
Integrating Annotations into a
Point-based Rendering System

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Markus Tragust
Matrikelnummer 0827047

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Dipl.-Ing. Claus Scheiblauer

Wien, 19.11.2013
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





Integrating Annotations into a
Point-based Rendering System

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Markus Tragust
Registration Number 0827047

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Dipl.-Ing. Claus Scheiblauer

Vienna, 19.11.2013
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at





Erklärung zur Verfassung der Arbeit

Markus Tragust
Malfattigasse 18/32-33, 1120 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i





Acknowledgements

Many thanks to Claus Scheiblauer who provided valuable tips and comments during the whole
creation process of this thesis.

I also would like to thank Michael Wimmer for his helpful comments and input during the
writing of this thesis.

Thanks to the FWF funded START project “The Domitilla Catacomb in Rome. Archaeology,
Architecture and Art History of a Late Roman Cemetery” for providing the point model of the
Domitilla catacomb. That project is possible by commission and with the help of the Pontificia
Commissione di Archeologia Sacra/Roma.

Finally, I want to thank my parents Günther and Sabina but also my better half Tamara for
their support during my studies and the writing of this thesis.

iii





Abstract

The preservation of archaeological sites is an important task in cultural heritage. Classical meth-
ods conserve archaeological objects in museums and provide restoration of archaeological sites
threatened by decay. The improved digitalization provides the possibility to generate an accu-
rate representation of archaeological sites by using laser scanners. The resulting point clouds
can preserve the archaeological site and provide the possibility to view it in its digital form even
if it no longer exists.

Usually, the archaeological site comes with a lot of different material, which has been created
over the years. This material provides information about the digitalized object, which helps to
gain a deeper understanding about the presented archaeological site.

This thesis presents an annotation system for a point-cloud renderer. The system allows
adding annotations in the 3D space next to the part of the point cloud it belongs to. This helps to
provide the additional information of the point cloud in the context it belongs to. Moreover, each
annotation should present interesting information about specific annotated parts of the archaeo-
logical site to the viewer. Besides simple textual annotations, a variable amount of documents,
such as images and PDFs, can be attached to each annotation to provide all kind of information.

Several filtering techniques, including viewpoint-dependent priority filtering, are presented
to control the visibility of the annotations. Moreover, a guidance system based on graphs is
introduced to lead viewers to different points of interest, which are represented as annotations.

To provide a clear connection between annotations and the annotated part of the point cloud,
a point-selection method and a point-marking method are presented. To allow the connection of
a large set of annotations to a single point cloud, these methods are developed in CUDA. This
is done by extending existing methods, which create octrees in CUDA. The developed methods
allow fast execution on the GPU while a CPU-based method is not able to handle such a large
amount of point selections in real-time.
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Kurzfassung

Die Konservierung von archäologischen Stätten ist ein wichtiger Schritt um das Kulturerbe zu
bewahren. Klassische Methoden stellen wertvolle Ausstellungstücke in Museen aus oder betrei-
ben aufwendige Restaurierungsarbeiten von Zerfall betroffener Exponate. Die fortgeschrittenen
Digitalisierungsverfahren der Informatik bieten heute die Möglichkeit eine exakte Abbildung
eines beliebigen Objektes mittels Laserscanner zu erstellen. Die daraus resultierende Punktwol-
ke ermöglicht es ein Objekt lange über sein natürliches Bestehen hinaus für die Nachwelt zu
konservieren.

Für gewöhnlich existieren neben der archäologischen Stätte selbst eine Vielzahl an Daten,
welche über die Jahre gesammelt wurden. Diese Daten beinhalten Informationen über das digi-
talisierte Objekt, sodass dies besser verstanden werden kann.

Diese Diplomarbeit präsentiert ein Annotationssystem, welches in einen Punktwolkenren-
derer integriert wird. Das System ermöglicht es Annotationen so im virtuellen Raum zu posi-
tionieren, dass diese in direktem Bezug zu dem Teil der Punktwolke stehen für den sie zusätzli-
che Informationen bereitstellen möchten. Die so bereitgestellten Informationen sollen dem Be-
trachter die Möglichkeit bieten mehr über einzelne Teile des Objektes zu erfahren. Dabei sollen
nicht nur Texte als Informationsquelle dienen, sondern auch Bilder, Dokumente und Webseiten
können eingebunden werden. Um die Sichtbarkeit einzelner Annotationen steuern zu können,
werden verschiedene Filtermöglichkeiten angeboten. Unter anderem soll es möglich sein Anno-
tationen blickpunktabhängig anhand ihrer Wichtigkeit darzustellen. Zudem wird ein Leitsystem
vorgestellt, das es ermöglicht den Betrachter zu den verschiedenen Annotationen innerhalb der
Punktwolke zu führen.

Um eine klare Verbindung zwischen Annotationen und den Teilen der Punktwolke herzu-
stellen welche annotiert werden, wird ein Selektionsverfahren und ein Markierungsverfahren
für Punkte präsentiert. Die Verfahren heben die für die Annotationen relevanten Punkte heraus.
Damit diese mit einer großen Anzahl von Annotationen funktionieren werden die Methoden
in CUDA entwickelt. Die entwickelten Methoden erweitern existierende Verfahren, welche Oc-
trees für CUDA bereitstellen. Dadurch ist es möglich beide Verfahren schnell auf der Grafikkarte
auszuführen, während es auf dem Hauptprozessor nicht möglich wäre diese Verfahren für eine
große Anzahl an Annotationen in Echtzeit zu berechnen.
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CHAPTER 1
Introduction

The digitalization of parts of the real word to make it processable in software is a common task
nowadays. Such parts can be small objects such as screws and go up to entire countries or even
the whole world. A first example what can be done with the data once it is collected can be
seen in “Google Earth”, which combines image data and height information with a model of the
world. As a first step to get a three-dimensional digital representation of the desired object, its
geometry has to be recorded and converted into a computer-readable form.

There exist several techniques differing in both accuracy and cost to fulfill this task. Pho-
togrammetry can be seen as first attempt to bring real-word positional information into digital
form. It uses different image-based approaches to calculate positional data from 2D images. The
usage of laser scanners allows the measurement of the complete surrounding by emitting a laser
beam and recoding the reflected light. Such a laser scanner can be mounted on a tripod to col-
lect the positional data of objects or buildings. This type of scanning is referred to as terrestrial
laser scanning (TLS). To scan large areas of land, typically starting at one square kilometer, a
laser scanner can be mounted on vehicles or airplanes. Another cheap method to gain positional
data is the usage of sensors such as they are integrated into consumer electronic devices like the
„Kinect“. But they are limited to small objects and provide only limited accuracy compared to
the other presented methods. All of these methods provide a point cloud which is processable
and displayable within a computer. An example of a point cloud is presented in Figure 1.1

The benefits of the digitalization can be found in the field of cultural heritage, where they
allow a contactless and therefore non-destructive recording of protected monuments. This pro-
vides the possibility to preserve its actual condition and allow people to visit the structure at
least in a digital form if it is threatened by decay or if there are other restrictions which prohibit
access. The creation and visualization of point clouds is only a first step. The point data allows
detailed distance- and area measurements, but also deformation analysis.
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Figure 1.1: A sample point cloud of the St. Stephen’s cathedral in Vienna.

1.1 Motivation

Working on large structures as they appear in cultural heritage or huge industrial complexes,
three-dimensional digital representations such as point clouds can help to give an overview of
the represented facilities. But often there exists more than only the point information of the
structure, which usually consists of positional data and optional per-point data such as color,
normal and intensity of the reflected laser light. In cultural heritage, there exists data regarding
the historical background of certain parts of the building, information about its creational process
or even information located underneath the currently visible surface of the walls.

All this additional information, available as textual description, images or illustrations, is
strongly correlated to different positions in the overall object. Therefore a solution which is able
to display the additional information next to the location it belongs to would be beneficial for
both archaeologists and visitors. First, the integration of this data into point clouds supports the
archaeologist in the following ways: Having all the available data of an object in the same appli-
cation makes it easier to organize the data. Moreover, it helps to see the additional information
in the context it appears to the object. Visitors get the possibility to learn more about the archae-
ological site while traversing the point cloud, using the annotations as source of information.
Besides cultural heritage, for example in the petroleum industry, exist large facilities. Detailed
information about significant parts of a facility is available. This helps understand the usage of
the parts and how they might influence other sections in the same facility.

2



1.2 Problem statement

Such annotations for point clouds are currently not available. Similar systems exist in three-
dimensional space only for meshes. They lack a number of functionality. Current annotation
system do not provide a detailed preview of the annotation in 3D space before opening it. A
solution to filter between important and less important annotations is currently only available
by defining groups which can be set visible or invisible [Díaz et al., 2011]. A clear connection
between the annotation and the annotated part is only provided using boxes to surround the
annotated parts. To provide an exact link between the annotated part of the object and the
annotation, some kind of marking would be required.

The system proposed by Yu et al. [Yu et al., 2011] works only for meshes, it highlights
selected parts of the mesh to visualize a link between parts of the mesh and their corresponding
annotations. Mapping this concept to point clouds requires a point-selection method. Current
laser scanners are able to produce one million points per second. A final point cloud, consisting
of separate (up to several 1000) single scanned point clouds, can hold more than 109 points. This
makes it necessary to develop a fast point-selection method. Existing point-selection solutions
are not fast enough to be used for a large number of annotations in a point cloud.

1.3 Aim of work

The aim of this thesis is to provide a solution which brings the available non-positional data
into relation with the part of the object it belongs to. Using this information as annotations
should provide a deeper understanding of the whole object represented as point cloud. To avoid
confusion when a large amount of annotations are present in the point cloud, a priority-dependent
visualization of annotations should be used. Additionally, a guidance system should be provided
which allows finding points of interest represented as annotations inside the point cloud. This
should help to navigate in complex point clouds such as the Domitilla catacomb presented in
Figure 1.2. The solution should be integrated into an existing point-cloud renderer.

To link the annotations to the part of the point clouds they belong to, a solution is required
to visualize the connections. Since the underlying model of the real-world object is always a
point cloud, a point-selection method has been chosen to create an accurate mapping between
the annotations and their belonging points. In the existing point-cloud renderer, there exists a
CPU-based point-selection approach which works with more than 109 points. However, it is not
able to work with more than 10 selections at an interactive frame rate. The final system should
be able to hold much more than 10 annotations in a single point cloud. Therefore, a method in
CUDA should be created which allows creating and marking more than 10 point selections in
real time.

1.4 Contribution

This thesis has three main contributions:
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1. The development of the first known system which adds annotations holding textual and
image information as annotations inside large point clouds, i.e., with typically up to sev-
eral billion points. This system is combined with a solution to visualize a clear connection
between the points of a point cloud and the annotations. This is done by extending the
solution for meshes proposed by Yu et al. [Yu et al., 2011] to point clouds using point
selections.

2. A point-selection method completely working on the GPU and implemented in CUDA,
due to the strict requirements on performance regarding the point-selection method. This
method consists of selecting and marking single points from the point cloud. The required
data structures will be completely represented on the GPU using CUDA-based octrees
proposed by [Karras, 2012]. This method creates large octrees when used with point
clouds. For this, a compression algorithm on the used data structure for a faster per-frame
test of newly visible points of the point cloud against all existing selections is created.

3. The comparison of the GPU-based point-selection method with an already existing CPU-
based method proposed by Scheiblauer et al. [Scheiblauer and Wimmer, 2011].

1.5 Structure of the work

This thesis continues with Chapter 2, explaining some basic concepts regarding required data
structures and algorithms needed to implement a point-selection method which is able to fully
run on the GPU using CUDA.

Chapter 3 gives an introduction into the currently available annotation solutions before re-
flecting about state-of-the-art annotations in the domain of cultural heritage. The next sections of
this chapter explain how current methods on point selection for point clouds work and introduce
previous work which is important to implement a CUDA-based point-selection and marking
solution.

Chapter 4 gives a detailed explanation on how an annotation-based system for point clouds
can be integrated into the existing point-cloud renderer Scanopy.

Chapter 5 covers all the details that are necessary to implement a method which connects
points of a point cloud with the corresponding annotations.

In Chapter 6, the implemented solution will be compared between different generations
of CUDA-capable devices. The performance impact of the developed solution regarding the
different compute capabilities will be analyzed. Moreover, the CUDA solution will be compared
with the already existing CPU-based point selection.

This thesis will be finished with Chapter 7, reflecting the outcome and discussing potential
future work.
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Figure 1.2: An overview of the complex structure of the Domitilla catacomb. Annotations
combined with a guidance system could help to navigate through it.
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CHAPTER 2
Basic Concepts

Usually, each annotation provides information for a specific part of the point cloud. This requires
to visualize a link between the annotation and this specific part of the point cloud. Therefore, a
highlighting method is required. To provide the possibility to highlight specific points, a point-
selection method is provided to select all points that belong to a given annotation. In the first
part of this Chapter (Sections 2.1 to 2.3), all the data structures and algorithms required to im-
plement a point selection with CUDA are explained. The most significant part is the used octree
structure. Not only is it already used in the CPU-based point selection, but it is also one key
part for rendering point clouds in Scanopy as will be discussed in Chapter 3 Section 3.2. The
second part of the Chapter (Section 2.4) will introduce the different general purpose computing
methodologies. Since the chosen methodology is CUDA, a detailed description of this architec-
ture follows.

2.1 Spatial Data Structures

Spatial data structures subdivide the space the data lies in. As this thesis covers topics in com-
puter graphics, 2D and 3D data is of special interest here. Besides the pure representation of the
data, they make certain tasks easier or faster to compute. Examples are collision detection and
visibility checks. Searching for neighbors of a given point can be done in O(log(n)) time using
k-d trees [Bentley, 1975].

Octrees help to improve the performance on intersection tests when using ray tracing. They
can be used to speed up radiosity [Samet and Webber, 1988b] and are used for fast volume
visualization [Boada et al., 2011]. Octrees are used for the visualization of point clouds because
they help introducing a level-of-detail algorithm as will be explained in Section 3.2.

2.1.1 Octrees

An octree is a hierarchical data structure to partition the space. It has been proposed indepen-
dently by Gregory M. Hunter [Hunter, 1978] in 1978 and Donald Meagher [Meagher, 1982] in

7



Figure 2.1: An example of a regularly subdi-
vided quadtree with depth 4.

Figure 2.2: An example of a regularly subdi-
vided octree with depth 4.

1981.Octrees extend the concept of quadtrees, which work in 2D, to 3D, and both can be seen
as binary trees extended to 2 respectively 3 dimensions.

Quadtrees have a square as root node element. This square is divided into 4 non-overlapping
squares of equal size called quadrants. It can handle both raster data, as it is used to represent
images, and vector data used to represent geometry. When working with raster data, the data
is divided until all quadrants hold only one single value. Those nodes will be referred to as
leafs. The same holds for the usage of vector data, where it is divided until no two vectors share
the same quadrant. [Samet and Webber, 1988a]. An example of a quadtree can be seen in
Figure 2.1.

When extending the quadtree into the third dimension, the root node is a cube with a center
and an expansion in x, y, z direction. Its space can be subdivided into eight cubes of equal
size called octants. They all share one common corner, namely the center of the parent. This
approach of subdividing can be continued recursively for each cube individually until the desired
subdivision level is reached. Although in theory the refinement of the octree can be continued
to any level, in practice a lower bound has to be defined. One criterion to stop the splitting step
can be the amount of data required in one cell [Samet and Webber, 1988a]. This is important for
the point-cloud renderer as can be seen in Section 3.2. Figure 2.2 shows an octree with depth 4.

Instead of splitting each octree node at its center, it can be split at inserted points [Samet,
1990]. Inserting a new point into the octree therefore requires the following steps: First the
correct octant in the octree is searched where the point can be inserted. This is the first octant
found in the hierarchy which does not hold a point already and the position of the point lies
within the volume of the octant. The point will be inserted in this octant and the octant will
be split into eight octants at the position of the inserted point. This can lead to octants with

8
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Figure 2.3: An example of a regularly sub-
devided quadtree with 7 inserted points. Note
how the quadtree is only refined where it is
necessary because it holds points at those po-
sitions.
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Figure 2.4: A quadtree having its nodes split
at the positions of the inserted points. Com-
pared to the regularly subdivided quadtree in
Figure 2.3 on the left, the number of subdivi-
sions is reduced while the space is subdivided
irregularly.

different volumes but can provide a better distribution of the points over the nodes of the octree.
Figure 2.4 shows one possible outcome of such a splitting procedure. For a better visibility of
the splitting positions and the resulting cells a quadtree is used, the concept holds however for
the third dimension and octrees as well. The insertion procedure can be immediately compared
with Figure 2.3 which holds exactly the same points but it is regularly subdivided. The k-d tree
in Section 2.1.2 is a similar solution providing a tree which holds less children per node. The
number of children per node is denoted as branching factor [Samet, 1990].

Octrees allow fast searching in space. Its search complexity depends on the depth of the
octree. The test whether a point lies in a filled or empty region of an octree can be done in
O(log(n)) time if the octree is balanced along the octants. Another important factor why octrees
are used in this thesis is that two octrees can easily be combined or intersected [Meagher, 1982].
Octrees can be used to search for neighborhoods [Samet, 1995], however there exist better data
structures for this task, for example the k-d tree described in Section 2.1.2.

Although the concept of the octree stays the same, there exist different representations in
memory. The used computer architecture has an impact on the used representation in memory.
This means not all possible representations can be used under a given architecture. Therefore
the following three subsections will cover three different concepts of representations in memory.
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Root
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Level 3

Internal node

Filled node

Empty node

Figure 2.5: A pointer-based octree of level 3, the lines represent the pointers to the nodes. Black
circles represent filled nodes, empty nodes are represented by white circles and intermediate
nodes are represented by gray circles.

2.1.1.1 Pointer-Based Octree

A common representation in memory when working with trees is the usage of pointers to re-
fer to a node’s children. The same applies for pointer-based octrees. Intermediate nodes are
marked as partially filled while the leaf nodes are either marked as full or empty. Often the
terms black and white are used for filled and empty nodes, while intermediate nodes are referred
to as gray [Samet, 1995]. An example of such a pointer-based octree can be seen in Figure 2.5.
In its simplest implementation, an octree would hold a pointer for each octant per node, which
would not be memory efficient. To reduce the number of pointers required, as a first step only
the filled/black nodes are stored in the data structure [Samet and Webber, 1988a]. It can be
reduced even further if each octant holds only a pointer to its first child and to one of its sib-
lings. Although this reduces the memory consumption, the required amount of operations during
traversal increases [Lewiner et al., 2010].

2.1.1.2 Linear Octree

When linear octrees and linear quadtrees were originally proposed by Gargantini [Gargantini,
1982a] [Gargantini, 1982b], the purpose was memory efficiency. As already stated above,
pointer-based octrees are not memory efficient in the sense that they hold more pointers to its
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002 003

011

013

03X
1XX

202

210

213

220

223
23X

200 310

313

320

323
33X

30X

Figure 2.7: The compressed version of the
linear quadtree from Figure 2.6. The dupli-
cated information is now reduced. Figure
adapted from [Gargantini, 1982a]

children than necessary. Gargantini therefore proposed the following method which does not
require the usage of pointers: Each quadrant of the quadtree denotes its children using following
encoding: 0 for the NW quadrant, 1 for the NE quadrant, 2 for the SW quadrant and 3 for the
last quadrant. Using this encoding, each node can be represented as a digit of base 4 storing its
hierarchy. Figure 2.6 shows the approach on data resulting in a linear quadtree of depth 3. After
the encoding is completed for all nodes, they can be sorted and result in the linear quadtree. Gar-
gantini further claimed that it is enough to store only the black/filled nodes in the linear quadtree
to save space in memory. A pointer-based quadtree can naturally represent different levels of
subdivision by stopping the splitting process at a given level. In the linear quadtree, all quadrants
have the same depth. This is inefficient in terms of memory usage if all children of one node
are filled. Therefore Gargantini proposed a method to combine such cases. If four nodes differ
only in the last digit, they can be combined into just one node, setting the last digit to a value
higher than 3. This step can be repeated until not all four children of a node are available or the
first digit is reached. Figure 2.7 visualizes the outcome of this process. A linead quadtree that
has not been reduced in size requires 2 bits to encode on level. This number increases to 3 bits
per node when the node reduction is applied because the reduction information is encoded with
a value larger than 3 [Gargantini, 1982a].

The same representation can be done with octrees, just extending the encoding to the octants,
therefore having numbers from 0-7 used to represent the hierarchy of an octant in the octree.
Besides the memory efficiency, linear octrees can be used on architectures where pointers are
not available or have other side effects. This is the case when working with CUDA (explained
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in Section 2.4.1). As one main part of this thesis is the development of a CUDA-based point-
selection and marking method based on octrees, a pointer less octree data structure is needed.

2.1.1.3 Hashed Octree

A variation of the linear octree is the hashed octree. As hash function, which defines the position
of a specific node inside the hash table, a function like the Morton code presented in Section 2.2
can be used. Usually, there are only the k last bits of the Morton code used as a key for the po-
sition in the hash table [Warren and Salmon, 1993]. Collisions can occur when he hash function
maps two nodes to the same entry in the hash table. They can be resolved by using a linked list
which allows to add several nodes at the same position of the hash table [Warren and Salmon,
1993].

2.1.2 K-d Tree

Another spatial data structure is the k-d tree, also referred to as multidimensional binary search
tree. It has been developed by Bentley [Bentley, 1975]. It is able to represent n-dimensional
data. In its name k-d tree the k refers to the dimensionality. Each inserted point splits the space
along one axis. In the two-dimensional case, this would mean the first point inserted splits along
the x axis, the second point splits along the y axis. This results in a tree where a node holds two
children representing the space at the left and the right side of the node. This can make it memory
efficient compared to the octree depending on the complexity of the represented data [Samet,
1990]. A representation of a k-d tree can be seen in Figure 2.8 with its tree representation in
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Figure 2.11: An example of the Hilbert curve
at iteration 4. It can be observed that it tra-
verses a quadtree of level 4. However its
traversing is different to the Morton code rep-
resented in Figure 2.12. Figure adapted from
Hilbert [Hilbert, 1891].

Figure 2.9. Moreover, the k-d tree is more suitable for neighborhood search with complexity
of O(log n), supposed that the k-d tree is balanced. Bentley therefore proposed an optimizing
approach to create a balanced k-d tree [Bentley, 1975]. A generalization of the k-d tree is the
BSP-tree, which does not require the splitting axes to be orthogonal to each other [Fuchs et al.,
1980].

2.2 Morton Code

As shortly mentioned in Section 2.1.1.2, linear octrees help avoiding pointers and are therefore
suited for CUDA. For easier construction of linear octrees the Morton code can be used. Morton
code or Morton order has been introduced by Morton [Morton, 1966].

Generally, the Morton code provides a mapping from an n-dimensional space to the 1D
space, which results in one type of a space-filling curve. Space-filling curves as the name im-
plies, are nothing else but curves which are able to fill an area or space with one curve. Besides
the Morton curve there exist other space-filling curves such as cantor-diagonal order and spiral
order [Samet, 1990]. The curve closest related to the Morton curve is the Hilbert curve, which
has been introduced by Hilbert [Hilbert, 1891].
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When describing the construction of its curve, Hilbert showed it at the example of the two-
dimensional case. He used the unit square and split it into four equal non-overlapping squares
along two orthogonal axes. Those four squares are sequentially numbered such that each num-
bered square shares one edge with the square holding the previous number. Now the line can be
inserted starting from the center of the first labeled square and continuously passing the center
of the remaining squares. This process can be continued by applying the splitting and label-
ing process with each of the four squares. This leads into the Hilbert curve. See Figure 2.10
for a construction example after two iterations. The same division approach can also be seen
in the quadtree and the octree when extending the Hilbert curve into the third dimension. A
combination of a quadtree and its represented Hilbert curve is visualized in Figure 2.11.

The Morton code shows a similar behavior when constructing it for the two-dimensional
case. As shown by Orenstein [Orenstein and Merrett, 1984], there exists a conversion from
n-dimensional data to linear space. Consider the three-dimensional case with the variables x, y,
z. The encoding concatenates the variables by shuffling the n bits as shown in Formula 2.1

x0, y0, z0, x1, y1, z1, x2, . . . , xn−1, yn−1, zn−1 (2.1)

This encoding can be done in any dimension bitwise concatenating the values. Once the
encoding has been computed for all points, they must be sorted, and the n-dimensional data is
represented as one-dimensional data. Along the sorted points, data can now be searched for
and the reversal of the encoding can be applied to retrieve the original data. Orenstein further
observed that the mapping of the Morton code in two-dimensional space shows Z-like structures,
so he introduced the name Z-ordering. This structures can be seen in Figure 2.12.

Both, the Hilbert curve and the Morton curve traverse all the quadrants in the quadtree. They
can therefore be seen as a linear representation of a quadtree and can be used as index structure
for it. Considering the encoding used by Gargantini [Gargantini, 1982a] in her proposed linear
quadtree structure and the traversal of the two-dimensional Morton code, it can be observed
that they are the same. The Morton code differs from the Hilbert curve in the sense that it
has discontinuities along the curve while the Hilbert curve is continuous. On the other side,
the conversion from n-dimensional space into the representation of the Morton code is easier
to compute compared to the Hilbert curve [Samet, 1990]. This can also be observed when
comparing Figure 2.12 and Figure 2.11. The Hilbert curve does not traverse all the quadrants in
the same order.

Although the construction of the Morton code is simple, it has a property which maps well
to quadtrees and octrees. In the case of the octree, each block of three bits represents one level of
the octree. Therefore, when the list of Morton codes is sorted all codes that have the same prefix
share the same parent node. Due to this properties and the simple construction, the Morton code
is used in this thesis to build the linear octree.

2.3 Parallel Sorting

In the sections above, necessary concepts for an implementation of a pointer-less octree have
been introduced. As has been mentioned, the last missing basic concept is a sorting algorithm.
Sorting has been well studied over the last decades. However, as the octree for selecting points
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Figure 2.12: A Morton Code represented as curve. It can be observed, that its traversal is
the same as the linear quadtree proposed by Gargantini [Gargantini, 1982a]. Compared to the
Hilbert curve in Figure 2.11 discontinuities can be observed when moving from one quadrant of
the quadtree to the next. Figure adapted from [Orenstein and Merrett, 1984]

should be implemented completely on the GPU in CUDA, a parallel sorting approach is needed.
The first parallel sorting algorithm was introduced by Batcher [Batcher, 1968] and several others
followed. While the theoretical complexity is the same for several sorting algorithms, it cannot
simply be used as a reference to choose from. It is not straight forward to map the theoretical
complexity of an algorithm to its practical running time on a specific parallel architecture [Blel-
loch, 1996]. Flynn distinguished between four architectural types. The only non-parallel system
is the single-instruction stream-single-data (SISD) architecture. In it one process is operat-
ing on one piece of data at a time. Single-instruction stream-multiple-data (SIMD) provides
several data items which are all processed by one instruction on a given timeslot. Multiple-
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instruction stream-multiple-data (MIMD) processes several data streams with possibly different
instructions at the same time. Multiple-instruction stream-single-data (MISD) is mentioned for
completeness [Flynn, 1972]. Blelloch et al [Blelloch et al., 1991] analyzed three different sort-
ing algorithms namely bitonic sort, radix sort, and sample sort on a SIMD architecture. They
showed that radix sort was the fastest of those three, however, sample sort outperforms the radix
sort when the ratio of number of sorted keys per processor increases. Amato et al. [Amato et al.,
1998] further extended the findings of Blelloch et al. by investigating an implementation of the
same three sorting methods using three different parallel architectures. They could verify that
the architecture has indeed an impact on the runtime of the sorting algorithm. Both surveys
came to the conclusion that the radix sort shows a good performance compared to the other
sorting approaches. It worked well on different amounts of sorted data and different numbers
of key/processor ratios. Additionally, radix sort is easier to implement and it is stable [Blelloch
et al., 1991]. While sample sort worked well on the architectures investigated by Blelloch and
Amato, Tsigas et al. [Tsigas and Zhang, 2003] showed that it preformed 50% slower than the
compared quicksort on a their chosen architecture. All these comparisons show that it is rather
difficult to choose a sorting algorithm for a specific parallel architecture because its performance
heavily depends on the underlying architecture.

2.3.1 Radix Sort

Radix sort is not comparison based as for example quicksort, and its running time is O(n). This
means the sorting algorithm does not compare the elements with each other to sort them. Instead
of comparing the elements with each other, the elements are divided into parts which can then
be used to sort the elements. Therefore, running time does depend on the length of the elements,
which are also referred as keys. It cannot be applied to non-number data types. It works naturally
with integers but it can be extended to work with floats [Blelloch et al., 1991]. The algorithm
takes n bits of each key per pass and sorts the keys along these n bits. As the key is an integer
with length 32 or 64 bit usually 4 or 8 bits per pass are chosen. To sort the n bits any sorting
algorithm can be chosen. The only condition is that it must be stable. Stable means that the
order of two elements, which are equal and follow after each other, must be preserved when the
sorting algorithm has been completed. Since the digits sorted at one step in time are small (4 or
8 bits) counting sort with its running time O(n) can be chosen as sorting algorithm [Leiserson
et al., 2009]. To sort n keys, each holding a value between 0 and k, two additional fields besides
the field which holds the sorting data are necessary. First a histogram is created storing all the
occurrences from 0 to k of the keys. Next each field in the histogram is added to the previous
entry in the histogram field. As a last step the value for each key i is used as the index for the
histogram. The ith value of the histogram is the final position where i must be put in the output
field to be sorted and the histogram entry is decreased by one. This algorithm is able to sort
without comparing the keys as a whole. An example of the radix sort algorithm can be seen in
Figure 2.13.

When converting this algorithm such that it can run on a parallel machine some changes are
necessary as proposed by [Blelloch et al., 1991] and [Zagha and Blelloch, 1991]. This thesis
will focus on the solution proposed by Zagha et al. as it introduces concepts necessary for the
implementation in CUDA.
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Figure 2.13: Radix sort sample. Figure
adapted from Zagha et al. [Zagha and Blel-
loch, 1991].
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Figure 2.14: A sample of the histogram ap-
proach used by Zagha et al. Each processor
uses its own histogram which are combined to
global offsets. Figure adapted from Zagha et
al. [Zagha and Blelloch, 1991].

In the parallel approach the n keys that have to be sorted are distributed over p processors.
When p processors work in parallel on the same histogram field, read-write conflicts can appear
when two or more processors try to access the same entry at the same time. When each processor
locks the entry before accessing it, the performance of the algorithm can be reduced if many
digits hold the same value. The solution to this problem proposed by Zagha et al. [Zagha and
Blelloch, 1991] is to assign to each processor its own histogram. This solves the problem of
concurrent access. As can be seen in Figure 2.14, each processor creates its own key-histogram
according to the current position. After each processor has finished the histogram computation,
the histograms are combined into a single one such that the keys can be globally sorted.

The combination of the histograms starts with the first element of each histogram continuing
with all the second elements and so on. Summing up all the entries can be done in parallel using
the method proposed by [Ladner and Fischer, 1980]. This resulting histogram can be used as
final output by all processors in the same way as in the non-parallel version of the algorithm.

2.4 General Purpose Computing

General Purpose Computing refers to the possibility to compute an arbitrary task on the graphics
processing unit (GPU). Initially, GPUs as the name implies processed nothing else but graphical
data to display an image on the screen.
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The rise of APIs like DirectX by Microsoft and OpenGL supported the developers by im-
plementing graphical tasks on the GPU. A direct programming of the GPU however was still
not possible. It was more like a definition on what should be rendered how, the details where
done inside the API not allowing the developers to introduce their own code for rendering. The
developer defines the geometry that should be rendered and defines the parameters for lighting
and the final output was calculated by the API/GPU combination. This is referred to as fixed-
function-pipeline. Starting from DirectX 8 and OpenGL 2.0, it was possible for the first time to
get control over certain parts in the fixed-function pipeline. The processing of the vertices and
the rendering of the pixels can be controlled with shaders. They are basically small programs
which run on the GPU but can be implemented by the developer. Vertex shader gave control
over the input vertices and pixel shader over the rendered pixels [Segal and Akeley, 2004].

Both the computations for each pixel and each vertex can be executed in parallel, because the
results for each pixel and vertex are independent of each other. This led to graphics cards with
the possibility of running many shaders in parallel because the number of shaders continuously
increased with each graphics card generation. Knowing that the graphics card evolved to a
highly parallel architecture compared to the CPU, the GPU became an alternative to the CPU
when the algorithm could be parallelized and ported to the GPU.

Although it was the purpose of shaders to control the appearance of vertices and rendered
pixels, the methodology could be used to compute tasks beyond simple rendering. One possi-
bility to do so was a three-step process. First a texture is filled with the data the algorithm has to
deal with. Next the texture can be passed to the GPU and the pixel shader performs an operation
on each texel. As the last step, the modified texture is read from the GPU memory and the result
can be used on the CPU [Buck and Purcell, 2004]. This workaround has been used for several
different tasks [Luebke et al., 2004].

In 2007, Nvidia came up with a first solution which makes workarounds with shaders obso-
lete. From that time on, developers could run general purpose algorithms directly on the GPU.
Other solutions came up such as OpenCL and DirectCompute. The capabilities of these solutions
will be discussed in the following subsections.

2.4.1 CUDA

From the GeForce 8800 onwards any Nvidia graphics card has been able to work with CUDA.
CUDA is basically an extension of C which allows directly running code on the GPU in par-
allel. Workarounds such as the one mentioned above were no longer necessary. This allowed
also developers which were not familiar with the concept of shaders and graphics APIs such as
OpenGL and DirectX to run general purpose code in parallel on the GPU [Garland et al., 2008].
When developing with CUDA it is typically distinguished between the host and the device. The
host is hardware device on which the CUDA-capable device is installed. The device is the piece
of hardware on which the CUDA code can be executed. Therefore on a common desktop ma-
chine, source code developed for the host runs on the CPU and uses the main memory, while
the device code runs on the GPU using the faster graphics card memory. To distinguish between
the device code from the code running on the host CUDA, therefore, introduced the __global__
and __device__ function prefixes. Functions with the __global__ prefix are also referred to as
kernels and can be called from the host source code. The functions prefixed with __device__
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can only be called from a __global__ function [Cook, 2013]. Any kernel function can run in
parallel on the GPU. To specify the level of parallelism CUDA extended the function call with
the following pattern:

function_name<<<num_of_blocks, num_of_threads>>>(paremeters);

CUDA hides the details regarding parallelism from the developer. This way, he can focus on
the development of parallel algorithms and does not have to bother with specific details of the
underlying hardware.

1 __device__ int sum(int number)
2 {
3 return number + number;
4 }
5
6 __global__ paralellSum(int *input, int *ouput)
7 {
8 // assume that thread_id is unique for each thread. Starting at 0

for the first thread and then continuously increased for each
thread.

9 ouput[thread_id] = sum(input[thread_id]);
10 }
11
12 void hostFunction()
13 {
14 int *data = new int[256];
15 //assign values to the data array
16 int *results = new int[256];
17 paralellSum<<<8, 32>>>(data, results);
18 }

Listing 2.1: Basic CUDA sample which calls one kernel function

Listing 2.1 shows a simple CUDA example. The kernel function is paralellSum, which
is called from the host in the hostFunction function. To execute 256 threads in parallel, 8
blocks are used holding 32 threads each. The kernel processes each of the 256 input elements in
parallel by calling the device function sum. This is a simplified example because the data has to
be copied to the graphics card memory such that it can be used in CUDA. The copy instructions
are omitted for simplicity.

2.4.1.1 Architecture

In Section 2.3 the problem that an algorithm can work very efficient on one type of parallel
architecture while it does not on another was briefly discussed. Moreover it takes effort to
optimize the algorithm such that it works well with the provided computer architecture. Nvidia
had in mind that the level of parallelism will increase from each generation of GPUs to the next.
Therefore, they designed the structure of their system in such a way that an adjustment of the
algorithm should not be necessary when a new GPU is released.
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On the conceptual level that is visible for the developer, the concepts threads and blocks are
the dominant terms. Similar to the multi-core CPUs, threads run in parallel in CUDA. They are
grouped to blocks and all blocks that are executed with one kernel call represent the grid. An
overview can be seen in Figur 2.16. All threads within this grid are logically executed in parallel
on the GPU by calling a given kernel function. This does not mean that all threads are executed
in parallel on the hardware. How many threads are actually executed in parallel depends on the
underlying CUDA hardware. However, the developer can assume that all threads are executed
in parallel.

To support the development with volume and image data, Nvidia allows to order the blocks
in the grid either three dimensional or in the case of images two dimensional. The same holds
also for the alignment of the threads inside a block. This alignment of threads and blocks can
be imagined as if a multidimensional array is defined. The benefit of this alignment is that the
data can easily be accessed in a per-thread basis, such that each thread can work on one voxel or
pixel. This allows the developer to define for each kernel a given amount of blocks and threads,
independent of the number of parallel cores that are actually available on the GPU. Figur 2.16
shows two different block/thread combinations. CUDA maps the specified thread blocks to the
available resources on the GPU. [Cook, 2013].

To make this work, the CUDA-capable hardware consists of one or several streaming mul-
tiprocessors (SM), which have been renamed to SMX on the latest Kepler architecture. Each
of these SMs holds a defined amount of streaming processors (SP). The first CUDA-capable
devices had eight SPs, this number continuously increased to 192 SPs in the current generation
of GPUs [Nvidia, 2012]. Figure 2.15 shows the hardware structure of CUDA-capable devices.
While each SM can execute up to 16 blocks, each block is executed in one SM. The threads
of each block are grouped together to warps. A warp holds 32 threads of a block. The threads
inside a warp are physically executed in parallel on the GPU. Therefore, all threads inside a warp
execute the same instruction at a given step in time. This means branching must be considered.
If the threads in one warp do not follow the same branch, those who do not enter the branch
are idle until the other threads exit the branch. Although the divergence in the branches is fully
handled by CUDA it still causes a loss in performance, since not all threads are active [Garland
et al., 2008].

CUDA differs between four different types of memory. Each streaming multiprocessor holds
an amount of registers. They are shared between all the streaming processors of the SM. A small
block of 64K of Constant memory is available for a fast access to read-only variables. This
memory can be read by all threads in the same grid [Huang et al., 2008]. The other two memory
concepts are global and shared memory. Their properties are covered in the Sections 2.4.1.3
and 2.4.1.4.

The architecture of each CUDA device is called single-instruction multiple-thread (SIMT),
which is in principle a SIMD architecture. One crucial difference is that threads located in
different warps do not have to enter the same branch or become idle otherwise [Nickolls et al.,
2008].
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Figure 2.15: Hardware layout of a CUDA-capable device. The number of streaming multipro-
cessors (SM) and streaming processors (SP) varies through the different device generations and
device types. Figure adapted from [Nvidia, 2009].

2.4.1.2 Compute Capability

Nvidia introduced different versions of compute capability (CC) to specify what kind of opera-
tions and hardware specifications a CUDA-capable device fulfills. It starts with CC version 1.0
and goes up until version 3.5 for the latest Kepler architecture. On the hardware side, the number
of registers per streaming multiprocessor continuously increased with each version. The number
of registers is important for the occupancy of the GPU. Each thread uses registers for its local
variables. As the amount of registers is limited per SM, a high usage of registers per thread limits
the amount of warps that can be executed in parallel on a SM. This can lead to a occupancy of
less than 100% and causes a loss in performance because not all streaming processors are active,
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or in the worst case the kernel cannot be executed if there are not enough registers available. A
solution to this problem is to reduce the number of threads per block or to reduce the number of
registers used per thread, which requires a change in the source code.

From version 2.0, which was introduce with the Fermi architecture, the amount of shared
memory increased from 16Kb to 48Kb. What can be done with shared memory will be discussed
in Section 2.4.1.4.

2.4.1.3 Global Memory

The global memory is located in the GDDR memory directly on the graphics card. This memory
holds between 512 MB and 2 GB on current generation graphics cards. Data stored in global
memory can be accessed from all threads that are located on the same grid.

Compared to the registers and the shared memory it is about ten times slower than shared
memory. The data that should be processed has to be copied from the host to the global memory
to make it available on the GPU. Once the final result has been computed, the results have to be
copied back to the host to make the output available for further processing in the application.

To get fast access on the data stored in memory only a few patterns are allowed to get a so
called fast coalesced access on global memory. Coalesced access allows reading 32, 64 or 128
bytes with one access to memory instead of accessing each field individually. CUDA devices
with compute capability below version 1.2 had the strongest requirements for coalesced access.
To get a coalesced access the ith thread of a half-warp has to access the ith word of the 128
bytes block. From version 1.2 onwards this restriction has been weakened, now the access is
coalesced if all threads access data within one 128 byte segment.

From version 2.0, the L1 cache has been introduced. When caching is active the global
memory is read as 128 byte per cache line. When a warp accesses different parts of the global
memory in a non coalesced way, it can be switched to read 32 byte per segment to keep the bus
utilization high.

2.4.1.4 Shared Memory

The shared memory is a fast on-chip memory available per multiprocessor and is also referred to
as a developer controlled L1 cache [Cook, 2013]. Its size is limited to 16 KB per multiprocessor
for CUDA cards with compute capability before 2.0. From version 2.0 onwards, the L1 cache
and the shared memory share 64 KB. Either 16 or 48 KB can be reserved for shared memory.
Shared memory can be accessed by all threads in the same block. Therefore, it can be used as a
communication mechanism between threads.

Due to the bandwidth difference between global memory and shared memory it is common
practice to load the data from global into shared memory. The data can be modified in shared
memory and stored back to global memory. This is especially important to support coalesced
data access and if the data is used multiple times and shared among the threads in a block. It is
often the case that the data has to be stored back in a different order than it was read from global
memory. Using the shared memory as a temporal variable allows reading and writing the global
memory in a coalesced manner, as the shared memory does not have a strict access patters as
global memory.
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However, there is another restriction when accessing shared memory. In CUDA, shared
memory is accessed by using banks. There exist 32 banks per warp and each bank can be used
to access 32 bits per cycle. The data stored in shared memory is placed in consecutive order such
that the first data value can be accessed using the first bank, the second value by the second bank
and so on. After the 32nd value is reached the access starts again with bank one. Each bank can
only be accessed by one thread in the same warp per cycle. Otherwise a bank conflict occurs.
This bank conflict has to be resolved by CUDA and costs performance. Until this conflict is
resolved, all other threads belonging to the same warp remain idle. The more threads access
the same bank, the longer it takes to resolve the bank conflict. An exception to this problem is,
when all threads of the same warp access the same bank. This does not result in a bank conflict.
The developer has to be aware of this issue and resolve the bank conflicts by adding for example
an offset to the shared memory index, when initially assigning values to shared memory [Cook,
2013].

2.4.2 Other Solutions

While Nvidia was the first introducing CUDA as a solution for general purpose computing on
the GPU, there exist other methods too. Those are worth mentioning as CUDA is proprietary
and it therefore only works on Nvidia GPUs.

The Khronos group created, similar to OpenGL as graphics API, an open standard for general
purpose computing for parallel processors named OpenCL. OpenCL is not only supported by
graphics cards from Nvidia and AMD but also multicore CPUs. The framework and architecture
is similar to CUDA. Comparing the performance of CUDA and OpenCL, both show the same
performance [Su et al., 2012] [Fang et al., 2011]. In OpenGL 4.3 compute shader have been
introduced and allow an arbitrary computation in shaders.

Another alternative to CUDA created by Microsoft is DirectCompute solution. It is coupled
to the latest DirectX 11 and is therefore only available for Windows.

The decision to use CUDA in this thesis was mainly because it was already used by other
parts of Scanopy. This helps avoiding the dependencies to another general purpose solution.
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Figure 2.16: Two different configurations that can be used launching a kernel with CUDA.
The first version uses a two-dimensional indexing which is useful to work on 2D data such as
images. The second version uses a plain indexing which is suitable for one-dimensional data.
Figure adapted from [Nickolls et al., 2008].
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CHAPTER 3
Related Work

This chapter gives a detailed overview of the related work used in this thesis. The first sections
describe the concept of annotations and how they are used in different fields. Special care is
given to the sector of cultural heritage. Since the implemented point selection is integrated into
Scanopy, the relevant parts of the point-cloud renderer will be described in Section 3.2. As one
significant part of this thesis is the development of a point-selection method, a detailed overview
of existing point-selection solutions is given. The last two sections cover state of the art methods
to construct octrees on the GPU and give an introduction into Radix Sort in CUDA, which is
crucial for certain CUDA octree creations.

3.1 Annotations

An annotation is defined as “. . . a note by way of explanation or comment added to a text or
diagram. . . ” by the Oxford Dictionary [Dictionary, 2004]. In computer science, an annotation
can be any kind of added information [Bechhofer et al., 2002]. This can be as simple as defined
in the Oxford dictionary but also images, audio or video files can be used as annotation. Also,
the annotated data can be much more than text or diagrams as will be shown in the following
Sections.

There exist a variety of different standards which allow annotating the data. They represent
the annotation in a machine readable format, which allows querying the data using annotations.
Common in the field of semantic web is the Resource Description Framework (RDF), which is
used to describe resources and the relation between different resources [Hitzler et al., 2008]. Re-
garding computer graphics, MPEG-7 is of special interest. It allows the description of complete
scenes using annotations.

There is one crucial distinction of annotations in computer science. The first type of anno-
tations has the purpose to provide the viewer with additional information regarding a currently
observed media. On the other hand, a semantic annotation adds information to data, such that
the annotation becomes machine readable [Bechhofer et al., 2002]. Such semantic annotations
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support searching for specific information and further allow automatically relating data by link-
ing different pieces of information together using semantic annotations. This thesis focuses on
annotations which provide additional information to the user. Semantic annotations will only be
introduced briefly as they are not part of this thesis. However, some related systems combine
both types of annotations.

One of the first fields where annotations have been used was in the field of image database
systems [Tamura and Yokoya, 1984] but also image information systems used those annota-
tions [Chang and Hsu, 1992]. Textual information is manually added to the images. Linking
a textual description to the image should provide the possibility to search for images holding
a specific content. Once the images have been annotated, query languages similar to SQL can
be used to query the database [Chang and Hsu, 1992]. As the amount of images increased over
the years, manual annotation became more and more time consuming or even infeasible. Sev-
eral methods have been proposed to automatically annotate images with text by analyzing the
content of the images [Zhang et al., 2012].

With the rise of the semantic web, other annotation based systems came up to annotate
web pages. The system proposed by Bechhofer et al. [Bechhofer et al., 2002] allowed to add
annotations to web pages in the form of texts and links to provide the viewer with detailed
information. The annotated information is combined with the web page once it is loaded by the
browser. Additionally, semantic annotations are added to the web pages. This information added
to the web page allowed an automatic reasoning about the content of the web page and should
support an automated information retrieval.

3D modeling tools and computer-aided design (CAD) software are used in teams. Instead
of managing comments and change requests on the modeled object in a different file, the inte-
gration of such comments in the modeling software can improve the collaboration. This does
not only reduce the management overhead by keeping fewer files in sync. It also gives the pos-
sibility to place information at the exact location it belongs to and allows to see it in its context.
Kadobayashi et al. [Kadobayashi et al., 2005] described a system which allows to add comments
on different parts of 3D models. As can be seen in Figure 3.1, those annotations are connected
with lines to the corresponding parts in the 3D scene. Additionally, several annotations can be
grouped such that they can be traversed consecutively along a path. To reduce the amount of
visible annotations the concept of an interactor has been introduced. This should help to visual-
ize only those parts of the annotations that are of interest to the viewer. Each annotation can be
assigned to one interactor. The user can decide which interactor is active. Only the annotations
which belong to the active interactor are visible.

Sin et al. [Sin et al., 2009] use the concept of annotations to sketch comments in 3D space.
Similar to Kadobayashi et al., they put the comment directly at the referred position. This way,
requests for changes can easily be expressed. They further proposed a so called Sketch-Box.
This is a semi-transparent box, which is shown on the left side of Figure 3.2. Its form and size
can be changed to approximate the annotated part of the 3D model. The sketch-box is combined
with a sketched comment. This combined annotation has the advantage that it clearly states
which part of the model is covered by this annotation as it is bounded by the box. Compared to
other annotation systems providing comments in 3D scenes, this combination provides a better
visibility among different point of views [Sin et al., 2009] as can be seen in Figure 3.2.
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Figure 3.1: Annotation system presented by
Kadobayashi et al. [Kadobayashi et al., 2006].
Textual annotations are added in the three-
dimensional space. It further allows anno-
tating already existing annotations with other
textual annotations. The connection between
annotation and annotated object is established
with a line. Image courtesy of Kadobayashi et
al. [Kadobayashi et al., 2006].

Figure 3.2: The annotations system created
by Sin et al. [Sin et al., 2009] does not rely on
lines as links between the annotations and the
annotated objects. Instead, it creates a semi-
transparent box around the annotated part of
the object. This provides a better hint on what
actually belongs to the annotation for different
point of views compared to the line approach
used by Kadobayashi et al. in Figure 3.1. Im-
age courtesy of Sin et al. [Sin et al., 2009]

To improve the understanding of complex virtual 3D models, Sonnet et al. [Sonnet et al.,
2004] proposed an method to add textual descriptions in the form of annotations to the model.
Besides an explosion technique, which allows seeing inside the 3D model, several methods have
been proposed to control the visibility of annotations. First of all, for each part of the model
a center point is calculated, which is referred to as centroid. This is typically the closest point
of the part compared to the center of its bounding box. Initially, annotations are not visible,
but as soon as the user chooses a part of the model its annotation becomes visible. The amount
of visible text of the current annotation depends on the distance between the mouse and the
centroid of the chosen part and changes when the mouse is moved closer to or further away of
the centroid. To place the annotation on the screen, the bounding box of the annotated part is
used. The annotation is placed at one of the longest edges of the bounding box, which is also
closest to the border of the screen. This helps to reduce the amount of space covered by the
annotation on the object itself since the object should be located at the center of the screen. To
show a clear connection between the annotation and object, a polygon is rendered between one
edge of the annotation and the centroid.
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Figure 3.3: An annotation example from the DECHO framework proposed by Aliaga at
al. [Aliaga et al., 2011]. The archaeological objects are represented as a picture. Annotations
inside the picture are outlined and can be clicked by the viewer to receive additional informa-
tion. The additional information is displayed in a new window, which provides a detailed textual
description and a image gallery related to the archaeological object. Each image can be further
investigated by opening it in a new window. Figure adapted from Aliaga at al. [Aliaga et al.,
2011].

3.1.1 Annotations in Cultural Heritage

In cultural heritage the preservation of archaeological sites using computer technology gained
importance over the last years. Besides the usage of laser scanners and photogrammetry as
mentioned in the introduction, 3D modeling is another possibility to gain a virtual model of
an archaeological site [Koller et al., 2010]. All annotation methods available have in common
that they can support the archaeologists at their work. Providing additional data in form of
annotations helps to structure the information. This is done by using a virtual model of the
archaeological site. The available information is added to the model next to the position it
belongs to. Another target group is the visitors of archaeological sites interested in the details
about the structure.

A simple approach to represent cultural heritage with a computer represents the usage of
images. With the DECHO framework, Aliaga at al. proposed a system to annotate images
of archaeological sites [Aliaga et al., 2011]. The system is web based, and panoramic images
are representing the archaeological objects. The annotated parts of the object are outlined and
can be clicked on. All the related information about this object is collected from the database
and presented to the user on a web page. Additionally, archaeological objects related with
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the annotation can be further investigated virtually because they are all stored in the database.
Objects not exposed in the current museum can be virtually visited in the museum they belong
to by opening a new panoramic image. This image shows the room of the remote museum
exhibiting the related object. The visualization is rather simple as can be seen in Figure 3.3.
The complexity of this system lies on the database connecting the related objects and textual
annotations with each other.

Another web based approach to annotate high resolution images has been proposed by Diaz
et al. [Díaz et al., 2011] named ImaNote. The DECHO framework was static and could not be
changed interactively. ImaNote allows the users to create annotations or change existing ones.
Annotations are represented as squares on the high resolution image. They hold a title and a
description. Images or other documents can be attached to the annotation by defining an URL to
the file. To filter for specific types of annotations, they can be combined into groups. Although
ImaNote allows specifying an icon or image in the annotation, both the DECHO and ImaNote
framework have no possibility to show information about the annotation before opening it. The
only hint about the annotation in the scene, represented as image, is the position and the outline
of the annotation.

Attempts to introduce the third dimension for annotations in cultural heritage have been
made by Yu et al. [Yu et al., 2011]. They introduced a web based application based on X3D.
X3D is an XML based standard to represent 3D data such that it can be rendered in the web
browser. The object data is represented as a mesh. To link an annotation with parts of the
objects, a selection method was introduced. The user can create a polyline and the parts of
the mesh in the polyline are selected. All selected parts of the mesh represent a link to the
current annotation. The selection step can be repeated to refine the selection either by including
other parts of the mesh into the selection or by removing previously selected parts. Whenever an
annotation is chosen from the list, the selected polygons are highlighted to show the link between
annotation and object. While Diaz et al. and Aliaga et al. did not introduce a possibility to show
a preview of the annotations besides an outline, Yu et al. show the name of the annotation next
to the highlighted selection. See Figure 3.4 for an example.

A completely different annotation approach has been proposed by Ma et al. [Ma et al., 2012].
They annotated traditional Chinese paintings, which are up to 5 meters long, with audio files.
The paintings have been digitalized and are presented on a screen. From the visible geometry
on the painting, a depth clue is estimated such that the audio can be embedded in the three-
dimensional space. The visitor stands in a room surrounded by 5.1 channel audio. The 3D
position of the viewer can be controlled by virtually panning and zooming through the painting.
The previously annotated sound files can then be played depending on the position of the viewer.

3.1.2 Annotations in Point Clouds

Annotating point clouds is conceptually similar to meshes because both represent data in 3D.
However, some important properties available in meshes are not present. Point clouds for exam-
ple do not have a surface. Scanned areas might have holes resulting from occlusion issues when
scanning an object. This makes it difficult to select a given area from the point cloud as it was
done by Yu et al. in the case of 3D meshes [Yu et al., 2011]. Additionally, point clouds coming
from devices such as laser scanners are often used to create a 3D mesh. Point cloud annotations
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Figure 3.4: The annotation system described
by Yu et al. The selected part of the 3D mesh
is highlighted with white color. Textual anno-
tations are linked to the highlighted part of the
mesh over a thin line. Image courtesy of Yu et
al. [Yu et al., 2011].

Figure 3.5: Simple point cloud annotations
proposed by Truong et al. [Truong et al.,
2012]. It uses speech bubbles to add textual
descriptions. The annotations are linked with
the point clouds with boxes. Image courtesy
of Truong et al. [Truong et al., 2012].

are not very common until now. The most basic example of an annotation is the possibility to
add a comment to a selected point. Such cases exist for example in the software packages “Bent-
ley”, “CloudCompare” and also Scanopy offers this feature. However, the possibility to create
complex annotations linked to a specific part of the point cloud does not seem to be considered
until now. Also the existence of complex annotations holding different types of media combined
with the possibility of filtering the annotations could not be found in the literature.

The only system that uses annotations in point clouds, which has been found in the literature,
was proposed by Truong et al [Truong et al., 2012]. It focuses on the topic of automatic semantic
annotation of point clouds. Therefore, it is not in the scope of annotations providing deeper
information to the user. However, they propose a solution to link parts of the point cloud with
their annotations. As can be seen in Figure 3.5, this is done with boxes, and these boxes are
annotated with labels to represent the detected structure of the point cloud.

3.2 Point-Cloud Renderer

With the increased point-cloud resolution produced by laser scanners and advanced registration
techniques, point clouds have become bigger and bigger over the years. This progress has lead
to point clouds which can hold more than 109 points nowadays. This amount of points can no
longer be visualized completely due to several hardware limitations. First, the available main
memory on actual computer hardware is not big enough to hold the whole point cloud. The
same is true for the memory on graphics card on which the data must be copied to render the
point cloud. The solution to this problem is to load only parts of a point cloud from the hard disk
to the memory of the graphics card where it can be rendered. This is often referred to as out-
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of-core [Gobbetti and Marton, 2004] [Scheiblauer and Wimmer, 2011]. It is crucial to decide
which parts of the point cloud should be rendered since a wrong decision results into a rendering
perceived as incorrect by the viewer. The two proposed methods use view frustum culling and
level of detail rendering and depend on spatial data structures. Data structures which allow
rendering only parts of the point cloud do not seem to become obsolete in the short future. Not
only the memory storage and processing power of the hardware increases, but also the amount
of points per point-cloud model increases at the same time. Whether or not a point is rendered
depends on whether it is visible from the viewing direction and the distance to the viewer. Points
that lie closer to the viewer are preferred when choosing points for rendering, compared to points
laying further away.

The method proposed by Rusinkiewicz et al. [Rusinkiewicz and Levoy, 2000] uses a tree of
bounding spheres holding the data of the point cloud. Nodes of the tree that do not lie within
the view frustum can be culled away with this method. Level of detail rendering is introduced
by comparing the size of a node’s bounding sphere in screen space with a defined threshold.
If the size of the bounding sphere is smaller than the threshold, the node is not rendered. To
guarantee a specific frame rate, the threshold is adapted from frame to frame. Due to its nature,
the octree is another possibility to render point clouds supported by view frustum culling and
level of detail.

The point-cloud renderer Scanopy, used in this thesis to add annotations, organizes the points
in a special octree named Modifiable Nested Octree(MNO) [Scheiblauer and Wimmer, 2011].
The MNO subdivides the space the point cloud is placed in such a way that each node holds
small parts of the complete point cloud. The number of points that are allowed to lie within a
given node is limited by the free cells of a 3D grid inscribed to the bounding box of the node.
When points fall into already occupied grid cells, they are not stored at the node but rather moved
into the according child node. This introduces level of detail in the MNO. Nodes close to the
root hold a rather coarse representation of the point cloud. Nodes at the leafs of the MNO hold
a detailed representation of the point cloud. This method allows a fast view frustum culling,
because the individual nodes of the MNO can be tested against the view frustum. Also parts of
the octree that are closer to the viewer are rendered in higher detail by rendering nodes closer to
the leaf which hold more data about a given region of the point cloud.

Scanopy distinguishes between three basic storing positions for the point data. Each node
of the MNO is available as a file on the hard disk [Scheiblauer and Wimmer, 2011]. When the
node is required to render a different view of the point cloud, it is loaded to main memory and
as a next step it is put on the graphics card memory where it can be rendered. Each node is
either not loaded and, which means it is only located on the hard disk, or it is either placed in
main memory or in the graphics card memory. However, it is not the case that the same node is
available in main memory and graphics card memory at the same time.

3.3 CPU-based Point Selection

When visualizing annotations, a crucial part is to give a clear hint which part of the data is actu-
ally annotated. As shown in Section 3.1.1, an outline can be used to visualize such a connection
when images are annotated. In the three dimensional case the outline can be extended to a box or
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another polyhedron [Truong et al., 2012] [Sin et al., 2009]. However, highlighting the relevant
areas of a point cloud is preferred because it provides a more accurate link between annotation
and annotated object [Yu et al., 2011]. This makes it necessary to establish a point selection
method.

Scheiblauer et al. integrated CPU-based point selection in Scanopy [Scheiblauer and Wim-
mer, 2011]. The key aspect when adding a point-selection method inside such out-of-core ren-
dering systems is that not all data of a selected area is necessarily loaded when doing the selec-
tion process. When working with an in-core rendering system, all data is available in memory
during the selection process. Therefore, each selected point could be marked with a flag to re-
member if it is currently selected or not. This does not work in the case of out-of-core systems
because not all points of the currently selected region can be stored in memory. Loading all
the necessary points from the hard disc to complete the selection process is inapplicable for two
reasons. First, the data cannot be loaded fast enough from disc to be completely available while
selecting. The other problem is the size of the data, which might not fit completely into memory.

The solution proposed by Scheiblauer et al. was the introduction of a so-called selection
octree, which is used to store a selection volume instead of selecting the points individually. To
select the points a three dimensional brush with the shape of a sphere or a box is used. The
brush can be moved on the point cloud and everything in the brush’s volume shall be marked as
selected. Only currently visible points are used to build the selection octree. The root node of the
selection octree has the same dimensions as the root node of the MNO. After each brush stroke,
the just selected points are filled top-down into the selection octree. The points are filtered
down the octree levels until each octree node holds only selected or unselected points. This step
can be repeated until the desired selection is completed. The selected area is represented by
a selection octree. Points that are loaded from disc because the viewpoint changed are tested
against the selection octree and marked as selected if they are within a selection octree node
which encompasses only selected points. Figure 3.6 shows a point cloud with a selection. The
nodes of the selection octree are visible as well.

This kind of CPU-based selection works at interactive frame rates if only a few selections are
used at the same time. The more point selections are used the slower the system becomes. This
is due to the fact that new loaded points have to be tested against all existing selections. When
more than 10 selections are used, the application can no longer work with an interactive frame
rate. To use a point-selection method to highlight the annotated parts of the point cloud, it must
be able to handle more selections. However, this is not the case with this CPU-base selection
approach and another solution is required.

3.4 GPU-based Octree Creation

To overcome the CPU-based point-selection limitations a method that works on the GPU is
proposed. To make this work, the selection octree must be ported to the GPU. The first proposed
methods which bring octrees to the GPU could not rely on concepts such as CUDA. They used
3D textures as a workaround to represent the octree on the graphics card memory. The method
proposed by Lefebver et al. [Lefebvre et al., 2005] encoded the octree in grids of 2x2x2 texels
for each node to represent the data in it. All grids together are denoted as indirection pool. To
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Figure 3.6: Point selection example of the solution proposed by Scheiblauer et al. The selected
points are marked orange. The selection octree is visible as well. The following color coding i
used: Octree nodes that hold only unselected nodes are colored gray, nodes that contain selected
and unselected nodes are represented orange. The nodes which contain only selected octree
nodes are represented in green. Image courtesy of Scheiblauer et al. [Scheiblauer and Wimmer,
2011].

specify the type of the octants the alpha value is used. An alpha value of 1 represents a leaf node
which holds data. Alpha 0.5 is used for internal nodes, and alpha 0 is used to represent an empty
node. The RGB information of the texel is either used to represent the data if it is a leaf or as an
index to the child nodes if it is an internal node. The data in the octree can be accessed using the
fragment shader.

With the introduction of general purpose methodologies, this workaround became obsolete.
The main problem when implementing solutions that use octrees on parallel architectures such
as the GPU is the fact that the existing serial solutions are not immediately parallelizable. The
classical approach to build up an octree on the CPU is done by continuously inserting points
into the octree. When inserted into the octree, the point subdivides the nodes of the octants such
that the inserted points are distributed over the octree. This method does not work in parallel.
Although it seems plausible to insert the points in parallel into the octree, this would result into
memory conflicts as soon as different points try to change the same node of the octree [BéDorf
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Figure 3.7: An example of a binary radix tree.
Figure adapted from Karras [Karras, 2012].
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Figure 3.8: Internal representation of the bi-
nary radix tree from Figure 3.7. The orange
nodes represent the internal nodes I and the
green nodes represent the leaf nodes L The
splitting position of each internal node is rep-
resented by a red dot. Figure adapted from
Karras [Karras, 2012].

et al., 2012]. First versions came up using CUDA and space filling curves to represent and
process octrees on the GPU in parallel [Ajmera et al., 2008].

The method proposed by BéDorf et al. [BéDorf et al., 2012] covered the problem of sorting
the points the octree is created from. They proposed radix sort as it is currently the fastest sorting
algorithm for parallel architectures supporting CUDA [Satish et al., 2009]. The disadvantage of
this approach is that it needs one pass for each level of the octree.

This problem has been resolved by Karras introducing a parallel construction of the binary
radix tree [Karras, 2012]. Similar to BéDorf et al., Karras first calculates the Morton code
for each point that has to be inserted into the octree. Next, the computed Morton codes are
sorted using radix sort. The crucial step for a fast parallel construction of the octree in CUDA
presented by Karras is the usage of a binary radix tree. A radix tree stores the data in the leaf
nodes of the tree. The internal nodes consist of the common prefixes of their corresponding child
nodes. A special case of the radix tree is the binary radix tree. Each node holds exactly two
children. Therefore, each binary radix tree with n leaf nodes holds exactly n-1 internal nodes.
See Figure 3.7 for an example of a binary radix tree.

Karras observed that each internal node can be computed independently from all the other
nodes in parallel. To do so, the ordered Morton codes are stored in an array L, and the internal
nodes are stored in a different array I. Therefore, the ID for I goes from 0 to n-2. The root of the
tree is stored at position I0 and it splits at the first difference found in the prefixes of the ordered
Morton codes. All the other internal nodes represent a subpart of the whole list of Morton codes
which share the same prefix. As can be seen in Figure 3.8, each internal node’s ID x, represented
by the orange dots, is also either the first or the last ID of the Morton codes it holds. Therefore,
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the parallel algorithm can check the length of the common prefix with x and its right neighbor,
and do the same with the left neighbor. As all Morton codes belonging to the same internal
node of the radix tree have the same prefix length, this test can be used to decide whether the
current internal node holds the Morton codes left or right of the ID x. Then the splitting position,
represented as red dot in Figure 3.8, can be calculated in the same way as it is done in the case
of the root. The left and right children are either another internal node with ID y when it is a left
child or y+1 when it is a right child. However, the index stays the same if the child is a leaf, and
it is marked as a leaf. Note that each consecutive group of 3 bits in a Morton code represents
one level of the octree.

3.5 CUDA-based Radix Sort

As mentioned in the previous Section, a sorting algorithm is required to arrange the Morton
codes in ascending order to build the octree with CUDA. The proposed method by Satish et
al. [Satish et al., 2009] is based on the work by Zagha et al. [Zagha and Blelloch, 1991] which
has been briefly described in Section 2.3.1. Since the access to global memory is expensive
in CUDA, the method of Satish et al. makes heavy use of shared memory. Each block gets a
number of keys assigned. These keys are sorted by repeating a bitwise counting sort four times.
After the first step each block holds its key sorted according to the last 4 bits. As the next step
the keys have to be sorted globally. Therefore, similar to the parallel sorting approach by Zagha
et al., a histogram is calculated that can be used for global sorting. These steps are repeated with
the next 4 bits until the keys are completely sorted.

3.6 Parallel Prefix Sum

While some tasks are very simple in the sequential case, where all the computation is done by
one thread, they are not when they have to be ported to a parallel architecture. Such a task is the
prefix sum or parallel prefix sum or scan in the parallel case [Blelloch, 1990].

The prefix sum is needed for the parallel radix sort to compute a global histogram out of
the local histograms to put the data to the final position [Satish et al., 2009]. The binary radix
tree construction method by Karras needs it to drop all duplicate entries [Karras, 2012] and it
is also needed in this thesis in Section 5.4.2 to compute a compressed octree. It is therefore an
important concept for this thesis and should provide a good running time, or it will slow down
any algorithm constructed on top of it.

The prefix sum computes the sum of all elements in a list before the current element. It
is distinguished between inclusive and exclusive prefix sum, depending on whether the current
element is used for the computation of the sum [Harris et al., 2007]. See Table 3.1 for an
example.

A sequential implementation is straight forward. The first input element can be written
immediately into the output list. The next element is computed using the previous result plus the
next element of the input list. This continues until all elements are summed up. This method does
not work in the parallel because the current element needs the results of its previous elements.
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Input 6 4 0 2 10 5 12 8
Output inclusive 6 10 10 12 22 27 39 47
Output exclusive 0 6 10 10 12 22 27 39

Table 3.1: Example for a prefix sum, distinguishing between inclusive and exclusive prefix sum.
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Figure 3.9: First phase of Harris parallel prefix sum algorithm. Image courtesy of Harris et
al. [Harris et al., 2007].

An efficient implementation for CUDA has been provided by Harris et al. [Harris et al.,
2007] adopting the parallel approach by Blelloch [Blelloch, 1990]. It uses a two step process
to produce the final outcome. The first phase partially computes the sums of the input list from
bottom up. The second phase uses the outcome of the first phase summing the items up from top
down. Each thread can work on two numbers contained in the list to compute the output. The
steps of each phase can be seen in Figure 3.9 and Figure 3.10 resulting in the final outcome. The
computation of the prefix sum can be seen as the traversal of a balanced tree. It is not actually
a tree. However, the concept helps to determine how the different elements of the list have to
be accessed during the different steps to compute the prefix sum in parallel. The variable d
presented in Figure 3.9 and Figure 3.10 represents the individual levels of the tree. A balanced
tree with n leaf nodes results to a depth of log2(n) [Harris et al., 2007].
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Figure 3.10: First phase of Harris parallel prefix sum algorithm. Image courtesy of Harris et
al. [Harris et al., 2007].
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CHAPTER 4
Annotations for Point Clouds

This chapter describes the annotation system which is able to annotate point clouds with addi-
tional information like text and images. Section 4.2 to Section 4.6 focus on the interface of the
annotation system. As underlying point-cloud renderer for the annotation system, Scanopy is
used.

Section 4.7 covers the details about a guidance system which uses graphs in combination
with the annotations to route the user to points of interest in the point cloud.

Scanopy is a point-cloud renderer which has been developed at the Institute of Computer
Graphics and Algorithms of the Vienna University of Technology. It is written in C++ using Qt
for the user interface. For scene-graph management, OpenSceneGraph is used. For the low-
level rendering of the point clouds, OpenGL in combination with Cg as shading language is
used. The software is built in a modular fashion such that the core parts are independent of each
other. Additional features not immediately necessary such as controlling the application using
joysticks and 3D mice are realized with plug-ins.

Although a deep research for related work has been done, no system could be found which is
able to annotate point clouds with additional information. Only one system providing a semantic
annotation of point clouds has been found in the literature [Truong et al., 2012]. The system
closest to the one described here has been provided by Yu et al. [Yu et al., 2011], annotating
three-dimensional meshes for cultural heritage. Especially the highlighting of the annotated
parts of the mesh and a brief textual hint of each annotation in the 3D space next to the model
seem useful and are integrated in this system too.

4.1 Overview

Usually, there exists a large pool of information about a a scanned object. Different pieces of
information are strongly correlated to various positions of the object. To present this information
to the user in the context it has with respect to the object, the idea in this thesis is to place
annotations next to the corresponding position in the point cloud. It is the aim of each annotation
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to provide additional information about a given part of a point cloud. Therefore, each annotation
can be enriched with images, PDFs, and text that can hold URLs to websites. The large benefit
of this solution is that the user has the additional information right where it belongs. It is placed
exactly at the object it is about and can immediately be retrieved from the annotation. Moreover,
all information is well organized since it is attached to those parts of the object that it will provide
with deeper information.

As already seen in Section 3.1, two concepts are important when working with 3D objects
that should be annotated. First, a clear connection between the annotated part of the object and
the annotation itself is required. Second, to maintain the overview within the 3D scene, not
all information that is contained within an annotation can be placed in the scene. Therefore,
a simplified representation of the annotation must be chosen which can be placed within the
scene. When using point clouds represented in 3D, the connection can be established by placing
each annotation next to the annotated part of the object it belongs to. However, the position
of the annotation is not sufficient to link it with the object. Therefore, a connection between
each annotation and the annotated points is established as will be described in Section 4.4. To
provide a preview to the users what they can expect to find in each annotation, a meaningful title
is displayed at the position of the annotation. Additionally, a 3D icon can be used to represent
the annotation. Alternatively, an image attached to the annotation which copes the content of the
annotation well can be used to represent the annotation in the 3D scene.

When a scene contains many annotations and those are all visible on the screen at the same
time, getting an overview is difficult. To resolve this issue, several methods are used. First,
each annotation can be set visible or invisible by the user. Annotations that belong together
can be grouped together. This makes it possible to manually set all annotations of a group
visible or invisible. The last method allows assigning a priority to each annotation. This priority
determines within which distance to the viewer annotations are visible. Annotations with high
priority are also visible from further away, while annotations with low priority will not be visible
at the same distance. This helps to visualize only those annotations that are relevant for the
current viewpoint.

In complex point clouds such as catacombs it is difficult to navigate through all the corridors
to find points of interest. Such points of interest can be represented by annotations. The annota-
tions are combined with a graph to build a guidance system. The graph is constructed such that
it represents all possible paths in the point cloud (for example all corridors in a catacomb). Now
it is possible to direct the user from any node of the graph to another node inside the same graph,
and it can be used to guide the user to any annotation inside the scene. For this to work, the
graph is constructed in such a way that each annotation is linked to its closest node in the graph.
This must be considered during the construction of the graph. The graph must be constructed
such that it passes each annotation, and for each annotation must exist a node in the graph that
is close to it.

4.2 Rendering

Everything that is rendered in Scanopy is added into a scene graph managed by OpenScene-
Graph. Therefore, to visualize the annotations in the scene, each annotation is represented as a
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Figure 4.1: Different annotations combined with a point cloud.

child of this scene graph. To provide a hint to the user what each annotation is about, the title
of the annotation is displayed at the position of the annotation in the scene. Additionally, each
annotation is represented by a three-dimensional icon above the title. The icon can be freely
chosen as long as it can be imported as a mesh. The following data types are currently sup-
ported: OBJ, OSG, 3DS. Considering cultural heritage as example, each group of annotations
can have a different icon. For example, all inscriptions have the same icon, paintings and special
architectural structures are represented with a different icon. This allows the viewer to imme-
diately distinguish the annotations without reading the title of the annotation. The title can be
used to distinguish between the elements within the same group. As an alternative, the icon can
be changed with a billboard that contains one of the images attached to the annotation. If an
annotation is represented in the scene with a billboard of the most meaningful image attached to
the annotation, this helps the viewer guess what the annotation is about. Since the caption and
the billboard are always aligned to the viewer, the representation of the annotation in the scene
can be seen from any viewing position. This is also supported by the usage of 3D icons because
they can represent the annotation from any viewpoint.

When working with 3D graphics, the perspective projection lets things appear bigger when
the camera is moved closer and lets them appear smaller when it is moved further away. This
causes two problems when working with annotations in a 3D scene. If the annotations becoming
too big, more and more of the point cloud is covered by the annotation. Therefore, it is difficult to
see the annotation in the context it appears to the point cloud because the point cloud is covered
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Figure 4.2: The scene ex-
plorer holds all objects of
the current scene. Anno-
tations can be grouped by
using different tabs.

Figure 4.3: The user interface represents the information stored
in an annotation. The upper half of the user interface holds ti-
tel, description and the priority of the annotation. The lower half
holds all images and documents attached to the annotation.

by the annotation. The second problem results in barely visible or even invisible annotations
when the viewer is too far away from the annotation. To prevent annotations from become too
large or too small when the user moves closer or farther away from the annotation, the projective
scaling is limited within a small range. This supports the natural behavior of objects becoming
larger when moving closer but still restricting them from becoming too big or too small.

The CPU-based point-selection method uses the vertex shader to change the color of all se-
lected points. This helps to distinguish between selected and non selected points in the point
cloud. Once the selection of all points from the point cloud belonging to an annotation is
completed, this method will also be reused to show the connection between point cloud and
annotation. The final annotation system integrated in Scanopy can be seen in Figure 4.1.

4.3 User Interface

In Scanopy, all objects rendered in the scene are also available in a tree-view called scene ex-
plorer, represented by an entry with their names. This also holds true for all the available anno-
tations that are inserted into the scene. Figure 4.2 shows the scene explorer with several scene
elements. The data of each annotation can be visited by double-clicking either on the corre-
sponding item in the scene explorer or by double-clicking on the annotation in the scene. The
visualization of the data stored inside an annotation is done using Qt widgets.
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As can be seen in Figure 4.3, each annotation can be enriched with several files. Currently,
images and PDFs are supported. The attached files are visualized in a window located at the
bottom of each annotation. Attached documents require a title, and images can be further an-
notated by adding a description. To allow further insight into the attached files, the images are
represented as thumbnails. This is similar to the DECHO framework proposed by Aliaga at
al [Aliaga et al., 2011], which only provides images as data type for additional files. This is
a problem when too many files are attached to the annotation. As soon as there are more files
attached than can fit on one page of the window, the overview of the data is no longer provided.
Additionally, it would lead to long scrolling periods. Therefore, the view can be changed to a
list when an annotation contains many files. This results in smaller items represented each by a
small icon and the name of the attached file. To improve the overview of the attached data files,
they can be sorted according to their names or their category. As can be seen in Figure 4.3, the
description widget supports different text formatting types such as bold and italic plus different
font sizes. This creates the possibility to emphasize certain parts of the description. This can
be especially useful when the description is a long text. To link other data besides images and
PDFs, the widget further enables the declaration of hyperlinks. Both PDFs and web pages can
be linked.

All attached images and web pages can be opened directly inside the annotation without the
need of an additional application. The provided image viewer allows zooming and panning for
images larger than the provided viewer window.

When an annotation is created, it is placed in the origin of the scene. To place an annotation
inside the 3D scene, three options exist. First, it can be numerically defined using the corre-
sponding fields in the properties dialog. The second option can be called by pressing the left
mouse button inside the scene. By extracting the depth value of the current cursor position, the
3D position of the annotation can be calculated. The benefit of this solution is that it places the
annotations immediately next to the currently visible part of the point cloud. The third option
uses manipulators as they are available in 3D modeling solutions. Those manipulators can be
dragged to move the annotation.

4.4 Linking Annotations to Parts of a Point Cloud

A visual hint is required when using annotations, otherwise it is not clear which part of the
object is annotated. When working in three-dimensional space as it is done when working with
point clouds, a first hint can be the location of the annotation. However, there are other issues
to consider as well. The geometric structure of the annotated part can have different shapes.
This makes it difficult to guess which parts of the object belong to the annotation and which not,
by using the position only. Additionally, whether using the position alone helps to guess which
parts of the object belong to the annotation heavily depends on the viewing direction from which
the annotation is viewed. This can be seen in Figure 4.4, the same annotation is presented from
two different views. It is difficult to determine which part of the point cloud is annotated when
no hint on the point cloud is available.

Simple solutions such as polyhedrons positioned around the corresponding points of an an-
notation are either not fine grained enough to cover any possible case of possible shapes that
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a) b)

c) d)

Figure 4.4: The point-marking method helps to detect which part of the point cloud belongs to
the annotation. The left column (images a and c) shows the annotation with selected points. The
right column (images b and d) shows the annotation without selected points. It is difficult to see
which parts of the point cloud are annotated without a clear link between the annotation and the
point cloud.

might be annotated when working with point clouds or result in complex geometry difficult to
create. The most natural decision besides using a volume to confine the region of a point cloud
is to highlight all individual points belonging to this region. This highlighting approach results
in an accurate representation of the annotated part of the point cloud. This requires a method to
select those points.

For now it is considered that a point-selection method exists to mark all points that belong
to a given annotation. At this point, it is ignored that the CPU-based selection is not suited for
the usage with annotations due to performance issues because the linking process conceptually
works also with the CPU-based selection method. The point-selection method is used to create a
selection octree for each annotation, which can be used to highlight all points within the selection
to provide a visual link between point cloud and annotation.

The highlighting itself is done by changing the color of all points that belong to the selected
regions of a selection octree. Exchanging the point color to a predefined color which is the same
for all selected points makes it impossible to see the details of the selected part of the point
cloud. An example can be seen in Figure 4.5 b), only the surroundings of the selected object are
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a) b) c)

d) e) f)

Figure 4.5: A section of a point cloud rendered with Scanopy is presented in a). As can be
seen in b), a simple replacement of the color of all selected points makes it impossible to see the
structure of the selected part. A multiplication of the color of each point with the selection color
can resolve this issue. As can be seen in c), this does not work well with dark-colored points. An
alternative blending approach is presented in d) and e). Depending on the used blending factor,
the structures of the selection are not clearly visible (d)), or the selection color is not represented
well (e)). The proposed solution is presented in f).

visible, all the other details of the object are lost. A first solution to change the color of all points
of a selected object is to multiply the color of each point with a predefined selection color. As
can be seen in Figure 4.5 c), this works well for bright colors, but it is not able to highlight dark
areas of the selected object at all. Moreover, it does not work well with points whose color are
saturated. The multiplication of complementary colors causes problems as well. To resolve these
issues, the color of each selected point is converted to a gray value according to Formula 4.1. It
computes the luma for the YCbCr color space out of the RGB color space [Poynton, 2012].

grayvalue = red ∗ 0.299 + green ∗ 0.587 + blue ∗ 0.114 (4.1)
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1 grayColor = Vector4 (grayvalue, grayvalue, grayvalue, 1.0);
2
3 if (grayvalue < 0.5) {
4 finalColor = Vector4 (1-grayvalue, 1-grayvalue, 1-grayvalue, 1.0)*

selectionColor;
5 }
6 else {
7 finalColor = grayColor* selectionColor;
8 }

Listing 4.1: Computation of the final color for a highlighted point.

If the resulting gray value is too dark, it is negated. This method is able to preserve the
structure of the selected region for variable luminance regions. The resulting gray value is
multiplied by the selection color. The complete method can be seen in Listing 4.1. This method
produces for each point of the selected object a more or less saturated color. Overall, the whole
selected object is colored with the same color and the details of the object itself are still visible,
as can be seen in Figure 4.5 f). On the other hand, alternative approaches such as blending
or weighted average are not able to provide the same result. Those results are presented in
Figure 4.5 d) and e). Either visible details get lost within the selected region, or the selection
color is not clearly visible.

4.5 Data Management

Before bringing annotations into Scanopy, all necessary information is stored in XML text files
and proprietary binary files. For example, the objects in a scene, like light sources, tape mea-
sures, and position markers, are stored in an XML file called XML scene file. Also, references
to the loaded point clouds and the created point selection octrees are stored in this XML scene
file. The point cloud and the selection octrees are stored in a binary format.

With the introduction of annotations, the XML scene file could have been extended to adopt
it to the needs required to store annotations as well. However, the annotations are rather nested
with different types of galleries holding images and PDFs. Different 3D meshes are used to
represent the annotations in the 3D scene. Those meshes should be available for the annotations
in all scenes. The possibility to query for certain parts of the annotations would be desirable as
well. This can be especially useful for advanced searching inside all the available annotations
of a scene. Therefore, a global storage possibility, which is able to provide all those features, is
required.

We use a database to store all the required information for each annotation. To combine all
annotations belonging to a specific scene, a single entry in the XML scene file is used. The same
element is also present in the database, where it groups all the annotations of a scene together.
As briefly mentioned, the point selections used to manipulate the point clouds of a scene are
stored on hard disk. This is no longer the case for the point selections that are used to represent
the link between the point clouds and the annotations. Those selections are represented inside

46



the database and can be retrieved together with the corresponding annotation. The details how
the selections are stored in the database are covered in Section 5.6.

As database management system (DBMS), PostgreSQL has been chosen for several reasons.
First, it is besides mySQL the only established free DBMS. Compared to mySQL it has a less
restrictive license. While mySQL is released under the GNU General Public License (GPL),
which requires you to provide the developed source code again under the GPL, PostgreSQL is
published under its own license similar to the BSD or MIT license.

Therefore, it is up to the developer to decide what should happen to the source code, and a
release under the GPL is not necessary. There were no performance considerations when choos-
ing the appropriate DBMS because the information retrieval from the database and storing the
data to the database are no time-critical tasks in the application. Moreover, there does not exist
a concurrent access to the data since the database is currently stored locally on each machine
running Scanopy.

To allow a simple exchange of the used DBMS, the database access is controlled with Qt,
which provides plug-ins to several DBMS such as mySQL, Oracle, SQLite, DB2, and Post-
greSQL (as used in this thesis). Each object required for the annotation process is available as
table in the database and also in the application. For each DBMS, the DatabaseConnection class
must be extended, and the read and write methods to the database must be overridden.

Scanopy should be able to handle large amounts of annotations combined with attached
images and PDFs. It is assumed that the user is only investigating a few annotations at the same
time in detail compared to all annotations available in the current scene. Therefore, the data of
each annotation is loaded on demand from the hard disk once it has been opened by the user.
This helps to keep the memory utilization of Scanopy low and makes the number of available
annotations less dependent from the available main memory.

As loading images attached to the annotation from disk is time consuming, especially if
several high-resolution images are used, loading images and creating the appropriate thumbnails
out of it is controlled by a separate thread. This avoids the blocking of the application. The same
threaded loading is also done when an image is specified as representation of the annotation in
the 3D scene and it has to be loaded from disk.

4.6 Priority-Dependent Visualization

With an increased number of annotations per scene, the system requires some filtering method
such that the user is not lost within all the annotations. The most basic method is to keep the
annotation minimized until the viewer claims interest about it [Aliaga et al., 2011, Sonnet et al.,
2004]. This is not sufficient when the amount of annotations further increases. This is especially
the case when the user is viewing the scene from further away to gain an overview of the whole
point cloud. Because in this case it is difficult to get an overview when hundreds of annotations
are visible at the same time. Other proposed solutions focus on combining different annotations
together such that they can be set visible depending on the group they belong to [Díaz et al.,
2011, Kadobayashi et al., 2005]. As the scene explorer in Scanopy gives the possibility to set
the visibility of each item individually by pressing an appropriate icon, this concept is applied
for the annotations as well. To include a group-like structure into the explorer, it is extended such
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Figure 4.6: The automated annotation grouping in the explorer demonstrated on the example of
the type property of the annotations.

that the tab holding the annotations can represent additional tabs, which group the annotations
together. Several annotations grouped in different tabs can be seen on the right side of Figure 4.6.
It is possible to automatically group all annotations of a scene. Annotations that share one
property are grouped together. Currently, the type of a annotation or its priority can be used as
grouping criterion. The type is a user-defined field which sets also the 3D icon that represents the
annotation in the 3D scene. It can be seen as a way to categorize all annotations of a scene. The
priority value is used for the priority-dependent visualization described below in this section.
Figure 4.6 shows the automated grouping and the resulting annotation group structure. Once
created, the automated grouping can be changed manually. Alternatively, the grouping can be
done completely by hand. In the scene explorer, annotations can be dragged over an annotation
group. As can be seen in Figure 4.7, the grouping process can also be done immediately in the
3D scene. Each annotation can be selected by right-clicking on it. Several annotations can be
selected by holding the control key pressed while the annotations are selected with the mouse.
The titles of all selected annotations are highlighted in red to show to the user which annotations
are currently selected. Once selected in the 3D scene, annotations can be assigned to an existing
group chosen from the list of available groups.
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Figure 4.7: The annotation grouping in the 3D scene. All selected annotations can be added to
an existing annotation group.

By toggling the visibility of a group tab, all corresponding annotations change their visi-
bility as well. To provide a further differentiation between the different groups, a color can be
assigned for each group. This color assignment can be refined by assigning annotations different
colors independent of the group they belong to. Coloring the mesh icons used to represent the
annotations is straight forward. To provide this feature also for annotations using an image as
representation in the scene, a border with the appropriate color is drawn around the image. Of
course drag and drop is supported to allow moving the annotations between the different groups
easily.

The usage of groups depends only on the user defining what kind of annotations should be
visible by clustering them. Another more natural approach to gain control on what is visible
can be the usage of a level-of-detail system. This is a type of priority-dependent visualization,
which is common in geographic information systems (GIS). When looking on a digital map
zoomed out, not all the data available can be made visible because there is not enough space
for it. Therefore, only the data considered the most important is visualized. When zooming
into the map, more details become visible as there is more space available to place these details.
GoogleMaps can be seen an example of such a system.
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This idea can be used as well in Scanopy to decide between important and less important an-
notations. The importance and therefore also the visibility of each annotation can be controlled
by the user. This is done by manually assigning a priority between 1 and 3 to each annotation,
where 3 is the highest priority. Additional classes could be added in the future to allow an even
more fine-grained separation. Annotations with the highest priority will always be visible in the
scene. The other annotations are only visible when the distance between the camera position
and the annotation does not lie above a predefined threshold. This threshold varies between the
different priority classes and therefore, also the visibility of annotations with different priorities
is not the same. This approach has another advantage. The visibility of each annotation can be
controlled such that it is only visible when the annotated part of the point cloud itself is visible
as well because the user is close enough. If the annotations would always be visible even if
the relevant part of the point cloud is still far away, it would not be clear to the user what the
annotation is about.

Since the system should be able to handle a large amount of annotations, testing the visibil-
ity for each annotation in each rendered frame is too expensive and also not necessary. Since
an annotation can only change its visibility state when the view position or viewing direction
changes, a CullCallback from OpenSceneGraph is used to change the visibility according to the
annotation’s priority. To avoid annotations from becoming immediately visible, which would re-
sult in unpleasant popping effects, they are faded in and out within a given range. The closer the
user comes to the annotation the less transparent it gets, until a given distance to the annotation
is reached and it becomes completely opaque.

4.7 Annotation-Supported Guidance System

Point clouds from cultural heritage sites can become rather complex. One example of such a site
are catacombs. They can consist of hundreds of corridors underneath the surface of the earth,
often connected over several floors. Due to their construction, they have a lot in common with a
maze, and orientation can be complex especially for non-experts in the field. As one of the key
purposes of annotations is to add information to important areas, it is assumed that annotations
are only placed next to locations that are of special interest. Therefore, annotations can be used
to guide users to interesting points in a point cloud.

To guide the user through the catacombs by using annotations, it is also required to know
how the different corridors of the catacomb are connected with each other. This is done by
constructing a graph through the catacomb where the edges are placed through the corridors. At
the crossings of the corridors, the edges are connected. This graph can be used to guide the user
between any two nodes by using a path finding algorithm such as the Dijkstra’s algorithm or the
A* search algorithm. The graph and the annotations can be combined to guide the user along the
graph to any annotation if the catacomb with all its corridors is represented as graph. Moreover,
it is required that the graph passes each annotation such that the user can be guided to it.

As the graph should be used as guidance system combined with all the available annotations,
it is important to know which annotations can be reached over the connected edges of a node.
Each node holds a search data structure which maps all available annotations to the connected
edges of the node which will lead one step closer to the corresponding annotation.
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Figure 4.8: This is a sample mapping between nodes and annotations used to guide a viewer
from any point along the graph to each annotation of interest. It shows which node has to be
traversed next to reach a given annotation if the user is currently at node 2.

This allows the graph to be traversed from any given point to any available annotation along
the shortest possible path. Before the user can be guided to an annotation, this mapping between
edges and annotations has to be computed. The algorithm for this computation is divided into
two parts. The entry point is Algorithm 4.1. The closest graph node is calculated for each anno-
tation. This node will be used as target node for the annotation when traversing the graph. Next,
any node directly connected over an edge to a target node is updated by linking the correspond-
ing edge with the annotation that can be reached traversing it.

Figure 4.8 shows a sample mapping between a graph and a number of annotations. The
mapping between the edges connected to node 2 and the annotations that can be reached over
these edges is presented as example. All the other nodes have such a mapping as well. This
allows to show the user at any node which annotations can be reached if the traversal on the
graph is proceeded along the corresponding edge.

Once the mapping of the neighbor nodes is completed, the second part of the algorithm
is called. This is a recursive function noted in Algorithm 4.2. It contains the principles of
Dijkstra’s algorithm. While Dijkstra’s algorithm originally uses one target, Algorithm 4.2 can
handle multiple targets. The number of targets depends on the number of annotations available in
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input : A list of annotations annotations of size n
output: A graph with all edges linked to the reachable annotations

1 if not IsNavigatorUpToDate then
2 ClearInfoPoints();

/* find for each annotation a the graph node
current_node[a] which is closest to it */

3 foreach annotation a in annotations do
4 current_node[a]← GetClosestGraphNodeFromPosition(a);
5 end

/* set for each edge e connected to current_node[i] which
is closest to annotation a that a can be reached over
i */

6 foreach node i in current_node do
7 foreach edge e connected to i do
8 list_of_nodes← e->Annotation[i];
9 attach (list_of_nodes, i ) ;

10 e->Annotation[i]← list_of_nodes;
11 end
12 end
13 SetAnnotationsPerEdge ( graphRoot, current_node );
14 SetNavigatorUpToDate () ;
15 end
Algorithm 4.1: BuildUpGraphAnnotationInformation. Note that list_of_nodes is a map data
type (such as std::map) in C++ mapping annotations to nodes.

the scene. A target is a node of the graph which is closest to the position of a specific annotation.
For all nodes in the graph, it computes the adjacent node that must be traversed to reach a
specific target. The execution of the Algorithm starts from the root of the graph and performs
the algorithm for each node.

Similar to Algorithm 4.1 from Line 6 onwards, it checks for each node whether an adjacent
node is able to reach an annotation. If this is the case, it is stored in a map that the annotation is
reachable if this adjacent node is traversed. This function is called recursively for all connected
edges of a node. Before the function is called for an edge, it is marked as visited to avoid visiting
any node twice.

The first mapping step works only for all nodes which are traversed after a target node of
a specific annotation. Therefore, a second mapping step is necessary after the recursive call
returns to update all nodes before the target nodes. At the end of the algorithm, a flag marks
that the mapping is up to date. The mapping has to be updated by the algorithm whenever the
position of an annotation is changed or deleted. The same holds when something is changed at
the graph.

The graph of the guidance system is visualized with OpenSceneGraph, nodes are repre-
sented as spheres and the edges are represented as cylinders. The components are rendered
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1 Function SetAnnotationsPerEdge( GraphNode: node, map: current_node ) : void is
2 foreach edge e1 connected to node do
3 foreach edge e2 connected to e1 do
4 if node not part of e2 then
5 annotations← node->Annotation[e1] ;
6 connected_annotations← e1->Annotation[e2] ;
7 foreach annotation a in annotations do
8 attach (connected_annotations, a ) ;
9 end

10 node->Annotation[e1]← connected_annotations ;
11 end
12 end
13 end

14 foreach edge e connected to node do
15 if e is not visited then
16 e← visited ;
17 SetAnnotationsPerEdge(e, current_node);
18 end
19 end

20 foreach edge e1 connected to node do
21 foreach edge e2 connected to e1 do
22 if node not part of e2 then
23 annotations← node->Annotation[e1] ;
24 connected_annotations← e1->Annotation[e2] ;
25 foreach annotation a in annotations do
26 attach (connected_annotations, a ) ;
27 end
28 node->Annotation[e1]← connected_annotations ;
29 end
30 end
31 end
32 end
Algorithm 4.2: SetAnnotationsPerEdge. Similar to Algorithm 4.1 annotations and con-
nected_annotations are both data types mapping annotations to nodes.

semi-transparently as the rendered elements are only provided as a hint to the user. The semi-
transparent rendering further provides a better visibility of the point cloud since the view to the
point cloud is not blocked by opaque parts of the graph.

Once the construction of the graph is completed and the mapping between each node and
the annotations is completed according to the previously described method, the graph can be
traversed. The traversal can start from any point in the graph. When the user starts the command
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Figure 4.9: Different annotations combined with a point cloud.

to traverse the graph, the camera is moved to the closest node of the graph compared to the
current camera position.

While the user moves along an edge, no guidance information is displayed, as the only two
possibilities to traverse the edge are forwards or backwards. This also holds true for any node
connected with two edges. When a node is reached with at least three edges connecting to it,
which resembles a crossing: the previously computed information can be used to display the
available annotations that can be reached by following one of the edges. The possible directions
are displayed by arrow icons at the corners of the screen such that the user knows in which
direction it is possible to continue the traversal along the graph. In addition to each arrow, the
annotations are displayed underneath each arrow to provide a hint to the user which annotations
are reachable following this direction. The information displayed on a crossing can be seen in
Figure 4.9. As the available screen space is limited, only a given amount of annotations can
be displayed for any direction. On a screen with a resolution of 1920x1080, four annotations
fit per direction. Therefore, a selection process is needed when more annotations are reachable
over a given direction. The proposed selection process uses the remaining distance from the
current node to the annotations and the priority of the annotations. For each of the three priority
categories, the closest annotations is displayed. If the screen is large enough to provide space
for additional annotations, the next closest annotation is displayed. To support the user with
the decision procedure which annotation shall be visited next, relevant information is displayed.
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This consists of the title of the annotation and the image chosen as icon representing the anno-
tation in the scene. If no icon was chosen by the user, the first icon is used, or a dummy image
is used if none exists. As can be seen in Figure 4.9, the priority of each annotation is displayed
as stars, and the distance along the path to the annotation is visualized to get an idea how far
the individual annotations are separated among each other. Also, each annotation can be opened
by clicking at the area occupied by the rendered hint. This can be useful if the hint alone is not
sufficient to make a decision where to go next.
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CHAPTER 5
Point Selection with CUDA

This chapter gives an extended description of the point-selection approach implemented using
CUDA. The reason for a CUDA-based point selection has already been mentioned in Section 3.3,
and CUDA itself has been introduced in Section 2.4.1. This chapter will cover the details on
designing a point-selection method. It is combined with a point-marking method to visualize
the selection by highlighting the points to provide links between the annotations and the point
cloud.

5.1 Overview

To highlight all points belonging to an annotation, the already existing CPU-based method is
adapted to work with CUDA. Before the points can be highlighted, it is required to decide which
points should be part of the highlighted area. This is done by selecting points with a three-
dimensional brush such as a sphere or a cube. With each brushstroke, every point that lies
within the volume of the brush is selected, and the color of the point is changed. The result of
this selection procedure is a set of highlighted points.

Due to the out-of-core point-cloud rendering, only those points that are currently needed to
render the point cloud are loaded from hard disk. Therefore, only those points can be selected
with the brush. Whenever the user changes his viewpoint, other points are required to render
the point cloud from the changed viewpoint. Those points are loaded from the hard disk. Since
not all points are necessarily loaded during a selection, a selection volume is created out of the
currently loaded points to solve this problem. The CPU-based point-selection method already
available in Scanopy uses selection octrees (Section 3.3) as representations for the volumes.
Each node of the selection octree is recursively subdivided until each node of a selection octree
contains only selected or unselected nodes. When points are loaded from the hard disk, the se-
lection octree can be used to test whether the loaded points belong to the selected regions of the
selection octree and set their color according to the result of this test. Due to the good perfor-
mance results for CUDA-based octrees reported in the literature [Karras, 2012], the concept of
selection octrees has been chosen to be ported to CUDA and to be used for point selections.
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Create Morton codes

Sort Morton codes

Select points with brush

Build new octree

Combine octrees Subtract octrees

Compact octree

Use octree to mark points

Figure 5.1: All basic construction steps required to create a selection octree with CUDA. The
green parts are adapted from Karras method [Karras, 2012].

The concept is similar to the existing CPU-based selection algorithm and visualized in Fig-
ure 5.1. First, some points are marked by the user with a three-dimensional brush such as a cube
or a sphere. Next, the selected points are used to create a selection octree with CUDA. It uses
Karras method which first creates Morton codes out of all currently visible points. Each Morton
code represents one node with the smallest available resolution depending on the length of the
Morton code. A code with 30 bits can represent an octree hierarchy of 10 levels. Those codes
are sorted and a binary radix tree is constructed such that a search query can be done fast. The
newly created octree can then be combined with an existing octree to generate a more complex
selection, or the new selection can be used to subtract a given area of an existing octree. The
resulting octree has the same resolution trough all nodes. This wastes memory and reduces the
access speed because more nodes than necessary must be traversed to decide whether a newly
loaded point belongs to the selected part of the octree.

Therefore, a compaction step in CUDA is proposed which uses the principles introduced by
Gargantini in her work about linear quadtrees [Gargantini, 1982a]. Once the octree is compacted,
it can be used in CUDA to decide whether newly loaded points belong to selected or unselected
regions and change the color of the selected points to provide a visual hint between selected and
unselected points.

5.2 Data Retrieval

As described in Section 2.4.1.1, every piece of data that should be manipulated by an algorithm
written in CUDA must be moved to the global memory of CUDA, which is located at the mem-
ory of the graphics card. When data is rendered with OpenGL, it is common that the data is
stored on the GPU memory for fast access instead of sending it to the GPU for each frame.
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OpenGL uses buffer objects to keep the data in graphics memory to allow fast access to it [Segal
and Akeley, 2004]. In the case of vertex data, the buffer object is named vertex buffer object
(VBO). The usage of VBOs is also applied to a point cloud rendered in Scanopy: each ren-
dered node of the MNO is available on the graphics card memory as VBO [Scheiblauer, 2006].
When the point selection is created, only the currently visible points are used for the selection.
Therefore, only the points available as VBOs on the graphics card memory are used. With the
CPU-based selection approach, the points have to be moved back to main memory before the
selection can be constructed out of them. The data must be loaded on the graphics card memory
anyway such that it can be processed with CUDA. As the required visible points are already
present there, they do not have to be copied back to main memory.

However, the data present in the VBOs cannot be used directly in CUDA. Nivida provided
the cudaGLMapBufferObject function to map the VBO to a memory area located in global
memory. Before mapping it, it has to be registered using cudaGLRegisterBufferObject.
This method to gain access to VBOs has been declared deprecated since CUDA 3.0. With the lat-
est versions of CUDA, a VBO must be registered with cudaGraphicsGLRegisterBuffer.
This provides a resource handle which can be used to access the data of the VBO. To get a pointer
to the data, cudaGraphicsMapResources is used to map the resource. Once the resource is
mapped, the pointer to the VBO data can be retrieved by calling cudaGraphicsResource-
GetMappedPointer. As soon as the VBO data is no longer needed by CUDA, its re-
source handle has to be unmapped using cudaGraphicsUnmapResources. Listing 5.1
provides an example to get the data from VBO 1 and make it available in CUDA over the
pointer vbo_pointer.

1 GLuint vbo = 1;
2 struct cudaGraphicsResource **cudaVboResource;
3 unsigned char *vbo_pointer;
4 size_t num_bytes;
5
6 cudaGraphicsGLRegisterBuffer(cudaVboResource, vbo,
7 cudaGraphicsRegisterFlagsNone);
8
9 cudaGraphicsMapResources(1, cudaVboResource, 0);

10
11 cudaGraphicsResourceGetMappedPointer((void **)&vbo_pointer,
12 &num_bytes, *cudaVboResource);
13 /*
14 do something with the data vbo_pointer points to.
15 */
16 cudaGraphicsUnmapResources(1, cudaVboResource, 0);

Listing 5.1: Sample to make VBO data available in CUDA

The structure of the VBO depends on the attributes that are available for the points in the
point cloud. The only required attribute is the position. Usually, a color is provided too. Other
attributes are intensity, normals, or the radii of the different points. These attributes are present
in different data types, see Table 5.1 for an example. For this reason, a pointer of unsigned char
(UChar) is used to map the VBO data into CUDA. An unsigned char has the size of one byte. To
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work on the point data in CUDA, the amount of bytes occupied by all attributes of a single point
is passed as stride into CUDA. Only the position of the point and its color are relevant to process
the points in CUDA. Therefore, additionally to the stride, the offset to the beginning of the color
attribute is passed as well into the kernel. Samples of different point-attribute combinations and
their strides with corresponding color offsets can be seen in Table 5.2 .

Attribute Data Type Size in UChar
Position(Pos) 3 Float 12 UChar
Color(Col) 1 UInt 4 UChar
Intensity(Int) 1 Float 4 UChar
Normal(Nor) 3 Float 12 UChar

Table 5.1: Different attributes and their size in unsigned char (UChar).

Combined Point Attributes Stride Color Offset
PosCol 16 UChar 12 UChar
PosColInt 20 UChar 12 UChar
PosColIntNor 32 UChar 12 UChar
PosColNor 28 UChar 12 UChar

Table 5.2: Examples of combined attributes that appear in different point clouds and the re-
sulting strides and color offsets. The abbreviations for the attributes introduced in Table 5.1 are
concatenated to express possible attribute combinations for the points.

This data is converted in the CUDA kernel to the appropriate CUDA data type before it can
be further processed using the corresponding offset and stride.

5.3 Memory Management

The previous section described how to prepare the data from the VBOs to be used in CUDA.
Then it can be used immediately inside a CUDA kernel to perform calculations with it. However,
there is also other data required to calculate a selection octree. For example the size of the
bounding box of the point cloud and the accuracy of th Morton code must be passed from the
main memory to CUDA. The same holds true for previously computed selection octrees. This
data, which comes from the host’s main memory, needs to be copied to the global memory before
using it. As a first step, the memory allocation for CUDA is performed with the cudaMalloc
command. Next, it can be copied to the devices, global memory using cudaMemcpy. Once the
copy instruction is completed, the data can be passed to the kernel and used there.

As will be described through the following sections, the process to create or change a se-
lection octree in CUDA is a multistep approach with several different kernel launches involved.
These kernels not only depend on the data computed by previous ones but also continue to cal-
culate new data which is then combined to the final outcome. During the implementation phase
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input : A list of VBOs vbos of size n
input : The previously computed octree old_octree
output: A linear octree

1 morton_codes← GenerateMortonCodes(vbos);
2 sorted_morton_codes← RadixSort ( morton_codes );
3 new_octree← BuildBinaryRadixTree ( sorted_morton_codes) ;

4 if selected then // selection:add more points to the octree
5 list_of_octree_nodes← CombineOctrees (new_octree, old_octree) ;
6 else // deselection:points are removed from the octree
7 list_of_octree_nodes← SubtractOctrees (new_octree, old_octree) ;
8 end

9 sorted_list← RadixSort ( list_of_octree_nodes );
10 sorted_list← CompactData ( sorted_list );
11 new_octree← BuildBinaryRadixTree ( sorted_list) ;

Algorithm 5.1: Octree creation

of the CUDA-based selection octree, the problem was discovered that memory needed to be al-
located several times for the different kernel launches. Such memory allocations are expensive.
Those allocations consumed more time than the computation of the selection octree itself. It
turned out that the size of the required memory blocks which hold the data is similar among all
required kernel launches. Therefore, a memory pool is used, which is created at the beginning
of the construction algorithm. Depending on the required data size, the corresponding memory
block which fits the data size is used. A continuous reallocation of the memory is no longer
necessary because the allocated memory can be reused from the memory pool for the different
CUDA kernels.

5.4 Octree Construction

The construction of the octree consists of the following steps marked in Algorithm 5.1. The
first part until Line 3 is equal to the method proposed by Karras [Karras, 2012]. It has been
extended by introducing a compaction method to get an octree which has a reduced number of
points compared to the original. As the selection should be editable, it is not enough to create
each octree once from a set of points. It is further required to change the selection. Therefore,
a restructuring method for the octree is necessary as well. Section 5.4.3 describes the used
approach to fulfill this task.

5.4.1 Morton Code Generation

When working with point clouds, the points are usually represented as floating point numbers.
To generate the Morton code, the usage of integers is required. Therefore, the points are con-
verted from floating point numbers to integers. Scanopy provides a bounding box in form of a
cube for each point cloud that contains all points of the given point cloud. Using the bounding
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box, it is simple to map all points into the unit cube. Now, all points have coordinates between
0 and 1. These coordinates are mapped to integers to generate the Morton codes from the coor-
dinates.

Morton code:

00|01|11

10|11|00

11|10|01

Position:

x-coordinate: 1 -  001
y-coordinate: 3 -  011

x-coordinate: 6 -  110
y-coordinate: 2 -  010

x-coordinate: 6 -  110
y-coordinate: 5 -  101

: :

: :

:

:

:

:

A:

B:

C:
   0       1      2        3      4       5       6        7

7
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Figure 5.2: Sample construction of 6-bit Morton codes. The bits of the x and y coordinate are
combined to get the Morton code. Note how each pair of two bits of a Morton code represents
one level of the quadtree.

Following the method described in Section 2.2, the three coordinates are packed together into
a single variable. Therefore, the precision depends on the used data type. The construction of
the Morton codes and their relation to octrees are expressed in 5.2 which shows the construction
of a quadtree with a 6-bit Morton code. To store three coordinates into a 32-bit integer, each
coordinate can use 10 bits. All coordinates are mapped from the range of 0 to 1 in the domain
of floating points to integers between 0 and 1023. When this precision is used to generate an
octree out of the Morton codes, the resulting depth of the octree is 10. This means that the octree
cannot be subdivided more than 10 times. Although this precision can be used to represent the
selection octree, it is by far not fine grained enough. Therefore, a Morton code with a length of
30 bits can only be used for point clouds with a reduced expansion. For point clouds that cover
a larger area, this resolution provides unpleasant outcomes. To express it in numbers: when
the bounding box has an edge length of 64, the smallest octree node has an edge length of 1/16.
When high-resolution point clouds with a bounding box edge length of 1024 have to be selected,
it would result in an edge length of 1 for the smallest possible octree node. When those units
represent meters, this would mean for the last case that it is not possible to provide a selection
octree with a finer resolution than 1 meter. This is not detailed enough to represent parts of the
object in an octree. As can be seen in Figure 5.3, the selection is not correctly represented due
to the limited precision of 30-bit Morton codes. Increasing the precision to 60 bits can resolve
this issue, as can be seen in Figure 5.4.

Variable Morton code length To compute the Morton code, more than one 32-bit integer is
used. The current implementation supports up to 3 32-bit integers that are used to represent one
single Morton code. To provide a general solution, only the last 30 bits per integer are used,
although it would be possible to use more than 30 bits. This is the case, for example, when the
Morton code is represented by 2 32-bit integers, only one bit cannot be used when one level
of the octree is split between the 2 integers. As this would raise the complexity of the point-
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Figure 5.3: A circular selection using 30-bit
Morton codes to represent the octee. Due to
the limited precision of the octree representa-
tion, visible artifacts appear.

Figure 5.4: The same circular selection pre-
sented in Figure 5.3 uses 60-bit Morton codes.
The higher precision reduces the visible arti-
facts.

selection method, the first two bits of each 32-bit integer are always omitted. Table 5.3 shows
the available configurations.

Precision Required integers Morton code length Octree depth
Low 1 30 10

Medium 2 60 20
High 3 90 30

Table 5.3: Different precisions and the required number of 32-bit integers to represent the cor-
responding Morton codes in memory.

The computation of the Morton code is done completely in CUDA. The data of the VBOs
is made available for CUDA as described in Section 5.2. The parallelization is straight forward;
each thread converts one point of the VBOs into three integers, one for each coordinate of
the point. The range of the integers depends on the used precision. These three integers are
combined into one Morton code using the defined amount of integers depending on the desired
precision. The computation of the Morton code itself can be done with a few bitwise and and or
and shift operations.

Similar to the CPU-based point selection presented in Section 3.3, the alpha value for each
point is checked because it is used to distinguish between selected and unselected points. There-
fore, the function GenerateMortonCodes not only provides the Morton code for each point.
It also provides a flag which defines whether a point is selected or unselected, for each point.
This makes it possible that the methods used in the following steps do not have to rely on the
color information, which is only available in the VBO data.
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5.4.2 Build-up and Compaction

When only one 32-bit integer is used for each Morton code, the construction of the octree can
be done as described by Karras [Karras, 2012]. He uses radix sort to sort the Morton codes and
creates a binary radix tree out of the sorted list of Morton cods. As described in the section
before, using one integer is often not precise enough to create an octree. Therefore, up to three
32-bit integers are used per Morton code. But when more than one 32-bit integer is used, the
sorting algorithm and the radix tree construction require small changes to handle those Morton
codes. Internally, the Morton codes are stored as an array of 32-bit integers. When a Morton
code consists of more than one integer, all integers belonging to the same code follow each other
before the next code starts. The radix sort starts sorting with the least significant integer for
each Morton code and moves forward until all integers that belong to the same Morton code
have been processed. The changes required for the radix tree construction are straight forward.
The prefixes must be computed over the whole Morton code using all integers that represent the
corresponding code.

Compaction The final octree represents all points of the MNO nodes that contain at least
one selected point. Each point is represented as a node in the octree. As there can be several
million points visible, this can result in an octree with millions of nodes. This is not only a
complex structure when it comes to processing it, but it also covers too much information in
many regions of the octree. To reduce the number of nodes in the octree, a principle is used that
is the same as introduced by Gargantini in her work about linear quadtrees [Gargantini, 1982a].
Only at the border, which splits selected and unselected regions, a large amount of points is
required to represent this border precisely in the octree. Therefore, an algorithm is required
which is capable to reduce the number of nodes within the octree on regions that do not provide
additional information. This is true for all nodes whose children only consist of one type of
nodes, either selected or unselected nodes.

To remove nodes from the octree, all the siblings of one node have to be retrieved. If the
siblings have all the same selection state, all except one can be removed. The not removed node
can then be used to represent the merged octree node. Since the used octree structure has no
pointers, all siblings of a node cannot be retrieved by accessing the parent and use the pointers
to its children. However, when the Morton codes are sorted, codes close to each other are also
grouped together in the octree. For the Morton code representation of the octree, this means
that each level of the octree is represented by 3 bits. Consider the lowest level of the octree, if
two Morton codes only differ at the last 3 bits they have the same parent. Figure 5.5 shows this
concept for quadtrees. Therefore, it is possible to access any random entry in the list of Morton
codes, compare the left and right entries in the list as long as they do not differ by more than the
last 3 bits they must have the same parent. As soon as the next tested Morton code does not hold
this criterion, the search procedure can be stopped in this direction. When all siblings of a node
have been found, they can be dropped if they all share one selection state, and the parent node is
used to represent this area of the selection octree.

Considerations for MNOs As already discussed in Section 3.3, it is not guaranteed that all
relevant points are loaded during a selection step. This has to be considered also in the com-
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Figure 5.5: Sample of a 6-bit Morton code used to represent a quadtree with level 3. All siblings
that share the same parent share all bits except the last two as well.

paction step. Not only must the selection state be the same for all siblings. It is also required
that all 8 siblings are available to make sure no information is omitted due to the out-of-core
rendering algorithm. Otherwise no compaction is allowed. If this is not considered, it might be
the case that nodes are grouped together although there exist other nodes that are currently not
displayed by the point-cloud renderer and are not available for a selection.

There is one exception to this rule. The maximum depth of the selection octree depends
on the length of the Morton code. It might be the case that the maximum depth of the MNO is
smaller than the maximum depth of the selection octree. The side length minNodeSideLength
of the smallest MNO node is retrieved using the side length maxNodeSideLength of the point
cloud’s bounding box (which is a cube) and the maximum depth (counting levels [1..n]) of the
MNO maxMNODepth: minNodeSideLength = maxNodeSideLength/2maxMNODepth−1.
As long as the side length of the nodes of the currently compacted octree level is smaller than
the side length of the smallest MNO nodes, the nodes in this octree level can be compacted even
if not all 8 siblings are available, but all available siblings have the same selection state. This
can be done because in such a case the resolution of the Morton code (when used for creating
selection octree nodes) is higher than the resolution of the MNO nodes, and therefore several
Morton code nodes cover the volume of a single MNO node.
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input : The input octree octree
output: A compacted octree

1 foreach octree level l in octree do

2 octree← MarkUnnecessaryNodes ( octree, l );
3 octree← ParallelCompaction ( octree ) ;
4 end

Algorithm 5.2: Overall octree compaction

CUDA compaction algorithm With this approach, it is possible to parallelize the compaction
of the octree with CUDA. The process uses one kernel launch for each level of the octree. This
is because after each step the unnecessary nodes can be dropped out of the octree. Nodes that are
deleted from the octree change the structure of the octree. To make sure that all threads work on
the same octree, it is required that all threads are in the same state before and after the deletion
of the individual nodes. This is denoted as synchronization. The only possibility to synchronize
between all threads is to wait until one kernel has finished its execution. Therefore, each level
requires its own kernel launch. Whether a node is removed or not can be checked individually
using one CUDA thread per node. Algorithm 5.2 shows the overall structure of the compaction
solution for CUDA. The core part is Algorithm 5.3, which searches for unnecessary nodes and
marks them.

Algorithm 5.3 runs in parallel on CUDA for each octree node individually. The octree is
stored in CUDA’s global memory. As shortly mentioned, each Octree node has to check its sib-
lings by traversing the list of Morton codes left and right. Therefore, each node is potentially
accessed several times by several threads. Accessing the same element multiple times is not
efficient because global memory access is slow compared to registers and shared memory. Al-
though the amount of shared memory is limited per block, it can still be used. It can be assumed
that each thread traverses only a small amount of indexes along the list of Morton codes because
each node has at most 7 siblings, and the traversal can be stopped as soon as an octree node
from a different parent is discovered. Therefore, in Line 2 each thread stores its node to shared
memory.

Finding reducible nodes The list of Morton codes to the left of the node is traversed to check
for siblings. As a part of the left side of the list is stored in shared memory this is checked first.
Due to the limited amount of the shared memory it can be necessary to check a small part of the
octree which is only available in global memory as well.

CheckNeighbour checks for each potential sibling, whether it is a sibling and if it has the
same selection state then the current node. Only if it is a sibling and it holds the same selection
state as the current node, the traversal of the list continues. When the traversal of the list in the
left direction is completed because all left siblings have been visited, the same operations are
applied to the right side of the list. The current node is marked at the end of the algorithm. If
all siblings have the same selection state as the current node, it can be dropped if it is not the
leftmost sibling. The variable compaction index is used to remember if a node can be deleted. It
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input : The input octree octree
output: A marked octree octree
output: A compaction index comp_index

1 current_node← octree[global_id] ;
2 shared_memory[thread_id]← current_node;
3 valid_node← current_node ->is_reducible ;
4 is_reducible← true ;

5 if current_node is further reducible then

// search for nodes to the left of the current node
6 while next element available in shared_memory AND valid_node == true do
7 valid_node← CheckNeighbour ( shared_memory, is_reducible );
8 end
9 while next element available in global memory AND valid_node == true do

10 valid_node← CheckNeighbour ( octree, is_reducible);
11 end

// search for nodes to the right of the current node
12 while next element available in shared_memory AND valid_node == true do
13 valid_node← CheckNeighbour ( shared_memory, is_reducible );
14 end
15 while next element available in global memory AND valid_node == true do
16 valid_node← CheckNeighbour ( octree, is_reducible );
17 end

18 if is_reducible then
19 comp_index[global_id]← 0;
20 else
21 comp_index[global_id]← 1;
22 if has other siblings then
23 current_node->is_reducible← false;
24 end
25 end

26 octree[global_id]←current_node ;
27 end

Algorithm 5.3: Overall octree compaction

is set 0 if the node can be deleted. Otherwise the compaction index is set to 1 and it is marked
that it is not further reducible if it has siblings with different selection states.

The outcome of CheckNeighbour can be seen in Figure 5.6, where a quadtree is used
for better visibility. The compaction index is only visualized for the bottom left quadrant of
the input quadtree surrounded with a red border. The concept works for the other quadrants in
the same way. Moreover, the reducible flag is set for each node to memorize whether it can
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be further compacted during the next steps. The circles inside the quadtree represent all visible
points during a selection step. They are converted into Morton codes to get the presented input
selection octree by using the steps previously presented in this Section. The yellow regions of
the quadtree represent the selected areas of the point cloud.
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Figure 5.6: The compaction algorithm applied to a sample quadtree. The bottom left quadrant
of the input quadtree is used to show all the required steps to compact the quadtree. The final
compacted quadtree is presented at the bottom right corner of the Figure. Note that the number
of nodes used to represent the quadtree decreased from 35 to 14. This is only a theoretical
example to explain the different steps of the algorithm. Compaction results on real data can be
seen in Section 6.2.
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Existing selection quadtree

Merge quadtrees

New selection

Figure 5.7: Add a new selection to an existing
selection quadtree.

Existing selection quadtree

Merge quadtrees

New selection

Figure 5.8: Subtract a new selection from an
existing selection quadtree.

Parallel compaction with CUDA After the compaction index has been computed for all oc-
tree nodes and the CUDA kernel returns, Algorithm 5.2 continues with Line 3. Now, parallel
compaction is applied to the octree data to remove all unnecessary nodes. The parallel prefix
sum introduced in Section 3.6 is used to sum up all the 0’s and 1’s which result into a list that
can be used as an index for the octree nodes. This index can be used to write the remaining
octree nodes in parallel at the correct position. The points A to I in Figure 5.6 are compacted
resulting in a smaller quadtree that holds only as many points as are necessary to represent the
exact quadtree. No precision is lost during this step.

Note that if a compaction of siblings is possible, always the rightmost sibling stays in the
octree although the leftmost sibling is the only one with a 1 in the compaction index. This is
due to the construction of the parallel prefix sum which overrides the previous siblings when
the right siblings compaction index originally was 0. However, it does not matter which of the
siblings is kept when the nodes are reduces. Because the bits used to represent the currently
reduced level of the octree are not necessary any more. This can be seen in Figure 5.6 as well.
The first 4 digits of the Morton codes, which are responsible to define the parent of the nodes E,
F and G, are the same. Since all three nodes have the same selection state, node emphE and F
can be dropped and the first 4 bits of G are enough to represent the parent node.

Figure 5.6 shows the different steps of the compaction. The first reduction step assumes that
the node size of the lowest octree level is smaller than the size of the smallest MNO node. This
allows to compact nodes even if not all siblings are present. The result of this algorithm is a
compacted octree visible in Figure 5.6 as selection quadtree after step 2. It helps to perform
a faster point marking due to its reduced size. The details about the point-marking method
are covered in Section 5.5. The possible compaction ratio achieved with this method and the
performance benefits for point marking are covered in Section 6.2.

5.4.3 Merging

It should be possible to edit selections once they have been created. As the underlying structure
of the point-selection method is a selection octree, a method is provided which is able to change
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input : The current octree current_octree
input : The selection as octree selection_octree
output: A unsorted list of octree nodes represented in Morton code node_list
output: A list of values whether a node is selected or unselected value_index

1 if global_id < selection_octree->num_nodes then
2 if current_octree->num_nodes > 0 then
3 octree_node← getOctreeNode ( current_octree,

selection_octree[global_id] ) ;
4 value_index[global_id]← (octree_node->is_selected OR

selection_octree[global_id]->is_selected ) ;
5 else
6 value_index[global_id]← selection_octree[global_id]->isselected ;
7 end
8 node_list[global_id]← selection_octree[global_id] ;
9 else

10 octree_node← getOctreeNode ( selection_octree, current_octree[global_id
- current_octree->num_nodes] ) ;

11 value_index[global_id]← (selection_octree->isselected OR
octree_node[global_id - current_octree->num_nodes]->is_selected ) ;

12 node_list[global_id]← octree_node[global_id - current_octree->num_nodes];
13 end

Algorithm 5.4: Octree combination

an already existing selection octree. In the overall octree creation Algorithm 5.1, this is done
between Line 4 and Line 8. The rough idea of this solution is to build a second octree out of
the newly selected nodes. This octree is denoted as new_octree in Algorithm 5.1. The octree
created during the previous selection steps (here denoted as old_octree) can then be com-
bined with the new octree. The result is a merged octree that includes the newly selected points
into the octree created during the previous selection steps. Figure 5.7 shows the combination on
the example of two quadtrees while Figure 5.8 shows how a new selection can be used to remove
selected parts from an existing selection.

Merging without two sorting steps The disadvantage of this approach is that the Morton
codes must be sorted twice before the final output is generated. This could be avoided if the
newly selected points could be integrated into the existing octree without creating an individual
octree for the new selection. This works as long as the new selection process has the same or
more points available during the selection process. As long as the same points are visible during
multiple selection steps, the points that are already present in the octree can be overwritten by
the newly selected points if they are outside of the selected regions of the octree. This works due
to the structure of the MNO because all points that are available looking from a far distance are
also rendered when the user moves closer to the point cloud. As long as the user does not move
further away from the selection, it is guaranteed that all unselected points in the octree can be
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Figure 5.9: A compacted selection octree.
The orange and red structures represent the
points that belong to the selection octree. The
selected points are red and the unselected
points are orange. Note that the number of
points is much higher at the border of the se-
lection to represent its exact structure. The se-
lection octree, which is rendered in pink, can
be constructed out of the points in the octree.

Figure 5.10: The artifacts, surrounded in red,
result from insufficient number of points dur-
ing two selection steps.

overwritten by newly selected points. All nodes that are not selected during the new selection,
but fall into the existing selection octree, can be relabeled from unselected to selected. After the
relabeling step has been completed, the construction of the new merged octree can be done by
building it up according to Algorithm 5.1. The code from Line 3 to Line 9 becomes obsolete
when this approach is used.

Limitations As soon as the new selection has fewer points available due to a different view-
point, this solution does no longer work. The problem arises at the boundary of the selection
octree. As can be seen in Figure 5.9, the compacted octree holds the most detail there. Overwrit-
ing the unselected points in the octree by the selected points of the new selection fails because
the new selection has fewer points available that are present in the boundary region of the oc-
tree. When the octree is built with this method, it results in artifacts visualized in Figure 5.10.
This kind of error could be avoided by modifying the compaction algorithm presented in Sec-
tion 5.4.2. Points contained previously in the octree could be labeled differently than newly
added points. This allows a specialized compaction, considering also the difference between old
and new points. Incorrect holes as they appear in Figure 5.10 can be removed by compacting the
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input : The current octree current_octree
input : The selection as octree selection_octree
output: A unsorted list of octree nodes represented in Morton code node_list
output: A list of values whether a node is selected or unselected value_index

1 if global_id < selection_octree->num_nodes then
2 if current_octree->num_nodes > 0 then
3 octree_node← getOctreeNode ( current_octree,

selection_octree[global_id] ) ;

4 if (NOT selection_octree[global_id]->is_selected) AND
(octree_node->is_selected) then

5 octree_selected← true;
6 else
7 octree_selected← false;
8 end
9 else

10 octree_selected← false;
11 end
12 node_list[global_id]← selection_octree[global_id] ;
13 else
14 current_id← global_id - selection_octree->num_nodes ;
15 octree_node← getOctreeNode ( selection_octree,

current_octree[current_id] ) ;

16 if octree_node->is_selected AND current_octree[current_id]->is_selected
then

17 octree_selected← false;
18 else
19 octree_selected← current_octree[current_id]->is_selected;
20 end
21 node_list[global_id]← current_octree[current_id] ;
22 end
23 value_index[global_id]← octree_selected ;

Algorithm 5.5: Octree substraction

nodes although they consist of children with old unselected points and newly selected points.
However, this algorithm destroys the structure of the selection octree by removing some details
at the boundary between selected and unselected octree nodes. It is also slower than the here
proposed solution which merges the new selection into the existing selection octree.

Final merging solution with CUDA The new selection is transformed into a temporal selec-
tion octree which can be combined with the existing one. It has to be distinguished whether
the selected points should be added to the existing octree, or they should be used to subtract
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the newly selected region from the existing selection octree. Both methods, the combination
and the subtraction, run completely in CUDA. For each node of both octrees one thread is used.
The two CUDA kernels are presented in Algorithm 5.4 and Algorithm 5.5 respectively. Con-
ceptually, they are similar and use two selection octrees as input. The output is a list which
combines all nodes of both octrees together. Additionally, for each node the values list identifies
whether the node is selected or not. This is important because both algorithms might change the
selection state of each octree node. For each octree node, it is checked in which octree node of
the other octree it fits in. Depending on the merge operation and the states of the two nodes,
the selection state of the checked octree node might change. In the case of the combination
operation the state change is simple. As can be seen in Figure 5.7, each unselected node of one
octree must be marked as selected if it falls into a selected node of the other octree. Figure 5.8
shows the subtraction case, which is not symmetric as it was the case for the combination. The
selection_octree is used to subtract all points from the current_octree which inter-
sect with the selection_octree. The performed intersection test, which is done per node,
can be seen in Algorithm 5.5. Note that in the case of the selection_octree, all points
have to be remarked as not selected except those that fall in the current_octree and are not
already selected. This is because during the deselection process, all points used for deselection
are marked first to make a distinction between deselected points and all other points. Once the
deselection from current_octree is performed, they have to be set back to non selected.

The output of the merging methods is a list of octree nodes represented in Morton code and
the corresponding correct selection states for each node. The remaining steps to complete the
octree construction can be seen in Algorithm 5.1 from Line 9 to Line 11. The list has to be sorted
and can then be compacted using the method described in Section 5.4.2. After the creation of
the binary radix tree, the octree is merged and its construction is complete.

5.5 Point Marking

As already described in Section 3.3, due to the out-of-core rendering method of Scanopy, not all
points are available during the selection process of a point cloud. Once the selection octree has
been created, points that become visible when a new frame is rendered must be tested against
the selection octree. This is required to mark each point to visualize whether it is selected or
not. This is done by assigning all selected points a specific color. This method was proposed by
Scheiblauer et al. for the CPU-based point selection [Scheiblauer and Wimmer, 2011]. As the
selection octree is created in CUDA, a method is proposed to perform the point-marking test of
each selection octree also on the GPU using CUDA.

Generally, the marking process has to be applied only when a new MNO node is loaded to
the GPU to render it, or when the selection state changes. A selection can be active, inactive, or
invisible. Therefore, it is required to distinguish selected points from not selected ones. If the
state of a selection changes, it is required to set all points which belong to the selection to the
new state.

The case of a node put on the GPU is considered first. This requires a brief introduction
to the out-of-core algorithm of Scanopy. As described in Section 3.2, MNO nodes are loaded
on demand from the hard disk. However, the number of MNO nodes loaded from disk to main
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memory is limited per rendered frame. In the case of the CPU-based selection, all points can
be tested immediately against the selection octree before the VBO for the node is created and
moved to the GPU.

This method is not effective when a point-marking method is created in CUDA for two
reasons. First, the data must be loaded to the graphics card memory anyway before it can be
rendered. Therefore, loading it first into CUDA’s global memory, coloring the selected points
and copying it back to main memory such that it can finally be loaded on the VBO to render
it is not effective. The second reason is that the CPU-based method works on the points of
each MNO node individually. Doing the same in CUDA would mean to launch for each MNO
node its own CUDA kernel and perform the required marking operation there. Not only does
each kernel launch take some time, but also the memory management to make required octree
information available in CUDA is not cheap.

Therefore, all MNO nodes that become available during one frame put their data on the
respective VBOs instead of marking them before the creation of the VBO, as it is done during the
CPU-based approach. As soon as all nodes are available as VBOs in graphics card memory, the
data of the points can be accessed and modified by CUDA as already introduced in Section 5.2.
This way, copy operations between CUDAs global memory and the main memory of the CPU
can be avoided. Combining the point-marking operation of all newly available MNO nodes
into one kernel call improves the performance as well due to the reduction of kernel calls and
memory instructions.

The second case is concerned with the state changes of the point selections. In case of the
CPU-based selection, the marking method is performed in a top down fashion. This means that
the root node of the MNO is tested against the selection octree first. The children of the root
node are recursively tested against the selection octree. They only have to be tested if they are
actually visible, which is only the case when they are available as VBO. Therefore the testing
process on the CPU slightly differs from the first case because in this case, the data is only
available in the VBO and has to be copied back to main memory to test it against the CPU-based
selection octree.

The fact that the data is already on the graphics card in form of VBOs supports the CUDA-
based marking process, as the data does not have to be copied back to main memory. While
the CPU-based method tests also in this case against all VBOs separately, the CUDA-based
approach tests all VBOs at once against the selection octree for the same reason as in the first
case. Before the point-marking method is executed in CUDA, all MNO nodes that are available
as VBOs are collected in a list to pass it once into the CUDA kernel responsible for the point
marking.

The CUDA kernel to mark each point is simple. Each point is processed by one thread. The
point is checked against the selection octree and its color is set depending on whether it falls
within a selected or unselected node.

The performance difference between the CPU-based point marking and the CUDA-based
point marking will be discussed in Section 6.4.
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5.6 Persistent Storage

As the selection octrees represent the links between point clouds and annotations, they are also
stored in the database such that anything related to annotations is stored in the same location.
The data size of each selection octree should not become too big, as it is assumed that only small
parts of the whole point cloud are selected for the different annotations.

Both the linear octree, represented as Morton codes, and the attribute for each node, which
states whether it is selected or not, are stored in the database as binary object. To successfully
convert it back from binary format into 32-bit integers, the number of nodes as well as the used
precision for the Morton code must be stored tool.
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CHAPTER 6
Results

The developed point-selection and point-marking solution is analyzed in this chapter. The point-
selection method creates the selection octree from a set of selected points. The point-marking
solution uses the selection octree to test whether newly loaded points from a point cloud belong
to the selection octree and have to be marked. Section 6.1 describes the benchmarking setup
used to provide the results presented throughout this Chapter. The benefits of the compaction
method are presented in Section 6.2. Section 6.3 shows the achieved performance with differ-
ent graphics cards and with different CUDA compute capabilities. It also compares the existing
CPU-based point-selection method with the CUDA-based method introduced in this thesis. Sec-
tion 6.4 presents the results of the point-marking method, comparing different graphics cards and
analyzing the performance difference between CUDA-based marking and CPU-based marking.

6.1 Benchmarking Setup

There exists a broad variety of CUDA-capable devices starting from the first series of Nvidia’s
GeForce 8800 graphics cards to today’s GeForce 700 series. Not only the number of parallel
processing units and their clock rate has changed, but also the overall architecture has evolved.
Section 2.4.1.1 covers the details of this development. Due to this evolution of CUDA-capable
devices, a variety of different hardware settings is used to analyze the performance of the devel-
oped point-selection and point-marking method, and they are compared with each other.

The four systems presented in Tables 6.1, 6.2, 6.3 and 6.4 have been used to compare the
developed algorithms and they will be referred to as benchmarking system 1 to benchmarking
system 4. The point clouds used for the tests are listed in Table 6.5.

6.2 Octree Compaction

The benefits of a compacted octree used during point marking are analyzed in this section. For
the compaction to be useful, the selection octree should be reduced by a reasonable amount.
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Component Specification
CPU AMD X2 6000+ / 3.0 GHz
Main memory 4 GB

Graphics card

Nvidia GeForce GTS 250
128 CUDA cores

512 MB of memory
Compute capability 1.1

Table 6.1: Desktop PC with compute capabil-
ity 1.1

Component Specification
CPU Intel i7-2600K / 3.4 GHz
Main memory 16 GB

Graphics card

Nvidia GeForce GTX 570
480 CUDA cores

1280 MB of memory
Compute capability 2.0

Table 6.2: Desktop PC with compute capabil-
ity 2.0

Component Specification
CPU AMD X2 6000+ / 3.0 GHz
Main memory 4 GB

Graphics card

Nvidia GeForce GTX 660
960 CUDA cores
2 GB of memory

Compute capability 3.0

Table 6.3: Desktop PC with compute capabil-
ity 3.0

Component Specification
CPU Intel i7-3612QM / 3.1 GHz
Main memory 4 GB

Graphics card

Nvidia GeForce GT 630M
96 CUDA cores
2 GB of memory

Compute capability 2.1

Table 6.4: Notebook with compute capability
2.1

Otherwise there would be no performance improvement for the point-marking step. As has been
discussed in detail in Section 5.5, point marking is required when a new MNO node becomes
visible or a selection changes its visibility. The compaction results are measured using the
benchmarking system from Table 6.3.

The Building and Catacombs point clouds denoted in Table 6.5 are used for the compaction
test.

Name Points Scan Positions Size Point Attributes
Building 7,358,930 1 112 MB position, color

Catacombs 1,921,537,902 1826 29384 MB position, color

Table 6.5: Point clouds used for the compaction test

As can be seen in Table 6.7, the possible number of nodes that can be compacted can vary
depending on the structure of the selected part of the point cloud. Selections with the highest
potential to result in a small selection octree are those which have only a limited amount of
not selected neighbour points. Pillars can be seen as a good example for this case. Once a
selection is completely surrounded by neighbour points, its possibility for compaction depends
on the complexity of the border of the selection, which seperates selected from unselected points.
Table 6.6 shows examples of selections with different border complexities and the resulting
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compacted selection octree. Morton codes with a length of 60 bits are used for this test. In
all cases the possible amount of memory that can be saved due to the reduction of nodes is at
least 96,5 %, as can be seen in Table 6.6 and 6.7. The selections of the Catacombs data set
are presented in Figure 6.1. The amount of remaining nodes compared to the original selection
octree are presented in the last column of Table 6.6 and 6.7.

Octree

Selected Points Construction Time [ms] Compaction Time[ms] Final Nodes Percent
235,052 88.9 24.6 2,151 0.91 %
206,812 82.6 14.1 860 0.42 %
275,887 90.9 23.7 3,688 1.34 %
316,559 106.1 25.6 4,771 1.51 %
390,081 117.2 27 8,292 2.13 %
613,854 150.5 34.9 21,775 3.55 %

Table 6.6: Marked Building data set with compaction

Octree

Selected Points Construction Time [ms] Compaction Time[ms] Final Nodes Percent
504,199 124.5 27.2 396 0.08 %

1,201,430 223.6 40.5 12,615 1.05 %
1,296,256 283.1 60.4 2,078 0.16 %
817,474 162.6 30.8 9,770 1.20 %

Table 6.7: Marked Catacombs data set with compaction

The direct comparison between compacted and not compacted selection octrees can be seen
in Figures 6.2 and 6.3. There is a clear connection between the time required to test the points
against the corresponding selection octree and whether the corresponding selection octree is
compacted or not. As expected, it is the case that compacted selection octrees speed up the
marking step of the point clouds.

It can be noted that the achievable speed up for compacted selection octrees during the point-
marking step is not as high as the potential memory savings. As can be seen in Table 6.6 and 6.7,
between 96,5% and 99,9% of all nodes can be dropped during the octree compaction. On the
other hand, when compacted selection octrees are used, the computation time required for the
point-marking step is at most reduced by half compared to the not compacted octrees. Still, the
marking step benefits from a compacted octree, especially if it was originally created by a large
set of selected points.
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1. Selection 2. Selection 3. Selection 4. Selection

Figure 6.1: The selections created on the Catacombs data set presented in Table 6.7.

6.3 Point Selection

The overall construction process for a selection octree in CUDA has been presented in Sec-
tion 5.4, and Algorithm 5.1 shows the general structure of the construction algorithm. To get an
overview of the time required by each subpart of the algorithm, the benchmarking system 6.2
is used, and with it several selections are performed using the Building data set. The result of
this test can be seen in Figure 6.4. During the creation of the selection octree, most of the time
is spent for the two sorting steps. When the number of points involved into the creation of the
selection octree increases, the time required for the Morton code generation and the compaction
step, which is used to reduce the number of points in the selection octree, increase notably as
well.

To test the selection step on the different hardware setups, the selection scene composed
of one point cloud and different selections was created and stored as a scene file on hard disk.
This allows reopening the scene on the other systems such that the camera is already placed at
the correct position, as the position is also stored on the scene file. The selection step can then
be repeated on the other systems. This can result in a selection which contains a set of slightly
different points because the selection is done manually with the mouse. However, measurements
have shown that the required time to complete the construction of the selection octree is the same
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Figure 6.2: Difference in time required to mark compacted and not compacted selection octrees
of the Building data set

as long as the selected number of points does not vary too much and the selections have a similar
form.

When the different hardware setups are compared, the comparison between benchmarking
systems 1 and 4 is of special interest. Both GPUs provide a similar amount of CUDA cores.
However, between the two graphics cards the GPUs of the 400 and 500 series lay in between.
Also, the compute capability has been increased from 1.1 to 2.1. Despite these gaps, the se-
lection process does not benefit from the newer architecture of the GPU. The selection process
even performs marginally faster on the GTS 250 compared to the GT 630M. If the system that
contains the GTX 570 is compared with the system containing the GTX 660, the selection re-
sults show that the GTX 570 performs the selection task on average in two thirds up to half the
time the GTX 660 requires. This is interesting as the GTX 660 has a higher compute capability
compared to the GTX 570 and its CUDA cores have been doubled from 480 to 960. Still the
GTX 570 can perform the selection task faster.The reason can be a more complex scheduler used
by the Fermi architecture compared to the Kepler architecture, which handles data dependencies
with special hardware during runtime, whereas the simpler scheduler of the Kepler architecture
relies on the compiler to handle these dependencies [Nvidia, 2012]. Therefore, the Fermi sched-
uler can deal with the random accesses to the linear octree, which are not predictable at compile
time, more efficiently. Moreover, the number of streaming multiprocessors (SM) decreased from
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Figure 6.3: Difference in time required to mark compacted and not compacted selection octrees
of the Catacombs data set

15 on the GTX 570 to 5 on the GTX 660. This reduction in SMs requires to triple the parallelism
in one streaming multiprocessor of the GTX 660 to provide the same performance compared to
the GTX 570 [Nvidia 2013]. This is not possible because of the register limit on each streaming
multiprocessor. Although the number of registers per SM is doubled from the GTX 570 to the
GTX 660, it is not enough to cover the required increase of parallelism, which must be tripled
to provide the same speed on the GTX 660.

As already discussed in Section 5.4.1, when using Morton codes as a representation of an
octree, the precision of the octree is limited by the number of bits used per Morton code. There-
fore, the desired precision per selection octree can be changed. It is assumed that the length of
the Morton code has an impact on the performance of the point-selection method. Figure 6.5
confirms this assumption. It shows the time required to build the selection octree using three
different Morton code lengths. As test selections, the first four selections from Table 6.8 are
chosen. The results come from benchmarking system 4 using an Nvidia GT 630M. Although
the absolute time required performing the selections varies using other GPUs, the relative time
required for the different parts of the selection process stays the same. Looking at the previous
results, which present the required computation time per subpart of the selection process, the
sorting steps are the most time consuming. Radix sort is used as the sorting algorithm. Since
the running time of this sorting algorithm depends on the length of the keys, the required time to
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Figure 6.4: Point selections of the Building data set and the time required for each step

complete the construction of the selection octree should also increase when longer Morton codes
are used. The compaction step depends as well on the length of the Morton code. Therefore,
also the compaction time almost doubles when the length of the Morton codes is increased from
30-bit to 60-bit values. Those two steps have already been confirmed by the measurements in
Figure 6.4 to be the most time consuming during the construction process. This shows that the
length of the Morton code has immediate influence on the construction of the selection octree as
can be seen in Figure 6.5.

During the individual selection steps, each brushstroke must be tested against the point cloud
on which the selection is performed. This is done by testing each point of the point cloud if
it is inside the brush’s volume. First, this was considered as a good possibility to optimize
the selection process with CUDA by testing each point with one CUDA thread. Unfortunately,
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Figure 6.5: Comparison of the required construction time using different lengths of the Morton
code. The first four selections from Table 6.8 are presented, which use the Building data set as
model.

performance analysis and comparison with the existing CPU test showed that the usage of CUDA
was not faster than the CPU-based containment test. The outcome was surprising as the idea
looked promising due to the perfect mapping to parallel systems. The problem with the CUDA-
based testing approach was that there is one communication step required after the testing of the
points. Once each point of an MNO node has been tested against the brush shape, it is required
to return the amount of points which are inside the brush. Only when the MNO node contains
selected points, it is relevant for the octree construction. Therefore, this number must be passed
back from CUDA’s global memory to the main memory where all required MNO nodes are
collected in a list. This list ensures that the octree calculation is only performed on MNO nodes
that contain selected points. To test whether a point of an MNO node is inside the brush is
faster in CUDA compared to the CPU-based. However, the time required to copy the number of
selected points back to main memory is slow. The overall performance measurement makes the
CUDA-based approach as slow as the CPU-based method. Since both methods need the same
time to complete this task, it does not matter whether CUDA or the original approach is used to
select the points with the brush.
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6.3.1 Point Selection CPU vs. CUDA

When the time required by the CPU to create a point selection is compared with the CUDA-based
solution, both the GTX 570 and the GTX 660 outperform the existing CPU based selection by
far. Especially the GTX 570 is able to complete the selection task more than 10 times faster than
the CPU.

Selected points CUDA build-up time [ms] CPU build-up time [ms] Speedup
104,812 21.8 45,1 2,1
92,484 20.3 48,6 2,4
92,484 20.2 32,6 1,6
56,369 15.1 16,4 1,1
234,560 36.9 63,3 1,7
199,830 33.0 72,2 2,2
467,461 68.8 289,7 4,2
522,373 75.5 215,1 2,8
244,013 44.0 243 5,5
255,770 44.2 133,2 3,0

Table 6.8: Point selections on the Building data set using the system described in Table 6.2
containing a GTX 570

Selected points CUDA build-up time [ms] CPU build-up time [ms] Speedup
1,003,475 128.9 281.5 2.2
1,329,920 165.5 540.0 3.3
529,689 77.8 91.7 1.2
682,923 94.1 213.9 2.3
613,433 87.9 216.6 2.5
710,219 98.7 236.4 2.4
1,775,522 214.4 1045.7 4.9
369,553 59.4 900.2 15.2
1,474,452 181.9 859.0 4.7
565,527 79.6 211.0 2.7

Table 6.9: Point selections on the Catacombs data set using the system described in Table 6.2
containing a GTX 570

The CUDA-based approach is especially faster compared to the CPU under two conditions.
A large amount of selected points provides a better improvement. When building a selection
out of 100,000 points or less, the speedup of the CUDA-based approach is at most tripled com-
pared to the CPU-based selection. Larger selections with millions of selected points benefit
from the CUDA-based selection by improving the selection speed 5 times and more. See Fig-
ures 6.6 and 6.7 for details. The second factor which determines the speed improvement of the
CUDA-based selection method to the CPU-based method lies in the structure of the selection.
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Figure 6.6: Point selections using the Building data set. Details about the selections are pre-
sented in Table 6.8.

The CUDA-based method only depends of the number of involved points to create the selec-
tion. The running time of the CPU-based method depends on the structure of the selection. This
comes from the difference of the build-up process. The existing CPU-based method builds the
selection octree in a top-down fashion. This means that it divides the initial cube surrounding
the point cloud until each node contains either only selected or only unselected points. This
process can potentially be stopped early for some nodes during the construction process. This
results in a faster construction of the selection octree. If such an early stopping is possible due
to a selection which does fit well into octree nodes of a higher level, the construction takes less
time on the CPU.

Such an example can be seen in Figure 6.7, the third selection is not faster using CUDA
because an isolated object is selected. The splitting process can be stopped early when using the
CPU-based method because there are no unselected points close to the selected object.

6.4 Point Marking

To analyze the difference between the Fermi architecture and the older CUDA devices, the
benchmarking systems 1 and 4 are used, which use a GTS 250 and a GT 630M respectively.
Both have a similar amount of CUDA cores as can be seen in Table 6.1 and 6.4. Although
the GTS 250 has 32 CUDA cores more than the GT 630M, the marking step is slower on the
GTS 250 as can be seen in Figure 6.8. The reason for this is the access pattern to the selection
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Figure 6.7: Point selections using the Catacombs data set. Details about the selections are
presented in Table 6.9.

octree. It cannot be structured such that the memory can be accessed in coalesced way. The
L1 cache, which has been introduced with the Fermi architecture, supports the access of the
irregular access pattern to the selection octree. Therefore the GT 630M outperforms the older
GTS 250.

6.4.1 Point Marking CPU vs. CUDA

The improved speed of the CUDA-based point-selection method compared to the CPU-based
method alone does not provide the required speedup to use a large amount of annotations. To
work with several point selections such that they can be used as a link between point cloud and
annotations, a fast point-marking step is more important. The selection octree, once created for
each annotation, remains constant. Therefore, the construction time is not as crucial as the time
required to mark the points that belong to the selection. Whenever a new MNO node becomes
visible, it has to be tested against the currently available selections because it has to be decided
for each point individually whether it belongs to a selection or not. If it does belong to a selected
node of an octree, its color must be changed such that the user knows that this point belongs to
the selection as well. As the amount of annotations increases, also the number of point selections
increases because each annotation holds its own point selection to create a link between point
cloud and annotation. To compare the existing CPU-based point-marking approach with the
CUDA-based approach implemented in this thesis, a test setup has been created.
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Figure 6.8: Point marking using the Building data set.

To compare the existing CPU-based point-marking approach with the CUDA-based ap-
proach implemented in this thesis, two different test setups have been created. The first method
compares how fast all currently visible MNO nodes can be tested against existing selection oc-
trees. This is done be switching the selection from not active to active. When such a switch is
performed all currently visible points have to be tested against the selection octree. If a point
falls within the selected part of the selection octree it is marked as selected. The comparison is
done using the Building and the Catacombs presented in Table 6.5.

The results of this test can be seen in Figure 6.9. The GTX 570, which is one of Nvidias
high-end graphics cards, outperforms all the other GPUs used in this test. Moreover, it shows the
best performance results compared to the CPU-based marking approach. The results are similar
to those presented in Section 6.3 which covers the results of the selection methods. Large selec-
tion octrees benefit much more from the CUDA-based method than selection octrees resulting
from smaller selections. However, the performance advantage for the CUDA-based method to
compare newly loaded points against existing selection octrees is even higher compared to the
CPU-based method than it was the case when the point-selection methods have been compared
with each other. It is able to mark the points which have to be tested against large selection
octrees almost 20 times faster than the CPU-based method. The results show as well that the
GTX 660 is not able to compete with the older GTX 570. Although the GTX 660 has twice as
many CUDA cores as the GTX 570, it is three times slower than the GTX 570. The reason for
this have been discussed in Section 6.3. The reduced number of streaming multiprocessors and
the simpler scheduler used on the GTX 660 seams to have a even greater impact. This comes
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Figure 6.9: Point marking using the Catacombs data set. Details about the selections are pre-
sented in Table 6.9.

from the random access to the selection octree, which is used to test whether a point belongs to
the selection.

The size of the selection octree has only limited influence on the computation time of the
CUDA-based marking method. This is not true for the CPU-based method. Selection octrees
with limited depth can be performed much faster. Such selection octrees result from selections
which have only a limited number of unselected points close to the selected points. As already
discussed in Section 6.3, example cases are completely selected objects such as pillars or se-
lections with small boundaries between selected and unselected objects as they appear when
circular or rectangular areas of the point cloud are selected. See the selection octree 3 in Fig-
ure 6.9 which represents the marking of a selected pillar.

The second test setup simulates a real movement of the user through the scene. During this
traversal, other parts of the point cloud become visible. This makes it necessary to load new
MNO nodes from the hard disk to the graphics card. The points within the newly loaded MNO
nodes must be tested against all active point selections. This test is required to decide whether
a point must change its color to represent it as selected or it can keep its original color if it does
not belong to any of the selected regions of all active selection octrees. Which MNO nodes are
loaded from disk depends on the path the user moves though the point cloud. To make sure this
traversal is equal for both, the CPU-based method and the CUDA-based method, a automated
camera path is created. This path moves the camera on a fixed track through the scene and makes
sure to load the same MNO nodes for all tests.
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Figure 6.10: Performance achieved while moving through the Catacombs data set with 10 se-
lection octrees. Reference traverses the scene without any selection test.

To show the maximum frame rate that is possible to achieve with Scanopy during the traver-
sal of the camera path, a traversal through the scene without any selection octree tests is done.
This reference is presented as green line in both Figure 6.10 and Figure 6.11.

The second test continues to use the selection octrees presented in Table 6.9 and uses the
benchmarking system from Table 6.3. Figure 6.10 shows the achieved frame rate while the user
moves through the scene along the predefined path. As can be seen, the frame rate of the CUDA-
based method falls off only a little compared to the reference camera traversal which does no
octree test at all. It is nor possible for the CPU-based method to keep the frame rate all the time
at the same level than the CUDA-based method. It shows also some heavy performance drops.
Those do not occur with the CUDA-based method. To extend this test, 10 more selection octrees
have been added. The camera path through the scene remained the same. Now, the newly loaded
points are tested against 20 selection octrees and the results are presented in Figure 6.11. The
result for the CUDA-based method are similar to the previous test with 10 selections. However,
the CPU-based method shows over all a lower frame rate with similar performance drops at the
same place during the traversal of the scene like before.

As can be seen in Figure 6.10 and 6.11, the CUDA and the CPU version are sometimes
faster than the reference solution. This can occur when it is not necessary to execute the point
marking. This is the case when newly loaded MNO nodes do not belong to any selected region
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Figure 6.11: Performance achieved while moving through the Catacombs data set with 20 se-
lection octrees. Reference traverses the scene without any selection test.

of all available selection octrees. It can be tested within 0.01 milliseconds whether the marking
step can be skipped by testing if the volume of the MNO node itself falls into any selected
octree node. Only if this is the case, the single points must be tested against the available
selection octrees to distinguish between selected and unselected points. When the marking is
not executed for any newly loaded MNO nodes of a given frame, only the time required to load
the points from the hard disk to the graphics card memory comes into account. This means
that the traversal with selection test and the reference traversal perform the same tasks when no
newly loaded MNO nodes must be tested against the selection octrees. The camera path ensures
that the same MNO nodes are loaded at a given point in time during the traversal of the path.
However, the required time to load a specific MNO nodes can slightly vary between consecutive
camera path traversals. This difference in time required to load the MNOs from the hard disk can
change the overall frame rate between 1-2 frames per second. Therefore, the marking methods
can be slightly faster than the reference solution at some points in time when no point marking
needs to be done during this time.

As can be seen in both Figure 6.10 and Figure 6.11, the CUDA-based marking method is
able to test points against 10 or even 20 different selection octrees at the same time without a
severe drop in performance compared to the reference traversal. On the other hand, when the
CPU-based method is used, the frame rate collapses several times. When 20 different selection
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octrees are used, this problem is even higher.
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CHAPTER 7
Conclusion

The aim of this thesis was the integration of an annotation system into the point cloud renderer
Scanopy.

To link the annotations with the point cloud, a point-highlighting method has been proposed.
The existing point-selection method running on the CPU was not able to work with a reasonable
amount of selections such that more than 10 annotations could be used. Therefore, a different
approach had to be created. It was assumed that an improved selection solution on the CPU
would not provide the required performance to work with a large amount of annotations. The
GPU with their capabilities of massive parallelism seemed to be an alternative to the existing
CPU-based method.

A point-selection and marking method completely running on the GPU has been developed.
As shown in Chapter 6, the performance was improved for both tasks. The point-selection
method is at least 5 times faster than the corresponding CPU-based method, while the marking-
method, which was responsible for low frame rates when several selections must be marked at
the same time, runs up to 20 times faster using the GPU-based method. The simulated movement
through a scene has show, that the CUDA-based method is able to handle 20 point selections
with a small loss in performance compared to a traversal that does not have to process any
point selection at all. The CPU-based method is not able to work with several annotations with
attached selection octrees. It already shows some severe performance problems when 10 point
selections are used. This drop in performance is also present when the amount of point selection
increase to 20. On the other hand, the new CUDA-based approach is able to handle at least 20
active annotations with attached CUDA-based selection octree. This is considered to be enough
for the annotation system in Scanopy because the selection octree for an annotation has only to
be evaluated if the annotation is active. Additionally, to preserve the overview on the scene there
should not be more than this amount of annotations visible at the same time.
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7.1 Future Work

The work of this thesis consists of two parts which lead to different improvements. The main
focus of the annotation system integrated into Scanopy is to visualize the additional information
such that the user gains deeper knowledge regarding the visualized object represented as point
cloud. Although a guidance system was integrated to lead the viewer to points of interest, other
possibilities to search for specific information are not available.

Such a search function can be useful especially when the number of annotations in a scene
increases. Due to the possibility to attach text documents and images to each annotation such a
search function could also allow to retrieve specific data out of an annotation or get all informa-
tion related to a given topic from all annotations. As it is already possible to add descriptions to
each image, such a search function could also provide the possibility to search for the content of
images if the descriptions cover the content of the images well.

On the technical part of this thesis, which covers the point-selection and point-marking meth-
ods responsible to establish a link between the point cloud and the annotations, a few improve-
ments could be useful.

As shown in the results, most time during the construction of the selection octree is spent
sorting the different Morton codes. It is not only the most time consuming step during the
construction process, it is also used twice in a selection step. A faster sorting method could
provide a reasonable performance improvement. Currently radix sort is used, which is assumed
to be the fastest sorting algorithm in CUDA. However, the usage of Morton codes makes it
necessary to use at least 60 bits of information per Morton code. As the complexity of radix sort
depends not only on the number of elements but also on their length, another sorting algorithm
could provide a better performance. The merge sort proposed by Satish et al. [Satish et al., 2009]
does not lose as much performance as it is the case for the radix sort when the keys that have to
be sorted get longer. The merge sort itself is slower than the radix sort when sorting 30-bit keys
and there is no comparison available for keys that are use 60 bits or more. Therefore, it is not
clear if a switch to merge sort improves the performance when longer keys have to be sorted.

The second step that can be covered is the issue that Scanopy can only perform a selection
on point clouds with a color attribute because it currently uses the alpha channel of the color
to distinguish between points that have been selected and those that have not been selected by
the brush. Generally, this is not a problem since most point clouds have color as an attribute
of their points. If the color attribute does not exist, an additional attribute, which is used to
distinguish between selected and unselected points, can be useful to provide the selection method
for colorless point clouds too.

The last aspect that can be improved is the performance issue on the latest CUDA capable
devices from Nvidias 600 series onwards. As shown in Chapter 6, both the selection and the
marking of points with the newer GTX 660 requires at least twice as long than the older GTX
570. Although the number of CUDA cores doubled between both graphics cards and Nvidia
claims a higher performance for the newer card, the results could not verify the improved tech-
nical specifications. A possible adoption of the selection and marking algorithm can be useful,
such that it better fits the newer architecture. However, it is not clear if this is possible at all
since other CUDA-based algorithm face this performance issue as well.
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