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Abstract

This thesis contains contributions to the theory of spherical convex bodies,
i.e., closed convex sets on the unit n-sphere.

On one hand projection covariant binary operations on the set of spherical
convex bodies are investigated. In Euclidean convexity Minkowski addition,
a projection covariant binary operation, together with the volume gives rise
to the Brunn–Minkowski theory. This theory lies at the very core of classical
Euclidean convexity and provides a unifying framework for various extremal
and uniqueness problems for convex bodies in Rn. However, in spherical
convexity there is no known natural analogue to Minkowski addition.
Together with Franz Schuster, all projection covariant binary operations on
the set of spherical convex bodies contained in a fixed open hemisphere are
characterized and it is shown, that the convex hull is essentially the only
non-trivial projection covariant binary operations between pairs of convex
bodies contained in open hemispheres.

On the other hand a spherical analogue of the Euclidean convex floating
body is introduced and investigated. Together with Elisabeth Werner, a
new notion of spherical convex floating bodies is defined and the volume
difference of a spherical convex body and its floating body is investigated.
Remarkably, this volume difference gives rise to a new spherical area
measure, the floating area. This floating area can be seen as a spherical
analogue of the classical affine surface area from affine differential geometry.
We start an investigation of the properties of this new spherical quantity.
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Kurzfassung

Diese Abeit enthält Beiträge zur Theorie sphärisch konvexer Körper, das
sind abgeschlossene konvexe Teilmengen der n-dimensionalen Sphäre.

Einerseits werden projektionskovariante binäre Operationen auf der Menge
der sphärisch konvexen Körper untersucht. In der Euklidischen Konvexität
führt die Kombination von Minkowski Addition – eine projektionskova-
riante binäre Operation – und Volumen zur Brunn–Minkowski Theorie.
Diese zentrale Theorie liefert einen vereinheitlichenden Rahmen zur Lö-
sung verschiedenster Extremal und Eindeutigkeits Probleme im Rn. In der
sphärischen Konvexgeometrie ist dagegen kein natürliches Analogon zur
Minkowski Addition bekannt. Zusammen mit Franz Schuster, werden alle
projektionskovarianten binären Operationen auf der Menge der sphärisch
konvexen Körper die in einer fixen offenen Halbsphäre liegen charakterisiert
und es wird gezeigen, dass die konvexe Hülle im Wesentlichen die einzige
nicht-triviale projektionskovariante binäre Operationen ist, auf paaren von
sphärisch konvexen Körpern die in offenen Halbsphäre enthalten sind.

Andererseits wird in dieser Arbeit ein sphärisches Analogon zum konvexen
Schwimmkörper aus der Euklidischen Konvexität eingeführt und untersucht.
Zusammen mit Elisabeth Werner, wird der neue Begriff eines sphärisch kon-
vexen Schwimmkörpers eingeführt und die Volumendifferenz eines sphärisch
konvexen Körpers und seines Schwimmkörpers untersucht. Bemerkenswer-
terweise führt diese Volumendifferenz zu einem gänzlich neuen sphärischen
Oberflächenmaß, der Schwimmoberfläche, welches als ein Analogon zur
klassischen Affinoberfläche der affinen Differentialgeometrie gesehen werden
kann. Wir beginnen eine Untersuchung der Eigenschaften dieser neuen
sphärischen Größe.
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CHAPTER 1

Introduction

In Euclidean convex geometry the main object of interest are compact
convex subsets, i.e. convex bodies, of a Euclidean vector space. Convex
bodies have been studied since antiquity, for instance the Platonic solids,
and most likely long before then. Convexity has ever since been a prosperous
branch of mathematics and is still thriving and growing. Nowadays, we
see convexity connect to many fields in mathematics producing numerous
exciting and non-trivial results.

It is well known (see e.g. [70]) that the notion of convex bodies extends
well to spaces of constant sectional curvature (space forms). This includes
of course the n-sphere and hyperbolic n-space. However, the development
of the theory of spherical or hyperbolic convex bodies has lagged behind
the theory of Euclidean convex bodies.

In recent years the research on non-Euclidean convex geometry has picked
up momentum [4,8,21,24,29,30,64,66,76,89]. In particular the integral
geometry of spherical convex bodies has witnessed tremendous progress
[1–3,9,31,41,74,83].

In this thesis we contribute to spherical convexity in two different ways.
First, we consider binary operations between spherical convex bodies that
are projection covariant. This is motivated of course by the classical
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2 1 Introduction

and important notion of Minkowski addition in Euclidean convexity. The
combination of Minkowski addition and volume gives rise to the classical
Brunn–Minkowski theory, which is a fundamental part of classical convex
geometry and convex analysis. It provides a framework that unifies various
problems on convex bodies, see e.g. [28,34,75].

Recently, a new investigation into the fundamental characteristics of known
binary operations between sets in Euclidean convexity was started by
Gardner, Hug and Weil [25]. They were able to characterize Minkowski
addition as the only projection covariant binary operation between convex
bodies that also satisfies the identity property. In fact, they achieved
even more by eventually characterizing all projection covariant operations
between origin-symmetric convex bodies and establishing a relation to Orlicz
additions. Orlicz additions are an important generalization of Minkowski
addition which give rise to the Orlicz-Brunn-Minkowski theory [26].

Motivated by these developments and the fact that there is a natural notion
of projection on the n-sphere, in a joint work with Franz E. Schuster [10],
we consider binary operations between spherical convex bodies that are
projection covariant. We prove that the convex hull is essentially the only
non-trivial projection covariant operation on pairs of convex bodies that are
contained in open hemispheres. Furthermore, if one restricts the domain
to a fixed open hemisphere, then we show a one-to-one correspondence
between binary operations that are projection covariant in the spherical and
the Euclidean setting. Thus, we find a multitude of projection covariant
operations between convex bodies contained in a fixed open hemisphere,
which also prove to be continuous.

The other topic investigated in this thesis are spherical convex floating
bodies. The notion of floating bodies goes back to paper of Dupin from 1822
[19], but the principles trace back to antiquity: Consider a solid body in a
fluid. The body will float on the surface of the fluid when the weight of the
fluid that it displaced is equal to the weight of the solid. This is generally
known as principle of flotation and was already studied by Archimedes in
his series of books “On floating bodies”. Now if the solid is light enough
and we roll it around in the fluid then there is a core part which will always
stay above surface. If we picture the solid as a convex body, then this core
part will be the intersection of all half-spaces that cut off a set of constant
volume – the convex floating body.

Although the notion of floating body is very classical it seems all the more
surprising to see it appear as seminal new and fundamental tool in affine
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convex geometry. Dupin’s floating body already appeared in 1923 when
Blaschke introduced affine surface area in (equi-)affine differential geometry
[12], a now classical and important notion [5,6,39,40,84,85]. Extending
affine surface area to general convex bodies in all dimensions proved to be
much more difficult compared to other notions from differential geometry,
like surface area measures and curvature measures. However, successively
such extensions were established [43,52]. One of the first extensions to all
convex bodies in all dimensions was achieved in 1990 by Schütt and Werner
[81] who introduced the convex floating body and used it to extend affine
surface area.

Affine surface area and its generalizations (see e.g. [37,48,54,65]) have
been characterized in the setting of valuations [35,49,50] and applications
are manifold, see e.g. the best and random approximation of convex bodies
by convex polytopes [13, 14, 32–34, 45, 71, 78, 80, 82], concentration of
measure [23, 58], and information theory [7, 17, 59, 60, 62, 67, 87, 88].
Furthermore, the fundamental affine isoperimetric inequality [12,68,73]
is related to many other inequalities [51, 56] and implies the Blaschke–
Santaló inequality [28]. It proved to be the key ingredient in the solution
of numerous problems, see e.g. [15,27,36,48,55,77,84].

In the second part of this thesis, in a joint work with Elisabeth M. Werner
[11], we introduce a new notion which seems natural in spherical convexity,
the spherical convex floating body. We are able to relate this floating body
to a curvature integral, which again seems natural, but has not yet appeared
in the literature. We call it floating area and it bears striking similarities
with affine surface area from Euclidean convexity. For example, the floating
area not only arises from the spherical convex floating body in a similar way
that the affine surface area arises from the convex floating body, but also
the properties of both notions are similar. For instance, the floating area
vanishes on spherical polytopes, is upper semicontinuous and a valuation.

This thesis is structured as follows: In the second and third chapter we
recall basic and classical results from Euclidean and spherical convexity
respectively. In the fourth chapter we state and prove our results on
spherical binary operations that are projection covariant and in the final
chapter we introduce and investigate the spherical convex floating body
and the floating area.





CHAPTER 2

Background Material from Euclidean Convex Geometry

In this chapter we collect basic material about convex bodies in Rn, n ≥ 2.
As a general reference for the facts in this chapter we recommend [75].

A convex body is a non-empty compact convex subset of Rn and the set of
convex bodies in Rn is denoted by K(Rn). Let Ke(Rn) be the set of origin
symmetric convex bodies and let Ko(Rn) denote the set of convex bodies
containing the origin (not necessarily in the interior). We denote by K0(Rn)
the set of convex bodies with non-empty interior.

The scalar product in Rn is denote by · and ‖.‖ denotes the Euclidean norm.
A convex body K ∈ K(Rn) is uniquely determined by its support function
defined by

hK(x) = max{x · y : y ∈ K}, x ∈ Rn.

Support functions are 1-homogeneous, that is, hK(λx) = λhK(x) for all
x ∈ Rn and λ > 0, and are therefore often regarded as functions on Sn−1.
They are also subadditive, that is, hK(x + y) ≤ hK(x) + hK(y) for all
x, y ∈ Rn. Conversely, every 1-homogeneous and subadditive function on
Rn is the support function of a convex body [75, Theorem 1.7.1]. Clearly,
K ∈ Ke(Rn) if and only if hK is even.
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6 2 Background Material from Euclidean Convex Geometry

The Minkowski sum of subsets X and Y of Rn is defined by

X + Y = {x+ y : x ∈ X, y ∈ Y }.

If K,L ∈ K(Rn), then K+L can be equivalently defined (see [75, Theorem
1.7.5]) as the convex body such that

hK+L = hK + hL.

The Hausdorff distance δ(X, Y ) between compact subsets X and Y of Rn

is defined by

δ(X, Y ) = min{λ ≥ 0 : X ⊆ Y + λBn(0, 1) and Y ⊆ X + λBn(0, 1)n},

where Bn(x, r) denotes a closed ball of radius r and center x ∈ Rn.

If K,L ∈ K(Rn), then δ(K,L) can be alternatively defined by

δ(K,L) = ‖hK − hL‖∞, (2.1)

where ‖ · ‖∞ denotes the L∞ norm on Sn−1, see [75, Lemma 1.8.13].

2.1. M-Addition

In this section we recall the definition of the Lp Minkowski addition and,
more generally, theM -addition of convex bodies as well as the characterizing
properties established in [25].

The standard orthonormal basis for Rn will be {e1, . . . , en}. Otherwise, we
usually denote the coordinates of x ∈ Rn by x1, . . . , xn. We call a subset
of Rn 1-unconditional if it is symmetric with respect to each coordinate
hyperplane.

For p ∈ [1,∞], the Lp Minkowski sum of convex bodies K,L ∈ Ko(Rn) was
first defined by Firey [22] by

hpK+pL = hpK + hpL,

for p <∞, and by

hK+∞L = max{hK , hL}.
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Note that K +∞ L is just the usual convex hull in Rn of K and L.

Lutwak [53,54] showed that the Lp Minkowski addition leads to a very
powerful extension of the classical Brunn–Minkowski theory. Since the
1990’s this Lp Brunn–Minkowski theory has provided new tools for unsolved
problems and established new connections between convex geometry and
other fields (see, e.g., [16,47,56,57,59,72,84,86–88] and the references
therein). An extension of the Lp Minkowski addition to arbitrary sets in
Rn was given only recently in [61].

An even more general way of combining two subsets of Rn is the still more
recent M-addition: If M is an arbitrary subset of R2, then the M-sum of
X, Y ⊆ Rn is defined by

X ⊕M Y =
⋃

(a,b)∈M
aX + b Y = {ax+ by : (a, b) ∈M,x ∈ X, y ∈ Y }. (2.2)

Protasov [69] first introduced M -addition for centrally symmetric convex
bodies and a 1-unconditional convex body M in R2. He also proved that
⊕M : Ke(Rn)×Ke(Rn)→ Ke(Rn) for such M .

Gardner, Hug and Weil [25] rediscovered M -addition in the more general
form (2.2) in their investigation of projection covariant binary operations
between convex bodies in Rn. Among several results on this seminal
operation, they proved the following:

Theorem 2.1 ([25]). Let M ⊆ R2. Then ⊕M : K(Rn)×K(Rn)→ K(Rn)
if and only if M ∈ K(R2) and M is contained in one of the 4 quadrants of
R2. In this case, let εi = ±1, i = 1, 2, denote the sign of the ith coordinate
of a point in the interior of this quadrant and let

M+ = {(ε1a, ε2b) : (a, b) ∈M}

be the reflection of M contained in [0,∞)2. If K,L ∈ K(Rn), then

hK⊕ML(x) = hM+(hε1K(x), hε2L(x)), x ∈ Rn. (2.3)

Example 2.2. For some 1 ≤ p ≤ ∞, let

M = {(a, b) ∈ [0, 1]2 : ap′ + bp
′ ≤ 1},

where 1/p+ 1/p′ = 1. Then ⊕M = +p is Lp Minkowski addition on Ko(Rn).
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The following basic properties of M -addition are of particular interest for
us. They are immediate consequences of either definition (2.2) or (2.3).

Proposition 2.3. Suppose that M ∈ K(R2) is contained in [0,∞)2. Then
⊕M : K(Rn)×K(Rn)→ K(Rn) has the following properties:

• Continuity
Ki → K, Li → L implies Ki ⊕M Li → K ⊕M L as i → ∞ in the
Hausdorff metric;

• GL(n) covariance
(AK)⊕M (AL) = A(K ⊕M L) for all A ∈ GL(n);

• Projection covariance
(K|V )⊕M (L|V ) = (K ⊕M L)|V for every linear subspace V of Rn.

It is easy to show that continuity and GL(n) covariance imply projection
covariance. That the converse statement is also true, follows from a deep
result of Gardner, Hug, and Weil which states the following:

Theorem 2.4 ([25]). An operation ∗ : K(Rn)×K(Rn)→K(Rn) is projection
covariant if and only if there exists a nonempty closed convex set M in R4

such that, for all K, L ∈ K(Rn),

hK∗L(x) = hM(h−K(x), hK(x), h−L(x), hL(x)), x ∈ Rn. (2.4)

Consequently, every such operation is continuous and GL(n) covariant.

Note that it is an open problem whether the binary operation on K(Rn)
defined by (2.4) is M -addition for some (convex) subset M of R2. However,
Gardner, Hug, and Weil [25] proved that an operation between o-symmetric
convex bodies is projection covariant if and only if it is M -addition for some
1-unconditional convex body in R2.

2.2. The Convex Floating Body and Affine Surface Area

In this section we recall well known results about the convex floating body
and its connection to affine surface area.
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Definition (Convex Floating Body [81]). Let K ∈ K0(Rn). For δ > 0 the
convex floating body K[δ] is defined as the intersection of all closed halfspaces
H− such that the hyperplanes cut off a set of volume less or equal δ, that is,

K[δ] =
⋂{

H− : voln(K ∩H+) ≤ δ
}
.

Basic properties of the convex floating body are collected in the following

Proposition 2.5 ([81]). Let K ∈ K0(Rn) and δ > 0 such that K[δ] exists.

(i) Through every x ∈ bdK[δ] there exists at least one hyperplane H that
cuts off of K a set of volume δ.

(ii) A hyperplane H that cuts off of K a set of volume δ touches K[δ] in
exactly one point, the barycenter of K ∩H.

(iii) K[δ] is strictly convex.

(iv) Let δ0 = max{δ : voln(K[δ]) > 0}. Then K[δ0] is only one point and
for all 0 < δ < δ0, K[δ] exists and has non-empty interior.

(v) For a linear transformation A ∈ GL(Rn) and a vector y ∈ Rn we have
(AK + y)[δ] = AK[| detA| δ] + y.

We can parametrize the halfspaces in the definition of the convex floating
body over Sn−1 in the following way:

Corollary 2.6. If K∈K0(Rn), then for any v∈Sn−1 there exists s(v, δ)∈R
such that

δ = voln
(
K ∩H+

v,s(v,δ)

)
,

where H+
v,s(v,δ) = {x ∈ Rn : x · v ≥ s(v, δ)}. Moreover, we have

K[δ] =
⋂

v∈Sn−1

H−v,s(v,δ). (2.5)

Proof. This follows from Proposition 2.5 (i).

The generalized Gauss–Kronecker curvature of a convex body K ∈ K(Rn)
at a boundary point x is denoted by HRn

n−1(K, x) and exists for Hn−1-almost
all boundary points, see e.g. [37, Lemma 2.3].
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Definition (Affine Surface Area). LetK ∈ K0(Rn). Then the affine surface
area as(K) of K is defined by

as(K) =
∫

bdK

HRn
n−1(K, x)

1
n+1 dx. (2.6)

Affine surface area as(K) is finite for all convex bodies K. This can be seen
in the following way: For a convex body K ∈ K0(Rn) and a boundary point
x ∈ bdK we denote by rK(x) the maximal radius of a Euclidean ball that
is contained in K and touches the boundary of K in x, in other words,

rK(x) = sup{r ≥ 0 : ∃y∈K such that Bn(y, r) ⊆ K and x ∈ bdBn(y, r)},

where Bn(y, r) denotes the closed Euclidean ball of radius r and center y.

By Blaschke’s Rolling Theorem (see e.g. [75, Corollary 3.2.13]) we know
that rK > 0 for Hn−1-almost all boundary points. In fact Schütt and
Werner proved in [81] the following:

Theorem 2.7 ([81]). Let K ∈ K0(Rn). Then for all α ∈ [0, 1)∫
bdK

rK(x)−α dx <∞. (2.7)

Since the Gauss–Kronecker curvature at a boundary point x of K is less or
equal to the curvature of any ball contained in K that touches the boundary
in x we have HRn

n−1(K, x) ≤ rK(x)−(n−1) for Hn−1-almost all x ∈ bdK. We
conclude

as(K) ≤
∫

bdK

rK(x)−
n−1
n+1 dx <∞.

The limit of the volume difference of a convex body and its floating body
converges to the affine surface area of the body in the following way:

Theorem 2.8 ([81]). Let K ∈ K0(Rn). Then

as(K) = 1
cn

lim
δ→0+

voln(K)− voln(K[δ])
δ

2
n+1

, (2.8)

where cn = 1
2

(
n+1
κn−1

) 2
n+1 .
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By (2.8) and the covariance of the floating body under affine transformations
that preserve volume we conclude that for all A ∈ SL(Rn) and y ∈ Rn,

as(AK + y) = as(K).

We see that, as the name suggests, affine surface area is invariant under
volume preserving affine transformations.

The proof of Theorem 2.8 is built on the following results. We choose to
include them here since we will need them to prove Theorem 5.1. Note that
the convex hull of two points x, y ∈ Rn is denoted by conv(x, y).

Theorem 2.9 ([81]). Let K ∈ K0(Rn) and 0 ∈ intK. For x ∈ bdK and
δ > 0, let {xδ} = bdK[δ] ∩ conv(0, x). Then there exists C > 0 and δ0 > 0
such that for all δ < δ0 we have

‖x− xδ‖
δ

2
n+1

≤ CrK(x)−
n−1
n+1

for Hn−1-almost all x ∈ bdK.

Theorem 2.10 ([81]). Let K ∈ K0(Rn) with 0 ∈ intK. For δ > 0 small
enough, we have for Hn−1-almost all x ∈ bdK,

lim
δ→0+

1
n

x ·NK
x

δ
2

n+1

(
1−

(
‖xδ‖
‖x‖

)n)
= cnH

Rn
n−1(K, x)

1
n+1 , (2.9)

where {xδ} = bdK[δ] ∩ conv(0, x) and NK
x denotes the outer unit normal

vector at x ∈ bdK.

Note that for the left hand side in (2.9) we have

lim
δ→0+

1
n

x ·NK
x

δ
2

n+1

(
1−

(
‖xδ‖
‖x‖

)n)
= lim

δ→0+

(
x

‖x‖
·NK

x

)
‖x− xδ‖
δ

2
n+1

. (2.10)





CHAPTER 3

Basic Facts from Spherical Convex Geometry

We denote the n-dimensional Euclidean unit sphere by Sn, n ≥ 2. The
natural spherical distance between points u and v von Sn is given by
d(u, v) = arccos(u · v), where · denotes the Euclidean scalar product.

The Hausdorff distance between closed sets A,B ⊆ Sn is given by

δs(A,B) = min{0 ≤ λ ≤ π : A ⊆ Bλ and B ⊆ Aλ},

where Aλ denotes the set of all points with distance at most λ from A. A
closed spherical cap is denoted by Cu(λ) = {u}λ for u ∈ Sn.

The interior of A ⊆ Sn is denoted by intA, the closure is clsA and the
boundary is bdA. The radial extension radA is given by

radA = {λx : λ ≥ 0, x ∈ A} ⊆ Rn+1.

A set A ⊆ Sn is called (spherical) convex if radA is convex. We say K ⊆ Sn
is a convex body if K is closed and convex and non-empty. Let K(Sn) denote
the space of convex bodies in Sn with the Hausdorff distance. If a convex
body does not contain a pair of antipodal points, we call it proper . The
subspace of proper convex bodies is denoted by Kp(Sn). Furthermore, the

13



14 3 Basic Facts from Spherical Convex Geometry

subset of bodies with non-empty interior is denoted by K0(Sn) (resp. for
proper convex bodies by Kp0(Sn)).

A k-sphere S, 0 ≤ k ≤ n, is the intersection of a (k + 1)-dimensional linear
subspace L of Rn+1 with Sn. For u ∈ Sn we denote by Su the hypersphere
that is given by Su = {v ∈ Sn : u · v = 0}. The open hemisphere with center
in u is denoted by S+

u . We set S−u = S+
−u. The closure of S+

u is a closed
hemisphere denoted by S+

u . Obviously k-spheres and closed hemispheres
are examples for non-proper convex bodies.

For the following alternative definitions of proper convex bodies in Sn, we
refer to [18].

Proposition 3.1. The following statements about a closed set K ⊆ Sn are
equivalent:

(a) The set K is a proper convex body.

(b) The set K is an intersection of open hemispheres.

(c) There are no antipodal points in K and for every two points u, v ∈ K,
the minimal geodesic connecting u and v is contained in K.

We remark, that a set K ⊆ Sn is a convex body if and only if K is the
intersection of closed hemispheres.

The convex hull convA of A ⊆ Sn is the intersection of all convex sets
in Sn that contain A. The convex hull of two sets A,B is denoted by
conv(A,B) = conv(A ∪B). Also the convex hull of two points u, v ∈ Sn is
denoted by conv(u, v) = conv({u, v}).

Example 3.2. Let u ∈ Sn and consider a spherical cap K = Cu(π4 ). For
v ∈ Su we set z = u+v√

2 ∈ bdK and put L = {−z}. Then

conv(K,L) = S+
v ∪ {±z}.

Thus, the convex hull of two convex bodies is in general not closed and
therefore no convex body. However, if K and L are convex bodies such
that there is an open hemisphere S+

u ⊇ K ∪ L, then conv(K,L) ∈ K(Sn).

For fixed u ∈ Sn we denote by Kpu(Sn) the subspace of (proper) convex
bodies that are contained in the open hemisphere centered at u. Then

Kp(Sn) =
⋃
u∈Sn
Kpu(Sn).
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Note again that, for K,L ∈ Kpu(Sn), we have conv(K,L) ∈ Kpu(Sn).

The k-dimensional Hausdorff measure is denoted by Hk and voln denotes
the usual volume measure on Sn. Of course, the n-dimensional Hausdorff
measure restricted to Sn coincides with voln. The volume of the unit
ball Bn(0, 1) is denoted by κn = voln(Bn(0, 1)) and the perimeter of
bdBn(0, 1) = Sn−1 is given by ωn−1 = Hn−1(Sn−1) = nκn.

The polar body K◦ of a convex body K ∈ K(Sn) is defined by

K◦ = {v ∈ Sn : v · w ≤ 0 for all w ∈ K}

and is again a convex body. The following lemma collects well-known facts
about the polar body:

Lemma 3.3. Let K ∈ K(Sn). Then

(i) (K◦)◦ = K.

(ii) We have

K◦ =
⋂
w∈K

S−w =
{
v ∈ Sn : K ⊆ S−v

}
.

In particular,

intK◦ =
⋂
w∈K

S−w =
{
v ∈ Sn : K ⊆ S−v

}
= Sn\Kπ

2
,

where Kπ
2
is the set of all points of distance at most π

2 to K.

(iii) K ∈ Kp0(Sn) if and only if K◦ ∈ Kp0(Sn).

(iv) (K ∩ L)◦ = cls conv(K◦, L◦).

(v) If K ∈ Kp0(Sn), then intK ∩ int (−K◦) 6= ∅. In particular, for
K ∈ Kp0(Sn) there exists u ∈ intK such that K ⊆ S+

u .

Let S be a k-sphere for some k ∈ {0, . . . , n} and let K ∈ K(Sn). Then the
spherical projection K|S is defined by

K|S = conv(K,S◦) ∩ S = (rad(K)|V ) ∩ Sn,

where S = V ∩ Sn and S◦ is the (n− k− 1)-sphere orthogonal to S, that is,
S◦ = V ⊥∩Sn. In general the spherical projection of a convex body may not
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be closed (see Example 3.2). However, if K ∈ Kpu(Sn), then K|S ∈ Kpu(Sn)
for any k-sphere S such that u ∈ S.

The spherical projection of a point w to a hypersphere Sv, for some v 6= ±w,
is given by

w|Sv = w − cos(d(v, w))v
sin(d(v, w)) . (3.1)

We have w = cos(d(v, w))v + sin(d(v, w))(w|Sv).

Example 3.4 (k-Lunes). There are essentially three different types of
convex bodies: proper convex bodies, k-spheres and k-lunes. A k-lune is
the convex hull of a k-sphere S and proper convex body K ⊆ S◦. A closed
hemisphere S+

u is an (n− 1)-lune since S+
u = conv(Su, {u}).

The space (K(Sn), δs) is compact (see e.g. [31]) and the closure of Kp(Sn)
with respect to δs is given by Kp(Sn) and all k-lunes.

3.1. Spherical Support Functions and the Gnomonic Projection

We introduce spherical support functions of proper convex sets contained in
a fixed hemisphere (cf. [44] for a related construction). For non-antipodal
u, v ∈ Sn, we write S1

u,v for the unique great circle containing u and v.

Definition (Spherical Support Function). For u ∈ Sn and a proper convex
body K ∈ Kpu(Sn), the spherical support function hu(K, ·) : Su →

(
−π

2 ,
π
2

)
of K is defined by

hu(K, v) = max{sgn(v · w) d(u,w|S1
u,v) : w ∈ K}.

Recall that the (Euclidean) support function of a convex body L in Rn

encodes the signed distances of the supporting planes to L from the origin.
In other words, we have for every v ∈ Sn−1,

L|span{v} = {tv : t ∈ [−hK(−v), hK(v)]}.

The intuitive meaning of the spherical support function of a proper convex
body K ∈ Kpu(Sn) is similar. It yields the oriented angle between u and the
supporting hyperspheres to K. More precisely, we have for every v ∈ Su,

K|S1
u,v = {cos(α)u+ sin(α)v : α ∈ [−hu(K,−v), hu(K, v)]}.
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In particular, for K,L ∈ Kpu(Sn), K ⊆ L if and only if hu(K, ·) ≤ hu(L, ·).

Let u ∈ Sn. For v ∈ Su and δ ∈
(
−π

2 ,
π
2

)
, we set z = cos(δ)v − sin(δ)u and

S+
u,v,δ = S+

z = {w ∈ Sn : v · w ≥ tan(δ)(u · w)}. (3.2)

Let K ∈ K(Sn) such that K ⊆ S+
u . For v ∈ Su, the supporting hyperspheres

of K are parametrized by Su,v,hu(K,v). In particular, we have that

z = cos(hu(K, v))v − sin(hu(K, v))u ∈ bdK◦

and thus z is an outer unit normal vector for any point w ∈ bdK∩Su,v,hu(K,v).
We note that v = z|Su and

−u · z = sin(hu(K, z|Su)). (3.3)

We conclude that K = ⋂
v∈Su S

−
u,v,hu(K,v) = ⋂

z∈bdK◦ S
−
z .

In the following we denote by Rn
u (instead of u⊥) the hyperplane in Rn+1

orthogonal to u ∈ Sn.

Definition (Gnomonic Projection). For u ∈ Sn, the gnomonic projection
gu : S+

u → Rn
u is defined by

gu(v) = v

u · v
− u.

In the literature, the gnomonic projection is often considered as a map to
the tangent plane at u. However, for our purposes it is more convenient if
the range of gu contains the origin.

In the following lemma we collect a number of well-known properties of the
gnomonic projection which are immediate consequences of its definition.

Lemma 3.5. For u ∈ Sn, the following statements hold:

(a) The gnomonic projection gu : S+
u → Rn

u is a bijection with inverse

g−1
u (x) = x+ u

‖x+ u‖
, x ∈ Rn

u.

(b) If S ⊆ Sn is a k-sphere, 0 ≤ k ≤ n−1, such that S∩S+
u is non-empty,

then gu(S ∩ S+
u ) is a k-dimensional affine subspace of Rn

u. Conversely,
g−1
u maps k-dimensional affine subspaces of Rn

u to k-spheres in S+
u .

(c) The gnomonic projection maps Kpu(Sn) bijectively to K(Rn
u).
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If K ∈ Kpu(Sn), then, by Lemma 3.5 (c), the set gu(K) is a convex body in
K(Rn

u). The next lemma relates the (Euclidean) support function of gu(K)
with the spherical support function of K.

Lemma 3.6. For u ∈ Sn and every K ∈ Kpu(Sn), we have

hgu(K) = tan hu(K, ·). (3.4)

In particular, K is uniquely determined by hu(K, ·).

Proof. For v ∈ Su and w ∈ S+
u , an elementary calculation shows that

v · w
u · w

= tan
(
sgn(v · w) d(u,w|S1

u,v)
)
.

Therefore, the definition of gu and the monotonicity of the tangent yield

hgu(K)(v) = max
x∈gu(K)

{v · x} = max
w∈K

{
v · w
u · w

}
= tan hu(K, v).

By Lemma 3.6, a function h : Su →
(
−π

2 ,
π
2

)
is the spherical support function

of a convex body K ∈ Kpu(Sn) if and only if the 1-homogeneous extension
of tan h to Rn

u is the support function of a convex body in Rn
u.

For K ∈ Kp0(Sn) and u ∈ Sn such that u ∈ intK, the radial function
ρu(K, ·) : Su → [0, π] is defined by

ρu(K, v) = max{α ∈ [0, π] : cos(α)u+ sin(α)v ∈ K}. (3.5)

If K ⊆ S+
u , then the Euclidean radial function ρgu(K) : Rn

u→R is given by

tan(ρ(K, v)) = ρgu(K)(v), v ∈ Su.

The Euclidean polar body gu(K)∗ = {y ∈ Rn
u : x · y ≤ 1 for all x ∈ gu(K)}

is related to K◦ by gu(K)∗ = g−u(K◦). Moreover,

tan(hu(K, v)) = hgu(K)(v) = 1
ρgu(K)∗(v) = cot(ρ−u(K◦, v)),

or, equivalently,

hu(K, v) + ρ−u(K◦, v) = π

2 , v ∈ Su. (3.6)
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Using spherical support functions, we define a metric γu on Kpu(Sn) by

γu(K,L) = max
v∈Su
|hu(K, v)− hu(L, v)|.

Since for K ∈ Kpu(Sn) and ε > 0, the set Kε of all points with distance at
most ε from K is not necessarily convex, it is not difficult to see that the
restriction of δs to Kpu(Sn) does not coincide with γu (in contrast to the
Euclidean setting). However, our next result shows that γu and δs induce
the same topology on Kpu(Sn). Since we could not find a reference for this
basic result, we include a proof for the readers convenience.

Proposition 3.7. For u ∈ Sn, the metrics γu and δs induce the same
topology on Kpu(Sn).

Proof. LetK ∈ Kpu(Sn) and ε > 0 sufficiently small. We denote by Bγu(K, ε)
the metric ball with respect to γu of radius ε and center K and Bδs(K, ε)
is defined similarly. We first show that there exists r(K, ε) > 0 such that

Bδs(K, r(K, ε)) ⊆ Bγu(K, ε). (3.7)

To this end, let w ∈ S+
u . Since Cw(ε) is a spherical cap of radius ε, it is not

difficult to show that

max
v∈Su

(hu(Cw(ε), v)− hu({w}, v)) = arcsin
( sin ε
u · w

)
,

where this maximum is attained for v ∈ Su ∩ Sw. Therefore, if we define

c(w, ε) = arcsin(u · w sin ε),

then

hu(Cw(c(w, ε)), v) ≤ hu({w}, v) + ε (3.8)

for all v ∈ Su. We now define

r(K, ε) = min
w∈K

c(w, ε/2).

Note that, by the compactness of K, we have r(K, ε) > 0. Since (3.8) holds
for all w ∈ S+

u , we obtain

max
w∈K

hu(Cw(r(K, ε)), v) ≤ max
w∈K

hu(Cw(c(w, ε/2)), v)

≤ max
w∈K

hu({w}, v) + ε

2 = hu(K, v) + ε

2
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for all v ∈ Su. Using

max
w∈K

hu(Cw(r(K, ε)), v) = hu(conv(Kr(K,ε)), v), v ∈ Su,

we conclude that

hu(conv(Kr(K,ε)), v) ≤ hu(K, v) + ε

2 (3.9)

for all v ∈ Su. Moreover,

r({w}r({w},ε), 2ε) = min{c(w′, ε) : w′ ∈ Cw(c(w, ε/2))} ≥ c(w, ε/2).
(3.10)

This follows from an elementary calculation and the fact, that c(w′, ε)
attains its minimum in Cw(c(w, ε/2)) when d(w′, u) = d(w, u) + c(w, ε/2).

Now, let L ∈ Kpu(Sn) such that δs(K,L) ≤ r(K, ε). Then, from

L ⊆ Kr(K,ε) ⊆ conv(Kr(K,ε)) (3.11)

and (3.9), we obtain on the one hand

hu(L, v) ≤ hu(conv(Kr(K,ε)), v) ≤ hu(K, v) + ε

2 ≤ hu(K, v) + ε

for all v ∈ Su. On the other hand, from (3.11) and (3.10) we deduce that

r(L, 2ε) ≥ min
w∈Kr(K,ε)

c(w, ε) ≥ min
w∈K

r(Cw(r({w}, ε)), 2ε)

≥ min
w∈K

c(w, ε/2) = r(K, ε)

and, thus, K ⊆ Lr(K,ε) ⊆ Lr(L,2ε) ⊆ conv(Lr(L,2ε)). Consequently, by (3.9),

hu(K, v) ≤ hu(conv(Lr(L,2ε)), v) ≤ hu(L, v) + ε

for all v ∈ Su, which concludes the proof of (3.7).

It remains to show that there also exists r(K, ε) > 0 such that

Bγu(K, r(K, ε)) ⊆ Bδs(K, ε). (3.12)

To this end, let again w ∈ S+
u . By our definition of spherical support

functions, we have for sufficiently small λ > 0,

min
v∈Su

(hu(Cw(λ), v)− hu({w}, v)) = λ,
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where this minimum is attained for v ∈ Su ∩ S1
u,w. Consequently, we obtain

hu({w}, v) + λ ≤ hu(Cw(λ), v)

for all v ∈ Su. Since this holds for all w ∈ S+
u , we conclude that

hu(K, v)+λ = max
w∈K

hu({w}, v)+λ ≤ max
w∈K

hu(Cw(λ), v) = hu(conv(Kλ), v)

for all v ∈ Su. Therefore, if L ∈ Kpu(Sn) such that γu(K,L) ≤ λ, then

L ⊆ conv(Kλ) and K ⊆ conv(Lλ). (3.13)

We want to choose λ = r(K, ε) in such a way that

conv(Kr(K,ε)) ⊆ Kε and conv(Lr(K,ε)) ⊆ Lε. (3.14)

In order to compute r(K, ε) let v, w ∈ S+
u and denote by Jwv ∈ Kpu(Sn) the

spherical segment connecting v and w. An elementary calculation shows
that

conv((Jwv )c(Jwv ,ε)) ⊆ (Jwv )ε, (3.15)

where

c(Jwv , ε) = arcsin
(

sin ε cos
(
d(v, w)

2

))
.

We define

r(K, ε) = min
v,w∈K

c(Jwv , ε/2).

Then, by (3.15),

conv(Kr(K,ε)) =
⋃

v,w∈K
conv((Jwv )r(K,ε)) ⊆

⋃
v,w∈K

conv((Jwv )c(Jwv ,ε/2)) (3.16)

⊆
⋃

v,w∈K
(Jwv )ε/2 = Kε/2 ⊆ Kε. (3.17)

This proves the first inclusion of (3.14). To see the second inclusion, note
that

r((Jwv )ε/2, 2ε) = min
v′,w′∈(Jwv )ε/2

c(Jw′v′ , ε) ≥ c(Jwv , ε/2).
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which follows from an elementary calculation and the fact, that c(Jw′v′ , ε)
attains its minimum in (Jwv )ε/2 when d(v′, w′) = d(v, w) + ε. Thus, for
L ∈ Kpu(Sn) such that γu(K,L) ≤ r(K, ε), it follows from (3.13), (3.16),
(3.17) that L ⊆ conv(Kr(K,ε)) ⊆ Kε/2 and we conclude

r(L, 2ε) ≥ min
v,w∈Kε/2

c(Jwv , ε) = min
v,w∈K

r((Jwv )ε/2, 2ε)

≥ min
v,w∈K

c(Jwv , ε/2) = r(K, ε).

Hence, using again (3.16) and (3.17), where K is replaced by L,

conv(Lr(K,ε)) ⊆ conv(Lr(L,2ε)) ⊆ Lε.

This proves the second inclusion of (3.14) and, thus, (3.12).

Note that if K,L ∈ Kpu(Sn), then, by (2.1) and Lemma 3.6,

δ(gu(K), gu(L)) = max
v∈Su
| tan hu(K, v)− tan hu(L, v)|.

Thus, from Proposition 3.7 and the continuity of the tangent we obtain the
following.

Corollary 3.8. The gnomonic projection is a homeomorphism between
(Kpu(Sn), δs) and (K(Rn

u), δ).

3.2. Boundary Structure of Spherical Convex Bodies

In this section we develop the technical framework to transform integrals on
Sn and the boundary of spherical convex bodies via the gnomonic projection
or the Gauss map. We will consider subsets of the sphere as subsets in Rn+1

and use the area formula on rectifiable sets, where we explicitly calculate
the (approximate) tangential Jacobian. For a reference on the area formula
and tangential Jacobian we refer to F. Maggi [63] or S. G. Krantz and H.
R. Parks [42], which will provide sufficient background for the tools we use
(for a more extensive exposition see, e.g., H. Federer [20]).

We begin with an outline of what follows: Using the area formula (see
Theorem 11.6 in [63]) we show for the diffeomorphism gu : S+

u → Rn
u, that

for measurable ω ⊆ S+
u and measurable f : Rn

u → R we have∫
ω

f ◦ gu dHn−1
Sn =

∫
gu(ω)

fJS+
u (gu) dHn−1

Rnu .
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Here JS+
u (gu) denotes the tangential Jacobian of gu on S+

u which is defined by

JS+
u (gu)(v) =

√
det(d(gu)∗vd(gu)v),

where d(gu)v denotes the tangential derivative (differential) in v and d(gu)∗v
denotes the adjoint. In the following proposition we will explicitly calculate
this expression.

Proposition 3.9. Let u ∈ Sn. Then gu is a diffeomorphism between S+
u and

Rn
u. For v ∈ S+

u we identify the tangent space TvS+
u with Rn

v and Tgu(v)Rn
u

with Rn
u. Then the differential d(gu)v : TvS+

u → Tgu(v)Rn
u is given by

d(gu)v(Xv) = 1
u · v

Xv −
u ·Xv

(u · v)2v, (3.18)

for all Xv ∈ Rn
v . The tangential Jacobian of gu is given by

JS+
u (gu)(v) =

√
det((d(gu)v)∗d(gu)v) = 1

(u · v)n+1 (3.19)

and the tangential Jacobian of the inverse g−1
u in x ∈ Rn

u is

JRnu(g−1
u )(x) = 1

JS+
u (gu)(g−1

u (x))
= 1

(1 + ‖x‖2)n+1
2
. (3.20)

Proof. An elementary calculation leads to formula (3.18). Also the inverse
can be explicitly calculated. Thus gu is a diffeomorphism. In order to prove
(3.19), we first note that d(gu)v can be expressed as a matrix on Rn+1 of
rank n by

d(gu)v = 1
u · v

(
Idn+1 −

1
u · v

v ⊗ u
)
,

where v⊗u denotes the matrix determined by (v⊗u)Xv = (u ·Xv)v. Thus,

(d(gu)v)∗d(gu)v = 1
(u · v)2

(
IdRnv + u− (u · v)v

u · v
⊗ u− (u · v)v

u · v

)
.

Using the well known formula det(Id + z ⊗ z) = 1 + ‖z‖2, we conclude

JS+
u (gu)(v) = 1

(u · v)n

√√√√1 + ‖u− (u · v)v‖2

(u · v)2 = 1
(u · v)n+1 .
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The analytic properties of the boundary of a spherical convex body K are
similar to the properties of the boundary of a Euclidean convex body. This
is obvious when considering the gnomonic projection around a boundary
point w ∈ bdK, that is, for an arbitrary but fixed ε ∈ (0, π2 ) we consider
L = gw(K ∩ Cw(ε)). Then L is a Euclidean convex body with gw(w) = 0
and bdL = bd gw(K ∩ Cw(ε)). Since gw is a diffeomorphism on Cw(ε) we
conclude that all regularity results of bdL in 0 from Euclidean convex
geometry hold for w ∈ bdK.

Proposition 3.10. Let K ∈ K(Sn).

(i) The boundary of K is an Hn−1-rectifiable set.

(ii) If K has non-empty interior, then for Hn−1-almost all boundary points
w there exists a unique outer unit normal NK

w ∈ Sw, where we identify
the tangent space TwSn with Rn

w.

Note that the gnomonic projection is not conformal and thus d(gu)w(NK
w )

is in general not the outer normal vector N gu(K)
gu(w) of bd gu(K). The relation

between the outer normal vector of bdK and bd gu(K) is given by

N
gu(K)
gu(w) = NK

w |Su. (3.21)

Now let u ∈ Sn and K ∈ Kp0(Sn) such that K ⊆ S+
u . Then there is

β ∈ (0, π2 ) such that K ⊆ intCu(β). Since gu is differentiable and therefore
Lipschitz on Cu(β) and because bdK is Hn−1-rectifiable, we conclude that
the approximate tangential derivative dbdKgu existsHn−1-almost everywhere.
Furthermore, since gu maps tangential hypersphere to w to the affine
hyperplane tangent to gu(w), we have d(gu)w(TwbdK) = Tgu(w)bd gu(K)
and conclude

dbdK(gu)w(Xw) = d(gu)w(Xw),

for all Xw ∈ TwbdK. We can write dbdK(gu)w as a matrix on Rn+1 of rank
n− 1 in the form

dbdK(gu)w = 1
u · w

(
Idn+1 −

1
u · w

w ⊗ u
)
− d(gu)w(NK

w )⊗NK
w .

Thus,

(dbdK(gu)w)∗dbdK(gu)w = 1
(u · w)2 (IdTwbdK + z̃ ⊗ z̃),
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where z̃ = u−(u·w)w−(u·NK
w )NK

w

u·w . Hence, the tangential Jacobian

JbdK(gu)(w) =
√

det((dbdK(gu)w)∗dbdK(gu)w)

is given by

JbdK(gu)(w) =

√
1− (u ·NK

w )2

(u · w)n = cos(hu(K,NK
w |Su))

cos(d(u,w))n , (3.22)

for Hn−1-almost all w ∈ bdK, where the last equation used (3.3) for
z = NK

w |Su. For the inverse g−1
u we obtain

Jbd gu(K)(g−1
u )(x) = 1

JbdK(gu)(g−1
u (x)) =

√
1 +

(
x ·N gu(K)

x

)2

(1 + ‖x‖2)n2
, (3.23)

for Hn−1-almost all x ∈ bd gu(K).

The radial map RK : bdK → Su is defined by RK(w) = w|Su. Since the
Euclidean radial map RL : bdL → Sn−1 is defined by RL(x) = x

‖x‖ . The
tangential Jacobian of RL is given by JbdL(RL)(x) = x·NL

x

‖x‖n = hL(NL
x )

‖x‖n for
Hn−1-almost all x ∈ bdL.

The radial maps RK and Rgu(K) are related by Rgu(K)(gu(w)) = RK(w).
We conclude for the approximate tangential Jacobian of RK ,

JbdK(RK)(w) = Jbd gu(K)(Rgu(K))(gu(w))JbdK(gu)(w)

= sin(hu(K,NK
w |Su))

sin(d(u,w))n = −u ·NK
w

sin(d(u,w))n , (3.24)

where we used the fact that hgu(K)
(
N
gu(K)
gu(w)

)
= tan(hu(K,NK

w |Su)) (see (3.4),
(3.3) and (3.21)).

A boundary point w ∈ bdK is called regular if it has a unique outer unit
normal NK

w . The set of regular boundary points of K is denoted by regK.
As in the Euclidean setting, the Gauss map NK : regK → Sn is in general
not Lipschitz, see e.g. [37]. However, as was pointed out in [37], if, for
α > 0, one restricts NK to (bdK)α, defined by

(bdK)α = {w ∈ bdK : ∃v ∈ Sn such that w ∈ Cv(α) ⊆ K},

then NK |(bdK)α is Lipschitz.
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Furthermore, for

(bdK)+ :=
⋃
n∈N

(bdK) 1
n
,

we have Hn−1(bdK\(bdK)+) = 0, see [37, Lemma 2.2]. It follows that for
Hn−1-almost all boundary points the approximate Jacobian of NK exists
and is therefore given by JbdK(NK)(w) = HSn

n−1(K,w), where HSn
n−1(K,w)

denotes the Gauss–Kronecker curvature. Again this can be seen easily when
considering the gnomonic projection around a boundary point w ∈ bdK,
since

JbdK(NK)(w) = Jbd gw(K∩Cw(ε))(N gw(K∩Cw(ε)))(0)JbdK(gw)(w)
= H

Rnw
n−1(gw(K ∩ Cw(ε)), 0)

and the fact that HRnw
n−1(gw(K ∩ Cw(ε)), 0) = HSn

n−1(K,w). The latter is
obvious since d(gw)w = IdRnw .

In particular, for a proper convex body with non-empty interior there exists
u ∈ intK such that K ⊆ S+

u (see Lemma 3.3(v)) and we may express
HSn
n−1(K, ·) by HRnu

n−1(gu(K), ·).

Lemma 3.11. Let K ∈ Kp0(Sn) and u ∈ Sn such that K ⊆ S+
u . Then

HSn
n−1(K,w) = H

Rnu
n−1(gu(K), gu(w))

(
cos(hu(K,NK

w |Su))
cos(d(u,w))

)n+1

(3.25)

for Hn−1-almost all w ∈ bdK.

Proof. Since gu is a geodesic diffeomorphism we have HSn
n−1(K,w) = 0 if and

only if HRnu
n−1(gu(K), gu(w)) = 0. Thus, in this case, (3.25) holds. So assume

HSn
n−1(K,w) > 0. By (3.21), we have NK

w |Su = N
gu(K)
gu(w) , which implies that

RK◦ ◦NK
w = N gu(K) ◦ gu(w),

where N gu(K) : bd gu(K)→ Su is the Euclidean Gauss map of gu(K). For
the outer unit normal N gu(K) of a Euclidean convex body L and a regular
boundary point x of L, we have JbdL(NL)(x) = H

Rnu
n−1(L, x) (see [37, Lemma

2.3]). Thus, we conclude

JSu(RK◦)(NK
w )HSn

n−1(K,w) = Jbd gu(K)(N gu(K))(gu(w))JbdK(gu)(w),
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and, by (3.24) and (3.22),

sin(h−u(K◦,NK◦

NK
w
|Su))

sin(d(−u,NK
w ))n HSn

n−1(K,w)=H
Rnu
n−1(gu(K),gu(w))cos(hu(K,NK

w |Su))
cos(d(u,w))n .

Since HSn
n−1(K,w) > 0, we have that NK

w is the unique outer unit normal to
w and this also implies that w is the unique outer unit normal to NK

w ∈ K◦,
thus, (NK◦ ◦NK)(w) = w. By the duality formula (3.6), we obtain (3.25).
We note that ρ−u(K◦, NK

w |Su) = d(−u,NK
w ).

Remark 3.12. This theorem relates to [38, Theorem 2.2] in the following
way: If w ∈ bdK such that HSn

n−1(K,w) > 0, then

1 = HSn
n−1(K,w)HSn

n−1(K◦, NK
w )

=
(

tan(d(u,w))
tan(hu(K,NK

w |Su))

)n+1

H
Rnu
n−1(gu(K), gu(w))HRnu

n−1(g−u(K◦), g−u(NK
w ))

thus,

Hn−1(gu(K), gu(w)) =
(

tan(d(w, u))
tan(hu(K,NK

w |Su))

)n+1 1
Hn−1(gu(K)∗, g−u(NK

w ))

=
(
gu(w)
‖gu(w)‖ ·N

gu(K)
gu(w)

)n+1

Dn−1hgu(K)∗

(
gu(w)
‖gu(w)‖

)
,

where for the second equality we used [37, Lemma 2.5].

The following lemma can be considered as a spherical version of the splitting
of Lebesgue integrals by orthogonal subspaces.

Lemma 3.13 ([76]). Let S be a k-sphere, 0 ≤ k ≤ n−1, and let f : Sn → R
be a non-negative measurable function. Then∫

Sn
f(w) dw =

∫
S

∫
conv(S◦,v)

sin(d(S◦, u))kf(u) du dv.

For a hypersphere Su, we derive

∫
Sn
f(w) dw =

∫
Su

π∫
0

sin(t)n−1f(cos(t)u+ sin(t)v) dt dv.
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Furthermore, for K ∈ Kpu(Sn) and v ∈ Su we have

voln(K) =
hu(K,v)∫

−hu(K,−v)

∫
K ∩ Su,v,t

cos(d(u,w))
cos(t) dw dt.

This follows by (3.19), (3.20) and (3.22), from

voln(K) =
∫

gu(K)

JRnu(g−1
u )(x) dx

=
tan(hu(K,v))∫

− tan(hu(K,−v))

∫
K ∩ Sz(s)

JSz(s)(gu)(w)
JS+

u (gu)(w)
dw ds

=
hu(K,v)∫

−hu(K,−v)

∫
K ∩ Su,v,t

cos(d(w, u))n+1 cos(t)
cos(t)2 cos(d(w, u))n dw dt,

where we put z(s) = cos(arctan(s))v − sin(arctan(s))u.

For a Euclidean convex body L ∈ K0(Rn) with 0 ∈ intL we can express
the volume of L by integrating the cone volume measure over the boundary
of L, i.e.,

voln(L) = 1
n

∫
bdL

x ·NL
x dx =

∫
bdL

x ·NL
x

‖x‖n

‖x‖∫
0

rn−1 dr dx.

The following proposition is a spherical version of this for K ∈ Kp0(Sn),
where we fix a reference point u ∈ intK.

Proposition 3.14. Let K ∈ Kp0(Sn) and u ∈ intK such that K ⊆ S+
u .

Then

voln(K) =
∫

bdK

−u ·NK
w

sin(d(u,w))n

d(u,w)∫
0

sin(t)n−1 dt dw.

In particular, for K,L ∈ Kp0(Sn) such that u ∈ intL and L ⊆ K ⊆ S+
u ,

voln(K)− voln(L) =
∫

bdK

−u ·NK
w

sin(d(u,w))n

d(u,w)∫
d(u,wL)

sin(t)n−1 dt dw,

where we set {wL} = bdL ∩ conv(u,w) for w ∈ bdK.
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Proof. Using Lemma 3.13 and the fact that for the hypersphere Su we have
S◦u = {−u, u}, we obtain

voln(K) =
∫
Su

∫
conv(S◦u,v)

sin(d(z,S◦u))n−1IK(z) dH1(z) dHn−1(v). (∗)

Now for any z ∈ conv(S◦u, v) we can write z = cos(t)u+ sin(t)v where t is
determined by t = d(S◦u, z) = d(u, z). From definition (3.5) of ρu(K, v), we
conclude

(∗) =
∫
Su

ρu(K,v)∫
0

sin(t)n−1 dt dv =
∫

bdK

JbdK(RK)(w)
ρu(K,RK(w))∫

0

sin(t)n−1 dt dw,

where we used the area formula for the spherical radial map RK : bdK → Su
defined by RK(w) = w|Su. By (3.24) and since, for any w ∈ bdK, we have
ρu(K,RK(w)) = d(u,w), we are done.

The second statement of the proposition follows easily.





CHAPTER 4

Binary Operations in Spherical Convexity

Abstract. Characterizations of binary operations between convex bodies
on the Euclidean unit sphere are established. The main result shows
that the convex hull is essentially the only non-trivial projection covariant
operation between pairs of convex bodies contained in open hemispheres.
Moreover, it is proved that any continuous and projection covariant binary
operation between all proper spherical convex bodies must be trivial. The
results in this chapter are published in a joint work with Franz E. Schuster
in [10].

For fixed u ∈ Sn we call a binary operation ∗ : Kp(Sn)×Kp(Sn)→ Kp(Sn)
u-projection covariant if for all k-spheres S, 0 ≤ k ≤ n− 1, with u ∈ S and
for all K, L ∈ Kpu(Sn), we have

(K|S) ∗ (L|S) = (K ∗ L)|S.

We call ∗ projection covariant if ∗ is u-projection covariant for all u ∈ Sn.

The main objective of this chapter is to characterize projection covariant
operations between spherical convex bodies. Our first result shows that
such operations between all proper convex bodies in Sn are of a very simple
form.

31
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Theorem 4.1. An operation ∗ : Kp(Sn)×Kp(Sn)→ Kp(Sn) between proper
convex bodies is projection covariant and continuous with respect to the
Hausdorff metric if and only if either K ∗ L = K, or K ∗ L = −K, or
K ∗ L = L, or K ∗ L = −L for all K,L ∈ Kp(Sn).

We call the binary operations from Theorem 4.1 trivial. The following
example shows, that the continuity assumption in Theorem 4.1 cannot be
omitted.

Example 4.2. Consider the set C ⊆ Kp(Sn) × Kp(Sn) of all pairs (K,L)
such that both K and L are contained in some open hemisphere, that is,

C =
⋃
u∈Sn

(Kpu(Sn)×Kpu(Sn)).

Define an operation ∗ : Kp(Sn)×Kp(Sn)→ Kp(Sn) by

K ∗ L =

K if (K,L) ∈ C,
L if (K,L) /∈ C.

Clearly, ∗ is not continuous but by our definition it is projection covariant.

The proof of Theorem 4.1 relies on ideas of Gardner, Hug, and Weil [25].
The critical tool to transfer their techniques to the sphere is the gnomonic
projection (see Section 3.1) which establishes the following correspondence
between projection covariant operations on K(Rn), the space of compact,
convex sets in Rn, and u-projection covariant operations on Kpu(Sn):

Theorem 4.3. For every fixed u ∈ Sn, there is a one-to-one correspondence
between u-projection covariant operations ∗ : Kpu(Sn) × Kpu(Sn) → Kpu(Sn)
and projection covariant operations ∗ : K(Rn)×K(Rn)→ K(Rn). Moreover,
every such u-projection covariant operation ∗ is continuous in the Hausdorff
metric.

Note that by Theorem 4.3 every projection covariant operation ∗ on C is
also automatically continuous.

Finally, as our main result, we prove that the only non-trivial projection
covariant operation on the set C is essentially the spherical convex hull.

Theorem 4.4. An operation ∗ : C → Kp(Sn) is non-trivial and projection
covariant if and only if either K∗L = conv(K∪L) or K∗L = −conv(K∪L)
for all (K,L) ∈ C.
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We prove Theorem 4.3 in the next section. Sections 4.2 and 4.3 contain the
proofs of Theorems 4.1 and 4.4. Motivated by investigations of Gardner,
Hug, and Weil [25] in Rn, we discuss section covariant operations between
spherical star sets in the concluding section of this chapter.

4.1. Proof of Theorem 4.3

Using Proposition 3.8 and other basic properties of the gnomonic projection,
we can prove the following refinement of Theorem 4.3.

Theorem 4.5. For every fixed u ∈ Sn, the gnomonic projection gu induces a
one-to-one correspondence between operations ∗ : Kpu(Sn)×Kpu(Sn)→ Kpu(Sn)
which are u-projection covariant and operations ∗ : K(Rn

u)×K(Rn
u)→ K(Rn

u)
which are projection covariant. Moreover, every such u-projection covariant
operation ∗ is continuous.

Proof. First assume that ∗ is u-projection covariant and define an operation
∗ : K(Rn

u)×K(Rn
u)→ K(Rn

u) by

K ∗L = gu(g−1
u (K) ∗ g−1

u (L))

for K,L ∈ K(Rn
u). Since for every k-sphere S containing u, there exists a

linear subspace V in Rn
u such that

g−1
u (K|V ) = g−1

u (K)|S

for all K ∈ K(Rn
u), we obtain

(K|V ) ∗ (L|V ) = gu(g−1
u (K|V ) ∗ g−1

u (L|V )) = gu((g−1
u (K)|S) ∗ (g−1

u (L)|S))
= gu((g−1

u (K) ∗ g−1
u (L))|S) = gu(g−1

u (K) ∗ g−1
u (L))|V

= (K ∗L)|V.

for all K,L ∈ K(Rn
u). Thus, ∗ is projection covariant.

Now, let ∗ : K(Rn
u) × K(Rn

u) → K(Rn
u) be projection covariant and define

∗ : Kpu(Sn)×Kpu(Sn)→ Kpu(Sn) by

K ∗ L = g−1
u (gu(K) ∗ gu(L))

for K,L ∈ Kpu(Sn). Using a similar argument as before, it is easy to show
that ∗ is u-projection covariant.
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The continuity of an operation ∗ : Kpu(Sn) × Kpu(Sn) → Kpu(Sn) which is
u-projection covariant is now a direct consequence of Theorem 2.4 and
Proposition 3.8.

Recall that the set C ⊆ Kp(Sn)×Kp(Sn) is defined by

C =
⋃
u∈Sn

(Kpu(Sn)×Kpu(Sn)).

By Theorem 4.5, the restriction of an operation ∗ : C → Kp(Sn) which is
projection covariant to convex bodies contained in a fixed open hemisphere
is continuous. Therefore, we obtain:

Corollary 4.6. Every projection covariant operation ∗ : C → Kp(Sn) is
continuous.

4.2. Auxiliary results

We continue in this section with our preparations for the proofs of Theorems
4.1 and 4.4. We prove three auxiliary results which will be used at different
stages in Section 4.3. We begin by establishing first constraints on projection
covariant operations ∗ on C.

Lemma 4.7. If ∗ : C → Kp(Sn) is projection covariant, then either

K ∗ L ⊆ conv(K ∪ L) (4.1)

for all (K,L) ∈ C or

K ∗ L ⊆ −conv(K ∪ L) (4.2)

for all (K,L) ∈ C.

Proof. For u ∈ Sn, the 0-sphere S◦u is just {−u, u}. By the projection
covariance of ∗, we have

({u} ∗ {u})|S◦u = ({u}|S◦u) ∗ ({u}|S◦u) = {u} ∗ {u}.

Thus, {u} ∗ {u} ⊆ {−u, u}. However, since {u} ∗ {u} ∈ Kp(Sn), we must
have either {u} ∗ {u} = {u} or {u} ∗ {u} = {−u}. Let

P = {u ∈ Sn : {u}∗{u} = {u}} and N = {u ∈ Sn : {u}∗{u} = {−u}}.
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Clearly, P ∩N = ∅ and P ∪N = Sn.

Since, by Corollary 4.6, ∗ is continuous, we obtain for every sequence ui ∈ P
with limit u ∈ Sn,

{u} ∗ {u} = {lim ui} ∗ {lim ui} = lim({ui} ∗ {ui}) = lim{ui} = {u}.

Thus, u ∈ P which shows that P is closed. In the same way, we see that N
is closed. Consequently, we have either P = Sn or N = Sn.

First assume that P = Sn and let (K,L) ∈ C. Then there exists u ∈ Sn
such that K, L ⊆ S+

u or, equivalently, conv(K ∪L) ⊆ S+
u . By the projection

covariance of ∗, we have

(K ∗ L)|S◦u = (K|S◦u) ∗ (L|S◦u) = {u} ∗ {u} = {u}.

Thus, K ∗ L ⊆ S+
u and we conclude that

K ∗ L ⊆
⋂
{S+

u : u ∈ Sn such that conv(K ∪ L) ⊆ S+
u } = conv(K ∪ L)

for all (K,L) ∈ C.

Conversely, if N = Sn, then we obtain (K ∗ L)|S◦u = {−u} and, therefore,
K ∗ L ⊆ S−u whenever conv(K ∪ L) ⊆ S+

u . This yields

K ∗ L ⊆
⋂
{S−u : u ∈ Sn such that conv(K ∪ L) ⊆ S+

u } = −conv(K ∪ L)

for all (K,L) ∈ C.

Our next lemma concerns spherical support functions of a spherical segment
contained in an open hemisphere.

Lemma 4.8. For u ∈ Sn, v ∈ S+
u , w ∈ Su ∩ Sv, and −π

2 < α ≤ β < π
2 let

Iwu (α, β) = {cos(λ)u+ sin(λ)w : λ ∈ [α, β]}.

Then,

tan hv(Iwu (α, β), w) = tan β
u · v

and tan hv(Iwu (α, β),−w) = −tanα
u · v

.

Proof. First note that by our definition of the spherical support function

hu(Iwu (α, β), w) = β and hu(Iwu (α, β),−w) = −α.
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Let

A = gv(Iwu (α, α)) = cos(α)u+ sin(α)w
(u · v) cosα − v,

B = gv(Iwu (β, β)) = cos(β)u+ sin(β)w
(u · v) cos β − v.

By Lemma 3.5 (b), gv(Iwu (α, β)) is the line segment in Rn
v in direction

w with endpoints A and B. Thus, by Lemma 3.6 and the definition of
(Euclidean) support functions, we obtain

tan hv(Iwu (α, β), w) = h(gv(Iwu (α, β)), w) = w ·B = tan β
u · v

,

tan hv(Iwu (α, β),−w) = h(gv(Iwu (α, β)),−w) = −w · A = −tanα
u · v

.

In view of Lemma 4.7, Theorem 4.5, and Theorem 2.4, the following result
will be useful in the proof of Theorem 4.4.

Lemma 4.9. Let M ⊆ R4 be closed and convex. If for all a, b, c, d ∈ R
such that −a ≤ b and −c ≤ d,

hM(a, b, c, d) ≤ max{b, d}, (4.3)

then

M ⊆ {(λ2, λ1 + λ2, λ3, 1− λ1 + λ3) ∈ R4 : λ1 ∈ [0, 1], λ2 ≤ 0, λ3 ≤ 0}.

Proof. For z = (−1, 1,−1, 1), we obtain from (4.3) that

h(M, z) ≤ 1 and h(M,−z) ≤ −1.

Since −h(M,−z) ≤ h(M, z), we conclude that −h(M,−z) = h(M, z) = 1
or, equivalently,

M ⊆ {x ∈ R4 : −x1 + x2 − x3 + x4 = 1}. (4.4)

By (4.3), we also have hM(1, 0, 0, 0) ≤ 0 and hM(0, 0, 1, 0) ≤ 0. Thus,

M ⊆ {x ∈ R4 : x1 ≤ 0, x3 ≤ 0}. (4.5)
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Finally, we deduce from (4.3) that

hM(−1, 1, 0, 0) ≤ 1 and hM(1,−1, 0, 0) ≤ 0,

as well as

hM(0, 0,−1, 1) ≤ 1 and hM(0, 0, 1,−1) ≤ 0.

Consequently,

M ⊆ {x ∈ R4 : 0 ≤ x2 − x1 ≤ 1 and 0 ≤ x4 − x3 ≤ 1}. (4.6)

Combining (4.4), (4.5), and (4.6), completes the proof.

The importance for us of the set

E := {(λ2, λ1 + λ2, λ3, 1− λ1 + λ3) ∈ R4 : λ1 ∈ [0, 1], λ2 ≤ 0, λ3 ≤ 0}

follows from

hE(h−K(x), hK(x), h−L(x), hL(x)) = hconv(K∪L)(x).

4.3. Proofs of Theorem 4.1 and 4.4

After these preparations, we are now in a position to first proof Theorem
4.4 and then complete the proof of Theorem 4.1. In order to enhance the
readability of several formulas below, we write tan(x1, . . . , xk) for the vector
(tan x1, . . . , tan xk) and arctan(x1, . . . , xk) is defined similarly.

Theorem 4.10. An operation ∗ : C → Kp(Sn) is projection covariant if
and only if it is either K ∗ L = conv(K ∪ L) or K ∗ L = −conv(K ∪ L)
for all (K,L) ∈ C or it is trivial, that is, K ∗ L = K, or K ∗ L = −K, or
K ∗ L = L, or K ∗ L = −L for all (K,L) ∈ C.

Proof. By Lemma 4.7, we may assume that

K ∗ L ⊆ conv(K ∪ L) (4.7)

holds for all (K,L) ∈ C (otherwise, replace ∗ by ∗− : C → Kp(Sn) defined
by K ∗− L = −(K ∗ L)). In particular, for every u ∈ Sn, the range of the
restriction of ∗ to Kpu(Sn)×Kpu(Sn) lies in Kpu(Sn).
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In the proof of Theorem 4.5 we have seen that, for every u ∈ Sn, there exists
a (unique) projection covariant operation ∗u : K(Rn

u) × K(Rn
u) → K(Rn

u)
such that

K ∗u L = gu(g−1
u (K) ∗ g−1

u (L))

for all K, L ∈ K(Rn
u). Thus, by Theorem 2.4, there exists a nonempty

closed convex set Mu ⊆ R4 such that

hK ∗uL(v) = hMu(hK(−v), hK(v), hL(−v), hL(v))

for all v ∈ Su. Therefore, Lemma 3.6 yields

tan hu(K ∗ L, v) = hgu(K∗L)(v) = hgu(K) ∗u gu(L)(v) (4.8)
= hMu(hgu(K)(−v), hgu(K)(v), hgu(L)(−v), hgu(L)(v))
= hMu(tan(hu(K,−v), hu(K, v), hu(L,−v), hu(L, v)))

(4.9)

for all K,L ∈ Kpu(Sn). Thus, since −hK(−v) ≤ hK(v) for every K ∈ K(Rn
u)

and every v ∈ Su, the restriction of ∗ to Kpu(Sn) × Kpu(Sn) is completely
determined by the values hMu(a, b, c, d), where −a ≤ b and −c ≤ d. Next,
we want to show that for such a, b, c, d ∈ R,

hMu(a, b, c, d) = hMv(a, b, c, d) (4.10)

whenever v ∈ S+
u . To this end, let −π

2 < α ≤ β < π
2 and −π

2 < ϕ ≤ ψ < π
2 .

For every u ∈ Sn and w ∈ Su, the u-projection covariance of ∗ implies that
there exist σ, τ such that −π

2 < σ ≤ τ < π
2 and

Iwu (α, β) ∗ Iwu (ϕ, ψ) = Iwu (σ, τ), (4.11)

where we have used the notation from Lemma 4.8 for spherical segments
Iwu . Since, for −π

2 < ξ ≤ ζ < π
2 , we have hu(Iwu (ξ, ζ),−w) = −ξ and

hu(Iwu (ξ, ζ), w) = ζ, we obtain on the one hand from (4.11), (4.8), and (4.9),

tan τ = tan hu(Iwu (σ, τ), w) = tan hu(Iwu (α, β) ∗ Iwu (ϕ, ψ), w)
= hMu(tan(−α, β,−ϕ, ψ)).

For v ∈ S+
u and w ∈ Su ∩ Sv, we obtain from Lemma 4.8 and again (4.11),

(4.8), and (4.9),

tan τ = (u · v) tan hv(Iwu (σ, τ), w) = (u · v) tan hv(Iwu (α, β) ∗ Iwu (ϕ, ψ), w)

= (u · v)hMv

(
tan(−α, β,−ϕ, ψ)

u · v

)
= hMv(tan(−α, β,−ϕ, ψ))



4.3 Proofs of Theorem 4.1 and 4.4 39

which proves (4.10). Since u ∈ Sn, v ∈ S+
u , and α, β, ϕ, ψ were arbitrary, we

conclude from (4.8), (4.9), and (4.10) that there exists a nonempty closed
convex set M ⊆ R4, independent of u ∈ Sn, such that

tan hu(K ∗ L, v) = hM(tan(hu(K,−v), hu(K, v), hu(L,−v), hu(L, v)))
(4.12)

for all K,L ∈ Kpu(Sn) and v ∈ Su.

To complete the proof, we have to show that for −a ≤ b and −c ≤ d, the
support function hM satisfies one of the following three conditions:

(i) hM(a, b, c, d) = b, that is, K ∗ L = K for (K,L) ∈ C;

(ii) hM(a, b, c, d) = d, that is, K ∗ L = L for (K,L) ∈ C;

(iii) hM (a, b, c, d) = max{b, d}, that is, K∗L = conv(K∪L) for (K,L) ∈ C.

From (4.7) and (4.12), we deduce that

hM(a, b, c, d) ≤ max{b, d} (4.13)

whenever −a ≤ b and −c ≤ d. Moreover, since

−hu(K ∗ L,−v) ≤ hu(K ∗ L, v)

for all K,L ∈ Kpu(Sn) and v ∈ Su, we deduce from (4.12) that

−hM(b, a, d, c) ≤ hM(a, b, c, d). (4.14)

Next, we want to show that for all −π
2 < α ≤ β < π

2 , −
π
2 < ϕ ≤ ψ < π

2 ,
and −π

2 + max{β, ψ} < η < π
2 + min{α, ϕ}, we have

arctan hM(tan Λ) = arctan hM(tan(Λ + Θ)) + η, (4.15)

where Λ = (−α, β,−ϕ, ψ) and Θ = (η,−η, η,−η). In order to prove (4.15),
let u ∈ Sn, v ∈ Su and define

u′ = cos(η)u− sin(η)v and v′ = cos(η)v + sin(η)u.

Note that u′ and v′ are rotations of u and v in the plane span{u, v} by an
angle −η. Therefore, for every λ ∈ [0, 2π),

cos(λ)u′ + sin(λ)v′ = cos(λ− η)u+ sin(λ− η)v.
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Hence,

Iv
′

u′ (α, β) = Ivu(α− η, β − η) ⊆ S+
u . (4.16)

Now, let

σ = −hu(Ivu(α− η, β − η) ∗ Ivu(ϕ− η, ψ − η),−v),
τ = hu(Ivu(α− η, β − η) ∗ Ivu(ϕ− η, ψ − η), v),

and

σ′ = −hu′(Iv
′

u′ (α, β) ∗ Iv′u′ (ϕ, ψ),−v′),
τ ′ = hu′(Iv

′

u′ (α, β) ∗ Iv′u′ (ϕ, ψ), v′).

By the u-projection covariance and the u′-projection covariance of ∗ and
(4.16), we obtain

Iv
′

u′ (σ′, τ ′) = Iv
′

u′ (α, β) ∗ Iv′u′ (ϕ, ψ) = Ivu(α− η, β − η) ∗ Ivu(ϕ− η, ψ − η)
= Ivu(σ, τ) = Iv

′

u′ (σ + η, τ + η).

Thus, τ ′ = τ + η. Using (4.12) and the definitions of τ and τ ′, we obtain
(4.15).

From applications of (4.15) with Λ = ±(−α, α, α,−α) and η = ±α, where
α ∈ [0, π4 ), we obtain

arctan(hM(−1,1,1,−1) tanα) = arctan(hM(0,0,1,−1) tan(2α)) + α, (4.17)
arctan(hM(−1,1,1,−1) tanα) = arctan(hM(−1,1,0,0) tan(2α))− α, (4.18)

and

arctan(hM(1,−1,−1,1) tanα) = arctan(hM(0,0,−1,1) tan(2α))− α, (4.19)
arctan(hM(1,−1,−1,1) tanα) = arctan(hM(1,−1,0,0) tan(2α)) + α. (4.20)

On the one hand, using (4.17) and (4.18), it is not difficult to show that
either

hM(−1, 1, 1,−1) = 1, hM(0, 0, 1,−1) = 0, hM(−1, 1, 0, 0) = 1, (4.21)

or

hM(−1, 1, 1,−1) = −1, hM(0, 0, 1,−1) = −1, hM(−1, 1, 0, 0) = 0. (4.22)



4.3 Proofs of Theorem 4.1 and 4.4 41

On the other hand, by (4.19) and (4.20), we have either

hM(1,−1,−1, 1) = 1, hM(0, 0,−1, 1) = 1, hM(1,−1, 0, 0) = 0, (4.23)

or

hM(1,−1,−1, 1) = −1, hM(0, 0,−1, 1) = 0, hM(1,−1, 0, 0) = −1. (4.24)

Note that, since −hM(1,−1,−1, 1) ≤ hM(−1, 1, 1,−1), (4.22) and (4.24)
cannot both be satisfied. Also recall that by Lemma 4.9, we have

M ⊆ E = {(λ2, λ1 + λ2, λ3, 1− λ1 + λ3) : λ1 ∈ [0, 1], λ2, λ3 ≤ 0}.

and let

E0 = {(λ2, λ2, λ3, 1 + λ3) : λ2 ≤ 0, λ3 ≤ 0},
E1 = {(λ2, 1 + λ2, λ3, λ3) : λ2 ≤ 0, λ3 ≤ 0}.

If (4.21) holds, then hM(−1, 1, 0, 0) = 1 and, since M ⊆ E, we have

1 = max{λ1 ∈ [0, 1] : (λ2, λ1 + λ2, λ3, 1− λ1 + λ3) ∈M}.

Thus, there are λ2, λ3 ≤ 0, such that (λ2, 1+λ2, λ3, λ3) ∈M or, equivalently,
M ∩ E1 is nonempty. Similarly, it follows from (4.23) that M ∩ E0 is
nonempty.

If (4.22) holds, we have hM(−1, 1, 0, 0) = 0 and we deduce that

0 = max{λ1 ∈ [0, 1] : (λ2, λ1 + λ2, λ3, 1− λ1 + λ3) ∈M}

which yields M ⊆ E0. Analogously, (4.24) implies M ⊆ E1.

Next, an application of (4.15) with Λ = (0, α, 0, α) and η = α, where again
α ∈ [0, π4 ), yields

arctan(hM(0, 1, 0, 1) tanα) = arctan(hM(1, 0, 1, 0) tanα) + α

Clearly, this is possible if and only if either

hM(0, 1, 0, 1) = 1, hM(1, 0, 1, 0) = 0, (4.25)

or

hM(0, 1, 0, 1) = 0, hM(1, 0, 1, 0) = −1. (4.26)



42 4 Binary Operations in Spherical Convexity

However, (4.26) contradicts (4.14) and is therefore not possible.

From (4.25) and the fact that M ⊆ E, we infer

0 = max{λ2 + λ3 : λ2, λ3 ≤ 0 and (λ2, λ1 + λ2, λ3, 1− λ1 + λ3) ∈M}

which implies

M ∩ {(0, λ1, 0, 1− λ1) : λ1 ∈ [0, 1]} 6= ∅. (4.27)

For the final part of the proof, we distinguish three cases:

(i) (4.21) and (4.24) hold, in particular, M ⊆ E1;

(ii) (4.22) and (4.23) hold, in particular, M ⊆ E0;

(iii) (4.21) and (4.23) hold.

In case (i), M ⊆ E1 and (4.27) imply that e2 ∈ M . Using (4.13), we
conclude that hM(a, b, c, d) = b, that is, K ∗ L = K for (K,L) ∈ C.

Similarly, in case (ii), M ⊆ E0 and (4.27) imply that e4 ∈M . Using again
(4.13), we obtain hM(a, b, c, d) = d, that is, K ∗ L = L for (K,L) ∈ C.

It remains to show that in case (iii), we have e2, e4 ∈M which implies that
hM (a, b, c, d) = max{b, d} or K ∗L = conv(K ∪L) for (K,L) ∈ C by (4.13).
To this end, we apply again (4.15) with Λ = (0, α, 0, 0) and η = α, where
α ∈ [0, π4 ) to obtain

arctan(hM(0, 1, 0, 0) tanα) = arctan(hM(1, 0, 1,−1) tanα) + α

This is possible if and only if either

hM(0, 1, 0, 0) = 1, hM(1, 0, 1,−1) = 0, (4.28)

or

hM(0, 1, 0, 0) = 0, hM(1, 0, 1,−1) = −1. (4.29)

Assume that (4.29) holds. Then, by (4.13), (4.14), and the subadditivity of
hM , we obtain

−1 ≤ hM(1, 1, 1,−1) ≤ hM(1, 0, 1,−1) + hM(0, 1, 0, 0) = −1 (4.30)

Hence, hM(1, 1, 1,−1) = −1.
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Now, consider the convex bodies K = [−e2, e2] and L = {e1} in Rn. Then,
hK(x) = |e2 · x| and hL(x) = e1 · x for x ∈ Rn, and we obtain from (4.21)
and hM(1, 1, 1,−1) = −1,

hM(hK(e1), hK(−e1), hL(e1), hL(−e1)) = hM(0,0,1,−1)=0,
hM(hK(e1+e2),hK(−e1−e2),hL(e1+e2),hL(−e1−e2)) = hM(1,1,1,−1)=−1,
hM(hK(e1−e2), hK(e2−e1), hL(e1−e2), hL(e2−e1)) = hM(1,1,1,−1)=−1.

Since hM (h−K , hK , h−L, hL) defines a support function of a convex body Z
in Rn, we infer

0 = hZ(−2e1) ≥ hZ(−e1 − e2) + hZ(−e1 + e2) = −2

which contradicts the subadditivity of hZ . Thus, (4.29) cannot hold.

Another application of (4.15) with Λ = (0, α, α, 0) and η = −α, where
α ∈ [0, π4 ), yields

arctan(hM(0, 1, 1, 0) tanα) = arctan(hM(tan(−α, 2α, 0, α)))− α.

Consequently,

hM

(
− tanα

tan(2α) , 1, 0,
tanα

tan(2α)

)
= tan(arctan(hM(0, 1, 1, 0) tanα) + α)

tan(2α) .

By letting α→ π
4 and using (4.28), we deduce that hM (0, 1, 1, 0) = 1. Since

M ⊆ E, this yields

1 = max{λ1 + λ2 + λ3 : (λ2, λ1 + λ2, λ3, (1− λ1) + λ3) ∈M}

which, in turn, implies that e2 ∈M .

The proof that e4 ∈ M is now very similar. We first use (4.15) with
Λ = (0, 0, 0, α) and η = α to deduce that

hM(0, 0, 0, 1) = 1, hM(1,−1, 1, 0) = 0.

Using this and another application of (4.15) with Λ = (α, 0, 0, α) and
η = −α, finally leads to hM(1, 0, 0, 1) = 1. From this and M ⊆ E, follows
e4 ∈M which completes the proof.

Using Theorem 4.10, we can now also complete the proof of Theorem 4.1:
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Theorem 4.11. An operation ∗ : Kp(Sn)×Kp(Sn)→ Kp(Sn) is projection
covariant and continuous if and only if either K ∗ L = K, or K ∗ L = −K,
or K ∗ L = L, or K ∗ L = −L for all K,L ∈ Kp(Sn).

Proof. By Theorem 4.10, it is sufficient to prove that the convex hull does
not admit a continuous extension from C to a map from Kp(Sn)×Kp(Sn)
to Kp(Sn). In order to show this, let u ∈ Sn, v ∈ Su, and consider the
spherical segments K = Ivu(−π

2 , 0) and Lε = Ivu(0, π2−ε), where ε > 0. Then
(K,Lε) ∈ C converges in the Hausdorff metric to (K,L0) ∈ Kp(Sn)×Kp(Sn)
as ε→ 0+. However,

lim
ε→0+

conv(K ∪ Lε) = lim
ε→0+

Ivu

(
−π2 ,

π

2 − ε
)

= Ivu

(
−π2 ,

π

2

)
6∈ Kp(Sn).

We remark, that the convex hull on Kp(Sn)×Kp(Sn) in general does not
map to K(Sn), see Example 3.2. Furthermore, it is not difficult to see that
the closure of the convex hull cls conv : Kp(Sn) × Kp(Sn) → K(Sn) is not
continuous.

There are still open questions when considering the closed convex hull
conv = cls conv as a binary operation on K(Sn). This operation is closed
projection covariant, that is, for any k-sphere S, we have

cls(conv(K,L)|S) = conv(cls(K|S), cls(L|S))

for all K,L ∈ K(Sn), where one admits the empty set as a convex body
(this is necessary since the projection of a spherical convex body may be
empty in general). Of course, on C the closed convex hull is the same as the
ordinary convex hull. Characterizing all closed projection covariant binary
operations on K(Sn) is still an open problem.

4.4. Section covariant operations

In this final section of the chapter, first we briefly recall a characterization
of rotation and section covariant operations between Euclidean star sets
established in [25]. Then, we discuss basic properties of spherical star sets
in order to eventually prove a corresponding result to Theorem 4.3 for
rotation and section covariant operations between them.

A subset L of Rn is called star-shaped with respect to o if every line through
the origin intersects L in a (possibly degenerate) closed line segment. A
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star set in Rn is a compact set that is star-shaped with respect to o. The
radial function ρL : Rn\{o} → [0,∞) of a star set L is defined by

ρL(x) = max{λ ≥ 0 : λx ∈ L}, x ∈ Rn\{o}.

Radial functions are −1-homogeneous, that is, ρL(λx) = λ−1ρL(x) for all
x ∈ Rn\{o} and λ > 0, and are therefore often regarded as functions on
Sn−1. If ρL is positive and continuous, we call L a star body. If K ∈ K(Rn)
contains the origin in its interior, then K is a star body and we have

ρK∗ = 1
hK

and hK∗ = 1
ρK

, (4.31)

where K∗ denotes the polar body of K defined by

K∗ = {x ∈ Rn : x · y ≤ 1 for all y ∈ K}.

The radial distance δ̃(K,L) between two star setsK and L in Rn is defined by
δ̃(K,L) = ‖ρK − ρL‖∞. (4.32)

We denote by S(Rn) the space of all star sets in Rn endowed with the radial
distance. The radial sum K +̃L of K, L ∈ S(Rn) is defined as the star set
such that

ρK +̃L = ρK + ρL.

More generally, for any p > 0, the Lp radial sum K +̃p L of K, L ∈ S(Rn)
is defined by

ρp
K +̃p L

= ρpK + ρpL.

Lutwak [54] showed that in the same way as the Lp Minkowski addition
leads to the Lp Brunn–Minkowski theory, Lp radial addition leads to a dual
Lp Brunn–Minkowski theory (see also [28] and the references therein).

While Lp radial addition is not projection covariant, the Lp radial sum of
star sets is section covariant, that is,

(K ∩ V ) +̃p (L ∩ V ) = (K +̃p L) ∩ V

for every linear subspace V of Rn. It is also GL(n) covariant and therefore,
in particular, covariant with respect to rotations.

A complete classification of all binary operations between star sets in Rn

that are rotation and section covariant was established by Gardner, Hug,
and Weil and can be stated as follows:
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Theorem 4.12 ([25]). An operation ∗ : S(Rn)×S(Rn)→ S(Rn) is rotation
and section covariant if and only if there exists a function f : [0,∞)4 → R
such that, for all K, L ∈ S(Rn),

ρK∗L(v) = f(ρ−K(v), ρK(v), ρ−L(v), ρL(v)), v ∈ Sn−1.

We turn now to star sets in Sn. We call a subset L of Sn a ( spherical)
star set with respect to u ∈ L if L ∩ S1

u,v is a (possibly degenerate) closed
spherical segment for all v ∈ Su. We denote by Su(Sn) the class of all
spherical star sets with respect to u and we write Spu(Sn) for the subclass
of proper star sets with respect to u, that is, star sets with respect to u
contained in S+

u .

Note that, by the definition of the spherical radial function ρu(L, ·), see
(3.5), for every v ∈ Su, we have

cos(ρu(L, v))u+ sin(ρu(L, v))v ∈ ∂L.

The counterparts to Lemma 3.5 (c) and Lemma 3.6 in the setting of spherical
star sets are the contents of our next lemma.

Lemma 4.13. For u ∈ Sn, the following statements hold:

(a) The gnomonic projection maps Spu(Sn) bijectively to S(Rn
u).

(b) For every L ∈ Spu(Sn), we have

ρgu(L)(v) = tan ρu(L, v), v ∈ Su.

Proof. Statement (a) is an immediate consequence of Lemma 3.5 (a) and (b).
From Lemma 3.5 (a) and the definitions of radial and spherical radial
functions, we obtain

ρgu(L)(v) = max{λ ≥ 0 : λv ∈ gu(L)}

= max
{
λ ≥ 0 : u+ λv

‖u+ λv‖
= 1√

1 + λ2
u+ λ√

1 + λ2
v ∈ L

}
= tan max{α ∈ [0, π2 ) : cos(α)u+ sin(α)v ∈ L}
= tan ρu(L, v)

which proves (b).
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A function ρ : Su → [0, π2 ) is the spherical radial function of a star set
L ∈ Spu(Sn) if and only if the −1-homogeneous extension of tan ρ to Rn

u is
the radial function of a star set in Rn

u, see Lemma 4.13 (b).

We call a proper star set L ∈ Spu(Sn) a (spherical) star body with respect to
u ∈ Sn if ρu(L, ·) is positive and continuous. Clearly, every proper convex
bodyK ∈ Kpu(Sn) containing u in its interior is a star body with respect to u.
In order to establish a counterpart to (4.31), we recall that, for K ∈ Kp(Sn)
with non-empty interior, the (spherical) polar body K◦ ∈ Kp(Sn) is defined
by

K◦ = {v ∈ Sn : v · w ≤ 0 for all w ∈ K}.

Note that if K ∈ Kpu(Sn) contains u in its interior, then K◦ ∈ Kp−u(Sn)
contains −u in its interior.

Proposition 4.14. If u ∈ Sn and K ∈ Kpu(Sn) contains u in its interior,
then

gu(K)∗ = g−u(K◦) (4.33)

and
hu(K, ·) + ρ−u(K◦, ·) = π

2 . (4.34)

Proof. By the definitions of the Euclidean and spherical polar bodies and
the gnomonic projection, we have

gu(K)∗ = {x ∈ Rn
u : x · y ≤ 1 for all y ∈ gu(K)}

= {x ∈ Rn
u : x · gu(w) ≤ 1 for all w ∈ K}

= {x ∈ Rn
u : w · x ≤ w · u for all w ∈ K}

=
{
x ∈ Rn

u : w · x− u
‖x− u‖

≤ 0 for all w ∈ K
}

= g−u({v ∈ Sn : v · w ≤ 0 for all w ∈ K}) = g−u(K◦).

which proves (4.33). Lemma 3.6, (4.31), (4.33), and Lemma 4.13 (b), now
yield

tan hu(K, ·) = hgu(K) = 1
ρgu(K)∗

= 1
ρg−u(K◦)

= 1
tan ρ−u(K◦, ·)

which is equivalent to (4.34).
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Using spherical radial functions, we define a metric γ̃u on Spu(Sn) by

γ̃u(K,L) = sup
v∈Su
|ρu(K, v)− ρu(L, v)|.

Note that if K,L ∈ Spu(Sn), then by (4.32) and Lemma 4.13 (b),

δ̃(gu(K), gu(L)) = sup
v∈Su
| tan ρu(K, v)− tan ρu(L, v)|.

Thus, from the continuity of the tangent we obtain the following.

Theorem 4.15. The gnomonic projection is a homeomorphism between
(Spu(Sn), γ̃u) and (S(Rn

u), δ̃).

For fixed u ∈ Sn we call a binary operation ∗ : Spu(Sn)× Spu(Sn)→ Spu(Sn)
u-section covariant if for all k-spheres S, 1 ≤ k ≤ n− 1, with u ∈ S and
for all K,L ∈ Spu(Sn), we have

(K ∩ S) ∗ (L ∩ S) = (K ∗ L) ∩ S.

The operation ∗ is called u-rotation covariant if (ϑK) ∗ (ϑL) = ϑ(K ∗ L)
for all ϑ ∈ SO(n+ 1) which fix u. Our next result is a version of Theorem
4.3 (or Theorem 4.5, respectively) in the setting of star sets.

Theorem 4.16. For u ∈ Sn, the gnomonic projection gu induces a one-to-
one correspondence between operations ∗ : Spu(Sn)×Spu(Sn)→ Spu(Sn) which
are u-rotation and u-section covariant and rotation and section covariant
operations ∗ : S(Rn

u)× S(Rn
u)→ S(Rn

u). Moreover, any such operation ∗ is
continuous if and only if ∗ is continuous.

Proof. First assume that ∗ is u-rotation and u-section covariant and define
an operation ∗ : S(Rn

u)× S(Rn
u)→ S(Rn

u) by

K ∗L = gu(g−1
u (K) ∗ g−1

u (L))

for K,L ∈ S(Rn
u). As in the proof of Theorem 4.5, it follows that ∗ is section

covariant. The rotation covariance of ∗ is a consequence of the u-rotation
covariance of ∗ and the fact that ϑgu(L) = gu(ϑL) for all L ∈ Spu(Sn) and
ϑ ∈ SO(n+ 1) which fix u.

Conversely, if ∗ : S(Rn
u)×S(Rn

u)→ S(Rn
u) is rotation and section covariant,

then define ∗ : Spu(Sn) × Spu(Sn) → Spu(Sn) by K ∗ L = g−1
u (gu(K) ∗ gu(L))

for K,L ∈ Spu(Sn).
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As before, it is easy to show that ∗ is u-rotation and u-section covariant
and, by Theorem 4.15, the operation ∗ is continuous if and only if ∗ is
continuous.

We conclude with a corollary to Theorem 4.12 of Gardner, Hug, and Weil
and Theorem 4.16.

Corollary 4.17. For fixed u∈Sn, an operation ∗ : Spu(Sn)×Spu(Sn)→ Spu(Sn)
is u-rotation and u-section covariant if and only if there exists a function
f : [0, π2 )4 → [0, π2 ) such that, for all K,L ∈ Spu(Sn) and v ∈ Su,

ρu(K ∗ L, v) = f(ρu(K,−v), ρu(K, v), ρu(L,−v), ρu(L, v)).





CHAPTER 5

Floating Bodies in Spherical Convexity

Abstract. For a convex body on the Euclidean unit sphere the spherical
convex floating body is introduced. The asymptotic behavior of the volume
difference of a spherical convex body and its spherical floating body is
investigated. This gives rise to a new spherical area measure, the floating
area. Remarkably, this floating area turns out to be a spherical analogue
to the classical affine surface area from affine differential geometry. Several
properties of the floating area are established. The results in this chapter
are published in a joint work with Elisabeth M. Werner in [11].

In Euclidean convex geometry the convex floating body is defined by the
intersection of all halfspaces such that the hyperplanes cut off a set of
constant volume. This motivates the following

Definition (Spherical Convex Floating Body). Let K ∈ K0(Sn), K 6= Sn.
For δ > 0 small enough we define the (spherical) convex floating body K[δ]

as the intersection of all closed hemispheres S− such that the hyperspheres
cut off a set of volume less or equal δ, that is,

K[δ] =
⋂{

S− : voln
(
K ∩ S+) ≤ δ

}
, (5.1)

where S+ is the complementary closed hemisphere to S−, that is, S+ = −S−.

51
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In our main theorem of this chapter we consider the volume difference of a
spherical convex body K and its floating body. We show that the limit, as
δ goes to zero, converges to the total curvature over the boundary bdK of
K when integrating the spherical Gauss–Kronecker curvature HSn

n−1(K, ·)
raised to the power 1

n+1 (see Section 3.2 for details on the spherical Gauss–
Kronecker curvature).

Theorem 5.1. If K ∈ Kp0(Sn) is a proper convex body with non-empty
interior, then

lim
δ→0+

voln(K)− voln(K[δ])
δ

2
n+1

= cn

∫
bdK

HSn
n−1(K,w)

1
n+1 dHn−1(w), (5.2)

where cn = 1
2

(
n+1
κn−1

) 2
n+1 and κn−1 is the volume of the (n− 1)-dimensional

Euclidean unit ball.

We will prove Theorem 5.1 in Section 5.2.

The curvature integral appearing on the right-hand side of (5.2) shares
striking similarities with the affine surface area from affine differential
geometry, see (2.6). Since, to our knowledge, there is no property similar to
the affine invariance of Euclidean affine surface area in the spherical setting,
we are reluctant to call this new spherical area measure a spherical affine
surface area.

Definition (Floating Area). For a convex body K ∈ K0(Sn) with non-
empty interior the floating area Ω(K) is defined by

Ω(K) =
∫

bdK

HSn
n−1(K, ·)

1
n+1 dHn−1

if K is proper and by Ω(K) = 0 otherwise.

In Section 5.3 we investigate properties of the floating area.

5.1. The Spherical Convex Floating Body

In this section we collect results about the spherical convex floating body
which we will need in Section 5.2 to prove Theorem 5.1.
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The definition of K[δ], see (5.1), immediately yields K[δ] to be convex, since
it is an intersection of closed hemispheres. Furthermore, as we will show, it
exists if δ is small enough. First, we show that for a proper convex body
the intersection can be parametrized with respect to a fixed hypersphere.

Lemma 5.2. Let K ∈ Kp0(Sn), δ ∈ (0, voln(K)) and u ∈ intK such that
K ⊆ S+

u . For v ∈ Su there exists a unique s(v, δ) ∈ (−π
2 ,

π
2 ) determined by

voln
(
K ∩ S+

u,v,s(v,δ)

)
= δ,

where S+
u,v,s(v,δ) = {w ∈ Sn : v · w ≥ tan(s(v, δ))(u · w)}. Moreover,

K[δ] =
⋂
v∈Su

S−u,v,s(v,δ) (5.3)

and s(v, δ) is continuous in both arguments and strictly decreasing in δ.

Proof. We consider the function f defined by f(v, s) = voln(K ∩ S+
u,v,s).

Then f is continuous in both arguments and strictly decreasing in s.
By (3.3), we have, for z = cos(hu(K, v))v − sin(hu(K, v))u, that Sz is
a supporting hypersphere to K. Therefore f(v, hu(K, v)) = 0. Similarly,
we have that f(v,−hu(K,−v)) = voln(K). We therefore conclude that
there exists a unique s(v, δ) ∈ (−hu(K,−v), hu(K, v)) ⊆ (−π

2 ,
π
2 ) such that

f(v, s(v, δ)) = δ. Thus s(v, δ) is continuous in both arguments and strictly
decreasing in δ.

To prove (5.3) we only have to show that

K[δ] ⊇
⋂
v∈Su

S−u,v,s(v,δ). (5.4)

Let z ∈ Sn such that voln(K ∩ S+
z ) ≤ δ. For z 6= ±u, we set v = (z|Su).

Then there is a unique s′ ∈ (−π
2 ,

π
2 ) such that z = cos(s′)v − sin(s′)u. We

conclude

f(s′) = voln
(
K ∩ S+

u,v,s′

)
= voln

(
K ∩ S+

z

)
≤ δ = f(s(v, δ)).

Thus, s′ ≥ s(v, δ), and therefore,

S+
u ∩ S−z = S+

u ∩ S−u,v,s′ = {w ∈ Sn : u · w ≥ 0 and v · w ≤ tan(s′)(u · w)}
⊇ S+

u ∩ S−u,v,s(v,δ).
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Since S+
u ⊇ K ⊇ K[δ], we obtain

K[δ] = S+
u ∩K[δ] =

⋂{
S+
u ∩ S−z : voln(K ∩ S+

z ) ≤ δ
}

⊇
⋂{

S+
u ∩ S−u,v,s(v,δ) : v ∈ Su

}
= S+

u ∩

 ⋂
v∈Su

S−u,v,s(v,δ)

.
Since S−u,v,s(v,δ) ∩ S−u,−v,s(−v,δ) ⊆ S+

u , we conclude (5.4).

The following theorem relates the Euclidean floating body of the gnomonic
projection of a proper spherical convex body to the spherical convex floating
body.

Theorem 5.3. Let K ∈ Kp0(Sn) such that Cu(α) ⊆ intK and K ⊆ Cu(β)
for some u ∈ Sn and α, β ∈ [0, π2 ). Then, for δ > 0 small enough, we have

gu(K)[
δ

cos(β)n+1

] ⊆ gu
(
K[δ]

)
⊆ gu(K)[

δ
cos(α)n+1

].
In particular, this shows that K[δ] exists if δ is small enough.

Proof. Set L = gu(K). By (5.3), we have K[δ] = ⋂
v∈Su S

−
u,v,s(v,δ), where

s(v, δ) is determined by δ = voln
(
K ∩ S+

u,v,s(v,δ)

)
. The gnomonic projection

gu maps Su,v,s(v,δ) to the hyperplane

Hv,tan(s(v,δ)) = {x ∈ Rn
u : x · v = tan(s(v, δ))}.

For δ small enough, we have, for v ∈ Su, that

∅ = gu
((
K ∩ Su,v,s(v,δ)

)
∩ Cu(α)

)
=
(
L ∩H+

v,tan(s(v,δ))

)
∩B(0, tan(α)).

By (3.20), we conclude

δ = voln
(
K ∩ S+

u,v,s(v,δ)

)
=

∫
L∩H+

v,tan(s(v,δ))

dx

(1 + ‖x‖2)n+1
2

≤ cos(α)n+1 voln
(
L ∩H+

v,tan(s(v,δ))

)
.

Now let s̃(v, δ) such that δ = cos(α)n+1 voln
(
L ∩H+

v,s̃(v,δ)

)
. Then obviously

s̃(v, δ) ≥ tan(s(v, δ)) and H−v,tan(s(v,δ)) ⊆ H−
v,s̃(v,δ). By (2.5), we deduce

gu
(
K[δ]

)
=

⋂
v∈Su

H−v,tan(s(v,δ)) ⊆
⋂
v∈Su

H−
v,s̃(v,δ) = L[

δ
cos(α)n+1

].
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For the converse, since gu(K) ⊆ gu(Cu(β)) = B(0, tan(β)), we first note that

δ = voln
(
K ∩ S+

u,v,s(v,δ)

)
=

∫
L∩H+

v,tan(s(v,δ))

dx

(1 + ‖x‖2)n+1
2

≥ cos(β)n+1 voln
(
L ∩H+

tan(s(v,δ))

)
.

Now let S̃(v, δ) such that δ = cos(β)n+1 voln
(
L ∩H+

v,S̃(v,δ)

)
. Then we have

S̃(v, δ) ≤ tan(s(v, δ)) and therefore H−v,tan(s(v,δ)) ⊇ H−
v,S̃(v,δ)

. We conclude

gu
(
K[δ]

)
=

⋂
v∈Su

H−v,tan(s(v,δ)) ⊇
⋂
v∈Su

H−
v,S̃(v,δ)

= L[
δ

cos(β)n+1

].

In the following three lemmas we establish properties of the spherical convex
floating body as δ goes to 0. First we show that the boundary points of
the floating body converge to boundary points of the convex body.

Lemma 5.4. If K ∈ K0(Sn) and δ1 ≤ δ2, then K[δ1] ⊇ K[δ2]. In particular,
we have intK = ⋃

δ>0K[δ].

Furthermore, let K ∈ Kp0(Sn) and u ∈ intK such that K ⊆ S+
u . For

w ∈ bdK, put {wδ} = bdK[δ] ∩ conv(u,w). Then limδ→0wδ = w.

Proof. The monotonicity of the floating body is obvious from its definition.

First we prove intK = ⋃
δ>0K[δ]. Let δ > 0 small enough such that K[δ] is

non-empty. If w ∈ K[δ], then every hypersphere through w cuts off a set
of K of volume greater or equal to δ. Thus K[δ] ⊆ intK and we conclude⋃
δ>0K[δ] ⊆ intK.

In order to prove the converse, we assume that there is w ∈ intK such that
w /∈ ⋂δ>0K[δ]. For every v ∈ Sw we have

voln
(
K ∩ S+

v

)
> 0. (5.5)

Since w /∈ ⋂δ>0K[δ] we conclude that for every δ > 0 there exists v(δ) ∈ Sw
such that voln

(
K ∩ S+

v(δ)

)
< δ. By compactness of Sw and continuity there

exists v0 ∈ Sw such that voln
(
K ∩ S+

v0

)
= 0. This is a contradiction to

(5.5).



56 5 Floating Bodies in Spherical Convexity

Finally, let K ∈ Kp0(Sn) and u ∈ intK such that K ⊆ S+
u . We have⋃

δ>0
conv(u,wδ) =

⋃
δ>0

K[δ] ∩ conv(u,w) = conv(u,w)\{w}.

We conclude limδ→0 d(wδ, w) = 0.

In the next lemma we show that the outer normals of the spherical convex
floating body converge to the outer normals of the convex body.

Lemma 5.5. Let K∈Kp0(Sn), u∈ intK and w∈bdK be a regular boundary
point. For δ > 0 such that K[δ] 6= ∅, we set {wδ} = bdK ∩ conv(u,w).
Then

lim
δ→0+

N
K[δ]
wδ = NK

w , (5.6)

where NK[δ]
wδ is an outer unit normal to K[δ] in wδ such that

δ = voln
(
K ∩ S+

N
K[δ]
wδ

)
.

In particular, for all ε > 0 there exists δ(ε) such that

NK
w ·N

K[δ]
wδ ≥ 1− ε, (5.7)

for all δ ≤ δ(ε) and, if K ⊆ intS+
u , then for all δ ≤ δ(ε)

(NK
w |Su) · (N

K[δ]
wδ |Su) ≥ 1− ε. (5.8)

Proof. Suppose (5.6) is not true. Then, by compactness, there exists
a subsequence (δi)i∈N such that limi→∞ δi = 0, limi→∞N

K[δi]
wδi

= v0 and

v0 6= NK
w . By the choice of NK[δi]

wδi
, we have voln

(
K ∩ S+

N
K[δi]
wδi

)
= δi. We

conclude that voln(K ∩ S+
v0) = 0. By Lemma 5.4, we have limi→∞wδi = w,

thus v0 is a normal to bdK in w. This contradicts the assumption that w
is a regular boundary point and therefore has a unique outer unit normal
NK
w 6= v0.

The other statements, (5.7) and (5.8), follow directly from (5.6).
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Let w ∈ bdK be a boundary point such that HSn
n−1(K,w) > 0. Then

K ∩ S+
w,NK

w ,−∆ is decreasing in ∆ and for ∆ = 0 equals just {w}. Thus
for ∆ small enough, K ∩ S+

w,NK
w ,−∆ is contained in some arbitrarily small

cap around w. By continuity this will still be true if we allow directions
v ∈ Sw close to NK

w . Let wδ be a boundary point of the floating body K[δ]
that converges to a boundary point w ∈ bdK. Then, by Lemma 5.5, the
normals to wδ converge to NK

w . Thus, if we consider directions v ∈ Sw close
to NK

w , then, for δ small enough, wδ will already be determined by these
directions. Hence, if we replace K by K ′ = K ∩ Cw(ε) for arbitrarily small
ε, then for δ small enough, we will have wK′δ = wKδ . We will prove this
rigorously in the following lemma.

Lemma 5.6. Let K ∈ Kp0(Sn) and w ∈ bdK such that HSn
n−1(K,w) > 0.

For ε > 0 set K ′ = K ∩ Cw(ε).

(i) There exists ∆ε such that for all ∆ < ∆ε we have

K ′ ∩ S+
w,NK

w ,−∆ = K ∩ S+
w,NK

w ,−∆.

(ii) There exists ξε and ηε such that, for all v ∈ Sw with d(v,NK
w ) < ξε

and ∆ < ηε, we have

K ′ ∩ S+
w,v,−∆ = K ∩ S+

w,v,−∆.

(iii) Let u ∈ intK ′. There exists δε such that, for all δ < δε, we have

K ′[δ] ∩ conv(u,w) = K[δ] ∩ conv(u,w).

In particular, we have wK′δ = wKδ for all δ < δε.

Proof. (i) Assume this does not hold. Then there exists an ε > 0 such that
for all ∆ > 0, we have

∅ 6= K ∩ S+
w,NK

w ,−∆\
(
K ′ ∩ S+

w,NK
w ,−∆

)
= (K\Cw(ε)) ∩ S+

w,NK
w ,−∆ ⊆ (K\intCw(ε)) ∩ S+

w,NK
w ,−∆.

For ∆1≤∆2, we have (K\intCw(ε))∩S+
w,NK

w ,−∆1⊆(K\intCw(ε))∩S+
w,NK

w ,−∆2 ,
and, by compactness, we conclude that ∅ 6= (K\intCw(ε))∩S+

NK
w
. Since SNK

w

is a supporting hyperplane at w, this implies that there exists v ∈ K ∩ SNK
w

such that d(v, w) ≥ ε. Since K is convex, the whole segment conv(v, w) is
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contained in K. Considering L = gw(K ∩Cw(ε)), we see that the boundary
of L contains the segment gw(Cw(ε) ∩ conv(w, v)), and we conclude that
H

Rnw
n−1(L, 0) = 0. This implies, by Lemma 3.11, that HSn

n−1(K,w) = 0 which
is a contradiction.

(ii) We may assume ε < π
3 . By (i), there exists ∆ε/2 such that ∆ε/2 <

ε
2 and

(K\Cw(ε/2)) ∩ S+
w,NK

w ,−∆ε/2
= ∅. (5.9)

We set ηε = ∆ε/2
2 < ε

4 and

sin(ξε) = tan(∆ε/2)− tan(ηε)√
tan(ε)2 − tan(ηε)2

> 0.

We show that, for all v ∈ Sw such that d(v,NK
w ) < ξε, we have

(K\Cw(ε)) ∩ S+
w,v,−ηε = ∅. (5.10)

This implies K ′ ∩ S+
u,v,−∆ = K ∩ S+

u,v,−∆ for all ∆ ≤ ηε.

Assume (5.10) is not true. Then there exists z ∈ (K\Cw(ε)) ∩ S+
w,v,−ηε .

Since K is convex, the whole segment conv(z, w) is contained in K. Since
d(z, w) > ε, there exists {z′} = bdCw(ε) ∩ conv(z, w). We will show that
z′ ∈ S+

w,NK
w ,−∆ε/2

. This will be a contradiction to (5.9), since by construction
z′ ∈ K\Cw(ε/2). We have to show that

−z′ ·NK
w

z′ · w
≤ tan(∆ε/2). (5.11)

Since z′ ∈ bdCw(ε), we have z′ = cos(ε)w + sin(ε)(z′|Sw) and conclude

−z′ ·NK
w

z′ · w
= tan(ε) sin

(
d(z′|Sw, NK

w )− π

2

)
,

and, since z′ ∈ S+
w,v,−ηε , we obtain

tan(ηε) ≥
−z′ · v
z′ · w

= tan(ε) sin
(
d(z′|Sw, v)− π

2

)
.

Thus d(z′|Sw, v) ≤ π
2 + arcsin

(
tan(ηε)
tan(ε)

)
and the triangle inequality yields

d(z′|Sw, NK
w ) ≤ d(z′|Sw, v) + d(v,NK

w ) ≤ π

2 + arcsin
(

tan(ηε)
tan(ε)

)
+ ξε.
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Finally, we obtain (5.11) from

−z′ ·NK
w

z′ · w
≤ tan(ε) sin

(
arcsin

(
tan(ηε)
tan(ε)

)
+ ξε

)

= sin(ξε)
√

tan(ε)2 − tan(ηε)2 + cos(ξε) tan(ηε)

≤ sin(ξε)
√

tan(ε)2 − tan(ηε)2 + tan(ηε) ≤ tan(∆ε/2).

(iii) Since K ′ ⊆ Cw(ε), by (5.3), we can write K ′[δ] = ⋂
v∈Sw S

−
w,v,sK′ (v,δ).

Here sK′(v, δ) is uniquely determined by δ = voln
(
K ′ ∩ S+

w,v,sK′ (v,δ)

)
and is

continuous in both arguments. By (ii), there exists ξε and ηε such that, for
all v ∈ Sw with d(v,NK

w ) < ξε, we have

δK
′(v,−∆) = voln(K ′ ∩ S+

w,v,−∆) = voln(K ∩ S+
w,v,−∆) = δK(v,−∆),

for all ∆ < ηε. Hence sK(v, δ) exists for v ∈ Sw such that d(v,NK
w ) < ξε

and δ small. Thus, there exist δ1 such that for all δ < δ1 and v ∈ Sw such
that d(v,NK′

w ) = d(v,NK
w ) < ξε, we have sK′(v, δ) = sK(v, δ).

Claim: There exists δ2 such that, for all δ < δ2, we have

K[δ] ∩ conv(u,w) =
⋂
{S−w,v,sK(v,δ) : v ∈ Sw, d(v,NK

w ) ≤ ξε} ∩ conv(u,w).

Assume that this is not true. Then, for all δ > 0, we have

conv(u,wKδ ) = K[δ] ∩ conv(u,w)
(
⋂
{S−w,v,sK(v,δ) : d(v,NK

w ) ≤ ξε} ∩ conv(u,w).

Thus, for any normal z to K[δ] in wKδ , we have d(z|Sw, NK
w ) ≥ ξε > 0 for all

δ > 0. This is a contradiction to Lemma 5.5.

With a similar argument for K ′ we also find a δ3 such that, for all δ < δ3,

K ′[δ] ∩ conv(u,w) =
⋂
{S−w,v,sK′ (v,δ) : v ∈ Sw, d(v,NK′

w ) ≤ ξε} ∩ conv(u,w).

Setting δε = min{δ1, δ2, δ3}, we conclude, for all δ < δε,

K ′[δ] ∩ conv(u,w) =
⋂{

S−w,v,−sK′ (v,δ) : d(v,NK′

w ) < ξ1
}
∩ conv(u,w)

=
⋂{

S−w,v,−sK(v,δ) : d(v,NK
w ) < ξ1

}
∩ conv(u,w)

= K[δ] ∩ conv(u,w).

The second statement of (iii) is obvious sinceK[δ]∩conv(u,w) = conv(u,wKδ )
and K ′[δ] ∩ conv(u,w) = conv(u,wK′δ ).



60 5 Floating Bodies in Spherical Convexity

5.2. Proof of Theorem 5.1

We are now ready to proof Theorem 5.1. By Lemma 3.3, there exists
u ∈ intK such that K ⊆ S+

u . Using Proposition 3.14, we may write the left
hand side of (5.2) as

voln(K)− voln(K[δ])
δ

2
n+1

=
∫

bdK

δ−
2

n+1
−u ·NK

w

sin(d(w, u))n

d(w,u)∫
d(wδ,u)

sin(t)n−1 dt

︸ ︷︷ ︸
f(w,δ)

dw.

(5.12)

The proof of Theorem 5.1 will now be completed in two steps. We will
first show that the integrand f(w, δ) in the integral on the right hand side
of (5.12) is bounded from above uniformly in δ almost everywhere by an
integrable function.

Lemma 5.7. Let K ∈ Kp0(Sn) and u ∈ intK such that K ⊆ S+
u . There ex-

ists δ0 > 0 and an integrable function g : bdK → R such that, for all δ < δ0,

δ−
2

n+1
−u ·NK

w

sin(d(w, u))n

d(w,u)∫
d(wδ,u)

sin(t)n−1 dt ≤ g(w) (5.13)

for Hn−1-almost every w ∈ bdK, where {wδ} = bdK[δ] ∩ conv(u,w).

Proof. Since u ∈ intK and K ⊆ S+
u , there is 0 < α < β < π

2 such
that Cu(α) ⊆ intK and K ⊆ Cu(β). Therefore, sin(d(u,w)) ≥ sin(α),
−u ·NK

w ≤ 1 and we conclude

δ−
2

n+1
−u ·NK

w

sin(d(w, u))n

d(w,u)∫
d(wδ,u)

sin(t)n−1 dt ≤ 1
sin(α)

d(w,wδ)
δ

2
n+1

.

We will show that there exists C > 0 and δ0 such that, for all δ < δ0,

1
sin(α)

d(w,wδ)
δ

2
n+1

≤ Crgu(K)(gu(w))−
n−1
n+1 (5.14)

for Hn−1-almost all w ∈ bdK. Then the right hand side of (5.14) is
integrable: By (3.23), the fact that 1 + (x · N gu(K)

x )2 ≤ 1 + ‖x‖2 and
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1 + ‖x‖2 ≥ 1, we have
∫

bdK

rgu(K)(gu(w))−
n−1
n+1 dw =

∫
bd gu(K)

rgu(K)(x)−
n−1
n+1

√
1 + (x ·N gu(K)

x )2

(1 + ‖x‖2)n2
dx

≤
∫

bd gu(K)

rgu(K)(x)−
n−1
n+1 dx,

which is finite by Theorem 2.7.

In order to prove (5.14), we set L = gu(K), x = gu(w). By (3.4), we have
tan(d(u,w)) = ‖gu(w)‖ and tan(d(u,wδ)) = ‖gu(wδ))‖. We derive

d(w,wδ)
δ

2
n+1

= arctan(‖x‖)− arctan(‖gu(wδ)‖)
δ

2
n+1

≤ ‖x− gu(wδ)‖
δ

2
n+1

.

By Theorem 5.3 and as gu(wδ) is on the line gu(conv(u,w)) = conv(0, x), we
have gu(K[δ]) ⊆ L[δ̃], where δ̃ = δ

cos(α)n+1 . Setting {xδ̃} = bdL[δ̃]∩conv(0, x),
we conclude that ‖gu(wδ)‖ ≥ ‖xδ̃‖. Therefore,

1
sin(α)

d(w,wδ)
δ

2
n+1

≤ 1
cos(α)2 sin(α)

‖x− xδ̃‖
δ̃

2
n+1

.

By Theorem 2.9, there exists δ̃0 and C̃ > 0 such that, for all δ̃ < δ̃0,
‖x− xδ̃‖
δ̃

2
n+1

≤ C̃rL(x)−
n−1
n+1 ,

for Hn−1-almost all x ∈ bdL. Thus, for all δ < δ̃0 cos(α)n+1, we have
1

sin(α)
d(w,wδ)
δ

2
n+1

≤ C̃

cos(α)2 sin(α)rgu(K)(gu(w))−
n−1
n+1

for Hn−1-almost all w ∈ bdK.

Using this lemma and the dominated convergence theorem, we can express
the limit as δ tends to zero of the right hand side of (5.12) by the integral
over the point-wise limit of the integrand.
Theorem 5.8. Let K ∈ Kp0(Sn) and u ∈ intK such that K ⊆ S+

u . Then,
for Hn−1-almost all w ∈ bdK, we have

lim
δ→0+

δ−
2

n+1
−u ·NK

w

sin(d(u,w))n

d(u,w)∫
d(u,wδ)

sin(t)n−1 dt = cnH
Sn
n−1(K,w)

1
n+1 , (5.15)

where {wδ} = bdK[δ] ∩ conv(u,w) and cn = 1
2

(
n+1
κn−1

) 2
n+1 .



62 5 Floating Bodies in Spherical Convexity

Proof. For t ∈ [d(u,wδ), d(u,w)], we have

sin(d(u,wδ))
sin(d(u,w)) ≤

sin(t)
sin(d(u,w)) ≤ 1.

Furthermore, limδ→0 d(u,wδ) = d(u,w) and d(u,w)− d(u,wδ) = d(w,wδ).
We therefore conclude

lim
δ→0+

−u ·NK
w

sin(d(u,w))n
1

δ
2

n+1

d(u,w)∫
d(u,wδ)

sin(t)n−1 = lim
δ→0+

−u ·NK
w

sin(d(u,w))
d(w,wδ)
δ

2
n+1

.

(5.16)

We first show that for a regular boundary point w of K with positive
curvature, the right hand side of (5.16) only depends on the local structure
of bdK at w.
Claim: Let ε ∈

(
0, π2

)
and w ∈ bdK such that HSn

n−1(K,w) > 0. If we
set K ′ = K ∩ Cw(ε) and let u′ ∈ intK ′ ∩ conv(u,w) be such that K ′ ⊆ S+

u′,
then, for δ small enough, we have

−u ·NK
w

sin(d(u,w))
d(w,wKδ )
δ

2
n+1

= −u′ ·NK
w

sin(d(u′, w))
d(w,wK′δ )
δ

2
n+1

. (5.17)

By (3.1), we have

u′|Sw = u′ − cos(d(w, u′))w
sin(d(w, u′)) .

Thus, we can write u′ = cos(d(w, u′))w+ sin(d(w, u′))(u′|Sw) and, similarly,
u = cos(d(w, u))w + sin(d(w, u))(u|Sw). Hence, since S◦w = {±w}, we have
u′|Sw = conv(u′, {±w}) ∩ Sw = u|Sw. Therefore,

u ·NK
w

sin(d(u,w)) = (u|Sw) ·NK
w = u′ ·NK

w

sin(d(u′, w)) .

Using Lemma 5.6 (iii) we conclude (5.17).

Now we can prove (5.15) for regular boundary points with positive curvature.
Claim: Let w ∈ bdK such that HSn

n−1(K,w) > 0. Then

lim
δ→0+

−u ·NK
w

sin(d(u,w))
d(w,wδ)
δ

2
n+1

= cnH
Sn
n−1(K,w)

1
n+1 .
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By the previous claim, we may assume that K ⊆ Cw(ε) for arbitrarily small
ε > 0 and u ∈ intK such that K ⊆ S+

u . Set L = gw(K), and ξ = − gw(u)
‖gw(u)‖ .

Since limδ→0+ gw(wδ) = 0, we obtain

lim
δ→0+

−u ·NK
w

sin(d(u,w))
d(w,wδ)
δ

2
n+1

= lim
δ→0+

(
ξ ·NK

w

)arctan(‖gw(wδ)‖)
δ

2
n+1

= lim
δ→0+

(
ξ ·NK

w

)‖gw(wδ)‖
δ

2
n+1

.

Using α = 0, β = ε and u = w in Theorem 5.3, we conclude∥∥∥∥x δ
cos(ε)n+1

∥∥∥∥ ≥ ‖gw(wδ)‖ ≥ ‖xδ‖

for δ small (note that the origin 0 = gw(w) is a boundary point of L). Since
NK
w = NL

0 , Theorem 2.10 implies

lim
δ→0+

(
ξ ·NK

w

)‖xδ‖
δ

2
n+1

= cnH
Rnw
n−1(L, 0)

1
n+1

and, by Lemma 3.11, we have HRnw
n−1(L, 0) = HSn

n−1(K,w). We conclude

cn
cos(ε)2H

Sn
n−1(K,w)

1
n+1 ≥ lim

δ→0+

−u ·NK
w

sin(d(u,w))
d(w,wδ)
δ

2
n+1

≥ cnH
Sn
n−1(K,w)

1
n+1 .

Since ε > 0 can be chosen arbitrarily small the claim follows.

To finish the proof we only need to consider regular boundary points with
vanishing curvature.
Claim: Let K ⊆ Cu(β) for some β ∈

(
0, π2

)
and u ∈ intK. Then, for

w ∈ bdK such that HSn
n−1(K,w) = 0,

lim
δ→0+

−u ·NK
w

sin(d(u,w))
d(w,wδ)
δ

2
n+1

= 0.

We consider L = gu(K) and x = gu(w). Then

lim
δ→0+

−u ·NK
w

sin(d(u,w))
d(w,wδ)
δ

2
n+1

= lim
δ→0+

(
x

‖x‖
·NL

x

)
arctan(‖x‖)−arctan(‖gu(wδ)‖)

δ
2

n+1

≤ lim
δ→0+

(
x

‖x‖
·NL

x

)
‖x− gu(wδ)‖

δ
2

n+1
.
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By Theorem 5.3, we deduce

‖x− gu(wδ)‖ ≤
∥∥∥∥x− x δ

cos(β)n+1

∥∥∥∥.
As before, with Theorem 2.10 and Lemma 3.11, we conclude

0 ≤ lim
δ→0+

−u ·NK
w

sin(d(u,w))
d(w,wδ)
δ

2
n+1

≤ lim
δ→0+

(
x

‖x‖
·NL

x

)∥∥∥∥x− x δ
cos(β)n+1

∥∥∥∥
δ

2
n+1

= 0.

This concludes the proof of Theorem 5.1.

5.3. The Floating Area

In this final section we will investigate some of the properties of the floating
area. First we note that we may localize the floating area to a measure on
the Borel σ-algebra B(Sn) on Sn in the following way.

Definition (The Floating Measure). For K ∈ K(Sn) and ω ∈ B(Sn) we
define the floating measure Ω(K,ω) by

Ω(K,ω) =
∫

ω∩bdK

HSn
n−1(K,w)

1
n+1 dw.

The floating area Ω(K) of K is given by Ω(K) = Ω(K, Sn).

This notion is well defined since, by Theorem 5.1, the floating measure
exists for all proper spherical convex bodies and is finite. For non-proper
convex bodies the floating measure is identically zero. This is shown next.

Theorem 5.9. The floating measure of a spherical polytope or a non-proper
spherical convex body C is trivial, that is, Ω(C, ·) ≡ 0.

Proof. This is obvious since in both cases the Gauss–Kronecker curvature
of C is zero for Hn−1-almost all boundary points. Note that for K = Sn
the floating measure is also trivial since bd Sn = ∅.

As is the case for the affine surface area, the floating measure is a valuation.
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Theorem 5.10. Let K,L ∈ K(Sn) such that K ∪ L ∈ K(Sn). Then, for
all ω ∈ B(Sn), we have

Ω(K,ω) + Ω(L, ω) = Ω(K ∪ L, ω) + Ω(K ∩ L, ω).

Proof. This can be proven similar to the Euclidean case by C. Schütt [79].
We will give a short outline of the argument. We decompose

bd(K ∪ L) = (bdK ∩ bdL) ∪ (bdK ∩ Lc) ∪ (Kc ∩ bdL),
bd(K ∩ L) = (bdK ∩ bdL) ∪ (bdK ∩ intL) ∪ (intL ∩ bdL),

bdK = (bdK ∩ bdL) ∪ (bdK ∩ intL) ∪ (bdK ∩ Lc),
bdL = (bdK ∩ bdL) ∪ (intK ∩ bdL) ∪ (Kc ∩ bdL),

where Kc = Sn\K and Lc = Sn\L. Thus the integrals cancel for all sets
but bdK ∩ bdL. So we are done, once we show that∫

bdK∩bdL

HSn
n−1(K ∪ L,w)

1
n+1dw +

∫
bdK∩bdL

HSn
n−1(K ∩ L,w)

1
n+1dw

=
∫

bdK∩bdL

HSn
n−1(K,w)

1
n+1dw +

∫
bdK∩bdL

HSn
n−1(L,w)

1
n+1dw.

This follows from the fact that for Hn−1-almost all w ∈ bdK ∩ bdL we
have

HSn
n−1(K ∪ L,w) = min{HSn

n−1(K,w), HSn
n−1(L,w)},

HSn
n−1(K ∩ L,w) = max{HSn

n−1(K,w), HSn
n−1(L,w)}.

This local result follows from the Euclidean case by applying the gnomonic
projection in w.

Next, we will show that the floating area is upper semicontinuous with
respect to the spherical Hausdorff metric δs. It is easy to see, that the
floating area Ω cannot be continuous. We may consider a sequence of
spherical polytopes (Pj)j∈N that converges to a spherical cap Cu(π4 ). Then
Ω(Cu(π4 )) = ωn−12−n−1

2 > 0, but for all j ∈ N we have Ω(Pj,Sn) = 0.

Theorem 5.11. The floating area is upper semicontinuous. Thus, for any
sequence (Kj)j∈N of convex bodies converging to a convex body K in the
spherical Hausdorff distance, we have lim supj→∞Ω(Kj,Sn) ≤ Ω(K, Sn).
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Proof. The proof of this theorem is along the lines of the proof of the
upper semicontinuity of curvature integrals in the Euclidean setting by
M. Ludwig [46]. Again, we will only give an outline. We denote the
m-th support measure of a spherical convex body K by Θm(K, ·). It is a
uniquely determined finite Borel measure on Sn×Sn (see e.g. [76] for precise
definitions). Furthermore it is weakly continuous in the first argument, that
is, Kj → K in the Hausdorff metric implies Θm(Kj, ·) w→ Θm(K, ·).

The m-th curvature measure Cm(K, ·) of K∈K(Sn) is defined, for ω∈B(Sn),
by Cm(K,ω) = Θm(K,ω × Sn). Cm(K,ω) is concentrated on bdK. The
Hausdorff measure restricted to bdK is denoted by Hn−1

bdK and is a Radon
measure. Thus we may split Cm(K, ·) = Ca

m(K, ·) + Cs
m(K, ·) such that

Ca
m(K, ·) is absolutely continuous with respect to Hn−1

bdK and Cs
m(K, ·) is the

singular part. Moreover, for the absolutely continuous part we have

Ca
m(K,ω) =

∫
ω∩bdK

Hn−1−m(K,w) dw,

for all ω ∈ B(Sn), and the singular part is concentrated on a null set, that
is, there exists ω0 ∈ B(Sn) such that Cs

m(K,ω\ω0) = 0 for all ω ∈ B(Sn).

Since Θm is weakly continuous in the first argument, so is Cm and we
conclude for m = 0,

lim sup
j→∞

∫
ω∩bdKj

HSn
n−1(Kj, w) dw ≤ lim sup

j→∞
C0(Kj, ω) ≤ C0(K,ω)

for all ω ∈ B(Sn). Using the arguments from [46, Section 4] and adapting
the terminology, upper semicontinuity of the floating area follows.

Using the Gauss map NK
· , we find an equivalent expression for the floating

area of K as a curvature integral over the boundary of the polar of K.

Theorem 5.12. Let K ∈ K(Sn). Then

Ω(K) =
∫

bdK◦
HSn
n−1(K◦, w)

n
n+1 dw.

Proof. The proof is similar to the proof of Theorem 2.8 in [37] by D. Hug.
Even more can be said: Let ω ∈ B(Sn) and denote by σ(K,ω) the set
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of v ∈ Sn such that v is an outer unit normal to some boundary point
w ∈ bdK ∩ ω. Clearly, σ(K,ω) ⊆ bdK◦. It follows that

Ω(K,ω) =
∫

σ(K,ω)

HSn
n−1(K◦, w)

n
n+1 dw.

Since σ(K, Sn) = bdK◦, this implies the statement.

5.3.1. Isoperimetric Inequality

By Theorem 5.11, the floating area is upper semicontinuous on K(Sn).
Since K(Sn) with the Hausdorff metric is compact (see, e.g., [31]), we may
immediately conclude the existence of maximizers C ∈ K(Sn) such that

sup{Ω(K) : K ∈ K(Sn) such that voln(K) = c} ≤ Ω(C)

for a fixed c ∈ [0, ωn2 ] and voln(C) = c.

We believe that the only maximizers of the floating area are geodesic balls:
Conjecture 5.13. Let K ∈ K(Sn). Then

Ω(K) ≤ Ω(CK), (5.18)

where CK is a spherical cap such that voln(CK) = voln(K). Equality holds
if and only if K is spherical cap.

This conjecture is still open, but we are able to prove the following inequality.
Theorem 5.14. Let K ∈ K(Sn). Then

Ω(K) ≤ P (K◦)
1

n+1P (K)
n
n+1 , (5.19)

where P (K) denotes the perimeter of K. Equality holds if and only if K is
a spherical cap.

Proof. Using Hölder’s inequality, we obtain

Ω(K) =
∫

bdK

HSn
n−1(K,w)

1
n+1 dw ≤

 ∫
bdK

HSn
n−1(K,w) dw

 1
n+1
 ∫

bdK

dw

 n
n+1

.

Since NK(bdK) ⊆ bdK◦ and JbdK(NK)(w) = HSn
n−1(K,w) for Hn−1-

almost all w ∈ bdK, this implies (5.19).

That equality holds precisely for spherical caps follows from the fact, that
equality holds in Hölder’s inequality if and only ifHSn

n−1(K, .) is constant.
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Another inequality for the floating area can be derived using the gnomonic
projection and the affine isoperimetric inequality.

Theorem 5.15. Let K ∈ Kp0(Sn). Then, for u ∈ intK and 0 < α ≤ β < π
2

such that Cu(α) ⊆ K ⊆ Cu(β), we have

Ω(K)
ωn−1

≤
(

cos(α)2 tan(β)n
tan(α)n−1

P (K)
ωn−1

)n−1
n+1

. (5.20)

Equality holds for spherical caps for which α = β.

Proof. Using the gnomonic projection in u, (3.23) and (3.25), we obtain

Ω(K) =
∫

bd gu(K)
HSn
n−1(K, g−1

u (x))
1

n+1Jbd gu(K)(g−1
u )(x) dx

=
∫

bd gu(K)
H

Rnu
n−1(gu(K), x)

1
n+1

1
(1 + ‖x‖2)n−1

2
dx.

Since tan(α) ≤ ‖x‖ ≤ tan(β) for all x ∈ bd gu(K), we conclude

cos(β)n−1as(gu(K)) ≤ Ω(K) ≤ cos(α)n−1as(gu(K)).

Using the classical affine isoperimetric inequality for L ∈ K0(Rn),

as(L)
ωn−1

≤
(
nvoln(L)
ωn−1

)n−1
n+1

,

gives

Ω(K)
ωn−1

≤
(

cos(α)n+1nvoln(gu(K))
ωn−1

)n−1
n+1

.

For the volume of the gnomonic projection we derive the inequality

voln(gu(K)) (3.19)=
∫
K

dv

cos(d(v, u))n+1 =
∫

bdK

−u ·NK
w

sin(d(u,w))n

d(u,w)∫
0

tan(t)n−1

cos(t)2 dt

≤
∫

bdK

1
sin(d(u,w))n−1

tan(d(u,w))n
n

dw ≤ P (K)
n

tan(β)n
sin(α)n−1 ,

where we used the fact that −u ·NK
w = sin(d(u,SNK

w
)) ≤ sin(d(u,w)). This

concludes the prove of (5.20). It is easy to check that equality holds for
spherical caps of radius α = β.
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Inequality (5.20) is weaker than our conjectured inequality (5.18): For any
K ∈ Kp0(Sn) and u ∈ intK such that Cu(α) ⊆ K ⊆ Cu(β) we have

voln(Cu(α)) ≤ voln(K) ≤ voln(Cu(β)).

Thus, for the spherical cap CK = Cu(αK) such that voln(CK) = voln(K),
we have α ≤ αK ≤ β. We therefore conclude for the right hand side of
inequality (5.20) that

(
cos(αK) sin(αK)P (K)

ωn−1

)n−1
n+1

≤
(

cos(α)2 tan(β)n
tan(α)n−1

P (K)
ωn−1

)n−1
n+1

. (5.21)

Our conjectured inequality (5.18) would imply

Ω(K) ≤ Ω(CK) = cos(αK)
n−1
n+1 sin(αK)n

n−1
n+1ωn−1,

which in turn would imply (5.20) by (5.21) and the isoperimetric inequality

P (K) ≥ P (CK) = sin(αK)n−1ωn−1.
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support function, 5

spherical, 16
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surface area
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