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Abstract

This thesis investigates thresholds in an epidemic, heterogenenous model
and how they are influenced by the heterogeneity. First aepidemical models
is introduced, where it could be optimal to treat at a maximal possible
level or not to treat at all, depending on the particular parameters and
initial state. Therefore an homogeneous epidemiological model is presented,
whose heterogeneity is introduced with respect to the time the individual is
already infected. Afterwards the optimal control problem is introduced for a
restricted, constant control variable.

The fourth section presents thresholds, firstly in a homogeneous version of
the heterogeneous model. Based on these results, heterogeneity is introduced
to the model and it is investigated how the thresholds are changing for
different distribution functions. Finally a sensitivity analysis is conducted
with respect to the infectivity of the disease.

5



Abstract

Diese Diplomarbeit untersucht Schwellenwerte in einem epidemiologischen,
heterogenen Model und wie diese durch Heterogenität beeinflusst werden.
Zuerst wird ein Problem eingeführt, bei dem es optimal sein könnte die
Infizierten mit einem maximal möglichen Level zu behandeln oder gar nicht
zu behandeln, was abhängig von den Parametern und dem Anfangszustand
ist. Daher wird ein Model dargelegt, dessen Heterogenität bezüglich der Zeit
eingeführt wurde, die das jeweilige Individuum infiziert ist. Anschließend
wird das zugehörige optimal Kontrollproblem eingeführt für eine konstante
Kontrollvariable. Der vierte Abschnitt präsentiert Schwellenwerte, zuerst
für eine homogene Version des heterogenen Models. Basierend auf diesen
Resultaten, wird Heterogenität in das Model eingeführt und untersucht, wie
sich diese Schwellenwerte für verschiedene Distributionsfunktionen ändern.
Zum Schluss wird eine Sensitivitätsanalyse durchgenommen bezüglich der
Infektiosität der Krankheit.
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1 Introduction

Within epidemiological models (for instance for animal populations) there
often occurs the dilemma, whether it is better to treat the infected population
or to let them die knowing that a certain part of the population is infected
with a lethal disease. We have to resolve this problem for conditions, although
just insufficient information is available. Moreover, there is only aggregated
data available, which is not structured along the infection time (so the time
since when the individual has become infected), or along other parameters
of heterogeneity.

The aim of this work is to investigate under which conditions a dilemma
like this can appear and how to resolve it, using the aggregated information
only. Furthermore we analyse in what direction this insuffiency of information
may influence our decision made on those aggregated (homogeneous) models.

Former studies already presented different types of epidemic models, as
in [4], [5],[6] [7] or [8]. Generally, an aim of homogeneous epidemic models
is to represent the dynamics of populations, which are divided into infected
individuals (of a certain disease) and susceptible individuals, which are still
not infected, but could become, so they are susceptible to the disease. These
populations can be affected by one or more different diseases, which will
influence the population (amount of I(t) and S(t)) and the population size.
Therefore the dynamics will be dependent on different parameters, like the
strength of infectivity (thus infectiousness) of a disease, birthrate of the
susceptible population, mortality rates of susceptible, non-infected individuals
or infected individuals, the recovery rate, the rate of the susceptible newborns
by infected mothers or the fertiltiy rate of the infected population.

In section 2.1 of this work we will introduce a general model and afterwards
restrict our main model to be considering a disease without recovery of
the infected individuals. We will let the mortality rate of the susceptible
individuals be equal to the fertility rate, which means that in the main model
we will consider a model, whereas its dynamics just regards the impact of
the disease itself. Without the disease the population would be equal to the
initil size, as the number of the offsprings would be equal to the number of
deaths in a period.

Furthermore in all of the models shown in this thesis, the objective is to
maximise the total population in the long run, without considering possible
costs for the control.
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Investigations about homogeneous epidemic models have already been
made, in which a so called threshold point (so an intersection point between
two different treatments depending on the percentage of infected individuals)
occured (in [16]). Based on these results, we present in section 2.1 a simple
epidemic model that represents the dynamics of a population with infected
individuals I(t) and individuals that are susceptible to a certain disease (we
denote these individuals with S(t)). In contrast to the objective function used
in diploma thesis [16], we let the objective function here be dependent on
the control as well, therefore dependent on the mortality rate of the infected
individuals. Furthermore we will not show threshold points in this model as
their existence was already shown in previous research.

We introduce a specific type of heterogeneity in the model. Heterogeneity
has already been introduced in [10], [12], [13] or [14] in different ways. We
will regard the general case in section 2.2. In comparison to a homogeneous
epidemic model, a heterogenous model represents a heterogeneus population
by implying a distributed parameter system. Former studies include heterogeneity
by introducing the parameter α, which is the time the individuals has already
been infected, like [1] or [9]. We also integrated this method into our model,
to represent heterogeneity (in 2.3).

In the third section we introduce an optimal control problem by introducing
an objective function and a control. Afterwards we will show the existence of
a solution of the heterogeneous model by using results from [2]. The last step
in this section will be to built the heterogeneous model, we will use further on
in section 4 and to restrict the optimal control problem to constant controls
only, based on previous investigations in [16].

One of the aims of the fourth section will be to find thresholds by chosing
parameters. Firstly the meaning and importance of threshold points is
explained and afterwards thresholds will be shown for the heterogeneous
model from 3.3. Therefore we will regard three different cases, which will as
well lead to three different thresholds. For the first investigations here, we
will choose a homogeneous version of the heterogeneous model, thus to let
the distribution function be constant and not dependent on infection time α.

Afterwards heterogeneity is introduced by choosing different distribution
functions, which will effect the threshold point. The distribution functions
will reflect how the disease is spreading dependent on the infection time α,
whereas it is important to notice that such a distribution function is generally
not known beforehand. We will choose 8 different distribution function to
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show 8 different possible situations and how the threshold points are going
to be effected by their introduction into the model.

The last investigation in section 4.3, will be to make a sensitivity analysis
of the thresholds, especially for a changing strength of the infectivity. The
main focus will be how the threshold points are changing for an alternating
infectiousness of the disease. Again we will consider the three different cases
for parameters and just for the homogeneous version of the model (so with
a constant distribution function).
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2 A SI Epidemiologic Model

2.1 The Homogeneous Model

Introductorily we consider the simple homogeneous model in [1], which is
an epidemic, homogeneous model for one infectious disease on an infinite
time horizon. There are two state variables: On the one hand there is
the infected population I(t), which is already infected with the considered
disease, whereas it is important to notice that we just regard the case for one
infectious disease. On the other hand, there is the susceptible population
S(t), so the part of the whole population, which is not infected with the
disease but is susceptible to it (therefore this model is named SI-model).

For the dynamics of this population, we will introduce among others a
birth rate of the susceptible individuals, a recovery rate of the infection and
a fertility rate of the two different individuals. Other important parameters
will be the mortality rate of the infected individuals and the net mortality
rate (which is the mortality rate minus the fertility rate) of the susceptible
individuals.

As we just need the dynamics of this model for our results later on, we will
now regard Ṡ(t) and İ(t) without control variable and objective function.

The dynamics is given by the equations:

Ṡ(t) = −σ I(t)S(t)

S(t) + I(t)
+ λ(S, I)S(t) + γ(S, I)I(t), S(0) = S0,

İ(t) = σ
I(t)S(t)

S(t) + I(t)
− δ(S, I)I(t), I(0) = I0,

where

• S(t) is the size of the susceptible population dependent on time t (state
variable)

• I(t) is the size of the infected population dependent on time t (state
variable)

• σ is the strength of the infection

• λ = η − µ

• η is the birthrate of susceptibles
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• µ is the net mortality rate of susceptible, non-infected individuals,
whereas µ ≥ 0

• γ = ν + εη̃

• ν is the recovery rate

• ε ∈ [0, 1] is the rate of susceptible newborns by infected mothers

• η̃ is the fertility rate of the infected individuals

• δ = µ̃+ ν − (1− ε)η̃

• µ̃ is the mortality rate of the infected population

2.2 Introducing Heterogeneity with respect to Individual
Features

In this section we will introduce heterogeneity like in [1] or [11] (in these
works heterogeneity is introduced for individual features). Therefore we have
to change the dynamics, which will here include the parameter p̃, the average
level of risk of the population, depending on the average intensity. The other
parameters will be the same as in 2.1.

The dynamics will be described by the following equations:

Ṡ(t) = −σp̃ I(t)S(t)

S(t) + I(t)
+ λ(S, I)S(t) + γ(S, I)I(t), S(0) = S0,

İ(t) = σp̃
I(t)S(t)

S(t) + I(t)
)− δ(S, I)I(t), I(0) = I0.

In order to introduce heterogeneity to the population, we now consider
the parameter p̃ to be specific for each susceptible individual, therefore is
an individual average level of risk. q̃ is the same parameter for infected
individuals. Moreover we introduce the variable ω, that describes individual
characteristics of each individual due to the disease. Like in [1] and [11] we
name this variable h-state (short for heterogeneity state).

Correspondingly two new functions are introduced:

• S(t, ·) is the density of the susceptible population at time t

• I(t, ·) is the density of the infected population at time t
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Their integrals are the total size of the susceptible and infected individuals
at time t. Hence for ω ∈ Ω, where is Ω is a measurable subset of a finite
dimensional space, and S(t, ·) : Ω→ R, I(t, ·) : Ω→ R, one has:

S(t) =

∫
Ω

S(t, ω)dω, (1)

I(t) =

∫
Ω

I(t, ω)dω. (2)

As p̃ and q̃ are dependent on the individual as well, we consider p̃(ω) ≥ 0
and q̃(ω) ≥ 0 to be the levels of risk at h-state ω.

Therefore the dynamics of the heterogeneous model is described by:

S(t, ω) = −σp̃(ω)z(t)S(t, ω)− µS(t, ω)

+η

∫
Ω

ψ0(S(t, ω), ω, ω′)S(t, ω′)dω′

+γ

∫
Ω

ψ(S(t, ω), ω, ω′)I(t, ω′)dω′, (3)

I(t, ω) = σp̃(ω)z(t)S(t, ω)− δI(t, ω). (4)

The parameters µ, η, γ and δ are the same as before and independent of
ω. The density ψ0(S(t, ω), ω, ω′) constitutes the probability that a newborn
of mother with h-state ω′ has the h-state ω and density ψ(S(t, ω), ω, ω′) the
probability that the h-state ω′ of an individuals becomes h-state ω after
recovery.

To explain the meaning of the term z(t), we will first introduce the
population, weighted with the prevalences of the susceptible population p̃(t)
and the infected individuals q̃(t). This weighted population is given by:

R(t) =

∫
Ω

p̃(ω)S(t, ω)dω, (5)

J(t) =

∫
Ω

q̃(ω)I(t, ω)dω. (6)

The term z(t) in the equations is the weighted prevalence, which is the
rate of weighted infected individuals. It represents the infectivity of the
environment the susceptible population lives in and is given by
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z(t) =
J(t)

R(t) + J(t)
(7)

Hence, the heterogeneous model is given by the equations (3), (4), (1),
(2), (5) and (6) and the initial conditions

S(0, ω) = ϕS
0 (ω)S0,

I(0, ω) = ϕI
0(ω)I0.

where S0 and I0 are the initial sizes of the susceptible and the infected
population and ϕS

0 (·) and ϕI
0(·) are the initial, probabilistic densities of their

distributions.

2.3 Introducing Heterogeneity with respect to the Infection
Age

In this model we consider a heterogeneity, which differs from the one in
[1], presented in the previous subsection. Namely, we introduce a new
variable α ∈ [0,∞], which is the infection age, therefore the time since
the individual has become infected. Generally, this variable influences the
infected population through their mortality rate, which changes dependent
on the time already infected. However, also the recovery rate depends on
α. Therefore the infected population now is dependent on two variables: the
time t and the infection age α.

Unlike the model from section 2.2, we will consider here as well the
dynamics with respect to the infection time α and not just changes due
to time t. That is why in this model there is a partial differential equation
(PDE) needed in contrast to the ODE in the homogeneous model. Here we
will built the model like in [3] and [15], where the dynamics of the susceptible
population is considered just for time t and the dynamics of the infected
population is given by a PDE, depending on the time t and the infection
time α.

Correspondingly, we consider the mortality rate of the infected individuals
as dependent on the infection age as well. This mortality rate will be given
by µ(α).
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Just as in 2.2, I(t, ·), a new function for the density of the infected
population, is introduced.

The integral of I(t, ·) on [0,∞) is the number of the infected individuals
at time t.

Moreover, a function i(α) is introduced for the infectivity of an individual
with infection age α. This function weights I(t, α) with respect to α so that
the weighted population of infected individuals at time t is

J(t) =

∫ ∞
0

i(α)I(t, α)dα.

In addition, the recovery rate ν is skipped for the sake of simplicity,
therefore in this model there is no possibilty to recover from the disease.

This heterogeneous model is the following:

Ṡ(t) = −σ J(t)S(t)

S(t) + I(t)
+ λ(S, I)S(t) + εη(S, I)I(t), (8)(

∂

∂t
+

∂

∂α

)
I(t, α) = −µ(α)I(t, α), (9)

S(0) = S0, (10)

I(0, α) = I0(α), (11)

I(t, 0) = σ
J(t)S(t)

S(t) + I(t)
+ (1− ε)η(S, I)I(t), (12)

I(t) =

∫ ∞
0

I(t, α)dα, (13)

J(t) =

∫ ∞
0

i(α)I(t, α)dα. (14)

Just as in the general case before, the prevalence is now p(t) = J(t)
S(t)+I(t)

,

hence weighted with respect to the infected population I(t). Corresponding
to the previous model from section 2.3, the boundary condition in this model
is (11), therefore the population density I(0, α) is given by the distribution
function I0(α), which is the density of the infected population at time 0.
Usually this distribution function is not known, a fact that will be important
in section 4.2, where we will introduce possible functions.
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3 A Controlled Heterogeneous SI Model

3.1 The Optimal Control Problem

In this section we consider the model from section 2.3 and introduce a control
and an objective function.

Just as in the simple epidemic model in [16], we will consider a control
variable ũ(t) that is dependent on the time and influences the mortality rate
of the infected population. The variable ũ(t) itself will be the mortality rate
of the infected individuals, which is influenced by the level of medication of
the infected individuals. Therefore ũ(t) ∈ [µ0, µ1], which means that with an
high level of medication we achieve a lower mortality rate µ0 than without
medication, which leads to a mortality rate of µ1.

The objective is to maximise the population size in the long run and is
constituted by two terms of a sum. One is the susceptible population.The
other one the infected population multiplied with a term that can be considered
as the net relative productivity. This term is given by the difference of the
relative productivity of the infected individuals and the control variable.

The objective function itself is not dependent on costs for medication
and the controls (so the level of medication) are not priced, as we will not
generally not consider that case in this model.

The objective function is the following:

max

∫ ∞
0

e−rt[S(t) + (β − c(ũ(t)))I(t)]dt

where

• β ∈ [0, 1] is the relative productivity of already infected individuals

• ũ(t) ∈ [µ0, µ1] is the medication (control variable), whereas ũ(t) = µ0

means full medication and ũ(t) = µ1 means no medication

• r > 0 is the discount rate

• c(ũ(t)) > 0 is the cost medication, that ensures the mortality rate
u ∈ [µ0, µ1]

17



3.2 The Existence of a Solution of the Heterogeneous
Model

In this section we will show that there exists a solution for the heterogeneous
model in 2.2 with the objective function from 3.1.

Under certain assumptions, that are fulfilled in our heterogenous model,
it is shown in [2] (Theorem 1) that there exists a solution for our model for
fixed controls.

3.3 The Heterogeneous SI Model in the Class of Constant
Controls

In this section we will introduce some further restrictions to the model and
will consider the control as constant.

The birth rate will be equal to the natural mortality rate of the susceptibles,
therefore they will not be explicitly considered in the model. There is as well
no recovery from the disease, which means that an infected individual will
stay infected until his death. Therefore the control variable u will influence
the mortality rate of the infected population but there will be no possiblity
for a complete recovery.

Just as in section 2.1, the net mortality rate for the non-infected individuals
µ should be as well greater than or equal to 0, so that the population is not
expanding. Considering the restrictions for u in 3.1 and the fact that the
net mortality rate of the non-infected population should be lower than the
mortality rate of an infected indivual, we receive:

0 ≤ µ < µ0 < µ1

The new model will have the same objective function as presented in 3.1.
An important difference to the control variable used in the objective function
in 3.1, is that the control in this model describes something different. In
3.1 the control ũ(t) is meant to be mortality rate of infected individuals,
which lies between a resulting mortality rate of full medication µ0 and of no
medication µ1, so ũ(t) ∈ [µ0, µ1]. On the other hand, the control variable
out of this model will be the controlability of the net mortality rate of the
infected population (this term will by given by the mortality rate dependent
on infection time α minus the mortality rate µ).

18



Therefore we restrict the control variable to be between a high and a low
level for medication

u ∈ [0, 1] (15)

We restrict our control variable to constant controls only, because it is
easier to implement. It is proven in the diploma work [16] that optimal
controls are really constant under certain conditions and assumptions in the
homogeneous version of the model. Here we use an a priori restricted class
of control, therefore constant controls, although the assumptions are not
completely fulfilled. With the constant control variable and assuming linear
costs c(u) = cu, the objective function for computations will be the following:

max

∫ ω

0

e−rt[S(t) + (β − cu)I(t)]dt

Furthermore we will use the term (1 − u) in the model, as with this
realization the meaning of u will be now u = u0 for no medication, and
u = u1 for full medication.

The main change will be implemented in the dynamics of I(t, α). In
the heterogeneous model of 2.3, the differential with respect to the infection
time α and the time t is just −µI(t, α), thus is just the mortality rate of the
infected population, whereas in this model this equation will be dependent
on the control variable u as well. The net mortality rate of the infected
population ν(α) = µ(α) − µ(S, I) multiplied with the control u, plus net
mortality rate of the susceptible, non-infected population µ describes this
model.

Under these assumptions and with the objective function from above, we
obtain the following model:
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Ṡ(t) = −σ S(t)J(t)

S(t) + I(t)
− µ(S, I)S(t), (16)(

∂

∂t
+

∂

∂α

)
I(t, α) = −(µ(S, I) + (1− u)ν(α))I(t, α), (17)

where ν(α) = µ(α)− µ(S, I), (18)

S(0) = 0, (19)

I(0, α) = I0(α), (20)

I(t, 0) = σ
S(t)J(t)

S(t) + I(t)
, (21)

I(t) =

∫ ∞
0

I(t, α)dα, (22)

J(t) =

∫ ∞
0

i(α)I(t, α)dα, (23)

u ∈ [u0, u1]. (24)

By the continuous dependence of the solution of (16) - (23) on the control
parameter u (see [2]), our objective functional is continuously dependent on
u. Since u ∈ [0, 1], which is compact, we have the existence of an optimal u.
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4 Thresholds in the SI Optimisation Model

4.1 Threshold Points

Generally a threshold prevalence p is such an initial prevalence for which
two different, optimal medication levels exists. On the one hand this is an
important point, as the same objective value at the prevalence p where the
threshold point occurs will be achieved. A threshold point is an intersection,
therefore the dividing point. The better objective value will be obtained for
another treatment before as after this point. For instance for our model we
will investigate threshold points for the control u0, that is no medication and
which is generally the better treatment before the threshold, and u1, which
is full medication and is better for a prevalence after the threshold point.

In this section we solve the heterogeneous model from 3.3 and find such a
threshold point. Furthermore we will use the time horizon ω for computations.

Moreover we will consider in this section just a homogenous version of
this model to find threshold points. The mortality rate of the infected
individuals will be constant in this section and the distribution function
I0(α) as well, hence there is no dependency on α anymore. Furthermore,
we choose the infectivity function i(α) to be equal to 1 so that there is no
weighting due to infectivity anymore and I(t) is equal to J(t). Heterogeneity
will be introduced to the system later on.

Now we consider three different cases for parameters, which will lead to
different threshold points:

4.1.1 CASE 1

The constant c in the objective function is equal to 0, which means that in
this case the objective function is not dependent on the control u, therefore
the medication is free. The relative productivity of the infected individuals
β = 0.4 and the strength of the infection σ = 0.5. The mortality rate of
infected individuals µ(α) will be equal to 1 and the discount rate r = 0.04.
The distribution function I0(α) will be constant and equal to the initial
prevalence p.

Moreover we just consider the case of the net mortality rate µ being equal
to 0, so that without the disease, the population would be in an equilibrium
and mortality is just caused by the regarded disease.
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We regard the threshold point of two different controls, which will be in
this case u0 = 0 (no medication) and u1 = 0.95 (full medication).

Calculating the results with MATLAB, we receive the following graphic:
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Figure 1: Objective value dependent on the prevalence for CASE 1

The threshold point occurs at the initial prevalence of about 44.91%,
which means that in case that 44.91% of the total population is infected
with the disease at the beginning. Again this intersection means that full
treatment leads to the same value of the objective value as no medication.
In the graphic it is also visible that, for a prevalence lower than 44.91%, it
is better not to medicate the infected population, but to just let them die.
Otherwise for a prevalence greater than 44.91% it is better to medicate the
infected individuals.

4.1.2 CASE 2

In this case we take the constant c to be equal to 0.3, which means that in
this case the control u is considered in the objective function as well. The
relative productivity β will be equal to 0.6 and the strength of the infection
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σ = 0.5. Again the net mortality rate of the non-infected individuals µ is 0
and µ(α) = 1. The discount rate r will be as well 0.04.

As in the case before, the two constant controls are u0 = 0 (no medication)
and u1 = 0.95 (full medication).
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Figure 2: Objective value dependent on the prevalence for CASE 2

In this case the threshold point appears at a prevalence of about 61.33%,
thus compared to the first case, the threshold point appears at a much higher
prevalence. This means that in this case it is better to start treating at an
even higher level of the prevalence and better to let the infected population
die for a prevalence lower than 61.33%. This is to be expected since in the
present case the medication is costly.

4.1.3 CASE 3

This case will basically be the same as CASE 2, with the only difference
that the constant parameter c out of the objective function will be equal
to 0.4. The rest will be be the same (so: relative productivity of already
infected individuals β = 0.6, strength of infection σ = 0.5, net mortality
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rate of non-infected individuals µ = 0, mortality rate of infected individuals
dependent on the age of infection µ(α) = 1 and discount rate r = 0.04).

Again the two constant controls are u0 = 0 (no medication) and u1 = 0.95
(full medication).
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Figure 3: Objective value dependent on the prevalence for CASE 3

The threshold in this case occurs at a prevalence of about 80, 56%, which
means that in this model it is better to treat just for a very high prevalence,
therefore in case that more than 80, 56% of the population are already infected.
This case will be interesting especially in the next section.

4.2 Thresholds in a Heterogeneous Model

Until now we just found thresholds for the homogeneous versions of our
model. In this section we will now concentrate on the threshold and how it
is changing for different non-constant distribution functions. For the sake of
comparison, here again the already located thresholds of the homogeneous
version of the model with the threshold at a prevalence of 44.91% (CASE 1),
61.33% (CASE 2) and 80.56% (CASE 3).
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Figure 4: Thresholds for constant distribution functions for all cases

The next step will be to introduce heterogeneity by choosing distribution
functions that are not constant, but have the same integral as the constant
distribution function out of the last section.

As for our calculations we are considering again the time horizon ω, that
is why the integral of this function is

∫ ω

0

I0(α) dα =

∫ ω

0

p dα = pω

The next step will be to introduce different non-constant distribution
functions for the three different cases of parameters and a comparison of the
results.
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4.2.1 Regarding CASE 1

The first possible distribution function we regard is linear and decreasing.

I1
0 (α) = −2p

ω
(α− ω).

The integral of this distribution function is a well pω and (in contrast to
the constant distribution function), the population decreasing regarding the
infection time α at time t = 0.

Calculating the threshold for CASE 1 we receive the following graphic:
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Figure 5: Threshold for distribution function I1
0 (α) for CASE 1

Comparing the threshold of the model with this distribution, we see that
the threshold moves slightly to the left, which means that in comparison
to the constant distribution function, here it is better to start treating at a
lower level of the prevalence.
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Figure 6: Distribution function I1
0 (α), I2

0 (α) and I3
0 (α)

As a second distribution we consider a linear and increasing function:

I2
0 (α) =

2p

ω
α.

Again the integral of this distribution function is pω and compared to the
distribution function I1

0 (α) the infected population increases with respect to
the infection time α.

Calculating the threshold for CASE 1 again, we receive:
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Figure 7: Threshold for distribution function I2
0 (α) for CASE 1

Here the threshold moves to the right, which means that in contrast to
the homogeneous version of our model, it is better to start medicating the
population at an higher prevalence.

The third distribution presents the case that there is a large infected
population at the beginning (until ω

3
) and afterwards it decreases to a very

low level with respect to infection time α.

I3
0 (α) =

{
3p− 1

5
for α ≤ ω

3
,

1
10

for α > ω
3
.

In comparison to the non-constant distribution function I1
0 (α), I3

0 (α)
doesn’t describe steadily decreasing infected population, but rather a disease,
which is much stronger at the beginning of the time.

Calculating the threshold for the model with parameters from CASE 1
with this distribution function, we obtain:
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Figure 8: Threshold for distribution function I3
0 (α) for CASE 1

Again, like with distribution function I2
0 (α), we receive a threshold that

is slightly more left than the threshold with the homogeneous version of the
model. In this case the threshold is at about a prevalence of 44.73%.

We now investigated that in case of a disease, which breaks out rather
at the end (or at the beginning) of a time interval, influences the threshold
point to be rather right (or more left) in comparison to the threshold point
out of the homogeneous model. This is why now we will see how an even
more extreme case will influence the threshold.

The fourth distribution function I4
0 (α) will be the case for a strong disease

at the beginning of the time interval and without fading until the end. The
function is the following:

I4
0 (α) =

{
5p for α ≤ ω

5
,

0 for α > ω
5
.

This function again has the same integral as the constant function from
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the homogeneous version.
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Figure 9: Threshold for distribution function I4
0 (α) for CASE 1

Now the threshold point is as well more left than the original one, at a
prevalence of 44.68%.
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Figure 10: Distribution function I4
0 (α), I5
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0 (α) and I7

0 (α)
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The fifth distribution function should reproduce a disease, which is strong
especially at the end of the time interval.

I5
0 (α) =

{
0 for α < 4ω

5
,

5p for α ≥ 4ω
5
.

Calculating the threshold for this distribution function leads to:
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Figure 11: Threshold for distribution function I5
0 (α) for CASE 1

Here the shift of the threshold point to the right hand side is very clear:
in comparison to the original threshold, which was at the level of prevalence
of about 44.91%, the new threshold point is at a prevalence of about 45.79%.

Now we will try to achieve an even more obvious change of the threshold
point, by choosing a distribution function that represents a disease that is
even much stronger at the beginning of the time interval than I4

0 (α).
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I6
0 (α) =

{
10p for α ≤ ω

10
,

0 for α > ω
10
.

With this function we receive the following graphic:
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Figure 12: Threshold for distribution function I6
0 (α) for CASE 1

Again a shift to the right. The threshold point is now at a prevalence of
about 44.67%. So in comparison to the results with the distribution function
I4

0 (α), there was no strong change of the threshold point.

Based on the last function, the next distribution function will as well
reproduce a disease, which is very strong at a certain point in the time
interval, this time it is right at the end.

I7
0 (α) =

{
0 for α < 9ω

10
,

10p for α ≥ 9ω
10
.
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Again, calculating the threshold point, we receive:
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Figure 13: Threshold for distribution function I7
0 (α) for CASE 1

This time the threshold point moved much more to the right side.

4.2.2 Regarding CASE 2

We will make the calculations for the same distribution functions from above
as well with the model with parameters from CASE 2. We received rather
similar results as with CASE 1:

For distribution function I1
0 (α), I3

0 (α) and I4
0 (α) we received again a

threshold, which is moving slightly to the left hand side. In comparison
to the result we gained for the homogeneous version of the model (so a
threshold at a prevalence of about 61.33%), we gained for the model with
distribution function I1

0 (α) the threshold at a prevalence of about 61.04%,
with the distribution function I3

0 (α) at a prevalence of 61.03% and with I4
0 (α)

at a prevalence of 61.08%. Furthermore for distribution function I6
0 (α) we

gained a threshold at a prevalence of about 61.01%. Obviously for an even
very high peak of the infected individuals at the firsth tenth of the time
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interval, the threshold is not changing very much. We see as well, that
in our model we receive thresholds that are moving slightly to the left for
distribution functions, which have a higher degree of infected individuals at
the beginning of the disease at time 0.

The more interesting investigation for CASE 2 as well, is that for distribution
functions, which represent more infected individuals at the end of the infection
time (so a strong break-out of the disease right at the end of the time
interval). For these distribution functions the shift of the threshold is much
more significant than for the distribution functions I1

0 (α), I3
0 (α) and I4

0 (α).

Calculating the threshold point for the model with distribution function
I2

0 (α) = 2p
ω
α, we receive the following graphic:
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Figure 14: Threshold for distribution function I2
0 (α) for CASE 2

Just as the threshold point for distribution function I2
0 (α) in CASE 1, the

threshold moved to the right and is now at a prevalence of about 61.61%.
I2

0 (α) is linear and increasing, hence there are more infected individuals
at the end of the time interval than at the beginning and the number is
always increasing. Therefore in case of an increasing infected population
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with respect to infection time α, it is better to start treat at an higher level
of the prevalence (in comparison to the constant distribution function).

Now we consider the results for the model with distribution function I5
0 (α),

remembering that this distribution function has an high infected population
at the last fifth of the time interval.
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Figure 15: Threshold for distribution function I5
0 (α) for CASE 2

In this graphic the threshold moved to a prevalence of about 62.51%,
therefore even more to the right than with distribution function I2

0 (α).

These results provide an incentive to consider as well the results for
distribution function I7

0 (α), hence for a function with an extraordinary peak
of the infected population (with respect to the infection time α) at the last
tenth of the time interval.

Calculating the threshold for I7
0 (α) leads to

35



61 62 63 64 65 66 67
0.8

0.82

0.84

0.86

0.88

0.9

0.92
J(p,0) and J(p,0.95)

Prevalence p in %

O
bj

ec
tiv

e 
va

lu
e 

J

 

 
u0=0
u1=0.95

Figure 16: Threshold for distribution function I7
0 (α) for CASE 2

The threshold shifted until the level of the prevalence of about 64.05%,
which is again a big shift in comparison to the initial model with the heterogenous
model.

For CASE 2 and CASE 1, it is not possible to find an extraordinary
distribution function so that the threshold disappears. We will show in the
following section, that a disappearing threshold is possible under certain
circumstances for CASE 3.

4.2.3 Regarding CASE 3

Generally we received similar results for CASE 3 for models with distribution
functions I1

0 (α) (a threshold at a prevalence of about 80.14%), I3
0 (α) (threshold

at 80.15%), I4
0 (α) (80.13%) and I6

0 (α) (80.13% as well). So again, for distribution
functions with an infected population that is larger at the beginning of the
time interval (with respect to infection time α), the shift of the threshold
point is not very significant.

For distribution function I2
0 (α), we receive the following graphic:
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Figure 17: Threshold for distribution function I2
0 (α) for CASE 3

Again, the threshold point moved to the right side, from 80.56% to 80.99%.
Hence for the increasing and linear case the variation is not very significant
as well.

Calculating the results for I5
0 (α), we receive
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Figure 18: Threshold for distribution function I5
0 (α) for CASE 3

In comparison to the results from the other two cases, we receive a much
more significant variation of the initial threshold point for CASE 3. Here the
threshold point occurs at a prevalence of about 82.37%.

For distribution function I7
0 (α), we receive
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Figure 19: Threshold for distribution function I7
0 (α) for CASE 3

Now the threshold point is at a prevalence of about 84.93%, which offers
again an incentive to introduce another extraordinary distribution function
to the model, so that the threshold disappears.

This distribution function will be

I8
0 (α) =

{
0 for α < 24ω

25

25p for α ≥ 24ω
25

Plotting this distribution function:
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Figure 20: Distribution function I8
0 (α)

In reality, this case is not very probable, as the outbreak of the disease is
just in the last 1

25
of the time interval.

Again, calculating the objective values dependent on the prevalence, we
receive the following graphic:
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Figure 21: No threshold for distribution function I8
0 (α) for CASE 3
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This graphic shows us, that with this distribution function, the threshold
even disappeared, which means that in this case it is always better not to
medicate the infected population, but to let them die. Considering our
distribution function, this would mean that it is always better to let the
infected individuals die, in case the outbreak of the disease is very strong
and right at the end of the time interval.

4.3 Sensitivity Analysis of Thresholds in the Optimal
Control of Epidemic Models

In this section we will make a sensitivity analysis for the homogeneous version
of the model, especially how the parameter σ (strength of the infection)
affects the threshold.

In this analysis we set the mortality rate dependent on infection time µ(α)
equal to 1 (so that we can compare the results from section 4.1) and we will
see how σ influences the thresholds.

Again, we will consider the different cases.

Considering CASE 1

Again, in CASE 1, we are considering our model for parameters c = 0
(constant in objective function), β = 0.4 (relative productivity of infected
individuals) and u0 = 1, u1 = 0.95 (controls), µ = 0, r = 0.04 and as
mentioned before µ(α) = 1. The only parameter we will very is σ ∈ [0, 1].
We already know that for σ = 0.5 our threshold is at a prevalence of about
44.91% (regarding Figure 1).

First we consider σ to be equal to 0, so that the strength of the infection
is 0. Of course, this means that there is no intersection between the two
curves, so that there is no threshold and it is always better to medicate.

For σ = 0.1, we receive the following graphic:
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Figure 22: No threshold for σ = 0.1

There is still no intersection, which means that for a disease with a
very low strength of infectivity, there is still no threshold. In this case full
medication is always better, so full medication for every infected individual
for all prevalences. The curve for no medication (u0) is almost straight and
decreasig.

Now we will set σ = 0.3:

42



0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5
J(p,0) and J(p,0.95)

Prevalence p in %

O
bj

ec
tiv

e 
va

lu
e 

J

 

 
u0=0
u1=0.95

Figure 23: Threshold for σ = 0, 3

In this case there is already an intersection between the two curves at
a prevalence of about 35.49%. Thus for a rather low strength of infection,
there is already an existing threshold. For a prevalence lower than 35.49% it
is better not to medicate the infected individuals (so to let them die) and for a
prevalence higher than the threshold, full medication is better. Furthermore
especially the curve for u1 is not that straight anymore. The slope of the two
curves is for increasing prevalence not as high as for a low prevalence p (until
about 35%). This means that for instance for u1 the changes of the objective
value are more significant for a low prevalence p than for a high prevalence
with respect to σ.

The next results we regard for σ = 0.6, as this σ is very close to the σ
from the original model of 4.1:
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Figure 24: Threshold for σ = 0.6

Here the threshold point is quite the same as for σ = 0.5, which could be
interpreted as an already decreasing growth of our threshold for increasing
strength of the infection σ. The threshold now is at a prevalence of about
46.14%, which is already rather close to the threshold for σ = 0.5, which
occurs at a prevalence of about 44.91%.

Probably, for an even more significant strenght of the infection, the threshold
point is not varying very much anymore. To confirm this assumption we
calculate the result for σ = 0.8:
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Figure 25: Threshold for σ = 0.8

In comparison to the results for σ = 0.5 or σ = 0.6, the threshold has not
changed significantly, the threshold occurs at a prevalence of about 46, 30%.
The much more considerable change, is that in comparison to the other
models, the slope of the curves is more decreasing for increasing σ. This
could be interpreted as for an high strength the objective value (which is the
number of the population in the long run), is not changing significantly for
an initial infected population greater than 30% of the total population.

The following graphic, which shows the treshold point in dependency on
σ, is summing up the main results of this section:
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Figure 26: Threshold point depending on strength of infection σ

We see that for very small σ, there is no threshold, just the intersection
of the curves at the beginning (t = 0). This makes sense as for a disease
which has a very low strength of infection, it is always better to treat the
infected individuals, thus there is no threshold. For small σ, so a strength of
the infection for more than about 0.15, the threshold is increasing very much,
so the threshold is changing very much for σ ∈ (0.15; 0.5). This means that
for diseases with a strength of the infection between 0.15 and 0.5, the point
where it is equally good to fully medicate the infected individuals or not to
treat them at all, is increasing until a prevalence of about 50% (so until a
situation where half of the initial population is infected). Afterwards the
threshold is almost not changing anymore, which means that for a disease
with the strength of infection higher than 0.5 in our model, the threshold
point is almost constantly at a prevalence of about 46.30%. Hence for a
disease with a sufficiently high strength of the infection, it is always better
to start treating for a population in which more than 46.30% are infected,
and it is better not to treat for a population with an initial quote of infected
individuals lower than 46.30%.

Considering CASE 2

The main difference between the parameters of CASE 1 and CASE 2
are, that in CASE 2 the relative productivity of the infected individuals β
is higher (0.4 in CASE 1 and here 0.6) and that the constant out of the
objective function c is not equal to 0, but 0.3. This means that for this case,
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the objective function is dependent on the control variable as well, as the
constant c is not equal to 0. Again the other parameters will be u0 = 1,
u1 = 0.95 (controls), µ = 0, r = 0.04 and a constant mortality rate of the
infected individuals dependent on infection time µ(α) = 1.

We already know the result for σ = 0.5 as this was the result of section 4.1.2.
As visible in Figure 2, the threshold occurs at a prevalence of 61.33%.

Of course in this model there is no threshold for a strength of the infection
equal to 0, as it was before.

We will now investigate if there is a threshold for σ = 0.1:
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Figure 27: Threshold for σ = 0.1

Unlike as for CASE 2, we receive here a threshold already for a very low
strength of the infection. The threshold occurs at a prevalence of about
23.67%, whereas the objective values for the two controls are very close,
which means that their objective value is until a prevalence of about 30%
very similar. Just as the results for CASE 1 and σ = 0.1, we receive curves
for the controls, that are almost straight.
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As a threshold occured for a strength of the infection of σ = 0, 1 already,
the next graphic is for σ = 0.2, to see how the threshold changes:
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Figure 28: Threshold for σ = 0.2

The threshold now occurs at a prevalence of about 51.83%, so again, for a
rather small variation of σ, the treshold moved more than 25% to the right.
In comparison to CASE 1, where the threshold occured at a prevalence of
about 15% for σ = 0.2, the threshold in CASE 2 is as well much more on the
right side, which means that including the control variable in the objective
function and for a greater β, the threshold moves much faster to the right for
increasing σ. Again the curves for the two controls are quite close together,
but not as much as for σ = 0.1. So for σ = 0.2 the objective values are as
well rather close together until a prevalence of about 55%.

We already know that for σ = 0.5 the threshold occurs at a prevalence of
about 61.33%, so now we have a look at the graphic for σ = 0.6, to see how
the threshold changes for values close to 0.5:
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Figure 29: Threshold for σ = 0.6

Just like for CASE 1, the threshold here as well has not changed significantly
compared to the results for σ = 0.5. Another investigation in comparison to
CASE 1, is that here the slope of the curves is not that much decreasing as
in Figure 24. So for this model and σ = 0.6 a higher prevalence does not
lead to rather similar objective values as it does for high values in Figure 24.

Again, to sum up the main results of this section, we plot the threshold
point in dependency on the strength of the infection for CASE 2:
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Figure 30: Threshold point depending on strength of infection σ

Just like as Figure 26 for CASE 1, we receive a curve, that is 0 at the
beginning, has a strong increase afterwards and is almost equal to a certain
prevalence until σ = 1. The main difference between this curve and Figure 26,
is that here the threshold is already nonzero for a strength of infection higher
than 0.06, so the strong increase occurs at a lower strength of infection than
in CASE 1. Furthermore the threshold is almost similar for σ greater than
0.4 already. This means that we would have got quite similar results in
section 4.1.2 in case of using a strength of the infection between 0.4 and 1.
So the threshold in this model is not significantly dependent on the strength
of the infection greater than 0.4.

Considering CASE 3

Finally, we consider the model with the parameters of CASE 3, which are
mainly the same as in CASE 2, with the only difference that the constant
in the objective function c is here equal to 0.4. Again the other parameters
will be β = 0.6 ( relative productivity of the infected individuals) u0 = 1,
u1 = 0.95 (controls), µ = 0, r = 0.04 and a constant mortality rate of the
infected individuals dependent on infection time µ(α) = 1.

We already know that the threshold for σ = 0.5 occurs at a prevalence of
about 80.56% for CASE 3.

For σ = 0.1 we receive:
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Figure 31: Threshold for σ = 0.1

In this case for a strength of infection of 0.1, a threshold occurs at a
prevalence of about 75.54%. Therefore, in comparison to CASE 2, the
treshold for σ = 0.1 occurs at a much higher prevalence (for CASE 2 at
about 23.67%). Hence for a disease with an even very low strength of the
infection, it is better to start treat the infected individuals just at a prevalence
of more than 75.54%. In comparison to CASE 2 for σ = 0.1, this is a very
low level, as in CASE 1, it was always better to treat the infected population
for σ = 0.1. Furthermore the two curves for the controls are very close in
this case, which means that the difference in the objective value between full
medication and no medication is not very significant.

The next σ we consider is equal to 0.2, as our results for σ = 0.1 are
already close to the threshold of our initial model for CASE 3 (σ = 0.5):
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Figure 32: Threshold for σ = 0.2

The treshold moved to a prevelance of about 80.40%, so is already very
close to our result for σ = 0.5. In comparison to the result for σ = 0.1,
the curves for the controls are not as close together as before, therefore the
especially until the threshold point, the difference between full medication
and no medication is more significant than before.

As we already know from the previous two cases, the threshold is not
moving very much after a certain σ. Here in this case, there is no threshold
at σ = 0, and increases for σ = 0.1, but is already at a certain prevalence at
σ = 0.2, that is very close to our initial results for σ = 0.5.

To confirm the assumption that the threshold is not increasing much more,
we again plot the graphic for the treshold in dependency of the strength of
the infection σ:
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Figure 33: Threshold point depending on strength of infection σ

Thus here we see that just like as in the previous cases, the threshold
is not varying significantly anymore after a certain point of the strength of
infection σ. Compared to the other cases, there is no threshold just for
σ = 0, afterwards the treshold is increasing until a prevalence of about 80%,
and after σ = 0.25 not varying very much.

4.4 Overview of the Results

The main focus in this section was to investigate threshold points in the
heterogenous model for different distribution functions, and to see how they
change for different functions.

In section 4.1 we shown that for a homogeneous version of the model, there
exist three different threshold points for the three different parametrizations
considered. As a result of the use of three different cases, we investigated that
the more the infected population is considered in the objective function and
the higher the relative productivity β, the larger is the occuring threshold
point.

In section 4.2 we introduced heterogeneity to the model by chosing different
distribution functions. We investigated that for the three different cases the
threshold moves to the right for a disease, which has an outbreak at the
end of the time horizon and a smaller threshold for diseases which break out
rather at the beginning of the time interval. Furthermore we were able to
find a distribution function for one of the cases, so that the threshold point

53



is disappearing. In this special case it is always better not to medicate the
infected population, but to let them die.

In the last section 4.3 we undertook a sensitivity analysis of the thresholds.
Especially we considered an altering strength of the infection σ and how this
is affecting the threshold point of the homogenous version of the model. For
the three cases we investigated that for a higher strength of the infection age,
the threshold point is moving to the right. Furthermore we found out that
above a certain infectivity the threshold point is not altering significantly
anymore. This occurs at a different amount of infectitivity for the different
cases of parameters.
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A Appendix

A.1 Solver

function [Y,P,Q] = age_primal_Christa(Y0,Nt,Np,Nq,h,funF,funG,...

funH,funPhi,U,V,PAR1,PAR2,PAR3);

%Solves the model from [F+T+V] with given controls U(ia,it),V(it),

%it = 1,...,Nt ,ia = 1,...Na, where Na is the number of columns of

%Y0. Everywhere the first dimension is the static dimenion of the

%vector, the second is age, the third is time.The function F must

%have the form Z = F(t,a0,ka,h,Yt,Pt,Qt,Ut,PAR1,PAR2,PAR3),

%where Z has dimension Ny x ka

%P = G(t,a0,b0,ka,kb,h,Yt,Ut,PAR1,PAR2,PAR3), with

%dim P = dim Np x ka x kb.

%Q = H(t,a0,ka,h,Yt,Pt,Ut,Vt,PAR1,PAR2,PAR3), with

%dim Q = Nq x ka.

%Y0 = Phi(t,Qt,Vt,PAR1,PAR1,PAR3), with dim Y0 = dim y (=Ny)

%Tested on 7.11.2001

min_L = 0;

[Ny,Na] = size(Y0);

Na1 = Na -1;

Y(:,:,1) = Y0;

P = zeros(Np,Na,Nt);

Q = zeros(Nq,Nt);

if (Np > 0)

P(:,:,1) = integ2nm(h,feval(funG,0,0,0,Na,Na,h,Y(:,:,1),...

U(:,:,1),V(:,1),PAR1,PAR2,PAR3));

end

if (Nq > 0)

Q(:,1) = integ2n(Na,h,feval(funH,0,0,Na,h,Y(:,:,1),...

P(:,:,1),U(:,:,1),V(:,1),PAR1,PAR2,PAR3));

end

Y(:,1,1) = feval(funPhi,0,Q(:,1),V(:,1),PAR1,PAR2,PAR3);

t = -h;

for (it1 = 2:Nt)

t = t + h;

t1 = t + h;
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it = it1 - 1;

Yw(:,1) = feval(funPhi,t1,Q(:,it),V(:,it1),PAR1,PAR2,PAR3);

Yw(:,2:Na) = Y(:,1:Na1,it) + ...

h*feval(funF,t,0,Na1,h,Y(:,1:Na1,it),P(:,1:Na1,it),...

Q(:,it),U(:,1:Na1,it),V(:,it),PAR1,PAR2,PAR3);

if (Np > 0)

P(:,:,it1) = integ2nm(h,feval(funG,t1,0,0,Na,Na,h,Yw,...

U(:,:,it1),V(:,it1),PAR1,PAR2,PAR3));

end

if (Nq > 0)

Q(:,it1) = integ2n(Na,h,feval(funH,t1,0,Na,h,Yw,...

P(:,:,it1),U(:,:,it1),V(:,it1),PAR1,...

PAR2,PAR3));

end

Y(:,1,it1) = feval(funPhi,t1,Q(:,it1),V(:,it1),PAR1,PAR2,...

PAR3);

Y(:,2:Na,it1) = 0.5*(Yw(:,2:Na) + Y(:,1:Na1,it) + ...

h*feval(funF,t1,h,Na1,h,Yw(:,2:Na),P(:,2:Na,it1),...

Q(:,it1),U(:,2:Na,it1),V(:,it1),PAR1,PAR2,...

PAR3));

A.2 Calculating the Objective Value for a Constant
Distribution Function

This MATLAB-Code is for the calculation of the objective value dependent
on a given prevalence and constant distribution function, we used in section 4.1
(representative for CASE 3).

function [Jobj]=Progcase6(contru,pt)

omega=300;

T=100;

h=0.1;

Na=floor(omega/h)+1;

Nt=floor(T/h)+1;

Np=0; Nq=2;

mu1=0;

mu2=1;

infect=ones(Na,1);

56



sigma=0.5;

U=contru*ones(2,Na,Nt);

U(2,:,:)=contru*ones(1,Na,Nt);

V=zeros(1,Nt);

PAR1(1)=T;

PAR1(2)=omega;

PAR1(3)=Nt;

PAR1(4)=Na;

PAR1(5)=h;

PAR1(6)=mu1;

PAR1(7)=mu2;

PAR1(8)=sigma;

PAR1(9)=pt;

PAR2=contru;

PAR3=infect’;

function fct1=Function1(t,a0,ka,h,Yt,Pt,Qt,Ut,Vt,PAR1,PAR2,PAR3)

mu12=PAR1(6);

mu22=PAR1(7);

mu123=PAR1(6)*ones(1,PAR1(4)-1);

J=Qt(2,:);

I=Qt(1,:);

S=Qt(3,:);

sigma1=PAR1(8);

fct11=((-(mu12+(1-PAR2)*(mu22-mu12)))*Yt(1,:));

fct22=((-sigma1*J*S/(S+I))*ones(1,PAR1(4)-1)-mu123*S);

fct1=[fct11;fct22];

end

funF=’Function1’;

funG=’NONE’;

function fct2=Hfunction2(t,a0,ka,h,Yt,Pt,Ut,Vt,PAR1,PAR2,PAR3)

fct2(1,:)=Yt(1,:)/PAR1(2);

fct2(2,:)=Yt(2,:)/PAR1(2);

end
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funH=’Hfunction2’;

function fct3=Phifunction3(t,Qt,Vt,PAR1,PAR2,PAR3)

J=Qt(2,:)

I=Qt(1,:);

S=Qt(3,:);

sigma1=PAR1(8);

fct31=(sigma1*J*S/(S+I));

fct32=(1-PAR1(9))/PAR1(2);

fct3=[fct31;fct32];

end

funPhi=’Phifunction3’;

Y0(1,:)=pt*ones(1,Na);

Y0(2,:)=(1-pt)*ones(1,Na);

[Ylsg,Plsg,Qlsg]=age_primal_Christa(Y0,Nt,Np,Nq,h,funF,funG,...

funH,funPhi,U,V,PAR1,PAR2,PAR3);

rinf=0.04;

betar=0.6;

c=0.4;

for t=1:1:Nt

S(t)=exp(-rinf*t)*(Qlsg(2,t)+(betar-c*contru)*Qlsg(1,t));

end

integ = integ2n(Nt,h,S);

Jobj=integ;

end

A.3 Plotting the Objective Value Dependent on the
Prevalence for CASE 3

function out=findcritpnt4het(contru1,contru2)

schrittweite=0.01;
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bestvalue1=zeros(1,101);

for t=1:1:101

bestvalue1(t)=Progcase6(contru1,(t-1)*schrittweite);

end

bestvalue2=zeros(1,101);

for t=1:1:101

bestvalue2(t)=Progcase6(contru2,(t-1)*schrittweite);

end

temp=0:1:100;

figure

plot(temp,bestvalue1(temp+1),’--r’)

hold on

plot(temp,bestvalue2(temp+1),’--b’)

hold off

title(’J(p,0) and J(p,0.95)’);

xlabel(’Prevalence p in %’);

ylabel(’Objective value J’);

h1leg=legend(’u0=0’,’u1=0.95’);

print -depsc Pic10.eps

end

A.4 Plot of Distribution Functions

A.4.1 Distribution Functions I1
0 (α) and I2

0 (α)

omega=300;

x = 0:1:omega;

p=1;

y = (-(2*p)/omega)*(x-omega);
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s = ((2*p)/omega)*x;

figure

g=area(y);

alpha(.7);

hold on

h=area(s);

alpha(.6);

hold off

set(g,’FaceColor’,[0.5,0,0]);

set(h,’FaceColor’,[0,0,0.5]);

title(’Distribution Function I01(a) and I02(a) for p=1’);

xlabel(’time interval’);

h1leg=legend(’I01(a)’,’I02(a)’);

print -depsc distrib12.eps

A.4.2 Distribution Function I3
0 (α)

omega=300;

t= 0:1:omega;

p=1;

y1=zeros(1,omega+1);

for t=0:1:omega/3

y1(t)=3*p-0.2;

end

y2=zeros(1,omega+1);

for t=omega/3+1:omega

y2(t)=1/10;

end

t= 0:1:omega;

figure

area(y1)

hold on

area(y2)

hold off
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title(’Distribution Function I03(a) for p=1’);

xlabel(’time interval’);

h1leg=legend(’I03(a)’);

print -depsc distrib3.eps

A.4.3 Distribution Functions I4
0 (α) and I5

0 (α)

omega=300;

t= 0:1:omega;

p=1;

y1=zeros(1,omega+1);

for t=0:1:omega/5

y1(t+1)=5*p;

end

y2=zeros(1,omega+1);

for t=4*omega/5:omega

y2(t)=5*p;

end

t= 0:1:omega;

figure

g=area(y1)

hold on

h=area(y2)

hold off

set(g,’FaceColor’,[0.5,0,0]);

set(h,’FaceColor’,[0,0,0.5]);

title(’Distribution Function I04(a) and I05(a) for p=1’);

xlabel(’time interval’);

h1leg=legend(’I04(a)’,’I05(a)’);

print -depsc distrib45.eps

A.4.4 Distribution Functions I6
0 (α) and I7

0 (α)

omega=300;
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t= 0:1:omega;

p=1;

y1=zeros(1,omega+1);

for t=0:1:omega/10

y1(t+1)=10*p;

end

y2=zeros(1,omega+1);

for t=9*omega/10:omega

y2(t)=10*p;

end

t= 0:1:omega;

figure

g=area(y1)

hold on

h=area(y2)

hold off

set(g,’FaceColor’,[0.5,0,0]);

set(h,’FaceColor’,[0,0,0.5]);

title(’Distribution Function I06(a) and I07(a) for p=1’);

xlabel(’time interval’);

h1leg=legend(’I06(a)’,’I0(a)’);

print -depsc distrib67.eps

A.5 Threshold for Heterogeneous Models with Distribution
Functions

For the calculations we used the same code as in A.2, with the only difference
that instead of

Y0(1,:)=pt*ones(1,Na);

Y0(2,:)=(1-pt)*ones(1,Na);

which is the constant distribution function, we introduced the distribution
functions.
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A.5.1 Distribution Function I1
0 (α)

for alphacnt=1:1:Na

t1=(alphacnt-1)*0.1;

Y0(1,alphacnt)=-(2*pt/omega)*(t1-omega);

end

for alphacnt1=1:1:Na

Y0(2,alphacnt1)=1-pt;

end

A.5.2 Distribution Function I2
0 (α)

for alphacnt=1:1:Na

t1=(alphacnt-1)*0.1;

Y0(1,alphacnt)=(2*pt/omega)*t1;

end

for alphacnt1=1:1:Na

Y0(2,alphacnt1)=1-pt;

end

A.5.3 Distribution Function I3
0 (α)

for alphacnt=1:1:Na

t1=(alphacnt-1)*0.1;

if t1 <= (omega/3)

Y0(1,alphacnt)=3*pt-0.2;

end

if t1 > (omega/3)

Y0(1,alphacnt)=1/10;

end

end

for alphacnt1=1:1:Na

Y0(2,alphacnt1)=1-pt;

end

A.5.4 Distribution Function I4
0 (α)

for alphacnt=1:1:Na

t1=(alphacnt-1)*0.1;
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if t1 <= (omega/5)

Y0(1,alphacnt)=5*pt;

end

if t1 > (omega/5)

Y0(1,alphacnt)=0;

end

end

for alphacnt1=1:1:Na

Y0(2,alphacnt1)=1-pt;

end

A.5.5 Distribution Function I5
0 (α)

for alphacnt=1:1:Na

t1=(alphacnt-1)*0.1;

if t1 >= (4*omega/5)

Y0(1,alphacnt)=5*pt;

end

if t1 < (4*omega/5)

Y0(1,alphacnt)=0;

end

end

for alphacnt1=1:1:Na

Y0(2,alphacnt1)=1-pt;

end

A.5.6 Distribution Function I6
0 (α)

for alphacnt=1:1:Na

t1=(alphacnt-1)*0.1;

if t1 <= (omega/10)

Y0(1,alphacnt)=10*pt;

end

if t1 > (omega/10)

Y0(1,alphacnt)=0;

end

end

for alphacnt1=1:1:Na
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Y0(2,alphacnt1)=1-pt;

end

A.5.7 Distribution Function I7
0 (α)

for alphacnt=1:1:Na

t1=(alphacnt-1)*0.1;

if t1 >= (9*omega/10)

Y0(1,alphacnt)=10*pt;

end

if t1 < (9*omega/10)

Y0(1,alphacnt)=0;

end

end

for alphacnt1=1:1:Na

Y0(2,alphacnt1)=1-pt;

end

A.5.8 Distribution Function I8
0 (α)

for alphacnt=1:1:Na

t1=(alphacnt-1)*0.1;

if t1 >= (24*omega/25)

Y0(1,alphacnt)=25*pt;

end

if t1 < (24*omega/25)

Y0(1,alphacnt)=0;

end

end

for alphacnt1=1:1:Na

Y0(2,alphacnt1)=1-pt;

end
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