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Kurzfassung

Das Ziel dieser Arbeit war die Entwicklung eines wissenschaftlichen Co-
des, der in der Lage ist realitätsnahe Systeme zu simulieren, und diesen auf
einen, nicht gut verstandenen, experimentellen Effekt anzuwenden. Dieser
experimentell bekannte Effekt ist die nicht intuitive NMR Signalverbreite-
rung in

”
spin-ladder-compounds“ bei niedrigen Temperaturen, wenn diese

mit nicht magnetischen Fremdatomen versetzt werden. Insbesondere wurde
Zn dotiertes SrCu2O3 untersucht.
Zu diesem Zweck wurde im Zuge dieser Arbeit ein Quantum Monte Carlo
(QMC) Code, im Rahmen der Stochastischen Reihenentwicklung (Stochastic
Series Expansion - SSE), geschrieben. Der Code ist eine Weiterentwicklung
eines früher entwickelnten Programmes,[1] in welchem nur einfache Spinsys-
teme ohne äußerem Magnetfeld simuliert werden konnten. Das für diese Stu-
die entwickelte Programm ist in der Lage komplexe Systeme zu simulieren.
Dazu gehören Systeme, die über orthogonale Kopplungen hinaus gehen, Sys-
teme mit Löchern, als auch Systeme mit externem Magnetfeld. Zusätzlich
wurde eine Effizienzsteigerung bezüglich Rechenzeit durch optimieren des
Codes, sowie Parallelisation, die eine Ausführung des Programmes auf ei-
nem Grid-System ermöglicht, erreicht.
Dieser hier entwickelte Code, angewandt auf das vorher genannte experimen-
tell boabachtete Phänomen, führt zu der Schlussfolgerung, dass eine Kopp-
lung in Stapel-Richtung (stacking direction) nötig ist, um die experimentelle
Verbreiterung zu erreichen. Die hier simulierte Linienbreite benötigt, im Ge-
gensatz zu frühere Studien zu ungestapelten Systemen, keine unphysikalisch
großen Korrelationslängen.
Zusätzlich führte die Analyse des Einflusses der Fremdatomkonfiguration
auf das NMR Spektrum auf eine Simulationsprozedur, die es ermöglicht,
eine große Anzahl an solchen Konfigurationen, basierend auf einigen weni-
gen QMC Rechnungen, zu simulieren. Diese Methode ist sehr effizient in
der Rechenzeit und ermöglicht somit in zukünftigen Arbeiten aufwendigere
Untersuchungen in dotierten Spinsystemen.
Die Resultate dieser Dissertation wurden veröffentlicht.[2]



Abstract

The aim of this study was to develop a scientific code capable of simulating
systems close to reality and to apply it to simulate and study experimental
findings. This experimentally observed effect is the counter intuitive low
temperature broadening of the NMR spectra of spin ladder compounds that
are doped with a tiny amount (x¤0.0025) of non magnetic impurities, in
particularly Zn doped SrCu2O3.
For this purpose, the code written in this work is a Quantum Monte Carlo
(QMC) code in the framework of the Stochastic Series Expansion (SSE)
based on earlier investigations,[1] in which a very simple simple program
was developed to simulate spin lattice systems without an external mag-
netic field. The further developed program used in this study is capable
to simulate more complex systems, such as models beyond simple orthog-
onal couplings, systems with holes, and systems in an external magnetic
field. Additionally, enhancements in computation time were achieved by
code optimization as well as parallelization to allow the execution on a grid
computing system. The theory as well as the algorithm behind this method
is described in this work.
Applying the developed code to the mentioned experimentally observed ef-
fect leads to the conclusion that a coupling in the stacking direction is nec-
essary to describe the desired broadening. Our simulation of the broadening
effect does not require physically unlikely large correlation lengths, which
have been applied in former studies.
Further, studying the influence of different impurity configurations on the
NMR spectrum resulted in the development of a framework to simulate a
large amount of impurity configurations based on a few QMC simulations
only. This method proved to be very efficient in computation time and thus
allows more intense studies of such systems for future works.
The results of this thesis have been published.[2]
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Introduction

This thesis presents the work of the author performed during his time as

a PhD student within the Wissenschaftskolleg Computational Material Sci-

ence of the Austrian Science Fonds (FWF) at the institute for applied physics

at Vienna University of Technology.

The thesis is divided in three parts, to guide the reader from the beginning of

the development of a code until its application on an experimentally observed

effect. The first part provides the reader with the necessary background.

There, the Monte Carlo (MC) method and statistic tools are explained in

general. Furthermore, the framework of the Stochastic Series Expansion

(SSE) is introduced and the required equations for the final Quantum Monte

Carlo (QMC) code are derived. For better understanding of the algorithm,

the reader will also be introduced into a graphical representation of the

model used in this work.

The second part explains the algorithm itself. The two different operator

updates are explained, as well as the parallelization of the program. In the

end test calculations for simple systems are compared to analytically exact

results to demonstrate the quality of the algorithm.

The third part presents a study in which the code is applied to the low tem-

perature broadening effect of NMR spectra in spin ladder compounds upon

doping with small amount of non magnetic impurities. After presenting the

results and conclusions, obtained with the QMC code, a new procedure is

introduced that allows to simulate NMR spectra closer to reality. Since this

new method relies only on a few QMC calculations it is very efficient in

calculation time, allowing for more detailed investigations of such impurity

doped spin ladder systems.
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Theory
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Chapter 1

Monte Carlo Method

In this chapter a short overview about the Monte Carlo method is presented.

The basic algorithm is explained using the famous problem of calculating

π. Further, the reader is introduced in the Metropolis algorithm, which is

demonstrated on a two particle Ising model. Additionally basic information

about random number generators (RNGs) as well as statistical tools are

presented.

1.1 The Beginning of the Monte Carlo Method

The Monte Carlo Method was developed in the late 40s in Los Alamos

to solve the problem of neutron diffusion in fissionable material by Ulam,

von Neumann and Metropolis. After the development of computers, and

thus the ability to quickly calculate the same process over and over again,

the idea came up to generate random starting points and velocities for the

Neutrons and calculate their trajectories. Using statistical analysis on those

simulated trajectories should lead to results comparable to experimentally

observed distributions. As almost everything developed in Los Alamos had

to be top secret that time, a code name for this method was needed. Since

this method works with random starting values, similar to card games in

casinos, the name ”Monte Carlo” was chosen. [3]

This method is not limited to the original use only. It is a rather general

method that can have many applications as stated in the abstract of an

article of Metropolis and Ulam. [4]
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Since its development, the Monte Carlo method has found its use for many

different applications and has proven to be a very powerful computational

tool, not restricted to science only.

1.2 Basic Algorithm

The basic algorithm[4] can be summarised as following:

1. Define the configuration space and determine how configurations are

being sampled.

2. Generate a configuration

3. Calculate the desired observables

4. Save the data

5. Repeat step 2-4 until a chosen number of configurations has been sam-

pled.

6. Use statistics to analyse the data.

1.3 Example: Calculating PI

A good example to demonstrate the algorithm is the calculation of π. It

can be explained in a very descriptive way without the use of computer

generated random numbers. Imagine a square with the length of the sides

of 1. Draw the quarter of a circle with the radius 1 in it. Then throw,

without aiming, darts towards that square. It is assumed that the darts

hit that square randomly and uniformly. Then, the ratio between the darts

that ended up within the quarter of the circle and the total amount that hit

the square is equal to the ratio of the areas of the 2 figures. Using simple

3



algebra leads to an expression to evaluate π.

Asquare � a2 � 1

Acircle �
r2π

4
�

π

4
Ncircle

Ntotal
�

Acircle

Asquare
�

π

4

Ñ π � 4
Ncircle

Ntotal
(1.1)

Applying this model on the basic algorithm (see Sec. 1.2) leads to following

procedure:

1. Define the configuration space and determine how configurations are

being sampled:

The configuration space consists out of two states, namely a dart being

either under the circle curve or not. The probability distribution on

how those two states are sampled is determined by the geometry of

the system.

2. Generate a configuration:

Throw darts without aiming until Ntotal darts are within the square.

3. Calculate the desired observables:

Count the number of darts under the circle curve and use Equ. 1.1 to

calculate Pi and remove the darts.

4. Save the data

Save the just obtained πi (label it with the current data number i).

5. Repeat step 2-4 until a chosen number of configurations has been sam-

pled:

Repeat steps 2-4 until enough data points (πi) have been sampled. The

amount of data points to sample is generally chosen before process.

6. Use statistics to analyse the data:

Calculate average and the standard deviation out of the data set πi.

This process can simply be transferred into a computer code by replacing

the darts with randomly drawn numbers (Fig. 1.1).

4
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Figure 1.1: Calculation of π. Random dots are drawn over the square. The
ratio of the number of dots under the circle curve and the total amount of
dots provides an estimate for π

1.4 Random Number Generators (RNGs)

To generate random numbers so called pseudo-random-number-generators

are used. Pseudo because they are actually created as a sequence of deter-

ministic numbers. Important for the quality of a RNG is that the sequence

of numbers is well distributed and the periodicity of the sequence is as long

as possible. Fig.1.2 and Fig. 1.3 illustrate these two properties, that could

easily be overlooked in short simulations.

While the standard RNGs of most compilers, with the periodicity of 231�1,

are sufficient enough for fast calculations, better RNGs such as the Mersenne

- Twister[5] are recommended for higher precision. However, for more com-

plex systems, standard RNGs can also lead to reliable results. Especially for

Markov processes, in which each configuration can lead to a large number of

new configurations, because then it is very unlikely have exactly the same
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configuration at the restart of the number sequence. Instead of doing one

Bad RNG Good RNG

0 1x
0

1

y

0 1x
0

1

y

0 1x
0

1

y

0 1x
0

1

y

Figure 1.2: Illustration of a good and a bad random number generators.
For 100 random points (top row) the bad RNG looks as random as the good
RNG. However, for 10000 random points (bottom row), the difference is
obvious.

run with lots of steps it is recommend to split up the sweeps into several

runs. There are two reasons for doing this. The first reason is to neglect

runs that end up in unlikely but possible configurations. The second reason

is to neglect the limitation of the RNGs. That limitation comes from the

periodicity of RNGs. Also to avoid runs starting with the same seed it is a

good idea to generate some kind of list containing random numbers at first,

from which a seed is drawn every time a new run starts. That way one will

start each run with a different seed for the RNG, which results in different

starting values for the simulation. That way unlikely paths of a simulation,

that can happen in one run, will average out by other runs.
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Figure 1.3: Simulated random walk after 1.000 (top left), 10.000 (top right),
100.000 (bottom left), and 10000000 steps. The periodicity of the used ran-
dom number generator was limited to 400.000 to illustrate repeating patters
for simulations longer than that. For easier recognition of the repeating
pattern a color code was used (bottom right). Each color is representing a
full cycle of the RNG.
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1.5 Metropolis Algorithm

While in principle the basic algorithm works for all applicable systems, it

can be rather ineffective for systems with larger configuration space. Imag-

ine for example a canonical ensemble with many possible configurations,

but only a few of them have reasonable large statistical weights. The ba-

sic algorithm would randomly generate configurations, which then would be

weighted according to their Boltzmann factor. Thus a lot of configurations

will be sampled that hardly contribute to the expectation values, which ren-

ders the simulation rather ineffective. To improve the algorithm, Metropolis

enhanced it by sampling in a Markov chain rather than randomly generating

configurations.[6] A Markov chain is a sequence of configurations. The next

generated configuration depends only on the current state and the related

transition-probabilities.[7]

Within this algorithm the current configuration will only be altered by a

small change. The energy of the newly obtained system is compared with

the old one. According to statistical weights and a random number check

it is determined whether the new configuration is accepted or rejected. En-

ergetically better configurations will always be accepted. This is repeated

until a certain number of samples have been generated.

An important feature of this method is that configurations are sampled

according to their statistical weight. Configurations with a small statistical

weight will hardly be accepted, even tough they are still possible, to remain

the completeness of the ensemble. This importance sampling reduces the

amount of configurations needed for a reliable result, which speeds up the

simulation overall. Additionally, the statistical weight does not need to be

considered anymore for the expectation values of the observables, which

simplifies the statistical analysis.

It needs to be mentioned that this algorithm needs a temperature (also called

equilibrium) phase. The reason is that the simulation starts at a randomly

generated configuration. This includes also less probable states, which can

falsify the statistics.

This enhanced algorithm is named after his developer, Metropolis, and thus

called Metropolis algorithm.
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1.6 Example: Ising model for two spins

This example is used to illustrates the process of the Metropolis algorithm

and to demonstrate the possible accuracy achieved with such a method.

1.6.1 Model Description

The Ising model[8] was developed by Ernst Ising to describe spin systems.

It is a simplification of the Heisenberg model,[9] which will be discussed

later on. For more detailed information about these models we refer to

“Magnetism in the Solid State”.[10]

In the Ising model, spins reside on a lattice and can have the values +1 or

-1. Only two particle exchange (between spin i and spin j) are considered,

with Ji,j as coupling constant. The Hamiltonian, and thus also the total

energy operator, is given as

Ĥ �

¸

i j

Ji,jSiSj . (1.2)

In general one can consider also a Zeeman term, which takes the influence

of an external magnetic field into account, which is omitted here. In Equ.

1.2 a spin Si interacts with any other spin Sj. The Ji,j vary according to

the interaction partners Si and Sj. For illustration purposes, the model is

reduced to its most simple form. For that purpose a system consisting out

of two spins only is considered. Then the Hamiltonian reduces to

Ĥ � JS1S2 . (1.3)

Since only one coupling is left, the indices in Ji,j can be neglected. Note

that the coupling constant J classifies the system. For J ¡ 0 the energy

is lower with anti-parallel aligned spins, referring to an anti-ferromagnetic

system. For J   0 the energy is lower when the spins face the same direction,

referring to a ferromagnetic system.

1.6.2 Weight and Partition Functions

The weight-function is important, since the configurations are sampled ac-

cording it. Every system state α inheres a total energy Epαq. The statistical

9



weight of each state is then given by the Boltzmann distribution

W pαq � e�βEpαq . (1.4)

Here β is the inverse temperature 1

kBT
. Summing up the weights of all states

results in the partition function

Z �

¸

α

e�βEpαq . (1.5)

The expectation value of an observable f pαq is then given by

xfy �
1

Z

¸

α

f pαqe�βEpαq . (1.6)

1.6.3 Transition Probability

The simplified system used here consists only out of two spins. Each of

them can only have the values +1 and -1, which results in 4 possible states

(| Ò, Òy, | Ò, Óy, | Ó, Òy, | Ó, Óy). To sample this system with a Metropolis

algorithm, one spin is updated/flipped and the weight functions before the

update (initial state) and after the update (final state) are compared. The

ratio between them (using Equ. 1.4)

PiÑf �
Wf

Wi
� e�βpEf�Eiq (1.7)

determines the acceptance rate of the spin flip, which corresponds to the

transition-probability. Note that for systems with more than one update

possibility, one has to consider also the detailed balance.[6] In Equ. 1.7

PiÑf exceeds the value of one, if the final state is energetically favourable.

Since a probability larger than 1 has no meaning, one limits PiÑf to one

leading to

PiÑf � minpe�βpEf�Eiq, 1q . (1.8)

This means that a new state with a larger statistical weight than the initial

one, is always accepted. On the other hand, energetically less favourable

states are still accepted with the probability PiÑf .
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1.6.4 Algorithm

The algorithm follows in principle the general Monte Carlo algorithm, except

that the sampling depends on the current state:

1. Generate a random starting configuration out of | Ò, Òy, | Ò, Óy, | Ó, Òy,

| Ó, Óy.

2. Choose a spin and calculate its probability to flip according equation

(1.8).

3. Draw a random number r P r0; 1s. If r ¤ PiÑf then flip the spin, else

not. [6]

4. Extract and save the desired data and repeat point 2-4 until the pre-

determined number of data points has been sampled.

5. Use statistics to calculate expectation values and errors.

1.6.5 Analytical Solution of χ

To demonstrate the quality of the algorithm the calculated susceptibility

will be compared to the exact analytical solution. According to [11] χ is

given by

χ � βpxM2
y � xMy

2
q (1.9)
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with M as the magnetisation. Using Equ. (1.6) and Equ. (1.9) allows to

derive χ for a ferromagnetic system as following:

x|M |y �

0 � eβJ � 2 � e�βJ

eβJ � e�βJ
� 2

e�βJ

eβJ � e�βJ

xM2
y �

02 � eβJ � 22 � e�βJ

eβJ � e�βJ
� 4

e�βJ

eβJ � e�βJ

xχy � βpxM2
y � xMy

2
q

xχy � βr4
e�βJ

eβJ � e�βJ
� p2

e�βJ

eβJ � e�βJ
q

2
s

xχy � 4βr
e�βJ

eβJ � e�βJ
�

e�2βJ

peβJ � e�βJ
q

2
s

xχy � 4βr
e�βJ

peβJ � e�βJ
q � e�2βJ

peβJ � e�βJ
q

2

xχy � 4βr
1 � e�2βJ

q � e�2βJ

peβJ � e�βJ
q

2

xχy � 4β
1

4 cosh2
pβJq

xχy �
1

kBT

1

cosh2p J
kBT

q

(1.10)

Here x|M |y was used instead of xMy, because with the absence of an external

magnetic field the states | Ò, Òy and | Ó, Óy are equal.

1.6.6 Results - Demonstration of Accuracy

To demonstrate the potential of the Monte Carlo method, the susceptibility

obtained with the Metropolis algorithm (see Sec. 1.6.4) is compared to

the analytical solution(see Sec. 1.6.5). Fig. 1.4 shows the susceptibilities

obtained by those two different approaches for comparison. For simplicity

the constants kB and J have been set to 1. The quality of the numerical

(orange crosses) results when compared with the analytical (solid black line)

solution is obvious.

For more detailed information on the Ising model and the applied statistical

mechanics we refer to [11].

1.7 Statistics

In this section basic statistics used in Monte Carlo simulations is introduced.
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Figure 1.4: 2 spin Ising model. Analytical solution and simulation results
for the susceptibility χ.

1.7.1 Averages and Expectation Values

When using importance sampling, such as the Metropolis algorithm, the

statistical weights are already considered when the system states are gen-

erated. Thus, one can simply average over all the data points (also called

measurements) the same way as experimental data are processed. There-

fore Monte Carlo simulations are also referred as “simulated experiments”.

Averages and variances can be calculated with basic statistics.

Ā �

1

N

Ņ

i�1

Ai mean value of observable Â (1.11)

σ2
�

1

N

Ņ

i�1

pAi � Āq2 variance of the population (1.12)

s2 �
1

n� 1

ņ

i�1

pAi � Āq2 variance of the sample (1.13)

It needs to be mentioned that for a Markov process, the errors obtained from

Equ. 1.13 are underestimating the actual error. The reason is that the next

13



generated configuration is achieved by changing the original configuration

only by a small amount. In other words, the newly updated configurations

are correlated with the initial one and it takes a few update steps to achieve

uncorrelated states.

1.7.2 Binning

To obtain the correct errors, “Binning” is used to get rid of the autocor-

relation in the sampled data points. The principle is rather simple. Two

neighbouring data points are grouped up into a “bin”. The average value of

both, forms a new data set. This process can be repeated for the new data

point generation. Depending on the generation (k) of the generated data

set, the bins consist out of 2k original (k � 0) data points (see Fig. 1.5. The

Figure 1.5: Illustration of the binning process

signification of this method is to generate uncorrelated data points and thus

obtain a realistic value of the error. The arithmetic average of the data set

remains unaffected as is proven in Equ. 1.15.

Bj �
1

2k

2kpj�1q
¸

i�2kpj�1q�1

Ai (1.14)

B̄ �

1
N
2k

N

2k
¸

j�1

Bj �
2k

N

N

2k
¸

j�1

1

2k

2kpj�1q
¸

i�2kpj�1q�1

Ai �
1

N

Ņ

i�1

Ai � Ā (1.15)

Ai are the initial data points of generation k � 0. Bj are the data points of

generation k. While the expectation value remains unchanged, the variance,

and thus the error, increases. This is a direct consequence of Equ. 1.13

when the number of data points is reduced. However, once the data points

14



are not correlated anymore, the variance reaches a plateau. This plateau

corresponds to the actual error of the sampled data. Fig. 1.6 shows a typical

evolution of the standard deviation of the sample, depending on the data

point generation k. The red square is the beginning of the plateau, and thus

0 1 2 3 4 5 6 7 8 9 10 11 12
N

1.2

1.3

1.4

1.5

 σ
   

[1
0-5

]

Figure 1.6: Evolution of the standard deviation of the sample during a
binning procedure.

corresponds to the actual standard deviation of the sample. Note that the

fluctuations after the plateau are caused by a too low amount of data points

at higher generations k.
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Chapter 2

Stochastic Series Expansion -

Classical Approach

While the stochastic series expansion was developed for quantum mechanical

systems, here the principle is explained first on classical mechanics. This

allows to focus on its quintessence without overloaded equations.

2.1 Principle

The Stochastic Series Expansion (SEE) is a generalization of the Handscomb

method[12, 13] developed by Sandvik and Kurkijärvi.[14] In quantum me-

chanics, instead of trying to solve the trace over the Boltzmann factor ana-

lytically, the system is decomposed into diagonal matrix elements that are

easily solvable. Those matrix elements are then sampled in form of operator

strings (see Chap. 3).

The principle would also work for classical mechanics, if a system would not

be solvable analytically. For the next steps, following equations are used:

W pαq � e�βEpαq statistical weight (2.1)

Z �

¸

α

W pαq partition function (2.2)

xfy �
1

Z

¸

α

f pαqW pαq expectation value of f (2.3)

(2.4)

β is the inverse temperature 1

kBT
. α is a system state. All possible α build
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up the configuration space of the system. Assuming the exponential term

in Equ. 2.1 cannot be resolved analytically, a series expansion needs to be

performed. The resulting partition function is shown in Equ. 2.5.

Z �

¸

α

W pαq �
¸

α

e�βEpαq
�

¸

α

8

¸

n�0

βn
p�Epαqqn

n!
�

¸

α

8

¸

n�0

W pα, nq (2.5)

n appearing from the power series extends the configuration space by one

dimension and a new weight-function is defined

W pα, nq �
βn
p�Epαqqn

n!
. (2.6)

For Epαq   0 Equ. 2.6 becomes negative. Since a negative statistical weight,

and thus a negative probability of a state, is physically impossible, the zero

point has to be shifted accordingly (Epαq ñ Epαq� ε, �Epαq   ε) resulting

in

W pα, nq �
βn
pε�Epαqqn

n!
. (2.7)

Equ. 2.7 is the governing equation in SSE and used to sample the states

consisting of α and n. So far n ranges from 0 until 8 and a truncation is

needed (see Chap. 3)

2.2 Number n and the System Energy

A feature from the new dimension n is that it can be used to calculate the

system’s energy directly. For that purpose we use the shifted Hamiltonian

Hpαq � H � ǫ�E � ǫ�Epαq . (2.8)

The positive definite statistical weight (Equ. 2.7) then becomes

W pα, nq �
βnHn

pαq

n!
. (2.9)
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The following equations derive the expectation value of H in terms of n:

xHy �

1

Z

¸

α,n

Hpαq
βnHpαqn

n!
(2.10)

xHy �

1

Z

¸

α,n

βnHpαqn�1

n!
(2.11)

xHy �

1

Z

¸

α,n

n� 1

β

βn�1Hpαqn�1

pn� 1q!
(2.12)

xHy �

1

Z

¸

α,m

m

β

βmHpαqm

pmq!
(2.13)

with m � n� 1

xHy �

1

βZ

¸

α,m

m
βmHpαqm

pmq!
(2.14)

xHy �

1

βZ

¸

α,n

n
βnHpαqn

pnq!
(2.15)

with m renamed to n

xHy �

1

βZ

¸

α,n

nW pα, nq (2.16)

xHy �

xny

β
(2.17)

(2.18)

It is shown that expectation value of H is proportional to the expectation

value of n. This means that keeping track of n is sufficient to obtain the

system’s energy. From H � ǫ�E follows E � ǫ�H. Thus the expectation

value of E is given by

xEy � ǫ� xHy � ǫ�
xny

β
(2.19)
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Chapter 3

Quantum Monte Carlo -

Stochastic Series Expansion

In this chapter, the principle of SSE is applied on the quantum mechanical

formalism (QMC-SSE). Here, the basic equations, the configurations space,

the truncation of the series, the “sign problem”, and the here used transition

probabilities are discussed. The theory presented here was developed by

Sandvik, Kurkijärvi, and Syljůasen.[14–17]

3.1 Basic Equations

In quantum mechanics statistical weight, partition function, expectation

value of an observable Â, and the trace are defined as following:

W pαq � xα|e�βĤ
|αy (3.1)

Z � Trpe�βĤ
q (3.2)

xÂy �
1

Z
TrpÂe�βĤ

q (3.3)

TrpÔq �
¸

α

xα|Ô|αy (3.4)

Here Ĥ is the Hamiltonian of the system. The trace sums over all quantum

mechanical states α. Analogue to Equ. 2.5 the configuration space can be
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extended by one dimension by performing a series expansion.

W pα, nq �
βn

n!
xα|p�Ĥqn|αy (3.5)

Z �

¸

α,n

W pα, nq (3.6)

xÂy �
1

Z

¸

α,n

ApαqW pα, nq (3.7)

To make use of the above equations, p�Ĥq

n needs to be rewritten in a non

power law form. For that purpose, the Ansatz from Equ. 3.8 is used.

Ĥ � �

¸

a,b

Ĥa,b (3.8)

The Hamiltonian is decomposed into a sum of single bond operators. b

is the bond index (also bond-number) and a the operator type. While the

operator types are essential for the algorithm later, here no further definition

is needed. Using Equ. 3.8 in p�Ĥq

n and calculating the bracket leads to

Equ. 3.9.

p�Ĥq

n
� p

¸

a,b

Ĥa,bq
n
�

pĤ1,1 � Ĥ1,2 � Ĥ1,3 � � � � � Ĥx,nq
n
�

Ĥn
1,1 � n� Ĥn�1

1,1 � Ĥ1,2 � n� Ĥn�1

1,1 � Ĥ1,3 � � � � � Ĥn
x,n (3.9)

Here x represents the number of operator types. Equ. 3.9 consists of terms

of single bond operators multiplied with each other in all combinations.

This rather cumbersome formalism can be rewritten in a simple form, by

introducing “operator strings”. An operator string is a product of single

bond operators with taking their order into account (Ĥap1q,bp1q � Ĥap2q,bp2q�

...� Ĥapnq,bpnq). With the help of such operator strings Equ. 3.9 becomes

¸

ta,bu

n
¹

p�1

Ĥappq,bppq . (3.10)
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The sum is over all possible operator strings ta, bu of length n. The partition

function (Equ. 3.2) can now be written as

Z �

¸

α,n

βn

n!

¸

ta,bu

xα|

n
¹

p�1

Ĥappq,bppq|αy �

¸

α,ta,bu

βn

n!
xα|

n
¹

p�1

Ĥappq,bppq|αy . (3.11)

Equ. 3.11 sums over the new configuration space of α, ta, bu, with a newly

defined weight factor (Equ. 3.12).

W pα, ta, buq �
βn

n!
xα|

n
¹

p�1

Ĥappq,bppq|αy . (3.12)

3.2 Truncation of the Series

The sum in Equ. 3.11 is over all possible operator strings ta, bu. The lengths

of these operator strings corresponds to n from the series expansion and thus

range from 0 to 8. For utilization in an algorithm, two more modifications

on the configuration space have to be made. First of all, a truncation M ǫN

of the series is performed. How to choose M without changing the statistics

will be explained in Sec. 6.5. The second modification expands all operator

strings with a length of n   M to strings with a unified length of M. For

that purpose, M � n unit operators (Ĥ0,0) are added to each string. Note,

that now n corresponds to the number of non unit operators in a string and

not to the length anymore. Sine the order within an operator string matters,

there are

l �
M !

pM � nq!n!
(3.13)

possibilities for this extension. Because we transformed a ta, b, u configura-

tion into l statistically equally distributed configurations we have to divide

our former statistical weight by the factor l and obtain Equ. 3.14.

W pα, ta, buq �
βn

n!

pM � nq!n!

M !
xα|

n
¹

p�1

Ĥappq,bppq|αy

W pα, ta, buq �
βn
pM � nq!

M !
xα|

n
¹

p�1

Ĥappq,bppq|αy (3.14)
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Equ. 3.14 is the base equation used to sample over the configuration space

in the algorithm. For mathematical simplifications when deriving transition

rates it will be necessary to calculate the eigenvalues of the single bond oper-

ators independently. This is achieved by adding identity operators between

the single bond operators.

xα|

n
¹

p�1

Ĥappq,bppq|αy � xα|Ĥap1q,bp1q

¸

α1

|α1yxα1|Ĥap2q,bp2q

¸

α1

|α1yxα1| . . .

. . . Ĥap2q,bp2q

¸

α1

|α1yxα1|ĤapMq,bpMq

|αy (3.15)

Since the Eigenvalues of the single bond operators only differ from zero at

a certain state α Equ. 3.15 is equivalent to

xα|

n
¹

p�1

Ĥappq,bppq|αy � xα|Ĥap1q,bp1q|α
1

1yxα
1

1|Ĥap2q,bp2qα
1

2yxα
1

2| . . .

. . . Ĥap2q,bp2q|α
1

M�1yxα
1

M�1|ĤapMq,bpMq

|αy (3.16)

The indices from α1p in Equ. 3.16 only refer to the position in the oper-

ator string and not the state itself. Particularly, α1p � α1p�1
for diagonal

Ĥapp�1q,bpp�1q and α1p � α1p�1
for off-diagonal Ĥapp�1q,bpp�1q.

3.3 Sign Problem

As already discussed in Chapter 2, it is necessary to shift the zero point of

the Hamiltonian to assure a non negative statistical weight. While this works

well for classical mechanics, it cannot be done for all quantum mechanical

systems. The problem is caused by the off-diagonal elements xα1|Ĥa,b|α2y

with α1 � α2, because the zero-point shift only effects diagonal elements.

To ensure a positive statistical weight some system requirements need to be

fulfilled. First of all, systems with positive off-diagonal elements don’t need

any restrictions. For Heisenberg systems this is valid for the ferromagnetic

case.
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For systems with negative off-diagonal elements a closer look at the term

3.17 reveals the required system limitations.

xα|

M
¹

p�1

Ĥa,b|αy (3.17)

Since in quantum mechanics the trace is used for the statistics, the state

α is identical in the bra and the ket. However, applying the single bond

operators of the operator string sequentially on the ket (or the bra) changes

the intermediate system state through off-diagonal operators. To achieve

a non zero value of the term 3.17, only operator strings are allowed that,

once applied completely on a state, result in the initial state (|αy as an

eigenvector of ta, b, u). Further, to ensure a positive value of term 3.17, odd

numbers of off-diagonal operators with a negative eigenvalue are forbidden.

For example, closed anti-ferromagnetic Heisenberg chains with odd length

are forbidden. Such resulting geometrical figures (triangles, pentagons, hep-

tagons, ...) have to be avoided in any model structure.

3.4 Acceptance Rate

With the statistical weight of the configurations (Equ. 3.14) known one can

calculate the acceptance rate, which in general is given by Equ. 3.18.

PacceptpA Ñ Bq �
W pBqPselectpB Ñ Aq

W pAqPselectpAÑ Bqq
(3.18)

PselectpB Ñ Aq and PselectpA Ñ Bq are the probabilities to transform state

A into B and vice versa and are necessary to meet detailed balance.[6]

While in general transitions from every state into another are possible, the

algorithm uses only certain possible transitions with a change of a single

operator only. The following two subsections discuss the transitions used in

the algorithm.

3.4.1 Diagonal Update Acceptance Rate

The diagonal update considers only transitions between diagonal operators.

Strictly speaking only transitions between a unit operator Ĥ0,0 and a di-

agonal (non-unit) operator Ĥ1,b. This corresponds to a change in the non
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unit operator number n by 1. Inserting the statistical weight (Equ. 3.14)

into Equ. 3.18 and capping the acceptance rate at 1 leads to the Metropolis

acceptance rates 3.19 and 3.20.

Pacceptpn Ñ n� 1q � minp
Bβ

pM � nq
xα|Ĥ1,b|αy, 1q (3.19)

Pacceptpn Ñ n� 1q � minp
pM � n� 1q

Bβxα|Ĥ1,b|αy
, 1q (3.20)

Here the number B is used to fulfill the detailed balance. While in the

algorithm there is only one way to replace a non unit operator by an unit

operator, there are B possibilities to replace a unit operator with a non unit

operator (see Sec. 6.3).

3.4.2 Off-Diagonal Transitions

For this section a small outlook on vertices and the algorithm is provided to

understand the upcoming transition rates. Since the system was decomposed

into single bond operators, it is sufficient to focus on the spins affected by

the current operator (|αy ñ |Sz
i , S

z
j y). The bra-ket notation can then be

represented by a vertex (see Equ. 3.21).

xÒ, Ò |Ĥ1,b| Ò, Òy ñ

Ò p1q Ò p2q

Ĥ1,b

Ò p3q Ò p4q

(3.21)

A vertex consists out of a single bond operator and the spin states before

(top row) and after (bottom row) the operator was acting on them. The 4

corners of a vertex are also called vertex-legs and are labelled 1 (top left),

2 (top right), 3 (bottom left), and 4 (bottom right). Another order of the

labels is possible, but consistency is required over all vertices. During an

off-diagonal update step (see Sec. 6.4), the algorithm reaches a vertex in one

of those legs (= entrance leg) and, after changing the operator due statisti-

cal selection, exits the vertex in any of the 4 legs (=exit leg). This update

process used in the “operator loop update”[15, 18], was later enhanced by

“Directed loops”.[16, 17] There a method was developed to shift the transi-

tion probabilities towards more probable states without violate the overall

statistics. The advantage of directed loops is the reduction of “bouncing”
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(entrance and exit legs are the same and the operator remains unchanged)

effects, which slow down the simulation.

To calculate the transition weights for the off-diagonal updates one has to

solve the general direct loop equations[17]

�

�

�

�

�

�

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

�

Æ

Æ

Æ

Æ



�

�

�

�

�

�

1

1

1

1

�

Æ

Æ

Æ

Æ



�

�

�

�

�

�

�

W1

W2

W3

W4

�

Æ

Æ

Æ

Æ



. (3.22)

aij are the transition weights and Wi the total statistical weights of the

possible vertices after the update. The transition probabilities are defined

as

P pi Ñ jq � pij �
ai,j

Wi
(3.23)

Since vertices of the type xÒ, Ò |Ĥa,b| Ó, Óy are not allowed one of the Wi is

equal to 0 and Equ. 10 reduces to a 3x3 matrix resulting in

�

�

�

a11 a12 a13

a21 a22 a23

a31 a32 a33

�

Æ



�

�

�

1

1

1

�

Æ



�

�

�

�

W1

W2

W3

�

Æ



. (3.24)

Further, exchanging entrance and exit legs, results in statistically equal ver-

tices, so that aij � aji. The equation system now consists out of 3 equations

with 6 variables (See Equ. 3.25).

�

�

�

a11 a12 a13

a12 a22 a23

a13 a23 a33

�

Æ



�

�

�

1

1

1

�

Æ



�

�

�

�

W1

W2

W3

�

Æ



. (3.25)

Because of this over-determination, 3 of the aij can be chosen freely. To

sample with a minimum of bounces, the diagonal elements aii are set as

small as possible. Three different cases can occur and the matrix elements

aij have to be adjusted accordingly.
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Case A - One of the weights Wi equals zero

This case occurs when one of the 3 vertices involved consists out of a sin-

gle bond operator, which expectation value equals zero. This corresponds

usually to the diagonal operator with the most negative eigenvalue.

Because one Wi � 0, the matrix in Equ. 3.25 is reduced by one dimension.

The diagonal elements aii are simply set to zero and the resulting directed

loop equations reduce to

�

0 a12

a12 0

��

1

1

�

�

�

W1

W2

�

. (3.26)

The transition probabilities (Equ. 3.23) result in

p12 �
W1

W1

� 1 (3.27a)

p21 �
W2

W2

� 1 (3.27b)

Thus, for such an update, the system propagates to the only possible state,

without the need to draw a random number.

Case B - Wi �Wj ¥Wk for all permutations of i, j, k

The probably most general case is Wi � Wj ¥ Wk for all permutations

of i, j, k, which, for example, appears in a Heisenberg model with a small

external magnetic field. In that case the diagonal elements aii are set to

zero. The resulting direct loop equations then reduce to

�

�

�

0 a12 a13

a12 0 a23

a13 a23 0

�

Æ



�

�

�

1

1

1

�

Æ



�

�

�

�

W1

W2

W3

�

Æ



. (3.28)
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The resulting transition probabilities are then given by Equations 3.29.

p12 �
W1 �W2 �W3

2W1

(3.29a)

p13 �
W3 �W1 �W2

2W1

(3.29b)

p23 �
W2 �W3 �W1

2W2

(3.29c)

p21 �
W1 �W2 �W3

2W2

(3.29d)

p31 �
W3 �W1 �W2

2W3

(3.29e)

p32 �
W2 �W3 �W1

2W3

(3.29f)

In the algorithm, one has to draw a random number between 0 and 1 and

chose the propagation according to Equations 3.29.

Case C - Wi �Wj  Wk for one of the permutations of i, j, k

The case Wi�Wj  Wk occurs when one state is much more probable than

the other two together. In a Heisenberg systems this is achieved by using a

strong external magnetic field.

Here the diagonal elements aii cannot be set to zero, because then one of

the transition probabilities would be negative (see Equations 3.29). The

solution is to keep the diagonal matrix element aii of the state with the

maximum weight non zero, and instead forbid the the transition between

the two lower probable states. For the following equations, W1 is assumed

to be the largest weight. Then the directed loop equations are

�

�

�

a11 a12 a13

a12 0 0

a13 0 0

�

Æ



�

�

�

1

1

1

�

Æ



�

�

�

�

W1

W2

W3

�

Æ



. (3.30)
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The resulting transition probabilities are then given by Equations 3.31.

p11 �
W1 �W2 �W3

W1

(3.31a)

p12 �
W2

W1

(3.31b)

p13 �
W3

W1

(3.31c)

p21 �
W2

W2

� 1 (3.31d)

p31 �
W3

W3

� 1 (3.31e)

Only if the algorithm enters the vertex in the most probable state, a random

number needs to be drawn. In that case a bounce is possible as well as an

update to one of the less probable states. On the other hand, when entering

the vertex in a less probable state the system always propagates to the most

probable one.
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Chapter 4

Graphical Representation

This chapter introduces the reader to the graphical representation, which is

later used to explain the different update processes used in the algorithm.

For that purpose an operator string is visualized and its representation is

reduced to its most simplified form. Additionally, vertices and the “linked

vertex list” are discussed.

4.1 Graphical Representation of Operator Strings

Operator strings can be visually illustrated for better demonstration of how

the algorithm samples over the configuration space.[15, 16] As shown in Equ.

3.16, such a string consists of sequentially ordered single bond operators,

separated by intermediate spin states. Since this work is focused on the

z-components of spin-1/2 particles, only two possible spin states, namely

spin up (full blue circle) and spin down (full red curcle), occur. Further, the

single bond operators are divided into diagonal (empty black boxes, a=1)

and off-diagonal (full black boxes, a=2) operators. Unit operators Ĥ0,0 are

represented by an empty space between two intermediate states. Note, that

the outer most states α are identical (trace).

Fig. 4.1 shows an operating string for an open spin chain consisting out of

5 spins. The string has a length of M � 8 and inheres 3 diagonal and 2

off-diagonal operators (n=5). The numbers 1 to 5 at the top of the coloured

dots label the different spins on the lattice. Since only next neighbour

interaction is allowed, only four different bonds (spin 1 - spin 2, spin 2 - spin

3, spin 3 - spin 4, spin 4 - spin 5) exist. The top and bottom rows of the
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6 0 0

7 2 2
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Figure 4.1: Complete Operatorstring at a defined state |αy � | Ò, Ò, Ó, Ò, Óy

coloured dots represent the spin state |αy � | Ó, Ó, Ò, Ó, Òy. The intermediate

spin states correspond to the α1p in Equ. 3.16. The space between two spin

states α1p represents the current single bond operator at this position. Empty

spaces refer to an unit operator Ĥ0,0 (a=0). Empty black boxes represent

diagonal operators(a=1), while full black boxes correspond to off-diagonal

operators (a=2). The three columns on the right refer to the position (p)

in the operator string, the operator type (a) and, the bond (b) the current

operator is acting on.

When propagating the system from the top towards the bottom, the effects

of the different operators become clear. While the diagonal operators do not

change the spin state, the off-diagonal ones flip both spins belonging to the

corresponding bond. This difference is used in the algorithm to sample the

configurations space in two different update steps. Once the whole operator

string acted on the initial spin state α, the system returns to exactly this

initiate state again, which needs to be considered in the update steps as well.

It needs to be mentioned that cutting the operator string at any position and
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reattaching the two pieces in different order, leads to a new operator string

with equal statistical weight. This can be used to calculate the averages of

local spins.

In Fig. 4.1 all intermediate spin values are drawn, but the amount of spin

flips is rather small. Since those spin flips only occur due off-diagonal oper-

ators, it is sufficient to draw only the operators with their four spin states.

The resulting representation is demonstrated in 4.2. The operators with
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Figure 4.2: Simplified graphical Interpretation of an operator string

their 4 spin states form “vertices”, which are connected by vertical lines.

This simplified illustration covers all the important information, so that the

columns p, a, and b are not needed in future plots. Also this representation

is a great tool to discuss and plan the algorithm.
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4.2 Vertices and Linked Vertex List

A vertex consists of a single bond operator, an entrance, and an exit leg. The

possible combinations are limited by the system. The weights of the different

vertices are given by the transition probabilities in Sec. 3.4.2 in Chap. 3.

In other words, vertices describe the update process at the local single bond

operator,when initiating the the update on the spin at the entrance leg. In

Fig. 4.3 the possible sets of vertices for the Heisenberg system are shown.

These vertices are used in the “loop algorithm”[18] to perform off-diagonal

updates (see Sec. 6.4).

Figure 4.3: Vertices in a Heisenberg system.

Linked Vertex List

In the loop algorithm a walker is propagating between and along the vertices.

The linked vertex list is a map, sending the walker to the next vertically

connected vertex. It is constructed by defining a 4�M vertex leg space and

connecting each leg with its vertically closest leg. Due to periodic boundary

conditions within an operator string, a vertex can even be connected with

itself. Once the map is complete (all legs are connected with another one),

the list is used to generate a loop (see Sec. 6.4).
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Chapter 5

Heisenberg Model

This chapter introduces the reader to the Heisenberg model. After a general

description, the effective Hamiltonian used in the QMC-SSE simulations is

explained.

5.1 General Model

The Heisenberg model[9] is a lattice model developed to describe spin-spin

interactions. In contrast to the Ising model[8] the spins are treated three

dimensionally. In the classical limiting case that the spins completely align

with the z-axis, the Ising and Heisenberg model are equivalent. The quantum

mechanical Heisenberg Hamiltonian without an external magnetic field is

given as

Ĥ �

¸

i j

Ji,j ŜiŜj , (5.1)

with the spin operators Ŝi, Ŝj and the coupling constant Ji,j. Performing

the dot product of the spin operators results in

Ĥ �

¸

i j

Ji,jpŜ
x
i Ŝ

x
j � Ŝ

y
i Ŝ

y
j � Ŝz

i Ŝ
z
j q . (5.2)

Introducing the ladder operators

Ŝ� � Ŝx
� iŜy , Ŝ� � Ŝx

� iŜy (5.3)
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allows to rewrite Equ. 5.2 as

Ĥ �

¸

i j

Ji,jpŜ
z
i Ŝ

z
j �

1

2
pŜ�i Ŝ

�

j � Ŝ�i Ŝ
�

j q . (5.4)

To complete the model an external magnetic field term is added to Equ.

5.4. The final resulting Hamiltonian is given by Equ.

Ĥ �

¸

i j

Ji,jpŜ
z
i Ŝ

z
j �

1

2
pŜ�i Ŝ

�

j � Ŝ�i Ŝ
�

j q �HexµBg
¸

i

Ŝz
i (5.5)

Hex is an external magnetic field. Often in computer simulations the exter-

nal field and the constants in the magnetic term are combined with a scaling

factor into a simple hŜz
i . In this work the full magnetic term is used, since

it eases the comparison to experimental parameters.

5.2 Effective Hamiltonian for QMC-SSE

In computer simulations relative parameters are usually preferred over ab-

solute ones. For simplicity constants are usually assumed with a value of 1.

The resulting Hamiltonian then reads

Ĥ �

¸

i j

Ji,jpŜ
z
i Ŝ

z
j �

1

2
pŜ�i Ŝ

�

j � Ŝ�i Ŝ
�

j q �

¸

i

hSz
i , (5.6)

where the Ji,j P p0, 1q are defined as fractions between the actual coupling

constant and the largest appearing coupling constant. The bars are used here

to distinguish between the absolute numbers. This simplification works well

for model calculations, but also makes the conversion to SI units harder. For

this conversion reason, the Hamiltonian used in this work does not use the

complete simplification. Which Hamiltonian is used exactly is demonstrated

by the following derivation. It also aids to understand the origin of some

parameter ratios and their dimensions.

The Boltzmann factor in terms of kBT is written as

e�βĤ
� e

�

Ĥ
kBT . (5.7)

For the next steps the following notation is used. J’i,j are the coupling

constants in units of Joule and J 1max refers to the largest occurring coupling
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constant. This newly defined coupling is introduced into the Boltzmann

factor (Equ. 5.8).

e
�

Ĥ
kBT

� e
�

J1

max
J1

max
Ĥ

kBT
� e

�

Ĥ
J1

max

kB
T

J1

max (5.8)

Using the notation Ji,j �
J 1

i,j

kB
results in coupling constants Ji,j in units of

Kelvin and in a Boltzmann factor without a kB (Equ. 5.9).

e
�

Ĥ
kBT

� e
�

Ĥ
J1

max
T

Jmax (5.9)

The Hamiltonian used for sampling is now represented by the original Hamil-

tonian divided by J 1max and thus is dimensionless (see Equ. 5.10).

Ĥ

J 1max

�

¸

i j

J 1i,j

J 1max

tŜz
i Ŝ

z
j �

1

2
pS�i S

�

j � S�i S
�

j qu �
1

J 1max

HexµBg
¸

i

Ŝz
i (5.10)

Note that the units of the coupling constants in Equ. 5.10 are Joule. To

avoid rather small numbers, usually Kelvin are used. To this end Equ. 5.10

is multiplied by kB
kB

and reads

kB

kB

Ĥ

J 1max

� �

¸

i j

kB

kB

J 1i,j

J 1max

tŜz
i Ŝ

z
j�

1

2
pS�i S

�

j �S�i S
�

j qu�
kB

kB

Hex

J 1max

µBg
¸

i

Ŝz
i .

(5.11)

Using again the earlier introduced notation Ji,j �
J 1

i,j

kB
results in Equ. 5.12.

1

kB

Ĥ

Jmax
� �

¸

i j

Ji,j

Jmax
tŜz

i Ŝ
z
j �

1

2
pS�i S

�

j �S�i S
�

j qu�
Hex

Jmax

µB

kB
g
¸

i

Ŝz
i (5.12)

Equ. 5.12 is the “effective” Hamiltonian used in this work. The actual

spin-spin interactions are governed by the ratios of the coupling constants

and the actual units do not matter, even tough now given in Kelvin. The

magnetic field term has its external field Hex still in Tesla, and by forming

the ratio µB

kB
the former uncomfortable (in SI units) constants are reduced

to the constant value of 0.671713..., which is a very manageable size for an

algorithm. The advantage compared to the usually simplified Hamiltonian

(Equ. 5.6) is that external field and temperature are given in Tesla and
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Kelvin. However, for comparison between these differently written Hamil-

tonians following relations are valid:

Ĥ �

1

kB

Ĥ

Jmax
(5.13)

Ji,j �
Ji,j

Jmax
(5.14)

h �
Hex

Jmax

µ

kB
g (5.15)

5.3 Diagonal and Off-Diagonal Operators

As explained in Chap. 3, in QMC-SSE the Hamiltonian is decomposed into

single bond operators. Further it is required to distinguish between diagonal

and off-diagonal terms. By looking at Equ. 5.12 and by taking also the unit

operator into account, the model consists out of three different operator

types:

Ĥ0,0 �

¸

α

|αyxα| (5.16a)

Ĥ1,b �
Jb

Jmax
Ŝz
ipbqŜ

z
jpbq �

Hex

Jmax

µB

kB
gpAipbqŜ

z
ipbq �AjpbqŜ

z
jpbqq (5.16b)

Ĥ2,b �
Jb

2Jmax
pS�

ipbq
S�
jpbq

� S�
ipbq

S�
jpbq

q (5.16c)

The change in notation (Ji,j Ñ Jb, Si Ñ Sipbq, and Sj Ñ Sjpbq) illustrates

that the sampling is performed over bonds (b) and not single spins. While

for the spin-spin interactions this “bond-sampling” is just a change in nota-

tion, it causes a problem with the magnetic field term, because the magnetic

energy is located on the spins and not on the bonds. To avoid an overcount-

ing of the magnetic energy, the magnetic field term needs to be distributed

over all bonds connecting a spin. Therefore the two factors Aipbq and Ajpbq

are added to Equ. 5.16b. Their values are simply defined as Aipbq
1

Nbi
, with

Nbi the number of bonds of the spin i.

5.4 Notation for Spin Ladder Systems

While Equ. 5.12 is generally valid, it is practical for lattice models to rename

the coupling constants Ji,j according to their coupling “direction”. The
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labels are a choice of the user. Usually simple numbering (J1,J2,J3,..,JN

for N different coupling directions), labels according to the axis (Jx,Jy,Jz),

specific names (JL, JR... for Leg and Rung directions of a ladder system),

or any combination of those is used. Since in this work the QMC-SSE code

is applied on spin ladder systems (see part III), we use the notation JL

(leg-direction), JR (rung-direction), and J3 (stacking direction).
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Part II

Algorithm
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Chapter 6

Algorithm

This chapter provides the reader insight on the algorithm[14–19] used in

this work. Flow charts for different routines as well as the truncation M is

discussed. Further a short overview about parallelisation is provided.

6.1 Overview

Figure 6.1 demonstrates the flow chart of the QMC-SSE algorithm, which

can be in summarized as:

1. Initialization of system parameters such as lattice geometry and cou-

pling constants. Also the zero point shift for ensuring positive weights

is processed here.

2. A sweep is performed, consisting out of one diagonal and one off-

diagonal update step. Here also desired data are extracted.

3. Check if the truncation M is large enough. If not, increase it and reset

the collected data.

4. If the pre-set number of sweeps has been reached, the simulation ends.

Else continue again with point 2.
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Figure 6.1: Overview-flowchart of the QMC-SSE algorithm
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6.2 Initialization

Before starting the actual simulation, the system parameters need to be

loaded into the code. It is important to put a lot of effort into this stage. A

well designed grid for the algorithm as well as pre-calculating the later used

transition probabilities can reduce the computation time by a large amount.

Some points to keep in mind:

• Geometry

The algorithm samples over a lattice of bonds. Thus the actual ge-

ometry is not important, as long as the correct bonds are considered.

The spin lattice is then reduced to an one dimensional lattice (chain),

and the bonds connect the associated spins with each other.

• Statistical weights and the zero point shift

In principle the zero point shift to ensure positive statistical weights

can be chosen freely, as long as it is large enough. However, the best

performance is achieved by shifting the single bond operators by their

most negative diagonal eigenvalue. This results in a zero weight for

that state which reduces the possible choices for the walker and speeds

up the sampling.

• External magnetic field

An external magnetic field interacts with the spins. However, the

sampling occurs over bonds and the external field terms need to be

distributed along these bonds. Adding the field term of both spins to

the bond leads, except for a 2 spin system, to a double counting of

those terms. To avoid that, the field terms are equally distributed on

all bonds connected with that current spin.

• Number of sweeps

The number of sweeps needs to be chosen according to the other system

parameters and the desired system data. For example, one data point

of the total magnetization corresponds to one sweep. On the other

hand, the local magnetic moments can additionally be averaged over

the different intermediate spin states, and thus require less sweeps for

a reliable result.
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Once the grid for the algorithm has been set up an allowed random initial

configuration is being generated and passed towards the sampling routine.

6.3 Diagonal Update

Figure 6.2: Flowchart - diagonal update

In Fig. 6.2 shows the flowchart for the diagonal update routine, which works

in detail as following:

• It samples sequentially over all operator string positions p � 1 . . .M
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• At every p the current operator type is being determined. The three

types are the unit operators (a=0), diagonal operators (a=1), and

off diagonal operators (a=2). As the name suggests, only diagonal

operator changes are allowed. In particularly, only transfers from an

unit operator Ĥ0,0 to a diagonal operator Ĥ1,bppq and vice versa are

performed. This corresponds to a change in the non-unit operator

number n without affecting spin states at any position in the grid.

• Depending on the current operator type at position p the algorithm

follows one of the following three branches:

1. Type 0: A random bond is chosen. The transition probability

to add a non unit operator at this bond is calculated according

to equation 3.19. A random number is drawn and if it is smaller

than the transition probability a new non unit operator is added

to the configuration at the chosen bond.

2. Type 1: A diagonal operator is at the current position in the op-

erator string. The transition probability of removing the operator

is being calculated according equation 3.20. A random number is

drawn and the change is accepted if the number is smaller than

the transition probability.

3. Type 2: There is an off diagonal operator at the current position

of the operator string. Since the diagonal update only considers

changes of diagonal operators the algorithm proceeds without

taking any action.

• The loop continues until p �M

Summarized the diagonal update has 3 major properties:

• Only changes from diagonal non unit operators to unit operators and

vice versa are performed.

• The diagonal update changes the non unit operator number n.

• The total spin configuration and thus the current spin state remains

unchanged.
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6.3.1 Example

Fig. 6.3 shows the start of a diagonal update step. The green arrow indicates

the current position in the operator string. Empty solid boxes represent di-

agonal operators Ĥ1,bppq and filled boxes off-diagonal operators Ĥ2,bppq. After

Figure 6.3: Diagonal update

the process starts, each position is checked for a possible operator update,

which is indicated by the green arrow moving downwards. Fig. 6.4 shows

the system after the first four operator string positions have been updated.

The first two rows remained unchanged. This indicates that neither the

Figure 6.4: Diagonal update

adding of a diagonal operator in the first row, nor the removal of the opera-

tor in the second row were accepted. However, the removal of the operator

at position three was accepted. Once all positions have been checked for a

possible update the diagonal update step ends. During the complete update

process (from Fig. 6.3 to Fig. 6.5) two operators were removed (actually

replaced by an unit operator) and one was added resulting in a reduction of
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Figure 6.5: Diagonal update

the non unit operator number n by one. Note that off-diagonal operators

and spins remain unchanged at this stage of the algorithm.
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6.4 Off-Diagonal Update

In the beginning of algorithms simulating vertex models local updates were

used for off-diagonal updates. This was rather inefficient and cluster updates

in form of loops were being developed [18, 19]. In the loop algorithm a walker

is generated that moves through the current configuration and performs

changes to operators and spins along its way until it reaches its starting

point again. Fig. 6.6 shows the flowchart for the off-diagonal update.

Figure 6.6: Flowchart for the off-diagonal update
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In detail this part of the update procedure works as follows:

• Create the linked vertex list.

• Choose a random starting point for the walker by randomly selecting

a leg at one of the existent non unit operators.

• Perform an operator change according to the equations in Sec. 3.4.2.

An operator change consists of a flip of the spin at the entrance leg, the

change of the operator according to statistical weights and an update

of the current position of the loop to its corresponding exit leg.

• Move the walker to its linked vertex point according to the linked

vertex list and flip all spins along its way.

• Perform such operator updates over and over again until the walker

reaches its starting point again and thus closes the loop.

• Count the number of loops generated during one update step. If this

number reaches the set number of loops for each update step (Nl in

the flow chart) the off-diagonal update step is complete. The number

of loops is determined due the equilibrium phase so that the average

amount of operator updates is about 2�M .[16, 17]

There are three major properties of the off-diagonal update that complement

the features of the diagonal one:

• Non unit operators are transformed into other (allowed) non unit op-

erators.

• The non unit operator number n remains unchanged, because only

non unit operators are transformed into each other.

• Spins can flip and thus the different spin states can be sampled.
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Example

Fig. 6.7 shows the start of a loop in the off-diagonal update step. The start-

Figure 6.7: Off-diagonal update

ing point (green ball) was drawn randomly under any leg of any operator

contained in the complete operator string. Then an operator update is per-

formed, by drawing a random number and checking it against the equations

from Sec. 3.4.2. After the exit leg has been determined, the operator is

changed accordingly and the walker moves to the connected vertex accord-

ing to the linked vertex list. All spins passed by the walker are flipped. The

resulting intermediate state is demonstrated in Fig. 6.8. The yellow line

Figure 6.8: Off-diagonal update

represents the path of the walker. Note that the first operator was trans-

formed from a diagonal (empty box) into an off-diagonal (filled box) one.

This process is repeated until the next operator is reached (Fig. 6.9).
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Figure 6.9: Off-diagonal update

As before, the diagonal operator is transformed into an off-diagonal one.

But also updates from a diagonal into another diagonal operator are possi-

ble, which can be seen through the next operator update. Comparing Fig.

6.9 with Fig. 6.10 might lead to the wrong assumption that the third oper-

ator passed, remains unchanged. True is, that the operator type (diagonal)

remains the same. However, the spin state on its right side gets altered,

and thus the eigenvalue of the operator is different after the update. After

Figure 6.10: Off-diagonal update

the third operator update, the walker reaches its starting point again and

thus closes the loop (Closed yellow track in Fig. 6.10). Then a new loop

starts, except the set amount of loops has been reached. In that case a

measurement (data extraction) is performed and the next diagonal update

step starts.

49



6.5 Truncation M

6.5.1 A Good Estimate for M

The choice of M is important. If M is too small then not all possible states

will be sampled, which falsifies the statistics. On the other hand, the runtime

increases with increasing M. Thus it is recommended to choose M is as

small as possible, but at the same time sufficiently large to remain correct

statistics. Fig. 6.11 shows three histograms of n obtained by using three

different cutoffs M . The remaining system parameters were identical. The

5 10 15 20 25
non unit operator number - n

Figure 6.11: Distribution of the non unit operator number n for three dif-
ferent cut-offs M � 15 (black), M � 50 (red), and M � 150 (blue).

histogram with M � 15 (black) indicates that not all possible states are

covered, because the distribution is cut at n � 15, before it can reach the

zero line again. The curves with M � 50 (red) and M � 150 (blue) are

shifted along the x-axis to be able to distinguish them, because they are

actually overlapping. This clearly demonstrates the existence of a truncation

Mmin, from which on all M ¡ Mmin lead to the statistically correct result.

Considering, that the statistics is governed by the non unit operators, one

can truncate with M � nmax, with nmax as the largest occurring non unit

operator number during the simulation. According to [16] based on [14] and

[12, 13] one can show that xny � βNb|Eb| with Nb as the number of bonds

and |Eb| � �xHby as the internal energy per bond. This internal energy

per bond also includes the shift of the energy. Thus, the larger the energy

shift the more non unit operators are needed to describe the system, which
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is another good argument to keep the energy shift as small as possible. The

width of the distribution for n is approximately
a

xny. From this a good

guess for nmax can be made and the truncation can be set to M � a�nmax.

a is a security factor to assure M ¡ nmax with a value in the range of

p1.2, 1.5q.

6.5.2 Self Update of M

Even tough M can be guessed quite well, it is recommended to implement a

self adjustment of M in the algorithm, if the current nmax gets too close to

the current M.[14] Once the update process for M is triggered, the subrou-

tine shown in the flow chart in Fig. 6.5.2 is performed.

Figure 6.12: Flowchart of the ’update M’ subroutine

In detail the procedure works as following:

• Save the current M in M 1

• Increase M by a factor of nmax

A
. A is a constant chosen by the user

and usually between 2-5 to achieve M � a�nmax, with a in p1.2, 1.5q.

• Fill the current operator string with M �M 1 unit operators, by ap-

pending them in the end.
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• Since the statistical weights change with M, the collected data is reset

and the “measurements” start from zero again.

With that algorithm M will be determined automatically, even with a small

starting value of M . An example of the self-adjustment of M is shown in

Fig. 6.13.

20 40 60 80 100
MC-step

0

20

40

60

M

Figure 6.13: Development of the truncation M during the equilibrium phase
for 100 steps

Here M starts with a value of 10 and gets progressively increased until its

value does not change anymore. Note that A in the adjustment process

needs to be chosen wisely. A large factor A leads to small increments of

M . On first sight, this looks desirable, since smaller M need less calculation

time. However, small steps obviously lead to more updates of M and thus

also increase computation time. A balanced value of A is suggested to be 3

or 4.[14]
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6.5.3 Equilibrium Phase

The QMC-SSE simulations start with a random spin state α, but the op-

erator string is only filled with unit operators. Thus, before taking mea-

surements, one has to be sure the system reaches its equilibrium. For that

purpose, before extracting any data, a certain amount of update steps has

to be performed, which is called the “equilibrium phase”. While for single

node calculations the length of this phase does not matter so much, it has a

strong impact of the overall runtime when running parallel on a CPU clus-

ter (see Sec. 6.6.3). To determine a good length for the equilibrium phase,

calculations of a spin system has been performed for different equilibrium

phase lengths. It turns out, that in combination with the self adjustment

of the truncation M , even a very short equilibrium phase can be enough

(see Fig. 6.5.3). In Fig. 6.5.3 the equilibrium phase is plotted in respect to

0 10 20 30 40
Monte Carlo Steps

0

500

1000

1500

2000

n

Figure 6.14: Development of n during the equilibrium phase with an equi-
librium step number of 10

the amount of Monte Carlo steps. The length of the equilibrium phase was

chosen to be 10 MC steps only. But the self adjustment of the truncation

M kept restarting the equilibrium phase and thus a total of 43 MC was

performed. After 30 MC steps a plateau is reached, indicating that equi-

librium is achieved. For confirmation also simulations with 100 and 1000
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MC steps as equilibrium phase have been performed and compared to the

results shown in Fig. 6.5.3. In Fig. 6.5.3 the development during these three

different equilibrium phases is shown. The filled black circles correspond to

the plot from Fig. 6.5.3. The red squares refer to a simulation with a 100

MC step long equilibrium phase and the blue triangles to a simulation with

1000 MC steps. The agreement between the three simulations is obvious

and thus a long equilibrium phase can be avoided.
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Figure 6.15: Comparison of the different chosen length of equilibrium steps

6.6 Parallelization

Clusters of CPUs or GPUs are standard these days in scientific calculations.

Obviously a larger amount of CPUs working on the same problem should

lead to a reduction in the calculation time. However, the increase in cal-

culation power does not reduce the runtime linearly as will be shown later.

During this PhD work two standards for parallelization were applied on

the QMC-SSE code, namely OpenMP [20] and OpenMPI [21]. Despite the

similarity of their names, these two standards work completely differently.

There is plenty of literature available,[20, 21] so it is sufficient to give a brief

overview only.
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6.6.1 OpenMP

OpenMP [20] stands for “Open Multi Processoring”. The important prop-

erties are:

• Threads are invoked due the master thread

One master thread proceeds along the main algorithm. Once it reaches

a loop that can be distributed easily among other threads, it invokes

sub-threads.

• Easy to parallelize

OpenMP is easy to parallelize, because the main algorithm does not

differ much from a single processor code. Especially for MC simula-

tions this is an advantage, since the MC steps can be separated without

any problem.

• Threads Share Memory

As long as someone does not want to perform cross printed circuit

board (PCB) calculations, this also is an advantage for MC simula-

tions, because the running counters are shared. However, for simula-

tion runs that are supposed to use a few hundred CPUs, OpenMPI is

recommended.

6.6.2 OpenMPI

[21] OpenMPI stands for “Open Message Passing Interface”. Since the pro-

gram developed during this work is supposed to run on a grid engine with

hundreds of CPUs, OpenMPI was favoured over OpenMP. The important

features of OpenMPI are:

• Threads are invoked simultaneously as independent threads

at the start

There is no master thread anymore. However, a “rank” gets assigned

to every thread. With the help of these ranks certain tasks in the

algorithm can be limited to certain threads only.

• Communication between the threads over an interface (MPI)

This is the main feature of MPI. Instead of having a single thread

multiplying itself for splitting up the work on different CPUs, each
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thread works independently. Variables are not shared anymore, but

are transferred over the messaging interface if necessary. Once has

to be very careful with timing the messaging processes right. If the

threads are communicating too often, it even can lead to a slow down

of the overall simulation.

• Memory is not shared

As a result of having many independent threads, their memory is not

shared. This allows for cross PBC parallelization and thus in principle

simulations on an unlimited amount of nodes.

Note that a difficulty for MC appears in OpenMPI, when a fixed number of

update steps is used, since there is no shared memory for a shared counter

anymore. During this work it turned out that letting the threads communi-

cate after a certain time instead of a certain amount of MC steps increases

the overall speed gain. Further the desired amount of measurements should

only be a lower limit for the code and the final measurement number needs

to be used for the statistics in the end.

6.6.3 Runtime Scaling

Simulations with identical parameters have been performed for different

amount of nodes. The parallelization simply spreads the amount of measure-

ments over the different nodes (advantage of MC simulations). Since every

simulation needs first an equilibrium phase, the best theoretical scaling is

given by Equ. 6.1.

tnodes � tequ �
tmeasure

Nnodes

(6.1)

tnodes corresponds to the real time needed for completing the simulation on

Nnodes nodes. tequ refers to the time spent in the equilibrium phase, which

every thread has to perform. tmeasure is the total time needed to complete

all measurement steps, which are distributed over the different nodes. From

Equ. 6.1 the condition for achieving a good runtime performance is obvi-

ous. As long as tequ   

tmeasure

Nnodes
the runtime scales almost directly with

the number of nodes. On the other hand, if tequ �

tmeasure

Nnodes
the simula-

tion will actually waste a lot of computation time just with the equilibrium

phase. Fortunately the equilibrium is reached quickly (see Sec. 6.5.3) and

thus, especially for long calculations of large systems, almost scales with the
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number of nodes used. Fig. 6.16 demonstrates the good performance in

runtime scaling by plotting the relative runtime (tnodes/t1) versus the node

number. The red squares correspond to the QMC simulations. The black

dotted line represents Equ. 6.1. For reference also the physical maximum

of 1/Nnodes (blue dashed line) is plotted.

Figure 6.16: Relative runtime against number of nodes.
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Chapter 7

Testing the Code

To test the accuracy of the code, simulations of small spin systems have been

performed and compared to results obtained to a MATLAB[22] code using

the Suzuki-Trotter expansion.[23] This expansion gives analytically correct

results, but is limited to very small systems (NSpins ¤ 12). All in this

chapter presented results are performed with periodic boundary conditions

in x direction and an external field of Hex{J � 0.1(except Fig. 7.1). Further

only one coupling constant J was used for all spin-spin interactions.

The actual testing was performed on more system parameters than the ones

listed here, but a selection for space reasons had to be made.

7.1 Spin Chains

Calculations for anti-ferromagnetic spin chains containing N=4 and N=8

spins have been performed. From these calculations the the energy per spin

(xEy{N) (Fig. 7.1) as well as the susceptibility χ (Fig. 7.1) have been

extracted and compared to the ST expansion.
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Figure 7.1: xEy{N versus the inverse temperature β for AF spins chains
containing 4 (red) and 8 (blue) spins. Squares: QMC results. Dotted lines:
Suzuki-Trotter expansion.
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Figure 7.2: xχy{N versus the inverse temperature β for AF spins chains
containing 4 (red) and 8 (blue) spins. Squares: QMC results. Dotted lines:
Suzuki-Trotter expansion.
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The QMC-SSE results are in very good agreement to the ST expansion.

Only at higher temperatures (small β) there is a small divergence for the

4 spin chain, best visible through the susceptibility. The reason is that the

energy, and thus also xny, is that small, that there are not enough non unit

operators entered to sample correctly. In that case it is suggested to add

a flip chance of 0.5 to every spin not constrained to any operator in the

current state.[24]

To demonstrate that the code also works for different external magnetic

fields, additional simulations for Hex{J � 0.5 and Hex{J � 1.0 have been

performed (Fig. 7.1).
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Figure 7.3: xEy{N versus the inverse temperature β for AF spins chains
with Hex{J � 0.1 (red), Hex{J � 0.5 (green), and Hex{J � 1.0 (black).
Squares: QMC results. Dotted lines: Suzuki-Trotter expansion.
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7.2 Spin Ladders

Simulations have been performed for spin ladder systems containing 4 � 2

and 6 � 2 spins under the same system parameters as for the spin chains

before. The results are again in perfect agreement (see Fig. 7.2 and Fig.

7.2).
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Figure 7.4: xEy{N versus the inverse temperature β for AF spins ladders
containing 4�2 (red) and 6�2 (blue) spins. Squares: QMC results. Dotted
lines: Suzuki-Trotter expansion.

Also simulations for ferromagnetic systems have been performed. They also

are in perfect agreement with the ST expansion and thus it is sufficient to

show only one ferromagnetic plot (Fig. 7.2).

After proving the reliability of the code, it finally can be applied to study

experimentally observed effects.
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Figure 7.5: xχy{N versus the inverse temperature β for AF spins chains
containing 4�2 (red) and 6�2 (blue) spins. Squares: QMC results. Dotted
lines: Suzuki-Trotter expansion.
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Figure 7.6: xEy{N versus the inverse temperature β for a ferromagnetic
spin ladder containing 6 � 2 spins. Squares: QMC results. Dotted lines:
Suzuki-Trotter expansion.
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Part III

Application - Broadening of

the NMR spectra
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Chapter 8

Background

8.1 Introduction

SrCu2O3 is a spin-1
2
Heisenberg spin-ladder compound that has been stud-

ied intensly both experimentally and theoretically. The crystallographically

determined structure[25, 26] consists of planar Cu-O trellis lattices[27] with

intercalated Sr ions. These trellis lattices contain the spin ladders which are

almost perfectly decoupled due to frustration. It is agreed, that the unpaired

electron of the Cu2� ion carries a spin-1{2 and the spin dynamics arises from

the Cu-O-Cu interaction via super-exchange over the oxygen ions. The hy-

perfine interaction couples the magnetic moments of the spins to the nuclear

magnetic moments of the Cu ions and in turn influences the local magnetic

resonance field. Upon doping with small amounts of non-magnetic impuri-

ties e.g. Zn, which occupy Cu sites, a broadening of the Cu NMR-spectrum

with decreasing temperature is observed.[28, 29] It is known that an impurity

in a single spin ladder causes an exponentially decaying staggered effective

local magnetic moment profile around this impurity.[30–38] However, fitting

the NMR spectra on the basis of this exponential behaviour requires much

larger correlation lengths as compared with theoretical studies of single spin

ladders.[39, 40] For a reasonable fit for a spin chain with an impurity concen-

tration of x � 0.0025 a correlation length of about ξx � 100 is required.[28]

Using a spin-ladder model with a concentration of x � 0.001 � 0.003 ξx is

estimated to be � 20 - 50.[29] An exponential decaying cloud model[41, 42]

for inter-ladder coupling in one layer (�exp(-(ξx/rx�ξy/ry)) and for stacked

ladder systems (�exp(-(ξx/rx� ξy/ry� ξz/rz)) works well for impurity con-
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centrations around x � 0.02, but fails to explain the broadening at very small

dilutions (x ¤ 0.005). In the present work we perform QMC simulations for

single and stacked spin-ladders within the parameter range suggested in the

report by Johnston at al.[43]. We find that a coupling to adjacent stacked

spin ladders is required to describe the experimentally found low tempera-

ture NMR line broadening down to very small impurity concentrations which

is consistent with a study on the chain material Sr2CuO3.[44]

8.2 Experiment

In his experimental investigation Fujiwara et al. [28] reports about NMR

studies on undoped and doped SrCu2O3. The results are shown in Fig.

8.1. For a doping of x � 0.0025 a massive broadening of the Cu NMR

Figure 8.1: Experimental data taken from Fujiwara et al.[28] The left panel
shows the effect of the NMR line-width broadening in doped SrCu2O3 for
all spin transitions, while the right panel zooms on the 65Cu central peak.

spectrum at low temperature is observed while in the undoped specimen

this effect is almost absent. On the first sight an increasing line-width

for decreasing temperature is counterintuitive, which implies that the ob-

served broadening must be due to the temperature dependence of the long

range order along and between the spin ladders. Similar experiments have

been performed by Ohsugi et al. [29] for SrCu2O3 and for other spin lad-

der systems YBa2(Cu1�xZnx)3O6�y,[45, 46] YBa2(Cu1�xZnx)4O8, [47] and

Bi(Cu1�xZnx)2PO6 .[48]
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Figure 8.2: SrCu2O3 structure, blue small balls: O, red middlesized balls:
Cu, green larger balls: Sr. — Made with Blender[49]

8.3 Structure and Model

The crystallographically determined structure of SrCu2O3[26, 50? ] (Fig.

8.2) consists of planar Cu-O trellis lattices with intercalated Sr ions. The

unpaired spin-1
2
of the Cu ions couple anti-ferromagnetically via superex-

change over the intermediate oxygen ions and build the spin ladders. This

corresponds to a Heisenberg model with effective coupling constants JL (cou-

pling in leg direction) and JR (coupling in rung direction). The anisotropy

of these coupling constants is due differences in the electronic structure of

the the oxygen ions residing either on a ladder legs or a ladder rung.[51]

Fig. 8.3 illustrates the structure of the Cu-O trellis lattice and its con-

taining spin ladders (orange bars). The triangle structure (green triangles)

causes a frustration, which effectively leads to an almost perfect decoupling

of neighbouring ladders. Thus SrCu2O3 is known to be a model spin lad-

der compound. However, other couplings between spins are still possible

such as interladder coupling in stacking direction, ferromagnetic diagonal

terms within the ladders or ring exchange. A very intensive study on the

geometry and the coupling constants was performed by Johnston et al.[43]

by fitting the possible models to the experimental susceptibility obtained

by Azuma at al.[52]. The most intense study of parameters had been per-

formed for a single ladder and further parameter sets have been studied as

a small perturbation of it. Also LDA+U calculations have been performed

and the parameters agree within 5% of the fitted ones. To investigate the

low temperature broadening caused by impurities it is sufficient to focus on

single ladders and stacked ladder systems without diagonal coupling or ring
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Figure 8.3: Trellis lattice formed by copper and oxygen in SrCu2O3. Orange
bars mark the spin ladders. The trellis structure causes a frustration be-
tween neighbouring ladders in plane(green triangles) effectively decoupling
the ladders almost perfectly. — Made with Blender[49]

exchange, which will be discussed in Sec. 11. The model structure, its nota-

JL
kB
pKq

JR
JL

J3
JL

1905(5) 0.488(3) -
1970(150) 0.48(3) -

1882 0.471(1) -

1894(8) 0.5 0.009(4)
1920(70) 0.5 0.01(1)

Figure 8.4: Simplified model of SrCu2O3 with relevant notations. In the
table one can see the model parameters obtained by Johnston at al.

tions and the used parameters that are used in this work can be seen in Fig.

8.4. There JL is the exchange constant along the leg direction (x-axis), JR

along the rungs (y-axis) and J3 in stacking direction (normal to the Cu-O

planes, z-axis). Non magnetic impurities miss an unsaturated spin-1
2
and

thus can be described as vacancies on the spin-1
2
grid (small green ball in

Fig. 8.4). Sz
0
is the spin on the same rung as the impurity. Further Sz

i,j for a

single ladder and Sz
i,j,k for a stacked ladder system refer to a spin at lattice

site i in x-direction , j in y-direction, and k in z-direction. For systems

67



containing a single impurity only the the origin is chosen so that Sz
0,0=Sz

0

for single ladders and Sz
0,0,0=Sz

0
for stacked ladder systems.

8.4 Rung-picture

To describe the impact of an impurity in a spin ladder one considers the

case of JR " JL (or vanishing JL) which leads to the so called rung-picture,

in which the rungs are seen as independent from each other (Fig. 8.5). The

Figure 8.5: Rung-picture in a 2 leg system. All spins are paired up into
singlets.

spins of each rung form a singlet separated by a spin-gap of energy JR{2

from the triplet state that prevents the system from responding to a small

external magnetic field. Adding an additional ladder leg leaves each rung

with an unsaturated spin (Fig. 8.5) and the system can respond even to

small external fields. This is the reason why a spin gap can be observed in

even leg spin ladders, but not in odd leg spin ladders.[53] By introducing an

Figure 8.6: Rung-picture in a 3 leg system. In every run one spin remains
unpaired.

impurity in an even leg spin ladder one rung remains with an odd number

of spins by breaking one singlet up. This leaves a spin-1{2 free (Fig. 8.7)

to respond to an external magnetic field (free spin). It turns out that this

68



mechanism also holds for JL ¥ JR with the difference that the sufficiently

large coupling in leg direction causes an effective local magnetic moment

profile around the impurity.

Figure 8.7: Rung-picture in a 2 leg system with 1 impurity represented by a
vacancies on the lattice. Because of the impurity one singlet is broken and
the ’free’ spin will respond to even small external fields.

8.5 Different Representations of a Magnetic Mo-

ment Profile

For a better understanding of the upcoming chapters the different represen-

tations of spin profiles used in this work are explained in this section. The

reason is that different features of the system can be illustrated better for

different representations. All plots shown in this section used the same re-

sult taken from one QMC calculation and show the local effective magnetic

moment profile xSz
i,jy versus lattice site. Here i is the lattice coordinate in

leg direction and j in rung direction. The data used was taken from a single

ladder system with one impurty located at i � 100 and j � 1. For a better

imagination of a magnetic moment profile Fig. 8.8 shows a 3D plot. The

red ball illustrates the non magnetic impurity. The green mesh is the local

magnetic moment profile. The shape of the gaussian peaks only support

the visualization and give no information about a spatial distribution. The

tips of the peaks however, correspond to the actual values. The staggered

magnetic moment profile can clearly can be seen. Fig. 8.9 shows the same

data in two dimensional plots. The left panel is an exact projection of the

ladder on the x-z plane. The ladder leg containing the impurity (j=1) is

represented by the green squares while the leg with Sz
0
(j=0) is illustrated

by the blue triangles. Here the x-axis corresponds exactly to the lattice co-
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Figure 8.8: 3D Plot of a spin ladder with 1 impurity (red ball). The local
effective magnetic moments of the spins (blue) are represented by the tips of
the peaks in the green mesh. The shape was chosen for visibility only, but
the relative height to each other is correct. — Made with Blender[49]
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Figure 8.9: Top pannel, bottom pannel.... larger!

ordinate i. The right panel plots both ladder legs consecutively. Note that

the x-axis does not correspond to the lattice coordinate i anymore. Lattice

sites 1-200 correspond to ladder one and lattice sites 201-399 to ladder 2 (the

impurity as a vacancy is not being plotted and thus reduces the lattice sites

by one). These type of plots are well suited to get an idea about the NMR

spectrum of a system since the magnetic resonance field profile has basically

the same shape (see Sec. 8.6). On the other hand these representations are

not the best choice when one wants to compare different profiles or find the

best parameters for a fit. For that purpose it is better to use absolute values

of the magnetic moment profile as is shown in Fig. 8.10. There the left

70



0 100 200
Lattice site i

0

0.05

0.1

0.15

0.2

|<
S 0z (i

)>
|

0 100 200
Lattice site i

0.0001

0.001

0.01

0.1

|<
S 0z (i

)>
|

Figure 8.10: Fill out, change left panel for absolute values + consecutively
ladders + top pannel, bottom pannel

panel shows the same plot as the right panel of Fig. 8.9, but with absolute

values. This is especially useful when looking at the differences in profiles

that can be caused by slightly changing one of the system parameters. In

the right panel of Fig. 8.10 a logarithmic plot with overlaying ladder legs is

used. The logarithmic scale can be used to analyse properties of the system,

like the exponentially decaying nature of the magnetic moment profile as

well as fitting parameters even at very small values of the effective magnetic

moments (see Sec. 11).

8.6 From a Spin Profile to the NMR Spectrum

To achieve the NMR spectrum in experiments a scan of either the exter-

nal magnetic field H0 or the radio frequency µRF is performed. Once the

resonance condition (Equ. 8.1) is fulfilled a part of the radiation is being

absorbed, which can be measured in a change of intensity behind the sample

resulting in the NMR absorption spectrum. Since the absorption intensity

obviously depends on the amount of nuclei resonating, the NMR spectrum

corresponds to the histogram of resonating nuclei.

νRF

γN
� H0 (8.1)

In Equ. 8.1 γN is the nuclear gyro-magnetic ratio of the probed nuclei. For

a system without an impurity the resulting NMR spectrum is a sharp peak

with a natural line-width. However, for non vanishing effective moments of

the spins the hyperfine coupling between spins and nuclei shifts the local

magnetic field at the nuclei, which needs to be taken into account when
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applying Equ. 8.1. The resulting resonance condition[54] including the

hyperfine coupling then becomes

νRF

γN
� H0piq �AHFµBgxS

z
i pH0piqqy , (8.2)

where AHF is the hyperfine coupling (for Cu AHF=-12T/µb) and xS
z
i pH0piqqy

is the effective local magnetic moment in z-direction of a spin at site i with

an external field H0(i). This ’recursive’ relation between xSz
i pH0piqqy and

the external field H0(i) causes a problem for theoretical studies using inten-

sive calculations. While in principle a scan over the magnetic field range can

also be performed in QMC calculations, this procedure would be too cumber-

some in practice. However, if the magnetic field dependence of xSz
i pH0piqqy

is known only one calculation at a single resonance field Href is needed to

obtain the whole resonance field spectrum. For small values of (µB H0)/(kB

T) this can be achieved simply by assuming a linear response to an external

field

xSz
i pH0piqqy � xSz

i pHref qy
H0piq

Href
, (8.3)

which leads (using Equ. 8.2) to the analytic solution

H0piq �
νRF

γN

1

1�AHFµBg
xSz

i pHref qy

Href

. (8.4)

For large
µBHref

kBT
the linear approximation is not valid anymore and a hy-

perbolic tangent relation is used (see Sec. 10.3). The resulting resonance

condition

νRF

γN
� H0piq �AHFµBgxS

z
i pHref qy

tanhp
µBH0piq
kBT

q

tanhp
µBHref

kBT
q

(8.5)

needs to be solved numerically. However, the linear approximation is still

useful since it yields a good initial value for the numerical solving procedure.

The histogram of the resulting resonance field profile H0(i) corresponds to

the NMR spectrum. To simulate the natural line-width the histogram is

smoothened with a gaussian of 0.2T FWHM (Full Width Half Maximum).

Fig. 8.11 describes the evolution from an effective magnetic moment profile

to its NMR spectrum. The labels on the left y-axis are in units of µB and

were scaled to fit to their corresponding magnetic field values in Tesla (labels
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Figure 8.11: Transforming the resonance field profile H0(i) to a histogram
which results into the NMR absorption spectrum. Single ladder system
(k=1).

on the right y-axis). This plot provides a good insight on how an effective

magnetic moment profile influences the NMR spectra.

8.7 Spin Profile and the NMR Broadening

Before starting with calculations it is worthwhile to discuss the influence of

the magnetic moment profile on the NMR spectrum and the requirements

to achieve a broadening effect. For that purpose it is suggested to compare

the example magnetic moment profile in Fig. 8.11 with its NMR spectrum.

While effective magnetic moments of zero build up the main NMR peek

non zero moments are spread out on the spectrum in a large range around

the main peak. A broadening of the main NMR peak can be achieved

by two mechanisms. First of all by reducing the number of spins with an

effective magnetic moment of zero. This would simply reduce the height of

the main NMR peak resulting in a small increase of the FWHM. Secondly,

but more important, is to increase the occupation number of spins with

effective magnetic moments in the vicinity of the zero line. Not only this

would decrease the height of the main peak by reducing the number of zero

moments, but also it increases the height of the NMR line along its slope.

This obviously can lead to a strong increase in the FWHM. In other words

for a strong broadening effect one has to find a system in which an impurity

can influence a lot of spins at once, but only very weakly. This raises some

problems for the analysis with QMC as explained in Sec. 9.3.
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Chapter 9

Direct QMC Approach

This chapter demonstrates the results of analysing the broadening effect by

calculating the NMR spectra directly from QMC results. For that purpose

QMC calculations with 1 impurity on a single ladder and on a stacked ladder

system within the parameter range given by Johnston at al.[43] have been

performed at different temperatures. This direct approach serves well to

study the basic properties of single and stacked ladder systems containing

an impurity. However, for a more exact description of a real system a better

method is needed as discussed in Sec. 9.3.

9.1 Single Ladder with 1 Impurity

To determine whether the influence of an impurity on a spin ladder sys-

tem has a strong temperature dependence QMC calculations of a single

ladder containing 1 impurity are performed at T/JL=0.02083(� 40K) and

T/JL=0.175(� 334K). The ratio of the system parameters JR/JL=0.488 as

the best fit for SrCu2O3 is taken from literature.[43] The system size is 200�2

with periodic boundary conditions along the ladder. Substituting 1 impurity

for 1 spin leads to an impurity concentration of 0.25% comparable to the

experiment of Fujiwara et al.[28] Also the magnetic field Href/JL=0.0037 is

chosen according to experiment. The results of these calculations are plot-

ted in Fig. 9.1. At room temperature (right panel) the effective magnetic

moment profile consists mainly out of stochastic noise around the zero line.

In contrast to that the appearance of magnetic order at low temperature

(left panel) is clearly visible. However, the FWHM of the according NMR
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Figure 9.1: Temperature effect of an impurity on a single ladder. Left panel
40 K. Right panel 334 K. JR/JL=0.488 which corresponds to the best fit
given by Johnston at al.

spectrum is hardly increased compared to the natural line-width. To cover

a larger range of the parameter space and its possible effects on the NMR

spectrum a scan of JR/JL between 0.4 and 0.6 is performed. In Fig. 9.2 the

resulting profiles for different JR/JL as well as the corresponding FWHM

of the NMR spectra are plotted. Even tough the system parameter ratio

JR/JL varies quite strongly, the differences in the effective magnetic mo-

ment profiles are rather small. The FWHM (inset of Fig. 9.2) shows a small

increase for smaller JR{JL (because of an increase of the correlation length

ξx). However, the increase of about 10% is not comparable at all to the

experimental increase of about 400-500%. The conclusion of these results

is that the large experimental broadening effect cannot be explained on the

basis of a single ladder model together with physically reasonable system

parameters.

9.2 Stacked Ladder System with 1 Impurity

Calculations with systems consisting out of 6 stacked ladders (100x2x6 with

periodic boundary conditions in leg and stacking direction) are performed.

As for single ladders the system contains one impurity only, which corre-

sponds to a concentration of x � 0.08 93%. Note that the impurity concen-

tration is now only 1

3
compared to the calculations of single ladders. A scan

of system parameters within the recommended ranges (JR{JL=0.5, J3{JL

between 0.001 and 0.02) has been performed. The results are plotted in Fig.

9.3. While for small J3/JL the stacked ladder system behaves effectively like

a single ladder system, the influence on neighbouring ladders increases with
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Figure 9.2: Absolute values of the effective local magnetic moments induced
by a single impurity (0.25%) for a single ladder for different JR/JL. System
size is 200 x 2 spins with periodic boundary conditions. T/JL � 0.02083
(comparable to an experimental value of 40K) and Href/JL � 0.01. Spin
distributions for both legs are given, the impurity is located in leg 1. In the
inset the FWHM is plotted versus JR/JL.

larger J3/JL. This influence has a strong impact on the FWHM as can be

seen in the inset of Fig. 9.3. Even tough the impurity concentration is only

one third compared to the single ladder calculations, a strong broadening

effect is clearly visibly at larger J3/JL. The cause of this is the unexpected

shape the effective local magnetic moment profile on neighbouring ladders.

Instead of following a simple exponential decay

� e
�

x
ξx e

�

z
ξz (9.1)

the profile gets more and more smeared out the further the ladder is away

from the impurity (see Fig. 9.4). This results in a large amount of non zero

effective magnetic moments close to the zero line, which is the requirement

of of the desired broadening effect as was discussed in Sec. 8.7. While

these results look very promising already they are not representative for

real systems yet, because the calculations were limited to systems containing

one impurity only. With periodic boundary conditions this corresponds to

systems with equally distributed impurities. To simulate a more realistic
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Figure 9.3: Absolute values of the local magnetic moments induced by 1
impurity (0.08 93%) in a single ladder for different J3/JL with JR/JL � 0.5.
System size was 100 � 2 � 6 spins with periodic boundary conditions in
leg and z direction. T/JL � 0.0208 (� 40K) and Href/JL � 0.01. Due
symmetry reasons only 3 ladders need to be plotted. In the inset the FWHM
is plotted as a function of J3/JL, the increase is easily visible.

system one has to average over many different impurity configurations, which

leads to a necessity of a large amount of QMC calculations. Additionally it

turns out that the stochastic noise enhances artificially the broadening of the

NMR spectra (See Sec. 9.3), which calls for longer QMC runs. Even tough

the direct investigation of impurity effects on the NMR spectra with QMC

calculation is possible, it is not worth the large amount of computational

power required. A more efficient approach will use QMC calculations to

study the properties of single impurities and use these results to generate

magnetic moment profiles due an analytical model (see Chapters 10 and 11).

9.3 The Bottleneck of QMC in the Direct Ap-

proach

Using QMC calculations directly to obtain NMR spectra contains two flaws.

First of all the stochastic noise artificially enhances the broadening effect of

the NMR central peak. The reason for this lies in the responsibility of ef-
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Figure 9.4: Stacked ladders legs are plotted on top of each other to demon-
strate the non exponential behaviour found on neighbouring ladders. The
blue line represents the ladder containing the impurity, the red line the next
neighbouring ladder and the green line the next next neighbouring ladder

fective moments close to the zero line on an increase the FWHM. One has

to distinguish which non zero effective moments are caused by the impurity

and which ones are caused by the stochastic noise only. Fig. 9.5 demon-

strates the influence of the stochastic noise on the FWHM. The left panel
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Figure 9.5: Left panel: Effective local magnetic moment profiles for 10k
(blue up-triangles) and 500k (red down-triangles) QMC steps. Right panel:
Illustration of the influence of stochastic noise on the NMR spectrum for 10k
(blue dashed line) and 500k (red solid line) QMC steps. The inset shows
the FWHM plotted versus QMC steps

of Fig. 9.5 shows the effective magnetic moment profiles for a short (blue

up-triangles) and a long (red down-triangles) QMC calculation of the same

system. Their corresponding NMR spectra are shown in the right panel of

Fig. 9.5 (blue dashed for the short and red solid of the long QMC calcula-

tion). It is clearly visible that the short calculation broadens the FWHM.

To prevent obtaining wrong data one needs to reduce the stochastic noise
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until its influence on the NMR spectrum vanishes, which is achieved by in-

creasing the QMC steps accordingly (inset of the right panel in Fig. 9.5).We

want to emphasise the strong demand for long QMC runs and point ot that

short runs cannot be used even for an estimate. While for a single QMC

calculation a long run time is not that much of an issue, it leads to a prob-

lem when many QMC calculations are needed. This leads to the second and

more important problem of the direct approach. While calculations with

single impurities have only one possible NMR spectrum, this is not valid for

systems with more than one impurity. In the latter systems different im-

purity configurations lead to different effective moment profiles and thus to

different NMR spectra, which is demonstrated in Fig. 9.6. Thus to achieve a
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Figure 9.6: Illustration of the influence of impurity configuration. The Solid
blue line represents a system with equally distributed impurities while the
red dashed line correspond to a system with impurities close to each other.
Left panel: Effective magnetic moment profiles. Right panel: Corresponding
NMR spectra.

NMR spectrum comparable to a real system, one has to average over many

different impurity configurations. For the direct QMC approach this means

one calculation for each configuration. Taking the earlier discussed necessity

of long QMC runs into account leads to a tremendous increase of calcula-

tion time. This “bottleneck” renders a study with the direct approach to be

uneconomic and thus calls for a different more effective method of studying

impurity effects on NMR spectra (see Chapter 10 and 11).
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Chapter 10

Basic Properties of

Impurities in Spin Ladder

Systems

Even tough the “direct” approach resulted in some promising insights the

uneconomically large amount of calculation time needed for simulating sys-

tems closer to reality render this method rather ineffective for further anal-

ysis. A better approach is to use QMC calculations to analyse the impact

impurities have on spin ladder systems with the aim to reproduce effec-

tive magnetic moment profiles analytically. This chapter focuses on the first

part of the just mentioned approach namely the detailed analysis of effective

magnetic moment profiles caused by a low amount of impurities.

10.1 Magnetic Moment Profile induced by a Sin-

gle Impurity

It is known that an impurity in a single spin ladder causes an exponen-

tially decaying staggered effective local magnetic moment profile around this

impurity.[30–38] This exponential decay is governed by the same correlation

length ξx (in leg direction) as for an undoped system. ξx itself depends

on the system parameters JL, JR, the temperature T/JL and the impu-

rity concentration. However, it turns out that for the broadening regime

T/JL ¤ 0.05 �100K and for a very low impurity concentration the cor-

relation length ξx remains almost constant.[39, 40]. To demonstrate the
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exponential decay the effective magnetic moment profile is plotted in Fig.

10.1 on a logarithmic scale for two temperatures. The two temperatures are
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Figure 10.1: Magnetization of a single ladder for JR{JL � 0.5, H{JL � 0.01
with a single impurity at two different temperatures. Upper curve (red/blue)
T {JL � 0.02 (� 40K), lower curve (black/green) T {JL � 0.05 (� 100K).
The different colours refer to magnetic moments located at the undoped
ladder leg (red and black) and for the doped ladder leg (blue and green).
For the two temperatures considered the correlation length remains almost
constant (lower inset). The upper inset shows the change of the correlation
length for different values JR{JL. ξxpJR{JLq becomes 5.9, 7.45, and 9.75 for
JR{JL � 0.6, 0.5, and 0.4, respectively.

chosen to be both below T/JL ¤ 0.05 �100K to illustrate the consistency of

ξx in this temperature regime. The lower inset plots ξx versus T/JL taken

from Greven et al.[39] The inset in the top right shows different resulting

profiles for different ratios of JR/JL as a result of the changing correlation

length ξx. Note that with increasing ξx and thus increasing expansion of the

magnetic moment profiles the maximum at Sz
0
decreases.
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10.2 Impurity compared to a Free Spin in a Mag-

netic Field

The reasoning for comparing the effective magnetic moment profile is based

on the rung picture (see Sec. 8.4. There an impurity breaks a singlet up

and leaves a free spin that can responds even to small external fields. For

JR/JL Ñ 0 a ladder system corresponds to the rung-picture and thus the

spin Sz
0
on the same rung as the impurity becomes a completely free spin.

Because of this congruency of rung picture and spin ladder in the limit

JR/JL Ñ 0 it is reasonable to search for a correlation between the behaviour

of a free spin in an external field and the effective local magnetic moment

profile caused by an impurity. For a free spin the Heisenberg Hamiltonian

Ĥ �

Ņ

i�j

JijpŜ
z
i Ŝ

z
j �

1

2
pŜ�i Ŝ

�

j � Ŝ�i Ŝ
�

j qq �

Ņ

i

µBgHexŜ
z
i (10.1)

reduces to the magnetic term only and the expectation value xSz
freey de-

pending on the external field Hex and temperature T can be calculated

analytically resulting in

xSz
freey �

1

2
tanh

µBHex

kbT
. (10.2)

Note that this equation only depends on the ratio of the external field Hex

and the temperature T . This also holds for the scaled values used in QMC

calculations h Ñ Hex{JL and tÑ T {JL, because JL cancels itself in Hex/T.

QMC calculations for different ladder systems are performed for different

Hex/T and are compared to their corresponding value of Equ. 10.2. A

selection of these results are printed in Tab. 10.1. It turns out that for

low temperature and systems with a single impurity only the expectation

value of a free spin is almost perfectly preserved in the sum of all spin

expectation values independent of the system parameters JL, JR and J3.

The large deviations at small Hex

T
call for a more detailed temperature scan.

The results for 3 impurities (last cell in Tab. 10.1) indicate an interaction

between impurities, which also makes a study of the spacial distribution of

impurities necessary.
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Nimp system Hex

T
xSz

freey
°

xSz
i y

°

xSz
i y

xSz
free

y

200x2

1 JR
JL

=0.4 0.48 0.1558 0.1567 1.0074
JR
JL

=0.5 0.1 0.0335 0.2563 7.6423

0.5 0.1619 0.1623 1.0024
2.0 0.4362 0.4361 0.9997

JR
JL

=0.6 0.48 0.1558 0.1579 1.0132

100x2x6

1 JR
JL

=0.5, J3
JL

=0.01 0.48 0.1558 0.1574 1.0097

3 0.1838 0.0614 0.1891 3.0798
0.1580 2.5723
0.1847 3.0074
0.0628 1.0219

Table 10.1: Free spin in a magnetic field compared to the total magnetization
of different systems at different system parameters. Nimp is the number of
impurities. In the last part (Nimp � 3) different impurity configurations
were simulated.
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10.3 Temperature Behaviour of the Total Magne-

tization

For a detailed temperature analysis QMC calculations are performed for a

200�2 ladder system in the temperature range 0.005¤T/JL ¤=0.1. The

used system parameters are JR/JL=0.5 and Href/JL=0.01. To distinguish

between an impurity effect and an intrinsic spin ladder property the tem-

perature scan is performed for a system containing only a single impurity as

well as for an undoped system. From these QMC results the total magneti-

zation is extracted and plotted versus T/JL (Fig. 10.2). Two temperature

0 0.02 0.04 0.06 0.08
T/J

L

0

0.1

0.2

0.3

0.4

0.5

0.6

<
M

to
ta

l>

a)

Imp.-0.1

0

0.1
b)

Imp.-0.1

0

0.1
c)

Figure 10.2: a) Total magnetizations versus T/JL for a system with (blue
up-triangles) and without (black circles) an impurity. System parameters:
200 � 2 ladder with periodic boundary conditions in x direction, JR/JL �

0.5, Href/JL � 0.005 . To observe the effect caused by the impurity only, the
difference between the undoped and doped systems is shown (green down-
triangles). The red dashed line describes the analytical solution for a free
spin in a magnetic field. In the insets distributions of effective local magnetic
moments at b) T/JL � 0.005 and c) T/JL � 0.09 are plotted.

dependent effects with direct impact on the NMR spectrum can be identi-

fied. First of all by looking on the undoped system (blue up triangles) the

total magnetization raises once the temperature is large enough. Because of
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the systems symmetry and thus the equality of all the spins this can only

be interpreted as a collective response to an external field according to the

susceptibility measured experimentally.[52] Applied to the NMR spectrum

this leads to a shift of the main peak towards higher external fields, but the

shape of the peak is conserved, which is actually experimentally observed for

the undoped system (see the right panel of Fig. 8.1). This is valid also for

the doped system (filled black circles), however due the broadening effect at

lower temperatures this shift is not that obvious anymore. The second effect

with a direct impact on the NMR spectrum is the change of the effective

local magnetic moments in the vicinity of the impurity. This effect is rather

localized and thus does not cause a shift of the NMR peak, but the local

magnetic moment profile appearing (Fig. 10.2 insets b and c) changes the

shape of the NMR signal and thus the FWHM. The total magnetization dis-

tributed on the ladder due to doping with a single impurity matches exactly

the total magnetization a single free spin would yield. This is demonstrated

in Fig. 10.2 by plotting the difference in total magnetization (green down tri-

angles) of the doped and undoped system next to the free spin solution (red

dashed line), which shows a perfect agreement. For SrCu2O3 these two ef-

fects occur in neighbouring slightly overlapping temperature regimes, which

explains the NMR peak shift towards lower H0 before, upon further lower-

ing of the temperature, the broadening sets in. With this plot the results

for one impurity of table 10.1 are well explainable. Once the temperature

is sufficiently small the collective excitation vanishes and the system follows

the tanh behaviour (ratios 1.0 in table 10.1). For larger temperatures the

collective excitation raises the total magnetization further, independently of

the impurity, which leads to a factor greater than 1 (ratio of 7.6423 in table

10.1). The in this section obtained results for a single spin ladder also hold

for stacked ladder systems. For validation this is demonstrated in Fig. 10.3

by plotting the effective magnetic moment profiles of a stacked ladder sys-

tem (200�2�8) for two different temperatures. Black dots show the results

of a QMC calculation at T/JL=0.175�334K and green dots a QMC calcu-

lation at T/JL=0.02083�40K. Because of the overlaying plot, both effects

are visible. For low T/JL (green dots) a magnetic moment profile is formed

symmetrically around the zero line. For high T/JL (black dots) the collec-

tive response to the external field slightly shifts the almost flat magnetic

moment profile above the zero line.
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Figure 10.3: Effective local magnetic moment profiles for a 200 � 2 � 8
stacked ladder system with periodic boundary conditions in x and z direc-
tions for two different temperatures. System parameters used are JR/JL �
0.4, J3/JL � 0.02 and Href/JL � 0.01. Green dots (T/JL=0.01) show the
raise of effective local magnetic moments around the impurity while black
dots (T/JL=0.111) show the collective response to an external field.

10.4 Temperature Behaviour of the Effective Lo-

cal Magnetic Moments

While the total magnetization induced by an impurity does not depend on

the exchange integrals JL, JR, and J3, the expansion of the “spin cloud”

forming around its impurity does. For larger JR/JL and thus smaller cor-

relation length ξx (for stacked ladders smaller ξz for larger ratios of JR/J3)

the spin cloud becomes more localized and vice versa. While in general the

correlation length depends on temperature and dilution[39, 40] it remains

nearly constant in the temperature regime where the broadening effect is

observed and in the limit of low impurity concentrations. Thus, not only

the total magnetization of the whole system, but also the effective local

magnetic moments show a hyperbolic tangent behaviour. One can obtain

an analytical description of the effective local magnetic moments (see Equ.

10.3) by introducing a fit pre-factor A(ξ)=A(JR/JL) and taking the expo-
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Figure 10.4: Effective local magnetic moments of the spins opposite of the
impurtiy (Sz

0
), at a distance of 10 lattice sites (i=10) and 20 lattice sites

(i=20) versus T/JL. The dashed lines correspond to a free spin in a magnetic
field times a proportionality factor. System parameters: 200 � 2 ladder with
periodic boundary conditions in x direction, JR/JL � 0.5, Href/JL � 0.005

nentially decaying nature of the staggered magnetic moment profile into

account.

xSz
i,jpT qy � Apξqp�1q|i�j|e

�

|i|

ξx
1

2
tanhp

µBHref

kBT
q (10.3)

The pre-factor A(ξ) is determined by scaling down the solution of the free

spin (Equ. 10.2) to fit xSz
0
y, which is obtained through a QMC calculation

at a chosen T/JL. Fig. 10.4 shows a comparison between (Equ. 10.3)

and QMC results for three different lattice sites. Apξq has been extracted

from one QMC simulation at Sz
0
and T/JL � 0.005. In the broadening

temperature regime (ξ � const.) the analytical descriptions (dashed lines)

fit perfectly to the QMC calculations. This also holds for stacked ladders

if the correct magnetic moment profile is applied (see Sec. 11). In the

inset of Fig. 10.4 the pre-factor A(JR/JL) is plotted versus JR/JL. The

smaller JR/JL (and thus larger ξx) the smaller is also the maximum of the

spin profile xSz
0
y. This is a result of the spacial distribution of the impurity

induced spin cloud, which gets less localized at larger correlation lengths.

It has to be mentioned that for systems in which ξ shows a pronounced
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temperature dependence the description given in Equ. 10.3 is only valid for

ξ Ñ ξpT q and thus Apξq Ñ ApξpT qq. Then QMC simulations are needed for

every temperature step.

10.5 Magnetic Field Dependence

To investigate the magnetic field dependence of a magnetic moment pro-

file QMC calculations of a ladder with a single impurity for different mag-

netic fields H/JL and fixed temperature are performed. Fig. 10.5 com-

pares the QMC results (blue triangles) for the total magnetic moment of

the ladder to the free spin solution Equ. 10.2 (red dashed line). For small
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Figure 10.5: Total magnetization versus H/JL for a system with a single
impurity (blue up-triangles). System parameters: 300 � 2 ladder with pe-
riodic boundary conditions in x direction, JR/JL � 0.5, Tref/JL � 0.02083.
The red dashed line corresponds to the solution of a free spin in a magnetic
field. The inset compares Equ. 10.3 with the QMC results for xSz

i,0y.

fields (H/JL ¤ 0.07) the QMC results match the free spin solution perfectly.

Above H/JL � 0.07 (corresponding to an applied magnetic field of about

200 Tesla) the magnetization starts to rise significantly, which indicates that

the applied magnetic field is large enough to break up the singlets, thus pro-

ducing an additional magnetization. However, in our simulations magnetic
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fields never exceed H/JL = 0.01 so that Equ. 10.3 is valid in the magnetic

field range. The inset shows the QMC results for the local spins (blue up-

triangles) opposite of the impurity (i=0) and at distant sites i=10 and i=20

in comparison to the solution given by Equ. 10.3 (red dashed line).

10.6 Multiple Impurities

10.6.1 Well Separated Impurities

0 20 40 60 80 100
lattice site i

-0.04

-0.02

0

0.02

0.04

0.06

<
S

0z >

Figure 10.6: Demonstration of how well superimposing magnetic moment
profiles of single impurities can describe the profile caused by two impurities.
Red squares: QMC results of a single ladder system containing two impuri-
ties with a distance of 30 lattice sites. Blue diamonds: Assembled magnetic
moment profile obtained by superimposing two single impurity profiles with
a distance of 30 lattice sites.

The existence of more than 1 impurity can have an impact on the total mag-

netization of the system (see table 10.1 bottom row). Since impurities induce

a rather localized effective magnetic moment profile around themselves an

assumption can be made right away. Obviously impurities separated suf-

ficiently from each other (larger than the expansions of their induced spin

clouds) can be seen as independent and thus the total magnetization they

induce will result in the free spin solution times the impurity number, which

is validated in the bottom row of table 10.1 for the values of �3.0. The

interaction of closer impurities needs more analysis. In first order approxi-

89



mation the resulting effective magnetic moment profile caused by impurities

with overlapping induced spin clouds can be described by a superposition of

two independent magnetic moment profiles, which is demonstrated in Fig.

10.6. There the magnetic moment profile for a single ladder containing two

impurities is compared to a profile created by superposing two single im-

purity profiles using the same impurity distance. However, to understand

the reduction of the total magnetization in the bottom row of table 10.1 the

concept of “sublattices” needs to be introduced.

10.6.2 Sublattices

A sublattice consists out of all lattice positions that prefer the same spin ori-

entation. Thus all spins on a sublattice form a ferromagnetic lattice. For our

anti-ferromagnetic model this applies to every second lattice site resulting in

two sublattices illustrated in Fig. 10.7 Applying this picture on overlapping

Figure 10.7: Illustration of the two different ferromagnetic sublattices (blue
up arrows, red down arrows) that combined build up the anti-ferromagnetic
spin system. — Made with Blender[49]

spin clouds leads to two cases. First there is the case when impurities are an

even amount of lattice site apart (from now on will be referred as “same sub-

lattice”). In this case only magnetic moments with the same sign interact,

which on first sight does not change the total magnetization. The other case
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describes impurities with an odd number of lattice sites apart. In this case

all interacting spins have opposite sign resulting in a weakening of both spin

clouds. This explains the at first sight surprising values of the bottom row of

Table 10.1. The value of about 2.57 corresponds to two slightly overlapping

spin clouds based on different sublattices. For the value of about 1.02 two

impurities are close enough to completely annihilate each others spin cloud

leaving only the magnetic moment profile of the third impurity.

10.6.3 Close Impurity Interaction

While for far and medium-close impurities the picture of superimposed spin

clouds works well it is not valid anymore once the impurities reside within

each others spin cloud. In this case the two different Sz
0
are close enough

to directly “feel” and thus interact with each other. This interaction can be

approximated by a two particle Heisenberg system with a distance dependent

effective coupling (see Equ. 10.4).

Ĥ � Jeff pdq
ÝÑ

S1

ÝÑ

S2 , Jeff pdq � C � e
�

d
ξx , (10.4)

where the constant C is a fit parameter. The correlation length xix is taken

from a QMC calculation. This approximation holds well as long as the dis-

tance is sufficiently large for the ladder to behave 1-dimensional. In Fig. 10.8

xSz
0
y for different models is plotted versus the impurity distance for different

system parameters JR/JL. The black bars represent the directly obtained

QMC results. The red down triangles correspond to the 2 particle Heisen-

berg system with an effective coupling with C fitted to the QMC results.

The difference between those two data sets is caused by a too small impurity

distance so that the ladder does not effectively behave like a 1-dimensional

system anymore. The blue dotted line results from superimposing two single

impurity profiles and shows are large deviation compared to the directly ob-

tained QMC data. Also calculations with stacked ladder systems have been

performed and lead to the same result with the addition that impurities on

different ladders can always be described by a simple superposition. The

reason for this seems to be the extremely weak coupling in stacking direc-

tion. In summary, the effective magnetic moment profile caused by more

than one impurity can be described by a superimposition of single impurity

profiles as long as impurities do not reside on the same ladder within each
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Figure 10.8: xSz
0
y for different models plotted versus the impurity distance

for different system parameters JR/JL. The three models are direct QMC
calcultion (black bars), two particle Heisenberg system with effective cou-
pling Jeff (red down triangles) and a superposition of single impurity profiles
(blue dotted line).

others spin cloud.

10.7 System Parameters and ξx

Johnston at al. [43] performed the parameter scan for stacked ladder system

at a fixed ratio JR/JR=0.5. However, small changes of the correlation length

ξx can already influence the FWHM of the NMR spectra. To investigate if

small perturbations of JR/JR=0.5 could lead to an enhanced or weakened

FWHM a scan of ξx in the parameter range JR/JL � 0.4 � 0.6 has been

performed for a single ladder. It turns out that within this parameter range

ξx changes linearly with the inverse of this ratio, namely JL/JR, shown in

Fig. 10.9.
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Figure 10.9: ξx vs JL/JR

Further calculations for different J3/JL have been performed to analyse the

influence of J3/JL on the correlation length ξx. In Fig. 10.10 J3/JL scans

for two different ratios of JL/JR are plotted. ξx increases for about 10% if
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Figure 10.10: ξx vs J3/JL for two different values of JL/JR.

a single ladder system system (J3/JL=0) is compared to a stacked ladder

system coupled with J3/JL=0.02. Thus a larger coupling in stacking direc-

tion does not only increase the number of lattice sites affected by influencing

additional ladders, but also flattens the magnetic moment profile on the im-

purity inhering ladder, leading to an enhancement of the FWHM.
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Since small adjustments in JR/JL and J3/JL influence ξx and thus the

FWHM of the NMR spectra sufficiently large a detailed analysis of the

system parameters JR, JL, and J3 could lead to an overall improved result.

However, this work focuses on the qualitative description of the low tem-

perature broadening effect only. Improved quantitative results due system

parameter adjustment could be a motivation for future works.
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Chapter 11

Analytical Fit using QMC

Results

This chapter explains how the obtained effective local magnetic moment

profiles from QMC simulations can be described analytically. The resulting

analytical profiles are not influenced by a stochastic noise and thus do not

artificially enhance the temperature dependent broadening effect. In addi-

tion to that many profiles resulting from different impurity configurations

can be generated quickly. The whole procedure from obtaining the param-

eters for the analytical fit from a small amount of QMC simulations until

generating realistic NMR spectra is explained at the end of this chapter.

11.1 Single Ladders

For single ladders, the effective local magnetic moment profile induced by an

impurity can be almost perfectly described with a staggered exponentially

(with ξx) decaying function which was already described in earlier (Equ.

10.3) as

xSz
i,jp

Href

T
qy � Apξxqp�1q

|i�j|e
�

|i|

ξx
1

2
tanhp

µBHref

kBT
q .

This equation only uses two parameters, namely ξx and Apξxq. ξx can be

extracted directly from a QMC calculation. Apξxq can be obtained by solving
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equation Equ. 10.3 at i, j � 0 for Apξxq, which results in

Apξxq �
xSz

0
y

1

2
tanh

µbHref

kbT

. (11.1)

xSz
0
y is the expectation value of the spin opposite of the impurity and can

be directly taken from a QMC simulation. In Fig. 11.1 an effective mag-

netic moment profile is compared with Equ. 10.3 to illustrate the quality

of this analytical description. The only deviations are within the first few

lattice sites around the impurity, which only have an impact on the edges

of the NMR spectrum (see sec. 8.6). Since the broadening effect is caused

by effective magnetic moments with a small deviation from zero only, this

analytic description renders to be a valid tool for the purpose of this work.

80 100 120
lattice site i

0.001

0.01

0.1

ln
(|<

Sz (i
)>

|)

Figure 11.1: Comparison between the analytical description and the QMC
result.

11.2 Same Function for Both Ladder Legs?

Fig. 11.1 demonstrates that the absolute values of both ladder legs follow

the same function once a certain distance from the impurity is reached. For

better understanding Fig. 11.2 uses a color code to illustrate the interac-

tion between the two legs. On the left side of the two plotted ladders are

two different fixed values represented by the blue and yellow balls. Because

of correlations along and between the ladder legs the two former different

values effectively average into a uniform one represented by the dark green
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Figure 11.2: Illustration of why and how two legs can be described with the
same function. The different thickness in the orange bonds represents the
different coupling strength of the ladders.

balls the further away from the initial fixed values. Furthermore the stronger

the legs are correlated the less lattice sites are necessary to achieve equality

as illustrated in Fig. 11.2. This picture can very well be applied to a spin

ladder. The different initial fixed values (blue and yellow) can be seen as the

different effective local magnetic moments at the rung containing the impu-

rity. The next few lattice sites towards the right correspond to the spins in

the close vicinity of an impurity. The mixing there was not sufficient enough

yet to average the difference out, which explains the deviations in Fig. 11.1

in the close vicinity of the impurity. However, with increasing distance the

difference of the legs becomes smaller until the effective moments on the

two different legs converge onto the same curve corresponding to Equ. 10.3.

Since the coupling in rung direction (JR/JL � 0.5) is strong only a few latice

sites are needed to achieve the equality of the legs.

11.3 Stacked Ladder Systems

In Sec. 9.2 was shown that for stacked ladders the profile is more and more

smeared out the larger the distance in stacking direction is (Fig. 9.3), which

cannot be described by a simple exponential cloud. Applying again the color

picture from the last section (Sec. 11.2) helps to understand why. (I) while

for a single ladder only two rows of lattice sites are mixing far more lattice

sites are involved in stacked stacked systems. (II) the coupling in stack-

ing direction is rather small. The large difference of the coupling constants

within the ladders and in stacking direction (JR,JL "J3) can be interpreted

as a stronger correlation within a ladder than in stacking direction. Thus

for the impurity inhering ladder the magnetic moment profile looks similar
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to the one of a single ladder. The next neighbouring ladder does not see the

impurity only, but the whole ladder profile of the former ladder. Then, with

the stronger correlation within that neighbouring ladder, the profile will be

smeared out more. This is repeating for every further neighbouring ladder.

Fig. 11.3 illustrates the mixing for a stacked system by starting with a fixed

bottom row containing balls of different colors, which represents the impu-

rity inhering ladder. Every color value of a ball on a neighbouring ladder

is achieved by averaging (with distance weighting) over five balls sitting on

the former ladder. That way the strong initial color profile (bottom row)

gets more and more smeared out there further away from the initial row,

similar as was shown earlier in Fig. 9.3.

Figure 11.3: Illustration of a stacked ladder system due color mixing. The
bottom row has its values fixed while every other ball corresponds to the
average of the closest five balls from the row below.

The comparison with color mixing gives a nice explanation for the flatten-

ing of the profiles in stacking direction, but one has also to be sure that

the influence of periodic boundary conditions in stacking direction can be

excluded. For that purpose QMC calculations have been performed using

the parameters from Johnston et al. [43]. In Fig. 11.4 the absolute effec-

tive magnetic moments |xSz
0,0,ky| are plotted for different J3/JL in stacking

direction derived from QMC calculations for 8 stacked ladders. Please note

that for stacked ladders the position of the spins depend also on a stacking

index k so that Sz
i,j Ñ Sz

i,j,k. With increasing J3 the deviation from a simple

exponential decay increases. This effect is shown in the inset of Fig. 11.4

where |xS0,0,ky| is compared with a hyperbolic cosine for J3{JL � 0.02. At

distant ladders the deviation from the hyperbolic cosine behaviour increases.
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Figure 11.4: |xS0,0,ky| for a stacked ladder system (k=0,1,2,...,7) with peri-
odic boundary conditions. JR{JL � 0.5, Href{JL � 0.01, T {JL � 0.02083
and (from bottom to top) J3{JL � 0.01, 0.015, 0.02, 0.025, 0.03. The inset
compares the QMC results for J3{JL � 0.02 with a hyperbolic cosine to
demonstrate the non exponential behaviour.

It thus becomes obvious that a simple exponential cloud model cannot be

used to describe the complete profile caused by an impurity in a stacked

ladder system.

To describe now spin ladders other than the impurity inhering one, an ansatz

comparable to the color model is used. For the leg with j=0 and k=1 (one

ladder above the impurity inhering one) the expectation value of the spin

xSz
i,0,1y can be calculated by considering the influence of all spins on the

ladder leg Szi,0,0, which describes the magnetic moment profile sufficiently

well. For the next neighbouring ladder with k=2, the profile is calculated

by considering only the influence of Szi,0,1. This procedure is repeated until

the end of the stack is reached. The strength of the coupling between all

the ladders can be modelled by a single ladder-independent coupling factor

κz taken from the QMC results. Equ. 11.2 describes the spin profiles on the

leg with j=0 for ladders with k ¥ 1 to be

xSz
i,0,ky � e

�

1

κz

Lx
2̧

l��Lx
2

p�1q|l|�1
xSz

i�l,0,k�1ye
�

|l|

ξx (11.2)
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where Lx is the length of the ladders. Exploiting the profile symmetry

for the stacked ladders around the ladder consisting the impurity and the

antisymmetry of the ladder legs the profile on the legs with j=1 is simply

given as

xSz
i,1,ky � �xSz

i,0,ky (11.3)

and

xSz
i,j,�ky � xSz

i,j,ky (11.4)

for k ¥ 1. To determine κz one applies Equs. 10.3, 11.1, and 11.2 for

H=Href and T=Tref and obtains

xSz
0,0,1y � �xSz

0ye
�

1

κz

�

�1� 2

Lx
2̧

l�1

e
�

2l
ξx

�

 (11.5)

with xSz
0,0,1y, xS

z
0
y and ξx taken from the QMC simulation.

11.4 Profile of Multiple Impurities

Is the effective local magnetic moment profile caused by a single impurity

calculated one can easily generate magnetic moment profiles for multiple

impurities. To do so one simply has to superimpose the single impurity

local effective moment profiles with respect to the impurtiy positions. To

demonstrate how well this analytical model works two different profiles for

different impurity configurations have been compared to their respective

QMC profiles and plotted in Fig. 11.5. The QMC results (solid blue lines)

are almost perfectly covered by the analytically generated profiles (solid

red lines / open circles). Note that this fit only uses three parameters

taken from a single QMC simulation, namely xSz
0
y, ξx, and κz. Since the

magnetic moment profiles can now be described analytically the problem of

the stochastic noise is solved. However, the stochastic noise is still existent in

the QMC simulation from which xSz
0
y, ξx, and κz are obtained and therefore

the statistical errors of those parameters need to be considered.

It has to be mentioned that even tough this method works well for most

impurity configurations, it is not exact for close impurities residing on the

same ladder (see next section). The impact of this deviation is not strong

as long as the impurity concentration is sufficiently small enough. Further
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Figure 11.5: Illustration of the great quality of the analytical fit for two
different impurity configurations.

the speed advantage of needing only a single QMC simulation outweighs

the handicap in accuracy for qualitative analysis. However, for calculations

that rely on accuracy a correction is needed that is obtained by performing

additional QMC simulations as is shown in the next section.

11.5 Correction for Close Impurities

As discussed in Sec. 10.6.3 already, close impurities on the same spin

ladder interact in a way so that simple superimposing of single impurity

spin clouds is not valid anymore. However, it turns out that it is suffi-

cient enough to replace xSz
0
p

Href

Tref
qy from Equ. 10.3 by a distance dependent

xSz
0
p

Href

Tref
, distqy2Imp obtained by performing a distance scan of 2 impurities

with QMC simulations. Note that xSz
0
p

Href

Tref
, distqy2Imp is not directly taken

from the QMC simulation, since the QMC result contains already the su-

perimposed value from the close-by impurity. To convert the QMC values

(xSz
0
p

Href

Tref
, distqyQMC) into xS

z
0
p

Href

Tref
, distqy2Imp the superposition has to be

taken out resulting in

xSz
0p

Href

Tref
, distqy2Imp �

xSz
0
p

Href

Tref
, distqyQMC

1� p�1q|i|�|j|e�
dist
ξx

. (11.6)

101



Along with replacing Apξxq by the proper term Equ. 10.3 then becomes

xSz
i,jp

H

T
qy � xSz

0p

Href

Tref
, distqy2Impp�1q

|i�j|e
�

|i|

ξx
1

2

tanhpµBH
kBT

q

tanhp
µBHref

kBTref
q

. (11.7)

Equ. 11.7 describes effectively a magnetic moment profile caused by a sin-

gle impurity on a single spin ladder, but already includes the enhancement

caused by interaction of close impurities. To generate profiles for multi-

ple impurities one simply has to superimpose the single magnetic moment

profiles resulting from Equ. 11.7. In Fig. 11.6 the quality of the adjusted

analytical description is demonstrated. There magnetic moment profiles for

a distance of 13 lattice sites (different sublattices) and a distance of 14 lat-

tice sites (same sublattices) are plotted for QMC results (black and green

triangles with error bars) and compared to Equ. 11.7 (solid blue lines).

Since no enhancement of a magnetic moment profile for impurities at dif-

100 120 140 160
lattice site i

0.01
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|<
S

i,0
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|

Figure 11.6: Magnetic moment profiles caused by close impurities on the
same ladder leg. Full lines: fit according to Equ.11.7, symbols: QMC results.
Upper curve: impurities are located at positions 123 and 137 at the same
sublattice. Lower curve: impurities are located at positions 123 and 136
at different sublattices. QMC simulation for JR{JL � 0.5, H{JL � 0.01,
T {JL � 0.02083.

ferent ladders has been observed the same procedure explained in Sec. 11.3

can be used to generate the magnetic moment profile at neighbouring lad-

ders. To demonstrate the improved accuracy obtained by the just adjusted
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analytical function Fig. 11.7 compares a QMC profile (black line) with the

analytical description with (blue line) and without (red line) correction. For

Figure 11.7: QMC results (black line) compared to its analytical fit with
(blue line) and without (red line) correction for close impurities residing on
the same ladder.

large impurity concentrations one needs to perform configuration analysis

also for more than just 2 impurities on the same ladder. But since this

work is primarily focused on small impurity concentrations x ¤ 0.0025 it

is sufficient to restrict our simulation to these pairs of impurities, since due

to combinatoric reasons already three close impurities would occur with a

probability of less than 0.6%.

11.6 Complete Procedure to simulate NMR Spec-

tra closer to Reality

With the analytical description being complete following procedure needs

to be applied to simulate NMR spectra closer to reality.

1. Perform a single QMC calculation for the desired system containing a

single impurity only. Temperature and external field should be chosen

according to produce a significant effective local magnetic moment

profile for further data analysis (e.g. T/JL=0.02, H/JL=0.01).

2. Extract xSz
0
y, ξx, and κz from the QMC results.

3. Optional for higher accuracy and/or higher impurity concentration:

Perform a distance scan of xSz
0
p

Href

Tref
, distqy2Imp. For larger impurity

concentrations even 3 ore more impurities need to be considered.
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4. Calculate the effective local magnetic moment profile around a single

impurity using Equ. 11.7 for the central ladder and Equ. 11.2 for

neighbouring ladders (by taking the systems symmetry into account).

5. Generate a random impurity configuration with the desired concen-

tration.

6. Optional for higher accuracy and/or higher impurity concentration:

Determine if impurities reside on the same ladder and if so their dis-

tance dist.

7. For every impurity the corresponding effective local magnetic moment

profile is superimposed on the whole system.

8. Calculate the resonance field profile according to to Equ. 8.5.

9. Repeat points 5 and 8 until a desired number of configurations is

achieved.

10. The final NMR spectrum then corresponds to the histogram (smeared

with a gaussian simulating the natural linewidth) of all generated res-

onance profiles.

With this procedure it is possible to reduce the calculation time tremen-

dously compared to a direct QMC approach. While a single QMC simu-

lation might take already a few hours the analytical model provides a way

to generate and simulate thousands of impurity configurations within a few

minutes. Further with this model the temperature behaviour of the mag-

netic moment profile is known for regions with almost constant correlation

length. Thus the effectiveness in CPU time is increased significantly, con-

sidering that only a small amount of QMC simulations (One single impurity

simulation + the optional 80 simulations for the distance scan of two close

impurities for JR/JL=0.5) is needed in the beginning to built up the ana-

lytical model compared to thousands of core hours for thousands of QMC

simulations.

It needs to be mentioned that this model focuses on the broadening effect

only. The shift of NMR peak from smaller to larger temperatures caused by

a collective excitation of all the spins is not being considered. However, to

calculate the shift of the resonance field peak one simply has to perform a

temperature scan with QMC simulations of a system without an impurity.
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Chapter 12

Results and Discussion

The results presented in this chapter are obtained by following the proce-

dure derived within this work (see Sec. 11.6). All results are assumed to

have constant correlation length ξx and constant inter ladder coupling fac-

tor κz. As was shown earlier (see Sec. 10.3) this assumption is valid for

the temperature range in which the low temperature broadening effect oc-

curs and for higher temperatures the effective local magnetic moment profile

vanishes anyway. Further only close impurity interactions (see Sec. 10.6.3)

of not more than two impurities are considered, which is sufficient for sys-

tems doped with a tiny amount (x¤0.0025) of impurities. Additionally only

stacked ladder systems are investigated since single ladders alone cannot

lead to the desired broadening effect.

12.1 Results within the 1-σ Range of Johnston at

al.

The first calculations are performed within a 1-σ range of parameters sug-

gested by Johnston at al.[43] Further to generate NMR spectra compara-

ble to the experiment of Fujuwara et al.[28] an impurity concentration of

x=0.0025 is used along with temperatures of �40 K and �330 K. In Fig.

12.1 the resulting calculated NMR spectra at 40K and room temperature as

well as the experimental spectrum at 40K are plotted. As expected at room

temperature (�330 K, dashed blue line) no broadening effect is observed.

The results at room temperature are also fairly independent of the stacking

coupling constant J3/JL. This is in agreement with the first investigations
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Figure 12.1: NMR Spectra for T = 40K, JL � 1905K and JR/JL � 0.5
with J3/JL � 0.01 (red/dot-dashed line) and J3/JL � 0.02 (solid orange
line). To see the temperature effect of the NMR broadening references lines
at room temperature for doped (blue/dashed line) and undoped (thin solid
line) systems have been added.

in Sec. 10.3 and confirms the validity of the analytical model at high tem-

peratures even tough the correlation lengths is assumed to be constant with

the fixed value taken from � 40K. The reason is that the impurity induced

magnetic moment profile at high temperatures simply has too small values

to have a notable influence on the NMR spectrum. On the other hand the

cooled systems (�40 K, green dot-dashed line for J3/JL=0.01, solid orange

line for J3/JL=0.02) show the desired broadening effect even tough not as

large as in experiment (red dot-double-dashed line). Note that in Johnston

et al . [43] the ratio JR/JL was kept constant at 0.5 for stacked systems and

the best fit to the susceptibility was made for a single ladder. Thus an ad-

justment for JR/JL is reasonable and can lead to a larger correlation length

and thus to a stronger broadening effect. However, this work is focused

mainly on the influence of a stacked coupling constant and only suggests a

further analysis of JR/JL in SrCu2O3 for future investigations.
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12.2 Results within the 2-σ Range of Johnston et

al.

QMC simulations with a coupling constant in stacking direction at the bor-

der of the 2-σ range of Johnston et al.[43], namely J3/JL=0.03, are per-

formed. The other system parameters remain un changed (see Sec. 12.1).

In Fig. 12.2 the resulting NMR spectrum (solid red line) is compared to

the experiment. The result looks very promising as the FWHM of the simu-
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H
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Figure 12.2: NMR Spectra for T = 40K, JL � 1905K and JR/JL � 0.5 with
J3/JL � 0.01 (red/dot-dot-dashed line) and J3/JL � 0.03 (solid red line)
compared to experiment (black dashed line). To see the temperature effect
of the NMR broadening reference lines at 336K for doped (blue dot-dashed
line) and undoped (green dotted line) systems are shown.

lated NMR spectrum even exceeds the experimental one. However, it needs

to be mentioned that for increasing J3/JL the haldane gap decreases until

vanishing completely between 0.04 J3/JL  0.05. The change in the gap

has an influence on other system properties. To keep the haldane gap at a

constant value one has to adjust the main coupling constant JL accordingly.

Further different combinations of JR/JL and J3/JL or even a ring exchange

within the ladders could be considered to obtain a similar broadening effect

but with less impact on the haldene gap. Again, this work focuses on the
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qualitative description of the low temperature broadening effect consider-

ing stacked ladder systems and leaves more detailed investigations on the

different parameter sets for future studies.

12.2.1 Comparison to the Experiment of Fijuwara at al.

So far only NMR spectra at two different temperatures, namely at 40K and

336K, have been calculated. To compare the temperature dependence over

the whole temperature range used in experiment simulations at different

temperatures with different combinations of JR/JL and J3/JL at different

temperatures have been performed. The resulting FWHM are demonstrated

in Fig. 12.3.
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Figure 12.3: FWHM of the 65Cu central peak vs temperature for a stacked
ladder system with JL � 1920K, JR/JL � 0.5, and varying inter ladder cou-
pling J3/JL: 0.0 (black diamonds), 0.01 (red down-triangles), 0.02 (green
up-triangles) and 0.03 (blue squares) . To show the influence of the rung cou-
pling we perform a calculation for JR{JL � 0.4 and J3{JL � 0.02 (crosses).
The individual correlation lengths for each curve are extracted from a QMC
calculation around T {JL � 0.02083 (=40K) and assumed to be independent
of temperature. Experimental values are given by red open circles. The
inset shows an expanded temperature range.
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The different parameters used for this plot are JR/JL=0.5 with J3/JL=0.0

(black diamonds), J3/JL=0.01 (red down triangles), J3/JL=0.02 (green up

triangles), J3/JL=0.03 (blue squares). Additionally simulations with JR/JL=0.4

and J3/JL=0.02 (black crosses) have been performed. JL is kept fixed at

1920K. The red circles correspond to the measured FWHM taken from the

experiment of Fujiwara et al.[28] The temperature range of the main graph

is between 19K and 105K. The inset shows the extended temperature range

up to 384K. The shape of the temperature dependent FWHM curve for the

parameter set JR/JL=0.5 with J3/JL=0.03 (blue symbols) is in good agree-

ment with experiment. At higher temperature (T/JL ¥0.1) there is quite a

strong deviation tough considering that there should be almost no impurity

influenced effective local magnetic moment profile. The reason for this de-

viation is the natural linewidth used in the simulations. Fujiwara et al. [28]

mentioned a natural linewidth of 0.02 Tesla at low temperatures (4.2K),

but for room temperature a linewidth of 0.01 Tesla. In this work only a

natural linewidth of 0.02 Tesla was used, since the most interesting temper-

ature range is below T/JL=0.05, which explains the larger FWHM at higher

6.75 6.80 6.85 6.90 6.95
H

0
 [Tesla]

280K

200K

100K

40K

30K

20K

x=0.0025

Figure 12.4: 65Cu left peak NMR Spectra for JL= 1920K JR/JL � 0.5 and
J3/JL � 0.03 with different temperatures compared with experiment (filled
circles) with a concentration of x=0.0025 and νRF � 83.55MHz.

temperatures compared to experiment. Also the curve for JR/JL=0.4 with
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J3/JL=0.02 (black crosses) shows qualitatively a similar behaviour, which

shows that more detailed investigation for an improved parameter set would

be reasonable for future studies.

While the FWHM is the primary indicator for the low temperature broaden-

ing effect, the shape of the NMR spectra is important as well. For this pur-

pose NMR spectra at different temperatures taken from experiment are com-

pared to the simulated NMR spectra for the parameter set with JR/JL=0.5

with J3/JL=0.03 (see Fig. 12.4). As can be observed the simulated NMR

spectra are in good agreement with the experimental ones. At lower temper-

atures the simulated ones are a bit wider, but the shape is comparable. The

difference at higher temperatures results again from the differing natural

linewidth.

12.2.2 Comparison to the Experiment of Ohsugi at al.

The results with the system parameters JR/JL=0.5 and J3/JL=0.03 pre-

sented in Sec. 12.2.1 are promising. However, so far the simulations have

been compared only to one experiment with an impurity concentration of

x=0.0025. To test the simulated spectra also on experiments performed by

Ohsugi et al.[29] simulations are performed according to the experimental

impurity concentrations. Note that in the simulations the parameters used

for the analytical description are the same as for Sec. 12.2.1. Only the

impurity concentration and the resonance condition parameters (νRF and

external field H0 for the main peak) have been adjusted according to exper-

iment. The different impurity concentrations can be simulated by adjusting

the size of the system box and the number of impurities.

In Fig. 12.5 simulated spectra are compared to experimental ones of a sys-

tem with an impurity concentration of x=0.001. Again the simulated NMR

spectra describe the experimental ones qualitatively very well. The asym-

metry in the experimental NMR spectra below 40K is caused by an overlap

with a 63Cu transition that has its main peak around 10.05 Tesla. But

the agreement on the unperturbed left side is noticeable. Results for quite

large impurity concentrations, namely x=0.01 and x=0.02, are plotted in Fig

12.6. Also for these large impurity concentrations the qualitative behaviour

is described fairly well by the simulated NMR spectra. However, at lower

temperatures the simulated broadening effect appears to become larger com-

pared to experiment. This is not a surprise considering that the analytical
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Figure 12.5: 65Cu left peak NMR Spectra for JL= 1920K JR/JL � 0.5
and J3/JL � 0.03 with different temperatures compared with experiment
(filled circles) with a concentration of x=0.001 and νRF � 125.1MHz. The
asymmetric experimental profiles below 40K are caused by an overlap of a
63Cu transition with it’s main peak around 10.05 Tesla.

model used for the simulations only considers up to two close impurities

residing on a the same ladder (see Sec. 11.5). While for small impurity con-

centrations (x¤0.0025) this approximation works well, for larger impurity

concentrations an additional configuration scan with more close impurities

residing on the same ladder is required for more accurate results. The pro-

cedure should be comparable to a cluster algorithm in which the different

impurity configurations correspond to different clusters.
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Figure 12.6: 65Cu left peak NMR Spectra for JL= 1920K JR/JL � 0.5 and
J3/JL � 0.03 with different temperatures compared with experiment (filled
circles) with a concentration of x=0.01. The inset shows the same system
with an impurity concentration of x=0.02.
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Part IV

Conclusion
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Conclusion

This work describes the complete process of developing a Quantum Monte

Carlo (QMC) code in the framework of the Stochastic Series Expansion

(SSE) towards its application on realistic systems. The analysed experi-

mentally observed effect is the low temperature broadening of the Cu NMR

line in the spin ladder compound SrCu2O3 when doped with a small amount

(x¤0.0025) of non magnetic impurities.

Here it is shown that the broadening effect can be reproduced by modelling

the system with coupled stacked spin ladders without the need of physically

unlikely large correlation lengths. This was required in former studies using

non stacked systems. Further a framework was developed that allows to

simulate NMR spectra of realistic materials for a certain temperature range

with a small amount of QMC simulations.

This strong reduction in computation time can help future studies to in-

vestigate NMR spectra of spin ladder compounds using even more complex

parameter sets as well as finding improved parameter sets to model real

systems better.
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[17] O. F. Syljůasen, “Directed loop updates for quantum lattice models,”
Phys. Rev. E, vol. 67, p. 046701, 2003.

[18] H. G. Evertz, G. Lana, and M. Marcu, “Cluster algorithm for vertex
models,” Phys. Rev. Lett., vol. 70, pp. 875–879, 1993.

[19] R. H. Swendsen and J.-S. Wang, “Nonuniversal critical dynamics in
monte carlo simulations,” Phys. Rev. Lett., vol. 58, no. 2, pp. 86–88,
1987.

[20] “OpenMP.” Website. http://www.openmp.org.

[21] “OpenMPI.” Website. http://www.open-mpi.org.

[22] MATLAB. Natick, Massachusetts: The MathWorks Inc., 2010.

[23] M. Suzuki, “Fractal decomposition of exponential operators with appli-
cations to many-body theories and monte carlo simulations,” Physics
Letters A, vol. 146, no. 6, pp. 319 – 323, 1990.

[24] A. W. Sandvik, “Stochastic series expansion method for quantum ising
models with arbitrary interactions,” Phys. Rev. E, vol. 68, p. 056701,
2003.

[25] M. Azuma, H. Yoshida, T. Saito, T. Yamada, and M. Takano,
“Pressure-induced buckling of spin ladder in SrCu2O3,” J Am Chem
Soc, vol. 126, no. 26, pp. 8244–6, 2004.
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