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Abstract

Data exchange is the problem where data conforming to a source schema
is transformed into data conforming to a target schema. Although the data
exchange problem was already described in the 1970s, its logical foundations
have not been studied until very recently. A bit over a decade ago data
exchange received new significance with the increasing importance of the
internet and the various data formats that it has brought with it. Since
then, data exchange has become a very active area of database research. In
the first place, data exchange of relational data has been investigated. More
recently, data exchange research has been extended to other data models
such as knowledge bases and XML.
The goal of this master’s thesis is to summarize the state of the art in data
exchange. Therefore, the available literature is surveyed and a selection of
the most important results in this area of research is presented. The main
issues that will be discussed are finding a proper formalism for expressing
expressing the relationship between the source and the target schema, val-
idating the solutions, materializing solutions, and answering queries posed
over the target schema with respect to the source data. We focus in the
range of this work on data exchange over relational data, knowledge bases
and XML data.

iii



Kurzfassung

Data Exchange ist das Problem in dem Daten mit einer Struktur entspre-
chend eines Startschemas auf eine Art und Weise umgewandelt werden, so-
dass die Struktur der transformierten Daten dem eines Zielschemas entspre-
chen. Obwohl das Problem bereits in den 1970er Jahren beschrieben wurde,
waren die formalen Grundlagen von Data Exchange bis vor kurzem uner-
forscht. Vor etwas mehr als einem Jahrzehnt erlangte das Data Exchange
Problem, durch die schnelle Ausbreitung des Internets und den verschie-
denen neuen Datenformaten welche es mit sich brachte, neue Wichtigkeit.
Seitdem ist Data Exchange eines der meist diskutierten Problemen in der
Datenbankforschung. In erster Linie wurde Data Exchange für das relatio-
nale Datenmodell untersucht. Vor kurzem jedoch wurde die Data Exchange
Forschung auf weiter Datenmodelle erweitert, wie zum Beispiel auf Wissens-
datenbanken (Knowledge Bases) und XML.
Das Ziel dieser Diplomarbeit ist den Stand der Technik von Data Exchange
aufzuzeigen. Deshalb werden verfügbare wissenschaftliche Arbeiten begut-
achtet und eine Auswahl der wichtigsten Ergebnisse präsentiert. Die zentra-
len Probleme in Data Exchange sind: das Finden eines geeigneten Forma-
lismus um die Beziehung des Startschemas mit dem Zielschema ausdrücken
zu können, das Erkennen von Lösungen, die Konstruktion von Lösungen
und das Beantworten von Abfragen über das Zielschema in Hinblick auf die
Startdaten. Der Fokus dieser Arbeit liegt auf Data Exchange über relationale
Daten, Wissensdatenbanken und XML Daten.
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CHAPTER 1
Introduction

Data processing was one of the earliest applications for the computer tech-
nology. As the amount of data increased, the need to handle data in a struc-
tured way emerged. In particular, data values associated with each other
should be managed in a way, such that similar data can be handled in a
similar way. The key concept therefore were schemata, which are essentially
specifications of data structures. Hence, similar data is structured such that
they conform to the same schema.
Data exchange is the problem where data conforming to a source schema
is transformed into data conforming to a target schema. Data exchange
appears every time when data sets have to be exchanged between two appli-
cations. One of its earliest descriptions was in the 1970s in the EXPRESS
system [62], which exchanged data between hierarchical schemata. Since
then the data exchange problem remained recurrent. A bit over a decade
ago data exchange received new significance with the increasing importance
of the internet and the various data formats that it has brought with it.
For long time data exchange was mainly solved in a procedural way. The
main reason for that was that although data exchange was a prevalent prob-
lem, its logical foundations had not been studied. According to [14] there are
two explanations for that. On the one hand database research was concen-
trated on scenarios with a single database. On the other hand, there was no
adequate formal model for data exchange known. Fagin, Kolaitis, Miller and
Popa [37] presented at ICDT 2003 for relational data such a model, which
was soon extended for other data formats.
Fagin et al. [37] based their formal model for data exchange on schema map-
pings. A schema mapping is a triple consisting of a schema for the source
data, a schema for the target data, and a set of logical formulae that de-
scribe the relationship between both schemata. Schema mappings are the
main building blocks for many other data management applications that in-
volve sharing or transformation of data such as information integration [52],
metadata management [19], and peer-to-peer data management systems [47].
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The data integration problem [52] is the most closely related problem to
data exchange. In data integration data is located in different sources and
gets accessed in a unified way through a single virtual view. It is specified
by a schema mapping consisting of a local schema, a global schema, and
logical formulae that connect the local schema and the global schema. The
main difference between data exchange and data integration is that in data
exchange source data is actually transformed into target data, while in data
integration the target is virtual and data remains in the source. Data ex-
change and data integration have many properties in common which recently
have been studied in [43].
Data exchange was initially investigated over the relational data model [37]
and was later adapted to the XML data model [9], to knowledge bases [10]
and to graph databases [16]. Data exchange over relational data was ex-
tensively studied and is nowadays well understood. Data exchange over the
XML data model also received substantial attention, but there remain still
open questions. The research on data exchange with knowledge bases and
graph databases started quite recently and accordingly there is still room
for discussion.
The goal of this master’s thesis is to summarize the state of the art in data
exchange. The main issues that will be discussed are finding a proper formal-
ism for expressing the dependencies, validating the solutions, materializing
solutions, and answering queries posed over the target schema with respect
to the source data. Therefore, the available literature is surveyed and a se-
lection of the most important results in this area of research is presented.
We focus in the range of this work on data exchange over relational data,
knowledge bases and XML data.
This thesis is organized as follows. Chapter 2 fixes the notation of the re-
lational data model and the XML data model. It further recapitulates the
concepts of incomplete data and query answering. Chapter 3 discusses data
exchange over relational data and further subsequent problems, like query
answering or the composition of two schema mappings. Chapter 4 studies
data exchange over knowledge bases. The knowledge bases used in this sce-
nario are an extension of relational data and allow us to reuse many of the
techniques from Chapter 2. Data exchange over XML trees is investigated
in Chapter 5. Even though XML also generalizes the relational data model,
many new formalisms have to be found to cover the tree structure of XML.
Finally, Chapter 6 recapitulates the discussed results and gives some con-
cluding remarks.
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CHAPTER 2
Preliminaries

2.1 Relational Data
2.1.1 Data Model
In this section we recapitulate the basic characterization of the relational
data model [63, 26]. The relational data model separates the structure of
data and it content.
A schema S is a finite sequence of relation symbols ⟨R1, . . . , Rn⟩. Each rela-
tion symbol Ri has a finite set of attributes. We say relation symbol Ri has
arity m, or for short Ri is m-ary, if Ri contains m attributes. Moreover, we
associate each schema with a countably infinite domain D.
An instance I over the schema S assigns to every m-ary relation symbol
Ri in S an m-ary relation RIi . A relation RIi is a set of m-ary tupels. A
tuple maps all m attributes of Ri to a value in the corresponding domain D.
We write RIi (t) to denote that a tuple t occurs in relation RIi and call this
occurrence a fact. As an alternative of saying that instance I is considered
over schema S, we sometimes say that instance I conforms to schema S.
We denote with Inst(S) the set of all instances conforming to schema S. We
write Da for the active domain of I, i.e. the subset of values from D that
are appearing in I.
If we have a schema S with relations ⟨S1, . . . , Sm⟩ and a schema T with rela-
tions ⟨T1, . . . , Tn⟩, we denote with ⟨S,T⟩ the combined schema ⟨S1, . . . , Sm,
T1, . . . , Tn⟩. Analogously, if we have instance I over S and instance J over
T, we denote with ⟨I, J⟩ an instance K over ⟨S,T⟩ so that SIi = SKi and
T Jj = TKi+j , for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Furthermore, if we consider two
schemas, say S and T, we always assume that both schemas have no rela-
tions symbols in common. We will sometimes abuse the notation and write
Ri for the relation symbol and for the relation itself. This inaccurateness is
common in the literature, since it is almost always clear from the context if
the relation or the relation symbol is meant.
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2.1.2 Incompleteness
An instance in the relational data model contains values from a domain
consisting of a countably infinite set of constants, denoted with Const. An
instance constructed only with those constants is called complete. In or-
der to widen practicability of the relational data model, we must be able
to represent incomplete information [28]. As it is common in the database
community, we consider incomplete information in instances as present but
unknown values. Thus, an instance with incomplete information can be inter-
preted by complete instances, where the unknown information is represented
as elements from Const. The notion of representation systems [49, 6, 10] al-
lows to define objects with different interpretations. A representation system
is a tuple (W, rep), where W is a set of representatives, and rep is a function
that assigns to every element in W a set of interpretations. In the literature
are many different formalisms proposed which define how the representatives
W and the function rep have to look like [49, 2]. We restrict us to the two
for data exchange most relevant representation systems, namley naive and
conditional tables. We stay close to the notation for incomplete information
used in [10].
In the first approach we represent incomplete information with elements
from a set of variables, denoted as Var. The literature refers to the elements
of Var also often with the term labeled nulls. A naive instance I of a schema
S assigns to every m-ary relation symbol R in S an m-ary relation RI ⊆
(Const∪Var)m, where Const and Var are assumed to be disjoint. The intuition
is that if we do not know the exact value for an attribute in a fact we use an
element from Var as replacement for the concrete value from Const. Thus,
a naive instance represents a possibly infinite set of complete instances,
where in each complete instance the elements from Var are replaced with
elements from Const. We call such complete instances, which describe an
interpretation of a naive instance, possible worlds. More formally, let vars(I)
be the set of variables occurring in I, and let ν : vars(I)→ Const be a variable
substitution. We denote with ν(RI) the fact RI , where each variable n is
replaced by its image ν(n). The set of possible worlds for a naive instance I
over a schema S is defined as follows:

repnaive(I) = {J ∈ Inst(S) |there is a ν : vars(I)→ Const such that
ν(RI) ⊆ RJ holds for every R ∈ S}

It is important to notice that we are allowed to reuse variables in an in-
stance to express that the same unknown element appears several times in
an instance.
The second approach extends the concept of naive instances with local con-
ditions. Local conditions are Boolean expressions with atoms of the form
x = y or x ̸= y with x ∈ Var, y ∈ (Const ∪ Var) and Boolean connectives ∧
and ∨. A conditional instance I assigns to every m-ary relation symbol R in
S a pair (RI , ρIR), where RI ⊆ (Const ∪ Var)m and ρIR is a function that as-
signs to every fact RI(t) a local condition. The semantics of the conditional
instances is that every possible world contains only those facts for which
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the local condition is satisfied. More formally, we denote with ν(RI , ρIR) the
set RI of facts, where every variable n is replaced by its image ν(n) and
the local condition is satisfied. The set of possible worlds for a conditional
instance I over a schema S is defined as follows:

repcond(I) = {J ∈ Inst(S) |there is a ν : vars(I)→ Const such that
ν(RI , ρIR) ⊆ RJ holds for every R ∈ S}

We call a local condition positive if it does not contain an atom of the
form x ̸= y. An important fragment of conditional instances represent
positive conditional instances, where the local condition is positive for ev-
ery corresponding fact. Accordingly, the function reppos is defined similar
to the function repcond with the difference that ρIR assigns to every fact
RI(t) a positive local condition. Let Wnaive, Wcond and Wpos be the set
of all possible naive, conditional and positive conditional instances, respec-
tively. Then Rnaive = {Wnaive, repnaive}, Rcond = {Wcond, repcond} and
Rpos = {Wpos, reppos} are representation systems. As umbrella term for
naive, conditional and positive conditional instances we use the term in-
complete instances.

2.1.3 Query Answering
In this section we discuss query answering over incomplete data. In particular
we highlight the semantics of querying over incomplete data and recall the
query languages relational algebra and relational calculus. Furthermore, we
return to mind two important special cases of both query languages. We
stay close to the statements proposed in [64].
Let J be a complete instance over schema S. A query q over S is a mapping
that transforms instance J into a single relation. We say to this relation
answer of q over J , and denote it with q(J). If the schema and the querying
instance is clear from the context, we use sometimes query q and answer
of q as abbreviation. We are now interested in extending this semantics
to instances containing incomplete information. In Section 2.1.2 we have
argued that an incomplete instance I represents a set of complete instances,
repnaive(I), repcond(I) or reppos(I) respectively. Accordingly, the result of a
query q over an incomplete instance I is a set of answers, consisting of the
answers of the application of q to every possible world from rep(I). Usually,
we are interested in the certain answer of q with respect to I, denoted as
certain(q, I), i.e., those tuples that occur in the answer of every possible
world.
Although, we have determined the semantics of queries over incomplete in-
stances, we have to deal with the fact that a set of answers might consist
of infinitely many elements, since incomplete instances have in general in-
finitely many interpretations. It seems natural to use the formalism of rep-
resentation systems to express such sets of answers with single relations. As
a further relaxation we require that an incomplete answer relation has to
preserve only certain answers. More formally, the following equality must

5



hold: ∩
rep(q(I)) =

∩
{q(J) | J ∈ rep(I)}

If this property is fulfilled by a representation system is depending on the
features used in the query. If it is the case we say that we have a weak
representation system. This concept was initially proposed by [49].
We recapitulate now two relevant query languages and present their basic
properties. As first query language we consider relational algebra, that can
be seen as procedural approach for querying data. Let I be an instance over
a schema S. Let RI1, RI2 be two arbitrary relations in I and R1, R2 their
corresponding relation symbols in S. We denote with t[X] the restriction of
tuple t from RI1 to X, where X ⊆ R1. A query over I expressed in relational
algebra is constructed with the following operators:

1. Projection: πX(RI1) = {t[X] | t ∈ RI1}, where X ⊆ R1.
2. Selection: σψ(RI1) = {t ∈ RI1 | ψ(t) = true}, where ψ is a Boolean

expression composed of logical connectives ∧, ∨, ¬ and atoms of the
form A = a or A = B, such that A,B ∈ R1 and a ∈ Const.

3. Union: RI1 ∪RI2, where R1 = R2 and ∪ is the set-theoretical union.
4. Join: RI1 ▷◁ RI2 = {t ∈ R▷◁3 | R3 = R1 ∪R2 ∧ t[R1] ∈ RI1 ∧ t[R2] ∈ RI2}
5. Renaming: ρB←A(RI1) = {ρB←A(t) | t ∈ RI1}, where ρB←A(t) yields a

tuple t′ identical to t over the schema (R1\{A}) ∪ {B}.
6. Difference: RI1−RI2 = RI1\RI2, where \ is the set-theoretical difference.

If we want to indicate that an expression uses only a subset of operators,
we use their first letter as abbreviation. For instance if we have a query
that uses only projection, selection and renaming, we say that the query is a
PSR-expression. Furthermore, we denote a restricted version of the selection
operator, where in ψ the negation is disallowed, with S+. Imielinski and
Lipski [49] showed among other things the following two results:

Theorem 2.1. [49] PS+UJR-expressions are the largest fragment of rela-
tional algebra such that naive instances form a weak representation system.

This result states that if a query contains a difference operator or a selec-
tion with negation, then the resulting naive instance might not preserve the
certain answers.

Theorem 2.2. [49] Conditional instances form a weak representation system
for relational algebra.

It follows that conditional instances have more expressive power than naive
instances. However, for many problems naive instances are sufficient and
entail lower complexity bounds.
The second recalled query language is the relational calculus that presents
a declarative approach and is by far the most significant query language
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for data exchange. We say to queries in the relational calculus often first-
order queries, or FO-queries for short. A first-order query over a schema S
is composed of the following elements:

1. Quantifiers: ∀, ∃
2. Boolean connectives: ∧, ∨, ¬
3. Atomic formulae: relations R(t1, . . . , tk) from S and equalities t1 = t2,

where each ti is either a variable or a constant from D.

Assume a schema S = {R1, . . . , Rn} and an instance I = {RI1, . . . , RIn} over
S. Let the first-order structure MI = ⟨Da, R

I
1, . . . , R

I
n⟩ be the model of I,

and let q(x1, . . . , xk) be a k-ary first-order query over S, where x1, . . . , xk
are free variables. The answer of q(x1, . . . , xk) over I is the set of tuples
{⟨a1, . . . , ak⟩ |MI |= q(a1, . . . , ak)}.
We say a first-order query q is domain independent if and only if we cannot
find an instance I and two domains D1 and D2, both containing the active
domain of I, such that evaluating q over I with domain D1 results in a
different answer than evaluating q over I with domain D2. Codd [27] showed
in 1972 the following fundamental result:

Theorem 2.3. [27] Relational Algebra and the domain independent rela-
tional calculus have the same expressive power.

In other words, the above result means that for every domain independent
first-order query there exists an expression in relational algebra such that
the result is identical over all databases and vice versa.
As next step the complexity of query answering is highlighted. Therefore, we
have to transform the problem of query answering into a decision problem. A
Boolean query is a query with no free variables such that we can either have
an empty tuple or the empty set as result. We write certain(q, I) = true if
the answer of the Boolean query q over an instance I contains the empty
tuple and certain(q, I) = false if the Boolean query results in the empty set.
The problem of evaluating a Boolean query over a given database is defined
as follows:

Problem: QueryEvaluation(q)
Input: a source instance I

Question: is certain(q, I) = true?

Notice that considering only Boolean queries does not lead to a loss of gen-
erality, since there is a PTIME reduction from the problem of computing
the certain answers of a k-ary query to the QueryEvaluation(q) problem.
In this reduction all of the Da

k possible tuples are enumerated and tested
if they are included in the certain answers.
Vardi [65] developed three complexity measures for categorizing query prob-
lems. Combined complexity considers the problem of query evaluation with
arbitrary queries and source instances. It is the most general complexity
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measure in the sense that it respects all sources of complexity. Another
complexity measure is data complexity that considers an arbitrary query
as fixed and examines only the complexity increase from the instance. Data
complexity most adequately reflects the complexity of query evaluation if we
assume that instances exceed queries in their size by far. Thus, in the range
of this work we focus on data complexity. Clearly, QueryEvaluation(q)
refers to data complexity. In addition, query complexity is a complexity
measure where the complexity increase from the instance is considered as
constant and only the complexity resulting from the query is investigated.
Query complexity is from interest if the impact of queries growing in size or
features is studied. It should not come as a surprise that the combined com-
plexity is always at least as high as data complexity and query complexity.
It turns out that the complexity of QueryEvaluation(q) is for complete
and incomplete data not the same. The result by Vardi [65] shows that
QueryEvaluation(q) is tractable for complete instances.

Theorem 2.4. [65] The QueryEvaluation(q) problem, where q is is a pos-
itive existential first order query, is for complete instances in LOGSPACE.

Abiteboul et al. [2] showed that if the input instance contains incomplete in-
formation the complexity for QueryEvaluation(q) increases to intractabil-
ity. Notice that the following result holds for each of the three discussed
representation systems.

Theorem 2.5. [2] The QueryEvaluation(q) problem, where q is is a pos-
itive existential first order query, is for incomplete instances coNP-complete.

Finally, we consider two special cases of queries that have shown advan-
tageous properties for data exchange. The first fragment are conjunctive
queries (CQs) that have the form ∃x1 . . . ∃xnA1 ∧ . . . ∧ Am, where Ai are
atomic formulae. In relational algebra conjunctive queries can be expressed
with SbPJR-expressions, where Sb is a restriction of the selection operator
such that the Boolean expression ψ consists only of one atom of the form
A = a or A = B. An extended form of CQs are union of conjunctive queries
(UCQs) that are in relational calculus a disjunction of conjunctive queries.
They correspond to S+PJRU -expressions in relational algebra.

2.2 XML Data
2.2.1 Data Model
In this section a definition of the notions of XML trees and DTDs is given.
The notations introduced in this section are inspired by the notations used
in [15] and the notations commonly used in XML exchange [9, 4, 3, 30, 23].
We start by assuming the following disjoint countably infinite sets:

• Labels, a set of names for element types,
• Attributes, a set of attribute names which are preceded for better

recognizability by the symbol @, and
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• V , a set of attribute values.
Consider two finite subsets Γ ⊂ Labels and Att ⊂ Attrbiutes. An XML tree
over Γ and Att is a structure T = ⟨U, ↓, ↓∗,→,→∗, lab, (ρa)a∈Att⟩, where

• U is a finite set of node ids, such that U ⊂ N∗ and for all j < i it holds
that if n · i ∈ U then also n · j ∈ U ;

• ↓ is the child relation, defined as n ↓ n · i, and ↓∗ is its reflexive-
transitive closure;

• → is the next-sibling relation, given by n · i → n · (i + 1), and its
reflexive transitive closure is denoted as →∗;

• lab is a labeling function from U to Γ;
• ρa are partial functions from U to V , such that ρa(s) = v holds when

node s ∈ U contains value v ∈ D for the attribute a ∈ Att.
Note that we use the term XML document occasionally as synonym for the
the term XML tree.
A document type definition, or short a DTD, over the finite sets Γ ⊂ Labels
and Att ⊂ Attributes is a triple D = ⟨r, PD, AD⟩ defined as follows:

• r ∈ Γ is the distinguished root symbol.
• PD is a function from Γ to regular expressions over Γ − {r} given by

the grammar
e := ϵ

∣∣ l, l ∈ Γ | e|e | ee | e∗,

where ϵ is the empty string, e|e is the union, ee is the concatenation,
and e∗ is the Kleene star. Moreover, we use the shorthands e+ = ee∗

and e? = e|ϵ. We write frequently l→ e for the expression PD(l) = e.
• AD is a mapping from Γ to subsets of Att, that associates to each label

a possibly empty set of attribute names. To simplify the notation, it
is assumed that the attributes of a label have a specific order. Hence,
a tree node with label l and n attributes is denoted as l(a1, . . . , an).

An XML tree T conforms to a DTD D = ⟨r, PD, AD⟩, denoted as T |= D, if
the label of the root node of T is r, for every node labeled with l the labels
of its children read left-to-right form a string in the language defined by the
regular expression PD(l), and the set of attributes of l is exactly AD(l).
Sometimes DTDs are of interest which are nested relational and represent a
generalization of nested relations. In a nested relational DTD all produced
regular expressions by PD are of the form l → l̂1 · · · l̂m, where each l̂i is
either li, l∗i , l+i or li? and each li is a distinct label. In addition, connecting
for all l → l̂1 · · · l̂m the label l with all labels li results in a graph that has
no cycles.

2.2.2 Tree patterns
A natural way to query an XML tree is to check whether a specific pattern
occurs in a XML document. Such a pattern is basically a recursive descrip-
tion of a root node and a listing of its children and descendants. We use the
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extended notion of patterns as proposed in [4, 3], since they allow, compared
to the patterns used in [9], the usage of the next- and following-sibling axes.
A tree pattern formula over Γ ⊂ Labels and Att ⊂ Attributes is defined by
the grammar

π := l(x)[λ] patterns
λ := ϵ | µ | //π | λ, λ sets
µ := π | π → µ | π →∗ µ sequences

where l ranges over Γ and the wildcard symbol, denoted by _, which matches
every label. We denote with π(x) that the variables in x are used in the tree
pattern π. In particular, every variable in x must occur exactly once in
the tree pattern π. As it is common in the literature, we write sometimes
l(x)/l′(y) for l(x)[l′(y)], and l(x)//l′(y) for l(x)[//l′(y)]. Moreover, we ab-
breviate the tree pattern l(x)[ϵ] with l(x).
We say a tree T satisfies a tree pattern π(x) at node s with variables x
interpreted as a, written as (T, s) |= π(a), if the following conditions hold:

• (T, s) |= l(a) iff s is labeled with l and the attributes of s are a.
• (T, s) |= l(a)[λ1, λ2] iff (T, s) |= l(a)[λ1] and (T, s) |= l(a)[λ2] holds.
• (T, s) |= l(a)[µ] iff (T, s) |= l(a) and s has a child s′ so that (T, s′) |= µ.
• (T, s) |= l(a)[//π] iff (T, s) |= l(a) and s has an descendant s′ such that

(T, s′) |= l(a).
• (T, s) |= π → µ iff (T, s) |= π and s has a sibling s′ so that (T, s′) |= µ.
• (T, s) |= π →∗ µ iff (T, s) |= π and s has a following sibling s′ such

that (T, s′) |= µ.
It is important to point out that if node s satisfies l(a)[λ1, λ2], then λ1 and
λ2 can be witnessed by the the same child of s. We write T |= π(a) if a tree
T satisfies a pattern π at its root node, i.e. if (T, r) |= π(a). Moreover, with
the use of the descendant operator //, all patterns can be transformed into a
pattern that can be witnessed at the root node of a tree. Thus, it suffices to
consider only tree patterns that can be witnessed at the root node of trees.
If we say a tree T satisfies a tree pattern π(x) or write T |= π(x), then the
tree pattern is satisfied for some variable interpretation a. For a tree pattern
π(x) and a tree T , we denote with π(T ) the set {a|T |= π(x)}.
We discuss now basic properties of tree patterns. We start by considering
the problem of checking whether a tree pattern occurs in an XML tree, or
more formally:

Problem: TreePatternEvaluation(π)
Input: a tree T and a tuple a

Question: T |= π(a)?

Since the tree pattern π is in the above problem fixed it is referred as the
data complexity version of the problem. Amano et al. [4] proved the following
result:
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Theorem 2.6. [4] The TreePatternEvaluation(π) problem is DLOG-
SPACE-complete.

In the combined complexity version of the problem, denoted as Tree-
PatternEvaluation, is the tree pattern considered as part of the input.
Amano et al. [4] showed that also for the combined complexity variant of
the problem tree patterns are well behaved and remain tractable.

Theorem 2.7. [4] The TreePatternEvaluation problem is solvable in
PTIME.

We look next at a problem where its asked, whether a tree pattern can
be satisfied in any tree conforming to a specific DTD. This problem has
occurred several times in the literature in different manifestations.

Theorem 2.8. [5, 18, 20, 48, 4] The problem of checking, for a DTD D and
a tree pattern π(x), whether there exists a tree T that conforms to D and
satisfies π(x) is NP-complete.

2.2.3 Query Answering
The previous section specified tree patterns which allowed us to define basic
queries. Essentially, the concept of tree patterns allowed us to determine
whether a given structure is included in an XML tree. This section presents
queries based on tree patterns, which allow projection and comparison of
data values. A conjunctive tree queries is a expression of the form

∃x(π, α) ,

where π is a tree pattern, α is a conjunction of equalities and inequalities,
and each free variable ξ0 is safe, i.e. either ξ0 appears in π or ξ0 = ξ1, ξ1 =
ξ2, . . . , ξk−1 = ξk are equalities in α and ξk appears in π. The semantics
for the existence quantifier, conjunctions, equalities, inequalities, and free
variables is as usual. Observe, that due to definition of tree pattern, con-
junctions among patterns is not necessary. A query q is satisfied by the XML
tree T , denoted as T |= q, if there exists a variable assignment for x and a
valuation of the free variables, such that π and α are satisfied. The output
of a query is the set of valuations of free variables in q, such that T |= q.
The just defined queries form the class CTQ. We also consider unions of
conjunctive tree queries. The class UCTQ consists of queries of the form
q1(x) ∪ . . . ∪ qn(x), where each qi is a query from CTQ.
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CHAPTER 3
Relational Data Exchange

The comprehensive study of the logical foundations of data exchange started
in 2003 on the relational data model with the work of Fagin, Kolaitis, Miller
and Popa [37]. In the following years a large number of subsequent research
papers were published. As a result, relational data represents nowadays the
best understood data model for data exchange. Although, surveys on rela-
tional data exchange have already appeared [50, 14], this chapter aims to
give a more detailed overview of this topic. It is worth to mention that we
focus on data complexity in the complexity analysis of the problems related
to relational data exchange, i.e. we consider only the complexity arising from
the size of the source data.
This chapter is organized as follows. In Section 3.1 the notion of schema
mapping is defined, that essentially describes how source data can be trans-
formed. The key element of schema mappings are logical formulae, called de-
pendencies, that represent the relationship between source and target data.
We consider dependencies in first-order and second-order logic and study
their properties for data exchange with relational data. In Section 3.2 the
problem of materializing solutions for source instances under schema map-
pings specified by first-order or second-order dependencies is studied. We
show that there is for both kinds of formulae an algorithm that produces
in polynomial time a solution if one exists. Section 3.3 considers the eval-
uation of queries posed over solutions. We show that query evaluation is
for UCQs in general coNP-hard, but there are also special cases that allow
efficient computation. In Section 3.4 we discuss the problem where we have
two successive schema mappings given and we search for a third schema
mapping that replaces the previous two. It turns out that for this problem
second-order dependencies are more advantageous than first-order depen-
dencies. Section 3.5 presents a generalization of the topics discussed so far
in relational data exchange, where incomplete source data is allowed. The
key idea is to use a more expressive representation system than the usual
representation system formed by naive instances.
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3.1 Data Exchange
In this section data exchange settings for relational data and its established
notation are introduced. In the two subsequent sections 3.1.1 and 3.1.2, we
focus on the logical formulae that relate two schemas. Moreover, a basic
decision problem is discussed, where we ask if a given source instance can
be transformed. In the range of this chapter data is assumed to be relational
even though it is not explicitly mentioned. We start by giving a formal
definition of the setting considered in data exchange.

Definition 3.1. A data exchange setting is a schema mapping, defined as a
triple M = (S1,S2,Σ) that consists of a source schema S1, a target schema
S2, and a set Σ of logical formulae called dependencies. An instance of a
schema mapping M is an instance ⟨I, J⟩ over ⟨S1,S2⟩ that satisfies every
dependency in Σ, denoted as ⟨I, J⟩ |= Σ. This J is called a solution for I
under M, or for short a solution. The set of all solutions for I under M
is denoted with SolM(I). Inst(M) denotes the set of all instances ⟨I, J⟩ of a
schema mapping M.

In the range of this work, we use the terms ”data exchange setting” and
”schema mapping” interchangeably. Moreover, we call instances conforming
to the source schema S1 source instances. Analogously, we say to instances
conforming to the target schema S2 target instances. As it is common in the
literature, source instances are assumed to be complete, i.e. the domain of
S1 contains only values from Const. In contrast, target instances can have
values from Const ∪ Var.
For the set of dependencies Σ we have to find a proper logical formalism.
We would like to have the property that if instance ⟨I, J⟩ |= Σ, and a second
instance ⟨I ′, J ′⟩ is isomorphic to ⟨I, J⟩, we also have that ⟨I ′, J ′⟩ |= Σ. More
formally, the set Inst(M) should be closed under isomorphisms. Furthermore
we would like to have a logical formalism with high expressivity and at
the same time low complexity bounds for all relevant problems. Obvious
candidates for such a formalism are first-order logic and second-order logic.
Both candidates are preserved under isomorphisms. We will investigate first-
order dependencies and second-order dependencies in Section 3.1.1 and 3.1.2,
respectively.
We will see that the considered formalisms are only able to enforce which
tuples have to be contained in a solution J . They are not able to restrict
that no further tuples can be contained in a valid solution. Thus, schema
mappings have for a source instance in general infinitely many solutions. This
is due the fact that we can take a solution and receive another solution by
adding further tuples. Nevertheless, there are also cases where no solutions
exists. This observation leads to the problem where we ask if for a schema
mapping and a given source instance a solution exists. More formally:

Problem: SolutionExistence(M)
Input: a source instance I

Question: is SolM(I) ̸= ∅?
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SolutionExistence(M) can be seen as the most basic data exchange
problem considered in this context, since every other investigated problem
needs to solve this problem directly or indirectly. Moreover, the logical for-
malism used for specifying the set of dependencies Σ must deliver reasonable
complexity bounds for SolutionExistence(M).

3.1.1 First-Order Dependencies
In this section we investigate first-order logic to express dependencies of
data exchange settings. We show that allowing arbitrary first-order formulas
as dependencies makes the problem of deciding if a source instance has a
solution under a schema mapping undecidable. Moreover, a restriction of
first-order dependencies is introduced which is tractable and still allows to
express interesting constraints. The following theorem follows directly from
Proposition 3.9 in [39]:

Theorem 3.2. [39] There exist a source instance I for a data exchange
setting M = (S1,S2,Σ), where Σ is a single first-order formula, such that
SolutionExistence(M) is undecidable.

Proof. (Sketch) We defineM = (S1,S2,Σ) such that ⟨I, J⟩ ∈ Inst(M), if I
is an encoding of a Turing machine and J encodes a terminating computa-
tion. Σ consists of a first order expression such that J ∈ SolM(I) if and only
if J represents a terminating computation of I. If I is the encoding from a
Turing machine that computes the halting problem, then it is undecidable
to determine if SolM(I) ̸= ∅.
This result demands that we either search for a more suitable logical for-
malism or for a fragment of first-order which is decidable. In [37] Fagin et
al. do the latter and restrict the class of allowed first-order dependencies in
such a way that the set Σ can be split in two sets Σ12 and Σ2:

Definition 3.3. (1) Σ12 is a set of source-to-target tuple-generating de-
pendecies (st-tgds) of the form ∀x(φ(x) → ∃yψ(x,y)), where φ is
a conjunction of atomic formulas over S1 and ψ is a conjunction of
atomic formulas over S2.

(2) Σ2 is a set of target dependencies consisting of tuple-generating de-
pendencies (tgds) of the form ∀x(φ(x)→ ∃yψ(x,y)), where φ and ψ
are conjunctions of atomic formulas over S2, and equality-generating
dependencies (egds) of the form ∀x(φ(x) → xi = xj), where φ is a
conjunction of atomic formulas over S2 and xi, xj are variables of x.

Observe, that in the above defined dependencies, it is required that every
universally quantified variable appears at least once in the antecedent of a
dependency. This requirement ensures that the solutions are domain inde-
pendent, and was introduced in [35]. A data exchange setting using these
dependencies is denoted withM = (S1,S2,Σ12∪Σ2). It is worth mentioning
that in the data integration context [52] source-to-target tgds are known as
Glav assertions. We will call a tgd or st-tgd full if it has no existentially

14



quantified variables, i.e. if it has the form ∀x(φ(x) → ψ(x)). Moreover, for
better readability we omit in examples universal quantifiers. For instance,
we write E(x, y, z)→ ∃wM(x, y, w) instead of writing ∀x∀y∀z(E(x, y, z)→
∃wM(x, y, w)). From now on if we speak about first-order dependencies in a
relational data exchange setting we mean explicitly the dependencies defined
in Definition 3.3.

Example 3.4. LetM = (S1,S2,Σ12∪Σ2) be a schema mapping in which
S1 consists of two binary relations E, F and S2 consists of a ternary relation
M and a binary relation N . The dependencies are defined as follows:

Σ12 = {E(x, y) ∧ E(y, z)→ ∃wM(x, z, w),

F (x, y)→ N(x, y)}
Σ2 = {M(x, y, z) ∧M(w, y, v)→ ∃uN(y, u),

M(x, y, z) ∧M(x,w, v)→ y = w}

Notice that the second dependency in Σ12 is a full source-to-target tgd. We
now ask if for the source instance I = {E(a, c), E(b, c), E(c, d), F (a, b)} a
solution under M exists. A solution for I would be

J1 = {M(a, d, n1),M(b, d, n2), N(a, b), N(d, n3)},

where n1, n2 and n3 are elements from Var. Clearly, an algorithm solving
the SolutionExistence(M) problem must only witness the existence of a
solution. As mentioned earlier, a schema mapping can have more than one
solution. In fact, SolM(I) has infinitely many solutions. Here are some of
them:

J2 ={M(a, d, b),M(b, d, c), N(a, b), N(d, a)},
J3 ={M(a, d, n1),M(b, d, n2), N(a, b), N(d, n3), N(c, d)},
J4 ={M(a, d, n1),M(b, d, n2),M(a, d, d), N(a, b), N(d, n3)},

where n1, n2 and n3 are elements from Var.
Assume now the source instance I ′ = {E(a, b), E(b, c), E(b, d), F (a, b)}. A
solution has to contain the facts M(a, c, n1) and M(a, d, n2), where n1 and
n2 are values from Const ∪ Var. It is easy to see, that these facts contradict
with the egd in Σ2. We conclude that I ′ has no solution.

We introduced these new dependencies with the objective to find a logical
formalism such that the SolutionExistence(M) problem becomes de-
cidable and possibly also tractable. Nevertheless, [51] showed the following
result:

Theorem 3.5. [51] There exist a data exchange setting M = (S1,S2,Σ12 ∪
Σ2) and a source instance I such that SolutionExistence(M) is unde-
cidable.

Proof. The undecidability of SolutionExistence(M) for M = (S1,S2,
Σ12∪Σ2) can be obtained by a reduction from Embedding. Let B = (B, g)
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be a partial algebra, where B is a finite non-empty set, called domain, and
g is a partial binary function from B × B → B. Let A = (A, f) be an
algebra, where A is the domain, and f is a total binary function A×A→ A.
We say that B is embeddable in A if B ⊆ A, and whenever we have that
g(a, b) is defined, a, b ∈ B, we have that f(a, b) = g(a, b). In the decision
problem Embedding we are given a finite partial semigroup and we ask
if its embeddable in a finite semigroup. The undecidability of Embedding
follows immediately from [46, 34].
We are given a partial algebra B = (B, g) defined as above. We define now
a schema mapping M = (S1,S2,Σ12 ∪ Σ2) and a source instance I such
that I has a solution under M if and only if B is embeddable in a finite
semigroup. Schema S1 and schema S2 consist of one ternary relation R and
R′, respectively. Instance I is composed of the facts {(a, b, c) ∈ B3 | g(a, b) =
c}. The dependencies are defined as follows:

Σ12 = {R(x, y, z)→ R′(x, y, z)}
Σ2 = {R′(x, y, z) ∧R′(x, y, w)→ z = w,

R′(x, y, u) ∧R′(y, z, v) ∧R′(u, z, w)→ R′(x, v, w),

R′(x, y, z) ∧R′(x′, y′, z′)→ ∃w1 · · · ∃w9

(R′(x, x′, w1) ∧R′(x, y′, w2) ∧R′(x, z′, w3)∧
R′(y, x′, w4) ∧R′(y, y′, w5) ∧R′(y, z′, w6)∧
R′(z, x′, w7) ∧R′(z, y′, w8) ∧R′(z, z′, w9))}

The source-to-target tgd copies the tuples from relation R to relation R′. We
have three target-dependencies, one egd and two tgds. The egd assure that
the facts in R′ actually encode a partial function. The second target depen-
dency guarantees that the encoded partial function is associative. Clearly,
an instance J satisfying the first two target dependencies is an encoding of a
finite partial semigroup. The last tgd demands that for every two elements
u and v there must be an element w, such that there exists a fact R′(u, v, w)
in a solution for I. In other words, the last target dependency asserts that
the encoded partial semigroup J is actually a total semigroup.
We are now interested in finding a further restriction for the dependen-
cies from Definition 3.3 such that the SolutionExistence(M) problem
becomes decidable. Therefore, we have to understand what causes the un-
decidability.

Example 3.6. Consider the data exchange setting M = (S1,S2,Σ12 ∪
Σ2). Schema S1 and schema S2 consist of one ternary relation R and R′,
respectively. Σ12 and Σ2 are defined as follows:

Σ12 = {R(x, y, z)→ R′(x, y, z)}
Σ2 = {R′(x, y, z)→ ∃wR′(y, w, x)}

We will now examine what facts a solution J would have to contain for source
instance I = {R(a, b, c)}. We start with J ′ = ∅ and add to it successively
tuples to satisfy the dependencies. After satisfying Σ12 we have

J ′ = {R′(a, b, c)}.
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The dependency in Σ2 is now violated and we have to add the tupleR′(b, n1, a),
where n1 is an element of Var:

J ′ = {R′(a, b, c), R′(b, n1, a)}.

The existence of R′(b, n1, a) forces the tgd in Σ2 to fire again:

J ′ = {R′(a, b, c), R′(b, n1, a), R(n1, n2, b)},

where n1 and n2 are elements of Var. The dependencyR′(x, y, z)→ R′(y, w, x)
is still violated. It is easy to see that the dependency remains violated
even if we keep adding tuples. The same behavior can be observed with
the schema mapping from the proof of Theorem 3.5 and source instance
{R(a, b, c), R(d, e, f)}.

Intuitively, the undecidability is caused from tgds in Σ2 that generate tuples
which force the tgd to fire again. This behavior can be triggered from a single
tgd or a series of tgds. Deutsch and Popa developed the following approach
to detect such cases in 2001 and utilized it independently in [33] and [37].

Definition 3.7. A dependency graph for a set Σ2 of tgds over schema S2

is a directed graph defined as follows:
1. For every attribute A occurring in a relation symbol R in S2 there is

a distinct node for the pair (R,A), called position.
2. For every tgd φ(x)→ ∃yψ(x,y) in Σ2 and every occurrence of x ∈ x

in φ in position (R,A) that also occurs in ψ:
a) there exists an edge (R,A) → (S,B) for every position (S,B)

where x occurs in ψ.
b) there exists a special edge (R,A)

∗−→ (T,C) for every existentially
quantified variable y ∈ y that occurs in position (T,C).

We say that Σ2 is weakly acyclic if the dependency graph has no cycle that
contains a special edge.

Example 3.8. Let S2 be a schema consisting of one ternary relation
R. We identify an attribute of an m-ary relation symbol with the corre-
sponding natural number between 1 and m. The set of tgds {R(x, y, z) →
∃wR(y, w, x)} is not weakly acyclic, because the special edge from position
(R, 1) to (R, 2) and the edge from position (R, 2) to (R, 1) form a cycle.
In contrast {R(x, y, z)→ ∃wR(y, x, w)} is weakly acyclic. Figure 3.1 shows
their dependency graphs. Figure 3.2 illustrates the dependency graph of the
target dependencies from the schema mapping used in the proof for Theo-
rem 3.5.

We have now all sufficient restrictions for first-order dependencies in schema
mappings such that the SolutionExistence(M) problem becomes decid-
able. Indeed, [37] showed that the SolutionExistence(M) problem, where
the set of target tgds in M is weakly acyclic, can be solved in polynomial
time. In Section 3.2.1 we will discuss an algorithm which is able to material-
ize a solution in polynomial time or fails if none exists. Since this algorithm
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Figure 3.1: The dependency graphs of {R(x, y, z) → ∃wR(y, w, x)} and
{R(x, y, z)→ ∃wR(y, x, w)}. Dashed arrows represent special edges.

..R,1.

R,2

. R,3..........

Figure 3.2: Dependency graph for Σ2 from the schema mapping in the proof
for Theorem 3.5. Dashed arrows represent special edges.

solves the SolutionExistence(M) problem implicitly, it can be seen as
proof of PTIME-membership. Furthermore, [51] showed that there are in-
stances and schema mappings for which SolutionExistence(M) is for the
complexity class PTIME hard. We conclude:

Theorem 3.9. [51] SolutionExistence(M) is for data exchange settings
with weakly acyclic target tgds PTIME-complete.

Proof. (Sketch) PTIME hardness of SolutionExistence(M) can be shown
by a reduction from Horn3Sat. In Horn3Sat we are given a Boolean for-
mula φ in conjunctive normal form with at most one positive literal and
at most three literals per clause. The question is if φ is satisfiable. The
PTIME-completeness of Horn3Sat is shown in [59].
The source schema S1 consists of two ternary and one unary relational sym-
bol P , N and V , respectively. From an arbitrary given Boolean Horn formula
φ with at most three literals per clause we construct an instance I of S1 as
follows: for each clause of the form (x ∨ ¬y ∨ ¬z) we add a fact P (x, y, z);
for each clause of the form (¬x ∨ ¬y ∨ ¬z) we add a fact N(x, y, z); clauses
consisting of exactly one positive literal are encoded with P (x, x, x). More-
over, we add the tuples V (a) and V (b). Clearly, the construction of I is
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feasible in logarithmic space. The target schema S2 consists of two ternary
and three unary relation symbols P ′, N ′, M ′, V ′ and W ′, respectively. Let
M = (S1,S2,Σ12 ∪Σ2) be a schema mapping with the following dependen-
cies:

Σ12 = {P (x, y, z)→ P ′(x, y, z),

N(x, y, z)→ N ′(x, y, z),

V (x)→ V ′(x)}
Σ2 = {W ′(u) ∧W ′(v)→ u = v,

P ′(x, x, x)→M ′(x),

P ′(x, y, z) ∧M ′(y) ∧M ′(z)→M ′(x),

N ′(x, y, z) ∧M ′(x) ∧M ′(y) ∧M ′(z) ∧ V ′(u)→W ′(u)}

A solution J for I under M contains in relation M at least those variables
that are directly or indirectly forced to be evaluated to true in φ. Each
variable for which no fact in M exists is in an evaluation of φ false. It is
easy to verify that J indeed encodes a satisfying variable evaluation for φ.
If φ is unsatisfiable then there is a clause (¬x ∨ ¬y ∨ ¬z) and x, y and z
are forced to be true. In this case the last dependency in Σ2 fires twice and
generates the facts W ′(a) and W ′(b) that leads to a contradiction in the
egd.
Its worth to mention that SolutionExistence(M) problem is not only
tractable for the class of schema mappings where the dependencies are
assembled from st-tgds, egds and weakly acyclic target tgds. In [31] and
[57] even broader classes of schema mappings are shown, such that the
SolutionExistence(M) remains tractable. These less restrictive classes
have the disadvantage that deciding if dependencies are contained in these
classes is in coNP.
Consider a schema mapping M = (S1,S2,Σ12 ∪ Σ2) where Σ12 is a set of
source-to-target tgds and Σ2 consists of a set of weakly acyclic tgds but
has no egds. In this case the SolutionExistence(M) problem is trivial,
since every source instance has a solution. It is common in the literature to
consider only schema mappings with no target tgds. We denote such data
exchange settings with M = (S1,S2,Σ12).

3.1.2 Second-Order Dependencies
In this section we consider second-order logic as the formalism for the set of
dependencies in schema mappings. Since second-order logic is an extension
of first-order logic the undecidability result from Theorem 3.2 applies also to
unrestricted second-order formulas. We present in this section a restricted
form of existential second-order formulas, as proposed in [39], which not only
allow to materialize solutions in polynomial time, but also have favorable
properties when we consider composition of schema mappings in Section 3.4.
Furthermore, it is possible to transform every set of first-oder st-tgds into
an equivalent second order formula conforming to the presented restrictions.
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Before we can define the restrictions for second order formulas we have to
introduce the notion of terms:

Definition 3.10. Let x be a collection of variables, and f be a collection of
function symbols. A term based on x and f , or term for short, is:

1. every variable in x, and
2. every k-ary function f(t1, . . . , tk), where f is function symbol in f and

t1, . . . tk are terms.

The restricted form of existential second-order formulas presented in [39] is
defined as follows:

Definition 3.11. Consider a source schema S1 and a target schema S2. A
second-order tuple-generating dependency (SO-tgd) is of the form

∃f((∀x1(φ1 → ψ1)) ∧ . . . ∧ (∀xn(φn → ψn))), s.t.

1. f is a collection of function symbols.
2. Each φi is a conjunction of atomic formulas S(x1, . . . , xk), where S is

a k-ary relation symbol in S1, x1, . . . , xk ∈ xi, and of equalities t = t′

of terms based on xi and f .
3. Each ψi is a conjunction of atomic formulas T (t1, . . . , tk), where T is

a k-ary relation symbol in S2, and t1, . . . , tk are terms based on xi and
f .

4. Each x ∈ xi is a safe term with respect to φi and f , i.e., each x satisfies
one of the following recursive properties:

a) x occurs in an atomic formula of φi.
b) x occurs in an equality x = x′ or x′ = x, where x′ appears in an

atomic formula of φi.
c) x occurs in an equality x = f(x′1, . . . , x

′
k) or f(x′1, . . . , x′k) = x,

where f ∈ f and x′1, . . . , x′k appears in an atomic formula of φi.

To prevent confusion with first-order dependencies, we will call the depen-
dencies defined in Definition 3.11 always second-order tgds, second-order de-
pendencies, or SO-tgds. If we speak instead about tgds we mean first-order
tgds from Defintion 3.3. The fourth condition in Definition 3.11 ensures do-
main independence. Domain independence is the analog to the restriction of
first-order tgds, which states that each universally quantified variable has to
appear on the left-hand side of the implication. Besides, second-order tgds
are closed under conjunction. Therefore, we restrict ourselves without loss
of generality to data exchange settings with only one SO-tgd.
In the following example we show sample formulas and argue if all of their
universally quantified variables are safe.

Example 3.12. Let S1 be a schema consisting of one binary relation sym-
bol S, and let S2 be a schema consisting of one ternary relation symbol T .
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The following formula is not a valid SO-tgd:

∃f∀x∀y∀z(S(x, y)→ T (x, y, f(z)))

According to rule 4.a) the variables x and y are safe; z instead is unsafe,
because it does not appear on the left side of the implication. The following
formula is a slightly more complex example for an invalid SO-tgd:

∃f∀x∀y∀z∀w(S(x, y) ∧ (z = w) ∧ (f(w) = x)→ T (x, y, z))

According to rule 4.a) the variables x and y are safe; z and w are unsafe. In
contrast, the following SO-tgd is valid:

∃f∀x∀y∀z∀w(S(x, y) ∧ (x = z) ∧ (f(z) = w)→ T (x, y, f(z)))

Variables x and y are safe, because of rule 4.a); z is safe because of rule 4.b).
Rule 4.c) makes w safe.

As next step, we have to define the semantics of existentially quantified
function symbols. If we evaluate an SO-tgd we have to replace the exis-
tentially quantified function symbols with concrete functions. Furthermore,
these functions must have an appropriate domain and range, such that the
expected behavior can be expressed.

Definition 3.13. Consider a combined instance ⟨I, J⟩ over ⟨S1,S2⟩ and an
SO-tgd σ of the form ∃fσ′, where σ′ is in first order. Let U be a universe
consisting of Var and the active domain of ⟨I, J⟩. The structure ⟨U ; I, J⟩
denotes the combined instance ⟨I, J⟩ that has universe U . The SO-tgd σ
is satisfied by ⟨U ; I, J⟩ if and only if there is a set of functions f0 with
domain and range U such that σ′ is satisfied by ⟨U ; I, J⟩ when each function
symbol in f is replaced by a function from f0. This behavior is denoted with
⟨U ; I, J⟩ |= σ′[f → f0], or with ⟨I, J⟩ |= σ′[f → f0] if U is clear from the
context.

We give now an example that demonstrates a data exchange scenario defined
by an SO-tgd and discusses possible solutions for a source instance.

Example 3.14. LetM = (S1,S2,Σ12) be a data exchange scenario, where
S1 consists of two binary relation symbols P and E, and schema S2 consists
of one ternary relation C. Σ12 consists of a single SO-tgd and is defined as
follows:

∃h∀x∀y∀u∀v(P (x, y) ∧ E(u, v) ∧ (h(x) = h(u))→ C(h(x), y, v))

This schema mapping can be interpreted such that we have names and
telephone numbers in P , and names and email addresses in E. If the names
from P and E refer to the same person we can derive a new contact consisting
of the name, telephone number and email address.
Consider the source instance below. For better readability telephone num-
bers and email addresses are represented by placeholders. Nonetheless, a, b,
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c, d, e and f are values from Const.

I = {P (”Jim M.”, a), P (”Robert P.”, b), P (”Jimi Hendrix”, c),
E(”J. Morrison”, d), E(”Pete Townshend”, e), E(”Jimi Hendrix”, f)}

A solution for I underM is J = {C(n, c, f)}, where n ∈ Var. We treat here
the equality h(x) = h(u) exactly then as satisfied if the values of x and u
are syntactically identical.
Another interesting solution for I underM is J ′ = {C(”Jim Morrison”, a, d),
C(”Jimi Hendrix”, c, f)}. Here h(·) gets interpreted and returns the full
name of a person, i.e., h(”Jim M.”) and h(”J. Morrison”) is interpreted as
”Jim Morrison”.

We are now interested in comparing the second-order dependencies with
the first-order dependencies presented in the previous section. We say two
schema mappingsM andM′ are equivalent, if both have the same source and
target schema, and for every source instance I the sets SolM(I) and SolM′(I)
contain exactly the same elements. Clearly, SO-tgds cannot simulate target-
egds. It is easy to see that a schema mapping M = (S1,S2,Σ12 ∪ Σ2),
where Σ12 is a set of first-order source-to-target tgds and Σ2 is a set of
weakly acyclic first-order target tgds, can be rewritten in a schema mapping
M′ = (S1,S2,Σ12) defined by a set of first-order source-to-target tgds of the
form

∀x(φ(x)→ ∃y1, . . . , ∃ynψ(x, y1, . . . , yn)),

where φ is a conjunction of atomic formulas over S1 and ψ is a conjunction
of atomic formulas over S2. We can receive a third schema mapping M′′
that is equivalent to M′ and M, where every first-order st-tgd is replaced
with an SO-tgd of the form

∃f∀x(φ(x)→ ψ(x, f1(x), . . . , fn(x))).

This translation from schema mappings with first order tgds to schema map-
pings with second order tgds is called Skolemization. In the example below
we show how a schema mapping with two st-tgds can be transformed into a
schema mapping with a single SO-tgd.

Example 3.15. Let S1 and S2 be source schema and target schema, re-
spectively. Schema S1 consists of three binary relation symbols D, E and
F . Schema S2 consists of one ternary relation M . Let M = (S1,S2,Σ12) be
a schema mapping, where Σ12 is the following set of first-order st-tgds:

D(x, y) ∧ E(y, z)→ ∃wM(x, z, w)

F (x, y)→ ∃v∃wM(x, v, w)

We construct M′ = (S1,S2,Σ12), where Σ12 is a single second-order tgd
defined as follows:

∃f∃h((D(x, y) ∧ E(y, z)→M(x, z, f(x, z)))∧
(F (x, y)→M(x, h(x), f(x))))

The schema mappings M and M′ are equivalent.
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We now consider the complexity of the SolutionExistence(M) problem,
whereM is a schema mapping with a single second-order tgd. If we recall the
definition of SO-tgds, we see that on the target schema are only conjunctions
of atomic formulas allowed. Not allowed are any kind of formulas that restrict
the existence of facts in a solution. It follows that every data exchange
setting M defined with SO-tgds has for each source instance arbitrarily
many solutions. We conclude that the SolutionExistence(M) problem
is trivial for data exchange settings composed of SO-tgds.

3.2 Solution Building
In the previous section the question if for an instance of a schema mapping
a solution exists is examined. In this section we go a step further and aim
to materialize a solution if one exists. More formally:

Problem: DataExchange(M)
Input: a source instance I
Goal: if SolM(I) ̸= ∅, find J s.t. J ∈ SolM(I)

We first introduce a subclass of solutions that have advantageous properties
for materialization. Then an algorithm for materializing solutions is given
for first-order and second-order dependencies.
In Section 3.1, we have already seen that in general a source instance can
have infinitely many solutions under a schema mappingM. A natural ques-
tion is now if there are some solutions that are preferable over others. In-
tuitively, the materialized solution should represent the set of all solutions
as well as possible. Solutions can contain facts that are not enforced by de-
pendencies. A solution with such superfluous tuples represents neither all
solutions adequately, nor is it economical to materialize it, since a solution
can have arbitrarily many superfluous tuples. Moreover, for unknown values
of attributes in a solution elements from Const∪Var can be chosen freely. A
solution is clearly less representative for all solutions if it contains concrete
values from Const instead of values from Var for unknown attributes. We
aim to define a subclass of solutions that has neither unnecessary facts nor
unjustified variable instantiations. As first step we have to fix the notion of
homomorphism between two instances:

Definition 3.16. Let I and I ′ be two instances over a schema S with values
from Const∪Var. A homomorphism h : I → I ′ is a mapping from the values
used in I to the values used in I ′ where

1. h(c) = c for every c ∈ Const, and
2. for every tuple t = (a1, . . . , an) that is a fact in I it holds that the tuple

t′ = (h(a1), . . . , h(an)) is a fact in I ′.

Based on homomorphisms we can formalize the above considerations:

23



Definition 3.17. LetM = (S1,S2,Σ) be a schema mapping and I a source
instance. A solution J is a universal solution for I iff for every solution J ′

for I there is a homomorphism h : J → J ′.

It can be shown that if there is a solution for a schema mapping and a source
instance, then there is also a universal solution. In the following example we
review the solutions from Example 3.4 and Example 3.14.

Example 3.18. In Example 3.4 a schema mapping, defined by first order
dependencies, with the corresponding source instance I = {E(a, c), E(b, c), E(c, d),
F (a, b)} is examined. The following solutions are listed:

J1 ={M(a, d, n1),M(b, d, n2), N(a, b), N(d, n3)}
J2 ={M(a, d, b),M(b, d, c), N(a, b), N(d, a)}
J3 ={M(a, d, n1),M(b, d, n2), N(a, b), N(d, n3), N(c, d)}
J4 ={M(a, d, n1),M(b, d, n2),M(a, d, d), N(a, b), N(d, n3)}

Variables n1, n2 and n3 are elements from Var. We will now examine these
solutions for the above described properties. All tuples in J1 are demanded
from the dependencies. For each attribute with unknown value a distinct
element from Var is chosen. Solution J2 also contains no superfluous tuples,
but contains unjustified variable instantiations. Solution J3 contains the
same tuples as J1 but has an additional fact that is not requested by the
dependencies. The fourth solution J4 has superfluous tuples and superfluous
variable assignments. Solution J1 contains exactly the tuples demanded from
the dependencies and is therefore the most general of all four solutions. It is
easy to see that there is a homomorphism from J1 to J2, J3 and J4. On the
other hand there is no homomorphism from J2, J3 and J4 to J1. In addition,
it can be shown that J1 is a universal solution.
In Example 3.14 the following solutions for a schema mapping with second-
order tgds and a source instance are shown:

J = {C(n, c, f)}
J ′ = {C(”Jim Morrison”, a, d), C(”Jimi Hendrix”, c, f)}

Notice variable n is the only element from Var. We already argued that both
solutions J and J ′ are in a sense natural. If we consider both solutions under
the notion of homomorphisms we see that there is a homomorphism from J
to J ′, but not the other way around. Furthermore, it can be shown that J
is universal as well.

It is important to notice that for a given source instance several universal
solutions exist, which can also differ in their size. In this section we restrict
ourselves to materialize an arbitrary universal solution. However, it would
be more economical to compute the smallest universal solution. Fagin et al.
[38] showed for first-order dependencies that the smallest universal solution
always coincides with the core of an arbitrary universal solution. Moreover,
there is an algorithm that computes the core of the universal solutions in
polynomial time [44, 45].
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In Section 3.2.1 and 3.2.2 algorithms for materializing solutions for data
exchange settings specified by first-order and second-order dependencies are
presented. Both algorithms are variations of the classical chase procedure
[17]. The chase was initially developed to test whether a set of dependencies
logically implies a given dependency.

3.2.1 First-Order Dependencies
In this section a modification of the classical chase procedure is shown that
computes a universal solution for a source instance under a schema mapping
in polynomial time or fails if no solution exists. This variant of the chase
was introduced in [37]. Basically, the algorithm tries iteratively to satisfy all
dependencies by adding new tuples or modifying existing ones. Before we
can give an exact definition of the chase we have to introduce some auxiliary
notions:

Definition 3.19. Let φ(x) be a conjunction of atomic formulas over a
schema S, and let I be an instance over S. A homomorphism h : φ(x)→ I
is a mapping from the variables in x to the the values used in I, such that
for every R(x1, . . . , xn) in φ there is a fact R(h(x1), . . . , h(xn)) in I.

Definition 3.20. Let ⟨I, J⟩ be an instance. A dependency d is unsatisfied
if

1. d is a tgd of the form φ(x)→ ∃yψ(x,y) and there exists a homomor-
phism h from φ(x) to ⟨I, J⟩, but there is no extension h′ of h, such
that h′ is a homomorphism from φ(x) ∧ ψ(x,y) to ⟨I, J⟩.

2. d is an egd of the form φ(x)→ (x1 = x2), and there is a homomorphism
h from φ(x) to ⟨I, J⟩, such that h(x1) ̸= h(x2) holds.

Otherwise, dependency d is satisfied.

The specification of the chase is divided into a definition for chase steps and
a definition of the chase itself, which is a sequence of chase steps.

Definition 3.21. (Chase step). Consider an instance ⟨I, J⟩, and Σ a set of
tgds and egds, which contain at least one unsatisfied dependency d. Let h be
a homomorphism from the antecedent φ(x) of d to ⟨I, J⟩. Dependent on d a
chase step fails or produces an instance ⟨I, J ′⟩ as follows:

1. If d is an unsatisfied tgd of the form φ(x)→ ∃yψ(x,y), then h′ : φ(x)∧
ψ(x,y) → ⟨I, J⟩ is an extension to h, where every variable in y is
mapped to an unused element from Var. J ′ is the union of J and the
facts obtained by taking the image of the atoms of ψ under h′.

2. If d is an unsatisfied egd of the form φ(x) → (x1 = x2) and at least
one of h(x1) and h(x2) is assigned to an element of Var, say h(x1),
then J ′ is a copy of J , where every occurrence of h(x1) in J is replaced
by h(x2).

3. If d is an unsatisfied egd of the form φ(x) → (x1 = x2), where both
h(x1) and h(x2) are mapped on elements of Const, then the chase step
fails.
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Definition 3.22. (Chase). Let ⟨I, J⟩ be an instance and Σ a set of tgds
and egds. A chase sequence of ⟨I, J⟩ with Σ is a possibly infinite sequence of
instances ⟨I, J⟩, ⟨I, J ′⟩, ⟨I, J ′′⟩, . . . where each successive instance is obtained
by a chase step on the predecessor. A chase of ⟨I, J⟩ with Σ is called finite,
if the number of chase steps is bounded by a constant. This is exactly then
the case, when either the last chase step fails or after the last chase step no
dependency in Σ is unsatisfied.

In general, an instance can have an infinite chase sequence, which means
that the chase does not terminate. This is due to the same fact that also
Solution-Existence(M) is undecidable for cyclic dependencies, shown in
the proof of Theorem 3.5.
For solving the DataExchange(M) problem we chase the combined in-
stance ⟨I, ∅⟩. If there is a finite successful chase, we obtain the instance
⟨I, J⟩ as last element of the chase sequence, where J is the desired solution.
Due the construction of the first-order dependencies, the source instance I
remains unchanged. If the last chase step of a chase sequence fails, we also
say the chase fails. In the following example we illustrate the chase on the
schema mapping from Example 3.4.

Example 3.23. Consider a data exchange scenarioM = (S1,S2,Σ12∪Σ2),
where S1 consists of two binary relations E, F , and S2 consists of a ternary
relation M and a binary relation N . The dependencies are defined as follows:

Σ12 = {E(x, y) ∧ E(y, z)→ ∃wM(x, z, w), (1)
F (x, y)→ N(x, y)} (2)

Σ2 = {M(x, y, z) ∧M(w, y, v)→ ∃uN(y, u), (3)
M(x, y, z) ∧M(x,w, v)→ y = w} (4)

Let I = {E(a, c), E(b, c), E(c, d), F (a, b)} be the source instance. The first
element of the chase sequence is the combined instance ⟨I, ∅⟩. The tu-
ples E(a, c) and E(c, d) satisfy the antecedent of tgd (1). We create tuple
M(a, d, n1), such that n1 is a fresh value from Var. Let J be a target instance
containing exactly this tuple. Dependency (1) is still unsatisfied due to the
existence of the tuples E(b, c) and E(c, d) in I. The combined instance ⟨I, J⟩
is transformed to ⟨I, J ′⟩ by adding the fact M(b, d, n2) to J . Again, n2 is an
unused variable from Var. Tuple F (a, b) satisfies the left hand side of the im-
plication in tgd (2), while the right side is unsatisfied. We transform ⟨I, J ′⟩
to ⟨I, J ′′⟩ by adding N(a, b) to J ′. The first two chase steps added tuples
such that tgd (3) has become unsatisfied. Target instance J ′′′ is obtained by
extending J ′′ with the tuple N(d, n3), where n3 ∈ Var. The combined in-
stance ⟨I, J ′′′⟩ satisfies all dependencies in Σ12 ∪ Σ2. The chase successfully
terminates after the sequence

⟨I, ∅⟩, ⟨I, J⟩, ⟨I, J ′⟩, ⟨I, J ′′⟩, ⟨I, J ′′′⟩

of chase steps. The final target instance J ′′′ contains the tuples M(a, d, n1),
M(b, d, n2), N(a, b) and N(d, n3).
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Consider now a second source instance I ′ = {E(a, b), E(b, c), E(b, d), F (a, b)}.
We start with ⟨I ′, ∅⟩. In the first chase step we satisfy tgd (1), by obtaining
a target instance K containing exclusively the fact M(a, c, n1), where n1 is
an element of Var. Since E(a, b) and E(b, d) are facts in I dependency (1)
is still unsatisfied. We transform ⟨I ′,K⟩ into ⟨I ′,K ′⟩ by extending K with
the fact M(a, d, n2), where n2 ∈ Var. In the combined instance ⟨I ′,K ′⟩ tgd
(2) and egd (4) are unsatisfied. In the next chase step we consider the latter
dependency. Both values c and d are elements from Const. The chase step
fails.

It is worth to mention that it is not defined in which order unsatisfied depen-
dencies have to be handled. Thereby, different chase sequences can lead to
different solutions. We will now prove that if a source instance is chased and
one chase sequence leads to a solution then all possible chase sequences lead
to solutions. Analogously, we will show that if the chase fails, then there is
a failing chase step in every possible chase sequence. Therefore, we will need
a basic property of the chase step that was implicitly proved by [17, 55]. We
will omit proving the following lemma, but a full proof can be found in [37].

Lemma 3.24. [37] Let ⟨I, J ′⟩ be the resulting instance of a non-failing chase
step for an instance ⟨I, J⟩ and a dependency d. Moreover, let ⟨I,K⟩ be an
instance that satisfies d, and there is a homomorphism h1 : ⟨I, J⟩ → ⟨I,K⟩.
Then there also exists a homomorphism h2 : ⟨I, J ′⟩ → ⟨I,K⟩.

The following two theorems where presented first in [37].

Theorem 3.25. [37] Let M = (S1,S2,Σ12 ∪Σ2) be a schema mapping and
I a source instance. If ⟨I, J⟩ is the result of a successful finite chase of ⟨I, ∅⟩
with Σ12 ∪ Σ2, then J is a universal solution.

Proof. By definition ⟨I, J⟩ is the last element of a finite chase sequence
where in each chase step a violation of the dependencies is repaired. Assume
an arbitrary solution J ′ for I under M, then there is clearly a homomor-
phism h : ⟨I, ∅⟩ → ⟨I, J ′⟩. Furthermore, by definition ⟨I, J ′⟩ satisfies all
dependencies in Σ12 ∪ Σ2. By applying Lemma 3.24 at each chase step, we
can conclude that there is also a homomorphism h′ : ⟨I, J⟩ → ⟨I, J ′⟩. Since
schema S1 and schema S2 have by definition no relation symbol in common,
it follows that there is also a homomorphism h′′ : J → J ′.

Theorem 3.26. [37] Let M = (S1,S2,Σ12 ∪Σ2) be a schema mapping and
let I be a source instance. If the finite chase of ⟨I, ∅⟩ fails, then SolM(I) = ∅.

Proof. Let ⟨I, J⟩ be the last element of a chase sequence of ⟨I, ∅⟩ before
failing, i.e., the next chase step on egd d fails. Egd d is of the form φ(x)→
(x1 = x2). By construction, there is a homomorphism g : φ(x) → J , where
g(x1) and g(x2) are two distinct elements from Const, say c1 and c2. We
claim that there is no solution for I under M. Assume the contrary, that
there is a solution J ′. Clearly, there is a homomorphism h : ⟨I, ∅⟩ → ⟨I, J ′⟩,
and by applying Lemma 3.24 at each chase step we can conclude that there
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is also a homomorphism h′ : ⟨I, J⟩ → ⟨I, J ′⟩. Furthermore, there must be
also a homomorphism g′ : φ(x) → J ′. Since J ′ is a solution, egd d has to
be satisfied by J ′, that means g′(c1) = g′(c2). This contradicts with the
Definition 3.16, where it is stated that homomorphisms map constants on
themselves.
We have showed that if the chase terminates we have either that there is
no solution and the chase fails or we get a universal solution, usually called
canonical universal solution. In Section 3.1.1 we have encountered that if the
target tgds are unrestricted deciding if a solution exists is undecidable. This
result carries over to the chase procedure. Moreover, we described a restric-
tion to the dependencies, named weakly acyclicity, that assures tractability.
Fagin et al. [37] showed that the chase with weakly acyclic dependencies
always terminates in polynomial time. This result follows immediately from
the result that the length of the chase sequence is polynomially bounded by
the input instance and the fact that in each chase step a constant number
of facts are added.

Theorem 3.27. [37] Let Σ12 be a set of st-tgds, and let Σ2 be the union
of weakly acyclic tgds and egds. The length of every chase sequence of an
instance ⟨I, ∅⟩ with Σ12∪Σ2 is bounded by a polynomial in the size of ⟨I, ∅⟩.

Proof. (Sketch) An incoming path for a node (R,A) in the dependency
graph of Σ12 ∪Σ2 is any path ending in (R,A). The rank of position (R,A)
is the maximum number of occurrences of special edges on any incoming
path. The weak acyclicity property assures that the rank of every position
is finite. Let r be the maximum rank of positions. Clearly, r is bounded
by the number of nodes in the dependency graph. As next step, the set
of positions is divided in the subsets N0, N1, . . . , Nr, such that Ni contains
exactly the positions with rank i. The last element of an arbitrary chase
sequence of ⟨I, J⟩ is denoted with ⟨I, J ′⟩. Let n be the number of distinct
values of Const ∪ Var used in ⟨I, J⟩.
By induction it can be shown that the total number of distinct values in
⟨I, J ′⟩ at positions from the subset Ni is bounded by Qi(n), where Qi(n) is
a polynomial. Roughly, in the base case Q0(n) = n, since there are no special
edges and the maximum number of values that can occur at a position (R,A)
in ⟨I, J ′⟩ is the number of values existing in ⟨I, J⟩. In the inductive case the
polynomial Qi(n) is n + G(n) + P (n), where G(n) is the number of how
many fresh elements from Var can be generated by a chase step in a position
of Ni, and P (n) is the number of distinct values copied to positions of Ni

from Nj with j < i.
Since, there are r subsets Ni, where r is a constant, there also exists a
polynomial Q, such that the number of distinct values at a single position
in ⟨I, J ′⟩ is bounded by Q(n). We conclude that the number of all possible
tuples in ⟨I, J ′⟩ is bounded by the polynomial s × (Q(n))p, where s is the
number of relations and p is the number of positions in the schema of ⟨I, J ′⟩.
Notice that p and s are constants. Due the fact that each chase step for a
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tgd adds a fact to J ′, it follows that the length of any chase sequence is at
most s× (Q(n))p.

Corollary 3.28. Assume a schema mappingM = (S1,S2,Σ12∪Σ2), where
Σ12 is a set of st-tgds and Σ2 consists of weakly acyclic tgds and egds.
The DataExchange(M) problem for a source instance I is solvable in
polynomial time.

3.2.2 Second-Order Dependencies
In this section the classical chase technique by Beeri and Vardi [17] is mod-
ified to handle second-order tgds. This variant was introduced in [39], and
allows to compute universal solutions in polynomial time. Before we define
the chase technique we have to introduce some terminology and notation:

Definition 3.29. Let V be a set of values and f a set of function symbols.
A ground term u over V and f is:

1. every value in V, and
2. every function term f(u1, . . . , uk), where f is k-ary function symbol in

f and u1, . . . , uk are ground terms over V and f .
A ground instance with respect to V and f is an instance consisting only
of ground terms over V and f .

This definition has huge similarities with the definition of terms in Sec-
tion 3.1.2. While terms from Definition 3.10 are elements of SO-tgds, ground
terms on the other hand are values of instances. In our context we use ground
instances to describe the values of target instances. Moreover, an instance
with values in V, as used for source instances, is a ground instance over V
and an arbitrary set of function symbols f . Hence, ground instances repre-
sent a generalization to the instances defined and used before. Recall, that
it suffices to consider data exchange settings M = (S1,S2,Σ), where Σ is a
single SO-tgd σ of the form

∃f((∀x1(φ1 → ψ1)) ∧ . . . ∧ (∀xn(φn → ψn))).

We denote with M = (S1,S2, σ) a schema mapping with a single SO-tgd.
For better readability, we will denote a conjunct ∀xi(φi → ψi) from σ with
Ci.

Definition 3.30. Let M = (S1,S2, σ) be a data exchange scenario and I a
source instance. SO-tgd σ is of the form ∃f(C1 ∧ . . . ∧ Cn), where each Ci
is defined as ∀xi(φi → ψi). Assume a mapping h : xi → I that maps the
variables in xi to values of I. Moreover, let t and t′ be two terms over xi

and f . The equality t = t′ is satisfied in I under h if one of the following
two conditions is satisfied:

1. the equality has the form x = x′, where x, x′ ∈ xi, and h(x) = h(x′)
holds.
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2. the equality has the form f(t1, . . . , tl) = f(t′1, . . . , t
′
l), where f ∈ f

and t1, . . . , tl, t
′
1, . . . , t

′
l are terms over xi and f , and the equalities

t1 = t′1, . . . , tl = t′l are satisfied in I under h.

Definition 3.31. Let M = (S1,S2, σ) be a schema mapping, where σ is
composed of conjuncts of the form Ci = ∀xi(φi → ψi). In addition, let I be
a source instance, and let h : xi → I be a mapping from the variables in xi

to the values of I. The function h is a homomorphism from Ci to I if we
have that:

1. for every atomic formula S(y1, . . . , yk) in φi, where y1, . . . , yk are ele-
ments of xi, the tuple (h(y1), . . . , h(yl)) is in relation SI .

2. all equalities in φi are satisfied in I under h.

We are now able to formalize the chase technique for second-order tgds. We
divide the definition as in the first-order case into chase step and chase.

Definition 3.32. (Chase Step). Let Ci be a conjunct of the form ∀xi(φi →
ψi) and V. Let I be an an instance over schema S1 with values from set
V, and let J be a ground instance with respect to V and f over schema S2.
Moreover, assume that there is a homomorphism h from Ci to I. Conjunct
Ci can be applied to ⟨I, J⟩ with h if ψi consists of an atomic formula
T (t1, . . . , tk), such that T (h(t1), . . . , h(tk)) is not a fact in J .
If Ci can be applied, then a chase step transforms ⟨I, J⟩ into ⟨I, J ′⟩, where
J ′ is the union of J and all tuples T (h(t1), . . . , h(tk)) for which the corre-
sponding relational atom T (t1, . . . , tk) is in ψi.

Definition 3.33. (Chase). Let M = (S1,S2, σ) be a schema mapping, and
let I be a source instance. A (chase) is a finite sequence of of instances
⟨I, ∅⟩, ⟨I, J1⟩, . . . ⟨I, Jm⟩, where each successive instance is obtained by a
chase step on the predecessor. For the last element, called the result of
the chase, holds that there is no conjunct Ci of σ and homomorphism h,
such that Ci can be applied to ⟨I, Jm⟩ with h.

Several remarks are in order now. The DataExchange(M) problem, for
a schema mapping M = (S1,S2, σ) and a given source instance I, can be
solved by chasing the combined instance ⟨I, ∅⟩. Since instance I is never
changed by a chase step, the resulting chase sequence is by definition finite.
This is due to the fact that it cannot happen that we have to apply a conjunct
with the same homomorphism more than once. We illustrate the chase for
SO-tgds on the schema mapping that is initially presented in Example 3.14.

Example 3.34. Assume a schema mapping M = (S1,S2, σ), where S1

consists of two binary relation symbols P and E, and schema S2 consists of
one ternary relation C. The SO-tgd σ is defined as follows:

∃h∀x∀y∀u∀v(P (x, y) ∧ E(u, v) ∧ (h(x) = h(u))→ C(h(x), y, v))
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Assume the following source instance. Note that all values in I are from
Const.

I = {P (”Jim M.”, a), P (”Robert P.”, b), P (”Jimi Hendrix”, c),
E(”J. Morrison”, d), E(”Pete Townshend”, e), E(”Jimi Hendrix”, f)}

The chase starts with ⟨I, ∅⟩. We have to find a homomorphism g from the
conjunct of σ to the instance I. In such a homomorphism every atomic
formula has to be mapped on a tuple from I. Furthermore, every equality
has to be satisfied in that homomorphism. In this case g(x) = g(u) is exactly
then satisfied if we have x = u. It is not hard to see, that there is only
one valid homomorphism g, where P (g(x), g(y)) is P (”Jimi Hendrix”, c) and
E(g(u), g(v)) is E(”Jimi Hendrix”, f). By applying the conjunct from σ with
g we receive the tuple C(h(”Jimi Hendrix”), c, f). As already indicated in
Example 3.14, we cannot find any other applicable homomorphism from σ to
I. Thus, the target instance J = {C(h(”Jimi Hendrix”), c, f)} is a solution
for I underM. Furthermore, J is a ground instance with respect to the set
of source values of I and the set of function symbols {h}.
Each ground function term can be considered as a distinct value. Hence,
we can replace all ground function terms by distinct elements from Var. We
obtain J = {C(n, c, f)} as final solution, where n is an element from Var.

We are now interested to show that the chase technique for SO-tgds always
delivers universal solutions. Therefore, we need the following property, shown
by [39]:

Lemma 3.35. [39] Let M = (S1,S2, σ) be a schema mapping, where σ
is an SO-tgd, and let ⟨I, J ′⟩ be the resulting instance of a chase step on
instance ⟨I, J⟩ over the schema ⟨S1,S2⟩. Moreover, assume a combined in-
stance ⟨I,K⟩ over ⟨S1,S2⟩ that satisfies σ, and there is a homomorphism
h from ⟨I, J⟩ to ⟨I,K⟩. Then, h is also a homomorphism from ⟨I, J ′⟩ to
⟨I,K⟩.

Due to Lemma 3.35, we are able to show that the result of a chase is always
a universal solution. The following result originates from [39].

Theorem 3.36. [39] Consider a data exchange scenario M = (S1,S2, σ),
where σ is a single SO-tgd. Then for every source instance I, chasing the
combined instance ⟨I, ∅⟩ with σ results in an instance ⟨I, J⟩, such that J is
a universal solution for I under M.

Proof. The second-order tgd σ is of the form ∃fσ′, where σ′ is in first order.
Assume an arbitrary solution K for I underM. By definition, we have that
⟨U ; I,K⟩ |= σ, where U is a universe. Consider a collection of functions f0

over U such that ⟨U ; I,K⟩ |= σ′[f → f0].
Let V be the values that occur in I. We define a mapping h as the iden-
tity function over V, and h(f(u1, . . . , uk)) = f0(h(u1), . . . , h(uk)) for every
ground function term f(u1, . . . , uk) over V and f . It is easy to see that h is a
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homomorphism from ⟨I, ∅⟩ to ⟨I,K⟩. By applying Lemma 3.35 at each chase
step, we can conclude that h : ⟨I, J⟩ → ⟨I,K⟩ is also a homomorphism. Since
K is an arbitrary solution, we have that J has to be a universal solution.
We have already argued that the chase of a source instance combined with
an empty set is decidable. Fagin et al. [39] showed that the chase is for
second-order tgds actually tractable.

Theorem 3.37. [39] Assume a schema mappingM = (S1,S2, σ), where σ is
a single SO-tgd, and an instance I over S1. Chasing ⟨I, ∅⟩ with σ terminates
in polynomial time in the size of I.

Proof. We want to show that the chase terminates in polynomial time in
the size of I. Therefore, it has to be shown first that the corresponding chase
sequence has length bounded by a polynomial in the size of I. Secondly, we
have to prove that each chase step is computable in polynomial time.
For each conjunct C of σ we can have at most nk homomorphisms, where
n is the number of distinct values in I and k is the maximum number of
universally quantified variables in a single conjunct of σ. From σ there can
be c× nk homomorphisms into I, where c is the number of conjuncts in σ.
Since an SO-tgd can only fire once for each homomorphism and the number
of homomorphisms does not change during the chase, we conclude that we
can have at most c× nk chase steps.
Let t be the maximum number of atoms in a formula ψ in σ. We know
that in a chase step exactly one conjunct is satisfied. In other words in a
chase step there can be added at most t tuples. Therefore, the number of
tuples in a solution is at most t × c × nk. Let q(n) be the time to check
if a possible homomorphism candidate is indeed a homomorphism from a
considered conjunct to I as specified in Definition 3.30. It is immediate that
time q(n) is polynomial in n. We can find at each chase step an applicable
homomorphism in at most c × nk × q(n) time. For each applicable homo-
morphism we have to check that the implied tuples do not already exist in
the intermediary combined instance. This can be done in the number of at
most added tuples in a chase step times the number of tuples in a solution.
More formally, the existence of t tuples in the target can be checked in at
most t2× c×nk steps. It follows, that the chase can be computed in at most
t2 × c× nk + c× nk × q(n) steps.
We conclude that the overall needed time to chase is at most the maximum
number of chase steps times the time we need at most for each chase step.
More formally, the needed time is t2 × c2 × n2k + c2 × n2k × q(n). Clearly,
this number is a polynomial in the size of I.

3.3 Query Answering
In this section query answering with respect to schema mappings is consid-
ered. Intuitively, if we have a source instance and a query formulated over
the target schema of a data exchange scenario, we would like to have an an-
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swer that represents the answers of evaluating the query over each solution.
In the following definition we adapt the concept of certain answers from
Section 2.1.3 to queries over solutions from schema mappings:

Definition 3.38. Let M = (S1,S2,Σ) be a data exchange scenario, and let
I be a source instance. Assume a k-ary query q over S2. The set of certain
answers of q with respect to I under M, denoted with certainM(q, I), is
defined as

∩
{q(J) | J ∈ SolM(I)}.

Sometimes, we say only certain answers of a query q if the schema mapping is
understood from the context and the source instance can be arbitrary. Fur-
thermore, if we speak of query answering in the context of data exchange we
assume that queries are formulated over the target schema. The associated
decision problem asks if the certain answers for a Boolean query include the
empty tuple or not. More formally:

Problem: QueryEvaluation(M, q)
Input: a source instance I

Question: certainM(q, I) = true?

An important variation of QueryEvaluation(M, q) asks if a given tuple
t is included in the certain answers of a k-ary query. This variation can be
transformed in the QueryEvaluation(M, q) problem by substituting the
tuple t into the query. Moreover, we are able to compute the certain answers
of a k-ary query q, by iteratively checking if one of the polynomially many
k-ary tuples is included in certainM(q, I). Thus, we are allowed to consider
without loss of generality only Boolean conjunctive queries.
Essentially, there are two issues to take into account when we are computing
the certain answers of a query. The first issue is that a source instance can
have infinitely many solutions under a given data exchange setting. Secondly,
a solution is in general incomplete, and as described in Section 2.1.3 query
answering over incomplete data is coNP-complete.
We show in Section 3.3.1 that the certain answers of a UCQ using first-order
or second-order dependencies, is computable in polynomial time in the size
of the source instance. In Section 3.3.2 we consider an extension of UCQs
that allows inequalities. It turns out, that the technique from Section 3.3.1
cannot be applied on UCQs with inequalities. Moreover, the complexity rises
in general from polynomial time to coNP. Though, there are restricted cases
of UCQs with inequalities such that the QueryEvaluation(M, q) problem
remains tractable. We discuss two of them.

3.3.1 Unions of Conjunctive Queries
In this section it is shown that the certain answers of a union of conjunctive
queries can be computed in polynomial time using a single universal solution.
First, we have to introduce a subset from an answer that contains only
constants:
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Definition 3.39. Let J be an incomplete instance over a schema S and q a
query over S. We write q(J)↓ for the set of those tuples in q(J) that contain
only values from Const. In the case that q is a Boolean query we have that
q(J)↓ = q(J).

Fagin et al. [37] showed the following result for first-order dependencies, but
it can also applied to second-order dependencies [39]:

Theorem 3.40. [37] LetM = (S1,S2,Σ) be a schema mapping, where Σ is
either a set of SO-tgds or a union of st-tgds, target tgds and egds. Moreover,
consider a universal solution J for a source instance I, and a UCQ q over
S2. Then, certainM(q, I) = q(J)↓.

Proof. Let t be an arbitrary tuple, such that t ∈ certainM(q, I). From Defini-
tion 3.38 we know that t must be in every solution, and thus certainM(q, I) ⊆
q(J). Furthermore, t consists only of values from Const. Assume to the con-
trary, that n ∈ t, where n ∈ Var. By definition n must be contained in every
{q(K) | K ∈ SolM(I)} and therefore also in every K ∈ SolM(I). Take an ar-
bitrary K ∈ SolM(I) and transform K to K ′ by replacing every occurrence
of n with an unused element from Const. Clearly, K ′ is a valid solution and
must be contained in SolM(I), which is a contradiction. We conclude that
also certainM(q, I) ⊆ q(J)↓ holds.
Let t be an arbitrary tuple from q(J)↓. There must be a disjunct of the
form ∃yφ(x,y) from q, such that there is homomorphism g : φ(x,y) → J
and g(x) = t. We know from the definition of universal solutions that there
must be also a homomorphism h : J → J ′, where J ′ is an arbitrary solution
from SolM(I). Since Definition 3.16 states that constants must be mapped
on themselves, we have that h(g(x)) = t and therefore also t ∈ q(J ′). We
conclude that q(J)↓ ⊆ certainM(q, I) holds.

Example 3.41. Let M = (S1,S2,Σ) be a schema mapping, where S1

consists of a ternary relation symbol E and a binary relation symbol F , and
S2 consists of a single ternary relation symbol M . Σ consists of the following
first-order dependencies:

Σ12 = {E(x, y, z)→M(x, y, z),

F (x, y)→ ∃zM(x, y, z)}
Σ2 = ∅

Assume I = {E(a, b, c), F (d, e)} as source instance, and the conjunctive
query q = ∃xM(x, y, z). It is easy to see that certainM(q, I) = {(b, c)}.
We compute the universal solution J = {M(a, b, c),M(d, e, n)}, where n ∈
Var, by chasing ⟨I, ∅⟩ with Σ. Evaluating q with instance J results in the set
{(b, c), (e, n)}. We have that q(J)↓ = {(b, c)}.

In addition it can be shown that only for universal solutions the equality
certainM(q, I) = q(J)↓ holds. This fact further approves that universal solu-
tions are a good choice for materialization. Since we can compute universal
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solutions in polynomial time for first-order and second-order dependencies,
the following corollary results immediately from Theorem 3.40:

Corollary 3.42. Consider a data exchange scenario M = (S1,S2,Σ), such
that Σ is either a single SO-tgd or the union of st-tgds, egds and a weakly
acyclic set of target tgds. Moreover, consider an arbitrary source instance I
and a UCQ over S2. The set certainM(q, I) can be computed in polynomial
time in the size of I.

3.3.2 Queries with Inequalities
In this section we study query answering with queries that allow inequalities.
We focus on an extension of CQs and UCQs that allows inequalities, defined
as follows:

Definition 3.43. A conjunctive query with inequalities over a schema S,
or CQ ̸= for short, is a formula of the form ∃yφ(x,y), such that φ(x,y) is a
conjunction of atomic formulas over S with inequalities of the form zi ̸= zj,
where zi and zj are variables in x ∪ y. A union of conjunctive queries with
inequalities is a disjunction of conjunctive queries with inequalities and is
denoted with UCQ̸=.

Unfortunately, [37] showed that the technique presented in Section 3.3.1
does not always lead to the certain answers of a CQ ̸= respectively a UCQ ̸=.

Theorem 3.44. [37] There is a data exchange setting M, a universal solu-
tion J for source instance I, and conjunctive query with inequalities q, such
that certainM(q, I) = q(J)↓ does not hold.

Proof. Let source schema S1 and target schema S2 each consist of one
binary relation, and let the dependencies of M be defined as follows:

Σ12 = {S(x, y)→ ∃z(T (x, z) ∧ T (z, y))}
Σ2 = ∅

Assume that q is a Boolean CQ ̸= defined as ∃x∃y(T (x, y) ∧ (x ̸= y)), and
the source instance I is the set {S(a, a)}. A valid solution for I underM is
J ′ = {T (a, a)}, and therefore q(J ′) = false. We conclude certainM(q, I) =
false. A chase of ⟨I, ∅⟩ with Σ12 results in the universal solution J =
{T (a, n), T (n, a)}, where a ∈ Const and n ∈ Var. Since, by definition Const∩
Var = ∅ we have that a ̸= n, and therefore also q(J) = q(J)↓ = true.
Apparently, we need a new approach for solving unions of conjunctive queries
with negations. Several remarks are in order now. First of all, we consider
without loss of generality only Boolean queries. A Boolean conjunctive query
q with inequalities is of the form

∃x

(
φ(x) ∧

(∧
i

(x1i ̸= x2i )

))
,
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where φ(x) is a conjunctive query, i.e. a conjunction of atomic formulas.
The negation of this CQ ̸= q can be transformed into an equivalent formula
of the form

∀x

(
φ(x)→

(∨
i

(x1i = x2i )

))
,

called disjunctive egd. Notice, that disjunctive egds are a generalization from
the so far used egds. In addition, if e is a disjunctive egd and has the form
∀x(φ(x) → ((x11 = x21) ∨ . . . ∨ (x1l = x2l ))), we write e1, . . . , el for the egds
∀x(φ(x) → (x1i = x2i )) associated with e, where 1 ≤ i ≤ l. A further
observation is that we can consider a UCQ ̸= q as a disjunction over the union
of the set of CQs C with the set of CQs ̸= E. The approach for evaluating
UCQs̸= proposed by [37] utilizes the following property:

Lemma 3.45. [37] There exists a solution J for source instance I that satis-
fies every CQ̸= in E, and satisfies no CQ in C if and only if certainM(q, I) =
false.

We define now the disjunctive chase, which is a generalization of the chase
from Section 3.2.1 and represents a special case of the chase proposed in
[32]. Like before, we distinguish between chase step and chase.

Definition 3.46. (Disjunctive chase step). Let ⟨I, J⟩ be an instance, and
let e : ∀xφ(x)→ ((x11 = x21) ∨ . . . ∨ (x1l = x2l )) be a disjunctive egd. Assume
that e is unsatisfied, i.e. there is a homomorphism h from φ(x) to ⟨I, J⟩
such that h(x11) ̸= h(x21)∧ . . .∧h(x1l ) ̸= h(x2l ) holds. Hence, every associated
egd e1, . . . , el is unsatisfied. There are two different outcomes:

1. The disjunctive chase step fails if no associated egd e1, . . . , el can be
satisfied, i.e. if all h(x1i ) and h(x2i ) are mapped to elements of Const.

2. Let ei1 . . . eir be those egds where at least one of h(x1ij ) and h(x2ij ) is
assigned to an element of Var, say h(x1ij ). The disjunctive chase step
results in a set of instances {⟨I, J1⟩, . . . , ⟨I, Jr⟩}, such that Jj satisfies
eij and is obtained by replacing every occurrence of h(x1ij ) in J by
h(x2ij ).

Definition 3.47. (Disjunctive chase). Assume a set of st-tgds Σ12, a union
of a set of tgds with a set of egds Σ2, a set of disjunctive egds E, and an
instance ⟨I, J⟩. A chase tree of ⟨I, J⟩ with Σ12∪Σ2∪E is a possibly infinite
tree, where ⟨I, J⟩ is the root node. The set of children {⟨I, Ji1⟩, . . . , ⟨I, Jir⟩}
of a node ⟨I, Ji⟩ is obtained depending on the considered dependency either
by a disjunctive chase step or by the chase step described in Definition 3.21.
A disjunctive chase is called finite if the chase tree has finitely many nodes,
and on each leaf node there is either no dependency in Σ12∪Σ2∪E unsatisfied,
or there is a dependency in Σ2 ∪ E such that the chase step respectively
disjunctive chase step fails.
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Notice that also the disjunctive chase has the property that there is no
order in which unsatisfied dependencies have to be processed. Thus, instead
of chasing ⟨I, ∅⟩ with Σ12 ∪ Σ2 ∪ E, we are also allowed to chase ⟨I, J⟩
with Σ2 ∪ E, where J is a universal solution for source instance I. The
QueryEvaluation(M, q) problem for UCQs ̸= comes down to generating
a chase tree of the source instance and checking if a leaf in the chase tree
exists that satisfies all disjunctive egds in E and no CQ in C. Fagin et al.
[37] showed that this is possible in coNP.

Theorem 3.48. [37] Let M = (S1,S2,Σ12 ∪ Σ2) be a schema mapping,
where Σ12 is a set of source-to-target tgds and Σ2 is a union of a set of egds
with a weakly acyclic set of tgds. Then, computing the certain answers of a
union of conjunctive queries with inequalities is in coNP.

Proof. (Sketch) Consider a source instance I and a UCQ ̸= q, where the sets
C and E denote the disjuncts in q that are CQs and CQs ̸=, respectively.
Assume that certainM(q, I) = false. We argued already in Section 3.2.1
that we can compute a universal solution in polynomial time. We guess a
sequence of homomorphisms and dependencies for the chase steps. Moreover,
we guess a sequence of decisions that determines which child we consider in
each chase step. Thereby, we are able to compute a solution J for I under
M that satisfies all CQs ̸= in E in polynomial time. Subsequently, we check
in polynomial time that J satisfies no CQ in C, using the technique from
Section 3.3.1. Consider now the opposite case that certainM(q, I) = true.
We can either have that none of the leaves in the chase tree satisfies all
CQs̸= in E, or all leaves that satisfy all CQs ̸= in E satisfy also at least one
CQ in C. We conclude that deciding if certainM(q, I) = false is in NP, and
therefore solving the QueryEvaluation(M, q) problem is in coNP.
Theorem 3.48 represents an upper complexity bound for computing the cer-
tain answers of a UCQ with inequalities. It can be shown that the Query-
Evaluation(M, q) problem is also coNP-hard for queries with inequalities.
We do not explicitly discuss this result since it is implied by Theorem 3.51.
A self-evident question is if we can restrict the QueryEvaluation(M, q)
problem with UCQs ̸= in such a way that it becomes solvable in polyno-
mial time. We consider two restrictions of UCQs̸= that allow computing the
certain answers in polynomial time. In the first restriction the number of
inequalities per disjunct is limited. The following result, proposed by [37],
shows that there is an algorithm that solves the QueryEvaluation(M, q)
problem for UCQs ̸=, where the number of inequalities per disjunct is limited
to one, in polynomial time.

Theorem 3.49. [37] Consider a data exchange scenarioM = (S1,S2,Σ12∪
Σ2), where Σ12 is a set of st-tgds and Σ2 is a set of egds and weakly acyclic
tgds. Then, the certain answers of a union of conjunctive queries with at
most one inequality per disjunct can be computed in polynomial time.

Proof. Assume an arbitrary source instance I. We compute a universal
solution J for I in polynomial time using the chase from Section 3.2.1.
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Without loss of generality let q be a UCQ ̸= with at most one inequality
per disjunct, such that q has the form q1 ∨ q2, where q1 is the disjunction
of a set C of CQs and q2 is the disjunction of a set E of CQs ̸=. Recall,
that disjunctive egds with exactly one inequality degenerate to egds from
Definition 3.3. Thus, we can transform q2 into a conjunction of a set E of
egds. We chase ⟨I, J⟩ with Σ2 ∪ E using the chase defined in Section 3.2.1.
We have already shown that this chase runs in polynomial time and either
fails or results in a target instance J ′. If the chase fails we set according to
Lemma 3.45 certainM(q, I) = true. If the chase does not fail we check for
each CQ in C if it is satisfied by J ′. Clearly, there are only polynomially many
CQs in C and each of them can be evaluated according to Theorem 3.40
in polynomial time. If J ′ satisfies at least one of the CQs in C we have
certainM(q, I) = true, otherwise certainM(q, I) = false. It follows that this
algorithm has polynomial runtime.
We consider now the correctness of the described algorithm. If the chase
⟨I, J⟩ with Σ2∪E fails, we have that q2 is satisfied in J . Since J is universal,
every solution satisfies q2 and therefore certainM(q, I) = true. If the chase
succeeds with a solution J ′, we have that some of the solutions for I under
M satisfy E and J ′ is universal for them. Those solutions which do not
satisfy E, satisfy by definition q2 and with it q. If J ′ satisfies at least one
CQ in C, we have that every solution that satisfy E satisfies also this CQ. It
follows that either q1 or q2 is satisfied, and hence certainM(q, I) = true. If J ′
satisfies no conjunctive query in C, then J ′ is a witness that certainM(q, I)
must be false.
The question arises if we are able to find efficient algorithms for UCQs ̸=
with more than one inequality per disjunct and no further restrictions. It
turns out that, under the assumption that P ̸=NP, this is not possible [37].
We discuss here an even stronger result proposed by Madry [54]. Therefore
we have to introduce a restricted form of schema mappings that is already
intensively studied in the data integration context [52].

Definition 3.50. A data exchange settingM = (S1,S2,Σ12) is called local-
as-view setting, or LAV setting for short, if all source-to-target dependencies
in Σ12 are of the form ∀x(R(x)→ ∃yψ(x,y)), where R(x) is a single atomic
formula over S1,ψ is a conjunction of atomic formulae over S2, and all
variables in x occur in ψ.

Theorem 3.51. [54] QueryEvaluation(M, q) for LAV settings and con-
junctive queries with two or more inequalities is coNP-complete.

Proof. (Sketch) Clearly, Theorem 3.51 implies membership in coNP, but for
the restricted case of LAV settings membership was already shown before
by [1]. Hardness is shown by a reduction from the complement of 3Sat.
Basically, the reduction creates from a formula ϕ in 3CNF a source instance
I with four binary relations P , L, R and N . Relation P can be interpreted as
a digraph, such that each tuple in P represents an arc. The target schema
contains two binary relations P ′ and N ′. A solution J contains in P ′ all
tuples from P . Furthermore, for each tuple in relation L and R there must
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be a directed path of length two respectively four in the digraph represented
by P ′. The query q asks if there is a node with three or more outgoing arcs
in the digraph represented by P ′. It can be shown that ϕ is satisfiable if and
only if certainM(q, I) = false.
The above result also states that we have to consider further restrictions
if we want to find a tractable algorithm that computes the certain answers
for UCQs ̸= with more than one inequality per disjunct. We discuss now the
restrictions that allow finding an efficient algorithm for UCQs ̸= with at most
two inequalities per disjunct. Let M = (S1,S2,Σ12) be a schema mapping
with a universal solution J for source instance I, and let q be a UCQ ̸= with
at most two inequalities per disjunct. Since M has no target dependencies,
we do not have to consider the case where for a source instance there exists
no solution. A first observation is that, if we allow in Σ12 only full st-tgds, it
becomes easy to show that QueryEvaluation(M, q) is tractable. This is
due the fact that if a universal solution satisfies q then all others solutions
do. We can relax this restriction by allowing elements from Var occur in I,
such that variables from q that appear in inequalities cannot be mapped on
them. Arenas et al. [12] proposed even less restrictive conditions that allow
QueryEvaluation(M, q) to be tractable:

Definition 3.52. Consider a schema mapping M = (S1,S2,Σ12). We say
that the i-th attribute of a relation symbol T ∈ S1 cannot be nullified if there
is no st-tgd in Σ12 that has the i-th attribute of T existentially quantified.
Let q be a Boolean conjunctive query with two inequalities of the form
∃x(φ(x) ∧ (x11 ̸= x21) ∧ (x12 ̸= x22)). The conjunctive query q has almost
constant inequalities underM, if at least x1i or x2i cannot be nullified, where
1 ≤ i ≤ 2. Query q has constant joins under M if only variables that occur
in φ once can be nullified.

Example 3.53. Consider a data exchange scenario M = (S1,S2,Σ12),
where S1 consists of one binary relation symbol, and S2 consists of a ternary
relation symbol. Σ12 is defined as follows:

Σ12 = {E(x, y)→ ∃zM(x, y, z)}

The first two attributes of the relation symbol M cannot be nullified, while
the third can be nullified. Consider the following three queries:

q1 =∃x∃y∃z∃u∃v(M(x, y, z) ∧M(x, u, v) ∧ y ̸= u ∧ z ̸= v)

q2 =∃x∃y∃z∃u(M(x, y, z) ∧M(x, u, z) ∧ y ̸= u)

q3 =∃x∃y∃z∃u∃v(M(x, y, z) ∧M(x, u, v) ∧ y ̸= v ∧ z ̸= u)

We have that q1 has constant joins, but z ̸= v destroys the almost con-
stant inequality property. Query q2 has almost constant inequalities but not
constant joins, because of the occurrences of variable z. The last query q3
satisfies both conditions.

The following result was shown by Arenas et al. [12]. Moreover, they showed
that tractability for QueryEvaluation(M, q) is immediately lost, if any
of the restrictions is removed.
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Theorem 3.54. [12] Let M = (S1,S2,Σ12) be a schema mapping. Assume
a query q consisting of a disjunction of conjunctive queries with at most
one inequality and constant joins under M, and conjunctive queries with
two inequalities, constant joins and almost constant inequalities under M.
Then, QueryEvaluation(M, q) can be solved in polynomial time.

3.4 Composing Schema Mappings
So far, we have exclusively studied properties and problems where the data
exchange setting is considered as fixed. The fundamental idea in model man-
agement [19] is to consider operations on data exchange settings. The two
most fundamental operators are inversion and composition. The intuition
of the inversion operator is to produce from a given schema mapping M12

a schema mapping M21, such that if J is a solution for I under M12 then
I is a solution for J under M21. The investigation [36, 40, 12, 41] in this
area has showed that even defining the exact semantics of the inversion op-
erator is by no means trivial. The composition operator produces a schema
mappingM13 that yields to the same solutions as the successive application
of two given schema mappings M12 and M23. In contrast to the inversion
operator, there is an agreement in the community about the semantics of
the composition. In this section the composition operator which is studied
in [53, 39, 58, 19] is discussed, but we primarily focus on the results of Fagin
et al. [39]. We start by giving the definition of the composition operator.

Definition 3.55. Consider the data exchange settingsM12 = (S1,S2,Σ12),
M23 = (S2,S3,Σ23) and M13 = (S1,S3,Σ13). Schema mapping M13 is a
composition of M12 and M23, denoted as M13 =M12 ◦M23, if Inst(M13)
consists of the following instances:

{⟨I1, I3⟩ | there is an I2 so that ⟨I1, I2⟩ ∈ Inst(M12) ∧ ⟨I2, I3⟩ ∈ Inst(M23)}

We discuss in this section only data exchange settings without target depen-
dencies. Moreover, the composition of two schema mappings always exists
and is unique up to logical equivalence. For the complexity analysis of com-
positions the composition query is of interest, which is a decision problem
where we ask if a set of pairs of instances is contained in the composition of
two schema mappings. More formally:

Problem: CompositionQuery(M12,M23)
Input: instances I1 and I3

Question: is ⟨I1, I3⟩ ∈ Inst(M12) ◦ Inst(M23)?

The following example illustrates a composition query and shows a compo-
sition of two schema mappings with first order dependencies:

Example 3.56. Let M12 = (S1,S2,Σ12) and M23 = (S2,S3,Σ23) be
two schema mappings, such that S1 and S3 consist of one ternary relation
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symbol. Schema S2 consists of one binary relation symbol. The source-to-
target tgds of M12 and M23 are defined as follows:

Σ12 = {D(x, y, z)→ E(x, y) ∧ E(y, z)}
Σ23 = {E(x, y) ∧ E(x, z)→ ∃wF (x, y, w)

Notice that the st-tgd in M12 is full. Assume a source instance I1 = {
D(a, b, c), D(c, a, b)} over S1. A chase of ⟨I1, ∅⟩ with Σ12 results in an in-
stance I2 = {E(a, b), E(b, c), E(c, a)}. Furthermore, a chase of ⟨I2, ∅⟩ with
Σ23 results in an instance I3 = {F (a, b, n1), F (b, c, n2), F (c, a, n3)}, where
n1, n2, n3 ∈ Var. Thus, the CompositionQuery(M12,M23) problem for
I1 and I3 results in the answer true. Let M13 = (S1,S3,Σ13) be a data
exchange scenario with the following dependencies:

Σ13 = {D(x, y, z) ∧D(x, u, v)→ ∃wF (x, y, w),
D(x, y, z) ∧D(v, x, u)→ ∃wF (x, y, w),
D(z, x, y) ∧D(x, u, v)→ ∃wF (x, y, w),
D(z, x, y) ∧D(v, x, u)→ ∃wF (x, y, w)}

It can be seen thatM13 is the composition ofM12 andM23. The technique
for producing those dependencies is described in the proof of Theorem 3.57.
Furthermore, I3 is a solution for I1 under M13.

There are two obvious ways to solve the CompositionQuery(M12,M23)
problem for two schema mappings M12 = (S1,S2,Σ12) and M23 = (S2,S3,
Σ23) and two given instances I1 and I3. The naive approach is to guess an
instance I2 over S2 and check if ⟨I1, I2⟩ |= Σ12 and ⟨I2, I3⟩ |= Σ23 holds. If we
assume that ⟨I1, I2⟩ |= Σ12 and ⟨I2, I3⟩ |= Σ23 can be checked in polynomial
time, as it is for first and second-order dependencies, then the Composi-
tionQuery(M12,M23) problem can be solved in nondeterministic polyno-
mial time. The second, more sophisticated approach is to compute a com-
position M13 = (S1,S3,Σ13) of M12 and M23 and check if ⟨I1, I3⟩ |= Σ13

holds.
In Section 3.4.1 the composition of two schema mappings with first-order
dependencies and the complexity of the corresponding composition query
is studied. It turns out that the composition of two schema mappings can-
not always be defined with st-tgds. For the special case where at least the
first schema mappings consist only of full st-tgds a finite composition can
be found, such that the composition query can be solved in polynomial
time. Otherwise, the naive approach has to be used and the complexity
raises to NP-completeness. In Section 3.4.2 compositions with schema map-
pings that use SO-tgds are discussed. The key result is that in contrast
to schema mappings with first-order dependencies, schema mappings with
SO-tgds allow always to compute a composition. Nevertheless, the Compo-
sitionQuery(M12,M23) problem remains NP-complete.
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3.4.1 First-Order Dependencies
The definition of the CompositionQuery(M12,M23) problem considers
both data exchange settingsM12 andM23 as constant, and therefore com-
puting a composition M13 does not result in a complexity increase. More-
over, for a schema mapping M12 = (S1,S2,Σ12) it can be decided in poly-
nomial time if an instance ⟨I1, I2⟩ over ⟨S1,S2⟩ satisfies all dependencies in
Σ12. It follows that if we can compute a composition M13 consisting of a
finite set of st-tgds, then the CompositionQuery(M12,M23) problem is
tractable. The following result, proposed in [39], shows a fragment of the
CompositionQuery(M12,M23) problem that allows computing a finite
composition with first-order dependencies.

Theorem 3.57. [39] The composition of two data exchange settingsM12 =
(S1,S2,Σ12) and M23 = (S2,S3,Σ23), where Σ12 is a set of full st-tgds and
Σ23 is a set of st-tgds, can be defined with a finite set of st-tgds. Hence, the
CompositionQuery(M12,M23) problem can be solved in polynomial time.

Proof. (Sketch) An introductory observation is that every full st-tgds can
be represented by a set of st-tgds with only a single atomic formula in
their conclusion. Therefore, without loss of generality it can be assumed
that the dependencies in Σ12 are of the form ∀zi(φi(zi) → Ri(ui)), where
ui ∈ zi. Moreover, the dependencies in Σ23 are of the form ∀x((R1(x1) ∧
. . .∧Rk(xk))→ ∃yψ(x0,y)). If an st-tgd τ in Σ23 has an atomic formula Ri
with 1 ≤ i ≤ k in their antecedent, such that there is no st-tgd in Σ12 with
Ri in the conclusion, then we can exclude τ from further considerations. For
all other st-tgds in Σ23, we construct a set of all possible st-tgds of the form

∀z′∀x((φ1[u1 7→ x1] ∧ . . . ∧ φk[uk 7→ xk])→ ∃yψ(x0,y)),

where φi is an antecedent of an st-tgd in Σ12 with Ri(ui) as conclusion.
The expression φi[ui 7→ xi] replaces all occurrences of ui with xi in φi.
The variables in z′ are all variables in φ1 . . . φk that are not affected from
the replacements. Since, there are only finitely many combinations of st-
tgds in Σ12, also the constructed set of st-tgds is finite. The union of all
constructed sets of st-tgds forms Σ13. The resulting composition is defined
as M13 = (S1,S3,Σ13).
It follows immediately by the construction of M13 that if ⟨I1, I3⟩ ∈ Inst(
M12)◦ Inst(M23), then also ⟨I1, I3⟩ |= Σ13 holds. Moreover, we have to show
for an instance ⟨I1, I3⟩ that satisfies Σ13, that also ⟨I1, I3⟩ ∈ Inst(M12) ◦
Inst(M23) holds. It suffices to show that ⟨I2, I3⟩ ∈ Inst(M23), where I2 is
the universal solution resulting from chasing ⟨I1, ∅⟩ with Σ12.
Note that the composition in Example 3.56 illustrates the technique used in
the above proof. Fagin et al. [39] showed that if we allow arbitrary st-tgds in
the first of the two composed schema mappings, then we can have that the
composition is only expressible with infinitely many st-tgds or is not even
definable with first-order dependencies. We restrict us to the second case,
but both cases imply that the we cannot apply the approach where we solve
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the CompositionQuery(M12,M23) problem with the composition ofM12

and M23.

Theorem 3.58. [39] There exist two schema mappingsM12 = (S1,S2,Σ12)
and M23 = (S2,S3,Σ23), where Σ12 consist of a single st-tgd and Σ23 is a
set of full st-tgds, such that the composition of M12 and M23 cannot be
defined by first-order dependencies.

Proof. (Sketch) Consider that S1 consists of one unary relation symbol, S2

consists of single binary relation symbol, and S3 consists of one binary and
one unary relation symbol. The dependencies in M12 and M23 are defined
as follows:

Σ12 = {D(x)→ ∃yE(x, y)}
Σ23 = {E(x, y)→ F (x, y),

E(x, x)→ G(x)}

Assume now the instance I1 = {D(a)} and the instance I3 = {F (a, b)}.
Notice that in I3 relation GI3 is empty. Clearly, the CompositionQuery(
M12,M23) problem is for instance ⟨I1, I3⟩ satisfied. Let I ′3 = {F (a, a)},
with GI3 = ∅, be another instance. The CompositionQuery(M12,M23)
problem is for instance ⟨I1, I ′3⟩ unsatisfied. It can be showed that every st-tgd
that satisfies ⟨I1, I3⟩ also satisfies ⟨I1, I ′3⟩.
We have already mentioned that if a composition of two schema mappings
with finitely many st-tgds cannot be computed, then the composition query
can be solved with the naive approach which has a runtime in NP. Further-
more, [39] showed that for such a case the composition query is also hard
for NP.

Theorem 3.59. [39] There exist two schema mappingsM12 = (S1,S2,Σ12)
and M23 = (S2,S3,Σ23), where Σ12 is a set of st-tgds and Σ23 is a set of
full st-tgds, such that the CompositionQuery(M12,M23) problem is NP-
complete.

Proof. (Sketch) It suffices to show NP membership for the case, where
Σ12 and Σ23 are arbitrary st-tgds, and NP hardness for the case, where
Σ23 contains only full st-tgds. Let ⟨I1, I3⟩ be an arbitrary instance over
⟨S1,S2⟩. NP membership can be shown by guessing an instance I2 over S2

and checking in polynomial time if ⟨I1, I2⟩ |= Σ12 and ⟨I2, I3⟩ |= Σ23 holds.
NP hardness is shown by a reduction from the Homomorphism problem to
the CompositionQuery(M12,M23) problem. The Homomorphism prob-
lem is a generalization of the 3Sat and the 3Colorability problem, where
we ask for two given instances I and J over the same schema, if there is a
homomorphism from I to J .

3.4.2 Second-Order Dependencies
In contrast to first-order dependencies, second-order dependencies are closed
under composition, i.e. for every two schema mappingsM12 = (S1,S2,Σ12)
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and M23 = (S2,S3,Σ23) defined with st-tgds or SO-tgds, we are able to
construct a composition M13 = (S1,S3, σ13) such that σ13 is a single SO-
tgd. In the proof of Theorem 3.58 two schema mappings are shown, where a
composition cannot be defined with first-order dependencies. We show now
that for these schema mappings a composition via SO-tgds can be found.
This example is adopted from [39].

Example 3.60. Assume three schemata S1, S2 and S3, where S1 consists
of a unary, S2 of a binary, and S3 of a unary and a binary relation symbol.
LetM12 = (S1,S2,Σ12) andM23 = (S2,S3,Σ23) be data exchange settings
with the following dependencies:

Σ12 = {D(x)→ ∃yE(x, y)}
Σ23 = {E(x, y)→ F (x, y),

E(x, x)→ G(x)}

The composition ofM12 andM23 can be defined as schema mappingM13 =
(S1,S3, σ13), where σ13 is the following SO-tgd:

∃f(∀x(D(x)→ F (x, f(x))) ∧ ∀x(D(x) ∧ (x = f(x))→ G(x))).

Fagin et al. [39] proposed the algorithm Compose(M12,M23) that com-
putes a composition M13 = (S1,S3, σ13) of two given data exchange set-
tingsM12 = (S1,S2, σ12) andM23 = (S2,S3, σ23). Recall, that SO-tgds are
closed under conjunction and therefore every set of SO-tgds can be trans-
formed into a single SO-tgd. Moreover, by Skolemizing every st-tgd can be
transformed into an SO-tgd. We do not give a formal specification of the
Compose(M12,M23) algorithm, but give instead an informal description in
the following example.

Example 3.61. Consider the schema mappings M12 = (S1,S2, σ12) and
M23 = (S2,S3, σ23). Schema S1 has two binary relation symbols D and E,
schema S2 has one ternary relation symbol F , and S3 consists of a unary
relation symbol G and a binary relation symbol I. The SO-tgds inM12 and
M23 are defined as follows.

σ12 =∃f(∀x∀y∀z(D(x, y) ∧ E(y, z)→ F (x, f(y), z)))

σ23 =∀u∀v(F (u, v, u)→ G(v))∧
∃h(∀u∀v∀w∀s∀t(F (u, v, w) ∧ F (s, v, t)→ I(h(u, s), h(w, t))))

The Compose(M12,M23) algorithm is divided in four steps. In the first step
we initialize the sets S12 and S23. An SO-tgd consists of a conjunction of
implications of the form φ(x) →

∧k
j=1Rj(tj), where k is the number of

atomic formulas in the conclusion of the implication and x contains every
tj. The set S12 is defined as the set of formulas φ(x)→ R1(t1), . . . , φ(x)→
Rk(tk). Set S23 is defined analogously. After the first step S12 and S23 contain
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the following elements:

S12 = {D(x, y) ∧ E(y, z)→ F (x, f(y), z)}
S23 = {F (u, v, u)→ G(v),

F (u, v, w) ∧ F (s, v, t)→ I(h(u, s), h(w, t))}

In the second step we compose S12 with S23. If we have an implication χ in
S23, such that the antecedent contains an atomic formula that is not included
in any conclusion of an implication of S12, then we remove χ from S23. For
all other implications χ of the form ϕ → ψ in S23, we replace every atomic
formula R(x) in ϕ with the antecedent of implication φ→ R(t) from S12. In
addition, we add in the antecedent conjunctions of equalities, which link the
variables in x with the terms in t. Should in S12 exist more than one formula
with R(t) in the conclusion, then we replace R(x) with the antecedent of
each R(t) in a fresh copy of χ. For instance implication F (u, v, u) → G(v)
is replaced with

χ1 : D(x, y) ∧ E(y, z) ∧ (v = f(y))→ G(v).

Moreover, variables with overlapping names occurring in a replacement get
renamed. The formula F (u, v, w) ∧ F (s, v, t) → I(h(u, s), h(w, t)) is trans-
formed by the second step into

χ2 :D(x0, y0) ∧ E(y0, z0) ∧ (u = x0) ∧ (v = f(y0)) ∧ (w = z0)

∧D(x1, y1) ∧ E(y1, z1) ∧ (s = x1) ∧ (v = f(y1)) ∧ (t = z1)

→ I(h(u, s), h(w, t)).

In the third step we simplify S23 by removing superfluous equalities and
variables in the implications:

χ′1 :D(x, y) ∧ E(y, z)→ G(f(y))

χ′2 :D(x0, y0) ∧ E(y0, z0) ∧D(x1, y1) ∧ E(y1, z1) ∧ (f(y0) = f(y1))

→ I(h(x0, x1), h(z0, z1))

In step four the resulting SO-tgd ∃f(∃x∃y∃zχ′1 ∧∃x0∃y0∃z0∃x1∃y1∃z1χ′2) is
returned.

The following result by [39], states that Compose(M12,M23) indeed com-
putes the correct composition for every pair of data exchange settings defined
by SO-tgds.

Theorem 3.62. [39] Consider two data exchange settings M12 = (S1,S2,
σ12) andM23 = (S2,S3, σ23), where σ12 and σ23 are two SO-tgds. Then, the
algorithm Compose(M12,M23) computes an SO-tgd σ13, such that M13 =
(S1,S3, σ13) is the composition of M12 and M23.

The size of the SO-tgd returned by the Compose(M12,M23) algorithm can
be exponential in the maximum number of atomic formulas appearing in
the antecedent of any implication of σ23. Although, we can always compute
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a composition, the CompositionQuery(M12,M23) problem still remains
NP-complete. This is due the fact that deciding if an instance ⟨I1, I2⟩ sat-
isfies an SO-tgd is in contrast to first-order dependencies an NP-complete
problem.

3.5 Exchanging Incomplete Data
So far we have always assumed that source instances of a data exchange
setting are complete. On the other hand, solutions are in general incom-
plete. The question then arises, how natural this assumption is and how the
existing techniques can be extended such that they can handle incomplete
source instances. In this section we discuss an approach based on positive
conditional instances that allows data exchange with incomplete source in-
stances, proposed by Arenas et al. [10]. Therefore, we reconsider the topics of
the former sections, namely solution building, query answering and compos-
ing schema mappings with schema mappings that allow incomplete source
instances. We start with the observation that naive instances do not have
enough expressive power for representing solutions for incomplete source in-
stances. Therefore we have to formalize the property that a representation
system has to fulfill to be able to represent the space of solutions.

Definition 3.63. Consider a representation system (W, rep) and a class
of schema mappings C. If for every schema mapping M12 = (S1,S2,Σ) in
C and for every U ∈W over S1, there exists a V ∈W over S2 such that
rep(V) =

∪
I∈rep(U) SolM(I) holds, then (W, rep) is called a strong represen-

tation system for C.

The notion of strong representation systems was initially proposed for queries
[49]. Fagin et al. showed that the representation system formed by naive in-
stances is powerful enough to represent the space of solutions for the class of
schema mappings defined by st-tgds [37] and SO-tgds [39] for any complete
source instance. The following example shows that we lose this property if
we allow the source instance to be incomplete.

Example 3.64. Let M = (S1,S2,Σ12) be a schema mapping, where S1
consists of a single binary relation symbol D and S2 consists of a single
unary relation symbol E. Σ12 is a set of first-order dependencies, defined as:

D(x, x)→ E(x)

Assume a naive source instance I = {D(a, n)}, where n is an element of
Var. A solution J for I under M must be able to express that if in an
interpretation of I n = a holds, then E(a) must be a fact of every solution
of that interpretation. It is easy to see that for naive instances this is not
the case.
Consider a positive conditional instance I ′ = {D(a, n)} with ρI

′
D : (a, n) →

true, where n ∈ Var. Moreover, let J ′ = {E(n)} with ρJ
′
E : (n) → n = a be

a conditional instance over S2. It can be shown that J ′ is indeed a solution
for I ′ under M, i.e. rep(J ′) =

∪
I∈rep(I′) SolM(I) holds.
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From the above example we can conclude that {Wnaive, repnaive} is not a
strong representation system for the class of schema mappings defined by
st-tgds. We have also seen that positive conditional instances can represent
the space of solutions for at least a specific data exchange setting. Arenas et
al. [10] showed that this result holds also in general. Moreover, positive con-
ditional instances can correctly represent the solutions of schema mappings
defined with SO-tgds.

Theorem 3.65. [10] Positive conditional instances form a strong represen-
tation system for the class of data exchange settings where the dependencies
are defined either as st-tgds or SO-tgds.

Clearly, this result holds also for the representation system {Wcond, repcond}.
In the literature it was frequently observed that more expressive represen-
tation systems lead to higher complexity bounds on problems. Hence, we
are interested in a representation system which is expressive enough to be
strong, but is still sufficiently simple for allowing efficient algorithms. Arenas
et al. [10] showed that the property of being a strong representation system
for the class of schema mappings defined by st-tgds or SO-tgds is immedi-
ately lost if we apply any further restriction on the local conditions of positive
conditional instances. This result gives strong evidence that {Wpos, reppos}
is indeed the favorable representation system for data exchange with in-
complete instances. As next step, we have to reconsider the semantics of
solutions if incomplete source instances are allowed.

Definition 3.66. Let M = (S1,S2,Σ) be a schema mapping and let R =
{W, rep} be a representation system. Consider U , V elements of W over
schema S1 and S2, respectively. Then, V is an R-solution for U under M
if rep(V) ⊆

∪
I∈rep(U) SolM(I) holds. Moreover, this R-solution is called

universal if also rep(V) =
∪
I∈rep(U) SolM(I) holds.

Several remarks are in order now. If V is an R-solution for U under a schema
mapping M = (S1,S2,Σ) and J ∈ rep(V), then there is an I ∈ rep(U) such
that ⟨I, J⟩ |= Σ holds. Universal R-solutions allow representing the space
of possible solutions with a single element of the representation system.
Consequently, the notion of strong representation system demands that for
every source instance for a schema mapping a universal R-solution has to
exist. The instance J ′ in Example 3.64 is a universal Rpos-solution.
With {Wpos, reppos} we have found a representation system which allows
us to correctly represent solutions of schema mappings specified by st-tgds
or SO-tgds. Hence, we have the foundation to discuss the problems of the
former sections for data exchange settings with incomplete source instances.
We start with the DataExchange(M) problem. In Section 3.2 universal
solutions have been shown to be suitable for materialization. In the presence
of a representation system R materializing a universal R-solution seems
the obvious choice. The following result, proposed in [10], states that the
DataExchange(M) problem can be solved efficiently for an incomplete
source instance.
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Theorem 3.67. [10] LetM = (S1,S2,Σ) be a data exchange setting, where
Σ is either a set of st-tgds or a single SO-tgd, and let I be a positive con-
ditional instance over S1. Then, there exists an algorithm that computes a
universal Rpos-solution for I under M in polynomial time.

Proof. (Sketch) The algorithm is based on the classical chase technique
[17] and can be directly applied to schema mappings specified by st-tgds.
The chase procedure provided by [10] differs from the chase considered in
Section 3.2.1 in order that it can handle local conditions and relationships be-
tween elements from Var in the source instance. Moreover, this algorithm can
also be used to solve schema mappings specified by a single SO-tgds. This is
due to the fact that an arbitrary schema mappingM = (S1,S2, σ12), where
σ12 is an SO-tgd, can be expressed as a finite sequence of schema mappings
specified by st-tgds M12 = (S1,S2,Σ12), . . . , Mk−1k = (Sk−1,Sk,Σk−1k)
such thatM =M12◦. . .◦Mk−1k holds [39]. Then, a universal Rpos-solution
for a source instance I underM can be computed by computing iteratively
a universal Rpos-solution for Ii under Mii+1, where 1 ≤ i < k, I1 = I and
Ii is the universal Rpos-solution for Ii−1 under Mi−1i.
The next discussed problem is QueryEvaluation(M, q). In order that
positive conditional instances can be handled adequately, we have to adapt
the notion of certain answers of a target query q with respect to the source
instance I under the considered schema mapping M as follows:

certainM(q, I) =
∩
{q(J) | J is an Rpos-solution for I under M}.

In Section 3.3, we achieved polynomial runtime for computing the certain
answers with restricting the query language in such a way that queries can be
directly evaluated on the universal solutions. This method can also applied
on schema mappings with positive conditional instances. Whereas in the case
of naive universal solutions the largest applicable class of queries are UCQs,
[10] showed that arbitrary first-order queries can be directly computed on
universal Rpos-solutions.

Theorem 3.68. [10] Consider a data exchange setting M = (S1,S2,Σ12),
where Σ12 is set of st-tgds, a positive conditional source instance I, and an
arbitrary first-order query q over S2. Then, certainM(q, I) = q(J) holds for
every universal Rpos-solutions J for I under M.

Furthermore, [10] showed that the QueryEvaluation(M, q) problem can
be solved comparably efficiently for positive conditional instances as for the
usual case:

Theorem 3.69. [10] Consider a schema mappingM = (S1,S2,Σ12), where
Σ12 is a set of st-tgds. Moreover, consider a positive conditional source
instance I, and a query q consisting of a union of conjunctive queries with
at most one inequality per disjunct over S2. Then QueryEvaluation(M, q)
can be decided in polynomial time.
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The last topic that we consider is composing schema mappings in presence
of conditional instances. For this purpose we have to introduce an analog
for the notion Inst(M) that supports positive conditional instances:

Definition 3.70. Let M = (S1,S2,Σ12) be a schema mapping. A positive
conditional mapping generated fromM, denoted as pc(M), is a set of pairs
of a positive conditional source and target instance and is defined as

{(I1, I2) | I2 is an Rpos-solution for I1 under M}.

Notice that for a given schema mapping M and an arbitrary element of
Inst(M), say ⟨I, J⟩, a pair of positive conditional instances (I ′, J ′) exists
such that (I ′, J ′) ∈ pc(M). We know from Section 3.4.2 that SO-tgds are
closed under composition, i.e. for two schema mappingsM12,M23 specified
by SO-tgds, there is a third schema mapping specified by SO-tgds such that
M13 = M12 ◦ M23 holds. Arenas et al. [10] showed that SO-tgds remain
still closed under composition if we allow positive conditional instances.

Theorem 3.71. [10] Consider two schema mappings M12 = (S1,S2, σ12)
and M23 = (S2,S3, σ23), where σ12 and σ23 are two SO-tgds. Then there
exists an SO-tgd σ13, such that for the schema mappingM13 = (S1,S2, σ13)
the equality pc(M13) = pc(M12) ◦ pc(M23) holds.
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CHAPTER 4
Knowledge Exchange

Knowledge exchange is a form of data exchange where data is exchanged
between knowledge bases. Basically, a knowledge base consists of a set of
facts and a set of rules over these facts that allow to deduce new facts.
Facts in knowledge bases are usually termed as explicit knowledge and are
given in the context of this thesis by relational instances. Accordingly, the
rules assigned to a knowledge base are called implicit knowledge and are
given by a set of logical formulae. An example for knowledge bases are
Datalog programs, where the extensional database represents the explicit
knowledge and the intentional database expresses the implicit knowledge.
Another example for knowledge bases are description logic specifications,
where ABox and TBox correspond to explicit and implicit knowledge.
Clearly relational instances, introduced in Section 2.1, can be seen as knowl-
edge bases with no implicit knowledge. Thus, knowledge bases are a gener-
alization of relational instances. A natural question is whether some of the
techniques from relational data exchange can be adapted to data exchange
on knowledge bases. It turns out that the framework for representation sys-
tems from [10], discussed in Section 3.5, can be applied to knowledge bases.
In particular, Arenas, Pérez and Reutter [10] laid the foundations of exchang-
ing explicit knowledge as well as implicit knowledge via schema mappings.
Knowledge exchange was further investigated in the context of description
logics in [7, 8, 24].
This chapter is entirely based on the results of Arenas, Pérez and Reutter
[10] and is structured as follows. In Section 4.1 the notions of knowledge
bases and knowledge exchange are specified. In addition an example is given
that is referred throughout the chapter. The most fundamental problem in
knowledge exchange is to materialize a target knowledge base for a source
knowledge base under a schema mapping. Clearly, this requires being able
to check, whether a knowledge base truly represents another knowledge base
under a given schema mapping. It turns out that this problem is in general
undecidable and is further investigated in Section 4.2. In Section 4.3 and
Section 4.4 two techniques for materializing a knowledge base with respect
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to a schema mapping and a source knowledge base are illustrated. In Sec-
tion 4.3 universal knowledge base solutions are introduced, which are the
analog of the universal solutions from Section 3.5. Minimal knowledge base
solutions, discussed in Section 4.4, are a relaxation of universal knowledge
base solutions and allow much more expressive implicit knowledge.

4.1 Knowledge Bases and Knowledge Exchange
In this section the formalism of knowledge bases is introduced. In addition,
the notion of solution in the context of exchanging knowledge between two
knowledge bases is defined. As already mentioned, knowledge bases distin-
guish between explicit data and implicit data. To be able to reuse many of
the concepts discussed so far, we use in this chapter relational data for the
explicit data. Logical formulae are used to express implicit data.

Definition 4.1. A knowledge base over a schema S is a pair (I,Σ), where
I is an instance over S and Σ is a set of logical formulae over S.The set of
possible models of (I,Σ), denoted as Mod(I,Σ), is defined as

Mod(I,Σ) = {K ∈ Inst(S) | K ⊇ I and K |= Σ}.

A knowledge base (I,Σ) can be seen as an representative for the set Mod(I,Σ).
On the other hand, each element of Mod(I,Σ) can be seen as an interpre-
tation of (I,Σ). Let K be the set of all possible knowledge bases over all
possible relational schemas, then R = (K,Mod) forms a representation sys-
tem for knowledge bases. Hence, we are allowed to apply the concept of
solution specified in Definition 3.66 for knowledge bases.

Definition 4.2. LetM = (S1,S2,Σ12) be a schema mapping, and let (I,Σ1)
and (J,Σ2) be two knowledge bases over S1 and S2, respectively. We say
(J,Σ2) is a knowledge base solution for (I,Σ1) under M, if Mod(J,Σ2) ⊆∪
K∈Mod(I,Σ1)

SolM(K) holds, i.e. for every instance L ∈ Mod(J,Σ2) there
is a K ∈ Mod(I,Σ1) such that ⟨K,L⟩ ∈ Inst(M). The set of all knowledge
base solutions for (I,Σ1) under M is denoted by SolM(I,Σ1).

Notice, that this definition corresponds to Definition 3.66, where the notion
of solution for incomplete source instances under a schema mapping is intro-
duced. We say in the above case that (I,Σ1) is a source knowledge base and
(J,Σ2) is a target knowledge base. In addition, we say that I is the source
explicit knowledge and that J is the target explicit knowledge. Analogously,
Σ1 refers to the source implicit knowledge and Σ2 refers to the target implicit
knowledge.
The most crucial problem concerning knowledge exchange is the problem of
constructing a knowledge base solution for a source knowledge base under a
given schema mapping. More formally:

Problem: KnowledgeExchange(M)
Input: source knowledge base (I,Σ1)

Question: find (J,Σ2) s.t. (J,Σ2) ∈ SolM(I,Σ1)
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We illustrate the concepts introduced so far with the following example.
Notice, that we are using tgds from Definition 3.3 as implicit knowledge for
the considered knowledge bases.

Example 4.3. LetM = (S1,S2,Σ12) be a schema mapping, where schema
S1 consists of two binary relation symbols D, E and one ternary relation
symbol F . Schema S2 consists of one binary relation symbol D′ and one
ternary relation symbol F ′. The dependencies of Σ12 are defined as follows:

Σ12 = {D(x, y)→ D′(x, y),

F (x, y, z)→ F ′(x, y, z)}

Consider a knowledge base (I,Σ1) over S1, where I consists of the tuples
from {D(a, b), D(b, c), D(b, d), E(a, b), E(b, c), E(c, d)} and Σ1 is specified as
follows:

Σ1 = {D(x, y) ∧D(y, z)→ F (x, y, z),

E(x, y) ∧ E(y, z)→ F (x, y, z)}

Notice that the logical formulae in Σ1 are full tgds as specified in Defini-
tion 3.3. One can infer from I and Σ1 the tuples {F (a, b, c), F (a, b, d), F (b, c, d)}.
We are now interested in defining a second knowledge base (J,Σ2) this time
over S2 such that (J,Σ2) is a knowledge base solution for (I,Σ1) under M.
An obvious approach would be to make all the data in (I,Σ1) explicit and
construct a solution with the techniques from Section 3.2. In this case J con-
tains the tuples in {D′(a, b), D′(b, c), D′(b, d), F ′(a, b, c), F ′(a, b, d), F ′(b, c, d)}
and Σ2 is the empty set. A more economical approach is to keep as much
data implicit as possible. We know from Σ1 and Σ12 that some of the facts
in relation F ′J can be derived from the tuples in D′J if we set Σ′2 to

{D′(x, y) ∧D′(y, z)→ F ′(x, y, z)}.

The explicit knowledge in J ′ has to consist of the facts in {D′(a, b), D′(b, c),
D′(b, d), F ′(b, c, d)}. Note that the tuple F ′(b, c, d) must still be contained in
J ′, since it is inferred from E(b, c) and E(c, d). Moreover, it can be shown
that (J ′,Σ′2) is a knowledge base solution for (I,Σ1) under M.

4.2 Recognizing Knowledge Base Solutions
As first step towards an algorithm that solves KnowledgeExchange(M)
is to address the problem of deciding whether a target knowledge base is
a knowledge base solution for the a source knowledge base under a schema
mapping. It turns out that this problem is by no means trivial and therefore
needs closer consideration.

Problem: SolutionTesting(M)
Input: knowledge bases (I,Σ1) and (J,Σ2)

Question: is (J,Σ2) ∈ SolM(I,Σ1)?
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Arenas et al. [10] showed that even if we restrict the language expressing
the implicit knowledge of the knowledge bases to tgds and the dependencies
of the schema mappings to st-tgds, the SolutionTesting(M) problem
remains undecidable.

Theorem 4.4. [10] There exists a schema mapping M = (S1,S2,Σ12),
where Σ12 consists of a set of st-tgds, and two knowledge bases with implicit
knowledge defined by tgds for which the SolutionTesting(M) problem is
undecidable.

Proof. (Sketch) Theorem 4.4 can be shown, like Theorem 3.5, by a reduction
from the undecidable problem Embedding [46, 34]. In Embedding we ask
for a finite set B and a partial associative function g : B×B → B, whether
there exists a set B ⊆ A and a total associative function f : A × A → A
that extends g. LetM = (S1,S2,Σ12) be a schema mapping with schemata
S1 = ⟨C,E,N,G, F ⟩ and S2 = ⟨F ′⟩, and the single dependency Σ12 =
{F (x) → F ′(x)}. Essentially, an instance of SolutionTesting(M), con-
sisting of source knowledge base (I,Σ1) and target knowledge base (J,Σ2),
is constructed from an arbitrary partial algebra B = (B, g) as follows. For
each g(bi, bj) = bk exists in relation GI a tuple G(bi, bj , bk). The relations
CI , EI and N I are binary relations that allow to determine equivalence of
two elements of B. The unary relation F I remains empty. The dependencies
in Σ1 are defined in such a way that there exists an instance K ∈ Mod(I,Σ1)
with FK = ∅ if and only if B = (B, g) is embeddable in a finite semigroup
A = (A, f). The target knowledge base (J,Σ2) consists of F ′J = ∅ and
Σ2 = ∅. Therefore, the target knowledge base (J,Σ2) is a knowledge base
solution for (I,Σ1) under M if and only if B = (B, g) can be embedded in
A = (A, f).
Note that the previous result also holds for the more restrictive case where
the dependencies in the schema mapping are restricted to full st-tgds, i.e.
the st-tgds do not contain existential quantified variables. Hence, Arenas et
al. [10] focused on restricting the implicit knowledge of the knowledge bases
to obtain decidability.

Theorem 4.5. [10] Consider a given schema mapping M = (S1,S2,Σ12),
where Σ12 is a set of st-tgds. Moreover, let (I,Σ1) and (J,Σ2) be a source
and a target knowledge base, where Σ1 and Σ2 are two sets of full tgds. Then
SolutionTesting(M) is ∆P

2 [O(log n)]-complete.

Proof. (Sketch) Recall that ∆P
2 [O(log n)] is the class of decision problems

that can be decided in polynomial time by a deterministic Turing machine
that is allowed to call an NP oracle logarithmically many times. Membership
is shown by an algorithm that runs in P||NP, i.e. the algorithm solves the
SolutionTesting(M) problem in polynomial time and is allowed to call
once polynomially many NP oracles in parallel. Buss and Hay [25] and Wag-
ner [67] showed that the class P||NP is equivalent to the class ∆P

2 [O(log n)].
Let K be the result of chasing I with Σ1. Analogously, let L be the result of
chasing J with Σ2. It can be shown that (J,Σ2) is a knowledge base solution
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for (I,Σ1) underM if and only if (K,L) |= Σ12. Moreover, checking whether
a tuple R(a) is included in K can be done in NP by first guessing a chase se-
quence of I with Σ1 and validating each chase step in polynomial time. The
algorithm starts by creating for each relation symbol R1 in S1 all possible
tuples R1(a). Equally, for each relation symbol R2 in S2 all possible tuples
R2(a) are generated. Since S1 and S2 are both considered as fixed, the num-
ber of created tuples is bounded by the number of elements in the domain
and the sum of the arities of the relation symbols. The instances K and L
are computed by asking polynomially many NP oracles in parallel, whether
the created tuples are included in the corresponding result of chasing I with
Σ1 and of chasing J with Σ2. Lastly, we check whether (K,L) |= Σ12 holds.
∆P

2 [O(log n)]-hardness is shown by a reduction from MaxOddClique, which
was shown in [66] to be a ∆P

2 [O(log n)] hard problem. MaxOddClique
asks whether the size of the maximum clique of an undirected graph is
odd. The fixed schema mapping M = (S1,S2,Σ12) consists of schemata
S1 = ⟨Succ, F irst, Clique,E⟩ and S2 = ⟨Succ′, F irst′, Clique′, E′⟩, and the
dependency

Σ12 = {Clique(x) ∧ Succ(x, y)→ Clique′(y)}.

The intuition of the reduction is as follows. The relations E and E′ each
store a copy of the undirected input graph. The SuccI relation contains the
tuples Succ(i, i+1) for all i ∈ {1 . . . n}, where n is the number of nodes in the
input graph. Every interpretation Mod(I,Σ1) contains the tuple Clique(l)
if and only if the input graph contains a clique of size l, where l is even.
Accordingly, every interpretation Mod(J,Σ2) contains the tuple Clique′(m)
iff the input graph contains a clique of size m, where m is odd. Therefore,
(J,Σ2) is a knowledge base solution for (I,Σ1) if and only if the input graph
has a maximum clique of odd size.
Due to the above result in the rest of this chapter we will restrict ourselves to
knowledge bases defined by full tgds. The complexity of the SolutionTest-
ing(M) problem can be further lowered if the source implicit knowledge or
the target implicit knowledge is assumed to be fixed. Therefore we intro-
duce three variants of the SolutionTesting(M) problem where either the
source implicit knowledge, the target implicit knowledge, or the source and
target implicit knowledge are fixed. In the SolutionTesting(M,Σ2) prob-
lem for instance, a schema mapping M = (S1,S2,Σ12) and a set of logical
sentences Σ2 over S2 is given. The problem asks for a source knowledge base
(I,Σ1) and a target instance J , whether (J,Σ2) is a knowledge base solution
for (I,Σ1) under M. The two other problems SolutionTesting(M,Σ1)
and SolutionTesting(M,Σ1,Σ2) are defined analogously. Arenas et al.
[10] showed the following complexity bounds:

Theorem 4.6. [10] Let M = (S1,S2,Σ12) be a schema mapping where Σ12

is a set of st-tgds. Moreover, let (I,Σ1) and (J,Σ2) be knowledge base defined
by full tgds over S1 and S2, respectively.

(1) If Σ1 and Σ2 are fixed, then the SolutionTesting(M,Σ1,Σ2) prob-
lem is in PTIME.
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(2) If Σ1 is fixed, then SolutionTesting(M,Σ1) is NP-complete.
(3) If Σ2 is fixed, then SolutionTesting(M,Σ2) is coNP-complete.

Proof. (Sketch) Assume that K is the result of chasing I with Σ1, and that
L is the result of chasing J with Σ2. Arenas et al. [10] showed that (J,Σ2) is
a knowledge base solution for (I,Σ1) under M if and only if ⟨K,L⟩ |= Σ12

holds.
If Σ1 and Σ2 are fixed, then the instances K and L can be computed in
polynomial time. Moreover, also ⟨K,L⟩ |= Σ12 can be checked in polyno-
mial time. It follows that SolutionTesting(M,Σ1,Σ2) can be decided in
polynomial time.
We discuss now NP membership of SolutionTesting(M,Σ1). We start
by computing K. Since Σ1 is fixed, K can be computed with the chase
procedure in polynomial time. Afterwards, for every st-tgds in Σ12 of the
form ∀x(φ(x)→ ∃yψ(x,y)) and every tuple a such that φ(a) is satisfied by
K, a chase sequence of J with Σ2 that satisfies ψ(a,b) is guessed. Lastly,
we check in polynomial time if the guessed chase sequences are valid. NP
hardness of SolutionTesting(M,Σ1) can be shown by a reduction from
3-Colorability.
In the coNP membership proof of SolutionTesting(M,Σ2) we show that
(J,Σ2) is not a knowledge base solution for (I,Σ1), i.e. ⟨K,L⟩ ̸|= Σ12 holds.
Since Σ2 is fixed, we can compute L in polynomial time. We start by guess-
ing a tuple a, a chase sequence of I with Σ1, and an st-tgds ∀x(φ(x) →
∃yψ(x,y)) in Σ12. Afterwards we validate the chase sequence and check
whether φ(a) is satisfied by the last element of the chase sequence and that
there exists no tuple b such that L satisfies ψ(a,b). A reduction from the
complement of 3-Colorability can be used to show coNP hardness of
SolutionTesting(M,Σ2).

4.3 Universal Knowledge Base Solutions
We are now interested in an algorithm that solves the KnowledgeEx-
change(M) problem, i.e. an algorithm that materializes a knowledge base
solution for a source knowledge base (I,Σ1) under a schema mapping M.
Due to the Definition 4.2, infinitely many knowledge base solutions for
(I,Σ1) under M exist. A reasonable question is which of those solutions
should be materialized. It seems natural to materialize the knowledge base
solution which models represents the models of all other knowledge base
solutions. Such solutions are the analog to the universal solutions in the
relational scenario.

Definition 4.7. Consider a given schema mapping M = (S1,S2,Σ12), and
two knowledge bases (I,Σ1) and (J,Σ2) over S1 and S2, respectively. Knowl-
edge base (J,Σ2) is a universal knowledge base solution for (I,Σ1) underM
if Mod(J,Σ2) =

∪
K∈Mod(I,Σ1)

SolM(K) holds.
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Note that the solution (J, ∅) from Example 4.3 is a universal knowledge
base solution. Moreover, it follows immediately from the above definition
that universal knowledge base solutions can be used to compute the certain
answers of arbitrary first order queries. Besides, the problem of finding such
a universal knowledge base solution is a more restrictive case of the Knowl-
edgeExchange(M) problem and is defined as follows:

Problem: UniversalKnowledgeBaseSolution(M)
Input: source knowledge base (I,Σ1)

Question: find (J,Σ2) s.t. Mod(J,Σ2) = SolM(Mod(I,Σ1))

We show in the following theorem, which was proposed in [10], that for
source knowledge bases defined by full tgds and schema mappings defined
by full st-tgds, a universal knowledge base solution always exists and can be
computed by the chase procedure introduced in Section 3.2.1.

Theorem 4.8. [10] LetM = (S1,S2,Σ12) be a schema mapping, where Σ12

is a set of full st-tgds. Moreover, let (I,Σ1) be a knowledge base over S1,
where Σ1 is a set of full tgds. If J is the resulting instance of chasing I with
Σ1 and subsequently with Σ12, then the knowledge base (J, ∅) is a universal
knowledge base solution for (I,Σ1) under M.

Proof. We have to show that Mod(J, ∅) =
∪
K∈Mod(I,Σ1)

SolM(K) holds.
By the definition of the chase we have that J ∈ SolM(Mod(I,Σ1)). Moreover,
J ∈ Mod(J, ∅) and for every J ′ ∈ Mod(J, ∅) we have that J ⊆ J ′. It follows
that Mod(J, ∅) ⊆

∪
K∈Mod(I,Σ1)

SolM(K).
Assume that there is instance L such that L ∈ SolM(Mod(I,Σ1)) and
L /∈ Mod(J, ∅). We know that for all J ′ ∈ Mod(J, ∅) it holds that J ⊆ J ′.
This implies that there must exist a tuple t ∈ J such that t /∈ L. According
to Definition 3.22 tuples are added during a chase step if and only if they are
needed to satisfy a dependency. We conclude that without t, a dependency
in Σ1 or Σ12 is violated and thus L /∈ SolM(Mod(I,Σ1)), which is a contra-
diction. Hence, we have also that Mod(J, ∅) ⊇

∪
K∈Mod(I,Σ1)

SolM(K).
In addition to the former result Arenas et al. [10] showed that the Universal-
KnowledgeBaseSolution(M) problem can be solved in exponential time.

Theorem 4.9. [10] Consider a schema mapping M = (S1,S2,Σ12) and
source knowledge base (I,Σ1), where Σ12 is a set of full st-tgds and Σ1 is a
set of full tgds. There exists an algorithm that computes a polynomial-size
universal knowledge base solution for (I,Σ1) under M in exponential time.

Proof. Let kS1 and kS2 be the sum of the arities of all relation symbols
in S1 and S2, respectively. The active domain of I is denoted with Da.
Chasing I with Σ1 results in at most Da

kS1 tuples of the maximum size of
kS1 . Accordingly, the outcome of chasing the result of the previous chase
with Σ12 are at most (Da

kS1 )kS2 tuples with the maximum size kS2 .
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We have shown how to produce universal knowledge base solutions with
the empty set as implicit knowledge. However, with full tgds in the target
implicit knowledge the amount of tuples in the target explicit knowledge
could be substantially reduced. The question is natural if there are universal
knowledge base solutions that reduce the size of their explicit knowledge by
using full tgds as implicit knowledge. The following results states that the
explicit knowledge of all universal knowledge base solutions are equivalent to
another. Thus, the universal knowledge base solutions produced by applying
the chase procedure first on the source implicit knowledge and then on the
dependencies are optimal under the viewpoint of the size of the explicit and
the implicit knowledge.

Theorem 4.10. LetM = (S1,S2,Σ12) be a schema mapping and let (I,Σ1)
be a source knowledge base, where Σ12 is a set of full st-tgds and Σ1 is a
set of full tgds. Consider two arbitrary universal knowledge base solutions
(J,Σ2) and (J ′, ∅) with Σ2, a set of full tgds, then we have that J = J ′.

Proof. We know from Definition 4.7 that Mod(J ′, ∅) = Mod(J,Σ2). More-
over, it is easy to see that J ′ ∈ Mod(J ′, ∅) and for every K ∈ Mod(J ′, ∅)
we have that K ⊇ J ′. We have to show that J = J ′. Assume the contrary,
J ̸= J ′.
Since the full tgds in Σ2 can neither eliminate nor modify tuples, it cannot
be that (J,Σ2) is a universal knowledge base solution and J ⊃ J ′.
Assume that J ⊂ J ′. It follows that there is at least one full tgd τ :
∀x(φ(x) → ψ(x)) in Σ2 which is unsatisfied, i.e. there is a homomorphism
h from φ(x) to J , but there is no extension to h from φ(x)∧ψ(x) to J . Let
φ(x) be of the form R1(x1)∧ . . .∧Rn(xn), where x1, . . . ,xn ∈ x. Moreover,
let X be a set {R1(a1), . . . , Rn(an)} of tuples, such that values in a1, . . . ,an
do not occur in J ′. By definition J ′ ∪X ∈ Mod(J ′, ∅). However, dependency
τ is unsatisfied in J ′ ∪X and thus J ′ ∪X /∈ Mod(J,Σ2), which contradicts
with the fact that (J,Σ2) is a universal knowledge base solution.

4.4 Minimal Knowledge Base Solutions
In the previous section universal knowledge base solutions were discussed. It
has turned out that the universality property does not allow the efficient use
of implicit knowledge. In this section minimal knowledge base solutions are
introduced which relax the notion of universal knowledge base solutions in
a way that allows implicit knowledge to be more expressive. We start with
two preliminary definitions.

Definition 4.11. Let X be a set of instances over schema S, and let K be
an arbitrary instance in X. The set X is called closed-up if for all instances
K ′ ⊇ K also K ′ ∈ X holds.
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Definition 4.12. Consider a set of instances X over schema S. The set of
minimal instances is defined as

Min(X) = {K ∈ X | there is no K ′ ∈ X s.t. K ′ ⊂ K}.

Notice, that SolM(Mod(I,Σ1)) is a closed up set for every source knowledge
base (I,Σ1) and every schema mapping defined by st-tgds and SO-tgds.
Furthermore, a closed-up set of instances can be characterized by its minimal
instances, i.e. if X and Y are two sets of instances over a schema S, then
X = Y if and only if Min(X) = Min(Y ). On the basis of Definition 4.11
and Definition 4.12, we are now able to give a relaxation of the notion of
universal knowledge base solutions from Definition 4.7.

Definition 4.13. Consider a schema mapping M = (S1,S2,Σ12) and a
source knowledge base (I,Σ1). A target knowledge base (J,Σ2) is a minimal
knowledge base solution for (I,Σ1) under M if and only if

Min(Mod(J,Σ2)) = Min(SolM(Mod(I,Σ1))).

Several remarks are in order now. Based on the definition of the chase we
have that chasing I with Σ results in an element of Min(Mod(I,Σ)) for an
arbitrary knowledge base (I,Σ) defined by full tgds. In addition, Arenas et
al. [10] showed that an element of Min(SolM(Mod(I,Σ1))) can be computed
by chasing I with Σ1 and then with Σ12. It can be easily seen, that every
universal knowledge base solution is also a minimal knowledge base solution,
but not every minimal knowledge base solution is a universal knowledge base
solution. The knowledge bases (J,Σ2) and (J ′,Σ′2) from Example 4.3 are
both an example for minimal knowledge base solutions, while (J,Σ2) is also
a universal knowledge base. The problem of finding a minimal knowledge
based solution for a given schema mapping and a source knowledge base is
defined as follows:

Problem: MinimalKnowledgeBaseSolution(M)
Input: source knowledge base (I,Σ1)

Question: find (J,Σ2) s.t.
Min(Mod(J,Σ2)) = Min(SolM(Mod(I,Σ1)))

Clearly, with the technique described in Section 4.3 also the Minimal-
KnowledgeBaseSolution(M) problem can be solved. Though, we are
interested in a method that produces more sophisticated minimal knowl-
edge base solutions, i.e. an algorithm that computes minimal knowledge
base solutions with as much implicit knowledge as possible. Moreover, the
implicit knowledge of a computed minimal knowledge base solution should
depend only on the corresponding source implicit knowledge and the schema
mapping and not on the source explicit knowledge. Safe sets of dependencies
are defined as follows.

Definition 4.14. Consider a schema mapping M = (S1,S2,Σ12) defined
by full st-tgds and a set Σ1 of full tgds over S1. We say a set Σ2 of full
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tgds over S2 is safe for Σ1 and M, if for every source instance I exists a
target instance J , such that (J,Σ2) is a minimal knowledge base solution for
(I,Σ1) under M.

In the subsequent two sections a technique is discussed which produces min-
imal knowledge base solutions with safe and meaningful implicit knowledge.
This technique was initially proposed by Arenas, Pérez and Reutter [10] and
basically consists of the application of two algorithms followed by the chase.
In the first algorithm, discussed in Section 4.4.1, the implicit knowledge of
a minimal knowledge based solution is materialized. The second algorithm,
illustrated in Section 4.4.2, allows in combination with the chase technique
to compute an explicit knowledge, such that the materialized explicit and
implicit knowledge form together a minimal knowledge base solution.

4.4.1 Implicit Knowledge Computation
As already mentioned, for a schema mapping M and a source knowledge
base (I,Σ1) defined by full st-tgds and full tgds respectively, the result of
solving the MinimalKnowledgeBaseSolution(M) problem is a minimal
knowledge base solution (J,Σ2). Arenas et al. [10] showed that there is an
algorithm which produces a target implicit knowledge Σ2, such that every
other safe set for Σ1 andM is implied by Σ2. The generated target knowledge
is a safe set of second-order logic sentences that cannot be expressed in first-
order logic. In this section we show the FullSafe(M,Σ1) algorithm, defined
in [10], that produces a safe set of full tgds. Although this safe set of tgds is
not optimal, it is nontrivial and should suffice in practice. We illustrate this
algorithm by first discussing the techniques to solve the subproblems and
show then how they are combined to produce a target implicit knowledge.
An unfolding of a set Σ of full tgds over a schema S is a set Σ+ of full tgds
with a single atomic formula in the conclusion. For every I ∈ Inst(S1) and
every tuple R(a) created by the chase of I with Σ, there exists a formula of
the form ∀x(φ(x)→ R(x)) in Σ+, such that φ(a) is satisfied in I. We denote
with Unfold(Σ) a procedure that computes the unfolding of a set Σ of full
tgds. Such an unfolding Σ+ is finite if the set Σ is acyclic, i.e. there exists a
numbering of the relation symbols used in Σ, such that whenever a relation
symbol R is in the antecedent and relation symbol S is in the conclusion
of a full tgd in Σ, we have that f(R) < f(S). Example 4.15 illustrates the
notion of acyclicty of full tgds and the unfolding of a set of full tgds.

Example 4.15. Consider a schema S consisting of one binary relation
symbol R and two unary relation symbols S and T . Let Σ be a set of full
tgds defined as:

{S(x)→ T (x)

T (x)→ S(x)}

According to the definition of acyclicity, f(R) < f(S) as well as f(S) < f(R)
must hold. It is easy to see that there is no valid numbering such that both
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inequalities hold and thus Σ is cyclic. Consider now a second set of full tgds:

Σ′ = {R(x, y)→ S(x) ∧ S(y)
S(x)→ T (x)}

Let f(R) = 1, f(S) = 2 and f(T ) = 3 be a numbering of the relation
symbols in Σ′. Since f(R) < f(S) < f(T ) holds, we have that Σ′ is acyclic.
The unfolding of Σ′ is:

Σ+ = {R(x, y)→ S(x)

R(x, y)→ S(y)

S(x)→ T (x)

R(x, y)→ T (x)

R(x, y)→ T (y)}

Consider a schema mapping M = (S1,S2,Σ12). A query q over S1 is target
rewritable under M, if for every I ∈ Inst(S1) there exists a query q′ over
S2 such that q(I) = certainM(q′, I). In such a case is q′ the target rewriting
for q under M. In other words we ask if enough information is preserved
by a schema mapping such that the query can be answered using the tar-
get knowledge. It is shown in [11] that the problem of deciding whether a
conjunctive query is target rewritable under a schema mapping defined by
full tgds is in coNEXPTIME. Furthermore, [11] states that there is a proce-
dure TargetRewriting(M, q) that computes a target rewriting for q and M
in UCQ ̸=, or fails if q is not target rewritable under M.
A further subtask in the FullSafe(M,Σ1) algorithm is the ComposeFull(M12,
M23) procedure, which computes for the schema mappings defined by full st-
tgdsM12 andM23 the set Σ13 of full st-tgds, such thatM13 = (S1,S3,Σ13)
is, according to Definition 3.55, the composition ofM12 andM23. The pro-
cedure ComposeFull(M1,M2) was introduced by Fagin et al. [39] and we al-
ready discussed a slightly more general version in the proof of Theorem 3.57.
The algorithm to compute the target implicit knowledge for a source knowl-
edge base and a schema mapping is defined as follows:
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Algorithm: FullSafe(M,Σ1)

Input : An acylic set Σ1 of full tgds over schema S1 and a schema
mapping M = (S1,S2,Σ12), where Σ12 is a set of full
st-tgds.

Output: A safe set Σ2 for Σ1 and M of full tgds with inequalities.
1 Σ+

1 ←− Unfold(Σ1);
2 Σ21 ←− ∅;
3 forall the (φ(x)→ R(x)) ∈ Σ+

1 do
4 if φ(x) is target rewritable then
5 (γ1(x) ∨ . . . ∨ γn(x))←− TargetRewriting(M, φ(x));
6 Σ21 ←− Σ21 ∪ (γ1(x)→ R(x)) ∪ . . . ∪ (γn(x)→ R(x));

7 Ŝ2 ←− {R̂ | R ∈ S2};
8 Σ′12 ←− replace in Σ12 every R ∈ S2 by the corresponding R̂ ∈ Ŝ2;
9 Σ′2 ←− ComposeFull((S2,S1,Σ21), (S1, Ŝ2,Σ

′
12));

10 Σ2 ←− replace in Σ′2 every R̂ ∈ Ŝ2 by the corresponding R ∈ S2;

In the following example we illustrate the FullSafe(M,Σ1) algorithm with
the schema mapping and source implicit knowledge from Example 4.3.

Example 4.16. Let Σ1 be a source implicit knowledge and let M =
(S1,S2,Σ12) be a schema mapping with schemata S1 = ⟨D,E, F ⟩ and
S2 = ⟨D′, F ′⟩. The dependencies of Σ1 and Σ12 are defined as follows:

Σ1 = {D(x, y) ∧D(y, z)→ F (x, y, z),

E(x, y) ∧ E(y, z)→ F (x, y, z)}
Σ12 = {D(x, y)→ D′(x, y),

F (x, y, z)→ F ′(x, y, z)}

It is easy to see that Σ1 is acyclic and is already unfolded, i.e. Unfold(Σ1) =
Σ1 and thus Σ1 = Σ+

1 . The target rewriting of query ∃x∃y(D(x, y)∧D(y, z))
is given by ∃x∃y(D′(x, y) ∧D′(y, z)). Query ∃x∃y(E(x, y) ∧E(y, z)) on the
other hand is not target rewritable under M. After line 6 we have

Σ21 = {D′(x, y) ∧D′(y, z)→ F (x, y, z)}.

Afterwards, a copy Ŝ2 = ⟨D̂′, F̂ ′⟩ of schema S2 is created. In line 8 we assign
Σ′12 to the result of replacing in Σ12 every relation symbol from S2 by the
analogous relation symbol from Ŝ2. We have

Σ′12 = {D(x, y)→ D̂′(x, y),

F (x, y, z)→ F̂ ′(x, y, z)}.

The dependencies of the composition of (S2,S1,Σ21) and (S1, Ŝ2,Σ
′
12) are

given by {D′(x, y) ∧ D′(y, z) → F̂ ′(x, y, z)}. In the last step all relation
symbols from Ŝ2 get replaced by the relation symbols in S2 and we return

Σ2 = {D′(x, y) ∧D′(y, z)→ F ′(x, y, z)}.
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The following result, shown by Arenas, Pérez and Reutter [10], states that
the FullSafe(M,Σ1) is correct.

Theorem 4.17. [10] The FullSafe(M,Σ1) algorithm computes a safe set Σ2

of tgds with inequalities for the acyclic set Σ1 of full tgds and the schema
mapping M = (S1,S2,Σ12), where Σ12 is a set of full tgds.

Proof. Let I be an arbitrary instance over S1, and let J∗ be the result of
chasing I with Σ1 and then with Σ12. We have to show that it is always the
case that J∗ |= Σ2, i.e. Σ2 is safe for Σ1 and M.
Let Σ′2 be the set constructed in line 9 of the algorithm FullSafe(M,Σ1).
Accordingly, Σ21 and Σ′12 are the sets obtained in line 6 and line 8, re-
spectively. Moreover, let Ĵ∗ be the result of replacing in J∗ every relation
symbol R from S2 with the corresponding relation symbol R̂ from Ŝ2. For
every I ∈ Inst(S1), showing that J∗ |= Σ2 holds is equivalent to showing
that ⟨J∗, Ĵ∗⟩ |= Σ′2 holds. Consequently, it suffices to show that for every
I ∈ Inst(S1), there exists instance K over S1, such that ⟨J∗,K⟩ |= Σ21 and
⟨K, Ĵ∗⟩ |= Σ′12. Let K ′ be a instance over S1 obtained by chasing I with Σ1.
Clearly, ⟨K ′, Ĵ∗⟩ |= Σ′12 holds, since Ĵ∗ is the result of chasing K ′ with
Σ′12. We now show that also ⟨J∗,K ′⟩ |= Σ21 holds. Consider a dependency
γi(x)→ R(x) in Σ21 and a tuple a such that J∗ |= γi(a). We know from line 5
that there is a UCQ ̸= of the form γ1(x)∨ . . .∨ γi(x)∨ . . .∨ γn(x), such that
J∗ |= γ1(a) ∨ . . . ∨ γi(a) ∨ . . . ∨ γn(a). Since γ1(x) ∨ . . . ∨ γi(x) ∨ . . . ∨ γn(x)
is a target rewriting of φ(x) and the fact that J∗ is obtained by chasing
K ′ with Σ12, we have also that K ′ |= φ(a). It remains to show that also
R(a) ∈ K ′ holds, such that (φ(x) → R(x)) ∈ Σ+

1 . Since K ′ is the result of
chasing I with Σ1, by definition K ′ |= Σ1 and thus also K ′ |= Σ+

1 . It follows
that R(a) ∈ K ′.

4.4.2 Explicit Knowledge Computation
Assume that a source knowledge base (I,Σ1) and a schema mapping M =
(S1,S2,Σ12), where Σ1 is an acyclic set of full tgds and Σ12 is a set of full
st-tgds. In the previous section the FullSafe(M,Σ1) algorithm is introduced
that computes a safe set Σ2 for Σ1 and M of full tgds over S2. In this
section an approach is discussed that produces an instance J over S2, such
that (J,Σ2) is a minimal knowledge base solution for (I,Σ1) under M. A
candidate for such an instance J is the result of chasing I with Σ1 and then
with Σ12. Clearly, (J,Σ2) is a minimal knowledge base solution for (I,Σ1)
under M, but the explicit and the implicit knowledge contains superfluous
knowledge. Intuitively, a much more efficient approach is to materialize a
instance J ′ containing as few tuples implied by Σ2 as possible.
Arenas et al. introduced in [10] the algorithm Minimize(M,Σ1,Σ2) that
produces a set Σ′1 of full tgds over S1, such that J ′ obtained by chasing I
with Σ′1 and then with Σ12 is still a minimal knowledge base solution and
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J ′ ⊆ J holds. For the computed set Σ′1 and every instance I over S1 the
following conditions hold:
(C1) the result of chasing I with Σ′1 is contained in the output of chasing I

with Σ1.
(C2) (J ′,Σ2) is minimal knowledge base solution for (I,Σ1) under M.
The Minimize(M,Σ1,Σ2) algorithm is defined as follows:

Algorithm: Minimize(M,Σ1,Σ2)

Input : An acylic set Σ1 of full tgds over schema S1, schema
mapping M = (S1,S2,Σ12), where Σ12 is a set of full
st-tgds, and a safe set Σ2 for Σ1 and M of full tgds with
inequalities.

Output: A minimal set Σ′1 of full tgds that satisfies the conditions
(C1) and (C2).

1 Σ′1 ←− Unfold(Σ1);
2 while σ ∈ Σ′1 s.t. Σ′1\σ satisfies (C1) and (C2) do
3 Σ′1 = Σ′1\σ;

In the following example the Minimize(M,Σ1,Σ2) algorithm is demonstrated
on the source knowledge base and schema mapping which were already used
in Example 4.3 and Example 4.16.

Example 4.18. Consider source knowledge base (I,Σ1), where I consists
of the tuples {D(a, b), D(b, c), D(b, d), E(a, b), E(b, c), E(c, d)} and the im-
plicit knowledge is given by

Σ1 = {D(x, y) ∧D(y, z)→ F (x, y, z),

E(x, y) ∧ E(y, z)→ F (x, y, z)}.

Moreover, letM = (S1,S2,Σ12) be a schema mapping where the dependen-
cies are defined as

Σ12 = {D(x, y)→ D′(x, y),

F (x, y, z)→ F ′(x, y, z)}.

In Example 4.16 we have illustrated how the application of the FullSafe(M,Σ1)
procedure on M and Σ1 results in

Σ2 = {D′(x, y) ∧D′(y, z)→ F ′(x, y, z)}.

Recall from Example 4.3 the outputs of chasing I with Σ and of chasing I
with Σ1 and then with Σ12 which we denote in this example with K1 and
K12, respectively.

K1 = {D(a, b), D(b, c), D(b, d), E(a, b), E(b, c), E(c, d),

F (a, b, c), F (a, b, d), F (b, c, d)}
K12 = {D′(a, b), D′(b, c), D′(b, d), F ′(a, b, c), F ′(a, b, d), F ′(b, c, d)}
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It is easy to see that Σ1 is already unfolded, i.e. Unfold(Σ1) = Σ1. We start
by checking whether Σ1 without dependency E(x, y) ∧ E(y, z)→ F (x, y, z)
still satisfies conditions (C1) and (C2). We start by chasing I with D(x, y)∧
D(y, z)→ F (x, y, z) an receive

L1 = {D(a, b), D(b, c), D(b, d), E(a, b), E(b, c), E(c, d), F (a, b, c), F (a, b, d)}.

Chasing L successively with Σ12 and Σ2 results in instance

L2 ={D′(a, b), D′(b, c), D′(b, d), F ′(a, b, c), F ′(a, b, d)}.

Instance L1 satisfies condition (C1), but instance L2 violates condition (C2).
Thus, condition E(x, y) ∧ E(y, z) → F (x, y, z) cannot removed from Σ1.
Conversely, it can be shown that dependency D(x, y)∧D(y, z)→ F (x, y, z)
can be removed, such that for every instance in Inst(S1) the conditions (C1)
and (C2) are satisfied. Let J1, J12 and J2 be the output of chasing I with
E(x, y) ∧ E(y, z)→ F (x, y, z), J1 with Σ12 and J12 with Σ2, respectively.

J1 ={D(a, b), D(b, c), D(b, d), E(a, b), E(b, c), E(c, d), F (a, b, c), F (b, c, d)}
J12 ={D′(a, b), D′(b, c), D′(b, d), F ′(a, b, c), F ′(b, c, d)}
J2 ={D′(a, b), D′(b, c), D′(b, d), F ′(a, b, c), F ′(b, c, d), F ′(a, b, d)}

The instances J1 and J2 satisfies both conditions (C1) and (C2). Since no
further tgd can be removed, the output of Minimize(M,Σ1,Σ2) is

Σ′1 = {E(x, y) ∧ E(y, z)→ F (x, y, z)}.

We conclude that (J12,Σ2) is a minimal knowledge base solution for (I,Σ1)
under M.

The correctness of the Minimize(M,Σ1,Σ2) follows immediately from the
following lemma. The proof of Lemma 4.19 can be found in the full version
of [10].

Lemma 4.19. [10] Let Σ1 be an acyclic set of full tgds over S1, and let
M = (S1,S2,Σ12) be a schema mapping with a set of full st-tgds Σ12.
Moreover, consider a set of full tgds Σ′1 for which Σ1 |= Σ′1 holds, and a
set Σ2 of full tgds with inequalities that is safe for Σ1 and M. It can be
decided in exponential time whether for every I ∈ Inst(S1) the chase of I
subsequently with Σ′1, Σ12 and Σ2 results in the same target instance as the
chase of I with Σ1 and then with Σ12.

Note, that the output of Minimize(M,Σ1,Σ2) is not necessarily unique. The
result of Minimize(M,Σ1,Σ2) depends on the order in which the depen-
dencies are processed. As already shown in Example 4.18, the Minimal-
KnowledgeBaseSolution(M) problem can be solved with a combina-
tion of the FullSafe(M,Σ1) procedure, the Minimize(M,Σ1,Σ2) procedure
and the chase procedure. The following theorem, proposed in [10], is a direct
consequence of Theorem 4.17 and Lemma 4.19.
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Theorem 4.20. [10] Consider an acyclic set Σ1 of full tgds over S1 and a
schema mapping M = (S1,S2,Σ12), where Σ12 is a set of full st-tgds. Let
Σ2 be the result of the FullSafe(M,Σ1) procedure and let Σ′1 be the result of
Minimize(M,Σ1,Σ2). Furthermore, let J be the result of subsequently chasing
an arbitrary instance I over S1 with Σ′1 and Σ12. Then (J,Σ2) is a minimal
knowledge base solution for (I,Σ1) under M.
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CHAPTER 5
XML Data Exchange

The XML data model can be seen as a generalization of the relational data
model. In fact, relational data can be represented by flat trees. It suggests
itself to consider also data exchange for XML documents. While the key
problems are the same as in relational data exchange, the results differ in
XML data exchange. This is mainly due to the fact that we have to consider
not only the values of data, but also their structure. Moreover, there has to
be dealt with the fundamental issue that the concept of universal solutions
does not exist in XML data exchange, i.e. there is in general no single solu-
tion that represents all possible solutions. Nevertheless, suitable algorithms
can be found for many of the problems that we have already encountered
in relational data exchange and in knowledge exchange. We focus in this
chapter on three fundamental problems, namely the problem of recognizing
solutions, the problem of determining whether a solution exists, and the
problem of query evaluation.
XML data exchange was first investigated by Arenas and Libkin [9]. Their
proposed schema mappings were rather simplistic and did not allow to rea-
son over the entire structure of XML trees. For example, their formalism did
not take horizontal navigation into account. Amano et al. [4, 3] addressed
these issues by extending the notion of XML schema mappings from Arenas
and Libkin [9]. David et al. [30] criticized the fact that XML schema map-
pings reason over trees, but queries over them result in tuples. Therefore,
they proposed a pattern-based XML query language with trees as outputs
and showed how they could be applied in XML data exchange. Moreover,
Bojańczyk et al. [23] closed different open questions concerning the static
analysis of XML data exchange settings.
In this chapter we focus on the results from [9, 4, 3]. In Section 5.1, XML data
exchange is formalized. In addition, a classification is presented that allows
us to denote restricted versions of XML schema mappings. We conclude this
section by investigating the problem of deciding whether a pair of XML trees
satisfies all dependencies imposed by XML schema mappings. In Section 5.2
two problems regarding the static analysis of XML trees are discussed. In
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particular, we highlight the problem where we ask whether a solution under
a given schema mapping exists for either all or at least for one of the source
trees. Query answering over the target with respect to a source XML tree
is studied in Section 5.3. Query answering is in general in coNP, but there
exists a tractable algorithm if the features of the XML schema mappings are
restricted.

5.1 XML Data Exchange Settings
In this section the notion of data exchange settings from Chapter 3 is
adapted for an application on the XML data model. Motivated by the fact
that the XML data model can be seen as a generalization of the relational
data model, also XML data exchange should represent a generalization of
relational data exchange. In the relational case a data exchange setting is a
triple consisting of two schemata and a set of dependencies. As counterpart
to relational schemata the formalism of document type definitions (DTDs)
and xml schema definitions (XSDs) have to be considered [56]. It has turned
out that the data exchange community favors the more simplistic notion of
DTDs for XML data exchange [9, 4, 3, 30, 23]. On account of the tree struc-
ture of XML documents, also an alternative for the relational dependencies
from Section 3.2.1 and Section 3.2.2 has to be found. Arenas and Libkin
[9] provided dependencies for XML schema mappings based on tree-pattern
formulae, which were extended in [4]. We start with the definition of XML
schema mappings and define the corresponding dependencies in the following
subsections.

Definition 5.1. An XML data exchange setting is an XML schema map-
ping given by a triple M = (D1, D2,Σ) consisting of a source DTD D1, a
target DTD D2, and a set of dependencies Σ. Consider a tree T1 conforming
to D1 and a tree T2 conforming to D2, then T2 is a solution for T1 under
M if ⟨T1, T2⟩ satisfies all dependencies in Σ. The set of all solutions for T1
underM is denoted with SolM(T1). Moreover, Sol(M) denotes the set of all
tuples ⟨T1, T2⟩, where T1 and T2 conform to D1 and D2, respectively, and T2
is a solution for T1 under M.

We use the terms XML data exchange setting and XML schema mapping
interchangeably in this thesis. Moreover, in the range of this chapter we omit
frequently the term XML. Conversely, if we consider data other than XML
it is always stated explicitly. Furthermore, we say source tree as a shorthand
for an XML tree conforming to a source DTD. Analogously, we write target
tree for a XML tree conforming to a target DTD.
As already pointed out, we have to specify dependencies that can handle the
tree structure. In Section 5.1.1 source-to-target dependencies are introduced.
Some of the problems discussed in this chapter have different complexity
bounds if we restrict some of the features of the used XML documents and
source-to-target dependencies. We give in Section 5.1.2 a classification of
XML data exchange settings that allow different sets of features in their
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DTDs and dependencies. In Section 5.1.3 we discuss complexity results of
problems concerning the recognition of solutions under XML schema map-
pings.

5.1.1 Source-to-Target Dependencies
In Definition 5.1 schema mappings for the XML data model are introduced.
However, this definition did not specify how dependencies have to look like.
Such dependencies should naturally extend st-tgds from Chapter 3. This
section presents dependencies based on tree patterns.

Definition 5.2. A source-to-target dependency, or std for short, is a for-
mula of the form

π(x,y), α(x,y)→ π′(x, z), α′(x, z),

where π and π′ are tree patterns over x∪y and x∪ z, respectively, and α is
a conjunction of equalities and inequalities among the variables x ∪ y, and
α′ is a conjunction of equalities and inequalities among the variables x ∪ z.
Moreover, each variable ξ0 in x ∪ y is safe, i.e. either ξ0 appears in π or
ξ0 = ξ1, ξ1 = ξ2, . . . , ξk−1 = ξk are equalities in α and ξk appears in π.
Two trees T1 and T2 satisfy an std σ, if for every pair of tuples a and b
which satisfy π(a,b) and α(a,b), there exists a tuple c such that π′(a, c)
and α′(a, c) are satisfied.

According to our definition of tree patterns, variables are allowed to occur in
a tree pattern only once. We relax sometimes this requirement and express
equalities by repeating the corresponding variable. For instance we write
r[t1(x, y), t2(y, z)] for the pattern r[t1(x, y1), t2(y2, z)] and the equality (y1 =
y2).
In the following example the so far discussed concepts about the XML data
model and XML exchange are demonstrated. We start by giving an example
of two DTDs and show two XML trees that conform to those DTDs. In
addition, a schema mapping is presented that relates both XML documents.
As already mentioned, we assume that attributes of a node have a specific
order, even though it is not specified by DTDs. This allows us to assign
values to attributes implicitly, and thus simplifies the notation.

..db.

album The Who
Tommy

1969



.

album The Rolling Stones
Exile on Main Street

1972



.

album The Who
The Who by Numbers

1975


Figure 5.1: Source tree T1
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..db.

band
(The Rolling Stones)

.

album Exile on Main Street
Rock and roll

1972



.

band
(The Who)

.

album Tommy
Hard rock

1969



.

album The Who by Numbers
Rock
1975


Figure 5.2: Target tree T2

..db.

band
(The Rolling Stones)

.

album Exile on Main Street
n1

1972



.

band
(The Who)

.

album Tommy
n2

1969



.

album The Who by Numbers
n3

1975


Figure 5.3: Target tree T3

Example 5.3. Consider a DTD D1 = ⟨db, PD1 , AD1⟩ over Γ1 = {db,
album} and Att1 = {@title,@band,@year} and a DTD D2 = ⟨db, PD2 , AD2⟩
over Γ2 = {db, band, album} and Att2 = {@name,@title,@year,@genre}.
The DTD D1 is defined as follows:

PD1 ={db→ album∗;

album→ ϵ}
AD1(db) =∅

AD1(album) ={@band,@title,@year}

The DTD D2 is given by the following rules:

PD2 ={db→ band∗;

band→ album∗;

album→ ϵ}
AD2(db) =∅

AD2(band) ={@name}
AD2(album) ={@title,@genre,@year}
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Figure 5.1 shows an XML tree T1 that conforms to D1. Analogously, tree
T2 and tree T3 from Figure 5.2 and Figure 5.3, respectively, conform both
to DTD D2. Observe, that the attribute values of the attributes with label
@genre are represented in T2 by elements from Const and in T3 by elements
from Var. Thus, tree T2 is more specific compared to tree T3. Let M =
(D1, D2,Σ) be a schema mapping, where Σ is given by the following single
std:

db/album(x, y, z)→ db/band(x)/album(y, w, z)

It is easy to confirm that ⟨T1, T2⟩ as well as ⟨T1, T3⟩ satisfy the std in Σ, and
thus T2 and T3 are solutions for T1 under M.

The ensuing example demonstrates how relational schema mappings can be
transformed into an XML data exchange setting. Note that Example 5.4
extends an example from [4].

Example 5.4. Let M1 = (S1,S2,Σ12 ∪ Σ2) be a relational schema map-
ping, where S1 is composed of two binary relation symbols E and F , S2 con-
sists of a single ternary relation symbol M , and Σ12 = {E(x, y)∧F (y, z)→
M(x, y, z)}.
We define now an XML schema mapping that represents the above relational
data exchange setting. We start by defining the analogs to the schema S1

and S2. Assume a DTD D1 = ⟨r, PD1 , AD1⟩ with PD1 = {r → e, f ; e →
d∗1; f → d∗2; d1 → ϵ; d2 → ϵ}, and AD1 results for r, e and f in the empty
set, AD1(d1) = {@x,@y1} and AD1(d2) = {@y2,@z}. Moreover, consider
the DTD D2 = ⟨r, PD2 , AD2⟩, where PD2 = {r → g; g → d∗3; d3 → ϵ}, AD2 is
for d3 {@x,@y,@z}, and the empty set for r and g. Let Σ be the std given
by

r[e[d1(x, y1)], f [d2(y2, z)]], y1 = y2 → r[g[d3(x, y1, z)]].

It can be shown that M2 = (D1, D2,Σ) reproduces M1 = (S1,S2,Σ12), i.e.
for every pair of instances (I, J) ∈ M1, there exists a source tree T1 and a
target tree T2, such that ⟨T1, T2⟩ ∈ Inst(M).

5.1.2 Classification of XML Schema Mappings
The source-to-target dependencies given in Definition 5.2 are rather general
and lead in the problems discussed in the following sections sometimes to
high complexity bounds or even to undecidability. We will see that the high
complexity bounds of the discussed problems are caused by different proper-
ties of stds and the structure of DTDs. This motivates us to isolate different
characteristics of XML schema mappings and to provide a classification of
schema mappings that utilize only subsets of those characteristics. We follow
the notations from [4].
Tree patterns have four different axes for tree navigation. The navigational
axes are referred as ↓ for the child axis, → for the next sibling axis, ↓∗ for
the descendant axis, and →∗ for the following child axis. It is denoted with
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_ that a tree pattern contains wildcard symbols. Furthermore, the case that
an std uses equalities and inequalities is denoted by = and ̸=, respectively.
Moreover, we use the abbreviations ⇓ for {↓, ↓∗,_}, ⇒ for {→,→∗}, and ∼
for {=, ̸=}.

Definition 5.5. Let σ ⊆ {↓, ↓∗,→,→∗,=, ̸=,_,⇓,⇒,∼} be a signature of
features. Then SM(σ) describes the class of XML schema mappings defined
by stds, which only use the features in σ. The class SMnr(σ) restricts SM(σ)
further, such that the schema mappings are determined by nested relational
DTDs. Moreover, SM◦(σ) is the subset of SM(σ) where the stds do not
mention attribute values, i.e. all tree patterns are of the form l[λ].

XML data exchange was originally proposed for the class SM(⇓) by Arenas
and Libkin [9]. In the range of this work the existence of the child axis ↓
is always assumed. Although, the class SM◦(σ) is useless for exchanging ac-
tual data, it represents a useful tool for hardness proofs. On the other hand,
the class SMnr(σ) is of practical importance, since it allows in many cases
to lower complexity bounds. Moreover, a comprehensive empirical analysis
has shown that nested relational DTDs are common in real life [13]. For in-
stance, if relational databases are encoded as in Example 5.4, then relational
schema mappings can be represented by XML schema mappings from the
class SMnr(↓,=).
One of the key ideas behind restricting the schema mappings is to reduce
the possibilities of how a tree pattern can be put on a tree. Consequently,
more specific schema mappings permit in general more efficient algorithms.
Diversity in the structure of trees can be prohibited by the use of nested
relational DTDs. In addition, wildcards and descendants in tree patterns
have to be disallowed to avoid guessing. The following definition restricts
the use of them.

Definition 5.6. A schema mapping is fully specified if the tree pattern in
the conclusion of every std does not use _ or ↓∗.

5.1.3 Solution Recognition
In this section the problem of deciding whether two XML trees form a so-
lution for a schema mapping is examined. We discuss the data complexity
and the combined complexity of this problem, i.e. the version of the prob-
lem where the schema mapping is considered as given and the version where
the schema mapping is part of the input. The data complexity variant of
recognizing solutions is defined as follows:

Problem: TestSolution(M)
Input: trees T1 and T2

Question: is ⟨T1, T2⟩ ∈ Sol(M)?

Amano, Libkin and Murlak [4] proved the following result.

71



Theorem 5.7. [4] The TestSolution(M) problem for schema mappings
in SM(⇓,⇒,∼) is LOGSPACE-complete.

Proof. LetM be defined by source DTD D1, target DTD D2 and by a set of
stds Σ. It is shown in [60] that deciding, whether an XML tree conforms to a
DTD is in LOGSPACE. The tree T2 is a solution for T1 if and only if ⟨T1, T2⟩
satisfies all stds in Σ. Let σ ∈ Σ be a single std given by π(x,y), α(x,y)→
π′(x, z), α′(x, z), where x = x1, . . . , xk, y = y1, . . . , yl and z = z1, . . . , zm.
Moreover, let A1 and A2 be the set of data values from V which occur in
the corresponding tree T1 or T2. According to Definition 5.2, the std σ is
satisfied if for each a ∈ (A1 ∪ A2)

k and each b ∈ Al1, which satisfy π(a,b)
and α=,̸=(a,b), exists c ∈ Am2 such that π′(a, c) and α′=,̸=(a, c) are satisfied.
Since k, l and m are not part of the input and are therefore considered as
constants, a, b and c can be represented in logarithmic size with respect to
the size of T1 and T2. Theorem 2.6 stated that tree patterns can be evaluated
in DLOGSPACE. Moreover, it is folklore that conjunctions of equalities and
inequalities can be verified in LOGSPACE. The resulting algorithm verifies
first that T1 and T2 are a source and a target tree and then iterates over all
possible combinations of a, b and c and checks if all stds in Σ are satisfied.
The LOGSPACE-hardness follows immediately from the fact that checking
whether a tree pattern is satisfied in a tree is a LOGSPACE-hard problem.

We look next at the TestSolution problem which is defined analogous
to TestSolution(M), but considers the schema mapping as part of the
input. The following result from [4] shows a notable increase in complexity
compared to the data complexity of the problem. It turns out that the main
source of complexity are the number of variables in the patterns.

Theorem 5.8. [4] For schema mappings in SM(⇓,⇒,∼) is the TestSolu-
tion problem Πp2-complete. If additionally the maximum number of variables
per pattern is fixed, then TestSolution is solvable in PTIME.

Proof. Assume that the schema mappingM is defined by source DTD D1,
target DTD D2 and by a set of stds Σ.
We start with the Πp2 membership by giving an algorithm for the comple-
mentary problem. This algorithm first guesses an std π(x,y), α(x,y) →
π′(x, z), α′(x, z) and tuples a, b, and then checks that T1 |= π(a,b), α(a,b)
and T2 ̸|= π′(a, z), α′(a, z). By Theorem 2.7, checking whether T1 |= π(a,b)
holds can be done in polynomial time. Moreover, also α(a,b) can be val-
idated in polynomial time. Deciding whether T2 ̸|= π′(a, z), α′(a, z) holds
is in coNP and can be determined by guessing a tuple c and checking in
polynomial time whether T2 |= π′(a, c), α′(a, c) holds.
Πp2 hardness is shown by a reduction from QSAT2. QSAT2 asks whether a
Π2 quantified Boolean formula (QBF), given by ∀x1 · · · ∀xm∃xm+1 · · · ∃xn∧k
j=1 Z

1
j ∨ Z2

j ∨ Z3
j , is satisfiable. The reduction has the following intuition.

The source tree expresses that each variable in the QBF can be either 0 or
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1. The target tree represents the variable assignments such that a clause is
satisfied. Moreover, the QBF is translated into a single dependency. Source
and target tree are defined as follows:

T1 = r[v(0), v(1)]

T2 = r[v[v1(0), v2(0), v3(1), v̄1(1), v̄2(1), v̄3(0)],

v[v1(0), v2(1), v3(0), v̄1(1), v̄2(0), v̄3(1)],

v[v1(0), v2(1), v3(1), v̄1(1), v̄2(0), v̄3(0)],

v[v1(1), v2(0), v3(0), v̄1(0), v̄2(1), v̄3(1)],

v[v1(1), v2(0), v3(1), v̄1(0), v̄2(1), v̄3(0)],

v[v1(1), v2(1), v3(0), v̄1(0), v̄2(0), v̄3(1)],

v[v1(1), v2(1), v3(1), v̄1(0), v̄2(0), v̄3(0)]]

Notice that the children of the root node in T2 are of the form v[v1(a1), v2(a2),
v3(a3), v̄1(ā1), v̄2(ā2), v̄3(ā3)], where a1, a2, a3 ∈ {0, 1} and āi denotes the
negation of ai.
The set Σ consists of a single std defined as

r[v(x1), v(x2), . . . , v(xm)]→ r[v[φ1
1, φ

2
1, φ

3
1], v[φ

1
2, φ

2
2, φ

3
2], . . . , v[φ

1
k, φ

2
k, φ

3
k]],

where φlj = vl(xi) for Z lj = xi and φlj = v̄l(xi) for Z lj = x̄i. We denote
the left-hand side of the above std with π(x) and the right-hand side with
π′(x,y).
It remains to show that the QBF is satisfiable if and only if for each valu-
ation a of x1, . . . , xm, there exists a valuation b that extends a, such that
T1 |= π(a) and T2 |= π′(b). Therefore, we choose an arbitrary conjunct
from the QBF, say xi ∨ xj ∨ x̄k. According to our definition π′ contains
the subpattern v[v1(xi), v2(xj), v̄3(xk)]. Assume there exists a valuation b,
such that the subpattern is mapped into the subtree v[v1(a1), v2(a2), v3(a3),
v̄1(ā1), v̄2(ā2), v̄3(ā3)]. We have the valuation x1 = a1, x2 = a2 and x3 = ā3
and the values of the literals are x1 = a1, x2 = a2 and x̄3 = a3. By the
construction of T2 at least one of a1, a2 or a3 is 1, and thus the conjunct is
satisfied.
Assume additionally that the maximum number of variables per pattern is
fixed. We can reuse the algorithm described in the proof of Theorem 5.7.
The PTIME membership follows immediately the fact that there are only
polynomially many valuations.

5.2 Static Analysis of XML Schema Mappings
Static analysis aims to determine certain properties of an XML data ex-
change setting. We focus here on properties concerning the existence of so-
lutions. As we will see in Example 5.9, a source tree for an XML schema
mapping defined by source-to-target dependencies need not necessarily have
a solution. Moreover, there are schema mappings defined by stds which have
no solution for any possible source tree. The following example, inspired from
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[4], first presents a schema mapping, where every source tree has no solution
and shows then a modification of the schema mapping, such that some but
not all source trees have a solution.

Example 5.9. Let D1 = ⟨r1, PD1 , AD1⟩ be a DTD over Γ1 = {r1, s} and
Att1 = {@p}, and let D2 = ⟨r, PD2 , AD2⟩ be a DTD over Γ2 = {r2, t} and
Att2 = {@q}. The DTDs are defined as follows:

PD1 = {r1 → s∗; AD1(r1) = ∅
s→ ϵ} AD1(s) = {@p}

PD2 = {r2 → t; AD2(r2) = ∅
t→ ϵ} AD2(t) = {@q}

Consider a schema mapping M = (D1, D2,Σ), where Σ is given by the std

r1[s(x), s(y)], x ̸= y → r2/t(x), x = y.

Since x ̸= y and x = y can never be both fulfilled at the same time, there
exists no tree T1 conforming to D1, which has a solution under M. If Σ is
defined instead as

{r1/s(x)→ r2/t(x)},

then there exist solutions only for some of the source trees. For instance, a
source tree consisting of only one node labeled with s has solutions, while a
source tree with two or more children at its root node has no solution.

Two static analysis problems are considered here. The first static analy-
sis problem, considered in Section 5.2.1, asks for a given schema mapping,
whether there exists a source tree that has a solution under the schema map-
ping. The second static analysis problem, discussed in Section 5.2.2, asks for
a given schema mapping whether every source tree has a solution.

5.2.1 Consistency
A schema mapping M is consistent if there exists at least one source tree
T1 that has a solution, i.e. SolM(T1) ̸= ∅. We consider in this section the
following decision problem:

Problem: Consistency(σ)
Input: a schema mapping M∈ SM(σ)

Question: is Sol(M) ̸= ∅?

This problem was first investigated for XML data exchange settings by Are-
nas and Libkin [9] for the class SM(⇓) of schema mappings. The consistency
problem was then investigated for much broader classes by Amano et al. [4].
It turns out that Consistency(σ) has high complexity bounds and is even
for many classes of schema mappings undecidable. The goal of this section
is to examine the different sources of complexity rather than to present all
complexity results exhaustively.
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Recall, that SM◦(σ) is a class of schema mappings, where the dependencies
do not use attribute values. The Consistency◦(σ) problem is defined anal-
ogously to Consistency(σ), but restricts the input to schema mappings
from SM◦(σ).
We start the investigation of the Consistency(σ) problem with SM(⇓,
⇒,∼), the largest class considered in this section.

Theorem 5.10. [4] Consistency(⇓,⇒,∼) is undecidable.

The undecidability of Theorem 5.10 can be shown by reduction from the
halting problem of 2-register machines, i.e. for a 2-register machine a schema
mapping can be constructed which is consistent if and only if the machine
halts. To obtain decidability for the Consistency(σ) problem, we have to
impose restrictions. Thus we have to restrict either the DTDs used in the
schema mapping or the dependencies. We start with the second and disallow
equalities and negations.

Theorem 5.11. [4] The Consistency(⇓,⇒) problem is EXPTIME-com-
plete.

Proof. (Sketch) The main observation of this proof is that Consisten-
cy(⇓,⇒) is not harder than Consistency◦(⇓,⇒). The hardness of Con-
sistency◦(⇓,⇒) can be shown via tree automata techniques. We show here
only the reduction from Consistency(⇓,⇒) to Consistency◦(⇓,⇒).
Assume an arbitrary tree pattern π. We denote with π◦ the tree pattern
obtained by replacing in π every subpattern of the form l(x)[λ] by l[λ],
where l is either a label or a wildcard. A schema mappingM = (D1, D2,Σ) ∈
SM(⇓,⇒) can be transformed into a schema mapping M′ = (D1, D2,Σ

◦) ∈
SM◦(⇓,⇒) by replacing every std of the form π1 → π2 into a std of the
form π◦1 → π◦2. It remains to show that M is consistent if and only if M′ is
consistent. It is easy to see that Sol(M) ⊆ Sol(M′) holds. Assume thatM◦
is consistent, i.e. there exists a tuple (T1, T2) such that (T1, T2) ∈ M◦. Let
(T ′1, T

′
2) be a tuple of trees obtained by setting all attributes in (T1, T2) to the

same value. Clearly, T ′1 and T ′2 are valid source and target trees. Moreover,
(T ′1, T

′
2) satisfies all dependencies, and thus also M is consistent.

The next arising question is if we can lower the complexity bounds if we dis-
allow in addition horizontal axes. However, Arenas and Libkin [9] showed
that Consistency(⇓) remains EXPTIME-complete. A further question is
if the combination of horizontal axes and data comparisons causes undecid-
ability, or if data comparisons are alone the cause. The next result confirms
the latter.

Theorem 5.12. [4] The problem Consistency(⇓,∼) is undecidable.

The undecidability result of Theorem 5.12 is not surprising, since related
problems showed undecidability as soon as data values comparisons are al-
lowed [22, 21, 29, 42, 61]. The above theorem can be shown similar to The-
orem 5.10, by a reduction from the halting problem of a 2-register machine.
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We investigate next if the complexity of the Consistency(σ) problem can
be influenced by considering less expressive DTDs. Consistencynr(σ) de-
notes a variant of the Consistency(σ) problem, that allows only schema
mappings from SMnr(σ) as input, i.e. schema mappings where the source
and the target DTDs are nested relational. The next result states that in
the presence of data comparisons, vertical axes and horizontal axes the con-
sistency problem remains undecidable even under the restriction to nested
relational DTDs.

Theorem 5.13. [4] The problem Consistencynr(⇓,⇒,∼) is undecidable.

Theorem 5.13 can be shown by a modification of the proof for Theorem 5.10,
i.e. by a reduction from the halting problem of a 2-register machine. Never-
theless, this modification cannot be repeated on the proof for Theorem 5.12.
In fact Amano et al. [4] showed that the Consistencynr(⇓,∼) problem is
actually decidable.

Theorem 5.14. [4] The Consistencynr(⇓,∼) problem is NEXPTIME-
complete.

Moreover, the restriction to nested-relational data allows lowering the com-
plexity bounds for schema mappings with vertical and horizontal axes.

Theorem 5.15. [4] Consistencynr(⇓,⇒) is PSPACE-complete.

The membership of Consistencynr(⇓,⇒) in PSPACE can be shown by
a reduction to XPath satisfiability, which is studied in [18]. As already
mentioned, the complexity boundaries of the Consistency(⇓,⇒) prob-
lem cannot be improved by disallowing horizontal axes. This changes for
schema mappings defined by nested relational DTDs and allows one to find
a tractable algorithm.

Theorem 5.16. [9] The Consistencynr(⇓) problem is solvable in polyno-
mial time.

Proof. (Sketch) Consider an arbitrary nested relational DTD D. We denote
with D◦ the result of replacing in D each l+ by l and each l? and l∗ by ϵ.
Moreover, we denote with D∗ the result of replacing in D each l+, l? and l∗
by l. If D does not have attributes, then D◦ and D∗ have both exactly one
conforming tree.
LetM = (D1, D2,Σ) be an arbitrary input of the Consistencynr(⇓) prob-
lem. Clearly, M can be transformed in linear time into a schema mapping
M′ = (D◦1, D

∗
2,Σ). As already shown in the proof sketch of Theorem 5.11,

we can assume without loss of generality that the stds in Σ do not mention
attributes. Therefore, we are also allowed to assume that D1 and D2 do not
have attributes. Furthermore, it can be shown that M is consistent if and
only if M′ is consistent. It suffices to evaluate the stds in Σ on ⟨T1, T2⟩,
where T1 and T2 conform to D◦1 and D∗2, respectively. This can be done in
time O(nm2), where n is the size of D1 and D2, and m is the size of Σ.
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5.2.2 Absolute Consistency
The previous section highlighted the problem of deciding whether for a given
schema mapping there exists at least one source tree that has a solution.
In this section the stronger notion of absolute consistency is considered. We
say a schema mapping is absolutely consistent if for every source tree there
exists a solution. More formally:

Problem: AbsoluteConsistency(σ)
Input: M = (D1, D2,Σ) ∈ SM(σ)

Question: is SolM(T1) ̸= ∅ for all T1 with T1 |= D1?

Clearly, the notion of absolute consistency is more restrictive than the no-
tion of consistency. For instance, Example 5.9 shows a schema mapping,
which is consistent but not absolutely consistent. It turns out that even for
vertical axes AbsoluteConsistency(⇓) is significantly harder than the
Consistency(⇓) problem. Whereas the Consistency(⇓) problem can be
reduced to the Consistency◦(⇓) problem, a similar reduction for the ab-
solute consistency problem does not exist. This is due to the fact that the
possible number of occurrences of attribute values has to be taken into ac-
count. The following result provided by Amano et al. [4] states that the
absolute consistency problem for schema mappings in SM(⇓) can be solved
in double-exponential time.

Theorem 5.17. [4] The AbsoluteConsistency(⇓) problem is in EX-
SPACE and NEXPTIME-hard.

We have seen that the complexity of the Consistency(σ) problem can be
reduced by using nested relational DTDs. However, this alone is not sufficient
for schema mappings in SMnr(⇓).

Theorem 5.18. [4] The AbsoluteConsistency(⇓) problem remains NEX-
PTIME-hard even if its restricted to nested relational DTDs.

To receive lower complexity bounds further restrictions on the dependencies
have to be imposed. The following result shows that the absolute consistency
problem is tractable for the class SMnr(↓) of schema mappings, i.e if we
additionally disallow the descendant axis and wildcards in stds. We denote
with AbsoluteConsistencynr(σ) the absolute consistency problem under
the restriction to nested-relational DTDs.

Theorem 5.19. [4] For fully specified schema mappings the Absolute-
Consistencynr(⇓) problem is solvable in polynomial time.

5.3 Query Answering
The most central problem in XML data exchange is answering a query posed
over the target with respect to a schema mapping and a source tree. Since a
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schema mapping might have infinitely many solutions for a source tree, it is
not obvious how such a answer should look like. We have already encountered
this issue in Section 3.3 for relational data exchange. There we considered the
answer of a query over the target schema as those tuples that are contained
in every solution of the schema mapping and the given source instance. The
concept of these certain answers can be adapted for XML data exchange.

Definition 5.20. Consider a schema mapping M, a source tree T1 and a
query q. The certain answers of q with respect to T1 under M are given by

certainM(q, T1) =
∩
{q(T2)|T2 ∈ SolM(T1)}.

The associated decision problem asks, whether a tuple a is included in the
certain answers of a query q with respect to the source tree T1 under the
schema mapping M. More formally:

Problem: Certain(M, q)
Input: a tree T1, a tuple a

Question: is a ∈ certainM(q, T1)?

In the complexity analysis of the Certain(M, q) problem we will restrict
the features of queries, analogous to Section 5.1.2. Thus, CTQ(σ) and
UCTQ(σ) denote the classes of queries which contain queries from CTQ
and UCTQ, which only use the features in σ, where σ ⊆ {↓, ↓∗,→,→∗,=
, ̸=,_,⇓,⇒,∼}.
We begin the complexity analysis of the Certain(M, q) problem with an
upper bound, i.e. for schema mappings from SM(⇓,⇒,∼) and queries from
UCTQ. Afterwards, we show that there exist restrictions of features such
that the Certain(M, q) problem becomes tractable. We conclude this sec-
tion with the result that adding more features leads quickly to intractability.

Theorem 5.21. [3] Let M be a schema mapping from SM(⇓,⇒,∼), and
let q be a query from UCTQ(⇓,⇒,∼). Then the Certain(M, q) problem
is in coNP.

Proof. (Sketch) Let the schema mapping M be defined by a set of stds
Σ and the source and target DTDs D1 and D2. Moreover, let T1 be a tree
conforming to D1. As in Section 3.3 we assume without loss of generality
that q is a Boolean query.
We consider the complementary problem to show membership in coNP. The
certain answer of q is false if and only if there exists a target tree T2, such
that (T1, T2) satisfies all dependencies in Σ, but T2 does not satisfy q. Assume
that such a tree T2 exists. Since T2 is possibly exponential in the size of the
input, we cannot simply guess T2 and check if T2 satisfies Σ and dissatisfies
q.
By construction, every solution satisfies each sentence of

∆ = {ψ(a) | φ(x,y)→ ψ(x) ∈ Σ and (T1, T2) |= φ(a,b)}.
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Due to Theorem 2.6, the set ∆ can be computed in PTIME by iterating
over all possible valuations a and b. The intuition of this proof is that many
of the possibly exponentially many nodes in tree T2 can be trimmed, such
that T2 becomes polynomial in the size of T1 and still satisfies Σ, dissatisfies
q and conforms to DTD D1. In other words, we show if T2 exists then there
exists always a polynomial sized tree which is a solution for T1 but does
not satisfy q. Therefore, we fix the nodes in T2 that witness ∆. Consider
two nodes u and v from T2 that satisfy the same set of first order formulae.
We can merge u and v and omit the nodes between them, if afterwards T2
still conforms to DTD D2 and all affected nodes are not witnesses of ∆. It
can be shown that this cutting technique can be repeated horizontally and
vertically until T2 is polynomial.
Alternatively, the above theorem could be shown by a reduction to the
problem, where an incomplete tree I and a tuple a is given and the question
is if a is a certain answer of a query q over I. Membership in coNP was
shown for this problem in [15].
We are now interested in restrictions that allows to solve the Certain(M, q)
problem in polynomial time. Therefore, we will discuss an algorithm, pro-
posed by Arenas and Libkin [9], that computes in polynomial time a canon-
ical solution T ⋆2 for a source tree T1 under a fully specified schema map-
ping M ∈ SMnr(⇓,=) over which the evaluation of an arbitrary query
q ∈ UCTQ(⇓,=) results in certainM(q, T ). We start with some prelimi-
nary notations.

Definition 5.22. Let e be a regular expression over an alphabet Γ and let
L(e) be the language described by e. Then perm(e) denotes the set of all
permutations of the strings in L(e).

For instance, perm(ab) contains the string ab and ba. The next concept
defines inductively the minimal tree that satisfies a tree pattern under a
given variable assignment.

Definition 5.23. Consider a tree pattern π(x) and a variable assignment a
for x. A tree Tπ(a) is associated with π(a) = l(a0)[π1(a1), . . . , πn(an)], if its
root node has the label l, attributes a0 and the subtrees Tπ1(a1), . . . , Tπn(an)

as children.

The algorithm for computing the canonical tree T ⋆2 is composed of three
components. The first component is related to the chase procedure from
Section 3.2.1 and creates an intermediate solution.

Definition 5.24. Consider a fully specified schema mappingM = (D1, D2,
Σ) from SMnr(⇓,=) as fixed and a source tree T1 as input. DTD D2 is defined
by (r, PD, AD). For every std π(x,y) → r[π′1(x, z), . . . , π

′
k(x, z)] ∈ Σ and

each pair of tuples a and b from Const, such that T1 |= π(a,b), we introduce
a tuple c of unused variables from Var and create k trees Tπ′

1(a,c)
. . . Tπ′

k(a,c)

associated with π′1(a, c), . . . , π
′
k(a, c). The canonical pre-solution T cp

2 is a
tree with root node r and all created trees Tπ′

i(a,c)
as distinct children.
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The following example illustrates the above specified concept of canonical
pre-solutions.
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Figure 5.4: Source tree T1, the unordered trees Tπ′
1(1,2)

and Tπ′
1(4,5)

associated
with r/u(x)[s, t(y)], the unordered trees Tπ′

2(3)
and Tπ′

2(6)
associated with

r/w(z), and the canonical pre-solution T cp
2 for T1.

Example 5.25. Consider the schema mapping M = (D1, D2,Σ) from
SMnr(⇓,=). The DTDs D1 = ⟨r, PD1 , AD1⟩ and D2 = ⟨r, PD2 , AD2⟩ are
defined as follows:

PD1 = {r → u∗ AD1(r) = ∅
u→ v AD1(u) = {@o}
v → w AD1(v) = {@p}
w → ϵ} AD1(w) = {@q}

PD2 = {r → u∗vw∗ AD2(r) = ∅
u→ st AD2(u) = {@o}
v → ϵ AD2(v) = ∅
w → ϵ AD2(w) = {@q}
s→ ϵ AD2(s) = {@m}
t→ ϵ} AD2(t) = {@p}
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The dependencies in Σ are given by two stds defined as

r/u(x)/v(y)→ r/u(x)[s, t(y)]

r/u/v/w(z)→ r/w(z).

Suppose that T1 is the tree conforming to D1 depicted in Figure 5.4 a).
We construct now the canonical pre-solution for T1. Therefore, we have to
create for each variable assignment a that satisfies the left-hand side of
an std, in our case, a single intermediate tree Tπ′(a), such that the right-
hand side of the std is satisfied under a by the tree with root node r and
the single child Tπ′(a). This step results in four of such intermediate trees
Tπ′

1(1,2)
, Tπ′

1(4,5)
, Tπ′

2(3)
and Tπ′

2(6)
depicted in Figure 5.4 b), c), d) and e),

respectively. Figure 5.4 f) shows the canonical pre-solution T cp
2 obtained by

subsuming all created trees under a single root node r. Note that although
T cp
2 satisfies all dependencies in Σ, it does not conform to D2.

It is easy to see that canonical pre-solutions can be computed in poly-
nomial time. As already demonstrated in Example 5.25, a canonical pre-
solution does not necessarily conform to the target DTD. We show now how
a canonical pre-solution can be transformed into a canonical tree by repair-
ing all constraint violations of the target DTD. Therefore, we have to deal
with two sorts of violations in canonical pre-solutions. In particular, a node
of a canonical pre-solution T cp

2 represents a violation of DTD D2, either
because its attributes are defined differently in the DTD, or its children
do not have the appropriate types. More formally, node s of T cp

2 violates
D2 if {a | ρa(s) is defined in T cp

2 } ̸= AD(lab(s)) or if lab(children(s)) ̸∈
perm(PD(lab(s))), where children(s) is a function returning the node ids
of the children of s. We will define the functions ChangeAtt(D2, T, s) and
ChangeReg(D2, T, s), which iteratively repair one violation at the time until
T cp
2 conforms to D2. Prior to that we continue Example 5.25 and illustrate

both kinds of violations.

Example 5.26. Recall Example 5.25. There we created a canonical pre-
solution T cp

2 , depicted in Figure 5.4 f), for a schema mappingM = (D1, D2,
Σ) and a source tree T1. Tree T cp

2 does not conform to D2. DTD D2 requires
that nodes labeled with s have an attribute @m, but the nodes in T cp

2 labeled
with s have no attribute. Moreover, DTD D2 specifies that a the root node
must have a child node labeled v.

The function ChangeAtt(D2, T, s) attempts to repair the attributes of a node.
If the node has missing attributes, then the function defines them. If the node
has on the other hand an attribute that the DTD does not specify, then the
function fails. More formally:

Definition 5.27. Function ChangeAtt(D,T, s) has as input parameter a
DTD D = (r, PD, AD), a tree T and a node id s, such that {a | ρa(s) is
defined in T} ̸= AD(lab(s)). If there is an attribute a, such that ρa(s) is
defined in T but a ̸∈ AD(lab(s)), then the function fails. Otherwise, for
every a, such that ρa(s) is undefined and a ∈ AD(lab(s)), define ρa(s) = v,
where v is a unused element from Var.
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The function ChangeReg(D2, T, s) is applied if the types of the children
of a node s do not coincide with the regular expressions from a DTD. If
the violations are not reparable then the function fails. Otherwise, it re-
turns a modified tree, such that lab(children(s)) ∈ perm(PD(lab(s))). Before
ChangeReg(D2, T, s) can be specified, we have to fix some terminology and
motivate how violations are handled.
Suppose that w is either a string over symbols from Γ ⊂ Labels. The set
of symbols mentioned in w is denoted with alph(w). Analogously, alph(e)
gives the set of different symbols used in a regular expression e. The num-
ber of occurrences of a symbol b ∈ alph(w) in w is given by #b(w). We
denote with w ⪯ w′ if #b(w) ≤ #b(w

′) holds for every a ∈ alph(w).
Furthermore, we need a preference relation that allows us to compare re-
placements w1, w2 for w. We prefer w2 to w1 if w2 excludes fewer symbols
from w than w1 and if w2 adds less new symbols to w than w1. More for-
mally, w1 ⪯w w2 if #b(w2) ≥ min{#b(w1),#b(w)} for all b ∈ alph(w) and
alph(w2)\alph(w) ⊆ alph(w1)\alph(w) holds. Definition 5.28 specifies, for a
string w and a regular expression e, those elements from perm(e) with the
smallest number of different symbols.

Definition 5.28. Consider a string w and a regular expression e, such that
alph(w) ⊆ alph(e) and w ̸∈ perm(e). The set of preferred repairs of w,
denoted as rep(w, e), is given by

rep(w, e) = max
⪯w

∪
w′⪯w,alph(w′)=alph(w)

min⪯{w′ | w′ ∈ perm(e), w ⪯ w′}.

We emphasize now the intuition of the above introduced concept of preferred
repairs. Therefore, the expression of rep(w, e) is surveyed from right to left.
We start with

minext(w, e) = min⪯{w′ | w′ ∈ perm(e), w ⪯ w′}.

The set minext(w, e) refers to the minimal extensions of w, i.e. those w′ ∈
perm(e) with substring w that contain the fewest additional symbols. The
minimal extensions define how to repair strings with too few symbols of a
particular kind. For example, rep(a, aab+) = {aab, aba, baa}. On the other
hand, if a symbol occurs too many times, then the set of minimal extensions
does not provide a repair. Consider therefore the example rep(aaabb, aab+) =
∅. To repair such a case, we have to exclude some of those symbols that occur
too often. This can be done by considering minimal extensions of a substring
of w, i.e. a string w′ such that w′ ⪯ w and alph(w′) = alph(w) holds. This
behavior is captured with∪

w′⪯w,alph(w′)=alph(w)

min⪯{w′ | w′ ∈ perm(e), w ⪯ w′}.

In the above example the minimal extensions for the substrings ab, aab, aaab,
abb, abb, aabb, and aaabb are given by {aab, aba, baa, aabb, abab, baab, abba,
baba, bbaa}. We prefer from this set those repairs that exclude as few known
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symbols and introduce as few new symbols as possible, i.e. {aabb, abab,
baab, abba, baba, bbaa}. This is captured with the max⪯w expression. The
ChangeReg(D,T, s) function is defined as follows:

Definition 5.29. Function ChangeReg(D,T, s) receives as input parame-
ters a DTD D, a tree T and a node id s, such that lab(children(s)) ̸∈
perm(PD(lab(s))). Suppose that w = lab(children(s)) and e = PD(lab(s)).
The function fails if rep(w, e) is empty.
Otherwise, the function chooses an arbitrary string w′ ∈ rep(w, e) and trans-
forms the children of s according to w′ as follows. For every b ∈ alph(e), let
p = #b(w) and let q = #b(w

′). If p < q then (q−p) new children labeled with
b without attributes and subtrees are added to s. If p > q, then the p children
labeled with b are replaced by a single fresh node s′ with label b. Moreover,
every subtree of the replaced nodes s1, . . . , sp is attached to s′.
The function ChangeReg(D,T, s) fails, if there are two nodes with subtrees
si, sj ∈ s1, . . . , sp which have an attribute a, where ρa(si) = Const, ρa(sj) =
Const and ρa(si) ̸= ρa(sj). If not, then ChangeReg(D,T, s) returns T .

Observe, ChangeReg(D,T, s) replaces the nodes s1, . . . , sp by a single node s′
having no attributes and no children if p > q. Thus, node s′ can itself violate
constraints from the target DTD again, which are resolved by applying the
functions ChangeAtt(D,T, s′) and ChangeReg(D,T, s′) on s′. The construc-
tion of the canonical pre-solution, ChangeAtt(D,T, s) and ChangeReg(D,T, s)
are the three components needed for specifying the algorithm that computes
the canonical tree for a schema mapping and a source tree.

Definition 5.30. The algorithm CanonicalTree(M, T1) starts by computing
a canonical pre-solution T cp

2 for the fully specified schema mapping M ∈
SMnr(⇓,=) and the source tree T1. Afterwards, the functions ChangeAtt
(D2, T

cp
2 , s) and ChangeReg(D2, T

cp
2 , s) are applied in an arbitrary order until

either the resulting tree T ⋆ conforms to the target DTD D2, or one of the
function calls fails, in which case also CanonicalTree(M, T1) fails.

The following example concludes our running example started at Exam-
ple 5.25 and illustrates the application of the CanonicalTree(M, T1) algo-
rithm.

Example 5.31. Example 5.25 presented a schema mappingM = (D1, D2,
Σ) and a source tree T1, shown in Figure 5.4 a). Moreover, it was demon-
strated how the canonical pre-solution T cp

2 is constructed. As already men-
tioned, the canonical pre-solution T cp

2 , depicted in Figure 5.4 f), does not
conform to DTD D2. Example 5.26 has located in T cp

2 two kinds of violations
of the constraints imposed by D2, namely nodes with label s do not have an
attribute and the root node has no node with label v.
We discuss now the further application of the CanonicalTree(M, T1) algo-
rithm. Let u1 and u2 be the node ids of the children with label s of the
nodes with attribute ”1” and ”4”, respectively. The function calls ChangeAtt
(D2, T

cp
2 , u1) and ChangeAtt(D2, T

cp
2 , u2) add to u1 and u2 an attribute @m
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Figure 5.5: The canonical solution T ⋆2 for the source tree T1 shown in Fig-
ure 5.4 a)

with the corresponding value n1 and n2, where n1, n2 ∈ Var. Moreover, let
u3 be the node id of the root node. The application of the ChangeReg(D,
T cp
2 , u3) function adds a new child with label v to the root node. Since there

are no violations left, the algorithm terminates successfully and thus the
resulting XML tree, depicted in Figure 5.5 and denoted as T ⋆2 , conforms to
D2. Furthermore, T ⋆2 is the canonical solution for T1 and M.

It remains to show the correctness of the CanonicalTree(M, T1) algorithm.
Observe that the above algorithm is essentially the chase. Accordingly, the
following Lemma is the analog to Theorem 3.27, Lemma 3.24 and Theo-
rem 3.26 from Section 3.2.1.

Lemma 5.32. [9] LetM = (D1, D2,Σ) be a schema mapping from SMnr(⇓,
=) and let T ′0 be the canonical pre-solution for the source tree T1. More-
over, let T ′0, . . . , T ′n be a sequence of trees created by applying ChangeAtt
(D2, T

′
i−1, s) and ChangeReg(D2, T

′
i−1, s) until one of them fails or both can-

not be applied anymore.
(1) The sequence T ′0, . . . , T ′n is finite.
(2) There exists a homomorphism hi : T

′
i → T2 for every solution T2 ∈

SolM(T1) and for every i ∈ [0, n].
(3) If either ChangeAtt(D2, T

′
n, s) or ChangeReg(D2, T

′
n, s) can be applied

but fails, then there exists no solution for T1 under M.

Theorem 5.33 states that if there are solutions for a source tree and a schema
mapping, then one of them is canonical.

Theorem 5.33. [9] Suppose that M is a fully specified schema mapping
from SMnr(⇓,=) and that T1 is a source tree. If there exists a solution
T2 ∈ SolM(T1), then there exists also a canonical solution T ⋆2 for T1.

Proof. Assume there is a tree T2 ∈ SolM(T1), but there exists no canonical
solution. This means that at some point ChangeAtt(D2, T

′, s) or ChangeReg
(D2, T

′, s) fails. Lemma 5.32 states that in such a case SolM(T1) is empty,
which is a contradiction.
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The following theorem continues Theorem 5.33 and shows that the Canonical-
Tree(M, T1) algorithm is correct, i.e. it results truly in a canonical solution
if one exists.

Theorem 5.34. [9] LetM be a fully specified schema mapping from SMnr(⇓,
=) and let T1 be a source tree. The CanonicalTree(M, T1) procedure computes
in polynomial time a canonical solution or fails if none exists.

Proof. (Sketch) LetM be defined by the source DTD D1, the target DTD
D2, and by a set of stds Σ. The CanonicalTree(M, T1) procedure is composed
of tree components, namely the construction of the pre-solution and the func-
tions ChangeAtt(D,T, s) and ChangeReg(D,T, s). Clearly, the pre-solution
as well as the function ChangeAtt(D,T, s) can be computed in polynomial
time. Showing tractability for the ChangeReg(D,T, s) function comes down
to demonstrating, whether the problem of testing rep(w, e) ̸= ∅ is tractable,
and if it is, whether a string w′ ∈ rep(w, e) can be computed in polynomial
time.
The CanonicalTree(M, T1) procedure starts by computing a canonical pre-
solution T ′0. By applying ChangeAtt(D2, T

′
i−1, s) and ChangeReg(D2, T

′
i−1, s)

in a depth-first search manner we compute a sequence of trees T ′0, . . . , T ′n,
such that neither ChangeAtt(D2, T

′
i−1, s) nor ChangeReg(D2, T

′
i−1, s) can be

applied to T ′n, or an application of one of them would fail. In the latter case
we have that T ′n ̸|= D2, and due to Lemma 5.32 we know that there is no
solution for T1 under M, and thus, there exists also no canonical solution.
If in contrast T ′n |= D2, then T ′n is the canonical solution.
The next theorem shows that canonical solutions can indeed be used for
computing the certain answers.

Theorem 5.35. [9] Consider a fully specified schema mappingM∈ SMnr(⇓,
=), a source tree T1, a query q ∈ UCTQ(⇓,=), and a tuple a from Const.
Moreover, assume there exists a canonical solution T ⋆2 for T1. Then a ∈
certainM(q, T1) if and only if T ⋆2 |= q(a).

Proof. Assume that T ⋆2 |= q(a). Let T2 be an arbitrary solution from
SolM(T1). We know from Lemma 5.32 that there exists a homomorphism
h : T ⋆2 → T2. It is easy to see that if a tree T satisfies a tree pattern
π and there is a homomorphism from T to T ′, then also T ′ satisfies π.
It follows that T2 |= q(a), and since T2 is an arbitrary solution, we have
that T2 |= q(a) holds for every solution T2 ∈ SolM(T1). We conclude that
a ∈ certainM(q, T1).
Assume that T ⋆2 ̸|= q(a). Since T ⋆2 is a solution for T1 under M, we have
that a ̸∈ certainM(q, T1).
The following result concludes the discussion of the algorithm provided by
Arenas and Libkin [9] and immediately follows by Theorem 5.34 and Theo-
rem 5.35.
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Corollary 5.36. [9] Suppose that M is a fully specified schema map-
ping from SMnr(⇓,=) and that q is a query from UCTQ(⇓,=). Then the
Certain(M, q) problem can be solved in polynomial time.

Arenas and Libikin [9] and Amano et al. [3] made several attempts to find a
larger class of schema mappings or query classes such that the Certain(M,
q) problem remains tractable. It has turned out that this problem is highly
non-trivial. Theorem 5.37 shows various coNP-hardness results obtained by
allowing further features in the schema mappings or queries compared to
Corollary 5.36. Recall, that Theorem 5.21 provided an upper bound for
Certain(M, q).

Theorem 5.37. [9, 4] The Certain(M, q) problem is coNP-complete if
(1) M∈ SMnr(⇓,=) and q ∈ CTQ(⇓,=),
(2) M∈ SM(⇓,=) is fully specified and q ∈ CTQ(⇓,=),
(3) M∈ SMnr(↓,=) is fully specified and q ∈ CTQ(↓,=, ̸=),
(4) M∈ SMnr(↓) is fully specified and q ∈ CTQ(↓,→,=),
(5) M∈ SMnr(↓) is fully specified and q ∈ CTQ(↓,→∗,=),
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CHAPTER 6
Conclusion

We have studied data exchange over relational data, knowledge bases and
XML data. The corresponding schema mappings are constructed in such
a way that knowledge exchange as well as XML data exchange represented
generalizations of the relational data exchange. Thus, the complexity results
in the relational case represent a lower complexity bound for the correspond-
ing problems in knowledge exchange and XML data exchange. This allowed
us to exclude problem settings that have already been shown to be unde-
cidable in the relational data scenario from further investigation under the
other two data models.
The first issue that has to be dealt with, is to find a proper logical formal-
ism that allows efficient algorithms, but is also powerful enough to express
meaningful queries. We highlighted this investigation for the relational data
exchange problem. As anticipated, dependencies defined by unrestricted first
order rules showed undecidability results even for the simplest problems. A
promising attempt to find the right formalism was to base the dependen-
cies on conjunctive queries, but nevertheless undecidability results could
be proven for basic problems in the presence of target dependencies. The
further restriction of weakly acyclic target dependencies provided then the
preferred properties.
The most crucial computational problem concerning data exchange is to
verify whether a target instance is a solution for a source instance. The
discussion of finding suitable dependencies for relational data exchange im-
plied that a solution can be verified in polynomial time. The complexity
is much higher for knowledge exchange, since a knowledge base can repre-
sent infinitely many relational instances. Hence, the complexity of verifying
a knowledge base solution rises to ∆P

2 [O(log n)]. The problem of verifying
solutions in XML data exchange is even for the full structure of XML doc-
uments well behaved and is solvable in LOGSPACE.
Clearly, the main task in data exchange is to materialize a solution for a given
source instance. The fact that there are in general infinitely many solutions
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gives rise to the question whether there are preferred solutions. In relational
data exchange such solutions exist and are called universal solutions. They
are defined as those solutions that have a homomorphism to every other
solution. Universal solutions can be computed in polynomial time with the
well-known chase procedure. The concept of universality can also be applied
to knowledge base solutions, but has the disadvantage that they prohibit
implicit knowledge, and thus, universal knowledge base solutions degener-
ate to relational solutions. More sophisticated are minimal knowledge base
solutions which have similar positive properties as universal knowledge base
solutions, but also allow implicit knowledge. On the other hand, for XML
data exchange there exists in general no single solution that is representative
for all other solutions. Nevertheless, we have seen an algorithm that materi-
alizes canonical solutions in our discussion of query answering for restricted
XML schema mappings.
We looked next at the problem of answering queries posed over the target
schema with respect to a source instance. The semantics are given by the
notion of certain answers, that defined the result of a query as those tuples
which occur in the answers for all solutions. In relational data exchange the
certain answers of a union of conjunctive queries can be computed over the
universal solution in polynomial time. As soon as we added inequalities to
the conjunctive queries the complexity increased to coNP-completeness. In
knowledge exchange the certain answers of queries can be directly computed
over universal knowledge base solutions. Computing the certain answers in
XML data exchange has an upper bound in coNP for schema mappings rea-
soning over the full structure of XML trees. We showed a tractable algorithm
that computes for restricted schema mappings a canonical tree, over which
the certain answers for unions of conjunctive tree queries can be calculated.
The last studied fundamental issue regarding data exchange was their com-
position. The associated problem is the composition query, which asks if a
pair of instances is contained in the composition of two schema mappings.
It turns out that the composition of two schema mappings cannot always be
defined with the usual first-order dependencies for relational data exchange
and knowledge exchange, and hence, the composition query is NP-complete.
We introduced alternative dependencies based on second order logic, that
possess good properties for data exchange and allow to specify the com-
position of two schema mappings in polynomial time. We did not discuss
composition for XML data exchange but it has already been studied by [4].
Data exchange has become one of the central problems in database theory.
This master thesis aimed to assess the state of the art of data exchange on the
basis of three different data models. It has shown that while relational data
exchange is already well understood, there are still many open questions in
knowledge exchange and XML data exchange. Nevertheless, the discussion
of exchanging incomplete data has shown that there are assumptions in data
exchange that can and should be questioned. Moreover, with the fast change
of technologies there will most likely emerge new data models that require
the exchange of data.
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