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Kurzfassung

Dendrimere, verformbare Einheiten, die über weiche, effektive Potentiale wechselwirken,
gehören zu jenen Kolloidteilchen, die sich selbst zu supramolekularen Strukturen organi-
sieren. Sie sind über eine baumartige innere Struktur aus Monomereinheiten aufge-
baut und für ihre Fähigkeit bekannt, in einer Vielzahl von kristallinen, quasikristalli-
nen und flüssigkristallinen Phasen zu kondensieren. Dieses reichhaltige Phasenverhal-
ten kann auf die stark verzweigte, räumliche Struktur der Dendrimere zurückgeführt
werden, die es ihnen ermöglicht, sich wie weiche Teilchen zu verformen und sich rela-
tiv zueinander in charakteristischen Orientierungen anzuordnen. Ausgehend von einer
monomerischen Beschreibung der Dendrimere kann man effektive Wechselwirkungen zwi-
schen diesen Makromolekülen berechnen, die für die Entstehung der verschiedenen Phasen
verantwortlich sind. In dieser Arbeit betrachten wir in einem ersten Schritt isolierte, am-
phiphile Dendrimere (mit einem solvophoben Kern und einer solvophilen Schale) und
untersuchen mithilfe von Monte Carlo Simulationen ihre geometrische Form. Dabei
werden unterschiedliche Dendrimergrößen sowie verschiedene Wechselwirkungsparame-
ter zwischen den Monomeren betrachtet. In einem weiteren Schritt werden zwei wech-
selwirkende Dendrimere im Grenzwert kleiner Dichten betrachtet und ihre gegenseitige
Deformation und ihre relative Orientierung untersucht. Die dabei berechnete effektive
Wechselwirkung wird dann mit den Wechselwirkungseigenschaften auf monomerischer
Ebene in Verbindung gebracht. Schließlich wird die geometrische Form und die räum-
liche Orientierung der Dendrimere bei endlicher Dichte untersucht. Unsere Ergebnisse
liefern eindeutige Hinweise, dass sich die nächsten Nachbarn eines Teilchen in speziellen
wechselseitigen Orientierungen anordnen, die eher auf eine antinematische (als auf eine
nematische) Ordnung hindeuten. Es ist möglich, dass diese antinematische Struktur bei
höheren Dichten zu offenen kristallinen Strukturen, wie etwa die A15 Struktur führt.
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Abstract

Among the various systems which self-organize into supramolecular structures, dendrimers
– seen as deformable units interacting via ultra soft potentials – have long been recog-
nized for their ability to condense into a wide range of crystalline, quasi-crystalline, and
liquid-crystalline phases, some of which are not commonly observed for non-deformable
particles. Such a rich phase behavior may be related to the highly branched, tree-like
structure of dendrimers, which not only allows them to deform like soft-spheres but also
to assume specific reciprocal orientation like rod-like particles. The internal structure at
the monomeric level and the effective interactions between the dendrimers determine the
emergence of the various bulk phases.
In this thesis we first consider isolated amphiphilic dendrimers and investigate the de-

pendence of their shape on the interaction parameters between their monomeric units and
on their internal structure by means of monomer-resolved Monte Carlo simulations. We
then study a pair of dendrimers in the zero-density limit focusing on their mutual deforma-
tion and their relative orientation; in parallel we proceed to a coarse-grained description
by eliminating the internal degrees of freedom in order to obtain the dendrimer-dendrimer
interaction. We then associate this so-called effective interaction to the specific features
of the monomer-resolved picture. Finally, we investigate the characteristic features of
the shape of our model dendrimers as well as the spatial and orientational structure of a
dense dendrimer liquid. Our results in the bulk provide unambiguous evidence that the
nearest-neighbor shell of a tagged particle consists of a mixture of crossed, side-by-side,
side-to-end, and end-to-end pair configurations, imposing antinematic rather than ne-
matic order observed in rod-like particles. We expect that this antinematic arrangement
may give rise to non-closed-packed crystalline structures such as the A15 crystal lattice
reported in several dendrimer compounds.
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Chapter 1

Introduction

The term Soft Matter became widely known in 1991 when Pierre-Gilles de Gennes, who
is considered today one of the founding fathers of soft matter physics, was awarded with
the Nobel prize in physics “for discovering that methods developed for studying order
phenomena in simple systems can be generalized to more complex forms of matter, in
particular to liquid crystals and polymers” [1]. Although many examples of soft matter
systems can be found in our everyday life, e.g. protein solutions, blood, mayonnaise,
foam, ink, paint and cement, a simple answer to the question “What is soft matter?” is
still missing.
Richard Jones describes soft matter as “a convenient term for materials in states of

matter that are neither simple liquids nor crystalline solids of the type studied in other
branches of solid state physics” [2]. It may seem that this sentence defines what soft
matter is not, but nonetheless it gives rise to two important questions:

(i) How can one distinguish between soft and hard materials?

(ii) What special features exclude this type of systems from being characterized as
simple liquids or solids that form crystals which are studied in sold state physics?

In order to provide an answer to question (i) we introduce a very common quantity for
characterizing the hardness of a materials, i.e. the cohesive energy density ℰ given by [3]

ℰ ≈ 𝑒

𝑎3
, (1.1)

where 𝑒 is the interaction energy between two particles separated by a distance 𝑎. The
interaction energy 𝑒 in hard matter systems is actually the covalent bond energy between
the atoms, which is typically of the order of 10−18 J, while the bond lengths are of the order
of 0.1 nanometers, i.e. 𝑎 ∼ 10−10 m. Thus, the cohesive energy density of hard matter is
estimated to be of the order of 1012 N/m2. Typical sizes of particles in soft matter systems
range from nanometers to micrometers, i.e. 𝑎 = 10−8 − 10−6 m, while the 𝑒 between such
mesoscopic particles (van der Waals interaction [4], hydrogen bonds, etc.) is of the order
of 10−20 J. The resulting cohesive energy density ℰ = 10−2 − 104 N/m2 [2] between these
colloidal particles is comparable to the thermal energy 𝑘B𝑇 at room temperature, meaning
that even thermal fluctuations or weak mechanical disturbances [5] can be responsible for
enormous structural changes in soft matter systems.
The answer to question (ii) is that soft matter systems are not simple but complex

fluids [6]. On one hand, the term complex describes the inner complexity of the mesoscopic
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2 Chapter 1. Introduction

particles that are usually composed of a large number of smaller atoms or molecules. On
the other hand, the term fluids does not necessarily imply that these materials are in a
fluid phase but it points out one key feature: flexibility. In his Nobel prize lecture [6], de
Gennes explained this flexibility by showing how a material made of a set of independent
polymer chains, such as latex, turns into a network structure (known today as rubber)
when exposed to air. In this case, the mild chemical reaction of latex with the air molecules
is enough to change the mechanical properties of the material enormously.

In this work we focus our interest on dendrimers, i.e. highly-branched synthetic
molecules with a tree-like structure which can be synthesized by a stepwise repetitive
reaction procedure. Dendrimer chemistry began in 1978 introduced by Vögtle et al. who
were the first to synthesize molecules with large internal cavities [7]. Inspired by this
pioneering work, Tomalia et al. [8] in the late 1980s synthesized the first dendrimers
and indicated a large number of possible applications, such as synthetic membranes,
encapsulating devices and many others [9]. Over the last three decades dendrimers have
been studied very thoroughly using experiments, computer simulations and theory. From
the experimental side the internal structure of dendrimers can be investigated by means of
small-angle X-ray scattering (SAXS) [10] and small-angle neutron scattering (SANS) [11].
The most commonly studied dendrimers are the polyamidoamine (PAMAM) dendrimers
because of their biocompatibility, which makes them good candidates for application in
nanotechnology [12, 13] and in drug development [14] as carriers for drug delivery [15],
but also for the ease and low cost of synthesis [16]. Many numerical studies focused
on the characterization of such molecules [17–20]. On the numerical side, the most
fundamental aspects have been investigated for neutral and charged dendrimers using
fine [21–23] as well as coarse-grained [24–28] approaches. A detailed review of a large
number of theoretical studies has been given by Ballauf and Likos in Ref. [29].

With a compact convex shape determined by their architecture, dendrimers are in many
ways more similar to colloidal particles than to spread-out, random-coil linear polymers
– yet they are penetrable like random coils, such that two dendrimers can overlap to
a high degree. Much like colloidal particles, dendrimers readily crystallize, but many
lattices observed (e.g. A15 and 𝜎 phases [30, 31]) are untypical for classical colloids.
Some aspects of this unique behavior may be related to the dendrimer shape: The early-
generation dendrimers found to have the shape of compact ellipsoids-spheroids with a
considerable amount of back-folding, whereas higher generations (𝐺9–𝐺11) become more
spherical in shape [17].

It is thus natural to expect that the optimal packing mode of dendrimers will depend
on their shape and deformability. Indeed, atomistic simulations revealed that at large
densities considerable interpenetration does take place [32] leading to the A15 cubic lattice
as seen experimentally [31]. Complementary to this prediction are theoretical studies of
penetrable ellipsoids. If forced into alignment, they form elongated lattices (obtained,
e.g., by stretching the body-centered cubic crystal along [001], [110], or [111] direction)
rather than cubic lattices [33, 34].

In this work we focus on the characterization of the positional and orientational order
of dendrimers. We develop a coarse-grained description of dendrimers where they are
regarded as soft anisotropic particles. For this, we use a model based on the amphiphilic
model [see Fig. 1.1] which was the subject of research by Mladek et al. [24, 25, 35, 36] where
the amphiphilicity is induced by introducing different interaction parameters between the
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Figure 1.1: Simulation snapshots of the amphiphilic dendrimer model used in this work
and for generation two (𝐺2), four (𝐺4) and ten (𝐺10). The inner generation (core)
monomers are drawn in green whereas the outer generation (shell) monomers in blue.
Monomer diameters and dendrimer sizes are drawn to scale.

inner and the outer monomers. This model is known to exhibit a rich phase behavior
where interpenetration (clustering) of dendrimers occurs both in the dense liquid phase
as well as in the ordered solid phases [24, 35, 36]. Furthermore, low generation amphiphilic
dendrimers have a more open structure and show stronger segregation between inner and
outer monomers [24, 37]. Hence, using this model we can on one hand have a core-shell
structure similar to the model in the work of Li et al. [32] but on the other hand we can
study and tune the shape deformations in terms of potential interaction parameters.
We use monomer-resolved Monte Carlo simulations and we provide a full shape and

orientational analysis of amphiphilic dendrimers based on the elements–eigenvalues and
eigenvectors– of the radius of gyration tensor [38]. First, we describe the shape of a
single dendrimer in terms of asphericity 𝑏 and acylindricity 𝑐 and for generation number
𝐺 = 2 to 10. Our most important finding in this case is that the shape of the low
generation (𝐺 = 2–4) dendrimers are not spherical but elongated. Afterwards, we use
different coarse-grained approaches for the calculation of the effective potential and we
study the effect of the dendrimers’ shape and relative orientation to the form of the
potential and vice versa. Afterwards, we focus on the fourth generation dendrimers and
we simulate a pair of dendrimers in the zero-density limit with aim of quantifying their
mutual influence on the shape and their relative orientation. Finally, we focus on the short-
range-order of dendrimers in the liquid phase where we study the many-body-effects on
the dendrimers’ shape and relative orientation. The perpendicular relative orientations
of dendrimers in the bulk system provide confirmatory evidence for the existence of an
antinematic [39] rather than a nematic [40] liquid phase. We show preliminary evidence
that this antinematic pattern exhibits many features of the A15 packing pattern already
observed for dendritic polymers in the work of Zeng et al. [31].
The thesis is organized as follows:

• Chapter 2 gives first a brief overview of the key ideas of statistical mechanics
(cf. Sec. 2.1) as well as of the Monte Carlo simulation technique. We discuss
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some the useful optimization tricks that reduce significantly the computational time
(cf. Sec. 2.2). Then we present different approaches for calculating the effective in-
teractions, which takes us from a monomer-resolved to a coarse-grained description
of a macromolecular system.

• Chapter 3 presents an overview of the historical key work in dendrimers and as well
as of the different models used in the literature for simulating these macromolecules.
Then we focus on the amphiphilic simulation model used throughout this work in
terms of interaction potentials.

• Chapter 4 provides a review on the basic theories in liquid crystals as a theoretical
framework for the description of the orientational order in dendrimer systems. After
describing the different possible liquid crystal phases, we focus on the Onsager theory
for the nematic-isotropic transition of hard rods. We quantify the orientation of
molecules using the nematic order parameter by diagonalizing the nematic tensor.
We use the nematic order parameter as a measure for the orientation of our model
dendrimers.

• Chapter 5 summarizes the quantities that we used to analyze our simulation data
with respect to shape, size and relative orientation of dendrimers. We also discuss
the trustworthiness of our sampling technique.

• Chapter 6 is the bulk of this thesis as it contains the results concerning the shape
and orientational properties of amphiphilic dendrimers. We present the dependence
of the shape and size of isolated dendrimers on their internal structure. Then
we proceed to a coarse-grained description of the interdendrimer interaction and
combine it with a monomer-resolved picture of the dendrimers’ deformation. We
also test different approaches for quantifying the relative orientation of dendrimers
on the pair level at zero density as well as in a bulk liquid.

• Chapter 7 summarizes our findings and gives an outlook on future work.



Chapter 2

Methods

In this chapter we give a brief overview of the key ideas of statistical mechanics and
we describe the Monte Carlo simulation methods.

2.1 Statistical Mechanics

2.1.1 Concept of statistical mechanics

Statistical mechanics is the branch of physics that deals with the study of equilibrium and
non-equilibrium properties of matter systems based on the concepts of probability theory.
The difficulty associated with these systems is that they are composed of a very large
number 𝑁 of small microscopic parts (typically atoms or molecules), which is usually
of the order of 1023. While these parts obey simple equations of motion, which can
be straightforwardly expressed mathematically, the large number of degrees of freedom
makes it impossible to solve the mathematics exactly. The role of statistical mechanics
is not to solve these equations, but rather to provide a conceptual understanding of the
macroscopic variables of the system (e.g. temperature, volume, pressure, internal energy
etc.) in terms of the variables that are relevant for the description of motion of the
constituents of matter.

2.1.2 Phase space

In classical statistical mechanics we can fully describe a 𝑁 -particle system1 by the sets of
positions and the momenta vectors

(︀
r𝑁 ,p𝑁

)︀
of the particles, i.e.:

r𝑁 = {r1, r2, . . . , r𝑁} ,
p𝑁 = {p1,p2, . . . ,p𝑁} . (2.1)

Each possible configuration of the system is called a microstate. For a system with 𝑑
physical dimensions, one microstate is characterized by a set of 𝑑𝑁 position and 𝑑𝑁
momentum vectors and can be represented as a point in the 2𝑑𝑁 -dimensional space,
called the phase space. We denote as

(︀
r𝑁𝜏 ,p

𝑁
𝜏

)︀
the set of position and momentum vectors

1System (σύστημα) comes from the greek verb συνίστημι which means to set together, combine, band
together.
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6 Chapter 2. Methods

of a system in a specific microstate 𝜏 . In contrast, a macrostate of a system can be
described by one of the systems macroscopic variables, i.e. temperature, volume, internal
energy etc. Thus a microstate is one of the different arrangements that molecules can
have in a particular macrostate.
The Hamiltonian ℋ of the system is defined as:

ℋ
(︀
r𝑁 ,p𝑁

)︀
= 𝐾

(︀
p𝑁
)︀
+ 𝒱

(︀
r𝑁
)︀
+ 𝒱ext

(︀
r𝑁
)︀
, (2.2)

where

𝐾 =
𝑁∑︁
𝑖=1

|p𝑖|2

2𝑚
(2.3)

is the kinetic energy, 𝒱 is the interatomic potential energy and 𝒱ext is the potential energy
due to the interaction of particles with an external field. If all interactions are pairwise
additive and radially symmetric, then the total potential energy is given by a sum of pair
terms, i.e.:

𝒱
(︀
r𝑁
)︀
=

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗>𝑖

𝑣(𝑟𝑖𝑗) (2.4)

with 𝑣(𝑟𝑖𝑗) being the interatomic potential energy between particles 𝑖 and 𝑗 that depends
only on the inter-particle separation 𝑟𝑖𝑗.
Given an initial state, the time evolution of the system can be obtained by solving the

canonical Hamilton equations of motion [41] given by:

ṙ𝑖 =
𝜕ℋ

(︀
r𝑁 ,p𝑁

)︀
𝜕p𝑖

,

ṗ𝑖 = −
𝜕ℋ

(︀
r𝑁 ,p𝑁

)︀
𝜕r𝑖

. (2.5)

2.1.3 Gibbsian ensemble

In order to describe a system we assume that its macroscopic physical quantities are long
time averages of the corresponding instantaneous quantities. Fot the purpose of obtaining
the time evolution of a microscopic state, the solution of the Hamiltonian equations of
motion [see Eq. (2.5)] is required. Due to the very large number of particles on the
system, namely ∼ 1023, this is not possible in practice. Thus, instead of calculating
these macroscopic quantities from first principles we can use a statistical approach. For
each system there is a huge number of microscopic states corresponding to the same
macroscopic state. A Gibbsian ensemble is a collection of systems in microstates that
correspond to the same macrostate, which are called macroscopically identical systems.
Thus, instead of calculating time averages we can determine the macroscopical properties
of the system by performing ensemble averages, i.e. averages of any physical quantity
over an ensemble of systems.
The distribution of the phase space points of an ensemble is described by a microstate

probability distribution function 𝒫
(︀
r𝑁 ,p𝑁 ; 𝑡

)︀
which describes the probability of finding

the system in a microstate 𝜏 and at a time 𝑡. In particular, the quantity:

𝒫
(︀
r𝑁𝜏 ,p

𝑁
𝜏 ; 𝑡
)︀
dr𝑁dp𝑁
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gives the probability of microstate 𝜏 , i.e. 𝒫
(︀
r𝑁𝜏 ,p

𝑁
𝜏 ; 𝑡
)︀
dr1 . . . dr𝑁dp1 . . . dp𝑁 is pro-

portional to the probability of finding the system at a time 𝑡 in the volume element
dr1 . . . dr𝑁dp1 . . . dp𝑁 [42]. From this definition it follows that∫︁ ∫︁

dr𝑁dp𝑁𝒫
(︀
r𝑁𝜏 ,p

𝑁
𝜏 ; 𝑡
)︀
= 1 (2.6)

for all 𝑡.
The system is said to be in statistical equilibrium [43, 44] when

𝜕𝒫
(︀
r𝑁𝜏 ,p

𝑁
𝜏 ; 𝑡
)︀

𝜕𝑡
= 0, (2.7)

where
∫︀ ∫︀

. . . dr𝑁dp𝑁 implies that the integral is over the whole phase space. From
now on, we will use the notation 𝒫

(︀
r𝑁 ,p𝑁

)︀
for the microscopical statistical distribution

function of a system in equilibrium. By imposing different macroscopic constraints in
order to control the system under study, we get a different statistical ensemble and thus
a different form for the distribution function 𝒫

(︀
r𝑁 ,p𝑁

)︀
. The most common statistical

ensembles are:

• The microcanonical (or 𝑁𝑉 𝐸) ensemble which is used to describe isolated systems
where a fixed number of particles 𝑁 is confined in an also fixed volume 𝑉 and where
the energy 𝐸 is constant.

• The canonical (or 𝑁𝑉 𝑇 ) ensemble where 𝑁 and 𝑉 are fixed and the system is in
equilibrium with a heat bath so that its temperature 𝑇 remains also fixed.

• The grand canonical (or 𝜇𝑉 𝑇 ) ensemble which is used to study open systems. In
this case 𝑇 and 𝑉 are fixed but the system may exchange particles with a particle
reservoir.

Let us now consider the so-called ergodic hypothesis. During an experiment, the observed
value of the quantity 𝐴 can be considered as the average of several sample values over a
long period of time 𝑇 . This can be expressed mathematically by

⟨𝐴⟩time = lim
𝑇→∞

1

𝑇

𝑇∫︁
0

d𝑡 𝐴(𝑡). (2.8)

The ergodic hypothesis assumes that the same observed values can be obtained as an
ensemble average over all the allowed phase space points

(︀
r𝑁 ,p𝑁

)︀
. Thus,

⟨𝐴⟩ens =
∫︁ ∫︁

dr𝑁dp𝑁𝐴
(︀
r𝑁 ,p𝑁

)︀
𝒫
(︀
r𝑁 ,p𝑁

)︀
. (2.9)

Hence, a system is ergodic if and only if

⟨𝐴⟩ens = ⟨𝐴⟩time . (2.10)

The ergodic hypothesis is implicitly used as a justification for substituting time averages by
averages over the statistical ensemble. Although this hypothesis was originally introduced
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by Boltzmann in 1871 [45], there are still many on going discussion about its validity. The
reason is that the ergodic hypothesis can be only verified for some very simple cases such
as the classical one-dimensional harmonic oscillator. There exist some other weak forms
of ergodic systems where the hypothesis is valid for almost all phase space points and
which are discussed in Ref. [46].

2.1.4 Canonical ensemble

The parameters that characterize a system 𝒮 in the canonical ensemble are: its number of
particles 𝑁 , its volume 𝑉 and its temperature 𝑇 . The system 𝒮 is considered to interact
with an infinitely large system 𝒮 ′ which is called heat reservoir and which ensures that
our system’s temperature 𝑇 remains constant. This way the energy of the system 𝒮 is no
longer constant like in an isolated system, but it fluctuates around a mean value.
In 1902, Gibbs showed that the microscopical distribution function of a system in

thermal equilibrium with a heat reservoir is proportional to the Boltzmann factor [47]

𝒫
(︀
r𝑁 ,p𝑁

)︀
∝ exp

(︀
−𝛽ℋ

(︀
r𝑁 ,p𝑁

)︀)︀
(2.11)

where ℋ
(︀
r𝑁 ,p𝑁

)︀
is the Hamiltonian of the system while 𝛽 = 1/𝑘B𝑇 with 𝑘B being the

Boltzmann constant. The normalizing factor for the probabilities [see Eq. (2.6)] in this
case is called the canonical partition function 𝒵 (𝑁, 𝑉, 𝑇 ) and is defined by the formula

𝒵 (𝑁, 𝑉, 𝑇 ) =
ℎ−3𝑁

𝑁 !

∫︁ ∫︁
𝑑r𝑁𝑑p𝑁 exp

(︀
−𝛽ℋ

(︀
r𝑁 ,p𝑁

)︀)︀
(2.12)

where ℎ is the Planck constant and 𝑁 ! is needed to properly normalize the phase integral
of indistinguishable particles.
Using Eq. (2.2) and by setting the external field to zero we can rewrite Eq. (2.12) as:

𝒵 (𝑁, 𝑉, 𝑇 ) =
ℎ−3𝑁

𝑁 !

∫︁ ∫︁
𝑑r𝑁𝑑p𝑁 exp

(︃
−𝛽

(︃
𝑁∑︁
𝑖=1

|p𝑖|2

2𝑚

)︃)︃
exp

(︀
−𝛽𝒱

(︀
r𝑁
)︀)︀

. (2.13)

This way, we can perform the integration over the momenta and over the position vectors
separately. The integration over each component of the momenta in Eq. (2.13) can be

done using the known integral of the Gaussian form2 and yields a factor (2𝜋𝑚/𝛽)
1/2.

Thus, the partition function reads now as

𝒵 (𝑁, 𝑉, 𝑇 ) ≡ 𝑧𝑁
Λ3𝑁𝑁 !

(2.14)

where

Λ ≡
√︂

𝛽ℎ2

2𝜋𝑚
(2.15)

is the thermal de Broglie wavelength and

𝑧𝑁 =

∫︁
dr𝑁 exp

(︀
−𝛽𝒱

(︀
r𝑁
)︀)︀

(2.16)

2 Gaussian integral:
∞∫︀

−∞
exp

(︀
−𝑎𝑥2

)︀
d𝑥 = (𝜋/𝑎)

1/2
.
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is the configuration integral.
The importance of the partition function stems from the fact that it links statistical

mechanics with thermodynamics. In particular, the Helmholtz free energy ℱ , the ther-
modynamic potential which measures the portion of energy that is available to perform
thermodynamic work of a system under constant volume and temperature, is connected
to the partition function through the relation:

ℱ (𝑁, 𝑉, 𝑇 ) = −𝑘B𝑇 log𝒵 (𝑁, 𝑉, 𝑇 ) . (2.17)

Physical quantities can be expressed as first- or second-order derivatives of the Helmholtz
free energy ℱ [48–50]. Thus, the knowledge of how ℱ (or equivalently 𝒵) varies with the
temperature, or any other constraint that affects the system under study, can give us all of
the information that we need to know about the macroscopic behavior of the system [49].
For example, the internal energy 𝑈 , i.e. the expectation value of the Hamiltonian ⟨ℋ⟩,
can be expressed in terms of the first derivative of the free energy in respect to the volume
𝑉 and the number of particles 𝑁

𝑈 =

(︂
𝜕𝛽ℱ
𝜕𝛽

)︂
𝑉,𝑁

= − 1

𝒵

(︂
𝜕𝒵
𝜕𝛽

)︂
𝑉,𝑁

. (2.18)

In a similar way we can calculate the pressure 𝑃

𝑃 = −
(︂
𝜕ℱ
𝜕𝑉

)︂
𝑇,𝑁

=
1

𝛽

(︂
𝜕 log𝒵
𝜕𝑉

)︂
𝑇,𝑁

. (2.19)

as well as the chemical potential 𝜇, which is a measure of the change in the Helmholtz
free energy upon the addition of one particle in the system,

𝜇 =

(︂
𝜕ℱ
𝜕𝑁

)︂
𝑇,𝑉

= − 1

𝛽

(︂
𝜕 log𝒵
𝜕𝑁

)︂
𝑇,𝑉

. (2.20)

2.2 Monte Carlo simulations

“Science is what we understand well enough to explain to a
computer. Art is everything else we do.”

Donald Knuth

This section is dedicated to the Monte Carlo (MC) method [48, 49, 51], which is a broad
class of numerical methods that rely on random number generation in order to solve certain
problems. This method is used to obtain numerical results for problems which cannot
be solved analytically. In physics, MC methods are useful when dealing with systems of
many degrees of freedom where in order to obtain properties of the system, the solution
of a large number of equations [such as the Hamilton equations Eq. (2.5)] is required.

2.2.1 Purpose of Monte Carlo simulations

Once we know the microstate distribution function 𝒫
(︀
r𝑁 ,p𝑁

)︀
of the ensemble, the aver-

age of any physical property 𝐴 can be calculated through Eq. (2.9) which for the canonical
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ensemble takes the form

⟨𝐴⟩ =
∫︀ ∫︀

dr𝑁dp𝑁𝐴
(︀
r𝑁 ,p𝑁

)︀
exp

(︀
−𝛽ℋ

(︀
r𝑁 ,p𝑁

)︀)︀∫︀ ∫︀
dr𝑁dp𝑁 exp (−𝛽ℋ (r𝑁 ,p𝑁))

. (2.21)

Properties that depend only on the momenta are in most of the cases easy to evalu-
ate [52]. Thus, in a similar way to the calculation of the partition function in Sec. 2.1.4,
we can also separate the exponential of Eq. (2.11) into a configurational and a kinetic part
and carry out the integration over the momenta separately. Then our problem reduces:

⟨𝐴⟩ =
∫︀
dr𝑁𝐴

(︀
r𝑁
)︀
exp

(︀
−𝛽𝒱

(︀
r𝑁
)︀)︀∫︀

dr𝑁 exp (−𝛽𝒱 (r𝑁))
(2.22)

=

∫︁
dr𝑁𝐴

(︀
r𝑁
)︀
𝒫
(︀
r𝑁
)︀

(2.23)

where

𝒫
(︀
r𝑁
)︀
=

exp
(︀
−𝛽𝒱

(︀
r𝑁
)︀)︀

𝑧𝑁
(2.24)

is the probability density of finding the system in a configuration around r𝑁 which is
also known as the Boltzmann distribution. The first approach to calculate the average
in Eq. (2.23) would be to evaluate the average ⟨𝐴⟩ by numerical integration. The difficulty
is that this would require discretizing a very large space, namely the 𝑑𝑁 -dimensional
configurational space, which would result in a magnitude of computation that exceeds
the limits of what can be realistically calculated with present-time computers [50].

2.2.2 Monte Carlo importance sampling

Another, more realistic, way for calculating such high dimensional integrals is by using
Monte Carlo integration. In this case, instead of of iterating through all different configu-
rations of the descretized configurational space (see Sec. 2.2.1), we first choose a random
subset of 𝑀 configurations, i.e.

{︀
r𝑁1 , r

𝑁
2 , . . . , r

𝑁
𝑀

}︀
from a certain probability distribution

𝑝
(︀
r𝑁𝑖
)︀
and then we estimate the average value of the physical quantity in Eq. (2.23) by

calculating its estimator 𝐴𝑀 given by:

𝐴𝑀 =

𝑀∑︀
𝑖=1

𝐴
(︀
r𝑁𝑖
)︀
𝑝
(︀
r𝑁𝑖
)︀−1

exp
(︀
−𝛽𝒱

(︀
r𝑁𝑖
)︀)︀

𝑀∑︀
𝑖=1

𝑝 (r𝑁𝑖 )
−1

exp (−𝛽𝒱 (r𝑁𝑖 ))

. (2.25)

This quantity has the property that the larger the 𝑀 the more accurate the estimation
for the average ⟨𝐴⟩, since:

lim
𝑀→∞

𝐴𝑀 = ⟨𝐴⟩ . (2.26)

A rather naive approach would be to choose these states from a uniform prob-
ability, i.e. to make all the probabilities 𝑝

(︀
r𝑁𝑖
)︀

equal. Thus, by substituting
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𝑝
(︀
r𝑁1
)︀
= 𝑝

(︀
r𝑁2
)︀
= . . . = 𝑝

(︀
r𝑁𝑀
)︀
into Eq. (2.25), we get:

𝐴𝑀 =

𝑀∑︀
𝑖=1

𝐴
(︀
r𝑁𝑖
)︀
exp

(︀
−𝛽𝒱

(︀
r𝑁𝑖
)︀)︀

𝑀∑︀
𝑖=1

exp (−𝛽𝒱 (r𝑁𝑖 ))

. (2.27)

The problem with this choice is that we are not sampling enough the interesting config-
urations. The reason is that a real physical system does not sample the states uniformly
but according to the microstate probability distribution function, which in the canonical
ensemble is the Boltzmann distribution [see Eq. (2.24)].

Metropolis et al. [53] proposed an algorithm that samples states from a probability
distribution 𝒫

(︀
r𝑁
)︀
. In this case the 𝑀 random states are directly generated according

to the Boltzmann distribution and thus, the expression for the estimator [see Eq. (2.25)]
becomes a simple arithmetic average

𝐴𝑀 =
1

𝑀

𝑀∑︁
𝑖=1

𝐴
(︀
r𝑁𝑖
)︀
, (2.28)

where r𝑁𝑖 is generated according to the desired distribution. This technique is known as
importance sampling or Metropolis MC.

2.2.3 Markov chains

But how do we generate random states states with the correct canonical probability
𝒫
(︀
r𝑁
)︀
in Eq. (2.24)?

We can achieve that by using a mathematical tool called Markov chain [54]. In a
Markov chain, the system at each timestep can undergo a transition from one state into
another. It does that randomly so that the system has no memory. This means that the
next state of the system depends only on the current state and not on the previous states
that the system has passed through.

In a MC simulation a Markov chain is created in the following way: suppose that at
a timestep 𝑡 the system is in a state 𝜏 . We then randomly generate a new trial state
𝜈, i.e. a new trial configuration r𝑁 . A way to do this is by choosing a random particle
on the system and then adding a small random displacement Δ𝜉𝑖 to its position, i.e.
perform a single-particle displacement. Next, we accept or reject the trial state in such a
way that the configuration is generated according to 𝒫

(︀
r𝑁
)︀
. If the trial configuration is

accepted, then at timestep 𝑡+ 1 the system is in the new state 𝜈, otherwise it remains in
the old state 𝜏 , which is now counted as the new state of the system. By repeating this
procedure over and over again we will eventually generate a trajectory of states where
each state appears with the correct probability. This trajectory can be then used to
calculate quantity averages according to Eq. (2.28). In the following section we describe
the conditions that have to be fulfilled in order for the states in the trajectory to appear
with the correct probability.
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2.2.4 Master equation and detailed balance

At this point we need to determine a criterion for the acceptance of states such that all the
states in the long time trajectory are generated according to the canonical probabilities
given by Eq. (2.24). We repeat here for convenience that:

𝒫
(︀
r𝑁
)︀
=

exp
(︀
−𝛽𝒱

(︀
r𝑁
)︀)︀

𝑧𝑁
. (2.29)

For the discussion that follows, we denote by 𝒫𝜏 (𝑡) the probability that at timestep 𝑡
the system will be in a state/configuration 𝜏 and by 𝑅 (𝜏 → 𝜈) the transition probability,
i.e. the probability that a system that is currently in a state 𝜏 will undergo a transition
into a state 𝜈 at any time 𝑡. We note here that since both quantities express probabilities
they should also obey the sum rule at any timestep 𝑡, i.e.:∑︁

𝜏

𝒫𝜏 (𝑡) = 1,∑︁
𝜈

𝑅 (𝜏 → 𝜈) = 1.

The time evolution of 𝒫𝜏 (𝑡) is governed by the so-called master equation [55], which
is given by the formula:

𝑑𝒫𝜏 (𝑡)

𝑑𝑡
=
∑︁
𝜈

[𝒫𝜈 (𝑡)𝑅 (𝜈 → 𝜏)− 𝒫𝜏 (𝑡)𝑅 (𝜏 → 𝜈)] . (2.30)

The first term inside the sum of the right-hand side of this equation represents the rate of
transitions into a state 𝜏 whereas the second one the rate at which the system undergoes
transitions out of 𝜏 into other states. In order to better explain the meaning of the
equation above, we consider just one timestep forward on our Markov chain. For this
case Eq. (2.30) reads as

𝒫𝜏 (𝑡+ 1) = 𝒫𝜏 (𝑡) +
∑︁
𝜈

𝒫𝜈 (𝑡)𝑅 (𝜈 → 𝜏)−
∑︁
𝜈

𝒫𝜏 (𝑡)𝑅 (𝜏 → 𝜈) . (2.31)

This means that for a given state 𝜏 the master equation takes into account:

(i) the increase in the probability associated with undergoing a transition from other
states 𝜈 into 𝜏 and

(ii) the decrease in the probability due to transition going from 𝜏 into other states 𝜈.

What we want to achieve is for those probabilities to converge to a stationary, indepen-
dent of time, distribution that is equal to the canonical microstate probability distribution
function. In other words, we want:

lim
𝑡→∞

𝒫𝜏 (𝑡) =
exp

(︀
−𝛽𝒱

(︀
r𝑁𝜏
)︀)︀

𝑧𝑁
. (2.32)

In order for this to be possible, the Markov transitions have to fulfill two important
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conditions:

(i) the condition of ergodicity and

(ii) the condition of detailed balance.

The first condition –ergodicity– says there there should exist at least one path of non-
zero transition probabilities between any two states 𝜈 and 𝜏 on our Markov chain. This
is necessary since we want the states in our chain to appear with the correct Boltzmann
probability. More specific, suppose that we have a state 𝜈, which is inaccessible from
another state 𝜏 although it appears with some non-zero probability 𝒫

(︀
r𝑁𝜏
)︀
in the Boltz-

mann distribution. Then, the probability of finding state 𝜈 in our chain will be zero and
not 𝒫

(︀
r𝑁𝜏
)︀
as it is required to be.

On the other hand, the condition of detailed balance is the one that ensures that in
equilibrium all states in the chain appear with the correct Boltzmann distribution. We
say that the system has reached an equilibrium state when the two terms in the sum
of the right-hand side of the master equation (Eq. (2.30)) cancel each other and thus
𝑑𝒫𝜏 (𝑡)/𝑑𝑡 = 0. This can be expressed mathematically by∑︁

𝜈

𝒫𝜏𝑅 (𝜏 → 𝜈) =
∑︁
𝜈

𝒫𝜈𝑅 (𝜈 → 𝜏) (2.33)

This so-called balance equation indicates that at equilibrium, the probabilities should not
change, i.e. the rate at which the system undergo a transition from a state 𝜏 has to be
equal to the number of transitions into that state. We denote with the symbol 𝒫𝜏 the
probabilities 𝒫𝜏 (𝑡) at equilibrium.

If the transition probabilities satisfy Eq. (2.33) then, the Markov chain has reached an
equilibrium probability 𝒫𝜏 . This, however, does not guarantee that the states generated
will have the desired probability distribution since there is the possibility that the system
has reached a dynamic equilibrium (see [49]). To overcome this we impose an even stronger
condition called the detailed balance:

𝒫𝜏𝑅 (𝜏 → 𝜈) = 𝒫𝜈𝑅 (𝜈 → 𝜏) , for each 𝜏 and 𝜈. (2.34)

By summing both sides over 𝜈, we see that this choice also satisfies Eq. (2.33)3.

Further, the transition probabilities are split into two factors [49, 50]:

𝑅 (𝜏 → 𝜈) = 𝑔 (𝜏 → 𝜈) 𝐴 (𝜏 → 𝜈) (2.35)

where

• 𝑔 (𝜏 → 𝜈) is the selection probability, which expresses the probability that the algo-
rithm will generate from an initial state 𝜏 a new state 𝜈 and

• 𝐴 (𝜏 → 𝜈) is the acceptance ratio, which is the probability to accept the newly
generated state 𝜈.

3If the detailed balance condition is obeyed then the general balance condition is also obeyed. The
opposite is not true.
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From Eq. (2.35) we can calculate the ratio of the transition rates as:

𝑅 (𝜏 → 𝜈)

𝑅 (𝜈 → 𝜏)
=

𝑔 (𝜏 → 𝜈) 𝐴 (𝜏 → 𝜈)

𝑔 (𝜈 → 𝜏) 𝐴 (𝜈 → 𝜏)
. (2.36)

By imposing also the detailed balance condition [Eq. (2.34)] we get for the acceptance
ratios:

𝐴 (𝜏 → 𝜈)

𝐴 (𝜈 → 𝜏)
=

𝑔 (𝜈 → 𝜏) 𝒫𝜈

𝑔 (𝜏 → 𝜈) 𝒫𝜏

. (2.37)

This equation is the one we need to create our MC simulation. By imposing it at any
timestep in our Markov chain we guarantee that:

(i) the detailed balance [Eq. (2.34)] is satisfied

(ii) we converge in an equilibrium probability distribution 𝒫𝜏 .

2.2.5 Metropolis Monte Carlo

“The spirit of this method was consistent with Stan’s interest in
random processes from the simple to the sublime. He relaxed
playing solitaire; he was stimulated by playing poker; he would cite
the times he drove into a filled parking lot at the same moment
someone was accommodatingly leaving.“

N. Metropolis [56]

The first importance sampling MC method algorithm was proposed in 1953 by
Metropolis et al. [53]. Prior to the Metropolis algorithm, the usual method for study-
ing systems that follow the Boltzmann distribution was to create a huge number of
random configurations, calculate then the properties of interest and then produce their
average by weighting each one of them with the relevant Boltzmann factor. The Los
Alamos team proposed ”a modified Monte Carlo scheme where, instead of choosing
configurations randomly, then weighting them with exp

[︀
−𝛽𝒱

(︀
r𝑁
)︀]︀
, they choose configu-

rations with a probability exp
[︀
−𝛽𝒱

(︀
r𝑁
)︀]︀

and weight them evenly“ [56]. The configuration
of the algorithm is based on the principles mentioned in Sec. 2.2.4 and is described below.

Let as assume that we have a system of 𝑁 particles confined in a volume 𝑉 . Suppose
that the system is initially in a state 𝜏 = 1 and that we want to accept or reject a trial
state 𝜈 = 2. These states, 1 and 2, correspond to some particle configurations r𝑁1 and r𝑁2
respectively. Then, according to Eq. (2.36), we have

𝐴 (1 → 2)

𝐴 (2 → 1)
=

𝑔 (2 → 1) 𝒫2

𝑔 (1 → 2) 𝒫1

. (2.38)

The fact that Eq. (2.38) fixes only the ratio 𝐴 (1 → 2)/𝐴 (2 → 1) of the acceptance probabili-
ties, gives us the freedom about on how we choose the selection probabilities 𝑔 (1 → 2) and
𝑔 (2 → 1). In the original Metropolis scheme the MC moves are symmetric, which means
that the selection probabilities are equal for the forward and the reverse transition [53],
i.e.:

𝑔(1 → 2) = 𝑔(2 → 1). (2.39)
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In this case, from Eq. (2.38) follows that:

𝐴 (1 → 2)

𝐴 (2 → 1)
=

𝒫2

𝒫1

. (2.40)

An example of symmetric moves is a single-particle displacement, where the trial config-
uration is created from the old one by moving a single random particle positioned at r𝑖
following the prescription:

r𝑖 → r𝑖 +Δ𝜉𝑖. (2.41)

Here, we denote by Δ denotes the maximum displacement4 and by 𝜉𝑖 a random unitary
vector5. The particle can be then located anywhere within a cube centered at r𝑖 and of
side length 2Δ.

Within the canonical ensemble we wish the equilibrium distribution is the canonical
distribution [see Eq. (2.29)]. Therefore Eq. (2.38) takes the form:

𝐴 (1 → 2)

𝐴 (2 → 1)
=

𝒫2

𝒫1

=
exp

(︀
−𝛽𝒱

(︀
r𝑁2
)︀)︀

exp (−𝛽𝒱 (r𝑁1 ))

= exp
(︀
−𝛽
[︀
𝒱
(︀
r𝑁2
)︀
− 𝒱

(︀
r𝑁1
)︀]︀)︀

≡ exp (−𝛽 (𝒱2 − 𝒱1)) . (2.42)

This equation leaves us with many possible choices for the acceptance acceptance proba-
bilities, with the constraint that 𝐴 (1 → 2) cannot exceed 1. The choice of Metropolis et
al., also known as the Metropolis criterion, is:

𝐴 (1 → 2) = min
(︁
1, exp (−𝛽 (𝒱2 − 𝒱1))

)︁
(2.43)

Hence, in order to choose the acceptance ratios we first need to calculate the energy cost
Δ𝒱 ≡ 𝒱2 −𝒱1 for changing the particle position. If a move of the particle results in a de-
crease in the energy, then the new configuration is always accepted. Thus, 𝐴 (1 → 2) = 1.
Otherwise, the move is accepted with a probability exp (−𝛽 (𝒱2 − 𝒱1)). To determine this
probability, we play a game of chance biased by a Boltzmann factor, i.e.:

(i) we choose a random number 𝜉 between 0 and 1

(ii) if 𝜉 < exp
(︀
−𝛽 (𝒱2 − 𝒱1)

)︀
then the new configuration is accepted

(iii) if 𝜉 > exp
(︀
−𝛽 (𝒱2 − 𝒱1)

)︀
then the move is rejected and the system remains in the

old configuration.

We should note here that for the purpose of taking averages according to Eq. (2.27), we
consider that we are always in a new configuration whether a move is accepted or not.

4The factor Δ can be automatically tuned by the update algorithm such that the ratio of accepted
configurations is 30 – 60% (for example) of the trial configurations. This tuning should not be done
during measurements, or else detailed balance might be ruined.

5Randomly orientated vectors can be calculated using Marsaglia’s algorithm [57].
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We can verify that the Metropolis criterion satisfies the detailed balance by calculating
the ratio 𝐴 (1 → 2)/𝐴 (2 → 1) using Eq. (2.43):

𝐴 (1 → 2)

𝐴 (2 → 1)
=

min
(︁
1, exp

(︀
−𝛽 (𝒱2 − 𝒱1)

)︀)︁
min

(︁
1, exp

(︀
−𝛽 (𝒱1 − 𝒱2)

)︀)︁
=

⎧⎨⎩ exp
(︀
−𝛽(𝒱2−𝒱1)

)︀
1

if 𝒱2 > 𝒱1

1
exp[−𝛽(𝒱1−𝒱2)]

if 𝒱1 > 𝒱2

= exp
(︀
−𝛽 (𝒱2 − 𝒱1)

)︀
(2.44)

which agrees with Eq. (2.43).
The acceptance ratios for the Metropolis MC can be summarized in the following for-

mula:

𝐴 (𝜏 → 𝜈) =

{︃
exp

(︁
−𝛽 (𝒱𝜈 − 𝒱𝜏 )

)︁
if 𝒱𝜈 > 𝒱𝜏

1 otherwise
(2.45)

or in a more compact form:

𝐴 (𝜏 → 𝜈) = min
(︁
1, exp

(︀
− 𝛽 (𝒱𝜈 − 𝒱𝜏 )

)︀)︁
. (2.46)

2.3 Finite size systems and optimization

2.3.1 Periodic boundary conditions and minimum image con-
vention

MC simulations of systems serves the purpose of providing information about the proper-
ties of a macroscopic sample. In reality, only a small number of particles can be handled
within a simulation using present-day computers. Let us, for example, assume a system
of 𝑁 particles confined in a cubic box of constant side 𝐿 (in units of particle diameters).
If we divide the box into 𝑛 × 𝑛 × 𝑛 smaller cubes of side length equal to one particle
diameter, we can then see that we have a number of (𝑛− 2)3 cubes that are not located
on the surface of the box. Thus, on the surface we have

𝑁𝑠𝑢𝑟 = 𝑛3 − (𝑛− 2)3 (2.47)

such cubes. Suppose we have 1000 particles arranged in a 10× 10× 10 cubic box. Then
according to Eq. (2.47) 488 particles will be located on the box’s surface. Thus there is a
fraction of ∼ 50% of the molecules that appear on the surface of the box.
Periodic boundary conditions (PBC) [58] are useful when simulating a finite system as

a part of a large infinite system where no surface is present. By PBC, we mean that our
model system is placed in a central cell and it is replicated throughout the space to form
an infinite system (see Fig. 2.1). That is, if the position vectors of the particles in the
central cubic cell are r𝑖 then the PBC create periodic images of particles at positions

r′𝑖 = r𝑖 + 𝐿 (𝑙x̂+𝑚ŷ + 𝑛ẑ) , (2.48)
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Figure 2.1: Schematic representation of periodic boundary conditions. Left: Central unit
cell. Right: The central unit is replicated an infinite amount of times. The position of
the particles in the periodic images are given by Eq. (2.48). The blue square marks the
central unit cell.

where x̂, ŷ and ẑ are the unit vectors of the cubic box edges and 𝑙,𝑚, 𝑛 are integers that
range from −∞ to ∞. Therefore there are no walls at the boundaries of the central cell
and thus no surface particles. As a particle moves within the original (central) cell, also
all of its periodic images in the repeated cells move exactly the same way. However, when
a particle crosses the boundary of the cell, one of its images will enter at the opposite side
of the central cell. Consequently, due to the surrounding cells, a particle in the central
cell not only interacts with the particles within the same cell, but also with their periodic
images (including its own periodic image) belonging to all other cells.

L

ij

Figure 2.2: Schematic representation of the minimum image convention. The central
square represents the central unit cell while the lower opacity ones the neighboring images
in one direction. The minimum image convention states that a particle 𝑖 can interact only
with the closest image of any other particle 𝑗 which may or may not lie on the same cell.
Here we consider the interaction between particles 𝑖 and 𝑗. We denote with 𝑗1 and 𝑗2 the
two images of particle 𝑗 in the neighboring images. In this case the closest image is 𝑗2.
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Applying PBC on a system does not imply that the effect of the small number of
particles automatically vanishes. There are certain limitations induced by the use of
PBC. Firstly, the characteristic size of any structural property of the system should be
smaller than the size of the central cell. Secondly, the size of the central cell should be
larger than 2𝑟𝑐, with 𝑟𝑐 being the cutoff radius of the interatomic potential energy 𝒱 (r𝑁)

6.
This way we ensure that none of the particles interacts with itself and also that any atom
𝑖 interacts with only one periodic image of any other particle 𝑗. The latter is called the
minimum image convention and is schematically represented in Fig. 2.2.

2.3.2 Cell lists

C-1 C-2

C-3 C-4

1

4

7

3

9

2

8

5

6

L

l

head[1] = 1

head[2] = 3

head[3] = 0

head[4] = 2

list[1] = 0

list[2] = 4

list[3] = 5

list[4] = 6

list[5] = 7

list[6] = 8

list[7] = 0

list[8] = 9

list[9] = 0

Figure 2.3: Left: A schematic representation of the cell list method. The simulation box
of side 𝐿, which contains nine particles in total, is divided to four cells of side length 𝑙
each and denoted as C-1, C-2, C-3 and C-4. Right: The particle index of the first element
in each sub-cell is stored in the head-of-chain (head) array while the particle indexes the
follow on the list are stored in the linked-list (list) array. For simplicity, we consider that
the first element of each cell is the particle with the lower index.

Typically, most of the computational time during a MC simulation is consumed in
calculating a double loop over all particle pairs, which is required for the evaluation of the
interatomic potential energy 𝒱

(︀
r𝑁
)︀
. For pairwise-additive interactions [see Eq. (2.4)] this

calculation is of the order of 𝑁(𝑁−1)/2. Although there exist several techniques that can
be used to reduce this dependence to 𝑂(𝑁) (for larger systems) still most of the simulation
time will be taken by this loop [61, 62]. As explained before, for short-range interactions
we typically use a cut-off radius, beyond which particle interactions are considered to be
0. In this case and for simulations involving a large number of particles (𝑁 ≥ 1000) only
pairs within this cut-off distance have to be considered. Therefore, we can decrease the
simulation time significantly by keeping a list of neighbors that are located a distance
smaller than 𝑟𝑐. Such a cell list was proposed by Quentrec and Brot [63] and is described
in the following. Let us assume that we are performing simulations in a three-dimensional

6Short-range potential and treated differently than long-range potentials and are discussed in Refs. [59–
62].
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Figure 2.4: Update cell list after a single particle has left the cell. Suppose that particle
8 has been moved from its original cell C-4 into cell C-1. Initially, the previous index of
particle 8 holds particle 6 while the next index holds particle 9. So, pv[8] = 6 and nx[8]
= 9. After 8 has left C-4 we have to update the pv and nx for the remaining particles.
This way, pv[9] = 6 and nx[6] = 9. After particles 8 has joined C-1 we have: nx[1] = 8,
pv[8] = 1, nx[8] = 0.

simulation box of side length 𝐿. We divide the box into 𝑀×𝑀×𝑀 smaller boxes, called
sub-cells, of equal side length 𝑙 = 𝐿/𝑟𝑐. Each of the sub-cells then contains on average
𝑁𝑐 = 𝑁/𝑀3 particles. We also assume that each particle in a sub-cell interacts only with
the particles in the same sub-cell and with the particles in the first-neighboring sub-cells.
By applying this, we have to go through 33𝑁𝑐𝑁 instead of 𝑁(𝑁 − 1)/2 pairs of particles
for the calculation of the interatomic potential in Eq. (2.4).

The method can be implemented using the singly- or doubly-linked lists [64, 65]. We
first describe the simple case of creating a cell list using singly-linked list with the help the
example system of nine particles shown in Fig. 2.3. At the beginning of the simulation we
assign to each cell the corresponding particles according to each particle’s position. The
particles are stored in cell with the use of two arrays. One array, called head-of-chain,
stores the address of the first particle of each cell. In other words, in the element head [𝑛]
of the head-of-chain array we store the index of the first particle found inside the 𝑛th cell.
This particle is then used as the list’s index to locate the next particle using the linked-list
array (list) which contains the next element of the cell, i.e. the element list [𝑖] holds the
particle index that follows particle 𝑖 on the list. This procedure is repeated until the 0th

element is found on the list; this element signals the end of the list. An example of how
cell lists are populated is shown in Fig. 2.3.

The disadvantage of this method is that whenever a particle moves to a neighboring
cell, the whole list has to be updated. To avoid the construction of a new list each time
a particle has left its original cell, we can just update the existing list at the cost of
some extra book-keeping. This can be done by additionally introducing to each particle
two more indices. Namely, we keep track of the next and previous indices of particles
connected with a particle 𝑖. The elements nx[𝑖] and pv[𝑖] hold the indices of the next and
the previous particles of particle 𝑖, respectively. Now, each time that a particle moves
to a neighboring cell only these two indices need to be updated. This method decreases
significantly the execution time of a MC simulation program, especially in the case where
single monomer moves are considered. Figure 2.4 illustrates how the update is done for
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the system shown in Fig. 2.3.

2.4 Special aspects of Monte Carlo simulations

2.4.1 Widom insertion method

The Widom or particle insertion method [66] is a technique that can be used to sample
the chemical potential within a MC simulation. In the canonical ensemble, the chemical
potential is defined as the change in the Helmholtz free energy upon the addition of one
particle [cf. Eq. (2.20)]:

𝜇 =

(︂
𝜕ℱ
𝜕𝑁

)︂
𝑇,𝑉

. (2.49)

Starting from the configuration integral of Eq. (2.16), if 𝒱𝑁 = 0:

𝑧𝑁 =

∫︁ ∫︁
· · · dr𝑁 = 𝑉 𝑁 . (2.50)

Thus the partition function [see Eq. (2.14)] of a uniform and ideal gas takes the form

𝒵 id =
𝑉 𝑁

Λ3𝑁𝑁 !
. (2.51)

The corresponding ideal Helmholtz free energy is

ℱ id = −𝑁𝑘B𝑇 ln

(︂
𝑉 𝑁

Λ3𝑁𝑁 !

)︂
(2.52)

= −𝑁𝑘B𝑇

[︂
ln

(︂
Λ3𝑁

𝑉

)︂
− 1

]︂
(2.53)

where for the latter equation we use Stirling’s approximation for ln𝑁 !.

With the help of equation Eq. (2.20) the ideal chemical potential reads

𝜇id = −𝑘B𝑇 ln

(︂
Λ3𝑁

𝑉

)︂
. (2.54)

The partition function of a system 𝑁 interacting particles can now be written as

𝒵𝑁 = 𝒵 id
𝑁

𝑧𝑁
𝑉 𝑁

. (2.55)

By taking the logarithm on both sides we can naturally separate the Helmholtz free energy
into an ideal and an excess part:

ℱ = ℱ id + ℱ ex (2.56)

where the excess part is

ℱ ex = −𝑘B𝑇 ln
𝑧𝑁
𝑉 𝑁

(2.57)
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For 𝑁 ≫ 1, Eq. (2.49) for the case of the excess chemical potential takes the form

𝜇ex = ℱ ex (𝑁 + 1, 𝑉, 𝑇 )−ℱ ex (𝑁, 𝑉, 𝑇 )

= −𝑘B𝑇 ln

(︂
1

𝑉

𝑧𝑁+1

𝑧𝑁

)︂
. (2.58)

By substituting Eq. (2.14) to Eq. (2.58) we get:

𝜇ex = −𝑘B𝑇 ln

(︃∫︀
dr𝑁+1 exp

[︀
−𝛽𝒱

(︀
r𝑁+1

)︀]︀
𝑉
∫︀
dr𝑁 exp [−𝛽𝒱 (r𝑁)]

)︃
. (2.59)

The interatomic potential energy 𝒱
(︀
r𝑁+1

)︀
of the (𝑁 + 1)-particle system is the sum of

the energy of the 𝑁 -particle system and the interaction energy Δ𝒱 of the extra, (𝑁 + 1)th

particle with the rest of the system, i.e.:

𝒱
(︀
r𝑁+1

)︀
= 𝒱

(︀
r𝑁
)︀
+Δ𝒱 . (2.60)

Then 𝜇ex can be rewritten as:

𝜇ex = −𝑘B𝑇

∫︀
dr𝑁+1 exp (−𝛽Δ𝒱) exp

(︀
𝒱
(︀
r𝑁
)︀)︀

𝑉
∫︀
dr𝑁 exp (𝒱 (r𝑁))

= −𝑘B𝑇
𝑉
∫︀
dr𝑁 exp (−𝛽Δ𝒱) exp

(︀
𝒱
(︀
r𝑁
)︀)︀

𝑉
∫︀
dr𝑁 exp (𝒱 (r𝑁))

= −𝑘B𝑇 ln ⟨exp (−𝛽Δ𝒱)⟩𝑁 (2.61)

where ⟨. . . ⟩𝑁 denotes a canonical ensemble average over the configuration space of the
𝑁 -particle system.

Therefore, we can compute the chemical potential within a standard MC simulation of
the 𝑁 -particle system the following way: while the simulation is running, we randomly
generate coordinates for the (𝑁 + 1)th particle uniformly distributed inside the three
dimensional simulation box. Using this random value for r𝑁+1 we first compute Δ𝒱 and
then we sample exp (−𝛽Δ𝒱). We should note here that the random particle is never
inserted in the 𝑁 -particle system. This is why it is also referred to as the ghost particle.

As an example, we calculate the chemical potential of a hard sphere (HS) fluid [67, 68].
In this case, the interaction potential between the particles is given by:

𝒱 (𝑟) =

{︃
∞ if 𝑟 < 𝜎

0 if 𝑟 ≥ 𝜎
(2.62)

where 𝜎 is the diameter of the hard sphere. In Fig. 2.5 we compare the simulations results
for 𝜇ex as a function of the numbered density 𝜌 with the theoretical prediction for the 𝜇ex

calculated according to the Carnahan and Starling equation of state [67], i.e.

𝛽𝜇ex =
3𝜂3 − 9𝜂2 + 8𝜂

(1− 𝜂)3
(2.63)
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where 𝜂 = 𝜋𝜌/6.
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Figure 2.5: Comparison of the 𝜇ex calculated from MC simulations using the Widom
method, with the values derived from the Carnahan-Starling equation of states and for
various density values 𝜌. Errors are within symbol size.

2.4.2 Non-Boltzmann sampling

As we have already explained (see Sec. 2.2.2), using the importance sampling method, we
are able to sample through a sequence of trial configurations where each one is accepted
or rejected according to the Boltzmann distribution. The macroscopic quantities are
then calculated by a simple arithmetic average [cf. Eq. (2.28)]. Using this method, we
only sample the important regions of the phase space, while regions where probability
is negligible are rarely or never sampled. There are cases, though, where the important
regions of the phase space are separated by high free-energy barriers to areas of non-
negligible probabilities. Thus, the use of the simple Metropolis method would lead to
biased results since the system would not be able to cross these barriers.
A method to overcome this broken ergodicity is the umbrella sampling and was proposed

by Torrie and Valleau [69] and it is actually a variation of a more general scheme referred
to today as non-Boltzmann sampling [70, 71]. In this method the phase space is sampled
within a biased ensemble. By biased we mean that the probability distribution that we
use is not related to a standard statistical ensemble (𝑁𝑉 𝑇, 𝑁𝑃𝑇, 𝜇𝑉 𝑇, etc.). Yet, any
results obtained in the biased ensemble have to somehow be related back to the results for
the same system in one of the usual ensembles. The idea is as follows: for the probability
distribution of our system within the canonical ensemble we have [cf. Eq. (2.24)]:

𝒫𝜏 ∝ exp (−𝛽𝒱𝜏 )
7. (2.64)

7Remark: for convenience we have dropped the rN dependence from the symbols 𝒫𝜏 , 𝒱𝜏 .
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In order to perform a biased simulation we introduce an additional factor to the expo-
nent of the above equation, i.e.:

𝒫(𝑏)
𝜏 ∝ exp (−𝛽𝒱𝜏 +𝑊𝜏 ) . (2.65)

We denote with 𝒫(𝑏)
𝜏 the probability distribution in the biased ensemble and𝑊𝜏 ≡ 𝑊

(︀
r𝑁𝜏
)︀

the so-called umbrella potential. The value of umbrella potential is such that some the
states will appear with higher or lower probability than expected. In the biased ensem-
ble Eq. (2.42) takes the form:

𝐴 (𝜏 → 𝜈)

𝐴 (𝜈 → 𝜏)
=

𝒫(𝑏)
𝜏

𝒫(𝑏)
𝜈

= exp
(︀
−𝛽 (𝒱𝜈 − 𝒱𝜏 ) + (𝑊𝜈 −𝑊𝜏 )

)︀
= exp (−𝛽Δ𝒱 +Δ𝑊 ) (2.66)

and thus the Metropolis criterion in Eq. (2.42) becomes:

𝐴 (𝜏 → 𝜈) = min
(︀
1, exp (−𝛽Δ𝒱 +Δ𝑊 )

)︀
. (2.67)

In the biased ensemble, the average of a macroscopic variable 𝐴 according to Eq. (2.28) is

⟨𝐴⟩(𝑏) = 1

𝑀

𝑀∑︁
𝑖=1

𝐴𝑖 (2.68)

where 𝑖 is the index over the 𝑀 different configurations in the biased ensemble. If we now
want to compute the above average in the unbiased (here canonical) ensemble, i.e. ⟨𝐴⟩(𝑢),
we can still performed simulations in the biased ensemble and then weight accordingly
by taking into account the differences between the two weighting factors, Eqs. (2.64) and
(2.65). Namely, from Eq. (2.23) we get:

⟨𝐴⟩(𝑢) =
∫︀
dr𝑁𝐴

(︀
r𝑁
)︀
exp

(︀
−𝛽𝒱

(︀
r𝑁
)︀)︀∫︀

dr𝑁 exp
(︀
−𝛽𝒱 (r𝑁)

)︀
=

∫︀
dr𝑁𝐴

(︀
r𝑁
)︀
exp

(︀
−𝑊

(︀
r𝑁
)︀)︀

exp
(︀
−𝛽𝒱

(︀
r𝑁
)︀
+𝑊

(︀
r𝑁
)︀)︀∫︀

dr𝑁 exp
(︀
−𝑊 (r𝑁)

)︀
exp

(︀
−𝛽𝒱 (r𝑁) +𝑊 (r𝑁)

)︀
=

⟨𝐴 exp (−𝑊 )⟩(𝑏)

⟨exp (−𝑊 )⟩(𝑏)
(2.69)

where we denote with ⟨. . . ⟩(𝑏) an average in the biased ensemble. Thus the canonical
ensemble average of the physical quantity 𝐴 can be calculated as:

⟨𝐴⟩(𝑢) =

𝑀∑︀
𝑖=1

𝐴𝑖 exp (−𝛽𝑊𝑖)

𝑀∑︀
𝑖=1

exp (−𝛽𝑊𝑖)

(2.70)

where each 𝐴𝑖 is now the value of 𝐴 in a microstate 𝑖 in the biased ensemble.
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2.4.3 Coarse-graining and effective interactions

Macromolecules (e.g. dendrimers and star polymers) are built from a large number of
monomers. In polymer science we are mostly interested in the investigation of the prop-
erties of polymer solutions, i.e. a mixture of macromolecules and a large number of
smaller particles, known as the solvent. Studying these already highly complex entities in
a solution increases significantly the number of degrees of freedom significantly. In order
to reduce this complexity and get an insight in the properties of such systems we need
to map the fine-grained monomeric system to an equivalent coarse-grained system which
consists of fewer but larger subcomponents; the procedure that one follows in order to do
that is called coarse-graining [26, 27, 72, 73] and is presented in the following.
Within simulations, we are able on a first level to reduce the degrees of freedom by

treating the solvent as a continuous medium and expressing the effect of the solvent
through the potential used for the monomer-monomer interactions [74]. However, even
after most of the microscopic details of the solvent have been removed we are still left
with the large number of microscopic degrees of freedom of the macromolecules. Here
is the point were the “effective” description of the macromolecules becomes important:
instead of treating the full system we can treat all macromolecules as point particles which
interact with each other by means of an effective interaction. This effective interaction
has to be constructed in such a way that the effect of all the monomers is included and
that the thermodynamics of the system is preserved.
Suppose that we have two macromolecules labeled by 𝛼 = 1 and 2 enclosed in a macro-

scopic volume 𝑉 and each one consisting of 𝑁 monomers. We denote with r𝑁𝛼 and p𝑁
𝛼

the sets of position and momenta of macromolecule 𝛼, respectively, i.e.:

r𝑁𝛼 = {r1𝛼, r2𝛼, . . . , r𝑁𝛼} ,
p𝑁
𝛼 = {p1𝛼,p2𝛼, . . . ,p𝑁𝛼} . (2.71)

The Hamiltonian ℋ
(︀
r𝑁1 , r

𝑁
2 ,p

𝑁
1 ,p

𝑁
2

)︀
of the system of the two macromolecules can be

split in terms of ℋ𝑘𝑙 that contain the interactions between macromolecules 𝑘 and 𝑙 only,
i.e.:

ℋ
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𝑁
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𝑁
1 ,p

𝑁
2

)︀
= ℋ11
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𝑁
1

)︀
+ℋ12

(︀
r𝑁1 ,p

𝑁
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𝑁
2 ,p

𝑁
2

)︀
+ℋ22

(︀
r𝑁2 ,p

𝑁
2

)︀
(2.72)

The canonical partition function of the system is8:

𝒬 =
1

ℎ6𝑁

∫︁ ∫︁
dr𝑁1 dp

𝑁
1 dr

𝑁
2 dp

𝑁
2 exp

(︀
−𝛽ℋ

(︀
r𝑁1 , r

𝑁
2 ,p

𝑁
1 ,p

𝑁
2

)︀)︀
. (2.73)

At this point it is helpful to introduce the center-of-mass density operators:

𝜌(𝛼)cm (R𝛼) = 𝛿

(︃
R𝛼 − 1

𝑁

𝑁∑︁
𝑖=1

r𝑖𝛼

)︃
, 𝛼 = 1, 2 (2.74)

where R𝛼 is the position vector of the center-of-mass of macromolecule 𝛼 and 𝛿 (·) is the
Dirac delta function. Then, according to Refs. [26, 27], by keeping the macromolecules’

8We have dropped the combinatorial factors𝑁 ! [cf. Eq. (2.12)] in the definition of the partition function
since the monomers in this case are distinguishable due to their connectivity.
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center-of-masses fixed at R1 and R2 the effective interaction Φeff (R1,R2) between the
two identical macromolecules is defined as:

𝛽Φeff (R1,R2) = − ln
(︁𝑉 2

𝒬2
1

ℎ−6𝑁

∫︁ ∫︁
𝑑r𝑁1 𝑑p

𝑁
1 𝑑r

𝑁
2 𝑑p

𝑁
2

× 𝜌(1)cm (R1) 𝜌
(2)
cm (R2) exp

(︁
−𝛽 (ℋ11 +ℋ12 +ℋ22)

)︁)︁ (2.75)

where 𝑉 is the volume of the system and 𝒬1 is the partition function of the single macro-
molecule defined as:

𝒬1 =
1

ℎ3𝑁

∫︁ ∫︁
dr𝑁1 dp

𝑁
1 exp (−𝛽ℋ11) . (2.76)

By combining Eqs. (2.73) and (2.75) and integrating over R1 and R2 we get for the
partition function 𝒬 of the system:

𝒬 =
𝒬2

1

𝑉 2

∫︁ ∫︁
dR1dR2 exp

(︀
−𝛽Φeff (R1,R2)

)︀
. (2.77)

The effective interaction depends only on the intermacromolecule separation
𝑅 = |R1 −R2|. Thus, we can write

Φeff (R1,R2) = Φeff (𝑅) . (2.78)

The direct computation of Φeff (𝑅) through Eq. (2.75) cannot be achieved using standard
simulation techniques since the effective potential [Eq. (2.75)] has the form of a restricted
partition function. However, from Eq. (2.75), it can be shown [26, 27] that the effective
interaction can be related to the correlation function 𝑔 (𝑅) between the positions of the
centers-of-mass through the equation:

𝑔 (𝑅) ≡
⟨︀
𝜌(1)cm (R1) 𝜌

(2)
cm (R2)

⟩︀
∝ exp (−𝛽Φeff (𝑅)) (2.79)

where ⟨𝑥⟩𝑅 denotes an ensemble average over quantity 𝑥 of a system of two particle which
are separated by a distance 𝑅. Therefore, the problem of computing the effective inter-
action reduces to evaluating the expectation value in Eq. (2.79) which can be done using
standard simulation techniques. In what follows we describe three different simulation
techniques for calculating the effective interactions of macromolecules.

2.4.3.1 Umbrella sampling method

A common approach to compute the effective pair-interaction between two macro-
molecules is by using its relation with the radial distribution function 𝑔(𝑅) [RDF,
cf. Sec. 5.1 and Eq. (2.79)]:

𝛽Φeff(𝑅) = − ln (𝑔(𝑅)) . (2.80)

However, the repulsion between macromolecules increases as they get closer to each other.
Hence, while measuring the radial distribution function for two particles, the system would
spend most of the time in configurations with either large particle separations or in ranges
with overall attractive interactions. In order to obtain the effective interaction for the
whole range of separations one can employ the technique of umbrella-sampling [24, 50]
(cf. Sec. 2.4.2).



26 Chapter 2. Methods

This method relies on introducing an additional term to the interactions of our model,
a so-called biasing potential. The simplest choice is to take a series of windows of biasing
potentials 𝑊 𝑖(𝑅) on the centers-of-mass of the dendrimers that have the form

𝑊 𝑖 (𝑅) =

{︃
0, 𝑅𝑖

min < 𝑅 < 𝑅𝑖
max

∞, otherwise
(2.81)

which limits the centers-of-mass distance to be within the range [𝑅𝑖
min, 𝑅

𝑖
max]. For each

window 𝑖 we obtain the effective interaction using the formula

𝛽Φ𝑖
eff(𝑅) = − ln

(︀
𝑔𝑖(𝑅)

)︀
+ 𝑐𝑖 (2.82)

with 𝑔𝑖(𝑅) being the RDF measured in this particular range and 𝑐𝑖 being an unknown
constant.

By dividing the full interaction range into a number of overlapping windows, the com-
plete RDF and hence the effective pair-interaction can be reconstructed. This is realized
by matching the partial Φ𝑖

eff(𝑅) with choosing appropriate constants 𝑐𝑖 and imposing
𝛽Φeff(𝑅max) = 0.

2.4.3.2 Widom particle insertion method

This method for determining the effective interaction between two mesoscopic particles is
based on Widom particle insertion method and was developed by Mladek and Frenkel [25].
It relies on simulating two isolated dendrimers, which are equilibrated independently using
standard MC simulations. Thereafter, the dendrimers are placed on a centers-of-mass
distance 𝑅 generated uniformly in the interval 𝑅 ∈ [0, 𝑅max]. If for each distance the
intermolecular potential energy Δ𝑈(𝑅) is evaluated, the effective interaction Φeff(𝑅) can
be obtained from:

𝛽Φeff(𝑅) = − ln
(︁ ⟨︀

exp
(︀
−𝛽Δ𝑈(𝑅)

)︀⟩︀
𝑅

)︁
+ 𝑐. (2.83)

where ⟨𝑎⟩𝑅 denotes a canonical ensemble over the quantity 𝑎 in the system of two
dendrimers at a center-of-mass distance 𝑅. Similar to the umbrella sampling method
(Sec. 2.4.3.1) the parameter 𝑐 is determined by requiring that the potential is 0 at
𝑅 = 𝑅max, where the intermolecular potential energy has decayed to zero.

2.4.3.3 Force integration method

An alternative way of extract the effective interaction between two macromolecules is by
calculating the force F𝛼 acting on the center-of-mass of each macromolecule 𝛼, due to the
presence of the other macromolecule. This force is given by

F𝛼 = −∇R𝛼Φeff (R1,R2) . (2.84)

It has been shown in Ref. [27] that this force can be calculated within a MC or a Molecular
Dynamics simulation as the expectation value of the forces exerted on the individual
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monomers of macromolecule 𝛼 due to the monomers of the other macromolecule, i.e.:

F𝛼(𝑅) =

⟨
𝑁∑︁
𝑖=1

F𝑖𝛼

⟩
𝑅

. (2.85)

This method has been applied for in the calculation of the effective interaction between
star polymers [75, 76] as well as between dendrimers [35, 36].

2.5 MC simulation of dendrimers

In order to study in detail the properties of dendrimers (cf. Sec. 3.1), we investigate our
model system (cf. Sec. 3.2.3.2) at three different density regimes:

• the infinite dilution limit in which single isolated dendrimers are considered,

• the infinite dilution limit for a pair of dendrimers, and

• the bulk limit were the system is studied at finite densities.

For all theses regimes, we use a standard 𝑁𝑉 𝑇 MC simulation with the conventional
Metropolis acceptance criterion. For the case of single dendrimer as well as for the bulk
system we employ single translational monomer moves [see Eq. (2.41)]. For a pair of
dendrimers center-of-mass moves were considered in order to keep the dendrimers at a
fixed distance. One way to achieve this is to choose a random bead 𝑖 and generate its new
position using the rule r𝑖 → r𝑖 +Δ𝜉𝑖. Then, to keep the center-of-mass of the dendrimer
at the same position, we move the rest of the beads 𝑗 ̸= 𝑖 according to the following
formula:

r𝑗 → r𝑗 −
Δ

𝑁𝑚 − 1
𝜉𝑗 (2.86)

where 𝑁𝑚 is the total number of monomers in the dendrimer. Initially, orientational
moves [50] were also considered.





Chapter 3

Model

3.1 Polymers and dendrimers

Polymers are molecules that are synthesized through a process called polymerization,
by which single components (monomers) are connected to each other through covalent
bonds1. A widely studied example of polymers is the polypropelene [(C3H6)𝑁 ]. The
subscript 𝑁 denotes the number of times the monomer, here C3H6, is repeated; 𝑁 is
referred to as the degree of polymerization of the polymer. One of the most common
methods for synthesizing polypropylene is by polymerizing propylene monomer by the
Ziegler-Natta polymerization (see Fig. 3.1).
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Ziegler-Natta

polymerization
.. C

H

CH3

C

H

CH3
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CH3
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CH3
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poly-propylene

Figure 3.1: Polymerization of propylene monomers using the Ziegler-Natta polymerization
method.

The properties of a polymer are determined by its degree of polymerization as well as by
its architecture. Polymers consisting of only one monomer type are called homopolymers,
whereas those consisting of several different types of monomers into a single chain are
called heteropolymers.
Polymers can be classified according to their structure to:

• linear

• branched (or hyperbranched), and

• crosslinked.

1(Poly)-(mer) means (many)-(parts) πολυ-μερές [77].

29
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In linear polymers the monomeric units are linked together to form a linear chain of finite
length. Examples are nylon, polyester or polyvinylchloride (PVC). In the case of branched
polymers the monomers form long chains with side branches which can consist of different
size monomers and can have various lengths. The most common branched polymers are
low-density polyethylene, glycogen and starch. In crosslinked polymers different polymer
chains form bridges, called crosslinks, which tie them all together. Vulcanized rubber is
a widely polymer used in industry that falls into this category.
Hyperbranched polymers [78, 79] are polymers based on AB𝑓−1 monomers, i.e.

monomers that have a single functional group of type A and (𝑓 − 1) terminal functional
groups of type B, where A can only react with B. In Fig. 3.2, we show an example of
an AB2 hyperbranched polymer, i.e. 𝑓 = 3. In this case, we can have three different
types of monomers: dendritic (𝑑), linear (𝑙) or terminal (𝑡) defined as monomers having
2, 1 or 0 B groups reacted. The degree of branching (DB), a quantity that measures
the proportion ratio of perfectly reacted sites in a hyperbranched polymer, is defined
as [80, 81]

DB =
𝐷 + 𝑇

𝐷 + 𝑇 + 𝐿
(3.1)

where 𝐷, 𝐿 and 𝑇 are the mole fractions of the dendritic, linear and terminal monomers.

𝑑

𝑑

𝑡

𝑡

𝑡

𝑙

A

B

A

B

B

B

A

B

A

B

B

B

A

B

A

B

B

B

Figure 3.2: Example of a hyperbranched (AB2) polymer. The dotted circles (black) mark
the terminal (𝑡), the dashed (red) the dendritic (𝑑) and the continuous (green) circles the
linear (𝑙) monomers. In this case 𝐷 = 2/6, 𝑇 = 3/6 and 𝐿 = 1/6 and so, according
to Eq. (3.1), DB = 55/6.

3.2 Dendrimers

In this section we first describe the growth procedure of regular dendrimers, i.e. a special
case of hyperbranched polymers (see Sec. 3.1), as well as some of the basic quantities that
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are used for describing the shape and the microscopic structure of a dendrimer. Then we
summarize the most important work done on dendrimers in the period 1978–2010 needed
in order to describe the dendrimer model used throughout this thesis. Finally, we present
two of the different models that are used in literature for simulating dendrimers.

3.2.1 Regular dendrimers

A very interesting and special subset of hyperbranched polymers are dendrimers. Their
DB has the value of 1 which means that they branch at each monomeric unit and as a
result they have a perfect architecture. They are typically synthesized through an iterative
reactive procedure which leads to a tree-like structure. During this procedure, branched
monomers are successively added in layers, starting from a monomer core with branching
groups. Each layer is called a generation. We denoted with the letter 𝐺 the total number
of generations.

We first describe the growth procedure for the simple case of a regular dendrimer. This
procedure is similar to the one described in Sec. 3.1 for hyperbranched polymers with the
difference that here the growth starts from an initial B𝑛 core whose terminal groups can
react only with 𝑛 AB𝑓−1 monomers. Initially, their B groups are protected from further
reactions to ensure that the AB𝑓−1 will only react with the initial core and not with each
other. As soon as the first generation is completed the B groups are activated and the
whole structure acts like a B𝑛(𝑓−1) core that can further react with 𝑛(𝑓 − 1) AB𝑓−1 in
order for the second generation to be created. This procedure can be repeated an infinite
number of times, where on each step 𝑛(𝑓 − 1)𝐺−1 monomers are added to the current
structure. The special case of 𝑓 = 𝑛 has a structure of a Cayley tree [77, 82] and is
presented in Fig. 3.3.
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Figure 3.3: Example of a growth procedure of a regular dendrimer with 𝑓 = 𝑛 = 3 up to
second generation.

Now we define the characteristic quantities of a single dendrimer. First we consider a
regular dendrimer as described in Sec. 3.2.1. The central particles constitute the zeroth
generation (see Fig. 3.4a). Each monomer has functionality 𝑓 (see Fig. 3.3) which means
that from there, 𝑓 linear chains of 𝑃 bonds each can be attached. The quantity 𝑃 is known
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as the spacer length of the dendrimer. The total number of monomers of a dendrimer of
generation 𝐺 is given by the formula:

𝑁 = 1 + 𝑓 𝑃
(𝑓 − 1)𝐺+1 − 1

𝑓 − 2
. (3.2)

We denote a dendrimer of generation 𝐺 = 𝑚 with the symbol 𝐺𝑚. The monomers of
the last generation form the shell of the dendrimer, while the rest form the core of the
dendrimer. The total number of monomers 𝑁shell belonging to the shell is given by

𝑁shell = 𝑓(𝑓 − 1)𝐺. (3.3)

In Fig. 3.4 we present the most common case of regular dendrimers, i.e. 𝑓 = 3 and 𝑃 = 1.

𝐺0
𝑁 = 4
𝑁shell = 3

𝐺1
𝑁 = 10
𝑁shell = 6

𝐺2
𝑁 = 22
𝑁shell = 12

(a) (b) (c)

Figure 3.4: Schematic representation of regular dendrimers, with 𝑓 = 3 and 𝑃 = 1 for
generations 0 (a), 1 (b) and 2 (c). For each case the total number of monomers as well as
the number of shell monomers are displayed.

The radius of gyration 𝑅g, measures the overall size of a dendrimer. Let r𝑖 be the
position vectors of the monomers 𝑖 = 1 . . . 𝑁 of a dendrimer and let RCM be the position
of the center-of-mass of the dendrimer. Then:

𝑅2
g =

1

𝑁

⟨
𝑁∑︁
𝑖=1

(ri −RCM)
2

⟩
. (3.4)

The radial monomer density profile 𝜌 (r) is a quantity that gives information on the
conformation of a dendrimer and reads

𝜌 (r) =

⟨
𝑁∑︁
𝑖=1

𝛿 (r− ri)

⟩
, (3.5)
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where ⟨· · · ⟩ denotes an average over all different configurations. The quantity 𝜌(r) implies
that the average number of monomers lying in the range from 𝑟 to 𝑟+d𝑟 from the center-
of-mass of the dendrimer is 4𝜋𝑟2𝜌(𝑟)d𝑟.

3.2.2 A brief history of dendrimers

(i) 1978: Cascade molecules

Dendrimers’ chemistry was introduced in 1978 by Vögtle et al. [7] (Univer-
sity of Bonn, Germany) who synthesized the first dendrimers (termed “cascade
molecules”) and described the advantages of frequent repetitions procedures in the
construction of large molecular cavities.

(ii) 1982: Host-guest character

Maciejewski et al. discussed in Ref. [83] the concepts of synthesis of shell
topo-logical compounds, which consist of guest molecules trapped by a host
molecule with a spatial, egg shell like structure. This “shell-cast” characterization
of dendrimers (termed as starburst molecules at that time) was based on the
assumption that starburst polymers consist of a hollow-core and a dense-shell.

(iii) 1983: Starburst polymers

Tomalia presented for the first time the sequential construction of branched
polymers as a novel technology in The Winter Polymer Gordon Conference (Santa
Barbara, CA) [9].

(iv) 1984: Hollow-core, dense-shell model

Motivated by Tomalia’s unpublished work, de Gennes and Hervet proposed
in Ref. [84] a purely theoretical approach on the growth of starburst polymers.
Using a modified version of the Edwards self-consistent field [85, 86], they predicted
that the monomeric density increases from the core to the periphery up to a
limiting radius 𝑅𝑙. Thus a limiting generation number 𝐺𝑙 exists, above which the
starburst process cannot continue. This limiting generation is given by the relation:

𝐺𝑙 = 2.88 ln𝑃 + 4.4± 0.2, (3.6)

where 𝑃 is the spacer length defined in Sec. 3.2.1. Well below this limit the poly-
mer radius 𝑅 scales with the molecular weight 𝑀 as 𝑅 ∼ 𝑀0.2, while above this
limit compact structures are expected and thus 𝑅 ∼ 𝑀0.33. This study created a
theoretical background for further studies based on the hollow-core (dense-shell) as-
sumption to come. Their result was not surprising, since the whole study was based
on the assumption that each successive generation was at further radial distance
from the core in such a way that the free (unreacted) groups always face outwards
and thus they would always lie on the surface of the starburst polymer.

(v) 1985: The term “dendrimers” appears for the first time in the bibliography
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In 1985, Tomalia et al. in the Dow Laboratories (Dow Chemical Co.) pub-
lished [8] the work done during the period 1979-1985 and presented the first
family of well-characterized dendrimers with a unique core-shell macromolecular
architecture synthesized with the use of a divergent method developed [16, 87].
These polymers had a central hollow core and tendrils that branched outwards, one
from another in a precise predictable manner. Inspired by their tree-like branching
structure, Tomalia termed these macromolecules dendrimers, from the Greek word
dendron for tree. Poly(amido amine) (PAMAM) dendrimers were produced in
high yields and in different molecular weights. In this work the term dendrimers
appeared for the first time. In Fig. 3.5, a second generation PAMAM dendrimer is
presented.

Figure 3.5: 𝐺2 PAMAM-dendrimer

(vi) Dense-core model

The de Gennes dense shell model (iv) was for a long time the accepted con-
cept for the structure of dendrimers. Lescanec and Muthukumar [88] simulated
the growth of starburst polymers using a self-avoiding walk algorithm [74] in three
dimensions. They studied molecules with trifunctional branch points and flexible
spacers 𝑃 (= 1, 3, 5, 7, 9 and 11). Their results showed that the free ends do not
necessarily lie on the surface of the molecule but they can fold back to the inner
part. This was in contradiction with the theoretical predictions made by de Gennes
given in Eq. (3.6). The physical properties studied in this work showed a strong
dependence on the spacer length. In particular, the radius of gyration 𝑅g, was
proven to scale like

𝑅g ∼ 𝑀𝜈𝑃 𝑞 with 𝜈 = 0.22 and 𝑞 = 0.5. (3.7)

Although the simulation model used had by construction a non-equilibrium nature,
their work gave rise to the dense-core model and was the starting point for many
theoretical studies.

(vii) Dense-core vs. dense-shell model
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It was the pioneering theoretical work of Boris and Rubinstein in Ref. [89]
that supported the validity of the dense core model. These authors performed
equilibrium self-consistent mean field (SCFM) [90] calculations and derived a
simple analytical equation for the dependence of the radius of gyration upon
generation. Their results showed that starburst dendrimers are characterized by
a dense rather than a hollow core. The ends of the dendrimers were found to
be distributed throughout the volume of the dendrimer whereas the monomeric
density was proven to monotonically decay from the center of the molecule. This
result was contradictory to the theoretical predictions of de Gennes and Hervet but
in agreement with computer simulations results [20, 88].

(viii) Dendrimers and cluster formation

Likos et al. in Ref. [91] established a criterion for the formation of full par-
ticle overlaps – called clusters – for particles interacting via bounded, non-negative
potentials. Until that time, cluster formation was explicitly seen in systems of
penetrable spheres and it was attributed to the tendency of particles to create
free space by forming full overlaps. They showed that clustering occurs in the
absence of attraction when the Fourier transform of the potential has oscillatory
behavior, i.e. it attains negative values for certain ranges of the wave number.
Such potentials are called 𝑄± potentials. In order for the criterion to be applicable,
these interactions have to be spherically symmetric, to decay sufficiently fast
to zero for large distances and to have an existing Fourier transform. Certain
model dendrimers [24, 92] were proven to belong in the 𝑄±-class of bounded
potentials [91].

(ix) Dendrimer liquid crystals

Figure 3.6: 𝐺2 dendrimer simulation ball model of Li et al. [32]

Li et al. in Ref. [32] presented a spherical model for soft dendrimer balls
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(see Fig. 3.6). The core of the sphere consists of hard aromatic groups while the
surface is covered with flexible C12 alkane chains. By carrying out Molecular
Dynamics simulations [60] they found that anisotropic A15 lattice is favoured over
FCC and BCC lattices with the soft balls to self-adjust their shape and interactions
in different lattices.

(x) Internal structure of PAMAM dendrimers

Maiti et al. in Ref. [17] combined configuration biased Monte Carlo and
Molecular Dynamics techniques to successfully characterize the structure of
single ethylenediamine (EDA) cored PAMAM dendrimers for several generations.
Low generation dendrimers (G2–G5) were found to have the shape of compact
ellipsoids-spheroids with a considerable amount of back-folding, whereas higher
generations (G9–G11) become more spherical in shape.

(xi) Effective interactions of cluster forming amphiphilic dendrimers

In Ref. [24], Mladek et al. presented a model of second generation amphiphilic
dendrimers (see Sec. 3.2.3.2) consisting of a solvophobic core and a solvophilic
shell. It was shown that their effective interactions belong to the aforementioned
𝑄±-potential class and thus they are suitable colloids for cluster formation.

(xii) Monomer resolved simulations of cluster forming amphiphilic dendrimers

Lenz et al. in Refs. [36, 93] verified the validity of the coarse-grained level
description for the stability of cluster crystals, i.e. crystals composed of ho-
mogeneously sized clusters of overlapping dendrimers, by performing extensive
monomer-resolved Monte Carlo simulation of 𝐺2 amphiphilic dendrimers, predicting
also an upper limit for the density for which such crystals can exist.

3.2.3 Dendrimer simulation models

3.2.3.1 General bead spring model

Murat and Grest performed in Ref. [20] the first off-lattice equilibrium Molecular Dy-
namics (MD) [60, 61] simulations in order to explore the properties of dendrimers. The
monomer-monomer pair interaction, 𝑈 (𝑟) , was modeled via a Lennard-Jones potential,
𝜑LJ [Eq. (3.9)], truncated and shifted at a cut-off distance 𝑟𝑐 which was freely chosen:

𝑈 (𝑟) =

{︃
𝜑LJ (𝑟)− 𝜑LJ (𝑟𝑐) , for 𝑟 ≤ 𝑟𝑐

0, for 𝑟 > 𝑟𝑐
, (3.8)

𝜑LJ = 4𝜀

[︂(︁𝜎
𝑟

)︁12
−
(︁𝜎
𝑟

)︁6]︂
. (3.9)

A cut-off value of 𝑟𝑐 = 21/6𝜎 makes the monomer-monomer interaction purely repulsive.
The chemical bonds between monomers were modeled via the finite extensible nonlinear
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elastic (FENE) [94] potential defined as:

𝑈FENE (𝑟) =

⎧⎨⎩−15𝜀
(︀
𝑅0

𝜎

)︀2
ln

(︂
1−

(︁
𝑟
𝑅0

)︁2)︂
, for 𝑟 ≤ 𝑅0

∞, for 𝑟 > 𝑅0

(3.10)

where 𝜎 being is the monomer diameter, 𝑅0 = 1.5𝜎 and 𝑇 = 1.2𝜀/𝑘B. The resulting total
potential between two adjacent (bonded) beads of the dendrimer separated at a distance
𝑟 reads

𝑈tot (𝑟) = 𝑈 (𝑟) + 𝑈FENE (𝑟) (3.11)

and is visualized in Fig. 3.7. The bonded beads experience a very strong restoring force
both for very short separations (steric repulsion) as well as for separations that approach
the bond length scale 𝑅0. The most probable separation is at 𝑟𝑚𝑖𝑛 = 0.97𝜎, where the
total potential 𝑈tot has its minimum and thus the total force vanishes.
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Figure 3.7: Total potential [see Eq. (3.11)] between two adjacent beads of the dendrimer.

3.2.3.2 Amphiphilic dendrimers

Throughout this work we have used the monomer resolved model for amphiphilic den-
drimers introduced by Mladek et al. [37, 92], which is based on the model of Welch and
Muthukumar [95]. The spacer length of these dendrimers is 𝑃 = 1, while their functiona-
lity is 𝑓 = 3. In contrast to the regular dendrimer model, the branching of amphiphilic
dendrimers starts from a central bond rather from a central monomer. This results in a
total number of monomers 𝑛(𝐺) given by the formula:
The total number of monomers in a dendrimer of generation number 𝐺 is given by

𝑛(𝐺) = 2
(︀
2𝐺+1 − 1

)︀
. (3.12)

and includes 2𝐺+1 − 2 core monomers and 2𝐺+1 terminal shell monomers.
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𝐺0
𝑁 = 2 𝐺1

𝑁 = 6
𝑁shell = 4

𝐺2
𝑁 = 14
𝑁shell = 8

(a) (b) (c)

Figure 3.8: Schematic representation of amphiphilic dendrimers, with 𝑓 = 3 and 𝑃 = 1
for generations 0 (a), 1 (b) and 2 (c). We denote with 𝑁 the total number of monomers
while with 𝑁shell number of terminal shell monomers.

The inner monomers represent the solvophobic core, labelled by ‘C’ while the outermost,
labelled by ‘S’, represent the solvophilic shell. This results in a total number of three
different interaction types between the beads namely ‘CC’, ‘CS’, ‘SS’. The bonds are
modeled via the finitely extensible nonlinear elastic (FENE) potential [Eq. (3.10)]. In this
case we introduce the subscript 𝜇𝜈 to denote the different types of interactions induced by
the amphiphilic nature of the model; using a different formulation compared to Eq. (3.10)
the FENE potential reads

𝛽ΦFENE
𝜇𝜈 (𝑟) = −𝐾𝜇𝜈𝑅

2
𝜇𝜈 ln

(︃
1−

(︂
𝑟 − 𝑙0𝜇𝜈
𝑅𝜇𝜈

)︂2
)︃

(3.13)

The difference of the FENE potential to the simple harmonic, “spring” potential is that
it restricts the bond length to be in the interval

[︀
𝑙min
𝜇𝜈 , 𝑙max

𝜇𝜈

]︀
. The 𝐾𝜇𝜈 are the spring

constants, 𝑅𝜇𝜈 =
(︀
𝑙max
𝜇𝜈 − 𝑙min

𝜇𝜈

)︀
/2 and measure the maximal extension and compression

of the bond from the equilibrium length 𝑙0𝜇𝜈 , defined as 𝑙0𝜇𝜈 =
(︀
𝑙min
𝜇𝜈 + 𝑙max

𝜇𝜈

)︀
/2. All of the

dendrimer monomers separated by a distance 𝑟 interact via a Morse potential:

𝛽ΦMorse
𝜇𝜈 (𝑟) = 𝜀𝜇𝜈

{︀
[exp (−𝛼𝜇𝜈 (𝑟−𝑑𝜇𝜈))− 1]2 − 1

}︀
. (3.14)

We focus on two families of model 𝐺4 dendrimers referred to as D7 [24] and D12. For
all interaction parameters we use the diameter of the core monomers 𝑑CC as the unit
of length. Using this convention, we summarize the interaction potential parameters for
the D7-type in Table 3.1. In the case of the D12-type dendrimers the core–core (CC)
Morse potential has been truncated and shifted [50] at a distance 𝑑CC, while for all other
Morse interactions we have introduced a general cut-off distance 𝑟𝑐 = 2.8 𝑑CC (see inset
to Fig. 3.10).
In Fig. 3.9 we give a schematic representation the model dendrimer for a 𝐺2 dendrimer
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FENE 𝐾𝜇𝜈𝑑
2
CC 𝑙0𝜇𝜈/𝑑CC 𝑅𝜇𝜈/𝑑CC

CC 40 1.8750 0.3750
CS 20 2.8125 0.5625

Morse 𝜀𝜇𝜈 𝛼𝜇𝜈𝑑CC 𝑑𝜇𝜈/𝑑CC

CC 0.714 6.4 1.00
CS 0.014 19.2 1.25
SS 0.014 19.2 1.50

Table 3.1: Interaction parameters specifying the potentials Eq. (3.13) and Eq. (3.14) for
the D7-type and D12-type dendrimers.

along with a simulation snapshot.

Figure 3.9: Left: Schematic representation of the dendrimer model for 𝐺2, the core
(C) and the shell (S) monomers are colored in green and blue, respectively. Right: A
simulation snapshot of a 𝐺2 D7-type amphiphilic dendrimer.

In Fig. 3.10 we plot the Morse potential for the different types that we have used, i.e.
D7 and D12, as well as for the different monomer types (C or S). We use a color coding
related the colors used for the different monomer types. The CC interaction is colored in
green, the CS interaction in turquoise and the SS in blue color. Following the same color
coding we also plot in Fig. 3.11 the FENE potential.
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Figure 3.10: Illustration of the Morse interaction potentials between the different types
of monomers. The dashed (dark green) and the continuous (light green) line illustrate
the CC interaction for the D7- and the D12-type dendrimer. With a dotted-dashed line
(turquoise) we represent the CS and with the dotted line (blue) the SS interactions. The
inset shows a close-up of the 𝑥-axis of the plot at the cutoff radius 𝑟𝑐 = 2.8 𝑑CC that is
used for all interactions except for the D12-type CC interaction where the potential is
truncated and shifted at 𝑟𝑐 = 𝑑CC.
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Figure 3.11: Illustration of the FENE interaction potentials between different types of
monomers, both for D7- and D12-type dendrimers. We have marked on the 𝑥-axis
the equilibrium lengths of the CC and CS interactions namely, 𝑙0CC/𝑑CC = 1.875 and
𝑙0CS/𝑑CC = 2.8125. We use the same color coding as in Fig. 3.10.



Chapter 4

Liquid crystals in a nutshell

On one hand, the simulation work done by Maiti et al. [cf. Sec. 3.2.2 (x)] suggests that
dendrimers are elongated rather than spherical (see Fig. 5 in [17]). On the other hand,
from the work of Li et al. [cf. Sec. 3.2.2 (ix)] we can expect that the dendrimers’ shape
deformation and re-orientation will play role in the way they pack. In this chapter we
review the basic theories in liquid crystals as a theoretical framework for the description
of the orientational order in dendrimer liquids. As the name suggests, LCs are matter
in an intermediate state (mesophase), observed between the liquid and the crystal phase.
Physically, LCs have the flow properties of liquids but they have also the optical properties
of crystalline solids due to the orientational (and partial positional) order.

n̂

Figure 4.1: Structure of isotropic liquid (left) and of nematic liquid crystal (right). The
director n̂ is a unit vector and gives the average direction of the molecules.

The classification of LCs is based on the degree of order in the system. According to
their positional and orientational order, LC phases can be classified as follows:

• isotropic phase

• nematic phase

• smectic phase and

• columnar phase.

41
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In Fig. 4.1 we show a schematic of the nematic phase. Here the molecules tend, in
contrast to isotropic liquids, to align along the average orientation defined as the director
n̂, which also specifies the average molecular orientation. Orientations of the director +n̂
and −n̂ are equivalent so that n̂ is a headless rather than a proper vector.

Several models [40, 96] have been developed in order to elucidate the stability of the
phases and the transitions between these phases. The Onsager theory gives an insight
into the nematic-isotropic (NI) transition [96].

4.1 The Onsager theory

𝐿
𝐷

Figure 4.2: Hard rod
molecule of length 𝐿 and
diameter 𝐷.

Onsager in Ref. [96] proposed a hard-rod model for LCs, which
predicts the nematic-isotropic transition. In his theory a 3-
dimensional gas of 𝑁 hard rods of length 𝐿 and diameter 𝐷 is
considered (see Fig. 4.2) [40, 96]. In this model it is assumed
that the energy of interaction between two rods is zero except
when they overlap and that the aspect ratio of the rods is large,
(𝐿/𝐷 ≫ 1), the theory is valid for small packing fraction 𝜂,

𝜂 =
𝑁

𝑉

𝜋𝐿𝐷2

4
(4.1)

with 𝜌 being the number density of the system.

An expression of the Helmholtz free energy ℱ of a system of
hard rods is based on our knowledge on the thermodynamics
of ideal gases and systems of finite sized spheres. In a perfect
gas the ideal Helmholtz free energy per atom reads

ℱ id

𝑁
= −𝑘B𝑇 ln

(︂
𝑎
𝑉

𝑁

)︂
(4.2)

where 𝑎 is a constant. If the gas atoms have a finite volume 𝑏 then the free volume
available per particle particle is:

𝑉free

𝑁
=

𝑉 −𝑁𝑏

𝑁
(4.3)

with 𝑉free being the free volume available to the all particles. Then, the modified Helmholtz
free energy per particle is modified to

ℱ
𝑁

= −𝑘B𝑇 ln

(︂
𝑎
𝑉 −𝑁𝑏

𝑁

)︂
= −𝑘B𝑇 ln

(︂
𝑎
𝑉

𝑁

(︂
1− 𝑁

𝑉
𝑏

)︂)︂
≈ −𝑘B𝑇 ln 𝑎⏟  ⏞  

ℱ0
𝑁

+𝑘B𝑇 ln
𝑁

𝑉
+ 𝑘B𝑇

𝑁

𝑉
𝑏 (4.4)

where we have expanded the logarithm ln
(︀
1− 𝑁

𝑉
𝑏
)︀
in the dilute limit. Hence the corre-
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sponding free energy reads

ℱ = ℱ0 +𝑁𝑘B𝑇 ln

(︂
𝑁

𝑉

)︂
+𝑁𝑘B𝑇

(︂
𝑁

𝑉

)︂
𝑏 (4.5)

In the case of hard rods the excluded volume depends also on the relative orientation
of the particles. For parallel rods the excluded volume is a cylinder of of radius 𝐷 and
length 𝐿 totaling to 𝜋𝐷2𝐿. For perpendicular rods the excluded volume is a cylinder of
ellipsoidal base and length 𝐿. It can be shown [40, 97] that the excluded volume per rod
is

𝑏 = 𝐷𝐿2| sin 𝛾| (4.6)

where 𝛾 is the angle between the long axes of the rods [see Fig. 4.7]. The orientation of
the rods is described by an orientational distribution function 𝑓(𝜃) so that 𝑓(𝜃)dΩ is the
fraction of molecules in a solid angle dΩ whose axes’ are oriented at an angle 𝜃 to the
director n̂.

𝛾

Figure 4.3: Relative orientation
of rods [40].

The average values | sin 𝛾| is a functional of the ori-
entational distribution function 𝑓 (𝜃):

⟨| sin 𝛾|⟩ =
∫︁

sin 𝛾𝑓(𝜃)𝑓(𝜃′) dΩdΩ′ (4.7)

where Ω and Ω′ describe the orientations of the two
particles in space. The anisotropic distribution of the
rod orientations results in a loss of entropy or, equiva-
lently, in an excess free energy difference Δℱor which
according to the Gibbs formula [98] is given by

Δℱor = 𝑁𝑘B𝑇

∫︁
𝑓(𝜃) ln

(︁
4𝜋𝑓 (𝜃)

)︁
dΩ. (4.8)

Hence, by substituting Eq. (4.6) into Eq. (4.5) and by
including the excess free energy due to the orientation
of the molecules [see Eq. (4.8)] we get:

ℱ = ℱ ′
0 +𝑁𝑘B𝑇

{︂
ln

(︂
𝑁

𝑉

)︂
+

𝑁

𝑉
𝐷𝐿2 ⟨| sin 𝛾|⟩ +∫︁

𝑓(𝜃) ln (4𝜋𝑓(𝜃)) dΩ

}︂
(4.9)

where ⟨| sin 𝛾|⟩ is given by Eq. (4.7). In terms of pack-
ing fraction 𝜂 the final form of the Onsager free energy
reads

ℱ = 𝑁𝑘B𝑇

[︂
ln

𝐿𝜂

𝐷
+

4

𝜋

𝐿𝜂

𝐷
⟨| sin 𝛾|⟩+

∫︁
𝑓(𝜃) ln

(︁
4𝜋𝑓(𝜃)

)︁
dΩ

]︂
. (4.10)
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Figure 4.4: Onsager’s trial function given in Eq. (4.11) for three representative values of
the parameter 𝛼. With increasing 𝛼 sharp peaks develop around 𝜃 = 0 and 𝜃 = 𝜋.

In order to determine the minimum of the free energy [Eq. (4.10)], Onsager used in his
original publication [96] the following ansatz for 𝑓 (𝜃):

𝑓(𝜃) =
𝛼 cosh(𝛼 cos 𝜃)

4𝜋 sinh𝛼
(4.11)

where the parameter 𝛼 controls the degree of orientational order: when 𝛼 = 0 the distri-
bution is uniform while with increasing 𝛼, sharp peaks appear around 𝜃 = 0 and 𝜃 = 𝜋
(see Fig. 4.4). Then the free energy was minimized with respect to 𝛼. For this particular
choice of 𝑓(𝜃) we can also calculate the degree of orientational order, which is the usual
measure of ordering in the nematic phase, given by [2]

𝑆 ≡ ⟨𝑃2(cos 𝜃)⟩ (4.12)

=
1

2

∫︁
𝑓(𝜃)(3 cos2 𝜃 − 1)2𝜋 sin 𝜃d𝜃, (4.13)

𝑃2(𝑥) = (3𝑥2 − 1)/2 is the Legendre polynomial of order 2. By substituting Eq. (4.11)
into Eq. (4.13) we get

𝑆(𝛼) = 1− 3
coth𝛼

𝛼
+

3

𝛼2
. (4.14)

As depicted in Fig. 4.5, 𝑆(𝛼) is a monotonically increasing function of 𝛼, starting from 0
at 𝛼 = 0 and saturating at 1 for 𝛼 → ∞. For 𝛼 ≪ 1, 𝑆 (𝛼) ≈ 𝛼2/15 whereas for 𝛼 ≫ 1,
𝑆 (𝛼) ≈ 1− 3/𝛼.

Using Onsager’s ansatz [see Eq. (4.11)] we can calculate the average value |sin 𝛾|
from Eq. (4.7) and plot the Onsager free energy [Eq. (4.10)] as a function of 𝑆(𝛼) for
different values of 𝐿𝜂/𝐷. An increase of the degree of ordering, associated with the
parameter 𝑆(𝛼) leads to:
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Figure 4.5: Illustration of the order parameter 𝑆(𝛼) as function of 𝛼 defined in Eq. (4.14).

(i) an increase in the orientational free energy 𝑁𝑘B𝑇
∫︀
𝑓(𝜃) ln (4𝜋𝑓(𝜃)) dΩ (loss of ori-

entational entropy) and

(ii) a decrease in the free energy 4
𝜋
𝐿𝜂
𝐷
⟨| sin 𝛾|⟩ emerging from excluded volume interac-

tions: as 𝑆(𝛼) → 1 all molecules tend to be parallel and therefore, the excluded
volume becomes very small.

The final form of the free energy depends in the quantity 𝐿𝜂/𝐷, i.e. the product of
the volume fraction 𝜂 of the rods as well as on their aspect ratio 𝐿/𝐷. In Fig. 4.6 we
plot the Onsager free energy as a function of the order parameter 𝑆(𝛼). We see that for
𝐿𝜂/𝐷 < 3.34 the free energy is minimal at 𝑆 = 0 whereas for values of 𝐿𝜂/𝐷 > 4.49 the
minimum is located at a finite value of the parameter 𝑆, i.e. 𝑆 > 0. Between theses to
limit there is a coexistence of the nematic and the isotropic phase.
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Figure 4.6: The Onsager free energy as a function of the order parameter 𝑆. For
𝐿𝜂/𝐷 = 3.3 the minimum is at 𝑆 = 0 which corresponds to the isotropic phase. For
higher values 𝐿𝜂/𝐷 = 4.5 the lowest energy state has nematic order.
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Although Onsager theory for hard rods does not predict a correct solution at high
densities [97] it provides a qualitative picture of the nematic-isotropic (NI) transition. The
anisotropy of the shape of the molecules along with their excluded volume are sufficient
for the stabilization of the orientational ordering. This can be also seen from the form of
the Onsager free energy in Eq. (4.10) which is athermal, i.e. the temperature 𝑇 enters only
as a prefactor which signals the entropic origin of the orientational order [99]. This does
not mean that the interactions between liquid-crystalline molecules or colloids are entirely
hard-core; but the steric repulsion between them represents the reference interaction.

4.2 Nematic order parameter

As we have already mentioned, the nematic phase is characterized by a preferred direction
specified by the director n̂ as well as by the degree of the nematic order 𝑆, see Eq. (4.13).
Both quantities can be combined into a second rank tensor called the nematic tensor Q
which captures all aspects of nematic order, i.e. the preferred molecular orientation as
well as the magnitude of order. The elements 𝑄𝑖𝑗 of the tensor are defined as [40]:

𝑄𝑖𝑗 =
1

𝑁

∑︁
𝛼

(︂
𝑙𝛼𝑖 𝑙

𝛼
𝑗 − 1

3
𝛿𝑖𝑗

)︂
, (4.15)

where l𝛼 is a unit vector pointing along the long axis of molecule 𝛼 while 𝑙𝛼𝑖 is the 𝑖th

component of l𝛼. The tensor Q is symmetric and traceless. In the ordered state the
elements of Q do not vanish. With the 𝑥 axis along the direction of the molecular
alignment, n̂, Q is diagonal and reads

Q =

⎡⎣ 2𝑆/3 0 0
0 −𝑆/3 + 𝑃 0
0 0 −𝑆/3− 𝑃

⎤⎦ (4.16)

where 𝑃 is the degree of biaxiality. If 𝑃 is nonzero, Q is biaxial [100], and there are two
preferred directions.

Usually nematic crystals are uniaxial, i.e. 𝑃 = 0 and there there is only one preferred
direction. In this case:

𝑄𝑖𝑗 = 𝑆

(︂
𝑛𝑖𝑛𝑗 −

1

3
𝛿𝑖𝑗

)︂
. (4.17)

From the definition of Eq. (4.15)

𝑆 =
1

2

⟨︀
3 (l𝛼 · n̂)2 − 1

⟩︀
=

1

2

⟨︀
3 cos2 𝜃𝛼 − 1

⟩︀
(4.18)

where 𝜃𝛼 is the angle between the long axis of the molecule 𝛼 and the director n̂, which
specifies the direction of the principal axis of 𝑄𝑖𝑗.

We see that if all molecules point along the director such that 𝜃𝛼 = 0 for all molecules
then 𝑆 = 1 [Fig. 4.7(a)]. This state corresponds to perfect nematic order. If the molecules
are oriented isotropically, ⟨cos2 𝜃𝛼⟩ = 1/3 and 𝑆 = 0 [Fig. 4.7(b)]; this is the isotropic
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Figure 4.7: Values of the order parameter 𝑆 [Eq. (4.18)] for perfectly ordered (a), isotropic
(b) and perpendicular (c) orientation. The director n̂ is shown in each case.

phase. A special kind of nematic orientational order is that with all molecules perpendic-
ular to the director such that 𝜃𝛼 = 𝜋/2. In this case 𝑆 = −1/2 [Fig. 4.7(c)].





Chapter 5

Data analysis

In this chapter we summarize the quantities and methods that we used to analyze our
simulation data. First we focus on the definition and implementation of the radial dis-
tribution function. Then we introduce sample autocorrelation functions as a measure of
testing the statistical randomness of our simulation data. Finally, we present the main
quantities for characterizing the shape, size and orientation of dendrimers, i.e. the radius
of gyration 𝑅g, the radius of gyration tensor 𝒮, the orientational correlation functions, 𝑆
and 𝛼.

5.1 Radial distribution function

The equilibrium n-particle density for a system of fixed 𝑁, 𝑉 and 𝑇 is defined as [67]:

𝜌
(𝑛)
𝑁 (r𝑛) =

𝑁 !

(𝑁 − 𝑛)!

1

ℎ3𝑁𝑁 !𝒵𝑁

∫︁ ∫︁
dr(𝑁−𝑛)dp𝑁 exp

(︀
−𝛽ℋ

(︀
r𝑁 ,p𝑁

)︀)︀
=

𝑁 !

(𝑁 − 𝑛)!

1

ℎ3𝑁𝑁 !𝒵𝑁

∫︁ ∫︁
dr(𝑁−𝑛)dp𝑁 exp

(︃
−𝛽

(︃
𝑁∑︁
𝑖=1

|p𝑖|2

2𝑚

)︃)︃
exp

(︀
−𝛽𝒱

(︀
r𝑁
)︀)︀

.

(5.1)

Performing separately the integration over the momenta, Eq. (5.1) can be written as:

𝜌
(𝑛)
𝑁 (r𝑛) =

𝑁 !

(𝑁 − 𝑛)!

1

𝑧𝑁

∫︁
dr(𝑁−𝑛) exp

(︀
−𝛽𝒱

(︀
r𝑁
)︀)︀

. (5.2)

where 𝑧𝑁 is the configuration integral defined in Eq. (2.16). The quantity 𝜌
(𝑛)
𝑁 (r𝑛) dr𝑛 give

the probability of finding any 𝑛 particles of a 𝑁 -particle system in the volume element
dr𝑁 [see Eq. (2.1)] irrespective of all momenta and of the positions of the remaining 𝑁−𝑛

particles. Normalization of 𝜌
(𝑛)
𝑁 (r𝑛) yields:∫︁

dr𝑛𝜌
(𝑛)
𝑁 (r𝑛) =

𝑁 !

(𝑁 − 𝑛)!
(5.3)
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which corresponds to finding 𝑛 particles among 𝑁 . In particular, for 𝑛 = 1 and 2 we get:∫︁
dr1 𝜌

(1)
𝑁

(︀
r1
)︀
= 𝑁, (5.4)∫︁

dr2 𝜌
(2)
𝑁

(︀
r2
)︀
= 𝑁 (𝑁 − 1) . (5.5)

Thus, for a uniform fluid the one-particle density is identical to the number density 𝜌 of
the system:

𝜌
(1)
𝑁 (r) =

𝑁

𝑉
≡ 𝜌. (5.6)

It is also useful here to introduce another special case of a density function, i.e. the
pair density function for an ideal gas, i.e. a theoretical gas composed of non-interacting,
randomly moving particles. In this case, Eq. (2.16) reduces to 𝑧𝑁 = 𝑉 𝑁 with 𝑉 being the
volume of the system. Therefore, it follows from Eq. (5.2) that the pair density function
is:

𝜌
(2)
𝑁 = 𝜌2

(︂
1− 1

𝑁

)︂
. (5.7)

We can re-express the one-particle density using the Dirac delta function as:

𝜌
(1)
𝑁 (r) =

⟨
𝑁∑︁
𝑖=1

𝛿 (r− r𝑖)

⟩
. (5.8)

Equivalently, for the two-particle density we get:

𝜌
(2)
𝑁 (r, r′) =

⟨
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝛿 (r− r𝑖) 𝛿 (r
′ − r𝑗)

⟩
. (5.9)

Now, we can define the pair distribution function as:

𝑔
(2)
𝑁 (r1, r2) =

𝜌
(2)
𝑁 (r1, r2)

𝜌
(1)
𝑁 (r1) 𝜌

(1)
𝑁 (r2)

. (5.10)

For a homogeneous system we have 𝜌
(1)
𝑁 (r) = 𝜌 and thus, Eq. (5.10) takes the form:

𝜌
(𝑛)
𝑁 (r𝑛) = 𝜌𝑛𝑔(𝑛)(r𝑛). (5.11)

Additionally, for a system that is isotropic the pair distribution function 𝑔(2) (r1, r2) de-
pends only on the separation 𝑟 = |r1 − r2| between the particles and it is also called radial
distribution function 𝑔(𝑟) (RDF) [61, 62]:

𝑔(𝑟) =
𝜌
(2)
𝑁 (𝑟)

𝜌2
. (5.12)
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It can be shown [67] that:⟨
1

𝑁

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝛿 (r− r𝑗 + r𝑖)

⟩
=

1

𝑁

∫︁
𝑑r′𝜌

(2)
𝑁 (r′ + r, r′) . (5.13)

Thus, from Eq. (5.12) and Eq. (5.13) we have:

𝜌𝑔(𝑟) =
1

𝑁

⟨
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝛿 (r− r𝑗 + r𝑖)

⟩
. (5.14)

The calculation of 𝑔(𝑟) in a simulation performed within a cubic box of side length 𝐿
and where periodic boundary conditions (cf. Sec. 2.3.1) are applied, is restricted within
a distance equal to 𝐿/2. This is due to the spatial periodicity in each of the directions of
the central unit cell. Computationally the calculation of RDF is as follows:

(i) We create an empty histogram of 𝑁bin bins and of a spatial step Δ𝑟 and of range
[0, 𝐿/2]. We denote with 𝑖 the bin number which ranges from 0 to 𝑁bin − 1.

(ii) We calculate for each bin 𝑖 the number of pairs whose distance is between 𝑖 𝛿𝑟 and
(𝑖+ 1) 𝛿𝑟. Note that according to Eq. (5.14), each distinct pair should be counted
twice in the histogram. This way, if 𝑁dp (𝑟) is the number of distinct pairs of
particles then the number of pairs in the bin is 2𝑁dp (𝑟).

(iii) The term 𝜌𝑔(𝑟)Δ𝑉 gives the probability of finding a particle inside the volume
element Δ𝑉 and at a distance 𝑟 from a reference particle [see Fig. 5.1]. Thus, we
can approximate Eq. (5.14) by:

𝜌𝑔
(︁
(𝑖+ 0.5) 𝛿𝑟

)︁
=

2𝑁dp (𝑟)

𝑁𝛿𝑉
(5.15)

where 𝛿𝑉 = 𝑉𝑖+1 − 𝑉𝑖 with 𝑉𝑖 =
4
3
𝜋 (𝑖𝛿𝑟)3.

The quantity 𝑔(𝑟) of a system is of special importance since its Fourier transform [101],
known as the structure factor 𝑆(𝑘) [see Eq. (5.16)], can be experimentally measured using,
for example, small-angle neutron scattering (SANS) [102] and small-angle X-ray scattering
techniques (SAXS) [103]. The structure factor is related to the RDF via relation [104]:

𝑆(𝑘) = 1 +
4𝜋𝜌

𝑘

∞∫︁
0

[𝑔(𝑟)− 1] 𝑟 sin(𝑘𝑟)d𝑟 (5.16)

where 𝜌 is the density of the system, and 𝑘 is the scattering wavevector modulus defined
by:

𝑘 =
4𝜋

𝜆
sin(𝜃/2). (5.17)

A typical RDF calculated from MC simulation of a hard-sphere fluid system presented
in Sec. 2.4.1 and for a number density 𝜌 = 0.6𝜎−3 is shown in Fig. 5.2. The 𝑥-axis is in
units of particle diameter 𝜎.
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rδrA

Figure 5.1: Schematic representation of the shell Δ𝑉 used for the calculation of 𝑔(𝑟) and
located at a distance 𝑟 from a reference particle A. The volume 𝛿𝑉 of the shell is given
by 𝛿𝑉 = 4

3
𝜋 [(𝑖+ 1)3 − 𝑖3] 𝛿𝑟3.
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Figure 5.2: Radial distribution function calculation from MC simulation of a hard-sphere
fluid at a density 𝜌 = 0.6𝜎−3 and for 𝑁 = 500 particles.

At short distances, 𝑟 ∈ [0, 1.0), 𝑔(𝑟) is zero as a result of the strong repulsion between
the particles [see Eq. (2.62)]. At 𝑟 = 1.0𝜎 we see the largest peak with 𝑔(1.0) ≈ 2.6.
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5.2 Sample autocorrelations

5.2.1 Autocorrelation function

Autocorrelation refers to the linear dependence of an observable quantity with itself at
two points in time. Suppose that during the production steps of an MC simulations we
measure the value of an observable quantity 𝐴. We define as a time series a set, also
called a sample set, of 𝑀 equi-spaced in time measurements of the quantity 𝐴, namely
{𝐴1, 𝐴2, . . . 𝐴𝑀}. Then, the lag-𝑘 autocorrelation coefficient is given by [105, 106]

𝑟𝑘 =
𝐶𝑘

𝐶0

(5.18)

where 𝐶𝑘 is the autocovariance function at lag 𝑘 is defined as

𝐶𝑘 =
1

𝑀

𝑀−𝑘∑︁
𝑡=1

(︀
𝐴𝑡 − 𝐴

)︀ (︀
𝐴𝑡+𝑘 − 𝐴

)︀
(5.19)

and 𝐶0 is the variance function

𝐶0 =
1

𝑀

𝑀∑︁
𝑡=1

(︀
𝐴𝑡 − 𝐴

)︀2
(5.20)

where 𝐴 is the mean value of 𝐴 over all values𝑀 . Note that in the bibliography a different
definition of 𝑐𝑘 can be found, i.e.:

𝐶𝑘 =
1

𝑀 − 𝑘

𝑀−𝑘∑︁
𝑡=1

(︀
𝐴𝑡 − 𝐴

)︀ (︀
𝐴𝑡+𝑘 − 𝐴

)︀
, (5.21)

but the difference between Eqs. (5.19) and (5.21) is small for large values of 𝑀 [107].

The coefficient 𝑟𝑘 is used to detect correlation between the two values, 𝐴𝑡 and 𝐴𝑡+𝑘 at
times 𝑡 and 𝑡+𝑘, respectively. The sample autocorrelation function, or simply ACF, for a
time series is the sequence of the autocorrelation coefficients 𝐶𝑘 for 𝑘 = 0, 1, . . . ,𝑀−1. If
we compare the time series with itself, which is the zero-lag case, the correlation coefficient
𝑟0 will be exactly 1.0. In order to determine the correlation coefficient for the first lag,
we offset the lag by one time step, i.e. we set 𝑘 = 1. We can continue offsetting the time
series by an additional step in order to get higher lags coefficients. Note that each time
we increase the lag 𝑘 by one the number of points that are used in the sum of Eq. (5.18)
decreases by two. Thus, it is not recommended to calculate autocorrelation coefficients
for lags greater then half the sample size 𝑀 , i.e. the relation 𝑘 < 𝑀/2 must hold during
the calculation [106, 107].

The plot of the ACF as a function of lag 𝑘 is called autocorrelation plot or correl-
ogram [107]. Using correlograms we can interpret a set of autocorrelation coefficients
{𝑟𝑘}1. Autocorrelation plots are used as a tool for checking randomness of of a dataset
{𝐴𝑀}. If the data is random, the autocorrelation coefficients should be near zero for all
timelags 𝑘 > 0. As an example, we generated 1000 random points and then compared the

1A general advice on how to interpret a correlogram is given in Ref. [107].
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Figure 5.3: Correlogram of the ACK calculated for a sample of 1000 random numbers and
for the first 100 lags. We illustrate with filled circles (red) the results using Eq. (5.19) and
with filled triangles (green) using Eq. (5.21). Notice that the value of 𝑟𝑘 approaches zero
for all 𝑘 > 0 which shows that this time series was created through a random process.

first 100 lags of the ACF shown in Fig. 5.3. We calculate the ACF using both Eqs. (5.19)
and (5.21) in order to show that the results do not differ irrespective of whether we divide
the sum with 𝑀 or with 𝑀 − 𝑘.

5.2.2 Autocorrelation function of 𝑅g

If we, during a Monte Carlo simulation, sample after every move then we create a highly
correlated sample set since after every move the point created in the phase space is very
close to the initial point. As a result, we end up with an underestimation of the true error
of an observable quantity 𝐴. In order to get results of the averaged quantities of interest,
we have to create a set of independent points in the phase space that are not close to one
another.

Throughout this thesis, our criterion for determining equilibration and statistical inde-
pendence of the configurations is based in the calculations of the radius of gyration 𝑅𝑔 of
a macromolecule [cf. Sec. 3.2.1] which is known to relax very slowly [108]. Based on the
definition in Eq. (5.18), the autocorrelation function [51, 109] of the radius of gyration 𝑅𝑔

for different lags 𝑘 is defined as:

𝜑𝑅g(𝑘) =
[𝑅𝑔 (𝑡+ 𝑘)−

∑︀
𝑅𝑔] [𝑅𝑔 (𝑡)−

∑︀
𝑅𝑔]

[𝑅𝑔 (𝑡)−
∑︀

𝑅𝑔]
2

. (5.22)
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Here the time 𝑡 is measured in terms of Monte Carlo sweeps and · · · denotes the av-

erage calculated as: 1
𝑀

𝑀∑︀
𝑡=1

· · · . where 𝑀 is the number of different equi-spaced in time

measurements of 𝑅𝑔. We typically find that the correlation of 𝑅𝑔 decreases exponentially
with the number of Monte Carlo steps. The characteristic time of this exponential is
called the relaxation time 𝜏rel and is defined as the time required for 𝜑𝑅g(𝑘) to decrease
to 1/𝑒 (≈ 0.368) of its initial value.

This way we can have an estimate of the decorrelation time 𝜏0 by [110]:

𝜏0 = − 𝜏

ln 𝑟1
(5.23)

This suggest that if the value of the first lag 𝑟1 is 1/𝑒 then there is a very good chance
that our sample set is composed of statistical independent measurements.

5.3 Shape and orientation analysis

5.3.1 Radius of gyration

The fundamental quantity for the characterization of the size of a macromolecule is its
radius of gyration 𝑅g (cf. Sec. 3.2.1, see Fig. 5.4). We repeat here for convenience the
formula for calculating the squared radius of gyration of a macromolecule consisting of 𝑁
monomers, i.e.:

𝑅2
g =

1

𝑁

⟨
𝑁∑︁
𝑖=1

(ri −RCM)
2

⟩
=

1

𝑁

⟨︀
(𝑥− 𝑥CM)

2 + (𝑦 − 𝑦CM)
2 + (𝑧 − 𝑧CM)

2⟩︀ (5.24)

where RCM denotes the position vector of the center-of-mass, located at (𝑥CM, 𝑦CM, 𝑧CM),
expressed in the same coordinate system used for the position vector of particle 𝑖, r𝑖. 𝑅g

is used to characterize the overall size of a macromolecule.

5.3.2 Radius of gyration tensor

By itself the radius of gyration 𝑅g does not provide information concerning the shape
and orientation of a macromolecule. When calculating the components (𝜏 − 𝜏CM)

2, with
𝜏 = 𝑥 or 𝑦 or 𝑧, of 𝑅𝑔 then we expect that the following relation will hold for the average
values [111]:

⟨︀
(𝑥− 𝑥CM)

2⟩︀ = ⟨︀(𝑦 − 𝑦CM)
2⟩︀ = ⟨︀(𝑧 − 𝑧CM)

2⟩︀ = 𝑅2
g

3
. (5.25)

since there is no preference in the orientation of the macromolecule in space. Thus, after
averaging over a very large number of different and independent conformations, the shape
of the macromolecule can be approximated by a sphere of radius 𝑅g.
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Figure 5.4: Schematic representation of the radius of gyration 𝑅g for a given macro-
molecule consisting of 𝑁 monomers. We denote with O the origin, with RCM the position
of the center-of-mass while r𝑖 is the position vector of the 𝑖-th monomer.

By its definition the 𝑅g is a measure of the size of the macromolecule which can hardly
characterize its shape. It was Kuhn who first pointed out in 1934 [112] that although
the long-time averages of the quantities in Eq. (5.25) should be spherically symmetric in
space, this is not in general true for an instantaneous chain conformation [113]. Later,
Šolc and Stockmayer [113, 114] employed the radius of gyration tensor (RGT) as a way of
characterizing the shape of the instantaneous chain conformations. Since then the RGT
has been extensively used [87, 111, 115–117] as a measure of shape for polymers.

The RGT 𝒮 is a tensor whose components 𝒮𝜏𝜏 ′ are constructed from the dyadic of the
position column vector r𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖)

𝑇 in a frame of reference with its origin located at
the center of mass of the macromolecule. Thus:

𝒮𝜏𝜏 ′ =
1

𝑁

𝑁∑︁
𝑖=1

(𝜏𝑖 − 𝜏CM) (𝜏
′
𝑖 − 𝜏 ′CM) (5.26)

where 𝜏 = 𝑥, 𝑦, 𝑧. Therefore,

𝒮 ≡

⎡⎣ 𝒮𝑥𝑥 𝒮𝑥𝑦 𝒮𝑥𝑧

𝒮𝑦𝑥 𝒮𝑦𝑦 𝒮𝑦𝑧

𝒮𝑧𝑥 𝒮𝑧𝑦 𝒮𝑧𝑧

⎤⎦

=

⎡⎣ ∑︀
(𝑥𝑖 − 𝑥CM)

2 ∑︀
(𝑥𝑖 − 𝑥CM) (𝑦𝑖 − 𝑦CM)

∑︀
(𝑥𝑖 − 𝑥CM) (𝑧𝑖 − 𝑧CM)∑︀

(𝑥𝑖 − 𝑥CM) (𝑦𝑖 − 𝑦CM)
∑︀

(𝑦𝑖 − 𝑦CM)
2 ∑︀

(𝑦𝑖 − 𝑦CM) (𝑧𝑖 − 𝑧CM)∑︀
(𝑥𝑖 − 𝑥CM) (𝑧𝑖 − 𝑧CM)

∑︀
(𝑦𝑖 − 𝑦CM) (𝑧𝑖 − 𝑧CM)

∑︀
(𝑧𝑖 − 𝑧CM)

2

⎤⎦
(5.27)

with the shorthand
∑︀

· · · we denote a summation over all particles 1
𝑁

𝑁∑︀
𝑖=1

· · · . By definition

𝒮 is a real, symmetric 3×3 matrix. The squared radius of gyration [cf. Eq. (5.24)] is given
by the trace of 𝒮, i.e. 𝑅2

g = 𝒮xx + 𝒮yy + 𝒮zz. This trace, as the first invariant of 𝒮,
is independent of the orientation of the reference system. However, in the absence of
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spherical symmetry, the individual elements 𝒮𝜏𝜏 of the RGT depend on the orientation
of the reference system.

5.3.2.1 Eigenvalues and eigenvectors

Following the convention introduced by Theodorou et al. [115] we chose a particle-reference
system so that 𝒮 is diagonal, i.e.:

𝒮diag =

⎡⎣ 𝐸1 0 0
0 𝐸2 0
0 0 𝐸3

⎤⎦ = diag (𝐸1, 𝐸2, 𝐸3) (5.28)

where 𝐸1, 𝐸2 and 𝐸3 are the three eigenvalues arranged in descending order, i.e.
𝐸1 ≥ 𝐸2 ≥ 𝐸3 while 𝜖1, 𝜖2, and 𝜖3 are the corresponding eigenvectors. This matrix 𝒮
has three invariants Tr (𝒮), D (𝒮) [118, 119] and M (𝒮), where Tr (𝒮) is the trace, D (𝒮)
is the determinant and M (𝒮) is the sum of its principal minors2 𝑀11,𝑀22,𝑀33, i.e.

M = 𝑀11 +𝑀22 +𝑀33

= 𝒮𝑥𝑥𝒮𝑦𝑦 + 𝒮𝑥𝑥𝒮𝑧𝑧 + 𝒮𝑦𝑦𝒮𝑧𝑧 − 𝒮𝑥𝑦𝒮𝑦𝑥 − 𝒮𝑥𝑧𝒮𝑧𝑥 − 𝒮𝑦𝑧𝒮𝑧𝑦. (5.29)

Therefore in terms of eigenvalues we have [120]:

Tr (𝒮) = 𝐸1 + 𝐸2 + 𝐸3, (5.30)

D (𝒮) = 𝐸1𝐸2𝐸3, (5.31)

M (𝒮) = 𝐸1𝐸2 + 𝐸1𝐸3 + 𝐸2𝐸3. (5.32)

The size and shape of macromolecules can be characterized by quantities expressed in
terms of the eigenvalues of 𝒮.

5.3.2.2 Shape analysis

As already mentioned, the trace of 𝒮 is defined as the squared radius of gyration 𝑅2
g

[cf. Eq. (5.28)]:

Tr (𝒮) = 1

𝑁

𝑁∑︁
𝑖=1

(︀
𝑥2
𝑖 + 𝑦2𝑖 + 𝑧2𝑖

)︀
= 𝑅2

g. (5.33)

If the macromolecule is isotropic in all directions, then we can approximate its shape
with an effective sphere center located at its centers-of-mass and of radius 𝑅g. On the
other hand, deviations from spherical symmetry macromolecules can be approximated by
three additional measurements which can be derived by comparing the traceless form of
the gyration tensor defined as [87]:

𝒮 = 𝒮 − 1

3
Tr (𝒮) diag(1, 1, 1) (5.34)

2The minor 𝑀𝑖𝑗 of the entry in the 𝑖th row and 𝑗th column of a squared matrix is the determinant of
the submatrix formed by deleting the 𝑖th row and the 𝑗th column.
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with an analogous traceless tensor used by Smith and Mortensen in Ref. [121],

𝒮 = 𝑏 diag (2/3,−1/3,−1/3)) + 𝑐 diag (0, 1/2,−1/2) . (5.35)

This way, the asphericity 𝑏 and the acylindricity 𝑐 are defined as

𝑏 = 𝐸1 −
1

2
(𝐸2 + 𝐸3) , 𝑏 ≥ 0 (5.36)

𝑐 = 𝐸2 − 𝐸3, 𝑐 ≥ 0. (5.37)

The asymmetry can be also expressed by in terms of the average values ⟨𝐸1/𝐸2⟩ and
⟨𝐸1/𝐸3⟩. These quantities provide information about deviations of the model dendrimer
from the spherical and cylindrical symmetry respectively. The combination 𝑏 = 𝑐 = 0 can
correspond to the spherical symmetric case, but not exclusively; for instance 𝑏 = 𝑐 = 0
for tetrahedral or cubic symmetry.

A different definition for the asphericity 𝛿 was given by Rudnick and Gaspari in
Ref. [119]

𝛿 =
Tr2 (𝒮)− 3M (𝒮)

Tr2 (𝒮)
= 1− 3

𝐸1𝐸2 + 𝐸1𝐸3 + 𝐸2𝐸3

(𝐸1 + 𝐸2 + 𝐸3)
2 . (5.38)

The quantity 𝛿 takes the value of 1 for rod-like molecules while for molecules with spherical
symmetry it vanishes, i.e. 𝛿 = 0. Using these three eigenvalues of the radius of gyration
tensor we can approximate the shape of the macromolecule as an ellipsoid located at the
center-of-mass and with the eigenvalues

√
𝐸1,

√
𝐸2 and

√
𝐸3 being its semi-axes.

5.3.3 Orientation analysis

An orientation can be assigned to the macromolecules with no spherical symmetry by
means of the eigenvectors extracted from the radius of gyration tensor, by interpreting
𝜖1 and 𝜖3 as the directions of maximum and minimum extension, respectively. This
also allows us to quantify the relative orientation of two macromolecules separated by a
center of mass distance 𝑟. It is possible to calculate orientational correlation functions
(OCF) [122, 123] that depend on the relative orientation of the macromolecules. The
OCFs allow to describe the degree of the relative orientation between the macromolecules.
The most commonly used OCF is defined as:

𝑆(𝑟) = ⟨𝑃2 (cos 𝜃)⟩𝑟−𝛿𝑟,𝑟+𝛿𝑟 (5.39)

where 𝑃2 (cos 𝜃) is the second order Legendre polynomial [124], 𝜃 is the relative angle
between the long axes of the macromolecules described by the unit vectors 𝜖1𝑖 and 𝜖1𝑗
(Fig. 5.5). Thus,

𝑆(𝑟) =

⟨
1

2

[︀
3 (𝜖1𝑖 · 𝜖1𝑗)2 − 1

]︀⟩
𝑟−𝛿𝑟,𝑟+𝛿𝑟

(5.40)

The OCF 𝑆(𝑟) takes the value 1 for perfectly aligned molecules, − 1/2 for perpendicular
and 0 for randomly oriented molecules and can be calculated in a similar manner to the
RDF (cf. Sec. 5.1). In the bibliography the aforementioned quantity is also referred to as
the Herman’s orientation function [125–127].
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Figure 5.5: Schematic representation of the long axes of 𝜖1𝑖 and 𝜖1𝑗, needed to describe the
respective orientations of molecules which are here represented by axisymmetric ellipsoids.
With the symbol 𝜃 we denote the angle between 𝜖1𝑖 and 𝜖1𝑗 such that cos 𝜃 = 𝜖1𝑖 · 𝜖1𝑗, 𝑟
being the the unit center-to-center vector between molecules 𝑖 and 𝑗.

The quantity 𝑆(𝑟) depends only on the angle between the vectors 𝜖1𝑖 and 𝜖1𝑖 and
contains no information for the relative position of the two macromolecules. It is a way
of representing a property of the phase space rather than the phase space itself. Another
way of characterizing each configuration of two molecules is by using

𝛼 =
1

2

[︀
(𝜖1𝑖 · r̂)2 + (𝜖1𝑗 · r̂)2

]︀
, (5.41)

where 𝜖1𝑖 and 𝜖1𝑗 are the directional unit vectors of the long axes of the dendrimers
and r̂ is the unit center-to-center vector (see Fig. 5.5). Note that using 𝛼 is symmetric
with respect to an interchange of dendrimers (1 ↔ 2) as well as to replacing 𝜖1𝑖 by
−𝜖1𝑖, reflecting thereby properly the headless nature of the molecules. Furthermore, this
quantity takes into account not only the relative orientation but also the relative position
of the molecules.





Chapter 6

Results

In this chapter we summarize the results obtained for isolated dendrimers but also for
pair of dendrimers in the zero-density limit as well as in the bulk. We study two different
types of dendrimers, referred to as D7- and D12-type, specified in Sec. 3.2.3.2.

6.1 Isolated dendrimers

We first investigate the shape and the size of single isolated dendrimers, with the gen-
eration number ranging from 𝐺 = 2 with 14 monomers up to 𝐺 = 10 with a total of
4094 monomers. The initial configurations for each dendrimer were constructed such
that the bond lengths between the monomers are within the maximum extension 𝑅𝜇𝜈 of
the FENE potential [see Eq. (3.13)]. We used standard 𝑁𝑉 𝑇 MC simulations with the
conventional Metropolis acceptance criterion (cf. Sec. 2.2) and simulation parameters as
specified in Table 3.1.

6.1.1 Autocorrelation function

During the simulation runs, the positions of the monomers were recorded for configura-
tions that were sufficiently uncorrelated. In order to determine the optimum sampling
frequency of the configurations we used autocorrelation plots as defined in Sec. 5.2. All
the quantities that were investigated – i.e the asphericity 𝑏, the acylindricity 𝑐, the acylin-
dricity 𝛿 as defined by Rudnick and Gaspari [38] and the radius of gyration 𝑅g – are
generated from the radius of gyration tensor, thus their autocorrelation functions have
the same behavior. Yet, we chose to present correlations using 𝑅g since it is already
known from the bibliography to relax very slowly [108]. We computed autocorrelation
functions 𝜑𝑅g(𝑘) (see Eq. (5.22)) of 𝑅g at varying timelags 𝑘. As we have seen in Fig. 5.3,
if a dataset is completely random then

𝜑𝑅g(𝑘) ≃ 0, for all 𝑘 ̸= 0. (6.1)

As an example, we plot the first 30 time lags in Fig. 6.1 of the sample autocorrelation
function (ACF) of 𝑅g for a 𝐺10 dendrimer of type 𝐷7, in the inset the 500 sampled
values of 𝑅g that were used for the calculation of the ACF are also plotted. The time
interval between two successive measurements is 5 × 105 Monte Carlo sweeps (MCS).
These data suggest that our sample of data is sufficiently uncorrelated. This means that

61
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we can use this data sample to calculate ensemble averages and error of the quantities of
interest [106].
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Figure 6.1: Sample autocorrelation function [see Eq. (5.22)] of 𝑅𝑔 for a 𝐺10 dendrimer of
type 𝐷7 and for the first 30 lags. The form of the curve suggests that our data for 𝑅g are
sufficiently uncorrelated. The inset shows the 𝑅g measurements at each sampled timestep
where the dashed line indicates the compute average value of 𝑅g. Here the timestep and
the time lags 𝑘 are measured in Monte Carlo sweeps (MCS).

6.1.2 Shape analysis

𝐷7 𝐷12
𝐺 𝑛(𝐺) 𝑅0

𝑔 𝐸1/𝐸2 𝐸1/𝐸3 𝑅0
𝑔 𝐸1/𝐸2 𝐸1/𝐸3

2 14 2.89(0.27) 1.99(0.76) 4.13(1.77) 2.94(0.26) 1.99(0.73) 4.17(1.75)
3 30 3.51(0.28) 1.82(0.60) 3.20(1.10) 3.67(0.25) 1.76(0.53) 3.19(1.04)
4 62 4.27(0.27) 1.70(0.48) 2.79(0.80) 4.54(0.23) 1.59(0.38) 2.59(0.68)
5 126 5.33(0.23) 1.56(0.34) 2.45(0.59) 5.57(0.19) 1.44(0.26) 2.13(0.43)
6 254 6.55(0.17) 1.37(0.21) 1.92(0.34) 6.77(0.15) 1.32(0.17) 1.76(0.26)
7 510 7.92(0.13) 1.26(0.13) 1.58(0.18) 8.15(0.12) 1.24(0.12) 1.52(0.16)
8 1022 9.47(0.10) 1.20(0.08) 1.39(0.11) 9.72(0.09) 1.20(0.08) 1.38(0.10)
9 2046 11.24(0.07) 1.17(0.06) 1.29(0.06) 11.52(0.06) 1.17(0.05) 1.28(0.06)
10 4094 13.24(0.05) 1.15(0.04) 1.24(0.05) 13.53(0.04) 1.15(0.03) 1.23(0.03)

Table 6.1: Single dendrimer properties as functions of the generation number 𝐺. We have
denoted with 𝑛(𝐺) the total number of monomers. Also given, are the radius of gyration
𝑅g, and the ratios of the principal moments 𝐸1/𝐸2 and 𝐸1/𝐸3 (cf. Sec. 5.3.2.1). The
sample standard deviation is shown in brackets. The parameters of the dendrimers are
given in Table 3.1.
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For the low generations dendrimers 𝐺 = 2 to 6 we sampled over ten while for the
higher generations 𝐺 = 7 to 10 over twenty independent initial configurations. We used
the autocorrelation function of 𝑅g in order to determine the equilibration of the system
as well as the optimal sampling frequency. Depending on the dendrimer’s generation the
sampling frequency ranges from 5× 103 to 5× 106 MC sweeps and was chosen according
to the form of the 𝑅g autocorrelation function. Once the system has reached equilibrium
we performed simulations over a period of 108 sweeps during which the position of all
monomers were recording. Then we used the monomer coordinated in order to compute
the elements of the radius of gyration tensor 𝒮 (see Eq. (5.27)) as well as its eigenvalues
and eigenvectors. The asphericity 𝑏 and the acylindricity 𝑐 of the isolated dendrimer could
be then determined from Eqs. 5.36 and 5.37, respectively. Additionally, we computed the
𝑅0

g with the help of Eq. (5.33). In Table 6.1 we present the quantities describing the size
and shape of D7- and D12-type dendrimers of generations 𝐺 = 2 to 10. In the same table
we also include for completeness the number of the total monomers 𝑛(𝐺).
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Figure 6.2: The radius of gyration 𝑅𝑔 (top) and the asphericity 𝑏 (empty symbols) and
acylindricity 𝑐 (full symbols) in units of 𝑅2

𝑔 (bottom) as function of generation number
𝐺 for isolated dendrimers of type D7 and D12. The insets in the top panel show typical
simulation snapshots of D7-type dendrimers of generation 𝐺 = 2 and 10.

The top panel of Fig. 6.2 shows the results for the radius of gyration 𝑅0
g whereas the

bottom panel these for the asphericity 𝑏 and acylindricity 𝑐. One one hand we observe that
𝑅g increases with the generation number 𝐺. On the other upon changing the dendrimer
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type from D7 to D12 its size, in terms of 𝑅g, remains the same. Hence the purely
repulsive interactions between core monomers in the D12-dendrimers induce only a small
additional stretching of the internal bonds with respect to those for dendrimers of type
D7; this additional stretching results in a slightly larger value of the 𝑅g. Also, the data
for our amphiphilic dendrimers follow the simple scaling law 𝑅0

g ∼ 𝑛𝑎(𝐺) in terms of the
total number of monomers 𝑛(𝐺) with an exponent 𝑎 = 0.318 ± 0.004. This value of 𝑎 is
consistent with the one reported for PAMAM dendrimers [17].
Our most important finding is that the shape of dendrimers is in general not spheri-

cal but prolate. As we can see in the bottom panel of Fig. 6.2 the asphericity and the
acylindricity of D7- and D12-type dendrimers decrease monotonically with 𝐺 in a similar
fashion. Therefore, there is a significant change in the shape of dendrimers while going
from low to high generations. For both types of dendrimers and for generations 𝐺 = 2
and 3 we find highly asymmetric shapes while for generations with 𝐺 ≥ 8 nearly spherical
shapes. The effect of the dendrimer’s type on its shape becomes more pronounced for
intermediate values of 𝐺, i.e. 𝐺 = 4 to 𝐺 = 6, where the differences between the 𝑏 values
become non-negligible.

(a) (b)

Figure 6.3: Simulation snapshot of G5 dendrimers of (a) D7- and (b) D12-type den-
drimers. The purely repulsive nature of the D12-type dendrimers (b) results in a more
open structure compared

For generations 𝐺 = 2 and 3 the nature of core-core monomer interaction is of lower
importance since the large lengths of the bonds between the monomeric units provide
enough space for the additional core monomers to distribute themselves within the core
region. As the core region becomes denser, 𝐺 ≥ 4 to 𝐺 = 6, on one hand the short
range interaction between the core monomers become more significant but on the other,
there are not enough shell monomers to fully dominate the structure. In this regime, the
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purely repulsive core-core interactions of the D12-type results in slightly more open and
more spherical shape compared to that of the D7-type. In an effort to visualize these
differences we show in Fig. 6.3 simulation snapshots of 𝐺5 dendrimers of both D7- and
D12-type; we can see that the D12-type 𝐺5 dendrimer exhibits a slightly more spherical
shape compared to the D7-type. In the range from 𝐺 = 7 to 10 both models exhibit
essentially the same shape; the dendrimer’s core are strongly populated and therefore
there is no additional space for outer core or shell monomers to penetrate the inner of the
core; the nature of the interaction becomes again irrelevant.
In this case, the dendrimer cores are strongly populated and there is little space left for

any additional outer core or shell monomers to penetrate the inner core so their repulsive
or attractive interaction does not play any important role.
Finally, we present the results for the asphericity 𝛿 as defined by Rudnick and Gas-

pari [119] (see Sec. 5.38) which is also used in Ref. [17] for the characterization of shape of
PAMAM dendrimers. We observe theat the asphericity drops monotonically from 𝐺 = 0
to 10 to 𝛿 ≈ 0 following the same trend as the asphericity 𝑏 (see bottom panel of Fig. 6.2).
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D12: 

Ref. [17]

Figure 6.4: Asphericity 𝛿 as function of generation number 𝐺 for isolated dendrimers of
type D7 (black triangles) and D12 (red triangles). We also include the results of Maiti et
al. [17] for the asphericity 𝛿 of PAMAM dendrimers.

Similar results for the overall shape properties of dendrimers can be found in the work
of Naylor et al. [128]. Their results also indicated a dramatic change in the morphology
with the generation 𝐺. More specifically, generations 𝐺 = 1 − 3 where found to be
highly asymmetric (𝐸1/𝐸3 = 4.4 − 2.7) whereas generations 𝐺 = 4 − 7 nearly spherical
(𝐸1/𝐸3 = 1.3) with a transition between two forms (𝐸1/𝐸3 = 1.7) occurring at generation
𝐺 = 4.

6.1.3 Density profiles

To get a better insight into the microscopic structure of our dendrimer models, we com-
puted the density profiles of dendrimers with 𝐺 = 2–10 and of type D7 and D12. For
each generation we measured separately the density profiles for the core and the shell
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monomers which are depicted in Fig. 6.5 and where we have scaled the distances 𝑟 with
the radius of gyration 𝑅g. By comparing these different profiles, we find that:

(i) For𝐺 = 2−4 [see Figs. 6.5 (a)-(c)] the core and shell monomers are more segregated.
The overall density profile is inhomogeneous with the maximum of the distribution
of the core monomers located close to the origin (𝑟 = 0). The shell distribution
peaks around 𝑟 = 0.8− 0.85𝑅g and then falls off towards the surface.

(ii) For 𝐺 = 5 [see Fig. 6.5(d)] the core monomer distribution of D12 develops a first
peak at 𝑟 ≈ 0.1𝑅g whereas the shell distribution develops a plateau.

(iii) For 𝐺 ≥ 6 a clear layer-like structure appears with the core distribution of both
models developing peaks characteristic for each different generations. Similar layer
structure as well as the broadening of the plateau of the shell monomer distribution
has been observed in the results obtained for lower generation dendrimers (𝐺 = 4
and 5) using the FENE-Lennard-Jones model described in Sec. 3.2.3.1 (see also
Refs. [29, 129]). In contrast, the shell monomer distribution starts developing an
almost constant plateau indicating of the back-folding of the shell monomers to the
interior of the core.

(iv) For 𝐺 = 10 the shell monomer distribution plateau is almost constant indicating
the limiting generation for this type of dendrimers.

The differences between the two models (D7 and D12) can be seen in the combined plots
for different generations presented in Fig. 6.6. The most pronounced difference is seen for
generation 𝐺 = 2 − 4 at the origin (𝑟 = 0) which arises from the different nature of the
core-core interaction. In particular, in the case of D12 it is repulsive while for the D7 it is
attractive leading to a lower value in the distribution for the case of D12. For 𝐺 = 2− 4
the density profile 𝜌(𝑟) develops a peak at 𝑟 = 0 and then falls off towards the surface.
From 𝐺 = 5 and up to 𝐺 = 10 the overall density becomes homogeneous while developing
multiple peaks for the different generations.
In the next section, we study the effective interaction between dendrimers of generations

𝐺 = 2 and 4 in the zero density limit and we relate it to the shape deformation due to
the mutual presence as well as to the relative orientation of the dendrimers.
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Figure 6.5: Density profiles of D7- (black squares) and D12-type (red triangles) isolated
dendrimers for the core (empty symbol) and the shell (filled symbol) regions as a function
of the distance 𝑟 from the dendrimer’s center of mass and for generations 𝐺2 (a), 𝐺3 (b),
𝐺4 (c), 𝐺5 (d), 𝐺6 (e), 𝐺7 (f), 𝐺8 (g), 𝐺9 (h), 𝐺10 (i).
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Figure 6.6: Total density profiles for generations 𝐺 = 2 − 10 as a function of the scaled
distance 𝑟/𝑅g for D7-(a) and D12-type (b).
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6.2 Two interacting dendrimers

In order to quantify the mutual influence in the shape of the two dendrimers, we fixed
their centers of mass at a distance 𝑅 chosen from the dendrimer-dendrimer interaction
range 𝑅 = 0 to 𝑅max ≃ 4𝑅0

g with 𝑅0
g being the radius of gyration of the isolated dendrimer

(this method is referred to as the fixed CM approach). For each distance 𝑅 we measured
the shape and the relative orientations of the two dendrimers with a sampling frequency
of 2×103 sweeps and for a total 2×108 Monte Carlo sweeps. In order to confirm that this
is an appropriate method for studying the mutual influence in the shape of dendrimers,
we also extracted the effective interaction by integrating the force from the configuration
data from the fixed CM approach (see Sec. 2.4.3.3) and compared it with the effective
interaction obtained from the umbrella sampling (see Sec. 2.4.3.1) as well as with the one
obtained from the Widom particle insertion method (see Sec. 2.4.1). For the purpose of
saving computational time, we initially tested the different methods for extracting the
effective interactions for the case of 𝐺2 dendrimers. Then, we focused on the shape and
orientational analysis of D7- and D12-type 𝐺4 dendrimers.

6.2.1 Effective Interactions
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Figure 6.7: Comparison between different methods for obtaining the dimensionless effec-
tive interaction 𝛽Φeff(𝑟) between two 𝐺2 dendrimers of D7-type.

We first compare the effective interactions obtained by different techniques for the
case of D7-type 𝐺2 dendrimers. In the case of the fixed CM approach, we performed
3× 108 MC sweeps starting from ten independent initial configurations. For the Widom
method we sampled the dendimers over 2× 106 MC sweeps, in each on of which we first
decorrelated each dendrimer for 280 MC moves (single monomer moves) and then we
used the resulting configurations to sample 1000 distances between the two dendrimers
as described in Sec. 2.4.1. For the umbrella sampling method we used 33 overlapping
windows for a maximum range 𝑅max ≃ 4𝑅0

g. In each window we sampled for 4 × 107
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MC sweeps. The effective pair interactions obtained are sketched in Fig. 6.7. We observe
that the methods produce identical results. The aforementioned methods produce also
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Figure 6.8: Comparison of the effective interactions obtained with the umbrella sampling
method between 𝐺2 dendrimer of D7- and D12-types.

identical results for the case of D12 dendrimers. In Fig. 6.8 we compare the shapes of the
pair-potentials for the different types of 𝐺2 obtained with the umbrella sampling method
(see Fig. 6.8) where we observe that the flattened maximum found in the D7 is replaced
by a Gaussian-like form in the D12.

The effective interaction of the 𝐺2 D12-type dendrimers can be fitted to members of
the general exponential model of exponent 𝑛 (GEM-𝑛) potentials 𝜑(𝑟):

𝜑(𝑟) = 𝜖 exp
(︁
− (𝑟/𝜎)𝑛

)︁
. (6.2)

The fitting parameters are presented in Table 6.2.

type 𝜖/𝑘B𝑇 𝜎/𝑅g 𝑛

D12 5.34 1.26 2.02

Table 6.2: Fit parameters for the pair effective interaction between 𝐺2 dendrimers of
D12-type using a GEM-n type of interaction [see Eq. (6.2)].

The effective pair interaction for 𝐺4 dendrimers and of D7- and D12-type are sketched
in Figs. 6.9 and 6.10 respectively. In this case, for the umbrella sampling the value
at 𝑟 = 0 increases and the pair-potential takes a Gaussian form with increasing the
dendrimers generation from 2 to 4 and by changing the dendrimer type from D7 to D12.
In Table 6.3 we present the fitting parameters and we also illustrate the relevant fitting
curve in a common plot with the effective interaction extracted from the simulation data
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Figure 6.9: Comparison between the effective interaction between two G4 dendrimers of
type D7 obtained with the umbrella sampling method (filled squares, GEM-𝑛 fit solid
line), by integrating the Force from the fixed CM method (filled circles) and with the
Widom method (empty diamonds).

in Figs. 6.9 and 6.10. Employing a description based on the validity of the effective pair-
interaction being valid for all densities [130], these values of the exponents indicate that
these types of amphiphilic dendrimers could form clusters [26, 130]. Upon increasing the

type 𝜖/𝑘B𝑇 𝜎/𝑅g 𝑛

D7 16.81 1.48 2.60
D12 22.56 1.29 2.31

Table 6.3: Fit parameters for the pair effective interaction of dendrimers of D7- and
D12-type using a GEM-n type of interaction [see Eq. (6.2)].

dendrimer’s generation from 2 to 4 the Widom method fails to give correct results at short
distance separations. The discrepancies between this method and the other approaches
for calculating the effective interaction suggest that the internal structure and also the
shape of dendrimers change due to their mutual influence.
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Figure 6.10: Comparison between the effective interaction between two G4 dendrimers of
type D12 obtained with the umbrella sampling method (filled squares, GEM-𝑛 fit solid
line) and by integrating the Force from the fixed CM method (filled circles).
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6.2.2 Shape deformation

We focus now on the case of 𝐺4 dendrimers. The shape of the effective interaction (see
Figs. 6.9 and 6.10) suggests that on approaching each other, the dendrimers of both
types experience an overall repulsive force. The repulsion is enhanced as the dendrimers
start to overlap since the core particles repel the shell particles. As soon as the core
regions overlap the growth of the repulsion ceases to increase upon further compression.
Although both dendrimer types show the same qualitative behavior on overlap, its nature
is different for the D7- and the D12-type. In the case of D7 dendrimers it is the attractive
core-core monomer interactions [see Fig. 3.10] that suspend the repulsion. On the other
hand, in the case of D12 dendrimers, the repulsive nature of the cores results in a higher
potential value at the origin but it also gives a more open structure to the dendrimers
(see Sec. 6.1.2) and thus there is more free space available for the dendrimers to inter-
penetrate each other. This can be seen also from the simulation snapshots presented
in Fig. 6.11.

(a) (b)

Figure 6.11: Simulation snapshot of two interacting 𝐺4 dendrimers at interdendrimer
distance 𝑟 = 0 and of (a) D7- and (b) D12-type dendrimers. Different colors mark
different dendrimers. In the case of D7 dendrimers, the attractive nature of the core
regions is responsible for the overlap of dendrimers. In the case of the D12 dendrimers, it
is the open structure of the dendrimers that allows them to overlap.

In order to have a better understanding of the mutual change in the shape of the den-
drimers, we sketch in a common plot the effective potential as well as the asphericity 𝑏
and acylindricity 𝑐 versus the interdendrimer separation 𝑟 for the D7 (Fig. 6.12) and the
D12 dendrimers (Fig. 6.13). The solid line in Figs. 6.12 and 6.13 shows the dimensionless
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effective interaction potential, 𝛽Φeff(𝑟), of two 𝐺 = 4 dendrimers in the zero-density limit
computed using umbrella sampling (Sec. 2.4.3.1). The filled circle points correspond to the
asphericity 𝑏 while the empty circles to the acylindricity 𝑐. The acylindricity of dendrimers
is essentially the same for both models and although it increases as the dendrimers are
pushed against each other it remains small. Its deviation from the acylindricity of isolated
dendrimers is moderate since the values of 𝑏 and 𝑐 at larger separations, i.e. 𝑟 & 2.5𝑅g,
coincide with those of an isolated dendrimer. On the other hand, the asphericity exhibits
a much more pronounced dependence on distance, increasing from about 0.24 and 0.26
(in D12 and D7 types, respectively) at large separation to about 0.32 and 0.35 in overlap-
ping dendrimers. As soon as the overlap of dendrimers becomes significant at a distance
𝑟 ≃ 2𝑅0

g, the interaction of the shell particles causes an increase in the asphericity.
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Figure 6.12: Dimensionless effective interaction 𝛽Φeff(𝑟) (solid line) between two D7 den-
drimers of 𝐺 = 4 and their asphericity 𝑏 and acylindricity 𝑐 (filled and open circles,
respectively), both shown on the secondary vertical axis. The distances are scaled to the
respective radius of gyration 𝑅0

g of the isolated dendrimer (see Table 6.1).
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Figure 6.13: Same as Fig. 6.12 but for two interacting D12 dendrimers.

The distinctively different trends in asphericity for the two dendrimer models can also



6.2. Two interacting dendrimers 75

be understood on a monomeric level. In the D12 model the mutual repulsion between
all monomers at small center-to-center separations induces a steady increase in the as-
phericity with decreasing 𝑟, as this deformation enables dendrimers with suitable relative
orientations (see Sec. 6.2.3) to minimize the number of interacting monomer pairs. In
contrast, for the D7-dendrimers the attractive interactions between core monomers can
lower the overall repulsion.

6.2.3 Relative orientation of dendrimers

It is clear that from the intrinsically aspherical shape of the dendrimers, which is even
more enhanced by the presence of neighboring particles, it follows that the dendrimer-
dendrimer interaction depends on both the relative orientation and the separation of
the particles. In order to study the relative orientation of the dendrimers we use two
different approaches, where we avoid using the full relative position and orientation of the
dendrimers because it is too complicated and not very instructive. We restrict ourselves
to the center of mass distance 𝑟, the angle 𝜑𝑖 (𝑖 = 1 and 2) between the long axis 𝜖1𝑖 of
the 𝑖th dendrimer and the unit center-to-center vector 𝑟, the angle 𝜃 between the long
axes of both dendrimers, which are depicted schematically in Fig. 6.14, and the quantity
𝛼 defined in Eq. (5.41).

r ̂

�11̂

�12̂

φ1

φ2θ

Figure 6.14: Schematic representation of the two unit vectors, 𝜖11 and 𝜖12, needed to
describe the respective orientations of molecules which are here represented by axisym-
metric ellipsoids. With the symbols 𝜑1 and 𝜑2 we denote the angles between 𝜖11 and 𝜖12
and the unit center-to-center vector 𝑟 between molecules 1 and 2, respectively. With the
symbol 𝜃 we denote the angle between the long axes 𝜖11 and 𝜖12.

First we computed the distribution 𝑃 (𝜑𝑖) of the angle 𝜑𝑖 with 𝑖 = 1 and 2. The results
for the 𝑃 (𝜑) were obtained by averaging the distributions over the different 𝜑𝑖. The data
presented in Figs. 6.15(a) and 6.15(b) we show the normalized probability per unit solid
angle, 𝑃 (𝜑), as a function of the polar angle 𝜑 relative to the long axis of the dendrimer,
over a representative range of center-to-center separations 𝑟. Since the distribution is
symmetric around 𝜋/2, we have plotted 𝑃 (𝜑) for the interval [𝜋/2, 𝜋). In Fig. 6.15(c) the
orientation correlation function given by Eq. (5.40) is also plotted.
Figures 6.15 (a) - (c) provide a good quantitative representation of the relative orien-

tation of the dendrimers but they are difficult to visualize. This is why we relegate the
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Figure 6.15: (a): normalized probability distribution per unit solid angle 𝑃 (𝜑) for two
interacting D7-dendrimers as a function of the polar angle 𝜑 over a representative range
of separations 𝑟, expressed in units of 𝑅0

g. The results are averages over both dendrimers.
The inset shows the position of the maximum of 𝑃 (𝜑) as a function of of the interdendrimer
separation 𝑟. (b): same as Fig. 6.15(a) but for D12-type dendrimers. (c): orientational
correlation function 𝑆(𝑟) [see Eq. (5.40)] as a function of the center-to-center separation
𝑟. The black square points correspond to the case of D7-type dendrimers while the red
triangular points to the case of D12-type dendrimers.
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interpretation to an alternative representation in Fig. 6.16 where we combined 𝑃 (𝜑) for
the different values of 𝑟 in contour plots. The top panels of Figs. 6.16(a) and 6.16(b)
show the normalized probability per unit solid angle, 𝑃 (𝜑), as a function of 𝜑, the polar
angle relative to the long axis of the dendrimer and averaged over both angles 𝜑𝑖, 𝑖 = 1
and 2. In the bottom panels, the distribution of 𝑆(𝑟, 𝜑) is plotted, which measures the
relative orientation by means of the quantity 𝑆 defined in Eq. (5.40).
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Figure 6.16: Contour plots for D7- (a) and D12-type (b) dendrimers. Top panels: proba-
bility 𝑃 (𝑟, 𝜑) of finding the neighbor at a polar angle 𝜑 relative to the long axis connecting
to the central dendrimer and a distance 𝑟; plotted is the probability distribution per unit
solid angle. Bottom panels: distribution of the orientation correlation function 𝑆(𝑟, 𝜑)
as defined in Eq. (5.40) for two interacting dendrimers as a function of separation 𝑟 and
polar angle 𝜑.

At larger separations, i.e. at 𝑟 & 3𝑅0
g, the probability 𝑃 (𝑟, 𝜑) obviously does not

depend on 𝜑 and 𝑆(𝑟, 𝜑) becomes zero, which signifies random relative orientation
[see Fig. 6.17(a)]. However, on approaching each other the two dendrimers are located
preferentially in the equatorial position at 𝜑 = 𝜋/2 whereas the polar regions, i.e. 𝜑 = 0
and 𝛼 = 𝜋, are depopulated. This effect becomes most pronounced at a distances
𝑟 ≈ 1.5𝑅0

g [see Fig. 6.17(b)]. At the same time, dendrimers in or near to the equatorial
plane attain positive values for 𝑆(𝑟, 𝜑), indicating parallel orientations, whereas in the
polar regions perpendicular relative orientations (negative 𝑆(𝑟, 𝜑)-values) are preferred.
In either case this allows the dendrimers to minimize mutual interactions by making the
overlap region smaller.

At very small separations 𝑟 . 0.5𝑅0
g [see Fig. 6.17(c)] the probability distribution 𝑃 (𝑟, 𝜑)

becomes again uniform. This can be understood in view of the fact that in such cases the
degree of overlap of dendrimers hardly depends on the position, but mainly on the relative
orientation. In particular, the dendrimers prefer to have perpendicular orientations, which
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(a)

𝑟 & 3𝑅0
g

(b)

𝑟 ≈ 1.5 - 2.5𝑅0
g(c)

𝑟 . 0.5𝑅0
g

Figure 6.17: Schematic representation of the relative orientation of two dendrimers. (a)
At large separations, the dendrimers do not interact with each other and thus 𝑃 (𝑟, 𝜑) does
not depend on 𝜑. In this case 𝑆(𝑟, 𝜑) = 0 and thus the dendrimers are randomly oriented.
(b) At intermediate separations, they are located preferentially in the equatorial position
with 𝑆(𝑟, 𝜑) attaining positive values. (c) At small separations, the dendrimers prefer to
have almost perpendicular orientations (𝑆(𝑟) < 0) in order to minimize the interaction
strength.

minimize the total degree of overlap, and hence the interaction strength, between the
dendrimers.
The angle 𝜑 is in fact an average of the scalar products of the long axes and the center-

to-center vector of both dendrimers. We choose to use the quantity 𝛼 defined in Eq. (5.41),
which we repeat here for convenience

𝛼 =
1

2

[︀
(𝜖11 · r̂)2 + (𝜖12 · r̂)2

]︀
, (6.3)

as it contains two separate contributions of the angle 𝜑. In Table 6.4 six characteristic
pair configurations are listed along with the corresponding values of 𝛼 and 𝑆 as well as a
schematic representation.
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configuration 𝛼 𝑆 schematic

0 1

0 −0.5

. 0.25 −0.5

0.5 −0.5

0.5 −0.5

1 1

Table 6.4: List of symbols used for the six characteristic configurations along with the
corresponding values of 𝛼 and 𝑆. In the last column we sketch each pair configuration.
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Figure 6.18: Positional and orientational order of an isolated pair of D7- (a) and D12-type
(b) dendrimers. Top panels: the conditional probability 𝑃 (𝑟, 𝛼) of finding two dendrimers
with a relative orientation which corresponds to a value 𝛼 and a distance 𝑟. Bottom
panels: distribution of the orientation correlation function 𝑆(𝑟, 𝛼) as defined in Eq. (5.40)
for two interacting dendrimers as a function of separation 𝑟 and of the relative orientation
parameter 𝛼.

In the top panels of Fig. 6.18 we observe the relative orientation of an isolated pair
depends on their separation. It is not surprising that at large separation (𝑟/𝑅0

g & 3)
the dendrimers are completely uncorrelated since all the monomers belonging to different
dendrimers are located above the Morse potential cutoff distance. In this regime, all
orientations of 𝜖1 and 𝜖2, are equally probable and therefore we gain a flat profile of 𝑃 (𝑟, 𝛼)
(not shown here). Correlations become more pronounced as the dendrimers approach each
other.

At large separations, i.e. 𝑟/𝑅0
g & 3, we gain a flat profile of 𝑃 (𝑟, 𝛼) (not shown here)

indicating that in this regime the orientations of the dendrimers are completely uncorre-
lated. This means that in the large separation regime all orientations of 𝜖1 and 𝜖2, are
equally probable. On the onset of the interdendrimer interaction, i.e. 𝑟 ≈ 2.5𝑅0

g, the cor-
relations become more obvious. In more detail, on decreasing the center-of-mass distance
𝑟the conditional probability 𝑃 (𝑟, 𝛼) peaks at 𝑟 = 0 and at 𝑟/𝑅0

g ≈ 1.5 the probability
for configurations with 𝛼 & 0.25 is essentially negligible. For 1.5 . 𝑟/𝑅0

g . 2.5 con-
figuration are more preferred. This can be readily see in the bottom panels of Fig. 6.18
where the enhanced 𝛼 range of 𝑃 (𝑟, 𝛼) coincides with the region of positive orientational
order parameter 𝑆(𝑟, 𝛼). In the regime of full overlap, i.e. 𝑟/𝑅0

g . 1, the distribution
𝑃 (𝑟, 𝛼) broadens; orientations with 𝛼 ≈ 0.4 are favored while the probability of large 𝛼
(& 0.6)-configurations is negligible. Combined with the strongly negative orientational or-
der parameter 𝑆(𝑟, 𝛼) at small 𝑟, this implies that and configurations are preferred



6.2. Two interacting dendrimers 81

in the case of overlapping dendrimers. Thus we conclude that repulsion between the
overlapping dendrimers forces them into a perpendicular arrangement (see also Fig. 6.11).
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6.3 Dendrimer liquid

In this section, we investigate the positional and orientational properties of dendrimers
in a bulk liquid. We employ standard 𝑁𝑉 𝑇 MC simulations to obtain the equilibrium
structures of 𝑁D number of dendrimers in a cubic simulation box. All the results presented
here pertain to the case of 𝐺 = 4, D7-type dendrimer.
As a measure for the density for the liquid phase, we introduce the volume fraction of

the monomers, defined by [35]

𝜑𝑚 =
𝑁D

𝑉system

𝜋

6

(︀
30𝑑3CC + 32𝑑3SS

)︀
, (6.4)

where:

𝑑SS = 1.50𝑑CC,

(6.5)

𝑉system is the volume of the system expressed in units of the core monomer diameter 𝑑CC.
Thus,

𝜑𝑚 ≈ 𝑁D

𝑉system

× 72.2565 𝑑3CC. (6.6)

As we have seen in Fig. 6.12 the inter-dendrimer interactions affects the shape and
the relative orientation of the dendrimers. However, we expect that the zero density pair
interaction alone should not be sufficient for the description of the spatial and orientational
behavior of a bulk system. With the use of standard 𝑁𝑉 𝑇 Monte Carlo simulations
(see Sec. 2.2) we obtain the equilibrium structure of an ensemble of 𝑁D dendrimers in a
cubic box and at several monomer packing fractions 𝜑𝑚. Starting from several independent
initial configurations at high temperatures, we cool the system using a simulated annealing
protocol [53, 131] to reach the desired temperature 𝑇 such that 𝑘B𝑇 is 1.4𝜖CC, 𝜖CC being
the depth of the core-core attractive potential.
During the simulations, the positions of monomers are recorded and used to evaluate

the following structural features:

(i) For each dendrimer in the ensemble we calculate the RGT 𝒮 (see Sec. 5.3.2).

(ii) By diagonalizing 𝒮 we obtain the eigenvalues 𝐸1, 𝐸2, 𝐸3 for each dendrimer. Using
these values, the radius of gyration 𝑅g, the asphericity 𝑏 and the acylindricity 𝑐
are computed using Eqs. (5.33), (5.36) and (5.37) respectively. We also record the
normalized effective ellipsoidal volume 𝑉ell given by [111]

𝑉ell = 4𝜋
√
3
√︀

𝐸1𝐸2𝐸3 (6.7)

which we normalize with the average effective volume of the isolated dendrimer 𝑉 0
ell.

(iii) Using the eigenvectors 𝜖1 that correspond to the largest eigenvalues 𝐸1 and center-
to-center unit vector r̂, we compute for each pair of dendrimers in the ensemble the
quantities 𝛼 and 𝑆 as in Sec. 6.2.3 (see Fig. 6.20). We refer to 𝜖1 as the long axis of
the dendrimer.
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(iv) For the different volume fractions 𝜑𝑚 considered, we compute the conditional prob-
ability 𝑃 (𝑟, 𝛼) and the orientational order parameter 𝑆(𝑟, 𝛼) in the following way:
initially the 𝑟-space is divided in 𝑁bin

𝑟 number of bins each one of length equal to
the core monomer diameter 𝑑CC. On each 𝑟-bin separate statistics for the parameter
𝛼 are performed; we create an one-dimensional histogram of the parameter 𝛼 for
each 𝑟-bin by dividing the 𝛼-space into 40 equally sized bins (the number of bins
is arbitrary). This way we get one one-dimensional histogram of 𝛼 for each value
of 𝑟. We normalize the 𝛼-histogram according to the total number of pairs and to
the random distribution of the 𝛼 parameter (cf. AppendixA). This way, we obtain
the normalized conditional distribution 𝑃 (𝑟, 𝛼). Similarly, we construct the 𝑆(𝑟, 𝛼)
conditional distributions where on each 𝛼 bin instead of counting pairs, we weight
the histogram according to the 𝑆 value of the pair of dendrimers.

(v) Last, we calculate the pair distribution function 𝑔(𝑟) as a function of interdendrimer
separation 𝑟 and the two-dimensional radial distribution function 𝑔(𝑟;𝛼) described
in the following. The distribution 𝑔(𝑟;𝛼) can be constructed in a way similar to
the 𝑔(𝑟). Instead of an one-dimensional histogram, where only the 𝑟-space is di-
vided into bins, we create a two-dimensional histogram where additionally to the
𝑟-binning we also divide the orientational parameter 𝛼-space, creating pairs (𝑟, 𝛼).
After counting the dendrimer pairs that fall into each (𝑟, 𝛼)-bin, the histogram is
normalized with the volume element of each 𝑟-bin (see Sec. 5.1) as well as with the
random distribution of 𝛼 (see (iv)).
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Figure 6.19: The first 30 lags (𝑘) of the autocorrelation function 𝜑𝑅𝑔(𝑘) of 220 individual
D7 dendrimers of generation 𝐺 = 4 at a density 𝜑𝑚 = 0.249. Different colors correspond
to different dendrimers within the same simulation run.

Similarly to the case of the isolated dendrimer (see Sec. 6.1.1), we determine the op-
timal sampling frequency by checking the behavior of the autocorrelation function of
𝑅𝑔 Eq. (5.22). A typical example of the correlation function 𝜑𝑅g(𝑘) measured for indi-
vidual dendrimers in a system of 220 D7 dendrimers of generation 𝐺 = 4 and volume
monomer fraction 𝜑𝑚 = 0.248 is shown in Fig. 6.19. The results for different dendrimers
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within the same simulation coincide almost perfectly and to a good approximation, the au-
tocorrelation function decays exponentially. The simulation runs typically involve 5×105

to 3 × 106 equilibration sweeps followed by 5 × 107 to 5 × 108 production sweeps with
a sampling frequency between 2 × 104 and ×106 sweeps depending on the number of
dendrimers 𝑁D in the system as well as on the monomer volume fraction 𝜑𝑚.

(a) (b)

(c) (d)

Figure 6.20: Snapshot of a configuration of 220 interacting D7 dendrimers of fourth
generation at a volume fraction 𝜑𝑚 = 0.199. Panel (a): representation of the dendrimers
by their monomeric units and by their bonds. Core monomers are colored are green, shell
monomers are blue and bonds are red. Monomers are drawn to scale. In panels (b),(c)
and (d) each dendrimer is represented by a different color according to the legend in panel
(d). Panel (b): representation of the dendrimers by their monomeric units (not to scale).
Panel (c): dendrimers represented by ellipsoids of semiaxes equal to the eigenvalues of
the radius of gyration tensor, 𝐸1, 𝐸2, and 𝐸3. Panel (d): dendrimer represented by the
semiaxes of the radius of gyration tensor.

In order to determine the appropriate system size, we simulate different numbers of den-
drimers 𝑁D from 𝑁D = 27 with 1674 monomers up to 𝑁D = 220 with 13640 monomers
and at densities covering a range from 𝜑𝑚 = 0.030 to 𝜑𝑚 = 0.249. In Fig. 6.21 we plot
the average asphericity 𝑏, acylindricity 𝑐 and the normalized ellipsoidal volume 𝑉ell/𝑉

0
ell

[see Eq. (6.7)] as a function of the overall density 𝜑𝑚 for the different system sizes. The
data obtained by these simulations suggest that, as far as shape deformations are con-
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cerned, there are no finite-size effects in any of the quantities of interest. For clarity we
also plot in Fig. 6.22 the pair distribution function 𝑔(𝑟) as a function of the interden-
drimer separation 𝑟 for the largest monomer volume fraction studied, i.e. 𝜑𝑚 ≈ 0.248,
and for system sizes from 𝑁D = 27 up to 220. We observe that the smaller systems are
not able to capture the long-range behavior where 𝑔(𝑟) → 1. In an effort to minimize
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Figure 6.21: Mean asphericity (𝑏), acylindricity (𝑐), and normalized ellipsoidal volume
(𝑉ell/𝑉

0
ell) in a fluid of interacting D7 fourth generation dendrimers as functions of the

monomer volume fraction 𝜑𝑚 [see Eq. (6.4)] and for several system sizes 𝑁 . The error
bars indicate the first and the third quartile of the respective distributions.

computational time, we first limited our investigation to the case of 27 dendrimers in the
liquid phase where we computed the relative orientations using the quantity 𝛼 as pre-
sented in Sec. 6.3 (iii). After developing the necessary tools we apply them to all system
sizes. Nevertheless, all system sizes studied exhibited the same quantitative and qualita-
tive behavior. Therefore, we choose to present in Sec. 6.3.1 the results from simulations
of the largest system studied, i.e. a system of 𝑁D = 220 dendrimers.
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Figure 6.22: Pair distribution function 𝑔(𝑟) as a function of the interdendrimer separation
𝑟 for systems of different number of dendrimers 𝑁D. The arrows indicate the location of
the half box size for each system size.
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6.3.1 System of 𝑁D = 220 dendrimers in the liquid phase

In this section, the discussion will point to the case of 220 dendrimers of D7-type in
the liquid phase at volume fractions covering a range from 𝜑𝑚 = 0.0 to 0.248. At the
largest volume fraction (𝜑𝑚 = 0.248) we perform 1000 different realization where in each
one we sample for 6.5 × 106 MC sweeps after equilibration. During the simulation runs
we recorded the positions of the monomers with a sampling frequency of 6.5 × 105 MC
sweeps determined by the autocorrelation plot shown in Fig. 6.19. For smaller densities
we perform from 20 (for 𝜑𝑚 = 0.095) to 500 (for 𝜑𝑚 = 0.199) different realizations and
sampled the system for 5× 106 MC sweeps.

(a) (b) (c)

0.0 0.1 0.2 0.3 𝜑𝑚

Figure 6.23: Schematic representation of the compression of dendrimer volume. (a) At
volume fractions 𝜑𝑚 ≈ 0 the dendrimers do not interact with each other and as a result
the ellipsoidal volume of each individual dendrimer is the same with that of the isolated
dendrimers. (b) For volume fractions in the range 𝜑𝑚 = 0.0 to 𝜑𝑚 ≈ 0.19 the dendrimers
experience a massive compression but their shape remains the same in terms of asphericity
𝑏 and acylindricity 𝑐. In this range the dendrimers do not overlap (see Fig. 6.24). (c) Upon
further increasing 𝜑𝑚, the rate of compression decreases as the dendrimers start to overlap.
Multi-occupancy of dendrimers starts playing a significant role in lowering the energy of
the system. The compression of dendrimers seems to stop at 𝜑𝑚 ≈ 0.24 where the mean
volume of the dendrimers correspond to 60% of that of an isolated dendrimer.

The results presented in Fig. 6.21 demonstrate the pronounced impact of many-body
effects. Based on the results obtained for a pair of dendrimers –where the asphericity is
increasing with decreasing the interdendrimer separation (cf. Figs. 6.12 and 6.13) – we
expected that the interacting macromolecules would become more and more elongated as
the volume fraction is increased. However, the results displayed in Fig. 6.21 show that
there is no significant change in the average asphericity and acylindricity with the volume
fraction. In fact, there is a slight decrease in both of the aforementioned quantities with
increasing the volume fraction.
In contrast, the size of the dendrimers is affected considerably. In particular, at the

highest volume fraction investigated, 𝜑𝑚 = 0.248, the volume that a dendrimer occupies,
based on Eq. (6.7), corresponds to only 60% of that when such a dendrimer is considered
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isolated. This massive compression is much larger than that found by Götze et al. [21],
where for dendrimers with hard-core monomers a value of 𝑅g/𝑅

0
g ≈ 0.98 was reported for

highly concentrated dendrimer solutions. The large deformation found here implies that
the effective pair interactions calculated at the zero-density limit (see Fig. 6.9) will fail to
accurately describe dense systems.
As we can see in Fig. 6.21 the reduction in volume of the dendrimers seems to stop at

𝜑𝑚 ≃ 0.24. At this volume fraction, the system has found an alternative way to lower its
energy (see Fig. 6.23).
Whereas for 𝜑𝑚 . 0.199 the value of the radial distribution function 𝑔(𝑟 = 0), shown

in Fig. 6.24, vanishes or is very small, it increases beyond this threshold. For 𝜑𝑚 ≥ 0.248,
the probability of finding a dendrimer overlapping with the reference dendrimer is larger
than the probability of finding it in the nearest-neighbor shell. Consequently, the system
arrives at a transition from a normal dense liquid to a multi-occupancy or cluster liquid.
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Figure 6.24: Radial distribution function 𝑔(𝑟) as a function of 𝑟 for a system of 220
dendrimers and for monomer volume fractions 𝜑𝑚 covering a range from 0.095 to 0.248.

Considering Fig. 6.21 we point the reduction in volume as an effect stemming from
the many-body interactions, since such a feature was not present in the results for two
dendrimers in the zero-density limit. Therefore, we focus now our attention on computing
the positional and orientational correlations in the fluid state. These calculations are
performed in the same way as we have presented for a pair of interacting dendrimers
(see Sec. 6.2.3). We use once again the orientation parameter 𝛼 and the orientational
correlation function 𝑆(𝑟, 𝛼).
In Fig. 6.27 we compare the results obtained for two different volume fractions of

𝜑𝑚 = 0.199 and 𝜑𝑚 = 0.248, and with the results for a pair of dendrimers. In Fig. 6.27(a)
we repeat as a reference the results for the two dendrimers in the zero-density limit
[see Fig. 6.18(a)]. Additionally in Figs. 6.27(b) and 6.27(c) we plot the radial distri-
bution function 𝑔(𝑟) (top panels), the conditional distribution function 𝑃 (𝑟, 𝛼) (middle
panels) and the orientational order parameter 𝑆(𝑟, 𝛼) (bottom panels).
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As a first observation we note that the variations of 𝑃 (𝑟, 𝛼) are less noticeable com-
pared to the isolated pair of dendrimers case. At distances 𝑟/𝑅0

𝑔 ≈ 2.5, the onset of the
dendrimer-dendrimer interaction, we find a slight preference for large-𝛼 configurations
(e.g., ) [see Fig. 6.28(b)] which is also the case for overlapping dendrimers (𝑟 → 0). In
contrast to the aforementioned distances, at intermediate distances 𝑟/𝑅0

𝑔 ≈ 1.5 the large
𝛼 configurations are less preferred – similar to the two isolated dendrimers – whereas the
𝛼 < 0.25 configurations are more favored [see Figs. 6.28(d)and 6.28(e)].
To give a more accurate description for the location and orientation of nearest neigh-

bours we superimpose in the 𝑃 (𝑟, 𝛼)- and 𝑆(𝑟, 𝛼)-plots some of the contour lines of the
𝑔(𝑟;𝛼). At the smaller packing fraction this contour line corresponds to the surface rep-
resenting the nearest neighbor peak location; the value of the 𝑔(𝑟;𝛼) on the isoline is a
little smaller than the height of this peak. At the larger packing fraction, 𝜑𝑚 = 0.248, we
additionally plot the contour line at the overlapping region 𝑟 → 0. This representation
is more clear than that of plotting the whole set of isolines (see Fig. 6.3.1) and yet more
robust than displaying only the 𝑟-location of the nearest-neighbor peak using the pair
distribution function 𝑔(𝑟).
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Figure 6.25: Surface and contour lines of 𝑔(𝑟, 𝛼) for a system of 𝑁D = 220 dendrimers in
the liquid phase and at a volume fraction 𝜑𝑚 = 0.199.

Based on the tilted 𝑔(𝑟) contour line, the nearest 𝛼 = 0 neighbors peak at the smaller
packing fraction 𝜑𝑚 = 0.199 is located at a distance 𝑟 ≈ 1.7𝑅g. The value of 𝛼 = 0, along
with the observation of a positive value of 𝑆(𝑟, 𝛼) [bottom panel in Fig. 6.27(b)] lead to
the conclusion of a parallel configuration rather than a configuration (see Table 6.4).
The intermediate-𝛼 configurations ( . , , and ) are located at a distance of about 2𝑅0

𝑔.
Last, end-to-end configuration with 𝛼 = 1 are located at 𝑟 ≈ 2.25𝑅0

𝑔.
The differences of the relative orientation of a pair of dendrimers in isolation and in a

bulk liquid at both small and large separations are even more pronounced at the larger
packing fraction 𝜑𝑚 = 0.248 [Fig. 6.27(c)] where particles start to overlap. Additionally to
the nearest neighbor peak, which exhibits similar behavior to the one at smaller volume
fraction, the occurrence of isolines at small 𝑟-values indicate the overlapping of dendrimers.
In this overlapping region we find a preferred parallel orientation due to the peak of the
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n̂

Figure 6.26: A schematic view of the antinematic from Ref. [39]. For monoaxial molecules
interacting via a Corner-type potential [132] it was found that the distribution function
describing the orientation of molecules with respect to the director n̂ has two maxima.
The first maximum corresponded to orientations of the molecules parallel to the director
n̂ whereas the second to the antinematic phase where the orientations of the molecules
are perpendicular to the director.

conditional distribution function 𝑃 (𝑟, 𝛼) at 𝛼 = 0 [middle panel of Fig. 6.27(c)].
To visualize the resulting orientation pattern of dendrimers in the liquid phase, we

show in Fig. 6.28 an idealized schematic view, where dendrimers are represented by ax-
isymmetric ellipsoids of aspect ratio of 1.70, consistent with the average ratio of semiaxes
of a single isolated dendrimer (Table 6.1). Figure 6.28(a) shows the observed pattern in
a dendrimer liquid. In more detail, the polar regions of the central reference dendrimer
(colored in white) are populated either by neighbors (yellow) or by neighbors
(green) [see Figs. 6.28(b) and 6.28(c), respectively]. In the equatorial plane, the cen-
tral reference dendrimer is surrounded by (blue), . (red), and (green) neighbors [see
Figs. 6.28(d), 6.28(e) and 6.28(f), respectively], with the neighbors being located a lit-
tle closer to the reference particle than the . and the neighbors. Since most nearest
neighbors are perpendicular the resulting pattern is antinematic [39] (see Fig. 6.26) such
that the long axes of most nearest neighbors are perpendicular, e.g., . . (where
dots represent rods pointing into or out of the paper).
The bottom Fig. 6.27(a) shows the perpendicular arrangement ( ) of a pair of isolated

dendrimers in the overlapping region (𝑟 → 0), which can be see from the extended red
region. On the contrary, overlapping dendrimers are arranged in an end-to-end configu-
ration in a bulk liquid of volume fraction 𝜑𝑚 = 0.248 [see bottom panel of Fig. 6.27(c)].
The origin of such a strong effect stems from tight ordering where the neighbors form
a ”cage” which leaves little space for a perpendicular orientation of overlapping den-
drimers. Together with the differences of 𝑃 (𝑟, 𝛼) between an isolated pair [top panel of
figure Fig. 6.27(a)] and a pair in a bulk dendrimer liquid (middle panels of Fig. 6.27(b)
and Fig. 6.27(c)) signify the existence of many-body effects.
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(a) (b) (c)

(d) (e) (f)

Figure 6.28: Schematic representation of the antinematic packing pattern observed in a
dendrimer liquid. (a): The central reference dendrimer, drawned in white, is surrounded
by neighbors with different orientations. The polar regions are populated either by
(b) or by (c) neighbors. In the equatorial plane, the central reference dendrimer
is surrounded by (d), . (e) and (f) neighbors. The color coding is compatible
with Table 6.4.



Chapter 7

Conclusions & Outlook

In this work we have studied the shape as well as the spatial and orientational equilibrium
properties of amphiphilic dendrimers by means of extensive Monte Carlo simulations. Our
investigations included the cases of an isolated dendrimer, a pair of interacting dendrimers
in the zero-density limit as well as the case of a finite number of dendrimers in the bulk
liquid phase. In the case a single isolated dendrimer, we investigated the shape properties
vary with the generation number 𝐺 ranging from 𝐺 = 2 up to 10. We have shown that
dendrimers are in general not spherical but prolate; their asphericity 𝑏, acylindricity 𝑐 as
well as the asphericity 𝛿 as defined by Rudnick and Gaspari [119] decrease monotonically
with 𝐺. We also showed that the sizes of the amphiphilic dendrimers scale as 𝑅g ∼ 𝑁0.32

where 𝑁 is the total number of monomers. This suggests that our model macromolecules
exhibit a homogeneous structure where monomers are densely packed. To get a better
understanding of the internal structure of our macromolecules we computed the density
profiles for different values of 𝐺 as well as for different monomer interaction potential
parameters (cf. D7- and D12-type model in Sec. 3.2.3.2); our findings suggest that for
generation up to 𝐺 = 4 dendrimers have a segregated core-shell structure whereas for
𝐺 ≥ 5 back-folding of the shell monomers takes place. Then we focused on the case of
𝐺4 dendrimers and study the mutual influence in the shape of a pair of dendrimers in the
zero-density limit and try to associate it to core and the shell monomers separately.

While studying our macromolecules in the zero-density limit we also investigated the
effective interactions using several different approaches. We observed that up to generation
𝐺 = 4 can be well fitted to members of the general exponential model of exponent 𝑛
(GEM-𝑛). It would be interesting as future work to investigate dendrimers of higher
generations at the zero density limit and verify if they belong to the class of 𝑄±-potential
that are prone to cluster formation [26, 130]. In AppendixB we show first results that also
generation 𝐺 = 6 dendrimers belong to the class of the aforementioned potentials. The
most interesting case should be the one of 𝐺 = 10 where the shell monomers fold back
to the interior of the dendrimer and thus their structure loses its segregated core-shell
character. Concerning the simulation methods for obtaining the effective interactions:
from the three different methods that were presented in this thesis, the umbrella sampling
method was proven to be the most robust and trustworthy technique for obtaining the pair
effective interaction in the zero-density limit. The main disadvantage of this method is
that separate simulations have to be performed in different windows of the inter-dendrimer
separations 𝑟 which, at the end of the simulations, have to be combined (see AppendixB).
Other methods that can be used for obtaining the effective interactions of macromolecules

93
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are:

(i) The Multiscale coarse-graining Method of Izvekov and Voth [133]; we show some
preliminary results of the method in AppendixB.

(ii) The Virtual-Move Parallel Tempering (VMPT) method developed by Coluzza and
Frenkel [134] combined with the waste-recycling method [50, 72].

In terms of shape deformations of two dendrimers in the zero-density limit, our results
suggested that for 𝐺 = 4 there is indeed a change in the shape and relative orientation
of dendrimers due to their mutual influence. The data yielded by our study provide
convincing evidence that our macromolecules become more prolate and that orientation
plays an important role in the formation of clusters; this was attributed to the different
nature of the core and the shell monomers. Amphiphilicity has the key role on both
orientation and interpenetration of dendrimers. In the case of the D7 model, the attractive
core-core interaction ceases the repulsion between the shell regions and along with the
orientation of the molecules allows the formation of a cluster. On the other hard, if the
core-core interaction is repulsive the perpendicular relative orientation of the molecules
preferred axes of elongation can by itself allow the interpenetration of dendrimers.
Finally, we investigated the spatial and orientational properties of dendrimers in a

bulk liquid. We first performed extensive Monte Carlo simulations for several system
sizes starting from a system of 27 dendrimers with 1674 monomers end ending at a total
number of 220 dendrimers with 13640 monomers. For all the aforementioned systems we
calculated the shape in terms of asphericity 𝑏 and acylindricity 𝑐 as well as the size using
as a measure the volume of the relevant ellipsoid of each distinct dendrimers. We then
defined the quantities and developed the tools for quantifying the relative orientation of
dendrimer pairs in the bulk. We have chosen to use as measures for the relative orientation
of a pair of dendrimers in the bulk liquid phase, the orientational correlation function 𝑆
along with the parameter 𝛼. On the one hand, the 𝛼 parameter includes information for
the orientation of both long axes of the dendrimers relative to the center-to-center vector.
On the other hand, 𝑆 is a measure for the orientation of the long axes relative to one
another. This description was a non-detailed but yet very practical way for calculating
and interpreting the relative orientation of molecules. Our findings demonstrated the
pronounced impact of the many body effects. Although we expected – based on the
analysis at zero-density limit – that interacting macromolecules would become more and
more elongated we observed that with increasing the volume fraction, dendrimers preserve
their average asphericity and acylindricity. In contrast, the size of the dendrimers was
strongly affected since they underwent a massive compression. Concerning the relative
orientation of our model macromolecules, there was overwhelming evidence corroborating
the existence of an antinematic [39] liquid phase.
Based on the observations for the bulk liquid phase we can now formulate our ex-

pectations for the structure of dendrimer crystals at even higher packing fractions. As
the average orientation of dendrimers with a local antinematic order is fairly isotropic, a
crystalline lattice formed by dendrimers is likely highly symmetric, i.e., cubic. However,
the single-site-type cubic lattices (e.g., simple, body-centered , and face-centered) are in-
compatible with the antinematic order, implying that dendrimer crystals must be more
complex.
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(a) (b) (c)

Figure 7.1: Unit cells of the FCC (a), BCC (b) and the A15 lattice (c). The columnar
sites of the A15 lattice are colored in gray whereas the interstitial in black [135].

(a) (b) (c)

(d)

(e)

Figure 7.2: Self-organization of dendritic polymers [31]. (a) Dendrons assume a conical
shape. (b) The cones assemble to form spherical micelles consisting of a compact core
and a squishy shell, which pack on three different three-dimensional lattices (c), (d), (e).
Panel (d) corresponds to the case of the A15 lattice.

It has been already observed that micell es of dendritic polymers (see Fig. 7.2) [30, 31]
indeed self-assemble to form more complex structures such as the A15 lattice. Unlike the
most common FCC [Fig. 7.1(a)] and BCC [Fig. 7.1(b)] lattices, the A15 lattice consists of
two different types of lattice sites. The A15 unit cell [see Fig. 7.1(c)] includes eight sites:
six columnar sites and two interstitial sites. The columnar sites are organized in pairs
and lie along the bisectors of the faces of the cube. The space between the columns is
then filled out by dodecahedral interstices, one in the center of the cell and one at the
vertex. The existence of such a structure in dendrimer assemblies was unclear mostly of
their low packing fraction. If the spherical micelles were hard they would self-organize
into an FCC lattice that has the largest packing fraction (i.e. 74%) and thus it maximizes
the configurational entropy of the system. In contrast, the A15 lattice is considered to be
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(a) (b)

Figure 7.3: Schematic view of the antinematic packing pattern observed in a dendrimer
liquid. Panel (a): The nearest-neighbor shell around the reference particle (white ellipsoid)
contains (left and right), . (back), and (front) configurations in the equatorial region.
The polar regions may be occupied either by (green) or (yellow) configurations, the
latter being a little farther from the reference particle. (b): The A15 lattice decorated by
ellipsoids arranged in three sets of mutually interlocking columns is indeed able to capture
the antinematic nature of the pattern shown in panel (a); the dodecahedral interstitial sites
(small white spheres only shown in the unit cell for clarity) lack a preferred orientation.
In this case the different colors indicate the different types of columnar site pairs.

loosely-packed since its packing fraction is that of the simple cubic (SC) lattice, i.e. 52%.
Therefore, the formation of such complex cases is related to the fact that dendrimers are
not structureless spheres, but they have a well-defined structure consisting of a compact
core and a squishy shell. Thus, the stability of the lattice that the micelles form does not
only depend on the repulsion between their hard cores but also on the interaction between
their soft shells. Ziherl and Kamien in Ref. [136] suggested a theory that provided a robust
insight into the self-organization of dendrimer micelles in complex lattices such as the A15
lattice; thus in the case of dendrimer systems the “softness” of the particles wins over
their hard cores.
In the case of amphiphilic dendrimers, it is the three sets of mutually perpendicular

columns [Fig. 7.3(a)] of particles which accommodate many features of the A15 packing
pattern discussed above. In Fig. 7.3(b) we plot a lattice based on the local structure of
a dendrimer liquid [see Fig. 7.3(a)]. Each columnar site [ellipsoids in Fig. 7.3(b)] has
neighbors and hybrids of . , , and neighbors as well as the more distant neigh-
bors. Thus, unlike any single-site cubic crystal structure, the A15 lattice is essentially
very consistent with antinematic order although the interstitial sites [small white spheres
in Fig. 7.3(b)] are characterized by a dodecahedral environment and are most easily pop-
ulated by spherical rather than elongated particles. In all, our results suggest that the
stability of the A15 lattice is directly related to the elongated shape and deformability of
dendrimers.
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Appendix A

Random distribution of 𝛼 parameter

In this appendix we provide the code for calculating the random distribution of the param-
eter 𝛼 (see Sec. 5.41) that was used for quantifying the relative orientation of dendrimers
in the zero-density limit but also in the bulk. The resulting distribution is presented
in Fig.A.1.

#!/ usr / b in /python
import sys
import numpy as np
import numpy . random as ran
import math as m

s t ep s = 5000000

def ran the ta ( ) :
return m. acos ( ran . uniform ( −1 .0 ,1 . 0 ) )

def ran ph i ( ) :
return ran . uniform (0 . 0 , 2∗m. pi )

R = [ ]
L1 = [ ]
L2 = [ ]
Alpha =[ ]
count = 0

for s in range ( s t ep s ) :
i f s%100000 == 0 :

print ” step=” , s , ”/” , s t ep s
th1 = ran the ta ( )
th2 = ran the ta ( )
thr = ran the ta ( )
ph1 = ran ph i ( )
ph2 = ran ph i ( )
phr = ran ph i ( )

# Create t h r ee random uni t v e c t o r s
# l 1 : long axes f i r s t molecu le
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# l2 : long axes second molecu le
# r : cen ter to cente v ec t o r

l 1 = ( m. s i n ( th1 )∗m. cos ( ph1 ) ,
m. s i n ( th1 )∗m. s i n ( ph1 ) , m. cos ( th1 ) )

l 2 = ( m. s i n ( th2 )∗m. cos ( ph2 ) ,
m. s i n ( th2 )∗m. s i n ( ph2 ) , m. cos ( th2 ) )

r = ( m. s i n ( thr )∗m. cos ( phr ) ,
m. s i n ( thr )∗m. s i n ( phr ) , m. cos ( thr ) )

L1 . append ( l 1 )
L2 . append ( l 2 )
R. append ( r )

# Ca l cu l a t e a lpha parameter
alpha = ( np . dot ( l1 , r ) )∗∗2 + (np . dot ( l2 , r ) )∗∗2
Alpha . append ( alpha )

#Create h is tograms o f a lpha
H alpha , b in a lpha = np . histogram ( Alpha , b ins = 40 , range = [0 , 2 . 0 ] )
#output to f i l e s
fz new = open ( ” a l pha d i s t 4 0b i n s . out” , ”w” )

for i in range ( l en ( H alpha ) ) :
fz new . wr i t e ( ”%4d∖ t%13.6 f ∖ t%13.6 f ∖ t%13.6 f ∖n”

%(i , b in a lpha [ i ] , H alpha [ i ] / f l o a t ( s t ep s ) , H alpha [ i ] ) )

0.0

0.01

0.02

0.03

0.04

0 0.25 0.5 0.75 1.0

P
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Figure A.1: Random distribution of the 𝛼 used for describing relative orientation of
dendrimers.



Appendix B

Further study of effective
interactions of dendrimers

In Fig. B.1 we illustrate in a common plot the effective interaction extracted from the
simulation data for a 𝐺 = 6 using the umbrella sampling methods as well as the rele-
vant GEM-𝑛 fitting lines; the relevant fitting parameters are presented in Table B.1. We
observe that even in this case 𝑛 > 2 dendrimers can form clusters.
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Figure B.1: The effective interaction of 𝐺 = 6 dendrimers obtained with the umbrella
sampling method (filled black diamonds, GEM-𝑛-fit dashed red line). The inset shows
the results obtained for the different windows that when combined give the final curve.

type 𝜖/𝑘B𝑇 𝜎/𝑅g 𝑛

D7 81.79 1.30 2.51

Table B.1: Fit parameters for the pair effective interaction of dendrimers of 𝐺 = 6
dendrimers of D7-type using a GEM-n type of interaction [see Eq. (6.2)].

101
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We also present in Fig. B.2 preliminary results for the effective interaction for 𝐺 = 4
dendrimers of D7-type obtained with the multiscale coarse-graining method [133] in a
common plot with the one obtained from the umbrella sampling method (see Sec. 2.4.3.1.)

5

10

15

20

0 0.5 1 1.5 2 2.5 3 3.5 4

β
Φ

ef
f(r

)

r/Rg
0

D7: Umbrella sampling
D7: MSCG                

Figure B.2: Comparison between the effective interaction obtained with the umbrella
sampling method (solid black line) and by the multiscale coarse-graining method [133]
(M. Montes Saralegui, Technische Universität Wien).



Bibliography

[1] P. G. de Gennes, Soft matter: more than words, Soft Matter 1, 16 (2005).

[2] R. Jones, Soft condensed matter, Oxford Master Series in Physics (Oxford University
Press, 2002).

[3] W. Hu, Polymer Physics: A Molecular Approach (Springer, 2012).

[4] V. Parsegian, Van der Waals forces: a handbook for biologists, chemists, engineers,
and physicists (Cambridge University Press, 2006).

[5] M. Amer, Raman spectroscopy for soft matter applications, Wiley InterScience on-
line books (Wiley, 2009).

[6] P. G. de Gennes, Soft matter, Reviews of Modern Physics 64, 645 (1992).
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[43] J. Liouville, Note sur la théorie de la variation des constantes arbitraires, Journal
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68, 2 (1934).
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