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Abstract

This thesis studies the performance limits of Gaussian channels with quantized feedback.

The channel capacity of a channel with additive white Gaussian noise was already

studied by Shannon and is well known as Shannon capacity. The problem of optimal

compression of a source was also mathematically formulated by Shannon in his rate

distortion theory.

These two aspects are combined in this thesis, as the channel output should be

quantized. We show that a rate-distortion optimal compression of the channel output

maximizes the mutual information only in the scalar case, but is generally suboptimal in

the vector case. We show that the information bottleneck method provides a framework

for quantizers which maximize the mutual information. By means of some selected

channels we discuss the differences in mutual information and quantify those. We show

that the difference is primarily determined by the eigenvalues of the channel.

It is known that perfect feedback does not increase the channel capacity, but the

error probability is substantially decreased for finite blocklengths. The performance of

such systems with a noisy feedback channel breaks down, i.e., no positive rate is achiev-

able. In this thesis, we study schemes with quantized channel output and quantized

feedback, and we derive equations for the achievable rate and error probabilities of such

systems. Here different quantization of channel output and feedback corresponds to

noisy feedback. Furthermore, we present a scheme where the receiver has the quantized

feedback as side-information to achieve positive rates.
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Kurzfassung

Diese Diplomarbeit beschäftigt sich mit der Analyse von Kapazitätsgrenzen Gauß-

scher Kanäle mit quantisiertem Feedback. Die Kanalkapazität eines Kanals mit additi-

vem weißen Gaußschen Rauschen wurde bereits durch Shannon untersucht und ist als

Shannon-Kapazität bekannt. Ebenfalls bereits von Shannon mathematisch formuliert

wurde das Problem der optimalen Kompression einer Quelle in seiner Rate-Distortion-

Theorie.

Diese zwei Aspekte werden in dieser Arbeit kombiniert, indem der Kanalausgang

quantisiert werden soll. Es wird gezeigt, dass die im Rate-Distortion Sinne optimale

Komprimierung des Kanalausgangs die Transinformation nur im skalaren Fall maxi-

miert, im Vektorfall jedoch im Allgemeinen suboptimal ist. Für den Vektorfall wird ge-

zeigt, dass ein auf Basis der Information-Bottleneck Methode entworfener Quantisierer

die Transinformation maximiert. Anhand beispielhafter Kanäle werden die Unterschie-

de der Transinformationen beider Methoden erörtert und quantifiziert. Es wird gezeigt,

dass der Unterschied im Wesentlichen durch die Kanaleigenwerte bestimmt wird.

Es ist ebenfalls bekannt, dass ein perfekter Rückkanal die Kanalkapazität zwar nicht

erhöht, die Fehlerwahrscheinlichkeit für endliche Blocklängen jedoch drastisch reduzie-

ren kann. Die Leistung solcher Systeme mit Rückkanal bricht allerdings ein und es

kann keine positive Rate erreicht werden, wenn dieser störungsbehaftet ist. In dieser

Arbeit werden Systeme mit quantisiertem Kanalausgang und quantisiertem Rückkanal

untersucht und Ausdrücke für deren erreichbarer Rate und Fehlerwahrscheinlichkeiten

abgeleitet. Unterschiedliche Quantisierung entspricht dabei einem störungsbehaftetem

Rückkanal. Es wird jedoch ein Schema gezeigt welches eine positive Rate erreicht, indem

der Empfänger die unterschiedlichen quantisierten Signale ausnutzt.
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1
Introduction

1.1 Motivation

In modern digital communication scenarios we want to transmit information from trans-

mitter to receiver over a channel, where the receiver performs a quantization of the

received signal, i.e., analog-digital conversion, since the receiver typically processes the

data in a digital manner. Even if we want to transmit a message with a finite alphabet,

the received signal is analog, since it has to be transmitted over some sort of physical

channel. In this thesis the focus is on an important type of channel, namely a chan-

nel with additive white Gaussian noise (AWGN). This type of channel was extensively

studied with the famous result of the Shannon capacity

C =
1

2
log2

(
1 +

P

σ2

)
, (1.1)

where σ2 is the power of the Gaussian noise and P is the power of the transmit signal.

Due to the logarithm to base 2 the capacity is measured in bits per channel use. The

Shannon capacity is the upper bound for the amount of information we could possibly

transmit without errors.

Channel capacity can be interpreted as the maximum amount of mutual information

about the message at transmitter and receiver. Or speaking with other words the

amount of uncertainty about the message is reduced at most by the value of channel

capacity. The amount of uncertainty is measured by the entropy which is defined as

H(x) = −
∑
x

p(x) log2 p(x), (1.2)

1



Chapter 1. Introduction 2

where p(x) is a probability mass function. Of course this definition makes only sense for

discrete distributions. For continuous distributions we define the differential entropy as

h(x) = −
∫
S

f(x) log2 f(x)dx, (1.3)

where S is the support set of the probability density function f(x). The mutual infor-

mation of two random variables x and y is then defined as

I(x; y) = h(x)− h(y|x) (1.4)

= h(y)− h(x|y). (1.5)

One important task of this thesis is to study how feedback affects the performance

of a communication system. The most generic case is to assume that the transmitter

has knowledge of all previously received symbols as side-information. The question

is if such a system has a higher channel capacity as a system without feedback, i.e.,

CFB ≥ C? Surprisingly the capacity of the AWGN channel is not increased [10]:

CFB = C =
1

2
log2

(
1 +

P

σ2

)
. (1.6)

For general Gaussian channels the capacity with feedback may be larger than the ca-

pacity without feedback and is limited by [9]

CFB ≤ min

{
2C,C +

1

2

}
, (1.7)

measured in bits. Although we may not get an improved channel capacity using feed-

back, feedback can dramatically improve the performance of communication systems.

The main reason is because the channel capacity is an asymptotic measure, i.e., reliable

transmission up to the channel capacity requires infinite blocklengths. This is clearly

not feasible in real world applications with delay constraints and other processing con-

straints. Hence, practical communication systems use finite blocklengths and therefore

error probabilities are greater than zero. For fixed blocklength, the error probability

can be decreased by a factor increasing exponentially in the blocklength [28].

The most common, but also most limiting, assumption is perfect feedback. It is

assumed that the transmitter has perfect knowledge of the received values at receiver

side. In general the feedback channel is not perfect and may be also modeled as an

AWGN channel. Hence, the feedback capacity is limited. Another limitation is due

to the fact that the need of quantization of the received signal is system immanent
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and introduces additional quantization noise. So at least the signal is quantized at

the receiver front-end for further digital processing where a high rate approximation

may be feasible. To reduce the amount of processing complexity and the rate of the

feedback it may be important to reduce the rate of the quantizer. In this case the

high rate assumption does not hold and the role of the quantizer, as an element which

reduces the total mutual information, has to be studied. Quantizer design is a classical

source coding problem and was addressed by many scientific papers, mathematically

formulated by Shannon with his rate distortion (RD) theory. Usually the quantizer is

designed to introduce the smallest amount of distortion. As a measure of distortion

often the mean squared error (MSE) distortion is used. The design goal is then to

minimize the MSE of the quantized signal to approximate the source signal as exact as

possible, at a given rate.

In the communication scenario, where the received signal should be quantized, this

approach however does in general not maximize the information about the transmit

signal in the received signal. We show that this desired maximization of the mutual

information can be perfectly addressed by the information bottleneck (IB) method [30].

We will show that IB quantizers outperform MSE quantizers and also quantify this

performance improvement.

1.2 Goals

• Using the framework of the information bottleneck method, optimal quantizer de-

sign parameters should be acquired. Especially for the AWGN channel the closed

form expressions for the Gaussian information bottleneck (GIB) [8] is used to ob-

tain expressions for the mutual information depending on the rate of the quantizer.

As a formal analogon to the distortion-rate functions and rate-distortion functions

in the rate distortion theory, information-rate functions and rate-information func-

tions for the Gaussian vector channel are derived.

• The performance improvement of the GIB quantizers should be proved and quan-

tified. To this end, the information-rate function of the system with RD quantizers

is derived and compared with the GIB quantizers.

• The performance limits of communication systems should be studied. Especially

the performance of systems with quantized channel output and further quantized

feedback signal should be investigated. The performance limits should be quan-

tified by usage of an optimal communication system with linear feedback.
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1.3 Outline

This thesis is structured as follows:

• The remainder of this chapter provides the necessary theoretical background.

• In Chapter 2 we study the capacity of the Gaussian channel with channel output

compression and apply the Gaussian information bottleneck method to derive

the information-rate function and the rate-information function. Furthermore we

compare the performance of information bottleneck optimal quantization and rate

distortion optimal quantization.

• In Chapter 3 we investigate an optimal linear feedback scheme with quantized

feedback and use results from Chapter 2 to study the performance in terms of

the information-rate tradeoff. Especially we provide asymptotic expressions for

capacity and error probabilities of such systems.

• In Chapter 4 we use the results from Chapter 3 to numerically evaluate the

performance of the linear feedback system. We will validate the results by Monte

Carlo simulations and discuss the difference to the theoretical findings.

• Finally, Chapter 5 gives conclusions and an outlook for further possible research.

1.4 Background

1.4.1 Rate Distortion Theory

The rate distortion theory [2] addresses the problem of optimal compression of a source.

Often it is necessary to compress a source in order to transmit it over a channel with a

given capacity, which is smaller than the rate of the source. Or one just wants to reduce

the amount of data to store or transmit, in tradeoff to a distortion, e.g., lossy source

coding for speech. The rate distortion theory provides the mathematical formulation

for this tradeoff. Let x be the source and x̂ be the compressed source, then we want to

find a probabilistic mapping f(x̂|x), which we formulate as

R(D) , min
f(x̂|x)

I(x; x̂) s.t. E{d(x, x̂)} ≤ D. (1.8)

Hence, we want to minimize the rate, which is represented by the mutual information

of x and x̂, under the constraint of keeping the average distortion under a specific limit
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R(D)

D

achievable region

Dmax

Figure 1.1: Illustration of the rate-distortion function.

D. The average distortion is the expectation of some suitable distortion d(·, ·),

E{d(x, x̂)} =

∫∫
(x,x̂)

f(x)f(x̂|x)d(x, x̂)dxdx̂. (1.9)

The inverse of the rate-distortion function is the distortion-rate function

D(R) , min
f(x̂|x)

E{d(x, x̂)} s.t. I(x; x̂) ≤ R. (1.10)

Thus, the goal is to minimize de distortion at a given rate. Fig. 1.1 shows the general

form of the rate-distortion function. The optimal rate-distortion function is bounded

by Dmax, since a source with finite power can be “approximated” by x̂ = 0 with a

distortion that equals the power of the source. Every point on the right hand side of

the curve is achievable by simple adding an additional random distortion to the optimal

compression.

1.4.2 Information Bottleneck

In many compression problems the question for an appropriate distortion measure

arises. However this can not be generally answered. The information-bottleneck method

[30] avoids the problem of choosing the “right” distortion measure by a more direct

approach. The source x should be compressed in a way that preserves the relevant

information. This approach is called relevance through another variable. In our con-

text, the relevance variable is denoted by y, and, hence, the fidelity criterion is the

mutual information between y and x̂. We want to find an optimal probabilistic map-
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I(R)

R

achievable region

I(x; y)

Figure 1.2: Illustration of the information-rate function.

ping f(x̂|x) which maximizes I(y; x̂) subject to a rate constraint. Thus, we define the

information-rate function as

I(R) , max
f(x̂|x)

I(y; x̂) s.t. I(x; x̂) ≤ R. (1.11)

Conversely, the rate-information function is defined as

R(I) , min
f(x̂|x)

I(x; x̂) s.t. I(y; x̂) ≥ I. (1.12)

The definitions in (1.11) and (1.12) are reminiscent of the distortion-rate function

and the rate-distortion function, respectively. Fig. 1.2 shows the general form of the

information-rate function. Clearly if we provide no rate, we cannot preserve any infor-

mation. Thus, the information-rate function always starts at the origin. For increasing

rate we expect to preserve more information, hence the information-rate function has

to be an increasing function. For infinite rates, the “compressed” x̂ perfectly repre-

sents the source x. As a consequence the mutual information I(x̂; y) is bounded by the

information of y contained in the original, uncompressed source x.

1.4.3 Channel Capacity

In accordance to the usual definition we define the channel capacity as the maximum

mutual information between the source at channel input and the channel output over

all source distributions.

Definition 1.1. The channel capacity with the source y and channel output x is defined
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by

C , max
f(y)

I(y; x). (1.13)

Channel Capacity of the Gaussian Channel

One of the most important type of channels is the discrete time AWGN channel, which

is considered in this thesis. The channel output x is thus given by the sum of the

channel input y and the Gaussian distributed noise w, with power σ2, as

x = y + w, w ∼ N (0, σ2). (1.14)

Obviously the channel capacity would be infinite if we do not constrain the source in

any way, since we could just find a source with infinite power. Thus, we modify the

definition of the channel capacity with an additional power constraint E{y2} ≤ P .

Definition 1.2. The channel capacity of the Gaussian channel with the source y and

channel output x is defined by

C , max
f(y):E{y2}≤P

I(y; x). (1.15)

This yields the famous result from Shannon, and is therefore also called Shannon

capacity [29],

C =
1

2
log2

(
1 +

P

σ2

)
. (1.16)

That (1.16) is indeed an upper bound of mutual information can be shown by expanding

the mutual information as follows [10]:

I(y; x) = h(x)− h(x|y) (1.17)

= h(y)− h(y + w|y) (1.18)

= h(x)− h(w|y) (1.19)

= h(x)− h(w). (1.20)

Here we used the fact that the noise is independent of the source. Thus, we have

E{y2} = E{x2}+ E{w2} = P + σ2. (1.21)

Also it is known that the Gaussian distribution maximizes the differential entropy for
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a source with a power constraint. Hence, we can bound the mutual information by

I(y; x) = h(x)− h(z) (1.22)

≤ 1

2
log2

(
2πe(P + σ2)

)
− 1

2
log2

(
2πeσ2

)
(1.23)

=
1

2
log2

(
1 +

P

σ2

)
. (1.24)

In order to show that this is not only an upper bound, but we a are able to con-

struct codes which achieve this bound we use the common “sphere packing” argument.

Consider the N dimensional vectorspace, which contains all possible channel output

sequences of length N . Then a channel output sequence, given a specific codeword,

is normally distributed around that particular codeword. Following the law of large

numbers the received sequence is with probability P → 1 on the hypersphere with

radius
√
Nσ2 and origin the true codeword as N → ∞. The subspace of all possible

received sequences is then also a hypersphere with radius
√
N(P + σ2). The decoder

decides on a codeword, if the received vector is in the hypersphere around the code-

word. For a nonambiguous decoding, i.e., error free decoding, these “decoding spheres”

must not intersect. Non-intersecting decoding spheres are obtained by an appropriate

placement of the codewords in the hypershere with radius
√
N(P + σ2). The volume

of an hypersphere with radius r is given by

V =
πN/2

Γ(N/2 + 1)
rN , (1.25)

where Γ(x) is the gamma function Γ(x) =
∫∞

0
yx−1e−ydy. If we want to place M

codewords with non-intersecting decoding spheres in the N dimensional hypersphere

with radius
√
N(P + σ2), the ratio of the volumes must fulfill

M ≤ VP+σ2

Vσ2

=

√
N(P + σ2)

N

√
Nσ2

N
=

(
1 +

P

σ2

)N/2
. (1.26)

Hence, we obtain for the rate

R =
log2M

N
≤ 1

2
log2

(
1 +

P

σ2

)
= C. (1.27)

This means we can construct error free asymptotic codes with rate at most equal to the

capacity.
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Channel Capacity of the Gaussian Channel with Feedback

Since reliable communication close to the channel capacity relies on the sphere hard-

ening effect, this requires large blocklengths. Large blocklengths go along with large

coding and decoding delays, which are generally undesired. Thus, we may want to use

feedback to obtain comparable performance, but significantly shorter blocklengths and

therefore also reduced complexity. The first question which arises is whether feedback

increases the channel capacity. As already mentioned, unfortunately this is not the

case. As a first motivating example why feedback may be nevertheless beneficial, we

present the famous Shalkwijk-Kailath result [28]:

P (N)
e ≤ 2 exp

(
−e2N(C−R)

)
. (1.28)

This is true for a simple linear feedback scheme, where the transmitter has perfect

strictly causal feedback. Taking a closer look at (1.28) we conclude some important

statements:

• If R < C the error probability decreases doubly exponential if we increase the

blocklength.

• By increasing the blocklength, the error probability can be made arbitrary small.

• For every ε > 0, where R = C − ε the error probability P
(N)
e → 0 as N → ∞.

Thus, we achieve the channel capacity.

This gives a first insight, why we may want to use feedback in our communication

system. In Chapter 3, we will study communication scenarios with feedback in detail.



2
Performance without

Feedback

2.1 Introduction

When we want to communicate from A to B, usually the communication is not perfect.

The transmitter encodes the message θ and transmits the signal y over the channel,

where it is received as the signal x and decoded as the estimate of the message θ̂. A

general way to describe a probabilistic and memoryless channel is to describe via a

conditional probability density function (pdf) f(x|y) (cf. Fig. 2.1).

The amount of information we can transmit over the channel depends on the statis-

tics of the source and is defined as

C , max
f(y)

I(y; x), (2.1)

where I(y; x) is the mutual information shared by transmitter and receiver. The mutual

information clearly depends on the channel and the source and is given by

I(y; x) =

∫∫
(y,x)

f(y)f(x|y) log2

f(x|y)

f(x)
dydx. (2.2)

Because of the use of the logarithm to base 2, the mutual information is measured in

bits.

10
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θ
Transmitter Channel Receiver

θ̂

f(x|y)

y x

Figure 2.1: Basic communication system.

In this thesis, discrete time channels with additive white Gaussian noise (AWGN)

are considered. The received signal x is the sum of the transmitted signal y and an

independent noise term w

x = y + w, w ∼ N (0, σ2). (2.3)

The capacity of the channel is again defined as in (2.1), i.e., we have

C = max
f(y):E{y2}≤P

I(y; x), (2.4)

with an average power constraint on y. This yields the famous result from Shannon,

and is therefore also called Shannon capacity [29],

C =
1

2
log2

(
1 +

P

σ2

)
. (2.5)

It turns out that the only input distribution which achieves Shannon capacity is also

Gaussian and satisfies the average power constraint with equality, hence y ∼ N (0, P ).

Thus, the Shannon capacity is an upper bound for all other input distributions.

2.2 System Model

The input of the receiver, the signal x, is continuous-valued, even if the transmit signal y

has a finite alphabet. This is because the channel introduces continuous valued noise, in

general as f(x|y), and especially in the AWGN case as w ∼ N (0, σ2). The performance

of such systems was intensively studied and is well known. Another important aspect,

in order to digitally process the received signal, is the compression (or quantization) of

the received signal. This quantization process introduces additional distortion and can

be described in the most general way as a probabilistic quantizer with the conditional

pdf f(t|x) (cf. Fig. 2.2).

Often the quantizer is assumed to have high quantization rate. Thus, the quantized
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θ
Transmitter Channel Quantizer Receiver

θ̂

f(x|y) f(t|x)

y x t

Figure 2.2: Basic communication system with quantizer.

signal t ≈ x for further processing. If the high-rate assumption is dropped, f(t|x) has to

be optimized in some way. Usually this is done via minimizing the mean-square error

(MSE) of the received signal. Rate distortion (RD) theory provides the mathemati-

cal framework for such problems [2]. The mutual information of the AWGN channel

with RD-optimal compression at the receiver will be studied in the next section. How-

ever, our goal is not to minimize the MSE, rather maximizing the mutual information of

source and quantized signal. This leads to the information bottleneck (IB) method [30],

which is supposed to perform better. Thus, the next sections focus on the analysis of

the AWGN channel with IB compression and we will quantify the performance improve-

ment. Therefore, we will formulate, derive and discuss the information-rate function

(termed IB-function in [15]) as an analogon to the distortion-rate function in rate-

distortion theory.

2.3 The Scalar Case

2.3.1 Rate Distortion Theory

The problem of quantization is mostly addressed by rate distortion theory, as a clas-

sical source-coding problem. Rate distortion theory quantifies the trade-off between

compression rate R and distortion D. The quantized signal t is therfore an estimation

for the received signal x, i.e., x̂ = t. The choice of the distortion measure is somewhat

arbitrary. The most common distortion metric is the squared error

d(x, x̂) = (x− x̂)2. (2.6)

The rate distortion function is defined as

R(D) , min
f(x̂|x)

I(x; x̂) s.t. E{d(x, x̂)} ≤ D, (2.7)



Chapter 2. Performance without Feedback 13

y ∼ N (0, P )

w ∼ N (0, σ2)

B
x̂

η ∼ N (0, BD)

x

Figure 2.3: Scalar system with RD-optimal compression.

with the average distortion

E{d(x, x̂)} =

∫∫
(x,x̂)

f(x)f(x̂|x)d(x, x̂)dxdx̂. (2.8)

The inverse of the rate-distortion function is the distortion-rate function

D(R) , min
f(x̂|x)

E{d(x, x̂)} s.t. I(x; x̂) ≤ R. (2.9)

Thus, the goal is to minimize the distortion at a given rate. Recall that x = y + w, with

y ∼ N (0, P ) and w ∼ N (0, σ2). Therefore, x is also Gaussian with x ∼ N (0, P + σ2).

It was shown that the optimal rate distortion function can be obtained with a “forward

channel” (cf. Fig. 2.3) [2]

x̂ = Bx + η, (2.10)

where η ∼ N (0, BD) is independent of x. Hence, x̂ is Gaussian with x̂ ∼ N (0, B2Px +

BD) and the distortion

D = E{d(x, x̂)} = B2Px +BD + Px − 2BPx. (2.11)

Solving (2.11) for B yields

B = 1− D

Px
(2.12)

and hence x̂ ∼ N (0, Px −D). The minimum rate R for distortion D is given by

R = I(x; x̂) = h(x̂)− h(x̂|x), (2.13)
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with x̂|x ∼ N (Bx,D −D2/Px). It follows that

R(D) =
1

2
log2

(
Px

D

)
, (2.14)

D(R) = 2−2RPx, (2.15)

which is indeed the famous rate distortion solution for a Gaussian source with variance

Px, which is in our case the output of the AWGN channel. Inserting (2.12) into (2.10)

yields

x̂ =

(
1− D

P + σ2

)
(y + w) + η. (2.16)

To compare the performance of this solution in terms of information conservation we

compute the mutual information I(y; x̂) as

I(R) , I(y; x̂) = h(x̂)− h(x̂|y), (2.17)

with x̂|y ∼ N ((1−D(R)/Px)y, (1−D(R)/Px)
2σ2 +D(R)−D(R)2/Px). I(R) can then

be calculated as

I(R) =
1

2
log2

 Px −D(R)(
1− D(R)

Px

)2

σ2 +D(R)
(

1− D(R)
Px

)
 (2.18)

=
1

2
log2

(
Px

(
1− 2−2R

)
(1− 2−2R)2 σ2 + 2−2RPx (1− 2−2R)

)
(2.19)

=
1

2
log2

(
P + σ2

2−2RP + σ2

)
. (2.20)

Finally we obtain I(R) for the rate distortion solution, as a function of the rate R

and the signal-to-noise ratio (SNR) P
σ2 and is termed as the information-rate function.

Thus, we can formulate following statement.

Corollary 2.1. The scalar information-rate function with RD-optimal channel output

compression is given by

I(R) =
1

2
log2

(
1 + P/σ2

1 + 2−2RP/σ2

)
. (2.21)

The inverse of the information-rate function is called the “rate-information func-

tion”.
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Corollary 2.2. The scalar rate-information function with RD-optimal channel output

compression is given by

R(I) =
1

2
log2

(
P/σ2

2−2I(1 + P/σ2)− 1

)
. (2.22)

2.3.2 Information Bottleneck

In communications, we actually we do not want to quantize the received signal with min-

imum distortion. What we actually want is to preserve the information about y carried

by x. This is exactly what the information bottleneck method [30] provides: relevance

through another variable. The problem of choosing the “right” distortion measure is

replaced by relevant information. As in the rate-distortion case the quantization should

compress x as much as possible while preserving as much information about y as pos-

sible. The rate-distortion function is now replaced by the rate-information function,

which is defined as

R(I) , min
f(t|x)

I(x; t) s.t. I(y; t) ≥ I, (2.23)

and conversely the distortion-rate function is replaced by the information-rate function

I(R) , max
f(t|x)

I(y; t) s.t. I(x; t) ≤ R. (2.24)

Derivation of the GIB Information-Rate Function for AWGN Channels

For general distributions it is hard to give an analytical expression for the information-

rate functions, if even possible. A solution for the case of jointly Gaussian y and x has

been found in [8], with the problem formulated as the variational problem

min
p(t|x)

I(x; t)− βI(t; y), (2.25)

where the parameter β describes the trade-off between compression and preserved rel-

evant information.

Because of the additive structure of the AWGN channel x and y are jointly Gaussian

and in the vector case jointly multivariate Gaussian. It was shown in [16] that for jointly

Gaussian x and y the optimal t is also jointly Gaussian with x. Thus, t can be described

using the linear transformation

t = Ax + ξ, ξ ∼ N (0,Σξ). (2.26)
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y ∼ N (0, P )

w ∼ N (0, σ2)

A
t

ξ ∼ N (0, 1)

x

Figure 2.4: GIB equivalent scalar system.

The problem in (2.25) can then be reformulated as

min
A,Σξ

I(x; t)− βI(t; y). (2.27)

The following theorem gives explicit expressions for the optimal A and Σξ.

Theorem 2.3 ([8], Thm. 3.1). The optimal projection t = Ax + ξ for a given tradeoff

parameter β is given by Σξ = Ix and

A =



(
0T ; . . . ; 0T

)
, 0 ≤ β ≤ βc1(

α1v
T
1 ; 0T ; . . . ; 0T

)
, βc1 ≤ β ≤ βc2(

α1v
T
1 ; α2v

T
2 ; 0T ; . . . ; 0T

)
, βc2 ≤ β ≤ βc3

...

(2.28)

where {vT1 ,vT2 , . . . ,vTnx} are left eigenvectors of Σx|yΣ
−1
x sorted by their corresponding

ascending eigenvalues λ1, λ2, . . . , λnx, βci = 1
1−λi are critical β values, αi are coefficients

defined by αi =
√

β(1−λi)−1
λiri

, ri = vi
TΣxvi, 0T is an nx dimensional row vector of zeros,

and semicolons separate rows in the matrix A.

Scalar Channel

As mentioned before y and x are jointly Gaussian and the optimum t is also jointly

Gaussian with y and therefore form a Markov chain

y − x− t, (2.29)

where x = y + w , y ∼ N (0, P ) and w ∼ N (0, σ2) (cf. Fig. 2.4).
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In the scalar case the covariance matrices simplify to

Σy = P, (2.30)

Σw = σ2, (2.31)

Σx = Σy + Σw = P + σ2, (2.32)

Σx|y = Σw = σ2. (2.33)

The desired eigenvalues from Theorem 2.3 therefore collapse to one single eigenvalue,

Σx|yΣ
−1
x =

σ2

σ2 + P
=

1

1 + P/σ2
= λ. (2.34)

Using the explicit tradeoff parameter β, Iβ(t; x) and Iβ(t; y) are derived in [8]

Iβ(t; x) =
1

2

n(β)∑
i=1

log2

(
(β − 1)

1− λi
λi

)
, (2.35)

where

n(β) = max{n : β ≥ βcn}. (2.36)

In the scalar case there is only one critical βc, because there is only one eigenvalue λ.

The only interesting case is β ≥ βc, otherwise Iβ(t; x) = 0. Therfore n(β) = 1.

Iβ(t; x) =
1

2
log2

(
(β − 1)

1− λ
λ

)
, R. (2.37)

Since the mutual information of t and x is a measure for the compression, it can also

be seen as the rate of the quantization. Making β explicit yields

β = 22R λ

1− λ
+ 1. (2.38)

The mutual information between t and y is

Iβ(t; y) = I(t; x)− 1

2

n(β)∑
i=1

log2 (β(1− λi)) , (2.39)
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where again in the scalar case n(β) = 1. Substituting I(t; x) with (2.37), β with (2.38)

and λ with (2.34) yields

Iβ(t; y) = R− 1

2
log2(β(1− λ)) (2.40)

= R− 1

2
log2

(
22Rλ+ 1− λ

)
(2.41)

=
1

2
log2

(
22R

22Rλ+ 1− λ

)
(2.42)

=
1

2
log2

(
22R

22R 1
1+P/σ2 + 1− 1

1+P/σ2

)
(2.43)

=
1

2
log2

(
22R(1 + P/σ2)

22R + P/σ2

)
, I(R). (2.44)

This can also be directly obtained, without using Iβ(t; x) and Iβ(t; y) from [8]. We just

need the identity t = Ax + ξ = A(y + w) + ξ. The rate and the mutual information are

again defined as

R , I(t; x) = h(t)− h(t|x), (2.45)

I , I(t; y) = h(t)− h(t|y). (2.46)

These random variables are all Gaussian distributed as follows:

t ∼ N (0, A2(P + σ2) + 1), (2.47)

t|x ∼ N (0, 1), (2.48)

t|y ∼ N (0, A2σ2 + 1). (2.49)

Using (2.47)–(2.49) to express R and I yields

R =
1

2
log2

(
A2(P + σ2) + 1

)
, (2.50)

I =
1

2
log2

(
A2(P + σ2) + 1

A2σ2 + 1

)
. (2.51)

Making A2 explicit in (2.50) yields

A2 =
22R − 1

P + σ2
. (2.52)

Substituting A2 in (2.51) with (2.52) yields the information-rate function in terms of

the rate R and the SNR P
σ2 .
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Corollary 2.4. The scalar information-rate function with GIB-optimal channel output

compression is given by

I(R) =
1

2
log2

(
1 + P/σ2

1 + 2−2RP/σ2

)
. (2.53)

The inverse of the information-rate function is called the rate-information function

and is given by the following corollary.

Corollary 2.5. The scalar rate-information function with GIB-optimal channel output

compression is given by

R(I) =
1

2
log2

(
P/σ2

2−2I(1 + P/σ2)− 1

)
. (2.54)

2.4 The Vector Case

2.4.1 System Model

Now we consider the vector case with some restrictions for the sake of simplicity. These

restrictions are dropped in the next subsection and can be removed using algebraic

transformations on source and channel. Let the random vector source be Gaussian

distributed as y =
(

y1 y2 . . . yn

)T
∼ N (0,D), where D is a diagonal matrix. In

the simplest case the available transmit power is evenly distributed on the independent

y1 . . . yn. Therefore, the elements of y are i.i.d. and y has the covariance matrix

Σy = D =
P

n
I. (2.55)

The noise is again additive and independent of y, thus the input/output relation reads

x = Hy + w, (2.56)

where H ∈ Rn×n is deterministic (cf. Fig. 2.5).

In this restricted model the noise is also modeled to be i.i.d., i.e., w ∼ N (0, σ2I). The

covariance matrices are then

Σw = σ2I, (2.57)

Σx = HΣyH
T + Σw =

P

n
HHT + σ2I, (2.58)
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y ∼ N (0, P
n
I)

H

w ∼ N (0, σ2I)

x

Figure 2.5: Vector system model.

since y and w are assumed to be independent.

2.4.2 Generalization of the System

Previously the system was restricted to an i.i.d. source y ∼ N (0, P
n
I) and noise w ∼

N (0, σ2I). Then x = Hy + w ∼ N (0, P
n
HHT + σ2I). Now we drop this restriction

and let y and w be independent Gaussian random vectors with full-rank covariance

matrices. We therefore have

y ∼ N (0,Σy), (2.59)

w ∼ N (0,Σw). (2.60)

P and σ2 can then be defined as

P = E{yTy}, (2.61)

σ2 =
1

n
E{wTw}. (2.62)

Then the covariance matrix of x is

Σx = HΣyH
T + Σw. (2.63)

Whitening the noise in x and decorrelating the signal yields

x̃ =
√
σ2UTΣ−1/2

w x, (2.64)

where UΛUT is the eigen decomposition of
√

nσ2

P
Σ
−1/2
w HΣyH

TΣ
−1/2
w

√
nσ2

P
. Hence,

x̃ ∼ N
(

0,
P

n
Λ + σ2I

)
. (2.65)
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The previous transformations are all invertible and, hence, do not change the mutual

information. Therefore, we can write an equivalent system as

x̃ = H̃ ỹ + w̃. (2.66)

This equivalent system has a diagonal channel H̃ and i.i.d. signal ỹ and noise w̃, which

are given as

H̃ = Λ1/2, (2.67)

w̃ ∼ N (0, σ2I), (2.68)

ỹ ∼ N
(

0,
P

n
I

)
. (2.69)

Since the channel is diagonal, the eigenvalues of H̃H̃
T

are the diagonal elements of Λ,

λH̃i
= Λii. (2.70)

To simplify the calculations in the next sections we will work with the system model

defined in the previous section which is equivalent to (2.66) with (2.67)–(2.69).

2.4.3 Rate Distortion Theory

As already described for the scalar case, rate distortion theory aims at compressing a

signal with minimum distortion at a given rate. As a common distortion metric we

again use the squared-error

d(x, x̂) = E{(x− x̂)T (x− x̂)} =
∑
i

d(xi, x̂i). (2.71)

We note that each scalar distortion d(xi, x̂i) contributes to the overall distortion, but

in general scalar compression of the xi’s is suboptimal. The optimal solution, which

jointly compresses x can again be obtained using a “forward channel” [2]

x̂ = Bx + η. (2.72)

The main challenge is to optimally allocate the rate to the individual modes. The opti-

mal rate allocation is obtained by applying the reverse waterfilling algorithm. For gen-

eral multivariate Gaussian distributions the algorithm is applied to the Karhunen-Loève

eigenvalues λk. The λk are the eigenvalues of the covariance matrix Σx = P
n
HHT +σ2I.

Hence, the rate is allocated to the scalar modes according to the values of λk.
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The eigenvalue problem for λk (λk 6= σ2) reads

det(Σx − λI) = 0 (2.73)

det

(
P

n
HHT − (λ− σ2)I

)
= 0 (2.74)

det

(
P

n(σ2 − λ)
UΛUT + I

)
= 0 (2.75)

r∏
i=1

(
P

n(σ2 − λ)
λHi + 1

)
= 0, (2.76)

where r is the rank of the channel and λHi are the eigenvalues of HHT .

Since (2.76) must be fulfilled for all λk one can simplify (2.76) to

λHk =
n(λk − σ2)

P
⇔ λk =

P

n
λHk + σ2. (2.77)

In the case λk = σ2, (2.74) reduces to det(HHT ) = 0. As a consequence λHk = 0 and

therefore (2.77) is still fulfilled.

The Rate-Distortion Function

The reverse waterfilling algorithm provides the rate allocation and reads [2]

D(θ) =
n∑
k=1

min{θ, λk}, (2.78)

R(θ) =
n∑
k=1

max

{
0,

1

2
log2

(
λk
θ

)}
, (2.79)

where θ is the waterlevel. This is a parametric form of the rate-distortion function in

the vector case.

Then, if the eigenvalues λk are sorted in descending order, the number of active

“modes” is

n(θ) = arg max
i
λi, λi ∈ (λk > θ). (2.80)

The critical rates Rc where new modes are added are then

Rc(n) =
1

2

n∑
k=1

log2

(
λk
λn

)
(2.81)

=
1

2
n log2

(
λi
λn

)
. (2.82)
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Note the structural analogies of (2.144) and (2.82). This means n(θ) is incremented at

each Rc and is therefore now a function of R (n(θ)⇒ n(R)):

n(R) = max{n : R ≥ Rc(n)}. (2.83)

At rate R there are n(R) active scalar modes.

Rewriting the distortion (2.78) and the rate (2.79) as the sum of the per-mode

distortions and rates, as

D(θ) =
n∑
k=1

Dk(θ), (2.84)

R(θ) =
n∑
k=1

Rk(θ), (2.85)

yields the “mode” distortions and rates

Dk(θ) = min{θ, λk}, (2.86)

Rk(θ) = max

{
0,

1

2
log2

(
λk
θ

)}
. (2.87)

Since, in the scalar case, X ∼ N (0, P + σ2), the distortion-rate function is given by

D(R) = 2−2R(P + σ2). In the vector case we have n(θ) independent parallel Gaussian

channels, where P ⇒ P
n
λHk and R⇒ Rk(θ).

Proof :

D(Rk(θ)) = 2−2Rk(θ)

(
P

n
λHk + σ2

)
(2.88)

=

2
−2
(

1
2

log2

(
λk
θ

)) (
P
n
λHk + σ2

)
if λk ≥ θ

P
n
λHk + σ2 else

(2.89)

=

 θ
λk
λk if λk ≥ θ

λk else
(2.90)

= min(θ, λk) = Dk(θ). (2.91)

The Information-Rate Function

From the previous section we know that, in the scalar case, the information-rate func-

tion of the rate distortion solution is the same as the Gaussian information bottleneck
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solution (which has also been shown in [32]),

I(R) = I(y; t) = h(y)− h(y|t) =
1

2
log2

(
1 + P/σ2

1 + 2−2RP/σ2

)
. (2.92)

An intuitive explanation for this is the fact that the RD optimal t is also jointly Gaussian

with x. Hence, the scalar I(t; x) has the same structure in RD and GIB. Therefore, the

information curve of the kth “mode” is

Ik(Rk(θ)) =
1

2
log2

(
1 + P

nσ2λHk
1 + 2−2Rk(θ) P

nσ2λHk

)
. (2.93)

In the case of n independent Gaussian channels

I(R) = I(y; t) = h(y1; y2; . . . ; yn)−

h(y1; y2; . . . ; yn|t1; t2; . . . ; tn) (2.94)

=
n∑
k=1

(h(yk)− h(yk|tk)) (2.95)

=̂
n∑
k=1

Ik(Rk(θ)). (2.96)

The equivalence of information-rate function I(R) of the RD solution with (2.96) is

formally proved in [31]. The information-rate function of the rate distortion solution is

then given by (2.79) and (2.96):

R(θ) =
n∑
k=1

max

{
0,

1

2
log2

(
λk
θ

)}
, (2.97)

I(θ) =
1

2

n∑
k=1

log2

(
1 + P

nσ2λHk
1 + 2−2Rk(θ) P

nσ2λHk

)
. (2.98)

This is already the information-rate function in parametric form, since it is obtained

by the reverse waterfilling solution of the rate-distortion solution. To obtain an explicit

expression for the information-rate function, in a first step we sort the eigenvalues in

descending order, instead of the max operator in (2.97), and then rewrite (2.97) as

R(θ) =

n(R)∑
k=1

1

2
log2

(
λk
θ

)
(2.99)

=
1

2
n(R) log2

(
λn
θ

)
, (2.100)
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where it is ensured by n(R) that log2

(
λk
θ

)
≥ 0 and therefore the max operator in (2.97)

can be dropped. λn = λn(R) is the geometric mean
∏n(β)

i=1 λ
1/n(R)
i . Making θ explicit

yields

θ = 2
−2R
n(R)λn. (2.101)

Now we can replace θ in (2.87), which yields the explicit rate allocation

Rk(R) = max

{
0,

1

2

(
log2

(
λk

λn

)
+

2R

n(R)

)}
. (2.102)

Basically the rate R is evenly distributed among all n(R) active modes up to a correction

term. Depending on whether the eigenvalue of the mode is greater or smaller than λn

the rate R/n(R) is increased or decreased by log2(λk/λn). Interestingly, all rates of the

scalar modes have the same slope

∂Rk(R)

∂R
=

1

n(R)
, (2.103)

were n(R) is constant. Rk(R) is not differentiable at the critical rates . This means that

a differential increase dR is evenly distributed among all n(R) active modes. Inserting

(2.102) in (2.98) yields an explicit expression for the information-rate function.

Corollary 2.6. The information-rate function with RD-optimal channel output com-

pression is given by

I(R) =
1

2

n(R)∑
k=1

log2

 1 + P
nσ2λHk

1 + 2−
2R
n(R) P

nσ2λHk
λn
λk

 , (2.104)

where the number of active modes is given by

n(R) = max{n : R ≥ Rc(n)}, (2.105)

and the critical rates Rc(n) are given by

Rc(n) =
1

2
n log2

(
λi
λn

)
. (2.106)

Equivalently we can write (2.104) as the sum of n(R) scalar modes with the rate
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Figure 2.6: GIB equivalent vector system.

allocation (2.102) as follows:

I(R) =

n(R)∑
k=1

Ik(R) (2.107)

=
1

2

n(R)∑
k=1

log2

(
1 + P

nσ2λHk
1 + 2−2Rk(R) P

nσ2λHk

)
. (2.108)

We identify (2.108) as the sum of scalar information-rate functions with the mode rates

Rk(R). Of course the mode rates have to sum up to the total rate, i.e., we have

R =

n(R)∑
k=1

Rk(R). (2.109)

2.4.4 Information Bottleneck

Now we consider jointly Gaussian random vectors y, x, t, which form a Markov chain

y − x− t, (2.110)

where x = Hy + w , y ∼ N (0,D) and w ∼ N (0, σ2I), H ∈ Rn×n (cf. Fig. 2.6).

Recall the covariance matrices, in the simplest case where it is assumed that the transmit

power is evenly distributed among the uncorrelated y1 . . . yn,

Σy = D =
P

n
I, (2.111)

Σw = σ2I, (2.112)

Σx = HΣyH
T + Σw =

P

n
HHT + σ2I. (2.113)
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The conditional covariance matrix Σx|y, which is needed to calculate the necessary

eigenvalues from Theorem 2.3, can be calculated by the Schur complement as

Σx|y = Σx −Σx,yΣ
−1
y ΣT

x,y = Σw = σ2I. (2.114)

Using these covariance matrices to calculate the eigenvalues from Theorem 2.3 then

yields

Σx|yΣ
−1
x = σ2I

(
P

n
HHT + σ2I

)−1

(2.115)

=

(
P

nσ2
HHT + I

)−1

(2.116)

=

(
P

nσ2
UΛUT + I

)−1

=: B−1, (2.117)

where the channel matrix is diagonalized as HHT = UΛUT . The resulting eigenvalue

problem is

vB−1 = λv (2.118)

⇒ v = λvB (2.119)

⇒ 1

λ
v = vB (2.120)

λBv = vB (2.121)

λ =
1

λB
. (2.122)

The characteristic equation for λB (λB 6= 1) is

det(B − λBI) = 0 (2.123)

det

(
P

nσ2
UΛUT − (λB − 1)I

)
= 0 (2.124)

det

(
P

nσ2(1− λB)
UΛUT + I

)
= 0 (2.125)

r∏
i=1

(
P

nσ2(1− λB)
λHi + 1

)
= 0, (2.126)
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where r is the rank of the channel and λHi are the eigenvalues of HHT . Since (2.126)

must be fulfilled for all λBi one can simplify this to

⇒ nσ2(1− λBi) + PλHi = 0 (2.127)

λBi = 1 +
P

nσ2
λHi (2.128)

λi =
1

λBi
=

1
P
nσ2λHi + 1

. (2.129)

In the case λB = 1, (2.124) reduces to det(HHT ) = 0. As a consequence λHi = 0 and

therfore (2.128) and (2.129) are still fulfilled.

The Information-Rate Function

The mutual information between t and x is again a measure for the compression and

can be interpreted as a compression rate R. This yields

Iβ(t; x) =
1

2

n(β)∑
i=1

log2

(
(β − 1)

1− λi
λi

)

)
(2.130)

=
1

2
log2

(β − 1)n(β)

n(β)∏
i=1

1− λi
λi

 , R. (2.131)

Then making β explicit yields following expression

⇒ β = 2
2R
n(β)

n(β)∏
i=1

(
λi

1− λi

) 1
n(β)

+ 1. (2.132)
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Using the expression for the mutual information between t and y as in the scalar case

and substituting β with (2.132) reads

Iβ(t; y) = I(t; x)− 1

2

n(β)∑
i=1

log2 (β(1− λi)) (2.133)

= R− 1

2
log2

βn(β)

n(β)∏
i=1

(1− λi)

 (2.134)

= R− 1

2
×

log2


2

2R
n(β)

n(β)∏
i=1

(
λi

1− λi

) 1
n(β)

+ 1

n(β)
n(β)∏
i=1

(1− λi))

 (2.135)

= R− 1

2
n(β) log2

2
2R
n(β)

n(β)∏
i=1

λ
1

n(β)

i +

n(β)∏
i=1

(1− λi)
1

n(β)

 (2.136)

=
1

2
n(β) log2

 2
2R
n(β)

2
2R
n(β)
∏n(β)

i=1 λ
1

n(β)

i +
∏n(β)

i=1 (1− λi)
1

n(β)

 . (2.137)

Now substituting λi with (2.129) yields

Iβ(t; y) =
1

2
n(β) log2

 2
2R
n(β)

2
2R
n(β) + P

nσ2
λHn∏n(β)

i=1 (1+ P
nσ2

λHi)
1/n(β)

 (2.138)

=
1

2
n(β) log2

(
2

2R
n(β)
∏n(β)

i=1

(
1 + P

nσ2λHi
)1/n(β)

2
2R
n(β) + P

nσ2λHn

)
(2.139)

=
1

2
log2

n(β)∏
i=1

2
2R
n(β) (1 + P

nσ2λHi)

2
2R
n(β) + P

nσ2λHn

 (2.140)

=
1

2

n(β)∑
i=1

log2

(
2

2R
n(β) (1 + P

nσ2λHi)

2
2R
n(β) + P

nσ2λHn

)
, I(R), (2.141)

where λHn = λHn(R)
is the geometric mean

∏n(β)
i=1 λ

1/n(β)
Hi

. Again substituting λi with

(2.129) and inserting the critical β values βc = 1/(1− λn) yields critical rates Rc when
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using (2.130):

Rc(n) =
1

2

n∑
i=1

log2

(
λn

1− λn
1− λi
λi

)
(2.142)

=
1

2

n∑
i=1

log2

(
λHi
λHn

)
(2.143)

=
1

2
n log2

(
λHn
λHn

)
. (2.144)

Hence, the eigenvalues λi are sorted in ascending order and λHi ∝ 1/λi, the λHi are in

descending order.

At the critical rates new modes are added to I(R) (2.141). This means n(β) is

incremented at each Rc and is therefore a function explicitly in R (n(β)⇒ n(R)):

n(R) = max{n : R ≥ Rc(n)}. (2.145)

Or in other words, at rate R there are n(R) active modes. These are the modes with

the n(R) largest eigenvalues λHi . The following corollary gives an explicit expression

for the information-rate function.

Corollary 2.7. The information-rate function with GIB-optimal channel output com-

pression is given by

I(R) =
1

2

n(R)∑
i=1

log2

(
1 + P

nσ2λHi

1 + 2−
2R
n(R) P

nσ2λHn

)
, (2.146)

where the number of active modes n(R) is given by

n(R) = max{n : R ≥ Rc(n)}, (2.147)

and the critical rates Rc(n) are given by

Rc(n) =
1

2
n log2

(
λHn
λHn

)
. (2.148)

We identify (2.146) as the sum of n(R) scalar information-rate functions, i.e., we
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have

I(R) =

n(R)∑
i=1

Ii(R) (2.149)

=
1

2

n(R)∑
i=1

log2

(
1 + P

nσ2λHi
1 + 2−2Ri(R) P

nσ2λHi

)
. (2.150)

Comparing (2.146) with (2.150), yields the rate allocation

Ri(R) = max

{
0,

R

n(R)
+

1

2
log2

λHi
λHn

}
. (2.151)

This is essentially the same way of rate allocation as in the RD case, where the rate R

is evenly distributed among all n(R) active modes up to a correction term. Depending

on whether the eigenvalue of the mode is greater or smaller than λHn the rate R/n(R)

is increased or decreased by log2(λHi/λHn). All rates of the scalar modes have the same

slope

∂Ri(R)

∂R
=

1

n(R)
, (2.152)

where n(R) is constant. As before, Ri(R) is not differentiable on the critical rates.

This means that a differential increase dR is evenly distributed among all n(R) active

modes. Of course the scalar rates again have to sum up to the total rate

R =

n(R)∑
i=1

Ri(R). (2.153)

Rewriting (2.146) in the form I(R) = 1
2

∑n(R)
i=1 log2(1 + SNRi) yields the “mode”

SNRs

SNRi =
P

nσ2

2
2R
n(R)λHi − λHn

2
2R
n(R) + P

nσ2λHn
. (2.154)

As in the scalar case, the information-rate function can also be directly obtained,

without using Iβ(t; x) and Iβ(t; y) from [8]. Again we just need the identity t = Ax+ξ =

A(y + w) + ξ. As presented in Subsection 2.4.2 an equivalent diagonalized system can

be given with the diagonal channel H = diag
{√

λHi
}n
i=1

. The problem reduces then

to n scalar information-rate functions with ti = Aixi + ξi, where we still have to find

the optimal rate allocation. The resulting information-rate function is the sum of the
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Figure 2.7: I(R)/C (left) and IR(SNR) (right).

individual scalar information-rate functions (2.150)

I(R) =
1

2

n∑
i=1

log2

(
1 + P

nσ2λHi
1 + 2−2Ri P

nσ2λHi

)
, (2.155)

with the rate constraint R =
∑n

i=1Ri. The optimal rate allocation can then be obtained

using Lagrange multipliers. That this solution is indeed equal to (2.146) will be shown

in Subsection 2.6.

The Rate-Information Function

Next we calculate the inverse to the information-rate function, the rate-information

function. Rewriting (2.133) as

R(I) = I − 1

2

n(β)∑
i=1

log2 (β(1− λi)) , (2.156)

then using (2.130) to substitute R(I) and making I explicit yields

I(β) =
1

2

n(β)∑
i=1

log2

(
β − 1

β

1

λi

)
(2.157)

=
1

2
n(β) log2

(
β − 1

β

)
− 1

2
log2 (λi) . (2.158)
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The above equation can be rewritten as

log2

(
β − 1

β

)
=

2I

n(β)
+

1

n(β)

n(β)∑
i=1

log2 (λi) (2.159)

=
2I

n(β)
+ log2

(
λ̄n
)
. (2.160)

Making β explicit yields

β =
1

1− 2
2I
n(β) λ̄n

. (2.161)

Inserting the expression for β in (2.161) into (2.130) yields

R(I) =
1

2

n(β)∑
i=1

log2

(
2

2I(R)
n(β) λ̄n

1− 2
2I
n(β) λ̄n

1− λi
λi

)
. (2.162)

The last step is to substitute λi with (2.129) and rearrange the equation to

R(I) =
1

2

n(β)∑
i=1

log2

 P
nσ2λHi

1/
(

2
2I
n(β) λ̄n

)
− 1

 . (2.163)

However, R(I) still depends on β through n(β). Analog to the critical rates we can

calculate critical mutual information values from (2.157) if we use the critical beta

values βc = 1/(1− λn):

Ic(n) =
1

2

n∑
i=1

log2

(
λn
λi

)
(2.164)

=
1

2
n log2

(
λn
λ̄n

)
. (2.165)

At these critical information values Ic new modes are added to R(I) (2.163). This

means n(β) is incremented at each Ic and is therefore a function of I (n(β)⇒ n(I)):

n(I) = max{n : I ≥ Ic(n)}. (2.166)

Or in other words, at mutual information I there are n(I) active modes. These are the

modes with the n(I) smallest eigenvalues λi. The following corollary gives an explicit

expression for the rate-information function.

Corollary 2.8. The rate-information function with GIB optimal channel output com-
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pression is given by

R(I) =
1

2

n(I)∑
i=1

log2

 P
nσ2λHi

1/
(

2
2I
n(I) λ̄n

)
− 1

 , (2.167)

where the number of active modes n(R) is given by

n(I) = max{n : I ≥ Ic(n)}, (2.168)

and the critical mutual information values Ic(n) are given by

Ic(n) =
1

2
n log2

(
λn
λ̄n

)
. (2.169)

We identify (2.167) as the sum of n(I) scalar rate-information functions, i.e., we

have

R(I) =

n(I)∑
i=1

Ri(I) (2.170)

=
1

2

n(I)∑
i=1

log2

(
P
nσ2λHi

2−2Ii(I)
(
1 + P

nσ2λHi
)
− 1

)
. (2.171)

Comparing (2.167) with (2.171) yields

Ii(I) =
I

n(I)
+

1

2
log2

(
λ̄n
λi

)
(2.172)

and

I =

n(I)∑
i=1

Ii(I). (2.173)

2.4.5 MSE-Optimal Quantization

Although we showed that in the scalar case RD and GIB yield the same information-rate

function, this is not true in the vector case. While the information bottleneck directly

maximizes the mutual information it is clearly the upper bound for all information-

rate functions. RD minimizes the MSE E{d(t, x)} = E{d(x̂, x)}, i.e., it compresses

the received signal x with smallest distortion. Actually a more reasonable approach

would be to compress x in a manner that minimizes the MSE of the desired signal y,
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so E{d(t, y)} = E{d(ŷ, y)}. Mathematically formulating this problem analogous to RD

reads as

R(D) , min
f(ŷ|x)

I(x; ŷ) s.t. E{d(y, ŷ)} ≤ D, (2.174)

In [2] it was shown that this problem can be optimally solved by a Wiener filter, which

estimates y with smallest MSE, followed by reverse waterfilling on the estimate. [24]

studied MSE optimal quantization, not only for the case with a Wiener filter, but for

arbitrary linear filters, followed by reverse waterfilling. In particular [24] derives the

information-rate function, where the derivation is analogous to the regular RD quanti-

zation. The resulting information-rate function is given in the following theorem [24].

Theorem 2.9. The information-rate function with MSE optimal channel output com-

pression is given by

I(R) =
1

2

n(R)∑
i=1

log2

 1 + P
nσ2λHi

1 + 2−
2R
n(R) P

nσ2λHn
1+λHi
λHi

λHn
λHn+1

 . (2.175)

where the number of active modes n(R) is given by

n(R) = max{n : R ≥ Rc(n)}, (2.176)

and the critical rates Rc(n) are given by

Rc(n) =
1

2

n∑
i=1

log2

(
λ2
Hi

1 + λHi

1 + λHn
λ2
Hn

)
. (2.177)

This can again be identified as the sum of n(R) active scalar modes

I(R) =

n(R)∑
i=1

Ii(R) (2.178)

=
1

2

n(R)∑
i=1

log2

(
1 + P

nσ2λHi
1 + 2−2Ri(R) P

nσ2λHi

)
, (2.179)

because by comparison of coefficients in (2.175) and (2.179), we have

Ri(R) =
R

n(R)
+

1

2
log2

λ2
Hi

1 + λHi

λHn + 1

λ2
Hn

. (2.180)
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2.5 Discussion of the Optimal Information-Rate Function

Now we discuss and prove the general properties of the optimal information-rate func-

tion, i.e., the information-rate function of the Gaussian information bottleneck. These

properties are true for all Gaussian sources and noise and arbitrary channel realizations.

The information-rate function I(R) has the following properties:

1. I(R) is concave (∩) in R on [0,∞).

2. I(R) is strictly increasing in R, i.e., I(R) > I(R′) iff R > R′.

3. I(R) ≤ R.

4. I(0) = 0.

5. lim
R→∞

I(R) = I(x; y).

6. I ′(R) = 1
n(R)

∑n(R)
i=1

P
nσ2

λHn

2
2R
n(R) + P

nσ2
λHn

≤ 1 and I ′(R) is continuous.

Consequently, the rate-information function R(I) has the following properties:

1. R(I) is convex (∪) in I on [0, I(X;Y )).

2. R(I) is strictly increasing in I, i.e., R(I) > R(I ′) iff I > I ′.

3. R(I) ≥ I.

4. R(0) = 0.

5. lim
I→I(X;Y )

R(I) =∞.

6. R′(I) = 1
n(I)

∑n(I)
i=1

1/λn

2
2R
n(I)−1/λn

≥ 1 and R′(I) is continuous.

Fig. 2.8 shows an illustration of the general form of the information-rate function.

The area below the curve is the feasible region, where every point is reachable. For rates

R < C the feasible region is limited by the fact that I(R) ≤ R and therefore called rate

limited region. For R > C the feasible region is limited by the channel capacity, i.e.,

I(R) ≤ C and thus called capacity limited region.

Next we prove the general properties of the information-rate function. The prop-

erties of the rate-information function follow from the fact that it is the inverse of the

information-rate function.

Proof (I(R)):
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I(R)

R

feasible region

I(X;Y ) = C

I(X; X̂) = R

Figure 2.8: Illustration of the information-rate function.

1. From the definition of concavity we have

I(αR1 + (1− α)R2) ≥ αI(R1) + (1− α)I(R2), 0 ≤ α ≤ 1. (2.181)

Without loss of generality we assume that R1 ≤ R2 and define Rα = αR1 + (1−
α)R2). Because a sum of concave functions is again a concave function we have

to show that each summand in (2.146) is concave:

log2

(
1 + P

nσ2λHi

1 + 2−
2Rα
n(Rα) P

nσ2λHn

)
≥ α log2

 1 + P
nσ2λHi

1 + 2
− 2R1
n(R1)

P
nσ2λHn

+

(1− α) log2

 1 + P
nσ2λHi

1 + 2
− 2R2
n(R2)

P
nσ2λHn

(2.182)

log2

 1 + 2
− 2R2
n(R2)

P
nσ2λHn

1 + 2−
2Rα
n(Rα) P

nσ2λHn

 ≥ α log2

1 + 2
− 2R2
n(R2)

P
nσ2λHn

1 + 2
− 2R1
n(R1)

P
nσ2λHn

 (2.183)

1 + 2
− 2R2
n(R2)

P
nσ2λHn

1 + 2−
2Rα
n(Rα) P

nσ2λHn

≥

1 + 2
− 2R2
n(R2)

P
nσ2λHn

1 + 2
− 2R1
n(R1)

P
nσ2λHn

α

(2.184)

(
1 + 2

− 2R2
n(R2)

P

nσ2
λHn

)1−α

≥
1 + 2−

2Rα
n(Rα) P

nσ2λHn(
1 + 2

− 2R1
n(R1)

P
nσ2λHn

)α (2.185)

1 + 2−
2Rα
n(Rα)

P

nσ2
λHn ≤

(
1 + 2

− 2R2
n(R2)

P

nσ2
λHn

)1−α

×(
1 + 2

− 2R1
n(R1)

P

nσ2
λHn

)α
. (2.186)
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If we weaken the inequality to prove partly concavity on intervals where n(Rα) =

n(R1) = n(R2), we define the equivalent inequality

(1 + a)α(1 + b)1−α ≥ 1 + aαb1−α, (2.187)

where a = 2
− 2R1
n(R1)

P
nσ2λHn and b = 2

− 2R2
n(R2)

P
nσ2λHn , hence a ≥ b. This can be seeen

as a weighted geometric mean. We reformulate the equivalent inequality as

g(x) = (1 + x)α(1 + b)1−α − 1− xαb1−α ≥ 0. (2.188)

Then g(b) = 0 and the first derivate is

g′(x) = α
(
(1 + x)α−1(1 + b)1−α − xα−1b1−α) = α

(
1 + b

1 + x

)1−α

− α
(
b

x

)1−α

.

(2.189)

It can be easily seen that g′(x) < 0 for 0 < x < b and g′(x) > 0 for x > b. It

follows that g(x) ≥ 0, and hence each summand is partly concave. This statement

is not true in general, i.e., if Rα = R+
c and R1 = R−c , then n(Rα) = n(R1) + 1.

Because we already showed partly concavity on intervals where n(Rα) = n(R1),

it is sufficient to show that I ′(R) is continuous. This is done in 6).

An equivalent way to prove the concavity of I(R) is to show that I(R) is contin-

uously differentiable and I ′(R) is strictly decreasing, that is

I ′(R1) ≥ I ′(R2), R1 ≤ R2. (2.190)

Since I ′(R) is continuous (will be shown in 6)), it is sufficient to show (2.190) for

rates R1, R2 where n(R1) = n(R2). The proof then simplifies and it remains to

show that each summand in I ′(R) is strictly decreasing:

P
nσ2λHn

2
2R1
n(R1) + P

nσ2λHn

≥
P
nσ2λHn

2
2R2
n(R2) + P

nσ2λHn

(2.191)

2
2R1
n(R1) ≤ 2

2R2
n(R2) (2.192)

R1 ≤ R2. (2.193)

Hence, I(R) is concave.

2. Since all eigenvalues λHi are nonnegative, the arguments of each logarithm in

(2.146) are strictly increasing in R. The logarithm is a strictly increasing func-
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tion and hence I(R) is strictly increasing in R.

3. This property can be justified by the data processing inequality. Recall that we

have the Markov chain y−x−t and R = I(t; x) and I = I(t; y). Loosely speaking

the data processing inequality states that data processing can never increase the

mutual information. Therefore,

I(t; x) ≥ I(t; y) ⇔ R ≥ I(R). (2.194)

This can also be shown by directly evaluating (2.146) as

I(R) =
1

2

n(R)∑
i=1

log2

(
2

2R
n(R) (1 + P

nσ2λHi)

2
2R
n(R) + P

nσ2λHn

)
(2.195)

= R− 1

2

n(R)∑
i=1

log2

(
2

2R
n(R) + P

nσ2λHn
1 + P

nσ2λHi

)
. (2.196)

To fulfill I(R) ≤ R it is sufficient that I(0) = 0 (property 4)) and maxR I
′(R) ≤ 1

(from property 6)).

4.

I(0) =
1

2
log2

(
1 + P

nσ2λH1

1 + P
nσ2λH1

)
= 0. (2.197)

5.

lim
R→∞

I(R) =
1

2

n∑
i=1

log2

(
1 +

P

nσ2
λHi

)
= I(x; y). (2.198)

6. Taking the derivate of (2.196) with respect to R yields

I ′(R) =
1

n(R)

n(R)∑
i=1

P
nσ2λHn

2
2R
n(R) + P

nσ2λHn
. (2.199)

From (2.199) and the property of concavity it follows that maxR I
′(R) = I ′(0) =

1 − (1 + P
nσ2λH1)

−1 ≤ 1 and minR I
′(R) = lim

R→∞
I ′(R) = 0. I ′(R) is obviously

continuous for constant n(R) because all summands are continuous. Hence, we
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have to prove that I ′(R) is continuous at the critical rates Rc(j). Note that

I ′(R) =
∂I(R)

∂R
=

n(R)∑
i=1

∂Ii(R)

∂R
=

n(R)∑
i=1

∂Ii(Ri(R))

∂R
=

n(R)∑
i=1

∂Ii(Ri)

∂Ri

∂Ri

∂R
. (2.200)

∂Ii(Ri)/∂Ri can easily be calculated from the scalar information-rate function

(2.53) as

∂Ii(Ri)

∂Ri

=
P
nσ2λHi

22Ri + P
nσ2λHi

. (2.201)

∂Ri/∂R can be obtained from the equation for the mode rate allocation (2.151)

as

∂Ri

∂R
=

1

n(R)
R 6= Rc(j). (2.202)

By evaluating (2.201) at the specific allocated rates Ri(R) (2.151), we get

∂Ii(Ri)

∂Ri

∣∣∣∣
Ri=Ri(R)

=
P
nσ2λHn

2
2R
n(R) + P

nσ2λHn
, (2.203)

which we identify as the summands in (2.199). Hence, all modes have the same

slope at the rates Ri(R). To prove that I ′(R) is continuous, it is therefore sufficient

to prove that ∂Ii(Ri)
∂Ri

∣∣
Ri=Ri(R)

is continuous. We show that

lim
R→Rc(j)−

∂Ii(Ri)

∂Ri

∣∣∣∣
Ri=Ri(Rc(j)−)

= lim
R→Rc(j)+

∂Ii(Ri)

∂Ri

∣∣∣∣
Ri=Ri(Rc(j)+)

(2.204)

P
nσ2λHj−1

2
2Rc(j)
j−1 + P

nσ2λHj−1

=
P
nσ2λHj

2
2Rc(j)
j + P

nσ2λHj

(2.205)

λHj−1(
λHj
λHj

)j/(j−1)

+ P
nσ2λHj−1

=
λHj

λHj
λHj

+ P
nσ2λHj

(2.206)

λHj−1

λHj−1

λHj
+ P

nσ2λHj−1

=
λHj

λHj
λHj

+ P
nσ2λHj

(2.207)

1
1

λHj
+ P

nσ2

=
1

1
λHj

+ P
nσ2

, (2.208)

where we used the identity λ
j

Hj
= λ

j−1

Hj−1
λHj . Thus, I ′(R) is also continuous.
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Proof (R(I)):

1) follows directly from property 1) and 5) of I(R).

2) follows directly from property 2) of I(R).

3) follows directly from property 3) of I(R).

4) follows directly from property 4) of I(R).

5) follows from property 1) and 3).

2.6 Comparison of GIB and RD Solution

To distinguish between the solution for the Gaussian information bottleneck and the

rate distortion, the information-rate functions are from now on called IGIB(R), respec-

tivly IRD(R). Obviously there can only be a difference in the solutions, if a channel

is present, so σ2 > 0. Also at least one eigenvalue has to be different than the others,

because the eigenvalues determine the rates where additional modes get active. If all

eigenvalues are the same, the rate is just evenly distributed among all modes, at all

rates.

Theorem 2.10. Iff maxλHi 6= minλHi and σ2 > 0, then λk >
P
n
λHk , λn >

P
n
λHn and

IGIB(R) > IRD(R), (2.209)

otherwise

IGIB(R) = IRD(R). (2.210)

If all eigenvalues are equal, then

IRD(R) = IGIB(R). (2.211)

In the high SNR region (σ2 � P ) λk ≈ P
n
λHk , hence

IRD(R) ≈ IGIB(R). (2.212)

Proof: In the previous section it was shown that the RD solution allocates the rate

on n(R) scalar modes according to the reverse waterfilling algorithm on the eigenvalues

λk. It turns out that the GIB solution is also mathematically equivalent to the reverse

waterfilling algorithm, but on the eigenvalues λHi . So we will show that the GIB solution

is indeed also the solution of the constrained maximization problem formulated with
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Lagrange multipliers

Λ(R1, . . . , Rn, µ) =
n∑
i=1

Ii(Ri)− µ

(
n∑
i=1

Ri −R)

)
, (2.213)

where µ is the Lagrange multiplier. Setting the derivative to zero yields

∂Λ(R1, . . . , Rn, µ)

∂Ri

= 2
P
nσ2λHi

22Ri + P
nσ2λHi

− µ = 0. (2.214)

Solving this equation for Ri yields

Ri = max

{
0,

1

2
log2

(
P
nσ2λHi
θ

)}
, (2.215)

which is the reverse waterfilling formulation with the “waterlevel” θ, where µ = 2θ P
nσ2/(1+

θ P
nσ2 ). Using (2.215) in

∑n
i=1Ri = R to express θ in R yields θ = 22R/n(R)/( P

nσ2 λ̄Hn).

Substituting this back in (2.215) formulates as

Ri = max

{
0,

R

n(R)
+

1

2
log2

λHi
λ̄Hn

}
. (2.216)

This equation is identical to (2.151). Thus, this rate allocation is optimal, i.e., it

maximizes I(R) at a given rate and every other rate allocation is suboptimal.

2.6.1 Number of Active Modes

Although we showed that in the scalar case I(R) = IRD(R), this is in general not true in

the vector case. This is caused by the fact that the information-rate function is the sum

of the information-rate functions of the individual modes and the total rate R has to

be distributed among these modes. How the rate is distributed is different in GIB and

RD, also the number of active modes n(R) may be different. This fact is summarized

in the following theorem.

Theorem 2.11. The number of active modes using GIB-optimal channel output com-

pression is always less or equal to the number of active modes using RD-optimal channel

output compression

nRD(R) ≥ n(R), (2.217)

or equivalently the critical rates using GIB-optimal channel output compression are al-
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Figure 2.9: Example for number of active “modes”.

ways greater or equal to the critical rates using RD-optimal channel output compression

RcRD(k) ≤ Rc(k). (2.218)

Proof: Comparing (2.82) and (2.144) yields

1

2
k log2

(
λ̄k
λk

)
≤ 1

2
k log2

(
λ̄Hk
λHk

)
(2.219)

λ̄k
λ̄Hk

≤ λk
λHk

(2.220)

k∏
k=1

(
P

n
+

σ2

λHk

)1/k

≤ P

n
+

σ2

λHk
. (2.221)

The last inequality in (2.221) is obviously true, since the eigenvalues are sorted in

descending order and therefore λHk is the smallest of the first k eigenvalues.

2.6.2 Quantitative Comparison of Some Selected Channels

Beamforming Scenario

In a typical beamforming scenario, where only one eigenvalue of HHT is present (i.e.,

λH1 = 1, λHi = 0), the largest differences between GIB and RD are expected. Defining

the SNR as

ρ =
P

nσ2
(2.222)
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yields

λH1 = 1, λ1 = (1 + ρ)σ2, (2.223)

λHi = 0, λi = σ2. (2.224)

For low rates R only one mode is active in GIB and RD. Therefore, GIB and RD

are equivalent for small rates. The critical rate where a second mode becomes active

Rc(2) is in RD always lower than in GIB. In the beamforming scenario only one mode

is active at all rates in the GIB case. In the following we denote the critical rates in

RD as RcRD
(n).

R ≤ RcRD
(2): IRD(R) = IGIB(R).

Calculating the critical rate RcRD
(2) from (2.82) yields

RcRD
(2) =

1

2
log2

P
n

+ σ2

σ2
=

1

2
log2

(
1 +

P

nσ2

)
=

1

2
log2(1 + ρ) = C. (2.225)

So for rates lower than channel capacity both information-rate functions are equal,

R ≤ C ⇒ IRD(R) = IGIB(R) (2.226)

and thus the difference ∆I = IGIB(R)− IRD(R) is generally bounded by

∆I ≤ C − I(C) =
1

2
log2

(
1 + ρ

1

1 + ρ

)
, (2.227)

since I(R) is a strictly increasing function, IGIB(R) ≤ C and IRD(R) ≥ I(C) if R ≥ C.

The bound becomes tight for R� n� 1.

R > RcRD
(2) = C: IRD(R) < IGIB(R).

In the GIB case n(R) = 1 for all rates and therefore one can calculate from (2.146)

IGIB(R) =
1

2
log2

(
1 + ρ

1 + ρ 2−2R

)
. (2.228)

Otherwise in the RD case n(R) = n, but only the mode with λH1 = 1 carries mutual

information. So one can calculate from (2.104)

IRD(R) =
1

2
log2

(
1 + ρ

1 + ρ 2−2R/n(1 + ρ)1/n−1

)
, (2.229)
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Figure 2.10: ∆I(R)/I(R) (top) and ∆IR(SNR)/IR(SNR) (bottom); λH1 = 1, λH2 = 0;
n = 4 (left); SNR = 0dB (top right); R = 5bits (bottom right).

and

∆I(R) =
1

2
log2

(
1 + ρ 2−2R/n(1 + ρ)1/n−1

1 + ρ 2−2R

)
. (2.230)

Fig. 2.10 shows ∆I for various SNRs. It can be observed that the difference increases

in the high dimensional case, but decreases for increasing ρ. The points where ∆I = 0

are determined by (2.225), where R = RcRD
(2) = C. In Fig. 2.10 (bottom right) this

corresponds to the ρ value where R = 1
2

log2(1 + ρ), since R is fixed.

General 2× 2 Case

Because in the general n × n case many critical rates for both RD and GIB exist, it

is not possible to give a handy expression for ∆I(R). In the 2 × 2 case we only have

two critical rates, which we therefore denote by RcGIB (from (2.144)) and RcRD (from



Chapter 2. Performance without Feedback 46

0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

R in bits

∆ 
I(

R
)/

I G
IB

(R
)

 

 
λ

H
2

 = 0

λ
H

2

 = 0.001

λ
H

2

 = 0.01

λ
H

2

 = 0.1

λ
H

2

 = 1

0 10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

SNR in dB

∆ 
I R

(S
N

R
)/

I R
(S

N
R

)

 

 
λ

H
2

 = 0

λ
H

2

 = 0.001

λ
H

2

 = 0.01

λ
H

2

 = 0.1

λ
H

2

 = 1

Figure 2.11: ∆I(R)/I(R) with SNR = 0dB (left) and ∆IR(SNR)/IR(SNR) with
R = 5 bits (right).

(2.82)):

RcGIB =
1

2
log2

λH1

λH2

, (2.231)

RcRD =
1

2
log2

λ1

λ2

=
1

2
log2

P
nσ2λH1 + 1
P
nσ2λH2 + 1

. (2.232)

Then the information-rate functions are

IGIB(R) =
1

2


1+ P

nσ2
λH1

1+2−2R P
nσ2

λH1

, R < RcGIB

1+ P
nσ2

λH1

1+2−R P
nσ2

√
λH1

λH2

+
1+ P

nσ2
λH2

1+2−R P
nσ2

√
λH1

λH2

, R ≥ RcGIB

, (2.233)

IRD(R) =
1

2


1+ P

nσ2
λH1

1+2−2R P
nσ2

λH1

, R < RcRD

1+ P
nσ2

λH1

1+2−R P
nσ2

λH1

√
λ1λ2/λ1

+
1+ P

nσ2
λH2

1+2−R P
nσ2

λH2

√
λ1λ2/λ2

. R ≥ RcRD

. (2.234)

We have RcRD ≤ RcGIB and therefore we can write the difference of the information-rate

functions ∆I(R) (cf. Fig. 2.11) as

∆I(R) =
1

2


0, R < RcRD

log2

1+2−R P
nσ2

λH1

√
λ1λ2/λ1

1+2−2R P
nσ2

λH1

+ log2

1+2−R P
nσ2

λH2

√
λ1λ2/λ2

1+ P
nσ2

λH2

, RcRD ≤ R < RcGIB

log2

1+2−R P
nσ2

λH1

√
λ1λ2/λ1

1+2−R P
nσ2

√
λH1

λH2

+ log2

1+2−R P
nσ2

λH2

√
λ1λ2/λ2

1+2−R P
nσ2

√
λH1

λH2

, R ≥ RcGIB

.

(2.235)



3
Performance with Feedback

3.1 Introduction

Until now we studied scenarios without feedback, and it is well known that feedback

does not increase the channel capacity [10] of AWGN channels,

CFB = C =
1

2
log2

(
1 +

P

σ2

)
. (3.1)

So why study feedback? Schalkwijk and Kailath showed that a scheme with feedback

([28], [27]), although it does not increase the capacity, can be very beneficial. They

demonstrated that a relatively simple iterative scheme can drastically reduce the error

probability and can even achieve channel capacity.

In our context we understand feedback as the additional knowledge of the transmit-

ter about the received signal at the receiver side. In many practical systems feedback

is used to give the transmitter knowledge about the channel (channel state informa-

tion). We instead, in the most generic system, directly feed back the received signal

and assume the transmitter has perfect knowledge about it, i.e., the feedback channel

is perfect. Such systems would have very high requirements regarding the feedback

channel and therefore are not feasible. Here it is important to reduce the rate of the

feedback to a reasonable amount and quantizers become an issue. We study the per-

formance of systems with GIB quantizers and therefore the basic requirement is that

all signals are Gaussian.

This requirement restricts the system design to a communication system where

the initial transmit symbol is Gaussian and also the later transmitted iterations are

47
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Gaussian. The later transmitted iterations are a function of the transmit message

and the previously received feedback signals. The Gaussianity of all signals can be

guaranteed by restricting to systems with linear feedback.

3.2 Source Signal Model

The optimization in the previous chapters was done with a Gaussian source signal,

yielding the Gaussian information bottleneck. If we want to measure the performance

of systems, we usually want to give error probabilites, i.e., symbol error probability or

bit error probability. Therefore, we have to discretize the source. In order to combine

the contradictory requirements of the Gaussian source and the discrete source we ap-

proximate the Gaussian source by a discrete source. To derive the discrete signal we

use definitions and derivations of the Riemann integral.

Given an interval [a, b] and f : [a, b]→ R, a bounded function. We partition the interval

[a, b] in intervals of size ∆, where n∆ = b − a and xk = a + k∆. Then we define the

upper sum and lower sum as

O(∆) ,
n∑
k=1

∆ sup
xk−1<x<xk

f(x), (3.2)

U(∆) ,
n∑
k=1

∆ inf
xk−1<x<xk

f(x). (3.3)

By the definition of integrability we have∫ b

a

f(x)dx , lim
∆→0

U(∆) = lim
∆→0

O(∆), (3.4)

if the last equality holds. Clearly if we do not take xk−1 < x < xk, which achieves the

supremum in O(∆) and the infimum in U(∆), but set x = xk and define

S(∆) ,
n∑
k=1

∆f(xk), (3.5)

we get a sum which is bounded by O(∆) and U(∆)

O(∆) ≥ S(∆) ≥ U(∆). (3.6)
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If (3.4) is fulfilled, we get ∫ b

a

f(x)dx = lim
∆→0

S(∆). (3.7)

To come back to the desired discrete approximation p(x) of our Gaussian distribution

f(x), the approximation should ideally fulfill∫ b

a

f(x)dx =
n∑
k=1

p(xk) a, b ∈ R. (3.8)

Comparing this equation with (3.7) yields

p(xk) = lim
∆→0

∆f(xk). (3.9)

In this case, ∆→ 0, we say both are equivalent. If ∆ > ε > 0 (3.8) is no longer exactly

fulfilled, but again we define the approximation as (Fig. 3.1)

p(xk) ≈ ∆f(xk). (3.10)

The relation of differential entropy and the entropy of the discretized version is

derived in [10]. The differential entropy of the original Gaussian source is denoted as

h(x). The source should have the rate R, which is the discrete entropy H(x)

R = H(x) = −
∑
x

p(xk) log2 p(xk). (3.11)

Now substituting p(xk) with (3.10) yields

R = −
∞∑
−∞

∆f(xk) log2(∆f(xk)) (3.12)

= −
∞∑
−∞

∆f(xk) log2 f(xk)−
∞∑
−∞

∆f(xk) log2 ∆ (3.13)

≈ −
∫ ∞
−∞

f(xk) log2 f(xk)dx︸ ︷︷ ︸
=h(x)

−
∫ ∞
−∞

f(xk)dx︸ ︷︷ ︸
=1

log2 ∆ (3.14)

= h(x)− log2 ∆. (3.15)

This approximation gets tight for high rates and is exactly fulfilled as R → ∞. The
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Figure 3.1: Gaussian distribution (top) and resulting discrete approximation (bottom).

differential entropy of a Gaussian source is

h(x) =
1

2
log2(2πeσ2). (3.16)

Making ∆ explicit then yields

⇒ ∆2 =
σ2

22R
2πe. (3.17)

An uniform distribution would result in

∆2
U =

σ2

22R

1

12
. (3.18)

Then the ratio of (3.17) and (3.18) is called the ultimate shaping gain [13] and formulates
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θ
Transmitter

z[n] ∼ N (0, 1)

Receiver
θ̂x[n] y[n]

b[n− 1]

Figure 3.2: Generic system model.

as

c2
0 =

∆2

∆2
U

=
πe

6
, 1.53dB. (3.19)

So the discrete approximation of the Gaussian source with the differential entropy h(x)

goes to an entropy H(x) → ∞ if ∆ → 0. From a mathematical point of view, every

continous source has to have infinite entropy, since the realization is chosen from a set

of real numbers, which are innumerable, even if the set is bounded.

3.3 Generic System Model

The most generic system model with feedback is shown in Fig. 3.2. We want to transmit

the message θ over the normalized channel with additive white Gaussian noise. Without

loss of generality the variance of the noise is σ2 = 1, hence the power of the transmit

signal x[n] is both a measure for the transmit power and received SNR. θ is chosen from

any sort of alphabet and is transmitted as a part of the signal x[n]. x[n] is generally a

function of θ and the feedback signal b[n]. Therefore,

x[n] = f(θ, b[1], b[2], . . . , b[n− 1]), (3.20)

in order to be a strictly causal function. This signal is received as

y[n] = x[n] + z[n]. (3.21)
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The feedback signal b[n] is generally a causal function of the previously received y[n],

i.e., we have

b[n] = f(y[1], y[2], . . . , y[n]). (3.22)

To simplify the problem we often set b[n] = y[n]. This means the transmitter has the

side-information of all previously received y[n], and therefore also the previous noise

realizations z[n], since it has of course knowledge of the transmit signal x[n] and the

noise is just z[n] = y[n] − x[n]. In what follows, N is considered to be arbitrary, but

fixed. After all N transmissions, the receiver estimates the transmit message using

all previously received values y[1], y[2], . . . , y[N ]. N is therfore called blocklength, or

number of iterations. We formulate the estimate as

θ̂ = f(y[1], y[2], . . . , y[N ]). (3.23)

These functions do not necessarily have to be deterministic. For example in the case of

noisy feedback, b[n] is a probabilistic function of the previously received values.

If this iterative system only involves linear operations and only Gaussian noise is

introduced, we can describe f(θ̂|θ) as a Gaussian channel with capacity

Cθ =
1

2
log2(1 + SNR). (3.24)

Since a new message is transmitted every N th iteration, we define the “superchannel”,

normalized by the number of channel usages, as

CS =
1

N

1

2
log2(1 + SNR). (3.25)

3.4 Perfect Feedback

3.4.1 Scalar Channel

A communication system with quantized feedback can be seen as a system with perfect

feedback, if the feedback signal is quantized with the same quantizer as the received

signal1 (Fig. 3.3), e.g., tFB = t.

1With an abuse of notation the transmit signal is termed y, the noise w, the received signal before
information bottleneck quantization is termed x and after the quantization t, if the actual architecture
of feedback and quantization should be pointed out, since this nomenclature is common in information
bottleneck literature. If the focus is on the whole communication system including the transmit message
generation the usual notation is used, where x[n] is the transmit signal, z[n] is the noise and y[n] is
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x

Figure 3.3: Communication system with perfect feedback (same quantizers).

y

w ∼ N (0, σ2) wq ∼ N (0, 1/A2)

t

tFB

x

Figure 3.4: Equivalent system.

If we include the quantizer in this analysis, the quantizer is considered to be a

part of the channel. Clearly every quantization process introduces additional noise.

In some special cases the quantization noise can be approximated as an independent

Gaussian signal. However in our analysis, where the quantizer is a Gaussian information

bottleneck, this is exactly true. Using the GIB solution for the quantizer leads to an

equivalent system (Fig. 3.4), where we can define a new channel including the quantizer.

The resulting channel from y to t is then again an AWGN channel with the noise

z = w + wq, where z ∼ N (0, σ2 + 1/A2).

From [8] we get

A(β) =

√
β(1− λ)− 1

rλ
v, (3.26)

with β = 22R λ
1−λ + 1 (2.38), λ = σ2

P+σ2 (2.34), the resulting eigenvector in the scalar

case v = 1 and r = vTΣxv = P + σ2. Writing now A as a function of the rate of the

the received signal.
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quantizer RQ yields2

A(RQ) =

√
22RQ − 1

P + σ2
. (3.27)

The capacity C(RQ) of the resulting channel3, including the quantizer, is then equiva-

lent to the information-rate function, since the information-rate function is the mutual

information I(t; y):

C(RQ) =
1

2
log2

(
1 +

P

σ2 + 1/A(RQ)2

)
(3.28)

=
1

2
log2

(
1 +

P

σ2 + P+σ2

2
2RQ−1

)
(3.29)

=
1

2
log2

(
P/σ2 + 1

2−2RQP/σ2 + 1

)
= I(RQ). (3.30)

Using a Schalkwijk-Kailath (SK) coding scheme ([28], [27]) it was schown in [28]

that the probability of an error Pe, with a source rate R, decreases as a second-order

exponential in N and achieves channel capacity.

Definition 3.1. A rate R is said to be achievable, if

lim
N→∞

P (N)
e (R) = 0. (3.31)

Figure 3.5 shows the feedback system where θ is the message to transmit. The SK

scheme is iteratively formulated as

x[0] = θ, (3.32)

x[1] = α1(y[0]− x[0]) = α1z[0], (3.33)

x[i] = αi(z[0]− ẑi[0]), i = 2, 3, . . . , N, (3.34)

where ẑi[0] is the minimum mean square error (MMSE) estimate of z[0] given all pre-

viously received values y[0], . . . , y[i− 1]. Basically at the initial transmission the actual

meassage is transmitted and the iterations are used to cancel the noise introduced at

the initial transmission. The scaling factors αi are chosen to meet the power constraint

2From now on the rate of the quantizer is termed as RQ to avoid confusion with the previously
introduced rate of the source R.

3Because of the fact that the resulting channel is a Gaussian channel including the quantizer (with
rate RQ) we term the capacity of the resulting channel as C(RQ). Especially the term C(RQ) is used
if the equation where it is used is derived from an equation referring to the channel capacity C. To
avoid confusion the channel capacity without quantization is termed as C0 (C0 = C(∞)).
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θ
Transmitter

z[n] ∼ N (0, 1)

Receiver
θ̂x[n] y[n]

y[n− 1]

Figure 3.5: Equivalent communication system with perfect feedback and quantizer in
forward path.

E{x[i]2} for all transmit values. This is rather an estimation approach, than an informa-

tion theoretical approach. However the MMSE estimate ensures that x[n] is Gaussian

for all n. Thus, the information-rate function is still the correct measure for the capac-

ity of the channel including the quantizer. A bound for the error probability was given

in [14] as

Pe ≤ 2Q(2N(C−R)), (3.35)

where

Q(x) =

∫ ∞
x

1√
2π

exp

(
−t

2

2

)
dt (3.36)

is the Q-function. As showed, the capacity of the resulting channel is equivalent to the

information-rate function and therefore give the following Corollaries.

Corollary 3.1. The error probability of the linear feedback scheme with perfect feedback

decreases doubly exponential as

Pe ≤ 2Q(2N(C(RQ)−R)), (3.37)

if R < I(RQ) = C(RQ).

Corollary 3.2. If the rate is limited by R < I(RQ) = C(RQ), the error probability

tends to 0, i.e.,

lim
N→∞

P (N)
e (R) = 0. (3.38)

Thus, the achievable rate is I(RQ) = C(RQ).
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Figure 3.6: Error probability Pe(N).

The expression in (3.37) can be bounded by an approximation of the Gaussian

cumulative density function, as in [18], by

Pe ≤ 2 exp

(
−c

2
022N(C(RQ)−R)

2

)
, (3.39)

where c0 is a fixed constant which depends only on the message constellation. The

proof in [18] is based on θ being a real number in the interval [−1, 1] with 22NR steps.

We instead set θ to be discrete Gaussian distributed with rate NR. So c0 in (3.39) is

equal to (3.19), which is the shaping gain of the Gaussian distribution over the uniform

distribution (ultimate shaping gain). Fig. 3.6 and Fig. 3.7 show the tighter bound (3.37)

for the error probabilities.

More sophisticated systems were studied, which show a error probability decreasing

faster than exponentially in blocklength. However these systems are nonlinear, e.g., [1]

uses partial sequential feedback. These systems were extended to error probabilities

even decreasing in any exponential order in [21], [11] and [26]. [25] studied a scheme

where the error probability is of the form Pe = exp(−O(n)). So the error probability

decreases exponentially with order of the blocklength. The drawback of all these systems

is the nonlinearity. Unfortunately linearity is necessary in our treatment, since Gaussian

signals are required. Thus, we will introduce an optimal communication system with

linear feedback in the next section.
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Figure 3.7: Pe(RQ) for SNR = 20dB, N = 10 (left); Pe(RQ) for R = 0.95C0, N = 10
(right).

3.4.2 Vector Channel

We study the equivalent diagonalized system, where n(RQ) modes are active. We have

a total information-rate, which is the sum of the capacities of the active modes,

I(RQ) =

n(RQ)∑
k=1

Ck(RQ). (3.40)

The sum of all scalar capacities does not provide the capacity of the vector channel,

since the power allocation on the modes is fixed. In order to obtain the capacity of the

vector channel we would have to jointly optimize power allocation and quantization of

the scalar modes, which is a much harder problem. As shown previously the capacity

has to be equal to the information-rate functions, (2.146) and (2.104),

I(RQ) = C(RQ). (3.41)

Therfore if a GIB optimized quantizer is used, the resulting capacity is given by

Ck(RQ) =
1

2
log2

 P
nσ2λHk + 1

P
nσ2λHn2

−
2RQ
n(RQ) + 1

 , (3.42)
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or in the case of an RD optimized quantizer the capacity is given by

Ck(RQ) =
1

2
log2

 1 + P
nσ2λHk

1 + 2
−

2RQ
n(RQ) P

nσ2λHk
λn
λk

 . (3.43)

The difference of the capacities of the channel including the quantizer is due to the fact

that the critical rates are different in GIB and RD. The critical rates determine the

number of active modes n(RQ) and the actual allocation of the total quantization rate

for each mode. In general the critical rates are different and so are the mode capacities.

Optimal source rate allocation

Due to different mode capacities we allocate the source rate in order to minimize the

average probability of a symbol error. The probability is given as the average of a

symbol error over all active n(RQ) modes,

Pe ≤
1

n(RQ)

n(RQ)∑
k=1

Pe(Rk|Rk > 0) (3.44)

=
1

n(RQ)

n(RQ)∑
k=1

2 exp

(
−c

2
022N(Ck(RQ)−Rk)

2

)
I(Rk > 0), (3.45)

under the constraint

n(RQ)∑
k=1

Rk = R. (3.46)

Here, I(Rk > 0) is the indicator function

I(Rk > 0) =

1 if Rk > 0

0 else
, (3.47)

since not all active modes necessarily carry information. In other words Rk may be

0 for an index k ≤ n(RQ). Clearly Rk = 0 for all indices k > n(RQ), because these

modes are inactive and therefore do not provide any capacity. If the individual error

probabilities Pe(Rk) are low, a valid approximation is to assume that the only occurring

errors are errors to the neighbor symbol. As a consequence, if a Gray code is assumed,

a symbol error is equivalent to the error of one bit. A bound for the average probability
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of an bit error can then be bounded by

Pb ≤
1

R

n(RQ)∑
k=1

Pe(Rk|Rk > 0) (3.48)

=
1

R

n(RQ)∑
k=1

2 exp

(
−c

2
022N(Ck(RQ)−Rk)

2

)
I(Rk > 0), (3.49)

again under the constraint

n(RQ)∑
k=1

Rk = R. (3.50)

Minimizing the average probability of an error is a constrained optimization problem,

which can be solved by Lagrange multipliers. The problem formulates as

Λ(R1, . . . , Rn, λ) = Pe(R1, . . . , Rn) + λ

n(RQ)∑
k=1

Rk −R

 (3.51)

=

n(RQ)∑
k=1

(
2

1

R
exp

(
−c

2
022N(Ck(RQ)−Rk)

2

)
+ λRk

)
− λR, (3.52)

∂Λ(R1, . . . , Rn, λ)

∂Rk

=
∂

∂Rk

(
2

1

R
exp

(
−c

2
022N(Ck(RQ)−Rk)

2

))
︸ ︷︷ ︸

const.

+λ = 0. (3.53)

Since the constant term defines a transcendent equation one can give only an implicit

solution as

Rk(θ) =

{
Rk :

∂

∂Rk

exp

(
−c

2
022N(Ck(RQ)−Rk)

2

)
= θ

}
(3.54)

=

{
Rk : e2N(Ck(RQ)−Rk) exp

(
−c

2
0e

2N(Ck(RQ)−Rk)

2

)
= θ

}
, (3.55)

where Ck(RQ) and Rk in (3.55) are in nats to avoid additional factors and in the other

equations in bits.

The first exponential is strictly increasing in Ck(RQ)−Rk, while the second exponential

is striclty decreasing. Hence, the resulting equation may be nonmonotonic and there-

fore multiple solutions may exist. Since the probability of an error decreases doubly

exponential with Ck(RQ) − Rk one optimal way to allocate the rates of the source Rk
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k

θ

Rk

Figure 3.8: Rate allocation.

would be to keep Ck(RQ)−Rk constant for all k (Fig. 3.8):

Rk(θ) = max(0, Ck(RQ)− θ). (3.56)
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3.5 Noisy Feedback

In the previous chapter the assumption was that the feedback is perfect, i.e., the trans-

mitter perfectly receives the feedback signal sent by the receiver. Since this is a very

convenient assumption, which simplifies analysis, the perfect feedback case got most

attention in literature. In reality the feedback would be hardly perfect, at least the

feedback is quantized, what is discussed in the following chapter. It turns out that

doubly exponential decreasing error probability is not always achieved with noisy feed-

back. Actually it is only achieved in special cases. Generally the noise accumulates

in the iterative process and the performance of the system breaks down with further

increasing blocklength.

3.5.1 Scalar Channel

In [7] the scalar case of noisy feedback was investigated and an optimal linear feedback

scheme was derived, which is similar to the SK-scheme. Since the SK-scheme is designed

for perfect feedback, it suffers from noise accumulation. The central idea of an optimal

scheme with noisy feedback is that the iterations do not only aim in canceling the

noise initially introduced while transmitting the message at the initial transmission,

but finding an optimal tradeoff in cancelling the noise and retransmitting the message.

In [6] the noisy feedback was specialized to quantization noise in the feedback path.

Fig. 3.9 shows the communication system with feedback and quantizers in forward

an backward path and the equivalent system as in [6]. In the original system the

forward path introduces the noise of the channel z[n] and the noise of the quantizer.

Without loss of generality the total introduced noise is normalized to have unit power

and termed as z[n]. The basic assumption is that, since the transmitter knows all

previously transmitted values, this is equivalent to having the side-information zq[n
′] =

z[n′] + nq[n
′] n′ < n at iteration n. This allows to describe the system as a scheme

with linear feedback. So

x[n] =
∑
n′<n

F [n, n′](z[n′] + nq[n
′])︸ ︷︷ ︸

noise cancellation part

+ g[n]θ︸ ︷︷ ︸
message part

, (3.57)

where F [n, n′] and g[n] define the tradeoff between noise cancellation and message

(re)transmission and are specified later. This can also be compactly written in matrix-

vector notation as

x = F zq + gθ, (3.58)
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θ
Transmitter

z[n] ∼ N (0, σ2)

Quantizer Receiver

Quantizer

θ̂x[n] y[n]

y[n− 1]Q(y[n− 1])

θ
Transmitter

z[n] ∼ N (0, 1)

Receiver
θ̂x[n] y[n]

y[n− 1]

nq[n− 1] ∼ N (0, σ2
q )

Figure 3.9: Communication system with feedback and quantizers in forward and feed-
back path (top); equivalent system as in [6] (bottom).

where the encoding matrix F ∈ RN×N is a strictly lower triangular matrix in order

to describe a strictly causal system, nq ∈ RN is the quantization error of the received

signal y, g ∈ RN is a unit norm vector, and θ is the message to be sent. The signal x

fulfills the average power constraint ρ

E{xTx} ≤ Nρ. (3.59)

Additionaly we know from the Elias result [12] that the optimal solution for a linear

feedback scheme fulfills the power constraint not only on average, but

E{x2
i } = ρ. (3.60)

Note, since z ∼ N (0, I), ρ is also the SNR of the forward path. An estimate of the

message θ is obtained as a linear combination of the received signal y[n]:

θ̂ =
∑
n

q[n]y[n]. (3.61)
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We compactly write (3.61) in vector notation as

θ̂ = qTy, (3.62)

where q ∈ RN is the combining vector. Inserting (3.58) in (3.62) yields

θ̂ = qT (x + z) (3.63)

= qT (F zq + gθ + z) (3.64)

= qTgθ︸ ︷︷ ︸
message part

+ qT (F + I)z + qTFnq︸ ︷︷ ︸
noise part

. (3.65)

Since the message is assumed to be Gaussian with θ ∼ N (0, Pθ) and the system consists

only of linear operations and all involved noise processes are also Gaussian the estimate

θ̂ and θ̂|θ are also Gaussian with

θ̂ ∼ N (0, Pθ|qTg|2 + ‖q(F + I)‖2 + σ2
q‖qTF ‖2), (3.66)

θ̂|θ ∼ N (θ, ‖q(F + I)‖2 + σ2
q‖qTF ‖2). (3.67)

Thus, the mutual information I(θ; θ̂) equals the capacity of the Gaussian channel

I(θ; θ̂) = h(θ̂)− h(θ̂|θ) (3.68)

=
1

2
log2(1 + SNR) (3.69)

=
1

2
log2

(
1 +

Pθ|qTg|2

‖qT (I + F )‖2 + σ2
q ‖qTF ‖

2

)
. (3.70)

The optimal values for F , g and q which maximize the mutual information, or equiva-

lently the SNR, are derived in [7] as

F =



0 . . . 0

− 1−β2
0

(1+σ2
q )β0

0

− 1−β2
0

(1+σ2
q )

. . . . . .
...

...
. . .

− 1−β2
0

(1+σ2
q )
βN−3

0 . . . − 1−β2
0

(1+σ2
q )
− 1−β2

0

(1+σ2
q )β0

0


, (3.71)

g =

√
1− β2

0

1− β2N
0

(
1 β0 β2

0 . . . βN−1
0

)T
, (3.72)

q = g, (3.73)
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where β0 is the smallest positive root of

β2N −
[
N + (1 + σ2

q )Nγρ
]
β2 + (N − 1) (3.74)

and γ ∈ [0, 1) is a power trade-off factor between transmitting side-information and

transmitting the message. A power trade-off factor γ = 0 would mean the transmit

power is used to transmit the message θ only. This would result in a repetition code,

which is clearly suboptimal (except in some trivial cases, e.g., zero feedback rate). A

power trade-off factor γ = 1 would mean the transmit power is used to transmit the

side-information. So focusing on the transmit power constraint yields

E{xTx} = tr
(
FE{(z + nq)(z + nq)

T}F T
)

+ ‖g‖2E{θ}2 (3.75)

= (1 + σ2
q )‖F ‖2

F︸ ︷︷ ︸
noise-cancelation power

+ E{θ}2︸ ︷︷ ︸
signal power

(3.76)

≤ Nρ. (3.77)

Using the tradeoff factor γ we can formulate the noise-cancellation and signal power as

(1 + σ2
q )‖F ‖2

F = γNρ, (3.78)

E{θ}2 = (1− γ)Nρ. (3.79)

For finite blocklenghts the optimal γ is in between, but can be only calculated nu-

merically [7]. The choice of the value of the trade-off factor plays a crucial role in

performance of the system. We will give optimal values for some asymptotic cases.

No knowledge of the quantized feedback at the receiver

If the receiver has no knowledge of the quantized feedback, but only of course knowledge

of the unquantized feedback, this is equivalent to the transmission over an AWGN

feedback channel, since the GIB quantizer introduces additional independent noise.

The signal-to-noise ratio of the superchannel is then according to (3.70) and [7]

SNR =
E{θ2}|qTg|2

‖qT (I + F )‖2 + σ2
q ‖qTF ‖

2 (3.80)

=
(1 + σ2

q )N(1− γ)ρ

σ2
q + β

2(N−1)
0

. (3.81)
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Since there is no closed-form solution for β0 an approximation is given in [7] as

β0 ≈
√

N − 1

N + (1 + σ2
q )Nγρ

≈
√

1

1 + (1 + σ2
q )γρ

, (3.82)

where the second approximation is tight for N � 1. An upper bound for the SNR can

be obtained if γ is chosen appropriately. If N →∞, Nγ →∞, and γ → 0, we have

SNR
N→∞→

1 + σ2
q

σ2
q

Nρ. (3.83)

If we quantize the forward path with a GIB optimal quantizer the capacity is

CFW =
1

2
log2(1 + ρ) , I(Rq) =

1

2
log2

(
1 +

P

σ2

1− 2−2Rq

1 + P/σ22−2Rq

)
. (3.84)

The first term is just the Shannon capacity for the Gaussian channel and the second

term is the information-rate function in the scalar case. We showed that these terms

have to be equal in (3.29)-(3.30). Consequently,

ρ =
P

σ2

1− 2−2Rq

1 + P/σ22−2Rq
. (3.85)

Also quantizing the feedback path with a GIB optimal quantizer yields

CFB =
1

2
log2(1 + SNRFB) =

1

2
log2

(
1 +

ρ+ 1

σ2
q

)
, (3.86)

because the power of the received signal, which is fed back is ρ + 1, since the noise

of the forward channel is normalized to have unit variance and the assumption that

no additional noise, except the quantization noise, is added in the backward channel.

Therefore, the quantization noise is

σ2
q =

ρ+ 1

22RqFB − 1
. (3.87)

Substituting ρ with (3.85) and σ2
q with (3.87) in the bound for the signal-to-noise ratio

(3.83) yields

SNR ≤ ρ+ 22RqFB

ρ+ 1︸ ︷︷ ︸
≥1

1− 2−2Rq

1 + P/σ22−2Rq︸ ︷︷ ︸
≤1

P

σ2

︸ ︷︷ ︸
ρ=SNRFW

N. (3.88)
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Figure 3.10: Trade-off between Rq and RqFB for fixed P
σ2 = SNRin = 30dB (left) and

fixed G = Grep = 16 (right).

Obviously the contribution of the quantized feedback path to the SNR is always positive

and the quantziation of the forward path decreases the SNR. P
σ2N is just the SNR of

the repetition code. So we define a SNR gain over the repetition code as

Grep =
SNR
P
σ2N

. (3.89)

If we keep the gain constant for a given P
σ2 there is a trade-off between the necessary

quantization rates of the forward and feedback path (Fig. 3.10):

RqFB ≥
1

2
log2

(
Grep

P

σ2

ρ+ 1

ρ
− ρ
)
. (3.90)

Achievable rate

In [3] it was shown that the SNR would have to have the form (1 + ρ)N in order to

achieve channel capacity. A rate R is defined to be achievable, if the error probability

goes to zero if the blocklength goes to infinity. Hence, a bound for the achievable rate

can be given as

R ≤ lim
N→∞

1

N

1

2
log2

(
1 + (1 + ρ)N

)
(3.91)

=
1

2
log2(1 + ρ). (3.92)



Chapter 3. Performance with Feedback 67

The factor 1/N is due to the fact that we need N channel uses to transmit one message.

Comparing the capacity achieving form (1 + ρ)N with (3.88) makes clear that for finite

quantizer rates the achievable rate is zero.

In the case of a binary pulse amplitude modulated (PAM) signal the bit error prob-

ability is given as

Pe = Q(
√

2SNR). (3.93)

For general M-PAM signals, the probability of an error is [17]

Pe = 2
M − 1

M
Q

(√
SNR

M2 − 1
c0

)
, (3.94)

for M � 1 we have

Pe ≈ 2Q

(√
SNR

M
c0

)
, (3.95)

where M is the size of the source alphabet and is related to the rate as

M = 2NR. (3.96)

Using the capacity achieving SNR yields

Pe ≈ 2Q

((
1 + ρ

22R

)N/2
c0

)
= 2Q

(
2N(C−R)c0

)
. (3.97)

The error probability is again doubly exponential decreasing if the SNR has the ca-

pacity achieving form and if R < 1
2

log2(1 + ρ) = C. In this case

lim
N→∞

Pe = 0. (3.98)

On the other side, using the resulting SNR of the super channel (cf. (3.88)) yields

Pe ≈ 2Q

((
2−2NRρ+ 22RqFB

ρ+ 1

1− 2−2Rq

1 + P/σ22−2Rq

P

σ2︸ ︷︷ ︸
ρ

N

)1/2

c0

)
. (3.99)

Since the term 2−NR decreases faster than the linear term in N , the error probability

is not decreasing doubly exponential anymore. In fact the error probability is even
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Figure 3.11: Error probability over RqFB for fixed N = 10 and SNRin = 10dB (left),
R = 0.7C0 (right).

increasing for increasing blocklengths. Basically this setup shows similar performance

as a repetition code up to a constant factor (the previously introduced gain Grep). As

a consequence for finite rate feedback RqFB we have

Pe > 0 ∀N. (3.100)

This means no rate is achievable.

Corollary 3.3. The achievable rate with feedback rate RqFB <∞ is zero.

Fig. 3.11 shows the error probability over the rate of the quantized feedback. The

error decreases nearly doubly exponential in the feedback rate, which is due to the

factor 22RqFB in (3.99). For small ρ, the doubly exponential slope is close. The impact

of ρ and therefore of SNRin on the slope is shown in Fig. 3.11 (right). Note that the

x-axis is normalized to different capacities C0 depending on SNRin.

Letting RqFB be possibly infinite, in order to achieve channel capacity, yields

ρ+ 22RqFB

ρ+ 1
ρN =̂ (1 + ρ)N (3.101)

⇒ RqFB =
1

2
log2

(
(1 + ρ)N+1

ρN
− ρ
)
. (3.102)

So RqFB would have to grow linearly in the blocklength, which is clearly not feasible

for large blocklengths.

Corollary 3.4. The achievable rate with feedback rate RqFB = O(N) equals capacity.
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3.6 Quantized Feedback

In the previous chapters the feedback was either perfect or noisy and the receiver had

no knowledge about the feedback noise. If the noise in the feedback path is introduced

by a quantizer the assumption that the noise is known at receiver side is valid, since

the quantization process takes place at receiver side.

Perfect knowledge of the quantized feedback at the receiver

Since the system is assumed to be linear, the contribution of the feedback quantization

noise can be canceled at the receiver, if known. This is because the fact that the received

signal

y = (F + I)z + Fnq︸︷︷︸
feedback noise part

+gθ, (3.103)

consists of the feedback quantization noise part. Thus, we can cancel the feedback

quantization noise at receiver side and therefore define the noise-canceled received signal

y′ as

y′ = y − Fnq = (F + I)z + gθ. (3.104)

Then the estimated message θ̂ can be written as

θ̂ = qTy′ = qT ((F + I)z + gθ), (3.105)

which is equivalent to the noiseless feedback case. The SNR is then given by (3.81)

with σ2
q = 0, i.e.,

SNR =
N(1− γ)ρ

β
2(N−1)
0

. (3.106)

Inserting the approximation (3.82) for β0 yields

SNR = N(1− γ)ρ(1 + γρ)N−1. (3.107)

Although the system is equivalent to the system with perfect feedback, the average

transmit power ρ increases, since the noise contribution is only subtracted at the re-

ceiver, but is physically present as in the previous section. This done by maximizing

the SNR by designing F , g and qT as there would be no noise in the backward channel.
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This would result in a power constraint (3.59) given by [7]

E{xTx} = tr
(
FE{zTz}F T

)
+ ||g||2E{θ}2 (3.108)

= ||F ||2F︸ ︷︷ ︸
noise-cancelation power

+ E{θ}2︸ ︷︷ ︸
signal power

(3.109)

≤ Nρ. (3.110)

Then by using the power tradeoff parameter γ, the powers are given by

||F ||2F = Nγρ, (3.111)

E{θ}2 = N(1− γ)ρ. (3.112)

However, the quantization noise of the backward channel is physically present, so the

actual transmit power is given by

E{xTx} = tr
(
FE{(z + nq)

T (z + nq}F T
)

+ ||g||2E{θ}2 (3.113)

= (1 + σ2
q )||F ||2F︸ ︷︷ ︸

new noise-cancelation power

+ E{θ}2︸ ︷︷ ︸
signal power

(3.114)

= (1 + σ2
q )Nγρ︸ ︷︷ ︸

new noise-cancelation power

+ (1− γ)Nρ︸ ︷︷ ︸
signal power

(3.115)

= (1 + γσ2
q )Nρ. (3.116)

Inserting the new average power, the average power scaled by the factor (1 + γσ2
q )
−1,

in (3.107) yields

SNR = Nρ
1− γ

1 + γσ2
q

(
1 +

γ

1 + γσ2
q

ρ

)N−1

. (3.117)

As shown before, the SNR would have to have the form (1 + ρ)N in order to achieve

channel capacity. For finite quantization rates (σ2
q > 0), the SNR does not have

this form. Hence, it can not achieve channel capacity. But fortunately if γ is chosen
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appropriately as γ → 1, then it can be shown that the asymptotic SNR is

SNR
N→∞→

(
1 +

1

1 + σ2
q

ρ

)N
(3.118)

=

(
1 +

22RqFB − 1

22RqFB + ρ
ρ

)N
(3.119)

=


1 +

22RqFB − 1

22RqFB + ρ︸ ︷︷ ︸
≤1

1− 2−2Rq

1 + P/σ22−2Rq︸ ︷︷ ︸
≤1

P

σ2

︸ ︷︷ ︸
ρ=SNRFW



N

. (3.120)

The capacity of the (Gaussian) superchannel is given as

CS =
1

N

1

2
log2 (1 + SNR) , (3.121)

since a message is transmitted every N th channel use. The achievable rate is limited by

R < CS, so we can give the bound as

R ≤ lim
N→∞

1

N

1

2
log2 (1 + SNR) (3.122)

=
1

2
log2

(
1 +

1

1 + σ2
q

ρ

)
, (3.123)

which is strictly positive. We identify (3.123) as the channel capacity of the closed loop,

so we can state following

Corollary 3.5. The achievable rate is

R ≤ lim
N→∞

1

N

1

2
log2 (1 + SNR) = CCL, (3.124)

where CCL is the channel capacity of the closed loop TX
FW→ RX

FB→ TX, if the real-

ization of the feedback is known at the receiver. Otherwise the achievable rate is 0.

We define a gain over the SNR with perfect quantization (Rq →∞, RqFB →∞) as

G =
1 + 1

1+σ2
q
ρ

1 + P
σ2

=
22CCL

22C0
= 2−2(C0−CCL). (3.125)
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Figure 3.12: Trade-off betweenRq andRqFB for fixed C0 = 4 (left) and fixed C0−C = 0.5
(right).

Thus, a constant gain corresponds to a constant C0 − CCL and if we keep the gain

constant for a given P
σ2 there is a trade-off between the necessary quantization rates of

the forward and feedback path (Fig. 3.12):

RqFB ≥
1

2
log2

(
G(1 + P/σ2)

1− (G(1 + P/σ2)− 1)/ρ

)
. (3.126)

The probability of an error is given by (cf. (3.94))

Pe ≈ 2Q

(√
SNR

2NR
c0

)
, (3.127)

if M-PAM with alphabet size M = 2NR is used. Inserting (3.118) in (3.127) yields

Pe ≈ 2Q

(1 + 1
1+σ2

q
ρ

22R

)N/2

c0

 (3.128)

= 2Q


1 + 22RqFB−1

22RqFB+ρ

1−2−2Rq

1+P/σ22−2Rq

P
σ2

22R

N/2

c0

 (3.129)

= 2Q
(
2N(CCL−R)

)
. (3.130)

Again the error probability decreases doubly exponential in blocklength. This is true

if R < CCL, while in the perfect feedback case the constraint was R < C. For finite
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Figure 3.13: Communication system with feedback (different quantizers).

quantization rates (corresponding to σ2
q > 0) we have CCL < C because

CCL =
1

2
log2

(
1 +

1

1 + σ2
q

ρ

)
<

1

2
log2(1 + ρ) = C. (3.131)

Corollary 3.6. If the rate is limited by R < CCL < C, the error probability tends to 0

as

lim
N→∞

P (N)
e (R) = 0. (3.132)

Thus, the maximum achievable rate is CCL.

Corollary 3.7. For large blocklengths N , the error probability decreases doubly expo-

nential as

Pe ≤ 2Q(2N(CCL−R)), (3.133)

if R < CCL < C.

Alternative representation of the quantizers

Using GIB optimized quantizers, with different rates, in the forward path and in the

feedback path, where the introduced noise is assumed to be correlated, yields an equiv-

alent system (Fig. 3.14). Basically we jointly quantize the forward and feedback signal

and it is assumed that Rq ≥ RqFB .

We showed that the information bottleneck quantization can equivalently be model

by an additive zero-mean Gaussian noise term, now called wqFW and wqFB , for different

quantization rates. The joint quantization is then performed in a way that

wqFB = wqFW + ∆wq, (3.134)
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Figure 3.14: Equivalent system with feedback (different quantizers).

with ∆wq ∼ N (0, σ2
qFB
− σ2

qFW
). Thus, the mutual information is still given by

I(t; y) = I(Rq), (3.135)

I(tFB; y) = I(RqFB), (3.136)

and ∆wq can be interpreted as a further quantization, that is tFB = t + ∆wq. This

means that the variance of the additional introduced noise ∆wq is the difference of the

both quantizer noise variances. Thus, normalizing the total noise in the forward path

z ∼ N (0, 1), as in Fig. 3.9, yields

∆σ2
q = σ2

qFB
− σ2

qFW
(3.137)

=

(
P

σ2
+ 1

)
22Rq − 22RqFB

(22Rq + P/σ2)
(
22RqFB − 1

) . (3.138)

The resulting SNR is then again given by (3.117), with σ2
q replaced by ∆σ2

q :

SNR = Nρ
1− γ

1 + γ∆σ2
q

(
1 +

γ

1 + γ∆σ2
q

ρ

)N−1

. (3.139)

If the term growing exponentially in N is in the same magnitude as the term growing

linearly in N , there is a trade-off between Rq and RqFB (Fig. 3.15). For growing N the

SNR gets less sensitive in Rq and therefore the achievable rate and SNR for N →∞
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are independent of the actual rate Rq, according to Corollary 3.5:

SNR
N→∞→

(
1 +

22RqFB − 1

22RqFB + P/σ2

P

σ2

)N
, (3.140)

R ≤ CCL = I(RqFB), (3.141)

Pe ≈ 2Q
(
2N(CCL−R)

)
= 2Q

(
2N(I(RqFB )−R)

)
. (3.142)

These equations can also directly be obtained by substituting σ2
q with (3.138) in (3.139)

and optimally letting γ → 1 as N →∞ and we follow

Corollary 3.8. The achievable rate is

R ≤ lim
N→∞

1

N

1

2
log2 (1 + SNR) = I(RqFB), (3.143)

if the feedback quantization noise is known at the receiver and Rq ≥ RqFB . Otherwise

the achievable rate is 0.

Since in this representation of the quantizers the capacity of the loop CCL = I(RqFB),

if N goes to infinity, we can concretize corollary 3.6 and 3.7 as follows:

Corollary 3.9. If the rate is limited by R < I(RqFB) < C0 and Rq ≥ RqFB , the error

probability tends to 0 as

lim
N→∞

P (N)
e (R) = 0. (3.144)

Thus, the achievable rate is I(RqFB).

Corollary 3.10. For large blocklengths N , the error probability decreases doubly expo-

nential as

Pe ≤ 2Q(2N(I(RqFB )−R)), (3.145)

if R < I(RqFB).
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3.6.1 Vector Channel

In this section we study the optimal feedback quantization rate allocation, for given

quantization in the forward path. The quantization rate allocation of the forward path

is given by the optimal rate allocation, which maximizes the information-rate function,

as showed in the previous chapter. The SNRs of the individual modes of the forward

path are denoted as SNRFWi
. We know that the i.i.d. (Gaussian) message vector θ is

transmitted over the Gaussian vector channel, which can be decomposed as a sum of

parallel scalar channels (modes). The information-rate IS of the superchannel is then

IS =
1

N
I(θ̂;θ) ,

1

N

n∑
i

Ci =
1

N

n∑
i

I(θ̂i; θi), (3.146)

since we need N channel uses to transmit one message θ. Note that in what follows we

consider the power allocation on the individual modes or equivalently the SNRFWi
to

be fixed. Thus we do not obtain the global optimum IS = CS. In order to obtain the

capacity of the vector channel we would have to jointly optimize power allocation and

quantization of the scalar modes, which is a much harder problem.

Optimal feedback quantization rate allocation (no knowledge of the quantized

feedback at the receiver)

The information-rate of a Gaussian vector channel is given as the sum of capacities of

the parallel scalar channels with SNRi as in (3.88):

I =
n∑
i=1

Ci =
1

2

n∑
i=1

log2 (1 + SNRi) (3.147)

=
1

2

n∑
i=1

log2

(
1 +

SNRFWi
+ 22RqFB

SNRFWi
+ 1

SNRFWi
N

)
, (3.148)

where for simpler notation, Ri are the feedback quantization rates of the individual

modes and fulfill

RqFB =
n∑
i=1

Ri. (3.149)
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The maximization of the overall information-rate is a constrained maximization prob-

lem, can be solved by Lagrange multipliers and reads

Λ(R1, R2, . . . , Rn, λ) =
1

2

n∑
i=1

log2

(
1 +

SNRFWi
+ 22RqFB

SNRFWi
+ 1

SNRFWi
N

)

+λ

(
n∑
i=1

Ri −R

)
, (3.150)

∂Λ(R1, R2, . . . , Rn, λ)

∂Ri

=
22RiSNRFWi

22RiSNRFWi
+ SNR2

FWi
+ (SNRFWi

+ 1)/N
(3.151)

+λ = 0.

A parameterized solution for the rates is

Ri(θ) = max

(
0,

1

2
log2

SNR2
FWi

+ (SNRFWi
+ 1)/N)

θSNRFWi

)
(3.152)

≈ max

(
0,

1

2
log2

SNRFWi

θ

)
. (3.153)

Optimal feedback quantization rate allocation (perfect knowledge of the quantized

feedback at the receiver)

The information-rate of a Gaussian vector channel is again, with SNRi as in (3.120):

I =
n∑
i=1

Ci =
1

2

n∑
i=1

log2 (1 + SNRi) (3.154)

=
1

2

n∑
i=1

log2

(
1 +

(
1 +

22Ri − 1

22Ri + SNRFWi

SNRFWi

)N)
, (3.155)

where for simpler notation, Ri are the feedback quantization rates of the individual

modes and fulfill

RqFB =
n∑
i=1

Ri. (3.156)
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The maximization of the overall information-rate is a constrained maximization prob-

lem, can be solved by Lagrange multipliers and formulates reads

Λ(R1, R2, . . . , Rn, λ) =
1

2

n∑
i=1

log2

(
1 +

(
1 +

22Ri − 1

22Ri + SNRFWi

SNRFWi

)N)

+λ

(
n∑
i=1

Ri −R

)
, (3.157)

∂Λ(R1, R2, . . . , Rn, λ)

∂Ri

= N
SNRFWi

22Ri + SNRFWi

+ λ = 0, (3.158)

for N →∞. A parameterized solution for the rates is

Ri(θ) = max

(
0,

1

2
log2

SNRFWi

θ

)
. (3.159)

Optimal feedback quantization rate allocation (perfect knowledge of the quantized

feedback at the receiver; alternative representation of the quantizers)

We showed that in the case of large blocklength the SNR and therefore also the capacity

is independent of the actual quantization rates of the forward path as long as Rq >

RqFW . Actually we showed that the information-rate is equal to the information rate

function I(RqFB). Thus, the problem reduces to the maximization of I(RqFB), which

we already studied in the previous chapter.



4

Numerical Results

4.1 Numerical Evaluation

In the previous chapter we gave equations for mutual information, SNR and error

probabilities including the power tradeoff factor γ. Generally it is not possible to give

analytic values of the optimal γ for finite blocklengths. So the last chapter focused

on the asymptotic performance for blocklengths N → ∞, where we were able to give

explicit values for optimal γ. Now we study the performance for finite blocklength

and give numerical solutions and performance comparisons. Since our iterative scheme

transmits a message every N th iteration one performance measure is the normalized

mutual information per channel use, which is equivalent to the channel capacity of the

super-channel

CS =
1

N
I(θ̂; θ) =

1

N

1

2
log2 (1 + SNR) . (4.1)

The second performance measure is the error probability for the normalized source rate

NR

Pe ≈ 2Q

(√
SNR

2NR

)
. (4.2)

80
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We will study the performance of perfect feedback, noisy feedback and quantized feed-

back (noise known at the receiver). Recall the most general expressions for the SNRs.

The SNR of just the AWGN channel is given by

SNR0 =
P

σ2
. (4.3)

The SNR for perfect feedback (σ2
q = 0) and noisy feedback is given by (3.81)

SNRnf =
(1 + σ2

q )N(1− γ)ρ

σ2
q + β

2(N−1)
0

, β0 ≈
√

N − 1

N + (1 + σ2
q )Nγρ

, (4.4)

SNRpf =
N(1− γ)ρ

β
2(N−1)
0

, β0 ≈

√
N − 1

N +Nγρ
. (4.5)

In the case of known quantized feedback noise the SNR is given by (3.106) and (3.116)

SNRqf =
N(1− γ)ρ

(1 + γσ2
q )β

2(N−1)
0

, β0 ≈
√

N − 1

N +Nγρ/(1 + γσ2
q )
. (4.6)

Note that generally β0 is given by (3.82), but is different in all three cases, since it

depends on the optimal γ. The perfect feedback case, is equivalent to the noisy feedback

case with σ2
q = 0 and if the quantized feedback noise is known this case is equivalent

to the perfect feedback case, but ρ scaled by (1 + γσ2
q )
−1 as argued in (3.116). ρ is the

SNR of the forward channel and therefore given by (3.85)

ρ =
P

σ2

1− 2−2Rq

1 + P/σ22−2Rq
. (4.7)

We consider σ2
q as the additional introduced noise of the quantizer in the feedback path,

what we studied in the previous chapter. σ2
q is then given by (3.138)

σ2
q =

(
P

σ2
+ 1

)
22Rq − 22RqFB

(22Rq + P/σ2)
(
22RqFB − 1

) . (4.8)

Fig. 4.1 shows the numerical optimization of the power tradeoff factor γ for an

exemplary operation at R = 0.8C0 = 1bit (C0 = 1.25bits). Clearly the case of perfect

feedback with RQ = 10bits (plotted in green with star type markers) is an upper

performance bound, where the mutual information 1
N
I(θ̂; θ) = I(Rq) ≈ C0, since the

channel output quantizer can be considered to have high rate RQ � C0 in this example.

The mutual information for known feedback quantization noise (plotted in red with
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triangle type markers) asymptotically approaches I(RqFB). If the feedback quantization

noise is unkown (plotted in blue with cross type markers) the mutual information can

be kept constant up to a specific blocklength, if the feedback noise is low. For longer

blocklengths the noise accumulation is too high and the performance quickly breaks

down. However there may be an optimal blocklength, where the error probability can be

decreased, compared to the error probability of just the AWGN channel. This is the case

if the feedback quantizer rate is high, or equivalently the feedback quantization noise

is low. If the feedback quantization noise is known and it is ensured that I(RqFB) > R,

the error probability tends to zero, since limn→∞
1
N
I(θ̂; θ) = I(RqFB). Although in the

asymptotic regime the performance is independent of the quantizer in the forward path

(as long as RQ ≥ RqFB), this is not true for finite blocklength. If we compare the error

probabilities of perfect feedback (RQ = 2bits, plotted in green with star type marker)

and known quantized feedback noise (RQ = 10bits and RqFB = 2bits, plotted in red

with triangle type marker), the higher rate quantization in the forward path provides

a substantial performance improvement, even though they have the same asymptotic

performance.

4.2 Monte Carlo Simulation

We next validate our error probability expressions using Monte Carlo simulations. We

use the presented source signal model to generate Gaussian distributed symbols. Recall

that theses Gaussian distributed symbols are quantized with a distance of the quanti-

zation points given in (3.17) as

∆ =

√
2πeσ2

2NR
, (4.9)

to match a source rate R. These iterative schemes require a symbol alphabet growing

exponentially in the blocklength, which is numerically problematic: In the simulation

this quantization process involves a rounding operation with an accuracy of 2NRbits.

Generally this numerical accuracy is not feasible for higher rates or longer blocklengths.

The Monte Carlo simulations were performed using Matlab, which provides a relative

accuracy of 2−52 [23]. Thus, the remaining accuracy of the distance of adjacent symbols

is approximately (NR− 52)bits.

Fig. 4.2 shows the error probabilities of the Monte Carlo simulation compared to

the numerically evaluated error probabilities of the previous section. Again the scheme

exemplarily operates at R = 0.8C0 = 1bit (C0 = 1.25bits) up to a blocklength of 15,
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to avoid numerical errors. It can be seen that in the case of perfect feedback (Rq =

RqFB = 2 and Rq = RqFB = 10) the simulations perfectly meet the theoretical results.

In the case of known feedback quantization noise the performance in the simulation has

the same properties as the theoretical results, but performs better in the low feedback

rate regime (I(RqFB) ≈ R). For higher feedback rates the simulation results are close

to the theoretical findings. This is due to the fact that the discrete approximation of

the Gaussian source becomes more exact for higher rates.
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Figure 4.1: Example of numerical optimization of the tradeoff γ over the blocklength:
mutual information I(θ̂; θ) (top); optimal γ (middle); error probabilities Pe (bottom).
R = 0.8C0 = 1bit, C0 = 1.25bits; perfect feedback (green, star type markers), noisy
feedback (blue, cross type markers), modified scheme with known quantized noisy feed-
back (red, triangle type markers).
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probabilities Pe. R = 0.8C0 = 1bit, C0 = 1.25bits; perfect feedback (green, star type
markers), modified scheme with known quantized noisy feedback (red, triangle type
markers).



5
Conclusion and Outlook

It is known that communication systems with feedback do not increase the channel ca-

pacity of the AWGN channel. The channel capacity is the maximum rate at which error

free communication is possible. However the channel capacity is an asymptotic measure

which requires infinite blocklengths. So for communication systems with finite block-

lengths the error probability is greater than zero. Altough feedback does not increase

the channel capacity of AWGN channels, it dramatically improves the performance in

terms of SNR and error probability at finite blocklengths. In [28] a linear system was

suggested which has an error probability doubly exponential decreasing in blocklength.

In [14] it was even shown that a nonlinear system with an error probability decreasing

not only exponential in blocklength, but with an exponential order in blocklength, is

possible.

As a drawback these systems require perfect feedback as their performance quickly

collapses if the feedback is noisy. Also they do not consider quantization as a source of

feedback noise. [22] studied quantized feedback, where the quantization noise was mod-

elled as bounded noise. Basically the assumption is that the quantizer is deterministic

and uniform and in order to achieve bounded quantization noise, the source signal also

has to be bounded. They showed if the noise is appropriately bounded, this system

also provides an error probability doubly exponential decreasing in blocklength.

In [20], [19], and [18] it was shown that in fact no linear system with noisy feedback

can provide error probabilities decreasing doubly exponential in blocklength and also

no linear system with noisy feedback can achieve any positive rate. This does not

contradict the findings in [22], since very special requirements at the feedback noise

were assumed.

86
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In [4] and [5], an optimal linear system with possibly noisy feedback was developed,

which serves as a basis in this thesis. They showed that the Schalkwijk-Kailath scheme

presented in [28] is a suboptimal special case of their scheme. The noisy feedback was

specialised in [6] to quantization noise where it was shown that the quantizer rate would

have to grow linearly in blocklength in order to achieve a positive rate.

What all these systems have in common is the prerequisite of a PAM source sig-

nal equally spaced in some interval. However, we studied a schemes with quantizers

modelled by the Gaussian information bottleneck which requires Gaussian signals. So

we specialized the scheme to Gaussian messages via the approximation of the Gaussian

distribution as a discrete distribution. As a consequence the source is of course not

bounded anymore and so is the quantization noise. Therefore, systems which rely on

bounded noise, as in [22] are not possible.

Thus, we formulated the general idea of designing a quantizer, which compresses

the channel output in order to maximize the mutual information of the desired trans-

mit signal. We formulated the information-rate function as a measure for the mutual

information and showed that the AWGN channel including the Gaussian information

bottleneck can also be interpreted as an AWGN channel for a Gaussian source.

We reassured that systems with GIB quantized feedback also cannot provide any

positive rate, if the feedback quantization noise is assumed to be unknown as usual. As

an important difference to the usual analysis the feedback quantization noise was then

assumed to be known at receiver side. This assumption may be valid if for example

the quantization of the feedback is considered as a re-quantization with a lower rate

in order to fulfill rate requirements on the feedback channel. The contribution of the

feedback noise can then be cancelled at the receiver, so the performance is basically

the same as for systems with perfect feedback if power requirements on the source are

neglected. Unfortunately the feedback noise is only mathematically canceled at receiver

side, but of course physically present in the system. So the feedback noise increases

the transmit power or conversely the feedback power reduces the available power of the

desired signal. We also showed that in contrast to the system where the feedback noise

is unknown, a positive rate is achievable and shows the same asymptotic performance

as a system with perfect feedback with reduced channel capacity. It turned out that the

resulting channel capacity of the system is equal to the channel capacity of the closed

loop of forward channel and backward channel.

The channel capacity of the closed loop is only an asymptotic performance measure,

since it is only achieved for infinite blocklengths. For finite blocklengths the system

with noise cancelation performs better in terms of SNR and error probability than the

system with perfect feedback but channel capacity of the closed loop, although both
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have the same achievable rate. The system with unknown feedback noise performs the

same up to a specific number of iterations because the introduced error of the noise

can be reduced via the trade off factor γ by choosing it slightly lower and so decrease

the influence of the noise. This is only possible up to a specific number of iterations

from where the accumulated error dominates. Hence, for further increasing number of

iterations less and less power is allocate for retransmission of the feedback until the

performance goes to the performance of the repetition code, which does not achieve

any positive rate.

5.1 Outlook

• In this thesis we studied memoryless Gaussian channel with Gaussian inputs

and thus applied the Gaussian information bottleneck to derive the information-

rate function. The interpretation of the information-rate function as the result-

ing channel capacity including the quantizer is only valid in the sense that the

information-rate function is indeed the limit of the mutual information for a Gaus-

sian source. However the general meaning of the channel capacity is the maximum

of mutual information over all possible source distributions. Thus, it is still an

open problem how to jointly find the optimal information bottleneck and source

distribution to give the information-rate function the general meaning of a channel

capacity under output compression.

• For vector channels and jointly Gaussian source and channel output an open

question is how to jointly design the source, i.e., optimal power allocation, and

the quantizers, i.e., optimal rate allocation. It is known that a power allocation

according to the waterfilling algorithm on the noise levels of the channel maxi-

mizes the mutual information for a given channel. Also we showed that the GIB

quantizers maximize the mutual information for a given source, which can be in-

terpreted as an reverse waterfilling rate allocation. That separate optimization

generally results in suboptimal solutions becomes evident if we consider a low rate

case where at least the weakest mode is inactive (provided with zero quantization

rate), although transmit power was allocated on this mode.

• Another open question is if feedback schemes exist, which achieve a strictly posi-

tive rate in the presence of noisy feedback. It was shown by [18] that in fact no

scheme with linear feedback achieves any positive rate.
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