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ẋt relative velocity of roof
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Chapter 1

Theory

1.1 Performance Based Design

1.1.1 General

During the last 40 years the sector of Earthquake Engineering has advanced considerably

due to the rapid developments of computers and computing, the improved experimental

facilities, and the development of new methods of seismic design and assessment of

structures. This development has led to an improvement of the named design procedures

with a shift from traditional force-based procedures to displacement-based procedures.

The characterization of the various performance levels has led to performance-based

earthquake engineering.

The practice of performance based engineering arose from the realization that buildings

had to be designed to explicitly ensure life safety, not necessarily attempting to reduce

damage in a structure. Thus buildings should be constructed based on their intended

use, to meet the performance objectives indicated in figure 1.1. In the figure, each

combination of an earthquake return period and performance level represents a specific

design performance objective. The intent is that ordinary buildings provide life safety

for any earthquake; and that for frequent earthquakes, the building user not be burdened

with extensive repairs or loss of use; that buildings required for emergency response and

essential public function should not be damaged beyond a level that would permit their

1



Chapter 1. Theory 2

Figure 1.1: Performance Objectives [9]

use, and; that facilities housing systems and materials that would pose a hazard to many

persons if released, have a low risk of damage resulting in such release [9].

The earthquake performance of buildings describes the damage incurred to the building’s

structure, envelope, partitions, ceilings, mechanical/electrical systems, and contents.

While the building performance is a continuum, for design purposes it is convenient to

identify discrete performance levels for the major structural and other building com-

ponents that significantly affect building function, property protection, and safety [1].

Standards [2] generally provide guidance on three performance levels:

• Immediate Occupancy, IO: Achieve essentially elastic behavior by limiting struc-

tural damage. Structure substantially retains original strength and stiffness and

there is no permanent drift. Minor cracking of facades, partitions, and ceilings as

well as structural elements can occur. All systems important to normal operation

are functional.

• Life Safety, LS: Limit damage of structural and nonstructural components so as

to minimize the risk of injury or casualties and to keep essential circulation routes

accessible. Life Safety, means the post-earthquake damage state in which signifi-

cant damage to the structure has occurred, but some margin against either partial
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or total structural collapse remains. It should be possible to repair the structure;

however, for economic reasons this may not be practical.

• Collapse Prevention, CP: means the building is near collapse. However, all signif-

icant components of the gravityload-resisting system must continue to carry their

gravity load demands. Significant risk of injury may exist.

1.1.2 Demand Parameters-Acceptance Criteria

Once these objectives are defined, the next step is to identify specific demand parameters

and appropriate acceptance criteria in order to quantitatively evaluate the performance

levels.

The performance acceptance criteria may be specified for the overall systems, substruc-

tures, or components of a building. They may also vary with the type of analysis

employed (for instance static or dynamic nonlinear analysis) and also with the way

uncertainties are handled.

In the next step the structure must be modeled and analyzed in order to calculate

the values of the demand parameters. The demand parameters typically include peak

forces and deformations in structural and nonstructural components, story drifts, and

floor accelerations and provide insights into the overall building response and damage to

nonstructural components. Other demand parameters, such as cumulative deformations

or dissipated energy, may be checked to help confirm the accuracy of the analysis and/or

to assess cumulative damage effects.

The performance is checked by comparing values of demand parameters (short: “de-

mands”) to the acceptance criteria (“capacities”) for the desired performance level.

Thus the capacity, the ability of the building to resist seismic loads must be greater

than the demands, the earthquake effects on the building. The comparison often occurs

through “demand-capacity” ratios.

1.1.3 Procedures for Earthquake Analysis

There are four analytical procedures for design and assessment purposes recommended

in the guidelines [10, 11]. These are the Linear Static Procedure, LSP, Linear Dynamic
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Procedure, LDP, Nonlinear Static Procedure, NSP, and the Nonlinear Dynamic Proce-

dure, NDP, with ascending order of complexity.

A. Linear Static Procedure:

Under Linear Static Procedure, design seismic forces and the corresponding internal

forces and displacements are determined using a linearly elastic, static analysis. A

pseudo lateral load is applied to the building in order to approximate the maximum

displacement which is to be expected during the design earthquake. If the building re-

sponds essentially elastically to the design earthquake, the calculated internal forces will

be reasonable approximations of those expected during the design earthquake. However

this will often not be the case. The results of the linear procedures can be very inaccu-

rate when applied to buildings with highly irregular structural systems, vertical mass or

stiffness irregularity or buildings exceeding a certain Height, as well as structures with

elements that have large ductility demands or the lateral force resisting system is non-

orthogonal. Thus restrictions on the applicability of this procedure must be carefully

checked.

B. Linear Dynamic Procedure:

Under the Linear Dynamic Procedure forces and displacements are determined using a

linearly elastic, dynamic analysis. The response calculations are carried out using either

modal spectral analysis or Time-History Analysis. Modal spectral analysis is carried out

using linearly-elastic response spectra that are not modified to account for anticipated

nonlinear response. Modal responses are combined using rational methods to estimate

total building response quantities. As with the LSP, it is expected that the LDP will

produce displacements that are approximately correct, but will produce internal forces

that exceed those that would be obtained in a yielding building.

C. Nonlinear Static Procedure:

In the nonlinear static procedure, the structural model is subjected to an incremental

lateral load whose distribution represents the inertia forces expected during ground

shaking. The lateral load is applied until the imposed displacements reach the so-called

“target displacement,” which represents the displacement demand that the earthquake

ground motions would impose on the structure. Once loaded to the target displacement,

the demand parameters for the structural components are compared with the respective

acceptance criteria for the desired performance state. The NSP should not be used unless
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comprehensive knowledge of the structure has been obtained. In the case of slender, tall

buildings, higher mode effects must be taken into account.

D. Nonlinear Dynamic Analysis Procedure:

The nonlinear dynamic procedure, when properly implemented, provides a more accu-

rate calculation of the structural response to strong ground shaking. Since the nonlinear

dynamic analysis model incorporates inelastic member behavior under cyclic earthquake

ground motions, the nonlinear dynamic procedure explicitly simulates hysteretic energy

dissipation in the nonlinear range. The dynamic response is calculated for input earth-

quake ground motions, resulting in response history data on the pertinent demand pa-

rameters. This analysis involves fewer assumptions than the nonlinear static procedure

and so is subject to fewer limitations than nonlinear static procedure. However, as this

accurate analysis involves the implementation of a complex analytical model as well as

a high computational effort, many prefer the usage of Nonlinear Static Procedure.

1.1.4 Evaluation of the methods

Clearly the nonlinear dynamic procedure that predicts the forces and cumulative de-

formations (damage) demands in every element of the structural system is the most

accurate solution. However, the implementation of this solution requires the availabil-

ity of a set of ground motion records that account for the uncertainties and differences

of the possible earthquake characteristics. It requires further the capability to model

adequately the cyclic load-deformation characteristics of all important elements of the

soil-foundation structure system, as well as the knowledge of element deformation ca-

pacities.

It is stated that there is a need to work on this final solution but also a need to recognize

the time and financial constraints imposed on engineering offices as well as the limitation

of today’s states of knowledge and practice [12]. Even in those situations where the

expertise and resources for running time-history analyses are available, it is often the

case that preliminary simpler analysis (i.e. modal and static analyses) are run to enable

a first check of the model. Errors in the definition/assemblage of a finite elements model

are difficult to detect from dynamic analysis results, while in the case of a pushover

analysis they tend to be relatively evident.
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In this context, the goal is to perform an analysis that is relatively simple and captures

the essential features of the system. The accuracy of demand prediction is desirable,

but may not be essential, since neither seismic input nor capacities are known with

accuracy. The inelastic static analysis (pushover analysis) serves this purpose provided

enough knowledge of its implementation and limitations is available [13].

1.2 Pushover Analysis

1.2.1 Purpose

The purpose of the Pushover Analysis is to evaluate the performance of a structural

system by estimating its strength and deformation demands in design earthquake and

comparing these demands to available capacities at the performance levels of interest

[13]. Important performance parameters are: global drift, interstory drift, inelastic

element deformations and element and connection forces. The pushover analysis can be

viewed as a method of predicting force and deformation demands, which accounts for

the redistribution of internal forces when the structure is deformed beyond its elastic

range.

The pushover analysis is expected to provide response characteristics that cannot be

obtained from an elastic static or dynamic analysis such as:

• The realistic force demands on potentially brittle elements

• Verification of the adequacy of load path

• Estimates of deformation demands for elements that have to deform inelastically

in order to dissipate energy

• Identification of strength discontinuities in plan and elevation

• Identification of the critical regions in which the deformation demands are expected

to be high
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1.2.2 Basic Steps

A model directly incorporating inelastic material response is displaced to a target dis-

placement, and resulting internal deformations and forces are determined. The mathe-

matical model of the building is subjected to monotonically increasing lateral forces or

displacements until either a target displacement is exceeded or the building collapses.

The target displacements represents the maximum displacement likely to be experienced

during the design earthquake. Because the mathematical model accounts for several

types of nonlinearity, the calculated internal forces will be reasonable approximations

of those expected during the design earthquake. Results of the analysis are checked

using applicable acceptance criteria. Calculated displacements and internal forces are

compared directly with allowable values.

The majority of the Nonlinear Static procedures follow the same basic steps:

1. A pushover analysis is performed. A lateral load pattern is applied and the base

shear- roof displacement curve, also called the pushover curve is plotted.

2. The pushover curve is idealized and an equivalent Single Degree of Freedom System,

ESDOFS, based on the pushover curve is defined.

3. The target displacement is estimated, according to a selected design response spec-

trum.

4. The SDOFS response and the actual response of the structure are related by means

of a shape coefficient, typically identified in the first mode participation factor.

5. Finally, the response parameters, storey drift and forces on each structural member,

can be evaluated, knowing the global demand, through the pushover curve (or capacity

curve) of the system.

1.2.3 Theoretical Background

The accuracy of NSA is mainly based on three assumptions:

1) the load pattern used in performing pushover analyses, that influences the shape of

the capacity curve as well as the distribution of seismic demand along the height of the
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structure;

2) the procedure to derive the idealized equivalent SDOF from the pushover curve;

3) the estimation of the target displacement.

Those assumptions will be further discussed.

1.2.3.1 Control Node Displacement

The Location of the control node, assumed as the global displacement parameter, is

at the center of mass at the roof of the building. The displacement of the node is

calculated for the specified loads and afterwards compared with the target displacement

— a displacement that characterizes the effects of earthquake shaking.

1.2.3.2 Lateral Load Pattern

The Lateral Load Pattern applied to the MDOF System is critical for the performance

evaluation and has been recognized that it affects the results significantly. The load pat-

terns are intended to represent the distribution of inertia forces in a design earthquake.

This distribution will vary during a severe earthquake but usually the assumption that

the forces will be reasonably constant throughout the earthquake leads to the usage of

a constant lateral load pattern. In order to capture the response of a dynamic system it

has been agreed that at least two load patterns should be applied to the system [10, 11].

1. The uniform load pattern is usually the first load pattern to be used and it is

based on lateral forces that are proportional to the total mass at each floor level. It

emphasizes the demands on lower stories compared to the demands in upper stories as

well as story shear forces compared to overturning moments.

Fi =Wi (1.1)

Where Wi is the effective seismic weight of the ‘i’ story, including dead loads.

2. The Lateral load pattern proportional to story inertia forces is calculated by

combination of modal responses using (1) Response Spectrum Analysis of the building

including a sufficient number of modes to capture 90 Percent of the total mass, and (2)

the appropriate ground motion spectrum.
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Fi =Wiφij (1.2)

Where φij is the ith element of the mode shape vector corresponding to the ‘i’ storey

for mode j.

3. Inverted triangular distribution may also be used.

Fi =
Wihi
n∑

i=1
Wihi

Vb (1.3)

where hi is the height of the ‘i’ story, n is the total number of the stories, and Vb is the

base shear given by the following equation:

Vb = Sd(Tn)W (1.4)

where Sd(Tn) is the acceleration ordinate of the design spectrum at the fundamental

period Tn, and W is the total weight of the structure.

4. The FEMA 356 load distribution which may be used if more than 75 Percent of

the total mass participates in the fundamental mode in the direction under consideration;

Fx = CvxV (1.5)

Cvx =
Wxh

k
x

n∑

i=1
Wihki

(1.6)

Where Cvx is the vertical distribution factor, hi height from base to floor level i, hx

height from base to floor level x and V is the pseudo lateral load, calculated through the

coefficient method.

5. Kunnath’s Load distribution

Fi =
n∑

j=1

amrΓjMiϕijSa(ςj , Tj) (1.7)
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where amr is a modification factor that can control the relative effects of each included

mode and which can take positive or negative values; usually positive or negative unity,

Γj is the participation factor for mode j, Mi is the mass of the ith-storey, ϕij is the

mode shape of the ith-storey for mode j, Sa(ςj , Tj) is the spectral acceleration for a

given earthquake loading at frequency corresponding to the period T and damping ratio

ς for mode j.

6. An adaptive load pattern utilizing an elastic demand spectrum. In this procedure,

equivalent seismic loads are calculated at each pushover step using the instantaneous

mode shapes. The corresponding elastic spectral accelerations are used for scaling of

the lateral loads which are applied to the structure in each mode independently. While

these adaptive force distributions may provide better estimates of seismic demands, they

are conceptually complicated and computationally demanding for routine application in

structural engineering practice.

The implementation of several load patterns is related to the different types of pushover

analysis which will be discussed in the following chapter. After applying the forces, a

nonlinear incremental static analysis of the MDOF structure can be carried out from

which it is possible to determine the force-deformation characteristics of the ESDOF

system. The outcome of the analysis of the MDOF structure is a Base Shear, Vb, - Roof

Displacement, Ut, diagram, the global force-displacement curve or capacity curve of the

structure. This capacity curve provides valuable information about the response of the

structure because it approximates how it will behave after exceeding its elastic limit.

1.2.3.3 Idealization of the pushover curve

The static pushover analysis has no robust theoretical background. It is based on the as-

sumption that the response of the multi-degree-of-freedom (MDOF) structure is directly

related to the response of an equivalent single-degree-of-freedom (ESDOF) system with

appropriate hysteretic characteristics. The deflected shape of the MDOF system can

be represented by a shape vector φ that remains constant throughout the time history,

regardless of the level of deformation.
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Defining the relative displacement vector X of an MDOF system as ( roof displacement),

the governing differential equation of an MDOF system can be written as

[M ]{φ}ẍt + [C]{φ}ẋt + [Q] = −[M ]{1}ẍg (1.8)

where [M] is the mass matrix, [C] is the damping matrix, [Q] is the story force vector,

{1} is an influence vector characterising the displacements of the masses when a unit

ground displacement is statically applied, and ẍg is the ground acceleration.

We define the reference SDOF displacement x∗ as

x∗ =
{φ}T [M ]{φ}

{φ}T [M ]{1}
xt (1.9)

and pre-multiply equation (1.8) by φT , and substitute for xt using equation (1.9). We

obtain the following differential equation for the response of the equivalent SDOF system:

[M ]∗ẍ∗ + [C]∗ẋ∗ + [Q∗] = −[M ]∗ẍg (1.10)

[M]*, [C]* and [Q]* denote the properties of the equivalent SDOF system and are given

by

[M ]∗ = {φ}T [M ]{1} (1.11)

[Q]∗ = {φ}T [Q] (1.12)

[C]∗ = {φ}T [C]{φ}
{φ}T [M ]{1}

{φ}T [M ]{φ}
(1.13)

The multilinear pushover curve of the MDOF Structure is idealized by a bilinear rela-

tionship that defines a ’yield’ strength, Vy, an effective ’elastic’ stiffness, Ke = Vy/δt,y,

and a hardening (or softening) stiffness, KS = αKe for the structure. The simplified

bilinear base shear-roof displacement response curve, is needed to define the properties

of the equivalent SDOF system.

The yield value of the base shear Vy and the corresponding roof displacement Xt,y

are used together with equations (1.9) and (1.12) to compute the force - displacement

relationship for the equivalent SDOF system:
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x∗y =
{φ}T [M ]{φ}

{φ}T [M ]{1}
xt,y (1.14)

[Q]∗y = {φ}T [Q]y (1.15)

where Qy is the story force vector at yield, i.e. Vy = {1}TQy. The initial period of the

equivalent SDOF system Teq can be computed as:

Teq = 2π

[
x∗yM

∗

Q∗

y

] 1

2

(1.16)

The strain hardening ratio α of the MDOF structure defines the strain hardening ratio of

the equivalent SDOF system. Thus the basic properties of the equivalent SDOF system

are known.

1.2.3.4 The Target Displacement

The target displacement of pushover analysis should approximate the maximum level of

deformation that is expected during the design earthquake. It can be calculated by any

procedure that accounts for the effects of non-linear response on displacement ampli-

tude. The properties of the equivalent SDOF system, together with spectral information

for inelastic SDOF system, provide the information necessary to estimate the target dis-

placement. A convenient definition of target displacement is the roof displacement at

the center of mass of the structure. There are several ways to determine the target

displacement, which will be discussed later in this thesis.

1.2.4 Pushover Analysis Methods

There are three different general groups of pushover Analysis: the Conventional POA

methods, the Adaptive POA methods, and the Energy-Based POA methods. The Con-

ventional POA methods are the following:
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1. Capacity Spectrum Method , CSM

2. Improved Capacity Spectrum Method, ICSM

3. N2 method

4. Displacement Coefficient Method, DCM

5. Modal Pushover Analysis, MPA

The Capacity Spectrum Method, the N2 Method and the Modal Pushover Analysis will

be further discussed. The Adaptive and Energy-Based POA are more recent sophisti-

cated variations of the Conventional POAs and will not be presented.

1.2.4.1 The Capacity Spectrum Method

In the CSM the base shear forces and roof displacements calculated through pushover

analysis are converted to equivalent spectral accelerations and spectral displacements,

respectively, by means of coefficients that represent effective modal masses and modal

participation factors. These spectral values define the capacity spectrum. The demands

of the earthquake ground motion are represented by response spectra. The performance

of the structure is then estimated by including both capacity and demand spectra in a

graphical construction and intersecting the two curves.

The procedure can be summarized by the following steps:

1.Lateral loads are applied to the MDOF System based to the fundamental mode of

vibration. Other lateral loads may as well be used. The Pushover Curve in terms of

roof displacement xt vs. Base shear Vb is plotted.

2. The capacity curve is idealized as a bilinear relationship with the choice of a global

yield point (Vy, uy) of the structural system and a final displacement (Vpi, upi). The

areas above and under the curve are approximately equal in order to ensure that there

is equal energy associated with each curve.

The conversion of the MDOF system to the ESDOF System and its dynamic character-

istics are calculated as previously described.

3. By use of dynamic characteristics, the Xt vs. Vb capacity curve is converted to a Sa

vs. Sd. capacity spectrum as follows:
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Figure 1.2: Example of an idealized capacity curve

Sa =
Vb

αmM
(1.17)

Sd =
u

Γ1φij
(1.18)

Where M is the total mass of the building, φij is is the modal amplitude at storey level

‘i’ for mode j, Γ1 is the participation factor and αm is the modal mass coefficient, which

are given by:

Γ1 =
{φ}T [M ]{1}

{φ}T [M ]{φ}
(1.19)

αm =

[
n∑

j=1
miφij

]2

n∑

i=1
mi

n∑

j=1
miφ2ij

(1.20)

4.The response spectra is obtained for several levels of damping. The capacity spectrum

and family of damped response spectra are plotted on an ADRS format (Sa vs Sd

coordinates with period T lines radiating from origin).

5. The intersection of the capacity spectrum with the appropriately damped response

spectrum represents an initial estimate of the performance point (api, dpi). The inter-

section between the two curves can be based on the equal displacement rule or other
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Figure 1.3: Conversion to ADRS Format

rules.

Figure 1.4: Initial performance point estimation

6. Equivalent viscous damping of the spectrum is estimated based on the specific maxi-

mum displacement dpi. A new response spectrum has to be computed for the calculated

amount of damping.

βeq = β0 + 0.05 (1.21)

7. The new demand spectrum should then be checked if it intersects the capacity spec-

trum at or close enough to the estimate of performance point. If the demand spectrum

intersects the capacity spectrum within an acceptable tolerance then the estimate is ac-

cepted. Otherwise the performance point is re-estimated and the procedure is repeated.
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Figure 1.5: Equivalent viscous damping estimation [2]

1.2.4.2 The N2 Pushover Procedure

The N2 procedure was developed at the University of Ljubljana in Slovenia in mid-

eighties. It is a novelty in EC8. The method is based on the following steps:

1.Compute the lateral force pattern. In the N2 method, the vector of the lateral

load F used in the pushover analysis is given by:

F = P [M ]{φ} (1.22)

where P controls the lateral load magnitude, [M] is the mass matrix and φ is the mode

shape vector.

The pushover analysis should be performed using both of the following lateral load

patterns (EC8 4.3.3.4.2.2):

A uniform load pattern: which yields in φi = 1,and the lateral forces becomes:

F =
Fi

n∑

j=1
mj

Fb =
Fi

n∑

j=1
mj

P (1.23)

where Fb is the base shear force and mi and mj are the storey masses.
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A modal pattern: which can be:

a. Inverted triangular pattern or

b. A pattern that simulates the peak inertia forces of the fundamental mode shape. The

lateral forces become:

F =
miφi
n∑

j=1
mjφi

Fb (1.24)

2. Perform the pushover analysis. This step is the same as for the Capacity Spec-

trum Method and as previously described.

3.Compute the equivalent SDOF capacity curve. The pushover curve is converted

to a Capacity Spectrum relationship for the equivalent SDOF system using the following

equations:

Sa =
Vb

ΓjM∗
(1.25)

Sd =
u

Γjφn
(1.26)

where M∗ =
∑
Miφij is the effective mass of the building, φn is the roof element of the

mode shape vector, and Γj is the participation factor for mode j. The capacity spectrum

is then plotted in the ADRS format.

4.Idealize the capacity curve as an elastic-perfectly plastic. An approximate

bilinear idealisation of the capacity spectrum is performed in order to determine the

yield strength F ∗

y , yield displacement u∗y from the bilinear capacity curve and effective

period Teq of the ESDOF system as described for the CSM Method.

5. Compute the seismic demand according to EC8. For an elastic SDOF system,

the following relationship applies:

Sde =
T 2

4π2
Sae (1.27)

where Sae and Sde are the values on the elastic acceleration and displacement spectrum

respectively, corresponding to the period T and a fixed viscous damping. For an inelastic
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(a) Equivalent
SDOF (b) Idealization of the pushover curve

spectrum, the acceleration Sa and the displacement Sd can be determined as:

Sa =
Sae
Rµ

(1.28)

Sd =
µ

Rµ
Sde (1.29)

where µ is the ductility factor, defined as the ratio between ultimate displacement and

the yield displacement of the SDOF system. Rµ is the reduction factor due to ductility:

Rµ =







(µ− 1)
T

Tc
+ 1 if T < Tc (1.30a)

µ if T ≥ Tc (1.30b)

6. Compute the target displacement of the MDOF system.

The structural response quantities to a given seismic load can not be extracted directly

from the capacity curve of the pushover analysis. The target displacement must be

estimated as the displacement demands for the corresponding equivalent SDOF system.

According to EC8, the target displacement of the equivalent SDOF structure is deter-

mined from the 5 Percent damped elastic response spectrum. The displacement demand

Sd of the ESDOF system can be determined by substituting eq. 1.30 into eq. 1.29. This

leads to:
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Figure 1.6: Demand spectra for constant ductility in AD format, normalized to 1,0g peak
ground acceleration, for subsoil class A

(a) Vibration period T ∗ longer than Tc (b) Vibration period T ∗ shorter than Tc

Figure 1.7: Computation of Target Displacement with the Equal Displacement Rule

Sd =







Sde
Rµ

(

(Rµ − 1)
Tc
T

+ 1

)

if T < Tc (1.31a)

Sde if T ≥ Tc (1.31b)

Equation 1.31 implies that the displacement estimate will always be larger than the ini-

tial elastic displacement for short-period structures, or structures that have fundamental

period lower than the characteristic period of the ground motion Tc. The elastic response

spectra and demand spectra can be plotted as a spectral acceleration against spectral

displacement, where the vibration period T ∗ is represented by radial lines. The above

figure shows the determination of the target displacement of an equal SDOF system

with (A) vibration period T ∗ longer than Tc and (B) period shorter than Tc.
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1.2.4.3 Modal Pushover Analysis

Usually in a pushover analysis, it is assumed that the target displacement is controlled

by a single shape vector- the first period of vibration. Parameter studies have shown

that for frames and wall structures with a first mode period of less than 2 seconds this

assumption is rather accurate for elastic systems and conservative (overestimates the

MDOF displacement) for inelastic systems. This assumption though doesn’t account

for higher mode effects which are to be expected in a tall structure, buildings with more

than 6 storys in general, which result in a first mode period larger than 2 seconds. Anil

K. Chopra and Rakesh K. Goel have devoloped the Modal Pushover Analysis, which

includes the contributions of several modes of vibration of the building.

Summarized below are the steps necessary for estimating the peak response of a building

using the modal analysis procedure:

1. Compute the natural frequencies, ωn and modes, φn, for linearly elastic vibration of

the building

2. For the nth-mode, develop the base shear-roof displacement, Vbn−un, pushover curve

for force distribution

S∗

n = mφn (1.32)

where m is the mass matrix of the structure. The structure pushed to the roof displace-

ment, urno the peak value of the roof displacement due to the nth-mode:

urno = ΓnφrnDn (1.33)

where Dn = An/ω
2
n. Dn or An are readily available from the response (or design)

spectrum.

3. Idealize the pushover curve as a bilinear curve. If the pushover curve exhibits negative

postyielding stiffness, idealize the pushover curve as elastic-perfectly-plastic.

4. Convert the Vbn − urn idealized pushover curve to the Fsn/Ln −Dn relation for the

nth -“mode” inelastic SDF system. The two sets of forces and displacements are related
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Figure 1.8: Properties of the nth-‘mode’ inelastic SDF system from the pushover curve [6]

as follows:

Fsn =
Vbn
Γn

(1.34)

Dn =
urn

Γnφrn
(1.35)

Equations 1.34 and 1.35 enable conversion of the pushover curve to the desired Fsn/Ln–Dn

relation shown in Figure 1.8, where the yield values of Fsn/Ln and Dn are

Fsny

Ln
=
Vbny
M∗

n

(1.36)

Dny =
urny
Γnφrn

(1.37)

in which Vbny and urny are the base shear and roof displacement at the yield point,

M∗

n = LnΓn is the effective modal mass, φrn is the value of φn at the roof, and Γn =

φTnm1/φ
T
nmφn.

5. Compute peak deformation Dn of the nth-“mode” inelastic SDOF system defined by

the force deformation relation and damping ratio ςn. The elastic vibration period of the

system is

Tn = 2π

(
LnDny

Fsny

)1/2

(1.38)

For an SDF system with known Tn and ςn , Dn can can be computed by nonlinear

response history analysis (RHA) or from the inelastic design spectrum.
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6. Calculate peak roof displacement urn associated with the nth-“mode” inelastic SDF

system from

urn = ΓnφrnDn (1.39)

7. From the pushover database (Step 2), extract values of desired responses rn: floor

displacements, story drifts, plastic hinge rotations, etc.

8. Repeat Steps 3-7 for as many modes as required for sufficient accuracy. Typically,

the first two or three “modes” will suffice.

9. The peak ‘modal’ responses rn, each determined by one pushover analysis, is combined

using an appropriate modal combination rule, to obtain an estimate of the peak value r

of the total response. This application of modal combination rules to inelastic systems

lacks a theoretical basis. However, it provides results for elastic buildings that are

identical to the well-known RSA procedure. The SRSS rule can be used:

r =

(
∑

n

r2n

)1/2

(1.40)

1.2.5 Limitations of Pushover Analysis and Conclusion

As previously described, the pushover analysis is a very useful tool for estimating the

deformation demands of a building. While the simplicity of the method makes it a

more attractive approach for everyday practice than nonlinear time-history analysis,

the method exhibits significant shortcomings and limitations, which are summarised

below:

1. The theoretical background of the method is not rigorous, being based on the as-

sumption that the MDOF response is related to the response of a SDOF oscillator. The

pushover analysis is generally based on a series of assumptions and therefore, in-depth

knowledge of the problem is needed in order to yield meaningful results.

2. The response of the MDOF system is highly dependent on the pattern of the applied

lateral force. Higher mode effects have to be taken into account, especially for buildings
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with more than 5 storys. Thus more than one load pattern has to be applied to the

structure and results have to be compared.

3. It is difficult to model three-dimensional and torsional effects. Pushover analysis is

very well established and has been extensively used with 2-D models. Extensive study

and the implementation of the method to asymmetric 3-D systems, with stiffness or

mass irregularities, still need to be carried out.

4. The progressive stiffness degradation that occurs during the cyclic non-linear earth-

quake loading of the structure is not taken into account. This degradation leads to

changes in the periods and the modal characteristics of the structure. This affects the

loading of the structure during an earthquake and would lead to a difference in the

applied load patterns.

5. Being a static method, pushover analysis concentrates on the strain energy of the

structure. Other sources of energy dissipation, which are associated with the dynamic

response, are neglected, such as the kinetic and the viscous damping energy. Moreover,

it does not take into account duration effects and cumulative energy dissipation demand.

6. The procedure mostly provides a convenient and fairly reliable method for structures

whose dynamic response is governed by first-mode sway motions. In general, it will yield

good results for low-rise buildings (less than about five stories) with symmetrical regular

floor plan and elevation.

None of the invariant force distributions can account for the contributions of higher

modes to response, or for a redistribution of inertia forces because of structural yielding

and the associated changes in the vibration properties of the structure. (chopra) Several

researchers have proposed adaptive force distributions, yet they are conceptually compli-

cated and computationally demanding for routine application in structural engineering

practice. Given this issues, attempts have been made to improve the static pushover

analsysis while retaining the conceptual simplicity and computational attractiveness of

the procedure with invariant force distribution. A. K. Chopra and R. K. Goel proposed

the Modal Pushover Analysis, which has been previously described, which employs more

than one modal distribution of the forces. It will be further used to investigate the re-

sponse of a 9-story building. The finite element program Ansys will be employed in

order to generate the pushover curve, which describes the nonlinear response of the
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building and is essential in the pushover analysis. In the next Chapter the use of the

finite element program for resolving complex nonlinear problems will be described.



Chapter 2

Implementation of Nonlinear

Problems in ANSYS

2.1 General Modeling Techniques

2.1.1 Nonlinear Demand Parameters

As mentioned in the previous chapter, the performance of a building is checked by

comparing the calculated values of demand parameters to the acceptance criteria for the

desired performance level.

Structural components can be divided into two distinct groups: deformation - controlled

and strength controlled components, depending on how ductile the reaction of each

component is. In case of real structures, most components exhibit a certain degree

of inelastic behaviour. Nevertheless, the distinction provides a guideline for modeling

the structure and for establishing requirements. Deformation-controlled components

must be modeled as inelastic, whereas force-controlled components can be simplified as

being elastic. Demand parameters are deformation and strength, as well as velocities,

accelerations, story drifts that provide overall building response and damage.

25
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2.1.2 Structural Analysis Model Types

Inelastic structural component models can be differentiated by the way that plastic-

ity is distributed through the member cross sections and along its length. Numerous

models have been proposed in engineering literature for inelastic analysis of steel struc-

tures. In general, these models may be categorized into two main types: (1) Plastic

zone (also called distributed plasticity); and (2) plastic hinge (also called concentrated

plastic hinge)[14].

Figure 2.1: Idealized models of beam-column elements [1]

A. Concentrated Plasticity

The simplest models concentrate the inelastic deformations at the end of the element,

such as through a rigid-plastic hinge (Figure 2.1, a) or an inelastic spring with hysteretic

properties (Figure 2.1, b). By concentrating the plasticity in zero-length hinges with

moment-rotation model parameters, these elements have relatively condensed numeri-

cally efficient formulations. Regions in the members other than at the plastic hinges are

assumed to behave elastically. For slender structures in which elastic instability is the

predominant mode of failure, both the elastic-plastic hinge and plastic-zone methods

lead to almost identical results. However, for structures that exhibit significant yielding

in the members, the elastic-plastic hinge method often overpredicts the actual stiffness

and strength of the structure.

B. Distributed Plasticity

The plastic-zone approach follows explicitly the gradual spread of yielding throughout

the volume of the structure. Plastification in the members is modeled by discretization

of members into several beam-column elements and subdivision of the cross sections
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into many fibers. Because of the refined discretization of the members and their cross

sections, the plastic-zone analysis can predict accurately the inelastic response of the

structure and is generally considered an exact method of analysis.

• The finite length hinge model (Figure 2.1, c) is an efficient distributed plasticity

formulation with designated hinge zones at the member ends. Cross sections in the

inelastic hinge zones are characterized through either nonlinear moment-curvature

relationships or explicit fiber-section integrations that enforce the assumption that

plane sections remain plane. The inelastic hinge length may be fixed or variable,

as determined from the moment-curvature characteristics of the section together

with the concurrent moment gradient and axial force. Integration of deformations

along the hinge length captures the spread of yielding more realistically than the

concentrated hinges, while the finite hinge length facilitates calculation of hinge

rotations.

• The fiber formulation (Figure 2.1, d) models distribute plasticity by numerical

integrations through the member cross sections and along the member length.

Uniaxial material models are defined to capture the nonlinear hysteretic axial

stress-strain characteristics in the cross sections. Uniaxial fibers are numerically

integrated over the cross section to obtain stress resultants (axial force and mo-

ments) and incremental moment-curvature and axial force-strain relations. The

cross section parameters are integrated numerically at discrete sections along the

member length, using displacement or force interpolation.

• The most complex models discretize the continuum along the member length and

through the cross section into finite elements with numerous input parameters.

This type of modeling is the most complex but represents as well the most challenge

in terms of computational effort. As with the fiber formulation, the strains calcu-

lated from the finite elements can be difficult to interpret relative to acceptance

criteria that are typically reported in terms of hinge rotations and deformations.

Concentrated vs. Distributed Plasticity

Concentrated and finite length hinge models may consider the axial force-moment (P-M)

interactions through yield surfaces. On the other hand, fiber and finite element models
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capture the P-M response directly. While distributed plasticity formulations model vari-

ations of the stress and strain through the section and along the member in more detail,

important local behaviors, such as strength degradation or the nonlinear interaction of

flexural and shear, are difficult to capture without sophisticated models. On the other

hand, concentrated hinge or spring models may capture better the nonlinear degrading

response of members through adjustment using member test data on moment-rotations

and hysteresis curves. While more sophisticated formulations may seem to offer bet-

ter capabilities for modeling certain aspects of behavior, simplified models may capture

more effectively the relevant feature with the same or lower approximation.

Cyclic Degradation

Degradation in strength and stiffness can occur under cyclic loading. It is usual to ac-

count for strength degradation in the “backbone” curves used for inelastic components.

This then affects the shape of the push-over curve. ASCE 41 and EC8 provide guidelines

for estimation of stiffness, strength, and deformation limits in steel, reinforced concrete,

masonry and wood members. Shown in Figure 2.2 is an idealized force versus deforma-

tion relationship. The points represented in the curve include: effective yield (point B),

peak strength (point C), residual strength (point D), and ultimate deformation (point

E).

Figure 2.2: Generalized force-deformation curve. [2]
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2.2 Structural Nonlinearities

2.2.1 Introduction

Many engineering problems can be solved using a linear approximation. In the Finite

Element Analysis (FEA) the set of equations, describing the structural behaviour is then

linear:

[K] {D} = {F}

In this matrix equation, [K] is the stiffness matrix of the structure, {D} is the nodal

displacements vector and {F} is the external nodal force vector.

The Assumption underlying this equation are: displacements are small and can be ne-

glected in equilibrium equations; the strain is proportional to the stress (linear Hookean

material model), loads are conservative, independent on displacements, and supports of

the structure remain unchanged.

If one of this approximations is abandoned, the problem becomes nonlinear. In Earth-

quake Engineering, where the structure is excited beyond its elastic range, implying large

deformations, material yielding and nonlinear behavior of connection, this is usually the

case. Thus the understanding of the nonlinear response is critical for performing a struc-

tural analysis for earthquake induced loads. The causes leading to nonlinear structural

behavior have to be detected and taken into account. The set of equations becomes:

[K (D)] {D} = {F (D)}

The sources for nonlinearities can be grouped into three principal categories:

• Geometric Nonlinearity, also known as P-Delta Effect. If a structure experiences

large deformations, its changing geometric configuration can cause the structure

to respond nonlinearly. Geometric nonlinearity is characterized by ”large” dis-

placements and/or rotations. It is usually applied to slender structures, which are

tipically steel structures as well as in stability porblmes of all types of problems.
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• Material Nonlinearity: Nonlinear stress-strain relationships are a common cause

of nonlinear structural behavior. The material behaviour depends on current de-

formation state as well as past history of the deformation. It may also depend on

other variables such as temperature, creep, prestress etc.

• Nonlinear boundary conditions/nonlinear connections: it is common practice to

treat boundary conditions and connections in steel structure as either perfectly

rigid or pinned. In reality the behavior is semi-rigid with nonlinear moment-

rotation response that influences the overall response of the structure.

These types of nonlinearities will be further discussed in this section.

Consequences of nonlinear structural behaviour that have to be recognized are:

• The principle of superposition cannot be applied. Thus, for example, the results

of several load cases cannot be combined. Results of the nonlinear analysis cannot

be scaled.

• Only one load case can be handled at a time.

• The sequence of application of loads (loading history) may be important. Espe-

cially, plastic deformations depend on a manner of loading. This is a reason for

dividing loads into small increments in nonlinear FE analysis.

• The structural behaviour can be markedly non-proportional to the applied load.

• The initial state of stress (e.g. residual stresses from heat treatment, welding etc.)

may be important. [15]

2.2.2 Solving the Nonlinear Equations

The equations of motion may be established from conservation of linear momentum.

Substituting the FE approximations (and neglecting time dependent terms), the global

equilibrium equations on discretized form is obtained:

{Rext}
︸ ︷︷ ︸

externallyapplied loads

= {Rint}
︸ ︷︷ ︸

nodal forces frominternal element stresses
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{Rres} = {Rext} − {Rint} = 0

where {Rext} and {Rint} denote sum of externally applied loads and sum of internal

element nodal forces, respectively.

{Rext} =

Nels∑

i=1

{re}i + {P} =

Nels∑

i=1

(∫

Vi

[N ]T {b}dV +

∫

Si

[N ]T {t}dS

)

+ P

{Rint} =

Nels∑

i=1

{rint}i =

Nels∑

i=1

(∫

Vi

[B]T {σ}dV

)

In order to satisfy equilibrium, external and internal forces have to be in balance. λ is

a prescribed value of load or time parameter. The problem consists of finding the dis-

placement vector {D} which produces an internal force vector {Rint(D,λ)} balancing ex-

ternally applied loads {Rext(λ)}. The fundamental equilibrium path (force-deformation

relationship) has to be traced while traversing critical points (limit, turning and bifurca-

tion points). A series of solutions have to be calculated: {Dn}, λn for n = 0, 1, 2, . . . , nstep

that within prescribed accuracy satisfy the equilibrium equation.

Figure 2.3: Solution Finding Process
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By linearizing the residual of the global equilibrium equations the incremental form

of the equations of motion expressed in terms of the incremental nodal displacements

{∆D} is obtained as:

{Rres}i+1
n+1 = {Rres}in+1 +

[
∂Rres

∂D

]i

n+1

{∆D}in+1 = {0}

which results to:

[KT ]
1
n+1 {∆D}in+1 = {Rres}in+1 (2.1)

This is the incremental equation that advances the solution while satisfying the global

equilibrium equations at each iteration ‘i’, within each time (load) step ‘n+1’, where

[KT ]
1
n+1 = −

[
∂Rres

∂D

]i

n+1

=

[
∂Rint

∂D

]i

n+1

−

[
∂Rext

∂D

]i

n+1

is the tangent stiffness matrix, which is also defined as:

[KT ] = [K0] + [KU ] + [Kσ]

where [K0] is the linear stiffness matrix, [KU ] is the initial displacement stiffness matrix

and [Kσ] is the initial stress stiffness matrix. The linear stiffness, which is independent

on displacement, is familiar from small displacement structural analysis. The initial

displacement stiffness reflects the effect of displacement on stiffness . The initial stress

stiffness reflects the fact that there is an axial force in the bar prior to load increment.

Equation 2.1 is solved by subdividing the load in a series of load increments. Increments

of ∆D are calculated and an updated solution is obtained as:

{D}i+1
n+1 = {D}in+1 + {∆D}in+1 (2.2)

There are several methods to solve these simultaneous equations: the iterative Method,

the Newton-Raphson method, the modified Newton-Raphson method and the Arch-

Length Method.
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2.2.3 Solving in ANSYS

In the past, costs associated with a nonlinear analysis prohibited its wider use. Today,

rapid increases in computing power and concurrent advances in analysis methods made

it possible to perform nonlinear analysis, taking into account the different types of

nonlinearities and minimizing approximations.

The general-purpose Finite Element Analysis Program ANSYS, Inc. offers the nec-

essary components for performing a nonlinear analysis: (a) element technologies for

large-deformation treatment, (b) constitutive models for metals and nonmetals, (c) con-

tact interaction and assembly analysis and (d) solution of large-scale problems (where

multiple nonlinearities interact in a complex manner). One approach of solving non-

linear problems is, as stated before, to apply the load gradually by dividing it into a

series of increments and adjusting the stiffness matrix at the end of each increment. The

problem with this approach is that errors accumulate with each load increment, causing

the final results to be out of equilibrium.

ANSYS employs the ”Newton-Raphson” method to solve nonlinear problems. [16]

The Newton Raphson Iteration

Let f (x) be a function and let r be a root of the equation f (x) = 0. The initial estimate

of r is x0, so that r = x0 + h. The number h = r− x0 measures how far the estimate x0

is from the true root r. Since h is small, the linear (tangent line) approximation is used

to conclude that

0 = f (r) = f (x0 + h) ≈ f (x0) + hf ′ (x0)

and therefore, unless f ′(x0) is close to 0,

h ≈
f (x0)

f ′ (x0)
and (2.3)

r = x0 + h ≈ x0 −
f (x0)

f ′ (x0)
(2.4)
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A new improved estimate x1 of r is therefore given by

x1 = x0 −
f (x0)

f ′ (x0)

Continuing in this way, if xn is the current estimate, then the next estimate xn+1 is

given by

xn+1 = xn −
f (xn)

f ′ (xn)

Figure 2.4: The Newton-Raphson Iteration

Implementation of the Method in ANSYS

ANSYS subdivides the load into a series of load increments. The load increments can

be applied over several load steps. Figure 2.5 illustrates the use of Newton-Raphson

equilibrium iterations in a single DOF nonlinear analysis.

Before each solution, the Newton-Raphson method evaluates the out-of-balance load

vector, which is the difference between the restoring forces (the loads corresponding

to the element stresses) and the applied loads. The program then performs a linear

solution, using the out-of-balance loads, and checks for convergence. If convergence

criteria are not satisfied, the out-of-balance load vector is re-evaluated, the stiffness

matrix is updated, and a new solution is obtained. This iterative procedure continues

until the problem converges. [16]
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Figure 2.5: The Newton-Raphson Iteration in Ansys

A number of convergence-enhancement and recovery features, such as line search, auto-

matic load stepping, and bisection, can be activated to help the problem to converge.

By line searches (LS) an optimal incremental step length is obtained by minimizing the

residual {Rres} in the direction of {∆D}. LS can be particularly useful for problems

involving rapid changes in tangent stiffness. If convergence cannot be achieved, then the

program attempts to solve with a smaller load increment.

Newton’s method is the most rapidly convergent process for solution of problems in which

only one evaluation of the residual is made in each iteration. It can also achieve a very

rapid convergence rate: it is the only method, provided that the initial solution is within

the “ball of convergence”, in which the asymptotic rate of convergence is quadratic. But

there are several weaknesses of Newton’s method:

• Computational expense: The tangent stiffness has to be computed and assembled

at each iteration within each load step. If a direct solver is employed KT also

needs to be factored at each iteration within each load step.

• Increment size: If the time stepping algorithm used is not robust (self-adaptive),

a certain degree of trial and error may be required to determine the appropriate

load increments.
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• Divergence: If the equilibrium path include critical points negative load increments

must be prescribed to go beyond limit points. If the load increments are too large

such that the solution falls outside “the ball of convergence” analysis may fail to

converge.

Convergence Criteria

A convergence criteria measures how well the obtained solution satisfies equilibrium.

In nonlinear finite element analysis the convergence criteria are usually based on some

norm of the: Displacements (total or incremental), Residuals or Energy (product of

residual and displacement). Although displacement based criteria seem to be the most

natural choice they are not advisable in general as they can be misleadingly satisfied

by a slow convergence rate. Residual based criteria are far more reliable as they check

that equilibrium has been achieved within a specified tolerance in the current increment.

Alternatively energy based criteria that use both displacements and residuals may be

applied. However, energy criteria should not be used together with LS. In general

nonlinear finite element analysis it is recommended that a combination of the three

criteria is applied. The convergence criteria and tolerances must be carefully chosen so

as to provide accurate yet economical solutions. If the convergence criterion is too loose

inaccurate results are obtained. On the other hand, if the convergence criterion is too

tight too much effort is spent in obtaining unnecessary accuracy.

Severe convergence difficulties are caused if the tangent stiffness matrix becomes singular

(or non-unique). Such occurrences include nonlinear buckling analyses in which the

structure either collapses completely or ”snaps through” to another stable configuration

as well as at limit, bifurcation or turning point in the load path. For such situations,

an alternative iteration scheme can be activated, the arc-length method, to help avoid

bifurcation points and track unloading.

The arc-length method

The arc-length method causes the Newton-Raphson equilibrium iterations to converge

along an arc, thereby often preventing divergence, even when the slope of the load

vs. deflection curve becomes zero or negative. This iteration method is represented

schematically in Figure 2.6.
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Figure 2.6: The Arc-Length Method

The basic idea behind arc length methods is that instead of keeping the load (or the

displacement) fixed during an incremental step, both the load and displacement incre-

ments are modified during iterations. the ‘arc length’ of the combined displacement-load

increment is controlled during equilibrium iterations. An additional unknown ∆λ is in-

troduced to the ndof incremental displacements {∆D}, and so an additional equation is

required to obtain a unique solution to {∆D} and ∆λ. A constraint scalar equation is

introduced:

{C (∆Z)} =
{

C (∆λ,∆D)T
}

= 0 (2.5)

in which the ‘length’ of the combined displacement-load increment is prescribed:

l2 = {∆D}T {∆D}+ ψ2∆λ2 (2.6)

where ψ is a scaling parameter ( {∆D} and ∆λ have different dimensions).
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2.2.4 Material Nonlinearity

2.2.4.1 Introduction

Linear elastic FE analysis is based on linear constitutive stress-strain equations:

{σ} = [D] {ǫ} (2.7)

in which the terms of material matrix [D] are expressed as functions of constant values

of modulus of elasticity and Poisson’s ratio. The constant D matrix leads to a constant

stiffness matrix [K] , whichisforstrain− displacementrelationship

{ǫ} = [B] {d} (2.8)

given by

[K] =

∫

V
[B]t [D] [B] dV (2.9)

Departure from linear elasticity implies that the linear elastic constitutive equations

are no longer valid, as the material matrix is no longer constant. The non-constant

material matrix [D] represents nonlinear constitutive equations corresponding to the

adopted nonlinear material model. Consequently, the conditions of equilibrium derived

in FEM from principle of virtual displacements become nonlinear. They are solved as

described in the previous section, by dividing the load into increments and performing

equilibrium iterations. For each load increment, stress iterations must be performed,

as the material matrix is a function of strain. The strain is unknown a priori and will

be computed only. Material nonlinearities are often combined with geometrical and/or

boundary nonlinearities.

One type of nonlinear material law is the nonlinear elastic material which is used to

describe rubber-like materials and will not be discussed in this section.
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2.2.4.2 Elastoplastic material model

Experiments indicate that linear elastic model is acceptable only within a limited range

of stress. Until the yield stress (for Steel S235 given by σy = 235MPa) the deforma-

tions are elastic and stress-strain relation may be described as 2.7. When the stress

level exceeds the yield stress, an elastoplastic constitutive law governs the relationship

between increments of stress and strain. Approximate stress-strain curves are usually

used in analysis. Bilinear approximation defined by yield stress, modulus of elasticity

E and tangential modulus ET is shown in Figure 2.7. If ET = 0, the material model is

elastic-perfectly plastic. If ET 6= 0 the material model assumes strain hardening.

Figure 2.7: Elastoplastic model with linear strain hardening

In a mathematical description, onset of yielding may be represented by a scalar function

termed the yield function F. The Von Mises yield criterion states that yielding occurs

when

F = (σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2 − 2σy = 0 (2.10)

where σ1, σ2 and σ3 are principle stresses and σy is the yield stress value.

Any yield condition that is function of stress tensor components and material parame-

ters
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F (σ,K) = 0 (2.11)

defines a yield surface in principal stress space, see Figure ??. Stress points that lie

inside the yield surface are associated with elastic stress states whereas those that lie

on the surface represent plastic stress states. No stress point can be outside the yield

surface 2.8.

Figure 2.8: Yield surface

For a perfectly plastic material, the yield surface remains unchanged during plastic

deformation. For a strain hardening material, plastic deformation produces a change in

shape and position of the yield surface. This means that initial yield surface is gradually

replaced by the subsequent yield surfaces. A modified yield function is adopted which

has a form such as

F
(
σ, ǫP ,K

)
= 0 (2.12)

This yield function depends on the stresses but also the plastic strains and a hardening

parameter K. The way in which the plastic strains modify the yield function is defined

by hardening rules:

• An isotropic hardening law implies that the yield surface increases in size but

maintains its original shape under loading conditions. Schematic representation of

isotropic hardening for uniaxial and biaxial stress state is shown in Figure 2.9.
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Figure 2.9: Isotropic hardening

Figure 2.10: Kinematic hardening

• In kinematic hardening, the original yield surface is translated to a new position

in stress space with no change of its shape and size as shown in Figure 2.10.

Kinematic hardening is important for modeling cyclic behaviour.

• The combination of the two principal hardening laws leads to a mixed hardening

law, where the initial yield surface both expands and translates as a consequence

of plastic flow.

Plasticity in ANSYS

In ANSYS, plastic analysis is much like a transient problem where instead of time stpes

we have load steps. If plastic response is anticipated in an analysis, the loads should

be applied as a series of small incremental load steps or time steps, so that the model

can follow the load-response path as closely as possible. The automatic time stepping

feature available in the program will respond to plasticity after the fact, by reducing

the load step size after a load step in which a large number of equilibrium iterations is
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performed or in which a plastic strain increment greater than 15 Percent is encountered.

If too large a step is taken, the program will bisect and re-solve using a smaller step size.

Elements have to be chosen that support plasticity. For every material elastic modulus,

poisson’s ratio, and yield stress has to specified. Also, a stress-strain curve of the material

has to be defined by the user.

Several options are available for describing plasticity behavior:

• The Bilinear Kinematic Hardening (BKIN) option assumes the total stress range

is equal to twice the yield stress, so that the Bauschinger effect is included. This

option is recommended for general small-strain use for materials that obey von

Mises yield criteria (which includes most metals). It is not recommended for

large-strain applications.

• The Multilinear Kinematic Hardening (MKIN) option uses the Besseling model,

also called the sublayer or overlay model, so that the Bauschinger effect is included.

This option is not recommended for large-strain analyses.

• The Multilinear Isotropic Hardening (MISO) option uses the von Mises yield cri-

teria coupled with an isotropic work hardening assumption. This option is not

recommended for cyclic or highly nonproportional load histories in small-strain

analyses. It is, however, recommended for large strain analyses. The MISO op-

tion can contain up to 20 different temperature curves, with up to 100 different

stress-strain points allowed per curve. Strain points can differ from curve to curve

• The Bilinear Isotropic Hardening (BISO) option is like the multilinear isotropic

hardening option, except that a bilinear curve is used instead of a multilinear

curve. This option is often preferred for large strain analyses.

• The Anisotropic (ANISO) option allows for different bilinear stress-strain behavior

in the material x, y, and z directions as well as different behavior in tension,

compression, and shear. This option is applicable to metals that have undergone

some previous deformation (such as rolling). It is not recommended for cyclic or

highly nonproportional load histories since work hardening is assumed. The yield

stresses and slopes are not totally independent. [17]



Chapter 2. ANSYS and Modeling Techniques 43

Figure 2.11: Kinematic hardening

2.2.5 Geometric Nonlinearity

2.2.5.1 Introduction

Geometric nonlinear effects are caused by gravity loads acting on the deformed con-

figuration of the structure, leading to an increase of internal forces in members and

connections. There are 2 effects to be distinguished: P − δ effects, which cause defor-

mations along the members, measured relative to the member chord, and P −∆ effects,

measured between member ends and commonly associated with story drifts in build-

ings. Provided that members conform to the slenderness limits for special systems in
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high seismic regions, P − δ effects do not generally need to be modeled in nonlinear seis-

mic analysis. On the other hand, P −∆ effects must be modeled as they can ultimately

lead to loss of lateral resistance, ratcheting (a gradual build up of residual deformations

under cyclic loading), and dynamic instability.

Figure 2.12: Force-deformation curve with and without P −∆ effect [1]

In a static sense the P-delta effect can be visualized as an additional lateral loading

that causes an increase in member forces and lateral deflections, reduces the lateral

load resistance of the structure, and may cause a negative slope of the lateral load-

displacement relationship at large displacements. Shown in Figure 2.12 is an idealized

base shear versus drift curve of a cantilever structure with and without P −∆ effects. If

the gravity load is large the stiffness reduction (shown by the negative slope) is significant

and contributes to loss of lateral resistance and instability. Therefore the gravity load-

deformation P −∆ effect must be considered directly in the analysis, whether static or

dynamic. This means that the gravity loads of the entire building must be present in

the analysis, and appropriate P − ∆ analysis techniques should be introduced in the

structural model.

2.2.5.2 P −∆ effect on a SDOF System

The effects of large displament will be described on a single degree of freedom system.

For a bilinear SDOF System the P −∆ effect can be represented as illustrated in Figure
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2.13. It consists of a mass m, with a weight force P, supported by a rigid column of

height h, with a flexural spring at its base. A lateral force, V, applied to the mass causes

a deflection, ∆. It is assumed that the base spring is bilinear. The initial stiffnes of

this curve is K0, which reduces to α′K0 after yield occurs at a lateral force V 0
y . The

nonlinear behavior of the oscillator under an earthquake ground motion is governed by

its natural period of vibration T, the fraction of critical damping ξ, the strain hardening

ration α′ and th evalue of the non-dimensionalised yield strength V 0
y /mg of the spring.

The ductility demand is given by δ0max/δ
0
y , where δ

0
y is the deflection at yield and δ0max

is the maximum deflection.

Figure 2.13: SDOF Lateral Force-Displacement Relationship with and without P−∆ effect.
[]

The inclusion of the vertical weight P into the oscillator model reduces the lateral stiffness

by P/h and the effective strength for resisiting lateral forces to V 0
y = Pδ0y/h. The lateral

force versus deflectoin of the system with P − ∆ effects is represented by the dashed

line.

The nondimensional ratio of the P −∆ over-turning moment to the resisting strength,

which has been defined as the stability factor θ is given by:

θ =
Pδ

V h
(2.13)

The reduction in effectice stiffness of the oscillator caused by he influence of the P −∆

load means that the period of oscillation is increased from T to T’. As the period inversely
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proportional to the square root of the effective initial stiffness, the stability coefficient θ

may alternatively be calculated as

θ = 1−

(
T

T ′

)2

(2.14)

The stability coefficien is used to describe the decrease in strength and stiffness. The

elastic stiffness K is rdeuced to (1 − θ)K and the post-elastic stiffness α′K is reduced

to (α′ − θ)K. In this formulation α′ is the strain-hardening ratio of the system without

P − ∆ effects, and (α′ − θ) is the ratio with P − ∆ effects, which is denoted here as

α. If θ >′, then α becomes negative and for such a case the system reaches a state of

zero lateral resistance (termed as ”collapse”) at a displacement of ∆c. The maximum

lateral strength of thesystem with P − ∆, V ′

y , is the strength of the system without

P −∆reduced by a factor of (1− θ).

2.2.5.3 Geometric Nonlinearities in ANSYS

There are two types of geometric nonlinearities: large deflections with small strain and

large deflection with large strain. By issuing NLGEOM,ON (GUI path Main Menu-

Solution-Analysis Options), large strain effects in those element types that support this

feature are activated. The large strain feature is available in most of the solid elements

(including all of the large strain and hyperelastic elements), as well as in most of the

shell and beam elements.

What is of interest in a nonlinear pushover analysis is the large deflection-small strain

solution. This feature is available in Ansys for all beam and most shell elements, as well

as in a number of the nonlinear elements. Issuing NLGEOM,ON (Main Menu-Solution-

Analysis Options) activates large deflection effects for those elements that are designed

for small strain analysis. [4]
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2.2.6 Nonlinear Connections

2.2.6.1 Introduction

Another source of nonlinearity in structures is the nonlinear boundary condition. In

steel structures the most important are the connections which are commonly treated

as either perfectly pinned or perfectly rigid. In reality the behavior is semi-rigid which

influences strongly the overall response of the structure. It is particularly important to

include the effects of connection flexibility in the analysis of building systems for use in

limit state design methods and in evaluating the seismic risk of structures. [3]

2.2.6.2 Modeling the Nonlinear Connection

In most investigations only in-plane behavior of connections is considered. Usually the

connection behavior is modeled by a nonlinear equation for moment-rotation response

which is calibrated to test data and normalized for use in design. One model which

is often used in analysis is the model of Richard and Abbott, which uses a nonlinear

equation to describe the moment-rotation behavior of the connection:

M =
(Ke −Kp)θ

(

1 +
∣
∣
∣
(Ke−Kp)θ

M0

∣
∣
∣

n)1/n
+Kpθ (2.15)

where M is the moment corresponding to the connection rotation, θ. The parameters,

Ke, Kp and M0, are independent variables which are related to the moment-rotation

behavior as shown in Figure 2.14, and n controls the shape of the curve. This model

encompasses more simple models: equation 2.15 becomes a simple linear model if Ke =

Kp, an elastic-plastic model if Kp = 0, and a bilinear model if n is large.

The four parameters may be determined using analytic formulations for the connection

strength and stiffness if the connection details are known. Or they may be determined

through curve fitting and optimization if test data are known. The parameters can be

found in literature for the various connection types.
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Figure 2.14: Moment-rotation Model for Inelastic Connection Response [3]

2.2.6.3 Connections in ANSYS

Ansys connects the different multibody components through joint elements. The MPC

184 family of elements serves to connect the flexible or rigid components to each other.

An MPC 184 joint element is defined by two nodes with six degrees of freedom at

each node (for a total of 12 DOFs). The relative motion between the two nodes is

characterized by six relative degrees of freedom. Different kinds of joint elements can be

configured by imposing appropriate kinematic constraints on these six relative degrees

of freedom. For example, to simulate a revolute joint, the three relative displacement

degrees of freedom and two relative rotational degrees of freedom are constrained, leaving

only one relative degree of freedom available (rotation around the revolute axis).

Stops or Limit constraints in joints can be imposed on the available components of

relative motion between the two nodes of a joint element. The stops or limits essentially

constrain the values of the free DOFs within a certain range. The SECSTOP command

is used to specify the values.

The stiffness and damping behavior of joint elements can be specified. They are associ-

ated with the free or unrestrained components of relative motion of the joint elements.

In the case of linear behavior, the values are specified as coefficients of a 6× 6 elasticity
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matrix using the TB,JOIN command with TBOPT = STIF or TBOPT = DAMP .

The nonlinear stiffness and damping behavior is specified using the TB,JOIN command

with an appropriate TBOPT label. In the case of nonlinear stiffness, relative displace-

ment (rotation) versus force (moment) values are specified using the TBPT command.

An example of a nonlinear curve is given in Figure 2.15. Nonlinear stiffness or damp-

ing behavior can be specified independently for each of the unrestricted components of

relative motion. citekohnke2001ansys

Figure 2.15: Nonlinear stiffness and damping behavior for joints [4]

2.3 Element Types in ANSYS

2.3.1 Introduction

ANSYS supports a large library of beam and shell elements with wide applicability:

composites, buckling and collapse analysis, dynamics analysis and nonlinear applica-

tions.

The recent 180-series elements were designed and developed for large deformation anal-

ysis with a large number of advanced elements technology and and a rich nonlinear

support. During the development, consistency and generality were the main theme,

hence fewer assumptions were made. They are natural candidates for nonlinear analysis

such as finite strain and large rotation analysis or hystory dependent and independent

materials.
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The beam elements (BEAM 188 and BEAM 189) enable the reduction in dimensionality

of the problem. After definition of cross section by the user, a finite element cross-section

analyzer calculates inertias, shear centers, shear flow, warping rigidity, torsion constant.

Arbitrary profiles can be sketched. Depending on the solution that is sought, the mesh

quality for the section can be as well specified. There are two types of cross sections: thin

wall sections (CTUBE, CHAN, I, Z, L, T, HATS and HREC) and solid sections (RECT,

QUAD and CSOLID). The thin wall sections have a minimum of two integration points

through thickness, so results produced using thin wall sections should be acceptable

for materially nonlinear analysis. However, when doing a plasticity analysis, the cell

defaults may need to be changed for the solid sections (for example: refinement at the

edges). All elastoplastic, hypo-viscoelastic material models may be used. Different types

of materials within the same cross section may be used as well. [4]

A comparison shows that the reduction in CPU time while using beam elements instead

of solid elements is substantial, while the approximation of results is minimal, see Figure

2.16.

Figure 2.16: Nonlinear analysis of a curved beam: comparison with solid elements [4]

2.3.2 Beam 188

BEAM 188 is a linear finite strain beam. They are one-dimensional 2-node line elements

in space. The geometry, node locations, and the coordinate system for this element are

shown in Figure 2.17. BEAM188 is defined by nodes I and J in the global coordinate

system. Node K is always required to define the orientation of the element. [4]
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Figure 2.17: Beam 188- Finite Strain Linear Beam [4]

Properties:

• The BEAM188 element is suitable for analyzing slender to moderately stubby/thick

beam structures. The element is based on Timoshenko beam theory which includes

shear-deformation effects. The element provides options for unrestrained warping

and restrained warping of cross-sections.

• it is based on Timoshenko beam theory, which is a first-order shear-deformation

theory: transverse-shear strain is constant through the cross-section (that is, cross-

sections remain plane and undistorted after deformation).

• it includes stress stiffness terms, by default, in any analysis with NLGEOM,ON.

The stress stiffness terms provided enable the elements to analyze flexural, lateral

and torsional stability problems (using eigenvalue buckling or collapse studies with

arc length methods).

• it can be used with any cross section defined. Elasticity and isotropic hardening

plasticity models are supported (irrespective of cross section subtype).

2.3.3 Beam 189

The element is a quadratic three-node beam element in 3-D, see Figure 2.18. BEAM189

is defined by nodes I, J, and K in the global coordinate system. With default settings,

six degrees of freedom occur at each node; these include translations in the x, y, and z

directions and rotations about the x, y, and z directions. An optional seventh degree of

freedom (warping magnitude) is available. The element is well-suited for linear, large

rotation, and/or large-strain nonlinear applications.
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Figure 2.18: Beam 189- Finite Strain Quadratic Beam [4]

The element is a one-dimensional line element in space. The cross-section details are

provided separately. Each section is assumed to be an assembly of a predetermined

number of nine-node cells, see Figure 2.19. Each cross-section cell has four integration

points and each can be associated with an independent material type. The number of

cells in the cross-sections influences the accuracy of section properties and ability to

model nonlinear stress-strain relationship through the cross-section. The element has a

nested structure of integration (along the length and in the cross-section).

Figure 2.19: BEAM188 and 189 Cross Section Models [4]

When the material associated with the elements has inelastic behavior or when the

temperature varies across the section, constitutive calculations are performed at the

section integration points. For more common elastic applications, the element uses

precalculated properties of the section at the element integration points. However, the

stresses and strains are calculated in the output pass at the section nodes.
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Forces are applied at the nodes, which also define the element x-axis. The nodes should

therefore be located at the points where the forces will be applied. Pressures may be

input as surface loads on the element faces. Positive normal pressures act into the

element. Lateral pressures are input as force per unit length. End pressures are input

as forces.

2.3.4 Conclusion

While analyzing a multistory steel structure it is preferable to find ways of reducing the

solution time and effort. Using shell or solid elements may render a more accurate solu-

tion in terms of presenting regions of member plastification and degrading of elements

but are not necesarry for computing the overall response of the structure. The Beam El-

ements 188 and 189 offer a wide range of possiblities for capturing the nonlinear reponse

of a building while reducing the CPU time noticeably. They represent a significant move

towards true reduction of dimensionality of the problem.



Chapter 3

Case Studies

In the previous two chapters the theory behind pushover analysis and the implemen-

tation in a nonlinear finite element program have been discussed. In this chapter steel

frame structures will be analyzed in order to asses the implementation of the nonlinear

problem in ANSYS. First a simple one bay steel frame will be subjected to vertical

and lateral loads and the response of the structure in Ansys will be compared with the

exact analytical solution. Further different types of modelling of the structure will be

discussed. Subsequently a 9 story building will be analyzed and a pushover analysis will

be performed. The results will be compared to the ones available in previous studies.

3.1 Single Story, One Bay Steel Frame

First a simple example of a steel frame is analyzed in order to assess the modeling quality

and results in ANSYS and to proceed to a more complex structure with confidence.

Moreover, a decision will be taken if modeling of the structure with beam elements

renders meaningful results and is a suitable tool for the subsequent pushover analysis of

steel frame structures.

3.1.1 Description of the Geometry

The Geometry to be analyzed is a single bay steel frame. All member connections are

fixed, as well as the boundary conditions. The structure is 4m in width and 2m in height.

54
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Figure 3.1: Steel Frame Dimensions [mm].

Figure 3.1 illustrates the dimensions and loads. What is inquired is the ultimate force F

that can be supported by the structure, in other words the collapse load. Further, the

location of plastic hinges should be detected.

3.1.2 Modeling in ANSYS Workbench

The structure will be modeled in ANSYS Workbench with BEAM 189 Elements. As

presented earlier, this elements can capture nonlinearities, material as well as geometric

and should provide a viable simplification of the problem. Modeling in ANSYS Work-

bench implies a series of steps:

A. First a static structural analysis has to be selected

Figure 3.2: Material properties.
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B. In the field with engineering data a material model is specified. In this example a

material which captures the material nonlinearity of steel has to be defined. The ma-

terial has a Young’s modulus of 2e11 Pa, a Poisson’s ratio of 0.3. Further a bilinear

kinematic hardening model is selected with a yield strength of 235 MPa and a tangent

modulus of 100 MPa. A tangent modulus different from zero provides a more stable

solution and allows the tracking of the deformation of the structure into the nonlinear

range. It allows the determination of the collapse load, not only the yield load of the

structure. The properties of the material can be visualized in Figure 3.2.

C. In the next step the geometry of the structure is created in ANSYS Design Modeler.

Points are defined which are further connected through lines. Cross section properties

are manually defined. For every line the specific cross section is selected which enables

the creation of line bodies. In design modeler it is determined the line bodies are con-

nected to each other by building a part or by defining joints in ANSYS Mechanical

and joint properties between each member. For fixed connections both are suitable and

render the same results.

D. The geometry is then loaded in ANSYS Mechanical. Connections are specified

through joint members. Two types of connections are suitable for the analysis of steel

frame structure. Either the fixed joints for rigidly fixed connections or revolute joints

in order to simulate pin joints between two members. For the revolute joints a torsional

stiffness and a torsional damping can be specified in order to model a semi-rigid connec-

tion between two members. For the presented problem simple fixed joints are selected.

This creates an MPC 184 element which is used to model a rigid constraint between two

deformable bodies or as a rigid component used to transmit forces and moments. This

element is well suited for linear, large rotation, and/or large strain nonlinear applica-

tions.

The Mesh properties are specified for the line bodies. It can be done automatically or

by apllying mesh control. For this example the mesh generation is left on automatic

with relevance center on medium which generates a fine mesh in order to capture the

spread of plasticity throughout the member length.

In the static structural branch the supports and forces are specified: fixed supports for

the end of the beams, a displacement support for the whole structure with Uz=0, which
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(a) Meshed Frame. (b) Forces and Supports.

should prevent the structure from buckling and a horizontal and vertical force which act

on the frame.

In the solution branch the data of interest is selected: total deformation, force and mo-

ment reaction for the supports, axial force, shear force and bending moment for the

frame. Further a chart is generated in order to plot the base shear vs. roof displacement

curve which will be of interest in further analysis.

For a nonlinear problem the selection of the analysis settings under the static structural

branch are fundamental. This includes the step controls as well as the solver and non-

linear controls. In step controls the automatic time stepping is turned on. This allows

ANSYS to determine appropriate sizes to break the load steps into. Decreasing the step

size usually ensures better accuracy, however, this takes time. The Automatic Time Step

feature will determine an appropriate balance. It also activates the ANSYS bisection

feature which will allow recovery if convergence fails. The number of substeps is speci-

fied: initial substeps are set on 40, minimum substeps on 20 and maximum substeps on

50. This will set the initial substep to 1/40 th of the total load and it stops the program

if the problem doesn’t converge after 50 substeps. This will apply the load gradually

and will allow tracking of the deflected shape and the beginning of steel yielding. In

the solver controls the large deflection can be turned on and off, depending whether

geometric nonlinearities are taken into account or not. Further in the nonlinear controls

the stabilization method is set on constant, with automatic values set by the program,

which will enable a more stable solution and will enhance the convergence. Due to

the fact that steel frames are often slender structures, they yield instability problems

when the load reaches its buckling value or when nonlinear material becomes unstable.
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Instability problems usually lead to convergence difficulties and therefore require the

application of special nonlinear techniques. One of this techniques is the nonlinear sta-

bilization which deals with local instabilities as well as global. It can be used together

with line search and automatic time stepping. The arc-length method is another way

of dealing with the problem, but it poses several restrictions: it doesn’t work well with

joints as well as with other nonlinear techniques and it prevents only global instability,

not local buckling. [4] Its advantage is that it can simulate the negative slope portion

of a load-vs.-displacement curve. However this is not required in the present analysis,

thus the stabilization method is chosen.

E. Finally, the problem is solved and the results are evaluated.

3.1.3 Results

In this section the results are displayed for the analytical solution and susequently for the

solution in Ansys. Results in Ansys are evaluated for a model including material non-

linearity as well as for one including both material and geometric nonlinearity. Finally

these results are compared and a conclusion is drawn.

3.1.3.1 Analytical Results

The analytical solution does not take into account geometric nonlinearity.

HEB 280 HEB 300

Npl 3078,5 kN 3783,5 kN

Vpl,z 552,5 kN 697,5 kN

Mpl,y 360, 5kNm =Mpl 503kNm = 1, 4 ·Mpl

Table 3.1: Plastic internal force limits.

The location of plastic hinge was determined by the minimum of applied force that leads

to a collapse mechanism, see Figure 3.3. The internal work is:

Wi =Mpl · ϕ+ 1, 4 ·Mpl · 2ϕ+Mpl · 2ϕ+Mpl · ϕ (3.1)
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Figure 3.3: Plastic hinge formation at collapse load.

(a) Applied forces and reactions. (b) Bending moment diagram.

(c) Shear force diagram. (d) Axial force diagram.

Figure 3.4: Reactions, internal forces and moments at collapse load.
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(a) Bending moment. (b) Shear force.

(c) Axial force. (d) Maximum combined stress.

Figure 3.5: Internal forces, moment and stress at collapse load.

(a) Deformation before collapse load. (b) Deformation at collapse load.

Figure 3.6: Deformation.

The external work is:

Wa = F · 2m · ϕ+ 2F · 2m · ϕ (3.2)

Setting Wi =Wa leads to the collapse load:

Fpl =
6, 8

6
·Mpl = 408.6kN (3.3)

At the collapse load, the internal forces and moments are then plotted, see Figure 3.4.

These results will be compared to the results provided by ANSYS.
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Figure 3.7: Shear force vs. displacement chart.

3.1.3.2 Results in ANSYS for Material Nonlinearity

Finding the collapse load in ANSYS is an iterative process. If the load is overestimated,

the problem fails to converge and an error message appears, stating that the probe is dis-

playing an unconverged solution. That indicates that the slope of the force- deformation

curve is negative and the building collapses.

The bending moment, shear force and axial force diagram are plotted at the collapse

load, see Figure 3.5. They are in good accordance with the analytical solution. A slight

difference can be observed at the column base, where the plastification occurs before

reaching the full plastic moment of the cross section. This may be due to the interaction

of moment, shear and axial forces, which was not taken into account in the analytical

solution.

Of further interest are the locations of plastic hinges in the model. They can be deter-

mined by plotting the maximum combined stress, see Figure 3.5d. The maximum value

is 241.8 MPa, which is slightly larger than the yield strength of 235 MPa, due to steel

hardening after the onset of yielding. The points where the maximum combined stress

exceeds this value indicate the formation of a plastic hinge. This can be visually checked

by further plotting the deformed structure before and at collapse load, see Figure 3.6.

The deflected shape changes as the load increases and a sharp bend can be observed at

the location of plastic hinges.
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(a) Bending moment. (b) Maximum combined stress.

Figure 3.8: Results for the problem including geometric nonlinearity.

Finally a shear force vs. roof displacement chart is plotted, see Figure 3.7, which is

essential for a pushover analysis. The middle point of the girder is selected as the

control node.

3.1.3.3 Results in ANSYS for Material and Geometric Nonlinearity

Figure 3.9: Shear force vs. displacement chart.

The same procedure is followed for a model including both material and geometric non-

linearity. In order to include geometric nonlinearity, large deflection in solver controls

under analysis settings is turned on. The shear force vs. roof displacement chart dis-

played in figure 3.9 shows that the onset of yielding and the associated displacement

and yield strength occurs at approximately same point as in the model which does not

include geometric nonlinearity, however the shape of the curve after yielding evolves

differently. The slope becomes faster negative and the solution fails to converge sooner,
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at 96,5 percent of the collapse load for the model without geometric nonlinearity. This

solution is more accurate, however the negative slope portion of the curve is of no in-

terest to the further study. In a modal pushover analysis procedure this portion would

be approximated as being perfectly plastic. Moreover a model including geometric non-

linearities poses convergence difficulties due to the associated instability. Figure 3.8

illustrates the bending moment and maximum combined stress at collapse load.

3.1.4 Conclusion

This study has led to the following conclusions:

• Results are quick and in good accordance with the analytical results.

• In the case of fixed connections, both models ,with and without joints, can be

used, as they render the same results.

• The automatic time stepping feature together with the other nonlinear features

that have been implemented captures very well the force-deformation relationship.

• In order to get better results and enhance convergence a greater number of elements

should be used. Moreover, it captures the spread of plasticity along the member

length.

• Bilinear material model with tangent modulus different than zero can be used with

confidence.

• Location of plastic hinge can be detected by using the plot of maximum or min-

imum combined stress. Further confirmation results from the deflected shape of

the structure.

• Modeling with BEAM elements doesn’t provide an insight into the distribution of

plastic strain over the cross section and it doesn’t allow a visual representation of

the formation of plastic hinge as a model consisting of solid elements might do, see

figure 3.10. But it does provide the point of onset of yielding and the distribution

over the length and the overall impact on the structure, visible in the deflected

shape. This is actually the relevant data for a pushover analysis. Furthermore, the

computing time by implementing beams is much less then by using solids. Thus,

the BEAM 189 element, connected by joints is suitable for further analysis.
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Figure 3.10: Shear force vs. displacement chart.

• A model including material as well as geometric nonlinearities renders more exact

results. However, due to the idealization of the pushover curve as bilinear and other

assumptions inherent to a pushover analysis, an exact solution is not regarded as

necessary. In the application of modal pushover analysis procedure, which will be

applied for the more complex structure, the negative slope portion of the pushover

curve is idealized as being perfectly plastic. Moreover, a model including geometric

nonlinearities may pose convergence difficulties. Hence, gravity load and P-delta

effects will be excluded from further analysis.

3.2 9 Story Building

3.2.1 Introduction

The presented study focuses on the implementation of a modal pushover analysis in AN-

SYS. For this endeavor a 9 story steel building was chosen, which is very well documented

in literature and for which extensive studies have been carried out. The final goal is to

assess the implementation by providing additional results and comparing those to the

ones available in previous studies. The main research that has been taken as reference

is the one proposed by Goel and Chopra (2004) [7]. The prototype building analyzed

in the current endeavor consists of a steel moment-resisting frame designed as a part of

the FEMA-funded SAC joint venture project [5]. The Aim of The SAC Joint Venture,

formed in 1994, was to develop standards for the repair or upgrading of damaged steel

moment frame buildings and for the design of new steel buildings.
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SAC commissioned three leading consulting firms to design 3-, 9- and 20-story model

buildings according to the local code requirements of three cities: Los Angeles (UBC

1994), Seattle (UBC, 1994), and Boston (BOCA, 1993). The buildings are designed

for gravity, wind, and seismic loads with a live load of 2.4 kPa as part of the SAC

Steel Project. Even though they are not actually constructed, they meet the local

code requirements for Los Angeles, USA region and represent typical low-, medium-

, and high-rise steel buildings. A series of analysis have been performed using these

models and a large number of results are available in the literature. Many mid- and

high rise buildings have steel moment resisting frames (SMRFs) as the primary lateral

load resisting system. This type of construction is considered a safe on for earthquake

resistance, as steel elements are expected to be able to sustain large plastic deformation

in bending and shear. The structure which will be analyzed in this case study is a 9-story

structure designed by Brandow & Johnston Associates* for the SAC** Phase II Steel

Project. This structure meets seismic code requirements of the 1994 UBC and represents

typical medium-rise buildings designed for the Los Angeles, California, region. [5]

3.2.2 Description of the Building

The structural system for the buildings consists of steel perimeter moment resisting

frames. A moment resisting frame resists forces in members and joints primarily by

flexure and relies on a frame to carry both vertical and lateral loads. Lateral loads

are carried primarily by flexure in the members and joints. Theoretically, joints are

completely rigid.

To avoid bi-axial bending in corner columns, the exterior bay of the MRF has only one

moment-resisting connection. The interior bays of the structure contain frames with

simple (shear) connections. The planes of the building are symmetrical.

The 9-story building has plan dimensions of 45.75m x 45.75m (150ft x 150ft) and is

37.19m (122ft) in elevation. It consists of five-bay frames in both N-S and E-W directions

spaced at 9.15m (30ft). The building has a basement level, denoted B-1. The height of

every level is 3.96 m (13ft) except for the basement level, which is 3.65 m (12ft) and for

the first floor, which is 5.49 m (18ft).
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Figure 3.11: Building elevation.[5]

Figure 3.12: Building plan. [5]
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Monolithic column pieces are connected every two levels through moment- and uplift

resistant connections at 1.83m (6ft) above the center-line of the beam to column joint.

Concrete foundation walls and surrounding soil are assumed to restrain the structure at

the ground level from horizontal displacement. This lateral restraint has been modeled

using joint elements developing only compressive forces.

The columns are assumed to be pinned to the ground at B1 and B2 levels respectively.

The yield strengths of all columns in the buildings are specified as Fy = 345Mpa. The

beams and columns are wide flange and the member dimensions are given in Figure

3.11. The floor system of the buildings is a composite construction with beams having

yield strength of Fy = 248 Mpa. The seismic mass of the ground floor is 9.65x105 kg,

for first floor is 1.01x106kg, for the second through eighth floor is 9.89x105 kg and the

ninth floor is 1.07x106kg. The seismic mass of the entire structure is 9.00x106kg. [5]

3.2.3 Modeling of the Structure

The structure is modeled as a 2 dimensional frame that respresents half of the structure

in north-south direction. The frame is given half of the seismic mass of the structure

at each floor level. The analytical model employed is a basic centerline model of the

moment resisting frame, In this model the beam and columns extend from centerline to

centerline. Panel zone effects are neglected. Moments are computed at the connection

centerline, which results in a high estimate of moments. In stiffness or lateral displace-

ment calculations the argument for employing such a model is that the use of centerline

dimensions compensates for the disregard of panel zone shear deformations. In strength

calculation the argument is that an accurate evaluation of strength is desirable but not

critical in the evaluation of seismic performance. The other factor of not modeling the

panel zone is the complexity and the associated increase in computational effort. [5]

The orientation of the floor beams is also north-south, resulting in uniformly distributed

gravity loads on the beams of the MRF and concentrated loads on the columns from the

orthogonal beams.

The basement of the structure is modeled as a typical story, however, the basement floor

and the ground floor are restrained against lateral displacement. This is employed in
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Ansys using a simple support for the columns ends at the basement floor level and a

displacement support, with X displacement set to 0, at ground level.

All the frame systems have been modeled including a gravity column to reproduce the

overturning effect of weights acting on the other vertical loads resisting members of the

structure (P- effects). The latter has been defined by means of an external column

composed by pin-jointed elements, with arbitrary sectional properties, pinned at each

storey.

A bilinear model has been adopted for steel, defining the post-elastic stiffness ratio (post

elastic stiffness/initial stiffness). The post-elastic stiffness ratio was set to 0.008.

Floor Diaphragms transfer the inertial forces to the vertical elements of the framing

system. Floor diaphragms are classified as either flexible, stiff, or rigid. The assumption

for the present model is that the diaphragm is rigid.

Gravity-load (and P-delta) effects are excluded from all analyses presented in this paper

as well as in the paper presented for comparison [7].

The modeling of the structure in ANSYS is similar to the modeling of the one bay steel

frame. A difference is in the defined joint connection between members of the 5th bay

which is assumed pinned and modeled as a rotational joint. The Elements used in the

analysis are BEAM 189 for all beam members and MPC 184 for the joint connections

between beams and columns. Two different nonlinear materials with different yield

strength are defined and are attributed to beams and columns respectively.

3.2.4 Dynamic Properties

The seismic demands of the building will be computed by nonlinear static analysis

subjected to monotonically increasing lateral forces with an invariant height-wise dis-

tribution. In the modal pushover analysis method a pushover analysis is performed for

each mode separately with the following force distribution:

s∗n = mφn (3.4)
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In order to obtain a modal distribution of forces, a 2D modal analysis is performed. A

point mass is attributed at each story level, equal to half of the story weight, see figure

3.13. The material used for the steel is isotropic elastic. The whole frame is attributed a

displacement boundary condition equal to z = 0, so that the structure is detained from

deflecting out of the plane.

Figure 3.13: Modal analysis with point mass.

LEVEL MODE 1 MODE 2 MODE 3

1 0.18 -0.49 0.96
2 0.28 -0.71 1.20
3 0.41 -0.84 0.86
4 0.55 -0.84 -0.06
5 0.68 -0.68 -0.76
6 0.78 -0.38 -1.15
7 0.87 0.07 -0.88
8 0.95 0.59 0.00
9 1.00 1.00 1.00

Table 3.2: Mode shapes for the 9 story building.

In Figures 3.15 3.16 and 3.17 the first three natural modes of vibration obtained in

ANSYS are presented and Figure 3.14 is a graphic in Excel displaying the normalized

three modes.This values will be introduced in the formula 3.4 in order to obtain the
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Figure 3.14: Normalized natural modes of vibration.

MODE FREQUENCY PERIOD PARTICIPATION
FACTOR

1 0.441 2.268 -2067.3
2 1.261 0.792 732.16
3 2.054 0.486 450.86

Table 3.3: Dynamic properties: natural frequencies, periods, participation factor.
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MODE RATIO EFFECTIVE
MASS

CUMULATIVE
MASS
FRAC-
TION

RATIO
EFF. M
TO TO-
TAL M

1 1.000000 0.427E+07 0.852524 0.753
2 0.354155 536055. 0.959452 0.095
3 0.218088 203275. 1.00000 0.036

Table 3.4: Dynamic properties: ratio, effective mass, cumulative mass fraction, ratio
effective mass to total mass.

Figure 3.15: Mode 1.

Figure 3.16: Mode 2.
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Figure 3.17: Mode 3.

Figure 3.18: Modes from paper [6].

lateral forces for the three pushover curves. The dynamic properties are compared

to the ones provided in the paper mentioned as reference literature [6] and which are

displayed in Figure 3.18. The values of the vibration periods for the first three modes are

2.27, 0.85 and 0.49 s, respectively, and are in good accordance with the ones obtained

with ANSYS, see the values in table 3.3 so the analysis moves on to the next step.
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Figure 3.19: Distribution of forces.

3.2.5 The Pushover Analysis

For the n-th mode, the base shear-roof displacement, Vbn − rrn, pushover curve for the

force distribution 3.4 is developed. In ANSYS the displacements linked to the modal

analysis are parametized, multiplied with the mass of each storey and introduced in the

new analysis as lateral forces, see Figure 3.19 as an example fo the applied forces for

force distribution of mode 2.

In the next step, the pushover curve is idealized as a bilinear curve. If the pushover

curve exhibits negative post-yielding stiffness, the pushover curve is idealized as elastic-

perfectly-plastic. The gravity loads were not included in the analysis, so the curve

does not exhibit negative post-yielding stiffness. The pushover curve is idealized by

mantaining the initial stiffness slope and determining the tangent stiffness by setting

the area below the pushover curve equal to the one below the idealized bilinear curve.

This leads to the location of the yielding point for the idealized curve, defined by the

yielding Force Fsny and deformation Dny.

The pushover curves are potted in the following figures, together with the idealized

curve, first as a Base Shear Vb in kN - roof displacement ut in cm relationship. The



Chapter 3. Case Studies 74

second plot is a base shear/ total weight of the building - roof displacement/ total

height relationship.

Figure 3.20: Pushover curve for the first modal distribution of forces.

Figure 3.21: Pushover curve for the first modal distribution of forces.
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Figure 3.22: Pushover curve for the second modal distribution of forces.

Figure 3.23: Pushover curve for the second modal distribution of forces.
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Figure 3.24: Pushover curve for the third modal distribution of forces.

Figure 3.25: Pushover curve for the third modal distribution of forces.
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3.2.6 Target Displacement

Once the idealized pushover curve is determined, it is converted to the force displacement

relation Fsn/Ln − Dn, in order to compute the peak deformation Dn of the nth mode

inelastic SDF system. This system is defined by the force deformation relation, by its

damping ratio ζn and by the elastic vibration period of the system Tn, see equation

1.38. Dn can be computed by nonlinear response history analysis or from the inelastic

design spectrum. The peak deformation Dn is then used to calculate the peak roof

displacement urn, as in equation 1.39. In order to render results comparable to the ones

available in the study [7], the peak roof displacement is determined through nonlinear

RHA of the building subjected to 1.5 x the El Centro ground motion. The values of peak

roof displacement are determined for each mode separately. The governing equation of

the nth mode inelastic SDF system is:

D̈n + 2ζnωnḊn +
Fsn

Ln
= −ügt (3.5)

Figure 3.26: Conceptual explanation of uncoupled modal RHA of inelastic MDF systems.
[7]

The values of the roof displacements determined by RHA of the nth-mode inelastic

SDF system are urn0 = 48.3, 11.7 and 2.53cm respectively, see Figure concept. The

conceptual explanation of the procedure is shown in Figure 3.27. These values are

extracted from the study [7] in order to render comparable results. They are further

applied in the present study and are implemented as the unknown target displacements.

Thus, the structure is pushed for each modal distribution of forces to each of these

target displacements respectively, see Figure 3.28. At this point the desired values are
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Figure 3.27: Response histories of roof displacement and top-storey drift due to 1.5 × El
Centro ground motion: individual ‘modal’ responses. [7]

(a) Target displacement for mode 1. (b) Target displacement for mode 2.

(c) Target displacement for mode 3.

Figure 3.28: Modal pushover curves with peak roof displacements for 1.5 x El Centro
ground motion.
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extracted from the pushover data base from ANSYS: floor displacements, story drifts

and plastic hinge locations.



Chapter 4

Results and Comparison

4.1 Pushover Curve - Comparison

Present Study Chopra and Goel

Mode Yield
Strength
Vby/W

Yield Dis-
placement
uy [cm]

Yield
Strength
Vby/W

Yield Dis-
placement
uy[cm]

1 0.1551 34.6 0.1684 36.3
2 0.0947 7.1 0.1122 9.9
3 0.0683 1.2 0.1181 4.6

Table 4.1: Yield strength and yield displacement of the idealized pushover curve for
the first three modes of vibration - current study vs. literature.

Mode Yield Strength Vby/W Yield Displacement uy

1 7.90 4.68
2 15.60 28.28
3 42.17 73.91

Table 4.2: Difference in percentage between the two studies.

In this section the results of the study are presented together with the ones from Liter-

ature [7], [6], [8] and [5] for comparison. The three pushover curves were plotted in the

previous chapter. Table 4.1 shows the yield strength and displacement of the idealized

pushover curve. As can be seen in table 4.2, the two sudies yield similar results for

the first mode, yet for the second and, most obvious, for the third mode they are very

different. Figure 4.1 shows the results from the study [7] . For mode number 3, what

80
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Figure 4.1: Modal pushover curves from the study [8] with peak roof displacements identi-
fied for the El Centro ground motion.

can be seen in comparison with Figure 3.28, what can be seen is that in the current

study the 1.5 X El Centro ground motion leads to yielding of the structure.

4.2 Story Drifts and Displacements

In this section the height- wise variation of floor displacements and story drift ratios from

MPA for the 1.5 X El Centro ground motion are presented. The values are extracted

from ANSYS for every mode at the respective target displacement. The definition of

story is:

∆n = un − un−1 (4.1)

where un is the floor displacement of story n.

The definition of story drift ratio is:

δn =
∆n −∆n−1

hn
(4.2)

where n is the story number, hn the stroy height and ∆n the story drift.
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(a) Floor displacements for the first mode
pushover curve.

(b) Story drift ratio for the first mode pushover
curve.

Figure 4.2: Values from ANSYS at target displacement ur1.

(a) Floor displacements for the second mode
pushover curve.

(b) Story drift ratio for the second mode
pushover curve.

Figure 4.3: Values from ANSYS at target displacement ur2.
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(a) Floor displacements for the third mode
pushover curve.

(b) Story drift ratio for the third mode pushover
curve.

Figure 4.4: Values from ANSYS at target displacement ur3.

Using The SRSS combination rule, the three sets of values from the three modes of

vibration are combined and then plotted.

For comparison the floor displacements and story drifts for the first three modes of

vibration, as well as the results from RHA, presented in the paper [7], see Figure 4.7.

It can be observed that the combined first two modes of vibration yield a result wich is

in good accordance with the RHA. However. the result from ANSYS for the third mode

of vibration seem to overestimate the story drifts and displacements, if compared to the

solution with RHA. [5]

4.3 Location of Plastic Hinges

Following, the location of Plastic Hinges for the three modes of vibration are presented:

For comparison, the location of plastic hinges in the paper [7], together with the plastic

hinge location by performing a RHA:

In the paper [7], the pushover analysis fails to predict the plastic hinge formation at

the ground floor columns, which the present study predicts. However the whole system
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Figure 4.5: Story drift ratio for the combined first two modes pushover curve.

seems to be not as rigid and a few more plastic hinges appear. This is also due to the

fact that the pushover analysis for the third mode of vibration also leads to formation

of plastic hinges, especially in the upper floors.
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Figure 4.6: Story drift ratio for the combined first three modes pushover curve.

Figure 4.7: Results from literature [7].
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Figure 4.8: Plastic hinge location for the first mode pushover curve.
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Figure 4.9: Plastic hinge location for the second mode pushover curve.
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Figure 4.10: Plastic hinge location for the combined first three modes pushover curve.
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Figure 4.11: Plastic hinge location in the paper [7].
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Conclusion

The MPA procedure for an inelastic system is structured as follows: first the dynamic

properties of the system are computed and a pushover curve is determined using the

inertia force distribution of each mode separately. In a further step, the target displace-

ment is evaluated by RHA and the values of the desired results are extracted from the

pushover data base: floor displacements, story drifts, plastic hinge locations. The total

response is obtained by combining those results using the SRSS rule.

The results are in good accordance with the RHA if compared for the first two modes of

vibration. The combined results lead to very similar demands for the floor displacements

and story drifts. In comparison with the study ??, it also determines the location of

plastic hinges more accurately, for example by predicting the plastic hinge formation

in the column base of the ground floor. However the results from the third mode of

vibration were less accurate, overestimating the actual story drifts.

ANSYS can be described as a very powerful tool for analyzing nonlinear systems, with

various capabilities to model the actual building. As has been described in chapter

2, the nonlinear system can be specified through various parameters: material and

geometric nonlinearity as well as nonlinear connections between members. The problem

will eventually become very complex and the question may arise if so much accuracy

is actually needed in order to assess the seismic demand by pushover analysis, which is

itself based on various assumptions. As for the modal pushover analysis, it can easily be

implemented in ANSYS, by performing a modal analysis of the system prior to adjusting

it in order to perform the static pushover analysis.

90
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9 Story Building

COLUMNS AREA[m²] d[cm] tw[cm] bf[cm] tf[cm]

W14X233 0.04419 40.7 2.7 40.4 4.4
W14X257 0.04877 41.6 3 40.6 4.8
W14X283 0.05374 42.5 3.3 40.9 5.3
W14X370 0.07032 45.5 4.2 41.8 6.8
W14X455 0.08645 48.3 5.1 42.8 8.2
W14X500 0.09484 49.8 5.6 43.2 8.9

BEAMS AREA[m²] d[cm] tw[cm] bf[cm] tf[cm]

W24X68 0.01297 60.3 1.1 22.8 1.5
W27X84 0.01600 67.8 1.2 25.3 1.6
W30X99 0.01877 75.3 1.3 26.5 1.7
W36X135 0.02561 90.3 1.5 30.4 2
W36X160 0.03032 91.5 1.7 30.5 2.6

Table 1: Cross section dimensions of the MRF.

Figure 1: Cross section parameters.
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COLUMNS Ixx[in4] Iyy[in4] Ixx[cm4] Iyy[cm4]

W14X233 3010 1150 125286 47867
W14X257 3400 1290 141519 53694
W14X283 3840 1440 159833 59937
W14X370 5440 1990 226430 82830
W14X455 7190 2560 299270 106555
W14X500 8210 2880 341726 119875

BEAMS Ixx[in4] Iyy[in4] Ixx[cm4] Iyy[cm4]

W24X68 1830 70.4 76170 2930
W27X84 2850 106 118626 4412
W30X99 3990 128 166076 5328
W36X135 7800 225 324660 9365
W36X160 9750 295 405826 12279

Table 2: Cross section moments of inertia in [in4] and [cm4] of the MRF.

Mass for both MRFs
[kg]

Mass for one Frame
[kg]

Ground Floor 965000 482500
1st Floor 1010000 505000
2nd-8th Floor 989000 494500
9th Floor 1070000 535000

Mass of above ground
levels

8979000

Table 3: Seismic mass of the structure including steel framing for N-S MRFs.


	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Theory
	1.1 Performance Based Design
	1.1.1 General
	1.1.2 Demand Parameters-Acceptance Criteria
	1.1.3 Procedures for Earthquake Analysis
	1.1.4 Evaluation of the methods

	1.2 Pushover Analysis
	1.2.1 Purpose
	1.2.2 Basic Steps
	1.2.3 Theoretical Background
	1.2.3.1  Control Node Displacement 
	1.2.3.2 Lateral Load Pattern
	1.2.3.3 Idealization of the pushover curve
	1.2.3.4 The Target Displacement

	1.2.4 Pushover Analysis Methods
	1.2.4.1 The Capacity Spectrum Method
	1.2.4.2 The N2 Pushover Procedure
	1.2.4.3 Modal Pushover Analysis

	1.2.5 Limitations of Pushover Analysis and Conclusion


	2 Implementation of Nonlinear Problems in ANSYS
	2.1 General Modeling Techniques
	2.1.1 Nonlinear Demand Parameters
	2.1.2 Structural Analysis Model Types

	2.2 Structural Nonlinearities
	2.2.1 Introduction
	2.2.2 Solving the Nonlinear Equations
	2.2.3 Solving in ANSYS
	2.2.4 Material Nonlinearity
	2.2.4.1 Introduction
	2.2.4.2 Elastoplastic material model

	2.2.5 Geometric Nonlinearity
	2.2.5.1 Introduction
	2.2.5.2 P- effect on a SDOF System
	2.2.5.3 Geometric Nonlinearities in ANSYS

	2.2.6 Nonlinear Connections
	2.2.6.1 Introduction
	2.2.6.2 Modeling the Nonlinear Connection
	2.2.6.3 Connections in ANSYS


	2.3 Element Types in ANSYS
	2.3.1 Introduction
	2.3.2 Beam 188
	2.3.3 Beam 189
	2.3.4 Conclusion


	3 Case Studies
	3.1 Single Story, One Bay Steel Frame
	3.1.1 Description of the Geometry
	3.1.2 Modeling in ANSYS Workbench
	3.1.3 Results
	3.1.3.1 Analytical Results
	3.1.3.2 Results in ANSYS for Material Nonlinearity
	3.1.3.3 Results in ANSYS for Material and Geometric Nonlinearity

	3.1.4 Conclusion

	3.2 9 Story Building
	3.2.1 Introduction
	3.2.2 Description of the Building
	3.2.3 Modeling of the Structure
	3.2.4 Dynamic Properties
	3.2.5 The Pushover Analysis
	3.2.6 Target Displacement


	4 Results and Comparison
	4.1 Pushover Curve - Comparison
	4.2 Story Drifts and Displacements
	4.3 Location of Plastic Hinges

	5 Conclusion
	Bibliography
	9 Story Building

