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Abstract

The research and development of novel fluids for high-efficient absorption heat pump applica-
tions require a detailed analysis of microscopic liquid flows. For this purpose, a Single Aperture
Defocusing Micro Particle Tracking Velocimetry system has been implemented within the scope
of this work. Due to the lack of commercial software for the considered application, an image
processing software is developed which computes spatially resolved velocity data by means of
flow-traced particles in recorded image sequences. As the particle position along the optical axis
determines its shape in the image, the application of a particle matching algorithm is required
for a full, three-dimensional characterization of the flow.

The method introduced for particle detection is based on a modified Circular Hough Trans-
form operating on the binary edge map of a particle image denoised with the aid of a nonlinear
diffusion filter. This approach permits the detection of partially overlapping particles and is ro-
bust to variations in particle shape, image contrast and noise. Furthermore, a matching technique
using normalized radial intensity profiles is developed and a tracking algorithm is presented
which is customized for planar flows and able to compensate for potentially imprecise matching
results.

The evaluation shows, that the matching technique proposed achieves a considerably in-
creased accuracy along with a reduction in computation time in comparison to conventional
cross-correlation based matching methods. Moreover, the particle detection method as well
as the particle tracking method individually perform almost error-free. In total, promising re-
sults on manually annotated experimental data as well as automatically generated synthetic data
demonstrate the applicability of the software.
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Kurzfassung

Das Verhalten mikroskopisch dünner Fallfilme spielt eine wichtige Rolle in der Erforschung
und Entwicklung neuartiger Flüssigkeiten für den Einsatz in modernen, hocheffizienten Ab-
sorptionswärmepumpen. Für die detaillierte Erfassung der räumlich aufgelösten Strömungsge-
schwindigkeit wurde im Rahmen dieser Arbeit ein Single Aperture Defocusing Micro Particle
Tracking Velocimetry System installiert. Dabei werden lokale Geschwindigkeitsdaten mit Hil-
fe von Mikropartikeln, die in aufgenommenen Bildsequenzen verfolgt werden, berechnet. Da
sich die Tiefenposition der Partikel im Film in ihrer Form im Bild widerspiegelt, ist die Ent-
wicklung eines Matching-Algorithmus zur vollständigen Beschreibung des dreidimensionalen
Systems notwendig.

Die in dieser Arbeit beschriebene Bildverarbeitungssoftware wertet die Aufnahmen des Sys-
tems aus. Zunächst werden die Bilder durch Anwendung eines nichtlinearen Diffusionsfilters
entrauscht. Anschließend werden die Partikel durch eine modifizierte Circular Hough Trans-
form, die sich auf ein binäres Kantenbild stützt, detektiert. Dieser Ansatz ermöglicht auch die
Erfassung von (teilweise) überlappenden Teilchen im Bild und ist robust gegenüber Abweichun-
gen in Partikelform, Bildkontrast und Rauschen. Der vorgestellte Matching-Algorithmus basiert
auf der Beschreibung der Partikel durch normalisierte, radiale Helligkeitsprofile und ist, wie die
Auswertung beweist, präziser und schneller als konventionelle Kreuzkorrelationsmethoden. Die
Verknüpfungen der Teilchen zwischen zwei Frames werden durch einen Tracking-Algorithmus
berechnet, der speziell auf den vorliegenden Fall eines ebenen Flusses zugeschnitten ist und
eventuelle Ungenauigkeiten im Matching ausgleichen kann.

Eine ausführliche Evaluierung der vorgeschlagenen Methode anhand eines manuell anno-
tierten, experimentellen Datensatzes sowie eines automatisch generierten, synthetischen Daten-
satzes beweist die erfolgreiche Einsetzbarkeit der entwickelten Software.
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CHAPTER 1
Introduction

“Fluid mechanics is that discipline within the broad field of applied mechanics that is concerned
with the behavior of liquids and gases at rest or in motion” [47]. As listed by [47], the inves-
tigation of fluid mechanics has concerned scientists throughout history: from early writings of
Archimedes (287-212 B.C.), who first expressed the principles of hydrostatics and flotation, to
contributions associated with famous names such as Newton, Euler, Navier and Stokes up to
the pioneering work of Ludwig Prandtl, a German professor in the early twentieth century, who
is “generally considered to be the father of present-day fluid mechanics” [47]. The task of
determining the velocity fields of liquid flows, however, is still challenging to this day [61, 63].

Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) are closely re-
lated optical methods for visualizing velocity fields in liquid and gas flows [61]. The principal
strategy of “classical” PIV [3, 61] is as follows:

Firstly, tiny spherical tracer particles (“seeding particles”), which are assumed to follow the
stream lines without influencing the local flow velocity, are added to the flow. In the second
step, a 2-dimensional region of interest (“light sheet”) is illuminated by a coherent light source.
Finally, the scattered light by the particles is recorded on a camera, positioned such that the light
sheet is located near to its focal plane. The velocity field of the flow in the light sheet is subse-
quently deduced with the aid of the particle displacements and the knowledge of time between
the two frames. By repeatedly relocating the light sheet along the optical axis, the velocity field
of a 3-dimensional interrogation volume can be determined. However, all particular velocity
components are 2-dimensional as solely motions within the light sheets are captured. Figure 1.1
demonstrates this procedure.

PIV and PTV differ solely by the strategy how the seeding particle displacements are cal-
culated. In the case of PTV, the corresponding particles between two consecutive frames are
associated and tracked, whereas PIV uses a statistical evaluation based on cross-correlation
techniques. If a “medium” particle density is provided in the image, i.e. single particles can
be distinguished while “it is no longer possible to identify image pairs by visual inspection of
the recording” [61], PIV is applied. For “low” particle densities, PTV is the preferred method,
while in the case of “high” particle density, where individual particles cannot be identified any
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Figure 1.1: Experimental arrangement for a PIV measurement. Figure taken from [61].

Figure 1.2: Three modes of particle image density: (a) low (PTV), (b) medium (PIV), (c) high
(LSV) image density. Figure taken from [61].

more, so called Laser Speckle Velocimetry (LSV) is applied [4, 61]. In Figure 1.2, examples of
the three particle image density modes (low, medium, high) are shown. Due to this close relation
of PIV and PTV, for the rest of this chapter, if PTV is not explicitly mentioned, the term “PIV”
shall represent both PIV and/or PTV.

The choice of size and material of the seeding particles is influenced by different physical
conditions, e.g. fluid density and viscosity. For a detailed description of the method of selection,
we refer to [4] and [61].
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The main advantage of PIV methods is their non-intrusivity [63], i.e. the flow is not disturbed
by the measurement. Additionally, “aside from Doppler Global Velocimetry [...], which is a new
technique particularly appropriate for medium to high-speed air flows, and Molecular Tagging
Velocimetry [...] all other techniques for velocity measurements only allow the measurement of
the velocity of the flow at a single point” [61] whereas PIV results provide global flow velocity
information.

When dealing with flows where the spatial scale of the fluid motion is approximately in the
range of

10−4 to 10−7 m,

the so-called µPIV (or micro-PIV) measurement technique is applied [84]. The basic concept of
µPIV coincides with the PIV approach, whereas the small length scales constitute “considerably
different optical and mechanical constraints” [84]. Therefore, µPIV is regarded as a separate
technique, which - since its first introduction by Santiago et al. in 1998 [61, 64] - has become
a standard measurement technique for the investigation of micro-scale flows [59]. According
to [61], there are three major differences which distinguish µPIV from macroscopic PIV:

• the seeding particles are small compared to the wavelength of the illuminating light,

• the seeding particles are small enough that the effects of Brownian motion must be con-
sidered,

• the illumination source is typically not a light sheet but rather an illuminated volume of
the flow due to limited optical access,

whereby volume illumination depicts the fundamental difference [42]. This implicates the re-
quirement of a different approach since the 3-dimensional position information of the particles
is not constituted by the location of a light sheet but rather has to be identified in another manner.
Furthermore, the standard PIV method assumes a planar flow and is not capable of computing
the out-of-plane velocity component which can lead to substantial errors [61]. Hence, advanced,
existing PIV and newly developed µPIV techniques have recently been presented and assessed
with respect to a successful application concerning microscale flows [40, 61, 84, 85]. In the
following, six common techniques are summarized according to their description in [40,84,85]:

• Standard µPIV extracts and processes particles from a measurement plane, similar to the
previously described standard macroscopic PIV approach. The difference is that in the
microscopic framework, the measurement plane - the focal plane of the camera - is distin-
guished by characteristics of the optical system rather than by illumination. As pointed out
by Wereley and Meinhart [84], this is made possible on account of the “sharply defined
objective planes” of microscopic objective lenses, enabling particles to transition “quickly
from being in focus to being out of focus”. As with macroscopic PIV, a (3-dimensional)
interrogation area is scanned by altering the position of the optics and a 2-component
velocity field is constructed (3D-2C method).

3



Figure 1.3: Particle images acquired using (a) standard imaging and (b) confocal imaging. Fig-
ure taken from [84].

(a) Configuration of Stereoscopic µPIV using
two cameras.

(b) Configuration of Digital Holographic µPIV
and typical reconstructed holographic image
with five highlighted particles.

Figure 1.4: Two different µPIV variants. Both figures taken from [85].

• Confocal µPIV applies the technique of focusing the illumination and the recording optics
on a single coincidental spot. As a result, the image plane has to be scanned point by point
in order to acquire one image. In return, interfering background light from out-of-focus
images is reduced and the spatial resolution along the optical axis is increased. Otherwise,
this method is identical to the standard approach. Figure 1.3 demonstrates the superior
image contrast of this technique.

• Stereoscopic µPIV uses multiple cameras to display the same interrogation area from
different viewing angles, thus allowing the reconstruction of the 3-component velocity
field, as indicated in Figure 1.4(a). The depth of the measurement volume, however, is
“restricted to a relatively small depth-of-focus region which is determined by the objective
lens” [40]. Therefore, Stereoscopic µPIV is generally referred to as a 2D-3C method
[40, 61, 84, 85].

• Digital Holographic µPIV: A hologram image is generated by the interference pattern
that is created by the scattered light by the particles and the unaffected laser beam. Both
amplitude and phase information of the objects are saved instead of traditional intensity
data. The digital hologram can be numerically reconstructed and 3D particle information
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Figure 1.5: (a) Defocusing concept using a three-hole-aperture mask, (b) Experimentally
recorded particle images. Figure taken from [85].

is obtained. The application of a 3D tracking algorithm yields the 3-component velocity
field (3D-3C). Figure 1.4(b) shows a holographic image acquired by this method as well
as its schematic configuration.

• Defocusing µPIV: In literature, two distinct defocusing techniques are mentioned [40,84,
85]. The first method uses a multi-hole aperture mask on a single camera recording the
frames. Figure 1.5 indicates the scenario of a three-hole aperture where the size and orien-
tation of the triangular particle image pattern provide information on a particle’s distance
to the focal plane.
The second defocusing method is applied to single-hole aperture imaging systems. The
3-dimensional particle position is encoded in the characteristic structure of defocused par-
ticle images. As will be motivated at the beginning of Section 1.1.1, this approach, also
applied by Paschke et al. [56] and Park and Kihm [54], is followed in this thesis.

Table 1.1 gives an overview of these µPIV methods. The first column contains the method’s
name, Column 2 states the dimension of the image field (i.e. if an interrogation plane or volume
is treated) and Column 3 indicates the number of components of the calculated velocity vectors
(i.e. if the particle velocities are restricted to a plane). In the last column, the authors and the
year of publication of the first successful application of the method in the field of microfluidics
are listed.

This chapter will first give the motivation for the thesis, followed by the scope of discussion
where further physical background is elucidated. In the subsequent two sections, the objective
and the main contribution of this thesis are illustrated. Section 1.2 provides a summary of the
results and an outline of the thesis concludes this chapter.
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Table 1.1: Overview of advanced µPIV techniques.

Method IDa VCb Original Source

“Standard” µPIV 3D 2C Santiago et al. [64] in 1998
Confocal µPIV 3D 2C Park et al. in 2004
Stereoscopic µPIV 2D 3C Lindken et al. in 2006
Holographic µPIV 3D 3C Satake et al. in 2005
Multi-hole Aperture Defocusing µPIV 3D 3C Yoon and Kim [88] in 2006
Single Aperture Defocusing µPIV 3D 3C Park and Kihm [54] in 2006
a Image Dimension
b Velocity Components

1.1 Motivation

This thesis is part of a project realized in cooperation of the Austrian Institute of Technology
(AIT) with the German chemical company Evonik. One main aim of the project is the develop-
ment of a Single Aperture Defocusing µPTV system in order to analyze the efficiency of falling
film absorbers.

Due to their high heat and mass transfer rates, falling films are used in energy and pro-
cess technology for example for heating, cooling, evaporation and condensation purposes [6].
Common devices using the falling film technology are falling film evaporators and heat exchang-
ers [60]. Moreover, the range of application includes the chemical industry, the food industry,
the paper industry and refrigeration technology [6].

At the AIT, falling films are primarily applied in the field of absorption heat pumps. Consid-
ering the development of more efficient devices, there is an emphasis on the research, develop-
ment and optimization of novel fluids in use (the so-called working pairs) in order to replace the
currently conventional working pairs LiBr−H2O (Lithium-Bromide and Water) and H2O−NH3
(Water and Ammoniac) [68]. The reasons for this are their detrimental characteristics, such
as corrosivity (LiBr−H2O and H2O−NH3), toxicity (H2O−NH3) and risk of crystallization
(LiBr−H2O).

The company Evonik is in a worldwide leading position regarding the development and in-
vestigation of new working pairs for absorption heat pumps [78] that include hyperbranched
polymeres, ionic liquids and water. As such fluids do not possess the above-mentioned disad-
vantages, they constitute potential replacements for the working pairs in use, similar heat and
mass transfer rates provided. Since heat and mass transfer are, inter alia, influenced by the local
flow velocity [66], it is required to examine the velocity field in order to acquire information
about the suitability of the liquid for an application in the field of absorption heat pumps.

1.1.1 Scope of Discussion

A film thickness in the range of approximately 400 to 600µm is expected for the given applica-
tion and therefore, the installation of a µPIV system is required. In order not to omit potential
velocity components, the implementation of a 3C technique is necessary, cf. Table 1.1.
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(a) Setup for reference image extraction. (b) 30 experimentally obtained reference images, or-
dered by increasing distance to backplate, row-wise
from left to right. The focused particle is denoted by
“F”. Gray values are inverted and the contrast is artifi-
cially enhanced.

Figure 1.6: Reference image measurement.

At the time of the draft of this work, the experiments have been conducted on liquid flows
under atmospheric conditions. In further consequence, however, it is desired to investigate flows
inside specific devices under vacuum conditions. In this context, the visual accessibility is con-
strained, hence disqualifying the Stereoscopic µPIV technique where the installation of multiple
cameras is required. As indicated in Figure 1.4(b), the non-transparency of the backplate ad-
ditionally complicates the application of holographic methods. Apparently, the implementation
of a Defocusing µPIV technique represents the superior choice for the existing situation. Since
multiple apertures involve the segmentation problem of overlapping particle patterns [85], the
decision has been taken in favor of the Single Aperture Defocusing µPIV method. An exper-
imental setup was installed at the AIT, a detailed description of which is provided below (see
Figure 1.8).

The chosen Single Aperture Defocusing µPIV technique requires the classification of differ-
ently shaped particles. In order to facilitate the particle recognition process, a comparatively low
density of seeding particles in the investigated liquid is established (resulting in approximately
60-100 particles per image). The velocity calculations therefore are conducted by means of a
tracking system, i.e. µPTV.

The essence of the proposed method is to compare the detected particles to reference im-
ages pre-recorded at variable distances. The standard reference image measurement process is
executed as follows (setup shown in Figure 1.6(a)): Initially, (at least) one particle is placed in
a drop of the investigated liquid and the camera is positioned such that the designated particle
is located in its focal plane. After recording the particle, the optical system is repeatedly shifted
by 20µm along the optical axis (in both directions) in order to obtain multiple reference images.
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(a) Particle images studied in [86]. Particle diameter: 1µm, shift from focus: z=-30, -20, -10,
0, 10, 20, 30µm respectively, 20× objective lens. Image taken from [86].

(b) Particle images studied in [59]. Particle diameter:
3µm, shift from focus denoted as z, 60× water immer-
sion lens. Image taken from [85].

Figure 1.7: Reference particles from different applications in literature.

Particles near to the focal plane are recorded as small, bright spots on the image, while particles
behind the focal plane seem to grow a diffuse corona and particles closer to the optical system
adopt a larger, annular shape. Figure 1.6(b) displays the results of a reference image compilation
with 13 camera shifts towards the particle and 16 shifts away from it, respectively. Starting from
the top left corner, the recorded particles are shown row by row in ascending order of distance
to the optical system. The second particle from the left in the third row is situated in the camera
focus.

As stated by [59], the “large number of microscope and µPIV system configurations (e.g.,
numerical aperture, magnification, Fresnel number, particle size, objective immersion medium,
etc) makes a general analysis of the [...] pattern produced by a spherical seed particle on the
image plane cumbersome”. Figure 1.7 shows reference images originating in different optical
setups.

Rings in the defocused imaging plane can be caused by both diffraction and spherical lens
aberration, as cited by Wu et al. [86]. For that matter, they [86] investigated the contribution of
those optical phenomena to the image both experimentally and numerically in a similar setup. It
is demonstrated that spherical lens aberration is the decisive factor for the characteristic particle
shapes.

Ultimately, the actual location of a particle is determined by the reference image with the
highest congruence. In the papers by Park and Kihm [54] and Peterson et al. [59], the focal
plane is placed behind the flow containing the particles. Out-of-focus particles therefore are
ring-shaped exclusively and allow the characterization by the radius of the outermost ring. It
is evident from Figure 1.6 and 1.7 that the Signal-to-Noise Ratio (SNR) of reference images,
a measure of signal strength relative to background noise, decreases with increasing distance
to focus. Therefore, the positioning of the optical system such that the focal plane is located
approximately in the middle of the flow, as implemented by Paschke et al. [56], yields an exten-
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Figure 1.8: Experimental setup: (1) long distance microscope installed on CCD camera, (2)
optical band pass filter, (3) laser, (4) backplate of falling film, (5) tube pump.

sion of the examined flow volume. Due to the distinguished shape of behind-the-focus particles,
a different matching technique is required. In [56], a cross-correlation based approach is used
which also is adopted and evaluated in this work. Alternatively, an algorithm based on radial
intensity profiles is proposed in Section 3.3.2.

The considered µPTV system, as shown in Figure 1.8, consists of the following components:

• Laser: DualPower 200-15. Laser medium: Nd:YAG, Beam diameter: 6.5 mm, Repetition
rate: max. 15 Hz, Energy: max. 200 mJ per pulse, Wavelength: 532 nm.

• Seeding particles: Material: melamine formaldehyde (MF), Diameter: 10.2µm (standard
deviation: 0.17µm), Fluorescent dye: Rhodamine B.

• Optical system: Consists of

– Digital CCD Camera: Hamamatsu Photonics C9300-501. Resolution: 2048x2048 pixels.

– Long distance microscope: InfiniMax MX-6. Working distance: 66 mm, Magnifi-
cation: 2.90, Depth of field: 24µm, Numerical aperture: 0.15, Resolution: 22µm,
Field of view: 2.2 mm.

– Filter: Optical band pass filter. Transmitted wavelength: 580 nm. Subsequent to
the excitation of the fluorescent seeding particles by the laser (at 532 nm), the wave-
length of the emitted light changes [61]. With the aid of the band pass filter, solely
the relevant wavelength is transmitted and the influence of perturbing factors such
as background light and reflections from the plate is minimized such that (almost)
exclusively the particles are visible in the image.
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• Metal backplate

• Pump: The pump ensures that the backplate is constantly wetted as uniformly as possible.

• Liquids: The experiments have been conducted with the following liquids:

– Soap water

– A LiBr/H2O solution

– A recently developed ionic liquid, called “LAYER-1”, diluted with water

1.1.2 Objective

The aim of this thesis is the development and the implementation of a software tool which is
capable of extracting the spatially resolved particle velocities with the use of the µPTV system
existing at the AIT. In order to ensure comparability of the results to existing fluid motion the-
ories (e.g. Nusselt’s Film Theory [49]) and therefore guarantee a practically relevant validation
of the software, the tracking algorithm initially has been designed to solely detect planar move-
ment. Due to the low Reynolds numbers of the considered falling films, this assumption agrees
with the physical properties of laminar flows.

The goal is to extract film velocity statistics that are significant and allow an accurate eval-
uation of the investigated fluid. For this purpose, over 100 image pairs are evaluated in each
measurement and for each considered layer, mean and median particle velocity are calculated
(see Chapter 4).

Prospectively, the software will have to deal with various types of experimental setups:

• different liquids with distinct consequences for the optical system (e.g. refractive index,
fluorescent effects of the liquid itself)

• different backplate structures with distinct consequences for the optical system (microchan-
nels in the plate can leave artifacts on the images)

Furthermore, illumination changes within two images of a subsequent recording appear. Poten-
tial reasons for this include the superposition of both laser pulses and an imperfect justification
of both lasers. Though the laser energy can be manually adjusted as compensation, in practice it
has been found that perfect brightness alignment of both recordings of an image pair is unlikely
to achieve.

Therefore, in conclusion, the algorithms used are required to be robust and adaptable towards
fluctuations in image brightness, contrast and noise in the raw data.

1.1.3 Contribution

Within the scope of this thesis, automatic particle detection algorithms as well as particle track-
ing algorithms are studied with regard to their application in a µPTV framework. In particular,
an advanced shape detection method customized for images acquired by the Single Aperture
Defocusing µPTV technique is introduced. As the number of successfully evaluated particles
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Figure 1.9: Particles from different µPTV measurements. Left: Particle from reference image,
Middle and Right: Particles from (distinct) raw images. Gray values inverted.

per image pair is desired to be maximal, the approach not only takes separated particles into
account but also permits the dissection of particle clusters. Furthermore, a particle matching
method independent from image contrast has been developed and physical properties of the flow
are exploited by the particle tracking algorithm presented.

Employing a simplified representation of the rotationally symmetrical optical system in use,
Wu et al. verified the theoretical circular particle symmetry in numerical simulations [86]. In
the practical situation, however, this symmetry can be disturbed by various impacts such as
an uneven gas-liquid interface, asymmetric aberrations of the optical system and camera noise.
Figure 1.9 shows examples of non circular symmetric particles extracted from experimental
µPTV measurements and indicates that the ocurring particle structures can be distorted. In
addition, different contrast conditions are illustrated. Thorough investigation of the available
raw image data suggests that the shape distortions of particles belonging to the same layer are
(almost) equivalent except for rotations, cf. Figure 1.9. Therefore, the features used in the
matching algorithm developed are chosen to be rotationally invariant.

1.2 Results

The methodology introduced in this thesis is evaluated by means of manually annotated exper-
imental data as well as automatically generated synthetic data. For both datasets, the matching
algorithm proposed is compared to standard methods based on cross-correlation. Furthermore,
the particle linking process (on image pairs) is evaluated separately from the particle detection
algorithm (on single images). The performance metrics employed to quantify their accuracy are
precision, recall and a weighed mean of these two values, the F-score.

For the experimental dataset, the algorithm proposed reaches an F-score of 0.907 for particle
detection and 0.901 for the whole µPTV algorithm. In contrast, the F-score for the standard
cross-correlation approach is 0.855 for particle detection and 0.853 for the whole algorithm.

Naturally, the results for the synthetic dataset are superior. In addition, the discrepancy
between both techniques is minimal: for the algorithm proposed, F-scores of 0.986 (particle
detection) and 0.985 (whole algorithm) are achieved while the corresponding values for the
cross-correlation technique are 0.982 and 0.977, respectively.
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Furthermore, the average computation time of the whole µPTV algorithm is more than twice
as short with the new particle matching method.

1.3 Outline

This chapter depicted the purpose and motivation of the thesis. The remainder of the thesis is
structured as follows:

Chapter 2 - State of the Art provides an overview of existing methods used in different auto-
matic particle detection and tracking applications. According to the methodology of the
algorithm developed, first, image pre-processing techniques are discussed. Then, tradi-
tional approaches for particle detection and matching are outlined and classified into two
different sorts of algorithms. Finally, common two-frame tracking schemes are reviewed.

Chapter 3 - Methodology gives background information about existing methods employed in
this thesis. For image pre-processing, the field of (nonlinear) diffusion filters is intro-
duced and theoretical and numerical properties are analyzed. As for the particle detection
process, a summary of the Canny edge detector is provided and the concepts of different
Hough Transforms are described in detail. Ultimately, the particle matching section out-
lines the Normalized Cross-Correlation coefficient while the fourth section of this chapter
deals with Linear and Integer Programming problems. Each section concludes with an ex-
planation of the proposed adaptations to the described method(s) for the use in the current
µPTV application.

Chapter 4 - Evaluation and Results presents the experiments based on an experimental and a
synthetic µPTV dataset, respectively. Subsequent to the introduction of the performance
metrics and the methods compared, the evaluation and analysis for each dataset are listed.

Chapter 5 - Conclusion and Outlook concludes this thesis and gives an outlook to potential
improvements and extensions of the methods proposed.
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CHAPTER 2
State of the Art

In this chapter, state-of-the-art methods for the main components of the software tool developed
are reviewed: image pre-processing, particle detection and matching as well as particle tracking
in gray-scale images. In conventional (micro-)PIV/PTV applications, the shape of the relevant
particles is not subject to change [61]. Due to the special characteristics of the Single Aperture
Defocusing µPTV technique applied in the current project, the successful recognition and clas-
sification of various particles types is crucial, as outlined in Chapter 1. Therefore, the methods
discussed in the following not only refer to pertinent PIV-related literature, but rather originate
in different technical applications where particle detection is required. The diversity of particle
shapes and sizes occurring in the reviewed sources is demonstrated in Figure 2.1(a)-(d).

In this chapter, first an overview of image pre-processing approaches in particle detection
applications is given.

In Section 2.2, selected methods for automatic particle detection applied in diverse technical
domains, are characterized. In addition, their potential contributions to a successful particle
matching are contemplated where possible.

The final component of the algorithm developed is to associate detected particles in two
frames. Therefore, a short summary of established PTV/µPTV tracking algorithms is presented
in Section 2.3.

Table 2.1 lists the sources surveyed in this chapter. For each referenced work, it is speci-
fied where methods concerning parts of the algorithm developed (pre-processing, particle detec-
tion/matching and particle tracking) are explicitly described. Furthermore, the application field
of the source is given.

2.1 Image Pre-Processing Methods

In literature, miscellaneous pre-processing strategies are applied concerning automatic particle
detection. In the following, a selection of commonly performed approaches is listed. The classi-
fication into four categories, according to the size of the pixel neighborhood that is used for the
calculation of a pixel’s new brightness value, has been adopted from [73]:

13



(a) (b)

(c) (d)

(e) (f)

Figure 2.1: Comparison of processed images: (a) Particle image from dataset used in [74,90,91],
(b) Particle image from [44], (c) Particle image from [54], (d) Particle image from [30], (e)
Experiment in LAYER-1 liquid, (f) Experiment in soap water.
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Table 2.1: Overview of surveyed sources with respect to potential contribution to current appli-
cation.

Source(s) PPa PD/PMb PTc Goal

[54, 56, 59] 4 4 4 Single Aperture Defocused µPTV
[4, 61] 4 4 6 PIV textbook
[1, 2, 33, 45, 48, 70, 74, 89–91] 4 4 6 Cryo-Electron Microscopy
[44] 4 4 6 Automatic drop detection
[30, 38] 4 4 6 Asbestos detection analysis
[65] 4 4 4 Tracking Algorithm in cell biology
[63] 6 6 4 Variational Fluid Motion Estimation
[31, 50, 53, 57, 75] 6 6 4 Tracking Algorithms for PTV

a Pre-Processing
b Particle Detection/Matching
c Particle Tracking

1. Pixel brightness transformations compute each pixel’s new brightness based on a given
transformation of the original brightness values.

2. Geometric transformations map each pixel to a new position, e.g. rotations, translations
and scalings, including brightness interpolations.

3. Local pre-processing methods use a (small) neighborhood of each pixel to create its new
brightness value.

4. Image restoration processes the nature of the whole image for the purpose of a recon-
struction of the original image.

Paschke et. al [56] enhance the image contrast in their µPTV application with the aid of
histogram stretchs, a histogram equalization and a Gamma correction (all class 1). Other pre-
processing methods applied in PIV/PTV systems include background removal [4], either by
subtracting a previously recorded background image (class 1), or a uniform-/median-/minimum
filtered image (class 3). In general, the majority of publications addressing automatic particle
detection listed in Table 2.1 use a type of background subtraction prior to the detection algorithm.

Adiga et al. [1,2] additionally propose the use of a nonlinear filter (class 4) which is based on
the solution of a partial differential equation and “has been proved to be effective in achieving the
desired reduction in noise” [2]. A similar, further developed filter using the so-called Diffusion
Tensor (DT) has recently been applied by Joubert et al. [33]. This method originates in the
famous Perona-Malik model [58] and is closely related to the filter of Catté, Lions, Morel and
Coll (CLMC) [14]. Extensive theoretical and numerical investigation concerning the last two
mentioned filters has been conducted by Weickert et al. [80, 81, 83].

In the context of diffusion filters (further described in Section 3.1), the smoothing of an
image by convolution with a 2-dimensional Gaussian (with variable parameter σ) represents the
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Figure 2.2: Evolution of an MRI slice under different diffusion filters. Top: Original image, Left
Column: Image evolution under LD filter, Middle Column: Image evolution under CLMC filter,
Right Column: Image evolution under DT filter. Images taken from [80].
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Linear Diffusion (LD) approach [80], see Section 3.1.1. Figure 2.2 displays different outcomes
in the processing of an MRI slice with the LD, CLMC and DT filter respectively. The top row
contains versions of the original raw image and the images below accrue from varying parameter
choices. It is apparent that the first method is inferior to the latter two and the parameter selection
process is crucial for the amount of structural information preserved in the image.

Other pre-processing techniques successfully applied in the literature listed in Table 2.1
include the self quotient image method where the raw image is pointwise divided by a Gaussian
smoothed version of itself [44] and Bayesian wavelet denoising algorithms [74].

2.2 Particle Detection and Particle Matching Methods

Manual particle selection becomes an exhausting task when dealing with hundreds of images.
Therefore, designing problem-fitted algorithms for automatic particle detection constitutes a
major challenge in those applications (cf. Table 2.1).

In the scope of Cryo-Electron Microscopy (Cryo-EM), Nicholson and Glaeser [48] give a
review of methods for automatic particle picking. The techniques presented are classified as
follows:

• Methods based on template matching

• Methods based on edge-detection

• Methods based on intensity comparisons

• Texture-based methods

• Methods based on neural networks

Another overview from this area of application is done by Zhu et al. [91] who present the results
of a program dedicated to the development of fully automated particle selection in the Cryo-
EM field. In this Multidisciplinary Workshop on Automatic Particle Selection for cryoEM, the
algorithms of 10 research groups were evaluated on a common dataset. The techniques are
grouped into two more general classes:

• Methods based on template matching (Class 1)

• Feature-based methods (Class 2)

Shortly summarized, algorithms belonging to Class 1 use generated template images of particles
for the detection process by applying a correlation technique while Class 2 methods extract
particle locations from an image by recognizing salient local or global features [91]. The latter
therefore potentially need an additional matching process if a further particle classification is
required. It should be noted that techniques can be considered as being “between” those two
classes [74]. In this context, Mallick et al. [45] and Sorzano et al. [74] introduced a third class
for their machine learning-based methods.
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(a) Detected area of asbestos particles. Images taken from [38].

(b) Identification of particles on a binarized µPTV image. Images taken
from [54].

Figure 2.3: Particle detection algorithms by (a) Kuba et al. [38] and (b) Park and Kihm [54].

The algorithm presented by Maass et al. [44] provides an example for a template matching
method (Class 1) in the field of automatic drop detection in multiphase systems. Drop locations
with a specific radius are extracted as local probability maxima in a cross-correlation image with
the sought-after structure.

Feature-based methods (Class 2) presented in [91] for instance apply efficient Hough Trans-
forms [90] or Voronoi Diagrams and distance transforms [89] for the detection of specific ge-
ometric shapes. Another Class 2 approach is the method developed by Short [70]: reference
objects are described by elementary properties such as the radius of gyration and intensity
sum/variance on circular sectors and concentric rings, respectively. Subsequently, the image
area is scanned with a moving square window and the congruence of the corresponding features
indicates the presence of a particle searched for.

Another learning-based approach where the features are trained by a random forest classifier
is studied by Joubert et al. [33].

In the field of asbestos detection analysis, microscope images of building material are exam-
ined for asbestos particles. Since their size, shape and color pattern are not a-priori known [38],
the goal is to automatically detect and count all occurring structures. Both reviewed tech-
niques [30,38] initially divide the image into smaller subregions (30×30 in [30], 10×10 in [38])
which are then classified into particle and background areas, either by clustering the RGB vari-
ance values [30] or by application of a One-Class Support Vector Machine on the gray-scale
histograms of the regions [38]. Naturally, the particle areas are refined in the end, e.g. by a
thresholding operation (see Figure 2.3(a)).

In their Single Aperture Defocused µPTV application, Park and Kihm [54] determine the
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flow velocity field over a 95µm diameter sphere inside a 100µm2 square channel. For the
detection of ring-shaped particles, the brightness values in the original image, as shown in Figure
2.1(c), initially are subject to adaptive thresholding. A location is then identified as a particle
center if the ratio of foreground pixels of the binarized image on a sampled, surrounding circle
exceeds a certain threshold. Figure 2.3(b) indicates this procedure.

In a similar way, Paschke et al. [56] implement binarization by performing Canny edge
detection. Subsequent to the calculation of particle center coordinates, matching with reference
images is performed by means of a cross-correlation approach.

2.3 Particle Tracking Methods

In this section, particle linking algorithms for the tracking application in PTV/µPTV images are
addressed. An extensive description of the classical PIV approach which determines discrete
flow velocity fields based on a statistical cross-correlation technique is provided in the PIV
textbooks by Adrian and Westerweel [4] and Raffel et al. [61]. Those methods do not involve
the extraction of particle coordinates but rather operate directly on gray-scale images.

Pereira et al. [57] state that in “conventional PTV, most methods use three or four consecutive
flow images (multi-frame methods) for accurate velocity measurements”, e.g. the algorithms
described in [26, 52]. However, since the laser in the current system (cf. Section 1.1.1) solely
allows two consecutive pulses per recording, a two-frame tracking algorithm is required. This
implies that, aside from theoretically estimated flow characteristics, no knowledge concerning
the expected particle motion is available from previous frames. Nevertheless, a cross-correlation
based technique can yield a rough estimate of the mean particle velocity between both images
[57].

A basic two-frame tracking scheme is the nearest neighbor method, which establishes links
between particles such that their distances in both frames are minimal. In literature, differ-
ent variations have been proposed, two of which are presented and evaluated by Pereira et
al. [57] with regard to the implementation in a 3D Defocusing PTV/µPTV application. In the
first method, originally presented by Labonté [39], a neural network acts in an iterative, self-
organizing manner as a “pre-sorting routine for the nearest neighbour method” [57], providing
a positive impact on the standard technique. Secondly, the so-called relaxation method, first
employed by Baek and Lee [10], postulates continuity in the velocity vector field by formulat-
ing the so-called quasi-rigidity condition: particles in a common neighborhood are subject to
similar displacements in the flow. According to this assumption, particle link probabilities are
computed and iteratively updated until convergence.

The evaluation of those two methods has been conducted on a specified synthetic 3D Burg-
ers’ vortex flow field, sampled on a total of Ncl = 5000 vectors, as shown in Figure 2.4(a). The
top image in Figure 2.4(b) displays the recovery ratio ηr = Mcl/Ncl, where Mcl denotes the
number of correctly tracked particle pairs, for the different investigated methods. The tracking
parameter Φ on the x-axis is inversely proportional to the time (and in further consequence, the
particle displacement) between both frames. Finally, the bottom image in Figure 2.4(b) shows
the mismatch rate ηm = Msl/Ml which represents the ratio of the number of incorrect linksMsl

divided by the number of overall identified links Ml.
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(a) Burgers’ vortex flow field. (b) Recovery ratio ηr and mismatch ratio ηm.

Figure 2.4: Evaluation of PTV tracking algorithms. Figures taken from [57].

Different alterations to the relaxation method have been proposed, as mentioned by Jia et al.
[31], who themselves very recently introduced two beneficial modifications for a 2D framework:
firstly, the identification of the neighborhood in the quasi-rigidity condition is based on the
Delaunay Tesselation of the set of particle positions. As a result, the calculation efficiency is
enhanced, especially for increasing particle numbers. Secondly, their bidirectional algorithm
developed enhances the computation of the no-match probability, thus improving the quality of
the particle pairing process.

Ruhnau [63] was the first to apply variational methods in a PIV/PTV framework. The whole
velocity field is estimated by the minimization of a functional composed of a local data term
and a global regularization term. While its results are shown to surpass the four-frame method
described in [26] and the classical relaxation method [10], its practical use is limited due to the
high computational cost [31].

In 1996, Dorigo et al. [20] introduced the ant colony optimization algorithm as a “viable
new approach to stochastic combinatorial optimization”. It is inspired by the behavior of a
group of ants determining the shortest path between a food source and their nest. According
to [50, 53], the method was first applied in the PTV particle association process by Takagi [75]
in 2007. In the last three years, the algorithm has been improved by Ohmi et al. [50] by adopting
a quasi-rigidity condition and extended by Panday et al. [53] for the use of image data acquired
by Stereoscopic PTV measurements.

As pointed out by [31, 50, 57], other common tracking approaches include the binary cross-
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correlation method [76] which is related to the classical PIV method and the application of
different cost functions [25, 36] and genetic algorithms, respectively [51, 69].

2.4 Summary

This chapter gave a review of state-of-the-art literature related to the main components needed in
a Defocusing µPTV software. First, pre-processing methods which improve the image quality
for the further processing steps are illustrated. There is no ambition to summarize the broad
range of existing image pre-processing techniques (for an overview, see the respective chap-
ter in [73]) since the approaches used in the literature discussed in this chapter (cf. Table 2.1)
are entirely sufficient for the application on µPTV recordings. Subsequently, different parti-
cle detection algorithms are discussed and two algorithm classification schemes are introduced.
Section 2.3 finally is focused on particle tracking methods which are actually implemented in 2-
or 3-dimensional PTV/µPTV applications.
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CHAPTER 3
Methodology

The Micro Particle Tracking Velocimetry approach presented in this work consists of four com-
ponents: image pre-processing, particle detection, particle matching and particle tracking. In
this chapter, the concepts of the basic algorithms used and the reasons and consequences of any
modifications applied are illustrated.

3.1 Step 1: Image Pre-Processing

The principal goal of image pre-processing is the minimization of any influences that obstruct
the qualitative and/or temporal performance of the subsequently applied algorithms. For the
current µPTV image data, this primarily involves the removal of camera noise and background
disturbances. The image background area (e.g. arising from reflections or adherent particles
on the backplate from previous measurements) is labeled on an empty recording of the scene
in the absence of fluid flow and ignored in the detection process. In addition, in order to create
contrast alignment between both recordings of a µPTV measurement, histogram matching is
performed. This is a simple routine where the cumulative image histograms of two images are
equalized [73]. For noise elimination, the nonlinear diffusion filter proposed by Catté, Lions,
Morel and Coll [14] is employed. Previously, similar techniques have been used to denoise
low-quality raw images in automatic particle detection applications by [1, 33].

This section introduces the concept of diffusion filters and in further consequence provides
insight into the most common variants presented in literature [14,58,80,81,83]. Crucial theoret-
ical results of the implemented method are presented in Section 3.1.2.2 while example images,
which demonstrate its actual performance on a µPTV dataset, are shown in Section 3.1.3.

For the sake of completeness and clarity, several notations occurring in the remaining course
of this work are specified.
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Definition 1. Let n ∈ N, Ω ⊂ Rn and 1 ≤ p <∞. Then we define the function spaces

C(Ω) := {f : Ω→ R | f continuous}
C∞(Ω) := {f : Ω→ R | f infinitely often continuously differentiable}

Lp(Ω) :=

{
f : Ω→ R |

∫
|f(x)|p dx <∞

}
L∞(Ω) := {f : Ω→ R | ess supΩ f <∞} where

ess supΩ f := inf {c > 0 | |f(x)| ≤ c for almost every x ∈ Ω} .

Moreover, unless stated otherwise, the norm of a vector x = (x1, . . . , xn)T denotes its l2-norm

‖x‖ := ‖x‖2 :=

√√√√ n∑
i=1

x2
i .

Apart from physics and engineering sciences, Partial Differential Equations (PDEs) have
been successfully applied in image processing and computer vision for image smoothing and
restoration purposes for over two decades [9, 80]. Diffusion filters represent a PDE-based ap-
proach used to enhance low-quality image data. Weickert [80] explains the term diffusion as
“a physical process that equilibrates concentration differences without creating or destroying
mass.” Mathematically, this is expressed by Fick’s law:

j = −D · ∇u. (3.1)

“This equation states that a concentration gradient∇u causes a flux j which aims to compensate
for this gradient” [80] while the diffusivity D, in general a positive definite symmetric matrix,
describes the relation between ∇u and j. The conservation of mass over time is characterized
by the continuity equation

ut + div j = 0, (3.2)

where ut := ∂u
∂t denotes the time derivative of u. By combining (3.1) and (3.2), the diffusion

equation

ut = div(D · ∇u) (3.3)

is derived. In the context of image processing, the values of the concentration u are identified
with the pixel brightness values of a gray-scale image. For the rest of this section, let Ω :=
(0, a1) × (0, a2) ⊂ R2 with a1, a2 > 0 be the rectangular domain of an image f , which is
described as a bounded, scalar function f ∈ L∞(Ω). Typical gray-scale pixel representations
are unsigned 8-bit integers (values between 0 and 255) and floating point (values between 0 and
1) [9]. A diffusion filtered image is then obtained by solving the diffusion equation (3.3) forward
in time until a fixed stopping time τ , with the original image f as initial condition at t = 0. As
will be motivated below, τ plays the role of a “scale parameter: larger values lead to simpler
image representations” [83].
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The classification of diffusion filters is based on the form of the diffusivity: ifD is depending
on the evolving image u itself, the filter is called nonlinear; otherwise we speak of a linear
filter [80]. All diffusion filter methods described in this work are designed for gray-value images.
It should be noted, however, that nonlinear diffusion filters have also been successfully extended
to vector-valued images such as RGB or multi- and hyperspectral images [21, 80, 82].

3.1.1 Linear diffusion filtering

This section is focused on the homogeneous, linear diffusion process, i.e. where the diffusivity
is constant over the whole image domain. Here, the scalar diffusivity D = 1 is considered.
Evans [24] shows that for f ∈ C(Rn) ∩ L∞(Rn), the resulting heat equation

ut = ∆u, on Rn × (0, T ),

u(x, 0) = f(x) on Rn,
(3.4)

possesses the solution

u(x, t) = (K√2t ∗ f)(x), (3.5)

where Kρ denotes the Gaussian with standard deviation ρ:

Kρ(x) :=
1

2πρ2
exp

(
−‖x‖

2

2ρ2

)
. (3.6)

Additionally, the uniqueness of the solution is ensured under the condition that solely functions
satisfying the growth estimate |u(x, t)| ≤ Aea‖x‖

2

(for some a,A > 0) are tolerated [24].
Moreover, due to Kρ ∈ C∞(Rn) and the differentiation property of the convolution operator,
the function u(·, t) is infinitely often differentiable for all positive t. As a consequence of (3.5),
linear diffusion filtering with stopping time τ is equivalent to the convolution with a Gaussian
with standard deviation ρ =

√
2τ .

In scale-space theory, an image f is represented as a one-parameter family {Ttf : t ≥ 0} of
gradually simplified (smoothed) versions of itself. This simplification property is expressed in
different axioms in literature [23,43,80]. Tt is denoted as the scale-space operator generating a
scale space. The family generated by

Tt := f 7→ Kt ∗ f

is called the Gaussian scale-space and is related to the solution to the heat equation described
in (3.5). It fulfils the desired axioms [23, 80] and represents the “historically first and best in-
vestigated scale-space” [80]. Convolution with Gaussian kernels represents an important class
of operators in the field of image processing, as it “can be used as basis to solve a large va-
riety of visual tasks, including feature detection, feature classification, stereo matching, motion
descriptors, shape cues, and image-based recognition”. [43].

A major drawback of linear diffusion filtering in the context of image pre-processing is the
fact that not only noise is smoothed but also information features such as edges are blurred [80].
Moreover, edges detected at a coarse scale can be dislocated with respect to their location at a
finer scale [80]. Those problems can be overcome by the use of a nonlinear diffusion filter.
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3.1.2 Nonlinear diffusion filtering

The basic idea of nonlinear diffusion filtering is to prevent the diffusion process from smoothing
across edges, where the “important” image information is stored. Edges are subjectively per-
ceived as image locations where the intensity function u changes abruptly [73]. The diffusivity
in (3.3) is therefore chosen to be dependent on the image gradient: D = D(∇u).

3.1.2.1 The Perona-Malik model

The first nonlinear diffusion approach was published by Perona and Malik [58] in 1990. In
their model, edge locations are indicated by high values of ‖∇u‖2. The diffusivity is given
by a positive, monotonically decreasing, scalar function D = g(‖∇u‖2), which satisfies the
conditions

g(0) = 1, lim
s→∞

g(s) = 0,

yielding the famous Perona-Malik equation

ut = div(g(‖∇u‖)∇u). (3.7)

The following diffusivity functions have been originally proposed [58, 83] (λ > 0):

g(s2) :=
1

1 + s2

λ2

, (3.8)

and (λ > 0, c = 3.315)

g(s2) :=

{
1 s2 = 0,

1− exp− c
(s/λ)8

s2 > 0.
(3.9)

In both variants, λ may be called a “contrast parameter” [83]: image regions where ‖∇u‖ < λ
are smoothed while ‖∇u‖ > λ indicates the presence of an edge which may even be enhanced
in the diffusion process [79].

Although the numerical results are described as “visually very impressive” [80], two prob-
lems emerge: firstly, evidence was found that the Perona-Malik process is theoretically ill-posed,
i.e. unstable with respect to perturbations of the initial image [80]. Secondly, large gradient mag-
nitudes in the original image can also be caused by noise which leads to the fact that the respec-
tive location is “misinterpreted” as an edge and therefore preserved instead of being smoothed.

These characteristics give rise to the following regularizing modification of (3.7).

3.1.2.2 The continuous CLMC equation

Catté, Lions, Morel and Coll [14] propose a spatial regularization by replacing the term g(‖∇u‖2)
by a Gaussian smoothed version g(‖∇uσ‖2) where

uσ = ũ ∗Kσ (3.10)
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with σ > 0 and ũ is an extension of u from Ω to R2 in order for the convolution to be well
defined. For this, the image is mirrored on its boundary which mathematically results in the
adoption of a homogeneous Neumann boundary condition. In conclusion, this leads to the prob-
lem

ut = div(g(‖∇uσ‖2)∇u) on Ω× (0, T ],

u(x, 0) = f(x) on Ω,

∂nu = 0 on ∂Ω× (0, T ],

(3.11)

where ∂nu denotes the normal derivative of u. Analogous to [83], (3.11) henceforth will be
called the CLMC equation. There exists a unique solution to (3.11) (in the distributional sense)
which is infinitely often differentiable on Ω×(0, T ) [14] and depends continuously on the initial
data [80]. In addition, Weickert [80] proves that the solution u(x, t) of (3.11) fulfils several scale-
space properties, thus generates its own nonlinear scale-space framework. In the following, the
principal results are listed.

Let Tt be the scale-space operator which maps an image f to the family of images created
by the nonlinear diffusion process described by the CLMC equation (3.11):

Ttf := u(·, t), t ≥ 0. (3.12)

Then the following scale-space properties hold:
Gray-level shift invariance: Let C ∈ R, then

Tt(f + C) = Tt(f) + C ∀t ≥ 0.

Conservation of average gray value: Let µ = 1
|Ω|
∫

Ω f(x)dx be the average gray level of
f , then

1

|Ω|

∫
Ω

(Ttf)(x)dx = µ ∀t ≥ 0.

Isometry invariance: Let R ∈ R2×2 be an orthogonal transformation and define Rf(x) :=
f(Rx), then

Tt(Rf) = R(Ttf) ∀t ≥ 0.

Extremum principle:

ess infΩ f ≤ Ttf(x) ≤ ess supΩ f ∀x ∈ Ω ∀t > 0

Nonenhancement of local extrema: Let u be the unique solution of (3.11), t0 > 0 and x0

a local extremum of u(·, t0) with nonvanishing Hessian, then

∂tu(x0, t0) <0 if x0 is a local maximum,

∂tu(x0, t0) >0 if x0 is a local minimum.
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Image simplification for increasing t: Let M be the image with constant gray value µ,
then

lim
t→∞
‖Ttf −M‖Lp(Ω) = 0 for p ∈ [1,∞).

Furthermore, the function

t 7→ ‖Ttf‖Lp(Ω) for p ∈ [2,∞)

is decreasing in t. As a consequence, the image energy ‖Ttf‖2L2(Ω) =
∫

Ω |u(x, t)|2 dx is reduced
by the progressing diffusion process. Therefore, Parseval’s theorem, which states that the L2-
norm of a square integrable function is equal to the L2-norm of its Fourier transform, indicates
that for t → ∞, low frequency components are dominating in the processed image Ttf . In
addition, the image entropy

t 7→ S[Ttf ] := −
∫

Ω
u(x, t) ln(u(x, t))dx if ess infΩ f > 0,

which represents a measure of uncertainty and missing information, is increasing in t [80].

3.1.2.3 The discrete CLMC equation

Due to the discrete nature of digital images, it is desirable that the numerical discretization of
(3.11), with respect to the spatial dimensions as well as the scale parameter t, fulfils similar
scale-space properties as the continuous framework listed above. In this context, Weickert [80]
established a discrete scale-space theory for a broad class of image filtering processes, as speci-
fied in Definition 2. In the following, the substantial results are sketched.

Instead of its “natural” characterization as a matrix B ∈ Rm×n, a discrete image is repre-
sented by a vector F ∈ RN , N = m · n whose elements fj , j ∈ J := {1, . . . , N} describe the
gray values at each pixel. For this purpose, consider the index transformation (see Figure 3.1):

(i, j) 7→

{
(i− 1)n+ j, i odd,
in+ 1− j, i even.

(3.13)

Definition 2 (The discrete filter class (Pd)). Let f ∈ RN . Calculate a sequence (u(k))k∈N0 of
processed versions of f by means of

u(0) = f,

u(k+1) = Q(u(k))u(k), ∀k ∈ N0,
(3.14)

where Q = (qij) has the following properties:

(D1) continuity in its argument: Q ∈ C(RN ,RN×N )

(D2) symmetry: qij(v) = qji(v) ∀i, j ∈ J, ∀v ∈ RN
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Figure 3.1: Image notation according to (3.13).

(D3) unit row sum:
∑N

j=1 qij(v) = 1 ∀i ∈ J,∀v ∈ RN

(D4) nonnegativity: qij(v) ≥ 0 ∀i, j ∈ J, ∀v ∈ RN

(D5) irreducibility for all v ∈ RN , i.e. for any i, j ∈ J there exist k0, . . . , kr ∈ J with k0 = i
and kr = j such that qkpkp+1 6= 0 for p = 0, . . . , r − 1

(D6) positiv diagonal: qii(v) > 0 ∀i ∈ J,∀v ∈ RN

The system (3.14) combined with the conditions (D1)-(D6) is referred to as filter class (Pd).

For each f ∈ RN , a filter associated to the class (Pd) creates a distinct sequence (u(k))k∈N0 .
In Theorem 1, the beneficial effects of such filters for the purpose of image pre-processing are
demonstrated.

Theorem 1. Let f ∈ RN , µ := 1
N

∑N
j=1 fj be the average grey level of f and (u(k))k∈N0

be a sequence of images fulfilling the requirements of the filter class (Pd). Then the following
statements hold:

(i) For every finite k, u(k) depends continuously on f .

(ii) Conservation of average gray value:

1

N

N∑
j=1

u
(k)
j = µ ∀k ∈ N0

(iii) Extremum principle:

min
j∈J

fj ≤ u(k)
i ≤ max

j∈J
fj ∀i ∈ J, ∀k ∈ N0
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(iv) Image simplification for increasing k:

lim
k→∞

u(k) = (µ, µ, . . . , µ)T .

Furthermore, the following functions are decreasing in k:

k 7→
∥∥∥u(k)

∥∥∥
`p
∀p ≥ 1

k 7→
N∑
j=1

u
(k)
j ln(u

(k)
j ) if min

j∈J
fj > 0.

Analogous to the continuous setting, the results are interpreted as decreasing energy and
increasing entropy for k →∞.

Proof. The proof follows the lines of [80].

(i) This fact is a direct consequence of prerequisite (D1).

(ii) Due to the symmetry (D2) of Q, not only the row sums (D3) but also the column sums
fulfil

∑N
i=1 qij(v) = 1 for all j ∈ J and v ∈ RN . This leads to

1

N

N∑
i=1

u
(k+1)
i =

1

N

N∑
i=1

N∑
j=1

qij

(
u

(k)
j

)
u

(k)
j =

1

N

N∑
j=1

(
N∑
i=1

qij

(
u

(k)
j

))
u

(k)
j

=
1

N

N∑
j=1

u
(k)
j

k=0
= µ ∀k ∈ N0.

(iii) The following inequalities hold for all i ∈ J and k ∈ N0:

u
(k+1)
i =

N∑
j=1

qij

(
u

(k)
j

)
u

(k)
j

(D4)

≤ max
m∈J

u(k)
m

N∑
j=1

qij

(
u

(k)
j

)
(D3)
= max

m∈J
u(k)
m = max

j∈J
fj ,

u
(k+1)
i =

N∑
j=1

qij

(
u

(k)
j

)
u

(k)
j

(D4)

≥ min
m∈J

u(k)
m

N∑
j=1

qij

(
u

(k)
j

)
(D3)
= min

m∈J
u(k)
m = min

j∈J
fj ,

where the last equality in both lines follows from induction in k.

(iv) Idea: It is shown that for any convex function r ∈ C([minj fj ,maxj fj ],R), the sequence

V (k) := Φ
(
u(k)

)
:=

N∑
i=1

r
(
u

(k)
i

)
, k ∈ N0

is a so-called Lyapunov sequence:

Φ(u(k)) ≥ Φ((µ, µ, . . . , µ)) ∀k ∈ N0,

V (k+1) ≤ V (k) ∀k ∈ N0.
(3.15)
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The proof of convergence to the constant image with gray value µ is then conducted with
the aid of Lyapunov stability theory and requires the prerequisites (D5) and (D6). The
monotonicity of the energy and entropy functionals respectively is a consequence of (3.15)
with specific convex functions r. See [80] for details.

�

Due to the properties (i)-(iv), Theorem 1 suggests the designation that each filter from the
class (Pd) creates a discrete scale space [80]. The next goal is to discretize the CLMC equation

ut = div(g(‖∇uσ‖2)∇u) =

2∑
l=1

∂xl

(
g(‖∇uσ‖2)∂xlu

)
. (3.16)

For the implementation, the diffusivity function g listed in (3.9) has been selected.
In conformity with [83], the position of pixel i with value fi is denoted as xi, h is the

(uniform) grid size and tk := kτ are the discrete times (τ is the uniform time step size). The
approximations to u(xi, tk) and g(‖∇uσ(xi, tk)‖2) are labeled uki and gki respectively, el is
the unit vector in the l-th coordinate direction and i+ and i− represent the indices of the closest
pixels to xi in positive and negative direction el respectively. The time derivative is approximated
by a simple forward difference and a discretization of the summands in (3.16) is deduced as
follows:

g

(∥∥∥∥∇uσ(xi +
h

2
el, tk)

∥∥∥∥2
)
∂xlu

(
xi +

h

2
el, tk

)
≈
gki + gki+

2

uki+ − uki
h

⇒

∂xl

(
g(‖∇uσ(xi, tk)‖2)∂xlu(xi, tk)

)
≈

(gki + gki+)(uki+ − uki )
2h2

−

(gki− + gki )(uki − uki−)

2h2
.

In matrix-vector notation, this finally yields the explicit iteration scheme (3.18) for the dis-
cretization of Equation (3.16)

uk+1 − uk

τ
= A(uk)uk (3.17)

⇒ uk+1 =
(
I + τA(uk)

)
uk (3.18)

with A(uk) =
∑2

l=1Al(u
k), where Al(uk) =

(
alij
(
uk
))

and

alij(u
k) =


gki +gkj

2h2
, j ∈ Nl(i)

−
∑

n∈Nl(i)
gki +gkn

2h2
, j = i

0 else.

(3.19)

Here, Nl(i) describes the set of the two neighbors of pixel i in direction ±el (boundary pixels
only have one neighbor). In image processing, the spatial step size usually fulfils h = 1 [83].
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Theorem 2 demonstrates that the useful application of the explicit scheme (3.18) is restricted to
small time steps τ . This motivates the investigation of different iteration schemes.

By approximating the spatial derivations of u - represented by the right side of Equation
(3.17) - at time tk+1, the implicit iteration scheme (3.21) is deduced:

uk+1 − uk

τ
= A(uk+1)uk+1 (3.20)

⇒
(
I − τA(uk+1)

)
uk+1 = uk (3.21)

Due to the nontrivial structure of the matrix A, which depends nonlinearly on u, solving the
system of equations (3.21) is a complicated process [83]. Theorem 2 shows that the semi-implicit
discretization scheme (3.23), where A is evaluated in an explicit way and the linear remainder
in an implicit manner, is applicable without limitation. It requires to solve a system of linear
equations in order to obtain the solution uk+1:

uk+1 − uk

τ
= A(uk)uk+1 (3.22)

⇒
(
I − τA(uk)

)
uk+1 = uk (3.23)

In the following, both the explicit and the semi-implicit scheme are examined.

Theorem 2. The explicit scheme (3.18) of the CLMC equation creates a discrete scale space
subject to the time step size restriction τ < 1

4 while the semi-implicit scheme (3.23) permits
arbitrarily large time steps.

Proof. According to Theorem 1, the properties (D1)-(D6) need to be verified. The explicit
scheme is given by Q1(uk) := (q1

ij(u
k)) := I + τA(uk), implying q1

ij(u
k) = δij + τ

∑2
l=1 a

l
ij

where δij denotes the Kronecker delta and alij is defined in (3.19). The continuity condition
(D1) follows directly from the continuity of the diffusivity g, cf. (3.9). Due to the symmetry of
δij and alij (due to j ∈ Nl(i) ⇔ i ∈ Nl(j)), Q1 is symmetric and therefore fulfils (D2). From
(3.19) it is also clear that

∑N
j=1 a

l
ij = 0 for all i ∈ J and l = 1, 2, which proves (D3). The

nonnegativity of q1
ij for i 6= j results from the positivity of gkj for all j ∈ J and k ∈ N0. In

order to fulfil (D4) and (D6), all diagonal elements q1
ii must be positive. As a consequence of

g ≤ 1, h = 1 and |Nl| ≤ 2, the inequality

q1
ii = 1− τ

2∑
l=1

∑
n∈Nl(i)

gi + gn
2h2

> 0 ∀i ∈ J

is satisfied in particular, if

τ <
1

4
. (3.24)
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Finally, from Figure 3.1 it is obvious that the index transformation (3.13) ensures that
{i− 1, i+ 1} ⊂ ∪2

l=1Nl(i). Therefore, the tridiagonal elements of Q1 are non-zero:

q1
i,i−1 > 0 ∀i = 2, . . . , N

q1
i,i+1 > 0 ∀i = 1, . . . , N − 1.

(3.25)

Now let s1, s2 ∈ J . If s1 ≤ s2, (3.25) guarantees

q1
s1,s1+1 > 0, q1

s1+1,s1+2 > 0, . . . , q1
s2−1,s2 > 0.

For s1 > s2, we have

q1
s1,s1−1 > 0, q1

s1−1,s1−2 > 0, . . . , q1
s2+1,s2 > 0.

Hence, Q1 is irreducible and (D5) is proven.
The implicit scheme depends on the inversion of

B(uk) := (bij(u
k)) := I − τA(uk).

Due to |bii| = 1 +
∑

j 6=i |bij | for all i ∈ J , B is strictly diagonally dominant, i.e. |bii| >∑
j 6=i |bij | for all i ∈ J . Then, results from linear algebra state that Q2 := B−1 exists and fulfils

(D1)-(D6) for all time step sizes τ > 0 (see [83] for details). �

Despite its unconditional stability, the major drawback of the semi-implicit scheme is its
high computational cost accruing from the solution of the linear system B(uk)uk+1 = uk. For
this purpose, a modification of (3.23) is introduced:

uk+1 =
1

2

2∑
l=1

(
I − 2τAl(u

k)
)−1

uk. (3.26)

The system (3.26) is called Additive Operator Splitting (AOS) Scheme since the diffusion term is
splitted into one-dimensional processes along the coordinate axes. Subject to an adequate pixel
numbering, the matrices

Bl(u
k) := I − 2τAl(u

k)

possess tridiagonal form and the resulting linear systems can be solved in linear complexity
with the aid of the so-called Thomas algorithm [83]. Furthermore, the following results can be
proven [80, 83]:

• The scheme (3.26) satisfies the conditions (D1)-(D6) and therefore creates a discrete scale
space.

• The Taylor expansions of all three presented schemes (3.18), (3.23) and (3.26) have the
same approximation orderO(τ+h2) and therefore are consistent to the original equation.

Table 3.1 outlines the results obtained in this section. Section 3.1.3 demonstrates the impact
of the discretized CLMC equation on raw µPTV data.
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Table 3.1: Finite difference schemes creating a
discrete nonlinear diffusion scale space. Table
content taken from [79].

Scheme Stability Costs per iteration

Explicit τ < 1
4 very low

Semi-implicit τ <∞ high
AOS τ <∞ low

3.1.2.4 Anisotropic Diffusion Filtering

The approaches illustrated up to this point used a scalar diffusivity D = g(‖∇u‖2), implicating
that the flux j = −g∇u is always parallel to ∇u. Such models are known as isotropic diffusion
filters. ”Nevertheless, in certain applications it would be desirable to bias the flux towards the
orientation of interesting features. These requirements cannot be satisfied by a scalar diffusivity
anymore, a diffusion tensor leading to anisotropic diffusion filters has to be introduced” [80].
For this purpose, different suggestions for the construction of the tensor D have been released,
as for instance described in [18,80,81]. Weickert [80] proves the existence of a continous as well
as a discrete scale space (in the sense that was introduced above) for a broad class of diffusion
tensors, thus extending the results from the isotropic CLMC equation (Theorem 1 and 2).

It should be noted that the notation in literature is not consistent concerning the terms
“(an)isotropic”. Some authors refer to homogeneous diffusion processes (constant diffusivity)
as isotropic while calling any inhomogenous filter anisotropic, even if they use a scalar-valued
diffusivity (e.g. [16, 58]).

3.1.3 Proposed modifications and impact on Micro PTV data

Let us now illustrate the behaviour of the discrete CLMC diffusion filters on µPTV images, using
the diffusivity g from (3.9). For the implementation of the algorithm, the Nonlinear Diffusion
Toolbox by Frederico D’Almeida [19] from the MATLAB Central File Exchange server has been
thoroughly examined and adopted. For the calculations, MATLAB R2010a on a 64-bit Windows
7 operating system with an Intel Core 2 Duo T9400 processor (2.53 GHz) and 4 GB RAM was
used.

Initially, the influence of the contrast parameter λ (appearing in the representation (3.9) of
the diffusivity) and the regularization parameter σ (appearing in the CLMC equation (3.16) with
(3.10)) shall be visualized, regarding both the explicit discretization (3.18) and the AOS scheme
(3.26). For this, a 140 × 140 window containing four distinct particles has been selected as
the reference image and the stopping time is chosen as T = 4. For the sake of visibility, the
contrast is increased by means of a linear pixel brightness transformation to the gray value range
[0, 255]. The explicit scheme is applied with time step size τ = 0.1 (kmax = 40 iterations) while
the solution of the AOS scheme is computed in kmax = 2 steps with τ = 2.

Subjective visual inspection of the resulting images suggests that λ ∈ [5, 10] and σ ∈ [1, 5]
represent reasonable choices. In Figure 3.2, it can be seen that for a lower parameter selection,
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image noise remains and a higher selection leads to a slightly oversimplified outcome (the holes
in the ring-shaped particles are diminishing).

Due to the scale space properties of the considered diffusion filter class, the major influence
on the morphological image structure certainly is constituted by the stopping time T = kmaxτ .
Figure 3.3 compares the temporal evolution of the AOS scheme to a stable (τ < 1/4) and an
unstable (τ > 1/4) version of the explicit scheme. Furthermore, the universal blurring effect of
a linear diffusion filter (Gaussian filtering) is displayed.

Finally, the accuracy as well as the temporal performance shall be evaluated more quanti-
tatively. “Since no analytical solution to the CLMC equation is known, [...] a good numerical
approximation to a test example as a standard for comparison” has to be used, as Weickert [83]
points out. Analogous to [83], the explicit scheme with a small step size (in our case: τ = 0.1)
provides the filtered reference image v. The relative `2-error of an approximation u is calculated
as

errorC(u) =
‖u− v‖
‖v‖

, (3.27)

where ‖v‖ =
(∑

i v
2
i

) 1
2 again denotes the `2-norm (of the vectorized image v). The subscript

C indicates that this error is derived from the continuous image representations of u and v.
Originally, the images are given in 8-bit format, i.e. the gray values are contained in the set
{0, 1, . . . , 255}. The images resulting from the diffusion process, however, are real-valued and
in the range [0, 255] due to the extremum principle. Naturally, by rounding those values to
the closest number in N0, the data format of the filtered image is adjusted. In the following,
this (component-wise) rounding operation is denoted by square brackets [ ]. The `2-error of the
discretized image is therefore computed as

errorD(u) =
‖[u]− v‖
‖v‖

. (3.28)

Table 3.2 lists the processing times and `2-errors of AOS and explicit scheme using the
stopping time T = 200 and various time steps τ (or equivalent: a various number of iterations
kmax = T

τ ). Two different images are evaluated: Image 1 refers to the 140 × 140 pixel image
from Figure 3.2 and 3.3 while Image 2 represents the whole 2048× 2048 recording from which
Image 1 is cut out. The lower error rates for Image 2 result from the existence of large image
regions without particles, where no significant information needs to be processed. By compar-
ison, Image 1 possesses a relatively high information density. Furthermore, it is demonstrated
that the average processing time per iteration of a regular 2048× 2048 µPTV image amounts to
approximately 2.9 seconds for the explicit scheme and 6.4 seconds for the AOS scheme. Con-
sidering the explicit scheme with time step τe and the AOS scheme with number of iterations
ka, we conclude that (for the configuration in use) the processing time of the latter falls below
that of the former for all stopping times

T ≥ d2.2kae τe,

where dce denotes the lowest natural number greater than c.
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(a) raw image (b) raw image (c) AOS λ = 5, σ = 2 (d) EXP λ = 5, σ = 2

(e) AOS λ = 1, σ = 0.5 (f) EXP λ = 1, σ = 0.5 (g) AOS λ = 10, σ = 2 (h) EXP λ = 10, σ = 2

(i) AOS λ = 1, σ = 2 (j) EXP λ = 1, σ = 2 (k) AOS λ = 10, σ = 5 (l) EXP λ = 10, σ = 5

(m) AOS λ = 5, σ = 0.5 (n) EXP λ = 5, σ = 0.5 (o) AOS λ = 40, σ = 30 (p) EXP λ = 40, σ = 30

Figure 3.2: Evolution of a cut out µPTV image under the discretized CLMC equation (3.11),
with varying parameters λ [from diffusivity (3.9)] and σ. The explicit scheme EXP (3.18) was
evaluated in kmax = 40 time steps with τ = 0.1, the AOS scheme (3.26) in kmax = 2 steps with
τ = 2 respectively.
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(a) AOS, τ = 4 (b) EXP, τ = 0.2 (c) EXP, τ ≈ 0.27 (d) LIN
T

=
0

T
=

4
T

=
12

T
=

80
T

=
400

Figure 3.3: Evolution of a cut out µPTV image under diffusion filtering with varying stopping
time T . Parameter selection: λ = 8, σ = 2. Column (a): CLMC with AOS scheme. Column
(b): CLMC with stable, explicit scheme. Column (c): CLMC with unstable, explicit scheme.
Column (d): Linear Diffusion approach (Gaussian smoothing).
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Table 3.2: Comparison of nonlinear diffusion schemes with respect to processing times and
accuracy. Parameter selection: λ = 8, σ = 2, T = 200.

Scheme τ kmax
Image 1 Image 2

CPU time errorC errorD CPU time errorC errorD

explicit
0.1 2000 15.08 s 0 % 0.76 % 5836 s 0 % 1.43 %
0.2 1000 7.56 s 0.003 % 0.76 % 2922 s 0.002 % 1.43 %
0.25 800 6.06 s 0.23 % 0.80 % 2339 s 0.41 % 1.49 %

AOS

0.25 800 6.70 s 5.65 % 5.69 % 5109 s 1.08 % 1.79 %
1 200 1.64 s 5.64 % 5.69 % 1275 s 1.08 % 1.79 %
5 40 0.35 s 5.65 % 5.70 % 255.3 s 1.09 % 1.79 %
20 10 0.10 s 6.22 % 6.26 % 63.84 s 1.32 % 1.94 %
50 4 0.05 s 8.89 % 8.92 % 25.53 s 2.30 % 2.70 %
100 2 0.03 s 13.91 % 13.92 % 12.89 s 3.77 % 4.04 %
200 1 0.02 s 21.66 % 21.68 % 6.39 s 5.99 % 6.16 %

To sum up, with regard to the accuracy, the explicit scheme is superior to the AOS scheme.
Especially for the processing of hundreds of large images, however, the AOS scheme represents
a powerful tool due to the enormous temporal performance advantage combined with a merely
moderate loss of accuracy: Table 3.2 shows that in the given framework, the AOS scheme with
kmax = 10 iterations is over 45 times faster than the explicit scheme with step size τ = 0.2.
Nevertheless, the corresponding discretized `2-errors are in a close range (1.43 % and 1.94 %,
respectively) such that the resulting images are indistiguishable with the naked eye, cf. the
related situation in Figure 3.3.

For the practical use on µPTV images, we propose a stopping time of T ≈ 4. In this case,
the AOS scheme with kmax = 5 is about twice as fast as the explicit scheme with τ = 0.2 while
the image quality of the latter is slightly superior (as indicated in Table 3.2). Both methods
represent justified pre-processing techniques and ultimately, the method of choice depends on
the priorities of the user.

3.2 Step 2: Particle Detection

The upcoming section describes the algorithms implemented for the purpose of automatic par-
ticle detection. The procedure is composed of two stages: initially, the edge locations of the
gray valued raw image are computed by means of the well-known Canny algorithm [13]. Sub-
sequently, the particle positions, indicated by the presence of circular shapes, are extracted from
this binary edge image with the aid of a Circular Hough Transform.

The principles of the Canny algorithm are explained in Section 3.2.1, followed by an overview
of different types of Hough Transforms in Section 3.2.2. Finally, Section 3.2.3 outlines the mod-
ifications applied to both techniques due to the considered framework and depicts the effect of
various parameter selections.
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3.2.1 Edge Detection - The Canny Algorithm

Despite the fact that its introduction dates back to the year 1986, the Canny Algorithm still
represents an established edge detection technique [72]: “Although research into reliable edge-
detection algorithms continues, the Canny method is generally acknowledged as the best ‘all-
round’ edge detection method developed to date”. Canny postulates three performance criteria
for the edge detection problem [13, 73]:

(EDP1) Detection criterion: important edges should not be missed, non-edge pixels should
not be falsely marked.

(EDP2) Localization criterion: the distance between actual and detected edge position should
be minimal.

(EDP3) One response criterion: there must be only one response to a single edge.

Actually, (EDP3) is implicitly covered by (EDP1). However, it is required since Canny’s
mathematical expression for (EDP1) does not address the multiple response characteristic. The
edge detector is formulated as a convolution filter determined to locate step edges disturbed by
white Gaussian noise. The task is to identify the one filter that optimizes (within the scope
of calculus of variation) the three criteria (EDP1)-(EDP3). For a detailed description of the
optimization problem, we refer to the original paper [13]. While the result proved to be too
complex to be solved analytically, it is shown that the convolution of the image f with a two-
dimensional Gaussian Kσ (cf. (3.6)), followed by the computation of the normal derivative,

∂

∂n
(Kσ ∗ f) , (3.29)

constitutes an efficient approximation [13] to the optimal edge detector. Note that the differen-
tiation and convolution operator commute, which speeds up computation in practice since the
normal derivative of a Gaussian is known in advance. The Gaussian parameter σ is associated
with the scale at which the edges are computed (cf. the Gaussian scale-space in Section 3.1.1).
The edge normal n of the image f is estimated as

n =
∇(Kσ ∗ f)

‖∇(Kσ ∗ f)‖
. (3.30)

An edge location is then situated at a local maximum of (3.29) in direction n, yielding the
necessary condition

∂2

∂n2
(Kσ ∗ f) = 0, (3.31)

and the strength of an edge is given by the magnitude η:

η :=

∣∣∣∣ ∂∂n (Kσ ∗ f)

∣∣∣∣ = ‖∇ (Kσ ∗ f)‖ . (3.32)
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Figure 3.4: Non-maximum suppression technique. The magnitudes along the edge normal are
interpolated from the adjacent pixels.

In the (discrete) practical case, Equation (3.31) is realized as the condition that the strength
of an edge pixel dominates the edge magnitude of its neighbors along the gradient direction.
Since in general, the orientation of the gradient vector is not a multiple of π/4 (i.e. pointing
exactly at a neighbor pixel), it is common to use linear interpolation [55]. As illustrated in
Figure 3.4, we denote the four neighbors of a pixel a which are closest to the line spanned by
the normal vector n(a) as p1, p2 (positive direction) and q1, q2 (negative direction) respectively;
their respective distances on the grid are labeled d1, d2. Assuming unit pixel distance, the two
magnitude conditions for the edge candidate a are then written as

η(a) > (1− d1)η(p1) + (1− d2)η(p2),

η(a) > (1− d1)η(q1) + (1− d2)η(q2).

As a consequence, it is ensured that the thickness of each detected edge does not exceed one
pixel. In literature, this operation is referred to as non-maximal suppression [73].

Eventually, the number of edge candidates is further reduced by thresholding the edge mag-
nitude (3.32). In order to avoid streaking, i.e. the breaking up of edge contours due to magnitude
fluctuations, so-called hysteresis thresholding is deployed. Thereby, two magnitude thresholds
t0, t1 > 0 are applied: all edge responses, where the magnitude exceeds the higher threshold t1,
constitute the definite, strong image edges while weaker responses with a magnitude between t0
and t1 are solely considered as edges, if they are connected to a strong edge. Candidates with
magnitudes smaller than t0 are discarded.

A complete C code of the Canny algorithm is provided in [55]. Details and results for an
application on µPTV data are illustrated in Section 3.2.3.

3.2.2 Hough Transforms

Originally designed for the identification of lines in binary images in 1962, a diversity of modi-
fications have made Hough Transforms (HT) a well-established tool for the detection of specific
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shapes in images [71]. In order to detect a binary object that is described by an equation with
n appearing parameters, it is necessary to construct an n-dimensional so-called accumulator
space. This is done by starting a voting process where each image edge point casts votes for
that set in the parameter space which corresponds to all possible objects that contain this point.
By accumulating all votes for each n-parameter-tupel, the accumulator space is built. The pa-
rameters of potential objects eventually can be extracted as the positions of local maxima of this
accumulator space.

In their survey [29], Illingworth and Kittler discuss the HT concept in general and provide
details for a successful implementation. As cited by [73], they conclude that Hough Transforms
fulfil several beneficial properties:

• The HT is very robust in the presence of additional data such as other objects or noise.

• Partial occlusion or a slight deformation does not impede the recognition of an object.

• Multiple occurrences of a shape can be detected in one processing step.

• Since each image point is treated separately, the implementation of a parallel processing
algorithm is feasible.

In the first two subsections, two well-known representatives of the HT are presented: the al-
gorithm for the detection of straight lines (henceforth denoted as the Standard Hough Transform
(SHT)) as well as the Circular Hough Transform (CHT) . Subsequently, an introduction to the
Generalized Hough Transform (GHT), which allows the recognition of arbitrary, non-parametric
shapes, is given.

3.2.2.1 Standard Hough Transform

In the original work by Hough [27], lines are characterized by the slope-intercept form

y = kx+ d. (3.33)

A reorganization of (3.33) instantly yields that the voting set for a fixed, arbitrary edge point
(x, y) again is described by a line in the (k, d) plane

d = −xk + y. (3.34)

Due to the fact that vertical lines are not covered by the representation (3.33), the use of the
normal form of a line is preferred [22]:

ρ = x cos θ + y sin θ, (3.35)

where θ ∈ [−π, π] is the angle of its normal and ρ ≥ 0 is its perpendicular distance to the origin,
see Figure 3.5(a). Figure 3.5(b) and (c) show the votes of three points p, q, r (collinear on line l)
by means of the transformations (3.34) and (3.35) respectively. The parameters of l correspond
to the point of intersection of their voting sets.

A complete C code of the SHT again is provided in [55].
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Figure 3.5: Standard Hough Transform voting schemes.

3.2.2.2 Circular Hough Transform

The CHT is intended to find circular objects in images, characterized by their center coordinates
and their (a priori unknown) radii, thus establishing a 3-dimensional accumulator space. We
denote the circle with radius r and center coordinates (a, b) as

Br(a, b) :=
{

(c, d) ∈ R2 : (c− a)2 + (d− b)2 = r2
}
.

For an edge pixel (x, y) and a fixed search radius r, the set of center candidates V r(x, y)
where the corresponding circle with radius r contains (x, y) on the border is constituted by the
circle with center (x, y) and radius r:

V r(x, y) =
{

(a, b) ∈ R2 : (x, y) ∈ Br(a, b)
}

=
{

(a, b) ∈ R2 : (x− a)2 + (y − b)2 = r2
}

=
{

(a, b) ∈ R2 : (a− x)2 + (b− y)2 = r2
}

= Br(x, y).
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Figure 3.6: Voting schemes: (a) standard CHT, (b) CHT with multiple radii in a 2D parame-
ter space, (c) gradient oriented CHT with multiple radii in a 2D parameter space, (d) gradient
oriented CHT with multiple radii and orientation uncertainty ∆α. Figure inspired by [71].

Figure 3.6(a) indicates the voting scheme of three edge points on a circular edge with known
radius. Passing through all possible radii in a search range [rmin, rmax], the three-dimensional
voting set V (x, y) for the edge point (x, y) is given by a frustum:

V (x, y) =
{

(x1, y1, r) ∈ R3 : r ∈ [rmin, rmax] , (x1 − x)2 + (y1 − y)2 = r2
}
.

In order to reduce computational and memory requirements and improve the detection per-
formance, different modifications to the standard CHT have been introduced, as discussed for
instance in [8, 29, 71, 73]. Firstly, it is sufficient to consider a flat, two-dimensional accumulator
space such that an edge point increments a comprising annulus of points in an accumulator plane.
The minimum/maximum radius of the voting annulus corresponds to the minimum/maximum
radius of the circle searched, as seen in Figure 3.6(b). The local maxima in this accumulator
array are strong candidates for circle centers. The circle radii have to be determined in an ad-
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ditional step, for instance with the aid of the so-called radial histogram technique. Thereby,
each potential radius r is represented by a histogram bin and its value is given by the number
of edge pixels along the circle with radius r surrounding the detected center. The peak location
eventually yields the radius of the circle.

In addition, the direction of the edge normals can be used to constrain the number of votes
per pixel due to the fact that for each point on a perfect circle, the vector pointing towards the
center is perpendicular to the edge direction. According to each search radius, solely those
elements in the accumulator array which are are positioned in direction of one of the two edge
normals are incremented (see Figure 3.6(c)). In order to compensate for shape irregularities,
however, it is beneficial to vote for an arc with uncertainty angle ∆α instead of only one point
per normal direction [71, 73]. According to these modifications, the voting area of an edge
pixel is composed of two annular sectors as shown in Figure 3.6(d) which provides a superior
performance for the CHT [71].

If edge magnitude information is available, “another heuristic that has a beneficial influ-
ence on the curve search is to weight the contributions to accumulator cells [...] by the edge
magnitude” [73]. Alternatively, other modifications have been proposed, such as adaptive al-
gorithms [15, 28], randomized approaches [17, 87], the application of a scale invariant kernel
operator [8] or the implementation of a complex accumulator array, where the radius is encoded
in the phase of the vote [7]. An overview of existing parametric HT variations as well as a com-
parison with respect to speed and memory usage is given in [34]. In general, a problem-based
adjustment of the voting strategy can significantly improve the obtained results, cf. Section
3.2.3.

3.2.2.3 Generalized Hough Transform

There are applications where a parametric representation of the structure searched for in an
image is not available. For this purpose, Ballard [11] introduced the GHT - an extension to the
HT algorithm which enables the detection of patterns similar to a reference object by exploiting
edge direction information. As a first step, a reference point xR inside the region is arbitrarily
selected (usually the centroid [35]). For each boundary point x of the reference object, its edge
orientation φ(x) is computed and its distance r and orientation α towards xR are stored in a
reference table (a so-called R-table) as a function of φ. An edge pixel xe = (e1, e2) in the
considered image, whose edge orientation φ(xe) corresponds to the R-table value φj , then votes
for the set V (xe) of all potential reference points, for which xe is located on the respective
object:

V (xe) =

nl⋃
l=1

{(
e1 + rlj cos(αlj), e2 + rlj sin(αlj)

)}
.

Accordingly, an accumulator space A is established in a similar manner to the previously de-
scribed Hough Transforms and the positions of the reference points of the objects searched are
indicated by local maxima of A. Figure 3.7 illustrates the geometry of the R-table construction
and displays the general form of an R-table.

If the scale S and the degree of rotation τ of the object are not known in advance, the accu-
mulator space becomes 4-dimensional. This leads to a memory requirement of N2Sqτq where
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Figure 3.7: Principle of R-table construction with reference object. Above: The edge directions
of two distinct border pixels coincide, resulting in an augmented set of voting points for their
edge orientation φ, Figure taken from [73]. Below: Structure of an R-table.

N × N is the size of the image, Sq is the resolution of the scale parameter and τq is the reso-
lution of the rotation parameter [35]. Thus, a 2048×2048 image with Sq = 20 and τq = 360
requires over 120 GB of memory for the construction of the accumulator array, assuming a 32
bit integer representation. Furthermore, the computational complexity of the GHT algorithm is
(np/Rq)ntSqτq, where np denotes the number of edge pixels on the prototype object, Rq is the
resolution of the R-table index and nt is the number of edge pixels in the reference object [35].
This excessive demand of storage and computational requirements is claimed to be the major
drawback of the conventional GHT approach [29, 73]. Kassim et al. [35] assess five alternative,
more efficient variants of the GHT with regard to their quality performance, computational com-
plexity and storage requirements. Extensive error analysis in this scope has been conducted by
Aguado et al. [5].

3.2.3 Proposed modifications and impact on Micro PTV data

This section motivates and interpretes the modifications applied to the Canny algorithm (Section
3.2.1) and the Circular Hough Transform (Section 3.2.2.2). Initially, the parameter selection
strategy for the Canny algorithm is explained by demonstrating the consequences of variable
scenarios on the template image from Section 3.1.3. Subsequently, beneficial modifications
for the construction of the accumulator array are introduced and the local maximum detection
strategy based on morphological dilation is presented. Finally, the implemented particle radius
determination process is outlined.

Visualized results are presented in Figure 3.11 and 3.12 at the end of this section. Image
pre-processing is conducted by means of the discretized CLMC equation, making use of the
AOS scheme (see Section 3.1.2.2). The parameters are chosen in accordance with the insights
from Section 3.1.3 as: λ = 8, σ = 2, T = 4, τ = 2. The images in the first column contain
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the edges detected by the Canny algorithm superimposed on the original image. In the center
column, the resulting accumulator arrays as well as the highlighted positions of its identified
local maxima are displayed. The third column of images eventually shows the extracted particle
locations and their associated radii. A characterization of the specific coloring used for the edge
components and the local maximum tags in the plots is provided below, at the passage of the
respective algorithm description.

Determination of the parameters for the Canny algorithm
Perona and Malik [58] state that edge detection subsequent to nonlinear diffusion filtering is
superior to linear Gaussian filtering used in the classical Canny approach. Hence, the Gaussian
smoothing operation is not necessarily required. However, the scale of the detected edges can
be further adjusted by the selection of a “moderate” σ ∈ [1, 3] (depending on the image quality)
for the Gaussian Kσ. Apart from that, the AOS scheme produces slightly perceptible horizontal
and/or vertical strips for a small and practically relevant number of time steps (e.g. kmax ∈
{2, 3, 4}), which can be observed in a close examination of Figure 3.2 and 3.3 (note that due to
the small image size, this behaviour is hardly visible in a printed version of this document). The
reason for this is the numerical realization, as the AOS scheme induces a decomposition of the
diffusion process into two one-dimensional processes along the coordinate axes [80]. From a
heuristic point of view, this causes the elimination of the stripes while the strong image edges,
which “survived” the application of the nonlinear diffusion filter, are largely preserved.

The specification of the hysteresis thresholds t0 and t1 for a whole raw image series of over
100 image pairs is a non-trivial task. In this approach, they are chosen as constants based on
manually selected values for the reference matrix images. The occurring contrast inconsisten-
cies between distinct raw images imply the requirement of relative thresholds (with respect to
the maximum appearing absolute gradient value). In this case, constant thresholds are only legit-
imate for those images where the maximum gradient value descends from a particle in the same
distance to the camera focus as in the reference image. In other words, this scenario requires that
the layer of the brightest particle from each image is consistent with the layer of the brightest
particle from the reference image. For an ordinary µPTV dataset (70-100 particles per image),
however, this condition has proven to be satisfied in general.

Alternatively, the thresholds could be selected separately for each image pair, e.g. via a
specified, fixed value for the amount of strong edge candidates. Due to the diversity of particle
shapes, the border length of individual particles is widely different: the computed thresholds for
an image mainly filled with ring particles (long border length) and an image filled with the same
number of sharp particles (short border length) respectively would vary significantly, even under
similar contrast conditions. Hence, the former mentioned constant threshold approach has been
adopted.

The success of the whole detection algorithm is influenced by the parameter selection: on
the one hand, too low thresholds result in a large number of useless edges which impede the
performance of the CHT and give rise to the potential detection of false positives. On the other
hand, too high thresholds eliminate the edges of diffuse low-contrast particles, leading to a large
category of false negatives. It is not the purpose of the µPTV software, however, to omit the
recognition of whole particle classes. Therefore, the path taken is to choose the thresholds in the
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lower range which permits the detection of abundant edges. In return, prior to the construction
of the accumulator array, the technique described below removes spurious edges in order to
minimize perturbing votes.

Elimination of disturbing edges and the CHT voting mechanism
In the present µPTV images, particles are characterized as bright spots (high gray value) on a
dark background (low gray value) such that the gradient vectors on the outer edge of a particle
exlusively point towards the particle center. Therefore, the vectors which determine the edge
normals in the Canny algorithm (3.30) represent a valid estimation of the inner edge normals of
a circle. Thus, in contrast to the scheme depicted in Figure 3.6(d), the accumulator array votes
are cast solely into one annular sector instead of two, cf. Figure 3.8.

As a further improvement for the performance of the CHT algorithm on µPTV data, spuri-
ous edges are removed from the edge image in order to minimize perturbing votes prior to the
construction of the accumulator array. On that note, a connected edge component is declared as
a spurious edge if it does not contribute to (but rather disturb) the detection of one true particle
center, i.e. at least one of the following conditions is fulfilled:

(E1) The component is solely a short edge fragment, e.g. consists of 8 pixels at most.

(E2) The gradient vectors of its elements, which determine the voting areas, do not intersect
frequently enough and therefore do not allow constructive accumulation. In order to keep
computational requirements at a minimum, at most 10 edge points are randomly selected
from the component. The rays originating from the corresponding gradient vectors are
subject to pairwise comparisons and if less than a certain percentage (e.g. 30%) of them
intersect, the component is rejected. Especially interfering votes from the inner circle of
ring-shaped particles, where the gradient vectors point towards the outside of the circle,
are prevented by this procedure.

The first column of Figure 3.11 reveals the detected edges with varying Canny thresholds in the
template image. Those edge components permitted to cast votes in the CHT are displayed in
green while the spurious, dismissed components are colored in red. The assertion from above
that low thresholds are superior is confirmed since the elimination algorithm effectively removes
the majority of redundant edges (second row). In contrast, high Canny thresholds are responsible
for the failed recognition of the diffuse particle due to the deficient detection of relevant edges
(first row). In addition, selected gradient vectors occurring in condition (E2) are drawn in Figure
3.11(c).

Figure 3.12(a) indicates the consequences of the omission of the edge elimination process:
whereas the overall particle detection quality is hardly affected (exclusively all four true particles
are identified in the present case), the temporal performance of the algorithm is deteriorated due
to the large number of non-zero elements in the accumulator array.

Additionally, specific voting weights are introduced. In order to compensate for the higher
number of votes originating from large circles, the weighting factor 1

r is used. Furthermore, a
dependency of the voting weights on the angular distance to the oriented edge normal is pro-
posed. In total, for an edge point (x, y) with gradient orientation φxy and uncertainty 2∆α, we
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Figure 3.8: CHT voting mechanism for an edge pixel (x, y).

define the weight function

Wxy(r, α) :=
1

r

(
exp

(
−(α− φxy)2

∆α2

)
− 1

e

)
, (3.36)

where (r, α) is given in polar coordinates with origin (x, y) and

r ∈ [rmin, rmax] , α ∈ [φxy −∆α, φxy + ∆α] .

In accordance with the size of the reference particles at hand, we select rmin = 5 and rmax = 40.
Figure 3.8(a) illustrates the voting area in conformity with the notation from above, while the

distribution of the voting weights according to (3.36) is shown in Figure 3.8(b). The beneficial
impact of this method on the accumulator array construction and local maximum extraction is
demonstrated in Figure 3.12(b) where the prerequisites coincide with those from Figure 3.11(c)
except for the weights W (r, α) which have been replaced by

W̃ (r, α) :=
1

r
, for r ∈ [rmin, rmax] , α ∈ [φxy −∆α, φxy + ∆α] . (3.37)

In this case, the detection of both ring-shaped particles fails due to the inferior design of the
accumulator array.

Local maximum detection in the CHT
In the traditional sense, an element of a two-dimensional array is referred to as a local maximum
if its value dominates that of its immediate (eight) neighbor pixels. For the sake of robust-
ness, this condition is tightened: in order for a position (x, y) in the accumulator array A to be
considered as a candidate for a circle center, it must be the strict maximum in a 7 × 7 square
neighborhood (with 48 neighbor pixels):

A(x, y) > A(x+ i, y + j) ∀i, j ∈ {−3,−2,−1, 1, 2, 3} . (3.38)

48



(a) Domain of structuring element
S7×7.

(b) Accumulator array of µPTV
image.

(c) Gray-scale dilation of (b) by
the element S7×7, pixels fulfilling
(3.39) are marked as red squares.

Figure 3.9: Local maximum extraction.

Within the scope of mathematical morphology, the gray-value dilation and erosion operators ⊕
and 	, respectively, of a gray-scale image B by a structuring element S are defined as

(B ⊕ S)[x, y] = max
(i,j)∈DS

{B(x− i, y − j) + S(i, j) : [x− i, y − j] ∈ DB} ,

(B 	 S)[x, y] = min
(i,j)∈DS

{B(x− i, y − j)− S(i, j) : [x− i, y − j] ∈ DB} ,

where DS and DB denote the domains of S and B respectively. The condition (3.38) therefore
can be expressed as

(A⊕ S7×7)[x, y] > A(x, y), (3.39)

where S7×7 denominates the flat (zero valued) object shown in Figure 3.9(a). Points belonging
to its domain are denoted as small black squares, the origin with coordinates (0,0) is marked
as a diagonal cross. Since the standard morphological operations are provided in the MATLAB
Image Processing Toolbox, (3.39) constitutes an elegant way of local maximum extraction. The
impact of gray-value dilation on the accumulator array image from Figure 3.9(b) is demonstrated
in Figure 3.9(c). Pixels fulfilling (3.39) are highlighted by red squares.

Dilation and erosion are dual transformations [55], in the sense that

(X 	 Y )c = Xc ⊕ Y̆ ,

where Xc = {x : x /∈ X} denotes the set complement and X̆ = {−x : x ∈ X} is the reflection
of X . For a list of other properties and the introduction of further morphological operations, we
refer to [55, 73].

In order to reduce the number of erroneously detected particle center candidates (false pos-
itives), in addition to (3.39), further restrictions are established: the first two conditions (M1)
and (M2) are based on accumulator array properties while (M3) and (M4) refer to the detected
shapes in the particle image.
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(M1) Depending on the extent of the radius search range, the accumulator array is thresholded
with the value of a p-quantile of its non-zero elements (e.g. p = 0.85). Due to performance
issues, this step is performed prior to the dilation operation.

(M2) Two local maxima must be situated at a minimum distance d apart from each other (e.g.
d = 10 pixels). Initially, the candidates are sorted by descending accumulator values,
yielding a list of coordinates mi. Let Sd(mi) :=

{
x ∈ R2 : ‖x−mi‖ ≤ d

}
be the

circular neighborhood of pixel mi with radius d. In the case of multiple particle oc-
currences in immediate vicinity, the weakest candidates with lower accumulator values
{mj : mj ∈ Sd(mi) for any i < j} are dismissed. This constraint is reasonable since it
emerged that (indistinguishable) particle clusters constitute the major source of error (see
Chapter 4). The remaining candidates are subject to a strict local maximum condition in
the extended neighborhood

Si := Sd(mi) ∩

⋃
j<i

Sd(mj)

c

.

The exclusion of the neighborhoods of stronger candidates from the local maximum
search area benefits the detection of weak, true particle centers which are between d and
2d pixels apart from a strong particle center. As with the 7× 7 square neighborhood, the
constraint

A(mi) > A(x) ∀x ∈ Si

is realized in terms of a dilation by the appropriate structuring element according to Si.

(M3) The variance of the normalized image brightness values of the pixels along each circle line
(with varying radius) surrounding the center candidate must fall below a certain threshold
tnv ∈ [0, 1]. As a result, centers of eminently deformed objects are eliminated. However,
the threshold value for this condition is not selected in a strict manner (e.g. tnv = 0.25)
since minor particle shape imperfections are common in the available µPTV images and
should not be penalized.

(M4) The ratio of valid gradient vectors of the pixels along at least one surrounding circle line
must exceed a certain threshold tv. This condition will be clarified in the forthcoming
description of the radius determination process.

Finally, the remaining local maximum locations in the accumulator array are refined by the
computation of local centroid positions.

In the accumulator array images (center column) in Figure 3.11 and 3.12(a)-(b), all locations
where (3.39) is fulfilled are tagged. The scenario of Figure 3.12(c) uses the respective S3×3

“standard” element instead of S7×7. In this case, the number of false center candidates more
than doubles; due to the radius determination process. Red coloring signifies that at least one of
the conditions (M1) and (M2) is not satisfied, i.e. the accumulator votes for the local maximum
candidate are not decisive enough. Blue colored markers imply that both (M1) and (M2) are
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fulfilled whereas (M3) or (M4) does not pertain, i.e. characteristics in the original image do not
suggest a circular object at the position in question. Green tags constitute the particle centers
satisfying all constraints (M1)-(M4).

Radius determination in the CHT
The reference matrix image displayed in Figure 1.6(b) motivates that the strongest edge of a
µPTV particle is not necessarily located at its outer visible boundary. Thus, the outer edge of
diffuse particles is often insufficiently captured by the Canny algorithm, as seen in Figure 3.11.
Therefore, the implementation of the radius histogram technique mentioned in Section 3.2.2.2
is not optimal. Instead, the behavior of the gradient vectors on circle lines surrounding the
considered particle center candidate is observed, as described in condition (M4). The largest
number R within the radius search range fulfilling the following two conditions is chosen as the
particle radius:

(R1) The ratio vR of valid gradient vectors on the circle line with radius R exceeds a certain
threshold: vR ≥ tv (e.g. tv = 0.5, black dashed line in Figure 3.10). A gradient vector is
called valid, if

• its magnitude exceeds a threshold tm (which is in the magnitude of the lower Canny
threshold t0),

• the deviation of its orientation to the orientation of the optimal vector (pointing to-
wards the center) is in a moderate range (e.g. lower than π/6).

(R2) The three previously computed smaller circle lines do not contain a considerably higher
number of valid gradient vectors, i.e.: vR ≥ 0.95 ·max (vR−1, vR−2, vR−3). In this way,
the selection of a significantly too large radius due to unfitting (too low) thresholds tm, tv
is avoided.

(R3) The circular image region with radius R around the considered particle must not be oc-
cluded by more than 50 % by the circular regions of other particles. The background for
the formulation of this condition is the fact that the particle matching algorithms described
in the next section solely operate on the pixel area not occluded by other particles.

As mentioned above, if no radius fulfilling those conditions is found, the potential particle center
is tagged as a false positive and rejected (blue squares in the accumulator array images). Fig-
ure 3.10 displays the ratio of valid gradient votes for the particles detected in Figure 3.11(c),
according to condition (R1). The radius chosen based on (R2) is marked by a diamond.
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Figure 3.10: Radius determination process of the scenario shown in Figure 3.11(c). The selected
particle radii are marked as diamonds.

3.3 Step 3: Particle Matching

Subsequent to the successful detection of a particle, its position in the film is determined by
locating the most resembling reference image. For this purpose, in their µPTV application,
Paschke et al. [56] implemented a cross-correlation based technique. The concept of cross-
correlation matching is described in Section 3.3.1. As an alternative, an improved approach
based on normalized radial intensity profiles (brightness profiles) is presented in Section 3.3.2.

A descriptive feature of a circular particle is given by its radius. Therefore, consistence of
the radius values (e.g. maximum difference: 2 pixels) is used as a necessary condition for two
particles to match. The radius determination process implemented in the current application is
described in Section 3.2.3.

The results in Section 4 demonstrate that the proposed technique based on radial intensity
profiles not only provides the expected improvement concerning temporal performance, but also
yields a superior reliability in the matching process compared to cross-correlation based algo-
rithms.
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(a) Canny thresholds selected too high.

(b) Canny thresholds selected too low.

(c) Canny thresholds selected appropriately.

Figure 3.11: Particle detection algorithm, different Canny thresholds. Left Column: inverted,
pre-processed images with detected edges (eliminated edges colored in red), the arrows in (c)
represent the gradient vectors of selected edge pixels. Center Column: corresponding accumu-
lator arrays with tagged local maxima, the labels in (c) are used as reference in Figure 3.10 and
3.13. Right Column: eventually detected particles on inverted original image.

53



(a) No elimination of disturbing edges.

(b) Voting weights constant for each search radius.

(c) Local maximum search in traditional 3× 3 mask.

Figure 3.12: Particle detection algorithm, without certain modifications. Left Column: inverted,
pre-processed images with detected edges (eliminated edges colored in red). Center Column:
corresponding accumulator arrays with tagged local maxima. Right Column: eventually de-
tected particles on inverted original image.

54



3.3.1 Normalized Cross-Correlation

Cross-correlation constitutes a standard approach for feature detection in the field of image pro-
cessing, as cited by Lewis [41]. For a square, discrete template image t ∈ RN×N , which is to
be localized in an image f ∈ RM×M , M ≥ N , the cross-correlation values c(u, v) of f and t
are given by

c(u, v) := (f ? t)(u, v) :=
∑
x,y

f(x, y)t(x− u, y − v), (3.40)

where the sum is computed in the region under the (u, v)-translated, N ×N -sized window. The
best matching position of t within the image f is then determined by the offset (u, v) which
maximizes c(u, v).

Template matching using standard cross-correlation is not robust since (3.40) strongly de-
pends on the local image brightness in the image f : brighter image areas yield higher correlation
values. To eliminate this disadvantage, both the image f and the template t are normalized by
subtracting the mean and dividing by the standard deviation, yielding the Normalized Cross-
Correlation (NCC) values γ(u, v) ∈ [−1, 1]

γ(u, v) =

∑
x,y

[
(f(x, y)− fu,v)(t(x− u, y − v)− t)

]
√∑

x,y

[(
f(x, y)− fu,v

)2]∑
x,y

[(
t(x− u, y − v)− t

)2] , (3.41)

where t is the mean brightness of t and fu,v corresponds to the mean brightness of f in the
window corresponding to the offset (u, v).

However, the direct computation of γ(u, v) via (3.41) is computationally expensive: al-
though the normalized version of the template t

t′(x− u, y − v) :=
t(x− u, y − v)− t√∑

x,y

[(
t(x− u, y − v)− t

)2]
can be computed in advance (in only 5N2 + 2 arithmetic operations), the computational com-
plexity of the rewritten NCC term

γ(u, v) =

∑
x,y

[(
f(x, y)− fu,v

)
t′(x− u, y − v)

]√∑
x,y

[(
f(x, y)− fu,v

)2] (3.42)

is

O(M2N2), (3.43)
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both for numerator γnum and denominator γdenom of (3.42) [12, 41]. Due to the correlation
theorem (3.44)

F(g ? h) = F(g) · F∗(h), or equivalently

g ? h = F−1(F(g) · F∗(h)) if F−1 well defined,
(3.44)

where F is the Fourier transform and F∗ its complex conjugate, γnum can be computed by mak-
ing use of the frequency domain since (3.42) implies that γnum = (f−fu,v)?t′. The complexity
of this operation amounts toO(M2 log2(M)) [41], which in particular is an improvement to the
complexity of the direct computation (3.43) for (relatively) large template widthsN . A different,
faster approach for the calculation of γnum is presented by Briechle and Hanebeck [12] who ap-
proximate γnum with the aid of special basis functions at the cost of an emerging approximation
error.

For an efficient computation of the denominator γdenom, a simple expansion yields∑
x,y

(
f(x, y)− fu,v

)2
=
∑
x,y

[
f(x, y)2

]
− 2

∑
x,y

[
f(x, y)fu,v

]
+
∑
x,y

[
fu,v

2
]

=
∑
x,y

[
f(x, y)2

]
− 2

N

(∑
x,y

[f(x, y)]

)2

+
1

N

(∑
x,y

[f(x, y)]

)2

=
∑
x,y

[
f(x, y)2

]
− 1

N

(∑
x,y

[f(x, y)]

)2

.

As demonstrated by Lewis [41], the remaining two summation terms can be efficiently computed
from running sum tables s(u, v), s2(u, v), defined by

s(u, v) = f(u, v) + s(u− 1, v) + s(u, v − 1)− s(u− 1, v − 1),

s2(u, v) = f2(u, v) + s2(u− 1, v) + s2(u, v − 1)− s2(u− 1, v − 1),

with s(u, v) = s2(u, v) = 0 when either u, v < 0. With this notation,

u+N−1∑
x=u

v+N−1∑
y=v

f(x, y) =s(u+N − 1, v +N − 1)− s(u− 1, v +N − 1)

− s(u+N − 1, v − 1) + s(u− 1, v − 1),

u+N−1∑
x=u

v+N−1∑
y=v

f2(x, y) =s2(u+N − 1, v +N − 1)− s2(u− 1, v +N − 1)

− s2(u+N − 1, v − 1) + s2(u− 1, v − 1),

which implies that subsequent to the initialization of s and s2, consuming O(M2) arithmetic
operations, solely three additions/subtractions per offset (u, v) are required to evaluate the sums
over f and f2.

The approach presented above is exclusively designed for rectangular template regions, i.e.
the sums over x, y in the NCC representations are computed for a rectangular domain. In the
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current particle matching application, however, it is desired to reduce the (perturbing) influence
of nearby particles, which motivates the use of circular template regions. Moreover, the ex-
clusion of the area of intersecting particles from the template region increases the reliability of
particle cluster dissection, as demonstrated in Chapter 4.

In practice, the computation of the whole correlation matrix is redundant since solely the
NCC value for that offset (u0, v0), which associates the known particle center locations in both
images, is relevant. Due to potentially imprecise center coordinates, the calculation of γ(u, v)
is performed in a small (3× 3 or 5× 5) neighborhood of (u0, v0), straight forward via (3.41) or
(3.42), respectively.

Each detected particle from a µPTV recording is then matched to all reference particles
and that with the highest NCC score then determines the allocated position in the flow. In
order to impede the detection of false positives, this score must exceed a predefined threshold,
otherwise the detected particle is discarded. Since large, ring-shaped particles are more prone
to shape imperfections than small, bright particles, this threshold is adjusted with regards to the
considered layer. In practice, it was found that the values 0.9 (for the first, diffuse particle),
0.97 (for the focused, sharp particle), and 0.7 (for the last, ring-shaped particle), with linear
combinations of those values for the layers in between, represent an adequate parameter choice.

In any case, the calculation of the NCC represents the most time-consuming component of
the presented algorithm as will be shown in Chapter 4.

3.3.2 Proposed Method: Radial intensity profiles

In this work, we propose an improved matching technique based on normalized radial intensity
profiles (brightness profiles). Radiating from the particle center, the profiles are computed by
averaging the intensities on surrounding circle lines, followed by a scaling to [0, 1] which ensures
contrast invariance. Here, the surrounding circle line of the center pixel c with radius r consists
of all image pixels x which fulfil

r − 1

2
≤ ‖x− c‖ ≤ r +

1

2
.

In order to increase the accuracy of the profiles, they are considered with half a pixel dis-
tance between two adjacent grid points, i.e. the surrounding circle lines are computed for
r = 1, 1.5, 2, 2.5, . . . , rmax.

Interfering areas from other detected particles in close vicinity are excluded from the profile
calculation process. Figure 3.13 displays the radial intensity profiles from the particles detected
in Figure 3.11(c).

The sum of the pointwise, absolute distances between a reference profile and the consid-
ered particle profile then indicates their dissimilarity. Therefore, that reference particle with
the lowest dissimilarity score represents the best match. Similar to the cross-correlation match-
ing approach, the lowest dissimilarity score must undercut a predefined (layer index dependent)
threshold for the particle not to be discarded.
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Figure 3.13: Normalized radial intensity profiles of the particles labeled in Figure 3.11(c).

3.4 Step 4: Particle Tracking

Due to the comparatively low particle density in the existing µPTV recordings (approximately
60-100 particles, diameter between 10 and 80 pixels on 2048 × 2048 pixel images), the use of
a standard tracking algorithm is sufficient. The algorithm implemented searches for the most
plausible particle links in two frames by minimizing a linear cost function and was inspired by
the work of Sbalzarini and Koumoutsakos [65]. This particular method was selected since a-
priori knowledge about the particle motion can be easily included into the formulation of the
tracking problem and the tools to solve the problem are available in the MATLAB Optimization
Toolbox (version R2010a).

In order to provide theoretical background, next, a short overview of Linear Programming
and Integer Programming techniques is given, followed by an explanation of the precise method
implemented in the µPTV application.
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3.4.1 Linear Programming

In Linear Programming, a linear objective function is optimized with respect to linear equal-
ity and/or inequality constraints. The standard form of the general Linear Programming (LP)
problem is given by [77]

maximize cTx

subject to Ax ≤ b,
x ≥ 0.

(3.45)

Here, A = (aij) ∈ Rm×n is a given matrix of coefficients, c = (cj) ∈ Rn and b = (bi) ∈
Rm are given vectors of coefficients and the values of the vector x = (xj) ∈ Rn are to be
determined. Note that each minimization problem can be viewed as a maximization problem
after multiplying the vector c by −1. Furthermore, it is clear that an equality constraint

n∑
j=1

aijxj = bi

can be converted to standard form by writing it as a pair of inequalities:

n∑
j=1

aijxj ≤ bi,

n∑
j=1

−aijxj ≤ −bi.

Finally, if a variable xj is not supposed to be nonnegative, the substitution

xj = x+
j − x

−
j

with x+
j ≥ 0, x−j ≥ 0 allows the introduction of unconstrained variables to the standard form

[37].
Each of the 2n inequality constraints in (3.45) describes a half-space in Rn which must

contain the solution. The intersection of these half-spaces therefore constitutes the set of the
so-called feasible solutions for the LP problem. For a maximum number of n = 3 variables, this
geometric interpretation permits a graphical illustration. An example where n = 2 and

A =

−1 3
1 1
2 −1

 , b =

12
8
10

 , c =

(
3
2

)

is displayed in Figure 3.14(a). In addition, two level sets of the objective function cTx are shown,
which indicate that x = (x1, x2)T = (6, 2)T represents the optimal solution.

As stated by Matoušek and Gärtner [46], “tens of different algorithms have been suggested
for linear programming over the years”. In the textbooks on Linear Programming reviewed for
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(a) The set of feasible solutions and two level sets of
the objective function. Figure taken from [77].

(b) Scheme of an Interior-Point Method. Figure
taken from [46].

Figure 3.14: Graphical interpretation of a Linear Programming problem.

this section [37, 46, 77], the algorithms relevant for a practical application are essentially classi-
fied into two groups: techniques based on the Simplex Method and Interior-Point Methods.
It can be shown [46] that if an optimal solution to (3.45) exists, it is reached at a “vertex” of
the set of feasible solutions, cf. Figure 3.14(a). The basic idea of the Simplex Method is to find
such a feasible starting solution and to gradually enhance it by moving along the edges from
one vertex to another such that the value of the objective function grows until the optimum is
obtained. In contrast, Interior-Point Methods ”walk through the interior of the set of feasible so-
lutions toward an optimum, carefully avoiding the boundary. Only at the very end, when they get
almost to an optimum, they jump to an exact optimum by a rounding step” [46]. This behaviour
is indicated in Figure 3.14(b).

The analytical procedure of both approaches is rather lengthy and best described with the aid
of a detailed example. For this purpose, we refer to the above-mentioned literature [37, 46, 77]
which provides an introduction into the field of Linear Programming. Moreover, dozens of
tutorials and solvers (commercial software as well as freeware) have been made available online
due to the popularity of those methods1.

A comparison of the performance of techniques based on the Simplex Method and Interior-
Point Methods leads to the discovery that each approach has its advantages, depending on the
particular problem [46, 77].

1The first two of the following links address the Simplex Method, the latter deal with Interior-Point Methods (all
accessed July 21, 2013):
http://people.hofstra.edu/stefan_waner/realworld/tutorialsf4/frames4_4.html
http://www.zweigmedia.com/RealWorld/simplex.html
http://www.caam.rice.edu/~zhang/lipsol/
http://www.diku.dk/OLD/undervisning/2006-2007/2006-2007_b2_426/interior.pdf
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3.4.2 Integer Programming

A standard Integer Programming (IP) problem differs from the standard LP problem by the
constraint that the variables xj are required to be integers:

maximize cTx

subject to Ax ≤ b,
x ≥ 0,

x ∈ Zn.

(3.46)

In general, two classes of algorithms dealing with (3.46) are mentioned [37, 46, 67]: Cutting
Plane Methods and Branch-and-Bound Methods. Initially, both classes apply so-called LP
relaxation, where the integrality constraint in (3.46) is omitted, i.e. a standard LP problem is
solved (e.g. by means of the Simplex Method). It can be proven that if the LP relaxation has at
least one feasible solution, then (3.46) also has at least one optimal solution [46]. If by chance an
optimal solution x̃ of the LP relaxation fulfils x̃ ∈ Zn, then x̃ obviously is an optimal solution of
(3.46). In the general case x̃ /∈ Zn, the value of cT x̃ represents an upper bound for the objective
function of the IP problem and further investigation is necessary.

Cutting Plane Methods successively add new constraints which do not affect the set of fea-
sible integral solutions but “cut off” a part of the non-integral solutions, including the optimal
solution x̃. This procedure is repeated until - after a finite number of iterations - the updated
optimal solution is integral. An explicit representation for the creation of such cutting planes is
available (Gomory cuts) [37, 46]. Figure 3.15(a) demonstrates this process for the problem

maximize z = 5x1 + 6x2

subject to 10x1 + 3x2 ≤ 52,

2x1 + 3x2 ≤ 18

x1 ≥ 0, x2 ≥ 0, integers.

(3.47)

The optimal solution of the LP relaxation of (3.47) is x̃ = (x1, x2) = (17
4 ,

19
6 ), with objective

value z = 40.25. After cutting off non-integral solutions with the aid of Cutting plane 1, the
updated optimal solution (x1, x2) = (4, 10

3 ) is still non-integral (with objective value z = 40).
The second iteration finally yields the optimal solution of (3.47) as (x1, x2) = (3, 4), with
maximum objective value z = 39.

Branch-and-Bound Methods select a non-integral component of the optimal solution of
the LP relaxation x̃j and split the integer program (3.46) into two “smaller” integer programs
(branching step): The first one is subject to the (additional) constraint bxjc ≤ x̃j , for the second
one the constraint dxje ≥ x̃j is added. Subsequently, both problems are solved and the splitting
process is repeated until (at least) one of the subproblems possesses an integral optimal solution,
whose objective value then is a lower bound for the optimal objective value. In further conse-
quence, only those subproblems where the maximum objective value exceeds this lower bound
need to be considered (bounding step). “In the worst case the bounding step may not prune any
subtree, but in many practical applications it results in enormous savings and allows for solving
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(a) Principle of a Cutting Plane Method. Figure taken from
[37].

(b) Iteration process of a Branch-and-Bound Method. Figures taken from [77].

Figure 3.15: Approaches for the Integer Programming problem.

large integer programs” [46]. In Figure 3.15(b), the problem

maximize z = 17x1 + 12x2

subject to 10x1 + 7x2 ≤ 40,

x1 + x2 ≤ 5

x1 ≥ 0, x2 ≥ 0, integers

(3.48)

is discussed. In the first frame, the set of feasible solutions of the LP relaxation is shaded. Its
optimal solution is x̃ = (x1, x2) = (5

3 ,
10
3 ) with maximum objective value z = 68.33, and the

thin line represents the corresponding level set of the objective function. In the first branching
step, the set of feasible solutions is splitted along the x1-axis, thus generating the two feasible
subregions P1 and P2, see the second frame of Figure 3.15(b). The optimal solution of P1

at (x1, x2) = (1, 4) with an objective value of z = 65 represents a first feasible solution to
(3.48). However, since the optimal solution of P2 at the (non-integral) point (x1, x2) = (2, 20

7 )
possesses the higher objective value z = 68.29, P2 requires the application of further branching
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steps. In the end, it is found that (x1, x2) = (4, 0) with objective value z = 68 is the optimal
solution to (3.48), marked as P8 in the third frame of Figure 3.15(b).

A famous task which can be formulated as an IP problem is the Traveling Salesman Prob-
lem where a salesman needs to visit a number of cities (with known pairwise distances). The
goal is to minimize the total traveling distance under the constraint that each city is visited ex-
actly once and that the salesman returns to the home city in the end (see [77] for more details).

Another example is the so-called Knapsack Problem: consider a hiker who can carry k
kilograms of equipment at most. Each item is described by its weight aj and its value cj . The
goal is to decide which items to carry in order to maximize the total value of all packed items,
in accordance with the weight limitation. Let xj = 1 if the jth item is chosen and xj = 0 if it is
not chosen. Then the mathematical formulation is

maximize
n∑
j=1

cjxj

subject to
n∑
j=1

ajxj ≤ k,

xj ∈ {0, 1} , j = 1, . . . , n.

The special case of IP where the variables xj are restricted to the set {0, 1} is referred to as
zero-one programming problem [37].

3.4.3 Proposed Implementation

In this section, the implementation of a special Integer Programming problem for the current
µPTV application is motivated and described in detail.

The goal is to determine the - in some sense most plausible - set of particle links between
both frames of a µPTV recording. Let {pi : i = 1, . . . ,m} and {qj : j = 1, . . . , n} be the set
of particles detected in Frame 1 and Frame 2, respectively. We define the binary, so-called
association matrix X = (xij) as

xij =

{
1 if pi and qj are produced by the same particle,
0 otherwise.

Due to entrance and exit of particles near the image border or detection errors, it is possible that
the same physical particle which appears on one frame is not detected on the other. On that
account, the association matrix is augmented with a column xi,n+1 (for particles disappearing
in Frame 2) and a row xm+1,j (for particles newly appearing in Frame 2), containing links to
so-called “dummy particles”. Thus, each particle must be either linked to a particle from the
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other frame or to a dummy particle, leading to the constraints for the matrix X:

n+1∑
j=1

xij = 1 ∀ i = 1, . . . ,m,

m+1∑
i=1

xij = 1 ∀ j = 1, . . . , n.

(3.49)

To find an optimal set of links (xij), the following linear cost functional Φ is minimized:

Φ =

m+1∑
i=1

n+1∑
j=1

cijxij → min, (3.50)

where cij represents the cost of associating the particle pi with particle qj . The cost of linking a
particle to one of the dummy particles is set to a predefined constant threshold C. Associations
with a cost larger than this value are impossible and do not need to be considered in the optimiza-
tion problem. By denoting the 3-dimensional physical position (determined in the detection and
matching process) of the particles pi, qj in the flow as Pi, Qj , the selection cnij := ‖Qj − Pi‖
represents the nearest-neighbor method which minimizes the total sum of particle distances be-
tween both frames.

In practice, however, it is beneficial to include a-priori physical knowledge about the fluid
motion. Let E(pi) be a reliable estimation of the displacement vector of particle pi, then the use
of

cpij := ‖Qj − (Pi + E(pi))‖

constitutes an appropriate adjustment. In the following, a method of computation for E(pi) for
the current application, based on a physical background, is presented. As a matter of fact, this
method is applicable for all planar flows, i.e. where all flow velocity vectors can be described in
a two-dimensional coordinate system.

In his investigations of the condensation process, Nusselt [49] deduced the following formula
for the velocity field of a (laminar) falling film on a vertical plate:

u(x, y, z) =
g

v

(
δz − z2

2

)
ex, (3.51)

where g = 9.81 m
s2

is Earth’s gravitational constant, v denotes the kinematic viscosity of the
considered liquid, δ is the film thickness (in practice estimated or measured with a probe), z
represents the distance to the backplate and ex is the unit vector in flow direction x. Obviously,
(3.51) describes a planar flow (in the (x, y)-planes) whose cross-sectional velocity profile is
shown in Figure 3.16.

Since the recording camera is positioned perpendicular to the flow - cf. the picture of the
experimental setup in Figure 1.8 on page 9 and the sketch in Figure 3.16 - the optical appearance
of a particle is not expected to change between two frames. As a consequence, two particles pi
and qj linked by the tracking algorithm must belong to the same layer. In practice, the strong
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Figure 3.16: Velocity profile of a falling film according to Nusselt [49]. Figure inspired by [47].

resemblance of specific reference images (cf. Figure 1.6(b) on page 7: the reference particles
near to the focal plane are hardly distinguishable) as well as image noise impede the accurate
particle classification. This statement is confirmed by the fact that the manual classification of an
image from a synthetic dataset where cut-out reference images were randomly distributed (see
Section 4.3 for a detailed description of this dataset) resulted in solely 71% exactly recovered
matches whereas 29% of the associations were off by one layer. Moreover, the finite number of
reference images (recorded at variable camera distances) accounts for variations of the shapes
of flow particles between those camera distances.

Therefore, the condition of coinciding layer indices is loosened and the planar motion is
computed in the “best” common layer lij of both particles. As a result, small deviations in the
matching result of (one or both) particles can be compensated and the erroneous rejection of the
particle link is prevented.

For this purpose, the set of possible layer indices is observed, i.e. the indices of those
reference images for which the matching value exceeds (correlation matching) or undercuts
(profile matching) the corresponding threshold for two considered particles pi and qj . In the case
that this set is empty, a best common layer does not exist and the link pi ↔ qj is impossible,
i.e. xij = 0 and the variable xij is removed from the optimization problem (3.50) with side
conditions (3.49). Otherwise, for cross-correlation matching, lij is chosen as that possible layer
index where the sum of both NCC matching values is maximal; for profile matching, the index,
where the sum of the profile matching values is minimal, is considered. In conclusion, the best
common layer lij permits the computation of the distance y between the moving particle and the
backplate. Equation (3.51) then yields the estimated displacement vector E(pi) = E(lij).

In order to impede the association of two particles where the matching algorithm assigned
different main layers (that with the best matching value), an additional cost term cdij , quantifying
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the shape dissimilarity of pi and qj , is used:

cij := cpij + cdij .

We set

cdij :=
dmax

10
·
(
Spi(lij) + Sqj (lij)− 2

)
, (3.52)

where Spi(lij) is the position of lij in a list of (sorted from best to worst) matching layers of
particle pi (analogous for qj). Thus, connections where both particles have the same main layer
are not penalized by this term, since cdij equals zero in this case. The value dmax is the maximum
allowed displacement of a particle in the second frame from its predicted position by means of
E(lij). In particular, we set dmax =

√
d2
p + d2

n where dp and dn describe the maximum allowed
displacement in the primary flow direction and its normal, respectively. This means that each
potential link pi ↔ qj necessarily must fulfil cpij ≤ dmax, otherwise it is declared impossible
and xij = 0 (analogous to above). The factor dmax

10 in (3.52) therefore adjusts the magnitude of
cdij to that of cpij .

The choice of the parameters dp and dn is crucial for the successful execution of the tracking
algorithm: on the one hand, a “too high” selection can cause a large number of possible particle
links. As a result, the dimensionality of the optimization problem (3.50) with (3.49) increases
which may affect the temporal performance of the algorithm. On the other hand, a “too low”
selection can eliminate a correct link xij due to the inaccuracy of E(lij). In practice, choosing
dp approximately as the maximum displacement vector according to (3.51) and dn =

dp
2 yields

satisfying results: it avoids the omission of correct links but in general eliminates over 95% of
the incorrect links.

Since cij = cpij + cdij , the cost C for a dummy link is composed of maximum acceptable
values for cpij and cdij :

C = dmax + 3
dmax

10
= 1.3 dmax.

In this work, the binary linear optimization problem (3.50) combined with side conditions
(3.49) is efficiently solved by the MATLAB Optimization Toolbox routine bintprog which
applies a Branch-and-Bound Method, supported by the Simplex Method (see Section 3.4.1 and
3.4.2). For the given low particle density, more than two iteration steps have never been required
to identify the optimal association matrix X .

Figure 3.17 illustrates the variables introduced above in a schematic image pair where one
particle p1 in the first frame is confronted with four potential linking particles q1, q2, q3, q4 in the
second frame. Suppose that cross-correlation matching is selected and the matching threshold is
t = 0.95. For the sake of visibility, we assume that the orientation of the displacement estimation
vectors of two different layers is variable which is not the case in our application due to (3.51).
Table 3.3 lists the (fictional) NCC matching values and the corresponding layer indices of all
five particles appearing in the scene.

Table 3.4 indicates how the best common layer is computed. Moreover, it becomes clear that
q1 and q2 remain as the only possible partners for p1 since q3 has no common layer with p1 and
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Figure 3.17: Illustration of variables used for particle tracking.

q4 is too distant from the estimated particle position. The fifth column shows that cd11 < cd12 and
from Figure 3.17, it is evident that cp11 < cp12. Therefore, the link p1 ↔ q1 is the most favorable
in this situation.

3.5 Summary

This chapter gave an overview of the methods applied in this thesis. The whole approach is
divided into four major tasks: image pre-processing, particle detection, particle matching and
particle tracking. For each task, first the theoretical background was specified, followed by a
detailed description of the specific algorithms implemented.

Concerning image pre-processing, the field of nonlinear diffusion filtering was introduced.
Based on the fundamental work of Perona and Malik [58], the advanced nonlinear diffusion
filter by Catté, Lions, Morel and Coll (CLMC) [14] was derived and its theoretical numerical
stability properties were analyzed. In particular, two discretization schemes were assessed on
µPTV data: an explicit scheme and a semi-implicit variant (AOS scheme), where the former
turned out to be somewhat more precise at the expense of a higher computational cost.
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Table 3.3: (Fictional) particle matching properties of exam-
ple situation in Figure 3.17.

Particle MVa CLIb

p1 0.995, 0.99, 0.97, 0.96, 0.955 12, 10, 9, 8, 13
q1 0.995, 0.98, 0.97, 0.96 10, 11, 12, 9
q2 0.97, 0.96, 0.955 6, 8, 7
q3 0.995, 0.97 20, 21
q4 0.99, 0.97, 0.96 8, 7, 9

a Matching Values (NCC) larger than threshold t, sorted in a
decreasing manner

b Corresponding Layer Indices

Table 3.4: Properties of potential particles links p1 ↔ qj .

Particle SMLa CCLIb l1j Sp1(l1j) + Sqj (l1j) dp ok?c dn ok?d

q1 1.985, 1.965, 1.93 10, 12, 9 10 2 + 1 = 3 4 4

q2 1.92 8 8 4 + 2 = 6 4 4

q3 − − − − − −
q4 1.95, 1.93 8, 9 8 4 + 1 = 5 4 6

a Sum of Matching Values of common layers with p1, sorted in a decreasing manner
b Corresponding Common Layer Indices with p1
c Distance to estimated displacement vector in primary flow direction within range?
d Distance to estimated displacement vector normal to primary flow direction within range?

In order to detect particles on a CLMC filtered image, a modified Circular Hough Transform
is used for the extraction of circular shapes from a (Canny) edge image. As for the practical
realization, especially the method of parameter selection was illustrated and modifications for a
superior performance of the method presented were proposed. These include an algorithm which
eliminates disturbing edges from the edge image and the adoption of specific voting weights for
the CHT.

Subsequently, two different particle matching algorithms were reviewed: the first, based on
the Normalized Cross-Correlation coefficient, represents a (computationally expensive) standard
matching technique already in use in a µPTV application [56]. As an alternative, a simple
method which compares radial particle brightness profiles is proposed. Promising results in the
next chapter demonstrate the applicability of this matching technique.

The last section deals with particle tracking, i.e. searching for the correct association of
detected and matched particles from two consecutive frames. For this purpose, a linear opti-
mization problem was formulated as the minimization of a special cost function. Subsequent
to a short overview of Linear and Integer Programming techniques, which gave an impression
of how to solve such problems, the derivation of the approach implemented was founded on
physical background knowledge according to Nusselt’s Film Theory [49].
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CHAPTER 4
Evaluation and Results

In this chapter, the evaluation process of the µPTV system implemented is described and results
are provided. The influence of different particle matching techniques on the performance of the
algorithm is analyzed and situations where the method proposed fails are revealed. In particular,
the particle detection algorithm is evaluated separately from the whole µPTV algorithm.

Two datasets describing planar velocity fields have been used to evaluate the method intro-
duced in this thesis. The first one consists of 5 experimental µPTV image pairs in a 50% solution
of the LAYER-1 testing liquid with water, containing a total of 693 particles (344 linked pairs,
5 single particles). In this case, the ground truth data was manually labelled. The second dataset
involves 5 synthetic image pairs containing a total of 662 randomly situated reference particles
(323 linked pairs, 16 single particles), superimposed with Gaussian white noise.

The algorithms in this work were implemented in MATLAB R2010a, making use of both
Image Processing Toolbox and Optimization Toolbox. The software was tested on a 64-bit
Windows 7 operating system with an Intel Core 2 Duo T9400 processor (2.53 GHz) and 4 GB
RAM. In order to reduce computation time, the code is vectorized where possible.

The next section outlines the experimental settings as well as the statistical methods applied
in the evaluation. Section 4.2 and 4.3 in detail characterize both datasets and present the results
obtained. In addition, the physical relevance of the extracted velocity data is discussed.

4.1 Experiments Overview

For image pre-processing, the AOS scheme of the CLMC equation is implemented (see Section
3.1.2.3). As motivated in Section 3.1.3, the parameter selection λ = 8, σ = 2, T = 4, τ = 2
guarantees proper noise removal in a comparatively short computation time.

In the forthcoming performance analysis, first, the particle detection algorithm (in combina-
tion with matching) is analyzed at single-particle level. This means that all frames are regarded
separately and the detection performance is evaluated by means of the particle layer indices
allocated by the algorithm.
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As a second step, the whole algorithm is evaluated, i.e. the particle pairs associated by the
tracking algorithm are compared with labelled, correct particle links.

For these two purposes, the standard measures precision and recall [62] are applied. In
this context, the number of true positives tp is declared as the quantity of correctly identified
particles (or particle links, respectively, for the evaluation of the whole algorithm). Erroneously
detected particles (particle links) not listed in the ground truth are denoted as false positives fp
(Type I error), while the false negatives fn are represented by those entries in the ground truth
data which have not been discovered by the algorithm (Type II error). Those particles (particle
links), where an inaccurate layer index has been assigned, therefore contribute to both false
positives and false negatives.

Then, the precision p and the recall r are defined by

p =
tp

tp + fp
, r =

tp

tp + fn
. (4.1)

Another accuracy measure is given by the F-score Fβ

Fβ =
(1 + β2) · p · r
β2 · p+ r

, (4.2)

which represents a weighted average of precision and recall. In our application, the correctness
of the results is more important than the amount of extracted data per image. Therefore, we use
β = 0.5, thus weighing the precision twice as much as the recall.

In the ground truth data, each particle is characterized by the coordinates of its center and
its layer index. All entries for which a corresponding detected particle exists, are labelled true
positives (of the particle detection algorithm). To be precise, two conditions must be fulfilled:

• the (Euclidian) distance between the detected and the true center coordinates must be
small. Due to potential inaccuracies in the manually annotated ground truth data (espe-
cially for large, low-contrast ring-shaped particles, where the center location is not ap-
parent), a maximum allowed deviation of 4 pixels is introduced. This corresponds to
approximately 6.5 % of the diameter of the largest occurring reference particle (62 pix-
els).

• their layer indices must be equal. As will be motivated below, for an increased relevance
of the results, this requirement is relaxed to a maximum allowed difference in the layer
index of up to ±3.

In the case of multiple detected particles fulfilling both conditions, solely the one nearest to the
true center is selected as the corresponding true positive. With the current data, however, this
situation never occurred.

The influence of five different matching variants on the outcome of the algorithm is com-
pared: the first one applies the radial intensity profile technique as described in Section 3.3.2.

As for the second method, further robustness towards the profile matching process is cre-
ated by merging the most resembling reference images into one class according to a previously
defined matching value threshold t. In the experiments below, each pair of reference images,
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(a) Profile matching (Method 2) (b) NCC matching (Method 5)

Figure 4.1: All 30 reference images with highlighted particles which are merged into three
classes. Gray values inverted, contrast enhanced.

where the sum of absolute distances between their intensity profiles undercuts the value t = 0.6,
is merged into the same layer class. Since the intensity profiles are evaluated on two grid points
per pixel (cf. Section 3.3.2), the matching value 0.6 corresponds to an approximate area of
0.6
2 = 0.3 between both intensity profile curves. In Figure 4.1(a), the three particle classes

emerging in the current application are marked by blue squares, green circles and red hexagons,
respectively. In the further process, one representative particle per class is selected and the oth-
ers are discarded, i.e. in the current situation, from 30 original reference images 26 distinct layer
classes are remaining. Due to the reduced amount of layers, a locally decreased spatial depth-
resolution of the flow is the consequence. Figure 4.1(a) discloses a potentially occurring problem
of the introduction of layer classes for the practical application: the physical significance of the
velocity data is diminished if the layer indices of the same class are not adjacent (here: blue
squares and red hexagons). The selection of a stricter threshold t prevents this situation; never-
theless, incorrect matching results cannot be ruled out due to the remaining resemblance of the
corresponding reference images.

The third method applies NCC matching with rectangular template windows with the aid of
Fourier transforms according to the approach presented by Lewis [41], see Section 3.3.1.

Ultimately, Methods 4 and 5 compute the NCC directly in a circular template region, using a
5× 5 neighborhood around the corresponding circle centers (see Section 3.3.1). Analogously to
Method 2, Method 5 combines layers with similar particle shapes into one class. To be precise,
a maximum NCC value of 0.99 is allowed for two reference images not to be merged into the
same class. Figure 4.1(b) shows the resulting layer classes for this method.

Furthermore, the origins of the (Type I and Type II) errors are investigated more concretely.
For both particle detection as well as the whole µPTV process, six potential reasons for the
emergence of false negatives can be identified while there are three reasons for the occurrence
of false positives, a detailed description of which is provided in Tables 4.1-4.4.
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Table 4.1: Reasons for the detection of false positives in the particle detection algorithm.

Reason Description

1 wrong layer index assigned (too large difference from ground truth value)

2 particle would have been correctly detected, but center coordinates are inaccurate
(more than 4 pixels, less than 8 pixels away)

3 none of the reasons above (e.g. spurious detection due to background)

Table 4.2: Reasons for the detection of false negatives in the particle detection algorithm.

Reason Description

1 particle center not detected since no local maximum in the accumulator array was
found (conditions (M1) and (M2) on page 50)

2 local maximum in the accumulator array found, but no corresponding particle ra-
dius (conditions (R1), (R2), (R3) on page 51)

3 particle radius found but variance condition along surrounding circle lines not ful-
filled (condition (M3) on page 50)

4 particle radius found and variance condition fulfilled but particle erroneously dis-
missed due to poor matching value (threshold)

5 matching value accepted but wrong layer index assigned (too large difference from
ground truth value)

6 particle would have been correctly detected, but center coordinates are inaccurate
(more than 4 pixels, less than 8 pixels away)

Table 4.3: Reasons for the detection of false positives in the whole µPTV algorithm.

Reason Description

1 wrong layer index assigned (too large difference from ground truth value), error
passed on from incorrect particle detection (Table 4.1 Reason 1)

2 particle link would have been correctly detected, but center coordinates of at least
one particle were inaccurate (Table 4.1 Reason 2)

3 other erroneous links produced by tracking algorithm
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Table 4.4: Reasons for the detection of false negatives in the whole µPTV algorithm.

Reason Description

1 particle link impossible to find; 0 particles detected

2 particle link impossible to find; 1 particle detected

3 particle link impossible to find; both particles detected but a wrong layer index was
assigned to at least one particle (Table 4.2 Reason 5)

4 particle link impossible to find; both particles correctly detected (layer index ±3)
but no common layer index exists

5 particle link would have been correctly detected, but center coordinates of at least
one particle were inaccurate (Table 4.2 Reason 6)

6 particle link possible to find; erroneous link produced by tracking algorithm

4.2 Experimental Dataset

For the experimental dataset, ground truth data is not a-priori available and therefore created
through manual particle annotation in the original, non pre-processed raw images. As the flows
considered in this work are assumed to be parallel to a backplate, planar velocity vectors are
postulated, cf. (3.51). This physical assumption leads to an increased reliability in the particle
labelling process as it allows the simultaneous classification of the same particle in both frames
with varying contrast conditions. Nevertheless, uncertainty in the specified ground truth data
remains: first of all, the finite number of reference images accounts for new, “in-between” types
of occurring particle shapes. Moreover, the similarity of specific reference images of different
layers (cf. Figure 4.1: reference particles around and behind the focal plane) as well as image
noise impede the accurate particle classification. This statement is confirmed by the fact that the
manual annotation of an image from the synthetic dataset, where ground truth data is available,
resulted in solely 71% exactly matched particles whereas 29% of the associations were off by
one layer. As a result, in the case of the experimental image data, it is not meaningful to demand
the exact recognition of the manually characterized ground truth reference label. Instead, a
deviation of ±2 or ±3 layers, respectively, is accepted and considered as a true positive.

Tables 4.5 and 4.6 display the performance of our profile matching algorithm in contrast
to the cross-correlation based approaches outlined in Section 3.3 for the experimental dataset.
Precision, recall and F0.5-score of the particle detection algorithm as well as the whole µPTV
algorithm are listed for a maximum allowed matching difference of 0, 1, 2 and 3 layer indices,
respectively. Note that for the evaluation of the detection algorithm, the layer index of a particle
is computed based on the best matching value (highest NCC score or lowest profile dissimilarity
score, respectively). Concerning a particle link in the whole µPTV algorithm, this layer index is
recomputed (a common layer index for both particles is found, see Section 3.4.3) and therefore
possibly differs from the previous value. Furthermore, the average computation time of the
whole algorithm per image pair is shown. The most relevant results (profile matching vs. NCC
matching, allowed deviation ±2 layers, no layer classes) are highlighted in bold.
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Table 4.5: Results of particle detection algorithm on real data, ground truth manually annotated

Matching method
Precision Recall

±0 ±1 ±2 ±3 ±0 ±1 ±2 ±3

1: Profiles 0.445 0.831 0.924 0.945 0.407 0.760 0.846 0.864

2: Profiles, merged layers 0.478 0.872 0.957 0.971 0.433 0.789 0.866 0.879

3: NCC Lewis 0.401 0.803 0.862 0.900 0.323 0.648 0.696 0.726

4: NCC mask 0.397 0.792 0.868 0.904 0.368 0.734 0.805 0.838

5: NCC mask, merged layers 0.498 0.865 0.908 0.931 0.459 0.798 0.837 0.859

Matching method
F0.5-score

±0 ±1 ±2 ±3

1: Profiles 0.437 0.816 0.907 0.928

2: Profiles, merged layers 0.469 0.854 0.937 0.951

3: NCC Lewis 0.382 0.766 0.823 0.859

4: NCC mask 0.391 0.779 0.855 0.890

5: NCC mask, merged layers 0.489 0.851 0.893 0.916

Table 4.6: Results of whole µPTV algorithm on real data, ground truth manually annotated

Matching method
Precision Recall

±0 ±1 ±2 ±3 ±0 ±1 ±2 ±3

1: Profiles 0.466 0.844 0.932 0.949 0.398 0.721 0.797 0.811

2: Profiles, merged layers 0.495 0.871 0.962 0.972 0.413 0.727 0.802 0.811

3: NCC Lewis 0.432 0.803 0.875 0.905 0.331 0.616 0.672 0.695

4: NCC mask 0.431 0.803 0.875 0.908 0.381 0.709 0.773 0.802

5: NCC mask, merged layers 0.523 0.877 0.924 0.937 0.459 0.770 0.811 0.823

Matching method
F0.5-score

Processing Time
±0 ±1 ±2 ±3

1: Profiles 0.451 0.816 0.901 0.918 39.6 s

2: Profiles, merged layers 0.476 0.838 0.925 0.935 39.1 s

3: NCC Lewis 0.407 0.757 0.825 0.854 101.5 s

4: NCC mask 0.420 0.782 0.853 0.885 91.6 s

5: NCC mask, merged layers 0.509 0.854 0.899 0.912 86.3 s
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It is concluded that the proposed approach using radial intensity profiles is superior to the
NCC-based techniques reviewed, with respect to the evaluation measures examined as well as
the temporal performance. The merging of layers into classes results in an increase of the preci-
sion of approximately 3− 5 %.

Unfortunately, a direct comparison to existing literature where a related Defocusing µPTV
framework is addressed [54,56,86] is not possible since in those publications, image processing
components are either analyzed insufficiently or not at all. Solely Paschke et al. [56], who im-
plemented a cross-correlation based technique, report a maximum recall value of approximately
0.2. Table 4.6 indicates that in this regard, the algorithm presented achieves superior results.
However, note that the conditions are related but not identical as the actual performance of the
method is influenced by different factors such as the given particle density in the considered
recordings, the number of reference particles or the present contrast conditions attributable to
the preferences of the optical system in use.

Figures 4.2 and 4.3 display the distribution of false positives and false negatives, respectively,
according to the error classification in Tables 4.1-4.4. The plots on the left refer to the standard
profile matching algorithm (Method 1), the right side is dedicated to NCC matching (Method
4). In Figure 4.2, where the error statistics of the particle detection algorithm are depicted, the
blue bars stand for the particles which are partially occluded. This concerns particles which are
either clipped by the image border or part of a cluster, i.e. where other particles are located in
close proximity.
In case of the particle detection algorithm, we observe that

• the distribution of false positive reasons is similar for both matching techniques: over
80 % of Type I errors originate in erroneous matching results (fp Reason 1), with an
insignificant negative influence of particle clusters.

• the majority of the false negatives are also attributable to poor matching results (fn Rea-
sons 4 and 5). Detection errors due to the modified CHT (fn Reasons 1,2,3) are rare
and primarily result from the indistinguishability of optically coalesced particle clusters.
To be precise, the main reason for a false negative in profile matching is the erroneous
rejection due to the matching threshold selected. Regarding NCC matching, however,
detected particles with an incorrectly assigned layer index are the dominant factor. Note
that this result is dependent on the explicit selection of the parameters appearing in the
implementation. A “loosened” matching threshold reduces the number of incorrectly re-
jected particles, but also causes a higher number of wrongly allocated layer indices. In the
notation from above, this would induce a decline of fn Reason 4 errors, combined with
an increase in errors due to fn Reason 5 and fp Reason 1.

As for the whole µPTV algorithm,

• as a logical consequence of the results from above, again the vast majority (this time over
90 % for both matching techniques) of false positives is due to wrong layer indices.

• more than half of the false negative links are due to the unsuccessful detection of the
corresponding particle in both frames.
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• all particle links, where the corresponding particle was successfully detected in both
frames, are recovered by the tracking algorithm, as the frequency of fn Reason 6 is zero
(for both matching techniques).

Figures 4.4-4.6 show real image cut-outs containing examples for the different error sce-
narios listed in Tables 4.1-4.4. The colors of the circles highlighting the particles indicate the
detection status (green = successful, yellow = wrong layer, red = unsuccessful). The different
shades of green indicate the difference to the layer index listed in the ground truth (bright↔ ±0,
darker↔ ±1, dark↔ ±2). Analogously, the color of the arrows describes the tracking status
of the whole µPTV algorithm. Further details are provided in the respective image captions.

To conclude this section, the physical relevance of the results obtained is evaluated. The
theoretical velocity profile of a falling film on a flat, vertical plate was specified in the previous
chapter in Equation (3.51) on page 64, see also Figure 3.16. The currently considered measure-
ments, however, were conducted on a structured plate with engraved microchannels; a sketch is
provided in Figure 4.7(a). Due to the inhomogeneous thickness of the flow, it is obvious that
the resulting particle velocities cannot be expected to follow a clear profile. Nevertheless, the
hypothetical velocity profiles with flow thickness d1 (in a channel) and d2 (on a ridge), as in-
dicated in Figure 4.7(a), can be used as reference curves for the extracted data. Note that the
exact values inserted for d1, d2 and the kinematic viscosity of the liquid v were estimated based
on the velocity data. This data is visualized in Figure 4.7(b) with the aid of a violin plot, which
generates multiple histograms side-by-side. In this way, the particle velocity distributions for
all flow layers are shown in a well-organized manner. For the creation of the graphic, a toolbox
downloaded from the MATLAB Central File Exchange was used [32]. For each layer, a red
cross marks the mean particle velocity. It can be seen that the particle velocities (except for a
few errors) are limited by the hypothetical profiles and their distribution shows good agreement
with the parabolic profile shape, especially for the deeper and shallower regions of the flow. The
high variation of the particle velocities of the layers in the middle of the flow (near to the ridges
in the plate) is due to the high variation of possible particle distances to the nearest plate surface
where the velocity is assumed to be zero (no-slip boundary condition).
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Figure 4.2: False positive and false negative error distribution of particle detection algorithm
according to reasons listed in Tables 4.1 and 4.2. TN = Total Number which relative frequency
refers to. Left: profile matching (Method 1), Right: NCC matching (Method 4). Above: False
positives fp (see Table 4.1). Below: False negatives fn (see Table 4.2). The blue coloring
indicates the fraction of particles which are not entirely visible, either due to particle clustering
or clipping by the image border.
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Figure 4.3: False positive and false negative error distribution of whole µPTV algorithm ac-
cording to reasons listed in Tables 4.3 and 4.4. TN = Total Number which relative frequency
refers to. Left: profile matching (Method 1), Right: NCC matching (Method 4). Above: False
positives fp (see Table 4.3). Below: False negatives fn (see Table 4.4).
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(a) Detection error scenario 1a: the left particle is cor-
rectly identified (layer index ±0), the other two par-
ticles are detected by the CHT but discarded since
no matching value (profile matching) undercuts the
matching threshold (Table 4.2 Reason 4).

(b) Detection error scenario 1b: the left and right parti-
cles are correctly identified (layer index ±0), the parti-
cle in the middle is detected by the CHT but discarded
since no matching value (profile matching) undercuts
the matching threshold (Table 4.2 Reason 4).

Figure 4.4: Tracking error scenario 1: the left particle is correctly tracked (common layer index
±0). The particle in the middle cannot be tracked since it was not correctly detected in both
frames (Table 4.4 Reason 1). The right particle cannot be tracked since it was only correctly
detected in one frame (Table 4.4 Reason 2).

(a) Detection error scenario 2a: the left particle is de-
tected but assigned to a wrong layer (Table 4.1 Reason
1 and Table 4.2 Reason 5). The right particle is cor-
rectly identified (layer index ±1).

(b) Detection error scenario 2b: here, the left particle
is correctly identified (layer index ±0) as well as the
right particle (layer index ±1).

Figure 4.5: Tracking error scenario 2: the left particle is tracked in a wrong common layer
(Table 4.3 Reason 1 and Table 4.4 Reason 3). Observe the difference in the particle shapes
in both frames, which impedes the discovery of a meaningful common layer index! The right
particle is correctly tracked (common layer index ±1).
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(a) Detection error scenario 3a: in the top half of the
image, a ring-shaped particle coalesces with a bright
particle. The ring particle is not detected at all (Ta-
ble 4.2 Reason 1) while the sharp particle is associated
with a too large radius. In the particle matching step,
this spurious detection is discarded (Table 4.2 Reason
4). The third particle in the scene is correctly identified
(layer index ±1).

(b) Detection error scenario 3b: in this frame, all three
particle centers are detected as local maxima in the ac-
cumulation array. However, the ring particle does not
fulfil the variance condition (Table 4.2 Reason 3) and
the bright particle in the cluster is discarded as a result
of the radius condition (R3), Table 4.2 Reason 2. The
third particle is correctly identified (layer index ±2).

Figure 4.6: Tracking error scenario 3: both particles in the cluster are not tracked since they
have not been successfully detected on both frames (Table 4.4 Reason 1). The third particle link
is correctly recognized (common layer index ±2).
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(b) Violin plot of the absolute particle velocities extracted from
the experimental dataset.

Figure 4.7: Physical relevance of the results.
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In addition, a different, larger dataset of 1142 image pairs containing a total of 71158 parti-
cles is investigated for a more meaningful description of the present flow behavior. Figure 4.8
displays the average vertical (x-component) flow velocity ux, spatially resolved on a horizontal
cross-section across the (y, z)-plane. The extracted velocity data indicates the actual geome-
try of the backplate and we observe that the actual depth of the microchannels located on the
approximately 1.8× 1.8 mm large region recorded by the camera is varying.

As a consequence of the no-slip boundary condition, it is expected that with increasing dis-
tance to the plate surface, the flow velocity also increases. This is consistent with the results
shown in Figure 4.8 where the deeper microchannel (on the right-hand side of the graphic) ac-
counts for higher flow velocities near to the flow surface (i.e. where zn−1 ≈ 0.2) than the
shallower microchannel (in the middle of the graphic). Here, zn−1 represents the optical dis-
tance to focus as n is the (unknown) refraction index of the liquid.

Figure 4.8: Average vertical flow velocity ux in m/s, spatially resolved in (y, z)-plane where
zn−1 denotes the optical distance to the focal plane (sample of over 70000 particles).
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4.3 Synthetic Dataset

In the following, the µPTV software developed is tested on synthetic raw data. In order to
achieve meaningful comparability to the results presented in the previous section, the image
structure should be as similar as possible to that of an experimental image. For this purpose,
initially, the creation process of the synthetic raw image data in use is outlined.

1. Random particle positioning: In the end, 2048 × 2048 pixel images are desired. Since
particle motion into/out of the frame should be possible, a 200 pixels wide “frame” is
added outside the image area prior to particle positioning. The row and column coordi-
nates, respectively, of the particle centers of the first frame are then calculated by gener-
ating 100 uniformly distributed random integers in the range [−199, 2248]. Moreover, for
each coordinate, a random layer index between 1 and 30 is assigned. For convenience,
a parabolic velocity profile (depending on the layer index) is postulated. As for the par-
ticle’s position in the second frame, the corresponding displacement vector from the ve-
locity profile as well as a small random deviation in both directions (Gaussian distributed,
µ = 0, σ = 5 pixels) are added to the coordinates of the first frame.

2. Determination of noise model: As the particles inserted into the synthetic image are
(circular) cut-outs from reference recordings, the noise distribution in the particle image
should be consistent with the noise distribution from the reference recordings. To this end,
an empty image region (i.e. only background, no particles) is cut out from all 30 reference
recordings. The distribution of the corresponding total gray value data, displayed in Figure
4.9, suggests the application of a Gaussian distribution. In order to identify its parameters,
the maximum likelihood estimates are computed (µ0 = 55.9, σ0 = 3.9, scaled density
function plotted in red).

3. Creation of images: Each image is initialized with constant gray value µ0. Subsequently,
the cut-out particle images are plugged in at the calculated positions. For a realistic display
of particle clusters, the pixel brightness at the intersection of p particles is selected as the
maximum of all p potential gray values. Finally, additive white Gaussian noise according
to the noise model (µ = 0, σ = σ0) is added and the images are clipped to the range
[1, 2048]× [1, 2048].

Analogous to the experimental dataset, the particle detection and the whole µPTV algorithm
are evaluated separately. A first glance at the results presented in Tables 4.7 and 4.8 causes
astonishment: firstly, the precision values of exact particle detection and tracking (layer index
±0) are “only” in the range between 0.8 and 0.85 although the ground truth labels are accurate
with certainty. Secondly, the combination of the most resembling layers into one class does
not conspicuously improve the quality of the algorithm, in some cases precision/recall even
deteriorate.

The distribution of the detected particles, where the difference to the correct layer index
does not equal zero, provides the answer to both phenomena: 68.1 % belong to Layer 1-8, only
10.3 % are part of Layer 9-28 (where the most resembling reference particles are located, see
Figure 4.1) and 21.6 % are counted among Layer 29-30. Therefore, for the synthetic dataset,
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Figure 4.9: Gray value histogram of image background area from 30 reference recordings. The
red line indicates the corresponding Gaussian distribution.

primarily the low-contrast particles are affected by imprecise matching. The reason for this is
the increasing perturbing influence of the superimposed additive Gaussian noise with decreasing
contrast of the particle image. In other words, the artificially added noise in some cases causes
the unintended optical “transition” of a particle into a diffent layer. The impact of this effect
on the particle velocity distribution, however, is marginal since a precision value of over 0.96 is
reached for an allowed deviation of the layer index of ±1, regardless of the matching technique
selected.

In general, the profile matching technique again is (slightly) more precise than the NCC-
based methods; as a matter of fact, no false positive particle links are encountered for an allowed
variation of the layer index of ±2. The error distribution analysis (not shown as a graphic) re-
veals that over 95 % of the false negatives in particle detection are due to the deficient separation
of particle clusters, for both profile matching and NCC matching. Furthermore, the unsuccess-
ful detection of both particles is the exclusive reason for a false negative in particle tracking. In
return, each false positive particle detection arises from a particle clipped on the image border,
where the particle’s center is not located in the image range and therefore not listed in the ground
truth data.
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Table 4.7: Results of particle detection algorithm on synthetic data, ground truth available.

Matching method
Precision Recall

±0 ±1 ±2 ±3 ±0 ±1 ±2 ±3

1: Profiles 0.811 0.972 0.989 0.989 0.796 0.955 0.971 0.971

2: Profiles, merged layers 0.816 0.974 0.989 0.989 0.799 0.953 0.968 0.968

3: NCC Lewis 0.846 0.967 0.983 0.985 0.769 0.879 0.894 0.896

4: NCC mask 0.844 0.969 0.985 0.985 0.832 0.956 0.971 0.971

5: NCC mask, merged layers 0.836 0.969 0.986 0.986 0.822 0.953 0.970 0.970

Matching method
F0.5-score

±0 ±1 ±2 ±3

1: Profiles 0.808 0.969 0.986 0.986

2: Profiles, merged layers 0.813 0.970 0.985 0.985

3: NCC Lewis 0.829 0.948 0.964 0.966

4: NCC mask 0.841 0.967 0.982 0.982

5: NCC mask, merged layers 0.833 0.966 0.983 0.983

Table 4.8: Results of whole µPTV algorithm on synthetic data, ground truth available.

Matching method
Precision Recall

±0 ±1 ±2 ±3 ±0 ±1 ±2 ±3

1: Profiles 0.833 0.973 1 1 0.774 0.904 0.929 0.929

2: Profiles, merged layers 0.836 0.977 1 1 0.771 0.901 0.923 0.923

3: NCC Lewis 0.851 0.967 0.993 0.993 0.728 0.827 0.848 0.848

4: NCC mask 0.851 0.967 0.990 0.990 0.799 0.907 0.929 0.929

5: NCC mask, merged layers 0.848 0.964 0.990 0.990 0.796 0.904 0.929 0.929

Matching method
F0.5-score

Processing Time
±0 ±1 ±2 ±3

1: Profiles 0.821 0.959 0.985 0.985 37.1s

2: Profiles, merged layers 0.822 0.960 0.983 0.983 36.8s

3: NCC Lewis 0.823 0.936 0.960 0.960 89.6s

4: NCC mask 0.840 0.954 0.977 0.977 81.5s

5: NCC mask, merged layers 0.837 0.951 0.977 0.977 75.5s
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4.4 Summary

In this chapter, the evaluation of the method introduced in this thesis was presented. First, an
overview of the experiments was given and the statistical measures employed to indicate the
performance of the methods evaluated were described. The metrics used were precision, recall
and F0.5-score.

A classification system was introduced which distinguishes between Type I and Type II
errors occuring in the particle detection process from Type I and Type II errors emerging in
the particle tracking process. Graphical examples which illustrate the error classification were
provided.

Subsequently, the datasets were characterized and the corresponding results were given. The
main outcome is that the proposed technique based on radial intensity profiles not only provides
the expected improvement concerning temporal performance, but also yields a superior reliabil-
ity in the matching process compared to NCC algorithms. The image processing is performed
more than two times faster with our suggested algorithm.

In addition, the physical relevance of the extracted velocity data was investigated.
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CHAPTER 5
Conclusion and Outlook

In this thesis, image processing algorithms customized for the implementation in a Single Aper-
ture Defocusing µPTV application are presented. Their task is to localize (particle detection),
classify (particle matching) and associate (particle tracking) corresponding particles in paired
image recordings in order to determine the flow velocity field of thin falling films.

Due to camera noise in the µPTV recordings, the implementation of an image pre-processing
routine is required. Owing to its property to smooth noise while largely preserving image edges,
the CLMC filter, a nonlinear diffusion filter, represents the method of choice. The procedure
involves the numerical solution of a nonlinear partial differential equation and two discretization
schemes are discussed. In the end, the so-called AOS scheme is preferred to the explicit scheme
due to its significantly shorter computation time at the cost of an acceptable loss of accuracy.

The core of the particle detection algorithm implemented is a modified Circular Hough
Transform which operates on a binary edge image and exploits the circular symmetry of the
particles. The fundamental modifications introduced include a technique which reduces compu-
tation time by eliminating disturbing edges prior to the application of the CHT. In addition, the
application of certain voting weights for the CHT and a radius determination method specifically
developed for µPTV image data are proposed. As Hough Transforms in general are known to be
robust algorithms, moderate imperfections in the particle shape caused by optical aberrations do
not impede a successful detection. Moreover, in contrast to elementary detection methods, the
CHT allows the correct dissection of clusters of overlapping particles instead of a-priori reject-
ing them as non-circular objects. In practice, however, the number of further processed particles
is reduced since a relevant matching result can solely be ensured for merely partially (50 % at
most) occluded particles. Therefore, the exact evaluation results are depending on the particle
density and the actual spatial particle distribution in the considered image dataset.

In the majority of related literature, the appearing particle shapes allow a classification based
on the outer visible radius of a ring structure. However, due to the different setup used in the
current approach, which captures a wider region of the investigated flow, other distinct particle
shapes emerge such that a different matching technique is required. For this purpose, a simple
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method based on radial intensity profiles is proposed, which is proven to reach a higher accuracy
and is more than twice as fast as classical cross-correlation methods.

The tracking algorithm implemented is formulated as a minimization problem which is
solved efficiently for the data evaluated in this work. The physical assumption of a planar flow
is included as a condition which increases the reliability of the results for the considered falling
films.

The evaluation is performed on two different datasets: for the experimental dataset consist-
ing of real µPTV recordings, ground truth data is manually annotated while the synthetic dataset
is automatically generated by means of randomly positioned reference particles on empty im-
ages which are subsequently disturbed by additive white Gaussian noise. Both datasets use a
total of 30 different classes of matched reference particles.

The whole approach is shown to yield promising results on both datasets and for the experi-
mental dataset, the physical validity of the results is also ensured.

Future Work

A detailed error analysis reveals that incorrect particle matching causes the majority of incorrect
detections. One reason for this is that the matching thresholds, which determine if a particle
detection is discarded or assigned to a specific layer, are sensitive parameters and both a too
high or a too low selection have negative influence on the performance of the whole approach.
Therefore, future work could deal with the (optimized) automatization of the parameter selection
process, which also would enhance the usability of the software.

Moreover, from a physical point of view, the relevance of the results depends on the re-
fraction properties of the liquid. To this end, the thickness of the drop in the reference image
measurement (cf. Section 1.1.1) or potential fluctuations in the film thickness influence the op-
tical appearance of the recorded particles and must be taken into account if the scale along the
optical axis is to be determined exactly.
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List of Acronyms

µPIV Micro Particle Image Velocimetry

µPTV Micro Particle Tracking Velocimetry

AOS Additive Operator Splitting

CHT Circular Hough Transform

CLMC Catté, Lions, Morel, Coll

Cryo-EM Cryo-Electron Microscopy

DT Diffusion Tensor

GHT General Hough Transform

HT Hough Transform

IP Integer Programming

LD Linear Diffusion

LP Linear Programming

LSV Laser Speckle Velocimetry

NCC Normalized Cross-Correlation

PDE Partial Differential Equation

PIV Particle Image Velocimetry

PTV Particle Tracking Velocimetry

SHT Standard Hough Transform
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