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Zusammenfassung

Herz-Kreislauf-Erkrankungen stellen in der heutigen Zeit die häufigste
Todesursache weltweit dar. Methoden, die eine verbesserte Früherken-
nung, Diagnose und Behandlung ermöglichen, sind demnach von globa-
ler Bedeutung. Mithilfe von mathematischen Modellen können wesentli-
che Einblicke in die komplexen Vorgänge innerhalb des Herz-Kreislauf-
Systems gewonnen werden. Von besonderem Interesse ist hierbei ein ver-
bessertes Verständnis für die zeitlichen Änderungen von Druck und Fluss,
da diese Rückschlüsse auf den Zustand der arteriellen Gefäße ermögli-
chen. Die mathematische Beschreibung des Zusammenspiels dieser beiden
Größen wird jedoch empfindlich durch verschiedenste Ausbreitungsphä-
nomene von Wellen innerhalb des Arterienbaumes erschwert. Die soge-
nannte „Reservoir-Theorie“ setzt hier an und modelliert die tatsächliche
Druckkurve als eine Summe bestehend aus Reservoir- und Exzess-Druck.
Ersterer ist hauptsächlich durch die Elastizität der großen Arterien be-
stimmt, während zweiterer die Wellenphänomene abbilden soll. Auf Basis
dieser Methode konnten bereits bemerkenswerte Resultate im Bereich der
aufsteigenden Aorta erzielt werden. Gestützt auf die zwei Beobachtun-
gen, dass zum Einen der Druckabfall an verschiedensten Orten im Ar-
terienbaum sehr ähnlich und zum Anderen der berechnete Exzess-Druck
proportional zum aortalen Fluss ist, glaubt man das Konzept auf herzfer-
nere Orte übertragen zu können. Um diese Erweiterung zu rechtfertigen,
wurden jedoch obige Beobachtungen zu zwei wesentlichen Annahmen.

Für die Anwendung der Reservoir-Theorie auf peripheren Arterien wa-
ren insgesamt 110 Druck- und Flusskurvenpaare, gemessen an der Arte-
ria brachialis und carotis, verfügbar. Zuerst wurde das Reservoir-Konzept
mathematisch hergeleitet und theoretisch untersucht. Insbesondere wur-
den zwei – für die Praxis wichtige – Methoden betrachtet: Methode 1
setzt die Flusskenntnis an der entsprechenden Arterie voraus während
Methode 2 auf obigen beiden Annahmen beruht und die Flusskenntnis
folglich nicht erforderlich ist. Insgesamt kamen drei unterschiedliche Al-
gorithmen zur Anwendung, wobei zwei verschiedene Berechnungsansät-
ze für die zweite Methode untersucht wurden. Vor der Aufspaltung des
Druckes in Reservoir- und Exzess-Komponente wurden die Datensätze
aufbereitet und deren Auswirkungen untersucht. Weiters wurde die Sen-
sitivität der Algorithmen auf ihre jeweiligen Eingabeparameter, wie etwa
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der geschätzten Systolendauer, ausgewertet, auf dessen Basis in weiterer
Konsequenz die Parametrisierung der Algorithmen erfolgte. Im Anschluss
wurden die Brachialis- und Carotis-Druckkurven gemäß des Reservoir-
Konzeptes separiert, die resultierenden Reservoir-Drücke verglichen und
systematische Unterschiede zwischen den Implementierungen diskutiert.
Zu guter Letzt wurden alle berechneten Reservoir-Kurven und einige aus
ihnen abgeleitete Parameter untersucht, wobei ein Hauptaugenmerk auf
klinisch relevante Indikatoren, wie etwa Pulsamplitude und Fläche des
Drucks über diastolischem Blutdruck, lag.

Die numerischen Experimente zeigten ähnliche Ergebnisse bei beiden
Algorithmen der Methode 2. Im Gegensatz dazu wurden deutliche Dif-
ferenzen beim Vergleich beider Methoden untereinander im Hinblick auf
Kurvenform und zugehöriger Parameter festgestellt. Beim Großteil der
Resultate lieferte die erste Methode systematisch höhere Pulsamplitu-
den und geringere Zeitkonstanten, die damit auf einen steileren Druck-
abfall in der Diastole hindeuten. Des Weiteren wurde auch eine merkli-
che Sensitivität bezogen auf die geschätzte Systolendauer bei sämtlichen
Implementierungen beobachtet. Darüber hinaus wiesen die Reservoir-
Kurven Unterschiede je Arterie auf. Generell besitzten die Reservoir-
Kurven der Brachialis kleinere Pulsamplituden und Flächen bei sämtli-
chen Implementierungen während die Pulsamplituden bei den Brachialis-
Messwerten geringfügig höher waren. Speziell waren die Pulsamplitu-
den im Mittel um 4mmHg und die Flächen um 2mmHg s bei der Bra-
chialis kleiner gemäß Methode 2. Die dazu entsprechenden gemessenen
Brachialis-Druckkurven hingegen hatten nach der Datenaufbereitung ei-
ne um etwa 4mmHg höhere Pulsamplitude und eine um ca. 5mmHg s
kleinere Fläche verglichen mit der Carotis. Dennoch konnte bewiesen
werden, dass die zweite wesentliche Annahme der Reservoir-Theorie des
zum Exzess-Druck proportionalen Aortaflusses, im Falle ihrer Gültigkeit,
mathematisch genauer charakterisiert werden kann.

Insgesamt deuten die Ergebnisse darauf hin, dass die Voraussetzun-
gen für die Anwendung der Reservoir-Theorie an der Arteria brachialis
und carotis nicht erfüllt sind. Demnach sollte die durchgeführte Sepa-
ration des Druckes eher als eine entsprechend eines Lumped Parameter
Modells interpretiert werden. Ferner bestehen aufgrund der Sensitivität
gegenüber der geschätzten Systolendauer Zweifel im Hinblick auf eine
zuverlässige Bestimmung medizinisch relevanter Parameter.
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Abstract

In modern times cardiovascular diseases (CVDs) constitute the major
cause of death worldwide. Thus, improvements in diagnosis, treatment
and prevention of CVDs could mean a further significant enhancement in
global health care. In this context cardiovascular modelling plays a key
role in order to gain valuable information on the human circulatory sys-
tem. Especially a profound understanding of the pressure and flow wave-
forms of blood are of high interest since they reflect the physical state of
a patient’s arterial system. However, the mathematical models have to
deal with considerably complex phenomena related to the wave propaga-
tion within the arterial tree. A very recent modelling approach meant to
address this issue properly is called the Reservoir Theory. Several results
have testified a promising ansatz of regarding the actual pressure wave-
form as an instantaneous sum consisting of an arterial compliance-related
reservoir and a wave-associated excess pressure at the aortic root. Due
to various experiments, it is believed that the same concept might suit
for more distal locations too. Nonetheless, two assumptions are crucial
to justify this extended reservoir concept: A similar pressure waveform
decay at different arterial locations during diastole and a corresponding
excess pressure proportional to the flow at the aortic root.

In total 110 pairs of pressure and flow curves measured at the brachial
and carotid artery were available in order to apply the Reservoir The-
ory on this data. Firstly, the reservoir concept was mathematically de-
rived and theoretically investigated. In particular, two distinct – and
practically important – methods were regarded: Method 1 is based on
the knowledge of flow at the respective artery and method 2 relies on
the extended reservoir concept which does not require the flow. Three
different algorithms were used whereby two distinct computational ap-
proaches were considered for the latter method. Prior to the pressure
separation, necessary data preprocessing was performed and its effects
analysed. Moreover, the sensitivity of all algorithms to input parameters
such as estimated notch time was pointed out. Based on these findings
the respective algorithms got parametrized and, in further consequence,
both the brachial and carotid pressure waveforms got separated. Their re-
sulting reservoir curves were compared and systematic differences among
all implementations discussed. Lastly, all computed reservoir waveforms
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and their deviated parameters were examined whereby a particular focus
was put on clinically relevant indicators such as pulse pressure and area
of pressure above diastolic blood pressure.

The numerical results showed similar results of both algorithms asso-
ciated with method 2. In contrast, remarkable differences with respect
to both the reservoir pressures and their deviated parameters were wit-
nessed as opposed to the first method. In the majority of cases, method 1
generated systematically higher pulse pressures and lower time constants
indicating a steeper pressure decay in diastole. Furthermore, a notable
sensitivity on the estimated notch time was observed among all imple-
mentations. Apart from that, the obtained reservoir curves differed for
brachial and carotid data. In general, brachial reservoir curves exhibited
lower figures in pulse pressure and area of pressure above diastolic blood
pressure among both methods whereas total pulse pressure was slightly
higher for brachial readings. Particularly, and with respect to method 2,
the differences in pulse pressure and area of pressure above diastolic blood
pressure between the corresponding brachial and carotid reservoir curves
were, on average, about −4mmHg and −2mmHg s respectively. In con-
trast, the provided measured pressure waveforms exhibited mean figures
of approximately 4mmHg and −5mmHg s for the respective differences
after data preprocessing. Nevertheless, the second main assumption for
the extended Reservoir Theory was, in case of its validity, mathematically
refined.

Overall, the findings suggest that the brachial and carotid reservoir
curves do not meet the necessary assumptions to justify the application
of the extended Reservoir Theory at these arterial locations. In partic-
ular, the assumed similarity of arterial reservoir curves is questionable.
Thus, the pressure separation at the respective artery might rather be
considered as a separation according to a local lumped parameter model.
Moreover, the observed sensitivity to the estimated notch time of all al-
gorithms causes doubts in terms of the reliable prediction of clinically
relevant parameters.
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Chapter 1

Introduction

Since the beginning of mortality and morbidity recordings a steady rise
of life expectancy has been witnessed globally. According to the World
Health Organization (WHO) a person who was born in 1955 was likely
to live 48 years and in 1995 already 65 years [35]. By 2025 it is expected
that no country worldwide will exhibit a life expectancy of less than 50
years. Moreover, the WHO states an average life expectancy of 70 years
of the global population born in 2012, having its peak in Japan with 84
years.

Modern medicine and its ability of curing and preventing diseases has
been an essential driver for this trend. The number one cause of death
worldwide is still rooted in cardiovascular diseases (CVDs). With refer-
ence to [20] CVDs are responsible for approximately 47% of all deaths
in Europe and for about 40% in the European Union. In Austria the
national statistical office Statistik Austria recorded that 42.7% of the
deaths in 2012 were caused by CVDs, followed by cancer achieving a pro-
portion of 25.5% [4]. Therefore, improvements in diagnosis, treatment
and prevention of CVDs could mean a further significant enhancement
in global health care.

Against this background many approaches have been developed to
model the cardiovascular system so as to describe the underlying phe-
nomena of hemodynamics and, hence, gain valuable information comple-
menting those provided by medical doctors. In this context pressure and
flow waveforms of blood in combination with their deduced parameters
are of main interest since they are capable to describe the physical state
of a patient’s arterial system. For example systolic blood pressure, pulse
pressure and arterial compliance1 were revealed as major predictors of
cardiovascular morbidity and mortality in recent years [5, 11, 33].

However, in order to obtain reliable information one has to deal with
numerous and considerably complex phenomena related to the propa-

1The pulse pressure represents the difference between the systolic and diastolic blood
pressure whereas the arterial compliance constitutes an indicator for the elasticity
of the main arteries.
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1. Introduction

gation of pressure and flow waveforms within the cardiovascular system.
One approach meant to address this issue properly is called the Reservoir
Theory. Promoters believe that this fairly new concept might contribute
a deeper insight to the challenging and very important subject of wave
travel in arteries. Initially the Reservoir Theory was developed to exam-
ine pressure and flow waveforms originating in the ascending aorta [31].
Nonetheless, since generally pressure and flow waveforms cannot be ob-
tained easily in the aortic root its inherent concept was subsequently
extended to arbitrary points within the arterial tree under some assump-
tions [1]. These assumptions are crucial for the applicability of the Reser-
voir Theory and therefore are currently subject of further investigation.

1.1 Reservoir Theory: The Main Principles

and Assumptions

For many years scientists have puzzled over the different waveforms be-
tween pressure and flow at the aortic root which have never been ex-
plained satisfactorily [31]. Despite various kinds of models this issue is
still persistent which, in turn, propels scientists to new modelling ap-
proaches. According to [7] two observed phenomena were the basis for
introducing a new concept – the Reservoir Theory :

(i) The elasticity of arteries induces a cushioning and recoiling effect
which smooths the pulsatile pressure and flow of every cardiac ejec-
tion. As a consequence an almost steady perfusion at tissue level
is achieved.

(ii) Travelling waves get reflected at different sites within the vascular
tree. Hence, the measured pressure and flow waves are a result
of superimposed forward- and backward-travelling waves which de-
pend strongly on the site and characteristics of the arterial location.

Indeed, these observations are believed to contribute to the pressure and
flow waveforms at any site along the arterial tree. Taking into account
these aspects a reasonable ansatz for a further investigation is to sep-
arate them from the measured pressure waveform. The main idea of
the Reservoir Theory is now to divide the measured pressure waveform p
into a time-dependent reservoir pressure pres and the remaining time- and
location-dependent excess pressure pex. Consequently, p is considered as
an instantaneous sum of the compliance-related reservoir pressure and
the excess pressure depending on local conditions which formally reads

p = pres + pex.

2



1.2. Thesis Objectives

This approach was firstly published in [31] in 2003 and was applied to
pressure and flow waveforms measured at the ascending aorta which
yielded remarkable results in terms of potentially solving some long-
lasting problems in this field.

In a subsequent publication [1] this concept was evolved further such
that the Reservoir Theory was meant to not only be able to model wave-
forms at the aortic root, but also to predict corresponding pressure wave-
forms at any arbitrary location in arteries when the flow rate into the
arterial system qin is not known. This was concluded from two empirical
observations [1, §2.2]:

(A1) The pressure waveform decay measured at different locations in
the arterial system is very similar during diastole.

(A2) The excess pressure at any aortic location is approximately pro-
portional to the flow in the aortic root.

Therefore, on locations where these assumptions are true, the respective
separation in reservoir and excess pressure can be performed by the mere
knowledge of the pressure waveform p at this arterial site without know-
ing the aortic flow. In other words it is believed to overcome the lack of
information by simply assuming (A2)

qin ∼ pex = p− pres,

whereby the reservoir pressure is supposed to be computed reliably due
to (A1).

Hence, if these assumptions are true, the description of many phenom-
ena within the cardiovascular system would be tremendously simplified
since in practice it is difficult to acquire both waveforms of arterial flow
and pressure simultaneously.

However, for conducting this thesis 110 pairs of measured pressure
and flow velocity waveforms at both the brachial and carotid artery are
available. This data was thankfully provided by Prof. Alun D. Hughes2

and acquired in the course of the Hypertension Associated Cardiovascular
Disease ASCOT3 substudy at the St. Mary’s Hospital center, London,
UK.

1.2 Thesis Objectives

The opportunity of holding numerous pressure and flow velocity wave-
forms at both the brachial and carotid artery enables manifold possibil-

2Prof. Alun D. Hughes, International Centre for Circulatory Health, NHLI, Imperial
College London, St Mary’s Hospital, London W2 1LA, United Kingdom.

3Abbreviation for “Anglo-Scandinavian Cardiac Outcome Trial”.
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1. Introduction

ities related to the application of the Reservoir Theory. In respect of
this thesis the objectives were related to the application of two different
approaches of the Reservoir Theory:

Method 1: Separate the measured pressure waveform at each artery
by using the flow velocity.

Method 2: Separate the measured pressure waveform at each artery
by assuming (A1) and (A2).

Thus, the second method does not use the arterial flow rate for the
pressure separation but assumes to know the waveform at the aortic root
by (A2) instead. In combination with (A1), this is sufficient to perform
the pressure separation at the respective artery. In further consequence
one has to expect differences in their corresponding pressure separations
which give rise to the three objectives of this thesis:

Objective 1: Compare the results of method 1 and 2 based on physio-
logically meaningful parameters. Quantify the reservoir
pressures in terms of clinically relevant parameters such
as the pulse pressure and the area of pressure above di-
astolic blood pressure.

Objective 2: Investigate the sensitivity of the implemented algorithms
on input parameters such as the estimated notch time4.

Objective 3: Examine the validity of (A1) by comparing the reservoir
pressure decays at both arterial locations.

1.3 Thesis Outline

The thesis is structured in five chapters. In the current chapter the
general motivation for introducing a new model concept for describing the
cardiovascular system was given. It was pointed out that the Reservoir
Theory suggests to separate two phenomena from the actual pressure
waveform at the ascending aorta: The elasticity of the main arteries and
wave travelling phenomena. In further consequence, based on empirical
observations, the Reservoir Theory is believed to be applicable at any
arterial location by assuming those findings.

In the second chapter, necessary basics of hemodynamics and im-
portant models for describing the the cardiovascular system are provided

4The notch time indicates the end of systole when the aortic valve shuts and the
fillings of both ventricles start anew.
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so as to build up the Reservoir Theory on them. In particular, the classic
two- and three-element Windkessel Models are presented.

The third chapter is dedicated to the concept of the Reservoir The-
ory and its mathematical description. Two kinds of modelling approaches
are illustrated: Firstly, the separation of pressure based on the knowledge
of the aortic flow into the arterial system is described. And secondly, the
ansatz of dividing the pressure by the assumed knowledge of the aortic
flow is pointed out. In further consequence, relying on the assumed ob-
servations (A1) and (A2), the extended Reservoir Theory is presented
which is supposed to be applicable at any arterial location. Available
data sets of pressure and flow velocity waveforms of the brachial and
carotid are discussed. The necessity of performing some data prepro-
cessing prior to the application of the Reservoir Theory is pointed out
and the methods used are documented. Additionally, two methods for
estimating the systolic time duration used in this thesis are described.
Lastly, three different implementation approaches of the Reservoir The-
ory are presented. One relies on the classic approach incorporating the
flow rate, and the others implement the extended concept meant to per-
form the pressure separation in case that the flow is not available. Since
they base on different input parameters possible model interpretations
are presented and a possible conversion formula of important peripheral
parameters is deviated.

The fourth chapter is dedicated to the comparison of the numeri-
cal results and their discussion. Beside the documentation of the im-
pact of data preprocessing on the altered waveforms the sensitivity of
the respective algorithms on their parametrization is investigated as well
before performing the Reservoir Theory. In the following the pressure
separations acquired by all implementation methods are examined and
interpreted. An extension of (A2) was formulated under which both con-
cepts theoretically should yield identical results at any arterial location.
The complete output parameters of all algorithms are checked against
each other at both the brachial and carotid artery. Systematic differ-
ences in the corresponding pressure separation are pointed out by means
of several indicators. Furthermore, clinically relevant parameters are de-
viated from the the respective reservoir curves and compared for both
arterial locations. Finally, the assumption (A1) is investigated based on
the brachial and carotid reservoir waveforms.

In the last chapter, a conclusion of all findings is given. Further im-
provements are suggested and other possible applications of the Reservoir
Theory are stated.
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Chapter 2

Pressure and Flow Waves in

Arteries

In this chapter necessary basics of hemodynamics and important models
for describing the cardiovascular system are provided in order to build
up the Reservoir Theory on them in chapter 3.

2.1 Cardiovascular Physiology

Beside many other tasks the main function of the cardiovascular system1

is to transport sufficient oxygen and nutrients to all parts of the body
whilst simultaneously being responsible for the removal of waste prod-
ucts. The driving force of this procedure is the heart by providing cyclic
heart beats to pump the blood periodically into the vascular system. A
general overview of the circulatory system is given by fig. 2.1.

Oxygenated blood, gathered in the left atrium, is forwarded to the
left ventricle, where the contraction of the heart pumps blood with high
pressure into the systemic arteries starting at the aorta. Then the blood
is conducted to the arterioles and capillaries where the microcirculation
is happening. Oxygen is transferred to the tissues and carbon dioxide
is passed to the blood. The capillaries merge into venules where the
deoxygenated blood enters the systemic veins bringing the blood back
to the heart by reaching the right atrium. The blood is ejected into
the pulmonary circulatory system by the right ventricle in which oxygen-
depleted blood gets reoxygenated in the lungs and finally returns to the
left atrium where the cycle starts again. Since blood never leaves this
network of blood vessels, it is referred to as a closed cardiovascular sys-
tem.

The pressures occurring in both the pulmonary and systemic system
exhibit remarkable differences as can be observed in fig. 2.2. Pressures
within the aorta and systemic arteries fluctuate considerably in time be-

1Also called circulatory system.
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Figure 2.1: The cardiovascular system
Source: [29, Fig. 21.17]
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2.1. Cardiovascular Physiology

Figure 2.2: Pressure distribution in the human cardiovascular system
Source: Modified from [24, Fig. 2.2] which originally stems from [22]

tween approximately 80mmHg and 120mmHg with a gradual decrease
towards capillaries whilst the pressures in the venous system remain in-
substantial at around 10mmHg. The pressures in the right ventricle and
the pulmonary arteries are slightly higher, oscillating at about 30mmHg.
In contrast, the pressure in the left ventricle is highly volatile ranging
from 0mmHg to 120mmHg.

However, regarding the blood volume, vessels located at the systemic
veins contain about 54%, whilst systemic arteries and pulmonary circu-
lation comprise approximately 20% and 14% respectively. The rest is
stored in capillaries [24].

2.1.1 The Cardiac Cycle

After this overall outline of the circulatory system a more detailed de-
scription is given so as to get a better understanding of the corresponding
aortic pressure waveform.

One cardiac cycle is divided into several stages. Each stage can be
addressed separately by two important terms, namely the systole and
diastole. Referring to the electrocardiogram (ECG) signal in fig. 2.3 the
former starts with the the ventricular contraction, indicated by the QRS-
complex, and the latter with the ventricular relaxation, initiated by the
T-wave, respectively. The sequence of events for a single heart beat of
the left heart is now as follows [8, § 4.2.2], whereby the numbers indicate
the stage associated with fig. 2.3:

1. Atrial filling (mid to late diastole): The two atrioventricular (AV)
valves of the right and left atrium are open and both the pulmonary
and aortic valves are closed. In fig. 2.1 this situation is depicted.
Therefore blood enters the left and right atrium but cannot get
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2. Pressure and Flow Waves in Arteries

out of the ventricles. In the end of this stage an electrical stimulus
activates both atria forwarding blood to the ventricles.

2. Ventricular contraction, stage I (early systole): After stimula-
tion the ventricles contract which gives rise to a higher ventricular
pressure forcing the AV valves to snap shut. The corresponding
sound is known as the first heart sound and can be detected by
a stethoscope. Given that blood is incompressible, the ventricular
blood volume remains unchanged causing a steady rise in ventric-
ular pressure. When the increasing ventricular pressure exceeds
aortic pressure the aortic valve snaps open yielding to an ejection
of the blood.

3. Ventricular contraction, stage II (mid to late systole): Aortic
pressure increases, achieving a peak and then drops gradually. As
soon as aortic pressure is undershot the aortic valve snaps shut
leading to the second heart sound indicating the end of systole.

4. Ventricular relaxation (early diastole): Due to the ongoing ven-
tricular relaxation the decreasing ventricular pressures fall below
atrial pressures which, subsequently, opens the AV valves and the
ventricular fillings start anew, introducing again the first stage in
this periodic process.

As described above the heart is the driving force to pump the blood
into the arterial system leading to pressure waveforms varying in time
and location depending on the conditions along the vascular tree. The
related pressure differences at different sites cause a flow and vice versa.
For the very beginning of the arterial tree, at the aortic root, both the
flow and pressure patterns are illustrated in fig. 2.4. The flow is given in
l/s and its curve is scaled such that pressure and flow have comparable
heights in systole. At an early stage of systole pressure and flow are
closely aligned until, at some point, this characteristic diminishes. The
ongoing deviation can be partly explained due to existence of travelling
waves which arrive at a later stage and partly due to the elastic compli-
ance of the aorta which acts as storage of blood. The presence of those
two phenomena constitutes the basic idea of the new approach called
Reservoir Theory. However, before discussing the phenomena of wave
reflection in the vascular bed and the elasticity of larger arteries in more
detail, their direct impact on locally distinct waveforms is described in
the following subsection.
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Figure 2.3: Cardiac cycle of the left heart
Source: Modified from [8, Fig. 4.9] which was modified from [30]

Figure 2.4: Aligned pressure and flow waves in the aortic root
Source: Modified from [31, Fig. 1]
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2.1.2 Different Waveforms at Different Locations

As already observed in fig. 2.2 pressures vary remarkably within the ar-
terial tree. The periodic cardiac contraction and relaxation combined
with local characteristics of the circulatory system lead to time- and
location-dependent pressure and flow distributions throughout the ar-
terial circulation. Schematic pressure waveforms along the arterial tree
including their mean levels are depicted in fig. 2.5. It indicates the highly
volatile pressure waveform in the left ventricle depending on the stage of
the cardiac cycle. Furthermore, the pressure waveforms tend to exhibit
higher amplitudes with steeper changes the more distal located they are
from the heart whilst simultaneously exhibiting a decreasing mean pres-
sure. Moreover, at the end of systole a notch is visible at the ascending
aorta which is known as the dicrotic notch and indicates the closure of
the aortic valve. Along the arterial tree this dicrotic notch becomes less
evident until it diminishes completely which is as well observable in the
upper panel of fig. 2.6. Referring to the bottom panel similar results
hold for the flow velocity but, as opposed to the changes in pressure,
the velocities tend to decrease along the arterial tree. It is important
to notice that flow and velocity waves are related to each other by the
corresponding cross-sectional area A of the respective arterial location,
i.e.

u =
q

A
. (2.1)

This relationship is a deduction of the mass conservation law for incom-
pressible fluids. Hence, the flow velocity u may be understood as the
cross-sectional average velocity determined by the volume flow rate q
through an artery of cross-sectional area A. For further considerations
one has to keep in mind that the waveforms of both the pressure and
flow vary along the cardiovascular system whose causes are rooted in
local circumstances which are hard to predict and therefore constitute
severe difficulties in modelling the arterial system.

2.2 Cardiovascular Modelling

In this section several definitions and concepts helping to characterize
the cardiovascular system are provided in order to describe widely used
model approaches.
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Figure 2.5: Pressure distribution in the arterial circulation
Source: [6, Fig. 12.12]

Figure 2.6: Pressure and flow velocities at different sites in dog arteries
Source: [6, Fig. 12.19] which is based on [21]
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2.2.1 Resistance

In the context of describing the circulatory system several types of resis-
tances are used. Generally, a resistance R quantifies the ratio between
the pressure drop ∆p and flow rate q through a vessel, i.e.

R :=
∆p

q
.

The unit of resistance is given by mmHg s/m3. In the simple case of a
single uniform vessel Poiseuille’s law predicts the flow

q =
π

8 η

r4∆p

ℓ

and hence the resistance R to be

R =
∆p

q
=

8 η

π

ℓ

r4

where η denotes the blood’s viscosity, r the radius and ℓ the length of the
vessel. It is evident that general vessels do not obey these characteristics
but Poiseuille’s law is widely used as a convenient approximation though.

The total vascular resistance2 is referred to as the total resistance of all
arteries, arterioles, capillaries, venules and veins which is mainly deter-
mined by the small arteries and arterioles [34, §6]. Therefore it is often
called (total) peripheral resistance. In a first approximation this becomes
clear by considering the vessels’ diameters and applying Poiseuille’s law
to the diameters given in table 2.1 which identifies the small vessels as
the major contributors to the resistance. Nevertheless, even though cap-
illaries possess small diameters they remain insubstantial in compari-
son [34, §6].

Other important resistances, which are in fact impedances since they
are defined in the complex plane, are the input and the characteristic
impedances. Impedances are given by the ratio between pressure and flow
rate for oscillatory signals and consequently are stated in the same unit
as resistances. These sinusoidal signals can be derived by the application
of Fourier Analysis. The input impedance describes the net impedance of
all vessels downstream the point of definition. For example the aortic in-
put impedance defines the total impedance of all vessels downstream the
ascending aorta including all peripheral arteries. In contrast, the char-
acteristic impedance describes the pressure flow ratio during the absence
of reflections. It will be important later on in section 2.2.4.

2Also called systemic vascular resistance.
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Vessel
Average
diameter

(mm)

Wall
thickness

(mm)

Average
length
(cm)

Ratio of wall
thickness to

radius

Aorta 25.000 2.000 40.00 0.16

Medium arteries 4.000 0.800 15.000 0.40

Arterioles 0.300 0.020 0.200 0.75

Capillaries 0.008 0.001 0.075 0.25

Venules 0.020 0.002 0.200 0.20

Medium veins 5.000 0.500 15.000 0.20

Large veins 15.000 0.800 20.000 0.10

Venae cavae 30.000 1.500 40.000 0.10

Table 2.1: Approximate physical characteristics of different components
of the vascular system

Source: [16, Table 9.1] which is based on [12, Section 2]

2.2.2 Compliance

The compliance refers to the elasticity of arteries. By definition it quan-
tifies the pressure-volume relation by

C :=
dV

dp

where V denotes the Volume and p the pressure at the specific point of
interest3. Its unit is stated in m3/mmHg. The elastic compliance of the
systemic arteries is largely determined by the proximal 10% of the aorta,
which furthermore constitutes the most compliant part of the aorta [21].
Thus the total arterial compliance, as an important example, obtained by
addition of all vessel compliances in the arterial system is mainly given by
the elasticity of the large (or conduit) arteries [33]. Studies have revealed
the clinical relevance of compliance as it gives a “quantitative measure of
mechanical and structural properties” [34, p. 45] of organs, which alter
throughout the lifetime and with diseases [13, 14].

2.2.3 Wave Velocity, Wave Travel and Wave

Reflections

Basically, every heart beat causes pressure and flow waves to run down-
wards the arterial tree with a certain speed which is called wave speed or
pulse wave velocity. A good overview of this situation is given by fig. 2.7
where several blood pressure waveforms are depicted for different sites
located downstream a dog’s aorta. By comparing two curves, e.g. those

3The elastance E, in contrast, is defined as the inverse of the compliance, i.e. E =
1/C.
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Figure 2.7: Blood pressures in systemic arteries of a dog
Source: [6, Fig. 12.14] which originally stems from [23]

Figure 2.8: Transverse elastic wave
Source: Modified from [8, Fig. 4.17]

belonging to the points x = 0 cm and x = 12 cm, a time-lag can be ob-
served which corresponds to the actual time it takes the pressure wave to
reach its new location. It has to be mentioned that the actual pulse wave
velocity superimposes the velocity of blood. Whilst the flow velocity itself
decreases along the arterial tree (as seen in the lower panel of fig. 2.6) the
wave speed (responsible for the time-lag between the curves) increases in-
stead. This is a consequence of stiffening and the decrease of radius which
can formally be described by means of the Moens-Korteweg equation

c =

√
E d

̺D
(2.2)

where E denotes the Young’s modulus4, d the wall thickness of the vessel,
D the internal diameter of the vessel and ̺ the blood viscosity. In ta-
ble 2.1 the ratio d/(2D) is stated which explains the increase in wave
speed towards the small arteries. Consequently, since pulse waves are
way faster then the blood flow velocity in most locations the latter is
usually neglected [34].

Moreover, these waves travel as transverse elastic waves. In order to
explain that an elastic tube filled with blood is regarded whereby the
blood is, on average, at rest for the sake of simplicity [8, §4.3.4]. Existing

4It is also known as tensile or elastic modulus and measures the stiffness of an elastic
material. Generally holds: The higher the value the stiffer the material.
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Figure 2.9: The concept of the Windkessel
Source: [33, Fig. 1]

pressure differences within the tube at a given time lead to a specific
distension distribution, c.f. fig. 2.8. Given that at some point the wall is
locally distended the corresponding pressure difference to some point next
to it causes the fluid (i.e. the blood) particles to move. Two mechanisms
involved are the blood inertia and the elasticity of the wall which act
against this particle displacement. Due to this movement the pressure
drops at point 1 and increases at point 2. Hence the wave moves to the
right as a distension wave. It is important to notice that fluid particles
are not moving along the tube in the assumed case of dealing with no net
flow. They give rise to the fluid displacement until they move backward
to its original location. Therefore they rather “execute back-and-forth
oscillatory motions” [8, p. 188]. However, generally the wave speed can
be estimated by means of the Moens-Korteweg equation (2.2).

Furthermore, travelling waves not only propagate throughout the ar-
terial system but also get reflected whenever an impedance mismatch
occurs, e.g. at bifurcations. Hence, measured waves at any location are
a result of superimposed forward- and backward travelling waves.

2.2.4 The Windkessel Model

One of the earliest models used to describe the cardiovascular system are
called Windkessel Models. To date there exist several variations but the
first representative was the two-element Windkessel introduced by Frank
in 1899 [9]. The idea behind was to take into account the already known
blood storage effect of arteries in combination with peripheral resistance.
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(a) Two-element Windkessel (b) Three-element Windkessel

Figure 2.10: Windkessel models in electrical analogy

The concept can simply be presented with fig. 2.9. The elastic aorta
acts as air chamber in order to provide an almost steady flow through-
out the whole cardiac cycle for a sufficient perfusion on tissue level. In
electrical analogy it can be illustrated with fig. 2.10a whereby R denotes
the (total) peripheral resistance and C the (total) arterial compliance.
Therefore the compliance is regarded as electrical capacitance and the
peripheral resistance as electrical resistance. Such analogies are widely
used but one has to bear in mind that they sometimes could cause some
misunderstandings. For example an electrical capacitor needs an in- and
outlet and the currents involved are necessarily equal at both sides. In
contrast, a fluid compliance chamber (e.g. the ascending aorta) many
times only has one inlet and the corresponding flow rates in and out of
them do not have to be the same [8, Box 4.4].

The Windkessel model can also be regarded as a so-called lumped pa-
rameter model. Since the arterial system, with pressure and flow at its
entrance, is described by two parameters only – without caring about
exact local phenomena – this term is also justified. In particular these
parameters convey a special physiological meaning, namely the arterial
compliance and arterial resistance. However, wave travel phenomena
which happen inside the arterial tree, such as wave reflections, cannot be
described with this type of model [33].

In a two-element Windkessel model the pressure decay during diastole
can be stated as

pWk2(t) = pes e
−t/(RC) (2.3)

where pes denotes the end-systolic aortic pressure and t ≥ 0 indicates
the time within diastole. As a result the two-element Windkessel model
predicts an exponential decay with characteristic time constant RC and,
when either R or C is known, the missing parameter can be found af-
ter fitting the Windkessel pressure pWk2 to the measured pressure p by
adjusting the time constant RC. Generally, with (2.3) it is possible
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2.2. Cardiovascular Modelling

to approximate the diastolic pressure behaviour quite well but the two-
element Windkessel generally poorly predicts systolic pressure.

An improvement of the two-element Windkessel model can be achieved
by simply adding the characteristic impedance Zc as shown in fig. 2.10b.
The crucial point is that, now by extending the model with an impedance,
also characteristics for higher frequencies of the arterial system are con-
sidered. This particular shortcoming of the two-element Windkessel
model becomes obvious by regarding the impedance of the in parallel
connected arterial compliance and peripheral resistance in the frequency
domain. With the angular frequency ω := 2 π f for a frequency f the
impedance Xc of the compliance reads

Xc =
1

iω C
.

Thus the parallel circuit of R and C yield an input impedance

ZWk2(ω) :=
RXc

R +Xc
=

R

R/Xc + 1
=

R

1 + iωRC

=
R

1 + (ωRC)2
(1− iωRC)

of the two-element Windkessel in the complex plane. Equivalently writ-
ten in polar form this means

ZWk2(ω) =
R√

1 + (ωRC)2
e−i arctan(ωRC).

Consequently, the magnitude becomes negligibly small for high frequen-
cies and the phase φ = − arctan(ωRC) → −90◦. Therefore the input
impedance of a two-element Windkessel constitutes a “short circuit” for
high frequencies.

In contrast, by adding the (real valued) characteristic impedance Zc,
one obtains an input impedance

ZWk3(ω) := Zc + ZWk2(ω).

and hence

lim
ω→∞

ZWk3(ω) = Zc. (2.4)

As a consequence, for high frequencies only the characteristic impedance
contributes to aortic input impedance. Indeed, the input impedance
in humans for high frequencies is measured to be non-zero and stated in
literature as the characteristic impedance [34, Appendix 3]. Given that at
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2. Pressure and Flow Waves in Arteries

high frequencies wave reflections cancel, the characteristic impedance can
be regarded as the input impedance when no reflections exist at all. “Thus
the higher the frequency the closer you ‘look’ into the arterial system.
The three-element Windkessel indeed contains these three elements.” [33,
p. 138] meaning the three elements depicted in fig. 2.10b.
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Chapter 3

Reservoir Theory

The cardiovascular system can be described with several time and fre-
quency domain models. However, no matter what kind of approach is
chosen its purpose is the same: To understand the phenomena yielding
the actual (measured) flow and pressure waveforms. One plain fact is that
central flow and pressure waveforms exhibit differences which are difficult
to describe satisfactorily. In fig. 3.1 a typical pair of aortic pressure and
flow waveforms is illustrated1. It can be witnessed that whilst the pres-
sure decreases steadily during diastole the flow already has diminished.
Moreover, the waveforms in general exhibit different characteristics even
when the flow is substantially greater than zero which corresponds to the
ejection time of the heart in systole.

Figure 3.1: Pressure and flow waveforms in aortic root
Source: Modified from [31, Fig. 1]

Indeed, commonly accepted and widely used one-dimensional wave-
only theories necessarily lead to “standing waves” as a result of self-
cancelling forward and backward travelling waves in the arterial tree
during diastole which are difficult to explain in terms of physical or phys-
iological mechanisms, cf. [7, 32]. To date science is still unsure about its

1The picture for the aligned waveforms was already shown in fig. 2.4.
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3. Reservoir Theory

interpretation as, for example, Mynard et al. state that “a complete
wave-based explanation of self-cancelling diastolic expansion (pressure-
decreasing) waves has not yet been advanced” in [19]. Therefore ideas
coming up with new approaches beyond the classic theories have a place.
One of them is the Reservoir Theory whose idea arose in the early 2000’s
and on which it will be emphasized in this chapter.

But before starting with the modelling, some remarks on the notation
shall be given so as to provide a collection of all necessary and important
variables.

3.1 Notation

Variable Description Unit

p (Measured) arterial pressure mmHg

q (Measured) arterial flow m3/s

P∞ Asymptotic pressure mmHg

R Resistance mmHg s/m3

C Compliance m3/mmHg

Ts Time duration of systole s

Td Time duration of diastole s

Tb Total time duration of one cardiac
cycle or beat, i.e. Tb = Ts + Td

s

Table 3.1: Reservoir Theory – Important notation

Variables which will be used throughout this chapter are summarized
in table 3.1. Their meaning and corresponding unit are also given. Gen-
erally capital letters indicate constants and small letters time (and dis-
tance) dependent variables. It shall be emphasized that hereafter the
beginning of systole is defined for each pressure curve separately corre-
sponding to the upslope of the waveform. E.g., referring to fig. 2.3, the
start of systole for the left ventricular pressure is defined with the begin-
ning of stage 2 and for the aortic pressure with the initiation of stage 3.
Thus for further considerations the time shifts of the curves are virtually
set to zero. Since the travel time is not of special interest this procedure
implies considerable simplifications in further data handling. Obviously,
a generic definition of the start of systole for a pressure waveform is nec-
essary. On this particular issue will be focussed on in section 3.3. For the
moment it is presumed t = 0 indicates the start of systole. Additionally,
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3.2. Modelling

Ts denotes the time duration of the systole and Tb the time duration of
one cardiac beat.

3.2 Modelling

Knowing that both the aortic cushioning effect and the superposition of
travelling waves originating in the left ventricle contribute to the mea-
sured waveforms [7], one may attempt to separate these phenomena in
a proper way. The Reservoir Theory, firstly published in [31], picks
up this idea and presumes the separation of the pressure waveform in
a time-dependent reservoir pressure pres(t) and the remaining local ex-
cess pressure pex(x, t) depending on time and distance along the arteries.
Hence, for the pressure p it holds that, according to this assumption,

p(x, t) = pres(t) + pex(x, t) (3.1)

with x indicating the location at the arterial tree. Thus, a 1D-model
is assumed implicitly. The reservoir pressure pres is defined as the solu-
tion of the mass conservation law and therefore represents the solution
of a two-element Windkessel model. Nonetheless, a spatially uniform
reservoir pressure curve at every site of the arterial tree would implic-
itly suggest an infinite wave speed which could only be obtained in rigid
arteries with reference to (2.2). Since the Windkessel effect is based
on the arterial compliance an infinite wave speed would contradict the
Windkessel model.

Therefore, due to the fact that the ascending aorta is the main driver
of cushioning and recoiling [21], the reservoir pressure might be regarded
as

pres(x, t) = pres(t− θ(x)), (3.2)

where θ(x) ≥ 0 is considered as the time it takes for the travelling wave
to get from the ascending aorta to the vessel at site x [26]. Consequently,
the reservoir pressure waveform at different sites is assumed to be delayed
in time but without altering its waveform. A more exact procedure will
be illustrated in the subsequent sections.

3.2.1 Reservoir Pressure when Aortic Flow is known

This section introduces the original idea of the Reservoir Theory and is
mainly based on explanations found in [26] and extended by information
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3. Reservoir Theory

Figure 3.2: Modelling of the arterial tree

provided by the homepage of Kim H. Parker2.
Firstly, one can assume the arterial tree as being composed of N vessels

with K ≪ N terminal vessels, where each vessel splits into two daughter
vessels. The terminal vessels indicate the border to the microcirculation.
This situation is schematically depicted in fig. 3.2. At vessel 1 (aorta) the
ventricular outflow qin enters the arterial system. The mass conservation
law describes the total change of volume by

dV

dt
(t) = qin(t)− qout(t) (3.3)

whereby qout represents the flow out of the system into the microcircu-
lation. According to fig. 3.2 the total volume is split up into N vessels
with volume Vn, n ∈ {1, . . . , N}, which means

V =
N∑

n=1

Vn. (3.4)

Apart from that, the flow into the microcirculation qout is composed
of the sum of the flows through the K terminal vessels with indices
{i1, i2, . . . , iK} ⊆ {1, 2, . . . , N}. Stating the pressure of each vessel
n with length Ln as an instantaneous average pressure

pn(t) =
1

Ln

∫ Ln

0

p(x, t) dx for all n = 1, 2, . . . , N,

2Department of Bioengineering, Imperial College London, U.K. His homepage:
http://www.bg.ic.ac.uk/research/k.parker/res_press_web/rp_index.html.
Retrieved: October 17, 2014.
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3.2. Modelling

the flow through the kth terminal vessel with resistance Rik can be de-
scribed by

qik(t) =
pik(t)− P∞

Rik

,

whereby P∞ represents the pressure at which the flow through the micro-
circulation ceases. Based on the objective of using computable param-
eters which, additionally, can as well be acquired by clinical measure-
ments, the asymptotic pressure P∞ is assumed to be uniform throughout
the body [26]. Therefore it holds

qout(t) =
K∑

k=1

qik(t) =
K∑

k=1

pik(t)− P∞

Rik

. (3.5)

Inserting (3.4) and (3.5) into (3.3) leads to

N∑

n=1

dVn

dt
(t) = qin(t)−

K∑

k=1

qik(t) = qin(t)−
K∑

k=1

pik(t)− P∞

Rik

.

Taking into account the arterial compliances Cn := dVn

dpn
and assuming

them to be constant one infers

qin(t) =
N∑

n=1

Cn
dpn
dt

(t) +
K∑

k=1

pik(t)− P∞

Rik

. (3.6)

However, finally an equation for computing the reservoir pressure pres

is aimed. At the first step, pres is regarded to be uniform throughout the
arterial system, but delayed by the time θn it takes the waveform from
the root to vessel n according to (3.2). Thus, one obtains

pres,n(t) = pres(t− θn) (3.7)

as the (instantaneous average) reservoir pressure at vessel n. By assum-
ing that the mass conservation law (3.6) is also valid for the reservoir
pressures, one infers

qin(t) =

N∑

n=1

Cn
dpres

dt
(t− θn) +

K∑

k=1

pres(t− θik)− P∞

Rik

(3.8)

which constitutes a time-delay differential equation with constant coef-
ficients for the reservoir pressure3. Nevertheless, a fully specified equa-
tion necessarily requires the knowledge of all vessel compliances Cn, n =

3In [26] it is stated that ODE-theory guarantees existence and uniqueness of (3.8)
according to [10, 27].
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3. Reservoir Theory

Figure 3.3: Electric analogy of reservoir pressure ODE (3.12)

1, . . . , N and of all terminal vessel resistances Rik , k = 1, . . . , K which
are clinically unavailable. Therefore, by applying the Taylor series it
holds that

pres(t− θn) = pres(t)− θn
dpres

dt
(t) +O(θ2n).

By simply neglecting the terms O(θn) with reference to [26] it holds that4

pres(t) ≈ pres(t− θn) (3.9)

and consequently (3.8) simplifies to

qin(t) =
dpres

dt
(t)

N∑

n=1

Cn + (pres(t)− P∞)
K∑

k=1

1

Rik

. (3.10)

Defining

R :=
( K∑

k=1

1

Rik

)−1

and C :=
N∑

n=1

Cn (3.11)

as the resistance and net compliance of the arterial system respectively,
finally yields the linear inhomogeneous ordinary differential equation

qin(t) = C
dpres

dt
(t) +

pres(t)− P∞

R
. (3.12)

In electric analogy this equation is illustrated with fig. 3.3 containing a
source of flow rate qin. An equivalent form of (3.12) can be written as

d(pres − P∞)

dt
(t) =

pres(t)− P∞

RC
−

qin(t)

C
(3.13)

4It is assumed that θn is small compared to the beat duration Tb [26].
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whose solution reads

pres(t) =
e−t/(RC)

C

∫ t

0

qin(s) e
s/(RC) ds

+
(
pres(0)− P∞

)
e−t/(RC) + P∞

(3.14)

with 0 ≤ t ≤ Tb and pres(0) = p(0) being the initial pressure at the
system inlet at the beginning of systole.

In order to gain the solution pres in (3.14) one has to determine three
degrees of freedom R, C and P∞. One ansatz in order to achieve this goal
is to align the reservoir pressure waveform pres to the measured pressure
curve p during diastole. This is motivated by two reasons: Firstly, in
diastole the pressure waveform is assumed to be caused mainly due to
the recoiling of the ascending aorta representing the reservoir effect. And
secondly, which has a pleasant impact to the computation, during this
stage the flow qin out of the left ventricle is approximately zero since
the aortic valve is shut. In fact, this supports the assumption that pex is
assumed to be minimal in this phase because the wave activity is expected
to diminish at the aortic root shortly after the valve closure. Thus by
neglecting the flow rate during diastole the solution of (3.13) is given by

pres(Ts + t) =
(
pres(Ts)− P∞

)
e−t/(RC) + P∞ (3.15)

for 0 ≤ t ≤ Td and therefore representing an exponential decay. Based
on the assumption that the excess pressure is minimal during diastole
the difference

‖pres − p‖

may be minimized with a proper norm on an appropriate interval of time
during diastole. A possible norm and choice of interval will be introduced
in section 3.4 which is dedicated to the implementation of this classic
approach. However, when the reservoir pressure pres is determined, the
excess pressure pex can simply be computed by subtracting pres from p
according to (3.1).

3.2.2 Reservoir Pressure when Aortic Flow is not

known

As can be witnessed from (3.14) the knowledge of the aortic flow qin is
essential so as to be able to compute the reservoir pressure. In general
this is a very stringent demand since the flow out of the left ventricle
cannot be obtained easily. Furthermore it is quite difficult to measure
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3. Reservoir Theory

pressure and flow simultaneously and small time discrepancies may cause
considerably different results. Hence, in practice, another approach is
preferable. Here one of the main advantages of the separation (3.1) comes
into play: In [31] the similarity of the excess pressure curve pex and
the aortic flow qin was pointed out. Indeed, this observation constitutes
one of the most important implications of the Reservoir Theory since it
suggests the application of Ohm’s law in hydraulic analogy. For the next
step, this aspect is used as an assumption rather than an observation,
i.e. it is assumed that

qin = ζ pex = ζ (p− pres) (3.16)

where ζ denotes a proportionality factor with unit m3/(mmHg s). The
following procedure was firstly published in [1]: Substituting the rate
constants

a :=
ζ

C
and b :=

1

RC
(3.17)

of the arterial system with units 1/s, (3.12) becomes

dpres

dt
(t) + b

(
pres(t)− P∞

)
=

qin(t)

C
= a

(
p(t)− pres(t)

)
(3.18)

and equivalent transformation yields

d(pres − P∞)

dt
+ (a + b) (pres − P∞) = a (p− P∞). (3.19)

The solution of (3.19) becomes

pres(t) = e−(a+b) t

∫ t

0

a
(
p(s)− P∞

)
e(a+b) s ds

+
(
pres(0)− P∞

)
e−(a+b) t + P∞.

or, in equivalent notation after elementary transformation,

pres(t) = e−(a+b) t

(
pres(0)−

b

a+ b
P∞

+ a

∫ t

0

p(s) e(a+b) s ds

)
+

b

a+ b
P∞.

(3.20)

By assuming the ventricular flow rate qin to be zero during diastole the
corresponding exponential decay behaviour (3.15) in the new variables
corresponds to

pres(Ts + t) =
(
pres(Ts)− P∞

)
e−b t + P∞ (3.21)
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Figure 3.4: Electric analogy of reservoir pressure ODE (3.18)

for 0 ≤ t ≤ Td.
In electric analogy the ODE (3.18) can be illustrated with fig. 3.4

containing a source which provides the pressure p. Hence, according to
this analogy and the ansatz (3.16), the proportionality factor ζ represents
the inverse of the characteristic impedance Zc, i.e.

ζ =
1

Zc
. (3.22)

Therefore, the underlying model basically represents a three-element
Windkessel model.

In summary again three degrees of freedom, namely the asymptotic
pressure P∞ and the rate constants a and b, need to be estimated by
means of an optimization routine. But as opposed to (3.14), where the
knowledge of the aortic inflow qin is essential, here the aortic pressure
p is the only independent variable. Finally, when the reservoir pressure
pres is determined, the subsequent pressure separation can again easily
be obtained due to (3.1).

3.2.3 Reservoir Theory at Arbitrary Locations

So far the Reservoir Theory for the pressure separation of the measured
pressure waveform in the aortic root was described where the flow qin

into the arterial system is known or, as in the preceding section, assumed
to be known by (3.16). Hence, as introduced in [31] and described in
the previous sections 3.2.1 and 3.2.2, the Reservoir Theory was origi-
nally meant the resolve the differences of pressure and flow waveforms
in the ascending aorta, cf. fig. 3.1. However, when applied to simulta-
neously measured pressure and flow curves of dogs along the aorta two
observations were found [1, §2.2]:

(A1) The pressure waveform decay measured at different locations in
the arterial system is very similar during diastole.
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3. Reservoir Theory

(A2) The excess pressure at any aortic location is approximately pro-
portional to the flow in the aortic root.

It is hoped that when both of these observations are true the Reservoir
Theory can be extended to any arterial location in the arterial system
where these assumptions are true. Hence, by assuming (A1) and (A2),
the reservoir pressure can be determined from any pressure waveform
p regardless its spot of measurement with the procedure documented
in section 3.2.2.

In this thesis this extended Reservoir Theory will be applied particu-
larly to the arterial locations of brachial and carotid artery where mea-
sured data sets are available. Since beside pressure waveforms as well
flow velocities are provided, two different computation methods may be
performed:

1. Use the extended Reservoir Theory so as to compute the reservoir
pressure pres determined by only the measured pressure waveform
of both the brachial and carotid artery. Hence by assuming the
assumptions (A1) and (A2) the concept of section 3.2.2 is applied.

2. In addition to the measured pressure, use the flow velocities and
apply the classic theory as described in section 3.2.1 in order to
acquire the reservoir pressure pres. Two interpretations may be
possible:

a) The measured data sets at the brachial and carotid artery are
considered as an approximation to the aortic root waveforms
and therefore the application of the Reservoir Theory may be
justified.

b) The flow and pressure signals are regarded as involved param-
eters of a lumped parameter model like illustrated in fig. 3.4.
But importantly, in this case the relating parameters do not
describe the (simplified) situation at the aortic root. Indeed,
referring to fig. 3.4, p then denotes the pressure and qin the
flow at the brachial or carotid artery respectively. Hence, in
fact, one does not apply the Reservoir Theory in the narrow
sense but rather use a classic three-element Windkessel model.

Obviously some of the stated assumptions would require further justi-
fications. At this point it is referred to chapter 4 where all these results
will be opposed to each other and discussed explicitly. But prior to that
the following section is devoted to the measured data sets.
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3.3. Data, Data Preprocessing and Estimation of Notch Time

3.3 Data, Data Preprocessing and

Estimation of Notch Time

The final aim is to apply the Reservoir Theory on peripheral arteries as
just described in section 3.2.3. In total a bundle of 110 pressure and
velocity curves non-invasively measured at both the brachial and carotid
artery are available for this purpose. Since this data cannot be used
straight forward some data preprocessing is necessary. For example it is
recalled that all pressure curves are assumed to begin with the systolic
part. Moreover an estimation of the systolic time duration is essential
so as to apply the Reservoir Theory. This section shall mainly be under-
stood as prestage in order to apply the corresponding Reservoir Theory
algorithms which will be subject of the subsequent section 3.4.

3.3.1 Measured Data

In total 110 pairs of pressure and flow curves measured at the brachial
and carotid artery were available in order to apply the Reservoir Theory
on them. This data was thankfully provided by Prof. Alun D. Hughes5

and acquired in the course of the Hypertension Associated Cardiovascular
Disease ASCOT6 substudy at the St. Mary’s Hospital center, London,
UK. The used measurement procedure corresponds to those in [17] or [36].

In fig. 3.5 a generic set of the provided waveforms is shown where pb

denotes the pressure at brachial and pc the pressure at the carotid artery.
The same notation is used for the velocities ub and uc. Referring to these
waveforms it is important to notice that

(i) the brachial and carotid curves are shifted due to wave propagation
phenomena.

(ii) the end of the curves generally do not match their beginning.

(iii) the depicted beat time of the brachial curve is usually different com-
pared to the carotid counterpart. In contrast the pressure and ve-
locity signals related to the same location exhibit the same length.

(iv) even though it was intended to adjust the carotid curve to the same
brachial mean pressures they are usually distinct.

(v) the dicrotic notch becomes less evident for the brachial pressure.

5Prof. Alun D. Hughes, International Centre for Circulatory Health, NHLI, Imperial
College London, St Mary’s Hospital, London W2 1LA, United Kingdom.

6Abbreviation for “Anglo-Scandinavian Cardiac Outcome Trial”.
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Figure 3.5: Non-invasively, simultaneously measured waveforms at
brachial and carotid artery
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(vi) the diastolic brachial flow velocity is smaller than the carotid one
but generally both curves are greater than 0 during diastole.

Taking into account these observations one has to perform some data
preprocessing in order to apply the Reservoir Theory algorithms appro-
priately and compare its results adequately. Referring to (i), each curve
must be shifted such that every single curve begins with systolic stage.
In order to resolve (ii) each curve needs to be smoothly extended. Obvi-
ously this must be regarded equally for the velocity waveforms. The beat
duration of both the pressure curves cannot be matched but the carotid
curve can be scaled so as to dispose of curves with equal mean pressures
which addresses (iii) and (iv). Provided that the knowledge of the sys-
tolic time duration Ts is essential in order to apply the Reservoir Theory,
one has to estimate it reliably. Since, referring to (v), the dicrotic notch
may diminish for some curves another stable and generic technique needs
to be applied. The last observation (vi) is not of particular interest in
terms of data preprocessing but it will be important for the discussion of
the numerical results.

Therefore some data preprocessing needs to be done in order to dispose
of meaningful signals and a method for estimating the notch time Ts is
indispensable. The impact on the results of the chosen procedures of
data preprocessing will then be examined in chapter 4.

Before going on it has to be emphasized on the fact that the measured
waveforms of course are not continuous since the signals are gained with
a sampling rate of f = 200Hz meaning a time step of

∆t :=
1

f
= 0.005 s.

Against this background

T := {ti : i = 0, . . . , N} with ti = i∆t

is defined as the discrete set of all sampled points of time and

T β
α := {ti ∈ T : tα ≤ ti ≤ tβ}

denotes the range between tα and tβ with tα, tβ ∈ T . Hence all methods
applied need to deal with discrete functions of pressure pb, pc and velocity
ub, uc at the brachial and carotid artery respectively. Operations, like
differential operations, are implemented as discrete ones. However, for
the theoretical investigation it is taken advantage of the fact that the
measured waveforms can be extended on the whole interval [0, Tb] such
that they may be regarded as sufficiently smooth. The corresponding
smooth extensions of pressure and flow signals will be denoted with the
same letter. Nevertheless, it has to be kept in mind that these waveforms
basically are discrete.
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Figure 3.6: Estimated start of systole

3.3.2 Data Preprocessing

The data preprocessing is done in several steps and addresses the stated
observations (i) to (iv):

(DP1) Estimate the start of systole in the pressure curves. Its time
will be chosen for the flow curve too.

(DP2) Make signals periodical by appending the waveforms appro-
priately.

(DP3) Scale carotid pressure such that brachial and carotid pressures
have the same mean pressure.

(DP4) Align the carotid to the brachial curves so that they virtually
”start at the same time“.

(DP1): Estimation of start of systole

In fig. 3.6 the procedure is depicted schematically for a brachial pressure
waveform pb. In the following it will be denoted by p since the same
procedure is applied for the carotid curve too. With the notation

p(t) :=

(
t

p(t)

)
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two points p(ta) and p(tb), ta < tb, are chosen through which a straight
line g is put. Therefore it holds

g =

{(
ta

p(ta)

)
+ c

(
tb − ta

p(tb)− p(ta)

)
: c ∈ R

}

or, in a more compact form,

g =
{
p(ta) + c

(
p(tb)− p(ta)

)
: c ∈ R

}
.

In the algorithm the parameters are set to

ta := 0 and tb := argmax
ti∈T

(
dp

dt
(ti)

)
.

In a next step a finite amount of straight lines ht perpendicular to g for
t ∈ T b

a are introduced with

ht :=

{(
t

p(t)

)
+ d

(
−
(
p(tb)− p(ta)

)

tb − ta

)
: d > 0

}
. (3.23)

The intersection of g and ht is denoted by

xt := g ∩ ht (3.24)

which is distinct from the empty set if and only if ct, dt > 0 exist such
that
(

ta

p(ta)

)
+ ct

(
tb − ta

p(tb)− p(ta)

)
=

(
t

p(t)

)
+ dt

(
−
(
p(tb)− p(ta)

)

tb − ta

)
.

Equivalent transformation yields the linear equation
(

ta − tb p(ta)− p(tb)

p(ta)− p(tb) tb − ta

)(
ct

dt

)
=

(
ta − t

p(ta)− p(t)

)

with a regular matrix which consequently infers the solution
(
ct

dt

)
=

1

det

(
tb − ta p(tb)− p(ta)

p(tb)− p(ta) ta − tb

)(
ta − t

p(ta)− p(t)

)

whereby det denotes the determinant

det = −(tb − ta)
2 −

(
p(tb)− p(ta)

)2
< 0.
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Reformulating leads to
(
ct

dt

)
=

1

| det |

(
tb − ta p(tb)− p(ta)

p(tb)− p(ta) ta − tb

)(
t− ta

p(t)− p(ta)

)
(3.25)

which uniquely determines xt for all t ∈ T in the case dt > 0, i.e. when

dt > 0 ⇔
(
p(tb)− p(ta)

)
(t− ta) +

(
p(t)− p(ta)

)
(ta − tb) > 0

⇔
(
p(tb)− p(ta)

)
(t− ta) >

(
p(t)− p(ta)

)
(tb − ta)

⇔
p(tb)− p(ta)

tb − ta
>

p(t)− p(ta)

t− ta
.

The estimated start of systole is now defined as:

Find t⋆ ∈ T b
a : ‖xt⋆ − p(t⋆)‖2 = max

t∈T b
a

‖xt − p(t)‖2 . (3.26)

Bearing in mind (3.23) and (3.24) one obtains

xt − p(t) = p(t) + dt

(
−
(
p(tb)− p(ta)

)

tb − ta

)
− p(t) = dt

(
p(ta)− p(tb)

tb − ta

)
.

As a result (3.26) is equivalent to:

Find t⋆ ∈ T b
a : dt⋆ = max

ti∈T b
a

dti . (3.27)

Assuming d : t → d(t) to be the smooth extension of dt on ta ≤ t ≤ tb,
the optimization (3.27) requires for the derivations of d due to (3.25)

ḋ(t) ∼ p(tb)− p(ta)− (tb − ta) ṗ(t) = 0 ⇔ ṗ(t) =
p(tb)− p(ta)

tb − ta

d̈(t) ∼ −(tb − ta) p̈(t) < 0 ⇔ p̈(t) > 0

for ta ≤ t ≤ tb. In other words: The tangent of the continuous pressure
at the defined start of systole would be parallel to g and the waveform
itself convex.

In order to find t⋆ ∈ T b
a only the factor

(
p(tb)− p(ta)

)
ti − (tb − ta) p(ti) + (tb − ta) p(ta)−

(
p(tb)− p(ta)

)
ta

of the second row of (3.25) needs to be evaluated for all ti ∈ T b
a so as to

find the maximum of dt since it equals dt up to the constant factor det.
The corresponding t⋆ ∈ T b

a is then set as the start of the pressure curve.
In fig. 3.6 the part p(T ⋆

0 ) is illustrated as a dashed and p(T \ T ⋆
0 ) as a

solid line. This procedure is done separately for the brachial and carotid
pressure waveform.
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3.3. Data, Data Preprocessing and Estimation of Notch Time

(DP2): Periodization and Filtering

Figured out an estimate for the start of systole t⋆ the signal values p(T ⋆
0 )

need to be shifted to the end of the curve so as not to lose any information.
Since the measured signal waveforms are not expected to be periodical

themselves a proper method has to be applied. Two cases can occur: The
waveforms either depict ”more than a heart cycle or less“7. In the first
case it is possible to find a pressure level at the end of the curve close to a
point before the estimated start of systole in the former part of the curve.
In the second case this cannot be achieved. Thus three approaches are
implemented in order to obtain a periodic curve. The method of choice
is “top-down”: Preferring the upper and going downwards if it is not
applicable.

(P1) Determine the greatest time tCut ∈ T ⋆
0 such that p(tCut) ≈ p(tN).

Hence it is sought to attach the waveform at the end in a natural
and smooth way. Append p(T ⋆

Cut) at the end of the curve p(tN).

(P2) Find the smallest time tCut in the later stage of diastole such
that p(tCut) ≈ p(t0). Therefore the duration of one beat is not
prolonged artificially. Append the part of curve p(T ⋆

0 ) to p(tCut).

(P3) Simply move p(T ⋆
0 ) to the end of curve.

For all these approaches the transitions need to be smoothed, in particu-
lar in (P3) where no natural appending is possible. In the figs. 3.7 to 3.9
all three approaches are illustrated on curves of the respective type. In
the upper panel of each figure the appending procedure is shown whereas
in the lower the filtering is depicted.

The favoured approach (P1) in terms of obtaining seamless signals is
illustrated in fig. 3.7. In fig. 3.7a the red dash-dotted curve represents
the part p(T ⋆

Cut) of p(T ⋆
0 ) which fits best to the end of the curve p(T ).

The dotted line indicates the pressure level p(tN) which was used as
the pressure level within p(T ⋆

0 ) for the enhancement. In a next step the
transition of these two parts got filtered which is illustrated in the bottom
panel. For this purpose the Matlab-function smooth was used with a
span of 5 points. Since smooth implements a moving average method the

7Of course, this formulation is an oversimplistic description but it helps to address
the issue directly. On the one hand the discrepancy between the start and the end
of each curve may be a consequence of the averaging procedure of several pressure
curves. On the other, pressure and flow curves by no means need to be periodical
due to physiological aspects of breathing etc.
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3. Reservoir Theory

entries {p1, p2, . . . , pM} are filtered according to

p1 = p1

p2 =
1

3
(p1 + p2 + p3)

p3 =
1

5

5∑

i=1

pi

...

pj =
1

5

j+2∑

i=j−2

pi

...

pM−1 =
1

3
(pM−2 + pM−1 + pM)

pM = pM .

This smoothing operation was applied to 5 points before until, at maxi-
mum, the 14th point after the attached point8 such that it is guaranteed
that at least the last 3 points of the patched curve remain untouched in
order to get a smooth and periodic waveform with view to the beginning
of the curve. In total, this smoothing procedure is applied three times. As
a result, by prolonging the part p(T N

⋆ ) with p(T ⋆
Cut) and the subsequent

smoothing procedure, the periodic and smooth curve p̃ is obtained.
Applying (P2) to a measured curve where (P1) was not possible yields

fig. 3.8. This happens when the end of the measured pressure with value
p(tN ) falls below the values in p(T ⋆

0 ). In this case a carotid pressure
waveform is depicted. The pressure p(tCut) at the later stage of the
measured curve with a magnitude close to p(t0) is marked with the dotted
line. Then the signal p(T ⋆

0 ) is appended at tCut (red dash-dotted line)
and subsequently filtered (green thick solid line) in order to get p̃. The
used procedure and the choice of its parameters is the same as in (P1).

If both procedures (P1) and (P2) are not applicable (P3) is performed
which is illustrated in fig. 3.9. It seems that no full cardiac cycle is
sampled. Assuming that the beat duration is still correct the values p(T ⋆

0 )
are simply added at the end of the curve and afterwards the transition
zone gets smoothed. Because of generally substantial discrepancies of
the pressure magnitudes smooth is applied with a span of 11 to a range
beginning with 20 points before and, at maximum, 24 points after the

8Hence, in total a maximum sum of 20 points is filtered including the first attached
point.

38



3.3. Data, Data Preprocessing and Estimation of Notch Time

first appended pressure value. Like before, at least the last 3 points of
the added signal remain unfiltered.

In total (P1) was applied 69, (P2) 16 and (P3) 135 times yielding the
overall sum of all 220 measured pressure curves of both sites. Determined
by the pressure waveform the same procedure was then used for the
associated flow velocity so as to have the same duration of time Tb for
both signals.

Due to the preceding steps all curves are periodic and “smooth”9. Fur-
thermore an initial guess for the beginning of systole is given. Assuming
that the systole begins at the minimum pressure both pressure and flow
curves are shifted (after the filtering) such that the pressure curves begin
with their minimum. The minimum of the pressure curves was then set
to the diastolic blood pressure (DBP) provided by the measured brachial
data.

(DP3): Scaling of the Carotid Pressure

Given that both the carotid and brachial pressure curves now are periodic
and begin with their minimum which furthermore corresponds to the the
brachial DBP, the scaling can be performed easily. For this purpose

pb
mean :=

1

T b
b

∫ Tb
b

0

(
pb(t)− DBP

)
dt (3.28)

and

pc
mean :=

1

T c
b

∫ T c
b

0

(
pc(t)− DBP

)
dt (3.29)

are computed, whereby T b
b and T c

b denote the beat duration of the
brachial and carotid pressure waveform respectively. By defining

λ :=
pb

mean

pc
mean

the scaled carotid pressure waveform

¯̄pc := λ
(
pc − DBP

)
+ DBP

exhibits the same mean blood pressure as the brachial curve. In fig. 3.10
the results of the Matlab-implementation of step (DP3) is illustrated
whereby on the y-axis the pressure above diastole p − DBP is plotted.
For solving the integrals the function trapz is used. The value pc denotes
the carotid pressure after (DP2) and ¯̄pc its scaling according to the lines
above. Thus the area under the graphs divided by their respective beat
duration correspond to each other indicating equal mean pressures.

9In a sense that they do not provide implausible jumps. Still they are discrete.
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Figure 3.7: (P1)-Periodization and filtering of measured pressure
waveform
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Figure 3.8: (P2)-Periodization and filtering of measured pressure
waveform
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Figure 3.10: Pressure waveforms after carotid pressure scaling

(DP4): Alignment of Brachial and Carotid Curve

The measured curves of pressure and flow velocity of the same site exhibit
the same beat duration Tb, but generally the measured beat time of the
carotid pressure does not match the brachial one. This is likewise true for
the flow rates as flow and pressure waveforms related to the same site were
recorded simultaneously, cf. fig. 3.5. This characteristic is still preserved
after the steps (DP1) to (DP3). Both input pressure curves of (DP4)
start with their minimum pressure which was set to the DBP. As can be
witnessed from fig. 3.10 the pressure upslopes generally are not aligned
to each other. Whereas the brachial pressure is not altered the carotid
curve is shifted during (DP4) such that the initial carotid pressure slope
matches the brachial one closely. The outcome is exemplarily illustrated
for one data set in fig. 3.11. The variables without an arrow represent
the curves after (DP3) and the carotid ones with arrow denote the data
after alignment. Overall, fig. 3.11 represents the final data after data
preprocessing which are used for the Reservoir Theory algorithms.

3.3.3 Estimation of Notch Time

Provided that the data processing is already done for all measured wave-
forms the time t = 0 indicates the beginning of systole of each signal.
Hence the interval [0, Ts] denotes the systole and (Ts, Tb] the diastole.
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Figure 3.11: Final waveforms after data preprocessing
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3.4. Implementation of the Reservoir Theory

From a practical point of view it is important to be able to estimate the
start of diastole from the pressure waveform. In this thesis two methods
are used in order to fulfil this task.

Maximum Curvature

One idea to estimate the notch time of the measured pressure waveforms
is to define

Ts,A := argmax

(
d2p

dt2
(t′)

)
(3.30)

with p being the pressure at any arterial location and t′ within a range
around an initial guess of Ts.

Hence the time Ts,A corresponds to the pressure with maximum cur-
vature. The exact time Ts,A can only be acquired when p is sufficiently
smooth. Since p is a discrete signal the differentiation has to be imple-
mented as a discrete operation. Therefore in reality only an approxima-
tion ts,A of the systolic time duration Ts,A can be found.

Minimum Derivation

Another approach to estimate duration of systole of the measured pres-
sure waveforms is to define

Ts,B := argmin
0≤t′≤Tb

(
dp

dt
(t′)

)
. (3.31)

Again, in practice only an approximation ts,B ≈ Ts,B of the systolic time
duration is possible.

Both possibilities are depicted in fig. 3.12 for a measured brachial pres-
sure waveform. As can be witnessed in this figure, it holds Ts,B < Ts,A

for all data sets with reference to section 4.3.1.

3.4 Implementation of the Reservoir Theory

In this section the focus is put on how the Reservoir Theory is imple-
mented in Matlab in the course of this thesis. Generally the theory
described in section 3.2 can be implemented through several approaches.
One ansatz is to translate the formulas more or less directly by using
optimization routines provided by Matlab to obtain the missing pa-
rameters. Another possibility is to acquire some of the parameters of
interest by virtue of introducing other equations in order to reduce the
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Figure 3.12: Brachial pressure waveform with proposed notch times

application of optimization routines to a minimum. The algorithm of
Prof. Kim H. Parker10 is based on such an approach and thankfully was
provided for doing some further analysis.

3.4.1 Reservoir Pressure by using Flow Velocity

The main statements and a general overview are already introduced
in section 3.2.1. But instead of disposing of flow rates the measured
data corresponds to flow velocity waveforms which, moreover, character-
ize the flow at the brachial or carotid artery and not at the ascending
aorta. One the one hand, as stated in section 3.2.3, one could regard
this data as approximation to the aortic root waveforms. On the other,
it is possible to assume them of being part of a three-element Wind-
kessel model for the brachial or carotid artery respectively, as illustrated
in fig. 3.3 where the inlet flow qin is replaced by q representing the flow
rate at the respective artery. In the following the latter approach will
be considered for further explanations. Thus the resistance R and the
capacitance C represent the peripheral resistance and compliance of the
respective site. Since peripheral flow waveforms differ from those at the
ascending aorta, cf. fig. 2.6, it is subject of further investigation whether

10Prof. Kim H. Parker is a member of the working group of the Department of
Bioengineering, Imperial College London, U.K.
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the obtained reservoir pressure is similar.
For the implementation some facts have to be taken into account:

The conservation law (3.3) is still valid and the subsequent steps in sec-
tion 3.2.1 too. Bearing in mind the different meanings of the involved
parameters the solution of the ODE (3.13) reads

pres(t) =
e−t/(RC)

C

∫ t

0

q(s) es/(RC) ds

+
(
pres(0)− P∞

)
e−t/(RC) + P∞.

Using the relationship (2.1) as

q = Au

with u the flow velocity at either the brachial or carotid artery and A
denoting their respective cross-sectional area it follows

pres(t) =
e−t/(RC)

C

∫ t

0

A(s) u(s) es/(RC) ds

+
(
pres(0)− P∞

)
e−t/(RC) + P∞.

With the sloppy assumption of having a time-independent cross-sectional
area A one infers

pres(t) =
e−t/(RC)

C/A

∫ t

0

u(s) es/(RC) ds

+
(
pres(0)− P∞

)
e−t/(RC) + P∞.

Defining the resistance and compliance with respect to the area A

R := AR and C :=
C

A
(3.32)

with the units mmHg s/m and m/mmHg respectively, the time constant
τ is preserved since

τ = RC = AR
C

A
= RC. (3.33)

Consequently

pres(t) =
e−t/(RC)

C

∫ t

0

u(s) es/(RC) ds

+
(
pres(0)− P∞

)
e−t/(RC) + P∞.

(3.34)
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Looking at the formulas (3.14) and (3.34) reveals that the structure
of these equations is identical and independent from the use of either
the flow velocity or flow rate. Solely the peripheral parameters of re-
sistance and net compliance are scaled by the (as constant assumed)
cross-sectional area A.

However, since the flow cannot be assumed to be zero during diastole,
cf. fig. 3.11b, formula (3.34) does not simplify like it happened before
in (3.15). Nonetheless, the graphs of the measured flow data suggest
that the flow in later stage of diastole remains almost constant. To
investigate the impact of an steady flow in later diastole on the reservoir
pressure (3.34), u is assumed to be constant for t ≥ T⊻ with T⊻ ≥ Ts.
Thus, for the moment, it is assumed that

u(t) = u⊻ for t ≥ T⊻ ≥ Ts.

Hence (3.34) reads for t ≥ T⊻ ≥ Ts

pres(t) =
e−t/(RC)

C

(∫ T⊻

0

u(s) es/(RC) ds+ u⊻

∫ t

T⊻

es/(RC) ds

)

+
(
pres(0)− P∞

)
e−t/(RC) + P∞

=

(
pres(0)− P∞ +

1

C

∫ T⊻

0

u(s) es/(RC) ds

)
e−t/(RC)

+Ru⊻ e
−t/(RC)

(
et/(RC) − eT⊻/(RC)

)
+ P∞

and subsequently

pres(t) = e−t/(RC)

(
pres(0)− P∞ +

1

C

∫ T⊻

0

u(s) es/(RC) ds

−Ru⊻ e
T⊻/(RC)

)
+Ru⊻ + P∞.

(3.35)

Since the terms in the bracket are constant for all t ≥ T⊻ ≥ Ts an
exponential decay with time constant RC = RC is observable too which
states a similar behaviour compared to (3.15) for this particular stage.
Moreover, one could assume the waves to be minimal when the flow is
almost steady and therefore this period of time in later diastole could
constitute an appropriate phase for fitting the reservoir pressure to the
measured one. Indeed, in literature the last two-thirds of diastole are
frequently used for this purpose [1, 3, 31]. With the least squared error
defined by the ℓ2−Norm

‖pres − p‖T β
α
:=

√√√√
β∑

i=α

|pres(ti)− p(ti)|2
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for tα < tβ and tα, tβ ∈ T the reservoir pressure (3.34) is fitted to the
measured pressure by minimizing the error

‖pres − p‖T N
s

during diastole11. Thus with the minimization

find parameters R, C and P∞ : ‖pres − p‖T N
s

→ min,

which shall be denoted by

min
R, C, P∞

‖pres − p‖T N
s
,

all missing parameters R, C and the asymptotic pressure P∞ are esti-
mated. Consequently the reservoir pressure pres can be computed for all
ti ∈ T N

0 due to (3.34) and the pressure separation (3.1) of the measured
pressure p can easily be obtained.

For the implementation the specific choice of the estimated notch time
and minimization interval during diastole is arbitrary but the particular
choice of ts ≈ Ts,B and performing the curve fitting over the whole dias-
tole have some advantages which will become clear in section 4.3. The
implemented procedure can be applied on both the brachial and carotid
data whereby all computed parameters are denoted with a tilde-symbol.
Its steps are summarized in the following

Algorithm 3.1 (Reservoir pressure by using flow velocity).
Input:

• Measured brachial or carotid pressure waveform p

• Measured brachial or carotid flow velocity u

• Sampling frequency f

Method:

(1) Compute beat duration Tb and corresponding time step ∆t de-
termined by the sampling frequency f and the number of sam-
pled values. It holds tN = Tb.

(2) Determine ts ≈ Ts,B of (3.31) in the form

ts := argmin
t′∈T N

0

(
dp

dt
(t′)

)
(3.36)

11In chapter 4 one particular focus is put on the specific choice of optimization interval
in the course of the sensitivity analysis in section 4.3.
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in the sense of discrete differentiation.

(3) Extract the peripheral net parameters R̃, C̃ and the asymptotic

pressure P̃∞ by performing

min
R̃, C̃, P̃∞

‖p̃res − p‖T N
s

(3.37)

in diastole and

p̃res(t) ≈
e−t/(R̃ C̃)

C̃

∫ t

0

uin(s) e
s/(R̃ C̃) ds

+
(
p̃res(0)− P̃∞

)
e−t/(R̃ C̃) + P̃∞.

(3.38)

The integral in (3.38) is implemented through the Matlab-
function trapz based on the trapezoidal rule which yields p̃res.
For the minimization (3.37) the Matlab-routine lsqnonlin

based on a non-linear least square method is used with set op-
tional bound

0.7 min
T N
0

(p) ≤ P̃∞ ≤ min
T N
0

(p) (3.39)

for the asymptotic pressure and initial values

R̃0 = 440mmHg s/m,

C̃0 = 0.001m/mmHg,

P̃∞,0 = min(p).

Output:

• Reservoir pressure p̃res based on either brachial or carotid data

• Asymptotic pressure P̃∞ based on either brachial or carotid data

• Peripheral brachial or carotid area resistance R̃

• Peripheral brachial or carotid area compliance C̃

In the following the implementation of two different approaches to com-
pute the reservoir pressure without knowing the aortic flow are described.
It has to be emphasized again that (A1) and (A2) are the crucial assump-
tions for applying the extended Reservoir Theory to arbitrary locations
at the arterial tree as mentioned in section 3.2.2.
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3.4.2 Reservoir Pressure without Flow – Variant A

The first step to obtain the missing parameters is similar to the procedure
in the prior section 3.4.1 by using (3.21) to minimize

min
b, pres(ts), P∞

‖pres − p‖T N
s

in order to determine P∞ and the inverse time constant b = 1/(RC).
Thereafter, assuming that the reservoir pressure exhibits an exponential
decay in diastole, an optimization for the rate constant a is performed
such that pres of (3.20) closely aligns pres of (3.21) in T N

s . Consequently
the reservoir pressure is fully identified by (3.14) which finally determines
the excess pressure via (3.1).

The implementation is described in the following algorithm. In order
to distinguish more clearly the computed parameters are denoted with a
hat-symbol.

Algorithm 3.2 (Reservoir pressure without using flow, A).
Input:

• Measured brachial or carotid pressure waveform p

• Sampling frequency f

Method:

(1) Compute beat duration Tb and corresponding time step ∆t de-
termined by the sampling frequency f and the number of sam-
pled values. It holds tN = Tb.

(2) Determine ts ≈ Ts,B through (3.36).

(3) Fit reservoir pressure to the measured curve by minimizing

min
b̂, p̂res,d(ts), P̂∞

‖p̂res,d − p‖T N
s
, (3.40)

in diastole where the reservoir pressure is assumed to be (3.21),
i.e.

p̂res,d(ti) :=
(
p̂res,d(ts)− P̂∞

)
e−b̂ (ti−ts) + P̂∞ with ti ∈ T N

s .

The minimization is done by the Matlab-function lsqnonlin

with condition (3.39) for asymptotic pressure P̂∞ and initial
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values

b̂0 = 3 · 1/s, p̂res,d(ts)0 = p(ts), P̂∞,0 = min(p).

Therefore the parameters b̂, p̂res(ts) and P̂∞ are computed.

(4) Apply lsqnonlin so as to

find â > 0 :
∣∣p̂res,s(ts)− p̂res,d(ts)

∣∣→ min (3.41)

with the initial value

â0 = 15 · 1/s

and the reservoir pressure being (3.20), i.e.

p̂res,s(t) = e−(â+b̂) t

(
p̂res(0)−

b̂

â+ b̂
P̂∞

+ â

∫ t

0

p(s) e(â+b̂) s ds

)
+

b̂

â+ b̂
P̂∞,

whereby the integral is implemented by means of the Matlab-
function trapz.

(5) The final reservoir pressure p̂res is then set

p̂res(ti) :=

{
p̂res,d(ti), if ti ∈ T N

s

p̂res,s(ti) otherwise.

Output:

• Reservoir pressure p̂res based on either brachial or carotid data

• Asymptotic pressure P̂∞ based on either brachial or carotid data

• Peripheral brachial or carotid rate constants â, b̂

3.4.3 Reservoir Pressure without Flow – Variant B

The ansatz of implementing section 3.2.2 taken by Prof. Kim H. Parker
is somewhat different.

With the assumption of having an exponential pressure decay in dias-
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tole one can set

pd(t) := α e−b t + P∞ for 0 ≤ t ≤ Td (3.42)

where t = 0 represents the start of diastole which lasts Td = Tb − Ts.
Just like in (3.21) the parameter b = 1/(RC) denotes the inverse time
constant and P∞ the pressure at which flow into microcirculation ceases.
Thus the positive valued variables α, b, P∞ in (3.42) are wanted. It holds

E0 :=
1

Td

∫ Td

0

pd(t) dt = −
α

b Td

(e−b Td − 1) + P∞ (3.43)

whereby b, Td > 0 and thus always b Td > 0. The functions pde1 and
pde2 are defined as

pdek(t) :=
(
pd(t)−E0

)
e
k t

Td = α

(
e
t
(

k−b Td
Td

)
+

e−b Td − 1

b Td
e
k t

Td

)
(3.44)

for k ∈ {1, 2}. The advantage is that pde1 and pde2 are independent of
P∞. Further equations aim to get a relationship of only one unknown
which can be obtained more easily. For this sake the integrals

Ek :=

∫ Td

0

pdek(t) dt with k ∈ {1, 2} (3.45)

are defined with the solutions

Ek = αTd

(
ek−b Td − 1

k − b Td
+ (ek − 1)

e−b Td − 1

k b Td

)
(3.46)

for b Td 6= k ∈ {1, 2}. However, this does not imply any restriction since
these points constitute a removable discontinuity. With l’Hôpital’s rule
it can be shown that

lim
b Td→k

Ek = αTd

(
1 +

1

k2

(
2− ek − e−k

))
. (3.47)

The crucial point now is that the quotient

Q :=
E2

E1

only depends on the single factor y := b Td > 0. With (3.46) and (3.47)
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it holds that

Q(y) =





e2−y−1
2−y

+ (e2 − 1) e
−y−1
2 y

e1−y−1
1−y

+ (e− 1) e
−y−1
y

, if y 6= 1, 2

e− 1 + (e2 − 1)(e−1 − 1)/2

3− e− e−1
, if y = 1

1 + (2− e2 − e−2)/4

1− e−1 + (e− 1)(e−2 − 1)/2
, if y = 2.

(3.48)

The implementation of this approach now reads as follows, whereby
the computed results are denoted with a breve-symbol:

Algorithm 3.3 (Reservoir pressure without using flow, B).
Input:

• Measured brachial or carotid pressure waveform p

• Sampling frequency f

Method:

(1) Compute beat duration Tb and corresponding time step ∆t de-
termined by the sampling frequency f and the number of sam-
pled values. It holds tN = Tb.

(2) Determine ts ≈ Ts through (3.36).

(3) Using the ansatz (3.42) of assuming

pd(t) = α e−b t + P∞ ≈ p(Ts + t)

for 0 ≤ t ≤ Td in diastole, set

p̆d := p(T N
s ) (3.49)

(4) Approximate the parameters (3.43) to (3.45) by using (3.49)
and solving the integrals with Simpson’s rulea yielding results
in the order Ĕ0, ˘pde1,

˘pde2, Ĕ1 and Ĕ2.
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3.4. Implementation of the Reservoir Theory

(5) Determine

Q̆ :=
Ĕ2

Ĕ1

.

(6) Compute the quotient Q analytically according to (3.48).

(7) Find y̆ > 0 such that

Q(y̆)− Q̆ = 0. (3.50)

Since y = b Td the rate constant b̆ = y̆/Td is known.

(8) Determine ᾰ and P̆∞ consecutively through the analytical rela-
tionships (3.46) with E1 and (3.43) with E0. Hence the reser-
voir pressure in diastole is given due to the assumption (3.42),
i.e.

p̆res,d(ti) := ᾰ e−b̆ ti + P̆∞ for ti ∈ T N
s .

(9) For determination of the systolic part minimize

min
ă

‖p̆res,s − p̆res,d‖T N
s

(3.51)

in diastole with initial value

ă0 = b̆,

whereby the reservoir pressure is assumed to be (3.20), i.e.

p̆res,s(t) = e−(ă+b̆) t

(
p̆res(0)−

b̆

ă + b̆
P̆∞

+ ă

∫ t

0

p(s) e(ă+b̆) s ds

)
+

b̆

ă+ b̆
P̆∞,

in order to get the last missing parameter ă. The optimization
is performed with the Matlab-function fminsearch based on
a least square method. The integral is approximated with trape-
zoidal rule.
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(10) Find crossover point of p̆res,d and p̆res,s in tx ∈ T N
s which is

implemented by finding the first index x such that

(
p̆res,s(tx)− p̆res,d(tx)

) (
p̆res,s(tx+1)− p̆res,d(tx+1)

)
≤ 0. (3.52)

The reservoir pressure is then set

p̆res(ti) :=

{
p̆res,s(ti), if ti ∈ T x

0

p̆res,d(ti), otherwise.

Output:

• Reservoir pressure p̆res based on either brachial or carotid data

• Asymptotic pressure P̆∞ based on either brachial or carotid data

• Peripheral brachial or carotid rate constants ă, b̆

aIf N is an odd number apply the composite Simpson’s rule on T N−1
0 and the

trapezoidal rule for the remaining part T N
N−1. The Simpson’s rule applied on

one part [a, b] ⊆ R reads

QSf ≈

∫ b

a

f(t) dt with QSf :=
b− a

6

(
f(a) + 4 f

(a+ b

2

)
+ f(b)

)

and the trapezoidal rule

QT f ≈

∫ b

a

f(t) dt with QT f :=
b− a

2

(
f(a) + f(b)

)
.

Discussion of Algorithm 3.3

Even though the algorithm 3.3 is stated as “reasonably robust” in [1] a
closer analysis of the implementation shall be provided since several steps
are crucial in order to compute the reservoir pressure p̆res successfully.

One key point is the computation of y̆ in (3.50). In fig. 3.13 the function
Q given by (3.48) is plotted. Although this function is defined for all
y ∈ R only the part for y > 0 (solid line) is valid in order to constitute a
reasonable zero of (3.50) since y = b Tb is necessarily positive. Therefore
the computed values Q̆ need to be in the range of

(
lim
y→∞

Q(y), Q(0)
)
≈ (3.06, 3.55).

In any case, if Q̆ has values out of this interval one may conclude that the
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Q(0) ≈ 3.55

limy→∞ Q(y) ≈ 3.06

−10 −5 0 5 10 15 20

3.5

4

3
y

Q(y)

Figure 3.13: Algorithm 3.3 – Quotient Q

initial ansatz of an exponential decay (3.42) is not justified and there-
fore algorithm 3.3 not applicable. In particular, when Q̆ is in the interval

(
Q(0), lim

y→−∞
Q(y)

)
≈ (3.55, 4.19)

the algorithm would confer a negative y = b Td. Since Td > 0 this
result would yield an implausible rate constant b < 0 and consequently
the corresponding reservoir pressure need to be excluded from further
considerations.

Furthermore, it has to be guaranteed that a crossover point exist and
thus can be found by (3.52). The procedure of the respective steps of
algorithm 3.3 is illustrated in fig. 3.14. The values of p̆res,d (red solid line)
constitute an initial estimate in diastole of the reservoir pressure of the
measured pressure waveform pb (blue dash-dotted line). After having ap-
plied the optimization (3.51) in diastole in order to find the systolic part
p̆res,s of the reservoir pressure (green dashed line) a reasonable conjunc-
tion of both waveforms is aimed. Defining it to be the first intersection
point of the pressures p̆res,s and p̆res,d fulfils both an exponential pressure
decay in diastole and an “optimal” reservoir waveform for the systole due
to (3.51). The resulting patched pressure wave p̆res is then considered
as the reservoir pressure of pb. A positive side effect of this method is
that the crossover point in tx may be understood as the indicator for the
notch time yielding a systolic duration greater than the initial estimate
for Ts. Since the (calculated) notch time Ts may be too short from a
physiological point of view the crossover time tx might be more plausi-
ble. However, the estimated notch time results are going to be presented
in section 4.3.1.
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3.4.4 Conversion of Peripheral Parameters

Beside extracting information from the differently computed reservoir
pressure waveforms p̃res, p̂res and p̆res and their comparisons at different
sites one may seek to use the peripheral parameters provided by the al-
gorithms 3.1 to 3.3 too. More precisely, in this section it is aimed to
provide some relationships in order to compare the results of

• the net area parameters R̃ and C̃ from algorithm 3.1

• the rate constants â and b̂ from algorithm 3.2

• the rate constants ă and b̆ from algorithm 3.3

so as to incorporate these findings in the final discussion too. Given that
relationships between these parameters will be provided by theoretical
investigation the accents will be omitted.

Firstly, a recapitulation is done: Due to the assumption (A2) and the
subsequent definition

qin = ζ pex

in (3.16) the relationship (3.22) between the proportionality factor ζ and
the (volumetric) characteristic impedance Zc, i.e.

Zc =
1

ζ
,

was shown. Therefore it holds

Zc =
pex

qin
(3.53)

with the excess pressure pex = p−pres and the cardiac output qin. On the
other hand the rate constant a, defined in (3.17), becomes with (3.22)

a =
ζ

C
=

1

Zc C
. (3.54)

The rate constant

b =
1

RC
(3.55)

is already fully specified. In other words: Provided that one already
disposes of the flow into the arterial system qin and the excess pressure pex

the characteristic impedance Zc can be computed by means of Ohm’s law
in hydraulic analogy (3.53). In further consequence the net parameters a
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and b can easily be transformed to the resistance R and the compliance
C.

In case of dealing with flow velocities instead of flow rates, switching
to the area parameters

R = AR and C =
C

A
,

as defined in section 3.4.1, seems to be more natural. The relation-
ships (3.54) and (3.55) are then altered to

a =
1

Zc C A
and b =

1

RC

or, equivalently,

C =
1

aAZc

and R =
1

b C
. (3.56)

With the mass conservation law holds for the flow rate

qin = Ain uin

at the ascending aorta with cross-sectional area Ain. As a result the
characteristic impedance in (3.53) becomes

Zc =
pex

Ain uin
.

Consequently, the net area compliance in (3.56) is given by

C =
Ain

aA

uin

pex
. (3.57)

In reality the cross-sectional Ain varies substantially within one cardiac
cycle since the ascending aorta is highly elastic. In contrast, the cross-
sectional area A is assumed to be constant and represents a mean area.
To get rid of this lack of knowledge one can simply assume Ain = A and
approximate uin/pex by proceeding to the mean values of one cardiac
cycle. With the mean operator

〈v〉 :=
1

Tb

∫ Tb

0

v(t) dt for all v ∈ L1(0, Tb)

the parameters a, b and R, C are (approximately) related to each other
by

C =
1

a

〈uin〉

〈pex〉
and R =

1

b C
(3.58)

which finally constitute computable relationships.
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Some remarks on the conversion of peripheral parameters

It has to be emphasized that the transformation given by (3.58) consti-
tutes an (approximated) relation in case that

• R corresponds to the area resistance of the arterial system.

• C indicates the net area compliance of the arterial system.

• a and b denote the rate constants of the arterial system.

In fact, according to the assumption that the reservoir pressure is uni-
form throughout the arterial tree due to (3.7) and (3.9), the concept of
the extended Reservoir implicitly suggests that the peripheral parameters
and net rate constants refer to the whole arterial system regardless the
arterial location of their associated reservoir pressure waveform. There-
fore the output parameters of algorithms 3.2 and 3.3 may be understood
as arterial system related parameters. In contrast, since algorithm 3.1
uses the flow of the respective location, the corresponding results refer
rather to either the brachial or carotid artery instead. But by substitut-
ing
〈
ub
〉

or 〈uc〉 for 〈uin〉 at least an evaluation of (3.58) and a subsequent
comparison of the obtained parameters is possible. Nonetheless, by ap-
plying (3.58), one has to bear in mind that this compares parameters
designated to describe the whole arterial system (â, b̂ and ă, b̆) with
parameters computed by the local flow velocities which are generally dis-
tinct to the ventricular flow (R̃, C̃).
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Chapter 4

Numerical Results and

Discussion

In this chapter all the results provided by the implemented algorithms are
summarized. Firstly, the effects of the data preprocessing as described
in section 3.3.2 are examined.

4.1 Notation

In table 4.1 a summary of the already introduced variables and parame-
ters necessary for this chapter is provided.

Beside the stated notation in table 4.1, several additional symbols are
used:

• The superindices of “b” and “c” always indicate the particular lo-
cation at either the brachial or the carotid artery of the respective
variable. For example pb corresponds to the measured pressure at
the brachial and pc to the carotid artery.

• The accent-symbols ,̃ ̂ and ˘ specify the origin of the computed
variable and refer to the algorithms 3.1 to 3.3, respectively. E.g.
p̃res denotes the computed reservoir pressure of algorithm 3.1. The
algorithms themselves are defined in the sections 3.4.1 to 3.4.3.

4.2 Effects of Data Preprocessing

Several impacts rooted in the choice of periodization methods (P1) to
(P3) are investigated in this section. In table 4.2 the statistic is pro-
vided of how many times each periodization method was applied on the
measured data sets of totally 220 waveform pairs. Overall, for the ma-
jority of waveforms (P3) was used. Therefore it was not possible to find
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Variable Description Unit Def.

a, b Rate constants 1/s (3.17)

C Net compliance m3/mmHg (3.11)

C Net area compliance m/mmHg (3.32)

p Measured pressure mmHg

P∞ Asymptotic pressure mmHg

pex Theoretical excess pressure mmHg (3.1)

pres Theoretical reservoir pres-
sure

mmHg (3.1)

u Measured flow velocity m/s

R Peripheral resistance mmHg s/m3 (3.11)

R Peripheral area resistance mmHg s/m (3.32)

τ Time constant s (3.33)

Tb Total time duration of one
heart beat cycle, i.e. Tb =
Ts + Td

s

Td Time duration of diastole s

Ts Time duration of systole s

Ts,A Estimated time duration of
systole based on maximum
pressure curvature

s (3.30)

Ts,B Estimated time duration of
systole based on minimum
pressure derivation

s (3.31)

Table 4.1: Numerical Results and Discussion – Important notation
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Brachial Artery Carotid Artery Total

(P1) 42 27 69

(P2) 5 11 16

(P3) 63 72 135

Table 4.2: Data preprocessing applied to 220 waveform pairs

a smoother transition for most of the signals by using (P1) or (P2) re-
spectively. On the other hand, due to the simple shift from one part of
the beginning of the (P3)-curve to its end, no precarious shortening of
the beat duration Tb needs to be tolerated. The first section is devoted
to this issue.

4.2.1 Shortening of Beat Duration

Provided that the periodization methods (P1) and (P2) determine a pres-
sure level at the former part of the waveform with a magnitude close to
the end the subsequent “chopping” of the waveform necessarily leads to
a shorter beat duration, cf. figs. 3.7 and 3.8. Hence, in case that “more
than one heart beat”1 is measured, a proper region-picking for further
processing is sought by the methods (P1) and (P2). In contrast, if this is
not possible (P3) is used by basically simply shifting the signal waveform
which preserves the measured beat duration Tb.

Due to the different approaches of the periodization methods (P1) to
(P3) different impacts on the duration time Tb are expected. To quantify
these effects the mean change and its standard deviation are computed.
In a general case of a sample y1, y2, . . . , yM its mean reads

µy :=
1

M

M∑

i=1

yi

and its standard deviation

σy :=

√√√√ 1

M − 1

M∑

i=1

(yi − µy)2.

Thus, the sample can be characterized by

µy ± σy, (4.1)

1Again it is emphasized that this impression is a consequence of the applied averaging
procedures as described in section 3.3.1. In reality exactly one (averaged) beat
defined by consecutive ECG R waves is depicted.
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in s Brachial Artery Carotid Artery Both arteries

(P1) −0.032± 0.018 −0.028 ± 0.015 −0.030± 0.000

(P2) −0.096± 0.047 −0.076 ± 0.032 −0.083± 0.037

(P3) 0.000 ± 0.000 0.000± 0.000 0.000 ± 0.000

(P1)–(P3) −0.016± 0.027 −0.015 ± 0.027 −0.015± 0.027

Table 4.3: Mean change and standard deviation of ∆Tb in s

in % Brachial Artery Carotid Artery Both arteries

(P1) −3.402± 1.914 −2.641 ± 1.265 −3.104± 0.000

(P2) −8.818± 3.986 −7.072 ± 2.710 −7.618± 3.136

(P3) 0.000 ± 0.000 0.000± 0.000 0.000 ± 0.000

(P1)–(P3) −1.700± 2.659 −1.356 ± 2.445 −1.528± 2.554

Table 4.4: Mean change and standard deviation of ∆Tb in %

meaning that in case of an assumed normal distribution about 68.27%
of the sample y1, y2, . . . , yM is located in the interval (µy − σy, µy + σy).

To examine the effect of the periodization methods the absolute and
relative duration changes are going to be considered. Therefore, the
absolute deviation of beat duration is defined as

∆Tb,i := Tb(xfinal,i)− Tb(xraw,i) (4.2)

whereby Tb(xfinal,i) represents the beat duration of the respective data x
related to curve i after the data preprocessing and Tb(xraw,i) prior to it2.
Moreover the relative deviation for each curve reads

Tb(xfinal,i)− Tb(xraw,i)

Tb(xraw,i)
=

∆Tb,i

Tb(xraw,i)
. (4.3)

The quantification (4.1) was evaluated for both the absolute and relative
duration changes and is summarized in tables 4.3 and 4.4 whereby the
respective sample size of each comparison is given in table 4.2. Obviously
(P3) has no impact at all on the beat duration of any waveform whereby
(P2) yields the greatest shortenings of about −0.1 s or −8% on aver-
age depending on the regarded arteries. The most substantial deviation
is observable when only considering (P2) for the 5 brachial data wave-
forms. However, bearing in mind the time step ∆t = 0.005 s, after the
whole periodization procedure and regarding all waveforms, on average
approximately 3 nodes are dropped.

In fig. 4.1 the box plots related to table 4.3 are given whereby the bot-
tom and top of the box illustrate the first and third quartiles and the band

2For the evaluation (4.2) the pressures pb and pc were used, but the velocities could
have been used too.
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inside the median of the sample of duration changes ∆Tb. Additionally,
possible outliers are depicted with plus-symbols. Again it becomes visible
that (P2) has the most considerable impact on the change of beat dura-
tion. Nonetheless, the affected group only contains in total 16 curves, cf.
table 4.2.

4.2.2 Impact on Waveforms

It is important to examine the impact on the actual waveform due to
chosen types of data preprocessing. In the tables 4.5 to 4.8 the corre-
sponding changes for the brachial and carotid pressures and velocities
are quantified in the form (4.1). The stated parameters are:

• Root mean squared error (RMSE)

RMSEi =

√√√√ 1

N

N∑

j=1

(
xfinal,i(tj)− xraw,i(tj)

)2

for each curve i with x being pb, pc, ub or uc. The index “final” in-
dicates the waveform after the whole data preprocessing procedure
and “raw” after (DP2) such that their beat durations coincide but
still are not altered in their waveform.

• Deviations in each curve i with respect to

– the pulse pressure (in case of dealing with pressures)

PP(pi) := max
T N
0

(pi)−min
T N
0

(pi)

– the pulse velocity (in case of dealing with flow velocities)

PV(ui) := max
T N
0

(ui)−min
T N
0

(ui).

The differences are stated in absolute differences

∆PPi := PP(pfinal,i)− PP(praw,i)

or

∆PVi := PV(ufinal,i)− PV(uraw,i)

and in the relative form

∆PPi

PP(praw,i)
or

∆PVi

PV(uraw,i)

respectively.
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Figure 4.1: Data Preprocessing – Impact on beat duration Tb
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pb (P1) (P2) (P3)

RMSE (mmHg) 0.029 ± 0.021 0.032 ± 0.011 0.212± 0.173

∆PP (mmHg) −0.018± 0.051 0.000 ± 0.000 −0.030± 0.096

∆PP (%) −0.027± 0.073 0.000 ± 0.000 −0.053± 0.166

∆Ap (mmHg s) −0.016± 0.049 0.000 ± 0.002 −0.028± 0.088

∆Ap (%) −0.065± 0.192 0.001 ± 0.010 −0.115± 0.348

Table 4.5: Impact on pb-waveforms

pc (P1) (P2) (P3)

RMSE (mmHg) 0.025± 0.011 0.036 ± 0.022 0.212 ± 0.127

∆PP (mmHg) −0.075 ± 0.134 −0.031± 0.059 −0.112± 0.219

∆PP (%) −0.162 ± 0.272 −0.060± 0.106 −0.211± 0.381

∆Ap (mmHgs) −0.076 ± 0.133 −0.033± 0.063 −0.111± 0.212

∆Ap (%) −0.381 ± 0.652 −0.133± 0.242 −0.483± 0.877

Table 4.6: Impact on pc-waveforms

ub (P1) (P2) (P3)

RMSE (cm/s) 0.000± 0.000 0.000± 0.000 0.001 ± 0.000

∆PV (cm/s) 0.000± 0.000 0.000± 0.000 0.000 ± 0.000

∆PV (%) −0.015 ± 0.069 0.000± 0.000 −0.017± 0.068

∆Au (cm/s2) 0.000± 0.000 0.000± 0.000 0.000 ± 0.000

∆Au (%) 0.013± 0.026 −0.014± 0.010 −0.009± 0.106

Table 4.7: Impact on ub-waveforms

uc (P1) (P2) (P3)

RMSE (cm/s) 0.001± 0.001 0.001± 0.000 0.001 ± 0.001

∆PV (cm/s) −0.001 ± 0.002 −0.001± 0.001 −0.002± 0.002

∆PV (%) −0.334 ± 0.444 −0.128± 0.187 −0.381± 0.408

∆Au (cm/s2) 0.000± 0.000 0.000± 0.000 0.000 ± 0.000

∆Au (%) 0.012± 0.015 0.005± 0.012 0.017 ± 0.062

Table 4.8: Impact on uc-waveforms
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• Deviations in each curve i with respect to the area3

Ap(pi) :=

∫ Tb

0

(
pi(s)−min

T N
0

(pi)
)
ds

or

Au(ui) :=

∫ Tb

0

ui(s) ds

which are as well given in absolute and relative quantities as de-
scribed above.

Referring to the results in tables 4.5 and 4.6 of the pressure waveforms
pb and pc, the pulse pressure PP became slightly smaller, having its peak
at (P3). The same applies to the change in area. Bearing in mind that
(P3) incorporates the most substantial smoothing-procedure among the
periodization methods these results confirm this fact. With a view to the
relative proportions and the root mean squared error the deviations due
to data preprocessing may be considered as insubstantial.

With respect to the tables 4.7 and 4.8 only little impact on the flow
velocities can be attested. Nevertheless, in this case the areas are gen-
erally increasing albeit the relative augmentations are less remarkable
compared to their pressure counterparts.

4.2.3 Effects of Data Preprocessing: Summary

Overall, and according to the stated quantities, the impact on the actual
waveform due to data preprocessing may be neglected. In contrast, the
impact on the beat duration yielding a shortening of, on average, −1.53%
could influence the results. However, since these changes indicate a mean
shortening of −0.02 s within the big sample of 220 curves these results
are regarded as acceptable for further investigations.

4.3 Notch Time and Sensitivity Analysis

In section 3.3.3 two different concepts for estimating the notch time by
only regarding the pressure curve were described. However, no method
can be attested as “better than the other” a-priori which, of course, always
depends on the context of application and the used algorithms.

3In Matlab the integral got implemented through trapz.
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4.3. Notch Time and Sensitivity Analysis

Moreover, whereas the reservoir pressure p̆res obtained by algorithm 3.3
is only affected by this choice4, the reservoir pressures p̃res and p̂res of the
other algorithms 3.1 and 3.2 additionally depend on the minimization
interval for performing the minimization routines (3.37) and (3.40). I.e.
in algorithm 3.1 the corresponding minimization reads

min
R̃, C̃, P̃∞

‖p̃res − p‖T N
n

(4.4)

and for algorithm 3.2

min
b̂, p̂res,d(ts), P̂∞

‖p̂res,d − p‖T N
n
, (4.5)

whereby T N
n ⊆ T N

s denotes the interval in diastole for the optimiza-
tion. Relating to the choice of the particular optimization interval T N

n

one disposes over a variety of options in order to obtain the parameters
necessary to compute the reservoir pressure.

Against this background the sensitivity of the algorithms on these two
estimated notch times and the intervals for minimization is investigated
whereby the initial values for the start of optimization routines remain
untouched. The principal aim of this section is to conclude which pa-
rameter configuration should be preferred for the final evaluation.

To begin with, the general relationship between the two estimated
notch times is investigated in section 4.3.1. Based on that, the sensitivity
of the reservoir pressures obtained by the algorithms 3.1 and 3.2 on the
minimization intervals is pointed out in section 4.3.2. Subsequently, in
section 4.3.3, the sensitivity analysis is devoted to the impact of the
particular choice of notch time which eventually will conclude the final
configuration for the algorithms:

• The estimated notch time is set ts := ts,B ≈ Ts,B

• The minimizations for the algorithms 3.1 and 3.2 are performed
over the whole diastole.

4.3.1 Notch Time

In fig. 4.2 the results for the computed notch times Ts,A of (3.30) and
Ts,B of (3.31) are shown. The former estimation of notch time repre-
sents the time of pressure with maximum curvature and the latter the
time of pressure with minimum first derivation. As can be observed in

4In fact, one could change the interval for the optimization in (3.51) too. However,
since algorithm 3.3 is provided by Kim H. Parker only the notch time is varied
which can be assigned as optional input parameter to the algorithm.
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Figure 4.2: Comparison of estimated Notch Times
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Figure 4.3: Notch Time – Impact of beat duration

figs. 4.2a and 4.2b, the estimated notch times for the brachial curves
are generally smaller compared to the carotid ones. Beside changes in
pressure waveforms at different locations within the arterial tree due to
travelling waves, cf. figs. 2.5 and 2.6, also the generally positive differ-
ence T c

b − T b
b between the brachial and carotid beat duration of each

data set, cf. fig. 4.3, might be a reason. Since the beat duration of
the measured carotid waveform is longer, it is likely that the respective
estimated notch time occurs later. Moreover, fig. 4.2c reveals that the
maximum curvature-related notch time Ts,A is always greater than the
minimum derivation-associated Ts,B. In particular, for the carotid artery
the difference between the two computed notch times equals the constant
value of 0.02 s in the majority of cases.

4.3.2 Sensitivity on Minimization Interval

In this section it shall be investigated how the reservoir pressures p̃res and
p̂res of the algorithms 3.1 and 3.2 depend on the choice of the minimization
interval T N

n for performing (4.4) and (4.5) during diastole. Moreover,
T N
n depends on the particular selection of notch time since the estimated

duration of diastole reads Td = Tb −Ts where Ts either represents Ts,A or
Ts,B.
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4. Numerical Results and Discussion

In this thesis it is restricted to the possibilities that T N
n either corre-

sponds to the whole diastole or only to the last two-thirds of it. The
latter is very common in literature since little wave activity is expected
in this particular stage and therefore could constitute an appropriate
interval for fitting the reservoir pressure to the measured one [1, 3, 31].
However, it is of great importance that the overall reservoir curve ex-
hibits a meaningful waveform. For example, it is not excluded a-priori
due to findings of analytical investigations that the final results of the
algorithms cannot constitute erratic waveforms in a neighbourhood of Ts

or that they are based on negative parameters – like mentioned in the
discussion of algorithm 3.3 in section 3.4.3 – which would contradict the
Reservoir Model. Hence, a trade-off between an aligned pressure decay
at later diastole and an overall reasonable waveform has to be found.
As a consequence the sensitivity of the reservoir pressures gained by the
algorithms 3.1 to 3.3 on the choice of the estimated notch time and the
minimization interval is examined. Finally, a parameter setting is sought
which fits best for the majority of measured data sets.

In order to compare these results the respective modi need to be ad-
dressed appropriately. Hence, the starting time tn for the minimization
interval T N

n shall either indicate the estimated notch times ts,A ≈ Ts,A

and ts,B ≈ Ts,B or be related to the time

T1/3D := Ts +
1

3
Td = Ts +

1

3
(Tb − Ts)

which indicates start of the last two-thirds of diastole. In summary, with
t1/3D ∈ T N

s as the approximation of T1/3D, the minimization routines
stated in (4.4) and (4.5) are restricted to the following parameter set-up:

(1) Estimated notch time:

• ts = ts,A ≈ Ts,A or

• ts = ts,B ≈ Ts,B

(2) Minimization interval T N
n :

• Minimization over the whole diastole: tn = ts ∈ {ts,A, ts,B}
determined by the choice of (1) or

• Minimization over the last two-thirds of diastole: tn = t1/3D
whereby

t1/3D ≈ Ts,A +
1

3
(Tb − Ts,A)

or

t1/3D ≈ Ts,B +
1

3
(Tb − Ts,B)
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4.3. Notch Time and Sensitivity Analysis

respectively, depending on the chosen notch time in (1).

The subsequent table 4.9 illustrates the used notation for the reservoir
pressures corresponding to the chosen parameter configuration of the
respective algorithms:

Minimization Interval

Two-third Diastole T N
1/3D Diastole T N

s

Notch Time
ts,A pres(ts,A,T N

1/3D
) pres(ts,A,T N

s )

ts,B pres(ts,B,T N
1/3D

) pres(ts,B,T N
s )

Table 4.9: Notation of reservoir pressures relating to parameter set-up

Sensitivity on Minimization Intervals with Notch Time ts,A

Firstly the impact of the minimization interval on the results is shown
by regarding ts = ts,A. Therefore the reservoir pressures located in the
first row of table 4.9 are compared for the algorithms 3.1 and 3.2 whose
results are denoted with p̃res and p̂res.

The deviations in the corresponding pressure waveforms by using the
whole diastole for the optimizations (4.4) and (4.5) instead of only the
last two-thirds of it are stated in table 4.10. The notation pres(ts,A,T N

1/3D
) 7→

pres(ts,A,T N
s ) shall indicate that the deviation from pres(ts,A,T N

1/3D
) to pres(ts,A,T N

s )

is investigated with pres(ts,A,T N
1/3D

) being the reference. Referring to all the
indicators RMSE, the relative ∆PP and ∆Ap it can be witnessed that for
both the computed reservoir pressures p̃res and p̂res the sensitivity on the
chosen interval is considerably high. These indicate that the waveforms
experience substantial changes due to the change of the minimization
interval. Even though the absolute differences of PP and area remain –
on average – almost zero the remarkably high figure in their standard
deviations point out that the positive changes cancel the negative ones.
When comparing p̂res with p̃res similar features can be witnessed but

p̃
res(ts,A,T N

1/3D
) 7→ p̃res(ts,A,T N

s ) p̂
res(ts,A,T N

1/3D
) 7→ p̂res(ts,A,T N

s )

RMSE (mmHg) 5.618± 4.902 5.619± 5.661

∆PP (mmHg) 0.294± 15.003 −2.521± 12.649

∆PP (%) 13.851 ± 42.091 −0.909± 26.037

∆Ap (mmHgs) 0.642± 4.424 −0.695 ± 4.159

∆Ap (%) 9.350± 30.738 −1.709± 20.233

Table 4.10: Sensitivity on minimization interval with notch time ts,A
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4. Numerical Results and Discussion

the influence of the optimization interval on particular reservoir pressure
waveforms p̃res by algorithm 3.1 seems to be more considerable by regard-
ing the relative area and PP deviations. Since the deviations in PP and
area are comparable for both pressure waveforms they indicate a similar
phenomenon: The respective deviations cancel on average over the whole
sample. In the following, a closer investigation is done separately for p̃res

and p̂res.
In fig. 4.4 the histogram for the changes in PP and two plots for in-

dicating exemplarily a positive and negative deviation for the transition
p̃res(ts,A,T N

1/3D
) 7→ p̃res(ts,A,T N

s ) are illustrated. The histogram shows the dis-
tribution of the PP changes for all 220 pressure waveforms. Bearing in
mind a typical5 PP of about 40mmHg numerous curves alter more than
a half of this figure. On average these deviations of the whole sample of
all pressure curves almost cancel but the standard deviation of approxi-
mately 15mmHg manifests this remarkable influence of the minimization
interval. Taking into account that the RMSE constitutes a ratio for the
absolute difference of the considered reservoir pressures the notable figure
of the RMSE in table 4.10 becomes obvious. In fig. 4.4b the direct im-
pact of the chosen minimization interval is illustrated yielding a positive
change in PP of about 30mmHg. The reservoir pressure p̃res(ts,A,T N

1/3D
) is

computed through minimizing the difference to the measured pressure
waveform p over the last two-thirds of diastole whose beginning is in-
dicated with t1/3D. Since the used optimization method lsqnonlin of
the Matlab-implementation might only give local solutions the corre-
sponding pressure waveform can be explained6. Using the whole diastole
with its estimated beginning at ts,A for the curve fitting the more rea-
sonable reservoir pressure waveform p̃res(ts,A,T N

ts
) is achieved. In fig. 4.4c

a pressure curve with negative change in PP can be observed. Here the
minimization-routine lsqnonlin detects a plausible solution in terms of
getting an aligned pressure waveform during T N

1/3D. Nonetheless, com-
pared to the reservoir pressure associated with the fitting over the whole
diastole T N

s,A, it hits a magnitude in PP which may well be unreasonably
high.

In fig. 4.5 the respective results of the reservoir pressure p̂res are de-
picted. With respect to the histogram similar assertions as stated above
can be said about the PP deviations of this parameter setting. But, as op-

5It is assumed a systolic and a diastolic pressure of 120mmHg and 80mmHg respec-
tively.

6In this concrete case, the optimization algorithm of Matlab terminated since the
change in the residual was smaller than the specified tolerance of 1× 10−6. This
problem remains persistent for other common optimization methods implemented
in Matlab such as fminsearch.
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p̃
res(ts,B,T N

1/3D
) 7→ p̃res(ts,B,T N

s ) p̂
res(ts,B,T N

1/3D
) 7→ p̂res(ts,B,T N

s )

RMSE (mmHg) 5.350± 4.841 6.877± 7.943

∆PP (mmHg) −0.093 ± 14.676 −5.862± 16.593

∆PP (%) 11.311 ± 41.659 −4.886± 30.190

∆Ap (mmHgs) 0.486± 4.267 −1.623 ± 5.223

∆Ap (%) 7.168± 29.684 −4.657± 24.423

Table 4.11: Sensitivity on minimization interval with notch time ts,B

posed to p̃res and with reference to the RMSE in table 4.10, the impact of
the optimization interval on particular reservoir pressure waveforms p̂res

obtained by algorithm 3.2 is less considerable. In fig. 4.5b the respec-
tive curve with a positive PP change of about 40mmHg is shown. Both
reservoir pressures exhibit a good approximation to the measured pres-
sure waveform in diastole but as opposed to p̂res(tts,A ,T N

1/3D
) the reservoir

pressure p̂res(tts,A ,T N
s ) fails during systole. The responsible computational

step in algorithm 3.2 for yielding such a flawed reservoir pressure is iden-
tified with the optimization (3.41). Hence, only a small discrepancy
between p̂res(tts,A ,T N

ts,A
) and p̂res(tts,A ,T N

1/3D
) in ts,A leads to a tremendously

different waveform in systole. This sensitivity will be important too in
the sensitivity analysis associated with the notch time in section 4.3.3.
Considering fig. 4.5c for discussing the impact of the minimization in-
terval on a particular waveform with deviation of about −30mmHg it
can be observed that both reservoir pressures exhibit a smooth wave-
form within the whole cardiac cycle. Nevertheless, their discrepancy in
PP due to the choice of the fitting interval is remarkable.

In conclusion, the computed reservoir pressure curves p̃res and p̂res re-
veals that the algorithms 3.2 and 3.3 are remarkably sensitive on the
minimization interval associated with the notch time ts,A. Due to the
fact that the minimization routine lsqnonlin can only detect local min-
ima and that measured pressure waveforms may vary substantially within
the first third compared to the last two-thirds of diastole, a minimization
over the whole diastole T N

ts,A
seems to be preferable. However, the sensi-

tivity of the systolic part of reservoir pressure p̂res, cf. fig. 4.5b, needs to
be investigated separately.

Sensitivity on Minimization Intervals with Notch Time ts,B

In this section the sensitivity of the reservoir pressure waveforms on the
minimization interval is discussed by using the estimated notch time
ts,B ≈ Ts,B rather than ts,A ≈ Ts,A.

By comparing table 4.11 with table 4.10 similar results of all ratios
can be observed for the deviations of the reservoir pressure p̃res. Also
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Figure 4.4: p̃res-sensitivity on minimization interval with notch time ts,A

the figs. 4.4 and 4.6 depict similar characteristics: The last two-thirds of
diastole may yield a reservoir pressure waveform which does not fit the
whole diastolic behaviour (fig. 4.6b) and its corresponding reservoir PP
might be too high (fig. 4.6c).

The situation for the pressures p̂res obtained by algorithm 3.2 is some-
what different. All figures of p̂res in table 4.11 are higher compared to
those in table 4.10 which indicate an even more severe impact on aver-
age. However, the PP distribution does not differ substantially among
them according to the histograms fig. 4.7a and fig. 4.5a. Fig. 4.7b does
not contribute any new insight since it suggests as well that the last
two-thirds of diastole might not be sufficient for a proper curve fitting.
In contrast, fig. 4.7c indicates another possible phenomenon: Since algo-
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Figure 4.5: p̂res-sensitivity on minimization interval with notch time ts,A

rithm 3.2 returns a reservoir pressure obtained by sticking two pressure
waveforms together, one related to systole and the other to diastole, the
transition at the connection point ts can be discontinuous. Therefore, in
case of getting “inappropriate” pressures p̂res(ts) the corresponding reser-
voir pressure waveform may provide discontinuities (fig. 4.7c) or simply
exhibit a “non-smooth” graph (fig. 4.5b).

Overall, by taking into account all the stated points above, it seems to
be preferable to use the whole diastole T N

s for the algorithms 3.1 and 3.2
so as to compute the respective reservoir pressures. However, many pres-
sure waveforms obtained by those algorithms depend considerably on
the minimization interval. In order to get plausible waveforms which can
be compared reasonably to each other further investigations need to be
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done. In this context, the next step is meant to analyse the sensitivity of
the computed reservoir pressure waveforms on the chosen type of notch
time.

 

 

6040

35

30

25

20

20

15

10

5

0
0−20−40−60−80

Change of PP in mmHg

A
bs

ol
ut

e
fr

eq
ue

nc
y

PP
(
p̃res(ts,B,T N

s )

)

− PP
(
p̃res(ts,B,T N

1/3D
)

)

µ− σ µ µ+ σ

(a) Change of PP of all pressure curves

 

 180

170

160

150

140

130

120

110

100

90
10.90.80.70.60.50.40.30.20.10

Time in s

p

p̃res(ts,B,T N
1/3D

)

p̃res(ts,B,T N
s )

P
re

ss
ur

e
in

m
m

H
g

ts,B t1/3D

(b) Positive change

 

 160

150

140

130

120

110

100

90

80

70

60
0.80.70.60.50.40.30.20.10

Time in s

p

p̃res(ts,B,T N
1/3D

)

p̃res(ts,B,T N
s )

P
re

ss
ur

e
in

m
m

H
g

ts,B t1/3D

(c) Negative change

Figure 4.6: p̃res-sensitivity on minimization interval with notch time ts,B

4.3.3 Sensitivity on Notch Time

In the preceding sections of the sensitivity analysis the differences be-
tween the two notch time estimations and the sensitivity of the computed
pressure waveforms p̃res and p̂res on the chosen type of minimization in-
terval related to both notch times were pointed out. It was inferred that
the obtained reservoir pressures seem to be more reasonable when using
the whole diastole T N

s for fitting the reservoir to the measured pressure
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Figure 4.7: p̂res-sensitivity on minimization interval with notch time ts,B

curves. Nonetheless, to obtain plausible pressure waveforms in order
compare their results and characteristics appropriately their dependency
on the notch time has to be pointed out. In fact, even though the median
of differences ts,A − ts,B of all waveforms only exhibits 0.02 s, cf. fig. 4.2c,
this deviation has considerable effects on some of the reservoir pressure
waveforms. Partly this has already been observed in section 4.3.2. How-
ever, in this section the main focus is put on that issue.

The results of the algorithms 3.1 to 3.3 in this section are generated
by using the following parameter set-up:

• All algorithms are executed for the estimated notch time ts,A ≈ Ts,A

of (3.30) and for ts,B ≈ Ts,B of (3.31).
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p̃res(ts,A) 7→ p̃res(ts,B) p̂res(ts,A) 7→ p̂res(ts,B) p̆res(ts,A) 7→ p̆res(ts,B)

RMSE (mmHg) 1.418 ± 2.485 1.776 ± 3.659 0.960± 2.369

∆PP (mmHg) 0.636 ± 5.249 −1.068± 7.253 0.152± 4.709

∆PP (%) 2.636± 16.686 −1.005± 12.568 1.210± 7.257

∆Ap (mmHgs) 0.158 ± 2.016 −0.267± 1.873 0.070± 0.967

∆Ap (%) 1.598± 14.235 −0.906± 8.904 0.692± 5.016

Table 4.12: Deviation due to sensitivity on notch time

• The optimization routines (3.37) and (3.40) of the algorithms 3.1
and 3.2, are performed over the whole Diastole T N

s . Therefore the
corresponding optimization is done for all sampled points starting
at either ts = ts,B ≈ Ts,B or ts = ts,A ≈ Ts,A respectively.

Thus, for every single pressure waveform p two different reservoir pres-
sures pres(ts,A) and pres(ts,B) are computed. The former denotes the reservoir
pressure based on the notch time Ts,A and the latter based on Ts,B. As
usual, the accent-symbols indicate the result of the respective implemen-
tation method.

In table 4.12 the RMSE, the differences in PP and in area are shown
by regarding the transition from pres(ts,A) to pres(ts,B). Again, the RMSE
indicates that many waveforms experience alterations in their waveform,
albeit they appear less substantial compared to those related to the sen-
sitivity analysis with respect to the minimization interval. In contrast
to that, the mean of the other absolute ratios equals almost zero and
the corresponding standard deviations are less considerable too. There-
fore, the sensitivity on the notch time seems less striking compared with
the minimization interval. However, the relative changes are still re-
markable. For a closer investigation each implementation is discussed
separately whereby the findings are similar to those already mentioned
in the previous section 4.3.2.

Algorithm 3.1: Reservoir pressure based on the flow velocity

Basically, referring to fig. 4.8a and table 4.12, the mean deviation in PP
remains approximately zero for the reservoir pressures p̃res. Nonetheless,
there are several curves which suffer severe deviations in their pulse pres-
sure by simply using Ts,B instead of Ts,A in the algorithm. These effects
can happen in both directions yielding PP changes in the range from ap-
proximately −20mmHg to 30mmHg. The figs. 4.8b and 4.8c illustrate
affected curves7. In either case the usage of Ts,B leads to an improvement
of the pressure waveform since the corresponding curve matches closely

7Again, the reservoir pressure p̃res(ts,A) does not align closely to the measured pres-
sure curve suggesting a non proper outcome of the optimization. However, the
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Figure 4.8: Sensitivity of p̃res on notch time
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Figure 4.9: Sensitivity of p̂res on notch time

the measured pressure waveform p in diastole and does not exhibit un-
reasonable pressure values throughout the whole cardiac cycle. However,
the contrary may as well be possible: A “good” curve may well alter into
a less plausible one too, which might be tied to a curve fitting in diastole
based on a local rather than a global minimum. Thus, indicators for
identifying suitable curves are proposed in the later section 4.3.4.
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4.3. Notch Time and Sensitivity Analysis

Algorithm 3.2: Reservoir pressure without flow – Variant A

Whereas a different notch time implies both positive and negative de-
viations in PP for the pressures p̃res, the PP deviations for the reser-
voir pressures p̂res are characterized by mainly (substantial) negative
changes which therefore document a non-wanted results: Some of the
curves p̂res(ts,A) do not seem to constitute a plausible reservoir pressure
but rather match the pressure waveform for the whole cardiac cycle, cf.
figs. 4.5b and 4.9c. Within the Reservoir Theory this would imply an
excess pressure of almost zero according to (3.1) which would contradict
the model since it is believed that wave activity is considerably high dur-
ing systole. Hence a drop in PP is preferable for many of the reservoir
pressure waveforms corresponding to Ts,A. Consequently, the choice of
using Ts,B instead of Ts,A yields plausible reservoir pressure waveforms
since numerous pressure curves undergo considerable changes in the PP.
In further consequence, these waveform deviations give rise to the still
notable value of RMSE in table 4.12.

Algorithm 3.3: Reservoir pressure without flow – Variant B

Algorithm 3.3 constitutes the most stable implementation method. This
becomes clear by observing the means and standard deviations of the
PP and area deviations in table 4.12. However, the, apparently contra-
dictory, high figures corresponding to the RMSE can be explained by
the existence of two curves exhibiting tremendous changes in PP which
result in the high RMSE, cf. fig. 4.10a. The reservoir pressures p̆res(ts,A)

and p̆res(ts,B) constitute reasonable waveforms for the majority of curves.
Nonetheless, as mentioned in section 3.4.3, it is not excluded a-priori
that some waveforms are based on negative parameters. Indeed, some
pressures p̆res belong to this group of waveforms which do not correspond
to physiological plausible parameters.

Conclusion

The reservoir pressures p̂res of algorithm 3.2 are most reasonable when
using the notch time ts,B ≈ Ts,B. Considering the reservoir pressure p̃res

no substantial difference is observable by performing algorithm 3.1 with
the notch time based on Ts,A or on Ts,B. The same applies to the reservoir
pressures p̆res obtained by algorithm 3.3. Hence, the choice for the notch
time to be ts := ts,B ≈ Ts,B finally accomplishes the configuration for
all algorithms since the initial values have always remained unchanged.

algorithm terminated regularly since the change in residual was less than the spec-
ified tolerance of 1× 10−6.
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Figure 4.10: Sensitivity of p̆res on notch time
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Therefore all algorithms are parametrized as originally documented in
the algorithms 3.1 to 3.3.

4.3.4 Identification of Reasonable Reservoir Curves

Even though the algorithms 3.1 to 3.3 now provide a uniquely defined
configuration which are supposed to be applicable for the majority of
pressure curves it still may occur that some of the computed waveforms
do not constitute physiological reasonable reservoir pressures which, in
further consequence, shall not be considered for the final evaluation.

For the reservoir pressure p̆res this can be done straight-forward: One
has to check only the sign of the parameters ă, b̆ and P̆∞. If any of those
is negative the respective curve is excluded.

Regarding the reservoir pressure p̂res the main problem constitutes the
existence of curves like those in figs. 4.5b and 4.9c. Using a query for
marking all curves which obey

Ap

(
p̂res|T s

0

)
> ηAp

(
p|T s

0

)

with an appropriate η > 0 all such unreasonable waveforms can be de-
tected.

Lastly, the reservoir pressures p̃res need to be classified which constitute
the most vague identification. However, it is aimed to mark the reservoir
curves which are based on local minima and therefore do not match the
measured pressure waveform closely during diastole. For this purpose the
optional output parameter resnorm of the Matlab-function lsqnonlin

is used which returns the squared euclidian norm of the residual. For
example, by considering the minimization (3.37), i.e.

min
R̃, C̃, P̃∞

‖p̃res − p‖T N
s
,

it holds with I :=
{
i ∈ N0 : ti ∈ T N

s

}
that

resnorm(p̃res) =
∑

i∈I

∣∣p̃res(ti)− p(ti)
∣∣2.

In case that the error with respect to the amount of fitting points #I is
greater than a specified tolerance tol > 0, i.e.,

resnorm(p̃res)

#I
> tol,

the respective reservoir pressure curve is regarded as unreasonable. There-
fore the computed reservoir pressure does not match the measured pres-
sure decay during diastole within a specified tolerance.

In summary, the final decision whether a computed reservoir curve is
accepted for further investigations the following criteria are applied:
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4. Numerical Results and Discussion

Brachial A. Carotid A. Both sites

p̃res 98 90 81

p̂res 110 110 110

p̆res 91 101 89

p̃res ∩ p̂res 98 90 81

p̃res ∩ p̆res 84 83 67

p̂res ∩ p̆res 91 101 89

p̃res ∩ p̂res ∩ p̆res 84 83 67

Table 4.13: Sample sizes of regarded reservoir pressures of totally 110
data sets

• p̃res : The reservoir pressure p̃res is regarded as implausible, when

resnorm(p̃res)

#I
> tol with tol := 20mmHg2.

• p̂res : In case that

Ap

(
p̂res|T s

0

)
> ηAp

(
p|T s

0

)
with η := 0.85

the corresponding reservoir pressure waveform is considered as un-
reasonable.

• p̆res : When any of the parameters ă, b̆ and P̆∞ is negative the re-
spective reservoir pressure is not taken into consideration for further
investigations.

Sample Sizes of Considered Reservoir Curves

Applying the stated criteria above the resulting sample sizes for further
investigations are denoted in table 4.13.

Therefore, by regarding only accepted reservoir pressures p̃res related
to the brachial artery, the sample consists of 98 waveforms which means
that 12 brachial reservoir waveforms are considered as flawed. Similarly,
one disposes of in total 90 carotid reservoir waveforms. In case that
comparisons between brachial and carotid pressure waveforms are aimed
the intersection of reasonable waveforms yield a sample of 81 data sets.

As opposed to that, all reservoir pressures p̂res are considered as plau-
sible. Thus, no jumps and other discontinuities in the neighbourhood of
p̂res(ts) exist with the chosen parametrization of algorithm 3.2.

In total 91 p̆res-waveforms based on brachial data are accepted. Con-
sequently, 19 brachial waveforms correspond to negative parameters and
subsequently are excluded from further considerations. Moreover, 101
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Figure 4.11: Pressure separation at brachial artery based on
algorithm 3.2. The diastolic blood pressure DBP of this particular

curve equals 76mmHg

carotid reservoir curves are available yielding a sample size of totally 89
curves for comparisons between both sites.

The remaining rows of table 4.13 shall be understood such that for ex-
aminations with respect to various reservoir pressures the corresponding
sample sizes are intersections of the involved pressure-related samples.
For example, in case of considering all carotid reservoir pressures the
corresponding sample consists of 83 waveforms.

4.4 Reservoir Theory applied on Peripheral

Arteries

In this section the results of the Reservoir Theory applied on peripheral
arteries are presented and discussed. Firstly, the pressure separation
according to (3.1) is illustrated.

4.4.1 Pressure Separation

In fig. 4.11 both the reservoir pressure pres and the excess pressure pex =
p− pres is depicted for a brachial curve whereby the results are obtained
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4. Numerical Results and Discussion

by application of the extended Reservoir Theory in the course of algo-
rithm 3.2. Hence no flow velocity is considered and the assumptions
(A1) and (A2) in combination with presuming spatially uniform reser-
voir pressures constitute the basis for performing the pressure separation
at the artery. Basically this figure visualizes the main idea of the Reser-
voir Theory: The local pressure p = p(x, t) is modelled as instantaneous
sum of the time-dependent reservoir curve pres = pres(t) and the time-
and location dependent excess pressure pex = pex(x, t) = p(x, t)− pres(t).
Thus, the reservoir pressure refers to the compliance related behaviour
of the main arteries and the excess pressure is associated with the wave-
related local phenomena. Nevertheless, an absolute separation of both
main contributors to the actual (measured) pressure waveform seems
virtually impossible. Indeed, since the reservoir pressure also drives the
pressure, at least in diastole, the reservoir part needs to accommodate
wave phenomena too.

However, by definition, the excess pressure is set to zero at the begin-
ning of systole since wave phenomena are expected to be negligible at
the end of diastole. Therefore the reservoir pressure corresponds to the
magnitude of the measured pressure at this time. In fig. 4.11 the pressure
above DBP is plotted on the ordinate axis which infers that both pressure
components start at the zero level in this graph. It can be witnessed that
the excess pressure is closely aligned to the measured pressure waveform
during early systole whereas the reservoir pressure fits in late diastole.
The underlying concept of the extended Reservoir Theory now implies
that the excess pressure corresponds to the flow rate at the ascending
aorta [1]. Since no simultaneously measured aortic pressure waveform is
available this assumption (A2) cannot be verified. Nonetheless, (A1) and
its assumed similar waveform decay of the measure pressure at different
locations in the arterial system during diastole can be investigated. In
total, 110 waveforms at both the brachial and carotid artery are available
in order to fulfil this task. However, depending on the chosen algorithm
not all of them are considered for this analysis.

4.4.2 Reservoir Pressure Waveforms

In the following two different sets of brachial and carotid curves and
their corresponding reservoir pressures are discussed. A focus is put on
the fact, that the majority of pressure sets do not exhibit the same beat
duration, cf fig. 4.3.

In figs. 4.12 and 4.13 two pairs of measured pressure waveforms are
depicted. For this discussion again algorithm 3.2 was used to generate
the corresponding reservoir pressures. It is emphasized that for this par-
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Figure 4.12: Reservoir pressure p̂res at both arteries. Beat duration of
measured brachial curve is slightly longer with ∆Tb = 0.01 s
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Figure 4.13: Reservoir pressure p̂res at both arteries. Beat duration of
measured brachial curve is considerably longer with ∆Tb = 0.235 s
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ticular selection of waveforms the deviation of beat duration between
the brachial and carotid waveform were the determining characteristic.
Fig. 4.12 depicts the waveform with the shortest and fig. 4.13 with the
greatest difference in the beat duration between brachial and carotid
curve of all available data sets. It has already pointed out that the pe-
riodization methods have altered the beat duration of numerous curves.
However, due to the fact that mostly (P3) was used, the influence of
data preprocessing on the resulting beat duration as a whole has been
considered as negligible, cf. section 4.2.1. Furthermore, the carotid pres-
sure scaling during (DP3) inferred that both the brachial and carotid
pressure waveforms exhibit the same mean pressure according to (3.28)
and (3.29), which can also be observed in the figs. 4.12 and 4.13. Since
these depicted waveforms constitute the most extreme representatives,
cf. fig. 4.3b, they sketch a realistic situation of how the different beat
durations can affect the reservoir pressure decay. Referring to fig. 4.12
it can be witnessed that even though the beat duration is almost iden-
tical, and therefore constitute an almost optimal example of a measured
set, the reservoir pressures of the brachial and carotid artery may ex-
hibit different waveforms. In other words: It cannot be taken for granted
that brachial and carotid reservoir pressures are perfectly aligned to each
other. In order to quantify whether measured pressure waveforms at the
distinct locations of brachial and carotid artery have a “similar pressure
decay” during diastole, the obtained parameters through the algorithms
will be used. In this case, especially the time constant

τ = RC = RC =
1

b
(4.6)

is of major interest which can be evaluated by the (approximated) net
area parameters R, C and the rate constants a, b obtained by the algo-
rithms. A particular focus is put on this issue in section 4.5.4.

In fig. 4.14 the results of all algorithms 3.1 to 3.3 applied to the curves
in figs. 4.12 and 4.13 are illustrated. By comparing the results of p̃res in
figs. 4.14a and 4.14b with p̂res and p̆res in figs. 4.14c to 4.14f the discrep-
ancies in their respective reservoir pressures become visible. However,
the reservoir pressures p̂res and p̆res seems to be quite comparable. Thus,
both algorithms based on the same concept of the extended Reservoir
Theory, produce similar results in this example whereas the one using
the flow generates slightly distinct reservoir waveforms.

A direct comparison of the respective reservoir pressures is provided
in fig. 4.15 for both the brachial and carotid artery associated with the
pressure set with the difference of ∆Tb = 0.01 s in their beat duration.
Therefore, this closer examination reveals that p̃res is throughout higher
than the others from the start of systole until the pressures begin to
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(a) p̃res, ∆Tb = 0.01 s
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(b) p̃res, ∆Tb = 0.235 s
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(c) p̂res, ∆Tb = 0.01 s
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(d) p̂res, ∆Tb = 0.235 s
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(e) p̆res, ∆Tb = 0.01 s
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Figure 4.14: Comparison of reservoir pressures of all algorithms at both
arteries for data sets with different deviations in their beat duration.
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Figure 4.15: Reservoir pressures of all algorithms at both arteries.
Regarded set of measured pressure curves exhibits difference

∆Tb = 0.01 s
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drop. At some point all waveforms merge together and provide a similar
decreasing behaviour. Nonetheless, whilst the reservoir pressure p̃b

res of
the brachial curve suggests an exponential decay, the pressure p̃c

res related
to the carotid one slightly oscillates around the others. This issue is
investigated in the following section.

4.4.3 Pressure Separation and Flow Velocity

In section 3.4.1 it was pointed out with (3.35) that in the case of a steady
flow beyond a specific time the corresponding reservoir pressure also ex-
hibits an exponential decay from this time point onwards. Fig. 4.16
illustrates the situation: By starting with the brachial curve in the up-
per panel it can be observed that the flow velocity diminishes within
diastole and remains almost zero. Since it is common to regard the last
two-thirds of diastole as the period of time when waves are believed to
be minimal [1, 3, 31], its initial time is marked with t1/3D. As stated in
the previous section 4.3.2, it does not constitute a proper start for the
reservoir curve fitting to the measured pressure, but it possibly indicates
the beginning when flow levels off. Indeed, the flow velocity (green dash-
dotted line) not only remains almost steady but also corresponds to ap-
proximately zero during T N

1/3D with the magnitude of (0.07± 0.23) cm/s.
As a consequence, (3.35) roughly simplifies to (3.15) indicating the same
exponential behaviour compared to the pressures p̂res and p̆res which rely
on this equation during diastole. However, by comparing the excess pres-
sure (red dotted line) with the flow velocity some discrepancies in their
respective waveform are observable which remain persistent even when
bearing in mind their different scales. For example, the minimum and
maximum of the excess pressure are hit later than those of the flow veloc-
ity. Since the extended Reservoir Theory, and therefore the algorithms 3.2
and 3.3, assume a proportionality u ∼ pex by (A2) the differences in sys-
tole of the respective reservoir pressures in fig. 4.15a can be explained8.
More precisely, if the computed excess pressure is proportionally equal
to the flow velocity, all algorithms should generate very similar results.

By recycling the stated arguments above and applying them to the
carotid curve the situation depicted in fig. 4.16b can be described as
follows: The flow within T N

1/3D is characterized by (6.37± 0.75) cm/s in-
dicating an approximately constant level as well. However, the standard
deviation is about three times higher as opposed to the brachial one
which consequently could cause the slight oscillations of p̃res in fig. 4.15b.

8In fact, in this case (A2) needs to be extended such that flows in any arterial

location with similar waveforms to the aortic flow are approximately proportional
to the excess pressure.
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Figure 4.16: Flow velocity and reservoir pressure p̃res for both arteries.
Regarded set of measured curves exhibits difference in beat duration of

∆Tb = 0.01 s
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4.4. Reservoir Theory applied on Peripheral Arteries

On the one hand, the velocity is always greater than zero and thus can
never be scaled with a proportionality factor in order to obtain the ex-
cess pressure. On the other hand, their respective minima and maxima
almost occur exactly at the same time. Consequently, by considering the
velocity u as a sum of a waveform v shifted by a constant v0, i.e.

u = v0 + v (4.7)

such that it holds µu|
T N
1/3D

= v0 for the mean of the flow velocity u over

T N
1/3D, the reservoir pressure (3.34) reads

pres(t) =
e−t/(RC)

C

∫ t

0

(
v0 + v(s)

)
es/(RC) ds

+
(
pres(0)− P∞

)
e−t/(RC) + P∞

= v0R e−t/(RC)
(
et/(RC) − 1

)
+

e−t/(RC)

C

∫ t

0

v(s) es/(RC) ds

+
(
pres(0)− P∞

)
e−t/(RC) + P∞

and subsequently

pres(t) =
e−t/(RC)

C

∫ t

0

v(s) es/(RC) ds

+
(
pres(0)− (v0R+ P∞)

)
e−t/(RC) + (v0R+ P∞).

(4.8)

Hence, the right-hand sides of (3.34) and (4.8) correspond to each other
by setting v0R + P∞ as the new (mathematical) asymptotic pressure
in (4.8). Moreover, since (3.34) can be transformed to (3.14) by using the
original net parameters of R and C and simply “do all steps backwards“
in section 3.2.1, the new assumption of having

pex ∼ v (4.9)

infers the theoretical solution of the reservoir pressure of the extended
Reservoir Theory to be

pres(t) = e−(a+b) t

(
pres(0)−

b

a+ b
(v0 R+ P∞)

+ a

∫ t

0

p(s) e(a+b) s ds

)
+

b

a+ b
(v0R+ P∞).

(4.10)
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This equation is structurally identical to (3.20) and only differs in the
definition of the asymptotic pressure. Therefore, one concludes the fol-
lowing: The theoretical solutions of the two different reservoir pres-
sures sought by the three different algorithms during systole are, in case
of (4.9), quite similar9. In other words, if it holds that pex ∼ v the
asymptotic pressure P̃∞ obtained by algorithm 3.1 might be regarded as
the (mathematical) asymptotic pressures gained by the algorithms 3.2 or
3.3 reduced by v0 R̃, i.e. P̃∞ ≈ P̂∞−v0R̃ or P̃∞ ≈ P̆∞−v0R̃ respectively.
As a consequence the better alignment of all reservoir pressures during
systole compared to the brachial counterpart as shown in the figs. 4.15a
and 4.15b could be explained.

Based on this observation the assumption (A2) might be refined for
the extended Reservoir Theory in the following way:

(Ã2) The flow at the regarded arterial location is, up to a constant
offset, approximately proportional to the excess pressure at the
same site, which itself is approximately proportional to the flow
in the aortic root.

At the first glance this might not seem like an improvement, but it states
that if the excess pressure is approximately proportional to the aortic
flow10 uin, i.e.

pex = c1 uin

with c1 ∈ R, and the flow u at the respective artery is, up to a constant
offset, proportional to the excess pressure pex, i.e.

pex = c2 u+ c0

with c0, c2 ∈ R, both (4.7) and (4.9) are fulfilled after parameter substitu-
tion and (A2) holds as well. More precisely, the procedure of computing
the excess pressure remains the same as before11 but (Ã2) helps to char-
acterize the situation in which the extended concept is applicable at this
particular arterial location. Moreover, if (Ã2) is fulfilled, both methods,
and therefore all algorithms, should theoretically yield the same reser-
voir pressure at the respective arterial location12. Apart from that, (Ã2)

9It is remembered, that algorithm 3.2 only describes the systolic part of the reservoir
pressure through (3.20). During diastole an exponential pressure decay is assumed.

10In this context the flow is considered as the flow velocity u. Nonetheless, the same
arguments are applicable in case of regarding the flow rate q.

11That means: Assume qin ∼ pex and compute the reservoir pressure due to (A1).
12In case of using the mathematical solution of pres for the extended Reservoir Theory

implementations. Since an exponential decay is assumed the results might only
be ”similar“.
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Figure 4.17: Mean and standard deviation of flow velocities in the last
two-thirds of diastole broken down for samples of 110 brachial and

carotid flow velocity-curves

Brachial Artery Carotid Artery Diff. (C-B)

µu|
T N
1/3D

(cm/s) 1.51± 2.31 9.87± 4.30 8.36± 5.00

σu|
T N
1/3D

(cm/s) 0.58± 0.49 1.28± 0.72 0.71± 0.83

Table 4.14: Mean µu|
T N
1/3D

and standard deviation σu|
T N
1/3D

in the last

two-thirds of diastole of all 110 brachial and carotid flow velocities

is a real generalization of (A2) since (A2) is based on the assumption
u = uin ∼ pex and therefore would be applicable as well by setting c0 = 0
in (Ã2). However, since the flow at the aortic root is not available, (Ã2)
cannot be verified for the respective data sets. Nonetheless, the flow
velocities shall be investigated more detailed in order to discuss their
impact on p̃res.

With respect to distribution of the mean flow rates µu|
T N
1/3D

during the

last two-thirds of diastole T N
1/3D in fig. 4.17a, it can be witnessed that the

carotid flow velocity is generally higher compared to those at the brachial
artery. In fact, the mean of the carotid flow velocities during this phase
corresponds to almost 10 cm/s which is more than 5 times higher than
the brachial ones, cf. table 4.14. The last column of table 4.14 states the
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mean and standard deviation of the difference µuc|
T N
1/3D

−µub|
T N
1/3D

of each

pair of velocity curves whose distribution is also depicted in the third
box plot of fig. 4.17a. Referring to fig. 4.17b, it can be witnessed that
brachial velocities remain quite stable and fluctuate less around their
mean as opposed to the carotid counterparts.

Thus, the ansatz of regarding the data sets of pressure and flow as an
approximation to those of the ascending aorta can, at most, be justified
for brachial curves. This is simply concluded from the fact that the flow
at the ascending aorta is approximately zero during diastole since the
aortic valve is shut.

Interpretation of the reservoir concept based on the flow
velocity

By taking into account all the stated findings above, the classic Reservoir
Theory, i.e. the concept based on the flow velocity, can be interpreted in
various ways.

Regarding the brachial artery the following interpretations, depending
on the actual flow waveforms, might be possible:

• The brachial flow is approximately proportional to the flow at the
ascending aorta: The Reservoir Theory applied at the brachial
artery might be regarded as the classic concept and theoretically
yields the same reservoir pressure results as the approach based on
(A1) and (A2). (Apparently, in case that the brachial flow is only
up to a constant offset proportional to the flow at the aortic root
the same can be stated due to (Ã2).)

• The brachial flows are not proportional to those at the ascend-
ing aorta: The pressure separation according to Reservoir Theory
might rather be considered as one according to a local lumped pa-
rameter model.

With respect to the carotid curves, it holds similarly:

• The carotid flow is, up to a constant offset, approximately propor-
tional to that at the ascending aorta: The classic reservoir concept
is according to (Ã2) comparable to the extended concept which is
based on (A1) and (A2). Therefore both methods should theoreti-
cally generate similar results13.

13To illustrate the situation, an exemplary carotid curve is regarded: With
the figures P̃∞ = 58.80mmHg, R̃ = 167.80mmHg s/m of algorithm 3.1 and
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4.4. Reservoir Theory applied on Peripheral Arteries

• The carotid flow is not, up to a constant offset, approximately pro-
portional to that at the ascending aorta: Like in the brachial case
it holds that the pressure separation according to Reservoir The-
ory might rather be considered as one according to a local lumped
parameter model.

Therefore, the interpretation of the classic Reservoir Theory markedly
depends on the actual flow waveform. In general, it might be assumed
that the respective flows are not ”similar” to the ventricular flow. Hence,
the classic concept at both arterial locations might commonly be regarded
as a local lumped parameter model as illustrated in fig. 2.10b where in
addition to the pressure p as well the flow q (or u) into the system through
the characteristic impedance Zc is already given.

Overall and bearing in mind the stated points above, it can be said
that the application of the Reservoir Theory with flow depends crucially
on the relation between pressure and flow curves. In fact, already slight
inaccuracies, in the sense that the pressure and flow measurements are
not perfectly matched to each other, might yield substantially different
reservoir waveforms. From this point of view, the application of the
extended Reservoir Theory might be more advantageous. However, a
closer comparison of the two different concepts based on the results of
the three algorithms 3.1 to 3.3 is done within the following sections.

4.4.4 Peripheral Reservoir Pressure Results:

Overview

In this section an overview of the peripheral reservoir pressures of all
algorithms is given for both the brachial and carotid data. It shall be
understood as a rough comparison of all parameters associated with the
the respective reservoir pressure waveforms. A more detailed investiga-
tion is then provided for both locations consecutively in the subsequent
sections 4.4.5 and 4.4.6.

The tables 4.15 and 4.16 show all computed parameters of both Reser-
voir Theory approaches implemented by the three algorithms 3.1 to 3.3
for both arterial locations. Therefore the last two columns of each table
correspond to the results of the extended Reservoir Theory which does

v = (9.42± 0.61) cm/s it holds that

P̃∞ + v0 R̃ = 58.80mmHg + 15.81mmHg = 74.61mmHg

might be an approximation for the computed asymptotic pressures of the algo-
rithms 3.2 or 3.3. However, the respective asymptotic pressures read P̂∞ =
62.97mmHg and P̆∞ = 62.48mmHg in this case. Still it holds P̃∞ < P̂∞ and
P̃∞ < P̆∞ notably.
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Brachial Artery p̃res p̂res p̆res

PP (mmHg) 40.89± 7.86 36.87± 7.27 36.49± 7.27

Ap (mmHgs) 17.90± 4.12 16.41± 3.95 16.31± 3.93

τ (s) 0.47± 0.15 0.58± 0.17 0.66 ± 0.30

P∞ (mmHg) 63.77± 9.27 63.89± 8.65 59.48 ± 15.32

a (1/s) —— 8.44± 3.91 8.17 ± 3.48

b (1/s) —— 1.91± 0.63 1.78 ± 0.65

R (mmHgs/m) 423.94± 193.45 416.79± 222.89 465.91 ± 280.60

C (m/mmHg) (1.27 ± 0.52) × 10−3 (1.70 ± 0.84) × 10−3 (1.73 ± 0.86) × 10−3

Table 4.15: Brachial Artery – Parameters of all reservoir pressures
based on the sample of 84 curves

Carotid Artery p̃res p̂res p̆res

PP (mmHg) 42.17± 8.97 41.48± 8.74 40.81± 8.52

Ap (mmHgs) 19.51± 4.98 18.71± 4.68 18.50± 4.54

τ (s) 0.22± 0.07 0.48± 0.15 0.54 ± 0.22

P∞ (mmHg) 60.52± 8.27 67.48± 9.62 64.84 ± 12.84

a (1/s) —— 11.72± 2.81 11.16± 2.91

b (1/s) —— 2.27± 0.75 2.17 ± 0.91

R (mmHgs/m) 224.19 ± 82.37 180.27 ± 77.08 195.30 ± 95.07

C (m/mmHg) (1.04 ± 0.40) × 10−3 (3.07 ± 1.40) × 10−3 (3.11 ± 1.40) × 10−3

Table 4.16: Carotid Artery – Parameters of all reservoir pressures based
on the sample of 83 curves
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4.4. Reservoir Theory applied on Peripheral Arteries

not use the flow velocities. In contrast, the first columns are related
to classic theory at both arteries incorporating the respective arterial
flows14. All results are stated in terms of means and standard deviations
whereby the sample sizes for the comparisons consisted of 84 brachial
and 83 carotid curves respectively, cf. table 4.13. In addition to the
direct output parameters of the algorithms as well the pulse pressure
PP and the area Ap of to the respective reservoir pressure above DBP
were computed. Moreover, the time constants τ , as stated in (4.6), were
determined by using either the net area parameters R̃, C̃ or the rate con-
stants b̂, b̆, depending on the type of algorithm. Furthermore, R̂, R̆, Ĉ, C̆
were approximated by means of (3.58) since they are not direct output
results of the algorithms 3.2 and 3.3. As a consequence the figures of
the first four rows indicate the values which can be inferred by all algo-
rithms directly, whereas the remaining four are either not available for
all algorithms or are obtained by further assumptions.

Referring to the brachial data, it can be observed that all parameters
are of the same order of magnitude. In fact, table 4.15 suggests very
similar results of algorithm 3.2 and 3.3. In particular, the pulse pressure
PP and the area Ap related to p̂res and p̆res are very close to each other
for both the mean and the standard deviation whereas those related to
p̃res have, on average, higher figures. The rate constants of algorithms 3.2
and 3.3 exhibit similar values as well.

With reference to table 4.16, which is related to the carotid reservoir
waveforms, it can be stated that the mean PP and Ap agree closely among
all algorithms whereas the mean time constant of p̃res differs considerably
from the others’. The mean asymptotic pressures vary throughout all
algorithms whereas the rate constants of the algorithms 3.2 and 3.3 agree
quite well.

Nonetheless, it has to be stated that at both arterial locations, espe-
cially with respect to the asymptotic pressures, many results of the two
algorithms 3.1 and 3.2 might be affected by the particular choice of P∞ to
be within the range 0.7 minT N

0
(p) ≤ P∞ ≤ minT N

0
(p). In fact numerous

computed asymptotic pressures of P̃∞ and P̂∞ are situated close to the
lower bound indicating that the algorithm might seek to decrease further
the respective pressures.

In table 4.17 the amount of asymptotic pressures located within an
absolute distance of 1mmHg to the lower bound of 0.7 minT N

0

(p) are
shown, whereby only the samples according to table 4.13 have been con-
sidered. E.g., 37 out of 98 pressures P̃∞ might be affected based on the
brachial sample of p̃res- and 42 based on the brachial and carotid sample

14The different model approaches are described in section 3.2 and summarized in
section 3.2.3.
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P∞ Brachial A. Carotid A. Both sites

p̃res 37 39 49

p̂res 42 19 46

p̆res 0 0 0

p̃res ∩ p̂res 42 42 50

p̃res ∩ p̆res 23 33 35

p̂res ∩ p̆res 23 10 25

p̃res ∩ p̂res ∩ p̆res 28 35 36

Table 4.17: Amount of possibly affected waveforms within regarded
curves, cf. table 4.13

of p̃res ∩ p̂res-curves since either algorithm 3.1 or 3.2 generated a result
of the asymptotic pressure close to the lower border. In further conse-
quence, other parameters computed within the same minimization step
are likely to have compensated this possibly restriction in order to get an
aligned reservoir waveform to the measured one during diastole. In case
of algorithm 3.1 that are R̃, C̃ according to (3.37). With respect to algo-
rithm 3.2 it is b̂ = 1/τ̂ , cf. (3.40). Therefore, this has to be kept in mind
during all considerations associated with the results of the algorithms 3.1
and 3.2.

However, for a closer examination of all algorithms and their param-
eters a different form of representation is needed. Hence, scatter and
Bland-Altman plots are provided for both locations in the following sec-
tions so as to compare every method and its associated results more
profoundly. The plots with respect to the brachial data are shown in
figs. 4.18 to 4.24 and those related to the carotid one are given in figs. 4.25
to 4.31. For each plot, the maximal available amount of samples accord-
ing to table 4.13 was considered. Every scatter plot contains, in addition
to the actual data, its fitted regression line. Moreover, the correlation
coefficient r of the respective variables is stated above each scatter plot.
In the Bland-Altman plots the mean µ (green solid lines) and µ± 1.96 σ
(green dashed-lines) with standard deviation σ of the differences are dis-
played which indicate the 95% limits of agreement in case of an assumed
normal distribution.

4.4.5 Brachial Reservoir Pressure

Referring to fig. 4.18 it can be observed that P̃P is systematically higher
than P̂P and P̆P with a bias of about µ = 4mmHg. Furthermore, the
fluctuations indicated by the 95% limits of agreement are very similar
too, cf. figs. 4.18b and 4.18d. Nevertheless, both scatter plots exhibit
a high correlation coefficient. With respect to lowest panel it can be
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witnessed that the correspondence of P̂P and P̆P is even better with a
correlation coefficient of 0.99. Moreover their mean difference and stan-
dard deviation are approximately zero indicating a pretty good align-
ment. The very same applies by regarding the areas of the reservoir
pressures Ap in fig. 4.19. The most striking difference in this figure of
areas compared to the one of the pulse pressures is the possible outlier
in fig. 4.19e. Nonetheless, since both algorithms state a similar value
the results fit as well for this particular curve. Referring to fig. 4.19f the
differences are very small anyway.

By considering the time constants in fig. 4.20 one can observe that the
results scatter more drastically compared to PP and Ap, especially when
τ̃ is involved which is also indicated by the low correlation coefficients of
0.55 and 0.41 respectively. However, whilst the values in fig. 4.20b suggest
a random scattering around a negative bias, fig. 4.20d indicates that the
lower the figures of τ are the better the alignment seems to be. Again,
the output parameters of algorithms 3.2 and 3.3 are better in agreement
even though some single values of τ̆ are approximately twice as high as
the corresponding τ̂ . The clustering of the majority of points around the
mean in fig. 4.20f and the smaller σ confirms this superior alignment.
Nonetheless, in this comparison the lower bound for P̃∞ and P̂∞ could
have affected the corresponding time constants τ̃ and τ̂ , cf. table 4.17.
This “artificial” restriction might also be observable by comparing them to
the values of τ̆ which exhibit values within a broader range, cf. figs. 4.20c
and 4.20e. However, it is remarkable that τ̂ and τ̆ still coincide quite well.
Their mean difference is rather small (µ = −0.08 s) and their correlation
coefficient is still high. Generally, the alignment is better in lower figures.
This indicates that, at least for lower time constants, the impact of the
minimization bound on 23 out of 91 samples does not influence the results
of τ̂ substantially in the comparison of figs. 4.20e and 4.20f. This is still
reasonable since curves with a flat pressure decay might not be described
with a parameter setting of a low asymptotic pressure and a high time
constant with algorithm 3.1 and 3.2. Instead, for such curves, a higher
asymptotic pressure and a lower time constant is chosen in order to keep
the error in the minimization small. The very same holds for the situation
depicted in the upper panels which compare τ̃ and τ̂ . Here 23 out of 84
values might be affected.

The plots in fig. 4.21 illustrate the direct impact of the minimization
bound: In total 42 of 98 excess pressures in figs. 4.21a and 4.21b are situ-
ated close to the lower bound yielding a mean difference of approximately
zero. However, still a high standard deviation is stated, indicating con-
siderable fluctuations for the other, not affected, values. With reference
to figs. 4.21c and 4.21d it can be witnessed that the higher the values

105



4. Numerical Results and Discussion

of P∞ are the better the asymptotic pressures P̃∞ and P̆∞ coincide. As
already pointed out, this makes sense since excess pressures with higher
values are not affected by the lower bound. In particular, in this setting
23 out of 84 values P̃∞ are affected. By regarding the bottom figures
of fig. 4.21 the high conformity of P̂∞ and P̆∞ for higher values is also
observable. The remarkably high standard deviation might be a conse-
quence of the fact that in total 23 of 91 curves are influenced, but still
they coincide quite well in general, which is also indicated by the still
notable correlation coefficient r = 0.75. It also interesting to observe
that in total 42 p̂b

res-curves might be affected by the lower optimization
bound but 19 of these curves are discarded since the corresponding p̆res-
waveforms are not considered as plausible. Consequently, 23 out of 91
P̂∞-values might be affected in this comparison. Hence, at least for the
brachial curve, a lot of influenced P̂∞-curves are discarded anyway in the
comparison in the bottom panels since any parameter related to p̆res is
negative.

Fig. 4.22 indicate comparable results in terms of rate constants a and
b of the respective algorithms 3.2 and 3.3. Rather small mean differences
can be witnessed and also the possible outlier of a has similar values in
both algorithms. In total similar results are shown for both algorithms
in this respect.

The subsequent figs. 4.23 and 4.24 depict the comparisons for the pe-
ripheral net area parameters R and C. Throughout all figures, the cor-
relation coefficients are always greater than 0.8 which, in combination
with the relatively small mean differences, indicate a quite good match
for the majority of curves. A closer examination reveals that the align-
ment in both the resistances R and C is better in lower figures. Since the
product RC corresponds to the time constant this observation coincide
with the already discussed situation depicted for the time constants in
fig. 4.20. However, by bearing in mind that the peripheral parameters
with respect to p̂res and p̆res are computed by the approximated conver-
sion formulas (3.58), it is remarkable that most of the computed values
of R̂ and Ĉ match closely their counterparts. This is especially true in
fig. 4.24f where the mean difference exhibits a value of 1× 10−5. More-
over, the respective differences have values in the order of magnitude of
1× 10−4 whereas the upper and middle panels have higher ones of about
1× 10−3.

Overall it can be said that the clinically important parameters of
PPb and Ab

p obtained by the algorithms 3.2 and 3.3 are almost iden-
tical whereas algorithm 3.1 produces systematically higher results. With
respect to the time constants associated with p̂b

res and p̆b
res, it has been

witnessed that they are quite similar in general and in particular agree
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even better for lower figures. In contrast, the time constants of the reser-
voir pressures p̃b

res are systematically lower, indicating a steeper decay
of the pressure-waveform. The systematic lower figure of τ̃b compared
to τ̂b and τ̆b might be caused by the flow behaviour. Nevertheless, the
figures indicate that the influence of the lower bound of the asymptotic
pressures should not be neglected in this respect. On the contrary, in
case of only regarding lower figures in fig. 4.20 for the comparison of all
brachial time constants the systematic difference seems to be persistent.
Regarding the brachial asymptotic pressures it has been observed that
many pressures of P̃ b

∞ and P̂ b
∞ have very likely been made to match for

the same pressure waveform due to the lower bound. In fact 42 out of 98
curves might be affected in their direct comparison. Nonetheless, in case
of only considering higher values of the respective asymptotic pressures
it seems that all algorithms generate similar results regarding P b

∞.
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(b) Bland-Altman plot: P̃P vs. P̂P
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(c) Scatter plot: P̃P vs. P̆P

10 20 30 40 50 60 70
−5

0

5

10

15
µ = 4.40, σ = 3.02

P̃
P
−

P̆
P

in
m

m
H

g

(P̃P + P̆P)/2 in mmHg

(d) Bland-Altman plot: P̃P vs. P̆P
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(e) Scatter plot: P̂P vs. P̆P
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(f) Bland-Altman plot: P̂P vs. P̆P

Figure 4.18: Brachial Artery: Direct comparison of reservoir pulse
pressures PP
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5 10 15 20 25 30
−3

−2

−1

0

1

2

3

4

5
µ = 1.51, σ = 1.00

Ã
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(b) Bland-Altman plot: Ãp vs. Âp
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(d) Bland-Altman plot: Ãp vs. Ăp
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(Âp + Ăp)/2 in mmHgs

(f) Bland-Altman plot: Âp vs. Ăp

Figure 4.19: Brachial Artery: Direct comparison of reservoir areas Ap
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Figure 4.20: Brachial Artery: Direct comparison of reservoir time
constants τ
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Figure 4.21: Brachial Artery: Direct comparison of asymptotic
pressures P∞
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Figure 4.22: Brachial Artery: Direct comparison of net parameters a, b
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Figure 4.23: Brachial Artery: Direct comparison of peripheral area
resistance R
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Ĉ in m/mmHg

C̆
in

m
/
m

m
H

g

(e) Scatter plot: Ĉ vs. C̆
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Figure 4.24: Brachial Artery: Direct comparison of net area compliance
C
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4.4.6 Carotid Reservoir Pressure

In this section the results of all algorithms at the carotid artery are
compared based on the figs. 4.25 to 4.31.

Regarding the pulse pressure PP the figures of algorithm 3.1 are slightly
higher compared to those of the other algorithms but differ with a stan-
dard deviation of about σ = 3mmHg, cf. figs. 4.25b and 4.25d. In
contrast, by comparing algorithm 3.2 with algorithm 3.3, which both
do not use the flow, a better agreement and a less standard deviation
is observable. Moreover, the correlation coefficient equals almost 1, cf.
fig. 4.25e. However, especially one curve is characterized by a striking
PP among all algorithms and suggests that it does not belong to this
cohort. In further consequence the high correlation coefficients at all
comparisons are possibly overestimated. Nonetheless, by regarding the
respective Bland-Altman plots the corresponding mean differences are
quite small which indicate a good agreement of all algorithms for the
majority of reservoir curves.

The just stated observations also apply to the area Ap by regarding
fig. 4.26. I.e. those areas associated with p̃res are generally slightly higher
and the remaining pressures p̂res, p̆res exhibit similar values. The possible
outlier is as well observable. However, the areas Âp and Ăp agree even
better compared to their respective pulse pressures.

As already suggested by table 4.16, the time constant τ̃ is for most of
the reservoir curves smaller than τ̂ and τ̆ . With respect to figs. 4.27a
and 4.27c it can be witnessed that τ̃ does not vary in the same range as
those belonging to the extended Reservoir Theory algorithms. Further-
more, the correlation coefficients are rather small. As already observed
for brachial curves, τ̃ is better in agreement with τ̂ and τ̆ for lower fig-
ures, cf. figs. 4.27b and 4.27d. Since in total 39 out of 90 P̃ c

∞-values are
affected by the lower minimization bound this circumstance could have
restricted the variability of τ̃ . Therefore, this might have a quite consid-
erable impact on the results. The same holds for 19 out of 110 P̂∞-values.
Since, in relative numbers, p̂res-curves are not expected to be affected to
the same extent as p̃res-ones the higher variability of τ̂ compared to τ̃
might be explained, cf. fig. 4.27a. With respect to the lower panels of
fig. 4.27 it can be witnessed that τ̂ and τ̆ agree well which is indicated
by the small mean µ = −0.05 s and standard deviation σ = 0.10 s. Since
only 10 of in total 101 regarded curves might be affected by the lower
bound in the regarded comparison, this influence might be neglected.
Therefore, a pretty good alignment of the algorithms 3.2 and 3.3 can be
stated.

With a view to the asymptotic pressures in fig. 4.28 the observations
are as follows: Firstly, it has to be recalled that 39 P̃∞- and 19 P̂∞-
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values of all their regarded curves are located close to the lower bound.
Consequently, those which are associated to the same curve, are likely to
correspond to each other. Several differences P̃∞ − P̂∞ are equal to zero
and could be caused by this circumstance. Moreover, the values of P̃∞

and P̂∞ are better in agreement with P̆∞ for higher values. Again, it is
likely that lower figures of P̃∞ and P̂∞ were prevented by the threshold
0.7 min(p) of the respective curve. By bearing that in mind and therefore
putting the focus on higher values instead, P̂∞ and P̆∞ produce compa-
rable results in general. In addition, the values of P̃∞ are then identified
as systematically lower compared to those of the implementations which
do not rely on the flow. Since the velocities are generally greater than
zero during later diastole, this is quite reasonable due to (4.10) and the
subsequent explanations that the asymptotic pressures P̃∞ are reduced
by the (theoretical) offset v0R.

Referring to the results illustrated in fig. 4.29, it can be witnessed
that the algorithms 3.2 and 3.3 generate very similar results in terms of
the respective rate constants a and b. The high correlation coefficients
and the small mean differences indicate a high correspondence of both
associated algorithms. Since b = 1/τ the results of b basically have
already been discussed.

The net area parameters show systematically higher resistances R̃ but
lower compliances C̃ compared to those of the other ones. Figs. 4.31d
and 4.31b suggest that C̃ is better in agreement with their counterparts
in case of lower values. Again, the lower bound for P̃∞ and P̂∞ might
have affected these results. However, since Ĉ and C̆ are obtained by (3.58)
– involving the excess pressure, the flow velocity and the rate constants
– this behaviour might have several causes and could as well be artificial.
Still, the high correlation coefficients among all comparisons shall be
pointed out.

By taking into account the stated points above, it can be concluded
that generally both algorithms 3.2 and 3.3 produce very similar results at
the carotid artery as well. Therefore, the lower bound in the optimization
routine in algorithm 3.2 does not seem to have a big influence on the
sample of carotid reservoir curves p̂c

res in general. However, due to the
higher quantity of possibly affected P̃ c

∞ this cannot be stated for sure for
algorithm 3.1 and the associated reservoir pressure p̃c

res, but the impact on
the clinically important parameters PP and Ap is suggested to be minimal
since they correlate quite well with those from the other algorithms.
Compared to p̂c

res and p̆c
res the pulse pressures P̃P

c
and areas Ã

c

p are
generally greater and the respective time constants τ̃ c smaller. However,
p̃c

res seems to be influenced more by the lower bound in the optimization
routine than p̂c

res at the carotid artery.
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Figure 4.25: Carotid Artery: Direct comparison of reservoir pulse
pressures PP
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0 10 20 30 40 50
−4

−2

0

2

4

6
µ = 0.83, σ = 1.31

Ã
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Figure 4.26: Carotid Artery: Direct comparison of reservoir areas Ap
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Figure 4.27: Carotid Artery: Direct comparison of reservoir time
constants τ
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Figure 4.28: Carotid Artery: Direct comparison of asymptotic pressures
P∞
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Figure 4.29: Carotid Artery: Direct comparison of rate constants a, b
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Figure 4.30: Carotid Artery: Direct comparison of peripheral area
resistance R
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Figure 4.31: Carotid Artery: Direct comparison of net area compliance
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4. Numerical Results and Discussion

4.5 Brachial vs. Carotid Reservoir Pressure

In the preceding section it was pointed out that both implementations
of the extended Reservoir Theory which do not use the flow yield similar
parameters. Furthermore it was observed that these results are gener-
ally different from those generated by the implementation of the classic
approach which incorporates the arterial flow.

However, in this section the differences between the carotid and brachial
reservoir pressures shall be investigated. A particular focus will be put
on clinically relevant parameters of pulse pressure PP and area Ap of
the reservoir pressure waveforms. Since one major objective of this the-
sis is to evaluate whether the pressure decays are similar at the arterial
locations of brachial and carotid artery, the time constant τ will be in-
vestigated too. Moreover, to get a better insight of the influences of the
lower threshold on the algorithms 3.1 and 3.2 the asymptotic pressure
will as well be examined more closely. Before comparing these parameters
between each arterial location individually, an overview of all parameters
and methods shall be given and discussed.

4.5.1 Overviews of all Parameters and Methods

The results of each algorithm are going to be compared between the
brachial and carotid artery. Therefore the maximal amount of curves
which can be considered for both the brachial and carotid artery con-
stitutes the sample for the respective algorithm. The resulting samples
for the respective pressure separations are shown and characterized in
tables 4.18 to 4.20. The corresponding results of each method, based on
these samples, are illustrated in the tables 4.21 to 4.23

In the tables 4.18 to 4.20 the heart rate (HR), the diastolic blood pres-
sure (DBP), the mean blood pressure (MBP), the systolic blood pressure
(SBP), the pulse pressure (PP) and the area of pressure above DBP (Ap)
of the measured pressure waveforms after data preprocessing associated
with the respective sample are shown. Due to the steps during data
preprocessing and the corresponding scaling the DBP and MBP have to
be necessarily equal for the brachial and carotid curves. Moreover, since
PP = SBP − DBP the according differences match those of SBP.

In the tables 4.21 to 4.23 the results of the respective locations are
illustrated, broken down by every single method. The figures in the first
two columns illustrate the mean and standard deviation of all computed
parameters for each arterial location separately. In the third column, the
mean and standard deviation of all differences of the respective brachial
and carotid curves are stated. Lastly, the fourth column denotes the
correlation coefficient of these differences.
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4.5. Brachial vs. Carotid Reservoir Pressure

Sample for p̃res Brachial A. Carotid A. Diff. (B-C) r

HR (1/min) 64.48± 10.76 60.91± 9.34 3.56± 4.36 0.92

DBP (mmHg) 78.80 ± 8.62 78.80± 8.62 0.00± 0.00 1.00

MBP (mmHg) 102.60± 9.40 102.60 ± 9.40 0.00± 0.00 1.00

SBP (mmHg) 139.27 ± 12.36 134.95± 13.55 4.32± 5.42 0.92

PP (mmHg) 60.47± 10.98 56.15 ± 11.53 4.32± 5.42 0.89

Ap (mmHgs) 97.75± 16.33 102.99± 15.68 −5.24± 7.04 0.90

Table 4.18: Parameters of pressure curves regarded for p̃res

(Sample size of 81 curves)

Sample for p̂res Brachial A. Carotid A. Diff. (B-C) r

HR (1/min) 65.48± 11.78 61.80± 9.79 3.68± 4.60 0.93

DBP (mmHg) 80.05 ± 8.53 80.05± 8.53 0.00± 0.00 1.00

MBP (mmHg) 104.30± 9.84 104.30 ± 9.84 0.00± 0.00 1.00

SBP (mmHg) 140.81 ± 13.67 136.84± 14.83 3.97± 5.41 0.93

PP (mmHg) 60.77± 12.23 56.80 ± 12.85 3.97± 5.41 0.91

Ap (mmHgs) 98.32± 18.33 103.39± 16.79 −5.07± 7.09 0.92

Table 4.19: Parameters of pressure curves regarded for p̂res

(Sample size of all 110 curves)

Sample for p̆res Brachial A. Carotid A. Diff. (B-C) r

HR (1/min) 62.97± 10.45 59.73± 8.56 3.24± 4.55 0.90

DBP (mmHg) 80.30 ± 8.49 80.30± 8.49 0.00± 0.00 1.00

MBP (mmHg) 104.36 ± 10.12 104.36± 10.12 0.00± 0.00 1.00

SBP (mmHg) 141.04 ± 14.20 137.47± 15.54 3.57± 5.36 0.94

PP (mmHg) 60.73± 12.27 57.17 ± 13.23 3.57± 5.36 0.91

Ap (mmHgs) 101.71 ± 17.27 106.49± 15.62 −4.78± 7.58 0.90

Table 4.20: Parameters of pressure curves regarded for p̆res

(Sample size of 89 curves)
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4. Numerical Results and Discussion

p̃res Brachial A. Carotid A. Diff. (B-C) r

P̃P (mmHg) 40.62 ± 8.44 41.69± 7.87 −1.07± 6.12 0.72

Ãp (mmHgs) 17.47 ± 4.32 19.20± 4.07 −1.74± 2.22 0.86

τ̃ (s) 0.49± 0.14 0.22± 0.07 0.27± 0.16 −0.05

P̃∞ (mmHg) 62.07 ± 9.17 59.40± 8.39 2.67± 7.17 0.67

R̃ (mmHgs/m) 421.34± 191.06 220.79 ± 78.20 200.55± 208.24 −0.02

C̃ (m/mmHg) (1.31 ± 0.51) × 10−3 (1.05 ± 0.40) × 10−3 (2.58 ± 5.50) × 10−4 0.30

Table 4.21: Parameters of reservoir pressures p̃res based on the sample
of 81 curves

p̂res Brachial A. Carotid A. Diff. (B-C) r

P̂P (mmHg) 36.78± 8.11 41.53± 8.53 −4.76± 4.30 0.87

Âp (mmHgs) 16.17± 4.75 18.54± 4.39 −2.36± 1.92 0.92

τ̂ (s) 0.59± 0.17 0.50± 0.16 0.09± 0.17 0.51

P̂∞ (mmHg) 62.85± 8.66 66.33 ± 10.23 −3.47± 6.99 0.74

â (1/s) 8.33± 3.55 11.94± 2.70 −3.61± 4.02 0.20

b̂ (1/s) 1.86± 0.61 2.20± 0.74 −0.34± 0.68 0.51

R̂ (mmHgs/m) 478.72 ± 294.45 187.67± 74.88 291.05 ± 294.47 0.13

Ĉ (m/mmHg) (1.61 ± 0.85)× 10−3 (3.02± 1.30)× 10−3 (−1.4± 1.4) × 10−3 0.26

Table 4.22: Parameters of reservoir pressures p̂res based on the sample
of 110 curves

p̆res Brachial A. Carotid A. Diff. (B-C) r

P̆P (mmHg) 37.07 ± 8.15 41.29± 8.59 −4.23± 4.86 0.83

Ăp (mmHgs) 16.61 ± 4.76 18.79± 4.29 −2.18± 1.92 0.91

τ̆ (s) 0.65± 0.29 0.54± 0.22 0.11± 0.32 0.24

P̆∞ (mmHg) 60.32± 14.84 65.33± 12.95 −5.01± 15.13 0.41

ă (1/s) 8.19± 3.41 11.33± 2.78 −3.14± 4.12 0.12

b̆ (1/s) 1.80± 0.66 2.15± 0.91 −0.36± 0.95 0.29

R̆ (mmHgs/m) 512.96± 356.72 201.61 ± 94.07 311.35 ± 358.77 0.11

C̆ (m/mmHg) (1.65 ± 0.89) × 10−3 (3.03 ± 1.30) × 10−3 (−1.39 ± 1.40) × 10−3 0.23

Table 4.23: Parameters of reservoir pressures p̆res based on the sample
of 89 curves
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4.5. Brachial vs. Carotid Reservoir Pressure

Referring to p̃res it can be witnessed that PP and Ap are comparable
for both sites. Moreover, the high values of r = 0.72 and r = 0.86 in-
dicate a notable linear correlation. Regarding the figures, the brachial
reservoir pulse pressures P̃P and areas Ãp are about one unit smaller
than the carotid ones, cf. table 4.21. In contrast, the associated sam-
ple of measured pressure curves exhibits a brachial pulse pressure PP
which is about 4mmHg greater and the corresponding Ap is approxi-
mately 5mmHg s lower as opposed to the carotid artery, cf. table 4.18.
Hence, in direct comparison with the original data the difference in PP
even changed the sign. In other words, whereas in the original pressure
waveform the brachial PP is greater, for the reservoir holds the contrary.
By considering the remaining parameters in table 4.21 the time constants
and peripheral area resistances differ remarkably. In fact, the brachial
resistance is on average almost twice as high compared to the carotid
one. Furthermore, the brachial asymptotic pressure is generally bigger.

By considering the results of p̂res and p̆res it can be stated that the
brachial PP an Ap are, on average, about 4mmHg and 2mmHg s smaller
in both cases and the corresponding correlation indices are all around 0.9.
The time constant discrepancy has decreased compared to p̃res. The re-
garded sample of pressure curves associated to p̂res and p̆res exhibit similar
figures, cf. tables 4.19 and 4.20. In short, the brachial readings provide
about 4mmHg higher pulse pressure and approximately 5mmHg s lower
areas compared to those at the carotid artery.

However, it has to be kept in mind that the possibly affected amount
of asymptotic pressures are in the case of P̃∞ 49 out of 81 and in the case
of P̂∞ 46 out of 110 values, cf. table 4.17. Regarding p̂res the preceding
findings suggested that the results are barely influenced since the param-
eters of p̂res and p̆res match closely each other which can be interpreted
as that they verify each others’ results. Unfortunately, this cannot be
stated for p̃res, but the observed results indicate systematic differences
compared to p̂res and p̆res regardless their existence. Nevertheless, the
asymptotic pressure is examined first.

127



4. Numerical Results and Discussion

4.5.2 Asymptotic Pressure

Referring to fig. 4.32b it can be witnessed that the brachial asymptotic
pressures P̃ b

∞ are generally higher than the carotid ones. Moreover it can
be stated that many, but not all, of the affected asymptotic pressures
are located at the lower bound of 0.7 min(p) for the same data set of
brachial and carotid curves. However, since in total 49 of 81 asymptotic
pressures are affected no clear statement can be given about the direct
comparison of both arteries associated with P̃∞.

With respect to P̂∞ it holds similarly that many of the asymptotic
pressures are located for the same pressure set at the lower minimization
bound indicating that the algorithm most likely would have sought to
decrease further the asymptotic pressure, cf. fig. 4.32d. Nonetheless,
since a direct comparison to P̆∞ is possible, the as systematically lower
stated brachial values P̂ b

∞ are very likely to depict the real situation and
outcome of p̂res.

With reference to fig. 4.32e it can be witnessed that the asymptotic
pressures P̆∞ vary remarkably for both the brachial and carotid artery
within a broader range of values compared to the other ones P̃∞, P̂∞.
However, a clustering can be observed for higher values in both the scatter
and Bland-Altman plot. This might also be the reason that the results
of p̂res and p̆res match closely each other since in the majority of cases
a higher asymptotic pressure than 0.7 minT N

0

p might be plausible. In
general, the brachial asymptotic pressure is lower than the carotid one
whereas both do not correlate well – at least not linearly.

4.5.3 Clinically Relevant Parameters

For the direct comparison of the clinically relevant parameters PP and
Ap only the algorithms 3.2 and 3.3 are considered. This is mainly based
on the observation that the algorithm 3.3 seems to be the most stable one
and its results are closely aligned to those of algorithm 3.2. Therefore the
regarded sample sizes consisted of 110 p̂res- and 89 p̆res-curves respectively.

The outcome is illustrated in figs. 4.33 and 4.34 whereby the left
columns indicate the results associated with the reservoir pressure p̂res

and the right ones those related to p̆res. Both methods testify the same
observation: The PP and Ap are systematically lower for reservoir curves
computed by brachial pressures. However, it has to be emphasized that
the carotid pressure scaling during (DP3) has affected the pulse pressures
and areas of the carotid waveforms. But, especially because of this step
of data preprocessing it is believed that these comparisons in terms of PP
and Ap are justified since afterwards both arterial pressures correspond
to each other in their mean pressures.
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4.5.4 Pressure Decay in Diastole

In this section the pressure decay in diastole is examined in order to
investigate (A1) for the respective arteries which constitutes one of the
the major assumptions for the extended Reservoir Theory. However,
due to this assumption, the reservoir curves are presumed to have an
exponential decay which is aligned to the measured waveform.

Since the majority of curves exhibit different beat durations and, hence,
a different amount sampled time points, it is not possible to compare
different curves by applying the (R)MSE. Therefore, one could use the
respective time constants of the brachial and carotid reservoir pressure
waveforms instead in order to quantify the pressure decay during dias-
tole. The corresponding results of the time constants τ for both arteries
are illustrated in fig. 4.35 computed by both the algorithms 3.2 and 3.3
whereby the samples for the respective algorithm consisted of 110 and 89
pressure curves at each arterial location.

Both illustrated comparison sets of τ̂ and τ̆ between the arteries in
fig. 4.35 show that the brachial time constant τb is systematically higher
whereby the differences associated with τ̂ are less substantial due to the
lower standard deviation. In other words, the carotid pressure decay is
indicated to be steeper for the majority of curves, which is also suggested
by the figs. 4.12 and 4.13.

Nevertheless, in section 4.3.1 it was pointed out that the beat dura-
tion Tb of the carotid curve is generally longer within the provided sets
of pressure curves. Therefore, this could have had an impact on the com-
putation of the time constants. Since τ is obtained in order to match the
pressure decay in diastole the respective diastolic durations Td = Tb −Ts

and their ratio to the the corresponding beat duration Tb are compared
for both arteries in fig. 4.36. On the one hand it can be witnessed in
figs. 4.36a, 4.36c and 4.36e that the estimated diastolic durations Td are
generally slightly longer for the carotid waveforms in absolute numbers.
On the other, it is observable that the brachial and carotid diastolic
durations are proportionally almost equal to their respective beat dura-
tions, cf. figs. 4.36b, 4.36d and 4.36f. In fact, the brachial ratios are
marginally greater in comparison. Therefore, the apparent discrepancies
in their respective diastolic durations seem to be a matter of scaling and,
in further consequence, should not have affected the computation of the
time constant largely.

Apart from the diastolic duration a closer look at the time duration it
takes from the highest figure in the respective reservoir pressure to the
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4.5. Brachial vs. Carotid Reservoir Pressure

end of the beat might be of interest. Therefore the duration between

tmax := argmax
t′∈T N

0

(
pres(t

′)
)

and the end of diastole is regarded. Since it holds PP = maxT N
0

(pres) −
DBP this time is associated with the reservoir pulse pressure. Hence, the
time duration between tmax and the end of diastole shall be denoted by

TPP := Tb − tmax.

Provided that the results of p̂res and p̆res are very similar, only the reser-
voir pressures p̆res are taken into further consideration. In fig. 4.37 the
values of TPP and their ratios to the respective diastolic durations Td

are illustrated for a direct comparison of the arteries. According to the
figs. 4.37a, 4.37c and 4.37e it can be witnessed that the brachial TPP is,
in general, slightly lower in absolute numbers. However, for a relative
comparison between the arteries the ratio TPP/Td shall be regarded too.
Firstly, and with respect to fig. 4.37b, it is observable that it always
holds that TPP > Td for both arteries. Hence, the maximum of p̆res is
hit throughout within systole at both arteries and in particular, for the
majority of curves, rather shortly prior to the estimated notch time. But
more importantly with a view to further investigation, the comparison of
the ratios TPP/Td between the arteries in figs. 4.37d and 4.37f indicates
that the relative time it takes from the highest point of the reservoir
pressures to the pressure at the end of diastole is quite similar for both
arteries.

Therefore, firstly, the reservoir pulse pressures at both arteries are
considered as meaningful due to the carotid pressure scaling during data
preprocessing. Secondly, the end-diastolic pressure values of both arterial
reservoir curves are supposed to be close to the same DBP due to the
diastolic fitting procedure. Hence, since the reservoir pulse pressures of
the carotid arteries are systematically higher than those at the brachial
artery but the relative time TPP/Td it takes to drop for both pressures to
the end-diastolic figure is quite comparable, a steeper pressure decay of
the carotid pressure waveform is very likely regardless the acknowledged
difficulties with respect to their direct comparison due to the different
beat durations of the provided measured data sets.

Overall, these findings suggest that the brachial and carotid reservoir
pressure decays differ during diastole. In consequence, in case of regard-
ing the exponential curves as appropriate approximations, the same holds
for the actual pressure waveforms.
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Figure 4.35: Brachial vs. Carotid Artery: Time constants τ̂ and τ̆ of
the reservoir pressures p̂res and p̆res
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Figure 4.36: Brachial vs. Carotid Artery: Diastolic duration Td
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Chapter 5

Conclusions

Before presenting the major findings and conclusions some essential as-
pects shall be recalled:

Originally the Reservoir Theory was meant to resolve the differences
of pressure and flow waveforms in the ascending aorta by regarding the
actual pressure as an instantaneous sum of a time-dependent reservoir
and a time- and location-dependent excess pressure. In order to acknowl-
edge the propagation of the reservoir curve as well, it was modelled to be
spatially uniform throughout the arterial tree but delayed in time. This
was reasoned by the fact that the ascending aorta is the main driver of
cushioning and recoiling within the systemic arteries. Therefore, it was
assumed that

p(x, t) = pres

(
t− θ(x)

)
+ pex(x, t) (5.1)

with the time-delay θ(x) ≥ 0. In further consequence, by assuming
θ(x) to be negligible, the pressure separation according to this approach
became mathematically feasible1. Moreover, due to the observation that
the excess pressure pex at the aortic root is proportional to the aortic
flow the pressure separation could be performed by the mere knowledge
of the pressure waveform.

Later, two observations were crucial so as to extend the concept on
more distal locations within the arterial tree:

(A1) The pressure waveform decay measured at different locations in
the arterial system is very similar during diastole.

(A2) The excess pressure at any aortic location is approximately pro-
portional to the flow in the aortic root.

By assuming them for the respective arterial location one can perform
the pressure separation without using the flow rate.

1From a different perspective, a two-element Windkessel model is applied in order
to obtain pres and then (5.1) is assumed for further considerations.
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For the present thesis pressure and flow waveforms at the brachial and
carotid artery were available in order to apply the Reservoir Theory on
them. Two different approaches were considered:

Method 1: The pressure waveform at each artery was separated into
reservoir and excess pressure by the use of both the pres-
sure and flow velocity waveform.

Method 2: The pressure waveform at each artery was separated
into reservoir and excess pressure by assuming (A1) and
(A2).

Given that these two methods are based on different preconditions several
interpretations are possible:

Method 1 – Interpretation: Since the flow velocity is used, two
interpretations were associated with Method 1:

a) The measured data sets at the brachial and carotid
artery are considered as an approximation to the
aortic root waveforms and therefore the application
of the (classic) Reservoir Theory using the flow is
justified.

b) The pressure separation is applied to a different
problem: A three-element lumped parameter model
describes the respective arterial location where the
pressure and flow into the system is given by the
measured data.

Method 2 – Interpretation: It is taken for granted that both
assumptions (A1) and (A2) are valid for both arteries
and therefore the pressure separation according to the
Reservoir Theory is applicable.

Prior to the application of the Reservoir Theory necessary data pre-
processing was performed. In total, three different Matlab-algorithms
realized the two modelling approaches, whereby two distinct algorithms
were used for Method 22. In further consequence the Reservoir The-
ory was applied to 110 data sets by means of all algorithms and their
corresponding results were compared to each other.

2One of these two algorithms was thankfully provided by Prof. Kim H. Parker and
therefore constituted a different computational approach of Method 2.
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5.1 Major Findings and Conclusions

In the course of the accomplishment of this thesis the major findings are:

– In general, it may not be expected that Method 1 and
Method 2 generate similar results: This might have been an-
ticipated since both are based on different preconditions. However,
the obtained results testify this intuition. In general, systematic
differences were observed in the regarded parameters. Particularly
the pulse pressures and areas of pressure above diastolic blood pres-
sure computed by Method 1 were systematically higher whereas
the time constants were lower at both arteries in the majority of
cases. Therefore it seems to be more reasonable to consider the
respective pressure separation of Method 1 as one according to a
local lumped parameter model such as illustrated in fig. 2.10b. But
note, the same might be true for Method 2: Since it cannot be
clarified with the available data whether the excess pressure wave-
form at the respective artery is “similar” to the flow in the aortic
root the application of the extended Reservoir Theory could also be
regarded as a local lumped parameter model. However, as opposed
to Method 1 the input flow q of this model is assumed to equal
pex/Zc. Therefore, theoretically, Method 1 and Method 2 might
still generate similar results in case that the input flows correspond
to each other3.

– The assumption (A2) can, in case of its validity, be re-
fined: In the course of this thesis (A2) was extended in the follow-
ing way:

(Ã2) The flow at the regarded arterial location is, up to a con-
stant offset, approximately proportional to the excess pres-
sure at the same site, which itself is approximately pro-
portional to the flow in the aortic root.

In fact, (Ã2) helps to characterize the situation in which the as-
sumption (A2) might hold at the regarded arterial location. Addi-
tionally, it is a real extension to (A2) since the flow at the “regarded
arterial location” can be chosen to be the aortic root. However, it
is still based on (A2) and its validity. Therefore, the computa-
tional procedure remains the same for Method 2. In further conse-
quence, the stated points above can be refined such that Method 1

3The word “similar” is chosen since Method 2 assumes an exponential decay in di-
astole. However, in case of using the mathematical solution of pres for the whole
beat instead the respective reservoir results would correspond to each other.
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and 2 are supposed to yield similar reservoir pressures in case of
q0 + q ∼ pex/Zc with a constant offset q0.

– The computed reservoir pressures are sensitive to the es-
timated notch time: Indeed, this is suggested by the numerical
experiments. Since, in general, the notch time can only be an ap-
proximate estimation it would be highly desirable to dispose of
algorithms which generate stable reservoir pressures. Therefore,
this observation causes doubts in terms of a reliable prediction of
clinically relevant parameters. However, it can be stated that the
algorithm 3.3, provided by Prof. Kim H. Parker, seems to be the
most stable among all regarded implementations.

– The brachial and carotid reservoir pressures obtained by
the extended Reservoir Theory (Method 2) differ from each
other: The computed pulse pressures and areas of pressure above
diastolic blood pressure associated with the carotid reservoir wave-
forms were systematically higher compared to their brachial coun-
terparts. Furthermore, the results suggest that the pressure de-
cay of the respective reservoir pressures exhibits differences too.
In combination with the discrepancies in their pulse pressure it is
questionable whether (A1) is valid for those arteries. In further
consequence, since a crucial assumption is that beside the “similar”
pressure decay during diastole as well only time-delayed but spa-
tially uniform reservoir curves are accepted by the inherent model
theory, one might suspect that the extended Reservoir Theory is
reasonably applicable at those arteries. However, additional data,
such as flow waveforms at the aortic root, might be helpful in order
to examine this more closely. Then, the respective excess pres-
sure could as well be related to the aortic flow and (A2) could be
discussed. Nonetheless, whereas the reservoir pressure waveform
is regarded as spatially uniform the excess pressure is expected to
reflect the local circumstances and shall help to explain the dif-
ferent pressure waveforms along the arterial tree. Hence, since the
brachial and carotid reservoir pressures are indicated to be different,
it is questionable if a comparison of the respective excess pressures
is meaningful.

Limitations

In order to perform the Reservoir Theory on the peripheral waveforms
some data preprocessing was necessary. Its procedure was carefully doc-
umented and its effects were examined. In general they were considered
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as negligible and for many comparisons, like those of the pulse pressures
and areas, even regarded as essential. For other comparisons, like for the
time constant, the discrepancies of brachial and carotid data were taken
into account in order to state the conclusions. Nevertheless, the provided
data sets got altered.

Unfortunately, numerous results of the two algorithms 3.1 and 3.2
were affected by the chosen value domain of 0.7 mint∈[0, Tb] p(t) ≤ P∞ ≤
mint∈[0, Tb] p(t) for the asymptotic pressure P∞ since many computed val-
ues were found to be very close to the lower bound. This was discussed
and taken into consideration during the comparison of the results and the
formulation of the conclusion statements. However, the adaptation of the
lower bound of the respective algorithms could be reasonable in order to
perform a deeper analysis. This is especially true for algorithm 3.1 since,
firstly, it was not possible to counter-check the results with another, un-
affected algorithm4 and secondly, its results differed notably depending
on the initial values which was also observed at the algorithm 3.2. For
the final parametrization of both algorithms “reasonable” initial values –
based on the obtained results – were aimed to be chosen for the mini-
mization routines.

5.2 Comparison with Literature

According to the current state of knowledge, the reservoir concept had
never been applied to this high amount of brachial and carotid data
sets in order to investigate the Reservoir Theory on a broader statistical
base at these arteries. Nonetheless, many scientists have published their
findings on the Reservoir Theory in the course of their research. Here,
some of them shall be presented and – if possible – related to the results
of this thesis.

In [7] the pressure separation according to Method 2 was discussed for
a pair of brachial and carotid pressure waveform. Therein they say,

“Despite the local arterial resistance and compliance being
markedly different for each artery the reservoir pressure was
almost identical, unlike the wave pressure [excess pressure]
which differed markedly between the two arteries. This sug-
gests that the reservoir pressure is a property of the central
aorta, and is largely independent of differences in local com-
pliance and resistance.” [7, p. 43]

4The results of algorithm 3.2 were comparable with those of the unaffected algo-
rithm 3.3.
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The differences in the arterial resistance have been observed too since
the brachial (area) resistances were, on average, approximately twice as
high as their carotid counterparts. With respect to the compliance a
clear statement by method 1 was not possible but method 2 indicated
systematically higher carotid (area) compliances. The peripheral excess
pressures have not been investigated but, as opposed to their observation,
the findings in this thesis suggest that the reservoir pressures are generally
different at the brachial and carotid artery. Moreover, some scientists say
that the assumption of having location-independent reservoir pressures
is not valid along the aorta either. In particular, in [18] it is stated that

“ ... contrary to a key assumption of the reservoir-wave ap-
proach, reservoir pressure was not spatially uniform [along
the aorta] during systole.” [18, p. 1]

Others conclude that

“ ... it is possible to demonstrate the effects of reflections
on arterial pressure and flow clearly and directly only after
appreciating that the measured aortic pressure is the instan-
taneous sum of a reservoir/windkessel pressure and a wave-
related excess pressure.” [32, p. 389.e8]

Especially this topic of wave propagation and reflection phenomena con-
stitutes another big research field in this context and was not touched in
the course of this thesis.

Overall, the Reservoir Theory remains controversial and still a lot of
progress has to be made in order to illuminate this issue.

5.3 Outlook: Velocity Separation

In this thesis the focus was put on the pressure separation at both the
brachial and carotid artery according to the Reservoir Theory. However,
it is also possible to separate the velocity waveforms at arbitrary loca-
tions within the arterial tree [1]. With respect to the velocity separation
it is assumed that the actual velocity waveform u can be regarded as
an instantaneous sum of reservoir and excess velocities which now both
depend on time and location. Thus, it is assumed that

u(x, t) = ures(x, t) + uex(x, t),

whereby ures is related to the reservoir pressure pres and uex depends on
local conditions. The procedure for the velocity separation now reads as
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follows [1, §2.3]: The reservoir velocity is believed to be proportional to
(pres − P∞) at the end of diastole when the reservoir effect is believed to
be dominant compared to the wave activity. Therefore, it holds that

ures(x, t) =
pres(t)− P∞

R(x)

where R describes the effective (area) resistance of all vessels downstream
of the measurement site. The linear relationship between u and p is
“difficult to identify, since waves may still be present” [1, p. 7]. However,
for the computation and the presentation herein it is assumed that R
can be approximated by

R =
〈〈p〉〉 − P∞

〈〈u〉〉

where 〈〈p〉〉 and 〈〈u〉〉 denote the time-averaged pressure and velocity during
diastole Ts ≤ t ≤ Td. This particular choice is suggested in [1] but
many other definitions are possible. For example the conversion formulas
in (3.58), based on the pressure separation, could be used for this purpose
too. Once ures has been determined, the excess velocity then reads

uex(x, t) = u(x, t)− ures(x, t).

In fig. 5.1 the separation of a brachial flow velocity is illustrated accord-
ing to the computation procedure above. It can be witnessed that the
excess velocity is prevalent during systole and diminishes during early
diastole which models the intuitive approach that in early systole the
wave-related phenomena are dominant whereas afterwards the reservoir
effect drives the blood but with a considerably lower flow velocity. An-
other type of illustration is a so-called “PU-loop” which relates the pres-
sure p with the flow velocity u. In fig. 5.2 the corresponding PU-loops
are depicted for the respective pressure-velocity combinations whereby
only the pressures above DBP have been considered. It is shown that in
the early stage of systole the slope of the p u-loop is almost identical to
the one of the pex uex-loop whereas in later diastole it is rather close to
the one of pres ures. Thus, this type of representation of the simultaneous
pressure and velocity separation as well suggests that both the reservoir-
and wave-related phenomena constitute major drivers but one after an-
other, depending on the stage within the cardiac cycle. Furthermore, the
p u-loop at the beginning of systole states a linear relationship between
p and u. In fact, this slope is proportional to the wave speed. This is a
consequence of the water hammer equation

dP± = ± ̺ c dU±
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which relates the changes of unidirectional waves, i.e. forward and back-
ward running waves, of pressure and velocity wavefronts5 with the wave
velocity c and the blood density ̺ [15].

Based on this short introduction it shall have been motivated that
the local wave speed at both the brachial and carotid artery could also
be compared and investigated by the approach of velocity separation.
In this context the considerations in [2] and in [28] might also be of
major interest. The former introduces a novel wave intensity analysis
of arterial pulse wave propagation which takes account for peripheral
reflections. The latter is dedicated to the impact of wave reflections on
the estimation of the local wave speed by the PU- and QA-loop methods.

5A wavefront refers to an infinitesimal change in pressure dP and velocity dU . The
forward wavefronts are denoted with a “+”- and the backward wavefronts with a
“−”-subindex. A more detailed description can be found in [25] for example.

144



5.3. Outlook: Velocity Separation

 

 60

50

40

30

20

10

0

0
−10

0.2 0.4 0.6 0.8 1 1.2 1.4

V
el

o
ci

ty
in

cm
/
s

Time in s

u

ures

uex
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