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Abstract
Although the Young’s modulus is undoubtedly one of the most important mechan-
ical characteristics of bone, its proper determination in the course of quasi-static
mechanical tests is still a matter of debate. In order to shed some light onto this
issue, the present Master’s thesis is concerned with the accurate determination of
elastic properties of bovine cortical bone at millimeter-length-scale. To achieve
this goal, a set of cylindrical samples with diameters of 7 mm and heights of 12
mm was extracted from an 18-month-old bovine femur. At first, a representative
specimen was saturated with distilled water, whereby its weight gain (correspond-
ing to the filling of vascular pores) was constantly measured, and this allowed for
computation of the vascular porosity as φvas = 7.9%. Subsequently, a set of uniax-
ial quasi-static unloading experiments with a displacement level of 0.125 mm and
a displacement rate of 0.031 mm/s, gave access to the longitudinal macroscopic
Young’s modulus as Eunloading = 23.2± 1.2 GPa.
As a next step, extracellular mass densities of 22 bovine tibia samples were
taken from [Lees et al., 1979] and entered a multi-step homogenization scheme
for bone as a hierarchical transversely isotropic material, as developed in
[Morin and Hellmich, 2014]. Numerical evaluation of the latter, while taking into
account the vascular porosity from the wetting and weighing test, delivered a full
stiffness tensors of bovine cortical bone at the macroscopic level. The Young’s mod-
ulus derived from this stiffness tensor and amounting to Ehiercarchy = 22.5±2.1 GPa,
reveals a very good agreement of the unloading tests and the previously extensively
validated model. This elucidates unloading as the key feature to retrieve a ”true”
elastic modulus from a quasi-static test.
Apart from this findings, which were recently submitted to the Journal of Biome-
chanics, a detailed sample characterization as well as comprehensive results of
the quasi-static mechanical tests, and a brief outlook to the future are given as
conclusion of the thesis.
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Zusammenfassung
Obwohl der Elastizitätmodul zweifelsohne zu den bedeutendsten mechanischen
Eigenschaften von Knochen zählt, herrscht bemerkenswerte Uneinigkeit, was
seine experimentelle Bestimmung betrifft. Als Beitrag zu dieser offenen Frage
beschäftigt sich die vorliegende Diplomarbeit mit der exakten Bestimmung der
elastischen Eigenschaften von kortikalem Rinderknochen, und zwar auf dem
Längenmaßstab einiger Millimeter. Dazu wurden zylindrischen Proben mit einem
Durchmesser von 7 mm und einer Höhe von 12 mm aus einem 18 Monate al-
ten Rinderknochen entnommen. Messung der Kinetik der Gewichtszunahme
einer 50 Stunden lang getrockneten Probe im Zuge ihrer Re-saturierung in des-
tilliertem Wasser ließ die Identifikation der in der vaskulären Poren aufnehm-
baren Flüssigkeitsmasse, und damit der vaskuläre Porosität, zu: φvas = 7.9%.
Anschließend wurden uniaxiale quasistatische Entlastungversuche an 17 Proben
durchgeführt, mit einem Verschiebungsniveau von 0.125 mm und einer Ver-
schiebungsrate von 0.031 mms−1, woraus der axiale makroskopische E-Modul,
Eunloading = 23.2± 1.2 GPa, bestimmt wurde.
Zur Kontrolle dieses E-Moduls wurde ein experimentell validiertes Homogeni-
sierungsschema nach [Morin and Hellmich, 2014] herangezogen. Dazu wurden von
[Lees et al., 1979] bestimmte extrazelluläre Massendichten von Rinderknochen als
Eingangsgrößen herangezogen, sowie die zuvorgenannte vaskuläre Porosität. Dies
ergab einen E-Modul von Ehierarchy = 22.5 ± 2.1, der perfekt mit dem Wert
Eunloading übereinstimmt. Dies verdeutlicht, dass quasi-statische Entlastung einen
verlässlichen Zugang zu elastischen Eigenschaften von Knochen eröffnet.
Diesen Ergebnissen wurden beim Journal of Biomechanics zur möglichen Pub-
likation eingereicht. Außerdem werden zusätzliche Details zur Probencharakter-
isierung, als auch detaillierte Ergebnisse an den Entlastungsversuchen und sowie
Zukunftsaussichten auf weitere Versuche gezeigt.
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1 Introduction
There is a general agreement in the biomedical engineering community that the
elastic or Young’s modulus of a biological material in general, and of bone in
particular, is one of the most important mechanical characteristics, giving deep
insight in the behavior of bony structures under specific (physiologic) loading con-
ditions [Turner and Burr, 1993]. Bearing in mind that the elasticity per se is
inseparably connected with energy storage, it becomes clear that it can be accu-
rately quantified only from the energy that can be recovered from a system, and
not the one which has been put into it [Salençon, 2001]. Therefore, this Master’s
Thesis is focused on determination of bovine cortical bone elasticity at millimeter-
length-scale from quasi-static unloading experiments, based on the protocol of
[Luczynski et al., 2013].
The core of the thesis is a paper (submitted to the Journal of Biomechanics), on
the aforementioned unloading tests compared with an experimentally validated
hierarchical homogenization scheme developed by [Morin and Hellmich, 2014,
Fritsch et al., 2009], and based on the results of ultrasonic experiments of Lees
[Lees et al., 1979] complemented by the results of performed wetting and weighing
test. In addition to the aforementioned compact study on reliable elasticity deter-
mination through a physically sound experimental approach, some further experi-
mental data, such as samples’ geometry, velocities of ultrasonic signals transmitted
through the bony samples, and comprehensive results of the conducted mechanical
tests, are also presented.
Finally, a short future outlook on planned quasi-static unloading tests on cortical
bone samples of sub-or-single-millimeter-size, is also given.
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2 Paper entitled ”Unloading is the key to quasi-
static determination of bone elasticity: evi-
dence from ultrasound, wetting and weighing
tests, as well as from micromechanics theory”,
submitted to the Journal of Biomechanics
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Abstract

While there is general agreement that the Young’s modulus of elasticity is one of

the most important mechanical characteristics of bone, there is a considerable

lack of agreement on how to retrieve this modulus from a stress-strain curve

of a quasi-static mechanical test: A variety of used protocols deliver inconsis-

tent results. We here take a rigorous thermodynamical approach, by relating

the elastic modulus to that portion of energy stored in the investigated sample,

which is recovered in form of efficient mechanical work upon unloading of the

sample. In more detail, evaluation of the linear portions of the unloading por-

tions of the stress-strain curves, corresponding to the time span during which a

sample is in full contact with the loading platens, gives access to the longitudi-

nal macroscopic Young’s modulus as Eunloading = 23.2 ± 1.2 GPa. In order to

check the relevance of this number, an experimentally validated hierarchical up-

scaling scheme quantifying how “universal” patterns in bone microstructure and

composition govern bone elasticity at different length scales (Fritsch et al., 2009;

Morin & Hellmich, 2014), is used to convert the extravascular bone mass density

of bovine limb bone into its elasticity. Additional identification of the vascular

porosity from weight gain measurements in the course of a saturation test allows

∗Christian Hellmich
Email address: christian.hellmich@tuwien.ac.at (Christian Hellmich)
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for upscaling to the macroscopic elasticity, corresponding to a Young’s modulus

of Ehierarchy = 22.5 ± 2.1 GPa. The latter is in perfect agreement with the one

stemming from the unloading experiments. Conclusively, unloading tests de-

liver truly elastic properties, while moduli derived from the loading portion of a

stress-strain curve contain also information on inelastic, most probably plastic,

deformation events.
Keywords: quasi-static unloading tests, elastic modulus, micromechanics,

ultrasound

1. Introduction

There is a general agreement in the biomedical engineering community that

the elastic or Young’s modulus of a biological material in general, and of bone

in particular, is one of the most important mechanical characteristics, giving

deep insight into the behavior of bony structures under specific loading condi-5

tions (Turner & Burr, 1993). While the idea of the Young’s modulus somehow

relating stresses imposed onto a material sample to the strains they provoke,

is common to all the innumerable scientific investigations comprising Young’s

modulus determination, there is a considerable lack of agreement on how to

actually retrieve the Young’s modulus from a given stress-strain curve. Namely,10

in contradiction to what is known from classical engineering materials such as

steel, the stress-strain curve of bone samples is never really linear, and hence,

there are different suggestions on how to “define” a Young’s modulus for this

particular situation: some researchers prefer the “slope of the linear portion” of

the stress-strain curve (Keller, 1994; Öhman et al., 2011), others the “slope of15

the stress–strain relationship between 0.2 and 0.4% strain” (López et al., 2014),

“the initial tangent modulus and secant modulus” (Novitskaya et al., 2013),

“the linear elastic region” of the loading regime (Vale et al., 2013), “the most

linear portion” of the loading regime (Vuola et al., 1998), “the steepest portion”

of the loading regime (Metsger et al., 1999), “the longest linear portion” of the20

loading regime (Chu et al., 2002), “the initial linear region” (Charles-Harris
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Nomenclature

Cu
exvas stiffness tensor of the un-

drained extravascular bone ma-

trix

Ccort stiffness tensor of cortical bone

d diameter of cortical bone sample

Dcort compliance tensor of cortical

bone

Ehierarchy Young’s modulus from ex-

perimentally validated hierar-

chical upscaling scheme for elas-

ticity, together with wetting and

weighing tests

Eloading modulus derived from load-

ing portion of quasi-static me-

chanical test

Eunloading modulus derived from un-

loading portion of quasi- static

mechanical test

e1, e2 base vectors defining trans-

verse material direction of bone

e3 base vector defining axial mate-

rial direction of bone

h height of cortical bone sample

I fourth-order identity tensor

Pcyl fourth-order Hill tensor for cy-

lindrical inclusions

∆m(t) amount of water taken in by

the sample over time t

∆m1 mass uptake related to filling

of vascular pores

∆m2 mass uptake related to fill-

ing of pores being significantly

smaller than the vascular ones

∆um displacements between piston

and actuator of quasi-static me-

chanical testing machine

∆ut “true” displacements prescri-

bed on bone sample

ε normal strain

σ normal stress

τ1 characteristic filling time of vas-

cular pores

τ2 characteristic time of (poten-

tially partial) filling time of

pores being significantly smaller

than the vascular ones

φvas vascular porosity
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et al., 2007; Maquet et al., 2004), or “the tangent at the origin” (Charrière

et al., 2001) of the aforementioned stress-strain characteristics. All these differ-

ent approaches deliver different results, and this difference is sometimes related

to the great variability of mechanical properties found in bone. Although this25

might be (partially) true (and then related to the different compositional na-

ture of different bones, such as different mineral and collagen contents, as well

as different porosities at different levels of observation), it is fairly probable

that the aforementioned different protocols induce several intrinsic errors to the

proper measurement of elastic properties. This becomes more evident when we30

remember the thermodynamical origin of elasticity (Salençon, 2001). The latter

is related to that part of energy stored in the material, which is fully recoverable

upon unloading, i.e. which the material then provides to perform work on its

surroundings. Hence, while all aforementioned protocols deal with the loading

portion of a stress-strain curve, it appears much more rigorous to determine an35

elastic modulus from the unloading curve, which, as a rule, exhibits a steeper

slope than the loading curve (Abdel-Wahab et al., 2011; Luczynski et al., 2012,

2013). Accordingly, we here report unloading mechanical tests on bone samples,

for retrieving their Young’s modulus. However, rather than just adding another

protocol to all the aforementioned ones (and one which again is probable to40

not coincide with any of them), we here wish to provide further evidence that

the presented protocol is really related to elasticity. Therefore, we compare

unloading-derived Young’s moduli to elastic properties derived from a totally

different, yet classical technique: transmission ultrasound. The latter has pro-

vided deep insight into the elasticity of bone (Ashman & Rho, 1988; Ashman45

et al., 1984; McCarthy et al., 1990; Lees et al., 1979b). This technique, however,

does not deliver Young’s modulus (which is related to uniaxial stress states),

but a normal component of the elasticity tensor (which is related to uniaxial

strain states). As to relate the latter to the former, the 3D elasticity tensor

of the investigated material needs to be known, and more than a decade of in-50

tensive micromechanical research (Fritsch & Hellmich, 2007; Morin & Hellmich,

2014; Hellmich & Ulm, 2002; Hellmich et al., 2004) has led to a precise and
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effective mathematically cast way of predicting this tensor from the material’s

hierarchical microstructure and composition, as has been experimentally vali-

dated through a vast amount of statistically and physically independent, as well55

as different biomechanical (including ultrasound), biochemical, and biophysical

experimental data into a coherent theoretical framework. The latter reflects

different types of “universal” patterns found in mineralized tissues, related to

mineral-to-collagen dosage ratios (Vuong & Hellmich, 2011), mineral distribu-

tion (Hellmich & Ulm, 2003), and mineral precipitation (Morin & Hellmich,60

2013). Thus, the extracellular mass density of the herein mechanically tested

material can be directly related to the material’s composition and microstruc-

ture, as to predict its Young’s modulus at the extravascular level by means of

an ultrasound-validated hierarchical material law. To further upscale to the

macroscopic level as “seen” in our newly performed quasi-static unloading tests,65

information on the tissue-dependent vascular porosity is needed, which we derive

from additional wetting tests. If the corresponding, ultrasonics-based elastic-

ity predictions fit well with the results from the quasi-static unloading tests

described here, then the latter turn out indeed as a reliable direct access to

the elastic modulus of bone. The corresponding check will be described in the70

remainder of this paper.

2. Materials and Methods

2.1. Sample preparation and vascular porosity determination

Cortical bone samples (n=17) were extracted from an 18-month-old fresh

bovine femur, obtained from a local butcher. As a rule, the samples were kept

frozen at a temperature of -20 degrees Celsius between all the preparation steps

described in the following, and also between the mechanical campaigns described

in Section 2.2. This provides conservation of mechanical properties throughout

the preparation and characterization process (Fölsch et al., 2011; Nazarian et al.,

2009; Linde & Sørensen, 1993). After cleaning the femur from the remaining soft

tissue, it was roughly cut with a hand saw. Subsequently, plane-parallel slices
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with a thickness of roughly 12 mm were cut orthogonal to the long bone axis, by

means of a diamond saw (Isomet, Buehler, USA) under constant distilled water

irrigation. The cutting speed was initially restricted to 7 revolutions per minute

(rpm), in order to avoid overheating, and was further reduced to 3 rpm at the

end of the cutting process, as to prevent breaking out of the cut-off part from

the remaining part. Then cylinders were drilled out along the long bone axis,

again under constant distilled water irrigation. The samples obtained in this

way exhibited a height of 12.46 ± 0.10 mm (mean value ± standard deviation)

and a diameter of 7.83 ± 0.02 mm, see Table 1 for further details.

One characteristic sample was preserved for porosity determination, through the

following protocol: it was dried in air at room temperature for 50 hours, in order

to empty the vascular pores, and at least partially, the lacunar pores as well.

Thereafter, the sample was re-wetted over a time span of 6 days, and the mass

increase, corresponding to the amount of water absorbed by the sample, was

measured by means of a balance (Mettler Toledo PG503-S DeltaRange, Mono

Bloc, Switzerland), using the corresponding density accessory kit. The kinetics

of the re-wetting process is expected to be governed by the characteristic size of

the porosity to be filled: the larger vascular pores are filled more quickly than

the smaller lacunar pores. Accordingly, the mass increase with time, ∆m(t), is

represented as a sum of two decaying functions,

∆m(t) = ∆m1[1− exp (−t/τ1)] + ∆m2[1− exp (−t/τ2)] (1)

where t denotes time, ∆m1 and τ1 denote the mass uptake and the characteristic

time related to vascular pores filling, and ∆m2 and τ2 refer to (potentially

partial) filling of pores being significantly smaller than the vascular ones. Thus,

∆m1 can be used to quantify the vascular porosity, through

φvas = 4∆m1
ρH2Oπd2h

(2)

with ρH2O = 1.0 g/cm3 as the mass density of water, and with d and h as the

diameter and the height of the tested sample, respectively.75
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Table 1: Characteristics of cylindrical bone samples: height, diameter, and loading/unloading

moduli

sample h d Eloading Eunloading

[mm] [mm] [GPa] [GPa]

H13 12.47 7.79 24.4 23.1

H15 12.38 7.80 20.6 25.0

H16 12.52 7.84 20.3 22.6

H19 12.55 7.80 18.4 22.5

H20 12.47 7.85 22.5 24.7

H21 12.38 7.82 18.7 24.7

H22 12.49 7.83 18.8 24.1

H23 12.47 7.85 17.4 23.5

H24 12.48 7.83 18.4 21.8

H25 12.46 7.82 23.0 23.9

H26 12.48 7.84 17.4 21.8

H27 12.46 7.83 22.7 22.7

H28 12.42 7.82 22.2 21.9

H29 12.49 7.87 22.6 23.1

H30 12.43 7.85 21.6 21.8

H31 12.53 7.85 24.2 24.7

H32 12.43 7.84 13.8 22.0

mean value 12.47 7.83 20.4 23.2

standard deviation 0.05 0.02 2.9 1.2
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2.2. Quasi-static unloading tests

Uniaxial compressive tests were performed on all samples with a displace-

ment rate of 0.063 mm/s, which lies in the range of typical “quasistatic” load-

ing rates for bone and biomaterial testing (Luczynski et al., 2013; Brynk et al.,

2011). In more detail, each sample was repeatedly loaded and unloaded in80

longitudinal direction (along the sample height), with increasing displacement

levels of ∆um = 0.125 mm, 0.250 mm, and 0.375 mm, respectively. These dis-

placements were recorded, by means of a Messotron LWG XX sensor, between

the actuator (i.e. the movable upper load platen) of the servo-hydraulic testing

machine (DLFV-250/DZ-10-D, Walter und Bai, Switzerland), and the piston85

hosting the oil which moves the actuator. In order to convert these displace-

ments into strains applied to the bone samples, the compliance of the testing

machine needs to be considered. Therefore, the force-displacement curve of the

plane test setup (without any sample) was recorded for the entire force range

employed during the actual experiments performed on the bone samples. The re-90

spective, force-specific “machine-only” displacements were then subtracted from

the “machine-plus-sample” displacements corresponding to the same applied

forces. The accordingly corrected, “true” displacement levels amounted to ap-

proximately ∆ut =0.063 mm, 0.125 mm, and 0.188 mm, respectively; and the

“true” displacement rate amounted to approximately 0.031 mm/s. These ”true“95

displacements ∆ut were then converted into normal strains ε = ∆ut/h; and re-

lated to normal stresses σ = 4F/(d2π).

As motivated in the Introduction, the longitudinal Young’s modulus of each

sample, Eunloading, was retrieved from the unloading portion of the recorded

stress-strain characteristic. Due to the fact that the loading platens were not100

exactly parallel to the loaded surfaces of the sample, the aforementioned stress-

strain characteristic was non-linear at the end of each unloading cycle, when

the load platens were not anymore in full contact with the sample surfaces. In

order to separate this nonlinear portion of the unloading regime from its linear

portion at higher stress levels (corresponding to full contact between sample sur-105

faces and load platens), this latter portion was identified by means of a sequence
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of linear regressions: Starting from the stress maximum, increasingly long arrays

of stress-strain-data-points were linearly approximated by means of least square

linear fits. Thereby, the initial array comprised ten data points, corresponding

to 1 × 10−2 mm of the unloading path, and the following arrays increased by110

one data point each. In order to identify the most relevant of the respective

regression lines (i.e. the one reflecting the best the linear nature of the unload-

ing curve), the standard deviations of the absolute differences in strain, between

each of the regression lines and the corresponding actually recorded data points,

were compared. This approach is inspired by the fact that, in case of a normal115

distribution (like a measurement noise in this case), the difference between the

median and the mean value of a statistical sample (here the aforementioned

absolute strain differences) decreases with this sample’s size. Additionally, the

standard deviation of a normal distribution decreases with the mean value ap-

proaching the median. On the other hand, the standard deviation increases the120

more the fitted points deviate from a straight line. Consideration of these facts

proposes that the regression line for which the minimum value among all stan-

dard deviations was recorded, corresponds to the longest possible set of data

points still lying on a straight line (indicating full contact between the sample

and the loading platens), and therefore the slope of exactly this regression line125

was recognized as the Young’s modulus.

2.3. Ultrasonics-validated hierarchical elasticity of bone

The elastic constants of the elementary mechanical constituents of bone,

namely hydroxyapatite, collagen, and water with some non-collageneous or-

ganics, and their dosages within the extracellular bone matrix, determine the

tissue-dependent elastic properties of the latter, as was quantified by an up-

scaling scheme based on homogenization theory (Hellmich et al., 2004; Morin

& Hellmich, 2014; Fritsch & Hellmich, 2007), and validated through an exten-

sive ultrasound data base (McCarthy et al., 1990; Lees et al., 1979b, 1994a,

1995; Lees, 1982; Lees et al., 1983), in combination with “universal” composi-

tion and mineralization rules for bone tissues (Morin & Hellmich, 2013; Morin
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Figure 1: Hierarchical elasticity of cortical bone as represented in a six-scale micromechanical

model (Morin & Hellmich, 2014): (a) representative volume element (RVE) of molecular

collagen, (b) RVE of mineralized fibril, (c) RVE of extrafibrillar space, (d) RVE of extracellular

bone matrix–bone ultrastructure, (e) RVE of extravascular bone matrix, (f) RVE of cortical

bone, (e1, e2: transverse material directions; e3: axial material direction); figure illustrates

2D sketches of 3D RVEs

et al., 2013; Vuong & Hellmich, 2011; Hellmich & Ulm, 2003), which were de-

rived from a wealth of biophysical, biochemical, and biomechanical experimental

sources (Lees et al., 1979a; Bonar et al., 1985; Prostak & Lees, 1996; Zylberberg

et al., 1998; Lees, 2003; Hammet, 1925; Gong et al., 1964; Burns, 1929; Biltz &

Pellegrino, 1969; Rougvie & Bear, 1953; Meek et al., 1991; Lees & Mook, 1986;

Lees & Heeley, 1981; Lees et al., 1984; Katz & Li, 1973; Hodge & Petruska,

1963; Bergman & Loxley, 1963). Given the aforementioned composition rules,

the elastic properties of the extracellular matrix are uniquely linked to the tissue

mass densities. For bovine hind limbs, the bone tissue mass density is reported
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to amount to 2.044 ± 0.430 g/cc (Lees et al., 1979b). Input of the respective

compositional characteristics, into the homogenization steps sketched in Figure

1(a)-(d), in terms of volume fractions of molecular collagen, hydroxyapatite, wet

collagen, and fibrils, delivers the extracellular bone matrix stiffness as

Cexcel =




C1111 C1122 C1133 0 0 0

C1122 C2222 C2233 0 0 0

C1133 C2233 C3333 0 0 0

0 0 0 2C2323 0 0

0 0 0 0 2C1313 0

0 0 0 0 0 2C1212




=

=




28.9 ± 3.4 10.8 ± 0.7 12.1 ± 0.8 0 0 0

10.8 ± 0.7 28.9 ± 3.4 12.1 ± 0.8 0 0 0

12.1 ± 0.8 12.1 ± 0.8 37.3 ± 3.2 0 0 0

0 0 0 19.2 ± 1.8 0 0

0 0 0 0 19.2 ± 1.8 0

0 0 0 0 0 18.1 ± 1.7




in GPa

(3)

However, we still need to check the relevance of the measurements described in

Section 2.2 at the macroscopic (rather than at the extracellular) level. There-

fore, we first upscale from the extracellular to the extravascular level, consid-

ering undrained lacunar pores with typical volume fraction of 10% (Tai et al.,

2008; Morin & Hellmich, 2014), being embedded into extracellular bone matrix
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material, see Figure 1(e), yielding the extravascular stiffness as

Cu
exvas =




24.2 ± 1.0 9.2 ± 0.6 10.2 ± 0.6 0 0 0

9.2 ± 0.6 24.2 ± 1.0 10.2 ± 0.6 0 0 0

10.2 ± 0.6 10.2 ± 0.6 30.6 ± 2.5 0 0 0

0 0 0 15.8 ± 1.4 0 0

0 0 0 0 15.8 ± 1.4 0

0 0 0 0 0 14.9 ± 1.3




in GPa

(4)

Finally, the macroscopic stiffness tensor is computed applying a Mori-Tanaka

scheme to a representative volume element (RVE) consisting of a vascular bone

matrix (with a volume fraction of 1 − φvas) and of (drained) extra-vascular

cylindrical pores (with a volume fraction of φvas and vanishing stiffness), as

sketched in Figure 1(f), yielding

Cmacro = (1− φvas)Cu
exvas : {φvas[I + Pcyl : (−Cu

exvas)]-1 + (1− φvas)I}-1 (5)

where I is the fourth-order identity tensor and Pcyl is the fourth-order Hill tensor

accounting for the cylindrical shape of the vascular pores being embedded into

the transversely isotropic extravascular bone matrix, see (Hellmich et al., 2004).

Eq.(5) readily delivers the longitudinal Young’s modulus through

Ehierarchy = 1
Dmacro,3333

(6)

where Dmacro,3333 is the longitudinal normal component of the macroscopic

compliance tensor Dmacro, which is the inverse of the macroscopic stiffness tensor

given through Eq.(5),

Dmacro = C−1
macro (7)

3. Results

All loading and unloading paths recorded during the quasi-static tests ex-

hibit a markedly nonlinear portion at lower stress levels, see Figure 3 for tests130
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characterized by a maximum displacement level of 0.125 mm. This nonlinear

portion reflects incomplete contact between sample surface and load platen,

and it is particularly pronounced for tests with a maximum displacement level

of 0.063 mm, which were therefore discarded from modulus determination (the

latter depending on a linear stress-strain relation). On the other hand, displace-135

ment prescription up to a level of 0.188 mm led to frequent (actually almost

certain) sample fracture, implying that unloading paths are missing - so that

the respective test series could not be used for modulus determination. When

applying the analysis described in Section 2.2 to the remaining test series, one

obtains a macroscopic Young’s modulus of Eunloading = 23.2 ± 1.2 GPa. This140

result needs to be compared to that gained from micromechanical upscaling ac-

cording to Eq.(4) - (7). This requires knowledge of the vascular porosity, which

we gain from evaluation of the drying-wetting test of Section 2.1.

Eunloading Ehierarchy
Eloading

Figure 2: Modulus determination from different sources: from loading and unloading portions

of quasi-static mechanical tests (Eloading and Eunloading, respectively), and from hierarchical

micromechanical upscaling scheme (Ehierarchy)

Namely, during the re-wetting test, the sample mass increased by approx-

imately 35 %. Thereby, the rate of water intake decreased over the time

span of the experiment, and reached a semi-saturation state characterized by

13



0-0.5-1 0-0.5-1 0-0.5-1

strain [%]ε

-150

-100

-50

0

-150

-100

-50

0

-150

-100

-50

0

-150

-100

-50

0

-150

-100

-50

0

-150

-100

-50

0

s
tr

e
s

s
[M

P
a

]
σ

H13 H15 H16

H19 H20 H21

H22 H23

H24 H25 H26

H27 H28 H29

H30 H31 H32

loading portion

unloading portion

loading

unloading

linear fits as described in
Subsection 2.2:

experimental data:

Figure 3: Loading and unloading portions of stress-strain curves gained from quasi-static

mechanical tests, characterized by a “true” maximum displacement level of 0.125 mm.
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∆m(t = 6d) = 186.5 mg. This water intake characteristic was fitted by the

bi-exponential function of Eq.(1), with a correlation coefficient of 99 %, see

Figure 4; delivering as regression parameters: τ1 = 2.80 h, τ2 = 28.60 h,

∆m1 = 42.70 mg, ∆m2 = 143.78 mg.

Insertion of the latter value for ∆m1 into Eq.(2) then gives access to the vascu-

lar porosity as φvas = 7.9 %. This value enters the hierarchical micromechanical

model as described in Subsection 2.3, which then delivers the full stiffness tensor

of the cortical bone according to Eq. (5), see Figure 1(f), reading as

Cmacro=




19.1 ± 1.6 7.1 ± 0.5 8.0 ± 0.5 0 0 0

7.1 ± 0.5 19.1 ± 1.6 8.0 ± 0.5 0 0 0

8.0 ± 0.5 8.0 ± 0.5 27.3 ± 2.2 0 0 0

0 0 0 13.5 ± 1.2 0 0

0 0 0 0 13.5 ± 1.2 0

0 0 0 0 0 12.0 ± 1.1




in GPa

(8)

The latter gives access to the Young’s modulus according to Eq. (6), amount-

ing to Ehierarchy = 22.5 ± 2.1 GPa. Finally, for the sake of completeness, a145

“loading modulus” derived from the loading branches in the same way as the

one extracted from the unloading part, was also computed, and amounted to

Eloading = 20.4± 2.9 GPa (see Figure 2 for the comparison of all three moduli).

In order to check whether the loading, unloading, and hierarchical upscaling-

derived moduli may still belong to the same statistical population, an analysis of150

variance (ANOVA) with a significance level of α = 0.05 was performed. Thereby,

the null hypothesis (stating that pair-wise compared groups of moduli stem from

the same population) was rejected for p < 0.05. The only pair for which the

hypothesis could not have been rejected (the investigated groups then stem from

the same population), was the one consisting of the unloading-derived moduli155

and those stemming from the hierarchical micromechanical upscaling scheme

(see Table 2 for the summary of the results and corresponding p-values). This

clearly shows that it is an unloading portion of a quasi-static mechanical test,
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which delivers an elastic modulus, in contrast to a loading portion.

Table 2: Result of the ANOVA performed on the three groups of moduli; x - null hypothesis

can be rejected, X- null hypothesis cannot be rejected

Eloading Eunloading Ehierarchy

Eloading - x (p < 0.01) x (p < 0.02)

Eunloading - - X(p > 0.15)

Ehierarchy - - -
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experimental data
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Figure 4: Water intake kinetics of cortical bone sample during re-wetting

4. Discussion160

There is a fairly general agreement in the bone mechanics community that

bone may exhibit plastic deformation modes, the corresponding discussion going

back at least to the 1970’s (Burstein et al., 1975). This has been particularly

impressively shown in the context of experimental fracture mechanics applied

to bone, where a plastic zone around the crack tip, in which elevated stress165

levels prevail, has been evidenced (Zimmermann et al., 2011; Ritchie et al.,
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2009). As regards the nature of these plastic events, the aforementioned au-

thors refer to “fibrillar sliding”, a concept also mentioned in the context of

mechanical tests with deformation observation through in situ X-ray scattering

devices (Gupta et al., 2013). The idea of mutual inelastic displacements between170

collagen fibrils naturally introduces the role of the inter-fibrillar regions, which

are more often referred to as extrafibrillar space. The latter hosts the majority

of mineral crystals found in bone tissue, as evidenced by microscopic techniques

(Lees & Prostak, 1988; Arsenault et al., 1991; Lees et al., 1994b; Prostak &

Lees, 1996; Alexander et al., 2012; Benezra Rosen et al., 2002; Jantou et al.,175

2009; McNally et al., 2013), neutron diffraction (Lees et al., 1984; Bonar et al.,

1985; Lees, 1987), and mathematical biology approaches including composite

and multiscale mechanics (Hellmich & Ulm, 2003, 2002; Hellmich et al., 2004;

Crolet et al., 1993; Aoubiza et al., 1996; Fritsch & Hellmich, 2007; Hamed et al.,

2010). The aforementioned nanoscaled mineral crystallites are strongly inter-180

acting with the intercrystalline water, as was shown by molecular dynamics

simulations (Bhowmik et al., 2007, 2009; Zahn & Hochrein, 2003; Pan et al.,

2007). This implies formation of liquid crystal-type interfaces, along which the

crystals can glide with respect to each other, in the course of “nanogranular fric-

tion between mineral particles”, as suggested on the basis of a nanoindentation185

campaign by (Tai et al., 2006). This nanomechanical origin of bone plasticity

was mathematically formulated in terms of a hierarchical elasto-plastic homog-

enization approach (Fritsch et al., 2009), which predicted amazingly well exper-

imentally determined strength values of bone samples (Currey, 1975; Burstein

et al., 1975; Reilly & Burstein, 1974; Currey, 1990), as a function of their compo-190

sition and porosity. Moreover, it is interesting to note that the aforementioned

multiscale elasto-plasticity model for bone proposed elasto-plastic phenomena

to occur long before major cracking events may be observed, i.e. even within

standard physiological strain levels. It is this proposition which our present

experimental campaign has directly confirmed: bone behaves elasto-plastically195

even at low load levels, and therefore, only the unloading data of quasi-static

mechanical experiments deliver truly elastic moduli.
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3 Additional activities and future work
In addition to the data described in Section 2, also strength values of some of the
tested samples were recorded, see Appendix A for details. Given the success of
the protocol described herein, a logical next step consists of applying it to other,
particularly lower, length scales. Therefore, a number of sub-or-single-millimeter-
sized samples was produced, by realizing another novel protocol: First the bovine
femur was cleaned from remaining soft tissue, it was roughly cut with a hand saw
into smaller pieces, fitting in the subsequently used diamond saw holder (see Figure
1). Out of these smaller pieces, a few plane-parallel, 2 millimeter-thick slices were

Figure 1: Hard-saw-cut piece of a bovine femur fixed in the diamond saw holder

cut with the aforementioned diamond saw (Isomet, Buehler, USA) under constant
distilled water irrigation, in a way that the bottom as well as the top surface of
each slice was normal to the long bone axis (see Figure 2). To avoid overheating
of the samples a velocity of 7 revolutions per minute (rpm) was chosen, which was
then reduced to 3 rpm to prevent breaking out of the cut-off part from the whole
sample at the very end of the cutting process. To assure a low surface roughness
of cut planes, the saw blade had to be in permanent contact with the sample.
Therefore, an appropriate weight was put on the cantilever of the diamond saw.
Out of the previously mentioned bony slices, 10 cylinders with 1 mm diameter, and
10 cylinders with a 0.6 mm diameter, were drilled out with a diamond hollow drill
(Dr. Müller Diamantmetall AG, Weilheim, Deutschland), see Figure 3. In order to
avoid any deviations from the desired cylindrical geometry (occurring at the end of
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Figure 2: Cutting of bony slices with the diamond saw

the drilling process), a material with a plane surface was put underneath the bone
plate, during the drilling. Furthermore, in order to overcome sample heating,
a water cooled step-wise drilling method was chosen. The cylindrical samples
characterized by the diameter of 0.6 mm had to undergo further preparation steps,
because the diameter of the very top differed significantly from the one of the very
bottom. To overcome this, each sample was mounted in a hole made in a 1.4 mm
thick metal plate in a way that this irregular distal parts were ”sticking out” of
the metal plate. Subsequently, this ”sticking out” parts were polished away with
a 800 CAMI sandpaper. Finally, exemplary microscopic images of the resulting
samples can be seen in Figure 4.
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Figure 3: Drilling of cylindrical samples out of a previously cut slice

Figure 4: Exemplary light-microscopy images of the millimeter-sized samples
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A Appendix I: Sample characterization
Exemplary images of one of the tested samples, as produced and after the destruc-
tive test to determine the ultimate stress and strain, can be seen in Fig. 5 and
6, respectively. The ultimate stress was thereby recognized as the maximum force
which a sample withstood over its cross-sectional area; the ultimate strain was
identified as the corresponding longitudinal displacement (corrected with respect
to the complaince of the testing steup as described in Subsection 2.2 in Chapter 2)
over the specimen’s height. Full sample characterization, including the aforemen-
tioned ultimate values, is given in Tables 1,2 and 3. Recorded unloading branches
of the stress-strain characteristics with their linear fits (computed as described in
Subsection 2.2 of the Chapter 2) as well as ultimate stress and strain values are
shown in Fig. (7-27).

Figure 5: Exemplary cortical
bone sample: as produced

Figure 6: Exemplary cortical
bone sample: after failure
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B Appendix II: Stress-strain curves from quasi-
static mechanical tests

Figure 7: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.063 mm and 0.125 mm, respectively; for
the sample with id H12. Black solid lines indicate linear fits computed as described
in Subsection 2.2 of the Chapter 2; the blue circle depicts the ultimate stress and
strain values
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Figure 8: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.063 mm and 0.125 mm, respectively; for
the sample with id H13. Black solid lines indicate linear fits computed as described
in Subsection 2.2 of the Chapter 2; the blue circle depicts the ultimate stress and
strain values

Figure 9: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.063 mm and 0.125 mm, respectively; for
the sample with id H14. Black solid lines indicate linear fits computed as described
in Subsection 2.2 of the Chapter 2; the blue circle depicts the ultimate stress and
strain values
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Figure 10: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.063 mm and 0.125 mm, respectively; for
the sample with id H15. Black solid lines indicate linear fits computed as described
in Subsection 2.2 of the Chapter 2; the blue circle depicts the ultimate stress and
strain values

Figure 11: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.063 mm and 0.125 mm, respectively; for
the sample with id H16. Black solid lines indicate linear fits computed as described
in Subsection 2.2 of the Chapter 2; the blue circle depicts the ultimate stress and
strain values
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Figure 12: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.063 mm and 0.125 mm, respectively; for
the sample with id H17. Black solid lines indicate linear fits computed as described
in Subsection 2.2 of the Chapter 2; the blue circle depicts the ultimate stress and
strain values

Figure 13: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.063 mm and 0.125 mm, respectively; for
the sample with id H18. Black solid lines indicate linear fits computed as described
in Subsection 2.2 of the Chapter 2; the blue circle depicts the ultimate stress and
strain values
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Figure 14: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.063 mm and 0.125 mm, respectively; for
the sample with id H19. Black solid lines indicate linear fits computed as described
in Subsection 2.2 of the Chapter 2; the blue circle depicts the ultimate stress and
strain values

Figure 15: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.063 mm and 0.125 mm, respectively; for
the sample with id H20. Black solid lines indicate linear fits computed as described
in Subsection 2.2 of the Chapter 2; the blue circle depicts the ultimate stress and
strain values
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Figure 16: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.063 mm and 0.125 mm, respectively; for
the sample with id H21. Black solid lines indicate linear fits computed as described
in Subsection 2.2 of the Chapter 2; the blue circle depicts the ultimate stress and
strain values

Figure 17: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.063 mm and 0.125 mm, respectively; for
the sample with id H22. Black solid lines indicate linear fits computed as described
in Subsection 2.2 of the Chapter 2; the blue circle depicts the ultimate stress and
strain values
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Figure 18: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.063 mm and 0.125 mm, respectively; for
the sample with id H23. Black solid lines indicate linear fits computed as described
in Subsection 2.2 of the Chapter 2; the blue circle depicts the ultimate stress and
strain values

Figure 19: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.063 mm and 0.125 mm, respectively; for
the sample with id H24. Black solid lines indicate linear fits computed as described
in Subsection 2.2 of the Chapter 2; the blue circle depicts the ultimate stress and
strain values
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Figure 20: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.063 mm and 0.125 mm, respectively; for
the sample with id H25. Black solid lines indicate linear fits computed as described
in Subsection 2.2 of the Chapter 2; the blue circle depicts the ultimate stress and
strain values

Figure 21: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.063 mm and 0.125 mm, respectively; for
the sample with id H26. Black solid lines indicate linear fits computed as described
in Subsection 2.2 of the Chapter 2; the blue circle depicts the ultimate stress and
strain values
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Figure 22: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.063 mm and 0.125 mm, respectively; for
the sample with id H27. Black solid lines indicate linear fits computed as described
in Subsection 2.2 of the Chapter 2; the blue circle depicts the ultimate stress and
strain values

Figure 23: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.063 mm and 0.125 mm, respectively; for
the sample with id H28. Black solid lines indicate linear fits computed as described
in Subsection 2.2 of the Chapter 2; the blue circle depicts the ultimate stress and
strain values
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Figure 24: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.063 mm and 0.125 mm, respectively; for
the sample with id H29. Black solid lines indicate linear fits computed as described
in Subsection 2.2 of the Chapter 2; the blue circle depicts the ultimate stress and
strain values

Figure 25: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.063 mm and 0.125 mm, respectively; for
the sample with id H30. Black solid lines indicate linear fits computed as described
in Subsection 2.2 of the Chapter 2; the blue circle depicts the ultimate stress and
strain values
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Figure 26: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.063 mm and 0.125 mm, respectively; for
the sample with id H31. Black solid lines indicate linear fits computed as described
in Subsection 2.2 of the Chapter 2; the blue circle depicts the ultimate stress and
strain values

Figure 27: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.063 mm and 0.125 mm, respectively; for
the sample with id H32. Black solid lines indicate linear fits computed as described
in Subsection 2.2 of the Chapter 2; the blue circle depicts the ultimate stress and
strain values
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Figure 28: Unloading branches of a stress-strain characteristics stemming from
mechanical tests, with a final displacements of 0.048 mm and 0.097 mm for the
sample with id K1. Black solid lines indicate linear fits computed as described
in subsection 2.2 of the Chapter 2; the blue circle depicts the ultimate stress and
strain values
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Figure 29: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.048 mm and 0.097 mm for the sample with
id K2. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values

Figure 30: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.048 mm and 0.097 mm for the sample with
id K3. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values
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Figure 31: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.048 mm and 0.097 mm for the sample with
id K4. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values

Figure 32: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.048 mm and 0.097 mm for the sample with
id K5. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values
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Figure 33: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.048 mm and 0.097 mm for the sample with
id K6. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values

Figure 34: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.048 mm and 0.097 mm for the sample with
id K7. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values
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Figure 35: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.048 mm and 0.097 mm for the sample with
id K8. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values

Figure 36: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.048 mm and 0.097 mm for the sample with
id K9. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values
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Figure 37: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.048 mm and 0.097 mm for the sample with
id K9. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values

Figure 38: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.048 mm and 0.097 mm for the sample with
id K10. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values
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Figure 39: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.048 mm and 0.097 mm for the sample with
id K11. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values

Figure 40: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.048 mm and 0.097 mm for the sample with
id K12. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values
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Figure 41: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.048 mm and 0.097 mm for the sample with
id K13. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values

Figure 42: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.048 mm and 0.097 mm for the sample with
id K14. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values
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Figure 43: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.048 mm and 0.097 mm for the sample with
id K15. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values

Figure 44: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.048 mm and 0.097 mm for the sample with
id K16. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values
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Figure 45: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.048 mm and 0.097 mm for the sample with
id K17. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values

Figure 46: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.048 mm and 0.097 mm for the sample with
id K18. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values
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Figure 47: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.048 mm and 0.097 mm for the sample with
id K19. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values

Figure 48: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.048 mm and 0.097 mm for the sample with
id K20. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values

61



Figure 49: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.048 mm and 0.097 mm for the sample with
id K21. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values
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Figure 50: Unloading branches of a stress-strain characteristics stemming from
mechanical tests, with a final displacements of 0.027 mm and 0.054 mm for the
sample with id J1. Black solid lines indicate linear fits computed as described in
subsection 2.2 of the Chapter 2; the blue circle depicts the ultimate stress and
strain values
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Figure 51: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.027 mm and 0.054 mm for the sample with
id J2. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values

Figure 52: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.027 mm and 0.054 mm for the sample with
id J3. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values
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Figure 53: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.027 mm and 0.054 mm for the sample with
id J4. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values

Figure 54: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.027 mm and 0.054 mm for the sample with
id J5. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values
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Figure 55: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.027 mm and 0.054 mm for the sample with
id J6. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values

Figure 56: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.027 mm and 0.054 mm for the sample with
id J7. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values
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Figure 57: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.027 mm and 0.054 mm for the sample with
id J8. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values

Figure 58: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.027 mm and 0.054 mm for the sample with
id J9. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values
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Figure 59: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.027 mm and 0.054 mm for the sample with
id J9. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values

Figure 60: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.027 mm and 0.054 mm for the sample with
id J10. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values
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Figure 61: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.027 mm and 0.054 mm for the sample with
id J11. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values

Figure 62: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.027 mm and 0.054 mm for the sample with
id J12. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values
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Figure 63: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.027 mm and 0.054 mm for the sample with
id J13. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values

Figure 64: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.027 mm and 0.054 mm for the sample with
id J14. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values
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Figure 65: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.027 mm and 0.054 mm for the sample with
id J15. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values

Figure 66: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.027 mm and 0.054 mm for the sample with
id J16. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values
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Figure 67: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.027 mm and 0.054 mm for the sample with
id J17. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values

Figure 68: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.027 mm and 0.054 mm for the sample with
id J18. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values
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Figure 69: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.027 mm and 0.054 mm for the sample with
id J19. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values

Figure 70: Unloading portions of stress-strain curves obtained from mechanical
tests with maximum displacements of 0.027 mm and 0.054 mm for the sample with
id J20. Black solid lines indicate linear fits computed as described in Subsection
2.2 of the Chapter 2; the blue circle depicts the ultimate stress and strain values
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C Appendix III: Matlab source code used to de-
rived the Young’s moduli from the unloading
branches of the stress-strain characteristics

c l c ; c l e a r a l l ;
d=[7.82 7 .79 7 .83 7 .8 7 .84 7 .85 7 .82 7 .8 7 .85

7 .82 7 .83 7 .85 7 .83 7 .82
7 .84 7 .83 7 .82 7 .87 7 .85 7 .85 7 .84 7 . 8 6 ] ; %in mm

h=[12.76 12 .47 12 .86 12 .38 12 .52 12 .68 12 .67 12 .55
12 .47 12 .38 12 .49 12 .47 12 .48 12 .46 12 .48 12 .46 12 .42
12 .49 12 .43 12 .53 12 .43 1 2 . 5 6 ] ; % in mm

sample =[12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30 31 3 2 ] ;

pre load =[30 50 50 130 60 40 30 30 50 50 70 30 30 60 20
50 60 80 50 50 40 2 0 ] ; %in N

s i g m a s t e l l e=ze ro s ( l ength ( sample ) , 1 ) ;

s t a r t 1 =40;
s t a r t 2 =40;
f o r i =1: l ength ( sample )
i m p o r t f i l e ( [ ’ raw data /h ’ , num2str ( sample ( i ) ) , ’ . txt ’ ] ) ;
Nachg i eb igke i t=Kraft /71 ;
Kraft=Kraft+pre load ( i )/1000;% in KN
e p s i l o n =(Weg−Nachg i eb igke i t )/h( i )∗100 ;
sigma=Kraft / ( ( d( i ) )ˆ2∗ pi /4)∗10ˆ3 ;
x werte ( : , i )= e p s i l o n ( 1 : 1 2 5 0 ) ;
y werte ( : , i )=sigma ( 1 : 1 3 0 0 ) ;

%f i g u r e

sigma max ( i )=max( sigma ) ;

s i g m a s t e l l e ( i )= f i n d ( sigma==sigma max ( i ) ) ;
eps i lon max ( i )= e p s i l o n ( s i g m a s t e l l e ( i ) ) ;
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[ max1 pos1 ]=max( sigma ( 1 : 4 0 0 ) ) ;
[ max2 pos2 ]=max( sigma ( 1 : 1 2 0 0 ) ) ;

s t a r t 1 ( i )=pos1 ;
s t a r t 2 ( i )=pos2 ;

%l i n e a r Regess ion
SSxy1=0;
SSxx1=0;
SSyy1=0;
f o r k =20:150;

s t ep l eng th1=k ;
sigma mean1=mean( sigma ( pos1 : pos1+step l eng th1 ) ) ;
epsi mean1=mean( e p s i l o n ( pos1 : pos1+step l eng th1 ) ) ;

f o r j =1: l ength ( sigma ( pos1 : pos1+step l eng th1 ) ) ;
b=(sigma ( j+pos1)−sigma mean1 )∗ ( e p s i l o n ( j+pos1)−epsi mean1 ) ;
SSxy1=b+SSxy1 ;

a=( e p s i l o n ( j+pos1)−epsi mean1 ) ˆ 2 ;
SSxx1=SSxx1+a ;
c=(sigma ( j+pos1)−sigma mean1 ) ˆ 2 ;
SSyy1=SSyy1+c ;

end
steig EModul1=SSxy1/SSxx1 /10 ;

s t e i g=sigma mean1−steig EModul1 ∗10∗ epsi mean1 ;
y=sigma ( pos1+step l eng th1 ) ;
x=(y−s t e i g )/ steig EModul1 /10 ;
r e l =(x−e p s i l o n ( pos1+step l eng th1 ) ) ;

e 1 r e l ( i , k)= r e l ;
e r e l ( k)= r e l ;
e1 mean ( i , k)=mean( e r e l ) ;
e 1 s td ( i , k)=std ( e r e l ) ;
i f k==150;

e r e l =0;
end
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s mean1 ( i , k)=sigma mean1 ;
e mean1 ( i , k)=epsi mean1 ;

Reg EModul1 ( i , k)=SSxy1/SSxx1 /10 ;
R2 1 ( i , k)=SSxy1 ˆ2/( SSxx1∗SSyy1 ) ;

end

SSxy2=0;
SSxx2=0;
SSyy2=0;
f o r k =20:300;

s t ep l eng th2=k ;
sigma mean2=mean( sigma ( pos2 : pos2+step l eng th2 ) ) ;
epsi mean2=mean( e p s i l o n ( pos2 : pos2+step l eng th2 ) ) ;

f o r j =1: l ength ( sigma ( pos2 : pos2+step l eng th2 ) ) ;
b=(sigma ( j+pos2)−sigma mean2 )∗ ( e p s i l o n ( j+pos2)−epsi mean2 ) ;
SSxy2=b+SSxy2 ;

a=( e p s i l o n ( j+pos2)−epsi mean2 ) ˆ 2 ;
SSxx2=SSxx2+a ;
c=(sigma ( j+pos2)−sigma mean2 ) ˆ 2 ;
SSyy2=SSyy2+c ;

end
steig EModul2=SSxy2/SSxx2 /10 ;

s t e i g=sigma mean2−steig EModul2 ∗10∗ epsi mean2 ;
y=sigma ( pos2+step l eng th2 ) ;
x=(y−s t e i g )/ steig EModul2 /10 ;
r e l =(x−e p s i l o n ( pos2+step l eng th2 ) ) ;

e 2 r e l ( i , k)= r e l ;
e r e l ( k)= r e l ;
e2 mean ( i , k)=mean( e r e l ) ;
e 2 s td ( i , k)=std ( e r e l ) ;
i f k==300

e r e l =0;
end
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s mean2 ( i , k)=sigma mean2 ;
e mean2 ( i , k)=epsi mean2 ;

R2 2 ( i , k)=SSxy2 ˆ2/( SSxx2∗SSyy2 ) ;
Reg EModul2 ( i , k)=SSxy2/SSxx2 /10 ;
end

end
R2 1 ( : , ˜ any ( R2 1 ) ) = [ ] ;
R2 2 ( : , ˜ any ( R2 2 ) ) = [ ] ;
e mean1 ( : , ˜ any ( e mean1 ) ) = [ ] ;
s mean1 ( : , ˜ any ( s mean1 ) ) = [ ] ;
e mean2 ( : , ˜ any ( e mean2 ) ) = [ ] ;
s mean2 ( : , ˜ any ( s mean2 ) ) = [ ] ;
e 1 s td ( : , ˜ any ( e1 s td ) ) = [ ] ;
e 2 s td ( : , ˜ any ( e2 s td ) ) = [ ] ;

[ e 1 s td , b1 ] = min ( e1 s td ( 1 : end , ( s t a r t 1 +1): end ) , [ ] , 2 ) ;
[ e 2 s td , b2 ] = min ( e2 s td ( 1 : end , ( s t a r t 2 +1): end ) , [ ] , 2 ) ;
Reg EModul1 ( : , ˜ any ( Reg EModul1 ) ) = [ ] ;
[ R2 1max , b1notused ] = max( R2 1 , [ ] , 2 ) ;
Reg EModul2 ( : , ˜ any ( Reg EModul2 ) ) = [ ] ;
[ R2 2max , b2notused ] = max( R2 2 , [ ] , 2 ) ;

R2 1= transpose ( R2 1 ) ;
R2 2= transpose ( R2 2 ) ;

Reg EModul1=transpose ( Reg EModul1 ) ;
Reg EModul2=transpose ( Reg EModul2 ) ;

s mean1=transpose ( s mean1 ) ;
e mean1=transpose ( e mean1 ) ;

s mean2=transpose ( s mean2 ) ;
e mean2=transpose ( e mean2 ) ;
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z1 =0;
z2 =0;
f o r n=1: l ength ( sample ) ;

j 1=b1 (n)+z1+s t a r t 1 ;
x1 (n)=e mean1 ( j1 ) ;
y1 (n)=s mean1 ( j1 ) ;
R2 a (n)=R2 1 ( j1 ) ;
EModul1 (n)=Reg EModul1 ( j 1 ) ;

z1=j1+length ( R2 1)−b1 (n)− s t a r t 1 ;

j 2=b2 (n)+z2+s t a r t 2 ;
x2 (n)=e mean2 ( j2 ) ;

y2 (n)=s mean2 ( j2 ) ;
R2 b (n)=R2 2 ( j2 ) ;

EModul2 (n)=Reg EModul2 ( j 2 ) ;
z2=j2+length ( R2 2)−b2 (n)− s t a r t 2 ;

a1 (n)=y1 (n)−EModul1 (n)∗10∗x1 (n ) ;
y 1=y werte ( s t a r t 1 (n ) , n ) :−1/100:
y werte ( s t a r t 1 (n)+b1 (n)+ sta r t1 , n ) ;
x 1=(y 1−a1 (n ) )/ EModul1 (n )/10 ;

a2 (n)=y2 (n)−EModul2 (n)∗10∗x2 (n ) ;
y 2=y werte ( s t a r t 2 (n ) , n ) :−1/100:
y werte ( s t a r t 2 (n)+b2 (n)+ sta r t2 , n ) ;
x 2=(y 2−a2 (n ) )/ EModul2 (n )/10 ;

f i g u r e

p l o t (−x werte ( s t a r t 1 (n ) : 3 9 8 , n) ,− y werte ( s t a r t 1 (n ) : 3 9 8 , n ) , ’ c ’ ,
−x werte ( s t a r t 2 (n ) : 1 1 98 , n) ,− y werte ( s t a r t 2 (n ) : 1 1 98 , n)
, ’m’ , ’ l inewidth ’ , 0 . 7 )
hold on
p lo t (−eps i lon max (n) ,− sigma max (n ) , ’ o ’ , ’ l inewidth ’ , 2 )

p l o t (−x 1 ,−y 1 , ’ co lo r ’ , ’ k ’ , ’ l inewidth ’ , 2 . 5 )
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p lo t (−x 2 ,−y 2 , ’ co lo r ’ , ’ k ’ , ’ l inewidth ’ , 2 . 5 )
%Plot Export

g r id on
y l a b e l ( ’ s t r e s s \ sigma [MPa] ’ )
x l a b e l ( ’ s t r a i n \ e p s i l o n [%] ’ )

t i t l e ( [ ’H’ , num2str ( sample (n ) ) ] ) ;
% s e t ( gca , ’ xdir ’ , ’ r eve r s e ’ ) ;
% s e t ( gca , ’ ydir ’ , ’ r eve r s e ’ ) ;
xl im ([−2.4 0 ] )
ylim ([−225 0 ] )
hold on
saveas ( gcf , [ ’ p i c /H’ , num2str ( sample (n ) ) ] , ’ jpg ’ ) ;
% e x p o r t f i g ( gcf , [ ’ img / ’ , num2str ( sample (n ) ) , ’ . eps ’ ] , . . .
% ’ width ’ , 6 , ’ fontmode ’ , ’ f i xed ’ , . . .
% ’ co lo r ’ , ’ cmyk ’ , ’ f o n t s i z e ’ , 1 3 , ’ LineWidth ’ , 3 ) ;

c l o s e a l l

e 1 (n)=x werte ( s t a r t 1 (n ) ) ;
e 2 (n)=x werte ( s t a r t 2 (n ) ) ;

end

e 1=transpose ( e 1 ) ;
e 2=transpose ( e 2 ) ;
EModul1=transpose (EModul1 ) ;
EModul2=transpose (EModul2 ) ;

sample= transpose ( sample ) ;
sigma max=transpose ( sigma max ) ;
eps i lon max=transpose ( eps i lon max ) ;
%z =[ sample EModul1 EModul2 sigma max eps i lon max e 1 e 2 ]
z=EModul1
z=EModul2
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