Die approbierte Originalversion dieser Diplom-/ Masterarbeit ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich.

DIPLOMARBEIT Master Thesis

Entwurf einer Versuchsanlage für Tragfähigkeitsversuche von SCSC-Platten

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Diplom-Ingenieurs/ einer Diplom-Ingenieurin

unter der Leitung von

Univ.Prof. Dipl.-Ing. Dr.techn. Josef Fink

und als verantwortlich mitwirkender Assistent

Univ.Ass. Dipl.-Ing. Marlene Steurer

E212

Institut für Tragkonstruktionen – Stahlbau

eingereicht an der Technischen Universität Wien Fakultät für Bauingenieurwesen

von

Christoph Kienast

0925471

Ysper 4 A-3683 Yspertal

Christoph Hiemon

Wien, am 09.10.2014

Danksagung

An dieser Stelle möchte ich mich bei all jenen bedanken, die mich während der gesamten Studienzeit begleitet und unterstützt haben.

Mein besonderer Dank gilt Herrn Univ.Prof. Dipl.-Ing. Dr.techn. Josef Fink, Frau Univ.Ass. Dipl.-Ing. Marlene Steurer sowie Herrn Dipl.-Ing. Herbert Pardatscher des Institutes für Tragkonstruktionen – Stahlbau für die gute Betreuung sowie für die vielen lehrreichen Besprechungen.

Ein großer Dank gilt auch meinen Freunden und Studienkollegen. Stellvertretend für alle die mich während dem Studium begleitet haben, möchte ich mich an dieser Stelle bei Herrn Cand. Dipl.-Ing. Stefan Hehenberger und Herrn Dipl.-Ing. Markus Waglechner für deren Unterstützung und Motivation seit der Schulzeit bedanken.

Außerdem möchte ich mich bei meinen Eltern Elfriede und Josef Kienast sowie meiner Schwester Claudia Poschenreither für die große Unterstützung während meiner gesamten schulischen und akademischen Laufbahn bedanken.

Kurzfassung

Die am Institut für Tragkonstruktionen, Forschungsbereich Stahlbau der Technischen Universität Wien, entwickelte SCSC-Platte (Steel- Concrete- Steel- Composite) soll zur bestmöglichen Beschreibung ihres Tragverhaltens experimentell untersucht werden. Die Platte wird sowohl hinsichtlich des statischen Tragvermögens als auch auf deren Ermüdungsverhalten unter dynamischer Beanspruchung untersucht. Die vorliegende Arbeit behandelt die Entwicklung des dazu benötigten Versuchsrahmens. Die Plattengröße sowie deren Masse, die hohe abgeschätzte Traglast und den daraus resultierenden Problemstellungen hatten entscheidenden Einfluss auf die Planung des Versuchsaufbaus.

Um die geplanten Versuche wirtschaftlich und kostensparend durchführen zu können, wurde der Versuchsrahmen für zwei unterschiedliche Standorte, Wien und Graz, geplant und vordimensioniert. Auf Grundlage dieser Planung, den berechneten Massen und den Rahmenbedingungen, wurde zum Zwecke einer Detailplanung die endgültige Entscheidung für einen Standort getroffen.

Die weitere Planung wird durch die statische Tragwerksberechnung, die Detailberechnung der Lasteinleitungs- und durchleitungsbereiche sowie deren Einfluss auf die Spannungsnachweise erweitert. Die Berechnung der Ermüdungsfestigkeit erfolgte insofern, dass die auftretenden Spannungsdifferenzen der globalen Berechnung nachgewiesen wurden, Detailnachweise wurden im Bereich der Ermüdungsfestigkeit nicht geführt.

Abschließend wurde die Werkstattplanung des gesamten Aufbaus vorgenommen. Die Werkstattplanung umfasst sämtliche Pläne und Darstellungen, welche zur Herstellung dieses Bauwerks erforderlich sind.

Abstract

At the Institute of Structural Engineering, Research Center of Steel Structures at the Vienna University of Technology, the SCSC-plate (Steel- Concrete- Steel- Composite) is under investigation, to describe the load carrying behavior. The sandwich structure will be tested to evaluate the statical limit state and the fatigue limit state, therefore was a structure needed that can withstand the acting effects. The size of the plate, their mass as well as the level of the assumed statical limit state and the resulting problems of these issues had an important influence on the planned structure.

To execute these tests economical and cost efficient, the structure was planned and pre-analyzed for two different testing sites, one in Vienna and another one in Graz. Based on this planning state, the calculated steel-mass and the boundary conditions of the individual sites, the decision for one of these sites was felled to plan the structure in detail.

The expanded planning state includes the structural calculation, detailed calculations of local effects and their influence on the stress checks of the section. The calculation of the fatigue limit state includes the check of the acting stress range of the global calculation, detailed verifications are not included.

Based on the global and detailed calculations, the production planning had been done for the whole structure. The production planning includes all plans and informations that are used to produce this structure.

Inhaltsverzeichnis

1.	Einleitung	9
1.1	Abgrenzung dieser Arbeit – Ausblick auf weitere Nachweisführungen	9
1.2	Abkürzungsverzeichnis	9
1.2.1	Querschnitts-/Bauteilbezeichnungen	9
122	Rezeichnungen	9
123	Schnittarößen / Spannungen	9
124	Geometrische Größen	10
1.3	Variantenstudie	10
121	Vorentwurf	11
1.3.1	Volentwull	. 1 1
1.3.2	Entwun	. 15 16
1.3.3 n		. 10
Z .		. 10
2.1	Standige Einwirkungen	.18
2.1.1	Eigengewicht der Platte	. 18
2.1.2	Eigengewicht des Stahlrahmens	. 18
2.1.3	Eigengewicht des Unwuchterregers	. 18
2.1.4	Eigengewicht der Waagbalken [WB1] und [WB2]	. 18
2.2	Veränderliche Einwirkungen – Prüfkräfte / Pressenkräfte	.19
2.2.1	Anordnung der Plattenkräfte	. 19
2.2.2	Statische Traglastversuche – Maximale Pressenkraft	. 19
2.2.3	Statische Traglastversuche – Vorspannkraft	. 19
2.2.4	Dynamische Ermüdungsversuche – Lastschwingbreite	. 19
2.2.5	Dynamische Ermüdungsversuche – Mittelspannung	.21
2.3	Teilsicherheitsbeiwerte	.22
2.3.1	Teilsicherheitsbeiwerte für die Einwirkungen nach ÖNORM EN 1993-1-1	.22
2.3.2	Teilsicherheitsbeiwerte für das Material nach ÖNORM EN 1993-1-1 und ÖNORM B 1993-1-1	.22
2.3.3	Teilsicherheitsbeiwerte für das Material nach ÖNORM EN 1993-1-9 und ÖNORM B 1993-1-9	.23
3.	Materialkennwerte	.24
4.	Querschnitte	.25
41	[AT] Auflagerträger	25
12	[/T] äpgeträger	26
4.2		.20
4.3		. 21
4.4		.28
4.5	[QI] _{offen} Quertrager offen	.29
4.6	[VT] Vorspannträger	.30
4.7	[WB1] Waagbalken 1 / [VTB] Verteilbalken	.31
4.8	[WB2] Waagbalken 2	. 32
4.9	[ZS] Zugstütze	.33
5.	Modellbildung	.34
5.1	Berechnungsmodell – Aufbau statische Traglastversuche	.34
52	Berechnungsmodell – Aufbau dynamische Ermüdungsversuche	34
6	Grenzzustände der Tradfähigkeit	36
6.1		20.
0.1		. 30
0.2		. 30
6.2.1	[A I] Auflagertrager	.39
6.2.2	[LI] Langstrager	.39
6.2.3	[LTu] Langstrager unten	.40
6.2.4	[QT] _{geschlossen} Quertrager geschlossen	.40
6.2.5	[QI] _{offen} Quertrager offen	.41
6.2.6	[VI] Vorspanntrager	.41
6.2.7	[WB1] Waagbalken 1 / [VIB] Verteilbalken	. 42
6.2.8	[WB2] Waagbalken 2	. 42
6.2.9	[ZS] Zugstütze	.43
6.3	Lastfalle / Lastfallkombinationen	.44
6.3.1	Lastfälle – Ubersicht	. 44
6.3.2	[AT] Versuchsdurchführung	.45
6.3.3	[LT] Vorspannung	. 48
6.3.4	[LT] Versuchsdurchführung	. 50
6.3.5	[LTu] FLS Vorspannung	.53

6.3.6	[QT] _{geschlossen} Vorspannung	. 55
6.3.7	[QT] _{geschlossen} Versuchsdurchführung	.57
6.3.8	[QT] _{offen} Vorspannung	. 59
6.3.9	[QT] _{offen} Versuchsdurchführung	.61
6.3.10	[VT] Vorspannung	.63
6.3.11	[VT] Versuchsdurchführung	.65
6.3.12	[VTB] FLS Vorspannung	.68
6.3.13	[WB1] Versuchsdurchführung	.69
6.3.14	[WB2] Versuchsdurchführung	. 70
6.3.15	[ZS] Vorspannung	. 71
6.3.16	[ZS] Versuchsdurchführung	. 73
6.4	Querschnittsnachweise	.75
6.4.1	Allgemeines	. 75
6.4.2	[AT] Versuchsdurchführuna	. 76
6.4.3	[LT] Vorspannung	.77
6.4.4	[LT] Versuchsdurchführuna	. 79
6.4.5	[LTu] FLS Vorspannung	.82
6.4.6	[QT] _{neschlossen} Versuchsdurchführung	.84
6.4.7	[QT] _{offen} Versuchsdurchführung	. 89
6.4.8	[QT] Torsionsabtragung Querträger	.93
6.4.9	[VT] Versuchsdurchführung – [QT] _{reschlossen}	.94
6.4.10	[VT] Versuchsdurchführung – [QT] _{offen}	.96
6.4.11	[WB1] Versuchsdurchführung	.98
6.4.12	[WB2] Versuchsdurchführung	100
6.4.13	[ZS] Vorspannung	102
6.4.14	[ZS] Versuchsdurchführung	102
6.5	stabilitätsnachweise	103
651	[AT] Versuchsdurchführung	103
6.5.2	[/ T] Vorspannung	103
653	[LT] Versuchsdurchführung	104
654	[21] voldalendarendar gilling	104
655	[QT]_#== Versuchsdurchführung	105
656	[VT] Vorspannung	105
657	[VT] Versuchsdurchführung	106
658	[WB1] Versuchsdurchführung	106
659	[WB1] Versuchsdurchführung	107
6510	[ZS] Vorspannung	108
6.6	[26] Voloparinang	109
661	Lastfall Vorspannung	100
662	Lastfall Versuchsdurchführung	111
67	Anschlüsse und Verbindungen	111
671		114
0.7.1	Anschluss Zugstütze [ZS] – Querträger [QT]	114
0.7.2	Anschluss Zugstutze [ZS] – Langsträger [LT]	127
0.0		130
6.8.1	Grundlagen	135
6.8.2	Stelfennachweise	136
6.8.3	Lastdetall LD _{ULS} 01 – [QT] _{geschlossen} – Versuchsdurchtunrung	138
6.8.4	Lastdetall LD _{ULS} 01 – [QT] _{offen} – Versuchsdurchfuhrung	140
6.8.5	Lastdetail $LD_{ULS}U2 - [QI]_{geschlossen} - Vorspannung$	142
6.8.6	Lastdetail $LD_{ULS}U2 - [QI]_{geschlossen} - Versuchsdurchfuhrung$	146
6.8.7	Lastdetail $LD_{ULS}U2 - [QT]_{offen} - Vorspannung$	149
6.8.8	Lastaetall LD _{ULS} U2 – [Q1] _{offen} – Versuchsdurchtuhrung	154
6.8.9	Lastaetall LD _{ULS} U3 – Vorspannung	159
0.8.10	Lastaetali LD _{ULS} U3 – Versuchsaurchtuhrung	162
6.8.11	Lastaetall LD _{ULS} U4 – Vorspannung	164
6.8.12	Lastdetail LD _{ULS} 04 – Versuchsdurchführung	167
6.8.13	Lastdetail LD _{ULS} 05 – Vorspannung	169
6.8.14	Lastdetail LD _{ULS} 05 – Versuchsdurchführung	175
6.8.15	Lastdetail $LD_{ULS}06 - [QI]_{geschlossen} - Vorspannung$	179
6.8.16	Lastdetail $LD_{ULS}06 - [QI]_{geschlossen} - Versuchsdurchführung$	184
6.8.17	Lastdetail $LD_{ULS}06 - [QI]_{offen} - Vorspannung$	186
6.8.18	Lastdetail LD _{ULS} 06 – [QT] _{offen} – Versuchsdurchführung	191

6.8.19	Lastdetail LD _{ULS} 07 – Versuchsdurchführung	193
6.8.20	Lastdetail LD _{ULS} 08 – Versuchsdurchführung	199
6.8.21	Lastdetail LD _{ULS} 09 – Versuchsdurchführung	202
6.8.22	Lastdetail LD _{ULS} 10 – Versuchsdurchführung	206
6.8.23	Lastdetail LD _{ULS} 11 – Versuchsdurchführung	209
7.	Grenzzustand der Gebrauchstauglichkeit	211
7.1	Teilsicherheitsbeiwerte	211
7.2	[AT] Versuchsdurchführung	211
7.3	[LT] Vorspannung	212
7.4	[LT] Versuchsdurchführung	213
7.5	[LTu] FLS Vorspannung	214
7.6	[QT] _{aeschlossen} Versuchsdurchführung	215
7.7	[QT] _{offen} Versuchsdurchführung	216
7.8	[QT] Versuchsdurchführung – Nachweis der Horizontalverschiebung	217
7.9	[VT] Vorspannung	218
7.10	[VT] Versuchsdurchführung	219
7.11	[VTB] FLS Vorspannung	220
7.12	WB11 Versuchsdurchführung	221
7.13	[WB2] Versuchsdurchführung	221
8.	Grenzzustand der Ermüdungsfestigkeit	222
8.1	Teilsicherheitsbeiwerte	223
82	Modellbildung	223
83	Frmittlung der Beanspruchungen / Nachweisführung im Grenzzustand der Ermüdungsfestigkeit	226
831	[AT] Auflagerträger	226
832	[I T] Längsträger	220
8.3.3	[LT] Längsträger unten	2.34
8.3.4	[QT] _{complement} Querträger geschlossen.	237
8.3.5	[QT] _{offen} Querträger offen	240
8.3.6	[VT] Vorspannträger – [QT] _{deschlossen}	243
8.3.7	[VT] Vorspannträger – [QT] _{offen}	247
8.3.8	[VTB] Verteilbalken – [QT] _{deschlossen}	251
8.3.9	[VTB] Verteilbalken – [QT] _{geschlossen}	252
8.3.10	[WB1] Waagbalken 1	253
8.3.11	[WB2] Waagbalken 2	254
8.4	Vorspannsystem	255
8.4.1	Vorspannsystem mit Gewindestangen	255
8.4.2	Vorspannsystem mit DYWIDAG Glattstäben 36 WS	255
8.4.3	Schlussfolgerung	256
8.4.4	Austührungshinweis	256
9.	Konstruktive Details	257
9.1	Querschnittsaussteifungen – Steifen	257
9.2	Längsverschieblichkeit der SCSC-Platte	257
9.3	Auswahl der Stahlsorte im Hinblick auf Eigenschaften in Dickenrichtung	257
9.3.1	Endplatte aus LD _{ULS} 06	259
9.3.2	Endplatte aus LD _{ULS} 05	260
10.	Literaturverzeichnis	261
10.1	Wissenschaftliche Arbeiten	261
10.2	Literatur, Bücher	261
10.3	Normen und Regelwerke	261
10.4	Verwendete Software	262
11.	Anhang	263
11.1	Dynamische Berechnung der SCSC-Platte	263
11.2	Konstruktionsplan Unwuchterreger	266
11.3	Datenblatt Kraftmessdosen	267
11.4	Vorspannsystem Glattstab 36 WS	271
11.5	Planliste	276
11.6	Stahlliste Variante Wien – Variante Querträger geschlossen	277
11.7	Stahlliste Variante Wien – Variante Querträger offen	279

Abbildungsverzeichnis

Abbildung 1.1: Vorentwurf Versuchsaufbau Wien	.11
Abbildung 1.2: Vorentwurf Versuchsaufbau Graz	.12
Abbildung 1.3: Entwurf Traglastversuche Wien (Längs- und Queransicht) am Beispiel [QT] _{geschlossen}	.14
Abbildung 1.4: Entwurf Ermüdungsversuche Wien (Längs- und Queransicht) am Beispiel [QT] _{geschlos}	sen
	.15
Abbildung 1.5: Entwurf Traglastversuche Graz (Längs- und Queransicht)	.16
Abbildung 1.6: Entwurf Ermüdungsversuche Graz (Längs- und Queransicht)	.16
Abbildung 2.1: Biegemomentenlinie bei LM71; M _{min} , M ₀ , M _{max} (siehe Anhang 11.1)	.20
Abbildung 5.1: Berechnungsmodell – statische Traglastversuche	.34
Abbildung 5.2: Berechnungsmodell – dynamische Ermüdungsversuche	.35
Abbildung 6.1: Auflagerträger [AT] – Versuchsdurchführung – Eigengewicht	.45
Abbildung 6.2: Auflagerträger [AT] – Versuchsdurchführung – Pressenkraft	.46
Abbildung 6.3: Auflagerträger [AT] – Versuchsdurchführung – Normalkraft N _{Ed}	.47
Abbildung 6.4: Auflagerträger [AT] – Versuchsdurchführung – Querkraft Vz Ed.	.47
Abbildung 6.5: Auflagerträger [AT] – Versuchsdurchführung – Biegemoment My Ed.	.47
Abbildung 6.6: Längsträger [LT] – Vorspannung – Eigengewicht	48
Abbildung 6.7: Längsträger [LT] – Vorspannung – Vorspannkräfte	.48
Abbildung 6.8 Längsträger [LT] – Vorspannung – Querkraft V. r.	49
Abbildung 6 9 [.] Längsträger [LT] – Vorspannung – Biegemoment Must	49
Abbildung 6 10: Längsträger [LT] – Versuchsdurchführung – Figengewicht	50
Abbildung 6 11: Längsträger [LT] – Versuchsdurchführung – Versuchskräfte	50
Abbildung 6 12: Längsträger [LT] – Versuchsdurchführung – Versuchskräfte	51
Abbildung 6.12: Längsträger [LT] – Versuchsdurchführung – Vorspännkrätte	52
Abbildung 6.17: Längsträger [LT] – Versuchsdurchführung – Querklait V _{z,Ed}	52
Abbildung 6.14. Längsträger unten [LTu] – ELS Verenennung – Diegemönieht My,Ed	52
Abbildung 6.15. Längsträger unten [LTu] – FLS Vorspannung – Eigengewicht	.55
Abbildung 6.10. Längsträger unten [LTu] – FLS Vorspannung – Vorspannung FLS	.33
Abbildung 6.17: Längsträger unten [LTu] – FLS Vorspannung – Querkräft V _{z,Ed}	. 34
Abbildung 6.10. Langsträger unten [LTu] – FLS vorspannung – Biegemoment M _{y,Ed}	. 34
Abbildung 6.19: Querträger geschlossen [QT] – Vorspannung – Eigengewicht	. 33
Abbildung 6.20: Querträger geschlossen [QT] – Vorspannung – Normalkräft N _{Ed}	. 30
Abbildung 6.21: Querträger geschlossen [QT] – Vorspannung – Querkräft V _{z,Ed}	. 30
Abbildung 6.22: Querträger geschlossen [QT] – Vorspannung – Biegemoment M _{y,Ed}	. 30
Abbildung 6.23: Querträger geschlossen [QT] – Versuchsdurchführung – Eigengewicht	.3/
Abbildung 6.24: Querträger geschlossen [QT] – Versuchsdurchfuhrung – Pressenkräfte	.5/
Abbildung 6.25: Querträger geschlossen [QT] – Versuchsdurchfuhrung – Normalkräft N _{Ed}	. 38
Abbildung 6.26: Querträger geschlossen [QT] – Versuchsdurchfuhrung – Querkräft v _{z,Ed}	.58
Abbildung 6.27: Querträger geschlossen [QT] – versuchsdurchfuhrung – Biegemoment M _{y,Ed}	.58
Abbildung 6.28: Quertrager offen [QI] – Vorspannung – Eigengewicht	.59
Abbildung 6.29: Quertrager offen [QI] – Vorspannung – Normalkraft N _{Ed}	.60
Abbildung 6.30: Quertrager offen $[QI]$ – vorspannung – Querkraft $v_{z,Ed}$.60
Abbildung 6.31: Quertrager offen [QI] – Vorspannung – Biegemoment M _{y,Ed}	.60
Abbildung 6.32: Quertrager offen [QI] – Versuchsdurchfuhrung – Eigengewicht	.61
Abbildung 6.33: Querträger offen [QT] – Versuchsdurchführung – Pressenkräfte	.61
Abbildung 6.34: Querträger offen [QT] – Versuchsdurchführung – Normalkraft N _{Ed}	.62
Abbildung 6.35: Querträger offen [QT] – Versuchsdurchführung – Querkraft V _{z,Ed}	.62
Abbildung 6.36: Querträger offen [QT] – Versuchsdurchführung – Biegemoment M _{y,Ed}	.62
Abbildung 6.37: Vorspannträger [VT] – Vorspannung – Eigengewicht	.63
Abbildung 6.38: Vorspannträger [VT] – Vorspannung – Vorspannkräfte	.63
Abbildung 6.39: Vorspannträger [VT] – Vorspannung – Querkraft V _{z,Ed}	.64
Abbildung 6.40: Vorspannträger [VT] – Vorspannung – Biegemoment M _{y,Ed}	.64
Abbildung 6.41: Vorspannträger [VT] – Versuchsdurchführung – Eigengewicht	.65
Abbildung 6.42: Vorspannträger [VT] – Versuchsdurchführung – Versuchskräfte	.65
Abbildung 6.43: Vorspannträger [VT] – Versuchsdurchführung – Vorspannkräfte	.66
Abbildung 6.44: Vorspannträger [VT] – Versuchsdurchführung – Querkraft V _{z,Ed}	.67
Abbildung 6.45: Vorspannträger [VT] – Versuchsdurchführung – Biegemoment M _{y,Ed}	.67
Abbildung 6.46: Verteilbalken [VTB] – FLS Vorspannung – Eigengewicht	.68
Abbildung 6.47: Verteilbalken [VTB] – FLS Vorspannung – Vorspannung FLS	.68
Abbildung 6.48: Verteilbalken [VTB] – FLS Vorspannung – Querkraft V _{z,Ed}	.68

Abbildung 6.49: Verteilbalken [VTB] – FLS Vorspannung – Biegemoment M _{y,Ed}	.68
Abbildung 6.50: Waagbalken 1 [WB1] – Versuchsdurchführung – Eigengewicht	.69
Abbildung 6.51: Waagbalken 1 [WB1] – Versuchsdurchführung – Pressenkraft	.69
Abbildung 6.52: Waagbalken 1 [WB1] – Versuchsdurchführung – Querkraft V _{z,Ed}	.69
Abbildung 6.53: Waagbalken 1 [WB1] – Versuchsdurchführung – Biegemoment M _{y,Ed}	.69
Abbildung 6.54: Waagbalken 2 [WB2] – Versuchsdurchführung – Eigengewicht	.70
Abbildung 6.55: Waagbalken 2 [WB2] – Versuchsdurchführung – Pressenkraft	.70
Abbildung 6.56: Waagbalken 2 [WB2] – Versuchsdurchführung – Querkraft V _{z,Ed}	.70
Abbildung 6.57: Waagbalken 2 [WB2] – Versuchsdurchführung – Biegemoment M _{y,Ed}	.70
Abbildung 6.58: Zugstütze [ZS] – Vorspannung – Eigengewicht	.71
Abbildung 6.59: Zugstütze [ZS] – Vorspannung – Vorspannkräfte	.71
Abbildung 6.60: Zugstütze [ZS] – Vorspannung – Normalkraft N _{Ed}	.72
Abbildung 6.61: Zugstütze [ZS] – Vorspannung – Querkraft V _{z,Ed} / V _{y,Ed}	.72
Abbildung 6.62: Zugstütze [ZS] – Vorspannung – Biegemoment M _{y,Ed} / M _{z,Ed}	.72
Abbildung 6.63: Zugstütze [ZS] – Versuchsdurchführung – Eigengewicht	.73
Abbildung 6.64: Zugstütze [ZS] – Versuchsdurchführung – Versuchskräfte	.73
Abbildung 6.65: Zugstütze [ZS] – Versuchsdurchführung – Normalkraft N _{Ed}	.74
Abbildung 6.66: Zugstütze [ZS] – Versuchsdurchführung – Querkraft V _{z,Ed} / V _{y,Ed}	.74
Abbildung 6.67: Zugstütze [ZS] – Versuchsdurchführung – Biegemoment M _{y,Ed} / M _{z,Ed}	.74
Abbildung 6.68: Auflagerträger [AT] – Versuchsdurchführung – Spannungsausnutzung $\sigma_{v, Ed}$ / f _{y,d}	.76
Abbildung 6.69: Längsträger [LT] – Vorspannung – Spannungsausnutzung $\sigma_{v,Ed}$ / f $_{y,d}$.77
Abbildung 6.70: Längsträger [LT] – Versuchsdurchführung – Spannungsausnutzung σ _{v,Ed} / f _{y,d}	.79
Abbildung 6.71: Längsträger unten [LTu] – FLS Vorspannung – Spannungsausnutzung $\sigma_{v,Ed}$ / f $_{y,d}$.82
Abbildung 6.72: Querträger geschlossen [QT] – Versuchsdurchführung – Spannungsausnutzung σ_v	, _{Ed} /
f _{y,d}	.84
Abbildung 6.73: Querträger offen [QT] – Versuchsdurchführung – Spannungsausnutzung $\sigma_{v,Ed}$ / f _{y,d}	.89
Abbildung 6.74: Vorspannträger [VT] – [QT] _{geschlossen} – Versuchsdurchführung – Spannungsausnutzi	ung
σ _{v,Ed} / f _{y,d}	.94
Abbildung 6.75: Vorspannträger [VT] – [QT] _{offen} – Versuchsdurchführung – Spannungsausnutzung o	ס _{v,Ed}
/ f _{y,d}	.96
Abbildung 6.76: Waagbalken 1 [WB1] – Versuchsdurchführung – Spannungsausnutzung $\sigma_{v,Ed}$ / f _{y,d}	.98
Abbildung 6.77: Waagbalken 2 [WB2] – Versuchsdurchführung – Spannungsausnutzung $\sigma_{v,Ed}$ / $f_{y,d}$.1	100
Abbildung 6.78: Globale Stabilitätsanalyse – Vorspannung – Eigengewicht	109
Abbildung 6.79: Globale Stabilitätsanalyse – Vorspannung – Vorspannkräfte	109
Abbildung 6.80: Globale Stabilitätsanalyse – Vorspannung – Eigenform	110
Abbildung 6.81: Globale Stabilitätsanalyse – Versuchsdurchführung – Eigengewicht	111
Abbildung 6.82: Globale Stabilitätsanalyse – Versuchsdurchführung – Vorspannkräfte	111
Abbildung 6.83: Globale Stabilitätsanalyse – Versuchsdurchführung – Versuchskräfte	112
Abbildung 6.84: Globale Stabilitätsanalyse – Versuchsdurchführung – Eigenform1	112
Abbildung 6.85: Anschluss Zugstütze [ZS]-Querträger [QT] _{geschlossen} / [QT] _{offen} 1	114
Abbildung 6.86: Zugstütze [ZS] – Querträger geschlossen [QT] _{geschlossen} – Fließmuster 11	115
Abbildung 6.87: Zugstütze [ZS] – Querträger geschlossen [QT] _{geschlossen} – Fließmuster 2	116
Abbildung 6.88: Zugstütze [ZS] – Querträger geschlossen [QT] _{geschlossen} – Fließmuster 31	116
Abbildung 6.89: Zugstütze [ZS] – Querträger geschlossen [QT] _{geschlossen} – Fließmuster 4	116
Abbildung 6.90: Zugstutze [ZS] – Quertrager geschlossen [QI] _{geschlossen} – Fließmuster 5	117
Abbildung 6.91: Zugstutze [ZS] – Quertrager geschlossen [QI] _{geschlossen} – Fließmuster 6	117
Abbildung 6.92: Zugstutze [ZS] – Quertrager offen [QI] _{offen} – Fließmuster 1	121
Abbildung 6.93: Zugstutze [ZS] – Quertrager offen [QI] _{offen} – Fließmuster 2	122
Abbildung 6.94: Zugstutze [ZS] – Quertrager offen [QI] _{offen} – Fließmuster 3	122
Abbildung 6.95: Zugstutze [ZS] – Querträger offen [QT] – Fließmuster 4	122
Abbildung 6.96: Zugstutze [ZS] – Querträger offen [QT] – Fließmuster 5	123
Abbildung 6.9/: Lugstutze [25] – Quertrager offen [QI] _{offen} – Filelsmuster 6	123 127
Abbildung 0.96: Anschluss Zugstutze [25] – Längsträger [Li]1	121
Abbildung 0.33: Lugstutze [23] – Langsträger [21] – Fileßmuster 1	129
Abbildung 6.100: Zugstutze [26] – Langsträger [L1] – Fileismuster 2	129
Abbildung 6.101: Zugstutze [23] – Längsträger [L1] – Fileismuster 3	130
Abbildung 6 102. Zugstütze [ZO] – Längsträger [LT] – Filebilluster 4	130
Appliquity 0, 103, Zuustutze 1231 – Laitustrauer 1211 – Filebilluster 3	124
	131 124
Abbildung 6.104: Zugstütze [ZS] – Längsträger [LT] – Fließmuster 6	131 131 125

Abbildung 6.106: Nachweisverfahren Steifentyp 11	136
Abbildung 6.107: Nachweisverfahren Steifentyp 21	137
Abbildung 6.108: Nachweisverfahren Steifentyp 31	137
Abbildung 6.109: Lastdetail LD _{ULS} 01 – [QT] _{geschlossen} – Versuchsdurchführung – Kräfte/Spannungen 1	138
Abbildung 6.110: Lastdetail LD _{III} s01 – [QT] _{deschlossen} – Versuchsdurchführung	139
Abbildung 6.111: Lastdetail LD _W s01 – [QT] _{offen} – Versuchsdurchführung – Kräfte/Spannungen1	140
Abbildung 6.112: Lastdetail LD _W s01 – [QT] _{effen} – Versuchsdurchführung	141
Abbildung 6.113: Lastdetail LDu s02 – [QT] asset lesser – Vorspannung – Kräfte/Spannungen	143
Abbildung 6 114: Lastdetail L D_{max} (0.2 – [0.7] – Vorspannung	144
Abbildung 6 115: Lastdetail L Du ₂ 02 – [QT] _{geschlössen} Versuchsdurchführung – Kräfte/Spannungen 1	146
Abbildung 6 116: Lastdetail LD _{0LS} 02 [QT] _{geschiossen} Versuchsdurchführung Rateropainangen f	1/7
Abbildung 6 117: Lastdetail LD _{ULS} 02 – [QT] _{geschlossen} – Versuchsudrennung – Kräfte/Spannungen	150
Abbildung 6.117. Lastdetail LD 02 [QT] Vorspannung – Klatte/Spannungen	150
Abbildung 6.110. Lastdetail LD 02 [QT] Vorsushedurehführung Kröfte/Spannungen	151
Abbildung 6.119. Lastdetail LD _{ULS} 02 – [QT] _{offen} – Versuchsdurchführung – Kraite/Spannungen	155
Abbildung 6.120: Lastdetail LD _{ULS} $UZ = [QI]_{offen} = Versuchsdurchfuhrung$	100
Abbildung 6.121: Lastdetall LD _{ULS} 03 – Versuchsdurchfunrung/vorspannung	100
Abbildung 6.122: Lastdetall LD _{ULS} U4 – Versuchsdurchtunrung/vorspannung	165
Abbildung 6.123: Lastdetail LD _{ULS} 05 – Vorspannung1	1/1
Abbildung 6.124: Lastdetail LD _{ULS} 05 – Versuchsdurchfuhrung1	176
Abbildung 6.125: Lastdetail LD _{ULs} 06 – [QT] _{geschlossen} – Vorspannung – Kräfte/Spannungen1	181
Abbildung 6.126: Lastdetail LD _{ULS} 06 – [QT] _{geschlossen} – Vorspannung1	182
Abbildung 6.127: Lastdetail LD _{ULS} 06 – [QT] _{geschlossen} – Versuchsdurchführung	185
Abbildung 6.128: Lastdetail LD _{ULS} 06 – [QT] _{offen} – Vorspannung – Kräfte/Spannungen	188
Abbildung 6.129: Lastdetail LD _{ULS} 06 – [QT] _{offen} – Vorspannung1	189
Abbildung 6.130: Lastdetail LD _{ULS} 06 – [QT] _{offen} – Versuchsdurchführung1	192
Abbildung 6.131: Lastdetail LD _{ULS} 07 – Versuchsdurchführung1	195
Abbildung 6.132: Lastdetail LD _{ULS} 08 – Versuchsdurchführung	200
Abbildung 6.133: Lastdetail LD _{ULS} 09 – Versuchsdurchführung	202
Abbildung 6.134: Berührungspressung nach Hertz [2]	203
Abbildung 6.135: Lastdetail LD _{ULS} 10 – Versuchsdurchführung	206
Abbildung 6.136: Lastdetail LD _{ULS} 11 – Versuchsdurchführung	209
Abbildung 7.1: Auflagerträger [AT] – Versuchsdurchführung – Verformung	211
Abbildung 7.2: Längsträger [LT] – Vorspannung – Verformung	212
Abbildung 7.3: Längsträger [LT] – Versuchsdurchführung – Verformung	213
Abbildung 7.4: Längsträger unten [LTu] – FLS Vorspannung – Verformung	214
Abbildung 7.5: Querträger geschlossen [QT] geschlossen – Versuchsdurchführung – Verformung	215
Abbildung 7.6: Querträger offen [QT] _{offen} – Versuchsdurchführung – Verformung	216
Abbildung 7.7: Pressenverdrehung [WB1] – Obergurt	217
Abbildung 7.8: Pressenverdrehung Querträger [QT]	217
Abbildung 7 9: Vorspannträger [VT] – Vorspannung – Verformung	218
Abbildung 7 10: Vorspannträger [VT] – Versuchsdurchführung – Verformung	210
Abbildung 7.11: Verteilbalken [VTB] – El S Vorsnannung – Verformung	220
Abbildung 7.12: Waagbalken 1 [WB1] – Versuchsdurchführung – Verformung	221
Abbildung 7.12. Waagbalken 2 [WB2] – Versuchsdurchführung – Verformung	22 I 221
Abbildung 7.15. waaybalken z [wb2] - versuchsuurchlunding - vertornlung	22 I 222
Abbildung 6.1. Ermulungslesligkentskurven für Langsspalmungen und Schubspalmungen [14]2	223
Abbildung 6.2: Einwirkende Lastschwingbreite [WD1], [WD2] (nach Punkt 2.2.4)	223
Abbildung 8.3: Einwirkende Lastschwingbreite [VTB], [QT] (nach Punkt 2.2.4)	224
Abbildung 8.4: Einwirkende Lastschwingbreite [VI], [LI], [LI], [LI] (nach Punkt 2.2.4)	224
Abbildung 8.5: Einwirkende Lastschwingbreite [AI] (nach Punkt 2.2.4)	225
Abbildung 8.6: Auflagertrager [AI] – FLS-Schnittgroßen – Querkraft V _{z,Ed,FLS}	226
Abbildung 8.7: Auflagertrager [AI] – FLS-Schnittgroßen – Biegemoment M _{y,Ed,FLS}	226
Abbildung 8.8: Langstrager [LI] – FLS-Schnittgrößen – Querkraft V _{z,Ed,FLS}	229
Abbildung 8.9: Längsträger [LT] – FLS-Schnittgrößen – Biegemoment M _{y,Ed,FLS}	229
Abbildung 8.10: Längsträger unten [LTu] – FLS-Schnittgrößen – Querkraft V _{z,Ed,FLS}	234
Abbildung 8.11: Längsträger unten [LTu] – FLS-Schnittgrößen – Biegemoment M _{y,Ed,FLS}	234
Abbildung 8.12: Querträger geschlossen [QT] _{geschlossen} – FLS-Schnittgrößen – Querkraft V _{z,Ed,FLS} 2	237
Abbildung 8.13: Querträger geschlossen [QT] _{geschlossen} – FLS-Schnittgrößen – Biegemoment M _{y,Ed,FLS}	S
	237
Abbildung 8.14: Querträger offen [QT] _{offen} – FLS-Schnittgrößen – Querkraft V _{z,Ed,FLS}	240
Abbildung 8.15: Querträger offen [QT] _{offen} – FLS-Schnittgrößen – Biegemoment M _{y,Ed,FLS}	240

Abbildung 8.16: Vorspanntrager [VI] – FLS-Schnittgroßen – Querkraft V _{z,Ed,FLS}	243
Abbildung 8.17: Vorspannträger [VT] – FLS-Schnittgrößen – Biegemoment M _{v.Ed.FLS}	243
Abbildung 8.18: Vorspannträger [VT] – FLS-Schnittgrößen – Querkraft V _{z.Ed.FLS}	247
Abbildung 8.19: Vorspannträger [VT] – FLS-Schnittgrößen – Biegemoment M _{v.Ed.FLS}	247
Abbildung 8.20: Verteilbalken [VTB] – FLS-Schnittgrößen – Querkraft V _{z.Ed.FLS}	251
Abbildung 8.21: Verteilbalken [VTB] – FLS-Schnittgrößen – Biegemoment M _{v.Ed.FLS}	251
Abbildung 8.22: Verteilbalken [VTB] – FLS-Schnittgrößen – Querkraft V _{z.Ed.FLS}	252
Abbildung 8.23: Verteilbalken [VTB] – FLS-Schnittgrößen – Biegemoment M _{v.Ed.FLS}	252
Abbildung 8.24: Waagbalken 1 [WB1] – FLS-Schnittgrößen – Querkraft Vzed.FLS	
Abbildung 8.25: Waagbalken 1 [WB1] – FLS-Schnittgrößen – Biegemoment M _{v.Ed.FLS}	253
Abbildung 8.26: Waagbalken 2 [WB2] – FLS-Schnittgrößen – Querkraft Vz Ed FLS	
Abbildung 8.27: Waagbalken 2 [WB2] – FLS-Schnittgrößen – Biegemoment M _{v.Ed.FLS}	254
Abbildung 8.28: Kerbfallklasse für Schrauben und Gewindestangen [14]	255
Abbildung 9.1: Ansicht der Schweißnähte Endplatte LDuis06 am Beispiel [QT]geschlossen	
Abbildung 9.2: Ansicht der Schweißnähte Endplatte LD _{uls} 05	

Tabellenverzeichnis

Tabelle 2.1: Eigengewicht Waagbalken	18
Tabelle 2.2: Berechnung der einwirkenden FLS-Schwingbreite (siehe Anhang 11.1)	20
Tabelle 2.3: Berechnung der FLS-Mittelspannung (siehe Anhang 11.1)	21
Tabelle 4.1: Querschnittswerte Auflagerträger [AT] – HE-M 700	25
Tabelle 4.2: Querschnittswerte Längsträger [LT]	26
Tabelle 4.3: Querschnittswerte Längsträger unten [LTu]	27
Tabelle 4.4: Querschnittswerte Querträger geschlossen [QT] _{geschlossen}	28
Tabelle 4.5: Querschnittswerte Querträger offen [QT] _{offen}	29
Tabelle 4.6: Querschnittswerte Vorspannträger [VT]	30
Tabelle 4.7: Querschnittswerte Waagbalken 1 [WB1] / Verteilbalken [VTB] – HE-M 220	31
Tabelle 4.8: Querschnittswerte Waagbalken 2 [WB2] – HE-M 140	32
Tabelle 4.9: Querschnittswerte Zugstütze [ZS]	33
Tabelle 6.1: Nachweis gegen Normalspannungsbeulen (Auszug ÖNORM EN 1993-1-1 Tabelle 5.2)	37
Tabelle 6.2: Nachweis gegen Normalspannungsbeulen (Auszug ÖNORM EN 1993-1-1 Tabelle 5.2)	
(Fortsetzung)	38
Tabelle 6.3: Lastfälle – Übersicht	44
Tabelle 9.1: Einflüsse auf die Anforderungen Z _{Ed} (Auszug aus ÖNORM EN 1993-1-10, Tabelle 3.2)	258
Tabelle 11.1: Stahlliste Variante Wien – Variante Querträger geschlossen	277
Tabelle 11.2: Stahlliste Variante Wien – Variante Querträger geschlossen (Fortsetzung)	278
Tabelle 11.3: Stahlliste Variante Wien – Variante Querträger offen	279
Tabelle 11.4: Stahlliste Variante Wien – Variante Querträger offen (Fortsetzung)	280

1. Einleitung

1.1 Abgrenzung dieser Arbeit – Ausblick auf weitere Nachweisführungen

Der Versuchsaufbau wird zunächst im Rahmen des Forschungsprojektes FFG-VIF 2012, Projektschwerpunkt 2.2.8, "Entwicklung einer neuartigen Sandwich-Verbundplatte für Eisenbahnbrücken" zur Durchführung von statischen Traglastversuchen verwendet. In einem weiterführenden Forschungsvorhaben werden dynamische Versuche an der SCSC-Platte durchgeführt. Aus diesem Grund wird der geplante Versuchsrahmen auch mit Bedacht auf die Einwirkungen der dynamischen Versuche konstruiert. Der Fokus liegt allerdings auf der Planung der statischen Versuche, so dass die Nachweise für die Ermüdungsversuche nur in Form von Spannungsdifferenzen behandelt werden.

Weiterführende Untersuchungen müssen noch im Bereich der dynamischen Einwirkungen geführt werden. Diese betreffen hauptsächlich die Interaktion zwischen den einzelnen Bauteilen wie beispielsweise lokale Lasteinleitungsbereiche und Detailnachweise.

1.2 Abkürzungsverzeichnis

1.2.1 Querschnitts- / Bauteilbezeichnungen

- [AT].....Auflagerträger
- [LT] Längsträger
- [LTu]Längsträger unten
- [QT]geschlossen...Querträger mit geschlossenem Querschnitt
- [QT]offenQuerträger mit offenem Querschnitt
- [VT].....Vorspannträger
- [VTB] Verteilbalken
- [WB1].....Waagbalken 1
- [WB2].....Waagbalken 2
- [ZS].....Zugstütze

1.2.2 Bezeichnungen

LD.....Lastdetail

1.2.3 Schnittgrößen / Spannungen

$$\begin{split} N_{Ed} & \dots & \text{Bemessungswert der einwirkenden Normalkraft} \\ V_{y,Ed} & \dots & \text{Bemessungswert der einwirkenden Querkraft in y-Richtung} \\ V_{z,Ed} & \dots & \text{Bemessungswert der einwirkenden Querkraft in z-Richtung} \\ M_{y,Ed} & \dots & \text{Bemessungswert des einwirkenden Biegemomentes um die y-Achse} \\ M_{z,Ed} & \dots & \text{Bemessungswert des einwirkenden Biegemomentes um die z-Achse} \\ M_{x,Ed} & \dots & \text{Bemessungswert des einwirkenden Torsionsmomentes} \\ M_{xp,Ed} & \dots & \text{Bemessungswert des einwirkenden primären Torsionsmomentes} \\ M_{xs,Ed} & \dots & \text{Bemessungswert des einwirkenden sekundären Torsionsmomentes} \\ M_{w,Ed} & \dots & \text{Bemessungswert des einwirkenden Sekundären Torsionsmomentes} \\ M_{w,Ed} & \dots & \text{Bemessungswert des einwirkenden Sekundären Torsionsmomentes} \\ M_{w,Ed} & \dots & \text{Bemessungswert des einwirkenden Sekundären Torsionsmomentes} \\ M_{w,Ed} & \dots & \text{Bemessungswert des einwirkenden Wölbmomentes} \\ \end{bmatrix}$$

 $\sigma_{x,Ed}$Normalspannung in die lokale x-Richtung (= Bauteillängsachse)

 $\sigma_{y,Ed}$Normalspannung in die lokale y-Richtung (= quer zur Bauteillängsachse)

- $\sigma_{z,Ed}....Normalspannung in die lokale z-Richtung (aus lokaler Lasteinleitung / -durchleitung)$
- $\sigma_{I,Ed}$Normalspannung parallel zur Schweißnahtlängsachse
- $\sigma_{\perp,Ed}$Normalspannung orthogonal zur Schweißnahtlängsachse

 $\tau_{\text{Ed}}.....Schubspannung$

- $\tau_{I\!I,Ed}$ Schubspannung parallel zur Schweißnahtlängsachse
- $\tau_{\perp,Ed}$Schubspannung orthogonal zur Schweißnahtlängsachse

fKraft je Längeneinheit (bei Lasteinleitungen)

1.2.4 Geometrische Größen

AiQuerschnittsfläche, Flächenmomente 0. Ordnung

Az = Sy..... Statisches Moment um die y-Achse, Flächenmomente 1. Ordnung um die y-Achse

Ay = Sz Statisches Moment um die z-Achse, Flächenmomente 1. Ordnung um die z-Achse

Azz = Sy...... Trägheitsmoment um die y-Achse, Flächenmomente 2. Ordnung um die y-Achse

Ayy = Sz..... Trägheitsmoment um die z-Achse, Flächenmomente 2. Ordnung um die z-Achse

It.....St. Venant'sches-Torsionsträgheitsmoment (Primärtorsion)

 $A_{\omega\omega} = I_{\omega}$Wölbwiderstand (Sekundärtorsion)

y _p Querschnittsko	Koordinate oordinaten	des	betrachteten	Punktes	Ρ,	bezogen	auf	die	lokalen
z _p Querschnittsko	Koordinate oordinaten	des	betrachteten	Punktes	Ρ,	bezogen	auf	die	lokalen

ω_p......Wölbordinate des betrachteten Punktes P

1.3 Variantenstudie

Die Variantenstudie umfasst die Planung der Gesamtkonstruktion der Versuchsstandorte Wien und Graz. Hierbei wurde das Gesamtkonzept festgelegt, die Vordimensionierung der Profile als auch die Erarbeitung der konstruktiven Details durchgeführt. Die Thematiken die sich hierbei ergaben, waren unter anderem:

- die Wahl der optimalen Laststellung um das Lastmodell 71 bestmöglich abzubilden
- die Abschätzung der Traglast der SCSC-Platte
- die Größe der auftretenden Versuchskräfte
- die unterschiedlichen Rahmenbedingungen der Versuchsstandorte
- Probleme welche w\u00e4hrend der Versuchsdurchf\u00fchrung auftreten k\u00f6nnen, bzw. deren Verhinderung durch konstruktive Ma\u00dfnahmen. Diese Problemstellungen sind haupts\u00e4chlich auf eine unerw\u00fcnschte Verschiebung der SCSC-Platte zur\u00fcckzuf\u00fchren.

1.3.1 Vorentwurf

Die Ausarbeitung erfolgte, wie schon eingangs erwähnt, für die Standorte Wien und Graz. Wegen des Vorhandenseins eines sogenannten "Aufspannfeldes", welches aus einer massiven Betonplatte besteht, wurde Graz als alternativer Standort zu Wien ausgewählt. Der Vorteil der Variante Graz liegt darin, dass die gesamten Pressenkräfte direkt in die Betonplatte eingeleitet werden können. Hingegen ist beim Standort Wien ein geschlossenes System vorzusehen, dieses ist somit nicht an einen bestimmten Ort gebunden sondern kann an einem geeigneten Platz positioniert werden.

Vorentwurf Variante Wien

Die zuvor beschriebene Variante Wien (siehe Abbildung 1.1), besteht aus drei über der SCSC-Platte angeordneten Querjoche, die mittels sogenannter Hydro-Hohlkolben-Zylinder an das obere Deckblech der SCSC-Platte gekoppelt sind. Die Aufgabe dieser Zylinder ist es, die auftretenden Relativverformungen aus Biegung der Querjoche und der SCSC-Platte auszugleichen, um eine einachsige Biegung der Platte zu gewährleisten. Die Hohlkolben sind mittels Hydraulikschläuchen miteinander verbunden und stellen so den Verformungsausgleich der Querjoche dar. Die Dimensionierung der Querjoche erfolgte auf Basis der Verformungen, diese sollten so gering wie möglich gehalten werden.

Das System besteht weiters aus zwei Auflagerträgern, zwei Längsträgern und drei unter den Längsträgern angeordneten Querträgern. Die Auflagerträger bilden das Auflager der SCSC-Platte, diese werden ebenfalls so dimensioniert, dass die Verformungen möglichst gering sind. Die Pressen werden am Untergurt der Querträger angeordnet. Über Spannstangen werden die Querjoche nach unten gezogen. Durch diesen Kraftfluss ergibt sich ein geschlossenes Kraftsystem.

Die Problematik bei dieser Anordnung liegt allerdings in der Lagerung der Querjoche. Diese Profile sind ausschließlich an den Enden über Spannstangen gehalten. Die Spannstangen weisen jedoch keine Behinderung gegen Verdrehen um die Längsachse der Querjoche auf. Eine Aussteifung, gegen diese Rotation, mit den anderen Querjochen, stellt eine aufwendige Alternative dar. Grund dafür sind die unterschiedlichen Vertikalverschiebungen der Querjoche die sich aus der Biegung der SCSC-Platte ergeben. Somit kommt es zu Relativverschiebungen zwischen der mittleren Querjoche-Achse und den äußeren Querjoche die nur durch eine komplexe Aussteifungskonstruktion gelöst werden könnte.

Abbildung 1.1: Vorentwurf Versuchsaufbau Wien

Vorentwurf Variante Graz

Der Vorentwurf der Variante Graz (siehe Abbildung 1.2) unterscheidet sich vom Standort Wien nur insofern, dass die Längsträger sowie die Querträger aufgrund des Vorhandenseins eines geeigneten massiven Aufspannfeldes entfallen. Die Pressen, über die die Versuchskraft aufgebracht wird, werden an der Unterseite des Aufspannfeldes montiert. Somit ergeben sich auch bei dieser Alternative die gleichen Problematiken der Querjoche, die schon zuvor bei der Variante Wien diskutiert wurden.

Vorteilhaft bei dieser Ausführungsform ist die geringere Anzahl an Stahlprofilen und somit die kostengünstigere Herstellung des Versuchsaufbaus. Dem gegenüber stehen allerdings einige Kostenpunkte, wie beispielsweise die Anmietung der benötigten Hallen der Technischen Universität Graz sowie der Reiseaufwand des betreuenden Personals der Technischen Universität Wien.

Die Variante Graz weist ebenso wie die Variante Wien einige besondere Problemstellungen auf. So sind beispielsweise die Verankerungskräfte, welche in das Aufspannfeld eingeleitet werden, begrenzt. Auch der Umstand, dass die Ermüdungsversuche am selben Versuchsstandort stattfinden sollen wie die statischen Traglastversuche, zeigt ein weiteres Problem auf. Der fehlende Erschütterungsschutz des Aufspannfeldes könnte mögliche Schäden an den umliegenden Bauwerken zur Folge haben.

Abbildung 1.2: Vorentwurf Versuchsaufbau Graz

Eine Alternative Versuchsanlage der Variante Graz stellt der Ersatz der Pressen durch ein Druckkissen dar. Dabei werden zwei Druckkissen übereinander auf das Aufspannfeld aufgelegt. Die SCSC-Platte wird anschließend über diesen Druckkissen angeordnet. Die Querränder der Platte werden mittels vorgespannter Spannstangen mit dem Aufspannfeld verbunden, sodass die SCSC-Platte seitlich gelagert ist. Über ein Aggregat werden die beiden Wasserkissen aufgepumpt. Durch diesen Druck wird die Platten von der Unterseite belastet.

Vorteil dieser Alternative ist die gleichmäßige Druckverteilung an der gesamten Plattenunterseite, welche sich aufgrund des hydraulischen Druckes ergibt. Diese Flächeneinwirkung bildet die gleichmäßige Belastung, welche auch auf einer Brücke mit Schotterbett anzutreffen ist, ideal ab. Ein weiterer Vorteil ist der geringe Konstruktionsaufwand. Bei dieser Versuchsanlage werden ausschließlich die seitlichen Verankerungen benötigt.

Nachteilig ist allerdings, dass die Ermüdungsversuche nicht durchgeführt werden können. Das Druckkissen könnte zwar zyklisch aufgepumpt und entlastet werden, allerdings ist die zeitliche Abfolge zu groß um die Versuche in einem geeigneten Zeitraum durchführen zu können. Aus diesem Grund wäre eine weitere Konstruktion für diese Tests erforderlich. Infolgedessen wird die Versuchsdurchführung mittels Druckkissen der Variante Graz nicht weiter verfolgt.

1.3.2 Entwurf

Entwurf Variante Wien

Basierend auf den Problemen des Vorentwurfes wurde der Rahmen gänzlich neu entwickelt. Grundlage für diese Umplanung war die Änderung der Lastaufbringung. Im Vorentwurf wurden die Pressen unter der Platte angeordnet, dieser Ansatz wird nun durch eine Lastaufbringung von der Oberseite der SCSC-Platte ersetzt. Die Darstellung dieses neuen Aufbaus für die Variante Wien ist in Abbildung 1.3 zu sehen.

Die Kräfte der Pressen, die über der SCSC-Platte angeordnet sind, werden über eine Verteilkonstruktion, welche aus insgesamt drei Waagbalken besteht, in vier Teilkräfte aufgespalten. Die Abstände dieser Teilkräfte wurden so ermittelt, dass sie den Biegemomentenverlauf aus dem Eisenbahnbetrieb bestmöglich abbilden.

Über den Pressen wird ein Querträger [QT] angeordnet. Dieser Bauteil hat die Aufgabe, die einwirkenden Kräfte in die Unterkonstruktion, bestehend aus zwei Längsträgern [LT] und zwei Auflagerträgern [AT], abzutragen. Die Steifigkeit des Querträgers spielt eine entscheidende Rolle für eine sichere Durchführung der Versuche. Ausgehend von den [QT]-Verformungen zufolge der Pressenkräfte, wirken abtreibende Kräfte in Plattenquerrichtung auf die Obergurte der Waagbalken [WB]. Durch die starre Verbindung der Pressen mit dem [QT]-Untergurt wirken diese Kräfte auch auf die Pressen. Diese Einwirkungen bewirken einen erhöhten Verschleiß der Kolbendichtungen. Um diesem Umstand entgegenzuwirken, wird der Querträger so dimensioniert, dass dessen Verformungen keine größere Schädigung der Pressen nach sich zieht. Hierzu wird die relative Horizontalverschiebung zwischen [QT]-Untergurt und dem Kolbenkopf auf max. 3,5 mm begrenzt. Dieser Wert wurde unter Annahme festgelegt, dass die daraus resultierenden Einwirkungen auf die Kolbendichtungen keine maßgebliche Schädigung zur Folge hat (siehe Punkt 7.8).

Der Querträger dient weiters auch der Abtragung von etwaigen Torsionseinwirkungen. Diese könnten sich beispielsweise aus diversen Imperfektionen einstellen, welche nicht quantifiziert werden können. Um diesen Einwirkungen dennoch Rechnung zu tragen, werden an den Lasteinleitungsstellen außenliegende Steifen angeordnet. Diese konstruktive Maßnahme ist notwendig um die Formtreuheit des Querschnitts zu gewährleisten und die Torsionsbeanspruchung hauptsächlich über den Bredt'schen Schubfluss des geschlossenen Querschnitts abzutragen.

Die Lagerung des Querträgers erfolgt beidseitig über sogenannte Zugstützen [ZS] an den Enden des [QT]-Untergurts. Deren Aufgabe ist es, während der Versuchsdurchführung, die Kräfte in den darunterliegenden Längsträger [LT] abzuleiten. Die Zugstütze [ZS] ist somit am oberen Ende mit dem [QT]-Untergurt und am unteren Ende mit dem [LT]-Obergurt verbunden. Der begrenzte Platz, der sich zwischen [QT]-Untergurt und der oberen [ZS]-Endplatte bzw. zwischen [LT]-Obergurt und der unteren [ZS]-Endplatte ergibt, lässt maximal vier Schrauben zur Verbindung dieser Bauteile zu. Die im Versuch auftretende maximal zu übertragende Kraft liegt allerdings weit über der Tragfähigkeit von vier Schrauben. Aus diesem Grund wird vor der Versuchsdurchführung die Stütze einer Vorspannung ausgesetzt, diese hat zur Folge, dass bei der Versuchsdurchführung die Vorspannung erst aufgehoben werden muss, bevor die Schrauben aktiviert werden. Die Einwirkung auf die Schrauben wird somit vielfach geringer.

Die aufgebrachte Vorspannung wird über einen sogenannten Vorspannträger [VT] am Obergurt des Querträgers [QT] eingeleitet, die gesamte Vorspannkraft muss daher durch den [QT]-Steg und den Auflagersteifen bis zur oberen Endplatte der Zugstütze durchgeleitet werden. Die Vorspannung wird über vier Spannstangen aufgebracht, diese werden nach oben hin am [VT]-Obergurt und nach unten hin am Untergurt des Längsträgers verankert. Durch die lokale Krafteinleitung des Vorspannungen, ist zur Verteilung der Vorspannkraft eine Lastausbreitungsplatte erforderlich. Durch die Platte, welche über der gesamten Länge über dem darunterliegenden [VT]-Steg bzw. [LT]-Steg aufliegt, kann die einwirkende Kraft auf diese Stege gleichmäßig verteilt werden, die auftretende Zwischenbiegung der Gurte wird auf ein Minimum reduziert und kann daher vernachlässigt werden.

Durch die Verschraubung der Vorspannträger [VT] mit dem Querträger [QT], können diese Bauteile samt den am [QT]-Untergurt befestigten Pressen gemeinsam bewegt werden. Dieser Vorteil wird vor allem beim Aus- und Einbau der Probekörper sehr deutlich, es müssen daher lediglich die

Spannstangen neu vorgespannt und die Verschraubungen zwischen [QT]-Untergurt und [ZS]-Endplatte neu eingebaut werden.

Der Auflagerträger, an dessen Obergurt die SCSC-Platte aufliegt, wird beidseitig an den Enden der [LT]-Obergurte gelagert. Durch diese Anordnung entsteht ein geschlossenes Kraftsystem. Die Lagerung des gesamten Aufbaus erfolgt jeweils an den Enden der [LT]-Untergurte mittels sogenannter Distanzträger [DT].

Abbildung 1.3: Entwurf Traglastversuche Wien (Längs- und Queransicht) am Beispiel [QT]geschlossen

Zur Durchführung der Ermüdungsversuche muss der Versuchsrahmen geringfügig adaptiert werden. Wie in Abbildung 1.4 zu sehen ist, entfällt beispielsweise die Zugstütze [ZS], die Begründung liegt darin, dass der Aufbau für die Ermüdungsversuche ein schwingungsfähiges System bilden muss. Daher darf der Querträger [QT] mit den darunterliegenden Längsträgern [LT] nicht starr verbunden sein.

Die auftretende Mittelspannung, welche für die Ermüdungsversuche der SCSC-Platten benötigt wird, wird über die vier Spannglieder aufgebracht. Durch einen zusätzlichen Träger (Längsträger unten [LTu]), der über Federpakte mit dem darüber liegenden Längsträger [LT] gekoppelt ist, wird so ein schwingungsfähiges Masse-Feder-System gebildet.

Die aufgebrachte, erzwungene Schwingung wird über einen sogenannten Unwuchterreger hergestellt. Dieser besteht aus zwei exzentrisch angeordneten rotierenden Massescheiben, die so eine periodische Schwingung erzeugen. Der Unwuchterreger wird am [QT]-Obergurt montiert. Der unsymmetrische Aufbau dieses Gerätes könnte ungewünschten, zu zyklischen Torsionseinwirkungen des Querträgers [QT] führen. Um diesem Umstand Rechnung zu tragen, wird für die Durchführung der Ermüdungsversuche ein weiterer, baugleicher Querträger [QT] unter dem Vorspannträger [VT] positioniert. Die beiden Querträger [QT] werden in einem Achsabstand von 820 mm symmetrisch unter dem Vorspannträger [VT] positioniert, sodass die Torsionseinwirkungen durch diese beiden Bauteile aufgenommen werden. Weiters muss unter den Querträgern [QT] ein zusätzlicher Träger eingebaut werden, durch den die Unwuchterregerkräfte der Querträger [QT] gebündelt und auf die darunterliegenden Waagbalken [WB1] übertragen werden.

Abbildung 1.4: Entwurf Ermüdungsversuche Wien (Längs- und Queransicht) am Beispiel [QT]geschlossen

Entwurf Variante Graz

Der Entwurf der Versuchsanlage für den Standort Graz (siehe Abbildung 1.5) orientiert sich im Wesentlichen an der Konstruktion für den Standort Wien. Der Auflagerträger [AT] auf welchem die SCSC-Platte gelagert wird, liegt direkt am Aufspannfeld auf und leitet somit die Vorspann- sowie die Versuchskräfte in die massive Betonplatte ab. Der Längsträger [LT] dient der Verteilung der Zugkräfte, die bei der Versuchsdurchführung über die Spannstangen [LT] in das Aufspannfeld eingeleitet werden.

Wie schon bei der Variante Wien, wird auch in Graz die Zugstütze [ZS] über vier Spannstangen vorgespannt, diese Spannglieder können direkt am Aufspannfeld verankert werden. Bei der Durchführung der Versuche wird die Vorspannung aufgehoben, die Differenzkraft wird über die Zugstütze [ZS] in den Längsträger [LT] eingeleitet. Um die Kräfte am Aufspannfeld besser zu verteilen, wird der Längsträger [LT] zusätzlich mit vier Spanngliedern am Aufspannfeld verankert. Über eine variable Vorspannung der vier Spannglieder am [LT]-Obergurt kann die Zugkraft somit nahezu gleichmäßig auf die acht Ankerpunkte am Aufspannfeld verteilt werden.

Abbildung 1.5: Entwurf Traglastversuche Graz (Längs- und Queransicht)

Für die dynamischen Ermüdungsversuche wird der Aufbau adaptiert, siehe Abbildung 1.6. Es wird hierzu der Vorspannträger [VT] entfernt und durch den Längsträger [LT] ersetzt. Diese Umordnung ist notwendig da für die Ermüdungsversuche zwei parallel angeordnete Querträger [QT] verwendet werden und somit der Abstand der Spannglieder vergrößert werden muss.

1.3.3 Ergebnis der Variantenstudie

Das Ergebnis der Variantenstudie fiel zugunsten der Variante Wien aus. In Graz gibt es zwei Hallen in denen die Versuche durchgeführt werden könnten. In der Halle des Labors für konstruktiven Ingenieurbau der Technischen Universität Graz befindet sich ein Aufspannfeld das keine Trennung zu den Fundamenten hat. Dieser Umstand hätte zur Folge, dass sich die Schwingungen der dynamischen Versuche nahezu ungehindert im Untergrund ausbreiten und zu Schäden in den umliegenden Bauwerken führen könnten. Das Aufspannfeld in der Schwingungsprüfhalle des

16

Institutes für Leichtbau der Technischen Universität Graz ist zu den Fundamenten hin entkoppelt. Allerdings sind die in das Aufspannfeld einzuleitenden Vorspann- und Versuchskräfte zu groß. Somit sind die beiden angeführten Hallen für die geplanten Versuche ungeeignet.

Zum Zwecke einer möglichst wirtschaftlichen Dimensionierung wird der Querträger [QT] für die Variante Wien sowohl als geschlossener Querschnitt [QT]_{geschlossen} als auch mit einem offenem Profil [QT]_{offen} geplant. Der große Vorteil des geschlossenen Querschnitts liegt in der hohen Torsionssteifigkeit. Da vor allem die Torsionseinwirkungen aus den Versuchen bzw. den Imperfektionen nicht quanitifiziert werden können, ist ein hoher Widerstand gegen Torsionseinwirkungen besonders vorteilhaft.

2. Einwirkungen

2.1 Ständige Einwirkungen

2.1.1 Eigengewicht der Platte

Nach [1] (Tabelle 2.8) ergibt sich die flächenbezogene Masse bzw. das flächenbezogene Gewicht der SCSC-Platte zu:

 $m_{k,SCSC-Platte} = 745 \ kg/m^2$ $g_{k,SCSC-Platte} \cong 7,45 \ kN/m^2$

Die Plattenlänge beträgt 4,14 m, die Plattenbreite 3,00 m, daraus errechnet sich das Eigengewicht des Versuchskörpers zu:

 $G_{k,SCSC-Platte} = 4,14 \cdot 3,00 \cdot 7,45 = 92,53 \ kN$

Diese Kraft wird in vertikaler Richtung nach unten wirkend an den Bauteilen angesetzt.

2.1.2 Eigengewicht des Stahlrahmens

Die ständige Einwirkung des Versuchsrahmens wird im Programm Dlubal RSTAB automatisch über die Querschnittsgeometrie mit einer Wichte von $\gamma_{G,St} = 78,50 \ kN/m^3$ zu einer gleichförmigen Kraft in vertikaler Richtung nach unten wirkend, entlang der Stabachse angesetzt.

2.1.3 Eigengewicht des Unwuchterregers

Die Masse bzw. das Eigengewicht des Unwuchterregers wird It. Konstruktionsplan (siehe 11.2) mit

 $M_{k,Unwuchterreger} = 1.433 \ kg$

 $G_{k,Unwuchterreger} \cong 14,33 \ kN$

in vertikaler Richtung nach unten wirkend angesetzt.

2.1.4 Eigengewicht der Waagbalken [WB1] und [WB2]

Dieses Eigengewicht muss gesondert berücksichtigt werden, da es im Versuchsaufbau nicht mitabgebildet wird.

Aus der Stahlliste ergibt sich folgende Aufstellung der Einzelpositionen:

	-			
[2.1]	[2] Waagebalken 1	Träger	12	2.003,69
[2.2]	[2] Waagebalken 1	Endplatte	24	237,29
[2.3]	[2] Waagebalken 1	Steifen	24	40,38
[2.4]	[2] Waagebalken 1	Streifen	24	6,03
[2.5]	[2] Waagebalken 1	Streifen	24	5,12
[3.1]	[3] Waagebalken 2	Träger	24	1.775,77
[3.2]	[3] Waagebalken 2	Steifen	96	59,79
[3.3]	[3] Waagebalken 2	Streifen	48	4,75
[3.4]	[3] Waagebalken 2	Einleitungsplatte Rolle	48	746,06
[3.5]	[3] Waagebalken 2	Einleitungsstreifen Rolle	4	938,80
[3.6]	[3] Waagebalken 2	Zylinder	48	443,91
		GES	AMTMASSE	6.261,59 kg

Tabelle 2.1: Eigengewicht Waagbalken

Die Gesamtmasse bzw. das Eigengewicht der Waagbalken wird mit

 $M_{k,Waagbalken} = 6.262 \ kg$

 $G_{k,Waagbalken} \cong 61,43 \ kN$

in vertikaler Richtung nach unten wirkend angesetzt.

2.2 Veränderliche Einwirkungen – Prüfkräfte / Pressenkräfte

2.2.1 Anordnung der Plattenkräfte

Die Anordnung der [WB2]-Auflagerkräfte am oberen Deckblech der SCSC-Platte wurde so ermittelt, dass der Biegemomentenverlauf am Versuchskörper dem Biegemomentenverlauf verursacht durch das Lastmodell LM71 bestmöglich angenähert wird.

2.2.2 Statische Traglastversuche – Maximale Pressenkraft

Die maximale Kraft einer Presse ergibt sich It. Herstellerangaben zu $P_{max,Presse} = 595 \ kN/Presse$.

Durch die Anordnung von 12 Pressen entlang des Querträgers ergibt sich eine maximale Prüfkraft von:

 $P_{max,Platte} = 12 \cdot 595 = 7.140 \ kN \approx 7,20 \ MN$

Es wird daher im Folgenden mit einer maximalen Versuchskraft von 7.200 kN gerechnet. Das entspricht einer maximalen Pressenkraft von:

 $P_{max,Presse} = \frac{7.200}{12} = 600 \ kN/Presse$

2.2.3 Statische Traglastversuche – Vorspannkraft

Zuerst wird die Traglast einer Spannstange ermittelt. Diese wird nach den geltenden ÖNORMEN EN 1993-1-1 Punkt 6.2.3 bzw. ÖNORM EN 1993-1-8 Punkt 3.6.1 folgendermaßen berechnet:

$$F_{t,Rd} = \frac{k_2 \cdot A_{Sp} \cdot f_{ub,k}}{\gamma_{M2}} = \frac{0.90 \cdot 8.17 \cdot 100}{1.25} = 588.24 \ kN$$

ÖNORM EN 1993-1-8/3.6.1

(die angesetzten Festigkeitskennwerte sind unter Punkt 3 bzw. jene für die Teilsicherheitsbeiwerte unter Punkt 2.3.2 aufgelistet)

Die maximale Beanspruchbarkeit einer Spannstangen M36 mit der Güte 10.9 ergibt sich somit zu je 588,24 kN.

Die Vorspannkraft für die statischen Traglastversuche wird mit 90% der Beanspruchbarkeit einer Spannstange M36 10.9 festgelegt. Diese 90% ergeben sich daher, dass die Spannstangen nicht überbeansprucht werden sollen.

$$F_{Vorspannkraft} = 0.90 \cdot F_{t,Rd} = 0.90 \cdot 588.24 \cong 529 \, kN/Spannstange$$

Im Zuge von Ermüdungsberechnungen stellte sich heraus, dass herkömmliche Gewindestangen aufgrund der hohen Kerbwirkung für die Ermüdungsnachweise ungeeignet sind. Aus diesem Grund wird ein Vorspannsystem der Fa. DYWIDAG verwendet (siehe 11.4). Dieses Stabspannsystem besteht aus einem Glattstab d = 36 mm mit an den Enden kaltaufgerollten Gewinden. Die maximale Vorspannkraft dieses Spannsystems wird It. Technischem Datenblatt (siehe 11.4) mit max. 856 kN beziffert.

Für den Lastfall Vorspannung wird bei den Traglastversuchen der zuvor errechnete Wert von 529 kN je Spannstange verwendet, da diese ausreicht um die Verbindung zwischen Querträger [QT] und Zugstütze [ZS] ausführen zu können.

Die Vorspannkraft für die Durchführung der Ermüdungsversuche wird in Punkt 2.2.5 ermittelt.

2.2.4 Dynamische Ermüdungsversuche – Lastschwingbreite

In diesem Abschnitt wird die erforderliche Lastschwingbreite, auf Basis der durch das Lastmodell LM71 auftretenden Schwingbreite, ermittelt. Diese Berechnung ist Grundlage für die einwirkende ermüdungswirksame Beanspruchung der Konstruktion.

Abbildung 2.1: Biegemomentenlinie bei LM71; M_{min}, M₀, M_{max} (siehe Anhang 11.1)

M_{EG,Platte}...... maximales Biegemoment zufolge Eigengewicht der SCSC-Platte

M_{EG,Schotterbett} ... maximales Biegemoment zufolge Eigengewicht des Aufbaus

M_{LM71}.....maximales Biegemoment zufolge Lastmodell 71

Tabelle 2.2: Berechnung d	er einwirkenden	FLS-Schwingbreite	(siehe Anhand	ı 11.1)
Labelle Lizi Belleellinalig a			(0.0.0.0.7.0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.	, ,

	Nennschotterbett- höhe -30%	Nennschotterbetthöhe	Nennschotterbett- höhe +30%
$P_1 = P_{Eg,Schotterbett} =$	92,04 kN	132,25 kN	172,46 kN
$P_2 = P_{LM71/2} =$	374,35 kN	368,52 kN	362,55 kN
$P_{min} = P_1 = P_{Eg,Schotterbett} =$	92,04 kN	132,25 kN	172,46 kN
$P_0 = P_{min} + P_2 =$	466,39 kN	500,77 kN	535,01 kN
$P_{max} = P_0 + P_2 =$	840,74 kN	869,30 kN	897,57 kN
$\Delta \boldsymbol{P} = \boldsymbol{P}_{max} - \boldsymbol{P}_{min} =$	<u>748,70 kN</u>	737,05 kN	725,11 kN

$$\begin{split} P_{FLS,\Delta\sigma,Platte} &= \frac{748,70}{12} = 62,40 \ kN \\ P_{FLS,\Delta\sigma,Spannstangen} &= \frac{748,70}{8} = 93,59 \ kN \\ P_{FLS,\Delta\sigma,[AT]} &= \frac{748,70}{2} \cdot \frac{1}{3,30} = 113,44 \ kN/m \end{split}$$

2.2.5 Dynamische Ermüdungsversuche – Mittelspannung

Die dynamischen Einwirkungen auf die SCSC-Platte im Betriebszustand ergeben sich einerseits aus einem periodisch schwingenden Anteil, der zuvor berechnet wurde und einem konstanten Anteil, der sogenannten Mittelspannung. Die Berechnung der Mittelspannung ist Grundlage für die Ermittlung der Vorspannkraft bei den dynamischen Ermüdungsversuchen.

Tabelle 2.3: Berechnung der FLS-Mittelspannung (siehe Anhang 11.1)

	Nennschotterbett- höhe -30%	Nennschotterbetthöhe	Nennschotterbett- höhe +30%
$P_1 = P_{Eg,Schotterbett} =$	92,04 kN	132,25 kN	172,46 kN
$P_2 = P_{LM71/2} =$	374,35 kN	368,52 kN	362,55 kN
$P_{min} = P_1 = P_{Eg,Schotterbett} =$	92,04 kN	132,25 kN	172,46 kN
$\boldsymbol{P}_0 = \boldsymbol{P}_{min} + \boldsymbol{P}_2 =$	466,39 kN	500,77 kN	<u>535,01 kN</u>

 $P_{FLS,Vorspannung,Spannstangen} = \frac{535,01}{8} = 66,88 \ kN$

 $P_{FLS,Vorspannung,Platte} = \frac{535,01}{12} = 44,59 \ kN$

2.3 Teilsicherheitsbeiwerte

2.3.1 Teilsicherheitsbeiwerte für die Einwirkungen nach ÖNORM EN 1993-1-1

Das geplante Bauwerk stellt eine temporäre Versuchsanlage dar, diese Bauwerksart ist in den Normen nicht geregelt. Um eine wirtschaftliche und effiziente Konstruktion gewährleisten zu können wurden einige Teilsicherheitsbeiwerte individuell angesetzt. So wurde der Teilsicherheitsbeiwert für die Pressenkraft, welcher zweifelsfrei eine Nutzlast darstellt, mit $\gamma_{F,O} = 1,00$ angenommen.

Der Grund für diese Ansätze liegt darin, dass beispielsweise die maximale Pressenkraft kaum einer statistischen Schwankung unterliegt und somit sehr genau festgelegt werden kann.

Grenzzustand der Tragfähigkeit

- ständige Einwirkungen, ungünstig $\gamma_{F,G} = 1,35$ (Berücksichtigt unter anderem das zusätzliche Gewicht der Pressen sowie Kleinteile wie Steifen, Endplatten und Schrauben.)

-	ständige Einwirkungen, günstig	$\gamma_{F,G} = 1,00$
-	Vorspannung, ungünstig	$\gamma_{F,P} = 1,05$
_	Vorspannung, günstig	$\gamma_{F,P} = 1,00$
_	Versuchsdurchführung, ungünstig	$\gamma_{F,Q} = 1,00$
_	Versuchsdurchführung, günstig	$\gamma_{EQ} = 1.00$

Grenzzustand der Gebrauchstauglichkeit

-	ständige Einwirkungen, ungünstig	$\gamma_{F,G} = 1,00$
_	ständige Einwirkungen, günstig	$\gamma_{F,G} = 1,00$
_	Vorspannung, ungünstig	$\gamma_{F,P} = 1,00$
_	Vorspannung, günstig	$\gamma_{F,P} = 1,00$
_	Versuchsdurchführung, ungünstig	$\gamma_{F,Q}=1,00$
_	Versuchsdurchführung, günstig	$\gamma_{F,Q} = 1,00$

Grenzzustand der Ermüdung

– Versuchsdurchführung $\gamma_{Ff} = 1,00$

2.3.2 Teilsicherheitsbeiwerte für das Material nach ÖNORM EN 1993-1-1 und ÖNORM B 1993-1-1

Nach ÖNORM EN 1993-1-1 Punkt 6.1 (1) Anmerkung 2B bzw. dem nationalen Anwendungsdokument ÖNORM B 1993-1-1 Punkt 4.4 gelten folgende Teilsicherheitsbeiwerte des semiprobabilistischen Sicherheitskonzeptes:

- Teilsicherheitsbeiwert für die Beanspruchbarkeit von Querschnitten (unabhängig von der Querschnittsklasse) $\gamma_{M0} = 1,00$
- Teilsicherheitsbeiwert für die Beanspruchbarkeit von Bauteilen bei Stabilitätsversagen (bei Anwendung von Bauteilnachweisen) $\gamma_{M1} = 1,00$
- Teilsicherheitsbeiwert für die Beanspruchbarkeit von Querschnitten bei Bruchversagen infolge Zugbeanspruchung $\gamma_{M2} = 1,25$
- Teilsicherheitsbeiwert für die Beanspruchbarkeit von Anschlüssen $\gamma_{M2} = 1,25$

2.3.3 Teilsicherheitsbeiwerte für das Material nach ÖNORM EN 1993-1-9 und ÖNORM B 1993-1-9

Auf Basis einer niedrigen Schadensfolge und dem Konzept der Schadenstoleranz, wird nach ÖNORM EN 1993-1-9 Tabelle 3.1 der Teilsicherheitsbeiwert für die Ermüdungsfestigkeit mit $\gamma_{Mf} = 1,00$ festgelegt.

3. Materialkennwerte

In diesem Abschnitt werden sämtliche Materialparameter der verwendeten Materialien aufgelistet, diese werden im Zuge der Berechnungen wiederverwendet.

Baustahl S355J2+N (t ≤ 40 mm), ÖNORM EN 10025-2 Baustahl S355J2+N (40 mm < t ≤ 80 mm), ÖNORM EN 10025-2	$f_{yk} = 355 N/mm^2$ $f_{yk} = 335 N/mm^2$
Schrauben/Spannstangen, Festigkeitsklasse 10.9:	$f_{yb,k} = 900 N/mm^2$
Zugfestigkeiten:	
Baustahl S355J2+N (t ≤ 40 mm), ÖNORM EN 10025-2	$f_{uk} = 490 N/mm^2$
Baustahl S355J2+N (40 mm < t ≤ 80 mm), ÖNORM EN 10025-2	$f_{uk} = 470 \ N/mm^2$
Schrauben/Spannstangen, Festigkeitsklasse 10.9:	$f_{ub,k} = 1.000 N/mm^2$
Materialkennwerte von Stahl:	
Elastizitätsmodul:	$E = 210.000 N/mm^2$
Schubmodul:	$G = 81.000 N/mm^2$
Poissonsche Zahl:	$\nu = 0,30$
Wärmeausdehnungskoeffizient	$lpha=12\cdot 10^{-6}$ je K
Wichte:	$\gamma = 78,50 \ kN/m^3$

4. Querschnitte

Dieses Kapitel gibt eine Übersicht über die verwendeten Profile und deren Querschnittswerte. Diese wurden über die Software Dlubal DUENQ, Programm-Version 7.01.960 ermittelt.

4.1 [AT] Auflagerträger

Querschnittswert	Symbol	Wert	Einheit
Profilhöhe	h	716,000	mm
Profilbreite	b	304,000	mm
Stegdicke	ts	21,000	mm
Flanschdicke	tg	40,000	mm
Ausrundungsradius	r	27,000	mm
Querschnittsfläche	A	383,000	cm ²
Schubfläche	A _v	204,170	cm ²
Schubfläche	Az	137,820	cm ²
Wirksame Schubfläche nach EC 3	A _{v,v}	253,280	cm ²
Wirksame Schubfläche nach EC 3	A _{v,z}	169,800	cm ²
Stegfläche	A _{Steg}	134,000	cm ²
Plastische Schubfläche	A _{pl,y}	243,200	cm ²
Plastische Schubfläche	A _{pl.z}	141,960	cm ²
Trägheitsmoment (Flächenmoment 2. Grades)	I _v	329300,0	cm⁴
Trägheitsmoment (Flächenmoment 2. Grades)	l _z	18800,0	cm⁴
Trägheitsradius	i,	293,000	mm
Trägheitsradius	i,	70,100	mm
Polarer Trägheitsradius	i,	301,300	mm
Trägheitsradius des Gurtquerschnitts (1/5 Steghöhe)	i,,,	78,700	mm
Volumen	V	38300,000	cm³/m
Querschnittsgewicht	G	300,700	kg/m
Mantelfläche	A _{Fläche}	2,560	m²/m
Profilfaktor	A _m /V	66,841	1/m
Torsionsträgheitsmoment	I,	1590,0	cm ⁴
Wölbwiderstand	Ιω	21400000,0	cm ⁶
Widerstandsmoment	W _v	9200,000	cm ³
Widerstandsmoment	Wz	1240,000	cm ³
Wölbwiderstandsmoment	W _ω	41649,800	cm ⁴
Statisches Moment	S _{v.max}	5270,000	cm ³
Statisches Moment	S _{z.max}	462,080	cm ³
Wölbordinate	ω _{max}	513,760	cm ²
Wölbfläche (Flächenmoment 1. Grades mit ω)	S _{w.max}	15618,300	cm⁴
Plastisches Widerstandsmoment	W _{pLy}	10540,000	cm ³
Plastisches Widerstandsmoment	W _{pl,z}	1928,780	cm ³
Plastisches Wölbwiderstandsmoment	W _{pl,ω}	62473,200	cm ⁴
Plastischer Formbeiwert	α _{pl.v}	1,146	
Plastischer Formbeiwert	α _{pl,z}	1,555	
Plastischer Formbeiwert	α _{pl,ω}	1,500	
Knicklinie nach EN	KL _{v.EN}	a	
Knicklinie nach EN	KL _{z. FN}	b	
Flanschlochdurchmesser	d	28,000	mm
Flanschlochabstand	w	145,000	mm
Flanschlochabstand	W1	130.000	mm
c/t-Verhältnis (Gurt)	c/t _{Gurt}	2.860	
c/t-Verhältnis (Steg)	c/t _{Steg}	27,700	

Tabelle 4.1:	Querschnittswerte	Auflagerträger	[AT] –	HE-M 700
			F 1	

4.2 [LT] Längsträger

Tabelle 4.2: Querschnittswerte Längsträger [LT]

Querschnittswert	Symbol	Wert	Einheit
Obere Flanschbreite	b _o	420,000	mm
Obere Flanschdicke	to	30,000	mm
Stegdicke	s	20,000	mm
Innengröße	b _i	190,000	mm
Höhe	h	700,000	mm
Untere Flanschbreite	bu	420,000	mm
Untere Flanschdicke	tu	30,000	mm
Obere Kehlnahtdicke	a。	3,000	mm
Untere Kehlnahtdicke	au	3,000	mm
Querschnittsfläche	A	508,000	cm ²
Schubfläche	Ay	122,390	cm ²
Schubfläche	Az	257,130	cm²
Kernfläche	A _k	1407,000	cm ²
Schwerpunktabstand	ez	350,000	mm
Trägheitsmoment (Flächenmoment 2. Grades)	l _y	370377,0	cm⁴
Trägheitsmoment (Flächenmoment 2. Grades)	I _z	65353,3	cm⁴
Polares Trägheitsmoment	l _p	435731,0	cm⁴
Polares Trägheitsmoment	I _{p,M}	435731,0	cm ⁴
Trägheitsradius	iy	270,000	mm
Trägheitsradius	i _z	113,400	mm
Polarer Trägheitsradius	i,	292,900	mm
Polarer Trägheitsradius	i _{p,M}	292,900	mm
Querschnittsgewicht	G	398,800	kg/m
Mantelfläche	A _{Fläche}	2,720	m²/m
Torsionsträgheitsmoment	I _t	98839,8	cm ⁴
Torsionsträgheitsmoment St. Venant	I _{t.StVen}	1079,3	cm⁴
Torsionsträgheitsmoment Bredt	I _{t.Bredt}	97760,4	cm⁴
Schubmittelpunkt-Lage bezogen auf S	z _M	0,000	mm
Wölbwiderstand bezogen auf M	I _w	29030000,0	cm ⁶
Wölbträgheitsradius	i _{w.M}	81,600	mm
Abklingfaktor	λ	0,004	1/mm
Widerstandsmoment	W _{v.max}	10582,200	cm ³
Widerstandsmoment	W _{v.min}	-10582,200	cm ³
Widerstandsmoment	Wz	3112,060	cm ³
Wölbwiderstandsmoment	W _ω	49885,700	cm⁴
Statisches Moment	S _{v.max}	3134,500	cm ³
Statisches Moment	S _{z.max}	1333,500	cm ³
Wölbordinate	ω _{max}	581,910	cm ²
Wölbfläche (Flächenmoment 1. Grades mit ω)	S _{w,max}	18038,400	cm ⁴
Kindem'sche Querschnittsstrecke	r _{y,Kindem}	0,000	mm
Querschnittsstrecke	r _{M,z}	0,000	mm
Lage der Flächenhalbierenden bez. auf S	fz	0,000	mm
Plastisches Widerstandsmoment	W _{pl,y,max}	12538,000	cm ³
Plastisches Widerstandsmoment	W _{pl,z,max}	5334,000	cm ³
Plastischer Formbeiwert	α _{pl,y,max}	1,185	
Plastischer Formbeiwert	α _{pl,z,max}	1,714	
Knicklinie nach EN	KL _{v,EN}	c	
Knicklinie nach EN	KL _{z.EN}	с	

4.3 [LTu] Längsträger unten

Querschnittswert	Symbol	Wert	Einheit
Obere Flanschbreite	b _o	250,000	mm
Obere Flanschdicke	to	25,000	mm
Stegdicke	s	16,000	mm
Innengröße	b _i	120,000	mm
Höhe	h	600,000	mm
Untere Flanschbreite	bu	250,000	mm
Untere Flanschdicke	tu	25,000	mm
Obere Kehlnahtdicke	a _o	3,000	mm
Untere Kehlnahtdicke	a _u	3,000	mm
Querschnittsfläche	А	301,000	cm ²
Schubfläche	Ay	45,130	cm ²
Schubfläche	Az	176,160	cm²
Kernfläche	A _k	782,000	cm ²
Schwerpunktabstand	ez	300,000	mm
Trägheitsmoment (Flächenmoment 2. Grade	ly	147752,0	cm⁴
Trägheitsmoment (Flächenmoment 2. Grade	l _z	14686,2	cm ⁴
Polares Trägheitsmoment	l _p	162438,0	cm⁴
Polares Trägheitsmoment	I _{p,M}	162438,0	cm⁴
Trägheitsradius	i _y	221,600	mm
Trägheitsradius	i _z	69,900	mm
Polarer Trägheitsradius	i _p	232,300	mm
Polarer Trägheitsradius	i _{p,M}	232,300	mm
Querschnittsgewicht	G	236,300	kg/m
Mantelfläche	A _{Fläche}	1,978	m²/m
Torsionsträgheitsmoment	l _t	29959,4	cm⁴
Torsionsträgheitsmoment St. Venant	I _{t,StVen}	401,1	cm⁴
Torsionsträgheitsmoment Bredt	I _{t,Bredt}	29558,3	cm⁴
Schubmittelpunkt-Lage bezogen auf S	z _M	0,000	mm
Wölbwiderstand bezogen auf M	Ι _ω	4784000,0	cm⁵
Wölbträgheitsradius	i _{ω,M}	54,300	mm
Abklingfaktor	λ	0,005	1/mm
Widerstandsmoment	W _{y,max}	4925,070	cm ³
Widerstandsmoment	W _{y,min}	-4925,070	cm ³
Widerstandsmoment	Wz	1174,890	cm ³
Wölbwiderstandsmoment	W _ω	15533,400	cm ⁴
Statisches Moment	S _{y,max}	1503,440	cm ³
Statisches Moment	S _{z,max}	494,510	cm ³
Wölbordinate	ω _{max}	307,970	cm²
Wölbfläche (Flächenmoment 1. Grades mit	S _{w,max}	5833,900	cm ⁴
Kindem'sche Querschnittsstrecke	r _{y,Kindem}	0,000	mm
Querschnittsstrecke	r _{M,z}	0,000	mm
Lage der Flächenhalbierenden bez. auf S	fz	0,000	mm
Plastisches Widerstandsmoment	W _{pl,y,max}	6013,750	cm ³
Plastisches Widerstandsmoment	W _{pl,z,max}	1978,050	cm ³
Plastischer Formbeiwert	α _{pl,y,max}	1,221	
Plastischer Formbeiwert	α _{pl,z,max}	1,684	
Knicklinie nach EN	KL _{y, EN}	с	
Knicklinie nach EN	KL _{z,EN}	с	

4.4 [QT]_{geschlossen} Querträger geschlossen

Querschnittswert	Symbol	Wert	Einheit
Obere Flanschbreite	b _o	500,000	mm
Obere Flanschdicke	to	30,000	mm
Stegdicke	s	20,000	mm
Innengröße	b _i	160,000	mm
Höhe	h	1000,000	mm
Untere Flanschbreite	b _u	500,000	mm
Untere Flanschdicke	tu	30,000	mm
Obere Kehlnahtdicke	a。	4,000	mm
Untere Kehlnahtdicke	au	4,000	mm
Querschnittsfläche	A	676,000	cm²
Schubfläche	Ay	130,570	cm²
Schubfläche	Az	371,650	cm ²
Kernfläche	A _k	1746,000	cm²
Schwerpunktabstand	ez	500,000	mm
Trägheitsmoment (Flächenmoment 2. Grades)	ly	982761,0	cm⁴
Trägheitsmoment (Flächenmoment 2. Grades)	I _z	93081,3	cm ⁴
Polares Trägheitsmoment	I _p	1076000,0	cm⁴
Polares Trägheitsmoment	I _{p,M}	1076000,0	cm ⁴
Trägheitsradius	i,	381,300	mm
Trägheitsradius	i,	117,300	mm
Polarer Trägheitsradius	i _p	398,900	mm
Polarer Trägheitsradius	i _{p,M}	398,900	mm
Querschnittsgewicht	G	530,700	kg/m
Mantelfläche	A _{Fläche}	3,700	m²/m
Torsionsträgheitsmoment	I _t	113255,0	cm ⁴
Torsionsträgheitsmoment St. Venant	I _{t,StVen}	1383,3	cm ⁴
Torsionsträgheitsmoment Bredt	I _{t,Bredt}	111872,0	cm ⁴
Schubmittelpunkt-Lage bezogen auf S	z _M	0,000	mm
Wölbwiderstand bezogen auf M	I _w	130700000,0	cm ⁶
Wölbträgheitsradius	i _{ω,M}	110,200	mm
Abklingfaktor	λ	0,002	1/mm
Widerstandsmoment	W _{y,max}	19655,200	cm ³
Widerstandsmoment	W _{y,min}	-19655,200	cm ³
Widerstandsmoment	Wz	3723,250	cm ³
Wölbwiderstandsmoment	W _ω	117035,000	cm⁴
Statisches Moment	S _{y,max}	5846,500	cm ³
Statisches Moment	S _{z,max}	1783,500	cm ³
Wölbordinate	ω _{max}	1116,390	cm ²
Wölbfläche (Flächenmoment 1. Grades mit ω)	S _{w,max}	45165,900	cm ⁴
Kindem'sche Querschnittsstrecke	r _{y,Kindem}	0,000	mm
Querschnittsstrecke	r _{M,z}	0,000	mm
Lage der Flächenhalbierenden bez. auf S	fz	0,000	mm
Plastisches Widerstandsmoment	W _{pl,y,max}	23386,000	cm ³
Plastisches Widerstandsmoment	W _{pl,z,max}	7134,000	cm ³
Plastischer Formbeiwert	α _{pl,y,max}	1,190	
Plastischer Formbeiwert	α _{pl,z,max}	1,916	
Knicklinie nach EN	KL _{y, EN}	с	
Knicklinie nach EN	KL _{z,EN}	c	

4.5 [QT]_{offen} Querträger offen

Querschnittswert	Symbol	Wert	Einheit
Höhe	h	1000,000	mm
Breite	b	500,000	mm
Stegdicke	s	28,000	mm
Flanschdicke	t	35,000	mm
Kehlnahtdicke	а	4,000	mm
Querschnittsfläche	А	610,400	cm²
Schubfläche	Ay	350,000	cm²
Schubfläche	Az	260,400	cm²
Plastische Schubfläche	A _{pl,y}	350,000	cm²
Plastische Schubfläche	A _{pl,z}	270,200	cm²
Trägheitsmoment (Flächenmoment 2. Grade	l _y	1003000,0	cm ⁴
Trägheitsmoment (Flächenmoment 2. Grade	l _z	73086,8	cm ⁴
Polares Trägheitsmoment	l _p	1076000,0	cm ⁴
Trägheitsradius	i _y	405,300	mm
Trägheitsradius	i _z	109,400	mm
Polarer Trägheitsradius	i _p	419,800	mm
Trägheitsradius des Gurtquerschnitts (1/5 St	i _{zg}	126,800	mm
Querschnittsgewicht	G	479,200	kg/m
Mantelfläche	A _{Fläche}	3,944	m²/m
Torsionsträgheitsmoment	l _t	2072,3	cm ⁴
Wölbwiderstand bezogen auf M	Ι _ω	169800000,0	cm⁵
Abklingfaktor	λ	0,000	1/mm
Widerstandsmoment	Wy	20057,300	cm ³
Widerstandsmoment	Wz	2923,470	cm ³
Wölbwiderstandsmoment	W _ω	140729,000	cm ⁴
Statisches Moment	S _{y,max}	11470,900	cm ³
Statisches Moment	S _{z,max}	1092,890	cm ³
Wölbordinate	ω_{max}	1206,250	cm²
Wölbfläche (Flächenmoment 1. Grades mit a	S _{w,max}	52773,400	cm ⁴
Plastisches Widerstandsmoment	W _{pl,y,max}	22941,800	cm³
Plastisches Widerstandsmoment	W _{pl,z,max}	4557,280	cm³
Plastisches Wölbwiderstandsmoment	$W_{pl,\omega}$	211094,000	cm ⁴
Plastischer Formbeiwert	α _{pl,y,max}	1,144	
Plastischer Formbeiwert	$\alpha_{\text{pl,z,max}}$	1,559	
Plastischer Formbeiwert	$\alpha_{pl,\omega}$	1,500	
Knicklinie nach EN	KL _{y,EN}	b	
Knicklinie nach EN	KL _{z,EN}	с	

4.6 [VT] Vorspannträger

Querschnittswert	Symbol	Wert	Einheit
Obere Flanschbreite	b _o	240,000	mm
Obere Flanschdicke	to	20,000	mm
Stegdicke	s	15,000	mm
Innengröße	b _i	120,000	mm
Höhe	h	450,000	mm
Untere Flanschbreite	bu	240,000	mm
Untere Flanschdicke	tu	20,000	mm
Obere Kehlnahtdicke	a _o	3,000	mm
Untere Kehlnahtdicke	a _u	3,000	mm
Querschnittsfläche	А	219,000	cm²
Schubfläche	Ay	42,950	cm²
Schubfläche	Az	123,020	cm²
Kernfläche	A _k	580,500	cm²
Schwerpunktabstand	ez	225,000	mm
Trägheitsmoment (Flächenmoment 2. Grades)	ly	61638,3	cm⁴
Trägheitsmoment (Flächenmoment 2. Grades)	l _z	10235,2	cm⁴
Polares Trägheitsmoment	I _p	71873,5	cm⁴
Polares Trägheitsmoment	I _{p,M}	71873,5	cm ⁴
Trägheitsradius	i _y	167,800	mm
Trägheitsradius	i _z	68,400	mm
Polarer Trägheitsradius	i,	181,200	mm
Polarer Trägheitsradius	i _{p.M}	181,200	mm
Querschnittsgewicht	G	171,900	kg/m
Mantelfläche	A _{Fläche}	1,630	m²/m
Torsionsträgheitsmoment	I ₊	19247,5	cm ⁴
Torsionsträgheitsmoment St. Venant	I _{t.StVen}	218,0	cm ⁴
Torsionsträgheitsmoment Bredt	I _{t Bredt}	19029,5	cm ⁴
Schubmittelpunkt-Lage bezogen auf S	Z _M	0,000	mm
Wölbwiderstand bezogen auf M	ι Ι	1435000,0	cm⁵
Wölbträgheitsradius	i _{ωM}	44,700	mm
Abklingfaktor	λ	0,007	1/mm
Widerstandsmoment	W _{v.max}	2739,480	cm ³
Widerstandsmoment	Wymin	-2739,480	cm ³
Widerstandsmoment	W,	852,940	cm ³
Wölbwiderstandsmoment	W _w	7079,290	cm ⁴
Statisches Moment	S _{v.max}	831,190	cm ³
Statisches Moment	S _{z.max}	351,560	cm³
Wölbordinate	ω _{max}	202,680	cm²
Wölbfläche (Flächenmoment 1. Grades mit ω)	S _{co max}	2553,500	cm⁴
Kindem'sche Querschnittsstrecke	r _{v Kindem}	0,000	mm
Querschnittsstrecke	r _{M 7}	0,000	mm
Lage der Flächenhalbierenden bez. auf S	f,	0,000	mm
Plastisches Widerstandsmoment	Walymay	3324,750	cm ³
Plastisches Widerstandsmoment	W _{nl z max}	1406.250	cm ³
Plastischer Formbeiwert		1.214	
Plastischer Formbeiwert		1.649	
Knicklinie nach EN	KL _{V ENI}	_,c.s	
Knicklinie nach EN	KL _{z.EN}	c	

4.7 [WB1] Waagbalken 1 / [VTB] Verteilbalken

Tabelle 4.7: Querschnittswerte Waagbalken 1 [WB1] / Verteilbalken [VTB] – HE-M 220

Querschnittswert	Symbol	Wert	Einheit
Profilhöhe	h	240,000	mm
Profilbreite	b	226,000	mm
Stegdicke	ts	15,500	mm
Flanschdicke	t _g	26,000	mm
Ausrundungsradius	r	18,000	mm
Querschnittsfläche	А	149,000	cm ²
Schubfläche	Ay	98,310	cm²
Schubfläche	Az	30,630	cm²
Wirksame Schubfläche nach EC 3	A _{v,y}	122,710	cm²
Wirksame Schubfläche nach EC 3	A _{v,z}	44,870	cm²
Stegfläche	A _{Steg}	29,100	cm²
Plastische Schubfläche	A _{pl,y}	117,520	cm ²
Plastische Schubfläche	A _{pl,z}	33,170	cm²
Trägheitsmoment (Flächenmoment 2. Grade	l _y	14600,0	cm ⁴
Trägheitsmoment (Flächenmoment 2. Grade	l _z	5010,0	cm⁴
Trägheitsradius	i _y	98,900	mm
Trägheitsradius	i _z	57,900	mm
Polarer Trägheitsradius	i _p	114,600	mm
Trägheitsradius des Gurtquerschnitts (1/5 S	i _{zg}	61,600	mm
Volumen	V	14900,000	cm³/m
Querschnittsgewicht	G	117,000	kg/m
Mantelfläche	A _{Fläche}	1,320	m²/m
Profilfaktor	A _m /V	88,591	1/m
Torsionsträgheitsmoment	l _t	316,0	cm ⁴
Wölbwiderstand	Iω	572700,0	cm ⁶
Widerstandsmoment	Wy	1220,000	cm ³
Widerstandsmoment	Wz	444,000	cm ³
Wölbwiderstandsmoment	W _ω	4736,580	cm ⁴
Statisches Moment	S _{y,max}	710,000	cm ³
Statisches Moment	S _{z,max}	166,000	cm ³
Wölbordinate	ω _{max}	120,910	cm ²
Wölbfläche (Flächenmoment 1. Grades mit	$S_{\omega,max}$	1776,170	cm ⁴
Plastisches Widerstandsmoment	W _{pl,y}	1420,000	cm ³
Plastisches Widerstandsmoment	W _{pl,z}	678,550	cm³
Plastisches Wölbwiderstandsmoment	$W_{pl,\omega}$	7104,670	cm ⁴
Plastischer Formbeiwert	$\alpha_{pl,y}$	1,164	
Plastischer Formbeiwert	$\alpha_{\text{pl,z}}$	1,528	
Plastischer Formbeiwert	$\alpha_{pl,\omega}$	1,500	
Knicklinie nach EN	KL _{y, EN}	b	
Knicklinie nach EN	KL _{z,EN}	с	
Flanschlochdurchmesser	dL	28,000	mm
Flanschlochabstand	w	122,000	mm
Flanschlochabstand	w ₁	120,000	mm
c/t-Verhältnis (Gurt)	c/t _{Gurt}	3,360	
c/t-Verhältnis (Steg)	c/t _{Steg}	9,810	

4.8 [WB2] Waagbalken 2

Querschnittswert	Symbol	Wert	Einheit
Profilhöhe	h	160.000	mm
Profilbreite	b	146.000	mm
Stegdicke	t.	13.000	mm
Flanschdicke	t.	22.000	mm
Ausrundungsradius	r	12.000	mm
Querschnittsfläche	A	80,600	cm ²
Schubfläche	A.	53,880	cm ²
Schubfläche	A	16,650	cm ²
Wirksame Schubfläche nach EC 3	Aux	67,490	cm ²
Wirksame Schubfläche nach EC 3	Au	24.500	cm ²
Stegfläche	Actes	15.100	cm ²
Plastische Schubfläche	A .	64,240	cm ²
Plastische Schuhfläche	Δ.	17 940	cm ²
Trägheitsmoment (Elächenmoment 2) Grade	/ vp1,z	3290.0	cm ⁴
Trägheitsmoment (Flächenmoment 2, Grade	1	11/0 0	cm ⁴
Trägheiteradius	1 _Z	62,000	
	1 _y	63,900	mm
	1 _z	37,700	mm
Polarer Tragheitsradius	I _p	74,200	mm
Trägheitsradius des Gurtquerschnitts (1/5 S	i _{zg}	40,000	mm
Volumen	V	8060,000	cm³/m
Querschnittsgewicht	G	63,300	kg/m
Mantelfläche	A _{Fläche}	0,857	m²/m
Profilfaktor	A _m /V	106,328	1/m
Torsionsträgheitsmoment	l _t	120,0	cm ⁴
Wölbwiderstand	Ι _ω	54330,0	cm⁵
Widerstandsmoment	Wy	411,000	cm ³
Widerstandsmoment	Wz	157,000	cm ³
Wölbwiderstandsmoment	Wω	1078,620	cm ⁴
Statisches Moment	S _{y,max}	247,000	cm³
Statisches Moment	S _{z,max}	58,620	cm³
Wölbordinate	ω _{max}	50,370	cm²
Wölbfläche (Flächenmoment 1. Grades mit	S _{w,max}	404,470	cm⁴
Plastisches Widerstandsmoment	W _{pl,y}	494,000	cm ³
Plastisches Widerstandsmoment	W _{pl.z}	240,510	cm ³
Plastisches Wölbwiderstandsmoment	W _{pl,ω}	1617,880	cm ⁴
Plastischer Formbeiwert	$\alpha_{nl.v}$	1,202	
Plastischer Formbeiwert	$\alpha_{nl,z}$	1,532	
Plastischer Formbeiwert	anto	1.500	
Knicklinie nach EN	KL _{V EN}	b	
Knicklinie nach FN	KL - FN		
Elanschlochdurchmesser	d	21.000	mm
Elanschlochabstand	w.	00 000	mm
		76 000	mm
	vv1	76,000	
	c/L _{Gurt}	2,480	
c/t-verhalthis (Steg)	C/t _{Steg}	7,080	

4.9 [ZS] Zugstütze

Tabelle 4.9: Querschnittswerte Zugstütze [ZS]

Querschnittswert	Symbol	Wert	Einheit
Höhe	h	490,000	mm
Breite	b	300,000	mm
Stegdicke	s	15,000	mm
Flanschdicke	t	15,000	mm
Kehlnahtdicke	а	3,000	mm
Querschnittsfläche	A	159,000	cm ²
Schubfläche	A _y	90,000	cm ²
Schubfläche	Az	69,000	cm ²
Plastische Schubfläche	A _{pl,y}	90,000	cm ²
Plastische Schubfläche	A _{pl,z}	71,250	cm ²
Trägheitsmoment (Flächenmoment 2. Grade	l _y	62949,5	cm⁴
Trägheitsmoment (Flächenmoment 2. Grade	l _z	6762,9	cm⁴
Polares Trägheitsmoment	I _p	69712,4	cm⁴
Trägheitsradius	i _y	199,000	mm
Trägheitsradius	i _z	65,200	mm
Polarer Trägheitsradius	i _p	209,400	mm
Trägheitsradius des Gurtquerschnitts (1/5 St	i _{zg}	75,800	mm
Querschnittsgewicht	G	124,800	kg/m
Mantelfläche	A _{Fläche}	2,150	m²/m
Torsionsträgheitsmoment	l _t	118,8	cm⁴
Wölbwiderstand bezogen auf M	Ι _ω	3807000,0	cm ⁶
Abklingfaktor	λ	0,000	1/mm
Widerstandsmoment	Wy	2569,370	cm ³
Widerstandsmoment	Wz	450,860	cm ³
Wölbwiderstandsmoment	W _ω	10687,500	cm ⁴
Statisches Moment	S _{y,max}	1465,500	cm ³
Statisches Moment	S _{z,max}	168,640	cm ³
Wölbordinate	ω _{max}	356,250	cm ²
Wölbfläche (Flächenmoment 1. Grades mit a	S _{w,max}	4007,810	cm ⁴
Plastisches Widerstandsmoment	W _{pl,y,max}	2931,000	cm ³
Plastisches Widerstandsmoment	W _{pl,z,max}	700,880	cm ³
Plastisches Wölbwiderstandsmoment	W _{pl,ω}	16031,300	cm⁴
Plastischer Formbeiwert	$\alpha_{\text{pl,y,max}}$	1,141	
Plastischer Formbeiwert	$\alpha_{\text{pl,z,max}}$	1,555	
Plastischer Formbeiwert	α _{pl,ω}	1,500	
Knicklinie nach EN	KL _{y,EN}	b	
Knicklinie nach EN	KL _{z,EN}	С	

5. Modellbildung

5.1 Berechnungsmodell – Aufbau statische Traglastversuche

Zur Vereinfachung der Berechnung wird der Versuchsrahmen in ein Berechnungsmodell übergeführt. Diesem Modell liegen mehrere Annahmen und Voraussetzungen zu Grunde. Diese betreffen einerseits, in der praktischen Baustatik übliche Vereinfachungen und Annahmen und andererseits auf das gegenständliche Bauwerk angewendete, individuelle Annahmen:

- Sämtliche Verbindungen zwischen den Bauteilen werden als Biegemomentengelenke definiert.
- Die drehelastische Einspannwirkung von Trägerkreuzungen, wird nicht weiter berücksichtigt.
- Die Spannstangen werden als reine Zugglieder definiert
- Exzentrische Stabanschlüsse werden mitabgebildet
- Die Lagerung der Längsträger erfolgt an festen, gelenkigen Auflagern
- Die Berechnung erfolgt nach elastischer Stabtheorie I. Ordnung, es werden somit keine Effekte aus den Verformungen berücksichtigt.
- Die Bauteile werden zur Vereinfachung auf deren Schwerachse reduziert, diese besitzen, mit Ausnahme der Spannstäbe, folgende Eigenschaften:
 - Dehnsteifigkeit EA
 - Biegesteifigkeiten EI_y , EI_z bzw. EA_{zz} , EA_{yy}
 - Schubsteifigkeit GÃ
 - Torsionssteifigkeit *GI*_T
 - Wölbsteifigkeit $EA_{\omega\omega}$

Abbildung 5.1: Berechnungsmodell – statische Traglastversuche

5.2 Berechnungsmodell – Aufbau dynamische Ermüdungsversuche

Im Wesentlichen gelten die gleichen Annahmen welche bereits unter Punkt 5.1 genannt wurden. Erweitert wurden die Annahmen nur durch folgende Punkte:
- Die Federpakte zwischen [LT] und [LTu] werden durch starre Kopplungen idealisiert, diese Annahme liegt f
 ür die Schnittgr
 ö
 ßenermittlung und somit auch f
 ür die Spannungsberechnung auf der sicheren Seite.
- Zur horizontalen Lagerung des [LTu] wird ein zentrisches Lager eingeführt, welches ausschließlich horizontale Kräfte aufnehmen kann. Die vertikale Lastabtragung erfolgt über die starren Kopplungen zum [LT].
- Die Verteilbalken [VTB] sind beidseitig durch Gelenke an den [QT]-Untergurten angebunden.
- Da der Querträger [QT] ausschließlich über Zugglieder mit dem Längsträger [LT] verbunden ist, muss der Querträger [QT] an den Enden sowohl vertikal als auch horizontal gelagert werden.

Abbildung 5.2: Berechnungsmodell – dynamische Ermüdungsversuche

35

6. Grenzzustände der Tragfähigkeit

6.1 Teilsicherheitsbeiwerte

Die Teilsicherheitsbeiwerte für den Grenzzustand der Tragfähigkeit werden nach Punkt 2.3.1 bzw. Punkt 2.3.2 angesetzt.

6.2 Querschnittsklassifikation

Die Querschnittsklassifizierung dient zum einen der Auswahl des anzuwendenden Berechnungsverfahrens. Die möglichen Verfahren nach ÖNORM EN 1993-1-1 unterscheiden sich in der Berechnung der einwirkenden Bauteilbeanspruchung und der Querschnittsbeanspruchbarkeit. Die möglichen Berechnungsmethoden werden in E-E, E-P und P-P eingeteilt. Zum anderen dient diese Nachweisform der Identifizierung möglicher Iokaler Instabilitäten. Diese Art des Stabilitätsverlusts wird durch Drucknormalspannungen ausgelöst

Der Nachweis gegen Normalspannungsbeulen erfolgt dabei nach ÖNORM EN 1993-1-1 Tabelle 5.2, diese sieht die Einstufung der Querschnitte in 4 Klassen vor.

In der vorliegenden Arbeit wurde das Berechnungsverfahren E-E gewählt. Diese Methode sieht eine elastische Tragwerksberechnung und eine elastische Querschnittsbeanspruchbarkeit vor. Aus diesem Grund muss der Querschnitt mindestens der Klasse 3 zuzuordnen sein, sofern der gesamte Querschnitt angesetzt werden soll. Ist der Querschnitt der Klasse 4 zuzuordnen, müssen einzelne Querschnittsteile unberücksichtigt bleiben und effektive Querschnittswerte ermittelt werden.

Nachweis gegen Normalspannungsbeulen nach ÖNORM EN 1993-1-1 Tabelle 5.2

Tabelle 6.1: Nachweis gegen Normalspannungsbeulen (Auszug ÖNORM EN 1993-1-1 Tabelle 5.2)

Einseitig gestützte Flansche								
Gewalzte Querschnitte					t [†]	c 	Querschnitte	
Klassa	au	f Druck		auf Druck und Biegung beanspruchte Querschnittsteile				
Klasse	Quers	chnittsteile		im	freier Rand Druckberei	ch	freier R im Zugbe	and ereich
Spannungs- verteilung über Querschnittsteile (Druck positiv)][+	+ C		-	+ +	-	→ α c + }	
1	$c/t \leq 9\varepsilon$				$c/t \le \frac{9\varepsilon}{\alpha}$		$c/t \leq c$	$\frac{9\varepsilon}{\alpha\sqrt{\alpha}}$
2	$c/t \le 10\varepsilon$				$c/t \le \frac{10\varepsilon}{\alpha}$	-	$c/t \leq c$	$\frac{10\varepsilon}{\alpha\sqrt{\alpha}}$
Spannungs- verteilung über Querschnittsteile (Druck positiv)		+ C -]	- C	+ →		
3	c/	t≤14 <i>ε</i>		$c/t \leq 21 \varepsilon \sqrt{k_{\sigma}}$ Für k_{σ} siehe EN 1993-1-5				
$\varepsilon = \sqrt{23}$	$5/f_{y}$	fy	2	235	275	355	420	460
· · · · ·	-	ε	1	1,00	0,92	0,81	0,75	0,71

Tabelle 6.2: Nachweis gegen Normalspannungsbeulen (Auszug ÖNORM EN 1993-1-1 Tabelle 5.2) (Fortsetzung)

Nachweis gegen Schubbeulen nach ÖNORM EN 1993-1-5

Eine weitere Form des lokalen Stabilitätsversagens stellt das schubinduziertes Beulen dar. Dieser Nachweis erfolgt in Anlehnung an ÖNORM EN 1993-1-5.

Der Nachweis wird vereinfacht über die Ungleichung:

$$\frac{h_w}{t_w} > 72\frac{\varepsilon}{\eta}$$

geführt. Diese wurde für nicht ausgesteifte Blechfelder hergeleitet, liegt aber auf der sicheren Seite für ausgesteifte Bleche und kann somit vereinfachend herangezogen werden.

6.2.1 [AT] Auflagerträger

HE-M 700

Flansche: einseitig gestützt, unter Druckbeanspruchung

f _{yk,S355J2+N (t ≤ 40 mm)} =	355	N/mm²	
γ _{M0} =	1,00		
$f_{yd,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²	
ε =	0,81		
h =	716	mm	
b =	304	mm	
t _w =	21	mm	
t _f =	40	mm	
r =	27	mm	
C =	115	mm	
t = t _f =	40	mm	
c/t =	2,86	≤14ε	
		= 11,39	
Querschnittsklasse 3			

Stege: zweiseitig gestützt, unter Biegebeanspruchung

$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355 N/mm²	
γ _{M0} =	1,00	
$f_{yd,S355J2+N(t \le 40 \text{ mm})} =$	355 N/mm²	
ε =	0,81	
c =	582 mm	
t = t _w =	21 mm	
c/t =	27,71 ≤ 124ε	
	= 100,89	
Querschnittsklasse 3		

Nachweis gegen Schubbeulen für unausgesteifte Stegbleche

h _w = c =	582 mm	
t _w = t =	21 mm	
ε =	0,81	
η =	1,00	(auf der sicheren Seite liegend)
$h_w / t_w =$	27,71 < 72 ε/η	
	= 58,58	
kein Nachweis gegen	Schubbeulen erf.	

6. Grenzzustände der Tragfähigkeit

6.2.2 [LT] Längsträger

Flansche, außen: einseitig gestützt, unter Druckbeanspruchung

$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²	
γ _{M0} =	1,00		
$f_{yd,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²	
ε =	0,81		
c _{brutto} =	95	mm	
a _{Kehlnaht} =	5	mm	(einseitig)
c =	90	mm	
t =	30	mm	
c/t =	3,00	≤14ε	
		= 11,39	
Querschnittsklasse 3			

Flansche, innen: zweiseitig gestützt, unter Druckbeanspruchung

$f_{yk,S355J2+N(t \le 40 \text{ mm})} = 355 \text{ N/mm}^2$			
γ _{M0} = 1,00			
$f_{yd,S355J2+N(t \le 40 \text{ mm})} = 355 \text{ N/mm}^2$			
ε = 0,81			
c _{brutto} = 190 mm			
a _{Kehlnaht} = 0 mm ((beidseitig		
c = 190 mm			
t = 30 mm			
c/t = 6,33 ≤ 42ε			
= 34,17			
Querschnittsklasse 3			

Stege: zweiseitig gestützt, unter Biegebeanspruchung

$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²	
γ _{M0} =	1,00		
$f_{yd,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²	
ε =	0,81		
c _{brutto} =	640	mm	
a _{Kehlnaht} =	5	mm	(beidseitig)
C =	630	mm	
t =	20	mm	
c/t =	31,50	≤124ε	
		= 100,89	

Querschnittsklasse 3

Nachweis gegen Schubbeulen für unausgesteifte Stegbleche

h _w = c _{brutto} =	640 mm	
t _w = t =	20 mm	
ε = η =	0,81 1,00	(auf der sicheren Seite liegend)
$h_w / t_w =$	32,00 < 72 ε/η	
	= 58,58	

kein Nachweis gegen Schubbeulen erf.

6.2.3 [LTu] Längsträger unten

Flansche, außen: einseitig gestützt, unter Druckbeanspruchung

$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355 N/mm	2	
γ _{M0} =	1,00		
$f_{yd,S355J2+N(t \le 40 \text{ mm})} =$	355 N/mm ²	2	
ε =	0,81		
C _{brutto} =	49 mm		
a _{Kehlnaht} =	3 mm	(einseitig)	
c =	46 mm		
t =	25 mm		
c/t =	1,84 ≤14ε		
	= 11,39		
Querschnittsklasse 3			

Flansche, innen: zweiseitig gestützt, unter Druckbeanspruchung

$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355 N/n 1.00	nm²	
YM0 -	1,00 255 N/m	a ma ²	
lyd,S355J2+N (t≤40 mm) =	355 N/II	nm-	
= 3	0,81		
C _{brutto} =	120 mm	I	
a _{Kehlnaht} =	0 mm	(beidseitig)	
c =	120 mm	I	
t =	25 mm	I	
c/t =	4,80 ≤ 42	E	
	= 34	,17	
Ouerschnittsklasse 3			

Stege: zweiseitig gestützt, unter Biegebeanspruchung

$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355 N/r	nm²	
γ _{M0} =	1,00		
$f_{yd,S355J2+N(t \le 40 \text{ mm})} =$	355 N/r	nm²	
ε =	0,81		
c _{brutto} =	550 mn	ı	
a _{Kehlnaht} =	3 mn	n (beidseitig)	
C =	544 mn	า	
t =	16 mn	า	
c/t =	34,00 ≤ 12	!4ε	
	= 10	0,89	
Querschnittsklasse 3			

Querschnittsklasse 3

Nachweis gegen Schubbeulen für unausgesteifte Stegbleche

$h_w = c_{brutto} =$	550 mm	
t _w = t =	16 mm	
ε = η =	0,81 1,00	(auf der sicheren Seite liegend)
$h_w / t_w =$	34,38 < 72 ε/η = 58,58	
kein Nachweis gege	n Schubbeulen erf.]

6.2.4 [QT]_{geschlossen} Querträger geschlossen

Flansche, außen: einseitig gestützt, unter Druckbeanspruchung

$f_{yk,S355J2+N(t \le 40 \text{ mm})} = \gamma_{M0} =$	355 1.00	N/mm²	
$f_{yd,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²	
ε =	0,81		
c _{brutto} =	150	mm	
a _{Kehlnaht} =	8	mm	(einseitig)
c =	142	mm	
t =	30	mm	
c/t =	4,73	≤14ε	
		= 11,39	
Querschnittsklasse 3			

Flansche, innen: zweiseitig gestützt, unter Druckbeanspruchung

$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²	
γ _{M0} =	1,00		
$f_{yd,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²	
ε =	0,81		
C _{brutto} =	160	mm	
a _{Kehlnaht} =	0	mm	(beidseitig
c =	160	mm	
t =	30	mm	
c/t =	5,33	≤42ε	
		= 34,17	
Querschnitts	klasse 3]

Stege: zweiseitig gestützt, unter Biegebeanspruchung

$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²	
γ _{M0} =	1,00		
$f_{yd,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²	
= 3	0,81		
c _{brutto} =	940	mm	
a _{Kehlnaht} =	8	mm	(beidseitig)
c =	924	mm	
t =	20	mm	
c/t =	46,20	≤124ε	
		= 100,89	

Querschnittsklasse 3

Nachweis gegen Schubbeulen für unausgesteifte Stegbleche

$h_w = c_{brutto} =$	940	mm
t _w = t =	20	mm
ε = η =	0,81 1,00	(auf der sicheren Seite liegend)
$h_w / t_w =$	47,00 -	< 72 ε/η = 58,58

kein Nachweis gegen Schubbeulen erf.

6.2.5 [QT]_{offen} Querträger offen

Flansche: einseitig gestützt, unter Druckbeanspruchung

$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²	
γ _{M0} =	1,00		
$f_{yd,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²	
ε =	0,81		
C _{brutto} =	236	mm	
a _{Kehlnaht} =	8	mm	(einseitig)
c =	228	mm	
t =	35	mm	
c/t =	6,51	≤14ε	
		= 11,39	
Querschnittsklasse 3			

Stege: zweiseitig gestützt, unter Biegebeanspruchung

$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355 N/mm²			
γ _{M0} =	1,00			
$f_{yd,S355J2+N(t \le 40 \text{ mm})} =$	355 N/mm²			
ε =	0,81			
c _{brutto} =	930 mm			
a _{Kehlnaht} =	8 mm			
c =	914 mm			
t =	28 mm			
c/t =	32,64 ≤ 124ε			
	= 100,89			
Querschnittsklasse 3				

Nachweis gegen Schubbeulen für unausgesteifte Stegbleche

h _w = c _{brutto} =	930 mm	
t _w = t =	28 mm	
ε = n =	0,81	(auf der sicheren Seite liegend)
·ı − h / t =	1,00 33.21 < 72 ε/r	
··w/ ·w	= 58,58	
1		

kein Nachweis gegen Schubbeulen erf.

6.2.6 [VT] Vorspannträger

Flansche, außen: einseitig gestützt, unter Druckbeanspruchung

$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²	
γ _{M0} =	1,00		
$f_{yd,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²	
ε =	0,81		
c _{brutto} =	45	mm	
a _{Kehlnaht} =	8	mm	(einseitig)
C =	37	mm	
t =	20	mm	
c/t =	1,85	≤14ε	
		= 11,39	
Querschnittsklasse 3			

Flansche, innen: zweiseitig gestützt, unter Druckbeanspruchung

f _{yk,S35}	5J2+N (t ≤ 40 mm) =	355	N/mm²	
γ _{M0} =		1,00		
f _{yd,S35}	5J2+N (t ≤ 40 mm) =	355	N/mm²	
ε =		0,81		
C _{brutto}	=	120	mm	
a _{Kehlna}	ht =	0	mm	(beidseitig)
c =		120	mm	
t =		20	mm	
c/t =		6,00	≤42ε	
			= 34,17	
	Querschnittsklas	sse 3]

Stege: zweiseitig gestützt, unter Biegebeanspruchung

f _{yk,S355J2+N (t ≤ 40 mm)} =	355	N/mm²	
γ _{M0} =	1,00		
$f_{yd,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²	
ε =	0,81		
c _{brutto} =	380	mm	
a _{Kehlnaht} =	8	mm	(beidseitig)
c =	364	mm	
t =	15	mm	
c/t =	24,27	≤ 124ε	
		= 100,89	

Querschnittsklasse 3

Nachweis gegen Schubbeulen für unausgesteifte Stegbleche

$h_w = c_{brutto} =$	380 mm	
t _w = t =	15 mm	
ε = η =	0,81 1,00	(auf der sicheren Seite liegend)
$h_w / t_w =$	25,33 < 72 ε/η	
	= 58,58	

kein Nachweis gegen Schubbeulen erf.

6.2.7 [WB1] Waagbalken 1 / [VTB] Verteilbalken

HE-M 200

Flansche: einseitig gestützt, unter Druckbeanspruchung

$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²
γ _{M0} =	1,00	
$f_{yd,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²
ε =	0,81	
h =	240	mm
b =	226	mm
t _w =	15,5	mm
t _f =	26	mm
r =	18	mm
c =	87	mm
t = t _f =	26	mm
c/t =	3,36	≤ 14ε
		= 11,39
Querschnittsklasse 3		

Stege: zweiseitig gestützt, unter Biegebeanspruchung

$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²
γ _{M0} =	1,00	
$f_{yd,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²
= 3	0,81	
c =	152	mm
t = t _w =	16	mm
c/t =	9,81	≤124ε
		= 100,89
Ouerschnittsklasse 3		

Nachweis gegen Schubbeulen für unausgesteifte Stegbleche

h _w = c =	152 mm	
t _w = t =	16 mm	
ε = η =	0,81 1,00	(auf der sicheren Seite liegend)
$h_w / t_w =$	9,81 < 72 ε/η = 58,58	
kein Nachweis gegen Sch	ubbeulen erf.]

6.2.8 [WB2] Waagbalken 2

HE-M 140

Flansche: einseitig gestützt, unter Druckbeanspruchung

$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355 N/mm ²	2
γ _{M0} =	1,00	
$f_{yd,S355J2+N(t \le 40 \text{ mm})} =$	355 N/mm ²	2
ε =	0,81	
h =	160 mm	
b =	146 mm	
t _w =	13 mm	
t _f =	22 mm	
r =	12 mm	
c =	55 mm	
t = t _f =	22 mm	
c/t =	2,48 ≤14ε	
	= 11,39	
Ouerschnittsklasse 3		

Stege: zweiseitig gestützt, unter Biegebeanspruchung

f _{yk,S355J2+N (t ≤ 40 mm)} =	355 N/mm²	
γ _{M0} =	1,00	
$f_{yd,S355J2+N(t \le 40 \text{ mm})} =$	355 N/mm²	
ε =	0,81	
c =	92 mm	
t = t _w =	13 mm	
c/t =	7,08 ≤ 124ε	
	= 100,89	
Ouerschnittsklasse 3		

Nachweis gegen Schubbeulen für unausgesteifte Stegbleche

ł	n _w = c =	92 mn	n	
t		13 mn	n	
8	2 =	0,81		
r	ן =	1,00		(auf der sicheren Seite liegend)
ł	n _w / t _w =	7,08 < 72	2 ε/η	
		= 58	8,58	
	kein Nachweis gegen Schu	bbeulen	erf.	

6.2.9 [ZS] Zugstütze

Flansche: einseitig gestützt, unter Druckbeanspruchung

$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²	
γ _{M0} =	1,00		
$f_{yd,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²	
= 3	0,81		
c _{brutto} =	143	mm	
a _{Kehlnaht} =	3	mm	(einseitig)
c =	140	mm	
t =	15	mm	
c/t =	9,33	≤14ε	
		= 11,39	
Querschnit	ttsklasse 3]

Stege: zweiseitig gestützt, unter Druckbeanspruchung

$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²
γ _{M0} =	1,00	
$f_{yd,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²
ε =	0,81	
c _{brutto} =	460	mm
a _{Kehlnaht} =	3	mm
c =	454	mm
t =	15	mm
c/t =	30,27	≤42ε
		= 34,17
Querschnittsklasse 3		

6.3 Lastfälle / Lastfallkombinationen

6.3.1 Lastfälle – Übersicht

[AT] Versuchsdurchführung	Punkt 6.3.2	
$LK_{Versuchsdurchf\"uhrung} = 1,35 \cdot LF_{Eigengewicht} \oplus 1,00 \cdot LF_{Versuchsdurchf\"uhrung}$		
[LT] Vorspannung	Punkt 6.3.3	
$LK_{Vorspannung} = 1,35 \cdot LF_{Eigengewicht} \oplus 1,05 \cdot LF_{Vorspannung}$		
[LT] Versuchsdurchführung	Punkt 6.3.4	
$LK_{Versuchsdurchf\"uhrung} = 1,00 \cdot LF_{Eigengewicht} \oplus 1,05 \cdot P_{k,[ZS]} bzw. P_{k,Spannstangen} \oplus 1,05 \cdot LF$	Vorspannung	
[LTu] FLS Vorspannung	Punkt 6.3.5	
$LK_{FLS,Vorspannung} = 1,00 \cdot LF_{Eigengewicht} \oplus 1,05 \cdot P_{FLS,Vorspannung,Spannstangen}$		
[QT] _{geschlossen} Vorspannung	Punkt 6.3.6	
$LK_{Vorspannung} = 1,05 \cdot LF_{Eigengewicht}$		
[QT] _{geschlossen} Versuchsdurchführung	Punkt 6.3.7	
$LK_{Versuchsdurchf\"uhrung} = 1,00 \cdot LF_{Eigengewicht} \oplus 1,00 \cdot LF_{Pressenkraft bei Traglast}$		
[QT] _{offen} Vorspannung	Punkt 6.3.8	
$LK_{Vorspannung} = 1,05 \cdot LF_{Eigengewicht}$		
[QT] _{offen} Versuchsdurchführung	Punkt 6.3.9	
$LK_{Versuchsdurchf\"uhrung} = 1,00 \cdot LF_{Eigengewicht} \oplus 1,00 \cdot LF_{Versuchsdurchf\"uhrung}$		
[VT] Vorspannung	Punkt 6.3.10	
$LK_{Vorspannung} = 1,35 \cdot LF_{Eigengewicht} \oplus 1,05 \cdot LF_{Vorspannung}$		
[VT] Versuchsdurchführung	Punkt 6.3.11	
$LK_{Versuchsdurchf\"uhrung} = 1,35 \cdot LF_{Eigengewicht} \oplus 1,00 \cdot P_{k,Spannstangen} \oplus 1,05 \cdot LF_{Vorspannung}$		
[VTB] FLS Vorspannung	Punkt 6.3.12	
$LK_{FLS,Vorspannung} = 1,00 \cdot LF_{Eigengewicht} \oplus 1,05 \cdot P_{FLS,Vorspannung,Platte}$		
[WB1] Versuchsdurchführung	Punkt 6.3.13	
$LK_{Versuchsdurchf\ddot{u}hrung} = 1,35 \cdot LF_{Eigengewicht} \oplus 1,00 \cdot LF_{Versuchsdurchf\ddot{u}hrung}$		

[WB2] Versuchsdurchführung	Punkt 6.3.14	
$LK_{Versuchsdurchf\ddot{u}hrung} = 1,35 \cdot LF_{Eigengewicht} \oplus 1,00 \cdot LF_{Versuchsdurchf\ddot{u}hrung}$		
[ZS] Vorspannung	Punkt 6.3.15	
$LK_{Vorspannung} = 1,35 \cdot LF_{Eigengewicht} \oplus 1,05 \cdot LF_{Vorspannung}$		
[ZS] Versuchsdurchführung	Punkt 6.3.16	
$LK_{Vorspannung} = 1,00 \cdot LF_{Eigengewicht} \oplus 1,00 \cdot LF_{Versuchsdurchf"uhrung}$		

6.3.2 [AT] Versuchsdurchführung

Lastfälle

Lastfall Eigengewicht [kN] / [kN/m]

Abbildung 6.1: Auflagerträger [AT] – Versuchsdurchführung – Eigengewicht

 $g_{k,SCSC-Platte} = \frac{92,53}{2 \cdot 3,30} = 14,02 \ kN/m$ $g_{k,Waagbalken} = \frac{61,43}{2 \cdot 3,30} = 9,31 \ kN/m$

Die Plattenbreite der SCSC-Platte beträgt 3,00 m, durch die darunterliegende Lasteinleitungskonstruktion und den elastischen Lastausbreitungswinkel von 45° ergibt sich eine Länge von 3,30 m auf die die Einwirkung verteilt werden kann.

 $g_{k,Aufbau} = g_{k,SCSC-Platte} + g_{k,Waagbalken} = 23,33 \ kN/m$

Abbildung 6.2: Auflagerträger [AT] – Versuchsdurchführung – Pressenkraft

 $p_{k,Pressenkraft} = \frac{7.200}{2\cdot 3,30} = 1.090,91 \cong 1.091 \; kN/m$

Die Plattenbreite der SCSC-Platte beträgt 3,00 m, durch die darunterliegende Lasteinleitungskonstruktion und den elastischen Lastausbreitungswinkel von 45° ergibt sich eine Länge von 3,30 m auf die die Einwirkung verteilt werden kann.

Lastfallkombination

Versuchsdurchführung

 $LK_{Versuchsdurchf\ddot{u}hrung} = 1,35 \cdot LF_{Eigengewicht} \oplus 1,00 \cdot LF_{Versuchsdurchf\ddot{u}hrung}$

1860.95

Schnittgrößen / Auflagerkräfte Normalkraft N_{Ed} [kN]

Abbildung 6.3: Auflagerträger [AT] – Versuchsdurchführung – Normalkraft N_{Ed}

Abbildung 6.4: Auflagerträger [AT] – Versuchsdurchführung – Querkraft Vz,Ed

Abbildung 6.5: Auflagerträger [AT] – Versuchsdurchführung – Biegemoment $M_{y,Ed}$

6.3.3 [LT] Vorspannung

Lastfälle

Lastfall Vorspannung [kN]

Abbildung 6.7: Längsträger [LT] – Vorspannung – Vorspannkräfte

Siehe Punkt 2.2.3

Lastfallkombination

Vorspannung

 $LK_{Vorspannung} = 1,35 \cdot LF_{Eigengewicht} \oplus 1,05 \cdot LF_{Vorspannung}$

Schnittgrößen / Auflagerkräfte

Querkraft V_{z,Ed} [kN]

Abbildung 6.8: Längsträger [LT] – Vorspannung – Querkraft V_{z,Ed}

Abbildung 6.9: Längsträger [LT] – Vorspannung – Biegemoment My,Ed

6.3.4 [LT] Versuchsdurchführung

Lastfälle

Abbildung 6.10: Längsträger [LT] – Versuchsdurchführung – Eigengewicht

 \oplus

Lastfall Versuchsdurchführung [kN]

Abbildung 6.11: Längsträger [LT] – Versuchsdurchführung – Versuchskräfte

$$P_{k,Zug} = -P_{k,Vorspannung} + P_{k,Versuchsdurchf\"uhrung} = -2.116 + \frac{7.200}{2} = 1.484 \ kN$$

Diese Einwirkung wird steifigkeits- (= flächen) äquivalent und unter Einbeziehung des statischen Satzes auf die Zugstütze und die Spannstangen verteilt:

$$P_{k,[ZS]} = P_{k,Zug} \cdot \frac{A_{[ZS]}}{A_{[ZS]} + 4 \cdot A_{S,Spannstangen}} = 1.484 \cdot \frac{159}{159 + 4 \cdot 8,17} = 1.231 \ kN$$

$$P_{k,Spannstangen} = P_{k,Zug} \cdot \frac{A_{S,M36}}{A_{[ZS]} + 4 \cdot A_{S,Spannstangen}} = 1.484 \cdot \frac{8,17}{159 + 4 \cdot 8,17} = 63,25 \ kN$$

Die einwirkenden Kräfte auf die Spannstangen können sich gegebenenfalls erhöhen, falls keine Gewindestangen M36 10.9 sondern das Glattstab-Spannsystem der Fa. DYWIDAG verwendet wird. Grund hierfür ist die erhöhte Dehnsteifigkeit *EA* des Glattstabquerschnittes, der nicht durch ein Gewinde geschwächt ist. Das DYWIDAG Glattstabspannsystem besitzt an den Enden ein kalt aufgerolltes Gewinde, welches allerdings zu keiner Schwächung des Querschnitts führt.

Dieser Umstand reduziert die einwirkende Normalkraft der Zugstütze [ZS].

Lastfall Vorspannung [kN]

Abbildung 6.12: Längsträger [LT] – Versuchsdurchführung – Vorspannkräfte

Siehe Punkt 2.2.3

Lastfallkombination

Versuchsdurchführung

 $LK_{Versuchsdurchf\"uhrung} = 1,00 \cdot LF_{Eigengewicht} \oplus 1,05 \cdot P_{k,[ZS]} bzw. P_{k,Spannstangen} \oplus 1,05 \cdot LF_{Vorspannung}$

Querkraft V_{z,Ed} [kN]

Abbildung 6.13: Längsträger [LT] – Versuchsdurchführung – Querkraft V_{z,Ed}

Abbildung 6.14: Längsträger [LT] – Versuchsdurchführung – Biegemoment M_{y,Ed}

6.3.5 [LTu] FLS Vorspannung

Lastfälle

Abbildung 6.15: Längsträger unten [LTu] – FLS Vorspannung – Eigengewicht

 \oplus

Abbildung 6.16: Längsträger unten [LTu] – FLS Vorspannung – Vorspannung FLS

 $P_{FLS,Vorspannung,Spannstangen}$ siehe 2.2.5

Lastfallkombination

Versuchsdurchführung

 $LK_{FLS,Vorspannung} = 1,00 \cdot LF_{Eigengewicht} \oplus 1,05 \cdot P_{FLS,Vorspannung,Spannstangen}$

Querkraft V_{z,Ed} [kN]

Abbildung 6.17: Längsträger unten [LTu] – FLS Vorspannung – Querkraft V_{z,Ed}

Abbildung 6.18: Längsträger unten [LTu] – FLS Vorspannung – Biegemoment M_{y,Ed}

6.3.6 [QT]_{geschlossen} Vorspannung

Lastfälle

Abbildung 6.19: Querträger geschlossen [QT] – Vorspannung – Eigengewicht

Lastfallkombination

Vorspannung

 $LK_{Vorspannung} = 1,35 \cdot LF_{Eigengewicht}$

Normalkraft N_{Ed} [kN]

Abbildung 6.20: Querträger geschlossen [QT] – Vorspannung – Normalkraft N_{Ed}

Abbildung 6.21: Querträger geschlossen [QT] – Vorspannung – Querkraft V_{z,Ed}

Abbildung 6.22: Querträger geschlossen [QT] – Vorspannung – Biegemoment My,Ed

6.3.7 [QT]_{geschlossen} Versuchsdurchführung

Lastfälle

Abbildung 6.23: Querträger geschlossen [QT] – Versuchsdurchführung – Eigengewicht

 \oplus

Lastfall Versuchsdurchführung [kN]

Abbildung 6.24: Querträger geschlossen [QT] – Versuchsdurchführung – Pressenkräfte

 $P_{k,Pressenkraft} = \frac{7.200}{12} = 600 \, kN$ (nach Punkt 2.2.2)

Lastfallkombination

Versuchsdurchführung

 $LK_{Versuchsdurchf\ddot{u}hrung} = 1,00 \cdot LF_{Eigengewicht} \oplus 1,00 \cdot LF_{Pressenkraft bei Traglast}$

Normalkraft N_{Ed} [kN]

Abbildung 6.25: Querträger geschlossen [QT] – Versuchsdurchführung – Normalkraft N_{Ed}

Querkraft V_{z,Ed} [kN]

Abbildung 6.26: Querträger geschlossen [QT] – Versuchsdurchführung – Querkraft Vz,Ed

Abbildung 6.27: Querträger geschlossen [QT] – Versuchsdurchführung – Biegemoment My,Ed

6.3.8 [QT]_{offen} Vorspannung

Lastfälle

Abbildung 6.28: Querträger offen [QT] – Vorspannung – Eigengewicht

Lastfallkombination

Vorspannung

 $LK_{Vorspannung} = 1,35 \cdot LF_{Eigengewicht}$

Normalkraft N_{Ed} [kN]

Abbildung 6.29: Querträger offen [QT] – Vorspannung – Normalkraft N_{Ed}

Abbildung 6.30: Querträger offen [QT] – Vorspannung – Querkraft Vz,Ed

6.3.9 [QT]_{offen} Versuchsdurchführung

Lastfälle

Abbildung 6.32: Querträger offen [QT] – Versuchsdurchführung – Eigengewicht

 \oplus

Lastfall Versuchsdurchführung [kN]

Abbildung 6.33: Querträger offen [QT] – Versuchsdurchführung – Pressenkräfte

$$P_{k,Pressenkraft} = \frac{7.200}{12} = 600 \, kN$$

Lastfallkombination

Versuchsdurchführung

 $LK_{Versuchsdurchf\ddot{u}hrung} = 1,00 \cdot LF_{Eigengewicht} \oplus 1,00 \cdot LF_{Versuchsdurchf\ddot{u}hrung}$

Normalkraft N_{Ed} [kN]

Abbildung 6.34: Querträger offen [QT] – Versuchsdurchführung – Normalkraft N_{Ed}

Querkraft V_{z,Ed} [kN]

Abbildung 6.36: Querträger offen [QT] – Versuchsdurchführung – Biegemoment My,Ed

6.3.10 [VT] Vorspannung

Lastfälle

Abbildung 6.37: Vorspannträger [VT] – Vorspannung – Eigengewicht

 \oplus

Abbildung 6.38: Vorspannträger [VT] – Vorspannung – Vorspannkräfte

Lastfallkombination

Vorspannung

 $LK_{Vorspannung} = 1,35 \cdot LF_{Eigengewicht} \oplus 1,05 \cdot LF_{Vorspannung}$

Querkraft V_{z,Ed} [kN]

Abbildung 6.39: Vorspannträger [VT] – Vorspannung – Querkraft V_{z,Ed}

Im Lastfall Vorspannung wird eine Kraft von $2 \cdot 1.113,85 kN = 2.227,70 kN$ durch den Querträger [QT] in die Zugstütze [ZS] abgeleitet.

Abbildung 6.40: Vorspannträger [VT] – Vorspannung – Biegemoment M_{y,Ed}

6.3.11 [VT] Versuchsdurchführung

Lastfälle

Lastfall Eigengewicht [kN] / [kN/m]

Abbildung 6.41: Vorspannträger [VT] – Versuchsdurchführung – Eigengewicht

 \oplus

Abbildung 6.42: Vorspannträger [VT] – Versuchsdurchführung – Versuchskräfte

(siehe Punkt 6.3.4)

$$P_{k,Spannstangen} = P_{k,Zug} \cdot \frac{A_{S,Spannstangen}}{A_{[ZS]} + 4 \cdot A_{S,Spannstangen}} = 1.484 \cdot \frac{8,17}{159 + 4 \cdot 8,17} = 63,25 \text{ kN}$$

Abbildung 6.43: Vorspannträger [VT] – Versuchsdurchführung – Vorspannkräfte

Lastfallkombination

Versuchsdurchführung

 $LK_{Versuchsdurchf\"uhrung} = 1,35 \cdot LF_{Eigengewicht} \oplus 1,00 \cdot P_{k,Spannstangen} \oplus 1,05 \cdot LF_{Vorspannung}$

Querkraft V_{z,Ed} [kN]

Abbildung 6.44: Vorspannträger [VT] – Versuchsdurchführung – Querkraft V_{z,Ed}

Im Lastfall Versuchsdurchführung wird eine Kraft von $2 \cdot 1.240,35 kN = 2.480,70 kN$ in den [QT]-Obergurt eingeleitet.

Abbildung 6.45: Vorspannträger [VT] – Versuchsdurchführung – Biegemoment My,Ed

6.3.12 [VTB] FLS Vorspannung

Lastfälle

Lastfall Eigengewicht [kN] / [kN/m]

Abbildung 6.46: Verteilbalken [VTB] – FLS Vorspannung – Eigengewicht

 \oplus

Abbildung 6.47: Verteilbalken [VTB] – FLS Vorspannung – Vorspannung FLS

P_{FLS,Vorspannung,Platte} siehe Punkt 2.2.5

Lastfallkombination

Versuchsdurchführung

 $LK_{FLS,Vorspannung} = 1,00 \cdot LF_{Eigengewicht} \oplus 1,05 \cdot P_{FLS,Vorspannung,Platte}$

Schnittgrößen

Querkraft V_{z,Ed} [kN]

Abbildung 6.48: Verteilbalken [VTB] – FLS Vorspannung – Querkraft Vz,Ed

Abbildung 6.49: Verteilbalken [VTB] – FLS Vorspannung – Biegemoment My,Ed

6.3.13 [WB1] Versuchsdurchführung

Lastfälle

Abbildung 6.50: Waagbalken 1 [WB1] – Versuchsdurchführung – Eigengewicht

 \oplus

Lastfall Versuchsdurchführung [kN]

Abbildung 6.51: Waagbalken 1 [WB1] – Versuchsdurchführung – Pressenkraft

Lastfallkombination

Versuchsdurchführung

 $LK_{Versuchsdurchf\ddot{u}hrung} = 1,35 \cdot LF_{Eigengewicht} \oplus 1,00 \cdot LF_{Versuchsdurchf\ddot{u}hrung}$

Schnittgrößen

Querkraft V_{z,Ed} [kN]

Abbildung 6.52: Waagbalken 1 [WB1] – Versuchsdurchführung – Querkraft V_{z,Ed}

Abbildung 6.53: Waagbalken 1 [WB1] – Versuchsdurchführung – Biegemoment My,Ed

6.3.14 [WB2] Versuchsdurchführung

Lastfälle

Abbildung 6.55: Waagbalken 2 [WB2] – Versuchsdurchführung – Pressenkraft

Lastfallkombination

Versuchsdurchführung

 $LK_{Versuchsdurchf\ddot{u}hrung} = 1,35 \cdot LF_{Eigengewicht} \oplus 1,00 \cdot LF_{Versuchsdurchf\ddot{u}hrung}$

Schnittgrößen

Querkraft V_{z,Ed} [kN]

Abbildung 6.57: Waagbalken 2 [WB2] – Versuchsdurchführung – Biegemoment My,Ed
6.3.15 [ZS] Vorspannung

Lastfälle

Lastfall Eigengewicht [kN] / [kN/m]

Abbildung 6.59: Zugstütze [ZS] – Vorspannung – Vorspannkräfte

Lastfallkombination

Vorspannung

 $LK_{Vorspannung} = 1,35 \cdot LF_{Eigengewicht} \oplus 1,05 \cdot LF_{Vorspannung}$

Schnittgrößen

Normalkraft N_{Ed} [kN]

-2243.29 -2247.74

Abbildung 6.61: Zugstütze [ZS] – Vorspannung – Querkraft V_{z,Ed} / V_{y,Ed}

Biegemoment M_{y,Ed} / M_{z,Ed} [kNm]

Abbildung 6.62: Zugstütze [ZS] – Vorspannung – Biegemoment M_{y,Ed} / M_{z,Ed}

6.3.16 [ZS] Versuchsdurchführung

Lastfälle

Lastfall Eigengewicht [kN] / [kN/m]

Abbildung 6.63: Zugstütze [ZS] – Versuchsdurchführung – Eigengewicht

Lastfall Versuchsdurchführung [kN]

 \oplus

Abbildung 6.64: Zugstütze [ZS] – Versuchsdurchführung – Versuchskräfte

Lastfallkombination

Vorspannung

 $LK_{Vorspannung} = 1,00 \cdot LF_{Eigengewicht} \oplus 1,00 \cdot LF_{Versuchsdurchf"uhrung}$

Schnittgrößen

6.4 Querschnittsnachweise

6.4.1 Allgemeines

Die nachfolgenden Abschnitte beinhalten einen Auszug der maßgebenden Spannungsausnutzungen aller Bauteile.

Die einwirkenden Spannungen werden elastisch ermittelt. Aus den einwirkenden Biegemomenten sowie der Normalkraft und dem Wölbmoment werden die Biegenormalspannungen in Stablängsrichtung ermittelt. Die Stäbe der gegenständlichen Konstruktion weisen ausschließlich ein Biegemoment um die starke Querschnitts-Hauptachse auf bzw. sind durch eine zentrische Normalkraft beansprucht. Daher kann diese Formel vereinfacht werden. Weiters kann auch die Berechnung der Schubspannungen auf die Beanspruchung zufolge der in z-Richtung wirkenden Querkräfte vereinfacht werden.

Um die beiden Spannungskomponenten Normal- und Schubspannungen zu überlagern bedient man sich der Vergleichsspannung nach Huber-Mises-Henckey. Diese Hypothese ist zur Anwendung bei duktilen Werkstoffen geeignet.

Spannungsberechnung

• Normalspannungen (exakt)

$$\sigma_{x,Ed} = \frac{N_{Ed}}{A} + \frac{M_{y,Ed}}{I_y} \cdot z_P - \frac{M_{z,Ed}}{I_z} \cdot y_P + \frac{M_{\omega,Ed}}{I_\omega} \cdot \omega_P$$

• Normalspannungen (vereinfacht)

$$\sigma_{x,Ed} = \frac{N_{Ed}}{A} + \frac{M_{y,Ed}}{I_y} \cdot z_P$$

• Schubspannungen (vereinfacht)

$$\tau_{Ed} = -\frac{V_{z,Ed} \cdot S_y}{I_y \cdot t}$$

• Vergleichsspannungen

$$\sigma_{v,Ed} = \sqrt{\sigma_{x,Ed}^2 + \sigma_{z,Ed}^2 - \sigma_{x,Ed} \cdot \sigma_{z,Ed} + 3 \cdot \tau_{Ed}^2}$$

Nachweisformat

$$\sigma_{\nu,Ed} \leq f_{y,d} = \frac{f_{y,k}}{\gamma_{M0}}$$

Nachweis der Schweißnähte nach dem vereinfachten Verfahren – Kehlnähte

• Vergleichswert der Beanspruchungen in der Schweißnaht

$$\sigma_{w,Ed} = \sqrt{\sigma_{\perp,Ed}^2 + \tau_{\parallel,Ed}^2 + \tau_{\perp,Ed}^2}$$

Nachweisformat

$$\sigma_{w,Ed} \leq f_{vw,Rd} = \frac{f_{u,k}}{\sqrt{3} \cdot \beta_w \cdot \gamma_{M2}} = \frac{490}{\sqrt{3} \cdot 0.9 \cdot 1.25} = 251.47 \, N/mm^2$$

6.4.2 [AT] Versuchsdurchführung

Spannungsausnutzung $\sigma_{v,Ed}$ / $f_{v,d}$ nach RSTAB [-] (ohne Berücksichtigung lokaler Lasteinleitung)

Lage x = 2,175 m - Feldmitte

(Querschnittsnachweis mit Berücksichtigung der lokalen Lasteinleitung)

Materialkennwerte

$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²	
f _{uk,S355J2+N (t ≤ 40 mm)} =	490	N/mm²	
E =	210.000	N/mm²	
γ _{M0} =	1,00		1
x =	2,175	m	untersuchte Stelle, gemessen vom Auflager x = 0,000 m
Einwirkungen (Feldmitte)			305
N _{Ed} =	0,00	kN	Normalkraft
V _{y,Ed} =	0,00	kN	Querkraft in y-Richtung
V _{z,Ed} =	0,00	kN	Querkraft in z-Richtung
M _{y,Ed} =	2.509,96	kNm	Biegemoment um die y-Achse
M _{z,Ed} =	0,00	kNm	Biegemoment um die z-Achse
$M_{x,Ed} =$	0,00	kNm	Torsionsmoment 989 92
M _{xp,Ed} =	0,00	kNm	primäres Torsionsmoment
M _{xs,Ed} =	0,00	kNm	sekundäres Torsionsmoment
$M_{\omega,Ed}$ =	0,00	kNm²	Wölbmoment
Querschnittskennwerte			
A =	383,00	cm²	Querschnittsfläche (Flächenmoment 0. Ordnung)
$A_{z,P} = S_{y,P} =$	0,00	cm³	statisches Moment um die y-Achse (Flächenmmoment 1. Ordnung)
$A_{\gamma,P} = S_{z,P} =$	0,00	cm³	statisches Moment um die z-Achse (Flächenmmoment 1. Ordnung)
$A_{zz} = I_y =$	329.300	cm⁴	Trägheitsmoment um die y-Achse (Flächenmoment 2. Ordnung)
z _P =	-35,80	cm	z-Koordinate des untersuchten Spannungspunktes
$A_{yy} = I_z =$	18.800	cm⁴	Trägheitsmoment um die z-Achse (Flächenmoment 2. Ordnung)
y _P =	0,00	cm	y-Koordinate des untersuchten Spannungspunktes
I. =	1.590	cm⁴	Torsionsträgheitsmoment
$A_{mm} = I_m =$	21.400.000	cm ⁶	Wölbwiderstand
$\omega_{\rm p} =$	0,00	cm²	Einheitsverwölbung des untersuchten Spannungspunktes
t =	305,00	mm	Blechstärke am betrachteten Querschnitt
Spannungen			
σ _{x Ed} =	-272,87	N/mm²	
$\sigma_{z,Ed} =$	-11,68	N/mm²	LD _{ULS} 08 - Fläche A ₄
$ au_{Ed} =$	0,00	N/mm²	
$\sigma_{v,Ed} / f_{y,d} =$	0,75	≤ 1,00	

6.4.3 [LT] Vorspannung

Spannungsausnutzung $\sigma_{v,Ed}$ / $f_{y,d}$ nach RSTAB [-] (ohne Berücksichtigung lokaler Lasteinleitung)

Abbildung 6.69: Längsträger [LT] – Vorspannung – Spannungsausnutzung $\sigma_{v,Ed}$ / $f_{y,d}$

Lage x = 2,640 m - Feldmitte

(Querschnittsnachweis mit Berücksichtigung der lokalen Lasteinleitung)

Materialkennwerte

$f_{yk,S355J2+N (t \le 40 \text{ mm})} = f_{uk,S355J2+N (t \le 40 \text{ mm})} = E =$	355 490 210.000	N/mm² N/mm² N/mm²			
γ _{M0} = x =	1,00 2,640	m	untersuchte Stelle, gemessen vor	n Auflager x = 0,000 m	
Einwirkungen (Feldmitte)					
$N_{Ed} =$ $V_{y,Ed} =$ $V_{z,Ed} =$ $M_{y,Ed} =$ $M_{z,Ed} =$	0,00 0,00 1.123,87 927,22 0,00	kN kN kN kNm kNm	Normalkraft Querkraft in y-Richtung Querkraft in z-Richtung Biegemoment um die y-Achse Biegemoment um die z-Achse	+ 420 + 95 ti ²⁰ 190 20 ti 95 ti + 1 + 1 + 1	
$M_{x,Ed} = M_{xp,Ed} = M_{xs,Ed} = M_{xs,Ed} = M_{\omega,Ed} = M_{\omega,E$	0,00 0,00 0,00 0,00	kNm kNm kNm kNm²	Torsionsmoment primäres Torsionsmoment sekundäres Torsionsmoment Wölbmoment		640 700
Querschnittskennwerte					
$A =$ $A_{z,P} = S_{y,P} =$ $A_{y,P} = S_{z,P} =$	508,00 0,00 0,00	cm² cm³ cm³	Querschnittsfläche (Flächenmon statisches Moment um die y-Ach: statisches Moment um die z-Ach:	nent 0. Ordnung) se (Flächenmmoment 1. C se (Flächenmmoment 1. C	Drdnung) Drdnung)
$A_{zz} = I_y = Z_p =$	370.377 -35,00	cm⁴ cm	Trägheitsmoment um die y-Achs z-Koordinate des untersuchten S _i	e (Flächenmoment 2. Ord. pannungspunktes	nung)
$A_{yy} = I_z =$ $y_P =$	65.353 0,00	cm⁴ cm	Trägheitsmoment um die z-Achse y-Koordinate des untersuchten S	e (Flächenmoment 2. Ordi pannungspunktes	nung)
$I_{t} = A_{\omega\omega} = I_{\omega} = \omega_{p} = \omega_{p} = \omega_{p}$	98.840 29.030.000 0,00	cm⁴ cm ⁶ cm²	Torsionsträgheitsmoment Wölbwiderstand Einheitsverwölbung des untersud	chten Spannungspunktes	
b =	420,00	mm	Blechstärke am betrachteten Qu	erschnitt	

Spannungen

$\sigma_{x,Ed}$ =	-87,62 N/mm²	
$\sigma_{z,Ed}$ =	-58,86 N/mm²	LD _{ULS} 05 - Fläche A ₉ / A ₁₀
τ_{Ed} =	0,00 N/mm²	
$\sigma_{v,Ed} / f_{v,d} =$	0,22 ≤ 1,00	

Lage x = 2,640 m - Feldmitte

(Schweißnahtnachweis mit Berücksichtigung der lokalen Lasteinleitung)

Materialkennwerte (Schweißnaht)

, · · · · ·	,	N/	
† _{uk,S355J2+N (t ≤ 40 mm)} =	490	N/mm ²	
t _{vw,Rd,S355J2+N} =	251,47	N/mm²	
E =	210.000	N/mm-	
γ _{M2} =	1,25		
x =	2,640	m	untersuchte Stelle, gemessen vom Auflager x = 0,000 m
Einwirkungen (Feldmitte)			490
N _{Ed} =	0,00	kN	Normalkraft
V _{y,Ed} =	0,00	kN	Querkraft in y-Richtung
$V_{z,Ed} =$	1.123,87	kN	Querkraft in z-Richtung
$M_{y,Ed} =$	927,22	kNm	Biegemoment um die y-Achse
M _{z,Ed} =	0,00	kNm	Biegemoment um die z-Achse
M _{x,Ed} =	0,00	kNm	Torsionsmoment
M _{xp,Ed} =	0,00	kNm	primäres Torsionsmoment
M _{xs,Ed} =	0,00	kNm	sekundäres Torsionsmoment
$M_{\omega,Ed}$ =	0,00	kNm²	Wölbmoment
Querschnittskennwerte			
A =	508,00	cm²	Querschnittsfläche (Flächenmoment 0. Ordnung)
$A_{7,P} = S_{7,P} =$	-4.221,00	cm³	statisches Moment um die y-Achse (Flächenmmoment 1. Ordnung)
$A_{y,P} = S_{z,P} =$	0,00	cm³	statisches Moment um die z-Achse (Flächenmmoment 1. Ordnung)
A., = I., =	370.377	cm⁴	Träaheitsmoment um die v-Achse (Flächenmoment 2. Ordnuna)
$z_P =$	-32,00	cm	z-Koordinate des untersuchten Spannungspunktes
A = I =	65.353	cm⁴	Träaheitsmoment um die z-Achse (Flächenmoment 2. Ordnuna)
$y_P =$	0,00	cm	y-Koordinate des untersuchten Spannungspunktes
I _t =	98.840	cm⁴	Torsionsträgheitsmoment
$A_{\omega\omega} = I_{\omega} =$	29.030.000	cm ⁶	Wölbwiderstand
ω _p =	0,00	cm²	Einheitsverwölbung des untersuchten Spannungspunktes
2·a =	10,00	mm	Schweißnahtstärke (2 ·Kehlnahtstärke)
Spannungen			
$\tau_{\perp,Ed}$ =	0,00	N/mm²	keine Berücksichtigung von Normalspannungen parallel zur Schweißnaht
$\sigma_{\perp,\text{Ed}}$ =	-180,83	N/mm²	LD _{ULS} 05 - Fläche A ₃ / A ₇
$\tau_{\parallel,Ed} =$	128,08	N/mm²	
$\sigma_{w,Ed} / f_{vw,Rd} =$	0,88	≤ 1,00	

6.4.4 [LT] Versuchsdurchführung

Spannungsausnutzung $\sigma_{v,Ed}$ / $f_{v,d}$ nach RSTAB [-] (ohne Berücksichtigung lokaler Lasteinleitung)

Abbildung 6.70: Längsträger [LT] – Versuchsdurchführung – Spannungsausnutzung $\sigma_{v,Ed}$ / $f_{y,d}$

Lage x = 0,000 m - Auflager

(Schweißnahtnachweis mit Berücksichtigung der lokalen Lasteinleitung)

Materialkennwerte (Schweißnaht)

$f_{uk,S355J2+N (t \le 40 \text{ mm})} = f_{vw,Rd,S355J2+N} = E =$	490 251,47 210.000	N/mm² N/mm² N/mm²			
γ _{M2} =	1,25				
x =	0,000 1	m	untersuchte Stelle, gemessen vo	om Auflager x = 0,000 m	
Einwirkungen (Auflager)				420 †	
N _{Ed} =	0,00 l	kN	Normalkraft	95 20 190 20 95	
V _{y,Ed} =	0,00 l	kN	Querkraft in y-Richtung		[∞] + →
V _{z,Ed} =	-628,24 l	kN	Querkraft in z-Richtung		1
M _{y,Ed} =	0,00 l	kNm	Biegemoment um die y-Achse		
M _{z,Ed} =	0,00 l	kNm	Biegemoment um die z-Achse		
M _{x,Ed} =	0,00 l	kNm	Torsionsmoment		640 700
M _{xp,Ed} =	0,00 l	kNm	primäres Torsionsmoment		
M _{xs,Ed} =	0,00 l	kNm	sekundäres Torsionsmoment		
$M_{\omega,Ed}$ =	0,00	kNm²	Wölbmoment		

Querschnittskennwerte

A =	508,00	cm²	Querschnittsfläche (Flächenmoment 0. Ordnung)
$\begin{aligned} A_{z,P} &= S_{y,P} = \\ A_{y,P} &= S_{z,P} = \end{aligned}$	-4.221,00	cm³	statisches Moment um die y-Achse (Flächenmmoment 1. Ordnung)
	0,00	cm³	statisches Moment um die z-Achse (Flächenmmoment 1. Ordnung)
$A_{zz} = I_y =$	370.377	cm⁴	Trägheitsmoment um die y-Achse (Flächenmoment 2. Ordnung)
$Z_p =$	-32,00	cm	z-Koordinate des untersuchten Spannungspunktes
$A_{yy} = I_z =$	65.353	cm⁴	Trägheitsmoment um die z-Achse (Flächenmoment 2. Ordnung)
$y_P =$	0,00	cm	y-Koordinate des untersuchten Spannungspunktes
$I_{t} = A_{\omega\omega} = I_{\omega} = \omega_{p} =$	98.840	cm⁴	Torsionsträgheitsmoment
	29.030.000	cm ⁶	Wölbwiderstand
	0,00	cm²	Einheitsverwölbung des untersuchten Spannungspunktes
2·a =	10,00	mm	Schweißnahtstärke (2 ·Kehlnahtstärke)

Spannungen

$\tau_{\perp,Ed} =$	0,00 N/mm ²
O⊥,Ed −	-107,85 N/IIIII
τ _{,Ed} =	71,60 N/mm*
$\sigma_{w,Ed} / f_{vw,Rd} =$	0,73 ≤ 1,00

keine Berücksichtigung von Normalspannungen parallel zur Schweißnaht ${\rm LD}_{\rm US} 07 - {\rm Fläche}\; {\rm A}_1$

Lage x = 1,360 m – Spannglieddurchführung

(Querschnittsnachweis mit Berücksichtigung der lokalen Lasteinleitung und der Spannungskonzentration zufolge Spannglieddurchführung)

Materialkennwerte

$f_{yk,S355J2+N (t \le 40 \text{ mm})} =$ $f_{uk,S355J2+N (t \le 40 \text{ mm})} =$ E =	355 r 490 r 210.000 r	N/mm² N/mm² N/mm²		
γ _{M0} = x =	1,00 1,360 r	m	untersuchte Stelle, gemessen v	om Auflager x = 0,000 m
Einwirkungen (Durchführung	Spannstange)			420
$N_{Ed} = V_{y,Ed} = V_{z,Ed} = V_{z,Ed} = M_{y,Ed} = M_{z,Ed} = M_{z,Ed} = M_{x,Ed} = M_{xp,Ed} = M_{xp,Ed} = M_{xs,Ed} = M_{xo,Ed} = M_$	0,00 0,00 -609,85 -733,75 0,00 0,00 0,00 0,00	kN kN kNm kNm kNm kNm kNm	Normalkraft Querkraft in y-Richtung Querkraft in z-Richtung Biegemoment um die y-Achse Biegemoment um die z-Achse Torsionsmoment primäres Torsionsmoment sekundäres Torsionsmoment Wölbmoment	
Querschnittskennwerte				
A =	508,00 (cm²	Querschnittsfläche (Flächenmo	oment 0. Ordnung)
$A_{z,P} = S_{y,P} =$ $A_{y,P} = S_{z,P} =$	0,00 c	cm³ cm³	statisches Moment um die y-Ac statisches Moment um die z-Ac	hse (Flächenmmoment 1. Ordnung) hse (Flächenmmoment 1. Ordnung)
$A_{zz} = I_y = z_p =$	370.377 (35,00 (cm⁴ cm	Trägheitsmoment um die y-Ach z-Koordinate des untersuchten	nse (Flächenmoment 2. Ordnung) Spannungspunktes
$A_{yy} = I_z =$	65.353 (cm ⁴	Trägheitsmoment um die z-Ach	nse (Flächenmoment 2. Ordnung)

 0,00 cm
 y-Koordinate des untersuchten Spannungspunktes

 98.840 cm⁴
 Torsionsträgheitsmoment

Wölbwiderstand Einheitsverwölbung des untersuchten Spannungspunktes

Blechstärke am betrachteten Querschnitt

Spannungen

y_P =

 $I_t =$

ω_P =

b =

 $A_{\omega\omega} = I_{\omega} =$

$3 \cdot \sigma_{x,Ed} =$	-208,01 N/mm²
$\sigma_{z,Ed}$ =	-17,21 N/mm²
τ_{Ed} =	0,00 N/mm²
$\sigma_{v,Ed} / f_{y,d} =$	0,56 ≤ 1,00

29.030.000 cm⁶

0,00 cm²

40,00 mm

LD_{uls}04 - Fläche A₁

Lage x = 1,360 m – Spannglieddurchführung (Querschnittsnachweis mit Berücksichtigung der lokalen Lasteinleitung und der Querschnittsschwächung zufolge Spannglieddurchführung)

$f_{uk,S355J2+N(t \le 40 \text{ mm})} = f_{vw,Rd,S355J2+N} =$	490 251,47	N/mm² N/mm²		
E =	210.000	N/mm²		T
γ _{M2} =	1,25			
x =	1,360	m	untersuchte Stelle, gemessen vom Auflager x = 0,000 m	
Einwirkungen (Auflager)			420	
N _{Ed} =	0,00	kN	Normalkraft 95 120 190 20 95	
V _{y,Ed} =	0,00	kN	Querkraft in y-Richtung	+
V _{z,Ed} =	-609,85	kN	Querkraft in z-Richtung	
M _{y,Ed} =	-733,75	kNm	Biegemoment um die y-Achse	
$M_{z,Ed} =$	0,00	kNm	Biegemoment um die z-Achse	
M _{x,Ed} =	0,00	kNm	Torsionsmoment	700
M _{xp,Ed} =	0,00	kNm	primäres Torsionsmoment	
M _{xs,Ed} =	0,00	kNm	sekundäres Torsionsmoment	
$M_{\omega,Ed} =$	0,00	kNm²	Wölbmoment	
Querschnittskennwerte	508.00	cm ²	Querschnittsfläche (Flächenmoment (), Ordnung)	
A -	508,00	CIII	Quersenniesjuche (nucliennioment o. orunang)	
$A_{z,P} = S_{y,P} =$	-4.221,00	cm³	statisches Moment um die y-Achse (Flächenmmoment 1. Ordr	iung)
$A_{y,P} = S_{z,P} =$	0,00	cm³	statisches Moment um die z-Achse (Flächenmmoment 1. Ordn	ung)
$A_{zz} = I_y =$	343.443	cm⁴	Trägheitsmoment um die y-Achse (Flächenmoment 2. Ordnun	g)
z _p =	32,00	cm	z-Koordinate des untersuchten Spannungspunktes	
$A_{yy} = I_z =$	65.353	cm⁴	Trägheitsmoment um die z-Achse (Flächenmoment 2. Ordnun	g)
y _P =	0,00	cm	y-Koordinate des untersuchten Spannungspunktes	
I _t =	98.840	cm⁴	Torsionsträgheitsmoment	
$A_{\omega\omega} = I_{\omega} =$	29.030.000	cm ⁶	Wölbwiderstand	
ω _p =	0,00	cm²	Einheitsverwölbung des untersuchten Spannungspunktes	
2·a =	10,00	mm	Blechstärke am betrachteten Querschnitt	
Spannungen				
$\tau_{\perp,Ed}$ =	0,00	N/mm²		
$\sigma_{\perp,Ed}$ =	-137,00	N/mm²	LD _{ULS} 04 - Fläche A ₂	
$\tau_{\parallel,Ed} =$	74,95	N/mm²		

0,62 ≤ 1,00

Materialkennwerte

 $\sigma_{w,Ed} / f_{vw,Rd} =$

6.4.5 [LTu] FLS Vorspannung

Spannungsausnutzung $\sigma_{v,Ed}$ / $f_{v,d}$ nach RSTAB [-] (ohne Berücksichtigung lokaler Lasteinleitung)

Abbildung 6.71: Längsträger unten [LTu] – FLS Vorspannung – Spannungsausnutzung $\sigma_{v,Ed}$ / $f_{y,d}$

Lage x = 0,670 *m* – *Spannglieddurchführung*

(Querschnittsnachweis mit Berücksichtigung der lokalen Lasteinleitung und der Spannungskonzentration sowie Querschnittsschwächung zufolge Spannglieddurchführung)

Materialkennwerte				
$f_{yk,S355J2+N (t \le 40 \text{ mm})} = f_{uk,S355J2+N (t \le 40 \text{ mm})} =$	355 490	N/mm² N/mm²		
E =	210.000	N/mm²		
γ _{M0} =	1,00			
x =	0,670	m	untersuchte Stelle, gemessen vor	m Auflager x = 0,000 m
Einwirkungen (Durchführun	g Spannstange)			250 + 1612016 40
N _{Ed} =	0,00	kN	Normalkraft	+49 10 120 10 149 + 11 11 +
V _{y,Ed} =	0,00	kN	Querkraft in y-Richtung	
V _{z,Ed} =	-68,75	kN	Querkraft in z-Richtung	
M _{y,Ed} =	6,48	kNm	Biegemoment um die y-Achse	
M _{z,Ed} =	0,00	kNm	Biegemoment um die z-Achse	
$M_{x,Ed} =$	0,00	kNm	Torsionsmoment	۵ ۵
M _{xp,Ed} =	0,00	kNm	primäres Torsionsmoment	
M _{xs,Ed} =	0,00	kNm	sekundäres Torsionsmoment	
$M_{\omega,Ed} =$	0,00	kNm²	Wölbmoment	5
Querschnittskennwerte				
A =	301,00	cm²	Querschnittsfläche (Flächenmon	nent 0. Ordnung)
$A_{z,P} = S_{y,P} =$	3.006,88	cm³	statisches Moment um die y-Ach	se (Flächenmmoment 1. Ordnung)
$A_{y,P} = S_{z,P} =$	0,00	cm³	statisches Moment um die z-Achs	se (Flächenmmoment 1. Ordnung)
$A_{zz} = I_y =$	131.221	cm⁴	Trägheitsmoment um die y-Achs	e (Flächenmoment 2. Ordnung)

0,00 cm z_P = z-Koordinate des untersuchten Spannungspunktes 14.686 cm⁴ $A_{yy} = I_z =$ Trägheitsmoment um die z-Achse (Flächenmoment 2. Ordnung) 0,00 cm y_P = y-Koordinate des untersuchten Spannungspunktes I_t = 29.959 cm⁴ Torsionsträgheitsmoment 4.784.000 cm⁶ $A_{\omega\omega} = I_{\omega} =$ Wölbwiderstand 0,00 cm² Einheitsverwölbung des untersuchten Spannungspunktes ω_P = 6,00 mm

optional

Blechstärke am betrachteten Querschnitt

Spannungen

2∙t =

$\sigma_{y,Ed}/f_{y,d} =$	0.13 ≤ 1.00
$\tau_{Ed} =$	26,26 N/mm²
σ _{z,Ed} =	0,00 N/mm²
$\sigma_{x,Ed}$ =	0,00 N/mm²

Lage x = 0,670 m – Spannglieddurchführung

Berücksichtigung (Schweißnahtnachweis mit der lokalen Lasteinleitung und der Querschnittsschwächung zufolge Spannglieddurchführung)

Materialkennwerte (Schweißnaht)

$f_{uk,S355J2+N(t \le 40 \text{ mm})} = f_{vw,Rd,S355J2+N} =$	490 251,47	N/mm² N/mm²	
Ε = γ _{M2} =	210.000 1,25	N/mm²	
x =	0,670	m	untersuchte Stelle, gemessen vom Auflager x = 0,000 m
Einwirkungen (Durchführung	(Spannstange)		250 t
$\begin{split} N_{Ed} &= \\ V_{y,Ed} &= \\ V_{z,Ed} &= \\ M_{y,Ed} &= \\ M_{z,Ed} &= \\ M_{x,Ed} &= \\ M_{xp,Ed} &= \\ M_{xp,Ed} &= \\ M_{xs,Ed} $	0,00 0,00 -68,75 6,48 0,00 0,00 0,00 0,00 0,00	kN kN kNm kNm kNm kNm kNm kNm ²	Normalkraft Querkraft in y-Richtung Querkraft in z-Richtung Biegemoment um die y-Achse Biegemoment um die z-Achse Torsionsmoment primäres Torsionsmoment sekundäres Torsionsmoment Wölbmoment
Querschnittskennwerte			
A =	301,00	cm²	Querschnittsfläche (Flächenmoment 0. Ordnung)
$\begin{array}{l} A_{z,P} = S_{y,P} = \\ A_{y,P} = S_{z,P} = \end{array}$	1.796,88 0,00	cm³ cm³	statisches Moment um die y-Achse (Flächenmmoment 1. Ordnung) statisches Moment um die z-Achse (Flächenmmoment 1. Ordnung)
$A_{zz} = I_y = $ $z_P =$	131.221 27,50	cm⁴ cm	Trägheitsmoment um die y-Achse (Flächenmoment 2. Ordnung) z-Koordinate des untersuchten Spannungspunktes

 $\mathsf{A}_{\mathsf{y}\mathsf{y}}=\mathsf{I}_{\mathsf{z}}=$ 14.686 0,00 29.959 4.784.000 $A_{\omega\omega} = I_{\omega} =$ 0,00

6,00

cm⁴	Trägheitsmoment um die z-Achse (Flächenmoment 2. Ordnung)
cm	y-Koordinate des untersuchten Spannungspunktes
cm⁴ cm ⁶ cm²	Torsionsträgheitsmoment Wölbwiderstand Einheitsverwölbung des untersuchten Spannungspunktes
mm	Blechstärke am betrachteten Querschnitt

Spannungen

y_P =

I_t =

ω_P =

2∙a =

$\tau_{\perp,Ed}$ =	0,00 N/mm²	
$\sigma_{\perp,Ed}$ =	0,00 N/mm²	optional
$\tau_{\parallel, Ed} =$	15,69 N/mm²	
$\sigma_{w,Ed} / f_{vw,Rd} =$	0,06 ≤ 1,00	

6.4.6 [QT]_{geschlossen} Versuchsdurchführung

Aus dem Lastfall Vorspannung resultieren an den Auflagern des Querträgers lediglich Normalspannungen in z-Richtung. Im Lastfall Versuchsdurchführung werden zusätzlich zu den Normalspannungen an den Auflagern zufolge Vorspannung, Biegenormal- und Schubspannungen im Feldbereich induziert, diese werden zu einer Vergleichsspannung nach Huber-Mises-Henckey kombiniert. Diese Vergleichsspannung ist maßgeblich für die Spannungsnachweise. Daher wird für diesen Querschnitt nur der Lastfall "Versuchsdurchführung" nachgewiesen.

Spannungsausnutzung $\sigma_{v,Ed}$ / $f_{v,d}$ nach RSTAB [-] (ohne Berücksichtigung lokaler Lasteinleitung)

Abbildung 6.72: Querträger geschlossen [QT] – Versuchsdurchführung – Spannungsausnutzung $\sigma_{v,Ed}$ / $f_{y,d}$

Lage x = 0,000 m - Auflager

(Querschnittsnachweis mit Berücksichtigung der lokalen Lasteinleitung)

Materialkennwerte

'yk,S355J2+N (t ≤ 40 mm) [—]	355	N/mm ²	
$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490	N/mm²	
E =	210.000	N/mm²	
γ _{M0} =	1,00		
x -	0.000	m	untersuchte Stelle, gemessen vom Auflager v =0.000 m
x -	0,000		untersuchte stehe, gemessen vom hajlager x = 0,000 m
Einwirkungen (Auflager)			
N _{Ed} =	0,00	kN	Normalkraft
V _{y,Ed} =	0,00	kN	Querkraft in y-Richtung
$V_{z,Ed} =$	3.588,46	kN	Querkraft in z-Richtung
M _{y,Ed} =	0,00	kNm	Biegemoment um die y-Achse
M _{z,Ed} =	0,00	kNm	Biegemoment um die z-Achse
M _{x,Ed} =	0,00	kNm	Torsionsmoment
M _{xp,Ed} =	0,00	kNm	primäres Torsionsmoment
M _{xs,Ed} =	0,00	kNm	sekundäres Torsionsmoment
$M_{\omega,Ed}$ =	0,00	kNm²	Wölbmoment
Querschnittskennwerte			
A =	676,00	cm²	Querschnittsfläche (Flächenmoment 0. Ordnung)
$A_{7,P} = S_{4,P} =$	0,00	cm³	statisches Moment um die v-Achse (Flächenmmoment 1. Ordnung)
$A_{y,P}^{z,r} = S_{z,P}^{y,r} =$	0,00	cm³	statisches Moment um die z-Achse (Flächenmmoment 1. Ordnung)
A ₂₂ = I ₁₂ =	982.761	cm⁴	Träaheitsmoment um die v-Achse (Flächenmoment 2. Ordnuna)
$z_{\rm P} =$	-50,00	cm	z-Koordinate des untersuchten Spannungspunktes
$A_{yy} = I_z =$	93.081	cm⁴	Trägheitsmoment um die z-Achse (Flächenmoment 2. Ordnung)
y _P =	0,00	cm	y-Koordinate des untersuchten Spannungspunktes
I _t =	113.255	cm⁴	Torsionsträgheitsmoment
$A_{\mu\nu} = I_{\mu} =$	130.700.000	cm ⁶	Wölbwiderstand
ω _p =	0,00	cm²	Einheitsverwölbung des untersuchten Spannungspunktes
b =	500,00	mm	Blechstärke am betrachteten Querschnitt
Spannungen			
б . с. =	0.00	N/mm²	
S _{x,Ed} =	-24.74	N/mm ²	LD _{III} 02 [QT] _{esechlossen} - Fläche A _s
- 2,Eu	,, ,	N/mm ²	· · · • • •
• _{Ed} —	0,00	11/11/11	
$\sigma_{v,Ed} / f_{v,d} =$	0,07	≤ 1,00	

Lage x = 0,000 m - Auflager

(Schweißnahtnachweis mit Berücksichtigung der lokalen Lasteinleitung)

Materialkennwerte (Schweißnaht)

† _{uk,S355J2+N (t ≤ 40 mm)} =	490	N/mm ²	
$f_{vw,Rd,S355J2+N} =$	251,47	N/mm²	
E =	210.000	N/mm²	
γ _{M2} =	1,25		[™] + [↓] [↓] + [↓]
x =	0,000	m	untersuchte Stelle, gemessen vom Auflager x = 0,000 m
Einwirkungen (Auflager)			
N _{Ed} =	0,00	kN	Normalkraft
V _{y,Ed} =	0,00	kN	Querkraft in y-Richtung
V _{z,Ed} =	3.588,46	kN	Querkraft in z-Richtung
M _{y,Ed} =	0,00	kNm	Biegemoment um die y-Achse
$M_{z,Ed} =$	0,00	kNm	Biegemoment um die z-Achse
M _{x,Ed} =	0,00	kNm	Torsionsmoment
M _{xp,Ed} =	0,00	kNm	primäres Torsionsmoment
M _{xs,Ed} =	0,00	kNm	sekundäres Torsionsmoment
$M_{\omega,Ed}$ =	0,00	kNm²	Wölbmoment
Querschnittskennwerte			
A =	676,00	cm²	Querschnittsfläche (Flächenmoment 0. Ordnung)
$A_{z,P} = S_{v,P} =$	-7.275,00	cm³	statisches Moment um die y-Achse (Flächenmmoment 1. Ordnung)
$A_{y,P} = S_{z,P} =$	0,00	cm³	statisches Moment um die z-Achse (Flächenmmoment 1. Ordnung)
$A_{77} = I_{y} =$	982.761	cm⁴	Trägheitsmoment um die y-Achse (Flächenmoment 2. Ordnung)
$z_p =$	-47,00	cm	z-Koordinate des untersuchten Spannungspunktes
$A_{yy} = I_z =$	93.081	cm⁴	Trägheitsmoment um die z-Achse (Flächenmoment 2. Ordnung)
y _P =	0,00	cm	y-Koordinate des untersuchten Spannungspunktes
₊ =	113.255	cm⁴	Torsionsträaheitsmoment
A _{ee} = _e =	130.700.000	cm ⁶	Wölbwiderstand
$\omega_{\rm p} =$	0,00	cm²	Einheitsverwölbung des untersuchten Spannungspunktes
2·a =	16,00	mm	Schweißnahtstärke (2 ·Kehlnahtstärke)
Spannungen			
$\tau_{\perp,Ed}$ =	0,00	N/mm²	keine Berücksichtigung von Normalspannungen parallel zur Schweißnaht
$\sigma_{\perp,Ed}$ =	-166,33	N/mm²	$LD_{ULS}02 [QT]_{geschlossen}$ - Fläche A ₃
$\tau_{\parallel,Ed} =$	166,02	N/mm²	
$\sigma_{w,Ed} / f_{vw,Rd} =$	0,93	≤ 1,00	

Lage x = 0,800 m – Endpressen

(Schweißnahtnachweis mit Berücksichtigung der lokalen Lasteinleitung)

Materialkennwerte (Schweißnaht)

	$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490	N/mm²	
	f _{vw Rd S35512+N} =	251,47	N/mm²	
	E =	210.000	N/mm²	
	γ _{M2} =	1,25		
	x =	0,800	m	untersuchte Stelle, gemessen vom Auflager x = 0,000 m
Eir	nwirkungen (Feldmitte, P	resse)		
	N _{Ed} =	0,00	kN	Normalkraft
	V _{y,Ed} =	0,00	kN	Querkraft in y-Richtung
	V _{z,Ed} =	-3.592,70	kN	Querkraft in z-Richtung
	M _{y,Ed} =	-2.872,46	kNm	Biegemoment um die y-Achse
	M _{z,Ed} =	0,00	kNm	Biegemoment um die z-Achse
	M _{x,Ed} =	0,00	kNm	Torsionsmoment
	M _{xp,Ed} =	0,00	kNm	primäres Torsionsmoment
	M _{xs,Ed} =	0,00	kNm	sekundäres Torsionsmoment
	M _{w,Ed} =	0,00	kNm²	Wölbmoment
Qı	ierschnittskennwerte			
	A =	676,00	cm ²	Querschnittsfläche (Flächenmoment 0. Ordnung)
	$A_{7,P} = S_{V,P} =$	7.275,00	cm³	statisches Moment um die y-Achse (Flächenmmoment 1. Ordnung)
	$A_{y,P} = S_{z,P} =$	0,00	cm³	statisches Moment um die z-Achse (Flächenmmoment 1. Ordnung)
	$A_{zz} = I_y =$	982.761	cm⁴	Trägheitsmoment um die y-Achse (Flächenmoment 2. Ordnung)
	z _p =	47,00	cm	z-Koordinate des untersuchten Spannungspunktes
	$A_{yy} = I_z =$	93.081	cm⁴	Trägheitsmoment um die z-Achse (Flächenmoment 2. Ordnung)
	$y_{\rm P} =$	0,00	cm	y-Koordinate des untersuchten Spannungspunktes
	I _t =	113.255	cm⁴	Torsionsträgheitsmoment
	$A_{mm} = I_m =$	130.700.000	cm ⁶	Wölbwiderstand
	ω _p =	0,00	cm²	Einheitsverwölbung des untersuchten Spannungspunktes
	2·a =	16,00	mm	Schweißnahtstärke (2 ·Kehlnahtstärke)
Sp	annungen			
	$\tau_{\perp,Ed}$ =	0,00	N/mm²	keine Berücksichtigung von Normalspannungen parallel zur Schweißnaht
	$\sigma_{\perp,Ed}$ =	153,69	N/mm²	$LD_{ULS}O1 [QT]_{geschlossen} - 2x Fläche A_1 = A_w$
	$\tau_{\parallel, Ed} =$	166,22	N/mm²	
	$\sigma_{w,Ed}/f_{vw,Bd} =$	0,90	≤ 1,00	

Lage x = 2,050 m - Feldmitte

(Querschnittsnachweis mit Berücksichtigung der lokalen Lasteinleitung)

Materialkennwerte

f _{yk,S355J2+N}	_{V (t ≤ 40 mm)} = 355	N/mm²		
f _{uk,S355J2+N}	_{V (t ≤ 40 mm)} = 490	N/mm²		
E =	210.000	N/mm²		
γ _{M0} =	1,00	I		
x =	2,050	m	untersuchte Stelle, gemessen vo	om Auflager x = 0,000 m
Einwirkunge	n (Feldmitte, Presse)			
N _{Fd} =	0,00	kN	Normalkraft	500
$V_{v,Ed} =$	0,00	kN	Querkraft in y-Richtung	+ 150 20 + 150 20 + 150
V _{z,Ed} =	-599,34	kN	Querkraft in z-Richtung	
M _{y,Ed} =	-5.117,49	kNm	Biegemoment um die y-Achse	
M _{z,Ed} =	0,00	kNm	Biegemoment um die z-Achse	
M _{x,Ed} =	0,00	kNm	Torsionsmoment	040
M _{xp,Ed} =	0,00	kNm	primäres Torsionsmoment	
M _{xs,Ed} =	0,00	kNm	sekundäres Torsionsmoment	
$M_{\omega,Ed} =$	0,00	kNm²	Wölbmoment	
Querschnitts	skennwerte			
A =	676,00	cm²	Querschnittsfläche (Flächenmo	ment 0. Ordnung)
$A_{z,P} = S_{y,P}$	= 0,00	cm ³	statisches Moment um die y-Ach	hse (Flächenmmoment 1. Ordnung)
$A_{y,P} = S_{z,P}$	= 0,00	cm³	statisches Moment um die z-Ach	nse (Flächenmmoment 1. Ordnung)
$A_{zz} = I_y =$	982.761	cm⁴	Trägheitsmoment um die y-Ach	se (Flächenmoment 2. Ordnung)
z _P =	50,00	cm	z-Koordinate des untersuchten	Spannungspunktes
$A_{yy} = I_z =$	93.081	cm⁴	Trägheitsmoment um die z-Achs	se (Flächenmoment 2. Ordnung)
y _P =	0,00	cm	y-Koordinate des untersuchten :	Spannungspunktes
I _t =	113.255	cm⁴	Torsionsträgheitsmoment	
$A_{\omega\omega} = I_{\omega}$	= 130.700.000	cm ⁶	Wölbwiderstand	
ω _P =	0,00	cm²	Einheitsverwölbung des untersu	ıchten Spannungspunktes
b =	500,00	mm	Blechstärke am betrachteten Qu	uerschnitt
Spannungen	1			
σ _{x,Ed} =	-260,36	N/mm²		
$\sigma_{z,Ed}$ =	22,58	N/mm²	LD _{ULS} 01 [QT] _{geschlossen} - Fläche A _{Las}	steinleitungsplatte
τ_{Ed} =	0,00	N/mm²		
$\sigma_{v,Ed}/f_{v,c}$	₁ = 0,77	≤ 1,00		

6.4.7 [QT]_{offen} Versuchsdurchführung

Beim Lastfall "Vorspannung" kommt es an den Auflagern des Querträgers lediglich zu Normalspannungen in z-Richtung. Im Lastfall "Versuchsdurchführung" werden zusätzlich zu den Normalspannungen an den Auflagern zufolge Vorspannung, Biegenormal- und Schubspannungen im Feldbereich induziert, diese werden zu einer Vergleichsspannung nach Huber-Mises-Henckey kombiniert. Diese Vergleichsspannung ist maßgeblich für die Spannungsnachweise. Daher wird für diesen Querschnitt nur der Lastfall "Versuchsdurchführung" nachgewiesen.

Spannungsausnutzung $\sigma_{v,Ed}$ / $f_{y,d}$ nach RSTAB [-] (ohne Berücksichtigung lokaler Lasteinleitung)

Abbildung 6.73: Querträger offen [QT] – Versuchsdurchführung – Spannungsausnutzung $\sigma_{v,Ed}$ / $f_{y,d}$

Lage x = 0,000 m - Auflager

(Querschnittsnachweis mit Berücksichtigung der lokalen Lasteinleitung)

Materialkennwerte

$f_{yk,5355J2+N (t \le 40 \text{ mm})} =$ $f_{uk,5355J2+N (t \le 40 \text{ mm})} =$ E =	355 490 210.000	N/mm² N/mm² N/mm²	
γ _{M0} =	1,00		╙ ┍╡<mark>╃</mark>╼╴───┍╪┰┍╪┰┍╪┰┍╪┱┍╪┱┍╪┱┍╪┱┍╪┱┍╪┱
x =	0,000	m	untersuchte Stelle, gemessen vom Auflager x = 0,000 m
Einwirkungen (Auflager)			
N _{Ed} =	0,00	kN	Normalkraft
V _{v.Ed} =	0,00	kN	Querkraft in y-Richtung
$V_{z,Ed} =$	3.589,58	kN	Querkraft in z-Richtung
M _{v Ed} =	0,00	kNm	Biegemoment um die y-Achse
M _{z,Ed} =	0,00	kNm	Biegemoment um die z-Achse
M _{x,Ed} =	0,00	kNm	Torsionsmoment
M _{xp,Ed} =	0,00	kNm	primäres Torsionsmoment
M _{xs.Fd} =	0,00	kNm	sekundäres Torsionsmoment
$M_{\omega,Ed} =$	0,00	kNm²	Wölbmoment
Querschnittskennwerte			
A =	610,40	cm²	Querschnittsfläche (Flächenmoment 0. Ordnung)
$A_{7,p} = S_{1,p} =$	-8.443,75	cm³	statisches Moment um die v-Achse (Flächenmmoment 1. Ordnung)
$A_{\gamma,P} = S_{z,P} =$	0,00	cm ³	statisches Moment um die z-Achse (Flächenmmoment 1. Ordnung)
$A_{rr} = I_{rr} =$	1.003.000	cm⁴	Träaheitsmoment um die v-Achse (Elächenmoment 2. Ordnuna)
$z_P =$	-46,50	cm	z-Koordinate des untersuchten Spannungspunktes
$A_{yy} = I_z =$	73.087	cm⁴	Trägheitsmoment um die z-Achse (Flächenmoment 2. Ordnung)
y _P =	0,00	cm	y-Koordinate des untersuchten Spannungspunktes
l. =	2.072	cm⁴	Torsionsträgheitsmoment
A _{ee} = I _e =	169.800.000	cm ⁶	Wölbwiderstand
$\omega_{\rm p}$ =	0,00	cm²	Einheitsverwölbung des untersuchten Spannungspunktes
t =	28,00	mm	Blechstärke am betrachteten Querschnitt
Spannungen			
$\sigma_{x,Ed}$ =	0,00	N/mm²	
$\sigma_{z,Ed}$ =	-31,08	N/mm²	$LD_{ULS}02 [QT]_{offen}$ - Fläche A ₄
τ_{Ed} =	107,92	N/mm²	
$\sigma_{v,Ed} / f_{y,d} =$	0,53	≤ 1,00	

Lage x = 0,000 m - Auflager

(Schweißnahtnachweis mit Berücksichtigung der lokalen Lasteinleitung)

Materialkennwerte (Schweißnaht)

	r			
	$t_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490	N/mm²	
	$f_{vw,Rd,S355J2+N} =$	251,47	N/mm ²	
	E =	210.000	N/mm²	
	γ _{M2} =	1,25		
	x =	0,000	m	untersuchte Stelle, gemessen vom Auflager x = 0,000 m
Ein	wirkungen (Auflager)			500
	N _{Ed} =	0,00	kN	Normalkraft
	V _{y,Ed} =	0,00	kN	Querkraft in y-Richtung
	V _{z,Ed} =	3.589,58	kN	Querkraft in z-Richtung
	M _{y,Ed} =	0,00	kNm	Biegemoment um die y-Achse
	M _{z,Ed} =	0,00	kNm	Biegemoment um die z-Achse
	M _{x,Ed} =	0,00	kNm	Torsionsmoment
	M _{xp,Ed} =	0,00	kNm	primäres Torsionsmoment
	M _{xs,Ed} =	0,00	kNm	sekundäres Torsionsmoment
	$M_{\omega,Ed}$ =	0,00	kNm²	Wölbmoment
Qu	erschnittskennwerte			
	A =	610,40	cm²	Querschnittsfläche (Flächenmoment 0. Ordnung)
	$A_{z,P} = S_{y,P} =$	-8.443,75	cm³	statisches Moment um die y-Achse (Flächenmmoment 1. Ordnung)
	$A_{\gamma,P} = S_{z,P} =$	0,00	ст³	statisches Moment um die z-Achse (Flächenmmoment 1. Ordnung)
	$A_{zz} = I_y =$	1.003.000	cm⁴	Trägheitsmoment um die y-Achse (Flächenmoment 2. Ordnung)
	z _p =	-46,50	cm	z-Koordinate des untersuchten Spannungspunktes
	$A_{yy} = I_z =$	73.087	cm⁴	Trägheitsmoment um die z-Achse (Flächenmoment 2. Ordnung)
	$y_{\rm P} =$	0,00	cm	y-Koordinate des untersuchten Spannungspunktes
	I ₊ =	2.072	cm⁴	Torsionsträgheitsmoment
	$A_{\omega\omega} = I_{\omega} =$	169.800.000	cm ⁶	Wölbwiderstand
	ω _p =	0,00	cm²	Einheitsverwölbung des untersuchten Spannungspunktes
	2·a =	16,00	mm	Schweißnahtstärke (2 ·Kehlnahtstärke)
Sp	annungen			
	$\tau_{\perp,Ed}$ =	0,00	N/mm²	keine Berücksichtigung von Normalspannungen parallel zur Schweißnaht
	$\sigma_{\perp, Ed}$ =	-54,38	N/mm²	LD _{ULS} 02 [QT] _{offen} - Fläche A ₃
	$\tau_{\parallel,Ed} =$	188,87	N/mm²	
	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,78	≤ 1,00	

Lage x = 0,800 m – Endpressen

(Schweißnahtnachweis mit Berücksichtigung der lokalen Lasteinleitung)

Materialkennwerte (Schweißnaht)

	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,95	≤ 1,00	
	$\tau_{\parallel,Ed} =$	189,07	N/mm²	
	$\sigma_{\perp, Ed}$ =	147,64	N/mm²	$LD_{ULS}01 \ [QT]_{geschlossen} - 2x \ Fläche \ A_1 = A_w$
	$\tau_{\perp,Ed}$ =	0,00	N/mm²	keine Berücksichtigung von Normalspannungen parallel zur Schweißnaht
Sp	annungen			
	2·a =	16,00	mm	Schweißnahtstärke (2 ·Kehlnahtstärke)
	ω _p =	0,00	cm²	Einheitsverwölbung des untersuchten Spannungspunktes
	$A_{\omega\omega} = I_{\omega} =$	169.800.000	cm ⁶	Wölbwiderstand
	I _t =	2.072	cm⁴	Torsionsträgheitsmoment
	y _P =	0,00	cm	y-Koordinate des untersuchten Spannungspunktes
	$A_{yy} = I_z =$	73.087	cm⁴	Trägheitsmoment um die z-Achse (Flächenmoment 2. Ordnung)
	$z_p =$	46,50	cm	z-Koordinate des untersuchten Spannungspunktes
	A ₇₇ = I ₁₇ =	1.003.000	cm⁴	Trägheitsmoment um die y-Achse (Flächenmoment 2. Ordnuna)
	$A_{y,P} = S_{y,P} = A_{y,P} = S_{z,P} = A_{y,P} = A_{y$	0,00	cm ³	statisches Moment um die z-Achse (Flächenmmoment 1. Ordnung)
	$A_{-n} = S_{+n} =$	8 443 75	cm ³	statisches Moment um die v-Achse (Flächenmmoment 1. Ordnung)
	A =	610,40	cm²	Querschnittsfläche (Flächenmoment 0. Ordnung)
Qu	erschnittskennwerte			
	$M_{\omega,Ed}$ =	0,00	kNm²	Wolbmoment
	M _{xs,Ed} =	0,00	kNm	sekundöres Torsionsmoment
	M _{xp,Ed} =	0,00	kNm	primäres Torsionsmoment
	M _{x,Ed} =	0,00	kNm	Torsionsmoment
	IVI _{z,Ed} =	0,00	кит	ыegenioment um ale z-Acnse
	M _{y,Ed} =	-2.873,20	kNm	Biegemoment um die y-Achse
	V _{z,Ed} =	-3.593,41	κN	Querkraft in z-Richtung
	V _{y,Ed} =	0,00	kN	Querkraft in y-Richtung
	N _{Ed} =	0,00	kN	Normalkraft
Ein	wirkungen (Feldmitte, Pr	esse)		700
	x =	0,800	m	untersuchte Stelle, gemessen vom Auflager x = 0,000 m
	γ _{M2} =	1,25		
	E =	210.000	N/mm²	
	$f_{vw,Rd,S355J2+N} =$	251,47	N/mm²	
	$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490	N/mm²	

Lage x = 2,050 m - Feldmitte

(Querschnittsnachweis mit Berücksichtigung der lokalen Lasteinleitung)

Materialkennwerte

$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²		-
f _{uk,S355J2+N (t ≤ 40 mm)} =	490	N/mm²		
E =	210.000	N/mm²		
γ _{M0} =	1,00		<u> </u>	Ħ
x =	2,050	m	untersuchte Stelle, gemessen vom Auflager x = 0,000 m	
Einwirkungen (Feldmitte,	Presse)			
N _{Ed} =	0,00	kN	Normalkraft	
V _{y,Ed} =	0,00	kN	Querkraft in y-Richtung	
V _{z,Ed} =	-599,40	kN	Querkraft in z-Richtung	
M _{v,Ed} =	-5.118,70	kNm	Biegemoment um die y-Achse	
M _{z,Ed} =	0,00	kNm	Biegemoment um die z-Achse	
M _{x,Ed} =	0,00	kNm	Torsionsmoment	
M _{xp,Ed} =	0,00	kNm	primäres Torsionsmoment	
M _{xs,Ed} =	0,00	kNm	sekundäres Torsionsmoment	
$M_{\omega,Ed}$ =	0,00	kNm²	Wölbmoment	
Querschnittskennwerte				
A =	610,40	cm²	Querschnittsfläche (Flächenmoment 0. Ordnung)	
$A_{7,P} = S_{4,P} =$	0,00	cm³	statisches Moment um die v-Achse (Flächenmmoment 1. Ordnung)	
$A_{y,P} = S_{z,P} =$	0,00	cm³	statisches Moment um die z-Achse (Flächenmmoment 1. Ordnung)	
A = I =	1 003 000	cm ⁴	Träaheitsmoment um die v-Achse (Elächenmoment 2 Ordnuna)	
7_{22} 1_y $7_0 =$	50.00	cm	z-Koordinate des untersuchten Spannungspunktes	
	73.087	cm⁴	Träaheitsmoment um die z-Achse (Flächenmoment 2. Ordnuna)	
$y_P =$	0,00	cm	y-Koordinate des untersuchten Spannungspunktes	
l. =	2 072	cm ⁴	Torsionsträgheitsmoment	
$\Delta = I =$	169 800 000	cm ⁶	Wölhwiderstand	
$\omega_{\rm P} = \omega_{\rm P}$	0,00	cm ²	Einheitsverwölbung des untersuchten Spannungspunktes	
b =	500,00	mm	Blechstärke am betrachteten Querschnitt	
Spannungen				
$\sigma_{x,Ed}$ =	-255,17	N/mm²		
$\sigma_{z,Ed}$ =	22,58	N/mm²	$LD_{ULS}01 \left[QT \right]_{offen} - Fläche A_{Lasteinleitungsplatte}$	
τ_{Ed} =	0,00	N/mm²		
$\sigma_{v,Ed} / f_{y,d} =$	0,75	≤ 1,00		

6.4.8 [QT] Torsionsabtragung Querträger

Eine Horizontalkraft quer zur [QT]-Stabachse kann am Untergurt nur dann angreifen wenn sich die Platte unsymmetrisch verformt. Dieses unerwünschte Verhalten wird durch einen sofortigen Versuchsabbruch abgewendet, da die Dichtungen der Pressen beschädigt würden und möglicherweise undicht werden bzw. zerstört werden könnten.

6.4.9 [VT] Versuchsdurchführung – [QT]_{geschlossen}

Aufgrund der großen lokalen Spannungen am Querträger [QT] im Versuch wird der Vorspannträger [VT] nur im Lastfall "Versuchsdurchführung" betrachtet.

Spannungsausnutzung $\sigma_{v,Ed}$ / $f_{y,d}$ nach RSTAB [-] (ohne Berücksichtigung lokaler Lasteinleitung)

Abbildung 6.74: Vorspannträger [VT] – [QT]_{geschlossen} – Versuchsdurchführung – Spannungsausnutzung $\sigma_{v,Ed} / f_{y,d}$ Lage x = 1,060 m - Auflager [QT]

(Querschnittsnachweis mit Berücksichtigung der lokalen Lasteinleitung) Materialkennwerte

$f_{vk,S355J2+N(t \le 40 \text{ mm})} =$	355 N/mm²	
$f_{uk,S35512+N(t < 40 \text{ mm})} =$	490 N/mm²	
E =	210.000 N/mm ²	
γ _{M0} =	1,00	
x =	1,060 m	untersuchte Stelle, gemessen vom Auflager x = 0,000 m
Einwirkungen (Auflager)		
N _{Ed} =	0,00 kN	Normalkraft
V _{y,Ed} =	0,00 kN	Querkraft in y-Richtung
V _{z,Ed} =	1.240,15 kN	Querkraft in z-Richtung
M _{v,Ed} =	-880,12 kNm	Biegemoment um die y-Achse
M _{z,Ed} =	0,00 kNm	Biegemoment um die z-Achse
M _{x,Ed} =	0,00 kNm	Torsionsmoment
M _{xp,Ed} =	0,00 kNm	primäres Torsionsmoment
M _{xs,Ed} =	0,00 kNm	sekundäres Torsionsmoment
$M_{\omega,Ed} =$	0,00 kNm²	Wölbmoment
Querschnittskennwerte		
A =	219,00 cm ²	Querschnittsfläche (Flächenmoment 0. Ordnung)
$A_{z,P} = S_{y,P} =$	0,00 cm ³	statisches Moment um die y-Achse (Flächenmmoment 1. Ordnung)
$A_{y,p} = S_{z,p} =$	0,00 cm ³	statisches Moment um die z-Achse (Flächenmmoment 1. Ordnung)
$A_{zz} = I_{y} =$	61.638 cm⁴	Trägheitsmoment um die y-Achse (Flächenmoment 2. Ordnung)
z _p =	21,00 cm	z-Koordinate des untersuchten Spannungspunktes
$A_{vvv} = I_7 =$	10.235 cm⁴	Trägheitsmoment um die z-Achse (Flächenmoment 2. Ordnung)
y _P =	0,00 cm	y-Koordinate des untersuchten Spannungspunktes
I _t =	19.248 cm⁴	Torsionsträgheitsmoment
$A_{mm} = I_m =$	1.435.000 cm ⁶	Wölbwiderstand
ω _p =	0,00 cm²	Einheitsverwölbung des untersuchten Spannungspunktes
b =	240,00 mm	Blechstärke am betrachteten Querschnitt
Spannungen		
$\sigma_{x,Ed}$ =	-299,85 N/mm²	
$\sigma_{z,Ed}$ =	-35,16 N/mm²	LD _{ULS} 02 [QT] _{geschlossen} - Fläche A ₅
τ_{Ed} =	0,00 N/mm²	
$\sigma_{v,Ed} / f_{y,d} =$	0,80 ≤ 1,00	

Lage x = 1,060 m - Auflager [QT]

(Schweißnahtnachweis mit Berücksichtigung der lokalen Lasteinleitung)

Materialkennwerte (Schweißnaht)

$f_{uk,S355J2+N (t \le 40 \text{ mm})} =$ $f_{vw,Rd,S355J2+N} =$ E = $\gamma_{M2} =$ x =	490 N/mm² 251,47 N/mm² 210.000 N/mm² 1,25 1,060 m	untersuchte Stelle, gemessen vom Auflager x = 0,000 m
Einwirkunaen (Auflaaer)		
$N_{Ed} =$ $V_{y,Ed} =$ $V_{z,Ed} =$ $M_{y,Ed} =$ $M_{z,Ed} =$ $M_{x,Ed} =$ $M_{xp,Ed} =$ $M_{xp,Ed} =$ $M_{xp,Ed} =$ $M_{xp,Ed} =$ $M_{xp,Ed} =$	0,00 kN 0,00 kN 1.240,15 kN -880,12 kNm 0,00 kNm 0,00 kNm 0,00 kNm 0,00 kNm	Normalkraft Querkraft in y-Richtung Querkraft in z-Richtung Biegemoment um die y-Achse Biegemoment um die z-Achse Torsionsmoment primäres Torsionsmoment sekundäres Torsionsmoment Wölbmoment
Querschnittskennwerte	0,00 KNII	
A =	219,00 cm ²	Querschnittsfläche (Flächenmoment 0. Ordnung)
$A_{z,P} = S_{y,P} =$ $A_{y,P} = S_{z,P} =$	-960,00 cm ³ 0,00 cm ³	statisches Moment um die y-Achse (Flächenmmoment 1. Ordnung) statisches Moment um die z-Achse (Flächenmmoment 1. Ordnung)
$A_{zz} = I_y =$ $z_P =$	61.638 cm⁴ 19,00 cm	Trägheitsmoment um die y-Achse (Flächenmoment 2. Ordnung) z-Koordinate des untersuchten Spannungspunktes
$A_{yy} = I_z =$ $y_P =$	10.235 cm⁴ 0,00 cm	Trägheitsmoment um die z-Achse (Flächenmoment 2. Ordnung) y-Koordinate des untersuchten Spannungspunktes
$I_t =$ $A_{\omega\omega} = I_{\omega} =$ $\omega_p =$ $2 \cdot a =$	19.248 cm ⁴ 1.435.000 cm ⁶ 0,00 cm ² 22,00 mm	Torsionsträgheitsmoment Wölbwiderstand Einheitsverwölbung des untersuchten Spannungspunktes Schweißnahtstärke (2 -Kehlnahtstärke)
Spannungen		
$\tau_{\perp,Ed} = \sigma_{\perp,Ed} = \tau_{\parallel,Ed} =$	0,00 N/mm² -225,52 N/mm² 87,80 N/mm²	keine Berücksichtigung von Normalspannungen parallel zur Schweißnaht LD _{uLS} 02 [QT] _{geschlossen} - Fläche A ₅
$\sigma_{w,Ed} / f_{vw,Rd} =$	0,96 ≤ 1,00	

6.4.10 [VT] Versuchsdurchführung – [QT]_{offen}

Aufgrund der großen lokalen Spannungen am Querträger [QT] im Versuch wird der Vorspannträger [VT] nur im Lastfall "Versuchsdurchführung" betrachtet.

Spannungsausnutzung $\sigma_{v,Ed}$ / $f_{y,d}$ nach RSTAB [-] (ohne Berücksichtigung lokaler Lasteinleitung)

Abbildung 6.75: Vorspannträger [VT] – [QT]offen – Versuchsdurchführung – Spannungsausnutzung ov,Ed / fy,d Lage x = 1,150 m - Auflager [QT]

(Querschnittsnachweis mit Berücksichtigung der lokalen Lasteinleitung) Materialkennwert

natenaikennwerte			
$f_{yk,S355J2+N} (t \le 40 \text{ mm}) =$ $f_{uk,S355J2+N} (t \le 40 \text{ mm}) =$ E =	355 N/mm ² 490 N/mm ² 210.000 N/mm ²		
γ _{M0} =	1,00		
x =	1,150 m	untersuchte Stelle, gemessen vom	Auflager x = 0,000 m

Normalkraft

Wölbmoment

LD_{ULS}02 [QT]_{offen} - Fläche A_s

Einwirkungen (Auflager)

N _{Ed} =	0,00	kN
V _{y,Ed} =	0,00	kN
V _{z,Ed} =	1.240,35	kN
M _{y,Ed} =	-991,68	kNm
M _{z,Ed} =	0,00	kNm
M _{x,Ed} =	0,00	kNm
M _{xp,Ed} =	0,00	kNm
M _{xs,Ed} =	0,00	kNm
$M_{\omega,Ed} =$	0,00	kNm²

Querschnittskennwerte

A =	219,00	cm²	Querschnittsfläche (Flächenmoment 0. Ordnung)
$A_{z,P} = S_{y,P} =$	0,00	cm³	statisches Moment um die y-Achse (Flächenmmoment 1. Ordnung)
$A_{y,P} = S_{z,P} =$	0,00	cm³	statisches Moment um die z-Achse (Flächenmmoment 1. Ordnung)
$A_{zz} = I_y =$	61.638	cm⁴	Trägheitsmoment um die y-Achse (Flächenmoment 2. Ordnung)
z _p =	21,00	cm	z-Koordinate des untersuchten Spannungspunktes
$A_{yy} = I_z =$	10.235	cm⁴	Trägheitsmoment um die z-Achse (Flächenmoment 2. Ordnung)
y _P =	0,00	cm	y-Koordinate des untersuchten Spannungspunktes
I _t =	19.248	cm⁴	Torsionsträgheitsmoment
$A_{\omega\omega} = I_{\omega} =$	1.435.000	cm ⁶	Wölbwiderstand
ω _p =	0,00	cm²	Einheitsverwölbung des untersuchten Spannungspunktes
b =	240,00	mm	Blechstärke am betrachteten Querschnitt

Spannungen

$\sigma_{v,Ed} / f_{y,d} =$	0,91 ≤ 1,00
τ_{Ed} =	0,00 N/mm²
$\sigma_{z,Ed}$ =	-32,31 N/mm²
σ _{x,Ed} =	-337,86 N/mm²
σ _{x.Ed} =	-337,86

Lage x = 1,150 m – Auflager [QT]

(Schweißnahtnachweis mit Berücksichtigung der lokalen Lasteinleitung)

Materialkennwerte (Schweißnaht)			<u> </u>
f., (, cost, (), () (, (), (), ()) =	490	N/mm²	
$t_{\rm uk}$, s355J2+N (t \le 40 mm)	251 /17	N/mm ²	
'vw,Rd,S355J2+N - F =	210 000	N/mm^2	
L -	210.000	•••	
γ _{M2} =	1,25		
x =	1,150	m	untersuchte Stelle, gemessen vom Auflager x = 0,000 m
Einwirkungen (Auflager)			
N _{Ed} =	0,00	kN	Normalkraft
V _{v,Ed} =	0,00	kN	Querkraft in y-Richtung
V _{z,Ed} =	1.240,35	kN	Querkraft in z-Richtung
M _{v,Ed} =	-991,68	kNm	Biegemoment um die y-Achse
M _{z,Ed} =	0,00	kNm	Biegemoment um die z-Achse
M _{x,Ed} =	0,00	kNm	Torsionsmoment
M _{xp,Ed} =	0,00	kNm	primäres Torsionsmoment
M _{xs Ed} =	0,00	kNm	sekundäres Torsionsmoment
M _{en} rd =	0.00	kNm²	Wölbmoment
ω,ευ	-,		5
Querschnittskennwerte			
A =	219,00	cm ²	Querschnittsfläche (Flächenmoment 0. Ordnung)
$A_{z,P} = S_{y,P} =$	-960,00	cm³	statisches Moment um die y-Achse (Flächenmmoment 1. Ordnung)
$A_{y,P} = S_{z,P} =$	0,00	cm³	statisches Moment um die z-Achse (Flächenmmoment 1. Ordnung)
$A_{77} = I_{y} =$	61.638	cm⁴	Trägheitsmoment um die y-Achse (Flächenmoment 2. Ordnung)
$z_p =$	19,00	cm	z-Koordinate des untersuchten Spannungspunktes
A = I =	10 235	cm ⁴	Trägheitsmoment um die z-Achse (Flächenmoment 2) Ordnung)
$V_{P} =$	0,00	cm	y-Koordinate des untersuchten Spannungspunktes
	10 240	4	
$I_t =$	19.248	cm ⁶	Torsionsträgheitsmoment
$A_{\omega\omega} = I_{\omega} =$	1.435.000	cm ²	woldwiderstand Einheitsverwölhung des untersuchten Spannungspunktes
ω _p –	0,00	em	Ennertsverworbung des untersachten Spunnungspunktes
2·a =	22,00	mm	Schweißnahtstärke (2 ·Kehlnahtstärke)
Spannungen			
$\tau_{\perp,Ed}$ =	0,00	N/mm²	keine Berücksichtigung von Normalspannungen parallel zur Schweißnaht
$\sigma_{\perp,Ed}$ =	-198,04	N/mm²	LD _{UL5} 02 [QT] _{offen} - Fläche A ₆
$\tau_{\parallel, Ed} =$	87,81	N/mm²	
$\sigma_{w,Ed} / f_{vw,Rd} =$	0,86	≤ 1,00	

6.4.11 [WB1] Versuchsdurchführung

Spannungsausnutzung $\sigma_{v,Ed}$ / $f_{v,d}$ nach RSTAB [-] (ohne Berücksichtigung lokaler Lasteinleitung)

Abbildung 6.76: Waagbalken 1 [WB1] – Versuchsdurchführung – Spannungsausnutzung $\sigma_{v,Ed}$ / $f_{y,d}$ Lage x = 0,010 m - Endplatte

(Querschnittsnachweis)

Materialkennwerte

Watenakennwerte		
f _{yk,S355J2+N (t ≤ 40 mm)} =	355 N/mm²	
f _{uk,S355J2+N (t ≤ 40 mm)} =	490 N/mm²	
E =	210.000 N/mm²	
γ _{M0} =	1,00	
x =	0,010 m	untersuchte Stelle, gemessen vom Auflager x = 0,000 m
Einwirkungen (Auflager)		000
N _{Ed} =	0,00 kN	Normalkraft
V _{y,Ed} =	0,00 kN	Querkraft in y-Richtung 105 16 105
V _{z,Ed} =	300,95 kN	Querkraft in z-Richtung
M _{y,Ed} =	3,01 kNm	Biegemoment um die y-Achse
M _{z,Ed} =	0,00 kNm	Biegemoment um die z-Achse
M _{x,Ed} =	0,00 kNm	Torsionsmoment
M _{xp,Ed} =	0,00 kNm	primäres Torsionsmoment
M _{xs,Ed} =	0,00 kNm	sekundäres Torsionsmoment
$M_{\omega Ed} =$	0,00 kNm²	Wölbmoment

Querschnittskennwerte

 $M_{\omega,Ed} =$

A =	149,00 cm ²	Querschnittsfläche (Flächenmoment 0. Ordnung)
$A_{z,P} = S_{y,P} =$ $A_{y,P} = S_{z,P} =$	-709,70 cm ³ 0,00 cm ³	statisches Moment um die y-Achse (Flächenmmoment 1. Ordnung, statisches Moment um die z-Achse (Flächenmmoment 1. Ordnung)
$A_{zz} = I_y = Z_P =$	14.600 cm⁴ 0,00 cm	Trägheitsmoment um die y-Achse (Flächenmoment 2. Ordnung) z-Koordinate des untersuchten Spannungspunktes
$A_{yy} = I_z =$ $y_P =$	5.010 cm⁴ 0,00 cm	Trägheitsmoment um die z-Achse (Flächenmoment 2. Ordnung) y-Koordinate des untersuchten Spannungspunktes
$I_t = A_{\omega\omega} = I_{\omega} = \omega_p =$	316 cm ⁴ 572.700 cm ⁶ 0,00 cm ²	Torsionsträgheitsmoment Wölbwiderstand Einheitsverwölbung des untersuchten Spannungspunktes
t =	16,00 mm	Blechstärke am betrachteten Querschnitt

optional

Spannungen

$\sigma_{v,Ed} / f_{y,d} =$	0,45 ≤ 1,00
τ_{Ed} =	91,43 N/mm²
$\sigma_{z,Ed}$ =	0,00 N/mm²
$\sigma_{x,Ed}$ =	0,00 N/mm²

Lage x = 0,820 m - Feldmitte

(Querschnittsnachweis mit Berücksichtigung der lokalen Lasteinleitung)

Materialkennwerte

Materialkennwerte			
$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355 N	l/mm²	
$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490 N	l/mm²	· · · · · /
E =	210.000 N	l/mm²	
γ _{M0} =	1,00		I
x =	0,820 m	า	untersuchte Stelle, gemessen vom Auflager x = 0,000 m
Einwirkungen (Presse)			200
N _{Ed} =	0,00 ki	N	Normalkraft 226
V _{y,Ed} =	0,00 ki	N	Querkraft in y-Richtung
V _{z,Ed} =	300,00 ki	N	Querkraft in z-Richtung
M _{y,Ed} =	246,53 kl	Nm	Biegemoment um die y-Achse
M _{z,Ed} =	0,00 ki	Nm	Biegemoment um die z-Achse
M _{x,Ed} =	0,00 kl	Nm	Torsionsmoment
M _{xp,Ed} =	0,00 ki	Nm	primäres Torsionsmoment
M _{xs,Ed} =	0,00 ki	Nm	sekundäres Torsionsmoment
$M_{\omega,Ed}$ =	0,00 kl	Nm²	Wölbmoment
Querschnittskennwerte			
A =	149,00 cr	m²	Querschnittsfläche (Flächenmoment 0. Ordnung)
$A_{z,P} = S_{y,P} =$	-663,49 cr	m³	statisches Moment um die y-Achse (Flächenmmoment 1. Ordnung)
$A_{y,P} = S_{z,P} =$	0,00 cr	m³	statisches Moment um die z-Achse (Flächenmmoment 1. Ordnung)
$A_{zz} = I_y =$	14.600 cr	m⁴	Trägheitsmoment um die y-Achse (Flächenmoment 2. Ordnung)
z _P =	-7,60 cr	m	z-Koordinate des untersuchten Spannungspunktes
$A_{yy} = I_z =$	5.010 cr	m⁴	Trägheitsmoment um die z-Achse (Flächenmoment 2. Ordnung)
y _P =	0,00 cr	m	y-Koordinate des untersuchten Spannungspunktes
I _t =	316 cr	m⁴	Torsionsträgheitsmoment
$A_{\omega\omega} = I_{\omega} =$	572.700 cr	m ⁶	Wölbwiderstand
ω _p =	0,00 cr	m²	Einheitsverwölbung des untersuchten Spannungspunktes
t =	16,00 m	nm	Blechstärke am betrachteten Querschnitt
Spannungen			
$\sigma_{x,Ed}$ =	-128,33 N	l/mm²	
σ _{z,Ed} =	-123,97 N	l/mm²	LD _{ULS} 11 - Fläche A ₄
$\tau_{Ed} =$	85,21 N	l/mm²	
$\sigma_{v,Ed} / f_{y,d} =$	0,55 ≤ 2	1,00	

6.4.12 [WB2] Versuchsdurchführung

Spannungsausnutzung $\sigma_{v,Ed}$ / $f_{v,d}$ nach RSTAB [-] (ohne Berücksichtigung lokaler Lasteinleitung)

Abbildung 6.77: Waagbalken 2 [WB2] – Versuchsdurchführung – Spannungsausnutzung $\sigma_{v,Ed}$ / $f_{v,d}$ Lage x = 0,175 m – Rollenauflager

(Querschnittsnachweis mit Berücksichtigung der lokalen Lasteinleitung)

Materialkennwerte

 $I_t =$

ω_P =

t =

Spannungen

 $\sigma_{x,Ed}$ =

 $\sigma_{z,Ed}$ =

 $A_{\omega\omega} = I_{\omega} =$

120 cm⁴

0,00 cm²

13,00 mm

0,00 N/mm²

-100,33 N/mm²

54.330 cm⁶

τ_{Ed} =	82,35 N/mm²
$\sigma_{v,Ed} / f_{v,d} =$	0,49 ≤ 1,00

LD_{ULS}09 - Fläche A₄

Torsionsträgheitsmoment

Einheitsverwölbung des untersuchten Spannungspunktes

Blechstärke am betrachteten Querschnitt

Wölbwiderstand

Lage x = 0,410 m – Aufsetzpunkt [WB1]-Endplatte

(Querschnittsnachweis mit Berücksichtigung der lokalen Lasteinleitung)

Materialkennwerte

$f_{yk,S355J2+N (t \le 40 \text{ mm})} =$ $f_{uk,S355J2+N (t \le 40 \text{ mm})} =$ E =	355 N/mr 490 N/mr 210.000 N/mr	n^2 n^2 n^2 n^2
γ _{M0} =	1,00	l l
x =	0,410 m	untersuchte Stelle, gemessen vom Auflager x = 0,000 m
Einwirkungen (Feldmitte)		
N _{Ed} =	0,00 kN	Normalkraft 146
V _{y,Ed} =	0,00 kN	Querkraft in y-Richtung
V _{z,Ed} =	150,65 kN	Querkraft in z-Richtung 67 ¹³ , 67
M _{y,Ed} =	61,84 kNm	Biegemoment um die y-Achse
$M_{z,Ed} =$	0,00 kNm	Biegemoment um die z-Achse
M _{x,Ed} =	0,00 kNm	Torsionsmoment 😜 👸
M _{xp,Ed} =	0,00 kNm	primäres Torsionsmoment
M _{vc Ed} =	0.00 kNm	sekundäres Torsionsmoment
$M_{\omega,Ed} =$	0,00 kNm ²	Wölbmoment
Querschnittskennwerte		
A =	80,60 cm²	Querschnittsfläche (Flächenmoment 0. Ordnung)
$A_{z,P} = S_{y,P} =$	-233,25 cm³	statisches Moment um die y-Achse (Flächenmmoment 1. Ordnung)
$A_{y,P} = S_{z,P} =$	0,00 cm ³	statisches Moment um die z-Achse (Flächenmmoment 1. Ordnung)
$A_{77} = I_{11} =$	3.290 cm⁴	Trägheitsmoment um die y-Achse (Flächenmoment 2. Ordnung)
$z_P =$	-4,60 cm	z-Koordinate des untersuchten Spannungspunktes
$A_{yy} = I_z =$	1.140 cm⁴	Trägheitsmoment um die z-Achse (Flächenmoment 2. Ordnung)
y _P =	0,00 cm	y-Koordinate des untersuchten Spannungspunktes
I ₊ =	120 cm⁴	Torsionsträgheitsmoment
$A_{mm} = I_m =$	54.330 cm ⁶	Wölbwiderstand
ω _p =	0,00 cm ²	Einheitsverwölbung des untersuchten Spannungspunktes
t =	13,00 mm	Blechstärke am betrachteten Querschnitt
Spannungen		
σ _{x,Ed} =	-86,46 N/mr	n²
$\sigma_{z,Ed}$ =	-194,13 N/mr	η ² LD _{ULS} 10 - Fläche A ₄
τ_{Ed} =	82,16 N/mr	n²
$\overline{\sigma}_{v,Ed} / f_{y,d} =$	0,62 ≤ 1,00	

6.4.13 [ZS] Vorspannung

Einwirkungen siehe Punkt 6.3.15

Spannungsnachweis (Druck)

N _{Ed} =	-2.247,74	kN
$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²
γ _{M0} =	1,00	
$f_{yd,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²
A _[ZS] =	159,00	cm²
σ_{Ed} = N_{\text{Ed}} / A_{[\text{ZS}]} =	141,37	N/mm²
$N_{Rd} = N_{pl,Rd} =$	5.644,5	kN
$N_{Ed} / N_{Rd} =$	0,40	≤ 1,00

Stauchung / Längenänderung

E = ε =	210.000 N/mm ² -0.067%
I ₀ =	2.169,1 mm
ΔI =	1,46 mm

6.4.14 [ZS] Versuchsdurchführung

Einwirkungen siehe Punkt 6.3.16

Spannungsnachweis (Zug)

N _{Ed} =	1.066,76	kN
$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²
γ _{M0} =	1,00	
$f_{yd,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²
A _[ZS] =	159,00	cm²
σ_{Ed} = N_{\text{Ed}} / A_{[\text{ZS}]} =	67,09	N/mm²
$N_{Rd} = N_{pl,Rd} =$	5.644,5	kN
$N_{Ed} / N_{Rd} =$	0,19	≤ 1,00

Dehnung / Längenänderung

E =	210.000 N/mm ²
ε =	0,032%
I ₀ =	2.169,1 mm
ΔI =	0,69 mm

6.5 Stabilitätsnachweise

6.5.1 [AT] Versuchsdurchführung

Schnittgrößen nach Punkt 6.3.2

Materialkennwerte

f _{yk,S355J2+N (t ≤ 40 mm)} =	355	N/mm²
f _{uk,S355J2+N (t ≤ 40 mm)} =	490	N/mm²
E =	210.000	N/mm²
γ _{M1} =	1,00	
Einwirkungen		

N _{Ed} =	0,00	kN
M _{y,Ed} =	2.509,96	kNm
M _{z,Ed} =	0,00	kNm

Biegedrillknicken nach EN 1993-1-16.3.2.3

M _{Ed} =	2.509,96 kNm
C ₁ =	1,132
C ₂ =	0,459
z _g =	35,80 cm
L _{LT} =	435,00 cm

Beiwert C₁ Beiwert C₂

Abstand Lastangriff

Biegedrillknicklänge

Verwölbungsbehinderung

Imperfektionsbeiwert (LT)

Trägheitsmoment z-Achse

Biegedrillknickmoment M ...

bezogene Schlankheit (LT)

Höchstwert nach EN 1993-1-1

Mindestwert nach EN 1993-1-1 Abminderungsfaktor

Torsionswiderstand

Wölbwiderstand

plastisches Widerstandsmoment

Verdrehbehinderung aus Stegebene

Knickspannungslinie (LT) nach EN 1993-1

Einspannwirkung an Stabenden

k _ω =	1,00
k _z =	1,00

Querschnitt

h/b =	2,36		
KSL _{LT} =	b		
α _{LT} =	0,34		
W _{y,pl} =	10.540,00	cm³	
I _z =	18.800	cm⁴	
I _t =	1.590	cm⁴	
Ι _ω =	21.400.000	cm ⁶	
M _{cr} =	6.677,23	kNm	
<u>λ</u> _{LT} =	0,749		
Φ _{LT} =	0,769		
<u>λ</u> lt,0 =	0,400		
β =	0,750		
$\chi_{\text{LT}} =$	0,845		
modifizierter Abminderungsbeiwert			

k _c =	0,940	
f =	0,970	
$\chi_{\text{LT,mod}} =$	0,871	
M _{b,Rd} =	3.258,28 kNm	
$M_{Ed} / M_{b,Rd} =$	0,77 ≤ 1,00	

6.5.2 [LT] Vorspannung

Schnittgrößen nach Punkt 6.3.3

Materialkennwerte

$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²
$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490	N/mm²
E =	210.000	N/mm²
γ _{M1} =	1,00	
Einwirkungen		
N _{Ed} =	0,00	kN
M _{y,Ed} =	927,22	kNm
M _{z Ed} =	0,00	kNm

Biegedrillknicken nach EN 1993-1-16.3.2.2

	M _{Ed} =	927,22	kNm	
ſ	C ₁ =	1,040		
	C ₂ =	0,431		
	z _g =	35,00	cm	
	L _{LT} =	412,00	cm	

Einspannwirkung an Stabenden

k _ω =	1,00
k _z =	1,00

Querschnitt

KSL _{LT} =	d
α _{LT} =	0,76
W _{y,pl} =	12.538,00 cm ³
I _z =	65.353 cm⁴
I _t =	98.840 cm ⁴
Ι _ω =	29.030.000 cm ⁶
M _{cr} =	73.230,24 kNm
<u>λ</u> _{LT} =	0,247
Φ_{LT} =	0,548
$\chi_{\text{LT}} =$	0,964
$M_{b,Rd}$ =	4.289,82 kNm
$M_{Ed} / M_{b,Rd} =$	0,22 ≤ 1,00

Beiwert C 1 Beiwert C 2 Abstand Lastangriff Biegedrillknicklänge

Verwölbungsbehinderung Verdrehbehinderung aus Stegebene

Knickspannungslinie (LT) Imperfektionsbeiwert (LT) plastisches Widerstandsmoment Trägheitsmoment z-Achse Torsionswiderstand Wölbwiderstand

Biegedrillknickmoment M _{cr} bezogene Schlankheit (LT)

Abminderungsfaktor

6.5.3 [LT] Versuchsdurchführung

Schnittgrößen nach Punkt 6.3.4

Materialkennwerte

f _{yk,S355J2+N (t ≤ 40 mm)} =	355	N/mm²
f _{uk,S355J2+N (t ≤ 40 mm)} =	490	N/mm²
E =	210.000	N/mm²
γ _{M1} =	1,00	
Einwirkungen		

N _{Ed} =	0,00	kN
M _{y,Ed} =	-1.184,92	kNm
M _{z,Ed} =	0,00	kNm

Biegedrillknicken nach EN 1993-1-1 6.3.2.2

M _{Ed} =	1.184,92 kNm
C ₁ =	1,040
C ₂ =	0,431
z _g =	35,00 cm
L _{LT} =	412,00 cm

Beiwert C 1	
Beiwert C 2	
Abstand Lastangriff	
Biegedrillknicklänge	

Verwölbungsbehinderung

Einspannwirkung an	Stabenden
--------------------	-----------

k _ω =	1,00
k _z =	1,00

Querschnitt

KSL _{LT} =	d	
α _{LT} =	0,76	
W _{y,pl} =	12.538,00	cm³
I _z =	65.353	cm⁴
I _t =	98.840	cm⁴
Ι _ω =	29.030.000	cm ⁶
M _{cr} =	73.230,24	kNm
<u>λ</u> _{LT} =	0,247	
$\Phi_{\rm LT}$ =	0,548	
$\chi_{LT} =$	0,964	
M _{b, Rd} =	4.289,82	kNm
$M_{Ed} / M_{b,Rd} =$	0,28	≤ 1,00

Knickspannungslinie (LT)
Imperfektionsbeiwert (LT)
plastisches Widerstandsmoment
Trägheitsmoment z-Achse
Torsionswiderstand
Wölbwiderstand

Verdrehbehinderung aus Stegebene

```
Biegedrillknickmoment M <sub>cr</sub>
bezogene Schlankheit (LT)
```

```
Abminderungsfaktor
```

6.5.4 [QT]_{geschlossen} Versuchsdurchführung

Schnittgrößen nach Punkt 6.3.6

Materialkennwerte

f _{yk,S355J2+N(t≤40 mm)} =	355	N/mm²
f _{uk,S355J2+N(t≤40 mm)} =	490	N/mm²
E =	210.000	N/mm²
γ _{M1} =	1,00	
Einwirkungen		
N _{Ed} =	0,00	kN
M _{y,Ed} =	-5.051,26	kNm
M _{z,Ed} =	0,00	kNm

Biegedrillknicken nach EN 1993-1-1 6.3.2.2

M _{Ed} =	5.051,26 kNm
C ₁ =	1,132
C ₂ =	0,459
z _g =	50,00 cm
L _{LT} =	435,00 cm

1,00

Beiwert C 1
Beiwert C 2
Abstand Lastangriff
Biegedrillknicklänge

Einspannwirkung an Stabenden

k_ω =

k _z =	1,00
Querschnitt	
KSL _{LT} =	d
α _{LT} =	0,76
W _{y,pl} =	23.386,00 cm ³
I _z =	93.081 cm⁴
I _t =	113.255 cm⁴
Ι _ω =	130.700.000 cm ⁶
M _{cr} =	94.023,18 kNm
$\underline{\lambda}_{LT} =$	0,297
Φ_{LT} =	0,581
$\chi_{\text{LT}} =$	0,926
M _{b,Rd} =	7.684,19 kNm
$M_{Ed} / M_{b,Rd} =$	0,66 ≤ 1,00

Verwölbungsbehinderung Verdrehbehinderung aus Stegebene

```
Knickspannungslinie (LT)
Imperfektionsbeiwert (LT)
plastisches Widerstandsmoment
Trägheitsmoment z-Achse
Torsionswiderstand
Wölbwiderstand
Biegedrillknickmoment M <sub>a</sub>
bezogene Schlankheit (LT)
```

Abminderungsfaktor

6.5.5 [QT]_{offen} Versuchsdurchführung

Schnittgrößen nach Punkt 6.3.9

Materialkennwerte

f _{yk,S355J2+N (t ≤ 40 mm)} =	355	N/mm ²
f _{uk,S355J2+N (t ≤ 40 mm)} =	490	N/mm ²
E =	210.000	N/mm ²
γ _{M1} =	1,00	

Einwirkungen

N _{Ed} =	0,00	kN
M _{y,Ed} =	-5.051,26	kNm
M _{z,Ed} =	0,00	kNm

Biegedrillknicken nach EN 1993-1-1 6.3.2.3

M _{Ed} =	5.051,26 kNm
C ₁ =	1,132
C ₂ =	0,459
z _g =	50,00 cm
L _{LT} =	435,00 cm

1,00

Beiwert C 1
Beiwert C 2
Abstand Lastangriff
Biegedrillknicklänge

Verwölbungsbehinderung

Verdrehbehinderung aus Stegebene

Einspannwirkung an S	tabenden
----------------------	----------

k_	=	1,00

k _z	=			

Querschnitt

h/b =	2,00	
KSL _{LT} =	с	
α _{LT} =	0,49	
W _{y,pl} =	22.941,80	cm³
I _z =	73.087	cm⁴
I _t =	2.072	cm⁴
Ι _ω =	169.800.000	cm ⁶
M _{cr} =	29.323,56	kNm
$\underline{\lambda}_{LT} =$	0,527	
Φ_{LT} =	0,635	
<u>λ</u> _{LT,0} =	0,400	
β =	0,750	
$\chi_{\text{LT}} =$	0,928	

Knickspannungslinie (LT) nach EN 1993-1
Imperfektionsbeiwert (LT)
plastisches Widerstandsmoment
Trägheitsmoment z-Achse
Torsionswiderstand
Wölbwiderstand
Biegedrillknickmoment M _{cr}
bezogene Schlankheit (LT)
Höchstwert nach FN 1993-1-1

Mindestwert nach EN 1993-1-1 Abminderungsfaktor

6.5.6 [VT] Vorspannung

Schnittgrößen nach Punkt 6.3.10

Materialkennwerte

$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²
$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490	N/mm²
E =	210.000	N/mm²
γ _{M1} =	1,00	
Einwirkungen		
N _{Ed} =	0,00	kN
M _{y,Ed} =	-890,48	kNm
M _{z,Ed} =	0,00	kNm

Biegedrillknicken nach EN 1993-1-16.3.2.2

Einspannwirkung an Stabenden

M _{Ed} =	890,48 kNm
C ₁ =	1,040
C ₂ =	0,431
z _g =	21,00 cm
L _{LT} =	230,00 cm

1,00

1,00

Verwölbunasbehinderuna Verdrehbehinderung aus Stegebene

Biegedrillknicklänge ($\beta = 2,0$)

Beiwert C 1

Beiwert C 2

Abstand Lastangriff

Querschnitt

k_ω =

k_z =

KSL _{LT} =	d
α _{LT} =	0,76
W _{y,pl} =	3.324,75 cm ³
I _z =	10.235 cm⁴
I _t =	19.248 cm⁴
Ι _ω =	1.435.000 cm ⁶
M _{cr} =	22.925,89 kNm
$\underline{\lambda}_{LT} =$	0,227
$\Phi_{\rm LT}$ =	0,536
$\chi_{LT} =$	0,979
M _{b,Rd} =	1.155,41 kNm
$M_{Ed} / M_{b,Rd} =$	0,77 ≤ 1,00

Knickspannungslinie (LT) Imperfektionsbeiwert (LT) plastisches Widerstandsmoment Trägheitsmoment z-Achse Torsionswiderstand Wölbwiderstand Biegedrillknickmoment M_{cr} bezogene Schlankheit (LT)

Abminderungsfaktor

modifizierter Abminderungsbeiwert

7.733,42 KINI
7 759 42 kNm
0,953
0,974
0,940

6.5.7 [VT] Versuchsdurchführung

Schnittgrößen nach Punkt 6.3.11

Materialkennwerte

$f_{\gamma k, S355J2+N (t \le 40 \text{ mm})} =$	355	N/mm²
f _{uk,S355J2+N (t ≤ 40 mm)} =	490	N/mm²
E =	210.000	N/mm²
γ_{M1} =	1,00	
Einwirkungen		

N _{Ed} =	0,00	kN
M _{y,Ed} =	-991,68	kNm
M _{z,Ed} =	0,00	kNm

Biegedrillknicken nach EN 1993-1-1 6.3.2.2

M _{Ed} =	991,68 kNm
C ₁ =	1,040
C ₂ =	0,431
z _g =	21,00 cm
L _{LT} =	230,00 cm

Beiwert C 1
Beiwert C 2
Abstand Lastangriff
Biegedrillknicklänge (β = 2,0)

Verwölbungsbehinderung

Verdrehbehinderung aus Stegeben

Einspannwirkung an Stabenden

k _ω =	1,00
k _z =	1,00

Querschnitt

KSL _{LT} =	d
α _{LT} =	0,76
W _{y,pl} =	3.324,75 cm ³
I _z =	10.235 cm⁴
I _t =	19.248 cm⁴
Ι _ω =	1.435.000 cm ⁶
M _{cr} =	22.925,89 kNm
<u>λ</u> _{LT} =	0,227
Φ _{LT} =	0,536
$\chi_{\text{LT}} =$	0,979
M _{b,Rd} =	1.155,41 kNm
$M_{Ed} / M_{b,Rd} =$	0,86 ≤ 1,00

Knickspannungslinie (LT) Imperfektionsbeiwert (LT) plastisches Widerstandsmoment Trägheitsmoment z-Achse Torsionswiderstand Wölbwiderstand

Biegedrillknickmoment M_{cr} bezogene Schlankheit (LT)

Abminderungsfaktor

6.5.8 [WB1] Versuchsdurchführung

Schnittgrößen nach Punkt 6.3.13

Materialkennwerte

f _{yk,S355J2+N(t≤40 mm)} =	355	N/mm²
f _{uk,S355J2+N (t≤40 mm)} =	490	N/mm²
E =	210.000	N/mm²
γ _{M1} =	1,00	
Einwirkungen		
N _{Ed} =	0,00	kN
M _{y,Ed} =	246,53	kNm
M _{z Ed} =	0,00	kNm

Biegedrillknicken nach EN 1993-1-1 6.3.2.3

M _{Ed} =	246,53 kNm
C ₁ =	1,363
C ₂ =	0,553
z _g =	12,00 cm
L _{LT} =	164,00 cm

Einspannwirkung an Stabenden

Linspannwirkung al	Istabelluell	
k _ω =	1,00	
k _z =	1,00	
Querschnitt		
h/b =	1,06	
KSL _{LT} =	а	
α _{LT} =	0,21	
W _{y,pl} =	1.420,00	cm³
I _z =	5.010	cm⁴
I _t =	316	cm⁴
Ι _ω =	572.700	cm ⁶
M _{cr} =	4.391,76	kNn
$\underline{\lambda}_{LT} =$	0,339	
$\Phi_{LT} =$	0,537	
<u>λ</u> _{LT,0} =	0,400	
ß =	0 750	

$\chi_{LT} = 1,000$

$M_{Ed}/M_{b,Rd} =$	0,49 ≤ 1,00
$M_{b,Rd}$ =	504,10 kNm
$\chi_{LT,mod} =$	1,000
f =	0,959
k _c =	0,857
modifizierter Abminderungsbeiwert	

Beiwert C 1 Beiwert C 2 Abstand Lastangriff Biegedrillknicklänge (β = 1,0)

Verwölbungsbehinderung Verdrehbehinderung aus Stegebene

Knickspannungslinie (LT) nach EN 1993-1-1 Tabelle 6.4 Imperfektionsbeiwert (LT) plastisches Widerstandsmoment Trägheitsmoment z-Achse Torsionswiderstand Wölbwiderstand Biegedrillknickmoment M _{cr} bezogene Schlankheit (LT)

Höchstwert nach EN 1993-1-1 Mindestwert nach EN 1993-1-1 Abminderungsfaktor
6.5.9 [WB2] Versuchsdurchführung

Schnittgrößen nach Punkt 6.3.14

Materialkennwerte

f _{yk,S355J2+N (t ≤ 40 mm)} =	355	N/mm²
f _{uk,S355J2+N (t ≤ 40 mm)} =	490	N/mm²
E =	210.000	N/mm²
γ _{M1} =	1,00	
Einwirkungen		

0,00	kN
61,84	kNm
0,00	kNm
	0,00 61,84 0,00

Biegedrillknicken nach EN 1993-1-16.3.2.3

M _{Ed} =	61,84 kNm
C ₁ =	1,363
C ₂ =	0,553
z _g =	8,00 cm
L _{LT} =	82,00 cm

1,00 1,00

Beiwert C 1
Beiwert C 2
Abstand Lastangriff
Biegedrillknicklänge ($\beta = 1,0$)

Einspannwirkung an Stabenden

Verwölbungsbehinderung
Verdrehbehinderung aus Stegebene

Höchstwert nach EN 1993-1-1 Mindestwert nach EN 1993-1-1 Abminderungsfaktor

Querschnitt

k_ω =

k_z =

h/b =	1,10	
KSL _{LT} =	а	
α _{LT} =	0,21	
W _{y,pl} =	494,00	cm³
I _z =	1.140	cm⁴
I _t =	120	cm⁴
Ι _ω =	54.330	cm ⁶
M _{cr} =	2.544,74	kNm
$\underline{\lambda}_{LT} =$	0,263	
Φ _{LT} =	0,511	
<u>λ</u> _{LT,0} =	0,400	
β =	0,750	
$\chi_{LT} =$	1,000	

Imperfektionsbeiwert (LT) plastisches Widerstandsmoment Trägheitsmoment z-Achse Torsionswiderstand Wölbwiderstand Biegedrillknickmoment M_{cr} bezogene Schlankheit (LT)

Knickspannungslinie (LT) nach EN 1993-1-1 Tabelle 6.4

modifizierter Abminderungsbeiwert

M _{b,Rd} = 175	,37 kNm
LT,mod – I,U	000
~ - 10	200
f = 0,9	970
k _c = 0,8	357

6.5.10 [ZS] Vorspannung

Schnittgrößen nach Punkt 6.3.15

Materialkennwerte

$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²
f _{uk,S355J2+N (t≤40 mm)} =	490	N/mm²
E =	210.000	N/mm²
γ _{M1} =	1,00	

Einwirkungen

N _{Ed} =	-2.247,74	kN
M _{y,Ed} =	0,00	kNm
M _{z,Ed} =	0,00	kNm

Knicken um die y-Achse

Knicken um die z-Achse

8		1	
KSL =	b	KSL =	C
α =	0,34	α =	0,49
A =	159,00 cm ²	A =	159,00 cm²
I _y =	62.950 cm ⁴	I _z =	6.763 cm⁴
W _{y,el} =	2.569,37 cm ³	W _{z,el} =	450,86 cm ³
W _{y,pl} =	2.931,00 cm ³	W _{z,pl} =	700,88 cm³
i =	19,90 cm	i =	6,52 cm
s _{k,γ} =	224,91 cm	s _{k,z} =	224,91 cm
$\lambda_{k,y} =$	11,30	$\lambda_{k,z} =$	34,49
λ ₁ =	76,41	$\lambda_1 =$	76,41
$\underline{\lambda}_{k,y} =$	0,15	$\underline{\lambda}_{k,z} =$	0,45
Φ=	0,502	Φ=	0,663
$\chi =$	1,000	$\chi =$	0,870
N _{b,y,Rd} =	5.645 kN	N _{b,z,Rd} =	4.910 kN
$N_{Ed} / N_{b,y,Rd} =$	0,40 ≤ 1,00	$N_{Ed} / N_{b,y,Rd} =$	0,46 ≤ 1,00

Knickspannungslinie Imperfektionsbeiwert Querschnittsfläche Trägheitsmoment elastisches Widerstandsmoment plastisches Widerstandsmoment Trägheitsradius Knicklänge Schlankheit

Abminderungsfaktor

6.6 Globale Stabilitätsanalyse

In diesem Abschnitt wird die Stabilität des Versuchsrahmens untersucht. Ziel ist es einen, für die gegebenen Einwirkungen geltenden kritischen Lastverzweigungsfaktor zu finden.

6.6.1 Lastfall Vorspannung

Lastfälle

Lastfall Eigengewicht [kN] / [kN/m]

 \oplus

Abbildung 6.79: Globale Stabilitätsanalyse – Vorspannung – Vorspannkräfte

Lastfallkombination

Vorspannung

 $LK_{Vorspannung} = 1,00 \cdot LF_{Eigengewicht} \oplus 1,05 \cdot LF_{Vorspannung}$

Kritischer Lastverzweigungsfaktor $\eta_{ki} = 2,20$

Abbildung 6.80: Globale Stabilitätsanalyse – Vorspannung – Eigenform

Die Stabilitätsanalyse ergibt für die Einwirkungen aus dem Lastfall Vorspannung einen kritischen Lastverzweigungsfaktor von η_{ki} = 2,20.

6.6.2 Lastfall Versuchsdurchführung

Lastfälle

Abbildung 6.81: Globale Stabilitätsanalyse – Versuchsdurchführung – Eigengewicht

 \oplus

Lastfall Vorspannung [kN]

Abbildung 6.82: Globale Stabilitätsanalyse – Versuchsdurchführung – Vorspannkräfte

 \oplus

Lastfall Versuchsdurchführung [kN]

Abbildung 6.83: Globale Stabilitätsanalyse – Versuchsdurchführung – Versuchskräfte

Lastfallkombination

Vorspannung

 $LK_{Vorspannung} = 1,00 \cdot LF_{Eigengewicht} \oplus 1,05 \cdot LF_{Vorspannung} \oplus 1,00 \cdot LF_{Versuchsdurchf"uhrung}$

Kritischer Lastverzweigungsfaktor η_{ki} = 1.616,42

Eigenform

Abbildung 6.84: Globale Stabilitätsanalyse – Versuchsdurchführung – Eigenform

Die Stabilitätsanalyse ergibt für die Einwirkungen aus dem Lastfall Versuchsdurchführung einen kritischen Lastverzweigungsfaktor von η_{ki} = 1.616,42.

6.7 Anschlüsse und Verbindungen

6.7.1 Anschluss Zugstütze [ZS] – Querträger [QT]

Abbildung 6.85: Anschluss Zugstütze [ZS]-Querträger [QT]geschlossen / [QT]offen

Die Verbindung zwischen der Zugstütze [ZS] und dem Querträger mit geschlossenem Profil [QT]_{geschlossen} ist links dargestellt, die Verbindung mit dem Querträger mit offenem Profil [QT]_{offen} ist im rechten Bild dargestellt.

Schraubenverbindung

Schraubenbeanspruchung auf Zug:

$$F_{t,Rd} = \frac{k_2 \cdot A_{Sp} \cdot f_{ub,k}}{\gamma_{M2}} = \frac{0.9 \cdot 8.17 \ cm^2 \cdot 100 \ kN/cm^2}{1.25} = 588.24 \ kN/Schraube$$

Durchstanzen:

$$t_{p,[QT]-Untergurt} = 30 \text{ mm}, t_{p,[ZS]-Endplatte} = 30 \text{ mm}$$
$$B_{p,Rd} = \frac{0.6 \cdot \pi \cdot d_m \cdot t_p \cdot f_{u,k}}{\gamma_{M2}} = \frac{0.6 \cdot \pi \cdot 6.262 \cdot 3.00 \cdot 49.0}{1.25} = 1.388,10 \text{ kN/Schraube}$$

Rechnerischer Durchmesser des Schraubenkopfes für Durchstanzen:

$$d_m = \frac{s+e}{2} = \frac{58,8+66,44}{2} = 62,62 \text{ mm}$$

Anzahl der Schrauben n = 4, Beanspruchbarkeit einer Schraube: $min\{F_{t,Rd}, B_{p,Rd}\}$

$$N_{t,Rd} = 4 \cdot F_{t,Rd} = 4 \cdot 588,24 = 2.352,90 \ kN > N_{t,Ed,[ZS]} = 1.066,76 \ kN$$

 $N_{t,Ed,[ZS]}$ siehe 6.3.16

Äquivalenter T-Stummelnachweis [QT]_{geschlossen}

Ermittlung ob Abstützkräfte an der Endplatte auftreten können

Nach ÖNORM EN 1993-1-8 Tabelle 6.2

$$L_{b} = \sum t_{p} + t_{Unterlegscheibe} + \frac{h_{Schraubenkopf}}{2} + \frac{h_{Mutter}}{2} = 2 \cdot 30 + 2 \cdot 6 + \frac{23}{2} + \frac{29}{2} = 98 \ mm$$

$$L_{b}^{*} = \frac{8,8 \cdot m^{3} \cdot A_{S}}{\sum l_{eff,1} \cdot t_{f}^{3}} = \frac{8,8 \cdot 7,02^{3} \cdot 8,17}{41,33 \cdot 3,0^{3}} = 22,29 \ cm = 222,9 \ mm$$

$$L_{b} = 98 \ mm \le L_{b}^{*} = 222,9 \ mm, \text{ es können daher Abstützkräfte an der Endplatte auftreten!}$$

• Ermittlung ob Abstützkräfte am Untergurt des [QT] auftreten können

nach ÖNORM EN 1993-1-8 Tabelle 6.2

$$L_{b} = \sum t_{p} + t_{Unterlegscheibe} + \frac{h_{Schraubenkopf}}{2} + \frac{h_{Mutter}}{2} = 2 \cdot 30 + 2 \cdot 6 + \frac{23}{2} + \frac{29}{2} = 98 mm$$

$$L_{b}^{*} = \frac{8,8 \cdot m^{3} \cdot A_{S}}{\sum l_{eff,1} \cdot t_{f}^{3}} = \frac{8,8 \cdot 5,93^{3} \cdot 8,17}{34,88 \cdot 3,0^{3}} = 15,92 cm = 159,2 mm$$

 $L_b = 98 \ mm \le {L_b}^* = 159,2 \ mm$, es können daher Abstützkräfte am Untergurt auftreten!

• Effektive Länge – Muster 1 – Fließen der Endplatte, Schraubengruppe

Schraubenreihe Muster 1:

1: $l_{eff,1,cp} = \pi m_2 + p = \pi \cdot 61,5 + 330,0 = 523,2 mm$ $l_{eff,1,nc} = 0,5p + \alpha m - (2m + 0,625n) =$ $= 0,5 \cdot 330,0 + 2\pi \cdot 70,2 - (2 \cdot 70,2 + 0,625 \cdot 83,8) =$ = 413,3 mm $\lambda_1 = \frac{m}{m+n} = \frac{70,2}{70,2+83,8} = 0,456$ $\lambda_2 = \frac{m_2}{m+n} = \frac{61,5}{70,2+83,8} = 0,399$

$$\rightarrow \alpha \cong 2\pi$$
 nach ÖNORM EN 1993-1-8 Bild 6.11

• Effektive Länge – Muster 2 – Fließen der Endplatte, einzelne Schrauben

Schraubenreihe Muster 2: $l_{eff,2,cp} = \pi \cdot m_2 + 2 \cdot n = \pi \cdot 61,5 + 2 \cdot 83,8 = 360,8 mm$ $l_{eff,2,nc} = \alpha \cdot m = 2\pi \cdot 70,2 = 441,1 mm$ $\lambda_1 = \frac{m}{m+n} = \frac{70,2}{70,2+83,8} = 0,456$ $\lambda_2 = \frac{m_2}{m+n} = \frac{61,5}{70,2+83,8} = 0,399$ $\rightarrow \alpha \cong 2\pi$ nach ÖNORM EN 1993-1-8 Bild 6.11

• Effektive Länge – Muster 3 – Fließen der Endplatte, einzelne Schrauben

Schraubenreihe Muster 3: $l_{eff,3,cp} = 2 \cdot \pi \cdot m_2 = 2 \cdot \pi \cdot 61,5 = 386,4 mm$

• Effektive Länge – Muster 4 – Fließen des [QT]-Untergurtes, Schraubengruppe

Abbildung 6.89: Zugstütze [ZS] – Querträger geschlossen [QT]_{geschlossen} – Fließmuster 4

Schraubenreihe Muster 4: $l_{eff,4,cp} = \pi m + p = \pi \cdot 59,3 + 162,5 = 348,8 mm$ $l_{eff,4,nc} = 0,5p + \alpha m - (2m + 0,625n) =$ $= 0,5 \cdot 162,5 + 6,8 \cdot 75,8 - (2 \cdot 59,3 + 0,625 \cdot 85) =$ = 425,0 mm $\lambda_1 = \frac{m}{m+n} = \frac{59,3}{59,3+85} = 0,411$ $\lambda_2 = \frac{m_2}{m+n} = \frac{48,8}{59,3+85} = 0,338$ $\rightarrow \alpha \cong 6,8$ nach ÖNORM EN 1993-1-8 Bild 6.11

Effektive Länge – Muster 5 – Fließen des [QT]-Untergurtes, einzelne Schrauben

Abbildung 6.90: Zugstütze [ZS] – Querträger geschlossen [QT]geschlossen – Fließmuster 5

Schraubenreihe Muster 5: $l_{eff,5,cp} = \pi m_2 + 2n = \pi \cdot 48,8 + 2 \cdot 85 = 323,3 mm$ $l_{eff,5,nc} = \alpha \cdot m = 6,8 \cdot 59,3 = 403,2 mm$ $\lambda_1 = \frac{m}{m+n} = \frac{59,3}{59,3+85,0} = 0,411$ $\lambda_2 = \frac{m_2}{m+n} = \frac{48,8}{59,3+85,0} = 0,338$ $\rightarrow \alpha \cong 6,8$ nach ÖNORM EN 1993-1-8 Bild 6.11

• Effektive Länge – Muster 6 – Fließen der Endplatte, einzelne Schrauben

Abbildung 6.91: Zugstütze [ZS] – Querträger geschlossen [QT]_{geschlossen} – Fließmuster 6 Schraubenreihe Muster 6: $l_{eff,6,cp} = 2 \cdot \pi \cdot m_2 = 2 \cdot \pi \cdot 48,8 = 306,6 mm$

	Schraubenreihe einzeln	Schraubenreihe als Gruppe
Modus 1	$l_{eff,1} = l_{eff,nc}$ jedoch $l_{eff,1} \le l_{eff,cp}$	$\sum l_{eff,1} = \sum l_{eff,nc}$ jedoch
		$\sum l_{eff,1} \le \sum l_{eff,cp}$
Modus 2	$l_{eff,2} = l_{eff,nc}$	$\sum l_{eff,2} = \sum l_{eff,nc}$

Modus 1

	Schraubenreihe einzeln	Schraubenreihe als Gruppe
Muster 1		$\sum l_{eff,1} = 413, 3 mm \le 523, 2 mm$
Muster 2	$l_{eff,1} = 441,1 \ mm \le 360,8 \ mm$	
Muster 3	$l_{eff,1} = 386, 4 mm$	
Muster 4		$\sum l_{eff,1} = 425,0 \ mm \le 348,8 \ mm$
Muster 5	$l_{eff,1} = 403,2 mm \le 323,3 mm$	
Muster 6	$l_{eff,1} = 306, 6 mm$	
	$l_{eff,1} = 306, 6 mm$	$\sum l_{eff,1} = 348,8 mm$

Modus 2

	Schraubenreihe einzeln	Schraubenreihe als Gruppe
Muster 1		$\sum l_{eff,2} =$ 413 , 3 <i>mm</i>
Muster 2	$l_{eff,2} = 441, 1 mm$	
Muster 3	-	
Muster 4		$\sum l_{eff,2} =$ 425 , 0 <i>mm</i>
Muster 5	$l_{eff,2} = 403, 2 mm$	
Muster 6	-	
	$l_{eff,2} = 403, 2 mm$	$\sum l_{eff,2} = 413, 3 mm$

Materialkennwerte

	$f_{yk,S355J2+N (t \le 40 \text{ mm})} =$ $f_{uk,S355J2+N (t \le 40 \text{ mm})} =$ E =	355 490 210.000	N/mm² N/mm² N/mm²			
	γ _{M0} =	1,00				
<u>Endplo</u>	<u>atte</u>					
Ge	ometrie					
	t _{f,Platte} =	30	mm			
	m =	70,2	mm			
	m ₂ =	61,5	mm			
	n =	83,8	mm			
	p =	330,0	mm			
Sch	nrauben					
	F _{t,Rd} =	588,24	kN	Bemessungs	wert der Zugt	tragfähigkeit der Schraube
Eff	ektive Längen					
	I _{eff,1} =	360,8	mm	Muster 3	n _{schrauben} =	2
	$\Sigma F_{t,Rd} =$	1.176,48	kN		Sentadoen	
	I _{eff.2} =	441,1	mm	Muster 2	n _{schrauben} =	2
	$\Sigma F_{t,Rd} =$	1.176,48	kN		Sentadoen	
	$\Sigma I_{eff,1} =$	413,3	mm	Muster 1	n _{schrauben} =	4
	$\Sigma F_{t,Rd} =$	2.352,96	kN		Contradicti	
	$\Sigma I_{eff,2} =$	413,3	mm	Muster 1	n _{schrauben} =	4
	$\Sigma F_{t,Rd} =$	2.352,96	kN		Sanduben	

Tragfähigkeit des T-Stummels nach EN 1993-1-1 Tabelle 6.2

$M_{pl,1,Rd} =$	2.881,89 kNcm 3 301 23 kNcm	maßgebend maßgebend	ist Muster 3 ist Muster 1
2·F _{T 1 Pd} =	3.284.21 kN	Modus 1	
F _{T,2,Rd} =	1.709,11 kN	Modus 2	\geq F _{t,Ed} = 1.066,76 kN = N _{t,Ed,[ZS]}
F _{T.3.Rd} =	2.352,96 kN	Modus 3	-

Untergurt [QT]

Geometrie					
t _{f,Gurt} =	30	mm			
m =	59,3	mm			
m ₂ =	48,8	mm			
n =	85,0	mm			
p =	162,5	mm			
Schrauben					
F _{t, Rd} =	588,24	kN	Bemessung	swert der Zug	tragfähigkeit der Schraube
Effektive Längen					
I _{eff,1} =	306,6	mm	Muster 6	n _{Schrauben} =	2
$\Sigma F_{t,Rd} =$	1.176,48	kN			
$I_{eff,2} =$	403,2	mm	Muster 5	n _{Schrauben} =	2
$\Sigma F_{t,Rd} =$	1.176,48	kN			
$\Sigma I_{eff,1} =$	348,8	mm	Muster 4	n _{Schrauben} =	4
$\Sigma F_{t,Rd} =$	2.352,96	kN			
$\Sigma I_{eff,2} =$	425,0	mm	Muster 4	n _{Schrauben} =	4
$\Sigma F_{t, Rd} =$	2.352,96	kN			
- ("					

Tragfähigkeit des T-Stummels nach EN 1993-1-1 Tabelle 6.2

M _{pl,1,Rd} = M _{pl,2,Rd} =	2.448,97 kNcm 3.220,56 kNcm	maßgebend maßgebend	ist Muster 6 ist Muster 5
2.F _{T,1,Rd} =	3.303,83 kN	Modus 1	_
2·F _{T,2,Rd} =	2.278,75 kN	Modus 2	\geq F _{t,Ed} = 1.066,76 kN = N _{t,Ed,[ZS]}
F _{T,3,Rd} =	2.352,96 kN	Modus 3	-

Äquivalenter T-Stummelnachweis [QT]offen

Ermittlung ob Abstützkräfte an der Endplatte auftreten können

nach ÖNORM EN 1993-1-8 Tabelle 6.2

$$L_{b} = \sum t_{p} + t_{Unterlegscheibe} + \frac{h_{Schraubenkopf}}{2} + \frac{h_{Mutter}}{2} = 2 \cdot 30 + 2 \cdot 6 + \frac{23}{2} + \frac{29}{2} = 98 mm$$

$$L_{b}^{*} = \frac{8.8 \cdot m^{3} \cdot A_{S}}{\sum l_{eff,1} \cdot t_{f}^{3}} = \frac{8.8 \cdot 7.02^{3} \cdot 8.17}{29.44 \cdot 3.0^{3}} = 31,29 cm = 312,9 mm$$

$$L_{b} = 98 mm \le L_{b}^{*} = 312,9 mm, \text{ es können daher Abstützkräfte an der Endplatte auftreten!}$$

• Ermittlung ob Abstützkräfte am Untergurt des [QT] auftreten können

nach ÖNORM EN 1993-1-8 Tabelle 6.2

$$L_{b} = \sum t_{p} + t_{Unterlegscheibe} + \frac{h_{Schraubenkopf}}{2} + \frac{h_{Mutter}}{2} = 2 \cdot 30 + 2 \cdot 6 + \frac{23}{2} + \frac{29}{2} = 98 mm$$

$$L_{b}^{*} = \frac{8.8 \cdot m^{3} \cdot A_{S}}{\sum l_{eff,1} \cdot t_{f}^{3}} = \frac{8.8 \cdot 7.43^{3} \cdot 8.17}{30.01 \cdot 3.5^{3}} = 22.92 cm = 229.2 mm$$

 $L_b = 98 \ mm \le {L_b}^* = 229,2 \ mm$, es können daher Abstützkräfte am Untergurt auftreten!

Effektive Länge – Muster 1 – Fließen der Endplatte, Schraubengruppe

Abbildung 6.92: Zugstütze [ZS] – Querträger offen [QT]_{offen} – Fließmuster 1

Schraubenreihe Muster 1:

 $l_{eff,1,cp} = \pi m_2 + p = \pi \cdot 132,5 + 188,0 = 604,3 mm$ $l_{eff,1,nc} = 0,5p + \alpha m - (2m + 0,625n) =$ $= 0,5 \cdot 188,0 + 5,6 \cdot 70,2 - (2 \cdot 70,2 + 0,625 \cdot 83,8) =$ = 294,4 mm $\lambda_1 = \frac{m}{m+n} = \frac{70,2}{70,2+83,8} = 0,456$

$$\lambda_2 = \frac{m_2}{m+n} = \frac{132,5}{70,2+83,8} = 0,860$$

 $\rightarrow \alpha \cong 5,6$ nach ÖNORM EN 1993-1-8 Bild 6.11

• Effektive Länge – Muster 2 – Fließen der Endplatte, einzelne Schrauben

Abbildung 6.93: Zugstütze [ZS] – Querträger offen [QT]_{offen} – Fließmuster 2

Schraubenreihe Muster 2: $l_{eff,2,cp} = \pi \cdot m_2 + 2 \cdot n = \pi \cdot 132,5 + 2 \cdot 83,8 = 583,9 mm$ $l_{eff,2,nc} = \alpha \cdot m = 5,6 \cdot 70,2 = 393,1 mm$ $\lambda_1 = \frac{m}{m+n} = \frac{70,2}{70,2+83,8} = 0,456$ $\lambda_2 = \frac{m_2}{m+n} = \frac{132,5}{70,2+83,8} = 0,860$

- $\rightarrow \alpha \cong 5,6$ nach ÖNORM EN 1993-1-8 Bild 6.11
- Effektive Länge Muster 3 Fließen der Endplatte, einzelne Schrauben

Abbildung 6.94: Zugstütze [ZS] – Querträger offen [QT]offen – Fließmuster 3

Schraubenreihe Muster 3: $l_{eff,3,cp} = 2 \cdot \pi \cdot m = 2 \cdot \pi \cdot 70,2 = 441,1 mm$

Effektive Länge – Muster 4 – Fließen des [QT]-Untergurtes, Schraubengruppe

Abbildung 6.95: Zugstütze [ZS] – Querträger offen [QT]_{offen} – Fließmuster 4

Schraubenreihe Muster 4: $\begin{aligned} l_{eff,4,cp} &= \pi m_2 + p = \pi \cdot 43,8 + 162,5 = 300,1 \ mm \\ l_{eff,4,nc} &= 0,5p + \alpha m - (2m + 0,625n) = \\ &= 0,5 \cdot 162,5 + 8,5 \cdot 74,3 - (2 \cdot 74,3 + 0,625 \cdot 156) = \\ &= 466,7 \ mm \\ \lambda_1 &= \frac{m}{m+n} = \frac{74,3}{74,3+156,0} = 0,323 \\ \lambda_2 &= \frac{m_2}{m+n} = \frac{43,8}{74,3+156,0} = 0,190 \end{aligned}$

- $\rightarrow \alpha \cong 8,5$ nach ÖNORM EN 1993-1-8 Bild 6.11
- Effektive Länge Muster 5 Fließen des [QT]-Untergurtes, einzelne Schrauben

Abbildung 6.96: Zugstütze [ZS] – Querträger offen [QT]offen – Fließmuster 5

Schraubenreihe Muster 5:
$$l_{eff,5,cp} = \pi m_2 + 2n = \pi \cdot 43,8 + 2 \cdot 156 = 449,6 mm$$

 $l_{eff,4,nc} = \alpha \cdot m = 8,5 \cdot 74,3 = 631,6 mm$
 $\lambda_1 = \frac{m}{m+n} = \frac{74,3}{74,3+156,0} = 0,323$
 $\lambda_2 = \frac{m_2}{m+n} = \frac{43,8}{74,3+156,0} = 0,190$
 $\rightarrow \alpha \cong 8,5$ nach ÖNORM EN 1993-1-8 Bild 6.11

• Effektive Länge – Muster 6 – Fließen der Endplatte, einzelne Schrauben

Abbildung 6.97: Zugstütze [ZS] – Querträger offen [QT]_{offen} – Fließmuster 6

Schraubenreihe Muster 6: $l_{eff,6,cp} = 2 \cdot \pi \cdot m_2 = 2 \cdot \pi \cdot 43,8 = 275,2 mm$

	Schraubenreihe einzeln	Schraubenreihe als Gruppe
Modus 1	$l_{eff,1} = l_{eff,nc}$ jedoch $l_{eff,1} \le l_{eff,cp}$	$\sum l_{eff,1} = \sum l_{eff,nc}$ jedoch
		$\sum l_{eff,1} \le \sum l_{eff,cp}$
Modus 2	$l_{eff,2} = l_{eff,nc}$	$\sum l_{eff,2} = \sum l_{eff,nc}$

Modus 1

	Schraubenreihe einzeln	Schraubenreihe als Gruppe
Muster 1		$\sum l_{eff,1} = 294, 4 mm \le 604, 3 mm$
Muster 2	$l_{eff,1} = 393, 1 mm \le 583,9 mm$	
Muster 3	$l_{eff,1} = 441, 1 mm$	
Muster 4		$\sum l_{eff,1} = 466,7 mm \le 300, 1 mm$
Muster 5	$l_{eff,1} = 631,6 mm \le 449,6 mm$	
Muster 6	$l_{eff,1} = 275, 2 mm$	
	$l_{eff,1} = 275, 2 mm$	$\sum l_{eff,1} = 294, 4 mm$

Modus 2

	Schraubenreihe einzeln	Schraubenreihe als Gruppe
Muster 1		$\sum l_{eff,2} = 294, 4 mm$
Muster 2	$l_{eff,2} = 393, 1 mm$	
Muster 3	-	
Muster 4		$\sum l_{eff,2} = 466,7 mm$
Muster 5	$l_{eff,2} = 631, 6 mm$	
Muster 6	-	
	$l_{eff,2} = 393, 1 mm$	$\sum l_{eff,2} = 294, 4 mm$

Materialkennwerte

$f_{yk,S355J2+N (t \le 40 \text{ mm})} = f_{uk,S355J2+N (t \le 40 \text{ mm})} = E =$	355 490 210.000	N/mm² N/mm² N/mm²			
γ _{M0} =	1,00				
<u>Endplatte</u>					
Geometrie					
t _{f, Platte} =	30	mm			
m =	70,2	mm			
m ₂ =	132,5	mm			
n =	83,8	mm			
p =	188,0	mm			
Schrauben					
F _{t,Rd} =	588,24	kN	Bemessungs	swert der Zug	tragfähigkeit der Schraube
Effektive Längen					
$I_{eff 1} =$	393,1	mm	Muster 2	n _{cabrauban} =	2
$\Sigma F_{t,Rd} =$	1.176,48	kN		Schlauben	
$I_{eff,2} =$	393,1	mm	Muster 2	n _{Schrauben} =	2
$\Sigma F_{t,Rd} =$	1.176,48	kN			
$\Sigma I_{eff,1} =$	294,4	mm	Muster 1	n _{Schrauben} =	4
$\Sigma F_{t, Rd} =$	2.352,96	kN			
$\Sigma I_{eff,2} =$	294,4	mm	Muster 1	n _{schrauben} =	4
$\Sigma F_{t,Rd} =$	2.352,96	kN		Schudberr	
Tragfähigkeit des T-Stum	mels nach i	EN 1993	1-1 Tabelle 6.	2	

$M_{pl,1,Rd}$ = $M_{pl,2,Rd}$ =	2.351,52 kNcm 2.351,52 kNcm	maßgebend maßgebend	ist Muster 1 ist Muster 1
F _{T,1,Rd} =	1.339,90 kN	Modus 1	\geq F _{t,Ed} = 1.066,76 kN = N _{t,Ed,[ZS]}
F _{T,2,Rd} =	1.585,77 kN	Modus 2	-
F _{T,3,Rd} =	2.352,96 kN	Modus 3	-

Untergurt [QT]

Geometrie					
t _{f,Gurt} =	35	mm			
m =	74,3	mm			
m ₂ =	43,8	mm			
n =	156,0	mm			
p =	162,5	mm			
Schrauben					
F _{t, Rd} =	588,24	kN	Bemessung	swert der Zug	tragfähigkeit der Schraube
Effektive Längen					
$I_{eff,1} =$	275,2	mm	Muster 5	n _{schrauben} =	2
$\Sigma F_{t,Rd} =$	1.176,48	kN			
I _{eff,2} =	631,6	mm	Muster 5	n _{schrauben} =	2
$\Sigma F_{t,Rd} =$	1.176,48	kN			
$\Sigma I_{eff,1} =$	300,1	mm	Muster 4	n _{schrauben} =	4
$\Sigma F_{t,Rd} =$	2.352,96	kN			
$\Sigma I_{eff,2} =$	466,7	mm	Muster 4	n _{Schrauben} =	4
$\Sigma F_{t,Rd} =$	2.352,96	kN			
The fighted attracts of the		EN 400		2	

Tragfähigkeit des T-Stummels nach EN 1993-1-1 Tabelle 6.2

M _{pl,1,Rd} = M _{pl,2,Rd} =	2.991,94 5.073,90	kNcm kNcm	maßgebend maßgebend	ist Muster 5 ist Muster 4
F _{T,1,Rd} =	1.610,73	kN	Modus 1	$\geq F_{t,Ed} = 1.066,76 \text{ kN} = N_{t,Ed,[ZS]}$
F _{T,2,Rd} =	2.034,48	kN	Modus 2	_
F _{T,3,Rd} =	2.352,96	kN	Modus 3	_

6.7.2 Anschluss Zugstütze [ZS] – Längsträger [LT]

Abbildung 6.98: Anschluss Zugstütze [ZS] – Längsträger [LT]

Schraubenverbindung

Schraubenbeanspruchung auf Zug:

 $F_{t,Rd} = \frac{k_2 \cdot A_{Sp} \cdot f_{ub,k}}{\gamma_{M2}} = \frac{0.9 \cdot 8.17 \ cm^2 \cdot 100 \ kN/cm^2}{1.25} = 588.24 \ kN/Schraube$

Durchstanzen:

 $t_{p,[ZS]-Endplatte} = 50 \text{ mm}, t_{p,[LT]-Obergurt} = 30 \text{ mm} \rightarrow t_{p,min} = 30 \text{ mm}$

 $B_{p,Rd} = \frac{0.6 \cdot \pi \cdot d_m \cdot t_p \cdot f_{u,k}}{\gamma_{M2}} = \frac{0.6 \cdot \pi \cdot 6.262 \cdot 3.00 \cdot 49.0}{1.25} = 1.388.10 \text{ kN/Schraube}$

Rechnerischer Durchmesser des Schraubenkopfes für Durchstanzen:

$$d_m = \frac{s+e}{2} = \frac{58,8+66,44}{2} = 62,62 \text{ mm}$$

Anzahl der Schrauben n = 4, Beanspruchbarkeit einer Schraube: $min\{F_{t,Rd}, B_{p,Rd}\}$

$$N_{t,Rd} = 4 \cdot F_{t,Rd} = 4 \cdot 588,24 = 2.352,90 \ kN > N_{t,Ed,[ZS]} = 1.063,46 \ kN$$

 $N_{t,Ed,[ZS]}$ siehe 6.3.16

Äquivalenter T-Stummelnachweis

• Ermittlung ob Abstützkräfte am Obergurt des [LT] auftreten können

nach ÖNORM EN 1993-1-8 Tabelle 6.2

$$L_{b} = \sum t_{p} + t_{Unterlegscheibe} + \frac{h_{Schraubenkopf}}{2} + \frac{h_{Mutter}}{2} = 2 \cdot 30 + 2 \cdot 6 + \frac{23}{2} + \frac{29}{2} = 98 mm$$

$$L_{b}^{*} = \frac{8,8 \cdot m^{3} \cdot A_{S}}{\sum l_{eff,1} \cdot t_{f}^{3}} = \frac{8,8 \cdot 4,40^{3} \cdot 8,17}{43,81 \cdot 3,0^{3}} = 5,18 cm = 51,8 mm$$

$$L_{b} = 98 mm > L_{b}^{*} = 51,8 mm, \text{ es können keine Abstützkräfte am Obergurt auftreten!}$$

• Ermittlung ob Abstützkräfte an der Endplatte auftreten können

nach ÖNORM EN 1993-1-8 Tabelle 6.2

$$L_{b} = \sum t_{p} + t_{Unterlegscheibe} + \frac{h_{Schraubenkopf}}{2} + \frac{h_{Mutter}}{2} = 2 \cdot 30 + 2 \cdot 6 + \frac{23}{2} + \frac{29}{2} = 98 mm$$

$$L_{b}^{*} = \frac{8.8 \cdot m^{3} \cdot A_{S}}{\sum l_{eff,1} \cdot t_{f}^{3}} = \frac{8.8 \cdot 15.15^{3} \cdot 8.17}{35.12 \cdot 3.0^{3}} = 263.65 cm = 2.636.5 mm$$

 $L_b = 98 mm \le {L_b}^* = 2.636,5 mm$, es können daher Abstützkräfte an der Endplatte auftreten!

• Effektive Länge – Muster 1 – Fließen des Obergurts [LT], Schraubengruppe

Abbildung 6.99: Zugstütze [ZS] – Längsträger [LT] – Fließmuster 1

Schraubenreihe Muster 1: $l_{eff,1,cp} = \pi m_2 + p = \pi \cdot 99,4 + 260,0 = 572,3 mm$ $l_{eff,1,nc} = 0,5p + \alpha m - (2m + 0,625n) =$ $= 0,5 \cdot 260,0 + 5,5 \cdot 96,5 - (2 \cdot 96,5 + 0,625 \cdot 47,5) =$ = 438,1 mm $\lambda_1 = \frac{m}{m+n} = \frac{44,0}{44,0+47,5} = 0,481$ $\lambda_2 = \frac{m_2}{m+n} = \frac{99,4}{44,0+47,5} = 1,086$ $\rightarrow \alpha \cong 5,5$ nach ÖNORM EN 1993-1-8 Bild 6.11

Effektive Länge – Muster 2 – Fließen des Obergurts [LT], Schrauben einzeln

Abbildung 6.100: Zugstütze [ZS] – Längsträger [LT] – Fließmuster 2

Schraubenreihe Muster 2: $l_{eff,2,cp} = \pi m_2 + 2n = \pi \cdot 99,4 + 2 \cdot 47,5 = 407,3 mm$

$$l_{eff,2,nc} = \alpha \cdot m = 5,6 \cdot 44,0 = 246,4 mm$$
$$\lambda_1 = \frac{m}{2} = \frac{44,0}{2} = 0,481$$

$$\lambda_1 = \frac{m_{+n}}{m_{+n}} = \frac{44,0+47,5}{44,0+47,5} = 1,086$$

 $\rightarrow \alpha \cong 5,6$ nach ÖNORM EN 1993-1-8 Bild 6.11

• Effektive Länge – Muster 3 – Fließen des Obergurts [LT], Schrauben einzeln

Abbildung 6.101: Zugstütze [ZS] – Längsträger [LT] – Fließmuster 3

Schraubenreihe Muster 3: $l_{eff,3,cp} = 2\pi m = 2\pi \cdot 44,0 = 276,5 mm$

• Effektive Länge – Muster 4 – Fließen der Endplatte, Schraubengruppe

Abbildung 6.102: Zugstütze [ZS] – Längsträger [LT] – Fließmuster 4

Schraubenreihe Muster 4:

 $l_{eff,4,cp} = \pi m_2 + p = \pi \cdot 96,5 + 260,0 = 563,2 mm$ $l_{eff,4,nc} = 0,5p + \alpha m - (2m + 0,625n) =$ $= 0,5 \cdot 260,0 + 4,6 \cdot 96,5 - (2 \cdot 96,5 + 0,625 \cdot 47,5) =$ = 351,2 mm

(es wurde hier anstelle von m, m_2 verwendet, da der Abstand von m zu groß ist um die Fließlinien zu beeinflussen!)

$$\lambda_1 = \frac{m}{m+n} = \frac{151,5}{151,5+47,5} = 0,761$$
$$\lambda_2 = \frac{m_2}{m+n} = \frac{96,5}{151,5+47,5} = 0,485$$

$$\rightarrow \alpha \cong 4,6$$
 nach ONORM EN 1993-1-8 Bild 6.11

• Effektive Länge – Muster 5 – Fließen der Endplatte, Schrauben einzeln

Abbildung 6.103: Zugstütze [ZS] – Längsträger [LT] – Fließmuster 5

Schraubenreihe Muster 5: $l_{eff,5,cp} = \pi \cdot m_2 + 2 \cdot n = \pi \cdot 96,5 + 2 \cdot 47,5 = 398,2 mm$

 $l_{eff,5,nc} = \alpha \cdot m = 4,65 \cdot 96,5 = 448,7 \, mm$

(es wurde hier anstelle von m, m_2 verwendet, da der Abstand von m zu groß ist um die Fließlinien zu beeinflussen!)

$$\lambda_1 = \frac{m}{m+n} = \frac{151,5}{96,5+47,5} = 1,052$$
$$\lambda_2 = \frac{m_2}{m+n} = \frac{96,5}{96,5+47,5} = 0,670$$

 $\rightarrow \alpha \cong 4,65$ nach ÖNORM EN 1993-1-8 Bild 6.11

• Effektive Länge – Muster 6 – Fließen der Endplatte, Schrauben einzeln

Abbildung 6.104: Zugstütze [ZS] – Längsträger [LT] – Fließmuster 6

Schraubenreihe Muster 6: $l_{eff,6,cp} = 2\pi m = 2\pi \cdot 47,5 = 298,5 mm$

	Schraubenreihe einzeln	Schraubenreihe als Gruppe
Modus 1	$l_{eff,1} = l_{eff,nc}$ jedoch $l_{eff,1} \le l_{eff,cp}$	$\sum l_{eff,1} = \sum l_{eff,nc}$ jedoch
		$\sum l_{eff,1} \le \sum l_{eff,cp}$
Modus 2	$l_{eff,2} = l_{eff,nc}$	$\sum l_{eff,2} = \sum l_{eff,nc}$

Modus 1

	Schraubenreihe einzeln	Schraubenreihe als Gruppe
Muster 1		$\sum l_{eff,1} = 438, 1 mm \le 572, 3 mm$
Muster 2	$l_{eff,1} = 246, 4 mm \le 407, 3 mm$	
Muster 3	$l_{eff,1} = 276, 5 mm$	
Muster 4		$\sum l_{eff,1} = 351, 2 mm \le 563, 2 mm$
Muster 5	$l_{eff,1} = 448,7 mm \le 398,2 mm$	
Muster 6	$l_{eff,1} = 298, 5 mm$	
	$l_{eff,1} = 246, 4 mm$	$\sum l_{eff,1} = 351, 2 mm$

Modus 2

	Schraubenreihe einzeln	Schraubenreihe als Gruppe
Muster 1		$\sum l_{eff,2} = 438, 1 mm$
Muster 2	$l_{eff,2} = 246, 4 mm$	
Muster 3	-	
Muster 4		$\sum l_{eff,2} = 351, 2 mm$
Muster 5	$l_{eff,1} = 448,7 mm$	
Muster 6	-	
	$l_{eff,2} = 246, 4 mm$	$\sum l_{eff,2} = 351, 2 mm$

Materialkennwerte

$f_{yk,S355J2+N (t \le 40 \text{ mm})} = f_{uk,S355J2+N (t \le 40 \text{ mm})} = E =$	355 490 210.000	N/mm² N/mm² N/mm²			
γ _{M0} =	1,00				
<u>Endplatte</u>					
Geometrie					
t _{f,Platte} =	50	mm			
m =	151,5	mm			
m ₂ =	96,5	mm			
n =	47,5	mm			
p =	260,0	mm			
Schrauben					
F _{t,Rd} =	588,24	kN	Bemessungs	swert der Zug	tragfähigkeit der Schraube
Fffektive Längen					
$I_{eff 1} =$	298,5	mm	Muster 6	n _{s chrauban} =	2
$\Sigma F_{t,Rd} =$	1.176,48	kN		Schlauben	
$I_{eff,2} =$	448,7	mm	Muster 5	n _{Schrauben} =	2
$\Sigma F_{t,Rd} =$	1.176,48	kN			
$\Sigma I_{eff,1} =$	351,2	mm	Muster 4	n _{schrauben} =	4
$\Sigma F_{t,Rd} =$	2.352,96	kN		Schladben	
$\Sigma I_{eff,2} =$	351,2	mm	Muster 4	n _{Schrauben} =	4
$\Sigma F_{t,Rd} =$	2.352,96	kN			

Tragfähigkeit des T-Stummels nach EN 1993-1-1 Tabelle 6.2

$M_{pl,1,Rd} = M_{pl,2,Rd} =$	6.622,97 7.792,25	kNcm kNcm	maßgebend maßgebend	ist Muster 6 ist Muster 4
2·F _{T,1,Rd} =	3.497,28	kN	Modus 1	
F _{T,2,Rd} =	1.344,78	kN	Modus 2	\geq F _{t,Ed} = 1.063,46 kN = N _{t,Ed,[ZS]}
F _{T,3,Rd} =	2.352,96	kN	Modus 3	-

Obergurt [LT]

Geometrie					
t _{f,Gurt} =	30	mm			
m =	44,0	mm			
n =	47,5	mm			
p =	260,0	mm			
Schrauben					
F _{t,Rd} =	588,24	kN	Bemessung	swert der Zug	tragfähigkeit der Schraube
Effektive Längen					
I _{eff,1} =	246,2	mm	Muster 2	n _{Schrauben} =	2
$\Sigma F_{t,Rd} =$	1.176,48	kN			
$I_{eff,2} =$	246,2	mm	Muster 2	n _{Schrauben} =	2
$\Sigma F_{t,Rd} =$	1.176,48	kN			
$\Sigma I_{eff,1} =$	438,1	mm	Muster 1	n _{Schrauben} =	4
$\Sigma F_{t,Rd} =$	2.352,96	kN			
$\Sigma I_{eff,1} =$	438,1	mm	Muster 1	n _{Schrauben} =	4
$\Sigma F_{t,Rd} =$	2.352,96	kN			

Tragfähigkeit des T-Stummels nach EN 1993-1-1 Tabelle 6.2

M _{pl,1,Rd} =	1.966,52 kNcm	maßgebend ist Muster 2	
2·F _{T,1-2,Rd} =	1.787,75 kN	<i>Modus</i> $1/2 \ge F_{t,Ed} = 1.063,46 k$	$N = N_{t, Ed, [ZS]}$
F _{T,3,Rd} =	2.352,96 kN	Modus 3	

6.8 Detailnachweise – Lasteinleitungen/-durchleitungen

6.8.1 Grundlagen

Die Detailberechnung erfolgt unter Anwendung folgender Annahmen und Voraussetzungen:

- Linear elastisches Materialverhalten, duktiles Material
- Diese Bedingung impliziert die Anwendbarkeit des statischen Satzes:
 - 1. Die einwirkenden Spannungen und Schnittgrößen sind kleiner oder gleich der plastischen Grenzlast $S_{Ed} \leq S_{pl,Rd}$
 - 2. Die angewendete Modellbildung befindet sich im statischen Gleichgewicht
 - 3. Bei Erreichen der plastischen Grenzlast wird an den durchplastizierten Querschnitten positive Dissipationsarbeit geleistet
- Die Lastausbreitung erfolgt in der Regel nach dem Verfahren E-E, das daraus resultierende Lastausbreitungsverhältnis beträgt 1:1, nur in Sonderfällen wird eine plastische Lastausbreitung mit einem Verhältnis 1:2,5 angewendet.
- Betrachtet werden die zwei Lastfälle "Vorspannung" und "Versuchsdurchführung".
- Die Umschweißung der Steifenblechdicken wird bei der Lastabtragung mitberücksichtigt. Für die Nachweise der Steifen wird diese Umschweißung nicht herangezogen (siehe Punkt 6.8.2), diese Annahme liegt daher auf der sicheren Seite.
- Die Schweißnahtstärken der Lastdetails entstammen aus einer ersten Abschätzung, diese können sich aufgrund der geführten Nachweise geringfügig ändern.

Abbildung 6.105: Einteilung der Lastdetails

6.8.2 Steifennachweise

Grundlagen

- Linear elastisches sowie duktiles Materialverhalten
- Konstante Schubspannungsverteilung
- Keine lokale Instabilität der Steife
- Die eingeleiteten Druckspannungen werden ausschließlich über die Schweißnaht in die Steife eingeleitet, es erfolgt keine Lasteinleitung über Kontakt des Steifenbleches
- Die Querschnittsklassifizierung der Steifen erfolgt anhand des Modells eines einseitig gestützten Gurtes, wobei der Nachweis mindestens die Querschnittsklasse 3 erreichen muss. Das bedeutet, dass die Beanspruchung der Steife durch eine elastische Berechnungsmethode ermittelt werden kann.
- Die Umschweißung der Bleche wird nicht berücksichtigt, es wird die Schweißnaht entlang der Längskante der Bleche zur Lastabtragung herangezogen.

Nachweisverfahren des Steifentyp 1

Abbildung 6.106: Nachweisverfahren Steifentyp 1

bekannt: $S_{1,Ed}$, $S_{Ed,2}$, h, b, r

Gleichgewichtsbedingungen:

$$\uparrow^{+} \Sigma V = 0 = S_{Ed,1} \cdot b - S_{Ed,2} \cdot b - T_{Ed,2} \cdot h$$
$$\rightarrow T_{Ed,2} = \frac{b \cdot (S_{Ed,1} - S_{Ed,2})}{h}$$

$$\stackrel{\rightarrow^{+} \Sigma H = 0}{=} T_{Ed,3} \cdot b - T_{Ed,1} \cdot b$$

$$\stackrel{\rightarrow}{\rightarrow} T_{Ed,1} = \frac{\left(S_{Ed,1} - S_{Ed,2}\right) \cdot b \cdot \left(\frac{b}{2} + r\right)}{b \cdot (b + 2 \cdot r)}$$

$$\begin{split} \mathcal{O}^+ & \Sigma M_A = 0 = \\ &= -S_{Ed,1} \cdot b \cdot \left(\frac{b}{2} + r\right) + T_{Ed,3} \cdot b \cdot (h + 2 \cdot r) + S_{Ed,2} \cdot b \\ &\quad \cdot \left(\frac{b}{2} + r\right) \\ &\quad \rightarrow T_{Ed,3} = \frac{\left(S_{Ed,1} - S_{Ed,2}\right) \cdot b \cdot \left(\frac{b}{2} + r\right)}{b \cdot (h + 2 \cdot r)} \end{split}$$

Nachweisverfahren des Steifentyp 2

bekannt:
$$S_{1,Ed}$$
, $S_{Ed,2}$, h , b , r

Gleichgewichtsbedingungen:

$$\uparrow^{+} \Sigma V = 0 = S_{Ed,1} \cdot b - S_{Ed,2} \cdot b - T_{Ed,2} \cdot h$$
$$\rightarrow T_{Ed,2} = \frac{b \cdot (S_{Ed,1} - S_{Ed,2})}{h}$$

$$\stackrel{\rightarrow^+}{\Sigma} H = 0 = T_{Ed,3} \cdot b - T_{Ed,1} \cdot b$$

$$\rightarrow T_{Ed,1} = T_{Ed,3} = \frac{(S_{Ed,1} - S_{Ed,2}) \cdot b \cdot (\frac{b}{2} + r)}{b \cdot (h + 2 \cdot r)}$$

$$\begin{split} \mathfrak{O}^+ \ \mathcal{E}M_A &= 0 = \\ &= -S_{Ed,1} \cdot b \cdot \left(\frac{b}{2} + r\right) + T_{Ed,3} \cdot b \cdot (h + 2 \cdot r) + S_{Ed,2} \cdot b \\ &\quad \cdot \left(\frac{b}{2} + r\right) \\ &\quad \rightarrow T_{Ed,3} = \frac{\left(S_{Ed,1} - S_{Ed,2}\right) \cdot b \cdot \left(\frac{b}{2} + r\right)}{b \cdot (h + 2 \cdot r)} \end{split}$$

Abbildung 6.107: Nachweisverfahren Steifentyp 2

Nachweisverfahren des Steifentyp 3

Abbildung 6.108: Nachweisverfahren Steifentyp 3

bekannt: $S_{Ed,1}$, h, b, r

Gleichgewichtsbedingungen:

$$\uparrow^{+} \Sigma V = 0 = S_{Ed,1} \cdot b - T_{Ed,2} \cdot h$$
$$\rightarrow T_{Ed,2} = \frac{S_{Ed,1} \cdot b}{h}$$

$$O^{+} \Sigma M_{A} = 0 =$$

$$= S_{Ed,2} \cdot h \cdot \left(\frac{h}{2} + r\right) - S_{Ed,1} \cdot b \cdot \left(\frac{b}{2} + r\right)$$

$$\rightarrow S_{Ed,2} = \frac{S_{Ed,1} \cdot \left(\frac{b^{2}}{2} + b \cdot r\right)}{\frac{h^{2}}{2} + h \cdot r}$$

$$\stackrel{\rightarrow^{+} \Sigma H = 0}{=} S_{Ed,2} \cdot h - T_{Ed,1} \cdot b$$

$$\stackrel{\rightarrow}{\to} T_{Ed,1} = \frac{S_{Ed,1} \cdot h \cdot b \cdot \left(\frac{b}{2} + r\right)}{h \cdot b \cdot \left(\frac{h}{2} + r\right)} = \frac{S_{Ed,1} \cdot \left(\frac{b}{2} + r\right)}{\left(\frac{h}{2} + r\right)}$$

6.8.3 Lastdetail LD_{ULS}01 – [QT]_{geschlossen} – Versuchsdurchführung

 $P_{Ed,Pressen} = 1,00 \cdot P_{k,Pressen} = 600,00 \ kN$ (siehe Punkt 2.2.2)

- **[QT]:** Die Lasteinleitung der Pressenkraft erfolgt über eine 12 mm dicke Lasteinleitungsplatte. Diese dient einerseits der Verteilung der Pressenkraft und andererseits zur Montage der Pressen am Untergurt des Querträgers [QT]_{geschlossen}.
- [QT]: Die rechnerische Einleitung der Pressenkraft in die Stege des Querträgers [QT]_{geschlossen} erfolgt ausschließlich über die Schweißnähte. Es wird keine Kontaktspannung zwischen Untergurt und den Stegen angesetzt.
- **[QT]:** Die Aussteifung des [QT]_{geschlossen} dient der Gewährleistung der Formtreuheit des Querschnitts bei unplanmäßiger Torsionsbeanspruchung.

P_{k,Presse} = 600,00 kN

Lasteinleitungsplatte / Unterkante [QT]-Untergurt

A _{Platte} =	265,73 cm²
σ_{Platte} =	-22,58 N/mm²
	$\leq f_{yk} = 355,00 \text{ N/mm}^2$

Schweißnähte / Halskehlnähte [QT]

$A_1 = A_w =$	39,04 cm ²	
$\sigma_1 = \sigma_w =$	-153,69 N/mm²	
	$\leq f_{vw Rd} = 251,47 \text{ N/mm}^2$	

Stegbleche [QT]

A ₂ =	97,6 cm²
σ2 =	-61,48 N/mm²
	≤ f _{yk} = 355,00 N/mm²

i

Abbildung 6.110: Lastdetail LD_{ULS}01 – [QT]_{geschlossen} – Versuchsdurchführung

6.8.4 Lastdetail LD_{ULS}01 – [QT]_{offen} – Versuchsdurchführung

 $P_{Ed,Pressen} = 1,00 \cdot P_{k,Pressen} = 600,00 \ kN$ (siehe Punkt 2.2.2)

- [QT]: Die Lasteinleitung der Pressenkraft erfolgt über eine 12 mm dicke Lasteinleitungsplatte. Diese dient einerseits der Verteilung der Pressenkraft und andererseits zur Montage der Pressen am Untergurt des Querträgers [QT]_{offen}.
- [QT]: Die rechnerische Einleitung der Pressenkraft in den Steg des Querträgers [QT]_{offen} erfolgt ausschließlich über die Schweißnähte. Es wird keine Kontaktspannung zwischen Untergurt und dem Steg angesetzt.
- **[QT]:** Die Aussteifung des [QT]_{offen} dient der Gewährleistung der Formtreuheit des Querschnitts bei unplanmäßiger Torsionsbeanspruchung.

P_{k,Presse} = 600,00 kN

Lasteinleitungsplatte / Unterkante [QT]-Untergurt

A _{Platte} =	265,73	cm²
σ_{Platte} =	-22,58	N/mm²
	$\leq f_{yk} = 355,00$	N/mm²

Schweißnähte / Halskehlnähte [QT]

$A_1 = A_w =$	40,64 cm ²	
$\sigma_1 = \sigma_w =$	-147,64 N/m	nm²
	≤ f _{vw Rd} = 251,47 N/m	nm²

Stegblech [QT]

A ₂ =	71,12 cm ²	
σ2 =	-84,36 N/mm²	
	≤ f _{yk} = 355,00 N/mm²	

Abbildung 6.111: Lastdetail LD_{ULS}01 – [QT]_{offen} – Versuchsdurchführung – Kräfte/Spannungen

Abbildung 6.112: Lastdetail LD_{ULS}01 – [QT]_{offen} – Versuchsdurchführung

6.8.5 Lastdetail LD_{ULS}02 – [QT]_{geschlossen} – Vorspannung

 $P_{Ed,Vorspannung} = 1,35 \cdot G_{k,[VT]} \oplus 1,05 \cdot P_{k,Vorspannung} = 1,35 \cdot 4,38 + 1,05 \cdot 2.116,00 = 2.227,70 \ kN$

(siehe Punkt 6.3.10 Auflagerkraft des Vorspannträgers [VT] am Querträger [QT])

Dieser Fall liefert zwar keine bemessungsrelevanten Ergebnisse, allerdings wird er für die Spannungsüberlagerung im Lastfall Vorspannung benötigt.

- **[VT]:** Die Lastabtragung vom Vorspannträger [VT] auf den Obergurt des Querträgers [QT] erfolgt ausschließlich über die Stege des [VT].
- **[VT]:** Die Aussteifung des [VT] dient der Gewährleistung der Formtreuheit des Querschnitts bei Torsionsbeanspruchung.
- [QT]: Die Last wird rechnerisch über die außenliegenden Steifen in die Stege des [QT] und über die Kreuzungspunkte zwischen den Stegen des [VT]/[QT] über die Kehlnähte des [QT] in die Stege eingeleitet.

Dabei wird die [VT]-Stegkraft in eine längenbezogene Kraft umgerechnet. Über die elastische Lastausbreitung der [QT]-Steifen vom [QT]-Obergurt bis zum [VT]-Untergurt wird so eine Einflussbreite der [QT]-Steifen ermittelt. Daraus ergibt sich die auf die [QT]-Außensteifen einwirkende Kraft.

Es müssen daher die Steifen und deren Anschlussnähte nach einem geeigneten Berechnungsmodell mit dem Verfahren E-E nachgewiesen werden.

- **[QT]:** Die Differenzkraft, welche nicht von den [QT]-Außensteifen aufgenommen wird, wird über die elastische Lastausbreitung der [VT]-Stege auf die [QT]-Stegnähte verteilt.
- **[QT]:** Die Lasteinleitung in den [QT] erfolgt ausschließlich über die Schweißnähte, die einzuleitende Kraft wird über die Schweißnähte der Steifen bzw. der Halskehlnaht eingeleitet.

[VT]-Untergurt Oberkante							
	A _{w,ges} =	110,00	cm²	gesamte Schweißnahtfläche			
	σ _w =	-202,52	N/mm²	mittlere Schweißnahtspannung			
		$\leq f_{vw,Rd} = 251,47$	N/mm²				
<u>Ste</u>	ege						
	$A_6 = A_w =$	55,00 cm ²		Halskehlnähte MTLStege			
	$\sigma_6 = \sigma_w =$	-202,52	N/mm²	nuiskennunte [v1]-stege			
		$\leq f_{vw,Rd} = 251,47$	N/mm²				
	$F_6 = F_w =$	1.113,85	kN	Gesamtkraft des Steges			
	A ₇ =	75,00	cm²	0/TI Stagblacha			
	σ ₇ =	-148,51	N/mm²	[vij-stegbiethe			
		$\leq f_{vk} = 355,00$	N/mm²				

2.227,70 kN

Pressung [VT]_{Untergurt} / [QT]_{Obergurt}

P_{z,Ed,[VT],Vorspannung} =

4·A ₅ =	501,32 cm ²	Kontaktanannung zwischen den Gurten
σ5 =	-22,22 N/mr	n ²
	≤ f _{vk} = 355,00 N/mr	n²

QI]-Q	Jbergurt Unter	kante		
<u>Au</u>	<u>ßensteifen</u>			
	f _{w,[VT]-Steg} =	-20,25	kN/cm	Schweißnahtkraft je cm des [VT]-Steg = Konsistenzbedingung
	e _{Steife} =	198,0	mm	Einflussbreite der Steife
	$A_1 = A_w =$	23,25	cm²	Schweißnahtfläche pro Steife
	$F_1 = F_w =$	400,99	kN	Gesamtkraft pro Steife
	$\sigma_1 = \sigma_w =$	-172,47	N/mm²	Schweißnahtspannung pro Steife
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
	A ₂ =	14,70	cm²	Chalfernhlanh
	σ2 =	-272,78	N/mm²	Steljenblech
		$\leq f_{vk} = 355,00$	N/mm²	
	F _{Steifen,ges} =	1.603,94	kN	Gesamtkraft aller Steifen
	$\Delta F =$	623,76	kN	Differenzkraft = Kraft der Steganteile
<u>Ste</u>	ege F _{stege,ges} = ∆F =	623,76	kN	Kraft der Steganteile
	$A_3 = A_w =$	10,44	cm ²	Caburai Bracht dar Stara
	$\sigma_3 = \sigma_w =$	-149,37	N/mm²	schweißnaht der stege
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
	A ₄ =	26,11	cm²	Stachlach
	σ4 =	-59,72	N/mm²	Stegoren
		$\leq f_{yk} = 355,00$	N/mm²	
		•		4

[OT] Oborgurt Unterkante

Abbildung 6.113: Lastdetail LD_{ULS}02 – [QT]_{geschlossen} – Vorspannung – Kräfte/Spannungen

Abbildung 6.114: Lastdetail LD_{ULS}02 – [QT]_{geschlossen} – Vorspannung

Steifennachweis Außensteife [QT]geschlossen

Steifentyp 2

Materialkennwerte

Watehakehitwerte						r bschweißnaht	
$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490	N/mm²	$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm ²		SEd 2
Vw,Rd,S355J2+N =	251,47	N/mm-	uk,S355J2+N (t ≤ 40 mm) =	490	N/mm-	+ + +	C Eu,2
γ _{M2} =	1,25		γ _{M0} =	1,00			$T_{Ed,3}$
geometrische Daten							
h _{Schweißnaht} =	942	mm					
b _{Schweißnaht} =	98	mm					
r =	35	mm					
t =	15	mm				E E	
Kraftflüsse						chweißnal	
S _{Ed,1} =	32,84	kN/cm	LD _{ULS} 06 [QT] _{geschlossen} - Fläche A ₈ = A	A _w		ا الق ع	
S _{Ed,2} =	40,92	kN/cm	$LD_{ULS}02 [QT]_{geschlossen} - Fläche A_1 = A_1$	A _w			
$T_{Ed,1} = T_{Ed,2} = T_{Ed,3} =$	-0,67 -0,84 -0,67	kN/cm kN/cm kN/cm					T _{Ed,1} S _{Ed,1}
Punkt 1 = Punkt 2			Punkt 3 = Punkt 4			Punkt 5 = Punkt 6	
a ₁ =	7	mm	a ₂ =	3	mm	a ₃ =	10 mm
σ _{∥,Ed} =	0,00	N/mm²	σ _{∥,Ed} =	0,00	N/mm²	$\sigma_{\parallel,Ed}$ =	0,00 N/mm²
$\sigma_{\perp,Ed}$ =	234,60	N/mm²	$\sigma_{\perp,Ed}$ =	0,00	N/mm²	$\sigma_{\perp,Ed}$ =	204,58 N/mm²
$\tau_{\parallel,Ed} =$	-4,79	N/mm²	$\tau_{\parallel,Ed} =$	-14,00	N/mm²	$\tau_{\parallel,Ed} =$	-3,35 N/mm²
$\tau_{\perp,Ed}$ =	0,00	N/mm²	$\tau_{\perp,Ed}$ =	0,00	N/mm²	$\tau_{\perp,Ed}$ =	0,00 N/mm²
$\sigma_{w,Ed} / f_{vw,Rd} =$	0,93	≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,06	≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,81 ≤ 1,00
$\sigma_{v,Ed} / f_{y,d} =$	0,62	≤ 1,00	$\tau_{Ed} / \tau_{Rd} =$	0,03	≤ 1,00	$\sigma_{v,Ed} / f_{y,d} =$	0,77 ≤ 1,00

Beulnachweis nach EN 1993-1-1 bzw. EN 1993-1-5

c/t = (b+r)/t =	8,9

≤ 14ε = 11,39 ε = 0,81

6.8.6 Lastdetail LD_{ULS}02 – [QT]_{geschlossen} – Versuchsdurchführung

 $P_{Ed,Versuchsdurchf\"uhrung}$

 $= 1,35 \cdot G_{k,[VT]} \oplus 1,05 \cdot P_{k,Vorspannung} \oplus 1,00 \cdot P_{k,Spannstangen,Versuchsdurchf"uhrung}$ = 1,35 \cdot 4,38 + 1,05 \cdot 2.116,00 + 1,00 \cdot 253,00 = 2.480,70 kN

(siehe Punkt 6.3.11 Auflagerkraft des Vorspannträgers [VT] am Querträger [QT])

Beschreibung siehe Seite 142.

P_{z,Ed,[VT],Vorspannung} = 2.480,70 kN

[VT]-Untergurt Oberkante

	A _{w,ges} =	110,00	cm²	gesamte Schweißnahtfläche
	σ _w =	-225,52	N/mm²	mittlere Schweißnahtspannung
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
Ste	ege			
	$A_6 = A_w =$	55,00	cm²	Ualakahla ähta N/T) Staaa
	$\sigma_6 = \sigma_w =$	-225,52	N/mm²	naiskeninante (v 1j-stege
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
	$F_6 = F_w =$	1.240,35	kN	Gesamtkraft des Steges
	A ₇ =	75,00	cm²	0 m charles
	σ ₇ =	-165,38	N/mm²	[vi]-Stegbieche
		≤ f _{vk} = 355,00	N/mm²	

Pressung [VT]_{Untergurt} / [QT]_{Obergurt}

4·A ₅ =	501,32 cm ²	Kantaktenannung zwischen den Gurten
σ5 =	-24,74 N/mm²	Kontaktspannung zwischen den Garten
	$\leq f_{yk} = 355,00 \text{ N/mm}^2$	

[QT]-0	Obergurt Unter	kante		
Au	<u>ßensteifen</u>			
	f _{w,[VT]-Steg} =	-22,55	kN/cm	Schweißnahtkraft je cm des [VT]-Steg = Konsistenzbedingung
	e _{Steife} =	198,0	mm	Einflussbreite der Steife
	$A_1 = A_w =$	23,25	cm²	Schweißnahtfläche pro Steife
	$F_1 = F_w =$	446,53	kN	Gesamtkraft pro Steife
	$\sigma_1 = \sigma_w =$	-192,05	N/mm²	Schweißnahtspannung pro Steife
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
	A ₂ =	14,70	cm²	Stoifenblach
	σ2 =	-303,76	N/mm²	Steljenblech
		$\leq f_{yk} = 355,00$	N/mm²	
	F _{Steifen,ges} =	1.786,10	kN	Gesamtkraft aller Steifen
	ΔF =	694,60	kN	Differenzkraft = Kraft der Steganteile
<u>Ste</u>	ege			
	$F_{stege,ges} = \Delta F =$	694,60	kN	Kraft der Steganteile
	$A_3 = A_w =$	10,44	cm²	Schweißnaht der Steae

			Schwoißnaht
$\sigma_3 = \sigma_w =$	-166,33	N/mm²	Scriweijsnum
	$\leq f_{vw,Rd} = 251,47$	N/mm²	
A ₄ =	26,11	cm²	Charlest
σ4 =	-66,51	N/mm²	Sleyblech
	$\leq f_{\gamma k} = 355,00$	N/mm²	

Abbildung 6.116: Lastdetail LD_{ULS}02 – [QT]_{geschlossen} – Versuchsdurchführung

Steifennachweis Außensteife [QT]geschlossen

Steifentyp 2

Materialkennwerte

IVI	utenukennwerte						r bschweißnaht	
	$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490	N/mm²	$f_{\gamma k, S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²		
	$f_{vw,Rd,S355J2+N} =$	251,47	N/mm²	$f_{uk, S355J2+N(t \le 40 \text{ mm})} =$	490	N/mm²	\downarrow \downarrow \downarrow	S _{Ed,2}
	γ _{M2} =	1,25		γ _{M0} =	1,00			T _{Ed,3}
ge	ometrische Daten							
	h _{Schweißnaht} =	942	mm					
	b _{Schweißnaht} =	98	mm					
	r =	35	mm					
	t =	15	mm				Ę	
Kr	aftflüsse						:hweißn	
	S _{Fd.1} =	-6,90	kN/cm	LD _{ULS} 06 [QT] _{geschlossen} - Fläche A ₇	= A _w		ے ا	
	S _{Ed,2} =	45,56	kN/cm	LD _{ULS} 02 [QT] _{geschlossen} - Fläche A ₁	= A _w			
							ļ	
	T _{Fd.1} =	-4,35	kN/cm					
	T _{Fd.2} =	-5,46	kN/cm					-
	T _{Ed,3} =	-4,35	kN/cm					Ed,1
								S _{Ed,1}
Pu	inkt 1 = Punkt 2			Punkt 3 = Punkt 4			Punkt 5 = Punkt 6	
	a ₁ =	7	mm	a ₂ =	3	mm	a ₃ =	10 mm
	σ _{∥,Ed} =	0,00	N/mm²	σ _{∥,Ed} =	0,00	N/mm²	$\sigma_{\parallel,Ed} =$	0,00 N/mm²
	$\sigma_{\perp,\text{Ed}}$ =	-49,27	N/mm²	$\sigma_{\perp,Ed}$ =	0,00	N/mm²	$\sigma_{\perp,Ed}$ =	227,82 N/mm²
	τ _{,Ed} =	-31,10	N/mm²	τ _{,Ed} =	-90,96	N/mm²	$\tau_{\parallel,Ed}$ =	-21,77 N/mm²
	$\tau_{\perp,Ed}$ =	0,00	N/mm²	$\tau_{\perp,Ed}$ =	0,00	N/mm²	$\tau_{\perp,Ed}$ =	0,00 N/mm²
	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,23	≤ 1,00	$\sigma_{w,Ed}/f_{vw,Rd}$ =	0,36 :	≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,91 ≤ 1,00
	$\sigma_{v,Ed}/f_{y,d} =$	0,19	≤ 1,00	$\tau_{Ed} / \tau_{Rd} =$	0,18 :	≤ 1,00	$\sigma_{v,Ed} / f_{y,d} =$	0,87 ≤ 1,00

Beulnachweis nach EN 1993-1-1 bzw. EN 1993-1-5

c/t = (b+r)/t = 8,9

 $\leq 14\varepsilon = 11,39$ $\varepsilon = 0,81$

6.8.7 Lastdetail LD_{ULS}02 – [QT]_{offen} – Vorspannung

 $P_{Ed,Vorspannung} = 1,35 \cdot G_{k,[VT]} \oplus 1,05 \cdot P_{k,Vorspannung} = 1,35 \cdot 4,38 + 1,05 \cdot 2.116,00 = 2.227,70 \ kN$

(siehe Punkt 6.3.10 Auflagerkraft des Vorspannträgers [VT] am Querträger [QT])

Dieser Fall liefert zwar keine bemessungsrelevanten Ergebnisse, allerdings wird er für die Spannungsüberlagerung im Lastfall Vorspannung benötigt.

- **[VT]:** Die Lastabtragung vom Vorspannträger [VT] auf den Obergurt des Querträgers [QT] erfolgt einerseits über die Stege des [VT] und andererseits über die innenliegende Steife.
- **[VT]:** Die Aussteifung des [VT] dient der Gewährleistung der Formtreuheit des Querschnitts bei Torsionsbeanspruchung.
- [QT]: Die Last wird rechnerisch über die außenliegenden Steifen in den Steg des [QT] und über die Kreuzungspunkte zwischen den Stegen des [VT]/[QT] über die Kehlnähte des [QT] in den Steg eingeleitet.

Dabei wird die [VT]-Stegkraft in eine längenbezogene Kraft umgerechnet. Über die elastische Lastausbreitung der [QT]-Steifen vom [QT]-Obergurt bis zum [VT]-Untergurt wird so eine Einflussbreite der [QT]-Steifen ermittelt. Daraus ergibt sich die auf die [QT]-Außensteifen einwirkende Kraft.

Es müssen daher die Steifen und deren Anschlussnähte nach einem geeigneten Berechnungsmodell mit dem Verfahren E-E nachgewiesen werden.

- **[QT]:** Die Differenzkraft, welche nicht von den [QT]-Außensteifen aufgenommen wird, wird über die elastische Lastausbreitung der [VT]-Stege auf die [QT]-Stegnähte verteilt.
- **[QT]:** Die Lasteinleitung in den [QT] erfolgt ausschließlich über die Schweißnähte, die einzuleitende Kraft wird über die Schweißnähte der Steifen bzw. der Halskehlnaht eingeleitet.

[VT]-Untergurt Ob	erkante						
A _{w,ges} =	125,26	cm²	gesamte Schweißnahtfläche	[QT]-Obergurt Unte	rkante		
σ _w =	-177,85	N/mm²	mittlere Schweißnahtspannung	Außensteifen			
	$\leq f_{vw,Rd} = 251,47$	N/mm²		f _{w,[VT]-Steg} =	-14,23	kN/cm	Schweißnahtkraft je cm des [VT]-Steg = Konsistenzbedingung
<u>Innensteifen</u>				e _{Steife} =	270,0	mm	Einflussbreite der Steife
$A_8 = A_w =$	15,26	cm ²	Schweißnahtfläche der Steife	$\Delta = \Delta =$	29.40	cm ²	Schweißnahtfläche pro Steife
$\sigma_8 = \sigma_w =$	-177,85	N/mm ²		$F_1 = F_{w} =$	384.15	kN	Gesamtkraft pro Steife
	$\leq T_{vw,Rd} = 251,47$	N/mm ⁻	1	$\sigma_1 = \sigma_w =$	-130,66	N/mm ²	Schweißnahtspannung pro Steife
$F_8 = F_w =$	271,39	kN	Gesamtkraft der Steife	1 W	$\leq f_{vw,Rd} = 251,47$	N/mm²	
				Δ. =	22.08	cm ²	-
<u>Stege</u>			1	$\sigma_2 =$	-173.98	N/mm ²	Steifenblech
$A_6 = A_w =$	55,00	cm²	Halskehlnähte [VT]-Steae	02	< f = 355.00	N/mm ²	
$\sigma_6 = \sigma_w =$	-177,85	N/mm²	naiskeimane [vi] stege		yk 000,00	,	1
	$\leq f_{vw,Rd} = 251,47$	N/mm²		F _{Steifen,ges} =	1.536,59	kN	Gesamtkraft aller Steifen
$F_6 = F_w =$	978,15	kN	Gesamtkraft des Steges	$\Delta F = F_8 =$	691,11	kN	Differenzkraft = Kraft des Steganteils
A ₇ =	75,00	cm²	D m Charlester	<u>Steg</u>			
σ7 =	-130,42	N/mm²	[VI]-Stegblech	$F_{stege,ges} = \Delta F =$	= 691,11	kN	Kraft des Steganteils
	$\leq f_{yk} = 355,00$	N/mm²		$A_3 = A_w =$	35,38	cm²	
				σ ₂ = σ _w =	-48.83	N/mm ²	Schweißnaht des Steges
Pressung [VT] _{Unterg}	_{gurt} / [QT] _{Obergurt}			- 3 - W	< f	, N/mm²	
A ₅ =	767,80	cm²			= · vw,Rd = = = = ; ; ;	2	1
σ _r =	-29.01	N/mm ²	Kontaktspannung zwischen den Gurten	A ₄ =	61,91	cm ²	Stegblech
~ 5	< f . = 355.00	N/mm ²		σ ₄ =	-27,91	N/mm²	
	s r _{yk} = 555,00	•••			≤1 _{yk} = 355,00	IN/ []]]]]

P_{z,Ed,[VT],Vorspannung} = 2.227,70 kN

<u>14</u>9

Abbildung 6.117: Lastdetail LD_{ULS}02 – [QT]_{offen} – Vorspannung – Kräfte/Spannungen

Abbildung 6.118: Lastdetail LD_{ULS}02 – [QT]_{offen} – Vorspannung

Steifennachweis Außensteife [QT]offen

Steifentyp 2

Materialkennwerte

Waterlakerinwerte				r b _{Schweißnat}	ıt
$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490 N/mm²	$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355 N/mm²		
$f_{vw,Rd,S355J2+N} =$	251,47 N/mm²	$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490 N/mm²	↓↓,	S _{Ed,2}
γ _{M2} =	1,25	γ _{M0} =	1,00		
geometrische Daten					
h _{Schweißnaht} =	933 mm				
b _{Schweißnaht} =	184 mm				
r =	35 mm			1	
t =	20 mm			ž	
Kraftflüsse				thweißna	
S _{Ed.1} =	16,80 kN/cm	LD _{ULS} 06 [QT] _{offen} - Fläche A ₈ = A _w		ا الا	
S _{Ed,2} =	20,88 kN/cm	$LD_{ULS}02 [QT]_{offen}$ - Fläche A ₁ = A _w			
T _{Ed,1} =	-0,52 kN/cm				
T _{Ed,2} =	-0,80 kN/cm				Т
T _{Ed,3} =	-0,52 kN/cm				_ ∎ Ed,1
					S _{Ed,1}
Punkt 1 = Punkt 2		Punkt 3 = Punkt 4		Punkt 5 = Punkt 6	
a ₁ =	5 mm	a ₂ =	3 mm	a ₃ =	5 mm
σ _{∥,Ed} =	0,00 N/mm²	σ _{∥,Ed} =	0,00 N/mm²	σ _{∥,Ed} =	0,00 N/mm²
$\sigma_{\perp,Ed}$ =	167,97 N/mm²	$\sigma_{\perp, Ed}$ =	0,00 N/mm²	$\sigma_{\perp,Ed}$ =	208,78 N/mm²
$\tau_{\parallel,Ed} =$	-5,17 N/mm²	$\tau_{\parallel,Ed} =$	-13,41 N/mm²	$\tau_{\parallel,Ed} =$	-5,17 N/mm²
$\tau_{\perp,Ed}$ =	0,00 N/mm²	$\tau_{\perp,Ed}$ =	0,00 N/mm²	$\tau_{\perp,Ed}$ =	0,00 N/mm²
$\sigma_{w,Ed} / f_{vw,Rd} =$	0,67 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,05 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,83 ≤ 1,00
$\sigma_{v,Ed} / f_{y,d} =$	0,24 ≤ 1,00	$\tau_{Ed} / \tau_{Rd} =$	0,02 ≤ 1,00	$\sigma_{v,Ed}/f_{y,d} =$	0,29 ≤ 1,00

Beulnachweis nach EN 1993-1-1 bzw. EN 1993-1-5

11,0

c/t = (b+r)/t =

 $\leq 14\epsilon = 11,39$ $\epsilon = 0,81$

Steifentyp 1

γ_{M2} =

r = t =

Kraftflüsse S_{Ed,1} =

 $S_{Ed,2} =$

T_{Ed,1} =

T_{Ed,2} =

T_{Ed,3} =

Materialkennwerte

 $f_{vw,Rd,S355J2+N} =$

geometrische Daten

h_{Schweißnaht} =

b_{Schweißnaht} =

 $f_{uk,S355J2+N(t \le 40 \text{ mm})} =$

						∤ ∤	b Schweißnaht	 ── <u>/</u> ─/
490	N/mm²	$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355	N/mm²		Ļ	\downarrow \downarrow \downarrow \downarrow	S _{Ed,2}
251,47	N/mm²	$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490	N/mm²	Ed,2			► T _{Ed,3}
1,25		γ _{M0} =	1,00			4	-	6
340	mm				Y			
80	mm				ŧ			
20	mm				1			
15	mm				ł	h Schweißnahl		
28,27	kN/cm	LD _{ULS} 02 [QT] _{offen} - Fläche A ₈ = A _w			ŧ			
0,00	kN/cm				ł	3		1
4,46	kN/cm				A	,° ==		
6,65	kN/cm				L	·		1
4,46	kN/cm							S _{Ed,1}

Punkt 1 = Punkt 2

unkt 1 = Punkt 2		Punkt 3 = Punkt 4		Punkt 5 = Punkt 6	
a ₁ =	8 mm	a ₂ =	3 mm	a ₃ =	3 mm
σ _{∥,Ed} =	0,00 N/mm²	σ _{∥,Ed} =	0,00 N/mm²	σ _{∥,Ed} =	0,00 N/mm²
$\sigma_{\perp,Ed}$ =	176,69 N/mm²	$\sigma_{\perp, Ed}$ =	0,00 N/mm²	$\sigma_{\perp, Ed}$ =	0,00 N/mm²
$\tau_{\parallel,Ed} =$	27,90 N/mm²	$\tau_{\parallel,Ed} =$	110,86 N/mm²	$\tau_{\parallel,Ed} =$	74,40 N/mm²
$\tau_{\perp,Ed}$ =	0,00 N/mm²	$\tau_{\perp,Ed}$ =	0,00 N/mm²	$\tau_{\perp,Ed}$ =	0,00 N/mm²
$\sigma_{w,Ed} / f_{vw,Rd} =$	0,71 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,44 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,30 ≤ 1,00
$\sigma_{v,Ed}/f_{y,d} =$	0,55 ≤ 1,00	τ_{Ed} / τ_{Rd} =	0,22 ≤ 1,00	$\sigma_{v,Ed}/f_{y,d} =$	0,15 ≤ 1,00

Beulnachweis nach EN 1993-1-1 bzw. EN 1993-1-5

8,0

c/t = (b+2r)/t =

 $\leq 14\epsilon = 11,39$ $\varepsilon = 0,81$

6.8.8 Lastdetail LD_{ULS}02 – [QT]_{offen} – Versuchsdurchführung

 $P_{Ed,Versuchsdurchf\"uhrung}$

 $= 1,35 \cdot G_{k,[VT]} \oplus 1,05 \cdot P_{k,Vorspannung} \oplus 1,00 \cdot P_{k,Spannstangen,Versuchsdurchf"uhrung$ $= 1,35 \cdot 4,38 + 1,05 \cdot 2.116,00 + 1,00 \cdot 253,00 = 2.480,70 \ kN$

(siehe Punkt 6.3.11 Auflagerkraft des Vorspannträgers [VT] am Querträger [QT])

Beschreibung siehe Seite 149.

P_{z,Ed,[VT],Vorspannung} = 2.480,70 kN

[VT]-Untergurt Oberkante

	A _{w,ges} =	125,26	cm²	gesamte Schweißnahtfläche
	σ _w =	-198,04	N/mm²	mittlere Schweißnahtspannun
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
Ini	nensteifen			-
	$A_8 = A_w =$	15,26	cm²	
	$\sigma_8 = \sigma_w =$	-198,04	N/mm²	Schweißnähtfläche der Steife
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
	$F_8 = F_w =$	302,22	kN	Gesamtkraft der Steife
Ste	ege			
	$A_6 = A_w =$	55,00	cm²	
	$\sigma_6 = \sigma_w =$	-198,04	N/mm²	Haiskeninante [VI]-Stege
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
	$F_6 = F_w =$	1.089,24	kN	Gesamtkraft des Steges
	A ₇ =	75,00	cm²	0/TI Stopplach
				• · · · · · · · · · · · · · · · · · · ·

-145,23 N/mm² $\leq f_{vk} = 355,00 \text{ N/mm}^2$

Pressung [VT]_{Untergurt} / [QT]_{Obergurt}

σ7=

A ₅ =	767,80 c	cm²	Kontaktenannung zwischen den Curten
σ5 =	-32,31 N	N/mm²	Kontaktspannung zwischen den Gutten
	≤ f _{yk} = 355,00 N	N/mm²	

[QT]-Obergurt Unter	kante		
<u>Außensteifen</u>			
f _{w,[VT]} -Steg =	-15,84	kN/cm	Schweißnahtkraft je cm des [VT]-Steg : Konsistenzbedingung
e _{Steife} =	270,0	mm	Einflussbreite der Steife
$A_1 = A_w =$	29,40	cm²	Schweißnahtfläche pro Steife
$F_1 = F_w =$	427,78	kN	Gesamtkraft pro Steife
$\sigma_1 = \sigma_w =$	-145,50	N/mm²	Schweißnahtspannung pro Steife
	$\leq f_{vw,Rd} = 251,47$	N/mm²	
A ₂ =	22,08	cm²	Chaifamhlach
σ2 =	-193,74	N/mm²	steljenblech
	≤ f _{yk} = 355,00	N/mm²	
F _{Steifen,ges} =	1.711,10	kN	Gesamtkraft aller Steifen
$\Delta F = F_8 =$	769,60	kN	Differenzkraft = Kraft des Steganteils
Steg			
$F_{stege,ges} = \Delta F =$	769,60	kN	Kraft des Steganteils
$A_3 = A_w =$	35,38	cm²	Schweißnaht der Steaer
$\sigma_3 = \sigma_w =$	-54,38	N/mm ²	Schweijshum des steges

	$\leq f_{vw,Rd} = 251,47 \text{ N/mm}^2$	
A ₄ =	61,91 cm²	
σ4 =	-31,08 N/mm²	Stegblech
	≤ f _{yk} = 355,00 N/mm²	

Abbildung 6.119: Lastdetail LD_{ULS}02 – [QT]_{offen} – Versuchsdurchführung – Kräfte/Spannungen

Abbildung 6.120: Lastdetail LD_{ULS}02 – [QT]_{offen} – Versuchsdurchführung

Steifennachweis Außensteife [QT]_{offen}

Steifentyp 2

Materialkennwerte

Mutenukennwerte					- bsobwoißpabt	
$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	= 490 251,47	N/mm² N/mm²	$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355 N/mm² 490 N/mm²		S _{Ed,2}
γ _{M2} =	1,25	,	$\gamma_{M0} =$	1,00		$T_{Ed,3}$
geometrische Daten						
h _{Schweißnaht} =	933	mm				
b _{Schweißnaht} =	184	mm			V I I I I I I I I I I I I I I I I I I I	
r =	35	mm				
t =	20	mm			*	
Kraftflüsse					hweißnar	
S _{Ed 1} =	-4,25	kN/cm	LD _{ULS} 06 [QT] _{offen} - Fläche A ₇ = A _w		h se	
S _{Ed,2} =	23,25	kN/cm	$LD_{ULS}02 [QT]_{offen}$ - Fläche A ₁ = A _w			
$T_{Ed,1} = T_{Ed,2} = T_{Ed,3} =$	-3,48 -5,42 -3,48	kN/cm kN/cm kN/cm				T _{Ed,1} S _{Ed,1}
Punkt 1 = Punkt 2			Punkt 3 = Punkt 4		Punkt 5 = Punkt 6	
a ₁ =	5	mm	a ₂ =	3 mm	a ₃ =	5 mm
σ _{ll,Ed} =	0,00	N/mm²	σ _{∥,Ed} =	0,00 N/mm²	σ _{∥,Ed} =	0,00 N/mm²
$\sigma_{\perp, Ed}$ =	-42,45	N/mm²	$\sigma_{\perp,Ed}$ =	0,00 N/mm²	$\sigma_{\perp, Ed}$ =	232,49 N/mm²
τ _{,Ed} =	-34,81	N/mm²	τ _{,Ed} =	-90,37 N/mm²	τ _{,Ed} =	-34,81 N/mm²
$\tau_{\perp,Ed}$ =	0,00	N/mm²	$\tau_{\perp,Ed}$ =	0,00 N/mm²	$\tau_{\perp,Ed}$ =	0,00 N/mm²
$\sigma_{w,Ed}$ / $f_{vw,Rd}$ =	0,22	≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,36 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,93 ≤ 1,00
$\sigma_{v,Ed}/f_{y,d}$ =	0,10	≤ 1,00	τ_{Ed} / τ_{Rd} =	0,13 ≤ 1,00	$\sigma_{v,Ed} / f_{y,d} =$	0,34 ≤ 1,00

Beulnachweis nach EN 1993-1-1 bzw. EN 1993-1-5

c/t = (b+r)/t =

11,0 $\leq 14\epsilon = 11,39$ $\epsilon = 0,81$

50	enentypi				r h	r
М	aterialkennwerte					Schweißnaht
	$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490 N/mm²	$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355 N/mm²	↓ ↓	S _{Ed,2}
	$f_{vw,Rd,S355J2+N} =$	251,47 N/mm²	$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490 N/mm²	Ediz	
	γ _{M2} =	1,25	γ _{M0} =	1,00		6
ge	eometrische Daten				i i	
	h _{Schweißnaht} =	340 mm				
	b _{Schweißnaht} =	80 mm			†	
	r =	20 mm				
	t =	15 mm			veißnah	
Kr	aftflüsse				h Schv	
	S _{Fd.1} =	37,78 kN/cm	$LD_{ULS}02 [QT]_{offen} - Fläche A_8 = A_w$		•	
	S _{Ed.2} =	0,00 kN/cm			1	
	T _{rd.1} =	5,96 kN/cm		- I I	A	
	$T_{\rm Ed,2} =$	8,89 kN/cm				
	$T_{Ed,3}^{2} =$	5,96 kN/cm			ĽĽ	
Pu	ınkt 1 = Punkt 2		Punkt 3 = Punkt 4		Punkt 5 = Punkt 6	
	a ₁ =	8 mm	a ₂ =	3 mm	a ₃ =	3 mm
	σ _{∥,Ed} =	0,00 N/mm²	$\sigma_{\parallel,Ed}$ =	0,00 N/mm²	$\sigma_{\parallel,Ed}$ =	0,00 N/mm²
	$\sigma_{\perp, Ed}$ =	236,11 N/mm²	$\sigma_{\perp, Ed}$ =	0,00 N/mm²	$\sigma_{\perp, Ed}$ =	0,00 N/mm²
	$\tau_{\parallel, Ed} =$	37,28 N/mm²	$\tau_{\parallel,Ed} =$	148,14 N/mm²	$\tau_{\parallel,Ed} =$	99,41 N/mm²
	$\tau_{\perp,Ed}$ =	0,00 N/mm²	$\tau_{\perp,Ed}$ =	0,00 N/mm²	$\tau_{\perp, \text{Ed}}$ =	0,00 N/mm²
	$\sigma_{w,Ed}$ / $f_{vw,Rd}$ =	0,95 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,59 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,40 ≤ 1,00

Beulnachweis nach EN 1993-1-1 bzw. EN 1993-1-5

c/t = (b+2r)/t =

 $\sigma_{v,Ed} / f_{y,d} =$

 $\leq 14\varepsilon = 11,39$ $\varepsilon = 0,81$

 τ_{Ed} / τ_{Rd} =

 $0,74 \le 1,00$

8,0

Querschnittsklasse 3

 $0,29 \leq 1,00$

 $\sigma_{v,Ed}/f_{y,d} =$

 $0,19 \leq 1,00$

6.8.9 Lastdetail LD_{ULS}03 – Vorspannung

 $P_{Ed,Vorspannung} = 1,05 \cdot LF_{Vorspannung} = 1,05 \cdot 529,00 = 555,45 \ kN$

Dieser Fall liefert zwar keine bemessungsrelevanten Ergebnisse, allerdings wird er für die Spannungsüberlagerung im Lastfall Vorspannung benötigt.

- **[VT]:** Die Einleitung der Vorspannkraft wird über Lastverteilplatten mit einer Stärke von 45 mm und 40 mm erzielt. Der daraus resultierende Druckkegel liefert Kontaktspannungen an der Oberseite des [VT]-Obergurts.
- **[VT]:** Die Einleitung dieser Kraft in den Vorspannträger [VT] erfolgt über die Schweißnähte. Die Einflusslänge, auf welche sich die Druckspannung auf die Schweißnähte auswirkt wird über den erweiterten Druckkegel ermittelt.

Beide Lasteinleitungsplatten liegen über den [VT]-Stegen auf, es kann somit angenommen werden, dass die Kräfte aus den Spanngliedern direkt in die Stege, ohne Zwischenbiegung des [VT]-Obergurtbleches abgeleitet werden können.

• **[VT]:** Zusätzlich zu den Halskehlnähten des [VT] wird auch die Innensteife zur Lastabtragung herangezogen. Die Innensteifen liegen im Überlagerungsbereich beider Druckkegel, deren Anschlussnähte werden daher nach einem geeigneten Berechnungsmodell mit dem Verfahren E-E nachgewiesen.

```
P<sub>Ed,Vorspannung</sub> = -555,45 kN
```

[VT]-Obergurt Oberkante

A ₁ =	359,53 cm²	Pressungsfläche
σ1 =	-15,45 N/mm²	Kontaktspannung
	$\leq f_{vk} = 355,00 \text{ N/mm}^2$	

[VT]-Obergurt Unterkante

.1.4	berguit ont			
	A _{w,ges} =	70,22	cm²	gesamte Schweißnahtfläche
	σ _w =	-79,10	N/mm²	mittlere Schweißnahtspannung
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
Inr	nensteifen			
	$A_4 = A_w =$	5,88	cm²	Cohunci@nahtfläche.dor.Ctaife
	$\sigma_4 = \sigma_w =$	-79,10	N/mm²	schweijsnuntjiuche der steije
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
	$F_4 = F_w =$	46,51	kN	Gesamtkraft der Steife
	Λ -	75.00	cm ²	

-6,20 N/mm²

 $\leq f_{yk} = 355,00 \text{ N/mm}^2$

Innensteife

Stege

σ₅ =

$A_2 = A_w =$	32,17	cm²	Halckohlnähta N/TI Staaa
$\sigma_2 = \sigma_w =$	-79,10	N/mm²	nuiskenmunte [v1]-stege
	$\leq f_{vw, Rd} = 251, 47$	N/mm²	
$F_2 = F_w =$	254,47	kN	Gesamtkraft des Steges
A ₃ =	60,32	cm²	NTI Staablach
σ3 =	-42,19	N/mm²	[vij-stegbleth
	$\leq f_{yk} = 355,00$	N/mm²	

Abbildung 6.121: Lastdetail LD_{ULS}03 – Versuchsdurchführung/Vorspannung

490 N/mm²

251,47 N/mm²

340 mm

80 mm

20 mm

12 mm

0,00 kN/cm 5,81 kN/cm

-0,92 kN/cm -1,37 kN/cm

-0,92 kN/cm

1,25

Steifentyp 1

γ_{M2} =

t =

Kraftflüsse S_{Ed,1} =

S_{Ed, 2} =

T_{Ed,1} =

T_{Ed,2} =

T_{Ed,3} =

 $\mathsf{f}_{\mathsf{vw},\mathsf{Rd},\mathsf{S355J2+N}} =$

geometrische Daten

h_{Schweißnaht} =

b_{Schweißnaht} = r =

 $f_{uk,S355J2+N(t \le 40 \text{ mm})} =$

$f_{yk,S355J2+N (t \le 40 \text{ mm})} =$ $f_{uk,S355J2+N (t \le 40 \text{ mm})} =$	355 N/mm² 490 N/mm²	r bschweißnaht r Sed,2
γ _{M0} = LD _{uts} 03 - Fläche A ₄ = A _w	1,00	A TEd.1 SEd,1

Punkt 1 = Punkt 2

unkt 1 = Punkt 2		Punkt 3 = Punkt 4		Punkt 5 = Punkt 6	
a ₁ =	3 mm	a ₂ =	3 mm	a ₃ =	3 mm
σ _{∥,Ed} =	0,00 N/mm²	σ _{∥,Ed} =	0,00 N/mm²	σ _{∥,Ed} =	0,00 N/mm²
$\sigma_{\perp, Ed}$ =	0,00 N/mm²	$\sigma_{\perp, Ed}$ =	0,00 N/mm²	$\sigma_{\perp, Ed}$ =	96,90 N/mm²
$\tau_{\parallel,Ed} =$	-15,30 N/mm²	$\tau_{\parallel,Ed} =$	-22,80 N/mm²	$\tau_{\parallel,Ed} =$	-15,30 N/mm²
$\tau_{\perp,Ed}$ =	0,00 N/mm²	$\tau_{\perp,Ed}$ =	0,00 N/mm²	$\tau_{\perp,Ed}$ =	0,00 N/mm²
$\sigma_{w,Ed} / f_{vw,Rd} =$	0,06 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,09 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,39 ≤ 1,00
$\sigma_{v,Ed} / f_{y,d} =$	0,04 ≤ 1,00	τ_{Ed} / τ_{Rd} =	0,06 ≤ 1,00	$\sigma_{v,Ed}/f_{y,d} =$	0,14 ≤ 1,00

Beulnachweis nach EN 1993-1-1 bzw. EN 1993-1-5

c/t = (b+2r)/t =10,0

 $\leq 14\epsilon = 11,39$ $\varepsilon = 0,81$

6.8.10 Lastdetail LD_{ULS}03 – Versuchsdurchführung

 $P_{Ed,Versuchsdurchf\"uhrung} = 1,00 \cdot P_{k,Spannstangen} \oplus 1,05 \cdot LF_{Vorspannung} = 1,00 \cdot 63,25 + 1,05 \cdot 529,00$ $= 618,70 \ kN$

Siehe Punkt 6.8.9 und Abbildung 6.121.

P_{Ed,Versuchsdurchführung} = -618,70 kN

[VT]-Obergurt Oberkante

A ₁ =	359,53 cm²	Pressungsfläche
σ1 =	-17,21 N/mm²	Kontaktspannung
	$\leq f_{yk} = 355,00 \text{ N/mm}^2$	

[VT]-Obergurt Unterkante

A _{w,ges} =	70,22	cm²	gesamte Schweißnahtfläche
σ _w =	-88,11	N/mm²	mittlere Schweißnahtspannung
	$\leq f_{vw,Rd} = 251,47$	N/mm²	
<u>Innensteifen</u>			
$A_4 = A_w =$	5,88	cm²	Cohusi Roohtfläche der Cteife
$\sigma_4 = \sigma_w =$	-88,11	N/mm²	schweijsnuntjiuche der steije
	$\leq f_{vw,Rd} = 251,47$	N/mm²	
$F_4 = F_w =$	51,81	kN	Gesamtkraft der Steife

A ₅ =	75,00 cm ²	anataifa
σ5 =	-6,91 N/mm²	ensterje
	$\leq f_{yk} = 355,00 \text{ N/mm}^2$	

Stege

$A_2 = A_w =$	32,17	cm²	Unlabahla ähta NTI Ctana
$\sigma_2 = \sigma_w =$	-88,11	N/mm²	Huiskeninunte [v1]-stege
	$\leq f_{vw,Rd} = 251,47$	N/mm²	
$F_2 = F_w =$	283,45	kN	Gesamtkraft des Steges
A ₃ =	60,32	cm²	NTI Staablach
σ3 =	-46,99	N/mm²	[VI]-Stegblech
	≤ f _{yk} = 355,00	N/mm²	

Steifentyp 1

				r h	-
Materialkennwerte				r Ds ≁≁	Schweißnaht Г
$f_{uk,S355J2+N (t \le 40 \text{ mm})} = f_{vw,Rd,S355J2+N} =$	490 N/mm² 251,47 N/mm²	$f_{yk,S355J2+N(t \le 40 \text{ mm})} = f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	355 N/mm² 490 N/mm²	d ⁴²	
γ _{M2} =	1,25	γ _{M0} =	1,00		6
geometrische Daten				l l	
h _{Schweißnaht} = b _{Schweißnaht} = r =	340 mm 80 mm 20 mm			ž ž	
t = Kraftflüsse	12 mm			Schweißna	
S _{Ed,1} = S _{Ed,2} =	0,00 kN/cm 6,48 kN/cm	LD _{ULS} 03 - Fläche A ₄ = A _w			1
$T_{Ed,1} = T_{Ed,2} = T_{Ed,3} =$	-1,02 kN/cm -1,52 kN/cm -1,02 kN/cm		Ĺ		
Punkt 1 = Punkt 2		Punkt 3 = Punkt 4		Punkt 5 = Punkt 6	
a ₁ =	3 mm	a ₂ =	3 mm	a ₃ =	3 mm
σ _{,Ed} =	0,00 N/mm ²	σ _{∥,Ed} =	$0,00 \text{ N/mm}^2$	σ _{∥,Ed} =	0,00 N/mm ²
$\sigma_{\perp,Ed} =$ $\tau_{\parallel,Ed} =$	-17,04 N/mm ²	$\sigma_{\perp,Ed} = \tau_{\parallel,Ed} =$	-25,40 N/mm²	$\sigma_{\perp,Ed} =$ $\tau_{\parallel,Ed} =$	-17,04 N/mm ²
$\tau_{\perp,Ed}$ =	0,00 N/mm²	$\tau_{\perp,Ed}^{\pi}$ =	0,00 N/mm²	$ au_{\perp, Ed}$ =	0,00 N/mm²
$\sigma_{w,Ed} / f_{vw,Rd} =$	0,07 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,10 ≤ 1,00	$\sigma_{w,Ed}/f_{vw,Rd}$ =	0,43 ≤ 1,00
$\sigma_{v,Ed} / f_{y,d} =$	0,04 ≤ 1,00	$\tau_{Ed} / \tau_{Rd} =$	0,06 ≤ 1,00	$\sigma_{v,Ed}/f_{y,d} =$	0,16 ≤ 1,00

Beulnachweis nach EN 1993-1-1 bzw. EN 1993-1-5

c/t = (b+2r)/t =10,0 $\leq 14\epsilon = 11,39$ $\varepsilon = 0,81$

6.8.11 Lastdetail LD_{ULS}04 – Vorspannung

 $P_{Ed,Vorspannung} = 1,05 \cdot LF_{Vorspannung} = 1,05 \cdot 529,00 = 555,45 \ kN$

(dieser Fall wird nicht weiter untersucht, da er keine bemessungsrelevanten Ergebnisse liefert, maßgebende Spannungen werden im Versuchszustand erzielt.)

- [LT]: Die Einleitung der Vorspannkraft wird über Lastverteilplatten mit einer Stärke von 45 mm und 40 mm erzielt. Der daraus resultierende Druckkegel liefert Kontaktspannungen an der Unterseite des [LT]-Untergurts.
- [LT]: Die Einleitung dieser Kraft in den Längsträger [LT] erfolgt über die Schweißnähte. Die Einflusslänge, auf welche sich die Druckspannung auf die Schweißnähte auswirkt, wird über den erweiterten Druckkegel ermittelt.

Die 40 mm dicke Lasteinleitungsplatte liegt über die gesamte Länge auf den [LT]-Stegen auf, es kann somit angenommen werden, dass die Kräfte aus den Spanngliedern direkt in die Stege, ohne Zwischenbiegung des [LT]-Untergurtbleches abgeleitet werden kann.

• **[LT]:** Zusätzlich zu den Halskehlnähten des [LT] wird auch die Innensteife zur Lastabtragung herangezogen. Die Innensteifen liegen im Überlagerungsbereich beider Druckkegel, deren Anschlussnähte werden daher nach einem geeigneten Berechnungsmodell mit dem Verfahren E-E nachgewiesen.

```
P<sub>Ed,Vorspannung</sub> = -555,45 kN
```

[LT]-Untergurt Unterkante

A ₁ =	359,53 cm²	Pressungsfläche
σ1 =	-15,45 N/mm²	Kontaktspannung
	≤ f _{yk} = 355,00 N/mm²	

[LT]-Untergurt Oberkante

	A _{w,ges} =	45,16	cm²	gesamte Schweißnahtfläche
	σ _w =	-123,00	N/mm²	mittlere Schweißnahtspannung
		$\leq f_{vw, Rd} = 251, 47$	N/mm²	
Inr	nensteifen			
	$A_4 = A_w =$	10,44	cm ²	
	$\sigma_4 = \sigma_w =$	-123,00	N/mm²	Schweißnahtfläche der Steife
		$\leq f_{vw, Rd} = 251, 47$	N/mm²	
	$F_4 = F_w =$	128,41	kN	Gesamtkraft der Steife
	A ₅ =	27,00	cm²	Innonctoifo
	σ5 =	-47,56	N/mm²	miensterje
		≤ f _{yk} = 355,00	N/mm²	

Stege

$A_2 = A_w =$	17,36	cm²	Halckohlnähta MTI Staan
$\sigma_2 = \sigma_w =$	-123,00	N/mm²	nuiskeninuitte [vij-stege
	$\leq f_{vw,Rd} = 251,47$	N/mm²	
$F_2 = F_w =$	213,52	kN	Gesamtkraft des Steges
A ₃ =	69,44	cm²	NTI Staghlach
σ3 =	-30,75	N/mm²	[VI]-StegDietii
	$\leq f_{yk} = 355,00$	N/mm²	

Abbildung 6.122: Lastdetail LD_{ULS}04 – Versuchsdurchführung/Vorspannung

50	enentypi				r	
М	aterialkennwerte					Schweißnaht
	$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490 N/mn	$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355 N/mm²	Į Į	S _{Ed,2}
	$f_{vw,Rd,S355J2+N} =$	251,47 N/mn	$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490 N/mm²	Ed,2	
	γ _{M2} =	1,25	γ _{M0} =	1,00		6
ge	ometrische Daten					
	h _{Schweißnaht} =	600 mm				
	b _{Schweißnaht} =	150 mm			▼ I I I	
	r =	20 mm				
	t =	18 mm			veißnah	
Kr	aftflüsse				hsdu	
	S _{Fd.1} =	8,56 kN/cr	1 $LD_{ULS}04 - Fläche A_4 = A_w$		♦	
	S _{Ed.2} =	0,00 kN/cr	n		1	
	$T_{Ed,1} = T_{Ed,2} = T_{Loc} = T_$	1,27 kN/cr 2,14 kN/cr 1 27 kN/cr	n n		A A	
	• Ed,3	1,2,7 ((1))				
Pu	ınkt 1 = Punkt 2		Punkt 3 = Punkt 4		Punkt 5 = Punkt 6	
	a ₁ =	3 mm	a ₂ =	3 mm	a ₃ =	3 mm
	σ _{∥,Ed} =	0,00 N/mn	n² σ _{∥,Ed} =	0,00 N/mm²	$\sigma_{\parallel, Ed}$ =	0,00 N/mm²
	$\sigma_{\perp, Ed}$ =	142,68 N/mn	$\sigma_{\perp,Ed} =$	0,00 N/mm²	$\sigma_{\perp, Ed}$ =	0,00 N/mm²
	$\tau_{\parallel, Ed} =$	21,18 N/mn	η² τ _{,Ed} =	35,67 N/mm²	$\tau_{\parallel,Ed} =$	21,18 N/mm²
	$\tau_{\perp,\text{Ed}}$ =	0,00 N/mn	$\tau_{\perp,Ed} =$	0,00 N/mm²	$\tau_{\perp,Ed}$ =	0,00 N/mm²
	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,57 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,14 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,08 ≤ 1,00

Beulnachweis nach EN 1993-1-1 bzw. EN 1993-1-5

 $0,14 \le 1,00$

10,6

c/t = (b+2r)/t =

 $\sigma_{v,Ed} / f_{y,d} =$

 $\leq 14\epsilon = 11,39$ $\epsilon = 0,81$

 τ_{Ed} / τ_{Rd} =

Querschnittsklasse 3

 $0,06 \leq 1,00$

 $\sigma_{v,Ed} / f_{y,d} =$

 $0,03 \leq 1,00$

6.8.12 Lastdetail LD_{ULS}04 – Versuchsdurchführung

$$\begin{split} P_{Ed,Versuchsuchsdurchf\"uhrung} &= 1,00 \cdot P_{k,Spannstangen} \oplus 1,05 \cdot LF_{Vorspannung} \\ &= 1,00 \cdot 63,25 + 1,05 \cdot 529,00 = 618,70 \ kN \end{split}$$

Siehe Punkt 6.8.11 und Abbildung 6.122.

P_{Ed,Versuchsdurchführung} = -618,70 kN

[LT]-Untergurt Unterkante

A ₁ =	359,53 cm²	Pressungsfläche
σ1 =	-17,21 N/mm²	Kontaktspannung
	$\leq f_{yk} = 355,00 \text{ N/mm}^2$	

[LT]-Untergurt Oberkante

	A _{w,ges} =	45,16	cm²	gesamte Schweißnahtfläche
	σ _w =	-137,00	N/mm²	mittlere Schweißnahtspannung
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
Inr	<u>nensteifen</u>			
	$A_4 = A_w =$	10,44	cm²	Schweißnahtfläche der Steife
	$\sigma_4 = \sigma_w =$	-137,00	N/mm²	schweijshuntjiuche der steije
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
	$F_4 = F_w =$	143,03	kN	Gesamtkraft der Steife

A ₅ =	27,00 cm ²	Innonstaife
σ5 =	-52,97 N/mm²	mnensterje
	$\leq f_{yk} = 355,00 \text{ N/mm}^2$	

Stege

$A_2 = A_w =$	17,36	cm²	Unlakablaäbta (VT) Stana
$\sigma_2 = \sigma_w =$	-137,00	N/mm²	Haiskenmante [v1]-stege
	$\leq f_{vw, Rd} = 251, 47$	N/mm²	
$F_2 = F_w =$	237,84	kN	Gesamtkraft des Steges
A ₃ =	69,44	cm²	NTI Stagblach
σ3 =	-34,25	N/mm²	[VI]-Stegbleth
	≤ f _{yk} = 355,00	N/mm²	

Stellentyp 1						h r
Materialkennwer	te				**	DSchweißnaht
f _{uk,S355J2+N (t≤40}	_{mm)} = 490	N/mm²	f _{yk,S355J2+N (t≤40 mm)} =	355 N/mm²	L L	SEd,2
$f_{vw,Rd,S355J2+N} =$	251,47	N/mm²	f _{uk,S355J2+N (t ≤ 40 mm)} =	490 N/mm²	Ed.2	
γ _{M2} =	1,25		γ _{M0} =	1,00		6
geometrische Dat	en				Í	
h _{Schweißnaht} =	600	mm				
b _{Schweißnaht} =	150	mm			†	
r =	20	mm			L L	
t =	18	mm			eißnat	
Kraftflüsse					h schw	
S _{Ed.1} =	9,54	kN/cm	LD _{ULS} 04 - Fläche A ₄ = A _w		t l	
S _{Ed,2} =	0,00	kN/cm				
					3 2 -	1
T _{Ed,1} =	1,42	kN/cm			A 🖛	
T _{Ed,2} =	2,38	kN/cm			↓ ↓	4 4 4 4
T _{Ed,3} =	1,42	kN/cm				S Ed, 1
Punkt 1 = Punkt 2			Punkt 3 = Punkt 4		Punkt 5 = Punkt 6	
a ₁ =	3	mm	a ₂ =	3 mm	a ₃ =	3 mm
σ _{∥,Ed} =	0,00	N/mm²	σ _{∥,Ed} =	0,00 N/mm²	σ _{∥,Ed} =	0,00 N/mm²
$\sigma_{\perp,Ed}$ =	158,92	N/mm²	$\sigma_{\perp,\text{Ed}}$ =	0,00 N/mm²	$\sigma_{\perp, Ed}$ =	0,00 N/mm²
$\tau_{\parallel,Ed} =$	23,59	N/mm²	$\tau_{\parallel,Ed} =$	39,73 N/mm²	$\tau_{\parallel,Ed} =$	23,59 N/mm²
$\tau_{\perp,Ed}$ =	0,00	N/mm²	$\tau_{\perp,\text{Ed}}$ =	0,00 N/mm²	$ au_{\perp,\text{Ed}}$ =	0,00 N/mm²
$\sigma_{w,Ed} / f_{vw,Rd} =$	0,64	≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,16 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,09 ≤ 1,00

Beulnachweis nach EN 1993-1-1 bzw. EN 1993-1-5

 $0,15 \le 1,00$

10,6

c/t = (b+2r)/t =

 $\sigma_{v,Ed} / f_{y,d} =$

 $\leq 14\epsilon = 11,39$ $\epsilon = 0,81$

 τ_{Ed} / τ_{Rd} =

Querschnittsklasse 3

 $0,06 \le 1,00$

 $\sigma_{v,Ed}/f_{y,d} =$

 $0,04 \le 1,00$

6.8.13 Lastdetail LD_{ULS}05 – Vorspannung

 $P_{Ed,Vorspannung} = N_{Ed,[ZS],Vorspannung} = -2.247,74 \, kN$ (siehe Punkt 6.3.15)

- **[ZS]:** Die Vorspannkraft wird von der Zugstütze [ZS] über deren Anschlussnähte sowie die Lasteinleitungssteife an die Endplatte weitergeleitet. Hierbei wird sowohl für die [ZS]-Gurte als auch für die Lasteinleitungssteifen ein Lastausbreitungsverhältnis von 1:1 verwendet.
- **[ZS]:** Die Abtragung der Kräfte in den darunterliegenden Längsträger [LT] erfolgt über die Kontaktspannung zwischen Zugstütze [ZS] und Längsträger [LT].
- [LT]: Die Lasteinleitung in den Längsträger [LT] erfolgt zum einen über die Halskehlnähte und zum anderen über die Anschlussnähte der Außen- bzw. Innensteifen des [LT].

P_{Ed,Vorspannung} = -2.247,74 kN

[ZS] Endplatte Oberkante

	A _{w,ges} =	92,80	cm²	gesamte Schweißnahtfläche
	σ _w =	-242,21	N/mm²	mittlere Schweißnahtspannung
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
Au	ßensteifen			
	$A_{13} = A_w =$	17,65	cm²	
	$\sigma_{13} = \sigma_w =$	-198,04	N/mm²	Schweißnahtfläche der Steife
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
	F ₁₃ = F _w =	349,55	kN	Gesamtkraft der Steife
	A ₁₄ =	18,54	cm²	Augustalfan Diach
	σ ₁₄ =	-188,54	N/mm²	Außenstelfen Blech
		$\leq f_{yk} = 355,00$	N/mm²	
[ZS	6]-Gurte			
	$A_{11} = A_w =$	28,75	cm²	Schweißnähte [75]-Gurte
	$\sigma_{11} = \sigma_w =$	-198,04	N/mm²	schweishunte [25]-Guite
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
	E - E -	560 38	۲N	Cocamthraft ain or [76] Curtor

$F_{11} = F_w =$	569,38	kN	Gesamtkraft eines [ZS]-G
A ₁₂ =	45,00	cm²	[76] Curto Block
σ ₁₂ =	-126,53	N/mm²	[25]-GUITE BIECH
	$\leq f_{yk} = 355,00$	N/mm²	

Pressung [ZS] Endplatte / [LT] Obergurt

F _{Gurt} = F ₁₁ =	569,38	kN	Gesamtkraft eines [ZS]-Gurtes
A ₉ =	421,46	cm²	Kontaktanannuna
σ ₉ =	-58,86	N/mm²	Kontaktspannung
	$\leq f_{yk} = 355,00$	N/mm²	
$F_{\text{Steifen}} = F_{13} =$	699,10	kN	Gesamtkraft beider Außensteifen
A ₁₀ =	781,80	cm²	Kontaktanannuna
σ ₁₀ =	-31,73	N/mm²	Kontaktspannang
	$\leq f_{yk} = 355,00$	N/mm²	

[LT] Obergurt Unterkante

Lastableitung [ZS]-Gurt

01			
F _{Gurt} = F ₁₁ =	569,38	kN	Gesamtkraft eines [ZS]-Gurtes
$A_1 = A_w =$	10,08	cm²	
$A_3 = A_w =$	8,85	cm²	
$A_5 = A_w =$	4,98	cm²	
A _{w,Gurt,ges} =	37,74	cm²	Gesamtfläche [ZS]-Gurtkraft
σ _w =	-150,87	N/mm²	mittlere Schweißnahtspannung
	$\leq f_{vw, Rd} = 251,47$	N/mm²	
F ₂ =	152,08	kN	
A ₂ =	18,00	cm²	Anteil [LT]-Innensteife
σ2 =	-84,49	N/mm²	
	$\leq f_{yk} = 355,00$	N/mm²	
F ₄ =	133,52	kN	
A ₄ =	35,41	cm²	Anteil [LT]-Stegblech
σ4 =	-37,71	N/mm²	
	$\leq f_{yk} = 355,00$	N/mm²	
F ₆ =	75,13	kN	
A ₆ =	7,80	cm ²	Anteil [LT]-Außensteife
σ ₆ =	-96,32	N/mm²	
	$\leq f_{yk} = 355,00$	N/mm²	

Lastableitung [ZS]-Außensteifen

			-
$F_{\text{Steifen}} = F_{13} =$	699,10	kN	Gesamtkraft beider Außensteifen
A ₁ =	10,08	cm²	
A ₇ =	9,31	cm²	
A ₅ =	4,98	cm²	
A _{w,Gurt,ges} =	38,66	cm²	Gesamtfläche [ZS]-Gurtkraft
$\sigma_5 = \sigma_w =$	-180,83	N/mm²	mittlere Schweißnahtspannung
	$\leq f_{vw, Rd} = 251, 47$	N/mm²	
F ₂ =	182,28	kN	
A ₂ =	18,00	cm²	Anteil [LT]-Innensteife
σ2 =	-101,27	N/mm²	
	$\leq f_{yk} = 355,00$	N/mm²	
F ₈ =	168,35	kN	
A ₈ =	37,23	cm²	Anteil [LT]-Stegblech
σ ₈ =	-45,22	N/mm²	
	$\leq f_{yk} = 355,00$	N/mm²	
F ₆ =	90,05	kN	
A ₆ =	7,80	cm²	Anteil [LT]-Außensteife
σ ₆ =	-115,45	N/mm²	
	$\leq f_{yk} = 355,00$	N/mm²	

Maximalspannungen Innen- / Außensteifen

σ _{2,max} =	-101,27	N/mm²
	$\leq f_{yk} = 355,00$	N/mm²
F _{2,max} =	182,28	kN
σ _{6,max} =	-115,45	N/mm²
	$\leq f_{yk} = 355,00$	N/mm²
F _{6,max} =	90,05	kN

⁴⁴ = 2.247,74 kN

ď

10 = 2.247,74 kN

Abbildung 6.123: Lastdetail LD_{ULS}05 – Vorspannung

Steifennachweis Außensteife [LT] unter Lasteinleitungssteife [ZS]

Steifentyp 2

Materialkennwerte

Waterlaikerinwerte				- hsaburai	asht
$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490 N/mm ²	$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355 N/mm ²		J S _{Ed.2}
vw,Rd,S355J2+N -	231,47 11/11111	uk,S355J2+N (t ≤ 40 mm) [—]	490 10/1111	• •	
γ _{M2} =	1,25	γ _{M0} =	1,00		
geometrische Daten					6
h _{Schweißnaht} =	600 mm				
b _{Schweißnaht} =	65 mm			♦	
r =	20 mm				
t =	12 mm			t i	
Kraftflüsse				hweißnal	
S _{Ed 1} =	0,00 kN/cm				
S _{Ed,2} =	13,85 kN/cm	$LD_{ULS}05 - Fläche A_5 = A_w$		↓ I I I I	
T _{Ed,1} =	-1,14 kN/cm				1
T _{Ed,2} =	-1,50 kN/cm				₩. = T
T _{Ed,3} =	-1,14 kN/cm				SEd,1
Punkt 1 = Punkt 2		Punkt 3 = Punkt 4		Punkt 5 = Punkt 6	
a ₁ =	3 mm	a ₂ =	3 mm	a ₃ =	3 mm
σ _{∥,Ed} =	0,00 N/mm²	σ _{∥,Ed} =	0,00 N/mm²	σ _{∥,Ed} =	0,00 N/mm²
$\sigma_{\perp,Ed}$ =	0,00 N/mm²	$\sigma_{\perp,Ed}$ =	0,00 N/mm²	$\sigma_{\perp,Ed}$ =	230,91 N/mm²
$\tau_{\parallel,Ed} =$	-18,94 N/mm²	$\tau_{\parallel,Ed} =$	-25,02 N/mm²	$\tau_{\parallel,Ed} =$	-18,94 N/mm²
$\tau_{\perp,\text{Ed}}$ =	0,00 N/mm²	$\tau_{\perp,Ed}$ =	0,00 N/mm²	$\tau_{\perp,\text{Ed}} =$	0,00 N/mm²
$\sigma_{w,Ed} / f_{vw,Rd} =$	0,08 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,10 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,92 ≤ 1,00
$\sigma_{v,Ed}/f_{y,d} =$	0,05 ≤ 1,00	$\tau_{Ed} / \tau_{Rd} =$	0,06 ≤ 1,00	$\sigma_{v,Ed}/f_{y,d} =$	0,33 ≤ 1,00

Beulnachweis nach EN 1993-1-1 bzw. EN 1993-1-5

c/t = (b+r)/t = 7,1

7,1 $\leq 14\epsilon = 11,39$ $\epsilon = 0,81$

Steifennachweis Innensteife [LT] unter Lasteinleitungssteife [ZS]

Steifentyp 1				r b	r
Materialkennwerte					weißnaht r
$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490 N/mm²	$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355 N/mm²		SEd,2
$f_{vw,Rd,S355J2+N} =$	251,47 N/mm²	$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490 N/mm²		
γ _{M2} =	1,25	γ _{M0} =	1,00		6
geometrische Daten					
h _{Schweißnaht} =	600 mm				
b _{Schweißnaht} =	150 mm			t I I I I	
r =	20 mm				
t =	18 mm			veißnat	
Kraftflüsse				h Schr	
S _{Fd 1} =	12,15 kN/cm	LD _{ULS} 05 - Fläche A ₁ = A _w		♦	
S _{Fd.2} =	0,00 kN/cm				
$T_{Ed,1} = T_{Ed,2} = T_{Ed,3} =$	1,80 kN/cm 3,04 kN/cm 1,80 kN/cm				
Punkt 1 = Punkt 2		Punkt 3 = Punkt 4		Punkt 5 = Punkt 6	
a ₁ =	3 mm	a ₂ =	3 mm	a ₃ =	3 mm
σ _{∥,Ed} =	0,00 N/mm²	σ _{∥,Ed} =	0,00 N/mm²	σ _{∥,Ed} =	0,00 N/mm²
$\sigma_{\perp,Ed}$ =	202,53 N/mm²	$\sigma_{\perp,Ed}$ =	0,00 N/mm²	$\sigma_{\perp, Ed}$ =	0,00 N/mm²
$\tau_{\parallel,Ed} =$	30,06 N/mm²	$\tau_{\parallel,Ed} =$	50,63 N/mm²	τ _{,Ed} =	30,06 N/mm²
$\tau_{\perp,Ed}$ =	0,00 N/mm²	$\tau_{\perp,Ed}$ =	0,00 N/mm²	$\tau_{\perp,Ed}$ =	0,00 N/mm²
$\sigma_{w,Ed} / f_{vw,Rd} =$	0,81 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,20 ≤ 1,00	$\sigma_{w,Ed}$ / $f_{vw,Rd}$ =	0,12 ≤ 1,00
$\sigma_{v,Ed} / f_{y,d} =$	0,20 ≤ 1,00	$\tau_{Ed} / \tau_{Rd} =$	0,08 ≤ 1,00	$\sigma_{v,Ed} / f_{v,d} =$	0,05 ≤ 1,00

Beulnachweis nach EN 1993-1-1 bzw. EN 1993-1-5

10,6

c/t = (b+2r)/t =

 $\leq 14\epsilon = 11,39$ $\epsilon = 0,81$

Steifennachweis Lasteinleitungssteife [ZS]-[LT]

Steifentyp 3

Materialkennwerte

$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490 N/mm²	$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355 N/mm²	E Ed,2
$f_{vw,Rd,S355J2+N} =$	251,47 N/mm²	$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490 N/mm²	
γ _{M2} =	1,25	γ _{M0} =	1,00	\sim
geometrische Daten				
h _{Schweißnaht} =	315 mm			veißna
b _{Schweißnaht} =	155 mm			Sch
r =	35 mm			
t =	12 mm			
Kraftflüsse				3
S _{Ed,1} =	12,82 kN/cm	LD_{ULS} 05 - Fläche A ₁₃ = A _w		
S _{Ed,2} =	3,67 kN/cm			
T _{Ed,1} =	7,47 kN/cm			r b _{Schweißnaht} Sed,1
$T_{Ed,2}$ =	6,29 kN/cm			+
Punkt 1 - Punkt 2		Dunkt 2 - Dunkt 1		
1 01111 - 1 011112		1 ulikt 5 – 1 ulikt 4		
a ₁ =	5 mm	a ₂ =	3 mm	
$\sigma_{\parallel, Ed}$ =	0,00 N/mm²	$\sigma_{\parallel,Ed}$ =	0,00 N/mm²	
$\sigma_{\perp, Ed}$ =	128,18 N/mm²	$\sigma_{\perp, Ed}$ =	61,10 N/mm²	
$\tau_{\parallel,Ed} =$	74,75 N/mm²	$\tau_{\parallel,Ed} =$	104,79 N/mm²	
$\tau_{\perp,Ed}$ =	0,00 N/mm²	$\tau_{\perp,\text{Ed}} =$	0,00 N/mm²	
$\sigma_{w,Ed} / f_{vw,Rd} =$	0,59 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,48 ≤ 1,00	
$\sigma_{v,Ed}/f_{y,d}$ =	0,43 ≤ 1,00	$\sigma_{v,Ed}/f_{y,d} =$	0,27 ≤ 1,00	

6.8.14 Lastdetail LD_{ULS}05 – Versuchsdurchführung

 $P_{Ed,Versuchsdurchf\ddot{u}hrung} = N_{Ed,[ZS],Versuchsdurchf\ddot{u}hrung} = 1.063,46 kN$ (siehe Punkt 6.3.16)

- Basierend auf dem maßgebenden Fließmuster (Muster 2 für [LT]-Obergurt, Muster 4 für [ZS]-Endplatte) aus Punkt 6.7.2 werden die von der Zugkraft beeinflussten Schweißnahtflächen festgelegt.
- **[ZS]:** Das maßgebende Fließmuster der [ZS]-Endplatte wird durch den [ZS]-Steg nicht beeinflusst. Aus diesem Grund wird der [ZS]-Steg für die Kraftübertragung nicht berücksichtigt.
- **[ZS]:** Die Zugkraft wird sowohl durch die [ZS]-Gurte als auch durch die [ZS]-Lasteinleitungssteifen in die Endplatte weitergeleitet.
- **[ZS]:** Die Zugkraft wird durch die [ZS]-Endplatte in die Schrauben eingeleitet.
- [LT]: Das maßgebende Fließmuster des [LT]-Obergurtes wird durch die [LT]-Außensteifen und die [LT]-Stege beeinflusst. Daher werden die Schweißnähte diese Stahlbleche für die Kraftübertragung herangezogen.

P_{Ed,Versuchsdurchführung} = 1.063,46 kN

[ZS] Endplatte Oberkante

A _{w,ges} =	92,80	cm²	gesamte Schweißnahtfläche
σ _w =	114,60	N/mm²	mittlere Schweißnahtspannung
	$\leq f_{vw,Rd} = 251,47$	N/mm²	
Rensteifen			

<u>Außensteifer</u>

$A_7 = A_w =$	17,65	cm²	Calumi On a had in a han Chaife
$\sigma_7 = \sigma_w =$	114,60	N/mm²	Schweißnantflache der Stelfe
	$\leq f_{vw,Rd} = 251,47$	N/mm²	
$F_7 = F_w =$	202,26	kN	Gesamtkraft der Steife
A ₈ =	18,54	cm ²	Augensteifen Black
σ ₈ =	109,10	N/mm²	Außensteijen Biech
	$\leq f_{yk} = 355,00$	N/mm²	

[ZS]-Gurte

$A_5 = A_w =$	28,75	cm²	Schweißnähte [75] Curte
$\sigma_5 = \sigma_w =$	114,60	N/mm²	Schweijshunte (23)-Guite
	$\leq f_{vw,Rd} = 251,47$	N/mm²	
$F_5 = F_w =$	329,47	kN	Gesamtkraft eines [ZS]-Gurtes
A ₆ =	45,00	cm²	[75] Curto Blach
σ ₆ =	73,21	N/mm²	[23]-Guite Bieth
	$\leq f_{yk} = 355,00$	N/mm²	

[LT] O	bergurt Unterl	kante		
	$A_1 = A_w =$	23,75	cm²	
	$A_3 = A_w =$	4,98	cm²	
	A _{w,ges} =	77,38	cm²	gesamte Schweißnahtfläche
	σ _w =	137,43	N/mm²	mittlere Schweißnahtspannung
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
	F ₂ =	326,40	kN	
	A ₂ =	95,00	cm²	Anteil [LT]-Stegblech
	σ2 =	34,36	N/mm²	
		$\leq f_{yk} = 355,00$	N/mm²	
	F ₄ =	68,44	kN	
	A ₄ =	7,80	cm²	Anteil [LT]-Außensteifen
	σ4 =	87,75	N/mm²	
		$\leq f_{yk} = 355,00$	N/mm²	

Vergleichsspannung [ZS]-Steg-Lasteinleitungssteife

$f_{yk,S355J2+N(t \le 40 \text{ mm})}$ γ_{M0} =	355 1,00	N/mm²	
N _{Ed} = A _[ZS] =	1.066,76 159,00	kN cm²	
$\sigma_{x,Ed} = N_{Ed} / A_{[ZS]} = \sigma_{z,Ed} = \tau_{Ed} =$	67,09 35,36 60,63	N/mm² N/mm² N/mm²	Lasteinleitungssteife [ZS]-[LT] Punkt 3-4 Lasteinleitungssteife [ZS]-[LT] Punkt 3-5
$\sigma_{v,Ed} / f_{y,d} =$	0,34	≤ 1,00	

Abbildung 6.124: Lastdetail LD_{ULS}05 – Versuchsdurchführung

Steifennachweis Außensteife [LT] unter Lasteinleitungssteife [ZS]

Steifentyp 2

Materialkennwerte						
f _{uk,S355J2+N (t ≤ 40 mm)} =	490 N/mm²	f _{vk,S355J2+N(t≤40 mm)} =	355 N/mm²			
f _{vw,Rd,S355J2+N} =	251,47 N/mm²	$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490 N/mm²		S _{Ed,2}	
γ _{M2} =	1,25	γ _{M0} =	1,00			
geometrische Daten					6	
h _{Schweißnaht} =	600 mm					
b _{Schweißnaht} =	65 mm			•		
r =	20 mm			↓ I		
t =	12 mm					
Kraftflüsse				thweißnat		
S _{Ed.1} =	0,00 kN/cm					
S _{Ed,2} =	-10,53 kN/cm	LD _{ULS} 05 - Fläche A ₃ = A _w				
T _{Ed,1} =	0,86 kN/cm				1	
T _{Ed,2} =	1,14 KN/CM			Α	— T _{Ed,1}	
I Ed,3 =	0,00 KN/CIII				S _{Ed,1}	
Punkt 1 = Punkt 2		Punkt 3 = Punkt 4		Punkt 5 = Punkt 6		
a ₁ =	3 mm	a ₂ =	3 mm	a ₃ =	3 mm	
$\sigma_{\parallel,Ed}$ =	0,00 N/mm²	σ _{∥,Ed} =	0,00 N/mm²	σ _{∥,Ed} =	0,00 N/mm²	
$\sigma_{\perp,Ed}$ =	0,00 N/mm²	$\sigma_{\perp,Ed}$ =	0,00 N/mm²	$\sigma_{\perp,Ed}$ =	-175,49 N/mm²	
$\tau_{\parallel,Ed} =$	14,40 N/mm²	$\tau_{\parallel, Ed} =$	19,01 N/mm²	$\tau_{\parallel,Ed} =$	14,40 N/mm²	
$\tau_{\perp,\text{Ed}} =$	0,00 N/mm²	$\tau_{\perp,Ed}$ =	0,00 N/mm²	$\tau_{\perp,\text{Ed}} =$	0,00 N/mm²	
$\sigma_{w,Ed} / f_{vw,Rd} =$	0,06 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,08 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,70 ≤ 1,00	
$\sigma_{v,Ed} / f_{y,d} =$	0,04 ≤ 1,00	τ_{Ed} / τ_{Rd} =	0,05 ≤ 1,00	$\sigma_{v,Ed}/f_{y,d}$ =	0,25 ≤ 1,00	

Beulnachweis nach EN 1993-1-1 bzw. EN 1993-1-5

c/t = (b+r)/t = 7,1

 $\leq 14\varepsilon = 11,39$ $\varepsilon = 0,81$

Steifennachweis Lasteinleitungssteife [ZS]-[LT]

Steifentyp 3

Materialkennwerte

$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490 N/mm²	$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355 N/mm²	E Ed,2
$f_{vw,Rd,S355J2+N} =$	251,47 N/mm²	$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490 N/mm²	
γ _{M2} =	1,25	γ _{M0} =	1,00	\sim
geometrische Daten				
h _{Schweißnaht} =	315 mm			veißna
b _{Schweißnaht} =	155 mm			Schw
r =	35 mm			
t =	12 mm			
Kraftflüsse				3
S _{Ed,1} =	-7,42 kN/cm	$LD_{ULS}05 - Fläche A_7 = A_w$		
S _{Ed,2} =	-2,12 kN/cm			
T _{Ed 1} =	-4,33 kN/cm			
$T_{Ed,2}^{cd,2} =$	-3,64 kN/cm			
Punkt 1 = Punkt 2		Punkt 3 = Punkt 4		
a ₁ =	5 mm	a ₂ =	3 mm	
$\sigma_{\parallel,Ed}$ =	0,00 N/mm²	σ _{∥,Ed} =	0,00 N/mm²	
$\sigma_{\perp, Ed}$ =	-74,17 N/mm²	$\sigma_{\perp,Ed}$ =	-35,36 N/mm²	
$\tau_{\parallel, Ed} =$	-43,25 N/mm²	$\tau_{\parallel,Ed} =$	-60,63 N/mm²	
$\tau_{\perp,\text{Ed}} =$	0,00 N/mm²	$\tau_{\perp, Ed}$ =	0,00 N/mm²	
$\sigma_{w,Ed} / f_{vw,Rd} =$	0,34 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,28 ≤ 1,00	
$\sigma_{v,Ed} / f_{y,d} =$	0,25 ≤ 1,00	$\sigma_{v,Ed} / f_{y,d} =$	0,16 ≤ 1,00	
6.8.15 Lastdetail LD_{ULS}06 – [QT]_{geschlossen} – Vorspannung

 $P_{Ed,Vorspannung} = N_{Ed,[ZS],Vorspannung} = -2.243,29 \, kN$ (siehe Punkt 6.3.15)

- **[QT]:** Die Vorspannkraft wird vom [VT] in den [QT] eingeleitet, wo die Kraft sowohl durch die Stege als auch durch die Außensteifen weitergeleitet wird.
- **[QT]:** Sowohl von den Außensteifen als auch von den Halskehlnähten des [QT] wird die Kraft in die Zugstütze [ZS] eingeleitet. Die Einflusslänge der Halskehlnähte wird dabei auf die darunterliegende Endplatte der [ZS] begrenzt.
- **[QT]:** Über Kontakt zwischen der [ZS]-Endplatte und dem [QT]- Untergurt wird die Vorspannkraft in die Zugstütze [ZS] geführt.
- **[ZS]:** Ausgehend von den [ZS]-Gurten wird über einen plastischen Lastausbreitungswinkel von 1:2,5 die gesamte Kraft der [QT]-Steifen auf die Außenkanten der [ZS]-Gurte verteilt. Die verwendete Verteilungslänge auf die [ZS]-Gurte wird hierbei über eine elastische Lastausbreitung ausgehend von den [QT]-Steifen ermittelt.
- **[ZS]:** Die [QT]-Stegkraft wird in eine längenbezogene Kraft übergeführt, diese kann somit über eine Einflussbreite des [ZS]-Steges sowie einer Lastausbreitung von 1:1 auf den [ZS]-Steg und dessen Anschlussnähte verteilt werden.
- **[ZS]:** Die Differenzkraft, welche sich aus den oben beschriebenen Modellen und der gesamten einwirkenden Kraft ergibt, wird gleichmäßig über die vier Anschlussnähte der [ZS]-Lasteinleitungssteifen verteilt.
- **[ZS]:** Die Kräfte werden ausschließlich über die Schweißnähte der Steifen und der teilweise beeinflussten [ZS]-Stege und [ZS]-Gurte in die genannten Bleche eingeleitet.

6. Grenzzustände der Tragfähigkeit

P_{Ed,Vorspannung} =

-2.243,29 kN

[QT]-Untergurt Oberkante

	A _{w,ges} =	123,92	cm²	gesamte Schweißnahtfläche
	σ _w =	-181,03	N/mm²	mittlere Schweißnahtspannung
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
Au	ßensteifen			
	$A_8 = A_w =$	17,78	cm²	Columi Oriolation and Child
	$\sigma_8 = \sigma_w =$	-181,03	N/mm²	schweijsnantspannung pro Steije
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
	$F_8 = F_w =$	321,87	kN	Gesamtkraft pro Steife
	•			
	A ₉ =	14,70	cm²	Chaife an h-Ionach
	$A_9 = \sigma_9 = \sigma_9 = \sigma_9$	14,70	cm² N/mm²	Steifenblech
	$A_9 = \sigma_9 =$	14,70 -218,96 ≤ f _{yk} = 355,00	cm² N/mm² N/mm²	Steifenblech
Ste	$A_9 = \sigma_9 =$	14,70 -218,96 ≤ f _{γk} = 355,00	cm ² N/mm ² N/mm ²	Steifenblech
<u>Ste</u>	$A_9 = \frac{1}{\sigma_9} = \frac{1}{\sigma_9} = \frac{1}{\sigma_9} = \frac{1}{\sigma_9} = A_{10} = A_w = \frac{1}{\sigma_9} = \frac{1}{\sigma_$	14,70 -218,96 ≤ f _{yk} = 355,00 26,40	cm ² N/mm ² N/mm ²	Steifenblech

~10 ~W	,	,	
	$\leq f_{vw,Rd} = 251,47$	N/mm²	
F ₁₀ = F _w =	477,91	kN	Gesamtkraft des Steges
A ₁₁ =	66,00	cm²	IOT Stacklash
σ11 =	-72,41	N/mm²	[Q1]-Stegblech
	$\leq f_{vk} = 355,00$	N/mm²	

Pressung [QT]_{Untergurt} / [ZS]_{Endplatte}

A ₇ =	414,58	cm²	Kontaktanannung zwischen den Gurten
σ ₇ =	27,05	N/mm²	Kontaktspannung zwischen den Gurten
	≤ f _{yk} = 355,00	N/mm²	

[ZS]-Endplatte Unterkante

[ZS	<u>6]-Gurt</u>			
	$F_8 = F_w =$	321,87	kN	Gesamtkraft pro Steife= Konsistenzbedingung
	$A_{5} = A_{w} =$	16,93	cm²	Schweißnahtfläche des [ZS]-Gurt
	$F_5 = F_w =$	321,87	kN	Gesamtkraft Anteil [ZS]-Gurt
	$\sigma_5 = \sigma_w =$	-190,12	N/mm ²	Schweißnahtspannung pro Steife
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
	A ₆ =	12,70	cm²	
	σ ₆ =	-253,44	N/mm²	[ZS]-Gurtanteil Blech
		$\leq f_{yk} = 355,00$	N/mm²	
	F _{[ZS]-Gurt,ges} =	1.287,47	kN	Gesamtkraft aller [ZS]-Gurtanteile
	ΔF =	955,82	kN	Differenzkraft = Kraft
[ZS	6]-Steg			
	f _{w,[QT]-Steg} =	-14,48	kN/cm	Schweiβnahtkraft je cm des [QT]-Steg = Konsistenzbedingung
	e _{[ZS1-Steg} =	149,0	mm	Einflussbreite der Steife
	$A_1 = A_w =$	15,14	cm²	Schweißnahtfläche pro Steife
	$F_1 = F_w =$	215,78	kN	Gesamtkraft pro Steife
	$\sigma_1 = \sigma_w =$	-142,53	N/mm²	Schweißnahtspannung pro Steife
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
	A ₂ =	22,70	cm²	Steifenhlerh
	σ2 =	-95,06	N/mm²	stellensten
		$\leq f_{yk} = 355,00$	N/mm²	
	F _{[ZS]-Steg,ges} =	431,57	kN	Gesamtkraft aller Steifen
	ΔF =	524,25	kN	Differenzkraft = Kraft der Lasteinleitungssteife
la	steinleitungsst	eifen		
<u>_u</u>	F _{Steifen,ges} =	524,25	kN	
	$A_3 = A_w =$	12,90	cm²	Schweißnahtsnannung pro Steife
	$\sigma_3 = \sigma_w =$	-101,60	N/mm²	Schweißhantspannang pro Sterje
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
	$F_3 = F_w =$	131,06	kN	Gesamtkraft pro Steife
	A ₄ =	15,78	cm²	Steifenhlech
	σ4 =	-83,06	N/mm²	segenseen
		$\leq f_{yk} = 355,00$	N/mm²	

Abbildung 6.125: Lastdetail LD_{ULS}06 – [QT]_{geschlossen} – Vorspannung – Kräfte/Spannungen

Abbildung 6.126: Lastdetail $LD_{ULS}06 - [QT]_{geschlossen} - Vorspannung$

Steifennachweis Außensteife [QT]geschlossen

Siehe Punkt 6.8.5

Steifennachweis Lasteinleitungssteife [ZS]-[QT]

Steifentyp 3

Materialkennwerte

Punkt 1 = Punkt 2

Punkt 3 = Punkt 4

a ₁ =	4 mm	a ₂ =	4 mm
$\sigma_{\parallel, Ed}$ =	0,00 N/mm ²	σ _{∥,Ed} =	0,00 N/mm²
$\sigma_{\perp,Ed}$ =	152,40 N/mm²	$\sigma_{\perp,Ed}$ =	136,69 N/mm²
τ _{II,Ed} =	146,22 N/mm²	τ _{,Ed} =	142,46 N/mm²
$\tau_{\perp,Ed}$ =	0,00 N/mm ²	$\tau_{\perp,Ed} =$	0,00 N/mm²
$\sigma_{w,Ed} / f_{vw,Rd} =$	0,84 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,79 ≤ 1,00
$\sigma_{v,Ed}/f_{y,d} =$	0,56 ≤ 1,00	$\sigma_{v,Ed} / f_{y,d} =$	0,53 ≤ 1,00

6.8.16 Lastdetail LD_{ULS}06 – [QT]_{geschlossen} – Versuchsdurchführung

 $P_{Ed,Versuchsdurchf\"uhrung} = 1,00 \cdot P_{k,Pressen} \oplus 1,00 \cdot P_{k,Vorspannung} \oplus 1,00 \cdot G_{k,[QT]}$

 \oplus 1,00 · $G_{k,[VT]}$ \oplus 1,00 · $N_{k,[ZS],Versuchsdurchf\"uhrung} =$

 $= 1,00 \cdot 3.600,00 - 1,00 \cdot 2.116,00 - 1,00 \cdot 11,54 - 1,00 \cdot 4,38 - 1,00 \cdot 1.066,76 = 401,32 \ kN$

- Basierend auf dem maßgebenden Fließmuster (Muster 5 f
 ür [QT]-Untergurt, Muster 1 f
 ür [ZS]-Endplatte) aus Punkt 6.7.1 werden die von der Zugkraft beeinflussten Schwei
 ßnahtfl
 ächen festgelegt.
- **[QT]:** Die Zugkraft wird sowohl durch die [QT]-Stege als auch durch die [QT]-Außensteifen weitergeleitet.
- **[ZS]:** Die Zugkraft wird durch die Schrauben in die [ZS]-Endplatte eingeleitet.
- [ZS]: Das maßgebende Fließmuster der [ZS]-Endplatte wird durch die Lasteinleitungssteife nicht beeinflusst. Aus diesem Grund wird die Lasteinleitungssteife für die Kraftübertragung nicht berücksichtigt.
- [ZS]: Die Zugkraft wird sowohl durch den [ZS]-Steg als auch durch die [ZS]-Gurte weitergeleitet.

P_{Ed,Versuchsdurchführung} = 401,32 kN

[QT]-Untergurt Oberkante

	A _{w,ges} =	105,56	cm²	gesamte Schweißnahtfläche
	σ _w =	38,02	N/mm²	mittlere Schweißnahtspannung
		$\leq f_{vw, Rd} = 251, 47$	N/mm²	
Aι	ıßensteifen			
	$A_7 = A_w =$	17,78	cm²	
	$\sigma_7 = \sigma_w =$	38,02	N/mm²	Schweißnahtspannung pro Steif
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
	$F_7 = F_w =$	67,60	kN	Gesamtkraft pro Steife
	A ₈ =	14,70	cm²	
	σ ₈ =	45,98	N/mm²	Steifenblech
		$\leq f_{yk} = 355,00$	N/mm²	
Ste	ege			1
	$A_5 = A_w =$	8,67	cm²	Halskehlnaht [OT]-Stea
	$\sigma_5 = \sigma_w =$	38,02	N/mm²	naiskennant [Qi] steg
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
	$F_5 = F_w =$	32,96	kN	Gesamtkraft des Steges
	A ₆ =	21,69	cm²	
	σ ₆ =	15,20	N/mm²	lUIJ-Stegblech
		$\leq f_{vk} = 355,00$	N/mm²	

[ZS]-Endplatte Unterkante

A _{w,ges} =	155,00	cm²	gesamte Schweißnahtfläche
σ _w =	25,89	N/mm²	mittlere Schweißnahtspannung
	$\leq f_{vw.Rd} = 251,47$	N/mm²	

[ZS]-Gurt

$A_3 = A_w =$	27,50	cm²	Schweißnahtfläche des [ZS]-Gurtanteils
$\sigma_3 = \sigma_w =$	25,89	N/mm²	Schweißnahtspannung des Gurtes
	$\leq f_{vw,Rd} = 251,47$	N/mm²	
$F_3 = F_w =$	104,55	kN	Gesamtkraft des [ZS]-Gurtanteils
A ₄ =	20,63	cm²	[70] Custom to II Disala
σ4 =	50,68	N/mm²	[ZS]-Gurtantell Blech
	$\leq f_{vk} = 355,00$	N/mm²	

[ZS]-Steg

$A_1 = A_w = \sigma_1 = \sigma_w = \sigma_w = \sigma_w$	45,00 25,89	cm² N/mm²	Schweißnahtfläche pro Steife Schweißnahtspannung pro Steife
	$\leq f_{vw,Rd} = 251,47$	N/mm²	
$F_1 = F_w =$	116,51	kN	Gesamtkraft des [ZS]-Steges
A ₂ =	67,50	cm²	Chatforn b land
σ2 =	17,26	N/mm²	Steljenblech
	$\leq f_{yk} = 355,00$	N/mm²	

Abbildung 6.127: Lastdetail LD_{ULS}06 – [QT]_{geschlossen} – Versuchsdurchführung

Steifennachweis Außensteife [QT]geschlossen

Siehe Punkt 6.8.6

6.8.17 Lastdetail LD_{ULS}06 - [QT]_{offen} - Vorspannung

 $P_{Ed,Vorspannung} = N_{Ed,[ZS],Vorspannung} = -2.243,29 kN$ (siehe Punkt 6.3.15)

- **[QT]:** Die Vorspannkraft wird vom [VT] in den [QT] eingeleitet, wo die Kraft sowohl durch den Steg als auch durch die Außensteifen weitergeführt wird.
- **[QT]:** Sowohl von den Außensteifen als auch von den Halskehlnähten des [QT] wird die Kraft in die Zugstütze [ZS] eingeleitet. Die Einflusslänge der Halskehlnähte wird dabei auf die darunterliegende Endplatte der [ZS] begrenzt.
- **[QT]:** Über Kontakt zwischen der [ZS]-Endplatte und dem [QT]-Untergurt wird die Vorspannkraft in die Zugstütze [ZS] geführt.
- **[ZS]:** Ausgehend von den [ZS]-Gurten wird über den elastischen Lastausbreitungswinkel im Verhältnis 1:1 die anteilige Kraft der [QT]-Steifen auf die Außenkanten der [ZS]-Gurte verteilt. Die verwendete Verteilungslänge auf die [ZS]-Gurte wird hierbei wiederum über eine elastische Lastausbreitung ausgehend von den [QT]-Steifen ermittelt.
- **[ZS]:** Die [QT]-Stegkraft wird in eine längenbezogene Kraft übergeführt, diese kann somit über eine Einflussbreite des [ZS]-Steges sowie einer Lastausbreitung von 1:1 auf den [ZS]-Steg und dessen Anschlussnähte verteilt werden.
- **[ZS]:** Die Differenzkraft, welche sich aus den oben beschriebenen Modellen und der gesamten einwirkenden Kraft ergibt, wird gleichmäßig über die zwei Anschlussnähte der [ZS]-Lasteinleitungssteifen verteilt.
- **[ZS]:** Die Kräfte werden ausschließlich über die Schweißnähte der Steifen und der teilweise beeinflussten [ZS]-Stege und [ZS]-Gurte in die genannten Bleche eingeleitet.

P_{Ed,Vorspannung} =

[QT]-Untergurt Oberkante

	A _{w,ges} =	174,88	cm ²	gesamte Schweißnahtfläche
	σ _w =	-128,28	N/mm²	mittlere Schweißnahtspannung
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
Au	ßensteifen			
	$A_8 = A_w =$	30,52	cm²	Cohuni@nahtanannuna neo Stoifa
	$\sigma_8 = \sigma_w =$	-101,27	N/mm²	schweißnantspannung pro stelje
		$\leq f_{vw, Rd} = 251, 47$	N/mm²	
	F ₈ = F _w =	309,06	kN	Gesamtkraft pro Steife
	A ₉ =	36,80	cm²	Staifarblach
	σ ₉ =	-83,98	N/mm²	Stelfenblech
		$\leq f_{yk} = 355,00$	N/mm²	
Ste	ege			
	A ₁₀ = A _w =	52,80	cm²	Halskehlnaht [OT]-Stea
	$\sigma_{10} = \sigma_w =$	-101,27	N/mm²	nuiskennun [er]steg

-2.243,29 kN

	$\leq t_{vw,Rd} = 251,47$	N/mm²	
$F_{10} = F_w =$	534,68	kN	Gesamtkraft des Steges
A ₁₁ =	92,40	cm²	(OT) Stagblach
σ11 =	-57,87	N/mm²	[Q1]-Stegbleth
	$\leq f_{yk} = 355,00$	N/mm²	

Pressung [QT]_{Untergurt} / [ZS]_{Endplatte}

A ₇ =	875,23	cm²	Kontaktanannung zwischen den Gurten
σ ₇ =	-12,82	N/mm²	Kontaktspannung zwischen den Garten
	$\leq f_{yk} = 355,00$	N/mm²	

[ZS]-Endplatte Unterkante

[Z

Z	S]-Gurt			
	f _{w,[QT]-Steife} =	43,27	kN/cm	Schweißnahtkraft je cm der [QT]-Steife = Konsistenzbedingung
	e _{IZS1-Gurt} =	75,0	mm	Einflussbreite des Gurtes
	$A_5 = A_w =$	18,91	cm²	Schweißnahtfläche des [ZS]-Gurtanteils
	$F_{5} = F_{w} =$	324,52	kN	Gesamtkraft des Gurtes
	$\sigma_5 = \sigma_w =$	-171,61	N/mm²	Schweißnahtspannung des Gurtes
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
	A ₆ =	14,19	cm²	[75] Custblach
	$\sigma_6 = \sigma_w =$	228,69	N/mm²	[25]-Guriblech
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
[79	Sl-Steg			
<u>[</u> 2,	<u>J Jieg</u>			
	f _{w.[QT]-Steg} =	-16,20	kN/cm	Schweijsnahtkräft je cm des [U1]-Steg = Konsistenzbedingung
	0 -	168.0	mm	Finflusshraita das [75]-Stanas
	C[ZS]-Steg -	100,0		
	$A_1 = A_w =$	18,06	cm²	Schweißnahtfläche des [ZS]-Steges
	$F_1 = F_w =$	272,20	kN	Gesamtkraft pro Steife
	$\sigma_1 = \sigma_w =$	-150,72	N/mm²	Schweißnahtspannung des [ZS]-Steganteils
		$\leq f_{vw, Rd} = 251,47$	N/mm²	
	A ₂ =	27,10	cm²	
	σ ₂ =	-200,89	N/mm ²	Stelfenblech
	-	≤ f _{uk} = 355.00	N/mm ²	
		ук/	,	1
	F _{[ZS]-Steg,ges} =	272,20	kN	Gesamtkraft aller Steifen
	$\Delta F =$	673,02	kN	Differenzkraft = Kraft der Lasteinleitungssteife
Las	steinleitungsst	eifen		
	F _{Steifen,ges} =	673,02	kN	
	A - A -	10 11	cm ²	l
	A3 - Aw -	19,11	NI / mar 2	Schweißnahtspannung pro Steife
	$\sigma_3 = \sigma_w =$	-176,09	N/mm ²	
		$\leq f_{vw,Rd} = 251,47$	N/mm²	J
	$F_3 = F_w =$	336,51	kN	Gesamtkraft pro Steife

$F_3 = F_w =$	336,51 kN	Gesamtkraft pro Ste
A ₄ =	16,13 cm²	Staifanhlach
σ4 =	-208,62 N/mm²	Steljenblech
	$\leq f_{vk} = 355,00 \text{ N/mm}^2$	

Abbildung 6.128: Lastdetail LD_{ULS}06 – [QT]_{offen} – Vorspannung – Kräfte/Spannungen

Steifennachweis Außensteife [QT]offen

Siehe Punkt 6.8.7

Steifennachweis Lasteinleitungssteife [ZS]-[QT]

Steifentyp 3

Materialkennwerte

a ₁ =	8 mm	a ₂ =	3 mm
σ _{∥,Ed} =	0,00 N/mm ²	σ _{,Ed} =	0,00 N/mm ²
$\sigma_{\perp,Ed} =$ $\tau_{\parallel,Ed} =$	87,75 N/mm ²	$\sigma_{\perp,Ed} =$ $\tau_{\parallel,Ed} =$	164,96 N/mm ²
$\tau_{\perp,Ed}$ =	0,00 N/mm²	τ _{⊥,Ed} =	0,00 N/mm²
$\sigma_{w,Ed} / f_{vw,Rd} =$	0,92 ≤ 1,00	$\sigma_{w,Ed}$ / $f_{vw,Rd}$ =	0,71 ≤ 1,00
$\sigma_{v,Ed} / f_{y,d} =$	0,98 ≤ 1,00	$\sigma_{v,Ed} / f_{y,d} =$	0,41 ≤ 1,00

6.8.18 Lastdetail LD_{ULS}06 – [QT]_{offen} – Versuchsdurchführung

 $P_{Ed,Versuchsdurchf\"uhrung} = 1,00 \cdot P_{k,Pressen} \oplus 1,00 \cdot P_{k,Vorspannung} \oplus 1,00 \cdot G_{k,[QT]}$

 \oplus 1,00 · $G_{k,[VT]}$ \oplus 1,00 · $N_{k,[ZS],Versuchsdurchf\"uhrung}$ =

 $= 1,00 \cdot 3.600,00 - 1,00 \cdot 2.116,00 - 1,00 \cdot 11,54 - 1,00 \cdot 4,38 - 1,00 \cdot 1.066,76 = 401,32 \ kN$

- Basierend auf dem maßgebenden Fließmuster (Muster 5 f
 ür [QT]-Untergurt, Muster 1 f
 ür [ZS]-Endplatte) aus Punkt 6.7.1 werden die von der Zugkraft beeinflussten Schweißnahtfl
 ächen festgelegt.
- **[QT]:** Die Zugkraft wird sowohl durch den [QT]-Steg als auch durch die [QT]-Außensteifen weitergeleitet.
- **[ZS]:** Die Zugkraft wird durch die Schrauben in die [ZS]-Endplatte eingeleitet.
- **[ZS]:** Das maßgebende Fließmuster der [ZS]-Endplatte wird durch die Lasteinleitungssteife nicht beeinflusst. Aus diesem Grund wird die Lasteinleitungssteife für die Kraftübertragung nicht berücksichtigt.
- [ZS]: Die Zugkraft wird sowohl durch den [ZS]-Steg als auch durch die [ZS]-Gurte weitergeleitet.

P _{Ec}	d, Versuchsdurchführun	_g = 401,32	kN	
[QT]-I	Untergurt Obei	kante		
	A _{w,ges} =	156,80	cm²	gesamte Schweißnahtfläche
	σ _w =	25,59	N/mm²	mittlere Schweißnahtspannung
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
Au	ßensteifen			
	$A_7 = A_w =$	30,52	cm²	Cohuneille abten annuna ara Ctaifa
	$\sigma_7 = \sigma_w =$	25,59	N/mm²	schweijsnuntspunnung pro steije
		$\leq f_{vw, Rd} = 251, 47$	N/mm²	
	$F_7 = F_w =$	78,11	kN	Gesamtkraft pro Steife
	A ₈ =	36,80	cm²	Steifenhlech
	σ8 =	21,23	N/mm²	Steljenbleen
		$\leq f_{yk} = 355,00$	N/mm²	
<u>Ste</u>	<u>eg</u>			
	$A_5 = A_w =$	17,36	cm²	Undekehlant (OT) Ston
	$\sigma_5 = \sigma_w =$	25,59	N/mm²	Huiskenmunt [Q1]-steg
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
	$F_5 = F_w =$	44,43	kN	Gesamtkraft des Steges
	A ₆ =	30,37	cm ²	IOTI Staablach
	σ ₆ =	14,63	N/mm²	ועון-אנטטוענוו
		< f . = 355.00	N/mm ²	

[ZS]-Endplatte Unterkante

A _{w,ges} =	155,00	cm²	gesamte Schweißnahtfläche
5 _w =	25,89	N/mm²	mittlere Schweißnahtspannung
	$\leq f_{vw.Rd} = 251,47$	N/mm²	

[ZS]-Gurt

$A_3 = A_w =$	27,50	cm²	Schweißnahtfläche des [ZS]-Gurtanteils
$\sigma_3 = \sigma_w =$	25,89	N/mm²	Schweißnahtspannung des Gurtes
	$\leq f_{vw,Rd} = 251,47$	N/mm²	
$F_3 = F_w =$	70,38	kN	Gesamtkraft des [ZS]-Gurtanteils
A ₄ =	20,63	cm²	[75] Curtantail Plach
$\sigma_4 = \sigma_w =$	34,12	N/mm²	[23]-Gurtanten Biech
	$\leq f_{vw,Rd} = 251,47$	N/mm²	

[ZS]-Steg

$A_1 = A_w =$	67,50	cm²	Schweißnahtfläche [ZS]-Steg
$\sigma_1 = \sigma_w =$	25,89	N/mm²	Schweißnahtspannung [ZS]-Steg
	$\leq f_{vw,Rd} = 251,47$	N/mm²	
$F_1 = F_w =$	174,77	kN	Gesamtkraft des [ZS]-Steges
A ₂ =	67,50	cm²	[7C] Charblach
σ2 =	25,89	N/mm²	[25]-Sleyblech
	$\leq f_{yk} = 355,00$	N/mm²	

Abbildung 6.130: Lastdetail LD_{ULS}06 – [QT]_{offen} – Versuchsdurchführung

Steifennachweis Außensteife [QT]offen

Siehe Punkt 6.8.8

228

8 9

219

w.ges = 156,80 cm² Biech.ges = 207,94 cm²

Ł

219

8-38

A_{w.pes} = 155,00 cm² A_{Biech.ges} = 150,02 cm²

219

c

6.8.19 Lastdetail LD_{ULS}07 – Versuchsdurchführung

 $P_{Ed,Versuchsdurchf"uhrung} = V_{z,Ed,[AT]} = 1.840,21 kN$ (siehe Punkt 6.3.2)

- **[AT]:** Die Auflagerkraft des [AT] im Lastfall Versuchsdurchführung wird sowohl über die Steifen als auch über den [AT]-Steg abgetragen.
- **[AT]:** Die Kraftableitung über die Steifen erfolgt ausschließlich über die Schweißnähte, die Kontaktspannung zwischen Steifenblech und [AT]-Untergurt wird vernachlässigt.
- **[AT]:** Der Kraftfluss über den Steg des [AT] wird über die Stegdicke und die Auflagerlänge des [AT] am [LT] gebildet.
- **[AT]:** Die anzusetzende Einflussbreite für Oberflächenpressung zwischen [AT]-Untergurt und [LT]-Obergurt wird über den elastischen Lastausbreitungswinkel von 45° tangential an die Steg-Gurt-Ausrundung des [AT]-Profils ermittelt.
- [LT]: Die Kraftanteile in den Halskehlnähten des Längsträgers [LT] wird zum einen über die Schnittflächen zwischen [AT]-Steg und [LT]-Stege und zum anderen über die [AT]-Steifen gebildet. Hierbei wurde für die Schnittfläche der Stege aber keine Lastausbreitung bzw. Einflussbreite angenommen sondern lediglich der Kraftanteil aus dem [AT]-Steg über eine verteilte Streckenlast ermittelt. Die Differenzkraft aus der Gesamtkraft und dem zuvor errechneten Kraftanteil wurde flächenproportional auf die [LT]-Steifen verteilt.
- [LT]: Die einwirkenden Kräfte werden ausschließlich über die Schweißnähte in den Querschnitt eingeleitet bzw. durchgeleitet.
- **[LT]:** Die den Steifen zugeordnete Kraft wird über Schub- und Normalspannungen in die Stegebzw. Gurte des [LT] eingeleitet, es wird hierzu der geeignete Nachweis geführt.

6. Grenzzustände der Tragfähigkeit

P_{Ed,Versuchsdurchführung} = 1.86

1.860,95 kN

[AT]-Untergurt Oberkante

	A _{min,ges} =	115,68	cm²	gesamte Schweißnahtfläche
	σ _w =	-160,87	N/mm²	mittlere Schweißnahtspannung
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
<u>Au</u>	ßensteifen			
	$A_8 = A_w =$	6,87	cm²	Schweißnahtsnannung pro Steife
	$\sigma_8 = \sigma_w =$	160,87	N/mm²	schweijsnantspannang pro sterje
		$\leq f_{vw,Rd} = 251,47$	N/mm²	
	F ₈ = F _w =	110,52	kN	Gesamtkraft pro Steife
				1
	A ₉ =	11,58	cm²	a
	A ₉ = σ ₉ =	11,58 -95,44	cm ² N/mm ²	Steifenblech
	$A_9 = \sigma_9 =$	11,58 -95,44 ≤ f _{yk} = 355,00	cm ² N/mm ² N/mm ²	Steifenblech
	A ₉ = σ ₉ =	11,58 -95,44 ≤ f _{yk} = 355,00	cm ² N/mm ² N/mm ²	Steifenblech
Ste	$A_9 = \sigma_9 =$	11,58 -95,44 ≤f _{yk} = 355,00	cm ² N/mm ² N/mm ²	Steifenblech
<u>Ste</u>	$A_9 = \frac{1}{\sigma_9} $	11,58 -95,44 ≤ f _{yk} = 355,00 88,20	cm ² N/mm ² N/mm ² cm ²	Steifenblech IATL-Sten

F ₁₀ =	1.418,88	kN	Gesamtkraft des Steges
	$\leq f_{yk} = 355,00$	N/mm²	
σ ₁₀ =	-160,87	N/mm²	[AT]-Steg
A ₁₀ =	88,20	cm²	[AT]_Stea

Pressung [AT]_{Untergurt} / [LT]_{Obergurt}

A ₇ =	901,45 cm ²	Kontaktanannung zwischen den Gurten
σ ₇ =	-20,64 N/mm²	Kontuktspunnung zwischen den Gurten
	≤ f _{yk} = 355,00 N/mm²	

1 obeigait officer	ante .		
$F_{[AT]-Steg} = F_{10} =$	1.418,88	kN	Gesamtkraft des [AT]-Steges
I _{[AT]-Steg} =	420	mm	
$f_{[AT]-Steg} =$	33,78	kN/cm	Stegkraft je cm des [AT]-Steg = Konsistenzbedingung
[LT]-Steg			
e _{[IT]-Steg} =	25	mm	Einflussbreite des [LT]-Steges
F _{[AT]-Steg} =	84,46	kN	Anteil des [LT]-Steges an der [AT]-Stegkraft
F _{[AT]-Steifen} =	221,04	kN	Gesamtkraft beider Außensteifen
F _{[LT]-Steg,ges} =	305,49	kN	Gesamtkraft des [LT]-Steges = F [AT]-Steg + F [AT]-Stej
$A_1 = A_w =$	18,20	cm²	Schweißnahtfläche [LT]-Halskehlnaht
$\sigma_1 = \sigma_w =$	-167,85	N/mm²	Schweißnahtspannung [LT]-Halskehlnaht
	$\leq f_{vw,Rd} = 251,47$	N/mm²	
F ₁ =	305,49	kN	
A ₂ =	72,80	cm²	(I T) Staablach
σ2 =	-41,96	N/mm²	[L1]-stegblech
	$\leq f_{yk} = 355,00$	N/mm²	
ΔF =	1.249,96	kN	Differenzkraft = Kraft der [LT]-Steifen
[LT]-Auflagerstei	fen		
F _{Steifen} =	1.249,96	kN	Gesamtkraft des [AT]-Steges
$A_3 = A_w =$	11,16	cm²	Schweißnahtfläche der Außensteife
$A_{5} = A_{w} =$	29,44	cm²	Schweißnahtfläche der Innensteife
A _{w,ges} =	51,76	cm²	gesamte Schweißnahtfläche
σ	-241 49	N/mm ²	Schweißnahtsnannung der Steifen
w,Steifen	< f = 251.47	N/mm ²	Serweijsnantspannang der Steijen
	- · vw,Ru, · ·		-
$F_3 = F_w =$	269,51	kN	
A ₄ =	9,00	cm²	[LT]-Außensteifen
σ4 =	-299,45	N/mm²	1
	$\leq f_{yk} = 355,00$	N/mm²	
F ₅ = F _w =	710,95	kN	_
A ₆ =	27,00	cm²	[LT]-Innensteife
σ -	263 32	N/mm ²	

 $\leq f_{yk} = 355,00 \text{ N/mm}^2$

[LT]-Obergurt Unterkante

Abbildung 6.131: Lastdetail LD_{ULS}07 – Versuchsdurchführung

Steifennachweis Außensteife [LT] unter Auflager [AT]

Steifentyp 2

Materialkennwerte

Watenakennwerte				- hsobur	signaht
$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490 N/mm²	$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355 N/mm²		
$f_{vw,Rd,S355J2+N} =$	251,47 N/mm²	$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490 N/mm²	↓ ↓	S _{Ed,2}
γ _{M2} =	1,25	γ _{M0} =	1,00		
geometrische Daten					_ 6
h _{Schweißnaht} =	600 mm				
b _{Schweißnaht} =	75 mm			t l	
r =	20 mm				
t =	12 mm			pt.	
Kraftflüsse				thweißna	
S _{Fd.1} =	0,00 kN/cm			اقى ا	
S _{Ed,2} =	35,93 kN/cm	LD_{ULS} 07 - Fläche A ₃ = A _w		ţ	
				ł	
T _{Ed.1} =	-3,23 kN/cm			3	
$T_{Ed,2} =$	-4,49 kN/cm				
T _{Ed,3} =	-3,23 kN/cm				
Punkt 1 = Punkt 2		Punkt 3 = Punkt 4		Punkt 5 = Punkt 6	
a ₁ =	3 mm	a ₂ =	3 mm	a ₃ =	8 mm
$\sigma_{\parallel,Ed}$ =	0,00 N/mm²	σ _{∥,Ed} =	0,00 N/mm²	σ _{∥,Ed} =	0,00 N/mm²
$\sigma_{\perp, Ed}$ =	0,00 N/mm²	$\sigma_{\perp, Ed}$ =	0,00 N/mm²	$\sigma_{\perp,Ed}$ =	224,59 N/mm ²
$\tau_{\parallel,Ed} =$	-53,81 N/mm²	$\tau_{\parallel,Ed} =$	-74,86 N/mm²	$\tau_{\parallel,Ed} =$	-20,18 N/mm ²
$\tau_{\perp,\text{Ed}}$ =	0,00 N/mm²	$\tau_{\perp, Ed} =$	0,00 N/mm²	$\tau_{\perp,\text{Ed}}$ =	0,00 N/mm²
$\sigma_{w,Ed} / f_{vw,Rd} =$	0,21 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,30 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,90 ≤ 1,00
$\sigma_{v,Ed} / f_{y,d} =$	0,13 ≤ 1,00	$\tau_{Ed} / \tau_{Rd} =$	0,18 ≤ 1,00	$\sigma_{v,Ed}/f_{y,d} =$	0,85 ≤ 1,00

Beulnachweis nach EN 1993-1-1 bzw. EN 1993-1-5

c/t = (b+r)/t =

7,9 $\leq 14\epsilon = 11,39$ $\epsilon = 0,81$ Querschnittsklasse 3

0,77 ≤ 1,00

Steifennachweis Innensteife [LT] unter Auflager [AT]

Steifentyp 1 bschweißnaht Materialkennwerte $S_{\text{Ed},2}$ 490 N/mm² 355 N/mm² f_{uk,S355J2+N (t ≤ 40 mm)} = $f_{yk,S355J2+N(t \le 40 \text{ mm})} =$ 251,47 N/mm² 490 N/mm² $f_{vw,Rd,S355J2+N} =$ $f_{uk,S355J2+N(t \le 40 \text{ mm})} =$ T_{Ed,2} $T_{Ed,3}$ 5 **-**6 γ_{M2} = 1,25 1,00 γ_{M0} = ļ geometrische Daten 600 mm h_{Schweißnaht} = 150 mm b_{Schweißnaht} = r = 20 mm t = 18 mm Kraftflüsse č $S_{Ed,1} =$ 0,00 kN/cm 47,40 kN/cm S_{Ed,2} = $LD_{ULS}07 - Fläche A_5 = A_w$ 2 $\mathsf{T}_{\mathsf{Ed},1}$ $T_{Ed,1} =$ -7,04 kN/cm A -11,85 kN/cm T_{Ed,2} = $S_{\text{Ed},1}$ -7,04 kN/cm T_{Ed,3} = Punkt 1 = Punkt 2 Punkt 3 = Punkt 4 Punkt 5 = Punkt 6 a₂ = a₁ = 3 mm 3 mm a₃ = 10 mm 0,00 N/mm² 0,00 N/mm² 0,00 N/mm² σ_{∥,Ed} = σ_{∥,Ed} = σ_{∥,Ed} = 0,00 N/mm² 0,00 N/mm² 236,98 N/mm² $\sigma_{\perp,Ed}$ = $\sigma_{\perp, \mathsf{Ed}}$ = $\sigma_{\perp,Ed}$ = -117,26 N/mm² -197,49 N/mm² -35,18 N/mm² τ_{II,Ed} = τ_{II,Ed} = τ_{II,Ed} = 0,00 N/mm² 0,00 N/mm² 0,00 N/mm² $\tau_{\perp,Ed}$ = $\tau_{\perp,Ed}$ = $\tau_{\perp,Ed}$ = 0,47 ≤ 1,00 $0,79 \le 1,00$ $0,95 \le 1,00$ $\sigma_{w,Ed} / f_{vw,Rd} =$ $\sigma_{w,Ed} / f_{vw,Rd} =$ $\sigma_{w,Ed} / f_{vw,Rd} =$

Beulnachweis nach EN 1993-1-1 bzw. EN 1993-1-5

c/t = (b+2r)/t =

 $\sigma_{v,Ed} / f_{v,d} =$

≤ 14ε = 11,39 ε = 0,81

 $\tau_{Ed} / \tau_{Rd} =$

0,19 ≤ 1,00

10,6

Querschnittsklasse 3

0,32 ≤ 1,00

 $\sigma_{v,Ed} / f_{y,d} =$

Steifennachweis Außensteife [AT]

Steifentyp 2

Materialkennwerte				" harburger	
f _{uk.S355J2+N (t ≤ 40 mm)} =	490 N/mm²	$f_{vk,S355J2+N(t \le 40 \text{ mm})} =$	355 N/mm²		+
$f_{vw,Rd,S355J2+N} =$	251,47 N/mm²	$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490 N/mm²		S _{Ed,2}
γ _{M2} =	1,25	γ _{м0} =	1,00		
geometrische Daten					
h _{Schweißnaht} =	566 mm				
b _{Schweißnaht} =	97 mm			♥	
r =	35 mm				
t =	12 mm				
Kraftflüsse				hweißnat	
S _{Ed 1} =	11,45 kN/cm	LD _{uls} 07 - Fläche A ₈ = A _w			
S _{Ed.2} =	0,00 kN/cm				
$T_{Ed,1} = T_{Ed,2} = T_{Ed,3} =$	1,50 kN/cm 1,95 kN/cm 1,50 kN/cm				T _{Ed,1}
Punkt 1 = Punkt 2		Punkt 3 = Punkt 4		Punkt 5 = Punkt 6	
a ₁ =	3 mm	a ₂ =	3 mm	a ₃ =	3 mm
σ _{∥,Ed} =	0,00 N/mm²	σ _{∥,Ed} =	0,00 N/mm²	σ _{∥,Ed} =	0,00 N/mm²
$\sigma_{\perp, Ed}$ =	190,88 N/mm²	$\sigma_{\perp,Ed}$ =	0,00 N/mm²	$\sigma_{\perp,Ed}$ =	0,00 N/mm²
$\tau_{\parallel,Ed} =$	24,99 N/mm²	$\tau_{\parallel,Ed} =$	32,54 N/mm²	$\tau_{\parallel,Ed}$ =	24,99 N/mm²
$\tau_{\perp,\text{Ed}} =$	0,00 N/mm²	$\tau_{\perp, Ed} =$	0,00 N/mm²	$\tau_{\perp,Ed}$ =	0,00 N/mm²
$\sigma_{w,Ed}$ / $f_{vw,Rd}$ =	0,77 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,13 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,10 ≤ 1,00
$\sigma_{v,Ed} / f_{y,d} =$	0,28 ≤ 1,00	$\tau_{Ed} / \tau_{Rd} =$	0,08 ≤ 1,00	$\sigma_{v,Ed}/f_{y,d} =$	0,06 ≤ 1,00

Beulnachweis nach EN 1993-1-1 bzw. EN 1993-1-5

c/t = (b+r)/t = 11,0

 $\leq 14\epsilon = 11,39$ $\epsilon = 0,81$

Querschnittsklasse 3

6.8.20 Lastdetail LD_{ULS}08 – Versuchsdurchführung

 $p_{Ed,Versuchsdurchf\"uhrung} = 1,35 \cdot g_{k,SCSC-Platte} \oplus 1,00 \cdot p_{k,Pressenkraft} = 1,35 \cdot 14,02 \oplus 1,00 \cdot 1.091,00 = 1.109,93 \ kN/m$

(siehe Punkt 6.3.2)

- **[AT]:** Die Auflagerpressung der SCSC-Platte wird über einen Lasteinleitungsstreifen, sowie einer Schicht aus Teflon in den darunterliegenden Auflagerträger abgetragen.
- **[AT]:** Die Lastausbreitung in der Auflagerkonstruktion der SCSC-Platte wird über den elastischen Ausbreitungswinkel von 45° beschrieben. Für die weitere Ausbreitung im [AT]-Obergurt wird ein Lastausbreitungsverhältnis von 1:2,5 angenommen. Der Grund dafür ist, dass somit die [AT]-Steifen vollflächig belastet werden.
- **[AT]:** Da die einwirkende Belastung der SCSC-Platte gleichförmig über den [AT] verteilt ist, werden sowohl die Kraftgrößen als auch die Flächen in eine längenbezogene Einheit umgerechnet.
- **[AT]:** Die eingeleitete Kraft wird einerseits über die Anschlussnähte der [AT]-Steifen als auch über den [AT]-Steg abgeleitet.
- **[AT]:** Die den Steifen zugeordnete Kraft wird über Schub- und Normalspannungen in die Stegebzw. Gurte des [AT] eingeleitet, es wird hierzu der geeignete Nachweis geführt.

p _{Ed,Versuchsdurchführung} = 1.109,	93	kN/m
---	----	------

[AT]-Steg

A _{min,ges} =	237,48	cm²/m	gesamte Fläche
σ1 =	-46,74	N/mm²	[AT]-Stegspannung
	$\leq f_{yk} = 355,00$	N/mm²	
			1
A ₂ =	6,87	cm²	Schweißnahtfläche je Steife
$\sigma_2 = \sigma_w =$	-46,74	N/mm²	Schweißnahtspannung der Steife
	$\leq f_{vw, Rd} = 251, 47$	N/mm²	
$F_2 = F_w =$	32,11	kN	Gesamtkraft der Steife
A ₃ =	11,58	cm²	Fläche der Steife
σ3 =	-27,73	N/mm²	Stahlspannung der Steife
	≤ f _{yk} = 355,00	N/mm²	

[AT]-Obergurt Oberkante

A ₄ =	950,00 cm²/m	gesamte Kontaktfläche
σ4 =	-11,68 N/mm²	[AT]-Obergurtspannung
	$\leq f_{yk} = 355,00 \text{ N/mm}^2$	

Abbildung 6.132: Lastdetail LD_{ULS}08 – Versuchsdurchführung

Steifennachweis Außensteife [AT]

Steifentyp 2

					r bschweißn	aht
$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490	N/mm²	$f_{yk, S355J2+N(t \le 40 \text{ mm})} =$	355 N/mm²	++	+
$f_{vw,Rd,S355J2+N} =$	251,47	N/mm²	$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490 N/mm²	Į Į	S _{Ed,2}
γ _{M2} =	1,25		γ _{M0} =	1,00	Ed,2	
geometrische Daten						5
h _{Schweißnaht} =	566	mm				
b _{Schweißnaht} =	97	mm			♥	
r =	35	mm				
t =	12	mm				
Kraftflüsse					thweißnat	
S _{Fd.1} =	0,00	kN/cm				
S _{Ed,2} =	3,33	kN/cm	$LD_{ULS}08$ - Fläche $A_2 = A_w$		t I	
					ţ	
T _{Ed 1} =	-0,44	kN/cm			3	
$T_{Ed,2} =$	-0,57	kN/cm				- - -
T _{Ed,3} =	-0,44	kN/cm				Ed,1
						S _{Ed,1}
Punkt 1 = Punkt 2			Punkt 3 = Punkt 4		Punkt 5 = Punkt 6	
a ₁ =	3	mm	a ₂ =	3 mm	a ₃ =	3 mm
$\sigma_{\parallel, Ed}$ =	0,00	N/mm²	$\sigma_{\parallel,Ed}$ =	0,00 N/mm²	σ _{∥,Ed} =	0,00 N/mm²
$\sigma_{\perp, Ed}$ =	0,00	N/mm²	$\sigma_{\perp, Ed}$ =	0,00 N/mm²	$\sigma_{\perp, Ed}$ =	55,46 N/mm²
$\tau_{\parallel,Ed} =$	-7,26	N/mm²	$\tau_{\parallel,Ed} =$	-9,45 N/mm²	$\tau_{\parallel,Ed} =$	-7,26 N/mm²
$\tau_{\perp,Ed}$ =	0,00	N/mm²	$\tau_{\perp,Ed}$ =	0,00 N/mm²	$\tau_{\perp,Ed}$ =	0,00 N/mm²
$\sigma_{w,Ed} / f_{vw,Rd} =$	0,03	≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,04 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,22 ≤ 1,00
$\sigma_{v,Ed} / f_{y,d} =$	0,02	≤ 1,00	$\tau_{Ed} / \tau_{Rd} =$	0,02 ≤ 1,00	$\sigma_{v,Ed} / f_{y,d} =$	0,08 ≤ 1,00

Beulnachweis nach EN 1993-1-1 bzw. EN 1993-1-5

c/t = (b+r)/t = 11,0

≤ 14ε = 11,39 ε = 0,81 Querschnittsklasse 3

6.8.21 Lastdetail LD_{ULS}09 – Versuchsdurchführung

 $P_{Ed,Versuchsdurchf\"{u}hrung} = V_{z,Ed,[WB2]} = 151,00 \, kN$ (siehe Punkt 6.3.14)

- [WB2]: Die Oberflächenpressung des Untergurtes wird über die Hertz'sche Pressung berechnet.
- [WB2]: Die einwirkende Kraft auf die Steifen und den anteiligen [WB2]-Steg wird über die Auflagerkraft des [WB2] ermittelt.
- **[WB2]:** Die den Steifen zugeordnete Kraft wird über Schub- und Normalspannungen in die Stege- bzw. Gurte des [WB2] eingeleitet, es wird hierzu der geeignete Nachweis geführt.

Abbildung 6.133: Lastdetail LD_{ULS}09 – Versuchsdurchführung

P_{Ed,Versuchsdurchführung} = 151,00 kN

Pressung Lasteinleitungsplatte

A ₁ =	94,15	cm ²	Pressungsfläche
σ1 =	-16,04	N/mm²	Kontaktspannung
	$\leq f_{yk} = 355,00$	N/mm²	

[WB2]-Untergurt Oberkante

A _{min,ges} =	15,05	cm²	gesamte Fläche
$\sigma_2 = \sigma_w = \sigma_4 =$	-100,33	N/mm²	Spannung der minimalen Fläche
	$\leq f_{vw,Rd} = 251,47$	N/mm²	
$A_2 = A_w =$	3,60	cm²	Schweißnahtfläche je Steife
F ₂ =	36,12	kN	Schweißnahtspannung der Steife
A ₃ =	5,04	cm²	Fläche der Steife
σ3 =	-71,67	N/mm²	Stahlspannung der Steife
	≤ f _{yk} = 355,00	N/mm²	

Voraussetzungen für die Berechnung nach Hertz [2]:

• Die Berührungskörper sind aus homogenem, isotropen und elastischem Material

• Die unbeschränkte Gültigkeit des Hooke'schen Gesetzes

Um diese Voraussetzung zu gewährleisten ist die Konstruktion so zu gestalten, dass die maximale Spannung σ_0 unter der Streckgrenze f_{vd} ist.

- Die Abplattung (Abmessung der Druckfläche) ist im Vergleich zu den Körperabmessungen und Krümmungsradien klein.
- In den Berührungsflächen treten keine Schubspannungen, sondern nur Normalspannungen auf (Voraussetzung: keine Reibung)
- Die Berührungsfläche zwischen beliebig gewölbten Körpern hat immer die Form einer Ellipse mit den Grenzfällen Rechteck und Kreis

Tafel 7.8 Berührungspressung nach Hertz							
Н	Hilfsgrößen: $u = \frac{R_1 + R_2}{R_1 \cdot R_2};$ $v = \frac{R_1 - R_2}{R_1 \cdot R_2};$ $w = \frac{1 - \mu_1^2}{E_1} + \frac{1 - \mu_2^2}{E_2}$ $\mu = Querdehoungszahl$						
N	Belastungsfall	Ver- schiedene Metalle $E_1 + E_2$	Gleiche	Metalle: $E_1 = E_2$	E = E;	μι μ;	<u>1</u> ≈ 0,3
181.		Größte Normal-	Größte Normal-	Radius a der Berührungs-	Schub- span-	Ab- stand	Abplattung
	F = Gesamtkraft	σο	σ₀	fläche	τ _{max}	Уm	Wo
4	Zylinder – Ebene	$\sigma_{o} = -0,564$ $\sqrt{\frac{F}{R \cdot w \cdot L}}$	$\sigma_{o} = -0,418 \sqrt{\frac{F \cdot E}{L \cdot R}}$	$a = 1,52 \sqrt{\frac{F \cdot R}{L \cdot E}}$	$ au_{max} = 0,30 \ \sigma_0$	y _m = 0,79 a	$w_{o} = \frac{1,159 \text{ F}}{\text{L} \cdot \text{E}}$ $\left(\frac{1}{3} + \ln \frac{2 \text{ R}}{a}\right)$

Abbildung 6.134: Berührungspressung nach Hertz [2]

Lasteinleitung Waagbalken 2 - Rolle - SCSC-Platte oberes Deckblech Zylinder - Ebene

F =	151,00	kN	
R =	50	mm	
L =	150	mm	
E ₁ =	210.000	N/mm²	
μ1 =	0,30		
f _{yk,1} =	355	N/mm²	
E ₂ =	210.000	N/mm²	
μ ₂ =	0,30		
f _{yk,2} =	355	N/mm²	
w =			
σ ₀ =	-859,50	N/mm²	größte Normalspannung
	$\leq f_{yk} = 890,00$	N/mm²	
a =	0,74	mm	Radius der Berührungsfläche
τ _{max} =	257,85	N/mm²	Schubspannung
y _m =	0,59	mm	Abstand
w ₀ =	0,03	mm	Abplattung

Ausleitung aus WB2 (WB2 - Einleitungsplatte)

f _{yk,WB2} =	355	N/mm²
b _{WB2} =	106	mm
b _{Einleitungfläche,oben} =	52	mm
σ _{wB2} =	-27,39	N/mm²
	$\leq f_{yk} = 355,00$	N/mm²

Einleitung in SCSC-Platte (Einleitungsplatte - Deckblech SCSC-Platte)

$f_{yk,DBSCSC-Platte} =$	355	N/mm²
b _{Zylinder} =	150	mm
t _{Einleitungplatte} ,unten =	60	mm
$\sigma_{\text{DBSCSC-Platte}} =$	-4,66	N/mm²
	$\leq f_{yk} = 355,00$	N/mm²

Steifennachweis Außensteife [WB2]

Steifentyp 2

Waterlaikeriitwerte				r b Schweißr	aht
$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490 N/mm²	$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355 N/mm²		+
$f_{vw,Rd,S355J2+N} =$	251,47 N/mm²	$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490 N/mm²	↓ ↓	S _{Ed,2}
γ _{M2} =	1,25	γ _{M0} =	1,00		
geometrische Daten					6
h _{Schweißnaht} =	86 mm				
b _{Schweißnaht} =	42 mm			•	
r =	15 mm			L	
t =	12 mm			at the second	
Kraftflüsse				chweißna	
S _{Fd.1} =	8,60 kN/cm	LD _{ULS} 09 - Fläche A ₂ = A _w		ٽ ا	
S _{Ed,2} =	0,00 kN/cm			ŧ I I I I I I I I I I I I I I I I I I I	
				ŧ I I I I	
T _{Ed.1} =	2,67 kN/cm			3	
$T_{Ed,2} =$	4,20 kN/cm				
T _{Fd.3} =	2,67 kN/cm			A	Ed,1
				t t	
Punkt 1 = Punkt 2		Punkt 3 = Punkt 4		Punkt 5 = Punkt 6	
a ₁ =	3 mm	a ₂ =	3 mm	a ₃ =	3 mm
σ _{∥,Ed} =	0,00 N/mm²	σ _{∥,Ed} =	0,00 N/mm²	σ _{∥,Ed} =	0,00 N/mm²
$\sigma_{\perp, Ed}$ =	143,33 N/mm²	$\sigma_{\perp,Ed}$ =	0,00 N/mm²	$\sigma_{\perp, Ed}$ =	0,00 N/mm²
τ _{,Ed} =	44,48 N/mm²	τ _{,Ed} =	70,00 N/mm²	$\tau_{\parallel,Ed} =$	44,48 N/mm²
$\tau_{\perp,\text{Ed}}$ =	0,00 N/mm²	$\tau_{\perp,Ed}$ =	0,00 N/mm²	$\tau_{\perp,Ed}$ =	0,00 N/mm²
$\sigma_{w,Ed}$ / $f_{vw,Rd}$ =	0,60 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,28 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,18 ≤ 1,00
$\sigma_{v,Ed} / f_{y,d} =$	0,23 ≤ 1,00	$\tau_{Ed} / \tau_{Rd} =$	0,17 ≤ 1,00	$\sigma_{v,Ed}/f_{y,d} =$	0,11 ≤ 1,00

Beulnachweis nach EN 1993-1-1 bzw. EN 1993-1-5

4,8

c/t = (b+r)/t =

≤ 14ε = 11,39 ε = 0,81 Querschnittsklasse 3

6.8.22 Lastdetail LD_{ULS}10 – Versuchsdurchführung

 $P_{Ed,Versuchsdurchf\"uhrung} = V_{z,Ed,[WB1]} = 301,29 kN$ (siehe Punkt 6.3.13)

- [WB1]: Der Kraftfluss wird über die Endplatte des [WB1] in den Obergurt des [WB2] geführt.
- **[WB2]:** Die Pressung zwischen [WB1]-Endplatte und [WB2]-Obergurt berechnet sich aus der überschnittenen Fläche beider Bauteile.
- **[WB2]:** Abgetragen wird die Kraft einerseits über die Steifen-Anschlussnähte an der Lasteinleitungsstelle sowie der anteiligen [WB2]-Stegfläche
- **[WB2]:** Diese Stegfläche wird über das Lastausbreitungsverhältnis von 1:1 von der Endplatte über den [WB2]-Obergurt und der Stegbreite errechnet.
- **[WB2]:** Die abzutragende Kraft bzw. Spannung des Steges, wird über die Gesamtfläche der Steifen-Anschlussnähte und der Stegfläche gebildet (A_{w.ges} + A₄).
- **[WB2]:** Die den Steifen zugeordnete Kraft wird über Schub- und Normalspannungen in die Stege- bzw. Gurte des [WB2] eingeleitet, es wird hierzu der geeignete Nachweis geführt.

Abbildung 6.135: Lastdetail LD_{ULS}10 – Versuchsdurchführung

P_{Ed,Versuchsdurchführung} = 301,29 kN

[WB1]-Verbindung an Endplatte

a _{Stegnaht,[WB1]} =	5	mm
I _{Stegnaht, [WB1]} =	138	mm
A _{Schub} =	13,80	cm²
$\tau_{\parallel,Ed} =$	218,33	N/mm²

Materialkennwerte (Schweißnaht)

f _{uk,S355J2+N (t≤40 mm)}	490 N/mm²
$f_{vw,Rd,S355J2+N} =$	251,47 N/mm²
γ _{M2} =	1,25
$\sigma_{w,Ed} / f_{vw,Bd} =$	0,868 ≤ 1,000

Pressung [WB2]-Obergurt Oberkante

A ₁ =	29,20 cm ²	Pressungsfläche
σ1 =	-103,18 N/mm ²	Kontaktspannung
	$\leq f_{yk} = 355,00 \text{ N/mm}^2$	

.

[WB2]-Obergurt Unterkante

A _{min,ges} =	15,52	cm²	gesamte Fläche
$\sigma_2 = \sigma_w = \sigma_4 =$	-194,13	N/mm²	Spannung der minimalen Fläche
	$\leq f_{vw,Rd} = 251,47$	N/mm²	
$A_2 = A_w =$	3,60	cm²	Schweißnahtfläche je Steife
F ₂ =	69,89	kN	Schweißnahtspannung der Steife
A ₃ =	5,04	cm²	Fläche der Steife
σ3 =	-138,66	N/mm²	Stahlspannung der Steife
	$\leq f_{yk} = 355,00$	N/mm²	

Steifennachweis Außensteife [WB2]

Steifentyp 2

Materialkennwerte				" harburger	
$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490 N/mm²	$f_{vk,S355J2+N(t \le 40 \text{ mm})} =$	355 N/mm²		
f _{vw,Rd,S355J2+N} =	251,47 N/mm²	$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490 N/mm²		S _{Ed,2}
γ _{M2} =	1,25	γ _{M0} =	1,00		
geometrische Daten					
h _{Schweißnaht} =	86 mm				
b _{Schweißnaht} =	42 mm				
r =	15 mm				
t =	12 mm				
Kraftflüsse				thweißnat	
S _{Fd.1} =	0,00 kN/cm			ے ا	
S _{Ed,2} =	16,64 kN/cm	LD _{ULS} 10 - Fläche A ₂ = A _w			
$T_{Ed,1} = T_{Ed,2} = T_{Ed,3} =$	-5,16 kN/cm -8,13 kN/cm -5,16 kN/cm				T _{Ed,1}
Punkt 1 = Punkt 2		Punkt 3 = Punkt 4		Punkt 5 = Punkt 6	
a ₁ =	3 mm	a ₂ =	3 mm	a ₃ =	4 mm
σ _{∥,Ed} =	0,00 N/mm²	σ _{∥,Ed} =	0,00 N/mm²	σ _{∥,Ed} =	0,00 N/mm²
$\sigma_{\perp,Ed}$ =	0,00 N/mm²	$\sigma_{\perp, Ed}$ =	0,00 N/mm²	$\sigma_{\perp, Ed}$ =	208,00 N/mm²
$\tau_{\parallel,Ed} =$	-86,07 N/mm²	$\tau_{\parallel,Ed} =$	-135,44 N/mm²	$\tau_{\parallel, Ed} =$	-64,55 N/mm²
$\tau_{\perp,Ed}$ =	0,00 N/mm²	$ au_{\perp,Ed} =$	0,00 N/mm²	$\tau_{\perp,Ed}$ =	0,00 N/mm²
$\sigma_{w,Ed} / f_{vw,Rd} =$	0,34 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,54 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,87 ≤ 1,00
$\sigma_{v,Ed} / f_{y,d} =$	0,21 ≤ 1,00	$\tau_{Ed} / \tau_{Rd} =$	0,33 ≤ 1,00	$\sigma_{v,Ed}/f_{y,d} =$	0,44 ≤ 1,00

Beulnachweis nach EN 1993-1-1 bzw. EN 1993-1-5

4,8

c/t = (b+r)/t =

 $\leq 14\epsilon = 11,39$ $\epsilon = 0,81$ Querschnittsklasse 3

6.8.23 Lastdetail LD_{ULS}11 – Versuchsdurchführung

 $P_{Ed,Presse} = 1,00 \cdot P_{k,Presse} = 600,00 \ kN$ (siehe Punkt 2.2.2)

- **[WB1]:** Die Pressenkraft wird über die Kraftmessdose und der Teflonschicht auf den [WB1]-Obergurt in einem Lastausbreitungsverhältnis von 1:1 verteilt.
- **[WB1]:** Für die weitere Ausbreitung im [WB1]-Obergurt wird ein Lastausbreitungsverhältnis von 1:2,5 angenommen. Der Grund dafür ist, dass somit die [WB1]-Steifen vollflächig angesetzt werden können.

Abbildung 6.136: Lastdetail LD_{ULS}11 – Versuchsdurchführung

P_{Ed,Presse} = 600,00 kN

Pressung [WB1]-Obergurt Oberkante

A ₁ =	101,84 cm ²	Pressungsfläche
σ1 =	-58,92 N/mm²	Kontaktspannung
	$\leq f_{yk} = 355,00 \text{ N/mm}^2$	

[WB1]-Obergurt Unterkante

A _{min,ges} =	48,40	cm²	gesamte Fläche
$\sigma_2 = \sigma_w = \sigma_4 =$	-123,97	N/mm²	Spannung der minimalen Fläche
	$\leq f_{vw,Rd} = 251,47$	N/mm²	
			I
$A_2 = A_w =$	5,30	cm²	Schweißnahtfläche je Steife
F ₂ =	65,70	kN	Schweißnahtspannung der Steife
A ₃ =	8,43	cm²	Fläche der Steife
σ3 =	-77,94	N/mm²	Stahlspannung der Steife
	$\leq f_{yk} = 355,00$	N/mm²	
ΔF =	468,60	kN	Differenzkraft
A ₄ =	37,80	cm²	DMR11 Stor
σ4 =	-123,97	N/mm²	[wb1]-sicy
	≤ f _{vk} = 355,00	N/mm²	

Steifennachweis Außensteife [WB1]

Steifentyp 2

Materialkennwerte

wateriaikennwerte					- hsahuusidaah	
$f_{uk,S355J2+N(t \le 40 \text{ mm})} =$	490	N/mm²	$f_{yk,S355J2+N(t \le 40 \text{ mm})} =$	355 N/mm²		
$f_{vw,Rd,S355J2+N} =$	251,47	N/mm²	$f_{uk, S355J2+N(t \le 40 \text{ mm})} =$	490 N/mm²	↓ ↓ ↓	SEd,2
γ _{M2} =	1,25		γ _{M0} =	1,00		T _{Ed,3}
geometrische Daten						
h _{Schweißnaht} =	138	mm				
b _{Schweißnaht} =	70	mm			▼	
r =	25	mm				
t =	12	mm			th	
Kraftflüsse					hweißne	
S _{Ed.1} =	0,00	kN/cm			ے ا	
S _{Ed,2} =	9,35	kN/cm	LD_{ULS} 11 - Fläche A ₂ = A _w		ţ	
$T_{Ed,1} =$	-2,99	kN/cm				
$T_{Ed,2} =$	-4,76	kN/cm				T _{Ed 1}
I _{Ed,3} =	-2,99	kN/cm				S _{Ed,1}
Punkt 1 = Punkt 2			Punkt 3 = Punkt 4		Punkt 5 = Punkt 6	
a ₁ =	3	mm	a ₂ =	3 mm	a ₃ =	3 mm
$\sigma_{\parallel,Ed} =$	0,00	N/mm²	$\sigma_{\parallel, Ed}$ =	0,00 N/mm²	$\sigma_{\parallel,Ed}$ =	0,00 N/mm²
$\sigma_{\perp, Ed}$ =	0,00	N/mm²	$\sigma_{\perp,Ed}$ =	0,00 N/mm²	$\sigma_{\perp, Ed}$ =	155,88 N/mm²
$\tau_{\parallel,Ed} =$	-49,85	N/mm²	$\tau_{\parallel,Ed} =$	-79,35 N/mm²	$\tau_{\parallel,Ed} =$	-49,85 N/mm²
$\tau_{\perp,Ed}$ =	0,00	N/mm²	$\tau_{\perp, Ed} =$	0,00 N/mm²	$ au_{\perp, \text{Ed}}$ =	0,00 N/mm²
$\sigma_{w,Ed} / f_{vw,Rd} =$	0,20 ≤	≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,32 ≤ 1,00	$\sigma_{w,Ed} / f_{vw,Rd} =$	0,65 ≤ 1,00
$\sigma_{v,Ed} / f_{y,d} =$	0,12 ≤	≤ 1,00	$\tau_{Ed} / \tau_{Rd} =$	0,19 ≤ 1,00	$\sigma_{v,Ed}/f_{y,d} =$	0,25 ≤ 1,00

Beulnachweis nach EN 1993-1-1 bzw. EN 1993-1-5

c/t = (b+r)/t =

7,9 ≤ 14ε = 11,39 $\varepsilon = 0,81$

Querschnittsklasse 3

7. Grenzzustand der Gebrauchstauglichkeit

7.1 Teilsicherheitsbeiwerte

Die Teilsicherheitsbeiwerte für den Grenzzustand der Gebrauchstauglichkeit werden nach Punkt 2.3.1 angesetzt.

7.2 [AT] Versuchsdurchführung

Lastfälle

Siehe Punkt 6.3.2

Lastfallkombination

Versuchsdurchführung

 $LK_{Versuchsdurchf\"uhrung} = 1,00 \cdot LF_{Eigengewicht} \oplus 1,00 \cdot LF_{Versuchsdurchf\"uhrung}$

Verschiebungen / Verdrehungen

Biegelinie w_y [mm]

Querschnittsdrehwinkel φ_v [mrad]

Abbildung 7.1: Auflagerträger [AT] – Versuchsdurchführung – Verformung

 $w_{z,max} = 9,17 \ mm \le \frac{l}{300} = \frac{4.350}{300} = 14,50 \ mm$ $\varphi_{y,max} = 5,055 \ mrad$

7.3 [LT] Vorspannung

Lastfälle

Siehe Punkt 6.3.3

Lastfallkombination

Vorspannung

 $LK_{Vorspannung} = 1,00 \cdot LF_{Eigengewicht} \oplus 1,00 \cdot LF_{Vorspannung}$

Verschiebungen / Verdrehungen

Biegelinie w_y [mm] Querschnittsdrehwinkel φ_y [mrad]

Abbildung 7.2: Längsträger [LT] – Vorspannung – Verformung

 $w_{z,max} = 1,69 \ mm \le \frac{l}{300} = \frac{4.120}{300} = 13,73 \ mm$ $\varphi_{y,max} = 0,638 \ mrad$

7.4 [LT] Versuchsdurchführung

Lastfälle

Siehe Punkt 6.3.4

Lastfallkombination

Versuchsdurchführung

 $LK_{Versuchsdurchf\ddot{u}hrung} = 1,00 \cdot LF_{Eigengewicht} \oplus 1,00 \cdot P_{k,[ZS]}$

Verschiebungen / Verdrehungen

Biegelinie w_y [mm]

Querschnittsdrehwinkel φ_v [mrad]

 $w_{z,max} = 10,68 \ mm \le \frac{l}{300} = \frac{4.120}{300} = 13,73 \ mm$ $\varphi_{y,max} = 6,289 \ mm ad$

7.5 [LTu] FLS Vorspannung

Lastfälle

Siehe Punkt 6.3.5

Lastfallkombination

Versuchsdurchführung

 $LK_{FLS,Vorspannung} = 1,00 \cdot LF_{Eigengewicht} \oplus 1,00 \cdot P_{FLS,Vorspannung,Platte}$

Verschiebungen / Verdrehungen

Biegelinie w_y [mm]

Querschnittsdrehwinkel φ_{v} [mrad]

Abbildung 7.4: Längsträger unten [LTu] – FLS Vorspannung – Verformung

 $w_{z,max} = 0,00 \ mm \le \frac{l}{300} = \frac{2.940}{300} = 9,8 \ mm$

Die translatorische Verschiebung beträgt 0,39 mm.

 $\varphi_{y,max} = 0,006 mrad$
7.6 [QT]_{geschlossen} Versuchsdurchführung

Lastfälle

Siehe Punkt 6.3.7

Lastfallkombination

Versuchsdurchführung

 $LK_{Versuchsdurchf\ddot{u}hrung} = 1,00 \cdot LF_{Eigengewicht} \oplus 1,00 \cdot LF_{Versuchsdurchf\ddot{u}hrung}$

Verschiebungen / Verdrehungen

Biegelinie w_y [mm]

Querschnittsdrehwinkel φ_y [mrad]

Abbildung 7.5: Querträger geschlossen [QT]geschlossen – Versuchsdurchführung – Verformung

 $w_{z,max} = 17,35 mm$

 $w_{z,min} = 9,11 mm$

 $\Delta w_z = w_{z,max} - w_{z,min} = 8,24 \ mm \ \le \frac{l}{300} = \frac{4.350}{300} = 14,50 \ mm$

 $\varphi_{y,max} = 4,188 \; mrad$

 $\varphi_{y,maxPresse} = 3,658 mrad$

7.7 [QT] offen Versuchsdurchführung

Lastfälle

Siehe Punkt 6.3.9

Lastfallkombination

Versuchsdurchführung

 $LK_{Versuchsdurchf\ddot{u}hrung} = 1,00 \cdot LF_{Eigengewicht} \oplus 1,00 \cdot LF_{Versuchsdurchf\ddot{u}hrung}$

Verschiebungen / Verdrehungen

Biegelinie w_y [mm] Querschnittsdrehwinkel φ_y [mrad]

Abbildung 7.6: Querträger offen [QT] offen – Versuchsdurchführung – Verformung

 $w_{z,max} = 18,03 mm$

 $w_{z,min} = 9,11 mm$

 $\Delta w_z = w_{z,max} - w_{z,min} = 8,92 \ mm \ \leq \frac{l}{300} = \frac{4.350}{300} = 14,50 \ mm$

 $\varphi_{y,max} = 4,123 mrad$

 $\varphi_{y,maxPresse} = 3,602 mrad$

7.8 [QT] Versuchsdurchführung – Nachweis der Horizontalverschiebung

Abbildung 7.8: Pressenverdrehung Querträger [QT]

[WB1]

Geschlossener Querträger (siehe Punkt 7.6)

$$s_{geschlossener QT} = \sin \varphi_{y,maxPresse} \cdot p$$
$$= \sin(3,658 \cdot 10^{-3}) \cdot 860 = 3,15 mm$$

Offener Querträger (siehe Punkt 7.7)

 $\varphi_{y,maxPresse} = 3,602 mrad$

 $\varphi_{y,maxPresse} = 3,658 mrad$

 $s_{geschlossener QT} = \sin \varphi_{y,maxPresse} \cdot p$ $= \sin(3,602 \cdot 10^{-3}) \cdot 860 = 3,10 mm$

7.9 [VT] Vorspannung

Lastfälle

Siehe Punkt 6.3.10

Lastfallkombination

Vorspannung

 $LK_{Vorspannung} = 1,00 \cdot LF_{Eigengewicht} \oplus 1,00 \cdot LF_{Vorspannung}$

Verschiebungen / Verdrehungen

Biegelinie w_y [mm] Querschnittsdrehwinkel φ_y [mrad]

Abbildung 7.9: Vorspannträger [VT] – Vorspannung – Verformung

 $w_{z,max} = 6,13 mm, w_{z,min} = 2,95 mm$

 $\Delta w_z = w_{z,max} - w_{z,min} = 3,18 \ mm \ \leq \frac{l}{150} = \frac{1.150}{150} = 7,67 \ mm$

 $\varphi_{y,max} = 2,660 mrad$

7.10 [VT] Versuchsdurchführung

Lastfälle

Siehe Punkt 6.3.11

Lastfallkombination

Versuchsdurchführung

 $LK_{Vorspannung} = 1,00 \cdot LF_{Eigengewicht} \oplus 1,00 \cdot LF_{Versuchsdurchf"uhrung}$

Verschiebungen / Verdrehungen

Biegelinie w_y [mm] Querschnittsdrehwinkel φ_y [mrad]

Abbildung 7.10: Vorspannträger [VT] – Versuchsdurchführung – Verformung

 $w_{z,max} = 12,55 mm, w_{z,min} = 10,69 mm$

 $\Delta w_z = w_{z,max} - w_{z,min} = 1,86 \ mm \ \le \frac{l}{150} = \frac{1.150}{150} = 7,67 \ mm$

 $\varphi_{v,max} = 1,557 mrad$

7.11 [VTB] FLS Vorspannung

Lastfälle

Siehe Punkt 6.3.12

Lastfallkombination

Versuchsdurchführung

 $LK_{FLS,Vorspannung} = 1,00 \cdot LF_{Eigengewicht} \oplus 1,00 \cdot P_{FLS,Vorspannung,Platte}$

Verschiebungen / Verdrehungen

Biegelinie w_y [mm]

Querschnittsdrehwinkel φ_{γ} [mrad]

Abbildung 7.11: Verteilbalken [VTB] – FLS Vorspannung – Verformung

 $w_{z,max} = 0,23 mm, w_{z,min} = 0,18 mm$

 $\Delta w_z = w_{z,max} - w_{z,min} = 0,05 \ mm \ \le \frac{l}{300} = \frac{820}{300} = 2,73 \ mm$

 $\varphi_{y,max} = 0,060 mrad$

7.12 [WB1] Versuchsdurchführung

Lastfälle

Siehe Punkt 6.3.13

Lastfallkombination

Versuchsdurchführung

 $LK_{Versuchsdurchf\ddot{u}hrung} = 1,00 \cdot LF_{Eigengewicht} \oplus 1,00 \cdot LF_{Versuchsdurchf\ddot{u}hrung}$

Verschiebungen / Verdrehungen

Biegelinie w_y [mm] Querschnittsdrehwinkel φ_y [mrad]

Abbildung 7.12: Waagbalken 1 [WB1] – Versuchsdurchführung – Verformung

 $w_{z,max} = 3,76 \ mm \le \frac{l}{300} = \frac{1.640}{300} = 5,47 \ mm$ $\varphi_{y,max} = 3,300 \ mrad$

7.13 [WB2] Versuchsdurchführung

Lastfälle

Siehe Punkt 6.3.14

Lastfallkombination

Versuchsdurchführung

 $LK_{Versuchsdurchf\ddot{u}hrung} = 1,00 \cdot LF_{Eigengewicht} \oplus 1,00 \cdot LF_{Versuchsdurchf\ddot{u}hrung}$

Verschiebungen / Verdrehungen

Biegelinie w_y [mm]

Querschnittsdrehwinkel φ_y [mrad]

Abbildung 7.13: Waagbalken 2 [WB2] – Versuchsdurchführung – Verformung

 $w_{z,max} = 0.96 \ mm \le \frac{l}{300} = \frac{820}{300} = 2.73 \ mm$ $\varphi_{y,max} = 1.833 \ mrad$

8. Grenzzustand der Ermüdungsfestigkeit

Die Versuchsanlage wird zusätzlich zu den statischen Traglastversuchen auch für dynamische Versuche verwendet. Hierbei werden die untersuchten SCSC-Platten einer definierten Lastschwingbreite (siehe Punkt 2.2.4) ausgesetzt, welche zwei Millionen mal aufgebracht wird. Da mehrere SCSC-Platten dynamisch untersucht werden ist der Versuchsrahmen auf eine weitaus höhere Anzahl an Lastspielen zu bemessen. Der Grenzzustand der Ermüdungsfestigkeit wird daher in Form eines Dauerfestigkeitsnachweises geführt. Die Dauerfestigkeit ist über eine Spannungsschwingbreite definiert, welche fünf Millionen mal aufgebracht werden kann. Ist die einwirkende Spannungsschwingbreite kleiner als die Dauerfestigkeit, so zieht diese Beanspruchung keine nennenswerte Schädigung nach sich.

Nachweisformate:

• Begrenzung der Nennspannung nach ÖNORM EN 1993-1-9 8(1):

 $\Delta \sigma \leq 1,5 \cdot f_y$ für Normalspannungen

 $\Delta \tau \leq 1.5 \cdot \frac{f_y}{\sqrt{3}}$ für Schubspannungen

Dauerfestigkeitsnachweis für Normalspannungen

$$\frac{\gamma_{Ff} \cdot \Delta \sigma}{\Delta \sigma_{\rm D} / \gamma_{Mf}} \le 1.0$$

• Dauerfestigkeitsnachweis für Schubspannungen

$$\frac{\gamma_{Ff} \cdot \Delta \tau}{\Delta \tau_{\rm D} / \gamma_{Mf}} \le 1.0$$

• Nachweis für kombinierte Beanspruchung aus Normal- und Schubspannungen

(Für eine kombinierte Beanspruchung aus Normal- und Schubspannungen gibt es keine Nachweisform im Sinne einer Dauerfestigkeit. Es wird daher die Interaktionsformel nach DS 804 angewendet.)

$$\left(\frac{\gamma_{Ff} \cdot \Delta \sigma_{x}}{\Delta \sigma_{C}/\gamma_{Mf}}\right)^{2} + \left(\frac{\gamma_{Ff} \cdot \Delta \sigma_{z}}{\Delta \sigma_{C}/\gamma_{Mf}}\right)^{2} - 0.8 \left(\frac{\gamma_{Ff} \cdot \Delta \sigma_{x}}{\Delta \sigma_{C}/\gamma_{Mf}}\right) \left(\frac{\gamma_{Ff} \cdot \Delta \sigma_{z}}{\Delta \sigma_{C}/\gamma_{Mf}}\right) + \left(\frac{\gamma_{Ff} \cdot \Delta \tau}{\Delta \tau_{C}/\gamma_{Mf}}\right)^{2} \le 1,00$$

Im vorliegenden Projekt wird die lokale Lasteinleitung im Grenzzustand der Ermüdungsfestigkeit nicht behandelt. Daher ist die Normalspannungskomponente $\Delta \sigma_z = 0$ zu setzen. Der oben angeführte Nachweis bei kombinierter Beanspruchung reduziert sich somit zu:

$$\left(\frac{\gamma_{Ff} \cdot \Delta \sigma_{\chi}}{\Delta \sigma_{C} / \gamma_{Mf}}\right)^{2} - 0.8 \left(\frac{\gamma_{Ff} \cdot \Delta \sigma_{\chi}}{\Delta \sigma_{C} / \gamma_{Mf}}\right) + \left(\frac{\gamma_{Ff} \cdot \Delta \tau}{\Delta \tau_{C} / \gamma_{Mf}}\right)^{2} \le 1.00$$

Die Spannungswerte der Dauerfestigkeit $\Delta \sigma_D$, $\Delta \tau_D$ bzw. der Kerbfestigkeit $\Delta \sigma_C$, $\Delta \tau_C$ werden in Abhängigkeit des Konstruktionsdetails und der Kerbfallklassifizierung über die Wöhlerkennlinie bestimmt (siehe Abbildung 8.1).

Abbildung 8.1: Ermüdungsfestigkeitskurven für Längsspannungen und Schubspannungen [14]

8.1 Teilsicherheitsbeiwerte

Die Teilsicherheitsbeiwerte für den Grenzzustand der Ermüdungsfestigkeit werden nach Punkt 2.3.1 bzw. Punkt 2.3.3 angesetzt.

8.2 Modellbildung

Für die Ermittlung der ermüdungswirksamen Spannungsschwingbreite wird die unter Punkt 2.2.4 ermittelte Lastschwingbreite auf die relevanten Bauteile angesetzt. Durch die elastische Tragwerksanalyse werden über die Schnittgrößen die einwirkenden Spannungsdifferenzen ermittelt.

Durch die strukturelle Entkopplung des Berechnungsmodells wurden die einwirkenden Kräfte in vier Schritten auf die betroffenen Bauteile angesetzt (siehe Abbildung 8.2 bis Abbildung 8.5).

Abbildung 8.2: Einwirkende Lastschwingbreite [WB1], [WB2] (nach Punkt 2.2.4)

Abbildung 8.4: Einwirkende Lastschwingbreite [VT], [LT], [LTu] (nach Punkt 2.2.4)

Abbildung 8.5: Einwirkende Lastschwingbreite [AT] (nach Punkt 2.2.4)

8.3 Ermittlung der Beanspruchungen / Nachweisführung im Grenzzustand der Ermüdungsfestigkeit

8.3.1 [AT] Auflagerträger

Schnittgrößen FLS

Abbildung 8.6: Auflagerträger [AT] – FLS-Schnittgrößen – Querkraft Vz,Ed,FLS

Biegemoment M_{y,Ed,FLS} [kNm]

Abbildung 8.7: Auflagerträger [AT] – FLS-Schnittgrößen – Biegemoment My,Ed,FLS

Nachweis des Grundmaterials

Materialkennwerte

$f_{yk,S355J2+N (t \le 40 \text{ mm})} =$ $f_{uk,S355J2+N (t \le 40 \text{ mm})} =$ E =	355 N/mm ² 490 N/mm ² 210.000 N/mm ²	
γ _{M0} =	1,00	
x =	0,000 m	untersuchte Stelle, gemessen vom Auflager x = 0,000 m
Einwirkungen FLS (Auflager)		
$ \Delta N_{Ed} =$	0,00 kN	Betrag der Schwingbreite der Normalkraft
$ \Delta V_{z,Ed} =$	187,18 kN	Betrag der Schwingbreite der Querkraft in z-Richtung
$ \Delta M_{y,Ed} =$	0,00 kNm	Betrag der Schwingbreite des Biegemomentes um die y-Achse
Spannungsschwingbreiten		
$ \Delta \sigma_{x,Ed} =$	0,00 N/mm²	$\leq \Delta \sigma_{\rm L} = 50,59$ (KF125)
$ \Delta\sigma_{z,Ed} =$	0,00 N/mm²	optional
$ \Delta \tau_{Ed} =$	14,26 N/mm²	$\leq \Delta \tau_{L} = 45,73 \text{ (KF100)}$
$ \Delta\sigma_{x,Ed} \oplus \Delta\sigma_{z,Ed} \oplus \Delta\tau_{Ed} :$	0,10 ≤ 1,00	Nachweis Schwellwert der Ermüdungsfestigkeit

Nachweis des Grundmaterials

Materialkennwerte

$f_{yk,S355J2+N (t \le 40 \text{ mm})} = f_{uk,S355J2+N (t \le 40 \text{ mm})} = E =$	355 N/mm² 490 N/mm² 210.000 N/mm²	
γ _{M0} =	1,00	
x =	2,175 m	untersuchte Stelle, gemessen vom Auflager x = 0,000 m
305 + 142 21, 142 + 142 21, 142 + 142 - +		

Einwirkungen FLS (Feldmitte)

636 716

	$ \Delta N_{Ed} =$	0,00	kN	Betrag der Schwingbreite der Normalkraft
	$ \Delta V_{z,Ed} =$	0,00	kN	Betrag der Schwingbreite der Querkraft in z-Richtung
	$ \Delta M_{y,Ed} =$	252,69	kNm	Betrag der Schwingbreite des Biegemomentes um die y-Achse
Sp	annungsschwingbreiten			
	$ \Delta\sigma_{x,Ed} =$	27,47	N/mm²	$\leq \Delta \sigma_{L} = 50,59 \text{ (KF125)}$
	$ \Delta\sigma_{z,Ed} =$	0,00	N/mm²	optional
	$ \Delta \tau_{Ed} =$	0,00	N/mm²	$\leq \Delta \tau_{L} = 45,73$ (KF100)
	$ \Delta\sigma_{x,Ed} \oplus \Delta\sigma_{z,Ed} \oplus \Delta\tau_{Ed} :$	0,29	≤ 1,00	Nachweis Schwellwert der Ermüdungsfestigkeit

8.3.2 [LT] Längsträger

Schnittgrößen FLS

Abbildung 8.8: Längsträger [LT] – FLS-Schnittgrößen – Querkraft Vz,Ed,FLS

Biegemoment M_{v,Ed,FLS} [kNm]

Abbildung 8.9: Längsträger [LT] – FLS-Schnittgrößen – Biegemoment My, Ed, FLS

Nachweis der Schweißnähte

Materialkennwerte (Schweißnaht)

Nachweis des Grundmaterials unter Berücksichtigung der Spannungskonzentration zufolge der Spannglieddurchführung

Nachweis der Schweißnähte unter Berücksichtigung der Querschnittsschwächung zufolge der Spannglieddurchführung

Nachweis der Schweißnähte

Materialkennwerte (Schweißnaht)		
$f_{uk,S355J2+N (t \le 40 \text{ mm})} =$ $f_{vw,Rd,S355J2+N} =$ E =	490 N/mm ² 251,47 N/mm ² 210.000 N/mm ²	
γ _{M2} =	1,25	
x =	2,640 m	untersuchte Stelle, gemessen vom Auflager x = 0,000 m
420 420 420 420 420 420 420 420		
$ \Delta N_{Ed} =$	0,00 kN	Betrag der Schwingbreite der Normalkraft
$ \Delta V_{z,Ed} =$	0,00 kN	Betrag der Schwingbreite der Querkraft in z-Richtung
ן בואא _{ץ,Ed} ן = Spannungsschwingbreiten	235,85 KNIII	berrug der Schwingbreite des biegeniomentes um die y-Achse
$ \Delta \sigma_{\parallel, Ed} =$	20,38 N/mm² ≤	≤ Δσ _L = 40,47 (KF100)
$ \Delta \sigma_{\perp,Ed} =$	0,00 N/mm²	optional
$ \Delta \tau_{\parallel,Ed} =$	0,00 N/mm² ≤	$\leq \Delta \tau_{\rm L} = 45,73$ (KF100)
$ \Delta\sigma_{\ ,Ed} \oplus \Delta\sigma_{\perp,Ed} \oplus \Delta\tau_{\ ,Ed}$	0,25 ≤ 1,00	Nachweis Schwellwert der Ermüdungsfestigkeit

8.3.3 [LTu] Längsträger unten

Schnittgrößen FLS

Abbildung 8.10: Längsträger unten [LTu] – FLS-Schnittgrößen – Querkraft V_{z,Ed,FLS}

Abbildung 8.11: Längsträger unten [LTu] – FLS-Schnittgrößen – Biegemoment My,Ed,FLS

Nachweis der Schweißnähte unter Berücksichtigung der Querschnittsschwächung zufolge der Spannglieddurchführung

Materialkennwerte (Schweißnaht)

Nachweis des Grundmaterials unter Berücksichtigung der Querschnittsschwächung zufolge der Spannglieddurchführung

Materialkennwerte		
$f_{yk,S355J2+N(t \le 40 \text{ mm})} = f$	355 N/mm ²	
E = 2	210.000 N/mm ²	
γ _{M0} =	1,00	
x =	0,670 m	untersuchte Stelle, gemessen vom Auflager x = 0,000 m
Einwirkungen FLS (Durchführung Spa	nnstange)	
$ \Delta N_{Ed} =$	0,00 kN	Betrag der Schwingbreite der Normalkraft
$ \Delta V_{z,Ed} =$	93,59 kN	Betrag der Schwingbreite der Querkraft in z-Richtung
$ \Delta M_{y,Ed} =$	9,36 kNm	Betrag der Schwingbreite des Biegemomentes um die y-Achse
Spannungsschwingbreiten		
$ \Delta\sigma_{x,Ed} =$	0,00 N/mm² :	$\leq \Delta \sigma_{L} = 50,59 \text{ (KF125)}$
$ \Delta\sigma_{z,Ed} =$	0,00 N/mm²	optional
$ \Delta \tau_{Ed} =$	31,74 N/mm ²	$\leq \Delta \tau_{L} = 45,73 (KF100)$
$ \Delta\sigma_{x,Ed} \oplus \Delta\sigma_{z,Ed} \oplus \Delta\tau_{Ed} $	0,48 ≤ 1,00	Nachweis Schwellwert der Ermüdungsfestigkeit

8.3.4 [QT]_{geschlossen} Querträger geschlossen

Schnittgrößen FLS

Abbildung 8.12: Querträger geschlossen [QT]geschlossen – FLS-Schnittgrößen – Querkraft Vz,Ed,FLS

Biegemoment M_{v,Ed,FLS} [kNm]

Abbildung 8.13: Querträger geschlossen [QT]_{geschlossen} – FLS-Schnittgrößen – Biegemoment M_{y,Ed,FLS}

Nachweis des Grundmaterials

Materialkennwerte

Betrag der Schwingbreite des Biegemomentes um die y-Achse

$|\Delta M_{y,Ed}| =$

Spannungsschwingbreiten

$ \Delta\sigma_{x,Ed} =$	13,57 N/mm ² $\leq \Delta \sigma_{L} = 50,59$ (KF125)	
$ \Delta\sigma_{z,Ed} =$	0,00 N/mm ² optional	
$ \Delta \tau_{Ed} =$	0,00 N/mm ² $\leq \Delta \tau_{L} = 45,73$ (KF100)	
$ \Delta \sigma_{x, Ed} \oplus \Delta \sigma_{z, Ed} \oplus \Delta \tau_{Ed} $	0,07 ≤ 1,00 Nachweis Schwellwert der Ermüdungsfestigkeit	it

266,76 kNm

Nachweis der Schweißnähte

Materialkennwerte (Schweißnaht)

8.3.5 [QT]_{offen} Querträger offen

Schnittgrößen FLS

Abbildung 8.14: Querträger offen [QT]_{offen} – FLS-Schnittgrößen – Querkraft V_{z,Ed,FLS}

Biegemoment M_{v,Ed,FLS} [kNm]

Abbildung 8.15: Querträger offen [QT]_{offen} – FLS-Schnittgrößen – Biegemoment M_{y,Ed,FLS}

Nachweis des Grundmaterials

Materialkennwerte

Einwirkungen FLS (Feldmitte, Presse)

$ \Delta N_{Ed} =$	0,00 kN	Betrag der Schwingbreite der Normalkraft
$ \Delta V_{z,Ed} =$	31,20 kN	Betrag der Schwingbreite der Querkraft in z-Richtung
$ \Delta M_{y,Ed} =$	266,76 kNm	Betrag der Schwingbreite des Biegemomentes um die y-Achse

$ \Delta \sigma_{x,Ed} =$	13,30 N/mm ² $\leq \Delta \sigma_{L} = 50,59$ (KF125)
$ \Delta\sigma_{z,Ed} =$	0,00 N/mm ² optional
$ \Delta \tau_{Ed} =$	0,00 N/mm ² $\leq \Delta \tau_{L} = 45,73$ (KF100)
$ \Delta\sigma_{x \text{Ed}} \oplus \Delta\sigma_{z \text{Ed}} \oplus \Delta\tau_{\text{Ed}} $:	0,07 ≤ 1,00 Nachweis Schwellwert der Ermüdungsfestigkeit

Nachweis der Schweißnähte

Materialkennwerte (Schweißnaht)

$ \Delta \sigma_{\parallel,Ed} =$	6,94 N/mm ² $\leq \Delta \sigma_{L} = 40,47$ (KF100)
$ \Delta \sigma_{\perp,Ed} =$	0,00 N/mm ² optional
$ \Delta \tau_{\parallel,Ed} =$	9,85 N/mm ² $\leq \Delta \tau_{L} = 45,73$ (KF100)
$ \Delta\sigma_{{}_{\parallel},{}_{Ed}} \oplus \Delta\sigma_{{}_{\perp},{}_{Ed}} \oplus \Delta\tau_{{}_{\parallel},{}_{Ed}}$	0,08 ≤ 1,00 Nachweis Schwellwert der Ermüdungsfestigkeit

8.3.6 [VT] Vorspannträger – [QT]_{geschlossen}

Schnittgrößen FLS

Abbildung 8.16: Vorspannträger [VT] – FLS-Schnittgrößen – Querkraft Vz,Ed,FLS

Biegemoment M_{v,Ed,FLS} [kNm]

Abbildung 8.17: Vorspannträger [VT] – FLS-Schnittgrößen – Biegemoment My,Ed,FLS

Nachweis der Schweißnähte unter Berücksichtigung der Querschnittsschwächung zufolge der Spannglieddurchführung

Materialkennwerte (Schweißnaht)

Einwirkungen FLS (Durchführung Spannstange)

420

380

$ \Delta N_{Ed} =$	0,00 kN	Betrag der Schwingbreite der Normalkraft
$ \Delta V_{z,Ed} =$	187,18 kN	Betrag der Schwingbreite der Querkraft in z-Richtung
$ \Delta M_{y,Ed} =$	18,72 kNm	Betrag der Schwingbreite des Biegemomentes um die y-Achse

$ \Delta \sigma_{\parallel, Ed} =$	5,77 N/mm ² $\leq \Delta \sigma_{L} = 40,47$ (KF100)
$ \Delta\sigma_{\perp,Ed} $ =	0,00 N/mm ² optional
$ \Delta \tau_{\parallel, Ed} =$	18,22 N/mm ² $\leq \Delta \tau_{L} = 45,73$ (KF100)
$ \Delta\sigma_{\parallel, Ed} \oplus \Delta\sigma_{\perp, Ed} \oplus \Delta\tau_{\parallel, Ed} $	0,18 ≤ 1,00 Nachweis Schwellwert der Ermüdungsfestigkeit

Nachweis des Grundmaterials

Materialkennwerte

	380	420	
•	2011		-

Einwirkungen	FLS (Aufl	ager)	
--------------	-------	------	-------	--

$ \Delta N_{Ed} =$	0,00 kN	Betrag der Schwingbreite der Normalkraft
$ \Delta V_{z,Ed} =$	187,18 kN	Betrag der Schwingbreite der Querkraft in z-Richtung
$ \Delta M_{y,Ed} =$	73,00 kNm	Betrag der Schwingbreite des Biegemomentes um die y-Achse

$ \Delta\sigma_{x,Ed} =$	24,87 N/mm ² $\leq \Delta \sigma_{L} = 50,59$ (KF125)
$ \Delta\sigma_{z,Ed} =$	0,00 N/mm ² optional
$ \Delta \tau_{Ed} =$	0,00 N/mm ² $\leq \Delta \tau_{L} = 45,73$ (KF100)
$ \Delta\sigma_{x,Ed} \oplus \Delta\sigma_{z,Ed} \oplus \Delta\tau_{Ed} :$	0,24 ≤ 1,00 Nachweis Schwellwert der Ermüdungsfestigkeit

Nachweis der Schweißnähte

Materialkennwerte (Schweißnaht)

Einwirkungen FLS (Auflager)

ΔN _{Ed} =	0,00 kN	Betrag der Schwingbreite der Normalkraft
$ \Delta V_{z,Ed} =$	187,18 kN	Betrag der Schwingbreite der Querkraft in z-Richtung
$\left \Delta M_{v,Fd}\right =$	73,00 kNm	Betrag der Schwingbreite des Biegemomentes um die y-Achse

∆σ _{∥,Ed} =	22,50 N/mm ² $\leq \Delta \sigma_{L} = 40,47$ (KF100)
$ \Delta\sigma_{\perp,Ed} $ =	0,00 N/mm ² optional
$ \Delta \tau_{\parallel,Ed} =$	13,25 N/mm ² $\leq \Delta \tau_{L} = 45,73$ (KF100)
$ \Delta\sigma_{\parallel, Ed} \oplus \Delta\sigma_{\perp, Ed} \oplus \Delta\tau_{\parallel, Ed} $	0,39 ≤ 1,00 Nachweis Schwellwert der Ermüdungsfestigkeit

8.3.7 [VT] Vorspannträger – [QT]_{offen}

Schnittgrößen FLS

Abbildung 8.18: Vorspannträger [VT] – FLS-Schnittgrößen – Querkraft Vz,Ed,FLS

Biegemoment M_{v,Ed,FLS} [kNm]

Abbildung 8.19: Vorspannträger [VT] – FLS-Schnittgrößen – Biegemoment My,Ed,FLS

Nachweis der Schweißnähte unter Berücksichtigung der Querschnittsschwächung zufolge der Spannglieddurchführung

Materialkennwerte (Schweißnaht)

45 11 20

380

0

420

$ \Delta N_{Ed} =$	0,00 kN	Betrag der Schwingbreite der Normalkraft
$ \Delta V_{z,Ed} =$	187,18 kN	Betrag der Schwingbreite der Querkraft in z-Richtung
$ \Delta M_{y,Ed} =$	18,72 kNm	Betrag der Schwingbreite des Biegemomentes um die y-Achse

$ \Delta\sigma_{\parallel,Ed} =$	5,77 N/mm ² ≤ $\Delta \sigma_{L}$ = 40,47 (KF100)
$ \Delta\sigma_{\perp,Ed} $ =	0,00 N/mm ² optional
$ \Delta \tau_{\parallel,Ed} =$	18,22 N/mm ² $\leq \Delta \tau_{L} = 45,73$ (KF100)
$ \Delta\sigma_{\parallel,Ed} \oplus \Delta\sigma_{\perp,Ed} \oplus \Delta\tau_{\parallel,Ed}$	0,18 ≤ 1,00 Nachweis Schwellwert der Ermüdungsfestigkei

Nachweis des Grundmaterials

Materialkennwerte

aterialkennwerte		
$f_{yk,S355J2+N (t \le 40 \text{ mm})} =$ $f_{uk,S355J2+N (t \le 40 \text{ mm})} =$ E =	355 N/mm ² 490 N/mm ² 210.000 N/mm ²	
γ _{M0} =	1,00	
x =	1,150 m	untersuchte Stelle, gemessen vom Auflager x =0,000 m
240		

<u>____</u>

Einwirkungen FLS (Auflager)			
$ \Delta N_{Ed} =$	0,00	kN	Betrag der Schwingbreite der Normalkraft
$ \Delta V_{z,Ed} =$	187,18	kN	Betrag der Schwingbreite der Querkraft in z-Richtung
$ \Delta M_{y,Ed} =$	73,00	kNm	Betrag der Schwingbreite des Biegemomentes um die y-Achse
Spannungsschwingbreiten			

Sp

$ \Delta \sigma_{x,Ed} =$	24,87 N/mm ² $\leq \Delta \sigma_{L} = 50,59$ (KF125)
$ \Delta\sigma_{z,Ed} =$	0,00 N/mm ² optional
$ \Delta \tau_{Ed} =$	0,00 N/mm ² $\leq \Delta \tau_{L} = 45,73$ (KF100)
$ \Delta\sigma_{x,Ed} \oplus \Delta\sigma_{z,Ed} \oplus \Delta\tau_{Ed} $	0,24 ≤ 1,00 Nachweis Schwellwert der Ermüdungsfestigkeit

Nachweis der Schweißnähte

8.3.8 [VTB] Verteilbalken – [QT]_{geschlossen}

Schnittgrößen FLS

Querkraft V_{z,Ed,FLS} [kN]

Abbildung 8.20: Verteilbalken [VTB] – FLS-Schnittgrößen – Querkraft Vz,Ed,FLS

Biegemoment My,Ed,FLS [kNm]

Abbildung 8.21: Verteilbalken [VTB] – FLS-Schnittgrößen – Biegemoment My, Ed, FLS

Nachweis der Ermüdungsfestigkeit

Nachweis des Grundmaterials

8.3.9 [VTB] Verteilbalken – [QT]geschlossen

Schnittgrößen FLS

Querkraft V_{z,Ed,FLS} [kN]

Abbildung 8.22: Verteilbalken [VTB] – FLS-Schnittgrößen – Querkraft V_{z,Ed,FLS}

Biegemoment M_{y,Ed,FLS} [kNm]

Abbildung 8.23: Verteilbalken [VTB] – FLS-Schnittgrößen – Biegemoment My,Ed,FLS

Nachweis der Ermüdungsfestigkeit

Nachweis des Grundmaterials

8.3.10 [WB1] Waagbalken 1

Schnittgrößen FLS

Querkraft V_{z,Ed,FLS} [kN]

Abbildung 8.24: Waagbalken 1 [WB1] – FLS-Schnittgrößen – Querkraft Vz,Ed,FLS

Biegemoment M_{v,Ed,FLS} [kNm]

Abbildung 8.25: Waagbalken 1 [WB1] – FLS-Schnittgrößen – Biegemoment My,Ed,FLS

Nachweis der Ermüdungsfestigkeit

Nachweis des Grundmaterials

8.3.11 [WB2] Waagbalken 2

Schnittgrößen FLS

Querkraft V_{z,Ed,FLS} [kN]

Abbildung 8.26: Waagbalken 2 [WB2] – FLS-Schnittgrößen – Querkraft V_{z,Ed,FLS}

Biegemoment M_{v,Ed,FLS} [kNm]

Nachweis der Ermüdungsfestigkeit

Nachweis des Grundmaterials

8.4 Vorspannsystem

Die gesamte ermüdungswirksame Lastschwingbreite die auf die Querträger einwirkt, beträgt nach Punkt 2.2.4, Tabelle 2.2:

$$\Delta P_{Ed,ges} = 748,70 \ kN$$

Diese Kraft muss vom gewählten Vorspannsystem aufgenommen werden. In den folgenden Abschnitten werden zwei Vorspannsysteme auf die Eignung zum Einsatz bei den dynamischen Ermüdungsversuchen untersucht.

8.4.1 Vorspannsystem mit Gewindestangen

In der nachfolgenden Abbildung ist die für Gewindestangen anzuwendende Kerbfalltabelle nach ÖNORM EN 1993-1-9 dargestellt.

Abbildung 8.28: Kerbfallklasse für Schrauben und Gewindestangen [14]

k _s =	0,955	
2·10 ⁶	5·10 ⁶	1·10 ⁸
$\Delta\sigma_{c}$	$\Delta\sigma_{ m D}$	$\Delta\sigma_{L}$
47.77 N/mm ²	35.20 N/mm ²	19.33 N/mm ²

Die untersuchten Gewindestangen sind M36 mit einer Materialgüte von 10.9.

Die erforderliche Anzahl an Gewindestangen zur Einhaltung des Dauerfestigkeitsnachweises wird wie folgt berechnet:

$$n_{Gewindestangen} = \frac{\Delta P_{Ed,ges}}{\Delta \sigma_D \cdot A_{Sp}} = \frac{748,70}{3,52 \cdot 8,17} = 26 \text{ Stück}$$

Die Konstruktion verlangt eine symmetrische Anordnung der Spannstangen um beide Achsen. Aus diesem Grund müssen somit 28 Stück angebracht werden.

8.4.2 Vorspannsystem mit DYWIDAG Glattstäben 36 WS

Dieses System hat It. ETA Zulassung 05/0123 (siehe Anhang Punkt 11.4) eine Kerbfestigkeit $\Delta \sigma_c$ von 80 N/mm² bei 2·10⁶ Lastwechsel.

Nach Rücksprache mit Fa. DYWIDAG über die Dauerfestigkeitskennwerte dieses Systems konnte glatten Stahlguerschnitt lediglich eine Aussage über den ohne den kritischen Verankerungsbereichen getroffen werden. Maßgebend für den Nachweis der Ermüdungsfestigkeit sind jene Verankerungsbereiche der Stäbe an denen es zu Kerbwirkungen und somit zu Spannungskonzentrationen kommt. Dies ist beim gewählten Vorspannsystem ausschließlich an den Verankerungsstellen gegeben, diese sind durch ein kaltaufgerolltes Gewinde zwar kerbmilder als ein geschnittenes Gewinde, allerdings für die Bemessung des Systems dennoch ausschlaggebend. Die weitere Berechnung bezieht sich daher auf den ungeschwächten Glattstab DYWIDAG 36 WS.

Durch die fehlende Information des Verlaufes der Wöhlerkurve dieses Vorspannsystems wird der Kurvenverlauf nach ÖNORM EN 1993-1-9 verwendet. Dieser gewählte Verlauf sieht eine Steigung der Geraden bis zur Dauerfestigkeit (5·10⁶ Lastwechsel) mit $k_1 = 3$ vor, bis zum Schwellwert der Ermüdungsfestigkeit (1·10⁸ Lastwechsel) mit $k_2 = 5$.

$2 \cdot 10^{6}$	5·10 ⁶	$1 \cdot 10^{8}$
$\Delta\sigma_{c}$	$\Delta\sigma_{ m D}$	$\Delta\sigma_{L}$
80,00 N/mm ²	58,94 N/mm ²	32,38 N/mm ²

Um die Spannungsschwingbreite für einen Nachweis der Dauerfestigkeit einzuhalten wird im Folgenden die Anzahl der erforderlichen Spannstangen errechnet.

$$n_{DYWIDAG \ Glattstäbe} = \frac{\Delta P_{Ed,ges}}{\Delta \sigma_D \cdot A} = \frac{748,70}{58,94 \cdot 10,18} = 13 \text{ Stück}$$

Um eine doppeltsymmetrische Anordnung am Versuchsaufbau zu erzielen, müssen mindestens 16 Stück DYWIDAG Glattstäbe 36 WS angebracht werden.

8.4.3 Schlussfolgerung

Aus der berechneten Anzahl an Spannstangen geht hervor, dass entweder 28 Stück Gewindestangen M36 mit der Güte 10.9 bzw. 16 Stück DYWIDAG Glattstäbe 36 WS verwendet werden müssen. In der vorab abgeschätzten ermüdungswirksamen Einwirkung war eine Anzahl von 8 Spannstangen möglich, die genauere Berechnung hat jedoch eine Erhöhung an Spannstangen zur Folge. Durch diesen Umstand müssen somit die Vorspannträger [VT] sowie die Längsträger [LT] angepasst werden. Die Vorspannträger [VT] müssen erweitert werden um die zusätzliche Anzahl an Spannstangen aufnehmen zu können. Die Längsträger [LT] müssen zusätzliche Bohrungen für die Durchführung der Spannglieder aufweisen.

Da diese Problematik zum aktuellen Zeitpunkt nicht restlos geklärt ist, wird die Konstruktion vorerst für insgesamt 8 Spannstangen ausgelegt.

8.4.4 Ausführungshinweis

Es wird darauf hingewiesen, dass unabhängig vom gewählten Vorspannsystem die Aufbringung der Vorspannung gleichmäßig zu erfolgen hat. Das bedeutet, dass die Kraft aller 4 Spannstangen je Vorspannträger [VT] in gleichmäßigen Schritten erhöht werden muss.

9. Konstruktive Details

9.1 Querschnittsaussteifungen – Steifen

Um den nicht planmäßigen Torsionseinwirkungen Rechnung zu tragen, werden sämtliche Querschnittsaussteifungen als Vollsteifen ausgebildet. Diese Art der Aussteifung gewährleistet die Formtreuheit des Querschnitts.

Die Nachweise der Steifen erfolgen anhand eines elastischen Spannungsmodells, welche auf Grundlage des statischen Satzes ermittelt wurden (siehe Punkt 6.8.2).

9.2 Längsverschieblichkeit der SCSC-Platte

Die SCSC-Platte wird an beiden Enden auf dem Auflagerträger [AT] gelagert, hierbei kann die Platte in Querrichtung, in Richtung des Auflagerträgers, nicht verschoben werden da sie über die Pressen daran gehindert wird. In Längsrichtung könnte sich die Platte bei asymmetrischer Verformung der Platte in eine Richtung translatorisch bewegen. Um diese Bewegung zu verhindern wird jeweils am äußeren Ende des [AT]-Obergurtes eine Reihe von fünf Zylinderkopfschrauben angebracht.

9.3 Auswahl der Stahlsorte im Hinblick auf Eigenschaften in Dickenrichtung

Die Verbindung der Zugstütze [ZS] mit dem Längsträger [LT] bzw. mit dem Querträger [QT] erfolgt über einen Kopfplattenstoß. Bei der Durchführung der Versuche wird die Stütze auf Zug beansprucht, diese Kraft muss über die Endplatte und über die Schrauben vom Querträger [QT] in die Zugstütze [ZS] bzw. von der Zugstütze [ZS] in den Längsträger [LT] abgeleitet werden. Die Aufgabe der Endplatte ist es, die Kräfte der Zugstütze [ZS] über Schweißnähte und über Biegung der Endplatte in die Schraubverbindung einzuleiten. Diese Platte wird daher an den Schweißnahtbereichen der Zugstütze [ZS] mit den Endplatten durch eine Zugeinwirkung normal zur Plattenebene beansprucht, und ist daher entsprechend gegen Terrassenbruch zu dimensionieren. Konstruktive Lösungen zur Vermeidung dieser Beanspruchung in Plattendickenrichtung sind in diesem Fall nicht möglich, es wird daher bei der Auswahl der Stahlsorte darauf Bedacht genommen.

Die ÖNORM EN 1993-1-10 bietet insgesamt zwei Methoden diesen Nachweis zu führen [6]:

- Bestimmung der erforderlichen Z-Güte vor Bestellung des Materials
- Zerstörungsfreien Prüfung der gefertigten Stahlbauteile

Da bei der zweitgenannten Methode das Risiko von Terrassenbrüchen alleinig beim ausführenden Unternehmen liegt, wird nachfolgend die Z-Qualität des Materials ermittelt.

Nachweisformat:

$$Z_{Ed} \leq Z_{Rd}$$

 Z_{Ed} ...erforderlicher Z-Wert, der sich aus der Größe der Dehnungsbeanspruchung des Grundwerkstoffs infolge behinderter Schweißnahtschrumpfung ergibt;

$$Z_{Ed} = Z_a + Z_b + Z_c + Z_d + Z_e$$

Z_{Rd}...verfügbarer Z-Wert des Werkstoffs nach ÖNORM EN 10164

Die Werte Z_a bis Z_e werden nach ÖNORM EN 1993-1-10 Tabelle 3.2 ermittelt.

AC) a)	Schweißnaht- dicke, die für die	Effektive Schweißnahtdicke a _{ef} ,siehe Bild 3.2	f Nahtdicke bei Kehlnähten 🕾	Z _i
	Dehnungsbean-	a _{eff} ≤ 7 mm	a = 5 mm	$Z_{\rm a} = 0$
	Schweiß-	7 < a _{eff} ≤ 10 mm	a = 7 mm	Z _a = 3
	schrumpfung	10 < a _{eff} ≤ 20 mm	a = 14 mm	$Z_{\rm a} = 6$
	verantwortlich ist	20 < a _{eff} ≤ 30 mm	a = 21 mm	$Z_{\rm a} = 9$
		30 < a _{eff} ≤ 40 mm	a = 28 mm	Z _a = 12
		40 < a _{eff} ≤ 50 mm	a = 35 mm	Z _a = 15
		50 < a _{eff}	a > 35 mm	Z _a = 15
b)	Nahtform und Anordnung der Naht in T-, Kreuz- und Eckverbindungen			Z _b = -25
		Eckverbindungen	0,5s	Z _b = -10
		Einlagige Kehlnahtdicke mit Z_a = Kehlnähte mit $Z_a > 1$ mit Buttern niedrigfestem Schweißgut	0 oder nit Is	Z _b = -5
		Mehrlagige Kehlnähte		Z _b = 0
		Voll durchge- schweißte und nicht voll durchge- schweißte Nähte	geeigneter Schweißfolge, um hrumpfeffekte zu reduzieren 1234 1234 1234 1234 1234 1234 1234 1234 1234	Z _b = 3
		Voll durchgeschweißte und nicht voll durchgeschweißte Nähte		Z _b = 5
		Eckverbindungen	<u>ş</u>	Z _b = 8
c)	Auswirkung der	<i>s</i> ≤ 10 mm		$Z_{\rm c} = 2^{\rm a}$
	auf die lokale	10 < <i>s</i> ≤ 20 mm		$Z_{\rm c} = 4^{\rm a}$
	Behinderung der	20 < <i>s</i> ≤ 30 mm		$Z_{\rm c} = 6^{\rm a}$
	Schrumpfung	30 < <i>s</i> ≤ 40 mm		$Z_{\rm c} = 8^{\rm a}$
		40 < <i>s</i> ≤ 50 mm		Z _c = 10 ^a
		50 < <i>s</i> ≤ 60 mm		Z _e = 12 ^a
		60 < <i>s</i> ≤ 70 mm		Z _e = 15 ^a
		z > 07		Z _e = 15 ^a
d)	Auswirkung der großräumigen	Schwache Behinderung: Fre (z.	eie Schrumpfung möglich B. T-Anschlüsse)	$Z_{\rm d} = 0$
	Behinderung der Schweiß-	Mittlere Behinderung: Fre (z.	eie Schrumpfung behindert B. Querschott in Kastenträgern)	Z _d = 3
	durch andere Bauteile	Starke Behinderung: Fre (z.	eie Schrumpfung verhindert B. Längsrippe in orthotroper Fahrbahnplatte)	Z _d = 5
e)	Einfluss der	Ohne Vorwärmung		$Z_{\rm e} = 0$
	Vorwärmung	Vorwärmung ≥100°C		Z _e =8
a D w	arf um 50 % reduzier ird.	t werden, wenn der Werkstoff in Dicke	nrichtung vorherrschend statisch und nur durch Druckk	räfte belastet

Tabelle 9.1: Einflüsse auf die Anforderungen Z_{Ed} (Auszug aus ÖNORM EN 1993-1-10, Tabelle 3.2)

9.3.1 Endplatte aus LD_{ULS}06

Siehe Punkt 6.8.16 und 6.8.18

Abbildung 9.1: Ansicht der Schweißnähte Endplatte LD_{ULS}06 am Beispiel [QT]_{geschlossen}

• Einfluss der Schweißnahtdicke

Die Anbindung der Zugstütze an die Endplatte erfolgt über eine vollständige Durchschweißung des [ZS]-Gurtes und einer angeschlossenen, innenliegenden Kehlnaht, es wird daher eine äquivalente Nahtdicke von $a_{eff} = 8 + 5 = 13 mm$ errechnet. Die gegebene Schweißnahtausbildung hat jedoch ein geringeres Schweißvolumen als die verglichene effektive Schweißnahtstärke von 13 mm. Diese Berechnung liegt daher auf der sicheren Seite. Grundlage dafür ist die größere Schrumpfspannung welche sich bei einem vergrößerten Schweißvolumen ergibt.

$$Z_a = 6$$

• Einfluss der Nahtform

Die untersuchte maßgebende Schweißnaht der Endplatte liegt am Rand und ist somit nach Tabelle 9.1 als Eckverbindung einzustufen.

$$Z_b = 8$$

• Einfluss der Werkstoffdicke

Die Dicke der Endplatte beim Anschluss an den Querträger beträgt 30 mm.

 $Z_{c} = 6$

• Einfluss der Schweißschrumpfung

Die Schrumpfung der Schweißnaht kann sich gänzlich frei und ungehindert ausbilden.

$$Z_d = 0$$

• Einfluss der Vorwärmung

Zur Verringerung des Terrassenbruchrisikos wird eine Vorwärmung empfohlen.

$$Z_{e} = -8$$

$$Z_{Ed} = 6 + 8 + 6 + 0 - 8 = 12$$

Der berechnete Z-Wert kann von Blechen ohne explizit ausgewiesener Z-Qualität aufgenommen werden. Es ist daher keine Z-Qualität der Endplatte erforderlich.

9.3.2 Endplatte aus LD_{ULS}05

Siehe Punkt 6.8.14

Abbildung 9.2: Ansicht der Schweißnähte Endplatte LD_{ULS}05

- Einfluss der Schweißnahtdicke
 - Die Anbindung der Zugstütze an die Endplatte erfolgt über eine vollständige Durchschweißung des [ZS]-Gurtes und einer angeschlossenen, innenliegenden Kehlnaht, es wird daher eine äquivalente Nahtdicke von $a_{eff} = 5 + 5 = 10 mm$ errechnet. Die gegebene Schweißnahtausbildung hat jedoch ein geringeres Schweißvolumen als die verglichene effektive Schweißnahtstärke von 10 mm. Diese Berechnung liegt daher auf der sicheren Seite. Grundlage dafür ist die größere Schrumpfspannung welche sich bei einem vergrößerten Schweißvolumen ergibt.

$$Z_a = 3$$

• Einfluss der Nahtform

Die untersuchte maßgebende Schweißnaht der Endplatte liegt am Rand und ist somit nach Tabelle 9.1 als Eckverbindung einzustufen.

$$Z_{b} = 8$$

Einfluss der Werkstoffdicke

Die Dicke der Endplatte beim Anschluss an den Längsträger beträgt 50 mm.

$$Z_{c} = 10$$

Einfluss der Schweißschrumpfung

Die Schrumpfung der Schweißnaht kann sich gänzlich frei und ungehindert ausbilden.

$$Z_d = 0$$

• Einfluss der Vorwärmung

Zur Verringerung des Terrassenbruchrisikos wird eine Vorwärmung empfohlen.

$$Z_{e} = -8$$

$$Z_{Ed} = 3 + 8 + 10 + 0 - 8 = 13$$

Der berechnete Z-Wert kann von Blechen ohne explizit ausgewiesener Z-Qualität aufgenommen werden. Es ist daher keine Z-Qualität der Endplatte erforderlich.

10. Literaturverzeichnis

10.1 Wissenschaftliche Arbeiten

[1] HERRMANN, P.: Tragfunktionsanalyse und Rechnerische Modellbildung einer neuartigen Sandwichverbundplatte (SCSC-Platte) als Fahrbahndeck für Eisenbahnbrücken. Institut für Tragkonstruktionen- Stahlbau, Technische Universität Wien, Dissertation, 2013

10.2 Literatur, Bücher

- [2] Stahl im Hochbau Handbuch für die Anwendung von Stahl im Hoch- und Tiefbau. Verein Deutscher Eisenhüttenleute, 14. Auflage, 1986
- [3] Beispiele zur Bemessung von Stahltragwerken nach DIN EN 1993 Eurocode 3. bauforumstahl e.V., Wilhelm Ernst & Sohn Verlag, 1. Auflage, 2012
- [4] Stahlbau-Praxis nach Eurocode 3 Band 1: Tragwerksplanung, Grundlagen. Beuth Verlag GmbH, 4. Auflage, 2011
- [5] Stahlbau-Praxis nach Eurocode 3 Band 2: Verbindungen und Konstruktionen. Beuth Verlag GmbH, 3. Auflage, 2011
- [6] STRANGHÖNER, N., KÜHN, B.: Auswahl der Stahlsorte auf Basis der DIN EN 1993-1-10. Stahlbau 81, 2012, Heft 4, S. 315-323.

10.3 Normen und Regelwerke

- [7] ÖNORM EN 1990: Grundlagen der Tragwerksplanung. Austrian Standards Institute, 2013-03-15
- [8] ÖNORM B 1990-1: Grundlagen der Tragwerksplanung, Teil 1: Hochbau. Austrian Standards Institute, 2013-01-01
- [9] ÖNORM EN 1990/A1: Grundlagen der Tragwerksplanung (Änderung). Austrian Standards Institute, 2006-09-01
- [10] ÖNORM EN 1993-1-1: Bemessung und Konstruktion von Stahlbauten, Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau. Austrian Standards Institute, 2006-10-01
- [11] ÖNORM B 1993-1-1: Bemessung und Konstruktion von Stahlbauten, Teil 1-1: Allgemeine Bemessungsregeln. Austrian Standards Institute, 2007-02-01
- [12] ÖNORM EN 1993-1-8: Bemessung und Konstruktion von Stahlbauten, Teil 1-8: Bemessung von Anschlüssen. Austrian Standards Institute, 2005-11-01
- [13] ÖNORM B 1993-1-8: Bemessung und Konstruktion von Stahlbauten, Teil 1-8: Bemessung von Anschlüssen. Austrian Standards Institute, 2006-10-01
- [14] ÖNORM EN 1993-1-9: Bemessung und Konstruktion von Stahlbauten, Teil 1-9: Ermüdung. Austrian Standards Institute, 2005-11-01
- [15] ÖNORM B 1993-1-9: Bemessung und Konstruktion von Stahlbauten, Teil 1-9: Ermüdung. Austrian Standards Institute, 2006-10-01

10.4 Verwendete Software

Ing.-Software Dlubal RSTAB, Programm-Version 7.04.1750

Ing.-Software Dlubal DUENQ, Programm-Version 7.01.960

11. Anhang

11.1 Dynamische Berechnung der SCSC-Platte

Die unten angeführte Berechnung erfolgte durch Hr. Univ.Ass. Dipl.-Ing. Patrik Takács.

Dynamische Berechnung der SCSC-Platte

02.07.2014

Dynamische Berechnung der SCSC-Platte

02.07.2014

02.07.2014

11.2 Konstruktionsplan Unwuchterreger

11.3 Datenblatt Kraftmessdosen

 RTN /	≤ 4,7 1			⊥ ⊥	depth o	View X f thread	7 mm		(1) 			0A 0B (25°8 0C			
RTN	1 t	2.2 t	4.7 t	10 t	15 t	22 t	33 t	47 t	68 t	100 t	150 t	220 t	330 t	470 t	
ØA	49	49	49	74	75	75	95	130	130	150	150	225	225	270	
ØB	20	20	20	30	30	30	40	60	60	70	70	100	100	120	ngt
ØC	60	60	60	75	75	75	95	130	130	150	150	225	225	270	<u> </u>
Н	43	43	43	50	50	50	65	75	85	90	100	130	145	170	- aple
J	-	-	-	7	7	7	7	7	7	7	7	10	10	10	ő
K	7.5	7.5	7.5	6.5	6.5	6.5	10	14	14	16	16	24	24	28	"

5m 5m 5m 5m 5m 12m 15m 12m 12m 12m 5m 5m 5m 5m

B0990-6.0 en

L

Specifications

Туре						F	RTN (),05				R	TN C:	3	
Nominal (rated) load (E _{max})									1	l t /	470 t				
Accuracy class							0.0	5				C3 (0	DIML F	R60)	
												III N	I (NTE	EP)	
Maximum number of load cell intervals (nLC)							_				3	3000 (OIML	R60)	
		\perp								78	A) 000	TEP	III M;	2,2 1	100 t)
Minimum LC verification interval (v _{min})			% of E	max			-					0005		. ROU) D III MI	
Sensitivity (C_)		+	m\//	v	-				2	95 +	0.1 %	0040	(INTE)	in wij	
Temperature effect on sensitivity (TKo)		+	94 of	c	-		+00	16	-	1	0.1 /0		0 000	1)	
Temperature effect on zero balance (TK-)			/ 10	⊂n ⊮			+ 0.0	12				-	0.000	,	
Husteresis erres (d.)		+	/ 10	ĸ			± 0.0			+			0.001		
Hysteresis error (d _{hy})			ov - 6	~			± 0.0	15				+	0.02		
Non-linearity (d _{lin})			% OT	Cn			±0.0	15				+	0.021	,	
Creep (d _{cr}) over 30 min.							±0.0	03				=	0.017	7	
Dead load output return (DR), 30 min.			% v.	Cn			±0.0	03			±(0,016	7 (OIN	1L R60)
		\perp									±	0,0111	(NTE	PIIIM)
Input resistance (R _{LC})			0						4	450 :	± 100				
Output resistance (R ₀)						4	1010	±2				40	10 ± 0).5	
Reference excitation voltage (Uret)			v							5					
Nominal range of excitation voltage (B _U)		\perp							5	30 (n	nax. 6	0)			
Carrier frequency of the excitation voltage		+	Hz		<u> </u>					< 6	00				
Nominal temperature range (B ₇)		+	GL	1					10 -	2 - 2 1 1 14	-14	+104	1		
Service temperature range (B _{fu})		-			<u> </u>					101.			1		
Load cell RTN				_	-3	+ o	-3 08-	22	+176]	(Opt	tion: u	p to +	110 °C	C / +23	0 °F)
Accessory: VEN			°C [°	F]				-:	30 •	+80 [-	-22	+176]		
VPN								-3	30 +	110 [-	-22	+230)]		
Storage temperature range (Btl)								-	50 •	+85 [-	-58	+185]		
Nominal (rated) load (E _{max})	t	1	2.2	4.7	10	15	22	33	47	68	100	150	220	330	470
Weight (G), approx.	kg	0.6	0.6	0.7	1.2	1.3	1.3	2.1	4.3	4.8	7.0	8.6	22	29	50
Safe load limit (EL)	+	1.7	3.8	8	17	25	38	56	80	115	170	250	380	500	700
Breaking load (E _d)		4	9	19	40	60	88	130	190	270	400	600	770	1100	1500
Permissible static side load (Lq)				0.5 (Emax	- 0.8	L _Z), t	out no	highe	r than	Lqma	ax = 0	.3 E _m	BOX	
		<u> </u>		max =	Nom	iinal (i	ated)	load;	$L_z = 1$	oad ir	n mea	suring	g direc	tion	
Permissible dynamic load (F ₈₇₈₁) (vibration amplitude accor to DIN 50100)	%								70						
Deflection at Emer (Snorr) approx	mm	0.13	0 12	0.12	017	0.18	0.21	0.25	033	035	0.45	0.57	0.67	0.85	1.00
Protection class to EN60529 (IEC529)		0.10	9.16		P 68	(test o	ondit	ions 1	00 h a	at 1 m	wate	r colu	mn)	0.00	
Material: Measuring element								Stain	ess st	eel					
Cable fitting				ть	E	lass,	nicke	el plate	ed / Se	ealing	: CR/I	NBR	5 mm		
Cable-sheath				1 h	ermo	plastic	elas	tomer	, RAL	/000	(grey), Ø8.	mm c.		

¹⁾ The data for Non-linearity (d_{In}). Hysteresis error (d_{hy}) and Temperature effect on sensitivity (TK_C) are typical values. The sum of these data meets the requirements according to OIML R60.

Wiring code RTN	(black)	Excitation (+)
K	(red)	Signal (+)
	* (blue)	Excitation (-)
L	(white)	Signal (-)
	(green-yellow)	Shield

Available Options:

•	Explosion-proof versions according to ATEX:	Ex II 2G EEx ia IIC T4 resp. T6 (Zone 1) *) Ex II 2D Ex t0 A21 IP68 T 80 °C (Zone 21) *)
		*) with EC-Type Examination Certificate
		Ex II 3G EEx nA II T6 (Zone 2)
		Ex II 3D IP68 T 80 °C (Zone 22 for non-conductive dust)
•	Service temperature range up to +110 °C (not pos	ssible in connection with ATEX and / or Elastomer mounts VEN)

	-	

B0990-6.0 en

Accessory: Pendulum mounts VPN (Dimensions in mm; 1 mm = 0.03937 inches)

B0990-6.0 en

RTN/100T/VPN (100 t)

M16 x 30

Accessory: Elastomer mounts VEN (Dimensions in mm; 1 mm = 0.03937 inches)

Elastomer mounts VEN for higher capacities on request

0.7

0.6

85 250

100 300

Modifications reserved

RTN/68T/VEN (68 t)

RTN/100T/VEN (100 t)

All details describe our products in general form only. They are not to be understood as express warranty and do not constitute any liability whatsoever.

Hottinger Baldwin Messtechnik GmbH

170 130 220 63 110

10

10 180 140 239 68 130

Im Tiefen See 45 · 64293 Darmstadt · Germany Tel. +49 6151 803-0 · Fax: +49 6151 803-9100 Email: info@hbm.com - www.hbm.com

310

360

350

400

B0990-6.0 en

M16x30

M16x30

40

40 21 8

21 8

measure and predict with confidence

11.4 Vorspannsystem Glattstab 36 WS

Spannstäbe, technische Daten

Allgemein

DYWIDAG- Spannstäbe sind warmgewalzt, aus der Walzhitze wärmebehandelt, gereckt und angelassen mit einem Kreisquerschnitt.

Gewindestähe

Gewindestäbe sind in Durchmessern von 17,5, 26,5, 32, 36, 40 und 47 mm erhältlich. Der Einsatz in der Spanntechnik ist bis 40 mm bauaufsichtlich geregelt.

DYWIDAG-Gewindestäbe weisen regelmäßige warmgewalzte Rippen auf, die ein rechtsgängiges Gewinde auf der gesamten Länge bilden.

Der Gewindestab kann beliebig abgelängt werden und ist ohne weitere Vorbereitung schraubbar.

Glattstäbe

Glattstäbe sind in Durchmessern von 32 und 36 mm erhältlich.

Beide Enden des Glattstabes, der auf die bei der Bestellung vorgegebene Länge geschnitten wurde, sind mit speziellen kaltgerollten Gewinden ausgestattet.

DYWIDAG-Gewinde werden werksseitig gemäß den Spezifikationen des Projektes hergestellt.

Bezeichnung

Nenndurchmesser

Max. Überspannkraft³

P_{0,max}= S_n x 0.95 x f_{p0,1k}

Technische Daten

Sie entsprechen einem Spannstahl Y 1050 H gemäß prEN 10138-4.

DYWIDAG-Gewindestäbe sind durch

WR, z. B. 26 WR, gekennzeichnet.

Nenndurchmesser und die Buchstaben

DYWIDAG-Gewinde- und Glattstäbe sind in Lagerlängen bis 18 m erhältlich und können vor Lieferung zur Baustelle auf vorgegebene Längen geschnitten werden.

Glattstab

36 WS

36

1.018

7,99

3

1.070

856

912

32 WS

32

804

6,31

3

845

676

722

DYWIDAG-Glattstäbe sind durch Nenndurchmesser und die Buchstaben WS, z. B. 32 WS gekennzeichnet.

Gewindestab

36 WR

36

912

40 WR

40

1.257

10,20

20

1.320

1.056

1.131

47 WR

47

1.735

14,10

21

1.820

1.457

1.566

32 WR

32

552 804 1.018 Nennquerschnitt S. [mm²] 241 Nennmasse¹ [kg/m] 1,96 4.48 6.53 8 27 M Steigung 13 16 18 C [mm] 8 Charakteristische Fm 1.070 580 845 [kN] 255 Höchstkraft Max. Vorspannkraft² $P_{m0,max} = S_n \times 0.8 \times f_{p,k}$ 204 464 676 856

[mm]

IkNI

[kN]

18 WR

17.5

219

26 WR

26.5

499

¹Die Nominalmasse pro Meter beinhaltet 3,5% nichttragenden Rippenanteil.

Die angegebenen Werte sind Maximalwerte nach Eurocode 2, d.h. es gilt min (k; xf_{ps. ks}x f_{ps. ts}). Die Erfüllung der Stabilitätskriterien und der Anforderungen in Bezug auf Rissbreite im Lastübertragungstest wurden bei 0,8 x F_{ps.} bestätigt.

722

F_{pa} = S_n x f_{pa} F_{pa 1 k} = S_n x f_{pa} "Uberspannen ist erlaubt, wenn die Kraft in der Spannpresse mit einer Exaktheit von ±5% bezogen auf den Endwert der Spannkraft gemessen werden kann.

d,

271

Übersicht über Spannpressen für vorgespannte Spannglieder

			Gewin	destab			Glat	tstab
Stabbezeichnung	18 WR	26 WR	32 WR	36 WR	40 WR	47 WR	32WS	36 WS
60 Mp	x	x	x ¹				x1	
110 Mp		х	x	х	х		х	х
200 Mp						x		

Abmessungen der Zubehörteile

						Gewin	destab			Glat	tstab
Stabbezeichnung				18 WR	26 WR	32 WR	36 WR	40 WR	47 WR	32 WS	36 WS
14 II II II	2000	Länge	[mm]	55	75	90	100	115	135	46	60
Rugelbundmutter	2099	Schlüsselweite	[mm]	36	50	60	65	70	80	55	65
	-	Länge	[mm]	60	80	90	110	120	140	55	80
Sechskantmutter	2002	Schlüsselweite	[mm]	41	46	55	60	70	80	55	60
M. R. (Di	2000	Länge	[mm]	100	170	200	210	245	270	110	160
Mutte (Standard)	3003	Außendurchmesser	[mm]	36	50	60	68	70	83	60	68
		Breite	[mm]	110	150	180	200	220	260	180	200
Quadratische Vollplatte	2011	Länge	[mm]	110	150	180	200	220	260	180	200
		Dicke	[mm]	25	35	40	45	45	50	40	45
		Breite	[mm]	100	130	140	150	160	200	140	150
Rechteckige Voliplatte (mit	2012	Länge	[mm]	130	150	180	220	250	280	180	220
and on no verbandy		Dicke	[mm]	30	35	40	50	60	60	40	50
		Breite	[mm]	80	120	140	160	180	210	140	160
Kleine rechteckige Voliplatte	2076	Länge	[mm]	90	130	165	180	195	235	165	180
fruit agricultury		Dicke	[mm]	25	30	35	40	45	55	35	40
		Breite	[mm]	-	120	140	160	180			160
QR-Platte	2074	Länge	[mm]	-	130	165	180	195		-	180
		Dicke	[mm]	12	30	35	40	45	<u> </u>	<u></u>	40
Contractors (100 lands)	4064	Innendurchmesser	[mm]	25	38	44	51	55	65	44	51
Genpptes Hullronr	4001	Außendurchmesser	[mm]	30	43	49	56	60	70	49	56
Minimaler Stabüberstand am Spannanker	-		[mm]	60	75	90	100	115	135	46	60

⁴ Sechskantmuttern 2002 sind in ETA-05/0123 nicht mit eingeschlossen.

Seite 42 der Europäischen technischen Zulassung ETA-05/0123 Geltungsdauer vom 30.06.2013 bis zum 29.06.2018, ersetzt ETA-05/0123 mit Geltungsdauer vom 14.11.2011 bis zum 18.09.2015

٦

2001		2	2099		
				e Ms	
\downarrow					
Stah	Nenn- durchmesser	sw	Ød	h	
Stab	Nenn- durchmesser mm	SW	Ød	h mm	
Stab	Nenn- durchmesser mm Ø 17,5	SW mm 36	Ø d mm 50	h mm 55	
Stab	Nenn- durchmesser mm Ø 17,5 Ø 26,5	SW mm 36 50	Ød mm 50 72	h mm 55 75	
Stab	Nenn- durchmesser mm Ø 17,5 Ø 26,5 Ø 32	SW mm 36 50 60	Ø d mm 50 72 80	h mm 55 75 90	
Stab Gewindestab	Nenn- durchmesser mm Ø 17,5 Ø 26,5 Ø 32 Ø 36	SW mm 36 50 60 65	Ø d mm 50 72 80 90	h mm 55 75 90 100	
Stab Gewindestab	Nenn- durchmesser mm Ø 17,5 Ø 26,5 Ø 32 Ø 36 Ø 40	SW mm 36 50 60 65 70	Ød mm 50 72 80 90 100	h mm 55 75 90 100 115	
Stab Gewindestab	Nenn- durchmesser mm Ø 17,5 Ø 26,5 Ø 32 Ø 36 Ø 40 Ø 47	SW mm 36 50 60 65 70 80	Ø d mm 50 72 80 90 100 110	h mm 55 75 90 100 115 135	
Stab Gewindestab	Nenn- durchmesser mm Ø 17,5 Ø 26,5 Ø 32 Ø 36 Ø 40 Ø 47 Ø 32	SW mm 36 50 60 65 70 80 55	Ød mm 50 72 80 90 100 110 72	h mm 55 75 90 100 115 135 46	
Stab Gewindestab Glattstab	Nenn- durchmesser mm Ø 17,5 Ø 26,5 Ø 32 Ø 36 Ø 40 Ø 47 Ø 32 Ø 36	SW mm 36 50 60 65 70 80 55 65	Ød mm 50 72 80 90 100 110 72 90	h mm 55 75 90 100 115 135 46 60	

OIB-250-001/02-245

r

Seite 43 der Europäischen technischen Zulassung ETA-05/0123 Geltungsdauer vom 30.06.2013 bis zum 29.06.2018, ersetzt ETA-05/0123 mit Geltungsdauer vom 14.11.2011 bis zum 18.09.2015

	1//	21		
Ød1	-			
			5	
-				
$(\uparrow$)			
\mathbf{U}	T			
4				
ļ		DSI		
			5	
d		-		
enn- imesser	a	с	Ø d1	Ød₂
nm	mm	mm	mm	mm
17,5	110	25	28	45
1	150	35	39	72
26,5	150	180 40		05.00
26,5 32	180	40	45	82
26,5 032 036	180 200	40 45	45 49	82 92
26,5 32 336 340	180 180 200 220	40 45 45	45 49 54	82 92 100
26,5 32 36 36 340 347	150 180 200 220 260	40 45 45 50	45 49 54 64	82 92 100 110
26,5 32 336 340 347 332	150 180 200 220 260 180	40 45 45 50 40	45 49 54 64 45	82 92 100 110 72
	enn- messer 17,5	enn- messer a 17,5 110	enn- messer a 17,5 110 25	enn- messer a c $\emptyset d_1$ nm mm mm mm 17,5 110 25 28

DYWIDAG-Stabspannglied im/ohne Verbund, externes Spannglied

Anhang 5 der Europäischen technischen Zulassung ETA-05/0123

Quadratische Vollplatte 2011

OIB-250-001/02-245

Seite 12 der Europäischen technischen Zulassung ETA-05/0123 Geltungsdauer vom 30.06.2013 bis zum 29.06.2018, ersetzt ETA-05/0123 mit Geltungsdauer vom 14.11.2011 bis zum 18.09.2015

Bezeichnung	Stabnenn- durchmesser	Nennquer- schnittsfläche	Größte Vorspannkraft ¹⁾	Größte Überspannkraft ^{1), 2)}
-	ds	Sn	0,9 · F _{p0,1k}	0,95 · F _{p0,1k}
-	mm	mm ²	kN	kN
		Gewinde	stab	
26 E	26,5	552	415	438
32 E	32	804	605	638
36 E	36	1018	765	808
40 E	40	1 257	944	997
-	ds	Sri	0,8 · F _{pk}	0,95 · F _{p0,1k}
-	mm	mm ²	kN	kN
		Gewinde	stab	
18 WR	17,5	241	204	219
26 WR	26,5	552	464	499
32 WR	32	804	676	722
36 WR	36	1 018	856	912
40 WR	40	1 257	1 056	1 131
47 WR	47	1 735	1 457	1 566
—	ds	Sn	0,8 · F _{pk}	0,95 · F _{p0,1k}
-	mm	mm ²	kN	kN
		Glattst	ab	1
32 WS	32	804	676	722
36 WS	36	1018	856	912

Tabelle 2: Größte	Vorspann- und	Überspannkräfte
-------------------	---------------	-----------------

¹⁾ Die angegebenen Werte sind Höchstwerte gemäß Eurocode 2, d. h., es gilt min(k1 · f_{pk}, k₂ · f_{p0,1k}). Die Erfüllung des Stabilisierungskriteriums und der Anforderungen an die Rissbreiten bei den Lastübertragungsversuchen wurde bei 0,8 · F_{pk} überprüft.

 $\mathsf{F}_{pk} = \mathsf{S}_n \cdot \mathsf{f}_{pk}$

 $F_{p0,1k}=S_n\cdot f_{p0,1k}$

²⁾ Überspannen ist erlaubt, wenn die Kraft in der Spannpresse mit einer Genauigkeit von ± 5 % des Endwertes der Vorspannkraft gemessen werden kann.

Die Ermüdungsfestigkeit wurde mit einer Spannungsänderung von 80 N/mm² bis zu 2 · 10⁶ Lastwechseln geprüft.

OIB-250-001/02-245

11.5 Planliste

Plannummer	Plantitel
01	SCSC-Platte
02	Übersichtsplan Prüfrahmen - Wien - statisch - [QT] _{geschlossen}
03	Übersichtsplan Prüfrahmen - Wien - dynamisch - [QT] _{geschlossen}
04	Übersichtsplan Prüfrahmen - Graz - statisch
05	Übersichtsplan Prüfrahmen - Graz - dynamisch
06	Übersichtsplan Prüfrahmen - Wien - statisch - [QT] _{offen}
07	Übersichtsplan Prüfrahmen - Wien - dynamisch - [QT] _{offen}
08	Konstruktionsplan Unwuchterreger
09	[QT] Querträger geschlossen
10	[QT] Querträger offen
11	[VT] Vorspannträger - [QT] _{geschlossen}
12	[VT] Vorspannträger - [QT] _{offen}
13	[ZS] Zugstütze - [QT] _{geschlossen}
14	[ZS] Zugstütze - [QT] _{offen}
15	[LT] Längsträger
16	[AT] Auflagerträger
17	[WB1] Waagbalken 1
18	[WB2] Waagbalken 2
19	[DT] Distanzträger
20	[LTu] Längsträger unten
21	[VTB] Verteilbalken - [QT] _{geschlossen}
22	[VTB] Verteilbalken - [QT] _{offen}
23	Montagedetail M01-MD05 - [QT] _{geschlossen}
24	Montagedetail M06-MD07 - [QT] _{geschlossen}
25	Montagedetail M01-MD05 - [QT] _{offen}
26	Montagedetail M06-MD07 - [QT] _{offen}

1		2	s				4		5	6 Ainhait	7	8 Gaurieb	+ اما ا	10	11 11-10 [m2]
Nr.	Bauteil	Bezeichnung des Bauteils	Stückzahl	Materialgüte	Bezeichn	nung des Walzpi mit N	ofils, der Blech Aaßen in [mm]	ie oder Handski	zze im Einzelner	im Ganzen Sp 3 x Sp 5	Avetto	im Einzelnen 7850 x Sp 5 x Sp 7	im Ganzen Sp 8 x Sp 6	Ko-Schutz- Umfang im Querschnitt	Ko-Schutz gesamt Sp 10 x Sp 6
									[m]	[m]	[m ²]/Stück	[kg/Stk]	[kg]	[u]	[m²]
	Prüfrahmen - Variante W	ien - Querträger	geschlos	sener Qu	ersch	nitt									
	TU Wien E212 - Institut für Traøkonstruktionen /	stahlbau	Stand:	07.10.2014 11:38											
[1.1]	[1] Ouerträger	Obergurt	1	S355J2+N	8	30	200	x 4.930				580.51	580.51		
[1.2]	[1] Querträger	Steg	2	S355J2+N	8	20	940	x 4.930				727,57	1.455,14	3,600	17,748
[1.3]	[1] Querträger	Untergurt	1	S355J2+N	8	30	c 500	x 4.930				580,51	580,51		
[1.4]	[1] Querträger	Endplatte	2	S355J2+N	8	20	c 520	x 1.020				83,27	166,55		2,245
[1.5]	[1] Querträger	Steifen Auflager	80	S355J2+N	8	15	(133	x 944				14,78	118,27		2,267
[1.6]	[1] Querträger	Steifen Pressen	24	S355J2+N	8	12	140	x 940				12,40	297,52		6,939
[1.7]	[1] Quertrager	Einleitungsplatte Pressen	12	S355J2+N	8	12	200	x 500				9,42	113,04		2,602
[2.1]	[2] Waagebalken 1	Trager	12	5355J2+N	a	ç	HE-M 220		1,620	19,440	0,01313	166,97	2.003,69	1,322	25,700 3 EAE
[C C]	[2] Waagebaken I	ctofacte	24 74	N+7/CCCC	<u> </u>	7	240 0E	0C2 X				9,89	67'/57		0001
[2.2]	[2] Waagebalken 1 [7] Waagebalken 1	Stelfen Straifan	24	V+7/CC22		71 01	<u>ر</u>	x 160				1,08 0.35	40,38 6.03		0.240 T,U2U
[2.5]	[2] Waagebalken 1	Streifen	24	N+20000	5 20	10	20	x 136				0.21	5.12		0.205
3.1	[3] Waarehalken 2	Träger	24	S35512+N	5		HE-M 140		1 170	28.080	0.008056	73 99	1 775 77	0.857	24.065
[3.7]	[3] Waagebalken 2	Steifen	96	N+212222	8	1	57	x 116	0.1717	000/04	000000	0.67	62.65	10010	1 668
3.3	[3] Waagebalken 2	Streifen	48	S355J2+N	8	19	10	x 126				0.10	4.75		0.252
[3.4]	[3] Waagebalken 2	Einleitungsplatte Rolle	48	S890Q	8	30	200	x 330				15,54	746,06		7,862
[3.5]	[3] Waagebalken 2	Einleitungsstreifen Rolle	4	S890Q	8	30	330	x 3.020				234,70	938,80		8,777
[3.6]	[3] Waagebalken 2	Zylinder	48	S890Q	0	100	150					9,25	443,91		
[4.1]	[4] Zugstütze	Gurt	4	S355J2+N	8	15	300	x 2.169				76,62	306,48	2 15N	0 377
[4.2]	[4] Zugstütze	Steg	2	S355J2+N	8	15	460	x 2.169				117,48	234,97	DCT'7	170'5
[4.3]	[4] Zugstütze	Endplatte oben	2	S355J2+N	BI	30	c 319	x 500				37,56	75,12		0,736
[4.4]	[4] Zugstütze	Endplatte unten	2	S355J2+N	B	50	420	x 580				95,61	191,23		1,174
[4.5]	[4] Zugstütze	Einleitungssteife oben	8	S355J2+N	BI	12	143	x 150				2,02	16,16		0,399
[4.6]	[4] Zugstütze	Einleitungssteife unten	4	S355J2+N	BI	12	190	x 350				6,26	25,06		0,584
[5.1]	[5] Auflagerträger	Träger	2	S355J2+N		•	HE-M 700		4,930	9,860	0,0383	1.482,23	2.964,46	2,560	25,242
[5.2]	[5] Auflagerträger	Endplatte	4	S355J2+N	8	20	324	x 436				22,18	88,71		1,252
[5.3]	[5] Auflagerträger	Steifen	48	S355J2+N	8	12	132	x 636				7,91	379,60		8,944
[5.4]	[5] Auflagerträger	Streifen	4	S355J2+N	8	15	50	x 3.280	+			7,72	30,90		0,921
() () ()	[5] Auriagertrager	Streiten	7	N+715555	2 2	c7 \$	117	x 3.300				5C,2/	145,0/		1,820
[1]	[5] Aunagertrager	Ohormint	7	N+7/CCCC	ō ā		000	0000 X 2000				00'AC	2//2/		2,144
6.2]	[6] Längsträger	Steg	4	S355J2+N	5 10	20	640	x 4.840				486.32	1.945.29	2,620	25,362
[6.3]	[6] Längsträger	Untergurt	2	S355J2+N	8	30	420	x 4.840				478,72	957,45		
[6.4]	[6] Längsträger	Endplatte	4	S355J2+N	8	20	440	x 720				49,74	198,95		2,720
[6.5]	[6] Längsträger	Außensteife Auflager	80	S355J2+N	8	12	c 95	x 640				5,73	45,82		1,114
[9:9]	[6] Längsträger	Innensteife Auflager	00	S355J2+N	8	18	170	x 640				15,37	122,99		1,974
[6.7]	[6] Längsträger	Außensteife Regelbereich	20	S355J2+N	8	12	85	x 640				5,12	102,49		2,524
[6.8]	[6] Längsträger	Innensteife Regelbereich	9	S355J2+N	8	12	170	x 640				10,25	61,49		1,422
[6:9]	[6] Längsträger	Verteilplatte	4	S355J2+N	8	40	260	x 460				37,55	150,22		1,187
[7.1]	[7] Vorspannträger	Obergurt	2	S355J2+N	8	20	240	x 2.300				86,66	173,33	_	
[7.2]	[7] Vorspannträger	Steg	4	S355J2+N	8	15	380	x 2.300				102,91	411,65	1,500	6,900
[7.3]	[7] Vorspannträger	Untergurt	2	S355J2+N	8	20	c 240	x 2.300				86,66	173,33		
[7.4]	[7] Vorspannträger	Endplatte	4	S355J2+N	8	20	c 260	x 440	_			17,96	71,84		1,027
[7.5]	[7] Vorspannträger	Innensteifen	16	S355J2+N	8	12	100	x 380				3,58	57,27		1,400
[1.6]	[7] Vorspannträger	Außensteifen	24	S355J2+N	8	12	45	x 380				1,61	38,66		1,066
[7:1]	[7] Vorspannträger	Außensteifen	00	S355J2+N	a 1	12	45	× 380				1,61	12,89		0,355
[7.8]	[7] Vorspannträger	Verteilplatte	4	S355J2+N	8	40	220	× 460				31,78	127,11		1,027

11.6 Stahlliste Variante Wien – Variante Querträger geschlossen

11 10 Contribution frame 10 Mode frame 100 Mode frame 100 10						205,716 m ²			17,748		2,245	2,263	6,939		11,148		1,482	0,251	0,251	1,067	22,051	3,556	5,101		74,102 m²			279,817 m²
1 0 000000000000000000000000000000000000									3,600						1,896						1,322							
31 31 30 Montengene 5 30 Montengene 5.35 8.350 Montengene 6.300 Montengene 7.310 Tage	338,51		239,36	1.277,35	425,78	21.998,87 kg		580,51	1.455,14	580,51	166,55	118,02	297,52	288,49	812,38	288,49	105,13	10,36	9,12	132,88	1.719,22	241,00	201,89		7.007,20 kg	29.006.06 kg	580,12 kg	29.586,18 kg
8.1 0.0 <td>42,31</td> <td></td> <td>14,96</td> <td>53,22</td> <td>53,22</td> <td>CHER VERSUCH</td> <td></td> <td>580,51</td> <td>727,57</td> <td>580,51</td> <td>83,27</td> <td>14,75</td> <td>12,40</td> <td>144,24</td> <td>203,10</td> <td>144,24</td> <td>26,28</td> <td>5,18</td> <td>2,28</td> <td>33,22</td> <td>143,27</td> <td>10,04</td> <td>1,68</td> <td></td> <td>UNGSVERSUCH</td> <td>ÜDUNGSVERSUCH</td> <td>+2,00 % Kleinteile</td> <td>GESAMTMASSE</td>	42,31		14,96	53,22	53,22	CHER VERSUCH		580,51	727,57	580,51	83,27	14,75	12,40	144,24	203,10	144,24	26,28	5,18	2,28	33,22	143,27	10,04	1,68		UNGSVERSUCH	ÜDUNGSVERSUCH	+2,00 % Kleinteile	GESAMTMASSE
3.1 B Genundicatagen Genunderstagen 5.255 42,360 3.1 B Genunderstagen Ewnuderstagen 5.00 4,000 3.1 D Genunderstagen Ewnuderstagen 5.00 4,000 3.1 D Genunderstagen Ewnuderstagen 5.00 8 4390 3.1 D Genunderstagen Ewnuderstagen 2 355,240 B 20 8 4,000 3.1 J Understagen Segen 2 355,240 B 20 8 4,000 3.1 J Understagen Segen 2 355,240 B 2 2 2 4 4 4 4 3.1 J Understagen Segen 2 355,240 B 2 2 2 2	0,001018			0,0113	0,0113	STATIS															0,01313				ERMÜD	TISCHER + ERM		
8.1 9 1.05 M35 kw. VMM0A5-system 5.35 8.1 81 10.9 M35 kw. VMM0A5-system 5.35 8.1 81 Gewindestangen Endigate 5.35 8.1 81 Gewindestangen Endigate 5.35 8.1 81 Gewindestangen Endigate 35 8.1 Bistantrager Träger 8 355.13 H:F.A.300 0.000 8.1 10 Unterlager 7 235.10 H:F.A.300 0.000 11 11 0uterringer 8 355.13 H 30 K 430 0.000 12 11 10 0uterringer 1 355.14 H 2 235.04 H 430 0.000 13 11 0uterringer 1 355.14 H 2 2 2 0.000 13 11 0uterringer 1 1 2 2 2 2 2 2	42,360			14,400	4,800																16,680					STAI		
B.J. B (Gewindetangen (Gewindetangen) Cewindetangen (Gewindetangen) Cewindetangen (Gewindeta	5,295			0,600	0,600																1,390							
B.1 [3] Gewindestangen Gewindestangen M36 baw. DVMIMode-System B.3 B) Gewindestangen ImMeter 16 3353.1 ImM6 baw. DVMIMode-System B.3 B) Gewindestangen ImM6 baw. DVMIMode-System Endplatte 16 3353.1 ImM6 baw. DVMIMode-System B.3 B) Gewindestangen Träger 24 2335.10 B) ImM6 baw. DVMIMode-System B.3 Distanträger Träger 24 2355.1 B) Im56 baw. DVMIMode-System B.1 Distanträger Träger 24 2355.1 B) 260 X B.1 Juerträger Obergurt 2 3555.2+M B) 20 X 900 X B.1 Juerträger Untergurt 2 3555.2+M B) 20 X 900 X			70					4.930	4.930	4.930	1.020	942	940	2.940	2.940	2.940	620	550	550	460		260	188	200				
B.J. B Gewindestangen Gewindestangen Gewindestangen Mutter 10.9 M36 baw. DWIDMG-5 B.3. B Gewindestangen Endplate 16 3353.0 1 165 17 15 B.3. B Gewindestangen Endplate 16 3353.0 1 165 1 16 3353.0 16.4 300 B.3. D Gtanstridger Endplate 16 3353.0 1 <td>/stem</td> <td>/stem</td> <td>×</td> <td></td> <td></td> <td></td> <td></td> <td>×</td> <td>x</td> <td>x</td> <td>x</td> <td>×</td> <td>×</td> <td>x</td> <td>×</td> <td>×</td> <td>x</td> <td>×</td> <td>x</td> <td>×</td> <td></td> <td>х</td> <td>x</td> <td>x</td> <td></td> <td></td> <td></td> <td></td>	/stem	/stem	×					×	x	x	x	×	×	x	×	×	x	×	x	×		х	x	x				
B.11 [3] Gewindestangen Gewindestangen Mutter 10.9 M36 bav B.2 B] Gewindestangen Mutter 16 3353.24 B] M36 bav B.3 B] Gewindestangen Endplater 16 3353.24 B] 165 1 B.3 B] Gewindestangen Endplater 16 3353.10 M36 bav B.3 B] Gewindestangen Endplater 24 235.10 B] 30 2 B.3 J Guetringer Träger 2 3355.24 B] 20 2 1.1 [] Quetringer Undergurt 1 2 3355.24 B] 20 2 1.3 [] Quetringer Steg 2355.24 B] 20 2	DYWIDAG-S	DYWIDAG-S	165	HE-A 300	HE-A 300			200	040	c 500	c 520	133	(140	c 250	c 550	250	270	100	44	230	HE-M 220	246	26 J	c var.				
B.1 [3] Genindestangen Gewindestangen 109 2.3 B] Gewindestangen Endplatte 16 33552+N BI 9.1 Distantrièger Täger 24 2335 J0 BI 9.1 Distantrièger Täger 24 2335 J0 BI 9.1 Distantrièger Täger 24 2335 J0 BI 9.1 10 uertrièger Täger 2 33552+N BI 1.1 11 Quertrièger Obergurt 1 33552+N BI 1.2 11 Quertrièger Steg 2 33552+N BI 1.2 11 Quertrièger Steg 2 33552+N BI 1.3 11 Quertrièger Steg 2 33552+N BI 1.3 11 Quertrièger Stefien Auflager 8 33552+N BI 1.4 11 Quertrièger Stefien Auflager 2 33552+N BI 1.5 13 Quertrièger Stefien Auflager 2 33552+N <td>M36 bzw.</td> <td>M36 bzw.</td> <td>165 ×</td> <td></td> <td></td> <td></td> <td></td> <td>30 ×</td> <td>20 ×</td> <td>30 x</td> <td>20 ×</td> <td>15 x</td> <td>12 ×</td> <td>25 x</td> <td>16 x</td> <td>25 x</td> <td>20 ×</td> <td>12 ×</td> <td>12 x</td> <td>40 ×</td> <td></td> <td>20 ×</td> <td>12 x</td> <td>5 x</td> <td></td> <td></td> <td></td> <td></td>	M36 bzw.	M36 bzw.	165 ×					30 ×	20 ×	30 x	20 ×	15 x	12 ×	25 x	16 x	25 x	20 ×	12 ×	12 x	40 ×		20 ×	12 x	5 x				
B.1 B Gewindestangen Gewindestange 8 109 B.2 B Gewindestangen Fndplate 16 35514 B.1 B Gewindestangen Fndplate 16 35514 B.1 B Gewindestangen Fndplate 16 35514 B.1 Distantridger Träger 24 \$35514 B.1 I Querträger 7 räger 24 \$35514 B.1 I Querträger 0 bergurt 1 355124N B.1 I Querträger 0 bergurt 1 355124N B.1 I Querträger 0 bergurt 1 355124N B.1 I Querträger 0 bergurt 2 355124N B.1 I Querträger			BI					BI	BI	BI	BI	BI	BI	BI	BI	BI	BI	BI	BI	BI		BI	BI	BI				
B.1 B Gewindestangen Gewindestangen B 23 B Gewindestangen Endplatte 16 9.1 Distanzträger Träger 24 9.2.1 B Gewindestangen Endplatte 16 9.1 Distanzträger Träger 24 9.2.1 Distanzträger 7 24 9.1 J Querträger 58 2 1.1 10 Unerträger 58 2 1.2 11 Querträger 58 2 1.3 11 Querträger 58 2 1.4.1 10 Linsträger 58 2 1.5 10 Unerträger 58 2 1.6 10 Unerträger 58 2 1.5 10 Unerträger 58 2 1.6 10 Unerträger 58 2 1.6 10 Unerträger 58 2 1.6 10 Unerträger 5 2 1.6 10 Unerträger 5 2	10.9	10.9	S355J2+N	S235 J0	S235 J0			S355J2+N	S355J2+N	S355J2+N	S355J2+N	S355J2+N	S355J2+N	S355J2+N	S355J2+N	S355J2+N	S355J2+N	S355J2+N	S355J2+N	S355J2+N	S355J2+N	S355J2+N	S355J2+N	S355J2+N				
B.1 [8] Gewindestangen Gewindestangen B.2 [8] Gewindestangen Mutter B.3 [8] Gewindestangen Mutter B.3 [8] Gewindestangen Endplatte B.3 [8] Gewindestangen Endplatte B.3 [8] Gewindestangen Träger B.3 [8] Gewindestangen Endplatte B.3 [1] Querträger Träger 1.1 [1] Querträger Steffen Arlhäger 1.2 [1] Querträger Steffen Arlhäger 1.3 [1] Querträger Steffen Arlhäger 1.4 [1] Querträger Steffen Arlhäger 1.5 [1] Querträger Steffen Arlhäger 1.6 [1] Querträger Steffen Arlhäger	••	16	16	24	8			1	2	1	2	8	24	2	4	2	4	2	4	4	12	24	120	12				
8.1 [8] Gewindestangen 8.2 [8] Gewindestangen 9.1 [01stantriager 9.1 [8] Loventriager 9.2 [9] Stantriager 9.1 [1] Quertriager 1.1 [1] Quertriager 1.2 [1] Quertriager 1.3 [1] Quertriager 1.4 [1] Quertriager 1.5 [1] Quertriager 1.6 [1] Quertriager 1.1 [1] Quertriager 1.2 [1] Quertriager 1.3 [1] Quertriager 1.4 [1] Quertriager 1.5 [1] Quertriager 1.6 [1] Quertriager 1.1 [1] [1] Instriager unten 0.2 [10] Langstriager unten 0.3 [10] Langstriager unten 0.4 [10] Langstriager unten 0.5 [10] Langstriager unten 0.7 [10] Langstriager unten 0.1 [11] Verteilbalken 1.1 [11] Verteilbalken 1.3 [11] Verteilbalken	Gewindestange	Mutter	Endplatte	Träger	Träger			Obergurt	Steg	Untergurt	Endplatte	Steifen Auflager	Steifen Pressen	Untergurt	Steg	Obergurt	Endplatte	Innensteifen	Außensteifen	Verteilplatte	Träger	Endplatte	Steifen	Knaggen				
881 882 882 882 822 823 821 822 823 821 823 823 824 825 827 827 827 827 827 827 827 827	[8] Gewindestangen	[8] Gewindestangen	[8] Gewindestangen	Distanzträger	Distanzträger		Erweiterung auf Ermüdungsversuch	 Querträger 	[10] Längsträger unten	[11] Verteilbalken	[11] Verteilbalken	[11] Verteilbalken	[11] Verteilbalken															
~~~~	8.1]	[8.2]	[8.3]	9.1]	[9.2]			[1.1]	1.2]	1.3]	1.4]	[1.5]	[1.6]	10.1]	10.2]	10.3]	10.4]	10.5]	10.6]	10.7]	11.1]	11.2]	11.3]	11.4]				

#### Tabelle 11.2: Stahlliste Variante Wien – Variante Querträger geschlossen (Fortsetzung)

1		2	m				4		2	9	-		6	10	11
									Maße	inheit		Gewicht	in [kg]	Ko-Schu	tz in [m²]
Nr.	Bauteil	Bezeichnung des Bauteils	Stückzahl	Materialgüte	Bezeich	nung des Walzp mit I	rofils, der Blech Aaßen in [mm]	ie oder Handski	im Einzelnen	im Ganzen Sp 3 x Sp 5	Avietto	im Einzelnen 7850 x Sp 5 x Sp 7	im Ganzen Sp 8 x Sp 6	Ko-Schutz- Umfang im Querschnitt	o-Schutz gesamt Sp 10 x Sp 6
									[8]	[m]	[m ² ]/Stück	[kø/Stk]	[لام]	[10]	[m²]
									E	E	lin l/action	[upc/Qu]	1001	E	
	<u> Prüfrahmen - Variante W</u>	ien - Querträger	geschlos	sener Qu	ersch	nitt									
	TU Wien E212 - Institut für Tragkonstruktionen /	Stahlbau	Stand:	07.10.2014 17:1											
[1.1]	[1] Querträger	Obergurt	1	S355J2+N	8	30	x 500	x 4.930				580,51	580,51		
[1.2]	[1] Querträger	Steg	2	S355J2+N	BI	20	x 940	x 4.930				727,57	1.455,14	3,600	17,748
[1.3]	[1] Querträger	Untergurt	1	S355J2+N	BI	30	x 500	x 4.930				580,51	580,51		
[1.4]	[1] Querträger	Endplatte	2	S355J2+N	BI	20	x 520	x 1.020				83,27	166,55		2,245
[1.5]	[1] Querträger	Steifen Auflager	00	S355J2+N	BI	15	x 133	x 944				14,78	118,27		2,267
[1.6]	[1] Querträger	Steifen Pressen	24	S355J2+N	BI	12	x 140	x 940				12,40	297,52		6,939
[1.7]	<ul><li>[1] Querträger</li></ul>	Einleitungsplatte Pressen	12	S355J2+N	BI	12	x 200	x 500				9,42	113,04		2,602
[2.1]	[2] Waagebalken 1	Träger	12	S355J2+N			HE-M 220		1,620	19,440	0,01313	166,97	2.003,69	1,322	25,700
[2.2]	[2] Waagebalken 1	Endplatte	24	S355J2+N	BI	20	x 246	x 256				9,89	237,29		3,505
[2.3]	[2] Waagebalken 1	Steifen	24	S355J2+N	8	12	x 95	x 188				1,68	40,38		1,020
[2.4]	[2] Waagebalken 1	Streifen	24	S355J2+N	8	10	x 20	x 160				0,25	6,03		0,240
[2.5]	[2] Waagebalken 1	Streifen	24	S355J2+N	8	10	x 20	x 136				0,21	5,12		0,205
[3.1]	[3] Waagebalken 2	Träger	24	S355J2+N			HE-M 140		1,170	28,080	0,008056	73,99	1.775,77	0,857	24,065
[3.2]	[3] Waagebalken 2	Steifen	96	S355J2+N	8	12	x 57	x 116				0,62	59,79		1,668
[3.3]	[3] Waagebalken 2	Streifen	48	S355J2+N	8	10	x 10	x 126				0,10	4,75		0,252
[3.4]	[3] Waagebalken 2	Einleitungsplatte Rolle	48	S890Q	8	30	x 200	x 330				15,54	746,06		7,862
[3.5]	[3] Waagebalken 2	Einleitungsstreifen Rolle	4	S890Q	8	30	x 330	x 3.020				234,70	938,80		8,777
[3.6]	[3] Waagebalken 2	Zylinder	48	S890Q	0	100	x 150	_				9,25	443,91		
[4.1]	[4] Zugstütze	Gurt	4	S355J2+N	8	15	x 300	x 2.169				76,62	306,48	2.150	9.327
[4.2]	[4] Zugstütze	Steg	2	S355J2+N	8	15	x 460	x 2.169				117,48	234,97		
[4.3]	[4] Zugstütze	Endplatte oben	2	S355J2+N	8	30	x 319	× 200				37,56	75,12		0,736
[4.4]	[4] Zugstütze	Endplatte unten	2	S355J2+N	8	50	x 420	x 580				95,61	191,23		1,174
[4.5]	[4] Zugstütze	Einleitungssteife oben	80	S355J2+N	BI	12	x 143	x 150				2,02	16,16		0,399
[4.6]	[4] Zugstütze	Einleitungssteife unten	4	S355J2+N	8	12	x 190	x 350				6,26	25,06		0,584
[5.1]	[5] Auflagerträger	Träger	2	S355J2+N	1		HE-M 700		4,930	9,860	0,0383	1.482,23	2.964,46	2,560	25,242
[5.2]	[5] Auflagerträger	Endplatte	4	S355J2+N	8	20	x 324	x 436				22,18	88,71		1,252
[5.3]	[5] Auflagertrager	Steifen	48	N+212552	<b>8</b>	17	X 132	x 636				1,91	3/9,60		8,944
5.4	[5] Auflagertrager	Streifen	4	S355J2+N	<b>2</b>	1	20	x 3.280				1,12	30,90		0,921
[9:5]	[2] Auriagerträger [5] Aurflagerträger	Streifen	7 C	N+27CCCC	- -	10	152	x 3300				30 38	78.75		2 144
[6.1]	[6] Längsträger	Obergurt	2	S355J2+N	8	30	x 420	x 4.840				478,72	957.45		
[6.2]	[6] Längsträger	Steg	4	S355J2+N	BI	20	x 640	x 4.840				486,32	1.945,29	2,620	25,362
[6.3]	[6] Längsträger	Untergurt	2	S355J2+N	BI	30	x 420	x 4.840				478,72	957,45		
[6.4]	[6] Längsträger	Endplatte	4	S355J2+N	81	20	x 440	x 720				49,74	198,95		2,720
[6.5]	[6] Längsträger	Außensteife Auflager	~	S355J2+N	8	12	x 95	x 640				5,73	45,82		1,114
[9.6]	[6] Längsträger	Innensteife Auflager	00	S355J2+N	8	18	x 170	x 640				15,37	122,99		1,974
[6.7]	[6] Längsträger	Außensteife Regelbereich	20	S355J2+N	8	12	x 85	x 640				5,12	102,49		2,524
[6.8]	[6] Längsträger	Innensteife Regelbereich	9	S355J2+N	8	12	x 170	x 640				10,25	61,49		1,422
[6.9]	[6] Längsträger	Verteilplatte	4	S355J2+N	8	40	x 260	x 460				37,55	150,22		1,187
[7.1]	[7] Vorspannträger	Obergurt	2	S355J2+N	8	20	x 240	x 2.300				86,66	173,33		
[7.2]	[7] Vorspannträger	Steg	4	S355J2+N	8	15	x 380	x 2.300				102,91	411,65	1,500	6,900
[7.3]	[7] Vorspannträger	Untergurt	2	S355J2+N	8	20	x 240	x 2.300				86,66	173,33		
[7.4]	[7] Vorspannträger	Endplatte	4	S355J2+N	8	20	x 260	x 440				17,96	71,84		1,027
[7.5]	[7] Vorspannträger	Innensteifen	16	S355J2+N	8	12	× 100	× 380				3,58	57,27		1,400
[7.6]	[7] Vorspannträger	Außensteiten	24	S355J2+N	8	12	45	x 380				1,61	38,66		1,066
[7.7]	[7] Vorspanntrager	Autsensterren	×	N1+71CCCC	n a	17	C ⁴	X 36U				1,01 21 72	127 11	Ī	CC5,U 7C0 1
[0.1]		Antrelibiatie	4	NI+7FCCCC	ā	40	X 22U	X 400				0/'TC	12/,11	-	1,021

# 11.7 Stahlliste Variante Wien – Variante Querträger offen

					JOE 716 m2	- III 0T / CN7			17,748		2,245	2,263	6,939		11,148		1,482	0,251	0,251	1,067	22,051	3,556	5,101		74,102 m²			279,817 m²
									3,600						1,896						1,322							
338,51		239,36	1.277,35	425,78	21 000 07 12	21.330,00 Kg		580,51	1.455,14	580,51	166,55	118,02	297,52	288,49	812,38	288,49	105,13	10,36	9,12	132,88	1.719,22	241,00	201,89		7.007,20 kg	29.006,06 kg	580,12 kg	29.586,18 kg
42,31		14,96	53,22	53,22	CHEP VERSIICH			580,51	727,57	580,51	83,27	14,75	12,40	144,24	203,10	144,24	26,28	5,18	2,28	33,22	143,27	10,04	1,68		UNGSVERSUCH	ÜDUNGSVERSUCH	+2,00 % Kleinteile	GESAMTMASSE
0,001018			0,0113	0,0113	STATIS																0,01313				ERMÜD	<b>TISCHER + ERM</b>		
42,360			14,400	4,800																	16,680					STAI		
5,295			0,600	0,600																	1,390							
		70						4.930	4.930	4.930	1.020	942	940	2.940	2.940	2.940	620	550	550	460		260	188	200				
stem	stem	×						×	×	х	x	×	×	×	×	×	×	×	×	×		×	×	x				
DYWIDAG-Sys	DYWIDAG-Sys	165	IE-A 300	IE-A 300				200	940	200	520	133	140	250	550	250	270	100	44	230	E-M 220	246	95	var.				
6 bzw.	6 bzw. I	×	т	т				x	×	x	×	×	×	×	×	×	×	×	×	×	Ť	×	×	×				
M3	M3	165						30	20	30	20	15	12	25	16	25	20	12	12	40		20	12	2				
		BI						BI	8	BI	BI	BI	8	8	BI	B	BI	8	8	8		8	B	B				
10.9	10.9	S355J2+N	S235 J0	S235 J0				S355J2+N	S355J2+N	S355J2+N	S355J2+N	S355J2+N	S355J2+N	S355J2+N	S355J2+N	S355J2+N	S355J2+N	S355J2+N	S355J2+N	S355J2+N	S355J2+N	S355J2+N	S355J2+N	S355J2+N				
80	16	16	24	8				1	2	1	2	8	24	2	4	2	4	2	4	4	12	24	120	12				
Gewindestange	Mutter	Endplatte	Träger	Träger				Obergurt	Steg	Untergurt	Endplatte	Steifen Auflager	Steifen Pressen	Untergurt	Steg	Obergurt	Endplatte	Innensteifen	Außensteifen	Verteilplatte	Träger	Endplatte	Steifen	Knaggen				
[8] Gewindestangen	[8] Gewindestangen	[8] Gewindestangen	Distanzträger	Distanzträger			Erweiterung auf Ermüdungsversuch	[1] Querträger	[1] Querträger	[10] Längsträger unten	[11] Verteilbalken	[11] Verteilbalken	[11] Verteilbalken	[11] Verteilbalken														
8.1	8.2]	8.3]	9.1]	[9.2]				[1.1]	1.2]	1.3]	1.4]	1.5]	1.6]	10.1]	10.2]	10.3]	10.4]	10.5]	10.6]	10.7]	11.1]	11.2]	11.3]	11.4]				
_														-	1				-	12	12	-				1		

#### Tabelle 11.4: Stahlliste Variante Wien - Variante Querträger offen (Fortsetzung)