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Abstract

Online Social Networks (OSNs) recently became one of the most popular web services, and
these services are used by hundreds of millions of users worldwide. People rely on OSNs to
foster social relationships, exchange media files, and to communicate online. OSN users in
general provide their real world identity, and social networking providers encourage their users
to share a plethora of personal information via their services. Access to the fast amounts of
personal information is exclusively governed by social network providers.

In the past decade, research on OSN security and privacy has focused to a large extend
on the information-disclosure behavior of OSN users, and the resulting challenges for the pri-
vacy management of social networking profiles. However, little research has been conducted
on third-party access to social networking data, and third-party applications in particular. Third-
party applications, or colloquial “apps”, are popular extensions to OSNs and their current modus
operandi allows them to transfer personal information out of walled gardens of OSNs. In this
thesis, we strive to advance research on the security and privacy implications of OSN third-party
access, and hereby tackle three main research problems. The first non-trivial research problem
we attempt to solve, is the automated analysis of OSN application ecosystems regarding their se-
curity and privacy practices. Second, current methods for digital forensics are rendered useless
by the distributed nature of OSNs, and we therefore investigate into novel methods to collect
digital evidence from OSNs. Third, we want to estimate the impact of social network’s weak
communication security practices for advanced session-hijacking attacks.

We develop AppInspect, an automated framework to analyze OSN application ecosystems
for security and privacy malpractices. Our results helped to mitigate a number of information
leaks in popular OSN third-party applications. We furthermore outline a novel approach to
collect digital evidence from OSNs, called Social Snapshots, which makes an important con-
tribution to the area of digital forensics. Finally, our third main result, Friend-in-The-Middle
(FiTM) attacks, describes a number of advanced attacks based on hijacking OSN user sessions.
Our results stressed the importance of proper OSN communication security, and social network-
ing provider began to acknowledge our findings. We expect that all major social networking
providers make encrypted communication protocols their default in the near future.
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Kurzfassung

Soziale Online Netzwerke (englische Abkürzung: “OSNs”) zählen heute zu den beliebtesten
Internetservices und werden weltweit von hunderten Millionen Menschen benutzt. Soziale Net-
zwerke werden hierbei verwendet um online: Freundschaften zu pflegen, digitale Inhalte auszu-
tauschen, als auch um zu kommunizieren. Benutzer von sozialen Medien verwenden in der
Regel ihre wirkliche Identität. Des Weiteren animieren Betreiber von sozialen Netzwerken ihre
Benutzer dazu eine Vielzahl von persönlichen Informationen mittels ihrer Services zu veröf-
fentlichen. Der Zugriff auf die beträchtlichen Datenmengen von persönlichen Informationen
wird ausschließlich durch die Betreiber von sozialen Netzwerken geregelt.

Die Forschung im Bereich der Sicherheit und Privatsphäre von sozialen Netzwerken hatte
sich in den vergangenen Jahren hauptsächlich auf das Informationsveröffentlichungsverhalten
von Benutzern sowie auf die sich daraus ergebenen Herausforderungen für die Verwaltung
von Profilinhalten fokussiert. Im Gegensatz dazu, hat sich die Forschung relativ wenig auf
den OSN Datenzugriff von Dritten, und insbesondere Drittanbieteranwendungen spezialisiert.
Bei Drittanbieteranwendungen, oder umgangssprachlich „apps“, handelt es sich um beliebte Er-
weiterungen deren aktuelle Funktionsweise den Transfer von persönlichen Informationen außer-
halb der geschützten OSN Plattformen ermöglicht. Mit dieser Dissertation streben wir eine
Erweiterung des aktuellen Wissensstands zu den Auswirkungen von Drittanbieterzugriffen auf
die OSN Benutzer-Sicherheit und –Privatsphäre an. Das erste komplexe Forschungsproblem
das wir hierbei behandeln, ist die automatische Analyse von Drittanbieteranwendungen auf
Sicherheits- und Privatsphären-Defizite. Die verteilte OSN Infrastruktur verhindert den Einsatz
von bestehenden Methoden der digitalen Forensik. Daher fokussieren wir in unserer zweiten
Forschungsfrage auf neuartige Methoden, um digitale Beweise aus sozialen Netzwerken zu sam-
meln. Als dritte Forschungsfrage beschäftigen wir uns mit der Ausnutzung der mangelnden
OSN-Verbindungssicherheit für ausgeklügelte Session-Hjiacking Angriffe.

Die erste Forschungsfrage brachte ein automatisiertes System zum Aufspüren von Defiziten
bezüglich Sicherheit und Privatsphäre von Drittanbieteranwendungen, mit dem Namen AppIn-
spect, hervor. Unsere Ergebnisse führten zur Beseitigung einer Reihe von Informationslecks
in populären Anwendungen. Diese Arbeit leistet des Weiteren, mit unserer Social Snapshot
Software zur OSN Datensammlung, einen wichtigen Beitrag im Bereich der digitalen Foren-
sik. In Folge, stellt unser drittes Hauptergebnis die sogenannten Friend-in-The-Middle (FiTM)
Angriffe dar. Unsere Ergebnisse heben die Wichtigkeit von OSN-Verbindungssicherheit hervor
und OSN Betreiber beginnen diese Erkenntnis zu berücksichtigen. In Folge erwarten wir, dass
die führenden Betreiber von sozialen Netzwerken in naher Zukunft alle Verbindungen standard-
mäßig verschlüsseln.
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CHAPTER 1
Introduction

1.1 Motivation

Online Social Networks (OSNs) are in the epicenter of today’s Internet and recently became
one of the most popular web services. Consequently, OSNs are used by hundreds of millions
of users worldwide, and people rely on OSNs to foster social relationships, exchange media
files, and to communicate online. People in general, use their real world identity, and social
networking providers encourage them to share a plethora of personal information via OSNs,
which includes: dates of birth, email addresses, circles of friends, and personal photos. Access
to the fast amounts of personal information is exclusively governed by social network providers.

Social networking providers invite developers to extend their platform functionality with
third-party applications. Popular third-party applications such as games ultimately enable ap-
plication developers to gain access to the walled gardens of personal information collected by
OSNs. Research on OSN security and privacy in the past decade has focused, to a large extend,
on the information-disclosure behavior of OSN users and the resulting challenges for the privacy
management of social networking profiles. Previous research helped to increase user awareness
of unwanted information-disclosure, and also led to the adaption of fine grained privacy con-
trols by major OSN services. Little research has however been conducted on third-party access
to social networking data, and third-party applications in particular. The aim of this thesis is
thus, to advance research regarding security and privacy implications of third-party access to
social networking data. In particular, we strive to automatically screen application ecosystems
for potential privacy malpractices, and security shortcomings. Automated analyses of applica-
tion ecosystems help to protect social networking users from privacy violations and the misuse
of their data. Furthermore, this thesis analyzes the use of custom applications in the area of
computer security. Hereby, we want to develop new methods to support the data extraction of
social networking data for forensic investigations, and academic research. Finally, we want to
create awareness for the misuse of weak communication security in combination with custom
applications before these shortcomings are going to be exploited in the wild.
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1.2 Problem Statement

This thesis addresses the implications of third-party access to social networking data for user
privacy and security. Hereby, we elaborate three specific research problems in depth. First,
third-party applications are popular OSN extensions and their security and privacy issues have
not been studied at large scale. Second, people increasingly use OSNs to communicate online
and new methods for digital forensics are therefore required to collect digital evidence from
social networking providers. Third, social networking providers often rely on insecure commu-
nication protocols and the impact of this security shortcoming requires additional research. In
the following we describe our three research problems in more detail.

Analysis of Third-Party Application Ecosystems

Third-party applications (apps) are used by hundreds of millions of social network users every
day. These apps offer extensions to social networking services, in exchange for personal infor-
mation from users. In addition, a number of unique privacy and security challenges arise due to
the transfer of personal data to application developers. Application developers rely on custom
hosting infrastructure to process and store personal data, which might contain security weaknes-
ses. Furthermore, the information transferred to third-party applications might leak to additional
advertising and analytics providers. The first research problem is thus concerned with methods
to analyze OSN application ecosystems for security and privacy shortcomings on a large scale.

Evidence Collection for Digital Forensics

Digital forensics is concerned with developing methods to recover and investigate digital evi-
dence for criminal investigations. Methods for digital forensics traditionally focus on filesy-
stems, logs, and databases. With the growing popularity of social networking services, the
importance of OSNs for criminal investigations is increasing as well. The distributed nature
of OSNs renders state-of-the-art methods for digital forensics useless, and novel approaches
for evidence collection from OSNs are thus required. Data associated with social networking
profiles can gain fast extends and methods to visualize the collected data are therefore another
important problem. The second research problem investigates into forensic methods to collect,
process, and visualize digital evidence from OSNs.

Impact of Session-Hijacking Attacks

The design and architecture of social networking services has important implications for the
privacy and security of its users. One especially important architectural feature is the communi-
cation security of data exchanged between users and OSN providers. OSNs currently offer only
partial support for exchanging information via secure and encrypted communication channels.
It has to be taken into consideration that insufficient protection against session-hijacking attacks,
enables attackers to misuse OSN accounts. The third research problem is thus concerned with
estimating potential misuse scenarios of hijacked user accounts, and to estimate the impact of
sophisticated attacks based on hijacking OSN user accounts.

2



1.3 Main Results

The main results are organized in accordance to the previously stated research problems. The
first main result consists in a framework to automatically analyze OSN third-party application
ecosystems, called AppInspect, which we further describe in Chapter 4. Our second main result
consists in a novel method to extract digital evidence from OSNs via so called Social Snapshots,
which corresponds to Chapter 5 in this thesis. In this section we furthermore briefly discuss our
third main result, called Friend-in-the-Middle (FiTM) attacks, which we cover in more detail in
Chapter 6.

Methodological Approach

The aim of thesis is not only to present new theoretical methods for social network privacy and
security but also to practically evaluate them. Hereby, we develop proof-of-concept implemen-
tations, and release our tools under an open-source license where it is applicable. Furthermore,
we share our collected data with the research community to advance research in the area of OSN
security and privacy. The novel methods presented in this thesis can be applied to the great
majority of OSNs, and we primarily tested our approaches on the basis of Facebook, which is
currently the most mature and popular social networking service.
The specific methodologies used to tackle our three main research problems, are further discus-
sed in each Chapter separately (see Subsections 4.2, 5.3, and 6.2).

1.3.1 Evaluation of Third-Party Application Ecosystems

First of all, we discuss generic methods to assess the security and privacy of OSN application
ecosystems in an automated fashion. The practical implementation of our generic methods for
Facebook helped to mitigate a number of privacy and security shortcomings of popular applica-
tions. Our main contributions are as follows:

• We present a novel framework for automated privacy and security analysis of social net-
working apps, called AppInspect. Our AppInspect framework consists of three main mo-
dules to: enumerate available applications for a given OSN, classify applications, and
perform in-depth analyses of their hosting infrastructure and network traffic.

• We evaluate the feasibility of our AppInspect framework on basis of Facebook and were
able to enumerate 434,687 third-party applications. We show that a relatively small num-
ber of applications within our subsample (∼10,000 apps), attracts the great majority of
users.

• We assess the security of third-party hosting infrastructure and automatically detect se-
curity and privacy malpractices of application providers for the most popular Facebook
applications.

• We make our enumerated dataset of 434,687 unique Facebook applications available to
the research community. Furthermore, we use our AppInspect framework to periodically
refreshed and extend our dataset.

3



1.3.2 Digital Forensics with Social Snapshots

We present a novel method to collect data from OSNs, called Social Snapshots, which relies on
an automated web browser in combination with a customized third-party application. Our novel
social snapshot tool makes the following contributions in the area of digital forensics:

• We introduce novel techniques to efficiently gather data from online social networks for
the purpose of forensic analyses as well as for academic studies. Our tool gathers more
data than possible with today’s approaches and makes it feasible to link “online evidence”
to traditional forensic artifacts found on computers, using state-of-the-art forensic me-
thods.

• We implement a prototype of our social snapshot tool for Facebook, and release it under
an open-source license.

• We perform an experimental evaluation involving a real-world test with volunteers and
show that our approach is both practicable and feasible.

• We discuss possible methods to visualize collected social networking data and furthermore
provide practical examples of these social snapshot visualizations.

1.3.3 Evaluation of Session Hijacking Attacks

In our third main results we present Friend-in-The-Middle (FiTM) attacks which describe ad-
vanced attacks based on hijacking OSN user sessions. We furthermore discuss the misuse of
hijacked user sessions for large scale spam campaigns. Our third main result makes the follo-
wing contributions:

• We introduce Friend-in-The-Middle (FiTM) attacks which enable automated context-aware
spam campaigns on a large scale. Hereby, we outline three attacks which are enabled
through hijacking social networking user sessions.

• We estimate the potential risk of OSNs session hijacking attacks on the basis of two expe-
riments. First, we show that public WiFi access points are a potential source for session
hijacking attacks. Second, we show that Tor exit nodes pose another risk for social net-
working users and a further potential starting point for FiTM attacks.

• We identify optimal attack strategies for our FiTM attack on the basis of a generated
Facebook subgraph.

• We simulate a large-scale spam campaign to estimate the impact of the potentially hijacked
OSN users of our two measurement experiments.

• We show that a relatively small number of initially hijacked user sessions might lead to
hundreds of thousands users being targeted with context-aware spam.
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1.4 Structure of the Work
In Chapter 2 we introduce basic notions and definitions used within this thesis. In addition we
discuss third-party applications in Section 2.3, which constitute a fundamental concept for the
three main contributions of this thesis. In Chapter 3 we survey the state-of-the-art research in
the area of social network security and privacy. This Chapter provides an extensive overview
over existing threats and protection mechanisms of OSNs. We outline privacy-related threats
in Section 3.1, followed by security-related threats in Section 3.2. Finally, we discuss possible
mitigation strategies in Section 3.3. The following three chapters outline the three main contri-
butions of this thesis, whereas:
Chapter 4 describes our large-scale evaluation of OSN application ecosystems. Hereby, Sec-
tion 4.1 outlines the design and functionality of AppInspect, our framework to analyze third-
party applications. In Section 4.2, we describe the evaluation of our framework on Facebook
and our acquired application sample. Section 4.3 presents the privacy and security shortcomings
we detected in Facebook’s application ecosystem. We then discuss the implications of our fin-
dings in Section 4.4. We outline our second main result: a novel method for collecting data
from OSN, called social snapshots, in Chapter 5. Hereby, Section 5.1 describes the design of
our social snapshot tool and its different modules. The methodology and our proof-of-concept
implementation are described in Section 5.3. We discuss different visualizations of social snaps-
hots for forensic purposes in Section 5.2. Our findings are outlined in Section 5.4 and further
discussed in Section 5.5. Chapter 6 presents the third main result of this thesis: a sophisticated
attack based on hijacking social network sessions, called Friend-in-The-Middle (FiTM) attack.
Section 6.1 outlines our novel attack and discusses large-scale spam campaigns. We explain the
methodology used to evaluate the practicability and impact of our attack in Section 6.2, while
we present our findings in Section 6.3. Finally, we discuss our results and possible mitigation
strategies in Section 6.4.
Chapter 7 finally summarizes the main results of this thesis and furthermore compares our fin-
dings with existing research in Section 7.2, before we discuss future research in Section 7.3.

This thesis is based on the following publications:

• M. Huber, M. Mulazzani, and E. Weippl. Who on earth is mr. cypher? automated friend injection
attacks on social networking sites. In Proceedings of the IFIP International Information Security
Conference 2010: Security and Privacy, 9 2010

• M. Huber, M. Mulazzani, E. Weippl, G. Kitzler, and S. Goluch. Friend-in-the-middle attacks:
Exploiting social networking sites for spam. IEEE Internet Computing, 15(3):28–34, 2011

• M. Huber, M. Mulazzani, M. Leithner, S. Schrittwieser, G. Wondracek, and E. Weippl. Social
snapshots: digital forensics for online social networks. In Proceedings of the 27th Annual Compu-
ter Security Applications Conference, 2011

• M. Mulazzani, M. Huber, and E. Weippl. Social network forensics: Tapping the data pool of social
networks. Eighth Annual IFIP WG 11.9 International Conference on Digital Forensics, 1 2012

• M. Huber, M. Mulazzani, S. Schrittwieser, and E. Weippl. Appinspect: Large-scale evaluation of
social networking apps. In Proceedings of ACM conference on Online Social Networks (COSN),
2013
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CHAPTER 2
Preliminaries

2.1 Online Social Networks (OSNs)

Online Social Networks (OSNs) are a recent phenomenon and account for the most popular web
services at the time of writing. One of the first researchers that described the phenomenon of
online social networks, were Boyd and Ellison [37] who provided an overview of OSNs in a
historical and scholarly context. The authors defined social networking sites (SNSs) as web-
based services that allow individuals to: (1) construct a public or semi-public profile within a
bounded system, (2) articulate a list of other users with whom they share a connection, and (3)
view and traverse their list of connections and those made by others within the system. While
we agree with their fundamental definition, we refer to social networking sites as “online social
networks” (OSNs) throughout this thesis. OSN describes a more general term, which better
accounts for the growing ubiquity of social networking services as web-based services, mobile
applications, and social extensions to regular web sites. State-of-the- art online social networks
can be divided into two main classes which we describe in the following.

2.1.1 General-purpose OSNs

General-purpose online social networks describe a class of OSNs which Bonneau and Prei-
busch [33] defined as: anybody is free to join, people commonly present their real-world iden-
tity, and the primary use of the site is interacting with others via profile pages. Web services
whose primary purpose consists in sharing content (e.g. YouTube, Flickr, or Tumblr), are thus
not included in the definition of general-purpose OSNs. General-purpose OSNs affect the area of
information security and privacy because users provide their real-world identity and a plethora
of personal information to third-party web services. The most popular examples for general-
purpose OSNs are currently Facebook and Google+. While Facebook and Google+ have a
global user base, a number of general-purpose OSNs cater specific geographic locations. Po-
pular regional online social networks include Qzone and Renren which are used in mainland
China, their popularity can be attributed to the inaccessibility of Facebook’s and Google’s web
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services in China. Other popular regional ONSs include VKonakte, which is primarily used in
Russian-speaking countries, and Tuenti which is a popular online social network in Spain.

2.1.2 Niche OSNs

Except from general-purpose OSNs a number of online social networks fill specialized niches.
This class of services either offers a functionality subset of general-purpose OSNs, or these ser-
vices are used in significantly different ways. Business-networking OSNs are a popular niche of
online social networking services whereas people focus on exchanging professional information.
This business-networking OSNs offer online services to foster business relationships and to hunt
for jobs. LinkedIn and XING are two prominent examples for this OSN niche. Media recommen-
dation OSNs describe a niche which focuses on sharing of music, movies, and book tastes and
provide media recommendation systems. Popular examples of media recommendation OSNs
include Last.fm for music, Flixster for movies, and Goodreads for books. Reunion OSNs focus
on facilitating off-line communication as compared with on-line communication of general-
purpose OSNs. Reunion OSNs, such as Classmates.com or MyLife, help former classmates,
work colleges, or servicemen to exchange contact details for reunions. Activity-focused OSNs
enable its users to perform certain activities. Gaia Online, for example, provides online services
for social gaming. Another example for this niche is Couchsurfing, which connects travelers
and acts as a provider for hospitality services. Privacy-focused OSNs focus on user privacy and
compose another OSNs niche. Privacy-focused OSNs often rely on decentralized architectures
and the currently most widely used privacy-focused OSN is Diaspora. Subsection 3.3.3 provides
a further overview of current academic proposals for decentralized OSN architectures.

Name Protection Requirements User URI

Facebook General-purpose Global 1,000,000,000 http://facebook.com

Qzone General-purpose CN 597,000,000 http://qzone.qq.com/

Google+ General-purpose Global 500,000,000 https://plus.google.com

LinkedIn Business-networking Global 200,000,000 http://www.linkedin.com/

Vkontakte General-purpose RU 200,000,000 http://vk.com

Renren General-purpose CN 160,000,000 http://renren.com/

Flixster Media recommendation Global 63,000,000 http://www.flixster.com

MyLife Reunion US, CA 51,000,000 http://www.mylife.com/

Classmates.com Reunion US 50,000,000 http://www.classmates.com

Last.fm Media recommendation Global 30,000,000 http://last.fm

Gaia Online Activity-focused Global 23,523,663 http://www.gaiaonline.com/

Tuenti General-purpose ES 14,000,000 https://www.tuenti.com/

XING Business-networking DE, AT, CH 11,100,000 https://www.xing.com

Goodreads Media recommendation Global 10,000,000 http://www.goodreads.com

CourchSurfing Activity-focused Global 2,967,421 https://www.couchsurfing.org

Diaspora Privacy-focused Global 406,960 http://diasporaproject.org

Table 2.1: Popular online social networking services as of March 2013

Table 2.1 outlines a number of popular online social networking services. Numbers on active
users are based on statistics from March 2013. It should be noted that the numbers of active users
represent self-reported statistics by OSN providers.
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2.2 OSN graph fundamentals

The underlying structures of online social networks represent graphs. In this section we will
therefore briefly outline common notations of graph theory, discuss graph metrics, as well as
methods to create graph models.

Social networking graphs represent simple graphs with undirected edges because friendships
in OSNs are in general mutual. We consider an OSN to be an undirected social graphG = (V,E)
with vi ∈ N and E ⊆ [V ]2, where the nodes vi ∈ V represent users and the vertices {vi, vj},
denoted as vivj ∈ E, represent connections between two users vi and vj .

2.2.1 Social Network Analysis and Graph Metrics

Social Network Analysis (SNA) is concerned with the methodical analysis of social networks.
Relationships are hereby analyzed with methods of network theory, which itself is an area of
graph theory. Borgatti et al. published an article describing the history of social network analy-
sis [34] and provides a brief introduction to the most import SNA concepts. In this Subsection we
briefly discuss two fundamental graph metrics: centrality, and segmentation. We point readers
interested in a comprehensive overview on social network analysis to Newman [142].

Centrality metrics

In a graph some vertices are more important and influential than others and centrality metrics are
used to describe this property. The most straightforward centrality metric, is degree centrality k,
which for an undirected graph G represents the number of edges connected to a vertex i. Hence,
it follows n for |V | = n:

ki =
n∑
j=1

aij (2.1)

Eigenvector centrality provides a more sophisticated metric of graph centrality, which gives each
vertex a score proportional to the sum of scores in its neighbors. The eigenvector centrality xi
of vertex i is proportional to the sum of the centralities xj of vertex i’s neighbors, whereas λ1
denotes the largest eigenvalue of the adjacency matrix A:

xi = λ1
−1
∑
j

aijxj (2.2)

Betweenness centrality is another important centrality metric, which measures to which ex-
tent a vertex lies on paths between other vertices. The betweenness centrality CB(v) for a vertex
v is defined as:

CB(v) =
∑
u6=v

∑
w 6=v

σuw(v)

σuw
(2.3)

Here σuw denotes the number of shortest paths between vertex u and vertex w, and σuw(v)
the number of shortest paths between those vertices that run through v.
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Segmentation

Social graphs divide naturally into groups and communities, e.g. users who share the same
co-workers or come from the same home town. Handcock et al. [90] showed that common af-
filiations implicate clustering within social networks. It can be assumed that OSN graphs are
segmented into a number of subgraphs, e.g. V ′i could consist of vertices that share certain pro-
perties nationality, gender or affiliations. The analysis of graph segmentation and algorithms for
group detection form important research problems in social network analysis. A basic concept
of graph segmentation are cliques, which represent subsets of users whereas all members in the
subset are connected with each other. The clustering coefficient measures the average probabi-
lity that two randomly selected neighbors of a vertex are connected by an edge. Let ki be the
number of neighbors of a vertex i and ei the sum of all edges between them. If each pair of
neighbors of vertex i were connected by an edge, then there would be ki(ki − 1)/2 edges in an
undirected network. Therefore, the clustering coefficient Ci of a vertex i is:

Ci =
2ei

ki(ki − 1)
(2.4)

The clustering coefficient thus shows how close the neighbors of i are to form a clique. Groups
and communities often do not form strict cliques and instead form separate dense regions. Gene-
ral approaches for community detection thus identify and remove spanning links within graphs
to segment it into a number of community subgraphs. The common Newman-Girvan algo-
rithm [143] for examples performs group detection based on the betweenness centrality scores
of graph vertices.

2.2.2 Subgraphs

The complete social graph is only known to OSNs operators and complete graph models are
difficult to compute. The total number of vertices in popular OSNs have vast extents, e.g. Face-
book has currently a total amount of |V | = 4 · 109 user vertices (see Table 2.1). In practice, it is
thus not feasible to analyze complete OSN graphs. Instead, a partial network is often created by
selecting a subgraph of the complete network: if V ′ ⊆ V and E′ ⊆ E, then G′ = (V ′, E′) is a
subgraph of G, written G′ ⊆ G. If E′ = {vivj ∈ E | vi, vj ∈ V ′}, then G′ is called an induced
subgraph. A graph is called simple when it has no self-loops and no multiple edges between any
pair of nodes. The degree dG(v) of a node v is the number of neighbors which is equal to the
number of edges on v, denoted |E(v)|. Note that for an induced subgraph G′ the degree of a
node v ∈ V ′ ⊆ V is dG′(v) ≤ dG(v). We say that an extended induced subgraph is a simple
graph with following enhancements of V ′ and E′: Let Ẽ′ be the set of edges with one endpoint
being in V ′ : Ẽ′ := {vivj ∈ E\E′|vi ∈ V ′} then Ṽ ′ := {vj ∈ V \V ′|vivj ∈ Ẽ′}. Ṽ ′ contains
all vertices which have a direct connection to a vertex within the induced subgraph vertices V ′.
With this extension we obtain a new graph G̃ := (Ṽ , Ẽ) with Ṽ = V ′ ∪ Ṽ ′ and Ẽ = E′ ∪ Ẽ′.

We assume that a complete social networking graph, denoted as SNG = (VSNG, ESNG),
consists of n ∈ N, n < ∞ extended induced subgraphs {G1, G2, ..., Gn} ⊆ SNG with a
pairwise almost disjoint property: |Gi ∩Gj | < ε with i, j = 1, ..., n ∧ i 6= j and ε ∈ N.
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Figure 2.1: Example of an extended induced subgraph G̃. The blue nodes represent an induced
subgraph, the black nodes represent our additions to form an extended induced subgraph.

Concerning the degree of a vertex, following proposition holds:1

for v ∈ V ′i ⊆ VSNG : dSNG(v) = dGi(v)

Modeling an OSN Subgraph

Since the dawn of the Internet, there has been extensive theoretical work on modeling the struc-
ture of social networks [80]. In the following we discuss possible models to generate OSN
subgraphs. The various proposed models focus on replicating recurring patterns and structures
of social networks observed in real-world. Recent work on social networks within mathema-
tics hereby focused on three distinctive features of network structure: the small average path
length (APL) or small world effect [135], the high clustering effect, and the property of having a
scale free degree distribution [18]. Within network simulations and modeling there are basically
three main classes of paradigms. The first one is the classic random graph or Poisson random
graph [64,152], which has been well studied in mathematics [29,111]. The random graph model
is still used in many different fields of research and serves as a benchmark for modeling studies.
However, the properties of these classic random graphs are not consistent with the properties
observed in real-world online social networks. The second class, motivated by the small world
effect, are small-world models. The idea of shortcuts for small-world models was proposed
by Watts and Strogatz [189], followed by other researchers in different research areas [8, 144].
These models account for the so called six degrees of separation phenomenon. Finally there
are scale-free models [17] which are basically networks with a given degree distribution, more

1V ′
i is the set of vertices from the induced subgraph G′

i, whereas Gi is the extended induced subgraph where G′
i

is the underlying induced subgraph
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precisely with a power law distribution. The discovery of the power-law degree distribution has
led to the construction of various scale-free models, which try to provide a universal theory of
network evolution and the realization of skewed degree distributions. For an overview of various
analytical models, we further refer the interested reader to [6].

2.3 Social networking apps

Third-party applications are a popular feature of today’s online social networks (OSNs). These
“apps”, as they are colloquially referred to, enrich user data to provide additional user experience
and functionality. An app might, for example, query a user’s birthday to create a personalized
horoscope in exchange. Social networking data is hereby provided to third parties through de-
veloper application programming interfaces (APIs). At the time of writing, there are two major
classes of apps. The first class consists of games, which typically incorporate aspects of social
networking into their gameplay. The second class contains general add-ons to social network
platforms, ranging from simple horoscope applications to sophisticated job hunting applicati-
ons. Facebook pioneered third-party applications by introducing the “Facebook Platform” in
May 2007 [70]. Facebook’s competitors responded with the launch of an open standard for
third-party access to social networking data called “OpenSocial” in November 2007 [87,92]. At
the time of writing, Facebook’s Connect platform is the most popular and mature framework for
social networking apps, which is why we use Facebook as an example of third-party platforms.
Ko et al. provides an overview of existing social networking APIs [119].

2.3.1 Facebook Platform

The Facebook Platform enables third parties to offer custom applications that extend Facebook’s
core functionality and integrate deeply into their website. Apps on Facebook are loaded inside
Facebook through a “Canvas Page”, which represents an HTML iframe. Facebook acts as a
proxy for displaying the output of apps to its users through iframes, while the actual apps are
hosted and executed on third-party servers. Facebook has no control over app servers but legally
binds third-party developers to comply with their Platform policies2. Before users decide to in-
stall a specific app, they need to authorize it. Facebook uses OAuth 2.0 [91] for authentication
and authorization of third-party applications. Once users authorize an application, it is granted
access to basic information by default. Basic information includes ID, name, picture, gender,
locale, and friend connections of a given user. Applications may, however, request additional
permissions. At the time of writing, there are four additional permission classes available on the
Facebook Platform [68], which applications may request in any combination. In total, there are
67 possible application permissions at the time of writing that app developers may request for
their application. Permissions within the extended permissions class grant applications access
to sensitive information such as exchanged private messages, and allows applications to post
content on behalf of its users. Another important permission class is the user and friend per-
missions class. Using permissions in this class, developers may request to gather information

2Facebook Platform Policies https://developers.facebook.com/policy/
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on a user’s religion, relationship status, birthday, personal email addresses, and virtually any pu-
blished content. Developers may also request personal profile information from a user’s friends,
with the exception of private email addresses. Facebook’s current default account settings allow
applications to access personal information of all of a user’s friends. This implies that, even if
you have not installed a single application, your data may be transferred to third parties through
your friends’ applications. Even though users can control which information is provided to their
friend’s applications, users are often unaware that they share their information with apps per
default.

Over the course of the last five years, Facebook has also emerged as an identity provider
for third-party websites. In addition to traditional canvas apps, websites leverage Facebook as
an identity provider and to enhance their social experiences through JavaScript plugins. Finally,
Facebook offers third-party access to mobile platforms through dedicated Android and iOS soft-
ware development kits.

2.3.2 Misconceptions of social applications

(a) Unified Auth Dialog, April
2010

(b) Enhanced Auth Dialog, Ja-
nuary 2012 (c) App Center Auth Dialog, May 2012

Figure 2.2: Adjustments to Facebook’s application authorization dialog over time.

Before users decide to add an application, an authorization dialog with requested permissi-
ons is displayed. Figure 2.2 shows Facebook’s current alternatives to display requested permissi-
ons. In response to complaints from the privacy commissioner of Canada, Facebook introduced
a unified permissions dialog in April 2010, of which Figure 2.2(a) provides an example. The
unified dialog has been deprecated and only a small number of applications still use this dia-
log. In January 2012 Facebook launched a revised permissions dialog called Enhanced Auth
Dialog (see Figure 2.2(b)), which replaced the unified permissions dialog. In May 2012, a third
permission dialog for all applications listed in Facebook’s App Center was introduced. Figure
2.2(c) shows an instance of this dialog. The standard authentication dialog uses pictograms and
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verbose descriptions for requested permissions and users may choose between Allow and Leave
App. Furthermore, a directed arrow symbolizes that the requested information is transferred to
a third party. Requested permissions faded from the spotlight with the enhanced authentication
dialog and permissions are now presented in a bulleted list with little additional information.
Facebook also changed the label of the authentication button, which reads Play Game instead of
Allow. Finally, with the App Center authentication dialog, the requested permissions are hardly
noticeable and a single prominent button encourages users to play the game. A TechCrunch
article [176] explains further design elements that Facebook uses to gradually conceal the re-
quested permissions of its third-party applications. Hull et al. [106] claims that Facebook’s
privacy issues are based primarily on design issues, which could be improved by making the
flows of information more transparent to users. The example of Facebook’s adjustments to their
app authorization dialog in Figure 2.2, suggests that Facebook currently invests little in making
their third-party application system more transparent. Previous research indicates that there are
a number of common misconceptions regarding how social networking applications work. Bes-
mer and Lipford [23] conducted semi-structured interviews as well as a survey to understand
how users perceive privacy risks of social applications. Their findings showed that social inter-
action drives the spread and use of applications, and influences perceptions about privacy and
information disclosure. Furthermore, the participants’ privacy concerns were centered around
sharing data with other people on the social network, with almost no understanding of the data
sharing that occurs with the application developers. The researchers concluded that there is a
serious risk of applications maliciously harvesting profile information, and that users are neither
aware of nor do they consent to these risks. King et al. [118] conducted an exploratory sur-
vey to measure how Facebook app users interact with apps, what they understand about how
apps access and exchange their profile information, and how these factors relate to their privacy
concerns. They discovered that many users have limited comprehension of the privacy issues
posed by apps on Facebook Platform. The authors finally argue that the interleaving of appli-
cations into social relationships diverts attention away from the underlying institutional privacy
concerns.

2.3.3 Application directories and reviews

An important privacy and security challenge with social networking apps is the balance between
requested data and app functionality. Horoscope apps may for example harvest a user’s perso-
nal messages and photos instead of requesting only the date of birth. The Facebook Platform
enables third-party developers to make their apps available to other users without requiring prior
approval. Between May 2008 and December 2008, Facebook operated a verified apps program,
through which it designated certain applications as “verified apps”. A verified app badge was
promised to applications that are secure and demonstrated commitment to compliance with the
Facebook platform policies. A FTC report, however, found out that Facebook took no extra
steps to verify the security of third-party applications and labeled the program as deceptive [54].
Until July 2011, Facebook offered a central application directory, where developers could sub-
mit their applications once they considered their software mature. Later, Facebook removed its
app directory and applications are now automatically indexed once they reach 10 monthly active
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users (MAU) [66]. In May 2012 Facebook finally introduced the App Center3, which showcases
high-quality Facebook applications. At the time of writing a relatively small number of App
center applications is in stark contrast to the overall number of applications. According to Face-
book [157, p. 87], as of March 2012, more than nine million apps and websites were connecting
to their Platform services, in comparison with a few hundred App Center applications.

3Facebook App Center http://www.facebook.com/appcenter
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CHAPTER 3
State of the Art

This chapter provides an overview of research regarding privacy and security issues in online
social networks and is divided into three main Sections. First we discuss privacy-related threats
in Section 3.1, followed by security-related threats in Section 3.2. Finally, we discuss possible
mitigation strategies for OSN privacy and security threats in Section 3.3.

A number of researchers previously surveyed existing research in the area of OSN privacy
and security. One of the first attempts to categorize OSN security and privacy threats was publis-
hed by Hogben et al. [98] in 2007 as a position paper. Their initial work provides an introduction
to OSN security and privacy issues and also discusses possible protection strategies. The aut-
hors divided OSN security and privacy threats into four broad categories: privacy-threats, OSN
variants of traditional threats, identity-, and social-threats. A number of their outlined poten-
tial threats have been confirmed by additional research in the meantime. Another overview of
existing research was provided Bonneau, who maintained a online bibliography on security and
privacy in social networks until late 2010 [30]. A number of publication furthermore attempted
to survey this field of research and they are of limited breadth and are outdated as well. For
example, Gao et al. [83] provide an overview of security issues in online social networks and
Zhang et al. [198] discuss both security and privacy issues. OSNs are a dynamic field of re-
search and this Chapter provides an updated and comprehensive introduction to OSN privacy-
and security-related threats. In the following we mainly focus on technical weaknesses of OSNs
and also discuss possible mitigation strategies. We point readers interested in general research
on OSNs to two online bibliographies. Boyd [36] maintains a bibliography on OSN research,
which contains over 500 publications. Wilson et al. [192] conducted a survey on OSN research
in the social sciences, the authors also maintain a online bibliography1.

1http://facebookinthesocialsciences.org
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3.1 Privacy

The great majority of people use their real world identity for their online social networking
profiles. OSNs provider furthermore encourage their users to provide and share a number of
sensitive personal informations through their services. This pool of personal information has
serious implications for the privacy of social networking users.

Acquisti and Gross [2, 88] were amongst the first researchers to raise awareness for the pri-
vacy implications of online social networks and the information disclosure behavior of its users.
They analyzed the online behavior of more than 4,000 Carnegie Mellon University students
and their information disclosure habits on Facebook. Acquisti and Gross found that the great
majority of students disclosed personal information, such as their birthday and home address,
publicly online. In the following, research by Jones and Soltren [112] showed that large datasets
can be harvested from Facebook in an automated fashion. Their study was the first to address
the privacy issues of Facebook from both a technical and user awareness standpoint. Stutz-
man [171] conducted a quantitative analysis of information disclosure in online social networks
and found that a disconnect between the value of traditional identity information and online so-
cial networks exists. These initial publications created awareness for the impact of online social
networks on information privacy and security. All four surveys had been conducted on Face-
book, which at this point of time, was limited to college students in the United States. While
these early information disclosure surveys all found that the majority of Facebook users made
sensitive information available to third-parties, these findings are to some degree explicable by
the fact that Facebook used to be exclusively for American college students until late 2006 [69].
A recent publication by Stutzman et al. [172] analyzed the disclosure patterns of Carnegie Mel-
lon students over the course of six years. As outline in Figure 3.1 did the amount of publicly
shared personal information decrease after Facebook became available to everyone with a valid
email address.

Figure 3.1: Heatmap of disclosure patterns in the CMU Yearly Snapshot Dataset [172].

Research in the social sciences became interested to discover the motives of people to join
OSNs and to better understand self-presentation on OSNs. Livingstone [129] conducted rese-
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arch to understand the motives of youth to join online social networks, including OSNs such as
Facebook and MySpace, on basis of interviews with teenagers. She found that younger teena-
gers prefer different OSNs as compared with older teenagers and that the graded perception of
friends does not meet the binary notion of friends in online social networks. The initial studies
of Acquisti and Gross [2, 88] have been further expanded by Tufekci [184] who conducted a
survey based on 704 college students to understand how they protect their personal information
online and how they present themselves in OSNs. The author found that online social networ-
king was already a widespread phenomenon amongst college students in 2008 and that students
mainly used their real name on Facebook, while relying on nicknames for their MySpace ac-
counts. Strater and Lipford [169] surveyed the strategies used by Facebook users to protect their
privacy online. They found that Facebook users often set their privacy settings upon account
creation and then adapt their privacy settings once problems occur. Strater and Lipford’s early
survey on privacy settings on Facebook also argues for improved usability of privacy settings
and stricter default settings. Another survey by Schrammel et al. [156] compared four different
OSN communities to better understand the disclosure behavior and usage patterns of these si-
tes. The four communities included the most popular professional and personal communities for
both English-speaking and German-speaking countries in 2009.

3.1.1 OSNs Platform Design

The actual design and implementation of social networking services has an important impact on
user privacy. OSN providers are hereby confronted with the trade-off of enabling convenient
information exchange versus protecting the privacy of their users.

Bonneau et al. [32] outlined a number of possible design weaknesses of Facebook which
might be misused to extract personal information from OSNs. Users might, might fore exam-
ple, expose their credentials via cross-site phishing attacks because they are trained to provide
their credentials for application authentication. Another weakness the authors found were spe-
cial FQL queries that expose a number of personal information. The authors simulated the
implications of their findings on basis of Stanford’s Facebook network. Like other web ser-
vices, OSNs rely on third-party products for tracking users and for monetizing their services
with advertisements. Krishnamurthy and Wills analyzed the use of third-party advertising and
tracking products across 11 different online social networks and found that OSNs commonly
leak personally identifiable information to third-parties via HTTP parameters, referers, and coo-
kies [123]. Krishnamurthy and Will [124] furthermore analyzed privacy leaks in mobile social
networks (mOSNs) and found that in addition to leaking personally identifiable information to
third-parties, these mobile applications also leak unique device identifiers and user locations to
third parties.

Public information

In order to advertise content within online social networks, OSN providers might decide to make
certain content available publicly. Bonneau et al. [31] showed that the social graph and under-
lying social network metrics can be inferred from public listings of a user’s friends in search
engines. Zheleva and Geetor [199] furthermore showed that private information can be inferred
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from public information e.g. based on group membership. The authors studied four different
web services, the photo-sharing website Flickr, the social network Facebook, an online social
network for dogs called Dogster, and the social bookmarking system BibSonomy. In order to
analyze Facebook, they relied upon the data from Lewis et al. [126] and used favorite books,
movies, and music as group memberships. Their results showed that it is, amongst other things,
feasible to infer the gender of Facebook users based on their friendships. At the time of writing,
Facebook limits the amount of personal information accessible to search engines. An initial fea-
ture of Facebook were networks, which per default enabled more permissive sharing of personal
information for people belonging to the same network. This feature was especially problematic
with open networks, such as regional networks, which anyone could join. Krishnamurthy and
Wills [122] analyzed the privacy settings of users profiles within regional networks of Facebook.
The authors found a negative correlation between permissive privacy settings and regional net-
work size. Another important design feature of OSNs is allowing users to browse through the
list of friends of their contacts. Korovola et al. investigated into attacks on link privacy whereas
an attacker tries to gather knowledge of a significant fraction of links in the network [120]. The
authors concluded that it is feasible to enumerate a significant faction of a ONS’s underlying
graph by subverting user accounts, and suggested that OSNs use lookahead values of 1 or 2 for
their user interfaces. Currently, all major OSNs allow a maximal lookahead of 1 or 2 for their
users. Irani et al. [108] finally investigated into publicly available OSN information and how
this information can be cross linked to create so called social footprints.

3.1.2 De-anonymization and Identity

Because people provide their real-world identity on OSNs, users might be de-anonymized in real
life based on their social networking data. Attackers in addition try to steal personal information
from OSNs for identity theft.

Wondracek et al. [193] evaluated a practical attack to de-anonymize visitors of websites
based on their previously visited social networking profiles. Their attack relied on first crawling
publicly accessible social networking groups and the corresponding unique identifiers of all
group members. Group membership was then used to optimize the number of queries to exactly
identify social networking users via browser history stealing. While their attack was successful
against users of XING, current web browsers protect against history stealing attacks and OSNs
began to limit the amount of publicly available information. Acquisti et al. [4] showed that off-
the-shelve face recognition algorithms are able to link snapshots of strangers with their online
social networking identity. In worst case the personal information available on online social
networks can lead to identity theft. For example, Acquisti and Gross [3] found that information
about an individual’s current location and date of birth can be exploited to predict her Social
Security number (SSN).

3.1.3 Anonymized Datasets

With the growing importance of OSNs for research, the community started to make collected
social networking datasets available online. While researchers usually exclude personal infor-
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mation from these datasets, it has been shown that releasing this kind of data poses non-trivial
challenges.

Backstrom et al. [12] outlined a number of passive and active attacks to re-identify social
networking users within anonymized datasets. The authors discuss formal methods to ensure
user anonymity in datasets and argued that there is a lack of computational methods to automa-
tically anonymize data from online social networks. A first survey on anonymization of social
networking data was done by Zhou et al. [200]. The survey discusses social networking specific
anonymization techniques on basis of two classes: clustering-based approaches and graph mo-
dification approaches. Narayanan and Shmatikov [139] developed a re-identification algorithm
targeting anonymized social-network graphs which relies on network structures. The authors
then demonstrated that verifiable members of both Flickr and Twitter can be recognized in a
completely anonymous Twitter graph. De-anonymization attacks on social networking datasets
are successful because in comparison with traditional relational datasets, the structural informa-
tion of social networking graphs can be used to re-identify individuals without the requirement
of personal information. Research acknowledged this problem and e.g. Zou et al. [202] propose
the use of k-automorphism to protect against multiple structural attacks and they also develo-
ped an algorithm (called KM) that ensures k-automorphism of social networking data. Another
early contribution which tackles this research problem was done by Campan and Truta [45] who
also relied on the k-anonymity model to design a greedy algorithm to anonymize structural and
personal information in social networking datasets.

3.2 Security

In this section we describe OSN security weaknesses and potential attacks based on OSNs. It
should however be noted that privacy leaks might also lead to further attacks on the security of
OSN users. If an attacker e.g. is able to extract personal information using a privacy leak she
could misuse this information for further attacks, such as automated social engineering.

3.2.1 Provider Security

Security of social networking services ultimately depend on the software and service architecture
deployed by OSNs providers, which we discuss in the following.

Communication security

OSNs are designed as centralized Internet services and communication security of these services
is a necessity. Unencrypted network communication between users and social network providers
implies that that the entire communication content (including personal messages, status updates,
pictures, etc.) is vulnerable to eavesdropping. Even more important user sessions can be easily
hijacked because attackers can extract authentication cookies from unprotected network links
and misuse their accounts. Transport Layer Security (TLS) is the state-of-the-art cryptographic
protocol to protect Internet services from eavesdropping and man-in-the-middle attacks. Table
3.1 shows the most popular OSNs, at the time of writing, and their support for TLS. Initially none
of the major OSNs fully supported TLS with the exception of Google+ which was launched
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Transport Layer Security (TLS)

OSN 2008 2013

Facebook Login only Opt-In/Default
Qzone No No
Google+ - Default
LinkedIn Login only Opt-In
Vkontakte No Login only

Table 3.1: Top five online social networks and their support for TLS as of April 2013.

in 2011. As reported by Jones and Soltren [112], in 2005 even Facebook login credentials
were exchanged in plain text. The fact that OSNs providers initially refrained from offering
their services over a secure network channel can be attributed to performance and cost reasons
(compare with [94]). It can be argued that the release of tools like Firesheep [43] or Faceniff
[149] and our findings (see Chapter 6) sped up the implementation of full TLS support for OSNs.
As of March 2013 a number of OSNs support full TLS communication as an optional feature of
their platforms. Facebook introduced optional TLS support in 2011 [72], followed by LinkedIn
in 2012 [127]. In November 2012, Facebook announced that they will start to roll out full TLS
support per default [73] to all their users. The current partial TLS support of OSNs enables
more sophisticated attacks on the communication security of user sessions. An example for
such sophisticated attacks, is the sslstrip attack by Marlinspike [133]. In case whereas OSNs
support unencrypted communication for backwards compatibility, sslstrip attacks can be used
as a man-in-the-middle attack for hijacking user sessions.

Implementation Issues

Like any other web based service, OSNs are prone for implementation bugs that impact the se-
curity of their systems. A common implementation error that was misused by attackers of OSNs
are cross-site scripting (XSS) bugs. Attackers misused these implementation bugs amongst other
things to leverage XSS worms. Examples include Samy on MySpace [197], which infected more
than 1 million profiles in less than 20 hours, and the Bom Sabado XSS worm targeting Google’s
Orkut in 2010 [195]. Except from XSS bugs, examples for high-impact attacks include the leak
of studiVZ user-data through SQL injection attacks in 2007 [95] and the leak of 6.5 million
unique LinkedIn passwords in 2012 [177]. A number of security bugs have been discovered
on the popular Facebook platform as well, including bugs that allowed to reset passwords of
arbitrary user accounts [161]. In June 2011 Facebook launched a bug bounty program to re-
ward security researchers for discovered security bugs [51]. As of April 2013, 185 independent
security researchers reported security bugs that eventually got acknowledged and fixed by Fa-
cebook2. Except from misusing implementation bugs, attackers recently try to trick users into
performing certain social networking actions by using clickjacking attacks. Attackers hereby

2https://www.facebook.com/whitehat/thanks/
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exploit recommendation buttons for web site developers through clickjacking attacks. Hereby,
attacker place an invisible iframes over seemingly harmless web links and once users click these
links they promote malicious content. In 2010 a number of these attacks targeted the Facebook
Like Button and these campaigns were therefore dubbed as likejacking attacks [153]. Rydstedt
et al. [155] found that in 2010 all of the top 500 websites were vulnerable to clickjacking attacks
and they proposed possible countermeasures. Balduzzi et al. [14] furthermore developed a new
detection technique, called ClickIDS, to automatically detect clickjacking attacks.

Platform Integrity

OSN providers rely on a number of strategies to ensure the integrity of their platforms. Stein et
al. [167] describe the Facebook Immune System and outline the countermeasures Facebook uses
to protect their system. According to the authors do Facebook’s protection mechanisms rely on
machine learning algorithms to keep pace with the changing nature of malicious campaigns. The
authors identified four major threats to Facebook’s platform integrity: compromised accounts,
fake account, creepers, and spam. With exception of creepers, which are real users creating
problems for other users, Facebook’s security threats origin from automated bots. OSNs rely
in general on two protection strategies to protect against malicious bots. First they make use
of CAPTCHAs [187] to tell humans and computers apart, and second they apply per account
rate limits to prevent misuse of certain platform features (e.g. number of friend requests per
day). While less complex CAPTCHAs can be broken [136], attackers nowadays relay complex
challenges to be solved by humans. A number of companies offer remote CAPTCHA solving
services for as low as 1 USD per 1,000 solved challenges [137]. Except from paid services,
attackers often use malware to solve complex anti-crawling mechanisms. An example includes
malware that disguises itself as a striptease-game and requests users to solve CAPTCHAs in
exchange for pornographic pictures [183]. Koobface, a malware family targeting OSNs users
specifically, deceives users to solve challenges under the pretense of system shutdowns [180].
While, CAPTCHAs and rate limits attempt to contain the impact of malicious bots, OSNs pro-
viders require additional mechanisms to prevent the compromise of user accounts. Facebook,
for example, used to rely upon IP features and the resulting geodistance, which attackers sub-
verted by using proxies and botnets to fake according geolocations [167]. Facebook pioneered
with an additional account verification mechanism, called social authentication. Social authen-
tication relies upon social knowledge, such as the correct identification of a user’s friends on
photos. This novel verification measure promises additional protection and Kim et al. [117]
found a number of potential shortcomings in this authentication scheme. The authors argue that
insiders might easily subvert Facebook’s social authentication schema and that face-recognition
algorithms pose a growing risk. Finally, Kim et al. proposed a number of methods to strengthen
Facebook’s social authentication method. Polakis et al. [148] furthermore demonstrated that
showed that the theoretical risks of Kim et al. [117] can be exploited in practice.

3.2.2 Unwanted and Malicious Content

It is believed that the vast majority of emails sent today are unsolicited bulk messages (spam),
accounting for more than 70% of all emails sent in 2012 [115]. Empirical studies showed that
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while the conversion rate of spam is quite low, it is apparently still sufficient for spammers to
make money [114]. Phishing is a special type of unsolicited bulk messages, which can be seen
as the marriage between social engineering and spam. Attackers try to fool victims into entering
their login credentials into malicious websites that mimic a real website (e.g., a bank). As
phishing uses the same attack vector (email) and infrastructure as spamming (phishing websites
are hosted on fast flux networks [99]), research in this area is closely related to spam and botnet
research. Current research focuses on preventing spam delivery and how botnets are used for
sending spam (e.g., the Storm [121] or Szizbi [168] botnets) to defeat IP blacklisting from email
service providers. In practice, a combination of various techniques is used to minimize spam:
sender-based systems such as SPF [194], IP blacklisting such as the Spamhouse blocklist3, and
content matching systems such as SpamAssassin4.

Online social networks might change the way large-scale spam attacks are carried out. On
one hand, are attackers using online social networks to deliver social spam, and on the other
hand can data from OSNs be misused to increase the authenticity of traditional spam messages
(see Subsection 3.2.3). Recent reports by Kaspersky [115] and Cicso [50] show that the global
spam volume is declining and suggest that attackers already began to focus on more targeted
spam attacks.

Social spam

We define social spam as unwanted content delivered via social networking platforms. Zin-
man and Donath [201] raised awareness for social spam and proposed to detect possible spam
profiles based on sociability and promotion ratings. Hereby, profiles with low sociability and
high promotion scores would be more likely to be spam profiles. Heymann et al. [97] surveyed
existing anti-spam solutions and outlined how email and website strategies might be applied to
OSNs. Webb et al. [190] proposed to use social honeypots to detect and analyze social spam
campaigns. The authors created 51 MySpace profiles and collected information on friend re-
quests they received via their honeypot accounts. Within four month, their honeypot profiles
received 1,570 friend requests, which either attempted to lure victims to specific websites or
to infiltrate their circle of friends. In the following, the authors extended their social honeypot
approach and developed classifiers based on machine learning to identify previously unknown
spammers [125]. Stringhini et al. [170] set-up 900 honeypot accounts for three major ONSs
(Facebook, MySpace, Twitter) to analyze friend requests and received messages. In the follo-
wing, the authors identified spam campaigns and supported Twitter in taking down a number
of spam profiles. Gao et al. [84] analyzed a dataset of over 187 million Facebook wall posts,
which they collected in 2009. Their system detected around 200,000 malicious wallposts, which
corresponded to 0.1 percent of their sampled wall posts. Their results suggest that more than
70 percent of malicious posts advertised phishing websites. Furthermore, more than 97 percent
of spam-sending Facebook accounts were classified as compromised user accounts rather than
sybil accounts. Abu-Nimeh et al. [1] finally conducted another survey of malicious spam posts
on Facebook and analyzed around half a million posts collected with the help of a Facebook

3Spamhaus Project https://www.spamhaus.org/
4SpamAssassin http://spamassassin.org/
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application, called Defensio. The authors relied on a number of third-party services to classify
links in their post sample. Their findings showed that 9 percent of the analyzed posts were social
spam and about 0.3 percent of posts linked to malware.

Socware

The term socware was introduced by Rahman et al. [150] to describe criminal and parasitic be-
havior in OSNs, including anything that annoys, hurts, or makes money off of the user. In order
to detect socware, Rahman et al. [150] developed a Facebook application called MyPageKeeper.
Their applications was installed by more than 12,000 Facebook users, and the authors evaluated
their approach on million posts collected in the course of four months. They found that 49% of
our users were exposed to at least one socware within four months and that their classification ap-
proach based on social context significantly outperforms traditional website blacklists. Finally
the authors observed and described a new type of parasitic behavior, called Like-as-a-Service
which describes campaigns to artificially boost the number of likes of specific OSN content.
Thomas and Nicol [180] analyzed Koobface a malware targeting OSNs. The Koobface botnet
exploits social network users by: leveraging zombies to generate accounts, befriend victims,
and to send spam. In order to get insights into the Koobface Botnet they first reverse engineered
the Koobface binary and then emulated Koobface zombies. Despite the number of defenses put
in place by OSN providers, their results found that domain blacklisting remains ineffective at
identifying malicious URLs. Their results showed that blacklisting of malicious links took on
average 4 days, while 81% of users visited Koobface URLs within 2 days.

3.2.3 Automated Social Engineering

While social engineering traditionally relies on information collected through dumpster diving
or phone calls, OSNs contain a plethora of personal information which could be misused as
an initial source for social engineering attacks. Because information harvested from OSNs can
be easily processed, we were among the first researchers to argue that OSNs enable automated
social engineering (ASE) attacks [100]. Reverse social engineering (RSE) describes a particular
social engineering technique whereas an attacker lures targets into initializing the conversion.
Irani et al. [107] argue that ONSs enable RSE attacks and describes three potential attack vectors.
In the following, the authors evaluated their proposed attack vectors on three different OSNs:
recommendation-based RSE on Facebook, demographic-based RSE on Badoo, as well as visitor
tracking-based RSE on Friendster. Their results show that RSE attacks are feasible in practice
and can be automated by exploiting the features of current online social networks. In comparison
with social spam, attackers can send traditional email messages to delivery spam, because users
provide their email addresses as part of their profiles. Hence, if spam is delivered via traditional
email instead of OSN platforms, these malicious messages cannot be detected by the OSNs
providers. Balduzzi et al. [15], for example, showed that OSNs can be misused for automated
user profiling. The authors found that OSNs can be misused to validate large sets of email
addresses and to collect additional personal information corresponding to these sets.
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Social-phishing

Phishing is a common threat on the Internet where an attacker tries to lure victims into ente-
ring sensitive information like passwords or credit card numbers into a faked website under the
control of the attacker. It has been shown that social phishing [110], which includes some kind
of “social” information specific to the victim, can be extremely effective compared to regular
phishing. Jagatic et al. [110] found that once phishing mails impersonated a target’s friend the
success rate of their phishing campaign increased from 16% to 72%. The social graph is the-
refore not only of value for the social network operator, but for attackers as well. Especially if
it contains additional information like a valid email address or recent communication between
the victim and the impersonated friend. With automated data extraction from social networks, a
vast amount of further usable data becomes available to spammers. Prior conversations within
the social network like private messages, comments or wall posts could be used to deduce the
language normally used for message exchange between the victim and the spam target. For ex-
ample, a phishing target might find it very suspicious if someone sends a message in English if
they normally communicate in French.

Context-aware spam

Context-aware spam misuses personal information extracted from OSNs to increase the authen-
ticity of traditional spam messages. Brown et al. [38] identified three context-aware spam at-
tacks which might be misused: relationship-based attacks, unshared-attribute attacks, as well as
shared-attribute attacks. Relationship-based attacks solely exploit relationship information, this
attack thus represents the spam equivalent of social phishing. The two remaining attacks exploit
additional information from social networks, which could either be shared or unshared amongst
the spam target and the spoofed friend. An example for an unshared attack are birthday cards
that seem to origin from the target’s friend. Finally, attackers might exploit shared attributes
for context-aware spam, such as photos where both the spam target and her spoofed friend are
tagged.

Fake profiles

At the time of writing the only requirement for the creation of a social networking account is a
valid email address, fake accounts can therefore be relatively easy created by attackers. A study
by Sophos in 2007 showed, based on randomly chosen Facebook users, that around 41% of
social networking users accepted friendship requests from a fake profile [163] they set up. Ryan
and Mauch [154] further showed that fake profiles can be misused to infiltrate social networks
and gain access to sensitive information in the military and information security community.
Bilge et al. [25] outlined two sophisticated fake profile attacks to infiltrate the trusted circles
of social networking users. First, with profile cloning attacks, an attacker clones an existing
user profile and attempts to “reinvite” her friends. Second, with cross-profile cloning attacks, an
attacker creates a cloned profile on a online social network where the target user does not have a
profile yet and contacts her target’s friends. For example, if a user has a Facebook account but no
LinkedIn account, an attacker clones the Facebook profile of the target to LinkedIn and contacts
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the target’s Facebook friends who are also on LinkedIn. Bilge et al. showed that their attacks
can be fully automated and are feasible in practice. If an attacker is able to create fake accounts
on a large scale, sybil attacks on ONSs become possible. OSN provider therefore employ a
number of protection mechanisms to limit the creation of large amounts of fake accounts (see
3.2.1). Boshmaf et al. [35] found that OSNs can be infiltrated on a large scale and evaluated
how vulnerable OSNs are to a large-scale infiltration by socialbots: computer programs that
control OSN accounts and mimic real users. The authors created a Socialbot Network (SbN):
a group of adaptive socialbots that are orchestrated in a command-and-control fashion, on basis
of Facebook. Hereby, the authors used 102 fake profiles to sent friendship requests to a random
sample of 5,053 Facebook users. Overall friendship requests were accepted by 19.3% of all
users. In the following the SbN tried to infiltrate the circle of friends of users who accepted
their fake friend requests. Within 8 weeks SbN was able to further infiltrate social networking
users and gain access to personal information. A recent survey by Alvisi et al. [7] provides an
overview on sybil defenses based for online social networks and proposes community detection
algorithms for sybil detection.

3.2.4 Digital Forensics

Digital forensics has received increasing attention in recent years as more and more crimes are
committed exclusively or with the involvement of computers. Digital traces help courts and
law enforcement agencies to capture valuable evidence for investigations. Existing research
as well as applications in the area of digital forensics focus on filesystems [46], volatile me-
mory [48, 93], databases [78], network traffic [53], and logfiles. The emergence of new online
services like OSNs replaces the traditional means of digital storage, sharing, and communica-
tion [44]. While traditional forensic approaches rely on the seizure of the suspect’s hardware
(computer, smartphone, storage media) for analysis, the emergence of online services, social
networks and novel online communication methods can render this approach useless: A tech-
savvy adversary might use a computer without hard disk, communicating securely with the use
of encryption and storing files distributed all over the world. This would leave no traces locally
for the forensic examiners to work with as soon as the computer is shut down. Another problem
is the worldwide distribution of the Internet with its multitude of jurisdictions: while a court
might order a company that is located within the same country to reveal information about a
suspect, across borders this request may not stand. With hundreds of millions of people sharing
and communicating on social networks, they become more and more important for crime scene
investigations. Traditional approaches to forensics on cloud computing and social network fo-
rensics are insufficient from an organizational as well as a technical point of view [26, 175]: the
physical location of server systems is only known to the company, making seizure of hardware
for examination in a forensic lab infeasible. Often, the social network operator in question co-
operates with law enforcement but in an equal number of cases they do not. Delicts that might
happen solely within social networks such as cyber- stalking, mobbing or grooming, in com-
bination with cross-border jurisdictions make it very hard to gather evidence in a forensically
sound manner. A number of examples for social network related crimes can be found in [179].
With the increasing number of users we expect the number of social network related investiga-
tions to increase heavily in the near future. The Electronic Frontier Foundation (EFF) compiled
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a report [62] on U.S. law-enforcement agencies’ access to social networking data. Most social
networking providers have dedicated services to cater for law-enforcement requests. For exam-
ple, Facebook offers two types of data: basic subscriber information (“Neoselect“) and extended
subscriber information (”Neoprint“) as well as an online request form for law enforcement agen-
cies5.

OSN forensic tools

Currently few digital forensic tools support the collection of evidence from OSNs. The collec-
tion techniques hereby focus on two evidence sources, namely: network dumps and forensic
images of hard drives. Xplico [196] is an Internet traffic decoder which supports the retrieval
of Facebook chats from network dumps. Standard packet analyzer often provide little insights
into exchanged content because OSNs rely on their users web browser to render the actual con-
tent. Pyflag [53], on the other hand, is a modular network forensic framework built to analyze
network dumps. Amongst other features the Pyflag framework can be used to rebuild web pa-
ges from packets, allowing examiner to view the web pages the suspect has seen even if it used
AJAX or other dynamic techniques for representation. Commercial tools, such as IEF (Inter-
net Evidence Finder)6 support the reconstruction of social networking fragments from forensic
images. Burszstein et al. [42] developed OWADE (Offline Windows Analyzer and Data Extrac-
tor) a project dedicated to cloud forensics which supports the recovery of browser history and
credentials. Garfinkel [85] finally introduced bulk_extract, an open source tool, for the efficient
extraction of forensic fragments. The tool extracts a number of fragments which are relevant for
OSN forensics such as browser history and cookies.

3.3 Protection Strategies

In this section we outline protection strategies for OSN users. Hereby, we first discuss security
extensions for OSNs, followed by possible usability improvements, and decentralized social
networking.

3.3.1 OSN Extensions

Security extensions for OSNs aim to hide personal information from social network providers
as well as from third parties without stopping users from sharing information. Guha et al. [89]
proposed an OSN extension, called NOYB (None Of Your Business), which substitutes personal
profile information with pseudorandom content. Lucas and Borisov [131] introduced another
OSN extension called flyByNight, which relies on public-key cryptography and a third-party
application to exchange confidential messages via Facebook. Their concept only applies to
messages; the remaining personal information is still exposed to social network providers and
third-party developers. Luo et al. [132] proposed FaceCloak, whereas OSNs providers receive
fake profile information and the real user data is stored encrypted on separate servers. In order

5https://www.facebook.com/records
6http://www.magnetforensics.com/products/internet-evidence-finder/
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to restore real user information, FaceCloak users require a browser extension and their Face-
Cloak credentials. FaceCloak’s approach is similar to NOYB with the exception of requiring
additional servers for storing the actual encrypted data. Baden et al. [13] proposed Persona
a privacy extension for OSNs by means of attribute-based encryption. The authors developed
a proof-of-concept Facebook implementation bundled with an extension for the Mozilla Fire-
fox web browser. The authors showed that their proposed approach is feasible and evaluated
the computational costs of Persona. Tootoonchian et al. [181] proposed Lockr, a system that
improves the privacy of centralized and decentralized online content sharing systems. Lockr
enables OSNs users to define and enforce fine-grained access control on shared content. Hereby,
Lockr implements an attestation verification mechanism, specifically a witness hiding proof of
knowledge (WHPOK), which is a variant of zero-knowledge protocols. The authors outlined the
feasibility of their approach on basis of an implementation for a centralized OSN as well as for
a de-centralized filesharing application. Beato et al. [20] finally proposed “Scramble”, a generic
method to shield confidential information from social networking providers. Table 3.2 outlines
the discussed OSN security extensions, their protection mechanisms, requirements, as well if
they are still operational.

Extension Mechanism Requirements Operational

NOYB [89] Pseudorandom substitution FF extension, dictionary server No
flyByNight [131] Public-key cryptography OSN application No
FaceCloak [132] Fake information, encryption FF extension, FaceCloak server No
Persona [13] Attribute based encryption FF extension, OSN application No
Lockr [181] WHPOK attestation FF extension, proxy server No
Scramble [20] Public-key cryptography FF extension, tiny link server Yes

Table 3.2: Overview of proposed OSN security extensions

With the exception of flyByNight all extensions require additional web browser extensions
and all researchers initially developed extensions for Mozilla Firefox (FF). In addition to web
browser extensions, all proposed OSN extensions require additional servers. Thus, if these ex-
tensions were deployed on a large-scale the required additional servers had to scale as well and
potentially handle the data of millions of OSN users. Even more important is the maintenance of
the proposed OSN extensions. As table 3.2 outlines, did all proof-of-concept implementations
except Scramble cease to be operational. Both web browsers and OSN platforms are subject
to swift implementation challenges and most authors arguably stopped any further development
once their papers got published. The authors of Lockr, for example initially maintained a web-
site for their project (http://lockr.org), at the time of writing the project domain is not owned by
the Lockr authors anymore and hosts a compromised personal homepage. Except from practical
OSN extensions, a number of researchers proposed generic schemes and architecture to improve
the security of centralized OSNs. Anderson et al. [9] proposed an architecture for untrusted
centralized services with link protection. Sun et al. [173] furthermore proposed a cryptographic
scheme for privacy preserving sharing of information within OSNs. Their scheme attempts to
mitigate threats posed by untrusted storage sites, supports dynamic revocation of group mem-
bers, and enables search over shared data. The authors argue that while their scheme might
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not completely protect the privacy of traditional OSNs users (e.g. in Facebook users can be
identified based on their shared pictures), their approach can enhance the privacy of anonymous
OSNs. Feldman et al. [75] finally proposed Frientegrity an OSN extension for untrusted cen-
tralized OSNs. Their approach accounts for both confidentiality and integrity, based on a novel
method for server equivocation detection, of OSN user data.

API protection

In addition to generic OSN security extensions, a number of researchers proposed extensions to
improve the security of OSN third-party APIs. Felt and Evans [76] conducted a survey of the
150 most popular Facebook applications in October 2007. Based on their analysis, they propo-
sed a privacy protection method for social networking APIs. Their method suggests providing
third-party developers with no personal information at all but with a limited interface that only
provides access to an anonymized social graph. Developers would use placeholders for user data,
which the social network providers would replace with actual user data. Felt and Evans’ design
is however impracticable with state-of-the-art applications because the majority of applications
require personal information to work. Singh et al. [162] proposed the “xBook” framework for
building privacy-preserving social networking applications. Their xBook framework is based
on information flow models to control what an application provider can do with the personal
information they receive. While their approach mitigates privacy and security issues of apps, it
would require all third-party developers to host their applications on the xBook platform. Egele
et al. [63] proposed fine-grained access control over application data requests. Their suggested
solution, called “PoX”, relies on a browser plugin that mediates application data access and a
modified Facebook API library for application developers. At the time of writing none of these
privacy-enhancing frameworks have been adopted by social network application developers.

3.3.2 Usability

Social network providers started to offer a number of fine-grained privacy and security controls,
research however showed that users often do not understand existing privacy interfaces [128].
Unusable and complex user interfaces ultimately lead to weak privacy settings of OSN users.
Lipford et al. [128] tested new interface prototypes that make use of an audience-oriented view
of profile information. Their experiments showed that audience-oriented interfaces significantly
improved the understanding of privacy management in ONSs. Danezis [57] proposed the auto-
matic inference of social context to simplify privacy management. Social contexts are hereby
inferred by automatically detecting highly cohesive social sub-groups (communities) based on
a user’s social graph. Fang and LeFevre [74] furthermore proposed the use of wizards to im-
prove the privacy settings of users. Users are hereby requested to label a limited number of their
friends and the privacy wizard then infers a privacy-preference model for all remaining friends.
Their work found, similar to Danezis [57], that community structures might offer helpful cues
for privacy preferences. Jones and O’Neil [113] investigated people’s rationales when grouping
their contacts for the purpose of controlling their privacy and assessed possible automated ap-
proaches. The authors showed that the SCAN algorithm yielded a 66,9% chance of correctly
grouping a user’s friends for privacy management. Squicciarini et al. [164] proposed collective
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privacy management based on game theory to tackle the problem of shared social networking
content. The authors implemented their approach as a Facebook application and evaluated the
performance of their proposed solution. Since late 2011 two of the proposed usability enhance-
ment have been en-cooperated into popular OSNs. Facebook introduced the automatic grouping
of friends with their so called “smart-list” feature [65]. Both Google+ and Facebook began to
support audience views of user profiles, to enable users to review which profile content is visible
to other users.

Application authorization dialogs

Third-party applications receive upon user authorization a number of personal information, the
design of these authorization dialogs is therefore an important usability problem. Besmer et
al. [22] evaluated a user interface prototype that would help users to choose which information
they want to share with third-party applications. They found that privacy-conscious users would
benefit from their new user interface, while careless users would continue to expose their perso-
nal information to third-party developers. Wang et al. [188] evaluated two alternative application
permission dialogs to help users understand better how third-party applications function. The
authors then proposed interface design cues based on their user interface evaluation. In con-
trast to these previous findings, current authentication dialogs seem to conceal privacy-relevant
information from users (see Figure 2.2).

3.3.3 Decentralized OSNs

Decentralized social networking services attempt to overcome a number of security and privacy
issues by not relying on centralized untrusted services.

Buchberger and Datta [39] made a case for peer-to-peer social networking services and dis-
cussed the unique challenges and opportunities of such services. Because no centralized service
is used to store data in peer-to-peer OSNs, users gain more control over their intellectual property
and better protect their privacy. The authors argue however that research into efficient content
update mechanisms would be required to realize peer-to-peer OSN services. PeerSoN [40] is a
prototypical implementation of a peer-to-peer OSN system, which uses a two-tier system archi-
tecture. One tier is used for peer lookups with distributed hash tables (DHTs), while the second
tier consists of the actual user peer-to-peer communication. Shakimov et al. [160] discuss three
alternatives to centralized OSNs: cloud-based decentralization, desktop-based decentralization,
and a hybrid of cloud- and desktop-based decentralization. The authors discuss the cost, and
availability tradeoffs of their three different proposed alternatives. In the following Shakimov
et al. [159] outlined Vis-à-Vis, a decentralized framework for social networking based on dis-
tributed Virtual Individual Server (VIS). They implemented their approach and deployed it in
the cloud and their evaluation showed that Vis-à-Vis imposes little performance overhead as
compared with centralized OSNs. Cutillo et al. [55, 56] analyzed common threats in OSNs and
proposed a privacy-preserving peer-to-peer OSN application called “Safebook”. The system
architecture of Safebook consists of three tiers: a social networking layer, a P2P substrate im-
plementing the application layer, and the Internet which represents the communication layer.
PrPl [158], short for private-public, is another decentralized OSN infrastructure whereas each
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user relies on a Personal-Cloud butler service. These butler services can be run on home servers
but also on paid cloud services and provide secure storage for personal files. Backes et al. [11]
proposed a cryptographic framework for distributed social networking which aims to protect
both user content as well as their social relationships. The authors formalized their approach
and verified it with an automated theorem prover. Except from the growing number of proposed
architectures and cryptographic schemes for decentralized OSNs, Diaspora7 is the first widely
deployed distributed social network. Diaspora itself consists of a network of independent, fe-
derated servers (pods). Users can run their own server or join an existing one. Bielenberg et
al. [24] analyzed the growth of the Diaspora social network and found that most users rely on a
few large Diaspora servers to host their data.

7http://diaspora-project.org/
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CHAPTER 4
Study of Application Ecosystems

Third-party applications, or colloquially “apps”, are used by hundreds of millions of social net-
working users every day. Popular apps include games, horoscopes, and quizzes. To provide
additional features, app developers transfer personal information from their users to their ap-
plication servers. Online social networks typically embed applications as framed websites in
their own portal and thus act as proxies between users and third-party applications. The actual
application code runs on third-party servers beyond the supervision of social network providers.

The modus operandi of social networking apps gives rise to unique privacy and security
challenges. Applications may maliciously harvest a wealth of personal information. One of the
key challenges is, therefore, to detect applications that process data in a way that may violate
the security or privacy expectation of users, and to identify apps that request more permissi-
ons than actually needed for their operation. Currently, the user is expected to decide whether
the requested permissions are in accordance with the application’s purpose on a technical layer.
Furthermore, sensitive user data may be stored on badly maintained third-party servers, making
them low-hanging fruits for attackers. Insights into applications’ underlying hosting infrastruc-
ture would help to get a better understanding of these security risks. Application providers
themselves rely on third parties for in-app advertising and analytics. Therefore, social networ-
king apps may leak sensitive information to third parties, both deliberately or by accident. In
the worst case, third parties may use leaked personal information to track app users across mul-
tiple websites with knowledge of their real identity. As a result, detecting information leakage is
another important challenge. Previous research focused on a single challenge, namely analyzing
personal information requested by social networking apps [49,188]. As a result of the deep inte-
gration of apps into social networking platforms, users often do not understand that application
developers receive and accumulate their personal information [118]. We are left with a dilemma
of social networking users’ misperception regarding app security and privacy, but also with little
insight into third-party application ecosystems.

In this chapter we outline a novel framework, called AppInspect, to systematically analyze
the unique privacy and security challenges of social networking applications. Our proposed
framework analyzes both information flows from social networking providers to third-party ap-
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plications and information flows from social networking applications to third parties. An initial
challenge in studies of online social networks lies in obtaining a meaningful sample of app-
lications. Our AppInspect framework entails a number of application enumeration strategies
to overcome this first obstacle. In the next step, our framework automatically fetches import-
ant attributes of enumerated applications, including their popularity and the set of requested
permissions. Finally, our framework collects the network traffic of social networking apps to
subsequently spot web trackers, poorly maintained application hosts, and leaking of sensitive
information to third parties. The motivation of our research is to protect social networking users
by automatically detecting security and privacy issues with social networking apps, as well as
policy violations. The findings of our AppInspect framework assist both social networking pro-
viders and application developers in protecting their users. We implemented our framework on
the basis of Facebook, which currently has the largest and most mature third-party application
ecosystem. We used our AppInspect prototype to carry out a large-scale evaluation of Face-
book’s application ecosystem, which ultimately helped to detect and report a number of privacy
and security shortcomings.

4.1 AppInspect Framework

The vast amount of available third-party social networking applications poses a challenge for
large-scale security and privacy studies. In order to overcome the naïve solution of manually
analyzing security and privacy issues of third-party applications, we propose a novel analysis
framework, called AppInspect. In this section we outline the design and functionality of our
framework.

Search 
Module

Classifier
Module

Analysis 
Module

Online Social Network (OSN)Start Analysis

App list App samples

Target
OSN

(1) Search Apps

App 
Directory

Fetch
directory

Search
exhaustively

(3) Analyse network
traffic (4) Fingerprint 

provider(2) Collect app details

Third-Party Applications

Figure 4.1: AppInspect, a framework for automated security and privacy analysis of social net-
work ecosystems

Our proposed AppInspect framework enables fully automated security and privacy analy-
sis of a target social networking app ecosystem. Figure 4.1 depicts the four generic processing
steps to automatically analyze a given social networking provider with AppInspect. (1) First, the
search module enumerates available third-party applications for a given social networking provi-
der. (2) In a second step, the classifier module collects additional information for all enumerated
apps. (3) Third, the analysis module adds the applications to experimental accounts and collects
the resulting network traffic for further analysis. (4) Finally, the analysis module fingerprints
the hosting infrastructure of all applications. AppInspect uses a modular software design and its
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functionality is separated into three main modules. Each of the three main modules encapsulates
additional functionality into submodules. Our design enables a straightforward adaption of fea-
tures for different security and privacy analyses. The three main modules and their submodules
are described in the following.

4.1.1 Search module

The initial challenge with social networking providers consists in collecting a preferably com-
plete list of third-party applications for further analysis in case a central app directory is missing.
In the best case, the social networking provider offers a complete app directory, which contains
all third-party applications. In the non-trivial case, no complete application directories exist and
third-party applications have to be enumerated using exhaustive search strategies.

Exhaustive search. In case no central application directory exists, exhaustive search stra-
tegies are required. The most straightforward solution is the enumeration of unique application
identifiers. This naïve approach works with social network providers with a small range of nu-
merical application identifiers. In the case of LinkedIn, for example, all available applications
are enumerable using a simple query and varying the applicationId parameter.

HTTP Request: Enumeration of LinkedIn app
GET /opensocialInstallation/preview?_applicationId=1000
Host: https://www.linkedin.com

With Facebook, the exhaustive search strategy becomes a non-trivial problem because their ap-
plication identifiers are not easily enumerable. Facebook assigns a unique numerical identifier
to every object it stores. Objects include third-party applications but also user profiles, pictures,
posts, etc. At the time of writing, Facebook’s unique object identifiers are numerical values
of length 14, resulting in up to 1014 possible combinations. This means that it is not feasi-
ble to probe the entire identifier range for third-party applications due to the resulting costs for
crawling and the fact that only a subset of these IDs are for apps. However, Facebook indexes
all third-party applications that have reached more than 10 monthly active users in their search
feature. Hence, an exhaustive search for indexed applications opens a way to enumerate appli-
cations on Facebook. Instead of integer ranges, the exhaustive search probes the social network
provider for keywords or character n-grams. For example, all trigrams for the English alpha-
bet would result in 263 = 17,576 search terms. Castelluccia et al. [47] used this approach for
a similar problem, namely the reconstruction of a users’ search history. Similar to their work,
our module can either use all possible character n-grams or limit the number of search terms
by using Castelluccia et al.’s smart tree approach. In addition to character n-grams, lists with
common words provide yet another keyword source.

Directory fetch. Some social networks offer a complete application directory, e.g., Google+.
Google+’s game directory1 consists of a single webpage that contains less than 50 applications
in total. In this particular case, the AppInspect framework provides a dedicated submodule to
gather the list of all available third-party applications from the social network’s application di-
rectory.

1Google+ Games https://plus.google.com/games/directory

35

https://plus.google.com/games/directory


4.1.2 Classifier module

The classifier module collects additional information on applications enumerated with App-
Inspect’s search module. Information is gathered passively from the social network provider
without actually running or adding applications to profiles.

Application properties. A number of application properties are available on third-party
application description pages. Important properties include the application type, popularity, and
rating. This submodule implements functionality to automatically gather a set of predefined pro-
perties. The submodule opens the generic application page for every application identifier and,
in addition to fetching available information, also observes the URL redirection behavior. Fa-
cebook, for example, redirects users to different targets depending on the application type. The
following example redirects the user to http://yahoo.com, and the submodule therefore classifies
the application as an external website.

GET /apps/application.php?id=194699337231859
Host: www.facebook.com
$\Longrightarrow$ Redirects to http://yahoo.com

The second example of a Facebook application redirects the user to an authentication dialog that
is classified as a standard application that requests additional information.

GET /apps/application.php?id=102452128776
Host: www.facebook.com
$\Longrightarrow$ Redirects to Facebook authentication dialog

Permissions. An important classification property of third-party applications is the set of
requested permissions. This submodule collects the set of requested permissions using two
different techniques: permissions are collected from rendered permission dialogs and based on
parameters in permission dialog request URIs.

Language. Third-party applications cater to many different geographical locations. The
language submodule detects the language used by third-party applications. An application name
together with the set of requested permissions often helps to spot suspicious apps. This submo-
dule therefore translates all non-English application names into English.

4.1.3 Analysis module

The analysis module analyses the actual application content. To this end, applications are instal-
led on test accounts by automating a Web browser.

Traffic collection. The traffic collection submodule provides a core functionality of the
analysis module, namely the collection of all network traffic resulting from social networking
apps. In order to collect network traffic, this submodule relies on an HTTP interception proxy,
which also acts as a man-in-the-middle HTTPS proxy to include encrypted traffic for subsequent
analysis as well.

Web tracker identification. Social network application developers themselves rely on
third-party components for analytics and advertising. In-app advertising promises revenue,
while analytic products provide application developers with additional insights into their ap-
plications’ users. Third-party analytics and advertising products raise major privacy concerns,
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because they may track users across multiple websites. The web tracker identification submo-
dule identifies planted web trackers based on network traffic collected with the analysis module.

Information leaks. Personally identifiable information (PII) is information that can be used
to uniquely identify a single individual with or without additional data sources. In case of online
social networks, a user’s unique identifier represents a sensitive PII. This submodule analyses
whether social networking apps leak PII to third-party components, such as advertising and
analytics providers. In addition to information leaks of personally identifiable information to
third parties, application developers may unintentionally leak API authentication tokens through
HTTP Referer. Therefore, this submodule traces leaks of tokens and unique user identifiers in
the collected traffic. HTTP request (a) provides an example of leakage through an HTTP Referer
header where “Super Analytics” receives a user’s unique identifier as well as the app’s OAuth
token through the Referer header of the HTTP request. The analytics provider could then im-
personate the application with the leaked access token to access the user’s personal information.

(a) Information leakage via HTTP Referer
GET /__beacon.gif
Host: www.super-analytics.com
Referer: http://www.fbgameexample.com/flash.php

?oauth_token=AAA...&id=111111111&locale=en_US

HTTP request (b) provides an example of PII leakage through a URI request. In this example
the third-party application transfers unique identifiers directly to a third party.

(b) Information leakage via URI request
GET /api/v1/ip=...&uid=111111111&data=%7B%7D
Host: api.tripppleclick.net

Network fingerprint. The network fingerprint submodule provides network metrics of a
given social networking app. The submodule first performs an analysis on the collected network
traffic to determine the application’s domain. Subsequently, a number of metrics are collected
on the application domain. In order to reveal the app’s service provider, the submodule per-
forms a reverse DNS lookup and determines the network hops between the AppInspect server
and the app’s domain. In case no reverse DNS entry exists, the last network hop might reveal
the possible service provider. The network fingerprint submodule furthermore performs a non-
intrusive service discovery scan against the third-party systems by enumerating a list of TCP
ports accepting packets and their corresponding service banners on the application host.

Vulnerability search. Finally, the vulnerability search submodule determines whether a
third-party host uses outdated software that might eventually compromise the security of their
systems. This submodule matches discovered service types and version numbers against pu-
blicly available vulnerability databases.

4.2 Methodology and Application Sample

In this section we briefly discuss our research methodology and outline the prototype implemen-
tation of our AppInspect framework for Facebook. In the following we describe our enumerated
third-party application sample.
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4.2.1 Methodology

We chose to implement an instance of our AppInspect framework for the Facebook platform.
Facebook serves is a good example due to its popularity and the plethora of available third-party
applications. We set up a number of experimental accounts with bogus data and to be able to per-
form automated application evaluations without needing to process personal information. Once
we finished our experiments we deactivated all Facebook test accounts. While Facebook offers
dedicated whitehat accounts2 for security researchers, these accounts cannot use any third-party
applications. In order to detect third-party products, we used traffic patterns from the Ghostery
database, which contains more than 1,200 ad networks and trackers3. We complemented Gho-
stery’s traffic patterns with additional trackers we identified during our traffic analysis. In order
to find potential vulnerabilities of application hosts, we fingerprinted their publicly available
web services in a non-intrusive way. We strictly refrained from interfering with application web
services and instead based our analysis on detected service banners.

4.2.2 AppInspect Facebook prototype

Our prototype uses a twofold crawling strategy. The enumeration and initial classification of
social networking apps is performed with a lightweight Python module. In addition, we use
a full-fledged Mozilla Firefox web browser that collects data for the application security and
privacy analysis. We found that many gaming applications required Adobe Flash, and an up-to-
date version of Adobe Flash was therefore included in the web browser to get realistic network
traffic samples. Automating a full-fledged web browser allows us to execute inline JavaScript
code and Adobe Flash content exactly as they would be processed by a normal application user.
Our twofold approach thus allows efficient headless crawling for enumerating and classifying
apps, but also a thorough analysis of executed application content with a state-of-the-art web
browser.

Search Module. Facebook offers two application directories that contain a tiny subset of
their third-party applications. The majority of third-party applications, however, is only retrie-
vable with Facebook’s global search feature. Therefore, we implemented three submodules to
enumerate third-party applications: an exhaustive search submodule that generates application
search terms and feeds them into Facebook’s search, and two submodules to collect all applica-
tions from Facebook’s timeline and Application Center directories. We include these two app-
lication directories to verify the completeness of results enumerated with the exhaustive search
submodule.

Classification Module. The classification module for Facebook implements the collection
of application type, permissions, rating, and language. A submodule of our AppInspect frame-
work collects application properties based on application info pages. The application type is
determined based on both harvested information and the application target URI. The permission
submodule detects application authentication dialogs and collects the set of requested permis-
sions. Finally, we implemented a generic language detection module that relies on the Google
Translate API to detect and translate non-English application names.

2Facebook whitehat accounts https://www.facebook.com/whitehat/accounts/
3Ghostery http://www.ghostery.com/
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Analysis Module. The traffic analysis submodule automates the installation of a given Fa-
cebook application on a test account and collects all traffic with a transparent HTTP(S) proxy.
Moreover, our prototype implements our proposed analysis submodules. We implemented the
information leaks submodule, which probes the session recordings for sensitive information. To
detect information leaks we verify whether our test account’s unique identifier or OAuth tokens
are transmitted to detected third-party products. We inspect the collected traffic dumps for plain-
text and Base64-encoded unique identifiers and authentication tokens. In order to reduce false
positives of HTTP Referer leaks, the information leaks submodule verifies whether information
is leaked to third parties other than application providers themselves. Furthermore, we ignore
leaks to content delivery networks (CDNs) of Facebook (fbcdn.net) and application providers
(e.g. zgncdn.com). Leaks to other CDNs such as Akamai or Amazon CloudFront are also less
critical because they do not track their users across multiple domains using HTTP cookies. The
network fingerprint submodule parses web session recordings and determines the application
host based on the application’s OAuth session initialization. The submodule, furthermore, uses
the tracepath and dig utilities to collect network metrics. In addition to collecting network
metrics, the networking fingerprint submodule also provides port scanning functionality. Fi-
nally, our prototype implements a vulnerability submodule that searches for outdated software.
A number of vulnerability databases exist and we focus on databases with readily accessible
exploits. The vulnerability submodule thus searches within the Exploit Database4 as well as for
readily available Metasploit modules5.

4.2.3 Enumerated application sample

We performed an initial enumeration of applications in April 2012 with search terms based on
bigrams of the English alphabet. The search module was configured to harvest information non-
aggressively with a limit of 2,500 queries per day. Facebook imposes rate limits on standard
accounts on a daily per-account basis. Therefore, we relied on a pool of accounts set up for the
experiment, which we rotated during app analysis. Our exhaustive search resulted in 234,597 ap-
plications and took around 5 days to complete. This first run helped us fine-tune our exhaustive
search module. In June 2012, we ran the search module again, this time with character trigrams
based on the English alphabet and also on integers from 0 - 9. The exhaustive search module
enumerated 434,687 unique applications and took two weeks to complete. Our application di-
rectory submodules found 129 Timeline applications and 108 applications in Facebook’s App
Center. Our search module successfully verified that all Timeline and App Center applications
were included in our enumerated application sample. In addition, we validated our enumerated
sample against Socialbakers application statistics6. Our validation attempt showed that in ad-
dition to including all Socialbaker applications, our approach found a number of high-ranking
applications that were missing in their sample.

We observed a great disparity in the monthly average usage (MAU) of the enumerated app-
lications. Figure 4.2 illustrates our observation. While the great majority of applications had an

4Offensive Security Exploit DB http://www.exploit-db.com/
5Metasploit modules http://www.metasploit.com/modules/
6http://socialbakers.com/facebook-applications/
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MAU lower than 10,000, a small number of applications attracted a wider audience (red graph).
Relative to our sample’s cumulative application usage, the top 10,000 apps covered 93.16 per-
cent (green graph) of all MAUs.

 0⋅10
0

 1⋅10
7

 2⋅10
7

 3⋅10
7

 4⋅10
7

 5⋅10
7

 6⋅10
7

 1  10  100  1000  10000  100000  1e+06
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %
M

o
n

th
ly

 A
v
e

ra
g

e
 U

s
a

g
e

 (
M

A
U

)

P
e

rc
e

n
t 

o
f 

C
u

m
u

la
ti
v
e

 M
A

U

Enumerated Application Sample

cumulative application usage
application usage

Figure 4.2: Active monthly users in our enumerated 434,687 applications sample.

We discarded all applications with fewer than 10,000 MAU from our subsequent analysis
because of their comparably minor impact. In July 2012, we performed an analysis of the
10,624 most popular apps with AppInspect’s classifier module. Our selected subsample covered
94.07% of all applications relative to our samples’ cumulative application usage. The results in
Table 4.1 show the different application types observed in our sample.

Application Type Applications Total %

Authentication Dialog 4,747 44.68%
Canvas 2,365 22.26%
Connect 2,260 21.27%
Defect 865 8.14%
Page Add-ons 280 2.64%
Mobile 107 1.01%
Total 10,624 100.00%

Table 4.1: Classification of subsample with popular applications.

44.68% or 4,747 applications belonged to the Authentication Dialog class. The Authenti-
cation Dialog class represents canvas applications that request personal information from their
users. The Canvas class represents applications that load external content into the Facebook can-
vas but do not require any personal information from their users to work. Connect applications
are external websites that leverage the Facebook API. Connect applications often use Facebook
as an identity provider and to import Facebook content into their own portals. A number of
apps responded with an error or were canceled (Defect). Page Add-ons are applications that
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provide add-ons to Facebook pages; these apps have access to the content of Facebook pages.
The Mobile class, finally, represents applications that target mobile platforms such as Android
or iOS. The relatively high number of defective applications (8.14%) can be attributed to two
independent observations. First, developers of less popular applications had trouble maintaining
reliable applications. As a result, a number of applications responded with error codes or did not
respond at all. Second, Facebook’s application ecosystem is volatile and some applications are
available only for a limited timespan.

In the final step, the classification module leveraged the Google Translate API to detect
languages used. In addition to language detection, the API was used to translate non-English
application names. The majority of applications were English (64.72%), followed by Spanish
and German. In total, we observed 69 different languages.

4.3 Results

This section describes the results of our extensive security and privacy analysis of third-party ap-
plications. The in-depth analysis was performed on the most popular Facebook canvas applica-
tions that requested additional information. These 4,747 apps represent a significant subsample
of our enumerated applications because they are widely used and transfer personal information
to application developers.

4.3.1 Requested personal information

Table 4.2 shows the most frequently requested permissions to access personal information out
of the 4,747 most popular third-party applications. The most requested permission for games
was “publish posts to stream”, which allows an app to post to a user’s profile. In total, 51.32%
of these third-party applications asked permission to publish to a user’s stream.

Characteristics

Name Type Users URI

Publish posts to stream 1,617 819 51.32%
Personal email address 1,055 1,132 46.07%
Publish action 435 857 27.22%
Access user’s birthday 582 428 21.28%
Access user’s photos 721 99 17.27%
Access data offline 517 120 13.42%
Access user likes 438 153 12.45%
Access user location 350 143 10.39%
Read stream 409 80 10.3%
Access friends’ photos 319 17 7.08%

Table 4.2: Most common requested permissions by third-party applications (n=4,747)
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The table also shows that access to a user’s personal email address was most commonly
requested for generic apps and by 46.07% of all third-party applications that requested personal
information. It is also interesting to observe that access to users’ birth dates and photos are often
requested as well.

We clustered applications based on their hosting domains to identify application providers.
Our results showed that the 4,747 applications belonged to 1,646 distinct domains or providers.
Furthermore, 73.42% or 3,485 apps belonged to a third party with more than one application.
Third parties that offer multiple applications can request different personal information with
different applications. Once a user installs more than one of their applications, providers can
simply aggregate all collected user information. Therefore, we argue that requested permissions
need to be analyzed not only based on individual apps, but also based on application providers.
In this analysis, we found that the most requested permission per application provider was access
to personal email addresses, which 60.24% of all providers requested.

Figure 4.3 depicts the number of distinct permissions requested per application provider.
The provider samples are sorted by monthly average usage ranging from 1 (most popular) to
1,646 (least popular). On average, providers requested close to three permissions. As our fi-
gure illustrates, there are a number of application providers that represent outliers because they
request a vast amount of different permissions from their users.
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Figure 4.3: Number of requested permissions for 1,646 applications providers.

Our results show that 40 providers (2.43% of all application providers in our sample) re-
quested more than 10 permissions. For these 40 providers, we manually verified whether the
requested permissions were in required for application functionality. Our findings suggest that
a number of applications genuinely required a large amount of permissions to function at all.
These legitimate applications often transferred large amounts of personal information to create
their own specialized social networks. Examples of such applications include dating and job
seeking applications. Dating applications, for example, gathered personal information to offer
matchmaking features. The majority of providers that requested more than 10 permissions, did,
however, request more permissions than were required to function. Especially one application
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provider set a striking example of application misuse. This provider offered a total of 140 appli-
cations for proverbs, quotes, or daily horoscopes in a number of different languages. However,
the majority of their applications did not require any personal information at all to function.
While access to a user’s birthday is required to generate horoscopes, the provider requested 27
different permissions in total. The provider’s most popular application was a daily horoscope in
Portuguese with 2.5 million monthly users (as of July 2012).

4.3.2 Hosting environment

Our analysis of reverse DNS queries and network hops showed that developers relied upon 604
distinct Internet hosting services. Table 4.3 outlines the most commonly used hosting services
and their geographical location. Amazon’s elastic cloud service hosted 18.72% of all third-party
applications in our sample. Amazon EC2 was especially popular with developers of applica-
tions that attracted a large number of active users. We also observed that the hosting services
were geographically spread across 64 different countries, although our analysis showed that the
majority of applications (55%) were hosted in the United States.

Provider Location Total %

Amazon EC2 US (755), IE (82), SG (52) 18.72%
SoftLayer US (505) 10.65%

Peak Hosting US (244) 5.14%
Rackspace US (147), GB (11), HK (4) 3.41%
GoDaddy SG (51), US (29), NL (6) 1.82%

Linode US (72), GB (6), JP (2) 1.69%
OVH FR (42), PL (7), ES (2) 1.04%

Hetzner DE (47) 0.99%
Internap US (35) 0.73%

Table 4.3: Most common Internet hosting services for Facebook third-party applications

Our analysis module probed the 604 hosts for open TCP ports and corresponding software
products. All applications were accessible via HTTP but 11.5% of all applications did not offer
access via HTTPS, which made those applications inaccessible via a secure connection. Our de-
tailed results show that 55% of web servers were powered by Apache httpd, followed by nginx
(15.63%) and Microsoft IIS (9.4%). An accessible web server that handles both HTTP and
HTTPS is the only requirement for a working Facebook third-party application. However, we
found that third-party developers exposed a number of additional services on their application
hosts. Table 4.4 outlines the most common publicly exposed services. It shows that 40.24% of
application hosting environments allowed access via SSH and 38.91% access via FTP. The used
products, together with their specific software versions, were used by the analysis module to
identify hosts with potential software vulnerabilities. Our security analysis showed that HTTP
and FTP services posed the highest risks. Two hosts ran an outdated nginx version that is prone
to a source code disclosure vulnerability (CVE-2010-2263). Furthermore, we found two outda-
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TCP Port Service Hosts % Total

22 ssh 662 40.22%
21 ftp 640 38.88%
25 smtp 572 34.75%
110 pop3 439 26.67%
143 imap 417 25.33%

Table 4.4: Most common additional services on application hosts

ted versions of ProFTPD that possibly allow an attacker to execute arbitrary code on application
hosts (CVE-2006-5815, CVE-2010-4221). Eight hosts were susceptible to buffer overflow at-
tacks via their FTP service. The most popular of the eight application hosts gathered information
from an average of 1.2 million users per month. This vulnerable application provider processes
sensitive personal information such as user email addresses and birthdays.

4.3.3 Web trackers

Our web tracker submodule identified 139 distinct web trackers in the recorded application traf-
fic. Table 4.5 outlines the most common web trackers detected in our application sample. Google
dominated both with their web analytics product and their online advertising products Double-
Click and AdWords. Our analysis showed that web trackers were mostly planted by online
advertising products that are used to create additional revenue for application developers. All
web bugs presented in Table 4.5 potentially track their users across multiple websites based on
HTTP cookies.

Web bug Type Apps % Total

Google Analytics analytics 3,378 71.16%
DoubleClick advertising 529 11.14%
Google Adsense advertising 361 7.61%
AdMeld advertising 276 5.81%
Cubics advertising 153 3.22%
LifeStreet Media advertising 94 1.98%
Google AdWords advertising 91 1.92%
OpenX advertising 82 1.73%
Quantcast analytics 49 1.03%
ScoreCard Beacon analytics 48 1.01%

Table 4.5: Common web trackers included in third-party applications

The ranking of web trackers changes slightly when the popularity of the different applica-
tions is factored in. Based on the total number of application users exposed to web trackers,
LifeStreet Media becomes the most popular advertising product. Furthermore, analytics based
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on BlueKai and advertising by Rubicon move to the top ten products when ranking is based on
cumulative monthly active users instead of the cumulative occurrences.

4.3.4 Information leaks

Our findings suggest that ten advertising and analytics products directly received users’ unique
identifiers from social networking applications via URI requests. One advertising provider even
received our test user’s birthday and gender in addition to the unique identifier. The following
request shows an instance of the detected application provider; however, we have replaced the
actual host with a fictional name.

Information leakage via URI request
GET /1111111111/landingbirthday=5%2F2%2F1978&gender=male
Host: notdisclosed.com

We observed that 315 social networking applications in our sample directly transferred perso-
nally identifiable information to at least one additional third-party product via HTTP parameters.
Three out of these 10 products were also previously classified as web trackers. This implies that
these three third parties can track users across multiple websites with additional knowledge of
their unique Facebook identifier and, thus, their real name7. Two advertising products that re-
ceived unique user identifiers via URI requests were approved by Facebook as valid advertising
products.

Our analysis showed that 51 applications leaked unique user identifiers to third parties via the
HTTP Referer header. In addition to user identifiers, 14 out of these 51 applications also leaked
their API authorization tokens via HTTP Referer. Third parties could misuse leaked OAuth
tokens to impersonate the leaking apps and harvest additional personal information. Referers
were in both cases mainly leaked to Google Analytics and DoubleClick. It became clear that a
popular game was affected by this issue, leaking on average 4.7 million OAuth tokens and user
identifiers per month to third-party analytics and advertising companies.

4.4 Discussion

In this section we discuss the implications of our findings as well as possible limitations of our
approach.

4.4.1 Detected malpractices

The evaluation of our novel AppInspect framework on the basis of Facebook shows that au-
tomated security and privacy analysis of social networking apps is feasible. Our framework
detected 14 application providers that requested a disproportionate amount of personal informa-
tion. These application providers offer hundreds of applications and collect sensitive personal

7The Facebook Graph API allows to query certain information without the requirement of prior authentication.
Given a user’s unique identifier, one can simply perform a query like: http://graph.facebook.com/4;
where “4” in this example is the unique user identifier of Mark Zuckerberg.
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information from millions of social networking users. Our automated analysis showed that appli-
cation providers make use of 139 different web tracking and advertising products. It furthermore
showed that application developers transmit personally identifiable information to third parties.
315 applications directly transferred user identifiers to third-party products via URI parameters.
In addition to receiving personally identifiable information, two out of ten products set tracking
cookies. Hence, a single social networking app might lead to users being tracked across mul-
tiple websites with their real name. web tracking in combination with personal information
from social networks represents a serious privacy violation that is also not transparent to social
networking users. Finally, our AppInspect framework detected that a number of applications
leaked personal information and authentication tokens to third-party products via HTTP Referer
headers. 51 applications leaked user information and out of these, 14 applications also leaked
OAuth authentication tokens. We found a popular game that suffered from this implementa-
tion bug and leaked 4.7 million authentication tokens per month on average. After we ran our
automated analysis, we manually verified all detected malpractices and implementation errors.
We reported our findings to Facebook in November 2012. Facebook confirmed our findings
and reached out to application developers to provide implementation fixes. As of May 2013, all
application providers fixed our detected privacy shortcomings.

4.4.2 Application hosting infrastructure

The hosting infrastructure of social networking apps is beyond the control of social networking
providers and users ultimately have to trust third-party developers with protecting their personal
data appropriately. Our findings show that application developers rely on a wide range of cu-
stom systems to provide social networking applications. Over one third of all application hosts
maintained publicly accessible FTP and SSH services. While these services offer proper admi-
nistration tools, they also increase the attack surface of application hosts. For example, both FTP
and SSH are well known to be popular targets of brute-force password guessing attacks. Moreo-
ver, a number of application hosts used outdated software versions that are susceptible to remote
exploits. Our findings include an application host with more than 1 million monthly active users
that was susceptible to a remote buffer overflow via their FTP service. Our analysis also showed
that Amazon EC2 is a popular choice for application developers. Insecure Amazon EC2 com-
munity images may pose another security risk for third-party hosting infrastructures. Two recent
publications [16, 41] came to the conclusion that Amazon’s community images contain a num-
ber of serious vulnerabilities. Our findings furthermore showed that application servers were
geographically spread over 64 different countries. This geographical distribution, finally, results
in non-technical challenges because a great number of different data protection laws apply.

4.4.3 Implications and protection strategies

Since January 2010, application developers on Facebook can request users’ personal email ad-
dresses instead of proxied email addresses. It is interesting to observe that 60.24% of all pro-
viders in our third-party application sample made use of this feature and requested the personal
email addresses of their applications’ users. Both social networking providers and application
developers host a pool of sensitive personal information. Large social networking providers pos-
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sess the necessary resources to maintain and improve the security of their services. In contrast,
our findings suggest that a considerable number of third-party developer leak personal informa-
tion to third parties and fail to harden their systems. While application developers collect email
addresses to contact users directly, valid email addresses are also in demand with spammers and
phishers. In addition to valid email addresses, third-party developers also collect information
that enables sophisticated email based attacks. For example, social phishing attacks [110] le-
verage the success rate of traditional phishing messages based on knowledge of a user’s friend.
In the case of Facebook, all applications can access friendship information by default. Context-
aware spam attacks [38] might also misuse user birthdays or photos to increase the authenticity
of unsolicited bulk messages. Forbes [77] reported that 1.1 million email addresses of social
networking users are sold for as little as 5 US$. According to the seller, the information was col-
lected via a Facebook third-party application. Based on our findings, we propose the following
protection strategies:

• Developers need to sanitize the landing page of their application and ensure that they do
not pass on unique identifiers or OAuth tokens via GET parameters.

• Developers need to provide third-party products that require a unique user identifier with
random identifiers and maintain internal mapping between these random identifiers and
the real Facebook user identifiers.

• Social network providers should follow the example of LinkedIn or iOS App Store and
manually review the balance of app functionality and requested permissions.

• Social network providers should stress application developers to harden their hosting en-
vironments.

4.4.4 Limitations

Our AppInspect prototype is currently limited to Facebook applications, but a number of mo-
dules can be reused when extending our prototype to other social networking providers. Our
prototype currently does not detect personal information that is scrambled before being sent
by third-party products. Finally, due to the non-intrusiveness of our performed security tests,
our results indicate the vulnerability of application hosts and may contain false positives and
negatives.

4.4.5 Dataset

Our dataset comprises an extensive social application dataset and provides a valuable basis for
research on social networking apps. AppInspect is designed to steadily provide new insights into
third-party application ecosystems, and we will, therefore, periodically refresh and expand our
dataset. Our AppInspect dataset is available online at: http://ai.nysos.net.
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CHAPTER 5
Social Snapshots

In this chapter, we introduce a novel method for data collection from social networks called
social snapshot. Our approach is based on a hybrid system that uses an automated web browser
in combination with an OSN third-party application.

Over the past years, Online Social Networks (OSNs) have become the largest and fastest
growing websites on the Internet. OSNs, such as Facebook or LinkedIn, contain sensitive and
personal data of hundreds of millions of people, and are integrated into millions of other web-
sites. Research has acknowledged the importance of these websites and recently, a number of
publications have focused on security issues that are associated with OSNs. In particular, a num-
ber of empirical studies on online social networks [25, 84, 105, 110, 193] highlight challenges to
the security and privacy of social network users and their data. We found that these, and similar
studies, heavily depend on datasets that are collected from the social networking websites them-
selves, often involving data that is harvested from user profiles. Furthermore, as social networks
continue to replace traditional means of digital storage, sharing, and communication, collecting
this type of data is also fundamental to the area of digital forensics. For example, data from
OSNs have been used successfully by criminal investigators to find criminals and even confirm
alibis in criminal cases [52, 178]. While traditional digital forensics is based on the analysis of
file systems, captured network traffic or log files, new approaches for extracting data from social
networks or cloud services are needed. Interestingly and contrary to our intuition, we found little
academic research that aims at developing and enhancing techniques for collecting this type of
data efficiently. Despite the growing importance of data from OSNs for research, current state of
the art methods for data extraction seem to be mainly based on custom web crawlers. However,
we found this naïve approach to have a number of shortcomings:

• High network traffic: The extraction of profile data via traditional web crawling can be
regarded as costly with regard to the required network resources, as it typically incurs a
large amount of HTTP traffic and causes a high number of individual network connections.
Apart from inherent disadvantages, social networking websites may also choose to block
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network access for clients that cause high levels of traffic, thus preventing them from
harvesting additional data.

• Additional or hidden data: Per definition, web crawlers can only collect data that is ac-
cessible on the target website. However, we found that social networks often publish
interesting meta-information (e.g. content creation timestamps or numeric identifiers) in
other data sources, for example via developer APIs.

• Maintainability: The structure and layout of websites tend to change unpredictably over
time. Additionally, the increasing use of dynamic or interpreted content (for example,
JavaScript) leads to high maintenance requirements for custom web crawlers.

In the following we show that our system can be used efficiently to gather social snapshots,
OSN user datasets and are able to overcome the major problems of traditional web crawling
techniques.

5.1 Social Snapshot Tool

In this section, we describe the design of our approach as well as the individual components of
our digital forensic framework.

Our digital forensics application enables an investigator to snapshot a given online social
network account including meta-information, a method we termed social snapshot. Meta-
information such as exact timestamps are not available to the user via the user interface of the
web application. A social snapshot represents the online social networking activity of a specific
user such as circle of friends, exchanged messages, posted pictures etc. Due to the diversity of
information available via OSNs we propose a twofold approach: an automated web-browser in
combination with a custom third-party application. The social snapshot application is initialized
with a user’s credentials or authentication cookie. In the following, a custom third-party applica-
tion is temporarily added to the target account. This application fetches the user’s data, pictures,
friend list, communication, and more. Information that is unavailable through the third-party
application is finally gathered using traditional web-crawling techniques. By automating a stan-
dard web-browser and avoiding aggressive web-crawling we simulate the behavior of a human
user, thus minimizing the risk of being blocked by OSN providers.

Figure 5.1 shows the core framework of our social snapshot application. (1) The social
snapshot client is initialized by providing the target user’s credentials or cookie. Our tool then
starts the automated browser with the given authentication mechanism. (2) The automated brow-
ser adds our social snapshot application to the target user’s profile and sends the shared API
secret to our application server. (3) The social snapshot application responds with the target’s
contact list. (4) The automated web browser requests specific web pages of the user’s profile
and her contact list. (5) The received crawler data is parsed and stored. (6) While the automated
browser requests specific web pages our social snapshot application gathers personal informa-
tion via the OSN API. (7) Finally the social data collected via the third-party application is stored
on the social snapshot application server.
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Figure 5.1: Collection of digital evidence through our social snapshot application.

5.1.1 Authentication

In order to get access to the complete content of a target’s social network account, social snaps-
hots depend on gathering the initial authentication token. In the following, we outline three di-
gital forensic scenarios that explain how this initial gathering of the authentication token works
and that are representative for real-world use cases.

Consent. This naïve approach requires consent from the person whose social networking
profiles are analyzed. A person would provide the forensic investigator temporary access to
her social networking account in order to create a snapshot. This would also be the preferred
method for academic studies to conduct this research in an ethically correct way and to comply
with data privacy laws. We used this method for the evaluation of our proposed application as
further described in Section 5.4.

Hijack social networking sessions. Our social snapshot application provides a module to
hijack established social networking sessions. An investigator would monitor the target’s net-
work connection for valid authentication tokens, for example unencrypted WiFi connections or
LANs. Once the hijack module finds a valid authentication token, the social snapshot application
spawns a separate session to snapshot the target user’s account.

Extraction from forensic image. Finally, physical access to the target’s personal computer
could be used to extract valid authentication cookies from web-browsers. Stored authentica-
tion cookies can be automatically found searching a gathered hard drive image or live analysis
techniques such as Forenscope [48].

5.1.2 Depth of Information Collection

Starting from a target profile, a number of subsequent elements become available for crawling
such as the user’s friends, uploaded photos and joined groups. With these elements, again, a
number of subsequent elements can be accessed. For example, the single-view page of a photo
can contain comments and likes of other users, who do not necessarily have to be direct friends
of the owner of the photo. Additionally, users can be tagged in photos. These are all starting
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Figure 5.2: Example for elements fetched with social snapshot of depth=2

points for further crawling. The same applies for groups; A group gives access to the profiles
of all group members, photos with users tagged, who are potentially not members of the group,
and so forth. Consequently, a social snapshot of a single user does not only obtain the user’s
data and data of her friends, but its depth can reach a high value. Thus, the depth of the social
snapshot is an essential configuration option which controls the social snapshot’s extent. Figure
5.2 shows an example of a social snapshot with depth = 2. For a given user all of her friends
are first fetched, followed by the friend’s photos. The single path for photos of the friend’s user
illustrates the magnitude of available paths and thus data. Defining a specific social snapshot
depth enables us to limit the amount of fetched data. The amount of data grows exponentially
with social snapshot depth.

It is important to note that the relevance of data is not the same for different elements. For
example, tagged users in a photo are most likely in a closer relationship to the owner of the
photo than two users that joined the same group, just because of similar interests. Therefore, the
social snapshot tool prioritizes element types that suggest higher data relevance and uses them
as a starting point of each iteration. The prioritization is performed on the basis of predefined
priority flags in the third-party application.

5.1.3 Modules

Our social snapshot application consists of a number of modules, which we describe in the follo-
wing. The core modules are the automated web browser and our custom third-party application
as outlined in Figure 5.1.

Social snapshot client. The social snapshot client module initializes the data gathering
process with a given user’s credentials or cookies. Once started, the client first authenticates
itself against the target online social network. In the following, the client automatically adds
our custom third-party application with the highest possible permissions to the target’s account.
Information that cannot be retrieved through our third-party application is crawled and parsed by
the client. Once all information has been retrieved, the client removes the third-party application
and logs out of the given social networking account. The interaction with the social network as
well as web-crawling is performed by the Selenium framework [146], which we describe in the
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following. We implemented the social snapshot client in Java and the module offers a command
line interface.

Automated web browser. The browser module is responsible for the basic interaction with
the target online social network. We used the Selenium testing framework [146] to automate the
Mozilla Firefox browser. Selenium comes with a command line server that receives Selenium
commands. Therefore, we can use the framework to script the behavior of an average user
using her Firefox web-browser to surf a social networking website. We had to overcome one
initial obstacle though: cookie authentication with Selenium which was not supported out-of-
the-box. We finally patched the original Java source code of the command line server to be able
to correctly set HTTP cookies for the cookie authentication mode.

Third-party social snapshot application. Our OSN social snapshot application is a third-
party application, which sole purpose consists of gathering all possible account data through
the target OSN’s API. The main design goal of our third-party OSN application is performance,
thus multiple program threads are used to gather information as quickly as possible. The third-
party application can be configured to prioritize specific account data and to download only a
predefined set of account artifacts (social snapshot depth).

Hijack module. The hijack module is a network sniffer module that collects valid OSN
HTTP authentication cookies from sources such as LAN or WiFi connections. We built our
hijack module on the basis of Mike Perry’s modified libpkt library [147], which works out of the
box with LAN, unencrypted WiFi, and WEP encrypted WiFi connections. The hijack module
offers a command line interface and is implemented in Python.

Digital image forensics. The digital image forensics module matches image files gathered
from online social networks with their original source. The goal is to find the pristine image of
a compressed picture extracted through our social snapshot application. All images are initially
clustered according to their color histograms, rescaled and compressed to the target picture size,
and finally matched with pattern recognition techniques. As social networks typically remove
meta (EXIF) information of uploaded images this module is helpful in finding the source of
collected pictures from OSNs and thus restore information such as the original image creation
time, camera model etc.

Analysis module. The analysis module is a parser for the results gathered with the data
collection modules of our application. It parses the crawled data as well as the information col-
lected through the OSN’s API. Furthermore, the analysis module fetches additional content such
as photos that are openly available by knowing the URI from online social networks. Finally,
it generates a report on the social snapshot data. The analysis module can be used to generate
exact timelines of communication, metadata summaries, e.g. of pictures, a weighted graph from
the network of friends, or their online communication.

5.2 Visualization

Our social snapshot tool enables forensic investigators to collect fast amounts of profile infor-
mation for a given OSN account. Information visualization helps to quickly screen the collected
information. In the following we thus describe possible information visualizations.
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5.2.1 Basic Visualizations

Social Interconnection Graph. It is trivial to retrieve the list of friends from social networks.
In most social networks this is public information, or can be easily collected [31] even without
entering the social circle of the account under investigation. However, it is not trivial to cluster
these friends, namely to find out who is connected with whom: is a specific contact part of the
cluster of work-friends, or are they directly related?

In our approach we use a feature of the Facebook API which allows an application to query
if two users are connected. This allows our software to cluster the friends of a user into different
groups e.g., people from work, school, family and more, as the members of the groups are
much more likely to know each other. The graph can be represented as an undirected graph
G =< V,E > where V = v1, v2, ...vn is the set of friends of a user, and E = (vx, vy), ... is
the set of edges that connects two nodes in case they are friends on the social network. Highly
connected nodes have a high degree, representing well connected friends that know most of the
suspect’s friends as well.

Social Interaction Graph. For many investigations it is of importance to find out who com-
municated with whom. Various ways of communication are possible among users, like wall
posts, direct messages, group communication or following public announcements. Communica-
tion can be represented as a directed graph G =< V,E > where the nodes V = v1, v2, ...vn are
all the friends while the edges E = (vx, vy), ... are directed and the weight of (vx, vy) is incre-
mented for every message sent from vx to vy. In this thesis, however, we do not distinct between
the different forms: direct messages, wall posts, and tags are treated equally as these are the
most direct form of communication. An investigator can easily identify the top communication
partners on a first sight, and compare them with e.g., obtained phone records.

Complete Timeline. With social network users being online 24/7 by using mobile clients on
smartphones, the timeline becomes of increasing importance. Not only activity of the user itself
can be extracted, but also the activity of all his or her friends. Often the times of activity can be
seen easily, if properly visualized. To make analysis feasible it is necessary to use respectively
allow different data layers: activity of the user, the friends, group activities, reactions on events
from friends, and so forth. It is also crucial that the timeline is zoomable, to visualize time
ranges of importance - a single day can have easily more than 500 events for a given profile and
all his or her friends.

Location Visualization. Geotagging and location applications are novel features with incre-
asing usage that needs to be reflected in forensic examinations. With foursquare1 and Facebook
Places, just to name a few, the geolocation information stored in social networks is growing stea-
dily. While our toolset is not yet available to extract geodata, we believe that this will become
more and more of an issue. Digital cameras as well as smartphones automatically geotag pictu-
res taken with the exact location. Up till now, most social networks remove metadata during the
transformation for picture storage [21], but this might change in the future.

1https://foursquare.com/
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5.2.2 Advanced Visualizations & Information Inference

While the features discussed so far are rather straightforward, we believe that the following list
of advanced features and components should become standard tools in digital forensics:

Event tracking. For viral scammers and other malicious applications that use the social
network for propagation it might be of interest who or what started such a series of events.
Tracking such events is not straightforward, but with a collection of social network footprints of
various users these events can be easily dissected. This would allow insight into dissemination
characteristics and propagation tactics of scammers, as well as advanced analytical capabilities.

Timeline matching. In highly centralized systems such as online social networks, an inve-
stigator has the benefit of consistent timestamps as they are provided by the social network. The
operators often run their won NTP infrastructure, and keep the clocks consistent across thou-
sands of servers. This can then be used to match timelines of different profiles, and eventually
create an exact timeline for a complete cluster of friends or even bigger. While this has been
proposed recently for the NTFS file system [59], we believe that this will be of importance for
social networks and cloud computing as well.

Differential Snapshots. Once a forensic image of a user profile is collected, at a later point
in time the image might look completely different. Therefore, the forensic framework must
provide the functionality to not only visualize the social network data of a user, but also the
functionality to visualize differences with previous images of the same user.

5.3 Methodology

In this section, we describe the evaluation of our social snapshot application. Our generic social
snapshot approach is applicable to the majority of today’s social networking services. The sole
requirement for target social networks is the availability of a developer API or the adaption of
our automated browser.

For a forensic tool there are some special requirements:

• Ability to reproduce results,

• Create a complete snapshot of the account.

To make digital evidence sufficiently reliable for court it is helpful if the process of gathering
the evidence can be reproduced with identical results. In dynamic Web-based applications this is
not possible because data is continuously added (eg. posts by friends) or removed (eg. friends-
of-friends deciding to unshare data by modifying their privacy settings). It is, however, possible
to have two or more independent investigators make snapshots at a similar time. While not all
artifacts will be identical one can easily compare the sets of artifacts retrieved by our tool.

It is important that all artifacts used in the case are contained in both sets and that the sets
do not contain too many unique artifacts because this would suggest that the snapshots are not
reliable. Similar to information retrieval research we can thus adapt the metrics of precision and
recall. n independent investigators gather each a set of artifacts Ai.
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5.3.1 Social Snapshots on Facebook

At the time of writing Facebook is the most popular online social network with a claimed user
base of over one billion users. Furthermore, Facebook supports third-party applications and user
profiles contain a plethora of information. We thus decided to evaluate our social snapshot tool
on Facebook. Third-party applications on Facebook have access to account data via the Graph
API [67]. Almost the entire account data of Facebook users and their contacts are made available
through their API. Facebook solely makes sensitive contact information such as phone numbers
and e-mail addresses inaccessible to third-party applications. Hence our social snapshot client
crawls the contact information of Facebook profiles, while all remaining social data is fetched
through a custom third-party application. In October 2010, Facebook introduced a download
option [71] that enables users to export their account data.

Element Download social snapshot

Contact details − XCrawler
News feed − XGraph API
Checkins − XGraph API
Photo Tags − XGraph API
Video Tags − XGraph API
Friends name onlya XGraph API
Likes name onlya XGraph API
Movies name onlya XGraph API
Music name onlya XGraph API
Books name onlya XGraph API
Groups name onlya XGraph API
Profile feed (Wall) limitedb XGraph API
Photo Albums limitedb XGraph API
Video Uploads limitedb XGraph API
Messages limitedb XGraph API
a No additional information available.
b Missing meta-information such as UIDs.

Table 5.1: Account information available through social snapshots compared with Facebook’s
download functionality.

Table 5.1 outlines the different profile content elements gathered through our social snapshot
application as compared with Facebook’s download functionality. As shown in Table 5.1, the

56



download functionality only offers a very limited representation of a user’s online activity. For
example, for a given user’s friends, only their ambiguous names are made available and no
information on the activity of a given user’s friends is included.

5.3.2 Hardware and Software Setup

To test the functionality of our social snapshot application, we developed a third-party applica-
tion for Facebook based on their PHP Graph SDK. One of the main modifications we performed
on their original library was the support for multi-threaded API requests. Our third-party social
snapshot application for Facebook is thus able to handle a number of predefined API requests
simultaneously. The single requests are hereby pushed on a request queue with a specific prio-
rity. Hence our third-party application can be configured to, for example, fetch private messages
before user comments of a Facebook group. The extent/depth of social snapshots can be further
configured as a parameter for our third-party application. We deployed it on a Linux server in
our university network.

Our third-party application fetches Facebook elements of a given account and stores them as
separate JSON files. The separate JSON files correspond to specific requests, whereas the files
are named as follows. The first part of the JSON file name is the ID of an API object while the se-
cond part specifies the requested connection detail. For instance, “123456789∼friends.request”
contains all friends of the object with ID 123456789 formatted as a JSON object. In order to im-
prove the performance of our application, we configured it not to download any videos or photos
through the Graph API directly. As the third-party application collects direct links to photos, the
digital image forensics module was configured to download photos during the analysis phase.
Once the third-party application is finished fetching account data, it creates a tarball containing
the social snapshot data.

The social snapshot client was adapted to fetch contact details of given user profiles and
automatically add our third-party application to a target account. One particular challenge we
had to overcome was to reliably obtain the list of friends of a given target account. Obstacles
we had to cope with were the changing layout of the friend lists as well as Facebook only
displaying a random subset of friends at a given time. We overcame the obstacles of creating the
list of friends to be crawled, by fetching it through our third-party application and sending the
profile links back to the client. Our client generates requests for every friend of the target user
and sends them to the Selenium server that automates a Mozilla Firefox browser. The responses
from the automated web browser module are parsed by the client and the contact information is
extracted with a set of XPath queries. The client finally creates a CSV-file containing the contact
information of all users. We deployed our client application in a virtual machine with a standard
Ubuntu Desktop that runs our patched Selenium server. Our social snapshot analysis module
implements both a parser for the fetched JSON Graph API requests as well as for fetched CSV
contact details. The analysis module merges the results from the social snapshot client and the
third-party application into a single database. We implemented the analysis module in Java.

We furthermore extended our digital image forensics module to automatically search a social
snapshot for photo links, which it automatically downloads from the Facebook content distribu-
tion network. The hijack module did not require any Facebook specific modifications as it simply
strips cookies of a given domain from a monitored network connection.
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5.3.3 Visualization

To evaluate our proposed basic visualizations we relied on Gephi [19], an open source graph
visualization tool. Gephi is an interactive tool that features a number of clustering and data
analysis metrics for graph structures, as well as layout algorithm for graph visualizations. We
used Gephi in a semi-automated fashion, that is we relied upon the Gephi GUI to produce graph
visualizations. Gephi is also available as a standard Java library2 and our semi-automated vi-
sualizations could therefore be fully automated. Our timeline visualization, see Figure 5.7, is
currently a mock-up and we did not implement any automated timeline visualizations.

5.3.4 Test Subjects and Setting

We recruited human volunteers via e-mail, describing our experiment setting. The e-mail con-
tained the experiment instructions and a briefing on how their personal information is going to
be stored and analyzed. Furthermore, we briefed volunteers on the ethics of our experiment: no
Facebook account data is modified, the social snapshots are stored in an encrypted filecontainer,
no personal information is given to third-parties nor published. The invitation to support this
first social snapshot evaluation was sent to researchers and students in computer science. Finally
25 people gave their consent to temporarily provide us access to their Facebook accounts. Vol-
unteers temporarily reset their Facebook account credentials, which we used to create a social
snapshot of their accounts. Once a social snapshot had been created, we informed our test group
to reset their account password.

We configured our third-party social snapshot application for fetching an extensive account
snapshot. We found that 350 simultaneous API requests lead to the best performance results
in a series of indicative experiments we conducted beforehand. Our third-party application was
configured to fetch the following elements recursively:

• Highest priority (priority = 3)
inbox, outbox, friends, home, feed, photos, albums, statuses

• Medium priority (priority = 2)
tagged, notes, posts, links, groups, videos, events

• Lowest priority (priority = 1)
activities, interests, music, books, movies, television, likes

Our priority settings ensure that important information is fetched first. Account elements with
highest and medium priority are fetched with depth = 2 while elements with the lowest priority
are gathered with depth = 1. Thus a social snapshot of a given user includes for example,
her friend’s groups, tagged pictures, links etc. but no pictures, comments, etc. are downloaded
from her favorite television series. These social snapshot settings imply that not only the target’s
account is completely fetched but also social data on the targets’ friends is collected.

2https://gephi.org/toolkit/
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5.4 Results

In this section we discuss the evaluation of our social snapshot prototype as well our first results
on the visualization of social snapshots. Finally we discuss a possible usage of our novel forensic
method on basis of a practical example.

5.4.1 Social Snapshot Performance and Completeness

Figure 5.3 illustrates the time required by our third-party social snapshot application to snaps-
hot the test accounts through the Graph API. Our third-party application required on average
12.79 minutes. Account elements of our test accounts were on average fetched with 93.1kB per
second.
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Figure 5.3: Time required by our social snapshot third-party application

Listing 5.1 shows an anonymized example from the fetched Facebook account elements.
The example represents the basic information fetched of the user “John Doe” formatted as a
JSON object. This example request also highlights that account data fetched through the Graph
API provides a richer information set for further investigations. The standard web interface does
not provide information if a user’s account is verified nor an update time that is accurate to the
nearest second with information on the used time zone.

Listing 5.1: Example of collected JSON user object
{

" i d " : " 12345678 " ,
" f i r s t _ n a m e " : " John " ,
" l a s t _ n a m e " : " Doe " ,
" e m a i l " : " johndoe@example . com" ,
" b i r t h d a y " : " 0 4 / 0 1 / 1 9 7 5 " ,
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" ge nd e r " : " male " ,
" hometown " : {

" i d " : " " ,
" name " : n u l l

} ,
" username " : " johndoe " ,
" l i n k " : " h t t p : / /www. f a c e b o o k . com / johndoe " ,
" l o c a l e " : " en_US " ,
" name " : " John Doe " ,
" q u o t e s " : " s o c i a l s n a p s h o t your a c c o u n t ! . \ n " ,
" t i m e z o n e " : 2 ,
" u p d a t e d _ t i m e " : " 2011−05−15 T13 :05 :19 +0000 " ,
" v e r i f i e d " : t r u e

}

Compared to data collected via the standard web interface, our social snapshot contains a
number of additional information tokens. Most notably for forensic investigation is the availabi-
lity of exact creation timestamps through the Graph API. We used our image forensic module to
download all unique photos in the highest available resolution from the gathered social snaps-
hots.

The time required for crawling contact details with our automated web browser is outlined in
Figure 5.4. Test accounts have been crawled within 14 minutes on average. The average elapsed
time per account corresponds to 3.4 seconds per user profile page.
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Figure 5.4: Time required for crawling contact details with social snapshot client and automated
web browser.

As illustrated in Figure 5.5, our third-party application found and fetched on average 9, 802
Facebook account elements per test subject. The storage size of the fetched JSON files accounted
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to 72.29MB on average. The downloaded photos corresponded to 3, 250 files or 225.28MB on
average per test account.

Figure 5.6 shows the additional contact details crawled with our social snapshot client. On
average, our social snapshot client had to crawl 238 profile sites per test account. For all crawled
profile pages our crawler found 22 phone numbers, 65 instant messaging accounts, as well as
162 e-mail addresses on average. We noticed that after a number of subsequent requests to
user profiles of a given account, Facebook replaces textual e-mail addresses with images. This
behavior was noticeable with our social snapshot client, whereas on average we fetched 85 e-
mail addresses in image form (OCR in Figure 5.6). Due to the fact that Facebook uses e-mail
addresses in image form as a web crawler protection method, we could not directly parse the
fetched images.
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Figure 5.5: Account elements fetched through social snapshot third-party application.

Finally we used our analysis module to verify the integrity of the collected snapshots. We
successfully verified that every entry in our fetched contact details CSV files had correspondent
entries within the retrieve JSON files, as well as that no invalid responses where received through
the Graph API. We furthermore implemented a mechanism for the analysis module to overcome
the obstacle of parsing image e-mail addresses. By providing Facebook’s e-mail image creation
script the maximum possible font size of 35 instead the default of 8.7, we fetched higher resolu-
tion versions of the e-mail address pictures. We could thus rely on GNU Ocrad [82] to resolve
these high resolution images into their textual representation. The idea of replacing the default
font size with a larger one was first described in [151] and we could successfully verify that the
described method still applies.
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Figure 5.6: Contact details crawled with social snapshot client and automated web browser.

5.4.2 Forensic Analysis of Social Snapshots

Collected social snapshots enable the forensic analysis of social network activity of specific users
and their online peers. Since the entire content of a users’ social networking account with exact
timestamps is collected, timelines can be easily generated. Moreover, social snapshots offer a
valuable source for further investigations. The collected e-mail addresses could for example be
used to identify users on other online platforms such as photo and file storage services, while col-
lected media data could be matched with evidence collected through traditional forensic images.
Figure 5.7 shows an example of a generated timeline for a fictitious forensic investigation on the

1/13/2011 12:00 AM 1/14/2011 12:00 AM

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

5:51:35 PM

Wall Post ID 123456789
Privacy: ALL_Friends

1 Comments

3:20:32 PM

Private Message
ID 00000000

To Grat Dalton
ID 333333

Bob Dalton 
ID 11111111 
UTC-5

6:27:12 PM

Private Message
ID 0000001

User Grat Dalton ID 3333336:43:12 AM

User Bill Power ID 222222
Wall Post ID 1234567

8:48:00 PM

User Dick Broadwell ID 4444444
Comment Wall Post ID 123456789

7:44:50 AM

Uploaded digital picture
ID 77777777

Privacy: EVERYBODY
Matched Source Image:

CIMG2216.JPG

12:32:50 PM

Like Wall Post ID 1234567
of User 123456

10:56:50 AM

User Dick Broadwell ID 4444444
Posted video ID 1234567

Figure 5.7: Example timeline created from collected social snapshot.

“Dalton Gang”. The Dalton gang is suspected of having committed an aggravated bank robbery
between 8:00am and 8:30am on the 13th of January 2011. All four gang members have an alibi
for the specific time and said they were all on a joint getaway together with their families. Bob
Dalton, the head of the gang, presents a group photo he posted on Facebook that very day. In
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order to validate the posting, five close friends of Bob give their consent to social snapshot their
social networking accounts. While the posted group photo correctly shows up with the specified
date in all five social snapshots, an interesting posting from Bob Dalton’s wife is collected in
two of the social snapshots. The posting dated one week before the robbery, timestamped with
01/06/2011 07:32:12 AM reads “Off to the beach, for our family group picture. Hehe”. The
investigators at this point start to suspect that the alibi picture had been taken a week beforehand
to fabricate an alibi. Unaware to Bob’s brother Grat Dalton, investigators social snapshot his
account using the hijack module during his daily Internet browsing, exploiting a coffeeshop’s
insecure WiFi connection. Analyzing Grat’s social snapshot the investigator noticed that Grat
exchanged private messages with his brother Bob on the day of the robbery. The first messages
with ID 00000000 sent at 3:20:32 PM reads “Grat, That was almost too easy today ... we should
start thinking on how to spend all the Benjamins:-). greetings Bob”. In the second message
Grat replied to Bob at 6:27:12 PM: “Yeah almost too easy:-) Great idea with the group picture
at the beach btw, that will cause them some serious teeth gnashing.” With this further evidence
on a possible false alibi, the investigators perform a house search on Bob Dalton’s home. While
the search does not reveal any of the stolen money, the personal computer of Bob Dalton is
seized during the house search. Amongst digital documents and images the investigators find
a valid Facebook authentication cookie on Bob’s forensic image. The investigator creates a
social snapshot of Bob’s social networking account using the extracted authentication cookie.
Comparing Bob’s and Grat’s social networking activity on the day of the robbery they find that
the social snapshots accurately correlate with a F1-score of 0.84, and both accounts hold the
treasonous private messages. The timeline generated from the social snapshot and outlined in
Figure 5.7 shows Bob’s online activity on the day of the bank robbery. Curious as to whether
the pristine digital image of Bob’s posting can be recovered the investigator runs the digital
image forensic module to match digital images from the forensic image with the image collected
through the seven independent social snapshots. The digital image forensic module reports a
positive match on a digital image named “CIMG2216.JPG”. The original EXIF information of
image “CIMG2216.JPG” reveals that their alibi group picture had indeed been taken a week
before the robbery.

5.4.3 Visualization Results

In the following we describe our visualization results, we replaced the actual personal informa-
tion of social snapshots with a random subset of the list of computer scientists on Wikipedia3.
As the replaced set is random, it obviously does not show real connections between the computer
scientists.

For the social interconnection graph we relied on a feature from the Facebook API that
allows an application to query if two specific users are connected. We iteratively tested if the
first friend is in connection with the n− 1 friends of the tested profile, then tested for the second
the remaining n−2, and so forth. We then extracted the social interconnection graph and plotted
it with Gephi using the Fruchterman-Reingold algorithm [81] to automatically layout the graph.
An example of a social interconnection graph from one of the authors can be seen in Figure 5.8.

3http://en.wikipedia.org/wiki/List_of_computer_scientists

63

http://en.wikipedia.org/wiki/List_of_computer_scientists


The size of single nodes depends on its degree. The nodes are furthermore clustered and colored
on basis of communities. Hereby, we used Gephi’s modularity feature, which implements the
community detection algorithm by Blondel et al. [28]. The automated visual representation of
communities further supports quick analyses by forensic investigators.
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Figure 5.8: Anonymized Social Interconnection Graph

With the data from Facebook it becomes possible to create different social interaction gra-
phs. In our implementation we created different graphs for different forms of interaction, while
they could be easily integrated to a complete social interaction graph. An example for a social
interaction graph based on tags in pictures on Facebook can be seen in Figure 5.9. The graph is
created using the following steps: (1) starting from an account under investigation, all pictures
from all friends are collected, and searched for tagged people. (2) People that are tagged in
pictures, and not in the list of friends, are ignored. (3) If the tagged person is in the friend list as
well, an edge is added between the two nodes pointing from the profile that uploaded the picture
to the profile that is tagged, or the weight increases by one if the edge already exists. The edges
are directed and weighted. An investigator can find with this graph persons that have a tight
social connection.

Yet another form of social interaction graph can be created using direct messages: instead
of using picture tags, an edge is added between two nodes if the profile under investigation ex-
changed messages with the other profile. Intuitively, an edge pointing to a node represents a
message sent to that profile. Again the edges are weighted, for the number of messages exchan-
ged. An example for a social interaction graph using direct message communication can be seen
in Figure 5.10.
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Figure 5.9: Anonymized Social Interaction Graph using Picture Tags
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Figure 5.10: Social interaction graph using direct messages
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5.4.4 Social Snapshot Open-Source Release

We release the social snapshot core framework for Facebook under a GPL v3 open source li-
cense4. The source code contains the social snapshot client, our third-party application, as well
as the patched Selenium server. Not included in the open source release are the analysis and
photo forensics modules. We furthermore decided not to release the hijack module, which could
be potentially misused for malicious attacks.

5.5 Discussion

Our evaluation required on average 9, 802 API and 238 HTTP requests to successfully snapshot
an entire social networking account in less than 15 minutes. In order to collect forensic evidence
with traditional web-crawling more than 10, 000 HTTP requests are necessary to snapshot a sin-
gle test account. The generated network traffic of traditional web-crawling would have been
likely detected and blocked by social networking providers. Moreover, our evaluated approach
retrieved the great majority of social networking account data without the requirement of ad-
ditional parsing and with exact timestamps. During the implementation of our social snapshot
techniques, Facebook’s web-site layout changed a number of times. Since only contact details
were crawled, we could promptly adapt the parser of our client, while our third-party application
did not require any changes at all. As Facebook has no mandatory review process for third-party
applications we could also make our third-party application available straightforward. Third-
party applications on Facebook do not even have to appear in their application directory in order
to be usable.

Apart from digital forensics, social snapshots could also be used to raise user awareness.
Users would run our social snapshot tool and get a report on their account data. Thus, social
networking users could sight the magnitude of information that is stored with their social net-
working providers. We hope that this would help the average social networking user to make
better informed decisions on which information they post.

Unencrypted social networking sessions enable the gathering of social snapshots for digital
forensics but also pose a serious security threat. Since TLS is not enabled by default on the
majority of today’s social networking services, user sessions can easily be hijacked. Two proof-
of-concept tools have been released that make session hijacking of social networking sessions
available to the average user. Firesheep [43] has been released in October 2010 as a browser
extension and at the time of writing is not functioning anymore. Faceniff [149] offers a point-to-
click interface and supports a number of wireless network protocols. It is an Android application
for hijacking social networking sessions released in June 2011. Both hijacking applications were
released in order to create awareness for the problem of insecure social networking sessions. It is
trivial however to couple such simple hijacking applications with our social snapshot tool. Thus,
attackers could harvest complete account snapshots in an automated fashion. In chapter 6 we
further show that the large amount of sensitive data stored in social networks could be misused
for large-scale spam attacks via session hijacking and malicious social snapshots.

4https://github.com/markushuber/social-snapshot-tool
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5.5.1 Threats to Validity

Whilst our method is novel and can be easily used in addition to already existing and deployed
social network analysis methods (i.e., subpoena requests to the social network operator) they
introduce new challenges at the same time as they solve others. One of the most obvious dra-
wbacks is that the data collection is hardly reproducible: the timelines and graphs generated
will look differently for multiple runs as the social network is very dynamic in nature, and the
amount of data rather big. Within a single day a user could change his social interconnection
graph to large extend, and could try to hide his or her communication in covert traffic. Some
other data, like login IP addresses as provided by the Facebook NeoPrint [62], are only available
to the operator of the network and not accessible with our method, neither with an automated
webbrowser or an API. Furthermore it is not easily possible to guarantee completeness: once
data is deleted by the user it can only be undeleted from the social network operator, and is thus
not available for our analysis. We believe, however, that most of the data items are rather static
in nature, and that our methods are applicable and auxiliary for forensic investigations.
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CHAPTER 6
Friend-in-The-Middle (FiTM) Attacks

Criminals, as well as direct marketers, continue to clog mailboxes with unsolicited bulk e-mails
in the hope of financial gain. So far, their strategy is straightforward, namely to send out a vast
numbers of unsolicited e-mails in order to maximize profit on the tiny fraction that falls for their
scams. Their pool of target e-mail addresses is normally based upon data harvested with web
crawlers or trojans, sometimes even including plain dictionary-based guessing of valid targets.
Previous research indicates that online social networks might change the playing field of spam
attacks in the near future (see Subsection 3.2.2). OSNs contain a pool of sensitive information
which can be misused for spam messages, namely contact information (email addresses, instant
messaging accounts, etc.) and personal information which can be used to improve the believabi-
lity of spam messages. A successful extraction of sensitive information from OSNs would result
in spam attacks that are based upon a pool of verified e-mail addresses. Thus messages may
have higher conversion rates, increasing the success rate of spam.

Gaining access to the pool of personal information stored in OSNs and impersonating a so-
cial network user poses a non-trivial challenge. Gross and Acquisti [88] as well as Jones and
Soltren [112] were among the first researchers to raise awareness for information extraction
vulnerabilities of OSNs. While their techniques were rather straightforward (automated scripts
which retrieve web pages), their results eventually led to security improvements of OSNs. Exi-
sting attempts to extract information from OSNs focus on the web application layer and can
thus be mitigated by adapting a specific social network’s web application logic. The leakage
of personal information from these platforms creates a remarkable dilemma as this information
forms the ideal base for further attacks. Jagatic et al. [110] showed that they could increase
the success rate of phishing attacks from 16 to 72 % by posing as a target’s friend. In social
engineering, additional available information on targets could lead to automated social enginee-
ring attacks [100]. The main obstacle for large-scale spam attacks on basis of OSNs are the
various access protection measures providers offer to keep sensitive information private or at
least limit access to a closed circle of friends. Our friend-in-the-middle (FiTM) attack overco-
mes this obstacle by hijacking HTTP sessions on the network layer, which the majority of OSNs
providers fail to secure appropriately.
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6.1 Friend-in-The-Middle (FiTM) Attacks

We define friend-in-the-middle attacks as active eavesdropping attacks against social networking
sites (see Subsection 3.2.1). Our FiTM attack is based on the missing protection of the commu-
nication link between users and social networking providers. By hijacking user HTTP sessions,
it becomes possible to impersonate victims and interact with the social network without proper
authorization. While at first glance the risk of hijacking social networking seems like yet ano-
ther threat to privacy, we claim that FiTM attacks enable large-scale spam attacks. Within this
section, we first explain various attack scenarios on basis of session hijacking and describe how
FiTM attacks could be misused for large-scale spam campaigns on basis of Facebook.
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Figure 6.1: An attacker becomes the “friend-in-the-middle” by hijacking an OSN user session
and targeting the user’s friends.

6.1.1 HTTP Session Hijacking Attacks on OSNs

As a precondition the attacker needs to have access to the communication channel between the
OSNs and the user. This can be achieved either passively (e.g., by monitoring unencrypted
wireless networks) or actively (e.g., by installing malicious software on the victim’s computer).
The adversary then simply clones the HTTP header containing the authentication cookies and
can interact with the social network, unbeknownst to the OSN operator or user. The victim is
unable to detect or prevent such attacks and the attacker is able to use the social network to
its full extent from the victim’s point of view. As with all HTTP session hijacking attacks, it
becomes possible to both retrieve information (data acquisition from the social network) as well
as to insert malicious requests on the behalf of a user (data publication into the social network).
However in the case of our FiTM attack, further scenarios become available to attackers, which
are specific to social networking sites:

• Friend injection to infiltrate a closed network

• Application injection to extract profile content

• Social engineering to exploit collected information

The rudimentary security and privacy protection measures of OSNs available to users are based
on the notion of “friendship”, which means that sensitive information is made available only to
a limited set of accounts (friends) specified by the OSN user. Once an attacker is able to hijack
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a social networking session, she/he is able to add herself/himself as a friend on behalf of the
victim and thus infiltrate the target’s closed network. The injected friend could then be misused
to access profile information or to post messages within the infiltrated network of friends. By
injecting a custom third-party application, written and under the control by the attacker, it is
possible to access the data in an automated fashion (see Chapter 5). Among other things, an ap-
plication has access to sensitive information (birthday, email address, demographic information,
pictures, interests) and with most OSNs even access to information of friends of the application
user. Third-party applications such as online games have become popular features of OSNs, and
hiding a malicious application without any activity visible to the user is possible. Thus, the ap-
plication is likely to remain undetected within a pool of installed third-party applications. This
ultimately enables an attacker to extract profile content in a stealthy way as this retrieval method
does not cause as much noise as a burst of separate HTTP requests. Even worse, the attacker
might install the application, take all the data needed in an automated fashion and remove the
application afterwards. This would be completely undetectable to the user and most likely to the
OSNs providers as well. Whereas social engineers traditionally relied upon context-information
gathered through dumpster diving or quizzing people over the phone, with FiTM attacks the
context-information harvesting process becomes automated. We thus claim that FiTM attacks
allow sophisticated social engineering attacks. In the following we outline how context-aware
spam and social phishing (see 3.2.3) could be misused for automated social engineering.

6.1.2 Large-scale spam campaigns through FiTM attacks

Figure 6.2 illustrates a spam campaign exploiting our novel FiTM attack.
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Figure 6.2: Outline of a large-scale spam campaign via the friend-in-the-middle attack: A so-
cial networking session is hijacked to fetch personal information from a victim’s profile. The
extracted information is then used for spam and phishing emails targeted at the victim’s friends.
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(1) In the first step, a network connection is monitored. Once the FiTM application detects
an active social networking session, it clones the complete HTTP header including the session
cookie. (2) The cloned HTTP header serves then as a valid authentication token for the OSN
provider and is used to temporarily hijack the OSN user’s session. (3) In order to extract the
profile content as well as information on the target’s friends, a custom third-party application is
added to the target’s profile. Once all information has been extracted the application is removed
from the profile. Additional queries are used to fetch the email addresses of the target’s friends in
case they cannot be retrieved through the third-party application. In this step we thus basically
create a malicious social snapshot of a users profile (see Chapter 5). (4) The extracted email
addresses and account content are used to generate tailored spam and phishing emails. While
the spam messages contain the actual payload of the attack, the phishing emails are used to steal
credentials of the target’s friends for further propagation (the FiTM attack starts again from (3)
with the phished OSN account credentials).

6.2 Methodology

We decided to evaluate the impact of a large-scale spam campaign on basis of Facebook. FiTM
attacks based on Facebook serve in our opinion as a good example because it is the biggest OSN
at the time of writing, HTTPS is per default only used to protect login credentials, and Facebook
supports custom applications. Furthermore, injections of third-party applications into Facebook
profiles promise access to a plethora of personal information. Within the Facebook application
framework, third-party applications can for example access the following information:

• Basic context information: Full name, geographical location, birthday, affiliations, educa-
tion, etc.

• Likes and interests: Favorite books, movies, tv-series, music, quotations, etc.

• Private content: Sent and received messages, photos, videos, etc.

In addition, third-party applications within Facebook are allowed to access the information of
a user’s friends as well. Thus an application injection in Facebook enables the extraction of a
pool of valuable context information from the targeted user as well of his/her friends. Email
addresses of users are not accessible through third-party applications and the addresses can be
collected by using the hijacked user session. The different permission classes available for social
networking apps, are further outlined in Section 2.3.

In order to make assertions on the effectiveness of our FiTM attack, an experiment which
mimics a real large-scale attack would provide valuable insights on effectiveness, but also raises
serious ethical concerns. Hence, we applied the following twofold approach: we performed an
empirical evaluation on the number of possible sessions that could have been hijacked, without
collecting any data or injecting any malicious requests. We then simulated the impact of our
FiTM attack on basis of established results from similar work on a graph model. In comparison
to survey-based methods we avoid problems such as selection bias, refusal rates, telescoping,
forgetting and exaggeration [96]. The methodology applied within our two experiments is ex-
plained in this section.
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6.2.1 Finding attack seeds

To conduct the FiTM attack, numerous attack vectors could be used: DNS poisoning, cross-
site request forgery (CSRF), wireless networks without or with only weak encryption, malicious
software like a trojan or a rootkit running on the victims computer, deep packet inspection from
an ISP or other malicious entity that has access to the traffic between the client and the OSN, as
well as modified software running on a users residential or company gateway.

In order to perform first indicative experiments we decided to measure the number of active
social networking sessions on unencrypted WiFi access points. We chose the library of a big
Austrian university as our experiment location. The university’s library was selected because
of two reasons: OSNs are very popular amongst students, and secondly this particular library
offers both secure and insecure (unencrypted) Internet access via wireless LAN. The university’s
wireless LAN is operated on three channels: 1, 6, and 11. To capture all three channels we
equipped a laptop with three WiFi USB dongles with an analysis script listening to each of the
three channels. In a first experiment we performed the analysis over the period of one and a half
hours and in a second experiment we performed the evaluation for seven hours.

As a second source of possible FiTM attack seeds we analyzed social networking sessi-
ons passing through a Tor exit node. We selected this second source of possible FiTM attack
seeds based on results of previous experiments, where we discovered that unencrypted social
networking sessions are popular within the Tor network [103]. The Tor network [60] is a widely
deployed anonymization network which hides the user’s IP address on the Internet. It is expected
to be used by hundreds of thousands of users every day and is believed to be the most heavily
used open anonymization network today [182]. The Tor infrastructure relies on servers run by
volunteers, hence anyone can support the Tor project by setting up a dedicated Tor server. For
our experiment, we set up a Tor exit node on a minimal GNU/Linux Debian server with a relay
bandwidth rate of 5 Mbit. The server was furthermore configured to only allow HTTP traffic
(TCP port 80) from the Tor network to the Internet. We then counted the number of Facebook
sessions together with the Facebook locales that were observable by our Tor exit node and could
have be used for our FiTM attack. Note that we only counted and saved the number of unique
social network sessions, not the number of users that used our Tor node.

During our experiments we ensured that the privacy of user data was not put at risk. We did
not collect or store any personal data of observed user sessions. To prevent counting the same
users multiple times, we matched the hash value of unique user identifiers of detected sessions
against a list of previously hashed user identifiers.

6.2.2 FiTM attack simulation.

We estimate the impact a large-scale FiTM attack on basis of the following simulations.

Finding an optimal FiTM attack strategy

We implemented a configuration model to generate an extended induced subgraph (see Subsec-
tion 2.2.2) of Facebook. Hereby, we constructed a simple graph out of a degree distribution pk,
such that pk is the fraction of vertices in the graph having degree k. Then choosing a degree
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sequence d = {di | i = 1, ..., n}, WLOG we assume di ≥ 1, which are the degrees of the n
vertices {v1, v2, ..., vn}. Since it is not always possible to construct a simple graph with a given
degree sequence [186], we first constructed a multigraph. Obtaining a simple graph out of such
a multigraph is easily achieved by erasing all loops and combing all multiple edges into one. The
obtained simple graph has asymptotically the same degree distribution. It has been shown [140]
that the chance of finding a loop goes as n−1, therefore the probability is humble for large n. For
an applicable degree distribution we considered the much studied power-law distribution [141],
more distributions are discussed in Subsection 2.2.2. Distributions of the form p(x) = Cx−α are
said to follow a power law, where α > 0 is called the exponent and C functions as a normalizing
constant. C is given by the following normalization requirement:

1 = C

∫ ∞
xmin

x−αdx =
C

1− α
[
x−α+1

]∞
xmin

(6.1)

Formula 6.1 shows that: 1) α > 1 and 2) for a given α > 1 and known limit xmin it is easy to
compute the normalization constant C. Gjoka et al. [86] presented a possible degree distribution
for Facebook which does not follow a single power-law but instead they found two regimes
1 ≤ k < 300 and 300 ≤ k ≤ 5000, each following a power law with exponent αk<300 = 1.32
and αk≥300 = 3.38. With this specific information it was possible to generate a accurate power
law degree sequence for the two intervals [1; 300[ and [300; 5000]. We generated a model with a
total amount of 1 · 104 nodes and computed C for each of the two intervals with formula 6.1.

Attack Cycle. For an attacker the properties of the entire graph is unknown. An attacker
knows the degree of a hijacked user vertex but other useful knowledge such as centrality, bet-
weenness, or clustering coefficient etc. is unknown to the attacker. The attack process thus
behaves as follows: We choose a random vertex vi, in the following called user, the user has
a predetermined degree (d(vi) = di = k) which is the amount of friends. We spam a fixed
percentage p of the users friends and propagate1 the remaining ones. This cycle then repeats
itself for a given amount of iterations, e.g. 5 times (it = m = 5). With these iteration steps we
probably get more vertices to further spread our attack compared with a single vertex. In order
for the attack to be less noticeable, we assume that a user can either be spammed or propagated
and no more than 1 time. We performed two consecutive evaluations to find an optimal attack
based on our graph model. Optimization 1: Find an optimal spam to phishing ration p, hereby
we randomly choose a single attack seed and perform it = 1, ...,m attack iterations for different
values of p. Optimization 2: Find an optimal number of attack iterations with our optimized
value of p and multiple attack seeds as = 1, ..., 35.

Simulating a large-scale attack

In a second step we simulated the impact of an optimized FiTM attack on a basis of an additional
graph model. We used the anonymous regional network collected by Wilson et al. [191], which
contains 3× 106 Facebook nodes, as basis of our attack simulation. The goal of our simulation
was to estimate how many Facebook nodes would be affected by a large-scale FiTM spam attack
given a specific amount of initial attack seeds and our optimized attack strategy.

1Our evaluated propagation strategy is social-phishing, therefore we assume that propagations have a success
rate of 72% based on Jagatic et al.’s findings [110].
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6.3 Results

In this section we present the results of finding possible attack seeds as well as the outcome of
our attack simulations.

6.3.1 Finding Attack Seeds

Indicative WiFi experiments

We performed two indicative experiments on possibly hijackable social networking sessions in
February 2010. Within our first WiFi experiment we counted social networking sessions for a
period of 1.5 hours during the peak time of the university’s library, where we expected most of
the students would use the library’s wireless access points. Figure 6.3 shows our findings, on
average our analysis tool detected a unique social networking session every 1.8 minutes.
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Figure 6.3: Observed social networking sessions measured during peak time of Internet usage.

The second WiFi experiment was carried out during an average day in the university’s library
were less students were using the Internet. During a period of seven hours we were able to detect
60 social networking sessions which corresponds to one unique session every seven minutes.

Tor exit node

During a period of 14 days, approximately 6.1 x 106 HTTP requests passed through our Tor exit
node. Facebook was the most requested domain and was responsible for 7.68 % of the overall
traffic. The second most frequent social networking site was Orkut which caused 0.49 % off
all HTTP requests. We observed 4,267 unique Facebook sessions throughout our experiment
which could have been hijacked for friend-in-the-middle attacks. Furthermore our cookie ana-
lysis suggests that the majority (92.81 %) of observed unique Facebook sessions were persistent
sessions. Figure 6.4 outlines our findings, whereas the red graph represents the unique attack
seeds during a period of 14 days.
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Figure 6.4: Number of sessions found through our Tor exit node server within 14 days.

Table 6.1 shows the distribution of the Facebook sessions in regard of the used language.
71.77 % of all users used English, followed by 6.19 % used an Italian, and 5.55 % of users
used Spanish. We furthermore observed that in total 3.45 % of users might have originated
from China and 1.28 from Iran, where in both countries Facebook is blocked by governmental
authorities. The information of the different locales used could be exploited by attackers to adapt
the language of their spam messages.

Facebook locale

Language ISO %

English (US) en_US 60.46
English (UK) en_GB 11.31
Italian it_IT 6.19
Spanish es_LA 5.55
Indonesian id_ID 3.21
Simplified Chinese (China) zh_CN 2.41
French (France) fr_FR 2.01
Persian fa_IR 1.28
Traditional Chinese (Taiwan) zh_TW 1.04
Others - 6.54

Table 6.1: Facebook locales of analysed user sessions
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6.3.2 Simulation Results

Optimization 1

We ran our attack model for optimization 1 for each number of iterations, it = 1, ..., 35, 1000
times. For each iteration step we averaged over the 1000 results and got the mean value for the
potential spam targets. Figure 6.5 outlines our results for attack optimization 1. For example,
for it = 5, the mean number of spam targets is sp = 1178 corresponding to the red curve. The
five colored curves correspond to different percentages p of spam messages in each iteration
step. The black curve describes the number of spam targets when only 1 user is phished in each
iteration step. One can observe that with the initial attack iterations (it = 1, ..., 10) the number
of spammed nodes increases almost linear with a high slope. After that (it = 11, ..., 35) the
curve slowly levels to sp ≈ 643. The colored curves behave similarly, but their linear growing
area is reduced to 5 attack iterations. The slope is significantly higher for values of p between
50 and 80 percent. All curves nearly level to a final value within the first 5 iteration steps. Based
on this results we tested an optimal ratio between spam targets and propagating percentage. Our
results show that propagating a fixed percentage 100−p yields to better results as compared with
only phishing 1 user in each attack iteration. One can also observe that a too small percentage
of spamming targets (p ≤ 60% in our simulation) yields to a decrease of spam targets. Based on
our simulation, we found the value p = 70% to be the best choice for p. The leveling of all six
curves yields to the assumption that in a highly clustered structure it is not possible to elude the
entire cluster. We expected this behavior based on the hypothesis that OSN graphs represent an
assembly of extended induced subgraphs. In the figure we limited the number of iterations to 35
because the slope for larger iterations converges to 0.

0 5 10 15 20 25 30 35
0

500

1000

1500
Attack iterations vs. spam targets

Attack iterations

S
pa

m
 ta

rg
et

s

 

 

1 Node
90 %
80 %
70 %
60 %
50 %

Figure 6.5: Simulation results for FiTM attack optimization 1

Optimization 2

Our second attack optimization can be seen as an extended algorithm of Optimization 1, whereas
we used the optimized value p = 70% and varied the number of attack seeds as = 1, ..., 35.
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As with Optimization 1 we averaged over 1000 results and got the mean value of spammed
user vertices. Figure 6.6 outlines our simulation results for Optimization 2. We found that for
one iteration (it = 1) the slope is almost linear (red curve). This can be explained by the fact
that in a large network we get almost the same number of spammed users for each attack seed.
Furthermore, one can observe that there is significant difference in the number of spammed
nodes between it = 1 and it = 2. This difference however decreases with a growing number
iteration steps. While there is still a considerable difference between it = 2 and it = 3 and
it = 10, there is almost none between it = 20 and it = 35. As in strategy 1, initially our
simulation shows a rapid increase of spammed users (as = 1, ..., 10) and after as = 10 the
slope decreases. Our simulations shows that all curves converge to a limit of 3000 spammed
nodes. This is a result of the fact that even with 35 iterations and 35 attack seeds, the chance of
finding unattacked graph segments is negligible small. It is interesting to observe, that even with
a moderate rate of iterations, say it = 10 per attack seed, we get almost the same amount of
spammed nodes when executing it = 35 iterations per attack seed. Hence, performing an attack
with multiple attack seeds and few iterations yields a higher impact than an attack with a single
attack seed and a high number of iterations. Furthermore, attacks with multiple attack seeds are
more inconspicuously because the attack spreads over multiple clusters in the social graph.
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Figure 6.6: Simulation results for FiTM attack optimization 2

6.3.3 Impact Evaluation

We performed the impact evaluation on basis of our optimized FiTM attack cycle, with a spam
ratio of p = 70% and a fixed number of attack iterations it = 3.

Table 6.2 shows our simulation results for 4,000 initial attack seeds with a propagation
success probability of 72%. We chose 4,000 as a maximum amount of attack seeds because
this value corresponds to the number of user sessions we observed with our Tor exit node (see
Subsection 6.3.1). Our results suggest that with 250 seeds it is possible to spam 1.94 × 105

potential targets (6.28 % of the total vertices in our graph model). When comparing the first
and the last line of the table, one finds a factor 16 between the number of corresponding seeds

78



attack seeds as as [%] spammed users su su [%]

250 0.01 1.94 · 105 6.28
450 0.01 2.12 · 105 6.86
750 0.02 2.27 · 105 7.35
1000 0.03 2.40 · 105 7.77
1500 0.05 2.58 · 105 8.35
2000 0.06 2.70 · 105 8.74
3000 0.10 2.90 · 105 9.39
4000 0.13 3.03 · 105 9.80

Table 6.2: Number of spammed users depending on initial attack seeds.

(250 × 16 = 4000). This does not hold when comparing the possible spam targets: for an
amount of 250 attack seeds we found 1.94× 105 targets, with 4,000 seeds we found 3.03× 105

targets, resulting in a growth factor 1.56. Our FiTM attack simulation on the regional network
by Wilson et al. [191] with 4,000 attack seeds thus finds fewer user vertices that have not been
already spammed. Our result of 3.03× 105 overall spam targets represents however a conserva-
tive estimation as seeds collected trough a Tor server most likely belong to a more disperse set
of Facebook clusters.

Because we did not actually perform phishing attacks, we were interested on the effect of
phishing success rates < 72%. Figure 6.7 shows the impact of the phishing success rate on
number of spam targets. As the figure illustrates, even with a 10%-success rate, it is possible to
spam 3% of the regional network. For higher success probabilities the difference between the
curves decreases. Thus, even if social-phishing would succeed with a probability of 30% instead
of 72% the overall effect would not be significant.
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6.4 Discussion

Our results suggest that unprotected OSN user session can be observed and potentially hijacked
when snooping on traffic of WiFi access points or Tor exit nodes. Our simulation results suggest
that our FiTM attack would result in malicious spam campaigns on a large scale. In a relatively
short amount of time, an attacker would be able to collect information from thousands of users
in an automated fashion, resulting in hundreds of thousands possible victims for context-aware
spam. For example 250 initially hijacked user sessions (attack seeds), would result in more than
1.94 · 105 users being targeted with context aware spam. With regard to our Tor experiment,
these 250 initial attack seeds would have been gathered within 15 hours. Because our attack
enables the extraction of e-mail addresses from social networking accounts, context aware could
be delivered via email and thus evade detection from social networking providers. In February
2010, a user’s email address was even included in Facebook session cookies in plaintext.

6.4.1 Mitigation strategies

In recent years numerous privacy protection schemes have been published with the intention
to protect sensitive social networking data from unwanted disclosure. One possible protection
strategy are security extensions for OSNs, which we discussed in Subsection 3.3.1. These ex-
tensions enforce access control to sensitive information with encryption. While OSN security
extensions conceal sensitive information from OSN providers as well as from attackers, they
have a number of shortcomings. First, the protection mechanisms in general focus to protect
messages and profile information while e.g. pictures and graph information remains vulnerable
to disclosure. Second, none of the proposed security extensions are actively maintained and the
majority of proof-of-concept implementations are not operational anymore (see Table 3.2).

The second and more promising protection strategy against our FiTM attack is protection
against session-hijacking attacks by social networking providers. In order to effectively miti-
gate FiTM attacks, OSNs providers have to ultimately ensure that all communication between
their users and their platform is performed via TLS. At the time of writing Google+ is the
only major OSN that supports TLS per default, see Table 3.1. Browser extensions such as For-
ceHTTPS [109] or EFF HTTPS Everywhere [61] offer a transitional mitigation strategy to the
average user by attempting to force HTTPS for requests that would have been normally trans-
ferred over HTTP. The Tor project furthermore announced [27] that they will include a special
version of NoScript [145] within the Tor browser bundle which enforces HTTPS for a num-
ber of websites including OSNs. OSNs currently refrain from enabling TLS per default for
cost and performance reasons and they might also deploy mechanisms that specifically protect
against session hijacking attacks. Examples for such a protection approach is SessionLock which
was proposed by Adida [5]. We furthermore developed SHPF a framework to detect session-
hijacking attacks [185].
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CHAPTER 7
Conclusion

7.1 Summary

Online Social Networks (OSNs) are used by millions of people on a daily basis, to share a
plethora of sensitive information online. The personal user information is hereby stored in the
walled gardens of social networking providers. In this thesis, we first outlined existing research
on OSN security, and privacy, as well as on protection strategies. Previous research focused to
a large extend on the information-disclosure behavior of social networking users and privacy
management of their profile’s content. Hence, the main research problem of this thesis focu-
sed on advancing research on security and privacy implications of OSN third-party access, and
third-party applications in particular. Third-party applications, or colloquial “apps”, are popular
extensions to OSNs and their current modus operandi allows them to transfer personal user in-
formation out of the walled gardens of OSNs. The first non-trivial research problem we solved,
is the automated analysis of OSN application ecosystems, regarding their security and privacy
practices. We furthermore showed that custom third-party applications have important implica-
tions for the area of information security. We then presented a novel approach to collect digital
evidence from OSNs with the help of a customized third-party application. While our results
suggest that OSN third-party access enables crucial methods for digital forensics, we also sho-
wed that custom third-party applications could be misused for spam campaigns. In particular we
demonstrated that session hijacking attacks can be used to inject custom applications into user
profiles. Our results suggest that a relatively small number of hijacked user sessions potentially
lead to a large number of users being spammed.

Our results helped to mitigate information leaks of popular OSN third-party applications,
and thus ultimately to protect the security of users. Furthermore, our novel approach for collec-
ting digital evidence from OSNs made an important contribution to the area of digital forensics.
Finally, the findings of this thesis stressed the importance of proper OSN communication se-
curity, and social networking providers recently acknowledged our findings. We expect that all
major social networking providers make encrypted communication protocols their default in the
near future. In the following we are going to summarize our three main results in more detail.
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7.1.1 AppInspect

In Chapter 4, we proposed a novel framework called AppInspect to automatically analyze se-
curity and privacy issues of social network third-party applications. Our analysis software first
enumerates available applications for a given social network provider. In the following, our
software collects application metrics from the social network provider. In a last step, AppIn-
spect installs third-party applications to test accounts and analyzes their network traffic. Hereby,
our framework analyses the collected network traffic for existing tracking software, informa-
tion leakage to third-parties, and application hosting infrastructure. We have implemented our
AppInspect framework and used it to evaluate Facebook’s application ecosystem. Our approach
automatically enumerated 434,687 unique Facebook applications and analyzed the most popular
applications in detail. Our results showed that AppInspect offers a practical approach to detect
common malpractices of third-party applications. Our findings helped to automatically spot in-
formation leaks of popular OSN applications and revealed the underlying hosting infrastructure
of application developers.

7.1.2 Social Snapshots

In Chapter 5 we introduced Social Snapshots and explored novel techniques for automated col-
lection of digital evidence from online social networks. An evaluation of our approach showed
that it is a practical and effective method to collect the complete information of a given social
networking account. In addition, our approach did not get detected by social networking pro-
viders. We believe that our techniques can be used in cases where no legal cooperation with
social networking providers exists. In order to provide a digital evidence collection tool for mo-
dern forensic investigations of social networking activities, we released our core social snapshot
framework as open source software.

7.1.3 Friend-in-The-Middle (FiTM) attacks

In Chapter 6, we introduced Friend-in-The-Middle (FiTM) attacks which exploit the partial com-
munication security support of OSNs. It becomes possible to impersonate OSN users and to use
the social network on their behalf, by eavesdropping on unprotected social networking commu-
nication. We showed that OSNs enable a number of unique attacks based on session hijacking:
(1) Friend injection, (2) Application injection, and (3) Social engineering. In the following, we
outlined a large-scale spam campaign on the basis of our FiTM attacks, whereas custom applica-
tions are injected into hijacked user profiles. A number of sources could be used to eavesdrop on
social networking sessions and we performed measurements on public WiFi access points and
an experimental Tor exit node. Our results suggested that finding possible FiTM attack seeds
for spam campaigns is cheap regarding time and hardware resources. We furthermore showed
on the basis of a simulation that a large-scale spam campaign via FiTM attacks would have a
severe impact. We discussed the limited protection strategies available against our attack and
emphasized that social networking providers have to ultimately protect their users against FiTM
attacks by securing all user communication with TLS per default.
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7.2 Comparison with Related Work

This section discusses our major findings with regard to the state-of-the-art.

7.2.1 Security and Privacy of Application Ecosystems

To the best of our knowledge, there has been no study on security and privacy issues of so-
cial networking apps of a scope comparable to our work. Wang et al. [188] conducted the
first measurement study regarding to data collection practices of third-party apps. Their study
analyzed the 200 most popular applications from nine different categories of Facebook’s dis-
continued application directory. Based on their collected dataset, their study showed the most
commonly requested permissions of 1,305 Facebook applications in December 2010. The Wall
Street Journal conducted an investigation into information gathered by the 100 most popular Fa-
cebook applications in May 2012 [10]. Their manual review of popular applications found that
applications often seek permission to access sensitive information. Two recent studies provide
additional insights into permission systems of third-party applications: Chia et al. [49] studied
the effectiveness of user-consent permission systems through a data collection of Facebook apps,
Chrome extensions and Android apps. They constructed a Facebook dataset with 27,029 apps by
web scraping a social media analytics platform’s list of Facebook applications. Chia et al. then
collected the requested permissions, popularity, and ratings of apps in their dataset. The authors
found that popularity and ratings are not reliable indicators of potential privacy risks associated
with third-party applications. Frank et al. [79] relied on Chia et al.’s dataset and used unsu-
pervised learning to detect permission request patterns. Their results showed that permission
patterns of low-reputation apps differed significantly from high-reputation apps. Krishnamurthy
and Wills discovered that online social networks commonly leak personally identifiable infor-
mation [123]. Their observation was confirmed by investigative journalism of the Wall Street
Journal, which found that both advertising and tracking products received social network user
identifiers [165, 166]. In May 2011, Symantec also found that third-party applications leaked
OAuth tokens to third parties [174] due to a now deprecated authentication scheme of Face-
book. Our AppInspect performs a fully automated analysis of requested permissions, informa-
tion leaks, as well as the application hosting infrastructures. Previous research either focused
exclusively on requested permissions or was limited to manually verifying a small number of
applications.

7.2.2 Digital Forensics

Numerous forensic frameworks have been proposed in recent years. However, none of them
were designed specifically to extract information from social networks. To the best of our know-
ledge, no other publication has examined the impact of a hybrid API and crawler based approach
to digital forensics in social networks. Datar and Mislan discussed OSN cyber crime but did not
propose any methods to analyze these crimes [58]. Even though social networks are not per-se
part of the cloud computing paradigm, the area of cloud forensics poses some related challen-
ges as these service operators rely on private clouds. Specifically, the unknown location of data
centers [175], and the difficulty to obtain access to forensic data sources without trusting a third
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party [26], as well as data provenance [130]. To the best of our knowledge there do not exist any
tools for extracting complete OSN account information. Pyflag [53] is a modular network foren-
sic framework built to analyze network dumps. Among other features it is able to rebuild HTML
pages from packets, allowing the examiner to view the webpages, even if they used AJAX or
other dynamic techniques for representation. Xplico [196] is an Internet traffic decoder which
can retrieve Facebook chat conversations from network dumps. In relation to our digital image
forensics module a recent approach is PhotoDNA [134], which is a program to detect known and
explicitly illegal pictures based on calculated signatures. However, it is only available to law en-
forcement agencies. Similar to signature-based antivirus software, a trusted party calculates the
signatures for illicit pictures which in turn is then compared with the signatures of pictures on
webpages, data archives, or pictures from forensic hard drive examinations. In [116] charac-
teristics of embedded thumbnails are used to authenticate the source of a picture. While both
approaches work similar to our module, they have not been designed or employed to compare
digital images from social networks with pictures from a suspect’s hard drive.

7.2.3 Impact of Session-Hijacking Attacks

The missing support for communication security was first brought up by Jones and Soltren [112],
who discovered that all communication with the early version of Facebook was performed in
plain text. We were amongst the first researchers to stress that, due to the popularity of OSNs,
unencrypted user session can be observed at virtually any Internet access point [103, 104]. In
addition to our publications, the risk of OSN session-hijacking gained public attention with
the development and availability of easy-to-use attack tools, such as Firesheep [43], and Face-
niff [149]. Our FiTM attack uses session-hijacking to exploit two previously published attacks,
namely social phishing [110] and context-aware spam [38]. Jagatic et al. [110] relied on simple
webcrawling to gather initial user information. In comparison to their outlined approach, our
attack gathers more detailed context information, through injecting third-party applications.

7.3 Future Work and Open Issues

We are currently improving the stability and functionality of our AppInspect framework. Our
current in-depth application analysis is limited to a small subsample and we therefore plan to
expand our analyses, and provide periodically refreshed data sets online1. We also plan to release
an updated version of our open-source social snapshot tool2, which aims to improve the user-
friendliness of our proof of concept implementation. Furthermore, we are working on a storage
backend to properly archive social snapshots, and to aid their forensic analysis. Furthermore,
we are developing a custom Gephi plugin for visualizing social snapshots.

The current security and privacy shortcomings of popular OSNs result in a number of open
research questions. Hence, we plan to conduct further research on secure alternatives to centra-
lized OSNs.

1AppInspect datasets http://ai.nysos.net
2Social Snapshot Tool https://github.com/markushuber/social-snapshot-tool
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