too 

large.  

  

Comparison between a group of patients with coronary heart disease and a healthy group [6]: 

 

Krstacic et al. investigated the clinical and prognostic significance of nonlinear methods and to 

correlate the results of dynamic examinations between patients with coronary heart disease (CHD) 

and a healthy control group. They concluded that normal fractal properties of the RR interval 

dynamics are altered in patients with CHD, as estimated by the R/S and DFA methods.  

 

Stability and improvements: 

An interesting topic is the influence of preprocessed signals on the DFA algorithm. Gomes et al. 

applied two preprocessing algorithms (convolution of inverse interval function values with a 

rectangular window and cubic polynominal interpolation of inverse interval function values) on their 

data and concluded that preprocessing with those two methods do not significantly change the 

deterministic signature in the data, except for the index    with the method of convolution. [54]  

Valencia et al. used an approximation of DFA based on symbolic dynamics for analyzing heart rate 

variability by means of RR series which are characterized by long-range correlations. This approach 

was compared with other different proposals that involve RR increment series, magnitude and sign 

of those RR increment series. It seems that an adequate symbolic transformation of the RR series 

allowed DFA scaling exponents to better identify different correlation properties between the 

studied cardiac risk groups. [55] 

 

 



31 
 

An important issue can be missing RR-interval data. Kim et al. have analyzed the effects of missing 

RR-interval data on nonlinear heart rate variability analysis. They used RR-interval tachograms with 

simulated missing data and actual missing data. Also they used some reconstruction methods 

including bootstrapping and several interpolation methods. Their conclusion was that the DFA may 

not be appropriate for accurate HRV analysis with missing data, since these parameters have 

relatively larger error values than time- or frequency-domain HRV parameters. However, the analysis 

of the long-term variation for nonlinear HRV values can be available through applying the rules for 

the reconstruction of the data obtained in their study. [39] 
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Lyapunov exponents (λ) 
 

Lyapunov exponents quantify the sensitivity of the system to initial conditions, which is an important 

feature of chaotic systems and describes how small changes in the state of a system grow at an 

exponential rate and eventually dominate the behavior. Lyapunov exponents are defined as the long 

time average exponential rates of divergence of nearby states. If a system has at least one positive 

Lyapunov exponent, then the system is chaotic. (Figure 1.13) The larger the positive exponent, the 

more chaotic the system becomes (i.e., the shorter the time scale of system predictability). Lyapunov 

exponents will be arranged such that           , where    and    correspond to the most 

rapidly expanding and contracting principal axes, respectively. Therefore,    may be regarded as an 

estimator of the dominant chaotic behavior of a system. [56] 

 

Method: 

 

Algorithm proposed by Wolf et al. [57] as shown by Acharya et al. [37]: 

 

For a given the time series of RR-intervals (     ) for   dimensional phase space with delay 

coordinate  , that is a point on the attractor is given by: 

 

                                                                                     

 

We locate nearest neighbor to initial point: 

 

                                                                                     

 

And denote the distance between these two points as      . At a later time   , initial length       

will evolve to length       . The mean exponential rate of divergence of two initially close orbits is 

characterized by 

   
 

     
      

 

   

      

        
                                                                   

 

In an implementation of this program, the following set of numerical parameters has to be chosen: 

 

 
 

Figure 1.13: Lyapunov exponents ( ) of a typical normal ECG beat. Lyapunov exponents (y-axis) are 

plottet against the Number of Lyapunov exponents (x-axis) [58]  
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where   is the  embedding dimension,   the Delay,   the Evaluation time              , 

          are maximum and minimum separations of replacement point respectively and  

      is the maximum orientation error. 

 

According to Das et al. [59] an embedding dimension between 5 to 20 and a delay of 1 should be 

chosen when calculating LE for EEG data. 

 

  = Negativ  Implies that the orbits approach a common fixed point 

  =Zero Orbits maintain their relative positions 

  =Positiv Implies that the orbits are on a chaotic attractor 

Table 1.6: Different ranges for lyapunov exponent   

 

Applications: 

 

Showing a clear distinction between the neutral and the arousal elicitation [60]: 

 

The outcomes of Valenza et al. showed a clear switching mechanism between regular and chaotic 

dynamics when switching from neutral to arousal elicitation. The mean approximate entropy (ApEn, 

see below) decreased with statistical significance during arousal elicitation and   became negative. 

They state that their results could be profitably exploited to improve the accuracy of emotion 

recognition systems based on HRV time series analysis.  

 

Analysis of the mobile phone effect on heart rate variability [61]: 

 

The results of Yilmaz et al. show that the LLE (Largest Lyapunov exponent) values increased slightly 

with higher electromagnetic fields produced by Mobile phones. This change indicates that the degree 

of chaos in the HRV signals increased at high electromagnetic fields compared to low level 

electromagnetic fields. They concluded that high level electromagnetic fields changed the complexity 

of the cardiac system behavior significantly.  

  

Analysis of heart rate variability in Preterm and Term Neonates [62]: 

 

Selig et al. concluded that preterm neonates have a less complex heart rate variability behavior than 

term neonates. The preterm neonates were significantly different from the term neonates, with 

        . The Lyapunov exponent of the term neonates was closer to one than the Lyapunov 

exponent of the preterm neonates.  

 

Analysis of heart rate time series in Patients with major depression [63]: 

 

Yeragani et al. suggested that major depression is associated with decreased cardiac vagal function 

and a relative increase in sympathetic function, which may be related to the higher risk of 

cardiovascular mortality in this group and illustrates the usefulness of nonlinear measures of chaos 

such as LLE in addition to the commonly used spectral measures.  
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Analysis of cardiac health [64]: 

 

HRV signals can be used as reliable indicator of heart diseases. Acharya et al. have evaluated linear 

and nonlinear parameters and subjected the results to a  -test with more than 90 % confidence 

interval giving significant  -values in all cases. Correlation dimension, LLE and the scaling exponent   

(see DFA) decrease as the RR interval decreases. 

  

Stability and improvements: 

 

The algorithm by Wolf et al. [57] fails to take advantage of all the available data because it focuses on 

one “fiducial” trajectory. A single nearest neighbor is followed and repeatedly replaced when its 

separation from the reference trajectory grows beyond a certain limit. Additional computation is also 

required because the method approximates the Gram-Schmidt procedure by replacing a neighbor 

with one that preserves its phase space orientation. [43]  

Therefore Rosenstein et al. have presented a new method for calculating LLE from experimental time 

series, which can also be applied to small data sets. [43] 

It has been controversial if HRV follows chaotic or stochastic behavior. Hu et al. tried to shed some 

light on the issue by characterizing heart rate variability by a scale-dependent Lyapunov exponent 

(SDLE). The SDLE is a multiscale complexity measure that is able to characterize deterministic chaos, 

noisy chaos, stochastic oscillations, random     processes, random Levy processes, and complex 

time series with multiple scaling behaviors. [65] 
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Approximate entropy (ApEn) 

 

Approximate Entropy (ApEn) is a family of statistic indexes which quantify different degrees of 

regularity in time series. [44] It represents the overall complexity and predictability of time series. 

[66] ApEn reflects the logarithmic likelihood that two sequences that are similar (within a tolerance 

 ) for   points remain similar at the next point. [67] A low ApEn reflects a high degree of signal 

regularity while a random signal has relatively high ApEn. 

 

Method: 

 

Method by Pincus et al. [66] as shown by Al-Angari et al. [45]: 

 

ApEn requires three input parameters: 

 

                                                                                        

 

where   is the embedded dimension of the vector to be formed (length of the vectors to be 

compared),   denotes the threshold that serves as a noise filter and   is the length of the RR-interval 

series. 

 

Pincus et al. [66] used an embedded dimension of    . The choice of   will be discussed under the 

stability section of the ApEn method.  

 

Suppose we have an RR-interval series: 

 

                                                                                 

 

The computation of       vectors (templates), each of size  , is done as follows: 

 

                                                                              

 

The distance                between each template and other templates (including itself) is 

computed as: 

 

                                                                                     

 

For each template      , the number of matching templates       which fulfill                 

 )  is found. 

 

  
     

     

     
                                                                         

 

  
     is the probability that any template       matches      . 
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Next the natural logarithm of each   
     is taken and averaged over  : 

 

      
 

     
     

    

     

   

                                                   

 

By increasing the dimension to      and repeating previous steps to find        , the value of 

the approximate entropy, for a finite length of data points  , is given by: 

 

                                                                                

 

Applications:  

 

Measurement of HRV complexity in healthy groups of different ages and different times of the day 

[68]: 

 

Pikkujämsä et al. concluded that cardiac interbeat interval dynamics change markedly from 
childhood to old age in healthy subjects. Children show complexity and fractal correlation properties 
of RR interval time series comparable to those of young adults, despite lower overall heart rate 
variability. Compared with young adults, children showed similar complexity (ApEn) and fractal 
correlation properties of RR interval dynamics despite lower spectral and time-domain measures. 
Progressive loss of complexity (ApEn) was observed thereafter from middle age to old age.  

Analysis of heart rate variability in patients with coronary heart disease [6]: 

 

Krstacic et al. investigated the clinical and prognostic significance of nonlinear methods and 

correlated the results of dynamic examinations between patients with coronary heart disease (CHD) 

and a healthy control group. Their results were that patients with CHD had lower ApEn than the 

healthy control group.  

 

Studying measures of heart rate dynamics after acute myocardial infarction [69]: 

 

Perkiömäki et al. concluded that short-term fractal scaling properties of heart rate dynamics change 

to a more correlated direction and the complexity of heart rate behavior decreases from the acute 

phase to the predischarge period after AMI. However, the individual values of the short-term scaling 

exponent    and ApEn are more stable over time than those of the conventional linear HRV 

measurements 

 

HRV as a marker for the rheumatoid arthritis stage [70]: 

 

Kamal found that the ApEn measure was reduced in patients with rheumatoid arthritis (RA) in 
comparison with the control group. The power spectra of patients with RA showed reduced high 
frequency value and increased low frequency value in comparison with control subjects. Additionally 
the ApEn measure was significantly reduced in RA patients who have had RA for a long time. Kamal 
concludes that ApEn may be a marker of RA stage. 
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Stability and improvements: 

 

For a shorter time series it is better to choose the Sample Entropy method (SampEn) instead of the 

Approximate Entropy method (ApEn), because the number of samples does not affect the result of 

SampEn (see figure 1.14). [71] 

Pincus et al. [66] used a selected threshold   between 0.1-0.25 times the standard deviation of the 

RR time series. In the following years a lot of authors used a value of   = 0.2 when applying ApEn to 

heart rate dynamics. It has been proposed that signals of faster dynamics are better analyzed with an 

  that maximizes ApEn. [72] Castiglioni et al. [73] have compared      (the r value that corresponds 

to the maximum ApEn value) to the values used until now and concluded that      is not 

incompatible with the traditionally recommended range when applying them to physiologic signals. 

However, they also state that small maneuvers (like change of posture from supine to sitting) do not 

have simple effects on ApEn. They suggest to quantify preliminary the whole ApEn( ) profile as a 

function of   to get a more complete picture and to verify preliminary how critical the choice of   can 

be in the quantification of ApEn. [73] 

 
 

 
 

Figure 1.14: ApEn’s dependence on the data length ( ) with     and              [74] 
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Sample entropy (SampEn) 
 

Richman and Moorman developed the Sample entropy method as an improvement to Approximate 

entropy (see above). [71] SampEn is similar to ApEn. SampEn does not count self-matches as 

comparisons within itself which will lower ApEn values so the signals are perceived to be more 

regular than they actually are. When estimating conditional probabilities, SampEn adopts a one 

template approach to find a match of length      , whereas ApEn adopts a template-wise 

approach. [71] 

 

Method: 

 

By Richman and Moorman [71]as shown by Kim et al. [39]: 

 

We need three input parameters: 

 

                                                                                    

 

where   is the embedded dimension of the vector to be formed (length of the vectors to be 

compared),   denotes the threshold that serves as a noise filter and   is the length of the sequence. 

 

                                                                                     

 

    denote the different RR-intervals. 

 

  
     

                                                       

     
                

 

 

where                is the distance between the vectors       and        
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Finally we can compute the SampEn: 

 

                  
     

     
                                                         

Applications: 

 

Detection of obstructive sleep apnea Syndrome [45]: 

 

The results of Al-Angari et al. showed that complexity of HRV was significantly different between 

normal and obstructive sleep apnea groups and they state that analysis of HRV might be a useful way 

to detect sleep apnea without using a polysomnopraphic study.  

 

Study of Heart rate complexity prior to the onset of atrial fibrillation [7]: 

 

 Tuzcu et al. used SampEn for complexity analysis. Their results showed that the SampEn of RR-

intervals was significantly reduced in the pre-Atrial Fibrillation period compared with the Atrial 

Fibrillation period. There was a significant decreasing trend in the entropy towards the onset of Atrial 

Fibrillation using linear mixed models.  

 

Analysis of heart rhythm following cardiac transplantation [75]: 

 

Tuzcu et al. concluded that system complexity decreases in patients who have undergone heart 

transplantation. Patients who underwent heart transplantation showed significant decrease in 

entropy as assessed by SampEn. This can be related to loss of the neural modulation of heart rate. 

Their limited number of transplanted patients do not seem to support presence of cardiac re-

innervation.   

 

Characterization of heart rate variability loss with aging and heart failure [76]: 

 

Goya-Esteban et al. characterized HRV loss with aging by SampEn. They were able to obtain a good 

representation of the HRV loss for CHF condition as well as a steady decrease of SampEn with a fixed 

threshold value  . They achieved higher discrimination than with an   value given as a percentage of 

the standard deviation of each data series. 

 

Identifying diabetic patients with cardiac autonomic neuropathy [77]: 

 

Khandoker et al. concluded that SampEn of HRV could have potential in identifying asymptomatic 

cardiac autonomic neuropathy (CAN). Their results showed that the SampEn values found in CAN 

group were lower, which could be a practical diagnostic and prognostic marker.  
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Stability and improvements: 

 

SampEn is less dependent on the data length than ApEn (Figure 1.15), although it has higher standard 

deviation for low number of samples. [74] 

 

 

 

 
 

Figure 1.15: SampEn’s dependence on the data length ( ) with      and              [74] 
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Multiscale entropy (MSE) 

 

Multiscale entropy is an indicator or the regularity of the signal at different time scales. MSE is based 

on the observation that the output of complex systems is far from extremes of either perfect 

regularity or complete randomness. Instead, the signals generally reveal structures with long-range 

correlations on multiple spatial and temporal scales. These multiscale features, ignored by 

conventional entropy calculations, are explicitly addressed by the MSE method. [48] 

Method: 

 

As shown by Costa et al. [49]: 

 

We have a one dimensional-discrete time series of RR-intervals with a total number ( ) of RR-

intervals: 

 

                                                                                     

 

From that time series we construct a coarse-grained time series determined by the scale factor   : 

 

  
   

 
 

              
  
          

    
 

 
                                                   

 

For a scale of 1, the time series {    } is the original time series. The length of the coarse-grained 

time series is equal to the length of the original time series divided by the scale factor   . (Figure 

1.16) 

 

Then we calculate an entropy measure (e.g. SampEn or ApEn) for each coarse grained time series, 

which can be plotted as a function of the scale factor   . (Figure 1.17) 

 

 

 
Figure 1.16: Coarse-graining procedure for scales 2 and 3 [78] 
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Figure 1.17: Plot of MSE average signature with                (from ApEn and/or SampEn).  

Awake and sleep period considering different age groups of non-healthy patients [79] 

 

Applications: 

 

Comparison of HRV between healthy subjects, subjects with congestive heart failure and subjects 

with atrial fibrillation [48]: 

 

Costa et al. applied multiscale entropy to cardiac interbeat interval time series of healthy subjects, 

those with congestive heart failure and those with atrial fibrillation. They concluded that under 

pathologic conditions, the structure of the time series variability may change in two different ways. 

One dynamical route towards disease is associated with loss of variability and the emergence of 

regular patterns (e.g. heart failure). The other dynamical route is associated with more random types 

of outputs (e.g. atrial fibrillation). In both cases, MSE reveals decrease in system complexity. 

 

Prediction of hospital mortality in trauma patients [80]: 

 

Norris et al. showed that nonsurvivors show lower SampEn at each scale factor and therefore lower 

MSE. Survivors had higher SampEn values, indicating more variability of HR and fewer consistent 

repeating patterns. This effect was consistent when MSE was computed across various durations of 

HR data. They concluded that MSE of the heart rate within hours of hospital admission predicts death 

occurring days later and that complexity may be a new physiological biomarker of the outcome.  

 

Detection of subtle abnormalities in cardiovascular control in young patients with diabetes 

mellitus type1 [50]: 

 

Trunkvalterova et al. concluded that MSE analysis of spontaneous HR and Blood pressure oscillations 

is able to detect subtle abnormalities in cardiovascular control in young patients with diabetes 

mellitus, supporting the concept of complexity loss. The values of SampEn in diabetes mellitus 

patients were significantly reduced on coarse-grained signals (scales 2 and 3). They suggest that 

complexity is mostly reduced on scales covering Respiratory Sinus Arrhythmia, which is in accordance 

with the parasympathetic dysfunction in diabetes mellitus.  
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Indication of fetal distress associated with the presence of a pathological condition at birth [81]: 

 

Ferrario et al. applied the ApEn and SampEn estimators to fetal heart rate signals on both single and 

multiple scales for an early identification of fetal sufferance antepartum.  Their results showed that 

the ApEn index significantly distinguishes suffering fetuses from normal fetuses between the 30th and 

the 35th week of gestation.  They state that MSE entropy values are reliable indicators of the fetal 

distress associated with the presence of a pathological condition at birth.    

 

Stability and improvements: 

 

Multiscale entropy suffers from two limitations: 1. The artificial MSE reduction due to the coarse 

graining procedure.  [82] 2. The introduction of spurious MSE oscillations due to the suboptimal 

procedure for the elimination of the fast temporal scales. The MSE approach eliminates fast 

temporal scales (e.g. short-term neural regulation carried out by the autonomic nervous system) in 

order to focus progressively on slower time scales (e.g. vasomotor control, chemoreflex regulation 

and thermoregulation). [83] 

 

Valencia et al. [83] proposed a refined method of the MSE in order to avoid these limitations. The 

method is called Refined Multiscale Entropy (RMSE) and it offers a way to resolve the two 

shortcomings that produce the MSE dependence on variance and on the shape of the power 

spectrum of the considered series. [83] 
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1.3. Sleep 
 

Sleep is an important topic in the lives of human beings because it is necessary for survival. Other 

than its general known function of revitalizing the human body sleep can also be associated with 

various pathologic conditions. Therefore sleep has been subject of studies for many of years. It can 

be described as state of rest which normalizes physiological parameters destabilized during the day. 

[1] From a practical point of view falling asleep can be promoted by lying down relaxed in a 

comfortable thermal environment, warm drinks, hypnotic suggestions of warmth, autogenic training, 

switching off lights or sleep medicine. [84] It is composed of different cycles of REM (Rapid eye 

movement) and NREM (Non-rapid eye movement) phases, with NREM consisting of shallow to deep 

sleep stages. Those cycles of sleep vary in human beings of different age groups. In children and 

young people cycles of about 2 hours duration each can be observed. Especially children exhibit a lot 

of deep sleep and a lot of REM phases, while elders have an increased amount of shallow sleep. 

Elders also experience more nocturnal awakenings leading to fragmented sleep and therefore to 

poorer sleep quality. [1] The deterioration of deep sleep with aging can be seen in table 1.7: 

 

Sleep phases/stages Young adults (about 25 years) Elderly persons (about 80 years) 

Awake < 5 % 14 % 

REM 25 % 18 % 

NREM Stage 1 4 % 8 % 

NREM Stage 2 50 % 54 % 

NREM Stage 3 6 % 4 % 

NREM Stage 4 13 % 2 % 

Table 1.7: Relative durations of sleep phases and stages for young adults and elderly persons [1] 

 

Sleep is tightly coupled to the circadian rhythm. Circadian rhythms have an impact on biochemical, 

physiological and psychological parameters. For example the stress hormone cortisol is produced in 

the second half of the night to prepare the body for waking up. Another example is the hormone 

melatonin which is activated by darkness and causes drowsiness, and lower body temperature.      

 

1.3.1. Sleep stages 
 

The characterization of sleep which is widely used today was originally introduced by Rechtschaffen 

and Kales [85]. It consists of different stages and phases such as an awake phase, a REM phase and 

several NREM phases (S1-S4). 2007 the American Acedemy of Sleep Medicine (AASM) proposed new 

guidelines for sleep scoring where they combined sleep stages S3 and S4 [86]. There are some 

significant differences between conventional sleep scoring and the new AASM standard and thus 

new normative data still has to be established [87]. Therefore we decided to use the sleep scoring 

method by Rechtschaffen and Kales. Different sleep stages can be visualized in so called Somnograms 

or Hypnograms. (Figure 1.18)     
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Figure 1.18: Somnogram/Hypnogram showing different sleep stages (Awake, REM, S1-S4) over time 

in minutes (Dataset nr. 10) 

 

Each sleep phase has its own purpose. REM sleep is accompanied by a heightened mental activity 

which includes counteracting daily life’s wearing effects like realistic rehearsals of threatening 

events, memorable dreaming and processing/saving implicit memory tasks. NREM sleep corresponds 

to revitalization of the body and plays an important role in processing of explicit memory tasks. Sleep 

stages can be classified by Polysomnography (PSG) by measuring different physiological signals using 

multiple measuring and recording devices [1]: 

 

 Electroencephalogram 

(EEG) 

Brain activity 

Electrooculogram 

(EOG) 

Eye movements 

Electromyogram 

(EMG) 

Muscle tension 

Electrocardiogram 

(ECG) 

Heartbeats 

Awake Relatively fast alpha 

and beta waves 

Normal eye 

movement 

High muscle 

tension 

 

REM  Rapid eye 

movements 

Nearly absent 

muscle tension 

Accelerated 

heartbeat 

S1 Reduction of alpha 

waves, increase of 

theta waves 

Slow eye 

movements 

Vanishing muscle 

tension 

 

S2 Theta waves, 

upcoming delta waves 

No eye 

movements 

Decreasing 

muscle tension 

 

S3 Domination of delta 

waves (up to 50 %) 

and increased 

amplitude 

No eye 

movements 

Further 

decreasing 

muscle tension 

 

S4 Domination of delta 

waves > 50 % 

No eye 

movements 

Low muscle 

tension 

 

Table 1.8: Sleep stages and their physiological relations 
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1.3.2. Sleep and HRV 
 

In general HRV is increased during sleep states as compared with the awake state indicating 

increased restorative effects of the body. HRV is highest during REM sleep and decreases with 

increasing sleep depth.  During sleep we can identify different frequencies of the power spectral 

density of the consecutive RR-intervals corresponding to different physiological phenomena and 

therefore also to different sleep stages [1]: 

 

Very low frequency (VLF) 

Humoral activity 

Low frequency (LF) 

Sympathetic activity 

High frequency (HF) 

Parasympathetic activity 

0.01-0.06 Hz 0.06-0.15 Hz 0.15-0.4 Hz 

Very slow oscillations in the 

rhythmogram most likely 

influenced by 

thermoregulation, humoral and 

metabolic regulation, circardian 

variations and blood pressure 

regulation 

Slow oscillations in the 

rhythmogram influenced by 

arterial blood pressure 

oscillations in terms of 

baroreflex (resonance 

phenomenon in the control 

loop of the baroreflex involving 

sympathetic nervous system 

(SNS) and parasympathetic 

nervous system (PNS)) 

Mainly characterized by 

respiratory sinus arrhythmia 

(relatively rapid respiratory 

modulation of RR-intervals) 

which is mediated by the PNS 

Table 1.9: Frequency ranges of HRV and their physiological relations 

 

In healthy humans the LF frequency components dominate during REM sleep, while on the other side 

there is a HF dominance during NREM sleep. (Figure 1.19) 

 

 
Figure 1.19: Power spectral density of HRV during REM and deep NREM sleep. It shows different 

frequency bands (Hz) of HRV (VLF, LF and HF) [1] 

 

With depth of sleep HF components increase compared to shallow sleep stages. (Figure 1.20) 

 

 
Figure 1.20: Relative distribution of LF and HF components during deep and shallow NREM sleep. [1] 
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1.3.3. Sleep and pathologic conditions 
 

There are many disorders of sleep patterns of human beings. Some of them are serious enough to 

interfere with normal physical, mental and emotional functioning. Different types of sleep disorders 

such as Dyssomnias (sleep disorders characterized by either hypersomnia or insomnia) and 

Parasomnias (disorders that involve abnormal and unnatural movements, behaviors, emotions, 

perceptions and dreams in connection with sleep) have been identified. [88] Some of the sleep 

disorders which have a pathologic impact are for example: 

 

Duration of sleep and mortality [89]: 
 
Kripke et al. analyzed the data of 1.1 million men and women from 30 to 102 years of age. The best 
survival was found among those who slept 7 hours per night. Patients who slept 8 hours or more 
experienced significantly increased mortality hazard. The same was valid for patients who slept 6 
hours or less. The increased risk exceeded 15 % for those reporting more than 8.5 hours or less than 
4.5 or 3.5 hours of sleep.  
 
REM sleep behavior disorder (RBD) as marker of neurodegenerative diseases [90]: 
 
The skeletal muscle tone is usually reduced during REM sleep, preventing the acting out of dreams. In 
RBD the skeletal muscle remains active during dreaming, resulting in vocalization and sometimes 
violent activity of arms and legs. Many patients insure themselves or their bed partners while 
dreaming that they are defending themselves against an attack. Studies have shown that 
neurologically normal RBD patients have reduces striatal dopamine activity, suggesting that they may 
be in the pre-symptomatic stages of Parkinson’s disease. These insights may provide a way of 
identifying patients with a high risk of developing serious neurologic disease and therefore perhaps 
allowing preventive therapies to be administered in the future.  
 
Obstructive sleep apnea [91]: 
 
Gastaut et al. documented the sleep of patients with obesity hypoventilation and found that they 
had repetitive episodes of upper-airway obstruction terminated by brief arousals that in turn 
fragmented nocturnal sleep, obstructive sleep apnea (OSA). It has been determined that OSA 
produces sleep fragmentation and daytime sleepiness. OSA is a common condition affecting men and 
women. Epidemiologic studies have confirmed that obesity remains one of the major risk factors for 
OSA. It can also be associated with the hypertension, along with an increased prevalence of coronary 
heart disease, heart failure and stroke.   
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2. Methodology 
 

In order to get an RR-interval series it is necessary to detect R-peaks of the QRS-complex of ECG 

recordings. ECG recordings contain a lot of artifacts which have an effect on R-peak detection 

algorithms. Therefore it was necessary to preprocess ECG signals and remove those artifacts. Our 

gained RR-interval series contained outliers which had to be removed manually. With a clean RR-

interval series it was possible to calculate spectrum weighted mean frequencies of all spectrums of 

HRV which are the basis of our HRV based sleep estimation. After considering some options and 

parameters we were able to compare our estimation of sleep stages to the sleep stages recorded by 

conventional PSG.  

 

2. 1. Data 
 

For our study we acquired 22 sets of sleep data from Giedrius Varoneckas, Professor at the Institute 

of Psychophysiology and Rehabilitation, Kaunas University of Medicine, Lithuania. The data was 

stored in the EDF file format and contained multiple channels such as for example ECG, EEG, EOG and 

EMG channels. We extracted the ECG channel and stored it in the ASCII file format. The ECG data was 

recorded with a sampling rate of 2000 Hz. Additionally we acquired the corresponding somnogram 

data stored as text files which  contained an assessment of the current sleep stage (Awake, REM, 

S1,S2,S3,S4) every 30 seconds during the period of sleep. Somnograms were detected by the means 

of standard PSG evaluation software (ALICE-4 Respironics) and then reassessed visually by an expert.   

Our datasets contained healthy subjects, subjects suffering from insomnia or parasomnia and 

subjects with sleep apnea:  

 

Dataset number Diagnosis Dataset number Diagnosis 

1 Insomnia 12  Sleep apnea/Insomnia 

2 Insomnia 13 Insomnia 

3 Insomnia 14  Insomnia 

4 Insomnia 15 Insomnia 

5 Insomnia 16  Insomnia 

6 Insomnia 17  Insomnia 

7  Healthy 18  Insomnia 

8 Healthy 19 Insomnia 

9  Healthy 20  Insomnia 

10  Healthy 21  Insomnia 

11 Healthy/Parasomnia 22 Insomnia 

Table 2.1: Used datasets and their pathologic conditions 
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2. 2. ECG preprocessing 
 

We used the software MATLAB for our analysis. In order to ensure a good automated R-peak 

detection we removed some common artifacts of the recorded ECG signals such as baseline drift and 

noise. (Figure 2.1) We tried different filters for the removal of those artifacts. After a comparison we 

chose to use a moving average filter with a span of 1000 points for the removal of the baseline drift 

by using the MATLAB’s smooth function. Once we had the signal without baseline drift, we removed 

noise artifacts by filtering our ECG signal with MATLAB’s filter function by using an  th order lowpass 

digital butterworth filter with a filter order of       and a cut-off frequency of           .   
 

 

a)  

 

 
 

b)  

 

 
 

c)  

 

 
 

 

Figure 2.1: Preprocessing steps from the raw ECG signal to the clean one in order to ensure good R-

peak detection. a) Raw ECG signal with noise and baseline drift. b) The baseline drift of the ECG was 

removed with an algorithm using a moving average filter. c) The noise of the ECG signal was removed 

by using a Butterworth filter. 
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2. 3. R-peak detection and correction of RR-intervals 
 

To identify R-peaks of the ECG data we used an R-peak detection algorithm developed by the Vienna 

University of technology. Even though the R-peak detection algorithm worked really well, some R-

peaks were missed or falsely identified due to ectopic beats and strong noise (e.g. movement 

artifacts) in some parts of the ECG signals. (Figure 2.2) We compared and corrected each RR-interval 

series manually. Ectopic beats and false R-peak detections were removed from our RR-interval series. 

(Figure 2.3) For further analysis it was important to preserve the information of the exact point in 

time when the individual RR-intervals were detected.  

 

RR-intervals before manual correction: 

 

a)  

 
 

 

 

b)  

 
 

  

 

Figure 2.2: Filtered ECG signal (top) and its corresponding RR-interval series (bottom) containing 

artifacts which have to be corrected in order to use PSD correctly.  a) ECG with falsely identified R-

peak (ectopic beat) and RR-interval series. b) ECG with falsely identified R-peaks due to movement 

artifacts and RR-interval series. 

RR-intervals after manual correction: 

 

a)  

 
 

 

 

b)  

 
 

 

 
 

Figure 2.3: ECG (top) and corresponding corrected RR-interval series (bottom) a) Removed RR-

interval (ectopic beat). b) Removed RR-intervals originating from movement artifacts. 
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2. 4. Spectrum weighted mean frequencies 
 

As shown by Kaniusas et al. [2]: 

 

Since the established sequence of RR-intervals represents an irregularly time-sampled signal, the 

sequence was linearly interpolated with a frequency of    = 3 Hz. The value of    was chosen to be 

higher than the highest instantaneous heart rate and sufficiently high that the Nyquist frequency 

( 
  

 
     Hz) of the HRV-spectrum is not within the frequency range of interest (i.e., up to 0.5 Hz).  

 

The values of the power spectral density ( ) were estimated in absolute units (ms2/Hz) using intervals 

of 60 seconds (180 points) with zero overlap, applying Hamming smoothing and zero padding up to 

512 points.  Thus the resulting frequency resolution of   was about 0.006 Hz (=      ). i.e. 

sufficiently fine to estimate   in the lowest humoral band.  

 

Spectrum-weighted frequencies    were assessed according to: 

 

        

     

     

   

     

     

         

     

     

     

     

     

                              

 

where   is the frequency,      and      are the lower and upper bounds of the relevant frequency 

range, respectively, and   is the area encompassed by  . It can be derived from Eq. 2.1 that    

represents the frequency of the center of   in the given frequency range [    ,     ]. The values of 

   were assessed for different frequency ranges: 

 

Total (  
 ):    0.01-0.5   Hz 

Humoral (  
 ):   0.01-0.06 Hz 

Sympathetic (  
 ):  0.06-0.15 Hz 

Parasympathetic (  
 

):  0.15-0.4   Hz 

 

The chosen ranges are widely accepted for HRV analysis in the clinical and research fields, and 

correspond to a particular physiological activity or sleep stage. Spectrum weighted mean frequencies 

of HRV can be seen in figure 2.4.  
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Figure 2.4: Weighted mean frequencies of RR-interval series containing different frequency ranges of 

HRV   
 (black trace),   

 (blue trace),   
 (green trace) and   

 
 (red trace). (Dataset nr. 10) 
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2. 5. Comparison of weighted mean frequencies with sleep stages 
 

For further analysis we only used the weighted mean frequencies of the total spectrum   
  (black 

trace in figure 2.4). To analyze the correlation between   
  and acquired somnograms recorded by 

conventional PSG we processed both signals and considered different options on how to improve the 

correlation between them. The signals were rescaled into relative units and filtered with the same 

filter parameters. After rescaling we inverted   
  and considered combining sleep stages, the removal 

of sleep stages of short period of time and different smoothing procedures.  

  

2. 5. 1. Inversion of signal and relative units 
 

We inverted   
  to get a better visual assessment of the correlation between   

  and the different 

sleep stages of the somnogram. We chose to compare two different ways of signal inversion. The 

Inversion      
  was calculated by: 

                           

     
    

                               

                                   

            
      

                             

 

To compare the weighted mean frequencies to the somnograms we rescaled the signals to fit them 

between 0 and 1. To rescale the frequencies we calculated the new frequency          

  : 

         
  

     
            

  

         
             

  
                                                     

 

For better view-ability in Figure 2.5 and 2.6,          
  was filtered by creating a filter kernel with fir1 

using MATLAB. We used an     order filter of     and a cut-off frequency of         . The 

filter uses a Hamming window of the length     and the normalized gain at    is -6 dB. 

 

 
 

 

 
 

Figure 2.5: The diagram on top shows rescaled weighted mean frequencies of total spectrum of HRV 

  
  (black), humoral (blue), sympathetic (green) filtered with fir1 (   ,       ) and 

corresponding somnogram (blue) over time in minutes (bottom). (Dataset nr. 10) 
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a)  

 

 

 

 

b)  

 

 

 

Figure 2.6: Weighted mean frequency of total spectrum   
  (green trace), its inversion (a:   

       

and b:     
 ) (black trace) filtered with fir1 ( =8,   =0.1) are shown on top and corresponding 

somnograms (blue trace) are shown in the bottom diagram. (Dataset nr. 10) 

 

After a comparison we decided to use      
    

       as inversion method for further analysis. 
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2. 5. 2. Removal of sleep stages of short duration 
 

We removed sleep stages of short periods of time (e.g. 1-3minutes) to get a “smoother” somnogram 

in order to achieve an improved correlation between the sleep stages and the weighted mean 

frequencies of the RR-interval data sets. (Figure 2.7) If a sleep stage lasts shorter than a specified 

range of minutes the value of the sleeps stage gets set to the value of the previous stage.  

 

a)  

 

 
 

b)  

 
 

c)  

 
 

d)  

 
 

Figure 2.7: Comparison of somnograms with removed sleep stages of different periods of time. a) 

Original somnogram b) Removed sleep stages <= 1 minute c) Removed sleep stages <= 2 minutes, d) 

Removed sleep stages <= 3 minutes. (Dataset nr. 10) 
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2. 5. 3. Combining sleep stages 
 

We also analyzed how the correlation between          
  and the somnograms change if we combine 

different sleep stages. (Figure 2.8) Stages which lasted a short period of time were removed, as 

shown in the chapter above, before combining the different stages. 2007 the American Academy of 

Sleep Medicine provided new guidelines on sleep scoring where they combined S3 and S4 to a single 

stage. Therefore for one part we combined only S3 and S4 while the combination of WK+REM, S1+S2 

and S3+S4 was our other choice of combination method.  

 

a)  

 

 
 

b)  

 
 

c)  

 
 

Figure 2.8: Combination of sleep stages. a) Original sleep stages after removal of stages of short 

period of time. b) Combination of S3 and S4 c) Combination of WK+REM, S1+S2 and S3+S4. (Dataset 

nr. 10) 
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2. 5. 4. Smoothing procedures 
 

To compare          
  to the sleep stages of the somnograms we filtered both signals with the same 

filter. We used the MATLAB function fir1 to design our filters with different parameters.   Fir1 designs 

an     order low pass filter with a cut-off frequency   . It uses a Hamming window of length   

 . The cut-off frequency    must be between            with 1.0 corresponding to half the 

sample rate. The normalized gain of the filter at    is -6 dB. We added values before and after the 

signal to eliminate the delay of the signal caused by the filter’s settling time in order to preserve 

length and timing of the signal.  

 

Comparison of signals using different filter orders  : 

 

The higher the filter order   and therefore the window length of the hamming window, the 

smoother both signals get, but the more detail they lose. (Figure 2.9) 
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Figure 2.9: Original Sleep stages and          
  (top) compared to filtered version by using different 

filter orders. (bottom)   .    = 0.01, a)  =10, b)   = 20, c)  = 30, d)  =60. (Dataset nr. 10) 
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Comparison of signals using different cut-off frequencies   : 
 

With a relatively high value of    we can see that there is still a lot of noise left especially in the HRV 

signal           
 , whereas with a lower value of    noise gets weaker. (Figure 2.10) 
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Figure 2.10: Original Sleep stages and          
   (top) compared to filtered version by using different 

cut-off frequencies   . (bottom)   = 30  a)    = 0.01, b)    = 0.1, c)    = 0.2, d)    = 0.5. 
(Dataset nr. 10) 

  

Sleep stages and inverted mean total frequency Sleep stages and inverted mean total frequency 

Sleep stages and inverted mean total frequency Sleep stages and inverted mean total frequency 

Filtered Sleep stages and inverted total frequency Filtered Sleep stages and inverted total frequency 

Filtered Sleep stages and inverted total frequency Filtered Sleep stages and inverted total frequency 

Sl
e

e
p

 s
ta

ge
s 

Sl
e

e
p

 s
ta

ge
s 

Sl
e

e
p

 s
ta

ge
s 

Sl
e

e
p

 s
ta

ge
s 

Sl
e

e
p

 s
ta

ge
s 

Sl
e

e
p

 s
ta

ge
s 

Sl
e

e
p

 s
ta

ge
s 

Sl
e

e
p

 s
ta

ge
s 

Time (minutes) Time (minutes) 

Time (minutes) Time (minutes) 

Time (minutes) Time (minutes) 

Time (minutes) Time (minutes) 



59 
 

3. Results 
 
We analyzed the 22 datasets we acquired with the different parameters shown above (Removal of 

short sleep stages of different duration, combining multiple sleep stages, using different filter orders 

  and using different cut-off frequencies    )) and created plots of their cross-correlation 

coefficients   and their corresponding histograms. To investigate how the different choices of 

individual parameters we used influenced each single dataset we also visualized the influence with 

Box plots and multivariable charts. 

 

3. 1. Correlations 
 

The cross-correlation coefficient   (with         ) specifies the correlation between sleep stages 

of the somnograms and our HRV based sleep estimation          
 .  

 

Negative correlation No correlation Positive correlation 

              
Table 3.1: Ranges of cross-correlation coefficient   

 

3.1.1. Influence of different parameters on correlations 
 

Removal of sleep stages of short duration: 

  

The removal of sleep stages of short periods of time did not alter our results significantly. The cross- 

correlation coefficients    of some datasets alter in a very small range. The histograms just show 

small shifts of distribution of  . (Figure 3.1)   
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b) 

 
 
 
 

 
 

 
 
 
 

 
 
 

    
c)  

 

  

 
 

 
Figure 3.1: Comparison of cross-correlation coefficients   of sample datasets and histograms with 

removed sleep stages <= a) 1 minute b) 2 minutes c) 3 minutes. 
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Combination of sleep stages: 

 

The combination of sleep stages seemed to influence our correlations and the distribution of   in the 

corresponding histograms. Whereas the combination of Wake+REM, S1+S2, S3+S4 (figure 3.2c) 

strengthens the correlation, the combination of only S3+S4 (figure 3.2b) weakens it significantly in a 

lot of cases. (Figure 3.2) 

a) 
 

 

 
 

 

 

   
b)  
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Figure 3.2: Comparison of cross-correlation coefficients   and histograms with combined sleep stages 

a) Not combined, b) S3 and S4 combined, c) WAKE and REM, S1 and S2, S3 and S4 combined 
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Different filter Orders  : 

 

In general, a higher value of the filter order   improves the correlation of our sleep stages and our 

HRV based sleep evaluation. Both signals get “smoother” by increasing the filter order. Therefore 

there is also a loss of detail. (Figure 2.9)  
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Figure 3.3: Comparison of cross-correlation coefficients   and histogram of different filter orders   a) 
  = 10, b)   = 20, c)   = 30 and d)   = 60 
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Different cut-off frequencies   : 

 

In our datasets smaller cut-off frequencies in general resulted in higher correlations of sleep stages 

and our HRV based sleep estimation. With a relatively high value    there is still a lot of noise left 

especially in the HRV signal           
  (Figure 2.10d) where as the noise is almost canceled out 

completely with a smaller value of    (Figure 2.10a) thus leading to different distributions of   seen 

in the histograms (Figure 3.4a-d).  
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d)  

 
 

 

 

 
Figure 3.4: Comparison of cross-correlation coefficients   and histograms of different cut-off 

frequencies    a)    = 0.01, b)    = 0.1, c)    = 0.2 and d)    = 0.5 
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Boxplots and Multivariable charts 

 

Box plots contain multiple statistical descriptors such as the median (red line), outliers (stars), first 

and third quartile (upper and lower box borders) and whiskers (lines outside the boxes) extending to 

the value which is the most extreme data value that is not an outlier. Multivariable charts visualize 

different parameters by assigning a different symbol to each option.  

 

Different filter orders  : 

 

Higher filter orders strengthened the correlation in most cases. It seems that datasets that have 

relatively higher correlation compared to datasets with a low correlation (around zero) especially 

increase with a choice of a higher filter order N. (Figure 3.5 and 3.6) 

  

 

 
 

Figure 3.5: Box plot of 22 datasets using varying filter orders   = 10, 20, 30, 60.   =0.01, removed 

sleep stages <=2 minutes, sleep stages not combined. 

 

 

 
 

Figure 3.6: Multivariable chart of 22 datasets using varying filter orders   = 10, 20, 30, 60.   =0.01, 

removed sleep stages <=2 minutes, sleep stages not combined. 
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Different cut-off frequencies   : 

 

Higher values of    generally weakened the correlation. Datasets where the correlation is relatively 

higher especially seemed to be influenced by the variation of cut-off frequencies, whereas datasets 

which did not correlate too well did not experience a big change in the cross-correlation coefficients 

  (Figure 3.8). 

 

  

 
 

Figure 3.7: Box plot of 22 datasets using different cut-off frequencies    = 0.01, 0.1, 0.2, 0.5.   = 30, 

Removed stages <= 2 minutes, sleep stages not combined. 

 

 

 
 

Figure 3.8: Multivariable chart of 22 datasets using different cut-off frequencies    = 0.01, 0.1, 0.2, 

0.5.   = 30, Removed stages <= 2 minutes, sleep stages not combined. 
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Combination of sleep stages: 

 

The multivariable chart (Figure 3.10) shows clearly that the combination of sleep stages S3+S4 

weakens the correlation in most datasets, whereas the method of combining Wk+REM, S1+S2, S3+S4 

improves most of them. It has to be considered that there is a loss of information when combining 

different sleep stages.   

 

 

 
 

Figure 3.9: Box plot of 22 datasets using different combinations of sleep stages: Not combined, S3+S4, 

Wake + REM S1+S2 S3+S4.   = 30,    = 0.01, removed stages <= 2 minutes 

 

 

 
 

Figure 3.10: Multivariable chart of 22 datasets using different combinations of sleep stages: Not 

combined, S3+S4, Wake + REM S1+S2 S3+S4.   = 30,    = 0.01, removed stages <= 2 minutes 
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Removal sleep stages of duration 

 

The box plot shows that there is no significant change of the correlation between somnograms and 

our HRV based sleep estimation (Figure 3.11). Only one dataset experiences a slightly better 

correlation by removing sleep stages of duration shorter or equal to three minutes (Figure 3.12).  

 

 

 
 

Figure 3.11: Box plot of 22 datasets with removal of short sleep stages of duration 1, 2 and 3 minutes. 

  = 30,    = 0.01, sleep stages not combined 

 

 

 
 

Figure 3.12: Multivariable chart of 22 datasets with removal of short sleep stages of duration 1, 2 and 

3 minutes.   = 30,    = 0.01, sleep stages not combined 
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Different Inversion methods: 
 

     
    

                    
 

 

                                 
  

 

  
                 

 
 

In most cases the negation of   
  (equation 3.1) worked better than the inversion method in 

equation 3.2.  (Figure 3.14) 

 

 

 
 

Figure 3.13: Box plot of 22 datasets using different types of inversion methods:      
    

       

and      
      

 .   = 30,    = 0.01, sleep stages not combined, removed stages <= 2 minutes 

 

  

 
 

Figure 3.14: Multivariable chart of 22 datasets using different types of inversion methods:      
  

  
       and      

      
 .   = 30,    = 0.01, sleep stages not combined, removed stages <= 2 

minutes 
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3.1.2. Good versus weak correlations 
 

After evaluating the different parameters we chose to use a filter order of       , a cut-off 

frequency of          , removal of sleep stages <= 2 minutes and no combination of sleep stages 

in order to achieve high correlations and not lose too much detail of our signals.  A lot of HRV 

datasets showed a really good correlation with their corresponding somnograms recorded by 

conventional PSG. (Figure 3.15)  It seemed like our HRV based sleep evaluation worked especially 

well with semi-periodic somnograms.  

  

Examples of good correlations: 

 

a) 

 
 
 

 

b)  

 
 
 

 
 
 

  

c) 

 
 
 

 
 

d)  

 
 
 

 

   
Figure 3.15: Examples of datasets with high cross-correlation coefficients of a)            (Dataset 

nr. 17) b)              (Dataset nr.11) c)             (Dataset nr. 10) and d)            
(Dataset nr. 7). The parameters we chose were:   = 30,    = 0.01, removal of sleep stages <= 2 

minutes and no combination of sleep stages.  
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Examples of weak correlations:  

 

There were also some somnograms which did not correlate very well at all with our sleep prediction 

method. (Figure 3.16) Most of them were either fragmented, or did not have a lot of sleep phases 

with long periods of being awake.  

 

a) 

 
 
 

 

b)  

 
 
 

 
 
 

  

c) 

 
 
 

 
 
 

d)  

 
 
 

 

   
Figure 3.16: Examples of datasets with low (around zero) cross-correlation coefficients a)    

          (Dataset nr. 22) b)            (Dataset nr. 21) c)              (Dataset nr. 19) and d) 
             (Dataset nr. 2). The parameters we chose were:   = 30,    = 0.01, removal of sleep 

stages <= 2 minutes and no combination of sleep stages. 
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3.1.3. Association with pathologic conditions 

 
After examining our results we tried to determine which datasets showed good correlations and 

which ones did not correlate very well. Datasesets 7 to 11 originated from healthy subjects. Subject 

12 was suffering from sleep apnea and the rest of the datasets were suffering from insomnia.  

Healthy subjects showed relatively high correlations (about 0.6 to 0.8) while subjects with insomnia 

showed mixed results (good correlations, no correlations and negative correlations). (Figure 3.17)   

 

 

 
 

Figure 3.17: Comparison of cross-correlation coefficients of different datasets. The parameters we 

used were: No combination of sleep stages, removed sleep stages <= 2 minutes, 

          and         

  

Cross-correlation coefficients 
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3. 2. Influence of ECG preprocessing on the results 

 
In order to ensure a good R-peak detection the raw ECG Signals had to be filtered. When filtering a 

signal it is possible that the R-peaks are subjected to a certain amount of delay depending on the 

filter parameters. To gain knowledge about how ECG preprocessing influences our output signal we 

made a comparison between our filtered signal and its unfiltered counterpart. (Figure 3.18) 

 

For the removal of the baseline drift we used a moving average filter. We compared the timing of R-

peaks of the raw signal to the signal with removed baseline drift. The peaks showed no signs of delay. 

To filter out the noise we used a Butterworth filter with a filter order   = 2 and a cut-off frequency of 

   = 0.025. As example we used a dataset which was not too noisy in order to still ensure a good R-

peak detection. Both datasets were corrected manually after automated R-peak detection:  

 

Removed baseline drift and Butterworth 

filtered ECG signal ( =2,    = 0.025) 

 Removed baseline drift (No noise filtering) 

a) 

 

 
 

 

 
 

b)  

 

 
 

 

 

Figure 3.18: Comparison sleep stages and           
   originating from filtered and unfiltered ECG data. 

Unfiltered sleep stages and          
  can be seen on top, while our filtered results can be seen on the 

bottom. (Dataset nr. 10)  

 

One peak is slightly higher, but that can be related to small differences of the R-peak detection or the 

manual correction. The overall signal and the cross-correlation coefficients did not change 

significantly (Filtered ECG:            , Unfiltered ECG:            ) and so we concluded that 

the ECG preprocessing methods we used did not significantly influence our results.   
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4. Conclusions  
 

Sleep is an important topic in the lives of human beings because it is necessary for survival. Other 

than its general known function of revitalizing the human body sleep can also be associated with 

various pathologic conditions. The standard method of evaluating sleep quality is PSG. Due to the use 

of multiple recording devices it is not accessible for everybody and has to be performed in a highly 

technical, medical environment. It is desirable to reduce the amount of applied devices in order to 

gain accessibility. There is a close relation between HRV and activity of the ANS, especially during 

sleep when ambient factors do not dominate. Therefore it might be possible to evaluate sleep using 

HRV as reflection of the human brain. Our goal was to asses a new method to estimate different 

sleep stages by using ECG as a single biosignal instead of the multiparametric analysis of the 

traditional PSG in order simplify the process of sleep evaluation. 

 

For our analysis we compared somnograms of 22 datasets recorded by PSG with our HRV based sleep 

estimation. As method we used spectrum weighted mean frequencies of the total spectrum of HRV 

to estimate different stages of sleep. Our results showed that the HRV-based sleep estimation 

provides a better sleep prediction in semi‐periodic somnograms than fragmented somnograms. The 

combination of sleep stages (Wake+REM, S1+S2, S3+S4) seems to improve the HRV‐based estimation 

of somnograms, whereas the combination of only S3+S4 seems to weaken this estimation in most 

cases. The removal of sleep stages with the duration of only a few minutes does not seem to alter 

our results significantly. We found that the negation of the weighted mean frequency (   
 ) tends to 

yield better sleep prediction than its inversion (    
 ). We also show that ECG preprocessing 

methods we used do not significantly influence our results. 

  

We conclude that HRV can be used to assess sleep quality in many cases, especially in rather healthy 

somnograms. However, further research is needed to improve sleep prediction in fragmented 

somnograms. 
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