
Hypervisor Based Composable Systems
for the Automotive Industry

Making a Secure Platform Safe

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Master of Science

im Rahmen des Studiums

Technische Informatik

eingereicht von

Andreas Platschek

Matrikelnummer 0425291

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuung: o.Univ.Prof. Dipl.-Ing. Dr. Dietmar Dietrich
Mitwirkung:Dipl.-Ing. (FH) Dr.techn. Heimo Zeilinger

Prof. Nicholas Mc Guire

Wien, 15.07.2013
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Hypervisor Based Composable Systems
for the Automotive Industry

Making a Secure Platform Safe

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

by

Andreas Platschek

Registration Number 0425291

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: o.Univ.Prof. Dipl.-Ing. Dr. Dietmar Dietrich
Assistance: Dipl.-Ing. (FH) Dr.techn. Heimo Zeilinger

Prof. Nicholas Mc Guire

Vienna, 15.07.2013
(Signature of Author) (Signature of Advisor)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Andreas Platschek
Theresiengasse 25-27, A-1180 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

Thanks to all who gave me inspiration and guidance to write this thesis (knowingly or other-
wise). Of course this includes everyone at OpenTech, OSADL and the whole FLOSS commu-
nity - thanks for all I was able to learn from you and the guidance I got from you guys.

Special thanks to Prof. Nicholas Mc Guire, for all your guidance, patience and insight, as
well as for kicking my butt at appropriate times.

Last but not least: thanks to my family and friends!

iii

Abstract

Following the trend already set by the avionics industry, the automotive industry is reconsid-
ering its current approach towards on-board electronics as well and starts to integrate multiple
ECUs (Error Containment Units) into one hardware node. Following this approach it is vi-
tal to ensure the independence of residing applications, which often require different levels of
safety and security. Independence is achieved by partitioning, that means temporal and spatial
isolation, supplemented by communication mechanisms that must not violate the isolation prop-
erties. This approach allows the construction of composable systems that simplify the reuse of
(legacy) software modules based on temporal and spatial isolation. Furthermore the preservation
of dependability, safety and security properties of the individual modules is ensured, enabling
modular validation and certification.

This thesis approaches the safety aspects of utilizing free/libre open source software (FLOSS)
components, taking the constraints of the automotive industry into account. The approach taken
is to use the XtratuM2 hypervisor, and to execute multiple instances of a FLOSS implementa-
tion of an OSEK (Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug)
compliant operating system – each instance running one automotive application – on top of
it. The resulting implementation is able to run several independent automotive applications in
parallel on the same processor, rather than requiring a single hardware node for each of them.
This approach reduces the number of ECUs in the car, leading to a decrease of power consump-
tion and weight, allowing a higher utilization of the hardware nodes and simplifying inter-node
communication.

v

Kurzfassung

Genau wie die Luftfahrt Industrie ist derzeit auch die Automobil Industrie im Umbruch, und
beginnt mehrere ECUs (Error Containment Units) in einen Hardware Knoten zu integrieren. Bei
diesem Ansatz ist es jedoch äußerst wichtig, dass die Unabhängigkeit der Applikationen – die
meist auch unterschiedliche Sicherheitsanforderungen (sowohl Safety als auch Security) haben
– erhalten bleibt. Die Unabhängigkeit wird durch Isolation, das heißt zeitliche sowie räumliche
Trennung erreicht und wird durch geeignete Kommunikationsmechanismen, die keines dieser
Isolationskriterien stören dürfen, ergänzt. Der Ansatz erlaubt, durch die Isolation die Safety-
und Security-Eigenschaften zu erhalten und ermöglicht so die modulare Validierung sowie die
modulare Zertifizierung von Software.

Die Arbeit versucht, die Safety-Kriterien, die von der Automobil Industrie gefordert wer-
den, mit Hilfe von FLOSS (free/libre open source software) zu erfüllen. Die gewählte Vorge-
hensweise ist, basierend auf dem XtratuM2 Hypervisor mehrere unabhängige Instanzen einer
FLOSS-Implementierung der OSEK-Spezifikation (Offene Systeme und deren Schnittstellen
für die Elektronik im Kraftfahrzeug) laufen zu lassen, wobei jede dieser Instanzen eine typi-
sche Applikation aus dem Automobil Bereich ausführt. Die resultierende Plattform erlaubt es,
mehrere unabhängige Applikationen parallel laufen zu lassen, anstatt einen Hardware Knoten
für jede der Applikationen zu verwenden. Dieser Ansatz reduziert die Anzahl der Knoten im
Fahrzeug und führt so zu einer Reduktion des Gewichtes sowie des Stromverbrauchs. Weiters
wird die Ausnutzung der Ressourcen, die moderne CPUs zur Verfügung stellen, verbessert und
die Kommunikation zwischen Applikationen vereinfacht.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 4
1.3 Methodical Approach . 5
1.4 Structure of the Thesis . 6

2 Concepts and Technologies 7
2.1 Operating Systems Classification . 7
2.2 Virtualization . 14
2.3 Virtualization in the Safety Domain . 20
2.4 Integrated Modular Avionics . 21
2.5 Toolchain - used tools . 26
2.6 Goal Structured Notation . 28
2.7 Real-Time Structured Analysis and Design . 30

3 Relevant Standards 35
3.1 ARINC 653 . 35
3.2 Interpartition Communication in ARINC 653 37
3.3 OSEK/VDX . 39
3.4 Establishing a Mapping between ARINC653 and OSEK 44
3.5 IEC 61508 . 47
3.6 ISO 26262 Road vehicles – Functional safety 49
3.7 EN 50128 . 51
3.8 MISRA-C . 52

4 Safety Case 53
4.1 Introduction to Safety Cases . 53
4.2 Implementing a Layered Safety Case . 55
4.3 High-Level Safety Case . 56

5 Implementation Details 69
5.1 Assessment . 69
5.2 Adaptation of the Build System . 75

ix

5.3 Task Management . 76
5.4 Interpartition Communication . 78
5.5 Implementation Summary . 82

6 Design of an Example Application 83
6.1 The Lifecycle of a Safety Critical Application 83
6.2 Requirements Analysis . 86
6.3 High Level Design . 87
6.4 High Level Hazard and Operability Study . 91
6.5 Refinement of the High-Level Design . 95
6.6 Detailed Design . 98
6.7 Risk Assessment of the Detailed Design . 101
6.8 Design Summary . 107

7 Conclusion 109
7.1 Summary . 109
7.2 Conclusion . 111
7.3 Future Work . 112

A Detailed Design 113

B Code Examples 115
B.1 xm_hello . 115
B.2 xm_timer . 119

C Papers in the Context of this Thesis 123

Bibliography 129

Internet References 135

x

CHAPTER 1
Introduction

Modern cars already integrate applications of the same safety integrity level into one hardware
node. The following chapter explains why it will be necessary to integrate applications of dif-
ferent integrity level into one hardware node in the future, and gives an outline of the goals and
chapters of this thesis.

1.1 Motivation

Today, the automotive industry strongly relies on software [1]. This need for more and more fea-
tures stems on one side from the customer who expects a modern car to be equipped with certain
features that improve comfort (e.g. navigation system, infotainment system with internet con-
nection) and safety (e.g. ABS, ESP) and on the other side from the automotive industry which
is on a journey to build autonomous driver-less cars [2] that are fully interconnected to each
other (vehicle to vehicle communication - V2V) and to road side units (vehicle to infrastructure
communication - V2I) via radio networks.

All of these features require a serious amount of computing power and a huge amount of
program code. Currently, new features are added into vehicles by just adding another hardware
node into the cars internal network. This led to the current situation were modern cars are
basically highly distributed computer networks on wheels. To give a rough number, a modern
higher class model contains about 70-80 hardware nodes [1].

A similar situation can be observed in the avionics industry, but there a trend to reduce
the number of hardware nodes has already set in. As various articles in aviation magazines
[Spi05,Ram07,Ada03,Mar06] suggest, there is a strong trend away from federated architectures
towards integrated architectures (Integrated Modular Avionics - IMA), in the aviation commu-
nity. Although this thesis is not targeting avionics, but automotive systems, most of the reasons
why IMA is used in airplanes, are also advantageous for automotive systems. This similarity on
an architectural level - not too surprisingly - can also be observed when looking at the proposed

1

AUTOSAR architecture which correlates with the ARINC 653 IMA architecture. Furthermore,
the avionics industry started to think about IMA a long time ago1 and is designing and imple-
menting IMA systems for quite some time now. Therefore a lot more information on integrated
systems is available from the avionics industry than from the automotive industry.

The above mentioned advantages of IMA include - amongst others: significant weight re-
duction, a reduced power consumption, decreased hardware costs, reduced heat generation (and
therefore simpler cooling), better utilization of modern CPUs, better scalability and higher flex-
ibility. Additionally an IMA architecture allows better reuse of software modules and makes
the software highly portable. This is especially important for safety-relevant software as it lends
itself towards modular certification allowing the reuse of already certified components without
the need of re-certification. In the past, those certification issues were not relevant for the auto-
motive industry, but with the introduction of ISO 26262 [STA11a] this will become one of the
major issues in the automotive industry.

The above mentioned applications that are using networks like V2V, V2I or an internet
connection introduce a new set of security issues that are not immanent in the current closed
networks of vehicles, although there are security issues in current implementations as well. The
security aspects of OVERSEE are a very important step for the automotive industry. Security
already is a big issue for today’s vehicles, but it has to be considered even more stringent for
future vehicles.

Recent shocking news on the deficits of security in the automotive sector have been the
TPMS (Tire Pressure Monitoring System) [RMM+10] which is mandatory in the US since 2008
and became mandatory in the EU in 2012 for all new cars. This system incorporates embedded
systems that are located on the inside of each tire and measure the tire’s pressure. The measured
value is then transmitted into the car using a radio transmitter, which according to [RMM+10]
can be read and spoofed from entities outside of the vehicle very easily and thus be misused to
track vehicles and/or communicate non-existent problems with the tire pressure to the inside of
the vehicle.

A second example showing us how stringent security is needed in the automotive sector, is a
paper of a group of researchers at the University of Washington, Seattle [KCR+10]. This paper
explains how the authors were able to hack a car via the On-Board Diagnostics (OBD) interface
- which is conveniently located somewhere (depending on the manufacturer and model of the
car) under the dash-board or the console. Via this interface the authors were not only able to
write messages onto the digital dashboard, but also to do harm, like e.g. deactivate the breaks
during driving or flash the motor control, while the engine was running.

Integrated systems allow the implementation of better security mechanisms that are able to
monitor the access point(s) into the car more efficiently. As already mentioned above, there is a
number of advantages that is gained by the shift from federated towards integrated systems:

Significant weight reduction - due to the fact that the on-board systems network consists of
fewer nodes and needs less wiring a significant weight reduction can be expected.

1IMA has been used in jet fighters such as the F-22 or F-35 since the beginning of the 90’s.

2

Reduced power consumption - a smaller number of CPUs that is better utilized should con-
sume less power than a higher number of CPUs that is idle.

Decreased hardware costs - as the price difference between small microcontroller based sys-
tems and modern high performance hardware is not that big, a decrease in hardware costs
can be expected.

Reduced heat generation/simpler cooling - a smaller number of hardware node does not re-
quire to pack them as densely and thus the heat generation will be reduced and cooling
will be simpler.

Better utilization of modern CPUs - the performance of a modern CPU hardly justifies the use
for one small application, leaving the CPU bored with a maximum utilization of few per-
cent of its capabilities. Integrating several applications into one hardware nodes obviously
leads to better utilization of the CPU.

Better scalability and higher flexibility - Using a virtualized environment, it is easier to add
new applications in spare partitions and the abstraction of the network (form the view of
the applications) allows to re-locate applications without any impact on the application
itself, only the configuration files have to be adapted.

Easy reuse / high portability of software modules - as the software does only interact with
the underlying layers via a well defined interfaces (examples could be ARINC 653, OS-
EK/VDX, POSIX, etc.) the software can be reused easily in new platforms, as long as the
needed interfaces are available. That means, the result is a highly composeable system.

Modular certification allowing - the reuse of already certified components without the need
of re-certification is one of the main issues discussed in this thesis, and will be discussed
later. Obviously a huge reduction in time and costs can be gained if is possible to avoid
the time- and money-consuming process of re-certification.

Maintainability maintenance can reach up to 90% of the total cost for a safety application,
spending time and money in designing a system for maintainability will pay off in the
long term.

While most of these advantages are inherent properties of an integrated system (e. g. re-
duction of weight) these advantages are of no value, if it cannot be shown that the integration of
applications of a different safety integrity level does not impact safety of each individual appli-
cation as well as the overall safety of the system. This of course cannot be shown generally and
has to be part of the design and implementation of such a system.

Probably the biggest advantage of integrated systems, is the reusability of legacy code. Fed-
erated architectures make it hard to reuse legacy code, since very often the code was written for
some old hardware platform which is not in use any more or for a legacy operating system that
offered some weird non standardized interface to the application. All these problems are not ex-
istent for IMA systems using a standardized interface. An example for such an interface would

3

be the one defined in the OSEK/VDX (Offene Schnittstellen für Elektronik in Kraftfahrzeu-
gen/Vehicle Distributed eXecutive) specification. Being compliant to a standardized interface
allows to run the application on every other operating system which is compliant to this API
(Application Programming Interface), and of course it gets very easy to run legacy code on the
newest version of the operating system, or on another OS that offers the same standardized API.
The advantage is not only the easy reusability of the code, but code that has already been certified
does not have to be certified again (as long as it is not changed).

The obvious downside of strong partitioning in time (achieved by static cyclic scheduling)
is, that it obviously leads to a sparse timing which limits interaction with physical endpoints/de-
vices. This results in the change of timing properties compared to physically concurrent dis-
tributed systems which may change the system behavior even if the components are unchanged.
Depending on the application this change of behaviour may not be tolerable. Consider for ex-
ample the control of the interior lights, an additional latency of 100ms to adopt new settings will
not be relevant. On the other hand, an additional latency of 1ms will make a huge difference for
the engine control where even few µs matter.

The major part of this thesis deals with the modular certification of software. In most avail-
able publications this is limited to the VMM (Virtual Machine Monitor) that assures the inde-
pendence of the applications. Of course this thesis also discusses this part of the problem, but
the focus is also set on how an application has to be designed and implemented to allow modular
certification and really end up with an application that can be used over a long period.

1.2 Goals

This thesis is tightly coupled with the OVERSEE project [3], a FP7 project funded by the Euro-
pean Commission. In short the goals of the OVERSEE project are to

• provide a single secure access point into the car,

• and allow the deployment of several independent partitions of different security levels on
the same hardware node.

While safety has been descoped for the OVERSEE project, this thesis will look the safety aspects
of the OVERSEE architecture. So the question this thesis is about to answer is, whether the
hypervisor approach implemented in the OVERSEE platform is also suitable to fulfill the safety-
requirements of the automotive industry.

This thesis also intends to make the industry aware of the advantages of open-source software
and show that there is software around that is ready to be employed in safety-relevant software.
While free/libre open source software (FLOSS) is entering more and more areas of computer
science, (thanks to well known projects, like the Linux Kernel, the Apache Web server, the

4

Firefox web browser or the OpenOffice.org office software suite) and is gaining more and more
acceptance [PA08], there are still industries in which it is not seen as very attractive. 2

One of these areas are safety critical systems, because companies still think that opening
their source code will result in a huge disadvantage over rival companies. While this might be
true for applications and some special libraries, this is definitely not true for “infrastructural“
software, like the operating systems and common libraries. The effort to develop a modern
operating system is a task which can only be solved by very few, huge corporations, and even
for those the benefits of doing so are not existent.

There have already been several safety critical projects employing FLOSS software (e.g.
a fire detection system by Siemens Building Technologies, using the Linux kernel [Ism08], a
railway signaling system [PS08] as well as a railway signaling platform [AGS08]), and there is
a growing demand for FLOSS software by the safety community, and in the air and space sector.
Proof for this are e.g. that NASA is doing more and more open source projects [4], and also
other space programs use FLOSS software (e.g. the DLR - Deutsches Zentrum für Luft- und
Raumfahrt in their MAPHEUS-1 rocket).

1.3 Methodical Approach

To show that it is in fact realistic to design and implement a system with an integrated archi-
tecture, that fulfills these safety requirements, this thesis takes a look at the problem from two
different angles.

First of all a high-level safety case for the system is constructed. This safety case is structured
in layers to improve maintainability and allow reusability of the high level safety case without
an impact on the applications.

Secondly the design and implementation of an application is considered. To show how a
design for such a safety critical application, a real-world automotive application (an indicator
control) is designed with modular certification in mind.

Apart from these more theoretical problems of integrated architectures and modular certi-
fication, on a more practical level it has to be shown that it is in fact feasible to run a current
automotive application in such an environment. To do so an OSEK/VDX compliant 3 operating
system is ported on top of the OVERSEE platform providing a well designed interface that is
commonly used in the automotive industry. On top of that runtime environment an indicator
control example is implemented.

2The main problem still is the Safety by secrecy thinking that has to be abandoned. This paradigm has already
been thrown over board by the security community a while ago, and is wrong for the same reasons for safety.

3The chosen OSEK implementation has been reviewed by me, and not deviations from the specification could
be found, e.g. all parts that have been implemented are likely to be fully OSEK/VDX compliant.

5

1.4 Structure of the Thesis

Chapter 1 already explained why safety is such a hot topic in the automotive industry, and why
there is such a desperate need for a platform that is capable of satisfying the safety as well as the
security needs of the industry.

Chapter 2 is going to summarize some of the important concepts and technologies this
project is based on. Furthermore it not only compares them to other concepts not suitable but
also states why those other concepts are not applicable to an application like this.

Chapter 3 gives an introduction the relevant standards one has to know if he wants to build a
safety-relevant system for the automotive industry.

Safety Cases are used to argue the safety of a system in a structured way. In Chapter 4 a
safety case for the OVERSEE platform is given. The safety case is structured using the well
established goal structuring notation (GSN) and has additionally been layered to get an even
better understandable, maintainable and re-usable argument.

Chapter 5 starts of with the assessment of existing FLOSS implementations of the OS-
EK/VDX specification and checks the feasibility of executing them in a XtratuM runtime en-
vironment. While the reuse of components is emphasized in the above introduction, no 100%
fit may ever be expected. Some adaptations to the OSEK variant used was required as well as
adaptations of the toolchain to integrate it into XtratuM. The steps for transforming FreeOSEK
to a para-virtualized RTE on top of XtratuM is elaborated on in this chapter.

The design of applications to allow their reuse still is a major issue in the industry. In
Chapter 6 a way how a simple indicator control application can be designed to assure reusability
is shown.

The main part of this thesis is concluded in Chapter 7 where a summary is given, conclusions
are drawn and a outlook to future work is given.

Furthermore, Appendix A contains the code defining the interface of the turn indicator ex-
ample designed in Chapter6, Appendix B presents some simple OSEK compliant example ap-
plications runnable in the runtime environment and Appendix C contains a list of papers, that
have been published in the course of this thesis.

6

CHAPTER 2
Concepts and Technologies

This chapter gives a short introduction to the concepts and technologies that form the basis
for this thesis. These concepts and technologies range from operating system principles (Sec-
tion 2.1) over virtualization principles in general (Section 2.2) to virtualization in safety critical
systems (Section 2.3) to the difference between federated and integrated architectures in Sec-
tion 2.4.

This is followed by a description of the tool-chain used for the practical part of the thesis as
well as some thoughts on code quality and coding standards in Section 2.5. Last the notations
used for the safety case (Section 2.6) and the design (Section 2.7) are introduced.

2.1 Operating Systems Classification

The following section gives an overview of the most important kernel architectures that are in
use nowadays, and compares the properties of the different approaches that are relevant for this
thesis.

2.1.1 Metrics of Classification

The three concepts (which are described in more detail in the remainder of this section) are
compared in Figure 2.1. The order in which they are presented, is from left to right:

Size of the Kernel (in decreasing order) - One discussion coming up every time when two or
more operating systems programmers come together, is the question of the size of the
kernel - just think about the famous discussion on monolithic vs. microkernel between
Linus Torvalds and Andrew S. Tanenbaum [5] - and what part should be in the core of
the OS and what part should not. When safety comes into play as an additional factor, we
also have to think about the implications that a larger code base makes for certification.

7

While a smaller code base lends itself towards certification, there are strategies to handle
big code bases as well.

Level of Hardware Abstraction (in decreasing order) While hardware abstraction is one of the
main duties in a monolithic architecture, the further right we move in figure 2.1, the less
abstraction is provided by the OS core, and the more knowledge about hardware specifics
is required of the application and library developers.

Size of Code Run in Kernel Mode (in decreasing order) Modern CPU architectures can be op-
erated in privileged and unprivileged modes (e.g. Ring0/Ring3 in the x86 family [6]). The
different modes differ in the memory areas they are allowed to read/write from and the
instruction set that is available. Generally, while in an unprivileged mode the instruction
set is limited to a subset of the instruction set, and some privileged instructions cannot be
used. Most OS only distinguish between kernel (privileged) mode and user (unprivileged)
mode, meaning, that there are certain things that can only be done in kernel mode.

Obviously these three properties are either linked together very tightly, or exclude each other.
The art is to find a way where the trade offs made in favor of one or the other approach are
compensated by either technological means that allow to assure that safety properties are met,
while still providing the convenient architectural properties (e.g. hardware abstraction) to the
application developer.

While it is widely established that hypervisors for safety-relevant systems are small mirco- or
even nanokernels, with a small code base is easier and cheaper to verify and certify, in the future
also full featured operating systems could be used for hypervisors in the safety domain. In order
to find out whether a monolithic approach like the one taken in the Linux kernel could be suitable
for a safety-relevant system, the differences between those approaches have to be pointed out,
in order to build the basis to understand the advantages/disadvantages of the properties, when it
comes to safety assurance and certification.

Figure 2.1 gives a rough overview on the internals of the kernel architectures which is suf-
ficient to illustrate the ratio between code executed in kernel mode and user mode in the four
architectures.

As mentioned above, nowadays OS in the safety domain tend to be small (i.e. micro- or
nanokernel approaches, often they still use no OS at all), since the verification, validation and
certification of a smaller code base is already very expensive in effort, time and money, the use of
huge monolithic OS seems to be not feasible - at least not with the safety assurance strategies that
are used currently. Due to the high expenses in OS development, the question arises, whether an
already existing OS could be used for the safety domain as well. This question is nothing new,
we already experienced the same trend in the hardware area, where - back in the good old days -
they had military grade (MIL) certified hardware that consisted only of expensive, high quality
elements, operable in huge temperature ranges, under the harshest of environmental influences.
Nowadays, this MIL certified hardware has vanished, and almost every domain is using COTS
hardware even for applications where it has been unthinkable a decade a ago. The same might

8

Figure 2.1: Comparison of Kernel Architectures

happen to specialized software - at least a trend of companies pushing into this direction can be
recognized, viewing some recent publications [AGS08, PS08].

2.1.2 Monolithic

As the name suggests, a monolithic kernel consists of one single piece. But rather than the ker-
nel itself being one piece - usually it is possible to dynamically load/unload kernel modules at
runtime, therefore the kernel itself is not really “one single piece (mono) of stone (lithic)“, but
rather, in a monolithic kernel all parts of the operating system run in a single address space and
as a single process (multi-threading is used in all modern monolithic operating systems though).
This includes not only basic functionality, but also resource allocation and management sys-
tems (e.g. memory management, file systems, network stack), power management, interprocess
communication (e.g. message queues, shared memory), and so on.

This design approach of running the whole OS in one address space, requires less encap-
sulation than would be needed in a microkernel approach, and therefore leads to a significant
reduction of system calls and context switches leading to a performance increase.

In order to being able to handle a complex, monolithic OS that consists of millions of lines of
code , rigorous logical and physical de-coupling of OS subsystems is needed. This is the reason,
why object-oriented design patterns can be found in modern monolithic operating systems [7,8].
If such modular design patterns, assuring the independence of subsystems are not followed, the
single address space approach can easily be misused and lead to unmaintainable systems. One
negative example is Windows Vista, which can be called a very large software project without
hesitation with its approximately 50 million lines of code. An Ex-Microsoft employee states in
his blog [9], that:

9

“Windows code is too complicated. It’s not the components themselves, it’s their inter-
dependencies. An architectural diagram of Windows would suggest there are more than 50
dependency layers (never mind that there also exist circular dependencies). After working in
Windows for five years, you understand only, say, two of them. Add to this the fact that building
Windows on a dual-proc dev box takes nearly 24 hours, and you’ll be slow enough to drive Miss
Daisy.“ [9]

Since this statement is not verifiable and the example is a very bad one, we will now turn
away from Microsoft and proprietary software and look at another monolithic operating system
where the principle of de-coupling and cohesion works very well: the Linux kernel. Figure 2.2
shows an architectural map of the Linux operating system, with all its inter-dependencies. As
you can see, there are only 8 dependency layers, and the inter-dependencies between the layers,
as well as the inter-dependencies between the functions are not too many. Nevertheless, as this
is a monolithic kernel, un-intended interference, outside of the intended interfaces is possible,
but chances that someone contributing a patch that is calling around like crazy is getting away
with that are very low, a very good explanation why it has to be done this way from the author
would be necessary to convince the other developers.

At the moment, the Linux kernel consists of approximately 14.3 million lines of code (2.6.38).
This sounds like a lot, but with Linux polymorphic configuration, this already includes the archi-
tecture specific code for all supported architectures (as of 2.6.38 there are 23 CPU architectures
supported by the mainline kernel) as well as the device drivers that are part of the mainline ker-
nel. Although this seems a lot, for a well configured, effective deployed kernel, this reduces to
well under 1 million lines of code (a configuration with 2-3 file-systems, 5-10 drivers, network-
ing and the common infrastructure will sum up to about 600k lines of code).

So how does this polymorphic configuration scheme work? At compile time you cannot
only choose, which processor architecture you want the kernel to run on (and there are plenty of
architectures Linux is running on, e.g. x86, x86_64, arm, ppc, mips, sparc, alpha, blackfin), but
you can also decide on many other things to be built into the kernel or not. You can in example
decide on the scheduler (preemptive or not), memory model being used (flat or sparse), whether
to use power management or not and which function of power management you want to use,
you can decide on about 20 different file-systems, or if you need any tools to debug the kernel
(e.g. tracers, profilers). You can also decide to build parts of the kernel as modules instead of
directly linking them into the kernel. Theses modules can be loaded and unloaded dynamically
at runtime, making the kernel highly modular. This configuration system is the key element, that
allows to run Linux on basically everything from embedded devices like mobile phones [10,11],
over desktop systems [12, 13] up to supercomputers [14].

If you are interested in more detail, on how much lines of code are included between two
releases, how many people are involved, which companies are involved, etc. in the development
of the Linux operating system, then have a look at [GKH09].

10

Figure 2.2: Automatically generated architectural map of the Linux operating system. This image was
published under a CC-BY-3.0 license, for details see http://commons.wikimedia.
org/wiki/File:Linux_kernel_map.png

2.1.3 Microkernel

In a microkernel architecture, the amount of code executed in kernel space is minimized. This
means, that the kernel itself only contains the most essential functionality, while the rest of the
operating system is shifted into separate processes (ideally into user space), where it is handled
by servers (sometimes also called translators [15]). For example, while memory allocation and
protection would be handled in kernel space, memory management is already a task that is
shifted into user space and has to be handled by a memory management server, in a microkernel
architecture.

Since the opinions about what really is essential, diverge, there are several definitions about
what a microkernel contains and how big a microkernel really is, but one element has been
established over all definitions, namely that the Inter Process Communication (IPC) is part of
the kernel, and that the key of a successful microkernel design is the IPC performance [Lie93,
Lie94, Lie96].

But even the fastest of those IPC mechanisms pose a huge penalty on latencies, due to the

11

http://commons.wikimedia.org/wiki/File:Linux_kernel_map.png
http://commons.wikimedia.org/wiki/File:Linux_kernel_map.png

overhead introduced by the need for constant switching between user- and kernel-space. For
this reason, most microkernel architectures do not run their servers in user-space, but in separate
processes in kernel space. This approach makes you loose more or less all advantages gained
from an microkernel architecture, and therefore is not desirable. Nevertheless, this approach has
been implemented in several operating systems (e.g. Windows NT/Vista/7, Mach).

Microkernels are very popular in high security applications, where a Trusted Code Base
(TCB) that is as small as possible is needed. A very well known example for this is the fully
verified seL4 microkernel [16]. In comparison to the Linux kernel with about 600k lines of code
in a actual deployable kernel, the seL4 kernel only consists of about 8700 lines of C-code and
600 lines of assembler code. Of course at this stage, the seL4 kernel is not of much use, and all
the servers needed to get a system with similar functionality as the Linux kernel would result in
a comparable amount of lines of code.

2.1.4 Nanokernel

The term nanokernel was first used in [BHF+92], but the intention there was a sarcastic side blow
at the Mach kernel which calls itself a Microkernel while (due to some performance enhancing
opitmizations) actually being more monolithic. In contrast to a microkernel, a nanokernel is
more a HAL (Hardware Abstraction Layer) than an operating system, essentially resulting in
a small layer that is able to monitor and control the applications running on top of it. Often
these applications tend to be full grown operating systems, making the nanokernel a VMM
(Virtual Machine Monitor), that provides only hardware abstraction, monitoring, and protection
from other applications to the guest OS. Since the definition of a microkernel is that it includes
everything that is really essential, we could say that a nanokernel contains even less [17]. This
in fact is true, but this does not mean that a nanokernel is in any way incomplete, but the concept
is a totally different one.

A nanokernel contains everything that is necessary to multiplex multiple runtime environ-
ments. Basically this is just memory protection, scheduling of the runtime Environments (RTEs)
and interrupt virtualization. Everything else - including IPC - is shifted into one or multiple
RTEs. While the this definition of a nanokernel is the one most widely in use, there are also
other uses for it, e.g. [MK00] uses the term nanokernel for a kernel that supports timers with a
nanosecond resolution.

Others call their operating systems nano-, pico-, atto-, . . . kernel to emphasize the small code
base, but most of them are not exceptional small, and from the functional point of view they
clearly should be called microkernel.

2.1.5 Exokernel

The idea of exokernels [Eng98, ?] was developed at the MIT (Massachusetts Institute of Tech-
nology) around 1994. The main design principles of this operating system architecture, are to
keep the kernel itself very small and to force as few abstractions as possible on the application
developer.

12

While previously discussed operating system architectures try to abstract the hardware as
much as possible (e.g. file systems, sockets for network communication), making it as transpar-
ent to the application developer as possible (e.g. ”Everything is a file” in Unix), in the exokernel
architecture, as few hardware abstractions as possible are introduced. This of course makes it
harder to write an application, since the application developer is forced to do much of the low-
level programming himself. Of course this approach avoids the layering introduced in all the
other architectures, resulting in a better performance (note that scenarios with this performance
gain are very unrealistic on modern multi-core systems).

The exokernel itself is, as mentioned above, very small and in principle only checks if a
hardware resource is allocatable to an application (i.e. that it is free and the application has the
permissions to allocate it), but there are no abstractions forced on the application programmer.
An example would be an application that reads and writes to an hard disk. The exokernel only
checks if the application has the permissions to read/write that part of the disk, but it does not
force the structure of the data on the application (i.e. no file system). This principle of not
abstracting resources allows different applications to use their own drivers. In example, it would
be possible for two processes to use two different implementations of the TCP/IP stack to send
messages via the network. Libraries are used to implement the different drivers and abstraction
layers, and make them accessible to the applications. This is possible because the exokernel only
provides rrawïnterfaces, that can be used by the libraries to provide more abstract interfaces for
the application.

Until now, two exokernel operating systems have been developed at MIT: Aegis and XOK.
Both of them are explained in detail in [Eng98]. While Aegis is a proof of concept with limited
support for storage, the exokernel principle is applied more thoroughly in XOK.

2.1.6 No Kernel at All

The classic approach of having no OS at all, and running the application directly on the CPU,
managing the resources on its own can still be found (actually more often than one would guess),
but eventually it is going to die out. The reasons for the extinction of this ancient species are sim-
ply the ever increasing complexity of modern CPUs, making it harder and harder to handle them
without a full grown OS, the demand for more and more features provided by the applications
that can often not be satisfied by running everything in a single while(1) loop and of course
the portability issues of applications that are interacting with the hardware directly. Operating
systems give us the abstraction needed by application developers to write portable code. If there
is no OS, porting the application to a new platform is somewhere between hard and not possible
at all.

2.1.7 Conclusion - Which is the Best Architecture

The question of ”Which architecture is the best?” actually has a very simple answer: this really
depends on your needs of your application. From a performance point of view, monolithic
kernels are definitely the winner, the difference in the overhead of just doing a function call
over invoking a microkernel’s complicated IPC mechanisms and switching between user- and

13

kernel-space is too big to get comparable performance on a Microkernel architecture. The only
way to get a microkernel based design close to the performance of an monolithic approach, is by
cheating and running the server processes in kernel-space as well and thereby invalidating the
microkernel paradigm of minimizing the code run in kernel-space.

For modern multi-core and multi-processor systems, the performance advantage of mono-
lithic operating systems over microkernel based operating systems has proven to be even greater,
but with the growing number of CPUs new problems arise and to scaling current operating sys-
tems to higher numbers of cores new approaches will have to emerge. One such approach might
be to have a small operating system (micro- or nanokernel) that is doing few things well, and the
RTEs running on top of that small kernel are full-featured monolithic operating systems pinned
to different cores loosely coupled to each other, communicating through inter-domain communi-
cation mechanisms (e.g. for safety-critical and safety-relevant systems, such mechanisms could
follow the design principles of the ARINC 653 interpartition communication - see section 3.2
for details).

From a safety point of view, the approach taken by many operating systems, is to have a small
kernel (the nanokernel approach) that is easy verify-able due to its size, but contains merely a
HAL as protection of the runtime environments in time and memory (see 2.4 IMA - Integrated
Modular Avionics). Since the purpose of theses systems is to integrate multiple applications, that
were running on multiple CPUs before, into one hardware node, the communication between
those RTEs is loose and with relatively small throughput (since in an federated architecture it
has probably been running over a CAN bus or something similar) even a relatively slow IPC
mechanism is faster than the network connection used in an federated implementation before.

2.2 Virtualization

Virtualization is a technique that has already been in use since the 1960s [18], but which got
very popular over the last years. The maybe most important example where virtualization is in
use is server hosting. Since most web-, mail-, . . . servers do not need the resources provided
by a modern computer system1, server hosting companies tend to run several servers on one
computer system. Since each of them is rented to another costumer, it is necessary to make
sure the administrators of the servers do not bother each other, and it is also essential, that if one
server is hacked, the others are still secure. This basically is what virtualization systems do: they
allow to run several guest systems on one hardware node and assure, that these guest systems
are separated from each other appropriately. For the users inside of the virtualized environment
it looks like they are working on a real hardware node.

From this short summary of main employment scenarios it becomes obvious, that the main
goal of virtualization is separation, to accomplish independence between runtime environments.
For applications in the server market, this separation has to provide mainly independence in
memory, to protect the data in one runtime environment from the users of the other runtime
environment. Independence in time and a communication system that discourages the impact of

1At least not all the time.

14

one runtime environment on the other one play a secondary role. Even if it is considered, this
done on a quality of service level and not a strict separation level.

2.2.1 Full Virtualization

The big advantage of full virtualization is, that you can run the operating system of your choice
without any further modifications, and the guest CPU architecture does not necessarily have
to be the same as the host CPU architecture. QEMU as an example supports x86, x86_64,
ARM, SPARC, PPC, MIPS, MIPS64, m68k(Coldfire),. . . as target platforms (running x86 as
host plaform).

Since full virtualization allows to run unmodified operating systems, also proprietary sys-
tems can be installed as guest systems. An example how such an system could look like is given
in figure 2.3, where the host operating system works as an VMM (Virtual Machine Monitor),
sometimes also called hypervisor to run several guest systems. As you can see in figure 2.3, full
virtualization allows us to run different operating systems like Linux, BSD, Windows, Solaris in
parallel on the same computer system. The number of guest systems depends on the available
hardware resources and can be up to hundreds of guest systems.

Host System (Hypervisor / VMM)

Hardware

Linux FreeBSD Solaris Windows

Figure 2.3: Full Virtualization

Full virtualization operates on the instruction level, and provides a specific CPU architecture
to the guest operating system, by interpreting the single instruction. You can visualize this as a
big switch-case statement with one case for each instruction of the CPU architecture. What the
virtualization system does, is to fetch the next instruction, search the switch-case statement for
the according function, which emulates the behavior of the respective guest.

Well known examples for a full virtualization FLOSS solutions are Virtualbox [19] and
QEMU [20].

15

2.2.2 Paravirtualization

In contrast to a full virtualization system, a paravirtualized system does not operate on the in-
struction level, and the guest operating system has to be modified. This means, that the guest
operating system is aware, that it is not running on real hardware and the boot process as well as
the hardware specific functions are replaced by so called paravirtualized operations. Obviously,
paravirtualization is restricted to guest operating systems, where the source code is available2.

Furthermore, the system is usually aware on which hardware architecture it is executed on,
which is the same one as the hypervisor itself. 3 Examples for paravirtualized systems are
KVM [21], XEN [22] and XtratuM [23].

2.2.3 XtratuM2 and its Hypercall interface

The remainder of this section is going to explain paravirtualization in greater detail, using Xtra-
tuM2 [23] as an example. The reasons why XtratuM2 was used in this thesis, is that it is the
hypervisor chosen by the OVERSEE consortium. The main reasons why it was chosen as basis
for the OVERSEE platform are that it is very small, accessible to everyone (it will be released
under an open-source license) and it is staying close to an operating system specification that is
very well known in the safety community (ARINC 653 - see section 3.1 for details).

XtratuM is a type I (bare metal) hypervisor targeting safety related composable systems.
The main guidelines for design come from one of the key IMA standards, ARINC 653 [Com03].
XtratuM is an active FLOSS project being developed at Instituto de Informatica Industrial, Uni-
versidad Politecnica de Valencia. While the OVERSEE project is focused on security aspects
the goal is to provide a platform that in principle can also satisfy safety requirements. There is
a strong sharing of core demands on the lowest OS layer with respect to safety and security, and
while safety and security have sometimes conflicting demands at higher levels these differences
are not present at the lowest level of a hypervisor [Rus99]. The key to unify the requirements at
the lowest level of safety and security is to provide a sound:

• Temporal isolation

• Spatial isolation

allowing to build high-level services on top that only allows explicitly permitted sharing of re-
sources as well as communication. XtratuM thus is intentionally reduced close to the bare min-
imum that is needed to allow high-level services to operate in there respective OS environments
and still give strong guarantees with respect to independence.

XtratuM offers a relatively narrow interface of Hypercalls to its partitions. This simplified
things a lot for our porting efforts. In this section we will only briefly outline hypercalls that
were used in this porting effort, for a full list of available hypercalls we refer you to the XtratuM

2Of course the owner of a proprietary OS could paravirtualize it.
3At least the author would see little sense in paravirtualization if the architectures are different.

16

Reference Manual [MRC11]. The intention of this section is to show the interface size used in
the XtratuM guest management for a actual example.

Time services: XtratuM provides an independent virtual time to each domain on which the
guest-OS then can implement high-level timing services. In this sense the low-level ser-
vices can be seen as mimicking hardware timing services.

• XM_get_time: Time entities in XtratuM are of microsecond granularity, and are
maintained relative to the last system reset. There are two basic clocks in the system.
Clocks in XtratuM are strictly monotonic. Clocks are maintained for the system
(XM_HW_CLOCK) as well as for the partitions execution (XM_EXEC_CCLOCK)

• XM_set_timer: Interval timer service (providing one-shot behavior by setting the
interval to 0). The expire time is an absolute time with respect to either hardware
clock or execution clock. To a partition the expired timer is signaled as a virtual
timer interrupt (emulating a hardware timer).

Interrupt services: Signaling to partitions is provided via virtual interrupts, it is up to the guest-
OS to then assign suitable meaning and response to the events. Note the absence of a
interrupt request hypercall - as all resources are allocated statically in XtratuM there is no
need for a request_irq.

• XM_enable_irqs: globally disable interrupt delivery to this partition

• XM_disable_irqs: globally enable interrupt delivery

• XM_set_irqmask: used for masking (blocking) and unmasking of interrupts

Basic partition management functions: Much of the partition management is related to the
initialization and shutdown phase of a partition. The essence of the interface is that it
minimizes the state information that needs to be handled by the hypervisor - leaving more
or less all state related work to the partition.

• XM_suspend_partition: This is a basic function that is only used in supervisor mode
to manage a partition. It is used to block a partition (waiting on a resource) or
temporarily stop a partition if errors are detected.

• XM_resume_partition: Simply the opposite to the above partition suspension.

• XM_shutdown_partition: As the hypervisor does not have information about the
internal state of a partition shutdown is provided as an asynchronous notification.
Basically a partition is sent a request to shut down via a dedicated interrupt and after
cleaning up any internal state will then terminate it self.

• XM_reset_partition: Conversely to the XM_shutdown_partition, the XM_reset_partition
is a forced shutdown of a partition whereby a warm and cold reset is differentiated,
a warm reset preserves some of the partitions initialized resources (i.e. open ports
and memory areas) while a cold reset clears this all and thus can have side-effects
on other partitions via communication channels no longer being served.

17

• XM_halt_partition: A halted partition is set into an inactive state but no reclama-
tion of resources (spatial or temporal) are done (that is left to the partition reset)
in this state the partition is simply no longer scheduled by the hypervisor. The
XM_halt_partition called by non-supervisor partitions can only pass self as the target
of the halt.

• XM_idle_self: This allows a partition to suspend itself within its time slot. The
partition will only be re-woken on its next time-slot or if a NMI is received within
its current time slot. This can be used to implement donation schemes for system
partitions.

Basic system management functions: Note that these are not directly related to the guest-OS
as these calls are related to privileged domains - they are listed here for completeness.

• XM_halt_system: The halt partition call (also described above) is used by system
partitions to manage the system as a whole as well as individual partitions. Only
supervisor partitions can halt other partitions. This is used to prepare a partition
reset as well as mode switching.

• XM_reset_system: Brute force system halt of the entire board after this only a hard-
ware reset can reboot the system. No precautions are taken to put any partition into
a sane state thus this is only the last step in a system shutdown as well as in extreme
emergency situations.

Low level Communication related functions: In practical implementations one does not ac-
tually use the low level object class functions but uses the wrappers provided to the com-
monly used objects (sampling and queuing ports as specified in ARINC 653). These
wrappers thus are the actual hypercalls that will be issued though they are rarely used in
guest-OS code.

• XM_read_object: read the object, verifying access permissions and other low-level
properties. Usage in all reading functions like XM_receive_queuing_message,
XM_read_sampling_message, etc.

• XM_write_object: write the object. This is used i.e. in XM_write_sampling / queu-
ing_message, XM_send_queuing_message.

• XM_ctrl_object: is used to create and manage objects with specific properties as
well as query these objects (i.e. retrieve the id of the object). This hypercall is used
in object management functions like XM_create_sampling / queuing_port,
XM_get_sampling / queuing_port_status, etc.

While the overall hypercall set is a bit more elaborate than listed here, the essential calls used to
implement the OSEK guest-OS are listed showing how small such a guest-OS interface actually
can be constructed if the abstraction level is pulled down far enough.

18

2.2.4 A Formal Approach to Virtualization

So far only very practical approaches to virtualization have been mentioned. Of course there
is also a theoretical approach to this topic. Especially when it comes to safety critical systems
a mathematical approach to proving key properties of a system is desired. In [Rus82] John
Rushby gives a Proof of Separability, for secure operating system kernels. Although his focus
is on security, the separation properties discussed are key for safety as well.

Rushby begins by defining an abstract model of a computer:

M = (S, I,O,NEXTSTATE, INPUT,OUTPUT) (2.1)

where M models a machine using the 6-tuple of S, the finite non-empty set of states this
machine is able to take, I is the set of inputs, and O is the set of Outputs. While O is available
continuously at every point in time, it can only be set once in the beginning. NEXTSTATE
is a function that defines the transition between states, i.e. NEXTSTATE : S → S, and
INPUT : I → S and OUTPUT : O → S are functions to process input and generate output.

Furthermore, we have to consider a system shared by multiple users (otherwise there would
be no need for security), this is done by defining C as a set of colors representing multiple users.
Each of this users has his own input and output, which shall be secure and must not be leaked to
other users in C. To indicate that, superscripts are used to indicate the user while subscripts are
used to indicate the value at a point in time of S, I and O.

Next, Rushby gives a formal definition for security, the conclusion of which is:

“... each user of a C-shared machine must be unaware of the activity , or even the existence,
of any other user: it must appear to him that he has the machine to himself.“ [Rus82, p.9]

Building on these basic definitions, Rushby then proofs that:

Theorem 1 A C-shared machine M is secure, if for each c ∈ C, there exists an M-compatible
private machine for c.

Theorem 2 If M = (S, I,O,NEXTSTATE, INPUT,OUTPUT) is a C-shared machine
and COLOUR : S → C is a total function, then a private machine
M c = (Sc, Ic, Oc, NEXTSTATEc, INPUT c, OUTPUT c) is M-compatible. (that is,
the user c does not recognise the difference).

Theorem 3 Such an M-compatible machine exists for user c.

19

From those three theorems, Rushby derives six conditions for his security verification tech-
nique Proof of Separability:

“ Using ’RED’ as a more vivid name for the quantified colour c, these conditions may be ex-
pressed informally as follows:

• When an operation is executed on behalf of the RED user, the effects which that user
perceives must be capable of complete description in terms of the objects known to him.

• When an operation is executed on behalf of the RED user, other users should perceive no
effects at all.

• Only RED I/O devices may affect the state perceived by the RED user.

• I/O devices must not be able to cause dissimilar behaviour to be exhibited by states which
the RED user perceives as identical.

• RED I/O devices must not be able to perceive differences between states which the RED
user perceives as identical.

• The selection of the next operation to be executed on behalf of the RED user must only
depend on the state of his regime.“ [Rus82, p.15]

The restrictions made by this list of conditions is, that it requires total isolation between the
runtime environments (or regimes, as Rushby calls them). In a real-world application some form
of communication between runtime environments will be required.

2.3 Virtualization in the Safety Domain

Although most virtualization solutions focus on Server applications, virtualization is also in-
teresting for embedded and safety applications. The reasons for this are, that if you have a
hypervisor or VMM (virtual machine monitor), that is very small (few lines of code), chances
are good that it is relatively easy to assess. If you have such an hypervisor that has been approved
by the authorities, it makes it very easy to build your system on top of it, since the application
partitions are independent of the hypervisor and of each other, assessing them becomes easier
too. The other big advantage is, that the reuse of legacy code becomes much easier and at the
same time the development and integration of new applications can be done faster.

In this section, the different levels of virtualization are introduced, and some examples for
each level are given. There are various reasons why virtualization is becoming more and more
popular:

• Better utilization of hardware resources is achieved, if more applications run on one big
computer, instead of several smaller ones.

• To secure a computer system. This technique is called sandboxing [24].

20

• Software development - if you write a new piece of software you can first test it on a
virtual machine, the advantage is, that you don’t crash your real hardware, and some of
the virtualization systems allow you to debug the guest systems (e.g. QEMU provides a
gdbserver).

• NooM (e.g. TMR) systems can be done in a virtualized way, to prevent CCF’s in the
application

• In safety critical systems, virtualization is used to keep independent applications from
influencing each other.

This last point the above list, is exactly what an IMA (integrated modular avionics) does,
and it is the reason why different virtualization approaches are explained, and examples of vir-
tualization software are given. The IMA approach and its advantages will be discussed in more
detail in section 2.4.

2.4 Integrated Modular Avionics

At the moment, most safety-critical and safety-relevant software is based on a federated archi-
tecture, but in recent years there was a shift towards integrated architectures, and there are some
examples - most out of the avionics industry - that use such an integrated architecture. This
section explains the difference between a federated and an integrated architecture and lists some
real world examples which use an IMA software architecture. After that a short rational why the
integrated approach is also interesting for applications other than avionics is given.

2.4.1 Federated Architecture

Today, most automotive systems in operation follow a federated approach. This means, that
they have one node for each software module. This makes many things easier. E.g. the
FCU’s (fault containment units) can be identified easily - usually an FCU is one node. The
downside is, that a federated approach leads to a highly distributed system very fast, and even
relatively simple applications need many processors. One simple example - originating in
[Wat06b, Wat06a, CBW07] - of a federated system is shown in figure 2.4. This example could
be a simple control application, where one node is reading data from some senors, based on this
data a new set value is calculated by a controller located on a second node, and the new set value
is applied to the effectors by a third node. In order to get data required by the nodes out of one
and into the other, a communication network is needed. To get a fast responding controller with
a tight control loop, it is necessary to have a high speed communication network

As you can see, this very simple example already needs three CPU’s. One CPU to read the
sensors, one to calculate the set value, and one to operate the effectors. Running this application
on three modern CPU’s would be a waste since none of the three tasks uses even 1% of the
CPU power of a modern CPU. So it would be nice to find a way to integrate the three parts of
the system into one CPU, and not only achieve a better utilization of the CPU, but also save
hardware and reduce the power consumption.

21

Figure 2.4: Simple example of a Federated System

2.4.2 Integrated Architecture

In contrast to a federated architecture, the integrated approach allows several independent parts
of the software to reside in one hardware node. Figure 2.5 shows our simple controller applica-
tion designed in an integrated manner, running input logic, controller and output logic on one
common CPU. So instead of three bored CPU’s we were able to reduce our hardware to one
bored CPU. Furthermore the network connecting the three nodes is replaced by a virtualized
network, increasing the savings even further.

Of course it would now be possible - depending on the application - to take further advantage
of our integrated approach. Let’s for example assume, that our controller is controlling the
motor of a CNC mill, then our CNC mill would have 3 such controllers (one for each axis),
meaning that a federated approach would require 9 hardware nodes to get the job done. With our
integrated approach, all 3 controllers could be located on the same node, thus allowing a massive
saving in hardware. But these savings in hardware are only the most obvious advantages here is
a list of the most important advantages of integrated architectures:

Weight reduction: Reducing might not be the biggest problem in the automotive industry (un-
less you are designing sports cars), but a weight reduction of course is also of advantage
when it comes to fuel consumption

Reduced power consumption: Inherent to the reduction of nodes is a reduction of power con-
sumption.

Decreased hardware costs: Modern COTS CPUs already are in the same price-range as special
purpose microcontrollers. Sparing CPUs therefore will reduce the hardware costs.

22

Figure 2.5: Example of an integrated architecture.

Reduced heat generation: In some industries (notably avionics) cooling can get an issue when
lots of nodes are packed in a very tight space. Reducing the number of nodes in that space
simplifies cooling, or might even eliminate some of those problems.

Better utilization of modern CPUs: With the availability of very chip high performant CPUs,
many nodes in a modern vehicle are utilized at few percent of their capabilities. Integrating
applications into the same HW node will increase the utilization of the individual node.

Better scalability / higher flexibility: It is questionable if the increase in applications will come
to an end any time soon. Having platforms that support the integration of new platforms
are the key to increase the flexibility and get systems that scale well - even if applications
that we cannot even think of today have to be integrated into future systems. In example,
consider the above discussed example. At some point a costumer could require to add a
webcam to visually monitor the system. In a federated architecture, this would require
you to introduce a new hardware node into the system, despite the fact that the available
nodes have the resources (e.g. CPU time left, USB ports for the camera etc.) available.
If an integrated approach had been taken from the very beginning, the system in figure
2.5 can easily be extended by a new application container and extended by the webcam
application, depicted in figure 2.6

Better reuse of software modules: The development of applications for the automotive indus-
try is very expensive, thus a the desire to reuse applications is very high. Having an

23

integrated architecture with well defined interfaces that eliminates the hardware depen-
dencies of the application itself helps to increase the reusability of newly developed as
well as legacy applications.

Increase of application portability: In order to increase the reusability portability is a cructial
pre-requisite. Of course writing highly portable code is a lot more initial effort,

but it will pay off in the long term.

Communication capabilities: Integrated architectures not only allow to dynamically add ap-
plications, but also to add communication channels as desired.

Security: Although security is often neglected in safety critical systems, it will become very
important in the future. That said, virtualized (interpartition) communication is easier to
protect than wired internode communication.

Figure 2.6: Example of an integrated architecture with an additional application

2.4.3 Related Work

In the following a short list of operating systems and applications that follow the IMA approach
is given.

2.4.3.1 Integrated Modular Avionics Operating Systems

The following list of OS that are following the IMA paradigm shows, how diverse the imple-
mentations can be, and how various approaches for the OS can be ranging over all the classes in
2.1.

24

POK: the partitioned operating system [25] is an ARINC-653 compliant microkernel, that
focuses on safety and security. POK has emerged from teaching activities at different
schools and universities and is licensed under a BSD license.

XtratuM: is a mostly ARINC 653 [23] compliant 4 hypervisor based on an nanokernel archi-
tecture. While the first version was strongly dependent on the Linux kernel (initialization
of the hardware), XtratuM2 is already standalone and can be used without Linux, although
Linux can be run as a guest inside of one or multiple partitions.
According to the homepage XtratuM is licensed under the GPL, but only version 1 can be
downloaded directly at the moment.

VxWorks: WindRiver’s VxWorks [26] is a proprietary real-time operating system. It is widely
used in smaller electronic devices (e.g. digital cameras), and there is also a ARINC 653
extension available, which has been used in many air- and space applications (e.g. Mars
pathfinder mission) as well as in other mission critical and safety related applications.

Integrity: Greenhill offers another ARINC 653 compliant operating system named Integrity
[27].

2.4.3.2 Applications

The IMA approach has first been used in avionics in the fourth generation of jet fighters. Ex-
amples are the Lockheed Martin F-22 and F-35, as well as Dassault Aviation’s Rafale. More
recently, IMA has found its way into civil aviation. Two very well known modern airplanes
using IMA technology are the Airbus A380 and the Boeing 787. Although they both use IMA,
the approach taken is very different [Ram07], as we will see in the following.

While the A380 integrates only few applications into one LRU, the approach taken in the
787 is a lot more radical, and uses a Common Core System (CCS), which integrates over 100
LRUs into one hardware node.

2.4.4 The Integrated Approach Outside of Avionics

This thesis uses a lot of examples from the avionic sector, since the concept of integrating sev-
eral software modules into one hardware module is already accepted in avionics, while other
industries currently have not concept comparable to IMA. Although it can only be speculated on
the reasons for this, it is obvious that integrated architectures would make a lot of sense in many
applications. For example railway signaling, where lots of ECUs could be merged into one big
TMR server, or machine controlling where e.g. all axis of CNC mill could be controlled by a
single ECU.

With AUTOSAR [28], the automotive industry already started using the integrated approach,
and the trend can be expected to go towards integrated components inside of vehicles very
quickly. Of course one example for the research into the suitablity of integrated architectures in
automotive is the OVERSEE project [3], and as we will see later in chapter 4, also ISO 26262

4Actually its ARINC 653 with extensions.

25

mentions the concept of integrated architectures, allows the usage of multiple applications of
different integrity levels if separation is guaranteed and suggests runtime environments that are
compatible to ARINC 653.

2.5 Toolchain - used tools

One of the first things to do in the development phase of a safety critical software project, is to
select the (subset of a) programming language(s) that shall be used as well as the used tools.
Furthermore the suitability of the selected languages and tools for the given application has to
be shown. A very short summary of the selection used in this thesis is giving in the following.

2.5.1 Language Selection

In order to being able to select the toolchain, first a language has to be selected. In this case
a long language selection process and discussion of the same can be skipped, since the lan-
guage is inherent, due to preexisting code. From the XtratuM nanokernel itself to all OSEK OS
implementations that were investigated in this thesis, the C programming language is used. Fur-
thermore, C is in wide usage in the automotive industry, but to meet the high quality demands
of the industry some restrictions are made. These restrictions are standardized and published in
the MISRA-C:2004 [MIS04] coding guidelines.

In the practical part of this thesis not only MISRA-C compliant code will be written, since
in some parts, this would not make sense. E.g. potential necessary changes (if any) in the Xtra-
tuM2 nanokernel will not be MISRA-C compliant. For the OSEK RTE as well as the example
applications MISRA-C compliance is the goal, but lacking a MISRA checker it will not be pos-
sible to prove the compliance. The code in the OSEK RTE on the other hand will be MISRA-C
compliant, as the current standalone implementations are MISRA-C compliant as well current
standalone implementations are MISRA-C compliant as well.

The restrictions in MISRA-C are mostly dedicated to the avoidance of uncertainties in the
C programming language itself. Such uncertainties, also called undefined behavior [29, 30],
are differences in compilers that arise due to inaccurate specifications in the C programming
language itself, and many experts in the safety domain criticise C as unsuitable for safety appli-
cations due to this undefined behaviour. The reasons why C is still a valid and good choice for
safety critical and safety relevant software are:

High Availability - Compilers for the C programming language are available for almost all
computer architectures and platforms on the market. Therefore, porting the system to a
new architecture is a lot easier.

High Performance - Modern C compiler optimize the code, making it faster and more efficient
than an human written assembler code could be.

Low Complexity - The C programming language allows structuring of the Code, making it
better readable and therefore better maintainable. Of course it is always possible to write

26

”smart” code using perverse code constructs, but this only depends on the programmers
awareness of the importance of well structured code.

High Portability - as mentioned above, C compilers are available for almost any computer
architecture, therefore porting the application to a new architecture takes less time and is
not that expensive.

But still, the critics of using C in the safety domain is rectified to the point, that programmers
using C have to be more aware of what they are doing, and cannot just rely on the compiler to
straighten out their mistakes and shortcomings. Using C in the safety critical and safety relevant
domain requires the programmer to not only know the language, but also to have a lot of knowl-
edge about the compiler in use and the behavior of the compiler, when in comes to undefined
behavior. The C FAQ [Sum96] defines undefined behavior as follows:

“Anything at all can happen; the Standard imposes no requirements. The program may
fail to compile, or it may execute incorrectly (either crashing or silently generating incorrect
results), or it may fortuitously do exactly what the programmer intended.“ [Sum96, p.189]

Using a FLOSS compiler gives the developer the advantage of getting all the information he
needs, when he needs it. To prove this point, consider the example, given in [30], where running
optimization stages of the compiler in a different order leads to quite different results. Problems
like these are really hard to find when using proprietary products, and as they only happen in
corner cases they can stay unrecognized in the code of the compiler for a long time

Also the usage of coding guidelines like MISRA-C prevents the appearance of such prob-
lems, by assuring the necessary code quality. E.g. the following (MISRA-C compliant) version
of the code given in [30] would not have led to the problem:

void contains_null_check(int *P) {
if (P == NULL) {

return;
}
else {

*P = 4;
}

return;
}

Going for code quality is especially important when writing software for safety critical sys-
tems. An appropriate code quality not only prevents many of the most common programming
errors (see the example above), but also makes it easier for the successor of the author to make
changes, reuse the code or port it to some new hardware architecture.

27

2.5.2 Tools

This section lists all the tools used for Development and Debugging, as well as the version used
during development. The version used is basically the default version in debian squeeze except
for some of the code checkers that are used in the latest version to gain maximum information.

make [31] is used to automate the build process, thus assisting to make the system usable by
everyone who does not know which exact compiler-flags to use and which objects to link
together to get the resulting binary.

gcc the GNU compiler collection [32] is one of the most widely used compilers, offering support
for a variety of programming languages and a lot of different hardware platforms. For this
thesis only the C compiler is used.

git [33] is a version control system, designed by Linux inventor Linus Torvalds. Using a
revision control system for this thesis is not only a matter of convenience, but as this
thesis has a strong safety context, it provides a high level of traceability.

doxygen [34] is a source code documentation generator. The comments in the code are anno-
tated with tags. These tags are used by doxygen to generate a source code documentation.
The usage of in-code documentation systems like doxygen have the advantage that it is
easier to maintain the code documentation, as interface changes are recognized automati-
cally, and the in-code documentation can be done while introducing those changes.

coccinelle [35] is a semantic patching tool that allows to handle collateral evolution (i.e. it is
able to propagate complex API changes throughout the system thus saving lots of time).
Although the capabilities are beyond that, it can be expected that this will be the most
important usage of coccinelle for the practical part of this thesis.

2.6 Goal Structured Notation

The argumentation of why a safety-critical or safety-relevant system can be regarded as sufficiently
safe is a process that is carried out starting from the very first high-level design all the way until
the dissemination of the system. The document containing this argumentation is called a safety
case (see chapter 4 for the safety case developed in this thesis) . For many systems this safety
case has to be maintained over years, more often even decades as many safety-critical systems
are meant to be employed over long timer periods (just think e.g. about a nuclear power plant).

To gain the needed level of maintainability, a structured approach is the key to success and
for structuring safety cases, the goal structured notation (GSN) is a very popular approach.
Although GSN has been around for quite some time, it has just recently been standardized into
a community standard [OCYL11].

Goal: The goal describes a requirement or sub-specification of the system that is to be satisfied.
This could be a high-level goal like ”The system can tolerate all single component fail-
ures”, it also could be a very specific goal corresponding to a low-level requirement, like

28

”Searching the list of active tasks is of complexity O(1)”. While goals generally express
requirements or sets of requirements they also commonly represent derived requirements
(subgoals) that are needed to develop the top goal. From the safety case perspective it
is complete if all the goals are satisfied by the elements they reference to (Assumptions,
Justifications, Solutions and Contexts).

Undeveloped Goal: GSN is by definition incomplete, but it makes this incompleteness explicit,
and thus mitigateable. Undeveloped goals may allow assessing the consistency of a sys-
tem under assumption of satisfying an undeveloped goal. As an example one might have
an undeveloped goal occurrence of double faults is covered by architectural means. While
the component being described might not allow coverage of double faults, it may be suf-
ficient to have an undeveloped goal for this case. The advantage would be that a double
fault scenario now can be developed by having a TMR to develop this goal but without the
need to change the rest of the structure and thus covering different integrity requirements
with a single GSN structure.

Strategy: Strategies refer to general solutions to a class of problems. Examples of strategies
are TMR, timeouts, retransmission or encodings. These strategies can be applied to many
different situations and have general properties e.g. a TMR has a single fault coverage
or retransmission can cover transient random faults. Strategies are generally used as a
constraint on the specific solution in the sense that it is not needed to elaborate the detailed
limits of a solution that is based on a TMR as this is well established know how.

Solution: A solution describes the concrete mitigation of a particular problem (in example a
16bit Cyclic Redundancy Check (CRC)). A solution may be part of a strategy and it may
be based on a set of assumptions.

Assumption: are always present in any abstract description of systems and system components.
The intent of having assumptions explicitly stated in GSN is to allow re-assessment of a
safety case in a changed environment or scenario. In this sense they are not only con-
straints but part of the safety case management capability of GSN. An assumption can be
viewed as an inherently satisfied goal. During safety case development it may be necessary
to use assumptions to constrain the complexity of the safety case or simplify validating
the logic of a safety case component by providing a set of assumptions for a particular
goal and showing that all of the cases would be covered.

Justification: A justification can be seen as the bottom line of a safety case. The generic process
for safety (see Figure 2.7) is represented in GSN and the justification object serves to
provide the necessary overall rational for the path through the argument structure. It also
may serve as justification of a specific solution if this is a well accepted and generic
method e.g. referring to a HAZOP result. Note that justifications in this form make
assumptions about methods and procedures listed as justification - this will generally not
be explicitly listed (i.e. nobody would state HAZOP compliant with MOD 00-58 [Min00a,
Min00b] result). At a higher level a safety case needs to provide this information to
prevent cluttering the lower levels.

29

Context: Safety is a system property (discussed in more detail in section 3.5) which means
nothing else but that the actually provided margins or residual failure probabilities de-
pend on the specific system configuration and the environment in which it is operating.
Any change of the operational constraints and/or system environment would potentially
impact the conclusions of the safety case. These assumptions are documented in the con-
textöbjects of the safety case.

Identify Hazards

Risk Assessment

Determine Mitigation Demands

Map to Acceptable Methods

Justification

Figure 2.7: A generic safety process.

These elements described in this section are the basic elements of GSN, allowing the unfa-
miliar reader to understand the GSN diagrams used in section 4. For details or more advanced
elements of GSN, please refer to [OCYL11].

Note that while GSN is a notational method, it also lends itself to development of patterns
– in his seminal work Fan Ye developed a number of GSN based safety case patterns for COTS
systems. These patterns can be viewed as a meta-strategy - for details of the strategies suitable
for COTS seeof [Ye05, Appendix A] (“A COTS safety argument pattern language“) .

2.7 Real-Time Structured Analysis and Design

This section gives a short introduction to RTSAD - the Real-Time Structured Analysis and De-
sign [DeM81, Goo01, KS92, Coo03] method, that is used for the design in the practical part of
this thesis. RTSAD is a method for system design and specification. This is in not restricted to
software but to the whole system including electric, electronic, mechanical, etc. parts, as well
as the interaction of humans with the system. RTSAD is a well established specification method
that is based on the Yourdon style variant of structured analysis and system specification, created
by Tom DeMarco [DeM81] in the 70s. The simple, yet powerful notation of Yourdon allows to
quickly understand the system specifications. The extension of Yourdon to RTSAD, making

30

it even more suitable for real-time and safety-related systems is therefore a very common sys-
tem specification method. Although the RTSAD method is not explicitly recommended by IEC
61508, Yourdon is, and since RTSAD only an extension of Yourdon it can be seen as highly
qualified and recommend by the standard as well.

As mentioned above, the notation itself is rather simplistic, but this simplicity can be seen as
the strength of this method. In comparison with other design methods like UML, which tend to
loose themselves in a plethora of different styled diagrams and charts, RTSAD has a very small
set of design elements for diagrams complemented by data dictionaries.

The main strategy of RTSAD is a divide and conquer approach. First the system is designed
on a rather abstract level, describing the interaction of the system with its environment in a
data context diagram. This data context diagram is then broken down into subsystems, and the
interactions between the subsystems are designed and specified. This step is repeated as long as
necessary or practicable, i.e. until a level is reached, where further breaking down is no longer
possible, or not practicable. The key elements of RTSAD are:

Data context diagram (DCD): As already mentioned above, the data context diagram is a high
level specification of the system, describing the function behavior of the system, as well
as its interactions with its environment. A DCD only contains one bubble - representing
the system - as well as boxes representing external entities and arrows describing the data
flow between the system and the external entities (i.e. the system’s environment).

Control context diagrams (CCD): The control context diagram describes the interaction trig-
gers and system response in a diagrammatic way similar to the DCD. The main focus
though is to de-couple data from signals - both in and out of the system. While these
signals could be described as data entities as well - any signal does need to transmit some
information, even if it were only a single bit, it makes sense to de-couple the description
as signals primarily impact control flow while data impact the processing steps more. It
should be noted that for many projects the CCD is integrated in the DCD and no sepa-
rate diagram is provided. In the case of joint diagrams the process is diagrammatically
presented as a data transformation with control inputs.

Data flow diagrams (DFD): The key principle in RTSA is the decomposition of the system
into subsystems. This decomposition is done diagrammatically by extending the original
DCD/CCD to reveal its internal structure while maintaining the external context as de-
scribed in the DCD/CCD. The DFD included data and control flow objects, each of them
is labeled and numbered and each of the internal relations (data or control connections)
gets a unique label. These names are retained throughout the entire hierarchy and the
numbering is used to make the hierarchy visible in the next layer of decomposition which
is described by further DFDs.

Control flow diagrams (CFD): Similar to the joining of DCD and CCD it is quite common to
join CFD with DFDs, in cases where the control flow is of significant complexity though
a separate diagram may be used. The only real difference is that CFDs do not contain data
transformations, while DFDs commonly do incorporate control transformations.

31

Data dictionary: As noted in the DFD description each connection between entities in the di-
agrams (control transformations, data transformations and data stores) is labeled with a
unique and meaningful name. These names are the first level of completeness and con-
sistency checking in RTSA. While the labels describe the logical data/control flow, RTSA
also anticipates limited quantified analysis, for this purpose each label (which corresponds
to control signal or data flow) is described with detailed attributes in the data dictionary.
This description generally needs to be adjusted a bit to the problem at hand. The goal
though always is to have a sufficient description of logical and physical (if applicable)
properties of each connecting entity so that one can also perform basic quantitative anal-
ysis.

State Diagrams (SD): Problems in control systems can be broken down to finite state machines
or a hierarchy of the same. This does not only pertain to actual state machine algorithms
but also to control flow in a system of coupled entities - as an example the transition
from an initializing to an operational state of the system might be bound to the successful
allocation of resources - this de-facto describes a state machine even though this will
generally not be directly visible in the code (see figure 2.8).

init run exit

Figure 2.8: A simple finite state machine (FSM).

This state diagrams may then be further detailed by the use of control transformations in
describing the criteria that lead to the respective state change (see figure 2.9).

init
resource_init() != -1

running

Figure 2.9: A finite state machine with state change criteria.

Event-action diagram (EAD): Event action diagrams are quite similar to FSM descriptions
just that they are relieved of the strict formal model employed in FSMs. Actions to FSMs
are confined to state transitions basically - EAD allow more general actions. Such an
action could be a mandatory procedure or an externalized action like call the cops. EADs
are though used as de-formalized FSMs in many designs.

Response time specification (RTS): One of the weaknesses of the data dictionary identified
early on in the use of RTSA was that it did not connect information from the SD or EAD
and the DFD directly in the temporal domain. Temporal specifications of periodic signals
are covered by data dictionaries, signal impact on internal state is covered by SD/EAD
and direct control transformations are visible in the CFD/CCD as represented by control
transformations (and the associated control specification CSpec) - but all this does not

32

cover the system response bounds to non-periodic events in a quantified way - this is
basically the role of RTS.

Equipped with the basic concepts, tools and techniques presented in this chapter, we can
now proceed and also gather the basic knowledge about relevant safety standards in Chapter 3.
In combination, these two big topics are then used to analyze and argument the safety of the
OVERSEE platform in Chapters 4 to 7.

33

CHAPTER 3
Relevant Standards

Since this thesis has a strong safety-relevance, it is vital to be familiar with the needed standards.
In this case this is ARINC 653 (Section 3.1) as the first standard to introduce an integrated
approach to the safety industry, furthermore XtratuM2 is using it as a guiding standard and
is almost compatible to ARINC 653. Section 3.3 gives an introduction to OSEK/VDX, the
currently most widely used standard in the automotive industry. A mapping between those two
standards is given in section 3.4.

While the first thre sections discuss operating systems specifications that are used to build
safe operating systems for the avionic and automotive domain, sections 3.5 and 3.6 are dedicated
to standards that help to determine and achieve the necessary level of safety for software systems.
The chosen standards here are the IEC 61508 (often called the mother of all functional safety
standards), as well as IEC 26262 the new functional safety standard which has been derived
from the IEC 61508 to suite the automotive industry.

The last section in this chapter 3.8 contains a short summary to MISRA-C - a standardized
coding guideline used in the automotive industry.

3.1 ARINC 653

This section gives a brief introduction to the ARINC 653 [Com03] specification and its most
important parts. The title of the ARINC 653 specification is Avionics Application Software
Standard Interface, and as the abbreviation says, it is published by the Aeronautical Radio
Incorporated (ARINC). As the longer, more descriptive name says, this specification introduces
a software interface designed for safety critical avionic applications. ARINC 653 backs up the
idea of an Integrated Modular Avionics (IMA) system (but does not necessarily claim it).

One might read the ARINC 653 [Com03] specification and find it restrictive. But these re-
strictions follow the effort to specify a way to build a safe system architecture, which is highly
composeable. Exactly these restrictions are the key to the success and popularity of the ARINC

35

653 specification. Not only the separation of software modules (partitions), but also a commu-
nication system which does not allow application partitions to influence each other in a way not
intended by design, is important to achieve this goal. All these essential conditions are provided
by the ARINC 653 specification, and are the reason why it is a suitable standard for our pur-
pose, which is to provide a generic application platform for multiple independently developed
applications while ensuring the high-availability of the overall system.

The central person in a ARINC 653 based development is the system integrator. His job is
to allocate the hardware resources required by the (application) partition developers and create
the XML configuration file. This means, that the application developers ask the system integrator
to allocate the resources (e.g. CPU time, memory, communication channels) needed by the
respective application. It is then the system integrator’s responsibility to ensures that everyone
gets the needed resources.The ARINC 653 specification contains the following sections:

Partition Management In ARINC 653 each software module is called a partition. There are
two types of partitions: Application and System Partitions. The main difference is, that
while the first kind is allowed to communicate with the OS only via the APEX Inter-
face (APplication EXecutive), the second one is also allowed to directly call core func-
tions. Partitions are the units that are scheduled by the operating system. For the partition
scheduling, ARINC 653 uses a static cyclic scheduler, which is configured in the XML
configuration file. Partitions are not allowed to preempt each other (i.e. in a partitions
time slot, only this partition can be scheduled).

Process Management Every partition can have several processes. These processes are created
and initialized at partition initialization time. The processes are managed and scheduled
from within the partition and are invisible outside of the partition:
“ The partition should be responsible for the behaviour of its internal processes. The
processes are not visible outside of the partition.“ [Com03, Section 2.3.2]

Time Management includes functionality to set timers (e.g. timed wait, periodic wait). These
functions operate on processes within a partition, i.e. if one process performs a “timed
wait“, another process of the same partition is scheduled (if the partitions slot is not over).

Memory Allocation The required memory for each partition is statically allocated via the XML
configuration file. ARINC 653 does not provide dynamic memory allocation, though
partitions are free to provide dynamic memory allocation to processes within the partition.

Inter- and Interpartition Communication ARINC 653 provides different ways of communi-
cation within and between partitions:

• Interpartition communication is the communication between two processes in dif-
ferent partitions. There are two communication modes: queuing ports and sampling
ports. It is also very important to note, that it is not important for the sender partition,
whether the receiving partition is on the same hardware module or on a different one
the way to send a message is always the same. As interpartition communication is
very important for this thesis, it is explained in detail in Section 3.2.

36

• Intrapartition Communication is the communication between two processes of the
same partition. The intrapartition communication is achieved by buffers, black-
boards, semaphores and events.

Health Monitor The Health Monitor uses knowledge about the behavior of the system (e.g.
Partition X sends a message at least once per second) to find out if a partition is misbe-
having. It is then able to restart the partition(s), or even the whole system.

Configuration In ARINC 653 all the configuration is done via an XML file. In this file, the
System Integrator is able to manage all the resources, discussed previously. His job is to
make the static schedule, configure all the necessary communication channels, and decide
whether it is necessary to add more CPU’s or not.

Verification and Validation Although Verification and Validation is listed as a main part of
ARINC 653 the only paragraph in the related section is:
“The system integrator will be responsible for verifying that the complete system fulfills
its functional requirements when applications are integrated and for ensuring that avail-
ability and integrity requirements are met. Verification that application software fulfills its
functional requirements will be carried out by the supplier of the application. ”

[Com03, Section 2.6, p.41]

3.2 Interpartition Communication in ARINC 653

Integrated systems contain a number of software modules with different safety levels on a sin-
gle hardware module. Therefore it is essential to partition these software modules in time and
memory, so that errors are contained in the module where they show up, and to prevent the
propagation into other software modules (of even higher criticality).

Nevertheless many applications require the different software modules to communicate with
each other. To guarantee a safe communication channel, which does not allow erroneous soft-
ware modules to influence the other software modules in the system, the interpartition communi-
cation system is used to monitor the communication and make sure that everything is alright. To
prevent possible faulty software modules from directly or indirectly influencing other software
modules, the interpartition communication system has to be designed properly.

To achieve this independence of the partitions, ARINC 653 introduces an interpartition com-
munication system that is strictly built on polling. That means that there is no way to signal the
receiver, that he should fetch a message. Assume that there is a signal notifying the receiver that
he got a new message. This would make it possible for a faulty sender (e.g. babbling idiot) to
indirectly influence the receiver, which would exhaust a lot of its computing time handling sig-
nals, instead of getting real work done. Of course this strictly polling based intercommunication
system has a huge impact on the performance, but performance is not what ARINC 653 is about.
As explained above we are trying to establish a communication channel between two partitions,
that does not allow either of the partitions to influence the other partition.

37

The ARINC 653 specification uses different properties to classify the different modes of
communication. Properties common to all forms of interpartition communication are that they
are message based, the data is transparent to the message passing system, sending can be periodic
or aperiodic, and the partitions access the communication channel via ports. The ports, as well
as the communication channels are defined by the system integrator in the XML configuration
file, and configured at initialization time.

Basically ARINC 653 differs between two types of communication modes: Sampling Ports
and Queuing Ports. These two categories are explained more precisely in Section 3.2. Both
of these two communication modes are message based. The data is transparent to the message
passing system. The application partitions access the communication channels via ports, which
are configured at initialization time, and specified by the XML configuration file. All messages
are atomic at the application level. That means, that either the complete message is received, or
nothing is received. Messages can be sent periodic or aperiodic, but this is up to the application,
and the ARINC 653 interpartition communication subsystem has nothing to do with that. What
the subsystem has to do, is to check whether the message is outdated or not. This done with an
apriori configured REFRESH_RATE, which specifies the maximum age of a message, before it
becomes invalid.

According to ARINC 653 [Com03] section 2.3.5.2, the communication ports are used to
communicate within a core module, between the core modules, as well as between a core module
and a non-ARINC 653 component. This project, only handles the first of these three levels of
communication. The other two are out of scope, and might be part of a following project.

Sampling Ports

Sampling ports (see [Com03], p.28) can be used to send messages at any time, but they are
restricted to fixed length messages. There exists only one copy of the message, which is over-
written every time a partition sends a new message. There is no buffering supported, therefore
messages can be lost, but the data a reader gets, always contains the newest available instance of
the message.

This communication mode is pretty simple, there is no need for buffer management because
the length of the message is known a priori (from the XML configuration file), therefore the
buffers can be set up at initialization time. Messages which are not of the right length are
discarded, because ARINC 653 says in section 2.3.5.1:

“ At the application level, messages are atomic entities i.e., either the whole message is
received, or nothing is received. Applications are responsible for assuring, data meets require-
ments for processing by that application. This might include range checks, voting between
different sources, or other means.“ [Com03, Section 2.3.5.1]

This paragraph precisely defines the border of jurisdiction between the application and the
message passing system. The message passing system has to make sure that the message arrives
in one piece at the receiver (which is definitely not possible, if the message has the wrong length),
but it has no influence on the data itself, which is application specific.

Another possibility how a message on a sampling port could get invalid is ageing. Each port

38

gets assigned a REFRESH_RATE at configuration time. This rate defines the maximum age of
the message which is acceptable. If the message gets older, it becomes invalid.Sampling ports
support uni-, multi- and broadcast. That means a message can be sent to one, multiple or all
other nodes.

Queuing Ports

In contrast to sampling ports, queuing ports (see [Com03], p.28) buffer the messages. The
buffer shows FIFO behaviour and supports fixed as well as variable length messages. Even if
variable length messages are used, the total resources usable are hard limited per queue by a fixed
maximum length of messages. Marking the message boundary/length is up to the application -
no support from ARINC 653 is given on that matter.

One important part of queuing ports is the buffer management. The buffering of the messages
makes sure that no messages are lost, i.e. several instances of the same message are recognized
by the receiving partition. ARINC 653 mandates two independent buffers, one where messages
from the sender are stored, as well as a second one, where checked, correct messages are stored.
Only messages from the second buffer can be read by the receiving partition. In contrast to
sampling ports, queuing ports support only unicast communication.

3.3 OSEK/VDX

In the following, the open OS specification OSEK/VDX [36] is summarized, looking at the high-
est conformance class extended conformance class 2 (ECC2). The lower conformance classes
are subsets of ECC2, the relation between the conformance classes can be found in [Con05],
Figure 3-3.

3.3.1 OSEK OS

The most important part of OSEK/VDX to understand the context of this thesis is OSEK/OS.
It specifies an OS, well suited for the needs of the automotive industry. The standardized API
and well defined behavior of OSEK/VDX compliant operating systems, allow high portability
of applications developed for such an operating system.

The following summarizes the essential points of OSEK/VDX, for more details, please refer
to the homepage [Con05], where all parts can be downloaded without charge, since it is an open
standard.

Task Management OSEK/VDX distinguishes between two different types of tasks, basic tasks
(BT) and extended tasks (ET). While a BT can only release the processor if it terminates,
or if it is preempted by a higher prior task or an interrupt service routine (ISR), an ET
can also go into an waiting state, allowing the scheduler to dispatch a lower priority task,
without terminating the higher priority task. An example for this would be, if the ET is
waiting for some kind of event to happen. Instead of just polling and wasting CPU time,
it can go into the waiting state, in which it is not scheduled, before the event is signaled
(more on signaling below).

39

OSEK/VDX provides a Task state Model ([Con05], section 4.2) that describes the states
a task can be in, and the transitions between those states the task state model for extended
tasks is shown in figure 3.1. For basic tasks the task state model is essentially the same,
but without the waiting state.The states a task can be in are the following:

• running - a task in the running state is currently active and executed. At all times
only one task can be in the running state. (OSEK/VDX is specified for single core
CPUs only, multi-core solutions are covered by newer versions of AUTOSAR [28])

• ready - all schedule-able tasks are in the ready state, waiting for their turn to transi-
tion into the running state.

• suspended - tasks in the suspended task are currently inactive and wait for their
activation to become ready.

• waiting - extended tasks that are waiting for some event to happen can decide to go
into the waiting state instead of wasting CPU time. A task in the waiting state will
be released from the waiting stated as soon as the desired event has happened.

running

suspendedwaiting

ready

wait terminate

startpreempt

release activate

Figure 3.1: OSEK/VDX Task state model for extended tasks [Con05, Figure 4-1, p.17]

In the OSEK/VDX task management, the scheduling policy is assigned by the system
integrator. A systems scheduling policy can be configured to be fully preemptive, non-
preemptive or mixed (both preemptable as well as non-preemptable tasks are running at
the same time). The scheduling decision itself is based on priority scheduling, with static
priorities (where 0 is the lowest priority and bigger numbers denote higher priorities).

Depending on the conformance class, one or more tasks of the same priority can exist at
the same time. If the system is configured to allow preemptive tasks, a priority ceiling

40

protocol is provided to prevent priority inversion. For non-preemptive tasks, rescheduling
happens only in the following cases:

• the running task terminates successfully

• explicit call of the scheduler by the running task

• the running task transitions into the waiting state

Interrupts - OSEK/VDX distinguishes between 2 types of interrupts:

• Category 1 ISRs do not use operating system services, and after they are finished,
execution continues exactly at the point where it was before the ISR has been called
(no influence on task management).

• Category 2 ISRs are allowed to use operating system services that are concerned with
handling interrupts (enable, disable, etc.), these ISRs prepare the system for a RTE to
run a dedicated user routine (comparable to Bottom Halves). After a category 2 ISR
has been executed, the execution does not return to the last point before the interrupt,
instead the scheduler is invoked, in order to check if a dedicated user routine (bottom
halve) has a higher priority than the current running task.

Events are a means of synchronization. They are only available for extended tasks, since they
are used to transition tasks into and out of the waiting state. Events are objects assigned
to tasks, and uniquely identified through their name and the task they belong to. At task
activation of an extended task, all the events are cleared automatically. Events can be set
by any task (also basic tasks) as well as category2 ISRs, to change the task state of the
events owner from the waiting to the ready state, but only the owner of the event is allowed
to clear the event after-wards.

Depending on the scheduling policy, the point of rescheduling is either, when the event
is set (fully preemptive) or at next point of rescheduling in non-preemptive mode (listed
above in Task Management).

Resource Management In order, to allow the concurrent task execution model described above,
resource management has to be provided, in order to assure

• mutually exclusive access to resources

• prevent priority inversion

• detect and prevent deadlocks

• and prevent the transition into a waiting state while holding resources

All these problems are high probable error sources, the goal of the OSEK resource man-
agement system is to do everything possible to prevent them from the operating system
side. To reach these goals, the following mechanisms are specified by OSEK/VDX:

41

• OSEK Priority Ceiling Protocol [Con05], Section 8.5, introduces the OSEK Pri-
ority Ceiling Protocol, used to avoid priority inversion and deadlocks between tasks.
This protocol provides a ceiling priority for each resource (this ceiling priority is
statically assigned at system generation), which shall be set to priority of the highest-
prior task using the resource. If a task with lower prior task access the resource, its
own priority is risen to the resources ceiling priority temporarily. After the task
releases the resource, its priority is set back to its old priority.
Section 8.6 of [Con05] introduces an optional extension of the OSEK Priority Ceil-
ing Protocol, that includes ISRs.

• Restrictions when using Resources OSEK/VDX defines restrictions on the sys-
tem calls that may be used, while a task is holding a resource. The calls forbidden
while holding a resource are TerminateTask, ChainTask, Schedule and WaitEvent.
As can be inferred from the names, those are the calls that invoke the scheduler and
might lead to the scheduling of another task are the ones prohibited while holding
a resource. This is a simple an effective way of assuring the mutual exclusivity of
resources, furthermore it helps to prevent deadlocks between tasks.

• Scheduler as a Resource If a task wants to prevent itself from being preempted, it
can lock the scheduler. In case a task chooses to do so, the scheduler is still invoked,
but not allowed to schedule any other tasks. Interrupts are received and processed
independently of the state of the scheduler.

Alarms are special events, offered by the OSEK OS, to activate tasks after a counter has ex-
perienced. A counter in OSEK is represented as a counter value measured in ticks, if the
counter reaches a predefined value, the alarm expires and the alarm-event is set off. The
predefined value can be specified either relative to the actual counter value (relative alarm)
or as an absolute value (absolute alarm).

A tick (i.e. an increment of he counter value) can be triggered by all kinds of external
events (i.e. interrupts). One counter source that has to be available by specification on
OSEK/VDX compliant systems is a counter incremented by the real-time clock.

While any number of alarms can be assigned to the same counter, each alarm has ex-
actly one counter and exactly one alarm-callback routine is statically assigned at system
generation time.

Error Handling OSEK/VDX defines hook routines which can be used for a variety of tasks.

Hook Routines are part of the operating system, although implemented by the applica-
tions developer. They can be seen as a possibility for the application developer to
extend the functionality of the operating system. The hook routines are called by
the OS at pre-configured events. The choice of events amended by hook routines is
left to the operating system deisgner. Since hook routines are part of the OS, they
have higher priority than all tasks, and they cannot be interrupted by category2 ISRs.
While the interface for hook routines are standardized, functionality is not, and thus
is up to the application developer.

42

Error Handling OSEK/VDX distinguishes between two categories of errors - applica-
tion errors and fatal errors. In case of a fatal error, the integrity of the operating
systems internal data can no longer be guaranteed, and the operating systems shuts
down. If an application error occurs, a system call could not be serviced properly,
but the internal data of the operating system is still assumed to be correct. If a system
service routine returns an error code, an error hook routine is called. This hook rou-
tine has to be provided by the user, who has the responsibility to bring his application
back on track.

System Startup/Shutdown All low level (hardware) initialization is up to the application
developer, the specifications of the OSEK/VDX concern only the platform indepen-
dent parts and start with the call to StartOS.
Shutdowns are a little more complicated, since each task has to be informed of the
shutdown, so it can bring potential actuators into a safe state. Therefore before the
system can actually shutdown, a shutdown hook is called.

Debugging is done via a PreTaskHook and a PostTaskHook, which are called on task
switches. These hooks can be used for debugging and measurement purposes 1.

Standardized API in [Con05], sections 12 and 13, the system services provided by the API of
an OSEK/VDX compliant operating system are specified. This API must be the only way
for the application to use the above described operating subsystems, like alarms, events,
etc.

3.3.2 Other parts of OSEK/VDX

OSEK/VDX consists of multiple parts, OSEK OS described previously is the most important
one for this thesis, while the other parts do not really play a role in this context, as the intent
is to port a OSEK OS compliant system as a proof of concept. Full compliance to all parts of
OSEK/VDX is out of scope. But for completeness, here is a short list of the other parts:

OSEK COM - Communication Layer specifies a message based communication for inter-
processor communication - it shows a stunning resemblance with ARINC653 interpar-
tition communication. Details about this can be found later in section 5.4.

OSEK NM - Network Management provides a standardized way for configuring networks of
OSEK/VDX nodes, initialization of networking peripherals, network start-up, network
monitoring and a lot more. Everything that is needed to start, maintain and diagnose a
network of nodes running OSEK/VDX compliant nodes.

OSEK OIL - OSEK Interpretation Language specifies a standardized configuration mecha-
nism for OSEK/VDX compliant nodes. The configuration files as defined by OSEK OIL
are per node (single CPU nodes only), and do not include network configuration.

1An example experienced during this thesis was a stack overflow that happend due to a poorly implemented first
shoot at the context switch. The stack overflow happened after several task switches. Using hooks, it was very easy
to locate the problem.

43

OSEK Time - Time-Triggered OS specifies a time-triggered variant of OSEK VDX, the dif-
ferences are e.g. time-triggered scheduling and the like. It is also possible to run a mixed
variant, were a standard OSEK OS is run in one or multiple time slots of the time-triggered
OS.

OSEK FTCom - Fault-Tolerant Communication provides a standardized time-triggered net-
working variant that in order to achieve better fault-tolerance than with the standard OS-
EK/VDX networking layer.

3.3.3 ISO17356

As mentioned above, OSEK/VDX is an open standard, that can be obtained for free at [36]. In
addition to this open standard, it has been transferred into an IEC standard, with the official ISO
number ISO 17356. The following list shows the document version of the open standard, that
has been the basis for IEC 17356:

• OSEK Glossary (located in OSEK Binding 1.4.1 [Con99a], part of ISO 17356-1, which
consists of a ISO-style introduction and the glossary)

• OSEK Binding Specification (base: OSEK Binding 1.4.1 [Con99a], ISO 17356-2 with
exception of the glossary)

• OSEK OS (base: OSEK OS 2.2.1 [Con05], ISO 17356-3)

• OSEK COM (base: OSEK COM 3.0.2 [Con04], ISO 17356-4)

• OSEK NM (base: OSEK NM 2.5.2 [Con99d], 17356-5)

• OSEK OIL (base: OIL 2.4.1 [Con99c], ISO 17356-6)

3.3.4 AUTOSAR

While OSEK/VDX is currently the most used operating system standard in the automotive in-
dustry, its successor AUTOSAR [28] is on its way to take over. The main reason for this is
definitely the fact that the newest release - AUTOSAR 4.0 - is the first operating systems stan-
dard taking multi-core CPUs into account. Since the days of single-core CPUs are counted, this
a real important topic that will shake the safety-community over the next years.

For this thesis AUTOSAR will not be used, the reason is simply its size and the fact that
AUTOSAR is based on OSEK/VDX, so every application written for an OSEK/VDX compliant
operating system can also be executed on a AUTOSAR compliant operating system.

3.4 Establishing a Mapping between ARINC653 and OSEK

Since OSEK/VDX does explicitly support an integrated approach, a mapping against ARINC653
- which is a very common standard within the avionics community - will show that an integrated
approach can be applied to OSEK/VDX as well. The mapping is done in several steps:

44

• A dictionary that maps expressions used in both standards to each other.

• A table showing a rough outline of which mechanisms are mapped against each other.

• To map mechansisms that can be directly mapped, the requirements of the OSEK/VDX
runtime environment will be used.

• Mechanisms that are only described in one of the two standards have to be considered,
and it has to be shown they do not contradict the standard in which they are not included.

Dictionary

Table 3.1 contains a list of expressions that describe the same concept in ARINC 653 and OS-
EK/VDX respectively. It is important to have those expressions as a basis for the rest of the
mapping of the two standards.

ARINC653 OSEK/VDX
process task
port message object
sampling port unqueued message
queuing port queued message
intrapartition communication internal communication
interpartition communication external communication

Table 3.1: Dictionary of matching vocabular: ARINC 653⇔ OSEK/VDX

ARINC653 OSEK/VDX
partition management mixed OSEKtime / OSEK/VDX System
process management task management

interrupt processing
memory management

buffers and blackboards Interaction Layer
Message Communication Levels Internal/External Communication
queuing ports and sampling ports Interaction Layer + virtual Network Layer

events event mechanism

Table 3.2: Matching components in ARINC 653 and OSEK/VDX

Mapping ARINC653 / OSEK

Next the components of the respective standards that map well together are listed in table 3.2.
As you can see some of the entries do not have a counterpart. They will be explained in more
detail in the next section, but most of the time this means that this component is hidden from the

45

application through abstraction. In example interrupt processing in OSEK/VDX does not have
counterpart in ARINC 653. This does not mean that ARINC 653 compliant operating systems
do not use interrupts at all, it just means that interrupts are abstracted through the ARINC 653s
APEX interface.

Mechanisms without a match

While the previous section handled those mechanisms that are described in both standards, thus
allowing a 1:1 mapping, this section is handling those mechanisms described in only one of the
two standards.

To complete the mapping, the important thing in this section will be to give a rational, why
these mechanisms are no contradiction to the standard they are not in. The order in this section
will be first mechanisms that are in ARINC653 but not in OSEK/VDX, and then those which
are in OSEK/VDX and not in ARINC653.

Mechanisms without a match – ARINC653

Partition Management The fact that parition management is part of the ARINC653 specifica-
tion and that it is not included in OSEK/VDX is the reason for this whole document.

Although OSEK/VDX does not support partition management as described by the IMA
approach in ARINC653, in Section 7 of [Con01], the possibility to run an OSEK OS
on top of an OSEKtime OS is described. The mode of operation described in such an
mixed OSEKtime / OSEK/VDX System is very similar to a hypervisor (OSEKtime OS)
taking control over the system and telling a guest (OSEK OS) when it is allowed to run.
Nevertheless, at this very high level view, the similarities end, since the OSEK OS is not
scheduled at preconfigured points in time, but when OSEKtime OS is idle.

From mapping all the other parts of the two standards to each other, we can conclude that
OSEK/VDX is suitable for an integrated approach, just as ARINC653 is.

Memory Allocation Since OSEK/VDX does not contain parition management, it does not in-
clude memory allocation either. In an integrated approach, it will be necessary to ensure
the independence of OSEK OS instances. Therefore memory is allocated statically during
configuration time.

Semaphores While ARINC653 defines semaphores to synchronize process, OSEK/VDX does
not explicitely define semaphores. But since OSEK/VDX uses semaphores e.g. to explain
the problems of synchronisation mechanisms [Con05, Section 8.4.1], Semaphores cannot
be a contradiction to OSEK/VDX.

Message Communication Levels ARINC 653 defines in section 2.3.5.2 three levels of com-
munication, depending on the communication boundaries they cross:

• Within core modules (communication between processes)

• Between core modules (communication between partitions)

• Between core modules and a non-ARINC653 component (communication with ex-
ternal entities)

46

OSEK/VDX on the other hand only distinguishes between internal and external com-
munication [Con04, Sections 2.3.2 and 2.3.3]. Clearly the first level of communication
in ARINC653 maps directly to internal communication in OSEK/VDX, which describes
the communication between tasks in OSEK/VDX and between processes in ARINC653.
Furthermore the two other levels of communication in ARINC653 can be considered as
special cases of external communication, and can hence be both be mapped to external
communication in OSEK/VDX. The only difference between those two in a paravirtu-
alized OSEK/VDX runtime environment will be that the Network Layer has to transfer
them via a different communication medium.

Mechanisms without a match – OSEK/VDX

Interrupt Processing As already mentioned, while ARINC 653 does not define interrupt pro-
cessing to the application through the APEX interface, OSEK/VDX gives some guidance
in Section 6 of [Con05]. It introduces 2 categories of interrupts - category 1 is not allowed
to use most of the OS services and does not pose a point of rescheduling (no impact on
task management), while category 2 is allowed to use all of the OS services and when the
ISR is exited the scheduler is triggered to choosing the next task to be scheduled.

Alarms While OSEK/VDX defines alarms for event and time management, ARINC 653 has
those 2 split up into two parts - time management covering those alarms triggered by the
passage of time, and event services covering those alarms triggered by other events (be it
software or hardware driven).

3.5 IEC 61508

The IEC 61508 is a generic standard for functional safety, giving guidance to developers of safety
critical applications. Generic in this case means nothing else than that it is not an application
sector standard, but it could be used in all industries. Usually it is used if the industry has no
standard for functional safety. Being generic, it often is used to derive new, industry specific
standards from it. This is why it is sometimes referred to as “the mother of all functional safety
standards“.

Unfortunately safety standards as the IEC 61508 are often (especially by beginners) seen as
a “list of requirements that have to be fulfilled to get my system certified“ when it should be seen
as a common starting point between the developers and the authorities, kind of a common basis
that establishes the current state of the art and gives guidance on how the process of developing
a safe system should be approached.

IEC 61508 consists of a set of 8 documents, these 8 parts are numbered from 0 through 7,
where part 0 is an introduction to functional safety, parts 1-4 are basic safety publications, and
parts 5-7 give additional guidelines to other parts (details below). Parts 1-4 are the normative
part of the standard, while parts 0 and 5-7 are only informative. The following list gives a short
overview on the content of the various parts, to give an idea what this is all about.

47

Part 0: Functional Safety and IEC 61508 [IEC10a] As mentioned above Part 0 is and infor-
mative part of the standard and gives a lot of valuable definitions and explanations about
safety and especially functional safety. Although the definitions given in Part 4 are more
exhaustive than those in Part 0, the basis for understanding the purpose of the IEC 61508
and the impact it has on system design and development is build here. While some of the
other parts might not be of outmost importance for everyone involved in the life-cycle of
the system, this is the part that is mandatory for everyone to read and understand. There-
fore, some of the most important definitions given in Part0 are given in the following. First
we start with the term safety which is defined as:

“Freedom from unacceptable risk of physical injury or of damage to the health of people,
either directly or indirectly as a result of damage to property or to the environment.“

[IEC10a, Clause 3.1, p.13]

Right afterwards the term functional safety is defined as:

“Functional safety is the part of the overall safety that depends on a system or equipment
operating correctly in response to its inputs.“

[IEC10a, Clause 3.1, p.13]

During the design phase, two important steps have to be carried out, the hazard analysis
and the risk assessment. From these two steps in the design phase, two sets of require-
ments can be derived:

Safety function requirements are identified during the hazard analysis, these require-
ments answer the question What safety function has to be performed?

Safety integrity requirements are identified during the risk assessment, these require-
ments answer the question What degree of certainty is necessary that the safety
function is carried out?.

These two sets of requirements assure that the goal of functional system safety - the correct
function of the electronic system - is reached.

Part 1: General requirements [IEC10b]

In order to make development of a safe system even possible, some general pre-requisits
have to be satisfied. Those are mainly of organisational nature and include general prob-
lems such as competence of personel, configuration management and qualtiy assurance.

Furthermore the objectives that have to be met by the system development lifecycle are
contained in this part, that means, tha this part is concerned with all parts of the system
including mechanic, pneumatic, . . . parts. The goal is to analyze the system as a whole,
identify the hazards imposed by the system, assign a system integrity level and find miti-
gations at the system level to mitigate the identified system level hazards.

48

Part 2: Requirements for E/E/PE safety-related systems [IEC10c] While part1 looked at the
overall system, part2 establishes the objectives an E/E/PE (electric/electronic/programmable
electronic) (sub-)system has to fulfill. Those objectives are really specialized due to the
nature of problems arising from the use of E/E/PE (sub-)systems and also due to the huge
increase in complexity introduced by those systems. As an example think of a simple
analog PID controller compared to a modern computer hosting a controller application.

Part 3: Software Requirements [IEC10d] The above example already mentions the controller
application running on a modern computer based control unit, indicating that a programmable
electronic device is nothing without the software running on it. Again the nature of soft-
ware - its flexibility on the one and its error prone nature on the other hand - is very
different and the objectives that are especially important for software thus are handled in
its own part.

Part 4: Definitions and Abbreviations [IEC10e] A full list of definitions and abbreviations is
found in this part. Although the terms used in standards are very often the same, their
exact meanings differ very often which makes it necessary to have such a dictionary in
every single standard.

Part 5: Examples of methods for the determination of safety integrity levels [IEC10f] One
of the first and probably hardest problems in developing a safety critical application is to
determine the hazard the application imposes and eliminate hazards where possible. Then
the safety integrity level is assigned according to the criticality of the remaining hazards.
Mitigations to those hazards are found, to assure that the probability of an accident is rea-
sonable low provided it is below the intolerable threshold. This is called the ALARP (as
low as reasonable practicable) principle.

Part 6: Guidelines on the application of IEC 61508-2 and IEC 61508-3 [IEC10g] (Safety)
Standards are usually written in a really abstract and slightly cryptic manner that has to
be interpreted. In order to help with the interpretation, part6 gives some guidance on how
objectives should be understood.

Part 7: Overview of techniques and measures [IEC10h] parts 1-3 list a number of methods
that are considered state of the art and that are suggested to be used for development.
Part 7 gives short introductions as well as a list of pointers to more elaborate literature of
those methods. As the title says, this is just an overview to get an idea of how a method
works. In order to use it a lot more additional literature and experience is needed. Part 7
is mapped to parts 2 and 3 via tables (Annex A and B) that allow to select the adequate
methods for the problem at hand.

3.6 ISO 26262 Road vehicles – Functional safety

Although the automotive industry produces systems that are highly safety critical, complex
(highly coupled with dependent subsystems) systems there was no mandatory safety certifi-

49

cation for road vehicles. Therefore no industry standard was available for a very long time 2

although some of the most critical systems built on this planet are road vehicles. When engi-
neers talk about risks, failures and failure modes they often state that aeroplanes are of higher
criticality than road vehicles because they do not have a safe state. But on the contrary a crash
of an airplanes subsystem leaves usually (except for take-off and landing) 3 enough time to just
restart the system. A restart that takes several seconds is no big deal for an airplane, if a criti-
cal subsystem (breaks, engine control, . . .) of a car is down for several seconds, an accident is
almost inevitable.

This all changed with the release of ISO 26262 [STA11a] in fall 2011. Now finally the
automotive industry has to comply to the standardized safety requirements set by ISO 26262
and has to proof it the safety of its systems to the authorities.

Being a derivative of IEC 61508 the aim it takes is very similar to that of IEC 61508, summa-
rized in the last section. Therefore just a short list of the most important things that ISO 26262
brings into the automotive industry is given:

• A full development life-cycle at system, hardware and software level, that helps to reduce
the number of systematic faults by forcing a rigorous system of verification and validation
activities on the application designers and developers.

• It provides the functional safety basis for modular and compositional systems which have
traditionally not been in use in the automotive industry.

• A sector specific risk classification and risk mitigation categorization is introduced - the
Automotive Safety Integrity Level (ASIL). ISO 26262 takes the strong role that the operator
(driver) plays in the system into account. Notably, IEC 61508 explicitly de-scopes human
factos and humans as part of the system being considered, this shift of focus was needed
to fit the application sector.

• Gives guidance on objectives to meet the safety requirements in order to make the systems
resdiual risk as low as reasonable practicable (ALARP).

• Gives guidance of objectives for design, developement, verification and validation of mod-
ern automotive applications.

The goal of applying all those methods, is to assure that the residual risk in the vehicle is
reduced to a minimum and maximzing the safety of the users. More details and clauses important

2Some might argue, that there is no need to make vehicles safer, as the majority of accidents are caused by
the drivers anyway - the author will not go into this discussion, although this might have been true for the first
ABS systems, but the author cannot agree for modern road vehicles that contain assisted parking, comfort braking
assistents or other “safety features“ that change the vehicles behaviour depending on sensor readings.

3Although there is no hard evidence as studies comparing those two areas, this is a safe statement as airplanes
can - depending on the altitude and their aerodynamic properties - travel for quite a long distance, even if all engines
are lost. This distance is defined by the Lift/Drag ratio (see [KM07, p.123] for details). In example: a plane with a
Lift/Drag ration of 15:1 can travel 15 000m in distance for each 1 000m of altitude.

50

1 Vocabulary

2 Management of functional safety

7
Production

and

operation

3

Concept

Phase

4 Development

 system level

5 Devel.

 HW level

6 Devel.

 SW level

8 Supporting processes

9 ASIL-oriented and safety-oriented analyses

10 Guideline on ISO 26262 (informaitve)

4 De nitions

and abbreviations

1(clauses 7.1 - 7.6)

System aspects

1(clauses 7.13 - 7.17)

System aspects

2
Realistation

E/E/PE

systems

3
Realistation

safety-related

software

5 Risk

based

approaches

6 Guide-

lines for the

application of

parts 2 and 3

7 Overview

of techniques

and measures

ISO 26262 IEC 61508

Figure 3.2: Overview of how ISO 26262 and IEC 61508 normative parts map to each other.

to this thesis will be introduced later in chapter 4. In order to show the relationship between IEC
61508 and ISO 26262, there is a mapping between the normative parts of those two standards in
figure 3.2, where the parts related to each other are connected with dashed lines.

Concluding it should be noted that the importance of ISO 26262 for the industry was defi-
nitely triggered by the ever increading complexity of automotive systems. Over recent decades
more and more electronic subsystems are added to road vehicles essentially making it necessary
to “running 100 million lines of code to get a premium car out of the driveway“ (see [1]). New
approaches and techniques are needed to being able to handle this increase in complexity. The
goal of this thesis is to look into some of the techniques that are suitable to reach this goal (see
chapters 4 to 7).

3.7 EN 50128

The EN 50128 (Railway applications - Communications, signalling and processing systems -
Software for railway control and protection systems is a standard on functional safety in the

51

railway domain issued by CENELEC, the European Committee for Electrotechnical Standard-
ization.

Although the standard itself is not relevant to the thesis itself, it is included, since it is
the very first safety standard that defines open-source software as COTS software, and gives
directive on how open-source software shall be treated in safety-critical applications. Therefore
the open-source components used in this thesis could in principle be used for safety-critical
applications4. The exact clause refered to so far is:

“pre-existing software
developed software not compliant with this European Standard, e.g.
– COTS (commercial off-the-shelf) and open-source software,
– software previously developed but not in accordance with this European Standard
– software that was developed according to a previous version of this European Standard“

[WGA08, Clause 3.18]

3.8 MISRA-C

The idea of avoiding undefined behavior of the C programming language by using only a subset
of the programming language during development, has been around for quite some time [Hat94].
The automotive industry managed to standardize such a subset that fits the needs of the industry.
This standard is published by the Motor Industry Software Reliability Association (MISRA) and
therefore is called MISRA-C [MIS04]. Software that is MISRA-C compliant, can be safer than
non-MISRA-C compliant software, since undefined behavior (see section 2.5.1) is avoided by
following a set of rules defined by the standard. In case a rule cannot be followed, this has to be
documented and justified in the code documentation. To prove MISRA-C compliance, several
checker are commercially available. The rules themselves are mostly best practice anyway.
Some of them seem strange at first, and it is not that easy to understand their meaning, unless
you understand undefined behavior in the C programming language well.

Knowledge of a wide range of standards is a powerful tool in safety engineering. Knowing
the standards allows one to choose the right standard(s) and use the guidelines given by the stan-
dards to ones advantage. Standards– including safety standards – contain the domain knowledge
collected over decades by the experts that wrote that standard. Even if some constructs seem
odd at a first glance, thinking about them usually reveals their intention and helps to deepen
ones own safety knowledge

4Of course only, if their suitability is shown.

52

CHAPTER 4
Safety Case

“ A safety case communicates a clear, comprehensive and defensible argument (supported by
evidence) that a system is acceptably safe to operate in a particular context.“

[STA11b, clause 9.1]

Although this definition already gives a good explanation on the purpose of a safety case,
Section 4.1 gives a more detailed introduction to safety cases, necessary to understand why
a safety case is used in this thesis to analyze the OVERSEE platform. This introduction is
followed by the proposal of safety case layering in Section 4.2 and a high level safety case for
the OVERSEE platform in Section 4.3.

4.1 Introduction to Safety Cases

Although the above cited clause in ISO 26262 defines the purpose of a safety case and is followed
by the suggestion (later in the same clause) of using a graphical argument notation such as
GSN [OCYL11], the standard does not mention one of the big problems of how safety cases
are constructed today. Unfortunately, safety cases very often tend to be badly structured or even
unstructured monoliths, that are seen to be unique for each individual system and have to be
completely redone for each (re)certification. But already today and even more in the future, a
well structured safety case is required, as

• Safety-critical and safety-relevant systems are becoming more and more complex - both
hardware and software are gaining more and more features and/or use COTS components
that were not explicitly constructed for the safety domain.

• Security is a topic relevant in many safety critical systems in operation today, as everything
is connected to the internet.

53

• FLOSS software is used for some of the building blocks of the system.

• Applications are ported to other OSs or hardware platforms without touching the actual
application code.

As these points are important to understand why the high level safety case for the OVERSEE [3]
platform (4.3.2) was constructed this way, the problems emerging from them are elaborated.

Due to the ever increasing complexity in safety critical systems1 , it will be of outmost impor-
tance for the future, to find new strategies to handle this complexity. While there are strategies
at the design level, the construction of safety cases is still done in a monolithic way, demanding
for a review of the whole safety case even if only small changes are made. Also, by definition,
a more complex concurrent software has more bugs in the code base to be found than a compar-
atively simple single threaded software application, thus the chance that a recertification due to
bug-fixes will be needed increases with the complexity of the system as well. Another property
of modern safety critical systems that increases the probability of fixes and recertification is the
need for security. While an unknown security related bug can be considered as very improbable
to be exploited (e.g. just as a safety related bug that has not been found during testing, static
analysis, code reviews), the probability of the bug being exploited rises abruptly as soon as the
bug gets known (in comparison to a purely safety related bug whose probability of striking stays
the same after being found). Although this elevation of probability is not very easy to grasp at
first, it becomes obvious if you think about an example. Assume that a safety critical application,
which is employed in an isolated environment (read as: does not have any security requirements
at all) and has been in operation for one year uses some FLOSS library. After the first year of
operation a bug in this library is found and made known publicly. Although you might want
to apply the patch to fix the bug, nothing has actually changed, and the probability of the bug
getting you into trouble stays the same. Now assume the very same system is connected to the
internet and the bug is a security bug. As long as it was unknown, the probability of it being
exploited was very small - someone not involved in the development of the library would have to
find it before the developers of the library did - but as soon as the issue becomes public knowl-
edge, the probability of someone exploiting the bug becomes very high very fast. And of course
if someone exploits this security related bug, the safety of the system is at stake as well.

Furthermore FLOSS is by its nature more dynamic than proprietary software - at least for-
mally this is the claim - so any safety strategy must take into consideration the effects of this
dynamics from the very outset or it will result in no more than an unmaintainable monolithic
safety case. FLOSS is not suitable for monolithic safety cases - and IEC 61508 contrary to
common claims, is sufficiently flexible to accommodate for the needs of utilizing FLOSS.

The next section of this chapter suggest a layered approach on constructing a safety case,
with the intend to render handling the complexity possible, as well as increasing the main-
tainability. After that an example of such a layered safety case is given on the example of a
partitioned system based on the XtratuM hypervisor, namely the OVERSEE [3] platform.

1Especially the automotive industry - see [1]

54

Requirements and

Specification Layer

Design Layer

Implementation

Layer

Management

Layer

Figure 4.1: Proposed Layering for the Safety Case

4.2 Implementing a Layered Safety Case

Structuring a safety case is nothing new, it has been done for a long time. One of the ways
used is a layered safety case as introduced in [?]. To the contrary of the layering proposed in
the following, Bishop and Bloomfield are talking about one big safety case that is organized
hierarchically. In the following the term layered safety case is more partitioning the safety case
into different levels (layers) of abstraction, each of which is then argumented in a hierarchical
way. The layering of the safety case proposed in this thesis is depicted in Figure 4.1. The layers
this approach includes are the following:

Requirements and Specification Layer At this layer, the safety case investigates the require-
ments and the specification as introduced by the used standards. In this case this could be
ISO/IEC17356 (OSEK/VDX), POSIX, SuSv3,...

Design Layer At this layer the design and its conformance with the standards introduced in the
requirements and specification layer are investigated.

• If only subsets of chosen standards or specifications are used, these subsets have to
be well documented and rationalized.

• Requirements for the system are derived from (a subset of) the chosen standards.

• Selection of an appropriate design methodology - an accepted design method (e.g.
RTSAD) is chosen

Implementation Layer At this layer, the actual implementation is evaluated. Strategies to ar-
gue the compliance with standards and specifications can be found in the GSN diagram
of this layer. The goal of this layer is to clarify two major components of the overall ap-
proach, first it has to describe the conformance evaluation of the systems components and
secondly it shall contain a well specified integration process.

55

Management Layer One more layer has to be added, to assure the consistency throughout the
development. This management layer contains all the organisational kind of things that
hold the other three layers together, like in example the definition of the development
life-cycle or a strategy on how to maintain the traceability over all documents and source
code.

As already mentioned, for each of those four layers, a GSN (Goal Structured Notation) dia-
gram and a data dictionary are used to document the decisions in a structured and maintainable
way. To produce those GSNs a special tool for safety case development with GSN was used:
D-Case [37].

The big advantage of layering the safety case in this manner, is that it is not necessary to
touch the higher layers if the implementation changes. As a matter of fact it will not even be
necessary to touch the requirements and specification layer, until e.g. a new version ISO/IEC
17356 is used. This is especially important for being able to keep up with highly dynamically
developed software.

One might argue, that this approach is not desirable, since the SIL level can only be consti-
tuted for the whole system, and since the application is unknown this is not possible here. But
if you turn your argumentation around and say that “as long as the application sticks to (this
subset of) the API provided by the OSEK RTE, SIL X can be reached“ it is possible to benefit
from this layering.

The safety case will be represented using GSN [OCYL11, KM98, Ye05] an introduction to
GSN can be found in section 2.6. While some resources on GSN give a more detailed description
of the entities using a table, most of them do not give any guidelines on that at all. In order
to get a complete methodology data dictionaries as described and used in structured design
[DeM81, Goo01] are used.

The last thing that has to be established before diving into the example, is the enumeration
scheme used to create unique identifiers for the items in the GSN. The identifiers consist of 3
parts, the first part identifies the kind of GSN item this is (e.g. G for goal, S for solution, ST
for strategy). The second part is the layer this item belongs to (e.g. RS for requirements and
specification layer, D for design layer, I for implementation layer and M for the management
layer) and the third part is a consecutive number for all items where the first two parts are the
same.

4.3 High-Level Safety Case

Since developing a complete and rigorous safety case is a very time consuming task, it is clearly
out of scope for this thesis. Thus only the initial iterations of a safety case for the proposed
design is are presented, with a focus on the most critical part - the high-level safety case. The
safety case is developed as described above, and uses the GSN as described in section 2.6 and
amends GSN by data dictionaries similar to the ones used in RTSA.

56

4.3.1 Requirements and Specification Layer

The goal of the requirements and specification layer is to make sure, that the chosen standards
and guidelines are appropriate for this kind of system. Basically the goal here is to justify why
the chosen standards and specifications are relevant, and to make sure that these chosen standards
and specifications do not contradict each other. The GSN of the requirements and specification
layer is shown in Figure 4.2, the companioning data dictionary is in the remainder of this section.

Goal:G.RS.1

Chosen Standards and

Specifications are appropriate.

Evidence:S.RS.1

Proven in Use:

ARINC 653, IEC

17356

Evidence:S.RS.2

Review of Standards

(SuSv3, POSIX, ...)

Strategy:ST.RS.1

Show, that divergence of

standards is not a safety

problem.

Strategy:ST.RS.2

Show Consistency of

Standards.

Evidence:S.RS.3

Consistent mapping

between standards is

possible.

Goal:G.RS.2

Project specific

requirements are

appropriate.

Evidence:S.RS.4

Review of the project

specific requirements.

Figure 4.2: GSN of the Requirements and Specification Layer

G.RS.1 The overall goal of this layer, is to show that the chosen standards and specifications
are appropriate. For those that are in wide use in the community, this will be very easy,
for others a little more work has to be done to assure that they are in fact suitable.

S.RS.1 Those standards and specifications that are in wide use in the industry, or other safety-
relevant industries can potentially be declared as proven in use. The necessary standards
for the approach taken in this thesis are listed in the following with a short rational why
they are considered.

• ARINC 653 originates from the avionics industry. As shown in Section 3.4 it can be
cleanly mapped to OSEK/VDX. The advantage of ARINC 653 over OSEK/VDX is
that it includes hard requirements on the independence of partitions (applications),
and explicitly allows an integrated approach. On the functional level, OSEK/VDX is
a subset of ARINC 653, so using ARINC 653 instead of OSEK/VDX makes sense,
as it is suitable for automotive as well (since it is a superset of OSEK/VDX), it
guarantees us the independence of applications that is needed.

57

• IEC 17356 is the IEC standardized version of OSEK/VDX (see 3.3.3), and the most
used OS specification in the automotive industry at the moment.

• IEC 61508 is the generic standard for functional safety. Since the derived standard
for the automotive industry (IEC 26262) is a bit vague in some parts, back referenc-
ing to the original standard will be necessary.

• IEC 26262 [STA11a] is the new standard for functional safety for the automotive
industry, which has been released in November 2011. Wide endorsement of this
standard in the automotive industry is expected within the next years, thus this is
a key standard to consider if the concepts should be suitable for the automotive
industry.

S.RS.2 Standards and specifications that are not in wide use in the automotive industry, or any
other safety-relevant industry, need to be reviewed. If parts are not needed or not suitable
for an automotive application, these restrictions have to be documented and the chosen
subset justified.

ST.RS.1 Although this is not expected, it might happen that at some point there will be a slight
divergence from the standards in use. These divergences have to be documented and it has
to be shown that these divergences do not pose a safety related problem.

ST.RS.2 The Consistency of the chosen standards is important, in order to guarantee that no
ambiguous interpretations and mixtures of standards can happen.

S.RS.3 One way to meet ST.RS.1 and ST.RS.2 is by establishing a mapping between the stan-
dards in question. An example for ARINC 653 and OSEK OS is done in the mapping
in section 3.4. Although a 1:1 mapping is not possible, it can be shown that the both are
compliant on large parts, and that OSEK/VDX is a subset of ARINC653. Basically, im-
posing additional requirements on OSEK (e.g. no shared address spaces of tasks) could
result in an 1:1 mapping.

G.RS.2 Applying the right standards and specifications, only makes sense if the requirements
are appropriate, so it has to be assured the requirements are correct and complete.

S.RS.4 The requirements have to be validated by review, deficiencies have to be documented
and fixed (iterate if necessary!).

4.3.2 Design Layer

In this layer, the chosen standards and specifications from the requirements and specification
layer have to be investigated further. While the requirements and specification layer has already
justified why the chosen standards and specifications are relevant and appropriate, the design
layer has to define which subsets of the chosen standards are relevant and will therefore be used.

The GSN of the design layer is shown in Figure 4.3, the companioning data dictionary is in
the remainder of this section.

58

Goal:G.D.1

The design is sufficiently

mature and suitable for the

system.

Goal:G.D.2

Well defined subsets of

coding standards chosen.

Goal:G.D.3

Evaluation of the high-level

architectures and derived

safety requirements.

Strategy:ST.D.1

Check against safety

standards

Evidence:S.D.1

Document Review.

Undeveloped:U.D.1

Figure 4.3: GSN of the Design Layer

G.D.1 The overall goal of the design layer, is to show that the design is suitable and sufficiently
mature and compliant with relevant standards. In this layer, the standards and specifica-
tions chosen in the requirements and specification layer are further investigated and used
to derive the requirements that must be met to reach the necessary safety integrity level.

G.D.2 The first step is to choose an appropriate subset of the chosen standards and specifica-
tions.

S.D.1 The used subsets of chosen standards and specifications shall be documented and ratio-
nalized.

G.D.3 The approach to evaluate the appropriateness of the design process is given in [IEC10d,
clause 7.4] .

• The software architecture has to fulfill the requirements for software safety to meet
the anticipated SIL level.

• The requirements imposed on the software by the hardware have to be evaluated and
reviewed.

• The toolchain used for the project has to be suitable (appropriate programming lan-
guage, compiler, linker as well as appropriate tools for verification, validation, as-
sessment and modification).

59

• It has to be assured that the resulting software is analysable and verifiable.

ST.D.1 Safety standards give some guidance on the design, document the compliance with the
standards guidelines or argue why deviations are necessary/permissible and show that all
the objectives are met (see [IEC10c, 7.4] and [IEC10c, 7.4]).

U.D.1 Note, that G.D.3 as well as ST.D.1 have been left undeveloped due to time reasons but
that is fine as requirements development is an inherently iterative process - the documented
state of requirements development is thus just the first few iterations. Essential though is to
observe that these intermediate states can, and should, be validated and verified allowing
early detection of potential issues.

4.3.3 Implementation Layer

The implementation layer contains the part of the safety case, that is concerned with assuring,
that the actual implementation is compliant with the requirements, the specification and the
design of the system. The GSN of the implementation layer is depicted in Figure 4.4 and has
three parts, with the intention to show that

• the independence between partitions (applications) is guaranteed,

• the hypervisor is safe,

• and the OSEK runtime environment for the applications is safe.

Due to its size this GSN was split into two parts depicted in Figures 4.4 and 4.5, were Figure
4.4 is the starting point, and Figure 4.5 is the extension of 4.4, visualized by the overlap of goal
G.I.6.

G.I.1 The overall goal is to argue, that the implementation is able to allow several independent
applications (possibly with different safety integrity) to run on the designed platform.

J.I.1 The pre-requisite for the safe execution of an safety-relevant application on top of this
architecture, is, to be able to guarantee that the environment of this application is safe. To
show that the environment is in fact safe, the overall argument is broken into three part
parts, that show that:

• the hypervisor itself is implemented in a safe manner,

• the independence of the partitions is given, in order to contain errors in those parti-
tions and prevent them from influencing independent partitions,

• the OSEK runtime environment (RTE) inside of the partition is safe.

These three parts cover all parts of the system’s software, except for the application itself.

60

Goal:G.I.1

The platform provides a

framework to allow

application to be safe.

Justification:J.I.1

Covering hypervisor, partitions

and interactions between

partitions means complete

coverage of the system.

Strategy:ST.I.1

Show that the independence

between applications is

guaranteed.

Justification:J.I.2

ARINC 653 based design

supports independence.

Goal:G.I.3

Memory areas of applications

are strictly partitioned

Goal:G.I.4

Guarantee Independence in

time through cyclic scheduling.

Goal:G.I.5

Show that no dependencies

through communication are

possible (strict polling

semantics).

Evidence:S.I.1

Code Review.

Evidence:S.I.2

Formal Methods:

Proof of Separation.

Evidence:S.I.3

Configuration

Review.

Evidence:S.I.4

Testing

Strategy:ST.I.2

Show that faults in the

hypervisor are eliminated

through diversity.

Goal:G.I.6

Show independence of faults in

diverse hypervisors.

Goal:G.I.2

The chosen OSEK runtime

environment is suitable.

Evidence:S.I.5

MODISTARC

conformance tests

Evidence:S.I.6

Conformance to

MISRA-C

Figure 4.4: GSN of the Implementation Layer - Part 1/261

Goal:G.I.6

Show independence of
faults in the diverse
hypervisors.

Goal:G.I.7

Di erent, independent
development lifecycles.

Goal:G.I.8

Show independent
semantic properties.

Goal:G.I.10

Speci cation
independence of
the DLC.

Goal:G.I.11

Design Independence
of the DLC.

Goal:G.I.12

Implementation
Independence of the DLC.

Goal:G.I.9

Demonstrate
independence of fault
manifestation.

Evidence:S.I.9

Fault Injection

Evidence:S.I.7

Di erent system
models (monolithic
vs. nanokernel).

Evidence:S.I.8

Formal Methods:
information ow
analysis (indirect
proof).

Evidence:S.I.10

Documentation of
deviation of
speci cation.

Evidence:S.I.11

Documentation of
deviation of Design
approach.

Evidence:S.I.12

Con guration
Management.

Evidence:S.I.13

Bug-Tracking
System

Evidence:S.I.14

Coding Style /
Coding Guidelines

Evidence:S.I.15

Revision Control
System

Figure 4.5: GSN of the Implementation Layer - Part 2/2

62

Goal:G.M.1

Show suitability of

software management.

Goal:G.M.2

Traceability over

documents and

code is assured.

Goal:G.M.3

Configuration

Management

Goal:G.M.4

All persons involved have

the required level of

competence.

Justification:J.M.2

61508-1, Annex B,

"Competence of Persons"

Goal:G.M.5

The DLC is consistent

and suitable.

Evidence:S.M.1

Usage of a modern

Revision Control

System (e.g. git)

Evidence:S.M.2

Usage of mechanisms

to prevent commiting

complex patches.

Evidence:S.M.3

Automatic configuration

checks (e.g. detect

overlaps in memory)

Evidence:S.M.4

Assessment of the

competence of all

persons involved.

Evidence:S.M.5

Documentation of

the DLC.

Evidence:S.M.6

Evaluation of

consistency of the

DLC.

Justification:J.M.1

IEC 61508-1, clause 6:

"Management of functional safety"

Figure 4.6: GSN of the Management Layer

63

ST.I.1 To allow the execution of several applications of different criticality, it is vital to assure
the independence of the partitions. To show that the partitions are independent, three
properties have to be proven:

• spatial partitioning (independence in memory - G.I.3)

• time partitioning (independence in time - G.I.4)

• and that no dependencies can result from the communication amongst partitions
(independence in communication - G.I.5)

If all three of these properties can be shown, the hypervisor guarantees that the partitions
can run completely independent of each other.
For the proof of independence, Rushby’s [Rus81] proof of separability will be used.

J.I.2 Showing that the partitions (applications) are independent is explicitly stated in IEC 61508-
3 [IEC10d]:
“7.4.2.7 Where the software is to implement both safety and non-safety functions, then all
of the software shall be treated as safety-related, unless adequate independence between
the functions can be demonstrated in the design.
7.4.2.8 Where the software is to implement safety functions of different safety integrity
levels, then all of the software shall be treated as belonging to the highest safety integrity
level, unless adequate independence between the safety functions of the different safety
integrity levels can be shown in the design. The justification for independence shall be
documented.“

[IEC10d, Clauses 7.4.2.7 and 7.4.2.8]

These two clauses show us, that this approach - if done correctly - is also OK from the
functional safety side.

G.I.3 As stated in ST.I.1, the first property that has to be proven, is the independence of the
partitions in memory. 2

S.I.1 Code reviews to assure that appropriate memory protection mechanisms are in place shall
be conducted.

S.I.2 To assure the independence in memory, formal methods using the rules defined in Rushby’s
proof separability [Rus81] shall be used.

G.I.4 The second important property, that has to be shown is the independence in time. This
independence in time is achieved by using a statically configured, cyclic scheduler. The
configuration is done in an XML configuration file which is read at compile time. NOTE:
Shared devices were an important topic here. If devices are shared between different
partitions, they need to be handelted at the highest SIL of all interacting partitions.

2NOTE: This will also require hardware analysis, which is descoped for this thesis.

64

S.I.1 Code reviews of the configuration tools and the scheduler itself shall be done.

S.I.3 Automatic checks of the XML configuration file shall be done at compile time, in order to
assure the consistency and validity of the configuration.

G.I.5 Apart from partitioning in time and memory, it has to be guaranteed, that faulty parti-
tions cannot influence non-faulty partitions. To reach this goal, only pre-defined (XML-
configuration file) communication channels are available for interpartition communica-
tion. Furthermore, these channels follow strict polling semantics. This means, that a faulty
partition (e.g. babbling idiot) cannot influence a non-faulty partition, since the non-faulty
partition reads messages only on its own will. You can find a more detailed description of
these communication mechanisms in 3.2.

S.I.1 Code reviews shall be conducted, to assure that the strict polling semantics are adhered to.

S.I.4 Rigorous testing is sufficient to complete the argument of independence at the communi-
cation level. Due to the simplicity of the communication semantics, exhaustive testing of
the communication channels polling methods seems feasible.

ST.I.2 Depending on the targeted safety integrity level, a diverse approach on hypervisor level
can be used to increase the safety integrity (see [IEC10g, E.3] for an example on diversely
implemented software).

G.I.6 The goal is to argue, that a fault is sufficiently unlikely to manifest itself in diverse hyper-
visor’s in the same behavior.

G.I.7 Differing development life-cycles are the first indication of the diversity amongst the cho-
sen hypervisor’s.

G.I.10 If the hypervisor’s follow a different specification, this is already the first step towards
diversity.

S.I.10 Documentation of the different specifications (e.g. ARINC 653, SuSv3, AUTOSAR)
used as basis for the hypervisor, and the relevant deviations between those specifications.

G.I.11 Diversity at the design level highly increases the level of diversity between hypervisors.

S.I.11 The different design approaches shall be documented.

G.I.12 A different approach at the implementation level is taken.

S.I.12 Document how configuration management is handled differently.

S.I.13 Document the use of different bug-tracking systems.

S.I.14 Document whether the hypervisor’s follow different coding styles/guidelines.

S.I.15 Document which RCS (revision control systems) are used and in which way the flow of
code into the main repository defers.

65

G.I.8 The independence of the semantic properties of the hypervisor’s in question shall be
shown.

NOTE: This excludes the inter-partition communication system, as the strict polling se-
mantics of this mechanism is a key element to reach independence between partitions.

S.I.7 Using hypervisor’s with a different system model decreases the probability of faults mani-
fest themselves in the same way. So in example, employing a two out of two system where
one hypervisor is based on nanokernel architecture, while the second one uses a mono-
lithic approach is already a big step to introduce a high degree of diversity. A classification
of operating systems and available system models can be found in section 2.1.

S.I.8 To show the impact of different system models, a indirect proof based on an information
flow analysis [DD77] shall be done.

G.I.9 The divergence in fault manifestation shall be demonstrated.

S.I.9 Fault injection is used to demonstrate die divergence in fault manifestation.

G.I.2 The OSEK RTE shall be suitable. The solutions to reach this goal are:

S.I.5 The MODISTARC conformance tests, to make sure that the implementation is function-
ally compliant to the OSEK standard.

S.I.1 A code review to assure the quality and correctness of the code is possible, since the code
base for the OSEK RTE is relatively small.

S.I.6 A checker can be used to prove the compliance to the MISRA-C coding guidelines.

4.3.4 Management Layer

Now that the three layers that contain all the technical justifications are defined, a fourth layer
that holds them together and contains all the management stuff needed in the other three layers
is established. The GSN of the management layer is shown in Figure 4.6, the companioning data
dictionary is in the remainder of this section.

G.M.1 The overall goal of the management layer, is to assure that the development is managed
in a well defined way, and that all the requirements for a successful certification process
are met.

J.M.1 The management of functional safety is defined in [IEC10b, Clause 6]. The important
clauses are:

• 6.1.1 and in more detail 6.2.1 state that a well defined development life-cycle has
to be defined.

• 6.1.2 states that the responsibilities of the involved persons has to be well docu-
mented.

66

• 6.2.1 o) gives some guidance on configuration management.

• 6.2.2 requires us to rigorously document all actions.

G.M.2 In order to assure that all actions taken during the development life-cycle, as required
in [IEC10b, Clause 6.2.2], the traceability over all documents and source code as to be
assured.

S.M.1 To reach G.M.2, it is vital to use an modern RCS (revision control system), in order to
get a full history over the complete development life-cycle. In this thesis the tool chosen
for this task is git [33].
A document to describe the integration of the RCS system into the development life-cycle
shall be done, this document needs to specify formal things like naming conventions for
tags and the like.

S.M.2 In order to extend the capabilities of git, hooks to assure things like:

• compliance to coding style or guidelines

• no empty commit messages

• no submission of giant patches

All these can be used to enforce permanent quality assurance measures. A document
listing and documenting the used hooks shall be provided. Changes to the hooks have to
be logged into this document.

G.M.3 As stated in [IEC10b, Clause 6.2.1 o)], the procedures for configuration management
have to be well specified.

S.M.3 Since the approach taken by ARINC 653 is a static configuration, automatic checks on
the correctness of the XML configuration file can be implemented. Such automatic checks
can in example be used to verify, that there are no overlapping memory areas or that the a
priori defined cyclic schedule is feasible. But also other basic properties like the validity of
the static, cyclic schedule, duplicated interpartition communication channels or channels
with only one partition attached can be checked easily.

G.M.4 To assure the quality of the resulting system, the competence of the persons involved
has to be appropriate.

J.M.2 A list of skills that shall be assessed is given in [IEC10b, Annex B].

S.M.4 An assessment of the competence of persons shall be done. The requirements of skills
and the depth of the assessment heavily depends on the targeted SIL level.

G.M.5 The basis for a successful development of every safety-relevant system lies in the defi-
nition of and compliance with an appropriate development life-cycle. It has to be assured,
that the employed DLC is appropriate for a safety relevant system.

67

S.M.5 The first thing to do, to even being able to show the consistency of the DLC is to fully
specify and document it.

S.M.6 The specification of the DLC from S.M.4 shall now be used to evaluate the consistency
of the DLC.

This section has shown, that it is indeed possible to argue the safety of a platform with a
virtualized environment, and thus that the OVERSEE platform can be made safe, although some
adjustments might be necessary (e.g. dual channel diverse hardware) to reach higher safety
integrity levels.

68

CHAPTER 5
Implementation Details

In the following the efforts that have to be taken to create an OSEK/VDX compliant runtime
environment in a XtratuM partition are described.

First an assessment (Section 5.1) of existing FLOSS implementations is done. The rest of
the chapter (Sections 5.2 to 5.5) can be seen as a step-by-step guide of things to do when porting
the chosen implementaion (FreeOSEK) to a new (hardware) platform, as the same steps would
be necessary to do a port to another hardware platform - except that very often instead of low-
level assembly language a XtratuM hypercall is sufficient. On the other hand, this also gives an
insight on the problems and efforts for everyone who wants to port a new runtime environment
to the XtratuM hypervisor or another para-virtualized environment with a similar hypercall API.

The following sections also include a detailed description of which steps already have been
achieved successfully, and gives an insight into the parts that will need more work. To anticipate
the most important thing first: As of this writing, FreeOSEK can be used as an XtratuM runtime
environment, but more work will be needed to make a full compliant version possible, most
notably in the task management and communication subsystem some (re)work will be necessary.

5.1 Assessment

This section is going to document the assessment that was done to chose the components for this
thesis. Due to the connection to OVERSEE project [3] some of the components (e.g. XtratuM2)
are a given and do not have to be chosen. The only software component that is left still open at
this point, is a suitable FLOSS implementation of the OSEK operating system specification.

5.1.1 Selection Criteria

Before a selection can be done, the criteria that are of importance and relevance for the use-
cases intended to run in the OSEK/VDX compliant runtime environment have to be established.
The selection of an FLOSS licensed OSEK/VDX implementation shall then be based on these

69

criteria. The following criteria are a mixture of indicators for code OSEK/VDX compliance,
usability and quality as those are the things of importance for an OSEK/VDX compliant runtime
environment.

Code size: To get a feeling on the size of the code base, David A. Wheeler’s tool SLOCCount
will be used, to count the lines of code in the project. Furthermore, a short estimation
on the distribution of the code (OIL parser, OS core, OS communication, arch dependent
code,..) will be done. The most important value here will be the architecture dependent
code, since it gives an idea on how much work a port to a new platform (namely the
XtratuM2 hypervisor) will be.

Code quality: The questions raised in this section, are: Does the Project follow any coding
guidelines or standards? How well are deviations from those standards documented? Are
data types defined by OSEK used thoroughly?

Code Documentation: The consistency of documentation / code will be evaluated in this sec-
tion.

Level of OSEK/VDX compliance: One important aspect of this assessment will be, whether
OSEK/VDX is implemented fully (if parts are missing - which ones?). Furthermore de-
viations from the standard as well as non-standard extensions and their impact will be
evaluated.

Safety considerations: A very important criteria is, whether or not a design choice was made
that has an obvious (good or bad) influence on safety. I.e. if there is any property of the
design or implementation that makes a certification very hard/easy.

5.1.2 FLOSS OSEK implementations

Before a selection can be done, the OSEK/VDX implementations that are up for debate are
analyzed in regard of the criteria established above, so that a decision can be made after wards.

5.1.2.1 Trampoline

Trampoline 1 is mainly developed by people from the Real-Time Systems group of IRCCyN
(Jean-Luc Béchennec, Mikaël Briday, Sébastien Faucou and Yvon Trinquet). The project has
external contributors: Jean-François Deverge from IRISA, Trame group from ESEO (Jonathan
Ilias and Jérôme Delatour) and Greensys. Trampoline is available for a number of hardware
architectures (e.g. arm, avr, c166, ppc) and is licensed under a BSD license2.

Lines of Code: Running sloccount on the top level directory reveals the following numbers on
lines of code in the project. The result of shown in Table 5.1

1trampoline.rts-software.org
2For details see the License file in the subversion repository: https://trampoline.rts-software.org/svn/trunk

70

Programming Language Lines of Code (Percent of Total)
ansic 66897 (91.5%)
asm 2430 (3.33%)
python 1498 (2.05%)
java 1004 (1.37%)
sh 549 (0.75%)
cpp 484 (0.66%)
objc 193 (0.26%)

Table 5.1: Total number of LoC of Trampoline grouped by language (dominant language first)

This means, a number of different languages have been used to implement the different
parts of trampoline as well as the tools that are packaged with trampoline and used to
configure / compile / run it. The numbers that are really interesting here are the numbers
for code written in C and assembler. Since several architectures are supported, a detailed
table over three architectures has been done (see 5.2 for the results), in order to get the C
and assembler code of the architecture dependent part. This helps to find out how much
of the code will need some work, and how much is generic code that (hopefully) should
not need any attention.

Arch NR Boards ansi-c asm
ARM 5 12392 1204
PPC 3 901 324
166 1 335 0

Table 5.2: LoC of architecture dependent code in trampoline.

Level of OSEK/VDX compliance / Deviations from OSEK/VDX: During the quick review per-
formed on the documentation and code, there were several deviations from OSEK/VDX
that were spotted. The sections mentioned in the deviations are sections in the trampoline
manual, which can be found in
trunk/documentation/Manual/main.pdf.

In section 2.5.3 two additional task states “for internal management“ are introduced. There
is an “autostart“ state for tasks that shall be run automatically when the OS is (re)started,
and a “ready_and_new“ state for tasks that are ready but have not been initialized yet.
Both of those additional states are not necessary. The “autostart“ should not be necessary,
since there is an autostart flag defined in the oil, allowing to mark processes that should be
started automatically at compile time. These processes should then be loaded into ready
automatically, and no dedicated states are necessary, and both states are neither mentioned
in OSEK/VDX nor in AUTOSAR.

71

In addition it has to be noted for the “ready_and_new“ state, that tasks that are preempted
are rescheduled at the point where they were preempted, so putting initialization at the
beginning of the process is just fine, a new state is not required to get this functionality.

Of course there could be reasons for introducing those additional states, but in that case
a rational should be provided why this extension of the specification is needed. Such
a rational is not available, this is not acceptable. Manual section 7.1 mentions expiry
points of a schedule table, but OSEK OS [Con05] does not specify anything about expi-
ration of schedule tables or the like in OSEK. Apparently this has been introduced when
the developers started to introduce autosar into trampoline. These non-compliance issues
introduced by those extensions have to be considered very critical as it implies incompa-
bility with existing implementations. Thus these noted, very low-evel deviations from the
OSEK/VDX specification are to be considered severe and will make an impact on the final
decision.

Code Quality: Trampoline seems to follow the MISRA-C (see Section 3.8 coding guidelines.
Although no official statement on that matter was found there are a couple of comments
explaining why some MISRA-C rules have been broken. Nevertheless it has to be noted
that a full MISRA-C compliance would be expected to be documented in a report (includ-
ing a deviation matrix).

Code Documentation: Trampoline’s documentation is done inline using the doxygen code
documentation framework. This includes both, the users manual as well as the devel-
opers manual. The developers version contains more detailed information. This doxygen
output contains just the code documentation, there are other documents describing differ-
ent subsystems (interrupts, task state model, api) and there is the trampoline manual has
already been used above.

5.1.2.2 FreeOSEK

FreeOSEK 3 [38] is a OSEK implementation started by Mariano Cerdeiro. It currently runs on
ARM and on POSIX compliant platforms, so you can test it on your Linux desktop machine.
FreeOSEK is licensed under GPLv3 with link exception. This means, that you can link your
code into FreeOSEK and can still license your code under whatever license you want (free or
proprietary). According to the FreeOSEK homepage, they currently run about 80% of the OSEK
conformance tests, and of those about 95% of the tests pass. In addition, FreeOSEK is tested,
using the static code checking tool splint.

Lines of Code: As above with trampoline, sloccount is run on the top level directory. The result
is shown in Table 5.3.

So this time we got fewer different programming languages and the assembler part is a lot
smaller (in comparison to the lines of C code) than in trampoline. The difference is by a
factor of 4.8 which means the probability that trampoline includes a lot more architecture
dependent code is very high.

3opensek.sourceforge.org

72

Programming Language Lines of Code (Percent of Total)
ansic 19219 (83.00%)
php 2626 (11.34%)
perl 1135 (4.90%)
asm 145 (0.63%)
ml 31 (0.13%)

Table 5.3: Total number of LoC of FreeOSEK grouped by language (dominant language first)

FreeOSEK/Drv/Adc/inc/arm7 ansic: 26
FreeOSEK/Drv/Adc/src/arm7 ansic: 7
FreeOSEK/Drv/Dio/inc/arm7 ansic: 26
FreeOSEK/Drv/Dio/src/arm7 ansic: 33
FreeOSEK/Drv/Mcu/inc/arm7 ansic: 15
FreeOSEK/Drv/Mcu/src/arm7 ansic: 47
FreeOSEK/Drv/Pwm/inc/arm7 ansic: 22
FreeOSEK/Drv/Pwm/src/arm7 ansic: 63
FreeOSEK/Drv/StartUp/asm/arm7 asm: 71
FreeOSEK/Drv/StartUp/src/arm7 asm: 74
FreeOSEK/Os/inc/arm7 ansic: 285
FreeOSEK/Os/src/arm7 ansic: 89
FreeOSEK/Posix/inc/arm7 ansic: 5
FreeOSEK/TestSuite/inc/arm7 ansic: 8
TOTAL: asm: 145

ansic: 626

Table 5.4: Architecture specific code in FreeOSEK

Arch Specific LoC: In FreeOSEK, the arch dependent code is sprinkled all over the tree, in the
Table 5.4 you find the numbers for arm7, listed with the according directory. From the
directory names, you can see, that this includes really all the arch dependent code, even
drivers (Adc, Dio), System Initialization, etc.

Code Quality: The Code Quality of FreeOSEK is comparable to Trampoline, the code seems
to stick to the most important MISRA-C rules (e.g. those that are hard to satisfy after
wards). Except from those minor MISRA-C deviations the code is very readable and easy
to understand.

Code Documentation: The code documentation in FreeOSEK is done using the doxygen inline
documentation system. This documentation contains not just the code documentation, but
also manuals and HowTos are woven into the doxygen output.

73

5.1.3 Result and Rational for Choice

Based on the four key properties that were evaluated per choice, this section is making a selection
and gives a rational for the actual choice. As a short reminder, the four key properties were:

• semi-formal metrics

• code review (code quality and documentation)

• OSEK conformance

• safety considerations

As the approaches taken by the two projects are very different, the comparison seemed to be very
hard at the beginning. After trying to do the first steps of porting for both of them, it became
clear very quickly, that one is easily portable to new platforms and the other is not. The Problem
of lies in the approach taken how the OIL configuration file is woven into the implementation:

Trampoline uses its own compiler called goil to read the configuration file and generate ar-
chitecture dependent code. That means that all the architecture dependent stuff is actually
inside the logic of goil and preliminary tests made it clear that getting into goil re-
quires a high expertise in compiler programming.

Furthermore code generators are amongst the tools that are really hard to argument for
safety related project. Using a tool like this makes certification really hard, as there are no
easy ways to prove that goil works as specified.

FreeOSEK uses a simple php script to parse the configuration file and generates header files
that are used to initialize statically allocated data structures. This is a very simplistic
approach but does exactly what it is supposed to do. Furthermore the architecture specific
parts of FreeOSEK are very small and easily accessible as they are stored in normal C
source and header files instead of a complicated compiler.

This also simplifies the certification process, as the code generated by the configuration
generator and the output of the tool can be verified by code review. The compiler used
for compiling the binary is gcc which is one of the most used C compilers today and a
argument around ïncreased confidence from useßhould be sufficient - at least for projects
with low and medium criticality.

According to this assessment FreeOSEK was chosen, basically for the smaller part of archi-
tecture dependent code, the fact that FreeOSEK sticks to OSEK/VDX and does deviate (except
for mechanisms not implemented yet) from it. Furthermore the approach for the code generation
from the OSEK OIL configuration file is a lot more reasonable. It is not only easier to under-
stand and modify on a technical level, but also very easy to justify in an safety argument as the
code that is produced by the code generator is just the initialization of some structs, which can
easily be justified by a code review of the output.

74

5.2 Adaptation of the Build System

Following the example of the Linux kernel, the architecture dependent portions of FreeOSEK
are located in directories, nicely separated from each other as well as from the generic parts
of the code. In the FreeOSEK source tree, the directories containing platform dependent code
are easily identifiable, as the directories name is the name of the platform (e.g. arm9), so the
very first step in porting FreeOSEK to a new architecture, was to create directories for the new
platform (xm), and the files included in those directories (basically the same filenames as in
the directories of the other platforms). Those new files contain declarations and definitions of
the needed functions and macros - those were preserved as they are needed for the XtratuM
architecture as well, but the Hardware dependent (i.e. assembly) code was removed. This step
does not sound too interesting, but finding out which parts of the OS should be kept and what
has to go is not always an easy decision. Furthermore, this step really helped to deepen the
knowledge about the internals of FreeOSEK acquired during the assessment phase.

The next step to running FreeOSEK inside of an XtratuM partition, was to adapt FreeOSEK’s
build system, so that the resulting binary would be accepted by XtratuM. The most important
thing here is, that FreeOSEK must not be compiled as an executable binary, but instead it has to
be compiled as an relocatable object, that can be linked into an XtratuM partition - if necessary
even in multiple partitions - at a memory address that is specified at configuration time in the
XtratuM configuration file. The following section describes the efforts that have to be taken to
run FreeOSEK as an runtime environment in a XtratuM partition.

Later, this relocatable object will be moved by the xmpack tool into its place in the XEF 4.
The XEF format is basically a binary format in which the binaries of all partitions, the configu-
ration as well as XtratuM itself are incorporated into a single container. This container can then
be downloaded into the targets memory.

CFLAGS += -Wall -c -m32 -fno-strict-aliasing -fomit-frame-pointer

CFGFILES += examples$(DIR)xm_hello$(DIR)etc$(DIR)FreeOSEK.oil

LIBXM_PATH=/home/andi/xm_oversee/xm/user/libxm
LFLAGS += -static -nostdlib $(COMMON_PATH)/std_c.o \

$(COMMON_PATH)/traps.o $(ARCH_PATH)/arch.o \
$(ARCH_PATH)/boot.o \
-T/home/andi/xm_oversee/xm/user/examples/ia32/loader.lds \
-L$(LIBXM_PATH) --start-group $(LIBGCC) \
--end-group -m elf_i386 -Ttext=0x800000

This set of compiler and linker flags has been taken from the examples in the XtratuM tree.
For production code, it might however be necessary to add flags that provide safety relevant

4Xtratum Executable Format - for details see: [MR11, Section 6.5]

75

features to the resulting binary. For now, this set is sufficient and no flags are changed or added,
as this might easily cause problems not relevant for the rest of the porting efforts.

After this stage it is already possible to boot into FreeOSEK, and to put some xprintf’s5

into the init code. Since most of the initialization code is generic (e.g. load the data of the
application’s task) this is already done without any changes to the FreeOSEK code base. The
next point that really needed attention, was the x86 specific code for the task management.

5.3 Task Management

In order to assure a flawless scheduling of tasks, it has to be assured,that for each possible point
of rescheduling, the transition from the old to the new task is done properly (properly meaning
broadly that the task has no trace of its interruption at the logical or data level - at the temporal
level it may be visible). Which actions have to be performed during dispatching, depends on the
event that led to the rescheduling - that is on the point of rescheduling itself. OSEK OS lists the
following 4 points of rescheduling for non-preemptive scheduling:

• Task Termination

• explicit activation of successor task

• explicit call of the scheduler

• a transition into a waiting state takes place

A quick look at those four points of rescheduling reveals, that the first two can be handled
with little effort. For those two, the task context of the old task does not have to be saved, since
it terminates, before the new task is scheduled. Therefore, all that was needed to get a basic
version of FreeOSEK running on XtratuM, was to set the stack pointer to the stack of the new
task, and jump into task itself. This way, simple examples that activate non-preemptive tasks,
and chain non-preemptive tasks can already be run. If preemptive scheduling is desired, the
following extended list of points of rescheduling has to be considered:

• Task Termination

• Explicit activation of successor task

• Activation of a task at task level

• Explicit call of the scheduler

• A transition into a waiting state takes place

• Setting a task to a waiting state
5xprintf is a library function of libxmwrapping a XM_write_console, giving the application programmer a way

to use formatted printing to the raw console for debugging.

76

• Release of a resource at the task level

• Return from interrupt level to task level

In order to allow preemption of tasks (either voluntarily by going into waiting states or
involuntarily by hitting one of the points of rescheduling from the above list), the context has to
be saved before and restored after rescheduling, this part of the task management is not clean
yet and will need some rework so it can be considered done. For a proof of concept as necessary
by the OVERSEE project, other parts of OSEK are more important and will therefore need to be
handled before finishing up task management.

5.3.1 Counters and Alarms

As described above, one way a task can be activated, is if an alarm has expired. Each alarm
is triggered by exactly one counter. Counters can be incremented by all kinds of events but
one of the most common ones are timers, in order to allow timed activation of tasks. All that
was to do, to allow alarms that wake up tasks, was to add an IRQ handler which is triggered
by the virtualized XM timer interrupts. Inside of this IRQ handler a counter is incremented,
using the OSEK defined IncrementCounter() call. The virtualized timer is configured
in the initialization code of FreeOSEK. Now one or more alarm(s) can be associated with the
counter in the OIL configuration file of the application, to make those alarms go off as soon as
the counter has reached its limit. An example for such configuration looks like this (only the
part that deals with counters and alarms):

COUNTER HardwareCounter {
MAXALLOWEDVALUE = 100000;
TICKSPERBASE = 1000;
MINCYCLE = 1;
TYPE = HARDWARE;
COUNTER = HWCOUNTER0;

};

COUNTER SoftwareCounter {
MAXALLOWEDVALUE = 100000;
TICKSPERBASE = 100;
MINCYCLE = 1;
TYPE = SOFTWARE;

};

ALARM IncrementSWCounter {
COUNTER = HardwareCounter;
ACTION = INCREMENT {

COUNTER = SoftwareCounter;
};

77

AUTOSTART = TRUE {
APPMODE = AppMode1;
ALARMTIME = 1;
CYCLETIME = 1;

};
};

ALARM ActivateTaskA {
COUNTER = SoftwareCounter;
ACTION = ACTIVATETASK {

TASK = TaskA;
}
AUTOSTART = FALSE;

};

The first section describes a hardware counter, that is incremented by the ticks from the
virtualized XtratuM timer interrupts. This counter is used to increment a software counter using
an alarm IncrementSWCounter. If this software counter has an overflow, the ActivateTaskA
alarm is triggered, and the OSEK task TaskA goes from state suspended to state ready.

This looks like a waste of resources, but if you want different Alarms triggered by the same
hardware timer, you have to configure multiple software counters, which then activate the vari-
ous tasks.

5.4 Interpartition Communication

Communication in OSEK is defined in [Con04], which defines the main goals of this specifica-
tion as follows:

“It is the aim of the OSEK COM specification to support the portability, re-usability and
interoperability of application software. The API hides the differences between internal and ex-
ternal communication as well as different communication protocols, bus systems and networks.“

[Con04, Section 1.1, p.5]

From this paragraph we already can deduce, that connecting FreeOSEK to the message
passing interpartition communication system that is provided by XtratuM is conforming to the
specification. More importantly, the latter part stating that communication protocols as well as
communication media should be transparent to the application implies, that it has to be possible,
to run a legacy OSEK compliant application, that uses OSEK COM. Specifically it can be run
in an FreeOSEK runtime environment communicating via the XtratuM interpartition communi-
cation system instead of let’s say a CAN bus, without even knowing it, and without the need of
changing a single line of application code.

78

One further thing we can take into account, is the mostly ARINC 653 compliant interpar-
tition communication system provided by XtratuM, and the resemblance of the OSEK Com
system and the ARINC 653 interpartition communication system. This similarity in communi-
cation mechanisms leads to a huge simplification in the external communication which can be
done with wrapper functions for the XtratuM hypercalls, which configure the XtratuM (ARINC
653) ports to behave the way expected from FreeOSEK and allow an OSEK Com compliant
interface. Things like FIFO buffers for queueing messages do not have to be implemented, since
they already are implemented in the XtratuM core.

5.4.1 Internal Representation of Communication Channels

Before the mapping of XtratuM’s interpartition communication channels can be done, it is nec-
essary to understand FreeOSEK’s internal representation of messages, and the OSEK compliant
API calls that are used to invoke communication. First we focus on receiving a message 6, and
the OSEK compliant call for receiving messages looks as follows:

StatusType ReceiveMessage {
MessageIdentifier Message,
ApplicationDataRef DataRef
}

The details of the behavior of this call can be found in [Con04, p. 51] - everything omitted
here can be found there. For now it is important to find out how FreeOSEK implements the
MessageIdentifier type as well as the ApplicationDataRef type.

While the API is well documented in [Con04], the internal data structures are documented
in the FreeOSEK code using doxygen tags, unfortunately some of the code is not present before
running the generator scripts, so the available choices are to either read the PHP code of the
generator scripts or write a simple example configuration file and use the generated code to
learn about the internals of FreeOSEK.

The configuration in this example defines one message with the name MessageA. In the
code that is generated by FreeOSEK this message is simply mapped to a numeric value by a
#define macro in the header file Com_Cfg.h:

#define MessageA 0U

The configuration data defining the properties of MessageA are found in an array of type
Com_RxMsgObjCstType:

extern const Com_RxMsgObjCstType Com_RxMsgObjsCst[1];

In this example, only one message is defined in the configuration file, therefore the table only
contains one entry - the entry for MessageA. Now we can find out what data this internal type

6The sending part is almost the same anyway.

79

Com_RxMsgObjCstType provides - flags defining the kind of message this is (external/inter-
nal, periodic/direct/mixed, as well as the notification callback type), furthermore the size of a
message, a pointer to the data and the network used to receive the message from are given.

/** \brief Receive Message (and network) Object Const type

** definition

**
** \param Flags Receive Flags, for more details see

** Com_MsgFlagsType type definition

** \param Size Size of the network message in bits

** \param Data pointer to the memory to stor the data

** \param Net network message

**/
typedef struct {

Com_MsgFlagsType Flags;
uint16 Size;
uint8* Data;
Com_NetType Net;

} Com_RxMsgObjCstType;

Note, that the message does not provide any fields dedicated to protection against faults
(neither does XtratuM for that matter), therefore a protection mechanism against faults (e.g.
CRC, sequence numbers) would have to be implemented at the application level.

5.4.2 Mapping FreeOSEK Channels to XtratuM Channels

The assumption in OVERSEE [Con10] is that all communication to a physical bus or network is
conducted via the secure I/O partition. This also means that no FreeOSEK partition has access
to a physical bus and all communication can be assumed to be via the XtratuM communication
mechanisms.

To achieve this kind of communication, a mapping between OSEK messages and XtratuM’s
ports has to be done. Internally this handled via the struct Com_RxPortsType, which maps an
OSEK message represented by the pointer to the message object MsgObj to a port represented
by the portname and the portdesc. Furthermore key properties of the port are stored here as well.

typedef struct {
Com_RxMsgObjCstType *MsgObj;
int portdesc;
char portname[MAX_PORT_NAME_LENGTH];
uint32 maxMsgSize;
uint32 maxNumMsgs;

} Com_RxPortsType;

80

Figure 5.1: Configuration of a System with multiple OSEK partitions

In order to allow configuration of this messages to ports mapping, a simple port-mapping tool
was developed that allows to do the configuration of the ports in an XML file and automatically
generates the configuration of the ports and paste it into the code generated by the PHP generator
script.

The principle of the resulting configuration scheme is shown in figure 5.1, where the system
consisting of the XtratuM hypervisor and N partition is depicted int he lower left corner. At com-
pile time the XML configuration file for XtratuM (xm_cfg.xml) is read and statically compiled
into the binary. In addition a portmap.xml file for each OSEK partition maps the ports of the
partition (configured in xm_cfg.xml) to the messages that can be used in the OSEK compliant
application code. The following shows a simple example of such a mapping:

<PORT_MAPPING>
<PORT id="0" portname="readerS" messagename="MessageA" \
type="SAMPLING" direction="DESTINATION" portsize="10" \
msgsize="512" />

</PORT_MAPPING>

This simple OSEK runtime environment uses only one sampling port, which is available
in XtratuM under the name readerS, and is mapped to the OSEK message with the name
MessageA.

81

5.5 Implementation Summary

Even if this prototype of the FreeOSEK runtime environment has restricted capabilities, the im-
plementation shows the feasibility of running an OSEK compliant operating system as a Xtra-
tuM runtime environment, fulfilling one of the main missions of OVERSEE - reuse of existing
automotive applications in a security enhanced environment with minimum effort.

Furthermore, the theoretical mapping between OSEK compliant communication and AR-
INC 653 compliant communication could be proven valid and compatible to the point where a
legacy OSEK compliant application can be moved into a XtratuM runtime environment with a
virtualized communication system replacing a legacy physical communications system, without
the need of adapting the application itself.

The next steps in the port of FreeOSEK to XtratuM will be the cleanup of the context switch,
in order to allow fully preemptive task scheduling. This is also the pre-requisite for most of the
MODISTARC [Con99b] tests which are already implemented in FreeOSEK and help to show
the compliance with the OSEK/VDX specifications and finally the integration of the FreeOSEK
port into the overall OVERSEE architecture proof-of-concept framework.

82

CHAPTER 6
Design of an Example Application

There is little doubt that there is a wealth (literally) of code and solutions that were built around
OSEK in the automotive industry. To allow reuse of these components and the intellectual
property behind it, the practical part of this thesis is providing an OSEK partition on top of
the OVERSEE platform, to effectively demonstrate the feasibility of migrating an OSEK based
application to an integrated platform based on partitioning, a typical OSEK application is to be
included in the OVERSEE demonstrator. This chapter designs such a generic application than
can be run in other OSEK compliant operating systems.

6.1 The Lifecycle of a Safety Critical Application

While the application itself may seem trivial, which many safety related applications actually
are, the intention is to demonstrate key qualities of the integrated approach:

• Safety and security properties retaining composeability

• Reuse of OSEK applications

As mentioned above, this chapter contains the full design of this simple safety critical appli-
cation. The approach taken is to collect the requirements (Section 6.2), do a naive, preliminary
high-level design (Section 6.3, use this naive design to perform a hazard analysis (ection 6.4) and
use the output of the hazard analysis as an input for a refined, high-level design (Section 6.5).
Then, from this finalized high level design a detailed design is done (Section 6.6). This detailed
design again is analyzed for potential hazards - this time a FMEA (Section 6.7) is performed on
the interface of the detailed design.

Note, that this approach of starting with a preliminary design is done by choice even encour-
aged by safety standards to choose this way of approaching the problem at hand. For example

83

in IEC61508-1 Ed.2 this approach can be found in Section 7 Overall safety lifecycle require-
ments, more specifically in clause 7.3:

“7.3 Overall scope definition
NOTE - This phase is Box 2 of Figure 2.

7.3.1 Objectives

7.3.1.1 The first objective of the requirements of this subclause is to determine the boundary
of the EUC and the EUC control system.

7.3.1.2 The second objective of the requirements of this subclause is to specify the scope of
the hazard and risk analysis (for example process hazards, environmental hazards, etc.).

7.3.2 Requirements

7.3.2.1 The boundary of the EUC and the EUC control system shall be defined so as to
include all equipment and systems (including humans where appropriate) that are associated
with relevant hazards and hazardous events. NOTE - Several iterations between overall scope
definition and hazard and risk analysis may be necessary.

7.3.2.2 The physical equipment, including the EUC and the EUC control system, to be in-
cluded in the scope of the hazard and risk analysis shall be specified. NOTE - See references [9]
and [10] in the bibliography C.

7.3.2.3 The external events to be taken into account in the hazard and risk analysis shall be
specified.

7.3.2.4 The equipment and systems that are associated with the hazards and hazardous
events shall be specified.

7.3.2.5 The type of accident-initiating events that need to be considered (for example com-
ponent failures, procedural faults, human error, dependent failure mechanisms that can cause
accident sequences to occur) shall be specified.

7.3.2.6 The information and results acquired in 7.3.2.1 to 7.3.2.5 shall be documented.“

[IEC10b, Clause 7.3]

So how does this section support the approach taken in designing this indicator control ap-
plication? The interpretation of this clause, and the reason one can be confident that it is suitable
for this task is as follows. First of all it defines two objectives:

• Determination of the system boundary - the system boundary is formally specified in the
data context diagram of the naive design.

• Specification of the hazard analysis - this is done in the preamble of the analysis. In this
thesis two hazard analysis with different scopes are performed, a HAZOP on the system
level and a FMEA on the API of the application.

84

So the objectives can be met by doing a naive design first. The requirements on the Overall
scope definition are met by the following properties of the preliminary design:

Clear definition of the boundaries - everything inside of the bubble in the data context dia-
gram is part of the system

Anticipate external events - all external interrupts as well as data passed from the environment
into and out of the application are defined in the data context diagram

Associate (sub)systems with hazards - in data flow diagram 0 the preliminary (naive) design
is broken into three modules, the association of hazards to those modules is done during
the HAZOP that is carried out on this design in Section 6.4

Accident initiating events - consideration of accident initiating events will be handled in the
form of a list after the preliminary design.

Also, as noted in clause 7.3.2.1 several iterations might be necessary, in order to get to an
appropriate level of the overall scope definition, this leads to a process for getting to a high-level
design as shown in Figure 6.1, where the iterative approach used in this Chapter is sketched.

Brainstorm

Formalize/Refine

Analyze Hazards

Finalize

Figure 6.1: Process of defining the Overall Scope

The steps taken in the process (depicted in Figure 6.1) map to the sections of this chapter as
follows:

Brainstorm this is an informal collection of requirements done in Section 6.2

Formalize/Refine depending on whether it is the first time or an iteration:

85

• in the first run the informal collection from the brainstrom are used to do a prelimi-
nary design that fulfills all the functional requirements but may be insufficient from
a safety point of view (this is done in Section 6.3)

• in each further iteration the output of the preceding hazard analysis is taken to refine
the design and adds needed safety functions to fulfill the safety requirements. In this
thesis only one iteration is done (see Section 6.5).

Analyze Hazards in Section 6.4 a HAZOP is conducted on the preliminary design from Section
6.3.

Finalize the refinement in Section 6.5 also constitutes the finalization of the overall scope

6.2 Requirements Analysis

The application used to demonstrate the above properties in the OVERSEE demonstrator is a
software implementation of a turn indicator control. Basically this is a timer application and
some simple I/O. But while the functional requirements seem trivial there are a few side condi-
tions that make this a bit more complex.

• Turn indicators and emergency flashers share the same resource but at different priorities
- these priorities must be respected

• Turn indicators can fail (broken cabling or light-bulb/LED failure) and so a monitoring
functionality needs to be provided

• The turn angle of the wheels, respectively the turning back of the wheels is an indicator for
stopping turn indicators automatically. This automatic stop of the indicators is restricted
to higher speeds, as the indicator should stay on at very low speeds (e.g. during parking
maneuvers).

• Acoustic indication of turn indicator activation is needed

Thus this use-case should demonstrate that a simple function can be cleanly modularized by
abstracting signal inputs to inter-domain communication primitives and thus de-coupling func-
tions from the physical implementation, that is, it is not relevant if the failure of the lights is
detected by physical circuit and signaled to the application level or if it is generated in soft-
ware by some form of sensor application, essentially the integrated approach allows to provide
a simple and sound implementation of direction indicator control, satisfying safety demands,
under consideration of security requirements and retaining composeability by de-coupling from
specific implementation details. Modularizing complex software in this way is crucial for de-
creasing the complexity of the safety function itself.

In the rest of this section an (almost) complete design process for a safety critical software
application will be performed on this turn indicator example. First a naive high level design is
done using structured design, then a HAZOP is conducted on the high level design, revealing

86

Turn

Indicator

Control

direct_ind_lever (left/right)

car_speed

emergency_flasher (on/off)

light (failed/ok)

turn_angle (reverted)

set_direction_indicator (on/off)

direct_ind_status (failed/ok)

set_timer()

signal_exception() [-> healthmonitor]

timer_virq

Figure 6.2: Example Application: turn indicators

some problems that had not been thought of during the high level design. Thus the high level
design is redone and a detailed design is done. After that an FMEA is done - for time and space
reasons only on the detailed design of one component.

Figure 6.2 shows just a simple block diagram with inputs and outputs to/from the application.
This maps nicely Figure 6.3 which is a little closer to reality and shows the high level view of
the resulting partition. The turn indicator control application is running on top of FreeOSEK
inside of an isolated application partition, which is only accessible from the outside world via
sampling ports.

6.3 High Level Design

In the following a RTSD as described in Section 2.7 is performed on the above described ex-
ample. This RTSD includes a high level design of the turn indicator example. This is a naive
approach to the problem, that is later on used for a hazard assessment. Of course some of the
problems are anticipated because they were thought of “by accident“ while doing the design.
Later on a HAZOP on the high level design is conducted, which is expected to reveal problems
that were not anticipated during this first shot at the problem.

87

FreeOSEK

Turn

Indicator

Application

TI Partition

Emergency Button

Turn Angle

Speed

Indicator Lever

Right Indicator

Left Indicator

Figure 6.3: Example Application: Partition Interface

6.3.1 Data Context Diagram

The data flow diagram in Figure 6.4 shows that the turn indicator control gets a number of signals
from its environment. Those signals contain the following information, summarized in Tables
6.1 and 6.2.

Turn

Indicator

Control

direction_ind_lever (left/right)

car_speed (km/h)

emergency/ asher (on/o)

light_failed (failed/ok)

turn_angle_reverted

set_timer

set_direction_indicator

direction_indicator_status

signal_exception

timer_virq

Figure 6.4: DCD - Data Context Diagram of the High Level Architecture

88

Inputs Description
timer_virq The virtualized timer interrupt is used to toggle the indicators when

they are in use.
direction_ind_lever The turn indicator lever allows the driver to (de-)activate the turn

indicators
turn_angle_reverted If the car has turned and the turn angle of the wheels has reverted to

its neutral position, the indicators are turned off automatically.
car_speed In some situations (e.g. parking maneuvers) the indicators should not

be turned off when the turn angle has reverted. These situations are
limited to small speeds, thus the speed of the vehicle is used in
addition to the turn angle to decide whether or not the indicator lights
should be turned off.

emergency_flasher The emergency flasher uses the same set of lights that are for indicating
a change in direction, but the priority is higher, as the emergency has
already been identified. Therefore if the emergency flasher is turned on,
the state of the turn indicators becomes unimportant and is overwritten
by the state of the emergency flasher.

light_failed If one of the lights fails, the indicator frequency is increased to indicate
the failure to the driver.

Table 6.1: Inputs of the turn indicator application (see Figure 6.4)

Outputs: Description
set_direction_indicator This output is passed on to a suitable driver to actually physically

enable the light to be set to on or off.
direction_indicator_status Indication of the turn indicators being active to the driver is done

by flashing suitable direction signals on the dash-board as well as
an acoustic indicator.

set_timer Direction indication must be done within a standardized,
, frequency range. A timer is used to implement the periodic
signal. Further, the frequency is used to indicate light
failures (by doubling the frequency), not only to the driver
in the car but also to the environment (i.e. other drivers).

signal_exception Any software, even if seemingly trivial , has the potential to enter
some inconsistent internal state that it can’t handle on its own any
more. As this application is running in an isolated partition some of
the unhandled situations can be resolved by escalating the event to
the platform that is able to perform a forced reset of the partition
as well as provide failure information to the driver.

Table 6.2: Outputs of the turn indicator application (see Figure 6.4)

89

blinker_state

Indicator

Control

2

Indicator

Output

3

Init

1

direction_ind_lever (left/right)

car_speed (km/h)

emergency/ asher (on/o)

light_failed (failed/ok)

turn_angle_reverted

timer_virq

set_timer

set_direction_indicator

direction_indicator_status

signal_exception

activate activate

Figure 6.5: DFD0 - High Level Composition (Task Level)

6.3.2 Data Flow Diagram

The RTSAD design, as introduced in Section 2.7 is done no. The design consists of the structured
diagram in Figure 6.5 as well as the data dictionary listed in the following. The items in the
dictionary/diagram are enumerated to allow a clear mapping.

1 Init
Description Initialization task
Rate Executed only once at partition boot time.
Comment The initialization task sets the timer for the periodic Indicator

Output task and sets up communication channels to other partitions.

2 Indicator Control
Description processes the input data and determines indicator output
Rate Main Task, it is consuming all of the partitions time slot, only inter-

rupted by the higher prior Indicator Output Task.
Comment This is the task were the decision of whether to flash the indicators or

not is made.

3 Indicator Output
Description sets the indicator output calculated by the Indicator Control
Rate periodic task, the period is 1.5Hz 1 in normal mode, and 3Hz 2 if one or

more of the lights are damaged, in order to make the driver aware of the
damage.

Comment Manages the timer and writes the data into the sampling ports.

90

6.4 High Level Hazard and Operability Study

Now as the preliminary high-level design is done, this design is used to conduct a hazard anal-
ysis on the turn indicator application. This HAZOP will hopefully reveal all corner cases not
anticipated in the preliminary design.

6.4.1 Pre-Requisites

During the course of doing the HAZOP in the next section, several things were realized. First
of all, although a naive approach to the problem, in the form of the high level design from 6.3
is available, this is just a preliminary design and problems that have been taken into account
intuitively should nevertheless be part of the hazard analysis for completeness.

Furthermore, it is important to really stick to the high level of abstraction, and avoid getting
too deep into the details. Some hazards pointed out in a high level design might not be relevant,
as mitigation of those hazards is outside of the scope, nevertheless on the high level design
they have to be included. An example for this would be if it were possible that only the front
indicators are flashing, due to bad wiring, then there is no mitigation for this in software, this is a
safety condition that has to be fulfilled by the environment. From a very high level of abstraction,
the turn indicator control system has only two functions it implements:

• Turn indicator - flash left or right (depending on the lever)

• Emergency indicator - flash all indicators if button pressed

So the goal of the HAZOP is to point out all possible hazards that are able to compromise
this functionality.

Throughout the HAZOP table, some abbreviations are used, to reduce the size of the table.
Please note, that these abbreviations may not be commonly used abbreviations and are possibly
only valid for this section of this thesis but as any safety related document should be complete
either by referencing normative sources or by meticulously defining everything internally , this
is a sound approach. The abbreviations are listed in Tabele 6.3.

EF emergency flasher
TI turn indicator
TIC turn indicator control (includes EF and TI)
TI on for the TI to be on can mean flash right as well as left
SAC safety application condition

Table 6.3: Abbreviations used during the Hazard and operability study.

1In Europe the frequency of the indicators has to be 1.5HZ ± 0.5Hz.
2European Law only defines that it has to be much faster.

91

HAZOP Item Attribute Guide Cause Consequence/ Indication/ Question/
item Word Implication Protection recommendation
1 EF ON No .) lights don’t work unsafe situation SAC:

.) input not handled cannot be indicated .) if battery gets

.) battery empty to other drivers empty, TIC has
priority over other
systems of the
vehicle
.) LED lights

2 EF ON More No Meaning
3 EF ON As Well As priority of functionality TI overwrites assign higher

is incorrectly assigned. priority to EF
4 EF ON Part Of only one side flashing handle as if

light broken
(flash faster)

5 EF ON Early/Late time management wrong flashing period sanity checks SAC: timer
incorrect very slow, very fast based on wall irqs provided

(permanent on) clock timestamps by XM correct.
6 EF ON Before/After No Meaning
7 EF OFF No No Meaning
8 EF OFF More Spurious EF on EF overwrites .) see item 3

signal and higher turn indicator relevant .) flash emergency
priority of EF information for other button

drivers suppressed.
9 EF OFF As Well As higher priority turn indicator turned see item 3

of EF over TI off as well relevant
information for other
drivers suppressed

10 EF OFF Part Of .) light broken only one side off, read back

92

.) bad wiring other driver sees values and

.) wrong output indicator signal. double check
11 EF OFF Early/Late No Meaning
12 EF OFF Before/After same as more.
13 TI ON No .) EF overwrites Indicator not

indicator flashing.
.) dead battery
.) lights don’t work
.) input not handled

14 TI ON More .) EF instead both left and
of TI. right flash at
.) left and right the same time.
with different
periods.

15 TI ON As Well As same as More
16 TI ON Part Of bad wiring only front or rear SAC: wiring

indicator flashes is correct.
17 TI ON Early/Late time management wrong flashing SAC:

incorrect period. see item 5
18 TI ON Before/After No Meaning.
19 TI OFF No No Meaning.
20 TI OFF More No Meaning.
21 TI OFF As Well As No Meaning.
22 TI OFF Part Of No Meaning.
23 TI OFF Early/Late can be due to incorrect delay in switch-off SAC:

time management can be interpreted see item 5
as second turn.

24 TI OFF Before/After No Meaning

Table 6.4: Hazard and Operability Study93

6.4.2 Summary of the HAZOP

After conducting the HAZOP in Table 6.4, it is now time to analyze the lessons learned and
analyze the notes from the table in a more elaborate way. This summary of the HAZOP picks
out the safety application conditions as well as the indication and protection mechanisms shortly
noted in the table and discusses them, so they can be integrated into a new, refined design in the
next section.

6.4.2.1 Safety Application Conditions

One of the most important outputs of this HAZOP are the safety application conditions. These
conditions are pre-requisites that have to be fulfilled by the environment to allow the system itself
to work properly. Only if these conditions are met, the system can behave correctly. Otherwise
problems that cannot be detected and/or corrected by the system itself will arise eventually.

For the longterm usage of the software component these SACs are important, as they are
used to determine whether the component is suitable to be deployed in a new environment, or if
it cannot be used in the new environment as an important pre-requisite is not met.

Correct Wiring: In order to make it possible to flash the lights that are intended, the wiring has
to be correct. If e.g. instead of the front left and the rear left indicator, front left and right
indicators are connected to the output for the left indicators, the two front indicators will
flash when the driver tries to indicate a left turn. These kinds of problems are not too hard
to detect, and should be tested after assembly.

Dead Battery: If the battery is dying, it has to be assured that vital elements of the vehicle - e.g.
the emergency flasher - function properly as long as possible, while others can be taken
out of operation to save energy (e.g. the parking assistant). This kind of energy control
has to happen on a vehicle wide level and can therefore not be handled by the indicator
control system.

Correct Time Management: The indicator control system depends on the correct (virtual)
timer interrupts generated by the hypervisor. If the time management is not correct due to
a fault in the hypervisor itself, cases that cannot be detected by the application partition
arise. We can however catch some cases where the fault is only affecting the timer inter-
rupts, but the hypercall for the wall clock still is working properly. Details for these cases
can be found below.

LED lights: Over recent years LED lights are used for the indicator lights as well as the rear
and braking lights. The big advantage of LED lights is their long life span, as well as the
fact that the single point of failure - namely the filament of the light bulb - is replaced
by multiple LEDs. So even if a considerable number of LEDs die, the rest is enough to
give clear signals to the other drivers, and the broken ones will be fixed by the mandatory
yearly maintenance and thus this hazard is covered short term and long term. So from a
strict point of view, the yearly maintenance is also a SAC here.

94

6.4.2.2 Indication and Protection Mechanisms

In order to get the system to detect and indicate all hazards that can be covered by the system
itself, a variety of mechanisms can be employed. These mechanisms can either be pure indica-
tion mechanisms, i.e. just make the user (here: the driver as well as other drivers) aware that
something bad is going on (in this case this would be flashing with a higher frequency). Other
mechanisms can be real protection mechanisms like correct priority assignment and enforce-
ment - i.e. the emergency flasher has higher priority than the turn indicator if it is switched on,
otherwise it must not bother the turn indicator.

Nevertheless, the goal should be to eliminate all hazards detectable by the system, and only
those hazards that cannot be handled should be passed on into the responsibility of the driver or
to other drivers.

Furthermore the following list contains fault detection mechanisms that are used to check
the behavior as well as the data in order to detect faults and make the indication of the fault to
the user possible.

Correct Priority Assignment: The basis for resolving problems where the turn indicator can
overwrite the emergency flasher or the other way round, is correctness of the priority
assignment.

Sanity Checks: In order to check the correct functionality of the turn indicator control, different
sanity checks on the data, as well as the timely behavior can be performed.

• Data Checks – a monitoring task inside of the turn indicator control application
checks whether the actual output is the same as the intended output.

• Timely Behaviour – as already stated above (see 6.4.2.1, “Correct Time Manage-
ment“), the timely behaviour of the system depends on the correctness of the hyper-
visors time management. Although the partition has no influence on that correct-
ness, some failures of the correctness of the virtual interrupts can be checked easily
by sanity checks. To perform these sanity checks, the application has to compare the
wall clock time of the current and the last interrupt, in order to find out if the period
of the interrupts is correct, that is if the difference of the two timestamps is in the
boundaries of the period.

6.5 Refinement of the High-Level Design

Now that the results of the hazard analysis of the preliminary design has shown the weak spots
in the design, it is time to improve the design, and to handle those hazards. This means that we
are iteratively improving our design. This iterative approach is a very common approach in the
safety domain, as it is an obvious assumption that the first design 3 will miss some important
corner cases. These corner cases can only be found by systematically finding the weak spots in

3or even the first few designs for that matter

95

the design, the implementation, etc. and by learning from the results and redoing the whole thing
with the new knowledge at hand. IEC61508 advocates this approach of iterative improvements
in the following clause:

“ 7.1.1.4 The overall, E/E/PES and software safety lifecycle figures (figures 2 to 4) are
simplified views of reality and as such do not show all the iterations relating to specific phases
or between phases. Iteration, however, is an essential and vital part of development through the
overall, E/E/PES and software safety lifecycles. “

[IEC10b, Clause 7.1.1.4]

The basic idea for the refined version of the Design, is to introduce a new task. This new task
is a monitoring task that calculates - based on the input and the history of previous inputs - a set
of valid new states. If the state calculated by the control task does not match any of those valid
new states, the monitor task switches the indicators frequency from normal to double frequency,
indicating that an error has happened. The resulting new high level design can be seen in Figure
6.6, this diagram is supplemented by the following data dictionary.

Indicator

Control

3

Init

1

set_timer

Indicator

Output

4

timer_virq

Indicator

Input

2

direction_ind_lever (left/right)

car_speed (km/h)

emergency/ asher (on/o)

light_failed (failed/ok)

turn_angle_reverted

Status

Monitor

5

a
ct

iv
a
te

a
c
tiv

a
te

a
c
tiv

a
te

a
ctiv

a
te

do
ub

le

as
h

on
/o

in
pu

t
da

ta
 (
as

pe
ct

 o
ri
en

te
d)

input data indicator output

(logic representation)

indicator output

(physical representation)

in
d
ic

a
to

r o
u
tp

u
t

(lo
g
ic

 re
p
re

s
e
n
ta

tio
n
)

indicator output
(physical representation)

Figure 6.6: DFD0 - High Level Composition (Task Level) - Refined Version

1 Init
Description Initialization task
Rate Executed only once at partition boot time.
Comment The initialization task sets the timer for the periodic Indicator

Output task and sets up communication channels to other partitions.

96

2 Indicator Input
Description reads the input data and passes it to Control Task and Monitor Task
Rate 10Hz (indicators are flashing at 1.5 Hz / 3 Hz, to satisfy Nyquists sam-

pling theorem 6 Hz would be appropriate, adding a safety margin leads
to a rate of 10Hz - this might be changed at testing time)

Comment The Indicator Input Task reads the input data from the inbound commu-
nication channels. To each data set a unique sequence number is added,
and the data is passed on to Indicator Control as well as to the Status
Monitor Task.

3 Indicator Control
Description processes the input data and determines the indicator output
Rate 10Hz (indicators are flashing at 1.5 Hz / 3 Hz, to satisfy Nyquists sam-

pling theorem 6 Hz would be appropriate, adding a safety margin leads
to a rate of 10Hz - this might be changed at testing time)

Comment The Indicator Control Task gets the Input Data from the Indicator In-
put Task. This Input Data is fed into the Control Algorithm that decides
whether the left, right or both (emergency) side of the indicators should
flash. This logical representation of the output is passed on to the Indi-
cator Output and the Status Monitor Task.

4 Indicator Output
Description sets the indicator output according to the new state calculated by the

Indicator Control Task.
Rate 10Hz (indicators are flashing at 1.5 Hz / 3 Hz, to satisfy Nyquists sam-

pling theorem 6 Hz would be appropriate, adding a safety margin leads
to a rate of 10Hz - this might be changed at testing time)

Comment The Indicator Output Task transforms the logical representation of the
Output calculated by the Indicator Control Task into a physical rep-
resentation. This physical representation is then provided to the driver
partition that controls the vehicles indicator lights via a Sampling port.
In addition the physical representation is passed to the Status Monitor,
where it is used to compare the physical and logical representation (e.g.
to check the Indicator Output Task).

97

5 Status Monitor
Description The Status Monitor task collects data from all all the other tasks and

performs failure detection checks on the data.
Rate 10Hz (indicators are flashing at 1.5 Hz / 3 Hz, to satisfy Nyquists sam-

pling theorem 6 Hz would be appropriate, adding a safety margin leads
to a rate of 10Hz - this might be changed at testing time)

Comment The Status Monitor keeps record of the last N input records, and uses
them to calculate all possible next states. It then compares the logical
(from the Indicator Control task) and the physical (form the Indicator
Output task) representation of the output data and determines if this data
represents a possible state.
If a failure is detected, the Status Monitor doubles the flashing fre-
quency, thus indicating a problem to the driver as well as to the other
vehicles drivers.

This refined design is the result of only one iteration of the process introduced in the begin-
ning of this chapter (Figure 6.1). For an application that is subject to certification more iterations
might be necessary to catch even more subtle failure modes.

6.6 Detailed Design

Now that the high-level design has been developed, a more detailed design is needed. As this
step is fairly straight forward for such a relatively simple example, and still produces lots of
paper, this detailed design is shown by example of the indicator input (Id 2 in Figure 6.6).

Figure 6.7 shows the structure chart of the indicator input entity is further decomposed into
its functional modules, and the data- and control-flow are specified. These functional modules
are already very simple elements that can be transformed into code very easy. They will just
be explained in prose, but other representations (e.g. state transition diagrams, truth tables, etc.)
could be used at this level as well.

Indicator

Input

Read

Input
Read Monitor

Status

Prepare

Data

Output

Data

Figure 6.7: Structure Chart of Indicator Input

98

The four functional modules of Indicator Input are listed and explained in the following
list. The structure chart can be read as Indicator Input calling the four functional modules one
after the other. The frequency of Indicator Input has already been specified in Section 6.5. In
the following a number of identifiers are used, their meaning described in Table 6.5.

Identifier Description
cur_ls current lever state (left/neutral/right /dead)
lst_ls last lever state (left/neutral/right /dead)
cur_lis current left indicator state (on/off/dead)
lst_lis last left indicator state (on/off/dead)
cur_ris current right indicator state (on/off/dead)
lst_ris last right indicator state (on/off/dead)
cur_ang current wheel angel (degree)
lst_ang last wheel angle (degree)
emerg emergency flasher button state
health state of input (as perceived by indicator input indicates e.g. if the input is outdated.)
seq sequence number
ts timestamp
crc a data CRC on all the above

Table 6.5: Identifiers used during the detailed design phase.

Read Input: gets the current data from the input messages. This data includes (see Figure
6.6): [cur_ls, cur_lis, cur_ris, cur_ang, emerg] All these values are read via sampling
messages via the OSEK/VDX API and stored locally so they can be packed and passed
on to the indicator control and status monitor.

Read Monitor Status: The flashing frequency of the indicators is determined by the status
monitor. The current setting is read from the status monitor, and add to the data set
passed to the indicator control.

Prepare Data: Before the read data can be sent to the indicator control and status monitor
it has to be packed into structures that are expected by the respective entity. The data is
packed up as follows:

• Indicator Input sends the full state to the controller (but no timestamp):
[lst_ang, cur_ang, lst_ls, cur_ls, cur_lis, lst_lis, cur_ris, lst_ris, emerg, health,
seq, crc]

• Indicator Input sends only the current state to the monitor (including timestamp)
[cur_ang, cur_ls, cur_lis, cur_ris, emerg, health, seq, ts, crc]

Output Data: the data that has been packed in the Prepare Data Module is now passed on to
the interfacing bubbles, namely to the indicator control and the status monitor.

99

enum members
indicator_state IND_ON = 0

IND_OFF
IND_DEAD

lever_state LEV_NEUTRAL = 0
LEV_LEFT
LEV_RIGHT
LEV_DEAD

flash_state NORMAL_FLASH = 0x55
DOUBLE_FLASH = 0xAA

Table 6.6: Detailed Design - Enumerations

struct members
in_data enum lever_state ls

enum indicator_state lis
enum indicator_state ris
uint16_t ang
bool emergency_button

controller_data uint16_t lst_ang
uint16_t cur_ang
enum lever_state lst_ls
enum lever_state cur_ls
enum indicator_state cur_lis
enum indicator_state lst_lis
enum indicator_state cur_ris
enum indicator_state lst_ris
bool emergency_button
enum flash_state health
uint16_t seq_nr
uint32_t crc

monitor_data uint16_t cur_ang
enum lever_state cur_ls
enum indicator_state cur_ris
bool emergency_button
enum flash_state health
struct timespec ts
uint16_t seq_nr
uint32_t crc

Table 6.7: Detailed Design - Data Structures

100

Function Name Output Type Parameters
read_input StatusType struct in_data *input
read_monitor_status StatusType enum flash_state *mon_status
pack_data StatusType struct in_data current

struct in_data *last
struct flash_state mon_status
struct controller_data *to_controller
struct monitor_data *to_monitor

write_output StatusType struct controller_data to_controller
struct monitor_data to_monitor

Table 6.8: Detailed Design - Function Prototypes

Putting all this into C code, the interface of the indicator input task is shown in Appendix A.
A summary of this interface is found in the form of enumerations in Table 6.6, data structures in
Table 6.7 and function prototypes in table 6.8.

6.7 Risk Assessment of the Detailed Design

Finally, the detailed design is analyzed by performing a FMEA on the interface that has been
established in the detailed design done in the previous section. The process of the FMEA is
roughly consistent with [DoD80, 4.4.2], the objectives (a-h) of the process defined in MIL-
STD-1629A are handled in this thesis as follows:

(a) The system definition has been done above, at the very beginning of this chapter, both in a
very informal way in the introduction to this chapter, and in a more structured way in the
requirements analysis 6.2.

(b) Although no block diagram was constructed, a structured high-level design (Figures 6.7 and
6.6) has been done, that illustrates operation, interrelationships, and interdependencies of
functional entities. Therefore, although a different notation was chosen, the objective clearly
is met.

(c) As the FMEA is performed on all the function prototypes (interface) the full coverage of
items is definitely reached, furthermore a full coverage of potential failure modes is reached
by iterating through all input parameters and their classes of input. The FMEA is performed
in Section C.

Of course logical correctness is a pre-requisite (provided by the process) that has to be
defined in the interface specification and tested in the testing process. The FMEA does not
deal with that part of the application, here only non-functional correctness is checked.

101

(d) The indicator control example is a generic component, therefore the severity analysis is
restricted to a qualitative severity analysis of negligible, tolerable and critical, where crit-
ical would mean that the severity would have to be assessed against the actual deployment
scenario (which is unknown here).

The allocation of the severity to the potential failure modes is done in Section D.

(e) Failure mode detection methods are listed in Section E.

(f) Corrective design or other actions are listed in Section F.

(g) This objective is DOD specific and not relevant in this context.

(h) The documentation of all this is done in the form of this description of the process and the
following summary of the FMEA. The result of this FMEA is summarized in H where a
severity classification of all failure modes after mitigation has been applied is done.

As mentioned, the Points (a) and (b) are considered to be handled in previous sections. The
open Points (c-h) are conducted in the following, where (c-h) map to (C-H) respectively.

It should also be noted, that this FMEA is restricted to systematic faults, and that other fault
types are not considered.

(C) Failure Mode Identification

The following contains the failure mode identification part oft the FMEA. The approach
was to iterate over the function prototypes of the detailed design (Section 6.6) and consider
all possible values of the parameters that get the application into a failure mode.

function: StatusType read_input (struct in_data *input)

• *input == NULL
what happens: access to invalid memory, application terminated through health

monitor, health monitor is expected to signal error.
effect: restart of partition
mitigation: check for null pointer, return ERROR_CODE
• *input == 0xDEAD (also known as pointer to lala-land)

what happens: access to invalid memory, application terminated through health
monitor, health monitor is expected to signal error.

effect: restart of partition
mitigation: component is in undefined state, internal mitigation not possible⇒

has to be handled by health monitor.
• *input points to valid address space, but wrong data structure

what happens: access to valid memory, but wrong data.
effect: no detection by system

102

mitigation: extension of data structure by unique magic number.

function: StatusType read_monitor_status(\
enum flash_state *mon_status)

• *mon_status == NULL
what happens: access to invalid memory, application terminated through health

monitor, health monitor is expected to signal error.
effect: restart of partition
mitigation: check for null pointer, return ERROR_CODE
• *mon_status == 0xDEAD (also known as pointer to lala-land)

what happens: access to invalid memory, application terminated through health
monitor, health monitor is expected to signal error.

effect: restart of partition
mitigation: component is in undefined state, internal mitigation not possible⇒

has to be handled by health monitor.
• *mon_status points to valid address space but wrong address

what happens: access to valid memory, but wrong data.
effect: no detection by system
mitigation: extension of data structure by unique magic number.

function: StatusType pack_data(struct in_data current,\
struct in_data *last,\
struct flash_state mon_status,\
struct controller_data *to_controller,\
struct monitor_data *to_monitor);

• (*last == ¤t) || (last == valid address space but wrong address)
effect: valid but wrong data
mitigation: _NEW_ unique magic number for *last data
• *last == NULL

what happens: access to invalid memory, application terminated through health
monitor, health monitor is expected to signal error.

effect: restart of partition
mitigation: check for null pointer, return ERROR_CODE
• *last == 0xDEAD (also known as pointer to lala-land)

what happens: access to invalid memory, application terminated through health
monitor, health monitor is expected to signal error.

effect: restart of partition
mitigation: component is in undefined state, internal mitigation not possible⇒

has to be handled by health monitor.
• *to_controller == NULL

103

what happens: access to invalid memory, application terminated through health
monitor, health monitor is expected to signal error.

effect: restart of partition
mitigation: check for null pointer, return ERROR_CODE
• *to_controller == valid address space but wrong address

effect: no detection by system
mitigation: extension of data structure by unique magic number.
• *to_controller == 0xDEAD (also known as pointer to lala-land)

what happens: access to invalid memory, application terminated through health
monitor, health monitor is expected to signal error.

effect: restart of partition
mitigation: component is in undefined state, internal mitigation not possible⇒

has to be handled by health monitor.
• *to_monitor == NULL

what happens: access to invalid memory, application terminated through health
monitor, health monitor is expected to signal error.

effect: restart of partition
mitigation: check for null pointer, return ERROR_CODE
• *to_monitor == valid address space but wrong address

what happens: access to valid memory, but wrong data.
effect: no detection by system
mitigation: extension of data structure by unique magic number.
• *to_monitor == 0xDEAD (also known as pointer to lala-land)

what happens: access to invalid memory, application terminated through health
monitor, health monitor is expected to signal error.

effect: restart of partition
mitigation: component is in undefined state, internal mitigation not possible⇒

has to be handled by health monitor.

function: StatusType write_output(\
struct controller_data to_controller,\
struct monitor_data to_monitor)

• to_controller and to_monitor are switched - different data types are recognized
by the compiler. Compiler warning is assumed to be handled accordingly.

(D) Severity without Mitigation

Since all possible failure modes have been identified in Section C, it is now necessary to
assign a severity to each possible failure mode. As this example is a generic component the
severity analysis is restricted to a qualitative severity analysis of negligible, tolerable and
critical, where critical would mean that the severity would have to be assessed against the
actual deployment scenario (which is unknown here).

104

function: StatusType read_input(struct in_data *input)

• *input == NULL : tolerable – In this case the application segfaults, the applica-
tion stops doing anything, which will quickly be discovered as a fault.
• *input == 0xDEAD (also known as pointer to lala-land) critical
• *input points to valid address space, but wrong data structure critical

function: StatusType read_monitor_status(\
enum flash_state *mon_status);

• pointer == NULL tolerable
• pointer to lala-land critical
• pointer to valid address space but wrong address critical

function: StatusType pack_data(struct in_data current, \
struct in_data *last, \
struct flash_state mon_status, \
struct controller_data *to_controller, \
struct monitor_data *to_monitor);

• (*last == ¤t) || (last == valid address space but wrong address) critical
• last == NULL tolerable
• last is a pointer to lala-land critical
• *to_controller == NULL critical
• *to_controller == valid address space but wrong address critical
• *to_monitor == NULL tolerable
• *to_monitor == valid address space but wrong address critical
• *to_monitor is a pointer to lala-land critical

function: StatusType write_output(\
struct controller_data to_controller,\
struct monitor_data to_monitor)

• to_controller and to_monitor are switched critical
• *to_monitor == NULL critical

(E) Mitigation Methods

Null Check – a typical method of defensive programming is to check every pointer passed
to a function against NULL before it is used (usually right at the top of the function)
and return an appropriate return value in case a NULL pointer has been passed to the
function.

Escalate Memory Region Check to HM – XtratuM provides us a memory protection be-
tween applications. If a memory violation is detected this is signalled to the health
monitor which can take appropriate action (e.g. to restart the application).

105

(F) Corrective Design

Magic Number – in order to assure that a memory area really contains the type of data
structure that is expected by the application, a magic number unique to this type of
data structures is added at the beginning of the memory are. If a wrong magic number
is read, the function knows that a pointer to a wrong data structure has been passed by
the caller.

SAC – problems that cannot (or only with a very high effort) be mitigate in the application
itself are passed to the environment for handling. The way to do this are SACs (safety
application conditions). The SACs identified for this application are listed in 6.4.2.1.

(G) This objective is DOD specific and not relevant in this context.

(H) Severity with Mitigation

function: StatusType read_input(struct in_data *input)

• pointer == NULL negligible - easy to mitigate, goes back into system (error code)
• pointer == 0xDEAD (also known as pointer to lala-land) negligible - easy to

mitigate, goes back into system (error code)
• pointer points to valid address space, but wrong data structure tolerable - proba-

bility small enough due to 32 bit magic number!

function: StatusType read_monitor_status(\
enum flash_state *mon_status);

• pointer == NULL negligible - easy to mitigate, goes back into system (error code)
• pointer to lala-land negligible - easy to mitigate, goes back into system (error

code)
• pointer to valid address space but wrong address

function: StatusType pack_data(struct in_data current, \
struct in_data *last, \
struct flash_state mon_status, \
struct controller_data *to_controller, \
struct monitor_data *to_monitor);

• (*last == ¤t) || (last == valid address space but wrong address)
• last == NULL negligible - easy to mitigate, goes back into system (error code)
• pointer to lala-land negligible - easy to mitigate, goes back into system (error

code)
• *to_controller == NULL negligible - easy to mitigate, goes back into system

(error code)
• *to_controller == valid address space but wrong address
• *to_controller is a pointer to lala-land negligible - easy to mitigate, goes back

into system (error code)

106

• *to_monitor == NULL negligible - easy to mitigate, goes back into system (error
code)
• *to_monitor == valid address space but wrong address
• *to_monitor is a pointer to lala-land negligible - easy to mitigate, goes back into

system (error code)

function: StatusType write_output(\
struct controller_data to_controller,\
struct monitor_data to_monitor);

• to_controller and to_monitor are switched
• *to_monitor == NULL negligible - easy to mitigate, goes back into system (error

code)

6.8 Design Summary

In conclusion it can be said, that no critical problems were found after the application of mitiga-
tions. Of course this does not mean that this design can be taken as is and expected to be ready
for certification, as some of the objectives on the development process could not be fulfilled.
This especially includes those steps in the development that should be a team effort (e.g. HA-
ZOP) and the steps that require to be performed by a person other than and independent from the
person who performed the step before (e.g. the person doing the FMEA should not be person
who did the detailed design).

Ignoring the fact that lacking a team all the steps in the development were carried out single
handedly, the example application can be considered safe as

• no more critical problems were found after the mitigations were applied

• a number of SACs has been found and collected to make the system integrator aware that
it is his responsibility to ensure that those problems that cannot be mitigated in software
are handled outside of the application

• the mitigations for found problems have been proposed, so far they have not been applied,
this would be the next step - to update the detailed design according to findings in the
FMEA.

Thus the turn indicator control application designed in this chapter can be considered safe,
while still being independent of its environment. The only requirements on the environment are:

• an OSEK/VDX compliant runtime environment - no matter whether it is in virtualized
environment on directly running on a hardware node

• the list of SACs found during development have to be fulfilled to ensure safety properties.

107

CHAPTER 7
Conclusion

The goal of this thesis was to analyze the safety properties of the OVERSEE platform, which
was developed to suite the security needs of the automotive industry while the equally important
safety properties were de-scoped.

7.1 Summary

There are many reasons why such a platform that provides a high level of safety and security
is needed in the industry, some were given in Chapter 1. Those reasons basically boil down to
the demand for new features by all parties - the end user, the manufacturer as well as the motor
clubs. These desired new features include e.g. comfort braking, V2V and V2I communication,
parking assistance and they lead to a tremendous increasing in complexity of the in-vehicle
programmable electronics [1]. The industries question is, whether or not this demands can be
(partially) satisfied by using legacy applications or FLOSS components, and if they are able to
satisfy the functional requirements - what adoptions in the safety process are needed to assure
the safe usage of legacy and FLOSS components?

Before a thorough analysis is possible, the appropriate methods and industry standards have
to be found. The concepts and methods that are relevant throughout this thesis, like a discussion
on operating system architectures, an introduction to virtualization and especially virtualization
in the safety domain, as well as design and implementation methods (e.g. GSN, RTSAD) are
considered in Chapter 2.

In the safety area one of the most important sources for guidance is given to engineers by
well established industry standards, therefore the whole Chapter 3 is dedicated to this topic and
gives an introduction to ARINC 653 as an operating system specification that introduces the
concept of virtualization and OSEK/VDX as an operating system specification widely used in
the automotive industry. Furthermore, as important functional safety standards IEC 61508 and
ISO 26262 are introduced. Although the latter can not be seen as a well established standard

109

yet1, it is based on the principles of IEC 61508 and the high quality standards of the automotive
industry. Although standards give developers some guidance, they are no cookbooks, so the
challenge of this thesis was the interpretation of the used standards. This thesis represents one
possible arguable interpretation.

The problem of analyzing the safety properties of the OVERSEE platform was approached
on different levels, starting in chapter 4 with a high level safety case of the platform itself and
validating the possibility of such an platform in the context of the relevant, industry specific
functional safety standards. This analysis was conducted on the highest abstraction level of the
platform, and structured not only into one but several GSNs. This was done in order to improve
the maintainability as well as the reusability of the safety case. The idea behind this structuring,
is to argue the safety of the system on different levels of abstraction. This way, if changes are
necessary at a lower level of abstraction - lets say in the implementation - these changes only
have an impact at the lower levels of the layered safety case, but those layers concerned with
higher levels of abstraction (e.g. the requirements) stay untouched and do not have to be altered.
With the increasing complexity of modern ECUs this reuse of previous work becomes more and
more important to not only develop systems that are safe and secure but can be used for a long
times and even on future (hardware) platforms.

In order to allow the reuse of applications on the code level, one other pre-requisite had to
be achieved. This pre-requisite is the support of standardized interfaces used in the automotive
industry. To show that such an interface can be provided, a prototypical OSEK OS compliant
runtime environment has been established in Chapter 5. Even if this FreeOSEK runtime envi-
ronment is only a prototype at the moment, the implementation shows the feasibility of running
an OSEK compliant operating system as a XtratuM2 runtime environment. Furthermore, the
theoretical mapping between OSEK compliant communication and the ARINC 653 compliant
communication could be proven valid and compatible to the point where a legacy OSEK compli-
ant application can be moved into a XtratuM runtime environment with a virtualized communi-
cation system replacing a legacy physical communications system, without the need of adapting
the application itself. Using these virtual communication mechanisms only requires changes in
the configuration files but one has to be careful and consideration and assessment of possible
semantic differences between physical concurrency and pseudo-concurrency of the virtualized
system will be necessary during the migration into the virtualized environment. Therefore this
prototype shows that one of OVERSEEs main missions - the reuse of existing automotive ap-
plications in a security enhanced environment with minimum effort is definitely feasible. Thus
this part of the thesis was successful in reaching its goal, although a major rework would be
necessary to make it ready for certification and ultimately for the use in a road vehicle. This
rework would need to address the XtratuM2 hypervisor, the FreeOSEK runtime environment as
well as the security components provided by the GNU/Linux “SecIO“ partition.

On the application level - in order to value the economic significance of reuse of legacy ap-
plications in the automotive industry - the possibilities of modular certification were explored. It
was shown that it is indeed possible to reach this goal of certified software modules, an example
application was designed and analyzed in Chapter 6. Although the main goal of this chapter is

1ISO 26262 was released in November 2011.

110

to show the feasibility of designing and implementing applications for modular certification, a
byproduct of this is a full example of designing and implementing an application for the safety
domain. Appropriate examples are sometimes really hard to find and often they just take too
many facts that just magically appear into account. The goal was to avoid that kind of annoy-
ance in this Chapter.

7.2 Conclusion

With the introduction of functional safety into the automotive industry (the release of ISO
26262), new challenges for the automotive engineering sector have emerged. Partitioning has
been demonstrated by the avionic industry to be an effective mitigation of economic an tech-
nical issues related to certification and the increasing dynamics of development. Binding the
functional, procedural and regulatory demands together is the job of the safety case – a safety
case plays a central role as it is the single point to store compliance information. At the same time
this seems to be one of the problematic issues as a modular system building on generic compo-
nents are intended for the reuse in different configurations. Thus, adaptations of the safety case
process need to be made – not only outlining but executing this adapted process is one of the key
contributions of this thesis.

Although arguments in safety cases can always be made more accurate and detailed, it is
well known that safety case development is a complex task with many pitfalls along the way (see
[Gre06] for some not so obvious and many very obvious examples), but the author is confident
that the suggested layering of the safety case can be worth a lot. Structuring the safety case
itself not only in an hierarchical fashion but also structuring it on different levels of abstraction
increases maintainability as well as readability of the argument and will help to understand
and find the problems and inaccuracies. Furthermore, a safety case is also just a component
in a broader system and should be considered for reuse - appropriate structuring and layered
abstractions can support this reuse significantly.

Designing a simple application for a partitioned hypervisor based system showed that this
application has to be treated as a generic component, that cannot make any assumptions about
its environment. To the contrary, it has to induce requirements (SACs) onto its environment in
order to guarantee that the targeted safety integrity level will be reached even if the application
is used in a new environment.

In essence this thesis shows that isolation of safety-related applications through well spec-
ified interfaces and a high-level compositional approach, as outlined in ARINC 653, are not
only suitable to provide component based safety related systems, but that these components can
be treated independently in the safety argumentation as well. This is in the authors opinion a
long sought goal of automotive industry (and other industries as well) and is the key result of
this diploma thesis: Compositional safety is effectively and efficiently possible based on well
specified interfaces.

111

7.3 Future Work

Although this thesis tries to tackle the problem of showing that it is possible to build a platform
that is as safe as well as secure, on different levels, It still leaves a lot of room for future work.

This includes the research and refinement of the safety case layering, as pointed out numer-
ous times this approach needs to be tested in real world. Only that way the experience as well
as the input from the authorities that is necessary to find the weak spots can be gained. Building
on this information, adjustments of the method might be necessary in order to allow the safety
managers using it to fully exploit its advantages.

Furthermore, this separated analysis of safety and security properties will need to be ad-
dressed, as a separated handling of the issues is neither economically nor technically optimal (if
possible at all). With the increasing security demands on automotive systems, this will be a topic
that will need a lot of work - not only by the manufacturers and component suppliers but also by
the committees working on safety standards, in order to integrate the handling of security issues
into the development processes of safety relevant components.

From a more practical point of view, the used software modules are prototypical implemen-
tations that are used to show the feasibility of the approach. In order to allow the integration into
a product for mass production a lot of re-work will be necessary to bring it to the point where
the high quality standards of the automotive industry are met.

Modularity of software has been firmly established in software development the next step is
to establish equally potent methods for modularity of safety and security - at the technical and
procedural level - the feasibility was successfully demonstrated with this thesis.

112

APPENDIX A
Detailed Design

enum indicator_state {IND_ON = 0, IND_OFF, IND_DEAD};
enum lever_state {LEV_NEUTRAL = 0, LEV_LEFT, LEV_RIGHT, LEV_DEAD};
/* Reference to MISRA-C Rule 9.3!! */
enum flash_state {NORMAL_FLASH = 0x55, DOUBLE_FLASH = 0xAA};

struct in_data {
enum lever_state ls;
enum indicator_state lis;
enum indicator_state ris;
uint16_t ang;
bool emergency_button;

};

struct controller_data {
uint16_t lst_ang;
uint16_t cur_ang;
enum lever_state lst_ls;
enum lever_state cur_ls;
enum indicator_state cur_lis;
enum indicator_state lst_lis;
enum indicator_state cur_ris;
enum indicator_state lst_ris;
bool emergency_button;
enum flash_state health;
uint16_t seq_nr;
uint32_t crc;

};

113

struct monitor_data {
uint16_t cur_ang;
enum lever_state cur_ls;
enum indicator_state cur_ris;
bool emergency_button;
enum flash_state health;
struct timespec ts;
uint16_t seq_nr;
uint32_t crc;

};

StatusType read_input(struct in_data *input);
StatusType read_monitor_status(enum flash_state *mon_status);
StatusType pack_data(struct in_data current, struct in_data *last, \

struct flash_state mon_status, \
struct controller_data *to_controller, \
struct monitor_data *to_monitor);

StatusType write_output(struct controller_data to_controller, \
struct monitor_data to_monitor);

114

APPENDIX B
Code Examples

This appendix contains two very simple examples, that have been written to test the various
steps that have been taken during the port for FreeOSEK on top of XtratuM. But apart from test-
cases, they also can be seen as a representation of the current state of FreeOSEK on XtratuM.
While each example usually only demonstrates the presence of a small piece of OSEK compli-
ant functionality, the possible combinations already allow to write real-world OSEK compliant
applications.

If you are interested in more test examples (e.g. communication) or an implementation of the
indicator control example from chapter 6, don’t hesitate to contact me. It is planned to release
all code that has been produced in the course of this thesis under an open-source license, but at
the time of this writing it is unclear how and where this code will be released.

B.1 xm_hello

The first simple example - as always - is a Hello World!. But in comparison to a classical hello
world program it got much more to say. As you can see in B.1.1, the example consists of 6
tasks, one init task and tasks A-E. While all tasks are activated at start-up (ACTIVATION =
1;), only the init task is actually runnable (AUTOSTART = TRUE) at start-up.

The code for example is shown in B.1.2, and the first function in this application is called
PartitionMain(). This is a mandatory function, it is the entry point for XtratuM into
FreeOSEK, and is called before the initialization of the OS. Indeed you can see the call of the
function StartOS(), which is the entry point to the initialization of FreeOSEK. After the
initialization of FreeOSEK, the init task is scheduled, and the flow of execution never returns
into PartitionMain().

Below of that you can see the code for the InitTask() which does nothing but print the
message Hello World! on the screen and activate TaskA() by using the ActivateTask()
OSEK API call. After that it terminates itself.

115

The tasks TaskA .. TaskE then chain each other in an infinite loop, printing their name
onto the screen whenever they are called.

This example demonstrates that non-preemptive scheduling works without problems - that
means no stack-overflows or that kind of problems.

B.1.1 Configuration File

OSEK OSEK {

OS ExampleOS {
STATUS = EXTENDED;
STARTUPHOOK = FALSE;
ERRORHOOK = FALSE;
SHUTDOWNHOOK = FALSE;
PRETASKHOOK = FALSE;
POSTTASKHOOK = FALSE;
MEMMAP = FALSE;
USERESSCHEDULER = FALSE;

};

TASK InitTask {
PRIORITY = 1;
SCHEDULE = NON;
ACTIVATION = 1;
AUTOSTART = TRUE {

APPMODE = AppMode1;
};
STACK = 1024;
TYPE = EXTENDED;

};

APPMODE AppMode1;

TASK TaskA {
PRIORITY = 2;
SCHEDULE = NON;
ACTIVATION = 1;
AUTOSTART = FALSE;
STACK = 1024;
TYPE = EXTENDED;

};

TASK TaskB {

116

PRIORITY = 3;
SCHEDULE = NON;
ACTIVATION = 1;
AUTOSTART = FALSE
STACK = 1024;
TYPE = EXTENDED;

};

TASK TaskC {
PRIORITY = 4;
SCHEDULE = NON;
ACTIVATION = 1;
AUTOSTART = FALSE
STACK = 1024;
TYPE = EXTENDED;

};

TASK TaskD {
PRIORITY = 5;
SCHEDULE = NON;
ACTIVATION = 1;
AUTOSTART = FALSE
STACK = 1024;
TYPE = EXTENDED;

};

TASK TaskE {
PRIORITY = 6;
SCHEDULE = NON;
ACTIVATION = 1;
AUTOSTART = FALSE
STACK = 1024;
TYPE = EXTENDED;

};

COUNTER HardwareCounter {
MAXALLOWEDVALUE = 100000;
TICKSPERBASE = 1000;
MINCYCLE = 1;
TYPE = HARDWARE;
COUNTER = HWCOUNTER0;

};
};

117

B.1.2 Source Code

/** \brief main function

**
** Project main function. This function is called after

** the c conformance initialisation. This function shall call

** StartOS ()

**/
void PartitionMain
(

void
)
{

/* Start OSEK */
StartOS(AppMode1);

/* never reached: */
return;

}

/** \brief Init Task

**
** This task is called one time after every reset and takes care of

** the system initialization.

**/
TASK(InitTask)
{

int i;

XM_write_console("Hello World!\n", 13);

/* Terminate Init Task */
ActivateTask(TaskA);
TerminateTask();

}

TASK(TaskA)
{

XM_write_console("taskA\n", 6);
ChainTask(TaskB);

}

118

TASK(TaskB)
{

XM_write_console("taskB\n", 6);
ChainTask(TaskC);

}

TASK(TaskC)
{

XM_write_console("taskC\n", 6);
ChainTask(TaskD);

}

TASK(TaskD)
{

XM_write_console("taskD\n", 6);
ChainTask(TaskE);

}

TASK(TaskE)
{

XM_write_console("taskE\n", 6);
ChainTask(TaskA);

}

B.2 xm_timer

The second example demonstrates the usage of counters and timers in an OSEK compliant en-
vironment. The example consists of two simple tasks, and InitTask doing the initializa-
tion - in this example configuring the timer - and TaskA the task that is periodically trig-
gered by the timer. Both of these tasks are configured in the configuration file. Furthermore
the configuration file contains the configuration of the counters (HardwareCounter and
SoftwareCounter), as well as the alarms (IncrementSWCounter and
ActivateTaskA).

As stated previously, the sources for incrementing counters can be all sorts of things, ranging
from timers to network cards to software events or explicit calls by the application. In this case
the HardwareCounter is bound to the timer interface provided by XtratuM, if the timer goes
off, the HardwareCounter is incremented. When it overflows the IncrementSWCounter
Alarm is triggered, which in turn increments the SoftwareCounter. As soon as the
SoftwareCounter overflows, the ActivateTaskA alarm is triggered, and this alarm ac-
tivates TaskA which is executed once every time alarm ActivateTask expires.

119

B.2.1 Configuration File

OSEK OSEK {

OS ExampleOS {
STATUS = EXTENDED;
STARTUPHOOK = FALSE;
ERRORHOOK = FALSE;
SHUTDOWNHOOK = FALSE;
PRETASKHOOK = FALSE;
POSTTASKHOOK = FALSE;
MEMMAP = FALSE;
USERESSCHEDULER = FALSE;
};

TASK InitTask {
PRIORITY = 1;
SCHEDULE = NON;
ACTIVATION = 1;
AUTOSTART = TRUE {
APPMODE = AppMode1;
};
STACK = 1024;
TYPE = EXTENDED;
};

TASK TaskA {
PRIORITY = 2;
SCHEDULE = NON;
ACTIVATION = 1;
AUTOSTART = FALSE;
STACK = 1024;
TYPE = EXTENDED;
};

APPMODE AppMode1;

COUNTER HardwareCounter {
MAXALLOWEDVALUE = 100000;
TICKSPERBASE = 1000;
MINCYCLE = 1;
TYPE = HARDWARE;
COUNTER = HWCOUNTER0;

120

};

COUNTER SoftwareCounter {
MAXALLOWEDVALUE = 100000;
TICKSPERBASE = 100;
MINCYCLE = 1;
TYPE = SOFTWARE;
};

ALARM IncrementSWCounter {
COUNTER = HardwareCounter;
ACTION = INCREMENT {
COUNTER = SoftwareCounter;
};
AUTOSTART = TRUE {
APPMODE = AppMode1;
ALARMTIME = 1;
CYCLETIME = 1;
};
};

ALARM ActivateTaskA {
COUNTER = SoftwareCounter;
ACTION = ACTIVATETASK {
TASK = TaskA;
}
AUTOSTART = FALSE;
};
};

B.2.2 Source Code

/** \brief main function

**
** Project main function. This function is called after

** the c conformance initialisation. This function shall call

** StartOS ()

**/
void PartitionMain
(

void
)
{

121

/* Start OSEK */
StartOS(AppMode1);

/* never reached: */
return;

}

/** \brief Init Task

**
** This task is called one time after every reset and takes care of

** the system initialization.

**/
TASK(InitTask)
{

int i;

SetRelAlarm(ActivateTaskA, 2689, 2689);

/* Terminate Init Task */
TerminateTask();

}

TASK(TaskA)
{

XM_write_console("taskA\n", 6);
TerminateTask();

}

122

APPENDIX C
Papers in the Context of this Thesis

The following is a list of papers that have been published during the course of this thesis.

OVERSEE - a generic FLOSS communication and application platform for vehicles. Andreas
Platschek, Nicholas Mc Guire and Georg Schiesser, The 12th Real-Time Linux Workshop
in Nairobi, Kenya, 2010

Linux as a Real-Time Hypervisor for the Automotive Industry Andreas Platschek, Nicholas
Mc Guire and Georg Schiesser, Embedded World Conference in Nürnberg, Germany,
2011

Migrating a OSEK run-time environment to the OVERSEE platform Andreas Platschek and
Georg Schiesser, The 13th Real-Time Linux Workshop in Prague, Czech Republic, 2011

Design and Implementation of a Safety-Critical Application Targeting Modular Certification
Andreas Platschek and Nicholas Mc Guire, The 14th Real-Time Linux Workshop in Chapel
Hill, USA, 2012

123

Abbreviations

ABS Anti Blocking System

API Application Programming Interface

ARINC Aeronautical Radio Incorporated

AUTOSAR AUTomotive Open System ARchitecture

BCC Basic Conformance Class (OSEK/VDX)

BT Basic Task(s) (OSEK/VDX)

CC Common Criteria

CENELEC European Committee for Electrotechnical Standardization

CNC Computer Numeric Controlled

COTS Common Off the Shelf

CPU Central Processing Unit

DOD Departement of Defense

EAL Evaluation Assurance Level

ECU Error Containment Unit

ECC Extended Conformance Class (OSEK/VDX)

E/E/PE Electric/Electronic/Programmable Electronic

ET Extended Task(s) (OSEK/VDX)

FCU Fault Containment Unit

FLOSS Free/Libre Open-Source Software

FMEA Failure Mode and Effects Analysis

125

FSF Free Software Foundation

GPL General Public License

GNU GNU’s not Unix

GSN Goal Structured Notation

HPET High Precision Event Timer

HAZOP Hazard and Operability Study

IMA Integrated Modular Avionics

IEC International Electrotechnical Commission

IPC Inter Process Communication

ISO International Organization for Standardization

ISR Interrupt Service Routine

NooM N out of M

OBD On-Board Diagnosis

OSEK Offene Schnittstellen für Elektronik in Kraftfahrzeugen

POSIX Portable Operating System Interface

PP Protection Profile

RTE Runtime Environment

RTSAD Real-Time Structured Analysis and Design

SFR Security Functional Requirements

SIL Safety Integrity Level

ST Security Target

STD State Transition Diagram

TCB Trusted Code Base

TMR Tripple Modular Redundancy

TOE Target of Evaluation

TPMS Tire Pressure Monitoring System

V2I Vehicle(s) to Infrastructure Communication

126

V2V Vehicle(s) to Vehicle(s) Communication

XEF Xtratum Executable Format

127

Bibliography

[Ada03] Charlotte Adams. A380 Innovations: A Balancing Act. Avionics Magazine, 1. March
2003.

[AGS08] Heinz Kantz Andreas Gerstinger and Christoph Scherrer. TAS Control Platform: A
Platform for Safety-Critical Railway Applications . ERCIM News, 75 (2008), p. 49
- 50., October 2008.

[BHF+92] Alan C. Bomberger, Norman Hardy, A. Peri Frantz, A. Peri, William S. Frantz,
Charles R. Landau, William S. Frantz, Jonathan S. Shapiro, and Ann C. Hardy. The
KeyKOSreg; Nanokernel Architecture. In Proc. of the USENIX Workshop on Micro-
kernels and Other Kernel Architectures, pages 95–112, 1992.

[CBW07] Randy Walter Christopher B. Watkins. Transitioning from Federated Avionics Ar-
chitectures to Integrated Modular Avionics. GE Aviation, 2007.

[Com03] Airlines Electronic Engineering Commitee. ARINC653 – AVIONICS APPLICA-
TION SOFTWARE STANDARD INTERFACE, October 2003.

[Con99a] OSEK/VDX Consortium. Binding Specification. http://portal.osek-vdx.
org/files/pdf/specs/binding142.pdf, 1999.

[Con99b] OSEK/VDX Consortium. OS Test Plan. http://portal.osek-vdx.org/
files/pdf/modistarc/ostestplan20.pdf, 1999.

[Con99c] OSEK/VDX Consortium. OSEK Implementation Language (OIL). http://
portal.osek-vdx.org/files/pdf/specs/oil25.pdf, 1999.

[Con99d] OSEK/VDX Consortium. OSEK Network Management. http://portal.
osek-vdx.org/files/pdf/specs/nm253.pdf, 1999.

[Con01] OSEK/VDX Consortium. OSEK Time Triggered Operating System. http://
portal.osek-vdx.org/files/pdf/specs/ttos10.pdf, 2001.

[Con04] OSEK/VDX Consortium. OSEK Communication Specification 3.0.3. http://
portal.osek-vdx.org/files/pdf/specs/osekcom303.pdf, 2004.

129

http://portal.osek-vdx.org/files/pdf/specs/binding142.pdf
http://portal.osek-vdx.org/files/pdf/specs/binding142.pdf
http://portal.osek-vdx.org/files/pdf/modistarc/ostestplan20.pdf
http://portal.osek-vdx.org/files/pdf/modistarc/ostestplan20.pdf
http://portal.osek-vdx.org/files/pdf/specs/oil25.pdf
http://portal.osek-vdx.org/files/pdf/specs/oil25.pdf
http://portal.osek-vdx.org/files/pdf/specs/nm253.pdf
http://portal.osek-vdx.org/files/pdf/specs/nm253.pdf
http://portal.osek-vdx.org/files/pdf/specs/ttos10.pdf
http://portal.osek-vdx.org/files/pdf/specs/ttos10.pdf
http://portal.osek-vdx.org/files/pdf/specs/osekcom303.pdf
http://portal.osek-vdx.org/files/pdf/specs/osekcom303.pdf

[Con05] OSEK/VDX Consortium. OSEK Operating System Specification 2.2.3. http:
//portal.osek-vdx.org/files/pdf/specs/os223.pdf, 2005.

[Con10] OVERSEE Consortium. Specification of Secure Communication. https://
www.oversee-project.com/fileadmin/oversee/deliverables/
D2-4_Specification_of_Secure_Communication_v1_5.pdf, 3.
June 2010.

[Coo03] Jim Cooling. Software Engineering for Real-Time Systems. Addison Wesley, first
edition edition, 2003.

[DD77] Dorothy E. Denning and Peter J. Denning. Certification of programs for secure in-
formation flow. Communications of the ACM, 20(7):504–513, 1977.

[DeM81] Tom DeMarco. Structured Analysis and System Specification. Yourdon P.,U.S., april
1981 edition, 1981.

[DoD80] United States of America Departement of Defense. Military Standard 1629A, Proce-
dures for Performing a Failure Mode, Effects and Criticallity Analysis. 24. Novem-
ber 1980.

[Eng98] Dawson R. Engler. The Exokernel Operating System Architecture. http:
//pdos.csail.mit.edu/exo/theses/engler/thesis.ps, 18. May
1998.

[GKH09] Amanda McPherson Greg Kroah-Hartman, Jonathan Corbet. Linux Kernel
Development. http://www.linuxfoundation.org/publications/
whowriteslinux.pdf, 1.August 2009.

[Goo01] Hassan Gooma. Software Design Methods for Concurrent and Real-Time Systems.
Addison Wesley, fifth printing edition, 2001.

[Gre06] William S. Greenwell. A taxonomy of fallacies in system safety arguments. In
Proceedings of the 2006 International System Safety Conference, 2006.

[Hat94] Les Hatton. Safer C: Developing Software for High-Integrity and Safety-Critical
Systems. Mcgraw-Hill Professional, first edition edition, 1994.

[IEC10a] IEC. 61508-0, Functional safety of electrical/electronic/programmable electronic
safety-related systems – Part 0: Functional safety and IEC 61508. April 2010.

[IEC10b] IEC. 61508-1, Part 1: General requirements. April 2010.

[IEC10c] IEC. 61508-2, Part 2: Requirements for electrical/electronic/programmable elec-
tronic safety-related systems. April 2010.

[IEC10d] IEC. 61508-3, Part 3: Software requirements. April 2010.

[IEC10e] IEC. 61508-4, Part 4: Definitions and abbreviations. April 2010.

130

http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
https://www.oversee-project.com/fileadmin/oversee/deliverables/D2-4_Specification_of_Secure_Communication_v1_5.pdf
https://www.oversee-project.com/fileadmin/oversee/deliverables/D2-4_Specification_of_Secure_Communication_v1_5.pdf
https://www.oversee-project.com/fileadmin/oversee/deliverables/D2-4_Specification_of_Secure_Communication_v1_5.pdf
http://pdos.csail.mit.edu/exo/theses/engler/thesis.ps
http://pdos.csail.mit.edu/exo/theses/engler/thesis.ps
http://www.linuxfoundation.org/publications/whowriteslinux.pdf
http://www.linuxfoundation.org/publications/whowriteslinux.pdf

[IEC10f] IEC. 61508-5, Part 5: Examples of methods for the determination of safety integrity
levels. April 2010.

[IEC10g] IEC. 61508-6, Part 6: Guidelines on the application of IEC 61508-2 and IEC 61508-
3. April 2010.

[IEC10h] IEC. 61508-7, Part 7: Overview of techniques and measures. April 2010.

[Ism08] Baurzhan Ismagulov. Linux in Safety-Critical Sys-
tems. https://www.osadl.org/fileadmin/dam/
presentations/Linux-in-Safety-Critical-Systems/
20080228-Siemens-Certification.pdf, 2008.

[KCR+10] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno,
Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, and Stefan Savage. Experimental security analysis of a modern automo-
bile. In Proceedings of the 2010 IEEE Symposium on Security and Privacy, SP ’10,
pages 447–462, Washington, DC, USA, 2010. IEEE Computer Society.

[KM98] Tim Kelly and John McDermid. Safety Case Patterns - Reusing Successful Argu-
ments. In Proceedings of IEE colloquium on understanding patterns and their ap-
plication to system engineering, 1998.

[KM07] Niels Klußmann and Arnim Malik. Lexikon der Luftfahrt. Springer Berlin Heidel-
berg, May 2007.

[KS92] Marilyn Keller Ken Shumate. Software Specification and Design - A Disciplined
Approach for Real-Time Systems. Wiley, first printing edition, 1992.

[Lie93] Jochen Liedtke. Improving IPC by Kernel Design. In 14th ACM Symposium on
Operating System Prinicples (SOSP), Asheville North Carolina, 1993.

[Lie94] Jochen Liedtke. On µ-Kernel Construction. In 15th ACM Symposium on Operating
System Prinicples (SOSP), Copper Mountain Resort, Colorado, 1994.

[Lie96] Jochen Liedtke. Toward Real Microkernels. In Communications of the ACM Vol.39,
1996.

[Mar06] George Marsh. Europe’s Vision of Future Avionics. Avionics Magazine, 1. June
2006.

[Min00a] Ministry of Defense. HAZOP Studies on Systems Containing Programmable Elec-
tronics, Part 1 Issue 2. tee.uq.edu.au/~elec7500/00-58%20part%201%
20issue%202.pdf, 1. May 2000.

[Min00b] Ministry of Defense. HAZOP Studies on Systems Containing Programmable Elec-
tronics, Part 2 Issue 2. cs.anu.edu.au/student/comp4100/lectures/
DEF-STAN-58.pdf, 1. May 2000.

131

https://www.osadl.org/fileadmin/dam/presentations/Linux-in-Safety-Critical-Systems/20080228-Siemens-Certification.pdf
https://www.osadl.org/fileadmin/dam/presentations/Linux-in-Safety-Critical-Systems/20080228-Siemens-Certification.pdf
https://www.osadl.org/fileadmin/dam/presentations/Linux-in-Safety-Critical-Systems/20080228-Siemens-Certification.pdf
tee.uq.edu.au/~elec7500/00-58%20part%201%20issue%202.pdf
tee.uq.edu.au/~elec7500/00-58%20part%201%20issue%202.pdf
cs.anu.edu.au/student/comp4100/lectures/DEF-STAN-58.pdf
cs.anu.edu.au/student/comp4100/lectures/DEF-STAN-58.pdf

[MIS04] MISRA. MISRA-C:2004 Guidelines for the use of the C language in critical systems.
October 2004.

[MK00] David L. Mills and Poul-Henning Kamp. The Nanokernel. http://www.eecis.
udel.edu/~mills/database/papers/nano/nano2.pdf, 2000.

[MR11] Miguel Masmano and Ismael Ripoll. XtratuM Hypervisor for INTEL x86 - Volume
4: Reference Manual. June 2011.

[MRC11] Miguel Masmano, Ismael Ripoll, and Alfons Crespo. XtratuM Hypervisor for IN-
TEL x86 Volume 2: User Manual. March 2011.

[OCYL11] on behalf of the Contributors Origin Consulting (York) Limited.
GSN COMMUNITY STANDARD VERSION 1. http://www.
goalstructuringnotation.info/documents/GSN_Standard.pdf,
November 2011.

[PA08] et al Philippe Aigrain. 2020 FLOSS Roadmap. http://www.
2020flossroadmap.org/docs/OWF_2020_Roadmap%20v2.18-3.
pdf, 2008.

[PS08] Detlef John Peter Sieverding. Sicas ECC – Die Plattform für Siemens-ESTWs für
den Nahverkehr. In Signal + Draht 5/2008, 2008.

[Ram07] James W. Ramsey. Integrated Modular Avionics: Less is More. Avionics Magazine,
1. February 2007.

[RMM+10] Ishtiaq Rouf, Rob Miller, Hossen Mustafa, Travis Taylor, Sangho Oh, Wenyuan
Xu, Marco Gruteser, Wade Trappe, and Ivan Seskar. Security and privacy vulner-
abilities of in-car wireless networks: a tire pressure monitoring system case study.
In Proceedings of the 19th USENIX conference on Security, USENIX Security’10,
pages 21–21, Berkeley, CA, USA, 2010. USENIX Association.

[Rus81] John Rushby. Design and Verification of Secure Systems. In 8th ACM Symposium
on Operating Systems Principles, 14. December 1981.

[Rus82] John Rushby. Proof of Seperability - A Verificaton Technique for a Class of Securtiy
Kernels. In Springer Verlag LNCS No. 137, pp. 352-367, 1982.

[Rus99] John Rushby. Partitioning in Avionics Architectures: Requirements, Mechanisms
and Assurance. In SRI International, 1. June 1999.

[Spi05] Cary Spitzer. Perspectives: Reusable Software in Integrated Avionics. Avionics
Magazine, 1. April 2005.

[STA11a] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 26262:
Road vehicles — Functional safety. November 2011.

132

http://www.eecis.udel.edu/~mills/database/papers/nano/nano2.pdf
http://www.eecis.udel.edu/~mills/database/papers/nano/nano2.pdf
http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf
http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf
http://www.2020flossroadmap.org/docs/OWF_2020_Roadmap%20v2.18-3.pdf
http://www.2020flossroadmap.org/docs/OWF_2020_Roadmap%20v2.18-3.pdf
http://www.2020flossroadmap.org/docs/OWF_2020_Roadmap%20v2.18-3.pdf

[STA11b] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 26262:
Road vehicles — Functional safety; Part 10: Guideline. November 2011.

[Sum96] Steve Summit. C Programming FAQs: Frequently Asked Questions. Addison Wesley
Pub Co Inc, 1st revised edition edition, 1996.

[Wat06a] Christopher B. Watkins. Integrated Modular Avionics: Managing the Allocation of
Shared Intersystem Resources. Smiths Aerospace LLC, 2006.

[Wat06b] Christopher B. Watkins. Modular Verification: Testing a subset of Interated Modular
Avionics in Isolation. Smiths Aerospace LLC, 2006.

[WGA08] WGA11 of Subcommittee CENELEC SC9XA. EN 50128: Railway applications -
Communications, signalling and processing systems - Software for railway control
and protection systems. April 2008.

[Ye05] Fan Ye. Justifying the Use of COTS Components within Safety Critical Applications.
In Dissertation, University of York - Department of Computer Science, September
2005.

133

Internet References

[1] Robert N. Charette. This Car Runs on Code. http://spectrum.ieee.org/
green-tech/advanced-cars/this-car-runs-on-code/ [Acccessed: July
16th, 2013].

[2] Wikipedia. Google driverless car. http://en.wikipedia.org/wiki/Google_
driverless_car [Acccessed: July 16th, 2013].

[3] OVERSEE consortium. Homepage of the OVERSEE Project. www.
oversee-project.com [Acccessed: July 16th, 2013].

[4] NASA. NASA Open Source Software. http://opensource.arc.nasa.gov/
[Acccessed: July 16th, 2013].

[5] Linus Torvalds and Andrew S. Tanenbaum. Linus vs. Tanenbaum. http:
//groups.google.com/group/comp.os.minix/browse_thread/
thread/c25870d7a41696d2/f447530d082cd95d?tvc=2 [Acccessed: July
16th, 2013].

[6] Wikipedia. Ring (CPU). http://de.wikipedia.org/wiki/Ring_%28CPU%29
[Acccessed: July 16th, 2013].

[7] Neil Brown. Object-oriented design patterns in the kernel, part 1. https://lwn.net/
Articles/444910/ [Acccessed: July 16th, 2013].

[8] Neil Brown. Object-oriented design patterns in the kernel, part 2. https://lwn.net/
Articles/446317/ [Acccessed: July 16th, 2013].

[9] philipsu. Broken Windows Theory. http://blogs.msdn.com/philipsu/
archive/2006/06/14/631438.aspx [Acccessed: July 16th, 2013].

[10] Google. Android webpage. http://www.android.com [Acccessed: July 16th,
2013].

[11] MeeGo community. MeeGo webpage. http://www.meego.com [Acccessed: July
16th, 2013].

135

http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code/
http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code/
http://en.wikipedia.org/wiki/Google_driverless_car
http://en.wikipedia.org/wiki/Google_driverless_car
www.oversee-project.com
www.oversee-project.com
http://opensource.arc.nasa.gov/
http://groups.google.com/group/comp.os.minix/browse_thread/thread/c25870d7a41696d2/f447530d082cd95d?tvc=2
http://groups.google.com/group/comp.os.minix/browse_thread/thread/c25870d7a41696d2/f447530d082cd95d?tvc=2
http://groups.google.com/group/comp.os.minix/browse_thread/thread/c25870d7a41696d2/f447530d082cd95d?tvc=2
http://de.wikipedia.org/wiki/Ring_%28CPU%29
https://lwn.net/Articles/444910/
https://lwn.net/Articles/444910/
https://lwn.net/Articles/446317/
https://lwn.net/Articles/446317/
http://blogs.msdn.com/philipsu/archive/2006/06/14/631438.aspx
http://blogs.msdn.com/philipsu/archive/2006/06/14/631438.aspx
http://www.android.com
http://www.meego.com

[12] Canonical. Ubuntu Webpage. http://www.ubuntu.com [Acccessed: July 16th,
2013].

[13] RedHat Inc. Redhat Webpage. http://www.redhat.com [Acccessed: July 16th,
2013].

[14] Top 500. Top 500 SuperComputers. http://www.top500.org [Acccessed: July
16th, 2013].

[15] Inc. Free Software Foundation. Hompage of GNU/HURD. http://www.gnu.org/
software/hurd/ [Acccessed: July 16th, 2013].

[16] NICTA Australia’s ICT Research Centre of Excellence. The L4.verified project - A
Formally Correct Operating System Kernel. http://www.ertos.nicta.com.au/
research/l4.verified [Acccessed: July 16th, 2013].

[17] Gernot Heiser. Microkernel, Nanokernel - what’s the dif-
ference? http://www.ok-labs.com/blog/entry/
microkernel-nanokernel-whats-the-difference/ [Acccessed: July
16th, 2013].

[18] wikipedia. CP/CMS - a time-sharing operating system of the late 60s and early 70s. http:
//en.wikipedia.org/wiki/CP/CMS [Acccessed: July 16th, 2013].

[19] Oracle. VirtualBox Homepage. http://www.virtualbox.org [Acccessed: July
16th, 2013].

[20] Fabrice Bellard. QEMU Homepage. http://www.qemu.org [Acccessed: July 16th,
2013].

[21] KVM. KVM - Kernel Based Virtual Machine. http://www.linux-kvm.org [Acc-
cessed: July 16th, 2013].

[22] Xen. XEN Homepage. http://www.xen.org/ [Acccessed: July 16th, 2013].

[23] Universidad Politécnica de Valencia (Spain). XtratuM - Homepage. http://www.
xtratum.org/ [Acccessed: July 16th, 2013].

[24] Amit Singh. A Taste of Computer Security. http://www.kernelthread.com/
publications/security/sandboxing.html [Acccessed: July 16th, 2013].

[25] Julien Delange. POK - A Partitioned Operating System. http://pok.
safety-critical.eu [Acccessed: July 16th, 2013].

[26] Windriver. VxWorks. http://www.windriver.com/products/vxworks/ [Ac-
ccessed: July 16th, 2013].

[27] Greenhill. Hompage Greenhill Integrity. http://www.ghs.com/products/
safety_critical/integrity-do-178b.html [Acccessed: July 16th, 2013].

136

http://www.ubuntu.com
http://www.redhat.com
http://www.top500.org
http://www.gnu.org/software/hurd/
http://www.gnu.org/software/hurd/
http://www.ertos.nicta.com.au/research/l4.verified
http://www.ertos.nicta.com.au/research/l4.verified
http://www.ok-labs.com/blog/entry/microkernel-nanokernel-whats-the-difference/
http://www.ok-labs.com/blog/entry/microkernel-nanokernel-whats-the-difference/
http://en.wikipedia.org/wiki/CP/CMS
http://en.wikipedia.org/wiki/CP/CMS
http://www.virtualbox.org
http://www.qemu.org
http://www.linux-kvm.org
http://www.xen.org/
http://www.xtratum.org/
http://www.xtratum.org/
http://www.kernelthread.com/publications/security/sandboxing.html
http://www.kernelthread.com/publications/security/sandboxing.html
http://pok.safety-critical.eu
http://pok.safety-critical.eu
http://www.windriver.com/products/vxworks/
http://www.ghs.com/products/safety_critical/integrity-do-178b.html
http://www.ghs.com/products/safety_critical/integrity-do-178b.html

[28] AUTOSAR. AUTOSAR - Automotive Open System Architecture. http://autosar.
org/ [Acccessed: July 16th, 2013].

[29] John Regher. A Guide to Undefined Behavior in C and C++. http://blog.regehr.
org/archives/213 [Acccessed: July 16th, 2013].

[30] LLVM Blog. What Every C Programmer Should Know About
Undefined Behavior. http://blog.llvm.org/2011/05/
what-every-c-programmer-should-know.html [Acccessed: July 16th,
2013].

[31] FSF Free Software Foundation. GNU make Homepage. http://www.gnu.org/
software/make/ [Acccessed: July 16th, 2013].

[32] FSF Free Software Foundation. GNU Compiler Collection Homepage [acccessed: July
16th, 2013]. http://gcc.gnu.org/.

[33] Scott Chacon. GIT - The Fast Version Control System. http://git-scm.com/ [Ac-
ccessed: July 16th, 2013].

[34] Doxygen. Doxygen Homepage. http://www.doxygen.org/ [Acccessed: July 16th,
2013].

[35] Julia Lawall. Coccinelle: A Program Matching and Transformation Tool for Systems Code.
http://coccinelle.lip6.fr/ [Acccessed: July 16th, 2013].

[36] OSEK/VDX consortium. OSEK/VDX Homepage. http://osek-vdx.org/ [Acc-
cessed: July 16th, 2013].

[37] Yutaka Matsuno. D-Case Editor – A Typed Assurance Case Editor. http://www.il.
is.s.u-tokyo.ac.jp/deos/dcase/ [Acccessed: July 16th, 2013].

[38] Mariano Cerdeiro. FreeOSEK Project Webpage. http://opensek.sourceforge.
net/ [Acccessed: July 16th, 2013].

137

http://autosar.org/
http://autosar.org/
http://blog.regehr.org/archives/213
http://blog.regehr.org/archives/213
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://www.gnu.org/software/make/
http://www.gnu.org/software/make/
http://gcc.gnu.org/
http://git-scm.com/
http://www.doxygen.org/
http://coccinelle.lip6.fr/
http://osek-vdx.org/
http://www.il.is.s.u-tokyo.ac.jp/deos/dcase/
http://www.il.is.s.u-tokyo.ac.jp/deos/dcase/
http://opensek.sourceforge.net/
http://opensek.sourceforge.net/

	Introduction
	Motivation
	Goals
	Methodical Approach
	Structure of the Thesis

	Concepts and Technologies
	Operating Systems Classification
	Virtualization
	Virtualization in the Safety Domain
	Integrated Modular Avionics
	Toolchain - used tools
	Goal Structured Notation
	Real-Time Structured Analysis and Design

	Relevant Standards
	ARINC 653
	Interpartition Communication in ARINC 653
	OSEK/VDX
	Establishing a Mapping between ARINC653 and OSEK
	IEC 61508
	ISO 26262 Road vehicles – Functional safety
	EN 50128
	MISRA-C

	Safety Case
	Introduction to Safety Cases
	Implementing a Layered Safety Case
	High-Level Safety Case

	Implementation Details
	Assessment
	Adaptation of the Build System
	Task Management
	Interpartition Communication
	Implementation Summary

	Design of an Example Application
	The Lifecycle of a Safety Critical Application
	Requirements Analysis
	High Level Design
	High Level Hazard and Operability Study
	Refinement of the High-Level Design
	Detailed Design
	Risk Assessment of the Detailed Design
	Design Summary

	Conclusion
	Summary
	Conclusion
	 Future Work

	Detailed Design
	Code Examples
	xm_hello
	xm_timer

	Papers in the Context of this Thesis
	Bibliography
	Internet References

