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Abstract

This thesis deals with the problem of automatically estimating the visual similarity of two ob-
jects shown in an image pair. Visual image comparison is a challenging task in the presence of
appearance variations between objects, as the similarity estimation has to be made insensitive
to the variations without losing the essential information necessary for differentiation. A com-
mon and effective methodology to handle appearance variations is to exploit machine learning
techniques where the intra-class variations are learned by means of representative example im-
ages. However, this methodology relies on large amounts of a-priori available image data which
might be infeasible in practice. Therefore, the work presented in this thesis aims at the robust
classification with the aid of an insensitive image-to-image similarity estimation. Consequently,
an exemplar-based classification pipeline is presented whose individual steps treat different as-
pects of appearance variability. The task of recognizing ancient coins is used as motivating
example and main application area of the presented methods due to the challenging nature of
ancient coins in terms of illumination effects, non-rigid spatial deformations, image clutter and
inter-class similarity.

In the first part of the pipeline the segmentation of roughly circular objects like ancient coins
is treated in order to make the visual comparison insensitive to object location and scale as well
as background clutter. The second part deals with the illumination-insensitive extraction of im-
age features, with a special focus on textureless objects like coins. Textureless objects exhibit
more complex appearance variations under illumination changes than textured objects, which
have been the main objects of interest in computer vision research on illumination insensitivity
so far. Thus, an exhaustive evaluation of low-level image representations for recognizing tex-
tureless objects under illumination changes is presented. The findings of this study are utilized
to construct a local image descriptor that outperforms state-of-the-art descriptors under illumi-
nation changes. Finally, in the last part the insensitivity against non-rigid local deformations is
addressed, as this type of appearance variations typically occurs within instances of the same
coin class. It is shown that by imposing both appearance-based and geometric constraints on the
optimization framework for correspondence search one can use the matching costs for exemplar-
based coin classification in a coarse-to-fine manner. However, the classification performance
of this methodology suffers from the computational demands of using only weak geometric
constraints. Appearance-driven feature matching followed by an evaluation of the geometric
plausibility of the detected correspondences allows to use stronger geometric constraints and
consequently leads to a faster and more reliable similarity estimation.
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Kurzfassung

Diese Dissertation beschäftigt sich mit dem Problem, die visuelle Ähnlichkeit von in Bildern
dargestellten Objekten zu bestimmen. Die besondere Schwierigkeit einer solchen Ähnlichkeits-
bestimmung liegt darin, das Ähnlichkeitsmaß insensitiv gegenüber Veränderungen im Ausse-
hen der Objekte zu machen, ohne die nützliche Information zur Unterscheidung von Objekten
zu verlieren. Ein gebräuchlicher und effektiver Weg dafür ist der Einsatz von Techniken des
maschinellen Lernens, bei denen die Variationen innerhalb einer Objektklasse anhand von re-
präsentativen Beispielbildern automatisch gelernt werden. Für einen effektiven Einsatz müssen
diese Bilder aber in einer großen Zahl vorhanden sein, was in der Praxis nicht immer möglich
ist. Aus diesem Grund verfolgt die vorgestellte Arbeit das Ziel, eine robuste Klassifizierung
mithilfe eines Bildähnlichkeitsmaßes zu erreichen. Es wird ein exemplar-basierter Klassifizie-
rungsprozess vorgestellt, dessen Einzelschritte unterschiedliche Aspekte von Objektvariabilität
behandeln. Dieser Prozess ist von dem Problem der automatischen Klassifizierung antiker Mün-
zen motiviert, da für diese Objekte eine Vielzahl von Variabilitäten wie Beleuchtungseffekte,
räumliche Verformungen oder unvollständige Bilddaten berücksichtigt werden müssen.

Im ersten Teil der Arbeit wird eine Bildsegmentierung von annähernd runden Objekten vor-
gestellt, die es ermöglicht, den Bildvergleich unabhängig vom Hintergrund und der Größe des
Objektes im Bild durchzuführen. Der zweite Teil untersucht die Berechnung von beleuchtungs-
insensitiven Bildmerkmalen mit dem Hauptaugenmerk auf untexturierte Objekte. Untexturierte
Objekte wie beispielsweise antike Münzen bestehen aus nur einer einheitlichen Farbe und sind
daher unter Beleuchtungsunterschieden schwieriger zu erkennen als texturierte Objekte, wes-
halb sie in der Vergangenheit im Bereich der Computer Vision Forschung großteils vernachläs-
sigt wurden. Aus diesem Grund werden in der Arbeit in einer umfangreichen Studie einfache
pixelbasierte Merkmale auf ihre Insensitivität zu Beleuchtungsveränderungen untersucht. Die
Erkenntnisse dieser Studie werden in weiterer Folge dazu genutzt, einen lokalen Bilddeskriptor
zu entwickeln, der unter Beleuchtungsunterschieden leistungsfähiger als bestehende Deskripto-
ren ist. Der letzte Teil der Arbeit wird der Insensitivität gegenüber räumlichen Verformungen
gewidmet, wie sie beispielsweise innerhalb von Objekten eines Münztyps vorkommen. Es wird
gezeigt, dass das Ergebnis einer Suche nach zusammengehörenden Bildpunkten, die sowohl
aussehensbasierte als auch geometrische Kriterien berücksichtigt, dazu genutzt werden kann, ei-
ne schrittweise Klassifizierung von Münzen zu erreichen. Jedoch erlaubt dieser rechenintensive
Prozess lediglich die Berücksichtigung von einfachen geometrischen Bedingungen. Aus diesem
Grund wird eine verbesserte Methode vorgestellt, die die zuverlässigsten Korrespondenzen von
Bildpunkten dazu verwendet, um die Ähnlichkeit aus deren geometrischer Plausibilität abzulei-
ten, was zu einem schneller berechenbaren und leistungsfähigerem Ähnlichkeitsmaß führt.
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CHAPTER 1
Introduction

In computer vision a central and recurrent problem is to determine the similarity of images or
parts of images. For instance, in face recognition [Li and Jain, 2011] a probe image needs to
be compared to gallery face images in order to find the most similar one and to consequently
identify a person. Object tracking in a video stream [Yilmaz et al., 2006] also requires a notion
of image similarity in order to detect the image part which looks most similar to the object
appearance defined in the previous frame. Another example is Content-Based Image Retrieval
(CBIR) [Datta et al., 2008] where an user might want to search for images with a color layout
similar to a query image. Image retrieval can be also based on higher-level semantics [Liu
et al., 2007] where image similarity is defined in terms of learned image categories like car,
plane, motorbike etc. These examples show that there is a broad spectrum of the meaning of the
term image similarity as well as of technical approaches needed to compute a both robust and
discriminative similarity measure for a given application domain.

Essential to the use of image similarity measures is the question which information has to be
extracted from the images and which information needs to be ignored, as the image similarity
measure should be based only on the necessary image information and not be disturbed by
other data inherent in the image. For instance, if image comparison is rather focused on an
object shown somewhere in the image than on the complete image, image parts belonging to
the background should not be considered, either implicitly within the method or explicitly by
rejecting background image parts in a preprocessing step. Ignoring unnecessary, disturbing
image information is also related to the concepts of invariance and insensitivity. Invariance in
computer vision is the property of a feature or outcome of an operation to remain unaltered
by a certain, defined set of image variations [Fisher et al., 2014]. Invariance can be proofed
theoretically, whereas insensitivity is a looser constraint needed in domains where true invariants
do not exist (e.g. illumination, see Section 2.1.3). Thus, in contrast to invariance, insensitivity
can be defined only in a relative but not in an absolute manner: it can be examined only if a
method is more or less insensitive to a given type of image transformation than another method
and if a method is or is not invariant to a given type of image transformation.

In the context of object-based image similarity the issues raised above mean that we want

1
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Object Scale, Object 
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Image Clutter 
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Figure 1.1: Causes of appearance variability, illustrated by example images for the application
scenarios of classifying ancient coins, identifying human faces and recognizing tigers1.

to compare two images of objects in such a way that, on the one hand, the resulting similarity
measure is not affected by various appearance variations and, on the other hand, the similarity
measure is discriminative enough to be suitable for the given task. As these two properties
stand in a trade-off relationship with each other, we seek for methods which optimally balance
them [Varma and Ray, 2007]. Consequently, it is beneficial to identify the types of possible
image variations for a given application area, since each kind of invariance or insensitivity might
unnecessarily decrease the discriminative power of the image similarity measure. In general, two
main types of variations can be identified which are also illustrated in Figure 1.1 for the object
types of ancient coins, human faces and tigers:

• Variations due to imaging conditions

Object scale and location, background clutter: Whenever imaging conditions can-
not be controlled, computer vision methods need to be made robust against the resulting
image appearance variations. Arbitrary camera viewpoints lead to an unknown, arbitrary
location and scale of the object to be recognized. The imaged background is considered as
image clutter which potentially disturbs the recognition process. As a solution, the object

1Please note that the figure does not show a complete categorization of image variations (see [Frisby and Stone,
2010] for a comprehensive taxonomy).
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has to be detected in a preprocessing step or feature extraction needs to be invariant to
scale and location.

Illumination: Feature extraction is also required to ignore effects of illumination
change like object brightness (e.g. day/night shot of tiger), highlights (e.g. metallic
surfaces like coins) or shading (e.g. different illumination directions during face image
acquisition).

• Variations due to alterations of the imaged object:

Non-rigid deformations: The object to be recognized may also have varying phys-
ical shapes. For instance, the individual specimens of an ancient coin class can be non-
rigidly deformed due to the hand-made dies used in ancient times for coin minting. How-
ever, non-rigid deformation does not only occur between different instances of the same
class, but also for the same “physical object” acquired at different times, like the expres-
sions on a human face. Also a tiger has a non-rigid shape which means that the relative
position of body parts may change from one image to another. Consequently, the underly-
ing recognition model needs a certain spatial flexibility to be insensitive to deformations
of the object.

Incomplete Data: Finally, as the imaged object might not be completely visible, fea-
ture extraction and recognition has to be designed in such a way that missing or disturbed
data does not corrupt the recognition process. For example, on ancient coins abrasions
and fragmentation can possibly lead to missing data. Missing data is also often related to
occlusions which can be caused by uncontrolled imaging conditions as well, e.g. a bush
occluding parts of the tiger.

The research presented in this thesis aims at making visual object comparison insensitive
to the different types of appearance variabilities described above. In contrast to the prevalent
methodology of learning image variability by training a classifier with image samples [Duda
et al., 2012], a direct way of comparing images without the need for an offline training stage
is followed. Consequently, individual methodologies are presented and evaluated, each one
treating certain aspects of appearance variability and insensitivity:

• Object segmentation is proposed to deal with varying object locations and scales on dif-
ferent backgrounds.

• Illumination variations are intensively examined by means of synthetic and real image
data leading to a new illumination-insensitive image descriptor.

• Image similarity is estimated based on a local correspondence model which shows high
discriminative power while being robust against non-rigid deformations and missing im-
age data.

The methods can be used in conjunction to obtain a holistic image similarity framework in
the end. Besides the insensitivity concern, reducing the runtime of the image search is treated as
well.

3



1.1 Motivation and Scope of Work

Although coping with image variabilities is a major concern in computer vision research, there
are issues that have not been examined accordingly. The common methodology for treating
image and object variation is using machine learning techniques [Duda et al., 2012]. The idea
is to represent the overall set of variabilities in the training data set which is then used to learn
models able to capture the variability of a given class [Varma and Zisserman, 2005,Russell et al.,
2008, Wright et al., 2009, Xiang et al., 2014]. The amount of training data needed depends on
the difficulty and degree of variability between images, but state-of-the-art image classification
results are based on training set sizes in the order of millions of images [Torralba et al., 2008,
Deng et al., 2009]2. The digital era and easy access to online images makes the collection of
training data for broad categories like tigers possible [Chen et al., 2013], but this is a condition
which cannot be fulfilled in certain domains like ancient coin recognition or identification of
(non-famous) persons.

Due to this training data problem, in this thesis the insensitive comparison of images with-
out using a-priori knowledge in the form of learned recognition models is pursued. For the
problem of image classification this means that no discriminative or generative models are
learned in an offline training phase but a query image is compared to class-reference images
in a dataset and classified to the most similar class image. This exemplar-based or nearest neigh-
bor classification scheme is in line with recent works that show superior results for scenarios
with limited number of training samples per class [Dreuw et al., 2009, Hua and Akbarzadeh,
2009,Pishchulin et al., 2012,Yao and Fei-Fei, 2012]. The benefit of such a classification scheme
is that the variability can be treated during classification by means of insensitive image com-
parison, without relying on a training dataset that includes the overall appearance variability of
a class. Moreover, there are additional advantages of exemplar-based classification compared
to learning-based classification [Boiman et al., 2008]: it can naturally handle a higher a num-
ber of classes, it is non-parametric and therefore not subjected to over-fitting, and it needs no
time-consuming offline learning phase which is particularly beneficial for dynamic databases as
changing classes/training sets is instantaneous in exemplar-based classifiers.

The complexity of exemplar-based classification does not lie in the model used, but rather
in the image similarity metric which has to consider appearance variabilities as shown in Fig-
ure 1.1. In the presence of image clutter and non-rigid deformations, establishing and assessing
corresponding feature points between images has shown to be a prominent approach for this
task [Berg et al., 2005, Duchenne et al., 2011b, Jorstad et al., 2011, Liu et al., 2011, Kim et al.,
2013]. In this thesis, this line of research is further investigated in order to obtain a deeper under-
standing how local correspondences can be exploited to estimate image similarity. In this con-
text, local image descriptors play an essential role as insensitive descriptions of the local image
structures are needed to establish reliable correspondences. However, although a vast amount of
descriptors have been proposed in the past (see Section 2.3 for an overview), insensitivity to illu-
mination conditions has been only marginally treated, dealing exclusively with global brightness
changes as common on textured surfaces. Nevertheless, as can be seen in Figure 1.1, textureless
surfaces like coins or parts of the human face exhibit a higher degree of appearance variability

2see for instance the results of the Large Scale Visual Recognition Challenge 2013 at http://www.
image-net.org/challenges/LSVRC/2013/index (accessed on June 8th, 2014).
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under illumination changes. Therefore, in this thesis illumination insensitivity on textureless
surfaces is further examined, aiming for a more robust local image descriptor in the presence of
illumination changes.

Within a correspondence-based recognition framework, location and scale differences of
objects are commonly treated by detecting salient keypoints with a canonical scale [Lowe, 2004,
Hassner et al., 2012]. However, due to the discriminative power-invariance trade-off and non-
perfect repeatability of keypoint detection, knowing the image region that contains the object of
interest before classification is conducive to a higher rate of correct correspondences and thus
for a more reliable image similarity metric. Therefore, object segmentation is proposed as a
first step for correspondence-based image classification in this thesis. For objects like ancient
coins keypoint detection is more error-prone than segmenting the coin which can be achieved in
a robust manner because of the known roughly circular shape of the coins.

Throughout this thesis, the task of classifying ancient coins is used as motivating exam-
ple and main application area of the presented methods since the aforementioned challenging
problems are inherently present in this type of data, as can also be seen in Figure 1.1:

• ancient coins can be imaged at different image locations, scales and on various back-
grounds.

• ancient coins are textureless objects with a 3D relief, and thus the appearance of the coin
surface in a 2D image is strongly influenced by the illumination conditions.

• ancient coins possibly show a high level of variability within a class due to their non-
industrial manufacturing and abrasions over the centuries.

• ancient coin classes are numerous and have different levels of rarity: for instance, in
the Museum of Fine Arts in Vienna around 3900 coins of the Roman Republican age
are available, but for only 237 of the 1900 classes (including the subclasses) defined in
[Crawford, 1974] more than three coins are available [Zambanini and Kampel, 2012].
Hence, the number of training samples is limited which heavily impedes the successful
learning of appearance variabilities by machine learning methods.

The manual classification of ancient coins is in general a time-consuming and difficult task,
even for trained experts [Grierson, 1975]. From a numismatic perspective, the motivation for the
research presented in this thesis is that an image-based analysis has the potential to disburden the
daily work of numismatists, but also to support more efficient research procedures in the future,
e.g. the automatic clustering of coin hoards [Zaharieva et al., 2008]. Therefore, the methods
presented in this thesis allow to automatically assess the visual similarity of coins, which in turn
enables exemplar-based classification.

However, although the experiments in this thesis focus on ancient coin classification, the
proposed methods are not restricted to this specific task. Instead, they generally treat objects
with the appearance variabilities illustrated in Figure 1.1 and thus have the potential to be used
and adapted for a wider class of problems (see Chapter 6 for a more detailed discussion of this
issue).
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1.2 Summary of Contributions

The general topic of this thesis is to automatically estimate the visual similarity of two objects
shown in an image pair, and particularly insensitivity to appearance variabilities as depicted in
Figure 1.1 is examined. Insensitivity to the various types of image variations are treated as indi-
vidual subproblems and thus contributions to different aspects of insensitive image comparison
are made:

1. Insensitivity to Object Scale, Location and Background

• A shape-controlled approach for object segmentation is proposed [Zambanini and
Kampel, 2009] which empirically proves to be robust and fast, in contrast to shape-
unaware approaches. The method exploits known a-priori information about the
shape of the object to be segmented, e.g. the roughly circular shape of an ancient
coin. With the known location of the object, the image can be cut and normalized
to a specified standard size to achieve insensitivity to object location and scale. This
avoids using scale-invariant feature detection [Lowe, 2004] where only a sparse set
of partially non-corresponding keypoints can be used for image comparison. Instead,
dense matching can be performed which uses the overall visual data for comparison.

• The circular object segmentation method [Zambanini and Kampel, 2009] is suc-
cessfully used as a preprocessing step in various works on ancient coin recogni-
tion [Zambanini and Kampel, 2011,Zambanini and Kampel, 2012,Zambanini et al.,
2013, Zambanini et al., 2014, Zambanini and Kampel, 2014, Kavelar et al., 2014].
Additionally, the resulting shape of the coin border is used as a feature for coin iden-
tification [Huber-Mörk et al., 2011]. Due to wearing the shape of the border is a
characteristic feature of a coin specimen. In [Huber-Mörk et al., 2011] this prop-
erty is exploited to build a system for automatic coin identification, motivated by the
problem of illegal online coin trade which was combatted by the EU-funded COINS
project [Zaharieva et al., 2007c] by means of an automatic retrieval of images of
stolen coins in the internet.

2. Insensitivity to Illumination Conditions

• A comprehensive evaluation of pixel-wise low-level features proposed in literature
is conducted [Zambanini and Kampel, 2013a]. Unlike previous studies [Chen et al.,
2000, Osadchy et al., 2007, Moreels and Perona, 2007, Van De Sande et al., 2010]
the influence of material specularity, object texturedness and amount of illumination
direction change is investigated. The experiments reveal that jets of oriented even
Gabor filter responses are the features of choice for capturing object characteristics
in an illumination-insensitive way, and that the single-scale representation can be
extended towards multiple scales for improved performance.

• The controlled evaluation is enabled by a new synthetic image dataset built from
3D historical coin models. The dataset makes it possible to directly compare the
performance of the features under different conditions without introducing a bias
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due to different objects used between datasets. As a contribution to other researchers
in this field the dataset is made publicly available3.

• The findings of the study are used to develop a new illumination-insensitive local
image descriptor [Zambanini and Kampel, 2013b] which empirically shows to out-
perform state-of-the-art descriptors such as SIFT [Lowe, 2004], SURF [Bay et al.,
2008], FREAK [Alahi et al., 2012], DAISY [Tola et al., 2010] or MROGH [Fan
et al., 2012] under illumination changes. The source code of the descriptor is also
made publicly available4.

3. Insensitivity to Non-Rigid Deformations and Incomplete Data

• In order to cope with the training data problem, an exemplar-based classification
method is proposed [Zambanini and Kampel, 2011]. It uses a dense grid of local
image features which are optimally matched by means of data-driven and geometric
constraints to infer about image similarity. Due to the local appearance description
and geometric regularization the method allows for the flexible matching needed in
presence of non-rigid deformations. Because of the locality of the similarity estima-
tion the method is also not vulnerable to occlusions or incomplete data.

• A coarse-to-fine hierarchical classification scheme [Zambanini and Kampel, 2012] is
introduced to decrease runtime. The main drawback of exemplar-based classification
is the runtime which is theoretically linear to the number of classes in the dataset.
It is shown that the runtime can be reduced to approximately one seventh without
decreasing the classification rate.

• It is further shown that the similarity estimation can be improved by evaluating data-
driven matchings for their geometric plausibility [Zambanini et al., 2014], instead
of regularizing the matching process by geometric constraints. As a consequence,
geometric constraints have to be evaluated only once in the similarity estimation pro-
cess, hence more complex constraints can be used which improves both the runtime
and the classification performance.

On the application side, the individual methods allow to build a complete pipeline for classi-
fication of ancient coins, as depicted in Figure 1.2. This procedure is used in [Zambanini et al.,
2014] (described in Chapter 5) and shows to outperform existing ancient coin classification ap-
proaches [Kampel and Zaharieva, 2008,Arandjelović, 2010]. The proposed methodology can be
integrated into a numismatic coin classification tool whose impact on the numismatic research
community would be versatile. First of all, it would help to save considerable amounts of time
for everyone dealing with historical coins, as classification needs no longer to be based on printed
reference books such as [Crawford, 1974] which might also be expensive and hardly available.
The tool could be also filled with different sets of data and be used for various purposes such as
die analysis [Howgego, 2005] or pre-classification of hoard finds.

3Synthetic Image Dataset for Illumination Robustness Evaluation (SIDIRE), http://www.caa.tuwien.
ac.at/cvl/people/zamba/sidire/

4Local Image Descriptor Robust to Illumination Changes (LIDRIC), http://www.caa.tuwien.ac.at/
cvl/people/zamba/lidric/LIDRIC_v1.02.rar
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Figure 1.2: The coin classification pipeline that is provided by the methods presented in this the-
sis, each one achieving insensitivity to different intra-class appearance variations. Segmenting
the coin and normalizing the coin region to a standard resolution achieves insensitivity to loca-
tion and scale, dense LIDRIC feature extraction achieves insensitivity to illumination conditions
and computing correspondence-based image similarities achieves insensitivity to non-rigid de-
formations and incomplete data.

From a more general perspective, automatic image-based coin classification contributes to
the research field of ICT and cultural heritage which aims to capture, analyze, manage and
deliver cultural information [Stanco et al., 2011]. The importance of this field is indicated by its
inclusion in the activities of the EU Horizon 2020 research programme [H2020, 2013] as well as
by several periodic scientific conferences5 and journals6. The EU-funded COINS project (2007-
2009) [Zaharieva et al., 2007c] aimed at developing technologies to fight against illegal trade
and theft of coins by means of standardized inventories, data management tools and an image-
based web search. This thesis was embedded in the ILAC project (2010-2014) [Kavelar et al.,
2013], which was funded by the Austrian Science Fund (FWF) and aimed at the image-based
classification of ancient coins.

1.3 Thesis Structure

The remainder of this thesis is organized as follows:

Chapter 2 gives an overview of the state-of-the-art in computer vision fields related to the
methods proposed in this thesis, namely invariance in visual object comparison, image seg-

5For instance, the Computer Applications and Quantitative Methods in Archaeology Conference (CAA), Inter-
national Congress on Digital Heritage and EUROGRAPHICS Workshop on Graphics and Cultural Heritage (GCH).

6For instance, the Elsevier Journal of Cultural Heritage and the ACM Journal on Computing and Cultural
Heritage.
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mentation, local image descriptors and correspondence-based image similarity. Additionally, an
outline of relevant numismatic knowledge and methods for image-based coin analysis is pro-
vided.

Chapter 3 describes the method for achieving insensitivity to object scale and location by
means of a shape-controlled object segmentation approach. Since the object of interest is known
to have a specific shape (e.g. roughly circular for coins), a global threshold is optimized in a way
such that the resulting shape is most similar to a circle. Results of the developed algorithm are
shown for an image database of ancient coins from various sources and demonstrate the benefits
of the approach in terms of robustness and speed.

Chapter 4 describes the method for achieving insensitivity to illumination conditions and
starts with a comprehensive evaluation of the discriminative power of various low-level im-
age features for a pixel-wise representation of the objects characteristics. For this purpose, a
new dataset with rendered images of 3D models is used which allows to directly compare the
influences of texture and material properties in an object recognition scenario. The results are
further validated on a dataset of real object images and finally reveal that jets of single- and
multi-scale even Gabor filter responses outperform other proposed features in scenarios with
textureless objects and strong variations of illumination. In the second part of the chapter a
new local image descriptor (LIDRIC) is proposed based on these findings. The descriptor is
computed from histograms of oriented filter responses in various subcells of the local image
region. For evaluation, a dataset of textured as well as textureless objects is used which intro-
duces a greater challenge towards evaluating the robustness against illumination changes than
conventional datasets used in the past. The experiments finally show the superiority of LIDRIC
compared to existing descriptors under illumination changes.

Chapter 5 describes the method for achieving insensitivity to non-rigid deformations and in-
complete data. It is demonstrated that learning-based methods are not practical and effective for
the image classification problem in the case of a high number of classes with a limited number
of training samples and complex intra-class variations. As a solution, a similarity metric based
on feature correspondence is proposed which is designed to be robust against the possible intra-
class coin variations like degraded parts and non-rigid deformations. The similarity metric is
used in an exemplar-based ancient coin classification scheme which shows to outperform previ-
ously proposed methods for ancient coin recognition. Comparative experiments are conducted
on a dataset of 60 Roman Republican coin classes where the presented method achieves supe-
rior classification rates ranging from 72.7% for the case of one training sample per class up to
97.2% when nine training samples per class are used. Additionally, a coarse-to-fine classifica-
tion scheme is introduced to decrease runtime which would be otherwise linear to the number of
classes in the training set.

Chapter 6 finally concludes the thesis by summarizing its main outcomes and implications
for computer vision research. The chapter also includes a discussion of the limitations of the
presented methods and highlights future research directions.
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All the methods described in the chapters 3-5 have already been partially published in con-
ference proceedings and journal articles. At the beginning of each chapter the corresponding
publications are denoted.
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CHAPTER 2
Background and Related Work

In this chapter background information and related work within the scope of this thesis’ research
is summarized. In Section 2.1, a general overview of methodologies for dealing with different
types of appearance variations is given. The subsequent sections describe the state-of-the-art
in the computer vision fields where the methods presented in this thesis add a contribution:
image segmentation (Section 2.2), local image descriptors (Section 2.3) and correspondence-
based image similarity (Section 2.4). Section 2.5 gives an overview of relevant numismatic
background knowledge and image-based coin analysis methods, as this is the main practical
focus of the thesis. The chapter is concluded by a summary in Section 2.6 where the key points
of the related literature are highlighted and the consequential design choices and innovative
aspects of the proposed object comparison methodology are described.

2.1 Invariance in Visual Object Comparison

Invariance in visual object comparison means that we want to compare objects such that non-
informative variations of the images are not taken into account. This implies that the outcome of
feature extraction is not affected by any environmental or object-specific conditions. This section
gives an outline of existing methods for overcoming the kinds of appearance variations that are
also treated by the methods proposed in this thesis: object location, object size, illumination
conditions, non-rigid object deformations and missing object data.

2.1.1 Translation Invariance

Translation invariance in visual object comparison means to obtain a similarity measure that
is unaffected by the location of the object in the images. Early recognition approaches in the
computer vision field were dominated by simple global methods [Smeulders et al., 2000], which
extract a description from the entire image, commonly being inherently translation-invariant.
For instance, Swain and Ballard [Swain and Ballard, 1991] proposed to use color histograms to
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describe and compare images. Other features used for image similarity have been shape [Mehtre
et al., 1997] and texture [Manjunath and Ma, 1996, Ojala et al., 1996].

A problem with these methods is that all image data is equally considered for comparison
which makes it vulnerable to background clutter. To locate the object as a whole in the image,
a general model of its appearance or shape can be used and searched for via template match-
ing [Brunelli, 2009]. The idea is to compare every image position to the model/template and
locate the object at the image point with the highest correlation. The methodology has been
successfully applied to problems like face detection [Viola and Jones, 2004] or character recog-
nition [Due Trier et al., 1996]. However, one of its disadvantages is speed, as the model has to be
tested for the complete parameter space of variations, i.e. for every image pixel, but also for dif-
ferent window sizes and orientations if object scaling and rotation is encountered. Furthermore,
if the object variability is to complex a general template of the object class cannot be defined.

State-of-the-art algorithms for image description and comparison are based on interest points
and thus represent an image as a set of detected points with corresponding local descriptors
[Nixon and Aguado, 2012]. Hence, two parts are involved: a detector and a descriptor. Within
this feature extraction scheme translation invariance follows directly from the interest point de-
tection that aims to detect points with a high degree of saliency. An important performance
criterion of interest point detectors is the repeatability [Schmid et al., 2000] which is the fraction
of corresponding detected keypoints among all detected keypoints of two images. An interest
point that is not redetected in the other image hinders the image comparison process and thus
interest point detectors focus on well-defined shapes like corners [Moravec, 1980, Harris and
Stephens, 1988]. Modern interest point detectors [Mikolajczyk and Schmid, 2004] provide not
only invariance to translation and rotation but also to scaling, as described in the next section.

2.1.2 Scale Invariance

Scale differences of objects are differences in their pixel dimensions, e.g. due to varying object
distances, camera focal length or image resolution. Whenever these differences are unknown,
feature extraction needs to be scale-invariant. As a solution, scale selection techniques have
been proposed that seek for a characteristic scale of each feature point. This procedure has
been established mainly by the work of Lindeberg [Lindeberg, 1998] who first proposed to use
extrema in the Laplacian of Gaussian (LoG) function computed over various image scales as
interest point locations. Lowe [Lowe, 2004] proposes to use the Difference-of-Gaussians (DoG)
operator as a more efficient approximation of LoG. The 3D scale space (2D image space plus
scale) is then scanned for local maxima, followed by subpixel refinement using a quadratic
fit and rejection of unstable points in low contrast areas or near edges. Another examples for
interest point detectors with scale selection are Harris-Laplace [Mikolajczyk and Schmid, 2004],
SURF [Bay et al., 2008], MSER [Matas et al., 2004], principle curvature [Deng et al., 2007] and
SIFER [Mainali et al., 2013].

The problem of feature extraction with scale selection is that stable scales can be detected
only for a sparse set of image points, typically on average on around 0.05-0.5% of all image
pixels [Aanæs et al., 2012]. Furthermore, scale selection becomes more and more unreliable with
increasing scale differences. For instance, experiments in [Mikolajczyk, 2002] reveal that for a
scale change factor of 4.4 only 13.3% of the scales selected by LoG are correct. To overcome
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these problems, local feature extraction methods have been proposed that are inherently scale-
invariant without requiring to normalize image patches by the selected scale [Hassner et al.,
2012,Kokkinos and Yuille, 2008], but apparently at the price of decreased discriminative power
due to the discriminative power/invariance trade-off [Varma and Ray, 2007].

The problem of interest point detection with scale selection is demonstrated in Figure 2.1 for
comparing images of ancient coins with unknown scales. Two coin images of the same class with
a scale difference of 2 are compared by extracting DoG interest points [Lowe, 2004]. A manual
inspection reveals that only ∼ 32% of the interest points in Figure 2.1b have a corresponding
interest point in Figure 2.1a at the same coin location and correct scale difference (green circles),
due to the image structure and scale changes between the two images. Moreover, the repeatable
interest points span only over certain subareas of the coin which means that the other areas are
excluded from comparison.

(a) (b)

Figure 2.1: Detected interest points with selected scale (radius of circles) for two coin images
of the same class. The coin image (b) has half the scale of the coin image (a) and interest points
with a correspondence in (a) are marked in green, while interest points without a correspondence
are marked in red.

To conclude, scale differences have to be mastered for application scenarios like coin recog-
nition, but scale selection has to be guaranteed to be robust. Therefore, instead of selecting scales
on a local level, in this thesis scale invariance is achieved on a global level by segmenting the
coin area and normalizing the images to the same scale (see Chapter 3). As an additional benefit,
the segmented coin area provides the region of interest for the further classification process and
thus an elegant way to ignore background clutter is given.
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(a) Flat, textured (b) Non-flat, textured (c) Textureless (d) Textureless, shiny

Figure 2.2: Four different kinds of objects from the ALOI dataset [Geusebroek et al., 2005].
The patches at the bottom show the appearance variations under illumination changes.

2.1.3 Illumination Invariance

When an object is imaged by a camera, its properties are communicated by the light that is
reflected from the object’s surface and projected onto the camera’s image plane. Hence, without
light no information about the object can be gathered, but the information is generally not unique,
as an object can produce a variety of different images. The reason is that the light spectrum
which is reflected from an object point depends on the light sources (i.e. the direction(s) and
intensity of light that hits the object point) and is not necessarily uniformly distributed for all
outgoing directions. Therefore, the level of difficulty to make feature extraction unaffected by
the lighting conditions is influenced by the possible amount of illumination change between
images, but also by the constitution of the objects. The influence of the object constitution is
demonstrated in Figure 2.2 by means of different kinds of objects which exhibit an increasing
degree of appearance variations under illumination changes (from left to right). Issues to be
considered are:

• Object Texturedness: Within this thesis, texture refers to changes in the reflectance prop-
erties of an object, i.e. changes in the intrinsic color (a.k.a. albedo) of an object. There-
fore, a textured object has a varying intrinsic color (Figure 2.2a-b), whereas a textureless
object has only one, constant intrinsic color (Figure 2.2c-d). Obviously, texture is a rich
source of information for recognition, e.g. considering the eyes and lips of a face or the
stripes of a tiger. It also has the advantage that it is robust with respect to illumination
changes. For instance, changing the illumination conditions for the flat, textured object

14



shown in Figure 2.2a induces only changes of the global brightness and does not affect the
discontinuities of the intrinsic object color. In contrast, a textureless object does not con-
tain texture information and thus information about its 3D shape becomes more important
for recognition.

• Object Depth Discontinuities: Similar to texture discontinuities (edges), object depth
discontinuities can be exploited for recognition but these object properties cannot be di-
rectly exploited in 2D images and have to be derived from the image appearance. This
is generally an ill-posed problem [Belhumeur et al., 1999] in unconstrained conditions
and the space of image appearance variation due to lighting changes is much wider than
for flat objects, as can be seen in Figure 2.2b-d. If the object is non-flat and textured as
the one shown in Figure 2.2b, also an increasing degree of appearance variation can be
spotted but texture information can still be extracted robustly and used for recognition. In
contrast, without texture additional effects of illumination change have to be considered:
for instance, opposite lighting directions change the polarity of image edges at depth dis-
continuities like the ridges of the cup in Figure 2.2c. Image contrast can also vary more
locally than for flat, textured objects due to shadows and the uneven intensity of light
reflected by the surface with varying surface normals.

• Object Material: The material an object is made of also influences its reflective prop-
erties which are usually described by the Bidirectional Reflectance Distribution Func-
tion (BRDF) [Koenderink, 2010]. The BRDF defines for any incoming ray of light the
light intensity that is emitted in a particular direction. Matte objects with a constant
BRDF are called Lambertian, an assumption which is often made in computer vision
to simplify the computational model [Basri and Jacobs, 2003,Wang et al., 2004,Drbohlav
and Chantler, 2005, Osadchy et al., 2007, Liu and Dai, 2009]. However, objects with a
shiny surface violate this assumption and exhibit an increased variability under illumina-
tion changes owing to local highlights, as shown in Figure 2.2d.

The examples in Figure 2.2 show that there are manifold ways how the appearance of an
object can change under illumination variations, which leads to the overall crux of illumination
invariance: it is generally impossible without any a-priori knowledge about the objects. This is
theoretically proven by [Chen et al., 2000], meaning there is no function that maps every image
to an illumination-invariant and object-specific representation. Even for Lambertian surfaces
and point light sources it is always possible for any two images to find an object that produces
these two images under different lighting directions, as shown by the example in Figure 2.3.
Therefore, the best one can do is to find representations that are more insensitive than the pure
gray values, that is representations whose likelihood of variation under illumination change is
minimal. [Chen et al., 2000] propose to use image gradient directions and show that a simple
recognition system that uses learned probabilities of gradient angle differences as dissimilarity
measure is effective on face recognition. In general, image gradient directions are not affected
by global brightness changes of the image as occurring on flat, textured objects like the one
shown in Figure 2.2a.
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Same Surface Same Albedo 

Figure 2.3: Illustration of the prove for the non-existence of illumination invariants [Chen et al.,
2000]. The two different images on the right are produced by the same 3D object illuminated
from two different directions (figure adapted from CVPR slides of Hansen F. Chen, 2000).

2.1.3.1 The Difference between Textured and Textureless Objects

Illumination insensitivity has been studied for various subfields of computer vision like face
recognition [Gopalan and Jacobs, 2010], stereo vision [Hirschmüller and Scharstein, 2009] or
object tracking [Gouiffès et al., 2012]. However, the research focuses on textured objects as
texture is a common property of objects and illumination-insensitive feature extraction is less
complex, as demonstrated in Figure 2.2. This goes back to the influential work of [Barrow
and Tenenbaum, 1978] who postulated to extract intrinsic images of a scene - object-specific
properties like depth, surface normals or color. More recently the term intrinsic images is widely
understood as the decomposition of an image I(x, y) into a reflectance image R(x, y) of texture
information and an image L(x, y) of the illumination effects [Weiss, 2001, Tappen et al., 2006,
Xie et al., 2011]. Therefore, the standard model used relates these quantities by

I(x, y) = R(x, y) · L(x, y) (2.1)

as illustrated in Figure 2.4a. We can see that the reflectance image bears the texture in-
formation without the illumination effects, hence an illumination-insensitive representation of
the scene has been achieved. However, such a decomposition is of limited use for textureless
objects like coins, statues, building facades etc. For instance, decomposing a coin image as
in Figure 2.4b gives a representation which might be useful to segment the image into coin
and background region, but does not help to recover the relief-like structures (i.e. object depth
discontinuities) on the coin which are mandatory for classification.

2.1.3.2 Textured Objects

As the vast majority of papers dealing with illumination insensitivity follow the intrinsic image
model, they attempt to extract the reflectance component from the image. A reasonable way to
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(a)

(b)

Figure 2.4: (a) Illustration of intrinsic image decomposition (figure taken from [Weiss, 2001]),
(b) theoretical solution of intrinsic image decomposition for an image of a textureless ancient
coin.

do so is to extract the high-frequency parts of the image as on Lambertian surfaces shading is
smooth and thus contained in the low-frequency parts of the image [Shashua and Riklin-Raviv,
2001]. Hence, the idea of self-quotient images is followed by various authors [Wang et al.,
2004,Chen et al., 2006,Arandjelovic, 2013] where the illumination is represented by a low-pass
filtered image version Î(x, y) and the intrinsic image can be obtained by simple image division:

R(x, y) =
I(x, y)

Î(x, y)
. (2.2)

In a similar direction lie frequency transformations which are used to obtain high-frequency
subbands for illumination-insensitive recognition, like wavelets [Garcia et al., 1998, Liu and
Dai, 2009], discrete cosine transform [Hafed and Levine, 2001] or Fourier transform [Lai et al.,
2001]. The image gradient directions proposed by [Chen et al., 2000] are also regularly used as
they are stable for the high-frequency parts of an image, e.g. for illumination-insensitive face
recognition [Zhang et al., 2009] or local image descriptors [Lowe, 2004, Chen et al., 2010, Tola
et al., 2010]. Some works deal with extracting color as reflectance information rather than texture
discontinuities. Such color invariants are proposed for local image descriptors [Van De Sande
et al., 2010], edge detection [Gevers and Stokman, 2003] or keypoint detection [Van De Weijer
et al., 2006].
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These general-purpose low-level methods have the advantage of simple closed-form com-
putation, but have a limited level of insensitivity due to their universal nature. Hence, methods
making use of different kinds of a-priori information about the objects of interest or the scene
conditions have been introduced to provide a more powerful image representation for specific
domains. [Drbohlav and Chantler, 2005] exploit the known illumination direction of two images
to obtain a comparable image representation by means of derivative filters oriented in recipro-
cal directions. The ambiguity of illumination effects can also be dissolved by using 3D models
of the objects to be recognized. [Basri and Jacobs, 2003] show that the manifold of image ap-
pearance of Lambertian objects lies in a 9-parameter space of spherical harmonics which can
be derived from a 3D model. This model-based approach is also extended to handle specu-
lar objects [Shirdhonkar and Jacobs, 2005, Netz and Osadchy, 2011]. Besides 3D models, the
variability of image appearance can also be learned from training images taken under different
illumination conditions [Georghiades et al., 2001,Leung and Malik, 2001,Cula and Dana, 2004],
but the real world practicability is equally limited due to this requirement.

2.1.3.3 Textureless Objects

When it comes to textureless objects there is actually little research on efficient feature extrac-
tion in general scenarios without using any a-priori available information like material BRDF,
illumination conditions, object shape in form of 3D models or illumination-induced object vari-
ability in form of training images. As the main source of information on such objects is the 3D
shape (depth), shape from shading techniques [Horn, 1989] can be considered which attempt to
derive depth information from the shading pattern on the objects. However, the shape from shad-
ing problem is generally ill-posed even for controlled imaging conditions, as the higher number
of variables than measurements precludes a unique solution [Prados and Faugeras, 2006]. Still,
different constraints like smoothness of the result can be used to obtain reasonable results, but a
high degree of computational effort is needed and the robustness of the result is limited for ar-
bitrary, unknown conditions (e.g. unknown lighting direction, unknown BRDF, unknown shape
priors etc.) [Forsyth, 2011].

[Osadchy et al., 2007] investigate low-level illumination insensitive feature extraction in a
general sense. They do not explicitly differentiate between textured and textureless objects, but
rather between non-isotropic and isotropic surfaces. Non-isotropic surfaces are surfaces whose
characteristics change in one direction and less in another, i.e. surfaces with discontinuities in
depth or albedo. In contrast, isotropic surfaces are smooth in both directions, i.e. textureless and
with slow variation in depth. Isotropic surfaces are more challenging, because in this case the
gradients depend more on the illumination. The authors showed that the main problem of these
surfaces is their high correlation, hence a whitening filter [Jain, 1989] helps to decorrelate the
image intensities and makes the result more discriminative. As an approximation for whitening,
the LoG filter is suggested. To handle both isotropic and non-isotropic surface types the orien-
tational information of image gradients and the whitening effects of the LoG can be effectively
combined by a Jet of Oriented Second Derivative filters (JOSD).

Although the problem of illumination-insensitive low-level feature extraction was studied
by [Chen et al., 2000] and [Osadchy et al., 2007], research on illumination invariance lacks a
comprehensive investigation and dataset of features for textureless objects. Both [Chen et al.,
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2000] and [Osadchy et al., 2007] do not explicitly separate the cases of textured and textureless
objects and thus cannot give a well-founded statement about the performance of the investigated
representations on textureless objects. It is also unclear how the performances of low-level fea-
tures are related to the material properties and the amount of illumination change. Therefore,
a comprehensive evaluation on synthetic datasets with varying degrees of specularity and tex-
turedness and on real images of textured and textureless objects is done in this thesis (see Section
4.1).

2.1.4 Invariance to Non-Rigid Deformations

Non-rigid deformations are spatial transformations between corresponding image features that
cannot be described by a single global transformation. This problem has to be tackled whenever
the shape of an object is not fixed and changes over time (e.g. a human, a tiger,...) or the class of
objects exhibits non-rigid deformations (e.g. an ancient coin class, a person’s signature, object
categories like chair etc.). Therefore, it is of interest in areas like image registration [Crum et al.,
2004], object tracking [Comaniciu et al., 2000] or object detection [Ferrari et al., 2010].

The simplest way to handle non-rigid deformations is to completely neglect the location of
local parts in an image. The well-known Bag Of Visual Words (BOVW) model [Csurka et al.,
2004] uses only the local image descriptions for recognition and is thus invariant to non-rigid
deformations as long as the keypoint detector and descriptor are not affected. However, al-
though the model is able to deal with large deformations between images, it is too general for
a fine-grained classification and needs to be equipped with additional constraints considering
the spatial locations of local parts. If local deformations can be considered to be small, spatial
pooling can be applied to summarize the local descriptions over defined image regions, an oper-
ation that happens also in the visual cortex [Hubel and Wiesel, 1962]. Spatial pooling schemes
proposed in the past are for instance spatial pyramids [Lazebnik et al., 2006] or object-centric
spatial pooling [Russakovsky et al., 2012].

When harder constraints for object deformation are needed to obtain a more distinctive sim-
ilarity metric, as for instance for human pose recognition [Moeslund et al., 2006], an object can
be regarded as a deformed version of a template. This way of modeling non-rigid deformations
goes back to the definition of pictorial structures [Fischler and Elschlager, 1973, Felzenszwalb
and Huttenlocher, 2005], where “parts” represent local visual properties and “springs” encode
spatial relations. Matching the model to an image involves the joint optimization of local ap-
pearance similarity as well as the compatibility of the local parts with the spatial model. The
object template can also be a statistical model where the likelihoods of landmark deformations
are learned from training images, as done by active shape models [Cootes et al., 1995] or their
generalization - active appearance models [Cootes et al., 2001] - which additionally model statis-
tics of appearance. These methods have in common that they search for the model parameters
that provide the best description of the given data by solving an optimization problem. A sim-
ilar idea is followed in the traditional graph matching problem [Conte et al., 2004]: the feature
points of an image are modeled as a graph and a cost function involving first-order (local feature
similarity) and higher-order (regularization) constraints is used to match graphs between images.
The output of this cost function can be used as a dissimilarity metric which is discussed in detail
in Section 2.4.
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For image comparison non-rigid deformations happen to be an additional challenge as recog-
nition schemes using a global transformation model like the RANdom SAmple Consensus
(RANSAC) [Fischler and Bolles, 1981] are not applicable. Nonetheless, they occur frequently
in computer vision applications. For instance, in ancient coin classification intra-class coin de-
formations originating from the non-industrial manufacturing of coins need to be mastered (see
Section 2.5). An appropriate way of handling non-rigid deformations in visual object compari-
son is proposed in Section 5.2.

2.1.5 Invariance to Incomplete Image Data

Incomplete image data in the context of recognition and image similarity means that certain parts
of the object/image are not visible. Obviously, a general invariant for missing image data does
not exist as in the worst case the whole object or the essential image parts are missing. Hence,
methods are aiming at being insensitive to missing image data either by explicitly recovering it
or by using image representations that are inherently robust to missing image data.

Recovering the missing image regions involves to find the most likely completion of the
image data given its context. Image inpainting methods [Bertalmio et al., 2000] estimate the
content of lost or deteriorated regions by means of the remaining image content, either locally
by continuing the image structures [Tschumperlé and Deriche, 2003], non-locally by filling the
regions with fitting exemplars of the whole image area [Criminisi et al., 2004] or by combina-
tions thereof [Arias et al., 2011]. Context information outside the given image has also been
leveraged, e.g. nearby video frames [Ling et al., 2011], multiple images of the same physical
scene [Agarwala et al., 2004] or large (> 1 million) image collections [Hays and Efros, 2008].

However, for the purpose of image-to-image similarity methods that recover the missing
image data are barely helpful, as it is difficult to automatically identify the image regions which
demand completion. Therefore, researchers tend to use insensitive image representations instead
of explicitly detecting the missing parts. Schmid and Mohr’s seminal work [Schmid and Mohr,
1997] stimulated the use of local features for recognition with partial visibility: in contrast to a
global image representation, which suffers proportionally from the missing image regions, local
representations are more stable as all features in the visible image regions remain unaffected.
This is another motivation for using local image representations, in addition to the ones already
given in Sections 2.1.1 and 2.1.4.

2.2 Image Segmentation

Image segmentation refers to the process of dividing an image into disjoint regions that belong
together based on color, texture or semantic properties [Szeliski, 2010]. According to this broad
definition, this computer vision field has a wide area of applications with different levels of
complexity. Typically, image segmentation is a preprocessing step for image analysis methods,
for example the binarization of document scans for optical character recognition [Gatos et al.,
2006], the segmentation of melanoma for automated diagnosis [Celebi et al., 2007] ore more
generally the oversegmentation of an image by means of so-called superpixels [Ren and Malik,
2003] to ease further processing.
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(a) Thresholding: binarization of document scans
(taken from [Shi et al., 2012])

(b) Edge-Based Segmentation:
lip tracking (taken from [Eveno
et al., 2004])

(c) Region-Based Segmentation: color segmen-
tation by mean-shift (taken from [Comaniciu and
Meer, 2002])

(d) Graph-Based Segmentation: color segmen-
tation by graph-partitioning (taken from [Felzen-
szwalb and Huttenlocher, 2004])

(e) Semantic Segmentation: semantic pixel labelling using harmony potentials (taken from
[Boix et al., 2012])

Figure 2.5: Examples of applications and techniques in image segmentation.

Segmentation methods can be classified according to the scope of data they rely on: unsu-
pervised methods use only the given input image for segmentation, whereas supervised methods
include a-priori knowledge in form of segmented training images into the segmentation process.
From a methodological perspective, the categorization listed below and exemplified in Figure 2.5
can be made.

Thresholding: Thresholding methods belong to the earliest techniques for image segmen-
tation [Otsu, 1975] and automatically define a range of brightness values (the thresholds) in
the original image. The pixels within this range are selected as belonging to the foreground,
whereas the remaining pixels are rejected to the background. The basic assumption of thresh-
olding methods is that the gray levels of the object are significantly different from the gray values
of the background. Thresholding techniques can either work globally, where a single threshold
is applied to the whole image, or locally, where the image is divided into regions and each re-
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gion has its own threshold. Besides that, thresholding techniques differ in the way of finding
optimal threshold values for a given image, e.g. by the use of histogram information [Glasbey,
1993, Dong et al., 2008], entropy of gray level distribution [Shanbhag, 1994] or shape informa-
tion [Shi et al., 2012]. A survey is given in [Sezgin and Sankur, 2004].

Edge-Based Segmentation: This category of segmentation methods partitions an image based
on abrupt changes in the intensity, i.e. edges found in an image by edge detectors [Heath et al.,
1998]. For the segmentation of parameterizable shapes like circles the Hough transform [Hough,
1962] can be applied. In edge relaxation a global relaxation process based on edge properties is
used to form continuous boundaries of objects [Duncan and Birkhölzer, 1992]. Border tracing
methods are used to follow the object borders from known starting points [Zhang et al., 2000].
Active contours [Blake and Isard, 1998] like snakes or level sets are boundary detectors which
iteratively move towards their final solution, with applications like lip tracking [Eveno et al.,
2004] or scene segmentation [Adam et al., 2009].

Region-Based Segmentation: Region-based segmentation methods partition or group regions
according to common image properties, like color or texture. Region growing techniques start
with seed points that are iteratively increased based on defined region homogeneity criteria
[Adams and Bischof, 1994, Mičušík and Hanbury, 2006]. Split-and-Merge [Duarte et al., 2006,
Ning et al., 2010] combines two operations to segment an image: splitting, where the image is
divided into a set of regions which are coherent within themselves, and merging, where adjacent
split regions are merged together based on a similarity criterion. In the watershed segmentation
method [Vincent and Soille, 1991] the image is considered as a topographic surface. According
to that analogy, the watershed transform finds “catchment basins” and “watershed ridge lines”
where the catchment basins theoretically correspond to the homogeneous gray level regions of
this image. Clustering-based methods such as mean shift [Comaniciu and Meer, 2002] transform
the image pixels into a feature space (e.g., color and position) to find clusters of the image data.

Graph-Based Segmentation: Graph-based methods model the image as graph where the pix-
els are connected by the graph edges. Every pixel and edge has a cost representing some mea-
sure of confidence that the corresponding pixels belong to the same segment. The segmentation
goal is then to find an optimal partitioning of the graph. Graph partitioning methods exploited
for image segmentation include graph-cuts [Shi and Malik, 2000, Peng et al., 2011], shortest
path [Falcão et al., 2004], minimum spanning trees [Felzenszwalb and Huttenlocher, 2004] and
random walks [Grady, 2006, Collins et al., 2012].

Semantic Segmentation: Semantic segmentation aims not at the segmentation of image re-
gions for any further processing but rather at a holistic recognition and segmentation process [Ar-
beláez et al., 2012]. Hence, semantic labels are inferred for each image pixel by joining top-
down object knowledge and bottom-up segmentation cues. This line of research has been ini-
tialized by the works of [Kumar et al., 2005] and [Borenstein and Ullman, 2008]. More recent
methods model the problem as a conditional random field [Boix et al., 2012], refine rectangular
object detections [Brox et al., 2011] or classify region proposals [Arbeláez et al., 2012]. The
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accuracies (intersection vs. union score [Everingham et al., 2010]) of these methods are in the
order of 50 % for a 20-category-problem1.

The short review of segmentation methods given above shows the variety of applications
and complexity of the problem, but also the historical evolution of image segmentation, from
the simple thresholding into binary regions to holistic semantic segmentation. Anyhow, which
method should be chosen for a given problem should be answered in application-specific man-
ner regarding issues like robustness, accuracy and computational time. Consequently, there is
no single state-of-the-art segmentation algorithm which produces the best results for every ap-
plication.

2.3 Local Image Descriptors

It has been argued in the previous sections that by relying on local parts of the image various
aspects of invariance can be handled in a straight-forward manner. However, this requires to use
local features which are able to describe the local image appearance in such a way that both a
high degree of distinctiveness and insensitivity to noise and other imaging conditions is given.
The success of local feature-based methods has been mainly initialized and supported by the
introduction of Lowe’s Scale Invariant Feature Transform (SIFT) descriptor [Lowe, 1999] which
can be regarded as one of the most influential works in computer vision2. Since its publication
in 1999, SIFT influenced the development of many other local image descriptor, as we see
later in this section. Nevertheless, SIFT shows an outstanding performance in comprehensive
experimental evaluation papers [Mikolajczyk and Schmid, 2005,Moreels and Perona, 2007] and
can still be seen as a powerful general-purpose descriptor which is constantly used in current
state-of-the-art work3.

The computation of image descriptors typically follows the workflow depicted in Figure 2.6.
The input is an image patch whose location has been obtained by dense feature sampling or
sparse keypoint detection (see Section 2.4) and eventually normalized by the detected scale,
orientation or affine transformation [Mikolajczyk and Schmid, 2004]. The input image is first
transformed to a more appropriate feature representation where instead of the raw gray values a
stack of feature values is computed. For instance, SIFT uses the gradient direction of each image
pixel and determines its bilinearly weighted membership to eight equally spaced directions.
Next, the descriptor is enriched with spatial information by spatial encoding, e.g. by pooling the
features within each cell arranged in a 4× 4 grid as in SIFT. The output of this step is a feature
vector of numerical values which is finally subject to a set of postprocessing steps. For instance,
in SIFT values above a certain threshold are clipped and the feature vector is normalized to unit
length to account for brightness changes of the image patch. The final outcome of descriptor

1see the results of the PASCAL VOC 2012 segmentation challenge (http://pascallin.ecs.soton.
ac.uk/challenges/VOC/voc2012/results/index.html).

2according to http://academic.research.microsoft.com/RankList?entitytype=
1&topdomainid=2&subdomainid=11&last=0 (accessed on June 8th, 2014), SIFT is the mostly cited
computer vision publication of all time with 2229 citations of the original paper [Lowe, 1999] and 7806 citations of
the extended journal version [Lowe, 2004].

3see for instance recent papers at the 2014 IEEE Conference on Computer Vision and Pattern Recognition such
as [Jegou and Zisserman, 2014, Paulin et al., 2014, Trulls et al., 2014].
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Figure 2.6: The image descriptor construction pipeline.

computation is a feature vector which describes a point in the feature space and the similarity of
descriptors is defined by their proximity in this space.

A chronological overview of local image descriptors is given in Table 2.1. Typically, these
descriptors are hand-crafted, except for the descriptors BESTDAISY [Brown et al., 2011] and
PR [Simonyan et al., 2012] which are the result of research aiming to automatically learn optimal
parameters and building blocks of local image descriptors.

2.3.1 Low-Level Per-Pixel Feature Extraction

The first step of descriptor construction is to transform the pixel intensities to a more robust
representation of the image structure. Image gradient directions are a popular low-level fea-
ture which are leveraged by means of histogram binning to describe their distribution in the
image patch, e.g. used by SIFT, DAISY, WLD, GLOH, or MROGH. Another type of low-level
features are filter bank responses, e.g. oriented edge filters (Geometric Blur), Haar wavelets
(SURF), higher-order derivatives (JBLD) or steerable filters (BESTDAISY). Encoding the local
image structures by means of a set of basic patterns has also been proposed, e.g. local binary
patterns (CS-LBP, MRRID), local ternary patterns (HRI-CSLTP) or local intensity order patterns
(LIOP). These patterns are usually detected on a smaller scale than the overall image patch and
the distribution of patterns is encoded as local image descriptor. An ordinal labeling of image
intensities is used in the OSID descriptor and the HRI-part of the HRI-CSLTP descriptor.

2.3.2 Spatial Encoding

The role of the spatial encoding stage is to describe the spatial configuration of the per-pixel
features. For instance, instead of summarizing all features of the overall image patch one can
downscale this process to specific subregions in the image patch. This operation is called spatial
pooling as the features of one spatial subregion are pooled together, for instance by summation
or the max-operation. Similar to the decision of which low-level features are used, the choice of
the pooling scheme is application-dependent, as the goal is to find an optimal trade-off between a
maximal descriptor distinctiveness and a maximal insensitivity to variations of the spatial distri-
bution caused by inaccurate keypoint detection, varying viewpoints and non-rigid deformations.
In the past, several pooling schemes have been proposed of which the most popular ones are
depicted in Figure 2.7. For increased robustness, spatial pooling includes also a weighting of
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Reference Descriptor Low-Level Fea-
ture

Spatial Encoding Feature Vector Post-
processing

[Lowe, 1999] SIFT Binned gradient direc-
tions

Spatial pooling (4 × 4 squared
grid cells)

Clipping and L2 normal-
ization

[Berg and
Malik, 2001]

Geometric
Blur

Oriented edge re-
sponses

Circularly arranged sample
points with increasing amount of
smoothing

-

[Belongie et al.,
2002]

Shape
Context

Edge points Spatial pooling (log-polar grid) -

[Lazebnik et al.,
2003]

Spin
Image

Binned image intensi-
ties

Spatial pooling (concentric rings) -

[Ke and
Sukthankar,
2004]

PCA-SIFT Gradient vectors - Dimensionality reduction
by Principal Component
Analysis (PCA)

[Mikolajczyk
and Schmid,
2005]

GLOH Binned gradient direc-
tions

Spatial pooling (log-polar grid) Dimensionality reduction
by PCA

[Bay et al.,
2006]

SURF Haar wavelet re-
sponses

Spatial pooling (4 × 4 squared
grid cells)

L2 normalization

[Shechtman and
Irani, 2007]

SSDESC L*a*b* colors Similarity to center pixel on log-
polar grid

Transformation of values
to range [0, 1]

[Tola et al.,
2008]

DAISY Binned gradient direc-
tions

Spatial pooling (circularly ar-
ranged cells)

L2 normalization

[Kobayashi and
Otsu, 2008]

GLAC Binned gradient direc-
tions

Correlation of neighboring his-
tograms, spatial pooling (4 × 5
squared grid cells)

Clipping and L2 normal-
ization

[Chen et al.,
2008]

WLD Binned differen-
tial excitations and
gradient directions

- 2D to 1D histogram trans-
formation

[Heikkilä et al.,
2009]

CS-LBP Local Binary Pattern Spatial pooling (4 × 4 squared
grid cells)

Clipping and L2 normal-
ization

[Tang et al.,
2009]

OSID Ordinal labeling Spatial pooling (16 pie cells) Clipping and L2 normal-
ization

[Gupta et al.,
2010]

HRI-
CSLTP

Ordinal labeling and
local ternary patterns

Spatial pooling (4 × 4 squared
grid cells)

-

[Calonder et al.,
2010]

BRIEF Original image inten-
sities

Pairwise intensity comparisons
between random pixel locations

-

[Brown et al.,
2011]

BEST-
DAISY

Steerable filter re-
sponses

Spatial pooling (circularly ar-
ranged cells)

Clipping and L2 normal-
ization

[Leutenegger
et al., 2011]

BRISK Gaussian smoothed
image intensities

Pairwise intensity comparisons
between circularly arranged pixel
locations

-

[Wang et al.,
2011]

LIOP Local intensity order
patterns

Spatial pooling (intensity order
regions)

-

[Alahi et al.,
2012]

FREAK Gaussian smoothed
image intensities

Pairwise intensity comparisons on
retinal sampling grid

-

[Fan et al.,
2012]

MROGH Binned gradient direc-
tions

Spatial pooling (intensity order
regions)

L2 normalization

[Fan et al.,
2012]

MRRID Local Binary Pattern Spatial pooling (intensity order
regions)

L2 normalization

[Larsen et al.,
2012]

JBLD Higher-order deriva-
tive filter responses

Spatial sampling (n × n squared
grid cells)

Whitening and L2 normal-
ization

[Simonyan
et al., 2012]

PR Binned gradient direc-
tions

Spatial pooling (circularly ar-
ranged cells)

Dimensionality reduction
by linear projection

[Seidenari
et al., 2014]

P-SIFT Binned gradient direc-
tions

Spatial pooling (multiple layers of
squared grid cells with increasing
cell sizes)

Clipping and L2 normal-
ization

Table 2.1: Chronological overview of image descriptors proposed in literature.
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features where the contribution of a feature near the region center is higher than the contribution
of a feature further away from the center.

(a) Regular grid with squared cells
and bilinear weighting.

(b) Log-polar grid with bilinear ra-
dial and angular weighting.

(c) Circularly arranged cells with
Gaussian weighting.

Figure 2.7: Examples of pooling schemes (adapted from [Brown et al., 2011]). Green points
depict the centers of the spatial cells and weighting is illustrated in red.

The squared 4×4 grid used in SIFT (Figure 2.7a) is adopted by other descriptors like SURF,
OSID, GLAC, CSLBP, and HRI-CSLTP. Shape Context and GLOH use a log-polar grid for
spatial pooling (Figure 2.7b). Similarly, the DAISY descriptor uses circular cells of varying size
arranged on concentric rings for spatial pooling (Figure 2.7c) and [Brown et al., 2011] propose a
learning scheme to obtain optimal configurations of such cell arrangements. MROGH, MRRID
and LIOP do not use fixed spatial cells but define cell locations by tiling the image patch based on
pixel-intensity orders. This has the advantage that the resulting descriptor is inherently invariant
to image rotations.

Another way of encoding spatial information is to describe the spatial correlation between
defined image regions. Shechtman and Irani [Shechtman and Irani, 2007] pioneered this idea
with the Self-Similarity DESCriptor (SSDESC) in order to represent the structure of an image
patch independently from its color or texture. For this purpose, the color similarities between the
center region and the surrounding regions located on a log-polar grid are measured. The GLAC
descriptor also exploits correlation but uses gradient directions instead of color values whose
local correlation patterns are measured and histogrammed. The concept of spatial correlation
is also used by binary descriptors such as BRIEF, BRISK or FREAK which describe an image
patch by comparing its image intensities at specified locations. Each comparison can be quan-
tized to 1 bit which enables a compact description for scenarios with limited hardware resources
(e.g. a mobile phone), as binary descriptors can be computed and matched faster and need less
storage than traditional descriptors [Calonder et al., 2010].

2.3.3 Feature Vector Postprocessing

Postprocessing steps are applied to the feature vector in order to increase its robustness and/or
decrease its dimensionality. Histogram-based descriptors, which compute a joint 2D histogram
of feature values and their locations, typically weight the histogram values by their saliency in
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the image patch, e.g. gradient directions are weighted by the gradient magnitude. In order to
reduce the influence of relatively high saliency values and to be invariant to contrast changes
the feature vector values above a certain threshold are clipped and the final feature vector is
normalized to unit length (e.g. SIFT, GLAC, OSID, BESTDAISY). Dimensionality reduction
techniques are applied to reduce the effects of the “curse of dimensionality” [Aggarwal et al.,
2001] and to save storage space, e.g. by PCA [Ke and Sukthankar, 2004], Linear Discriminant
Analysis (LDA) [Brown et al., 2011] or learned linear projections (PR) [Simonyan et al., 2012].

2.3.4 Illumination Insensitivity of Local Descriptors

Image descriptors are developed based on specific requirements, e.g. MROGH and MRRID
were proposed for improved rotation insensitivity and binary descriptors for low computational
effort. However, when it comes to illumination insensitivity of local image descriptors, there
is a lack of research both on the methodological and the evaluation level. The Oxford dataset
presented in [Mikolajczyk and Schmid, 2005] covers illumination insensitivity by means of 6
images of one single scene taken with different camera apertures (see Figure 2.8a), and this eval-
uation image data is also used by others to test the illumination insensitivity of their descriptors
(e.g. BRIEF, BRISK, FREAK, LIOP, MROGH, SURF, CSLBP, OSID, HRI-CSLTP). However,
changing the camera aperture leads only to global brightness changes in the image and more
complex local effects on 3D objects as shown in Figure 2.2b-d are not considered. Some evalua-
tions are additionally conducted on more image data (LIOP, MROGH, MRRID, CSLBP, OSID),
but still only global brightness changes are simulated. A more comprehensive evaluation of il-
lumination insensitivity is given in [Moreels and Perona, 2007]. Their study uses images with
three different lighting conditions (see Figure 2.8b) from 100 objects. The experiments couple
the descriptor performance evaluation with the interest point detection step and reveal that the
combination of Harris-affine detector and SIFT descriptor performs best. However, the test data
and evaluation protocol does not allow to restrict the experiments of descriptor performance
on textured/textureless objects. Moreover, the study is from 2007 and modern descriptors are
therefore not included.

Due to the fixation of treating illumination insensitivity as a contrast normalization prob-
lem induced by the commonly used Oxford dataset [Mikolajczyk and Schmid, 2005], current
descriptors are generally only invariant to illumination changes on flat, textured objects (see
Figure 2.2). Hence, they assume that illumination changes have only a global linear effect on
the intensity values which can be compensated by feature vector normalization (SIFT, SURF,
DAISY, GLAC, CS-LBP, BESTDAISY, JBLD, P-SIFT). The descriptors OSID, LIOP, MRRID
and HRI-CSLTP use the relative order of pixel intensities to construct descriptors invariant to
the wider class of generally monotonic intensity changes, but still complex illumination changes
on 3D objects are not handled.

2.4 Correspondence-Based Image Similarity

Comparing images by means of sets of local features has benefits in terms of invariance: trans-
lation invariance is inherently achieved and rotation-, scale- and illumination-insensitivity can
be obtained by using appropriate local detectors and descriptors. Moreover, the locality pro-
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(a) Oxford dataset [Mikolajczyk and Schmid, 2005]: 6 shots with different camera apertures.

(b) 3D object dataset [Moreels and Perona, 2007]: 3 shots with different illumination
conditions for a given camera angle.

Figure 2.8: Previously used datasets for the evaluation of illumination insensitivity of local
image descriptors.

vides robustness to missing image data and background clutter, as only the local features in the
disturbing image regions are affected.

Therefore, modern approaches for complex real world recognition scenarios with a high
degree of variability (e.g. scene classification, object recognition) are commonly based on local
features4. However, describing an image by a set of features (i.e. a set of fixed-size vectors)
hinders direct image comparison, as images produce a variable number of unordered features.
Hence, establishing correspondences is the core step for revealing similarities between images:
if many parts in an image can be associated with similar-looking parts in another image, they
are likely to show similar content.

The output of local feature extraction are image coordinates pi describing the spatial location
of the features as well as a vector di for each feature location describing its local appearance. The
spatial locations are either determined by interest point detectors such as DoG [Lowe, 2004] or
Harris-Laplace [Mikolajczyk and Schmid, 2004] to identify the most salient regions in an image

4see for instance recent papers on recognition presented at the 2014 IEEE Conference on Computer Vision and
Pattern Recognition such as [Jegou and Zisserman, 2014, Lai et al., 2014, Xie et al., 2014, Yao et al., 2014].
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or by taking regular samples (this is often referred to dense vs. sparse sampling, as the former
typically produces fewer interest points and features [Nowak et al., 2006]). For determining the
correspondences and estimating image similarities the information about feature location can
either be ignored or used to guide this process by means of geometric constraints.

2.4.1 Without Geometric Constraints

Ignoring the locations and geometric dependencies of the features has the advantage that ge-
ometric deformations between images have not to be taken into account for comparison and
a wide range of geometric invariances is covered. Hence, the remaining questions are how to
detect the corresponding features and how can this information be used to derive an image sim-
ilarity measure? As the features themselves have a fixed size they can easily be compared by
vector distance metrics such as L2 [Lowe, 2004] or χ2 [Belongie et al., 2002]. More sophis-
ticated metrics for non-aligned vector values such as the Earth Mover’s Distance [Rabin et al.,
2008, Pele and Werman, 2009] have also been proposed.

Given such a metric, correspondences can be established, either in a one-to-many scheme,
where a feature can have a correspondence with multiple other features, or in a one-to-one
scheme, where each feature is allowed only to have a correspondence with one feature from
the other set. The simplest one-to-many matching scheme is to assign each feature to its near-
est neighbor in the other feature set. However, [Lowe, 2004] claims that this is a error-prone
procedure when similar features are present in the two images and suggests to accept a corre-
spondence only if the distance ratio from the nearest to the second nearest neighbor is under
a given threshold. The Hungarian algorithm [Kuhn, 1955] used in [Kumar et al., 2001, Be-
longie et al., 2002] finds the optimal one-to-one correspondences between feature sets but has
the disadvantage that outliers are not rejected and interfere with the matching process. Similar
approaches with more robustness to outliers are proposed by [Scott and Longuet-Higgins, 1991]
and [Gold and Rangarajan, 1996]. The one-to-one symmetric search proposed by [Zhao et al.,
2007] accepts correspondences only if a feature in the first image is the nearest neighbor of a
feature in the second image and vice versa.

Correspondences of local features are also used as similarity measures in the form of kernel
functions to make use of kernel-based classifiers like the Support Vector Machine (SVM) [Cortes
and Vapnik, 1995]. The match kernel [Wallraven et al., 2003] uses the average vector distance
of the optimal one-to-many correspondences whereas the pyramid match kernel [Grauman and
Darrell, 2005] uses an approximation of the sum of vector distances of the optimal one-to-one
correspondences.

A prominently used methodology to describe and compare images by local features with-
out considering their geometric arrangement is the BOVW model [Csurka et al., 2004] which
has shown to achieve state of the art performance on benchmarks like the PASCAL Visual Ob-
ject Classes Challenge 20125 [Dong et al., 2013] or the ImageCLEF 2013 Photo Annotation
Task6 [Grana et al., 2013]. In this approach, correspondences are not established between images
but between images and a vocabulary of codewords for sparse feature coding: vector distance

5http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/ (accessed on June 8th,
2014).

6http://www.imageclef.org/2013/photo (accessed on June 8th, 2014).
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metrics between local features of the image and codewords are computed to obtain a coding vec-
tor for each local feature which indicates the active codewords. Statistics such as the histogram
of activated codewords are then used as the final image representation and can be used for image
comparison. The power of this methodology lies in the compact description of images by means
of the most relevant image structures and its invariance to geometric variations, as feature loca-
tions are not considered. However, neglecting spatial information also limits the discriminative
power of the model as the appearance of local parts alone might be ambiguous and does not give
enough information about the object. Therefore, correspondence-based image similarity can be
enriched with the spatial information about the extracted local features, as discussed in the next
section.

2.4.2 With Geometric Constraints

Adding geometric constraints helps to identify false correspondences and thus to make the sim-
ilarity measure more reliable. A possible constraint is to assume a rough alignment of image
structures and to compare features only for the same image region. In the context of BOVW
this concept is known as spatial pooling [Boureau et al., 2010] and shows to improve the recog-
nition rate of BOVW for scene categories [Lazebnik et al., 2006, Jia et al., 2012], object cate-
gories [Zhou et al., 2010b] or characters [Jia et al., 2012]. Other researchers pursue a more local
encoding of spatial information by means of co-occurrence statistics of visual words [Agarwal
and Triggs, 2006, Savarese et al., 2006, Arandjelović, 2010].

Geometric constraints can also be applied to feature matching as a postprocessing step. The
task of this geometric verification step is to check the geometric consistency of the initial cor-
respondences which are determined from feature vector distances as described in Section 2.4.1.
A possible verification constraint is that the correspondences follow a common global geomet-
ric transformation. The RANdom SAmple Consensus (RANSAC) [Fischler and Bolles, 1981]
scheme repeatedly takes random subselections of the feature correspondences and checks how
many correspondences support the global transformation estimated from the chosen samples.
The total number of these so-called inliers serves as a measure of trust if the estimated image
transformation represents the true transformation between the two images. As the false matches
(outliers) can be assumed to be randomly distributed and do not follow a common global trans-
formation, they are effectively ruled out. RANSAC or weaker geometric verification constraints
are widely used in the literature, e.g. by [Sivic and Zisserman, 2003, Lowe, 2004, Philbin et al.,
2007, Jegou et al., 2008, Dreuw et al., 2009, Wu et al., 2009, Zhou et al., 2010a]. This shows
that geometric verification can be a strong tool in correspondence-based image similarity, and
even simple similarity measures like the number of matched features after geometric verification
have been effectively used for tasks like face recognition [Dreuw et al., 2009] or duplicate image
search [Zhou et al., 2010a].

However, geometric verification cannot be easily adapted to non-rigid deformations, as ev-
ery corresponding feature pair is defined by its own local transformation and not by a common
global transformation. Hence, for non-rigid deformations only relative geometric constraints
can be used, such as that two neighboring points will likely have neighboring correspondences
in the other images. In computer vision such a constraint is typically cast as a graph matching
problem [Conte et al., 2004], as illustrated in Figure 2.9: a cost function consisting of first-order
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(local feature similarity) and second-order (regularization) constraints is defined and solved by
numerical optimization [Velho et al., 2011]. Graph matching can be used to find correspon-
dences between images (e.g. the frames of a video stream), but the output of the cost function
has also been used in the past as similarity metric for image comparison as it can be assumed that
the costs of matching similar objects are higher than that of matching dissimilar objects [Berg
et al., 2005,Duchenne et al., 2011b,Jorstad et al., 2011,Liu et al., 2011,Kim et al., 2013]. These
methods show superior performance in recognition scenarios with non-rigid intra-class defor-
mations and low number of training samples like face recognition [Jorstad et al., 2011,Liu et al.,
2011]. The reason is that for low-number of training samples the variability is better handled
“online” during image matching than “offline” by machine learning.

The second-order constraints of graph matching have the task of regularizing the matching
process by assessing the pairwise costs of matching two features in an images connected by a
edge of the graph. For instance, the matching schemes proposed in [Berg et al., 2005,Leordeanu
and Hebert, 2005, Torresani et al., 2013] are regularized by a weighted sum of edge length
difference and edge angle difference. The dense matching schemes proposed by [Liu et al.,
2011, Kim et al., 2013] penalize differences in neighboring pixel correspondences as well as
global displacements. The model of [Duchenne et al., 2011b] enforces smoothness as well as
monotonicity of matched features.

Using such regularization constraints does not make the image comparison truly invariant
to non-rigid deformations, as for instance the distance between two features can vary in the two
images. However, under the assumption that the deformation is smooth a reasonable trade-off
between insensitivity to non-rigid deformations and discriminability can be achieved. For the
case where global deformations have to be taken into account also higher-order constraints can
be used. For instance, [Chertok and Keller, 2010,Duchenne et al., 2011a,Cheng et al., 2013] use
the inner angles of triples of feature points to obtain a regularization which is locally invariant

Image 1 Image 2 

Figure 2.9: Using graph matching to determine the correspondences between the local features
extracted from two images. The detected feature points represent the vertices of the graph con-
nected by edges. Matching two point pairs, e.g. p1 with q1 and p2 with q2, produces first-order
costs (difference of the feature descriptions, dotted red lines) as well as second-order regular-
ization costs (difference of the vectors ~u and ~v). Higher-order costs (e.g. the difference of
the matched triangles p1p2p3 and q1q2q3) can also be used. The overall matching costs are
minimized to obtain the optimal correspondences.
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to a similarity transformation, i.e. rotation and scale. Projective invariance can be achieved by
using the cross-ratios of points along the edges of the triples [Duchenne et al., 2011a].

2.5 Image-Based Coin Analysis

In this section an introduction to the field of image-based coin analysis is given. The practical
focus of the image comparison research conducted in this thesis lies on ancient coins and thus
an overview of ancient coinage and a definition of the most relevant numismatic terms is given
in Section 2.5.1. In Section 2.5.2 the specific challenges of ancient coin analysis compared to
present-day coins are specified. Finally, related work in the fields of coin image segmentation
(Section 2.5.3) and coin image classification (Section 2.5.4) is reviewed.

2.5.1 Introduction to Ancient Coinage

The production of coins has begun in the 7th century BC in Greece and has become the central
embodiment of money in this as well as other ancient cultures like the Roman empire, Byzan-
tium, India or China [Grierson, 1975]. Like their present-day counterparts, ancient coins have
a front and back side, which are referred to as obverse and reverse side [Jones, 1990]. The ap-
pearance of coins has been designed by artisans known as engravers who manufactured the dies
for the obverse and reverse coins sides. For coin production a metal flan was placed between the
two dies: the obverse die was held stationary on an anvil while the reverse die was placed over
the flan and struck with a hammer (see Figure 2.10).

Anvil 

Obverse die 

Reverse die 

Flan 

Hammer 

Figure 2.10: The striking of an ancient coin.

The basic elements of ancient coin design are type, inscription or legend, and accessory
symbols [Grierson, 1975], as depicted in Figure 2.11 for a Roman Republican coin. The type is
the central person, object or device represented on a coin. The legend is the writing placed upon
a coin in order to give information about the person(s) by whose authority the coin was minted,
to describe the shown type or to convey a general message. Accessory symbols are smaller
features like minting date or control marks. Anyhow, none of the basic elements are necessarily
present on an ancient coin.
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Type: 
Laureate 
head of 
Jupiter 

Accessory 
symbol: 
Control mark ●B 

Type: 
Jupiter in 
quadriga  

Legend:  
L●SCIP●ASIAG 

Figure 2.11: An example for the basic coin elements on the obverse (left) and reverse side
(right) of a Roman Republican Denarius.

(a) Cra 344/1 (b) Cra 344/3 (c) Cra 410/1

Figure 2.12: Three Roman Republican coin classes with Crawford number.

Within this thesis the coin image datasets contain Roman Republican coins, as there exists
a clear definition of coin classes based on Crawford’s reference book [Crawford, 1974]. Hence,
the task of automatic classification is to assign a coin to the correct number in this reference
book. A coin class is basically defined as a distinct combination of coin type and legend and
Crawford defined classes as well as subclasses, i.e. a complete reference is given by the class
number and subclass number separated by a ’/’. For instance, the coins shown in Figure 2.12a
and 2.12b are from the same general class (344) but from different subclasses (/1 and /3). The
obverse of both coins shows the head of the moneyer Lucius Titurius Sabinus while the reverse
of 344/1 shows the abduction of the Sabine women and the one of 344/3 the goddess Victory
in a 2-horse chariot. The coin in Figure 2.12c is from a different class and shows the diademed
head of Apollo on the obverse and a standing Hercules on the reverse. In total, Crawford de-
fined 550 main classes and over 1900 subclasses. The examples of Figure 2.12 demonstrate
the common design of Roman Republican coin types [Jones, 1990]: the obverse displays the
portrait of a historical or mythological person while the reverse depicts certain scenes or ob-
jects. Consequently, the reverse side shows more variation between classes and thus gives more
discriminative information for classification.
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(a) The difference between
modern (top) and ancient
coins (bottom)

(b) Challenges for coin segmenta-
tion

(c) Challenges for coin recognition: illumina-
tion changes.

(d) Challenges for coin recognition: non-rigid de-
formations.

(e) Challenges for coin recognition: abrasions.

Figure 2.13: The various challenges of image-based ancient coin recognition.

2.5.2 The Challenges of Image-Based Ancient Coin Analysis

In contrast to present-day coins, ancient coins offer particular challenges to image-based recog-
nition, as shown in Figure 2.13a. For the automatic segmentation of coins, difficulties are posed
by the non-roundness of coins, shadows at the coin borders and background clutter. These issues
are demonstrated in Figure 2.13b: ancient coins are not necessarily completely circular (shown
by the red circle around the coin), thus simple geometric structure detection methods like the
Hough transform [Hough, 1962] are not applicable. An improper image acquisition setup can
lead to shadow casts at coin borders which deteriorate their correct identification. And finally,
background objects like a ruler complicate the detection of the coin object in the image.

For the classification of ancient coins, the complexity of the problem is given by the high
number of classes (e.g. over 1900 subclasses for the Roman Republican age [Crawford, 1974]).
Furthermore, all the kinds of variations illustrated in the introductory Figure 1.1 arise, as de-
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scribed also in [Zambanini and Kampel, 2011]:

• Illumination: illumination variations significantly affect the surface appearance and hence
make coin comparison difficult. With reference to Figure 2.2, coins with their metallic
relief-like structures belong to the challenging group of shiny, textureless objects. An
example for the illumination variation is given in Figure 2.13c, where two images of the
same coin specimen under different lighting conditions are shown. A detailed look at the
man’s upper body reveals how the local appearance is affected by the lighting direction.

• Non-rigid deformations: Non-rigid deformations within a coin class result from the man-
ual manufacturing of the coins. In ancient times, the manually made coin dies were used
only for a limited amount of coins. Therefore, die variations and thus finally coin varia-
tions as the ones shown in Figure 2.13d can occur. Here a detail of two Roman coins from
the same class depicting the goddess Roma is shown. The green arrows illustrate that the
facial features have a different arrangement due to the different dies used for striking these
coin specimens.

• Incomplete data. Parts of the visual information on a coin are possibly lost or distorted
due to abrasions, caused both by use and by exposure to environmental influences like
chemicals in the soil (see Figure 2.13e).

All these particular challenges sum up to a demanding relationship between intra-class and
inter-class variations, as demonstrated in Figure 2.14. One the one hand, inter-class variations
can be low: the coins of Figure 2.14a-b all show the goddess Calliope and the two classes can
only be differentiated by the coin legend. On the other hand, non-rigid intra-class deformations
due to the non-industrial manufacturing can be spotted within the classes (e.g., Calliope’s hand
and the legend structure in Figure 2.14b). The conditions of the coins lead to further intra-class
variations: missing and worn parts due to the coins’ age (Figure 2.14c) as well as appearance
variations due to lighting variations (e.g., the two coins in Figure 2.14d are illuminated from
opposite directions).

2.5.3 Coin Image Segmentation

Separation of the coin from its background is done in any coin recognition system to obtain a
region-of-interest where the recognition procedure can be applied to. For systems designed for
the recognition of modern coins the problem is simplified by the circularity of the coin and a
controlled acquisition setup. For instance, the acquisition setup of the Dagobert coin recognition
and sorting system [Nölle et al., 2003] ensures that the background (conveyor belt) is darker
than the photographed coin and thus simple global thresholding is sufficient. Circularity of
modern coins is exploited in [Reisert et al., 2006] by means of the Generalized Hough Transform
[Ballard, 1981]. The segmentation step of [Van Der Maaten and Poon, 2006] uses a pipeline of
global thresholding, edge detection and morphological operations.

Due to the higher complexity of the segmentation problem on ancient coins (see
Figure 2.13b), researchers developed own segmentation strategies for ancient coin recognition
methods that are more appropriate for this kind of objects. The first recognition system dedicated
exclusively to ancient coins is presented by [Zaharieva et al., 2007a] and uses a modification of
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(a) Cra 410/3 (b) Cra 442/1

(c) Cra 346/1 (d) Cra 393/1

Figure 2.14: Reverse side of Roman Republican coins from four different coin classes.

the adaptive thresholding approach originally proposed by [Yanowitz and Bruckstein, 1989] for
coin segmentation. The method uses variable thresholds which are computed by sampling points
at detected edges and interpolating them over the image. The modified version of [Zaharieva
et al., 2007a] uses zero crossings of the second image derivatives [Marr and Hildreth, 1980]
instead of gradient magnitudes for edge detection. The coin classification method presented
by [Arandjelović, 2010] uses an improved circular Hough transform [Atherton and Kerbyson,
1999] for coarse coin location. Finally, the accurate coin border is found by inferring the states
of a hidden Markov chain [Blake et al., 2011] representing the radial distances at uniformly
discretized directions.

The method proposed in Chapter 3 for ancient coin segmentation uses global thresholding
and exploits the approximately circular shape of coins as a cue to find an optimal threshold.
Hence, the method remains simple and fast to compute, as no costly boundary tracing or opti-
mization like in [Arandjelović, 2010] is needed. Still, the proposed method shows to be insensi-
tive to wide variations of coin images in the experiments.

2.5.4 Image-Based Coin Classification

The first methods for image-based coin classification have been developed for modern coins,
hence they all assume rigidity of objects and thus that an alignment of the coin structures can be
achieved by solving for the global translation and rotation differences between a query coin and
reference coins. The Dagobert system [Nölle et al., 2003] uses global rotation-invariant features
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extracted from the detected coin to derive a list of subselected candidate reference coins. The
image similarity to the candidate coin images is then established by finding the maximum corre-
lation of the query edge image and reference images under rotation. The method is evaluated on
913 coin classes from over 30 currencies and achieves a classification rate of 99.24 %. Compared
to this results, the multistage classifier based on eigenspaces proposed in [Huber et al., 2005]
shows a lower performance with a classification rate of 92.23 % on a similar dataset. Motivated
by the effectivity the Dagobert system, [Reisert et al., 2006] propose to use the Fast Fourier
Transform on binary images encoding the pixels’ gradient directions to register coin images and
estimate their similarity. The method was the winner of the MUSCLE CIS Coin Competition
2006 [Nölle et al., 2006] with a classification rate of 97.24 % on a dataset of 2270 modern coin
classes. It outperformed the COIN-O-MATIC system proposed by [Van Der Maaten and Poon,
2006] which uses a global descriptor of edge distributions on a log-polar grid (see Figure 2.7b).
Since the descriptor summates all edges in a spatial cell it does not make full use of the rigidity
of modern coins. In contrast, the method of [Reisert et al., 2006] assesses coin similarity on a
per-pixel basis and is thus more distinctive.

As described in Section 2.5.2, ancient coins show a higher intra-class variability than modern
coins, which permits the reverse conclusion that each specimen has its own individual charac-
teristics that allow for coin identification. This task is important in the context of finding stolen
coins in the internet as highlighted by [Huber-Mörk et al., 2011]. Their experiments reveal that
the segmented coin border is a strong characteristic feature which can be leveraged for iden-
tification by shape matching. In combination with type matching on both coin sides 98.83 %
of 2400 coin images representing 240 individual coin specimens could be identified. However,
evidently the coin border does not assist in classifying the coin, hence it can be concluded that
classification is a more difficult task than identification on ancient coins. The level of object indi-
viduality is in general strongly correlated with the complexity of classification, and consequently
on modern coins the opposite case is true: classification is less complex than identification.

It is experimentally shown by [Zaharieva et al., 2007b] that the success of classification
methods for modern coins cannot be transferred to the domain of ancient coins. While the
method of [Van Der Maaten and Poon, 2006] achieves a classification rate of up to 76 % on
their testset of 100 modern coin classes, only 6 % of coins in a testset of 106 Roman Imperial
coin classes can be correctly classified. The first method exclusively dedicated to ancient coins
is proposed by [Kampel and Zaharieva, 2008]. The non-rigid deformations of ancient coins are
handled by using detected local SIFT features and a similarity measure is simply obtained by
counting the number of features that can be matched by means of Lowe’s distance-ratio rule
(see Section 2.4.1). In their experiments this similarity measure is used for exemplar-based
classification and achieves a classification rate of 90 %, but only on a very limited dataset of
only three coin classes.

Learning-based methods for ancient coin classification are proposed by [Anwar et al., 2013]
and [Arandjelović, 2010]. Both methods also rely on local SIFT features which are quantized
into a fixed vocabulary of visual words. In [Anwar et al., 2013] the image is tiled into spa-
tial regions and the concatenated single histograms of visual words of each region are used as
image feature. This approach is rather used for a coarse classification of the types shown on
the coin’s reverse side than for a fine-grained classification based on reference numbers. The
method achieves a classification rate of up to 90% for eight common Roman Republican types.
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Arandjelović’s method [Arandjelović, 2010] exploits the spatial configuration of visual words
in a different way: Locally-Biased Directional Histograms (LBDH) are introduced for encod-
ing the distribution of visual words around a detected keypoint in eight directions relative to its
canonical orientation. The LBDH features are then again subject to vocabulary creation and the
histogram of LBDH words serves as final image feature. This method achieves a classification
rate of around 57% on 65 classes of the Roman Imperial age.

Learning-based methods are also exploited to support coin classification by means of leg-
end recognition. [Arandjelović, 2012] describes a system which subselects Roman Imperial coin
classes based on the recognized legends on the obverse sides. The system assumes that the leg-
end is arranged along the coin border and thus can be normalized for orientation by means of a
log-polar transformation. Obviously, known legend orientation eases the problem and the author
reports a correct legend recognition for 24 of 25 test coins with a lexicon of 1478 known coin
legends. This is achieved by encoding letter appearance by single local image descriptors and
casting the search for words in the lexicon as a weighted-graph optimization problem which
can be efficiently solved via dynamic programming [Szeliski, 2010]. The same approach is fol-
lowed by Kavelar et al. [Kavelar et al., 2012, Kavelar et al., 2014], but on Roman Republican
coins which requires to make the local descriptors and word search procedure orientation invari-
ant. Consequently, the results are worse compared to [Arandjelović, 2012] with a detection rate
of 53 % among the top five words found for a 35-word-lexicon [Kavelar et al., 2014]. Never-
theless, it is shown in [Zambanini et al., 2013] that legend recognition is still able to improve
performance, as it exploits a different source of background information by means of a known
lexicon. In [Zambanini et al., 2013] the exemplar-based classification proposed in Section 5.1.3
is fused with legend recognition which improves the classification rate from 78.9% to 81.0% for
a dataset of 60 Roman Republican coin classes. Also the method of [Arandjelović, 2012] com-
bines legend recognition with exemplar-based matching: global translation differences between
the reverse coin types are first corrected by RANSAC-based registration of SIFT features. The
detected SIFT features are then checked for consistent location, orientation and scale and the
total number of verified correspondences is used as similarity measure.

2.6 Summary and Innovative Aspects of the Thesis

Invariance or insensitivity to certain conditions of the objects or the imaging procedure can be
treated in manifold ways. Leveraging a-priori information to handle variations has led to suc-
cessful methods, but with limited real world practicability due to their dependency on a high
amount of training data. Without using offline training, recognition is reduced to an image simi-
larity estimation problem, where the determination of local correspondences has proven to be the
common methodology, due to the beneficial properties of comparing many local parts instead of
the images in their entirety: translation, rotation and scale invariance by means of interest point
detection with rotation and scale selection, the opportunity to flexibly match local parts in case
of non-rigid deformations, and robustness against image clutter and missing content. Neverthe-
less, there are aspects in this image-to-image comparison problem which have not been tackled
accordingly in existing works and are treated in this thesis:

• Shape-Controlled Object Segmentation: invariance to scale changes and image back-
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ground clutter can be achieved by interest point detection, but this is an error-prone pro-
cess, especially for textureless objects like ancient coins under illumination changes. Seg-
mentation of the object of interest does not only select a proper image subregion for the
visual comparison, but also allows for a scale normalization and dense sampling of local
descriptors in order to have a more robust correspondence-based comparison. The mani-
fold research in the wide area of image segmentation shows that application-specific so-
lutions work best and commonly dominate general-purpose segmentation methods within
a given field. Hence, in this thesis a method is proposed which exploits the known nearly
circular shape of coins to achieve a fast, robust and accurate segmentation.

• Illumination-Insensitive Feature Extraction: Establishing correspondences between
images demands both distinctive and insensitive local descriptors, but insensitivity to
changes of the illumination conditions has only been marginally treated. Existing de-
scriptors do only handle monotonic brightness changes but not the more complex effects
on textureless and non-flat objects. Hence, there is a need for robust image descriptors in
scenarios where strong illumination changes can be expected and texturedness as well as
flatness of objects are not necessarily given. This shortcoming is tackled in this thesis by
means of a fundamental evaluation of the illumination insensitivity of low-level per-pixel
image features. Based on the achieved results, a new descriptor (LIDRIC) with a higher
degree of illumination-insensitivity is proposed. The problem of unsatisfactory datasets
and evaluation protocols for this kind of problem is overcome by new datasets allowing to
intensively test the influence of textured/textureless 3D objects on descriptor performance.

• Correspondence-Based Image Similarity: in the past, the correspondences of local im-
age parts have been exploited to derive similarity measures between images. A contri-
bution to this research is given by means of a coarse-to-fine classification scheme which
shows that a subselection of reference objects on coarser scales does not decrease classifi-
cation performance while substantially speeding up the overall process. The method uses
a dense correspondence search with spatial regularization and stimulates the construction
of a more powerful correspondence-based similarity. Similar to geometric verification,
the correspondences are checked for geometric plausibility, but in this case not to discern
true from false correspondences, but rather to derive a similarity measure from it assum-
ing a higher fraction of geometric plausible correspondences between similar images than
between dissimilar ones.

• Image-Based Coin Classification: ancient coins prove to be a challenging type of objects
for image classification and learning-based approaches [Csurka et al., 2004,Arandjelović,
2010] suffer from the training data problem given for this domain. Previously published
similarity measures that can be exploited for exemplar-based classification either ignore
spatial information and are thus not distinctive enough [Kampel and Zaharieva, 2008]
or are too strict by assuming a rigid-body transformation between coins [Arandjelović,
2012]. Therefore, it is first shown that a correspondence search with spatial optimization
provides a better framework for similarity estimation for the non-rigid deformations of
ancient coins. On this basis, an improved similarity measure with lower computational
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complexity is proposed which uses pairwise geometric consistency evaluation of matched
features and consequently outperforms the previously proposed methods.

40



CHAPTER 3
Shape-Controlled Object Segmentation

In this chapter the method for ancient coin segmentation originally published in [Zambanini and
Kampel, 2009] is described. Its goal is to segment the image in two areas: the area depicting the
coin and the area belonging to the background. Within the context of image-based coin analysis,
such a segmentation answers a twofold purpose: first, for coin classification, it provides a region-
of-interest and allows for scale normalization. The proposed segmentation procedure has thus
been applied as a preprocessing step in the coin recognition methods described in [Zambanini
and Kampel, 2011,Zambanini and Kampel, 2012,Zambanini et al., 2013,Zambanini et al., 2014,
Kavelar et al., 2014]. And second, it provides not only a region-of-interest for coin identification
but also the opportunity the leverage the coin border as a characteristic coin-specific feature.
Hence, the method is used to obtain the coin border in the coin identification system presented
in [Huber-Mörk et al., 2011].

The proposed coin segmentation strategy is described in Section 3.1. Results of empiri-
cal evaluations are presented in Section 3.2. Section 3.2.1 reports experiments on a set of 92
manually segmented ground truth images, whereas Section 3.2.2 reports results on identification
based on coin shape determined by the proposed segmentation method.

3.1 Methodology

An essential requirement for the usability of coin segmentation is to provide a ready-to-use
method without the need for parameter tuning. Therefore, the objective of the presented method-
ology is a robust and fast segmentation for a large variety of coin image styles. Coin images from
different sources (e.g. museum collections or public online databases) are photographed with
different image acquisition setups. Therefore, no assumptions about image quality can be made
and major challenges to be faced in the segmentation of coins are caused by an improper im-
age acquisition procedure. Especially shadow casts caused by an insufficient illumination setup
impede the correct determination of the coin border. Furthermore, tests have shown that image
compression with chroma subsampling (e.g. JPEG image compression [Gonzalez and Woods,
2002]) is widely used when storing images of coins. The resulting compression artifacts preclude
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the use of color information, thus only the luminance can be used for a reliable segmentation of
the coins.

The method presented in this chapter is based on the assumption that the coin is the most
circular object in the image and possesses more local information content and details than the
rest of the image. Although this assumption can not be guaranteed to hold in practice, it is
reasonable from experience and also supported by the experiments. Thus, the method consists
of two steps:

1. Saliency Extraction: The image is filtered with a local entropy and range filter in order
to obtain a more meaningful image representation for thresholding. After this operation
each pixel’s value can be seen as the likelihood of belonging to the coin region.

2. Shape-Controlled Thresholding: An optimal global threshold is found by maximizing
an objective function describing the circularity of the resultant shape.

In the following the two steps are described in detail.

3.1.1 Saliency Extraction

Saliency extraction is done by two filters providing a local measurement of information content
in the image: the local entropy and the local range of gray values.

Local entropy filter: entropy is the measure of the information content in a probability distri-
bution. For digital images, the probability distribution is represented by the histogram of gray
values [Kapur et al., 1985]. Given an image point p and its local neighborhood Ωp, all image
intensity values I(p), p ∈ Ωp, are transformed to normalized frequency values f1, f2, ..., fN ,
where N is the number of different values and

∑N
i=1 fi = 1. Then, the local entropy of p is

defined as:

X(p) = −
N∑
i=1

fi · log2(fi). (3.1)

Local range filter: the local range of gray values is defined as the difference of the maximum
and minimum gray value of a local neighborhood:

Y (p) = max
p∈Ωp

I(p)− min
p∈Ωp

I(p). (3.2)

For both filters a circular neighborhood with an empirically determined radius of 3 pixels
is used. In order to bring both filter outputs to the same value range they are normalized with
respect to the maximum value in the image. The final saliency measure is then given by the sum
of both normalized filter outputs:

Z(p) =
X(p)

maxp∈I X(p)
+

Y (p)

maxp∈I Y (p)
. (3.3)
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For illustration on a simple example, in Figure 3.1 the particular results of the entropy filter
X , the range filter Y and their summation Z are shown. The output of both filters is higher for
the region of the coin than for the region of the background, especially at the coin border.

(a) Original image. (b) Output of local en-
tropy filter X .

(c) Output of local range
filter Y .

(d) Final saliency mea-
sure Z.

Figure 3.1: Saliency extraction on a simple, illustrative example of a coin image.

3.1.2 Shape-Controlled Thresholding

In order to obtain the final coin segmentation from the saliency image shown in Figure 3.1d, a
simple way would be to a apply a global threshold and close all holes in the binary mask caused
by homogeneous regions inside the coin. However, the optimal threshold has to detected sep-
arately for each image. Defining the optimality of a threshold is in general a difficult task due
to the unknown correct result, but in the case of ancient coins we can use the known approx-
imately circular shape as strong constraint. Hence, what is needed is a measure of confidence
that estimates the closeness of the resulting binary mask to a perfect circle. Consequently, the
formfactor [Russ, 2011] turns out to be a suitable choice for this task, defined as follows for a
binary connected component C:

FF(C) =
4πAC
P 2
C

(3.4)

whereAC is the area of the shape and PC its perimeter. For a connected component the area is
typically computed by its number of pixels and the perimeter by tracing the border pixels where
vertical and horizontal steps have a length of 1 and diagonal steps a length of

√
2 [Sonka et al.,

2007]. The formfactor has adequate properties for measuring the closeness to a circle. First of
all, it is invariant to the rotation and size of the shape [Russ, 2011]. And second, the formfactor
provides a measurement which is sensitive to both the elongation of the shape and the jaggedness
of its border. The higher the jaggedness or elongation of a border, the less the formfactor, which
is equal to 1 for a circle and close to 0 for a straight line. The influence of the shape elongation
and jaggedness to the formfactor is also demonstrated in Figure 3.2. It can be seen that the
formfactor decreases both with increasing elongation and jaggedness of the synthetic shapes1.

1Please note that the formfactor of the circle shape shown in Figure 3.2 is not 1 due to the approximative area
and perimeter measurements on binary connected components.
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FF=0.902 FF=0.878 FF=0.633

FF=0.890 FF=0.857 FF=0.568

FF=0.805 FF=0.737 FF=0.484

Figure 3.2: Formfactor (FF) of different synthetic shapes with varying elongation and jagged-
ness. Elongation increases from left to right and jaggedness from top to bottom.

Since the final shape of the segmentation should be close to circle with a regular border, the
formfactor provides a convenient measure for the confidence of the segmentation.

As it is assumed that the coin is the most circular object in the image, in the presented
method the connected component Ct to be used for the confidence measurement is the one with
the highest formfactor in the binary image resulting from thresholding with t. Additionally, it
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Figure 3.3: Plot of formfactors of three coin images when thresholded with t.

is expected that the size of the coin is between 5 % and 95 % of the overall image area, hence
objects above and below are rejected. The binary segmentation mask is also shrunk by removing
its 3-pixel-wide border in order to compensate for high saliency values outside the actual coin
boundary caused by the applied filter kernels with a radius of 3 pixels.

However, as mentioned above, optimal thresholds have to be individually chosen for each
image. This is also illustrated in Figure 3.3 where the confidence measures (formfactors) of
three coin images are plotted as a function of the threshold t used to binarize the saliency image.
It can be seen that for all three images the confidence measures have clear peaks that indicate
an optimal threshold for this image, as the resulting binary shape has the highest formfactor and
thus shows the highest confidence that the shape represents the actual coin region. However,
these peaks are at different t and formfactor values. Therefore, for the optimal threshold t∗ the
maximum value of the objective function FF(Ct) needs to be found, i.e.

t∗ = arg max
t

FF(Ct). (3.5)

Optimizing this function numerically is straightforward as it consists of only one variable
with a specified value range, hence the values of t must be just regularly sampled in the search
space [0, 1] and the maximum value obtained must be recorded. For the given task, it has been
empirically determined that seven thresholds t ∈ {0.3, 0.35, . . . , 0.6} are sufficient and that a
finer discretization does not improve the accuracy of the method. In Figure 3.4 the segmentation
masks along with their respective formfactors for the three coin images depicted in Figure 3.3
and thresholds of 0.35, 0.45 and 0.55 are shown. It can be seen that the confidence values of the
images shown in Figure 3.3 are in accordance with the obtained segmentation masks, i.e. the
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(a) Input image t=0.35, FF=0.884 t=0.45, FF=0.871 t=0.55, FF=0.000

(b) Input image t=0.35, FF=0.525 t=0.45, FF=0.851 t=0.55, FF=0.050

(c) Input image t=0.35, FF=0.000 t=0.45, FF=0.204 t=0.55, FF=0.585

Figure 3.4: The three images of Figure 3.3 along with the segmentation masks obtained by
thresholding with t values of 0.35, 0.45 and 0.55. The input images and segmentation masks are
cropped for better visualization.

visually best segmentation correlates with the maximum formfactor. The segmentation masks
of Figure 3.4a for t = 0.35 and t = 0.45 are very similar and t = 0.35 is chosen just due to a
slightly more regular border. Similarly, the mask of t = 0.45 is chosen over the mask of t = 0.35
for Figure 3.4b, but the difference in border jaggedness is more pronounced. For Figure 3.4c, the
mask of t = 0.45 depicts the sheet of paper indicating the coin ID and the correct segmentation
with highest formfactor is obtained with t = 0.55.

3.2 Experiments

In this section the results of empirical evaluations of the presented method are reported. In
Section 3.2.1 a comparison to manual ground truth segmentations is done for 92 coin images
from different sources. The suitability of the method for extracting the exact coin border for
shape-based coin identification is investigated in Section 3.2.2. The results of Section 3.2.1 and
Section 3.2.2 have been originally published in [Zambanini and Kampel, 2009] and [Huber-
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Mörk et al., 2011], respectively.

3.2.1 Comparison with Manual Coin Segmentations

The proposed method is tested on a set of 92 images acquired at the Museum of Fine Arts, Vienna,
the Fitzwilliam Museum, Cambridge, and the Romanian National History Museum, Bucharest,
representing a wide range of different coin images. Six of the images used for evaluation are
shown in Figure 3.5. The images of the evaluation set differ in various ways:

• Resolution: from 178× 184 up to 1154× 866.

• Background: images with uniform background (Figure 3.5a,b,e,f) and images with less
uniform background (Figure 3.5c-d).

• Image clutter: images where the coin is the only visible object (Figure 3.5b) and images
where other objects like rulers or signs are present (Figure 3.5a,c-f).

• Coin size relative to image size: images where the coin perfectly fits into the image frame
(Figure 3.5b) or images where the coin region makes only ∼ 15% of the image (Figure
3.5c).

• Coin roundness: images with a nearly perfectly circular border (Figure 3.5a,f) and images
with a more irregular border due to fragmentation (Figure 3.5b-c)

• Illumination conditions: images with (Figure 3.5b-c) and without shadow casts (Figure
3.5a,d-f).

For the experiments presented here, all color images were converted to gray-level images.
Compression artifacts due to chroma subsampling as done in JPEG compression [Gonzalez and
Woods, 2002] are highly present in the image data and make the use of color information infea-
sible.

3.2.1.1 Evaluation Procedure

For each image a ground truth segmentation was manually obtained by means of an image
editing software. For the evaluation of a single segmentation the dice coefficient (DC) [Dice,
1945], also known as mutual overlap, is measured:

DC =
2 · |Cs ∩ Cg|
|Cs|+ |Cg|

(3.6)

where Cs is the set of pixels in the segmented region and Cg the set of pixels in the ground
truth segmentation. The formula measures the set agreement by the size of the union of two sets
divided by the average size of the two sets. Hence, a dice coefficient of 0 indicates no overlap,
whereas a dice coefficient of 1 indicates perfect agreement. The dice coefficient is a commonly
used evaluation metric for image segmentation [Crum et al., 2006, Shattuck et al., 2009].

To demonstrate the appropriateness of the proposed method for the segmentation of coin
images, the results are compared to the outputs of other segmentation methods: (1) the adaptive
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: Six of the 92 coin images used for evaluation.

thresholding method used in [Zaharieva et al., 2007a] for the segmentation of ancient coins
(see Section 2.5.3), (2) the mean shift method proposed by [Comaniciu and Meer, 2002] for a
comparison with a state-of-the-art method in image segmentation (see Section 2.2) and (3) the
presented method when the thresholding is directly applied to gray values instead of the saliency
values.

It must be noted that the output of the mean shift segmentation method is not implicitly a
partition into foreground and background, as needed here. Mean shift is a general unsupervised
segmentation method and thus partitions the image in a set of disjoint regions without labeling
the foreground and background. For the given task, the segmentation has to extract the single
most salient object in the image, i.e. the coin. Therefore, to make the mean shift segmentation
results comparable, the parameter M for the minimum allowable region area (see [Comaniciu
and Meer, 2002] for details) has to be manually adapted for each image to produce a two-
segment partition of the image. Evaluation was performed on the mean shift implementation of
the EDISON system2.

3.2.1.2 Results and Discussion

In Table 3.1 the average and median DC of the different methods are listed. The average DC of
0.517 and median DC of 0.720 of the adaptive thresholding method indicate its low robustness.
Although the parameters of the method can be adjusted to perform well on a given type of
coin image, it is not able to handle the wide range of different images contained in the test set.

2http://coewww.rutgers.edu/riul/research/code/EDISON/ (accessed on June 8th, 2014).
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Average Median
Adaptive Thresholding [Zaharieva et al., 2007a] 0.517 0.720
Mean Shift [Comaniciu and Meer, 2002] 0.983 0.988
Presented method on original gray values 0.923 0.980
Presented method 0.983 0.993

Table 3.1: Average and median DC achieved on the 92 test images.

A second conclusion of the results is that the local entropy and range filtering is a reasonable
preprocessing step to provide a more appropriate intensity image for the thresholding. This can
be seen by the lower average and median DC when the original gray values are used. From the
results in Table 3.1 it can also be seen that the presented method achieves a similar performance
than mean shift segmentation. The average DC is equal (0.983) and the median DC of the
presented method is even higher (0.993 to 0.988 of the mean shift method). However, shape-
controlled thresholding has two advantages: firstly, in contrast to mean shift no parameter has
to be adapted manually. And secondly, the method is computationally faster: while written in
MATLAB, it takes 0.11s for a 178× 184 image and 1.46s for a 1154× 866 image, whereas the
mean shift implementation (written in C++) takes 0.24s for the 178 × 184 image and 8.95s for
the 1154× 866 image on the same machine.

Figure 3.6 shows results on selected images where the obtained coin border is outlined by a
black or white line. Figure 3.6a-c belong to the best segmentation results with a DC of 0.9973,
0.9981 and 0.9970, respectively. Figure 3.6d-e show the two worst results with a DC of 0.9441
and 0.9500, respectively. You see that shadows pose a problem to the method since they produce
a strong edge which does not belong to the actual coin border. Nevertheless, although on these
images the shadow prevents the correct detection of the coin borders, the coin area is still cor-
rectly identified and a further classification of the coin would be only marginally affected by the
non-perfect segmentation. Anyhow, on the image of Figure 3.6f the method correctly excludes
the shadow from the segmentation, producing a DC of 0.9904.

3.2.2 Evaluation for Shape-Based Coin Identification

The dataset used to evaluate coin identification consists of 2400 images of 240 different coins
from the same ancient Greek coin class, provided by the Fitzwilliam Museum, Cambridge, UK.
In Figure 3.7 four coins of the dataset are shown, where each row represents the same coin spec-
imen and each column represents a different sensor used for coin acquisition and/or orientation
of the coin. The two sensor types are a digital camera and a flatbed scanner, which were used
to acquire three and two different coin orientations, respectively. By taking images of both coin
sides, hence in summation 10 images are available per coin specimen. It can be seen in Figure
3.7 that all images show the same coin type: on the obverse side the head of Heracles in a lion
skin in depicted. The reverse side shows the God Zeus seated on a throne. However, each coin
specimen’s border has its own individual shape, although differences can be subtle.

The coin identification dataset does not include manually annotated ground truth segmenta-
tions which prohibits the direct evaluation of segmentation performance. Instead, segmentation
performance is indirectly measured by applying shape-based coin identification, i.e. the accu-
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(a) DC = 0.9973 (b) DC = 0.9981 (c) DC = 0.9970

(d) DC = 0.9441 (e) DC = 0.9500 (f) DC = 0.9904

(g) DC = 0.9876 (h) DC = 0.9966 (i) DC = 0.9798

Figure 3.6: Results of the proposed segmentation method with respective dice coefficients (DC).

racy is evaluated in the terms of the identification rate when the segmented coin border is used
to identify a coin. In [Huber-Mörk et al., 2011] the deviation from a circular shape is used to
describe the coin border in order to perform the shape matching for coin identification. The
shape descriptor samples the distances of border points to the center of gravity of the segmented
coin region at equiangular intervals. For the final shape matching a global and local dissimilar-
ity is computed. The global metric uses the minimum mean squared error of all shifts between
two descriptors, whereas the local metric uses the squared distance of their Fourier magnitude
values.
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Figure 3.7: Four examples of coin specimens used for shape-based identification. Images with a
white background have been acquired with a flatbed scanner and images with a gray background
with a digital camera.

Tests performed with various training set sizes reveal that the coin identification rates are
ranging from 90.3 %, when only one coin image per specimen is available, up to 99.0 %, when
9 images per class are available for comparison. Given the high number of classes (240) and
the low inter-class variations (all coins are roughly circular), these results show the effectiveness
of the shape-based coin identification method. As the shape matching relies on the presented
coin segmentation method, the high identification rates indicate its suitability for obtaining an
accurate description of the coin border.

3.3 Summary

In this chapter a shape-controlled segmentation method is described. The method exploits the
approximately known shape of the target object and leverages a scalar shape confidence measure
to achieve a both robust and fast segmentation. The method starts with the transformation of the
image to a saliency map by means of combining the outputs of a local entropy and range filter.
For approximately round objects like ancient coins, the formfactor of the shape resulting from
thresholding the saliency map is proposed as confidence measure.
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It is shown in the experiments that seven regularly sampled thresholds are sufficient to find
the best segmentation for images of ancient coins. Hence, although based on optimization, the
method is faster than general-purpose unsupervised segmentation methods like mean shift which
do not take a-priori knowledge of shape into account. Additionally, for ancient coins the method
shows higher segmentation accuracy than a previously proposed adaptive thresholding approach.
On the testset of 92 images representing a wide variety of coin image conditions (resolution,
relative coin size, illumination, background clutter etc.), the method proves its robustness with
dice coefficients of no less than 0.9441. The highest errors are caused by shadow casts at the
coin borders, but on the overall dataset there are no substantially wrong segmentations which
emphasizes the usefulness of the method as a preprocessing step for coin classification. For coin
classification, the purpose of an initial segmentation is to provide a scale-normalized region-of-
interest for the subsequent feature extraction step (see Chapter 4). This goal is highly fulfilled,
as the possible enlargement of the segmentation due to shadow casts is not more than 15% (see
Figure 3.6). Hence, the scale difference is marginal and the introduced small image clutter is
weakened by the locality of the similarity metric (see Chapter 5).

If proper arrangements for coin image acquisition are made and no shadows are present at
the coin border (e.g. by placing the coin on a sheet of glass or by using an adequate illumina-
tion setup), the method can be assumed to give a highly accurate segmentation. This is shown
by the experiments for shape-based coin identification, where with the presented segmentation
method an identification rate of up to 99% for a dataset of 240 coins can be achieved, despite
the generally high shape similarity of the coins.
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CHAPTER 4
Illumination-Insensitive Feature

Extraction

This chapter deals with illumination-insensitive extraction of image features. The feature should
be able to (1) identify the underlying surface characteristics within the shading pattern on the
one hand and (2) ignore effects resulting from unknown illumination and material conditions on
the other hand. As there exists no fully invariant and distinctive representation for this kind of
problem (see Section 2.1.3), it rather has to be aimed to maximize insensitivity and distinctive-
ness in a joint fashion. This is especially challenging for textureless objects, but this type of
objects is widely ignored in existing research and thus the focus of the presented work.

In Section 4.1, first a general evaluation of low-level features is conducted. The objective is
to comparatively investigate image representations with respect to their ability for illumination-
insensitive recognition. The presented evaluation is comprehensive in the sense that object tex-
turedness, material and the amount of light source change are manipulated by means of a syn-
thetic dataset. Parts of Section 4.1 have been originally published in [Zambanini and Kampel,
2013a].

In Section 4.2, the new local image descriptor LIDRIC is presented. This descriptor is the
result of the insights provided by previous feature evaluation and hence shows to outperform
existing descriptors on real-world image data with illumination changes. This work has been
originally published in [Zambanini and Kampel, 2013b].

4.1 Evaluation of Low-Level Image Representations

The purpose of the presented evaluation is illustrated in Figure 4.1. Given an image patch and a
particular representation (i.e. a value or a set of values for each image pixel), it is evaluated how
distinctive and insensitive to illumination changes the representation is. The less the distance
between two representations of a the same imaged object under illumination changes, the more
insensitivity is given. On the contrary, the more the distance between representation of two
different imaged objects, the more distinctiveness is given.
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Figure 4.1: The scope of the presented evaluation. An image representation R is evaluated in
terms of its distances to same object patches (left, green arrows) under different illumination
conditions as well as to other object patches (right, red arrows). The green distances should be
low, whereas the red distances should be high.

The remainder of this section is organized as follows. The various image representations
used for this evaluation are described in Subsection 4.1.1. In Section 4.1.2 the test data and
evaluation scheme is described and the final results are reported and discussed.

4.1.1 Low-Level Image Representations

In this study eight representations are compared. These representations are chosen since they
have proposed as being insensitive to illumination changes in the past and are constantly used
for illumination-insensitive feature extraction in computer vision. In the following, all represen-
tations are described in detail. Additionally, a visualization of the representations is exemplarily
shown for the four object types shown in Figure 2.2, i.e. flat and textured, non-flat and textured,
textureless as well as textureless and shiny. The patches shown for each object type are again
depicted in Figure 4.2.

Gradient Direction (GD)

Image gradient directions have been identified by [Chen et al., 2000] as an illumination-insensitive
image feature. The direction GD(p) of the gradient at the image point p = (x, y) in the image
I is defined as

GD(p) = arg

(
∂I

∂x
,
∂I

∂y

)
(4.1)

where arg(x, y) is the angle (in radians) from the x-axis to the point (x, y). In the circu-
lar domain, the distance dGD(GD′(p),GD′′(p)) between two gradient directions GD′(p) and
GD′′(p) is then computed as

dGD(GD′(p),GD′′(p)) = min(
∣∣GD′(p)−GD′′(p)

∣∣ , 2π − ∣∣GD′(p)−GD′′(p)
∣∣) (4.2)

54



(a) Flat, textured (b) Non-flat, textured

(c) Textureless (d) Textureless, shiny

Figure 4.2: The image patches used for illustrating the representations used in this evaluation.

Using this distance metric for the individual pixels, the Sum of Squared Distances (SSD) is
taken to compare two images,

SSD(GD′,GD′′) =
∑
p∈I

(dGD(GD′(p),GD′′(p)))2. (4.3)

Gradient Orientation (GO)

Instead of representing image gradients in a signed version (directions between 0-360 degrees),
an unsigned version (orientations between 0-180 degrees) of gradients can also be used. In the
following, the term direction is used for signed gradients and the term orientation for unsigned
gradients. Gradient orientations are in theory less sensitive to the lighting directions than gra-
dient directions, as opposite lighting directions tend to produce opposite gradient directions at
depth discontinuities on the surface [Osadchy et al., 2007]. From the gradient direction GD(p)
the gradient orientation GO(p) can be simply computed as

GO(p) = mod(GD(p), π). (4.4)

To compare two images, the SSD is used where the pixel difference dGO(GO′(p),GO′′(p))
is defined as

dGO(GO′(p),GO′′(p)) = min(
∣∣GO′(p)−GO′′(p)

∣∣ , π − ∣∣GO′(p)−GO′′(p)
∣∣). (4.5)
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Figure 4.3 shows both the representations GD and GO. One can see that GD is very stable
for textured objects, but is affected by edge polarity changes (Figure 4.3c), in contrast to GO.

(a) Flat, textured (b) Non-flat, textured (c) Textureless (d) Textureless, shiny

Figure 4.3: Output of GD (top row) and GO (bottom row).

Laplacian of Gaussian (LOG)

The Laplacian of Gaussian is an approximation of the whitening filter tending to decorrelate the
images which makes the filter appropriate for isotropic surfaces [Osadchy et al., 2007]. The
LOG filter kernel is computed by applying the Laplacian operator to a Gaussian function with
standard deviation σ,

LOG(x, y) = − 1

πσ4
e−

x2+y2

2σ2

(
1− x2 + y2

2σ2

)
. (4.6)

An example of the filter is shown in Figure 4.4. The LOG filter is used by convolving the
image and normalizing the absolute responses to unit length (see Figure 4.5). The distance
between two images is then again determined by the SSD.

Figure 4.4: A Laplacian of Gaussian filter.

Jets of Gabor Filter Responses (JG)

Gabor filters refer to the work of Dennis Gabor [Gabor, 1946] in which he proposes to represent
a signal as a combination of elementary functions. Daugman [Daugman, 1980] extended his
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(a) Flat, textured (b) Non-flat, textured (c) Textureless (d) Textureless, shiny

Figure 4.5: Output of LOG.

theory to two dimensions and proposed to use Gabor filters for image feature extraction [Daug-
man, 1988]. Gabor filters are widely mentioned to be insensitive against illumination condi-
tions [Adini et al., 1997, Kamarainen et al., 2006, Osadchy et al., 2007] due to their invariance
against additive and multiplicative intensity changes, which makes them a popular low-level fea-
ture for applications like face recognition [Adini et al., 1997, Tan and Triggs, 2010]. A Gabor
filter G has complex coefficients and can thus be defined in terms of a real/even part Ge and an
imaginary/odd part Go,

Ge(x, y) = exp

(
−x
′2 + γ2y′2

2σ2

)
cos

(
2π
x′

ω

)
, (4.7)

Go(x, y) = exp

(
−x
′2 + γ2y′2

2σ2

)
sin

(
2π
x′

ω

)
, (4.8)

with x′ = x cos θ+y sin θ and y′ = −x sin θ+y cos θ. The parameter σ defines the standard
deviation of the Gaussian envelope whereas ω represents the wavelength of the sinusoidal plane
wave. To construct Gabor filters of different sizes but equal shapes, one can define σ as a
linear function of ω, σ = c · ω. The parameter θ defines the orientation of the filter and γ is
the spatial aspect ratio. Gabor filters can be thought of as quadrature bandpass filters where
the combination of a real and imaginary component allows for the phase-invariant detection of
oriented frequencies in the image. Figure 4.6 demonstrates the influence of the parameters c and
γ for a filter with horizontal orientation.

To construct a Gabor filter bank, the parameters σ, c and γ are kept fixed, N equally spaced
orientations θ1 . . . θN are used and the image is filtered with the corresponding N Gabor filters
Gθie and Gθio . The jet J̃G(p) is a vector of the magnitude responses of the filtered images Iθie =
I ? Gθie and Iθio = I ? Gθio ,

J̃G(p) = [

√
(Iθ1e (p))2 + (Iθ1o (p))2, . . . ,

√
(IθNe (p))2 + (IθNo (p))2] (4.9)

In addition to complex shading patterns, illumination variations can also induce simple mul-
tiplicative changes of image intensities which can be compensated by normalizing the jet to unit
length [Kamarainen et al., 2006, Osadchy et al., 2007]. The final feature is thus given by the
normalized jet JG(p). Figure 4.7 shows the elements of JG that correspond to the Gabor filter
with θ = 0. The distance between two jets JG′(p) and JG′′(p) is computed as the L2-norm of
their vector difference. Image distances are computed by taking the SSD of JG′(p) and JG′′(p)
for all image points p.
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(a)

c=0.3 c=0.6 c=0.9

γ=0.8

γ=1.0

γ=1.2

(b)

c=0.3 c=0.6 c=0.9

γ=0.8

γ=1.0

γ=1.2

Figure 4.6: The influence of the parameters c and γ on the shape of the (a) even Gabor filter Ge
and (b) odd Gabor filter Go.

(a) Flat, textured (b) Non-flat, textured (c) Textureless (d) Textureless, shiny

Figure 4.7: Output of the jet element corresponding to a filter orientation of θ = 0 for JG (top
row) and JEG (middle row). The bottom row shows the jet element of JMSEG with the same
orientation but a higher filter scale ω.

Jets of Even Gabor Filter Responses (JEG)

Besides Gabor jets, jets of oriented second derivatives of Gaussians [Freeman and Adelson,
1991] have also been proposed as an effective way of combining LOG and GO to produce a
representation which is appropriate for both isotropic and anisotropic surfaces [Osadchy et al.,
2007]. Even Gabor filters have a very similar shape to oriented second derivatives of Gaussians
if the cosine bandwidth is chosen such that the Gaussian envelope roughly covers the cosine
range of [−1.5π, 1.5π] (i.e., c ≈ 0.4) [Kamarainen et al., 2006, Osadchy et al., 2007]. This
similarity is depicted in Figure 4.8. Figure 4.8a shows an even Gabor filter with parameters
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(a) (b)

Figure 4.8: (a) Even Gabor filter and (b) second derivative of a Gaussian with reversed sign.

c = 0.4 and γ = 1.0 and Figure 4.8b a second derivative of Gaussian with reversed sign.
In this study, even Gabor filters are used as they provide a higher flexibility in the definition

of the filter shape, due to a more general set of parameters. However, it is clear from the high
similarity of the filters that substantially the same performance can be achieved by the use of
second derivatives of Gaussians. In contrast to JG, the jet J̃EG is formed only from the absolute
values of Iθie ,

J̃EG(p) = [
∣∣∣Iθ1e (p)

∣∣∣ , . . . , ∣∣∣IθNe (p)
∣∣∣] (4.10)

The final feature is again given by the normalized jet JEG(p) (see Figure 4.7).

Jets of Multi-Scale Even Gabor Filter Responses (JMSEG)

The optimal size of the filters depends on the surface characteristics, as for smoother surface
parts a wider filter is needed than for less smooth surface parts [Osadchy et al., 2007]. One can
learn the optimal filter size for a given application domain by means of training data as done
in [Osadchy et al., 2007], but nonetheless the variation of surface smoothness is disregarded if
only one single filter size is used. As in a general scenario the surface characteristics are usually
unknown and varying, it is beneficial to extend the single-scale jet JEG towards a multi-scale
representation JMSEG. For this jet the single-scale jets JEGωi , obtained by filtering with Gabor
filters of scales ω1 . . . ωM , are simply concatenated,

JMSEG(p) = [JEGω1 , . . . , JEGωM ] (4.11)

The output of a larger scale filter is shown in Figure 4.7. In the presented experiments,
the multi-scale representation is only used for even Gabor filter responses due to the higher
performance of JEG compared to JG on single scales (see Section 4.1.2.3).

Self-Quotient Image (SQI)

The SQI was introduced by Wang et al. [Wang et al., 2004] as a method to separate the albedo
information R(x, y) from images. Similar to other works in this area (see Section 2.1.3.2), the
idea is - based on the Lambertian assumption - that the illumination effects mainly appear in the
low-frequency components of the image and that they can therefore be eliminated by dividing
the image by a smoothed version of it. For increased robustness, several anisotropic smoothing
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kernels with different scales are used and integrated to the final self-quotient image. In Figure
4.9 the illumination normalization effect of SQI is shown. It can be seen that the low-frequency
parts of the image originating from Lambertian shading (e.g. Figure 4.9b) are suppressed while
the high-frequency parts originating from texture are preserved.

(a) Flat, textured (b) Non-flat, textured (c) Textureless (d) Textureless, shiny

Figure 4.9: Output for SQI.

The method is intentionally designed for textured objects, but also showed superior perfor-
mance in a study of illumination invariance for face recognition [Gopalan and Jacobs, 2010] on
the nearly textureless face parts cheek, chin and nose. Another motivation for including SQI
in the evaluation is to assess the performance of the vast amount of methods dedicated to tex-
tured objects by evaluating one representative method. For the experiments, the implementation
of SQI provided by the INFace1 toolbox is used and the SSD of the SQIs is taken as distance
measure.

Gray Value (GV)

In order to have a baseline performance, results for simple image differencing are also reported.
In other words, the SSD between the original gray values of the two images is taken as image
distance.

4.1.2 Experiments

Experiments are conducted on synthetic image datasets built from 3D historical coin models as
well as on real datasets of textureless and textured objects. Synthetic images are used because
this way the parameters of image formation can be freely changed to produce images with differ-
ent illumination conditions and material properties with or without texture. In this manner, it is
possible to directly compare the performance of the features under different conditions without
introducing a bias due to different objects used between datasets. The real dataset is used to
validate the results for various real-world material properties and illumination conditions. Both
datasets are specifically described in Section 4.1.2.1. Section 4.1.2.2 details the general evalu-
ation procedure. Various aspects of the evaluation like parameter selection, influence of object
texturedness and specularity, influence of amount of light source change as well as real data
performance are treated in the Sections 4.1.2.3-4.1.2.6.

1http://luks.fe.uni-lj.si/sl/osebje/vitomir/face_tools/INFace/ (accessed on June
8th, 2014).
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4.1.2.1 Datasets

Synthetic Datasets

The synthetic datasets consist of images of 14 coin models which were rendered using the open-
source graphics software Blender2. For each model, twelve sets of 500 × 500 images with
65 illumination directions were rendered where each set represents one out of four material
BRDFs and one out of three texture density levels. Material BRDFs are intended to represent
different levels of specularity starting from a Lambertian material with zero specularity up to
specular intensity values of 0.25, 0.50 and 1.00. Three texture levels were chosen to show
the correlation of the features’ performances to the amount of texture on the objects. The first
level shows no texture and thus represents the set of textureless objects. For the remaining two
levels synthetically generated textures were used. For each coin such a texture was generated by
placing random characters from different fonts at positions described by a quasi-random spatial
distribution. Texture density was measured by computing the mean gradient magnitude in the
texture images (for texture density level 1 and texture density level 2 the threshold was set to
0.04 and 0.08, respectively).

For each model and dataset, 65 images with varying illumination directions were rendered.
The camera image plane was placed parallel to the coin and light source positions were defined
by their azimuth angleϕ and elevation angle λ, as illustrated in Figure 4.10. Eight levels of
λ ∈ {10◦, 20◦, . . . , 80◦}with eight levels of ϕ ∈ {0◦, 45◦, . . . , 315◦} each were used to produce
64 images. The 65th image was rendered with the light placed at the camera position (i.e. λ =
90◦). Figure 4.11 shows images of one model rendered with the same illumination parameters
of ϕ = 315◦ and λ = 60◦ for the twelve synthetic datasets. Figure 4.12 shows the appearance
variation induced by changing the light sources on the same textureless model and a specular
intensity of 0.50.

In Figure 4.13 all coin models are shown. It can be recognized that the coin models exhibit,
on a local level, smooth isotropic as well as non-isotropic surface parts and thus cover the wide
range of surface characteristics desired for the purpose of this evaluation. As a contribution to
other researchers in this field, the overall dataset is available for download3.

Amsterdam Library of Object Images

The Amsterdam Library of Object Images4 (ALOI) [Geusebroek et al., 2005] is an image
database of 1 000 objects that were photographed from three viewpoints and with eight illu-
mination configurations each. The database contains a wide variety of textureless objects (e.g.,
a nut, a sponge, white cotton, a metal elephant, a plastic cup...) as well as textured objects
(e.g., labeled boxes, an alarm clock, a calendar, a cream tube, a shoe ...), as shown in Figure
4.14. Therefore, the ALOI images provide a realistic and challenging database due to the high
variation of material BRDF and surface smoothness among the objects.

2http://www.blender.org/ (accessed on June 8th, 2014).
3http://www.caa.tuwien.ac.at/cvl/people/zamba/sidire/ (accessed on June 8th, 2014).
4http://staff.science.uva.nl/~aloi/ (accessed on June 8th, 2014).
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Figure 4.10: Camera and illumination setup for the synthetic datasets.

Texture-
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Figure 4.11: Coin model rendered with different material properties and texture densities.
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Figure 4.12: All 65 images of the coin model shown in Figure 4.11 rendered without texture
and specular intensity of 0.50.

.

Figure 4.13: All 14 coin models used for creating the synthetic datasets. For this figure all
models were rendered without texture, specular intensity of 0.25, light source azimuth angle
ϕ = 135◦ and elevation angle λ = 50◦.

4.1.2.2 Evaluation Procedure

For evaluation an empirical performance measure is needed in order to assess the quality of
a image representation by means of its distances to true and false images, as depicted in Fig-
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(a)

(b)

Figure 4.14: Examples of (a) textureless and (b) textured objects in the ALOI dataset.

ure 4.1: a “good” feature will minimize the distance between image patches showing the same
object part and maximize the distance between image patches showing different object parts.
Hence, inspired by the evaluation scheme presented in [Brown et al., 2011], these two groups of
distances are measured for a given feature by sets of true and false image patch pairs. True patch
pairs show the same object patch but with different illumination conditions, whereas false patch
pairs show different object patches. Figure 4.15a-c shows examples of true patch pairs from the
synthetic datasets, the ALOI textureless dataset and the ALOI textured dataset, respectively.

For a given representation and set of true and false pairs, the distances form two histograms,
as depicted in Figure 4.16. These two histograms of distances are integrated to build a Receiver
Operating Characteristic (ROC) curve [Fawcett, 2006] of which the Area Under Curve (AUC)
is computed as performance measure. The ROC analysis allows to investigate how reliably one
can discern true pairs from false pairs by evaluating the relationship between the True Positive
Rate (TPR) and False Positive Rate (FPR), defined as

TPR =
number of true positives

number of positives
,FPR =

number of false positives
number of negatives

. (4.12)

Here, the number of true positives is the number of true patch pairs whose distance is below a
given threshold and the number of positives is the total number of true patch pairs in the dataset.
Likewise, the number of false positives is the number of false patch pairs whose distance is
below the same threshold and the number of negatives is the total number of false patch pairs
in the dataset. The ROC curve is then formed by varying the threshold from zero up to the
maximum distance occurring in the overall set and measuring the corresponding TPRs and FPRs.
The AUC is a simple scalar measure allowing to compare the performance of ROCs and their
underlying classifiers, with 1.0 being a perfect result and 0.5 being the statistical outcome of
random guessing. Intuitively, a highly illumination-insensitive feature will have less overlap
between the two histograms shown in Figure 4.16, and thus will produce values nearer to the top
left corner of the ROC space and a higher AUC than a less illumination-insensitive feature.

For generating the patch pairs, the same number of true patch pairs and false patch pairs were
randomly extracted from the images of a dataset. A patch size of 16 × 16 pixels was used, but
in general the patch size has no significant impact on the results, as has been observed in initial
tests. To generate patch pairs from the ALOI datasets, 80 textureless objects and 80 textured
objects were manually identified in the dataset and non-overlapping true and false patch pairs
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(a) Synthetic Datasets

(b) ALOI textureless dataset

(c) ALOI textured dataset

Figure 4.15: True patch pairs used for evaluating the image representations (of size 64× 64 for
better illustration).

AUC of ROC curve

Distances of 
 true patch pairs

Distances of 
     false patch pairs

TP
R

FPR

Figure 4.16: Histograms of distances between true and false patch pairs and derived ROC curve
with measured AUC.
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were randomly picked from images taken from the same viewpoint (12 000 from the textureless
objects and 18 000 from the textured objects).

4.1.2.3 Parameter Selection

As the main purpose is the study of the features’ behavior on textureless objects with varying
material properties, tests for parameter selection were conducted on a mixed patch pair set ex-
tracted from the four synthetic datasets of textureless objects. More particularly, for the true
patch pairs 50 000 pairs were randomly extracted, each showing a 16× 16 region from the same
object and at the same image position, but illuminated from different directions. For the false
patch pairs, 50 000 pairs were randomly extracted, each showing a 16×16 region from different
objects at different positions. Parameter selection was then achieved by an exhaustive search
over the parameter space.

For GD and GO, it was tested if a presmoothing of the patches or a larger Sobel filter than
the standard 3 × 3 one are beneficial in terms of recognition performance, but no improvement
could be detected. For LOG an exhaustive search was done to find an optimal standard devia-
tion of 1.5 of the Gaussian. For SQI, no exhaustive parameter selection was conducted as this
method is intended for textured objects and initial tests with several parameter settings were
not successful in substantially improving the generally bad performance of SQI. Therefore, the
standard settings defined in the INFace Toolbox were used.

For the features JG and JEG, the parameters defining the shape of the Gabor filters (c
and γ) as well as the number N of orientations are of interest. Hence, a parameter space of
c ∈ {0.30, 0.35, . . . , 1.00}, γ ∈ {0.50, 0.60, . . . , 1.50} and N ∈ {2, 3, . . . 12} was defined.
Figure 4.17 shows the maximum AUC achieved over the parameter space for various fixed val-
ues of c, γ and N . It can be derived from these results that the best performance is achieved
when c is set in a range of 0.45 − 0.50, i.e. the filters have a shape close to second derivatives
of Gaussians (see also Figure 4.8). The optimal value for the aspect ratio of the filters defined
by the parameter γ is around 0.9. The experiments also reveal that the number of orientations
has only a minor influence on the overall performance for N ≥ 6. Based on these results, for
the further experiments parameter values of γ = 0.9 and N = 6 for JG, JEG and JMSEG are
used, as well as c = 0.50 for JEG and JMSEG and c = 0.45 for JG. The resulting shape of the
JEG and JMSEG filters is shown in Figure 4.18, whose similarity to second derivative of Gaus-
sian filters becomes apparent by comparison with Figure 4.8. Optimal filter sizes ω1 . . . ωM for
JMSEG were identified as ωj = ω12(j−1)/2 with ω1 = 1 and M = 8.

4.1.2.4 Recognition Performance Depending on Object Specularity and Texturedness

To evaluate the recognition performance of the features for the twelve synthetic datasets, 50 000
true and false patch pairs were randomly extracted from each dataset. Patch pairs contained
in the mixed set for parameter selection were not included into the four textureless datasets
used for this evaluation. The results are plotted in Figure 4.19a-c. It can be clearly seen that
on textureless objects the representations based on even Gabor responses (JEG and JMSEG)
perform best. The multi-scale representation of JMSEG is beneficial especially on Lambertian
surfaces where it shows a significant improvement of recognition performance over JEG (AUC
of 0.933 against 0.899). Complex Gabor filter responses (JG) are better than the other remaining
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Figure 4.17: Recognition performance of JEG and JG dependent on parameters c, γ and N .

Figure 4.18: The even Gabor filter with c = 0.5 and γ = 0.9 used for JEG and JMSEG.

features but it can be concluded from the worse performance compared to JEG that the phase
invariance of the complex filter decreases its recognition power. For image gradients, there is a
large discrepancy between the use of gradient orientations (GO) and gradient directions (GD).
GD is much less stable than GO as it is highly vulnerable to edge polarity changes induced
by opposite lighting directions between true patch pairs. SQI is only slightly better and per-
forms substantially worse than the top-performing features, as this representation is designed
for textured objects and is thus highly affected by changes of the shading patterns on texture-
less objects. Therefore, the method achieves its best results on Lambertian objects with a high
texture density (Figure 4.19c). Another conclusion from the results on textureless objects is that
more specularity of the objects’ material increases the performance. Although a specular BRDF
causes more appearance variations from light source variations than a Lambertian BRDF, sur-
face characteristics are also more accentuated by a specular surface, which in turn supports its
recognition. The only exception of this effect is LOG which has been especially proposed for
smooth, Lambertian objects [Osadchy et al., 2007].

The results on textured objects shown in Figure 4.19a-b show that texture increases the
recognition performance of all features and in general that their performance is correlated to
the degree of texture variation. Naturally, since changes of albedo are less affected by lighting
variations than changes of object depth, the recognition of objects is more robust the more albedo
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(a) Textureless objects.
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Figure 4.19: Comparison of recognition performance for different levels of texturedness and
material specularity.

changes occur (i.e. a higher texture density). However, the representations based on Gabor filters
are the best performing features for all scenarios, regardless of the texture density of the objects.

4.1.2.5 Influence of the Amount of Light Source Change

An interesting question in the context of this evaluation is how the amount of light source dif-
ference between the images to be compared has an influence on the discriminative power of the
features. If one examines the ROC curves obtained from all textureless patch pairs shown in
Figure 4.20a, it is evident that some curves cross with each other. This indicates that the relative
orderings of recognition performance among the features are dependent on the amount of light
source difference. The representations GD, SQI and GV, which generally perform badly due to
their non-invariance to the polarity of image edges, have a lower false positive rate in a true posi-
tive range of around 0.0−0.4 than the generally top-performing feature JEG. On the other hand,
for higher false positive rates they have true positive rates below the line of no-discrimination.
This effect is caused by the strong impact that opposite lighting directions between patch pairs
of textureless objects have on the computed distance, as in such cases the polarity change makes
the distance become larger than the distances between random false patch pairs. Albedo changes
usually do not cause edge polarity changes for opposite lighting directions, and thus this effect
is far less pronounced for textured objects (see Figure 4.20b)

To evaluate the features’ performances with respect to the amount of light source differences,
this issue is taken into account for the ROC curve generation by subselecting patch pairs from the
textureless objects with a given difference of light source azimuth or elevation. Hence, only true
patch pairs with a specified azimuth difference and no elevation difference, and vice versa, are
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Figure 4.20: ROC curves for textureless and textured objects. The values in brackets are the
AUCs of the features. The black solid line depicts the line of no-discrimination.

considered. The results of these tests are shown in Figure 4.21. The plotted curves demonstrate
that for smaller light source changes the performances of the features are close together whereas
for stronger changes there is also a higher difference in performance. GD is a competitive fea-
ture for small light source changes of 45◦ azimuth and 10◦ − 20◦ elevation, but its performance
decreases stronger than that of other features for larger light source changes. GD, SQI and GV
are especially vulnerable to changes of the light azimuth, in contrast to representations which
are invariant to edge polarity. For these features azimuth changes of 90◦ represent the worst
case scenario, whereas the recognition performance at changes of 180◦ lies in the same range
as the performance at changes of 45◦. An important aspect of these experiments is that JM-
SEG shows the top performance for all levels of light source changes, but its dominance is more
pronounced for higher levels of change. Therefore, for scenarios where only little variations of
illumination conditions are expected, GD can still be considered as a powerful low-level rep-
resentation, whereas for more extensive variations single- or multi-scale Gabor filter responses
work remarkably better than all other representations.

4.1.2.6 Recognition Performance on Real Datasets

As can be seen in Figure 4.22, the results on the real datasets widely reflect the findings of the
experiments on the synthetic datasets. JMSEG is again the best performing feature for texture-
less and textured objects, followed by JEG and JG. The generally lower performance on the real
datasets is explained by image noise on the images as well as the acquisition setup used. There
are more underexposed (i.e. completely black) and overexposed (i.e. completely white) objects
parts which evidently hinders recognition. Nonetheless, the results show that the insights gained
from the experiments on synthetic datasets can be transferred to the real world.
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Figure 4.21: Recognition performance in relation to the amount of light source difference.

Textureless Objects Textured Objects

0.65

0.7

0.75

0.8

0.85

A
U

C

 

 

GD
GO
LOG
JG
JEG
JMSEG
SQI
GV

Figure 4.22: Recognition performance on the real ALOI datasets of textureless and textured
objects.

4.2 LIDRIC: A Local Image Descriptor Robust to Illumination
Changes

Due to the demonstrated superiority of the JMSEG feature transformation for illumination
changes, in this section this low-level feature is used as a basis for image descriptor construction.
It has been argued in Section 2.3.4 that typical effects of illumination variations like changes
of edge polarity or spatially varying brightness changes are not taken into account by current
descriptors. Gradient directions, which are a commonly used low-level feature for descriptor
construction [Lowe, 1999,Ke and Sukthankar, 2004,Mikolajczyk and Schmid, 2005,Tola et al.,
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2008,Chen et al., 2008,Simonyan et al., 2012,Seidenari et al., 2014], are not well-suited to han-
dle these variations, as shown in Section 4.1.2. The same applies to other low-level features used
like Haar wavelets [Bay et al., 2006] or pairwise image intensity comparisons [Calonder et al.,
2010, Leutenegger et al., 2011, Alahi et al., 2012]. Hence, by relying on a more suitable low-
level feature, a more illumination-insensitive image description is achieved. This description is
enriched with spatial statistics in a spatial coding stage.

In Section 4.2.1 the methodology for constructing the LIDRIC descriptor is described in de-
tail. In Section 4.2.2 the descriptor is empirically compared to existing local image descriptors.
In this evaluation the shortcomings of past evaluations are omitted by using a more challenging
dataset for testing insensitivity to illumination conditions. Past evaluations [Mikolajczyk and
Schmid, 2005, Moreels and Perona, 2007, Van De Sande et al., 2010] have the problem of only
marginally considering illumination changes (see also Section 2.3.4): [Mikolajczyk and Schmid,
2005] and [Van De Sande et al., 2010] only test image brightness changes and ignore changes
of the light source direction. Moreels and Perona [Moreels and Perona, 2007] use only three
different lighting configurations and couple the descriptor performance evaluation with the in-
terest point detection step. The experiments presented in this thesis aim at a broader evaluation:
testing the robustness of the small image patch descriptions against changes of the light source
direction for textured as well as textureless objects, the latter being the more challenging type of
objects.

4.2.1 LIDRIC Descriptor Construction

The LIDRIC descriptor is based on JMSEG described in Section 4.1.1, as this low-level feature
showed the top-performance in the illumination insensitivity evaluation. Therefore, for given
values of the filter shape parameters c and γ,N filters with equally spaced orientations θ1 . . . θN ,
where θi ∈ [0, π[ and θ1 = 0, are constructed. The M scales ω1 . . . ωM are exponentially
sampled to achieve homogeneous intervals, i.e. ωj = kj−1ω1.

In order to build the LIDRIC descriptor, the absolute filter responses Iθi,ωj are computed by
convolving the image patch I with the N ·M filters Gθi,ωje ,

Iθi,ωj =
∣∣∣I ? Gθi,ωje

∣∣∣ . (4.13)

These output images are arranged to a feature map F that contains for every image point p
and discrete filter parameters θi and ωj the absolute filter responses,

F (p, θi, ωj) = Iθi,ωj (p). (4.14)

Obviously, the filter outputs Iθi,ωj depend on the image contrast, e.g., stronger ridges pro-
duce higher values in F (p). This gives a natural weighting of the local low-level features, in
the same manner as, for instance, the gradient magnitude is used to weight the histogram inputs
in the SIFT descriptor [Lowe, 2004]. Global linear brightness changes on the image patch can
then be compensated by normalizing the final histogram vector to unit length. However, differ-
ent light source directions can lead to brightness changes that vary locally, as demonstrated in
Figure 4.2b-d. Therefore, similar to JMSEG, F is normalized on a per-pixel level,
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F̃ (p, θi, ωj) =
F (p, θi, ωj)√∑N

i=1

∑M
j=1 F (p, θi, ωj)2

. (4.15)

An option would also be to normalize only over the responses of different orientations, as
done for JMSEG, but normalizing over all responses is more robust when parts of the image re-
gion are over- or undersaturated. On discrete images linear brightness changes lead to a clipping
of values which are outside the dynamic range of the sensor. The normalized feature map F̃ is
not invariant to brightness changes when such effects occur, but normalizing over all orientation
and scale responses is more robust in presence of partial over- and undersaturation as wider fil-
ters and thus more data samples are included. For illustration, the feature maps obtained for the
right textureless image of Figure 4.2c are shown in Figure 4.23 for N = 6, ω1 = 4 and k = 2.

Figure 4.23: Feature maps for the right textureless image of Figure 4.2 with size 128×128. Fil-
ter orientations of {0, 1

6π,
2
6π,

3
6π,

4
6π,

5
6π} are shown from left to right and scales of {4, 8, 16}

from top to bottom.

The last step of the descriptor construction is to perform a spatial pooling on F̃ to increase
the descriptor’s discriminative power by adding spatial information. Formally, L cellsCl(p), l =
1 . . . L are defined that represent the weighting of the spatial location p for the cell’s local sub-
histogram. The final descriptor is a 3D joint histogram H(θi, ωj , l) of the values in F̃ ,

H(θi, ωj , l) =
∑
p∈F̃

Cl(p) · F̃ (p, θi, ωj). (4.16)

The cells Cl can be, for instance, of Gaussian shape to achieve a DAISY-like pooling [Tola
et al., 2010, Brown et al., 2011] or perform the bilinear weighting between squared cells as in
the SIFT descriptor [Lowe, 2004]. However, in general the optimal pooling scheme depends on
the application scenario, and a finer pooling increases the distinctiveness of the descriptor while
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decreasing its robustness to deformations of the underlying image structure and vice versa. Thus,
for object matching between viewpoints one can use smaller cells the less viewpoint differences
are expected. In the presented experiments, the standard SIFT 4× 4 squared cells with bilinear
weighting [Lowe, 2004] for spatial pooling is used as it achieves reasonably good results on all
datasets. The corresponding cells C1, . . . , C16 are visualized in Figure 4.24. Please note that the
cells are weighted with a Gaussian window with a standard deviation of half of the window size
to make the descriptor less dependent on the exact keypoint positioning [Lowe, 2004].

Figure 4.24: The 16 cells for the SIFT-like 4× 4 pooling with bilinear weighting.

Although Gabor filters are well known and often used [Kamarainen et al., 2006], to the
best of the author’s knowledge they have never been used before in this manner for local image
descriptors. Multi-scale and/or multi-oriented filter banks are used by others for image recog-
nition tasks, e.g. by [Kyrki et al., 2004, Ahonen and Pietikäinen, 2009] with Gabor filters and
by [Brown et al., 2011] with their single-scale Gaussian derivative counterparts, but the filters
are usually used in quadrature, whereas in this work only their real part is used. It is shown in
the general evaluation (see Section 4.1.2) that combining even and odd outputs has no positive
effect on recognition performance. Additionally, it is shown in the LIDRIC experiments (see
Section 4.2.2) that using only the real part for feature map construction achieves similar results
under strong illumination variations while saving computation time. Larsen et al. [Larsen et al.,
2012] also use filter bank responses to build a local descriptor, but they rely on higher-order
derivative filters which are applied to single positions on the patch. In contrast, in this work
statistics of the filter responses are established at all pixel positions. The statistics are well-
founded for an illumination-insensitive descriptor by means of measuring the spatially varying
frequency of occurrence of locally normalized responses.

4.2.2 Experiments

For the experiments the same evaluation procedure as described in the general evaluation (see
Section 4.1.2.2) is applied, instead of combining the evaluation with interest point detection as
done in [Mikolajczyk and Schmid, 2005, Moreels and Perona, 2007]. However, in lieu of the
synthetic coin model datasets two additional data sets are used which are more appropriate for
descriptor evaluation. All datasets consist of non-aligned image data for true patch pairs and
thus simulate the common situation of inexact keypoint positioning and local deformations due
to viewpoint differences when matching local image structures. The datasets are described in
Section 4.2.2.1. Gabor filter parameter selection for LIDRIC construction is handled in Sec-
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tion 4.2.2.2 and its performance compared to other descriptors is reported and discussed in Sec-
tion 4.2.2.3.

Three configurations of the LIDRIC descriptor are used for evaluation: one that uses only
single-scale even Gabor filters (SSEG) with dimensionality N , one that uses multi-scale even
Gabor filters (MSEG) with dimensionality N ·M and the full descriptor which uses a 4× 4 grid
for spatial pooling (MSEG4x4) with dimensionality N ·M ·L. These descriptors are compared
to several descriptors proposed in literature where implementations are provided for download:
SIFT [Lowe, 2004], SURF [Bay et al., 2008], DAISY [Tola et al., 2010], MROGH, MRRID
[Fan et al., 2012], LIOP [Wang et al., 2011], FREAK [Alahi et al., 2012] and GLAC [Kobayashi
and Otsu, 2008]. Additionally, the best DAISY descriptor reported in [Brown et al., 2011]
(BESTDAISY) was implemented which uses second order steerable quadrature pair filters, a
DAISY-like spatial pooling and a final vector normalization with range clipping. A modified
version of the SIFT descriptor is also tested which uses unsigned gradients in the range [0, π[ to
handle the polarity changes of edges on textureless surfaces under opposite lighting directions
(UGSIFT).

4.2.2.1 Datasets

Experiments are conducted on four datasets of true and false image patch pairs. The ALOI
datasets described in Section 4.1.2.1 are again used. To test the descriptors on scenarios with
less lighting variations the existing image patch pair databases Liberty and Virtual World are
also used for evaluation.

ALOI Textureless and ALOI Textured

The same 80 textureless objects as already selected for the patch pair generation described in
Section 4.1.2.2 are used, but with larger patch sizes of 64 × 64. Correspondences for the true
patch pairs were identified by manually estimating the homography between images from the
three viewpoints. The viewpoint changes are small enough to describe the image correspon-
dences by a homography and thus errors are also considered as being small enough to just
simulate the uncertainty of interest point detection. In total, 60 000 true and 60 000 false patch
pairs were extracted. Likewise, the same 80 textured objects were selected resulting in a set of
120 000 true and false patch pairs.

Liberty Dataset

The Liberty dataset5 consists of true and false patches sampled from 3D reconstructions of the
Statue of Liberty. This dataset has been used for descriptor learning [Brown et al., 2011] and
represents an appropriate descriptor evaluation dataset for the scenario of multi-view reconstruc-
tion of large-scale outdoor objects. Hence, it also includes realistic outdoor lighting variations,
although their amount and frequency is unknown. 50 000 patch pairs of the dataset are used for
evaluation.

5http://www.cs.ubc.ca/~mbrown/patchdata/patchdata.html (accessed on June 8th, 2014).
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Virtual World Dataset

This dataset6 contains 3 000 photorealistic images of a virtual city model and has been used
by [Kaneva et al., 2011] for image descriptor evaluation in the same manner as the real image
patches in [Brown et al., 2011]. Likewise to [Kaneva et al., 2011], 120 000 true patch pairs were
extracted by identifying corresponding Difference-of-Gaussians keypoints between viewpoints
and different times of the day to introduce changing lighting conditions. Finally, the patches
were resized to the standard size of 64 × 64 based on the detected scale. The advantage of
this dataset over the Liberty dataset is that it exhibits a more controlled and evenly distributed
variation of the lighting conditions, as each scene was rendered under five different lighting
conditions (different times of the day), as shown in Figure 4.25.

Examples of true patch pairs contained in the datasets are shown in Figure 4.26. Please
notice that, in contrast to the patches of the general evaluation (see Figure 4.15), the image
structures of the patch pairs are not perfectly aligned. It also has to be noted that the correct
patch pairs of all datasets show no rotation differences. Hence, to allow for a fair comparison,
in the presented evaluation the rotation-variant versions of the descriptors are used, except for
MROGH, MRRID and LIOP which are inherently rotation invariant. The other descriptors can
be made rotation invariant by determining a canonical orientation per patch and describing the
per-pixel features and cells relative to this orientation [Lowe, 2004]. The same principle can be
used to make LIDRIC rotation-invariant, although it is not treated in this work.

6http://people.csail.mit.edu/biliana/projects/iccv2011/ (accessed on June 8th, 2014).

9 a.m. 11 a.m. 1 p.m. 3 p.m. 5 p.m.

Figure 4.25: Examples of scene renderings contained in the Virtual World dataset simulating
five different times of the day.
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(a) ALOI Textureless

(b) ALOI Textured

(c) Liberty

(d) Virtual World

Figure 4.26: Examples of true patch pairs in the datasets.

4.2.2.2 Parameter Selection

In order to investigate the relation of the LIDRIC parameters to the recognition performance,
parameter selections were defined in discrete intervals and the AUC of all parameter combina-
tions on a selected training set was determined. As the main goal of the LIDRIC descriptor is to
achieve an optimal performance under strong lighting variations, a mixed dataset was built by
randomly extracting 25 000 patches from the representative datasets ALOI Textureless and ALOI
Textured. MSEG4x4 was then modified according to the filter shape parameters c and γ as well
as the number of orientations N and tested on the mixed dataset.

Figure 4.27a shows the influence of the number of orientations by plotting the best AUC
for a given value of N and all values of c and γ. It can be seen that for N > 6 no substantial
improvement can be achieved. Therefore, a value ofN = 6 is chosen for all further experiments.
In Figure 4.27b the AUC values for the filter parameters c and γ are shown. It is evident that
the best performance is not achieved for filter parameters that make the Gabor filter similar to
the second derivative of Gaussian used in [Osadchy et al., 2007] (c ≈ 0.4), but for values of c
close to 0.6 where the Gaussian envelope is wider and thus a higher frequency and orientation
resolution is provided [Kamarainen et al., 2006]. Compared to the second derivative of Gaussian
as well as the even Gabor filter used in the general evaluation with c = 0.5 (see Figure 4.18),
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this comes at the price of an increased spatial uncertainty of the filter. However, this seems not
to be critical due to the subsequent pooling step. For values of c in this range the aspect ratio
γ has only a minor influence on the performance. Based on these results, parameter values of
c = 0.6 and γ = 1 are used for the experiments. Figure 4.28 shows the shape of the filter used.
Optimal parameters for the multi-scale spacing have been determined on this dataset as ω1 = 2,
k =
√

2 and M = 8.

4.2.2.3 Results and Discussion

At first, the illumination-insensitivity of the proposed descriptor is qualitatively demonstrated
by analyzing the descriptor differences on the image pairs shown in Figure 4.2. In Figure 4.29
the LIDRIC descriptors using SSEG are shown on the left along with the absolute distances
of vector values, whereas the SIFT equivalents are shown on the right. It can be seen that the
LIDRIC descriptor is highly insensitive to the illumination variation effects on all object types,
indicated by low difference values of corresponding descriptor vector elements depicted in red.
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Figure 4.27: Performance of descriptor MSEG4x4 for different values of N , c and γ.

Figure 4.28: The even Gabor filter with c = 0.6 and γ = 1.0 used for LIDRIC.
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In contrast, SIFT is only robust against the global brightness changes on flat, textured objects.

Results on the four datasets were achieved by applying the descriptors to all patch pairs but
excluding the patches used for parameter selection from the ALOI Textureless and ALOI Textured
datasets. The obtained ROC plots are shown in Figure 4.30. The corresponding legends list the
descriptors sorted by their achieved AUC given in brackets.

For the datasets representing strong illumination variations between patches (ALOI Texture-
less and ALOI Textured), all versions of the LIDRIC descriptor outperform the other descriptors,
with a larger advance in performance for the more challenging textureless objects. On both
ALOI datasets even the descriptor SSEG with a dimensionality of 6 achieves a better recog-
nition performance than the remaining high-dimensional descriptors with dimensionalities of
≥ 64. MSEG4x4 clearly shows the best performance on these datasets as well as on the Virtual
World dataset which is assumed to represent more lighting variations than the Liberty dataset.
On the Liberty dataset MSEG4x4 is outperformed by BESTDAISY but shows nearly the same
performance as SIFT and DAISY. However, BESTDAISY has been especially optimized for
this dataset. It is worth noting that the best parameters for the LIDRIC descriptor were selected
according to the datasets ALOI Textureless and ALOI Textured, but parameter tuning can also be
used to improve the results of LIDRIC on the Liberty dataset. By using Gabor filters with a shape
more similar to a second Gaussian derivative (c = 0.4) and N = 8, MSEG4x4 is competitive to
BESTDAISY on the Liberty dataset (AUC=0.9582), while still achieving the best performance
on ALOI Textureless and ALOI Textured (AUC of 0.9563 and 0.9807, respectively). In general, it
can be concluded that MSEG4x4 shows the best performance under strong illumination changes
for a wide range of filter shapes. Even the worst parameter combination with c = 0.3 and
γ = 0.5 (see Figure 4.27b) achieves a better performance than the other descriptors on ALOI
Textureless (AUC=0.9054, not shown in Figure 4.30).

Among the remaining descriptors, the gradient-based descriptors SIFT and DAISY show
the best performance under illumination changes. It is also shown that using unsigned gradi-
ents (UGSIFT) is beneficial for the SIFT descriptor by making it invulnerable to edge polarity
changes. However, this lowers also the discriminability of the SIFT descriptor and thus its recog-
nition performance is decreased when less illumination changes are present in the data (AUC of
0.9301 compared to 0.9498 on the Liberty dataset). Image gradients have previously been men-
tioned to exhibit illumination-insensitivity properties [Chen et al., 2000, Osadchy et al., 2007]
and thus descriptors, which rely on per-pixel features that are not well adapted to the problem of
changing lighting conditions (GLAC, MROGH, MRRID, LIOP, SURF, FREAK), have a worse
performance compared to SIFT and DAISY.

It has been shown in Section 4.1.2 that complex Gabor filters are less distinctive than just
using the even filter part for aligned image data. In order to investigate this issue for the non-
aligned image data used in this evaluation, the results achieved by either using the even Gabor
filters or the entire complex filters for LIDRIC are compared in Table 4.1. It is shown that using
the magnitude of both the even and odd filter as feature map does not contribute to considerably
better results, while consuming twice the computational power. The advantage of the complex
filters is in general that the response is invariant to the phase of the signal, but this does not help
to improve illumination insensitivity, as has also been noted by Osadchy et al. [Osadchy et al.,
2007].
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LIDRIC descriptors SIFT descriptors

(a) Flat, textured

LIDRIC descriptors SIFT descriptors

(b) Non-flat, textured

LIDRIC descriptors SIFT descriptors

(c) Textureless

LIDRIC descriptors SIFT descriptors

(d) Textureless, shiny

Figure 4.29: Comparison of the LIDRIC descriptor using SSEG4x4 and the SIFT descriptor
on the image pairs of Figure 4.2. The red bar plots show the absolute differences of respective
descriptor vector elements.
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Figure 4.30: ROC curves of the descriptors on the datasets.

ALOI Tex-
tureless

ALOI Tex-
tured

Liberty Virtual
World

Even Gabor Filters 0.9674 0.9854 0.9392 0.9663
Complex Gabor Filters 0.9666 0.9855 0.9397 0.9656

Table 4.1: Comparison of AUC values achieved when using even or complex Gabor filter re-
sponses for the LIDRIC descriptor.

4.3 Summary

In this chapter the problem of illumination-insensitive recognition of objects in unconstrained
conditions is investigated. Therefore, in a preliminary study the discriminative power of various
low-level image features for a pixel-wise representation of the underlying surface characteris-
tics of the object. The emphasis of this study is on textureless objects, as this kind of objects
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is an under-researched topic in existing literature, although they regularly occur in image data
for computer vision tasks (e.g., the classification of coins or the matching of building facades).
Hence, a new dataset with rendered images of 3D models is used which allows to directly com-
pare the influences of texture and material properties in an object recognition scenario. The
results are further validated on a dataset of real object images and finally reveal that jets of
single- and multi-scale even Gabor filter responses are the most powerful low-level representa-
tion among the investigated ones. They outperform all other features regardless of object ma-
terial conditions, levels of texturedness or amount of illumination change, but their superiority
is more prominent for the textureless objects which naturally show a higher degree of variation
under illumination changes. It is demonstrated that features claimed to be insensitive to illumi-
nation conditions based on previous studies, like gradient direction or the self-quotient image,
perform substantially worse on textureless surfaces than on textured surfaces.

As a consequence, since popular image descriptors are based on such low-level features, they
are likewise affected by illumination effects that are more complex than the simple monotonic
brightness changes on textured, flat objects. It is demonstrated that existing descriptors, while
performing reasonably well in scenarios with textured objects and only low changes of illumi-
nation conditions, show a tremendous decrease of performance in scenarios with strong changes
of illumination conditions, especially when textureless objects are involved. The absence of tex-
ture on objects as well as strong illumination variations makes the recognition more challenging
and this scenario has been neglected in descriptor design and evaluation in the past. Therefore,
grounded on the findings of the preliminary study, the LIDRIC descriptor based on even Gabor
filter responses is proposed. The descriptor shows to be more robust against the effects caused
by changing lighting conditions on non-flat surfaces and thus a recognition performance boost
in such scenarios is gained.
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CHAPTER 5
Correspondence-Based Image

Similarity

This chapter deals with the determination of image similarities based on local correspondences.
Therefore, given two images, we want to derive an image similarity measure that tells us how
“similar” the objects in the image are. In analogy to Figure 4.1, this means that the similarity
metric should be minimized for similar objects and maximized for dissimilar objects. In the
presented methods, similarity is defined in terms of class memberships of ancient coins, i.e. two
images of coins are said to be similar if they show a coin specimen from the same class.

It has been argued in Sections 2.1.4 and 2.1.5 that the use of local features is subsidiary to
overcome image clutter and non-rigid object deformations. However, it remains unclear how
geometric constraints can be optimally incorporated for robust similarity measurements. The
method presented in Section 5.1 proposes to use the minimal costs from a locally regularized
dense correspondence method [Liu et al., 2011] as similarity. The method serves as a proof-of-
concept that geometric constraints substantially improve the performance of the coin similarity
metric. Consequently, it can be used in an exemplar-based classification framework that is not
subject to the limitations of learning-based methods described in Section 1.1. Additionally, a
hierarchical subselection scheme is proposed to reduce the classification runtime. This method-
ology has been originally published in [Zambanini and Kampel, 2011] and [Zambanini and
Kampel, 2012].

In Section 5.2, image comparison based on location-aware correspondences is enhanced to
an improved similarity measure with lower computational complexity. In this metric the cor-
respondence search is not guided by the feature locations, which are instead utilized for the
metric by means of evaluating the geometric plausibility of the matched features. This method
has been originally published in [Zambanini et al., 2014], with an extended large-scale evalua-
tion in [Zambanini and Kampel, 2014]. Experimental results for both methods are reported in
Section 5.3.
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5.1 Dense Feature Matching for Hierarchical Coarse-to-Fine
Exemplar-Based Classification

In this section a method for automatically estimating the visual similarity between two coin im-
ages is presented and it is shown how this visual similarity can be used in a coarse-to-fine scheme
for the ancient coin classification task. In Section 5.1.1 the SIFT flow method is described and
the way of using it for ancient coin classification is presented. In Section 5.1.2 an adaptation
of the SIFT flow algorithm for handling coin rotations is described. Section 5.1.3 presents the
extension of hierarchical coarse-to-fine matching for classification speed-up.

5.1.1 Image Similarity from SIFT Flow

The measurement for coin image similarity is derived from a SIFT flow based image matching
[Liu et al., 2011]. SIFT flow aligns images by minimizing an energy function defined over a
dense grid of SIFT features. The main application field of this technique highlighted by the
authors is scene image retrieval and alignment, i.e. for a given image similar scenes are found
and densely aligned. Based on the specific challenges of ancient coin classification described
in Section 2.5.2, it is argued that this method is also well suited for coin images as it allows a
spatially coherent matching with local variations that is robust to image clutter. As coins from
the same class show a similar spatial arrangement of local features, matching these images is
assumed to produce a lower energy than matching images from two different classes.

SIFT flow is based on the SIFT descriptor [Lowe, 2004]. The descriptor is computed with
a fixed scale and densely over the image, generating a 128-dimensional vector for every pixel,
the so called SIFT image S. The SIFT images of two coins from the same class are shown in
Figure 5.1. It can be seen that the shared image structures are also encoded in the local pixel-
wise SIFT features. In order to find an image matching, corresponding SIFT features between
two SIFT images S′ and S′′ have to be determined for each pixel location, represented as a
field of flow vectors w(p) = (u(p), v(p)) at grid coordinates p = (x, y). This is achieved by
minimizing the following energy function on w:

E(w) =
∑
p

min(||S′(p)− S′′(p + w(p))||1, q) (5.1)

+
∑
p

κ(|u(p)|+ |v(p)|) (5.2)

+
∑

(p,q)∈Φ

min(β|u(p)− u(q)|, d) + min(β|v(p)− v(q)|, d) (5.3)

where Φ contains all four-connected pixel pairs. The energy function is composed of three terms.
The data term (5.1) computes the L1-distances of all corresponding descriptors and thus mea-
sures how similar the local image structures are. The small displacement term (5.2) penalizes
correspondences that are in different absolute image regions, as it is assumed to be more likely
that corresponding image parts share the same image region and thus the flow vectors are small.
And finally, the smoothness term (5.3) forces the algorithm to produce smooth alignments, i.e.
flow vectors of adjacent pixels are similar. The parameters q and d are thresholds for clipping the
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Figure 5.1: SIFT images of two coin images from the same class. The color values are obtained
by projecting the 128-dimensional descriptors onto the three principal components with largest
eigenvalues, previously determined from SIFT descriptors of a set of images [Liu et al., 2011].
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Figure 5.2: Illustration of the coarse-to-fine scheme for finding SIFT flow correspondences.

distances in order to reduce the influence of matched outliers. The parameters κ and β control
the relative influences of the individual constraints.

In order to minimize the energy function and to obtain an optimal image matching, a dual-
layer belief propagation [Shekhovtsov et al., 2008] is used. Additionally, a coarse-to-fine match-
ing scheme is applied for speed-up and better matching results. This is needed due to the large
number of variables and states to be optimized, as correspondences are searched for all image
pixels and a pixel of one image can be possibly matched to all pixels of the other image. There-
fore, a coarse-to-fine search is applied on a pyramid of SIFT images: initial correspondences are
first searched on a coarse resolution and this information is iteratively propagated to the finer
resolution layers of the pyramid where the flow vectors are only refined locally. The SIFT image
pyramid is generated by consecutively smoothing and downsampling the SIFT images SK to
S1, where Sk−1 has half the size in pixel dimensions than Sk. This coarse-to-fine scheme for
finding correspondences is illustrated in Figure 5.2. For a given point p to be matched at each
pyramid level k, the best match is found by minimizing E(w) and the found flow vector is used
to center the search window for the level k + 1. At the coarsest level the search window has the
same size as the SIFT image of this level, while for the remaining levels the window size is fixed
to 11 × 11. The authors describe that by this scheme the complexity is reduced from O(h4) to
O(h2 log h), where h is the width/height of the images.
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The adoption of the SIFT flow algorithm for coin classification relies on the following idea:
matching two coin images of the same class will likely produce a lower energy E(w) than
matching coin images from different classes, since a smooth matching can be more likely found
in the former case. An example for this is shown in Figure 5.3. Matching the test coin image with
a coin image from the same class produces a reasonable result, as can be seen in Figure 5.3c,
where the result of warping the image back to the test image using the SIFT flow vectors is
shown. In contrast, matching the test coin image with a coin image of a different class produces
an unsuitable result and thus a higher energy. As a consequence, coin classification can be
achieved by matching the coin image with all coin images in the database and finally choosing
the class of the image with lowest energy. Note that the images have to be normalized with
respect to the size of the coin, as the SIFT features are not extracted sparsely with scale detection,
but densely with a fixed scale. This is accomplished by the segmentation method proposed in
Chapter 3.

(a) Test image (b) Image of same class (c) Image (b) warped onto
test image (energy: ∼ 4.98 ·
107)

(d) Test image (e) Image of different class (f) Image (e) warped onto
test image (energy: ∼ 6.35 ·
107)

Figure 5.3: SIFT flow applied to coin images of the same class (top) and images of different
classes (bottom).
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5.1.2 Insensitivity to Coin Rotations

Although different coin rotations are a rare occasion (see Section 5.3.2), it is worthwhile noting
that SIFT flow can be made insensitive to rotations with little adaptation. As coin rotations
demand to allow large pixel displacements in the correspondence search, the small displacement
term regulated by the parameter κ needs to be ignored. Therefore, by setting κ to 0 a rotation
between image pairs only affects the correspondence search by producing a slightly larger energy
in the smoothness term. It is quantitatively proofed in the experiments in Section 5.3.4 that the
influence of the smoothness term in such cases is negligible and that classification performance
is not affected by coin rotation differences.

Examples of correspondences found by using the energy function E(w) with κ = 0 on coin
images with rotation differences can be seen in Figure 5.4. Here the query image of Figure 5.4a
is matched with an image of a coin from the same class (Figure 5.4b), which produces the
correspondences visualized in Figure 5.4c. It can be seen that reasonable correspondences have
been found despite the variations between the two coins. If SIFT flow is computed for a rotated
version of the coin (Figure 5.4d), the result is almost identical (Figure 5.4e).

(a) Query image (b) Image of same class (c) Image b warped back to
query image

(d) Image b rotated by 90 de-
gree

(e) Image d warped back to
query image

Figure 5.4: Comparison of SIFT flow for coin images with and without rotation differences.
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5.1.3 Hierarchical Coarse-To-Fine Classification

A disadvantage of using SIFT flow for example-based classification is that the runtime is linear
to the amount of images in the database. However, the coarse-to-fine scheme for correspondence
search described in Section 5.1.1 can be utilized by selecting only the most similar coin classes
at each level for further processing and thus subsequently reducing the amount of possible target
coin classes. This way, the computational effort of the whole classification process is reduced
as the more costly computations at finer levels have to be conducted only on a subset of coin
classes. An illustration of the proposed method is shown in Figure 5.5.

Input Image

Dense SIFT 
Feature Extraction

Level 1

Subselection

Dense Matching

Database

Level 2

Subselection

Dense Matching

Database

......

......
Subselection

Level K

Dense Matching

Database

Final Classi�cation

Figure 5.5: Schematic illustrating the proposed coarse-to-fine coin classification procedure.
Given an input image, a dense set of SIFT features is extracted and matched against the database
at the coarsest level. A defined amount of most similar coin images is selected and forwarded
to the matching step of the next finer level. This process is continued until the finest level K is
reached where the final classification decision is made.

More formally, a subselection scheme is applied within the SIFT pyramid consisting of K
layers {S1, . . . , SK}. If the set of coin target classes is denoted by Z and the SIFT flow energy
obtained at level k by Ek, classification of a query SIFT image S is achieved in the following
manner:

1. For all levels k, k = 1...K

a) Compute SIFT flow energiesEk between Sk and all SIFT images of level k of classes
Z .

b) For each class in Z , compute the average energy Ēk for all its SIFT images in the
database.

c) Sort all energies Ēk and reduceZ by selecting only a percentage ξk ofZ with lowest
energy.

2. Finally, take the class with lowest energy.
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5.2 Improved Similarity from Feature Correspondences by
Evaluating Geometric Plausibility (GP)

SIFT flow offers a straightforward way of establishing a dense correspondence field between
coin images, and the energy term composed of the feature similarities and their geometric likeli-
hood provides an appropriate dissimilarity metric as non-rigid deformations are dissolved. This
shows that it is beneficial to consider the location of features to increase the discriminative
power of correspondence-based image similarity. However, SIFT flow enforces dense corre-
spondences (i.e. every single pixel has to be matched to a pixel in the other image) and is thus
vulnerable to outliers (non-matchable parts) due to abrasions, although their influence is dimin-
ished by the truncation of the energy terms. Additionally, in order to keep the computational
complexity of the optimization process low, it only uses weak geometric constraints (i.e. the
L1-norm of the 4-connected neighboring flow vectors and absolute displacements). Therefore,
in the presented method a similarity metric is established in a different way: instead of reg-
ularizing the matching process by geometric constraints, a data-driven first-order matching is
performed and constraints are used afterwards to reason about the geometric plausibility (GP) of
the most stable correspondences found. This method implicitly excludes outliers and improves
the discriminative power of the similarity measure while reducing the computation time. The
higher discriminative power comes from the introduced potential of using stronger constraints
with higher computational complexity, as the constraints have to be evaluated only once for the
given correspondence configuration. Moreover, in contrast to optimization-based approaches
like SIFT flow, the “freedom” of data-driven matching contributes to a statistically more mean-
ingful way of using the matching costs as dissimilarity measure: the geometric plausibility of the
matched features will be higher for similar coins than for dissimilar coins, as statistically more
correspondences are correct. In contrast, in optimization-based approaches the correspondence
search is highly forced by the geometric constraints in case of local appearance ambiguities,
which consequently reduces the similarity metric’s gap between similar and dissimilar image
pairs, and hence the discriminative power.

The goal of the proposed exemplar-based coin classification methodology is to estimate the
similarity of two coin images robustly against scale differences, illumination conditions, im-
age background and non-rigid deformations. Therefore, it utilizes the previous achievements of
this thesis and thus represents the coin classification pipeline shown in Figure 1.2. Robustness
against scale differences and image background is achieved by segmenting the coin region in
the image (see Chapter 3). Robustness against illumination conditions is accomplished by ex-
tracting illumination-insensitive LIDRIC features for matching (Section 5.2.1). Coin similarity
insensitive to non-rigid deformations is finally enabled by first-order matching followed by an
evaluation of the geometric consistency of the correspondences (Section 5.2.2).

5.2.1 Feature Extraction and First-Order Matching

Similar to SIFT flow, in the proposed method local features are regularly extracted from the im-
age. However, the feature sampling is not done for every pixel but at positions pi = (xi, yi) on
a regular grid with pixel interval ∆p = (∆x,∆y). Dense sampling is fundamental for the ef-
fectivity of the method, as more features and thus a statistically more valuable estimation of the
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quality of feature correspondences is provided. In contrast to the SIFT flow method presented
in Section 5.1 and other works [Kampel and Zaharieva, 2008, Arandjelović, 2012, Anwar et al.,
2013], the method does not rely on SIFT features and uses the LIDRIC features instead. How-
ever, the original descriptor described in Section 4.2 has to be adapted to be more appropriate
for the problem at hand. In contrast to the datasets used for the LIDRIC experiments presented
in Section 4.2.2.1, matching is not done for identical objects under changing lighting condi-
tions but rather similar objects, i.e. the underlying local object characteristics are not the same.
Consequently, the use of multi-scale responses turned out to be not necessary anymore. In lieu
thereof, responses are computed for only one single scale but for 8 orientations. Additionally,
instead of dividing each filter response by the pure L2-norm of all 8 responses (denoted as ‖F‖)
for normalization, the power ‖F‖r with r > 1 is taken of it before division. This reduces the
relative influence of the highest responses in the image which likely arise from highlights on the
metallic surface of the coin. Reducing the relative influences of the highest descriptor values
has frequently been reported to be beneficial for performance, e.g. by clipping values above a
threshold [Lowe, 2004] or by taking the square root of the descriptor values [Arandjelovic and
Zisserman, 2012]. Finally, by performing a 4× 4 spatial pooling, a 128-dimensional descriptor
di for an image point pi is obtained.

After the local descriptors d′i ∈ D′ and d′′j ∈ D′′ have been extracted from the two images
I ′ and I ′′, it is aimed to find robust matchings between them. An option would be to accept only
nearest neighbors with a certain distance to their second nearest neighbors as proposed in [Lowe,
2004], but a one-to-one symmetric search [Zhao et al., 2007] turned out to be the better choice.
Two features d′i and d′′j are matched only if d′′j is the nearest neighbor of d′i in D′′ and d′i is
in turn the nearest neighbor of d′′j in D′. The indices of the descriptors in D′ with a match in
D′′ are stored in the setM and the function φ(i) relates the indices of D′ to the corresponding
indices of D′′, i.e. φ(i) = j if d′i corresponds to d′′j . Figure 5.6 shows the result of the one-
to-one symmetric correspondence search for two coins from the same class and two coins from
different classes.

(a) Matching with an image from the same class. (b) Matching with an image from a different class.

Figure 5.6: Results of one-to-one symmetric matching. Only random 10% of the overall corre-
spondences are shown for better illustration.
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5.2.2 Similarity Estimation from First-Order Correspondences

The basic assumption of the presented approach is that by first-order matching more correct
correspondences can be found for coins from the same class than for coins from different classes.
By examining the matching results of similar and dissimilar coins as shown in Figure 5.6 we are
able to identify three key observations that lead to the definition of the final similarity measure:

1. Number of Correspondences

The number of matched features is likely to be higher for similar coins than for dissimilar ones.
This property is used for a similarity score by

Θn =
|M|

min(|D′| , |D′′|)
. (5.4)

2. Displacement of Corresponding Feature Points

The displacement of correct correspondences is low which can be used as a dissimilarity score
by

Θd =
1

|M|
∑
i∈M
‖p′i − p′′φ(i)‖2 (5.5)

with ‖·‖2 being the L2-norm.

3. Geometrical Consistency of Correspondences

Pairs of correct correspondences do not drastically change their relative position to each other.
Hence, given two points p′i and p′j and their corresponding points p′′φ(i) and p′′φ(j), the vector

~u = p′ip
′
j will be similar to the vector ~v = p′′φ(i)p

′′
φ(j), as illustrated in Figure 5.7. Their

difference is computed by

Φ(p′
i,p

′
j ,p

′′
φ(i)

,p′′
φ(j)

) = η · ψ(p′
i,p

′
j ,p

′′
φ(i)

,p′′
φ(j)

) + (1− η) · α(p′
i,p

′
j ,p

′′
φ(i)

,p′′
φ(j)

) (5.6)

ψ(p′
i,p

′
j ,p

′′
φ(i)

,p′′
φ(j)

) =

∣∣∣‖p′i − p′j‖2 − ‖p′′φ(i) − p′′φ(j)‖2
∣∣∣

‖p′i − p′j‖2 + ‖p′′φ(i) − p′′φ(j)‖2
(5.7)

α(p′
i,p

′
j ,p

′′
φ(i)

,p′′
φ(j)

) =
1

π
arccos

(
p′i − p′j
‖p′i − p′j‖2

·
p′′φ(i) − p′′φ(j)

‖p′′φ(i) − p′′φ(j)‖2

)
(5.8)

Intuitively, the terms ψ and α measure the vector difference in terms of length and orienta-
tion, respectively, where η serves as weighting parameter. This or a similar vector difference
metric is typically used for regularization in optimization-based matching approaches [Berg
et al., 2005, Duchenne et al., 2011b, Jorstad et al., 2011, Kim et al., 2013, Liu et al., 2011] in
order to penalize matching discontinuities and prefer smooth results. However, for computa-
tional reasons only small neighborhoods can be considered (e.g., SIFT flow uses the L1-norm
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Figure 5.7: The geometric plausibility of the correspondences of the points p′i and p′j in I ′ with
the points p′′φ(i) and p′′φ(j) in I ′′ is assessed by the comparing the vectors ~u and ~v in terms of
length (Eq. 5.7) and orientation (Eq. 5.8).

of the 4-connected neighboring flow vectors). In the given case, these metrics have to evaluated
only once for the given first order matching, which allows to use a larger neighborhood system
N for the geometric dissimilarity score:

Θg =
1

|M|
∑
i∈M

1

|Ni|
∑
j∈Ni

Φ(p′
i,p

′
j ,p

′′
φ(i)

,p′′
φ(j)

). (5.9)

In general, one can define all other feature points as the neighborhood Ni of a given feature
point, but this unnecessarily increases the computational burden without substantially improving
the quality of this similarity metric. Hence, in practice it turns out to be sufficient to compare
every feature point to only a small subset of feature points. In this work it has been empirically
chosen to compare every feature point to its neighboring features at the six distances 1∆p, 2∆p,
4∆p, 8∆p, 12∆p and 16∆p, which on average leads to a comparison of a feature point with
around 7.5% of the remaining feature points.

The final overall similarity score is computed from the three individual scores by

Θ = (1− g(Θn;σn)) + g(Θd;σd) + g(Θg;σg) (5.10)

where g(x;σ) = exp(−x2/(2σ2)) is a Gaussian membership function that transforms the
individual scores to the same value range.

5.3 Experiments

Empirical evaluation is conducted for coins of the Roman Republican age. Different datasets are
used to serve the different requirements for the respective sub-experiments, which are described
in Section 5.3.1. In Section 5.3.2 the SIFT flow-based method is compared to a simpler coin
matching method that involves no geometric constraints [Kampel and Zaharieva, 2008] in order
to demonstrate the usefulness of incorporating geometric constraints into the matching process.
In Section 5.3.3 both the classification and runtime performances for various subselection values
ξk of the coarse-to-fine SIFT flow classification method are reported. In Section 5.3.4 the SIFT
flow method is applied to artificially rotated images to show the low vulnerability of the method
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to this kind of image variation. A comparison of the SIFT flow method and the improved GP
metric as well as of previously proposed learning-based methods is conducted in Section 5.3.5
on a challenging multi-source dataset. Finally, the GP similarity metric is tested for its behavior
on a large scale dataset in Section 5.3.6.

5.3.1 Roman Republican Coin Datasets

In total, four coin datasets are used for the experiments which are listed in Table 5.1. All images
in the datasets have been successfully scale-normalized in an automated fashion with the help
of the proposed shape-controlled segmentation method by means of cropping the images at the
coin borders and resizing the resulting region-of-interest to a standard size of 150 × 150. The
Single-Source Small-Scale dataset acts as a small, initial demonstrator for the superiority of
using geometric constraints for matching instead of feature similarity alone. The Single-Source
Medium-Scale dataset consists of 60 classes where each class is represented by three coin images
of the reverse side. It is used for testing the coarse-to-fine SIFT flow classification as well as for
rotation insensitivity tests. Although only a small fraction of the theoretically over 1900 classes
are contained in this test dataset, a wide period of minting dates from 199 to 39 B.C. is covered.
Sample images of all classes’ reverse sides are shown in Figure 5.8.

Dataset Classes Images
/class

Coin
sides

Sources Purpose Sections

Single-Source
Small-Scale

24 3 obv.
& rev.

Museum of
Fine Arts
Vienna

Proof-of-concept for usefulness of
geometric matching constraints;
comparison of classification per-
formance w.r.t. coin side.

5.3.2

Single-Source
Medium-
Scale

60 3 rev. Museum of
Fine Arts
Vienna

Test of SIFT flow classification
performance and runtime analysis
with hierarchical sub-selection; ro-
tation insensitivity test.

5.3.3
5.3.4

Multi-Source
Medium-
Scale

60 10 rev. Museum of
Fine Arts Vi-
enna, British
Museum
London, web
resources

Comparison of proposed methods
(SIFT flow and GP) and previously
published learning-based methods
for challenging real-world intra-
class variations (abrasions, non-
rigid deformations, illumination
changes).

5.3.5

Single-Source
Large-Scale

418 2 obv.
& rev.

Museum of
Fine Arts
Vienna

Analysis of the scalability of the
proposed GP coin classification
method.

5.3.6

Table 5.1: Overview of the four datasets used for the evaluation of the coin classification meth-
ods.

For the comparison with other methods the Multi-Source Medium-Scale dataset of 60 Roman
Republican coin classes is used. For each class 10 images were collected from different image
sources to increase the diversity among the images and to mimic a more realistic scenario of coin
classification under uncontrolled image acquisition conditions. Three images of each class were
taken from the coin collection of the Museum of Fine Arts, Vienna (as for the other datasets),
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Figure 5.8: Reverse side sample images of all 60 classes of the Single-Source Medium-Scale
dataset.
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another three images from the collection of the British Museum, London1, and the remaining
four from free online ancient coin search engines2. An example image of each class is shown in
Figure 5.9.

The Multi-Source Medium-Scale dataset is well suited to comparatively evaluate the perfor-
mance of coin classification methods for strong intra-class variations, but covers only on a small
subset of coinage. Therefore, the real world practicability of the top-performing GP method is
additionally investigated by means of the Single-Source Large-Scale dataset consisting of 418
classes. This dataset covers a much wider range of coinage from the Roman Republican era and
thus allows to give a more qualified statement of achievable classification rates in practice. For
this dataset two coin specimens are available per class. The images were gathered from the coin
collection of the Museum of Fine Arts, Vienna, and all classes of the collections with at least two
available coins have been included. This Museum collection belongs to the five largest collec-
tions in the world and hence the 418 classes can be seen as a cross section of the most common
classes of the over 1900 (including all subclasses) defined in [Crawford, 1974]. Figure 5.10
shows the coin images of 30 classes in the dataset, which demonstrate the challenging nature of
this image data for exemplar-based classification. Apart from the intra-class variations, which
stem from variations in the manual manufacturing process and abrasions, the variety of the types
shown on the coins is narrow due to the strong presence of popular coin themes. For instance,
heads of mythological or historical persons are typically shown on the obverse sides [Jones,
1990], and also on the reverse sides motives are shared by multiple classes (e.g. horse teams,
standing persons, jugs, animals etc.).

5.3.2 Comparison of Coin Matching with and without Geometric Constraints

In this section the SIFT flow method is compared to the correspondence-based method proposed
by [Kampel and Zaharieva, 2008]. In their method, similarity between coins is measured by the
number of matched interest points, extracted at Difference-of-Gaussians extrema and described
by SIFT.

For this experiment the following empirically determined parameters for SIFT flow matching
were used: dense SIFT features were computed for a local neighborhood of 12×12 pixels on the
150× 150 images, the number K of pyramid levels was set to 4, and the parameters controlling
the influence of the smoothness term were set to β = 12 and d = 1200. The small displacement
term was ignored in order to make the similarity metric insensitive to coin rotations. However,
it has to be noted that in the provided dataset only marginal rotation differences of less than
20◦ occur. Generally speaking, strong rotation differences between ancient coin images were
found to be an uncommon situation, which has also not been encountered in gathering of coin
images from the internet for the Multi-Source Medium-Scale dataset. The reason is that coins
are typically imaged at a canonical orientation based on their type. Nevertheless, the issue of
stronger coin rotations of more than 90◦ is treated in 5.3.4 on artificially rotated images to show
the low vulnerability of the method to this kind of image variation.

1www.britishmuseum.org/research/publications/online_research_catalogues/
rrc.aspx (accessed on June 8th, 2014).

2www.acsearch.info and www.coinarchives.com (accessed on June 8th, 2014).

95

www.britishmuseum.org/research/publications/online_research_catalogues/rrc.aspx
www.britishmuseum.org/research/publications/online_research_catalogues/rrc.aspx
www.acsearch.info
www.coinarchives.com


Figure 5.9: An exemplar image for each of the 60 classes in the Multi-Source Medium-Scale
dataset.
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Figure 5.10: Example images from 30 classes of the overall 418 classes in the Single-Source
Large-Scale dataset. Each image quadruple shows the obverse (left) and reverse (right) of the
two coins of a class.

The comparison was performed on the Single-Source Small-Scale dataset where either the
proposed SIFT flow energy or the number of matched features defined the coin-to-coin simi-
larity. As three images are available per coin class, a 3-fold cross validation was used to test
classification performance. The dataset was divided into three subsets, each set containing one
image from each class. Three classification runs were executed whereas in each run one subset
served as testset and the remaining two served as training set. An image from the testset was
then matched with all images from the training set. The average of the similarity values of the
two images of a class defined the class-similarity, and thus finally the image was assigned to the
class with minimum class-similarity. Classification performance was tested on the obverse as
well as the reverse sides.

The overall results are listed in Table 5.2. The SIFT flow method clearly outperforms the
method of [Kampel and Zaharieva, 2008]. As the SIFT descriptor itself is potentially noisy on
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ancient coins due to their challenging conditions, the simple matching of SIFT interest points
is more vulnerable than SIFT flow matching. SIFT flow introduces an additional constraint for
a spatially meaningful matching with local variations. Therefore, SIFT flow provides a more
robust matching and coin similarity measure.

SIFT Flow Matching SIFT Matching
Obverse side 63.9% 25.0%

Reverse side 73.6% 33.3%

Total 68.8% 29.2%

Table 5.2: Classification rates of the proposed SIFT flow matching and standard SIFT matching
[Kampel and Zaharieva, 2008] on the Single-Source Small-Scale dataset.

Another observation from the results is that classification rates are higher on the reverse sides
of the coin. This is caused by the typical composition of Roman coins from the investigated
period. Customarily, obverse sides show the heads of gods or historical persons. For instance, in
the given evaluation dataset the obverse side of 15 of the 24 classes depicts the goddess Roma.
Reverse sides depict certain scenes and thus have a higher inter-class variability.

5.3.3 Hierarchical Classification Performance and Runtime Analysis of SIFT
Flow Method

For this experiment the Single-Source Medium-Scale dataset consisting of reverse side coin im-
ages was used. In each classification run one of the 180 coin images served as query image and
one or two of the remaining images per class served as training images. This led to 180 (two
training images per class) or 360 classification runs (one training image per class). For runtime
evaluation, the average runtime of computing the SIFT flow between two coin images was mea-
sured by using the C++ implementation provided by the authors3 on a standard machine with
a quad-core 2.70 GHz processor. The resulting average SIFT flow matching time was 3.93s,
where around 3%, 6%, 21% and 70% are needed for the first, second, third and fourth level,
respectively. In Table 5.3 classification results for the two training set sizes as well as various
values of ξk are shown. Runtimes are indicated as the time for classifying one coin against the
dataset of 60 classes, without considering feature extraction of the query image. Subselection
parameters of ξ1 = ξ2 = ξ3 = 100% mean that no subselection was performed. Subselection
parameters of ξ1 = 1%, ξ2 = 1% and ξ3 = 1% mean that only the energies of the first, second
or third level, respectively, were used for classification.

One can see that, without subselection, over 70% of the images can be classified correctly
with only one training image per class available. Adding a second training image brings a
performance improvement of about 7− 12%. Based on the results on this dataset, a reasonable
choice for the subselection parameters is ξ1 = 10% and ξ2 = ξ3 = 50%. The classification rate
is very close to the case without subselection (−2.2% for a training set size of 1 and −0.5% for
a training set size of 2, respectively), whereas the runtime improvement is around 93%.

3http://people.csail.mit.edu/celiu/SIFTflow/ (accessed on June 8th, 2014).
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Training
set size

ξ1 ξ2 ξ3 Correct clas-
sifications

Classification
rate

Average
classifica-
tion time

1 100% 100% 100% 257/360 71.4% 235.8s
1 1% 100% 100% 220/360 61.1% 7.1s
1 100% 1% 100% 234/360 65.0% 21.2s
1 100% 100% 1% 257/360 71.4% 70.7s
1 30% 50% 50% 258/360 71.7% 32.5s
1 10% 50% 50% 249/360 69.2% 16.5s
2 100% 100% 100% 150/180 83.3% 471.6s
2 1% 100% 100% 127/180 70.6% 14.1s
2 100% 1% 100% 133/180 73.9% 42.4s
2 100% 100% 1% 141/180 78.3% 141.5
2 30% 50% 50% 150/180 83.3% 65.0s
2 10% 50% 50% 149/180 82.8% 32.9s

Table 5.3: Classification results for training set sizes of 1 and 2 and various subselection values
ξk on the Single-Source Medium-Scale dataset.

In Figure 5.11 some of the classification results are shown where Figure 5.11a-c depict
incorrect classifications and Figure 5.11d-f depict correct classifications. It is obvious that strong
abrasions, like in Figure 5.11a, as well as the low inter-class variability, like in Figure 5.11b,
pose a problem to the method, since the SIFT flow energy becomes less reliable under such
conditions. However, also the examples shown in Figure 5.11d-f exhibit strong abrasions and
variations between the images which can be dissolved by SIFT flow. Figure 5.11c demonstrates
the general limits of image-based ancient coin classification. The query image represents a
misprint, which makes it impossible even for human experts to accurately classify the coin if
only this coin side is available for examination.

5.3.4 Analysis of Coin Rotation Insensitivity of SIFT Flow Method

In order to assess the sensitivity of the SIFT flow matching to coin rotation differences, a random
selection of a query and a training image from 20 coin classes of the Single-Source Medium-
Scale dataset was done and different coin rotations were simulated by rotating the query image
in 90 degree steps. Figure 5.12a shows the classification results of all four runs for the four
pyramid levels of SIFT flow matching. In Figure 5.12b the average and maximum increase
of energy due to the additional costs in the smoothness term is plotted. It is seen that at a
coarser level the energy values are more sensitive to coin rotations, thus producing a decrease of
classification performance and a higher relative increase of the energy value. Nevertheless, by
using a coarse-to-fine classification with subselection parameters ξ1 = 10%, ξ2 = ξ3 = 50%,
18 out of 20 classes can be classified correctly for all coin rotation differences. This shows
that, although the method is in theory not invariant to coin rotation differences, a high degree of
insensitivity is given.
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(a)

(b)

(c)

(d)

(e)

(f)
Query image. Most similar image

found warped back
using the SIFT flow
correspondences.

Original most similar
image found.

Correct most simi-
lar image depicting a
coin of the same class.

Figure 5.11: Six classification results on the Single-Source Medium-Scale dataset.
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Figure 5.12: Results of evaluating sensitivity to coin rotations.

5.3.5 Comparison of Coin Classification Methods on Multi-Source Dataset

In this section, the GP similarity method is compared to the previous SIFT flow-based method
as well as to the learning-based methods using locally biased directional histograms (LBDH)
[Arandjelović, 2010] and bag of visual words (BOVW) [Csurka et al., 2004] on the Multi-Source
Medium-Scale dataset.

For all methods compared suitable parameter choices were empirically determined. Local
feature extraction is the first step of all methods and was accomplished either by using SIFT or
LIDRIC features with r = 1.3 and ω = 5. Dense sampling with ∆p = 3 for the proposed
method and ∆p = 1 for SIFT flow was performed at a feature scale of 24 × 24 pixels. For
LBDH and BOVW the standard Difference-of-Gaussian interest point detection [Lowe, 2004]
was used. Features were only extracted from the coin region in the image provided by the initial
coin segmentation step. As no rotation differences are present in the image dataset, for a fair
comparison all features were extracted without rotation invariance, i.e. the canonical orientation
of all features was automatically set to the same fixed value. Accordingly, the displacement term
of SIFT flow controlled by the parameter κ was not set to 0 for these experiments.

For the presented coin similarity algorithm from one-to-one symmetric correspondences pa-
rameter values of η = 0.7, σn = 0.1, σd = 50 and σg = 0.25 were used. For SIFT flow
parameter values of β = 200, d = 20 000 and κ = 12 were used. For BOVW the descriptors
were quantized to 100 visual words and the visual word histogram was computed as image fea-
ture. As in the original experiments [Arandjelović, 2010], a vocabulary size of 500 was used for
the implementation of LBDH. However, the bandwidth R of the directional kernels was set to
200 instead of 1 000, as this showed superior results on the dataset.

For the final class decision a 5-nearest neighbors classifier was used for all methods com-
pared. The distance of test and training samples was thereby determined by the proposed class
similarity or the SIFT flow energy. For BOVW and LBDH the Euclidean distance of the visual
word or LBDH histograms was used.

The intention of the proposed exemplar-based coin classification methodology is to achieve
coin classification in scenarios with low number of training samples. Therefore, the influence of
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Training images per class
1 5 9

BOVW [Csurka et al., 2004] - SIFT 6.3% 11.2% 13.2%

BOVW [Csurka et al., 2004] - LIDRIC 7.6% 12.3% 14.8%

LBDH [Arandjelović, 2010] - SIFT 6.2% 11.9% 14.3%

LBDH [Arandjelović, 2010] - LIDRIC 8.8% 13.1% 16.8%

SIFT flow - SIFT 48.9% 81.0% 90.5%

SIFT flow - LIDRIC 68.6% 90.2% 95.8%

Proposed method - SIFT 68.0% 93.7% 97.1%

Proposed method - LIDRIC (full) 72.7% 94.1% 97.2%

Proposed method - LIDRIC (Θn + Θg) 70.5% 93.8% 97.2%

Proposed method - LIDRIC (Θn + Θd) 69.4% 92.9% 97.0%

Proposed method - LIDRIC (Θn) 56.0% 84.5% 91.1%

Table 5.4: Numerical classification results of all methods using SIFT/LIDRIC feature extraction
on the Multi-Source Medium-Scale dataset.

the number of training samples per class to the methods’ classification performances is analyzed.
For this purpose, multiple classification runs were conducted for each image in the dataset with
increasing number of training samples N per class, i.e. N = 1 . . . 9. In each run, N randomly
chosen images per class served as training set. This process was again repeated 10 times for
each value of N and the overall classification rate out of the 60 · 10 · 10 = 6 000 classifications
was recorded.

Comparison of Classification Rates

The classification results for the different training set sizes are shown in Figure 5.13 for all
methods with LIDRIC feature extraction. Additionally, in Table 5.4 the numerical classification
results of all methods with SIFT or LIDRIC feature extraction are listed. It can be seen that the
correspondence-based methods dominate the learning-based ones and that the GP method out-
performs all other methods for all training set sizes with classification rates from 72.7% (N = 1)
to 97.2% (N = 9). The inclusion of spatial information provided by LBDH gives only a slight
improvement over the general BOVW model and does not contribute to a performance com-
parable to the ones achieved by the correspondence-based methods. Due to the low number
of training samples the learning-based methods are not able to sufficiently generalize over the
intra-class variation. In the experiments presented in [Arandjelović, 2010] LBDH achieved a
classification rate of 57.2% on a 65-class problem. However, the dataset used in Arandjelović’s
work shows a very uneven distribution of training samples among the classes which are repre-
sented by 10 up to 160 exemplars. It can be conjectured that the classification performance of
LBDH on this dataset is mainly supported by the classes with a high number of training samples.
Another reason for the low classification rate of LBDH is the erroneous interest point detection.

From the results shown in Table 5.4 it can also be concluded that LIDRIC represents a
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Figure 5.13: Bar plot of the classification results of all methods using LIDRIC feature extraction
and training set sizes of 1 to 9 on the Multi-Source Medium-Scale dataset.

more powerful local descriptor for coin classification under uncontrolled conditions as its use
improves the performance of each individual method. For the proposed method the performance
is increased from 68.0% to 72.7% due to LIDRIC’s lower sensitivity to illumination changes.

Influence of Individual Similarity Scores

As three single scores are combined for the overall similarity score, it is also of interest to assess
their individual influence to the classification performance. It is evidently shown in Table 5.4
that all three scores have a contribution to the classification power of the method. By using
only data-driven matching as similarity measure (Θn) and ignoring the geometric ones (Θd and
Θg) only 56.0% correct classifications are achieved for n = 1, less than the SIFT flow method
which also uses geometric information for finding the optimal correspondences (68.6%). Adding
geometric information to the model either by the displacement similarity Θd or neighboring
vector consistency Θg leads to classification rates that are higher than that of SIFT flow. The full
model with all three terms achieves the highest classification rate of 72.7%.

Runtime Analysis

An important issue of exemplar-based classification is the time it takes to compare two image
samples. Without feature extraction, which takes around 1s, the MATLAB implementation of
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the proposed method needs around 0.35s to compare two images whereas the C-implementation
of SIFT flow takes around 2.2s. In practice, this means that it takes around 22s to classify a query
image for this 60-class problem. However, it has been shown in Section 5.3.3 that the classifica-
tion time of exemplar-based coin classification in conjunction with feature correspondence can
be reduced to one-seventh without a loss of classification accuracy by applying a hierarchical
subselection scheme. Generally, the same principle can be applied to the presented similarity
metric for speeding up the classification process.

5.3.6 Classification Performance on Large-Scale Single-Source Dataset

The classification rates achieved by the GP similarity method on the large-scale single-source
dataset are plotted in Figure 5.14a. The plot shows the respective percentage of coins where
the correct class is within the top N similarities. First of all, like in a previous experiment (see
Section 5.3.2), it can be observed that a classification based on the coins’ reverse side has a
better performance than a classification based on the obverse sides. This is caused by the higher
variation of reverse side motives and leads to a ∼ 10% higher performance (73.0% vs. 62.6%
for N = 1). Combining the obverse and reverse side similarities boosts the classification rate
by another ∼ 10% (84.3% for N = 1). It can also be spotted in Figure 5.14a that there is a
comparatively high increase in classification rates from N = 1 to N = 5: for the combined
method the correct class is among the top 5 similarities in 93.5% of the cases. This shows
that due to the high number of classes with low inter-class distances an exact classification is
challenging, but the ranking is sensitive to the relevant class. The high discriminative power
of the coin similarity metric is also demonstrated by the ROC curves shown in Figure 5.14b.
These curves are obtained by applying increasing thresholds to the similarities as described in
Section 4.1.2.2.
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Figure 5.14: Classification results on the Single-Source Large-Scale dataset.

Nevertheless, the curve of 5.14a is flattened more and more for higher values of N which
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Figure 5.15: (a)-(e) Examples for misclassifications where the correct class is not ranked among
the top 50 similarities, (f)-(j) examples for correct classifications.

indicates that there are particular coins where the classification goes completely wrong and the
correct class is not ranked properly. For such cases the similarity to the correct class is not con-
siderably higher or even lower than the mean similarity to all incorrect classes. For instance,
even with the combined method for 15 out of the 836 coins (i.e. 1.8%) the correct class is not
contained in the top 50 similarities. Some of these substantial misclassifications are shown in
Figure 5.15a-e to exemplify their diverse causes. One source of error are scale differences be-
tween coin motives which are not sufficiently compensated by the scale normalization induced
by the segmentation step. As the local features are extracted with a fixed scale, the correspon-
dence search is disturbed by scale changes which is most evidently seen in the obverse side heads
shown in Figure 5.15a-b. Strong changes in type appearance (e.g. the chariot of Figure 5.15c)
and abrasions (Figure 5.15d-e) are further causes for misclassifications. Nevertheless, the cor-
rectly classified coin classes shown in Figure 5.15f-j also exhibit abrasions and motive variations
which show that the method is generally able to cope with these types of image variations.

Compared to the results on the multi-source dataset presented in Section 5.3.5, on the large-
scale dataset a similar classification rate is achieved (73.0% vs. 72.7% on the multi-source
dataset), although seven times as many classes are considered. In contrast to the multi-source
dataset, all images of the large-scale dataset come from one single source. This facilitates the
classification process, as illumination changes between coin images can be assumed to be much
less due to the invariable image acquisition setup. The particular challenge of this dataset is the
high number of classes and it is shown that increasing the number of classes has no drastic effect
on classification performance.

5.4 Summary

In this chapter the problem of assessing image-to-image similarities from local correspondences
is treated. The proposed metrics are included in a exemplar-based coin classification framework
to account for the limited availability of training data, which makes standard procedures based
on an offline training phase inappropriate. Instead, it is aimed to make the similarity metrics
robust against the intra-class variations to handle them directly in the image comparison.
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In the first method proposed SIFT flow is exploited for robust dense correspondence between
coin images. It is demonstrated that the matching costs are a powerful dissimilarity metric to
establish coin classification for training set sizes of one or two images per class. This is shown
by a higher classification rate when compared to a previously proposed correspondence-based
method which does not include geometric constraints in the similarity metric. Additionally, a
coarse-to-fine classification scheme is introduced to decrease runtime which would be otherwise
linear to the number of classes in the dataset. It is shown in the experiments that this way the
average classification time can be reduced from 471.6s to 32.9s, which is a reduction to 7% of the
time needed without hierarchical classification. By using this subselection scheme, the method
achieves a classification rate of 83.3% on a dataset of 60 Roman Republican coin classes.

The second method extends the idea of using geometric constraints due to the success of the
SIFT flow and uses a new local correspondence-based image similarity metric that is both ac-
curate and fast to compute. The method is designed to be robust against the possible intra-class
coin variations like degraded parts, non-rigid deformations and illumination-induced appearance
changes. It derives a similarity score by analyzing established data-driven correspondences for
their geometric plausibility. Experiments are conducted on a dataset of 60 Roman Republican
coin classes from various sources where the presented method achieves classification rates rang-
ing from 72.7% for the case of one training sample per class up to 97.2% when nine training
samples per class are used. Consequently, the method shows to deliver a less complex but more
distinctive similarity measure than the SIFT flow-based method and outperforms also previously
proposed learning-based methods for ancient coin classification. The method is further reviewed
for its real-world applicability by evaluation on a large-scale dataset of 418 Roman Republican
coin classes. As a result, the method achieves a classification rate of 84.3% when the information
from the coins’ obverse and reverse side is combined and the correct class is shown to be among
the top 5 similarities in 93.5% of the cases. The superior classification performance of the pre-
sented method results also from the illumination-insensitive feature extraction by means of the
LIDRIC descriptor. The descriptor provides the needed robustness against uncontrolled image
acquisition conditions, but at the same time ensures enough discriminative power to establish
correct correspondences between coins without needing to guide the correspondence search by
regularization.

106



CHAPTER 6
Conclusions

In this chapter the thesis is concluded by highlighting its main achievements. Additionally, the
limitations of the presented methods in their current form are reviewed in Section 6.1. Future
work and possible implications for computer vision research and other application areas are
discussed in Section 6.2.

The main motivation for the research conducted in this thesis stems from practical consid-
erations with respect to available training data. Modelling image variabilities is a major issue
for image recognition that has to be addressed for successful algorithms, and learning from
large collections of training images is the widely followed paradigm. This trend has arisen
from the increasingly eased access to - probably annotated - image data and the development of
sophisticated machine learning methods to handle such large datasets, e.g. deep learning meth-
ods [Bengio, 2009]. However, for certain domains with a high number of classes and relatively
low number of examples per class this approach is infeasible. In this thesis ancient coin recogni-
tion is identified as such a domain where the combined diversity and rarity of classes prevent the
successful use of learning methods. As a consequence, in this thesis various aspects of handling
image variability are addressed in an exemplar-based classification framework where a query
image is compared to class reference images without the need for an offline training phase. This
approach has also benefits from a practical point of view: the gathering of large datasets of an-
notated training images is not needed and class extensions are straightforward by just adding
new reference images. In learning-based systems training can take days or weeks and must be
repeated from scratch any time new training images or classes are added.

The purpose of the segmentation method presented in Chapter 3 is to be insensitive to image
clutter in the background and the object scale. This allows to compute local features at a constant
scale, and hence it is not needed to sacrifice a certain amount of discriminative power and relia-
bility by scale-invariant feature detection. The contribution of the presented method to the field
of object segmentation is that it points out the use of a simple, scalar confidence measurements
to control the segmentation process. Therefore, prior knowledge about the approximate shape
of objects can be exploited to achieve a both fast and robust segmentation. This is demonstrated
on the annotated coin segmentation testset of 92 images as well as all other coin datasets used
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for method evaluation in this thesis, where no segmentation results with less than 94% mutual
overlap are encountered.

The research presented in Chapter 4 aims to obtain a deeper understanding of illumination-
insensitive feature extraction. A basic evaluation of low-level pixel-wise features for their ro-
bustness and discriminative power under illumination changes illumination is conducted. The
study is the first one conducted so far that is comprehensive with respect to evaluated features,
influences of object material and object texturedness. Especially the type of textureless objects
like coins has not been investigated accordingly in the past. The required comprehensiveness is
reached by means of a new dataset of synthetically generated images. As a result, jets of oriented
Gabor filter responses turn out to be most effective under illumination changes. In the study a
comprehensive parameter analysis is conducted and it is further shown that for improved perfor-
mance one can extend the single-scale representation towards multiple scales by concatenating
the single-scale jets.

The outcome of this basic study leads to the development of the LIDRIC descriptor, which
shows to outperform existing local descriptors on real images with illumination variations. Re-
garding the experimental evaluation of the illumination-insensitivity of local descriptors, the
shortcomings of existing evaluations are emphasized. Therefore, a dataset of textured as well as
textureless objects is used which introduces a greater challenge towards evaluating the robust-
ness against illumination changes than conventional datasets used in the past.

Finally, non-rigid object deformations as for instance occurring between ancient coins of
the same class are addressed in Chapter 5. It is deduced from a SIFT flow based method that
geometric constraints are crucial for establishing correct dense correspondences between coin
images. The proposed method is also inspired by correspondence-based methods for image clas-
sification, but does not intend to establish a dense field of correspondences but rather focuses on
understanding what the most reliable correspondences tell us about the similarity of the two im-
ages. Hence, a similarity metric is derived from checking the geometric plausibility of matched
features, instead of using geometric plausibility to guide the correspondence search.

All the single proposed methods treat a specific kind of image variation and can finally
be integrated into a holistic ancient coin classification system: the query coin is segmented,
dense LIDRIC features are extracted and the correspondence-based similarity to exemplars in the
dataset is computed to classify the coin. Therefore, on the application side, the work presented
in this thesis contributes to the research of image-based ancient coin classification, a quite new
application field in the area of computer vision. Based on the experimental results, the system
shows the top performance compared to existing correspondence-based as well as learning-based
approaches. Moreover, it shows its real-world applicability by classifying over 400 classes of
the Roman Republican period with high accuracy.

6.1 Limitations

Despite the diverse contributions of the proposed methods to the computer vision field, there are
certain limitations which are discussed below:
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• Shape-Controlled Object Segmentation

– The presented segmentation method is quite application-driven and thus only ap-
plicable to nearly-circular objects like coins. However, within the broad field of
object segmentation, an applied method accounts for the challenging diversity of
the problem, as there is no general state-of-the-art segmentation method applicable
for all scenarios. Therefore, designing a segmentation for a specific type of objects
can be assumed to be more powerful than applying a general-purpose unsupervised
segmentation method, which is also shown in the experiments.

– The method might fail if its assumptions - the coin is less regular as the surrounding
background and the most circular object in the image - are not fulfilled, although this
has never been encountered during evaluation.

• Illumination-Insensitive Feature Extraction

– The LIDRIC descriptor is designed to be insensitive to illumination conditions. Ev-
idently, that means that it loses discriminative power when no illumination changes
occur. More insensitivity means that more points in the space of all images are
mapped to the same representation. Therefore, it is not advisable to use LIDRIC in
scenarios where no illumination differences are present, in the same manner as it is
not advisable to use the rotation-invariant SIFT descriptor when no image rotations
are expected.

– LIDRIC does only treat the description stage of local image features and not the
interest point detection stage. Hence, it is most effectively used with regularly sam-
pled interest points, although it can be used in conjunction with existing interest
point detectors. However, existing detectors are not designed for scenes with strong
illumination variations and the result is likely to be unsatisfactory.

• Correspondence-Based Image Similarity

– The proposed GP similarity metric is based on data-driven matching and assumes
that for similar objects more correspondences are correct. Hence, the method might
fail when the objects to be compared are dominated by regular structures and thus no
reliable correspondences can be detected without considering their spatial location.

– In the presented form, the metric is not invariant to object rotations due to involve-
ment of the absolute displacement of features and the rotation-variant comparison of
neighboring correspondences. However, the individual terms can be flexibly adapted
to extend the metric to other kinds of geometric variations between images.

• Ancient Coin Classification System

– Naturally, the system relies solely on image data and does not use other information
like the size and weight of the coin. Consequently, it fails in cases where the image
data is also not sufficient for classification for a human expert, e.g. very strong
abrasions. This includes also the detection of professional forgeries, which cannot
be done from image data.
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– Scale changes are compensated by normalizing the images with respect to the size
of segmented coin, but scale changes within the motive shown on the coin can be
handled only to a certain degree. Strong scale changes heavily affect the dense
features which are extracted at a constant scale.

6.2 Future Work and Implications

Shape-Controlled Object Segmentation

The segmentation method is in theory not limited to circular objects but can be applied to all
kinds of objects whose shape can be described by a confidence measure which is invariant to
global transformations like rotation or scale as well as insensitive to local deformations. Given
the proposed shape-controlled thresholding and an appropriate shape descriptor, the segmenta-
tion of other shapes like elongated or rectangular ones is possible. A further extension would be
to use the formfactor to guide a locally adaptive thresholding method.

Illumination-Insensitive Feature Extraction

Generally, the presented research on illumination-insensitive feature extraction enhances the
knowledge for this under-researched topic. The compared low-level features are the basis of
many mid-level features and high-level systems, and thus it can also be derived from the pre-
sented evaluation how these features and systems act in scenarios with textureless objects and/or
strong illumination changes. Consequently, it also helps researchers to select proper features for
their application scenarios in the future.

The LIDRIC descriptor shows superior performance for strong appearance variations caused
by different illumination directions. This includes one the one hand the matching of highly
specular surfaces, as even small viewpoint changes can lead to strong appearance variations due
to the inconstant BRDF for different viewing directions. Hence, the descriptor can be used for an
improved matching result for applications like stereo vision [Hirschmüller and Scharstein, 2009]
or structure-from-motion [Ozden et al., 2010] when such objects are involved. For structure-
from-motion also the aspect of changing lighting conditions becomes more important as the
images are often collected from different sources and hence were taken at different conditions
(e.g. time of the day). The same applies to the problem of place recognition [Lategahn et al.,
2013]. Although the majority of objects in the world might be textured, these methods would
also benefit from a more reliable matching of textureless object (parts), like facades of buildings,
statues etc.

Future work will focus on improving LIDRIC with respect to computational time, dimen-
sionality and rotation invariance. Additionally, the detection of interest points under illumination
changes will be investigated.

Correspondence-Based Image Similarity

The proposed GP similarity metric is evaluated on ancient coins, but is not restricted to this
application. The method provides a fast and reliable similarity metric for non-rigid deformations
of features as occurring, for instance, for human faces or within object categories like letters, cars
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etc. The similarity metric can be effectively used for exemplar-based classification when a large
number of classes has to be detected and it is impossible or impractical to gather large amounts
of training images to handle the intra-class variations. This is not only the case for ancient coin
classification but also for domains like writer identification [Bulacu and Schomaker, 2007] or
plant leaf recognition [Kumar et al., 2012]. Hence, for future research it is planned to investigate
and adapt the image similarity metric to such classes of problems as well as to extend it to other
kinds of geometric variations between images. The method allows to flexibly adapt the similarity
terms to account for other required geometric invariances. For instance, rotation invariance
can be achieved by using rotation-invariant local features and a rotation-invariant evaluation of
correspondence consistency, e.g. by using only the distance of pairs of correspondences or by
using the length and angles between triplets of correspondences.

For further improvement of the similarity metric, the matching can be achieved on multiple
scales to jointly consider smaller and larger structures for similarity. Matching from larger to
smaller scales can be also done in a hierarchical subselection process to speed-up the classifica-
tion process as done for the SIFT flow method.

Notably, the method provides similarity values between images but no dense correspondence
field. Another research direction for the future is to derive dense correspondences from the
similarity metric, e.g. by seeding the correspondence search on the most similar object parts and
iteratively grow the correspondence field.

Ancient Coin Classification System

The ancient coin classification system demonstrates its practical usability by the high classifica-
tion rate achieved on the large-scale dataset. Considering the fact that simple modifications will
lead to further improved results, like a proper selection of reference coins as well as a subse-
lection scheme, the system is ready-for-use and thus able to support numismatists in classifying
coins from a certain era like the Roman Republican one. As due to the achieved empirical re-
sults the classification can be assumed to be correct or at least highly ranked for the majority of
query coins, the presented automatic classification system bears the potential to speed-up and
ease their daily work.

Potential is also seen in using the visual similarity estimation in other forms within the ap-
plication field of numismatics. Visual similarity estimation can be combined with other methods
like symbol or legend recognition for a more extensive classification process. It can also be
used for automatic coin hoard grouping where a clustering of coins is performed based on the
proposed similarity metric.
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