
Implementation of XVSM for the
iOS platform

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Medizinische Informatik

eingereicht von

Gerald Grötz
Matrikelnummer 0427554

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: A.o. Univ. Prof. Dr. Dipl.-Ing. eva Kühn
Mitwirkung: Dipl.-Ing. Tobias Dönz

Dipl.-Ing. Stefan Craß

Wien, 29.08.2013
(Unterschrift Verfasserin) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Implementation of XVSM for the
iOS platform

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Medical Informatics

by

Gerald Grötz
Registration Number 0427554

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: A.o. Univ. Prof. Dr. Dipl.-Ing. eva Kühn
Assistance: Dipl.-Ing. Tobias Dönz

Dipl.-Ing. Stefan Craß

Vienna, 29.08.2013
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Gerald Grötz
Dr. Czermakstraße 15/1, 2000 Stockerau

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-
wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken
oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall un-
ter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Danksagung

Meine Studien und im speziellen diese Arbeit wäre ohne die Mithilfe und Unterstützung
vieler Personen nicht möglich gewesen und deshalb möchte ich mich bei Ihnen recht
herzlich bedanken.

Besonders erwähnen möchte ich an dieser Stelle meine Eltern Helmut und Maria die
mich nicht nur finanziell unterstützt, sondern auch mit Geduld und Verständnis meinen
Weg begleitet haben. Ihnen habe ich zu verdanken, dass ich nicht früher ohne Abschluss
das Studium beendet habe. Ebenso möchte ich mich bei meinen zwei Brüdern Harald
und Andreas sowie meiner Schwägerin Karin für gelegentliche fachliche Ratschläge
beziehungsweise die aufmunternden Worte bedanken, die mich zum Weitermachen an-
imierten. Die Gespräche mit meinem Großvater Josef halfen mir auch, immer neue
Sichtweisen zu entwickeln. Leider kann sich meine Großmutter Aloisia nicht mehr mit
mir gemeinsam über den Abschluss dieser Arbeit freuen. Ebenfalls möchte ich an dieser
Stelle die Unterstützung durch meine Freunde - insbesondere Kirchmauer Alexander
und Reiff Christian - erwähnen.

Ein Höhepunkt meines Studium war sicherlich das Auslandssemester in Göteborg,
bei dem ich mich persönlich weiterentwickeln konnte und das mir sprachlich sehr geholfen
hat.

Schlussendlich möchte ich mich bei meinen Betreuern eva Kühn, Tobias Dönz und
Stefan Craß für die Mithilfe an dieser Arbeit bedanken.

ii

Abstract

Due to the increasing complexity of software systems there comes the need of technolo-
gies that help developers to simplify the programming process. Middleware systems in
general can offer this functionality. One type of middleware is based on the Space Based
Computing paradigm. It offers a shared memory data space that can be accessed concur-
rently by different users. The eXtensible Virtual Shared Memory (XVSM) architecture
uses this approach and provides an easy extendable solution for developers. Actual
implementations are based on Java (MozartSpaces) and .NET (XCOSpaces). With the
rapid growth of smartphones based on Apple’s iOS operating system comes the need of
an implementation for that platform.

The goal of this thesis is the provision of an implementation for the iOS platform that
is fully compatible to MozartSpaces, the actual reference implementation of XVSM. A
research process concerning possible solutions is followed by a ready to use implemen-
tation for software developers.

The output is evaluated by different kind of performance benchmarks. The compat-
ibility to MozartSpaces is evaluated by integration tests and presented by an application
scenario where the new implementation works hand in hand with Mozartspaces.

The new implementation is based on the native programming language of Apple,
Objective C and works well in association with MozartSpaces.

iii

Kurzfassung

Aufgrund der zunehmenden Komplexität von Softwaresystemen ist die Verwendung
von Technologien notwendig, die den Entwicklern die Programmierung vereinfachen.
Middleware Systeme sind eine Möglichkeit das zu erreichen. Ein Typ von Middlewa-
re basiert auf der Space Based Computing Paradigma. Sie bietet einen gemeinsamen
Datenraum (Space), der gleichzeitig von verschiedenen Benutzern verwendet werden
kann. Die eXtensible Virtuelle Shared Memory (XVSM) Architektur nutzt diesen An-
satz und bietet eine einfache erweiterbare Technologie für Entwickler. Aktuelle Im-
plementierungen basieren auf Java (MozartSpaces) und .NET (XCOSpaces). Mit dem
rasanten Wachstum von Smartphones basierend auf Apple’s iOS Betriebssystem kommt
die Notwendigkeit einer Implementierung für diese Plattform.

Das Ziel dieser Diplomarbeit ist die Bereitstellung einer Implementierung für die
iOS-Plattform die vollständig kompatibel zu MozartSpaces, der aktuellen Referenz-
Implementierung von XVSM ist. Am Beginn steht der Vergleich möglicher Lösungs-
ansätze mit anschließender Implementierung für diese Plattform.

Die Implementierung wird durch verschiedene Arten von Performance-Benchmarks
ausgewertet. Die Kompatibilität zu MozartSpaces wird durch Integration-Tests evalu-
iert und ein Anwendungsszenario präsentiert die Zusammenarbeit zwischen der neuen
Implementierung und MozartSpaces.

Die neue Implementierung basiert auf Objective C, der nativen Programmiersprache
von Apple und funktioniert gut in Verbindung mit MozartSpaces.

iv

Contents

1 Introduction 1
1.1 Motivation and goals . 3
1.2 The thesis’ structure . 4

2 Background 5
2.1 Middleware . 5

2.1.1 General aspects . 5
2.1.2 Space Based Computing . 9

2.2 XVSM . 9
2.2.1 Formal Definition . 9

2.3 Mobile devices - General restrictions / properties 14
2.3.1 Limited Resources . 14
2.3.2 Multitasking / Background processing 14

2.4 iOS mobile devices . 15
2.4.1 Cross platform development 17
2.4.2 Jailbreak . 20

2.5 Requirements for porting MozartSpaces 20
2.6 Communication in heterogeneous systems 21

2.6.1 Serialization . 21

3 Related Work 23
3.1 Actual Implementations . 24

3.1.1 Java implementation - MozartSpaces 24
3.1.2 Java implementation - MozartSpaces running on Android 24
3.1.3 .NET implementation - TinySpaces 24
3.1.4 .NET implementation - XCOSpaces 25
3.1.5 iOS implementations . 25
3.1.6 Summary . 25

4 Use Cases 27
4.1 Intra-App communication . 27

v

4.2 Inter-App communication . 27
4.3 Remote communication . 28

5 Implementation 29
5.1 Porting process . 29

5.1.1 General aspects . 29
5.1.2 Restrictions . 30
5.1.3 Porting details . 31

5.2 iOS issues . 33
5.2.1 Background processing . 33

5.3 Implementation details . 36
5.3.1 Serialization . 36
5.3.2 Cellular communication . 38
5.3.3 Implementation details . 39
5.3.4 Interface description for users 44

6 Application Scenario 54

7 Evaluation 56
7.1 Benchmark environment . 56
7.2 Performance benchmark . 57

7.2.1 Performance benchmark serializer 57
7.2.2 Performance benchmark CAPI-3 58
7.2.3 Scalability benchmark CAPI-3 62
7.2.4 Performance benchmark embedded space 63
7.2.5 Scalability benchmark embedded space 64

7.3 Compatibility . 65
7.4 Summary and conclusion . 68

8 Deployment on iOS devices 70
8.1 Apple specific issues . 70

8.1.1 Programming restrictions . 70
8.1.2 Registration . 71
8.1.3 App Store . 71
8.1.4 iOS device simulator . 72

8.2 Deployment How-To . 72

9 Future Work 74

10 Conclusion 77

A Appendix 79

vi

A.1 Source code heavily used in MozartSpaces 79
A.2 Java2objc Objective C output . 80
A.3 Makefile . 82

References 87

Web References 90

vii

List of Listings

1 Difference between Java and Objective C syntax 32
2 Background processing using finite length task 34
3 Background processing using “audio” environment 34
4 Background processing using fork() 35
5 Background processing using dummy AVAudioPlayer 35
6 Configuration of the new Objective C implementation 44
7 Startup and shutdown of the new Objective C implementation 44
8 Container operations with the new Objective C implementation 45
9 Entry operations with the new Objective C implementation 45
10 Coordination and selection with the new Objective C implementation . 46
11 Transaction handling with the new Objective C implementation 47
12 Defining aspects with the new Objective C implementation 47
13 Using aspects with the new Objective C implementation 48
14 Error handling with the new Objective C implementation 51
15 Getting started with the new Objective C implementation 52
16 Typical Java source code in MozartSpaces 79
17 Typical Java source code in MozartSpaces converted by java2objc - in-

terface file . 80
18 Typical Java source code in MozartSpaces converted by java2obj - im-

plementation file . 81
19 Makefile . 82

viii

List of Figures

1.1 Smartphone turnover 2010 and 2012; prediction from 2012 to 2016 2
1.2 Proportion of smartphone operating systems 2

2.1 A distributed system organized as middleware ([TS06]) 6
2.2 Layered architecture of XVSM [Cra10, 24] 10
2.3 State changes in an iOS App . 15

4.1 Intra-App communication using XVSM 28
4.2 Inter-App communication using XVSM 28

5.1 Directory structure of the new Objective C implementation 40
5.2 Logical structure of the new Objective C implementation 41

6.1 iOS chat login window . 55

7.1 Performance evaluation - comparison of different serializers on different
platforms using different memory management 58

7.2 Byte stream size evaluation - comparison of different serializer on different
platforms . 59

7.3 Performance evaluation new Objective C compared to MozartSpaces using
FifoCoordinator . 60

7.4 Performance evaluation new Objective C compared to MozartSpaces using
RandomCoordinator . 61

7.5 AnyCoordinatorScalability . 62
7.6 Performance evaluation of the new Objective C embedded space compared

to MozartSpaces using FifoCoordinator 64
7.7 Runtime performance evaluation Objective C - MozartSpaces 65
7.8 Comparison of memory and time scalability of CAPI (FifoCoordinator (“Read

Separate Tx”)) . 66
7.9 Integration testing: Embedded space Objective C 67
7.10 Integration testing: Remote space Objective C 67
7.11 Integration testing: Standalone Objective C 67
7.12 Integration testing: Objective C - Java . 67

ix

7.13 Integration testing: Java - Objective C . 67

x

List of Tables

2.1 Overview of relevant iOS devices (iPhone) 16
2.2 Overview of relevant iOS devices (iPad / iPod touch 16
2.3 Requirements for porting MozartSpaces on the iOS platform 21
2.4 Serialized size in bytes [HJR+03] . 22
2.5 Average Serialization Time in ms [HJR+03] 22
2.6 Average Deserialization Time in ms [HJR+03] 22

3.1 Overview of different XVSM implementations 26

5.1 Mapping Java to Objective C datatypes . 38
5.2 NAT behavior of Austrian network operators 39
5.3 Testing environment dependencies . 42
5.4 New Objective C implementation dependencies 43

xi

List of Abbreviations

AOT Ahead-Of-Time
API Application Programming Interface
ARC Automatic Reference Counting
CAPI Core API
GC Garbage Collection
GCD Grand Central Dispatch
GUI Graphical User Interface
IDE Integrated Development Environment
IP Internet Protocl
JIT Just-in-time
JVM Java Virtual Machine
LTS Lime Tuple Space
NAT Network Address Translation
QoS Quality of Service
RPC Remote Procedure Call
SDK Standard Development Kit
STUN Session Traversal Utilities for NAT
URL Uniform Resource Locator
WSN Wireless Sensor Networks
XML eXtensible Markup Language
XVSM eXtensible Virtual Shared Memory
XVSMP XVSM Protocol
XVSMQL . . . XVSM Query Language

xii

CHAPTER 1
Introduction

Due to the falling prices of smartphones, mobile computing and mobile Internet access
gain more and more influence in our everyday work and life. Figure 1.1 with data from
[2] show the annual turnover (2010 and 2011) and predicted turnovers (2012 to 2016)
of smartphones worldwide. Figure 1.2 shows the worldwide proportion of smartphone
operating systems in the first quarter 2012 ([18]) and the prediction of 2015 ([1]). With
this trend in mind there exists the possibility of building complex and large applications
because great sales can be expected. For example, map apps, collaborating games or
social media network access are possible fields for development. There exist mobile ap-
plications in the application store of Apple [4] and Google [33] that are larger than 100
megabyte. In addition to the size of the application they are inherently distributed appli-
cations. Due to such a dramatically increase of complexity of smartphone applications
there comes the need of a technology that can assist designers as well as developers to
quickly build reliable and reusable software. Like on desktop computers a middleware
should achieve that. This should also allow communication between regular personal
computers and smartphones. For the perspective of the application there should be no
difference between these devices.

One kind of middleware paradigm to achieve these requirements called Space Based
Computing uses some kind of blackboard (called space) to share data between hosts. It
offers the possibility to exchange data no matter the receiving endpoint is operating or
not (time decoupling) as well as it is not necessary to know the address of the receiver
(space decoupling). An adaptable and extendable implementation of this paradigm is
XVSM.

1

Figure 1.1: Smartphone turnover 2010 and 2012; prediction from 2012 to 2016

Figure 1.2: Proportion of smartphone operating systems

2

1.1 Motivation and goals
Since hardware capabilities of actual mobile devices improved rapidly in the last years
there are new possibilities for designing mobile applications. Processing power of mul-
ticore CPUs and clock speed beyond 1GHz offer the possibility of developing complex
applications. In addition, wireless communication between the devices using 3G/4G
and WLAN allows high data traffic. Applications in AppStores of Apple and Google
exceed the 100MB boundary and are often distributed applications. Due to these facts
there comes the need of software systems that reduce complexity for developers. The
Space Based Computing paradigm based on the Linda coordination model, e.g. XVSM
offers a solution by decoupling communication in space and time. This approach works
well for static as well as for dynamic clients and is therefore well suited for mobile
devices as mentioned in [CFL+06]:

“Summarizing, the Linda coordination model grants the flexibility and the
adaptability needed in developing applications in mobile computing scenar-
ios.”

The main goal of this thesis is a XVSM implementation for the iOS platform (iPhone,
iPad, iPod) that is fully compatible with the actual MozartSpaces version. This includes
the following parts:

• Operations, coordination and transactions

• Runtime model, communication protocol and API semantics

• Semantics of aspects

• Persistency operations

Different possible solutions should be mentioned to achieve this goal like using the ex-
isting source code and adapt it for using on iOS or a new implementation. Since Apple
included a lot of restrictions in the API of iOS in contrast to OS X as well as in the
distribution mechanism of Apps there may be some unexpected limitations in the result
of this thesis. Some solutions will be presented to outwit these limitations including
mentioning the consequences. Additionally, the restrictions by the user interface for
configuration and running the middleware like no command line interface and limited
interaction possibilities (e.g. no physical keyboard or limited screen size) must be han-
dled by designing an intelligent user interface. Another challenge is the design of a
serialization mechanism that operates in the heterogeneous environment.

A small scenario where the MozartSpaces implementation as well as the new iOS
implementation works hand in hand will be created. This will be demonstrated by a
small example that presents the opportunities of XVSM on the iOS platform interacting
with the existing MozartSpaces implementation.

3

To achieve compatibility the actual integration test suite of MozartSpaces will be
executed by using a remote core of the new Objective C implementation. In addition,
some benchmarks will be performed to compare the different implementations concern-
ing execution speed and memory consumption.

1.2 The thesis’ structure
This thesis is structured in the following chapters: Chapter 2 is about middleware in
general, XVSM including the formal definition, aspects about using mobile devices and
in particular iOS devices, requirements for porting MozartSpaces and communication
in heterogeneous systems. Chapter 3 describes the related work and why a new imple-
mentation for the iOS platform is necessary. Chapter 4 is about possible use cases of the
new Objective C implementation for the iOS platform. Chapter 5 sums up the most im-
portant aspects of the implementation details. This includes how the porting process is
done, some issues concerning iOS and detailed information about the implementation.
Chapter 6 describes an application scenario that present the new Objective C imple-
mentation and MozartSpaces working hand in hand. Chapter 7 describes the evaluation
concerning execution performance, scalability and compatibility to MozartSpaces. The
deploying process on iOS devices including some Apple specific issues is outlined in
chapter 8. Chapter 9 describes open issues concerning the new Objective C implemen-
tation. Finally, chapter 10 summarizes the thesis.

4

CHAPTER 2
Background

To get an understanding of the content of the thesis some concepts needs to be de-
scribed. This chapter gives an instruction of middleware in general (see 2.1) including
a short description of Space Based Computing. Further, an introduction to XVSM (see
2.2) is given with the description of the formal definition, which it is based on. After-
wards, issues concerning mobile devices are discussed (see 2.3). Then, aspects about
the iOS platform are mentioned (see 2.4). The chapter gets finished with an overview
about the porting MozartSpaces (see 2.5) and some concerns about communication in
heterogeneous systems (see 2.6).

2.1 Middleware
Due to the increasing size and complexity of software systems there comes the need
of hiding details from developers to simplify the programming process. Middleware
systems offer such functionality. They hide complexity of distributed systems, e.g. con-
currency access and give a well-defined view on the system.

The first part of this chapter describes general aspects of middleware. The second
part is about Space Based Computing at a glance. After that some aspects of middleware
and mobile devices are given.

2.1.1 General aspects
Definition

[CDK05, p. 16] gives a overview of middleware and describes it in useable way:

5

Figure 2.1: A distributed system organized as middleware ([TS06])

“The term middleware applies to a software layer that provides a program-
ming abstraction as well as masking the heterogeneity of the underlying
networks, hardware, operating systems and programming languages.”

Middleware provides a software layer (2.1) that is between operating system and
the application. It offers a higher degree of abstraction and is therefore easier to han-
dle. Therefore the view of the application (API, programming concept) is the same as it
would be on a single computer system although it is a distributed system. A middleware
offers the ability to focus on the application logic but on low-level details like concur-
rency control or transaction management. There are 7 challenges defined in [CDK05]
that need to be fulfilled for distributed systems. A middleware system takes over parts
of them and hides them from the developer:

• Heterogeneity: Various kinds of systems (e.g. networks, operating systems, pro-
gramming languages) should work together using well-defined interfaces and pro-
tocols (e.g. IP, XML). This allows overcoming differences like unequal data type
representation or usage of different programming languages.

• Openness: Interfaces should be published, accessible and standardized to allow
extension or reimplementation.

• Security: Since important data is transmitted it must be secured, especially based
on confidentiality (protection against intruders), integrity (protection against mod-
ification) and availability (protection against interruption).

• Scalability: The system should be extendable with resources as well as with users
and still work efficiently.

6

• Failure handling: The systems should be able to detect hardware and software
failures and handle them accordingly. For instance retransmitting of corrupted
data or recovering after an error.

• Concurrency: The system should handle data access to resources at the same
time and still stay in a consistent state.

• Transparency: “Transparency is defined as the concealment from the user and
the application programmer of the separation of components in a distributed sys-
tem, so that the system is perceived as a whole rather than as a collection of
independent components [CDK05, 23].” The most important transparencies are
the following:

– Access: Local and remote access use the same operations.

– Location: The physical or network location is hidden.

– Concurrency: Allow different processes accessing shared resources at the
same time and keeping them consistent.

– Replication: Resources may be replicated for performance, availability or
security reasons without reflecting it to users or programmers.

– Failure: Failure and recovery are hidden for the resource.

– Mobility: Allows the movement of resources without reflecting it to the
user.

– Performance: The system can be reconfigured to handle different loads.

– Scaling: The systems need no changes when extending it.

Categories of middleware

[JYYL09] describes four different categories of middleware systems:

• Procedural middleware allows “Remote Procedure Calls” (RPC) to communi-
cate between the peers. A server provides different procedures that can be exe-
cuted by the client. An advantage is the simple way of implementation and the
good support by the operating systems. Disadvantages are for example the lack
of support for replication, the non-existence of asynchronous communication or
a lack of scalability. An implementation is for instance the “CORBA”.

• Message-oriented middleware (MOM): The communication is done by exchang-
ing messages. There exist at least two different types of MOM: message queuing
and publish-subscribe. In the first type of MOM, the messages are sent to a queue
and from there forwarded to the receiver (indirect). In the second case the mes-
sages are sent to interested parties that have been registered before. An advantage

7

is the fact that group communication and synchronous/asynchronous communi-
cation are supported. A disadvantage is the need of an extra component (message
broker). An implementation is for instance the “Java Message Service” (JMS).

• Transactional middleware: The communication supports distributed transac-
tion according to the ACID ([HR83]) properties. An advantage is that the sys-
tem is always in a consistent state. A disadvantage is the sometimes undesired-
overhead. An implementation is for instance “Customer Information Control Sys-
tem” (CICS).

• Object middleware: This is an extension to the procedural approach. Some
object-oriented features like inheritance, object references and exceptions are
added to the RPC principle. An advantage is the flexibility - it can replace the
other approaches. A disadvantage is the rather heavyweight design. An imple-
mentation is for instance “Component Object Model” (COM)

Benefits of using middleware

Due to the requirement of building software in time and budget some new approaches
need to be invented. The systematic reuse of artifacts as described in [SB03] is one
way to achieve this. There are three main improvements for developing and evolving of
application software mentioned which are reached due to middleware:

• Open standards: Offers the opportunity of interoperable artifacts with respect to
security, layered distributed resource management and fault tolerant services.

• Strategic focus: Allows the developers to focus on higher level software artifacts
like business logic instead of low level operating system concerns.

• Implementation reuse: The additional effort of developing amortizes after reuse.

In [SS02] the benefits of well-designed middleware systems are summarized as follows:

• Hiding error-prone details like socket programming from application developers.

• Costs can be reduced due to reusing artifacts and using previous development
expertise.

• Offers a higher-level abstraction to the developers.

• Offers proven services like logging and security for the developer.

8

2.1.2 Space Based Computing
The Space Based Computing paradigm is based on the Linda Tuple Space communi-
cation model by David Gelernter ([Gel85]). It provides a repository of tuples (space)
that can be accessed by different processes. Instead of sending messages or using re-
mote procedure calls data exchange and coordination between peers is accomplished
by using a shared space. That means that there is no direct communication between
the processes. A timeout specifies how the operations on the space are handled - the
operation blocks until the timeout expires (from zero seconds to infinity). A space is
sometimes understood as a blackboard. It is a shared data space that can be accessed by
different atomic operations:

• read (rd): Search the space for an entry (e.g. using template matching, unique id)
and return the result.

• write (out): Write a tuple/entry into the space.

• take (in): It is like the read operation except that the entry/tuple is removed from
the space (consuming read).

The communication is decoupled in time, space and reference. Due to these character-
istics it is intended for the use in large distributed systems [Mor10].

There exist many implementations with different goals on different platforms. This
thesis is about the implementation of a technology called XVSM that is based on the
space based computing paradigm.

2.2 XVSM
Many program designs are based on concepts like stacks or queues. This also applies
in distributed environments. Since template matching does not offer a sufficient way to
coordinate processes with respect to this requirement there was a need of an extension.
Another need was platform independency to serve the need of the actual internetwork-
ing. XVSM [49], developed by the Space Based Computing group [48] was introduced
to extend the potential of such a Space Based Computing approach and add the two
mentioned features above. To achieve a well-defined way of operations a formal def-
inition is needed. Chapter 2.2.1 gives an overview of the formal definition of XVSM
while Chapter 3.1 gives information about MozartSpaces [47], the actual reference im-
plementation.

2.2.1 Formal Definition
The formal definition of XVSM can be found in [Cra09, eKMS08, Cra10]. It is the base
for MozartSpaces. Figure 2.2 gives an overview of the architecture of XVSM. It is layer

9

Algebra

CAPI-1: Basic operations

CAPI-2: Transactions

CAPI-3: Coordination
CAPI-B:

Blocking behavior

CAPI-4: XVSM Runtime (with Timeouts and Aspects)

XVSMP

Language Binding (API)

sy
st

e
m

 c
o
n
ta

in
e
rs user containers

Figure 2.2: Layered architecture of XVSM [Cra10, 24]

based while each layer uses the functionality offered underneath. Each layer (Core
API - CAPI) provides well-defined operations. CAPI-1 offers basic operations (read,
write, take), CAPI-2 adds transactional support while CAPI-3 is responsible for coor-
dination. All these operations are non-blocking and return immediately with different
status reflecting if the operation was processed or if it was not possible (e.g. the entry
is locked by another transaction). CAPI-4 (Runtime) offers timeouts and reschedules
the requested operations as well as aspects. CAPI-B offers blocking behavior for ba-
sic operations and is used by the runtime. XVSMP offers interaction between different
XVSM nodes based on XML.

XVSM Algebra

The XVSM Algebra defines the way elements can be accessed and manipulated. El-
ements can be strings or integers and collections (sequential lists and unordered bags
(=multiset)). Lists offer ordered sequence of elements while bags are sets that allow
duplicate elements. Collections can hold objects as well as collections. Both of them
are identified by a label. Such a data structure (tree) is called xtree and is the base of the

10

formal definition of a space. Xtrees are defined in [Cra10] as follows:

An xtree is either a sequence or a multiset of labeled xtrees, or an unstruc-
tured value like a string or an integer.

A list is represented by [l1 : e1, l2 : e2, ...] and bags by 〈l1 : e1, l2 : e2, ...〉 while lx
are labels and ex are elements. Anonymous elements omitting labels are allowed. For
example:

X = [Batman : “Bale“, Opponents : 〈TwoFace : “Eckhart“, Joker :
“Ledger′′〉, V ehicle : “Batmobil“, V ehicle : “Batpod“]

That means that X is a multi set of four elements. The object with label “Batman” has
the value “Bale” and the object with label “Opponents” is a sequence (list) that contains
two elements: “TwoFace” with value “Eckhart” and “Joker” with its value “Ledger”.
Two other objects with label “Vehicle” have elements “Batmobil” and “Batpod”. A
subtree can be identified by paths or by an index (sequence) to access elements. Due to
the fact that bags can contain elements with equal label the navigation will become in
deterministic. The following example describes access to trees:

X.(Opponents/TwoFace) = “Eckhart“

X.1 = “Bale“

X.vehicle = “Batmobil“‖“Batpod“

The first select the sequence “Opponents” and then “TwoFace” to become the element
“Eckhart”. The second uses the index notation to get the first element of the list: “Bale”.
The third is in deterministic because of the property of a bag and result in either “Bat-
mobil” or “Batpod”. With this information a space can be described as follows:

“Basically, a space is a multiset xtree that comprises all containers located at
a single site, together with their unique labels that serve as their references.
A container is itself a multiset xtree containing user-generated entries with
unique labels. Entries consist of labeled values called properties, which
have a well-defined label and a value that can either be an unstructured
value like an integer or string, or a more complex xtree.” ([Cra10, p. 11])

This principle can be used for user data as well as for meta data (e.g. transaction locks).

XVSM Query Language

To allow more precise access to the data structure than with path and indices there
is a need of a query language. XVSM Query Language (XVSMQL) offers such an
extended functionality. A simple query (SXQ) can be combined to a complex one by

11

concatenation. They are executed from left to right and the output of the previous stage
is the input for the next one. There exist two different forms of SXQ: matchmakers
(applied on single elements) and selectors (applied on whole input). The following
selectors are defined:

• Count operator (cnt(n)): Take the first n entries from a list or any n entries from
a bag.

• Sorting (sortup(p), sortdown(p), reverse()): Sort the input ascending/descend-
ing defined by path, reverse the order (sequences only) or return the input.

• Uniqueness (distinct(p): Return unique values defined by path.

Core API (CAPI)

Each layer depends on the underlying layer and uses that functionality. CAPI 1 to 3 is
non-blocking while CAPI 4 implements the runtime features that can block for a defined
timeout. All CAPI operations return the result and a status:

• OK: Operation is succeeded.

• DELAYABLE: Operation is not executable at the moment. For example if a write
operation tries to insert an entry in an already full bounded container.

• LOCKED: Operation is not executable because the data structure is locked by a
transaction.

• NOTOK: Operation cannot be executed.

CAPI 1

The CAPI 1 layer is responsible for basic operations like read, write and take (consum-
ing read). These operations are used for user data as well as for meta data. An update
of an entry can be simulated by take followed by a write operation.

CAPI 2

The CAPI 2 layer is responsible for the transactional control. Arbitrary CAPI 1 opera-
tions can be combined to a single operation. Pessimistic locking is used as concurrency
control method and “repeatable read” is used as isolation level. Transactions can be
committed and roll backed by the user; sub transactions are managed by its transac-
tion. There exist three different locks (insert/delete/read) that are responsible of how the
entries and containers can be accessed by other transactions (e.g. not visible or locked)

12

CAPI 3

The CAPI 3 layer is responsible for the organization of the data in a container. This
includes two main tasks. On the one hand defines how entries are stored and retrieved
from a container. This is handled by corresponding meta data. On the other hand it is
responsible for the coordination for concurrent access. There exist many pre-defined
coordinators that improve usability:

• System coordinator (implicitly added): Check container limits.

• Query coordinator: Executes XVSMQL queries on a container.

• FiFo coordinator: FiFo ordering of the inserted entries.

• LiFo coordinator: LiFo ordering of the inserted entries.

• Key coordinator: Uses unique keys to identify inserted entries.

• Label coordinator: Uses not unique labels to identify inserted entries.

• Linda coordinator: Support Linda template matching.

• Vector coordinator: Store entries in an indexed list that can be used to access
entries.

In addition to the predefined coordinators there is the possibility to specify custom co-
ordinators [eKMKS09].

CAPI 4

The CAPI 4 layer includes the runtime and the aspect feature as described in [Dö11]:

The runtime in CAPI-4 manages the timeout of operations and schedules
the request processing. It also initializes the meta model where system
containers are used.

Aspects in XVSM are code segments that can be added dynamically during
runtime and are executed when a request is processed...

The runtime handles local requests as well as remote requests. The execution result
depends on the result of CAPI 3. If it is DELAYED or LOCKED it will be rescheduled
and eliminated after a certain timeout if the operation does not finish. If the CAPI 3
operation result is OK or NOTOK it will be returned by the runtime immediately. The
complete XVSM runtime structure is explained in [Cra10, 53].
Aspects allow the user to dynamically adapt the semantics of an operation at a specified
interception point. Another operation can be executed before/after a certain operation
(for example: print a log statement after a write operation).

13

XVSMP and Language Bindings

XVSMP (XVSM protocol) offers a programming language independent communication
between different peers. Using XML for the protocol guarantees interoperability.

2.3 Mobile devices - General restrictions / properties

2.3.1 Limited Resources
In the past the limitations of mobile devices (e.g. cell phones) had a large influence
on the design and scope of an application. Some years ago the available hardware had
many restrictions. For instance the original iPhone [57] in 2007 had the following con-
figuration: CPU: 412Mhz, 128MB RAM, 4/8/16GB Storage, 802.11 b/g. Comparing
to the actual iPhone 5 [61] (CPU: 2x1.3GHz, 1GB RAM, 16/32/64GB Storage, 802.11
a/b/g/n), one can come to the conclusion that available space and memory as well as
CPU speed should not be a considerable limitation anymore.

The limited power supply of mobile devices is another important aspect but is not in
the scope of this thesis. [Zar12] gives a detailed description of the energy consumption
of the MozartSpaces persistence layer on Android devices and is a good starting point
for further investigations concerning energy consumption of XVSM middleware.

2.3.2 Multitasking / Background processing
Since iOS 4.0 multitasking is supported. According to the “iOS App Programming
Guide” [12] an App can be in one of the five states:

• Not running: The application is not in memory.

• Inactive: Temporary state when application is in foreground but not receiving
events.

• Active: The application is running and can receive events (e.g. multitouch ges-
tures)

• Background: The application is in background and executing code. This “must
not take too long” because it will be interrupted by the operating system.

• Suspended: The application is in background (still in memory) and not executing
any code.

In figure 2.3 ([12, p. 37]) there is an overview of the possible state transitions.
Most of the state changes correspond to method calls in the App delegate object. This
gives the possibility to interact with the App while state transitions. Unfortunately, there

14

Figure 2.3: State changes in an iOS App

is no official way to handle long term running background processes except for some
predefined purposes like Audio or VoIP applications.

2.4 iOS mobile devices
There are three device categories on the Apple iOS platform that are potential candidates
for a XVSM implementation: The mobile phone “iPhone”, the tablet “iPad” and the
portable media player “iPod touch”. These are the actual devices (End 2012) that are
compatible with at least iOS 5 that is necessary for the actual implementation. Tables
2.1 and 2.2 present an overview of the different hardware. The performance will highly
depend on the different hardware configurations.

15

Ta
bl

e
2.

1:
O

ve
rv

ie
w

of
re

le
va

nt
iO

S
de

vi
ce

s
(i

Ph
on

e)

iP
ho

ne
3G

S
1

[5
8]

iP
ho

ne
4

[5
9]

iP
ho

ne
4S

[6
0]

iP
ho

ne
5

[6
1]

iP
od

to
uc

h
5t

h
g
en

[6
2]

C
PU

60
0

M
H

z
80

0
M

H
z

2x
80

0M
H

z
2x

1.
3G

H
z

1G
H

z
C

ap
ac

ity
8/

16
/3

2G
B

8/
16

/3
2G

B
16

/3
2/

64
G

B
16

/3
2/

64
G

B
32

/6
4G

B
M

em
or

y
25

6M
B

51
2M

B
51

2M
B

1G
B

51
2M

B
C

el
lu

la
r

3G
3G

3G
3G

2
—

N
et

w
or

ki
ng

80
2.

11
b/

g
80

2.
11

b/
g/

n
80

2.
11

b/
g/

n
80

2.
11

a/
b/

g/
n

80
2.

11
a/

b/
g/

n
bl

ue
to

ot
h

2.
1+

E
D

R
2.

1+
E

D
R

4.
0

4.
0

4.
0

Ta
bl

e
2.

2:
O

ve
rv

ie
w

of
re

le
va

nt
iO

S
de

vi
ce

s
(i

Pa
d

/i
Po

d
to

uc
h

iP
ad

[5
2]

iP
ad

2
[5

3]
iP

ad
3t

h
g
en

[5
4]

iP
ad

4t
h
g
en

[5
5]

iP
ad

m
in

i[
56

]
C

PU
1G

H
z

2x
1G

H
z

2x
1G

H
z

2x
1.

4G
H

z
1G

H
z

C
ap

ac
ity

16
/3

2/
64

G
B

16
/3

2/
64

G
B

16
/3

2/
64

G
B

16
/3

2/
64

G
B

16
/3

2/
64

G
B

M
em

or
y

25
6M

B
51

2M
B

1G
B

1G
B

51
2M

B
C

el
lu

la
r

3G
op

tio
na

l
3G

op
tio

na
l

3G
op

tio
na

l2
3G

op
tio

na
l2

3G
op

tio
na

l2

N
et

w
or

ki
ng

80
2.

11
a/

b/
g/

n
80

2.
11

a/
b/

g/
n

80
2.

11
a/

b/
g/

n
80

2.
11

a/
b/

g/
n

80
2.

11
a/

b/
g/

n
bl

ue
to

ot
h

2.
1+

E
D

R
2.

1+
E

D
R

4.
0

4.
0

4.
0

1 us
ed

fo
rt

he
th

es
is

2 4G
on

ly
fo

rs
om

e
m

ob
ile

ne
tw

or
k

op
er

at
or

s

16

2.4.1 Cross platform development
Since there already exist implementations of XVSM like MozartSpaces [Bar10, Dö11,
Zar12] for the Java environment and XCOSpaces [Tho08, Mar09] for the .NET environ-
ment it would be an elegant solution to reuse the already existing and well performing
source code instead of reimplementing it from scratch. This would save a lot of time,
increase code quality and result in a convenient multi-platform development. Since Java
and all .NET languages are not officially supported for the iOS platform there is a need
of a third party tool/environment to allow the execution. It has to fulfill the following
requirements:

• Output must be runnable on iOS platform (iPhone and iPad).

• Reuse of the actual source code without adaptations.

• Tool/Framework must be free of charge.

• Output must be compatible to the actual MozartSpaces license (AGPLv33).

• Output of source code that is compile able or binary output. They must perform
concerning execution speed similar to the original binary.

• The reuse of Java code (MozartSpaces) is preferred because XCOSpaces is not
fully compatible to MozartSpaces (see 3.1.4).

The following chapters present the possible solutions for the cross platform development
approach.

java2objc

Java2objc [21] is a tool that converts Java programs to Objective C programs and is
released under the Apache license 2.0. It converts Java source code to an equivalent
Objective C source code. It is mentioned that the output is like hand written Objec-
tive C but simultaneously it should be a suggestion and may not compile. In addition
the status of the project on the homepage is described as infancy. The input Java file
(Appendix A.1) and Objective C output file (Appendix A.2) shows that the result is not
compile able, the method calls are wrong and Automatic Reference Counting (ARC) is
not supported.

3http://www.gnu.org/licenses/agpl-3.0.html

17

http://www.gnu.org/licenses/agpl-3.0.html

J2ObjC

J2Objc [20] is a command line tool that converts Java source to Objective C for the iOS
platform and is released under the Apache License 2.0. It converts non-GUI source code
like application logic. It supports exceptions, inner and anonymous classes, generic
data types, threads, reflection and JUnit tests. Serialization is a heavy used feature in
MozartSpaces so there is a strongly need for support. There is no Serialization support,
the translation of exceptions is really bad (Objective C exceptions instead of NSError)
and the project is according to the homepage “between alpha and beta quality”.

In-the-box

In-the-box [19] is a project that is porting the Dalvik VM and the Gingerbread Android
API (2.3.x) to iOS. This is not allowed because of the following paragraph in the Apple
Developer agreement and therefore would not be accepted in the AppStore:

3.3.2 An Application may not download or install executable code. Inter-
preted code may only be used in an Application if all scripts, code and
interpreters are packaged in the Application and not downloaded. The only
exception to the foregoing is scripts and code downloaded and run by Ap-
ple’s built-in WebKit framework.

Further the development seems to be stopped.

Monobjc

Monobjc [44] offers the tools to develop and run .NET applications under OS X and
is released under the MIT/X11 license (.NET code) and GNU Lesser General Public
License v3.0 (native runtime). It is actively developed but there is no support for the
iOS platform.

MonoTouch

MonoTouch [65] developed by Xamarin allows .NET development for iOS devices and
is released under a commercial license. The usage is not free of charge. The goal of
MonoTouch is the following:

Write your App entirely in C# and share your code on iOS, Android, Win-
dows and Mac.

MonoTouch Apps are compiled to machine code since Apple does not allow JIT com-
piling.

18

Mono

Mono [64] developed by Xamarin is the .NET framework compatible cross-platform
implementation. It allows running .NET source code (e.g. C#) on platforms among
others on ARM7(s) (iOS platform) and Linux/OS X operating system. This allows
running C# source code on the iOS platform. Since iOS does not allow JIT it needs
AOT compiling and embedding the Mono runtime to the App. This use of Mono needs
licensing by Xamarin4 and is therefore no option:

We only require licensing for uses of Mono and Moonlight on embedded
systems, or systems where you are unable to fulfill the obligations of the
GNU LGPL.

For example, if you manufacture a device where the end user is not able
to do an upgrade of the Mono virtual machine or the Moonlight runtime
from the source code, you will need a commercial license of Mono and
Moonlight.

xmlvm

XMLVM [45] is a cross-compiler tool on byte code level and is released under the
GNU Lesser General Public License, version 2.1. The intention is that byte code (e.g.
Java, .Net) is easier to cross-compile then source code files. The output format can be
chosen between Objective C and C but former will be eliminated in the future. There
exist restrictions that some classes are not implemented and therefore not useable for
the cross-compiling process (e.g. Date, ObjectOutputStream, URL).

Conclusion

“java2objc” creates code that is not compile able and therefore not useable for the imple-
mentation. “J2ObjC” is in early stage and therefore no option for development. Hence,
“In-the-box” development is stopped, it is not useable. “Monobjc” does not support iOS
development and is therefore not useful. “xmlvm” does not support necessary classes
and is therefore not useful. “MonoTouch” is a platform that needs to be taken into ac-
count. It has a big community and a large documentation. Unfortunately, it is not free
of charge and not open source and therefore it is not used for the implementation. Sim-
ilar problems occur using Mono. As described above Mono is not free of charge either.
None of the mentioned possible solutions can be chosen and therefore the implementa-
tion is done by porting MozartSpaces to the iOS platform using Objective C.

4http://www.mono-project.com/FAQ%3a_Licensing

19

http://www.mono-project.com/FAQ%3a_Licensing

2.4.2 Jailbreak
Due to the restrictions that Apple has built into the iOS operating system (see section
8.1) some inventive people started to remove these limitations. This process is called
“jailbreak”. It is done by using hardware/software exploits that can be used because
of security vulnerability. It allows the user to use applications that are distributed by
other stores than Apple App Store. For example, the cydia App Store [27] can then be
used. Due to the fact that all functions of iOS can be used after jail breaking (Apple
App Store, iTunes,...) it is some kind of adding new features to the operating system.
This allows for instance access to the file system, installing a command line or running
processes in the background.

Legal aspects

Apple complains that jail breaking violates the Software License Agreement. In the
USA it is definitely allowed since 2010 ([43]):

“Computer programs that enable wireless telephone handsets to execute
software applications, where circumvention is accomplished for the sole
purpose of enabling interoperability of such applications, when they have
been lawfully obtained, with computer programs on the telephone handset.”

The situation in Germany is slightly different. It seems that it is not regulated [24] but
Eva Dzepina from law office “Borgelt & Partner” (Düsseldorf, Germany) argued that the
private use of jailbreaked devices is allowed. In Austria, there is no explicit regulation
if jail breaking an Apple or other device is allowed or not. It may be in conflict with the
national copyright act. This cannot be, however, subject of this thesis.

2.5 Requirements for porting MozartSpaces
To implement a MozartSpaces compatible version on a new platform there are require-
ments that need to be fulfilled by the operating system. Table 2.3 gives a summary
of the necessary features/technologies of the operating systems. Since iOS is a UNIX
based operating system it supports sockets, threads/locks similar to Android OS. The
SQLite database is included and used extensively in iOS. The background processing is
restricted (see 2.3.2) but there is a workaround and iOS 7 allows it anyway. There exists
an object oriented programming language (Objective C) as counterpart to Java on iOS.
The communication can be established with WLAN interface.

5Not included in iOS but can be built like on any other UNIX platform
6Not allowed but workaround exists. iOS 7 supports background processing.

20

Table 2.3: Requirements for porting MozartSpaces on the iOS platform

Requirement Technology Android iOS
Communication Socket x x
Concurrency Threads/Locks x x

Persistency
SQLite x x
Berkeley DB x x5

Background processing Daemon x x6

Programming Framework
Object oriented Pro-
gramming Language

Java Objective C

Configuration
Programmatically x x
XML x x

Communication interface WLAN x x

2.6 Communication in heterogeneous systems

2.6.1 Serialization
In [HJR+03] is serialization and deserialization defined as follows:

“Object serialization is the process of writing the state of an object to a
stream. Deserialization is the process of rebuilding the stream back into an
object.”

Data exchange in heterogeneous systems needs special treatment because standard
exchange formats of MozartSpaces like Java serialization do not work in iOS environ-
ment. Therefore there is a need of a format that can be handled in Java as well as in
Objective C. It [SM12] is a comparison of different serialization formats: XML [51],
JSON7, Thrift8, and ProtoBuf9. The first two are text-based while the latter two use
a binary format. Advantages of XML and JSON are that they are widely used, hu-
man readable and there exists libraries for many programming languages. The largest
disadvantage for mobile devices is the big markup overhead. Thrift and ProtoBuf are
extremely lightweight, fast to serialize and deserialize and are therefore well useable
for mobile devices. The two large disadvantages of the binary formats are that they are
not human readable and therefore hard to debug and that they are specific for program-
ming languages. The paper compares the serialization formats concerning serialization
speed, data size, and usability. Two different test objects were used for the evaluation:

7www.json.org
8thrift.apache.org
9code.google.com/p/protobuf

21

www.json.org
thrift.apache.org
code.google.com/p/protobuf

firstly a heavy text object (“Book” object in the table) and secondly a heavy number
object (“Video”). Table 2.4 shows the different serialization size. The binary formats
are the smallest and XML is by far the biggest. Table 2.5 and 2.6 depict the serialization
and the deserialization performance. The binary formats are the fastest while XML is
the slowest. The last criterion is the usability. This includes human readability, plat-
form compatibility and available documentation. XML and JSON cover all criteria very
well while Thrift and ProtoBuf are not human readable and only supported on a limited
number of programming languages. ProtoBuf does not support Objective C natively but
there is an external implementation called protobuf-objc 10 which is well documented.
Thrift has the drawback of missing documentation but supports Objective C by default.
Another interesting criterion would be CPU usage. Since it is closely related to the
performance it is not explicitly mentioned.

Table 2.4: Serialized size in bytes [HJR+03]

XML JSON ProtoBuf Thrift
Book 873 781 687 720
Video 231 139 59 92

Table 2.5: Average Serialization Time in ms [HJR+03]

XML JSON ProtoBuf Thrift
Book 22.842 4.177 2.339 2.315
Video 17.884 4.097 1.800 1.747

Table 2.6: Average Deserialization Time in ms [HJR+03]

XML JSON ProtoBuf Thrift
Book 7.908 1.199 0.298 0.732
Video 6.742 0.755 0.197 0.310

For a mobile middleware the performance and the data size are the most important
properties. The importance of serialization and deserialization performance is obvious
but also the size is important. Since using wireless/3G communication bandwidth is a
limited resource. The dependency on external libraries including the licenses must also
be taken in concern.

10github.com/booyah/protobuf-objc

22

github.com/booyah/protobuf-objc

CHAPTER 3
Related Work

There are many different middleware implementations based on the Tuple Space com-
munication model by David Gelernter ([Gel85]) with different features and points of
view. Some are related to business applications (e.g. GigaSpaces [34]) while others run
on embedded devices like wireless sensor networks (e.g. Agilla [FRL09]). This shows
the potential of this technology in many different fields of application. This thesis is
about implementations that have at least the following features:

• Compatible to XVSM reference implementation, MozartSpaces 2.x concerning:

A) Operations

B) Transaction

C) Coordination

D) Aspects

E) Communication protocol

F) API semantics

G) Persistency operations

• Runnable on iOS platform

The following actual implementations are potential candidates to fulfill the above re-
quirements.

23

3.1 Actual Implementations

3.1.1 Java implementation - MozartSpaces
The actual MozartSpaces implementation [47] is based on two master theses, which are
based on the formal definition, described in 2.2.1 and is the reference implementation
of the XVSM technology. The design and implementation of Operation, Transaction
and Coordination is described in [Bar10] and the design and implementation of Run-
time, Protocol and API is explained in [Dö11]. There were some changes like com-
bining CAPI 1 to 3 in a single layer (CAPI 3) due to performance considerations or
adding “read committed” and “repeatable read” isolation levels to the implementation.
Additionally, a persistence framework was added [Zar12]. It supports storing entries
based on Berkeley DB [35] and SQLite [50] and allows continuing work after shutdown
and restart of MozartSpaces. MozartSpaces is the Java implementation of XVSM with
many useful features like aspects, different coordinators (e.g. FiFo, Random, Linda and
Query) or authorization features using an access control model [CDJ+13]. A replica-
tion mechanism ([Hir12]) to avoid loss of data and distributed transactions ([Brü13]) to
increase the level of data consistency is also supported. Due to the feature richness, a
wide field of application exists. For example, the SILCA framework [eKMS+12] used
for load clustering is based on MozartSpaces.

3.1.2 Java implementation - MozartSpaces running on Android
Since Android OS Apps are based on Java the actual MozartSpaces implementation can
be easily adapted to be compile able for Android OS based smartphones. The design
remains the same but there is a need for extensions like adapting for different API levels
or improving the communication implementation for cellular network. The work is
still in progress and described in [Floon]. The features of MozartSpaces of the desktop
version can also be used for the Android OS version.

3.1.3 .NET implementation - TinySpaces
TinySpaces [Mar10] is an XVSM implementation based on the .NET Micro Frame-
work. It can be used on embedded system, e.g. sensor networks. An advantage is the
wide applicability of this implementation because of the hardware independency of the
runtime environment. It can be used on many embedded systems using different archi-
tectures. Since the code must be interpreted at runtime there might be problems with
performance and energy consumption. Although TinySpaces is based on the formal
definition of XVSM [Cra10] it is not fully compatible to MozartSpaces. Aspects are
implemented in a different way as described in [Mar10]:

24

“Currently XVSM has no complete formal definition of aspects although
they have already been implemented in XcoSpaces and MozartSpaces. There-
fore the description of aspects in ... is used as a source here.”

The communication functionality is completely separated from the runtime and is
configurable. A corresponding XML serializer to the new Java/Objective C XML seri-
alizer would allow communication.

3.1.4 .NET implementation - XCOSpaces
XCOSpaces [Tho08, Mar09] is a .NET implementation that interoperates via XML with
former version of MozartSpaces (1.x) but it is not fully compatible. The following
.NET types are supported: bool, byte, int, long, float, double, string,
DateTime, byte[] and Uri. Objects cannot be serialized and are therefore not
used for communication but there is the possibility to use a tuple that consists of a
combination of data entries. The design is not based on the formal definition in [Cra10]
and is therefore not compatible to MozartSpaces 2.x. For example, different runtime
model and different layering with other API semantics.

XCOSpaces allows implementation of a XML serializer similar to the Java/Objec-
tive C version and could then allow communication to MozartSpaces or the new Objec-
tive C implementation.

3.1.5 iOS implementations
At the moment there exists no publication or implementation on the internet that deals
with the iOS platform in combination with the requirements mentioned above. There-
fore the implementation proposed in this thesis course tries to fill this gap.

3.1.6 Summary
There exists no XVSM implementation that is fully compatible to MozartSpaces as
shown in table 3.1 and running on the iOS platform. The different criteria mentioned
above are compared on which level the implementations can interact. As it has been
shown none of the existing implementations that fulfill the requirements are runnable
on the iOS platform.

25

Pr
og

ra
m

m
in

g
la

ng
ua

ge
C

om
pa

tib
ili

ty
iO

S
pl

at
fo

rm
A

B
C

D
E

F
G

M
oz

ar
tS

pa
ce

s
Ja

va
Y

es
Y

es
Y

es
Y

es
Y

es
17

Y
es

Y
es

N
o

M
oz

ar
tS

pa
ce

s
(A

nd
ro

id
)

Ja
va

Y
es

Y
es

Y
es

Y
es

Y
es

17
Y

es
Y

es
N

o

Ti
ny

Sp
ac

es
.N

E
T

Y
es

11
Y

es
11

Y
es

11
,1

2
N

o
N

o18
N

o
N

o
N

o
X

C
O

Sp
ac

es
.N

E
T

N
o

N
o

N
o

N
o

N
o13

,1
8

N
o

N
o

N
o

ne
w

O
bj

ec
tiv

e
C

im
pl

em
en

ta
tio

n16
O

bj
ec

tiv
e

C
Y

es
Y

es
Y

es
12

Y
es

Y
es

14
,1

7
Y

es
Y

es
15

Y
es

Ta
bl

e
3.

1:
O

ve
rv

ie
w

of
di

ff
er

en
tX

V
SM

im
pl

em
en

ta
tio

ns

11
C

om
bi

ne
d

in
M

oz
ar

tS
pa

ce
s

(C
A

PI
-3

)b
ut

la
ye

re
d

in
Ti

ny
Sp

ac
es

12
Su

bs
et

of
M

oz
ar

tS
pa

ce
s

co
or

di
na

to
rs

13
A

ct
ua

li
m

pl
em

en
ta

tio
n

co
m

pa
tib

le
to

M
oz

ar
tS

pa
ce

s
1.

x
w

ith
re

st
ri

ct
ed

nu
m

be
ro

fd
at

at
yp

es
.

14
A

sp
ec

ts
ca

nn
ot

be
se

ri
al

iz
ed

15
In

M
em

or
y

pe
rs

is
te

nc
e

ba
ck

en
d

im
pl

em
en

te
d

16
Im

pl
em

en
te

d
in

th
is

th
es

is
17

U
si

ng
ne

w
X

M
L

se
ri

al
iz

er
-a

va
ila

bl
e

in
Ja

va
an

d
O

bj
ec

tiv
e

C
18

A
co

rr
es

po
nd

in
g

.N
E

T
(M

ic
ro

)F
ra

m
ew

or
k

im
pl

em
en

ta
tio

n
of

th
e

ne
w

X
M

L
se

ri
al

iz
er

w
ou

ld
al

lo
w

co
m

m
un

ic
at

io
n

26

CHAPTER 4
Use Cases

An XVSM implementation that is fully compatible with MozartSpaces brings new op-
portunities for different kind of scenarios. It offers simplifications for the developers to
create peer-to-peer scenarios with little lines of code in the homogenous iOS devices as
well as in the heterogeneous communication with MozartSpaces. The following chap-
ters summarize the most relevant ones.

4.1 Intra-App communication
This first possible area of application is using XVSM for communication inside a single
App between different threads. This brings features like persistency and a substitute
of concurrent data structures to an iOS application including the coordination between
threads. In addition data organization in the coordinators (e.g. Random, FiFo) can save
lots of code lines. Since the iOS SDK does not support concurrent data structure such
as Java with the Concurrent package (e.g. ConcurrentHashMap) this simplifies de-
velopment of multithreading Apps. The persistency feature supplements the standard
persistency possibilities (SQLite, CoreData). Figure 4.1 outlines communication be-
tween two threads using XVSM.

4.2 Inter-App communication
Including using cases presented in section 4.1 there is the possibility of inter-process
(App) communication. Since XVSM is running in the background this will offer the
full coordination abilities as known as on desktop computers. Figure 4.2 outlines the
communication between two different processes (Apps) using XVSM. This allows inter
process communication on a very high level.

27

APP

Thread 1 Thread 2

XVSM
 Fifo
 Lifo
 Label
 ...

Figure 4.1: Intra-App com-
munication using XVSM

APP 1

XVSM
 Fifo
 Lifo
 Label
 ...

APP 2

Figure 4.2: Inter-App com-
munication using XVSM

4.3 Remote communication
WLAN can be used for communication on mobile devices because it is working fast, it
is easy to configure and it allows communication with many different computer systems.
This can be used for every application (e.g. games or business application) as long as
the devices are in range of a WLAN access point. Then the XVSM design (e.g. loose
coupling) offers its advantages. (Mobile) devices sharing a combined view on data can
be realized with only few lines of code.

Cellular communication (3G/4G) cannot be used at the moment because of the us-
age of NAT (Network Address Translation) of the network operators. A well-known
technique (STUN (Session Traversal Utilities for NAT)) was tested (5.3.2) but it was
not working.

28

CHAPTER 5
Implementation

Since using the existing Java source code cannot be used for the iOS platform and
the reuse of the source using different technologies as described in chapter 2.4.1 is
not possible there comes a need of a new implementation or of porting source code
of MozartSpaces (Java) to the iOS platform (Objective C). The existing code is well
performing and tested by many developers and therefore it is a logical choice starting a
porting process to become a compatible XVSM implementation to the iOS environment.

The following chapter describes important aspects concerning the porting process
(see 5.1), issues developing on the iOS platform (see 5.2) and implementation details
(see 5.3) including a How-To using the new Objective C implementation.

5.1 Porting process

5.1.1 General aspects
Porting Java source code to Objective C leads to some changes in the code base be-
cause of differences in the programming language (e.g. different features of collections
concerning multithreading) and the environment (e.g. garbage collection in Java versus
automatic reference counting in Objective C) but the interface definition is very simi-
lar. Especially the most upper interfaces like Capi are fully compatible with the Java
implementation and will look familiar to MozartSpaces users. Most parts of the imple-
mentation are compatible as well. This brings some advantages for the developers and
designers: First of all the well-tested and performing source code will be reused. This
increases the implementation quality because many problems are already solved in the
Java implementation. Secondly, future adaptations needs to be designed once and can
then be used for both platforms. This applies for bug fixes as well as for new features.

29

Thirdly, the integration tests of MozartSpaces can be used to check compatibility by ex-
ecuting against the Objective C implementation. This allows future development as easy
as possible because the Objective C code base has similar code quality as MozartSpaces.
Fourthly, the formal definition of MozartSpaces is reused and therefore the semantic is
clearly defined.

5.1.2 Restrictions
Due to the fact that MozartSpaces became a large and feature rich application some
compromises needed to be done for the proof of concept prototype of the new imple-
mentation performed in this thesis. The following list summarizes the main differences
between MozartSpaces and the new implementation for the iOS environment:

• No authorization functionality at all;

• The persistence layer is prepared (and partly implemented) but not tested and
working (including any caching mechanism). Actually there works the InMem-
ory configuration. For iOS exists well-documented official support for SQLite
(already integrated in iOS) but only little information using Berkeley DB. There-
fore SQLite will be a good starting point for persistence.

• Limited number of coordinators compared to MozartSpaces: AnyCoordinator,
LabelCoordinator, KeyCoordinator, FifoCoordinator, LifoCoordinator, Random-
Coordinator

• “HelloSpace” and the application scenario are the only example applications.

• Documentation of source as well as tutorials need to be taken from MozartSpaces
and be used accordingly.

• Standalone space using some kind of background processing (see 5.2.1)

• Some features that are implemented in different ways and can be selected in
MozartSpaces are only implemented in one way. For example there exists no
“NonPollingTimeoutProcessor”. The polling equivalent
XMPollingTimeoutProcessor is used.

• Configuration is tested only programmatically and not using a configuration file.

• Aspects cannot be serialized at the moment.

• No notification mechanism implemented right now.

• No ReST implementation.

30

• No equivalents for JAXB, kryo or XStream implementations.

• The serialization mechanism used to communicate between MozartSpaces and
the new Objective C implementation has performance drawbacks.

• The meta model functionality is not implemented.

5.1.3 Porting details
The project is developed on a MacBook pro (Mid 2009) with 2,53GHz and 8GB RAM.
As operating system is MacOS X Lion (10.7) used with the latest updates (July 2013).
The mobile device is an iPhone 3GS with iOS 5.1.1. The development environment is
Xcode 4.6.3 with the Apple LLVM 4.2 compiler. SDK 5.1 and 6.1 is used including the
according iPhone/iPad simulators.

Apple only supports developing using the Xcode environment. This includes using
a Mac. Linux or Windows is not supported officially. There exist some solutions using
OS X in a virtual machine19 and then using Xcode. Since Apple does not allow running
OS X on non-Apple machines20 it is prohibited. Other solutions like modifying the
SDK or jail-breaking are maybe illegal (see 2.4.2) or bring at least the risk that the App
is rejected by Apple when bringing it to the AppStore. Alternative IDEs like AppCode21

running on a Mac and support other features uses the Xcode environment and do not get
in conflict with Apples licenses.

Coding convention

In principle, the generated source code for this thesis fit to the Apple Coding Guidelines
for Cocoa [7]. This is necessary because many of the properties of Objective C depend
on conventions22 and so it needs to be defined clearly. There exists no namespaces in
Objective C and therefore it is common to use prefix for every project to avoid naming
conflicts. The “XM” prefix is used. A MozartSpaces class called FifoCoordinator
becomes XMFifoCoordinator in the Objective C implementation. The typographic
convention is camel-casing (e.g. capitalizeFirstLetterOfEachWord). Because of the
different naming styles of Java and Objective C, the method naming is little different.
Listing 1 presents the difference in the different naming styles. When translating Java
code to Objective C the guideline in [Buc10] is used. For instance, an ArrayList
become an NSArray if it is read only otherwise NSMutableArray. If the Java
feature is not supported it will be simulated to have a close relation (e.g. inner classes

19http://www.macbreaker.com/2012/02/lion-virtualbox.html
20http://www.apple.com/legal/sla/
21http://www.jetbrains.com/objc/
22All methods including alloc, copy, mutableCopy or new delegate the release responsibility to the

calling method

31

http://www.macbreaker.com/2012/02/lion-virtualbox.html
http://www.apple.com/legal/sla/
http://www.jetbrains.com/objc/

of Java will be translated to standard Objective C classes). The following features are
available for Java but not for Objective C:

• Method overloading: Different method signatures are used to deal with that prob-
lem.

• No generics: A type of id is used and all collections are heterogeneous.

• No annotations: Annotations are skipped and handled implicitly.

p u b l i c C o n t a i n e r R e f e r e n c e l o o k u p C o n t a i n e r (f i n a l S t r i n g name , f i n a l
URI space , f i n a l long t i m e o u t I n M i l l i s e c o n d s , f i n a l
T r a n s a c t i o n R e f e r e n c e t r a n s a c t i o n)

− (XMConta inerRefe rence ∗)
lookupConta inerWi thName : (NSSt r ing ∗) name

Space : (NSURL ∗) s p a c e
T i m e O u t I n M i l l i s e c o n d s : (long long i n t) t i m e o u t I n M i l l i s e c o n d s

T r a n s a c t i o n R e f e r e n c e : (XMTransac t ionRefe rence ∗) t r a n s a c t i o n
E r r o r : (XMError ∗∗) e r r o r

Listing 1: Difference between Java and Objective C syntax

Another aspect is the object creation. Each class has a convenience constructor (e.g.+
(XMCapi *)capiWithCore:(id <XMXaviCore>)core) to create an object
with one meaningful class method call.

Testing

GHUnit [28] is used as test framework. It supports command line execution very well
and also outputs error messages clearly. Each test class needs to be inherited from
GHTestCase. It support features like setup and teardown for each test case as well as
for a test class as known from JUnit [40]. Each test method needs to have a “test” prefix.
All test classes have the “Test” prefix and the interface block and implementation block
are written in one file.

Concurrency

All immutable collections like NSArray, NSDictionary,... are thread safe but their
mutable equivalent (e.g. NSMutableArray,
NSMutableDictionary,...) are not. Therefore, a manual locking mechanism must
be used. Objective C supports many different locking mechanism as described in [16].
The following types are used depending on the situation:

• POSIX Mutex Lock: Basic mutex - e.g. used in XMNativeLock

32

• SpinLock: Used when locked sequence can be executed in a short amount of time
- e.g. used in XMDefaultSubTransaction

• @synchronized block: Slowest but most convenience mechanism. Releases
the lock when leaving @synchronized block (e.g. after throwing exception or
leaving the method) - e.g. used in XMDefaultTransaction

Error handling / Exceptions

Exception handling is slow in Objective C and reserved for exceptional conditions and
not for the standard program flow like when a container name is not available any more.
For this situations an NSError object will be used and the methods have an indirect
reference to this error object. All exceptions of MozartSpaces inherited of Exception
become an error object XMError a subclass of NSError. All runtime exceptions in-
herited of RuntimeException become an Objective C exception. It is used for
unexpected situations like array index out of bounds error. This decision was made
because all MozartSpaces exceptions are caught after a method call and therefore easy
to translate to an error object. The MozartSpaces runtime exceptions are exceptional
conditions and therefore translated to Objective C exceptions. This concept has the ad-
vantage to get the speedup of using error objects for recoverable problems and Objective
C exceptions for unexpected program behavior.

Memory Management

The memory management feature “Automatic Reference Counting - ARC” is used for
all classes. This is a recommendation by Apple since invention of Xcode 4.2, Apple
LLVM 3.0+ compiler. In principle, in ARC the reference counting is the same as for
manual reference counting except that the retain and release statements are inserted at
compile time automatically by the compiler [15]. The complete technical specification
of ARC is shown in [23]. Apple promises speed up compared to manual reference
counting and also compared to garbage collection that is not support by the iOS envi-
ronment.

5.2 iOS issues

5.2.1 Background processing
As described in 2.3.2, there is no official way to run long-term background process-
es/daemons. Nevertheless, four different (undocumented) approaches were tried out to
ascertain that background processing is no option. Based on the keynote of WWDC
2013 Apple will change its focus and allow background processes in iOS 7.

33

Background processing using Finite-Length task

Before an App is suspended it will get into background state. Then
the applicationDidEnterBackground: method gives the opportunity
to run finite length tasks. In listing 2, there is an example how to
use this feature. At the beginning a background task must be registered
(beginBackgroundTaskWithExpirationHandler:). After that a thread can
be used to run the background task. At the end the application must be informed that
the background has finished otherwise the complete App will be killed by the operating
system. In test runs there were 600 sec to finish the background task. Another possibil-
ity would be to nest many finite length tasks. Unfortunately this is does not work either.
There seems to be one counter per App.

− (void) a p p l i c a t i o n D i d E n t e r B a c k g r o u n d : (U I A p p l i c a t i o n ∗) a p p l i c a t i o n {
__b lock U I B a c k g r o u n d T a s k I d e n t i f i e r bgTask = [a p p l i c a t i o n

b e g i n B a c k g r o u n d T a s k W i t h E x p i r a t i o n H a n d l e r : ^ {
[a p p l i c a t i o n endBackgroundTask : bgTask] ;
bgTask = U I B a c k g r o u n d T a s k I n v a l i d ;

}] ;

d i s p a t c h _ a s y n c (d i s p a t c h _ g e t _ g l o b a l _ q u e u e (
DISPATCH_QUEUE_PRIORITY_DEFAULT , 0) ,

^{
long long i n t i = 0 ;
/ / f i n i t e t a s k
whi le (i < 100) {

NSLog (@"%l l d − BackgroundTimeRemaining : %.0 f s e c " , i ++ ,
[U I A p p l i c a t i o n s h a r e d A p p l i c a t i o n] .

backgroundTimeRemaining) ;
s l e e p (1) ;

}
[a p p l i c a t i o n endBackgroundTask : bgTask] ;
bgTask = U I B a c k g r o u n d T a s k I n v a l i d ;

}) ;
}

Listing 2: Background processing using finite length task

Background processing using “audio” environment

Another promising approach is defining a specified profile to the App. Among other
there exists the profile “audio”. It allows playing audio in the background. It must be
defined in the App Info.plist:

<key>UIBackgroundModes< / key>
< a r r a y >

< s t r i n g > a u d i o < / s t r i n g >

34

< / a r r a y >

Listing 3: Background processing using “audio” environment

This should allow defining a process to run in background. But this does not work
when creating a thread. The App will be suspended after some time.

Background processing using fork

Another possibility is using fork() to create a new process as described in listing 4.
Unfortunately this call is not allowed in iOS.

p i d _ t p i d ;
sw i t ch (p i d = f o r k ()) {

case −1:
NSLog (@" c o u l d n o t c r e a t e f o r k − CHILD! ") ;
re turn ;

case 0 :
NSLog (@" c h i l d p r o c e s s ") ;
break ;

d e f a u l t :
NSLog (@" p a r e n t p r o c e s s ") ;
break ;

}
re turn ;

Listing 4: Background processing using fork()

Background processing using dummy AVAudioPlayer

The only working solution is the usage of a dummy audio that uses the “audio” environ-
ment in combination with a player that play an empty file with zero volume. The first
step is the configuration like in section 5.2.1 followed by starting a dummy player with
the included thread as shown in listing 5.

− (void) viewDidLoad {
[super viewDidLoad] ;
NSURL ∗ a u d i o F i l e L o c a t i o n U R L = [[NSBundle mainBundle] URLForResource

:@"dummy" w i t h E x t e n s i o n :@"mp4"] ;

NSError ∗ e r r o r ;
a u d i o P l a y e r = [[AVAudioPlayer a l l o c] in i tWi thCon ten t sOfURL :

a u d i o F i l e L o c a t i o n U R L e r r o r :& e r r o r] ;
[a u d i o P l a y e r setNumberOfLoops : −1] ;

i f (e r r o r) {
/ / e r r o r h a n d l i n g

} e l s e {

35

[[AVAudioSession s h a r e d I n s t a n c e] s e t C a t e g o r y :
AVAudioSess ionCa tegoryP layback e r r o r : n i l] ;

[[AVAudioSession s h a r e d I n s t a n c e] s e t A c t i v e : YES e r r o r : n i l] ;
[a u d i o P l a y e r p r e p a r e T o P l a y] ;

}
}

− (IBAct ion) s t a r t P r e s s e d : (id) s e n d e r {
d i s p a t c h _ a s y n c (d i s p a t c h _ g e t _ g l o b a l _ q u e u e (

DISPATCH_QUEUE_PRIORITY_DEFAULT , 0) ,
^{

long long i n t i = 0 ;
whi le (YES) {

NSLog (@"%l l d − BackgroundTimeRemaining : %.0 f s e c " , i ++ , [
U I A p p l i c a t i o n s h a r e d A p p l i c a t i o n] .
backgroundTimeRemaining) ;

s l e e p (1) ;
}

}) ;
[a u d i o P l a y e r se tVolume : 0] ;
[a u d i o P l a y e r p l a y] ;

}

Listing 5: Background processing using dummy AVAudioPlayer

A problem to distribute the App through the AppStore is the fact that using multitask-
ing services not for the intended meaning (audio, location, voip, newsstand-content,
external-accessory, bluetooth-central) is not allowed by the Developer agreement:

3.3.6 You may use the Multitasking services only for their intended pur-
poses as described in the Documentation.

5.3 Implementation details

5.3.1 Serialization
At the moment there exists two serializers for the new Objective C environment. The
native Built-in serializer (XMBuiltinSerializer) and the XML serializer
(XMMzsXaviSerializer) for heterogeneous environments. Both implement the
protocol XMSerializer and can therefore be used for communication process as
well as for persistence operations.

Built-in serialization

The object serialized by the Built-in serializer must implement the NSCoding protocol.
It defines two methods: one for encoding (-(void)encodeWithCoder:(NSCoder

36

*)aCoder) and one for decoding
(-(id)initWithCoder:(NSCoder *)aDecoder). The NSKeyedArchiver
take care of the encoding process and NSKeyedUnarchiver is responsible for de-
coding. This is the standard way of serialization recommended by Apple [6].

XML Serialization

Although both binary formats described in [SM12] fit well to the requirements (first best
speed then best data size) XML was chosen for this implementation to support multi
platform communication. It is on the one hand human readable, easy to understand and
there exist many parsers for Java and Objective C that can be used. The principle of de-
signing the serializer in Java and porting to Objective C was done like for MozartSpaces.
Especially the interfaces are identical. This allows that optimization on one environment
and leads to optimization in the other environment. As the XStream23 output the serial-
izer does not comply with any XML Schema Definition. Every class that implements the
MzsXaviSerializerMarker respectively XMMzsXaviSerializerMarker and
can be serialized. Because of the differences of the programming languages and for sim-
plification some other restrictions were made:

• Neither the keywords of Java nor the keywords of Objective C are allowed for
names.

• In collections there is only one object type allowed.

• No pointers are allowed in Objective C.

• No modifier like unsigned are allowed.

• Only a restricted number of data types that can be easily mapped to XML are
supported as listed in table 5.1.

• All collections in the messages (responses and requests) are handled as non-
concurrent lists, sets and maps.

• Aspects can be serialized.

• Equal classes in both environments must exist and have the corresponding vari-
able definition (including data types).

• The class naming convention is as following: Java class name with an “XM”
prefix for Objective C. E.g. Java class NiceClass is named XMNiceClass in
Objective C.

23http://xstream.codehaus.org

37

http://xstream.codehaus.org

The following features are implemented in the actual serializer:

• Resolve class inheritance.

• Serialize all supported attributes including private and protected attributes.

• No mapping between objects needs to be explicitly added.

• Output in valid XML ([51]) format not conforming to any XML schema defini-
tion.

• Support of circular references in an object graph.

• Support of multiple references to the same object.

• Mapping of Java exceptions to corresponding Objective C errors respectively ex-
ceptions and vice versa.

Table 5.1: Mapping Java to Objective C datatypes

Java type Objective C type
boolean BOOL

int int
long long long int
double double
String NSString

StringBuffer NSMutableString
ArrayList NSMutableArray
LinkedList NSMutableArray
Vector NSMutableArray
HashSet NSMutableSet
HashMap NSMutableDictionary

URI NSURL
Collections$EmptyList NSMutableArray
MzsXaviSerializerMarker XMMzsXaviSerializerMarker

5.3.2 Cellular communication
A possible solution to solve the NAT problem is using a STUN implementation. For
Objective C there exists STUN-iOS [41]. Running it for checking Austrian mobile

38

network carriers comes to the result presented in table 5.2. In Austria there are three
cellular network operators: A1 Austria, T-Mobile Austria and Hutchison Drei Austria
with their different labels. It was only possible to check A1 Austria (“Bob”) and Hutchi-
son Drei Austria (“Orange”). Both use symmetric NAT and can therefore not be used
with STUN. Since the allowing cellular communication is not a main topic of this thesis
there is other research necessary.

Table 5.2: NAT behavior of Austrian network operators

SIM Carrier Mobile Country Code Mobile Network Code Symmetric NAT
Orange 232 05 yes

Bob 232 11 yes

5.3.3 Implementation details
Directory structure

The directory structure of the new Objective C implementation depends on Xcode struc-
ture of defined targets. Each target gets per default its own directory with its en-
try point (main function including AppDelegate for iOS environment). To allow
compiling for iOS and for OS X a separate directory for the classes is used. Figure
5.1 presents the actual file structure. bin, build, doc, etc, Frameworks and
usr are explained in the figure. The application scenario is splitted into 2 directo-
ries: MzsXaviChatiOS has the implementation classes for the iOS environment and
MzsXaviChatMac has the implementation classes for OS X. All benchmark classes
are stored in Performance, the entry points for ARC is in PerformanceMacARC
and for GC in PerformanceMacGC. Testing has all test classes, TestingiOS,
the entry points for iOS are in TestingiOS and TestingMac for OS X.

Project structure

Xcode offers a logical grouping feature that is independent of the directory structure
in the file system. It offers grouping feature of files/classes to keep the overview. The
structure is closely related to MozartSpaces’ Java package structure. Additionally there
are some groups for external source code (e.g. CocoaLumberjack) and a group for the
new serializer (mzsxaviserializer). Figure 5.2 gives an overview of the actual structure.

24http://www.doxygen.org
25http://cloc.sourceforge.net

39

http://www.doxygen.org
http://cloc.sourceforge.net

XaviSpaces

bin

createDoc.sh ... Create Doxygen 24documentation
clocDoc.sh ... Create cloc 25

removeDoc.sh ... Remove all docs
build ... Builds created by make dist

doc ... Doxygen documentation, cloc documenta-
tiont

etc ... Config files (e.g. doxygen)
Frameworks ... External Frameworks

GHUnit.framework

GHUnitIOS.framework

OCHamcrest.framework

OCHamcrestIOS.framework

OCMock.framework

OCMockito.framework

OCMockitoIOS.framework

MzsXaviChatiOS ... Application scenario OS X
MzsXaviChatMac ... Application scenenario iOS
Performance ... Performance benchmarks classes
PerformanceMacARC ... Performance benchmark with ARC configu-

ration
main.m ... Main function for OS X benchmarks

PerformanceMacGC ... Performance benchmark with GC configura-
tion

main.m ... Main function for OS X GC benchmarks
Testing ... Test classes including helper classes
TestingiOS ... iOS specific classes for Tests

main.m ... Main function for OS X testing
TestingMac ... Mac specific classes for Mac

main.m ... Main function for OS X testing
usr

include

OCMock

lib

libOCMock.a ... Static OCMock library
XaviSpacesLib ... XVSM implementation
Makefile

README.txt

testsToRunMac ... List of tests running on Mac
testsToRunIOS ... List of tests running on iOS

Figure 5.1: Directory structure of the new Objective C implementation
40

XaviSpaces

__CocoaLumberjack

__FMDB ... FMDatabase source
__GCDAsyncSocket

_misc

categories ... Extensions like thread safe database access
error ... Errors and exceptions
threadsafe ... Thread safe collections

capi3-api

capi3-native

coordination

isolation

operation

persistence

cache

db

key

sqlite

core-api

aspects

config

requests

core-common

capi3

core

util

mzsxaviserializer

runtime

core

util

config

remote

tcpsocket

runtime

util

tasks

blocking

deadlock

datastructure

aspects

Figure 5.2: Logical structure of the new Objective C implementation

41

Makefile

Apart from Xcode building features a Makefile is used to get a command line interface
for the build and execution process. It uses the shell variables described in 5.3.3 to get
fine graded access to different build and running configurations. Appendix A.3 gives
the content of the Makefile with description as comments.

Dependencies

Despite of the focus on little dependencies the new implementation needs some frame-
works and libraries. Table 5.3 show the dependencies running the tests for iOS as well
as for OS X. Table 5.4 show the dependencies when using the static library of the new
Objective C implementation26.

Table 5.3: Testing environment dependencies

Name Type iOS OS X Reference
UIKit framework x - SDK

CFNetwork framework x - SDK
libsqlite3 dynamic library x x SDK
Security framework x x SDK

CoreGraphics framework x - SDK
OCMockitoIOS framework x - [32]
OCHamcrestIOS framework x - [31]
libOCMock static library x - [42]
GHUnitIOS Framework x - [28]

Cocoa Framework - x SDK
OCMock Framework - x [42]
GHUnit Framework - x [28]

OCMockito framework - x [32]
OCHamcrest framework - x [31]

CocoaLumberjack source files x x [46]
FMDatabase source files x x [29]

GCDAsyncSocket source files x x [30]

26CocoaLumberjack, FMDatabase and GCDAsyncSocket are not available as framework or library
and are therefore compiled into the static library.

42

Table 5.4: New Objective C implementation dependencies

Name Type iOS OS X Reference
libXaviSpacesLibiOS static library x -
libXaviSpacesLibMac static library - x

Foundation framework x x SDK
UIKit framework x - SDK

CFNetwork framework x x SDK
libsqlite3.dylib dynamic library x x SDK

Security framework x x SDK
CoreGraphics framework x - SDK

AppKit framework - x SDK

Testing

All unit tests as well as integration test can be executed from Xcode using different tar-
gets and schemes or on the command line using the Makefile. The testsToRunMac
and testsToRunIOS files consist of lists of test classes for the corresponding devel-
opment environment. The following shell environment variables are available (only OS
X):

• GHUNIT_SUITE: Defines either using a test suite or running all tests.

• GHUNIT_CLI: Defines if tests run on the command line or using a GUI.

• GHUNIT_TEST_GUI: Defines if tests has output on GUI or on the command
line.

• GHUNIT_SUITE_TEST: List of tests in a test suite.

• GHUNIT_SUITE_FILE_TESTS: File name with list of tests
(e.g. testsToRunMac) (# introduces comments in the list)

• GHUNIT_INTEGRATION: Defines if tests environment is used for integration
tests with MozartSpaces.

• GHUNIT_INTEGRATION_TYPE: either ”OBJC_JAVA” or ”JAVA_OBJC”. De-
fines the direction of the integration test. The first is the creating and the second
the reading environment.

• GHUNIT_INTEGRATION_OBJECT: Defines the message type that is sent (e.g.
for a “RollbackTransactionRequest”: MsgRollbackTransactionRequest)

43

• GHUNIT_STANDALONE: Using the test environment to start a standalone space,
which can be used by an external core.

The classes consist of unit tests except the TestIAllIntegrationTest class. It
runs all integration tests with their necessary setup.

5.3.4 Interface description for users
The following section gives an overview of the programming interfaces of the new Ob-
jective C implementation. In combination with the detailed description of the func-
tionality in [Bar10] (operations, coordination and transaction details), [Dö11] (runtime,
API, configuration details), [Zar12] (persistency layer details) and [63](MozartSpaces
Tutorial) it is possible to configure and operate with the new Objective C implementa-
tion.

Configuration, startup, and shutdown

The configuration can be done programmatically. The configuration using XML and
plist is partially started but not fully implemented right now. The XMConfiguration
class is similar to the MozartSpaces Configuration class and can be used as a pa-
rameter for the instantiation of the core (XMDefaultXaviCore). It allows config-
urations like defining embedded space, the request handler or the serializer. Detailed
options are described in [Dö11] section 6.3. In listing 6 is sample configuration using
an embedded space, defining the MozartSpaces/Objective C serializer (mzsxavi) with a
space URL.

The startup is done by creating an XMDefaultXaviCore using a configuration
and initializing a synchronous API (XMCapi). The shutdown of a space is done by
defining a space. This is presented in listing 7.

XMConf igura t ion ∗ c o n f i g = [XMConf igura t ion c o n f i g u r a t i o n] ;
[c o n f i g se tEmbeddedSpace :YES] ;
[c o n f i g s e t S e r i a l i z e r I d s : [NSArray a r r a y W i t h O b j e c t s :@" mzsxavi " , n i l]] ;
NSURL ∗ s = [[NSURL a l l o c] i n i t W i t h S t r i n g :@" xvsm : / / l o c a l h o s t :9876 "] ;
[c o n f i g s e t S p a c e U r i : s] ;

Listing 6: Configuration of the new Objective C implementation

id <XMXaviCore> c o r e = [XMDefaultXaviCore
d e f a u l t X a v i C o r e W i t h C o n f i g u r a t i o n : c o n f i g] ;

XMCapi ∗ c a p i = [XMCapi cap iWi thCore : c o r e] ;
[c a p i shutdownWithSpace : n i l E r r o r :& e r r o r] ;

Listing 7: Startup and shutdown of the new Objective C implementation

44

Container operations

The containers are managed by the container manager
(XMDefaultContainerManager). The functionality of the CAPI-3 layer concern-
ing container management is described in detail in [Bar10] section 5.3. The CAPI inter-
face allows creating and destroying as well as looking up of containers. Listing 8 present
the creation of a named container, a lookup of a container defined by the container name
and the destruction of a container.
XMConta inerRefe rence ∗ c r e f =

[c a p i c r e a t e C o n t a i n e r W i t h N a m e :@" con ta ine rName " E r r o r :& e r r o r] ;
XMConta inerRefe rence ∗ l o o k u p C r e f =

[c a p i lookupConta inerWithName :@" con ta ine rName " E r r o r :& e r r o r] ;
[c a p i d e s t r o y C o n t a i n e r W i t h C o n t a i n e r R e f e r e n c e : c r e f

T r a n s a c t i o n R e f e r e n c e : n i l E r r o r :& e r r o r] ;

Listing 8: Container operations with the new Objective C implementation

Entry operations

Every entry that can be added to a container must be serializable. This means the im-
plementation of the following protocols: NSCoding, NSObject, NSCopying.
For the XML serializer described in 5.3.1 there exists in addition the marker proto-
col XMMzsXaviSerializerMarker that needs to be implemented or the object
must be defined as a primitive data type. Otherwise an XMSerializationError
occur. The following operations concerning entries are supported: read, write, test,
take, delete. Listing 9 presents the usage of the entry operations. First an entry is
inserted in a container. This entry works for the built-in as well as for the XML Se-
rializer. NSCoding, NSObject and NSCopying are implemented by NSString
and NSString is a primitive data type in the XML serializer. All other operations use
a default selector choosing one entry. The read operation returns an array containing
the resulting entries. The test operations return the number of entries specified by the
selector. The take operation returns like the read operation the resulting entries but also
removes them from the container. The delete works like the take operation but instead
of returning the entries only the number of deleted entries is returned.
NSArray ∗ a r r a y ;
i n t c o u n t ;
[c a p i w r i t e W i t h E n t r y : [XMEntry e n t r y W i t h V a l u e :@" e n t r y "]

C o n t a i n e r R e f e r e n c e : c r e f E r r o r :& e r r o r] ;
a r r a y = [c a p i r e a d W i t h C o n t a i n e r R e f e r e n c e : c r e f E r r o r :& e r r o r] ;
c o u n t = [c a p i t e s t W i t h C o n t a i n e r R e f e r e n c e : c r e f E r r o r :& e r r o r] ;
a r r a y = [c a p i t a k e W i t h C o n t a i n e r R e f e r e n c e : c r e f E r r o r :& e r r o r] ;
c o u n t = [c a p i d e l e t e W i t h C o n t a i n e r R e f e r e n c e : c r e f E r r o r :& e r r o r] ;

Listing 9: Entry operations with the new Objective C implementation

45

Coordination and selection

All entries of a container are organized by coordinators in a specified way (e.g. FIFO
ordering). The corresponding selectors are responsible for selecting the entries in a
defined way. For example the FifoCoordinator holds the elements in a first-in first-
out ordering that the FifoSelector can access and return to the responding caller. The
Stage-Concept allows chaining multiple selectors to process a final result. A detailed
description of the coordination concepts is presented in [Bar10] section 7. The following
coordinators are implemented right now:

• AnyCoordinator

• FifoCoordinator

• LifoCoordinator

• KeyCoordinator

• LabelCoordinator

• RandomCoordinator

Listing 10 presents the usage of the FifoCoordinator and the corresponding selector. At
the beginning a FifoCoordinator is created and registered on container. Then a selector
is created that return 3 entries and used for a read operation.

XMFifoCoord ina to r ∗ f i f o C o o r d i n a t o r = [XMFifoCoord ina to r
f i f o C o o r d i n a t o r] ;

NSArray ∗ c o o r d i n a t o r s = [NSArray a r r a y W i t h O b j e c t : f i f o C o o r d i n a t o r] ;
NSArray ∗ a r r a y ;
XMConta inerRefe rence ∗ c r e f =

[c a p i c r e a t e C o n t a i n e r W i t h S p a c e : n i l
O b l i g a t o r y C o o r d i n a t o r s : c o o r d i n a t o r s

T r a n s a c t i o n R e f e r e n c e : n i l
E r r o r :& e r r o r] ;

/ / w r i t e e n t r i e s
id <XMSelector > s e l e c t o r = [XMFifoCoord ina to r s e l e c t o r W i t h C o u n t : 3] ;
a r r a y = [c a p i r e a d W i t h C o n t a i n e r R e f e r e n c e : c r e f

S e l e c t o r : s e l e c t o r
T i m e O u t I n M i l l i s e c o n d s :

XAVI_CONSTANTS_REQUEST_TIMEOUT_DEFAULT
T r a n s a c t i o n R e f e r e n c e : n i l E r r o r :& e r r o r] ;

Listing 10: Coordination and selection with the new Objective C implementation

46

Transaction handling

MozartSpaces operations can be grouped into transactional safe operations. A pes-
simistic concurrency control system using locks is used for the prevention of incon-
sistent states. The isolation levels REPEATABLE_READ and READ_COMMITTED are
supported and define the level influencing of different transactions. [Bar10] section
6 describes the transaction mechanism in the CAPI-3 layer in detail. The transaction
management is done by the transaction manager as described in detail in [Dö11] section
4.2.4. Well-known operations like commit and rollback are supported as well as time-
outs of transactions. The external API XMTransactionReference allows transac-
tion handling from the user perspective. Listing 11 presents the principle usage in the
new Objective C implementation. An XMTransactionReference is created with
a timeout of 5,000ms using the embedded space. After some operations the transaction
can be committed of roll backed. There is also the possibility to use implicit transac-
tions by using nil as transaction reference. Then the runtime creates a transaction that
encapsulates only this operation.

XMTransac t ionRefe rence ∗ t x =
[c a p i c r e a t e T r a n s a c t i o n W i t h T i m e o u t I n M i l l i s e c o n d s :5000

Space : n i l
E r r o r :& e r r o r] ;

/ / pe r fo rm some o p e r a t i o n s u s i n g t r a n s a c t i o n
[c a p i c o m m i t T r a n s a c t i o n W i t h T r a n s a c t i o n R e f e r e n c e : t x E r r o r :& e r r o r] ;
/ / or
[c a p i r o l l b a c k T r a n s a c t i o n W i t h T r a n s a c t i o n R e f e r e n c e : t x E r r o r :& e r r o r] ;

Listing 11: Transaction handling with the new Objective C implementation

Aspects

Aspects are used to execute code segments before and after a specific operation. This
allows separating the implementation of crosscutting concerns (e.g. logging) from the
business logic. There exist aspects that are executed on the whole space (space aspects)
and aspects that are executed on a specific container (container aspects). Aspects are
supported with the built-in serializer and is therefore only working in the Objective C
environment. The XML serializer does not support aspects. A list of the all space and
container aspects is in [63] section 5.2 and 5.3. Listing 12 presents a typical pre-read
and post-read implementation of a container aspect. The according methods need to be
overridden of the XMAbstractContainerAspect class. Listing 13 presents the
usage the container aspect. First is the definition of the interception points (pre-Read,
post-Read) and then adding the aspects to the container.

@inter face SomeAspects : X M A b s t r a c t C o n t a i n e r A s p e c t
@end

47

@implementation SomeAspects {
}

− (XMAspectResul t ∗) p reReadWi thReques t : (XMReadEntr iesReques t ∗)
r e q u e s t

T r a n s i t i o n : (id <XMTransact ion >) t x
S u b T r a n s a c t i o n : (id <XMSubTransaction >) s t x

C a p i 3 A s p e c t P o r t : (id <XMCapi3AspectPort >) c a p i 3
E x e c u t i o n C o u n t : (i n t) e x e c u t i o n C o u n t {

/ / p reReadAspec t t a s k s
re turn [XMAspectResult a s p e c t R e s u l t O K] ;

}

− (XMAspectResul t ∗) pos tReadWi thReques t : (XMReadEntr iesReques t ∗)
r e q u e s t

T r a n s i t i o n : (id <XMTransact ion >) t x
S u b T r a n s a c t i o n : (id <XMSubTransaction >) s t x

C a p i 3 A s p e c t P o r t : (id <XMCapi3AspectPort >) c a p i 3
E x e c u t i o n C o u n t : (i n t) e x e c u t i o n C o u n t

E n t r i e s : (NSArray ∗) e n t r i e s {
/ / p o s t R e a d A s p e c t t a s k s
re turn [XMAspectResult a s p e c t R e s u l t O K] ;

}
@end

Listing 12: Defining aspects with the new Objective C implementation

SomeAspects ∗ a s p e c t s = [[SomeAspects a l l o c] i n i t] ;
NSSet ∗ i p o i n t s = [NSSet s e t W i t h O b j e c t s : [XMConta ine r IPo in t cPreRead] ,

[XMConta ine r IPo in t cPos tRead] , n i l] ;

[c a p i a d d C o n t a i n e r A s p e c t W i t h C o n t a i n e r A s p e c t : a s p e c t s
C o n t a i n e r R e f e r e n c e : c r e f
I P o i n t s : i p o i n t s
E r r o r :& e r r o r] ;

[c a p i r e a d W i t h C o n t a i n e r R e f e r e n c e : c r e f E r r o r :& e r r o r] ;

Listing 13: Using aspects with the new Objective C implementation

Error handling

The following errors are available (the corresponding exceptions are in brackets):

• XMAspectError (AspectException): Error concerning aspects (e.g. as-
pect is not registered)

• XMEntryCopyingError (EntryCopyingException): Error concerning
cloning of entries (e.g. request context)

48

• XMMetaModelError (MetaModelException): Error concerning meta model
(not used at the moment)

• XMTimeoutError (MzsTimeoutException): Error concerning timeouts
(e.g. a task has timed out)

• XMSerializationError (SerializationException): Error concern-
ing serialization (e.g. serialization error because of missing expected protocol)

• XMAccessDeniedError (AccessDeniedException): Error concerning
authorization framework (not used at the moment)

• XMContainerFullError (ContainerFullException): Error concern-
ing container operation (e.g. writing to a full container)

• XMContainerLockedError (ContainerLockedException): Error con-
cerning container locking by transaction

• XMContainerNameNotAvailableError (ContainerName-
NotAvailableException): Container name is already used by another con-
tainer.

• XMContainerNotFoundError (ContainerNotFoundException): The
container name could not be found.

• XMCoordinatorLockedError (CoordinatorLockedException): The
coordinator is locked by another transaction.

• XMCoordinatorNotRegisteredError (CoordinatorNot-
RegisteredException): The coordinator for the used selector cannot be
found.

• XMCountNotMetError (CountNotMetException): The selector count
could not be satisfied.

• XMDuplicateCoordinatorError (DuplicateCoordinatorException):
Error when coordinators with duplicate names are registered.

• XMDuplicateKeyError (DuplicateKeyException): Duplicate key in
the KeyCoordinator are used.

• XMEntryLockedError (EntryLockedException): Error concerning en-
try locking by transaction.

• XMEntryNotAnnotatedError (EntryNotAnnotatedException): Er-
ror concerning LindaCoordinator (not used at the moment)

49

• XMInvalidContainerError (InvalidContainerException): Error
when container is invalid.

• XMInvalidContainerNameError (InvalidContainerNameException):
Error when container name is invalid.

• XMInvalidCoordinatorNameError (InvalidCoordinatorName-
Exception): Error when coordinator name is invalid.

• XMInvalidEntryError (InvalidEntryException): Error when entry
gets invalid.

• XMInvalidEntryTypeError (InvalidEntryTypeException): Error
concerning TypeCoordinator (not used at the moment)

• XMInvalidSubTransactionError (InvalidSubTransaction-
Exception): Error when sub-transaction is invalid.

• XMInvalidTransactionError (InvalidTransactionException):
Error when transaction is invalid.

• XMInvalidTypeError (InvalidTypeException): Error concerning au-
thorization (not used at the moment)

• XMObligatoryCoordinatorMissingError (Obligatory-
CoordinatorMissingException): Error when no coordinator is associ-
ated with a selector.

• XMPersistenceInitializationError (Persistence-
InitializationException): Error concerning persistence layer initializa-
tion.

The following exceptions are used in context of unexpected situations:

• XMAssertionException (AssertionError): Exception for undefined
situations in container restoring.

• XMIllegalArgumentException (IllegalArgumentException): Ex-
ception for undefined states if getting illegal arguments.

• XMIllegalStateException (IllegalStateException): Exception
for undefined states.

• XMMzsCoreRuntimeException (MzsCoreRuntimeException):
Unchecked exception in the core.

50

• XMNoSuchElementException (NoSuchElementException): Excep-
tion if element could not be found in data structure.

• XMNullPointerException (NullPointerException): Exception if a
reference in nil (null).

• XMPersistenceException (PersistenceException): Exception when
operation of the persistence layer fails.

• XMRemotingException (RemotingException): Exception concerning
error in remote communication.

• XMTransactionException (TransactionException): Exception con-
cerning error in transaction.

• XMUnsupportedOperationException (UnsupportedOperation-
Exception): Exception if operation is not supported at the specified point.

The error handling for the user can be performed as show in listing 14. A transaction
will be committed by forwarding a transaction reference and a pointer to an XMError
object. If an error occurs the error object will be created and can be handled appropri-
ately (e.g. checking for different kind of errors).

XMError ∗ e r r o r = n i l ;
[c a p i c o m m i t T r a n s a c t i o n W i t h T r a n s a c t i o n R e f e r e n c e : t x E r r o r :& e r r o r] ;
i f (e r r o r != n i l) {

/ / e r r o r h a n d l i n g
i f ([e r r o r i s K i n d O f C l a s s : [XMTimeoutError c l a s s]]) {
}

}

Listing 14: Error handling with the new Objective C implementation

Persistency

Most of the persistency features of MozartSpaces are ported right now except the database
related classes. This means that XMPersistenceBackend as well as XMDBAdapter
and the implementing classes for the in-memory storage (XMInMemoryDB) are imple-
mented right now. Hence the storage is volatile and all data gets lost after shutdown of
the core. The SQLite implementation is partly ported but not runnable at the moment
but it might be a good solution because SQLite is part of the iOS environment. Berkeley
DB [35] is not included in iOS but can be compiled manually [36].

51

Getting started!

Listing 15 presents a small example of the usage of the new Objective C implementation
to get a starting point for developers. At the beginning the logging facility is initialized.
The core is configured, initialized, and is using the synchronous interface XMCapi.
Then a container using a FifoCoordinator is created and an entry is written. This is
encapsulated by a transaction and is committed. After this a selector is configured to
read the entry from the container using an implicit transaction. At the end the container
is destroyed and the space is shutdown. Error handling is performed by using an error
object that needs to be evaluated after every method call outlined in this example by
using assertions.

[XMLoggerConf igura t ion c o n f i g u r e L o g g e r] ;

XMError ∗ e r r o r = n i l ;
XMConf igura t ion ∗ c o n f i g = [XMConf igura t ion c o n f i g u r a t i o n] ;
id <XMXaviCore> c o r e = [XMDefaultXaviCore

d e f a u l t X a v i C o r e W i t h C o n f i g u r a t i o n : c o n f i g] ;
XMCapi ∗ c a p i = [XMCapi cap iWi thCore : c o r e] ;
NSLog (@" XaviSpaces : t r a n s a c t i o n a l ’ G e t t i n g s t a r t e d ! ’ w i th s y n c h r o n o u s

i n t e r f a c e ") ;

XMTransac t ionRefe rence ∗ t r a n s a c t i o n =
[c a p i c r e a t e T r a n s a c t i o n W i t h T i m e o u t I n M i l l i s e c o n d s :5000

Space : n i l
E r r o r :& e r r o r] ;

NSAsser t (e r r o r == n i l , @" ") ;

NSArray ∗ c o o r d s =
[NSArray a r r a y W i t h O b j e c t s :

[XMFifoCoord ina to r f i f o C o o r d i n a t o r] , n i l] ;
XMConta inerRefe rence ∗ c o n t a i n e r =

[c a p i c r e a t e C o n t a i n e r W i t h N a m e :@" h e l l o S p a c e C o n t a i n e r "
Space : n i l

S i z e : 1 0
O b l i g a t o r y C o o r d i n a t o r s : c o o r d s

O p t i o n a l C o o r d i n a t o r s : n i l
T r a n s a c t i o n R e f e r e n c e : t r a n s a c t i o n

E r r o r :& e r r o r] ;
NSAsser t (e r r o r == n i l , @" ") ;

NSSt r ing ∗ e n t r y = @" H e l l o Space ! " ;
NSArray ∗ e n t r i e s =

[NSArray a r r a y W i t h O b j e c t :
[XMEntry e n t r y W i t h V a l u e : e n t r y]] ;

[c a p i w r i t e W i t h E n t r i e s : e n t r i e s
C o n t a i n e r R e f e r e n c e : c o n t a i n e r
T i m e O u t I n M i l l i s e c o n d s : XAVI_CONSTANTS_REQUEST_TIMEOUT_DEFAULT

52

T r a n s a c t i o n R e f e r e n c e : t r a n s a c t i o n
E r r o r :& e r r o r] ;

NSAsser t (e r r o r == n i l , @" ") ;
NSLog (@" E n t r y w r i t t e n : %@" , e n t r y) ;

[c a p i c o m m i t T r a n s a c t i o n W i t h T r a n s a c t i o n R e f e r e n c e : t r a n s a c t i o n
E r r o r :& e r r o r] ;

NSAsser t (e r r o r == n i l , @" ") ;

NSArray ∗ s e l e c t o r s =
[NSArray a r r a y W i t h O b j e c t : [XMFifoCoord ina to r s e l e c t o r]] ;

NSArray ∗ r e s u l t E n t r i e s =
[c a p i r e a d W i t h C o n t a i n e r R e f e r e n c e : c o n t a i n e r

S e l e c t o r s : s e l e c t o r s
T i m e O u t I n M i l l i s e c o n d s :1000

T r a n s a c t i o n R e f e r e n c e : n i l
E r r o r :& e r r o r] ;

NSAsser t (e r r o r == n i l , @" ") ;
NSLog (@" E n t r y r e a d : %@" , [r e s u l t E n t r i e s o b j e c t A t I n d e x : 0]) ;

[c a p i d e s t r o y C o n t a i n e r W i t h C o n t a i n e r R e f e r e n c e : c o n t a i n e r
T r a n s a c t i o n R e f e r e n c e : n i l E r r o r :& e r r o r] ;

NSAsser t (e r r o r == n i l , @" ") ;

[c a p i shutdownWithSpace : n i l E r r o r :& e r r o r] ;
NSAsser t (e r r o r == n i l , @" ") ;

Listing 15: Getting started with the new Objective C implementation

53

CHAPTER 6
Application Scenario

As an application scenario the well-known “Chat example” of MozartSpaces [47] is
used. Multiple users on different peers can send messages to each other and also re-
ceive them. The communication between the peers is accomplished via Space based
middleware XVSM. The users can join and leave whenever they want - all already sent
messages are stored in a single container and will be recovered after connecting and so
become visible for the user. The sequence of the messages will be kept in the order
they were sent. The new implementation for iOS (iPhone) and for OS X as well as the
MozartSpaces implementation is used for the scenario.

The communication between the computer peers is done via LAN connection and
over WLAN for the iOS device. The peer that is the first user creates and holds the space
(embedded space). When connecting to a remote peer the communication is done using
the new XML serializer to get compatibility between Java and Objective C. The mes-
sage (MzsXaviMessage respectively XMMzsXaviMessage) that is sent between
the peers consists of the username (String) and the text message itself (String). This
message is used as entry that is stored in the FIFO container. Therefore it implements
MzsXaviSerializerMarker (Java) or XMMzsXaviSerializerMarker (Ob-
jective C).

One peer creates a space by specifying the port number and connects to it with a
username. The space contains a list of messages (username and message content) in
first-in, first-out order (FIFO). Maintaining the sequence as well as the coordination
is accomplished by a FIFOCoordinator. Since the Objective C implementation has no
notification mechanism right now a polling thread is implemented for Java and for Ob-
jective C to check for new messages on the space. The MozartSpaces implementation of
notifications heavily uses aspect and they are not supported at the moment because they
cannot be serialized. A polling thread checks every 300ms for updates and reload all
messages if there exist new messages on the space. This is a simplification that has big

54

Figure 6.1: iOS chat login window

performance issues but necessary to keep the application as simple as possible. Another
user can be connected by specifying the space (IP address and port) and a username.
After the connection is established all already existing messages from the space are
recovered on the new peer. Figure 6.1 shows the login/create space window.

The following application scenario is used to present the functionality of the new
implementation in combination with MozartSpaces: A MozartSpaces client starts as the
very first user and creates a space. The core is created with the specified IP address,
port and the new XML serializer for remote communication. Then an OS X client
connects to the already running space and starts the chat by sending messages between
each other. As last peer the iOS (iPhone) implementation joins and receives all already
sent messages and lists them in the GUI.

55

CHAPTER 7
Evaluation

The evaluation of the new Objective C implementation is done on three important crite-
ria: performance, memory usage and compatibility to MozartSpaces. For the serializer
the size of the transferred data is benchmarked additionally. For Objective C there are
two different configurations used for comparison: Memory management using Garbage
Collection (GC) and Automatic Reference Counting (ARC). Although GC is not sup-
ported on the iOS environment it gives a feeling what additional future memory man-
agement optimizations for ARC bring for performance improvements. At the beginning
the new XML serializer will be compared to existing serializers for Java as well as for
Objective C. Then the CAPI-3 performance including the scalability will be compared
between the existing MozartSpaces implementation and the new implementation. At
the end of the performance benchmarks is a comparison of operations on an embed-
ded space. The compatibility to the actual MozartSpaces implementation is another
important aspect of the new XVSM implementation for the iOS environment. This is
described in the fourth part. At the end of this section is short discussion of the results.

7.1 Benchmark environment
All benchmarks are executed on a MacBook pro (Mid 2009) with 2,53GHz and 8GB
RAM. As operating system is MacOS X Lion (10.7) used with the latest updates (July
2013). Java 1.6.0_43 64bit for MacOS is used as JVM. The development environment
for Objective C is Xcode 4.6.3 with the Apple LLVM 3.1 compiler.

56

7.2 Performance benchmark
Because of the lack of equivalent hardware for the iOS environment and the Android
environment (there exists no mobile phone that can run Android as well as iOS) the
performance benchmark are executed on a Mac for Java and Objective C. Since the
implementations for Android and PC as well as the implementation for iOS and Mac
have no big differences this design should be a useful indicator for the performance in
the iOS environment. The MozartSpaces implementation is used from a snapshot from
4th June, 2012.

All benchmarks are executed ten times and the two fastest and two slowest results
are discharged to avoid outliers because of the garbage collector, the just-in-time com-
piler or other disturbing processes of the operating system. Then the arithmetic mean
of the remaining 6 results is calculated and used for comparison. The memory usage
is measured using the well-known top command for Objective C. The tool returns
the memory that the process has allocated from the operating system. The memory
usage for Java is calculated by Runtime.getRuntime().totalMemory() -
Runtime.getRuntime().freeMemory()with a manual call of the garbage col-
lector if necessary.

7.2.1 Performance benchmark serializer
The serializer has to serialize two objects that cover primitives, collections, and objects
containing circular references followed by a deserialization process. The chosen objects
simulate messages like RequestReference or different kind of Request instances
transferred between the XVSM implementations. The JavaBuiltin serializer is used as
the reference for the other implementations. On the Java environment the new XML
serializer and the XStream XML are evaluated. The XStream is also added to get a
reference for serialization in XML. On the Objective C environment the new serializer
and the built-in serializer (using NSKeyedArchiver) are compared. Figure 7.1 gives
the result of the performance of the different serializers.

The sums of the size of the byte stream of the two objects are also compared. This
is useful because the transmission rate in a mobile environment is sill a limited resource
especially using 3G/4G. Figure 7.2 gives the result of the size of the byte stream of the
different serializers.

The Objective C built-in serializer using NSKeyedArchiver has a performance
drawback compared to the Java Builtin. ARC is 3.73 and GC is 4.82 times slower than
the corresponding Java implementation. The new XML serializer is not optimized in
serialization performance as well as in byte stream output size and is therefore much
slower than the Java built-in - ARC by a factor 18.79, GC by a factor 19.91, Java by a
factor 34.85. It uses readable code as well as readable output. No redundant information

57

0 2,000 4,000 6,000 8,000 10,000

Java - Builtin

Java - new Serializer

Java - XStream XML

Objective C - Builtin ARC

Objective C - new Serializer ARC

Objective C - Builtin GC

Objective C - new Serializer GC

272

9,479

810

1,014

5,205

1,311

5,414

time [ms]

Figure 7.1: Performance evaluation - comparison of different serializers on different
platforms using different memory management

is removed to offer optimum readability. As XStream is a mature library it can therefore
show a maximum of performance using XML (2.98 times slower than Java built-in).

7.2.2 Performance benchmark CAPI-3
The following two sections describe the benchmarks of the CAPI-3 using the FifoCoor-
dinator and the RandomCoordinator compared to the existing MozartSpaces implemen-
tation. They are chosen because they cover the general functionality of the coordinators
and the implementation of the other coordinators is quiet similar. While for the LifoCo-
ordinator this is obvious this is also for LabelCoordinator and the KeyCoordinator true
because of the usage of HashMaps and therefore also an O(1) time complexity for ac-
cessing one entry. While the FifoCoordinator (and the corresponding selector) operates
on one element (like LabelCoordinator, KeyCoordinator, LifoCoordinator) the Random-
Coordinator operates on the whole dataset and shuffle it. This given a good overview of
the performance of frequent operations like “read one entry”, “take all entries” or “read
some entries”. The first three benchmark configurations presented in the following sec-
tions offer results influenced especially by the implementation of the coordinator while
the isolation manager is only little active because of the creating a single transaction
per operation. This is relatively cheap in contrast to checking the availability of entries
because of entry locking of a transaction. The last three benchmark configurations are
much influenced by the isolation manager because it has to check for entry availabil-
ity. This leads to a dramatic decrease of the performance. All operations are executed

58

0 1,000 2,000 3,000 4,000

Java - Builtin

Java - new Serializer

Java - XStream XML

Objective C - Builtin

Objective C - new Serializer

2,742

4,344

2,714

3,202

4,344

size [kB]

Figure 7.2: Byte stream size evaluation - comparison of different serializer on different
platforms

in repeatable-read isolation level. For the read and take operations exist a pre-filled
container with exactly the number of entries that where read or taken.

FifoCoordinator

To compare the performance of the new CAPI-3 implementation with the existing one
of MozartSpaces to following benchmark configuration is executed on a container using
a FifoCoordinator:

• 20,000 read operations using a separate transaction per read (“Read Separate
20,000”)

• 20,000 write operations using a separate transaction per write (“Write Separate
20,000”)

• 20,000 take operations using a separate transaction per take (“Take Separate 20,000”)

• 8,000 read operations using a single transaction (“Read Single 8,000”)

• 20,000 write operations using a single transaction (“Write Single 20,000”)

• 3,000 take operations using a single transaction (“Take Single 3,000”)

Figure 7.3 gives an overview of the FifoCoordinator benchmarks. The new Objective C
implementation is from 1.07 (“Read Single”) to 7.63 (“Take Single”) for GC and from

59

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

Read Separate 20,000

Write Separate 20,000

Take Separate 20,000

Read Single 8,000

Write Single 20,000

Take Single 3,000

185

227

575

1,458

399

739

1,358

1,638

1,736

1,558

868

5,636

2,190

2,151

2,764

4,373

1,123

15,266

time [ms]

MozartSpaces
new Objective C - GC

new Objective C - ARC

Figure 7.3: Performance evaluation new Objective C compared to MozartSpaces using
FifoCoordinator

2.82 (“Write Single”) to 20.67 (“Take Single”) for ARC slower than the corresponding
MozartSpaces implementation.

RandomCoordinator

To compare the performance of the new CAPI-3 implementation to the existing one of
MozartSpaces following benchmark configuration is executed on a container using a
RandomCoordinator:

• 6,000 read operations using a separate transaction per read (“Read Separate 6,000”)

• 20,000 write operations using a separate transaction per write (“Write Separate
20,000”)

60

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

Read Separate 6,000

Write Separate 20,000

Take Separate 8,000

Read Single 6,000

Write Single 20,000

Take Single 6,000

1,771

222

1,944

1,777

358

1,795

15,696

1,802

13,803

13,612

791

13,587

14,344

2,087

15,131

13,929

1,097

13,116

time [ms]

MozartSpaces
new Objective C - GC

new Objective C - ARC

Figure 7.4: Performance evaluation new Objective C compared to MozartSpaces using
RandomCoordinator

• 8,000 take operations using a separate transaction per take (“Take Separate 8,000”)

• 6,000 read operations using a single transaction (“Read Single 6,000”)

• 20,000 write operations using a single transaction (“Write Single 20,000”)

• 6,000 take operations using a single transaction (“Take Single 6,000”)

Figure 7.4 gives an overview of the RandomCoordinator benchmarks. The new Ob-
jective C implementation is from 2.21 (“Write Single”) to 8.86 (“Read Separate”) for
GC and from 3.07 (“Write Single”) to 9.42 (“Write Separate”) for ARC slower than the
corresponding MozartSpaces implementation.

61

50,000 500,000

0

10,000

20,000

30,000

40,000

50,000

Entries

Ti
m

e
[m

s]

Time: MozartSpaces new Objective C GC new Objective C ARC

250

500

750

1,000

Entries

M
em

or
y

[M
B

]

Memory: MozartSpaces new Objective C GC new Objective C ARC

Figure 7.5: Comparison of memory and time scalability of CAPI-3 (FifoCoordinator
(“Read Separate Tx”))

7.2.3 Scalability benchmark CAPI-3
Scalability will be evaluated in time as well as in memory consumption. The goal is a
linear increase of time and memory dependent on the number of entries. A pre filled
container with a FifoCoordinator is used for reading 5,000, 50,000 and 500,000 entries.
As shown in Figure 7.5 there is indeed a linear increase of time as well as memory.
MozartSpaces is about a factor 12 faster than the new Objective C ARC and about a
factor 8 faster than the new Objective C GC. MozartSpaces is the most memory saving
implementation. Objective C GC needs about 40% more memory and Objective C ARC
needs about 25% more memory.

62

7.2.4 Performance benchmark embedded space
This section describes the benchmarks of the complete XVSM implementation using
an embedded space compared to the existing MozartSpaces implementation. Transport
using socket for remote communication is not part of this benchmark. The goal is to
get performance values for the runtime environment like messages creation and distri-
bution, requests/responses handling, and tasks. The container uses a FifoCoordinator
and all operations are executed using repeatable-read isolation level. The following
configuration is used:

• 20,000 read operations using a separate transaction per read (“Read Separate
20,000”)

• 20,000 write operations using a separate transaction per write (“Write Separate
20,000”)

• 20,000 take operations using a separate transaction per take (“Take Separate 20,000”)

• 8,000 read operations using a single transaction (“Read Single 8,000”)

• 20,000 write operations using a single transaction (“Write Single 20,000”)

• 3,000 take operations using a single transaction (“Take Single 3,000”)

Figure 7.6 present the difference between the MozartSpaces and the new Objective C
implementation using GC as well as ARC. The new Objective C implementation is
from 1.55 (“Read Single”) to 5.97 (“Read Separate”) for GC and from 3.48 (“Read
Single”) to 14.72 (“Take Single”) for ARC slower than the corresponding MozartSpaces
implementation.

Evaluation using embedded space without CAPI-3

Since the configuration of the performance benchmark using embedded space is the
same as for the CAPI-3 benchmark using FifoCoordinator the runtime execution time
can be calculated. Figure 7.7 present the difference of the execution time of the CAPI-3
benchmark using FifoCoordinator (see figure 7.3) and the execution time of the embed-
ded space using FifoCoordinator (see figure 7.6). This gives the performance of the
runtime implementation. The new Objective C implementation is from 1.64 (“Take Sin-
gle”) to 10.91 (“Write Single”) times for GC slower than the corresponding MozartSpaces
implementation. The ARC implementation is even 0.59 times faster (“Take Single”)
than MozartSpaces.

63

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

Read Separate 20,000

Write Separate 20,000

Take Separate 20,000

Read Single 6,000

Write Single 20,000

Take Single 3,000

1,066

1,313

1,442

1,683

620

1,050

6,368

6,861

7,092

2,604

3,279

6,147

8,766

8,841

8,694

5,859

4,071

15,449

time [ms]

MozartSpaces
new Objective C - GC

new Objective C - ARC

Figure 7.6: Performance evaluation of the new Objective C embedded space compared
to MozartSpaces using FifoCoordinator

7.2.5 Scalability benchmark embedded space
Scalability will be evaluated in time as well as in memory consumption. The goal is to
show a linear increase of time and memory dependent on the number of entries. Like
in the CAPI-3 scalability benchmark 7.5 a pre filled container with a FifoCoordinator is
used for reading 5,000, 50,000 and 500,000 entries. As shown in Figure 7.8 there is in-
deed a linear increase of time as well as memory. MozartSpaces is about a factor 8 faster
than the new Objective C ARC and about a factor 5.8 faster than the new Objective C
GC. The new Objective C GC implementation is the most memory saving implemen-
tation. Objective C ARC needs about 31% more memory, MozartSpaces needs about
30% more memory.

64

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

Read Separate 20,000

Write Separate 20,000

Take Separate 20,000

Read Single 6,000

Write Single 20,000

Take Single 3,000

881

1,086

867

225

221

311

5,010

5,223

5,356

1,046

2,411

511

6,576

6,690

5,930

1,486

2,948

183

time [ms]

MozartSpaces
new Objective C - GC

new Objective C - ARC

Figure 7.7: Runtime performance evaluation of the new Objective C implementation
compared to MozartSpaces

7.3 Compatibility
After comparing the performance the compatibility of the new Objective C implemen-
tation and MozartSpaces needs to be evaluated. At first the compatibility is evaluated
by using the integration tests as described below. To present the interoperability by
example an application scenario is used (see chapter 6).

The code quality of the implementation is evaluated by using unit tests as well as
integration tests. While the unit tests take care of the small parts (classes) of the new im-
plementation itself the integration tests check the compatibility between MozartSpaces
and the new Objective C implementation. Therefore, integration tests are considered in
more detail. The integration tests in MozartSpaces are exactly the same as they are in

65

50,000 500,000

0

50,000

100,000

150,000

200,000

Entries

Ti
m

e
[m

s]

Time: MozartSpaces new Objective C GC new Objective C ARC

250

500

750

1,000

Entries

M
em

or
y

[M
B

]

Memory: MozartSpaces new Objective C GC new Objective C ARC

Figure 7.8: Comparison of memory and time scalability of CAPI (FifoCoordinator
(“Read Separate Tx”))

the new implementation.
At first all possible objects that can be transmitted between two XVSM instances

(e.g. AnswerContainerInfo, ReadEntriesRequest etc. including their Ob-
jective C equivalences XMAnswerContainerInfo, XMReadEntriesRequest
etc.) where created, encoded, and written to a temporary file in the MozartSpaces envi-
ronment and read, encoded and checked in the Objective C environment. This process
is repeated using Objective C environment as source and MozartSpaces as the destina-
tion. This method checks if the encoding and decoding in both environments works
correctly. It includes especially the compatible serialization and deserialization process
in both environments.

Secondly the integration tests are executed. The following configurations of the
integration test suite is used to evaluate the new Objective C implementation as well as
the compatibility to MozartSpaces:

66

Obejctive C

remote

local

Space

Figure 7.9:
Embedded space
Objective C

Obejctive C

remote

local

Space

Figure 7.10:
Remote space
Objective C

Obejctive C

remote

local

remote

local

Obejctive C

Space

Figure 7.11: Standalone Objective C

Obejctive C

remote

local

remote

local

Java

Space

Figure 7.12: Objective C - Java

Java

remote

local

remote

local

Obejctive C

Space

Figure 7.13: Java - Objective C

• Embedded space using the new Objective C implementation (figure 7.9).

• Remote space using space from same process with the new Objective C imple-
mentation (figure 7.10).

• Remote space using standalone space with the new Objective C implementation
(figure 7.11).

• Remote space of Objective C implementation using standalone space of MozartSpaces
(figure 7.12).

• Remote space of MozartSpaces using standalone space of Objective C implemen-
tation (figure 7.13).

The red arrows in the figures depict which interface (local or remote) is connected to a
space (new Objective C implementation or MozartSpaces(Java)). For example in figure
7.12 the new Objective C implementation access a standalone space of MozartSpaces
(Java) using the remote interface (XMTcpSocketSender and
XMTcpSocketReceiver). All integration test scenarios described above are suc-
cessfully executed. This includes execution of tests with successful operations as well
operations that throw an exception/create an NSError object.

67

7.4 Summary and conclusion
The platform independent serialization process is important for the overall performance
of future XVSM implementations. The Java Builtin serializer it the fastest method
and can therefore works a reference for maximum possible performance. Even the
NSKeyedArchiver is much slower. Apache Thrift [26] or Protocol Buffers [22]
can probably be a good starting point to get high performance platform independent
serialization. The overhead of the XML implementation is quiet obvious for both cri-
teria (serialization/deserialization time and byte stream size) and has to be replaced in
production systems by a better performing solutions. A performance comparison of
different Java serialization methods can be found at [25].

The performance of CAPI-3 is influenced by different aspects. At first is the porting
process from MozartSpaces to Objective C. The well performing Java code seems to
have some performance issues like using NSEnumerator for Iterator. Another
problem is the heavy usage of small objects like the Availability object. Objec-
tive C especially in combination with ARC has problems to handle them quickly. Using
small C structures can solve that but it has the problem of the manual memory handling
because ARC cannot handle C. Another issue is the big difference between GC and
ARC. ARC needs to take care of retain and release messages including allocating and
freeing memory that seems to work slower than using an extra thread for the garbage
collector. Heavy use of __unsafe_unretained objects and revising the naming
convention can lead to a performance improvement. The next problem is the relatively
slow implementation of collections like NSArray, NSSet, and NSDictionary
including their mutable versions. To solve that problem either the usage of the equiva-
lent Core Foundation collections CFArray, CFSet, and CFDictionary or using
C data structures will lead to a real performance boost. The disadvantage would be the
manual memory management because ARC does not handle these features.

The time and memory scalability of the CAPI-3 is linear for the MozartSpaces and
the new Objective implementation. There is no need for general adaptations because
the performance bottleneck is not a design issue but an implementation/programming
language problem as described in the upper paragraph.

The runtime performance evaluated by using embedded space configuration comes
to the result that the runtime has to wait for CAPI-3 in all “Separate” scenarios as well
as in “Read” and “Write” in the “Single” scenario. For the slow CAPI-3 “Take Single”
implementation the runtime result has in fact less overhead (183ms for ARC, 511ms
for GC and 311ms for MozartSpaces). Investigating the execution using DTrace [38]
show that most of the time is spent waiting for releasing a lock. This goes along with
the assertion that the performance bottleneck is the CAPI-3 implementation and not the
runtime because it has to wait most of the time until the locks are released.

The time and memory scalability of the runtime is linear for MozartSpaces and the
new Objective C implementation. As for CAPI-3 there is no need for a general design

68

adaptation.
An unexpected result is the fact that the Objective C implementation is in some

situations clearly slower than the Java implementation. The reason is probably the par-
tially lack of Objective C specific performance optimization. The code seems to work
well in Java using the JIT compiler but has performance drawbacks in Objective C.
The most surprising result is that the ARC implementation is (sometimes) significantly
slower than the GC implementation although Apple presented ARC as a faster tech-
nology compared to GC in WWDC 2011 [11]. Due to the facts that iOS only support
ARC and GC is set deprecated in OS X 10.8 [9] and will probably be removed in newer
versions the future developing should be concentrated on ARC.

The compatibility check using integration tests in different scenarios gives a hint of
a code base with a certain quality. Since testing can never verify the correctness but
only find errors there is a need of other techniques (e.g. model checking).

All previous performance optimizations where performed using Apple Instruments
[10] and DTrace. This will be a good starting point for future performance optimizations
for the new Objective C implementation and even for the Java MozartSpaces implemen-
tation [37].

It can be summarized that the new Objective C implementation works with an ac-
ceptable speed and can interact with MozartSpaces as required in the thesis goals (see
1.1).

69

CHAPTER 8
Deployment on iOS devices

Developing applications for the iOS environment has some additional tasks that need to
be done compared to developing on the Mac. There exits two major differences. At first
the development environment and the deploying target is not the same and secondly
deploying on Apple iOS devices needs some extra tasks to work. In the beginning
of this chapter there is a description of some Apple specific issues like programming
restrictions, registration for a developer program and some issues with the App Store and
the iOS device simulator. After this a How-To of the deployment process is presented.

8.1 Apple specific issues

8.1.1 Programming restrictions
Apple offers a closed world for their iOS environment. This includes the operating
system itself as well as all interfaces defined. The code is closed source and only the
public interfaces are allowed to use. Every App gets reviewed concerning interface
design, content, functionality and the use of technology. The Apple Review Guidelines
[3] give an overview of the restrictions. For example they restrict the used programming
language for web access:

“Apps that browse the web must use the iOS WebKit framework and We-
bKit JavaScript”

Another restriction is the usage of non-public APIs (e.g. enabling and disabling WLAN
interface):

“Apps that use non-public APIs will be rejected”

70

For the XVSML development the missing support of long running background process-
ing, missing command line, restricted number of programming languages and restricted
API are the main disadvantages. All workarounds presented in 5 uses not allowed tech-
niques. Because of this strict constraint jail-breaking 2.4.2 can outwit this limitations.

8.1.2 Registration
Due to of Apple restrictions all iOS Apps must be signed by a valid certificate before
they can be deployed on the iOS device. This needs to be done on the one hand for
security reasons and on the other hand to disallow App installation without the App
Store [4]. It allows Apple to control the application market (see chapter 8.1.3).

At the beginning there is a need for free registration at the Apple developer portal
[5]. This is Apple’s information portal concerning developing iOS, OS X and Safari. It
gives among others access to the development program and documents like references
or sample code. Then there is a need to join an “Apple developer program” for the iOS
platform. There can be chosen between 3 different [13]: “iOS Developer Program”,
“iOS Developer Enterprise Program” and “iOS Developer University Program”. The
first is for people or organizations that want to submit the Apps to the App Store. The
second is designed to for designing proprietary Apps for distribution within an organi-
zation. The last one is build for universities and students, free, and is therefore used
for this thesis course. One disadvantage is that it does not allow bringing the build App
to the AppStore or getting any help of the Apple support. The next step is to create
a “Development Certificate”. It creates a private/public key pair that allows Xcode to
verify the identity of the user. Then the device id (40 digits hex value) must be added
to the portal to register a specific developing device. After that an “App ID” must be
created. It identifies a set of Apps created by the developing team. Then the “App ID”
is added to the “Provisioning Profile”. It contains all of the necessary information for
Xcode and the magic token that allows deploying on iOS devices. This profile appears
in Xcode after login and download in the organizer. Then the connected device must
be defined to use for development. After this the device is ready for developing. The
whole process is described in detail in [17].

8.1.3 App Store
Since members of the “iOS Developer University Program” cannot submit Apps in the
App Store the official link on the Apple website is not accessible. However there exists
an unofficial version at another URL1. The most important restriction when porting
MozartSpaces to the iOS platform is 2.16:

1http://stadium.weblogsinc.com/engadget/files/app-store-guidelines.
pdf

71

http://stadium.weblogsinc.com/engadget/files/app-store-guidelines.pdf
http://stadium.weblogsinc.com/engadget/files/app-store-guidelines.pdf

“Multitasking Apps may only use background services for their intended
purposes: VoIP, audio playback, location, task completion, local notifica-
tions, etc”

It disallows the background processes and therefore the MozartSpaces implementation
ported to iOS will be rejected.

8.1.4 iOS device simulator
Since the compiled App is not runnable on a Mac there is a need of an environment that
can be used to run and test the App without a real device. The iPhone/iPad simulator
[14] offers this possibility. As part of Xcode it runs like a standard Mac application and
can be used to test Apps before deploying on a real device. The simulator can use differ-
ent iOS versions and different screen resolutions to test the different environments. The
interaction can be done with keyboard and mouse to emulate interactions like fingertips,
swipes, device rotation or pressing the home button. The simulator appears like a real
device with the well-known view of the installed Apps. The interaction works exactly
the same as on a real device. Apps can be uninstalled, preferences can be set, and the
standard Apple Apps can be used. Debugging in Xcode while using the simulator is
also working and is a good starting point for bug fixing. The simulator is a great tool for
running new Apps at the beginning but it also has some limitations. The memory is used
from the Mac and therefore much bigger than on the real device. Also the user inter-
face performance is different to a real device. There exist also some hardware features
that are not simulated like the accelerometer, the camera, the gyroscope, the proximity
sensor or the microphone input. Some APIs and frameworks like Apple Push Services
or the Event Kit are also missing. Official support for only one simulator instance is
another disadvantage. Therefore, the simulator is a good starting point for developing
but a real device is necessary to become familiar with the actual environment.

8.2 Deployment How-To
After the registration from chapter 8.1.2 the device is ready for deploying. The following
steps are necessary to add the new Objective C implementation to a new Xcode project:

1. Create a static library and the header files depending on the deploying environ-
ment. The Makefile has different targets for all supported environments.
make dist create all libraries and header files for all environment.

2. Create a new project depending on the environment (iOS or OS X).

3. In Project Preferences/Build Settings/Other Linker Flages add
-ObjC "/path/to/lib.a"

72

4. In Project Preferences/Build Settings/Header Search Path add
"/path/to/headers.h"

5. In Project Preferences/Build Phases/Link Binary With Libraries add
CFNetwork.framework, Security.framework, libsqlite3.dylib

6. Use chapter 5.3.4 as a starting point for development.

73

CHAPTER 9
Future Work

The new implementation of a MozartSpaces compatible version of XVSM for the iOS
environment seems to work quite well for the first implementation of a complex middle-
ware system in a new programming language as described in chapter 7. But there exist a
high number of possible improvements that can make it more and more attractive. The
following list presents possible improvements that extend the functionality as well as
open issues like programming technique improvements:

• Serialization of aspects is not implemented at the moment for the new XML seri-
alizer. This would be necessary to use aspects across heterogeneous platform like
MozartSpaces.

• The serialization process is quite slow and the resulting byte stream is big. A new
multi platform implementation like Apache Thrift or Protocol Buffer can improve
performance heavily. Another option is the usage of an XML schema with the
already existing usage of JAXB in MozartSpaces and a new implementation for
Objective C.

• The marker protocol XMMzsXaviSerializerMarker may not be the right
choice to highlight an object that is possible to be serializable with the XML
serializer. Either allow serialization of every object or define the restrictions for
XML serialization in more detail.

• Although all MozartSpaces integration tests are executed successfully more tests,
especially more integration tests including working with test coverage would lead
to a quality boost.

• MozartSpaces offers lot of example applications to present inexperienced users a
good starting point.

74

• Some coordinators are missing compared to MozartSpaces like LindaCoordinator,
QueryCoordinator or VectorCoordinator.

• The distribution of the new Objective C implementation needs to be defined more
clearly. At the moment exist a static library and header files that need to be added
to all new projects. In addition there exist other framework dependencies. A
framework can make the usage easier.

• The persistence layer is prepared but the implementation for the persistence back-
end is not implemented right now. SQLite support is partly implemented and
probably a good way because SQLite is part if the iOS environment. Berkeley
DB [35] is not included in iOS but can be compiled manually. Another possible
solution is the usage of Apple’s Core Data [8] as persistency backend.

• All authorization features from MozartSpaces are not available and needs imple-
mentation.

• Using the space in the 3G environments is still open topic that needs to be solved.

• Mobile devices restrictions like running out of memory needs to be handled to
persist entries before the application gets killed.

• Adaptation of the implementation for ARC to safe memory (e.g. more use of
AutoreleasePools or changing method name to fulfill the naming convention that
result in fewer retain/release calls) and allow faster execution needs to be done.

• The data type compatibility between the iOS environment, Mac and Java needs
to be reviewed. The different length of data types depending on the device in
Objective C needs a clear definition.

• Because of performance reasons some parts of the implementation like collec-
tions, enumerators or intensive use of small objects needs adaptation of the Ob-
jective C code or switch to C source code.

• The porting process is based on June 4th, 2012 and therefore all bug fixes as well
as other improvements are missing in the actual Objective C implementation.

• A well-defined performance benchmark environment for Objective C (as well as
for MozartSpaces) could be used to tweak the implementations.

• The iOS environment offers features like GCD to parallelize operations instead of
using thread and replacing locks. If still using locks the @synchronized can
maybe replaced by POSIX mutex.

75

• Some not necessary but well performing features like
NonPollingTimeoutProcessor are not implemented yet.

• At the moment the error handling is split into two different types: error objects for
common errors like “container locked” and exceptions for unexpected errors like
“wrong list index”. Because exception handling is slow in Objective C a change
to error objects may give a performance boost.

• MozartSpaces features like Notifications are not implemented yet.

• The implementation is working for at least iOS 5. Since some useful features (e.g.
NSMapTable) are available for iOS 6 an update would be worth. According to
WWDC 2013 announcement iOS 7 (release date: fall 2013, Beta for developer
is available) will support background processing. Therefore, this update sounds
very promising.

• An environment for automation of test executions should be created. Since there
exist lots of tests that should be performed after every change a continuous inte-
gration system like [39] can help saving a lot of time and improve code quality.

• The configuration can be via XML or plist is not fully implemented yet. This
feature will provide configuration without recompiling.

• The meta model functionality is not implemented yet.

• The logging framework CocoaLumberjack has some features that extend the func-
tionality dramatically like dynamic changing of the logging level or logging to
files.

• The Makefile needs revision to get a clear command line interface.

• The actual implementation is compiled for the ARMv7 instruction set but not for
the ARMv7s used by the Apple A6 chip (iPhone 5).

76

CHAPTER 10
Conclusion

The main goal of this thesis was to provide an iOS implementation that is fully compat-
ible to actual reference implementation of XVSM, MozartSpaces. Different approaches
had to be mentioned and the most promising solution should be realized.

The goal was achieved by investigating different approaches for code reuse and then
taken the decision to port the well performing Java implementation to the iOS environ-
ment. The communication between MozartSpaces and the new Objective C implemen-
tation was realized by using a simple XML serializer to solve the encoding problem
between these two different environments. Some restrictions concerning the iOS envi-
ronment were also discussed.

The iOS implementation is fully compatible to MozartSpaces. It includes the API
definition, most parts of the implementation details as well as the communication pro-
cess. All well known operations (read, write, take, test) have the same semantics
as MozartSpaces. Transaction support with different isolation levels (read commit-
ted, repeatable read) are also working as well as different coordination mechanisms
(AnyCoordinator, FifoCoordinator, LifoCoordinator, KeyCoordinator, LabelCoordina-
tor, RandomCoordinator). The runtime functionality and the aspect semantic work like
in MozartSpaces. The communication based on XML was realized by mapping Java
data types to corresponding Objective C data types including the different message
types.

The implementation was compared to MozartSpaces by benchmarking concerning
execution speed as well as memory usage. The new Objective C implementation was at
maximum a factor 15 slower than MozartSpaces. Most operations were about a factor
six to eight slower. In one situation (CAPI-3) was MozartSpaces more memory effi-
cient, in the runtime benchmark was the new Objective C implementation better. The
compatibility was evaluated but using all integration tests for the new Objective C im-
plementation and presented by a short application scenario (chat example).

77

The limiting scope of a diploma thesis led to some compromises to be able to per-
form the proof of concept. The policy was to fully implement the API but leave out
detailed implementations. Some coordinators (VectorCoordinator, LindaCoordinator,
QueryCoordinator) or the configuration via XML files were not implemented. The us-
age of aspects in the heterogeneous environment was also skipped.

As described in 2.4.1 there exist different approaches for multi-platform develop-
ment (i.e. maintaining one code base for PC/Android OS/iOS/etc). This approach can
be taken into account for future implementations to save developing time as well as im-
proving code quality because each functionality must be implemented once. Probably,
an adaptation of the license model or the use of a commercial software system is needed
to reach the goal.

78

APPENDIX A
Appendix

A.1 Source code heavily used in MozartSpaces

package a t . T y p i c a l J a v a ;

import j a v a . u t i l . A r r a y L i s t ;
import j a v a . u t i l . C o l l e c t i o n s ;
import j a v a . u t i l . L i s t ;
import j a v a . u t i l . c o n c u r r e n t . a t om ic . AtomicLong ;

/∗ ∗
∗ @author g e r r y
∗
∗ T h i s c l a s s c o n t a i n s t y p i c a l Java s o u r c e code t h a t i s used

i n
∗ Mozar tSpaces
∗
∗ /

p u b l i c c l a s s T y p i c a l J a v a implements I T y p i c a l J a v a {
p r i v a t e s t a t i c f i n a l long s e r i a l V e r s i o n U I D = 1L ;
p r i v a t e s t a t i c f i n a l AtomicLong SOMEATOMICLONG = new

AtomicLong () ;
p r i v a t e L i s t < S t r i n g > c o n c u r r e n t L i s t ;
p r i v a t e v o l a t i l e boolean s o m e V o l a t i l e ;
p r i v a t e long someLong ;

p u b l i c T y p i c a l J a v a () {
t h i s . someLong = SOMEATOMICLONG. incrementAndGet () ;
t h i s . c o n c u r r e n t L i s t = C o l l e c t i o n s . s y n c h r o n i z e d L i s t (

new A r r a y L i s t < S t r i n g > ()) ;
t h i s . s o m e V o l a t i l e = t rue ;

79

}

p u b l i c vo id doSomeThing () {
doSomeThingOther () ;

}

p r i v a t e vo id doSomeThingOther () {
t h i s . someLong = SOMEATOMICLONG. incrementAndGet () ;
t h i s . s o m e V o l a t i l e = f a l s e ;

}

p u b l i c L i s t < S t r i n g > g e t C o n c u r r e n t L i s t () {
re turn c o n c u r r e n t L i s t ;

}

p u b l i c boolean i s S o m e V o l a t i l e () {
re turn s o m e V o l a t i l e ;

}

p u b l i c long getSomeLong () {
re turn someLong ;

}

}

Listing 16: Typical Java source code in MozartSpaces

A.2 Java2objc Objective C output

import " NSMutableArray . h "
import " C o l l e c t i o n s . h "
import " NSMutableArray . h "
import " AtomicLong . h "

/∗ ∗
∗ @author g e r r y
∗
∗ T h i s c l a s s c o n t a i n s t y p i c a l Java s o u r c e code t h a t i s used i n
∗ Mozar tSpaces
∗
∗ /

@inter face T y p i c a l J a v a : NSObject < I T y p i c a l J a v a > {
NSMutableArray ∗ c o n c u r r e n t L i s t ;
BOOL s o m e V o l a t i l e ;
long someLong ;

}

80

@property (nonatomic , r e t a i n , readonly) NSMutableArray ∗
c o n c u r r e n t L i s t ;

@property (nonatomic , readonly) BOOL s o m e V o l a t i l e ;
@property (nonatomic , readonly) long someLong ;
− (id) i n i t ;
− (void) doSomeThing ;
@end

Listing 17: Typical Java source code in MozartSpaces converted by java2objc -
interface file

import " T y p i c a l J a v a . h "

long c o n s t s e r i a l V e r s i o n U I D = 1L ;
AtomicLong ∗ c o n s t SOMEATOMICLONG = [[[AtomicLong a l l o c] i n i t]

a u t o r e l e a s e] ;

@implementation T y p i c a l J a v a

@synthes ize c o n c u r r e n t L i s t ;
@synthes ize s o m e V o l a t i l e ;
@synthes ize someLong ;

− (id) i n i t {
i f (s e l f = [super i n i t]) {

someLong = [SOMEATOMICLONG incrementAndGet] ;
c o n c u r r e n t L i s t = [C o l l e c t i o n s s y n c h r o n i z e d L i s t : [[[NSMutableArray

a l l o c] i n i t] a u t o r e l e a s e]] ;
s o m e V o l a t i l e = YES ;

}
re turn s e l f ;

}

− (void) doSomeThing {
[s e l f doSomeThingOther] ;

}

− (void) doSomeThingOther {
someLong = [SOMEATOMICLONG incrementAndGet] ;
s o m e V o l a t i l e = NO;

}

− (void) d e a l l o c {
[c o n c u r r e n t L i s t r e l e a s e] ;
[super d e a l l o c] ;

}

@end

81

Listing 18: Typical Java source code in MozartSpaces converted by java2obj -
implementation file

A.3 Makefile

M a k e f i l e
X a v i S p a c e s
#
M a k e f i l e f o r e x e c u t i n g t e s t s on MacOS X p l a t f o r m and iOS

s i m u l a t o r p l a t f o r m
#
TEST . . . t e s t t o run
GHUNIT_CLI=1 . . . run t e s t s
GHUNIT_SUITE=1 . . . run t e s t s u i t e
GHUNIT_SUITE=0 . . . run a l l t e s t s
GHUNIT_TEST_GUI=1 . . . run t e s t s w i t h g u i
GHUNIT_TEST_GUI=0 . . . run t e s t s on command l i n e
GHUNIT_SUITE_TESTS= . . . comma s e p a r a t e d l i s t o f t e s t c l a s s e s

(r e c e i v e s c l a s s e s from command l i n e)
GHUNIT_STANDALONE=1 . . . run a s t a n d a l o n e space
#
GHUNIT_INTEGRATION_TYPE=
TYPE . . . e i t h e r OBJC_JAVA or JAVA_OBJC
OBJECT . . . O b j e c t i v e C c l a s s name
#
examples :
make t e s t i O S S i m u l a t i o n # run a l l t e s t s i n s i m u l a t i o n

e n v i r o n m e n t on command l i n e
make t e s t i O S S i m u l a t i o n TEST=Tes t IOS # run s p e c i f i e d

t e s t i n s i m u l a t i o n e n v i r o n m e n t on command l i n e
make t e s t M a c A l l C l i
make t e s t M a c S u i t e C l i TESTS=TestMac , T e s t M i s c
make t e s t M a c A l l G u i
make t e s t M a c F i l e FILE=tes t sToRunMac
make tes tMacDebug TEST=T e s t S o m e t h i n g
#
c r e a t e d by g e r r y

d e f a u l t : a l l
S e t d e f a u l t make a c t i o n here
x c o d e b u i l d − t a r g e t T e s t s −c o n f i g u r a t i o n MyMainTarget −sdk

i p h o n e s i m u l a t o r b u i l d

c l e a n :
x c o d e b u i l d −c o n f i g u r a t i o n Debug c l e a n

82

x c o d e b u i l d −c o n f i g u r a t i o n R e l e a s e c l e a n
−rm − r f b u i l d /∗

##################

a l l :
x c o d e b u i l d − a l l t a r g e t s

##################

l i s t :
x c o d e b u i l d − l i s t

sdk :
x c o d e b u i l d −showsdks

xcode :
xcode−s e l e c t −p r i n t−p a t h
x c o d e b u i l d −v e r s i o n

##################

d i s t : d i s tDS51 d i s t R S 51 d i s tDS61 d i s t R S 6 1 d i s t D i 6 1 d i s t R i 6 1 distDM107
distRM107

(Debug / R e l e a s e) (S i m u l a t o r / iOS / Mac) (V e r s i o n)
S i m u l a t o r
d i s tDS51 :

x c o d e b u i l d − t a r g e t XaviSpacesLib iOS −c o n f i g u r a t i o n Debug −sdk
i p h o n e s i m u l a t o r 5 . 1 b u i l d

mv b u i l d / Debug−i p h o n e s i m u l a t o r b u i l d / Debug−i p h o n e s i m u l a t o r 5 . 1

d i s t R S 5 1 :
x c o d e b u i l d − t a r g e t XaviSpacesLib iOS −c o n f i g u r a t i o n R e l e a s e −

sdk i p h o n e s i m u l a t o r 5 . 1 b u i l d
mv b u i l d / Re lease−i p h o n e s i m u l a t o r b u i l d / Re lease−

i p h o n e s i m u l a t o r 5 . 1

d i s tDS61 :
x c o d e b u i l d − t a r g e t XaviSpacesLib iOS −c o n f i g u r a t i o n Debug −sdk

i p h o n e s i m u l a t o r 6 . 1 b u i l d
mv b u i l d / Debug−i p h o n e s i m u l a t o r b u i l d / Debug−i p h o n e s i m u l a t o r 6 . 1

d i s t R S 6 1 :
x c o d e b u i l d − t a r g e t XaviSpacesLib iOS −c o n f i g u r a t i o n R e l e a s e −

sdk i p h o n e s i m u l a t o r 6 . 1 b u i l d
mv b u i l d / Re lease−i p h o n e s i m u l a t o r b u i l d / Re lease−

i p h o n e s i m u l a t o r 6 . 1

83

iOS
d i s t D i 6 1 :

x c o d e b u i l d − t a r g e t XaviSpacesLib iOS −c o n f i g u r a t i o n Debug −sdk
i p h o n e o s 6 . 1 b u i l d

mv b u i l d / Debug−i p h o n e o s b u i l d / Debug−i p h o n e o s 6 . 1

d i s t R i 6 1 :
x c o d e b u i l d − t a r g e t XaviSpacesLib iOS −c o n f i g u r a t i o n R e l e a s e −

sdk i p h o n e o s 6 . 1 b u i l d
mv b u i l d / Re lease−i p h o n e o s b u i l d / Re lease−i p h o n e o s 6 . 1

OS X
distDM107 :

x c o d e b u i l d − t a r g e t XaviSpacesLibMac −c o n f i g u r a t i o n Debug −sdk
macosx10 . 7 b u i l d

mv b u i l d / Debug b u i l d / Debug−osx10 . 7

distRM107 :
x c o d e b u i l d − t a r g e t XaviSpacesLibMac −c o n f i g u r a t i o n R e l e a s e −

sdk macosx10 . 7 b u i l d
mv b u i l d / R e l e a s e b u i l d / Re lease−osx10 . 7

##################
t e s t M a c S t a n d a l o n e :

x c o d e b u i l d − t a r g e t Tes t ingMac −scheme T e s t i n g M a c _ S t a n d a l o n e
−c o n f i g u r a t i o n Debug −sdk macosx b u i l d

x c o d e b u i l d − t a r g e t Tes t ingMac −c o n f i g u r a t i o n Debug −sdk
macosx b u i l d

DYLD_FRAMEWORK_PATH= . / Framework DYLD_FRAMEWORK_PATH= . /
Framework GHUNIT_STANDALONE=1 b u i l d / Debug / Tes t ingMac .
app / C o n t e n t s / MacOS / Tes t ingMac

t e s t M a c I n t e g r a t i o n :
GHUNIT_INTEGRATION=1 GHUNIT_CLI=1 GHUNIT_INTEGRATION_TYPE=${

TYPE} GHUNIT_INTEGRATION_OBJECT=${OBJECT} x c o d e b u i l d −
t a r g e t Tes t ingMac −c o n f i g u r a t i o n Debug −sdk macosx
b u i l d

t e s t M a c S u i t e C l i :
GHUNIT_CLI=1 GHUNIT_SUITE=1 GHUNIT_TEST_GUI=0

GHUNIT_SUITE_TESTS=${TESTS} x c o d e b u i l d − t a r g e t
Tes t ingMac −c o n f i g u r a t i o n Debug −sdk macosx b u i l d

t e s t M a c F i l e :
GHUNIT_CLI=0 GHUNIT_SUITE=1 GHUNIT_TEST_GUI=0

GHUNIT_SUITE_FILE_TESTS=${FILE} x c o d e b u i l d − t a r g e t

84

Tes t ingMac −c o n f i g u r a t i o n Debug −sdk macosx b u i l d

t e s t M a c A l l C l i :
GHUNIT_CLI=1 GHUNIT_SUITE=0 GHUNIT_TEST_GUI=0 x c o d e b u i l d −

t a r g e t Tes t ingMac −c o n f i g u r a t i o n Debug −sdk macosx
b u i l d

t e s t M a c A l l G u i :
GHUNIT_CLI=1 GHUNIT_SUITE=0 GHUNIT_TEST_GUI=1 x c o d e b u i l d −

t a r g e t Tes t ingMac −c o n f i g u r a t i o n Debug −sdk macosx
b u i l d

tes tMacDebug :
GHUNIT_CLI=1 x c o d e b u i l d − t a r g e t Tes t ingMac −c o n f i g u r a t i o n

Debug −sdk macosx b u i l d

##################

t e s t i O S S i m u l a t i o n :
GHUNIT_CLI=1 GHUNIT_SUITE=0 GHUNIT_TEST_GUI=0

CFFIXED_USER_HOME=/ tmp x c o d e b u i l d − t a r g e t T e s t i n g i O S −
c o n f i g u r a t i o n Debug −sdk i p h o n e s i m u l a t o r b u i l d

t e s t iOSDebug :
GHUNIT_CLI=1 CFFIXED_USER_HOME=/ tmp x c o d e b u i l d − t a r g e t

T e s t i n g i O S −c o n f i g u r a t i o n Debug −sdk i p h o n e s i m u l a t o r
b u i l d

t e s t i O S D e v i c e :
GHUNIT_CLI=1 CFFIXED_USER_HOME=/ tmp x c o d e b u i l d − t a r g e t

T e s t i n g i O S −c o n f i g u r a t i o n Debug −sdk i p h o n e s i m u l a t o r
b u i l d

t e s t I :
GHUNIT_CLI=1 CFFIXED_USER_HOME=/ tmp x c o d e b u i l d − t a r g e t

T e s t i n g i O S −c o n f i g u r a t i o n Debug −sdk i p h o n e s i m u l a t o r
b u i l d

##################

t e s t A l l : t e s t M a c A l l C l i t e s t i O S A l l S i m u l a t o r

t e s t S u i t e : t e s t M a c S u i t e t e s t i O S S u i t e S i m u l a t o r

##################

benchmarkMac :

85

x c o d e b u i l d − t a r g e t BenchmarkingMac −c o n f i g u r a t i o n R e l e a s e −
sdk macosx b u i l d

b u i l d / R e l e a s e / BenchmarkingMac

benchmarkiOS :
x c o d e b u i l d − t a r g e t BenchmarkingiOS −c o n f i g u r a t i o n R e l e a s e −

sdk i p h o n e s i m u l a t o r b u i l d

Listing 19: Makefile

86

References

[Bar10] Barisits, Martin-Stefan. Design and Implementation of the next Genera-
tion XVSM Framework - Operations, Coordination and Transaction. Mas-
ter’s thesis, Vienna University of Technology, 2010.

[Brü13] Andreas Brückl. Relaxed non-blocking distributed transactions for the
eXtensible virtual shared memory. Master’s thesis, Vienna University of
Technology, 2013.

[Buc10] J Bucanek. Learn Objective-C for Java Developers. Learn Series. Apress,
2010.

[CDJ+13] Stefan Craß, Tobias Dönz, Gerson Joskowicz, eva Kühn, and Alexander
Marek. Securing a space-based service architecture with coordination-
driven access control. Journal of Wireless Mobile Networks, Ubiquitous
Computing, and Dependable Applications (JoWUA), 4(1):76–97, 3 2013.

[CDK05] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Con-
cepts and Design (4th Edition). Addison-Wesley Longman Publishing
Co., Inc., 2005.

[CFL+06] Giacomo Cabri, Luca Ferrari, Letizia Leonardi, Marco Mamei, Franco
Zambonelli, and Università Di Modena E. Uncoupling coordination:
Tuple-based models for mobility. In The Handbook of Mobile Middle-
ware. Auerbach Publications, 2006.

[Cra09] Craß, Stefan and Kühn, Eva and Salzer, Gernot. Algebraic foundation
of a data model for an extensible space-based collaboration protocol. In
Proceedings of the 2009 International Database Engineering & Applica-
tions Symposium, number 6 in IDEAS ’09, pages 301–306, New York,
NY, USA, 2009. ACM.

[Cra10] Craß, Stefan. A Formal Model of the Extensible Virtual Memory (XVSM)
and its implementation in Haskell - Design and Specification. Master’s
thesis, Vienna University of Technology, 2010.

87

[Dö11] Dönz, Tobias. Design and Implementation of the next Generation XVSM
Framework - Runtime, Protocol and API. Master’s thesis, Vienna Univer-
sity of Technology, 2011.

[eKMKS09] eva Kühn, Richard Mordinyi, Laszlo Keszthelyi, and Christian Schreiber.
Introducing the concept of customizable structured spaces for agent coor-
dination in the production automation domain. In Proceedings of The 8th
International Conference on Autonomous Agents and Multiagent Systems -
Volume 1, AAMAS ’09, pages 625–632, Richland, SC, 2009. International
Foundation for Autonomous Agents and Multiagent Systems.

[eKMS08] eva Kühn, Richard Mordinyi, and Christian Schreiber. An extensible
space-based coordination approach for modeling complex patterns in large
systems. In ISoLA, pages 634–648. Springer-Verlag, 2008.

[eKMS+12] eva Kühn, Alexander Marek, Thomas Scheller, Vesna Sesum-Cavic,
Michael Vögler, and Stefan Craß. A space-based generic pattern for self-
initiative load clustering agents. In COORDINATION, pages 230–244,
2012.

[Floon] Florian Lukschander. Thesis on eXtensible Virtual Shared Memory on the
Android Operating System. Master’s thesis, Vienna University of Tech-
nology, In preparation.

[FRL09] Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu. Agilla: A
mobile agent middleware for self-adaptive wireless sensor networks. ACM
Trans. Auton. Adapt. Syst., 4(3):16:1–16:26, jul 2009.

[Gel85] Gelernter, David. Generatice communication in Linda. ACM Transactions
on Programming Languages and Systems, pages 7(1):80–112, 1985.

[Hir12] Jürgen Hirsch. An adaptive and flexible replication mechanism for
mozartspaces, the xvsm reference implementation. Master’s thesis, Vi-
enna University of Technology, 2012.

[HJR+03] Marjan Hericko, Matjaz B. Juric, Ivan Rozman, Simon Beloglavec, and
Ales Zivkovic. Object serialization analysis and comparison in Java and
.NET. SIGPLAN Not., 38(8):44–54, aug 2003.

[HR83] Theo Haerder and Andreas Reuter. Principles of transaction-oriented
database recovery. ACM Comput. Surv., 15(4):287–317, 1983.

[JYYL09] Liu Jingyong, Zhong Yong, Chen Yong, and Zhang Lichen. Middleware-
based distributed systems software process. In Proceedings of the 2009

88

International Conference on Hybrid Information Technology, ICHIT ’09,
pages 345–348, New York, NY, USA, 2009. ACM.

[Mar09] Markus Karolus. Design and Implementation of XcoSpaces, the .Net Ref-
erence Implementation of XVSM – Coordination, Transactions and Com-
munication. Master’s thesis, Vienna University of Technology, 2009.

[Mar10] Marek, Alexander. Design and Implementation of TinySpaces, the .NET
Micro Framework based implementation of XVSM for embedded sys-
tems. Master’s thesis, Vienna University of Technology, 2010.

[Mor10] Richard Mordinyi. Managing complex and dynamic software systems with
space-based computing. PhD thesis, Vienna University of Technology,
2010.

[SB03] Douglas C. Schmidt and Frank Buschmann. Patterns, frameworks, and
middleware: Their synergistic relationships. In Proceedings of the 25th
International Conference on Software Engineering, ICSE ’03, pages 694–
704, Washington, DC, USA, 2003. IEEE Computer Society.

[SM12] Audie Sumaray and S. Kami Makki. A comparison of data serialization
formats for optimal efficiency on a mobile platform. In Proceedings of the
6th International Conference on Ubiquitous Information Management and
Communication, number 6 in ICUIMC ’12, pages 48:1–48:6, New York,
NY, USA, 2012. ACM.

[SS02] Richard E. Schantz and Douglas C. Schmidt. Middleware for distributed
systems - evolving the common structure for network-centric applications.
In Encyclopedia of Software Engineering (J. Marciniak and G. Telecki,
eds.), New York, 2002. Wiley & Sons.

[Tho08] Thomas Scheller. Design and Implementation of XcoSpaces, the .Net Ref-
erence Implementation of XVSM – Core Architecture and Aspects. Mas-
ter’s thesis, Vienna University of Technology, 2008.

[TS06] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Prin-
ciples and Paradigms (2nd Edition). Prentice-Hall, Inc., 2006.

[Zar12] Zarnikov, Jan. Energy-efficient Persistence for Extensible Virtual Shared
Memory on the Android Operating System. Master’s thesis, Vienna Uni-
versity of Technology, 2012.

89

Web References

[1] Statista (2012): Worldwide market share forecast of smart-
phone operating systems from 2010 to 2015 from Gart-
ner. http://www.statista.com/statistics/150842/
market-share-forecast-of-smartphone-operating-systems\
-from-2010-to-2015/.

[2] Statista (2012): Worldwide smartphone shipments from 2010 to 2016 (in mil-
lion units) from IDC. http://www.statista.com/statistics/12865/
forecast-for-sales-of-smartphones-worldwide/.

[3] Apple Inc. App review guidelines. https://developer.apple.com/
appstore/guidelines.html.

[4] Apple Inc. Apple app store for ios. http://itunes.apple.com/en/
genre/ios/id36?mt=8.

[5] Apple Inc. Apple developer portal. https://developer.apple.com.

[6] Apple Inc. Archives and serializations programming guide. http:
//developer.apple.com/library/mac/documentation/Cocoa/
Conceptual/Archiving/Archiving.pdf.

[7] Apple Inc. Coding guidelines. https://developer.apple.
com/library/mac/documentation/Cocoa/Conceptual/
CodingGuidelines/CodingGuidelines.pdf.

[8] Apple Inc. Core data programming guide. http://developer.apple.com/
library/mac/documentation/cocoa/Conceptual/CoreData/
CoreData.pdf.

[9] Apple Inc. Garbage collection programming guide. https://
developer.apple.com/legacy/library/documentation/Cocoa/
Conceptual/GarbageCollection/GarbageCollection.pdf.

90

http://www.statista.com/statistics/150842/market-share-forecast-of-smartphone-operating-systems\-from-2010-to-2015/
http://www.statista.com/statistics/150842/market-share-forecast-of-smartphone-operating-systems\-from-2010-to-2015/
http://www.statista.com/statistics/150842/market-share-forecast-of-smartphone-operating-systems\-from-2010-to-2015/
http://www.statista.com/statistics/12865/forecast-for-sales-of-smartphones-worldwide/
http://www.statista.com/statistics/12865/forecast-for-sales-of-smartphones-worldwide/
https://developer.apple.com/appstore/guidelines.html
https://developer.apple.com/appstore/guidelines.html
http://itunes.apple.com/en/genre/ios/id36?mt=8
http://itunes.apple.com/en/genre/ios/id36?mt=8
https://developer.apple.com
http://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Archiving/Archiving.pdf
http://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Archiving/Archiving.pdf
http://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Archiving/Archiving.pdf
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CodingGuidelines/CodingGuidelines.pdf
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CodingGuidelines/CodingGuidelines.pdf
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CodingGuidelines/CodingGuidelines.pdf
http://developer.apple.com/library/mac/documentation/cocoa/Conceptual/CoreData/CoreData.pdf
http://developer.apple.com/library/mac/documentation/cocoa/Conceptual/CoreData/CoreData.pdf
http://developer.apple.com/library/mac/documentation/cocoa/Conceptual/CoreData/CoreData.pdf
https://developer.apple.com/legacy/library/documentation/Cocoa/Conceptual/GarbageCollection/GarbageCollection.pdf
https://developer.apple.com/legacy/library/documentation/Cocoa/Conceptual/GarbageCollection/GarbageCollection.pdf
https://developer.apple.com/legacy/library/documentation/Cocoa/Conceptual/GarbageCollection/GarbageCollection.pdf

[10] Apple Inc. Instruments user guide. http://developer.apple.com/
library/mac/documentation/DeveloperTools/Conceptual/
InstrumentsUserGuide/InstrumentsUserGuide.pdf.

[11] Apple Inc. Introducing automatic reference counting. http://adcdownload.
apple.com//wwdc_2011/adc_on_itunes__wwdc11_sessions_
_pdf/323_intro_to_arc_304repeat.pdf.

[12] Apple Inc. ios app programming guide. https://developer.
apple.com/library/ios/documentation/iPhone/Conceptual/
iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf.

[13] Apple Inc. ios developer programs. https://developer.apple.com/
programs/start/ios/.

[14] Apple Inc. ios simulator user guide. http://developer.apple.
com/library/ios/documentation/IDEs/Conceptual/iOS_
Simulator_Guide/iOS_Simulator_Guide.pdf.

[15] Apple Inc. Memory management. http://developer.apple.com/
library/ios/documentation/Cocoa/Conceptual/MemoryMgmt/
MemoryMgmt.pdf.

[16] Apple Inc. Synchronization. https://developer.apple.
com/library/mac/documentation/Cocoa/Conceptual/
Multithreading/Multithreading.pdf.

[17] Apple Inc. Tools workflow guide for ios. http://developer.apple.
com/library/ios/documentation/Xcode/Conceptual/ios_
development_workflow/iphone_development.pdf.

[18] Canalys. Statista (2012): Worldwide market share of leading smart-
phone OS vendors from 3rd quarter 2010 to 2nd quarter 2012 from
Canalys. http://www.statista.com/statistics/172562/
worldwide-market-share-of-leading-smartphone-operating\
-systems/.

[19] code.google.com. in-the-box. http://code.google.com/p/
in-the-box/.

[20] code.google.com. J2objc. http://code.google.com/p/j2objc/.

[21] code.google.com. java2objc. http://code.google.com/p/java2objc.

91

http://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/InstrumentsUserGuide.pdf
http://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/InstrumentsUserGuide.pdf
http://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/InstrumentsUserGuide.pdf
http://adcdownload.apple.com//wwdc_2011/adc_on_itunes__wwdc11_sessions__pdf/323_intro_to_arc_304repeat.pdf
http://adcdownload.apple.com//wwdc_2011/adc_on_itunes__wwdc11_sessions__pdf/323_intro_to_arc_304repeat.pdf
http://adcdownload.apple.com//wwdc_2011/adc_on_itunes__wwdc11_sessions__pdf/323_intro_to_arc_304repeat.pdf
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/iPhoneAppProgrammingGuide.pdf
https://developer.apple.com/programs/start/ios/
https://developer.apple.com/programs/start/ios/
http://developer.apple.com/library/ios/documentation/IDEs/Conceptual/iOS_Simulator_Guide/iOS_Simulator_Guide.pdf
http://developer.apple.com/library/ios/documentation/IDEs/Conceptual/iOS_Simulator_Guide/iOS_Simulator_Guide.pdf
http://developer.apple.com/library/ios/documentation/IDEs/Conceptual/iOS_Simulator_Guide/iOS_Simulator_Guide.pdf
http://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/MemoryMgmt/MemoryMgmt.pdf
http://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/MemoryMgmt/MemoryMgmt.pdf
http://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/MemoryMgmt/MemoryMgmt.pdf
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Multithreading/Multithreading.pdf
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Multithreading/Multithreading.pdf
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/Multithreading/Multithreading.pdf
http://developer.apple.com/library/ios/documentation/Xcode/Conceptual/ios_development_workflow/iphone_development.pdf
http://developer.apple.com/library/ios/documentation/Xcode/Conceptual/ios_development_workflow/iphone_development.pdf
http://developer.apple.com/library/ios/documentation/Xcode/Conceptual/ios_development_workflow/iphone_development.pdf
http://www.statista.com/statistics/172562/worldwide-market-share-of-leading-smartphone-operating\-systems/
http://www.statista.com/statistics/172562/worldwide-market-share-of-leading-smartphone-operating\-systems/
http://www.statista.com/statistics/172562/worldwide-market-share-of-leading-smartphone-operating\-systems/
http://code.google.com/p/in-the-box/
http://code.google.com/p/in-the-box/
http://code.google.com/p/j2objc/
http://code.google.com/p/java2objc

[22] code.google.com. Protocol buffers. http://code.google.com/p/
protobuf/.

[23] Department of Computer Science University of Illinois. Arc specification. http:
//clang.llvm.org/docs/AutomaticReferenceCounting.html.

[24] dpa. Jailbreak permission in germany. http://www.macwelt.de/news/
Freiheit-fuers-iPhone-Anwaeltin-Jailbreak-auch-in-\
Deutschland-legal-3205800.html?redirect_seitennr=1.

[25] eishay. Benchmark serialization. https://github.com/eishay/
jvm-serializers/wiki.

[26] Apache Software Foundation. Apache thrift. http://thrift.apache.org.

[27] Jay Freeman. Cydia. http://cydia.saurik.com.

[28] Gabriel Handford. Ghunit. https://github.com/gabriel/gh-unit.

[29] GitHub. Fmdatabase. https://github.com/ccgus/fmdb.

[30] GitHub. Gcdasyncsocket. https://github.com/robbiehanson/
CocoaAsyncSocket.

[31] GitHub. Ochamcrest. https://github.com/hamcrest/OCHamcrest.

[32] GitHub. Ocmockito. https://github.com/jonreid/OCMockito.

[33] Google Inc. Google play. https://play.google.com/store?hl=en.

[34] GigaSpaces Technologies Inc. GigaSpaces. http://www.gigaspaces.com.

[35] Oracle inc. Berkeley db. http://www.oracle.com/technetwork/
products/berkeleydb.

[36] Oracle inc. Berkeley db installation. http://docs.oracle.com/cd/
E17076_02/html/installation/index.html.

[37] Oracle inc. Dtrace probes in hotspot vm. http://docs.oracle.com/
javase/6/docs/technotes/guides/vm/dtrace.html.

[38] Oracle inc. Solaris dynamic tracing guide. http://docs.oracle.com/cd/
E19253-01/817-6223/.

[39] Jenkins community. Jenkins - an extendable open source continuous integration
server. http://jenkins-ci.org.

92

http://code.google.com/p/protobuf/
http://code.google.com/p/protobuf/
http://clang.llvm.org/docs/AutomaticReferenceCounting.html
http://clang.llvm.org/docs/AutomaticReferenceCounting.html
http://www.macwelt.de/news/Freiheit-fuers-iPhone-Anwaeltin-Jailbreak-auch-in-\Deutschland-legal-3205800.html?redirect_seitennr=1
http://www.macwelt.de/news/Freiheit-fuers-iPhone-Anwaeltin-Jailbreak-auch-in-\Deutschland-legal-3205800.html?redirect_seitennr=1
http://www.macwelt.de/news/Freiheit-fuers-iPhone-Anwaeltin-Jailbreak-auch-in-\Deutschland-legal-3205800.html?redirect_seitennr=1
https://github.com/eishay/jvm-serializers/wiki
https://github.com/eishay/jvm-serializers/wiki
http://thrift.apache.org
http://cydia.saurik.com
https://github.com/gabriel/gh-unit
https://github.com/ccgus/fmdb
https://github.com/robbiehanson/CocoaAsyncSocket
https://github.com/robbiehanson/CocoaAsyncSocket
https://github.com/hamcrest/OCHamcrest
https://github.com/jonreid/OCMockito
https://play.google.com/store?hl=en
http://www.gigaspaces.com
http://www.oracle.com/technetwork/products/berkeleydb
http://www.oracle.com/technetwork/products/berkeleydb
http://docs.oracle.com/cd/E17076_02/html/installation/index.html
http://docs.oracle.com/cd/E17076_02/html/installation/index.html
http://docs.oracle.com/javase/6/docs/technotes/guides/vm/dtrace.html
http://docs.oracle.com/javase/6/docs/technotes/guides/vm/dtrace.html
http://docs.oracle.com/cd/E19253-01/817-6223/
http://docs.oracle.com/cd/E19253-01/817-6223/
http://jenkins-ci.org

[40] junit team. Junit. http://junit.org.

[41] Igor Khomenko. Stun-ios. https://github.com/soulfly/STUN-iOS.

[42] Mulle kybernetiK. Ocmock. http://ocmock.org/.

[43] U.S. Copyright Office. Jailbreak permission in the usa. http://www.
copyright.gov/fedreg/2010/75fr43825.pdf.

[44] Monobjc Project. Monobjc. http://www.monobjc.net.

[45] Arno Puder, Sascha Häberling, Wolfgang Korn, et al. Xmlvm. http://xmlvm.
org.

[46] Robbie Hanson. Cocoalumberjack. https://github.com/
robbiehanson/CocoaLumberjack.

[47] Space Based Computing Group. Mozartspaces. http://www.
mozartspaces.org.

[48] Space Based Computing Group. Space based computing. http://www.
spacebasedcomputing.org.

[49] Space Based Computing Group. XVSM. http://www.xvsm.org.

[50] SQLite-Team. Sqlite. http://www.sqlite.org.

[51] W3C. Extensible markup language (xml). http://www.w3.org/XML.

[52] Wikipedia. ipad. http://en.wikipedia.org/wiki/Ipad.

[53] Wikipedia. ipad 2. http://en.wikipedia.org/wiki/IPad_2.

[54] Wikipedia. ipad (3rd generation). http://en.wikipedia.org/wiki/
IPad_(3rd_generation).

[55] Wikipedia. ipad (4rd generation). http://en.wikipedia.org/wiki/
IPad_(4th_generation).

[56] Wikipedia. ipad mini. http://en.wikipedia.org/wiki/IPad_Mini.

[57] Wikipedia. iphone. http://en.wikipedia.org/wiki/IPhone_(1st_
generation).

[58] Wikipedia. iphone 3gs. http://en.wikipedia.org/wiki/IPhone_
3GS.

93

http://junit.org
https://github.com/soulfly/STUN-iOS
http://ocmock.org/
http://www.copyright.gov/fedreg/2010/75fr43825.pdf
http://www.copyright.gov/fedreg/2010/75fr43825.pdf
http://www.monobjc.net
http://xmlvm.org
http://xmlvm.org
https://github.com/robbiehanson/CocoaLumberjack
https://github.com/robbiehanson/CocoaLumberjack
http://www.mozartspaces.org
http://www.mozartspaces.org
http://www.spacebasedcomputing.org
http://www.spacebasedcomputing.org
http://www.xvsm.org
http://www.sqlite.org
http://www.w3.org/XML
http://en.wikipedia.org/wiki/Ipad
http://en.wikipedia.org/wiki/IPad_2
http://en.wikipedia.org/wiki/IPad_(3rd_generation)
http://en.wikipedia.org/wiki/IPad_(3rd_generation)
http://en.wikipedia.org/wiki/IPad_(4th_generation)
http://en.wikipedia.org/wiki/IPad_(4th_generation)
http://en.wikipedia.org/wiki/IPad_Mini
http://en.wikipedia.org/wiki/IPhone_(1st_generation)
http://en.wikipedia.org/wiki/IPhone_(1st_generation)
http://en.wikipedia.org/wiki/IPhone_3GS
http://en.wikipedia.org/wiki/IPhone_3GS

[59] Wikipedia. iphone 4. http://en.wikipedia.org/wiki/IPhone_4.

[60] Wikipedia. iphone 4s. http://en.wikipedia.org/wiki/IPhone_4S.

[61] Wikipedia. iphone 5. http://en.wikipedia.org/wiki/IPhone_5.

[62] Wikipedia. ipod touch. http://en.wikipedia.org/wiki/IPod_
touch.

[63] Michael Wittman, Bernhard Efler, Tobias Dönz, and Martin Planer. Mozartspaces
tutorial. http://www.mozartspaces.org/2.2-SNAPSHOT/docs/
MozartSpaces_Tutorial.pdf.

[64] Xamarin. Mono. http://www.mono-project.com.

[65] Xamarin. Monotouch. http://xamarin.com/monotouch.

All web references have been last accessed on August 11, 2013.

94

http://en.wikipedia.org/wiki/IPhone_4
http://en.wikipedia.org/wiki/IPhone_4S
http://en.wikipedia.org/wiki/IPhone_5
http://en.wikipedia.org/wiki/IPod_touch
http://en.wikipedia.org/wiki/IPod_touch
http://www.mozartspaces.org/2.2-SNAPSHOT/docs/MozartSpaces_Tutorial.pdf
http://www.mozartspaces.org/2.2-SNAPSHOT/docs/MozartSpaces_Tutorial.pdf
http://www.mono-project.com
http://xamarin.com/monotouch

	Introduction
	Motivation and goals
	The thesis' structure

	Background
	Middleware
	General aspects
	Space Based Computing

	XVSM
	Formal Definition

	Mobile devices - General restrictions / properties
	Limited Resources
	Multitasking / Background processing

	iOS mobile devices
	Cross platform development
	Jailbreak

	Requirements for porting MozartSpaces
	Communication in heterogeneous systems
	Serialization

	Related Work
	Actual Implementations
	Java implementation - MozartSpaces
	Java implementation - MozartSpaces running on Android
	.NET implementation - TinySpaces
	.NET implementation - XCOSpaces
	iOS implementations
	Summary

	Use Cases
	Intra-App communication
	Inter-App communication
	Remote communication

	Implementation
	Porting process
	General aspects
	Restrictions
	Porting details

	iOS issues
	Background processing

	Implementation details
	Serialization
	Cellular communication
	Implementation details
	Interface description for users

	Application Scenario
	Evaluation
	Benchmark environment
	Performance benchmark
	Performance benchmark serializer
	Performance benchmark CAPI-3
	Scalability benchmark CAPI-3
	Performance benchmark embedded space
	Scalability benchmark embedded space

	Compatibility
	Summary and conclusion

	Deployment on iOS devices
	Apple specific issues
	Programming restrictions
	Registration
	App Store
	iOS device simulator

	Deployment How-To

	Future Work
	Conclusion
	Appendix
	Source code heavily used in MozartSpaces
	Java2objc Objective C output
	Makefile

	References
	Web References

