
Optimization Challenges of the
Future Federated Internet

Heuristic and Exact Approaches

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften

by

Dipl.-Ing. Johannes Inführ
Registration Number 0625654

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: a.o.Univ.-Prof. Dipl.-Ing. Dr.techn. Günther R. Raidl

The dissertation has been reviewed by:

(a.o.Univ.-Prof. Dipl.-Ing.
Dr.techn. Günther R. Raidl)

(Prof. Dr. Kurt Tutschku)

Wien, 10.10.2013
(Dipl.-Ing. Johannes Inführ)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der Arbeit

Dipl.-Ing. Johannes Inführ
Kaposigasse 60, 1220 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
- einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

This work as it lies before you would not be what it is without the numerous and significant
contributions by my co-workers and family. I want to express my gratitude and ensure them of
my perpetual thankfulness. The order of contributors that follows is not based on importance or
quality of contribution, but rather on a call to std::shuffle. I thank the following people:

My colleagues within the Algorithms and Data Structures Group, currently Günther Raidl, Doris
Dicklberger, Andreas Müller, Christopher Bacher, Benjamin Biesinger, Frederico Dusberger,
Igor Grujicic, Bin Hu, Christian Kloimüllner, Petrina Papazek, Mario Ruthmair, and Christian
Schauer, for being great guys and gals all around, supportive, fun, and helpful in any way they
can.

Markus Leitner, the expert on the theory of Integer Linear Programming, for guiding me through
the morass that is Column Generation.

Günther Raidl, for being an excellent supervisor, offering me the opportunity for working on the
OptFI project, and being a great beta-reader of this thesis, always offering valuable feed-back.

Bin Hu, for initial discussions about OptFI and for having the right proof at the right time.

Kurt Tutschku, for initiating the OptFI project, numerous discussions and guidance on a topic
that was completely new to me, and valuable comments on this thesis.

David Stezenbach, for many discussions on the concrete problems to be tackled within the OptFI
project and a different perspective.

My family, for offering the nurturing environment and save haven that made this work possible.

Doris Dicklberger, for helping with any- and everything and for being a great insulation against
the bureaucracy of the university.

Andi Müller, for remaining calm and supportive, even if some unnamed third party *cough*
floods our shared home directory with log-files, causes literally thousands of automated emails
due to configuration errors, and always requests the most bleeding-edge software to be present
on our cluster.

Susan, for being supportive, patient, and understanding, even when the weekends became work-
days and for being a beta-reader of remarkable stamina and endurance, only rarely requiring
some poking, prodding or alternatively chocolate bananas.

Christian Schauer, the expert on heuristics, for cheerfully picking up my slack with respect to
my teaching obligations when the thesis deadline loomed and for being a valuable beta-reader.

iii

Mario Ruthmair, the expert on practical programming issues especially with Integer Linear Pro-
gramming, for offering the project culminating in the tool that made the evaluations in this work
possible, for cementing my interest for doing my studies at the ADS and for being a very thor-
ough beta-reader.

The Vienna Science and Technology Fund (WWTF) for financing the OptFI project and help-
fully supplying one line to every work connected with it (like this thesis): “This work has been
funded by the Vienna Science and Technology Fund (WWTF) through project ICT10-027”.

Abstract

The Internet has ossified. It has lost its capability to adapt as requirements change. A fitting
practical example for ossification is the introduction of IPv6. It has been specified in 1998 to
solve, among other things, the forseeable Internet address shortage. The addresses have begun
to run out in 2011 and still IPv6 does not see any wide-spread usage; hacks like network address
translation reduce the need to switch.
A promising approach for solving this problem is the introduction of network virtualization.
Instead of directly using the single physical network, unchangeable to a large degree and working
just well enough for a limited range of applications, multiple virtual networks are embedded on
demand into the physical network, each of them perfectly adapted to a specific application class.
Compute capabilities within the network are provided to the virtual networks, enabling them to
offer their own customized topologies, routing, resource management and naming services.
There are still numerous unsolved problems regarding network virtualization, ranging from the
implementation of virtualizable routers to economic aspects. In this thesis, we focus on the
problem of resource allocation. All virtual networks, with all the resources they require (e.g.,
bandwidth), still need to fit into the available physical network. Our aim is not merely finding an
arbitrary solution, we want to fit the virtual networks in a cost-optimal way. This is the core of
the Virtual Network Mapping Problem (VNMP), anNP-complete Combinatorial Optimization
Problem.
We present several heuristic and exact approaches for solving the VNMP. As heuristic meth-
ods we investigate Construction Heuristics, Local Search, Variable Neighborhood Descent,
Memetic Algorithms, Greedy Randomized Adaptive Search Procedures, and Variable Neigh-
borhood Search. The exact approaches we develop are based on Constraint Programming and
Integer Linear Programming. In addition to analyzing different solution methods and comparing
their various strengths and weaknesses, we present a strong preprocessing method for VNMP
instances. This preprocessing method can determine which parts of the physical network each
virtual network can and cannot use. We show that preprocessing is essential for solving large
VNMP instances with exact methods.
For finding a valid mapping of virtual networks into substrate networks, the preprocessing
method is powerful enough to make Integer Linear Programming the solution method of choice.
For low-cost solutions, the situation is more complex. Integer Linear Programming is the best
method for small to medium instance sizes. If run-time is a concern, our Memetic Algorithm
and Variable Neighborhood Search approaches can be used to great effect, achieving costs within
5% of the exact method. For large instances, we conclude that Variable Neighborhood Descent
performs best.

v

Kurzfassung

Das Internet wie wir es heute kennen hat seine Fähigkeit verloren, sich an ändernde Bedin-
gungen anzupassen. Es gilt als “erstarrt”. Ein prägnantes Beispiel ist die Einführung von IPv6.
Dieses Protokoll wurde schon 1998 spezifiziert, um unter anderem der bevorstehenden Internet-
Adressknappheit entgegenzuwirken. Obwohl die Adressen seit 2011 zur Neige gehen, wird IPv6
noch immer nicht großflächig eingesetzt. Notlösungen wie Netzwerk-Adressübersetzung redu-
zieren die Notwendigkeit eines Wechsels.
Ein vielversprechender Ansatz um wieder Flexibilität in das Internet zu bringen ist Netzwerkvir-
tualisierung. Statt eines einzigen unflexiblen physischen Netzwerks, das eine Reihe von Anwen-
dungen gerade noch ausreichend unterstützt, werden mehrere virtuelle Netzwerke, die voll und
ganz auf verschiedene Anwendungsfälle ausgerichtet sind, in das physische Netz eingebettet.
Bevor Netzwerkvirtualisierung großflächig eingesetzt werden kann, gilt es noch eine Vielzahl
von Problemen zu lösen, von der Implementierung von virtualisierbaren Routern bis hin zu
wirtschaftlichen Aspekten. In dieser Dissertation konzentrieren wir uns auf Ressourcenvertei-
lung und -belegung. Die verschiedenen virtuellen Netze, samt ihren benötigten Ressourcen (z.B.
Bandbreite), müssen ein einem einzigen physischen Netz untergebracht werden. Unser Ziel ist
jedoch nicht, eine beliebige Einbettung der virtuellen Netze in das physische Netz zu finden, son-
dern eine kosten-optimale. Das ist der Kern des Virtual Network Mapping Problems (VNMP),
ein NP-vollständiges kombinatorisches Optimierungsproblem.
In dieser Arbeit untersuchen wir heuristische und exakte Ansätze zur Lösung des VNMP. Die
heuristischen Methoden sind Konstruktionsheuristiken, Lokale Suche, Variable Neighborhood
Descent, Memetische Algorithmen, Greedy Randomized Adaptive Search Procedures und Va-
riable Neighborhood Search. Als exakte Verfahren entwickeln wir Ansätze, die auf Constraint
Programming und Integer Linear Programming basieren. Zusätzlich zur Analyse der vorgestell-
ten Algorithmen und des Vergleichs ihrer Stärken und Schwächen präsentieren wir auch eine
Vorverarbeitungsmethode für VNMP Instanzen. Wir zeigen, dass diese Vorverarbeitung ein es-
senzieller Schritt für die Anwendung von exakten Verfahren auf große VNMP Instanzen ist.
Nur durch die Vorverarbeitung ist es möglich, dass unser Integer Linear Programming Ansatz
unabhängig von der Instanzgröße ein exzellentes Verfahren ist, wenn es um das Finden einer
beliebigen Einbettung geht. Für die Suche einer kosten-optimalen Lösung ist die Wahl der bes-
ten Methode komplizierter. Integer Linear Programming liefert die besten Ergebnisse bis zu
mittleren Instanzgrößen, jedoch nur unter hohem Zeitaufwand. Gilt es diesen zu minimieren,
sind unsere Memetischen Algorithmen und Variable Neighborhood Search Ansätze vielverspre-
chend. Die damit erreichten Kosten liegen nur 5% höher als die der exakten Methode. Für große
Instanzen bietet Variable Neighborhood Descent die beste Lösungsqualität.

vii

Contents

1 Introduction 1
1.1 The History of a Changing Internet . 1
1.2 Current Problems . 3
1.3 Network Virtualization: The Cure? . 4

1.3.1 Advantages and Applications . 5
1.3.2 Challenges . 5

1.4 Scope and Structure of this Thesis . 7

2 Theory and Methodology 9
2.1 Introduction . 9
2.2 Combinatorial Optimization Problems and Solution Methods 9

2.2.1 Combinatorial Optimization Problems 9
2.2.2 Complexity Theory . 10
2.2.3 Multiobjective Problems and Pareto Optimality 12
2.2.4 Construction Heuristics . 12
2.2.5 Local Search . 12
2.2.6 Variable Neighborhood Descent . 14
2.2.7 Variable Neighborhood Search . 14
2.2.8 Greedy Randomized Adaptive Search Procedure 15
2.2.9 Genetic Algorithm . 16
2.2.10 Tree Search and Branch & Bound . 18
2.2.11 Constraint Programming . 19
2.2.12 Integer Linear Programming . 20

2.3 Graph Theory . 24
2.3.1 Dominators . 28
2.3.2 Strong Articulation Points . 28
2.3.3 All Pair Shortest Path . 29

2.4 Experimental Setup . 29
2.4.1 Computational Environment . 29
2.4.2 Statistical Tests . 29
2.4.3 Used Software . 30

ix

3 The Virtual Network Mapping Problem 33
3.1 Introduction . 33
3.2 Input of the VNMP . 33
3.3 Output of the VNMP . 35
3.4 Example VNMP Instance . 35
3.5 Objective . 36
3.6 Complexity . 38
3.7 Ranking . 41
3.8 Extensions . 42
3.9 Summary . 43

4 Related Work 45
4.1 Introduction . 45
4.2 Network Models . 45
4.3 Resources and Constraints . 46
4.4 Objectives . 48
4.5 Testing Methodology . 48
4.6 Solution Methods . 49
4.7 Conclusion . 50

5 Towards a Realistic VNMP Benchmark Set 51
5.1 Introduction . 51
5.2 Substrate . 52
5.3 Virtual Networks . 53

5.3.1 Stream Network . 53
5.3.2 Web Network . 54
5.3.3 Peer-to-Peer Network . 54
5.3.4 Voice-over-IP Networks . 54

5.4 Main VNMP Instance Properties . 56

6 Construction Heuristics, Local Search, and Variable Neighborhood Descent 57
6.1 Introduction . 57
6.2 Construction Heuristics . 57
6.3 Local Search . 61
6.4 Variable Neighborhood Descent . 62
6.5 Results . 63

6.5.1 Construction Heuristics . 64
6.5.2 Local Search . 71
6.5.3 Variable Neighborhood Descent . 77
6.5.4 Comparing CH, LS and VND . 84

6.6 Conclusion & Future Work . 87

x

7 Memetic Algorithm 89
7.1 Introduction . 89
7.2 Background and Related Work . 90
7.3 A Memetic Algorithm for the VNMP . 90
7.4 Results . 94
7.5 Conclusion and Future Work . 96

8 Greedy Randomized Adaptive Search Procedure and Variable Neighborhood
Search 99
8.1 Introduction . 99
8.2 GRASP . 99
8.3 VNS . 100
8.4 Results . 101

8.4.1 GRASP . 102
8.4.2 VNS . 103
8.4.3 Comparison . 104

8.5 Conclusions . 106

9 Preprocessing of VNMP Instances 109
9.1 Introduction . 109
9.2 Solving the SDP . 111
9.3 The SDP for One Component . 114

9.3.1 Pruning by Simple Heuristics . 115
9.3.2 Pruning by All Pair Shortest Paths . 116
9.3.3 Pruning by Integer Linear Programming 116
9.3.4 Pruning by Path Enumeration . 119
9.3.5 Fixing by Testing . 120
9.3.6 Fixing by Path Enumeration . 123
9.3.7 Fixing by Integer Linear Programming 123

9.4 Solving the SDP for One Component Efficiently 123
9.5 The Complete Preprocessing Algorithm . 126
9.6 Results . 127

9.6.1 Influence of Block Tree Decomposition 129
9.6.2 Influence of the Domain Evaluation Order 130
9.6.3 Influence of Partially Known Domains 131
9.6.4 Modification of TwoFlow . 132
9.6.5 Modification of FixFlow . 133
9.6.6 Removal of ILP solutions . 134
9.6.7 Cutoff Size for Path Enumeration . 134
9.6.8 Comparison of Pruning and Fixing Methods 137

9.7 Conclusion . 146
9.8 Future Work . 148

xi

10 Constraint Programming 151
10.1 Introduction . 151
10.2 Models . 151

10.2.1 Binary Model . 152
10.2.2 Set Model . 154

10.3 Heuristic Branching . 157
10.4 Strengthening Propagation . 158
10.5 Results . 159
10.6 Conclusion . 163
10.7 Future Work . 164

11 Mixed Integer Linear Programming 165
11.1 Introduction . 165
11.2 Multi-Commodity Flow Model . 165
11.3 Path-based Model . 170
11.4 Results . 173

11.4.1 Solving Characteristics of FLOW Configurations 174
11.4.2 Comparison of FLOW Configurations 179
11.4.3 Starting with a Valid Solution . 181
11.4.4 Feasibility of PATH . 185

11.5 Conclusion . 188
11.6 Future Work . 189

12 Application Study 191
12.1 Introduction . 191
12.2 Related Work . 192
12.3 Network Traffic Model . 192
12.4 Methodology . 193

12.4.1 Proving Unsolvability and Extracting Reasons 194
12.4.2 Reacting to Failure Reasons . 196

12.5 Results . 197
12.5.1 VNMP Instance Properties . 197
12.5.2 Extension Procedure . 198
12.5.3 Change to the Embedding Probability 200

12.6 Conclusion . 203

13 Comparison and Conclusions 205
13.1 Introduction . 205
13.2 Number of Valid VNMP Solutions . 207
13.3 Additional Resource Cost . 207
13.4 Relative Rank . 207

xii

13.5 Substrate Usage Cost Gap . 210
13.6 Required Run-time . 210
13.7 Conclusion . 210
13.8 Future Work . 214

Bibliography 217

A Solutions in Detail 231

xiii

CHAPTER 1
Introduction

The Internet has ossified [72, 132]. This means it has lost its ability to react to changing re-
quirements, its ability to innovate. It has fallen victim to its own success [170], and only just
works [72].
Why this negativity? Without a doubt, the Internet works. Customers can expect ever increasing
data transfer speeds. With higher speeds new and innovative services become possible, like
video streaming. The video streaming service YouTube [181], founded in 2005, is now visited
by more than a billion users and streams six billion hours of video in one single month. Other
services like Twitch [99] or Ustream [173] are not satisfied with video on demand and offer true
live video streams. A camera and Internet access is all that is required to instantly reach an
audience of thousands. Since the advent of mobile phones with Internet connectivity, it is no
longer a challenge to be online anytime, anywhere.
So, where are the big problems? If the Internet has ossified, how did it come to that? Where
are the cracks that show that something is amiss? How can these problems be solved and what
contribution is this thesis going to make? We will answer these questions in the following
sections.

1.1 The History of a Changing Internet

The history of the Internet is one of explosive growth and change. Technologies and protocols
have been discarded or modified as it became clear that they could not keep up. An excellent
review can be found in [72], which forms the basis of this section.
The Internet had its beginnings as the ARPAnet, the first large-scale packet switched network.
Its foundation was the Network Control Program (NCP) [35], responsible for addressing and
data transport. As the ARPAnet grew, it became clear that NCP was not flexible enough. The
task of addressing and data transport fell to the Internet Protocol (IP), but ensuring reliability,
i.e., that sent data is actually received, was from now on achieved by the Transmission Control
Protocol (TCP) on top of IP. An alternative that does not guarantee reliability, the User Datagram

1

Protocol (UDP) was also introduced. The switch from NCP to TCP/IP occurred on a single day
in 1983, when the remaining ARPAnet nodes started using the new protocols. This procedure
encompassed about 400 nodes and was probably the last time core functionality could be re-
placed by just moving every component to the new technology. From then on, every change has
been deployed incrementally.
As the Internet grew, components failed to scale and were replaced. An early example for this
is the “hosts.txt” file [111] used for name resolution in addressing. It rapidly grew infeasible
to distribute a file with the names and addresses of all available servers in the Internet to each
computer with access to the Internet. In 1982, this system was replaced by the Domain Name
System (DNS) which in addition to solving the distribution problem also introduced namespaces
which could be administrated in a decentralized fashion. Handley [72] notes that this system
could have been developed years earlier but only as the scaling limit of the previous system was
reached the need was pressing enough to deploy a replacement.
Other systems replacing their predecessors because they could not handle the increasing size of
the Internet are link-state routing protocols [124] and the Exterior Gateway Protocol [151].
The strategy of fixing problems just in time worked rather well, until a series of congestion
collapses occurred in the mid-1980s. The network was moving data at full capacity, but no
useful work was done. The problem turned out to be TCP’s retransmission policy, the network
was flooded with data that was unnecessarily retransmitted. This problem occurred with TCP,
but also UDP can cause congestion. Indeed, congestion is a consequence of trying to send more
data than possible, independent of the employed protocols. Therefore, the correct solution might
have been to add a layer to the protocol stack that handles congestion. This would have been
a serious change to the core working principles of the Internet and in 1988 it was already too
large to attempt it. Instead, a congestion control mechanism for TCP was introduced [96], not
a solution for the general problem, but good enough. This change was backwards compatible,
incrementally deployable and probably the first of what are called “architectural barnacles” by
Peterson et al. [6], unsightly outcroppings that have affixed themselves to an unmoving archi-
tecture.
After the Border Gateway Protocol (BGP) [116] was introduced in the early 1990s to allow the
commercialization of the Internet, the last major change to the core Internet was the introduction
of Classless Inter-Domain Routing (CIDR) [182] in 1993, changing how addressing worked. It
was basically lucky chance that made this switch possible. Firstly, it was backwards compatible
and the end-hosts could use the previous system until an operating system upgrade fixed the issue
eventually. Secondly, the routing hardware within the network was supplied by a single vendor,
and the affected functionality was implemented in software and thus easily changed. Such a fix
would be unthinkable today, as the core functionality of the Internet protocols is implemented in
hardware for speed reasons.
At the time of writing, 1993 was two decades ago. What happened in the meantime? Except the
explosive growth of the Internet, nothing. Numerous improvements to the Internet have been
suggested, all bringing an immediate benefit. Examples include Explicit Congestion Notifica-
tion [144], Integrated Services [18], Differentiated Services [26], and Mobile IP [137]. All of
them failed. They might be available in small, isolated parts of the Internet [171], but never saw
general adoption.

2

The history of the Internet shows that changes to the network only occur if there is an immediate
monetary gain, or if the network is about to collapse. Achieving monetary gain by improving the
core Internet is hard, because the Internet Service Providers (ISPs) need to agree on the changes.
If all ISPs offer the improvement, then there is no benefit for any of them [6]. Improvements
become impossible, the Internet ossifies.
In [132], the general diagnosis of ossification is further refined. First, there is intellectual ossifi-
cation. Any new technology has to be compatible with the current technology from the outset.
This stifles innovation. Secondly, there is infrastructure ossification. Suggested improvements
are not deployed in the infrastructure, not even for testing purposes. Thirdly, there is system
ossification, describing basically the same effect as the architectural barnacles [6]. Instead of
fixing problems at their root, workarounds and fixes are employed to keep the system running
while making it more fragile and susceptible to even more problems.

1.2 Current Problems

The Internet, the general purpose network flexible enough to evolve and meet new challenges
head on, has been lost. Instead, we have the Internet, the global network working really well, as
long as nothing too extreme, like Quality-of-Service (QoS) guaranty, is asked of it. How does
this ossification show in practice, which problems do occur? Handley [72] offers a list of short,
medium, and long term problems due to ossification.
Spam, security and Denial-of-Service (DoS) attacks are short term and immediate problems.
One of the main reasons why these problems exist is that at its core, the Internet is a transport
network. It efficiently transfers data from A to B. Whether B wants the data is irrelevant. As
workarounds, firewalls and Network Address Translators (NATs) are used and consequently, the
Internet loses transparency. Data is dropped or modified along the way for no apparent reason
and the deployment of applications that need to transfer data is much more complicated than it
needs to be. As a result, many applications dress up their data as HyperText Transfer Protocol
(HTTP) traffic, since this is understood and accepted by most firewalls. Problems only arise if
HTTP does not correspond to the communication requirements of the application.
A fitting example is the Voice-over-IP (VoIP) software Skype [162]. It uses UDP to transfer
voice data since short delays are important and reliability is not an issue as long as enough
packets arrive. The data has to be sent directly from one user to another for latency reasons,
which is hard to do when NATs are involved. NATs change IP addresses and UDP ports and
the precise mapping has to be determined by the Skype client. Techniques to do so involve
contacting a remote server to determine the IP address and using heuristics to determine the
port mapping. These techniques are complicated and error prone. It gets even worse if both
Skype clients that want to communicate are behind NATs. Then a third party, not hidden by a
NAT, has to be used as a relay station, which adds delay and reduces reliability, since the third
party (another Skype client) can quit at any time. This approach fails completely if most clients
are behind NATs, if the heuristics cannot determine the mappings, or if a firewall blocks UDP
traffic. In those cases, Skype falls back to using TCP as a last resort. In the end, Skype works
well enough to be successful, but consider the amount of engineering that was necessary. It
should not have been required.

3

The medium term problems identified by Handley [72] are congestion control, inter-domain
routing, mobility, multi-homing and architectural ossification. Congestion control is problem-
atic, because with rising link speeds it takes longer and longer for the data transfer rate to con-
verge to a suitable value. As for inter-domain routing, this is facilitated by BGP [116]. It is
basically the glue that holds the Internet together and when it fails, connectivity is affected.
In [122], the frequency of BGP misconfigurations is measured, and they have been found to be
prevalent. For every misconfiguration, there is a 4% chance that it affects the connectivity, i.e.,
some parts of the Internet cannot be reached. Efforts to improve and secure BGP have failed.
The mobility of users, or the possibility that they have multiple simultaneous connections to the
Internet (multi-homing) remain open problems. An example of architectural ossification is that
not even the extension paths already built into the protocols can be used. IP for instance was
designed to be extensible by using IP options. However, packets without options can be handled
in a hardware-accelerated manner within routers. With options, packets have to be processed in
software. Using IP options would be equal to an DoS attack on the router, so those packets are
highly likely to be dropped.
Address space depletion is a long term problem that will be very hard to deal with due to ossi-
fication. Handley [72] states that it was already clear in 1990 that the Internet addresses would
run out. In the meantime, CIDR and NATs kept the network running. An alternative without
the problem of address depletion, IPv6 [42], was specified in 1998. To this day, adoption is
slow [12,170], even though the organizations responsible for distributing the addresses have be-
gun to run out of addresses in 2011 [84]. This is probably the best example for ossification in
practice, but what are the reasons for this slow adoption? One component is, that NATs alleviate
the address shortage, another, that IPv6 is complicated to implement. Maybe the problem is that
IPv6 is just more of the same and does not enable the required fundamental change.
Ossification would not be a problem if the requirements were static. But they are not. According
to [132], users do not only want more bandwidth. They want more reliability, predictability,
manageability, configurability, security, and privacy. Improving those characteristics requires
changes. The Internet was meant to be a general-purpose network, but now more than that is
needed [72].

1.3 Network Virtualization: The Cure?

The Internet has stopped evolving, but how can we start the evolution up again? We have already
seen that a new technology, that wants to have any hope of actually being deployed, has to have
two properties. It needs to be backwards compatible and incrementally deployable. Network
virtualization has been put forward as a suitable candidate [6, 12, 66, 168, 171, 172].
The basic idea of network virtualization is straight forward. Instead of using one physical net-
work that can do everything well, use multiple virtual networks embedded in the physical net-
work, each one specialized and perfectly adapted for a particular application. To allow for this
adaptation, the nodes of the virtual networks receive compute capabilities within the routers of
the physical network. Therefore, virtual networks can offer their own (and application specific)
topology, routing, naming services, and resource management [171]. The alternative to adapted
virtual networks, multiple physical networks, is clearly infeasible on a global scale.

4

That sounds promising, but is it realistic? At the very least, network virtualization requires sup-
port from the physical network by offering routers that can host virtual machines (the routers
of the virtual networks). This technology is already available [32]. In addition, network vir-
tualization is actively and successfully used in large scale scientific network testbeds such as
GENI [62], PlanetLab [31] or G-Lab [156], not as an enhancement to be studied, but as a central
enabling technology for carrying out experiments. Virtual networks are used to partition the
network testbeds so that different research groups can perform their experiments without inter-
ference from each other. As Tutschku et al. [172] state, the “virtualization of telecommunication
services or applications is no longer an academic concept”.
Network virtualization is not the only proposed concept to break the ossification of the Internet.
Alternatives include OpenFlow [123] and Software Defined Networks [112], which allow very
flexible routing that can be administrated centrally.

1.3.1 Advantages and Applications

Allowing network virtualization in the Internet offers some advantages and applications, which
are currently unthinkable, become possible. As a central advantage, Berl et al. [12] mention the
flexibility of the system. Virtual networks can be dynamically reconfigured, new networks can
be added and old ones can be removed, suspended or discarded. The state of the network can be
frozen and reverted if the need should arise. Unused parts of the network can be shut down to
conserve energy. In aggregated services, it is possible to fix or replace parts transparently [27].
Some interesting possibilities also emerge on the user side of things. Turner et al. [170] describe
a virtual network offering a learning environment with high quality audio and video multicast
mechanisms. Format translators are available at the virtual nodes to enhance compatibility. With
virtual networks, it may be possible to switch Internet Service Providers (ISPs) on the spot, like
it is possible for electricity or phone providers [171].

1.3.2 Challenges

Adoption is a central problem for every new technology. How will (or should) the adoption
process of network virtualization work? Anderson et al. [6] envision the following adoption
process. Virtual networking will start with a single daring Next Generation Service Provider
(NGSP) offering virtualization services for its own network. Customers not directly connected
to the network of the NGSP can connect via standard ways through the current Internet. If the
NGSP is successful, it can expand its network to reach more customers. Local ISPs may be
forced to offer the same services to stay competitive. For Turner et al. [170], adoption will
resemble more the introduction of the Internet. First, virtual networks will be offered as an over-
lay in the existing Internet. Then, a government-supported experimental backbone infrastructure
will be built, which natively supports virtualization. As the last step follows the commercial op-
eration of virtual networks.
After adoption is achieved, the tasks of the current ISPs will be carried out by two differ-
ent business entities [29], the infrastructure providers (InPs) and the virtual network providers
(VNPs). InPs will manage the physical infrastructure necessary for hosting the virtual net-

5

works. VNPs create virtual networks from a federation of the resources offered by the different
InPs [28, 50, 170].
This structure offers a rich environment for business opportunities [170]. InPs can compete by
offering better services for VNPs using their networks, such as high quality resources, manage-
ment tools, operation support, and fault tolerance. VNPs can distinguish themselves by offering
shorter virtual network setup times, higher quality virtual networks, or guaranteed resources. In
addition, VNPs do not own any physical resources, they do not need to deploy and maintain
infrastructure. Thus, there is a low barrier to entry for VNPs. There are also opportunities for
network equipment vendors, as there will be demand for high performance virtualizable routers.
Network virtualization is not ready to be deployed in the Internet. The authors of [29, 170]
identify key research questions that still need to be answered, which we summarize below.

Interfacing How can InPs and VNPs communicate, for instance about available resources or
requirements?

Signaling and Bootstrapping How can VNPs set up their virtual resources, if they have no
communication capabilities besides the resources that they want to set up?

Resource Allocation How can a VNP best fit its virtual networks into the resources it has leased
from the InPs?

Resource Discovery How can InPs keep track of the resources they offer and their connectivity,
especially to other InPs.

Admission Control How can it be ensured that the capacities of an InP cannot be exceeded?

Virtualization How are the physical routers to be designed to allow low overhead virtualiza-
tion?

Resource Scheduling How can an InP efficiently distribute its resources among the interested
VNPs. How long should an InP guarantee the availability of resources?

Naming and Addressing How can the situation be handled that a single host may connect to
multiple different virtual networks, each with different naming and addressing schemes?

Dynamism and Mobility How can the dynamic nature of virtual networks and the changing
location of users be efficiently handled in terms of routing?

Operation and Management How can virtual networks be efficiently monitored and man-
aged?

Security and Privacy How can it be prevented that a hostile virtual network breaks out of its
virtualized environment and takes control of the physical infrastructure?

Heterogeneity of Technology How can the plurality of different virtualization technologies be
handled efficiently?

Economics How should the economics of virtual networks work?

6

Service Duplication How can the overhead caused by multiple virtual networks offering the
same basic services be avoided?

In this thesis, we cannot solve all those problems. In the following section, we will outline our
aim.

1.4 Scope and Structure of this Thesis

There are a lot of unsolved problems surrounding network virtualization. In this thesis, we
will focus exclusively on resource allocation. We will try to answer the question of how VNPs
may best utilize the resources they have acquired from the InPs so that all virtual networks they
want to create actually fit and do not incur excessive operational costs. Simply put, we will
study algorithms for mapping multiple virtual networks into a physical (substrate) network in
a reasonable way. We call this problem the Virtual Network Mapping Problem (VNMP). The
remainder of this thesis is structured as follows:
In Chapter 2, we give an overview of the relevant theory and define our experimental methodol-
ogy, followed by a rigorous definition of the VNMP and its variants in Chapter 3. Related work
will be discussed in Chapter 4. Chapter 5 presents the methods used to create realistic benchmark
instances for the VNMP. In the following chapters, we present different algorithms for solving
the VNMP. Since the VNMP is NP-complete and also hard to solve in practice, we consider
(meta)heuristic approaches in addition to exact solution methods. First, we will focus on heuris-
tic methods to generate good solutions in a reasonable amount of time, later parts will focus on
exact approaches to find optimal solutions. Chapter 6 contains basic Construction Heuristics,
Local Search, and Variable Neighborhood Descent approaches. A Memetic Algorithm is pre-
sented in Chapter 7 while Greedy Randomized Search Procedures and Variable Neighborhood
Search algorithms may be found in Chapter 8. Preprocessing techniques for VNMP instances are
discussed in Chapter 9. Then we leave the heuristic solution methods behind and concentrate on
exact approaches for solving the VNMP. In Chapter 10, we apply Constraint Programming and
in Chapter 11 Integer Linear Programming methods. In Chapter 12, we study how the developed
algorithms might be used to support a VNP when deciding where to increase capacities. Chap-
ter 13 contains an overall comparison of the main algorithms presented and final conclusions. In
Appendix A, the detailed results of all algorithms may be found.
Parts of this thesis have been presented at the following conferences and published in the cor-
responding proceedings (all reviewed). The Construction Heuristics, Local Search and Variable
Neighborhood Descent algorithms from Chapter 6 have been published in

J. Inführ and G. R. Raidl. Solving the Virtual Network Mapping Problem with Con-
struction Heuristics, Local Search, and Variable Neighborhood Descent. In M. Mid-
dendorf and C. Blum, editors, Evolutionary Computation in Combinatorial Optimisa-
tion – 13th European Conference, EvoCOP 2013, volume 7832 of Lecture Notes in
Computer Science, pages 250–261. Springer, 2013.

7

The Memetic Algorithm we present in Chapter 7 has been published in

J. Inführ and G. R. Raidl. A Memetic Algorithm for the Virtual Network Mapping
Problem. In H. C. Lau, P. Van Hentenryck, and G. R. Raidl, editors, Proceedings
of the 10th Metaheuristics International Conference, pages 28–1–28–10, Singapore,
2013.

The Greedy Randomized Search Procedures and Variable Neighborhood Search algorithms that
can be found in Chapter 8 have been published in

J. Inführ and G. R. Raidl. GRASP and Variable Neighborhood Search for the Vir-
tual Network Mapping Problem. In M. J. Blesa et al., editors, Hybrid Metaheuristics,
8th International Workshop (HM 2013), volume 7919 of Lecture Notes in Computer
Science, pages 159–173. Springer, 2013.

A very early form of the Integer Linear Programming approach for solving the VNMP as pre-
sented in Chapter 11 has been published in

J. Inführ and G. R. Raidl. Introducing the Virtual Network Mapping Problem with De-
lay, Routing and Location Constraints. In J. Pahl, T. Reiners, and S. Voß, editors, Net-
work Optimization: 5th International Conference (INOC 2011), volume 6701 of Lec-
ture Notes in Computer Science, pages 105–117, Hamburg, Germany, 2011. Springer.

The application study we perform in Chapter 12 has been published in

J. Inführ, D. Stezenbach, M. Hartmann, K. Tutschku, and G. R. Raidl. Using Optimized
Virtual Network Embedding for Network Dimensioning. In Proceedings of Networked
Systems 2013, pages 118–125, Stuttgart, Germany, 2013. IEEE.

8

CHAPTER 2
Theory and Methodology

2.1 Introduction

In this chapter, we give an overview of the theoretical concepts we use in this work, as well
as a description of the employed experimental methodology. In Section 2.2, we introduce the
basics of combinatorial optimization, give an overview of the associated complexity theory,
and present some of the major principles used to solve Combinatorial Optimization Problems
(COPs). Section 2.3 covers the basic definitions and associated algorithms from graph the-
ory. The experimental setup, describing for example the computational environment and the
employed statistical tests, is outlined in 2.4.
We want to state clearly that it is not in the scope of this work to even give a proper overview of
the concepts that we are going to introduce in the following. We will mainly concentrate on the
parts relevant for this work and give references to fill the gaps.

2.2 Combinatorial Optimization Problems and Solution Methods

2.2.1 Combinatorial Optimization Problems

Before we can start outlining different heuristic and exact solution methods for solving instances
of Combinatorial Optimization Problems, we first require a definition what problems, instances
of problems, and solutions are.
A problem is an abstract description of what needs to be done, usually specified by defining
what data is required as input and what is requested as output. The output has to satisfy some
constraints. If we are dealing with an optimization problem, the output has an attached value
that either has to be minimized or maximized. An instance of a problem is a concrete set of
inputs, following the rules as defined by the problem. An instance can be defined more formally
as follows [15, 134]:

9

Definition 2.2.1 (Instance of a Problem). Given a finite tuple of variables X = (x1, . . . , xn),
domains D1, . . . , Dn for those variables (with D = D1 × . . . ×Dn), constraints C defined on
a subset of D and limiting the allowed combinations of values assigned to variables X , and an
objective function f : D → R that has to be minimized or maximized, a problem instance is
defined as quadruple (X,D,C, f).

A problem can also be viewed as the set of all its instances. We will use the terms problem and
instance interchangeably. Given a problem instance, the set of candidate solutions S is the set
of all possible assignments of values to variables according to their domains, but not necessarily
satisfying the constraints. S is also referred to as search space or solution space. Every s ∈ S
has an assigned objective value f(s).
The set of feasible solutions Sfeas is a subset of S, containing all candidate solutions that fulfill
the constraints. When solving a feasibility (decision) problem, we try to find any member of
Sfeas. When solving an optimization problem, we are searching for a special feasible solution;
one that has the best possible objective value. In the following, we assume that smaller values
are better, i.e., we focus on minimization problems. The definitions for maximization problems
are analogous.

Definition 2.2.2 (Optimal Solution). A solution sopt ∈ Sfeas is said to be globally optimal, if
∀s ∈ Sfeas : f(sopt) ≤ f(s). Note that there may be multiple globally optimal solutions with the
unique globally optimal objective value.

If the domains of the variables of a problem (instance) are continuous, we are dealing with a Con-
tinuous Optimization Problem. The problems we are going to solve in this work have discrete
variable domains and therefore belong to the class of Combinatorial Optimization Problems.

2.2.2 Complexity Theory

When we use an algorithm to solve a problem, we are usually interested in how the algorithm be-
haves in terms of run-time or memory requirements when the size of the problem (e.g., number
of variables) increases. The tools available from the field of computational complexity the-
ory [61, 67, 110, 134, 159, 160] can help us to find useful answers.
From this field, we get the following definitions:

Definition 2.2.3 (Time Complexity). The time complexity function of an algorithm gives the
largest amount of time needed to solve problem instances of a particular size (denoted by n), for
all possible values of n.

Definition 2.2.4 (Big-Oh). A function f(n) is inO(g(n)), iff there exist constants c > 0, n0 > 0
such that ∀n > n0 : |f(n)| ≤ c · |g(n)|. Informally, this means that f(n) grows asymptotically
not faster than g(n) for n→∞ when neglecting scaling by a constant.

Definition 2.2.5 (Big-Theta). A function f(n) is in Θ(g(n)), iff there exist constants c1 > 0,
c2 > 0 and n0 > 0, such that ∀n > n0 : c1 · |g(n)| ≤ |f(x)| ≤ c2 · |g(n)|. Informally, this
means that f(n) grows asymptotically as much as g(n) for n→∞ when neglecting scaling by
a constant.

10

Definition 2.2.6 (Polynomial Time Algorithm). An algorithm runs in polynomial time, if its time
complexity is in O(nk), for a constant k <∞.

Definition 2.2.7 (Exponential Time Algorithm). If the time complexity function of an algorithm
cannot be bounded by a polynomial, it is called an exponential time algorithm.

Definition 2.2.8 (Well Solved Problem). A problem is considered well solved, if a polynomial
time algorithm solving the problem is known. A well solved problem is also called efficiently
solvable.

In complexity theory, all efficiently solvable problems belong to the class P (for polynomial
time). Unfortunately, for many of the important COPs the known algorithms require exponential
time. Exponential time basically means that an exponential number of solutions have to be
enumerated to find the optimal solution, at least in the worst case. The problems not belonging
to P can be split into two groups, those for which it is easy (in P) to check whether a potential
solution is valid, and those for which even this check is not in P . The problems for which
it is easy to determine if a candidate solution satisfies all constraints form the class NP (for
nondeterministic polynomial). It holds that P ⊆ NP , but whether P = NP is still an open
problem. It is conjectured thatP 6=NP . The “hardest” problems withinNP areNP-complete:

Definition 2.2.9 (NP-complete). A problem isNP-complete, if it is inNP and every problem
in NP is reducible to it in polynomial time.

Based on this definition, to prove that a problem A isNP-complete, we first need to prove mem-
bership inNP . If there is a polynomial time algorithm capable of checking whether a candidate
solution for A is feasible, A belongs toNP . The second condition forNP-completeness is that
all problems in NP can be reduced to it in polynomial time. That means, for every problem B
inNP , there has to be a polynomial time algorithm capable of transforming any input of B into
an input of A and a solution of A to a solution of B. More informally, A can solve problem B,
and therefore cannot be easier to solve than B. Following the definition of NP-completeness,
it is sufficient to show a polynomial time algorithm capable of reducing another NP-complete
problem to A. The first proof determining the NP-completeness of a problem was achieved by
Cook [33], which of course could not use this shortcut. In addition toNP-completeness, there is
also the notion of NP-hardness. A problem is NP-hard if any problem in NP can be reduced
to it, but it does not necessarily lie in NP itself.
To sum it all up, COPs can be split up roughly into “easy” or tractable problems (those be-
longing to P), and “hard” or intractable problems (those being NP-complete). The “hopeless”
problems not even belonging to NP are usually not considered. It is important to note that
the (in)tractability of a problem is not in lockstep with its solvability in practice. It might be
infeasible to solve a problem in P (possibly due to instance size), and a problem in NP might
be easily solvable for the relevant instance sizes. In addition, there exist pseudo-polynomial
algorithms for some NP-complete problems that are very effective in practice. An algorithm is
pseudo-polynomial if its run-time does not only depend polynomially on the input size, but also
on the input numbers themselves. A pseudo-polynomial algorithm is allowed to run longer when

11

for instance a cost value contained in the problem instance is changed from 100 to 1000. NP-
complete problems, for which a pseudo-polynomial algorithms exist are called weakly NP-
complete. Otherwise, they are called strongly NP-complete.

2.2.3 Multiobjective Problems and Pareto Optimality

In the previous sections, we have only considered the case of a single objective, which tells us
how good a solution to a problem is. However, in reality there are frequently multiple objectives
to be considered and to make matters worse, no solution might be best according to all objectives.
Just think about the trade-off between quality and cost or execution time and solution quality.
The concept of Pareto optimality has been introduced to deal with these kinds of problems and
is based on domination. A solution s strictly dominates a solution s′, if s is at least as good as s′

according to all objectives and better than s according to some objectives. The Pareto-optimal
solutions are those which are not strictly dominated by another solution. An interpretation of this
is that the Pareto-optimal solutions can only be improved according to one objective if another
objective is made worse. The set of Pareto-optimal solutions is called the Pareto-front and is the
dividing line between the best feasible and infeasible solutions to a problem.
Now that we have covered the required theory, we can start discussing solution methods for
COPs. Broadly speaking, they are divided into two categories. First we will present some
heuristic methods. Heuristic methods try to find good solutions in a short amount of time, but
cannot give any guarantees with respect to the solution quality. The other category are the exact
methods. Exact methods can give quality guarantees and even find provably optimal solutions.
Since they are applied to NP-complete problems, their run-time is exponential in the worst
case.

2.2.4 Construction Heuristics

The first, and very basic, heuristic method we cover are Construction Heuristics. A Construction
Heuristic tries to build a solution by iteratively adding components to an initially empty solution
until it is complete. The selection of the components usually follows a greedy rule. That means
that the component that currently seems to be the best choice (e.g., increases profit the most)
is chosen, without regard for possible future consequences of this choice. In addition, once a
decision has been made and a component has been added to the solution, it cannot be removed
again. These properties make Construction Heuristics very fast and easy to implement and ana-
lyze. As downside, the created solutions are frequently far away from the optimal solution [16].
Depending on the problem that has to be solved, the created solutions may not even be feasible.
Nevertheless, the application of a construction heuristic is in practice often the first step when
solving a problem, since more sophisticated improvement heuristics may build upon it.

2.2.5 Local Search

Local Search [1, 15, 134] is a basic improvement heuristic that starts from a starting solution
s ∈ S and tries to find a solution s′ in a neighborhood of s that is better than s. If an improved

12

Algorithm 2.1: Local Search
Input : Solution s
Output: Possibly improved solution s

1 while stopping criteria not met do
2 choose s′ ∈ N(s);
3 if f(s′) ≤ f(s) then
4 s = s′;
5 end
6 end
7 return s;

solution can be found, it replaces the starting solution and the search continues. A neighborhood
structure is defined as follows.

Definition 2.2.10 (Neighborhood Structure). A function N : S → 2S is called a neighborhood
structure. It assigns a set of neighbors N(s) ⊆ S, called neighborhood, to each solution s ∈ S.

A neighborhood structure is usually not defined by explicit enumeration, but rather implicitly by
giving a transformation rule how a solution is to be changed to create its set of neighbors, i.e.,
its neighborhood. These transformations are usually local changes, like swapping or replacing
single components of the solution. The larger the neighborhood, i.e., the more solutions are
reachable from an initial solution, the higher the probability of finding an improving solution in
general. Of course, larger neighborhoods usually lead to higher run-time requirements.

Definition 2.2.11 (Locally Optimal Solution). If N(s) of solution s does not contain solutions
better than s, s is locally optimal with respect toN . A locally optimal solution can be arbitrarily
bad compared to the globally optimal solution.

The main strategic choice for Local Search, besides the definition of the used neighborhood,
is the method of selecting a neighbor. There are three commonly used selection strategies.
First-improvement enumerates the solutions of N(s) and stops when the first improving one has
been found. With best-improvement, all solutions of N(s) are enumerated and the best solution
among them is chosen. Random-neighbor randomly generates neighbors from N(s) and selects
the first improving solution.
A natural stopping point of Local Search is when a local optimum has been reached. However,
based on the size of the employed neighborhood, other limits such as the number of iterations,
elapsed run-time, or no improvement in a certain number of iterations might be chosen. Algo-
rithm 2.1 shows the outline of Local Search.
An important type of neighborhoods are ruin-and-recreate neighborhoods [154]. Instead of spec-
ifying transformation rules, they define how a solution is to be partially destroyed, i.e., how some
components of the solution are to be removed. For recreating, any method for solving COPs can
be applied, as long as it can handle partially fixed solutions. Depending on the chosen recreation
method, these neighborhoods can be very powerful.

13

Algorithm 2.2: Variable Neighborhood Descent
Input: Initial solution s
Output: Possibly improved solution s

1 l = 1;
2 while l ≤ k do
3 select s′ ∈ Nl(s) by first- or best-improvement;
4 if f(s′) < f(s) then
5 s = s′;
6 l = 1;
7 end
8 else
9 l = l + 1;

10 end
11 end
12 return s;

2.2.6 Variable Neighborhood Descent

An extension of Local Search is Variable Neighborhood Descent [74], which is shown in Al-
gorithm 2.2. Instead of one neighborhood structure, a set {N1, . . . , Nk} is utilized. An initial
solution is improved by N1 until no more improvements can be found, then N2 is applied. If
this neighborhood is not able to improve the solution, the next one is tried. If Nk fails, VND
terminates. If at any point an improvement is found, the algorithm goes back to N1. At the end
of VND, the solution is locally optimal for all considered neighborhoods. The neighborhoods
are usually searched in first-improvement or best-improvement fashion.
This method is especially promising if there is a set of neighborhood structures which comple-
ment each other very well. For example, if a problem that has to be solved can be decomposed
into a part that deals with route planning and in another part that deals with packing, it is natural
to use one neighborhood structure that focuses on the routing and another one that focuses on
the packing aspect. Usually, the neighborhood structures are ordered according to their size,
with the smallest ones first.

2.2.7 Variable Neighborhood Search

The main drawback of VND is that it only focuses its search on the part of the search space
around the initial solution. As such, it has a heavy focus on intensification, that means it only
tries to improve the initial solution, but does not diversify the search by sampling solutions
from other parts of the search space. The General Variable Neighborhood Search (VNS) [73–
75] rectifies this problem by using the very scheme of VND around VND once again, with
another set of larger neighborhood structures N1, . . . ,Nk that are only sampled by the random-
neighbor strategy. These are the so-called shaking neighborhoods and not meant for improving
the solution directly, but rather to move the search to another part of the search space and leave

14

Algorithm 2.3: General Variable Neighborhood Search
Input: Initial solution s
Output: Possibly improved solution s

1 while stopping criteria not met do
2 l = 1;
3 while l ≤ k′ do
4 randomly select s′ ∈ Nl(s) // diversification;
5 s′ = VND(s′) // intensification;
6 if f(s′) < f(s) then
7 s = s′;
8 l = 1;
9 end

10 else
11 l = l + 1;
12 end
13 end
14 end
15 return s;

the basin of attraction of the VND’s neighborhoods. The basin of attraction of a VND solution
s is the set of all solutions s′ which are transformed into s by VND. A move in N1 causes
the least change to the current solution, while Nk perturbs the current solution a lot. VNS is a
very successful metaheuristic for Combinatorial Optimization Problems, for more details and a
survey of applications see [76]. The general outline is presented in Algorithm 2.3.

2.2.8 Greedy Randomized Adaptive Search Procedure

The Greedy Randomized Adaptive Search Procedure (GRASP) [52, 53] is an extension of Con-
struction Heuristics in combination with Local Search. It works by continually repeating two
steps. The first step is the randomized greedy construction of a solution to the problem to be
solved. A second step is applying a local improvement technique to the constructed solution.
These two steps are repeated until a termination criterion (like run-time or number of iterations)
is reached. The best found solution is the final result of GRASP. How the randomized greedy so-
lution construction works is a central aspect of GRASP. It iteratively builds a solution by adding
components that seem good (but not necessarily the best) according to a greedy criterion. All
possible components are collected in a candidate list (CL). A restricted candidate list (RCL)
is derived from the CL, usually by selecting the best k candidates, where k is a specified pa-
rameter, or all parts whose greedy evaluation lies above a certain quality threshold. The actual
component that is added to the solution is selected uniformly at random from this RCL. This
procedure usually leads to promising and at the same time diversified solutions for local opti-
mization. Comprehensive overviews of GRASP can be found in [54, 147]. For hybridization
techniques see [55]. The outline of GRASP is shown in Algorithm 2.4.

15

Algorithm 2.4: Greedy Randomized Adaptive Search Procedure
Input: Instance of a problem as quadruple (X,D,C, f)
Output: Solution s

1 s = ∅;
2 while stopping criteria not met do
3 build CL from unassigned variables of X and their domains;
4 s′ = ∅;
5 while s′ is not a complete solution do
6 build RCL from CL;
7 randomly select an element si from RCL;
8 s′ = s′ ∪ {si};
9 CL = CL \ {si};

10 end
11 (locally) improve s′;
12 if s == ∅ ∨ f(s′) < f(s) then
13 s = s′;
14 end
15 end
16 return s;

2.2.9 Genetic Algorithm

A Genetic Algorithm (GA) [80] is a nature-inspired population-based algorithm that can be used
to solve Combinatorial Optimization Problems. An overview can be found in [161]. It mimics
natural evolution as described by Darwin [40] and Mendel [126] by applying three different
methods to a set of solutions, called population: selection, crossover, and mutation. The task
of the selection procedure is to choose promising solutions from the population as a basis for
creating new solutions. The crossover procedure combines two selected solutions (the parents)
such that characteristics of both parents are inherited to the offspring. Mutation changes the off-
spring in a small way so that new solution properties may emerge. Depending on the particular
GA variant, multiple offspring may be collected to form a new population (generational GA) or
the offspring is immediately reinserted into the population (steady-state GA) where it replaces a
solution.
Common methods for selecting solutions from the population are tournament selection and
roulette-wheel selection. With tournament selection, k solutions are randomly chosen from the
population and the best one is the result of the selection procedure. The parameter k controls
the level intensification caused by the selection procedure, higher values of k mean that only
the very best solutions have a significant chance of being selected. For k = 2, this method is
called binary tournament selection. In roulette-wheel selection, every solution in the population
is assigned a selection probability proportional to its solution quality, the best solutions having
the highest probability of being selected.
For a description of the common crossover operators, we assume that the solutions are repre-

16

Algorithm 2.5: Genetic Algorithm
Input: Instance of a COP
Output: Solution s

1 P ... initial population;
2 while stopping criteria not met do
3 O ... empty set of offspring;
4 while offspring O not sufficient do
5 if crossover condition satisfied then
6 select parent solutions P ′ from P ;
7 select crossover parameter;
8 o = crossover(P ′);
9 end

10 if mutation condition satisfied then
11 select mutation parameters;
12 o = mutate(o);
13 end
14 evaluate fitness of offspring o;
15 O = O ∪ {o};
16 end
17 P = select(P,O);
18 end
19 return best solution s ∈ P ;

sented by a vector of integers. To create an offspring with one-point crossover, a location within
the vector of integers is selected randomly. All integers up to this location are copied from one
parent, the remaining values are copied from the other parent. For two-point crossover, two lo-
cations where the source of the values changes are selected. An extreme form of this crossover
type is the uniform crossover. For uniform crossover, there is a random decision at every location
to determine whether the value will be copied from the first or from the second parent.
The applied mutation operator is usually point mutation. With point mutation, a single value in
the vector of integers of a solution is changed to another allowed value. This change might be
random, or biased by the previous value so that a result close to the previous value is more likely.
Algorithm 2.5 shows a general GA template [146], which is one of many possible ways of
constructing a GA. Additional information about GAs can be found in the literature, e.g., [129,
146, 178].
An extension of GA is the Memetic Algorithm. The Memetic Algorithm (MA) is a combi-
nation of GA (or other population based optimization method) and a local improvement tech-
nique [130, 131, 142]. The main idea is to use the GA to find promising regions in the search
space and then use the local improvement technique to find excellent solutions in those promis-
ing regions. There is a tradeoff between the time spent in the GA and the time spent executing
the local improvement technique. Without enough time for the GA, it will fail to find promising

17

regions, without enough time for the local improvement method, the found solutions will not
be excellent. Usually, the local improvement technique is only applied to a fraction of the gen-
erated solutions. Sometimes, only the very best solution in the population is improved to save
on execution time. Another implementation issue surrounding Memetic Algorithms is the treat-
ment of an improved solution. This solution could replace the solution in the population it was
derived from. The other possibility is that the improved solution is discarded and the original
solution is treated as if it had the solution quality of the improved solution. Both approaches
have their drawbacks. If we replace solutions, the diversity in the population might suffer. In
the worst case, every solution in the population is transformed into the same solution by the
local improvement method. Discarding the improved solution is problematic, because we throw
away a lot of work done by the local improvement method. The properties of a highly successful
solution are not inserted into the population so that related, therefore it is not possible to create
related, possibly even better, individuals.

2.2.10 Tree Search and Branch & Bound

We now leave the area of heuristics and focus on exact methods for solving COPs. As outlined
previously, for NP-complete problems we have to expect that we need to check an exponential
number of solutions in the search space to find the best one. Enumerating all possible solutions
only works for the very smallest instances, due to the effect of combinatorial explosion. For
every variable added to a problem instance, we multiply the size of the search space by the
size of the domain of the added variable. This becomes untenable very quickly, so some better
approach is required.
A common concept for exact solution methods is Tree Search, named so because its execution
builds a tree graph (see Definition 2.3.18). The root node represents the complete search space
to be explored. Tree Search then recursively partitions the search space in mutually disjoint
spaces by restricting variable domains or adding constraints. For instance, starting from the root
node, we may create two children representing each one half of the search space by fixing a
variable with domain {0, 1} in one child node to 0 and in the other one to 1. These child nodes
may be partitioned further by restricting other variables. In its simplest form, the search tree
is explored in a depth-first fashion, which means we partition the search space until we either
find a feasible solution, or can prove that given the constraints added during the partitioning, no
feasible solution can exist (without having to enumerate all candidate solutions in the current
sub-space). If we prove that no feasible solution exists, the current node has failed, and we need
to back-track to continue the search, i.e., we need to find another unexplored part of the search
space. This is done by going to the parent of the currently failed node and checking if it has
children that have not been explored yet. If no more unexplored children exist, we repeat this
procedure with the parent of the current node. When we reach the root node in this manner, and
it too has no more unexplored children, Tree Search is finished, and in this case has proven that
no feasible solution exists. It is easy to see that Tree Search is a complete search method, i.e., if
there is a solution it will be found.
In this description, we have only focused on finding a feasible solution (i.e., solving a Constraint
Satisfaction Problem), but could already see the strength of Tree Search: whole parts of the
search space can be discarded, if we can prove that they do not contain a feasible solution.

18

The same applies when Tree Search is used to solve COPs, but now, once we have found a
feasible solution, we can also discard parts of the search space for which we can prove that no
solution better than the currently best found solution exists. This procedure is called Branch &
Bound. Branching refers to the partitioning of the search space and bounding to the calculation
of an upper bound for solution quality (note that this is a lower bound in case of minimization
problems) for the partitions. If the upper bound on solution quality of a part of the search
space not better than the currently best known solution, it can be discarded. How branching and
bounding are implemented depends on the concrete method employing the Branch & Bound
principle.

2.2.11 Constraint Programming

Constraint Programming (CP) [7,119,152] is an exact method following the Tree Search princi-
ple. It is mostly used to solve Constraint Satisfaction Problems but can also solve optimization
problems. The branching works as described before, variables are assigned values (or their
domains are reduced) to partition the search space. In CP, this is also called the labeling strat-
egy. However, the main power of CP comes from propagation [9], also called filtering in the
context of CP. Once a new node in the search tree is created, propagation is performed on the
sub-problem it represents. That means that values, which cannot occur in a feasible solution,
are removed from the domains of the variables. Assume variables a, b, and c with domains
Da = Db = {0, 1} and Dc = {0, 1, 2, 3} respectively and a constraint a + b = c. Propagation
would remove 3 from Dc, since this value clearly cannot be produced by the sum of a and b.
Propagation cannot reduce the domains any further, a fixed point is reached and branching is
required. Assume we branch by assigning c every value from its domain, i.e., one branch where
c = 0, one where c = 1, and one where c = 2. When we consider the first and the third branch,
propagation alone is sufficient to find a complete assignment to a and b. For the second branch,
we end up with Da = Db = {0, 1} and Dc = {1}. Here we can see that by propagation alone,
we are not able to describe the set of feasible solutions. The domains suggest that the set of
feasible solutions (in terms of assignments to a and b) is {(0, 0), (0, 1), (1, 0), (1, 1)}, when in
reality it should be {(0, 1), (1, 0)}. Branching has to be used to find all feasible solutions. If
propagation removes all values from the domain of a variable, then we know that the current
partial assignment (variables that have been assigned a value due to branching or propagation)
is inconsistent, i.e., it is not possible to assign values to the remaining variables such that all
constraints are satisfied. In this case, CP backtracks and evaluates another partial assignment.
Propagation methods come in different strengths, i.e., how well they can reduce the domains of
variables. This is called the consistency of a propagator. The most common consistency level
is domain (or arc) consistency. Two variables are domain consistent if for every value allowed
for the first variable there is a value for the second variable such that the constraint between the
variables is satisfied. Other consistency levels are node consistency or path consistency.
CP is very flexible with respect to the employed variables and constraints, as long as suitable
propagation and branching procedures can be defined. Regarding the types of variables, we
have already seen that binary (a and b) and integer variables (c) can be handled. Real-valued
variables are also possible. Set variables are going to be relevant later on. The domain of
set variables is the set of all possible sets of integers. Due to combinatorial explosion, it is not

19

possible to represent the domain of a set variable directly. Indeed, direct representation is already
problematic for integer variables with large domains. Instead, the domain is approximated by
two sets, the greatest lower bound (GLB) and the least upper bound (LUB). The domain of a set
variable contains all sets that can be built by using all elements of the greatest lower bound and
any selection of elements from the least upper bound. It is written as [GLB .. LUB]. Intuitively
speaking, the value (which is a set) of the set variable has to contain all elements of GLB and
may contain elements of the LUB. This representation cannot represent every set of sets. The
best representation of the domain {{1, 2}, {1, 3}, {2, 3}} for example is [∅ .. {1, 2, 3}], which
also includes sets such as {1} or {1, 2, 3}. To improve on this, the domain of a set variable
usually also contains information on the cardinality of the set, i.e., lower and upper bounds
on its size. The example domain can be represented exactly by specifying a lower and upper
cardinality bound of 2.
For optimization problems, CP works the same way as for satisfaction problems, but every time
a feasible solution is found, the remaining search space is restricted by adding the constraint
that the solution has to be better than the current one. This is usually implemented by adding a
variable f to the model, which represents the value of the objective function. If propagation can
remove all values from the domain of f which are better than the currently best known solution
at some node in the search tree, then this node can be pruned immediately.

2.2.12 Integer Linear Programming

Integer Linear Programming is a class of methods for solving COPs. In contrast to CP, it is
far less flexible with respect to the types of COPs that can be solved. Only if the COP can be
modeled as shown by Equations (2.1)–(2.3), i.e., as a system of linear inequalities with a linear
objective function and using integer variables, Integer Linear Programming can be applied.

z = min c′x (2.1)

subject to Ax ≥ b (2.2)

x ∈ Zn+. (2.3)

Using additional real-valued variables (Mixed Integer Linear Programming) is also allowed, but
it is not possible to model an NP-complete COP exclusively with real-valued variables (unless
the model is exponential in size). In the following, we will consider Integer Linear Programming,
but everything is applicable to Mixed Integer Linear Programming as well. To solve Constraint
Satisfaction Problems, set c = 0.
Branch & Bound can be applied to solve Integer Linear Programs (ILPs). Some definitions are
required before we can cover the details.

Definition 2.2.12 (Set of Integer-Feasible Solutions). The set of integer-feasible solutions X of
ILP (2.1)–(2.3) is defined as X = {x ∈ Zn+ | Ax ≥ b}.

Following this definition, an ILP can also be written as z = min{c′x | x ∈ X}.

Definition 2.2.13 (LP Relaxation). Given an ILP (2.1)–(2.3), the LP relaxation is obtained by
replacing the integrality constraints (2.3) by x ∈ Rn+.

20

Algorithm 2.6: LP-based Branch & Bound (for minimization problems)
Input: ILP min{c′x : x ∈ X}
Output: Optimal solution x∗

1 problem list L = {X}; // initialize problem list
2 x∗ = 0; // best known feasible solution
3 z =∞; // objective of best known feasible solution
4 while L 6= ∅ do
5 choose set Xi and remove it from L;
6 (xiLP, z

i) = LP (Xi); // get optimal LP solution and objective
7 if LP(Xi) = ∅ then prune Xi by infeasibility;
8 else if zi ≥ z then prune Xi by bound;
9 else if xiLP ∈ X then // LP solution is integer

10 if zi ≤ z then
11 x∗ = xiLP; // update best known solution
12 z = zi; // update best known objective

13 end
14 prune Xi by optimality;
15 end
16 else L = L ∪ {Xi,1, Xi,2}; // partition search-space Xi

17 end
18 return x∗;

The LP relaxation can be solved efficiently (in polynomial time) by ellipsoid [104] or interior
point methods [103]. Much better in practice and more widely used is the simplex method [37],
even though it can have an exponential run-time in the worst case [13]. Details on the simplex
method can be found in [13]. By using this method, we can define the LP based Branch & Bound
scheme (for minimization problems), as presented in Algorithm 2.6.
The problem list L is the central data structure of this algorithm. It contains all partitions of the
search-space that have not yet been considered. When this list is implemented as a stack, we
get the standard depth-first search (as we have outlined for Branch & Bound). In practice, there
are a lot of improvements possible by intelligently choosing which partition to consider next.
In addition to L, we also need to store the best known feasible solution (which is the optimal
solution at the end of this algorithm), and its objective. During the execution, this objective is
an upper bound on the optimal value, hence the overline and initial value of∞.
After the initialization, the algorithm starts in earnest by considering every search space partition
(subproblem) in turn, untilL is empty. For the currently considered subproblem, we solve the LP
relaxation and get the optimal solution of the LP relaxation xiLP and its objective zi. Since we
do not enforce variables x to be integer in the LP relaxation, the LP solution will be fractional
in the general case. Its objective is a lower bound (hence underlined) on the objective of the
optimal integer solution contained in Xi. This is the bounding step, and depending on the result,
different actions are executed. If Xi is not even feasible when considering its LP-relaxation

21

(i.e., there is not even a fractional assignment to all variables that satisfies all inequalities), then
Xi cannot contain any integer feasible solutions and can be discarded. If the best fractional
solution contained in Xi is not better than the globally best known integer feasible solution,
Xi can be discarded without further consideration, since no integer feasible solution that will
lead to an improvement exists within it. This step has the potential of quickly recognizing large
parts of the search space as uninteresting and therefore hugely increasing performance. If the
LP solution happens to be integer, then we store it, if it is better than the best known solution.
As a side-effect, this increases the probability of being able to prune by bound in subsequent
iterations. Then we discard Xi, since we have already identified the optimal solution contained
within. If none of those conditions apply, i.e., the LP solution is fractional and better than the
currently best known integer solution, then Xi might contain an improving integer solution and
further analysis is required.
This leads us to the branching step, where we partitionXi into two sets. This is done by selecting
a variable x of the LP solution that has a fractional value v, and adding for one partition the
constraint x ≤ bvc and for the other partition x ≥ dve. Note that if x is a binary variable (its
domain is {0, 1}), it is now forced to be integer in both partitions. By partitioning Xi in that
way, xiLP is no longer a feasible solution for both partitions. The optimal LP solution of both
partitions is likely worse than zi, so in the best case it may be possible to immediately prune both
partitions of Xi, while we could not prune Xi itself. Due to this branching, we can guarantee
that the LP solution will be integer feasible at some point going down the search tree (or no LP
solution exists and we need to track back), and the search tree depth is finite.
When modeling a COP with ILP, one aim is finding a strong model, that means that the optimal
objective of its relaxation is close to the objective of the optimal integer solution. It is possible
to add inequalities to a model to strengthen it, i.e., the inequalities are redundant and do not
change the set of integer feasible solutions, but they remove feasible solutions of the relaxation.
These inequalities might be added to the model at the beginning or added during search as nec-
essary. An added inequality is also called cut, because it cuts away previously feasible fractional
solutions. The problem of finding such a violated cut for a given LP solution is called the (cut)
separation problem. It is theoretically possible to add cuts to the model until the solution of the
LP relaxation yields the optimal integer solution by means of the cutting plane algorithm [38].
Usually, the cutting plane algorithm is computationally too expensive.
Far more promising is the combination of the idea of cut generation and Branch & Bound,
yielding highly effective Branch & Cut algorithms. At each node in the Branch & Bound tree,
cuts are separated to strengthen the LP relaxation of the current subproblem. Procedures to
automatically derive certain types of generic cuts, such as Gomory cuts [68] or Lift-and-Project
cuts [8], are included in the major ILP solvers. With Branch & Cut, it is also possible so solve
models which are exponential in the number of required inequalities, for instance forbidding all
cycles of a specific length when formulating a problem on a graph structure. The initial model
does not contain these constraints. Only if a constraint is violated by a LP solution, the cut
enforcing the constraint is added.
Instead of adding constraints, it is also possible to dynamically add variables to a model. For
the LP relaxation, this is called column generation [64], as a new variable adds a column to
the coefficient matrix A. When combined with Branch & Bound for solving ILPs, it is called

22

Branch & Price. With this method, it is possible to use models with an exponential number
of variables. Initially, an LP containing only a small fraction of the variables is solved. An
important condition here is that this small fraction of variables has to permit a feasible solution.
This is problematic when even finding a feasible solution is NP-complete. After the LP is
solved, a variable that is currently not included in the model and may improve the solution of
the LP has to be identified. This is called the pricing problem. Only variables with negative
reduced costs may improve the solution, see the simplex algorithm [37] for details. By means
of Danzig-Wolfe decomposition [39], it is possible transform a compact model into a model
with exponentially many variables. The transformed model usually has much tighter LP bounds
when compared to the original compact model which reduces the number of Branch & Bound
nodes that need to be considered.

As an example for a model with exponentially many variables, consider a variant of the Vehicle
Routing Problem (VRP), where packets have to be delivered to customers by a fleet of vehicles.
Each vehicle starts from the central depot, delivers packets to a set of customers and returns to
the depot. The total length of the driven distance by all vehicles has to be minimized. All packets
that need to be delivered by a vehicle need to fit into the vehicle. One decision variable could
represent a specific route of a vehicle that is valid with respect to the capacity constraint of the
vehicle. There are exponentially many such variables. In the model for this VRP, we select one
route for each vehicle, such that every customer is visited exactly once, and the total cost of the
routes is minimized.

One point of interest of the column generation approach (besides potentially better LP bounds)
is that it is possible to hide arbitrary constraints within the pricing subproblem and the LP model
deals only with variables that respect those constraints. However, there are also some downsides.
First of all, column generation cannot be stopped during execution and still yield a valid LP
bound. Only after we have proven that no more improving variables exist is the LP bound valid.
Otherwise it might be too high (for a minimization problem), which means we might then prune
subproblems during Branch & Bound that may still contain improving integer feasible solutions.
The cutting plane method can be stopped and we get a valid (if not as strong as possible) lower
bound. Proving that no further cuts exist is only necessary when an integer solution is found,
otherwise the integer solution could be invalid for the complete (exponential) model. Branching
sometimes is also problematic for Branch & Price. Assume we need to chose (i.e., set to 1) one
of exponentially many variables. When we branch on one of those variables, we either fix it to
1 (and are finished unless there are also other variables), or we fix it to 0 and have basically no
additional restriction since there are still exponentially many other variables that may need to
be generated and branched upon. As a result, the search tree is very skewed. The third major
hurdle of column generation are convergence issues. Without taking care, a lot of variables will
be generated that improve the LP bound only a tiny bit which leads to long convergence times.
Stabilization techniques [45] are required to combat this. Despite these challenges, Branch &
Price has been very successfully applied to Cutting & Packing and Network Design problems.
For an overview on column generation, see [44, 118].

23

1

2

3

4

(a) Simple graph

1

2

3

4

(b) Directed graph

Figure 2.1: A simple graph and a directed graph.

2.3 Graph Theory

In this section, we review the basics of graph theory and related algorithms required in later
chapters of this work. We follow the definitions from [176].

Definition 2.3.1 (Graph). A graph G = (V,E) with n = |V | vertices an m = |E| edges
consists of a vertex set V (G) = {v1, . . . , vn} and edge set E(G) = {e1, . . . , em}, where each
edge consists of two (possibly equal) vertices called its endpoints. If e = {u, v} ∈ E(G), then u
and v are adjacent. A loop is an edge whose endpoints are equal. Parallel edges are edges that
have the same pair of endpoints. A simple graph is a graph having no loops or multiple edges.

We will use V and E as shorthand for V (G) and E(G) when G is clear from the context. We
will use the word graph to denote simple graphs unless stated otherwise.

Definition 2.3.2 (Directed Graph). A directed graph G = (V,A) consists of a vertex set V (G)
and arc set A(G), where each arc is an ordered pair of vertices. If a = (u, v) ∈ A(G), u is the
head and v the tail of the arc. The choice of head and tail gives an arc a direction, from head to
tail. A simple directed graph is a directed graph in which each ordered pair of vertices occurs
at most once as an arc.

We will use A as shorthand for A(G) when G is clear from the context.
Figure 2.1 shows an example for a simple graph and a directed graph. Both graphs have a
vertex (node) set V = {1, 2, 3, 4}. The simple (undirected) graph 2.1a has edge set E =
{{1, 2}, {1, 3}, {2, 4}, {2, 3}, {3, 4}}. The directed graph 2.1b has arc set A = {(1, 2), (1, 3),
(2, 3), (3, 2), (2, 4), (3, 4)}.

Definition 2.3.3 (Dense and Sparse Graphs). A graph G is considered to be dense if m ∝ n2, it
is sparse if m ∝ n.

Definition 2.3.4 (Source and Target of an Arc). Given an arc a = (u, v) ∈ A, s(a) denotes
the source (head) of the arc, i.e., s(a) = u while t(a) denotes the target (tail) of the arc, i.e.,
t(a) = v.

24

Definition 2.3.5 (Subgraph). A subgraph of a graph G is a graph H such that V (H) ⊆ V (G)
and E(H) ⊆ E(G).

Definition 2.3.6 (Degree). The degree of vertex v of a simple graph G, written δ(v), is the
number of edges containing v.

Definition 2.3.7 (Incident Edges). The incident edges of vertex v of a simple graph G are the
edges containing v.

Definition 2.3.8 (In-Degree). The in-degree of a vertex v of a directed graph G, written δ−v , is
the number of arcs with v as target.

Definition 2.3.9 (Out-Degree). The out-degree of a vertex v of a directed graph G, written δ+v ,
is the number of arcs with v as source.

Definition 2.3.10 (Shadow). The shadow of a directed graph G is an undirected graph S with
the same vertex set. The edge set of S is chosen such that adjacent vertices in G are adjacent in
S and vice versa.

Definition 2.3.11 (Reversal Graph). The reversal graph GR of a directed graph G contains all
vertices of G, and (u, v) ∈ A(GR) if and only if (v, u) ∈ A(G).

The degree of node 2 of the simple graph in Figure 2.1a is 3, i.e., δ(2) = 3. The incident edges
of node 1 of this graph are {1, 2} and {1, 3}. The in-degree of node 3 of the directed graph in
Figure 2.1b is 2, i.e., δ−3 = 2. The out-degree of node 4 is 0, i.e., δ+4 = 0. Graph 2.1a is the
shadow of graph 2.1b.

Definition 2.3.12 (Path). A path p of length k is a sequence v0, e1, v1, e2, . . . , ek, vk of vertices
and edges such that ei = {vi−1, vi}, ∀i ∈ [1, k]. A path with no repeated vertices is called
simple. The source or start of p, s(p), is v0, the target or end, t(p), is vk. The nodes of the path
p are N(p) = {v0, . . . , vk}, the edges of the path are E(p) = {e1, . . . , ek}.

Definition 2.3.13 ((Simple) Cycle). A path p of length at least 2 is called a cycle, if s(p) = t(p).
If p is simple (with the exception of its source and target node), the cycle is called simple.

Definition 2.3.14 (Weighted Path). Given a path p in graph G and a function w : E(G) → R,
the weight of p is

∑
e∈E(p)w(e). If a weight function for edges is available, the length of a path

refers to its weight instead of the number of its edges.

Definition 2.3.15 (Node and Edge Disjoint Path). Two paths p1, p2 are node disjoint if N(p1)∩
N(p2) = ∅. They are edge disjoint if E(p1) ∩ E(p2) = ∅.

The definitions of a path for directed graphs and arc disjointness are analogous. Let p1 =
1, (1, 2), 2, (2, 4), 4 in graph 2.1b. Then the length of p1 is 2, s(p1) = 1, t(p1) = 4, N(p1) =
{1, 2, 4} and A(p1) = {(1, 2), (2, 4)}. Let p2 = 2, (2, 3), 3 and p3 = 3. Then p1 and p2 are arc
disjoint but not node disjoint, p1 and p3 are arc and node disjoint.

25

1

3

987

2

654

Figure 2.2: A tree.

Definition 2.3.16 (Connected Graph). A graph G is connected if there is a path between every
pair of vertices from V (G).

Definition 2.3.17 (Connected Components). The connected components of a graph G are its
maximal connected subgraphs. A connected graph has one connected component.

Definition 2.3.18 (Tree). A graph G is a tree, if it is connected and the path between each pair
of vertices is unique. For trees, n = m+ 1. The root of a tree is a node of V (G) and often used
as starting point for algorithms on trees.

Figure 2.2 shows an example tree. Node 1 is the root of the tree. Nodes 4–9 are the leafs.
Nodes 2 and 3 are intermediate nodes and the children of 1. The parent of 4 is 2. Nodes 7–9 are
siblings. Node 1 is ancestor of Node 7. The height (or depth) of the tree is 2 and is the length of
the longest path from the root to one of the leafs.

Definition 2.3.19 (Depth-First Search). Depth-first search is a traversal order of the nodes of
the tree. Starting at the root, we select one of its children and then one of the children of the child
and so on, until we have reached a leaf. Then we go back in direction of the root (back-tracking).
We stop at the first node that still has unexplored children and continue with one of those. The
search is finished if all children of the root have been explored.

Depth-first search applied to the tree in Figure 2.2 could visit nodes in the following order (not
showing nodes visited during back-tracking): 1, 3, 8, 9, 7, 2, 4, 6, 5.

Definition 2.3.20 (Biconnected Graph). A graph G is biconnected, if any vertex of V (G) or
edge of E(G) can be removed and G remains connected.

Definition 2.3.21 (Articulation Point). Vertex v of graph G is an articulations point, if its re-
moval increases the number of connected components.

Definition 2.3.22 (Bridge). Edge e of graph G is a bridge, if its removal increases the number
of connected components.

Definition 2.3.23 (Block). A block of a graph G is a maximal connected subgraph of G that has
no articulation points.

26

If a block has more than two vertices, then it is biconnected. If it has two vertices, the edge
connecting them has to be a bridge. Two blocks in the same graph share at most one vertex,
hence the blocks of a graph partition its edge set, i.e., all edges belong to exactly one block.
A shared vertex has to be an articulation point, every articulation point belongs to at least two
blocks.

Definition 2.3.24 (Block Tree). The block tree B is built from a connected graph G, by adding
all articulation points of G to B, and one vertex for every block of G. Vertices v1, v2 of B are
connected, if v1 represents an articulation point of G which belongs to the block represented by
v2.

Definition 2.3.25 (Weakly Connected Graph). A directed graph is weakly connected, if its
shadow is connected.

Definition 2.3.26 (Strongly Connected Graph). A directed graph is strongly connected, if there
is a path in both directions between every pair of vertices.

Definition 2.3.27 (Strongly Connected Components). The strongly connected components of a
directed graph are its maximal strongly connected subgraphs.

The strongly connected components of a graph G can be calculated in O(m + n) by using
Tarjan’s algorithm [166] based on depth-first search.

Definition 2.3.28 (Strong Articulation Point). A vertex is a strong articulation point, if its re-
moval increases the number of strongly connected components of a directed graph.

Definition 2.3.29 (Strong Bridge). An arc is a strong bridge, if its removal increases the number
of strongly connected components of a directed graph.

Definition 2.3.30 (Flowgraph). A flowgraph G(s) = (V,A, s) is a directed graph with a start
vertex s in V such that every vertex in V is reachable from s.

Definition 2.3.31 (Dominator). Given a flowgraph G(s), vertex u is a dominator of vertex v
if all paths from s to v include u. The trivial dominators of u are s and u. D(s) is the set of
non-trivial dominators in G(s).

Definition 2.3.32 (Immediate Dominator). Given a flowgraph G(s), vertex u is an immediate
dominator of v if u is a dominator of v and every other non-trivial dominator of v also dominates
u. The immediate dominator is unique.

Definition 2.3.33 (Dominator Tree). The dominator tree DT (s) of a flowgraph G(s) contains
all vertices of G. There is an arc from a vertex u to a vertex v in DT (s) if u is the immediate
dominator of v. DT (s) is a tree rooted at s, the dominators of a vertex in G(s) are all its
ancestors in DT (s)

Definition 2.3.34 (Planar Graph). A graph G is called planar, if it can be drawn in the plane
without edge crossings.

27

Definition 2.3.35 (Diameter of a Graph). The diameter of a graph is the length of the longest
shortest path between any pair of vertices.

Definition 2.3.36 (Small World Graph). A graph is a small world graph, if the average degree of
each node is small, but the graph also has a small diameter. The diameter grows proportionally
to the logarithm of the number of vertices.

2.3.1 Dominators

Efficiently calculating dominators and the dominator tree has been an open problem for a long
time. Lengauer and Tarjan [115] presented an algorithm solving this problem in O(mα(m,n)),
where α(m,n) is the extremely slow-growing functional inverse of the Ackermann function, in
1979. Truly linear-time algorithms have been proposed by Harel [77], Alstrup [4] and Buchs-
baum [22]. These algorithms either turned out to be wrong or far too complicated for a practical
implementation. Georgiadis et al. [63] were able to present an implementable algorithm for
finding dominators in O(m + n) in 2004 and Buchsbaum et al. [23] were able to correct their
algorithm in 2005. The best source for actually implementing a linear time dominator algorithm
seems to be the work of Buchsbaum, Georgiadis and Tarjan et al. [21] from 2008. For an easily
implementable algorithm for dominators in O(n2) see the work of Cooper et al. [34].

2.3.2 Strong Articulation Points

The advances made with algorithms for finding the dominators in a flowgraph enabled Italiano
et al. [94, 95] to formulate a O(m + n) algorithm for finding all strong articulation points in a
directed strongly connected graph G. We will just present the main ideas here and refer to the
referenced work for more details and proofs.
The first step of the algorithm is to determine for an arbitrary node s if it is a strong articula-
tion point. This is done by removing s from G and checking if the remainder is still strongly
connected, which can be done in O(m+ n). In the second step, we calculate the dominators in
G(s) and its reversal GR(s), which is also in O(m + n). These dominators (possibly together
with s depending on the outcome of the first step) give all strong articulation points of G.
To see why this is so, consider the following argument. It is clear that every dominator has to be
an articulation point, since crossing a dominator is the only way to reach the node it dominates.
Removing the dominator means that the dominated nodes cannot be reached any more, which
increases the number of strongly connected components, the defining property of articulation
points. Therefore, we only need to be certain that we do not miss any strong articulation points,
i.e., every strong articulation point has to be a dominator in either G(s) or GR(s). Assume
there is a strong articulation point a and a node b, node b being in another strongly connected
component than s if a were to be removed. In G, there have to be paths from s to b and from b
to s. In one direction, there is only allowed to be a single path, which has to cross a, otherwise
this would violate the assumption that a is a strong articulation point. If the path from s to b
crosses a, then a is a dominator in G(s). If the path from b to s crosses a, then a is a dominator
in GR(s). Therefore, it is not possible to miss a strong articulation point by using the outlined
algorithm. Basically the same method can be used to find all strong bridges.

28

2.3.3 All Pair Shortest Path

The All Pair Shortest Path Problem is defined as follows:

Definition 2.3.37 (All Pair Shortest Path Problem). Given a graph G and a function w :
E(G)→ R, determine for each pair of vertices of G the shortest path.

There are two well-known algorithms for solving this problem. Both allow negative edge
weights, but no cycles of negative length. The first algorithm is Johnson’s algorithm [97], solv-
ing the problem in O(n2 log(n) + nm) by essentially calculating for each vertex in the G the
shortest path to all other vertices. The alternative is the Floyd-Warshall algorithm [56] requiring
a run-time of O(n3). The modern implementation of this algorithm is essentially a series of
n− 1 matrix multiplications [93].
Based on the run-time complexities, Johnson’s algorithm is the fastest choice for sparse graphs,
while the Floyd-Warshall algorithm has an advantage for dense graphs. In this work, we deal
with very sparse graphs, so Johnson’s algorithm is used to solve the All Pair Shortest Path
Problem.

2.4 Experimental Setup

2.4.1 Computational Environment

All computational results presented in this thesis have been achieved on Intel Xeon E5540 multi-
core systems with 2.53 GHz and 24 GB RAM, which corresponds to 3 GB RAM per core. The
implemented algorithms only utilize one core. All reported run-times are CPU-times, as opposed
to wall-clock time. A memory limit of 5 GB has been used, unless otherwise specified. If an
algorithm exceeds the memory limit during execution, it is aborted.

2.4.2 Statistical Tests

In the course of this thesis, we will often compare the performance of two different algorithms
solving the same problem, for instance with respect to the required run-time. A natural question
of course is, which algorithm is faster? When algorithm A always requires a run-time in the
order of seconds for a particular set of problem instances, and algorithm B always requires a
run-time in the order of hours, then we may rightly conclude (assuming that the set of problem
instances is representative of the problem) that algorithm A is faster than algorithm B. However,
the situation is not so clear most of the time. If there is only a difference of some percent between
the average run-times of the two algorithms, it could very well be that it is caused by random
chance.
In such cases, statistical hypothesis testing becomes important to distinguish between random
chance and a true difference. In statistical hypothesis testing, one first states a null and alternative
hypotheses. For our example, the null hypothesis would be that algorithm A is not faster than
algorithm B, while the alternative hypothesis is that A is indeed faster than B. Now we need to
select an appropriate statistical test to determine if we can reject the null hypothesis in favor of
the alternative given a certain error probability. In our case, we are dealing with paired data.

29

Table 2.1: Example table showing how the results of the statistical test are presented.

Size A B
20 5.1 > 1.0 =
30 11.0 = 10.9 =

For every problem instance, we know the run-time of algorithm A and algorithm B. A common
assumption for hypothesis testing is that the data (run-time) follows a normal distribution. In
the context of this work, this assumption will not hold, as we compare run-times (and other
properties) across different classes of problem instances, some more readily solved than others.
As a result, we get clusters of different run-times according to the hardness of the instances.
Therefore, we need a statistical test that does not assume a normal distribution and can deal with
paired data: the Wilcoxon Signed-Rank test [179]. Information on how this test works exactly is
readily available [100], so we will not go into detail here. It is just important to note that the null
hypothesis for the Wilcoxon Signed-Rank test is that the difference between the run-times of A
and B is centered at a value ≥ 0 and the alternative that it is centered at a value < 0. The main
point here is that this is different from saying that the arithmetic mean (which we usually report)
of the run-times of A is smaller than the mean of the run-times of B. In rare cases, this will
become visible, as a mean run-time of one algorithm might be marked as the lowest run-time,
even though other algorithms have lower reported mean run-times.
On the topic of presentation of the results of the statistical tests, Table 2.1 shows an example.
The average run-time in seconds of algorithms A and B are compared for two different instance
sizes. For size 20, we can see that B requires only 1 second, while A requires 5.1 seconds. A
Wilcoxon Signed-Rank Test has shown thatA−B is> 0 (with a certain error probability), hence
the “>”-sign next to the reported run-time of A. B is equal to itself (we always compare to the
best algorithm) and therefore marked with an “=”-sign. The situation is not as clear for size 30.
Again, algorithm B is faster, but now the difference between A and B is not significantly greater
than 0, therefore A is also marked with an “=” sign and shaded, but slightly less so than B.
In this thesis, we always perform the Wilcoxon Signed-Rank test with a level of significance of
5%, which is the probability of mistakenly rejecting the null hypothesis. We used the Wilcoxon
test available in the statistics software R [86]. For an introduction to statistical hypothesis testing,
see for example [24, 150, 169].

2.4.3 Used Software

This thesis would not have been possible without utilizing the work of others. In this section
we want to acknowledge the authors of the libraries and software packages which we used. As
programming environment, we used Eclipse Kepler [59, 81] with the C++ Development Tool-
ing [138]. The employed compiler was gcc-4.7.1 [65]. Considerable support was provided by the
various libraries of the boost project [17,102], especially the graph library [158]. Other libraries
and applications we used to handle graphs were Stanford GraphBase [107, 108], GT-ITM [184]
and nem [120]. For statistical computations we used R [86].

30

As solver for (Integer) Linear Programs we used CPLEX 12.5 [85]. Unless otherwise specified,
we used default settings, with the exception that we solved in single-threaded mode and that the
time-limit was specified in CPU time and not wall-clock time. We used GECODE [155, 167] as
Constraint Programming solver.

31

CHAPTER 3
The Virtual Network Mapping

Problem

3.1 Introduction

In Chapter 1, we have outlined the need for virtual networks within physical networks, but we
did not go into detail on how this works exactly. The main aim is clear: we want to fit virtual
networks into physical networks. Even this simple statement is ambiguous. It could mean that
we want to find a part of the physical network that has the same structure as a virtual network,
so the virtual network will fit there. Another possibility would be that we have to recreate the
structure of a virtual network by using parts of the physical network. Additionally, resources
should be involved in some way, since it is not possible to implement an unlimited amount of
virtual networks within a physical network. This demonstrates that a rigorous definition of the
problem we are going to solve in the following chapters, the Virtual Network Mapping Problem
(VNMP), is required. In this chapter, we will present the definition of the VNMP. Chapter 4 will
outline other definition possibilities that can be found in the literature.

3.2 Input of the VNMP

Two central components of the input of the VNMP are the physical network and the virtual
networks. Another name for the physical network that we will use throughout this thesis is
substrate network. The substrate network is modeled by a directed graph G(V,A) with node
set V (the substrate nodes) and arc set A (the substrate arcs). The virtual networks, also called
slices, will be defined by a directed graph G′(V ′, A′) with node set V ′ (the virtual nodes) and
arc set A′ (the virtual arcs). Each separate connected component of G′ represents one virtual
network. Based on these definitions, we will use the terms network and graph interchangeably.
We chose directed graphs to model the physical and virtual networks because this allows us
to distinguish between communication directions. As a result, we can model asymmetric con-

33

nections, i.e., the connections that have different properties in different directions, which often
occurs in practice.

Virtual networks are meant to represent a specific application or application class. This implies
that they have to connect the users of the application which are located at fixed points in the
substrate network. As a result, we cannot place all the virtual nodes to which the users want to
connect arbitrarily within the substrate network. They need to be close to the users. There are
other reasons why the ability to limit the location of virtual nodes is important. One example
would be that the operator of a virtual network for video streaming wants to ensure that each
country in which he operates is covered by a virtual node the users can connect to. There might
also be legal reasons why some locations are undesirable. Therefore, the third major input
required to define an instance of the VNMP is a set M ⊆ V ′ × V , which specifies allowed
mappings. If and only if (k, i) ∈ M , virtual node k is allowed to be located at substrate node i.
ByM(k), we denote the set of substrate nodes where virtual node k might be placed. Obviously,
M(k) 6= ∅, ∀k ∈ V ′ for a valid VNMP instance.

It is not physically possible to map an unlimited number of virtual networks into a substrate
network, so we need to consider relevant resources which are used up by the virtual networks.
First and foremost, virtual networks transfer data, so they require data transfer capacities, or
bandwidth, from the substrate network. To be able to model this, we associate a bandwidth
requirement bf ∈ N+ with all f ∈ A′ and bandwidth capacities be ∈ N+ with all e ∈ A.
With data transfer capacities, we are able to represent applications (i.e., virtual networks) that
are just concerned with bulk data transfer. There are applications with this characteristic (e.g.,
Peer-to-Peer networks), but there are also many applications that require more than guaranteed
transfer capacities. One might imagine a telephone conversation, where the time lag between
the speaking of the caller and the listener being able to hear it is too high. Such situations
are experienced as irritating by many people. Therefore, the time it takes to transfer data is a
more important characteristic than the transfer capacity for Voice-over-IP applications. We take
transmission delays into account by specifying an upper bound for delay df ∈ N+ for all f ∈ A′
and associating a transmission delay de ∈ N+ to all e ∈ A.

A virtual network is not simply a passive container for a specific application. It offers services to
the application, be it in the form of customized routing protocols, naming services, or something
else. To be able to do that, the virtual nodes require computing capacities that have to be available
at the substrate node where they are hosted. So we associate CPU requirements ck ∈ N+ to all
k ∈ V ′ and CPU capacities ci ∈ N+ to all i ∈ V . The CPU capacities of the substrate nodes
are not just used to host virtual nodes. In a physical network, the substrate nodes are typically
represented by routers, and their main task is forwarding data. This data forwarding requires
processing power, which is then unavailable for hosting virtual nodes (or vice versa). This
interaction is approximately modeled by the VNMP by assuming that one unit of data (as a
slight misuse of terminology, we will also call this one unit of bandwidth) from a virtual arc
that crosses a substrate node requires one unit of processing capacity there. It is inconsequential
whether this bandwidth is simply relayed by the substrate node or has originated from a virtual
node mapped to the substrate node. Even if both, the sending and receiving virtual node are
mapped to the same substrate node, CPU capacity is required to route data from one virtual
node to the other.

34

These are all the inputs that are required for a very basic form of the VNMP, when we are only
interested in finding valid solutions (the exact definition of a valid solution will be discussed
later). For richer forms of the VNMP, we require additional inputs. We want to map virtual
networks into a physical network in a cost-optimal way. Again, we have to refer to a later part of
this chapter for the definition of the objective. For now it is sufficient to state that each substrate
node i has an associated usage cost pVi ∈ N+ and every substrate arc e has a cost pAe ∈ N+. If the
resources within the substrate network are not sufficient, it might be possible to buy additional
resources. For this, we have a defined price of one unit of CPU capacity pCPU ∈ N+ and one
unit of bandwidth pBW ∈ N+.
This concludes the discussion of the input necessary to define a VNMP instance. In the next
section, we will define the output of the VNMP.

3.3 Output of the VNMP

The output of a VNMP consists of two parts. First, a mapping m : V ′ → V such that
(k,m(k)) ∈ M, ∀k ∈ V ′. That means every virtual node has to be assigned to one of its
allowed substrate nodes. The second part is the implementation of the virtual arcs. For every
virtual arc f , we need to find a simple path pf from m(s(f)) to m(t(f)) in the substrate. Such
a solution is only valid, if the following resource constraints are fulfilled. First of all, there is the
delay constraint. The sum of the delays of the substrate arcs that are used to implement a virtual
arc f may not exceed the maximum allowed delay df . Then there is the bandwidth constraint.
The data transferred across a substrate arc e by the implementations of virtual arcs has to be less
than or equal to the bandwidth capacity be. As last resource constraint, we have the CPU capac-
ity at the substrate nodes. The total CPU load caused by hosting virtual nodes and by routing
data for virtual arcs is not allowed to be greater than the CPU capacity ci. If a solution to the
VNMP satisfies those constraints, it is valid.
One thing to note for this definition of output is that we require the implementing paths for
virtual arcs to be simple, i.e., to not contain loops. This is not strictly necessary, as long as the
substrate has enough resources and the path does not exceed the delay limit, implementing paths
with loops would not be a problem. However, given a valid VNMP solution (except the simple
path requirement), we can always derive a solution that only contains simple paths by removing
all loops. The result will be a valid solution and require strictly less resources, so it will be
better in this sense. The simple path requirement also adds optimization potential, as outlined in
Chapter 9, where we will heavily depend on the simpleness of implementing paths.

3.4 Example VNMP Instance

Before we define the objective for the VNMP, we will show a small example to demonstrate the
main components of the VNMP.
Figure 3.1 shows a simple VNMP instance. The virtual network G′ contains two virtual nodes,
showing their CPU requirement. A virtual arc connects them and is labeled with its bandwidth
requirement and allowed delay. The substrate network G contains the physical network nodes

35

Virtual Network G′

Substrate Network G

3
a′

1
b′

11
a

6
b

12
c

7
d

8
e

(7;12)

(1
3;

6)

(8;6)

(4;3)

(7;10)

(1
0;

3)

(11;2)

Mapping M

Figure 3.1: An illustrative VNMP instance.

showing their CPU resources and the available links (i.e., connections) between the nodes, la-
beled by their bandwidth capacity and the delay that is incurred when data is transmitted across
them. The dashed lines show M , i.e., the allowed locations of the virtual nodes. This example
instance has only one valid solution, as b′ cannot be mapped to c, even though c has enough re-
sources available. At least eight units of processing capacity are required at c, one for hosting b′

and seven for routing the data of the virtual arc to b′, so the 12 available units are sufficient. The
problem is that the virtual connection cannot be implemented from a to c. The implementing
path cannot use b, because it does not have enough resources to route seven units of bandwidth.
The direct connection from a to c lacks the required bandwidth capacity, and the path (a, d, c)
incurs too much delay. So the only valid solution is to map a′ to a, b′ to e and use the path
(a, d, e) to implement the virtual arc between a′ and b′.

3.5 Objective

Until now, we have defined how a valid solution to the VNMP looks like and which constraints
it has to fulfill. However, when considering practical applications it is clear that not all valid
solutions are equally desirable. We have already touched on this previously during the discus-
sion of the simple path requirement, where we noted that wasting resources is bad. What we
now need is a measure of desirability of a valid solution and there are a lot of possibilities for
defining it. We could say that it is desirable to spread the load on the substrate nodes so that the
CPU requirement at each node is as far away from the available capacity as possible. Another
possibility would be to minimize the length of the implementing paths (measured by the number
of used arcs), because that reduces the total bandwidth load on the substrate and the probability
that a defect of a substrate arc will break a virtual connection. Or we could minimize the length
of the implementing paths (measured by the incurred delay), which would make a solution more
resilient if the requirements of the virtual networks or the characteristics of the substrate change.
We chose to define a model of the operational costs of a VNMP solution, which we try to
minimize. In this model, the resources of the substrate network are available to a virtual network

36

provider. If it does not access these resources, they do not incur any costs. In case it utilizes the
virtualization capabilities of a substrate node i, by hosting any amount of virtual nodes there, it
has to pay the usage cost pVi for this substrate node. For substrate arcs, the situation is the same.
If any number of virtual arcs utilize a substrate arc e, usage cost pAe has to be paid. The sum total
of the incurred costs gives the substrate usage cost Cu, which has to be minimized. Therefore,
the objective is to fit all virtual networks into a cheap part of the substrate network, subject to
the resource and mapping constraints.

This choice of objective function has some implications. First and foremost, there is no imme-
diate connection between a solution and its cost. By paying the substrate usage cost, we select
a part of the substrate that we are allowed to use to implement virtual networks. How they are
implemented within this selected part does not influence the costs. As a result, it can be expected
that a VNMP instance will have a lot of different optimal solutions. The weak link between a
solution and its cost may be problematic for heuristic methods. In Chapter 11 we will show
problems this objective causes for Integer Linear Programming approaches. Another property
of the objective function is that it provides a force away from feasibility. To create a very good
solution, we need to aim for high utilization of the parts of the substrate we pay for. However, if
the utilization is too high, we might fail to find a valid solution at all. To increase the probability
of finding a valid solution, we need to spread the utilization of substrate nodes and arcs, which
will result in a solution with very high Cu.

For practical purposes, just using this objective is insufficient. It might happen that the substrate
network does not contain enough resources to implement all virtual networks. If we try to solve
such a VNMP instance with heuristic methods, we will just fail to find a solution. If we apply
exact methods, we might be able to prove that no solution exists. This is an important piece of
information, but useless for a virtual network provider as it does not give any hints as how to
solve this problem. There are two ways to deal with insufficient resources: reduce the amount of
resources required or add more resources. To reduce the amount of required resources, there are
multiple possible approaches. We could assign penalties to virtual networks that do not get the
requested resources and try to minimize the penalties. Another possibility would be to assign
profits to virtual networks and try to select a subset of virtual networks that still fits into the
substrate network and maximizes the profits.

In this work, we choose the second way to deal with insufficient resources: we add the possibility
of increasing the amount of available resources. This is more constructive than simply rejecting
or not satisfying customers and also possible in practice. A virtual network provider might be
able to rent additional resources for the controlled substrate network. As a first step, we need to
identify where the resources are missing. In the general case, the location and amount of missing
resources is ambiguous. It might be possible to make a VNMP instance solvable by adding
CPU capacity at one node, or increasing the bandwidth somewhere else in the substrate, or a
combination of both. In absence of any other constraints, we assume that we want to minimize
the cost of renting additional resources, that one additional unit of resource has a fixed cost, and
that the amount of resources that can be bought is unlimited. One unit of CPU resources costs
pCPU and one unit of bandwidth pBW. The total cost of additional resources is the additional
resource cost Ca, which we want to minimize.

37

We have neglected to mention delay as resource that might be changed. This has three reasons,
the first of which is the ease of change in practice. Changing the available CPU resources is
simple, just add another server. Also increasing the available bandwidth is not problematic, just
lease more bandwidth or activate additional fiber-optic connections if available. Changing the
delay of a connection is far more complicated and usually means changing the employed mode
of transmission, for instance from copper wire to fiber-optic cable. Also, the amount of CPU
or bandwidth resources to be added can be controlled much better. For delay there basically is
only the choice whether we want to have the delay of an electrical connection or of an optical
one. The second reason why we neglect to discuss delay changes is that this is problematic
to model with Integer Linear Programming approaches (see Chapter 11). For adding CPU and
bandwidth, only a new variable per substrate node or arc is required to specify the amount of
added resources. For delay changes, we would need to add new variables for every combination
of virtual arc and substrate arc, which is a substantial amount of additional variables. The third
reason for ignoring delay as a changeable resource is that changing only CPU or bandwidth
capacities is sufficient to make a VNMP instance feasible, as long as there is a mapping for the
source and target node of every virtual arc such that the delay bound is not exceeded. All these
reasons notwithstanding, in Chapter 12 we will present an application where we also consider
changes to delays.
A VNMP solution has two properties, its substrate usage cost Cu and its additional resource cost
Ca. This allows us to define the following:

Definition 3.5.1 (Valid VNMP Solution). A VNMP solution is valid, if Ca = 0.

Definition 3.5.2 (The VNMP Satisfiability Problem VNMP-S). Given a VNMP instance, find a
valid solution.

Definition 3.5.3 (The VNMP Optimization Problem VNMP-O). Given a VNMP instance, find
a valid solution with minimal Cu. If no such solution exists, find a solution with minimal Ca.

In this work, our main aim is solving the VNMP-O. In some cases we will also consider the
VNMP-S. A slight variation of VNMP-S is looking for a solution with minimal Ca, which
we will do for example in Chapter 11. For some applications, we do not allow the possibility
of adding additional resources. It will be clear from the context when this is the case. For a
compact mathematical definition of the VNMP, see Section 11.2.

3.6 Complexity

VNMP-S is NP-complete. Quite obviously, it cannot be harder than NP since we can guess a
solution and check if it satisfies all constraints in polynomial time. To show that it is NP-hard,
there are different possibilities for reducing other NP-hard problems to VNMP-S. One way is
shown in [5], but there are also simpler reductions, for which we will present the general ideas.
Bin-packing can be reduced to VNMP-S by using virtual nodes with their CPU requirements
as items to pack, substrate nodes as bins and allowing every mapping from virtual nodes to
substrate nodes (i.e., every item can be packed in every bin).

38

V1

2

1

3

V2

5

4

6

V3

8

7

9

V4

11

10

12

Figure 3.2: VNMP-S when just considering mapping and delay constraints.

A similar reduction can be performed by using the bandwidth requirements of virtual arcs as
items to pack. Every item is a virtual network with two nodes and a virtual arc between those
nodes. The bandwidth requirement of the virtual arc is the size of the item. The substrate
contains one main source and one main target node. The source nodes of all virtual arcs are only
allowed to be mapped to the main source node and the target nodes of the virtual arcs only to
the main target node in the substrate. In addition, the substrate contains a node for every bin (the
bin-nodes). Arcs from the main source node to all bin-nodes and from the bin-nodes to the main
target node have the bandwidth capacity of the bin that is represented by the bin-node.
We have seen that by considering only CPU or bandwidth resources,NP-hard problems can be
reduced to VNMP-S. The same is possible for the delay constraint. Consider a relaxed version
of the VNMP-S where only the delay and mapping restrictions are relevant. By calculating the
shortest possible delay of paths between all pairs of substrate nodes, we know for each virtual
arc f which mapping combinations of s(f) and t(f) are allowed. Those are the combinations
for which the delay betweenm(s(f)) andm(t(f)) is≤ df . Once we have identified the allowed
combinations, we need not consider the delay constraint any further.
Figure 3.2 shows how the remaining problem looks like. In this example, we have to implement
a virtual network containing four nodes (V1–V4). Each of those nodes can be mapped to three
substrate nodes, for example V1 can be mapped to substrate nodes 1–3. The edges present in
the figure denote substrate connections that are feasible with respect to the delay constraint. For
example, if m(V1) = 1 and m(V2) = 4, then there exists a delay feasible path for virtual arcs
between V1 and V2. Note the use of the plural here as there might be a virtual arc from V1 to V2,
from V2 to V1, or both. An edge is only present if a delay feasible path exists for all virtual arcs.
What we need to do now is to choose a substrate node for each virtual node, such that edges for
all virtual arcs can be chosen. Mapping V1 to node 1 and V2 to node 6 would not be valid for

39

example, since there is no edge between those nodes. We have chosen m(V1) = 2, m(V2) = 5,
m(V3) = 9, and m(V4) = 12. The selected edges are colored and also show the structure of the
virtual network (i.e., which virtual nodes have to be connected).

Given a clustered graph (V1–V4 are clusters) as shown in Figure 3.2, it is straight forward to con-
struct a VNMP instance corresponding to it. The VNMP instance contains one virtual network,
with one node for each cluster. If the graph contains at least one edge between clusters, then
there is a corresponding arc between the virtual nodes. The orientation of the arc is arbitrary.
The substrate network is given by the nodes within the clusters and the connections between
them. The orientation of the substrate arcs has to be compatible to the corresponding virtual
arc. For example, the VNMP instance derived from the graph shown in Figure 3.2 contains a
virtual node for V1 and a virtual node for V2. Since there are edges between those clusters, there
is also a virtual arc between the virtual nodes. We orient it arbitrarily from V1 (more precisely
the virtual node representing V1) to V2. In the substrate network we have nodes 1 and 4 (among
others) and an arc between them. They represent a connection between V1 and V2. Since we
chose an orientation from V1 to V2, also the substrate arc has to go from node 1 to node 4 in
order to be compatible. The mapping constraint we set according to the clusters. All virtual arcs
have a delay requirement of 1 and all substrate arcs have a delay of 1.

There is a transformation of the NP-hard graph coloring problem [60] to a clustered graph as
shown in Figure 3.2. This transformation was presented in [83, 114], we will just give the main
idea here. For the graph coloring problem [60], we are given an undirected graph and a set of
colors. To each node, we need to assign a color such that no pair of adjacent nodes is colored the
same. For each node in the input graph, we create a cluster of nodes, one node representing a
color the original node is allowed to have. For every arc in the input graph, we connect all nodes
from the cluster of its source node to all compatible nodes of the cluster of its target node. Nodes
are compatible if the colors they represent are different. This creates a structure as shown in
Figure 3.2, which in turn can be transformed to a VNMP-S instance (only considering mapping
and delay constraints). Thus VNMP-S is NP-hard and the NP-completeness of VNMP-O
follows accordingly.

TheNP-completeness of VNMP-O is another reason why we defined additional resource costs
Ca. We cannot expect that heuristic methods will always be able to find a valid solution to a
VNMP instance if such a solution exists. Therefore, we need a way to guide the search process
towards valid solutions, which is achieved by trying to minimize Ca. Another complication with
respect to the delay constraints concerns the creation of a (not necessarily valid) solution to a
VNMP instance. Previously, we have stated that just adding CPU and bandwidth resources is
enough to ensure the existence of a feasible solution to a VNMP instance if there is a mapping of
the virtual nodes such that the delay constraint of all virtual arcs can be satisfied. If we want to
construct a feasible solution, we need to check if such a mapping exists and then use it to define
the solution. Now we have shown that finding the mapping is NP-complete, so we actually
missed our goal that by allowing to buy additional resources, finding a feasible solution to an
arbitrary VNMP instance will be easy (i.e., polynomially solvable). We circumvent this prob-
lem by using VNMP instances that allow delay feasible implementing paths for every mapping
configuration (see Chapter 5). Chapter 12 contains techniques for dealing with delay changes,
so that we do not need to restrict the structure of VNMP instances. Also note that using VNMP

40

instances that guarantee delay feasible paths for any mapping does not mean that the graph col-
oring aspect of VNMP can be ignored. It is very much relevant for VNMP-S and VNMP-O,
since we want to find a solution with Ca = 0, which means that some delay feasible paths may
not be allowed anymore due to bandwidth or CPU constraints.
There is one further problem caused by delay constraints, which occurs when trying to find
implementing paths. When trying to find implementing paths for virtual arcs, it is easy to find
a path that is valid with respect to the delay constraint by just using a shortest path calculation
(with the delay used as distance). However, we are usually not interested in the shortest path, we
want to find a good path that satisfies the delay constraint, for some definition of “good”. If we
want to find implementing paths such that the final VNMP solution is valid, one approach could
be to use arcs where only few bandwidth resources have been used. Trying to find a path with
the least amount of used resources on the arcs that satisfies the delay constraint is a Resource
Constrained Shortest Path Problem, which is NP-complete [125]. So even when we apply
heuristics for finding solutions to a VNMP instance, we have to solve NP-complete problems.
Luckily, the Resource Constrained Shortest Path Problem can be solved in pseudo-polynomial
time by Dynamic Programming approaches, for example the one presented in [69], if the arc
costs are non-negative.

3.7 Ranking

For a solution to a VNMP instance we have defined two properties: its substrate usage cost
Cu and its additional resource cost Ca. When solving VNMP-S, there are no complications.
Depending on the variant, we either set Ca = 0 and try to find a valid solution, or we try
to minimize Ca. Given different solutions, we also need to be able to determine which is the
best. Again, this is straight forward for VNMP-S as the solution with lowest Ca is the best.
In addition, the difference in Ca also gives us a measure of how much a solution is better than
another one.
For VNMP-O, the situation is more complicated, since we also care about Cu. In effect, we have
a lexicographic objective measure. When comparing two solutions, the solution with lower Ca
is better. Only if those costs are equal, Cu decides which solution is better. For one particular
instance, this still allows to decide which solution (and therefore the algorithm that created it)
is better. The problem arises when we want to analyze the average performance across multiple
instances. In the case of VNMP-S, we can just compare average Ca values. For VNMP-O,
comparing average Cu values and declaring the algorithm with the lowest value the best is not
a valid approach, since it is very easy to reduce Cu by increasing Ca. Therefore, we need a
representative value that we can compare. An often used approach is to calculate this value by
KCa + Cu, with K greater than the maximum usage cost. This would work and also give a
measure of how much an algorithm is better than another one. The main downside with this
approach is that it places a huge emphasis on valid solutions, more than we deem reasonable.
Assume we have two algorithms for VNMP-O to compare and ten different instances. One
algorithm ignores Cu and creates ten valid solutions which utilize the complete substrate (and
therefore incur the maximum Cu). The other algorithm finds very good (i.e., valid with low
Cu) solutions for nine instances but fails to find a valid solution for one instance. The first

41

algorithm would seem to be better according to the representative value, even though there are
good reasons to prefer the second one in practice.
Because of this, we chose to use another approach: ranking. Given different algorithms to
compare and a set of VNMP instances, we can order the algorithms, for each instance separately,
according to the solutions they achieve. Based on this order, we assign ranks. The algorithm
with the best solution gets rank zero, the second best rank one and so on. If two algorithms create
the same result, they share the same rank. Now every algorithm has a rank R for each VNMP
instance. Average ranks cannot be meaningfully compared because the total number of ranks is
(potentially) different for every instance. Achieving rank one out of two ranks means that this
algorithm achieved the worst result, but achieving rank one out of ten means that this algorithm
achieved nearly the best result. So we need to normalize the rank by dividing it by the highest
assigned rank. The created value is the relative rankRrel. IfRrel = 0, the algorithm achieved the
best result, Rrel = 1 means the worst result. If all algorithms created the same solution (which
would cause a division by zero), we assign a relative rank of zero to all algorithms. Average
relative ranks across multiple instances can be compared in a meaningful way. If an algorithm
achieves an average relative rank of 0.2, that means its results are among the top 20% on average.
The relative rank Rrel will be the main metric for comparing results in this work.
The relative rank is not without its problems. The first problem is that we lose all information
about how much better one solution is compared to another. Assume we have two algorithms (A
and B) and two VNMP instances. Both algorithms create valid solutions for both instances. For
the first instance, A’s solution has half the substrate usage cost of B’s. For the second instance,
B’s solution costs one monetary unit less than A’s. Both algorithms have an average relative rank
of 0.5, but clearly algorithm A should be preferred. The second problem is that the relative rank
of an algorithm depends on the algorithms that are being compared. Therefore, Appendix A
contains the full results of all algorithms that are going to be presented in the following chapters
to allow comparison with future VNMP solution methods.

3.8 Extensions

The model of Virtual Network Mapping as presented in this chapter is greatly simplified. In this
section, we are going to outline some possibilities for refining the model to better match it to the
real world.
One extension could be to model virtualization overhead, i.e., depending on the number of vir-
tual nodes mapped to a substrate node we have an additional demand for CPU resources caused
by the overhead of managing the different virtual nodes. Also the delay behaviour can be im-
proved. As a first step, instead of assuming a constant delay on an arc, we could use a normally
distributed delay. Instead of a hard upper bound, virtual arcs could specify a delay limit and
the maximum allowed probability of exceeding this delay. However, this is still a very limited
model. The delay of network connection depends on its utilization, so a relation between used
bandwidth and delay of a connection could be added. However, the relationship between delay
and utilization is highly non-linear [135] and incurred delay is actually mostly a property of
the routing nodes and not the links between them. Even the used hypervisor influences the de-
lays [177]. Whether a more realistic delay model generates tangible benefits in practice remains

42

to be seen. There is research [188] that suggests that the higher statistical moments (skewness,
kurtosis, . . .) are also important to characterize the behaviour of a link with respect to delay.
For a valid VNMP solution, we require that we have exactly one implementing path for each
virtual arc. It is possible to relax this constraint and allow an arbitrary number of paths. Assum-
ing we already have fixed a particular mapping and relaxing the delay constraint, finding valid
paths for the virtual arcs subject to the bandwidth and CPU constraints is a Multi-Commodity
Flow Problem with fractional flows. This problem can be solved in polynomial time by Integer
Programming or if fast solutions are required by approximation schemes [101]. Allowing mul-
tiple paths was also considered for example in [183]. For this work, we chose the restriction to a
single path due to practical reasons. If we allow multiple paths, then the observed behaviour of
the virtual connection will be much more erratic in terms of delay and probably harder to deal
with by the employed protocols in the virtual network.
One additional enhancement to the model could be to allow redistribution of bandwidth between
the directions of a connection between two substrate nodes. That would capture the flexibility
inherent especially in fiber optic connections. Different wavelengths can be configured to be
either used in sending or receiving direction. In this case it would also be possible to simplify
the substrate network to an undirected graph where edges have a specific bandwidth capacity
that can be used in arbitrary directions. As a downside, we would lose the ability to model
cases when the distribution between sending and receiving capacity is fixed, for instance if the
substrate resources are only rented.
We have now outlined some possibilities of modeling Virtual Network Mapping closer to the
real world by including behaviours that can be observed in practice. However, we neglected an
important point: Virtual Network Mapping is not a static process. For the VNMP we assume
that we know all virtual networks and the available substrate network in advance. In practice,
virtual network mapping will be very dynamic, new virtual networks will have to be added to the
substrate network while other virtual networks are removed. Already present virtual networks
might need to be reconfigured because their resource requirements have changed. Of course,
also the substrate network is subject to modifications due to failures, maintenance, or because
resources can be rented somewhere else much cheaper and we want to move the virtual networks
there.
With all those sources of uncertainty, it might be useful to consider finding solutions that are
robust when the environment changes [11, 14]. For instance, we could try to find a selection of
resources in the substrate, which allows for a valid solution even if an arbitrary node or arc of the
selection fails. Alternatively, we could try to find a selection that allows adding another virtual
network (at least with high probability) without having to use additional parts of the substrate.

3.9 Summary

In this chapter, we have presented the definition of the Virtual Network Mapping Problem,
VNMP. Virtual networks require CPU resources on the nodes, bandwidth resources on the arcs
and have a maximum allowed data transfer delay. The physically available network (the sub-
strate) offers CPU resources on the nodes, the arcs have data transfer capacities and delay is
incurred when data is transferred across them. In addition, virtual nodes can only be hosted on a

43

Table 3.1: Input of the Virtual Network Mapping Problem.

Input Description

G(V,A) Substrate graph
ci ∈ N+ ∀i ∈ V Available CPU resources on substrate nodes
be ∈ N+ ∀e ∈ A Available bandwidth on substrate arcs
de ∈ N+ ∀e ∈ A Incurred delay on substrate arcs
pVi ∈ N+ ∀i ∈ V Cost of using a substrate node
pAe ∈ N+ ∀e ∈ A Cost of using a substrate arc
pCPU ∈ N+ Cost of one additional unit of CPU capacity
pBW ∈ N+ Cost of one additional unit of bandwidth capacity
G′(V ′, A′) Virtual network graph
ck ∈ N+ ∀k ∈ V ′ Required CPU resources of a virtual node
bf ∈ N+ ∀f ∈ A′ Required bandwidth of a virtual arc
df ∈ N+ ∀f ∈ A′ Maximum allowed delay for the implementation of a virtual arc
M Set of allowed mappings of virtual nodes to substrate nodes

Table 3.2: Output of the Virtual Network Mapping Problem.

Output Description

m : V ′ → V Mapping of each virtual node to a substrate node
pf , ∀f ∈ A′ Implementing path for each virtual arc
Cu Substrate usage cost
Ca Additional resource cost

specific set of substrate nodes. The aim is to find a mapping of virtual nodes to substrate nodes
and a simple path in the substrate for each virtual arc subject to the resource constraints such
that the operational costs are minimized. Every substrate node that is used to host virtual nodes
incurs costs, as does every substrate arc that is used to implement a virtual arc. The sum of
those costs is the substrate usage cost Cu. Just finding a solution that satisfies all constraints is
NP-complete. Therefore, it is allowed to buy additional resources so that an arbitrary solution
can be made to satisfy all resource constraints. The cost of the additional resources is the addi-
tional resource cost Ca. We call a VNMP solution valid if no additional resources are necessary
(Ca = 0). By VNMP-S we denote the problem of finding a valid solution, VNMP-O is the
problem of finding a valid solution with minimal operational costs. Table 3.1 gives a summary
of the input for the VNMP, Table 3.2 summarizes the output of the VNMP.

44

CHAPTER 4
Related Work

4.1 Introduction

In this chapter, we present an overview of the available literature on Virtual Network Mapping
and relate it to our approach. Work on the VNMP can also be found under the names Virtual
Network Assignment [187], Virtual Network Embedding [30], Virtual Network Resource Allo-
cation [164], and Network Testbed Mapping [148]. The different names are a result of slightly
different application scenarios. Network Testbed Mapping for instance deals with the problem
of embedding virtual networks into a network testbed to share it among different research groups
and their experiments. Even though the core problem is always the same, i.e., mapping virtual
networks into a physical network, there is a huge diversity in the details.
In Section 4.2, we will cover the basic setup of the related work in terms of employed network
model, size, and structure of virtual and substrate networks. The types of resources that have
been used will be discussed in Section 4.3. In Section 4.4, we consider the different possibili-
ties with respect to the objective. The test methodology will be the main focus of Section 4.5
and Section 4.6 presents the different solution methods employed for solving the VNMP. We
conclude in Section 4.7.

4.2 Network Models

In this work, we use directed graphs to represent substrate and virtual networks. From the
sampled related work, only one [164] employs directed graphs. The vast majority [30, 48, 71,
82, 139, 145, 148, 175, 180, 185–187] uses undirected graphs. In between lies the work of Lu
and Turner [117], who consider undirected substrate networks but directed virtual networks.
Unfortunately, there is never a reason stated as to why directed graphs were rejected in favor of
undirected graphs (or vice versa). We chose directed graphs, since they allow for asymmetric
resource requests, which appears to be very meaningful in practice. For instance in some video
streaming applications a virtual server node a may send a virtual node b a lot of data, while

45

b sends only small amounts to a. Also, substrate connections may have different properties
depending on direction, which cannot be modeled by undirected graphs. The one advantage of
undirected graphs is that they can capture the situation when the Virtual Network Operator owns
the substrate resources and is able for instance to split the capacity of a network link arbitrarily
between the two directions. The directed model we employ could handle this with additional
constraints, but we do not explore this possibility further.
The employed substrate networks are mostly synthetic, only [117, 164, 185] use substrate net-
works based on real topologies. Considering the sizes of the employed networks, they can be
split roughly into three size classes: 10–50 nodes, 100 nodes and more than 100 nodes. Into the
smallest class fall [164] (15 and 27 nodes), [117, 185] (20 nodes), [180] (40 nodes), and [30]
(50 nodes). Note that every work using realistic substrate networks falls into this class. The
representatives of the medium size class with 100 nodes are [48, 82, 145, 175, 187]. For the
largest size, we have the work presented in [186] with 150-250 nodes and [148] with 120 and
525 nodes. The synthetic substrates are random graphs, where the probability of an edge (or
arc) between two vertices was chosen either to be 50%, or less commonly 40%. As a result, the
substrates are rather dense. For our work, we use substrates based on real topologies covering
sizes from 20 to 1000 nodes.
The used virtual networks are usually very small synthetic random graphs with 50% chance of
an edge between two nodes. The exception are the virtual networks used in [164], which are
complete graphs with 2-4 nodes. Most work [30, 48, 175, 180, 185–187] uses random sizes be-
tween 2 and 10 nodes. The largest virtual networks we encountered were 2 to 20 nodes in [145],
25 nodes in [82] and 10 to 100 nodes in [148]. The only work considering realistic virtual net-
work loads is [148]. In this case, realistic means that the topologies have been requested within
a network testbed. Our work will use virtual networks between 5 and 30 nodes. In addition,
they are not random graphs but rather try to capture different types of applications and their
requirements with respect to topology and resources. Details will be presented in Chapter 5.

4.3 Resources and Constraints

Virtual networks have an impact on the substrate network. They require resources and only a
finite number of virtual networks can fit into a substrate network. This is (nearly) universally
acknowledged among the sampled work. The main differences lie in the considered resources.
The work presented in [187] does not use resources at all, but rather the count of virtual nodes
mapped to a substrate node (node stress) and the count of virtual arcs crossing a substrate arc
(link stress). The node and link stresses are not allowed to exceed a certain value. The remaining
work at least considers the available bandwidth on substrate arcs, [71, 117, 164] exclusively use
bandwidth as resource.
The next logical resource to consider is the CPU capacity available at the substrate nodes, which
is consumed by the virtual nodes. The work presented in [30, 139, 145, 148, 175, 180, 185]
considers CPU and bandwidth resources.
In addition to resource restrictions, limiting the mapping possibilities of virtual nodes is popu-
lar. One method to implement this is to assign a location to substrate nodes and virtual nodes.
Virtual nodes may only be mapped to substrate nodes not too far distant. This approach is em-

46

ployed in [30, 117, 186]. Another way of limiting the mapping possibilities is to forbid that
a substrate node hosts multiple virtual nodes of the same virtual network [48, 180, 187]. An
in-depth discussion about the possibilities of restricting virtual node placement can be found
in [180]. The authors mention location preference constraints, which means that a virtual node
may only be mapped to a specific set of substrate nodes, location exclusion, which means that a
virtual node is not allowed to be mapped somewhere and location separation, which means that
two virtual nodes may not be mapped on the same substrate node or otherwise close together
(e.g., on servers in the same rack).
Some less usual resources and restrictions are also covered in the literature. The power state
(similar to the notion of a used substrate node in this work) is considered in [186]. Some nodes
cannot host any virtual nodes in [164]. In [185], virtual nodes may be split up and mapped
to multiple substrate nodes. This parallelization causes an additional overhead. The authors
of [48] consider the available memory at the substrate nodes as additional resource. As a further
extension, they consider the possibility of “overbooking” bandwidth resources on substrate arcs,
since virtual arcs will not require their specified bandwidth constantly. A limit is placed on the
probability that the bandwidth capacity of a substrate connection is exceeded. In [71, 117], the
virtual networks are not even fixed. Given are data sending and receiving rates at the virtual
nodes and the topology of the virtual network has to be created such that every traffic pattern
conforming to these rates is possible. The authors of [71] also consider the restriction that the
virtual network has to be a tree.
We have already mentioned in the previous chapter that an argument for allowing multiple paths
to implement a single virtual arc can be made. This approach is used in [30, 164, 180, 183]. On
the topic of the implementing paths, some work (e.g., [117, 145]) implicitly focuses on short-
est paths, instead of allowing arbitrary implementations. For instance, the algorithm presented
in [145] will reject a virtual network, if one of its virtual arcs cannot be implemented by using
one of the k ≤ 6 shortest paths. Longer paths which may have enough free resources are not
considered. In tests with physical networks, it has been concluded that in 25% of cases the short-
est path (with respect to hops) is not the shortest path with respect to transmission delay [171],
so focusing only on shortest paths is really a restriction that might hurt the final solution quality.
The VNMP version considered in this work utilizes CPU, bandwidth and delay as main re-
sources. From the sampled work, only the authors of [82] and [10] considered delay as factor
for virtual network mapping. However, in the model proposed in [82], virtual networks cannot
specify delay constraints and furthermore it is assumed that resources are unlimited. In [10],
only the mapping of virtual nodes is considered, together with communication delays for the
users of the virtual nodes. No virtual connections have to be implemented.
As location constraints we allow only a specific set of substrate nodes as host for each virtual
node. We do not forbid the mapping of two virtual nodes from the same virtual network to
the same substrate node, because if it is the cheapest way to implement a virtual network, why
should it be forbidden. If two virtual nodes of a network are not allowed to be hosted on the
same substrate node, this can be realized by choosing two disjoint sets of substrate nodes as
possible hosts. Only if the sets of possible nodes cannot be disjoint, our employed method for
specifying location constraints fails to capture this restriction. Restrictions based on distance
between virtual node and substrate node can be realized by our model. For paths implementing

47

virtual arcs, we consider all paths that are short enough (with respect to delay), not only the
shortest ones. We only use one resource on nodes, the CPU capacity. We chose not to consider
other resources on the nodes, since they are basically the same as the CPU capacity and do not
require any special handling. In fact, an additional resource on the nodes would be easier to
handle than the CPU capacity in our model, since routing of data also requires the CPU. This
causes a much tighter coupling between node mapping and arc implementing than in other work.

4.4 Objectives

The main objectives used for Virtual Network Mapping are either maximizing revenue or mini-
mizing cost. The work published in [139,145,175,185] focuses on maximizing revenue. Virtual
networks with high resource demands generate high revenue.
The cost of a virtual network implementation is usually the sum of resources used in the sub-
strate, which is used (with some variations) in [30, 71, 82, 148, 164, 180, 187].
We have already mentioned the work of Fajjari et al. [48], where it is allowed to exceed the
bandwidth capacity of a substrate arc with a certain probability. Two objectives are used, max-
imizing the acceptance rate (fitting as many virtual networks as possible to maximize revenue)
and minimizing the probability of exceeding the available capacity.
In [186], another interesting objective is used: minimizing the electricity cost. This is similar to
the usage cost we use in this work (not using a substrate component means it can be shut down,
thus saving on electricity other operational costs), but exceeds our approach by also considering
the time dependence of the cost of electricity.

4.5 Testing Methodology

Most algorithms presented for the VNMP are tested in an online setting. That means that a
substrate network is given and random virtual networks arrive over time that have to be mapped.
These virtual networks also have a limited lifetime, after which they are removed from the
substrate. As a representative of this methodology, we present the test setup as used in [175]. A
single substrate network is used. Virtual networks arrive in a Poisson process with an average
rate of 5 requests per 100 time units. Each request has an exponentially distributed lifetime with
a mean of 1000 time units. The simulation is run for 50000 time units. The main performance
metric is the acceptance ratio, i.e., how many of the arriving virtual networks can be mapped into
the physical network. Also the work presented in [30,48,139,145,164,180,185,186] follows this
evaluation style. It is important to note that the mapping algorithms only see one virtual network
request at a time and cannot plan ahead or change how already accepted virtual networks are
mapped to the substrate network. However, some methods allow to store a request for some
time to wait for resources to become available.
In [187], the alternative of changing already mapped virtual networks is considered. This work
also contains a discussion of the associated costs when changing a virtual network implemen-
tation (migrating virtual machines,. . .). However, also in this case the presented algorithm only
considers one virtual network at a time. It could be shown that reconfiguring already present
virtual networks leads to better performance.

48

Unfortunately, when this testing setup is used, the total number of virtual networks present in the
substrate is not reported. Based on the available resources in the substrate networks and required
resources by virtual networks, we estimate the total number of virtual networks to lie between
10 and 50. Another, in our opinion interesting, parameter that is usually not reported is the time
needed to map a virtual network. In [82], a required time of 1 second was mentioned.
The work presented in [117, 148] uses an offline approach, where the total load of virtual net-
works is known from the start. Only the algorithm presented in [148] makes use of this infor-
mation, the algorithm from [117] maps the virtual networks iteratively. A completely different
type of evaluation is performed in [82], where the proposed distributed algorithm is simulated
by means of a multi-agent system.
In our evaluation, we will focus on the offline case, which means we know which virtual net-
works need to be implemented. Every heuristic and exact approach we will introduce in the
following chapters will deal with all virtual networks at once. In some sense, these methods can
be viewed as complementary to the methods presented in the literature. While they concentrate
on immediately answering virtual network requests, and by necessity have to focus on keeping
the implementations of the virtual networks spread across the substrate so that critical resources
remain available for future networks, our algorithms deal with the global view and can optimize
the virtual network implementations to reduce operating costs. Instead of a single substrate net-
work, we use 210 networks spanning 7 size classes and up to 40 virtual networks to evaluate the
performance of our algorithms.

4.6 Solution Methods

In the previous section, we have shown that the approaches from the literature are meant to be
employed in an online setting, which means they have to be able to decide nearly immediately
if a virtual network is accepted or not. As a consequence, most of the presented methods are
Construction Heuristics [48, 139, 145, 175, 185–187], with quite involved strategies for deter-
mining which virtual node or arc should be implemented next. The algorithm presented in [139]
for instance uses Bayesian network analysis to improve the node selection strategy. Another
interesting observation is that some methods, even though they only have to implement a single
(usually small) virtual network, apply decomposition techniques to the virtual network and then
concentrate on implementing the decomposed parts [48, 187].
The first step away from Construction Heuristics is the algorithm presented in [48], which in
addition to greedy rules also utilizes backtracking to find good solutions. In [148], simulated
annealing is utilized, in [117] Local Search.
The methods published in [30, 164, 180] are based on solving multi-commodity flow problems,
which is possible since implementing virtual arcs with multiple paths is allowed in their version
of Virtual Network Mapping. The algorithm from [164] uses a heuristic approach, while [180]
uses Integer Linear Programming. The method presented in [30] uses the LP relaxation of the
Virtual Network Mapping Problem to derive the mapping via rounding procedures and solves
the multi-commodity flow problem afterwards. A distributed algorithm is presented in [82].
In this work, we will cover exact and heuristic approaches to solve the VNMP. In contrast to the
work in the literature, we will focus less on execution speed and more on solution quality.

49

4.7 Conclusion

The VNMP as solved in the literature could be summarized as follows: Given is an synthetic
undirected substrate network with 50 nodes and a capacity of about 30 virtual networks. From
a continuous stream of synthetic virtual network requests with a size of 2 to 10 nodes, select
those that can be implemented and implement them. The VNMP as solved in this work may be
summarized as follows: Given are hundreds of realistic directed substrate networks from 20 to
1000 nodes in size and a capacity of at least 40 virtual networks. For each of those networks,
implement at most 40 realistic virtual networks with a size between 5 and 30 nodes.
This already shows some areas in which we go beyond what is usually considered in the lit-
erature. We deal with a sizable set of substrates derived from networks occurring in the real
world. Also the virtual networks are not synthetic but based on the requirements of different ap-
plications. Instead of CPU and bandwidth capacities, which are independent of each other, we
consider an interaction between them. CPU capacity has to be used at substrate nodes to transfer
data. In addition, we allow virtual arcs to specify delay constraints for their implementing paths.
In contrast to the majority of the works in literature, we focus on the offline VNMP. This allows
us to consider more powerful solution approaches, which would require too much run-time in
an online setting.
Some interesting approaches from the literature go beyond what we will do in this work, for
instance [186] with its complex operational costs model or [71, 117], where the virtual network
structure has do be derived based on a set of traffic demands. We also do not consider the
possibility of splitting up the workload of a virtual node as done in [185].

50

CHAPTER 5
Towards a Realistic VNMP Benchmark

Set

5.1 Introduction

In this chapter, we describe how we created the VNMP instance set we use to evaluate differ-
ent solution methods. Our design goals during the development of the instance set were the
following:

• Realistic substrate networks with a structure comparable to networks as they occur in the
real world, i.e., no random or structured (e.g., Hub-and-Spoke) graphs.

• Wide range of substrate network sizes so that we have instances which can be solved by
exact methods, but also instances for which heuristic methods are required.

• Virtual networks that cover different applications or application classes with a diverse set
of requirements with respect to resources but also with respect to structure.

• Mapping restrictions that make sense in terms of the substrate network, i.e., not just ran-
dom locations, but locations that cover specific parts of the substrate.

• Guaranteed existence of a valid solution.

• A way other than substrate network size to control the “hardness” of an instance. Put dif-
ferently, a way to go from an instance where finding a valid solution is easy and optimality
is hard to an instance where finding a valid solution is already a challenge.

• Any solution satisfying the mapping constraints can be made to satisfy the resource con-
straints by buying more CPU and bandwidth resources.

In the following sections we describe how we built the substrate and virtual networks to conform
to these goals.

51

Figure 5.1: Topology map of national research networks and their interconnections by the
GÉANT backbone network, as published in [106].

5.2 Substrate

Our main aim with respect to the substrate networks was that they have to have a realistic
structure. Therefore, they need to be derived from real, measured topologies of the Internet,
which are available in the literature. Candidates include the topology maps from the Rocketfuel
project [163], the Scan-Lucient map (which contains the union of the topologies measured by
the SCAN [70] and Lucent [25] Internet mapping projects) or the survivable network design
library (SNDlib) [133]. In earlier work [88], we used the Rocketfuel and Scan-Lucient maps to
derive substrate networks. The disadvantage with those topologies is that the Rocketfuel maps
are rather small (about 100 nodes at most) and the Scan-Lucient map, while huge, is so sparse
that most subgraphs are trees. The topologies of the SNDlib mostly do not exceed 50 nodes in
size. Due to these reasons, we decided to look elsewhere for suitable substrate networks.
In the end, we decided to generate the substrate networks from a network of the Internet topology
zoo [105], the European Research and Education Network GÉANT [106]. It contains national
European research networks which are interconnected by the European Backbone Research Net-
work. Figure 5.1 shows the structure of the complete network, the Points-of-Presence (PoPs) of
the GÉANT network and their interconnects. For more details on how this topology was derived
see [106].
This network proved to be very suitable for our needs. First of all, it contains 1157 nodes, which
allows the creation of a wide range of substrate network sizes. Secondly, it associates with
each node a geo-location (i.e., the county in which this node is located), which is very useful

52

for defining meaningful mapping constraints. The network also contains information about the
capacity of different links. We did not utilize this information because it ranges across several
orders of magnitude which is unsuitable for creating benchmark instances.
To derive substrate networks from the GÉANT map, we used the network manipulator nem-
0.9.6 [120, 121]. Nem can extract sub-graphs of a given network that retain the main character-
istics of the network, if the requested sub-graph size is small enough. If the target size exceeds
30% of the source network size, another approach is necessary. We selected a subset of the
GÉANT map by choosing a random node from the map and then iteratively grew the selection
by adding random nodes which are connected to the already selected part until the target size
was reached. Since the GÉANT network is undirected, we added connections in both directions
to the substrate graph. We created 30 substrates for each of the following sizes: 20, 30, 50, 100,
200, 500, and 1000 nodes. Up to (and including) size 200 nem was used. The costs pVi and pAe
were assigned uniformly at random from [1, 50] and the arc delays de uniformly at random from
[5, 40]. The other properties of the substrate (CPU and bandwidth capacity) are assigned based
on the demand by the virtual networks that are added to the VNMP instance because we need to
make sure that a valid solution exists. The detailed method will be discussed at a later point in
this chapter.

5.3 Virtual Networks

Our main design goal for virtual networks was that they reflect different use-cases with a diverse
set of resource demands. To fulfill this goal, we designed four different archetypes of virtual
networks. After the creation of a substrate network as outlined in the previous section, we added
ten instances of each of the four virtual network types to define a VNMP instance. The size
of each virtual network was chosen uniformly at random from [5,min(30, 0.3 ∗ |V |)]. These
bounds ensure that on one hand, the created virtual networks are not too small and on the other
hand that they are significantly smaller than the substrate network into which they have to be
mapped. Now follows a discussion of the four different virtual network archetypes.

5.3.1 Stream Network

This virtual network type models (video-)streaming services and has a random tree structure.
The root node represents a streaming service which broadcasts its content consisting of multiple
channels. Intermediate nodes in the distribution tree split this stream and forward only the
channels that are actually watched by the customers connected to the leaf nodes of the tree. This
is an example of an application that can directly benefit from custom routing protocols, as this
splitting and forwarding of data is currently not possible within the network. A streaming service
sends between 10 and 20 channels, each requiring between 2 and 10 units of bandwidth, which
covers audio and video streaming. Every intermediate node forwards between 30% and 100%
of received channels to each of its children, making sure each channel is forwarded at least once
and each child receives at least one channel. The required bandwidth of each virtual arc is the
product of transferred channels and the bandwidth requirement per channel. The required CPU
power on each virtual node is three times the received bandwidth which models the required

53

processing power for unpacking and redistributing the stream. For the root node, the required
CPU power is three times the sent bandwidth. Streaming applications are not delay constrained
in our model, so we set the delay requirement of each virtual arc to the highest shortest path
delay within the substrate network. As for the allowed mapping of the virtual nodes, we create
groups of substrate nodes for the root and all leaf nodes. The node grouping procedure works
as follows: Initially, substrate nodes are grouped according to their geo-location. If this creates
more groups than required, some are randomly deleted so that the required number of groups
is reached. Otherwise, we generate a new group by randomly moving half of the nodes of the
largest group (rounding down in case of odd-sized groups) to this new group. New groups are
generated until the required number of groups is reached. The location of the root node of the
Stream virtual network is fixed to one of the nodes of its group. The leaf nodes can be mapped
to any substrate node in their group. Intermediate nodes in the streaming tree can be mapped to
any node in any group.

5.3.2 Web Network

This virtual network type models the typical web usage and has star structure. The center rep-
resents the web-server which serves the connected customers. Each customer receives between
one and five units of bandwidth, the processing of which requires one unit of CPU power per re-
ceived unit of bandwidth. The CPU requirement of the web-server is the sum of the transmitted
bandwidth. As for the allowed mapping, the node grouping procedure is used to create map-
ping target candidates for each node of the virtual network. The virtual node of the web-server
can only be mapped to one randomly selected substrate node of its group. All other nodes can
be mapped to two randomly selected nodes of their group. As delay requirement for each arc
(which connects the web-server node to one of the customer nodes) we set the smallest possible
delay with which both possible locations of the customer node may be reached from the loca-
tion of the web-server node. This models hard delay requirements, since users usually expect
web-pages to load fast.

5.3.3 Peer-to-Peer Network

This virtual network type represents Peer-to-Peer (P2P) networks and is based on a directed
small world graph [98,149]. P2P applications do not have delay requirements (in our model), so
the delays are set as they are for the Stream virtual networks. However, they have high bandwidth
requirements; each arc requires between 10 and 70 units of bandwidth. The CPU requirements
on each virtual node are twice the outgoing bandwidth which models compression or encryption
services offered by this network type. As for the allowed mapping, the node grouping procedure
is used to create groups for each of the nodes of the P2P network. Every virtual node is allowed
to be mapped to any substrate node of its group.

5.3.4 Voice-over-IP Networks

This virtual network type models Voice-over-IP (VoIP) networks and is, like the P2P type, based
on a directed small world graph. It requires 2 to 20 units of bandwidth for each virtual connection

54

and three times the outgoing bandwidth as CPU power on each virtual node, which models video
compression and transcoding services. The virtual nodes can be mapped to any substrate node
of their substrate node group created by the node grouping procedure. The delay requirement of
a virtual connection f for this virtual network type is set to the lowest possible value such that a
delay constrained path between every location of s(f) and t(f) in the substrate exists.
To sum it all up, Stream networks have high bandwidth and CPU requirements but are barely
delay constrained. Web networks on the other hand have very low bandwidth and CPU require-
ments but stringent delay constraints. P2P networks have high bandwidth and medium CPU
requirements and lax delay constraints. VoIP networks have medium bandwidth and CPU re-
quirements and are moderately delay constrained. P2P and VoIP networks also have a complex
structure.
At this point, we have built a VNMP instance by creating a substrate network and assigning costs
and delays to it. Then we added ten virtual networks for each of the four different network types
together with their mapping constraints. To clarify, the 40 different networks are combined into
one graph, the virtual network graph G′. The only missing component are the bandwidth and
CPU capacities in the substrate network. We assign them by creating a random solution to the
VNMP instance as it is now and use it as a guide to define the available resources.
As the first step for creating the guiding solution, we map each virtual node to one of its allowed
locations in the substrate. Note that due to the chosen delay limits of the virtual networks, it is
guaranteed that implementing paths satisfying the delay constraint exist for any mapping of the
virtual nodes. To set the implementing paths of the solution, we could just use delay shortest
paths. However, that would introduce too much structure into the solution, meaning that it could
be found easily based on the final VNMP instance. Therefore, we construct implementing paths
by solving a resource constrained shortest path problem. The delays within the substrate are
used as resource, as lengths we set random values between one and ten for every substrate arc.
The distance values are set differently for every path calculation to increase the randomness
of the final solution. Based on the created solution, we assign CPU and bandwidth resources
available in the substrate so that the solution is valid. Some nodes or arcs may not have been
assigned resources. Substrate nodes get assigned the average amount of CPU resources (that
have already been set) within their geo-location. If all nodes of a geo-location have not been
assigned CPU resources, they are assigned the average amount of assigned CPU resources within
the whole substrate network. The same process is applied to assign missing bandwidth resources.
Arcs within a geo-location get assigned the average of the location, if no arc has been assigned
resources the average bandwidth resources within the substrate are assigned. Arcs connecting
different geo-locations get assigned the average bandwidth of arcs that have been assigned a
bandwidth capacity and cross a geo-location. Note that it is not possible that no arc connecting
different geo-locations has been assigned a bandwidth capacity based on the guiding random
solution. Now all resources have been assigned. As a final step, we increase the CPU and
bandwidth capacities at each node or arc separately by 20% to 50% so that there is more room
for optimization.
One design goal is still unfulfilled: a way to control the “hardness” of a VNMP instance. We do
this by modifying the number of virtual networks that have to be mapped, which we will denote
by the load of an instance. The instances created by the outlined procedure have a load of 1, or

55

Table 5.1: Properties of the VNMP instances: average number of substrate nodes (V) and arcs
(A), virtual nodes (V ′) and arcs (A′), number of allowed mapping targets for each virtual node
(MV ′) and the average total usage costs (Cu).

Size |V| |A| |V′| |A′| |MA′ | Cu

20 20 40.8 220.7 431.5 3.8 1536.0
30 30 65.8 276.9 629.0 4.9 2426.6
50 50 116.4 398.9 946.9 6.8 4298.1

100 100 233.4 704.6 1753.1 11.1 8539.1
200 200 490.2 691.5 1694.7 17.3 17584.2
500 500 1247.3 707.7 1732.5 30.2 44531.8

1000 1000 2528.6 700.2 1722.8 47.2 89958.4

full load. For lower loads, some virtual networks are removed. At load 0.9, one virtual network
of each type has been removed. At load 0.1, the VNMP instance contains four virtual networks,
one of each type. Based on the created 210 VNMP instances of full load (30 instances for
seven different substrate network sizes), 1890 additional instances can be derived by reducing
the virtual network load (0.1 to 0.9), yielding a total of 2100 VNMP instances. The created
instances are available at [87].

5.4 Main VNMP Instance Properties

In this section, we show the main properties of the created VNMP (full load) instances, which
are presented in Table 5.1. It can be seen that the created substrate graphs are very sparse. For
instances of size 20 (which means that the substrate network contains 20 nodes), we observe an
average of 40.8 substrate arcs. For a connected substrate, the lowest possible number of arcs is
38, which is twice the number of edges required to form a tree. This number is doubled since
due to the construction of the substrate network, if two nodes are connected, they are connected
in both directions. With rising instance size, the substrate networks also get marginally denser.
The main point to note with respect to the virtual networks is that the number of virtual nodes to
map and the number of virtual arcs to implement stays roughly constant from size 100 onward,
because each virtual network has a size limit of 30 nodes. Even if the number of virtual nodes
and arcs stays the same, with rising instance size we can expect that the required implementing
paths for each virtual arc get longer, which complicates the problem of finding cheap and valid
solutions. In addition, for larger instance sizes there are far more mapping possibilities for each
virtual node. Table 5.1 also shows the complete substrate usage costs for reference, i.e., how
much it would cost to use every part of the substrate network.

56

CHAPTER 6
Construction Heuristics, Local Search,

and Variable Neighborhood Descent

6.1 Introduction

In this chapter, we will introduce Construction Heuristics (Section 6.2), Local Search (Sec-
tion 6.3), and Variable Neighborhood Descent algorithms (Section 6.4) for the VNMP. We
present those algorithms together since they depend on each other and also share the prop-
erty that they terminate by design, i.e., they are finished at some point and do not need to be
aborted by a stopping criterion like the elapsed time. The heuristic algorithms we discuss in
later chapters do not have this property. The deterministic termination also offers some great
opportunities to analyze the tradeoff between required run-time and solution quality, which is
more complicated if the run-time is an external parameter to the algorithm. The performance of
the algorithms is compared in Section 6.5, Section 6.6 concludes and gives some directions for
future work. The results presented in this chapter have been published in a more compact form
in [91].

6.2 Construction Heuristics

A Construction Heuristic (CH) is used to create solutions to problems by following heuristic
rules that guide the construction process towards feasible solutions of high quality. During each
step, a partial solution is extended by the currently most promising component. For the VNMP,
we can already see that these are conflicting objectives; guiding towards valid solutions means
spreading resource usage across the whole substrate to decrease the probability of having to buy
additional resources, which causes Cu to be unnecessarily high. Trying to pack virtual networks
densely to keep Cu low will most likely lead to high Ca as some substrate network components
run out of resources, so some kind of balancing is required. To find the right balance, we first
define a general outline of a CH for the VNMP. This outline defines sub-problems, which can

57

Algorithm 6.1: Outline of the Construction Heuristic for the VNMP
Input : A VNMP instance I
Output: A solution to I

1 Solution S(I);
2 if use node emphasis NE then
3 while not all virtual nodes mapped do
4 VirtualNode k=getVirtualNode(I,S); // virtual node selection SVN
5 SubstrateNode i=getMapTarget(I,S,k); // mapping target sel. IVN
6 S.setMapping(k,i);
7 end
8 end
9 while S incomplete do

10 while virtual arcs are implementable do
11 VirtualArc f=getVirtualArc(I,S); // virtual arc selection SVA
12 Path p=getImplementingPath(I,S,f); // path selection IVA
13 S.setPath(f,p);
14 end
15 if not all virtual nodes mapped then
16 VirtualNode k=getVirtualNode(I,S); // virtual node selection SVN
17 SubstrateNode i=getMapTarget(I,S,k); // mapping target sel. IVN
18 S.setMapping(k,i);
19 end
20 end
21 return S;

be solved by different heuristics. These heuristics can be tuned towards low Cu or low Ca and
by selecting the right heuristics for the sub-problems, a CH for the VNMP can be derived that
creates valid results with low Cu with high probability.
Algorithm 6.1 shows the outline of the CH. It uses the solution to four sub-problems to build a
VNMP solution. The four sub-problems are:

SVN Selecting a virtual node to map from the nodes that have not been mapped.

IVN Selecting an implementation of the virtual node, i.e., a substrate node to which the virtual
node is mapped.

SVA Selecting a virtual arc f to implement. This arc has to be implementable, which means
that it is not implemented in the current solution and s(f) and t(f) have to be mapped.
Otherwise we would not know, which substrate nodes the implementing path for f has to
connect.

IVA Selecting an implementation of the virtual arc, i.e., the path in the substrate network.

58

In addition to the heuristics used to solve those four sub-problems, there is another parameter
which determines the behaviour of the CH. Basically, we can decide if we want to map all virtual
nodes before we start to implement virtual arcs (node emphasis NE) or if we implement virtual
arcs as soon as they are implementable (arc emphasis AE). We will call this the implementation
emphasis. If NE is used, Algorithm 6.1 iteratively selects substrate nodes to implement (SVN)
and a mapping target for them (IVN), until all virtual nodes are mapped. Only after that, the
main loop of the CH is entered. This loop is executed until the solution is complete, that means
every virtual node has been mapped and every virtual arc has an implementing path. In the
main loop, we first implement all virtual arcs that are currently implementable by selecting such
an arc (SVA) and finding a path for it (IVA). Once no more implementable arcs remain, an
additional node has to be mapped to (potentially) make more arcs implementable. The structure
of Algorithm 6.1 might seem a bit counterintuitive, because it contains the node mapping twice,
which is not strictly necessary. We chose this structure because it can be easily adapted to
work with a partial solution as input, which has to be completed. This functionality will be
required for the Local Search and Variable Neighborhood Descent algorithms discussed in the
following sections. The required modification to Algorithm 6.1 is removing its first line and
adding Solution S, the solution to be completed, as second input.
We implemented four heuristics for each of the four different sub-problems to solve, which are
described in the following. If the strategies define no specific order of nodes or arcs (or ties
occur), it is arbitrary. Now follows the discussion of the SVN heuristics.

NextVNode Selects an unmapped virtual node from V ′.

CPUHeavy Selects the virtual node with the highest sum of CPU requirement and connected
bandwidth. The connected bandwidth is the sum of the bandwidth requirements of all
virtual arcs that start, or end, at a virtual node. It is important to include this factor, since it
is a (nearly) guaranteed CPU load caused by the virtual node. It slightly overestimates the
CPU load because transferring data from one virtual node to another if both are hosted on
the same substrate node requires CPU capacity only once but is counted twice according
to this calculation model. We want to focus on virtual nodes that require a lot of resources
because they are the most problematic to fit into the substrate network.

CPUHeavyVN Selects with CPUHeavy from the virtual network (VN) with the highest total
CPU and bandwidth requirements that still has unmapped nodes left. Concentrating on
one virtual network when selecting nodes supports AE, since virtual arcs become imple-
mentable much faster.

DLHeavyVN Selects with CPUHeavy from the VN with the lowest total sum of allowed delays
that still has unmapped nodes left. This heuristic assumes that VNs that are highly delay
constrained are the most critical to implement. Especially in concert with AE, this ensures
that virtual arcs with stringent delay constraints are implemented first, when the substrate
still has enough resources to allow a delay feasible path without any additional costs in
terms of Ca.

59

Now follows the description of the node mapping heuristics. Note that for the node mapping
strategies, only substrate nodes allowed by M are regarded as candidates. If no substrate node
would yield a valid solution, i.e., no allowed substrate node has enough CPU resources or con-
nected bandwidth left, then the substrate node (allowed by M) with the most free resources is
chosen. This is the substrate node with the least missing resources in case no substrate node has
resources left.

NextSNode Maps a virtual node to the first substrate node with enough free CPU capacity.

NextFree Maps a virtual node to the first substrate node with enough free CPU capacity to
support the CPU requirements and the total connected bandwidth of the virtual node (the
total CPU load of a virtual node).

MostFree Maps to the substrate node with the most free CPU capacity. In case of ties, the
substrate node with the most free connected bandwidth is chosen as map target.

CheapHost Maps to the substrate node with enough free resources (with respect to the total
CPU load) and least increase of Cu, i.e., if possible to a substrate node that already hosts
virtual nodes.

For the following description of virtual arc selection heuristics, keep in mind that the SVA strate-
gies only consider implementable virtual arcs.

NextVArc Selects an arbitrary unimplemented virtual arc.

BWHeavy Selects the arc with the highest bandwidth requirement.

DLHeavy Selects the arc with the smallest delay.

RelDLHeavy Selects the arc with the smallest fraction of allowed delay to shortest possible
delay between m(s(f)) and m(t(f)). This might be a more accurate measure of how
delay constrained a connection actually is.

All four IVA strategies implement a virtual arc f by finding a Delay Constrained Shortest Path in
the substrate fromm(s(f)) tom(t(f)) via the Dynamic Program from [69]. The only difference
between the strategies is the calculation of the substrate arc costs, which define the length of a
path.

MinUse If substrate arcs have already been used, they have a cost of 0. Otherwise, their usage
cost pAe is assigned. If arcs do not have enough free bandwidth, or their source and target
node not enough CPU capacity to host f , a penalty cost of 106 is applied.

Spread-n The cost of a substrate arc is the sum the fraction of the arc’s remaining free band-
width that would be used by the virtual arc and the fraction of free CPU capacity the
virtual arc would use on the node the substrate arc connects to. This represents the rela-
tive resource usage the virtual arc would incur on a substrate arc. Low values mean that
the virtual arc has a low impact on the available resources of a substrate arc (and the node

60

it connects to). The relative resource usage is then taken to the power of n ∈ {0.5, 1, 2} so
that it is possible to evaluate the influence of different biasing strategies. We will denote
them by Spread-0.5, Spread-1 and Spread-2 respectively.

These methods result in a total of 512 different CH configurations, the results of their evaluation
can be found in Section 6.5. The strategies were kept simple to keep running times short as the
following heuristics build on the best CH variants.

6.3 Local Search

The basic idea of Local Search (LS) is that a found solution to a problem may be improved by
iteratively making small changes. The solutions immediately reachable from a starting solution
S are defined by a neighborhoodN(S), which can be generated by the appropriate neighborhood
structure. LS starts with a solution S and replaces it with a better solution from N(S) until no
more improvements can be found. For selecting the neighbor, we use the two standard strategies
first-improvement (select the first improving solution) and best-improvement (select the best
solution from a neighborhood).
We implemented six different neighborhood structures for the VNMP. They are ruin-and-
recreate [154] neighborhoods, which means (in the context of this work) that they remove a
part of a complete solution, for instance the implementation of a virtual arc, and then rebuild the
solution by applying a CH. Here we need the CH with the modified structure as discussed in the
previous section. The discussion of the neighborhoods will skip this rebuilding step.

RemapVarc (N1) Removes the implementation of a virtual arc.

RemapVnode (N2) Removes a virtual node and the implementations of all adjacent virtual
arcs.

RemapSlice (N3) Removes a virtual network from the solution by removing all virtual nodes
and implementations of all virtual arcs of the virtual network.

ClearSarc (N4) Clears a substrate arc, which means it removes the implementation of all vir-
tual arcs using this substrate arc.

ClearSnode (N5) Clears a substrate node, which means it removes the implementation of all
virtual arcs that are crossing the substrate node and removes all virtual nodes that are
mapped to the substrate node.

RemapVnodeTAP (N6) Works like RemapVnode, but instead of delegating the choice of sub-
strate node for the removed virtual node to the CH, it explicitly tries to map the virtual
node to all possible (TAP) substrate nodes.

Note that the description of the neighborhood structures only specifies how one neighboring
solution is reached. How the neighborhood is used during Local Search is straight forward to
derive from the description. For example, when performing Local Search with the RemapVarc

61

neighborhood and best-improvement, we start with an initial solution created by CH. Then we
remove the implementation of a virtual arc and rebuild the solution with CH. If the created solu-
tion is better, we store it as the currently best one. This procedure is repeated for all remaining
virtual arcs, always starting from the initial solution. After all virtual arcs have been tested, the
best found solution replaces the initial solution and the process of finding an improving solution
is repeated until no further improvements can be found.
For each neighborhood, there is a natural order in which to evaluate the neighbors, for instance
the order in which virtual nodes are specified in the VNMP instance. This order is relevant when
we use first-improvement. We might be able to speed up the search process if we try the most
promising neighbors first. When the current solution for example is not valid, then the most
promising neighbors are those which might reduce Ca. In case of RemapVnode, that means vir-
tual nodes, which are mapped to substrate nodes that are overloaded (additional resources had to
be bought there), should be tried first. For neighborhoods that focus on the substrate (ClearSarc,
ClearSnode), overloaded substrate nodes or arcs should be cleared first. We will denote this
neighbor ordering by OverloadingFirst. When solving VNMP-S instead of VNMP-O, it might
make sense to only consider neighbors which might reduce Ca instead of just prioritizing them.
We will call this strategy OnlyOverloading. The choice of not focusing on any particular neigh-
bors will be denoted by None. Note that even when solving VNMP-S, OnlyOverloading is not
as strong as OverloadingFirst since changing parts of a solution that do not directly contribute
to Ca might make future improvements of Ca possible.
For an evaluation of the different neighborhoods, see Section 6.5.

6.4 Variable Neighborhood Descent

The neighborhood structures discussed in the previous section can be applied in combination
within a Variable Neighborhood Descent (VND) algorithm [74]. A VND utilizes a series of
neighborhoods N1 . . . Nk. An initial solution is improved by N1 until no more improvements
can be found, then N2 is applied to the solution and so on. If Nk fails, VND terminates. If an
improved solution is found in some neighborhood, VND restarts withN1. For more information,
see Section 2.2.6.
We use the neighborhood structures defined in the previous section in two variants: as described
without any neighbor prioritization and with OnlyOverloading. We will denote the second vari-
ant with a prime. For exampleN ′6 denotes RemapVnodeTAP in OnlyOverloading configuration.
The following neighborhood orderings (VND configurations) were tested:

All (C1): N ′1, N ′2, N ′3, N ′4, N ′5, N ′6, N1, N2, N3, N4, N5, N6

All neighborhoods, in order of their size.

OnlyOverloading (C2): N ′1, N ′2, N ′3, N ′4, N ′5, N ′6
Only neighborhoods in OnlyOverloading configuration.

Complete (C3): N1, N2, N3, N4, N5, N6

Only complete neighborhoods.

62

RComplete (C4): N6, N5, N4, N3, N2, N1

Like C3, but in reverse order.

ImprovCompA (C5): N1, N2, N3, N4, N6

An improvement to Complete based on preliminary results which showed that ClearSnode
does not contribute in a significant way to VND.

RImprovCompA (C6): N6, N4, N3, N2, N1

C5 in reverse order.

ImprovOverload (C7): N ′1, N ′2, N ′3
The neighborhoods of OnlyOverloading which find improvements based on preliminary
results.

RImprovOverload (C8): N ′3, N ′2, N ′1
C7 in reverse order.

ImprovCompB (C9): N2, N4, N5, N6

Another selection of neighborhoods to improve Complete.

ImprovCompC (C10): N3, N4, N5, N6

C9, but using RemapSlice instead of RemapVnode in the hope of speeding up the algo-
rithm while achieving similar results.

OnlyClear (C11): N4, N5

Only the neighborhoods that try to clear parts of the substrate.

ImprovCompD (C12): N2, N4, N5

A variant of C9 which does not use RemapVnodeTAP to improve run-times.

6.5 Results

Each CH, LS and VND variant was tested on the full VNMP instance set as described in Chap-
ter 5. In addition to load level 1, we also used 0.1, 0.5 and 0.8 to see how the different algorithms
and neighborhoods react to changing levels of hardness. This gives a total of 840 instances. A
time-limit of 1000 seconds was applied, which was only reached for some VND configurations
for the largest instance sizes. The main objective of the evaluation was to find configurations
which are suitable for solving VNMP-S or VNMP-O, but also to identify configurations which
have a good tradeoff between performance and required run-time. We use the average addi-
tional resource cost Ca to evaluate the performance of an algorithm with respect to VNMP-S
and the relative rank Rrel to determine the suitability for VNMP-O. The price of one unit of
CPU resources pCPU was set to one, the price of one unit of bandwidth pBW to five.

63

6.5.1 Construction Heuristics

Before we can compare all presented heuristics, we needed to identify promising CH variants
which can be used to generate the initial solution for LS and VND and perform the rebuilding
step of the proposed ruin-and-recreate neighborhoods. To do this, we evaluated the 512 different
CH configurations on all 840 VNMP instances. The following tables will show the influence of
the different choices for the selection and implementation strategies.
Table 6.1 shows the average performance of the CH configurations depending on the chosen
SVN strategy. Based on this data, using DLHeavyVN as the strategy for choosing a virtual node
to be mapped is the obvious choice, as this strategy dominates with respect to Rrel and Ca. Note
that in some cases, it is significantly better to choose an arbitrary virtual node to implement
(NextVNode) instead of one that requires a lot of resources (e.g., CPUHeavy) when solving
VNMP-S. NextVNode also performs surprisingly well with respect to the Rrel.
The influence of the chosen IVN strategy is presented in Table 6.2. It is very clear that MostFree
is the IVN strategy of choice, beating the other choices by a very large margin both with respect
to Rrel and to Ca. The additional resource cost is very close to zero for instances with the lowest
load. That means nearly every CH configuration creates a valid VNMP solution for all VNMP
instances of lowest load, no matter which configuration choices are made, as long as MostFree
is used as IVN strategy (these are 128 different CH configurations in total).
Regarding the influence of the SVA strategy, Table 6.3 shows that in this case the best choice
really depends on the instance size and load. For small instances, focusing on delay constrained
virtual arcs works best. When the load is low, it is beneficial to focus on the virtual arcs that have
a delay requirement close to the best achievable delay within the substrate. For higher loads,
implementing virtual arcs with low allowed delay values is more important. Notice however,
that the differences in Rrel and Ca, while statistically significant, are very small. Beginning with
instances of size 200, the critical virtual arcs are those with high bandwidth requirements.
Table 6.4 shows that the best choice of IVA strategy mostly depends on instance load. When
trying to minimize Rrel, using MinUse for the lowest loads is advantageous, but in most cases
Spread-1 performs the best. For low loads and large instances, squaring the relative resource
usage of a virtual arc is advantageous. Using Spread-1 achieves the best results in nearly all
cases when minimizing Ca is the objective.
The last parameter of CH is the implementation emphasis and its influence is presented in Ta-
ble 6.5. Using AE gives clearly better results, both in terms of Rrel and Ca.
The presented results suggest the following CH configuration for the best performance: DL-
HeavyVN as SVN, MostFree as IVN, DLHeavy as SVA, Spread-1 as IVA and using AE. Using
this would of course be wrong. We have only presented the average performance tendencies of
the different strategic choices. It may very well be that a great configuration is drowned in a sea
of average or bad configurations and as it turns out, the suggested configuration is neither the
best with respect to Rrel, nor with respect to Ca. To find the truly best configurations, we order
the compared configurations with respect to their average Rrel (or Ca) over all VNMP instances
and choose the top configuration. Note that we choose based on average performance over all
instances. We have already shown that the strategy selection is very sensitive with respect to the
instance size and also the load. We could have also defined the best configurations for particular
size or load classes. However, this would make further discussion very hard to follow, especially

64

Ta
bl

e
6.

1:
In

flu
en

ce
of

th
e

ch
os

en
SV

N
st

ra
te

gy
on

th
e

pe
rf

or
m

an
ce

of
C

H
.

R
re

l
C

a

Si
ze

L
oa

d
N

ex
tV

N
od

e
C

PU
H

ea
vy

C
PU

H
ea

vy
V

N
D

L
H

ea
vy

V
N

N
ex

tV
N

od
e

C
PU

H
ea

vy
C

PU
H

ea
vy

V
N

D
L

H
ea

vy
V

N
20

0.
10

0.
47

9
>

0.
53

7
>

0.
52

1
>

0.
45

4
=

58
.5

=
61

.2
>

58
.4
>

44
.8

=
0.

50
0.

42
3
>

0.
54

0
>

0.
50

1
>

0.
40

4
=

18
15

.9
>

28
54

.8
>

26
45

.4
>

16
24

.4
=

0.
80

0.
38

9
>

0.
51

2
>

0.
45

9
>

0.
35

6
=

63
02

.6
>

93
85

.4
>

85
86

.0
>

55
72

.5
=

1.
00

0.
42

5
>

0.
53

9
>

0.
48

7
>

0.
39

7
=

10
70

4.
1
>

14
92

2.
1
>

13
75

2.
3
>

98
13

.4
=

30
0.

10
0.

53
5
>

0.
60

2
>

0.
59

6
>

0.
50

1
=

42
.4
>

49
.9
>

45
.8
>

32
.4

=
0.

50
0.

35
9
>

0.
51

8
>

0.
45

5
>

0.
32

1
=

28
80

.0
>

49
34

.5
>

42
65

.0
>

24
29

.7
=

0.
80

0.
35

2
>

0.
52

3
>

0.
46

1
>

0.
32

7
=

76
38

.8
>

13
32

7.
9
>

11
81

7.
7
>

66
91

.6
=

1.
00

0.
37

9
>

0.
54

0
>

0.
46

7
>

0.
36

2
=

14
47

9.
2
>

22
86

1.
1
>

20
13

4.
8
>

13
48

8.
4

=

50
0.

10
0.

48
5
>

0.
51

6
>

0.
51

3
>

0.
43

4
=

70
.5
>

81
.1
>

77
.7
>

67
.3

=
0.

50
0.

34
2
>

0.
48

6
>

0.
42

9
>

0.
30

9
=

31
21

.7
>

58
66

.0
>

49
92

.9
>

27
92

.1
=

0.
80

0.
36

0
>

0.
50

4
>

0.
44

4
>

0.
32

9
=

88
29

.4
>

15
52

4.
2
>

13
55

5.
8
>

79
99

.0
=

1.
00

0.
38

7
>

0.
53

4
>

0.
46

5
>

0.
37

7
=

17
83

5.
8
>

27
93

7.
3
>

24
39

5.
4
>

17
11

0.
2

=

10
0

0.
10

0.
53

0
>

0.
57

2
>

0.
55

7
>

0.
50

4
=

18
1.

6
=

22
5.

7
>

19
5.

5
>

18
5.

1
>

0.
50

0.
36

8
>

0.
50

7
>

0.
44

7
>

0.
33

6
=

58
13

.2
>

99
00

.6
>

84
50

.1
>

51
08

.6
=

0.
80

0.
37

2
>

0.
51

8
>

0.
45

3
>

0.
34

8
=

17
59

6.
6
>

28
75

0.
2
>

25
69

3.
1
>

15
48

9.
5

=
1.

00
0.

39
6
>

0.
53

3
>

0.
47

2
>

0.
37

2
=

33
84

3.
5
>

50
38

8.
3
>

45
58

5.
4
>

30
60

8.
5

=

20
0

0.
10

0.
43

4
>

0.
47

1
>

0.
46

3
>

0.
42

4
=

46
9.

8
=

62
9.

3
>

57
9.

8
>

48
0.

1
=

0.
50

0.
39

4
>

0.
49

8
>

0.
44

7
>

0.
37

6
=

60
62

.7
>

10
29

0.
6
>

87
86

.8
>

56
66

.0
=

0.
80

0.
42

0
>

0.
52

6
>

0.
46

8
>

0.
39

6
=

18
51

6.
0
>

28
58

9.
2
>

24
68

2.
5
>

17
04

2.
0

=
1.

00
0.

44
2
>

0.
55

0
>

0.
49

2
>

0.
42

2
=

38
20

8.
1
>

53
65

1.
3
>

47
36

8.
1
>

35
97

5.
8

=

50
0

0.
10

0.
42

4
>

0.
46

4
>

0.
45

6
>

0.
40

2
=

23
82

.0
>

27
73

.4
>

26
97

.3
>

22
92

.6
=

0.
50

0.
43

3
>

0.
51

8
>

0.
47

8
>

0.
39

5
=

31
11

1.
8
>

42
21

4.
1
>

37
56

5.
6
>

26
35

9.
6

=
0.

80
0.

44
9
>

0.
53

5
>

0.
49

3
>

0.
41

8
=

67
83

3.
6
>

89
78

4.
4
>

79
34

4.
5
>

58
67

4.
5

=
1.

00
0.

46
5
>

0.
55

7
>

0.
51

2
>

0.
42

8
=

10
52

06
.9
>

13
73

53
.0
>

12
22

49
.9
>

91
50

4.
3

=

10
00

0.
10

0.
43

2
>

0.
45

4
>

0.
44

3
>

0.
41

6
=

40
78

.5
>

42
88

.3
>

42
02

.9
>

39
16

.8
=

0.
50

0.
45

1
>

0.
52

2
>

0.
48

5
>

0.
42

5
=

43
03

6.
6
>

54
68

7.
8
>

48
94

7.
4
>

37
74

0.
8

=
0.

80
0.

47
0
>

0.
54

0
>

0.
50

4
>

0.
44

5
=

88
89

2.
0
>

11
35

97
.4
>

10
14

84
.4
>

78
00

2.
9

=
1.

00
0.

47
5
>

0.
55

5
>

0.
51

4
>

0.
44

8
=

13
43

88
.2
>

17
05

52
.6
>

15
33

23
.9
>

11
90

68
.0

=

65

Table
6.2:Influence

ofthe
chosen

IV
N

strategy
on

the
perform

ance
ofC

H
.

R
rel

C
a

Size
L

oad
N

extSN
ode

N
extFree

M
ostFree

C
heapH

ost
N

extSN
ode

N
extFree

M
ostFree

C
heapH

ost
20

0.10
0.626

>
0.612

>
0.337

=
0.416

>
143.0

>
76.4

>
0.0

=
3.3

>
0.50

0.716
>

0.640
>

0.151
=

0.362
>

3941.3
>

3383.5
>

21.4
=

1594.5
>

0.80
0.653

>
0.582

>
0.118

=
0.363

>
12345.8

>
11188.1

>
408.1

=
5904.5

>
1.00

0.674
>

0.606
>

0.168
=

0.401
>

19100.4
>

17573.6
>

2079.9
=

10437.9
>

30
0.10

0.672
>

0.649
>

0.420
=

0.493
>

85.2
>

68.6
>

0.0
=

16.7
>

0.50
0.631

>
0.559

>
0.115

=
0.348

>
6313.9

>
5403.6

>
14.9

=
2777.0

>
0.80

0.621
>

0.554
>

0.108
=

0.380
>

15577.8
>

13888.6
>

520.6
=

9488.9
>

1.00
0.637

>
0.577

>
0.138

=
0.396

>
26807.1

>
24639.0

>
3264.1

=
16253.3

>

50
0.10

0.588
>

0.525
>

0.306
=

0.529
>

191.7
>

85.9
>

0.0
=

19.0
>

0.50
0.582

>
0.489

>
0.119

=
0.375

>
7178.8

>
5884.7

>
45.8

=
3663.5

>
0.80

0.599
>

0.526
>

0.098
=

0.414
>

17921.9
>

15647.9
>

646.9
=

11691.6
>

1.00
0.624

>
0.556

>
0.139

=
0.446

>
31924.9

>
28690.8

>
4162.3

=
22500.8

>

100
0.10

0.687
>

0.595
>

0.344
=

0.537
>

508.6
>

250.9
>

0.2
=

28.2
>

0.50
0.628

>
0.519

>
0.110

=
0.401

>
12717.7

>
10092.6

>
76.6

=
6385.7

>
0.80

0.617
>

0.532
>

0.103
=

0.439
>

33583.7
>

28642.0
>

1313.5
=

23990.2
>

1.00
0.633

>
0.556

>
0.132

=
0.452

>
58386.7

>
51981.5

>
6827.4

=
43230.1

>

200
0.10

0.598
>

0.466
>

0.209
=

0.519
>

1294.9
>

676.9
>

0.0
=

187.1
>

0.50
0.603

>
0.487

>
0.095

=
0.531

>
10628.5

>
7790.0

>
150.3

=
12237.3

>
0.80

0.631
>

0.531
>

0.101
=

0.547
>

30648.3
>

25306.6
>

1759.9
=

31115.0
>

1.00
0.650

>
0.570

>
0.157

=
0.529

>
59623.6

>
52057.9

>
9869.4

=
53652.3

>

500
0.10

0.830
>

0.546
>

0.074
=

0.297
>

6385.5
>

2971.1
>

0.1
=

788.6
>

0.50
0.776

>
0.594

>
0.089

=
0.365

>
74085.0

>
45915.8

>
152.4

=
17097.8

>
0.80

0.773
>

0.617
>

0.102
=

0.404
>

146362.1
>

101503.3
>

4162.6
=

43608.9
>

1.00
0.770

>
0.628

>
0.151

=
0.413

>
208378.7

>
154279.4

>
18410.3

=
75245.7

>

1000
0.10

0.844
>

0.568
>

0.069
=

0.264
>

11005.2
>

4505.1
>

1.5
=

974.7
>

0.50
0.818

>
0.604

>
0.092

=
0.368

>
106735.2

>
57087.9

>
306.2

=
20283.3

>
0.80

0.812
>

0.625
>

0.119
=

0.402
>

205072.2
>

121937.6
>

5953.1
=

49013.9
>

1.00
0.808

>
0.631

>
0.157

=
0.395

>
287114.7

>
183846.1

>
23381.0

=
82990.8

>

66

Ta
bl

e
6.

3:
In

flu
en

ce
of

th
e

ch
os

en
SV

A
st

ra
te

gy
on

th
e

pe
rf

or
m

an
ce

of
C

H
.

R
re

l
C

a

Si
ze

L
oa

d
N

ex
tV

A
rc

B
W

H
ea

vy
D

L
H

ea
vy

R
el

D
L

H
ea

vy
N

ex
tV

A
rc

B
W

H
ea

vy
D

L
H

ea
vy

R
el

D
L

H
ea

vy
20

0.
10

0.
49

9
>

0.
50

0
>

0.
49

6
>

0.
49

5
=

55
.7

=
55

.7
=

55
.7

=
55

.7
=

0.
50

0.
46

8
>

0.
46

9
>

0.
46

6
=

0.
46

6
>

22
35

.0
>

22
42

.3
>

22
29

.9
=

22
33

.4
>

0.
80

0.
43

0
>

0.
43

1
>

0.
42

8
=

0.
42

8
>

74
61

.8
>

74
78

.4
>

74
48

.4
=

74
57

.8
>

1.
00

0.
46

3
>

0.
46

4
>

0.
46

0
=

0.
46

2
>

12
30

2.
3
>

12
32

3.
7
>

12
27

7.
9

=
12

28
8.

0
=

30
0.

10
0.

56
2
>

0.
56

3
>

0.
55

7
>

0.
55

2
=

42
.6

=
42

.7
=

42
.5

=
42

.7
=

0.
50

0.
41

5
>

0.
41

7
>

0.
41

1
>

0.
41

0
=

36
34

.8
>

36
48

.4
>

36
19

.2
>

36
06

.8
=

0.
80

0.
41

8
>

0.
41

7
>

0.
41

3
=

0.
41

5
>

98
82

.4
>

99
11

.4
>

98
18

.2
=

98
63

.9
>

1.
00

0.
43

8
>

0.
43

8
>

0.
43

6
=

0.
43

6
=

17
76

5.
2
>

17
84

3.
7
>

17
64

2.
8

=
17

71
1.

8
=

50
0.

10
0.

49
1
>

0.
49

6
>

0.
48

2
>

0.
47

9
=

74
.1

=
74

.7
>

73
.9

=
73

.9
=

0.
50

0.
39

4
>

0.
39

4
>

0.
38

9
>

0.
38

8
=

42
06

.6
>

42
09

.1
>

41
78

.9
=

41
78

.1
=

0.
80

0.
41

3
>

0.
41

3
>

0.
40

6
>

0.
40

5
=

11
55

3.
8
>

11
56

2.
3
>

11
40

6.
0
>

11
38

6.
2

=
1.

00
0.

44
2
>

0.
44

4
>

0.
43

8
=

0.
43

9
=

21
88

7.
7
>

22
05

4.
7
>

21
68

5.
6

=
21

65
0.

7
=

10
0

0.
10

0.
54

3
>

0.
55

1
>

0.
53

6
>

0.
53

4
=

19
5.

6
=

19
6.

2
=

20
0.

0
>

19
6.

1
>

0.
50

0.
41

7
>

0.
41

9
>

0.
41

0
=

0.
41

1
=

73
21

.4
>

73
60

.4
>

72
93

.4
=

72
97

.3
=

0.
80

0.
42

3
>

0.
42

6
>

0.
42

0
=

0.
42

2
>

21
87

2.
9
>

22
09

7.
8
>

21
72

4.
9

=
21

83
3.

7
>

1.
00

0.
44

2
>

0.
44

9
>

0.
43

9
=

0.
44

3
>

40
02

8.
6
>

40
92

8.
9
>

39
62

3.
6

=
39

84
4.

7
>

20
0

0.
10

0.
45

0
>

0.
45

2
>

0.
44

5
>

0.
44

6
=

53
8.

5
>

53
7.

9
=

54
1.

1
>

54
1.

5
>

0.
50

0.
42

9
>

0.
43

2
>

0.
42

8
=

0.
42

7
=

76
94

.3
=

77
26

.6
=

76
93

.9
=

76
91

.4
=

0.
80

0.
45

2
=

0.
45

5
=

0.
45

0
>

0.
45

3
>

22
17

1.
7

=
22

58
8.

7
=

21
96

9.
6
>

22
09

9.
8
>

1.
00

0.
47

4
=

0.
48

2
>

0.
47

4
>

0.
47

7
>

43
48

8.
1

=
45

00
5.

0
>

43
24

7.
7
>

43
46

2.
5
>

50
0

0.
10

0.
43

9
>

0.
43

4
=

0.
43

9
>

0.
43

5
=

25
42

.9
>

25
17

.5
=

25
46

.8
>

25
38

.1
>

0.
50

0.
45

7
>

0.
45

6
=

0.
45

5
>

0.
45

5
>

34
36

5.
5
>

34
24

9.
4

=
34

33
3.

5
>

34
30

2.
6
>

0.
80

0.
47

4
>

0.
47

3
=

0.
47

4
>

0.
47

5
>

73
99

9.
8
>

74
33

7.
1

=
73

64
7.

7
>

73
65

2.
4
>

1.
00

0.
49

0
>

0.
49

2
=

0.
48

9
>

0.
49

1
>

11
41

80
.3
>

11
58

03
.8

=
11

31
03

.6
>

11
32

26
.5
>

10
00

0.
10

0.
43

7
>

0.
43

0
=

0.
43

8
>

0.
43

9
>

41
22

.2
>

40
80

.5
=

41
35

.5
>

41
48

.3
>

0.
50

0.
47

1
>

0.
46

8
=

0.
47

1
>

0.
47

1
>

46
16

7.
1
>

45
80

9.
0

=
46

26
4.

5
>

46
17

1.
9
>

0.
80

0.
48

9
>

0.
48

7
=

0.
49

1
>

0.
49

1
>

95
57

0.
4
>

95
46

6.
0

=
95

53
1.

1
>

95
40

9.
3
>

1.
00

0.
49

7
>

0.
49

7
=

0.
49

8
>

0.
49

9
>

14
42

68
.3
>

14
57

07
.3

=
14

37
10

.7
>

14
36

46
.3
>

67

Table
6.4:Influence

ofthe
chosen

IVA
strategy

on
the

perform
ance

ofC
H

.

R
rel

C
a

Size
L

oad
M

inU
se

Spread-1
Spread-0.5

Spread-2
M

inU
se

Spread-1
Spread-0.5

Spread-2
20

0.10
0.477

=
0.502

>
0.520

>
0.491

>
55.9

>
55.6

=
55.7

=
55.6

=
0.50

0.480
>

0.461
=

0.466
>

0.462
>

2347.5
>

2195.4
=

2200.6
>

2197.1
>

0.80
0.450

>
0.421

=
0.422

>
0.423

>
7738.1

>
7367.5

>
7357.7

=
7383.1

>
1.00

0.487
>

0.452
=

0.452
=

0.458
>

12876.3
>

12083.8
=

12080.3
=

12151.4
>

30
0.10

0.471
=

0.589
>

0.614
>

0.561
>

45.1
>

41.8
=

41.8
=

41.8
=

0.50
0.441

>
0.402

=
0.408

>
0.403

=
3903.8

>
3529.7

=
3544.1

>
3531.7

>
0.80

0.456
>

0.399
=

0.402
>

0.404
>

10838.0
>

9520.4
=

9534.3
>

9583.2
>

1.00
0.491

>
0.414

>
0.414

=
0.428

>
19943.0

>
16879.6

=
16866.5

>
17274.3

>

50
0.10

0.397
=

0.519
>

0.540
>

0.491
>

81.5
>

71.6
=

71.6
=

71.9
>

0.50
0.427

>
0.376

=
0.383

>
0.379

>
4557.0

>
4052.4

=
4058.9

>
4104.4

>
0.80

0.466
>

0.386
=

0.390
>

0.395
>

12881.3
>

10923.9
=

10956.1
>

11147.0
>

1.00
0.522

>
0.407

=
0.410

>
0.425

>
25347.6

>
20428.6

=
20487.0

>
21015.5

>

100
0.10

0.407
=

0.579
>

0.623
>

0.554
>

214.4
>

190.9
=

191.7
>

191.0
>

0.50
0.454

>
0.399

=
0.406

>
0.399

=
8022.1

>
7060.2

=
7089.2

>
7101.1

>
0.80

0.493
>

0.395
=

0.399
>

0.403
>

25293.0
>

20642.6
=

20713.2
>

20880.6
>

1.00
0.537

>
0.407

=
0.408

>
0.422

>
48594.2

>
36952.2

=
36992.9

>
37886.4

>

200
0.10

0.374
=

0.470
>

0.506
>

0.441
>

602.7
>

509.2
=

526.9
>

520.3
=

0.50
0.476

>
0.408

=
0.419

>
0.413

>
8717.5

>
7304.9

=
7396.7

>
7387.0

>
0.80

0.555
>

0.412
=

0.419
>

0.423
>

27737.9
>

20186.1
=

20348.7
>

20557.1
>

1.00
0.621

>
0.420

=
0.425

>
0.441

>
59471.9

>
38104.1

=
38343.9

>
39283.4

>

500
0.10

0.444
>

0.429
>

0.450
>

0.424
=

2721.5
>

2455.5
>

2518.7
>

2449.5
=

0.50
0.486

>
0.442

=
0.452

>
0.443

>
37137.4

>
33220.4

=
33569.7

>
33323.5

>
0.80

0.530
>

0.451
=

0.459
>

0.457
>

83113.8
>

70507.0
=

71029.3
>

70986.8
>

1.00
0.577

>
0.456

=
0.463

>
0.467

>
137133.1

>
105808.8

=
106409.7

>
106962.5

>

1000
0.10

0.448
>

0.427
>

0.452
>

0.418
=

4438.4
>

3971.8
>

4108.7
>

3967.6
=

0.50
0.504

>
0.454

=
0.466

>
0.457

>
50099.2

>
44401.8

=
45145.3

>
44766.2

>
0.80

0.540
>

0.466
=

0.477
>

0.475
>

107190.5
>

90793.7
=

91997.8
>

91994.8
>

1.00
0.580

>
0.463

=
0.473

>
0.477

>
172246.9

>
133765.1

=
135233.4

>
136087.2

>

68

Table 6.5: Influence of the choice of implementation emphasis on the performance of CH.

Rrel Ca

Size Load NE AE NE AE
20 0.10 0.494 = 0.501 > 58.6 > 52.8 =

0.50 0.578 > 0.356 = 3747.1 > 723.2 =
0.80 0.585 > 0.273 = 12778.5 > 2144.7 =
1.00 0.646 > 0.278 = 20671.6 > 3924.3 =

30 0.10 0.566 > 0.551 = 56.7 > 28.5 =
0.50 0.538 > 0.289 = 6169.9 > 1084.7 =
0.80 0.574 > 0.257 = 16474.9 > 3263.1 =
1.00 0.615 > 0.259 = 28356.6 > 7125.1 =

50 0.10 0.504 > 0.469 = 99.9 > 48.4 =
0.50 0.520 > 0.262 = 7026.1 > 1360.2 =
0.80 0.564 > 0.254 = 18924.2 > 4029.9 =
1.00 0.618 > 0.264 = 34720.5 > 8918.9 =

100 0.10 0.563 > 0.519 = 265.0 > 128.9 =
0.50 0.548 > 0.281 = 12218.7 > 2417.6 =
0.80 0.589 > 0.257 = 36500.2 > 7264.4 =
1.00 0.622 > 0.265 = 63745.9 > 16467.0 =

200 0.10 0.494 > 0.402 = 754.4 > 325.1 =
0.50 0.566 > 0.292 = 12417.1 > 2985.9 =
0.80 0.608 > 0.296 = 34072.4 > 10342.5 =
1.00 0.642 > 0.311 = 64038.9 > 23562.7 =

500 0.10 0.485 > 0.388 = 2960.5 > 2112.1 =
0.50 0.567 > 0.345 = 51195.5 > 17430.0 =
0.80 0.611 > 0.337 = 111432.2 > 36386.3 =
1.00 0.637 > 0.344 = 168010.0 > 60147.1 =

1000 0.10 0.484 > 0.388 = 4731.2 > 3512.1 =
0.50 0.565 > 0.376 = 65001.9 > 27204.4 =
0.80 0.607 > 0.372 = 136567.3 > 54421.1 =
1.00 0.624 > 0.371 = 203415.5 > 85250.8 =

when different CH configurations are used as sub-solver within LS or VND. Because of that, we
choose a selection based on the average performance over all instances.
Table 6.6 shows the ten best CH configurations with respect to achieved average Rrel. Due
to space constraints we cannot show the full table containing all 512 configurations. The best
configuration for solving VNMP-O is DLHeavyVN, MostFree, RelDLHeavy, MinUse, and AE.
We will denote this configuration by CH-O. The presented table also shows the importance of
the different strategic choices for the final outcome. Least important is the choice of SVA, as we
can see groups of four configurations that only differ in this strategy. For the different choices
of IVA, we can at least observe some differences in Rrel based on the selected strategy. The 16th
best configuration uses a different SVN strategy than CH-O (which is not visible in the table).
The 53rd configuration is the first that does not use AE and the most important strategic choice
for CH is the mapping strategy for virtual nodes. The 95 best configurations map virtual nodes
to the substrate node with the most free resources. As a side note, the choice of AE explains

69

Table 6.6: Average Rrel and Cu, number of valid solutions (# Valid) and average required CPU-
time (t[s]) of the top 10 CH configurations according to Rrel. The implementation emphasis is
denoted by Em.

SVN IVN SVA IVA Em. Rrel Ca # Valid t[s]
DLHeavyVN MostFree RelDLHeavy MinUse AE 0.091 = 1950.8 > 511 0.3
DLHeavyVN MostFree DLHeavy MinUse AE 0.092 > 1958.8 > 510 0.2
DLHeavyVN MostFree BWHeavy MinUse AE 0.092 > 1964.1 > 507 0.2
DLHeavyVN MostFree NextVArc MinUse AE 0.092 > 1955.4 > 508 0.2
DLHeavyVN MostFree DLHeavy Spread-2 AE 0.101 > 702.7 > 586 0.2
DLHeavyVN MostFree BWHeavy Spread-2 AE 0.101 > 700.2 > 588 0.2
DLHeavyVN MostFree NextVArc Spread-2 AE 0.101 > 703.9 > 586 0.2
DLHeavyVN MostFree RelDLHeavy Spread-2 AE 0.102 > 705.8 > 586 0.2
DLHeavyVN MostFree BWHeavy Spread-1 AE 0.108 > 652.9 > 590 0.2
DLHeavyVN MostFree DLHeavy Spread-1 AE 0.108 > 659.5 > 586 0.2

Table 6.7: Average Rrel and Cu, number of valid solutions (# Valid) and average required CPU-
time (t[s]) of the top 10 CH configurations according to Ca. The implementation emphasis is
denoted by Em.

SVN IVN SVA IVA Em. Rrel Ca # Valid t[s]
CPUHeavyVN MostFree NextVArc Spread-1 AE 0.127 > 263.4 = 650 0.2
CPUHeavyVN MostFree DLHeavy Spread-1 AE 0.127 > 264.0 = 648 0.2
CPUHeavyVN MostFree RelDLHeavy Spread-1 AE 0.127 > 264.7 = 649 0.2
CPUHeavyVN MostFree BWHeavy Spread-1 AE 0.127 > 265.1 = 649 0.2
CPUHeavyVN MostFree BWHeavy Spread-2 AE 0.120 > 267.9 = 648 0.2
CPUHeavyVN MostFree RelDLHeavy Spread-2 AE 0.120 > 269.1 = 649 0.3
CPUHeavyVN MostFree NextVArc Spread-2 AE 0.120 > 272.5 = 647 0.2
CPUHeavyVN MostFree DLHeavy Spread-2 AE 0.120 > 276.4 > 647 0.2
CPUHeavyVN MostFree BWHeavy Spread-0.5 AE 0.137 > 276.7 > 638 0.2
CPUHeavyVN MostFree RelDLHeavy Spread-0.5 AE 0.137 > 279.5 > 636 0.3

why the choice of SVA strategy has nearly no influence on the outcome. When using AE, there
are never a lot of implementable arcs to choose from, so the order among them is not critical. In
addition, since we use a SVN strategy that focuses on virtual networks (only if all nodes from
one virtual network are mapped, nodes from another one are chosen), the virtual arcs will have
similar properties.

The ten best CH configurations for VNMP-S can be seen in Table 6.7. The best configuration
uses CPUHeavyVN, MostFree, NextVArc, Spread-1, and AE. We will denote this configuration
by CH-S. In contrast to minimizingRrel, we can see that a lot of different configurations achieve
the same level of performance. Also, the achieved average Ca is far lower than those for the
configurations minimizing Rrel. In contrast, the achieved Rrel is just a bit higher. For far more

70

valid solutions, CH-S only has to sacrifice a bit of the cheapness of solutions found by CH-O.
The importance of the different strategic choices is the same as before.
We have now defined two good CH configurations, CH-S for solving VNMP-S and CH-O for
solving VNMP-O. Both use MostFree as IVN strategy, which focuses on finding valid solutions.
In the context of LS and VND, we will use the CH configurations also to rebuild a small part of
the solution. If we rebuild this part with a bias towards validity, we might hamper LS and VND
during the search for minimal Cu with neighborhood structures that remove the mapping of a
node. Therefore, we define a third configuration, CH-R, which is used for cheaply rebuilding
solutions. It is equivalent to CH-O, but uses CheapHost as IVN strategy. The full configuration
of CH-R is DLHeavyVN, CheapHost, RelDLHeavy, MinUse, and AE.

6.5.2 Local Search

In this section, we will analyze the influence of the different configuration parameters of Local
Search, similar to the analysis carried out in the previous section. We used CH-S and CH-O
for creating initial solutions and in addition CH-R for rebuilding solutions. Together with the
six presented neighborhoods, two step functions (first-improvement and best-improvement) and
three neighbor priorities (None, OverloadingFirst, OnlyOverloading), this gives a total of 216
different LS configurations.
Table 6.8 shows the influence of the selected neighborhood on the performance of Local Search.
For solving VNMP-O, the neighborhood structure of choice is clearly RemapVnodeTAP, the
largest and most powerful neighborhood. Only for the largest instance sizes and loads, Remap-
Slice is better, since it can be searched much faster. For solving VNMP-S, RemapSlice is gen-
erally the best choice. For the lowest load (and all but the largest instance size), the choice
of neighborhood structure does not matter, every configuration is able to find a valid solution.
The worst neighborhood structure is RemapVarc, which is not surprising since it is the smallest
neighborhood.
The influence of different neighbor priorities is presented in Table 6.9. The one thing that is
clear from this data is that OnlyOverloading is a bad choice. It is not surprising that it does not
perform well when solving VNMP-O, since LS stops once a valid solution has been found. One
could have expected better performance with respect to Ca, but, as we have already pointed out,
being able to change parts of the solution which are not directly causing overloaded substrate
nodes or arcs is beneficial when trying to reduce Ca. The presented data shows this quite nicely.
OnlyOverloading is not completely useless, we will show later that it has very attractive run-time
characteristics. As for the best choice, OverloadingFirst is better than None for large instances
and high loads, so focusing on overloaded parts of the substrate network first is beneficial.
In Table 6.10, we present the influence of the employed Construction Heuristics to create the
initial solution and for rebuilding the solution. The employed configuration is given in pairs
A-B, where A denotes the CH used to create the initial solution and B the CH for rebuilding the
solution. O denotes CH-O, R denotes CH-R, and S denotes CH-S. It is clear that the idea of
having a special CH configuration for the rebuilding task was successful. For solving VNMP-O
and for solving VNMP-S, using CH-R achieves the best performance overall. Note how the
choice of the initial solution influences the whole Local Search. When starting from a solution
created by CH-O, we get the best solutions with respect to Rrel. By starting with a solution

71

Table
6.8:Influence

ofthe
selected

neighborhood
structure

on
the

perform
ance

ofL
S.

R
rel

C
a

Size
L

oad
N

1
N

2
N

3
N

4
N

5
N

6
N

1
N

2
N

3
N

4
N

5
N

6

20
0.10

0.930
>

0.873
>

0.885
>

0.898
>

0.721
>

0.697
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.50
0.946

>
0.878

>
0.886

>
0.918

>
0.738

>
0.637

=
0.0

=
0.4

>
0.0

=
0.0

=
0.4

>
0.4

>
0.80

0.934
>

0.889
>

0.888
>

0.901
>

0.741
>

0.643
=

33.8
>

18.9
>

6.0
=

33.8
>

30.6
>

14.9
=

1.00
0.938

>
0.748

>
0.722

>
0.918

>
0.756

>
0.514

=
230.5

>
120.5

>
46.5

=
233.4

>
191.8

>
105.7

>

30
0.10

0.889
>

0.783
>

0.806
>

0.822
>

0.679
>

0.532
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.50
0.889

>
0.800

>
0.812

>
0.825

>
0.670

>
0.560

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.80

0.888
>

0.804
>

0.813
>

0.809
>

0.668
>

0.521
=

0.0
=

10.4
>

0.0
=

0.0
=

10.4
>

10.4
>

1.00
0.810

>
0.691

>
0.688

>
0.758

>
0.629

>
0.496

=
94.9

>
100.7

>
0.1

=
101.3

>
95.9

>
100.5

>

50
0.10

0.848
>

0.748
>

0.782
>

0.748
>

0.630
>

0.502
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.50
0.909

>
0.812

>
0.820

>
0.813

>
0.674

>
0.496

=
0.0

=
0.2

>
0.0

=
0.0

=
0.2

>
0.2

>
0.80

0.885
>

0.796
>

0.813
>

0.802
>

0.669
>

0.490
=

0.0
=

4.6
>

0.1
>

0.0
=

4.6
>

4.6
>

1.00
0.814

>
0.622

>
0.606

>
0.773

>
0.556

>
0.407

=
529.4

>
131.0

>
10.3

=
602.8

>
88.9

>
115.0

>

100
0.10

0.876
>

0.778
>

0.804
>

0.772
>

0.652
>

0.517
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.50
0.890

>
0.790

>
0.809

>
0.789

>
0.661

>
0.481

=
2.3

=
7.2

>
2.3

=
2.3

=
6.7

>
7.2

>
0.80

0.884
>

0.769
>

0.784
>

0.787
>

0.665
>

0.472
=

40.2
>

58.5
>

2.4
=

40.2
>

75.3
>

58.5
>

1.00
0.811

>
0.593

>
0.591

>
0.760

>
0.584

>
0.376

=
331.0

>
243.5

>
56.8

=
341.2

>
217.8

>
215.7

>

200
0.10

0.824
>

0.731
>

0.751
>

0.663
>

0.580
>

0.524
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.50
0.884

>
0.767

>
0.794

>
0.776

>
0.654

>
0.467

=
66.5

>
55.2

>
45.7

>
66.5

>
55.0

>
25.5

=
0.80

0.798
>

0.640
>

0.675
>

0.717
>

0.576
>

0.385
=

269.8
>

238.1
>

161.6
>

267.2
>

231.1
>

139.0
=

1.00
0.803

>
0.420

>
0.414

>
0.786

>
0.490

>
0.263

=
1178.9

>
710.5

>
368.4

>
1200.3

>
579.9

>
488.0

=

500
0.10

0.789
>

0.692
>

0.736
>

0.624
>

0.553
>

0.511
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.50
0.872

>
0.742

>
0.781

>
0.770

>
0.642

>
0.450

=
12.7

>
9.0

>
7.3

>
12.5

>
9.6

>
5.5

=
0.80

0.740
>

0.520
>

0.541
>

0.704
>

0.536
>

0.391
=

931.7
>

524.1
>

366.0
=

935.0
>

705.9
>

422.4
=

1.00
0.813

>
0.319

=
0.303

=
0.803

>
0.529

>
0.418

>
4949.5

>
1927.2

=
1296.0

=
4891.4

>
3086.1

>
2586.3

>

1000
0.10

0.817
>

0.719
>

0.776
>

0.657
>

0.586
>

0.486
=

1.1
>

1.0
>

0.8
>

1.1
>

1.0
>

0.5
=

0.50
0.804

>
0.640

>
0.677

>
0.724

>
0.597

>
0.526

=
119.6

>
100.8

>
79.6

=
121.4

>
90.8

>
94.3

=
0.80

0.760
>

0.400
>

0.345
=

0.716
>

0.465
>

0.510
>

1727.9
>

852.3
>

557.4
=

1674.8
>

911.7
>

1165.2
>

1.00
0.809

>
0.274

=
0.252

=
0.791

>
0.462

>
0.630

>
7824.0

>
2908.0

=
2364.2

=
7699.8

>
4237.8

>
7749.5

>

72

Ta
bl

e
6.

9:
In

flu
en

ce
of

th
e

se
le

ct
ed

ne
ig

hb
or

pr
io

ri
ty

on
th

e
pe

rf
or

m
an

ce
of

L
S.

R
re

l
C

a

Si
ze

L
oa

d
N

on
e

O
ve

rl
oa

di
ng

Fi
rs

t
O

nl
yO

ve
rl

oa
di

ng
N

on
e

O
ve

rl
oa

di
ng

Fi
rs

t
O

nl
yO

ve
rl

oa
di

ng
20

0.
10

0.
77

9
=

0.
77

9
=

0.
94

4
>

0.
0

=
0.

0
=

0.
0

=
0.

50
0.

77
3

=
0.

77
3

=
0.

95
6
>

0.
0

=
0.

0
=

0.
6
>

0.
80

0.
77

7
=

0.
77

7
=

0.
94

4
>

17
.2

=
17

.2
=

34
.6
>

1.
00

0.
69

4
=

0.
69

4
=

0.
91

0
>

12
1.

6
=

12
1.

6
=

22
0.

9
>

30
0.

10
0.

67
5

=
0.

67
5

=
0.

90
5
>

0.
0

=
0.

0
=

0.
0

=
0.

50
0.

68
5

=
0.

68
5

=
0.

90
9
>

0.
0

=
0.

0
=

0.
0

=
0.

80
0.

66
6
>

0.
66

6
=

0.
91

8
>

0.
0

=
0.

0
=

15
.6
>

1.
00

0.
60

3
=

0.
60

3
=

0.
83

0
>

37
.8

=
37

.3
=

17
1.

6
>

50
0.

10
0.

62
6

=
0.

62
6

=
0.

87
6
>

0.
0

=
0.

0
=

0.
0

=
0.

50
0.

66
3

=
0.

66
3

=
0.

93
5
>

0.
0

=
0.

0
=

0.
4
>

0.
80

0.
65

2
=

0.
65

2
>

0.
92

5
>

0.
0

=
0.

0
=

6.
9
>

1.
00

0.
53

9
=

0.
53

9
>

0.
81

0
>

19
0.

1
=

19
0.

9
=

35
7.

7
>

10
0

0.
10

0.
65

4
=

0.
65

4
=

0.
89

2
>

0.
0

=
0.

0
=

0.
0

=
0.

50
0.

64
3

=
0.

64
4

=
0.

92
3
>

2.
2

=
2.

2
=

9.
6
>

0.
80

0.
63

0
>

0.
62

9
=

0.
92

2
>

19
.2

=
19

.1
=

99
.2
>

1.
00

0.
52

3
=

0.
52

2
=

0.
81

2
>

14
8.

3
=

14
8.

2
=

40
6.

6
>

20
0

0.
10

0.
59

4
=

0.
59

4
=

0.
84

9
>

0.
0

=
0.

0
=

0.
0

=
0.

50
0.

62
4

=
0.

62
4

=
0.

92
3
>

44
.6

=
44

.6
=

68
.0
>

0.
80

0.
52

2
=

0.
52

1
=

0.
85

2
>

16
6.

9
>

16
6.

5
=

31
9.

9
>

1.
00

0.
45

1
=

0.
45

0
=

0.
68

6
>

57
3.

6
>

57
0.

6
=

11
18

.8
>

50
0

0.
10

0.
57

1
=

0.
57

1
=

0.
81

0
>

0.
0

=
0.

0
=

0.
0

=
0.

50
0.

60
9

=
0.

60
9

=
0.

91
0
>

7.
6

=
7.

5
=

13
.3
>

0.
80

0.
48

5
>

0.
47

9
=

0.
75

1
>

55
4.

3
>

54
5.

8
=

84
2.

5
>

1.
00

0.
48

3
>

0.
47

0
=

0.
63

9
>

28
64

.5
>

27
31

.5
=

37
72

.3
>

10
00

0.
10

0.
58

9
=

0.
58

9
=

0.
84

3
>

0.
7

=
0.

7
=

1.
3
>

0.
50

0.
56

5
>

0.
56

2
=

0.
85

7
>

88
.4
>

86
.9

=
12

8.
0
>

0.
80

0.
47

0
>

0.
45

9
=

0.
66

9
>

10
26

.8
>

98
4.

7
=

14
33

.2
>

1.
00

0.
51

7
>

0.
48

7
=

0.
60

5
>

55
71

.1
>

49
64

.1
=

58
56

.5
>

73

Table
6.10:Influence

ofthe
selected

C
H

m
ethods

forfinding
an

initialsolution
and

forrebuilding
iton

the
perform

ance
ofL

S.

R
rel

C
a

Size
L

oad
O

-O
O

-R
O

-S
S-O

S-R
S-S

O
-O

O
-R

O
-S

S-O
S-R

S-S
20

0.10
0.845

>
0.712

=
0.852

>
0.897

>
0.764

>
0.935

>
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.50

0.866
>

0.719
=

0.876
>

0.884
>

0.739
>

0.921
>

0.4
>

0.4
>

0.4
>

0.0
=

0.0
=

0.0
=

0.80
0.837

>
0.721

=
0.845

>
0.890

>
0.767

>
0.936

>
25.9

>
22.5

>
25.9

>
22.3

>
18.9

=
22.3

>
1.00

0.799
>

0.691
=

0.812
>

0.793
>

0.687
=

0.815
>

171.5
>

162.4
>

170.7
>

144.1
>

135.8
=

143.8
>

30
0.10

0.728
>

0.581
=

0.768
>

0.822
>

0.682
>

0.930
>

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.50
0.735

>
0.595

=
0.762

>
0.836

>
0.702

>
0.927

>
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.80

0.743
>

0.613
=

0.780
>

0.799
>

0.680
>

0.886
>

10.4
>

10.4
>

10.4
>

0.0
=

0.0
=

0.0
=

1.00
0.683

>
0.572

=
0.724

>
0.708

>
0.607

>
0.777

>
121.5

>
123.9

>
110.0

>
50.1

>
44.8

=
43.0

=

50
0.10

0.633
>

0.512
=

0.694
>

0.794
>

0.681
>

0.944
>

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.50
0.746

>
0.601

=
0.805

>
0.806

>
0.666

>
0.900

>
0.2

>
0.2

>
0.2

>
0.0

=
0.0

=
0.0

=
0.80

0.750
>

0.607
=

0.804
>

0.774
>

0.641
>

0.881
>

4.6
>

4.6
>

4.6
>

0.0
=

0.0
=

0.0
=

1.00
0.652

>
0.554

>
0.717

>
0.615

>
0.523

=
0.716

>
289.1

>
302.8

>
270.6

>
203.8

>
213.0

>
198.2

=

100
0.10

0.673
>

0.535
=

0.731
>

0.821
>

0.696
>

0.944
>

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.50
0.718

>
0.563

=
0.776

>
0.803

>
0.656

>
0.905

>
7.2

>
6.9

>
7.2

>
2.3

>
2.1

=
2.3

>
0.80

0.713
>

0.569
=

0.784
>

0.779
>

0.632
>

0.884
>

69.0
>

64.8
>

69.0
>

25.5
>

21.2
=

25.5
>

1.00
0.648

>
0.531

>
0.725

>
0.610

>
0.503

=
0.699

>
300.1

>
290.5

>
289.3

>
179.4

>
168.1

=
178.8

>

200
0.10

0.559
>

0.446
=

0.655
>

0.772
>

0.688
>

0.954
>

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.50
0.693

>
0.531

=
0.774

>
0.791

>
0.639

>
0.914

>
62.4

>
37.3

>
62.4

>
59.1

>
34.1

=
59.1

>
0.80

0.642
>

0.508
=

0.708
>

0.652
>

0.522
>

0.761
>

295.6
>

204.9
>

261.6
>

208.4
>

129.8
=

206.5
>

1.00
0.605

>
0.531

>
0.583

>
0.500

>
0.441

=
0.514

>
994.3

>
877.0

>
842.4

>
651.8

>
541.4

=
619.1

>

500
0.10

0.495
>

0.402
=

0.586
>

0.756
>

0.700
>

0.967
>

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.50
0.698

>
0.530

=
0.766

>
0.764

>
0.612

>
0.887

>
19.4

>
12.6

>
12.6

>
4.1

>
3.7

=
4.1

>
0.80

0.627
>

0.543
>

0.671
>

0.536
>

0.446
=

0.608
>

750.9
>

647.2
>

732.4
>

631.9
>

494.9
=

627.8
>

1.00
0.639

>
0.582

>
0.602

>
0.469

>
0.429

=
0.464

>
3820.8

>
3500.8

>
3544.5

>
2735.3

>
2456.7

=
2678.6

>

1000
0.10

0.547
>

0.442
=

0.648
>

0.752
>

0.691
>

0.962
>

0.9
>

0.5
=

0.9
>

1.1
>

0.7
>

1.3
>

0.50
0.680

>
0.517

=
0.751

>
0.686

>
0.518

>
0.815

>
138.7

>
111.5

>
137.3

>
81.9

>
51.2

=
86.1

>
0.80

0.643
>

0.560
>

0.587
>

0.481
>

0.430
=

0.494
>

1469.2
>

1257.2
>

1278.8
>

1019.8
>

875.7
=

988.6
>

1.00
0.671

>
0.599

>
0.582

>
0.480

>
0.430

=
0.455

>
7143.5

>
6556.7

>
6323.1

>
4463.0

>
4044.9

=
4252.1

>

74

Table 6.11: Influence of the selected step function on the performance of LS.

Rrel Ca

Size Load FirstImprove BestImprove FirstImprove BestImprove
20 0.10 0.835 = 0.834 = 0.0 = 0.0 =

0.50 0.835 > 0.833 = 0.2 = 0.2 =
0.80 0.833 = 0.832 = 22.9 = 23.1 >
1.00 0.767 = 0.765 = 154.6 = 154.8 >

30 0.10 0.754 > 0.749 = 0.0 = 0.0 =
0.50 0.764 > 0.755 = 0.0 = 0.0 =
0.80 0.753 > 0.748 = 5.2 = 5.2 =
1.00 0.686 > 0.671 = 86.4 > 78.1 =

50 0.10 0.713 > 0.706 = 0.0 = 0.0 =
0.50 0.757 > 0.751 = 0.1 = 0.1 =
0.80 0.747 > 0.738 = 2.3 = 2.3 =
1.00 0.635 > 0.624 = 253.4 > 239.0 =

100 0.10 0.736 > 0.731 = 0.0 = 0.0 =
0.50 0.741 > 0.732 = 4.7 = 4.7 =
0.80 0.732 > 0.722 = 45.8 = 45.8 =
1.00 0.626 > 0.612 = 236.1 > 232.6 =

200 0.10 0.682 > 0.676 = 0.0 = 0.0 =
0.50 0.727 > 0.721 = 52.4 = 52.4 =
0.80 0.639 > 0.625 = 219.0 > 216.6 =
1.00 0.541 > 0.517 = 788.1 > 720.5 =

500 0.10 0.654 > 0.648 = 0.0 = 0.0 =
0.50 0.712 > 0.707 = 9.6 > 9.3 =
0.80 0.590 > 0.554 = 676.0 > 619.1 =
1.00 0.560 > 0.501 = 3366.8 > 2878.7 =

1000 0.10 0.677 > 0.670 = 0.9 = 0.9 =
0.50 0.678 > 0.645 = 108.4 > 93.8 =
0.80 0.563 > 0.502 = 1236.6 > 1059.8 =
1.00 0.544 > 0.529 = 5506.2 > 5421.6 =

created by CH-S, we get the best solutions with respect to Ca. The exception to this rule are
instances of high load. Building the initial solution with CH-S results almost universally in better
Rrel, building it with CH-O is in one case significantly better than CH-S when trying to solve
VNMP-S. It is surprising that CH-S is worse than CH-R as rebuilding heuristic when minimizing
Ca, although the difference is small. The reason could be that, when used as rebuilding strategy,
it repeats the same mistakes it made when creating the initial solution.

The influence of the step function on the performance of Local Search is shown in Table 6.11.
For all but the smallest instances, best-improvement (labeled BestImprove) is significantly better
than first-improvement (labeled FirstImprove) when trying to find valid solutions with low Cu,
but the difference is quite small. First-improvement can keep up much longer when trying to
minimize Ca, but is worse for high loads and large instances. Later we will show the difference
in run-time between first-improvement and best-improvement.

75

Table 6.12: Average Rrel and Cu, number of valid solutions (# Valid) and average required
CPU-time (t[s]) of the top 10 LS Configurations according to Rrel.

Neighborhood Step-Function Priority Init. Reb. Rrel Ca # Valid t[s]
ClearSnode BestImprove OverloadingFirst CH-S CH-R 0.092 = 202.6 > 703 115.0
ClearSnode BestImprove None CH-S CH-R 0.092 = 202.8 > 703 114.8
ClearSnode BestImprove OverloadingFirst CH-O CH-R 0.093 = 203.2 > 695 121.6
ClearSnode BestImprove None CH-O CH-R 0.093 = 203.2 > 695 121.5
ClearSnode FirstImprove OverloadingFirst CH-O CH-R 0.125 > 192.0 > 696 59.0
ClearSnode FirstImprove OverloadingFirst CH-S CH-R 0.126 > 193.7 > 701 53.9
ClearSnode FirstImprove None CH-O CH-R 0.137 > 255.2 > 693 66.3
ClearSnode FirstImprove None CH-S CH-R 0.142 > 252.4 > 694 54.2
RemapVnodeTAP BestImprove OverloadingFirst CH-O CH-O 0.234 > 540.8 > 746 265.8
RemapVnodeTAP BestImprove None CH-O CH-O 0.234 > 538.0 > 746 266.4

Table 6.13: Average Rrel and Cu, number of valid solutions (# Valid) and average required
CPU-time (t[s]) of the top 10 LS Configurations according to Ca.

Neighborhood Step-Function Priority Init. Reb. Rrel Ca # Valid t[s]
RemapVnode BestImprove None CH-S CH-R 0.428 > 64.5 = 714 27.0
RemapVnode BestImprove OverloadingFirst CH-S CH-R 0.429 > 64.8 = 714 27.0
RemapVnode FirstImprove OverloadingFirst CH-S CH-R 0.442 > 77.3 > 708 8.9
RemapVnode FirstImprove None CH-S CH-R 0.442 > 77.7 > 709 9.8
RemapVnode BestImprove OverloadingFirst CH-O CH-R 0.343 > 86.4 > 706 35.4
RemapVnode BestImprove None CH-O CH-R 0.343 > 86.4 > 706 35.5
RemapVnode FirstImprove None CH-O CH-R 0.362 > 100.7 > 696 14.2
RemapSlice BestImprove None CH-S CH-R 0.497 > 108.5 > 703 4.6
RemapSlice BestImprove OverloadingFirst CH-S CH-R 0.497 > 108.5 > 703 4.5
RemapVnode FirstImprove OverloadingFirst CH-O CH-R 0.361 > 109.0 > 698 11.9

As in the previous section, we show the 10 best LS configurations with respect to the average
Rrel in Table 6.12. In comparison with the best CH configurations with respect to Ca, the best
LS configurations according to the Rrel beat them with respect to Ca and also in terms of valid
solutions. Of course, this has a substantial cost in terms of run-time. It can be observed that
with all other settings being equal, there is no significant difference between OverloadingFirst
and None. Also, the initialization CH is far less important for the best configurations than in the
average case. The rebuilding CH however still has to be CH-R for the best performance, notice
the large increase in relative rank for the configurations using CH-O. Observe how switching
from BestImprove to FirstImprove increases the Rrel by 30%, but halves the required run-time.
Using RemapVnodeTAP instead of ClearSnode (which by the way was not indicated to be a
promising neighborhood in the slightest) doubles the required run-time.
Table 6.13 shows the 10 best LS configurations with respect to the average Ca. Again we can
observe that changing the neighbor priority has no significant effect on the final result (as long
as we do not use OnlyOverloading). Using first-improvement reduces the required run-time to a

76

third for a slight increase in average Ca. The best configurations for solving VNMP-S are gen-
erally faster than those for VNMP-O. One important thing to note is that the best configuration
with respect to average Ca does not solve the most instances to validity. The best LS configura-
tion is able to solve 764 out of the 840 instances. It uses RemapVnodeTAP, best-improvement,
OverloadingFirst, CH-S for initialization, and CH-R for rebuilding.
The best CH configurations have shown that the mapping strategy for virtual nodes is essen-
tial. The same can be observed here. The best LS configuration with respect to Rrel tries to
clear substrate nodes (by removing the virtual nodes) to reduce Cu. To minimize Ca, the more
conservative approach of removing a single virtual node achieves the best results.
We will denote the best LS configuration for solving VNMP-O (ClearSnode, best-improvement,
OverloadingFirst, CH-S, and CH-R) by LS-O. The best LS configuration with respect to
VNMP-S (RemapVnode, best-improvement, None, CH-S, and CH-R) will be called LS-S.

6.5.3 Variable Neighborhood Descent

For Variable Neighborhood Descent, we tested all combinations of the twelve neighborhood
structure configurations, two step-functions, two initialization CHs and three rebuilding CHs,
yielding in total 144 VND algorithms. The different step-functions were applied to all neigh-
borhoods simultaneously, so either all neighborhoods were searched by first-improvement or all
were searched by best-improvement.
Table 6.14 shows the influence of the different neighborhood configurations on the achieved
average Rrel. For all instances up to and including size 200, C4 (RComplete) is the best neigh-
borhood structure configuration. Very similar performance levels are achieved by C1 (All),
C3 (Complete), C9 (ImprovCompB) and C10 (ImprovCompC), which are all configurations
that utilize the RemapVnodeTAP neighborhood structure. For the instances of the two largest
size classes, reducing the number of employed neighborhood structures (ImprovCompB) is re-
quired to achieve the best levels of performance. A key factor is also that ImprovCompB uses
RemapVnodeTAP as last neighborhood structure and not as first, as is done by RComplete,
because RemapVnodeTAP requires a lot of time for large instances. This is because RemapVn-
odeTAP explicitly tries to map all virtual nodes to all possible mapping targets, and we know
from Chapter 5 that for the largest instances we can expect 700 virtual nodes with an average of
50 allowed mapping targets. The configurations that use neighborhood structures in the Only-
Overloading setting (C2, C7, and C8) produce very bad results with respect to Rrel, as could be
expected.
How different neighborhood configurations influence the achieved performance of VND with
respect to average Ca is shown in Table 6.15. It is striking that the choice of configuration
basically has no influence on the performance up to instance size 100. In addition, every config-
uration choice is able to solve every instance of size 30, with the exception of C11 (OnlyClear)
and full load. It is interesting that instances of size 20 seem to be harder to solve than instances
of size 30 or 50. For larger instances, configurations C1, C3, C5, C9, and C10 achieve the best
performance. Note that the configurations that reverse the order of neighborhood structures (C4,
C6) perform far worse.
The influence of the CH choice on the performance of VND is presented in Table 6.16. The CH
choice is encoded in the same way as for LS, i.e., S-R means that CH-S was used to create the

77

Table
6.14:

Influence
of

the
selected

V
N

D
neighborhood

structure
configuration

on
the

perform
ance

of
V

N
D

w
ith

respectto
average

R
rel .

R
rel

Size
L

oad
C

1
C

2
C

3
C

4
C

5
C

6
C

7
C

8
C

9
C

1
0

C
1
1

C
1
2

20
0.10

0.454
=

0.951
>

0.454
=

0.447
=

0.634
>

0.633
>

0.951
>

0.951
>

0.454
=

0.458
>

0.640
>

0.648
>

0.50
0.444

>
0.959

>
0.444

>
0.443

=
0.612

>
0.608

>
0.959

>
0.960

>
0.444

>
0.440

=
0.682

>
0.682

>
0.80

0.473
>

0.958
>

0.470
>

0.431
=

0.613
>

0.588
>

0.958
>

0.958
>

0.469
>

0.476
>

0.707
>

0.704
>

1.00
0.406

>
0.889

>
0.425

>
0.381

=
0.545

>
0.502

>
0.889

>
0.891

>
0.414

>
0.426

>
0.759

>
0.654

>

30
0.10

0.324
=

0.927
>

0.324
=

0.322
=

0.424
>

0.413
>

0.927
>

0.927
>

0.324
=

0.333
>

0.610
>

0.611
>

0.50
0.408

=
0.941

>
0.408

=
0.407

=
0.534

>
0.536

>
0.941

>
0.941

>
0.409

=
0.411

=
0.651

>
0.643

>
0.80

0.431
>

0.961
>

0.431
>

0.421
=

0.576
>

0.567
>

0.961
>

0.961
>

0.431
>

0.440
>

0.673
>

0.665
>

1.00
0.394

>
0.890

>
0.391

>
0.379

=
0.509

>
0.496

>
0.890

>
0.901

>
0.387

=
0.399

>
0.667

>
0.610

>

50
0.10

0.343
>

0.925
>

0.343
>

0.325
=

0.427
>

0.415
>

0.925
>

0.925
>

0.343
>

0.350
>

0.607
>

0.607
>

0.50
0.423

>
0.962

>
0.423

>
0.407

=
0.557

>
0.536

>
0.962

>
0.960

>
0.424

>
0.432

>
0.670

>
0.671

>
0.80

0.460
>

0.964
>

0.460
>

0.450
=

0.603
>

0.590
>

0.964
>

0.965
>

0.463
>

0.474
>

0.705
>

0.694
>

1.00
0.413

>
0.905

>
0.422

>
0.364

=
0.539

>
0.489

>
0.905

>
0.901

>
0.372

=
0.381

>
0.681

>
0.621

>

100
0.10

0.422
>

0.956
>

0.422
>

0.400
=

0.518
>

0.498
>

0.956
>

0.956
>

0.424
>

0.426
>

0.676
>

0.684
>

0.50
0.485

>
0.965

>
0.485

>
0.474

=
0.637

>
0.615

>
0.965

>
0.966

>
0.488

>
0.501

>
0.697

>
0.704

>
0.80

0.473
>

0.952
>

0.468
>

0.457
=

0.617
>

0.595
>

0.952
>

0.956
>

0.471
>

0.487
>

0.687
>

0.681
>

1.00
0.408

>
0.887

>
0.382

>
0.363

=
0.500

>
0.476

>
0.887

>
0.895

>
0.397

>
0.426

>
0.685

>
0.637

>

200
0.10

0.417
>

0.943
>

0.417
>

0.387
=

0.505
>

0.478
>

0.943
>

0.943
>

0.418
>

0.414
>

0.660
>

0.664
>

0.50
0.453

>
0.972

>
0.453

>
0.439

=
0.602

>
0.580

>
0.972

>
0.974

>
0.455

>
0.475

>
0.712

>
0.704

>
0.80

0.401
>

0.917
>

0.391
>

0.357
=

0.531
>

0.483
>

0.917
>

0.928
>

0.391
>

0.422
>

0.689
>

0.665
>

1.00
0.307

>
0.810

>
0.295

>
0.282

=
0.393

>
0.372

>
0.813

>
0.838

>
0.295

>
0.361

>
0.795

>
0.593

>

500
0.10

0.417
>

0.938
>

0.417
>

0.402
=

0.497
>

0.478
>

0.938
>

0.938
>

0.416
>

0.421
>

0.699
>

0.718
>

0.50
0.428

=
0.971

>
0.430

=
0.518

>
0.548

>
0.615

>
0.971

>
0.972

>
0.431

=
0.439

>
0.732

>
0.720

>
0.80

0.350
>

0.828
>

0.339
>

0.508
>

0.351
>

0.510
>

0.829
>

0.841
>

0.320
=

0.373
>

0.708
>

0.617
>

1.00
0.310

>
0.693

>
0.298

>
0.658

>
0.302

>
0.658

>
0.704

>
0.694

>
0.286

=
0.312

>
0.848

>
0.515

>

1000
0.10

0.434
=

0.958
>

0.435
=

0.458
=

0.519
>

0.547
>

0.958
>

0.958
>

0.438
=

0.434
=

0.770
>

0.781
>

0.50
0.400

>
0.901

>
0.392

>
0.601

>
0.425

>
0.602

>
0.901

>
0.907

>
0.375

=
0.414

>
0.669

>
0.640

>
0.80

0.347
>

0.670
>

0.341
>

0.701
>

0.344
>

0.703
>

0.694
>

0.641
>

0.320
=

0.386
>

0.719
>

0.495
>

1.00
0.264

=
0.520

>
0.343

>
0.903

>
0.331

>
0.906

>
0.607

>
0.536

>
0.305

>
0.392

>
0.870

>
0.394

>

78

Ta
bl

e
6.

15
:

In
flu

en
ce

of
th

e
se

le
ct

ed
V

N
D

ne
ig

hb
or

ho
od

st
ru

ct
ur

e
co

nfi
gu

ra
tio

n
on

th
e

pe
rf

or
m

an
ce

of
V

N
D

w
ith

re
sp

ec
tt

o
av

er
ag

e
C
a
.

C
a

Si
ze

L
oa

d
C

1
C

2
C

3
C

4
C

5
C

6
C

7
C

8
C

9
C

1
0

C
1
1

C
1
2

20
0.

10
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

50
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

80
6.

0
>

6.
0
>

6.
0
>

0.
0

=
6.

0
>

0.
0

=
6.

0
>

6.
0
>

6.
0
>

6.
0
>

23
.6
>

6.
0
>

1.
00

20
.7

=
46

.4
>

29
.5
>

24
.2

=
29

.5
>

24
.2

=
46

.4
>

46
.5
>

29
.5
>

20
.7

=
15

1.
4
>

46
.3
>

30
0.

10
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

50
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

80
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
1.

00
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
49

.1
>

0.
0

=

50
0.

10
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

50
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

80
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
1.

00
1.

8
=

20
.2
>

2.
9
>

2.
9
>

2.
9
>

2.
9
>

20
.7
>

10
.6
>

2.
9
>

1.
6

=
76

.3
>

21
.1
>

10
0

0.
10

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
50

1.
6

=
2.

3
>

1.
6

=
1.

6
=

2.
3
>

2.
3
>

2.
3
>

2.
3
>

1.
6

=
1.

6
=

1.
6

=
1.

6
=

0.
80

2.
3

=
2.

3
=

2.
3

=
2.

3
=

2.
3

=
2.

3
=

2.
3

=
2.

3
=

2.
3

=
2.

3
=

27
.6
>

2.
3

=
1.

00
9.

1
=

59
.3
>

9.
1

=
8.

2
=

9.
1

=
8.

2
=

59
.3
>

56
.6
>

12
.9
>

9.
5
>

11
1.

0
>

42
.7
>

20
0

0.
10

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
50

0.
0

=
45

.7
>

0.
0

=
0.

0
=

0.
0

=
0.

0
=

45
.7
>

45
.7
>

0.
0

=
0.

0
=

44
.4
>

44
.4
>

0.
80

0.
9

=
16

0.
2
>

0.
0

=
0.

3
=

0.
3

=
1.

4
>

16
0.

4
>

15
8.

3
>

0.
0

=
0.

0
=

15
3.

6
>

14
4.

3
>

1.
00

4.
1

=
34

8.
1
>

4.
0

=
10

.2
>

4.
0

=
11

.3
>

35
7.

6
>

33
4.

9
>

4.
6
>

5.
6
>

47
8.

2
>

27
9.

2
>

50
0

0.
10

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
50

0.
0

=
6.

9
>

0.
0

=
0.

9
=

0.
0

=
1.

6
=

6.
9
>

7.
2
>

0.
0

=
0.

0
=

6.
4
>

5.
5
>

0.
80

97
.0
>

34
6.

7
>

82
.6
>

18
5.

3
>

47
.6

=
18

5.
1
>

34
7.

2
>

34
6.

1
>

71
.1

=
10

3.
4
>

59
6.

7
>

28
5.

4
>

1.
00

39
2.

3
=

12
02

.6
>

39
6.

6
=

23
93

.8
>

38
0.

4
=

23
97

.3
>

12
40

.5
>

11
79

.1
>

38
8.

9
=

38
5.

3
=

28
38

.9
>

84
7.

2
>

10
00

0.
10

0.
0

=
0.

7
>

0.
0

=
0.

0
=

0.
0

=
0.

0
=

0.
7
>

0.
7
>

0.
0

=
0.

0
=

0.
7
>

0.
7
>

0.
50

24
.3
>

72
.9
>

24
.1
>

68
.1
>

18
.8

=
68

.2
>

72
.9
>

72
.4
>

23
.8

=
23

.6
=

70
.5
>

61
.9
>

0.
80

22
8.

2
=

52
4.

1
>

26
5.

6
=

11
06

.9
>

26
4.

9
=

11
11

.2
>

60
6.

6
>

47
8.

9
>

22
9.

5
=

22
7.

4
=

72
9.

3
>

41
6.

6
>

1.
00

99
9.

7
=

17
94

.6
>

12
88

.1
>

10
41

1.
5
>

12
32

.8
>

10
43

7.
2
>

21
76

.9
>

19
13

.7
>

11
90

.2
>

14
47

.0
>

55
47

.8
>

14
80

.4
>

79

Table
6.16:Influence

ofthe
selected

C
H

m
ethods

forfinding
an

initialsolution
and

forrebuilding
iton

the
perform

ance
ofV

N
D

.

R
rel

C
a

Size
L

oad
O

-O
O

-R
O

-S
S-O

S-R
S-S

O
-O

O
-R

O
-S

S-O
S-R

S-S
20

0.10
0.736

>
0.388

=
0.739

>
0.749

>
0.395

=
0.829

>
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.50

0.732
>

0.417
=

0.748
>

0.739
>

0.421
=

0.781
>

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.80
0.724

>
0.441

=
0.754

>
0.726

>
0.447

=
0.811

>
7.3

=
4.8

=
7.3

=
7.3

=
4.8

=
7.3

=
1.00

0.661
>

0.440
>

0.704
>

0.657
>

0.425
=

0.704
>

45.3
>

38.5
=

45.1
>

45.0
>

38.7
=

45.0
>

30
0.10

0.556
>

0.328
=

0.653
>

0.583
>

0.372
>

0.742
>

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.50
0.642

>
0.386

=
0.710

>
0.667

>
0.416

>
0.794

>
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.80

0.676
>

0.411
=

0.748
>

0.691
>

0.427
>

0.806
>

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

1.00
0.615

>
0.398

=
0.693

>
0.616

>
0.395

=
0.739

>
5.0

=
4.0

=
2.5

=
6.5

=
3.8

=
2.9

=

50
0.10

0.527
>

0.341
=

0.658
>

0.560
>

0.367
>

0.815
>

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.50
0.655

>
0.421

=
0.769

>
0.648

>
0.419

=
0.802

>
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.80

0.708
>

0.450
>

0.798
>

0.693
>

0.434
=

0.812
>

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

1.00
0.633

>
0.412

=
0.723

>
0.613

>
0.400

=
0.714

>
13.9

=
17.9

>
9.6

=
11.2

>
19.8

>
11.1

>

100
0.10

0.608
>

0.405
=

0.760
>

0.624
>

0.428
>

0.845
>

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.50
0.708

>
0.443

=
0.817

>
0.713

>
0.452

>
0.857

>
2.3

>
1.0

=
2.3

>
2.3

>
1.0

=
2.3

>
0.80

0.695
>

0.439
=

0.819
>

0.681
>

0.434
=

0.832
>

5.5
>

2.3
=

5.5
>

5.5
>

2.3
=

5.5
>

1.00
0.630

>
0.398

>
0.736

>
0.598

>
0.387

=
0.721

>
37.0

>
26.2

=
37.2

>
35.9

>
25.3

=
35.9

>

200
0.10

0.548
>

0.393
=

0.760
>

0.572
>

0.415
>

0.906
>

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.50
0.677

>
0.420

=
0.829

>
0.682

>
0.429

>
0.858

>
27.7

>
1.1

=
27.7

>
27.7

>
1.1

=
27.7

>
0.80

0.631
>

0.385
=

0.772
>

0.611
>

0.382
=

0.766
>

104.6
>

11.4
>

89.9
>

89.1
>

5.7
=

89.1
>

1.00
0.564

>
0.381

>
0.659

>
0.508

>
0.342

=
0.622

>
230.1

>
91.8

>
176.5

>
186.6

>
69.2

=
166.6

>

500
0.10

0.522
>

0.397
=

0.786
>

0.561
>

0.437
>

0.938
>

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.50
0.678

>
0.429

=
0.843

>
0.664

>
0.426

=
0.848

>
8.6

>
1.7

=
3.8

>
1.3

>
0.9

=
1.3

>
0.80

0.617
>

0.408
>

0.727
>

0.545
>

0.349
=

0.643
>

293.5
>

135.6
>

292.3
>

274.8
>

89.0
=

261.8
>

1.00
0.626

>
0.468

>
0.624

>
0.515

>
0.363

=
0.544

>
1640.4

>
1175.1

>
1643.4

>
1020.1

>
553.1

=
989.4

>

1000
0.10

0.546
>

0.432
=

0.840
>

0.594
>

0.490
>

0.943
>

0.4
>

0.0
=

0.4
>

0.4
>

0.0
=

0.4
>

0.50
0.635

>
0.411

=
0.763

>
0.623

>
0.400

>
0.781

>
70.4

>
36.1

>
84.3

>
51.1

>
9.3

=
49.6

>
0.80

0.630
>

0.428
>

0.632
>

0.521
>

0.384
=

0.586
>

744.7
>

436.9
>

715.7
>

467.0
>

264.0
=

466.3
>

1.00
0.696

>
0.500

>
0.588

>
0.519

>
0.402

=
0.481

>
4975.9

>
4211.0

>
4559.6

>
2275.0

>
1861.7

=
2076.7

>

80

Table 6.17: Influence of the selected step function on the performance of VND.

Rrel Ca

Size Load FirstImprove BestImprove FirstImprove BestImprove
20 0.10 0.645 > 0.634 = 0.0 = 0.0 =

0.50 0.646 > 0.633 = 0.0 = 0.0 =
0.80 0.653 > 0.648 = 6.4 = 6.5 =
1.00 0.602 > 0.595 = 44.3 = 41.6 =

30 0.10 0.546 > 0.532 = 0.0 = 0.0 =
0.50 0.615 > 0.590 = 0.0 = 0.0 =
0.80 0.634 > 0.619 = 0.0 = 0.0 =
1.00 0.584 > 0.568 = 3.9 = 4.3 =

50 0.10 0.555 > 0.535 = 0.0 = 0.0 =
0.50 0.629 > 0.609 = 0.0 = 0.0 =
0.80 0.659 > 0.640 = 0.0 = 0.0 =
1.00 0.578 = 0.588 = 12.0 = 15.8 >

100 0.10 0.618 > 0.605 = 0.0 = 0.0 =
0.50 0.680 > 0.650 = 1.9 = 1.9 =
0.80 0.663 > 0.637 = 4.4 = 4.4 =
1.00 0.592 > 0.565 = 33.2 > 32.6 =

200 0.10 0.605 > 0.593 = 0.0 = 0.0 =
0.50 0.660 > 0.638 = 18.8 = 18.8 =
0.80 0.600 > 0.582 = 65.3 = 64.6 =
1.00 0.524 > 0.502 = 159.7 > 147.3 =

500 0.10 0.619 > 0.594 = 0.0 = 0.0 =
0.50 0.654 > 0.642 = 3.2 > 2.7 =
0.80 0.590 > 0.506 = 284.1 > 164.9 =
1.00 0.596 > 0.450 = 1610.2 > 730.3 =

1000 0.10 0.659 > 0.623 = 0.3 = 0.3 =
0.50 0.641 > 0.563 = 70.8 > 29.5 =
0.80 0.612 > 0.449 = 712.0 > 319.5 =
1.00 0.562 > 0.500 = 3633.1 > 3020.2 =

initial solution and the solutions are rebuilt by CH-R. As with LS, we can see that using CH-R
for rebuilding is essential for good performance. When solving VNMP-O, it can be observed
that the best choice of CH configuration for initialization depends on the instance load. For
low loads, initializing with CH-O is better, for higher loads an initial VNMP solution created
by CH-S leads to the best results. When minimizing Ca, using CH-S for the initial solution is
almost always the best choice.
Table 6.17 shows the influence of the selected step function on the performance of VND. The
results are basically the same as for LS. For better ranks, using best-improvement is essential.
When trying to minimize the additional resource cost, first-improvement can keep up until size
200.
One parameter that is always of interest for VND is the contribution of the different neighbor-
hood structures to the final solution. In Table 6.18 we present the fraction of successful exe-
cutions of a neighborhood structure, i.e., the number of times a neighborhood structure found
an improvement divided by the number of its executions. Note that this data is based on all

81

Table 6.18: Fraction of improvements found per execution of the different neighborhood struc-
tures used for VND

Fraction of Improvements [%]
Size Load N′1 N′2 N′3 N′4 N′5 N′6 N1 N2 N3 N4 N5 N6

20 0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.9 21.6 3.1 9.7 39.3 33.8
0.50 0.0 0.0 0.0 0.0 0.0 0.0 3.8 23.7 0.8 6.1 47.2 52.1
0.80 0.0 0.0 1.6 0.0 0.0 0.0 5.6 16.6 3.0 11.2 49.8 46.1
1.00 2.7 3.3 9.1 0.0 0.0 0.0 0.6 22.8 11.5 9.7 40.5 52.1

30 0.10 0.0 0.0 0.0 0.0 0.0 0.0 7.5 30.9 0.9 18.8 42.6 48.3
0.50 0.0 0.0 0.0 0.0 0.0 0.0 9.0 30.8 0.9 17.8 47.4 61.4
0.80 0.0 0.0 0.0 0.0 0.0 0.0 7.2 24.4 3.6 21.4 49.3 63.7
1.00 1.9 1.6 1.7 0.0 0.0 0.0 6.7 28.2 11.2 21.2 47.0 62.0

50 0.10 0.0 0.0 0.0 0.0 0.0 0.0 8.2 34.3 3.0 27.5 41.7 59.3
0.50 0.0 0.0 0.0 0.0 0.0 0.0 6.2 27.6 1.1 26.2 48.0 74.0
0.80 0.0 0.0 0.0 0.0 0.0 0.0 9.6 32.2 1.4 21.5 46.5 78.5
1.00 32.9 6.3 1.2 0.0 0.0 0.0 12.1 37.4 12.7 22.7 48.7 75.1

100 0.10 0.0 0.0 0.0 0.0 0.0 0.0 9.0 35.0 2.0 35.4 45.4 75.8
0.50 0.0 0.0 0.2 0.0 0.0 0.0 5.6 30.8 1.1 30.2 51.6 85.0
0.80 0.0 0.0 0.4 0.0 0.0 0.0 5.5 32.4 2.0 25.3 52.8 86.0
1.00 1.4 1.0 2.2 0.0 0.0 0.0 8.4 33.9 7.6 24.3 50.7 86.9

200 0.10 0.0 0.0 0.0 0.0 0.0 0.0 13.2 33.7 1.4 53.1 33.6 76.6
0.50 0.0 0.0 0.2 0.0 0.0 0.0 7.9 38.8 1.0 36.4 38.3 91.1
0.80 0.7 0.3 0.8 0.0 0.0 0.1 8.5 38.3 4.0 27.8 39.4 93.9
1.00 8.2 4.2 1.4 0.0 0.0 0.1 8.9 41.1 10.2 23.3 38.4 94.7

500 0.10 0.0 0.0 0.0 0.0 0.0 0.0 15.5 35.3 0.6 59.6 22.9 81.5
0.50 0.1 0.0 0.4 0.0 0.0 0.0 9.4 39.7 0.7 40.3 33.6 94.2
0.80 1.5 1.2 1.6 0.0 0.0 0.0 10.8 43.3 6.8 37.4 45.7 98.0
1.00 9.2 11.2 4.7 0.2 0.0 0.2 11.4 53.3 24.2 39.9 56.4 99.8

1000 0.10 0.1 0.0 0.2 0.0 0.0 0.0 17.6 34.5 0.2 60.7 16.7 85.9
0.50 0.6 0.2 0.8 0.0 0.0 0.0 13.4 45.5 2.6 56.5 56.4 98.2
0.80 6.6 3.8 2.6 0.0 0.0 0.0 17.0 57.2 17.7 62.2 85.6 100.0
1.00 24.8 23.0 6.2 0.4 0.3 1.0 19.6 72.7 40.0 76.7 96.2 100.0

tested VND configurations. Not all neighborhood structures are present in all configurations
and are also executed in different orders so what we show here is the average behaviour of a
neighborhood structure.

The first thing noticeable from Table 6.18 is that the neighborhood structures used with Only-
Overloading (marked with a prime) seldom contribute any improvements. Only for the highest
loads and for the largest instance sizes do they improve solutions with a significant probability.
The neighborhood structures that do not restrict themselves to parts of the substrate network
which are overloaded have a far better success rate. However, there are still neighborhood struc-
tures that perform better than others. Just implementing virtual arcs in another way (N1) does
not find improvements very often. Only for instances of size 1000 is the success rate consis-
tently above 10%. Reimplementing complete virtual networks (N3) achieves this success rate
only for instances of highest load. This is also the neighborhood structure that is most strongly
influenced by the load of an instance. The best performance is consistently achieved by N6

(RemapVnodeTAP). Note especially the 100% success rate for high load instances of size 1000.

82

Table 6.19: Top 10 VND Configurations according to Rrel.

Conf. Step-Function Init. Reb. Rrel Ca # Valid t[s]
C9 BestImprove CH-S CH-R 0.095 = 29.6 > 772 221.4
C1 BestImprove CH-S CH-R 0.099 > 31.9 > 773 226.9
C3 BestImprove CH-S CH-R 0.100 > 35.0 > 773 225.3
C9 BestImprove CH-O CH-R 0.114 > 36.9 > 770 221.4
C10 BestImprove CH-S CH-R 0.117 > 32.8 > 776 232.7
C3 BestImprove CH-O CH-R 0.123 > 39.3 > 766 224.7
C1 BestImprove CH-O CH-R 0.124 > 43.9 > 769 226.0
C9 FirstImprove CH-S CH-R 0.133 > 28.8 > 769 205.0
C10 BestImprove CH-O CH-R 0.133 > 50.8 > 772 230.8
C3 FirstImprove CH-S CH-R 0.138 > 34.0 > 769 211.6

Table 6.20: Top 10 VND Configurations according to Ca.

Conf. Step-Function Init. Reb. Rrel Ca # Valid t[s]
C1 BestImprove CH-S CH-S 0.620 > 15.6 = 773 271.9
C5 BestImprove CH-S CH-S 0.618 > 22.2 > 769 264.4
C10 BestImprove CH-S CH-S 0.628 > 23.2 = 774 269.5
C9 BestImprove CH-S CH-S 0.616 > 23.4 > 768 268.5
C3 BestImprove CH-S CH-S 0.620 > 24.6 > 768 271.8
C1 BestImprove CH-S CH-O 0.403 > 28.3 > 773 275.3
C9 FirstImprove CH-S CH-R 0.133 > 28.8 > 769 205.0
C5 BestImprove CH-S CH-R 0.408 > 29.1 > 772 216.2
C9 BestImprove CH-S CH-R 0.095 = 29.6 > 772 221.4
C1 BestImprove CH-S CH-R 0.099 > 31.9 > 773 226.9

First of all, this is based on very few executions compared to the other neighborhood structures
(168 and 17, compared to 2000–5000). Secondly, that means that the VND was terminated due
to run-time and not because it finished. When VND is finished, every neighborhood structure
has failed to improve the solution at least once. We do not present an evaluation of the time
required to search each neighborhood structure because the individual times were so small that
no significant conclusion can be drawn from them.
Table 6.19 shows the 10 best VND configurations based on Rrel. We can see that in comparison
to LS, the required run-time has doubled. There is a surprising diversity of employed neighbor-
hood structure configurations, configurations C1, C3, C9, and C10 can be observed. Far more
important seems to be the use of best-improvement and CH-R as rebuilding CH. The best VND
configuration for solving VNMP-O uses C9 with best improvement, creates its initial solution
with CH-S and uses CH-R for rebuilding the solution. We will denote this configuration by
VND-O.

83

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.1 1 10 100

(A)

(B) (C)
(D)

(E) (F)

(G) (H)

(I)
(J) (K)

R
re

l

Run-time [s]

CH
LS

VND
Pareto-Optimal

Figure 6.1: Pareto-front of the tested heuristics regarding average Rrel and run-time over all
instances.

The 10 best VND configurations with respect to Ca are shown in Table 6.20. Even more neigh-
borhood structure configurations are present, C5 now also occurs. Rather surprising is that for
the very best performance, CH-S has to be used for rebuilding instead of CH-R. There is even
one VND configuration that uses CH-O for rebuilding before configurations using CH-R appear.
It can be observed that for VND, concentrating on low average Ca costs a lot of performance
with respect to the relative rank. The best VND configuration achieves a relative rank of 0.62.
For VND, the top configuration for low Rrel (VND-O) also appears in the top 10 configurations
for low Ca. This allows us to directly observe the cost (with respect to Rrel) of minimizing Ca.
VND-O appears at the ninth position. Just by using CH-S for rebuilding instead of CH-R, the
fourth position can be reached. This reduces the average Ca from 29 to 23, but increases theRrel
from 0.1 to 0.6.
The best configuration for solving VNMP-S uses C1 with best-improvement and CH-S for both
building the initial solution and rebuilding it. We will denote this configuration by VND-O. As
with Local Search, the best configuration with respect to low Ca is not the same as the best
configuration with respect to the number of instances solved. The best configuration in this
regard uses C10 with best improvement, creates the initial solution with CH-O and rebuilds with
CH-S. It is able to find a valid solution to 778 VNMP instances.

6.5.4 Comparing CH, LS and VND

Until now, we have considered the different CH, LS and VND algorithms separately. We have
also mostly neglected a very important property of the presented algorithms: their required run-
time. In this section, we will analyze the trade-off between the performance of the algorithms
and the required run-time. We assume knowledge of Pareto-optimality (c.f. Section 2.2.3).

84

Figure 6.1 shows the trade-off between low Rrel and low run-time for all tested heuristics over
all instances. Note that most of the CH algorithms have been cut off, since they produce far
worse results than the LS and VND configurations.

The best non-dominated construction heuristics are marked by label (A). Since we are trying
to solve VNMP-O, we would expect that CH-O is present. However, this is not the case. The
CH configurations at (A) are just related to CH-O in the sense that they too use DLHeavyVN
as SVN strategy, MostFree as IVN strategy and emphasize the implementation of virtual arcs.
The main difference to CH-O is that they use Spread-1 (faster but slightly worse) or Spread-2
as IVA strategy. CH-O itself does not occur in this graph (as Pareto-optimal CH configuration),
it is dominated by the fastest LS configuration. This shows that the “best” configuration of an
algorithm is not necessarily useful.

Two clusters of LS configurations are marked by (B). Since they perform on par with CHs in
term of required run-time (and Rrel), it is not surprising that they use first-improvement and On-
lyOverloading. They employ the RemapVnode neighborhood structure. The difference between
the two clusters is the initialization CH, using CH-S is faster but CH-O gives better results.
The three configurations at (C) use the ClearSarc, ClearSnode and RemapSlice neighborhood
structures, still with first-improvement, OnlyOverloading and CH-O for initialization.

Marked with (D) is the first configuration using a complete neighborhood structure with Over-
loadingFirst. The employed neighborhood structure is still RemapSlice, which is not surprising
because it has nearly the same size whether using OnlyOverloading or OverloadingFirst. There-
fore, the increase in run-time is not large. At (E), a huge improvement in performance is evident.
It is caused by switching from CH-O to CH-R as rebuilding CH. From here on out, CH-R is ex-
clusively used as rebuilding strategy.

The configurations at (E) also mark the begin of a clearly visible pattern. (E) and (F) mark a
group of three clusters, (G) and (H) mark a group of three clusters, and (I) and (J) (the dominated
LS configurations) mark a group of three clusters. The three cluster groups represent different
neighborhood structures, at (E) RemapSlice is used, at (G) RemapVnode and ClearSnode at (I).
Analyzing one cluster group further reveals that the changes in performance levels are caused
by going from CH-S to CH-O as initialization heuristic and then by using best-improvement
instead of first-improvement. The differences at the lowest level are caused by using Over-
loadingFirst instead of None as neighborhood prioritization strategy. Putting this together, that
means that for example at (G) and (H), the RemapVnode neighborhood structure is used. Start-
ing from the fastest (and worst with respect to Rrel) configuration of LS, we know that it uses
OverloadingFirst and CH-S for initialization. The next slower configuration switches to None.
The following increase in performance is caused by using CH-O for initialization (and going
back to OverloadingFirst). The last configuration at (G) again switches to None. (H) marks
the same configuration, but now using best-improvement. Since this pattern repeats itself for
three different neighborhood structures, we can state with some certainty the following: Using
best-improvement instead of first-improvement has a significant performance penalty for a small
gain in Rrel. Initial solutions created by CH-S let LS terminate earlier but with a slightly worse
solution than when using CH-O. Using OverloadingFirst gives an edge with respect to required
run-time while being Rrel neutral, even when using first-improvement. Note that LS-O (like

85

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0.1 1 10 100

(A)

(B)

(C)

(D)
(E) (F)

(G)

(H)
F

ra
c
ti
o

n
 o

f
s
o

lv
e

d
 i
n

s
ta

n
c
e

s

Run-time [s]

CH
LS

VND
Pareto-Optimal

Figure 6.2: Pareto-front of the tested heuristics regarding the fraction of solved instances and
run-time over all instances.

CH-O earlier) is dominated by VND configurations at (J), which achieve better results while
requiring the same amount of time.
The VND configurations at (J) use C12, CH-S for initialization and CH-R for rebuilding. The
difference between the two Pareto-optimal configurations is once again the employed step func-
tion, with first-improvement being faster but producing slightly worse results. The cluster of
VND configurations at (K) uses C9. The best configuration is VND-O.
In Figure 6.2 we present the same trade-off analysis, but now with respect to the number of
solved instances. Again, most of the tested CH configurations have been cut off to focus on the
interesting configurations. At (A), we see the fastest non-dominated CH configurations, which
are relatives of CH-O. The difference lies just in the selected SVA strategy. (B) marks (relatives
of) CH-S.
At (C), we see the fastest LS configurations. As was the case for minimizing Rrel, they use
RemapSlice, first-improvement, OnlyOverloading, and initialize with CH-S. The better config-
uration (in terms of solved instances) uses CH-R instead of CH-O for rebuilding. At (D), we can
observe a phenomenon that did not occur previously. It marks VND configurations which are
fast enough to beat LS configurations by a large margin and also achieve excellent results. Fast
VND configurations could also be seen in the previous figure, but they were far worse than LS
in terms of performance. The neighborhood structure configuration used at (D) is C8. This is
remarkable, since no analysis we have carried out previously indicated thatC8 is useful. Its main
strength is speed, which is achieved by using three neighborhood structures in OnlyOverloading
configurations. The difference in the two marked configurations at (D) is again the step-function.
After the incursion of VND, (E) and (F) mark the only complete (i.e., not using OnlyOverload-
ing) neighborhood structures able to compete in terms of solved instances: RemapVnode. At
(E) first-improvement is used, at (F) best-improvement.

86

At (G), VND is used in configuration C12, which derives its advantage in execution speed from
the fact that it does not utilize the RemapVnodeTAP neighborhood structure. (H) marks a mix
of different configurations, all of which use RemapVnodeTAP, also containing VND-S. The
slightly faster configurations use first-improvement, the slower ones best-improvement.

6.6 Conclusion & Future Work

In this chapter, we compared 512 CH, 216 LS, and 144 VND algorithms. We could show that for
the VNMP, each algorithm class has its application area: CHs for finding solutions fast, VND
for finding the best solutions and LS covering the range in-between, depending on the used
neighborhood structures. The flexibility of LS was especially surprising, since it was able to
outperform CH configurations on one end of the spectrum and VND configurations on the other.
For CHs, the most important strategy is the target choice for virtual nodes, so this is a clear area
of interest for future improvements. For LS we could see that best-improvement works slightly
better than first-improvement, but at a significant run-time cost. Reducing the neighborhood
size also reduced the performance, but brought the execution speed into CH territory. VND
benefited from the reduced neighborhoods as well when searching for valid solutions. For LS,
the initialization strategy has a pronounced influence on the result. The discussed VND variants
produced the best results, but at a high run-time cost.
We could also show that for all of the compared algorithms, every parameter has an influence
on the final outcome and in addition, synergy between settings was very important to produce
the best results. Quite often it was the case that a combination of settings that produce the best
results on average does not result in a configuration achieving the very best performance.
A major direction for promising future work is parameter tuning. For CH, we selected three out
of 512 configurations and based all further results upon them. It might be the case that other con-
figurations produce even better results. An indication of this is that the handcrafted CH-R works
far better for rebuilding solutions than CH-O or CH-S. Searching the RemapVnodeTAP neigh-
borhood structure more efficiently might also be a promising area for future research, leading to
Very Large Neighborhood Search [2].

87

CHAPTER 7
Memetic Algorithm

7.1 Introduction

This chapter presents a Memetic Algorithm (MA) for solving the VNMP. For the basics of
Genetic Algorithms (GAs), and its extension the Memetic Algorithm, see Section 2.2.9. During
the following discussions, our main focus will be to answer the following questions in the context
of the VNMP:

• What are suitable solution representations and crossover operators, and what is their in-
fluence?

• Does the crossover operation have a beneficial influence on the final outcome, or is mu-
tation as the only variation operator enough for good performance? In other words, does
the application of a full Genetic Algorithm bring any benefit?

• Is the time for local improvement well spent, i.e., does it make sense to use a Memetic
Algorithm instead of a Genetic Algorithm?

The main motivation for developing a Memetic Algorithm for solving the VNMP is that it is
a population based algorithm. In the end, we get a collection of very good solutions instead
of a single one. When we simply want to implement the cheapest solution, it does not matter
that we have multiple high quality solutions. In practice however, there are often factors that
require consideration, but are not included in the objective. By having a collection of good
solutions available, we can select according to additional external criterions. By applying a
local improvement technique, we hope to speed up the process of finding good solutions.
In Section 7.2, we will discuss the relevant background with respect to Genetic Algorithms with
focus on different solution representations applicable to the VNMP. The proposed Memetic
Algorithm is outlined in Section 7.3. For the evaluation of the algorithms see Section 7.4. We
conclude in Section 7.5. The algorithm presented in this chapter has been published in [89].

89

Algorithm 7.1: Memetic Algorithm for the VNMP
Input : VNMP instance I
Output: Solution S for I

1 Population P;
2 InitializePopulation(P,I);
3 while !terminate() do
4 Solution p1=select(P);
5 Solution p2=select(P);
6 Solution offspring=crossover(p1,p2);
7 mutate(offspring);
8 copyArcs(offspring,p1,p2);
9 localImprovement(offspring);

10 insert(P,offspring);
11 end
12 return best(P);

7.2 Background and Related Work

The problem representation plays a crucial role for the performance of a Genetic Algorithm. As
an example, its influence in the context of the Travelling Salesman Problem is discussed in [113].
In particular, there is a special representation designed for problems where entities have to be
grouped together (grouping problems) [49], like in the case of the VNMP virtual nodes that are
mapped to the same substrate node (see the following section for details). We will utilize this
representation to define a GA. Successful applications of this representation include the access
node location problem [3] and the Multiple Travelling Salesman Problem [47]. However, it is
not clear that this representation is always advantageous when applied to grouping problems. For
instance, [51] reports a successful application of a GA to the generalized assignment problem,
without using this representation. Also, its robustness is questioned in [20]. Therefore, we set to
goal of analyzing the performance implications of different representations for the VNMP.
For an overview on Memetic Algorithms, see Section 2.2.9.

7.3 A Memetic Algorithm for the VNMP

Algorithm 7.1 shows the Memetic Algorithm for the VNMP in pseudocode, which we will de-
scribe in this section. In Chapter 6 we have shown that the most important step while construct-
ing a solution to the VNMP is the choice of the location of the virtual nodes in the substrate.
Therefore, we designed the Genetic Algorithm to work primarily on finding good mapping tar-
gets for virtual nodes and use other algorithms to create a complete solution, i.e., to implement
the virtual arcs. The main task of the GA is thus to assign virtual nodes to substrate nodes. But
do we actually care where a single virtual node is mapped? It matters if it is the first node using
a particular substrate node, because then the associated usage cost has to be paid. Otherwise,

90

D
1

P1: C
2

D
3

D
4

B
5

C
6

A
7

B
8

A

9
a)

BP2: A C E A D D E B

D
1

UXD: C
2

D
3

E
4

A
5

D
6

A
7

B
8

B
9

{5, 7}UXD’: {8,9} {2} {1,3,6} {4}

{7, 9}P1’:
A

{5, 8}
B

{2, 6}
C

{1, 3, 4}
D

{}
E

b)

{2, 5}P2’: {1, 9} {3} {6, 7} {4, 8}

{7}
A

UXA: {1, 9}
B

{3}
C

{}
D

{4, 8}
E

{7}UXB: {9} {} {1, 3} {4, 8}

Figure 7.1: Comparison of different implementations of uniform crossover for the direct (a) and
grouping (b) representations.

the concrete mapping decision does not directly influence the solution cost. The one thing that
matters though is that there are enough free resources, and this is determined to a large extent by
the other virtual nodes also mapped to the same substrate node. Therefore, it is important to find
good groups of virtual nodes that can be mapped to the same substrate node, without requiring
more than the available amount of resources. This gives raise to two different ways of solving
the mapping problem: finding a substrate node for every virtual node or finding a good group of
virtual nodes for every substrate node. We study the two corresponding solution representations.
The first representation is a simple vector that specifies the mapping target for each virtual node.
We will call this representation the direct representation. The second representation focuses on
the grouping aspect and represents a solution as a vector of sets, which specify the virtual nodes
mapped to each substrate node. We will call this representation the grouping representation. Fig-
ure 7.1 shows examples of the direct and grouping representations of the same VNMP solution.
P1 and P2 are solutions in direct representation, P1’ and P2’ are the grouping representations of
the very same solutions. For instance, P1 shows that the virtual nodes 1, 3 and 4 are mapped to
substrate node D. Correspondingly, P1’ contains the set {1, 3, 4} for substrate node D.
The employed representation influences how the crossover operator works. As its basic scheme,
we chose uniform crossover. The simpler variants of one-point and two-point crossover were
rejected based on preliminary results, which showed their inferiority.
For the direct representation, the uniform crossover works in a straight forward manner. For
every virtual node the mapping target is randomly selected from one of the parents. Figure 7.1
shows a possible result of the uniform crossover of P1 and P2 in direct representation. We will
call this crossover operator UXD. The marked components in the figure are the ones selected to
be carried over to the offspring. UXD’ shows the translation of UXD to the grouping represen-
tation for reference later on.
The uniform crossover for the grouping representation utilizes the same principle. For every
substrate node, the virtual nodes mapped to it are chosen randomly from one of the parents. We
will call the set of virtual nodes mapped to a substrate node a virtual node group from here on
out. Due to the solution representation based on sets, two effects can occur that are not possible
with the direct representation. In each solution, a virtual node is part of exactly one virtual node
group. When none of those groups are selected to be present in the offspring, a virtual node

91

remains unmapped after the crossover operation. If both groups are selected, then the virtual
node would be mapped twice, which is not allowed. The first problem can be remedied by just
utilizing the mapping decision of one of the parents for all unmapped virtual nodes after the
crossover procedure has finished. To solve the second problem, we override the old mapping
with a newer mapping. This means that the sequence in which the groups are copied matters,
since the later copy may disturb an earlier one. We will compare two different copying strategies:
copying all groups of one parent, then all groups of the other (UXA), and copying the groups
in order of the substrate node labels (UXB). Note that our decision to override the old mapping
was arbitrary. Equally valid would be to keep the first mapping decision for a virtual node. In
the end, this does not make a difference as all we will discuss in the following would still apply.
Figure 7.1 shows the result of applying these crossover operators using parents P1’ and P2’. For
UXA, we see for example that only node 7 is mapped to substrate node A, instead of 7 and
9, which are mapped for P1’. This is because after all groups for P1’ have been copied (for
substrate nodes A and D), those of P2’ are transferred. In particular, the group for substrate node
B, containing virtual nodes 1 and 9. Node 9 therefore cannot also be mapped to substrate node
A and is removed from there; only virtual node 7 remains.
For UXB, the substrate node groups are copied according to the order of substrate nodes, first
the node group from P1’ for substrate node A, the node group of P2’ for substrate node B, and
so on. We can observe the same destruction of groups as for the UXA crossover. For example,
after UXB has finished, no virtual node is mapped to substrate node C, even though the group
containing virtual node 3 has been copied from P2’. This is because in the following step, the
group for D was copied from P1’, which also contains virtual node 3, so it is removed from C.
Note that for both crossover operators, some virtual nodes remain unmapped.
The main idea of the crossover operator in general is to combine important solution properties
from the parents to generate superior offspring, so we want as much information from both
parents to be present in the offspring as possible. In our case, that means keeping the virtual
node groups intact. The marked regions in the crossover results of UXD’, UXA and UXB show
the groups that have survived without node removal. We can see that for UXA three groups have
survived, for UXB one group has survived, and no group survived UXD. The bad performance of
UXD with respect to groupings was the reason why the grouping representation was introduced
in the first place [49]. However, there is also a big difference between UXA and UXB. With
UXA, at least all virtual node groups of the second parent, which are selected for crossover will
survive (which are half of the groups in the expected case). With UXB, only the last group
that is copied is guaranteed to survive. Therefore, we use UXA when comparing the different
representation possibilities for the VNMP.
After the crossover operation we apply the mutation operator, which we will call ClearSnodes
mutation, with a probability of pm. The ClearSnodes mutation clears a fraction of substrate
nodes by mapping virtual nodes to substrate nodes that are not selected to be cleared, if it is
allowed by the mapping constraints. In Chapter 6, we introduced a neighborhood structure based
on the same principle. It was in fact the inspiration for this mutation operator. This fraction of
cleared nodes is chosen uniformly at random from [0, r], but at least one node is cleared. In
this work we used pm = 0.2 and r = 0.2 based on preliminary results, which also showed that
mutation is required for good performance.

92

In addition, we evaluated other, more standard approaches for mutation, like moving a virtual
node to some other substrate node or swapping two virtual nodes (which are mapped to different
substrate nodes). The ClearSnodes mutation was shown to be clearly superior.
Until now, we have neglected the implementation of virtual arcs. It is also a part of the solution
representation, even though the crossover and mutation operators do not work on them directly.
Since the arc implementation may represent a significant amount of work done by the local
improvement, and the basic idea of crossover is to transfer as much information as possible from
the parents to the offspring, we copy the arc implementation of the parents once the mapping
for the virtual node is fixed. For every virtual arc f , we check the locations of s(f) and t(f) in
the substrate graph for both parents and the offspring. If one parent utilizes the same mapping
locations as the offspring, we copy its arc implementation. If both parents are compatible, the
arc implementation is chosen randomly from one of the parents. If the mapping is different
from both parents, the arc remains unimplemented. Unimplemented arcs will be assigned an
implementation during the local improvement phase.
Since we want to check whether the time spent for local improvement actually improves the
performance of the algorithm, we either use a Variable Neighborhood Descent [74] to perform
local improvement, or we skip local improvement and apply a Construction Heuristic instead.
The only reason for applying the Construction Heuristic is to implement all virtual arcs that
have not been implemented yet to guarantee that after this step a complete solution has been
generated. We selected the best Construction Heuristic for solving the VNMP-O presented in
Chapter 6, CH-O, which means that virtual arc implementations are paths that cause the least
increase in the substrate usage cost Cu without increasing the additional resource cost Ca. In
this chapter, we will call this method CH.
As for the Variable Neighborhood Descent, we chose C12 as defined in Section 6.4. This config-
uration utilizes the neighborhood structures RemapVnode, ClearSarc, and ClearSnode (in this
order). First-improvement is used to search the neighborhoods. CH-R is employed for solution
reconstruction. This configuration was chosen based on the results presented in Section 6.5.4. It
achieves the best possible results without using the RemapVnodeTAP neighborhood structure,
which reduces the time requirements. We will denote this configuration by VND. We are also
going to compare the Memetic Algorithm to VND-O, the best VND configuration for VNMP-O.
The local improvement method is executed without time-limit.
The newly created and improved offspring is immediately inserted back into the population and
replaces the worst solution present (steady-state GA), unless the offspring is already present in
the population. Two individuals are considered to be equal, if they specify the same mapping. At
this point, one GA iteration is complete, and the next one begins by utilizing a binary tournament
to select the parents for the next crossover operation. Until now, we have neglected the problem
of population initialization for reasons that will become obvious shortly. The main aim when
initializing a population is the creation of a diverse set of good solutions. For the VNMP, there
are different possibilities. One could simply randomly map virtual nodes to one of the allowed
substrate nodes. Mapping virtual nodes in a way that tries to minimize the increase in Cu is
another. Preliminary results showed that these approaches, while creating a very diverse set of
initial solutions, do not work well, because VND requires a lot of time to improve the offspring
during the initial iterations. Therefore, we chose a different approach: we create one good

93

solution by using VND, and then apply the mutation operator with r = 0.2 to generate all other
initial solutions. This has the additional benefit that the MA will have a good solution from the
start. A population size of 10 was used.

7.4 Results

As in the previous chapter, we set pCPU = 1 and pBW = 5 to reflect the fact that it is easier
to increase the CPU power of a router than to increase the bandwidth of a network connection.
With these costs, even if we are unable to find a valid solution to a VNMP instance, we are able
to derive a cost effective way to be able to host the current virtual network load.
To evaluate the performance of the proposed Memetic Algorithm, we used the VNMP instance
set as presented in Chapter 5 in the same configuration as in Chapter 6 to allow meaningful
comparisons. That means we tested all instances of the instance set with loads 0.1, 0.5, 0.8
and 1, which creates a total of 840 test instances. A run-time limit of 200 seconds was applied
for instance sizes up to 100 nodes, 500 seconds were used for the larger instances. These run-
time limits were chosen to reflect practical usage scenarios. Virtual networks are meant to be
dynamic. Even if we assume that they only change on an hourly basis, spending 500 seconds to
find a good solution means nearly 14% of the time the solution is going to be useful has already
elapsed.
We compare four different MA configurations: direct representation with CH as local improve-
ment (D-CH), with VND as local improvement (D-VND), grouping representation using UXA
and CH as local improvement (G-CH) and with VND as local improvement (G-VND). To fully
compare the influence of the employed crossover operator, we also test the grouping repre-
sentation with UXB and CH as local improvement (G-CH-B) and VND as local improvement
(G-VND-B). Furthermore, we investigate the G-VND variant with disabled crossover (G-VND-
N), i.e., one individual is chosen from the population, mutated, improved and then reinserted.
Preliminary experiments showed that the performance of G-VND-N cannot be improved by in-
creasing (or decreasing) r. Finally, to be able to analyze the improvement caused by the GA
around VND, we also present the results for VND alone and in addition compare to VND-O. In
this chapter, our main focus will be solving VNMP-O, so we are mainly concerned with the aver-
age relative rank the different algorithms achieve. For reference, we also show the performance
of the algorithms with respect to VNMP-S, both in terms of solved instances (i.e., the solution
found to an instance has an additional resource cost of zero) and in terms of average Ca.
Table 7.1 shows the average performance of the tested algorithms for different instance sizes. It
can be seen that D-VND and G-VND achieve the best results for all instances up to and including
size 200. For sizes 500 and 1000 VND-O performs best. However, VND-O also takes more time
(a maximum of 1000 seconds was allowed in Chapter 6) than the 500 seconds allowed for all
GA variants for these sizes. The GA variants based on CH achieve the best results at sizes 100
and 200. With smaller instances, local improvement with VND is better than a higher number of
iterations made possible by not spending time on local improvement. However, starting with size
100, performing more iterations gets more important and CH outperforms VND. Even though
the configuration of VND was selected for low run-time requirements, the number of iterations
for larger instances is very low. For the largest instances, the final result is basically the one

94

Table 7.1: Average relative rank Rrel and its relation to the best result, average number of iter-
ations (Its.) for GA based algorithms or average run-time for the other algorithms, fraction of
solved instances (Solv.) in percent and average Ca for all compared algorithms per instance size.

Size D-CH G-CH D-VND G-VND G-CH-B G-VND-B G-VND-N VND VND-O
Rrel 20 0.352 > 0.367 > 0.206 = 0.196 = 0.366 > 0.231 > 0.205 = 0.914 > 0.761 >

30 0.442 > 0.452 > 0.232 = 0.231 = 0.445 > 0.230 = 0.247 = 0.922 > 0.727 >
50 0.475 > 0.475 > 0.249 = 0.259 = 0.471 > 0.288 > 0.378 > 0.942 > 0.746 >

100 0.409 = 0.408 = 0.388 = 0.411 = 0.419 = 0.364 = 0.546 > 0.969 > 0.614 >
200 0.393 = 0.373 = 0.425 = 0.410 = 0.389 = 0.461 > 0.633 > 0.941 > 0.379 =
500 0.438 > 0.444 > 0.609 > 0.645 > 0.402 > 0.628 > 0.757 > 0.992 > 0.143 =

1000 0.525 > 0.547 > 0.715 > 0.729 > 0.536 > 0.715 > 0.788 > 0.664 > 0.240 =

GA: Its. 20 393268 357568 8185 8169 359589 8141 8265 0.2 0.4
Other: t[s] 30 259702 241245 3899 3854 238717 3869 3912 0.7 1.3

50 163663 151068 1663 1671 151207 1657 1691 2.1 4.2
100 63276 59591 314 325 59571 315 328 16.0 29.7
200 109125 104063 333 352 103817 340 355 40.2 119.7
500 43412 42076 94 95 42057 93 99 126.6 605.1

1000 13631 13348 23 25 13407 24 27 397.1 828.1
Solv. [%] 20 97.5 97.5 100.0 100.0 97.5 100.0 100.0 96.7 97.5

30 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
50 99.2 99.2 100.0 100.0 99.2 100.0 100.0 99.2 98.3

100 95.0 95.0 100.0 100.0 95.0 99.2 99.2 95.0 97.5
200 94.2 93.3 95.8 96.7 94.2 96.7 97.5 90.0 98.3
500 77.5 78.3 76.7 79.2 78.3 77.5 76.7 73.3 90.8

1000 60.0 59.2 58.3 57.5 59.2 61.7 57.5 57.5 61.7
Ca 20 9.9 8.4 0.0 0.0 7.4 0.0 0.0 13.1 4.5

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 4.9 4.9 0.0 0.0 4.9 0.0 0.0 4.9 2.1

100 5.3 6.3 0.0 0.0 5.3 2.1 0.6 6.3 3.3
200 5.5 4.1 3.0 3.4 5.6 7.6 4.4 19.0 1.0
500 62.4 73.6 77.3 76.6 70.9 64.4 65.9 97.6 13.9

1000 215.4 215.5 215.9 214.7 216.2 214.1 215.9 184.1 198.9

created during population initialization. Surprisingly, UXB achieves the same results as the
algorithms using UXA. G-VND has a slight advantage compared to G-VND-B, but no clear
pattern is visible. Disabling crossover (G-VND-N) however has a pronounced negative effect on
the results for medium sized instances. Generally, no significant differences could be observed
between direct and grouping representations. The influence of the type of local improvement
is far more pronounced. The results for VND show that the combination with the GA has a
significant positive effect on the achieved results.

Table 7.2 shows the average performance of the tested algorithms for different loads. For low
loads, every tested GA achieves basically the same results, except G-VND-N, which performs
far worse due to the disabled crossover operator. For medium load (0.5), a direct representation
and CH as local improvement are essential. Interestingly, the grouping representation is only
able to achieve the same level of performance by using UXB. It seems as if the additional dis-
ruption caused by the crossover operation is the key for good performance for this load case.
Higher loads require a MA for the best performance. For load 0.8 the direct representation is

95

Table 7.2: Average relative rank Rrel and its relation to the best result, average number of iter-
ations (Its.) for GA based algorithms or average run-time for the other algorithms, fraction of
solved instances (Solv.) in percent and average Ca for all compared algorithms per load.

Load D-CH G-CH D-VND G-VND G-CH-B G-VND-B G-VND-N VND VND-O
Rrel 0.10 0.302 = 0.297 = 0.317 = 0.319 = 0.289 = 0.312 = 0.411 > 0.893 > 0.527 >

0.50 0.355 = 0.382 > 0.449 > 0.454 > 0.358 = 0.432 > 0.561 > 0.981 > 0.479 >
0.80 0.492 > 0.492 > 0.425 = 0.473 > 0.500 > 0.475 > 0.559 > 0.912 > 0.495 >
1.00 0.584 > 0.582 > 0.423 = 0.401 = 0.582 > 0.448 > 0.499 > 0.839 > 0.562 >

GA: Its. 0.10 430129 401525 6354 6321 401711 6323 6373 5.6 41.7
Other: t[s] 0.50 82299 75242 1016 1020 74971 1010 1027 50.2 218.3

0.80 48183 43667 537 547 43522 533 566 111.2 316.2
1.00 37147 33257 385 393 33147 385 420 166.0 331.6

Solv. [%] 0.10 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.50 99.0 98.6 97.1 97.6 98.6 99.0 97.1 95.7 99.0
0.80 88.6 88.6 88.6 88.1 88.6 90.0 88.1 85.7 91.9
1.00 68.6 68.6 74.8 76.2 69.0 73.8 75.2 68.1 77.1

Ca 0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.50 0.1 0.1 0.6 0.4 0.1 0.2 0.5 0.7 0.1
0.80 19.0 18.3 21.4 26.5 21.1 23.1 19.4 30.0 11.4
1.00 154.3 160.3 147.3 141.6 156.1 141.5 144.0 155.0 116.3

significantly better, for load 1 the grouping representation has an advantage, but is not signifi-
cantly better. Note that disabling the crossover operation (G-VND-N) results in bad solutions
for every tested load case. Also, VND-O is outperformed by the MAs for every load case. Keep
in mind that for the highest load, VND-O requires the same amount of time as all the tested
GA variants, which have an average run-time of 328.5 seconds due to the set run-time limits.
However, VND-O is able to solve more instances of the highest load than all other algorithms.

7.5 Conclusion and Future Work

In this chapter we have introduced a Memetic Algorithm for the VNMP. Based on the presented
results, the MA configuration using the direct representation and VND as local improvement (D-
VND) finds the best solutions. We will denote this configuration by MA-O. We could show that
MA-O outperforms VND-O over a wide range of instance sizes and load cases. With reference
to the main questions we set out to answer in this chapter, we could not observe any significant
difference between the two tested representations if performance for specific instance sizes is
relevant. For high loads, the grouping representation might offer an advantage. As for the differ-
ence between UXA and UXB, we have shown that UXB can cause performance degradations,
but also seen one case where it is beneficial. We believe that analyzing the difference between
those crossover variants warrants further research. Whether or not the time for local improve-
ment is well spent depends on the instance size and load. For small sizes, local improvement in-
creases performance, while for large instances executing more GA iterations is more important.
For high loads, using local improvement is essential. We have shown that disabling crossover
decreases performance in all cases. Chapter 13 offers a more in-depth comparison of MA-O
with other algorithms.

96

We have already stated in Section 3.8 that looking into more dynamic variants of the VNMP
(with changing configurations of virtual networks) is a promising area for future study. The
MA presented in this chapter would be a prime candidate for solving the dynamic variant of
VNMP, since it is population based. The hope here is that, when the configuration of virtual
networks changes, some individuals within the population can be easily adapted to the new
virtual network load. If this proves to be true, some more elaborate population management
methods could be devised. For instance, multiple populations may be used: one population for
finding good solutions for the current problem, another one for trying to find a solution that
keeps some fraction of resources available at each substrate node or arc, and a third population
that tries to minimize Cu, without regard to Ca (within reason). The aim of the first population
is clear: finding a good solution that is immediately useful. The second population’s task is
to find good solutions, which easily accommodate additional virtual networks in case some are
added to the current instance. The third population tries to find solutions which are similarly
flexible in the other direction. The solutions may not be valid at the moment, but once some
virtual network is removed, they might lead to valid solutions of high quality. This is of course
only a rough idea, and a lot of details such as possible interactions between populations need to
be addressed. A multi-objective GA [41] might be used instead of separate populations. For an
overview on the design of Genetic Algorithms for dynamic problems, see [19].

97

CHAPTER 8
Greedy Randomized Adaptive Search

Procedure and Variable Neighborhood
Search

8.1 Introduction

In this chapter, we present a Greedy Randomized Adaptive Search Procedure (GRASP) and
a Variable Neighborhood Search (VNS) algorithm for solving the VNMP. Instead of simple
Local Search, both algorithms make use of a Variable Neighborhood Descent algorithm with
ruin-and-recreate neighborhoods [154], which makes them belong to the class of Hybrid Meta-
heuristics [16, 143, 165]. We consider GRASP and VNS to be promising methods for solving
the VNMP, since they extend the already developed algorithms from Chapter 6, which might
lead to performance improvements. Indeed, we will show that the VNS approach significantly
outperforms the algorithms presented in the previous chapters.
The rest of this chapter is structured as follows: Section 8.2 presents the GRASP algorithm,
Section 8.3 the VNS approach. We refer to Sections 2.2.7 and 2.2.8 for background on VNS
and GRASP respectively. The results of the experimental evaluation of the proposed algorithms
and their comparison to other algorithms presented in this work can be found in Section 8.4.
We conclude in Section 8.5. The algorithms and results presented in this chapter have been
published in [90].

8.2 GRASP

The main idea of GRASP is to repeatedly construct solutions to a problem in a greedy, but
randomized, fashion and then to improve it by a local improvement method. We refer to Sec-
tion 2.2.8 for a general introduction to GRASP.

99

A key component for a well working GRASP approach is the randomized greedy construction
heuristic. Since we will concentrate on solving VNMP-O in this chapter, we use CH-O (see Sec-
tion 6.5.1) as basis for randomization. In a nutshell, CH-O works as follows: As long as virtual
arcs are implementable (source and target node have been mapped), the virtual arc f with the
smallest fraction of df to shortest possible delay between m(s(f)) to m(t(f)) is implemented
by the path with the least increase in Cu without increasing Ca. If no such virtual arc exists, the
unmapped node with the highest total CPU requirement (CPU requirement of the virtual node
and bandwidth of connected virtual arcs) is selected from the virtual network that has the small-
est sum of total delay requirements. It is mapped to the substrate node with the highest amount
of free CPU capacity.
We know from our experiments with Construction Heuristics (see Section 6.5.1), that the sub-
strate node selection strategy is most influential for the overall performance of the construction
heuristic. Therefore, we concentrate on randomizing this strategy and keep all other parts of the
randomized construction heuristic deterministic. We introduce a parameter α ∈ [0, 1] that con-
trols the level of randomization. When selecting a suitable substrate node for a virtual node, we
collect a list of possible targets sorted by the available CPU and bandwidth, the candidate list.
Let fCPU

Best denote the free CPU capacity and fBW
Best the free bandwidth capacity of the node that

would have been selected by the deterministic strategy. We build the restricted candidate list by
selecting all nodes i with fCPU

i ≥ αfCPU
Best ∧fBW

i ≥ αfBW
Best. If fCPU

Best or fBW
Best is negative (i.e., more

resources are used than are actually available), α is replaced by 2−α in the relevant acceptance
criterion. The mapping target is chosen uniformly at random from the restricted candidate list.
After a randomized greedy solution is generated, it is locally improved. For comparison pur-
poses, we choose the same method that MA-O presented in the previous chapter uses. It is
Variable Neighborhood Descent using configuration C12 as defined in Section 6.4. This con-
figuration utilizes the neighborhood structures RemapVnode, ClearSarc and ClearSnode (in this
order). First-improvement is used to search the neighborhoods. CH-R is employed for solution
reconstruction. This configuration was chosen because it achieves very good results for a rather
small amount of required run-time. We will call this configuration simply VND and we use it
without time-limit to improve solutions generated by the randomized construction heuristic up
to local optimality. If the found solution after the improvement phase is better than the best
solution found so far, we keep it. Then we repeat the randomized construction and improvement
steps until the time-limit is reached. The best found solution is the result of GRASP.

8.3 VNS

VNS is an improvement over VND that focuses on diversification. Where deterministic VND
would be finished, VNS adds a probabilistic shaking phase. That means that a set of neighbor-
hood structures, which are different from the ones employed by the VND and typically larger,
are used to change the currently best known solution to escape its basin of attraction. We refer
to Section 2.2.7 for further details.
Our proposed VNS algorithm uses a single type of shaking neighborhood structure in multiple
configurations. Let this neighborhood structure be called N s(v), with v ∈ [0, 1] as parameter
controlling the shaking vigor. N s is based on the idea of clearing substrate nodes. When N s(v)

100

Algorithm 8.1: VNS for the VNMP
Input : VNMP instance I
Output: Solution S for I

1 Solution best=initialize(I);
2 nni=1;
3 while !terminate() do
4 Solution candidate=shake(N s(vbnni),best);
5 applyVND(candidate);
6 if candidate.value<best.value then // New best solution found
7 best=candidate;
8 nni=1;
9 end

10 else
11 ++nni;
12 if nni>nmax then nni=1
13 end
14 end
15 return best;

is applied to a VNMP solution, N s randomly selects dv · |V |e substrate nodes. All virtual arc
implementations that traverse the selected nodes are removed from the solution. All virtual
nodes mapped to the selected substrate nodes are mapped to a substrate node that is allowed
by M but not selected. If no such node exists, the mapping remains unchanged. The resulting
solution is completed and improved by VND to create the final solution of one VNS iteration.
During the execution of VNS we apply N s with different values for v. The used values are
determined by two parameters, the base neighborhood size vb and the count of iterations that
have not resulted in an improvement of the best found solution nni. At the beginning of a new
iteration, N s(vbnni) is applied to the currently best found solution and the result is improved
by VND. If the solution created in this manner is better than the currently best known solution,
nni is reset to one, otherwise nni is increased by one. The upper limit for nni is nmax. If this
value is exceeded, nni is reset to one. The largest shaking neighborhood searched during VNS is
N s(vbnmax). Values for vb and nmax have to be chosen such that vbnmax ≤ 1. The shaking and
improvement steps are applied until the time-limit is reached. The initial solution for VNS is
built by the same method as for GRASP, but without randomization, i.e., CH-O. Algorithm 8.1
shows the general outline of the proposed VNS.

8.4 Results

To test the proposed GRASP and VNS algorithms, we used the same selection of VNMP in-
stances as in the previous two chapters, that means 210 full-load instances and 630 derived
instances with loads 0.1, 0.5, and 0.8. In total, there are 120 instances for every size class and

101

Table 8.1: Average relative rank Rrel and its relation to the best result, average number of itera-
tions (Its.), fraction of solved instances (Solv.) in percent and average Ca for different values of
α per instance size.

Size GR-0.00 GR-0.10 GR-0.20 GR-0.30 GR-0.40 GR-0.50 GR-0.60 GR-0.70 GR-0.80 GR-0.90 GR-0.99
Rrel 20 0.278 = 0.216 = 0.219 = 0.235 = 0.215 = 0.331 > 0.384 > 0.445 > 0.516 > 0.618 > 0.842 >

30 0.431 > 0.337 > 0.318 = 0.288 = 0.266 = 0.341 > 0.337 > 0.461 > 0.551 > 0.626 > 0.826 >
50 0.549 > 0.512 > 0.463 > 0.362 > 0.311 = 0.329 = 0.402 > 0.484 > 0.536 > 0.640 > 0.868 >

100 0.870 > 0.665 > 0.468 > 0.362 = 0.319 = 0.359 = 0.410 > 0.384 > 0.460 > 0.554 > 0.692 >
200 0.889 > 0.737 > 0.488 > 0.361 > 0.301 = 0.301 = 0.313 = 0.339 = 0.436 > 0.531 > 0.740 >
500 0.856 > 0.718 > 0.511 > 0.449 > 0.381 > 0.306 = 0.325 = 0.358 > 0.390 > 0.488 > 0.617 >

1000 0.902 > 0.665 > 0.623 > 0.529 > 0.425 > 0.354 = 0.338 = 0.341 = 0.375 = 0.426 > 0.470 >
Its. 20 1998 2323 2641 2916 3142 3291 3453 3677 3751 3836 3897

30 780 896 1034 1153 1248 1399 1534 1588 1676 1667 1664
50 282 329 390 442 481 497 531 553 565 567 566

100 39 47 56 62 66 71 77 82 83 87 87
200 45 54 66 78 90 98 103 112 116 127 129
500 15 18 22 26 30 33 36 39 41 41 42

1000 4 5 7 7 9 10 11 12 12 12 12
Solv. 20 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.2

[%] 30 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

100 100.0 100.0 100.0 99.2 98.3 97.5 97.5 99.2 99.2 97.5 95.8
200 95.8 99.2 99.2 99.2 98.3 97.5 97.5 96.7 95.8 95.0 91.7
500 71.7 80.8 81.7 81.7 76.7 80.8 78.3 75.8 77.5 75.0 70.0

1000 34.2 58.3 57.5 55.8 60.0 55.0 54.2 55.8 55.0 55.0 55.8
Ca 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.6

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

100 0.0 0.0 0.0 1.3 2.5 3.7 2.8 1.5 1.5 2.5 4.2
200 0.4 0.0 0.0 0.1 0.4 1.6 0.9 1.8 2.0 4.9 20.4
500 120.5 92.8 50.0 26.9 47.1 32.8 55.7 54.1 76.8 89.4 83.9

1000 708.7 227.1 251.1 206.1 245.5 273.5 251.2 311.4 263.5 336.7 277.5

210 for every load. See Chapter 5 for more detail on those instances. A time-limit of 200 seconds
was applied for sizes up to 100 nodes, 500 seconds for larger instances.
Our design goal for the proposed algorithms was solving VNMP-O. Therefore, the relative rank
as defined in Section 3.7 will once again be our main performance metric. Section 8.4.1 com-
pares the performance of the GRASP approach for different values of α, Section 8.4.2 analyzes
the performance of the VNS approach for different shaking neighborhood structure configu-
rations and Section 8.4.3 shows a comparison of the best GRASP and VNS approaches, also
considering previously presented algorithms.

8.4.1 GRASP

To evaluate the influence of α on the GRASP approach, we tested values for α from 0 (com-
pletely random initial solution) to 0.9 in 0.1 increments and 0.99 (very similar initial solutions).
The average performance depending on the instance size can be seen in Table 8.1. Once again,
we mark the relation of the results to the best observed result with = if no significant difference

102

could be observed, or > if the difference is indeed significant. See Section 2.4.2 for further
details on the employed statistical tests.
Immediately visible in the presented data is the tendency of the best α value to rise with the
instance size. For size 20, α ∈ [0, 0.4] yields the best results w.r.t. Rrel, while for size 1000
α ∈ [0.5, 0.8]. The reason for this behaviour is that for small instances, the randomized con-
struction heuristic does not have to make as many random choices as for the larger instance
sizes. Therefore, to get the same search space coverage w.r.t. initial solutions, α has to be small
for small instances. The results for the larger instances show that if α is too small, then the per-
formance degrades, because the initial solution is far too random. Another contributing factor is
that VND takes longer to optimize a very random initial solution, as can be seen by the iteration
counts, which increase with rising values of α. Therefore, fewer iterations can be performed in
the same amount of time.
Note that for finding valid solutions, low α values seem to be beneficial, even for large instances.
The GRASP approaches presented here are already an improvement when compared to MA-O
as outlined in the previous chapter. GRASP with an α ∈ [0.1, 0.2] is nearly able to find a valid
solution to every instance of size 200, just a single instance remains unsolved. The solution
derived for the one remaining instance has so little additional resource cost Ca, that the reported
average is zero. This is by no means certain, as the results for α = 0.3 indicate. With this
configuration, also one instance remains unsolved, but with a noticeable impact on the average
Ca. Also for the two largest instance sizes, the average Ca is lower than for the best MA
configurations.
Table 8.2 shows the influence of α for different load cases. Again we can observe that higher
values of α allow more iterations, but they do not lead to improved performance for high load.
Instead, a value for α ∈ [0.4, 0.5] seems to be best suited when performance at a specific load
level across different sizes is most important. Low α values are again beneficial for finding valid
solutions and especially for the highest load, GRASP performs better than MA previously.
Based on these results, we select the GRASP approach with α = 0.4 (GR-0.40) for further
comparisons. We will denote this configuration by GRASP-O.

8.4.2 VNS

To analyze the influence of different shaking neighborhood configurations, we performed exper-
iments with nmax ∈ {2, 5, 10} and vb ∈ {0.01, 0.05, 0.1} to cover the range from very small
changes with few shaking neighborhoods (i.e., few different configurations for N s) to large
changes with a lot of neighborhoods. Table 8.3 shows the performance of different neighbor-
hood configurations based on instance size. The different configurations are labeled as “VNS-
nmax.vb”, e.g., VNS-2.05 uses nmax = 2 and vb = 0.05. We can see a similar behaviour
to GRASP. For smaller sizes, large shaking neighborhoods are beneficial, while large instance
sizes require small neighborhoods for the best levels of performance. Smaller shaking neigh-
borhoods lead to an increased number of iterations in the same amount of time. Also note the
similarity in number of iterations between VNS-5.05 and VNS-2.10, caused by the very similar
maximum shaking neighborhood sizes. Indeed, between sizes 50 and 500, there is no significant
difference between the two configurations. Larger shaking neighborhoods seem to increase the
chance of finding valid solutions. Indeed, VNS-10.10 is able to solve all instances of size 200.

103

Table 8.2: Average relative rank Rrel and its relation to the best result, average number of itera-
tions (Its.), fraction of solved instances (Solv.) in percent and average Ca for different values of
α per load.

Load GR-0.00 GR-0.10 GR-0.20 GR-0.30 GR-0.40 GR-0.50 GR-0.60 GR-0.70 GR-0.80 GR-0.90 GR-0.99
Rrel 0.10 0.520 > 0.413 > 0.330 > 0.288 = 0.299 = 0.335 = 0.419 > 0.495 > 0.573 > 0.683 > 0.766 >

0.50 0.744 > 0.586 > 0.445 > 0.384 > 0.307 = 0.313 = 0.324 = 0.354 = 0.473 > 0.574 > 0.773 >
0.80 0.782 > 0.634 > 0.521 > 0.430 > 0.305 = 0.318 = 0.312 = 0.350 > 0.397 > 0.482 > 0.695 >
1.00 0.682 > 0.568 > 0.470 > 0.377 = 0.356 = 0.360 = 0.380 = 0.407 > 0.423 > 0.482 > 0.654 >

Its. 0.10 1529 1737 1990 2193 2348 2490 2638 2781 2871 2917 2947
0.50 108 142 173 208 239 267 298 322 330 333 336
0.80 80 105 120 137 155 169 180 190 192 195 201
1.00 90 114 126 139 151 160 167 173 175 176 173

Solv. 0.10 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
[%] 0.50 90.0 97.1 97.6 97.1 97.1 96.7 96.7 96.7 96.2 95.7 95.7

0.80 81.0 90.5 89.0 89.5 90.0 87.6 87.6 89.0 88.6 86.7 85.2
1.00 72.9 77.1 78.1 76.7 74.8 76.2 74.3 72.9 73.8 73.3 69.0

Ca 0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.50 46.5 7.7 0.4 0.5 0.5 0.5 0.5 0.5 0.6 0.7 7.1
0.80 106.0 17.2 21.7 22.1 18.3 14.7 25.4 24.2 25.8 38.1 25.9
1.00 321.5 158.0 149.9 111.3 150.0 162.8 151.6 185.9 170.0 209.0 192.5

The average Ca however is higher for the largest instance sizes than for GRASP-O. The results
also indicate that increasing the shaking neighborhood size in multiple small steps works better
than few large steps. This can be seen with configurations that have the same maximum shaking
neighborhood size. VNS-10.01 and VNS-2.05 show no significant difference in Rrel, except
for sizes 200 and 1000 where using smaller steps is significantly better. The difference is more
pronounced for VNS-10.05 and VNS-5.10. Until size 50 there is no difference in performance,
for larger instances using smaller steps is significantly better.
The influence of the shaking neighborhood configuration across different load cases can be seen
in Table 8.4. Small shaking neighborhoods lead to the best performance. Load 0.1 is an excep-
tion, as larger shaking neighborhoods achieve the best results. As for the configurations with the
same maximum shaking neighborhood size, smaller steps are a significant advantage for half of
the load cases.
Based on these results, we chose VNS-10.01 for further comparison. We will denote this con-
figuration by VNS-O.

8.4.3 Comparison

In this section, we compare our proposed algorithms GRASP-O (GR-0.4) and VNS-O (VNS-
10.01) with previously presented algorithms. These are MA-O, the Memetic Algorithm for the
VNMP introduced in Chapter 7, VND-O as introduced in Chapter 6, and the local improvement
method VND on its own, to see improvement caused by GRASP and VNS when using it. Recall
that the available run-time for MA-O was the same as for the GRASP and VNS algorithms
and that MA-O also made use of VND for local improvement. The reported results of VND
and VND-O are based on a time-limit of 1000 seconds. Note that we only show the average
run-time for these two algorithms, since the others were run until the time-limit was reached.

104

Table 8.3: Average relative rank Rrel and its relation to the best result, average number of itera-
tions (Its.), fraction of solved instances (Solv.) in percent and average Ca for different shaking
neighborhood configurations per instance size.

Size VNS-2.01 VNS-5.01 VNS-10.01 VNS-2.05 VNS-5.05 VNS-10.05 VNS-2.10 VNS-5.10 VNS-10.10
Rrel 20 0.389 > 0.436 > 0.396 > 0.416 > 0.240 > 0.244 > 0.340 > 0.198 = 0.163 =

30 0.402 > 0.404 > 0.394 > 0.344 > 0.305 > 0.293 > 0.229 = 0.304 > 0.283 =

50 0.457 > 0.390 = 0.356 = 0.396 = 0.333 = 0.368 = 0.338 = 0.390 = 0.472 >
100 0.432 > 0.371 = 0.372 = 0.349 = 0.486 > 0.506 > 0.425 > 0.578 > 0.630 >
200 0.460 > 0.360 = 0.316 = 0.376 > 0.490 > 0.554 > 0.479 > 0.591 > 0.685 >
500 0.467 > 0.420 > 0.344 = 0.395 = 0.500 > 0.520 > 0.547 > 0.658 > 0.624 >

1000 0.468 > 0.339 = 0.366 = 0.462 > 0.459 > 0.518 > 0.579 > 0.596 > 0.665 >
Its. 20 7327 7327 7345 7325 6796 5812 6822 5701 4742

30 3721 3699 3670 3590 3132 2577 3156 2511 2010
50 1766 1758 1664 1583 1321 1042 1327 1001 786

100 415 389 346 311 237 181 233 169 127
200 504 450 399 349 270 208 260 192 147
500 157 143 124 110 85 67 83 62 48

1000 51 44 39 33 25 20 25 18 14
Solv. 20 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

[%] 30 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

100 98.3 99.2 100.0 100.0 99.2 100.0 100.0 100.0 99.2
200 93.3 95.8 97.5 95.8 95.0 99.2 99.2 98.3 100.0
500 74.2 74.2 76.7 79.2 76.7 77.5 80.0 76.7 76.7

1000 55.8 55.0 59.2 53.3 55.0 54.2 55.0 55.0 53.3
Ca 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

100 1.2 1.3 0.0 0.0 1.3 0.0 0.0 0.0 0.6
200 13.6 2.5 6.1 3.9 4.1 1.4 0.5 0.4 0.0
500 97.3 100.0 68.5 76.5 86.1 91.7 87.9 86.3 107.2

1000 333.1 281.4 311.2 317.8 357.6 315.8 314.6 339.8 360.7

For the others, we show the number of performed iterations instead. One iteration is basically
one execution of VND, which takes the majority of the required run-time, and some algorithm
dependent actions. For GRASP, the execution of the randomized construction heuristic, for VNS
the shaking and for MA the creation of a new individual. For reference, the average run-time of
these three algorithms when considering different load cases is 328.5 seconds.
Table 8.5 shows the performance of the compared algorithms in relation to each other. It can be
seen that the results achieved by GRASP-O are disappointing. It is significantly outperformed
by the VNS and MA algorithms. However, using GRASP around VND is significantly better
than using VND alone, except for size 1000, where both perform equally well. VND-O can only
be beaten or matched by GRASP-O up to size 100, then VND-O achieves significantly better
results. VNS-O works far better, achieving the best solutions for sizes 30 to 200. For size 20,
MA-O works marginally better. Keep in mind however, that we selected a shaking configuration
for the VNS that was significantly worse for the smallest instance sizes than the alternatives, so
it should be possible to at least match the MA with a different configuration. For the two largest
sizes, VNS-O is beaten by VND-O, partly because the VND-O had more run-time available (and

105

Table 8.4: Average relative rank Rrel and its relation to the best result, average number of itera-
tions (Its.), fraction of solved instances (Solv.) in percent and average Ca for different shaking
neighborhood configurations per load.

Load VNS-2.01 VNS-5.01 VNS-10.01 VNS-2.05 VNS-5.05 VNS-10.05 VNS-2.10 VNS-5.10 VNS-10.10
Rrel 0.10 0.393 > 0.289 = 0.253 = 0.242 = 0.239 = 0.250 = 0.250 = 0.304 > 0.390 >

0.50 0.464 > 0.408 = 0.360 = 0.407 > 0.415 > 0.458 > 0.436 > 0.486 > 0.516 >
0.80 0.446 = 0.451 = 0.408 = 0.467 > 0.471 > 0.479 > 0.486 > 0.559 > 0.535 >
1.00 0.454 = 0.407 = 0.432 = 0.449 = 0.482 > 0.528 > 0.506 > 0.546 > 0.572 >

Its. 0.10 6220 6176 6100 5992 5451 4640 5472 4542 3744
0.50 924 905 877 853 712 550 708 526 410
0.80 483 477 458 444 360 274 367 262 204
1.00 339 335 329 312 257 196 256 186 141

Solv. 0.10 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
[%] 0.50 95.2 96.7 98.1 96.7 97.1 97.1 97.6 97.1 96.2

0.80 87.1 87.1 88.6 85.7 86.7 87.1 88.6 87.1 88.6
1.00 72.9 72.9 75.2 76.7 73.8 76.2 76.2 75.7 74.8

Ca 0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.50 7.2 7.0 6.9 0.6 6.9 0.4 0.4 7.5 1.3
0.80 45.5 30.0 29.6 36.7 21.5 21.0 25.8 40.8 31.7
1.00 201.6 183.2 183.9 190.2 228.2 212.3 204.1 195.4 234.7

also made use of it) as evidenced by the average run-times. Also, it is not a coincidence that there
is no significant difference between the GRASP, VNS, MA, and VND approaches for size 1000.
They all use VND as local improvement strategy, and as can be seen by the iteration count, not
enough iterations could be performed to reap the benefits of the more involved heuristics within
the available run-time. Based on the presented results, it seems that it is best to create one good
solution and improve upon it (VNS-O), instead of creating a population of good solutions and
profiting from their combination (MA-O) or trying to get lucky with randomly generated (and
then improved) solutions (GRASP-O).
For solving instances at a specific load level, Table 8.6 shows that the VNS approach is the best
choice across all load levels, achieving significantly better results than all of the other compared
algorithms. There is no reason to use GRASP-O, it is matched or outmatched by VND-O within
the same or lower run-time.

8.5 Conclusions

In this chapter, we have presented a GRASP and VNS algorithm for solving the Virtual Network
Mapping Problem. We have shown that the VNS algorithm produces significantly better results
than the MA and VND approaches previously introduced. Based on the presented results, we
can conclude that the main idea of VNS (successively larger random moves away from local
optima) works better than learning from a set of good solutions (MA) or improving good random
solutions (GRASP) for the Virtual Network Mapping Problem, at least with a rather constraining
run-time budget. The comparison is fair since the same local improvement strategy (VND)
was used, the parameters of all algorithms have been optimized and the same time-limits were
employed.

106

Table 8.5: Average relative rank Rrel and its relation to the best result, average number of it-
erations (Its.) or run-time, fraction of solved instances (Solv.) in percent and average Ca for
different solution methods per instance size.

Size GRASP-O VNS-O MA-O VND VND-O
Rrel 20 0.476 > 0.222 = 0.192 = 0.912 > 0.753 >

30 0.518 > 0.222 = 0.241 = 0.920 > 0.705 >
50 0.598 > 0.214 = 0.275 > 0.930 > 0.696 >

100 0.606 > 0.187 = 0.368 > 0.916 > 0.564 >
200 0.577 > 0.197 = 0.413 > 0.859 > 0.372 >
500 0.628 > 0.489 > 0.538 > 0.846 > 0.171 =

1000 0.623 > 0.592 > 0.589 > 0.569 > 0.228 =

Its. / 20 3142 7345 8185 0.2 0.4
t[s] 30 1248 3670 3899 0.7 1.3

50 481 1664 1663 2.1 4.2
100 66 346 314 16.0 29.7
200 90 399 333 40.2 119.7
500 30 124 94 126.6 605.1

1000 9 39 23 397.1 828.1
Solv. 20 100.0 100.0 100.0 96.7 97.5

[%] 30 100.0 100.0 100.0 100.0 100.0
50 100.0 100.0 100.0 99.2 98.3

100 98.3 100.0 100.0 95.0 97.5
200 98.3 97.5 95.8 90.0 98.3
500 76.7 76.7 76.7 73.3 90.8

1000 60.0 59.2 58.3 57.5 61.7
Ca 20 0.0 0.0 0.0 13.1 4.5

30 0.0 0.0 0.0 0.0 0.0
50 0.0 0.0 0.0 4.9 2.1

100 2.5 0.0 0.0 6.3 3.3
200 0.4 6.1 3.0 19.0 1.0
500 47.1 68.5 77.3 97.6 13.9

1000 245.5 311.2 215.9 184.1 198.9

A promising direction for future work could be to further look into the behaviour of the pre-
sented algorithms for the largest instances sizes, where their performance still leaves something
to be desired. The main problem is that VND, while already selected for reduced run-time
requirements, takes too much time. It might be promising to try for instance LS-O as local
improvement strategy, or some other Local Search variants as presented in Section 6.5.4. Even
setting a time-limit for VND might be sufficient to improve performance for the largest instance
sizes.

107

Table 8.6: Average relative rank Rrel and its relation to the best result, average number of it-
erations (Its.) or run-time, fraction of solved instances (Solv.) in percent and average Ca for
different solution methods load.

Load GRASP-O VNS-O MA-O VND VND-O
Rrel 0.10 0.497 > 0.215 = 0.315 > 0.876 > 0.528 >

0.50 0.616 > 0.294 = 0.384 > 0.913 > 0.450 >
0.80 0.602 > 0.333 = 0.397 > 0.841 > 0.484 >
1.00 0.586 > 0.371 = 0.400 = 0.771 > 0.532 >

Its. / 0.10 2348 6100 6354 5.6 41.7
t[s] 0.50 239 877 1016 50.2 218.3

0.80 155 458 537 111.2 316.2
1.00 151 329 385 166.0 331.6

Solv. 0.10 100.0 100.0 100.0 100.0 100.0
[%] 0.50 97.1 98.1 97.1 95.7 99.0

0.80 90.0 88.6 88.6 85.7 91.9
1.00 74.8 75.2 74.8 68.1 77.1

Ca 0.10 0.0 0.0 0.0 0.0 0.0
0.50 0.5 6.9 0.6 0.7 0.1
0.80 18.3 29.6 21.4 30.0 11.4
1.00 150.0 183.9 147.3 155.0 116.3

108

CHAPTER 9
Preprocessing of VNMP Instances

9.1 Introduction

In this chapter, we present preprocessing techniques to use on VNMP instances. The main aim
is to extract as much information as possible from those instances and possibly reduce their size
or complexity before we start solving them. As an example, one can determine if a virtual arc
can never use a particular substrate arc. If we know this beforehand, we can reduce the model of
the problem by removing the variable that would tell us if the virtual arc uses the substrate arc.
In addition, it is also possible to remove some constraints. If we can detect that a virtual arc can
never cross a particular substrate node, then we can omit the flow conservation constraint for this
substrate node and virtual arc (for formulations based on network flows). The following chap-
ters on exact approaches for solving the VNMP will make use of the preprocessing techniques
discussed in this chapter.

There are also other preprocessing opportunities which we will not regard any further. One is
checking the consistency of the mapping possibilities, i.e., for each allowed mapping of a virtual
node, is it possible to find a valid implementing path for all virtual arcs going out of (going into)
that virtual node for one of the allowed mapping targets of the target (source) of the virtual arc.
Since the VNMP instances are generated in a way that ensures this property, we do not check
it during preprocessing. Implementing this check would be straight forward. Another prepro-
cessing possibility would be checking if the capacities of nodes or arcs are actually constraining
(e.g., all virtual arcs that could traverse a substrate arc require more bandwidth than available)
and only add a constraint if it is actually possible to violate it. These checks are performed
within the exact solvers discussed in the next chapters, so we do not consider them any further.
Note however that they benefit from the domain reductions that we present in this chapter.

Before we can introduce the preprocessing methods for the VNMP, we require the following
definitions:

109

Definition 9.1.1 (Set of Delay-Constrained Simple Paths). Given a directed graph G(V,A) and
delays de, ∀e ∈ A, P ds,t denotes the set of all simple paths from s ∈ V to t ∈ V of length at
most d.

Definition 9.1.2 (Possible Nodes of a Delay-Constrained Substrate Connection). The set of pos-
sible nodes of a substrate connection from s ∈ V to t ∈ V with delay limit d, PNds,t, is defined
as PNds,t = {i ∈ V | ∃pds,t ∈ P ds,t : i ∈ pds,t}.

Definition 9.1.3 (Fixed Nodes of a Delay-Constrained Substrate Connection). The set of fixed
nodes of a substrate connection from s ∈ V to t ∈ V with delay limit d, FNds,t, is defined as
FNds,t = {i ∈ V | ∀pds,t ∈ P ds,t : i ∈ pds,t}.

The definition of the set of possible arcs of a delay-constrained substrate connection PAd
s,t and

the set of fixed arcs FAd
s,t is analogous.

Definition 9.1.4 (Domain of a Delay-Constrained Substrate Connection). The domain of a sub-
strate connection from s ∈ V to t ∈ V with delay limit d, Dd

s,t, is defined as the quadruple
(PNds,t,PAds,t,FNds,t,FAds,t). We will refer to this also as substrate domain.

Definition 9.1.5 (Possible Nodes of a Virtual Arc). Given a VNMP instance, the set of possible
nodes of a virtual arc f ∈ A′, PNf , is defined as PNf =

⋃
s∈M(s(f)),t∈M(t(f)) PNdfs,t.

Definition 9.1.6 (Fixed Nodes of a Virtual Arc). Given a VNMP instance, the set of fixed nodes
of a virtual arc f ∈ A′, FNf , is defined as FNf =

⋂
s∈M(s(f)),t∈M(t(f)) FNdfs,t.

The definition of the possible arcs PAf and fixed arcs FAf for a virtual arc f ∈ A′ is analogous.

Definition 9.1.7 (Domain of a Virtual Arc). Given a VNMP instance, the domain of a virtual
arc f ∈ A′, Df , is defined as the quadruple (PNf ,PAf ,FNf ,FAf).

These definitions allow us to state the VNMP preprocessing problem as follows:

Definition 9.1.8 (The VNMP Preprocessing Problem). Given a VNMP instance, calculate the
virtual arc domains Df ,∀f ∈ A′.

Given a solution to this problem, we can remove superfluous variables and constraints from the
exact VNMP models. As for solving this problem, it is immediately apparent that the VNMP
Preprocessing Problem can be decomposed into multiple instances of the following problem:

Definition 9.1.9 (The Substrate Domain Problem (SDP)). Given a source node s, a target node
t and a delay limit d, calculate Dd

s,t for the substrate graph of a VNMP instance.

The decomposition of the calculation ofDf works as follows: Let S = M(s(f)) be the set of all
allowed sources of f , T = M(t(f)) the set of all allowed targets and df the allowed delay of f .
Then Df is given as (

⋃
s∈S,t∈T PNdf

s,t,
⋂
s∈S,t∈T FNdf

s,t,
⋃
s∈S,t∈T PAdf

s,t,
⋂
s∈S,t∈T FAdf

s,t), which

is the combination of all Ddf
s∈S,t∈T .

110

1

2

4

3

6

5

7

8

9 11

10

Figure 9.1: A small sample substrate network.

At first glance, solving the Preprocessing Problem in that way seems wasteful. For instance, we
check if it is possible to use a substrate node for every mapping configuration, even if we have
already found a mapping configuration for which it is possible. The same holds for the fixed
parts. We check for every mapping configuration if we have to use a substrate arc, even if we
have already found a mapping configuration where we do not have to use it. As it turns out, it is
actually wasteful to skip evaluating nodes or arcs if we already know the result when solving the
SDP. When nodes or arcs are skipped based on external assumptions, the solution of the SDP
will be invalid for another set of assumptions. This slows down preprocessing considerably,
because the solutions cannot be memoized. Section 9.6.3 shows an evaluation of this effect.

9.2 Solving the SDP

Central to the design of a solution method for the SDP is the question of how many SDP in-
stances we need to solve. When considering the largest VNMP instances with 1000 substrate
nodes, we know that each virtual node has about 50 different allowed locations in the substrate
and that an instance contains about 1700 virtual arcs, which means that we can expect about
2500 SDP instances per virtual arc and 4.25 million instances in total. Section 9.6 will show
that the real number is actually closer to 7.8 million. As there are only one million unique pairs
of substrate nodes, we will need to solve the SDP for every pair multiple times with different
delay values. We also know that the substrate graphs are sparse. Given these preconditions, we
present the preprocessing procedure guided by an illustrative example.
Figure 9.1 shows a possible substrate network that will be the basis for solving SDPs. There are
delays associated with the substrate, but they are inconsequential for now. Before we start to
solve all SDPs, we perform a decomposition step that will allow us to derive partial SDP solu-
tions to a whole range of SDP instances. The first step is calculating the biconnected components
of the shadow of the substrate graph, as shown in Figure 9.2.
The red nodes are articulation points, all arcs labeled with the same number (and the nodes they
connect) belong to the same biconnected component. As the second step, we build the block
tree from this graph, by introducing a node for each biconnected component, which is then
connected to all articulation points that connect the biconnected component to the rest of the
network. Figure 9.3 shows the resulting block tree, the rectangular nodes represent biconnected

111

1

2

4

3

6

5

7

8

9 11

10

1 1

11

2

3 4 4

44

5

6

Figure 9.2: Biconnected components and articulation points of the shadow of the sample sub-
strate network.

1 3 2 5

3

4 8

5

6

Figure 9.3: Block tree of the sample substrate network.

3 5 4 8

Figure 9.4: Simplified block tree.

components labeled by the component number, the circular ones are the articulation points which
are labeled by their substrate node number.
This tree can be simplified further by removing all component nodes that are only connected to
one articulation point (in this example nodes 1, 3, 5 and 6) and also all component nodes that
represent bridges (i.e., only containing two articulation points and an edge between them), in
this example component node 2. The final result can be seen in Figure 9.4.
During this decomposition, we keep track of the location of the original substrate nodes, so
that we know for instance that substrate node 4 is represented by articulation point 3 in the
simplified block tree, or that node 9 is represented by component node 4. We have now created
a very compact representation of the original substrate graph that can be used to derive partial
results to an SDP instance in the following way: Locate the representation of s and t in the
simplified block tree and find a path between them. Since this path is unique, we immediately
know that all traversed articulation points belong to FNd

s,t (and PNd
s,t) and for every traversed

bridge that the corresponding arc in the substrate belongs to FAd
s,t (and PAd

s,t). We also know
which components are traversed and in addition by which articulation point we have to enter a

112

1

2

4

3 5

7

8

9

10

2

4

3

6

9
6

8

1

5

4

2

3

1

3

5

6

2

3

Figure 9.5: Partial domain for D21
1,10.

component and by which we have to leave. If those articulation points are the same, we do not
consider the component traversed. The only exception to this is when both s and t belong to
the same component but are represented by an articulation point (i.e., the connected component
node was removed during simplification). Then the representing articulation point is not in FNd

s,t

(but possibly in PNd
s,t). Due to the applied simplification, the found path in the block tree might

still be incomplete. If s is not an articulation point, but the start of the path is one, then we
need to add the component that s belongs to at the beginning of the path. As a refinement, if
this component is a bridge, then we can immediately determine a fixed arc and do not need
to consider the component. The same extension might be needed at the end of the path. The
last piece of information that we can extract from the path in the simplified block tree is, that
any node or arc that was not touched by the path (excluding all nodes and arcs contained in a
traversed component) are definitely not in PNd

s,t or PAd
s,t.

TheDd
s,t we have calculated up to this point is a partial solution to the SDP, information concern-

ing the traversed components is still missing. However, note that this Dd
s,t is both independent

of d and valid for all SDP instances that start and end in the same component as the SDP that
is currently being solved. As such, it is a prime candidate for memoization, as in storing partial
domains given start and end nodes in the simplified block tree, so that they can be used while
solving future SDP instances instead of calculating paths again. In some sense, this is the so-
lution to the “easy” part of the SDP, and the “hard” part is determining the domains within the
components.
Before we start outlining different methods for calculating the domains within the components,
we will continue our example by considering the SDP with s = 1, t = 10, and d = 21 for our
example substrate. Figure 9.5 shows the created partial domain D21

1,10.
The process for deriving this is the following: Substrate node 1 is represented by articulation
point 3 and substrate node 10 is represented by articulation point 8 in the simplified block tree.
We search the corresponding path in the simplified block tree (which in this case is the complete
tree). At the start of the path we need to extend with component node 1. At the end we can
immediately fix the arc in the substrate from node 8 to 10, since the end component is a bridge.
Also, we can add substrate nodes 1, 3, 5, 8, and 10 to FN21

1,10 and the arc from 3 to 5 to FA21
1,10. In

Figure 9.5, FN21
1,10 and FA21

1,10 are marked in red, all nodes and arcs of the substrate that can not
belong to PN21

1,10 or PA21
1,10 have been removed. Now we only need to solve the domain problem

113

1

2

3 5

7

8

9

10

2 3

5

4 3

52

3

Figure 9.6: Complete domain for D21
1,10.

within components 1 and 4. At this stage the specified delay limit becomes relevant. The figure
contains the delay values for the arcs that might still be possible. For our path from node 1 to 10
we know the delay of all arcs currently in FA21

1,10 and lower bounds for traversing components 1
and 4, determined by shortest path calculations. This allows us to derive upper bounds for the
delay that we are allowed to spend while traversing the components. This bound for a particular
component is calculated by taking the original delay bound d and subtracting the delay of all
fixed arcs and the lower delay bound of all other traversed components. In our example, we can
not spend more delay than 6 in component 1 (21 − 8 − 7) and 8 in component 4 (21 − 8 − 5).
Calculating D6

1,3 and D8
5,8 is the last step. A discussion of how to achieve this will follow, but

for this example the solution can be derived easily. We can immediately discard all arcs that go
into starting nodes within the component or leave the target node. Since we are only considering
simple paths, these arcs cannot be used. For component 1, the path using node 4 requires a total
delay of 7, which exceeds our delay bound, so this node and all connecting arcs cannot be used.
Now only one path remains, therefore its nodes and arcs have to be fixed. A similar argument
applies for component 4. The final result for D21

1,10 is shown in Figure 9.6. The parts of the
domain that were fixed by considering the component subproblem are marked in green, all arcs
that cannot be used have been removed.

9.3 The SDP for One Component

In this section we will outline techniques for deriving domains within components. More for-
mally, we cover methods for calculating Dd

s,t, with s and t belonging to the same component,
and d being the upper bound on the delay that we are allowed to spend within the component.
To do this, we consider the extended component graphGc(Vc, Ac), which contains all nodes and
arcs of the substrate that are contained within the same biconnected component c in the shadow
of the substrate. In addition, every substrate arc is represented by a node (called an arc node)
and two arcs, one going from the source of the original substrate arc to the representing node
and one going from the node to the original target of the substrate arc. The delay of the sub-
strate arc is assigned to the arc going into the representing node, the outgoing arc has no delay.
Distributing the delay any other way would not make sense, because we could for example get
the situation that due to the delay bound the representing node is still allowed, but the following
node is not. That would mean that using an arc is allowed, but the target of this arc is not. By

114

1

2

4

3

x

4

3

6

9

6

8

1

5

6

7

8

9

10

11

12

2

0

0

4 3

0

0

6

9

0

0

6

8

0

0

1

Figure 9.7: Extended component graph G1.

using this extension, we only need to consider PNd
s,t and FNd

s,t for Gc. PAd
s,t and FAd

s,t can be
reconstructed by checking which arc nodes are possible or fixed. Figure 9.7 shows G1 of the
example substrate. Without loss of generality, we assume that s 6= t and |Vc| ≥ 6, otherwise the
problem is immediately solvable.

The following techniques are split into two categories, the first one are methods for determining
PNd

s,t. These methods will be called pruning methods, because starting from Vc they remove
nodes which cannot be part of PNd

s,t. The second category are methods for calculating FNd
s,t

from PNd
s,t. We will call them fixing methods. The simplest pruning and fixing methods do just

the bare minimum to create a valid domain for a substrate connection. All nodes of the com-
ponent are added to PNd

s,t and only the nodes by which the component is entered and left are
added to FNd

s,t. Unsurprisingly, these methods are very fast and do not require additional mem-
ory, but of course also do not perform any additional pruning or fixing within the component.
However, the final calculated domain for a substrate connection will still benefit from the in-
formation extracted from the simplified block tree and these simple pruning and fixing methods
allow us to determine the additional benefit of using more elaborate methods within biconnected
components.

9.3.1 Pruning by Simple Heuristics

Heuristic pruning was already applied during the calculation of D6
1,3 for the example substrate.

It works by removing all incoming arcs of the source node and all outgoing arcs of the target
node in Gc. In addition, all nodes n for which δ−n = 0 or δ+n = 0 can be removed, together
with any incident arcs. This step is repeated until no further nodes can be removed. Figure 9.8
shows the result of applying heuristic pruning to G1. Note that the path across substrate node 4
cannot be excluded with this simple pruning strategy since it does not take delays into account.
Therefore this pruning method is incomplete; it does not calculate Dd

s,t, but a superset of it. Its
run-time is in O(n2 +m), where n = |N(Gc)| and m = |A(Gc)|.

115

1

2

4

3

x 3

61

5 7

1012

2

0 3

0

0

60

1

Figure 9.8: Extended component graph G1 after heuristic pruning for D6
1,3.

9.3.2 Pruning by All Pair Shortest Paths

In order to improve the pruning capabilities, we need to take delays into account. Therefore, we
calculate the shortest possible delays between all pairs of nodes inGc with Johnson’s Algorithm,
see Section 2.3.3. A node k ∈ Vc can only be in PNd

s,t if the shortest delay from s to k plus the
shortest delay from k to t is≤ d. This pruning method is still incomplete, since we do not check
if the two path segments s → k and k → t are disjoint, so again we get a superset of Dd

s,t.
This pruning method is sufficient to generate the complete domainD21

1,10 as shown in Figure 9.6.
In general, we might miss pruning opportunities that are caught by the heuristic pruning, so
we include the first step of heuristic pruning discussed in the previous section; the removal of
incoming arcs of the source node and of outgoing arcs of the target node. Why we chose not to
use the whole heuristic pruning method will become clear in Section 9.6.8. To keep this method
fast, we do not repeat the delay checking after the heuristic pruning, even though it might be
able to exclude further nodes. Doing so would require a costly recalculation or at least updating
of the distance matrices (for instance with the algorithm presented in [43]) based on the pruned
nodes. This pruning method runs inO(n), but requires an initial calculation of the shortest paths
taking O(n2 log(n) + nm).

9.3.3 Pruning by Integer Linear Programming

Until now, we could only solve the problem of computing PNd
s,t approximately. This is not

surprising, since for every node in Vc, we basically need to solve a 2-disjoint paths problem,
which is NP-complete [57].

Definition 9.3.1 (The 2-Disjoint Paths Problem). Given a directed graph G = (V,A) and two
pairs (s1, t1), (s2, t2) of pairwise different vertices of G. Find two vertex-disjoint directed paths
P1 and P2 in G, where P1 goes from s1 to t1 and P2 from s2 to t2.

If we want to test whether k ∈ PNd
s,t, we need to split k into two copies k′ and k′′. All incoming

arcs of k go to k′, all outgoing arcs leave from k′′. Then we set G = Gc, s1 = s, t1 = k′,
s2 = k′′ and t2 = t to get a 2-disjoint paths problem. To reduce the 2-disjoint paths problem to

116

the problem of determining whether k ∈ PNd
s,t, we just need to do this transformation in reverse.

We include an additional node k in G and add an arc from t1 to k and from k to s2. By finding
a simple path from s1 to t2 crossing k within G, we solve the 2-disjoint paths problem. As a
side-note, the special case of planar graphs is in P [153], but we do not restrict ourselves to
planar extended component graphs. So if we want to calculate PNd

s,t exactly, we need to solve
an NP-complete problem for every node in Vc (and we have not even considered the delay
constraint yet). One possibility to do this is using Integer Linear Programming (ILP) to solve
the following problem:

Definition 9.3.2 (The Node Testing Problem). Given a directed graph G(V,A) with arc delays
de, ∀e ∈ A, three nodes s, t, and k from G and a delay limit d. Find a pds,t ∈ P ds,t, such that
k ∈ pds,t.

We now present two different ILP models based on network flows for solving the node testing
problem.
The first model, denoted by (TWOFLOW), is based on the idea of finding a simple path from s
to k, and a simple path from k to t, while forbidding that they share a node and enforcing that
they do not exceed d. It utilizes decision variables y1e ∈ {0, 1}, ∀e ∈ A to indicate if an arc is
used for the first path (to k) and decision variables y2e ∈ {0, 1}, ∀e ∈ A to indicate if an arc is
used for the second path (to t).

(TWOFLOW)
∑

e∈A|s(e)=i

y1e −
∑

e∈A|t(e)=i

y1e =

1, if i = s

−1, if i = k

0, otherwise

∀i ∈ V (9.1)

∑
e∈A|s(e)=i

y2e −
∑

e∈A|t(e)=i

y2e =

1, if i = k

−1, if i = t

0, otherwise

∀i ∈ V (9.2)

∑
e∈A|s(e)=i

(y1e + y2e) ≤ 1 ∀i ∈ V (9.3)

∑
e∈A|t(e)=i

(y1e + y2e) ≤ 1 ∀i ∈ V (9.4)

∑
e∈A

(y1e + y2e)de ≤ d (9.5)

y1e ∈ {0, 1} ∀e ∈ A (9.6)

y2e ∈ {0, 1} ∀e ∈ A (9.7)

Equalities (9.1) and (9.2) ensure flow conservation, so that the result is one connected path,
inequalities (9.3) and (9.4) limit the incoming and outgoing flow at every node, so that the
result is a simple path and that the two flows cannot share an arc. Inequality (9.5) is the delay
constraint. The integrality constraints (9.6) and (9.7) ensure the integrality of the final solution.
Note that this model allows disconnected flow circulations. As a result, for reconstructing the

117

solution to the model, we need to follow the flow values from s over k to t to see which arcs
(and nodes) are actually used for the path. After we have introduced the second model, we will
discuss why we need to know the actual path and why we accept the overhead of having to
reconstruct it instead of ensuring that no superfluous flow can be contained in the result. The
presented model does not contain an objective function, since node testing is a satisfiability
problem. (TWOFLOW) can be transformed to correspond to the definition of an ILP model as
presented in Section 2.2.12 by adding the minimization of a constant as objective. This also
holds for the following models for satisfiability problems.
The second model, denoted by (FLOWINFLOW) is based on the idea of finding a simple path
from s to t which is limited by d and contains a path from s to k. It utilizes decision variables
y1e ∈ {0, 1}, ∀e ∈ A to indicate if an arc is used for the path from s to t and decision variables
y2e ∈ {0, 1}, ∀e ∈ A to indicate if an arc is used for the path from s to k.

(FLOWINFLOW)
∑

e∈A|s(e)=i

y1e −
∑

e∈A|t(e)=i

y1e =

1, if i = s

−1, if i = t

0, otherwise

∀i ∈ V (9.8)

∑
e∈A|s(e)=i

y2e −
∑

e∈A|t(e)=i

y2e =

1, if i = s

−1, if i = k

0, otherwise

∀i ∈ V (9.9)

y1e − y2e ≥ 0 ∀e ∈ A (9.10)∑
e∈A|s(e)=i

y1e ≤ 1 ∀i ∈ V (9.11)

∑
e∈A|t(e)=i

y1e ≤ 1 ∀i ∈ V (9.12)

∑
e∈A

y1ede ≤ d (9.13)

y1e ∈ {0, 1} ∀e ∈ A (9.14)

y2e ∈ {0, 1} ∀e ∈ A (9.15)

Equalities (9.8) and (9.9) ensure flow conservation. The linking constraints (9.10) state that the
flow from s to k has to be contained in the flow from s to t. Inequalities (9.11) and (9.12) force
the path from s to t to be simple, (9.13) realizes the delay constraint. The integrality of the so-
lution is enforced with (9.14) and (9.15). As with the previous model, (FLOWINFLOW) allows
disconnected flow circulations, so the actual path from s to t over k has to be reconstructed after
the model has been solved.
Why do we allow disconnected flow circulations? After all, it would be easy to add an objec-
tive to both models, stating for instance that the number of selected arcs should be minimized.
However, keep in mind that we are not only interested in the solution of the model with one par-
ticular k, we need to check all k ∈ Vc, which would be very time-consuming if done in the naive
way. Luckily, when we solve the model for one particular k, we can extract the path from s to t

118

that has been found. This path proves not only that there exists a simple path from s to t using
k within the delay limit, it proves this for all nodes on the path, and those nodes do not have
to be checked via the ILP models. So we actually want to get long paths as a result, because
they reduce the need for further ILP solver invocations. By adding constraints to remove the
disconnected flow circulations, we shorten the resulting path which causes more work later on.
We could go towards the other extreme and add an objective to maximize the number of selected
arcs and remove the circulations by using directed connection cuts, but then we get the overhead
of actually having to find a longest path and proving its optimality, which again increases the
run-time requirements.
This touches on another requirement for ILP models for solving the node testing problem: rapid
reconfigurability. The structure of the ILP model (number of constraints, involved variables)
is constant for one particular extended component graph. The only changing components are
the coefficients on the right-hand side of the (in)equalities for different values of s, t, k and
d. So it is much more efficient to change the coefficients of the model to match new values
of s, t, k, and d than to rebuild the whole model. A consequence of this is that models that
require cuts for correctness, like the variant previously mentioned that maximizes path length,
are highly undesirable, because every cut that has to be separated represents work that has to
be thrown away when the model is reconfigured. Section 10.5 will offer some results on this
reconfiguration aspect.
As a result of these considerations, we rejected two other modeling possibilities that we know of
for the node testing problem. One model is based on the idea of having two units of flow which
leave s, at k one unit is removed and at t the second one. This model has the advantage of only
needing one flow variable per arc. However, it can happen that we get solutions where one unit
of flow goes from s to k and then loops back to k again (so we have two units of flow entering
k and one leaving) and one unit of flow directly from s to t. We would need cuts to ensure
feasibility and as already explained, this is undesirable in our situation. Due to this reason, we
also rejected another modeling idea: require a flow from s to t and use directed connection cuts
to ensure that this flow crosses k.

9.3.4 Pruning by Path Enumeration

Until now, we have looked at the problem to calculate PNd
s,t from the point of view that we have

to find paths that prove the membership of each node within this set. However, it also holds that
PNd

s,t =
⋃
pds,t∈P d

s,t
N(pds,t). Therefore, if we know P ds,t, we can immediately calculate PNd

s,t.

The problem here is of course that the size of P ds,t grows exponentially with the size of the
input graph (in our case the extended component graph). There are three arguments that make
the enumeration of all paths nevertheless a viable approach in this situation: The biconnected
components are rather small (and adding one node for each arc makes paths only longer but does
not increase the number of paths), they are still relatively sparse (even though they are denser
than the parts of the network that could be represented by the simplified block tree) and we do
not need to store all paths, we only need to keep the union of the nodes used by the paths. To
put it more precisely, for each s, t ∈ Vc, determine each value of delay d for which simple paths
between s and t exist and store the union of the nodes used by those paths and the nodes used

119

by the next smaller possible value of d. The result is PNd
s,t. Since it is not possible to enumerate

only paths from s to t, we enumerate all paths starting from s to all t′ ∈ Vc within d and calculate
the corresponding PNd

s,t′ .
Algorithm 9.1 shows how the path enumeration procedure works. The most important data struc-
ture used by this algorithm is the PathSearchState. It contains information about how a
particular node was reached, including: which node was reached, how much delay was incurred
to reach this node and which nodes have been visited. One input of the algorithm is a collection
of such states that have not been explored during the last invocation because they have exceeded
the allowed delay value. These are called the continuation search states. Assume PNd

s,t has al-
ready been calculated. If we now have to calculate PNd′

s,t′ , with d′ > d and possibly t 6= t′, then
we can simply continue the algorithm with the state it ended in when calculating until d, without
having to repeat the computations. For the first invocation of the algorithm for a particular start
node s, the continuation search state is initialized with one PathSearchState, the node set
to s, delay to 0, and the path just containing s. The algorithm has two main stages. In the first
stage all paths not exceeding d, starting from the continuation search states, are enumerated and
stored for each target node in ascending order of delay. In the second phase, the store for PNd

s,t

(in the algorithm referred to as Unions) is updated. So with one invocation of this algorithm to
calculate PNd

s,t, we also get PNd′
s,t′ for all t′ ∈ Vc and d′ ≤ d. As an implementation side-note,

in line 28 an empty set is returned for the first invocation of the algorithm.
Within the path enumeration algorithm, the union of (nodes of) paths is a central operation and
therefore critical for the overall execution speed. In preliminary runs we have seen that using
a bit-vector outperforms other alternatives, like sets or hash-sets, by a wide margin. In the bit-
vector representation, a path is a vector of bits with the size of |Vc|. All nodes used by the path
are set to 1, the others are set to 0. Note that in the case of the extended component graph,
this representation of a path via its nodes is unique because Gc contains nodes representing arcs
in the original biconnected component. The union of paths in the bit-vector representation is a
simple bitwise-or operation. Using this representation also has a very low overhead compared to
the alternatives in terms of memory. However, even though we only store the path unions and not
the paths themselves, the memory requirements are too high when applying this method to the
largest VNMP instances. To combat this, there is a size limit for the biconnected component.
If this size limit is exceeded, pruning by all pair shortest paths is performed instead of path
enumeration. See Section 9.6.7 for an evaluation of this behavior.
This concludes the discussion of pruning techniques, we will now present fixing techniques to
calculate FNd

s,t of Gc.

9.3.5 Fixing by Testing

To determine if a node k ∈ Vc belongs to FNd
s,t, we need to check if all paths from s to t not

longer than d have to use k. This is equivalent to checking if there are no paths not longer than d
that do not use k. The second statement can easily be tested by using a shortest path computation
while forbidding the use of k. This is the basic idea of fixing by testing and immediately shows
that determining FNd

s,t is in P , in contrast to determining PNd
s,t, which is in NP . Of course,

applying fixing by testing in the straight forward manner of forbidding every k ∈ Vc in turn and

120

Algorithm 9.1: Pruning by path enumeration
Input : Extended Component Graph G, delay limit d, continuation search states CS
Output: For each node in G, complete set of nodes usable when reaching them within d

1 Queue<PathSearchState> states, Paths paths(num_vertices(G));
2 for PathSearchState continueState ∈ CS do
3 if continueState.delay≤d then
4 states.push(continueState);
5 CS.erase(continueState);
6 end
7 end
8 while !states.empty() do
9 PathSearchState s=states.pop_front();

10 if s.delay>d then CS.push(s);
11 else // found a new way to reach a node
12 paths.at(s.node).add(s.delay,s.path);
13 forall the outgoing arcs oa from s.node do
14 n=target(oa);
15 nn=outgoingNeighbor(n); // n is an arcnode
16 if s.path.contains(nn) then continue; // would introduce a loop
17 PathSearchState newS=s; // store new state
18 newS.path.add(n,nn);
19 newS.node=nn;
20 newS.delay=s.delay+delay(oa);
21 states.push(newS);
22 end
23 end
24 end
25 forall the nodes n in G do // update path unions
26 npaths=paths.at(n); // new paths in ascending delay order
27 if npaths.empty() then continue;
28 union=Unions.at(n).latest(); // fetch union of previous call
29 delay=npaths.front().delay;
30 forall the paths p in npaths do
31 delayNow=p.delay;
32 if delayNow>delay then // previous delay-level complete
33 Unions.at(n).insert(delay,union);
34 delay=delayNow;
35 end
36 union.add(p);
37 end
38 Unions.at(n).insert(delay,union);
39 end

121

1

2

3

4

5

6

Figure 9.9: Nodes 2 and 3 are strong articulation points, but do not belong to FNd
1,4.

checking if a path of length at most d from s to t exists would be highly inefficient. Every node
belonging to FNd

s,t has to be contained in every path not longer than d from s to t. So if we test
a node k and find an alternative path, we immediately know that only nodes within this path can
belong to FNd

s,t. If we test a node of this path, and again find an alternative path, we can iterate
this argument. Only nodes belonging to the intersection of both paths can belong to FNd

s,t. As
a result, for every alternative path we find, we can exclude more than one node from FNd

s,t with
high probability. This method runs in O(n2 log(n) + nm).
There are some possibilities to reduce the number of nodes that need to be tested even further.
One of those is to calculate the strong articulation points (see Section 2.3.2) of Gc. Only strong
articulation points can belong to FNd

s,t, if delays are not considered. If a node different from s

and t belongs to FNd
s,t, then there is no path from s to t without this node. So removing this

node would increase the number of strongly connected components, which means that this node
is a strong articulation point. Note that the converse is not true, strong articulation points do not
necessarily belong to FNd

s,t, even if a path from s to t contains them.
An example of this can be seen in Figure 9.9. When trying to determine the fixed nodes for paths
from node 1 to 4, it is necessary to use a strong articulation point (2 or 3), but they are not fixed.
This example also shows that heuristics like “only cross a strong articulation point if it is really
necessary, then it belongs to FNd

s,t” are invalid. Restricting testing to strong articulation points
can potentially speed up this fixing method. However, it is no longer complete since we do not
consider delays. With delays, it might happen that a node is fixed, even though it is not a strong
articulation point.
Another possibility for improving the performance of the fixing method is the use of dominators
(see 2.3.1). When calculating FNd

s,t, every dominator of t (while using s as a source node) has to
belong to FNd

s,t and only the remaining nodes of Gc have to be tested. In the results section we
will analyze the fixing performance of the dominator technique on its own to be able to judge
what additional solving performance it could add to the testing approach.
Note that both methods do not take the delay limit into account, so they can be strengthened
by not using Gc as a basis, but rather the graph that is derived from Gc by deleting all nodes
not in PNd

s,t. Then, better pruning will improve the performance of the fixing by testing (but

122

not its (in)completeness). However, every determination of FNd
s,t depends on PNd

s,t, which pre-
cludes the possibility of precomputation, so strong articulation points or dominators have to be
calculated anew every time.

9.3.6 Fixing by Path Enumeration

Fixing by path enumeration is essentially the same as pruning. It is also basically free if the
pruning is done by path enumeration. Algorithm 9.1 still applies, but in addition to the union we
also keep track of the intersection of the paths to calculate FNd

s,t. In the step corresponding to
line 28, the intersection returned during the first execution of the algorithm is Vc.

9.3.7 Fixing by Integer Linear Programming

For completeness sake, it is also possible to test if a node has to be fixed by using an ILP
formulation, which we will denote by (FIXFLOW). It is based on the idea of finding a simple
path form s to t which is limited by d and does not contain k. It utilizes decision variables
ye ∈ {0, 1}, ∀e ∈ A to indicate if an arc is used for the path from s to t.

(FIXFLOW)
∑

e∈A|s(e)=i

ye −
∑

e∈A|t(e)=i

ye =

1, if i = s

−1, if i = t

0, otherwise

∀i ∈ V (9.16)

∑
e∈A|s(e)=i

ye ≤

{
0, if i = k

1, otherwise
∀i ∈ V (9.17)

∑
e∈A

yede ≤ d (9.18)

ye ∈ {0, 1} ∀e ∈ A (9.19)

Equalities (9.16) ensure flow conservation. Inequalities (9.17) forbid the use of k for the path
from s to t and force the path to be simple, (9.18) forces the path to respect the delay constraint.
The integrality of the solution is enforced with (9.19). As with previous formulations, the actual
path has to be reconstructed after the model has been solved.

9.4 Solving the SDP for One Component Efficiently

After outlining all of the pruning and fixing methods, one part of the algorithm for solving the
SDP for one component is still missing: the procedure to execute these methods. As already
discussed, we can expect to have to calculate PNd

s,t and FNd
s,t for extended component graphs

with the same start and end nodes for different delay values. This means that is is possible (and
effective) to use previous results as bounds for the current domain request. Algorithm 9.2 shows
how this works in detail.

123

Algorithm 9.2: Calculating PNd
s,t and FNd

s,t for one component

Input : Extended component graph Gc, source node s, target node t, delay limit d and
domain store Domains

Output: PNd
s,t and FNd

s,t of G

1 PosNodes pn,FixNodes fn;
// calculate pn (=PNds,t)

2 if Domains.hasPosNodes(s,t,d) then pn=Domains.getPosNodes(s,t,d) else
3 PosNodes pnUB=Domains.getPosUB(s,t,d);
4 PosNodes pnLB=Domains.getPosLB(s,t,d);
5 if pnUB==pnLB then pn=pnUB else
6 PosNodes pnToTest=pnUB∧(¬ pnLB); // bit-vector operations
7 prune(s,t,d,pnToTest); // call one of the pruning methods
8 pn=pnLB∨pnToTest;
9 end

10 end
// calculate fn (=FNds,t)

11 if Domains.hasFixNodes(s,t,d) then fn=Domains.getFixNodes(s,t,d) else
12 FixNodes fnUB=Domains.getFixUB(s,t,d);
13 FixNodes fnLB=Domains.getFixLB(s,t,d);
14 if fnUB==fnLB then fn=fnUB else
15 RestrictGraph Gr=restrict(Gc,pn);
16 FixNodes fnToTest=pn∧fnLB∧(¬ fnUB);
17 fix(s,t,d,fnToTest,Gr); // call one of the fixing methods
18 fn=fnUB∨fnToTest;
19 end
20 end

// store calculated domains, return
21 Domains.setPosDomain(s,t,d,pn);
22 Domains.setFixDomain(s,t,d,fn);
23 Domains.simplify(s,t,d);
24 return pn,fn;

124

The input of the preprocessing algorithm for a component c is the extended component graph
Gc, the data for the required connection (source and target nodes, maximum allowed delay) and
the store for previously calculated PNd

s,t and FNd
s,t within this component.

The first step of the algorithm is calculating PNd
s,t. If PNd

s,t is already present in the domain
store, then there is nothing more to do. Otherwise, we use the results of previous calls as upper
and lower bounds. The upper bound is a previously calculated PNd′

s,t with d′ > d but as small as
possible. If no such domain has been calculated before, then it is Vc. Obviously, if there is no
simple path using a node within d′, then there will be none within d, so PNd

s,t is a subset of PNd′
s,t.

Similarly, we try to find a lower bound PNd′′
s,t with d′′ < d but as large as possible. If no such

domain has been calculated, then it is the empty set. If there is a simple path using a node within
d′′, then this path is of course still valid with delay bound d, so all nodes in PNd′′

s,t also belong to
PNd

s,t. If the upper and lower bounds are equal, then we already know PNd
s,t and nothing more

needs to be done. Otherwise, the nodes that are included in PNd′
s,t, but not in PNd′′

s,t, are the ones
we still need to test whether they belong to PNd

s,t, which is stated in line 6. Note that we assume
a bit-vector representation of the domains, so we can apply bit-wise logical operators. After
determining which nodes need to be tested, we apply one of the pruning methods discussed
previously. The pruning method will remove all nodes from the nodes to test that do not belong
to PNd

s,t. It is free to ignore the input about nodes to test. The Path Enumeration method for
instance cannot use it, the All Pair Shortest Path method on the other hand can and does use
it. The final PNd

s,t is then assembled from the lower bound and the nodes that have passed the
pruning.

The second step of the algorithm determines FNd
s,t. It works basically the same way as the first

step. One thing to note here is that the term upper bound still refers to a domain that was derived
by allowing more delay and lower bound refers to a domain where less delay was allowed. The
result is that for fixed nodes, the upper bound will contain fewer nodes than the lower bound.
In case no suitable upper or lower bounds have been calculated, the upper bound will be the
empty set and the lower bound Vc. For calculating the nodes for which we have to test whether
they belong to FNd

s,t (line 16), that means we have to test all nodes that belong to PNd
s,t and

are present in lower bound, but not in the upper bound. The restriction to PNd
s,t is especially

useful at the beginning when no suitable lower bound is known. One of the discussed fixing
methods is then called with the nodes to test and removes all nodes that do not belong to FNd

s,t.
As an additional input, the fixing method gets the extended component graph, restricted by the
possible nodes. This for instance increases the efficiency of path calculations, because parts of
the extended component graph are removed.

The last step of the algorithm is storing the calculated domains in the domain store, followed
by a simplification step. The main idea here is that it is not necessary to store all calculated
domains, because a lot of them will be the same. It is sufficient to store the same domain only
twice; for the lowest and the highest delay for which this domain occurred. As a consequence,
the memory requirements for storing domains can be reduced. On the other hand, the probability
of finding exactly the requested domain already present in the domain store is decreased, but we
will still get the same upper and lower bounds and save execution time that way.

125

1

2

3

4

1

3

1

3

1 1

Figure 9.10: FNd
s,t can change without PNd

s,t changing.

As an implementation remark, note that PNd
s,t and FNd

s,t are stored completely independently
from each other, because changing delays can add or remove nodes from one without affecting
the other. It is easy to see that changing delay may change PNd

s,t without changing FNd
s,t. Just

think about a graph without fixed nodes where increasing the delay bound might add nodes
to PNd

s,t. The other direction is also possible, Figure 9.10 shows an example. For simplicity
reasons we omitted the nodes for every arc. It holds that PN5

1,4 = PN6
1,4 = {1, 2, 3, 4}, but

FN5
1,4 = {1, 2, 4} and FN6

1,4 = {1, 4}. The main insight here is that even with perfect pruning,
the resulting graph can contain delay-infeasible paths. This means that an incomplete fixing
method that does not take delays into account applied to a pruned extended component graph
derived by a complete pruning algorithm will still be incomplete. In this example, the fixing
method cannot distinguish the situations for delay 5 and 6.

9.5 The Complete Preprocessing Algorithm

We have now finished the discussion of all components necessary for solving the VNMP pre-
processing problem and are therefore able to show the algorithm for solving it. Algorithm 9.3
gives an high level overview of the procedure. It neglects the mentioned memoization steps for
simplicity. In addition, there is a relevant implementation aspect to this algorithm. As presented,
it solves the substrate domain problems one at a time for each virtual arc separately. We will
refer to this as the default order. As a result, consecutive SDP instances will be very different
in terms of starting node, end node, and delay constraint. It is possible to calculate the domains
for the virtual arcs in another order. Instead of iterating through virtual arcs, we iterate through
substrate nodes, and for each node solve the SDP for every virtual arc that may start at this
node. We will refer to this order as substrate order. With this simple step, consecutive SDP
instances will be more similar, which causes a performance increase up to 15%. See the results
in Section 9.6.2 for more details.

126

Algorithm 9.3: Preprocessing for the VNMP
Input : A VNMP Instance
Output: Virtual arc domains Df ,∀f ∈ A′

1 Calculate simplified block tree of substrate;
2 forall the virtual arcs f in VNMP instance do
3 VirtualArcDomain D;
4 forall the allowed locations ms of s(f) do
5 forall the allowed locations mt of t(f) do

// solving the substrate domain problem
6 SubstrateDomain D’;
7 Calculate path in block tree from ms to mt;
8 Add domain parts known from block tree path to D’;
9 Calculate delay bounds for all crossed components;

10 forall the crossed components do
11 Execute algorithm 9.2;
12 Add result to D’;
13 end
14 D.add(D’);
15 end
16 end
17 Store D for f;
18 end

9.6 Results

In this section, we will analyze the different aspects of the preprocessing algorithm. Now follows
a description of the default configuration of the preprocessing algorithm which is used unless
specified otherwise. We also refer to following sections that offer further explanations and ex-
perimental evidence as to why a particular setting was chosen as default setting. The evaluation
was done on instances with full load and a memory limit of 5 GB.
In the default setting, the preprocessing algorithm uses the block tree decomposition with all
simplifications (see Section 9.6.1). The virtual arc domains are built in substrate order (see
Section 9.6.2). Knowledge already gathered while calculating the domain of a virtual arc is not
used when evaluating further mapping possibilities for the source and target node of the virtual
arc (see Section 9.6.3). The following pruning methods are utilized:

None This method does not perform any pruning. All nodes and arcs within a component are
possible.

Heuristic The heuristic pruning scheme described in Section 9.3.1.

APSP The pruning scheme based on shortest delays between nodes as described in 9.3.2.

127

PathEnumeration The path enumeration scheme presented in 9.3.4. A node limit of 40 nodes
is employed, meaning that components containing more than 40 nodes will be solved by
APSP. See Section 9.6.7 for details.

TwoFlow The ILP model TWOFLOW presented in 9.3.3 is used for pruning. If CPLEX has
stored a solution from the last solving procedure, it is discarded. Section 9.6.6 contains
details. The CPLEX solver object is not discarded when the model is modified (9.6.4).

FlowInFlow The ILP model FLOWINFLOW presented in 9.3.3 is used for pruning. Again, a
possibly stored solution is discarded (see Section 9.6.6) and the solver object is kept (see
Section 9.6.4).

Now follows a description of the employed fixing methods:

None Does not perform any fixing, only the nodes by which a component is entered and left are
fixed.

Dominators Utilizes the idea of using dominators for fixing presented in 9.3.5.

Testing The fixing by testing approach introduced in 9.3.5.

TestingSAP-0 A variant of testing that only tests strong articulation points. These strong artic-
ulation points are determined statically based on the complete extended component graph.

TestingSAP-1 This method recomputes the strong articulation points depending on the nodes
of the extended component graph that were determined to be possible (PNd

s,t).

PathEnumeration The path enumeration approach presented in 9.3.4, extended to calculate
fixed nodes as well. A node limit of 40 nodes is employed. If this limit is exceeded,
Testing is used. See Section 9.6.7 for details.

FixFlow The ILP model FIXFLOW as presented in 9.3.7 is used for fixing. A possibly stored
solution is discarded (see Section 9.6.6). The solver object is kept during modifications
and inequality 9.17 is only applied for the testing node k. See Section 9.6.5 for details.

Unless stated otherwise, all combinations of pruning and fixing methods are evaluated. In the
following sections, we will present the motivation for the choice of parameters and behaviors
for the default configuration. Then we will analyze the characteristics of the preprocessing
algorithm in more detail. The following definitions will apply during the discussion of the
results. Symbol t will be used to denote the run-time of the preprocessing algorithm in CPU-
seconds.

Definition 9.6.1 (Relative Node-Pruning Performance PNrel). The relative node-pruning per-

formance PNrel is defined as PNrel =
∑

f∈A′ |PNf |
|A′||V | . Note that smaller values mean better perfor-

mance because more nodes could be excluded from PNf .

128

Table 9.1: Influence of different block tree decomposition configurations on the average required
CPU-time (t) in seconds and the pruning and fixing performance. TN is the average number of
nodes of the tree decomposition.

Configuration t[s] PNrel[%] PArel[%] FNrel[%] FArel[%] TN
No Decomposition 204.2 67.9 62.6 4.0 0.9 1.0

With Decomposition 16.1 37.2 26.9 5.2 1.2 51.3
With Bridge Opt. 16.0 37.2 26.9 5.2 1.2 42.5

With Node Opt. 16.0 37.2 26.9 5.2 1.2 27.4
With Both Opt. 16.0 37.2 26.9 5.2 1.2 18.6

Definition 9.6.2 (Relative Arc-Pruning Performance PArel). The relative arc-pruning perfor-

mance PArel is defined as PArel =
∑

f∈A′ |PAf |
|A′||A| .

The definitions of the relative node-fixing performance FNrel and relative arc-fixing performance
FArel are analogous, but for fixing, larger values are better. As an example, PNrel = 0.2 means
that on average, every virtual arc can only use 20% of the substrate’s nodes.

9.6.1 Influence of Block Tree Decomposition

Calculating the simplified block tree decomposition is the first step when executing the prepro-
cessing algorithm. In this section, we test the influence this step has on the overall preprocessing
algorithm, especially with respect to run-time, pruning and fixing performance. Additionally,
we test the influence of the suggested simplifications. Those simplifications were the removal of
component and articulation point nodes of degree one (henceforth called node optimization) and
the removal of component nodes containing only two nodes (bridge optimization). We tested
on instances of size 50. Testing with larger instances was not possible, because the required
run-time exploded when omitting the block tree decomposition, especially for the ILP methods.
Table 9.1 shows the behavior of the preprocessing algorithm depending on the chosen config-
uration. It can be seen that there is a huge difference between the performance with the de-
composition or without it. By using the tree decomposition, the algorithm requires only 8% of
the original run-time. Additionally, the pruning and fixing performance is better. For instance,
without the decomposition, the preprocessing tells us that every virtual arc may use about 68%
of the substrate nodes on average, with the decomposition this is reduced to 37%. The difference
is even larger for the possible arcs. For fixing, the additional benefit of the decomposition is not
as pronounced, which is due to the fact that not a lot of nodes or arcs can be fixed to begin with.
This difference occurs because of the use of incomplete pruning or fixing methods. Keep in mind
that for all configurations all combinations of pruning and fixing methods have been tested, for
instance pruning with method None and fixing with method None. With those methods and
without decomposition, nothing can be pruned or fixed. By performing the decomposition, we
can exclude nodes and arcs that are not touched by the path within the block tree. For a method
selection that uses complete methods, like PathEnumeration, the decomposition does not give

129

Table 9.2: Influence of the evaluation order of virtual arc domains on the average required run-
time for preprocessing.

(a) without ILP methods

Evaluation Order
Size Default Substrate

20 0.01 = 0.01 >
50 0.12 = 0.12 >

200 2.99 > 2.80 =

(b) with ILP methods

Evaluation Order
Size Default Substrate

20 0.19 = 0.18 =
50 43.77 > 37.38 =

200 1261.19 > 1253.36 =

any additional advantages other than better run-time. The last column of Table 9.1 shows the
average number of nodes of the block tree. Without decomposition, there is of course just one
node, containing the complete substrate graph. More interesting is the situation with respect to
the number of nodes with decomposition. Just using decomposition, the block tree contains 51
nodes on average, which is even more than the substrate size. By using bridge optimization, nine
nodes can be removed, while node optimization can remove 24 nodes. By using both optimiza-
tions, the simplified block tree uses only 18 nodes. That means the preprocessing algorithm is
able to find a structural representation of the input substrate graph that contains only 35% of the
substrate’s nodes. Unfortunately, this additional compactness does not lead to any performance
gains.
Based on these results, we chose to use the block tree decomposition with both simplifications.

9.6.2 Influence of the Domain Evaluation Order

In Section 9.5, we have outlined two different ordering possibilities for calculating the domains
of virtual arcs, the default order and the substrate order. To analyze the difference between these
orderings, we have tested the preprocessing algorithm on instances of size 20, 50 and 200. The
results are summarized in Table 9.2. Note that we have distinguished between preprocessing
configurations that do not use ILP based pruning/fixing methods (9.2a) and configurations that
use ILP based methods either for pruning, fixing, or both (9.2b), since the required run-times are
very different.
We can see that for ILP based methods, using substrate order always requires less run-time than
the default order and this difference is also statistically significant for all but the smallest instance
size. The largest improvement is achieved for size 50, where using substrate order requires 15%
less run-time. This advantage is reduced to 0.6% for size 200. Every reported value is the
average of 540 runs.
As for the preprocessing configurations that do not use ILP methods, we can see that the over-
head of having to determine for each substrate node the virtual arcs that may originate there is
prohibitive for small instances. The default order performs better than the substrate order. Note
that due to rounding the reported average run-times are the same, but still significantly different.
For the largest instance size, using substrate order results in 6% lower run-times, so the overhead
of using substrate order starts paying off. Every reported value is the average of 720 runs.

130

Table 9.3: Influence of utilizing partially known domains on the required preprocessing run-
time.

Fixing
Pruning Cfg. None Dominators Testing TestingSAP-0 TestingSAP-1 PathEnum. FixFlow

None A 2.2 = 2.2 = 2.5 = 2.3 = 4.1 = 2.9 = 31.2 =
B 7.6 > 7.7 > 28.2 > 15.4 > 160.7 > 15.6 > 2658.3 >
C 8.2 > 8.3 > 27.7 > 16.0 > 161.2 > 15.9 > 2417.4 >

Heuristic A 2.2 = 2.2 = 2.6 = 2.5 = 4.2 = 3.2 = 31.4 =
B 3.1 > 3.1 > 17.3 > 10.3 > 91.6 > 10.6 > 1493.3 >
C 8.4 > 8.4 > 28.5 > 16.7 > 166.4 > 16.6 > 2451.3 >

APSP A 2.3 = 2.3 = 2.4 = 2.3 = 3.6 = 3.0 = 31.0 =
B 7.7 > 7.7 > 18.2 > 11.5 > 93.3 > 11.6 > 1387.6 >
C 10.4 > 10.5 > 29.8 > 18.0 > 175.7 > 17.2 > 2496.9 >

PathEnum. A 2.9 = 2.9 = 3.0 = 2.9 = 4.1 = 3.0 = 32.5 =
B 8.3 > 8.3 > 17.1 > 11.4 > 80.7 > 11.5 > 1289.7 >
C 11.4 > 11.4 > 30.2 > 18.8 > 177.6 > 17.3 > 2447.9 >

TwoFlow A 1465.5 > 1460.1 > 1460.1 > 1460.7 > 1456.3 > 1473.0 > 1489.1 =
B 822.4 = 824.0 = 835.1 = 825.8 = 889.3 = 830.4 = 2041.1 >
C 1543.1 > 1547.5 > 1564.8 > 1557.5 > 1707.8 > 1579.8 > 3954.0 >

FlowInFlow A 1739.9 > 1740.5 > 1736.0 > 1739.0 > 1742.1 > 1758.6 > 1763.6 =
B 958.8 = 960.7 = 974.4 = 963.4 = 1029.0 = 974.4 = 2166.0 >
C 1775.7 > 1775.6 > 1797.5 > 1787.3 > 1942.5 > 1831.2 > 4200.6 >

Based on these results, we decided to use substrate order as default setting for the preprocessing
algorithm.

9.6.3 Influence of Partially Known Domains

When calculating the domain of a virtual arc, we combine the results of all relevant substrate
domains. At the end of Section 9.1, we have argued that this might seem wasteful, because we
test for instance whether a node belongs to PNd

s,t, even though we might already know from
another substrate domain that it belongs to the domain of the virtual arc. In this section we show
that the benefit of calculating valid substrate domains, which might be useful for the domains of
other virtual arcs, outweighs the cost of possibly redundant testing in most cases.
We tested three different configurations. Configuration A is the standard configuration, which
calculates every substrate domain, regardless of what is already known about the virtual arc
domain. Configuration B skips the evaluation of a substrate domain (for one component), if it
cannot give any new information. In algorithm 9.2, we calculate nodes that have to be tested for
membership in PNd

s,t. If we already know for all nodes that they will be present in PNf , we skip
the pruning step. The same holds for the fixing step: If we know for all nodes that would have
to be tested, that they cannot belong to FNf , then we skip the fixing step. If pruning or fixing
have been skipped, the calculated substrate domain is invalid and cannot be stored for later use.
Configuration C goes even further and just removes nodes for which it is already known if they
either belong to PNf or cannot belong to FNf from the nodes that have to be tested during the
pruning and fixing step respectively.
We have tested all three configurations on instances of size 20, 50, and 200. The results were
consistent across all size classes, therefore Table 9.3 only shows the results for size 200.

131

Table 9.4: Influence of the method used for changing TwoFlow models on the required prepro-
cessing time and the time required for changing the model (Setup Time).

t[s] Setup Time[s]
Size Default Tracking Default Tracking

20 1.1 > 0.2 = 0.8 0.0
50 79.0 > 41.4 = 35.0 0.4

200 2026.4 > 1468.0 = 518.9 5.6

For all pruning methods that are not ILP based, configuration A is the best choice by a very
wide margin. For non-ILP-based fixing, using another configuration results in a 5 to 40 fold
increase in run-time, when FixFlow is used we get an 70 fold increase. The situation is reversed
for ILP based pruning methods. Here a 40% reduction in run-time can be achieved by using
configuration B instead of A. Configuration C however still performs worst. Interestingly, the
benefit of using configuration A for FixFlow outweighs the cost of using it for ILP based pruning.
This demonstrates the tradeoff between possibly computing too much, but creating good domain
bounds that can be utilized during future calculations (configuration A) and only calculating
what is needed, but possibly repeatedly for different virtual arcs (configuration B). With good
bounds, we can skip calling a pruning or fixing method altogether, which is beneficial if the
bound creation did not take a lot of time. For slow pruning methods, the cost for creating good
bounds is prohibitive, which is why configuration B performs better. The fraction of nodes that
can be fixed is rather low (see results in Section 9.6.8), so good bounds are also essential when
using FixFlow. Configuration C combines the worst of both worlds, the calculated domains
cannot be reused and during domain calculation we still need to execute pruning and fixing
methods (albeit with a reduced number of nodes).

9.6.4 Modification of TwoFlow

In this section, we will look at the performance differences caused by either destroying the
solver object before the model is modified and then rebuilding it with the new model, or letting
the CPLEX solver object track changes to the TwoFlow model. It is not clear beforehand which
method is better, because both have overheads. For the first method, we have the cost of in-
stantiating CPLEX solver objects, for the second we have the cost of the solver object having to
change its internal model representation (e.g., the simplex tableau) to correspond to the modified
model. As a side note, we do not offer an analysis of the alternative of destroying both solver and
model and rebuilding from scratch, because we have seen in preliminary runs that preprocessing
an instance with this method took more than two hours, while the other choices finished within
seconds. Because the results for FlowInFlow are similar, we will only discuss TwoFlow.
We tested the preprocessing algorithm with TwoFlow as pruning method and None for fixing on
instance sizes 20, 50, and 200. For TwoFlow, we applied the default changing method (change
the model without an attached solver object) and the tracking method (change the model with
an attached solver object). Table 9.4 shows the results.
It can be seen that the tracking method is vastly superior to the default changing method, which

132

Table 9.5: Influence of different configurations of FixFlow on the required preprocessing time.

Configuration
Size A B C D

20 0.3 > 0.3 > 0.0 = 0.1 >
50 6.1 > 6.2 > 2.6 > 2.2 =

200 76.1 > 74.8 > 40.3 > 31.0 =

requires 38% more time for preprocessing for the largest instance size. Table 9.4 also shows
the total setup time required for the two configurations. The setup time is the time needed for
changing the model from solving PNd

s,t to PNd′
s′,t′ . There is a factor of 90 difference between the

setup times for the default and tracking method, which means that it is 90 times faster to modify
a model that is tracked by a CPLEX solver object than to repeatedly create new solver objects.
Based on these results we chose the tracking method for TwoFlow and FlowInFlow.

9.6.5 Modification of FixFlow

In this section we test for FixFlow what we tested for TwoFlow in Section 9.6.4: The tradeoff
between either tracking model changes with the CPLEX solver object or rebuilding the solver
object once the model has been modified. However, for FixFlow we had a look at an additional
possibility for modification. Inequalities 9.17 of FIXFLOW limit the flow through every node
in the component and forbid flow through the node for which we want to determine whether
it belongs to FNd

s,t (the testnode). Our design goal for the FIXFLOW model was that it can
be reconfigured by just changing coefficients. Since every node may be the testnode, we need
inequalities 9.17 for every node. As we need them for every node anyway, we can use them
to limit the flow. There is, however, another possibility. We could only forbid flow through
the testnode, which means we only have to add one inequality instead of |V |, which makes the
model smaller. On the other hand, extracting the actual path from a solution to FIXFLOW gets
more complicated, as the flow from s to t will no longer be a simple path. To extract a simple
path, we need to perform a shortest path computation in the graph induced by the flow values.
The second downside of only using one inequality is that removing constraints from a model
is usually an expensive operation, which is why we look at this tradeoff in more detail in this
section.
We tested four different FixFlow configurations. Configuration A uses the default changing
setup (rebuilding the CPLEX solver object) and the original inequalities 9.17. In configuration
B, only one inequality is used. Configuration C uses the tracking method (the CPLEX solver
object gets notified about changes to the model) and the original inequalities. Configuration
D uses the tracking method and only one inequality. These four configurations were used for
preprocessing (with pruning method None) on instances of size 20, 50, and 200. Table 9.5 shows
the results.
It can be seen that when the CPLEX solver object does not have to track modifications to the
model, it does not matter whether coefficients are modified (A) or constraints are removed (B).
The preprocessing will be slow either way. The situation becomes more interesting when we

133

use the tracking method, since we can see a significant difference here between coefficient mod-
ification (C) and constraint removal (D). For the smallest instance size, coefficient modification
is faster, while the other instances constraint removal offers a distinct speed advantage. For
instances of size 200, constraint removal is 25% faster. This means that it is more important
to save on the number of constraints in the model for larger instances than it is to have simple
model modification methods.
Based on these results, we used configuration D for FixFlow.

9.6.6 Removal of ILP solutions

During the discussion of ILP based pruning and fixing methods, we stated that rapid reconfig-
urability of an ILP formulation is very important since we need to solve very closely related
problems in succession. By reconfigurability we mean the ability to solve a related problem by
just changing some coefficients of the model. The alternative of course would be to rebuild the
model from scratch. While conceptually simpler, this has a huge performance penalty. So, in
CPLEX terms, we always use the same model and solver object, cf. Section 9.6.4. That means
when we modify a model and try to solve it, CPLEX might have stored the solution to a previous
variant of the model. Usually, this is done to speed up the re-solving process of the model. For
instance when adding additional cuts, a previous solution might be modified to satisfy the new
constraints so that a valid solution to the new model is available from the beginning. In our case
however, even though the models are closely related, a solution to one model is not related to the
solution of the modified model at all. Just think about changing the source node of a flow. The
previous flow from another source (i.e., the previous solution) is not helpful for finding a new
solution. Therefore, it might be the case that CPLEX spends too much time trying to adapt a
solution instead of solving the new model. Removing a present solution before resolving might
speed up the process. In this section, we will test this hypothesis.
We tested all three ILP based pruning/fixing methods without clearing and with clearing solu-
tions. As the fixing method for the ILP based pruning methods (TwoFlow and FlowInFlow) we
used None, which we also used as pruning method for FixFlow. From the instance set, we used
the sizes 20, 50, and 200. Table 9.6 shows the result.
It can be seen that for all three methods, clearing the solution is significantly better than keeping
it. The margin by which it is better however becomes smaller with larger instance size. This is
not surprising, as the time spent on adapting a solution is small in relation to the time required
for solving the model for larger instances. For the largest instances, clearing the solution results
in a run-time reduction of 3% for TwoFlow, 1.5% for FlowInFlow, and 12% for FixFlow.
Based on these results, we chose to clear the solution for all three ILP based methods.

9.6.7 Cutoff Size for Path Enumeration

The time and memory requirements of the PathEnumeration method are exponential in the size
of the component for which it is executed. Therefore, we only execute PathEnumeration if the
number of nodes contained in a component is below a certain threshold. For larger components,
we fall back to APSP if we perform pruning, or to Testing if we perform fixing. In this section,
we analyze the influence of this threshold (referred to as node limit) on the performance of

134

Table 9.6: Influence of clearing a (possibly) present solution before resolving an ILP model on
the required preprocessing run-time.

Clear Solution
Method Size No Yes

TwoFlow 20 0.2 > 0.2 =
50 42.8 > 41.2 =

200 1489.5 > 1442.3 =

FlowInFlow 20 0.3 > 0.2 =
50 55.0 > 53.1 =

200 1766.8 > 1738.7 =

FixFlow 20 0.1 > 0.1 =
50 2.6 > 2.1 =

200 35.1 > 30.9 =

PathEnumeration. As test set, we used all instances from the VNMP instance set and applied
node limits from 10 to 100 nodes in increments of 10 nodes. We used PathEnumeration as
pruning and fixing method. Table 9.7 shows the results.
It can be seen that for sizes up to 100, the run-time differences caused by different node limits are
negligible and every configuration is able to preprocess all instances up to size 200. However,
beginning with instance size 30, some calls to PathEnumeration have to fall back to APSP or
Testing and with larger instance sizes ever larger node limits are required to avoid falling back.
The tradeoff between node limit and fraction of fallbacks can be seen especially well for instance
size 200 and node limits 50 and 60. We can see that for node limit 50, we fall back in 7% of all
cases and require on average 3.4 seconds of run-time. By increasing the node limit to 60, we do
not fall back any longer, at the cost of an average run-time of 14.8 seconds. That means we have
more than a five fold increase of run-time when we try to solve 7% of calls to PathEnumeration
exactly. This tradeoff gets even worse when we consider the increase of relative arc pruning
performance PArel we get by spending so much more time. By never falling back to APSP, we
are able to exclude an additional 0.2% of substrate arcs from PAf on average for every f ∈ A′.
By going beyond instance size 200, we can see the memory limit coming into effect as executions
of the preprocessing algorithm start to fail. The algorithm can perform preprocessing for only
six out of 30 instances when a node limit of 100 nodes is used, for instances of size 1000. Note
that the reported run-times, fallbacks and arc pruning performances are averages of successful
executions only, which means that the reported values cannot be directly compared if some
instances could not be preprocessed. This is nicely demonstrated by the (apparent) increase in
fallbacks when increasing the node limit from 90 to 100 for instance size 1000.
The choice of node limit generally has very little influence on PArel. The largest difference is
caused by changing the node limit from 10 to 20 nodes, which results in about 1% more pruning
for small to medium sized instances. Also note that we only show the results for PArel because
for PNrel, FNrel and FArel, the differences are even smaller.
Based on these results, we chose to use a node limit of 40 nodes, since this is the largest value for
the node limit so that all instances can be preprocessed. We could have reduced the node limit

135

Table 9.7: Influence of different node limits for PathEnumeration on the average required CPU-
time (t) in seconds, the number of executions not terminated due to excessive memory require-
ments (# Successes), the fraction of APSP and Testing fallbacks and the relative arc pruning
performance (PArel).

Node Limit
Size 10 20 30 40 50 60 70 80 90 100

t[s] 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

100 0.7 0.7 0.9 0.9 0.9 1.2 1.2 1.2 1.2 1.2
200 2.4 2.5 2.7 3.1 3.4 14.8 14.3 16.1 16.1 16.0
500 13.9 14.1 16.1 26.4 58.3 117.3 133.5 150.0 162.0 216.6

1000 68.9 69.8 73.4 75.6 151.6 324.1 329.9 326.2 318.7 330.4
Successes 20 30 30 30 30 30 30 30 30 30 30

30 30 30 30 30 30 30 30 30 30 30
50 30 30 30 30 30 30 30 30 30 30

100 30 30 30 30 30 30 30 30 30 30
200 30 30 30 30 30 30 30 30 30 30
500 30 30 30 30 29 23 19 17 15 11

1000 30 30 30 30 29 18 18 18 17 6
Fallbacks[%] 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

30 12.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 35.5 9.6 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

100 53.6 19.6 3.1 3.1 3.1 0.0 0.0 0.0 0.0 0.0
200 81.7 35.8 16.4 8.1 7.2 0.0 0.0 0.0 0.0 0.0
500 91.8 85.2 72.3 65.8 55.1 43.3 37.2 32.1 24.5 0.0

1000 95.5 90.6 83.3 80.6 75.0 68.9 68.9 68.9 69.0 70.5
PArel[%] 20 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9

30 29.3 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4 28.4
50 25.2 24.6 24.3 23.9 23.9 23.9 23.9 23.9 23.9 23.9

100 20.9 19.8 19.3 19.3 19.3 19.1 19.1 19.1 19.1 19.1
200 19.4 18.2 17.8 17.5 17.5 17.3 17.3 17.3 17.3 17.3
500 17.9 17.8 17.7 17.6 17.4 17.4 16.9 16.4 15.7 13.5

1000 15.6 15.6 15.6 15.6 15.5 15.7 15.7 15.7 15.7 16.1

further, but then we would have moved even farther away from the ideal of a complete pruning
(fixing) method. Note that this choice of node limit means that employing PathEnumeration is
only complete for instances up to size 50. For sizes 100 and 200, it is close to complete, since
less than 10% of PathEnumeration calls are solved by APSP or Testing. The pruning efficiency
cost is at most 0.2%. For the largest instances, the behavior of PathEnumeration is actually
closer to APSP or Testing than to its own. Another possibility would have been to set a node
limit of 60 up to size 200 and use a limit of 40 for sizes 500 and 1000, which would have kept
PathEnumeration exact up to size 200 while still being able to preprocess all instances. We
decided against that to keep the configuration simple.

136

9.6.8 Comparison of Pruning and Fixing Methods

Now that we have determined the best configuration for the preprocessing algorithm and its
pruning and fixing methods, we can evaluate the performance of preprocessing depending on the
selected pruning and fixing methods, the general behavior of the algorithm and the usefulness of
memoization.
We tested all combinations of pruning and fixing methods on the complete instance set with full
load, with one exception. The ILP-based pruning methods (TwoFlow and FlowInFlow) were not
tested on instance sizes 500 and 1000 due to their run-time requirements.
Table 9.8 shows the required run-time of preprocessing with different pruning and fixing meth-
ods. It can be seen that up to size 50, all configurations that do not use ILP based methods require
basically the same run-time. The differences only start showing with larger instance sizes. For
sizes 100 and 200, using TestingSAP-1 as fixing method requires consistently more run-time
than the rest. For the larger instances, it is possible to see the influence of interactions between
pruning and fixing methods on the required run-time. For instance, at size 500 and using Testing
as fixing method, preprocessing using None as pruning is slower than preprocessing with APSP
as pruning method. This is surprising, as None does nothing and should be faster. However,
by not performing any pruning, Testing has to test more nodes, so in total it is more beneficial
to use APSP as pruning method. For sizes 500 and 1000, there starts being a distinct run-time
difference between PathEnumeration and the faster methods. Note that PathEnumeration is not
exact any longer for these sizes, as discussed in Section 9.6.7. TestingSAP-1, however, is still
slower. Also observe that TestingSAP-0 is faster than Testing, because it restricts testing only
to the strong articulation points in the extended component graph. The required run-time when
using None as pruning and fixing method gives the time necessary to calculate the virtual arc
domains by just using the simplified block tree. Generally, the additional run-time cost of using
pruning or fixing methods that actually do something is rather small.
Until now we have neglected to discuss the ILP based pruning and fixing methods. From Ta-
ble 9.8, we see that they are not competitive in terms of required run-time, even though we
spent some effort to implement them efficiently. FixFlow can be applied up to size 1000 (taking
about a factor of 10 longer than other methods), but for TwoFlow and FlowInFlow, the run-
time is too high for the largest sizes. Interestingly, size 200 is also the largest size for which
PathEnumeration can be applied in an exact configuration. Note that we do not use such a con-
figuration, but in Section 9.6.7 we have shown that it would require 16 seconds on average for
instances of size 200, which compares quite favorably to the 1450 seconds TwoFlow requires.
To calculate exact domains for larger instances, either more memory (for PathEnumeration) or
more run-time (for TwoFlow) than we were able to supply has to be invested.
Of course, analyzing the required run-time alone is insufficient, since different methods for
pruning and fixing have different pruning and fixing performances. Table 9.9 shows the relative
node pruning performance PNrel for the presented pruning methods. As a general tendency, the
larger the instances, the better the node pruning performance. For size 20, half of the substrate’s
nodes can be excluded from the domain of every virtual arc, which increases to nearly 85% for
size 1000. Unsurprisingly, the exact methods achieve the best results and the difference to the
other pruning methods is significant. However, by using exact methods we can only exclude
about 2% of additional substrate nodes from PNf , while the additional run-time cost, as shown

137

Table 9.8: Mean required run-time in seconds of preprocessing with different pruning and fixing
methods.

Fixing
Size Pruning None Dominators Testing TestingSAP-0 TestingSAP-1 PathEnum. FixFlow

20 None 0.0 0.0 0.0 0.0 0.0 0.0 0.1
Heuristic 0.0 0.0 0.0 0.0 0.0 0.0 0.1

APSP 0.0 0.0 0.0 0.0 0.0 0.0 0.1
PathEnum. 0.0 0.0 0.0 0.0 0.0 0.0 0.1

TwoFlow 0.2 0.2 0.2 0.2 0.2 0.2 0.2
FlowInFlow 0.2 0.2 0.2 0.2 0.2 0.2 0.3

30 None 0.0 0.0 0.0 0.0 0.1 0.0 0.6
Heuristic 0.0 0.0 0.0 0.0 0.1 0.0 0.6

APSP 0.0 0.0 0.0 0.0 0.1 0.0 0.6
PathEnum. 0.0 0.0 0.0 0.0 0.0 0.0 0.6

TwoFlow 5.3 5.3 5.3 5.3 5.3 5.2 5.8
FlowInFlow 6.5 6.5 6.6 6.5 6.5 6.5 7.1

50 None 0.1 0.1 0.1 0.1 0.2 0.1 2.1
Heuristic 0.1 0.1 0.1 0.1 0.2 0.1 2.2

APSP 0.1 0.1 0.1 0.1 0.2 0.1 2.1
PathEnum. 0.1 0.1 0.1 0.1 0.1 0.1 2.0

TwoFlow 41.8 42.2 42.2 41.5 42.5 41.5 43.8
FlowInFlow 52.7 53.7 52.9 53.3 54.0 53.0 54.6

100 None 0.6 0.7 0.7 0.7 1.2 0.8 8.7
Heuristic 0.7 0.7 0.8 0.7 1.2 0.9 8.4

APSP 0.7 0.7 0.7 0.7 1.0 0.9 8.2
PathEnum. 0.8 0.8 0.9 0.8 1.1 0.8 8.6

TwoFlow 416.0 419.6 413.1 413.1 418.0 413.6 422.5
FlowInFlow 490.2 491.5 496.3 493.4 491.3 495.5 503.0

200 None 2.1 2.2 2.4 2.3 4.1 2.9 30.8
Heuristic 2.2 2.2 2.6 2.5 4.2 3.1 31.0

APSP 2.2 2.2 2.4 2.3 3.6 3.0 30.5
PathEnum. 2.8 2.9 3.0 2.9 4.0 2.9 31.3

TwoFlow 1468.8 1472.8 1473.4 1467.3 1465.6 1479.7 1490.0
FlowInFlow 1759.9 1763.9 1755.5 1747.6 1764.4 1777.4 1787.7

500 None 11.5 11.5 14.4 12.8 31.5 26.1 286.0
Heuristic 12.0 11.9 15.8 14.1 32.6 27.1 287.1

APSP 11.9 12.1 13.9 12.8 28.2 24.9 285.7
PathEnum. 23.3 24.3 25.2 24.0 42.0 26.6 302.4

1000 None 59.3 59.6 70.3 64.7 128.5 76.1 988.5
Heuristic 61.0 61.4 75.0 69.5 132.1 81.4 993.2

APSP 61.7 61.6 67.8 64.3 118.1 74.3 983.9
PathEnum. 67.8 68.0 74.3 70.9 125.0 74.1 988.0

138

Table 9.9: Relative node pruning performance in percent for the presented pruning methods.

Size
Pruning 20 30 50 100 200 500 1000

None 50.20 > 47.37 > 38.94 > 29.32 > 24.12 > 20.64 > 17.65 >
Heuristic 50.20 > 47.37 > 38.94 > 29.32 > 24.12 > 20.64 > 17.65 >

APSP 49.10 > 45.66 > 36.76 > 27.34 > 22.36 > 18.31 > 15.63 >
PathEnum. 48.90 = 45.29 = 36.10 = 26.80 = 21.93 = 18.24 = 15.62 =

TwoFlow 48.90 = 45.29 = 36.10 = 26.74 = 21.88 = - -
FlowInFlow 48.90 = 45.29 = 36.10 = 26.74 = 21.88 = - -

Table 9.10: Relative arc pruning performance in percent for the presented pruning methods.

Size
Pruning 20 30 50 100 200 500 1000

None 33.28 > 37.39 > 34.03 > 27.50 > 24.51 > 22.29 > 18.85 >
Heuristic 29.73 > 33.18 > 29.57 > 24.64 > 22.32 > 21.25 > 18.17 >

APSP 27.58 > 30.22 > 25.99 > 21.32 > 19.52 > 17.90 > 15.61 >
PathEnum. 26.88 = 28.42 = 23.94 = 19.28 = 17.49 = 17.57 = 15.56 =

TwoFlow 26.88 = 28.42 = 23.94 = 19.15 = 17.34 = - -
FlowInFlow 26.88 = 28.42 = 23.94 = 19.15 = 17.34 = - -

in Table 9.8, may lie between 30% (size 100) or 200% (size 500). Whether the benefit is worth
the additional run-time will have to be seen. Note that for sizes 100 and 200, PathEnumeration
does not produce the same results as TwoFlow or FlowInFlow (but is not significantly different).
This is due to the cutoff rule discussed in detail in Section 9.6.7. For the two largest size classes,
the performance of PathEnumeration is quite close to its fallback methods APSP and Testing.
Generally, APSP performs very similar to PathEnumeration. The difference is basically the
fraction of nodes for which a path that is not simple and which fulfills the delay constraints
exists. As a further observation, the heuristic pruning is not able to prune any nodes (in addition
to None), which means that there never is a situation where a node in the extended component
graph has no incoming or outgoing arcs so that it can be removed. This is also the reason why
APSP does not include this step.
Table 9.10 shows the relative arc pruning performance PArel for the presented pruning methods.
We can again observe that the pruning efficiency increases with the instance size. In contrast to
the node pruning performance, now we can see the value of the heuristic pruning. The difference
in pruning performance when compared to None is caused by removing the incoming arcs of
s and the outgoing arcs of t while calculating PAd

s,t within an extended component. With this
rule alone we can remove about 4% of arcs from PAf , which is reduced to 0.5% for the largest
instance sizes. Considering the delays of paths by using APSP allows us to remove another 3%
of arcs. And finally, by calculating the exact domain, we can remove an additional 2%. As

139

Table 9.11: Relative node fixing performance in percent for the presented fixing methods.

Size
Fixing 20 30 50 100 200 500 1000

None 7.74 < 6.60 < 5.13 < 2.95 < 1.53 < 0.59 < 0.30 <
Dominators 7.74 < 6.60 < 5.13 < 2.95 < 1.53 < 0.59 < 0.30 <

Testing 7.78 = 6.69 = 5.22 = 3.03 = 1.61 = 0.62 = 0.31 =
TestingSAP-0 7.74 < 6.60 < 5.13 < 2.95 < 1.53 < 0.59 < 0.30 <
TestingSAP-1 7.78 = 6.69 = 5.22 = 3.03 = 1.61 = 0.62 = 0.31 =

PathEnum. 7.78 = 6.69 = 5.22 = 3.03 = 1.61 = 0.62 = 0.31 =
FixFlow 7.78 = 6.69 = 5.22 = 3.03 = 1.61 = 0.62 = 0.31 =

Table 9.12: Relative arc fixing performance in percent for the presented fixing methods.

Size
Fixing 20 30 50 100 200 500 1000

None 1.86 < 1.67 < 1.15 < 0.67 < 0.26 < 0.10 < 0.05 <
Dominators 1.86 < 1.67 < 1.15 < 0.67 < 0.26 < 0.10 < 0.05 <

Testing 1.94 = 1.77 = 1.26 = 0.73 = 0.30 = 0.11 = 0.06 =
TestingSAP-0 1.86 < 1.67 < 1.15 < 0.67 < 0.26 < 0.10 < 0.05 <
TestingSAP-1 1.86 < 1.67 < 1.15 < 0.67 < 0.26 < 0.10 < 0.05 <

PathEnum. 1.94 = 1.77 = 1.26 = 0.73 = 0.30 = 0.11 = 0.06 =
FixFlow 1.94 = 1.77 = 1.26 = 0.73 = 0.30 = 0.11 = 0.06 =

with the node pruning performance, there is nearly no benefit in using PathEnumeration for the
largest instance size when comparing to APSP, as a lot of calls to PathEnumeration end up being
answered by APSP.
As we are able to exclude about 75% of nodes from PNf and 80% of arcs from PAf , one could
hope that we are also able to fix a significant number of nodes and arcs. Unfortunately, this is
not the case, as Table 9.11 shows for the node fixing performance and Table 9.12 for the arc
fixing performance. The presented results are based on using None as pruning method. For
node fixing, we can see that for small instance sizes, we can fix about 1.5 nodes for every virtual
arc (7.7% of 20 nodes) which increases to three nodes for every virtual arc for instances of size
1000. The advantage of exact methods, while statistically significant, is negligible. It can be
seen that Dominators has exactly the same performance as None, so the extended component
graph does not contain dominators. For our instances this is not surprising since for every arc
in the substrate there also exists the reverse arc. Therefore, the extended component graphs are
strongly node biconnected and no dominators exist. This method is only interesting in situations
when reverse arcs are missing. Also TestingSAP-0 fails to find any nodes to fix.
For the arc fixing performance, the situation is basically the same, but the performance is even
lower. The astute reader will have noticed that we only used None as pruning method for com-

140

Table 9.13: Average relative node pruning (PN), node fixing (FN), arc pruning (AP) and arc
fixing (AF) performance of PathEnumeration for an individual substrate domain evaluation in
percent.

Size PN FN PA FA
20 23.15 19.34 10.06 6.32
30 24.16 14.12 12.36 3.91
50 20.96 9.27 12.30 2.23

100 16.04 5.37 11.81 1.31
200 14.27 2.72 12.40 0.52
500 12.91 1.10 14.70 0.20

1000 11.47 0.56 13.07 0.09

paring the different fixing methods, but the fixing methods depend on the employed pruning
method. We have already shown the influence on the run-time. As for the relative node fix-
ing performance, there is no detectable difference depending on the employed pruning. The
only observable difference is the arc fixing performance of TestingSAP-1. By using APSP or
PathEnumeration as pruning method, it reaches the fixing performance of Testing. However, it
requires much more run-time, which makes TestingSAP-1 uninteresting as fixing method and is
the reason why we do not show the more detailed data.
A related question regarding the pruning and fixing capabilities of the different methods is the
performance cost of having to combine the different substrate domains. Until now, we have only
looked at the final virtual arc domains. However, they are of course weaker (i.e., less restrictive)
than the substrate domains they are built upon. Table 9.13 shows the average domain pruning
and fixing performance of PathEnumeration (used both for pruning and fixing) for individual
substrate domain calculations, before they are combined into a virtual arc domain. For instance,
it shows that for size 20, a delay restricted simple path in the substrate can use about 23% of
the available substrate nodes and has to use 19% of the available substrate nodes. That means
we are only uncertain about 4% of substrate nodes. This uncertainty increases with instance
size. When we compare these values to PNrel and FNrel, we see that due to the combination of
substrate domains, we loose roughly half of the pruning and fixing performance, i.e., PNrel is
doubled and FNrel is halved. This, however, can also be interpreted in a positive way. Once we
are able to fix the locations of the source and the target node of a virtual arc, we can expect to
be able to remove half of the nodes that we considered usable and we can double the number of
nodes that we know we have to use.
Until now we have concentrated on the final result of the preprocessing algorithm. We will now
focus on its inner workings, for example how many domains have to be calculated and what
the benefit of memoization is. The results presented are based on the preprocessing algorithm
using PathEnumeration as pruning and fixing method. Table 9.14 shows the characteristics of
the preprocessing algorithm 9.3. The average VNMP instance of size 1000 contains 1700 virtual
arcs, which means that we have to calculate 1700 virtual arc domains (CDom). Because of the
high average number of mapping locations for virtual nodes (see Chapter 5), this corresponds

141

Table 9.14: Properties of the preprocessing algorithm 9.3: Average number of virtual arcs |A′|,
calculated virtual arc domains (CDom), substrate domain requests (Dom Req), domain requests
that were not memoized (DR Miss) and domain requests within a component (DR Comp).

Size |A’| CDom Dom Req DR Miss DR Comp
20 432 432 6291 803 358
30 629 629 16588 2062 1659
50 947 947 60044 5548 6417

100 1753 1753 420592 19280 26830
200 1695 1695 1086983 63321 121473
500 1732 1732 3197825 313422 661395

1000 1723 1723 7843384 1047682 2456685

Table 9.15: Properties of algorithm 9.2 for calculating PNd
s,t within a component: Average

number of domain requests that are memoized (Pos Hit), that are not memoized (Pos Miss),
that have equal upper and lower bounds (Pos EqB), that have to be calculated by executing the
pruning method (Pruning), the stored PNd

s,t within the components (Sto. D.) and the domain
simplification efficiency for possible nodes.

Size Pos Hit Pos Miss Pos EqB Pruning Sto. D. SEff[%]
20 46 312 206 106 59 33.2
30 166 1493 1017 476 306 45.9
50 563 5854 4411 1442 946 47.4

100 2170 24660 20265 4395 2783 47.3
200 9672 111801 96415 15386 9133 44.4
500 83308 578087 501803 76284 52939 32.8

1000 323052 2133633 1931410 202223 138851 31.5

to calculating 7.8 million substrate domains (Dom Req). However, only 1 million of those are
unique (DR Miss). By storing the result of the substrate domain calculation, we can reduce the
number of calculations to a seventh of what we would have to do without memoization. For
calculating the unique substrate domains, we have to calculate 2.4 million substrate domains
within the crossed components (DR Comp). It can be seen that the path of a substrate connection
in the simplified block tree crosses about 2.4 components on average. For smaller instances,
fewer components have to be crossed. This is the point where execution of algorithm 9.2 begins
to calculate PNd

s,t and FNd
s,t within a component.

The properties of the PNd
s,t calculation are shown in Table 9.15. Out of the 2.4 million substrate

domain requests within a component, only 300000 can be served directly from memory (PosHit).
For the remaining 2.1 million requests (Pos Miss), we now calculate upper and lower bounds for
PNd

s,t. For 1.9 million requests, the upper and lower bounds are equal (Pos EqB), so we know
PNd

s,t and do not need to call the pruning method. Note that the distribution between direct

142

Table 9.16: Properties of algorithm 9.2 for calculating FNd
s,t within a component: Average

number of domain requests that are memoized (Fix Hit), that are not memoized (Fix Miss), that
have equal upper and lower bounds (Fix EqB), that have to be calculated by executing the fixing
method (Fixing), the stored FNd

s,t within the components (Sto. D.) and the domain simplification
efficiency for fixed nodes.

Size Fix Hit Fix Miss Fix EqB Fixing Sto. D. SEff[%]
20 43 315 223 92 45 35.0
30 140 1519 1150 369 201 50.9
50 403 6014 5042 972 516 56.0

100 1136 25694 23252 2442 1142 58.5
200 2580 118893 111257 7636 3120 61.2
500 7361 654033 621246 32787 13097 60.9

1000 17699 2438987 2357299 81688 33148 59.5

domain hits and equal bounds is skewed because of the domain simplification that is performed
at the end of algorithm 9.2. For the remaining 200000 requests, we have to actually calculate
the domain by using the pruning method. Of those calculated domains, we have to store only
138000, which gives a simplification efficiency (SEff) of 30%, which means that we save 30%
of memory.
The properties of the FNd

s,t calculation of algorithm 9.2 are shown in Table 9.16. For fixing
nodes, even fewer requests can be served from memory (Fix Hit). However, the number of
times we actually have to execute a fixing procedure is lower than for the pruning procedure,
the rest of the domain requests can be answered due to equal bounds. In addition, the simplifi-
cation efficiency is better than for the calculation of possible nodes. This is because generally,
very few nodes can be fixed, so FNd

s,t stays the same for a wide range of delays, which makes
simplification work very well.
To sum it all up, due to the design of the preprocessing algorithm, especially with respect to
domain bounds and memoization techniques, the selected pruning method (PathEnumeration) is
only called 200000 times and the fixing method 80000 times to calculate 7.8 million substrate
domains. This is a reduction of the required computations of 97.4% for pruning and 99% for
fixing. In addition, the substrate domain problems that have to be solved eventually are smaller
than the original problem, since we only consider a component instead of the complete substrate
graph, which also increases efficiency.
Based on the presented data regarding the node and arc pruning performances, one could ask if
it is possible to prune the substrate graph of the input VNMP instance as a whole, i.e., remove
nodes and arcs that do not occur in any PNf or PAf . Related to this is which nodes or arcs have to
be used, i.e., occur in any FNf or FAf . To explore this, we executed the preprocessing algorithm
using PathEnumeration as pruning and fixing method on the complete VNMP instance set with
loads from 0.1 to 1. We tested with different loads because with fewer virtual networks the
probability that some parts of the substrate cannot be used increases. The results are presented
in Table 9.17. By PNS we denote the fraction of substrate nodes that occur in any PNf , PAS

143

Table 9.17: Influence of the VNMP instance load on the preprocessing algorithm’s run-time
(t[s]), the time required to calculate the simplified block tree (tb[s]), the fraction of substrate
nodes (PNS) and arcs (PAS) which are contained within at least one PNf or PAf and the fraction
of substrate nodes (FNS) and arcs (FAS) which are contained within at least one FNf or FAf .

Load
Size 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

t[s] 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1

100 0.3 0.3 0.4 0.5 0.5 0.6 0.7 0.7 0.8 0.8
200 1.0 1.3 1.5 1.7 1.9 2.1 2.2 2.5 2.7 2.9
500 11.4 15.7 17.6 18.9 19.8 21.6 21.9 23.2 24.3 25.4

1000 15.9 26.0 34.5 40.9 46.7 51.9 58.4 63.0 68.1 72.2
tb[s] 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1000 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
PNS[%] 20 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

30 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
50 99.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
200 98.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 90.1 99.1 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1000 86.9 97.0 99.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0
PAS[%] 20 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

30 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
50 99.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
200 97.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 89.9 99.1 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1000 87.1 96.7 99.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0
FNS[%] 20 26.7 34.0 39.0 43.7 47.3 51.2 54.2 55.8 58.2 60.7

30 28.9 34.6 38.4 43.4 46.4 48.1 50.4 52.2 54.7 56.6
50 24.1 28.6 31.4 33.7 35.8 37.5 39.6 41.5 43.9 45.3

100 21.7 25.9 27.5 29.9 31.7 33.3 34.6 35.7 37.1 38.2
200 16.9 19.3 20.9 22.3 23.9 25.1 26.1 27.4 28.3 29.3
500 9.0 11.0 12.1 13.1 13.9 14.9 15.6 16.4 17.1 17.8

1000 5.4 6.7 7.5 8.4 9.0 9.6 10.1 10.5 11.0 11.5
FAS[%] 20 15.4 19.7 22.8 25.7 28.0 30.5 32.3 33.6 35.0 36.4

30 17.0 20.0 22.6 25.7 27.1 28.4 29.9 30.8 32.2 33.5
50 14.8 17.7 19.6 21.2 22.5 23.5 24.8 25.9 27.2 28.1

100 12.7 15.7 17.0 18.5 19.8 20.9 21.8 22.6 23.5 24.3
200 8.2 10.2 11.7 12.8 13.8 14.6 15.3 16.1 16.8 17.4
500 3.8 5.3 6.0 6.7 7.2 7.8 8.3 8.7 9.2 9.5

1000 2.1 2.8 3.4 3.9 4.3 4.6 4.9 5.1 5.4 5.7

144

Table 9.18: Properties of the simplified block tree (average number of nodes N, number of
component nodes C and articulation point nodes A), average number of fixed components (FC)
and different ways of crossing (CR) them per virtual arc.

Size N A C FC CR
20 6.8 6.1 0.7 0.5 2.5
30 11.2 9.7 1.5 0.9 4.3
50 18.6 15.8 2.8 1.5 4.2

100 35.0 30.8 4.2 1.7 3.5
200 71.8 62.6 9.2 2.3 4.6
500 154.9 134.9 20.0 2.4 7.9

1000 250.8 219.7 31.1 2.9 11.4

gives the same information about substrate arcs. The fraction of nodes that are fixed in any FNf

is labeled by FNS , for arcs by FAS .
Before we have a look if pruning the substrate graph is feasible, we should analyze the required
run-times. Until now we have only looked at instances with load 1, now we can see the run-time
increase depending on the load. Significant run-times of the preprocessing algorithm only occur
at size 200 and above. The interesting thing to note here is the sub-linear growth in required
run-time. For size 1000, going from load 0.1 to 0.2 adds 10 seconds to the run-time, from 0.2
to 0.3 8.5 seconds, to 0.4 adds 6.4 seconds, and going from load 0.9 to 1 adds only 4.2 seconds.
This is caused by the employed memoization and bounding techniques which get more efficient
when more substrate domains have to be calculated. This is doubly true for PathEnumeration,
since for evaluating the domain within a component from one source to one target, we have to
enumerate the paths to all nodes within the component. This is inefficient if the domains to
the other target nodes are never requested. So the 16 seconds required for load 0.1 is basically
the warmup-time to calculate paths which get mostly reused when more virtual networks are
added. Table 9.17 also shows that the time to build the simplified block graph (labeled tb) is
insignificant, even for the largest instances. Note that this time is independent of the load.
Going back to the substrate pruning idea, we see that this is not feasible. Only for the largest
instance sizes and lowest loads some substrate nodes and arcs could be removed. Only for load
0.1 and sizes 500 and 1000 the savings are of a meaningful magnitude, around 10% for nodes
and arcs. Far more interesting is the fraction of nodes FNS and and arcs FAS for which we know
that we have to use them. In the extreme case of size 20 and full load, 60% of the substrate
nodes and 36% of the arcs have to be used. For the largest instances, this is reduced to 11% for
nodes and 6% for arcs. This information can be used for instance to derive lower bounds for the
substrate usage cost.
To finalize the discussion of the preprocessing algorithm, we will have a look at miscellaneous
properties that did not fit into the discussion before. They are presented in Table 9.18. Previously
(in Table 9.1), we have only presented the average size of the simplified block tree over a limited
range of instance sizes, Table 9.18 shows the size for all instance sizes (N). It can be seen that

145

the simplified block tree only requires 25% to 35% of the number of nodes in the substrate
graph to describe the main structure of the substrate. The following two columns in the table
show the distribution of nodes in the block tree. Most of the nodes represent articulation points
(A), only 10% to 15% of the nodes represent components (C). Note that this number slightly
underrepresents the number of components that are found while calculating the block tree, since
components that are only connected via one articulation point to the rest of the graph get removed
by the simplification procedure.
We have shown that only a few nodes can be fixed for virtual arcs. There is however a related
property that we have not touched upon: fixed components. These are components that have
to be touched by a virtual arc. This includes just using one node of the component and stands
in contrast to the definition of crossed component, which excludes components of which only
one node is used. This difference is essential when we take the resources within components
into account. Even if a virtual arc only uses one node of a component, it consumes resources.
This will become relevant in Chapter 10 for determining satisfiability of a VNMP instance.
Table 9.18 shows that a virtual arc has to use between 0.5 and 2.9 components (column FC).
The last column (CR) shows by how many ways these forced components can be traversed on
average.

9.7 Conclusion

In this chapter, we have presented a preprocessing algorithm for VNMP instances. Its main aim
is to calculate tight domains of the virtual arcs, i.e., which substrate nodes or arcs can be used
by the implementation of a virtual arc and which substrate nodes or arcs have to be used. This
information is especially useful for removing unnecessary variables and constraints in VNMP
models.
The preprocessing algorithm works in two phases. The first phase is independent of the vir-
tual network configuration of the instance. It calculates the simplified block tree of the sub-
strate, which contains two types of nodes: Articulation points, which directly represent a node
of the substrate graph, and component nodes, which represent a subgraph of the substrate whose
shadow is biconnected. The results have shown that the simplified block tree is rather compact,
requiring about a quarter of the substrate nodes to represent the global structure of the substrate.
The second phase of the preprocessing algorithm derives the domains for the virtual arcs by
using the block tree as a guide. Just using the tree alone gives very good results, depending on
the instance size 50% to 83% of substrate nodes and 67% to 81% of arcs can be excluded for
each virtual arc as unusable. Note that these numbers are high, even though they are based on
all mapping possibilities of the source and target node of the virtual arcs. We have demonstrated
that when the locations are fixed, about half of the remaining nodes and arcs can be excluded.
As for determining which nodes and arcs have to be fixed, only very few nodes and arcs can be
identified per virtual arc.
To further improve this performance, we have introduced methods for determining possible
nodes (the pruning methods) and fixed nodes (the fixing methods) within the graph represented
by a component node of the block tree. We extend this graph by adding a node for every arc,
which results in the extended component graph. This allows us to concentrate exclusively on

146

nodes. The pruning problem is NP-complete, while fixing is in P . For both problems we
presented heuristic and exact solution methods and evaluated them. Based on the results, three
interesting method selections for preprocessing can be identified: just using the simplified block
tree (None as pruning and fixing method), which gives the best performance for invested time,
using APSP as pruning and Testing as fixing method, which is the middle ground between run-
time and pruning/fixing performance and using PathEnumeration for pruning and fixing for the
best performance at the cost of doubling run-time (in relation to doing nothing) in the worst case.
The ILP based pruning and fixing methods were not competitive, even though some effort was
expended to increase their efficiency.

A very interesting point to note is that PathEnumeration beats the ILP methods to a large ex-
tent. This is surprising, since usually it is not a good idea to solve a problem by enumerating all
solutions and one would expect that the more sophisticated methods perform better. There is a
number of factors that make PathEnumeration perform so well. First of all, by enumerating sim-
ple paths originating at a specific node and limited by a certain delay, we do not only solve one
pruning or fixing problem, we solve all pruning and fixing problems that use the originating node
as source node and a delay not larger than the current bound. Also the ILP based approaches
can solve more than one problem per execution (remember that a path proves for all contained
nodes that they are possible in the case of pruning and that only nodes contained in a found path
can be fixed), but not as many as PathEnumeration. For PathEnumeration, it is also possible
to build upon previous executions when the delay bound is increased. This is not possible for
the ILP based methods. The third factor is the sparseness of the extended component graphs
which makes enumerating all paths feasible. We expect that the ILP based methods would not
fail with denser graphs, but they will definitely require more memory and even more run-time.
On the topic of memory, path enumeration starts to fail for larger instances due to its memory
requirements, which is why we needed to add a fallback to simpler methods if the extended
component graphs are too large. We performed some optimizations to reduce the memory re-
quirements (like storing only unions and intersections of paths), but there is still significant room
for improvement.

During the evaluation, we have shown some pruning and fixing methods that seem to be useless.
We have included them because the pruning and fixing methods are applicable to more than just
preprocessing. Due to external factors (for instance a partial solution for the VNMP instance),
we might be able to deduce that a substrate node cannot be used any longer. Based on this new
information, we can execute the pruning and fixing methods within the changed component and
derive new information. In these cases, a fixing method like Dominators might be useful, even
though it is not so during preprocessing, due to the structure of the VNMP instances.

We have shown that for good performance while executing the pruning and fixing methods it
is essential that domain bounds are calculated and used, since a very large fraction of domain
requests can be answered because the upper and lower bounds are equal. Even if they are not
equal, they are useful to reduce the number of nodes for which we have to test whether they are
possible or fixed. Memoization is a central component of fast preprocessing.

147

9.8 Future Work

In this section, we discuss possibilities for future research on the topic of preprocessing.
The preprocessing for VNMP instances produces a lot of useful information, especially when
using Path Enumeration. It might be possible to develop specialized VNMP problem formula-
tions that make use of this information, for instance a model that works on the simplified block
tree with additional variables that select a specific path within crossed biconnected component.
One important caveat to the presented preprocessing method is that it works best with sparse
graphs. A computational study is still necessary to determine the characteristics of this method
for dense graphs, for applications outside of the telecommunication network domain. It is clear
that the decomposition based on the block tree will not work any more, since we will most likely
end up with a single biconnected component. Therefore well performing pruning and fixing
algorithms will be key. We expect that methods that take the delay into account are going to
perform far better in terms of pruning or fixing performance than the alternatives, but this also
warrants further investigation.
We saw that the order in which the virtual arc domains are calculated can influence the execution
speed. As a refinement, it could be tested if additional improvements can be achieved by looking
at the target nodes of virtual arcs in addition of the source nodes. That means, when we know
the virtual arcs that may start at a particular substrate node, we could group them according to
their possible target nodes. For one particular pair of source and target nodes and the virtual arcs
that may be implemented between them, it might be beneficial to impose an additional order
based on the delay. Here different strategies (high delay first, low delay first, . . .) could be
tested. As an additional benefit, after we have solved the substrate domain problems for one
particular source node in the substrate, it is possible to erase all memoized data associated with
this node, since we will not need it again. This could make preprocessing applicable to even
larger instances.
At the moment, the selection of pruning and fixing methods is static, with the exception of
PathEnumeration, which falls back to other methods if the component graphs grow too large.
It might be beneficial to add more fine-grained control here, and fall back in a staggered way,
e.g., first try to apply PathEnumeration, if the problem is too complex fall back to Testing or
APSP, if this still uses too much time, just use None. However, for the tested instance sizes,
there was never a big run-time difference between applying Testing/APSP and None, so this
might only be beneficial for even larger VNMP instances. Another possibility would be to apply
PathEnumeration only for a fraction of calls to a pruning method to derive better bounds. It might
also be possible to initialize the stored domains within a component with interesting values, for
instance with the domains for all pairs of nodes while using the shortest possible delay as delay
bound.
A refinement for the pruning methods could be using the All Pair Shortest Path pruning while
keeping track of the shortest paths (instead of just their delays). If we accept a node, but the
shortest paths from s to this node and from this node to t are not disjoint, then we use an exact
method to determine if this node really belongs to PNd

s,t. Since the pruning performance of
APSP is very close to the exact methods, it might be feasible to use an ILP based approach also
for the largest instance sizes without too much of a performance hit.

148

We have discarded two ILP formulation ideas for the node testing problem because they did not
fit our requirements. However, it might be interesting to see if they offer advantages for larger,
denser graphs and in situations were reconfigurability is not a huge concern. For solving the
FIXFLOW model, it was beneficial to only have one constraint which has to be removed instead
of having |V | constraints where coefficients have to be adapted. This modification might also be
possible for the TWOFLOW and FLOWINFLOW models and speed up preprocessing.
A further idea to improve preprocessing efficiency while using ILP pruning or fixing would be
collecting all required domains within components and then solving them in one go for the same
s, t and k values, but with increasing d, because the possible nodes for low d values are still
possible for higher d and do not need to be tested again. The same applies to fixed nodes, for
increasing d, only nodes that have been fixed for lower d need to be tested again. Depending
on the number of different d values that have to be tested, it might even be beneficial to solve
another problem: what is the lowest d such that a simple path from s to t over k exists or what
is the highest d such that no simple path from s to t not containing k exists respectively. With
this, we would have to solve two optimization problems for each k, instead of k satisfaction
problems for each delay bound. This idea directly leads to a more space efficient method of
storing domains for memoization. Currently, we store complete domains within components
for one source-target node pair sorted by delay. Another possibility would be to store for each
node (and source and target node) the minimum allowed delay required to make it possible and
the maximum allowed delay to keep it fixed. Depending on the number of different values for
the delay bound that occur this could lead to significant memory savings, but of course causes
the domain extraction time to be linear in the number of nodes since we need to assemble the
domain based on delay values.
We have shown that the combination of substrate domains to build the domains of virtual arcs
doubles the possible nodes and arcs and halves the fixed ones. However, we usually combine
a lot of different substrate domains (for size 1000 2500 for the expected case) to achieve this
doubling. That means that each additional substrate domain only adds very little additional in-
formation. It might be possible to rank substrate domain calculation according to their potential
of adding new information. For instance, if a substrate domain calculation is done for a connec-
tion that starts and ends at nodes for which no such calculation has been executed until now, then
it has a high potential for adding new possible nodes/arcs and removing fixed nodes and arcs. It
might be possible to calculate substrate domains exactly for the ones with the highest potential
and then use the knowledge already gathered about the domain of the virtual arc to speed up
the calculation of the complete domain. If we use the information about the already gathered
domain only in this limited way, it might be possible to avoid the run-time penalty that we have
observed.
A surprising number of substrate nodes or arcs can be fixed, i.e., they have to be used. This
information might be useful for defining more intelligent neighborhoods, for instance the clear-
ing neighborhood as discussed in Chapter 6 can skip evaluating nodes which have to be used
anyway. Such nodes and arcs are also interesting in their own right. If they are removed from
the substrate, the flexibility afforded by being able to chose mapping locations for virtual nodes
is not enough to ensure a feasible solution to the VNMP instance, so they are very critical. Of
course, when capacity constraints are considered also other nodes might be critical in this sense.

149

CHAPTER 10
Constraint Programming

10.1 Introduction

In this chapter, we investigate Constraint Programming (CP) approaches for solving the VNMP.
For a treatment of the basic working principles of CP, see Section 2.2.11. Section 10.2 in-
troduces CP formulations for the VNMP. In Section 10.3, we apply the lessons learned while
designing Construction Heuristics (Chapter 6) to devise heuristic branching rules that guide CP
towards feasible solutions. Methods for strengthening propagation are discussed in Section 10.4.
The analysis of the different improvements for the CP approach can be found in Section 10.5.
Section 10.6 summarizes the results and Section 10.7 shows possible directions for future work.

10.2 Models

We will present two different CP models for solving the VNMP. Their main difference is the
type of variables used for modeling. The presented model in Section 10.2.1 utilizes binary
variables. For instance, that means for representing an implementing path for a virtual arc, we
need variables for each substrate arc telling us whether this substrate arc is used to implement this
particular virtual arc. Another possibility is using set variables as presented in Section 10.2.2.
With set variables, we only need one variable to define the implementing path of a virtual arc.
Usually, CP models based on set variables perform better, both in terms of run-time and memory
requirements [46]. We will evaluate whether this is true for the VNMP models in Section 10.5.
The following CP models assume that preprocessing as defined in Chapter 9 has been executed.
As a short summary, PNf ⊆ V is the set of substrate nodes that a virtual arc f ∈ A′ can use
(the possible nodes). PAf ⊆ A is the set of substrate arcs that a virtual arc can use (the possible
arcs). Correspondingly, FNf ⊆ V is the set of substrate nodes that a virtual arc has to use (the
fixed nodes), and FAf ⊆ A is the set of substrate arcs that a virtual arc has to use (the fixed
arcs). If no preprocessing has taken place, PNf = V, ∀f ∈ A′, PAf = A, ∀f ∈ A′ and
FNf = FAf = ∅, ∀f ∈ A′.

151

Table 10.1: Variables of the CP model based on binary variables

Variable Domain Description

xki ∀(k, i) ∈M [0, 1] Mapping for virtual nodes
yfe ∀f ∈ A′, ∀e ∈ PAf [0, 1] Substrate arcs for virtual arcs
zfi ∀f ∈ A′, ∀i ∈ PNf [0, 1] Substrate nodes for virtual arcs
uVi ∀i ∈ V [0, 1] Used substrate nodes
uAe ∀e ∈ A [0, 1] Used substrate arcs
aCPU
i ∀i ∈ V [0,

∑
k∈V ′ ck] Additional CPU resources

aBW
e ∀e ∈ A [0,

∑
f∈A′ bf] Additional bandwidth

10.2.1 Binary Model

To formulate a CP model for the VNMP based on binary variables, we need two sets of main
variables. The first set of variables xki , ∀(k, i) ∈ M , is used to specify the mapping of
each virtual node. If xki is true, virtual node k is mapped to substrate node i. We define
xki = 0, ∀(k, i) ∈ (V ′ × V)\M , to simplify the model definition. To define the paths used
to implement the virtual arcs, we use variables yfe , ∀f ∈ A′, ∀e ∈ PAf . If yfe is true, substrate
arc e is used to implement virtual arc f . These variables are sufficient to define a solution to
the VNMP. However, to be able to express the constraints we need further auxiliary variables.
First, there are variables zfi , ∀f ∈ A′, ∀i ∈ PNf . If zfi is true, substrate node i is crossed by the
implementing path of virtual arc f . This information is required to define the CPU constraints.
Variables uVi , ∀i ∈ V , are true for all substrate nodes that are used to host virtual nodes while
variables uAe , ∀e ∈ A, are true for all substrate arcs which are used to implement virtual arcs.
They are required to define the objective. To be able to buy additional CPU resources if neces-
sary, we use integer variables aCPU

i , ∀i ∈ V . They specify for each substrate node how much
additional CPU resources have been bought. Integer variables aBW

e , ∀e ∈ A, fulfill the same
role for additional bandwidth for each substrate arc. A summary of the used variables and their
domains is shown in Table 10.1.

The complete CP model for the VNMP based on binary variables (CPBIN) is defined by equa-
tions (10.1)–(10.11). We begin the discussion of the model with the objective function as shown
in (10.1). The aim is to minimize the cost incurred by having to buy additional resources. If it is
possible to realize the virtual network load with the available resources, we want to reduce the
cost incurred by using the substrate network as much as possible. K denotes a sufficiently large
constant, for instance the sum of all pVi and pAe .

min
∑
i∈V

KpCPUaCPU
i +

∑
e∈A

KpBWaBW
e +

∑
i∈V

pVi u
V
i +

∑
e∈A

pAe u
A
e (10.1)

152

For a valid description of a VNMP solution, we must first enforce that every virtual node is
mapped exactly to one substrate node.

∑
(k,i)∈M

xki = 1 ∀k ∈ V ′ (10.2)

The implementations of the virtual arcs have to be simple paths from the mapping location
of the source of the virtual arc to the mapping location of the target of the virtual arc within
the substrate. We use the idea of network flows to formulate this. Each virtual arc sends one
unit of flow across the substrate network, which enters at the mapping location of the source
of the virtual arc and leaves at the mapping location of the target. At the nodes we have flow
conservation, which means that all incoming flow has to leave again. The flow defines the
implementing path for each virtual arc. This is enforced by the following two constraints, which
also link the flow to the zfi variables. Remember that we have defined xki = 0 for (k, i) /∈M .

∑
e∈PAf |t(e)=i

yfe + x
s(f)
i = zfi ∀f ∈ A′, ∀i ∈ PNf (10.3)

∑
e∈PAf |s(e)=i

yfe + x
t(f)
i = zfi ∀f ∈ A′, ∀i ∈ PNf (10.4)

The CPU load caused by hosting virtual nodes and routing data may not exceed the available
resources. If necessary, more resources have to be bought. The amount of CPU resources that
have to be bought for a particular substrate node are the resources that are missing after the
mapped virtual nodes and all traversing virtual arcs have consumed the available resources, but
at least zero. We have stated the CPU constraint in this way so that aCPU

i is always as small as
possible. If we had chosen for example an inequality to formulate the CPU constraint, a complete
assignment to the main variables (xki and yfe) would not cause aCPU

i to become assigned, it would
just force a lower bound. Additional branching would be needed to find a valid assignment to
aCPU
i . Suffice it to say, this would be very inefficient, since we already know that the smallest

possible value will be valid and also the best assignment according to the employed objective
function.

max(0,
∑

(k,i)∈M

ckx
k
i +

∑
f∈A′|i∈PNf

bfz
f
i − ci) = aCPU

i ∀i ∈ V (10.5)

In a similar fashion, the bandwidth required by virtual arcs crossing a substrate arc may not
exceed the available resources. If necessary, more resources have to be bought.

max(0,
∑

f∈A′|e∈PAf

bfy
f
e − be) = aBW

e ∀e ∈ A (10.6)

153

The third resource we need to take care of is the delay. The implementing path for the virtual
arcs may not exceed the respective allowed delays.

∑
e∈PAf

dey
f
e ≤ df ∀f ∈ A′ (10.7)

To make the objective function work as intended, we need to set uVi if at least one virtual node
is mapped to substrate node i.

max(xki | (k, i) ∈M) = uVi ∀i ∈ V (10.8)

In addition, we need to set uAe if at least one virtual arc uses substrate arc e.

max(yfe | e ∈ PAf) = uAe ∀e ∈ A (10.9)

As the last part of the model, we need to set variables which we know to be set based on the
results of preprocessing.

zfi = 1 ∀f ∈ A′, ∀i ∈ FNf (10.10)

yfe = 1 ∀f ∈ A′, ∀e ∈ FAf (10.11)

10.2.2 Set Model

As with the discussion of CPBIN, before we can state the constraints we need to define the
used variables. To define a VNMP solution, we again need two sets of main variables. The
set variables Pf , ∀f ∈ A′, define for each virtual arc the set of substrate arcs that are used
to implement the virtual arc. The set variables Xi, ∀i ∈ V , define for each substrate node
which virtual nodes it hosts. Note that this is an indirect way of specifying the locations of the
virtual nodes. Defining it this way will become useful later when stating the CPU constraint for
substrate nodes.
In addition to those main variables, we need auxiliary variables that allow us to formulate the
resource constraints. To define the set of virtual arcs that utilize a substrate arc, we use vari-
ables Ye, ∀e ∈ A. These variables are in some sense the duals of Pf , so they cannot express
any additional information. However, we need both variable types to specify (and implement)
constraints, Pf to define the delay constraints and Ye for the bandwidth constraints. Variables
Zi, ∀i ∈ V , contain for each substrate node the virtual arcs that are crossing it. The remaining
variables are the same as for CPBIN. Binary variables uVi , ∀i ∈ V , to specify which substrate
nodes are used and uAe , ∀e ∈ A, for the used substrate arcs. Integer variables aCPU

i , ∀i ∈ V ,
denote bought CPU resources for each substrate node, variables aBW

e , ∀e ∈ A, bought band-
width capacities for each substrate arc. To simplify stating the model we define the following
four (constant) sets: δ+k and δ−k , ∀k ∈ V

′, the sets of virtual arcs leaving and entering a virtual

154

Table 10.2: Variables and auxiliary constants of the CP model based on set variables

Variable Domain Description

Pf ∀f ∈ A′ [∅ .. PAf] Substrate arcs for virtual arcs
Xi ∀i ∈ V [∅ .. {k | (k, i) ∈M}] Virtual nodes mapped to a substrate node
Ye ∀e ∈ A [{f ∈ A′ | e ∈ FAf} .. {f ∈ A′ | e ∈ PAf}] Virtual arcs using a substrate arc
Zi ∀i ∈ V [{f ∈ A′ | i ∈ FNf} .. {f ∈ A′ | i ∈ PNf}] Virtual arcs using a substrate node
uVi ∀i ∈ V [0, 1] Used substrate nodes
uAe ∀e ∈ A [0, 1] Used substrate arcs
aCPU
i ∀i ∈ V [0,

∑
k∈V ′ ck] Additional CPU resources

aBW
e ∀e ∈ A [0,

∑
f∈A′ bf] Additional bandwidth

δ+k ∀k ∈ V ′ {f ∈ A′ | s(f) = k} Outgoing arcs of a virtual node
δ−k ∀k ∈ V ′ {f ∈ A′ | t(f) = k} Incoming arcs of a virtual node
δ+i ∀i ∈ V {e ∈ A | s(e) = i} Outgoing arcs of a substrate node
δ−i ∀i ∈ V {e ∈ A | t(e) = i} Incoming arcs of a substrate node

node and δ+i and δ−i , ∀i ∈ V , the sets of substrate arcs leaving and entering a substrate node. A
summary of the used variables, constants and their domains is shown in Table 10.2.
The complete CP model for the VNMP based on set variables (CPSET) is defined by equations
(10.12)–(10.20). We begin the discussion of CPSET with the objective function as shown in
(10.12). As before, the aim is to minimize the cost incurred by having to buy additional re-
sources. If it is possible to realize the virtual network load with the available resources, we want
to reduce the cost incurred by using the substrate network as much as possible.

min
∑
i∈V

KpCPUaCPU
i +

∑
e∈A

KpBWaBW
e +

∑
i∈V

pVi u
V
i +

∑
e∈A

pAe u
A
e (10.12)

One type of constraint that we will make heavy use of during the definition of the constraints for
CPSET is the disjoint union, which we denote by the symbol t. Its semantics are the same as
the regular union, with the additional constraint that the sets being combined are disjoint. As an
example, the constraint A t B = C states that the set C contains all elements from sets A and
B and each element within C has to have a unique source, i.e., either A or B but not both. This
allows us to state the mapping constraint as shown in equation (10.13) in an elegant way. All
virtual nodes have to be hosted on exactly one substrate node.

⊔
i∈V

Xi = V ′ (10.13)

The CPSET model is based on the idea of network flows. The flow conservation constraints
are shown in equations (10.14) and (10.15). They state that all virtual arcs that use one of the
incoming arcs of a substrate node together with all virtual arcs whose source is mapped to the
substrate node give the virtual arcs that are traversing the substrate node. All traversing virtual
arcs need to leave either by using an outgoing arc or the mapping of the target of the virtual arc.
By using the disjoint union we enforce that the implementing path for every virtual arc is simple.

155

⊔
e∈δ−i

Ye t
⊔
k∈Xi

δ+k = Zi ∀i ∈ V (10.14)

⊔
e∈δ+i

Ye t
⊔
k∈Xi

δ−k = Zi ∀i ∈ V (10.15)

The following equalities take care of the resource constraints. The amount of CPU resources
that have to be bought for a particular substrate node are the resources that are missing after the
mapped virtual nodes and all traversing virtual arcs have consumed the available resources, but
at least zero.

max(0,
∑
k∈Xi

ck +
∑
f∈Zi

bf − ci) = aCPU
i ∀i ∈ V (10.16)

In a similar fashion, the bandwidth constraints state that the amount of extra bandwidth that has
to be bought for a substrate arc is the bandwidth that is missing after the virtual arcs using that
arc have used up the available resources, but at least zero.

max(0,
∑
f∈Ye

bf − be) = aBW
e ∀e ∈ A (10.17)

The delay constraints can be stated in a straight forward manner, the delay of all substrate arcs
used to implement a virtual arc may not exceed the maximum allowed delay for the virtual arc.

∑
e∈Pf

de ≤ df ∀f ∈ A′ (10.18)

To make the objective function work as intended, we need to connect the mapping decisions
with the variable that is used to track whether a substrate node is used to host a virtual node. If
the set of hosted virtual nodes is not empty, then the substrate node is used.

min(1, |Xi|) = uVi ∀i ∈ V (10.19)

In the same way, we connect the substrate arc usage to the virtual arcs using the substrate arc. If
the set of virtual arcs using a substrate arc is not empty, then the substrate arc is used.

min(1, |Ye|) = uAe ∀e ∈ A (10.20)

156

As a last step, we need to add the channeling between the substrate arcs used to implement the
virtual arcs and the virtual arcs crossing substrate arcs.

e ∈ Pf ⇔ f ∈ Ye ∀e ∈ A, ∀f ∈ A′ (10.21)

This completes the CPSET model. Note that in comparison to CPBIN, we do not need to add
additional constraints to include information about fixed nodes or arcs. The domains calculated
for the virtual arcs during preprocessing can be used directly to define the domains of the CPSET
variables (see Table 10.2); no further constraints or considerations are necessary.
An additional characteristic of CPSET when compared to CPBIN is its greater compactness. For
instance, CPBIN requires one constraint per virtual node to ensure valid mappings, for CPSET a
single constraint is sufficient. Flow conservation only requires two constraints for every substrate
node, while CPBIN needs 2|A′|. On the other hand, we need an additional type of variables (Pf)
to formulate a valid model of the VNMP. In Section 10.5 we will analyze the practical difference
between CPBIN and CPSET.

10.3 Heuristic Branching

When trying to find solutions to the VNMP by using the CPBIN or CPSET formulations, we
need to define a branching strategy. After propagation has been performed and the domains of
the variables cannot be reduced any longer (and not all variables have been assigned a value),
branching needs to be performed to basically try out some assignments to a variable and see if
this leads to a valid solution.
As default strategy for CPBIN and CPSET we use the following. We first try to assign the
mapping variables (xki and Xi). During branching, we select the unassigned mapping variable
with the highest degree (i.e., occurs in the most constraints), and assign it the value one (for
CPBIN) or one virtual node from its domain (for CPSET). In effect, with this branching decision
we fix the mapping of one virtual node.
Once the mapping has been fixed, we branch on the variables concerned with the implementing
path of a virtual arc (yfe and Pf). We select an arbitrary variable and set its value to zero
(CPBIN), or remove a substrate arc (CPSET). In effect, we forbid the usage of a substrate arc for
a virtual arc. This might seem counter-intuitive, as we would like to directly fix an implementing
path instead of removing substrate arcs until only one path remains. However, it is not possible
to specify a branching strategy in GECODE that builds implementing paths in a logical way
(e.g., for a virtual arc select the substrate arc going away from the mapping location of its source
node, then the following arc and so on). Instead, arcs are basically randomly selected across the
substrate network and only very late in the branching it is detected that the currently selected set
of substrate arcs cannot be used to form a simple implementing path. Preliminary runs showed
a very bad performance when using this kind of strategy.
However, also the strategy of forbidding the use of a single substrate arc for a virtual arc has
its weakness. First of all, there are a lot of decisions required to reach a complete assignment
for all variables, and secondly, the implementing paths are still not built in a coherent fashion.
To alleviate those problems, we implemented a custom branching strategy, making use of the

157

results presented in Chapter 6. A branching decision is either the mapping of a virtual node or
a complete assignment of an implementing path for a virtual arc. We used CH-O to calculate
the branching decision. In the context of CP that means the following. As long as there is a
virtual arc which is implementable (source and target nodes have been mapped and does not
have a (complete) implementing path), implement a virtual arc, otherwise map a virtual node
(arc emphasis). If we implement a virtual arc, we select the most delay constrained virtual
arc from the virtual network that in total has the most stringent delay constraints. For this
virtual arc, we need to find an implementing path. However, just generating one path as possible
implementation would mean that the search is not complete (i.e., not all solutions can be found).
Therefore, we create multiple paths by following all outgoing arcs from the mapping location
of the source of the virtual arc (denoted as continuation arcs) and then finding a path that causes
the least increase to the substrate usage cost. During branching, these alternatives are tried in
order of the increase in substrate usage cost they cause. Still, this is not complete as we do not
try all possible paths, so in case we cannot find a solution by using one of the calculated paths,
we just assign one of the continuation arcs and complete the implementation of the virtual arc
with a path in a subsequent branching decision.
When we have to map a virtual node, we select the node with the DLHeavyVN strategy, i.e.,
from the virtual network that is most delay constrained we select the node that has the highest
CPU requirements (see Section 6.2). CH-O uses MostFree to determine the mapping location,
i.e., the virtual node is mapped to the substrate node which still has the most resources left. In
context of CP that means that we first try to map the virtual node to the substrate node with the
most free resources. If we fail to find a valid solution using this decision, we try the substrate
node with the second most free resources and so on.
By using this branching strategy, the performance of the CP models is at least as good as CH-O.
We expect it to be better since we can make use of the results of propagation and for instance
exclude mapping possibilities that would have been chosen by CH-O.

10.4 Strengthening Propagation

The task of propagation is to reduce the domains of variables as much as possible, based on
the imposed constraints. If the domain of a variable becomes empty, we know that the current
assignment of values to variables is inconsistent and it is not possible to find a solution that
satisfies all constraints with it. If the current assignment is inconsistent, we want to detect that as
early as possible. A way to facilitate this would be using the DomReachability propagator [140,
141], which is used to find constrained paths in a network. However, this propagator has a
high memory overhead. We would need to store three times a graph of the size of the substrate
network for each of the virtual arcs. In addition, it is based on dominator trees, which cannot
be used when we want to consider the delay constraints. These problems were actually one of
the main reasons for developing the preprocessing methods as presented in Chapter 9, as we
needed a method which is less sensitive to a high number of virtual arcs and can also consider
the delay constraints. So as a first step to strengthen propagation, we remove useless values from
the domains of the variables by using the presented preprocessing techniques.

158

This is something we can do once at the beginning when we start searching for a solution, but
does not help during the search. Based on mapping decisions or chosen implementing paths,
some nodes or arcs might become forced for virtual arcs or might not be possible any longer.
This is detected only in the simplest cases. To improve on this situation, it would of course
be possible to re-apply the preprocessing methods on the residual substrate network (i.e., the
substrate network with the capacities that are still available) and the virtual arcs that still need
to be implemented. This would mean either a very high overhead or a complex implementation
making use of upper and lower domain bounds for virtual arcs not only according to the allowed
delay, but also the available parts of the substrate network. Therefore, we chose a simpler
approach. As outlined in Chapter 9, the preprocessing does not directly calculate the domains
for the virtual arcs. Instead, it calculates domains for delay constrained paths in the substrate
network and combines the relevant domains (depending on the possible mapping locations of
the source and target node of a virtual arc) to derive the final domain of the virtual arc. Every
time the mapping targets change, there is a possibility that the domain of the virtual arc changes.
We chose to update the domain only when a mapping has been fixed, because then we have the
highest probability of actually reducing the domain for the virtual arc.
In total, we update the domain of a virtual arc f three times during the search for a solution.
The first time at the beginning, based on the results of the preprocessing procedure. Then, when
either s(f) or t(f) has been mapped and the last time when both virtual nodes have been mapped.
These domain updates just reuse information already generated during preprocessing, so they
are very fast and do not require any additional memory (aside from keeping the preprocessing
information during search). As a downside, these domains are based on the initial resources
available in the substrate network and not on the current resource levels.

10.5 Results

In this section, we evaluate the performance of the two proposed formulations for the VNMP and
the various improvements described in the previous section. We will mainly focus on solving
the VNMP-S. We do that by removing the objective we presented for the CPBIN and CPSET
models and instead add a constraint forcing Ca to be zero. Another approach would have been
to minimize Ca. Preliminary runs have shown that this reduces the number of VNMP instances
for which a valid solution can be found since the search gets stuck at finding an improvement to
a bad solution (in terms of Ca) instead of finding a valid one.
We test the following configurations:

CPB-B The CPBIN model with standard branching and no improvements.

CPS-B The CPSET model with standard branching and no improvements.

CPS-PE The CPSET model using PathEnumeration as pruning and fixing strategy for prepro-
cessing.

CPS-BR The CPS-PE configuration, but in addition using the heuristic branching introduced in
Section 10.3.

159

Table 10.3: Performance of different CP configurations depending on instance size.

Size CPB-B CPS-B CPS-PE CPS-BR CPS-VA CPS-NE CPS-OP
Valid 20 41 38 80 110 111 108 112

30 15 12 48 104 105 99 105
50 0 0 23 98 102 100 102

100 0 0 6 77 81 78 81
Mem. 20 0 0 0 0 0 0 0

30 43 0 0 0 0 0 0
50 69 57 2 0 0 0 0

100 112 60 38 23 21 10 21
Cu 20 1182.5 981.1 1011.2 1062.8 1067.5 1051.5 914.6

30 1813.1 1238.2 1399.7 1543.4 1550.5 1504.7 1336.1
50 - - 2004.2 2332.3 2368.9 2324.4 2163.4

100 - - 3487.7 4203.7 4310.1 4222.6 4097.9
t[s] 20 6299.9 6810.1 3339.5 884.1 828.4 1066.0 6996.9

30 8523.2 8890.8 5954.2 1332.0 1248.5 1751.5 8579.6
50 9801.8 6300.8 7756.6 1831.3 1497.2 1664.8 9830.0

100 9984.1 5659.1 6856.9 1822.2 1998.0 2668.1 8724.1
tn[ms] 20 1.1 1.1 0.9 0.6 0.6 0.7 0.8

30 3.8 1.9 1.4 1.5 1.4 1.4 1.8
50 13.1 4.2 2.7 2.8 2.5 2.5 3.3

100 78.0 24.7 9.1 6.4 5.7 6.9 7.3
M. Peak [MB] 20 570 105 23 38 42 28 95

30 1127 653 120 89 96 70 216
50 1587 210 446 231 249 183 414

100 3124 462 440 769 835 654 1271
Opt 20 0 0 0 0 0 0 37

30 0 0 0 0 0 0 18
50 0 0 0 0 0 0 2

100 0 0 0 0 0 0 0

CPS-VA The CPS-BR configuration enhanced by using the propagation strengthening tech-
nique for virtual arcs outlined in Section 10.4.

CPS-NE The same configuration as CPS-VA, but the heuristic branching uses node emphasis
(i.e., maps all virtual nodes first), instead of arc emphasis.

CPS-OP The CPS-VA configuration used for solving VNMP-O instead of VNMP-S.

The motivation behind this choice of configurations will become clear when the computational
results are being discussed. We use VNMP instances of size 20, 30, 50, and 100, at loads 0.1,
0.5, 0.8, and 1 as test instances. A time-limit of 10000 seconds and a memory limit of 5 GB was
employed.

160

Table 10.3 shows the performance of the different CP configurations depending on instance
size. First, we will have a look at the basic models and their characteristics, i.e., configuration
CPB-B using the CPBIN model and CPS-B using CPSET. When considering the number of
valid solutions (out of 120 instances) found by the CPBIN and CPSET models (labeled # Valid),
it can be seen that those numbers are very low, and that CPBIN has a slight advantage. Not a
single valid solution can be found for instances of size 50 and 100.

In terms of the number of times the solution procedure had to be aborted due to the memory
limit (labeled Mem.), we can see that CPSET is far better than CPBIN, for instances of size 100
nearly every execution of CPBIN has to be aborted, while CPSET succeeds at least for half of
the instances. With respect to the average substrate usage cost Cu, we can see that the solutions
found by CPSET are cheaper. However, these numbers are only based on valid solutions and as
CPBIN produces more of those we cannot conclude that solutions by CPSET are cheaper.

The average required run-time is labeled by t[s] in the table. If the execution had to be aborted,
we assume a run-time of 10000 seconds. We can observe that CPSET is faster than CPBIN. This
statement is also supported by the average time required to perform propagation before another
branching decision is necessary (labeled as node-time tn). Note that the reported values of tn
are only based on instances where the solution process was not aborted due to the memory limit.

With respect to the peak memory consumption (labeled M. Peak), we can again observe an ad-
vantage of CPSET. These values are based on instances where CP did not fail due to memory
reasons. The last shown property, the number of instances that could be solved to optimality (la-
beled Opt.), is of course zero for CPB-B and CPS-B, as they solve VNMP-S and not VNMP-O.

To sum it all up, while CPBIN is able to solve a bit more instances, CPSET requires far less
memory and also has faster propagation. Therefore, we considered CPSET to be more promising
and continued with this model as basis for further improvements.

When we activate preprocessing (CPS-PE), we can observe a huge improvement in terms of
performance. Now, CP is also able to find valid solutions for instances of size 50 and 100, and
fails due to memory reasons only for a third of instances of size 100. Also the propagation time
is decreased, since preprocessing can remove a lot of superfluous variables.

With heuristic branching (CPS-BR), we get another boost in performance. CP fails due to mem-
ory reasons only for the instances of size 100. It is interesting to see that in some cases the
peak memory requirements have increased. This is due to two effects. First of all, these num-
bers are based on more, and more challenging, instances (since fewer executions fail due to the
memory limit). Secondly, due to the employed heuristic branching scheme, we get far deeper
in the search tree than with the standard branching, which gets stuck early on due to undetected
inconsistencies. However, most of the performance increase can be explained by the capability
of CH-O for finding valid solutions. CH-O on its own finds 99 valid solutions for size 20, 96 for
size 30, 91 for size 50 and 77 for size 100. Only the remaining instances that could be solved
benefit from CP, for size 100, there is no benefit at all.

The performance of CP can be increased a little bit by using improved propagation (CPS-VA).
Two instances do not fail any more due to memory limits and four more valid solutions can be
found for the largest instance size. It is remarkable that the average propagation time does not
increase, even though we perform more propagation. The peak memory requirements on the

161

Table 10.4: Performance of different CP configurations depending on instance load

Size CPB-B CPS-B CPS-PE CPS-BR CPS-VA CPS-NE CPS-OP
Valid 0.10 19 19 66 120 120 120 120

0.50 16 15 46 119 119 118 119
0.80 13 11 31 101 106 99 106
1.00 8 5 14 49 54 48 55

Mem. 0.10 30 24 0 0 0 0 0
0.50 69 58 22 0 0 0 0
0.80 72 29 16 3 2 1 2
1.00 53 6 2 20 19 9 19

Cu 0.10 922.6 705.0 1166.3 1381.9 1382.0 1376.7 1236.7
0.50 1471.4 1142.0 1489.4 2441.9 2440.8 2409.5 2217.2
0.80 1607.7 1358.5 1579.3 2667.5 2740.4 2670.6 2516.3
1.00 1713.4 1334.0 1475.5 2119.4 2319.8 2299.9 2115.4

t[s] 0.10 8230.2 7128.2 4455.1 0.1 0.1 0.0 6087.5
0.50 8501.4 4707.4 4572.4 84.6 84.7 168.0 9407.4
0.80 8753.7 6652.7 6287.2 1333.7 1000.6 1675.4 9733.1
1.00 9123.6 9172.5 8592.5 4451.3 4486.7 5307.1 8902.6

tn[ms] 0.10 0.7 0.4 0.4 0.5 0.6 0.6 0.9
0.50 7.0 1.1 1.2 1.8 1.9 1.9 2.9
0.80 8.7 7.9 3.4 3.6 3.5 3.4 4.5
1.00 13.1 11.2 7.0 5.1 3.9 5.4 4.4

M. Peak [MB] 0.10 616 252 89 12 13 10 30
0.50 1461 434 289 199 209 156 513
0.80 1273 540 325 450 490 354 778
1.00 1046 278 281 395 443 395 552

Opt 0.10 0 0 0 0 0 0 49
0.50 0 0 0 0 0 0 7
0.80 0 0 0 0 0 0 1
1.00 0 0 0 0 0 0 0

other hand increase due to the space required for preprocessing data. Now, CP is also able to
solve more instances than CH-O for size 100.
The next tested configuration (CPS-NE) uses node emphasis instead of arc emphasis for the
heuristic brancher. We tested this configuration because we suspected that there could be a
possible benefit in combination with the better propagation. We propagate only if a virtual node
has been mapped. If we map the virtual nodes early, then we get better domains for the virtual
arcs faster, which might help with the search for valid solutions. However, the results show that
this was not the case, fewer valid solutions could be found.
As the last experiment, we tried to tackle VNMP-O with the CPS-OP configuration. We can see
that some instances can be solved to optimality, but these are not a significant fraction of the
total VNMP instances. Based on the reported Cu values, we can see an improvement of about
10% when compared to CPS-VA, at the expense of a six fold increase in required run-time.

162

Table 10.4 shows the performance of the different CP configurations depending on the load
of the VNMP instances. Again we can observe the advantage of CPSET compared to CPBIN
with respect to the number of memory aborts, especially for instances of high load. CPS-PE and
CPS-BR give huge benefits across the board. It is interesting to see that CPS-BR fails more often
for the instances of highest load than CPS-PE. Because of the heuristic branching, the search gets
far deeper into the search tree until inconsistencies are encountered. That also means that the
memory requirements are higher, which leads to more failed instances. With CPS-BR, CP is
able to solve all instances of the lowest load. Improved propagation (CPS-VA) is only useful for
instances of the highest load and using node emphasis causes performance regressions for those
instances. CPS-OP can basically only prove optimality for instances of the lowest load levels.

10.6 Conclusion

In this chapter, we have introduced two Constraint Programming models for the VNMP, one
based on binary variables and one based on sets. In addition, we presented methods for improv-
ing the performance of those approaches, such as utilizing preprocessing to reduce the number
of variables, heuristic branching or additional propagation during search.

Our computational results showed that the formulation based on set variables is far better in
terms of required memory than the formulation using binary variables, even though it requires
more variable types. By using preprocessing, the memory requirements can be reduced further.
The main component necessary for finding valid VNMP solutions turned out to be the use of
the heuristic brancher. This brancher however was the sole determining factor if a valid solution
could be found. Especially for instances of the largest size a solution was either found by fol-
lowing the first suggestion of the brancher or not at all. This situation could be slightly improved
by using the advanced propagation. Only the smallest instances of lowest load could be solved
to optimality.

Based on these results, the main problem of the CP approaches is weak propagation, i.e., incon-
sistent assignments are detected too late. This was also confirmed by inspection of the search
tree. We saw cases where the branching decision that caused the partial assignment to be incon-
sistent was 50 levels above the location in the search tree where inconsistencies were detected.
Even if the tree was binary, the search could never (in a practical amount of time) back-track to
the wrong decision and revert it. In the following section, we will give some ideas on how to
improve that situation.

The question that remains now is of course whether the CP approach is promising, since we have
not presented another exact method for solving the VNMP. However, anticipating the results
we will show in the following chapter, which is concerned with Integer Linear Programming
approaches, the performance of CP is very bad. We were not even able to solve VNMP instances
larger than 100 nodes. Nevertheless, the CP approach is interesting, since it does not require
the constraints to be linear, which might make it the only promising exact solution method for
extensions to the VNMP.

163

10.7 Future Work

We could show that the main problem of the CP method is the weak propagation. One possibility
to alleviate this problem is to reapply the preprocessing methods during search, but as we have
already pointed out, such an approach would have either a high overhead or be very intricate.
Even if such an approach was used, it would still be focused only on one virtual arc. It is
not possible to detect for instance that a group of nodes or arcs has not enough resources left
to implement some virtual arcs. Just imagine three virtual arcs, each requiring one unit of
bandwidth. The sources of the virtual arcs are mapped to the same substrate node, and all targets
are mapped to another node. If there are two paths between those two substrate nodes, with a
capacity of one unit of bandwidth each, it is immediately apparent that no solution can exist.
The CP approach, even with the preprocessing techniques, is not able to detect this situation, so
some techniques with a more global view are needed.
One possible approach would be to consider the subgraphs of the substrate network correspond-
ing to one component of the block tree calculated during preprocessing. For each of the sub-
graphs, we keep track of the virtual arcs that need to cross it. Note that even in case the source
and target node of a virtual arc have not been fixed, its implementation may be forced to cross a
particular subgraph.
Based on this, we can define the following problem. We are given a subgraph of the substrate
(with the currently remaining resources) and a set of virtual arcs that have to cross the subgraph.
For each virtual arc, we have a set of configurations of how it may cross the subgraph, which
are ultimately depending on the different mapping configurations for its source and target node.
These configurations are pairs of nodes by which the virtual arc enters the subgraph and by
which it leaves. A solution to this problem is a selection of one configuration for each virtual arc
and an implementing path through the subgraph, such that the resource constraints are satisfied.
In addition, the selection of configurations needs to be consistent. All virtual arcs with the same
source node have to enter from the same substrate node and all virtual arcs with the same target
node have to leave by the same node.
This problem can be solved at different levels of relaxation. We might employ single commodity
flow algorithms or formulate this problem as an integer linear program. This approach might
be strengthened further by also incorporating the mapping decisions, that means, when a vir-
tual arc enters a subgraph due to mapping, then we have at the entering node not only the CPU
cost caused by the transferred data, but also the cost for hosting the virtual node. We are con-
vinced that this method can lead to further improvements, but in first prototype implementations
inconsistencies were still not detected early enough.
As a further technique to improve performance, we could activate the advanced propagation
techniques outlined in this section only when needed (i.e., when we start to find inconsisten-
cies). The best thing to to in this case would be to track back in the search tree, and check
every partial assignment (once again, but now with better propagation) for consistency, until we
find a consistent assignment (or at least cannot prove inconsistency) and then continue with the
search without the advanced propagation until it is needed again. However, this behaviour is not
natively supported by GECODE and would require a custom search engine.

164

CHAPTER 11
Mixed Integer Linear Programming

11.1 Introduction

In this chapter, we will introduce (Mixed) Integer Linear Programming (ILP) formulations for
the Virtual Network Mapping Problem. Section 11.2 presents a multi-commodity flow based ILP
formulation for the VNMP, while a Column Generation approach based on paths is shown in
Section 11.3. Computational results can be found in Section 11.4. We conclude in Section 11.5
and give promising directions for future work in Section 11.6. A precursor to the work presented
in this chapter was published in [88].

11.2 Multi-Commodity Flow Model

This section presents a multi-commodity flow ILP formulation for the VNMP. Its objective is to
find the cheapest possible implementation of all virtual networks within the substrate (solving
VNMP-O). Later on, we will present variants of this formulation with the aim of finding a
feasible solution, and if this is not possible, the cheapest possible way of adding resources to the
substrate so that all virtual networks fit into the substrate (VNMP-S).
For the following ILP model, we assume that preprocessing as defined in Chapter 9 has taken
place. As a short summary, PNf ⊆ V is the set of substrate nodes that a virtual arc f ∈ A′

can use (the possible nodes). PAf ⊆ A is the set of substrate arcs that a virtual arc can use (the
possible arcs). Correspondingly, FNf ⊆ V is the set of substrate nodes that a virtual arc has to
use (the fixed nodes), and FAf ⊆ A is the set of substrate arcs that a virtual arc has to use (the
fixed arcs). If no preprocessing has taken place, PNf = V, ∀f ∈ A′, PAf = A, ∀f ∈ A′ and
FNf = FAf = ∅, ∀f ∈ A′.
The model utilizes decision variables xki ∈ {0, 1}, ∀(k, i) ∈ M , to indicate where the virtual
nodes are located in the substrate graph and yfe ∈ {0, 1}, ∀f ∈ A′, ∀e ∈ PAf , to indicate if a
virtual connection is implemented by using a substrate connection. To simplify the model, we
define xki = 0, ∀(k, i) ∈ (V ′×V)\M . The decision variable zfi ∈ {0, 1}, ∀f ∈ A′, ∀i ∈ PNf ,

165

indicates that a substrate node is used to route a virtual connection. Further auxiliary decision
variables are uVi ∈ {0, 1}, ∀i ∈ V , to indicate that a substrate node hosts at least one virtual
node and uAe ∈ {0, 1}, ∀e ∈ A, to indicate that a substrate arc is used to implement at least one
virtual connection.
The complete model is defined by inequalities (11.1)–(11.16).

(FLOW) min
∑
i∈V

pVi u
V
i +

∑
e∈A

pAe u
A
e (11.1)∑

(k,i)∈M

xki = 1 ∀k ∈ V ′ (11.2)

∑
e∈PAf |t(e)=i

yfe + x
s(f)
i −

∑
e∈PAf |s(e)=i

yfe − x
t(f)
i = 0 ∀f ∈ A′, ∀i ∈ PNf (11.3)

∑
e∈PAf |t(e)=i

yfe + x
s(f)
i ≤ zfi ∀f ∈ A′, ∀i ∈ PNf (11.4)

∑
(k,i)∈M

ckx
k
i +

∑
f∈A′|i∈PNf

bfz
f
i ≤ ci ∀i ∈ V (11.5)

∑
f∈A′|e∈PAf

bfy
f
e ≤ be ∀e ∈ A (11.6)

∑
e∈PAf

dey
f
e ≤ df ∀f ∈ A′ (11.7)

yfe = 1 ∀f ∈ A′, ∀e ∈ FAf (11.8)

zfi = 1 ∀f ∈ A′, ∀i ∈ FNf (11.9)

xki ≤ uVi ∀(k, i) ∈M (11.10)

yfe ≤ uAe ∀f ∈ A′, ∀e ∈ PAf (11.11)

uVi ≥ 0 ∀i ∈ V (11.12)

uAe ≥ 0 ∀e ∈ A (11.13)

xki ∈ {0, 1} ∀(k, i) ∈M (11.14)

yfe ∈ {0, 1} ∀e ∈ A, ∀f ∈ A′ (11.15)

zfi ∈ {0, 1} ∀i ∈ V, ∀f ∈ A′ (11.16)

Table 11.1 gives a short summary of the used variables, constants, and functions.
The objective of FLOW (11.1) is to minimize the total cost incurred due to hosting virtual nodes
on substrate nodes and using substrate arcs to implement virtual arcs. Equalities (11.2) ensure
that each virtual node is mapped to exactly one substrate node, subject to the mapping con-
straints. The flow conservation constraints (11.3) make sure that for each virtual connection
there is a connected path in the substrate network going from the location of the source of the
virtual connection to the location of the target of the virtual connection. Linking constraints
(11.4) make certain that variables zfi are equal to one when the corresponding node is used to

166

Table 11.1: Summary of the used variables, constants and functions to define FLOW (i ∈ V ,
e ∈ A, k ∈ V ′, f ∈ A′, l ∈ A ∪A′)

Symbol Meaning Symbol Meaning Symbol Meaning

G(V,A) Substrate graph G′(V ′, A′) Virtual graph xki Map node k to i
ci Available CPU ck Required CPU yfe Use arc e for f
de Delay df Max. allowed delay zfi Use node i for f
be Available bandwidth bf Required bandwidth uVi Use node i
M Set of allowed mappings s(l) Source node of arc l uAe Use arc e
pVi Node price t(l) Target node of arc l
pAe Arc price

1

2

3

4

1;1
00

3;1

1;100

3;1

1;1000 1;
10

00

Figure 11.1: Substrate configuration showing that fixing nodes can strengthen FLOW. The arcs
are labeled by their delay and costs.

route the traffic of a particular virtual connection. Since zfi is binary, this also ensures that the
implementing path of the virtual connection is simple. Inequalities (11.5)–(11.7) ensure that the
solutions are valid with regard to CPU, bandwidth, and delay constraints. The constraints (11.8)
and (11.9) incorporate the knowledge about fixed nodes and arcs into the model. To keep the
exposition easy to follow, we chose to include superfluous variables that are explicitly set in the
model instead of defining for instance zfi only for arcs in PNf but not in FNf . In addition, we
know that only few nodes and arcs can be set, which limits the overhead caused by additional
constraints. A discussion on the usefulness of those two constraint classes fill follow shortly.
Linking constraints (11.10) and (11.11) force variables uVi and uAe to be (at least) one when the
corresponding substrate node or arc is used by any virtual node or arc. Inequalities (11.12) and
(11.13) ensure that the model is bounded even if some substrate nodes or arcs are not used by
any virtual connection. The results presented in Chapter 9 show that this can occur for large
instances from the VNMP instance set with low loads. Note that while the model only includes
integrality constraints for xki , y

f
e and zfi (11.14)–(11.16), constraints (11.10) and (11.11) to-

gether with the objective function (11.1) and the non-negativity constraints (11.12) and (11.13)
also cause variables uVi and uAe to be integral (and binary).

167

The presented model makes good use of the information provided by preprocessing regarding
the substrate nodes and arcs that might be used, by reducing the number of variables (see yfe) and
constraints (see (11.3) and (11.4)) required to formulate the VNMP. By adding equations (11.8)
and (11.9), we incorporate information about nodes and arcs that have to be used. Now the
question is whether adding those constraints is actually beneficial. The first instinctive reaction
would say that yes, adding these is beneficial because we constrain more and should be able to
improve the formulation, which means a better (i.e., higher) lower bound on the solution cost
derived via calculating the LP relaxation of FLOW. On second thought, however, we recall what
it means for a node to be fixed: The implementation of the virtual arc has to use this node, i.e.,
there is no possible way of not using this node. Therefore, also the LP relaxation will have to use
this node, even without adding an explicit constraint, so adding it does not improve the model.
This argumentation is incorrect, because it neglects the interaction of the delay bound with the
LP relaxation. Due to the nature of the LP relaxation, we can get multiple fractional flows as
implementation of a virtual arc, instead of one unit flow. Referring to inequalities (11.7), we
can see that crossing a substrate arc only fractionally also incurs the delay only fractionally. As
an example, a flow of 0.5 may cross an arc with a delay of 20 even if the delay bound is 10
(neglecting for now the other half of the flow which may incur additional delays). Therefore,
we need to identify cases where a fractional flow can go around a fixed node or arc, because in
these cases using (11.8) and (11.9) will be useful. One possible way of achieving this would
be to use None as pruning and Testing as fixing method (as defined in Chapter 9), so arcs that
are not actually possible remain within PNf which may then carry flow avoiding fixed nodes or
arcs. But even with complete pruning, it is possible to avoid fixed nodes. We present an example
for this in the following.
Figure 11.1 shows a substrate graph labeled with delay values and costs for using the arcs. We
disregard bandwidths, CPU resources and node usage costs because they are not relevant for this
example. Assume that a virtual arc needs to be implemented from node 1 to node 4 with a delay
limit of 5. As a result, we know that node 2 is fixed. Note that this graph is perfectly pruned.
It is easy to see that the optimal result of FLOW will be implementing the virtual arc via the
path 1-2-4 for a total solution cost of 200. Now lets consider the LP relaxation of FLOW in this
scenario, if we do not fix node 2. It will try to put as much flow as possible across the path 1-3-4,
because this is the cheapest possibility. In this case, 3

4 units of flow, i.e., yf(1,3) = yf(3,4) = 3
4 .

The rest of the flow uses the path 1-2-4, i.e., yf(1,2) = yf(2,4) = 1
4 . In total, this gives a delay

of 5 for the implementation of the virtual arc and a substrate usage cost of 51.5, which is very
far away from the integer optimal solution cost of 200. If we fix node 2, we require one unit of
flow crossing node 2. With this additional constraint, the optimal solution of the LP relaxation
will also be 200. This shows that equations (11.9) strengthen FLOW. A similar example can
be constructed for equations (11.8). Note that for node fixing to work, inequalities (11.4) have
to be equalities. In the presented form, we would only limit the incoming flow to one, but not
force it to be one. We will show in Section 11.4 whether fixing nodes and arcs has any effect if
inequalities (11.4) are used in their presented form.
As with previous network-flow based ILP formulations, we have the problem of disconnected
flow circulations, i.e., there is the main flow from the appropriate source to the appropriate
target node, but there may be also flow circulations disconnected from this main flow. Two

168

factors help reduce the occurrences of these circulations for FLOW. First of all, we have an
objective function that tries to minimize substrate usage costs. Therefore, circulations can only
occur within the part of the substrate network that is used by some part of the calculated VNMP
solution. Note that if we had an objective that directly depends on the utilization of substrate
nodes and arcs, circulations would not be possible for an optimal solution. The second factor
is the delay constraint. Since any disconnected flow circulation also counts towards the delay
limit, it puts a boundary on the length of the circulation. However, even though we have these
mitigating factors, we still can have disconnected circulations. As a consequence, this requires
a bit more thought when extracting a solution from the solved FLOW model, but this is not
problematic. A bigger problem is that the circulations can circumvent the strengthening by fixed
nodes or arcs. If a node or arc is fixed, it could simply cause a flow circulation, without having an
influence on the main flow. The substrate shown in Figure 11.1 is too small to show this effect.
Subtour elimination constraints or directed connection cuts could be used to solve this problem.
Note that we do not need to remove all circulations, only those that involve fixed nodes. We
will leave the inclusion of cuts as shown in (11.17) to FLOW as future work and concentrate on
determining if fixing nodes and arcs has a measurable effect on the performance of FLOW. We
expect that circulations involving fixed nodes only become a problem for the largest instances.∑

e∈{(i,j)∈PAf |i,j∈S}

yfe ≤ |S| − 1 ∀f ∈ A′, ∀S ⊂ PNf : |S ∩ FNf | > 0 (11.17)

The presented formulation of the VNMP has one weakness: it fails if a VNMP instance is un-
solvable. By failing we mean it detects unsolvability, but does not give any more information,
such as where additional resources might be bought so that all virtual networks can be imple-
mented. We already used this aproach for the heuristic methods presented in Chapters 6, 7,
and 8. We will now present a modification of FLOW that gives the cheapest possible way to
make a VNMP instance feasible if it is not feasible and otherwise minimizes the substrate usage
costs. We will call the adapted model FLOW-A.
FLOW-A requires additional information in the form of the cost of one unit of additional band-
width pBW and the cost of one unit of additional CPU resources pCPU. We also need two addi-
tional types of variables. Variables aCPU

i , ∀i ∈ V , to denote the amount of added CPU resources
and aBW

e , ∀e ∈ A, to denote the amount of added bandwidth resources. The objective of FLOW-
A is given in (11.18). K denotes a sufficiently large constant, for instance the sum of all pVi and
pAe .

min
∑
i∈V

KpCPUaCPU
i +

∑
e∈A

KpBWaBW
e +

∑
i∈V

pVi u
V
i +

∑
e∈A

pAe u
A
e (11.18)

To allow for added CPU capacity, inequalities (11.5) are replaced by inequalities (11.19).

∑
(k,i)∈M

ckx
k
i +

∑
f∈A′|i∈PNf

bfz
f
i ≤ ci + aCPU

i ∀i ∈ V (11.19)

169

For added bandwidth capacity, inequalities (11.6) are replaced by inequalities (11.20).

∑
f∈A′|e∈PAf

bfy
f
e ≤ be + aBW

e ∀e ∈ A (11.20)

To forbid selling of resources, inequalities (11.21) and (11.22) are added to FLOW-A.

aCPU
i ≥ 0 ∀i ∈ V (11.21)

aBW
e ≥ 0 ∀e ∈ A (11.22)

In Section 11.4, we will show how the additional variables influence the behaviour of FLOW-A
compared to FLOW.

11.3 Path-based Model

In this section, we present an ILP model for the VNMP based on paths. The main difference
between this model and the one presented in Section 11.2 is that we now use decision variables
to decide which path in the substrate implements a virtual connection, instead of deciding which
substrate arc is part of the implementing arc. Since the set of paths may be exponential in size,
so is this model (in principle). To get around this problem, we use delayed column generation
(see Section 2.2.12).
Before we can show the complete model, some definitions are required. First, we need the
extended graph GP (VP , AP) based on the substrate graph G(V,A): VP = V ′ ∪ V ∪ V ′′, where
V ′′ contains a copy k of each node k ∈ V ′, and AP = A ∪ {(k, i), (i, k) | (k, i) ∈ M}. The
delays of all additional arcs are zero, the available bandwidth larger than

∑
f∈A′ bf . By using

this construction, the implementation of a virtual arc f always has to connect the same nodes
(s(f) and t(f) in VP), regardless of the mapping decision, which simplifies the model definition.
Furthermore, since the virtual nodes contained in GP only have outgoing edges and the copies
of the virtual nodes only have incoming edges, every path implementing a virtual arc is valid.
Without the copies of the virtual nodes (i.e., incoming and outgoing arcs for virtual nodes) we
could have paths that cross other virtual nodes before reaching the target node. On the topic of
paths, for all virtual arcs f ∈ A′ let Pf be the set of all simple paths from s(f) to t(f) in GP
not exceeding the delay bound df .
The model utilizes decision variables wpf ∈ {0, 1}, ∀pf ∈ Pf to indicate which path is chosen
to implement virtual arc f . As for FLOW, we have variables xki specifying if virtual node k
is mapped to substrate node i. The presented model is capable of adding resources if required
(akin to FLOW-A), so we need variables uVi , ∀i ∈ V , to indicate if a substrate node is used
to host virtual nodes, uAe , ∀e ∈ A, to indicate if a substrate arc is used to implement virtual
arcs, aCPU

i , ∀i ∈ V , to indicate the amount of added CPU resources and aBW
e , ∀e ∈ A, to

indicate the amount of added bandwidth resources. Like FLOW-A, pCPU denotes the cost of one
additional unit of CPU resources, pBW denotes the cost of one additional unit of bandwidth and
K a sufficiently large constant.

170

The complete model is defined by inequalities (11.23)–(11.34). The variables in parenthesis
denote the dual variables associated with the constraint.

(PATH) min
∑
i∈V

KpCPUaCPU
i +

∑
e∈A

KpBWaBW
e +

∑
i∈V

pVi u
V
i +

∑
e∈A

pAe u
A
e (11.23)

(µf)
∑
pf∈Pf

wpf = 1 ∀f ∈ A′ (11.24)

(πfki)
∑

pf∈Pf :(k,i)∈pf∨(i,k)∈pf

−wpf + xki ≥ 0 ∀(k, i) ∈M, ∀f ∈ A′

(11.25)∑
(k,i)∈M

xki = 1 ∀k ∈ V ′ (11.26)

(λi) −
∑
f∈A′

∑
pf∈Pf :i∈pf

bfwpf −
∑

(k,i)∈M

ckx
k
i ≥ −ci − aCPU

i ∀i ∈ V (11.27)

(εe)
∑
f∈A′

∑
pf∈Pf :e∈pf

−bfwpf ≥ −be − a
BW
e ∀e ∈ A (11.28)

(γef)
∑

pf∈Pf :e∈pf

−wpf + uAe ≥ 0 ∀e ∈ A, ∀f ∈ A′ (11.29)

−xki + uVi ≥ 0 ∀(k, i) ∈M (11.30)

aCPU
i ≥ 0 ∀i ∈ V (11.31)

aBW
e ≥ 0 ∀e ∈ A (11.32)

wpf ∈ {0, 1} ∀f ∈ A′, ∀pf ∈ Pf (11.33)

xki ∈ {0, 1} ∀(k, i) ∈M (11.34)

The objective function (11.23) states that first the cost of adding additional resources has to
be minimized. If those costs cannot be reduced any more, then the cost of using substrate
components has to be reduced as much as possible. Equalities (11.24) ensure that for every
virtual arc exactly one implementing path is chosen. The linking constraints (11.25) state that if
a specific path is used, the corresponding mapping variables have to be set too. Equalities (11.26)
state that exactly one mapping target for every virtual node has to be chosen. Inequalities (11.27)
implement the CPU constraint, the bandwidth constraint is implemented by inequalities (11.28).
The linking constraints (11.29) ensure that variables uAe are set if paths are selected that use
those arcs. Constraints (11.30) fulfill the same role for variables uVi , which are set if a virtual
node is mapped to them. Inequalities (11.31) forbid selling CPU resources, inequalities (11.32)
forbid it for bandwidth capacities. Note that while the model only includes constraints to restrict
wpf and xki to binary values, due to the employed constraints and the objective function, uVi

171

and uAe are binary as well. Since the CPU and bandwidth capacities are integral, aCPU
i and aBW

e

are too. We do not need to add delay constraints since they are covered by the definition of Pf .
The restricted master problem is derived from PATH by using only a small, nonempty subset
P ′f of Pf to construct the model. For the pricing subproblem, we need to find a path pf with
negative reduced costs. The reduced costs cwpf

of a path pf are calculated as follows:

cwpf
= 0− (µf −

∑
(k,i)∈M |(k,i)∈pf∨(i,k)∈pf

πfki −
∑

e∈pf∩A
bf εe −

∑
e∈pf∩A

γef −
∑

i∈pf∩V
bfλi) =

= −µf +
∑

(k,i)∈M |(k,i)∈pf∨(i,k)∈pf

πfki +
∑

e∈pf∩A
(bf εe + γef) +

∑
i∈pf∩V

bfλi (11.35)

Note that µf is unrestricted, while variables πfki, εe, γef and λi have to be greater or equal
to zero. Looking at the structure of equation (11.35), we can see that the costs are determined
by two parts: one part (µf) is constant for the virtual arc for which we are trying to find an
improving path. The second part actually depends on the nodes and arcs used by the path. Since
we add the values of the dual variables to the cost and the dual variables are always positive due
to the way the corresponding constraints are stated, we need to minimize those costs. In effect,
we are searching for a cheapest path within GP that satisfies the delay restrictions. The costs of
the arcs c are set as follows, the costs of nodes are added to all incoming arcs:

cfe = bf εe + γef + bfλt(e) ∀e ∈ A (11.36)

cfki = πfki + bfλi ∀(k, i) ∈M (11.37)

cf
ik

= πfki ∀(k, i) ∈M (11.38)

Costs cfe apply to arcs within AP that come from the substrate graph, costs cfki apply to arcs
which connect a virtual node to the substrate and costs cf

ik
apply to arcs which connect the

substrate to the copy of a virtual node. It is important to note that the costs can never be negative.
Summing up, to create a path variable for a virtual arc f that can potentially reduce the cost of
the LP relaxation of PATH, we need to find a resource constrained shortest path inGP from s(f)
to t(f), with arc costs defined by equations (11.36)–(11.38). Note that in this case, the delay
bound is the constrained resource. Since we are dealing with non-negative arc costs, we can use
the Dynamic Program for the Resource Constrained Shortest Path Problem from [69] to identify
such a path. If the sum of−µf and the cost of the path is negative, we have identified a path that
we have to add to the model. If no such path exists for all f ∈ A′, then we have successfully
solved the LP relaxation of PATH.
A central problem when applying delayed column generation is determining the initial set of
variables, which has to be sufficient to allow a solution to the problem. For the VNMP, this
condition is problematic, since just finding a valid solution (which could be used to initialize
P ′f) is NP-complete. One possible way around this problem would be the introduction of
additional arcs between all pairs of substrate nodes with infinite bandwidth, zero delay, and very
high costs. Paths using these arcs could be used to initialize P ′f .

172

By using the extension that we are allowed to purchase additional resources as needed it is
possible to avoid that problem. A simple method for constructing initial paths could be to just
randomly map virtual nodes to arbitrary substrate nodes (allowed by the mapping constraints)
and implement every virtual arc with its delay shortest path. This path, together with the mapping
decision, defines a path pf in GP , which is the sole member of P ′f . This procedure assumes that
for every virtual arc f and all possible mappings of s(f) and t(f) a path within the delay bound
df exists. This condition holds for the VNMP instance set, otherwise selecting the mapping
targets requires more thought or penalties for exceeding the delay. For a better selection of initial
paths, the heuristics presented in the previous chapters can be used. These of course can also be
used to speed up solving FLOW by supplying good upper bounds on the optimal solution. In
Section 11.4.3 we will analyze the influence of an initial solution on the performance of FLOW,
in Section 11.4.4 we will utilize CH-O (see Section 6.5.1) to derive an initial set of paths for
PATH.

11.4 Results

In this section, we present the evaluation of the different ILP models for the VNMP. We executed
the different models with a time-limit of 10000 seconds and a memory limit of 5 GB. The
reported times include also the time necessary for preprocessing. We use the complete VNMP
instance set with loads of 0.1, 0.5, 0.8 and 1. As constants we use pCPU = 1, pBW = 5, and
K = 1000000. The motivation for the difference in cost between additional CPU and bandwidth
resources is that it is easier to add another server than to add more bandwidth, which might mean
constructing a new physical connection if other options like renting additional bandwidth are not
available.
As for the different models, we will now compare the following FLOW configurations. A dis-
cussion of the influence of an initial solution on FLOW and the performance of PATH follows
later in this section.

FLOW-B The basic FLOW model, without using any preprocessing.

FLOW-P1 The FLOW model with activated preprocessing, but using None as pruning method.
Preprocessing is executed with the same settings as outlined in Chapter 9. Fixing of nodes
or arcs is not performed within FLOW. Nevertheless, the preprocessing algorithm requires
a method specification for the fixing method. We use None, unless otherwise specified.

FLOW-P2 FLOW-P1 with better preprocessing. APSP is used as pruning method.

FLOW-P3 FLOW-P1 with the best preprocessing. PathEnumeration is used as pruning method.

FLOW-F FLOW-P3, but in addition, nodes and arcs are being fixed. PathEnumeration is used
as fixing method.

FLOW-FE The FLOW-F configuration, but with equalities instead of the inequalities (11.4).

173

FLOW-A The FLOW-A model. Otherwise, the FLOW-FE configuration is used, i.e., prepro-
cessing with PathEnumeration, nodes and arcs are fixed and node usage is linked to in-
coming flow by using equalities.

FLOW-MA A variant of FLOW-A which only minimizes the cost of additional resources to
buy, solving VNMP-S. After this variant is solved, we either get a valid solution to the
original VNMP instance (but not an optimal one) or the cheapest possible solution that
requires additional resources if the instance is infeasible.

FLOW-S Another configuration that focuses on satisfiability instead of optimality. It is a vari-
ant of the FLOW-FE configuration, but removes the objective function. As with FLOW-
MA, we get a valid solution to the original VNMP instance if possible. If the instance is
infeasible, we get no hints about recourse actions to make it feasible.

11.4.1 Solving Characteristics of FLOW Configurations

In this section, we will compare the main solving characteristics of the different FLOW configu-
rations. By solving characteristics we mean how far the different configurations get when trying
to solve VNMP instances, for instance, do they find optimal solutions or do they run out of time
before they are able to solve the LP relaxation in the root node. We also consider the standard
characteristics like the required run-time or the gap between the lower bound and the best found
integer feasible solution after all of the available run-time has been used. We will now discuss
the different characteristics that we are going to report on in more detail.
When trying to solve a VNMP instance with one of the configurations of FLOW, we can either
succeed (i.e., find an optimal solution) or we can fail to varying degrees. The most serious failure
is exceeding the memory limit. Due to technical limitations, we do not get any information about
the solving process in this case, even though useful results might have been created before the
memory limit was hit. We will denote this type of failure by Mem. The next type of failure is
failing to solve the LP relaxation of the root node in the Branch-and-Bound tree, which means
we do not get any lower bounds. We will label this type of failure LP. If we succeed in solving
the root node and start branching, we can fail to find an integer feasible solution to the VNMP
instance that we are trying to solve (denoted by NS). Depending on the configuration of FLOW,
it might be possible to buy additional resources. Even if we found an integer feasible solution,
it might not be valid for the original VNMP instance because additional resources need to be
bought. This type of failure we will denote with AR. If none of these failure reasons apply, then
we succeeded in finding an integer feasible solution to the VNMP instance that we are trying to
solve. However, we may fail to prove the optimality of this solution (if it is the optimal solution).
We will call this condition Feas. If none of the previous failures apply, then we have found an
optimal solution to the VNMP instance we are trying to solve, denoted by Opt. Since FLOW-S
does not have an objective to optimize, it counts as Opt if a feasible solution has been found.
In addition to the state that the solving process ended in, we will also report on other character-
istics, the first of which is the achieved gap between the final lower bound (lb) on the solution
cost and cost of the best found integer feasible solution (ub). The gap (in %) is calculated as
100ub−lb

ub . A gap of 1% means that the best found solution can be improved by at most 1%. If

174

we do not have access to lower or upper bounds (i.e., we failed before Feas), we assume a gap
of 100%. We also report on the achieved objective values (Obj). However, for the objective we
cannot define a useful default value if we fail before Feas, so the reported objective values are
only based on instances where at least a feasible solution not requiring additional resources was
found. The required run-time t in seconds is not as problematic, if we fail due to Mem we as-
sume a run-time of 10000 seconds. For gap, objective, and run-time, we present average values.
Last but not least, we are going to report on the number of variables (Vars) used to model the
VNMP instances. This allows us to judge the effectiveness of preprocessing in terms of model
size. Note that we report the size of the model after CPLEX has performed its own reductions.
That has two consequences. First of all, this allows us to really see the benefit of preprocessing.
If we would report on the size of the model before the reductions, any reduction in the number
of necessary variables caused by preprocessing could in principle be matched by the reductions
performed by CPLEX. Preprocessing only adds real value if it reduces the number of variables
in addition to the reductions of CPLEX. The second consequence and downside of using the
number of variables after the reductions is that the results are not necessarily consistent. We
have seen instances where the final number of variables is smaller if weaker preprocessing is
used. Of course, the number of variables in a model is only an indicator for the “hardness” of a
model but by no means the sole determining factor. We could observe instances where a smaller
model for the same instance took far longer to solve to optimality. The reported numbers of
variables are based on instances that did not fail due to Mem.
Based on these definitions, we can present the main characteristics of different configurations of
FLOW depending on the instance size in Table 11.2.
For the smallest instance sizes, we can see that every configuration is able to solve all of the 120
instances (30 instances with four load levels each). The average time required to to so however is
very different. Unsurprisingly, FLOW-B requires the most run-time with more than 100 seconds
on average. By adding preprocessing without any pruning and fixing, the run-time requirements
can be reduced to one third of the original run-time.
Interestingly, adding additional pruning capabilities increases the required run-time in some
cases. The reason is not the run-time required by the enhanced preprocessing methods, as we
know from Chapter 9 that they are negligible compared to the total run-time. The reason is the
performance variability of ILP [36, 109]. Simple changes to a model which should be perfor-
mance neutral (or improve performance) like changing the order of constraints may sometimes
cause unexpected degradations. At least the number of variables present in the ILP model is re-
duced by using enhanced preprocessing methods. Starting to fix nodes gives another boost to the
preprocessing performance. FLOW-F only requires less than 17% of the run-time of FLOW-B,
but linking flow with node usage by equality does not give an additional advantage. By adding
the possibility of buying additional resources, we slow the solving process down significantly. It
also causes a noticeable increase in variables necessary for modeling the VNMP instances. The
two configurations that focus on finding a valid solution, FLOW-MA and FLOW-S, unsurpris-
ingly are much faster than the optimizing configurations. The solutions that are found by them
are about 50% more expensive than the optimal solutions with respect to substrate usage costs.
Starting with instance size 30, the configurations begin to fail. Most noticeable of them is the
FLOW-B configuration, which is not able to find an integer feasible solution for one instance.

175

Table 11.2: Main characteristics of different configurations of FLOW depending on the instance
size.

Size Method Mem LP NS AR Feas Opt Gap[%] Obj t[s] Vars
20 FLOW-B 0 0 0 0 0 120 0.0 803.2 102.2 6269.7

FLOW-P1 0 0 0 0 0 120 0.0 803.2 28.6 2437.8
FLOW-P2 0 0 0 0 0 120 0.0 803.2 34.6 2039.0
FLOW-P3 0 0 0 0 0 120 0.0 803.2 29.6 1962.2
FLOW-F 0 0 0 0 0 120 0.0 803.2 16.9 1871.2
FLOW-FE 0 0 0 0 0 120 0.0 803.2 17.1 1884.4
FLOW-A 0 0 0 0 0 120 0.0 803.2 44.5 2070.4
FLOW-MA 0 0 0 0 0 120 0.0 1237.5 0.3 2077.4
FLOW-S 0 0 0 0 0 120 0.0 1271.0 0.2 2091.3

30 FLOW-B 0 0 1 0 9 110 0.1 1139.9 1155.9 18271.4
FLOW-P1 0 0 0 0 8 112 0.2 1141.3 905.8 8661.9
FLOW-P2 0 0 0 0 6 114 0.1 1141.3 690.6 7116.6
FLOW-P3 0 0 0 0 5 115 0.1 1140.9 690.9 6408.7
FLOW-F 0 0 0 0 5 115 0.1 1140.8 653.6 6258.7
FLOW-FE 0 0 0 0 4 116 0.1 1140.6 638.8 6301.2
FLOW-A 0 0 0 0 6 114 0.1 1140.9 635.2 6473.0
FLOW-MA 0 0 0 0 0 120 0.0 1901.8 1.0 6670.3
FLOW-S 0 0 0 0 0 120 0.0 1934.1 0.9 6625.9

50 FLOW-B 1 1 4 0 23 91 0.6 1728.1 2895.2 51474.8
FLOW-P1 0 0 3 0 16 101 0.4 1742.4 2006.5 21382.1
FLOW-P2 0 0 1 0 14 105 0.6 1753.8 1718.0 17825.8
FLOW-P3 0 0 0 0 16 104 0.6 1760.0 1676.9 15193.8
FLOW-F 0 0 1 0 15 104 0.5 1752.8 1639.7 15033.7
FLOW-FE 0 0 2 0 12 106 0.3 1746.5 1601.0 15050.5
FLOW-A 0 0 0 1 17 102 0.5 1751.9 1879.9 15971.0
FLOW-MA 0 0 0 0 0 120 0.0 3131.5 2.9 16106.5
FLOW-S 0 0 0 0 0 120 0.0 3179.0 2.7 15288.9

100 FLOW-B 1 45 6 0 27 41 1.4 2939.1 6780.5 212914.1
FLOW-P1 0 8 14 0 48 50 1.7 3291.9 6054.2 71727.4
FLOW-P2 0 3 6 0 53 58 1.6 3385.3 5534.4 57764.0
FLOW-P3 1 3 2 0 56 58 1.6 3415.5 5484.2 49632.6
FLOW-F 0 3 2 0 59 56 1.5 3420.7 5648.9 49346.6
FLOW-FE 0 3 3 0 55 59 1.4 3410.1 5432.7 49079.0
FLOW-A 2 3 3 0 56 56 1.3 3403.4 5601.8 51844.1
FLOW-MA 0 0 0 0 0 120 0.0 6207.9 10.9 50784.4
FLOW-S 0 0 0 0 0 120 0.0 6189.7 10.6 48418.3

200 FLOW-B 0 69 4 0 13 34 0.4 3325.1 7410.6 457143.5
FLOW-P1 0 39 9 0 31 41 1.6 3973.1 6856.6 133156.1
FLOW-P2 0 24 13 0 37 46 1.7 4218.3 6514.9 109582.3
FLOW-P3 0 18 17 0 41 44 1.7 4253.3 6455.4 93957.8
FLOW-F 0 17 18 0 38 47 1.5 4264.8 6343.9 92999.5
FLOW-FE 0 15 15 0 41 49 1.5 4342.4 6275.2 92228.6
FLOW-A 0 20 16 1 36 47 1.4 4191.6 6372.2 102392.0
FLOW-MA 0 0 0 0 0 120 0.0 8849.6 28.5 102075.4
FLOW-S 0 0 0 0 0 120 0.0 8872.3 27.1 91624.3

500 FLOW-B 73 6 10 0 5 26 0.2 3171.8 8131.2 433322.5
FLOW-P1 0 84 2 0 7 27 0.2 3448.6 7879.0 316870.9
FLOW-P2 0 68 3 0 15 34 0.7 4423.6 7384.5 250480.3
FLOW-P3 0 67 2 0 18 33 0.7 4503.6 7440.8 243814.4
FLOW-F 0 64 6 0 17 33 0.6 4488.7 7385.6 241183.3
FLOW-FE 0 63 2 0 22 33 0.7 4706.8 7334.0 240455.4
FLOW-A 0 67 6 0 14 33 0.4 4293.6 7452.2 279763.4
FLOW-MA 0 0 0 0 0 120 0.0 13381.6 146.0 278027.4
FLOW-S 0 0 0 0 0 120 0.0 13774.0 174.6 241346.1

1000 FLOW-B 90 3 4 0 15 8 1.5 3677.5 9707.1 416302.4
FLOW-P1 19 61 13 0 11 16 0.7 3721.4 9104.5 468323.0
FLOW-P2 3 66 14 0 13 24 0.6 4657.2 8209.1 420043.5
FLOW-P3 3 65 15 0 12 25 0.6 4617.8 8146.5 418783.2
FLOW-F 2 64 14 0 13 27 0.6 4834.0 8058.6 420225.3
FLOW-FE 2 59 14 0 18 27 0.7 5277.2 7978.8 417890.5
FLOW-A 3 68 8 0 15 26 0.8 4948.1 8062.7 509628.8
FLOW-MA 15 0 0 0 0 105 0.0 16698.6 1630.9 463200.4
FLOW-S 1 0 0 0 0 119 0.0 21265.4 673.8 422138.7

176

Other than that, the solving performance of all configurations is similar, between 110 and 115
instances can be solved to optimality, for the rest we get feasible solutions. The average gap
is also very small. Notice how FLOW-B seems to produce better results based on the reported
objective value than the other configurations. This is because the result for the instance that
failed with NS is missing from the average objective value. Again, we can see significant run-
time improvements by activating preprocessing and this time using improved pruning (FLOW-
P2) gives an additional advantage. Notice how preprocessing is able to reduce the number of
required variables to a third of the original value. FLOW-FE shows a distinct advantage when
compared to FLOW-F in terms of required run-time and is even able to prove optimality for one
more instance. For size 30, FLOW-A is the fastest solution method, the ability to add additional
resources no longer seems to be a disadvantage. The last two configurations are still very fast
and able to find valid solutions to all instances. Note however that the gap to the optimal solution
values increases, the found solutions now being 60% more expensive than the optimal solutions.
By increasing the substrate size to 50 nodes, we can observe the first failures of FLOW-B due
to the memory limit. None of the other methods have problematic memory consumption, but
they start failing due to NS. Also, the number of instances where only a valid solution could be
found increases. Still, all methods employing preprocessing can solve more than 100 instances
to optimality. FLOW-A is again slower than the other methods and also keeps being slower for
larger instance sizes. Also notice how the run-time advantage of methods using preprocessing
starts to shrink, but the difference in variables is still huge.
At size 100 we have reached the point where only half of the instances can be solved to opti-
mality by the optimization configurations using preprocessing (FLOW-P1 – FLOW-A). For the
remaining instances we mostly find feasible solutions, but for some we fail earlier at LP or NS.
The most common result for FLOW-B is to fail at LP, which means gaps and objective values
cannot be compared meaningfully with the other algorithms.
By doubling the instance size again to 200, we get a significant number of failures for all op-
timization configurations, but still a surprising number of instances can be solved to optimality
by the configurations using preprocessing. This is the last size for which we can compare the
number of variables in a meaningful way, as FLOW-B starts failing at Mem for the larger sizes.
FLOW-B almost requires five times more variables than FLOW-FE. For this size class we also
have the second and last occurrence of a solution found by FLOW-A that requires additional
resources.
For size 500, FLOW-B requires too much memory in most cases. All other optimization con-
figurations predominately fail at LP. Observe that if a valid solution can be found, in most cases
also its optimality can be proven or the remaining gap is very small.
Applying the different FLOW configurations to the last instance size, we can see that also
FLOW-P1 starts to fail a significant number of times due to Mem. The configurations using more
preprocessing fail predominantly at LP. Again, if we find a valid solution, we either achieve low
gaps or can prove optimality, but this happens less often than for the previous size class. Also the
configurations concentrating on just finding valid solutions start to fail, especially FLOW-MA,
which needs too much memory. FLOW-S just fails once due to Mem and manages to find valid
solutions for all other instances. Here we can clearly see the run-time and memory cost of not
only finding valid solutions, but also being able to derive cheap recourse actions if the VNMP

177

Table 11.3: Main characteristics of different configurations of FLOW depending on the instance
load.

Load Method Mem LP NS AR Feas Opt Gap[%] Obj t[s] Vars
0.10 FLOW-B 0 3 4 0 23 180 0.2 1866.3 1812.7 97877.5

FLOW-P1 0 0 3 0 16 191 0.1 1906.7 1237.4 24635.7
FLOW-P2 0 0 0 0 7 203 0.0 1937.8 428.8 16877.0
FLOW-P3 0 0 0 0 7 203 0.0 1938.0 440.0 16362.7
FLOW-F 0 0 0 0 5 205 0.0 1937.8 378.5 16209.0
FLOW-FE 0 0 0 0 5 205 0.0 1937.8 330.3 15320.2
FLOW-A 0 0 0 0 6 204 0.0 1938.3 395.0 20833.0
FLOW-MA 0 0 0 0 0 210 0.0 3504.0 11.2 23754.1
FLOW-S 0 0 0 0 0 210 0.0 3508.9 10.3 19896.2

0.50 FLOW-B 44 25 13 0 21 107 0.2 1985.6 5213.3 201956.9
FLOW-P1 0 58 3 0 32 117 0.5 2348.0 4614.2 130523.2
FLOW-P2 0 31 9 0 39 131 0.5 2891.2 4135.5 104773.1
FLOW-P3 0 27 11 0 42 130 0.5 2924.8 4061.7 100501.8
FLOW-F 0 26 11 0 43 130 0.4 2959.5 4065.7 99785.8
FLOW-FE 0 22 6 0 49 133 0.5 3201.5 3955.1 99474.9
FLOW-A 0 27 10 0 42 131 0.4 2979.1 4084.8 117538.6
FLOW-MA 0 0 0 0 0 210 0.0 6697.3 45.6 115672.5
FLOW-S 0 0 0 0 0 210 0.0 6888.1 44.8 98781.1

0.80 FLOW-B 60 45 3 0 23 79 0.7 1766.8 6442.6 201773.8
FLOW-P1 0 75 11 0 38 86 1.0 2306.7 6128.9 209788.7
FLOW-P2 0 66 7 0 44 93 1.1 2586.2 5973.0 168153.4
FLOW-P3 1 64 6 0 49 90 1.1 2623.4 5923.0 161912.1
FLOW-F 0 61 8 0 49 92 1.1 2686.2 5927.3 160086.1
FLOW-FE 0 61 6 0 48 95 0.9 2734.8 5831.7 159641.8
FLOW-A 2 63 8 0 48 89 1.0 2603.3 6004.9 188727.4
FLOW-MA 0 0 0 0 0 210 0.0 8959.1 111.9 185858.2
FLOW-S 0 0 0 0 0 210 0.0 9879.9 113.1 158224.1

1.00 FLOW-B 61 51 9 0 25 64 1.0 1739.9 7207.3 253519.9
FLOW-P1 19 59 24 0 35 73 1.4 2157.8 6782.6 194607.1
FLOW-P2 3 64 21 0 48 74 1.8 2493.8 6654.7 201272.1
FLOW-P3 3 62 19 0 50 76 1.8 2549.5 6674.9 192672.3
FLOW-F 2 61 22 0 50 75 1.5 2542.8 6626.9 194292.1
FLOW-FE 2 57 24 0 50 77 1.5 2634.3 6612.9 193650.0
FLOW-A 3 68 15 2 48 74 1.3 2430.0 6686.0 223339.1
FLOW-MA 15 0 0 0 0 195 0.0 9717.4 871.7 179565.3
FLOW-S 1 0 0 0 0 209 0.0 11956.2 340.3 194892.7

instance does not have a valid solution. For the smaller sizes, there was no clear difference
between FLOW-MA and FLOW-S.

We have discussed the characteristics of different FLOW configurations based on the instance
size. Table 11.3 shows the same characteristics, but now based on the instance load. For the
lowest load of 0.1, finding at least feasible solutions is not a problem, just FLOW-B fails at LP
or NS for some instances. All other configurations manage to find optimal solutions for most
instances. Note that for low loads the run-time requirements are very different for the compared

178

configurations, higher loads will cause the run-time requirements to be more similar. The same
holds true for the number of variables. Also observe that the solutions found by FLOW-F and
FLOW-FE are the same, but FLOW-FE is faster. Both configurations are better than FLOW-P3.
By increasing the load to 0.5, we see that FLOW-B already starts to fail due to Mem, all other
configurations start failing due to LP. Most instances can still be solved to optimality. Going to
load 0.8 increases the number of failures due to LP further, we also start seeing failures due to
Mem for configurations other than FLOW-B. The average gap reaches 1%. The main difference
when using VNMP instances with full load is that for some instances the different configurations
fail to find valid solutions more often. It can also be seen that the two instances for which FLOW-
A produces a solution which requires additional resources are those with highest load. There is
not a lot of observable difference between the characteristics of the configurations FLOW-P2 to
FLOW-A, only FLOW-P1 and FLOW-B are worse.
Based on these results, one thing is clear: if we want to tackle instances with more than 50
substrate nodes and with more than 50% load with FLOW, then preprocessing in some form is
essential. For the largest instance sizes and highest loads, using more advanced preprocessing
techniques becomes important. Valid solutions can be found to nearly all instances in surpris-
ingly short time. Especially for large instances with high loads, solving the LP relaxation in the
root node is very time consuming. The differences between the configurations from FLOW-P1
to FLOW-A are not very visible and require further analysis. Preprocessing has a very pro-
nounced effect on the number of variables, which also translates to shorter run-times, albeit to a
lesser extent. This is not surprising since in some sense preprocessing just removes unnecessary
ballast but does not make the core problem easier to solve.

11.4.2 Comparison of FLOW Configurations

In the previous section, we have analyzed the properties of different configurations of FLOW.
It could be seen that adding preprocessing improves the performance, but a more detailed anal-
ysis (for instance if fixing nodes reduces run-times in a statistically significant way or if going
from FLOW-P2 to FLOW-P3 is beneficial) could not be presented. This is the main goal for this
section. We will present a comparison of the configurations FLOW-P1 to FLOW-A and deter-
mine which one actually performs best. We excluded FLOW-B, because the results presented
in the previous section showed it to be very clearly worse than the alternatives. FLOW-MA
and FLOW-S are not considered since they do not perform optimization. To be able to perform a
meaningful comparison, we restrict ourselves to instances for which all compared configurations
at least managed to find a valid solution that does not require additional resources.
Table 11.4 shows the comparison of the different FLOW configurations based on instance size.
The values labeled # Inst. give the count of instances used as basis for the other presented
properties. For instance the data for size 20 is based on all 120 instances, but for size 1000 the
different configurations produced comparable results only for 27 instances. The other properties
have the same meaning as before. The presented values are geometric means, except for the gap
values, which are arithmetic means (since values of zero can occur).
Based on the presented results, we can see that FLOW-P1 is outclassed for all but the smallest
instance sizes in terms of the achieved solution and always significantly slower than the best
configurations. For the largest instance size, FLOW-P1 is nearly ten times slower than the best

179

Table 11.4: Comparison of FLOW configurations utilizing preprocessing, depending on the
instance size.

Size FLOW-P1 FLOW-P2 FLOW-P3 FLOW-F FLOW-FE FLOW-A
Inst. 20 120 120 120 120 120 120

30 120 120 120 120 120 120
50 117 117 117 117 117 117

100 97 97 97 97 97 97
200 71 71 71 71 71 71
500 34 34 34 34 34 34

1000 27 27 27 27 27 27
Gap[%] 20 0.00 = 0.00 = 0.00 = 0.00 = 0.00 = 0.00 =

30 0.16 > 0.11 = 0.10 = 0.08 = 0.08 = 0.10 =
50 0.41 > 0.35 > 0.32 = 0.26 = 0.26 = 0.31 =

100 1.58 > 1.10 > 0.97 > 0.96 = 0.84 = 0.94 >
200 1.51 > 0.93 > 0.80 > 0.73 = 0.63 = 0.72 =
500 0.23 > 0.06 = 0.05 = 0.04 = 0.06 = 0.06 =

1000 0.73 > 0.10 = 0.11 = 0.08 = 0.07 = 0.12 =

Obj 20 758.9 = 758.9 = 758.9 = 758.9 = 758.9 = 758.9 =
30 1086.2 > 1086.2 = 1085.9 = 1085.8 = 1085.7 = 1085.9 =
50 1659.2 > 1658.6 > 1658.2 = 1657.7 = 1657.6 = 1657.8 =

100 3104.7 > 3095.2 > 3092.9 = 3093.5 = 3091.4 = 3092.9 =
200 3673.6 > 3660.6 > 3656.2 > 3655.7 = 3653.8 = 3654.4 =
500 3326.3 = 3325.4 = 3325.4 = 3325.1 = 3325.5 = 3325.1 =

1000 3677.2 > 3665.4 = 3665.7 = 3665.8 = 3665.5 = 3666.2 =

t[s] 20 1.0 > 0.8 > 0.8 = 0.8 = 0.7 = 0.8 >
30 7.8 > 5.6 > 5.2 > 4.9 = 4.8 = 4.7 =
50 41.1 > 27.2 > 24.3 = 22.0 = 22.0 = 25.0 =

100 437.5 > 283.4 > 275.2 > 284.4 > 250.7 > 237.3 =
200 511.2 > 270.4 > 247.3 > 225.5 = 215.9 = 225.3 =
500 417.0 > 91.8 > 105.9 > 90.3 > 81.9 = 84.2 =

1000 3373.9 > 507.1 > 469.5 > 404.9 = 352.9 = 399.8 >
Vars 20 1350.5 > 1240.7 > 1213.0 > 1152.6 = 1160.2 = 1230.4 >

30 4478.5 > 3669.4 > 3455.1 > 3464.5 > 3366.5 = 3538.5 >
50 11442.5 > 9838.5 > 8480.6 > 8275.8 > 8432.2 = 9446.0 >

100 32832.4 > 27831.2 > 24132.6 > 23648.2 > 23223.7 = 25757.1 >
200 46666.0 > 36512.6 > 30493.7 > 30487.8 > 28645.3 = 36273.1 >
500 44079.5 > 28478.0 > 27718.1 > 22596.9 = 25789.7 = 32490.7 >

1000 87962.1 > 49807.1 > 50308.2 > 50537.9 > 44325.1 = 69993.1 >

180

configuration. Adding additional preprocessing capabilities by using pruning by APSP improves
the situation a bit. For instance sizes 20, 30, 500 and 1000 FLOW-P2 achieves solutions not
significantly different from the best, both in terms of gap and objective. For the instances of
medium size, PathEnumeration manages better pruning and FLOW-P2 cannot keep up. For the
largest instances, the distance between APSP and PathEnumeration shrinks, due to the fallback
behaviour of PathEnumeration, and FLOW-P2 manages to create comparable results. It also
speeds up the solving process itself, giving a factor of 4 to 6 improvement over FLOW-P1.
By using PathEnumeration as pruning method (FLOW-P3), it is possible to achieve the best
known objectives for all but one size class and the best gaps except for medium sized instances.
FLOW-P3 also starts getting competitive in terms of run-time, but is still more than 30% slower
than the best for the largest instances.
By switching on fixing (FLOW-F), we are now able to achieve the best possible results in terms
of gap and objective function. The difference to FLOW-P3 shows that utilizing the information
about nodes that have to be used results in a meaningful improvement and is not only a the-
oretical advantage. It is moderate in terms of gap and objective value, but very noticeable in
terms of required run-time. To achieve the very best performance, we need to link the use of
substrate nodes to the incoming flow via equalities (FLOW-FE). This configuration achieves the
best values for gap, objective, required run-time and variables in nearly all cases.
The case of FLOW-A is interesting to analyze. On one hand, the model is larger in principle,
because we have to add variables that allow buying additional resources. These additional vari-
ables even increase the number of variables in the simplified model in a disproportionate way,
i.e., the difference in variables between FLOW-FE and FLOW-A is larger than the number of
added variables. Therefore, we could expect worse performance. On the other hand, allowing
to buy additional resources makes finding an integer feasible solution easier, which potentially
speeds up the solving process. Based on the results shown in Table 11.4, it seems that these
influences balance each other. FLOW-A requires far more variables, but is still competitive with
respect to solving time, especially for instances of medium size.
Table 11.5 shows the same data, but this time depending on instance load. Regarding the quality
of the solutions, we get basically the same results as previously. One difference to note is
that FLOW-P1 is not even competitive for the lowest loads, both in terms of average gap and
objective. By increasing the level of preprocessing and utilizing fixing information, we get the
best solutions. With respect to the time required to achieve a solution, we can see that for loads
0.1 and 0.5, FLOW-A is the fastest configuration. For higher loads, FLOW-FE is fastest.

11.4.3 Starting with a Valid Solution

The aim of this section is to analyze the influence of using an initial solution created by one
of the heuristics presented in the previous chapters on FLOW. As base configurations we use
FLOW-A and FLOW-MA, to solve VNMP-O and VNMP-S respectively. Note that we chose
FLOW-A instead of FLOW-FE and FLOW-MA instead of FLOW-S because they can use an
initial solution which requires additional resources. Such solutions are likely to be found by
heuristics, especially for the larger instance sizes and could not be used otherwise (e.g., when
using FLOW-FE), so all the effort expended on creating them would have been wasted.

181

Table 11.5: Comparison of FLOW configurations utilizing preprocessing, depending on the
instance load.

Size FLOW-P1 FLOW-P2 FLOW-P3 FLOW-F FLOW-FE FLOW-A
Inst. 0.10 207 207 207 207 207 207

0.50 149 149 149 149 149 149
0.80 123 123 123 123 123 123
1.00 107 107 107 107 107 107

Gap[%] 0.10 0.12 > 0.01 = 0.02 = 0.01 = 0.01 = 0.02 >
0.50 0.50 > 0.28 > 0.26 > 0.23 = 0.22 = 0.21 =
0.80 0.98 > 0.73 > 0.58 > 0.54 = 0.47 = 0.55 =
1.00 1.26 > 0.91 > 0.86 = 0.79 = 0.73 = 0.86 >

Obj 0.10 1476.4 > 1475.7 = 1475.7 = 1475.7 = 1475.7 = 1475.7 =
0.50 1868.9 > 1866.6 > 1866.5 > 1866.1 = 1866.0 = 1866.0 =
0.80 1863.5 > 1860.7 > 1858.3 = 1858.2 = 1857.5 = 1858.0 =
1.00 1818.2 > 1814.3 > 1813.5 = 1813.6 = 1812.4 = 1813.6 >

t[s] 0.10 6.6 > 2.8 > 2.7 > 2.5 > 2.5 > 2.2 =
0.50 43.3 > 26.6 > 24.4 > 23.6 > 21.8 > 21.5 =
0.80 127.4 > 103.1 > 94.4 > 91.2 > 84.1 = 96.3 =
1.00 244.5 > 189.6 > 186.6 = 174.9 = 168.4 = 228.6 >

Vars 0.10 6039.1 > 4596.8 > 4218.4 > 4044.8 > 3965.8 = 4891.2 >
0.50 12578.3 > 10699.3 > 9623.5 > 9380.9 > 9410.1 = 10205.0 >
0.80 14696.6 > 12567.9 > 11381.9 > 11101.7 > 10958.3 = 11741.8 >
1.00 13974.3 > 12081.4 > 11126.3 > 10930.4 > 10881.9 = 11872.2 >

Table 11.6: Main solving characteristics of FLOW-A (FA) and FLOW-MA (FMA) when an
initial solution is created by CH-O (CH), LS-O (LS), or VNS-O (VNS).

Method Mem LP NS AR Feas Opt
FA 3 165 36 3 138 495
FA-CH 29 0 0 116 198 497
FA-LS 28 0 0 74 239 499
FA-VNS 28 0 0 58 255 499
FMA 15 0 0 0 0 825
FMA-CH 28 0 0 0 0 812
FMA-LS 27 0 0 0 0 813
FMA-VNS 27 0 0 0 0 813

182

As heuristics to create initial solutions we use CH-O, LS-O, and VNS-O with a time-limit of
500 seconds. The time required to create the initial solution of course counts towards the total
time-limit of 10000 seconds.
The solving characteristics of the different configurations of FLOW-A and FLOW-MA are
shown in Table 11.6. We use the same definitions as in Section 11.4.1. When solving VNMP-O
with FLOW-A, using a heuristic to create an initial solution has a very pronounced influence
on the solving characteristics. While the basic FLOW-A configuration (FA) fails to solve the
LP relaxation in the root node 165 times or fails to find an integer feasible solution 36 times
(out of 840 instances), it never fails due to those reasons when an initial solution is supplied.
Interestingly, an initial solution increases the number of instances that fail due to Mem. This is
most likely caused by FLOW-A being able to solve the LP relaxation when an initial solution
is supplied, but later running out of memory during Branch & Bound. For most instances that
failed due to LP, a valid solution, or at least a solution requiring additional resources can be
found. Supplying an initial solution has barely any influence on the number of instances that can
be solved to optimality. Based on the number of instances for which a valid solution could be
found, VNS-O is the best heuristic to use to create the initial solution. When solving VNMP-S
with FLOW-MA (FMA), the only difference caused by supplying an initial solution is that more
instances fail due to Mem.
Table 11.7 shows a comparison of the different FLOW-A configurations. As in the previous
section, we restrict the comparison to those instances for which all configurations where able
to find at least a valid solution. The number of instances used for comparison is labeled by #
Inst. It can be seen that beginning with size 200 a significant fraction of instances is rejected.
The influence of an initial solution on the achieved gap and objective values is negligible. Only
with respect to the required run-time is it advantageous to supply an initial solution, which has
to be created by CH-O. Using CH-O has the most benefit for the largest instance sizes. The
run-time overhead of LS-O is too high to make it worthwhile. Note that we use VNS-O exactly
in the configuration as introduced in Chapter 8. That means that the only termination criterion
is the elapsed time and as a consequence FA-VNS requires at least 500 seconds to solve an
instance. However, even if we subtract 500 seconds from the reported run-times, it still is far
from competitive. Using VNS-O does not show any advantage with respect to gap or objective
value, so an evaluation of more practical termination criteria does not seem warranted. Also
with respect to the required Branch & Bound nodes (# Nodes) VNS-O is only as good as the
other heuristics are.
The same data, but now according to instance load is presented in Table 11.8. Again we can
observe that the presence of an initial solution only has a significant influence on the required
run-time and CH-O seems to be the right choice. A solution created by LS-O is only beneficial
for instances of the highest load.
The performance of the different FLOW-MA configurations when solving VNMP-S is shown in
Table 11.9. Note that we do not present the average objective and gap values in this case, because
we have already shown that the different configurations of FLOW-MA either find a valid solution
or fail due to the memory limit. For solving VNMP-S it is very clear that using an initial solution
created by CH is an advantage in terms of required run-time. In contrast to VNMP-O, better
initial solutions consistently lead to fewer required nodes in the Branch & Bound tree, with the

183

Table 11.7: Comparison of FLOW-A (FA) configurations depending on the instance size.

Size FA FA-CH FA-LS FA-VNS
Inst. 20 120 120 120 120

30 120 120 120 120
50 120 120 120 120

100 113 113 113 113
200 79 79 79 79
500 46 46 46 46

1000 35 35 35 35
Gap[%] 20 0.0 = 0.0 = 0.0 = 0.0 =

30 0.1 = 0.1 = 0.1 = 0.1 =
50 0.5 = 0.5 = 0.5 = 0.5 =

100 1.4 = 1.3 = 1.4 = 1.4 =
200 1.4 > 1.2 = 1.2 = 1.2 =
500 0.4 = 0.4 = 0.4 = 0.3 =

1000 0.6 > 0.4 = 0.4 = 0.4 =

Obj 20 803.2 = 803.2 = 803.2 = 803.2 =
30 1140.8 = 1141.3 = 1140.7 = 1140.9 =
50 1758.0 = 1758.1 = 1757.9 = 1758.2 =

100 3398.2 = 3397.1 = 3398.2 = 3395.6 =
200 4140.7 > 4134.4 = 4134.6 = 4134.6 =
500 4248.8 = 4249.6 = 4250.2 = 4248.5 =

1000 4353.7 = 4346.1 = 4347.4 = 4346.4 =

t[s] 20 0.9 = 0.8 = 1.0 > 516.5 >
30 4.9 = 4.9 = 5.7 > 650.2 >
50 30.3 > 28.7 = 32.4 > 963.9 >

100 421.7 > 410.5 = 488.3 > 2742.7 >
200 341.6 > 341.3 = 400.8 > 2336.1 >
500 306.6 > 277.2 = 330.4 > 1499.3 >

1000 730.1 > 645.5 = 674.4 = 1545.7 >
Nodes 20 921.7 = 583.2 = 500.4 = 698.5 =

30 1452.4 = 1532.6 = 1993.7 = 2047.2 =
50 2756.6 > 2873.8 > 2219.0 = 2245.4 =

100 5657.1 = 4409.3 = 4840.8 = 5728.0 =
200 1528.4 = 1513.4 = 1599.3 = 1574.5 =
500 558.0 = 503.4 = 539.8 = 625.7 =

1000 715.1 = 656.3 = 732.7 = 636.7 =

184

Table 11.8: Comparison of FLOW-A (FA) configurations depending on the instance load.

Load FA FA-CH FA-LS FA-VNS
Inst. 0.10 210 210 210 210

0.50 165 165 165 165
0.80 135 135 135 135
1.00 123 123 123 123

Gap[%] 0.10 0.0 = 0.0 = 0.0 = 0.0 =
0.50 0.4 = 0.3 = 0.3 > 0.3 =
0.80 1.0 > 0.9 = 0.8 = 0.9 =
1.00 1.4 = 1.4 = 1.4 = 1.4 =

Obj 0.10 1938.3 = 1937.9 = 1937.9 = 1937.9 =
0.50 2749.6 > 2748.4 = 2749.4 = 2748.2 =
0.80 2528.9 > 2525.5 = 2524.9 = 2525.0 =
1.00 2447.6 = 2447.2 = 2447.6 = 2446.3 =

t[s] 0.10 2.5 > 2.3 = 3.1 > 597.0 >
0.50 43.5 = 43.2 = 50.3 > 1206.5 >
0.80 155.6 = 147.9 = 154.2 = 1669.0 >
1.00 357.0 > 360.1 = 352.2 = 2041.1 >

Nodes 0.10 170.9 > 158.4 = 177.4 = 162.9 =
0.50 1280.1 = 937.4 = 1365.4 = 1632.8 =
0.80 4501.3 = 3847.3 = 3597.9 = 3937.8 =
1.00 4647.0 > 4515.3 = 4399.6 = 4767.5 =

fewest nodes required by FMA-VNS. This method might even be competitive with respect to
run-time with a better termination criterion. The data presented in Table 11.10 shows the same
tendencies. When considering run-time, FMA-CH performs best. The higher the instance load,
the more important good initial solutions are, and again FMA-VNS performs best. It is notable
that solving VNMP-S requires barely any branching.
In conclusion, we have shown that using an initial solution (preferably one created by CH-O)
can reduce the time required to solve an instance. However, it does not increase the number of
instances that can be solved to optimality or decrease the achieved gap. The influence of the
employed heuristic is much more pronounced when solving VNMP-S. We will denote FA-CH
by ILP-O and FLOW-S by ILP-S.

11.4.4 Feasibility of PATH

In this section, we are mainly concerned with PATH and whether this formulation is substantially
better than FLOW. Using PATH, we only implemented a Column Generation approach, instead
of full Branch & Price. Therefore, we will compare lower bounds on the objective instead of
found feasible solutions. PATH should be able to achieve significantly better (i.e., higher) lower
bounds than FLOW. For FLOW, we only showed the influence of utilizing knowledge about

185

Table 11.9: Comparison of FLOW-MA (FMA) configurations depending on the instance size.

Size FMA FMA-CH FMA-LS FMA-VNS
Inst. 20 120 120 120 120

30 120 120 120 120
50 120 120 120 120

100 120 120 120 120
200 120 120 120 120
500 120 120 120 120

1000 92 92 92 92
t[s] 20 0.2 > 0.2 = 0.3 > 500.2 >

30 0.8 > 0.6 = 0.9 > 500.4 >
50 2.5 > 1.8 = 2.4 > 501.1 >

100 9.1 > 7.3 = 15.1 > 504.6 >
200 23.9 > 19.5 = 52.1 > 510.3 >
500 119.0 > 93.9 = 310.8 > 572.4 >

1000 244.0 > 189.4 = 502.5 > 652.9 >
Nodes 20 0.0 = 0.0 = 0.0 = 0.0 =

30 0.1 = 0.0 = 0.0 = 0.0 =
50 0.2 = 0.0 = 0.0 = 0.0 =

100 0.1 = 0.0 = 0.0 = 0.0 =
200 4.2 > 0.6 = 0.0 = 0.0 =
500 46.4 > 1.7 = 2.4 = 0.2 =

1000 98.5 > 14.4 > 12.8 = 3.7 =

Table 11.10: Comparison of FLOW-MA (FMA) configurations depending on the instance load.

Load FMA FMA-CH FMA-LS FMA-VNS
Inst. 0.10 210 210 210 210

0.50 210 210 210 210
0.80 209 209 209 209
1.00 183 183 183 183

t[s] 0.10 9.7 > 8.9 = 16.2 > 508.5 >
0.50 37.8 > 32.3 = 116.4 > 528.9 >
0.80 86.1 > 67.9 = 177.7 > 549.1 >
1.00 71.8 > 51.3 = 147.7 > 536.3 >

Nodes 0.10 0.0 = 0.0 = 0.0 = 0.0 =
0.50 1.6 > 0.2 = 0.0 = 0.0 =
0.80 34.3 > 5.7 > 0.0 = 0.7 =
1.00 41.9 > 2.1 = 8.0 > 1.3 =

186

Table 11.11: Number of instances for which all configurations created a result (# Inst.), average
lower bounds (LB.) and average required run-time (t[s]) for FLOW and PATH configurations.

Size PATH F-P3N F-FEN F-P3 F-FE
Inst. 20 120 120 120 120 120

30 120 120 120 120 120
50 116 116 116 116 116

100 45 45 45 45 45
200 31 31 31 31 31
500 28 28 28 28 28

1000 13 13 13 13 13
LB. 20 737.6 < 737.0 < 737.1 < 785.5 = 785.0 =

30 1073.8 < 1072.4 < 1072.4 < 1117.8 = 1118.5 =
50 1653.1 < 1650.8 < 1650.8 < 1711.2 = 1712.3 =

100 2391.8 < 2386.3 < 2386.4 < 2440.4 = 2440.2 =
200 2534.3 < 2523.4 < 2523.5 < 2566.0 = 2566.2 =
500 3082.9 < 3071.4 < 3072.2 < 3110.6 = 3111.6 =

1000 3996.8 < 3990.8 < 3992.8 < 4052.8 = 4053.2 =

t[s] 20 22.7 > 1.6 > 0.9 = 1.3 > 1.2 >
30 243.5 > 12.3 > 7.5 = 15.8 > 12.9 >
50 1476.0 > 34.5 > 20.8 = 47.0 > 45.2 >

100 1648.2 > 24.2 > 6.6 = 15.6 > 13.3 >
200 884.3 > 24.8 > 5.4 = 8.6 > 6.6 >
500 1557.5 > 79.5 > 31.7 = 46.1 > 38.7 >

1000 4321.2 > 324.2 > 62.9 = 96.6 > 64.5 =

fixed nodes on the final result and not on the achieved lower bound in the root node. We will
also consider this aspect in this section.
The following PATH and FLOW configurations are going to be compared:

PATH The PATH model. The initial set of paths is derived from the solution found by CH-O.

F-P3 The FLOW-P3 configuration, all cuts CPLEX uses in its default setting are used.

F-P3N The same as F-P3, but all automatic cuts of CPLEX are deactivated.

F-FE The FLOW-FE configuration making use of all cuts. This configuration utilizes informa-
tion about fixed nodes or arcs, which F-P3 does not.

F-FEN The same as F-FE, but all cuts are deactivated.

Note that in addition to the influence of fixing nodes and arcs, we also compare the performance
of the FLOW models with and without automatic cuts. For a fair comparison of model strength,
PATH has to be compared to FLOW without cuts, and is expected to achieve better bounds. For
practical purposes, it should also create better bounds than FLOW with cuts to be considered
useful.

187

Table 11.11 shows a comparison of the different configurations. We only consider instances for
which all methods were able to derive a valid lower bound. It can be seen that beginning with
size 100, only for a small fraction of instances a bound could be obtained. This low number is
due to PATH, the FLOW based configurations were far more successful. For size 1000, PATH
fails mostly because of its memory requirements, for smaller sizes too many pricing iterations
are required.
When comparing the achieved lower bounds, it can be observed that PATH indeed creates better
bounds than both FLOW configurations without automatic cuts, and the difference is statistically
significant (not shown in the table). However, the difference is small, especially compared to
the bound increase achieved by using the automatic cuts. As for the difference in bounds when
fixing nodes and arcs, we see that fixing results in slightly higher bounds, but the difference
is not significant. This is surprising since we have already shown in Section 11.4.2 that using
information about fixed nodes or arcs has a significant positive influence on the final result.
When considering the required run-time, we see that PATH is not competitive at all. This alone
however should not be discouraging, since it is well known [174] that Column Generation re-
quires careful tuning to achieve lower run-times, which we did not perform in this case. Auto-
matic cuts and fixing nodes have an interesting influence on the required run-time. Without the
overhead of the automatic cuts, fixing nodes allows solving the LP much faster than without,
especially for larger instances. With the automatic cuts, fixing is still faster, but only barely.
In addition, activating the cuts decreases the required run-time when not fixing nodes, but in-
creases it when fixing. We do not show the results depending on instance load since they show
essentially the same.

11.5 Conclusion

In this chapter, we could show that the preprocessing techniques as presented in Chapter 9 are
essential for solving the VNMP with FLOW. The largest improvement is achieved by activating
preprocessing. Using more powerful preprocessing techniques gives another boost to perfor-
mance. The achieved objective values are usually very similar, the influence of preprocessing
mostly concerns the required run-time. In total, FLOW-FE performed best. This configura-
tion uses FLOW with the highest levels of preprocessing, utilizing also information about fixed
nodes and links incoming flow and node usage with equality. FLOW-A, which allows buying
additional resources in the substrate, could have been better than FLOW-FE since integer fea-
sible solutions can be found more easily, but this advantage did not materialize. Nevertheless,
FLOW-A has a performance very similar to FLOW-FE, and for instances of medium size or low
loads offers a small advantage with respect to run-time. The run-time can be further improved
by starting from a solution created by CH-O.
The difference between methods for solving VNMP-S and VNMP-O is huge, both in number
of solved instances and required run-time. FLOW-S fails only to produce a valid solution for a
single instance of the largest size due to memory reasons, which also exceeds the capabilities of
the best heuristics presented in the previous chapters. The FLOW variants solving VNMP-O fail
earlier and more often. Additionally, there is a run-time difference of a factor between 10 and
500.

188

Concerning PATH, we have shown that it is not a promising approach for solving the VNMP.
While it is able to derive better bounds than FLOW without automatic cuts used by CPLEX, it
does not even come close to the bounds achieved by using automatic cuts. In addition, imple-
menting a full Branch & Price scheme based on PATH would require significant effort, since
this is not supported by CPLEX and additional work would be required to make it competitive
with respect to run-time. The performance of PATH depends critically on the delays, since this
constraint is hidden within the pricing problem. In preliminary work with another instance set,
where most virtual arcs just used a large value for the allowed delay if it was not meant to be
constraining, PATH achieved even worse results. It stands to reason that for instances where
delays are more critical, PATH might offer a useful advantage over FLOW.

11.6 Future Work

The incorporation of knowledge about fixed nodes or arcs could be refined. We have shown
that the information about fixed nodes can strengthen the model, because it helps forbidding
fractional flows that would exceed the delay limit if they were integer. However, this is only true
if the fixed node is not an articulation point in the shadow of the substrate. If it is an articulation
point, then there is by definition no other way than to use this node, regardless of delay limits.
The same holds true for fixed arcs, if they are bridges in the shadow of the substrate. Therefore,
the corresponding constraints could be omitted in those cases.
During the definition of FLOW-A, we have forbidden the possibility of selling resources that we
do not use. However, there are some applications where this would be an interesting possibility.
For instance, if we own contended resources that we do not need to use ourselves, it might
be profitable to rent them out. This of course raises the question of how to determine which
resources to keep so that future virtual networks can still be accommodated.
If a VNMP instance has no valid solution, we only considered changes to the substrate network.
It might beneficial to study the possibility of changing the virtual network requests. For instance,
we could allocate less bandwidth to a virtual arc than it requires, which would incur a penalty.
Depending on the costs for adding additional resources, this approach might make more sense.
For full flexibility, one could consider both options at the same time. Some care would be
required to keep the model linear.
The presented ILP models (and the VNMP in general) use a very simple delay model. One
possible enhancement would be to assume the delay on a substrate connection to be normally
distributed instead of constant. In addition to the maximum allowed delay, a virtual arc also
specifies the probability of exceeding this delay. Since the means and variances of normal dis-
tributions are additive (assuming independent distributions), it is possible to modify FLOW by
adding another variable type that tracks the sum of the variances for each virtual arc. The only
challenge is that to check whether we exceed the delay bounds, we need the standard deviation,
which is the square root of the variance. To calculate this, linear approximations of the square
root function have to be employed, as presented for instance in [136].
Based on the presented results of FLOW-S and previous heuristics, it might make sense to com-
bine both, since FLOW-S is rather fast when trying to find valid solutions for an VNMP instance.
These valid solutions could be further optimized by one of the heuristics.

189

PATH does not work for the VNMP, but that does not mean that the Column Generation idea
itself is without merit for the VNMP. It may be possible to devise other formulations, for instance
focusing on finding good groups of virtual nodes for a substrate node instead of finding good
paths for virtual arcs.

190

CHAPTER 12
Application Study

12.1 Introduction

In the previous chapters, we have presented different methods for solving the VNMP. In this
chapter, we will give an example of how these methods can be used to solve problems occurring
in practice. In particular, we use one of the presented methods to evaluate at which locations
in the substrate we have to invest (i.e., increase the amount of available resources) to be able to
host more virtual networks.

Note the difference between this scenario and what we did previously for solving the VNMP
where we allow to buy additional resources. In the VNMP scenario, we know which virtual
networks we want to embed into the substrate and are able to determine, if the substrate does
not have enough resources, the cheapest way of buying additional resources to fit all virtual
networks into the substrate. Now we try to determine beforehand where we need to buy more
resources, so that future virtual networks can be successfully embedded and do not need to be
rejected. Of course, we do not know how future virtual networks will look like, so our objective
is to increase the probability that a new virtual network can be embedded into the substrate, the
embedding probability pem.

The remainder of this chapter is structured as follows. We give an overview on related work
in Section 12.2. In Section 12.3, we present the Virtual Network Mapping model used in this
chapter. It is slightly different from the VNMP, since the work presented here actually partly
preceded the results from previous chapters. This section also outlines the differences in the
used VNMP instances, as precursors of the VNMP instances as presented in Chapter 5 have
been used. The method of determining the embedding probabilities is outlined in Section 12.4.
The results of the evaluation can be found in Section 12.5. We conclude in Section 12.6. The
work presented in this chapter has been published in [92].

191

12.2 Related Work

A physical network has to be able to transfer the occurring traffic and avoid packet loss and
delay. The amount of data to be transferred during normal operation is not known beforehand
and has to be estimated. There are different mechanisms available to ensure adequate quality of
service by avoiding or minimizing link overload in the network.
To a certain extent, Traffic Engineering (TE) can be used to optimize the resource-usage of
flows in the network [58]. By using TE, the physical network can carry more traffic, but the
optimization is difficult and requires a careful selection of objective functions [78]. In addition
to TE, the mechanism of Admission Control (AC) can be used. With AC, the load in the network
is analyzed before new traffic is allowed to enter the network to avoid overload situations. This
mechanism was proposed for the Internet in [157].
Both mechanisms are rather complex and require constant monitoring of the network. A much
simpler approach is to use Capacity Overprovisioning (CO). With CO, the network is overdi-
mensioned, which makes overload in unexpected scenarios very unlikely. It is often stated that
CO has high initial costs in comparison to other methods, but as the network usually must also
provide backup capacity for unexpected failure scenarios, the bandwidth requirements for CO
are similar to those of AC [128]. To determine the best capacities for links and routers is not
easy, even when accurate information about traffic patterns in a network are provided. A method
to find network elements which might have insufficient capacity is implemented in the Resilyzer
framework [79, 127]. It can analyze all network failure scenarios with given probability and
determine for example the link overload probability, which can be used for CO.
In this chapter we present a new method to determine such bottlenecks that can be alleviated by
CO, which is not based on failure probabilities but on the probability that a new virtual network
can be embedded. To the best of our knowledge, no other previous work examined the use of a
virtual network embedding algorithm for finding bottlenecks in the substrate.

12.3 Network Traffic Model

The network traffic model employed in this chapter is the same model as for the VNMP, with one
exception. For the VNMP, we have only one type of resource available on the substrate nodes,
the CPU capacity. It is used for hosting virtual nodes and to transfer data across the node. Here,
the CPU capacity does not have this dual role and is only required for hosting virtual networks.
For routing, there is a second type of resource at the substrate nodes, the routing capacity. For
one unit of transferred data, one unit of routing capacity is used at the substrate node. Within
this chapter, we will denote this problem by VNMP.
The second major difference in the employed methodology in contrast to the previous chapters
concerns the used instance set [87]. Here we use substrate networks derived from the rock-
etfuel [163], scan [70] and lucient [25] projects. The instances were created similarly to the
method presented in Chapter 5. They still contain virtual networks designed to represent Stream,
Web, P2P and VoIP applications, albeit not the same number of each of those networks. Further
differences will be mentioned as relevant, for much more detail on the design of the instances
and this variant of the VNMP, see [88].

192

Solvable

Unsolvable

(a)

(b) (c) (d) (e)

(f)

Figure 12.1: Example of an extension procedure execution.

12.4 Methodology

The basic idea of the conducted experiments is to show that by solving VNMP instances that do
not have a valid solution we can extract valuable information in order to improve the substrate
network. By improvement we mean that the probability that an additional virtual network (VN)
can be embedded into the substrate (the embedding probability pem) is increased, and that more
virtual networks can be embedded into the substrate before pem reaches zero.
To show this, we perform two experiments. We start with the VNMP instances available at [87].
For those instances, we determine pem separately for each VN type because we want to show the
influence of different VN types on pem. The embedding probability of an instance is determined
by adding a VN of a specific type and checking whether this new problem is solvable or not.
This is repeated nS times and pem is calculated as the fraction of solvable cases in relation to
the number of tested ones. In this work, we use nS = 50 as tradeoff between required run-time
and confidence in the calculated pem. We continue this process with the first found solvable
problem (i.e., the added VN could be successfully embedded in the substrate) in a depth-first
fashion until pem reaches zero or we have added ten additional VNs. Then the procedure tracks
back to an instance with the least amount of added VNs that has not had its pem determined.
The motivation for this traversal order is that we want to see how pem develops while adding
additional VNs but also cover a reasonable fraction of the search space of instances reachable
from the initial problem. We chose the upper limit of ten additional VNs because as more
VNs are added, the resource bottlenecks in the substrate depend more and more on the exact
configuration of the added VNs and not on the initial situation in the substrate and therefore
become less relevant when we want to determine where we want to add additional resources
to the substrate. Additionally, we used a limit of 101 pem evaluations, which allows the cutoff
point of ten added VNs to be reached ten times. For the whole procedure (which we will call
extension procedure from now on) we set a time limit of one day and we executed it for each of
the four VN types used for the VNMP.
Figure 12.1 shows an example execution of the extension procedure. It starts with problem
instance (a), an instance from the instance set. It then determines pem for this instance by
repeatedly extending (a) with one random VN (generated as in [88]) and checking whether the

193

new instances (b) are solvable or not. In the illustrated case, every newly generated instance was
solvable. We continue with the first found instance and repeat this process until we reach c. For
c, we determine a pem of 2%, because only one of 50 instances is solvable. We continue with
the only found solvable instance (d). Node (d) has a pem of 0%, so there are no instances with
which to continue; we track back to an instance with the least amount of added VNs that has not
had its pem determined, in this case the second solvable instance created from (a). The extension
procedure then continues with (f) and so on until one of the mentioned limits is reached or no
more instances remain.
During the extension procedure, a lot of unsolvable instances (i.e., VN configurations that cannot
be embedded into the substrate) are created. For the second experiment, we add resources to the
substrates of the starting instances based on the reasons why those instances from the first run
of the extension procedure were unsolvable and then execute the extension procedure again.
The following sections describe in detail how we determined the solvability or unsolvability of a
problem instance during the calculation of pem, how the reasons for unsolvability were extracted
and how they were translated into substrate changes.

12.4.1 Proving Unsolvability and Extracting Reasons

During the execution of the extension procedure, we want to collect reasons (i.e., location and
amount of missing resources) why some VN configurations could not be mapped into the sub-
strate. From these reasons, we want to derive changes to the substrate network. To get the un-
solvability reasons, we solve a modified version of the Integer Linear Program presented in [88].
It calculates the cheapest changes to the substrate (i.e., added resources), so that a specific VN
configuration can be embedded. We have looked at this problem also in previous chapters. Here
we consider an extended version, because we do not only allow changing bandwidth and CPU
capacities, but also changing the delay on substrate arcs and the routing capacity on substrate
nodes. We will now present the used ILP in detail.
The directed graph G = (V,A) with node set V and arc set A represents the substrate network.
The available CPU power of a substrate node is denoted with ci ∈ N+, ∀i ∈ V , its routing
capacity with ri ∈ N+, ∀i ∈ V . The delay of a substrate arc is denoted by de ∈ N+, ∀e ∈ A, its
available bandwidth with be ∈ N+, ∀e ∈ A. The components of the VN graphG′ = (V ′, A′) are
the VNs that have to be embedded into the substrate. The constant ck ∈ N+, ∀k ∈ V ′ determines
the required CPU power of a virtual node. The required bandwidth by a virtual connection is
defined by bf ∈ N+, ∀f ∈ A′ and the maximum allowed delay by df ∈ N+,∀f ∈ A′. The set
M ⊆ V ′ × V defines the allowed mappings between virtual and substrate nodes. The functions
s : A∪A′ → V ∪V ′ and t : A∪A′ → V ∪V ′ associate each arc of G and G′ with their source
and target nodes, respectively. The coefficients pCPU, pRC, pBW and pDL define the cost of adding
one unit of CPU or routing capacity to a substrate node, a unit of bandwidth to a substrate arc or
removing a unit of delay from a substrate arc. We use pCPU = pRC = 1, pBW = 5 and pDL = 20
to reflect the fact that it is easy to increase the resources at the substrate nodes, but adding
bandwidth at substrate arcs may be difficult and expensive because new cables may need to be
run. Most expensive is a change to delays, which basically means a switch of data transmission
technology.

194

The ILP utilizes the decision variables xki ∈ {0, 1}, ∀k ∈ V ′, ∀i ∈ V to indicate where
the virtual nodes are located in the substrate graph and yfe ∈ {0, 1}, ∀f ∈ A′, ∀e ∈ A to
indicate if a virtual connection is implemented by using a substrate connection. The decision
variable zfi ∈ {0, 1}, ∀f ∈ A′, ∀i ∈ V indicates that a substrate node is used to route a virtual
connection. The variables aCPU

i , ∀i ∈ V represent the added CPU capacity to a substrate node,
aRC
i , ∀i ∈ V the added routing capacity. Variables aBW

e , ∀e ∈ A represent the added bandwidth
to a substrate arc and aDL

e , ∀e ∈ A the removed delay. Note that aDL
e is always non negative. The

auxiliary variable dfe , ∀e ∈ A, ∀f ∈ A′ represents the delay a substrate arc has when used to
implement a virtual arc and is required due to technical reasons pertaining to the implementation
of delay constraints when delay changes on substrate arcs are possible.
The complete ILP is defined by inequalities (12.1)–(12.18).

min
∑
i∈V

(pCPUaCPU
i + pRCaRC

i) +
∑
e∈A

(pBWaBW
e + pDLaDL

e) (12.1)∑
(k,i)∈M

xki = 1 ∀k ∈ V ′ (12.2)

∑
e∈A|t(e)=i

yfe + x
s(f)
i −

∑
e∈A|s(e)=i

yfe − x
t(f)
i = 0 ∀i ∈ V, ∀f ∈ A′ (12.3)

∑
e∈A|t(e)=i

yfe + x
s(f)
i ≤ zfi ∀i ∈ V, ∀f ∈ A′ (12.4)

∑
(k,i)∈M

ckx
k
i ≤ ci + aCPU

i ∀i ∈ V (12.5)

∑
f∈A′

bfz
f
i ≤ ri + aRC

i ∀i ∈ V (12.6)

∑
f∈A′

bfy
f
e ≤ be + aBW

e ∀e ∈ A (12.7)

dey
f
e − aDL

e ≤ dfe ∀e ∈ A, ∀f ∈ A′ (12.8)

aDL
e ≤ de − 1 ∀e ∈ A, ∀f ∈ A′ (12.9)∑

e∈A

dfe ≤ df ∀f ∈ A′ (12.10)

xki ∈ {0, 1} ∀(k, i) ∈M (12.11)

yfe ∈ {0, 1} ∀e ∈ A, ∀f ∈ A′ (12.12)

zfi ∈ {0, 1} ∀i ∈ V, ∀f ∈ A′ (12.13)

aCPU
i ∈ R+

0 ∀i ∈ V (12.14)

aRC
i ∈ R+

0 ∀i ∈ V (12.15)

aBW
e ∈ R+

0 ∀e ∈ A (12.16)

aDL
e ∈ R+

0 ∀e ∈ A (12.17)

dfe ∈ R+
0 ∀e ∈ A, ∀f ∈ A′ (12.18)

195

The objective is given by (12.1), the total cost of added resources is to be minimized. Equali-
ties (12.2) ensure that each virtual node is mapped to exactly one substrate node, subject to the
mapping constraints. The flow conservation constraints (12.3) make sure that for each virtual
connection there is a connected path in the substrate. Linking constraints (12.4) ensure that vari-
ables zfi are equal to one when the corresponding node is used to route the traffic of a particular
virtual connection. Inequalities (12.5)–(12.7) ensure that the solution is valid with regard to
CPU, routing capacity and bandwidth constraints while also considering added resources. In-
corporating changes to the substrate delay is not as straight forward. Inequalities (12.8) together
with the domain of dfe ensure that dfe is either zero if substrate arc e is not used by virtual arc
f (i.e., yfe is zero) or has the correct delay value (i.e., defined delay minus delay reduction)
if the substrate arc is used. Inequalities (12.9) make certain that even after reduction, the de-
lay of a substrate connection is at least 1. Inequalities (12.10) ensure that the solution is valid
with regards to the delay constraints. Equations (12.11)–(12.18) define the domains of the used
variables. Note that the model only includes integrality constraints for xki , y

f
e and zfi (12.11)–

(12.13), the already covered constraints together with the objective function cause aCPU
i , aRC

i ,
aBW
e and aDL

e to be integral as well. Every non-zero a variable in an optimal solution counts as
one failure reason because a resource had to be added in order to embed all VNs.

12.4.2 Reacting to Failure Reasons

Executing the extension procedure for one instance typically creates ≈ 3000 unsolvable VN
configurations. With the help of the ILP formulation from the previous section, ≈ 8000 reasons
for unsolvability can be extracted. These have to be condensed into concrete changes for the
substrate. The following lists the four parameters we used for calculating the changes to the
substrate:

f Function that calculates a descriptive value from a set of missing resources, e.g., mean or
max

s Scaling factor for the result of f to calculate the added amount of resources

r How often resources (of one type) have to be missing at a specific location in the substrate
in relation to the maximum number of reported missing resources in order for this location
to receive additional resources

n Maximum number of resource changes in the substrate (per resource type)

Our aim is to add more resources to the most critical parts of the substrate network. Critical parts
are those that are frequently reported as having too few resources of a specific type available.
Let this report count be called m, and the highest count mmax. Note that the amount of missing
resources that is reported is not yet relevant. So, for routing capacity, bandwidth, CPU capacity
and delay separately, we regard substrate nodes (in case of routing and CPU capacity) and arcs
(for bandwidth and delay) in descending order of m. All locations with m ≥ r ·mmax, but at
most n, will receive additional resources. These cutoff rules ensure that we do not add resources
to too many locations in the substrate (which would not be economical) and also not to locations

196

which only rarely miss resources. The amount of additional resources is determined by applying
f to the reported amounts of missing resources at the selected locations and multiplying the
result by s. In this work, we used f = mean, s = 3, r = 0.3, n = 5. That means that
for each resource type separately, at most five locations receive additional resources. If, for
example, bandwidth was reported to be missing on a substrate arc ten times, and bandwidth was
not required on another arc more often, then every substrate arc that required more bandwidth
at least three times gets additional bandwidth. If these are more than five arcs, the five arcs
that reported missing bandwidth most often are selected to receive additional resources. For one
particular substrate arc selected to receive additional bandwidth, we calculate the mean reported
missing bandwidth and add three times as much. For consistency reasons, we apply s also to
delay changes (ensuring that the resulting delay is still at least one), even though this is not
strictly necessary, since delay is not consumed in the same way as for instance bandwidth is by
additional virtual networks.

12.5 Results

From the instance set, we chose 80 instances with a load of 0.8. Due to the computational
demand of the extension procedure, we could not use the complete instance set. We set a time-
limit of 300 seconds to solve the presented ILP model, for substrates of size 100 (the largest size
for this instance set) a time-limit of 500 seconds was employed. If the optimal solution to the
ILP was not found within the time-limit, we used the best found feasible solution if the gap to
the optimal solution was smaller than 95%. Preliminary runs showed that for larger substrates
the feasible solution reported by CPLEX sometimes was the result of heuristics CPLEX runs
before it actually starts to solve the ILP. For this problem, the solutions generated in this way
add a lot of resources to almost all nodes and arcs in the substrate and are therefore not helpful
for finding the real bottlenecks in the substrate. The gap limit ensures that we do not use those
solutions.

12.5.1 VNMP Instance Properties

In this section we show the properties of the 80 VNMP instances used as base for the performed
experiments. Table 12.1 shows the number of nodes and arcs and the number of virtual networks
of each type contained in the instances. The first thing to note is that we only tested 10 instances
of size 100, instead of the 14 for all other instance sizes. The reason for this is that for size
100, the instance set does not contain as many instances as for the other sizes since some of
the rocketfuel networks used as basis for the substrate networks are smaller than 100 nodes.
The development of the number of substrate arcs, virtual nodes and virtual arcs is similar to the
instances presented in Chapter 5. The remaining part of the table shows the average number
of virtual networks of each type contained in the instances. Previously, this was constant at
10 virtual networks for each type. These instances however have been created by completely
specifying a substrate network and then adding virtual networks of a random type and checking
if a valid solution exists until no more virtual networks could be added. As a result, the instances
contain more Stream and Web slices, since they require fewer connections and also not as many

197

Table 12.1: Number of used VNMP instances per size (#) and the average number of substrate
arcs (A), virtual nodes (V ′), virtual arcs (A′) and contained Stream, Web, P2P, and VoIP virtual
networks for those instances.

Size # A V’ A’ Stream Web P2P VoIP
20 14 53.7 118.2 146.0 6.6 8.5 4.4 4.1
30 14 95.4 215.0 264.0 13.1 14.6 7.6 7.8
40 14 126.1 275.4 382.0 16.4 18.5 6.9 7.1
50 14 172.1 308.0 523.9 14.4 16.5 7.5 6.4
70 14 259.4 478.7 835.6 18.1 17.9 6.1 7.6

100 10 399.0 648.0 1276.9 14.0 15.8 6.8 9.1

Table 12.2: Fraction of failure reasons of a specific type (missing CPU- (C) or routing- (R)
capacity, missing bandwidth (B) or too much delay (D)) during the first run of the extension
procedure for each VN type in relation to the total number of found failure reasons in percent.
(May not add up to exactly 100% due to rounding.)

Stream Web P2P VoIP
Size C R B D C R B D C R B D C R B D

20 39.9 56.0 4.1 0.0 12.5 66.2 0.0 21.3 11.9 80.3 7.8 0.0 11.5 88.0 0.2 0.2
30 35.5 43.7 20.7 0.0 10.6 40.8 12.3 36.3 5.1 53.3 41.6 0.0 4.3 48.1 40.3 7.3
40 42.9 46.1 11.0 0.0 8.9 37.5 9.1 44.4 13.3 58.8 27.9 0.0 16.2 42.2 12.9 28.7
50 39.5 38.6 21.9 0.0 6.2 38.0 12.7 43.1 1.8 78.7 19.0 0.5 4.6 45.5 31.6 18.4
70 53.7 33.4 12.8 0.0 9.2 28.0 13.3 49.4 6.0 61.7 31.7 0.6 5.6 58.7 34.0 1.7

100 48.9 36.5 14.6 0.0 4.0 42.6 3.3 50.1 5.2 88.8 6.1 0.0 19.1 74.1 5.1 1.6

resources as the P2P and VoIP networks and therefore have a higher probability to fit into the
substrate network. The total number of virtual networks contained in the instances does not rise
because their size grows with the substrate network size.

12.5.2 Extension Procedure

After we executed the extension procedure for all 80 instances and for each of the four virtual
network (VN) types, the extracted failure reasons were distributed as shown in Table 12.2.
It can be seen that in general missing routing capacities are prevalent, no matter which type
the additionally added VNs are. For Stream VNs, the fraction of missing routing capacities is
reduced while CPU capacities are missing more often with increasing substrate size. Normally,
one would expect the development to be the other way around, because routing capacities are
needed at multiple nodes in the substrate network to implement a virtual connection, while CPU
capacities are only needed at the start and the end of a virtual connection. When the substrate
grows, so do the average lengths of the implementations of virtual connections and the total
required routing capacity increases while the CPU capacity stays the same. This would cause
the probability of missing routing capacity to increase. The reason why missing CPU resources
become more prominent is that the nodes of stream VNs require a lot of CPU capacity (because
they have to split and distribute video streams). The VN sizes grow proportional to the substrate
sizes, therefore the Stream VNs for larger substrates can contain more nodes which perform

198

video stream splitting which in turn requires more CPU resources. In relation to the missing
CPU and routing capacities, the substrate link bandwidths only play a subsidiary role and no
link was found to have too much delay, which is not surprising since the virtual connections in
Stream VNs are not delay constrained.
This is not true for Web VNs which are heavily delay constrained. For substrates of size 100,
more than half of all found failure reasons are too high delay on some substrate arc. This fraction
rises with increasing substrate size because the average length of virtual arc implementations and
therefore the total accumulated delay grows.
When embedding additional P2P VNs into the substrate, missing bandwidths on substrate links
become a significant issue for the first time, even though missing routing capacities still domi-
nate. Again, this is because the (already high) bandwidth requirements of P2P VNs require a lot
of routing capacity in the substrate nodes and depending on the particular substrate configuration
one resource is more limiting than the other. Also note that a bias against bandwidth changes
exists, since adding one unit of bandwidth costs five times more than a unit of routing capacity.
That means that if an additional VN can be added either by adding four units of routing capacity
or adding one unit of bandwidth, four units of routing capacity are reported missing because this
is the cheaper solution. However, this effect can also be witnessed the other way around with
this VN type. Even though P2P VNs are not delay constrained, for sizes 50 and 70 delays were
reported missing. This can happen because the initial instances contain all four VN types, i.e.,
also some with are delay constrained. By reducing the delay somewhere, the virtual connec-
tions with stringent delay requirements can be implemented by using a previously impossible
substrate path which frees up resources for new VNs where they are needed. This can be the
cheaper solution, even though decreasing link delay by one unit costs twenty times more than
adding a unit of routing capacity for instance.
For VoIP VNs, missing bandwidths are again prominent (after missing routing capacities). Also
link delays play some role, but since VoIP VNs are not as delay constrained as Web VNs it is
not surprising to see that delays are less often a failure reason when compared to Web VNs.
Unfortunately we can offer no conclusive reason as to why the fraction of delay reasons fluc-
tuates so much for VoIP VNs. Larger instances reduce the probability that the presented ILP
can be solved to optimality, so one possible explanation could be that feasible solutions which
only change other resources are predominantly found. We will not go into detail regarding the
performance of the ILP, but in a nutshell, it works well up to substrate sizes of 50, i.e., more than
99% of executions yield useful results (a valid solution within the gap limit). For sizes 70 and
100, there is a split between Stream and Web VNs on the one hand and P2P and VoIP VNs on
the other. For Stream and Web VNs, we still get useful results more than 90% of the time. For
P2P and VoIP VNs, this is reduced to 85% for instances of size 70 and even 45% for size 100.
Note that at the time these experiments were performed, the preprocessing techniques outlined
in Chapter 9 had not been developed.
Based on the reported missing resources for each instance, we added resources to each VNMP
instance as outlined in Section 12.4.2. Table 12.3 shows the change to the available resources in
the substrate because of the added resources.
It can be seen that only a very small amount of resources was added to the substrate, as was our
goal. Generally, the total available amount of resources was increased by less than one percent.

199

Table 12.3: Relative change of the available resources in the substrate due to the found failure
reasons in percent.

Stream Web P2P VoIP
Size C R B D C R B D C R B D C R B D

20 1.4 0.7 0.2 0.0 0.1 0.3 0.0 -8.4 0.1 2.1 0.0 0.0 0.2 2.2 0.0 -1.2
30 0.6 0.4 0.2 0.0 0.0 0.1 0.0 -5.9 0.1 1.0 0.1 0.0 0.1 0.9 0.1 -3.8
40 0.4 0.3 0.1 0.0 0.0 0.1 0.0 -7.5 0.1 1.2 0.1 0.0 0.2 1.2 0.1 -3.5
50 0.2 0.1 0.2 -0.2 0.0 0.1 0.1 -6.5 0.0 0.8 0.3 -0.9 0.1 0.9 0.3 -5.7
70 0.2 0.1 0.0 -0.2 0.0 0.0 0.0 -2.3 0.0 0.5 0.1 -0.3 0.1 0.5 0.1 -0.4

100 0.1 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0 -0.1

Table 12.4: Average pem in percent for the first run of the extension procedure and for the second
run with additional substrate resources.

Stream Web P2P VoIP
Size 1st 2nd 1st 2nd 1st 2nd 1st 2nd

20 13.6 38.8 18.4 59.7 7.4 20.2 7.9 20.4
30 13.1 39.6 14.7 60.8 3.3 18.2 3.7 15.5
40 13.5 42.7 11.7 60.6 4.3 15.4 3.1 14.3
50 15.7 40.7 9.0 51.7 11.6 13.6 7.2 14.7
70 12.7 33.5 11.3 31.5 2.6 11.7 2.9 15.4

100 8.0 31.7 12.2 30.9 0.0 0.9 0.0 0.6

The most notable exception to this are the delays when adding Web or VoIP VNs. There are three
factors that work together to cause this. First of all, Web and VoIP VNs are delay constrained,
so even though delays are not very often reported to be too high, the reported magnitude is high.
Secondly, as we have already pointed out, s is also applied when calculating delay changes for
uniformity reasons, even though it is not strictly necessary. If the delay of a substrate connection
is reduced all future VNs will benefit, at least in our simplified model where substrate link delays
are independent of link load. The same is not true for the other resource types, since they are
used up by additional VNs, which is the reason why we add more resources than are reported
missing. The third contributing factor to the large delay changes is the fact that the sum of all
delays in the substrate is less than the sum of the other resource types, so changing the delay by
some fixed amount will be a larger relative change than for the other resources.
The following section will answer the question whether the resources added to the substrate
could influence pem in a meaningful way.

12.5.3 Change to the Embedding Probability

The complete development of pem during both runs of the extension procedure can be seen in
Figures 12.2 and 12.3. They show how often a specific pem occurred depending on the number
of added VNs. Stream and Web have been combined into one graph, as have P2P and VoIP,
because they show very similar behaviour. Clearly visible is the shift of the clusters to the
right, i.e., more VNs can be added before the substrate is full. Figure 12.2b shows that for

200

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 1 2 3 4 5 6 7 8 9 10

E
m

b
e

d
d

in
g

 P
ro

b
a

b
ili

ty
 [

%
]

Added Virtual Networks

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

N
u

m
b

e
r

o
f

O
c
c
u

rr
e

n
c
e

s

(a) Stream+Web

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 1 2 3 4 5 6 7 8 9 10

E
m

b
e

d
d

in
g

 P
ro

b
a

b
ili

ty
 [

%
]

Added Virtual Networks

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

N
u

m
b

e
r

o
f

O
c
c
u

rr
e

n
c
e

s

(b) Stream+Web-R

Figure 12.2: pem development for both runs of the extension procedure for Stream and Web
VNs. Suffix R denotes the second run with additional resources for the substrates.

201

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 1 2 3 4 5 6 7 8 9 10

E
m

b
e

d
d

in
g

 P
ro

b
a

b
ili

ty
 [

%
]

Added Virtual Networks

 0

 20

 40

 60

 80

 100

 120

 140

N
u

m
b

e
r

o
f

O
c
c
u

rr
e

n
c
e

s

(a) P2P+VoIP

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 1 2 3 4 5 6 7 8 9 10

E
m

b
e

d
d

in
g

 P
ro

b
a

b
ili

ty
 [

%
]

Added Virtual Networks

 0

 20

 40

 60

 80

 100

 120

 140

N
u

m
b

e
r

o
f

O
c
c
u

rr
e

n
c
e

s

(b) P2P+VoIP-R

Figure 12.3: pem development for both runs of the extension procedure for P2P and VoIP VNs.
Suffix R denotes the second run with additional resources for the substrates.

202

Stream and Web VNs, the added resources cause a substantial fraction of instances to stay at
pem = 1 during the first five added VNs. This is in contrast to the situation before additional
resources were added, as seen in Figure 12.2a. After five added VNs, most instances show a
pem smaller than 0.2. A similar, although not as pronounced, development can be seen for P2P
and VoIP VNs in Figure 12.3. It can be seen that during the first run of the extension procedure
(Figure 12.3a) it happens very often that the initial VNMP instance cannot be extended with an
additional VN. Nearly every initial instance has pem ≤ 0.12. After adding additional resources,
pem of the initial instance covers the whole range of possibilities. Adding further VNs reduces
pem far more rapidly than for Stream and Web VNs. On the whole the added resources are
more effective for influencing pem for Stream and Web VNs than they are for P2P and VoIP
VNs. There are two possible explanations for this behaviour. First of all, since the first run
of the extension procedure for P2P and VoIP VNs often could not extend the initial instance,
the collected failure reasons only contain reasons why adding one VN might fail. Therefore,
after adding resources, only adding the first VN works well and pem rapidly approaches zero
afterwards. Another possible explanation is that the used settings for determining where and
how much resources are added might not cause enough resources to be added so that multiple
VNs can be embedded in the substrate. The chosen settings work well for Stream and Web VNs,
but might be too conservative for P2P and VoIP VNs, which require more resources per VN.
In Table 12.4, we show the average embedding probability for all instances generated by both
runs of the extension procedure. It can be seen that the greatest gains have been achieved for Web
VNs (which also had the largest resource change). A close second are Stream VNs, where less
than 1% change in resources increased pem by 20% and more on average. The improvements
for P2P and VoIP VNs were not as great, especially for instances of size 100 where the ILP fails
to extract useful failure reasons due to time and memory constraints.

12.6 Conclusion

In this chapter, we presented a method how an ILP as presented in Chapter 11 can be adapted to
successfully identify bottlenecks in a substrate network. Our results show that less than one per-
cent of additional resources in the substrate network can increase the probability that additional
VNs can be embedded by 20% or more. We also showed that different use cases (i.e., different
VNs) lead to different resources being added to the substrate. Therefore, Virtual Network Op-
erators (VNOs) are able to optimize their networks to cater best to the VN types they encounter
the most, or are most profitable.
With the presented method, a VNO could monitor its current network situation and decide
whether leasing additional resources at a specific location is necessary to provide a certain ser-
vice availability. Knowing these bottlenecks in advance offers the VNO the possibility to add
additional resources before it is too late.
We have shown in this chapter the flexibility of the VNMP solution approaches. They can be
easily adapted to solve related practical problems occurring when operating VNs.

203

CHAPTER 13
Comparison and Conclusions

13.1 Introduction

In the final chapter of this work, we present a comparison of the main algorithms introduced
previously, both for solving VNMP-S and VNMP-O. The algorithms chosen for comparison
are CH-S and CH-O as defined in Section 6.5.1, LS-S and LS-O as defined in Section 6.5.2,
VND-S and VND-O as defined in Section 6.5.3, MA-O as defined in Section 7.5, GRASP-O as
defined in Section 8.4.1, VNS-O as defined in Section 8.4.2, and ILP-S and ILP-O as defined
in Section 11.4.3. For an even more extensive presentation of the results achieved by those
algorithms, we refer to Appendix A.

The presented data is based on the full VNMP instance set as defined in Chapter 5 at loads 0.1,
0.5, 0.8 and 1, giving a total of 840 VNMP instances. Comparing the exact algorithms (ILP-S
and ILP-O) to the others is problematic, since they may fail to produce any solution at all, for
instance when they are aborted due to the memory limit. To offer a meaningful comparison, we
chose the following approach: For every VNMP instance, we keep track of the highest additional
resource cost Ca and usage cost Cu produced by any compared algorithm. If one of the exact
methods failed to generate a result, we assume it generated a result with the worst Cu increased
by one, the worst Ca increased by one, and required 10000 seconds (the time-limit used for the
exact methods).

In Section 13.2, we analyze the number of valid solutions found by each algorithm. Section 13.3
is concerned with the Ca of the found solutions, while the achieved relative ranks Rrel are cov-
ered in Section 13.4. The gap of the substrate usage cost (and the definition of this metric) is
discussed in Section 13.5. Required run-times are presented in Section 13.6. We conclude in
Section 13.7 and outline future work in Section 13.8.

205

Table
13.1:N

um
berofvalid

solutions
found

by
the

m
ain

algorithm
s

presented
in

this
w

ork.

Size
L

oad
C

H
-O

L
S-O

V
N

D
-O

M
A

-O
G

R
A

SP-O
V

N
S-O

IL
P-O

C
H

-S
L

S-S
V

N
D

-S
IL

P-S
20

0.10
30

=
30

=
30

=
30

=
30

=
30

=
30

=
30

=
30

=
30

=
30

=
0.50

29
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

0.80
27

=
29

=
29

=
30

=
30

=
30

=
30

=
29

=
29

=
29

=
30

=
1.00

13
<

24
<

27
=

30
=

30
=

30
=

30
=

23
<

27
=

28
=

30
=

30
0.10

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

0.50
30

=
30

=
30

=
30

=
30

=
30

=
30

=
30

=
30

=
30

=
30

=
0.80

23
<

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

1.00
13
<

28
=

30
=

30
=

30
=

30
=

30
=

28
=

30
=

30
=

30
=

50
0.10

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

0.50
29

=
30

=
30

=
30

=
30

=
30

=
30

=
30

=
30

=
30

=
30

=
0.80

25
<

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

1.00
7
<

27
=

28
=

30
=

30
=

30
=

30
=

27
=

28
=

29
=

30
=

100
0.10

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

0.50
26
<

30
=

30
=

30
=

30
=

30
=

30
=

30
=

29
=

29
=

30
=

0.80
18
<

29
=

29
=

30
=

30
=

30
=

30
=

28
=

29
=

29
=

30
=

1.00
3
<

26
<

27
=

30
=

28
=

30
=

28
=

27
=

24
<

28
=

30
=

200
0.10

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

0.50
22
<

30
=

30
=

30
=

30
=

30
=

29
=

26
<

29
=

30
=

30
=

0.80
6
<

28
=

30
=

28
=

29
=

30
=

25
<

21
<

27
=

30
=

30
=

1.00
0
<

12
<

27
=

27
=

29
=

27
=

21
<

7
<

19
<

28
=

30
=

500
0.10

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

30
=

0.50
21
<

27
=

30
=

28
=

28
=

29
=

27
=

24
<

26
<

30
=

30
=

0.80
3
<

20
<

30
=

26
<

24
<

24
<

7
<

9
<

18
<

30
=

30
=

1.00
0
<

0
<

18
<

8
<

10
<

9
<

0
<

0
<

4
<

16
<

30
=

1000
0.10

27
=

30
=

30
=

30
=

30
=

30
=

30
=

26
<

30
=

30
=

30
=

0.50
9
<

25
<

28
=

26
<

26
<

27
=

20
<

14
<

24
<

28
=

30
=

0.80
0
<

8
<

17
<

12
<

16
<

12
<

0
<

1
<

10
<

17
<

30
=

1.00
0
<

0
<

2
<

2
<

0
<

2
<

0
<

0
<

1
<

2
<

29
=

206

13.2 Number of Valid VNMP Solutions

In this section, we focus on the capabilities of the main algorithms with respect to VNMP-S
and present the number of valid solutions found in Table 13.1. The very best performance is
achieved by ILP-S, which only fails to find a valid solution for one single instance. However,
most of the other compared algorithms achieve nearly the same performance for instances up
to size 100. VND-S is competitive up to size 200, but then fails often for instances with load
0.8 and 1. The same is true for MA-O, GRASP-O, and VNS-O. The hardest VNMP instances
with respect to VNMP-S are those of size 500 and 1000 with full load. For those, ILP-S is able
to find valid solutions for nearly all instances. The next best algorithm (VND-O) finds 18 valid
solutions for size 500 and 2 for size 1000. Therefore, there is still room for improvement for
heuristics when solving VNMP-S for the largest instances.

13.3 Additional Resource Cost

Table 13.2 presents the average achievedCa of the compared algorithms. This allows us to judge
how far the found solutions are away from validity (Ca = 0). The most interesting comparison
can be performed for instances of size 1000 and load 1. We know from the previous section that
all algorithms (with the exception of ILP-S) fail to find valid solutions for basically all instances.
Now we can see, that while those algorithms are the same with respect to the number of solved
instances, there are huge differences as to their distance to optimality. The best algorithm is
VND-S, with an average Ca of 303. The construction heuristic geared towards solving VNMP-S
is more than ten times worse, with a cost of 3200. When we use CH-O, the cost is 23300, nearly
a 77-fold increase compared to the best value. ILP-O achieves basically the same cost. This is
the result of how we set the costs if no solution is found. Note how the average cost of 1352 for
ILP-S is marked as the best value. From the previous section, we know that this average is the
result of 29 solved instances (i.e., 0 for Cu) and one instance for which no result was produced,
which is punished by using the Ca value from the worst algorithm (CH-O). This is better than
failing for nearly every instance with small values of Ca.

13.4 Relative Rank

We now start considering the performance of the different algorithms with respect to VNMP-O.
In Table 13.3, we show their average relative ranks. Unsurprisingly, ILP-O dominates according
to this metric, only starting with size 100 other methods achieve better results. This is mostly
due to ILP-O failing because of excessive memory requirements. For larger instances, ILP-O
cannot be beaten for a load of 0.1. When we consider the performance of the heuristic methods,
we see that MA-O and VNS-O are close to ILP-O up to size 100. For larger sizes VND-O is
best and also able to outperform ILP-O in some instances. The algorithms focusing on VNMP-S
generally have the worst ranks. Considering that CH-O often fails to find valid solutions, it is
surprising that ILP-S is even worse. For size 500 and load 0.1, this method consistently finds
the most expensive solutions. However, this is reversed for the highest loads and largest instance
sizes, where ILP-S performs best since all other methods struggle to find valid solutions.

207

Table
13.2:A

verage
C
a

achieved
by

the
m

ain
algorithm

s
presented

in
this

w
ork.

Size
L

oad
C

H
-O

L
S-O

V
N

D
-O

M
A

-O
G

R
A

SP-O
V

N
S-O

IL
P-O

C
H

-S
L

S-S
V

N
D

-S
IL

P-S
20

0.10
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.50

2.3
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.80
55.3

=
6.0

=
6.0

=
0.0

=
0.0

=
0.0

=
0.0

=
1.7

=
6.0

=
6.0

=
0.0

=
1.00

386.0
>

101.3
>

29.5
=

0.0
=

0.0
=

0.0
=

0.0
=

36.0
>

46.3
=

11.8
=

0.0
=

30
0.10

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.50
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.80

62.5
>

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

1.00
786.9

>
50.7

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
2.8

=
0.0

=
0.0

=
0.0

=
50

0.10
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.50

1.5
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.80
27.5

>
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
1.00

1905.5
>

124.8
=

8.4
=

0.0
=

0.0
=

0.0
=

0.0
=

21.6
=

22.7
=

5.3
=

0.0
=

100
0.10

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.50
31.5

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
2.3

=
2.3

=
0.0

=
0.80

301.3
>

2.3
=

2.3
=

0.0
=

0.0
=

0.0
=

0.0
=

12.5
=

2.3
=

2.3
=

0.0
=

1.00
1470.6

>
30.7

=
14.7

=
0.0

=
10.0

=
0.0

=
119.5

=
144.0

=
53.7

>
5.5

=
0.0

=
200

0.10
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.50

86.2
>

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

8.3
=

69.1
=

0.8
=

0.0
=

0.0
=

0.80
648.9

>
2.2

=
0.0

=
1.2

=
1.3

=
0.0

=
74.0

>
132.6

>
3.0

=
0.0

=
0.0

=
1.00

5480.0
>

229.8
>

4.8
=

11.0
=

0.2
=

24.3
=

1742.9
>

585.0
>

99.4
>

4.0
=

0.0
=

500
0.10

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.0
=

0.50
25.4

>
1.9

=
0.0

=
1.8

=
1.3

=
1.1

=
20.0

=
16.7

>
2.3

=
0.0

=
0.0

=
0.80

2075.8
>

339.3
>

0.0
=

35.8
=

29.1
>

34.1
>

1902.3
>

381.6
>

106.2
>

0.0
=

0.0
=

1.00
13765.3

>
1963.2

>
57.9

>
271.7

>
158.1

>
238.8

>
13765.3

>
2214.2

>
496.1

>
47.6

>
0.0

=
1000

0.10
1.1

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
0.0

=
1.9

=
0.0

=
0.0

=
0.0

=
0.50

237.9
>

2.5
>

0.4
=

2.1
=

2.1
=

47.3
=

158.4
>

34.8
>

3.1
>

0.6
=

0.0
=

0.80
3993.5

>
290.0

>
45.5

>
112.9

>
98.0

>
173.4

>
3993.5

>
510.1

>
151.0

>
49.3

>
0.0

=
1.00

23278.3
>

2527.5
>

659.1
>

748.5
>

881.8
>

1024.0
>

23279.2
>

3211.0
>

811.4
>

303.2
>

1352.6
=

208

Ta
bl

e
13

.3
:A

ve
ra

ge
R

re
l
ac

hi
ev

ed
by

th
e

m
ai

n
al

go
ri

th
m

s
pr

es
en

te
d

in
th

is
w

or
k.

Si
ze

L
oa

d
C

H
-O

L
S-

O
V

N
D

-O
M

A
-O

G
R

A
SP

-O
V

N
S-

O
IL

P-
O

C
H

-S
L

S-
S

V
N

D
-S

IL
P-

S
20

0.
10

0.
61

9
>

0.
20

9
>

0.
18

6
>

0.
01

3
=

0.
08

6
>

0.
03

1
>

0.
00

0
=

0.
74

9
>

0.
50

6
>

0.
65

7
>

0.
97

1
>

0.
50

0.
69

8
>

0.
38

2
>

0.
32

1
>

0.
09

6
>

0.
22

0
>

0.
10

3
>

0.
00

0
=

0.
84

4
>

0.
57

1
>

0.
70

3
>

0.
96

9
>

0.
80

0.
72

6
>

0.
46

0
>

0.
41

1
>

0.
12

4
>

0.
26

6
>

0.
13

0
>

0.
00

0
=

0.
86

3
>

0.
64

8
>

0.
76

4
>

0.
91

0
>

1.
00

0.
88

3
>

0.
52

3
>

0.
42

1
>

0.
13

2
>

0.
27

8
>

0.
15

0
>

0.
00

0
=

0.
83

7
>

0.
61

3
>

0.
68

8
>

0.
76

5
>

30
0.

10
0.

56
0
>

0.
19

9
>

0.
16

7
>

0.
01

4
=

0.
09

9
>

0.
02

8
>

0.
00

0
=

0.
77

1
>

0.
49

0
>

0.
71

5
>

0.
99

0
>

0.
50

0.
62

6
>

0.
38

4
>

0.
30

4
>

0.
09

2
>

0.
23

1
>

0.
10

7
>

0.
00

0
=

0.
85

2
>

0.
58

7
>

0.
76

0
>

0.
99

3
>

0.
80

0.
74

5
>

0.
44

9
>

0.
35

9
>

0.
15

0
>

0.
27

7
>

0.
12

3
>

0.
00

0
=

0.
85

4
>

0.
60

4
>

0.
75

8
>

0.
96

0
>

1.
00

0.
85

9
>

0.
48

2
>

0.
40

3
>

0.
18

3
>

0.
28

6
>

0.
13

6
>

0.
00

0
=

0.
84

6
>

0.
62

1
>

0.
71

5
>

0.
88

9
>

50
0.

10
0.

54
1
>

0.
27

6
>

0.
16

5
>

0.
01

9
=

0.
17

9
>

0.
04

8
>

0.
00

0
=

0.
83

1
>

0.
55

1
>

0.
77

5
>

1.
00

0
>

0.
50

0.
68

0
>

0.
45

4
>

0.
36

6
>

0.
15

5
>

0.
27

7
>

0.
11

1
>

0.
00

0
=

0.
88

4
>

0.
61

8
>

0.
78

5
>

0.
98

8
>

0.
80

0.
72

9
>

0.
48

4
>

0.
37

1
>

0.
18

3
>

0.
31

9
>

0.
12

9
>

0.
00

0
=

0.
86

8
>

0.
63

0
>

0.
77

9
>

0.
98

3
>

1.
00

0.
93

7
>

0.
51

4
>

0.
42

1
>

0.
18

8
>

0.
33

1
>

0.
11

9
>

0.
00

0
=

0.
79

4
>

0.
63

6
>

0.
70

6
>

0.
87

4
>

10
0

0.
10

0.
63

0
>

0.
41

1
>

0.
31

9
>

0.
15

1
>

0.
27

0
>

0.
09

2
>

0.
00

0
=

0.
87

6
>

0.
64

4
>

0.
81

8
>

1.
00

0
>

0.
50

0.
69

7
>

0.
44

8
>

0.
30

9
>

0.
27

0
>

0.
32

5
>

0.
14

2
>

0.
00

0
=

0.
88

1
>

0.
65

9
>

0.
78

4
>

0.
97

5
>

0.
80

0.
79

7
>

0.
45

0
>

0.
32

3
>

0.
23

1
>

0.
36

2
>

0.
14

0
>

0.
01

9
=

0.
85

3
>

0.
64

4
>

0.
74

9
>

0.
94

0
>

1.
00

0.
96

7
>

0.
46

5
>

0.
33

9
>

0.
24

0
>

0.
39

3
>

0.
13

7
>

0.
06

7
=

0.
76

2
>

0.
64

7
>

0.
66

7
>

0.
83

8
>

20
0

0.
10

0.
59

6
>

0.
46

4
>

0.
32

4
>

0.
21

9
>

0.
25

4
>

0.
12

1
>

0.
00

0
=

0.
89

2
>

0.
69

4
>

0.
80

9
>

0.
97

8
>

0.
50

0.
71

0
>

0.
46

1
>

0.
24

0
>

0.
27

2
>

0.
36

4
>

0.
12

5
>

0.
07

0
=

0.
89

2
>

0.
67

3
>

0.
75

7
>

0.
95

6
>

0.
80

0.
91

5
>

0.
45

0
>

0.
17

4
=

0.
28

9
>

0.
39

7
>

0.
15

5
=

0.
18

5
=

0.
85

9
>

0.
64

7
>

0.
66

9
>

0.
85

0
>

1.
00

0.
99

7
>

0.
68

0
>

0.
19

0
=

0.
26

5
>

0.
32

4
>

0.
20

1
=

0.
30

0
=

0.
80

8
>

0.
64

7
>

0.
56

2
>

0.
67

7
>

50
0

0.
10

0.
59

8
>

0.
44

5
>

0.
25

4
>

0.
34

1
>

0.
28

2
>

0.
16

9
>

0.
00

0
=

0.
87

8
>

0.
70

6
>

0.
82

8
>

1.
00

0
>

0.
50

0.
69

4
>

0.
39

9
>

0.
07

7
=

0.
30

1
>

0.
40

4
>

0.
23

0
>

0.
24

4
=

0.
90

9
>

0.
69

1
>

0.
72

1
>

0.
89

1
>

0.
80

0.
96

4
>

0.
47

4
>

0.
01

7
=

0.
26

1
>

0.
36

1
>

0.
32

0
>

0.
80

4
>

0.
81

7
>

0.
64

2
>

0.
52

8
>

0.
67

1
>

1.
00

0.
99

6
>

0.
79

4
>

0.
09

6
=

0.
36

6
>

0.
34

2
>

0.
40

7
>

0.
99

3
>

0.
83

0
>

0.
58

4
>

0.
33

2
>

0.
23

9
>

10
00

0.
10

0.
63

0
>

0.
42

3
>

0.
12

8
>

0.
37

8
>

0.
37

3
>

0.
21

3
>

0.
00

0
=

0.
88

9
>

0.
69

6
>

0.
81

3
>

0.
97

5
>

0.
50

0.
86

8
>

0.
34

8
>

0.
07

0
=

0.
31

6
>

0.
36

5
>

0.
33

1
>

0.
41

1
>

0.
91

7
>

0.
68

3
>

0.
64

1
>

0.
71

6
>

0.
80

0.
99

7
>

0.
55

5
>

0.
11

1
=

0.
38

8
>

0.
37

7
>

0.
43

2
>

1.
00

0
>

0.
76

4
>

0.
59

8
>

0.
42

0
>

0.
34

2
>

1.
00

0.
91

3
>

0.
70

2
>

0.
26

9
>

0.
34

6
>

0.
42

5
>

0.
47

8
>

1.
00

0
>

0.
76

9
>

0.
44

6
>

0.
17

9
>

0.
05

7
=

209

13.5 Substrate Usage Cost Gap

The previous section allowed a small insight into the relative performance of the compared
algorithms when solving VNMP-O. However, as we have outlined when defining the ranking
procedure, by ranking we lose the information about the distance between solutions (in terms of
cost). In this section, we will focus on the difference of the created solutions with respect to Cu.
As a measure, we chose the substrate usage cost gap Cu-gap. For an algorithm A, it is calculated
by dividing the difference between the Cu of the result created by A and the best Cu by the Cu
of A. If A’s result is not valid, we assume a Cu-gap of 100%. A Cu-gap of 1% means that the
best result is 1% cheaper than the result of the algorithm in question. Table 13.4 presents the
average Cu-gap values achieved by the algorithms compared in this chapter.
It can be seen, that for instances below size 200, VNS-O is very close to the results achieved by
ILP-O. For load 0.1, the gap is about 0.5%, for load 0.5 it is 2%, for 0.8 4%, and 7% for load 1.
Also MA-O is close to the performance of ILP-O. It can be observed that the results of ILP-S
are very often the most expensive. They are only exceeded for some instances by CH-O due to
the 100% gap assumed when the final result is not valid. Even the results of CH-S, LS-S, and
VND-S are in most cases not as expensive. Note that the presented gaps are in relation to the best
found solution, which is usually created by ILP-O. For a significant fraction of instances, ILP-O
cannot prove the optimality of the found solution and a gap of about 1% remains, as shown in
Chapter 11. Therefore, to get an approximation of the gap between the heuristic solutions and
the best solution value that might be obtainable, 1% can be added to the reported Cu-gaps.

13.6 Required Run-time

The last property of the presented algorithms we compare is their required run-time, which is
presented in Table 13.5. For MA-O, GRASP-O, and VNS-O, the required run-time is constant
since the algorithms were executed until the time-limit was reached. The applied time-limit of
1000 seconds for VND-based methods can be observed for the largest instances. Also note how
the run-time, especially for full load and a size of 1000, exceeds the time-limit by a large margin.
This is due to the fact that the time-limit is checked after a neighborhood has been searched. For
the very largest instances, even LS-O had to be aborted due to the time-limit. That may be
an indication that the employed neighborhoods grow too large when the instance size rises and
some alternatives need to be developed. It is remarkable how close the run-time of ILP-S is to
the heuristic alternatives.

13.7 Conclusion

The Internet has ossified. It cannot react to changing demands placed upon it by different ap-
plications. A way to get around this problem is to use virtual networks, which can be adapted
in terms of structure, employed protocols, and available resources to perfectly fit to specific
applications or application classes. These virtual networks need to be hosted in the available
physical network. In this work, we have considered an abstraction of this problem, the Virtual
Network Mapping Problem (VNMP), which is NP-hard. More precisely, we considered two

210

Ta
bl

e
13

.4
:A

ve
ra

ge
C
u
-g

ap
in

pe
rc

en
ta

ch
ie

ve
d

by
th

e
m

ai
n

al
go

ri
th

m
s

pr
es

en
te

d
in

th
is

w
or

k.

Si
ze

L
oa

d
C

H
-O

L
S-

O
V

N
D

-O
M

A
-O

G
R

A
SP

-O
V

N
S-

O
IL

P-
O

C
H

-S
L

S-
S

V
N

D
-S

IL
P-

S
20

0.
10

19
.4
>

5.
7
>

5.
0
>

0.
0

=
2.

0
>

0.
5
>

0.
0

=
23

.0
>

17
.9
>

20
.3
>

48
.2
>

0.
50

29
.5
>

8.
7
>

7.
7
>

1.
7
>

4.
8
>

2.
1
>

0.
0

=
31

.3
>

24
.2
>

28
.0
>

38
.2
>

0.
80

32
.5
>

15
.2
>

14
.1
>

2.
8
>

6.
3
>

3.
3
>

0.
0

=
32

.8
>

27
.5
>

29
.4
>

34
.4
>

1.
00

68
.3
>

29
.9
>

20
.9
>

4.
0
>

8.
1
>

4.
4
>

0.
0

=
44

.9
>

30
.8
>

30
.3
>

29
.3
>

30
0.

10
22

.6
>

3.
8
>

2.
7
>

0.
2

=
1.

7
>

0.
4
>

0.
0

=
26

.9
>

20
.5
>

25
.5
>

47
.0
>

0.
50

25
.5
>

7.
4
>

6.
1
>

1.
6
>

4.
3
>

1.
9
>

0.
0

=
31

.9
>

25
.1
>

28
.5
>

40
.6
>

0.
80

44
.5
>

11
.9
>

10
.1
>

4.
0
>

7.
2
>

3.
5
>

0.
0

=
34

.5
>

27
.8
>

30
.8
>

40
.8
>

1.
00

67
.9
>

19
.6
>

13
.5
>

6.
7
>

9.
1
>

6.
0
>

0.
0

=
38

.3
>

28
.8
>

30
.6
>

36
.5
>

50
0.

10
19

.8
>

4.
7
>

2.
7
>

0.
2

=
2.

4
>

0.
4
>

0.
0

=
25

.7
>

20
.3
>

24
.6
>

45
.2
>

0.
50

30
.3
>

8.
4
>

6.
3
>

2.
5
>

4.
7
>

1.
8
>

0.
0

=
32

.4
>

27
.2
>

29
.6
>

45
.4
>

0.
80

42
.0
>

12
.2
>

9.
4
>

5.
0
>

7.
6
>

4.
3
>

0.
0

=
34

.3
>

29
.7
>

32
.0
>

44
.4
>

1.
00

83
.8
>

24
.7
>

20
.3
>

9.
0
>

12
.7
>

7.
2
>

0.
0

=
41

.9
>

36
.0
>

35
.0
>

42
.1
>

10
0

0.
10

21
.7
>

6.
0
>

4.
3
>

1.
2
>

2.
7
>

0.
8
>

0.
0

=
28

.9
>

24
.1
>

26
.7
>

40
.0
>

0.
50

38
.0
>

8.
4
>

6.
6
>

5.
9
>

6.
7
>

4.
5
>

0.
0

=
34

.5
>

32
.1
>

33
.4
>

46
.3
>

0.
80

57
.6
>

14
.1
>

12
.7
>

8.
6
>

10
.0
>

7.
4
>

0.
9

=
40

.3
>

32
.6
>

33
.8
>

44
.6
>

1.
00

93
.1
>

25
.5
>

21
.0
>

11
.9
>

19
.1
>

10
.6
>

6.
7

=
42

.3
>

44
.3
>

36
.1
>

42
.1
>

20
0

0.
10

19
.9
>

6.
5
>

3.
7
>

2.
2
>

2.
9
>

1.
1
>

0.
0

=
30

.0
>

26
.0
>

28
.4
>

41
.1
>

0.
50

49
.1
>

8.
8
>

5.
6
>

5.
9
>

7.
2
>

4.
2
>

5.
0

=
44

.4
>

34
.1
>

33
.0
>

45
.8
>

0.
80

86
.7
>

17
.2
>

7.
8

=
14

.8
>

13
.3
>

7.
5

=
17

.7
=

57
.1
>

39
.8
>

34
.3
>

45
.2
>

1.
00

10
0.

0
>

65
.1
>

19
.0

=
19

.2
>

15
.5
>

18
.8

=
30

.0
=

86
.0
>

57
.3
>

37
.5
>

43
.6
>

50
0

0.
10

16
.8
>

5.
8
>

2.
9
>

4.
4
>

3.
7
>

2.
5
>

0.
0

=
29

.5
>

26
.0
>

28
.2
>

44
.5
>

0.
50

51
.0
>

16
.4
>

3.
3

=
12

.3
>

13
.2
>

8.
8
>

17
.9

=
50

.9
>

41
.9
>

34
.2
>

43
.6
>

0.
80

93
.3
>

38
.0
>

1.
6

=
18

.4
>

25
.8
>

25
.1
>

78
.7
>

81
.6
>

58
.8
>

33
.3
>

42
.7
>

1.
00

10
0.

0
>

10
0.

0
>

40
.1

=
74

.4
>

68
.3
>

71
.4
>

10
0.

0
>

10
0.

0
>

89
.8
>

61
.0
>

27
.2

=
10

00
0.

10
28

.2
>

7.
7
>

3.
3
>

7.
1
>

7.
1
>

4.
7
>

0.
0

=
41

.9
>

28
.7
>

30
.7
>

46
.9
>

0.
50

80
.3
>

23
.2
>

9.
7

=
20

.1
>

20
.6
>

17
.5
>

37
.8

=
73

.3
>

49
.3
>

40
.9
>

44
.8
>

0.
80

10
0.

0
>

73
.9
>

43
.3

=
61

.5
>

49
.9
>

61
.8
>

10
0.

0
>

98
.1
>

76
.9
>

59
.7

=
36

.7
=

1.
00

10
0.

0
>

10
0.

0
>

93
.3
>

93
.3
>

10
0.

0
>

93
.6
>

10
0.

0
>

10
0.

0
>

97
.4
>

94
.7
>

9.
1

=

211

Table
13.5:A

verage
run-tim

e
in

seconds
required

by
the

m
ain

algorithm
s

presented
in

this
w

ork.

Size
L

oad
C

H
-O

L
S-O

V
N

D
-O

M
A

-O
G

R
A

SP-O
V

N
S-O

IL
P-O

C
H

-S
L

S-S
V

N
D

-S
IL

P-S
20

0.10
0.0

=
0.0

>
0.0

>
200.0

>
200.0

>
200.0

>
0.1

>
0.0

=
0.0

>
0.0

=
0.0

>
0.50

0.0
=

0.1
>

0.3
>

200.0
>

200.0
>

200.0
>

0.8
>

0.0
=

0.0
>

0.0
=

0.1
>

0.80
0.0

=
0.2

>
0.5

>
200.0

>
200.0

>
200.0

>
10.7

>
0.0

=
0.0

>
0.0

=
0.3

>
1.00

0.0
=

0.3
>

0.6
>

200.0
>

200.0
>

200.0
>

85.8
>

0.0
=

0.0
>

0.0
>

0.4
>

30
0.10

0.0
=

0.0
>

0.1
>

200.0
>

200.0
>

200.0
>

0.2
>

0.0
>

0.0
>

0.0
=

0.1
>

0.50
0.0

=
0.3

>
0.8

>
200.0

>
200.0

>
200.0

>
96.6

>
0.0

=
0.0

>
0.0

=
0.5

>
0.80

0.0
=

0.6
>

1.6
>

200.0
>

200.0
>

200.0
>

466.1
>

0.0
=

0.0
>

0.0
=

1.0
>

1.00
0.0

=
0.9

>
1.9

>
200.0

>
200.0

>
200.0

>
1899.2

>
0.0

=
0.1

>
0.0

>
1.8

>
50

0.10
0.0

=
0.1

>
0.3

>
200.0

>
200.0

>
200.0

>
0.4

>
0.0

=
0.0

>
0.0

=
0.2

>
0.50

0.0
=

1.1
>

2.7
>

200.0
>

200.0
>

200.0
>

372.9
>

0.0
=

0.1
>

0.0
=

1.8
>

0.80
0.0

=
2.2

>
5.3

>
200.0

>
200.0

>
200.0

>
2576.0

>
0.0

=
0.1

>
0.0

=
3.7

>
1.00

0.0
=

3.3
>

6.7
>

200.1
>

200.0
>

200.1
>

4565.6
>

0.0
=

0.3
>

0.6
>

5.3
>

100
0.10

0.0
>

1.0
>

2.5
>

200.0
>

200.0
>

200.0
>

4.1
>

0.0
>

0.0
>

0.0
=

1.3
>

0.50
0.1

=
9.1

>
19.3

>
200.1

>
200.1

>
200.1

>
3108.9

>
0.1

=
0.2

>
0.9

=
7.1

>
0.80

0.1
=

18.2
>

37.0
>

200.2
>

200.2
>

200.2
>

8933.8
>

0.1
>

0.3
>

1.9
=

13.3
>

1.00
0.1

=
24.3

>
47.9

>
200.3

>
200.2

>
200.3

>
9912.9

>
0.1

>
1.0

>
4.3

>
20.8

>
200

0.10
0.0

>
2.3

>
7.7

>
500.1

>
500.0

>
500.1

>
48.5

>
0.0

=
0.1

>
0.0

=
3.4

>
0.50

0.1
=

25.0
>

63.6
>

500.2
>

500.2
>

500.3
>

6470.8
>

0.1
=

0.5
>

1.8
=

16.8
>

0.80
0.2

=
55.0

>
153.1

>
500.4

>
500.5

>
500.3

>
9768.4

>
0.2

>
1.6

>
6.6

>
32.8

>
1.00

0.2
=

77.6
>

209.5
>

500.5
>

500.6
>

500.7
>

10006.3
>

0.3
>

6.2
>

51.5
>

55.5
>

500
0.10

0.1
>

7.3
>

41.7
>

500.2
>

500.2
>

500.2
>

536.9
>

0.0
=

0.2
>

0.0
=

24.3
>

0.50
0.3

>
96.1

>
366.0

>
500.7

>
500.5

>
500.7

>
8988.5

>
0.3

=
2.3

>
5.7

=
79.3

>
0.80

0.6
>

245.4
>

909.8
>

501.2
>

501.0
>

501.4
>

10030.9
>

0.5
=

19.3
>

80.0
>

161.9
>

1.00
0.8

>
427.3

>
1013.2

>
501.5

>
501.3

>
502.1

>
10038.8

>
0.8

=
80.8

>
579.8

>
432.9

>
1000

0.10
0.3

>
25.1

>
216.6

>
500.5

>
500.3

>
500.4

>
2264.7

>
0.1

=
0.5

>
1.8

>
42.4

>
0.50

0.8
>

328.6
>

1011.3
>

502.3
>

501.6
>

501.8
>

10075.2
>

0.7
=

12.2
>

129.5
>

208.2
>

0.80
1.5

>
860.3

>
1064.9

>
502.7

>
502.8

>
503.8

>
10124.3

>
1.3

=
109.3

>
717.5

>
579.0

>
1.00

2.1
>

1009.4
>

1013.9
>

503.9
>

504.8
>

506.3
>

10019.6
>

1.9
=

356.4
>

1076.5
>

1865.5
>

212

variants, VNMP-S, where just a valid solution (i.e., an embedding of the virtual networks into
the physical network) needs to be found, and VNMP-O, where we want to find a valid and cheap
embedding.

As a first approach for solving the VNMP, we presented Construction Heuristics. Then we
defined neighborhood structures to improve solutions found by the Construction Heuristics to
create Local Search algorithms. We studied how the different neighborhood structures can be
used to form Variable Neighborhood Descent algorithms. Based on the experience of solving
the VNMP with those methods, we developed Greedy Randomized Adaptive Search Procedures,
Memetic Algorithms and Variable Neighborhood Search approaches to further increase perfor-
mance. Having covered some of the most important meta-heuristics for combinatorial optimiza-
tion problems, we focused on exact methods for solving the VNMP. As preparation for that, we
developed a preprocessing algorithm which makes use of the properties of telecommunication
networks to extract useful knowledge from a VNMP instance, such as which nodes have to be
used in any case. The preprocessing methods proved to be essential when we applied Constraint
Programming and Integer Linear Programming to the VNMP.

As for the performance of the different developed algorithms, some of course proved to be
better suited than others. The Constraint Programming and Column Generation approaches we
had to reject out of hand. Constraint Programming showed poor performance when trying to find
valid VNMP solutions and very poor performance when solving VNMP-O. The main problems
where high memory consumption and insufficient detection of inconsistent partial assignments.
The Column Generation approach was dismissed, since it offered no advantages over a compact
ILP formulation for the VNMP while substantially increasing the required run-time.

The other algorithms were more successful. Due to the performance of ILP-S, VNMP-S can be
considered solved, at least for the instance types and sizes used in this work. ILP-S was also
surprising because of its extremely low run-time requirements for an exact method. Just for one
single instance from the VNMP instance set ILP-S failed to find a valid solution due to memory
requirements. In fact, without the memory limit, ILP-S is able to solve this instance within
the time-limit. Among the tested heuristic methods, VND-S showed the best performance for
solving VNMP-S. This algorithm is able to solve all but the instances from the largest two size
classes. In addition, the results it creates are very close to validity.

When considering the VNMP-O, the overall best performing algorithm in terms of solution qual-
ity is ILP-O. We could demonstrate the importance of our developed preprocessing algorithm,
which reduces the required run-time and memory for solving VNMP instances significantly.
However, the dominance of ILP-O is not as complete as ILP-S’s on VNMP-S. For the largest
instances, VND-O produces the best results. For the most challenging instances, ILP-S is the
best algorithms since it is the only one capable of finding valid solutions. Even though ILP-O
produces the best results, the heuristic methods, especially MA-O and VNS-O are very close.
On average, the solutions found by ILP-O cost about 5% less than those of the best heuristic
methods.

213

13.8 Future Work

As the previous chapters already contained remarks on promising research avenues for each of
the investigated subtopics, we will focus here on those ideas which are supported by data from
this chapter. At the end, we present directions for future work on Virtual Network Mapping.
One major area for future improvement is the performance of the heuristic approaches for the
larger instance sizes and especially in cases of high load. We have seen that the load of an
instance has a far more pronounced influence on the results achieved by a heuristic than the
instance size. The first step for doing this is to incorporate the information derived by prepro-
cessing, similar to what we did for the exact methods. Especially the defined neighborhood
structures can be refined. For instance, it does not make sense to remove the implementation of
a virtual arc from a substrate node if we know that the virtual arc has to use that substrate node.
We have also seen an indication that the neighborhoods become too large when the instance size
increases. As the number of virtual arcs and nodes stays roughly the same for instances larger
than 100 nodes, the problem lies in the much increased mapping possibilities. Methods that do
not slow to a crawl when confronted with a high number of mapping possibilities need to be
developed.
We have shown that ILP-S is excellent for solving the VNMP-S, but the created solutions leave
something to be desired in terms of Cu. Combined with one of the presented heuristic methods,
we could create a method that can basically guarantee that it will find a valid solution to a VNMP
instance (if it exists) and that the solution will be close to optimal.
If the utilization of an ILP approach is not desirable, another approach to increase the capability
of the heuristics to find valid solutions could be to solve VNMP instances incrementally. That
means, we first solve the instance with load 0.1 and once a valid solution has been found, we
add further virtual networks until the target load is reached.
In this work, we have considered the offline variant of the VNMP and built a solid foundation
for future work on this topic. The following lists what we believe are core research directions
for the VNMP:

Online VNMP: As we have outlined in Chapter 4, most work on the VNMP considers the
online variant of VNMP in the sense that virtual networks arrive and depart. The perfor-
mance of the algorithms presented in this work needs to be evaluated in such a setting.
The required run-time will be of prime importance as it determines how fast virtual net-
works can be accepted. However, arriving and departing virtual networks are only a part
of the possible dynamic behaviours of the VNMP. Virtual networks may change their
requirements, for instance if more people connect to them. At the very least, bandwidth
requirements will increase and the behaviour of the presented algorithms needs to be stud-
ied when such small scale changes occur. The substrate network is also dynamic and can
change in structure, for example if leasing resources somewhere else in the physical net-
work gets cheaper, or if hardware fails. One interesting question would be how long it
takes to modify an existing solution, such that it does not use a particular substrate node
or arc any longer. Models for the cost of changing a virtual network configuration need to
be studied, together with their implications on the performance and complexity of algo-
rithms solving the VNMP.

214

Distributed VNMP: Current models of the VNMP assume global knowledge of the substrate
network. However, this is not possible for networks on the scale of planets, so algorithms
that work in a distributed fashion need to be studied further. The methods presented in this
work could be used as efficient solvers for parts of the network where global knowledge
is feasible.

Stochastic VNMP: We have already stated that the whole system of network virtualization
is very dynamic. This can be handled in two ways, we could solve the problem again
when something changes, or we could add the possibility of change to the model of the
VNMP. The first approach is the online VNMP. Here, we deal with the second one. As
an example, instead of assuming that a virtual network has a constant requirement for
bandwidth, we could model it using a suitable statistical distribution depending on the
application. Instead of a solution that does not exceed the available resource capacities,
we would search for a solution with a probability of capacity violations below a certain
threshold.

Nonlinear VNMP: Models of the VNMP usually do not consider non-linear behaviour in the
network. As an example, the observed delay of a link in the physical network heavily
depends on the amount of data that is transferred across this link. This dependency is
highly non-linear, especially when a link’s capacity limit is approached. Furthermore,
virtual nodes are not free of overhead and mapping multiple virtual nodes on a substrate
node should at least cause some additional CPU load. Algorithms able to cope with non-
linear behaviour, or which are at least able to approximate it, need to be studied.

Split-Flow VNMP: A major assumption of the definition of VNMP in this work is, that a virtual
connection can only be implemented by using a single path in the substrate network.
Doing otherwise would cause erratic behaviour with respect to transmission delays on
the virtual link. However, a lot of applications are not delay sensitive or can deal with
high delay variances. In addition, allowing multiple paths simplifies the VNMP. There
are some interesting possibilities that arise when multiple paths are allowed. For instance,
virtual links can be implemented that have more capacity than any single connection in
the substrate network. Depending on the application, it might be possible to split up the
workload of a single virtual node and spread it across multiple substrate nodes.

Physical VNMP: At the moment, the behaviour of algorithms for solving the VNMP is only
evaluated theoretically. There are no experiments in this work where the developed al-
gorithms are used to perform Virtual Network Mapping in a real network, or at least a
simulated network. Such experiments would be highly informative, as they can give hints
which aspects of the VNMP model should be refined to get it close enough to real world
behaviour. For instance, it could turn out that the behaviour of a physical network with
non-linearities is not so far removed from the assumed linear behaviour as to make the
investigation of algorithms capable of dealing with non-linearities absolutely essential.

215

Bibliography

[1] E. H. L. Aarts and J. K. Lenstra. Local Search in Combinatorial Optimization. Princeton
University Press, 2003.

[2] R. K. Ahuja, Ö. Ergun, J. B. Orlin, and A. P. Punnen. A Survey of Very Large-Scale
Neighborhood Search Techniques. Discrete Applied Mathematics, 123(1):75–102, 2002.

[3] O. Alonso-Garrido, S. Salcedo-Sanz, L. E. Agustín-Blas, E. G. Ortiz-García, A. M.
Pérez-Bellido, and J. A. Portilla-Figueras. A Hybrid Grouping Genetic Algorithm for
the Multiple-Type Access Node Location Problem. In E. Corchado and H. Yin, editors,
Intelligent Data Engineering and Automated Learning - IDEAL 2009, volume 5788 of
Lecture Notes in Computer Science, pages 376–383. Springer Berlin Heidelberg, 2009.

[4] S. Alstrup, D. Harel, P. W. Lauridsen, and M. Thorup. Dominators in Linear Time. SIAM
Journal on Computing, 28(6):2117–2132, 1999.

[5] D. Andersen. Theoretical Approaches To Node Assignment. http://www.cs.
cmu.edu/~dga/papers/andersen-assign.ps, December 2002. Unpublished
Manuscript.

[6] T. Anderson, L. Peterson, S. Shenker, and J. Turner. Overcoming the Internet Impasse
Through Virtualization. Computer, 38(4):34–41, 2005.

[7] K. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.

[8] E. Balas, S. Ceria, and G. Cornuéjols. A Lift-and-Project Cutting Plane Algorithm for
Mixed 0 – 1 Programs. Mathematical Programming, 58(1-3):295–324, 1993.

[9] R. Barták. Theory and Practice of Constraint Propagation. In Proceedings of the 3rd
Workshop on Constraint Programming in Decision and Control, volume 50, 2001.

[10] I. L. Bedhiaf, R. B. Ali, and O. Cherkaoui. On the Problem of Mapping Virtual Machines
to Physical Machines for Delay Sensitive Services. In IEEE Global Communications
Conference (GLOBECOM 2012), pages 2628–2633. IEEE, 2012.

[11] A. Ben-Tal and A. Nemirovski. Robust Optimization – Methodology and Applications.
Mathematical Programming, 92(3):453–480, 2002.

217

http://www.cs.cmu.edu/~dga/papers/andersen-assign.ps
http://www.cs.cmu.edu/~dga/papers/andersen-assign.ps

[12] A. Berl, A. Fischer, and H. de Meer. Virtualisierung im Future Internet. Informatik-
Spektrum, 33:186–194, 2010.

[13] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific,
1997.

[14] H. Beyer and B. Sendhoff. Robust Optimization – A Comprehensive Survey. Computer
Methods in Applied Mechanics and Engineering, 196(33–34):3190–3218, 2007.

[15] C. Blum and A. Roli. Metaheuristics in Combinatorial Optimization: Overview and
Conceptual Comparison. ACM Computing Surveys (CSUR), 35(3):268–308, 2003.

[16] C. Blum and A. Roli. Hybrid Metaheuristics: An Introduction. In C. Blum, M. Aguil-
era, A. Roli, and M. Sampels, editors, Hybrid Metaheuristics, volume 114 of Studies in
Computational Intelligence, pages 1–30. Springer Berlin Heidelberg, 2008.

[17] Boost.org. boost 1.54. http://www.boost.org/.

[18] Clark D. Braden, R. and S. Shenker. Integrated Services in the Internet Architecture: An
Overview. IETF, RFC 1633, 1994.

[19] J. Branke and H. Schmeck. Designing Evolutionary Algorithms for Dynamic Optimiza-
tion Problems. In Advances in Evolutionary Computing, pages 239–262. Springer, 2003.

[20] E. C. Brown and R. T. Sumichrast. Impact of the Replacement Heuristic in a Grouping
Genetic Algorithm. Computers & Operations Research, 30(11):1575–1593, 2003.

[21] A. L. Buchsbaum, L. Georgiadis, H. Kaplan, A. Rogers, R. Tarjan, and J. Westbrook.
Linear-Time Algorithms for Dominators and Other Path-Evaluation Problems. SIAM
Journal on Computing, 38(4):1533–1573, 2008.

[22] A. L. Buchsbaum, H. Kaplan, A. Rogers, and J. R. Westbrook. Linear-time Pointer-
Machine Algorithms for Least Common Ancestors, MST Verification, and Dominators.
In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pages
279–288. ACM, 1998.

[23] A. L. Buchsbaum, H. Kaplan, A. Rogers, and J. R. Westbrook. Corrigendum: A New,
Simpler Linear-Time Dominators Algorithm. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 27(3):383–387, 2005.

[24] M. G. Bulmer. Principles of Statistics. Dover Publications, 1979.

[25] H. Burch and B. Cheswick. Mapping the Internet. Computer, 32(4):97–98, 102, 1999.

[26] M. Carlson, W. Weiss, S. Blake, Z. Wang, D. Black, and E. Davies. An Architecture for
Differentiated Services. IETF, RFC 2475, 1998.

218

http://www.boost.org/

[27] P. Cholda, A. Mykkeltveit, B. E. Helvik, O. J. Wittner, and A. Jajszczyk. A Survey of
Resilience Differentiation Frameworks in Communication Networks. Communications
Surveys & Tutorials, IEEE, 9(4):32–55, 2007.

[28] N. M. M. K. Chowdhury and R. Boutaba. Network Virtualization: State of the Art and
Research Challenges. Communications Magazine, IEEE, 47(7):20–26, 2009.

[29] N. M. M. K. Chowdhury and R. Boutaba. A Survey of Network Virtualization. Computer
Networks, 54(5):862–876, 2010.

[30] N. M. M. K. Chowdhury, M. R. Rahman, and R. Boutaba. Virtual Network Embedding
with Coordinated Node and Link Mapping. In 28th IEEE International Conference on
Computer Communications (INFOCOM 2009), pages 783–791. IEEE, 2009.

[31] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M. Bow-
man. PlanetLab: An Overlay Testbed for Broad-Coverage Services. ACM SIGCOMM
Computer Communication Review, 33:3–12, 2003.

[32] Cisco Systems, Inc. Logical Routers Commands on Cisco IOS XR Soft-
ware, 2013. www.cisco.com/en/US/docs/ios_xr_sw/iosxr_r3.2/
interfaces/command/reference/hr32lr.html.

[33] S. A. Cook. The Complexity of Theorem-Proving Procedures. In Proceedings of the
Third Annual ACM Symposium on Theory of Computing, pages 151–158. ACM, 1971.

[34] K. D. Cooper, T. J. Harvey, and K. Kennedy. A Simple, Fast Dominance Algorithm.
Software Practice & Experience, 4:1–10, 2001.

[35] S. Crocker. Protocol Notes. Network Working Group, RFC 36 (updated by RFC 44, RFC
39), 1970.

[36] E. Danna. Performance Variability in Mixed Integer Programming. In Workshop on
Mixed Integer Programming, Columbia University, New York, 2008. http://coral.
ie.lehigh.edu/mip-2008/abstracts.html#Danna.

[37] G. B. Dantzig. Maximization of a Linear Function of Variables Subject to Linear Inequal-
ities. In T. C. Koppmans, editor, Activity Analysis of Production and Allocation, pages
339–347. Wiley, 1951.

[38] G. B. Dantzig, R. Fulkerson, and S. Johnson. Solution of a Large-Scale Traveling-
Salesman Problem. Journal of the Operations Research Society of America, pages 393–
410, 1954.

[39] G. B. Dantzig and P. Wolfe. Decomposition Principle for Linear Programs. Operations
Research, 8(1):101–111, 1960.

[40] C. Darwin. On the Origin of Species by Means of Natural Selection of the Preservation
of Favored Races in the Struggle for Life. Murray, 1859.

219

www.cisco.com/en/US/docs/ios_xr_sw/iosxr_r3.2/interfaces/command/reference/hr32lr.html
www.cisco.com/en/US/docs/ios_xr_sw/iosxr_r3.2/interfaces/command/reference/hr32lr.html
http://coral.ie.lehigh.edu/mip-2008/abstracts.html#Danna
http://coral.ie.lehigh.edu/mip-2008/abstracts.html#Danna

[41] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley &
Sons, Inc., New York, NY, USA, 2001.

[42] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification, RFC 2460,
1998. http://tools.ietf.org/html/rfc2460.

[43] C. Demetrescu and G. F. Italiano. A New Approach to Dynamic All Pairs Shortest Paths.
Journal of the ACM, 51(6):968–992, 2004.

[44] G. Desaulniers, J. Desrosiers, and M. M. Solomon. Column Generation, volume 5.
Springer, 2005.

[45] O. Du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized Column Generation.
Discrete Mathematics, 194(1):229–237, 1999.

[46] Ronald R. Escobar, G. Constraints on Set Variables for Constraint-based Local Search.
Master’s thesis, Uppsala University, Department of Information Technology, 2011.

[47] C. B. Evelyn, T. R. Cliff, and E. C. Arthur. A Grouping Genetic Algorithm for the Mul-
tiple Traveling Salesperson Problem. International Journal of Information Technology &
Decision Making, 6(02):333–347, 2007.

[48] I. Fajjari, N. Aitsaadi, G. Pujolle, and H. Zimmermann. Adaptive-VNE: A Flexible Re-
source Allocation for Virtual Network Embedding Algorithm. In IEEE Global Commu-
nications Conference (GLOBECOM 2012), pages 2640–2646. IEEE, 2012.

[49] E. Falkenauer and A. Delchambre. A Genetic Algorithm for Bin Packing and Line Bal-
ancing. In IEEE International Conference on Robotics and Automation, pages 1186–
1192. IEEE, 1992.

[50] N. Feamster, L. Gao, and J. Rexford. How to Lease the Internet in Your Spare Time. ACM
SIGCOMM Computer Communication Review, 37(1):61–64, 2007.

[51] H. Feltl and G. R. Raidl. An Improved Hybrid Genetic Algorithm for the Generalized As-
signment Problem. In Proceedings of the 2004 ACM Symposium on Applied Computing,
pages 990–995. ACM, 2004.

[52] T. A. Feo and M. G. C. Resende. A Probabilistic Heuristic for a Computationally Difficult
Set Covering Problem. Operations Research Letters, 8(2):67–71, 1989.

[53] T. A. Feo and M. G. C. Resende. Greedy Randomized Adaptive Search Procedures.
Journal of Global Optimization, 6:109–133, 1995.

[54] P. Festa and M. G. C. Resende. An Annotated Bibliography of GRASP – Part I: Algo-
rithms. International Transactions in Operational Research, 16(1):1–24, 2009.

[55] P. Festa and M. G. C. Resende. Hybrid GRASP Heuristics. Foundations of Computational
Intelligence, 3:75–100, 2009.

220

http://tools.ietf.org/html/rfc2460

[56] R. W. Floyd. Algorithm 97: Shortest Path. Communications of the ACM, 5(6):345–345,
1962.

[57] S. Fortune, Hopcroft J., and J. Wyllie. The Directed Subgraph Homeomorphism Problem.
Theoretical Computer Science, 10(2):111–121, 1980.

[58] B. Fortz and M. Thorup. Internet Traffic Engineering by Optimizing OSPF Weights.
In 19th Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM 2000), pages 519–528, Tel-Aviv, Israel, 2000. IEEE.

[59] Eclipse Foundation. Eclipse 4.3 “Kepler”. http://www.eclipse.org/.

[60] M. R. Garey and D. S. Johnson. Computers and Intractability, volume 174. Freeman
New York, 1979.

[61] M. R. Gary and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness, 1979.

[62] GENI.net. Global Environment for Network Innovations. http://www.geni.net,
2012.

[63] L. Georgiadis and R. E. Tarjan. Finding Dominators Revisited. In Proceedings of the
Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 869–878. Society
for Industrial and Applied Mathematics, 2004.

[64] P. C. Gilmore and R. E. Gomory. A Linear Programming Approach to the Cutting-Stock
Problem. Operations Research, 9(6):849–859, 1961.

[65] GNU Compiler Collection. The GNU Compiler Collection, gcc 4.7.3. http://gcc.
gnu.org/.

[66] R. Gold, P. Gunningberg, and C. Tschudin. A Virtualized Link Layer with Support for
Indirection. In Proceedings of the ACM SIGCOMM Workshop on Future Directions in
Network Architecture, pages 28–34. ACM, 2004.

[67] O. Goldreich. P, NP, and NP-Completeness: The Basics of Computational Complexity.
Cambridge University Press, Cambridge, 2010.

[68] R. E. Gomory. Outline of an Algorithm for Integer Solutions to Linear Programs. Bulletin
of the American Mathematical Society, 64(5):275–278, 1958.

[69] L. Gouveia, A. Paias, and D. Sharma. Modeling and Solving the Rooted Distance-
Constrained Minimum Spanning Tree Problem. Computers & Operations Research,
35(2):600–613, 2008.

[70] R. Govindan and H. Tangmunarunkit. Heuristics for Internet Map Discovery. In Nine-
teenth Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM 2000), volume 3, pages 1371–1380. IEEE Computer Society Press, 2000.

221

http://www.eclipse.org/
http://www.geni.net
http://gcc.gnu.org/
http://gcc.gnu.org/

[71] A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi, and B. Yener. Provisioning a Virtual Private
Network: A Network Design Problem for Multi-Commodity Flow. In STOC ’01, pages
389–398, 2001.

[72] M. Handley. Why the Internet Only Just Works. BT Technology Journal, 24:119–129,
2006.

[73] P. Hansen and N. Mladenović. An Introduction to Variable Neighborhood Search. In
S. Voß, S. Martello, I. H. Osman, and C. Roucairol, editors, MIC-97: Meta-Heuristics
International Conference, pages 433–458. Kluwer Academic Publishers, 1999.

[74] P. Hansen and N. Mladenović. Variable Neighborhood Search: Principles and Applica-
tions. European Journal of Operational Research, 130(3):449–467, 2001.

[75] P. Hansen, N. Mladenović, J. Brimberg, and J. A. Moreno Pérez. Variable Neighborhood
Search. In M. Gendreau and J. Potvin, editors, Handbook of Metaheuristics, volume 146
of International Series in Operations Research & Management Science, pages 61–86.
Springer, 2010.

[76] P. Hansen, N. Mladenović, and J. A. Moreno Pérez. Variable Neighbourhood Search:
Methods and Applications. 4OR, 6:319–360, 2008.

[77] D. Harel. A Linear Algorithm for Finding Dominators in Flow Graphs and Related Prob-
lems. In Proceedings of the Seventeenth Annual ACM Symposium on Theory of Comput-
ing, pages 185–194. ACM, 1985.

[78] M. Hartmann, D. Hock, M. Menth, and C. Schwartz. Objective Functions for Optimiza-
tion of Resilient and Non-Resilient IP Routing. In 7th International Workshop on Design
of Reliable Communication Networks (DRCN 2009), pages 289–296. IEEE, 2009.

[79] D. Hock, M. Menth, M. Hartmann, C. Schwartz, and D. Stezenbach. ResiLyzer: A Tool
for Resilience Analysis in Packet-Switched Communication Networks. Measurement,
Modelling, and Evaluation of Computing Systems and Dependability and Fault Tolerance,
pages 302–306, 2010.

[80] J. H. Holland. Genetic Algorithms. Scientific American, 267(1):66–72, 1992.

[81] Steve Holzner. Eclipse. O’Reilly, 2004.

[82] I. Houidi, W. Louati, and D. Zeghlache. A Distributed Virtual Network Mapping Algo-
rithm. In IEEE International Conference on Communications (ICC ’08), pages 5634–
5640. IEEE, 2008.

[83] B. Hu, M. Leitner, and G. R. Raidl. The Generalized Minimum Edge Biconnected Net-
work Problem: Efficient Neighborhood Structures for Variable Neighborhood Search.
Networks, 55(3):257–275, 2010.

222

[84] G. Huston. IPv4 Address Report, daily generated, 2013. http://www.potaroo.
net/tools/ipv4/index.html.

[85] IBM ILOG. CPLEX 12.5. http://www-01.ibm.com/software/
integration/optimization/cplex-optimizer/.

[86] R. Ihaka and R. Gentleman. R: A Language for Data Analysis and Graphics. Jour-
nal of Computational and Graphical Statistics, 5(3):299–314, 1996. http://www.
R-project.org/.

[87] J. Inführ and G. R. Raidl. The Virtual Network Mapping Problem Benchmark Set and
Achieved Solutions by Heuristic and Exact Methods. https://www.ads.tuwien.
ac.at/projects/optFI/.

[88] J. Inführ and G. R. Raidl. Introducing the Virtual Network Mapping Problem with Delay,
Routing and Location Constraints. In J. Pahl, T. Reiners, and S. Voß, editors, Network
Optimization: 5th International Conference (INOC 2011), volume 6701 of Lecture Notes
in Computer Science, pages 105–117, Hamburg, Germany, 2011. Springer.

[89] J. Inführ and G. R. Raidl. A Memetic Algorithm for the Virtual Network Mapping Prob-
lem. In H. C. Lau, P. Van Hentenryck, and G. R. Raidl, editors, Proceedings of the 10th
Metaheuristics International Conference, pages 28–1–28–10, Singapore, 2013.

[90] J. Inführ and G. R. Raidl. GRASP and Variable Neighborhood Search for the Virtual
Network Mapping Problem. In M. J. Blesa et al., editors, Hybrid Metaheuristics, 8th
International Workshop (HM 2013), volume 7919 of Lecture Notes in Computer Science,
pages 159–173. Springer, 2013.

[91] J. Inführ and G. R. Raidl. Solving the Virtual Network Mapping Problem with Construc-
tion Heuristics, Local Search, and Variable Neighborhood Descent. In M. Middendorf
and C. Blum, editors, Evolutionary Computation in Combinatorial Optimisation – 13th
European Conference, EvoCOP 2013, volume 7832 of Lecture Notes in Computer Sci-
ence, pages 250–261. Springer, 2013.

[92] J. Inführ, D. Stezenbach, M. Hartmann, K. Tutschku, and G. R. Raidl. Using Optimized
Virtual Network Embedding for Network Dimensioning. In Proceedings of Networked
Systems 2013, pages 118–125, Stuttgart, Germany, 2013. IEEE.

[93] P. Z. Ingerman. Algorithm 141: Path Matrix. Communications of the ACM, 5(11):556–
556, 1962.

[94] G. F. Italiano, L. Laura, and F. Santaroni. Finding Strong Bridges and Strong Articulation
Points in Linear Time. In W. Wu and O. Daescu, editors, Combinatorial Optimization
and Applications, volume 6508 of Lecture Notes in Computer Science, pages 157–169.
Springer Berlin Heidelberg, 2010.

[95] G. F. Italiano, L. Laura, and F. Santaroni. Finding Strong Bridges and Strong Articulation
Points in Linear Time. Theoretical Computer Science, 447:74–84, 2012.

223

http://www.potaroo.net/tools/ipv4/index.html
http://www.potaroo.net/tools/ipv4/index.html
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.R-project.org/
http://www.R-project.org/
https://www.ads.tuwien.ac.at/projects/optFI/
https://www.ads.tuwien.ac.at/projects/optFI/

[96] V. Jacobson. Congestion Avoidance and Control. In ACM SIGCOMM Computer Com-
munication Review, volume 18, pages 314–329. ACM, 1988.

[97] D. B. Johnson. Efficient Algorithms for Shortest Paths in Sparse Networks. Journal of
the ACM (JACM), 24(1):1–13, 1977.

[98] M. Jovanović, F. Annexstein, and K. Berman. Modeling Peer-to-Peer Network Topolo-
gies Through Small-World Models and Power Laws. In IX Telecommunications Forum,
TELFOR, pages 1–4, 2001.

[99] Justin.tv, Inc. All about Twitch, 2013. http://de.twitch.tv/p/about.

[100] G. K. Kanji. 100 Statistical Tests. Sage, 2006.

[101] G. Karakostas. Faster Approximation Schemes for Fractional Multicommodity Flow
Problems. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’02, pages 166–173, Philadelphia, PA, USA, 2002. Society for Indus-
trial and Applied Mathematics.

[102] B. Karlsson. Beyond the C++ Standard Library: An Introduction to Boost. Pearson
Education, 2005.

[103] N. Karmakar. A New Polynomial-Time Algorithm for Linear Programming. Combina-
torica, 4:373–395, 1984.

[104] L. Khachiyan. A Polynomial Algorithm in Linear Programming (english translation).
Soviet Mathematics Doklady, 20:191–194, 1979.

[105] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The Internet Topol-
ogy Zoo. IEEE Journal on Selected Areas in Communications, 29(9):1765–1775, 2011.

[106] S. Knight, H. X. Nguyen, N. Falkner, and M. Roughan. Realistic Network Topology
Construction and Emulation from Multiple Data Sources. Technical report, The Uni-
versity of Adelaide, 2012. http://www.topology-zoo.org/publications/
eu_nren_tech/eu_nren_tech.html.

[107] D. E. Knuth. The Stanford GraphBase: A Platform for Combinatorial Algorithms. In
Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’93, pages 41–43, Philadelphia, PA, USA, 1993. Society for Industrial and Applied Math-
ematics.

[108] D. E. Knuth. The Stanford GraphBase: A Platform for Combinatorial Computing.
Addison-Wesley Professional, 1st edition, 2009.

[109] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby, E. Danna,
G. Gamrath, A. M. Gleixner, S. Heinz, et al. MIPLIB 2010. Mathematical Programming
Computation, 3(2):103–163, 2011.

224

http://de.twitch.tv/p/about
http://www.topology-zoo.org/publications/eu_nren_tech/eu_nren_tech.html
http://www.topology-zoo.org/publications/eu_nren_tech/eu_nren_tech.html

[110] B. Korte and J. Vygen. Combinatorial Optimization, volume 21 of Algorithms and Com-
binatorics. Springer, 5th edition, 2012.

[111] M. Kudlick. Host Names On-Line. IETF, RFC 608, 1974.

[112] B. Lantz, B. Heller, and N. McKeown. A Network in a Laptop: Rapid Prototyping for
Software-Defined Networks. In Proceedings of the 9th ACM SIGCOMM Workshop on
Hot Topics in Networks, Hotnets-IX, pages 19:1–19:6, New York, NY, USA, 2010. ACM.

[113] P. Larrañaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic. Genetic Algo-
rithms for the Travelling Salesman Problem: A Review of Representations and Operators.
Artificial Intelligence Review, 13:129–170, 1999.

[114] M. Leitner. Solving Two Generalized Network Design Problems with Exact and Heuris-
tic Methods. Master’s thesis, Vienna University of Technology, Institute of Computer
Graphics and Algorithms, May 2006.

[115] T. Lengauer and R. E. Tarjan. A Fast Algorithm for Finding Dominators in a Flowgraph.
ACM Transactions on Programming Languages and Systems (TOPLAS), 1(1):121–141,
1979.

[116] K. Lougheed and Y. Rekhter. Border Gateway Protocol BGP. RFC 1105, 1989.

[117] J. Lu and J. Turner. Efficient Mapping of Virtual Networks Onto a Shared Substrate.
Technical report, Washington University in St. Louis, 2006.

[118] M. E. Lübbecke and J. Desrosiers. Selected Topics in Column Generation. Operations
Research, 53(6):1007–1023, 2005.

[119] I. J. Lustig and J. Puget. Program Does Not Equal Program: Constraint Programming and
its Relationship to Mathematical Programming. Interfaces, 31(6):29–53, 2001.

[120] D. Magoni. Nem: A Software for Network Topology Analysis and Modeling. In Proceed-
ings of the 10th IEEE International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems, MASCOTS ’02, pages 364–371, Washing-
ton, DC, USA, 2002. IEEE Computer Society.

[121] D. Magoni. Network Topology Analysis and Internet Modelling with Nem. International
Journal of Computers and Applications, 27(4):252–259, 2005.

[122] R. Mahajan, D. Wetherall, and T. Anderson. Understanding BGP Misconfiguration.
In ACM SIGCOMM Computer Communication Review, volume 32, pages 3–16. ACM,
2002.

[123] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner. OpenFlow: Enabling Innovation in Campus Networks. ACM
SIGCOMM Computer Communication Review, 38(2):69–74, 2008.

225

[124] J. McQuillan, I. Richer, and E. Rosen. The New Routing Algorithm for the ARPANET.
IEEE Transactions on Communications, 28(5):711–719, 1980.

[125] K. Mehlhorn and M. Ziegelmann. Resource Constrained Shortest Paths. In Mike S.
Paterson, editor, Algorithms - ESA 2000, volume 1879 of Lecture Notes in Computer
Science, pages 326–337. Springer Berlin Heidelberg, 2000.

[126] G. Mendel. Versuche über Pflanzen-Hybriden (Experiments on Plant Hybridization). In
Verhandlungen des naturforschenden Vereins Brünn (Proceedings of the Natural History
Society of Brünn), volume 4, pages 3–47, 1866.

[127] M. Menth, M. Duelli, R. Martin, and J. Milbrandt. Resilience Analysis of
Packet-Switched Communication Networks. IEEE ACM Transactions on Networking,
17(6):1950–1963, 2009.

[128] M. Menth, R. Martin, and J. Charzinski. Capacity Overprovisioning for Networks with
Resilience Requirements. ACM SIGCOMM Computer Communication Review, 36(4):87–
98, 2006.

[129] Z. Michalewicz. Genetic Algoritms + Data Structures = Evolution Programs. Springer,
Berlin, 1994.

[130] P. Moscato and C. Cotta. A Modern Introduction to Memetic Algorithms. In M. Gendreau
and J. Potvin, editors, Handbook of Metaheuristics, volume 146 of International Series
in Operations Research & Management Science, pages 141–183. Springer, 2010.

[131] P. Moscato and M. G. Norman. A Memetic Approach for the Traveling Salesman Prob-
lem Implementation of a Computational Ecology for Combinatorial Optimization on
Message-Passing Systems. In Proceedings of International Conference on Parallel Com-
puting and Transputer Applications, volume 1, pages 177–186. IOS Press, 1992.

[132] National Research Council. Looking Over the Fence at Networks. National Academy
Press, Washington D.C., 2001.

[133] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski. SNDlib 1.0 – Survivable Net-
work Design Library. Networks, 55(3):276–286, 2010.

[134] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Com-
plexity. Dover Publications, 1998.

[135] K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, F. Tobagi, and C. Diot. Analysis of
Measured Single-Hop Delay from an Operational Backbone Network. In Twenty-First
Annual Joint Conference of the IEEE Computer and Communications Societies (INFO-
COM 2002), volume 2, pages 535–544, 2002.

[136] I. Park and T. Kim. Multiplier-Less and Table-Less Linear Approximation for Square and
Square-Root. In Proceedings of the 2009 IEEE International Conference on Computer
Design, pages 378–383, Piscataway, NJ, USA, 2009. IEEE Press.

226

[137] Charles E Perkins. Mobile IP. IEEE Communications Magazine, 35(5):84–99, 1997.

[138] CDT Project. C++ Development Tooling - CDT 8.2, 2013. http://eclipse.org/
cdt/.

[139] S. Qing, Q. Qi, J. Wang, T. Xu, and J. Liao. Topology-Aware Virtual Network Embed-
ding through Bayesian Network Analysis. In IEEE Global Communications Conference
(GLOBECOM 2012), pages 2621–2627. IEEE, 2012.

[140] L. Quesada. Solving Constrained Graph Problems Using Reachability Constraints Based
on Transitive Closure and Dominators. PhD thesis, Université Catholique de Louvain,
2006.

[141] L. Quesada, P. Van Roy, Y. Deville, and R. Collet. Using Dominators for Solving Con-
strained Path Problems. In Practical Aspects of Declarative Languages, pages 73–87.
Springer, 2006.

[142] N. Radcliffe and P. Surry. Formal Memetic Algorithms. Evolutionary Computing, pages
1–16, 1994.

[143] G. R. Raidl. A Unified View on Hybrid Metaheuristics. In F. Almeida, M. J. Blesa Aguil-
era, C. Blum, J. M. Moreno Vega, M. Pérez Pérez, A. Roli, and M. Sampels, editors,
Hybrid Metaheuristics, volume 4030 of Lecture Notes in Computer Science, pages 1–12.
Springer Berlin Heidelberg, 2006.

[144] K. K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion Noti-
fication (ECN) to IP. IETF, RFC 3168, 2001.

[145] A. Razzaq and M. S. Rathore. An Approach Towards Resource Efficient Virtual Net-
work Embedding. In Proceedings of the 2010 2nd International Conference on Evolving
Internet, INTERNET ’10, pages 68–73. IEEE Computer Society, 2010.

[146] C. R. Reeves. Genetic Algorithms. In M. Gendreau and J. Potvin, editors, Handbook of
Metaheuristics, volume 146 of International Series in Operations Research & Manage-
ment Science, pages 109–139. Springer, 2010.

[147] M. G. C. Resende and C. Ribeiro. Greedy Randomized Adaptive Search Procedures.
Handbook of Metaheuristics, pages 219–249, 2003.

[148] R. Ricci, C. Alfeld, and J. Lepreau. A Solver for the Network Testbed Mapping Prob-
lem. Special Interest Group on Data Communication Computer Communication Review,
33(2):65–81, 2003.

[149] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the Gnutella Network: Properties of
Large-Scale Peer-to-Peer Systems and Implications for System Design. arXiv preprint
cs/0209028, 2002.

[150] J. P. Romano. Testing Statistical Hypotheses. Springer, 2005.

227

http://eclipse.org/cdt/
http://eclipse.org/cdt/

[151] E. Rosen. Exterior Gateway Protocol (EGP). RFC 827, 1982.

[152] F. Rossi, P. Van Beek, and T. Walsh. Handbook of Constraint Programming. Elsevier,
2006.

[153] A. Schrijver. Finding k Disjoint Paths in a Directed Planar Graph. SIAM Journal on
Computing, 23(4):780–788, 1994.

[154] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, and G. Dueck. Record Breaking Op-
timization Results using the Ruin and Recreate Principle. Journal of Computational
Physics, 159(2):139–171, 2000.

[155] C. Schulte, G. Tack, and M. Z. Lagerkvist. Modeling and Programming with Gecode,
2013. http://www.gecode.org/.

[156] D. Schwerdel, D. Günther, R. Henjes, B. Reuther, and P. Müller. German-Lab Experimen-
tal Facility. In A. Berre, A. Gómez-Pérez, K. Tutschku, and D. Fensel, editors, Future
Internet - FIS 2010, volume 6369 of Lecture Notes in Computer Science, pages 1–10.
Springer, 2010.

[157] S. Shenker. Fundamental Design Issues for the Future Internet. IEEE Journal on Selected
Areas in Communications, 13(7):1176–1188, 1995.

[158] J. G. Siek, L. Lee, and A. Lumsdaine. The Boost Graph Library: User Guide and Refer-
ence Manual. Pearson Education, 2001.

[159] M. Sipser. The History and Status of the P versus NP Question. In Proceedings of the
Twenty-Fourth Annual ACM Symposium on Theory of Computing, pages 603–618. ACM,
1992.

[160] M. Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course
Technology Boston, 2006.

[161] S. N. Sivanandam and S. N. Deepa. Introduction to Genetic Algorithms. Springer Pub-
lishing Company, Incorporated, 1st edition, 2007.

[162] Skype. http://www.skype.com.

[163] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topologies with Rocketfuel.
In Proceedings of the 2002 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, SIGCOMM ’02, pages 133–145, New York,
NY, USA, 2002. ACM.

[164] W. Szeto, Y. Iraqi, and R. Boutaba. A Multi-Commodity Flow based Approach to Virtual
Network Resource Allocation. In Global Telecommunications Conference (GLOBECOM
2003), volume 6, pages 3004–3008. IEEE, 2003.

[165] E. G. Talbi. A Taxonomy of Hybrid Metaheuristics. Journal of Heuristics, 8(5):541–564,
2002.

228

http://www.gecode.org/
http://www.skype.com

[166] R. Tarjan. Depth-first Search and Linear Graph Algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

[167] Gecode Team. Gecode: Generic Constraint Development Environment, Version 4.1.0,
2013. http://www.gecode.org/.

[168] J. Touch, Y. Wang, L. Eggert, and G. Finn. A Virtual Internet Architecture. ISI Technical
Report ISI-TR-2003-570, 2003.

[169] M. F. Triola, W. M. Goodman, G. LaBute, R. Law, and L. MacKay. Elementary Statistics.
Pearson/Addison-Wesley, 2006.

[170] J. S. Turner and D. E. Taylor. Diversifying the Internet. In IEEE Global Telecommunica-
tions Conference (GLOBECOM 2005), volume 2, pages 755–760. IEEE, 2005.

[171] K. Tutschku. Towards the Future Internet: Virtual Networks for Convergent Services.
e & i Elektrotechnik und Informationstechnik, 126(7-8):250–259, 2009.

[172] K. Tutschku, P. Tran-Gia, and F. Andersen. Trends in Network and Service Operation for
the Emerging Future Internet. AEU-International Journal of Electronics and Communi-
cations, 62(9):705–714, 2008.

[173] Ustream, Inc. Company Info, 2013. http://www.ustream.tv/our-company.

[174] F. Vanderbeck. Implementing Mixed Integer Column Generation. In G. Desaulniers,
J. Desrosiers, and M. M. Solomon, editors, Column Generation, pages 331–358. Springer
US, 2005.

[175] Z. Wang, Y. Han, T. Lin, H. Tang, and S. Ci. Virtual Network Embedding by Exploiting
Topological Information. In IEEE Global Communications Conference (GLOBECOM
2012), pages 2603–2608. IEEE, 2012.

[176] D. B. West. Introduction to Graph Theory, volume 2. Prentice Hall, 2001.

[177] J. Whiteaker, F. Schneider, and R. Teixeira. Explaining Packet Delays Under Virtualiza-
tion. ACM SIGCOMM Computer Communication Review, 41(1):38–44, 2011.

[178] D. Whitley. A Genetic Algorithm Tutorial. Statistics and Computing, 4(2):65–85, 1994.

[179] F. Wilcoxon. Individual Comparisons by Ranking Methods. Biometrics Bulletin, 1(6):80–
83, 1945.

[180] W. Yeow, C. Westphal, and U. Kozat. Designing and Embedding Reliable Virtual Infras-
tructures. In Proceedings of the Second ACM Special Interest Group on Data Commu-
nication Workshop on Virtualized Infrastructure Systems and Architectures, VISA ’10,
pages 33–40, New York, NY, USA, 2010. ACM.

[181] YouTube, Inc. Statistics, 2013. http://www.youtube.com/yt/press/
statistics.html.

229

http://www.gecode.org/
http://www.ustream.tv/our-company
http://www.youtube.com/yt/press/statistics.html
http://www.youtube.com/yt/press/statistics.html

[182] J. Yu, K. Varadhan, T. Li, and V. Fuller. Classless Inter-Domain Routing (CIDR): An
Address Assignment and Aggregation Strategy. IETF, RFC 1519, 1993.

[183] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking Virtual Network Embedding: Sub-
strate Support for Path Splitting and Migration. ACM SIGCOMM Computer Communi-
cation Review, 38(2):17–29, 2008.

[184] E. W. Zegura. GT-ITM: Georgia Tech Internetwork Topology Models (Software).
Georgia Tech, 1996. http://www.cc.gatech.edu/fac/Ellen.Zegura/
gt-itm/gt-itm/tar.gz.

[185] S. Zhang, J. Wu, and S. Lu. Virtual Network Embedding with Substrate Support for
Parallelization. In IEEE Global Communications Conference (GLOBECOM 2012), pages
2615–2620. IEEE, 2012.

[186] Z. Zhang, S. Su, X. Niu, J. Ma, X. Cheng, and K. Shuang. Minimizing Electricity Cost in
Geographical Virtual Network Embedding. In IEEE Global Communications Conference
(GLOBECOM 2012), pages 2609–2614. IEEE, 2012.

[187] Y. Zhu and M. Ammar. Algorithms for Assigning Substrate Network Resources to Virtual
Network Components. In 25th IEEE International Conference on Computer Communi-
cations (INFOCOM 2006), pages 1–12. IEEE, 2006.

[188] T. Zinner, P. Tran-Gia, K. Tutschku, and A. Nakao. Performance Evaluation of Packet
Reordering on Concurrent Multipath Transmissions for Transport Virtualisation. Inter-
national Journal of Communication Networks and Distributed Systems, 6(3):322–340,
2011.

230

http://www.cc.gatech.edu/fac/Ellen.Zegura/gt-itm/gt-itm/tar.gz
http://www.cc.gatech.edu/fac/Ellen.Zegura/gt-itm/gt-itm/tar.gz

APPENDIX A
Solutions in Detail

Here, we present the detailed results achieved by CH-O, CH-R, CH-S, LS-O, LS-S, VND-O,
VND-S, GRASP-O, MA-O, VNS-O, CP-O, CP-S, ILP-O, and ILP-S for each individual in-
stance of the VNMP instance set, which is the basis for the analysis carried out in the previous
chapters. This data allows for comparisons with future algorithms solving the VNMP and is also
available online [87]. We report the additional resource cost Ca and substrate usage cost Cu of
the final VNMP solution. The required run-time is labeled by t[s]. For the ILP methods, we also
report the final gaps in percent. The gap is 100% if the LP relaxation of the root node could
not be solved. For the ILP and CP methods, column Opt shows if the optimality of the solution
could be proven. Note that for ILP-S, any valid solution is optimal. Values may be missing due
to early termination because of the applied memory limit. Table A.1 gives an overview where
the results can be found.

Table A.1: Tables showing the achieved results for the VNMP instance set, depending on em-
ployed methods, the instance size, and the instance number (Nr.)

Methods Size Nr. 0–14 Nr. 15–29 Size Nr. 0–14 Nr. 15–29

CH-O, CH-R, CH-S,
LS-O, LS-S

20 A.2 A.3 30 A.4 A.5
50 A.6 A.7 100 A.8 A.9

200 A.10 A.11 500 A.12 A.13
1000 A.14 A.15

VND-O, VND-S,
GRASP-O, MA-O,
VNS-O

20 A.16 A.17 30 A.18 A.19
50 A.20 A.21 100 A.22 A.23

200 A.24 A.25 500 A.26 A.27
1000 A.28 A.29

CP-O, CP-S
20 A.30 A.31 30 A.32 A.33
50 A.34 A.35 100 A.36 A.37

ILP-O, ILP-S

20 A.38 A.39 30 A.40 A.41
50 A.42 A.43 100 A.44 A.45

200 A.46 A.47 500 A.48 A.49
1000 A.50 A.51

231

Table A.2: Performance of CH-O, CH-R, CH-S, LS-O, and LS-S for instance size (Sz.) 20,
instance numbers (Nr.) 0–14.

CH-O CH-R CH-S LS-O LS-S
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]
20 0 0.10 0 572 0.0 0 607 0.0 0 595 0.0 0 513 0.0 0 560 0.0

0.50 0 1063 0.0 0 921 0.0 0 1048 0.0 0 829 0.2 0 931 0.0
0.80 0 1223 0.0 0 1161 0.0 0 1284 0.0 0 1107 0.2 0 1223 0.0
1.00 625 1382 0.0 520 1224 0.0 0 1382 0.0 0 1184 0.3 0 1336 0.0

1 0.10 0 377 0.0 0 474 0.0 0 377 0.0 0 361 0.0 0 377 0.0
0.50 0 791 0.0 545 1017 0.0 0 910 0.0 0 737 0.1 0 791 0.0
0.80 0 1040 0.0 695 980 0.0 0 1030 0.0 0 804 0.2 0 958 0.0
1.00 0 1168 0.0 1626 1003 0.0 0 1153 0.0 113 994 0.3 0 1139 0.0

2 0.10 0 511 0.0 0 604 0.0 0 511 0.0 0 484 0.0 0 511 0.0
0.50 0 960 0.0 0 1017 0.0 0 1032 0.0 0 791 0.1 0 960 0.0
0.80 0 1297 0.0 0 1106 0.0 0 1388 0.0 0 972 0.2 0 1249 0.0
1.00 0 1470 0.0 430 1431 0.0 0 1623 0.0 0 1201 0.3 0 1360 0.0

3 0.10 0 739 0.0 0 553 0.0 0 798 0.0 0 535 0.0 0 698 0.0
0.50 0 1147 0.0 0 1018 0.0 0 1147 0.0 0 960 0.1 0 1147 0.0
0.80 0 1309 0.0 535 1235 0.0 0 1397 0.0 0 1107 0.1 0 1271 0.0
1.00 0 1582 0.0 947 1437 0.0 0 1550 0.0 0 1380 0.2 0 1474 0.0

4 0.10 0 543 0.0 0 589 0.0 0 543 0.0 0 506 0.0 0 511 0.0
0.50 0 1048 0.0 0 914 0.0 0 1048 0.0 0 818 0.1 0 1011 0.0
0.80 0 1248 0.0 0 1090 0.0 0 1350 0.0 0 989 0.2 0 1248 0.0
1.00 658 1399 0.0 385 1236 0.0 146 1488 0.0 0 1124 0.4 0 1399 0.1

5 0.10 0 464 0.0 0 486 0.0 0 530 0.0 0 401 0.0 0 464 0.0
0.50 0 978 0.0 105 1020 0.0 0 1116 0.0 0 832 0.1 0 978 0.0
0.80 0 1166 0.0 0 1018 0.0 0 1245 0.0 0 888 0.2 0 1131 0.0
1.00 0 1177 0.0 0 1134 0.0 0 1311 0.0 0 1057 0.1 0 1142 0.0

6 0.10 0 493 0.0 0 389 0.0 0 493 0.0 0 389 0.0 0 479 0.0
0.50 0 1143 0.0 0 963 0.0 0 1280 0.0 0 860 0.1 0 1071 0.0
0.80 0 1406 0.0 0 1267 0.0 0 1422 0.0 0 1229 0.1 0 1406 0.0
1.00 425 1422 0.0 0 1422 0.0 0 1446 0.0 0 1422 0.1 0 1422 0.0

7 0.10 0 831 0.0 0 573 0.0 0 819 0.0 0 551 0.0 0 725 0.0
0.50 0 1289 0.0 0 1069 0.0 0 1334 0.0 0 982 0.1 0 1207 0.0
0.80 0 1418 0.0 225 1285 0.0 0 1506 0.0 0 1237 0.2 0 1418 0.0
1.00 0 1590 0.0 965 1503 0.0 155 1630 0.0 0 1461 0.3 0 1506 0.0

8 0.10 0 656 0.0 0 418 0.0 0 716 0.0 0 351 0.0 0 559 0.0
0.50 0 1092 0.0 0 884 0.0 0 1219 0.0 0 841 0.1 0 1049 0.0
0.80 0 1171 0.0 0 1162 0.0 0 1378 0.0 0 1070 0.2 0 1214 0.0
1.00 0 1442 0.0 0 1326 0.0 55 1442 0.0 0 1273 0.1 0 1353 0.0

9 0.10 0 782 0.0 0 672 0.0 0 754 0.0 0 643 0.0 0 753 0.0
0.50 0 1094 0.0 0 1129 0.0 0 1121 0.0 0 1011 0.1 0 1059 0.0
0.80 0 1163 0.0 0 1392 0.0 0 1254 0.0 0 1106 0.1 0 1163 0.0
1.00 305 1455 0.0 572 1445 0.0 0 1560 0.0 0 1287 0.3 0 1355 0.0

10 0.10 0 660 0.0 0 722 0.0 0 717 0.0 0 598 0.0 0 660 0.0
0.50 0 1093 0.0 0 1124 0.0 0 1236 0.0 0 923 0.1 0 1027 0.0
0.80 0 1374 0.0 0 1459 0.0 50 1454 0.0 0 1252 0.1 0 1302 0.0
1.00 1035 1538 0.0 825 1502 0.0 65 1538 0.0 1035 1502 0.1 1035 1538 0.0

11 0.10 0 308 0.0 0 272 0.0 0 362 0.0 0 217 0.0 0 308 0.0
0.50 0 933 0.0 0 793 0.0 0 997 0.0 0 638 0.1 0 829 0.0
0.80 0 1077 0.0 0 839 0.0 0 1077 0.0 0 977 0.1 0 1077 0.0
1.00 0 1077 0.0 0 1023 0.0 145 1224 0.0 0 942 0.1 0 997 0.0

12 0.10 0 573 0.0 0 650 0.0 0 573 0.0 0 557 0.0 0 573 0.0
0.50 70 1153 0.0 235 1004 0.0 0 1236 0.0 0 1022 0.1 0 1121 0.0
0.80 625 1380 0.0 700 1173 0.0 0 1465 0.0 0 1137 0.4 0 1407 0.0
1.00 790 1607 0.0 3302 1343 0.0 0 1613 0.0 0 1238 0.5 0 1476 0.0

13 0.10 0 638 0.0 0 802 0.0 0 644 0.0 0 480 0.0 0 621 0.0
0.50 0 900 0.0 0 1004 0.0 0 972 0.0 0 733 0.1 0 888 0.0
0.80 0 1267 0.0 530 1279 0.0 0 1294 0.0 0 1109 0.2 0 1277 0.0
1.00 50 1293 0.0 1320 1338 0.0 0 1338 0.0 0 1224 0.2 0 1330 0.0

14 0.10 0 636 0.0 0 681 0.0 0 636 0.0 0 535 0.0 0 576 0.0
0.50 0 1195 0.0 0 977 0.0 0 1203 0.0 0 828 0.1 0 1195 0.0
0.80 0 1310 0.0 0 1231 0.0 0 1310 0.0 0 1214 0.2 0 1310 0.0
1.00 250 1344 0.0 2405 1301 0.0 0 1456 0.0 250 1301 0.1 0 1344 0.0

232

Table A.3: Performance of CH-O, CH-R, CH-S, LS-O, and LS-S for instance size (Sz.) 20,
instance numbers (Nr.) 15–29.

CH-O CH-R CH-S LS-O LS-S
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]
20 15 0.10 0 430 0.0 0 539 0.0 0 524 0.0 0 424 0.0 0 524 0.0

0.50 0 905 0.0 0 1057 0.0 0 980 0.0 0 722 0.1 0 863 0.0
0.80 0 1094 0.0 0 964 0.0 0 1140 0.0 0 964 0.2 0 1140 0.0
1.00 0 1299 0.0 354 1169 0.0 0 1474 0.0 0 1029 0.3 0 1224 0.0

16 0.10 0 931 0.0 0 837 0.0 0 1092 0.0 0 736 0.0 0 961 0.0
0.50 0 1373 0.0 0 1204 0.0 0 1398 0.0 0 895 0.3 0 1273 0.0
0.80 0 1542 0.0 0 1415 0.0 0 1564 0.0 0 1227 0.4 0 1462 0.0
1.00 2575 1564 0.0 2363 1543 0.0 0 1584 0.0 0 1285 0.4 0 1564 0.0

17 0.10 0 563 0.0 0 583 0.0 0 563 0.0 0 453 0.0 0 549 0.0
0.50 0 1061 0.0 0 1132 0.0 0 1136 0.0 0 982 0.1 0 1061 0.0
0.80 0 1356 0.0 0 1311 0.0 0 1489 0.0 0 1169 0.2 0 1299 0.0
1.00 758 1561 0.0 1048 1560 0.0 129 1623 0.0 0 1297 0.5 0 1561 0.1

18 0.10 0 528 0.0 0 507 0.0 0 528 0.0 0 439 0.0 0 517 0.0
0.50 0 1112 0.0 0 920 0.0 0 1179 0.0 0 891 0.1 0 1074 0.0
0.80 1015 1271 0.0 0 1197 0.0 0 1271 0.0 180 1093 0.2 180 1271 0.1
1.00 1050 1328 0.0 1734 1262 0.0 0 1374 0.0 940 1157 0.3 325 1328 0.1

19 0.10 0 643 0.0 0 627 0.0 0 662 0.0 0 584 0.0 0 643 0.0
0.50 0 1401 0.0 0 1030 0.0 0 1493 0.0 0 1008 0.1 0 1309 0.0
0.80 0 1500 0.0 845 1405 0.0 0 1535 0.0 0 1226 0.3 0 1491 0.0
1.00 905 1535 0.0 1118 1473 0.0 0 1573 0.0 0 1318 0.3 0 1535 0.1

20 0.10 0 396 0.0 0 546 0.0 0 434 0.0 0 396 0.0 0 403 0.0
0.50 0 1182 0.0 0 739 0.0 0 1182 0.0 0 640 0.1 0 1083 0.0
0.80 20 1322 0.0 280 892 0.0 0 1322 0.0 0 835 0.2 0 1307 0.0
1.00 0 1366 0.0 2568 1102 0.0 0 1391 0.0 0 1008 0.3 0 1366 0.0

21 0.10 0 484 0.0 0 507 0.0 0 535 0.0 0 475 0.0 0 484 0.0
0.50 0 898 0.0 0 893 0.0 0 902 0.0 0 758 0.1 0 898 0.0
0.80 0 1052 0.0 0 1050 0.0 0 1221 0.0 0 952 0.1 0 1052 0.0
1.00 421 1300 0.0 646 1158 0.0 0 1360 0.0 0 1097 0.2 0 1268 0.1

22 0.10 0 647 0.0 0 662 0.0 0 647 0.0 0 646 0.0 0 647 0.0
0.50 0 748 0.0 0 801 0.0 0 794 0.0 0 747 0.1 0 748 0.0
0.80 0 1120 0.0 0 898 0.0 0 1110 0.0 0 898 0.4 0 1120 0.0
1.00 0 1127 0.0 0 905 0.0 0 1171 0.0 0 905 0.5 0 1127 0.0

23 0.10 0 612 0.0 0 593 0.0 0 754 0.0 0 535 0.0 0 591 0.0
0.50 0 1180 0.0 0 919 0.0 0 1256 0.0 0 779 0.1 0 1039 0.0
0.80 0 1490 0.0 0 1066 0.0 0 1500 0.0 0 990 0.2 0 1390 0.0
1.00 0 1515 0.0 0 1338 0.0 0 1564 0.0 0 1131 0.2 0 1415 0.0

24 0.10 0 716 0.0 0 767 0.0 0 716 0.0 0 683 0.0 0 716 0.0
0.50 0 1044 0.0 0 910 0.0 0 1128 0.0 0 910 0.1 0 930 0.0
0.80 0 1184 0.0 0 1153 0.0 0 1247 0.0 0 1153 0.1 0 1184 0.0
1.00 0 1258 0.0 283 1226 0.0 0 1395 0.0 0 1257 0.2 0 1257 0.0

25 0.10 0 525 0.0 0 533 0.0 0 568 0.0 0 432 0.0 0 525 0.0
0.50 0 955 0.0 0 1058 0.0 0 990 0.0 0 827 0.1 0 902 0.0
0.80 0 1195 0.0 345 1164 0.0 0 1394 0.0 0 1043 0.1 0 1131 0.0
1.00 0 1481 0.0 30 1214 0.0 0 1522 0.0 0 1043 0.3 0 1357 0.0

26 0.10 0 559 0.0 0 508 0.0 0 559 0.0 0 420 0.0 0 527 0.0
0.50 0 1024 0.0 0 946 0.0 0 1058 0.0 0 937 0.1 0 1022 0.0
0.80 0 1047 0.0 0 1069 0.0 0 1101 0.0 0 1024 0.1 0 1047 0.0
1.00 730 1240 0.0 0 1112 0.0 0 1213 0.0 0 1112 0.2 0 1240 0.1

27 0.10 0 687 0.0 0 699 0.0 0 687 0.0 0 607 0.0 0 654 0.0
0.50 0 1086 0.0 0 1271 0.0 0 1347 0.0 0 901 0.1 0 1086 0.0
0.80 0 1284 0.0 0 1461 0.0 0 1538 0.0 0 1068 0.3 0 1286 0.0
1.00 590 1446 0.0 385 1511 0.0 0 1538 0.0 385 1233 0.4 0 1538 0.0

28 0.10 0 568 0.0 0 531 0.0 0 630 0.0 0 552 0.0 0 568 0.0
0.50 0 1249 0.0 0 1225 0.0 0 1247 0.0 0 1034 0.1 0 1187 0.0
0.80 0 1367 0.0 0 1347 0.0 0 1576 0.0 0 1243 0.2 0 1368 0.0
1.00 315 1581 0.0 0 1409 0.0 385 1581 0.0 315 1390 0.2 30 1436 0.1

29 0.10 0 460 0.0 0 431 0.0 0 460 0.0 0 387 0.0 0 460 0.0
0.50 0 1029 0.0 175 866 0.0 0 1050 0.0 0 593 0.1 0 1040 0.0
0.80 0 1249 0.0 40 1079 0.0 0 1285 0.0 0 886 0.2 0 1192 0.0
1.00 97 1377 0.0 333 1326 0.0 0 1433 0.0 0 1334 0.1 0 1377 0.0

233

Table A.4: Performance of CH-O, CH-R, CH-S, LS-O, and LS-S for instance size (Sz.) 30,
instance numbers (Nr.) 0–14.

CH-O CH-R CH-S LS-O LS-S
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]
30 0 0.10 0 633 0.0 0 641 0.0 0 633 0.0 0 611 0.0 0 619 0.0

0.50 0 1332 0.0 0 1289 0.0 0 1327 0.0 0 1036 0.2 0 1287 0.0
0.80 0 1509 0.0 0 1560 0.0 0 1714 0.0 0 1454 0.3 0 1553 0.0
1.00 0 1711 0.0 905 1882 0.0 0 2091 0.0 0 1586 0.3 0 1716 0.0

1 0.10 0 793 0.0 0 887 0.0 0 932 0.0 0 713 0.1 0 876 0.0
0.50 0 1470 0.0 0 1539 0.0 0 1789 0.0 0 1149 0.5 0 1649 0.0
0.80 0 1951 0.0 2808 1927 0.0 0 2382 0.0 0 1510 0.7 0 2077 0.1
1.00 4041 2330 0.0 4782 2067 0.0 0 2474 0.0 0 1689 1.3 0 2457 0.1

2 0.10 0 1288 0.0 0 1028 0.0 0 1467 0.0 0 860 0.1 0 1250 0.0
0.50 0 1818 0.0 0 1634 0.0 0 2135 0.0 0 1628 0.3 0 1925 0.0
0.80 0 2176 0.0 0 1866 0.0 0 2384 0.0 0 1810 0.6 0 2210 0.1
1.00 233 2288 0.0 3102 2084 0.0 0 2546 0.0 0 2216 0.4 0 2432 0.1

3 0.10 0 1000 0.0 0 701 0.0 0 1000 0.0 0 679 0.0 0 844 0.0
0.50 0 1347 0.0 0 1177 0.0 0 1558 0.0 0 1095 0.2 0 1365 0.0
0.80 565 1879 0.0 0 1234 0.0 0 1871 0.0 0 1203 0.7 0 1815 0.0
1.00 1636 2096 0.0 1467 1869 0.0 0 2162 0.0 0 1745 1.3 0 2110 0.1

4 0.10 0 1036 0.0 0 979 0.0 0 1024 0.0 0 701 0.1 0 994 0.0
0.50 0 1610 0.0 0 1563 0.0 0 1733 0.0 0 1376 0.4 0 1602 0.0
0.80 0 1696 0.0 80 1595 0.0 0 1838 0.0 0 1436 0.6 0 1688 0.0
1.00 0 1788 0.0 385 1938 0.0 0 2219 0.0 0 1647 0.5 0 1807 0.1

5 0.10 0 737 0.0 0 641 0.0 0 801 0.0 0 612 0.0 0 712 0.0
0.50 0 1429 0.0 0 1163 0.0 0 1480 0.0 0 1105 0.4 0 1426 0.0
0.80 0 1649 0.0 0 1588 0.0 0 1969 0.0 0 1402 0.6 0 1614 0.0
1.00 0 1906 0.0 657 1618 0.0 0 2002 0.0 0 1466 0.9 0 1774 0.0

6 0.10 0 853 0.0 0 786 0.0 0 971 0.0 0 624 0.1 0 899 0.0
0.50 0 1467 0.0 0 1414 0.0 0 1637 0.0 0 1206 0.4 0 1515 0.0
0.80 330 1796 0.0 145 1642 0.0 0 1824 0.0 0 1333 0.7 0 1755 0.0
1.00 5 1779 0.0 5376 1769 0.0 0 2051 0.0 0 1544 0.6 0 1864 0.1

7 0.10 0 897 0.0 0 769 0.0 0 1002 0.0 0 684 0.0 0 768 0.0
0.50 0 1589 0.0 0 1355 0.0 0 1661 0.0 0 1226 0.5 0 1596 0.0
0.80 0 1834 0.0 0 1686 0.0 0 2031 0.0 0 1510 0.8 0 1965 0.1
1.00 415 2296 0.0 3097 1948 0.0 0 2362 0.0 0 1752 1.3 0 2285 0.1

8 0.10 0 1489 0.0 0 1275 0.0 0 1561 0.0 0 1192 0.1 0 1375 0.0
0.50 0 1659 0.0 0 1457 0.0 0 1746 0.0 0 1269 0.6 0 1541 0.0
0.80 0 1758 0.0 0 1761 0.0 0 1773 0.0 0 1629 0.6 0 1746 0.1
1.00 0 1758 0.0 200 1915 0.0 0 1838 0.0 0 1625 1.0 0 1773 0.1

9 0.10 0 743 0.0 0 654 0.0 0 822 0.0 0 571 0.0 0 762 0.0
0.50 0 1638 0.0 0 1423 0.0 0 1924 0.0 0 1164 0.3 0 1784 0.0
0.80 0 2065 0.0 0 1939 0.0 0 2234 0.0 0 1486 0.8 0 2145 0.0
1.00 0 2242 0.0 678 2179 0.0 0 2382 0.0 0 1788 0.9 0 2280 0.1

10 0.10 0 610 0.0 0 811 0.0 0 610 0.0 0 593 0.0 0 610 0.0
0.50 0 1375 0.0 0 1292 0.0 0 1375 0.0 0 1122 0.3 0 1289 0.0
0.80 0 1662 0.0 0 1436 0.0 0 1717 0.0 0 1259 0.8 0 1538 0.0
1.00 0 1930 0.0 494 1539 0.0 0 1977 0.0 0 1349 1.3 0 1817 0.1

11 0.10 0 908 0.0 0 625 0.0 0 1064 0.0 0 597 0.1 0 914 0.0
0.50 0 1430 0.0 405 1360 0.0 0 1627 0.0 0 1188 0.2 0 1459 0.0
0.80 140 2088 0.0 3507 2094 0.0 0 2155 0.0 0 1663 0.4 0 1894 0.0
1.00 3089 2184 0.0 5516 2278 0.0 10 2327 0.0 1481 2043 0.3 0 2184 0.2

12 0.10 0 754 0.0 0 867 0.0 0 871 0.0 0 754 0.0 0 827 0.0
0.50 0 1439 0.0 0 1369 0.0 0 1539 0.0 0 1102 0.2 0 1392 0.0
0.80 0 1923 0.0 125 1713 0.0 0 2081 0.0 0 1434 0.6 0 1821 0.0
1.00 0 2160 0.0 262 1972 0.0 0 2216 0.0 0 1742 0.7 0 2150 0.0

13 0.10 0 674 0.0 0 655 0.0 0 698 0.0 0 542 0.0 0 617 0.0
0.50 0 1424 0.0 0 1476 0.0 0 1523 0.0 0 1102 0.3 0 1386 0.0
0.80 0 1677 0.0 422 1910 0.0 0 1921 0.0 0 1517 0.3 0 1703 0.0
1.00 0 1929 0.0 436 1791 0.0 0 2132 0.0 0 1555 0.6 0 1926 0.1

14 0.10 0 902 0.0 0 940 0.0 0 935 0.0 0 809 0.1 0 884 0.0
0.50 0 1771 0.0 0 1593 0.0 0 1909 0.0 0 1413 0.5 0 1802 0.0
0.80 0 1825 0.0 0 1631 0.0 0 2065 0.0 0 1490 1.1 0 1923 0.1
1.00 1875 2019 0.0 3089 1799 0.0 0 2347 0.0 0 1812 1.2 0 2109 0.1

234

Table A.5: Performance of CH-O, CH-R, CH-S, LS-O, and LS-S for instance size (Sz.) 30,
instance numbers (Nr.) 15–29.

CH-O CH-R CH-S LS-O LS-S
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]
30 15 0.10 0 1245 0.0 0 1160 0.0 0 1226 0.0 0 1019 0.1 0 1163 0.0

0.50 0 1633 0.0 0 1582 0.0 0 1633 0.0 0 1298 0.4 0 1623 0.0
0.80 0 1867 0.0 0 1650 0.0 0 2084 0.0 0 1531 1.1 0 1779 0.1
1.00 0 2304 0.0 623 1901 0.0 0 2304 0.0 0 1773 2.7 0 2206 0.1

16 0.10 0 633 0.0 0 534 0.0 0 649 0.0 0 461 0.0 0 589 0.0
0.50 0 1382 0.0 0 1196 0.0 0 1556 0.0 0 997 0.2 0 1279 0.0
0.80 0 1777 0.0 1070 1505 0.0 0 1797 0.0 0 1229 0.5 0 1704 0.0
1.00 289 1924 0.0 1814 1796 0.0 0 1931 0.0 0 1521 1.2 0 1900 0.1

17 0.10 0 976 0.0 0 999 0.0 0 1065 0.0 0 904 0.1 0 992 0.0
0.50 0 1392 0.0 0 1412 0.0 0 1427 0.0 0 1132 0.5 0 1370 0.0
0.80 305 1779 0.0 1725 1654 0.0 0 1972 0.0 0 1463 1.0 0 1772 0.1
1.00 3630 1901 0.0 933 1711 0.0 0 2053 0.0 0 1604 1.2 0 1922 0.1

18 0.10 0 579 0.0 0 658 0.0 0 629 0.0 0 561 0.0 0 561 0.0
0.50 0 1458 0.0 25 1530 0.0 0 1612 0.0 0 1200 0.3 0 1381 0.0
0.80 0 1831 0.0 727 2061 0.0 0 1928 0.0 0 1534 0.4 0 1724 0.0
1.00 0 2181 0.0 597 2292 0.0 0 2304 0.0 0 1750 0.5 0 2066 0.1

19 0.10 0 955 0.0 0 810 0.0 0 1005 0.0 0 548 0.0 0 984 0.0
0.50 0 1643 0.0 0 1614 0.0 0 1833 0.0 0 1432 0.4 0 1706 0.0
0.80 0 1928 0.0 270 1820 0.0 0 2136 0.0 0 1570 0.9 0 1932 0.0
1.00 315 2248 0.0 3234 2168 0.0 0 2261 0.0 0 1818 1.2 0 2210 0.1

20 0.10 0 1195 0.0 0 1165 0.0 0 1222 0.0 0 941 0.1 0 1050 0.0
0.50 0 1771 0.0 0 1513 0.0 0 1807 0.0 0 1490 0.4 0 1761 0.0
0.80 0 2011 0.0 0 1710 0.0 0 1985 0.0 0 1686 1.0 0 1973 0.0
1.00 0 2129 0.0 38 1885 0.0 0 2200 0.0 0 1842 1.4 0 2129 0.1

21 0.10 0 897 0.0 0 684 0.0 0 878 0.0 0 640 0.0 0 812 0.0
0.50 0 1283 0.0 0 1243 0.0 0 1332 0.0 0 1010 0.1 0 1283 0.0
0.80 0 1636 0.0 0 1629 0.0 0 1769 0.0 0 1460 0.3 0 1565 0.0
1.00 46 1875 0.0 1314 1887 0.0 75 2012 0.0 41 1743 0.3 0 1875 0.1

22 0.10 0 968 0.0 0 1013 0.0 0 1003 0.0 0 929 0.0 0 968 0.0
0.50 0 1554 0.0 0 1442 0.0 0 1706 0.0 0 1400 0.3 0 1479 0.0
0.80 75 1813 0.0 0 1693 0.0 0 2048 0.0 0 1491 0.6 0 1727 0.1
1.00 529 2249 0.0 100 1757 0.0 0 2292 0.0 0 1631 1.1 0 2110 0.1

23 0.10 0 766 0.0 0 1213 0.0 0 876 0.0 0 738 0.0 0 841 0.0
0.50 0 1589 0.0 0 1582 0.0 0 1949 0.0 0 1214 0.5 0 1643 0.0
0.80 115 2240 0.0 40 1974 0.0 0 2300 0.0 0 1492 1.0 0 2135 0.1
1.00 270 2410 0.0 785 2360 0.0 0 2380 0.0 0 1745 1.0 0 2184 0.1

24 0.10 0 626 0.0 0 571 0.0 0 630 0.0 0 564 0.0 0 626 0.0
0.50 0 1398 0.0 10 1498 0.0 0 1799 0.0 0 1278 0.3 0 1479 0.0
0.80 0 1936 0.0 0 1862 0.0 0 2187 0.0 0 1700 0.6 0 2155 0.0
1.00 309 2234 0.0 5062 2445 0.0 0 2514 0.0 0 2139 0.6 0 2349 0.1

25 0.10 0 1123 0.0 0 1381 0.0 0 1222 0.0 0 972 0.1 0 1187 0.0
0.50 0 1645 0.0 0 1709 0.0 0 1886 0.0 0 1533 0.5 0 1694 0.0
0.80 0 2029 0.0 615 1872 0.0 0 2147 0.0 0 1587 0.9 0 1925 0.1
1.00 1370 2095 0.0 6659 2057 0.0 0 2310 0.0 0 1722 1.5 0 2125 0.1

26 0.10 0 750 0.0 0 528 0.0 0 763 0.0 0 518 0.0 0 763 0.0
0.50 0 1479 0.0 0 1068 0.0 0 1528 0.0 0 1009 0.2 0 1410 0.0
0.80 345 1941 0.0 590 1736 0.0 0 1938 0.0 0 1364 0.5 0 1825 0.0
1.00 4841 2047 0.0 7421 2034 0.0 0 2143 0.0 0 1554 0.5 0 2024 0.1

27 0.10 0 773 0.0 0 651 0.0 0 751 0.0 0 561 0.0 0 638 0.0
0.50 0 1396 0.0 0 1174 0.0 0 1504 0.0 0 1106 0.2 0 1267 0.0
0.80 0 1699 0.0 0 1665 0.0 0 1958 0.0 0 1407 0.6 0 1659 0.0
1.00 0 1968 0.0 686 1910 0.0 0 2057 0.0 0 1517 0.9 0 1919 0.1

28 0.10 0 1031 0.0 0 1131 0.0 0 1073 0.0 0 962 0.0 0 1006 0.0
0.50 0 1422 0.0 0 1457 0.0 0 1619 0.0 0 1238 0.1 0 1422 0.0
0.80 0 1769 0.0 0 1555 0.0 0 2033 0.0 0 1553 0.3 0 1671 0.1
1.00 0 2017 0.0 20 1800 0.0 0 2229 0.0 0 1608 0.7 0 1914 0.1

29 0.10 0 872 0.0 0 495 0.0 0 935 0.0 0 415 0.1 0 798 0.0
0.50 0 1524 0.0 0 1508 0.0 0 1668 0.0 0 1090 0.2 0 1445 0.0
0.80 0 1858 0.0 0 1771 0.0 0 1944 0.0 0 1437 0.4 0 1761 0.0
1.00 715 1920 0.0 0 2067 0.0 0 1944 0.0 0 1743 0.3 0 1920 0.1

235

Table A.6: Performance of CH-O, CH-R, CH-S, LS-O, and LS-S for instance size (Sz.) 50,
instance numbers (Nr.) 0–14.

CH-O CH-R CH-S LS-O LS-S
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]
50 0 0.10 0 1313 0.0 0 1291 0.0 0 1311 0.0 0 1020 0.1 0 1289 0.0

0.50 0 2410 0.0 0 2522 0.0 0 2571 0.0 0 1872 1.5 0 2411 0.1
0.80 0 2967 0.0 4241 2977 0.0 0 3275 0.0 0 2445 2.8 0 2991 0.1
1.00 7008 3614 0.1 18804 3663 0.0 0 3859 0.0 2640 3240 4.0 0 3731 1.3

1 0.10 0 1472 0.0 0 1449 0.0 0 1638 0.0 0 1340 0.1 0 1470 0.0
0.50 0 2262 0.0 0 2246 0.0 0 2395 0.0 0 1826 0.7 0 2208 0.0
0.80 0 2720 0.0 13 2643 0.0 0 3180 0.0 0 2088 2.2 0 2937 0.1
1.00 757 3669 0.0 5574 3489 0.0 0 3756 0.0 0 2634 2.8 0 3678 0.1

2 0.10 0 1126 0.0 0 1071 0.0 0 1175 0.0 0 749 0.1 0 1069 0.0
0.50 0 2453 0.0 0 2474 0.0 0 2610 0.0 0 2043 0.5 0 2372 0.1
0.80 0 3002 0.0 0 2862 0.0 0 3116 0.0 0 2373 1.1 0 2915 0.1
1.00 1148 3097 0.0 1287 3273 0.0 0 3386 0.0 520 2668 1.6 95 3049 0.3

3 0.10 0 1410 0.0 0 1444 0.0 0 1588 0.0 0 1211 0.1 0 1512 0.0
0.50 0 2602 0.0 0 2315 0.0 0 2957 0.0 0 1905 1.4 0 2575 0.1
0.80 0 3282 0.0 0 2536 0.0 0 3416 0.0 0 2370 2.4 0 3223 0.1
1.00 958 3633 0.0 5673 3013 0.0 0 3776 0.0 0 2502 4.0 0 3573 0.1

4 0.10 0 1313 0.0 0 1300 0.0 0 1360 0.0 0 1194 0.1 0 1317 0.0
0.50 0 2232 0.0 0 2275 0.0 0 2303 0.0 0 1904 0.7 0 2175 0.1
0.80 0 2604 0.0 0 2746 0.0 0 2750 0.0 0 2188 1.8 0 2560 0.1
1.00 218 3106 0.0 2794 3124 0.0 0 3219 0.0 0 2723 2.2 0 3124 0.1

5 0.10 0 1397 0.0 0 1376 0.0 0 1470 0.0 0 1280 0.1 0 1431 0.0
0.50 0 2143 0.0 0 1888 0.0 0 2290 0.0 0 1664 1.2 0 2111 0.0
0.80 0 2676 0.0 0 1989 0.0 0 2837 0.0 0 2031 2.7 0 2720 0.1
1.00 0 2907 0.0 616 2406 0.0 0 3172 0.0 0 2221 4.0 0 2831 0.1

6 0.10 0 900 0.0 145 1205 0.0 0 947 0.0 0 825 0.1 0 911 0.0
0.50 0 2096 0.0 30 2500 0.0 0 2431 0.0 0 1732 0.8 0 2064 0.0
0.80 100 2727 0.0 385 2655 0.0 0 2988 0.0 0 2085 2.3 0 2640 0.1
1.00 370 3012 0.0 4080 3132 0.0 0 3264 0.0 0 2460 3.0 0 2954 0.1

7 0.10 0 1152 0.0 0 1617 0.0 0 1227 0.0 0 1129 0.1 0 1198 0.0
0.50 0 2351 0.0 1387 2558 0.0 0 2513 0.0 0 2010 1.2 0 2268 0.1
0.80 40 2746 0.0 905 2823 0.0 0 2731 0.0 0 2464 1.4 0 2653 0.1
1.00 360 3060 0.0 1674 3192 0.1 0 3412 0.0 0 2643 3.3 0 3086 0.1

8 0.10 0 1053 0.0 130 1224 0.0 0 1194 0.0 0 946 0.1 0 1097 0.0
0.50 0 2202 0.0 190 2219 0.0 0 2337 0.0 0 1619 0.8 0 2159 0.1
0.80 0 2732 0.0 200 2609 0.0 0 3180 0.0 0 2127 2.2 0 2824 0.1
1.00 7306 3537 0.0 6770 3608 0.0 0 3873 0.0 0 2956 3.2 0 3648 0.8

9 0.10 0 1623 0.0 0 1566 0.0 0 1736 0.0 0 1392 0.2 0 1623 0.0
0.50 0 2369 0.0 0 2263 0.0 0 2370 0.0 0 1818 1.1 0 2229 0.1
0.80 0 2683 0.0 0 2542 0.0 0 2803 0.0 0 2076 2.1 0 2596 0.1
1.00 0 3144 0.0 1251 3038 0.0 0 3438 0.0 0 2404 4.7 0 3122 0.1

10 0.10 0 1079 0.0 0 1256 0.0 0 1094 0.0 0 988 0.1 0 1046 0.0
0.50 0 2677 0.0 0 2346 0.0 0 2894 0.0 0 1862 1.4 0 2637 0.1
0.80 0 3001 0.0 20 2780 0.0 0 3284 0.0 0 2165 2.1 0 2908 0.1
1.00 1657 3380 0.0 3819 3073 0.0 0 3840 0.0 0 2726 3.6 0 3330 0.1

11 0.10 0 1380 0.0 0 1249 0.0 0 1402 0.0 0 978 0.2 0 1336 0.0
0.50 0 2498 0.0 45 2110 0.0 0 2507 0.0 0 1703 0.9 0 2375 0.0
0.80 400 3011 0.0 17 2928 0.0 0 3261 0.0 0 2353 1.6 0 2941 0.1
1.00 3373 3428 0.0 4288 3412 0.0 0 3671 0.0 585 3129 2.2 585 3204 0.8

12 0.10 0 1042 0.0 0 981 0.0 0 1098 0.0 0 889 0.1 0 1026 0.0
0.50 0 2326 0.0 0 2049 0.0 0 2493 0.0 0 1837 1.1 0 2343 0.1
0.80 0 2600 0.0 0 2647 0.0 0 2827 0.0 0 2364 1.1 0 2598 0.1
1.00 2609 2810 0.0 4501 2865 0.0 25 3174 0.0 0 2682 1.4 0 2810 0.5

13 0.10 0 1375 0.0 0 1312 0.0 0 1438 0.0 0 1086 0.1 0 1358 0.0
0.50 0 2247 0.0 0 2132 0.0 0 2303 0.0 0 1897 0.9 0 2222 0.0
0.80 0 3116 0.0 105 2728 0.0 0 3175 0.0 0 2389 2.1 0 2995 0.1
1.00 5020 3454 0.0 4965 3490 0.0 80 3495 0.0 0 3190 3.1 0 3428 0.8

14 0.10 0 1278 0.0 0 1360 0.0 0 1286 0.0 0 1096 0.1 0 1250 0.0
0.50 0 2144 0.0 0 2098 0.0 0 2202 0.0 0 1859 0.8 0 2149 0.0
0.80 0 2606 0.0 38 2458 0.0 0 2673 0.0 0 2096 2.7 0 2562 0.1
1.00 5 2724 0.0 544 2575 0.0 0 2918 0.0 0 2283 3.0 0 2665 0.1

236

Table A.7: Performance of CH-O, CH-R, CH-S, LS-O, and LS-S for instance size (Sz.) 50,
instance numbers (Nr.) 15–29.

CH-O CH-R CH-S LS-O LS-S
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]
50 15 0.10 0 1396 0.0 0 1297 0.0 0 1449 0.0 0 1161 0.1 0 1398 0.0

0.50 0 2618 0.0 55 2688 0.0 0 2775 0.0 0 2091 1.2 0 2577 0.1
0.80 275 3074 0.1 480 2997 0.0 0 3137 0.0 0 2278 3.1 0 3029 0.1
1.00 4494 3581 0.0 2336 3397 0.1 0 3770 0.0 0 3227 3.6 0 3689 0.2

16 0.10 0 1305 0.0 0 1549 0.0 0 1369 0.0 0 1180 0.1 0 1295 0.0
0.50 0 2234 0.0 0 2237 0.0 0 2326 0.0 0 1509 1.9 0 2151 0.1
0.80 0 2682 0.0 1529 2754 0.0 0 2711 0.0 0 2142 3.1 0 2627 0.1
1.00 25 3083 0.0 3606 3047 0.0 0 3409 0.0 0 2390 4.5 0 3062 0.1

17 0.10 0 1276 0.0 0 1475 0.0 0 1422 0.0 0 1103 0.1 0 1314 0.0
0.50 0 2502 0.0 0 2445 0.0 0 2576 0.0 0 2191 0.9 0 2555 0.0
0.80 0 2945 0.0 0 2670 0.0 0 3249 0.0 0 2388 2.1 0 2991 0.1
1.00 430 3665 0.0 1667 3124 0.0 0 4059 0.0 0 2755 4.1 0 3763 0.1

18 0.10 0 1034 0.0 0 995 0.0 0 1093 0.0 0 863 0.1 0 1025 0.0
0.50 45 2144 0.0 0 2250 0.0 0 2367 0.0 0 1945 0.7 0 2148 0.1
0.80 0 2937 0.0 0 2545 0.0 0 3089 0.0 0 2433 2.3 0 2994 0.1
1.00 2401 3438 0.0 7945 3049 0.0 0 3680 0.0 0 2894 3.9 0 3542 0.4

19 0.10 0 1187 0.0 0 1090 0.0 0 1433 0.0 0 1065 0.1 0 1311 0.0
0.50 0 2133 0.0 0 1753 0.0 0 2331 0.0 0 1628 1.3 0 2234 0.1
0.80 0 2769 0.0 0 2298 0.0 0 2737 0.0 0 2042 1.9 0 2605 0.1
1.00 5028 3012 0.0 6512 2932 0.0 0 3128 0.0 0 2585 2.6 0 3012 0.4

20 0.10 0 1837 0.0 0 1831 0.0 0 2150 0.0 0 1659 0.2 0 2027 0.0
0.50 0 2353 0.0 295 2504 0.0 0 2590 0.0 0 2042 0.9 0 2462 0.1
0.80 0 2838 0.0 1210 3096 0.0 0 2946 0.0 0 2513 1.4 0 2870 0.1
1.00 2774 3256 0.1 5274 3320 0.1 0 3234 0.0 0 2841 4.3 0 3306 0.1

21 0.10 0 1482 0.0 0 1523 0.0 0 1489 0.0 0 1210 0.1 0 1322 0.0
0.50 0 2187 0.0 0 2416 0.0 0 2410 0.0 0 1814 1.0 0 2144 0.1
0.80 10 2817 0.0 230 2906 0.0 0 3225 0.0 0 2431 3.0 0 2949 0.1
1.00 590 3403 0.0 10 3341 0.0 0 3553 0.0 0 2801 5.1 0 3352 0.1

22 0.10 0 1532 0.0 0 1602 0.0 0 1853 0.0 0 1377 0.1 0 1684 0.0
0.50 0 2661 0.0 0 2707 0.0 0 3092 0.0 0 2093 1.5 0 2778 0.1
0.80 0 3072 0.0 0 3120 0.0 0 3264 0.0 0 2425 2.6 0 3075 0.1
1.00 79 3334 0.0 3984 3673 0.0 0 3766 0.0 0 2841 3.3 0 3385 0.1

23 0.10 0 1209 0.0 0 1151 0.0 0 1318 0.0 0 1035 0.1 0 1165 0.0
0.50 0 2700 0.0 0 2718 0.0 0 2861 0.0 0 2184 1.2 0 2655 0.1
0.80 0 3100 0.0 450 3071 0.0 0 3272 0.0 0 2484 2.6 0 3060 0.1
1.00 0 3148 0.0 557 3159 0.0 0 3378 0.0 0 2680 2.5 0 3185 0.1

24 0.10 0 1047 0.0 0 1013 0.0 0 1137 0.0 0 803 0.1 0 1057 0.0
0.50 0 2259 0.0 80 2092 0.0 0 2883 0.0 0 1645 1.9 0 2461 0.1
0.80 0 3193 0.0 449 2715 0.0 0 3510 0.0 0 2276 2.8 0 3189 0.1
1.00 0 3415 0.0 3401 3503 0.0 0 3732 0.0 0 2925 3.7 0 3462 0.1

25 0.10 0 1243 0.0 0 1139 0.0 0 1343 0.0 0 962 0.1 0 1214 0.0
0.50 0 2420 0.0 0 1856 0.0 0 2438 0.0 0 1737 1.4 0 2347 0.0
0.80 0 2637 0.0 0 2201 0.0 0 2716 0.0 0 2115 1.6 0 2532 0.1
1.00 0 2844 0.0 2202 2473 0.0 0 3084 0.0 0 2280 3.0 0 2820 0.1

26 0.10 0 1071 0.0 0 1222 0.0 0 1193 0.0 0 929 0.1 0 1085 0.0
0.50 0 2357 0.0 0 2070 0.0 0 2507 0.0 0 1709 1.3 0 2354 0.0
0.80 0 2824 0.0 115 2656 0.0 0 3048 0.0 0 2308 2.1 0 2840 0.1
1.00 4 2980 0.0 2238 2957 0.0 0 3266 0.0 0 2579 2.5 0 3055 0.1

27 0.10 0 1497 0.0 0 1631 0.0 0 1609 0.0 0 1397 0.0 0 1502 0.0
0.50 0 2469 0.0 0 2376 0.0 0 2563 0.0 0 2019 1.1 0 2398 0.1
0.80 0 2842 0.0 0 2553 0.0 0 2877 0.0 0 2179 1.9 0 2733 0.1
1.00 0 3099 0.0 1411 2884 0.0 0 3066 0.0 0 2370 3.4 0 3012 0.1

28 0.10 0 1787 0.0 0 1857 0.0 0 2044 0.0 0 1154 0.3 0 1807 0.0
0.50 0 2941 0.0 0 2875 0.0 0 3192 0.0 0 2279 1.1 0 2990 0.1
0.80 0 3703 0.0 1977 3599 0.0 0 4059 0.0 0 2926 2.8 0 3832 0.1
1.00 10551 4483 0.1 17697 4325 0.0 543 4298 0.1 0 3643 2.8 0 4232 0.5

29 0.10 0 953 0.0 0 844 0.0 0 1207 0.0 0 620 0.1 0 974 0.0
0.50 0 2583 0.0 0 2321 0.0 0 2705 0.0 0 1977 0.9 0 2660 0.1
0.80 0 3125 0.0 0 2880 0.0 0 3332 0.0 0 2463 1.9 0 3082 0.1
1.00 0 3652 0.0 25 3275 0.0 0 3507 0.0 0 2745 2.4 0 3368 0.1

237

Table A.8: Performance of CH-O, CH-R, CH-S, LS-O, and LS-S for instance size (Sz.) 100,
instance numbers (Nr.) 0–14.

CH-O CH-R CH-S LS-O LS-S
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]

100 0 0.10 0 2527 0.0 0 2959 0.0 0 2943 0.0 0 2286 0.8 0 2854 0.0
0.50 0 4209 0.1 0 4028 0.1 0 4557 0.1 0 3235 9.0 0 4145 0.1
0.80 580 5556 0.1 1355 5123 0.1 0 6047 0.1 0 4014 26.9 0 5627 0.3
1.00 4264 5991 0.1 7294 5728 0.1 0 6831 0.2 0 5042 26.9 0 6128 0.4

1 0.10 0 3310 0.0 0 3714 0.0 0 3533 0.0 0 2788 1.5 0 3264 0.0
0.50 0 4966 0.1 1915 5018 0.1 0 5855 0.1 0 4279 7.6 0 5300 0.2
0.80 1305 5744 0.1 4514 5758 0.1 0 6503 0.1 0 4867 11.2 0 5911 0.2
1.00 7855 6617 0.1 7721 6583 0.1 0 7135 0.1 0 5664 17.3 0 6742 0.3

2 0.10 0 1522 0.0 0 1687 0.0 0 1531 0.0 0 1401 0.3 0 1504 0.0
0.50 0 3898 0.1 0 3984 0.1 0 4366 0.0 0 2965 9.1 0 3945 0.2
0.80 0 4832 0.1 1019 4445 0.1 0 5550 0.1 0 3769 18.6 0 4851 0.3
1.00 416 5649 0.1 3743 5494 0.1 0 6227 0.1 0 4668 21.6 0 5772 0.6

3 0.10 0 2913 0.0 0 3436 0.0 0 3497 0.0 0 2553 2.1 0 3169 0.0
0.50 0 5305 0.1 0 5126 0.1 0 6172 0.1 0 4096 12.8 0 5849 0.2
0.80 0 6301 0.1 60 5767 0.1 0 7232 0.1 0 4747 25.5 0 6590 0.3
1.00 1626 7346 0.1 5479 6792 0.1 0 7713 0.1 0 5666 31.0 0 7346 0.4

4 0.10 0 2414 0.0 0 2356 0.0 0 2699 0.0 0 1980 1.0 0 2628 0.0
0.50 0 4938 0.1 905 4998 0.1 0 5361 0.1 0 4099 9.3 0 5150 0.2
0.80 355 5885 0.1 2385 5591 0.1 0 6278 0.1 0 4651 18.1 0 5789 0.3
1.00 539 6312 0.1 2175 6035 0.1 0 6733 0.1 410 5141 25.1 0 6354 0.9

5 0.10 0 2139 0.0 0 2231 0.0 0 2557 0.0 0 1927 0.8 0 2475 0.0
0.50 0 4643 0.1 0 5026 0.1 0 5040 0.1 0 3692 11.6 0 4733 0.2
0.80 0 5307 0.1 735 5714 0.1 0 6049 0.1 0 4375 18.3 0 5362 0.3
1.00 0 6272 0.1 8113 6426 0.2 0 6701 0.2 0 4863 24.8 0 5950 0.5

6 0.10 0 2577 0.0 0 2648 0.0 0 3249 0.0 0 2297 1.3 0 3088 0.0
0.50 0 4578 0.1 30 4213 0.1 0 5276 0.1 0 3750 10.8 0 5029 0.2
0.80 250 5590 0.1 312 5056 0.1 0 6365 0.1 0 4527 21.0 0 5943 0.3
1.00 1705 6983 0.1 4566 6170 0.1 0 7251 0.1 0 5502 28.7 0 6992 0.4

7 0.10 0 3981 0.0 0 3216 0.0 0 4044 0.0 0 2761 1.8 0 3856 0.0
0.50 65 5187 0.1 65 4727 0.1 0 5304 0.0 0 3930 8.8 0 5244 0.2
0.80 75 6144 0.1 305 5835 0.1 6 6591 0.1 0 4791 19.0 0 6171 0.3
1.00 310 6624 0.1 3041 6385 0.1 6 7189 0.1 0 5381 27.2 0 6819 0.4

8 0.10 0 2380 0.0 0 2359 0.0 0 2785 0.0 0 1831 0.7 0 2378 0.0
0.50 0 4620 0.0 0 4514 0.1 0 5077 0.0 0 3661 5.7 0 4684 0.1
0.80 675 5400 0.1 68 5822 0.1 0 5985 0.1 0 4236 14.4 0 5461 0.2
1.00 1557 6541 0.1 6343 6973 0.1 0 6916 0.1 160 5202 22.6 160 6177 3.7

9 0.10 0 2531 0.0 0 2755 0.0 0 2796 0.0 0 2153 1.1 0 2530 0.0
0.50 70 4521 0.1 186 4276 0.1 0 4860 0.1 0 3365 14.3 70 4156 1.3
0.80 70 5275 0.1 354 4982 0.1 0 5701 0.1 70 4055 25.0 70 4946 2.5
1.00 70 5984 0.1 4406 5788 0.1 0 6638 0.1 70 4959 25.5 70 5728 2.7

10 0.10 0 2937 0.0 0 2998 0.0 0 3291 0.0 0 2179 1.1 0 2844 0.0
0.50 0 4004 0.0 0 3624 0.1 0 4449 0.0 0 2910 6.0 0 3979 0.1
0.80 0 4969 0.1 661 4914 0.1 0 5438 0.1 0 4141 12.4 0 4898 0.2
1.00 448 5824 0.1 4094 5500 0.1 0 6114 0.1 0 4865 21.7 0 5791 0.3

11 0.10 0 3882 0.0 0 3646 0.0 0 4325 0.0 0 2778 1.9 0 3875 0.0
0.50 0 5648 0.1 70 4845 0.1 0 5704 0.1 0 4362 8.2 0 5579 0.2
0.80 0 6424 0.1 1764 5955 0.1 0 7006 0.1 0 5164 16.8 0 6538 0.3
1.00 1960 7043 0.1 18262 7313 0.2 1840 7701 0.2 0 5803 26.2 925 6370 4.9

12 0.10 0 2896 0.0 0 2570 0.0 0 3265 0.0 0 2273 1.1 0 2850 0.0
0.50 0 5184 0.1 0 4324 0.1 0 5444 0.1 0 3441 9.3 0 5178 0.2
0.80 205 6193 0.1 85 5355 0.1 0 6736 0.1 0 4553 16.2 0 6299 0.3
1.00 550 6967 0.1 2149 6430 0.1 0 7395 0.1 0 5590 20.5 85 6114 3.0

13 0.10 0 2705 0.0 0 2774 0.0 0 2820 0.0 0 2192 0.8 0 2710 0.0
0.50 0 4967 0.1 185 5199 0.1 0 5252 0.1 0 3966 11.3 0 5108 0.2
0.80 0 5739 0.1 90 5845 0.1 0 6332 0.1 0 4898 20.0 0 5977 0.3
1.00 635 6670 0.1 6815 6628 0.1 0 7339 0.1 0 5792 22.3 0 6608 0.4

14 0.10 0 3196 0.0 0 3339 0.0 0 3409 0.0 0 2783 1.8 0 3273 0.0
0.50 0 5138 0.1 0 5175 0.1 0 6012 0.1 0 4181 10.1 0 5216 0.2
0.80 0 6414 0.1 0 6161 0.1 0 6810 0.1 0 4986 22.1 0 6264 0.3
1.00 1811 7048 0.1 2304 6773 0.1 0 7323 0.1 0 5591 31.8 0 6816 0.3

238

Table A.9: Performance of CH-O, CH-R, CH-S, LS-O, and LS-S for instance size (Sz.) 100,
instance numbers (Nr.) 15–29.

CH-O CH-R CH-S LS-O LS-S
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]

100 15 0.10 0 2541 0.0 0 2304 0.0 0 2591 0.0 0 1940 0.9 0 2495 0.0
0.50 0 4275 0.0 0 3881 0.0 0 4338 0.0 0 3359 5.1 0 4191 0.1
0.80 0 5350 0.1 405 4894 0.1 0 5798 0.1 0 4445 12.2 0 5439 0.2
1.00 550 6054 0.1 1760 6019 0.1 0 6912 0.1 0 5148 15.1 0 6108 0.3

16 0.10 0 3185 0.0 0 3039 0.0 0 3553 0.0 0 2547 2.3 0 3299 0.0
0.50 0 4801 0.0 301 4722 0.1 0 5151 0.0 0 3934 10.3 0 4822 0.2
0.80 0 5656 0.1 1746 5895 0.1 0 5930 0.1 0 4610 21.1 0 5695 0.3
1.00 909 6199 0.1 3343 6242 0.1 0 6667 0.1 0 5474 33.6 0 6382 0.7

17 0.10 0 2529 0.0 0 2583 0.0 0 2793 0.0 0 2157 0.6 0 2595 0.0
0.50 0 5283 0.0 90 5111 0.0 0 5884 0.0 0 4300 9.7 0 5393 0.1
0.80 0 5953 0.1 1258 6088 0.1 0 6681 0.1 0 5143 14.2 0 6005 0.2
1.00 0 6842 0.1 8986 7118 0.1 0 7128 0.1 0 5794 19.8 0 6776 0.3

18 0.10 0 2399 0.0 0 2585 0.0 0 2419 0.0 0 2048 0.7 0 2304 0.0
0.50 0 4357 0.1 0 3984 0.1 0 4669 0.1 0 3284 7.5 0 4256 0.1
0.80 0 5185 0.1 1543 5233 0.1 370 5719 0.1 0 3966 14.1 0 5037 0.2
1.00 3130 6252 0.1 2798 6450 0.1 2475 6579 0.1 0 4881 21.9 115 5526 3.6

19 0.10 0 2624 0.0 0 2703 0.0 0 2996 0.0 0 2305 1.1 0 2884 0.0
0.50 0 4377 0.1 0 4511 0.1 0 4561 0.1 0 3547 9.5 0 4265 0.2
0.80 0 5009 0.1 390 5315 0.1 0 5608 0.1 0 4201 15.2 0 4953 0.3
1.00 3461 5766 0.1 5447 5605 0.1 0 6120 0.1 0 4626 22.8 0 5579 0.4

20 0.10 0 1946 0.0 0 2009 0.0 0 2091 0.0 0 1637 0.5 0 2025 0.0
0.50 0 4777 0.0 0 4573 0.0 0 5357 0.0 0 3733 6.5 0 4983 0.1
0.80 0 5752 0.1 890 4950 0.1 0 6236 0.1 0 4322 17.6 0 5939 0.2
1.00 509 6347 0.1 1460 5811 0.1 0 6614 0.1 0 5136 24.6 0 6610 0.3

21 0.10 0 2596 0.0 0 2660 0.0 0 3029 0.0 0 2051 1.4 0 2777 0.0
0.50 470 4481 0.1 0 4618 0.1 0 4937 0.1 0 3492 8.2 0 4709 0.2
0.80 3895 5448 0.1 4520 5802 0.1 0 6070 0.1 0 4415 18.5 0 5694 0.3
1.00 7014 5840 0.1 9414 6263 0.1 0 6942 0.1 0 4765 21.8 0 6027 0.4

22 0.10 0 1209 0.0 0 1413 0.0 0 1238 0.0 0 1097 0.2 0 1218 0.0
0.50 0 4152 0.0 0 3809 0.1 0 4379 0.0 0 3013 7.1 0 4139 0.1
0.80 0 5441 0.1 152 4887 0.1 0 6014 0.1 0 3957 17.0 0 5316 0.3
1.00 0 5848 0.1 790 5522 0.1 0 6649 0.1 0 4450 24.0 0 5947 0.3

23 0.10 0 2007 0.0 0 2916 0.0 0 2254 0.0 0 1681 0.3 0 2108 0.0
0.50 340 4380 0.1 520 4408 0.1 0 5235 0.1 0 3182 9.6 0 4525 0.1
0.80 790 5419 0.1 1045 5413 0.1 0 6075 0.1 0 4153 19.4 0 5612 0.3
1.00 1640 6321 0.1 14984 6145 0.1 0 7157 0.1 0 5311 19.6 0 6316 0.4

24 0.10 0 3153 0.0 0 3063 0.0 0 3233 0.0 0 2678 0.7 0 3150 0.0
0.50 0 4961 0.0 0 4568 0.1 0 5563 0.1 0 4043 6.9 0 5154 0.1
0.80 0 6337 0.1 1023 5696 0.1 0 6753 0.1 0 4801 16.2 0 6337 0.3
1.00 273 6595 0.1 2731 6275 0.1 0 7196 0.1 0 5162 21.6 0 6648 0.3

25 0.10 0 2520 0.0 65 2736 0.0 0 2747 0.0 0 2088 1.4 0 2467 0.0
0.50 0 4727 0.0 0 4290 0.1 0 4831 0.1 0 3662 9.8 0 4433 0.2
0.80 0 5600 0.1 2986 5690 0.1 0 6464 0.1 0 4651 18.8 0 5461 0.3
1.00 181 6649 0.1 5600 6907 0.1 0 7156 0.1 0 5271 33.5 0 6653 0.3

26 0.10 0 2868 0.0 0 3052 0.0 0 3335 0.0 0 2450 0.6 0 2924 0.0
0.50 0 4437 0.0 60 4484 0.0 0 4707 0.0 0 3749 3.7 0 4513 0.1
0.80 55 5751 0.1 325 5625 0.1 0 6244 0.1 0 4585 17.9 0 5989 0.2
1.00 615 6491 0.1 2856 6141 0.1 0 6909 0.1 0 5214 21.8 0 6468 0.3

27 0.10 0 2113 0.0 0 2321 0.0 0 2153 0.0 0 1745 0.3 0 2073 0.0
0.50 0 4514 0.0 0 4595 0.0 0 4961 0.0 0 3318 6.3 0 4433 0.1
0.80 0 5577 0.1 510 5624 0.1 0 6194 0.1 0 4417 14.1 0 5551 0.3
1.00 385 5960 0.1 952 5930 0.1 0 6580 0.1 280 4950 13.3 255 5641 2.1

28 0.10 0 2790 0.0 0 2675 0.0 0 2976 0.0 0 2297 1.1 0 2902 0.0
0.50 0 5380 0.1 703 5108 0.1 0 5829 0.1 0 4358 15.7 0 5321 0.2
0.80 785 6060 0.1 902 5812 0.1 0 6634 0.1 0 4793 23.5 0 6058 0.3
1.00 1465 6874 0.1 3094 6528 0.1 0 7206 0.1 0 5312 38.4 0 6869 0.4

29 0.10 0 2807 0.0 0 3021 0.0 0 3363 0.0 0 2526 1.1 0 3014 0.0
0.50 0 5076 0.1 0 4545 0.1 0 5566 0.1 0 3661 14.3 0 5198 0.2
0.80 0 5955 0.1 1923 5699 0.1 0 6959 0.1 0 4680 22.1 0 6167 0.3
1.00 240 6266 0.1 3814 6090 0.1 0 7390 0.1 0 5100 24.4 0 6537 0.4

239

Table A.10: Performance of CH-O, CH-R, CH-S, LS-O, and LS-S for instance size (Sz.) 200,
instance numbers (Nr.) 0–14.

CH-O CH-R CH-S LS-O LS-S
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]
200 0 0.10 0 2781 0.0 0 3139 0.0 0 3071 0.0 0 2415 1.3 0 2948 0.0

0.50 15 6499 0.1 738 7015 0.1 0 7063 0.1 0 4804 16.6 0 6683 0.2
0.80 70 7771 0.1 4537 8931 0.2 0 8984 0.1 0 6100 31.5 0 8033 0.4
1.00 1911 9075 0.2 9313 10248 0.2 0 10329 0.2 16 7008 46.3 0 9453 0.5

1 0.10 0 2229 0.0 0 2804 0.0 0 2809 0.0 0 1915 1.2 0 2428 0.1
0.50 0 5705 0.1 1558 6056 0.1 152 6682 0.1 0 4276 25.7 0 5847 0.4
0.80 1782 7610 0.2 5283 7825 0.2 214 8383 0.2 0 6010 45.7 0 7443 0.9
1.00 6584 9578 0.2 11628 9646 0.3 2009 10351 0.2 291 7798 62.8 0 9357 2.8

2 0.10 0 3032 0.0 0 3293 0.0 0 3685 0.0 0 2690 1.9 0 3351 0.1
0.50 0 5777 0.1 385 5646 0.1 0 6131 0.1 0 4326 16.4 0 5720 0.3
0.80 0 7261 0.2 1901 7329 0.2 0 8438 0.2 0 5715 32.3 0 7375 0.5
1.00 2647 9158 0.2 8931 8881 0.2 0 10935 0.2 0 7109 75.6 0 9390 2.7

3 0.10 0 4387 0.0 527 4505 0.0 0 5014 0.0 0 3779 4.6 0 4788 0.1
0.50 100 7619 0.1 2832 7640 0.1 0 8340 0.1 0 5942 26.8 0 7922 0.7
0.80 270 9055 0.1 2138 8633 0.2 0 9769 0.2 0 7173 48.6 0 9354 1.0
1.00 393 10138 0.2 3829 9908 0.2 86 10612 0.2 140 8207 63.2 100 9155 10.9

4 0.10 0 3356 0.0 0 3973 0.1 0 3930 0.0 0 3097 2.8 0 3740 0.1
0.50 0 6441 0.1 1110 7178 0.1 0 7071 0.1 0 5140 18.3 0 6675 0.2
0.80 0 8874 0.2 1618 8692 0.2 0 9774 0.2 0 6926 51.8 0 9445 0.5
1.00 2099 10999 0.2 4810 9913 0.2 0 11794 0.2 899 8622 78.5 0 11302 1.7

5 0.10 0 3740 0.0 0 3779 0.0 0 4182 0.0 0 3230 2.7 0 4004 0.1
0.50 120 6923 0.1 1 7222 0.2 120 7687 0.1 0 5402 37.0 0 7163 0.3
0.80 1240 8773 0.2 3573 8914 0.3 140 9388 0.2 0 6881 76.2 40 7853 11.0
1.00 3029 10007 0.3 4080 9909 0.3 120 10895 0.3 382 8747 92.7 205 9135 15.9

6 0.10 0 4577 0.0 90 4822 0.0 0 5297 0.0 0 3517 5.6 0 4919 0.1
0.50 0 7598 0.1 3860 7780 0.1 0 8231 0.1 0 5613 31.5 0 7765 0.4
0.80 739 9499 0.2 17089 10385 0.2 0 10569 0.2 0 7191 56.5 0 9553 0.6
1.00 4553 11680 0.2 32203 10890 0.3 169 11936 0.3 0 9246 59.7 0 10880 1.9

7 0.10 0 3558 0.0 0 3927 0.0 0 4547 0.0 0 3108 3.0 0 4346 0.1
0.50 0 7712 0.1 1259 8374 0.1 0 8742 0.1 0 5698 27.7 0 8236 0.3
0.80 100 10352 0.2 3076 10421 0.2 0 11280 0.2 0 7586 63.8 0 10421 0.9
1.00 4007 11758 0.2 7036 11238 0.3 2278 12069 0.2 541 9019 92.9 1035 10310 15.2

8 0.10 0 1873 0.0 0 2176 0.0 0 2046 0.0 0 1546 0.5 0 1971 0.0
0.50 0 6417 0.1 760 7049 0.1 0 7658 0.1 0 4899 24.1 0 6760 0.3
0.80 430 8930 0.2 2615 9901 0.2 261 10236 0.2 0 6726 49.2 0 9014 0.8
1.00 4614 11950 0.2 19800 11899 0.3 509 12330 0.3 0 8402 69.7 0 10764 1.1

9 0.10 0 2428 0.0 0 2824 0.0 0 2765 0.0 0 2265 1.3 0 2661 0.1
0.50 25 6693 0.1 296 6868 0.1 25 7444 0.1 0 5216 33.3 25 6044 5.4
0.80 25 8198 0.2 3110 9068 0.3 25 8792 0.2 0 6332 69.7 25 7293 10.5
1.00 8678 9961 0.3 12752 9616 0.3 25 11106 0.3 135 8434 103.5 25 9157 15.0

10 0.10 0 2140 0.0 0 2247 0.0 0 2388 0.0 0 1840 0.4 0 2324 0.0
0.50 0 6611 0.1 295 6635 0.1 0 7034 0.1 0 5045 17.2 0 6704 0.2
0.80 130 9180 0.1 1333 8967 0.2 0 9593 0.2 0 6911 47.8 0 8978 0.4
1.00 9394 10797 0.2 16382 10805 0.2 0 11413 0.2 0 8375 76.2 0 10563 1.9

11 0.10 0 2449 0.0 0 2475 0.0 0 2893 0.0 0 2150 1.4 0 2653 0.1
0.50 250 6800 0.1 380 6825 0.1 0 7755 0.1 0 5101 35.9 0 7130 0.3
0.80 350 10157 0.2 11667 10463 0.3 0 11318 0.2 0 7943 79.5 0 10591 0.6
1.00 17462 11850 0.3 33827 11930 0.3 260 12920 0.3 140 8926 96.5 0 12127 0.8

12 0.10 0 3200 0.0 45 3811 0.0 0 3806 0.0 0 2757 2.3 0 3631 0.1
0.50 0 6058 0.1 206 5988 0.1 0 6587 0.1 0 4839 19.8 0 6264 0.3
0.80 520 7670 0.2 4650 7444 0.2 0 8298 0.2 0 5813 45.2 0 7778 0.5
1.00 1374 9706 0.2 27009 9256 0.3 4768 10229 0.3 0 7488 71.4 0 9518 0.7

13 0.10 0 2419 0.0 0 3275 0.0 0 2634 0.0 0 2231 0.9 0 2634 0.1
0.50 0 4928 0.1 615 5719 0.1 0 5392 0.1 0 4006 10.1 0 5128 0.2
0.80 0 7293 0.2 6790 8075 0.2 0 8728 0.2 0 5430 45.2 0 7677 0.5
1.00 11084 9999 0.2 18983 9255 0.3 0 10634 0.2 0 6829 73.2 0 9795 1.7

14 0.10 0 3791 0.0 0 5439 0.1 0 4452 0.0 0 3487 4.5 0 4222 0.1
0.50 0 6231 0.1 40 7724 0.1 0 6908 0.1 0 4994 26.0 0 6363 0.3
0.80 600 8728 0.2 3419 10365 0.3 0 9801 0.2 0 7279 48.6 0 8650 0.6
1.00 3409 10386 0.3 5986 10436 0.3 0 10929 0.3 0 8046 65.2 0 9506 1.3

240

Table A.11: Performance of CH-O, CH-R, CH-S, LS-O, and LS-S for instance size (Sz.) 200,
instance numbers (Nr.) 15–29.

CH-O CH-R CH-S LS-O LS-S
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]
200 15 0.10 0 3101 0.0 0 3784 0.0 0 3096 0.0 0 2645 1.5 0 2966 0.1

0.50 0 5915 0.1 210 6156 0.1 0 6495 0.1 0 4545 22.7 0 6023 0.3
0.80 0 7723 0.2 1723 8040 0.2 0 8426 0.2 0 5770 46.7 0 7766 0.5
1.00 2295 9120 0.2 5349 9458 0.2 10 9858 0.2 45 7388 72.2 10 8008 13.0

16 0.10 0 3021 0.0 0 3560 0.0 0 3647 0.0 0 2731 1.9 0 3477 0.1
0.50 0 5508 0.1 225 5593 0.1 0 6363 0.1 0 4313 16.3 0 5721 0.3
0.80 0 8416 0.2 3502 7661 0.2 0 9510 0.2 0 5656 67.9 0 8702 0.5
1.00 3588 10403 0.3 9093 9531 0.3 583 11989 0.3 395 7710 89.8 535 9241 16.0

17 0.10 0 2381 0.0 0 2682 0.0 0 2962 0.0 0 1917 2.3 0 2684 0.1
0.50 0 7493 0.1 603 7155 0.2 0 8358 0.1 0 5491 39.8 0 7566 0.3
0.80 297 9681 0.2 3361 10053 0.3 0 11151 0.2 0 7390 68.0 0 9415 0.6
1.00 3826 11663 0.3 22415 11530 0.3 85 12826 0.3 0 8733 110.0 0 11426 3.4

18 0.10 0 2763 0.0 0 2992 0.0 0 3070 0.0 0 2254 2.9 0 2865 0.1
0.50 0 6426 0.1 640 6827 0.1 0 6747 0.1 0 5074 25.1 0 6532 0.3
0.80 110 8632 0.2 4640 9351 0.3 0 9354 0.2 0 6773 65.0 0 8799 0.6
1.00 5073 9603 0.3 20267 10228 0.3 100 10157 0.3 0 7720 101.8 0 10024 2.4

19 0.10 0 2649 0.0 0 3726 0.0 0 2926 0.0 0 2581 1.0 0 2824 0.1
0.50 0 5477 0.1 772 6578 0.1 0 5970 0.1 0 4464 11.7 0 5358 0.2
0.80 1245 8678 0.1 6243 8702 0.2 110 9785 0.2 0 6585 46.5 0 8825 0.8
1.00 2143 9615 0.2 8616 9980 0.2 148 10907 0.2 12 8061 59.4 0 9825 1.3

20 0.10 0 3617 0.0 0 4096 0.1 0 4567 0.0 0 2716 3.7 0 3917 0.1
0.50 0 7468 0.1 1852 6701 0.1 0 7807 0.1 0 5109 39.0 0 7431 0.3
0.80 3975 9478 0.2 7573 8477 0.2 45 10479 0.2 25 6711 68.3 25 8575 8.4
1.00 11918 11079 0.3 17564 9841 0.3 470 11374 0.2 613 8528 78.3 623 9875 12.8

21 0.10 0 3217 0.0 0 3500 0.0 0 3454 0.0 0 2617 2.8 0 3406 0.1
0.50 0 6330 0.1 1941 6682 0.1 0 6794 0.1 0 4919 29.2 0 6468 0.3
0.80 470 8652 0.2 975 8355 0.2 0 9463 0.2 0 6666 66.2 0 8760 0.6
1.00 6928 10102 0.2 11431 9306 0.3 315 10952 0.3 0 8050 78.9 0 9869 2.0

22 0.10 0 3572 0.0 170 3636 0.0 0 4263 0.0 0 3144 2.5 0 4108 0.1
0.50 50 6925 0.1 1896 7194 0.2 0 7340 0.1 0 5413 32.1 0 7092 0.4
0.80 355 8576 0.2 2435 8970 0.2 0 9241 0.2 0 6783 58.9 0 8501 0.6
1.00 2747 10086 0.3 11568 9796 0.3 579 11023 0.3 0 7872 104.7 165 9116 15.8

23 0.10 0 3933 0.0 0 4262 0.0 0 4242 0.0 0 3127 2.5 0 3964 0.1
0.50 0 7767 0.1 0 8269 0.1 0 8534 0.1 0 5625 28.6 0 8145 0.3
0.80 155 9409 0.2 3118 10009 0.2 0 10373 0.2 0 7196 63.0 0 9617 0.5
1.00 2579 11244 0.2 5574 11922 0.2 457 12530 0.2 175 9771 74.5 175 10804 10.1

24 0.10 0 2643 0.0 0 2680 0.0 0 3063 0.0 0 2231 1.7 0 2875 0.1
0.50 0 6723 0.1 1323 6526 0.1 0 7494 0.1 0 5252 23.3 0 6912 0.3
0.80 130 8396 0.2 6897 8262 0.2 0 9253 0.2 0 6101 56.7 0 8395 0.5
1.00 7567 9878 0.2 15560 10260 0.3 10 11128 0.3 85 8506 68.7 0 10469 2.5

25 0.10 0 3635 0.0 0 3623 0.0 0 4103 0.0 0 2976 3.2 0 3857 0.1
0.50 1751 7172 0.1 1958 7917 0.1 1775 8002 0.1 0 5192 34.0 0 7196 0.3
0.80 2721 9022 0.2 15645 9305 0.2 1781 9882 0.2 40 6483 56.6 0 8591 1.6
1.00 16072 9962 0.2 41028 10234 0.2 2372 10797 0.2 130 7333 65.7 0 9379 1.9

26 0.10 0 3283 0.0 0 3916 0.0 0 3637 0.0 0 3027 2.2 0 3547 0.1
0.50 275 5500 0.1 550 5864 0.1 0 6108 0.1 0 4742 17.1 0 5853 0.3
0.80 2102 8641 0.2 5852 8351 0.2 1134 8842 0.2 0 6516 48.8 0 8607 0.6
1.00 5909 9427 0.2 19286 9415 0.3 1594 10481 0.3 1611 7839 60.8 0 9382 3.0

27 0.10 0 2898 0.0 0 2986 0.0 0 3166 0.0 0 2561 1.1 0 3080 0.0
0.50 0 6054 0.1 80 6208 0.1 0 6162 0.1 0 4740 22.9 0 6129 0.3
0.80 0 7820 0.2 926 7950 0.2 0 8564 0.2 0 6095 51.4 0 7973 0.5
1.00 2153 9057 0.2 9719 8701 0.3 108 9768 0.2 0 7005 85.1 0 9116 2.0

28 0.10 0 3278 0.0 0 3501 0.0 0 3676 0.0 0 2678 1.8 0 3454 0.1
0.50 0 5730 0.1 62 5972 0.1 0 6506 0.1 0 4476 11.9 0 5819 0.2
0.80 1456 8479 0.1 3647 8300 0.2 269 9061 0.2 0 5884 38.0 0 8382 0.4
1.00 9279 10623 0.2 21759 10169 0.2 496 11073 0.2 1255 8245 65.6 80 9000 13.8

29 0.10 0 3421 0.0 0 3647 0.1 0 3865 0.0 0 2452 4.1 0 3571 0.1
0.50 0 7206 0.1 688 7998 0.2 0 7437 0.1 0 4874 30.4 0 7091 0.3
0.80 194 9262 0.2 2715 9810 0.3 0 10150 0.2 0 6823 56.2 0 9158 0.6
1.00 1084 10443 0.3 9158 10802 0.3 0 10918 0.3 30 8133 83.5 30 9182 13.4

241

Table A.12: Performance of CH-O, CH-R, CH-S, LS-O, and LS-S for instance size (Sz.) 500,
instance numbers (Nr.) 0–14.

CH-O CH-R CH-S LS-O LS-S
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]
500 0 0.10 0 4639 0.1 897 6702 0.2 0 5318 0.1 0 3991 14.4 0 4869 0.3

0.50 0 9322 0.3 2696 11370 0.4 0 10397 0.3 0 7148 106.0 0 9593 0.7
0.80 3395 12835 0.5 7780 15754 0.7 0 14895 0.5 0 9912 221.6 0 13114 1.5
1.00 16483 16274 0.8 34288 19718 1.0 3538 18925 0.8 1767 13745 385.7 26 14452 101.8

1 0.10 0 4382 0.1 2235 5523 0.1 0 5021 0.0 0 4060 4.1 0 4799 0.2
0.50 145 9123 0.2 2974 10614 0.4 0 10409 0.2 0 7231 63.8 0 9645 0.6
0.80 1264 13307 0.4 7211 13727 0.5 270 13953 0.4 0 9135 198.9 0 10688 31.0
1.00 9320 15518 0.6 15351 16821 0.7 1139 17511 0.6 1797 12164 312.4 37 13361 75.7

2 0.10 0 4213 0.1 2295 5164 0.1 0 4771 0.1 0 3563 9.0 0 4644 0.2
0.50 0 8279 0.2 1694 11026 0.4 0 9983 0.2 0 6749 63.7 0 9007 0.7
0.80 2459 13825 0.5 6911 16454 0.7 0 15069 0.5 0 9808 230.3 0 14273 1.4
1.00 16322 17531 0.8 26042 19283 1.0 1987 19586 0.7 718 13580 418.7 0 16982 29.8

3 0.10 0 3569 0.1 170 3703 0.1 0 4012 0.0 0 3153 5.7 0 3822 0.1
0.50 0 7746 0.2 994 9867 0.3 0 8426 0.2 0 6142 52.4 0 7861 0.5
0.80 0 13022 0.5 7621 14865 0.6 0 13986 0.5 0 9798 193.1 0 12658 1.3
1.00 4795 16388 0.7 25696 17495 0.9 255 18825 0.7 390 12850 386.0 0 16322 10.9

4 0.10 0 2728 0.1 0 4108 0.1 0 3405 0.0 0 2729 2.5 0 3262 0.1
0.50 0 8967 0.3 5901 10319 0.5 0 9980 0.3 0 6848 87.9 0 9231 0.8
0.80 45 12775 0.6 3284 14316 0.6 0 13575 0.5 0 9475 193.7 0 12261 1.4
1.00 5868 16026 0.8 10654 16537 0.9 5 16855 0.7 92 12075 348.9 5 12859 61.0

5 0.10 0 3420 0.1 160 4547 0.1 0 3982 0.1 0 2971 5.6 0 3753 0.2
0.50 0 10418 0.4 3766 12711 0.5 0 11563 0.3 0 7368 168.4 0 11015 0.9
0.80 4851 14490 0.6 21752 15667 0.8 20 16297 0.6 2530 10558 335.8 0 14213 8.8
1.00 16673 17427 0.8 28631 17898 0.9 1079 18720 0.7 3472 13089 537.1 715 14721 89.5

6 0.10 0 3757 0.1 541 4389 0.1 0 4367 0.0 0 3412 6.1 0 4201 0.2
0.50 5 9320 0.3 1458 11341 0.4 5 10598 0.2 0 7308 94.4 0 10059 0.7
0.80 886 12920 0.5 11505 14845 0.8 5 14779 0.5 0 9742 233.8 40 11393 40.8
1.00 8250 16495 0.8 28714 18642 1.0 544 18350 0.8 1006 13171 395.9 220 14095 97.6

7 0.10 0 3763 0.1 520 4604 0.1 0 4290 0.0 0 3414 4.7 0 4197 0.1
0.50 12 9619 0.3 8211 12100 0.4 419 10680 0.3 0 8008 80.7 12 8978 11.4
0.80 5255 15456 0.7 14600 17041 0.8 3561 17611 0.6 0 11983 338.6 12 13023 56.8
1.00 12441 18699 0.9 19709 19006 1.0 3909 20477 0.8 321 15659 511.3 262 16255 103.4

8 0.10 0 3607 0.1 0 5400 0.1 0 4893 0.1 0 3219 10.3 0 4505 0.2
0.50 0 9553 0.4 192 12537 0.6 0 10879 0.4 0 7036 122.8 0 9856 0.9
0.80 2349 15746 0.8 19266 18420 1.1 0 17910 0.7 0 11398 363.0 0 15925 1.9
1.00 19908 19533 1.0 30225 20327 1.2 906 22797 1.0 456 15974 559.5 20 16041 109.8

9 0.10 0 2923 0.1 1147 4028 0.1 0 3622 0.0 0 2541 4.5 0 3279 0.1
0.50 20 8164 0.3 3747 9209 0.3 20 9104 0.2 0 5836 88.4 0 8489 0.6
0.80 3052 12907 0.5 15420 14233 0.6 739 13599 0.4 0 8655 209.6 0 12698 2.0
1.00 9392 15606 0.6 21374 16239 0.8 4967 17645 0.6 1215 12149 323.3 2220 13142 65.3

10 0.10 0 3623 0.1 150 5686 0.1 0 4438 0.0 0 3192 6.7 0 4007 0.2
0.50 0 8586 0.3 2533 11985 0.5 0 10208 0.3 0 6117 99.1 0 9055 0.8
0.80 344 13430 0.6 9302 16689 0.7 214 15785 0.5 0 10272 239.0 0 13936 1.5
1.00 20951 17789 0.8 25223 18480 0.9 1982 20284 0.8 825 13128 463.8 385 14340 107.0

11 0.10 0 4104 0.1 140 4510 0.1 0 4616 0.0 0 3567 9.8 0 4482 0.2
0.50 0 10219 0.3 1206 12049 0.4 0 10925 0.3 0 8037 90.3 0 10256 0.8
0.80 778 12513 0.5 3404 13959 0.6 75 14083 0.4 0 9849 174.5 0 12549 1.3
1.00 5612 15057 0.6 16226 16281 0.7 7489 17062 0.6 364 12588 249.7 3090 13441 53.6

12 0.10 0 3760 0.1 95 4123 0.1 0 3948 0.0 0 3279 3.2 0 3876 0.1
0.50 435 10761 0.4 3352 12110 0.5 0 12073 0.3 0 7699 118.4 0 10947 0.9
0.80 7555 14944 0.6 16467 15788 0.7 3001 16505 0.5 2360 10995 284.8 30 13543 43.0
1.00 19224 17711 0.8 45729 17485 0.8 7480 19377 0.7 5911 14612 389.0 170 15902 90.9

13 0.10 0 3197 0.1 3435 4570 0.1 0 3681 0.0 0 2901 2.4 0 3387 0.1
0.50 0 8910 0.3 3301 9558 0.4 0 10247 0.3 0 6097 105.2 0 9202 0.8
0.80 491 12995 0.5 11789 12357 0.6 170 13764 0.5 0 9074 210.5 0 13040 1.3
1.00 6984 17009 0.7 27600 16633 0.9 501 18842 0.7 1500 12886 389.8 224 14647 80.6

14 0.10 0 4163 0.1 539 5325 0.1 0 4545 0.0 0 3661 6.9 0 4378 0.1
0.50 0 10190 0.3 5114 12951 0.5 0 11211 0.3 0 7528 115.8 0 10400 0.7
0.80 3412 15201 0.6 17179 17470 0.8 17 17351 0.6 770 11480 255.7 620 12310 50.1
1.00 21324 19392 0.9 39018 20434 1.1 1611 22932 0.9 1820 16084 561.5 645 16859 116.1

242

Table A.13: Performance of CH-O, CH-R, CH-S, LS-O, and LS-S for instance size (Sz.) 500,
instance numbers (Nr.) 15–29.

CH-O CH-R CH-S LS-O LS-S
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]

500 15 0.10 0 4337 0.1 0 5984 0.1 0 5471 0.1 0 3833 11.3 0 5204 0.2
0.50 0 8564 0.3 1701 10815 0.5 0 10023 0.3 0 6338 98.9 0 8986 0.7
0.80 822 13489 0.5 9295 15193 0.8 308 15349 0.5 415 10391 207.0 100 12308 33.9
1.00 18419 18031 0.8 34280 18153 1.0 3129 19613 0.8 2238 14331 419.2 403 15751 85.5

16 0.10 0 3922 0.1 190 4793 0.1 0 4532 0.0 0 3078 5.9 0 4402 0.2
0.50 0 9070 0.3 1328 11054 0.4 0 10079 0.2 0 6445 77.0 0 9295 0.7
0.80 0 12612 0.5 4375 15005 0.6 0 14224 0.5 0 9235 214.8 0 12815 1.4
1.00 6602 16230 0.7 13534 18495 0.9 1345 17828 0.7 2520 13264 389.1 10 14113 91.6

17 0.10 0 2567 0.1 0 3382 0.1 0 2955 0.0 0 2269 3.2 0 2890 0.1
0.50 17 7829 0.2 5112 9467 0.3 5 8516 0.2 5 5683 54.6 5 6540 12.1
0.80 17 11091 0.4 12934 12166 0.5 5 12464 0.4 5 7910 128.8 5 9627 28.2
1.00 3856 13976 0.5 33832 14764 0.7 938 16571 0.5 148 11585 203.7 143 12254 48.5

18 0.10 0 3925 0.1 0 5084 0.1 0 4581 0.1 0 3588 6.6 0 4357 0.2
0.50 0 9346 0.3 424 11412 0.5 0 10631 0.3 0 6776 113.6 0 9683 0.9
0.80 783 14895 0.6 3583 16682 0.8 98 17355 0.7 0 10124 340.5 0 15150 1.8
1.00 8189 19675 1.0 25385 19737 1.2 1342 21090 1.0 989 14257 704.4 650 16383 119.4

19 0.10 0 3746 0.1 445 4754 0.1 0 4561 0.0 0 3249 8.5 0 4401 0.2
0.50 0 9705 0.4 1283 11328 0.5 0 11099 0.3 0 7442 141.8 0 9819 1.0
0.80 2328 15313 0.8 13788 15842 0.9 0 17020 0.7 0 10744 383.9 0 15392 4.5
1.00 22383 19932 1.1 24383 20815 1.2 1454 21649 1.0 406 16481 659.6 10 17407 128.3

20 0.10 0 3720 0.1 872 4680 0.1 0 4587 0.0 0 3304 9.7 0 4393 0.2
0.50 0 9524 0.3 2766 11041 0.5 0 10252 0.3 0 7394 100.6 0 9819 0.8
0.80 140 13534 0.6 7417 15145 0.8 5 15010 0.5 0 9603 252.7 0 13754 1.4
1.00 10625 17590 0.9 29717 18913 1.0 4471 19531 0.8 1188 13498 492.1 140 14724 99.8

21 0.10 0 4110 0.1 0 4754 0.1 0 4601 0.0 0 3245 6.6 0 4170 0.2
0.50 20 8759 0.3 9236 11794 0.4 20 9953 0.2 20 6527 65.8 20 8207 10.6
0.80 1719 13366 0.4 16118 14810 0.6 558 16133 0.5 1055 10042 162.5 981 11649 35.7
1.00 10421 17057 0.6 38611 18385 0.8 2376 19933 0.7 3188 13273 345.3 2450 14595 67.4

22 0.10 0 2848 0.1 105 4504 0.1 0 3519 0.0 0 2547 4.9 0 3409 0.1
0.50 33 8694 0.3 3434 10729 0.4 33 10256 0.3 33 6045 78.1 33 7219 14.0
0.80 2914 12548 0.5 6969 13449 0.6 1007 13975 0.5 53 9059 171.6 193 10618 34.7
1.00 9597 14935 0.7 23708 16508 0.8 1795 17428 0.6 993 12239 275.4 33 13119 66.4

23 0.10 0 4083 0.1 0 4985 0.1 0 4694 0.1 0 3483 15.0 0 4561 0.2
0.50 0 9658 0.4 1269 10183 0.5 0 10429 0.3 0 6930 110.2 0 9562 0.9
0.80 444 13460 0.6 10164 13810 0.8 290 14859 0.6 194 10391 243.8 0 13262 7.4
1.00 29457 17271 0.9 39710 17403 1.1 3871 20132 0.9 14050 14235 539.6 315 15032 122.1

24 0.10 0 3263 0.1 250 4395 0.1 0 4001 0.1 0 3044 5.4 0 3890 0.2
0.50 0 8513 0.4 1363 9432 0.5 0 9538 0.3 0 6397 109.4 0 9006 0.9
0.80 75 12952 0.6 5554 12786 0.7 15 14740 0.6 0 8971 291.1 15 10842 45.8
1.00 25367 17170 0.9 36228 16999 1.0 267 19446 0.8 104 13225 500.7 40 15004 86.8

25 0.10 0 4055 0.1 859 5614 0.2 0 5008 0.1 0 3630 12.4 0 4822 0.2
0.50 0 10040 0.4 2762 12273 0.5 0 11636 0.3 0 7668 101.0 0 10443 0.9
0.80 2290 15194 0.6 10050 17291 0.8 390 18089 0.6 5 11519 277.9 485 13489 47.3
1.00 8822 18437 0.8 18950 20014 1.0 1477 21844 0.9 135 14532 508.8 520 16206 98.0

26 0.10 0 3366 0.1 2326 5271 0.1 0 4184 0.0 0 2964 6.6 0 4081 0.2
0.50 75 10152 0.4 3026 10883 0.5 0 11443 0.3 0 7263 125.7 0 10593 1.0
0.80 5587 14590 0.6 18790 15660 0.8 230 16986 0.6 0 10760 297.0 0 14108 5.0
1.00 23692 17156 0.8 39414 15962 0.9 1069 19577 0.8 1612 13051 445.0 500 14460 79.7

27 0.10 0 3876 0.1 1549 6053 0.2 0 4903 0.0 0 3619 10.1 0 4554 0.2
0.50 0 8821 0.2 4299 11196 0.4 0 10770 0.2 0 6712 71.5 0 9535 0.6
0.80 4348 14665 0.5 16860 15164 0.6 0 16322 0.5 0 10745 201.3 540 11893 40.7
1.00 18469 16927 0.7 29088 18139 0.8 1209 19218 0.7 1297 14397 293.8 0 17175 18.2

28 0.10 0 3731 0.1 75 4690 0.1 0 4331 0.0 0 3099 7.2 0 4132 0.1
0.50 0 9044 0.3 7452 11418 0.5 0 11149 0.3 0 6582 103.9 0 9516 0.8
0.80 4672 14631 0.6 14427 15100 0.7 470 16131 0.5 2791 10204 282.7 165 12498 44.4
1.00 14827 17823 0.9 31728 17750 1.0 2965 18709 0.8 5457 13473 469.4 1650 15089 80.5

29 0.10 0 4423 0.1 0 5809 0.2 0 5261 0.1 0 4019 10.5 0 5032 0.2
0.50 0 8437 0.3 990 10250 0.5 0 9194 0.3 0 6672 73.8 0 8731 0.7
0.80 0 12656 0.6 8556 14821 0.8 0 13500 0.6 0 9740 222.2 0 13124 1.5
1.00 8686 16546 0.9 24144 18253 1.1 1325 18572 0.9 2916 13776 340.1 0 16853 39.8

243

Table A.14: Performance of CH-O, CH-R, CH-S, LS-O, and LS-S for instance size (Sz.) 1000,
instance numbers (Nr.) 0–14.

CH-O CH-R CH-S LS-O LS-S
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]

1000 0 0.10 0 5196 0.3 0 6776 0.4 0 6322 0.1 0 4110 40.7 0 5788 0.5
0.50 41 15071 0.8 7216 18404 1.2 0 17968 0.7 0 10740 402.4 0 15908 2.1
0.80 3663 22502 1.5 17413 24043 2.0 251 25885 1.3 200 17226 1003.8 165 18760 183.1
1.00 20216 29398 2.1 29304 29570 2.5 2177 33235 2.0 1651 26417 1016.0 727 26087 473.6

1 0.10 0 4094 0.2 466 6048 0.4 0 5319 0.1 0 3547 13.1 0 4717 0.4
0.50 15 12987 0.7 2033 16765 1.1 130 14191 0.5 0 9121 237.5 0 12703 5.0
0.80 2433 21052 1.3 8171 23812 1.7 493 22946 1.1 240 15189 821.6 180 16934 140.1
1.00 16846 26477 1.9 51031 29050 2.5 2159 30554 1.6 1637 23646 1007.4 888 23011 300.8

2 0.10 0 5091 0.2 0 6681 0.3 0 6139 0.1 0 4284 27.9 0 5782 0.5
0.50 216 12957 0.8 3055 13865 1.0 0 14232 0.6 0 9831 320.1 0 13830 1.7
0.80 7705 20612 1.5 20259 20468 1.7 1114 23987 1.2 0 15050 849.1 105 16449 156.6
1.00 16323 25039 1.9 36308 25547 2.1 4966 28409 1.7 1661 21440 1015.6 500 21211 301.2

3 0.10 0 3813 0.2 770 5177 0.2 0 4170 0.0 0 3234 6.8 0 4049 0.3
0.50 78 12973 0.7 5971 17540 1.1 15 14622 0.5 0 9527 283.6 0 13367 2.5
0.80 620 20989 1.5 28508 25024 2.0 126 23903 1.2 0 14518 867.3 0 20749 15.6
1.00 20795 25665 2.0 42092 27458 2.4 2106 29794 1.7 804 22216 1011.0 702 20716 320.7

4 0.10 10 4879 0.2 2102 7188 0.4 10 5804 0.1 0 4497 26.1 0 5616 0.5
0.50 411 13991 1.0 8431 19291 1.5 50 15668 0.7 50 9719 313.1 50 10835 57.9
0.80 5337 18736 1.4 15900 23388 2.0 245 21161 1.2 301 13637 942.3 50 15212 165.4
1.00 21328 25619 2.1 36127 29322 2.6 3267 30343 1.8 5032 21518 1001.7 687 23039 426.8

5 0.10 17 5767 0.3 255 8344 0.5 17 6978 0.1 0 5123 33.3 0 6841 0.6
0.50 66 15091 0.9 8281 18482 1.2 17 16693 0.7 0 10688 336.5 0 15907 3.1
0.80 6039 21893 1.4 14785 23403 1.8 417 24847 1.3 547 16205 984.3 0 22382 29.9
1.00 12657 26901 1.8 29003 27717 2.2 1451 29828 1.8 1172 23564 1005.2 716 22591 306.6

6 0.10 0 5927 0.3 170 7551 0.4 0 6664 0.1 0 4994 36.2 0 6661 0.5
0.50 1247 12758 0.8 3821 17146 1.2 0 14312 0.6 0 9971 308.8 0 13228 1.9
0.80 4198 19513 1.6 26573 24380 2.2 20 23080 1.4 409 15486 750.3 209 16778 145.3
1.00 28518 25317 2.2 52866 29555 2.8 3164 29314 1.9 7573 22447 1000.5 965 22248 407.7

7 0.10 0 3686 0.2 0 4993 0.3 0 4066 0.1 0 2963 12.5 0 3823 0.4
0.50 0 10625 0.7 8620 15125 1.2 0 12967 0.6 0 7477 247.4 0 11059 1.7
0.80 4890 19680 1.4 32328 23706 2.1 136 22255 1.2 951 15856 796.1 28 16496 154.5
1.00 25492 24462 2.0 40601 27330 2.5 2977 29990 1.8 5400 22799 1011.2 670 22894 428.2

8 0.10 0 4595 0.3 860 7078 0.4 0 5596 0.1 0 3941 35.9 0 5039 0.5
0.50 0 11685 0.7 3519 15387 1.1 0 12875 0.6 0 7422 282.6 0 12322 1.7
0.80 8167 20085 1.7 25673 24750 2.3 363 22444 1.4 467 14977 1005.3 241 17441 189.5
1.00 20002 24877 2.2 31579 28807 2.6 2515 27968 2.0 2912 22309 1019.1 789 22448 393.6

9 0.10 0 4041 0.3 95 6490 0.4 0 5029 0.1 0 3653 16.0 0 4539 0.5
0.50 0 12248 0.9 4475 16862 1.3 0 14389 0.7 0 8974 336.4 0 12258 1.9
0.80 5838 19365 1.4 14139 23388 1.9 145 21958 1.2 73 14346 913.4 140 16037 154.6
1.00 23001 25099 2.0 28037 26838 2.6 1439 29700 1.9 2231 21493 1000.7 450 21273 380.1

10 0.10 0 3646 0.2 180 5128 0.3 0 4237 0.1 0 3328 13.0 0 4176 0.4
0.50 5 12952 0.8 6521 14687 1.1 5 14187 0.6 0 9219 255.5 0 12910 1.8
0.80 6926 21602 1.4 20906 21365 1.7 331 24471 1.3 993 15839 908.3 544 17259 192.1
1.00 13299 25286 1.8 30759 24897 2.2 3384 30429 1.8 4352 22692 1013.0 3806 21980 378.2

11 0.10 0 4686 0.3 3574 6800 0.4 0 5715 0.1 0 4176 22.5 0 5394 0.5
0.50 542 12145 0.7 11967 16322 1.1 0 14044 0.6 0 8509 262.0 0 12242 2.9
0.80 2403 19234 1.3 13307 22450 1.8 169 22770 1.2 181 14173 707.2 181 16983 139.3
1.00 17012 25742 1.9 33457 28041 2.3 1993 29217 1.8 1754 21984 1000.3 1085 23480 282.1

12 0.10 0 4532 0.2 432 6597 0.4 0 5091 0.1 0 3829 22.3 0 4970 0.5
0.50 1735 14863 1.0 11285 19083 1.8 190 18036 0.9 0 10308 409.1 0 14729 2.3
0.80 5453 21292 1.6 15778 25065 2.3 2103 25600 1.5 329 15930 804.4 8 17364 168.3
1.00 27342 27460 2.1 30033 28396 2.7 5144 31464 2.0 1377 22319 1017.0 756 22552 305.0

13 0.10 0 5221 0.2 296 6592 0.4 0 5841 0.1 0 4616 26.8 0 5805 0.4
0.50 0 13085 0.9 7155 19246 1.4 0 14707 0.7 0 8252 375.0 0 12694 1.9
0.80 1964 17975 1.4 9505 23430 2.1 0 20666 1.3 0 12354 660.6 0 17397 8.0
1.00 41279 25331 2.1 38544 27805 2.6 2743 28391 2.0 3643 22878 1006.4 1155 23725 423.2

14 0.10 0 4056 0.3 479 7611 0.5 0 4972 0.1 0 3734 23.0 0 4721 0.5
0.50 84 11605 0.8 5315 15639 1.2 10 13875 0.7 0 7936 267.2 0 11951 2.0
0.80 2927 17229 1.5 10246 21418 1.9 75 19858 1.2 0 11664 751.6 5 13994 113.7
1.00 33164 25902 2.3 40044 28222 2.7 4513 30282 2.0 1217 22897 1020.9 886 22179 333.2

244

Table A.15: Performance of CH-O, CH-R, CH-S, LS-O, and LS-S for instance size (Sz.) 1000,
instance numbers (Nr.) 15–29.

CH-O CH-R CH-S LS-O LS-S
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]

1000 15 0.10 0 5059 0.3 1675 6601 0.4 0 5843 0.1 0 4567 26.0 0 5690 0.5
0.50 0 13171 0.8 2381 16368 1.1 0 15489 0.6 0 10002 290.7 0 13783 1.8
0.80 755 20466 1.3 10115 22057 1.6 35 22961 1.2 415 15160 911.2 440 16561 157.8
1.00 11479 25693 2.1 28888 26727 2.4 3188 30088 1.9 2758 22403 1007.4 281 22455 353.8

16 0.10 0 4785 0.3 0 5519 0.3 0 5813 0.1 0 3772 19.4 0 5400 0.4
0.50 0 12126 0.6 5998 14833 1.0 0 13759 0.5 0 9026 290.3 0 13007 1.5
0.80 1402 17668 1.2 15555 21353 1.6 155 21499 1.1 0 13390 618.1 0 18085 5.1
1.00 23767 25688 1.8 28961 26463 2.2 1577 29450 1.8 903 20220 1013.3 15 21646 314.4

17 0.10 0 4004 0.3 4300 5514 0.3 0 4984 0.1 0 3389 22.4 0 4661 0.5
0.50 31 13453 0.8 4769 16688 1.1 1 16223 0.7 1 9936 405.5 1 11590 59.7
0.80 9575 22070 1.5 17569 24406 2.0 1889 26220 1.4 226 16870 850.7 156 17902 159.3
1.00 18155 24743 1.8 40331 27112 2.1 3879 30238 1.6 1012 21500 1014.9 420 22546 275.1

18 0.10 0 4181 0.2 0 5835 0.3 0 5054 0.1 0 3779 23.8 0 4801 0.4
0.50 470 12661 0.9 13274 18247 1.3 35 15322 0.7 0 8971 378.0 0 13450 2.0
0.80 3164 20325 1.6 28276 24765 2.1 483 22891 1.4 0 13489 928.1 0 20619 6.0
1.00 40578 26496 2.3 71771 29686 3.0 2094 30215 2.2 389 21162 1001.7 490 21208 310.0

19 0.10 0 4393 0.2 959 6433 0.4 0 5149 0.1 0 3739 26.8 0 4837 0.4
0.50 21 13148 0.9 4783 19214 1.4 21 14948 0.7 11 9297 404.5 21 10868 50.2
0.80 981 19866 1.5 15869 25079 2.1 21 22115 1.2 11 14222 883.4 36 15861 132.4
1.00 26342 27032 2.1 54438 29111 2.8 1846 29894 1.9 644 22904 1016.7 506 21920 317.2

20 0.10 0 6019 0.3 782 8487 0.5 0 6842 0.2 0 5320 42.6 0 6492 0.7
0.50 201 12484 0.8 1994 14251 1.2 0 14119 0.6 0 9306 311.6 0 12735 1.8
0.80 809 20242 1.4 9509 22372 1.9 635 22541 1.2 625 14714 884.2 0 20371 10.5
1.00 16688 26072 2.0 38667 27244 2.4 5921 28323 1.7 4495 22454 1019.1 370 22364 373.7

21 0.10 0 4786 0.3 373 7937 0.5 0 5932 0.2 0 4247 39.5 0 5313 0.7
0.50 0 12449 1.1 6377 16635 1.5 0 14753 0.9 0 8916 497.6 0 12943 2.5
0.80 1007 17922 1.5 17534 22065 1.9 138 20535 1.3 273 13164 1007.3 89 14567 166.2
1.00 21296 23839 2.0 43268 26489 2.7 2013 29574 1.9 1951 23347 1011.5 797 21333 452.4

22 0.10 0 4254 0.3 1187 6232 0.4 0 5252 0.1 0 3867 26.2 0 4828 0.6
0.50 1661 13169 1.2 10071 18168 1.7 477 15233 0.9 0 8246 458.7 0 12930 2.4
0.80 3284 20370 1.8 29163 23258 2.6 494 22936 1.6 9 13864 1007.6 0 19849 20.1
1.00 20535 25283 2.5 68871 27012 3.1 3914 29400 2.3 4303 22148 1012.7 2298 21630 462.5

23 0.10 5 4924 0.2 1250 6196 0.3 5 5429 0.1 0 4277 24.3 0 5379 0.5
0.50 36 13865 0.8 6538 16844 1.2 20 15186 0.6 0 9885 387.1 10 10944 56.8
0.80 3892 19010 1.4 17020 23117 1.8 50 22561 1.2 169 13448 779.1 30 15052 143.7
1.00 41686 27139 2.1 61185 29942 2.5 4382 31180 1.9 1978 22948 1005.2 784 22996 389.8

24 0.10 0 3960 0.2 0 4600 0.3 0 4724 0.1 0 3505 13.4 0 4522 0.4
0.50 27 13225 0.7 2777 14779 1.1 2 15007 0.6 2 10199 341.4 2 11877 43.5
0.80 6348 21149 1.6 15229 22423 1.9 1239 23469 1.4 873 16355 990.4 1128 17690 197.4
1.00 14117 24242 2.0 26530 26305 2.5 4185 28953 2.0 2682 21888 1004.8 976 21728 358.4

25 0.10 0 4824 0.3 793 7973 0.5 0 6523 0.1 0 4317 36.3 0 6159 0.6
0.50 0 12830 1.1 7232 19970 1.7 0 14713 0.8 0 8892 384.4 0 13129 2.2
0.80 6483 21993 1.8 20834 26704 2.4 599 24887 1.7 0 15233 1007.1 0 21138 20.7
1.00 26302 27529 2.5 55995 30587 3.1 2180 31566 2.4 1761 22097 1006.7 5 21479 417.0

26 0.10 0 5847 0.3 356 7035 0.4 0 6429 0.1 0 4823 26.9 0 6229 0.5
0.50 20 13267 0.8 4944 15823 1.1 30 14646 0.6 0 9548 312.5 0 13624 1.7
0.80 2238 20437 1.4 12939 22721 1.8 524 23118 1.2 11 15514 950.1 0 21218 19.1
1.00 20349 25838 2.0 35679 26706 2.2 2452 28831 1.7 1534 21892 1007.1 313 22521 361.5

27 0.10 0 3375 0.2 0 5355 0.4 25 4175 0.1 0 3144 13.9 0 4125 0.4
0.50 0 9773 0.6 4461 13440 1.1 25 11563 0.4 0 7396 190.8 0 10657 1.2
0.80 907 17975 1.6 10136 21828 2.3 25 19861 1.2 0 12740 758.8 0 17960 5.6
1.00 12904 25403 2.3 35436 28267 3.2 1510 28785 2.1 315 22238 1003.0 0 24187 97.5

28 0.10 0 5476 0.3 1696 8154 0.5 0 6467 0.1 0 4821 25.9 0 6203 0.5
0.50 15 13716 0.7 3905 18345 1.3 15 14871 0.6 10 10416 262.9 10 11352 43.3
0.80 1613 20802 1.5 11516 26213 2.1 335 23182 1.4 10 15178 832.4 220 16584 140.0
1.00 23215 27435 2.3 49253 32750 3.0 2796 31563 2.1 2137 23282 1007.2 1569 24318 389.7

29 0.10 0 5329 0.2 89 7895 0.4 0 5978 0.1 0 4442 30.0 0 5801 0.5
0.50 215 12357 0.9 6702 16262 1.4 0 13893 0.7 0 8549 305.7 0 13195 4.5
0.80 8784 19037 1.5 28753 23123 2.1 2694 22283 1.2 1388 14329 634.6 575 15769 138.0
1.00 43662 24147 2.0 51276 26103 2.5 10396 28020 1.7 6548 21979 1005.4 735 21436 356.8

245

Table A.16: Performance of VND-O, VND-S, GRASP-O, MA-O, and VNS-O for instance size
(Sz.) 20, instance numbers (Nr.) 0–14.

VND-O VND-S GRASP-O MA-O VNS-O
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]
20 0 0.10 0 469 0.1 0 595 0.0 0 469 200.0 0 469 200.0 0 469 200.0

0.50 0 829 0.3 0 1023 0.0 0 813 200.0 0 778 200.0 0 778 200.0
0.80 0 1102 0.4 0 1269 0.0 0 1073 200.0 0 1001 200.0 0 977 200.0
1.00 0 1164 0.9 0 1382 0.0 0 1166 200.0 0 1101 200.0 0 1084 200.0

1 0.10 0 361 0.0 0 377 0.0 0 351 200.0 0 351 200.0 0 351 200.0
0.50 0 719 0.3 0 910 0.0 0 702 200.0 0 686 200.0 0 668 200.0
0.80 0 820 0.2 0 989 0.0 0 737 200.0 0 730 200.0 0 703 200.0
1.00 0 976 0.6 0 1139 0.0 0 871 200.0 0 813 200.0 0 871 200.0

2 0.10 0 484 0.0 0 511 0.0 0 484 200.0 0 484 200.0 0 484 200.0
0.50 0 753 0.3 0 1026 0.0 0 753 200.0 0 722 200.0 0 717 200.0
0.80 0 954 0.6 0 1340 0.0 0 913 200.0 0 893 200.0 0 893 200.0
1.00 0 1139 1.1 0 1451 0.0 0 1086 200.0 0 1051 200.0 0 1061 200.0

3 0.10 0 535 0.0 0 739 0.0 0 535 200.0 0 467 200.0 0 467 200.0
0.50 0 954 0.2 0 1147 0.0 0 953 200.0 0 869 200.0 0 869 200.0
0.80 0 1067 0.4 0 1309 0.0 0 1107 200.0 0 1060 200.0 0 1060 200.0
1.00 0 1318 0.6 0 1582 0.0 0 1291 200.0 0 1239 200.0 0 1239 200.0

4 0.10 0 497 0.0 0 543 0.0 0 506 200.0 0 497 200.0 0 497 200.0
0.50 0 818 0.2 0 1048 0.0 0 840 200.0 0 772 200.0 0 772 200.0
0.80 0 989 0.4 0 1248 0.0 0 963 200.0 0 918 200.0 0 964 200.0
1.00 0 1217 0.5 0 1399 0.0 0 1090 200.0 0 1075 200.0 0 1075 200.0

5 0.10 0 401 0.0 0 464 0.0 0 401 200.0 0 401 200.0 0 401 200.0
0.50 0 832 0.2 0 978 0.0 0 764 200.0 0 733 200.0 0 733 200.0
0.80 0 888 0.4 0 1166 0.0 0 888 200.0 0 854 200.0 0 854 200.0
1.00 0 1046 0.5 0 1177 0.0 0 1046 200.0 0 935 200.0 0 966 200.0

6 0.10 0 382 0.0 0 493 0.0 0 374 200.0 0 374 200.0 0 374 200.0
0.50 0 832 0.2 0 1143 0.0 0 840 200.0 0 791 200.0 0 785 200.0
0.80 0 1154 0.5 0 1406 0.0 0 1075 200.0 0 1075 200.0 0 1041 200.0
1.00 0 1422 0.2 0 1446 0.0 0 1287 200.0 0 1231 200.0 0 1256 200.0

7 0.10 0 543 0.1 0 819 0.0 0 521 200.0 0 521 200.0 0 521 200.0
0.50 0 982 0.3 0 1289 0.0 0 966 200.0 0 931 200.0 0 979 200.0
0.80 0 1237 0.4 0 1418 0.0 0 1079 200.0 0 1116 200.0 0 1076 200.0
1.00 0 1461 0.5 0 1593 0.0 0 1322 200.0 0 1263 200.0 0 1263 200.0

8 0.10 0 351 0.0 0 656 0.0 0 347 200.0 0 347 200.0 0 347 200.0
0.50 0 826 0.3 0 1135 0.0 0 767 200.0 0 752 200.0 0 752 200.0
0.80 0 1070 0.4 0 1246 0.0 0 1039 200.0 0 1033 200.0 0 1022 200.0
1.00 0 1246 0.4 0 1442 0.0 0 1163 200.0 0 1109 200.0 0 1119 200.0

9 0.10 0 649 0.1 0 754 0.0 0 643 200.0 0 643 200.0 0 643 200.0
0.50 0 984 0.4 0 1094 0.0 0 984 200.0 0 984 200.0 0 984 200.0
0.80 0 1071 0.6 0 1163 0.0 0 1071 200.0 0 1042 200.0 0 1042 200.0
1.00 0 1197 1.3 0 1466 0.0 0 1210 200.0 0 1109 200.0 0 1106 200.0

10 0.10 0 598 0.0 0 660 0.0 0 598 200.0 0 559 200.0 0 559 200.0
0.50 0 944 0.2 0 1093 0.0 0 905 200.0 0 905 200.0 0 923 200.0
0.80 0 1252 0.2 0 1374 0.0 0 1143 200.0 0 1098 200.0 0 1098 200.0
1.00 530 1465 0.5 0 1538 0.3 0 1297 200.0 0 1220 200.0 0 1209 200.0

11 0.10 0 217 0.0 0 308 0.0 0 217 200.0 0 217 200.0 0 217 200.0
0.50 0 703 0.1 0 933 0.0 0 579 200.0 0 579 200.0 0 579 200.0
0.80 0 873 0.5 0 1077 0.0 0 713 200.0 0 633 200.0 0 633 200.0
1.00 0 942 0.3 0 1077 0.0 0 919 200.0 0 919 200.0 0 854 200.0

12 0.10 0 557 0.0 0 573 0.0 0 557 200.0 0 499 200.0 0 499 200.0
0.50 0 981 0.3 0 1153 0.0 0 887 200.0 0 848 200.0 0 801 200.0
0.80 0 1137 0.8 0 1488 0.0 0 1097 200.0 0 999 200.0 0 999 200.0
1.00 0 1227 1.1 0 1611 0.0 0 1184 200.0 0 1091 200.0 0 1136 200.0

13 0.10 0 480 0.1 0 644 0.0 0 480 200.0 0 480 200.0 0 476 200.0
0.50 0 708 0.4 0 940 0.0 0 705 200.0 0 696 200.0 0 696 200.0
0.80 0 1109 0.5 0 1330 0.0 0 987 200.0 0 938 200.0 0 950 200.0
1.00 0 1224 0.5 0 1338 0.0 0 1122 200.0 0 1046 200.0 0 1020 200.0

14 0.10 0 539 0.0 0 636 0.0 0 539 200.0 0 535 200.0 0 535 200.0
0.50 0 818 0.4 0 1195 0.0 0 828 200.0 0 818 200.0 0 818 200.0
0.80 0 1115 0.9 0 1310 0.0 0 1026 200.0 0 950 200.0 0 967 200.0
1.00 0 1267 0.6 0 1344 0.0 0 1220 200.0 0 1164 200.0 0 1164 200.0

246

Table A.17: Performance of VND-O, VND-S, GRASP-O, MA-O, and VNS-O for instance size
(Sz.) 20, instance numbers (Nr.) 15–29.

VND-O VND-S GRASP-O MA-O VNS-O
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]
20 15 0.10 0 424 0.0 0 524 0.0 0 318 200.0 0 318 200.0 0 318 200.0

0.50 0 678 0.2 0 951 0.0 0 678 200.0 0 570 200.0 0 597 200.0
0.80 0 930 0.5 0 1140 0.0 0 865 200.0 0 837 200.0 0 822 200.0
1.00 0 1077 0.5 0 1299 0.0 0 1012 200.0 0 967 200.0 0 967 200.0

16 0.10 0 734 0.1 0 987 0.0 0 611 200.0 0 611 200.0 0 649 200.0
0.50 0 895 0.5 0 1373 0.0 0 895 200.0 0 895 200.0 0 893 200.0
0.80 0 1227 0.8 0 1564 0.0 0 1186 200.0 0 1137 200.0 0 1137 200.0
1.00 0 1285 0.8 0 1564 0.0 0 1263 200.0 0 1186 200.0 0 1263 200.0

17 0.10 0 453 0.0 0 563 0.0 0 453 200.0 0 453 200.0 0 453 200.0
0.50 0 982 0.2 0 1061 0.0 0 935 200.0 0 935 200.0 0 950 200.0
0.80 0 1169 0.3 0 1356 0.0 0 1131 200.0 0 1093 200.0 0 1093 200.0
1.00 0 1382 0.5 0 1561 0.0 0 1280 200.0 0 1181 200.0 0 1215 200.0

18 0.10 0 467 0.0 0 528 0.0 0 439 200.0 0 439 200.0 0 439 200.0
0.50 0 891 0.3 0 1112 0.0 0 858 200.0 0 786 200.0 0 783 200.0
0.80 180 1093 0.5 180 1271 0.2 0 964 200.0 0 906 200.0 0 956 200.0
1.00 325 1216 0.5 325 1328 0.2 0 1080 200.0 0 1030 200.0 0 1080 200.0

19 0.10 0 603 0.0 0 662 0.0 0 579 200.0 0 579 200.0 0 584 200.0
0.50 0 981 0.4 0 1449 0.0 0 957 200.0 0 929 200.0 0 929 200.0
0.80 0 1226 0.7 0 1535 0.0 0 1225 200.0 0 1199 200.0 0 1199 200.0
1.00 0 1318 0.6 0 1535 0.0 0 1318 200.0 0 1318 200.0 0 1318 200.0

20 0.10 0 371 0.0 0 434 0.0 0 371 200.0 0 371 200.0 0 381 200.0
0.50 0 640 0.3 0 1182 0.0 0 640 200.0 0 626 200.0 0 625 200.0
0.80 0 835 0.5 0 1322 0.0 0 773 200.0 0 742 200.0 0 773 200.0
1.00 0 1008 0.6 0 1366 0.0 0 1008 200.0 0 897 200.0 0 913 200.0

21 0.10 0 475 0.0 0 484 0.0 0 475 200.0 0 421 200.0 0 421 200.0
0.50 0 758 0.1 0 898 0.0 0 711 200.0 0 675 200.0 0 675 200.0
0.80 0 952 0.3 0 1052 0.0 0 905 200.0 0 882 200.0 0 882 200.0
1.00 0 1148 0.4 0 1268 0.0 0 1024 200.0 0 1024 200.0 0 1024 200.0

22 0.10 0 646 0.0 0 647 0.0 0 524 200.0 0 524 200.0 0 524 200.0
0.50 0 747 0.2 0 748 0.0 0 676 200.0 0 670 200.0 0 709 200.0
0.80 0 898 0.8 0 1120 0.0 0 849 200.0 0 802 200.0 0 841 200.0
1.00 0 905 1.1 0 1127 0.0 0 905 200.0 0 887 200.0 0 894 200.0

23 0.10 0 535 0.0 0 591 0.0 0 535 200.0 0 499 200.0 0 535 200.0
0.50 0 779 0.3 0 1180 0.0 0 779 200.0 0 727 200.0 0 766 200.0
0.80 0 972 0.4 0 1490 0.0 0 923 200.0 0 908 200.0 0 908 200.0
1.00 0 1131 0.5 0 1515 0.0 0 1037 200.0 0 1062 200.0 0 1039 200.0

24 0.10 0 683 0.1 0 716 0.0 0 643 200.0 0 620 200.0 0 620 200.0
0.50 0 910 0.2 0 1044 0.0 0 910 200.0 0 910 200.0 0 910 200.0
0.80 0 1153 0.3 0 1184 0.0 0 1044 200.0 0 965 200.0 0 1018 200.0
1.00 0 1247 0.6 0 1258 0.0 0 1153 200.0 0 1131 200.0 0 1131 200.0

25 0.10 0 432 0.0 0 525 0.0 0 432 200.0 0 432 200.0 0 432 200.0
0.50 0 827 0.1 0 955 0.0 0 827 200.0 0 809 200.0 0 809 200.0
0.80 0 1043 0.2 0 1195 0.0 0 993 200.0 0 993 200.0 0 993 200.0
1.00 0 1043 0.5 0 1481 0.0 0 1043 200.0 0 1043 200.0 0 1043 200.0

26 0.10 0 369 0.0 0 559 0.0 0 369 200.0 0 369 200.0 0 369 200.0
0.50 0 926 0.3 0 1024 0.0 0 819 200.0 0 866 200.0 0 866 200.0
0.80 0 1024 0.2 0 1047 0.0 0 939 200.0 0 939 200.0 0 939 200.0
1.00 0 1112 0.5 0 1240 0.0 0 1076 200.0 0 1065 200.0 0 1034 200.0

27 0.10 0 607 0.0 0 687 0.0 0 607 200.0 0 607 200.0 0 607 200.0
0.50 0 872 0.4 0 1086 0.0 0 872 200.0 0 807 200.0 0 807 200.0
0.80 0 1068 0.8 0 1376 0.0 0 1068 200.0 0 1068 200.0 0 1068 200.0
1.00 0 1202 0.9 0 1538 0.0 0 1147 200.0 0 1147 200.0 0 1109 200.0

28 0.10 0 552 0.0 0 584 0.0 0 531 200.0 0 531 200.0 0 531 200.0
0.50 0 953 0.5 0 1247 0.0 0 946 200.0 0 946 200.0 0 946 200.0
0.80 0 1201 0.6 0 1370 0.0 0 1179 200.0 0 1076 200.0 0 1141 200.0
1.00 30 1341 0.7 30 1436 0.6 0 1270 200.0 0 1196 200.0 0 1152 200.0

29 0.10 0 387 0.0 0 460 0.0 0 383 200.0 0 369 200.0 0 369 200.0
0.50 0 593 0.2 0 1040 0.0 0 574 200.0 0 574 200.0 0 574 200.0
0.80 0 878 0.5 0 1285 0.0 0 876 200.0 0 876 200.0 0 855 200.0
1.00 0 1162 0.6 0 1377 0.0 0 1121 200.0 0 1064 200.0 0 1085 200.0

247

Table A.18: Performance of VND-O, VND-S, GRASP-O, MA-O, and VNS-O for instance size
(Sz.) 30, instance numbers (Nr.) 0–14.

VND-O VND-S GRASP-O MA-O VNS-O
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]
30 0 0.10 0 611 0.0 0 633 0.0 0 606 200.0 0 606 200.0 0 606 200.0

0.50 0 1020 0.5 0 1371 0.0 0 1036 200.0 0 1016 200.0 0 1016 200.0
0.80 0 1425 0.9 0 1598 0.0 0 1270 200.0 0 1254 200.0 0 1270 200.0
1.00 0 1545 1.2 0 1750 0.0 0 1482 200.0 0 1425 200.0 0 1389 200.0

1 0.10 0 711 0.1 0 932 0.0 0 694 200.0 0 677 200.0 0 682 200.0
0.50 0 1211 0.9 0 1759 0.0 0 1126 200.0 0 1079 200.0 0 1082 200.0
0.80 0 1510 1.8 0 2183 0.0 0 1392 200.0 0 1359 200.1 0 1351 200.0
1.00 0 1820 2.6 0 2457 0.1 0 1641 200.0 0 1547 200.0 0 1547 200.0

2 0.10 0 898 0.1 0 1366 0.0 0 826 200.0 0 826 200.0 0 826 200.0
0.50 0 1527 1.3 0 2027 0.0 0 1508 200.0 0 1378 200.0 0 1409 200.0
0.80 0 1734 1.3 0 2353 0.0 0 1629 200.0 0 1610 200.0 0 1539 200.0
1.00 0 2151 1.1 0 2432 0.0 0 1879 200.0 0 1835 200.1 0 1822 200.1

3 0.10 0 679 0.1 0 1000 0.0 0 679 200.0 0 679 200.0 0 679 200.0
0.50 0 1083 0.7 0 1399 0.0 0 1095 200.0 0 1083 200.0 0 1083 200.0
0.80 0 1258 2.2 0 1879 0.0 0 1166 200.0 0 1118 200.0 0 1118 200.0
1.00 0 1700 2.0 0 2146 0.0 0 1641 200.0 0 1612 200.0 0 1593 200.1

4 0.10 0 701 0.1 0 994 0.0 0 712 200.0 0 701 200.0 0 701 200.0
0.50 0 1265 0.9 0 1629 0.0 0 1251 200.0 0 1217 200.0 0 1251 200.0
0.80 0 1436 1.0 0 1715 0.0 0 1384 200.0 0 1365 200.0 0 1290 200.0
1.00 0 1628 1.2 0 1807 0.0 0 1628 200.0 0 1577 200.0 0 1539 200.0

5 0.10 0 606 0.1 0 737 0.0 0 612 200.0 0 606 200.0 0 606 200.0
0.50 0 1164 0.8 0 1480 0.0 0 1076 200.0 0 1043 200.0 0 1043 200.0
0.80 0 1384 0.9 0 1700 0.0 0 1246 200.0 0 1263 200.0 0 1243 200.1
1.00 0 1459 1.4 0 1899 0.0 0 1387 200.0 0 1405 200.0 0 1405 200.0

6 0.10 0 624 0.1 0 971 0.0 0 624 200.0 0 623 200.0 0 623 200.0
0.50 0 1199 0.6 0 1587 0.0 0 1127 200.0 0 1131 200.0 0 1136 200.0
0.80 0 1344 1.3 0 1786 0.0 0 1323 200.0 0 1326 200.0 0 1299 200.0
1.00 0 1456 1.9 0 1880 0.0 0 1473 200.0 0 1388 200.0 0 1384 200.0

7 0.10 0 671 0.1 0 910 0.0 0 671 200.0 0 671 200.0 0 671 200.0
0.50 0 1226 1.2 0 1633 0.0 0 1222 200.0 0 1175 200.0 0 1175 200.0
0.80 0 1469 2.8 0 2000 0.0 0 1485 200.0 0 1408 200.1 0 1409 200.0
1.00 0 1774 3.3 0 2355 0.0 0 1543 200.0 0 1567 200.0 0 1529 200.0

8 0.10 0 1192 0.2 0 1541 0.0 0 1111 200.0 0 1111 200.0 0 1111 200.0
0.50 0 1316 1.0 0 1707 0.0 0 1269 200.0 0 1269 200.0 0 1269 200.0
0.80 0 1569 1.6 0 1773 0.0 0 1521 200.0 0 1490 200.0 0 1504 200.0
1.00 0 1606 2.7 0 1773 0.0 0 1578 200.0 0 1578 200.0 0 1578 200.0

9 0.10 0 571 0.1 0 822 0.0 0 571 200.0 0 571 200.0 0 571 200.0
0.50 0 1157 0.8 0 1924 0.0 0 1129 200.0 0 1124 200.0 0 1129 200.0
0.80 0 1468 1.7 0 2205 0.0 0 1441 200.0 0 1401 200.0 0 1401 200.0
1.00 0 1788 1.7 0 2336 0.0 0 1690 200.0 0 1626 200.0 0 1626 200.0

10 0.10 0 593 0.0 0 610 0.0 0 593 200.0 0 593 200.0 0 593 200.0
0.50 0 1112 0.7 0 1375 0.0 0 1082 200.0 0 997 200.0 0 1039 200.0
0.80 0 1228 1.7 0 1662 0.0 0 1228 200.0 0 1153 200.0 0 1200 200.0
1.00 0 1349 2.5 0 1930 0.0 0 1345 200.0 0 1335 200.0 0 1307 200.0

11 0.10 0 608 0.1 0 985 0.0 0 597 200.0 0 597 200.0 0 597 200.0
0.50 0 1155 0.7 0 1507 0.0 0 1144 200.0 0 1122 200.0 0 1109 200.0
0.80 0 1634 1.3 0 1990 0.0 0 1590 200.0 0 1447 200.0 0 1438 200.0
1.00 0 2071 1.5 0 2184 0.1 0 1868 200.0 0 1811 200.0 0 1722 200.0

12 0.10 0 759 0.0 0 871 0.0 0 754 200.0 0 754 200.0 0 754 200.0
0.50 0 1071 0.5 0 1467 0.0 0 1071 200.0 0 1071 200.0 0 1071 200.0
0.80 0 1311 2.1 0 1923 0.0 0 1311 200.0 0 1311 200.1 0 1311 200.0
1.00 0 1719 1.8 0 2160 0.0 0 1694 200.0 0 1650 200.1 0 1634 200.0

13 0.10 0 542 0.0 0 698 0.0 0 542 200.0 0 542 200.0 0 542 200.0
0.50 0 1081 0.7 0 1462 0.0 0 1081 200.0 0 1061 200.0 0 1061 200.0
0.80 0 1448 1.3 0 1717 0.0 0 1498 200.0 0 1407 200.0 0 1386 200.0
1.00 0 1505 1.4 0 2014 0.0 0 1505 200.0 0 1455 200.0 0 1482 200.0

14 0.10 0 777 0.1 0 935 0.0 0 759 200.0 0 749 200.0 0 749 200.0
0.50 0 1346 0.9 0 1911 0.0 0 1318 200.0 0 1285 200.0 0 1285 200.0
0.80 0 1451 1.9 0 1974 0.0 0 1419 200.0 0 1376 200.0 0 1403 200.0
1.00 0 1652 2.0 0 2109 0.0 0 1595 200.0 0 1583 200.1 0 1583 200.1

248

Table A.19: Performance of VND-O, VND-S, GRASP-O, MA-O, and VNS-O for instance size
(Sz.) 30, instance numbers (Nr.) 15–29.

VND-O VND-S GRASP-O MA-O VNS-O
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]
30 15 0.10 0 993 0.1 0 1245 0.0 0 977 200.0 0 977 200.0 0 993 200.0

0.50 0 1298 0.9 0 1633 0.0 0 1298 200.0 0 1270 200.0 0 1270 200.0
0.80 0 1520 2.7 0 1911 0.0 0 1510 200.0 0 1512 200.1 0 1499 200.0
1.00 0 1726 3.0 0 2304 0.0 0 1729 200.0 0 1693 200.1 0 1689 200.0

16 0.10 0 461 0.1 0 633 0.0 0 461 200.0 0 458 200.0 0 458 200.0
0.50 0 957 0.6 0 1382 0.0 0 969 200.0 0 916 200.0 0 916 200.0
0.80 0 1159 1.4 0 1778 0.0 0 1045 200.0 0 971 200.0 0 996 200.0
1.00 0 1547 1.0 0 1900 0.0 0 1371 200.0 0 1272 200.0 0 1249 200.0

17 0.10 0 780 0.3 0 1027 0.0 0 795 200.0 0 776 200.0 0 776 200.0
0.50 0 1132 1.2 0 1427 0.0 0 1096 200.0 0 1066 200.0 0 1043 200.0
0.80 0 1463 1.5 0 1849 0.0 0 1388 200.0 0 1319 200.0 0 1313 200.1
1.00 0 1648 1.8 0 1999 0.0 0 1532 200.0 0 1542 200.0 0 1519 200.0

18 0.10 0 561 0.0 0 579 0.0 0 561 200.0 0 561 200.0 0 561 200.0
0.50 0 1235 0.7 0 1458 0.0 0 1200 200.0 0 1192 200.0 0 1192 200.0
0.80 0 1534 0.9 0 1831 0.0 0 1532 200.0 0 1532 200.0 0 1532 200.0
1.00 0 1746 1.2 0 2181 0.0 0 1746 200.0 0 1714 200.0 0 1714 200.0

19 0.10 0 516 0.1 0 1005 0.0 0 502 200.0 0 502 200.0 0 502 200.0
0.50 0 1270 1.3 0 1774 0.0 0 1263 200.0 0 1251 200.0 0 1205 200.0
0.80 0 1518 2.3 0 2065 0.0 0 1532 200.0 0 1420 200.0 0 1420 200.0
1.00 0 1760 2.5 0 2294 0.0 0 1695 200.0 0 1593 200.0 0 1624 200.0

20 0.10 0 817 0.2 0 1222 0.0 0 896 200.0 0 803 200.0 0 803 200.0
0.50 0 1490 0.7 0 1824 0.0 0 1465 200.0 0 1450 200.0 0 1423 200.0
0.80 0 1686 2.3 0 2011 0.0 0 1686 200.1 0 1672 200.0 0 1646 200.0
1.00 0 1842 3.2 0 2170 0.0 0 1794 200.0 0 1792 200.1 0 1792 200.1

21 0.10 0 640 0.1 0 897 0.0 0 640 200.0 0 581 200.0 0 581 200.0
0.50 0 993 0.4 0 1283 0.0 0 1003 200.0 0 928 200.0 0 928 200.0
0.80 0 1420 0.8 0 1636 0.0 0 1242 200.0 0 1239 200.0 0 1239 200.0
1.00 0 1647 1.1 0 1875 0.0 0 1422 200.0 0 1430 200.0 0 1399 200.0

22 0.10 0 905 0.1 0 1003 0.0 0 929 200.0 0 881 200.0 0 881 200.0
0.50 0 1380 0.6 0 1554 0.0 0 1333 200.0 0 1312 200.0 0 1338 200.0
0.80 0 1418 1.6 0 1813 0.0 0 1430 200.0 0 1395 200.0 0 1395 200.0
1.00 0 1631 1.4 0 2249 0.0 0 1565 200.0 0 1531 200.0 0 1490 200.0

23 0.10 0 738 0.1 0 876 0.0 0 738 200.0 0 738 200.0 0 738 200.0
0.50 0 1199 0.8 0 1724 0.0 0 1201 200.0 0 1187 200.0 0 1187 200.0
0.80 0 1413 2.2 0 2263 0.0 0 1440 200.0 0 1376 200.0 0 1346 200.0
1.00 0 1667 3.3 0 2282 0.0 0 1721 200.0 0 1598 200.0 0 1531 200.0

24 0.10 0 547 0.1 0 630 0.0 0 525 200.0 0 525 200.0 0 525 200.0
0.50 0 1278 0.5 0 1547 0.0 0 1278 200.0 0 1205 200.0 0 1205 200.0
0.80 0 1627 1.9 0 2203 0.0 0 1575 200.0 0 1427 200.0 0 1352 200.0
1.00 0 2046 2.1 0 2375 0.0 0 1753 200.0 0 1701 200.0 0 1670 200.0

25 0.10 0 972 0.3 0 1222 0.0 0 952 200.0 0 849 200.0 0 869 200.0
0.50 0 1514 1.5 0 1772 0.0 0 1389 200.0 0 1286 200.0 0 1355 200.0
0.80 0 1560 2.2 0 1970 0.0 0 1550 200.0 0 1532 200.1 0 1520 200.0
1.00 0 1765 2.2 0 2190 0.0 0 1679 200.0 0 1630 200.0 0 1652 200.1

26 0.10 0 518 0.1 0 763 0.0 0 518 200.0 0 518 200.0 0 518 200.0
0.50 0 1009 0.6 0 1479 0.0 0 1009 200.0 0 1009 200.0 0 1009 200.0
0.80 0 1364 0.9 0 1941 0.0 0 1270 200.0 0 1258 200.0 0 1258 200.0
1.00 0 1517 1.6 0 2047 0.0 0 1517 200.0 0 1477 200.0 0 1505 200.0

27 0.10 0 583 0.1 0 751 0.0 0 549 200.0 0 549 200.0 0 549 200.0
0.50 0 1044 0.3 0 1390 0.0 0 1029 200.0 0 1017 200.0 0 1013 200.0
0.80 0 1407 1.0 0 1740 0.0 0 1378 200.0 0 1279 200.0 0 1284 200.0
1.00 0 1540 1.6 0 2006 0.0 0 1434 200.0 0 1434 200.0 0 1434 200.0

28 0.10 0 1002 0.1 0 1031 0.0 0 939 200.0 0 939 200.0 0 939 200.0
0.50 0 1232 0.5 0 1422 0.0 0 1232 200.0 0 1232 200.0 0 1232 200.0
0.80 0 1547 1.0 0 1769 0.0 0 1501 200.0 0 1413 200.0 0 1413 200.0
1.00 0 1608 1.5 0 2013 0.0 0 1568 200.0 0 1473 200.0 0 1473 200.0

29 0.10 0 415 0.1 0 872 0.0 0 411 200.0 0 411 200.0 0 411 200.0
0.50 0 1065 0.6 0 1524 0.0 0 1024 200.0 0 963 200.0 0 963 200.0
0.80 0 1430 1.0 0 1858 0.0 0 1397 200.0 0 1328 200.0 0 1363 200.0
1.00 0 1686 0.8 0 1944 0.1 0 1494 200.0 0 1458 200.0 0 1503 200.0

249

Table A.20: Performance of VND-O, VND-S, GRASP-O, MA-O, and VNS-O for instance size
(Sz.) 50, instance numbers (Nr.) 0–14.

VND-O VND-S GRASP-O MA-O VNS-O
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]
50 0 0.10 0 1022 0.3 0 1311 0.0 0 1022 200.0 0 974 200.0 0 988 200.0

0.50 0 1840 3.7 0 2499 0.0 0 1832 200.0 0 1796 200.1 0 1763 200.0
0.80 0 2281 8.8 0 3030 0.0 0 2224 200.0 0 2242 200.0 0 2173 200.0
1.00 0 3116 6.4 0 3793 1.9 0 2828 200.0 0 2682 200.1 0 2501 200.1

1 0.10 0 1340 0.2 0 1494 0.0 0 1340 200.0 0 1322 200.0 0 1322 200.0
0.50 0 1764 1.9 0 2302 0.0 0 1703 200.0 0 1673 200.0 0 1668 200.0
0.80 0 1956 5.1 0 3096 0.0 0 1960 200.0 0 1906 200.1 0 1937 200.0
1.00 0 2659 8.2 0 3678 0.0 0 2611 200.0 0 2454 200.1 0 2365 200.0

2 0.10 0 749 0.1 0 1175 0.0 0 747 200.0 0 719 200.0 0 719 200.0
0.50 0 1968 2.5 0 2496 0.0 0 1949 200.0 0 1782 200.0 0 1844 200.0
0.80 0 2326 3.1 0 3045 0.0 0 2322 200.0 0 2222 200.1 0 2223 200.0
1.00 95 2636 5.6 0 3335 0.1 0 2597 200.0 0 2468 200.1 0 2534 200.1

3 0.10 0 1118 0.4 0 1588 0.0 0 1140 200.0 0 1118 200.0 0 1131 200.0
0.50 0 1927 2.1 0 2740 0.0 0 1882 200.0 0 1841 200.0 0 1803 200.0
0.80 0 2355 5.3 0 3323 0.0 0 2245 200.0 0 2108 200.0 0 2082 200.1
1.00 0 2390 8.6 0 3573 0.1 0 2418 200.0 0 2268 200.1 0 2260 200.1

4 0.10 0 1182 0.3 0 1360 0.0 0 1193 200.0 0 1182 200.0 0 1182 200.0
0.50 0 1881 1.5 0 2261 0.0 0 1878 200.0 0 1870 200.1 0 1870 200.0
0.80 0 2092 5.9 0 2646 0.0 0 2084 200.1 0 2018 200.0 0 2009 200.0
1.00 0 2598 9.0 0 3160 0.0 0 2494 200.1 0 2387 200.2 0 2357 200.1

5 0.10 0 1295 0.3 0 1470 0.0 0 1240 200.0 0 1238 200.0 0 1238 200.0
0.50 0 1664 2.0 0 2272 0.0 0 1644 200.0 0 1631 200.0 0 1592 200.0
0.80 0 1920 7.1 0 2824 0.0 0 1924 200.1 0 1905 200.0 0 1905 200.1
1.00 0 2245 7.1 0 2935 0.0 0 2243 200.1 0 2145 200.1 0 2096 200.1

6 0.10 0 825 0.2 0 947 0.0 0 801 200.0 0 787 200.0 0 787 200.0
0.50 0 1749 1.8 0 2096 0.0 0 1698 200.1 0 1698 200.0 0 1698 200.0
0.80 0 2052 4.5 0 2727 0.0 0 2023 200.0 0 1968 200.0 0 1968 200.1
1.00 0 2450 4.2 0 3087 0.0 0 2389 200.1 0 2320 200.1 0 2303 200.0

7 0.10 0 1116 0.1 0 1227 0.0 0 1116 200.0 0 1116 200.0 0 1116 200.0
0.50 0 1994 2.1 0 2324 0.0 0 1980 200.0 0 1964 200.0 0 1964 200.0
0.80 0 2300 3.0 0 2703 0.0 0 2243 200.2 0 2207 200.1 0 2191 200.0
1.00 0 2524 7.0 0 3120 0.0 0 2481 200.0 0 2370 200.0 0 2414 200.1

8 0.10 0 875 0.3 0 1119 0.0 0 841 200.0 0 798 200.0 0 807 200.0
0.50 0 1535 3.1 0 2214 0.0 0 1507 200.0 0 1432 200.1 0 1432 200.0
0.80 0 2002 6.0 0 2899 0.0 0 1993 200.0 0 1920 200.0 0 1865 200.0
1.00 0 2712 6.6 0 3786 2.8 0 2647 200.1 0 2553 200.0 0 2493 200.0

9 0.10 0 1392 0.4 0 1683 0.0 0 1392 200.0 0 1371 200.0 0 1392 200.0
0.50 0 1793 2.5 0 2268 0.0 0 1815 200.0 0 1733 200.0 0 1733 200.0
0.80 0 2044 4.5 0 2684 0.0 0 2002 200.1 0 1959 200.1 0 1933 200.1
1.00 0 2437 4.9 0 3260 0.0 0 2422 200.0 0 2289 200.1 0 2293 200.0

10 0.10 0 973 0.2 0 1094 0.0 0 973 200.0 0 973 200.0 0 973 200.0
0.50 0 1791 2.4 0 2798 0.0 0 1875 200.0 0 1780 200.1 0 1780 200.1
0.80 0 2132 3.8 0 3026 0.0 0 2145 200.0 0 2103 200.1 0 2040 200.0
1.00 0 2635 7.5 0 3419 0.0 0 2501 200.0 0 2433 200.0 0 2450 200.1

11 0.10 0 916 0.4 0 1402 0.0 0 974 200.0 0 886 200.0 0 886 200.0
0.50 0 1701 2.0 0 2507 0.0 0 1583 200.0 0 1534 200.0 0 1575 200.0
0.80 0 2380 2.8 0 3020 0.0 0 2133 200.0 0 2097 200.1 0 2089 200.1
1.00 158 2992 5.4 158 3366 6.7 0 2888 200.1 0 2688 200.0 0 2555 200.1

12 0.10 0 880 0.4 0 1098 0.0 0 881 200.0 0 872 200.0 0 872 200.0
0.50 0 1770 2.9 0 2396 0.0 0 1751 200.0 0 1768 200.0 0 1729 200.0
0.80 0 2305 2.9 0 2670 0.0 0 2183 200.0 0 2099 200.1 0 2130 200.1
1.00 0 2630 2.3 0 2988 0.5 0 2381 200.1 0 2364 200.0 0 2347 200.0

13 0.10 0 1086 0.3 0 1438 0.0 0 1086 200.0 0 1081 200.0 0 1081 200.0
0.50 0 1833 2.6 0 2286 0.0 0 1791 200.0 0 1748 200.1 0 1706 200.1
0.80 0 2329 4.5 0 3094 0.0 0 2217 200.1 0 2108 200.0 0 2092 200.0
1.00 0 2897 7.2 0 3432 0.5 0 2794 200.0 0 2518 200.1 0 2514 200.0

14 0.10 0 1061 0.3 0 1286 0.0 0 1074 200.0 0 1057 200.0 0 1057 200.0
0.50 0 1760 2.3 0 2202 0.0 0 1829 200.0 0 1736 200.0 0 1736 200.0
0.80 0 2037 5.5 0 2670 0.0 0 2096 200.0 0 1948 200.1 0 1988 200.1
1.00 0 2179 5.8 0 2773 0.0 0 2207 200.0 0 2157 200.0 0 2015 200.1

250

Table A.21: Performance of VND-O, VND-S, GRASP-O, MA-O, and VNS-O for instance size
(Sz.) 50, instance numbers (Nr.) 15–29.

VND-O VND-S GRASP-O MA-O VNS-O
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]
50 15 0.10 0 1132 0.3 0 1446 0.0 0 1132 200.0 0 1132 200.0 0 1132 200.0

0.50 0 2025 2.3 0 2648 0.0 0 1949 200.0 0 1880 200.1 0 1907 200.0
0.80 0 2205 9.8 0 3079 0.0 0 2191 200.1 0 2157 200.0 0 2128 200.0
1.00 0 2898 5.7 0 3713 0.6 0 2883 200.0 0 2672 200.1 0 2582 200.1

16 0.10 0 1162 0.2 0 1315 0.0 0 1113 200.0 0 953 200.0 0 953 200.0
0.50 0 1635 4.1 0 2250 0.0 0 1472 200.0 0 1493 200.0 0 1456 200.0
0.80 0 2072 5.5 0 2719 0.0 0 1996 200.1 0 1955 200.0 0 1911 200.0
1.00 0 2319 8.7 0 3149 0.1 0 2310 200.2 0 2251 200.1 0 2244 200.1

17 0.10 0 1103 0.2 0 1376 0.0 0 1110 200.0 0 1103 200.0 0 1110 200.0
0.50 0 2071 3.0 0 2603 0.0 0 2064 200.0 0 2039 200.0 0 2008 200.0
0.80 0 2290 4.9 0 3164 0.0 0 2294 200.1 0 2250 200.0 0 2216 200.0
1.00 0 2732 6.8 0 3886 0.0 0 2697 200.0 0 2726 200.0 0 2553 200.0

18 0.10 0 839 0.1 0 1093 0.0 0 864 200.0 0 839 200.0 0 839 200.0
0.50 0 1945 1.4 0 2195 0.0 0 1796 200.0 0 1785 200.0 0 1740 200.1
0.80 0 2395 5.9 0 3104 0.0 0 2347 200.1 0 2281 200.0 0 2248 200.1
1.00 0 2959 7.7 0 3542 1.8 0 2789 200.0 0 2608 200.0 0 2547 200.1

19 0.10 0 961 0.4 0 1361 0.0 0 973 200.0 0 949 200.0 0 949 200.0
0.50 0 1499 2.8 0 2322 0.0 0 1498 200.0 0 1494 200.0 0 1481 200.0
0.80 0 1963 5.2 0 2743 0.0 0 1865 200.0 0 1777 200.0 0 1736 200.1
1.00 0 2613 4.7 0 3012 1.9 0 2392 200.1 0 2351 200.0 0 2243 200.1

20 0.10 0 1626 0.6 0 2150 0.0 0 1637 200.0 0 1626 200.0 0 1626 200.0
0.50 0 1998 2.6 0 2566 0.0 0 1968 200.0 0 1966 200.0 0 1966 200.1
0.80 0 2473 4.1 0 2901 0.0 0 2420 200.1 0 2360 200.1 0 2368 200.0
1.00 0 2891 7.2 0 3306 0.3 0 2807 200.1 0 2791 200.0 0 2718 200.1

21 0.10 0 1210 0.2 0 1482 0.0 0 1210 200.0 0 1213 200.0 0 1213 200.0
0.50 0 1763 1.9 0 2237 0.0 0 1781 200.0 0 1735 200.0 0 1727 200.0
0.80 0 2352 6.2 0 3016 0.0 0 2257 200.0 0 2194 200.0 0 2228 200.0
1.00 0 2681 9.4 0 3399 0.0 0 2687 200.0 0 2599 200.1 0 2617 200.1

22 0.10 0 1355 0.4 0 1808 0.0 0 1305 200.0 0 1305 200.0 0 1338 200.0
0.50 0 2113 2.9 0 2869 0.0 0 2047 200.0 0 2072 200.0 0 2073 200.0
0.80 0 2322 7.7 0 3219 0.0 0 2362 200.1 0 2275 200.1 0 2234 200.0
1.00 0 2833 7.2 0 3488 0.0 0 2618 200.0 0 2593 200.1 0 2583 200.0

23 0.10 0 1035 0.1 0 1279 0.0 0 997 200.0 0 986 200.0 0 986 200.0
0.50 0 2117 3.6 0 2719 0.0 0 2144 200.0 0 2068 200.0 0 2065 200.1
0.80 0 2521 5.1 0 3142 0.0 0 2364 200.1 0 2347 200.1 0 2308 200.0
1.00 0 2616 4.4 0 3267 0.0 0 2551 200.0 0 2601 200.0 0 2516 200.0

24 0.10 0 803 0.3 0 1137 0.0 0 784 200.0 0 784 200.0 0 784 200.0
0.50 0 1570 3.5 0 2570 0.0 0 1553 200.0 0 1444 200.0 0 1444 200.0
0.80 0 2159 6.2 0 3314 0.0 0 2181 200.0 0 2181 200.1 0 2144 200.1
1.00 0 2917 7.3 0 3533 0.0 0 2830 200.0 0 2699 200.0 0 2646 200.1

25 0.10 0 856 0.6 0 1343 0.0 0 856 200.0 0 823 200.0 0 823 200.0
0.50 0 1720 3.6 0 2413 0.0 0 1556 200.0 0 1537 200.1 0 1537 200.1
0.80 0 2126 3.0 0 2620 0.0 0 2014 200.1 0 1931 200.0 0 1929 200.1
1.00 0 2217 3.7 0 2908 0.0 0 2206 200.1 0 2087 200.1 0 2073 200.1

26 0.10 0 929 0.1 0 1193 0.0 0 937 200.0 0 920 200.0 0 920 200.0
0.50 0 1680 2.7 0 2406 0.0 0 1709 200.0 0 1646 200.0 0 1625 200.0
0.80 0 2216 6.2 0 2926 0.0 0 2189 200.0 0 2186 200.0 0 2142 200.1
1.00 0 2493 7.5 0 3055 0.0 0 2569 200.0 0 2376 200.0 0 2311 200.0

27 0.10 0 1340 0.3 0 1545 0.0 0 1397 200.0 0 1340 200.0 0 1340 200.0
0.50 0 2008 2.5 0 2469 0.0 0 1999 200.0 0 1998 200.1 0 1998 200.1
0.80 0 2123 5.6 0 2842 0.0 0 2145 200.0 0 2140 200.0 0 2130 200.0
1.00 0 2357 7.0 0 3079 0.0 0 2376 200.1 0 2330 200.0 0 2328 200.0

28 0.10 0 1154 0.6 0 2066 0.0 0 1099 200.0 0 1082 200.0 0 1082 200.0
0.50 0 2198 4.5 0 3064 0.0 0 2170 200.0 0 2142 200.0 0 2028 200.0
0.80 0 2865 6.1 0 3978 0.0 0 2787 200.1 0 2659 200.1 0 2648 200.0
1.00 0 3271 8.2 0 4279 0.5 0 3311 200.0 0 3065 200.2 0 2913 200.0

29 0.10 0 620 0.2 0 1139 0.0 0 620 200.0 0 620 200.0 0 620 200.0
0.50 0 1844 3.1 0 2721 0.0 0 1808 200.0 0 1754 200.0 0 1685 200.0
0.80 0 2365 3.8 0 3171 0.0 0 2339 200.0 0 2295 200.0 0 2307 200.1
1.00 0 2630 8.6 0 3419 0.0 0 2635 200.1 0 2483 200.0 0 2515 200.1

251

Table A.22: Performance of VND-O, VND-S, GRASP-O, MA-O, and VNS-O for instance size
(Sz.) 100, instance numbers (Nr.) 0–14.

VND-O VND-S GRASP-O MA-O VNS-O
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]
100 0 0.10 0 2247 2.3 0 2943 0.0 0 2295 200.0 0 2272 200.0 0 2239 200.0

0.50 0 3207 14.8 0 4267 0.1 0 3186 200.0 0 3149 200.1 0 3129 200.0
0.80 0 4019 49.6 0 5723 0.1 0 3970 200.5 0 4115 200.2 0 4084 200.6
1.00 0 5066 40.7 0 6178 0.1 0 4918 200.2 0 4939 200.4 0 4945 200.2

1 0.10 0 2788 2.3 0 3398 0.0 0 2765 200.0 0 2757 200.0 0 2757 200.0
0.50 0 4218 17.4 0 5398 0.1 0 4264 200.0 0 4259 200.1 0 4189 200.1
0.80 0 4778 28.0 0 6009 0.1 0 4979 200.1 0 4769 200.2 0 4739 200.2
1.00 0 5435 38.0 0 6742 0.6 0 5435 200.3 0 5417 200.4 0 5215 200.3

2 0.10 0 1301 1.8 0 1531 0.0 0 1232 200.0 0 1219 200.0 0 1219 200.0
0.50 0 2975 18.3 0 4032 0.1 0 2940 200.1 0 2986 200.0 0 2939 200.1
0.80 0 3656 38.5 0 4956 0.1 0 3658 200.0 0 3748 200.1 0 3572 200.3
1.00 0 4405 42.0 0 5804 0.2 0 4562 200.4 0 4539 200.1 0 4492 200.1

3 0.10 0 2504 3.9 0 3298 0.0 0 2364 200.0 0 2217 200.0 0 2197 200.0
0.50 0 3909 32.6 0 5929 0.1 0 3999 200.1 0 3936 200.3 0 3850 200.3
0.80 0 4655 49.3 0 6680 0.1 0 4692 200.3 0 4590 200.3 0 4573 200.1
1.00 0 5521 79.1 0 7346 0.2 0 5666 200.0 0 5544 200.1 0 5448 200.9

4 0.10 0 1949 3.6 0 2699 0.0 0 1804 200.0 0 1785 200.0 0 1785 200.0
0.50 0 4006 24.2 0 5223 0.1 0 3954 200.3 0 3977 200.1 0 3811 200.3
0.80 0 4554 45.0 0 6061 0.2 0 4637 200.1 0 4543 200.1 0 4436 200.2
1.00 0 4961 74.1 0 6554 0.3 0 5288 200.1 0 5097 200.2 0 5173 200.0

5 0.10 0 1928 1.4 0 2557 0.0 0 1917 200.0 0 1910 200.0 0 1910 200.0
0.50 0 3590 26.7 0 4799 0.1 0 3615 200.0 0 3628 200.2 0 3534 200.0
0.80 0 4311 35.5 0 5479 0.1 0 4371 200.2 0 4194 200.1 0 4046 200.0
1.00 0 4726 66.5 0 6065 0.2 140 4928 200.5 0 4828 200.6 0 4827 200.0

6 0.10 0 2280 2.4 0 3207 0.0 0 2284 200.0 0 2296 200.1 0 2257 200.0
0.50 0 3723 21.1 0 5118 0.1 0 3725 200.2 0 3686 200.1 0 3618 200.0
0.80 0 4593 40.6 0 6052 0.1 0 4522 200.0 0 4539 200.0 0 4429 200.0
1.00 0 5492 53.4 0 7097 0.1 0 5561 200.0 0 5466 200.1 0 5456 200.0

7 0.10 0 2755 2.9 0 4054 0.0 0 2596 200.1 0 2569 200.0 0 2556 200.1
0.50 0 3883 20.1 0 5304 0.1 0 3830 200.1 0 3901 200.3 0 3883 200.3
0.80 0 4635 46.7 0 6285 0.1 0 4732 200.2 0 4574 200.1 0 4607 200.1
1.00 0 5136 71.4 0 6874 0.2 0 5254 200.4 0 5188 200.2 0 5071 200.1

8 0.10 0 1854 1.7 0 2444 0.0 0 1887 200.0 0 1765 200.0 0 1765 200.0
0.50 0 3362 23.2 0 4774 0.0 0 3488 200.1 0 3367 200.0 0 3292 200.1
0.80 0 4181 24.9 0 5539 0.1 0 4299 200.2 0 4160 200.0 0 4134 200.2
1.00 0 5158 41.0 0 6849 0.3 160 5347 200.2 0 5018 200.4 0 5082 200.0

9 0.10 0 2085 3.7 0 2635 0.0 0 2029 200.0 0 2012 200.0 0 2024 200.0
0.50 0 3308 24.8 70 4095 25.5 0 3316 200.2 0 3310 200.1 0 3318 200.3
0.80 70 4081 39.6 70 4806 53.7 0 4229 200.0 0 4153 200.3 0 4178 200.0
1.00 70 4914 38.8 70 5650 48.7 0 4814 200.7 0 4824 200.1 0 5000 200.4

10 0.10 0 2194 2.4 0 2947 0.0 0 2143 200.0 0 2143 200.0 0 2143 200.0
0.50 0 2945 14.0 0 4073 0.0 0 2998 200.0 0 2913 200.1 0 2835 200.0
0.80 0 4074 27.1 0 4961 0.1 0 4151 200.0 0 4128 200.1 0 3931 200.1
1.00 0 4771 40.3 0 5791 0.1 0 4706 200.0 0 4629 200.1 0 4706 200.1

11 0.10 0 2786 4.6 0 4079 0.0 0 2784 200.0 0 2744 200.0 0 2744 200.0
0.50 0 4199 27.7 0 5654 0.1 0 4297 200.0 0 4332 200.0 0 4251 200.2
0.80 0 4987 52.6 0 6634 0.1 0 5138 200.4 0 5098 200.5 0 5056 200.2
1.00 0 5594 56.6 0 7202 12.6 0 5802 200.5 0 5549 200.6 0 5323 200.7

12 0.10 0 2282 2.0 0 2896 0.0 0 2228 200.0 0 2206 200.0 0 2192 200.0
0.50 0 3420 14.3 0 5261 0.1 0 3444 200.1 0 3440 200.2 0 3393 200.1
0.80 0 4519 24.6 0 6353 0.1 0 4528 200.1 0 4411 200.1 0 4313 200.1
1.00 0 5680 26.8 0 7018 4.0 0 5615 200.2 0 5612 200.1 0 5405 200.1

13 0.10 0 2192 1.3 0 2820 0.0 0 2212 200.0 0 2241 200.0 0 2158 200.0
0.50 0 4003 18.8 0 5228 0.1 0 3950 200.3 0 4028 200.1 0 3993 200.2
0.80 0 4892 40.9 0 6078 0.1 0 4912 200.2 0 4829 200.1 0 4759 200.1
1.00 0 5596 50.7 0 6755 0.1 0 5407 200.1 0 5494 200.5 0 5380 200.3

14 0.10 0 2776 2.1 0 3330 0.0 0 2799 200.1 0 2733 200.0 0 2733 200.0
0.50 0 4090 20.0 0 5501 0.1 0 4136 200.2 0 4066 200.0 0 4068 200.3
0.80 0 4889 46.9 0 6377 0.1 0 4909 200.4 0 4822 200.1 0 4807 200.3
1.00 0 5379 61.5 0 6930 0.1 0 5492 200.2 0 5356 200.6 0 5316 200.6

252

Table A.23: Performance of VND-O, VND-S, GRASP-O, MA-O, and VNS-O for instance size
(Sz.) 100, instance numbers (Nr.) 15–29.

VND-O VND-S GRASP-O MA-O VNS-O
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]
100 15 0.10 0 1861 3.2 0 2591 0.0 0 1887 200.0 0 1850 200.0 0 1822 200.0

0.50 0 3293 11.6 0 4283 0.0 0 3183 200.0 0 3103 200.1 0 3064 200.1
0.80 0 4413 25.9 0 5504 0.1 0 4323 200.0 0 4317 200.1 0 4243 200.1
1.00 0 5251 25.5 0 6118 0.1 0 5347 200.4 0 5254 200.1 0 5221 200.0

16 0.10 0 2531 4.7 0 3454 0.0 0 2530 200.1 0 2519 200.1 0 2499 200.1
0.50 0 3894 18.8 0 4885 0.1 0 3976 200.0 0 3957 200.2 0 3850 200.4
0.80 0 4493 47.9 0 5796 0.1 0 4466 200.0 0 4567 200.4 0 4527 200.1
1.00 0 5217 61.2 0 6609 0.3 0 5167 200.2 0 5198 200.3 0 5157 200.7

17 0.10 0 2003 2.2 0 2744 0.0 0 2045 200.0 0 2003 200.0 0 2003 200.0
0.50 0 4339 16.7 0 5453 0.0 0 4226 200.1 0 4217 200.2 0 4151 200.0
0.80 0 4986 27.4 0 6123 0.1 0 4872 200.1 0 4693 200.4 0 4859 200.2
1.00 0 5791 31.0 0 6888 0.1 0 5905 200.1 0 5717 200.2 0 5702 200.2

18 0.10 0 2002 1.5 0 2419 0.0 0 2013 200.0 0 1956 200.0 0 1945 200.0
0.50 0 3143 17.1 0 4376 0.1 0 3214 200.0 0 3158 200.0 0 3023 200.1
0.80 0 3914 28.1 0 5150 0.1 0 3863 200.1 0 3706 200.0 0 3641 200.2
1.00 115 4763 44.8 0 6356 0.7 0 4778 200.0 0 4699 200.2 0 4527 200.0

19 0.10 0 2210 3.8 0 2947 0.0 0 2220 200.0 0 2219 200.0 0 2204 200.1
0.50 0 3514 21.8 0 4375 0.1 0 3451 200.0 0 3352 200.4 0 3346 200.2
0.80 0 4048 27.2 0 5060 0.1 0 4001 200.2 0 3977 200.4 0 3990 200.0
1.00 0 4543 43.5 0 5686 0.1 0 4374 200.4 0 4530 200.2 0 4359 200.0

20 0.10 0 1630 0.8 0 2091 0.0 0 1609 200.0 0 1548 200.0 0 1548 200.0
0.50 0 3648 15.5 0 5106 0.0 0 3607 200.0 0 3600 200.0 0 3544 200.2
0.80 0 4338 37.8 0 6065 0.1 0 4366 200.0 0 4262 200.0 0 4170 200.3
1.00 0 4963 52.1 0 6644 0.2 0 5001 200.0 0 4853 200.4 0 4711 200.0

21 0.10 0 1973 4.3 0 2866 0.0 0 2015 200.0 0 1950 200.0 0 1923 200.0
0.50 0 3414 19.7 0 4798 0.1 0 3440 200.1 0 3434 200.0 0 3434 200.2
0.80 0 4249 41.9 0 5769 0.1 0 4158 200.2 0 4154 200.5 0 4107 200.1
1.00 0 4708 46.6 0 6111 0.1 0 4815 200.0 0 4570 200.2 0 4570 200.1

22 0.10 0 1097 0.6 0 1238 0.0 0 1065 200.0 0 1065 200.0 0 1065 200.0
0.50 0 2882 17.4 0 4200 0.0 0 2961 200.1 0 2855 200.0 0 2863 200.0
0.80 0 3881 35.2 0 5445 0.1 0 3958 200.3 0 3869 200.3 0 3901 200.1
1.00 0 4395 38.6 0 6033 0.1 0 4510 200.2 0 4365 200.2 0 4282 200.3

23 0.10 0 1572 1.6 0 2254 0.0 0 1603 200.0 0 1518 200.0 0 1519 200.0
0.50 0 3084 17.9 0 4672 0.1 0 3023 200.0 0 2959 200.2 0 3018 200.0
0.80 0 4064 40.3 0 5685 0.1 0 4282 200.2 0 4160 200.3 0 4109 200.0
1.00 0 5315 39.7 0 6413 0.1 0 5420 200.4 0 5312 200.2 0 5134 200.1

24 0.10 0 2584 2.1 0 3233 0.0 0 2503 200.0 0 2490 200.0 0 2482 200.1
0.50 0 3991 18.3 0 5237 0.0 0 3992 200.2 0 4020 200.2 0 3886 200.0
0.80 0 4810 31.2 0 6442 0.1 0 4707 200.1 0 4606 200.3 0 4554 200.2
1.00 0 4948 62.0 0 6741 0.1 0 5252 200.2 0 4988 200.1 0 4853 200.0

25 0.10 0 2088 2.2 0 2535 0.0 0 2088 200.0 0 1940 200.0 0 1976 200.1
0.50 0 3587 23.4 0 4569 0.1 0 3539 200.0 0 3440 200.1 0 3518 200.3
0.80 0 4648 34.0 0 5558 0.1 0 4479 200.2 0 4555 200.2 0 4453 200.4
1.00 0 5150 51.6 0 6758 0.1 0 5145 200.4 0 5020 200.0 0 4860 200.4

26 0.10 0 2384 1.6 0 3194 0.0 0 2357 200.0 0 2353 200.0 0 2360 200.0
0.50 0 3753 9.1 0 4552 0.0 0 3735 200.1 0 3751 200.1 0 3590 200.0
0.80 0 4535 33.5 0 6142 0.1 0 4652 200.2 0 4458 200.0 0 4355 200.3
1.00 0 5091 36.2 0 6596 0.1 0 5103 200.1 0 4954 200.2 0 5081 200.5

27 0.10 0 1690 1.1 0 2153 0.0 0 1465 200.0 0 1480 200.0 0 1445 200.0
0.50 0 3175 13.2 0 4531 0.0 0 3221 200.1 0 3122 200.1 0 3013 200.0
0.80 0 4371 21.6 0 5636 0.1 0 4378 200.2 0 4197 200.2 0 4137 200.3
1.00 255 5031 27.2 95 5567 59.4 0 4777 200.2 0 4789 200.1 0 4688 200.4

28 0.10 0 2265 2.8 0 2976 0.0 0 2178 200.0 0 2219 200.0 0 2219 200.0
0.50 0 4364 17.6 0 5456 0.1 0 4292 200.0 0 4277 200.2 0 4202 200.0
0.80 0 4693 38.7 0 6154 0.1 0 4675 200.2 0 4658 200.4 0 4629 200.4
1.00 0 5401 47.2 0 7019 0.1 0 5306 200.1 0 5519 200.1 0 5115 200.7

29 0.10 0 2523 3.0 0 3087 0.0 0 2403 200.0 0 2421 200.0 0 2416 200.0
0.50 0 3622 24.4 0 5318 0.1 0 3616 200.2 0 3580 200.0 0 3501 200.0
0.80 0 4549 48.3 0 6258 0.1 0 4663 200.1 0 4577 200.1 0 4454 200.3
1.00 0 5045 49.6 0 6537 0.3 0 5156 200.4 0 4987 200.4 0 4948 200.1

253

Table A.24: Performance of VND-O, VND-S, GRASP-O, MA-O, and VNS-O for instance size
(Sz.) 200, instance numbers (Nr.) 0–14.

VND-O VND-S GRASP-O MA-O VNS-O
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]
200 0 0.10 0 2277 6.7 0 3035 0.0 0 2247 500.0 0 2265 500.0 0 2222 500.1

0.50 0 4616 65.1 0 6799 0.1 0 4760 500.2 0 4631 500.5 0 4612 500.4
0.80 0 6050 112.2 0 8179 0.1 0 6173 500.0 0 6047 500.1 0 5811 500.2
1.00 0 7003 121.9 0 9502 0.2 0 6885 500.1 0 7104 500.1 0 6857 500.3

1 0.10 0 1915 2.7 0 2535 0.0 0 1879 500.0 0 1891 500.1 0 1858 500.1
0.50 0 4132 70.4 0 5974 0.1 0 4334 500.1 0 4302 500.3 0 4212 500.6
0.80 0 5706 159.1 0 7391 11.1 0 5932 500.8 0 5834 500.6 0 5904 500.1
1.00 0 7601 137.1 0 9234 20.0 0 7613 500.0 0 7394 500.6 0 7189 500.9

2 0.10 0 2669 6.4 0 3478 0.0 0 2673 500.1 0 2650 500.1 0 2677 500.0
0.50 0 4261 31.6 0 5910 0.1 0 4389 500.2 0 4203 500.1 0 4135 500.3
0.80 0 5398 153.0 0 7485 0.2 0 5649 500.6 0 5516 500.0 0 5278 500.4
1.00 0 6676 178.2 0 9725 0.7 0 7036 500.2 0 7051 500.9 0 6722 500.5

3 0.10 0 3699 13.6 0 4918 0.0 0 3612 500.1 0 3650 500.2 0 3579 500.0
0.50 0 5850 85.5 0 7894 30.9 0 5968 500.4 0 6144 500.2 0 5815 500.6
0.80 0 6965 139.6 0 9359 72.9 0 7104 500.2 0 7017 500.1 0 6921 500.0
1.00 100 8081 159.8 100 8951 363.9 0 8190 500.3 0 7952 500.3 100 7946 501.0

4 0.10 0 2921 10.0 0 3805 0.0 0 2896 500.0 0 2882 500.0 0 2854 500.1
0.50 0 4870 41.4 0 6757 0.1 0 5080 500.4 0 4905 500.4 0 4819 500.3
0.80 0 6398 174.8 0 9562 0.1 0 6845 500.2 0 6524 500.1 0 6320 500.2
1.00 0 8240 218.1 0 11288 0.7 0 8569 500.1 0 8111 500.9 0 7991 501.3

5 0.10 0 3012 12.4 0 4086 0.0 0 3089 500.1 0 2994 500.0 0 2994 500.0
0.50 0 5150 100.4 0 7151 6.0 0 5217 500.0 0 5298 500.4 0 5182 500.8
0.80 0 6435 224.4 0 8654 22.6 40 6840 500.1 10 6681 500.4 0 6516 500.1
1.00 20 7388 353.2 20 8429 523.5 0 7601 500.4 130 7742 500.0 40 7289 500.6

6 0.10 0 3334 20.6 0 5047 0.0 0 3411 500.2 0 3262 500.2 0 3310 500.0
0.50 0 5307 92.3 0 7907 0.1 0 5546 500.5 0 5280 500.8 0 5272 500.0
0.80 0 6829 147.3 0 9469 2.7 0 7064 501.0 0 6929 501.0 0 6818 500.6
1.00 0 8076 191.4 0 10897 6.3 0 8231 501.4 0 7962 500.5 0 8030 500.3

7 0.10 0 2883 10.0 0 4504 0.0 0 3025 500.0 0 2932 500.0 0 2802 500.1
0.50 0 5657 72.4 0 8369 0.1 0 5808 500.0 0 5640 500.2 0 5562 500.5
0.80 0 7221 172.1 0 10621 0.2 0 7499 500.3 0 7371 500.6 0 7131 500.0
1.00 0 8518 188.2 0 11595 15.8 0 8917 501.2 0 8705 500.2 0 8524 500.9

8 0.10 0 1530 1.9 0 2046 0.0 0 1511 500.0 0 1520 500.0 0 1511 500.0
0.50 0 4746 56.4 0 7117 0.1 0 4851 500.1 0 4818 500.2 0 4779 500.1
0.80 0 6262 144.8 0 9732 13.2 0 6468 501.0 0 6449 500.3 0 6305 500.1
1.00 0 8083 159.1 0 10777 23.3 0 8337 500.2 0 8067 500.3 0 8133 500.0

9 0.10 0 2264 3.5 0 2765 0.0 0 2241 500.0 0 2264 500.0 0 2262 500.0
0.50 0 5070 83.8 0 7299 7.3 0 5249 500.2 0 5184 500.4 0 5108 500.1
0.80 0 5890 254.8 0 8466 13.7 0 6078 500.4 0 6141 500.1 0 5924 500.2
1.00 0 7854 312.9 0 10055 20.0 0 8003 500.5 0 7813 500.4 0 7952 500.7

10 0.10 0 1792 1.6 0 2375 0.0 0 1810 500.0 0 1734 500.0 0 1734 500.0
0.50 0 5040 34.6 0 6830 0.1 0 4944 500.2 0 4919 500.2 0 4812 500.0
0.80 0 6718 149.6 0 9066 0.1 0 6947 500.2 0 6722 500.3 0 6720 500.5
1.00 0 7897 154.0 0 10630 1.4 0 8236 501.1 0 7828 500.1 0 7894 500.8

11 0.10 0 2070 2.6 0 2747 0.0 0 1999 500.0 0 1889 500.0 0 1869 500.0
0.50 0 4961 73.8 0 7254 0.1 0 5067 500.4 0 5032 500.8 0 5005 500.2
0.80 0 7695 184.8 0 10777 0.2 0 7474 500.3 0 7669 500.0 0 7343 500.4
1.00 0 8669 304.8 0 12127 0.3 0 9074 501.4 0 8704 501.2 0 8696 500.3

12 0.10 0 2733 7.6 0 3761 0.0 0 2719 500.0 0 2718 500.1 0 2704 500.0
0.50 0 4635 57.0 0 6317 0.1 0 4781 500.1 0 4749 500.2 0 4630 500.0
0.80 0 5735 92.8 0 7884 0.2 0 5758 500.2 0 5745 500.2 0 5593 500.3
1.00 0 6990 225.8 0 9638 0.2 0 7257 500.8 0 7278 500.7 0 7070 500.0

13 0.10 0 2209 2.9 0 2706 0.0 0 2201 500.0 0 2206 500.0 0 2201 500.0
0.50 0 3819 63.7 0 5247 0.1 0 3953 500.1 0 3873 500.4 0 3853 500.0
0.80 0 5031 149.3 0 7815 0.2 0 5204 500.2 0 5173 500.1 0 5055 500.3
1.00 0 6416 207.2 0 9871 0.5 0 6744 500.4 0 6442 500.8 0 6119 500.4

14 0.10 0 3292 18.4 0 4318 0.0 0 3339 500.1 0 3412 500.3 0 3279 500.1
0.50 0 4803 63.0 0 6509 0.1 0 5023 500.0 0 4818 500.0 0 4932 500.4
0.80 0 6857 160.9 0 8785 0.2 0 7093 501.5 0 7032 500.9 0 6918 500.2
1.00 0 7482 186.6 0 9518 0.4 0 7678 501.7 0 7696 500.3 0 7639 501.6

254

Table A.25: Performance of VND-O, VND-S, GRASP-O, MA-O, and VNS-O for instance size
(Sz.) 200, instance numbers (Nr.) 15–29.

VND-O VND-S GRASP-O MA-O VNS-O
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]
200 15 0.10 0 2631 5.3 0 3045 0.0 0 2562 500.1 0 2546 500.0 0 2554 500.1

0.50 0 4419 58.1 0 6125 0.1 0 4485 500.2 0 4496 500.1 0 4355 500.2
0.80 0 5506 164.4 0 7859 0.1 0 5832 500.4 0 5706 500.9 0 5676 500.0
1.00 0 6968 134.0 0 9258 15.9 5 7264 500.9 0 6944 500.7 0 6745 500.0

16 0.10 0 2700 6.3 0 3571 0.0 0 2694 500.0 0 2689 500.1 0 2652 500.0
0.50 0 4103 46.9 0 5862 0.1 0 4171 500.5 0 4124 500.1 0 4009 500.4
0.80 0 5450 158.5 0 8900 0.2 0 5735 500.1 0 5682 500.7 0 5660 500.2
1.00 0 7128 214.3 0 10720 22.1 0 7504 501.0 0 7558 500.1 0 7261 501.6

17 0.10 0 1943 4.4 0 2837 0.0 0 1851 500.0 0 1851 500.1 0 1851 500.1
0.50 0 5287 82.7 0 7698 0.1 0 5286 500.5 0 5300 500.2 0 5094 500.5
0.80 0 7095 141.2 0 9643 0.2 0 7310 500.5 0 7183 500.3 0 7132 500.6
1.00 0 8576 251.3 0 11573 1.1 0 8770 500.2 0 8654 500.8 0 8365 500.9

18 0.10 0 2159 12.4 0 2980 0.0 0 2065 500.1 0 2060 500.0 0 2042 500.1
0.50 0 4635 80.4 0 6669 0.1 0 4624 500.8 0 4568 500.1 0 4521 500.8
0.80 0 6442 172.7 0 8854 0.3 0 6364 500.4 0 6427 500.4 0 6265 500.8
1.00 0 7457 249.5 0 9800 28.6 0 7434 500.5 0 7272 501.4 0 7615 501.7

19 0.10 0 2414 4.1 0 2889 0.0 0 2394 500.0 0 2415 500.1 0 2402 500.1
0.50 0 4347 35.7 0 5502 0.1 0 4297 500.1 0 4301 500.2 0 4182 500.1
0.80 0 6480 116.2 0 9378 0.3 0 6653 500.1 0 6710 500.9 0 6438 500.7
1.00 0 7581 119.4 0 10351 14.3 0 7742 500.1 0 7662 500.3 0 7374 500.3

20 0.10 0 2627 8.2 0 4118 0.0 0 2619 500.1 0 2640 500.1 0 2604 500.1
0.50 0 5076 62.1 0 7554 0.1 0 5013 500.1 0 4971 500.2 0 4895 500.6
0.80 0 6384 168.6 0 9645 14.3 0 6743 500.7 25 6682 500.8 0 6561 500.0
1.00 25 8128 198.2 0 10652 69.4 0 8345 500.8 25 8162 501.3 588 8009 500.4

21 0.10 0 2512 7.9 0 3518 0.0 0 2516 500.1 0 2545 500.1 0 2481 500.0
0.50 0 4811 52.4 0 6612 0.1 0 4878 500.2 0 4812 500.1 0 4758 500.4
0.80 0 6539 151.4 0 8874 0.2 0 6880 501.2 0 6510 500.1 0 6788 500.3
1.00 0 7445 199.1 0 9870 15.0 0 8055 501.1 0 7453 500.5 0 7908 501.0

22 0.10 0 3046 8.5 0 4213 0.0 0 3084 500.0 0 3031 500.0 0 2997 500.0
0.50 0 5436 66.5 0 7159 0.1 0 5342 500.7 0 5350 500.1 0 5321 500.1
0.80 0 6731 140.1 0 8708 0.2 0 6809 501.0 0 6732 500.0 0 6598 500.2
1.00 0 7742 222.7 0 10890 6.0 0 7871 500.1 0 7853 500.5 0 7851 501.2

23 0.10 0 2571 11.7 0 4196 0.0 0 2699 500.0 0 2797 500.0 0 2571 500.1
0.50 0 5191 58.2 0 8257 0.1 0 5352 500.5 0 5318 500.0 0 5025 500.0
0.80 0 6835 120.3 0 9738 0.2 0 6793 500.4 0 6532 500.2 0 6343 500.5
1.00 0 9031 256.4 0 11393 16.0 0 9102 500.0 175 8972 500.0 0 9171 501.1

24 0.10 0 2278 2.7 0 2970 0.0 0 2209 500.0 0 2208 500.0 0 2207 500.0
0.50 0 5032 63.5 0 7111 0.1 0 5175 500.0 0 5009 500.2 0 4771 500.1
0.80 0 5899 134.6 0 8662 0.2 0 6176 500.3 0 5994 500.0 0 6009 500.1
1.00 0 8010 216.9 0 10681 3.5 0 7771 500.2 0 7780 500.0 0 7778 500.4

25 0.10 0 2919 8.8 0 3957 0.0 0 2866 500.0 0 2829 500.0 0 2805 500.1
0.50 0 5100 69.8 0 7152 6.5 0 4992 500.1 0 5001 500.2 0 4913 500.4
0.80 0 6154 150.8 0 8577 20.3 0 6203 500.0 0 6108 500.2 0 6136 500.1
1.00 0 7074 218.7 0 9729 23.3 0 7364 500.6 0 7330 500.0 0 7286 500.3

26 0.10 0 2992 12.6 0 3590 0.0 0 2997 500.0 0 2943 500.1 0 2920 500.2
0.50 0 4498 87.6 0 5922 0.1 0 4598 500.4 0 4608 500.0 0 4469 500.7
0.80 0 6348 152.8 0 8519 12.4 0 6408 501.0 0 6430 500.3 0 6247 500.1
1.00 0 7398 219.2 0 9393 16.1 0 7635 501.3 0 7476 501.5 0 7371 501.3

27 0.10 0 2555 1.9 0 3166 0.0 0 2437 500.0 0 2478 500.1 0 2478 500.0
0.50 0 4632 48.3 0 6317 0.1 0 4643 500.1 0 4611 500.2 0 4620 500.2
0.80 0 5823 149.2 0 8099 0.2 0 6041 500.3 0 6013 500.0 0 5923 500.3
1.00 0 6655 202.7 0 9045 14.2 0 6889 500.3 0 6753 501.1 0 6815 500.2

28 0.10 0 2630 7.1 0 3615 0.0 0 2545 500.0 0 2389 500.0 0 2397 500.0
0.50 0 4272 56.3 0 5952 0.1 0 4189 500.2 0 4151 500.1 0 4052 500.2
0.80 0 5713 114.1 0 8237 10.8 0 6128 500.2 0 5796 500.8 0 5845 500.7
1.00 0 7744 194.4 0 9275 187.7 0 8211 500.7 0 7808 500.6 0 7655 500.0

29 0.10 0 2531 7.0 0 3760 0.0 0 2455 500.0 0 2391 500.2 0 2368 500.2
0.50 0 4826 47.9 0 7198 0.1 0 4894 500.4 0 4634 500.0 0 4676 500.2
0.80 0 7064 138.6 0 9158 0.3 0 6956 500.6 0 6770 500.8 0 6697 501.0
1.00 0 7805 288.2 0 9998 135.4 0 7977 500.5 0 7833 500.3 0 7595 500.4

255

Table A.26: Performance of VND-O, VND-S, GRASP-O, MA-O, and VNS-O for instance size
(Sz.) 500, instance numbers (Nr.) 0–14.

VND-O VND-S GRASP-O MA-O VNS-O
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]
500 0 0.10 0 3876 42.0 0 4988 0.1 0 3838 500.2 0 3846 500.0 0 3793 500.0

0.50 0 6952 229.7 0 9727 0.2 0 7167 500.1 0 7172 500.6 0 7118 500.6
0.80 0 9165 887.1 0 13114 0.5 0 9530 501.8 0 9787 500.3 0 9582 502.6
1.00 26 12890 1009.9 26 15806 1001.1 194 13827 500.2 231 13924 501.4 231 13062 501.4

1 0.10 0 3749 51.1 0 4910 0.0 0 3828 500.1 0 3934 500.3 0 3817 500.3
0.50 0 6510 309.9 0 9735 0.2 0 6953 500.0 0 6813 500.3 0 6818 501.4
0.80 0 8452 643.1 0 13259 36.6 0 9321 500.4 0 9019 500.4 0 8982 502.8
1.00 35 11716 896.5 35 14438 1001.4 55 12580 500.4 13 13087 502.3 37 11838 503.5

2 0.10 0 3475 53.3 0 4820 0.1 0 3520 500.1 0 3588 500.4 0 3384 500.1
0.50 0 6501 215.9 0 9112 0.2 0 6829 500.4 0 6722 500.3 0 6762 500.1
0.80 0 9319 994.7 0 14273 0.6 0 9768 500.7 0 9643 500.4 0 9743 501.8
1.00 0 13096 1031.7 0 18406 80.8 240 14091 500.6 0 13636 500.5 0 13921 500.8

3 0.10 0 3082 30.8 0 3907 0.0 0 3108 500.0 0 3124 500.0 0 3046 500.1
0.50 0 6098 187.2 0 7963 0.2 0 6202 500.2 0 6121 500.6 0 6106 500.0
0.80 0 8799 1028.9 0 12861 0.4 0 9538 500.2 0 9651 502.0 0 9413 500.3
1.00 0 11894 1037.1 0 16369 4.4 0 12682 501.0 0 12177 500.1 0 12201 500.9

4 0.10 0 2633 9.3 0 3323 0.0 0 2631 500.0 0 2630 500.0 0 2625 500.1
0.50 0 6540 333.1 0 9406 0.3 0 6843 501.2 0 6733 500.9 0 6783 500.0
0.80 0 9127 698.1 0 12390 0.5 0 9643 502.0 0 9300 500.9 0 9508 503.2
1.00 0 11498 1042.1 0 15213 96.6 0 12659 503.0 5 11987 500.7 5 12208 501.1

5 0.10 0 2998 25.5 0 3862 0.0 0 2951 500.1 0 2944 500.0 0 2896 500.1
0.50 0 6967 610.1 0 11169 0.3 0 7409 501.4 0 7326 501.0 0 7399 500.2
0.80 0 9970 1000.6 0 14375 4.0 0 10697 501.3 0 10421 500.6 0 10295 503.2
1.00 308 12753 1001.8 93 15957 1037.3 468 14832 502.3 530 13490 503.9 615 13444 500.0

6 0.10 0 3270 46.5 0 4386 0.0 0 3305 500.3 0 3223 500.1 0 3217 500.0
0.50 0 6890 405.4 0 10049 31.4 0 7350 500.1 0 7227 500.2 0 6984 501.4
0.80 0 8984 1030.9 0 13276 60.5 0 9592 500.3 0 9927 501.6 0 9851 500.7
1.00 185 12434 1039.0 120 15583 1002.3 120 13315 502.5 120 12932 500.5 120 12996 504.4

7 0.10 0 3256 40.6 0 4290 0.0 0 3381 500.1 0 3272 500.1 0 3247 500.0
0.50 0 7664 513.1 0 10053 25.1 0 7783 501.2 0 7964 501.1 0 7725 501.3
0.80 0 11302 1000.1 0 15800 275.8 0 12010 501.5 0 11733 503.2 0 11877 500.3
1.00 115 14322 1001.6 115 17843 1012.9 12 16823 501.5 250 14718 501.4 250 15023 501.3

8 0.10 0 3059 73.4 0 4606 0.1 0 3165 500.1 0 3207 500.3 0 3015 500.1
0.50 0 6557 657.0 0 9999 0.3 0 7000 500.1 0 6861 500.3 0 7104 500.0
0.80 0 10742 1045.4 0 16243 0.6 0 11073 500.5 0 10918 501.6 0 11105 500.9
1.00 0 13979 1010.7 0 19822 189.5 0 15110 500.9 0 14482 500.6 0 15607 505.8

9 0.10 0 2480 30.9 0 3470 0.0 0 2490 500.4 0 2623 500.1 0 2434 500.2
0.50 0 5588 333.5 0 8472 26.0 0 5904 500.4 0 5991 500.1 0 5881 500.1
0.80 0 8510 784.1 0 12676 43.7 0 8724 500.3 0 8626 500.2 0 9067 500.6
1.00 0 11692 1029.5 0 16230 306.9 0 12509 501.1 0 12556 500.6 0 12235 500.7

10 0.10 0 3145 41.8 0 4117 0.1 0 3062 500.0 0 3246 500.1 0 3128 500.2
0.50 0 6003 375.3 0 9254 0.3 0 6160 500.4 0 6073 500.9 0 6023 500.1
0.80 0 9655 676.5 0 14007 0.6 0 9659 501.0 0 10003 501.4 0 9840 500.7
1.00 0 13097 1037.9 46 16492 1007.1 0 13281 502.0 385 13164 500.1 0 13839 500.9

11 0.10 0 3513 19.1 0 4610 0.0 0 3471 500.4 0 3513 500.5 0 3513 500.5
0.50 0 7540 310.8 0 10411 0.3 0 8085 500.5 0 7891 501.5 0 7953 500.4
0.80 0 9417 567.8 0 12731 0.4 10 9744 500.0 0 9692 500.2 0 9881 501.0
1.00 0 11712 1003.2 0 15413 244.1 0 12423 500.3 0 12330 501.8 280 12371 501.1

12 0.10 0 3098 9.8 0 4014 0.0 0 3098 500.0 0 3096 500.1 0 3096 500.2
0.50 0 7209 453.8 0 11058 0.3 0 7716 501.8 0 7485 500.6 0 7357 500.8
0.80 0 10124 993.7 0 16037 125.9 0 11356 500.3 0 10830 500.3 5 11000 503.3
1.00 0 12797 1037.7 0 18317 440.7 440 14389 500.0 25 14220 501.2 5 13617 501.2

13 0.10 0 2899 16.1 0 3434 0.0 0 2895 500.0 0 2858 500.0 0 2860 500.1
0.50 0 5966 203.4 0 9346 0.2 0 6087 500.1 0 5934 500.0 0 5894 500.4
0.80 0 8972 529.9 0 13215 0.4 0 9283 501.0 0 9095 502.4 0 9119 501.6
1.00 49 12696 1021.8 49 15625 1037.6 0 13146 500.7 49 12963 501.0 145 13196 501.1

14 0.10 0 3549 44.7 0 4501 0.0 0 3535 500.1 0 3647 500.1 0 3451 500.1
0.50 0 7067 461.0 0 10534 0.2 0 7245 501.8 0 7186 500.7 0 7197 501.1
0.80 0 10278 1042.0 0 15870 71.4 750 10618 502.6 0 10630 500.2 750 10781 500.9
1.00 275 15289 1053.1 15 20098 1015.5 1248 17547 501.7 645 15412 502.9 800 15954 505.5

256

Table A.27: Performance of VND-O, VND-S, GRASP-O, MA-O, and VNS-O for instance size
(Sz.) 500, instance numbers (Nr.) 15–29.

VND-O VND-S GRASP-O MA-O VNS-O
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]

500 15 0.10 0 3641 73.2 0 5289 0.1 0 3673 500.3 0 3671 500.2 0 3647 500.0
0.50 0 6151 361.6 0 9280 0.2 0 6408 501.5 0 6357 501.4 0 6183 501.4
0.80 0 9656 1029.1 0 14306 115.3 70 10602 500.9 35 10365 500.8 100 10537 500.5
1.00 10 13722 1000.1 75 16961 1000.7 0 14463 501.4 35 14140 501.2 260 14365 504.8

16 0.10 0 2960 38.8 0 4581 0.0 0 3030 500.3 0 3098 500.1 0 3007 500.0
0.50 0 6258 313.0 0 9436 0.2 0 6346 500.2 0 6377 500.3 0 6281 501.0
0.80 0 8758 1022.2 0 12919 0.4 0 9102 500.4 0 9180 501.9 0 9087 501.0
1.00 5 12286 1046.9 30 15699 1014.1 10 13036 500.2 10 12989 500.1 10 13006 500.2

17 0.10 0 2215 11.7 0 2955 0.0 0 2183 500.0 0 2188 500.2 0 2160 500.0
0.50 0 5638 182.0 0 8191 20.5 5 5655 500.2 0 5713 500.0 0 5797 500.1
0.80 0 7552 687.8 0 11509 36.9 5 7914 500.7 0 7889 500.1 5 7706 500.1
1.00 0 10869 884.7 0 14079 109.4 23 11465 501.5 30 11242 500.2 5 10975 501.2

18 0.10 0 3512 35.5 0 4432 0.0 0 3595 500.6 0 3594 500.3 0 3556 500.2
0.50 0 6626 301.7 0 9815 0.3 0 6877 500.5 0 6806 501.4 0 6728 501.7
0.80 0 9344 1018.7 0 15415 0.5 0 9999 501.0 0 9999 503.2 3 10055 501.1
1.00 0 13930 1002.3 0 19481 341.1 236 15025 500.1 514 14178 500.2 1045 14379 506.0

19 0.10 0 3123 62.3 0 4511 0.1 0 3234 500.4 0 3193 500.3 0 3211 500.5
0.50 0 7380 404.2 0 9965 0.3 0 7612 500.4 0 7535 501.6 0 7488 501.6
0.80 0 10284 1002.8 0 15392 1.2 0 11730 502.4 0 10543 505.2 0 10611 503.4
1.00 0 15385 1042.9 0 20147 40.2 95 16302 506.6 10 15447 500.2 0 15708 502.5

20 0.10 0 3336 21.9 0 4522 0.0 0 3284 500.1 0 3313 500.1 0 3275 500.0
0.50 0 6942 479.0 0 9923 0.3 0 7265 500.2 0 7205 500.1 0 7104 501.2
0.80 0 9157 832.0 0 13713 53.3 0 9771 501.4 0 9568 500.0 0 9538 502.4
1.00 140 13358 1003.5 140 18061 1011.9 95 14276 501.3 140 13641 503.2 210 14028 501.6

21 0.10 0 3101 40.9 0 4578 0.0 0 3195 500.0 0 3110 500.3 0 3067 500.0
0.50 0 5902 406.9 0 9383 29.8 0 6404 500.2 20 6389 501.3 0 6633 500.1
0.80 0 8931 991.5 0 14010 136.4 5 10101 502.0 981 10173 501.6 0 9439 500.8
1.00 0 12602 1001.8 0 16905 462.5 852 13017 501.2 2450 13483 500.9 1394 13814 501.2

22 0.10 0 2527 72.6 0 3519 0.0 0 2497 500.0 0 2497 500.0 0 2477 500.1
0.50 0 5853 423.4 0 9410 32.9 33 6291 500.5 33 6118 501.4 33 5943 500.1
0.80 0 8389 1012.2 0 13008 152.5 33 9284 501.2 53 9105 502.2 160 9408 500.2
1.00 0 11750 1017.4 0 16226 324.5 33 12819 500.9 53 12357 504.0 213 12213 500.4

23 0.10 0 3336 63.6 0 4694 0.1 0 3481 500.2 0 3528 500.6 0 3500 500.6
0.50 0 6540 428.1 0 9842 0.3 0 6725 500.3 0 6731 500.4 0 6803 500.5
0.80 0 9106 1008.9 0 13632 1.8 0 9505 502.8 0 9553 500.6 0 9710 502.0
1.00 0 12634 1033.1 0 18518 237.2 1 14416 501.4 480 13006 505.2 315 14041 503.1

24 0.10 0 2747 89.0 0 3948 0.0 0 2899 500.3 0 2922 500.0 0 2908 500.1
0.50 0 6230 410.6 0 9173 0.3 0 6399 500.2 0 6392 500.7 0 6356 500.2
0.80 0 8669 1001.9 0 12918 66.0 0 9133 500.0 0 8989 502.2 0 8996 500.3
1.00 0 12018 1006.0 0 16876 238.3 0 13248 500.1 0 12448 501.7 0 13204 503.6

25 0.10 0 3631 35.4 0 4956 0.1 0 3507 500.3 0 3606 500.1 0 3596 500.2
0.50 0 7411 428.2 0 10623 0.3 0 7771 500.2 0 7674 500.8 0 7519 502.0
0.80 0 11048 1000.1 0 14185 999.4 0 11903 501.2 5 11496 500.9 0 11712 500.8
1.00 305 13828 1042.4 315 17860 1028.2 390 14827 500.1 480 14547 501.1 480 14849 501.1

26 0.10 0 3033 42.0 0 4184 0.0 0 2972 500.0 0 3113 500.2 0 2928 500.2
0.50 0 6924 342.3 0 10625 0.5 0 7105 500.4 0 7184 500.9 0 6903 501.3
0.80 0 10142 1002.5 0 14119 103.8 0 10897 500.1 0 10931 501.0 0 11189 500.6
1.00 0 12362 1047.6 20 15650 1040.4 50 13326 500.3 405 13284 501.3 405 12926 504.8

27 0.10 0 3503 31.7 0 4626 0.1 0 3576 500.0 0 3601 500.3 0 3531 500.0
0.50 0 6415 292.1 0 9717 0.2 0 6533 500.2 0 6740 500.9 0 6554 501.0
0.80 0 9944 927.5 0 14386 43.1 0 10540 501.0 0 10514 500.3 0 10513 500.9
1.00 0 13425 1003.6 0 17330 13.1 167 14332 500.3 0 13721 504.7 0 13177 502.9

28 0.10 0 3032 35.7 0 4465 0.0 0 3035 500.1 0 3154 500.1 0 3050 500.3
0.50 0 6513 274.0 0 9716 0.3 0 6723 500.6 0 6562 500.0 0 6563 500.0
0.80 0 9860 800.9 0 14309 65.6 0 10478 500.8 0 9889 500.6 0 9862 501.0
1.00 285 12589 1001.2 350 15724 1034.8 15 14008 502.9 1290 13091 501.3 340 13464 500.1

29 0.10 0 3814 62.8 0 5124 0.1 0 3997 500.1 0 3789 500.1 0 3815 500.5
0.50 0 6518 334.3 0 8895 0.2 0 6613 500.3 0 6560 501.1 0 6412 500.2
0.80 0 9009 1032.5 0 13180 0.7 0 10127 500.1 0 9738 500.6 0 9510 502.5
1.00 0 13274 1009.6 0 17571 18.8 0 13867 503.5 0 13503 501.0 0 13633 500.1

257

Table A.28: Performance of VND-O, VND-S, GRASP-O, MA-O, and VNS-O for instance size
(Sz.) 1000, instance numbers (Nr.) 0–14.

VND-O VND-S GRASP-O MA-O VNS-O
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]

1000 0 0.10 0 4002 169.5 0 6023 0.1 0 4066 500.1 0 4161 500.3 0 4105 501.3
0.50 0 10173 1001.8 0 15908 0.7 0 10479 500.9 0 11017 502.8 0 10435 504.7
0.80 165 16396 1004.9 0 23962 723.0 1120 17394 500.9 165 16757 501.3 15 17332 509.0
1.00 617 25140 1004.6 191 31778 1062.6 716 26359 503.7 523 25113 511.5 1291 25589 502.0

1 0.10 0 3352 160.5 0 4841 0.1 0 3500 500.2 0 3564 500.0 0 3386 500.1
0.50 0 8718 804.7 15 11474 1042.5 0 9230 500.9 0 9417 500.2 0 9261 501.0
0.80 93 14461 1041.5 0 20847 380.6 0 14984 504.1 110 15082 503.3 110 15513 500.9
1.00 848 21414 1004.3 645 27135 1124.7 441 23130 502.1 779 22406 503.9 1059 22265 508.4

2 0.10 0 4024 303.7 0 5945 0.1 0 4224 500.4 0 4266 501.1 0 4148 500.1
0.50 0 9526 1034.5 0 13551 115.2 0 9929 500.1 0 9907 500.7 0 9846 500.3
0.80 0 14721 1172.8 0 21191 1001.6 60 14826 500.0 105 14821 500.7 105 14778 502.4
1.00 240 19995 1003.3 0 25236 978.1 3476 21794 501.8 85 20292 502.7 0 21828 511.4

3 0.10 0 3183 81.7 0 4225 0.0 0 3240 500.1 0 3296 500.1 0 3135 500.1
0.50 0 9127 1058.5 0 13362 83.2 0 9682 500.1 0 9472 500.6 0 9586 501.7
0.80 0 13998 1046.4 0 21102 349.0 0 14715 500.7 0 14091 500.1 0 14211 500.6
1.00 2 18835 1004.3 242 26054 1089.6 245 22159 505.3 0 19758 505.8 700 20647 505.3

4 0.10 0 4415 216.7 0 5630 17.9 0 4616 500.2 0 4486 501.3 0 4511 500.2
0.50 0 9361 1044.0 0 14012 139.5 50 9970 502.4 50 9676 505.3 50 9913 502.1
0.80 0 13536 1006.5 0 19171 934.8 50 14336 501.6 50 13828 501.4 50 14242 508.7
1.00 583 21503 1016.7 289 29230 1195.9 1358 23893 511.8 607 22448 500.4 824 23125 510.0

5 0.10 0 4875 198.9 0 6841 19.4 0 5189 500.2 0 5065 500.1 0 4952 500.2
0.50 0 9889 1000.8 0 15660 256.0 0 10776 503.5 0 10623 500.1 0 10714 500.2
0.80 0 15818 1039.9 0 22306 405.0 370 17524 501.8 0 16406 501.8 0 16274 505.3
1.00 586 21117 1010.3 70 28299 1001.5 1067 21961 502.9 361 21982 502.7 470 22525 505.6

6 0.10 0 4957 223.4 0 6789 0.1 0 4900 500.7 0 5032 500.9 0 4947 500.4
0.50 0 9438 1075.6 0 13399 0.7 0 10120 500.3 0 9860 500.0 0 9940 502.6
0.80 209 15055 1071.8 209 19397 1135.0 0 15613 505.1 209 15360 502.6 0 15664 508.6
1.00 840 21214 1012.6 312 27707 1160.3 117 22356 501.1 870 21125 502.5 1589 23091 501.9

7 0.10 0 2747 251.9 0 4115 0.1 0 2837 500.3 0 3086 500.0 0 2825 500.2
0.50 0 7407 726.3 0 11289 0.5 0 7640 501.4 0 7644 501.5 0 7782 501.7
0.80 0 14343 1055.3 15 19408 1083.0 0 15271 505.8 17 15605 501.2 17 14608 501.3
1.00 606 21510 1001.2 300 27212 1068.0 1250 22715 502.7 1152 22695 503.0 1576 22714 501.5

8 0.10 0 3685 155.6 0 5300 0.1 0 4043 500.4 0 3760 500.2 0 3676 500.8
0.50 0 7209 1023.4 0 12741 0.5 0 7482 501.1 0 7924 501.0 0 7939 501.4
0.80 241 15233 1001.5 427 20567 1003.9 95 17283 507.3 168 15584 503.8 635 16356 506.6
1.00 664 21941 1010.3 293 25790 1152.5 1639 22590 511.2 787 21958 500.2 872 21856 510.2

9 0.10 0 3490 202.5 0 4687 0.1 0 3566 500.3 0 3604 500.1 0 3537 500.2
0.50 0 8437 1003.9 0 12546 0.6 0 8920 500.3 0 8748 500.6 0 9253 500.1
0.80 0 14113 1046.4 54 19688 1103.9 0 14505 502.6 140 14227 502.2 140 14295 500.1
1.00 445 19812 1004.5 576 26125 1084.9 775 20566 503.5 635 19365 500.1 372 20820 508.8

10 0.10 0 3114 566.1 0 4256 0.1 0 3383 500.0 0 3272 500.0 0 3200 500.4
0.50 0 8881 1104.5 0 12850 122.2 0 9197 501.0 0 9021 500.8 0 9135 500.9
0.80 195 14986 1077.6 180 21157 1160.4 240 16103 500.6 205 15345 509.4 485 15387 500.9
1.00 3571 20931 1012.3 964 29324 1180.4 270 21356 500.1 3494 21739 502.0 4061 21781 511.9

11 0.10 0 3910 226.5 0 5517 0.1 0 4026 500.3 0 4152 500.8 0 4099 500.5
0.50 0 8113 1051.6 0 12241 83.1 0 9026 501.6 0 8501 501.7 0 8443 500.0
0.80 181 13879 1025.7 181 19710 1051.7 0 14538 501.4 181 14248 500.1 102 13947 503.9
1.00 895 21569 1004.4 444 28019 1010.0 237 21877 500.4 769 22065 501.4 854 22061 500.8

12 0.10 0 3634 189.6 0 5372 0.1 0 3706 500.9 0 3863 500.4 0 3660 500.8
0.50 0 9669 1075.4 0 14584 154.0 0 10548 506.8 0 10792 507.1 0 10960 504.7
0.80 3 15518 1073.6 13 20770 1172.7 68 16812 500.7 78 15829 508.9 78 15979 507.0
1.00 756 21013 1010.0 420 26258 1171.0 1534 23337 506.8 796 22100 502.3 2650 23860 506.0

13 0.10 0 4415 217.9 0 5895 0.1 0 4488 500.0 0 4453 500.0 0 4346 500.6
0.50 0 7777 1012.5 0 12976 0.6 0 8543 503.2 0 8002 504.5 0 8241 502.6
0.80 0 11924 1074.7 0 17614 217.1 0 14021 500.7 0 12399 501.3 0 12553 508.2
1.00 492 21687 1002.6 234 30050 1222.0 667 21642 500.6 927 21426 503.9 1349 23440 501.5

14 0.10 0 3675 105.1 0 4816 0.1 0 3842 500.0 0 3765 500.3 0 3729 500.0
0.50 0 7609 990.7 0 12272 0.6 0 7609 503.1 0 7644 501.3 0 8179 504.0
0.80 0 11535 1030.9 0 17609 188.4 0 12810 500.7 0 11962 500.1 0 12439 507.5
1.00 300 20934 1008.4 171 26818 1048.9 866 23107 513.8 462 20678 501.3 601 22796 503.5

258

Table A.29: Performance of VND-O, VND-S, GRASP-O, MA-O, and VNS-O for instance size
(Sz.) 1000, instance numbers (Nr.) 15–29.

VND-O VND-S GRASP-O MA-O VNS-O
Sz. Nr. Load Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s] Ca Cu t[s]

1000 15 0.10 0 4379 208.0 0 5923 0.1 0 4732 500.1 0 4523 501.1 0 4445 500.8
0.50 0 9442 1024.9 0 13953 0.6 0 9975 501.8 0 10023 500.0 0 10017 500.5
0.80 25 15244 1057.0 25 19378 1075.9 202 18378 500.8 415 15068 500.4 407 15623 505.5
1.00 271 21226 1019.0 129 26157 1123.0 75 22238 509.9 356 21376 506.0 341 22488 502.2

16 0.10 0 3407 346.0 0 5535 0.1 0 3722 500.1 0 3722 500.2 0 3445 500.3
0.50 0 8562 1039.1 0 13259 0.5 0 9132 501.5 0 8977 500.2 0 8794 501.7
0.80 0 12980 1077.0 0 17842 186.6 0 13968 503.2 0 13296 501.0 0 13738 500.6
1.00 15 19855 1004.9 92 25731 1229.2 89 21632 500.4 0 19838 505.7 0 21329 505.6

17 0.10 0 3277 140.2 0 4789 0.1 0 3335 501.0 0 3360 500.1 0 3318 500.3
0.50 0 9638 1000.8 0 14267 95.8 1 10148 503.0 1 9848 500.1 0 10037 500.1
0.80 131 16398 1040.0 130 20956 1139.3 202 17271 504.7 247 16226 504.6 202 16822 504.9
1.00 420 20852 1011.4 173 26541 1003.7 2079 22834 509.7 323 20633 503.2 513 21909 502.2

18 0.10 0 3609 163.3 0 4996 0.1 0 3797 500.1 0 3808 501.1 0 3694 500.0
0.50 0 8722 967.1 0 14021 0.7 0 9226 501.4 0 8974 505.8 0 9003 502.0
0.80 0 13556 1107.8 0 20666 1.9 0 14504 503.2 0 14620 501.1 0 14519 502.4
1.00 0 19996 1008.2 0 27385 833.5 330 22020 503.6 145 20219 505.1 1092 22447 509.3

19 0.10 0 3441 209.8 0 5071 0.1 0 3746 500.1 0 3548 500.2 0 3397 500.8
0.50 0 8623 1006.1 0 13490 196.9 0 9312 500.3 11 9274 500.2 0 9393 504.9
0.80 0 14182 1042.0 0 19998 396.4 0 14865 502.6 11 14463 502.1 471 15046 500.9
1.00 496 20822 1013.5 10 26340 1022.3 669 22114 500.4 506 20657 509.8 657 22706 508.2

20 0.10 0 5129 234.3 0 6581 0.2 0 5239 500.1 0 5344 500.1 0 5278 500.1
0.50 0 8886 1041.4 0 13071 0.6 0 9170 500.9 0 9224 503.1 0 9297 500.6
0.80 0 14090 1020.5 0 20926 22.8 0 15476 505.4 0 15009 503.1 10 15026 502.9
1.00 350 20310 1013.2 70 27316 1104.1 113 22324 503.4 1306 21099 501.8 640 21640 512.0

21 0.10 0 4076 286.3 0 5436 0.2 0 4215 501.5 0 4230 500.3 0 4140 501.4
0.50 0 8891 1002.1 0 13172 0.8 0 8998 500.8 0 9178 503.4 0 9299 500.8
0.80 89 13080 1009.4 89 17547 1001.2 0 14081 503.9 89 13284 500.4 89 13539 501.6
1.00 490 20092 1014.8 550 25878 1016.7 499 21015 505.4 642 20671 501.3 1159 20412 503.2

22 0.10 0 3846 106.9 0 5040 0.1 0 3896 500.1 0 3830 501.0 0 3811 500.4
0.50 0 7637 1002.8 0 12930 115.0 0 8498 501.2 0 7736 505.2 1366 8050 503.7
0.80 0 13609 1167.7 0 19922 428.6 0 14097 503.2 0 13833 504.9 1366 14049 502.4
1.00 2293 20607 1005.1 758 28152 1012.5 860 20302 510.0 2268 20076 501.0 2138 21291 507.7

23 0.10 0 4208 106.8 0 5379 13.9 0 4293 500.5 0 4224 500.0 0 4251 500.1
0.50 0 9397 1046.3 0 14073 94.4 0 9806 501.6 0 9689 501.8 0 9633 500.9
0.80 20 12808 1119.4 20 17995 1128.8 185 13746 502.2 20 13188 501.2 0 13434 504.3
1.00 774 21556 1001.2 540 27914 1091.1 1795 23157 506.0 950 21029 510.1 1418 22339 512.2

24 0.10 0 3384 68.5 0 4662 0.1 0 3517 500.1 0 3459 500.8 0 3422 500.5
0.50 2 9596 1075.2 2 12818 1081.3 2 10189 500.8 2 10178 504.7 2 9859 503.7
0.80 2 16223 1107.3 2 20791 1045.3 102 16224 502.8 1028 16382 506.1 911 16547 508.1
1.00 971 20759 1013.9 528 24957 1068.8 551 22007 503.5 981 21229 503.8 1034 21980 512.6

25 0.10 0 4114 379.7 0 6284 0.2 0 4250 500.1 0 4285 501.9 0 4209 500.8
0.50 0 8360 1112.3 0 13407 0.7 0 8705 503.9 0 8889 506.9 0 8783 501.5
0.80 0 14777 1106.2 0 21769 840.6 0 15925 505.6 0 15506 506.2 0 16295 501.2
1.00 5 20428 1020.6 338 29771 1081.9 1147 23330 500.6 270 20241 504.1 691 22011 501.6

26 0.10 0 4570 166.6 0 6407 0.1 0 4766 500.0 0 4699 500.9 0 4807 500.1
0.50 0 9124 1029.4 0 13540 88.5 0 9672 502.0 0 9702 501.0 0 9394 505.1
0.80 0 15371 1137.7 0 20996 369.8 30 15910 502.6 0 15967 507.6 0 15970 502.2
1.00 308 21298 1000.9 194 26020 1033.0 1552 22214 509.1 308 21712 514.3 242 22463 505.1

27 0.10 0 2977 231.3 0 4175 0.1 0 3216 500.4 0 3141 500.2 0 3023 500.0
0.50 0 7174 870.6 0 10707 0.4 0 7425 502.5 0 7298 500.6 0 7257 500.1
0.80 0 12510 1112.6 0 18046 1.2 205 14122 501.6 0 13030 502.6 0 13011 501.3
1.00 0 19228 1013.2 28 25302 1016.2 370 21183 502.4 240 19644 501.9 30 21289 507.5

28 0.10 0 4536 260.1 0 6309 0.1 0 4679 500.1 0 4846 500.1 0 4666 500.9
0.50 10 9881 1070.3 0 13777 204.2 10 10552 500.2 0 10323 504.7 0 10287 500.1
0.80 10 14949 1023.9 135 19721 1079.9 10 15670 506.9 150 15129 500.6 10 15469 501.6
1.00 1569 23433 1013.9 451 29311 1006.6 125 25106 505.3 1753 23220 502.9 1882 25455 504.3

29 0.10 0 4111 322.0 0 5978 0.1 0 4303 500.2 0 4417 500.4 0 4257 500.0
0.50 0 8080 1043.7 0 13549 4.5 0 8428 500.2 0 8648 502.3 0 8640 500.1
0.80 0 13828 1047.6 0 19509 896.3 0 17023 501.4 0 14389 500.0 0 14809 503.0
1.00 367 19753 1153.6 85 26128 1103.3 1542 21627 506.3 160 20018 502.5 615 21064 505.1

259

Table A.30: Performance of CP-O and CP-S for instance size (Sz.) 20, instance numbers (Nr.)
0–14.

CP-O CP-S
Sz. Nr. Load Ca Cu t[s] Opt Ca Cu t[s] Opt
20 0 0.10 0 469 0.2 1 0 595 0.0 0

0.50 0 778 6.1 1 0 1042 0.2 0
0.80 0 1223 9991.3 0 0 1238 0.5 0
1.00 0 1288 9995.6 0 0 1382 0.8 0

1 0.10 0 351 0.0 1 0 377 0.0 0
0.50 0 668 0.5 1 0 791 0.1 0
0.80 0 870 10000.3 0 0 1007 0.2 0
1.00 0 921 9995.6 0 0 1095 0.4 0

2 0.10 0 484 2146.7 1 0 511 0.0 0
0.50 0 900 10000.5 0 0 990 0.1 0
0.80 0 983 9995.5 0 0 1298 0.4 0
1.00 0 1538 10000.4 0 0 1540 0.6 0

3 0.10 0 467 31.6 1 0 739 0.0 0
0.50 0 1006 9994.5 0 0 1147 0.1 0
0.80 0 1175 9998.3 0 0 1305 0.2 0
1.00 0 1438 10000.5 0 0 1578 0.4 0

4 0.10 0 497 3.7 1 0 543 0.0 0
0.50 0 981 10000.5 0 0 1048 0.1 0
0.80 0 1037 10000.5 0 0 1352 0.2 0
1.00 0 1295 10000.2 0 0 1488 0.4 0

5 0.10 0 401 0.7 1 0 464 0.0 0
0.50 0 879 9970.9 0 0 978 0.1 0
0.80 0 990 10000.3 0 0 1166 0.3 0
1.00 0 1081 9997.3 0 0 1222 0.4 0

6 0.10 0 374 1.7 1 0 493 0.0 0
0.50 0 841 9983.3 0 0 1143 0.1 0
0.80 0 1215 9979.4 0 0 1406 0.2 0
1.00 0 1422 10000.3 0 0 1446 0.4 0

7 0.10 0 521 9.1 1 0 819 0.0 0
0.50 0 1034 9997.0 0 0 1289 0.2 0
0.80 0 1216 9994.3 0 0 1460 0.4 0
1.00 0 1503 9995.5 0 0 1590 0.6 0

8 0.10 0 347 309.9 1 0 662 0.0 0
0.50 0 849 9995.5 0 0 1092 0.2 0
0.80 0 1122 9978.6 0 0 1171 0.5 0
1.00 0 1273 9999.2 0 0 1442 0.6 0

9 0.10 0 643 37.2 1 0 754 0.0 0
0.50 0 1089 9995.6 0 0 1121 0.2 0
0.80 0 1142 10000.4 0 0 1230 0.4 0
1.00 0 1271 9995.5 0 0 1549 0.5 0

10 0.10 0 559 44.3 1 0 660 0.0 0
0.50 0 979 10000.4 0 0 1093 0.1 0
0.80 0 1268 10000.5 0 0 1374 0.3 0
1.00 0 0 9994.5 0 0 0 9961.6 0

11 0.10 0 217 0.5 1 0 308 0.0 0
0.50 0 711 9981.7 0 0 933 0.1 0
0.80 0 890 9993.7 0 0 1077 0.3 0
1.00 0 973 9995.5 0 0 1077 0.4 0

12 0.10 0 499 4.0 1 0 573 0.0 0
0.50 0 882 10000.5 0 0 1153 0.2 0
0.80 0 1257 9995.5 0 0 1440 0.4 0
1.00 0 1382 10000.5 0 0 1586 0.6 0

13 0.10 0 476 2733.9 1 0 689 0.0 0
0.50 0 800 9995.5 0 0 880 0.4 0
0.80 0 992 10000.5 0 0 1310 0.8 0
1.00 0 1315 10000.5 0 0 1340 1.2 0

14 0.10 0 535 2.5 1 0 636 0.0 0
0.50 0 947 9997.0 0 0 1195 0.1 0
0.80 0 1219 10000.4 0 0 1310 0.4 0
1.00 0 0 9989.3 0 0 0 10000.4 0

260

Table A.31: Performance of CP-O and CP-S for instance size (Sz.) 20, instance numbers (Nr.)
15–29.

CP-O CP-S
Sz. Nr. Load Ca Cu t[s] Opt Ca Cu t[s] Opt
20 15 0.10 0 318 3.0 1 0 474 0.0 0

0.50 0 525 2.8 1 0 949 0.2 0
0.80 0 880 10000.5 0 0 1138 0.5 0
1.00 0 0 10000.5 0 0 0 9997.9 0

16 0.10 0 611 9.7 1 0 931 0.0 0
0.50 0 1047 9982.7 0 0 1373 0.2 0
0.80 0 1328 9995.6 0 0 1584 0.4 0
1.00 0 1482 9995.6 0 0 1584 0.5 0

17 0.10 0 453 0.1 1 0 563 0.0 0
0.50 0 923 2.7 1 0 1061 0.1 0
0.80 0 1323 10000.4 0 0 1447 0.3 0
1.00 0 1489 10000.4 0 0 1589 0.5 0

18 0.10 0 439 1.3 1 0 528 0.0 0
0.50 0 985 9994.7 0 0 1112 0.1 0
0.80 0 1245 10000.5 0 0 1271 95.1 0
1.00 0 0 9995.5 0 0 0 9893.5 0

19 0.10 0 579 2575.0 1 0 662 0.0 0
0.50 0 987 10000.5 0 0 1416 0.2 0
0.80 0 1353 9993.8 0 0 1500 0.5 0
1.00 0 0 9995.5 0 0 0 9981.1 0

20 0.10 0 371 0.2 1 0 434 0.0 0
0.50 0 958 9995.6 0 0 1172 0.1 0
0.80 0 1153 9949.1 0 0 1322 0.3 0
1.00 0 1366 9995.6 0 0 1391 0.4 0

21 0.10 0 421 1.9 1 0 484 0.0 0
0.50 0 697 10000.4 0 0 898 0.2 0
0.80 0 909 9979.4 0 0 1103 0.5 0
1.00 0 1211 9996.3 0 0 0 9989.3 0

22 0.10 0 524 0.1 1 0 647 0.0 0
0.50 0 669 0.3 1 0 748 0.1 0
0.80 0 802 2.0 1 0 1120 0.3 0
1.00 0 887 10000.4 0 0 1127 0.4 0

23 0.10 0 499 2102.5 1 0 591 0.0 0
0.50 0 936 9995.5 0 0 1180 0.2 0
0.80 0 1066 9995.1 0 0 1461 0.4 0
1.00 0 1361 10000.5 0 0 1559 0.7 0

24 0.10 0 620 14.3 1 0 716 0.0 0
0.50 0 930 9997.9 0 0 1075 0.2 0
0.80 0 1162 9995.0 0 0 1184 0.5 0
1.00 0 1247 10000.0 0 0 1307 0.7 0

25 0.10 0 432 1.0 1 0 525 0.0 0
0.50 0 894 9995.5 0 0 955 0.1 0
0.80 0 1148 9999.0 0 0 1249 0.4 0
1.00 0 1357 9994.5 0 0 1481 9525.2 0

26 0.10 0 369 9.1 1 0 559 0.0 0
0.50 0 1022 9995.5 0 0 1022 0.1 0
0.80 0 962 9992.6 0 0 1054 0.3 0
1.00 0 0 9995.4 0 0 0 9995.5 0

27 0.10 0 607 1.9 1 0 687 0.0 0
0.50 0 807 0.8 1 0 1086 0.2 0
0.80 0 1115 9994.3 0 0 1446 0.4 0
1.00 0 0 9995.2 0 0 0 9975.3 0

28 0.10 0 531 12.0 1 0 617 0.0 0
0.50 0 1128 9995.4 0 0 1247 0.1 0
0.80 0 1286 9995.4 0 0 1502 0.4 0
1.00 0 0 9999.8 0 0 0 10000.4 0

29 0.10 0 368 10.3 1 0 460 0.0 0
0.50 0 681 9995.3 0 0 1029 0.1 0
0.80 0 1135 9995.5 0 0 1258 0.4 0
1.00 0 1354 9995.5 0 0 1418 0.6 0

261

Table A.32: Performance of CP-O and CP-S for instance size (Sz.) 30, instance numbers (Nr.)
0–14.

CP-O CP-S
Sz. Nr. Load Ca Cu t[s] Opt Ca Cu t[s] Opt
30 0 0.10 0 606 368.4 1 0 633 0.0 0

0.50 0 1139 9994.0 0 0 1327 0.3 0
0.80 0 1430 9995.5 0 0 1509 0.7 0
1.00 0 1561 10000.3 0 0 1808 0.9 0

1 0.10 0 836 9999.9 0 0 866 0.1 0
0.50 0 1383 10000.2 0 0 1579 0.8 0
0.80 0 0 9999.6 0 0 0 9989.1 0
1.00 0 0 9991.5 0 0 0 10000.2 0

2 0.10 0 959 9998.8 0 0 1237 0.1 0
0.50 0 1700 9995.3 0 0 1861 0.6 0
0.80 0 0 9995.4 0 0 0 9971.4 0
1.00 0 0 10000.4 0 0 0 9981.4 0

3 0.10 0 789 9995.4 0 0 1031 0.0 0
0.50 0 1348 10000.4 0 0 1380 0.3 0
0.80 0 1796 9995.4 0 0 1939 0.8 0
1.00 0 0 9999.7 0 0 0 10000.4 0

4 0.10 0 701 16.4 1 0 994 0.0 0
0.50 0 1578 10000.3 0 0 1629 0.4 0
0.80 0 1710 9993.9 0 0 1745 0.8 0
1.00 0 1767 10000.2 0 0 2114 1.2 0

5 0.10 0 606 283.0 1 0 737 0.0 0
0.50 0 1287 10000.4 0 0 1422 0.3 0
0.80 0 1533 9998.8 0 0 1736 0.7 0
1.00 0 0 9993.9 0 0 0 9999.5 0

6 0.10 0 823 9995.6 0 0 875 0.1 0
0.50 0 1359 9999.5 0 0 1479 0.6 0
0.80 0 1689 10000.4 0 0 1731 1.6 0
1.00 0 0 9994.8 0 0 0 9940.7 0

7 0.10 0 759 10000.0 0 0 910 0.0 0
0.50 0 1390 10000.4 0 0 1627 0.5 0
0.80 0 1780 10000.1 0 0 1939 1.4 0
1.00 0 2048 9995.4 0 0 2408 2.1 0

8 0.10 0 1208 10000.5 0 0 1491 0.0 0
0.50 0 1395 10000.2 0 0 1688 0.5 0
0.80 0 1534 9998.2 0 0 1739 1.0 0
1.00 0 0 9994.3 0 0 0 10000.4 0

9 0.10 0 571 1232.1 1 0 834 0.0 0
0.50 0 1409 9995.2 0 0 1813 0.5 0
0.80 0 1966 9999.1 0 0 2170 1.4 0
1.00 0 0 9995.5 0 0 0 10000.4 0

10 0.10 0 593 3.9 1 0 610 0.0 0
0.50 0 1054 10000.5 0 0 1375 0.2 0
0.80 0 1393 10000.4 0 0 1643 0.5 0
1.00 0 1560 9997.7 0 0 1930 0.9 0

11 0.10 0 646 9995.5 0 0 937 0.0 0
0.50 0 1297 9991.3 0 0 1459 0.4 0
0.80 0 1682 9994.6 0 0 2088 0.7 0
1.00 0 2151 9993.7 0 0 2327 1.7 0

12 0.10 0 754 0.1 1 0 869 0.0 0
0.50 0 1300 9995.4 0 0 1439 0.3 0
0.80 0 1703 10000.5 0 0 2015 0.7 0
1.00 0 0 9998.1 0 0 0 9998.9 0

13 0.10 0 542 3.7 1 0 686 0.0 0
0.50 0 1184 10000.3 0 0 1464 0.3 0
0.80 0 1535 10000.3 0 0 1787 0.8 0
1.00 0 1719 9996.9 0 0 1967 1.1 0

14 0.10 0 749 2316.7 1 0 891 0.0 0
0.50 0 1391 10000.4 0 0 1813 0.4 0
0.80 0 1695 10000.4 0 0 1865 1.0 0
1.00 0 2162 10000.2 0 0 2162 1.7 0

262

Table A.33: Performance of CP-O and CP-S for instance size (Sz.) 30, instance numbers (Nr.)
15–29.

CP-O CP-S
Sz. Nr. Load Ca Cu t[s] Opt Ca Cu t[s] Opt
30 15 0.10 0 977 70.0 1 0 1209 0.0 0

0.50 0 1270 143.2 1 0 1633 0.3 0
0.80 0 1691 9995.1 0 0 1903 0.9 0
1.00 0 1853 9993.5 0 0 2304 1.4 0

16 0.10 0 458 288.9 1 0 633 0.0 0
0.50 0 1186 9995.5 0 0 1556 0.3 0
0.80 0 1700 9995.6 0 0 1778 0.6 0
1.00 0 1810 9999.8 0 0 1931 0.9 0

17 0.10 0 784 9994.2 0 0 992 0.1 0
0.50 0 1392 10000.4 0 0 1392 0.5 0
0.80 0 1588 9896.3 0 0 1934 1.2 0
1.00 0 0 9995.5 0 0 0 10000.1 0

18 0.10 0 561 0.1 1 0 646 0.0 0
0.50 0 1271 10000.4 0 0 1481 0.3 0
0.80 0 1596 9994.5 0 0 1831 0.6 0
1.00 0 1879 9995.6 0 0 2292 1.0 0

19 0.10 0 498 4880.8 1 0 975 0.0 0
0.50 0 1394 10000.3 0 0 1640 0.7 0
0.80 0 1669 9999.0 0 0 1962 1.8 0
1.00 0 0 9995.2 0 0 0 9995.5 0

20 0.10 0 910 9994.9 0 0 1171 0.0 0
0.50 0 1525 9995.2 0 0 1803 0.5 0
0.80 0 1791 9995.3 0 0 2023 1.2 0
1.00 0 1999 10000.1 0 0 2157 2.0 0

21 0.10 0 640 10000.2 0 0 897 0.0 0
0.50 0 994 10000.4 0 0 1283 0.2 0
0.80 0 1613 9995.4 0 0 1636 0.6 0
1.00 0 1844 9995.5 0 0 1968 1.9 0

22 0.10 0 881 116.0 1 0 1003 0.0 0
0.50 0 1437 10000.4 0 0 1554 0.3 0
0.80 0 1481 10000.2 0 0 1958 0.7 0
1.00 0 1881 9919.3 0 0 2268 1.1 0

23 0.10 0 738 3.0 1 0 755 0.0 0
0.50 0 1753 9994.7 0 0 1764 0.5 0
0.80 0 2003 9995.6 0 0 2254 1.0 0
1.00 0 0 9962.3 0 0 0 9946.7 0

24 0.10 0 525 52.9 1 0 630 0.1 0
0.50 0 1459 10000.3 0 0 1543 0.6 0
0.80 0 1707 9995.1 0 0 2123 1.8 0
1.00 0 0 10000.1 0 0 0 9995.5 0

25 0.10 0 930 9995.5 0 0 1198 0.0 0
0.50 0 1592 9963.5 0 0 1756 0.5 0
0.80 0 1728 9877.1 0 0 2019 1.2 0
1.00 0 2154 9999.9 0 0 2247 1.9 0

26 0.10 0 653 9999.6 0 0 763 0.0 0
0.50 0 1304 10000.3 0 0 1509 0.4 0
0.80 0 1598 9995.1 0 0 1977 1.0 0
1.00 0 0 9999.4 0 0 0 9979.9 0

27 0.10 0 549 1.2 1 0 751 0.0 0
0.50 0 1198 10000.3 0 0 1432 0.3 0
0.80 0 1574 9995.5 0 0 1693 0.7 0
1.00 0 1843 10000.0 0 0 2124 1.3 0

28 0.10 0 962 10000.4 0 0 1031 0.0 0
0.50 0 1317 9995.2 0 0 1422 0.3 0
0.80 0 1455 10000.4 0 0 2013 0.8 0
1.00 0 2013 9995.0 0 0 2191 1.3 0

29 0.10 0 411 521.5 1 0 915 0.0 0
0.50 0 1094 10000.3 0 0 1524 0.3 0
0.80 0 1639 9999.6 0 0 1858 0.7 0
1.00 0 1751 9903.7 0 0 1920 0.9 0

263

Table A.34: Performance of CP-O and CP-S for instance size (Sz.) 50, instance numbers (Nr.)
0–14.

CP-O CP-S
Sz. Nr. Load Ca Cu t[s] Opt Ca Cu t[s] Opt
50 0 0.10 0 1085 9908.4 0 0 1271 0.1 0

0.50 0 2186 9992.4 0 0 2410 2.0 0
0.80 0 2686 9988.8 0 0 3047 4.8 0
1.00 0 0 10000.3 0 0 0 9932.4 0

1 0.10 0 1425 10000.4 0 0 1492 0.2 0
0.50 0 1955 9997.5 0 0 2277 1.0 0
0.80 0 2376 10000.1 0 0 2744 2.8 0
1.00 0 0 9999.9 0 0 0 9974.1 0

2 0.10 0 830 9960.1 0 0 1175 0.0 0
0.50 0 2058 9995.4 0 0 2453 1.0 0
0.80 0 2794 10000.2 0 0 2988 2.3 0
1.00 0 0 9995.2 0 0 0 9995.4 0

3 0.10 0 1171 9995.3 0 0 1425 0.1 0
0.50 0 2208 9995.4 0 0 2645 1.1 0
0.80 0 2864 10000.0 0 0 3430 2.7 0
1.00 0 0 10000.1 0 0 0 10000.1 0

4 0.10 0 1213 9995.3 0 0 1317 0.1 0
0.50 0 2182 10000.1 0 0 2237 1.0 0
0.80 0 2443 9989.1 0 0 2625 2.2 0
1.00 0 3191 10000.3 0 0 3255 3.4 0

5 0.10 0 1344 9901.0 0 0 1429 0.1 0
0.50 0 2000 9995.5 0 0 2065 0.8 0
0.80 0 2429 10000.2 0 0 2742 2.6 0
1.00 0 2555 9923.1 0 0 3188 58.9 0

6 0.10 0 852 9921.5 0 0 861 0.1 0
0.50 0 2062 10000.4 0 0 2342 1.2 0
0.80 0 2519 9980.4 0 0 2708 2.8 0
1.00 0 2990 10000.5 0 0 3088 4.1 0

7 0.10 0 1116 10000.3 0 0 1169 0.0 0
0.50 0 2449 9995.6 0 0 2480 0.9 0
0.80 0 2702 9998.0 0 0 2795 2.2 0
1.00 0 0 10000.5 0 0 0 9995.5 0

8 0.10 0 1009 9995.6 0 0 1084 0.1 0
0.50 0 1960 9995.4 0 0 2181 2.2 0
0.80 0 2333 9968.5 0 0 2843 5.5 0
1.00 0 0 10000.2 0 0 0 10000.2 0

9 0.10 0 1483 9999.4 0 0 1617 0.1 0
0.50 0 1992 9945.4 0 0 2289 0.6 0
0.80 0 2258 10000.2 0 0 2587 1.7 0
1.00 0 0 9987.6 0 0 0 9993.3 0

10 0.10 0 1006 9990.2 0 0 1046 0.1 0
0.50 0 2307 9996.0 0 0 2674 1.3 0
0.80 0 2839 9933.2 0 0 2942 2.7 0
1.00 0 3473 9995.4 0 0 3782 4.7 0

11 0.10 0 1201 10000.4 0 0 1402 0.0 0
0.50 0 2183 9995.6 0 0 2507 0.7 0
0.80 0 2591 9995.4 0 0 2893 2.0 0
1.00 0 0 9945.9 0 0 0 9997.3 0

12 0.10 0 956 9999.6 0 0 1098 0.1 0
0.50 0 2202 10000.3 0 0 2326 1.1 0
0.80 0 2418 9995.5 0 0 2600 2.7 0
1.00 0 0 9999.4 0 0 0 10000.4 0

13 0.10 0 1136 9876.1 0 0 1375 0.1 0
0.50 0 2058 9995.6 0 0 2291 1.0 0
0.80 0 2710 9995.5 0 0 3143 2.1 0
1.00 0 0 9998.7 0 0 0 10000.4 0

14 0.10 0 1105 10000.5 0 0 1314 0.1 0
0.50 0 2038 9995.6 0 0 2144 0.7 0
0.80 0 2593 9995.5 0 0 2756 2.3 0
1.00 0 2564 10000.5 0 0 2937 3.2 0

264

Table A.35: Performance of CP-O and CP-S for instance size (Sz.) 50, instance numbers (Nr.)
15–29.

CP-O CP-S
Sz. Nr. Load Ca Cu t[s] Opt Ca Cu t[s] Opt
50 15 0.10 0 1314 10000.4 0 0 1350 0.1 0

0.50 0 2353 9967.5 0 0 2582 1.4 0
0.80 0 2965 10000.5 0 0 3149 3.7 0
1.00 0 3793 9911.8 0 0 3793 5.5 0

16 0.10 0 1232 9999.2 0 0 1306 0.1 0
0.50 0 1894 9995.5 0 0 2243 1.4 0
0.80 0 2443 10000.4 0 0 2739 3.1 0
1.00 0 2829 9937.9 0 0 3041 5.2 0

17 0.10 0 1321 9999.6 0 0 1400 0.1 0
0.50 0 2518 9995.5 0 0 2633 1.0 0
0.80 0 3089 9926.8 0 0 3278 2.5 0
1.00 0 0 9745.9 0 0 0 9691.6 0

18 0.10 0 839 408.5 1 0 1093 0.1 0
0.50 0 2134 9999.0 0 0 2239 1.1 0
0.80 0 2812 10000.3 0 0 2972 2.7 0
1.00 0 3142 10000.3 0 0 3494 4.6 0

19 0.10 0 949 10000.4 0 0 1458 0.1 0
0.50 0 1955 10000.4 0 0 2236 1.2 0
0.80 0 2601 10000.3 0 0 2788 2.8 0
1.00 0 0 9995.5 0 0 0 9976.4 0

20 0.10 0 1819 9908.4 0 0 1939 0.1 0
0.50 0 2402 9982.7 0 0 2485 0.9 0
0.80 0 2821 9995.5 0 0 2844 2.4 0
1.00 0 3282 9989.9 0 0 3290 3.2 0

21 0.10 0 1254 10000.4 0 0 1482 0.1 0
0.50 0 1944 9980.3 0 0 2275 1.0 0
0.80 0 3023 9992.6 0 0 3065 2.7 0
1.00 0 3426 9915.0 0 0 3484 3.9 0

22 0.10 0 1495 9991.1 0 0 1607 0.1 0
0.50 0 2666 10000.5 0 0 2778 1.3 0
0.80 0 2919 9991.9 0 0 3176 2.5 0
1.00 0 0 9994.6 0 0 0 9981.2 0

23 0.10 0 1060 10000.5 0 0 1228 0.1 0
0.50 0 2444 9948.0 0 0 2700 0.9 0
0.80 0 2976 10000.5 0 0 3151 1.9 0
1.00 0 3061 10000.3 0 0 3201 3.0 0

24 0.10 0 984 9994.1 0 0 1138 0.1 0
0.50 0 2203 10000.5 0 0 2480 1.3 0
0.80 0 3281 9995.4 0 0 3350 3.5 0
1.00 0 3572 9995.4 0 0 3705 5.3 0

25 0.10 0 982 9867.5 0 0 1293 0.1 0
0.50 0 2223 9996.9 0 0 2420 1.1 0
0.80 0 0 9921.9 0 0 0 9995.5 0
1.00 0 0 9885.6 0 0 0 10000.4 0

26 0.10 0 941 9995.5 0 0 1146 0.0 0
0.50 0 2345 10000.3 0 0 2405 1.0 0
0.80 0 2737 10000.4 0 0 2933 2.3 0
1.00 0 2867 9961.0 0 0 3106 3.7 0

27 0.10 0 1397 9997.6 0 0 1497 0.1 0
0.50 0 2356 9995.6 0 0 2507 0.9 0
0.80 0 2537 9931.7 0 0 2856 2.0 0
1.00 0 2778 9995.2 0 0 3160 3.1 0

28 0.10 0 1505 10000.3 0 0 1772 0.3 0
0.50 0 2672 9995.4 0 0 2978 3.5 0
0.80 0 0 9995.5 0 0 0 9998.1 0
1.00 0 0 10000.4 0 0 0 9995.4 0

29 0.10 0 620 1433.3 1 0 865 0.1 0
0.50 0 2459 9995.5 0 0 2650 1.1 0
0.80 0 3332 9995.1 0 0 3383 4.0 0
1.00 0 0 10000.4 0 0 0 9950.3 0

265

Table A.36: Performance of CP-O and CP-S for instance size (Sz.) 100, instance numbers (Nr.)
0–14.

CP-O CP-S
Sz. Nr. Load Ca Cu t[s] Opt Ca Cu t[s] Opt

100 0 0.10 0 2554 9995.8 0 0 2637 0.3 0
0.50 0 3969 9985.8 0 0 4261 6.1 0
0.80 0 0 9960.6 0 0 0 9995.5 0
1.00 - - - - - - - -

1 0.10 0 3372 9929.4 0 0 3372 0.6 0
0.50 0 5134 10000.4 0 0 5345 6.0 0
0.80 0 0 9768.7 0 0 0 9760.6 0
1.00 0 0 9692.8 0 0 0 9685.4 0

2 0.10 0 1360 9970.4 0 0 1522 0.3 0
0.50 0 3562 10000.1 0 0 3992 4.1 0
0.80 0 4797 9421.4 0 0 4797 11.0 0
1.00 - - - - - - - -

3 0.10 0 2891 9924.9 0 0 2961 1.0 0
0.50 0 5407 10000.5 0 0 5541 8.2 0
0.80 0 0 9997.4 0 0 0 9998.0 0
1.00 - - - - - - - -

4 0.10 0 2519 9985.2 0 0 2572 0.8 0
0.50 0 4973 9995.0 0 0 5055 9.9 0
0.80 0 0 9999.4 0 0 0 9999.6 0
1.00 - - - - - - - -

5 0.10 0 2060 10000.5 0 0 2381 0.5 0
0.50 0 4506 10000.2 0 0 4618 6.6 0
0.80 0 5223 9995.1 0 0 5500 18.1 0
1.00 - - - - - - - -

6 0.10 0 2706 9981.8 0 0 2759 1.9 0
0.50 0 4679 9729.9 0 0 4679 7.9 0
0.80 0 5946 9998.9 0 0 6019 15.8 0
1.00 0 0 9997.4 0 0 0 9988.3 0

7 0.10 0 3959 9995.6 0 0 3981 0.5 0
0.50 0 5139 9779.4 0 0 5213 5.6 0
0.80 0 5960 9939.0 0 0 6165 14.8 0
1.00 - - - - - - - -

8 0.10 0 2139 9989.1 0 0 2362 0.4 0
0.50 0 4236 10000.4 0 0 4602 3.6 0
0.80 0 0 9961.5 0 0 0 9995.4 0
1.00 0 0 9997.7 0 0 0 10000.3 0

9 0.10 0 2465 9934.6 0 0 2622 0.6 0
0.50 0 0 10000.1 0 0 0 10000.1 0
0.80 0 0 10000.3 0 0 0 10000.3 0
1.00 - - - - - - - -

10 0.10 0 2809 9995.4 0 0 2947 0.6 0
0.50 0 3331 9997.6 0 0 4073 3.2 0
0.80 0 4761 9994.5 0 0 5114 8.3 0
1.00 - - - - - - - -

11 0.10 0 3759 9907.6 0 0 3965 4.9 0
0.50 0 5520 10000.2 0 0 5603 9.4 0
0.80 0 6380 9993.9 0 0 6535 21.5 0
1.00 - - - - - - - -

12 0.10 0 2713 9999.0 0 0 2865 0.4 0
0.50 0 4408 9995.1 0 0 5229 5.3 0
0.80 - - - - - - - -
1.00 - - - - - - - -

13 0.10 0 2761 9995.4 0 0 2777 0.3 0
0.50 0 4672 10000.0 0 0 5001 7.7 0
0.80 0 5621 9998.7 0 0 5996 16.2 0
1.00 - - - - - - - -

14 0.10 0 3103 9992.2 0 0 3263 0.4 0
0.50 0 4858 9932.5 0 0 5117 6.0 0
0.80 0 6114 9999.1 0 0 6355 14.8 0
1.00 - - - - - - - -

266

Table A.37: Performance of CP-O and CP-S for instance size (Sz.) 100, instance numbers (Nr.)
15–29.

CP-O CP-S
Sz. Nr. Load Ca Cu t[s] Opt Ca Cu t[s] Opt

100 15 0.10 0 2421 9995.0 0 0 2548 0.4 0
0.50 0 4060 9964.9 0 0 4256 3.9 0
0.80 0 5273 9992.0 0 0 5415 8.4 0
1.00 0 0 9994.9 0 0 0 9994.9 0

16 0.10 0 3285 9886.6 0 0 3320 0.3 0
0.50 0 4641 9995.3 0 0 4772 3.5 0
0.80 0 5309 9995.1 0 0 5814 10.2 0
1.00 - - - - - - - -

17 0.10 0 2492 9992.1 0 0 2548 0.4 0
0.50 0 5346 10000.5 0 0 5412 3.9 0
0.80 0 6218 9993.8 0 0 6342 8.3 0
1.00 0 0 9949.1 0 0 0 9995.4 0

18 0.10 0 2326 9966.6 0 0 2414 0.3 0
0.50 0 4012 9970.1 0 0 4356 4.4 0
0.80 0 4865 9992.9 0 0 5144 11.8 0
1.00 - - - - - - - -

19 0.10 0 2762 9927.5 0 0 2762 0.4 0
0.50 0 3701 9994.9 0 0 4485 8.5 0
0.80 - - - - - - - -
1.00 - - - - - - - -

20 0.10 0 1923 9999.7 0 0 1964 0.3 0
0.50 0 4539 9995.4 0 0 4730 5.0 0
0.80 0 5503 9974.4 0 0 5925 10.9 0
1.00 0 6091 9999.6 0 0 6401 15.7 0

21 0.10 0 2722 9992.4 0 0 2740 0.7 0
0.50 0 3871 9995.4 0 0 4494 7.7 0
0.80 0 0 9995.2 0 0 0 9963.1 0
1.00 - - - - - - - -

22 0.10 0 1172 10000.5 0 0 1246 0.2 0
0.50 0 3893 9997.2 0 0 4201 3.5 0
0.80 0 5498 9998.0 0 0 5715 10.1 0
1.00 0 0 9953.2 0 0 0 9995.0 0

23 0.10 0 2056 10000.3 0 0 2066 0.4 0
0.50 0 4217 10000.3 0 0 4468 5.0 0
0.80 0 5638 9999.5 0 0 5799 13.9 0
1.00 - - - - - - - -

24 0.10 0 2953 9992.8 0 0 3214 0.3 0
0.50 0 5056 10000.2 0 0 5091 4.8 0
0.80 0 6131 10000.1 0 0 6309 12.2 0
1.00 - - - - - - - -

25 0.10 0 2473 9904.0 0 0 2549 0.3 0
0.50 0 4048 9997.9 0 0 4582 4.6 0
0.80 0 4960 9999.6 0 0 5609 13.2 0
1.00 - - - - - - - -

26 0.10 0 2833 9982.1 0 0 3021 0.2 0
0.50 0 4380 10000.1 0 0 4437 3.4 0
0.80 0 5641 9998.6 0 0 5831 12.8 0
1.00 0 6283 9994.0 0 0 6437 17.8 0

27 0.10 0 2128 9979.0 0 0 2142 0.4 0
0.50 0 4448 9975.2 0 0 4599 3.5 0
0.80 0 5608 9988.1 0 0 5924 9.8 0
1.00 0 0 9999.4 0 0 0 9976.3 0

28 0.10 0 2603 10000.4 0 0 2908 0.4 0
0.50 0 4883 9977.1 0 0 5320 5.9 0
0.80 0 5445 9954.1 0 0 5993 14.4 0
1.00 0 0 9980.7 0 0 0 9987.2 0

29 0.10 0 2842 10000.0 0 0 2891 0.7 0
0.50 0 5015 9965.9 0 0 5130 7.1 0
0.80 0 0 9999.6 0 0 0 10000.0 0
1.00 0 0 9999.7 0 0 0 10000.0 0

267

Table A.38: Performance of ILP-O and ILP-S for instance size (Sz.) 20, instance numbers (Nr.)
0–14.

ILP-O ILP-S
Sz. Nr. Load Ca Cu t[s] Gap Opt Ca Cu t[s] Gap Opt
20 0 0.10 0 469 0.0 0.0 1 0 835 0.0 0.0 1

0.50 0 778 1.7 0.0 1 0 1255 0.2 0.0 1
0.80 0 977 0.9 0.0 1 0 1284 0.4 0.0 1
1.00 0 1057 2.7 0.0 1 0 1475 0.6 0.0 1

1 0.10 0 351 0.0 0.0 1 0 736 0.0 0.0 1
0.50 0 668 0.2 0.0 1 0 1048 0.1 0.0 1
0.80 0 668 0.4 0.0 1 0 1096 0.2 0.0 1
1.00 0 786 3.2 0.0 1 0 1269 0.2 0.0 1

2 0.10 0 484 0.4 0.0 1 0 1010 0.0 0.0 1
0.50 0 706 0.5 0.0 1 0 1353 0.2 0.0 1
0.80 0 862 3.6 0.0 1 0 1606 0.5 0.0 1
1.00 0 1028 646.5 0.0 1 0 1586 0.7 0.0 1

3 0.10 0 467 0.0 0.0 1 0 1122 0.0 0.0 1
0.50 0 826 0.5 0.0 1 0 1445 0.1 0.0 1
0.80 0 1055 18.1 0.0 1 0 1493 0.1 0.0 1
1.00 0 1185 5.3 0.0 1 0 1493 0.2 0.0 1

4 0.10 0 497 0.0 0.0 1 0 675 0.0 0.0 1
0.50 0 772 0.1 0.0 1 0 1043 0.1 0.0 1
0.80 0 915 0.4 0.0 1 0 1304 0.1 0.0 1
1.00 0 1043 0.7 0.0 1 0 1488 0.2 0.0 1

5 0.10 0 401 0.0 0.0 1 0 771 0.0 0.0 1
0.50 0 733 0.3 0.0 1 0 1160 0.1 0.0 1
0.80 0 816 0.9 0.0 1 0 1310 0.1 0.0 1
1.00 0 935 2.8 0.0 1 0 1310 0.2 0.0 1

6 0.10 0 374 0.0 0.0 1 0 757 0.0 0.0 1
0.50 0 768 1.4 0.0 1 0 1326 0.1 0.0 1
0.80 0 941 2.4 0.0 1 0 1369 0.1 0.0 1
1.00 0 1159 2.7 0.0 1 0 1446 0.2 0.0 1

7 0.10 0 521 0.0 0.0 1 0 802 0.0 0.0 1
0.50 0 931 0.8 0.0 1 0 1508 0.2 0.0 1
0.80 0 1076 2.0 0.0 1 0 1494 0.3 0.0 1
1.00 0 1158 56.4 0.0 1 0 1596 0.4 0.0 1

8 0.10 0 347 0.1 0.0 1 0 618 0.0 0.0 1
0.50 0 752 3.7 0.0 1 0 1305 0.2 0.0 1
0.80 0 1004 28.6 0.0 1 0 1405 0.4 0.0 1
1.00 0 1066 32.7 0.0 1 0 1442 0.5 0.0 1

9 0.10 0 643 0.1 0.0 1 0 1056 0.0 0.0 1
0.50 0 984 0.5 0.0 1 0 1317 0.1 0.0 1
0.80 0 1042 0.8 0.0 1 0 1591 0.2 0.0 1
1.00 0 1106 1.7 0.0 1 0 1585 0.3 0.0 1

10 0.10 0 559 0.0 0.0 1 0 998 0.0 0.0 1
0.50 0 905 0.2 0.0 1 0 1306 0.1 0.0 1
0.80 0 1095 0.4 0.0 1 0 1502 0.1 0.0 1
1.00 0 1172 5.5 0.0 1 0 1502 0.2 0.0 1

11 0.10 0 217 0.0 0.0 1 0 639 0.0 0.0 1
0.50 0 576 0.3 0.0 1 0 1036 0.1 0.0 1
0.80 0 633 0.5 0.0 1 0 1217 0.1 0.0 1
1.00 0 854 3.9 0.0 1 0 1217 0.2 0.0 1

12 0.10 0 499 0.0 0.0 1 0 939 0.0 0.0 1
0.50 0 801 0.4 0.0 1 0 1246 0.1 0.0 1
0.80 0 944 2.9 0.0 1 0 1558 0.2 0.0 1
1.00 0 1050 8.9 0.0 1 0 1611 0.5 0.0 1

13 0.10 0 476 0.2 0.0 1 0 1329 0.1 0.0 1
0.50 0 671 2.5 0.0 1 0 1653 0.7 0.0 1
0.80 0 878 53.0 0.0 1 0 1739 1.3 0.0 1
1.00 0 954 918.8 0.0 1 0 1739 1.8 0.0 1

14 0.10 0 535 0.0 0.0 1 0 776 0.0 0.0 1
0.50 0 818 0.3 0.0 1 0 1288 0.1 0.0 1
0.80 0 899 1.7 0.0 1 0 1456 0.2 0.0 1
1.00 0 1107 22.9 0.0 1 0 1409 0.3 0.0 1

268

Table A.39: Performance of ILP-O and ILP-S for instance size (Sz.) 20, instance numbers (Nr.)
15–29.

ILP-O ILP-S
Sz. Nr. Load Ca Cu t[s] Gap Opt Ca Cu t[s] Gap Opt
20 15 0.10 0 318 0.1 0.0 1 0 847 0.0 0.0 1

0.50 0 525 0.3 0.0 1 0 1212 0.2 0.0 1
0.80 0 800 0.8 0.0 1 0 1521 0.4 0.0 1
1.00 0 919 1.0 0.0 1 0 1551 0.6 0.0 1

16 0.10 0 611 0.0 0.0 1 0 1062 0.0 0.0 1
0.50 0 866 0.5 0.0 1 0 1499 0.1 0.0 1
0.80 0 1094 1.2 0.0 1 0 1499 0.2 0.0 1
1.00 0 1186 2.4 0.0 1 0 1559 0.3 0.0 1

17 0.10 0 453 0.0 0.0 1 0 1113 0.0 0.0 1
0.50 0 923 0.2 0.0 1 0 1235 0.1 0.0 1
0.80 0 1076 0.7 0.0 1 0 1546 0.2 0.0 1
1.00 0 1164 1.9 0.0 1 0 1656 0.2 0.0 1

18 0.10 0 439 0.0 0.0 1 0 820 0.0 0.0 1
0.50 0 783 0.6 0.0 1 0 934 0.1 0.0 1
0.80 0 906 3.7 0.0 1 0 1125 0.1 0.0 1
1.00 0 1030 5.9 0.0 1 0 1339 0.2 0.0 1

19 0.10 0 579 0.1 0.0 1 0 1030 0.0 0.0 1
0.50 0 915 3.9 0.0 1 0 1520 0.2 0.0 1
0.80 0 1174 103.8 0.0 1 0 1595 0.8 0.0 1
1.00 0 1256 644.4 0.0 1 0 1557 1.1 0.0 1

20 0.10 0 371 0.0 0.0 1 0 565 0.0 0.0 1
0.50 0 598 0.3 0.0 1 0 1233 0.1 0.0 1
0.80 0 715 1.1 0.0 1 0 1293 0.2 0.0 1
1.00 0 860 26.4 0.0 1 0 1481 0.2 0.0 1

21 0.10 0 421 0.0 0.0 1 0 813 0.0 0.0 1
0.50 0 675 1.8 0.0 1 0 1257 0.2 0.0 1
0.80 0 882 14.8 0.0 1 0 1420 0.4 0.0 1
1.00 0 950 94.9 0.0 1 0 1420 0.5 0.0 1

22 0.10 0 524 0.0 0.0 1 0 995 0.0 0.0 1
0.50 0 669 0.2 0.0 1 0 912 0.1 0.0 1
0.80 0 802 0.4 0.0 1 0 1333 0.2 0.0 1
1.00 0 887 1.0 0.0 1 0 1168 0.2 0.0 1

23 0.10 0 499 0.1 0.0 1 0 1078 0.0 0.0 1
0.50 0 727 0.8 0.0 1 0 1530 0.2 0.0 1
0.80 0 892 39.4 0.0 1 0 1477 0.5 0.0 1
1.00 0 937 8.7 0.0 1 0 1549 0.5 0.0 1

24 0.10 0 620 0.1 0.0 1 0 1214 0.0 0.0 1
0.50 0 910 0.3 0.0 1 0 1497 0.1 0.0 1
0.80 0 965 0.6 0.0 1 0 1505 0.3 0.0 1
1.00 0 1131 2.2 0.0 1 0 1505 0.3 0.0 1

25 0.10 0 432 0.0 0.0 1 0 1101 0.0 0.0 1
0.50 0 809 0.2 0.0 1 0 1076 0.1 0.0 1
0.80 0 993 1.3 0.0 1 0 1371 0.2 0.0 1
1.00 0 1043 1.7 0.0 1 0 1452 0.3 0.0 1

26 0.10 0 369 0.0 0.0 1 0 813 0.0 0.0 1
0.50 0 811 0.3 0.0 1 0 1083 0.1 0.0 1
0.80 0 939 0.6 0.0 1 0 1129 0.2 0.0 1
1.00 0 1000 0.7 0.0 1 0 1389 0.2 0.0 1

27 0.10 0 607 0.1 0.0 1 0 1018 0.0 0.0 1
0.50 0 807 0.3 0.0 1 0 1279 0.1 0.0 1
0.80 0 1028 1.0 0.0 1 0 1608 0.2 0.0 1
1.00 0 1109 1.2 0.0 1 0 1497 0.5 0.0 1

28 0.10 0 531 0.1 0.0 1 0 941 0.0 0.0 1
0.50 0 928 1.4 0.0 1 0 1308 0.1 0.0 1
0.80 0 1042 2.0 0.0 1 0 1524 0.2 0.0 1
1.00 0 1084 22.4 0.0 1 0 1524 0.3 0.0 1

29 0.10 0 368 0.0 0.0 1 0 908 0.0 0.0 1
0.50 0 574 0.4 0.0 1 0 1210 0.1 0.0 1
0.80 0 836 32.2 0.0 1 0 1395 0.3 0.0 1
1.00 0 1028 44.1 0.0 1 0 1486 0.6 0.0 1

269

Table A.40: Performance of ILP-O and ILP-S for instance size (Sz.) 30, instance numbers (Nr.)
0–14.

ILP-O ILP-S
Sz. Nr. Load Ca Cu t[s] Gap Opt Ca Cu t[s] Gap Opt
30 0 0.10 0 606 0.1 0.0 1 0 1127 0.1 0.0 1

0.50 0 1016 1.0 0.0 1 0 1497 0.2 0.0 1
0.80 0 1208 5.0 0.0 1 0 2022 0.4 0.0 1
1.00 0 1300 97.4 0.0 1 0 2059 0.7 0.0 1

1 0.10 0 649 0.5 0.0 1 0 1684 0.2 0.0 1
0.50 0 1047 2714.2 0.0 1 0 2330 1.4 0.0 1
0.80 0 1298 2165.2 0.0 1 0 2416 3.5 0.0 1
1.00 0 1401 9998.5 2.5 0 0 2570 5.4 0.0 1

2 0.10 0 826 0.2 0.0 1 0 1752 0.1 0.0 1
0.50 0 1365 18.7 0.0 1 0 2459 1.1 0.0 1
0.80 0 1464 11.7 0.0 1 0 2706 2.0 0.0 1
1.00 0 1635 4737.1 0.0 1 0 2730 3.5 0.0 1

3 0.10 0 679 0.1 0.0 1 0 1165 0.0 0.0 1
0.50 0 1083 2.9 0.0 1 0 1756 0.3 0.0 1
0.80 0 1118 4.8 0.0 1 0 2278 0.8 0.0 1
1.00 0 1526 1119.9 0.0 1 0 2448 0.9 0.0 1

4 0.10 0 701 0.1 0.0 1 0 1516 0.1 0.0 1
0.50 0 1213 4.7 0.0 1 0 1770 0.3 0.0 1
0.80 0 1267 6.5 0.0 1 0 2185 0.5 0.0 1
1.00 0 1486 18.1 0.0 1 0 2359 0.8 0.0 1

5 0.10 0 606 0.1 0.0 1 0 1176 0.0 0.0 1
0.50 0 1043 4.1 0.0 1 0 1812 0.3 0.0 1
0.80 0 1209 510.5 0.0 1 0 1908 0.4 0.0 1
1.00 0 1309 50.2 0.0 1 0 2001 0.8 0.0 1

6 0.10 0 617 1.3 0.0 1 0 1306 0.2 0.0 1
0.50 0 1079 5.1 0.0 1 0 2138 0.9 0.0 1
0.80 0 1207 9998.3 0.8 0 0 2296 2.5 0.0 1
1.00 0 1339 9998.4 7.0 0 0 2296 4.8 0.0 1

7 0.10 0 671 0.1 0.0 1 0 1138 0.1 0.0 1
0.50 0 1175 1.1 0.0 1 0 1814 0.7 0.0 1
0.80 0 1339 9.6 0.0 1 0 2015 0.9 0.0 1
1.00 0 1395 36.2 0.0 1 0 2013 1.7 0.0 1

8 0.10 0 1111 0.1 0.0 1 0 1620 0.1 0.0 1
0.50 0 1267 4.6 0.0 1 0 1978 0.5 0.0 1
0.80 0 1475 2.9 0.0 1 0 2214 0.6 0.0 1
1.00 0 1549 5.3 0.0 1 0 2257 0.9 0.0 1

9 0.10 0 571 0.1 0.0 1 0 1503 0.1 0.0 1
0.50 0 1094 4.9 0.0 1 0 2308 0.8 0.0 1
0.80 0 1374 243.8 0.0 1 0 2554 1.6 0.0 1
1.00 0 1530 9998.3 1.4 0 0 2474 2.6 0.0 1

10 0.10 0 593 0.1 0.0 1 0 1068 0.0 0.0 1
0.50 0 997 0.3 0.0 1 0 1663 0.2 0.0 1
0.80 0 1139 1.3 0.0 1 0 1987 0.4 0.0 1
1.00 0 1307 10.5 0.0 1 0 2168 0.4 0.0 1

11 0.10 0 597 0.1 0.0 1 0 1606 0.1 0.0 1
0.50 0 1109 0.6 0.0 1 0 2043 0.2 0.0 1
0.80 0 1396 48.8 0.0 1 0 2200 0.5 0.0 1
1.00 0 1626 836.2 0.0 1 0 2278 0.9 0.0 1

12 0.10 0 754 0.1 0.0 1 0 1147 0.0 0.0 1
0.50 0 1049 0.3 0.0 1 0 1551 0.2 0.0 1
0.80 0 1311 1.0 0.0 1 0 2216 0.3 0.0 1
1.00 0 1546 1.3 0.0 1 0 2243 0.7 0.0 1

13 0.10 0 542 0.1 0.0 1 0 1464 0.1 0.0 1
0.50 0 1061 1.1 0.0 1 0 1972 0.5 0.0 1
0.80 0 1380 5.7 0.0 1 0 2209 0.5 0.0 1
1.00 0 1405 9.7 0.0 1 0 2205 0.9 0.0 1

14 0.10 0 749 0.1 0.0 1 0 1660 0.1 0.0 1
0.50 0 1282 3.4 0.0 1 0 1958 0.5 0.0 1
0.80 0 1323 1.6 0.0 1 0 2356 1.1 0.0 1
1.00 0 1488 85.6 0.0 1 0 2527 1.5 0.0 1

270

Table A.41: Performance of ILP-O and ILP-S for instance size (Sz.) 30, instance numbers (Nr.)
15–29.

ILP-O ILP-S
Sz. Nr. Load Ca Cu t[s] Gap Opt Ca Cu t[s] Gap Opt
30 15 0.10 0 977 0.1 0.0 1 0 1581 0.1 0.0 1

0.50 0 1270 0.6 0.0 1 0 2033 0.3 0.0 1
0.80 0 1406 23.3 0.0 1 0 1971 0.8 0.0 1
1.00 0 1590 51.7 0.0 1 0 2148 1.3 0.0 1

16 0.10 0 458 0.1 0.0 1 0 1208 0.0 0.0 1
0.50 0 896 1.8 0.0 1 0 1842 0.2 0.0 1
0.80 0 971 3.2 0.0 1 0 1894 0.4 0.0 1
1.00 0 1202 36.2 0.0 1 0 1959 0.8 0.0 1

17 0.10 0 776 0.2 0.0 1 0 1326 0.1 0.0 1
0.50 0 1043 2.9 0.0 1 0 1797 0.6 0.0 1
0.80 0 1313 11.7 0.0 1 0 2036 0.7 0.0 1
1.00 0 1366 127.2 0.0 1 0 2195 1.4 0.0 1

18 0.10 0 561 0.1 0.0 1 0 1035 0.1 0.0 1
0.50 0 1192 0.5 0.0 1 0 1969 0.3 0.0 1
0.80 0 1473 1.2 0.0 1 0 2308 0.4 0.0 1
1.00 0 1669 13.5 0.0 1 0 2498 0.8 0.0 1

19 0.10 0 498 2.4 0.0 1 0 1284 0.1 0.0 1
0.50 0 1118 111.5 0.0 1 0 2514 1.5 0.0 1
0.80 0 1287 586.1 0.0 1 0 2443 3.7 0.0 1
1.00 0 1465 9998.5 4.8 0 0 2483 8.6 0.0 1

20 0.10 0 803 0.1 0.0 1 0 1184 0.1 0.0 1
0.50 0 1317 2.9 0.0 1 0 2015 0.8 0.0 1
0.80 0 1539 182.7 0.0 1 0 2275 2.2 0.0 1
1.00 0 1658 8166.4 0.0 1 0 2301 2.7 0.0 1

21 0.10 0 581 0.1 0.0 1 0 1246 0.0 0.0 1
0.50 0 916 1.5 0.0 1 0 1616 0.2 0.0 1
0.80 0 1169 2.9 0.0 1 0 1926 0.3 0.0 1
1.00 0 1273 30.7 0.0 1 0 1926 0.4 0.0 1

22 0.10 0 881 0.1 0.0 1 0 1152 0.0 0.0 1
0.50 0 1312 0.4 0.0 1 0 1753 0.2 0.0 1
0.80 0 1395 0.7 0.0 1 0 2428 0.3 0.0 1
1.00 0 1417 1.1 0.0 1 0 2453 0.4 0.0 1

23 0.10 0 738 0.1 0.0 1 0 940 0.1 0.0 1
0.50 0 1178 0.7 0.0 1 0 1731 0.5 0.0 1
0.80 0 1332 23.0 0.0 1 0 2303 0.8 0.0 1
1.00 0 1497 135.7 0.0 1 0 2182 1.0 0.0 1

24 0.10 0 525 0.1 0.0 1 0 991 0.2 0.0 1
0.50 0 1202 3.1 0.0 1 0 2294 1.7 0.0 1
0.80 0 1339 32.9 0.0 1 0 2709 2.3 0.0 1
1.00 0 1371 866.2 0.0 1 0 2810 4.3 0.0 1

25 0.10 0 849 0.1 0.0 1 0 1714 0.1 0.0 1
0.50 0 1283 2.6 0.0 1 0 1850 0.6 0.0 1
0.80 0 1462 8.0 0.0 1 0 2132 0.8 0.0 1
1.00 0 1620 116.7 0.0 1 0 2328 2.7 0.0 1

26 0.10 0 518 0.1 0.0 1 0 835 0.1 0.0 1
0.50 0 981 1.3 0.0 1 0 2028 0.3 0.0 1
0.80 0 1165 6.6 0.0 1 0 2288 0.5 0.0 1
1.00 0 1365 147.0 0.0 1 0 2293 0.8 0.0 1

27 0.10 0 549 0.1 0.0 1 0 980 0.0 0.0 1
0.50 0 1013 0.5 0.0 1 0 1642 0.2 0.0 1
0.80 0 1262 35.4 0.0 1 0 2137 0.7 0.0 1
1.00 0 1422 187.4 0.0 1 0 2251 0.9 0.0 1

28 0.10 0 939 0.1 0.0 1 0 1505 0.1 0.0 1
0.50 0 1232 0.6 0.0 1 0 1736 0.3 0.0 1
0.80 0 1385 4.5 0.0 1 0 2308 0.4 0.0 1
1.00 0 1448 8.2 0.0 1 0 2338 0.9 0.0 1

29 0.10 0 411 0.1 0.0 1 0 1069 0.0 0.0 1
0.50 0 940 0.9 0.0 1 0 1718 0.2 0.0 1
0.80 0 1278 45.2 0.0 1 0 1947 0.4 0.0 1
1.00 0 1354 86.3 0.0 1 0 2067 0.5 0.0 1

271

Table A.42: Performance of ILP-O and ILP-S for instance size (Sz.) 50, instance numbers (Nr.)
0–14.

ILP-O ILP-S
Sz. Nr. Load Ca Cu t[s] Gap Opt Ca Cu t[s] Gap Opt
50 0 0.10 0 974 0.6 0.0 1 0 1731 0.4 0.0 1

0.50 0 1732 97.7 0.0 1 0 3859 2.5 0.0 1
0.80 0 1991 5787.4 0.0 1 0 4019 6.3 0.0 1
1.00 0 2131 9999.0 3.2 0 0 4378 7.0 0.0 1

1 0.10 0 1322 0.5 0.0 1 0 2103 0.5 0.0 1
0.50 0 1612 25.2 0.0 1 0 3087 2.2 0.0 1
0.80 0 1837 9998.8 0.7 0 0 3754 4.1 0.0 1
1.00 0 2162 9999.0 4.8 0 0 3868 11.0 0.0 1

2 0.10 0 719 0.2 0.0 1 0 1537 0.1 0.0 1
0.50 0 1776 2.5 0.0 1 0 3032 1.2 0.0 1
0.80 0 2124 49.4 0.0 1 0 3686 1.1 0.0 1
1.00 0 2370 398.5 0.0 1 0 3873 2.2 0.0 1

3 0.10 0 1118 0.2 0.0 1 0 2028 0.1 0.0 1
0.50 0 1779 3.0 0.0 1 0 3193 1.0 0.0 1
0.80 0 1972 11.4 0.0 1 0 3666 1.7 0.0 1
1.00 0 2022 16.4 0.0 1 0 4193 2.8 0.0 1

4 0.10 0 1182 0.3 0.0 1 0 1763 0.2 0.0 1
0.50 0 1870 7.9 0.0 1 0 3033 1.4 0.0 1
0.80 0 1969 66.4 0.0 1 0 3606 2.6 0.0 1
1.00 0 2203 290.0 0.0 1 0 3678 3.2 0.0 1

5 0.10 0 1238 0.3 0.0 1 0 2190 0.2 0.0 1
0.50 0 1571 11.7 0.0 1 0 2892 1.4 0.0 1
0.80 0 1866 20.5 0.0 1 0 3632 2.6 0.0 1
1.00 0 1905 931.3 0.0 1 0 3602 3.9 0.0 1

6 0.10 0 787 0.2 0.0 1 0 1213 0.2 0.0 1
0.50 0 1657 2.1 0.0 1 0 2726 1.1 0.0 1
0.80 0 1884 6.9 0.0 1 0 3425 2.1 0.0 1
1.00 0 2214 258.2 0.0 1 0 3463 2.6 0.0 1

7 0.10 0 1116 0.2 0.0 1 0 1939 0.1 0.0 1
0.50 0 1948 2.1 0.0 1 0 3577 1.2 0.0 1
0.80 0 2161 12.2 0.0 1 0 3485 2.2 0.0 1
1.00 0 2370 185.7 0.0 1 0 3987 3.2 0.0 1

8 0.10 0 780 2.5 0.0 1 0 2015 0.5 0.0 1
0.50 0 1420 506.3 0.0 1 0 4054 4.1 0.0 1
0.80 0 1720 9998.9 1.6 0 0 4377 10.9 0.0 1
1.00 0 2201 9999.1 8.1 0 0 4605 20.5 0.0 1

9 0.10 0 1371 0.2 0.0 1 0 2305 0.1 0.0 1
0.50 0 1709 1.3 0.0 1 0 2268 0.8 0.0 1
0.80 0 1873 116.3 0.0 1 0 2866 2.6 0.0 1
1.00 0 2117 10.2 0.0 1 0 3380 2.3 0.0 1

10 0.10 0 973 0.2 0.0 1 0 1277 0.3 0.0 1
0.50 0 1765 129.0 0.0 1 0 3811 2.1 0.0 1
0.80 0 1981 2813.1 0.0 1 0 4165 3.6 0.0 1
1.00 0 2141 9998.9 1.7 0 0 4325 4.5 0.0 1

11 0.10 0 886 0.1 0.0 1 0 2184 0.1 0.0 1
0.50 0 1534 2.0 0.0 1 0 3384 1.0 0.0 1
0.80 0 1935 9998.6 0.3 0 0 3685 1.9 0.0 1
1.00 0 2388 9998.7 2.0 0 0 3809 4.7 0.0 1

12 0.10 0 872 0.3 0.0 1 0 1560 0.1 0.0 1
0.50 0 1706 70.0 0.0 1 0 3246 1.5 0.0 1
0.80 0 1954 9998.6 0.4 0 0 3491 1.7 0.0 1
1.00 0 2089 9998.8 1.2 0 0 3640 3.5 0.0 1

13 0.10 0 1081 0.2 0.0 1 0 1987 0.1 0.0 1
0.50 0 1657 1.5 0.0 1 0 2962 1.1 0.0 1
0.80 0 1982 51.8 0.0 1 0 3303 1.8 0.0 1
1.00 0 2304 217.6 0.0 1 0 3778 2.8 0.0 1

14 0.10 0 1057 0.2 0.0 1 0 1461 0.2 0.0 1
0.50 0 1736 1.8 0.0 1 0 2402 0.9 0.0 1
0.80 0 1925 37.4 0.0 1 0 3201 1.7 0.0 1
1.00 0 1962 8.2 0.0 1 0 3313 2.4 0.0 1

272

Table A.43: Performance of ILP-O and ILP-S for instance size (Sz.) 50, instance numbers (Nr.)
15–29.

ILP-O ILP-S
Sz. Nr. Load Ca Cu t[s] Gap Opt Ca Cu t[s] Gap Opt
50 15 0.10 0 1132 0.3 0.0 1 0 1767 0.2 0.0 1

0.50 0 1865 56.2 0.0 1 0 3401 1.6 0.0 1
0.80 0 2010 129.1 0.0 1 0 3627 2.9 0.0 1
1.00 0 2358 6428.8 0.0 1 0 3987 3.3 0.0 1

16 0.10 0 953 0.7 0.0 1 0 1899 0.1 0.0 1
0.50 0 1456 2.2 0.0 1 0 3596 1.8 0.0 1
0.80 0 1860 27.7 0.0 1 0 3795 3.2 0.0 1
1.00 0 2038 2273.3 0.0 1 0 3939 3.5 0.0 1

17 0.10 0 1103 0.2 0.0 1 0 1546 0.2 0.0 1
0.50 0 1963 2.6 0.0 1 0 3164 1.3 0.0 1
0.80 0 2185 120.4 0.0 1 0 3541 2.2 0.0 1
1.00 0 2436 3794.3 0.0 1 0 3828 3.8 0.0 1

18 0.10 0 839 0.2 0.0 1 0 1773 0.1 0.0 1
0.50 0 1725 2.6 0.0 1 0 2818 1.2 0.0 1
0.80 0 2222 4.3 0.0 1 0 3736 2.1 0.0 1
1.00 0 2418 818.4 0.0 1 0 4052 3.2 0.0 1

19 0.10 0 949 0.2 0.0 1 0 1720 0.1 0.0 1
0.50 0 1462 46.1 0.0 1 0 3128 1.3 0.0 1
0.80 0 1653 95.5 0.0 1 0 3376 2.6 0.0 1
1.00 0 1995 9998.8 0.6 0 0 3563 2.7 0.0 1

20 0.10 0 1626 0.3 0.0 1 0 2865 0.1 0.0 1
0.50 0 1965 3.1 0.0 1 0 3258 0.6 0.0 1
0.80 0 2249 53.5 0.0 1 0 3567 2.4 0.0 1
1.00 0 2647 6524.8 0.0 1 0 3878 3.1 0.0 1

21 0.10 0 1208 0.7 0.0 1 0 2479 0.1 0.0 1
0.50 0 1703 144.0 0.0 1 0 3157 1.4 0.0 1
0.80 0 2137 7210.6 0.0 1 0 4026 2.6 0.0 1
1.00 0 2467 9998.7 2.0 0 0 4115 4.0 0.0 1

22 0.10 0 1305 0.9 0.0 1 0 2192 0.4 0.0 1
0.50 0 2020 11.5 0.0 1 0 3755 1.5 0.0 1
0.80 0 2207 116.5 0.0 1 0 3949 3.8 0.0 1
1.00 0 2445 9998.9 0.7 0 0 4300 6.2 0.0 1

23 0.10 0 986 0.1 0.0 1 0 1960 0.1 0.0 1
0.50 0 1985 11.5 0.0 1 0 2993 1.0 0.0 1
0.80 0 2239 162.5 0.0 1 0 3623 1.6 0.0 1
1.00 0 2361 591.2 0.0 1 0 3849 1.8 0.0 1

24 0.10 0 784 0.3 0.0 1 0 2076 0.3 0.0 1
0.50 0 1412 31.8 0.0 1 0 3394 2.5 0.0 1
0.80 0 2072 9998.7 3.8 0 0 4222 6.6 0.0 1
1.00 0 2430 9998.8 5.5 0 0 4319 6.7 0.0 1

25 0.10 0 823 0.2 0.0 1 0 1652 0.1 0.0 1
0.50 0 1463 2.4 0.0 1 0 2674 1.2 0.0 1
0.80 0 1859 6.9 0.0 1 0 3197 1.9 0.0 1
1.00 0 2011 114.2 0.0 1 0 3336 2.2 0.0 1

26 0.10 0 920 0.2 0.0 1 0 1553 0.1 0.0 1
0.50 0 1575 2.5 0.0 1 0 2857 0.7 0.0 1
0.80 0 1994 314.1 0.0 1 0 3641 1.9 0.0 1
1.00 0 2147 998.5 0.0 1 0 3778 3.0 0.0 1

27 0.10 0 1309 0.1 0.0 1 0 2185 0.1 0.0 1
0.50 0 1984 1.7 0.0 1 0 3296 0.6 0.0 1
0.80 0 2094 3.1 0.0 1 0 3020 1.3 0.0 1
1.00 0 2282 8.8 0.0 1 0 3464 2.0 0.0 1

28 0.10 0 1082 1.7 0.0 1 0 3313 0.8 0.0 1
0.50 0 1976 9998.7 3.9 0 0 4406 10.9 0.0 1
0.80 0 2449 9999.1 8.1 0 0 4736 22.7 0.0 1
1.00 0 2676 9999.3 11.6 0 0 4716 28.0 0.0 1

29 0.10 0 620 0.2 0.0 1 0 1741 0.2 0.0 1
0.50 0 1658 6.5 0.0 1 0 3000 1.9 0.0 1
0.80 0 2168 71.3 0.0 1 0 3441 5.0 0.0 1
1.00 0 2306 3110.4 0.0 1 0 4170 8.2 0.0 1

273

Table A.44: Performance of ILP-O and ILP-S for instance size (Sz.) 100, instance numbers (Nr.)
0–14.

ILP-O ILP-S
Sz. Nr. Load Ca Cu t[s] Gap Opt Ca Cu t[s] Gap Opt
100 0 0.10 0 2226 0.8 0.0 1 0 3211 0.6 0.0 1

0.50 0 3015 10.4 0.0 1 0 5501 6.2 0.0 1
0.80 0 3691 10001.4 1.5 0 0 6764 13.5 0.0 1
1.00 0 4444 10001.7 5.2 0 0 7466 20.7 0.0 1

1 0.10 0 2757 1.2 0.0 1 0 4302 1.1 0.0 1
0.50 0 3910 9999.8 0.2 0 0 6785 6.9 0.0 1
0.80 0 4361 10000.9 1.8 0 0 7133 10.7 0.0 1
1.00 0 4770 10001.0 3.5 0 0 7764 16.0 0.0 1

2 0.10 0 1219 0.7 0.0 1 0 2049 0.9 0.0 1
0.50 0 2723 378.9 0.0 1 0 5891 4.9 0.0 1
0.80 0 3281 10000.7 2.0 0 0 6833 9.0 0.0 1
1.00 0 3884 10001.4 6.6 0 0 7351 15.1 0.0 1

3 0.10 0 2185 71.3 0.0 1 0 4786 3.3 0.0 1
0.50 0 3595 10000.8 1.7 0 0 7480 29.3 0.0 1
0.80 0 6301 10002.2 39.4 0 0 7918 44.9 0.0 1
1.00 1626 7346 10003.5 100.0 0 0 8279 113.7 0.0 1

4 0.10 0 1776 7.2 0.0 1 0 3257 1.9 0.0 1
0.50 0 3663 10000.5 2.4 0 0 6941 13.1 0.0 1
0.80 0 4119 10001.0 4.9 0 0 7706 20.9 0.0 1
1.00 0 4398 10001.5 6.2 0 0 7839 29.4 0.0 1

5 0.10 0 1904 1.2 0.0 1 0 3067 1.4 0.0 1
0.50 0 3432 31.0 0.0 1 0 6101 6.3 0.0 1
0.80 0 3838 2059.4 0.0 1 0 6736 13.8 0.0 1
1.00 0 4199 10001.8 2.6 0 0 7150 18.1 0.0 1

6 0.10 0 2250 5.5 0.0 1 0 3883 3.8 0.0 1
0.50 0 3497 944.7 0.0 1 0 5462 8.6 0.0 1
0.80 0 4133 10001.2 0.9 0 0 6727 21.9 0.0 1
1.00 0 4637 10001.9 3.4 0 0 7980 21.7 0.0 1

7 0.10 0 2552 1.2 0.0 1 0 4132 1.1 0.0 1
0.50 0 3614 30.5 0.0 1 0 6073 6.0 0.0 1
0.80 0 4455 10001.3 2.6 0 0 7091 13.7 0.0 1
1.00 0 4782 10001.8 4.4 0 0 8264 17.2 0.0 1

8 0.10 0 1765 1.0 0.0 1 0 3603 0.9 0.0 1
0.50 0 3167 257.5 0.0 1 0 6530 4.0 0.0 1
0.80 0 3772 10000.7 1.8 0 0 7266 7.2 0.0 1
1.00 0 4508 10001.6 5.0 0 0 7582 9.6 0.0 1

9 0.10 0 1990 1.3 0.0 1 0 2937 1.3 0.0 1
0.50 0 3278 1616.1 0.0 1 0 6032 4.9 0.0 1
0.80 0 3829 3107.8 0.0 1 0 6647 8.6 0.0 1
1.00 0 4267 10001.5 0.8 0 0 7162 11.4 0.0 1

10 0.10 0 2143 1.2 0.0 1 0 3741 1.1 0.0 1
0.50 0 2726 30.7 0.0 1 0 5431 4.5 0.0 1
0.80 0 3751 10001.0 3.1 0 0 6381 6.5 0.0 1
1.00 0 4018 10001.8 3.6 0 0 7016 10.9 0.0 1

11 0.10 0 2724 5.4 0.0 1 0 4904 6.1 0.0 1
0.50 0 3984 6036.7 0.0 1 0 7065 15.5 0.0 1
0.80 0 4675 10001.7 2.4 0 0 8027 30.6 0.0 1
1.00 1960 7043 10003.0 100.0 0 0 8443 44.6 0.0 1

12 0.10 0 2192 0.6 0.0 1 0 4178 0.4 0.0 1
0.50 0 3276 580.7 0.0 1 0 6776 3.4 0.0 1
0.80 0 3841 10001.1 0.9 0 0 7554 7.3 0.0 1
1.00 0 4563 10002.0 3.9 0 0 7780 10.0 0.0 1

13 0.10 0 2145 1.3 0.0 1 0 3207 0.6 0.0 1
0.50 0 3732 10000.0 1.3 0 0 6353 7.6 0.0 1
0.80 0 4440 10001.1 4.1 0 0 7432 13.1 0.0 1
1.00 0 4802 10001.8 4.0 0 0 7880 21.9 0.0 1

14 0.10 0 2693 3.2 0.0 1 0 4245 0.6 0.0 1
0.50 0 3802 668.9 0.0 1 0 6572 6.1 0.0 1
0.80 0 4357 10000.9 2.6 0 0 7184 13.0 0.0 1
1.00 0 4639 10001.9 4.4 0 0 7999 26.4 0.0 1

274

Table A.45: Performance of ILP-O and ILP-S for instance size (Sz.) 100, instance numbers (Nr.)
15–29.

ILP-O ILP-S
Sz. Nr. Load Ca Cu t[s] Gap Opt Ca Cu t[s] Gap Opt
100 15 0.10 0 1822 0.7 0.0 1 0 3592 1.1 0.0 1

0.50 0 2955 191.0 0.0 1 0 5939 5.1 0.0 1
0.80 0 3830 10000.4 0.3 0 0 6803 7.7 0.0 1
1.00 0 4503 10001.2 1.9 0 0 7505 11.4 0.0 1

16 0.10 0 2496 0.9 0.0 1 0 3639 0.6 0.0 1
0.50 0 3702 9.8 0.0 1 0 4941 3.2 0.0 1
0.80 0 4113 5490.9 0.0 1 0 6278 6.9 0.0 1
1.00 0 4622 10000.9 0.7 0 0 6902 10.2 0.0 1

17 0.10 0 1973 2.4 0.0 1 0 3401 1.2 0.0 1
0.50 0 3861 2176.9 0.0 1 0 7456 6.5 0.0 1
0.80 0 4308 10000.5 2.6 0 0 8000 13.3 0.0 1
1.00 0 4877 10000.9 5.0 0 0 7986 16.6 0.0 1

18 0.10 0 1889 0.7 0.0 1 0 2603 0.8 0.0 1
0.50 0 2980 9999.9 1.3 0 0 6363 6.3 0.0 1
0.80 0 3383 10001.2 2.7 0 0 7573 11.0 0.0 1
1.00 0 4004 10002.3 7.3 0 0 7890 16.5 0.0 1

19 0.10 0 2148 0.8 0.0 1 0 3214 0.7 0.0 1
0.50 0 3182 1058.8 0.0 1 0 5594 7.8 0.0 1
0.80 0 3680 10001.8 3.7 0 0 6359 11.2 0.0 1
1.00 0 4039 10002.3 2.7 0 0 6769 15.4 0.0 1

20 0.10 0 1548 0.9 0.0 1 0 2586 0.7 0.0 1
0.50 0 3468 9999.9 1.1 0 0 6784 7.4 0.0 1
0.80 0 3924 10001.3 1.4 0 0 7405 12.9 0.0 1
1.00 0 4336 10001.8 3.0 0 0 8055 19.4 0.0 1

21 0.10 0 1923 2.3 0.0 1 0 3799 1.6 0.0 1
0.50 0 3283 4776.0 0.0 1 0 6795 7.7 0.0 1
0.80 0 3893 10002.0 4.3 0 0 7724 16.0 0.0 1
1.00 0 4168 10002.5 5.3 0 0 7971 19.8 0.0 1

22 0.10 0 1065 0.5 0.0 1 0 1454 0.5 0.0 1
0.50 0 2776 12.1 0.0 1 0 5583 3.9 0.0 1
0.80 0 3686 9470.6 2.2 0 0 6795 8.3 0.0 1
1.00 0 3979 10001.4 1.7 0 0 7620 13.8 0.0 1

23 0.10 0 1518 1.1 0.0 1 0 2845 1.2 0.0 1
0.50 0 2922 3318.1 0.0 1 0 5319 4.7 0.0 1
0.80 0 3857 10001.4 1.3 0 0 6785 10.2 0.0 1
1.00 0 4506 10002.1 2.2 0 0 7491 18.1 0.0 1

24 0.10 0 2458 1.2 0.0 1 0 3910 1.0 0.0 1
0.50 0 3762 19.0 0.0 1 0 6516 6.1 0.0 1
0.80 0 4311 10000.9 1.3 0 0 7833 10.9 0.0 1
1.00 0 4505 10002.2 2.5 0 0 7773 14.5 0.0 1

25 0.10 0 1940 2.0 0.0 1 0 4142 0.9 0.0 1
0.50 0 3291 1048.4 0.0 1 0 6984 5.2 0.0 1
0.80 0 3925 10001.3 2.4 0 0 7912 12.9 0.0 1
1.00 0 4505 10001.7 6.2 0 0 7932 19.3 0.0 1

26 0.10 0 2340 1.7 0.0 1 0 3340 0.5 0.0 1
0.50 0 3534 39.2 0.0 1 0 6147 4.9 0.0 1
0.80 0 3997 10001.3 1.3 0 0 7801 12.7 0.0 1
1.00 0 4351 10001.8 3.4 0 0 8173 20.0 0.0 1

27 0.10 0 1445 1.0 0.0 1 0 2193 0.9 0.0 1
0.50 0 2868 5.5 0.0 1 0 6244 3.6 0.0 1
0.80 0 3712 5991.7 0.0 1 0 7219 6.7 0.0 1
1.00 0 3985 7333.2 1.5 0 0 7465 9.2 0.0 1

28 0.10 0 2137 0.8 0.0 1 0 3765 1.3 0.0 1
0.50 0 3872 24.8 0.0 1 0 7234 6.4 0.0 1
0.80 0 4183 1864.8 0.0 1 0 7817 12.0 0.0 1
1.00 0 4589 10001.5 3.1 0 0 8307 16.2 0.0 1

29 0.10 0 2377 4.1 0.0 1 0 4260 1.5 0.0 1
0.50 0 3387 9999.8 1.9 0 0 6603 7.2 0.0 1
0.80 0 4213 10000.9 2.8 0 0 7541 11.5 0.0 1
1.00 0 4405 10001.3 2.4 0 0 7990 16.6 0.0 1

275

Table A.46: Performance of ILP-O and ILP-S for instance size (Sz.) 200, instance numbers (Nr.)
0–14.

ILP-O ILP-S
Sz. Nr. Load Ca Cu t[s] Gap Opt Ca Cu t[s] Gap Opt
200 0 0.10 0 2215 6.3 0.0 1 0 3643 1.3 0.0 1

0.50 0 4452 10001.7 0.6 0 0 8102 14.0 0.0 1
0.80 0 5370 10004.0 2.3 0 0 10515 30.3 0.0 1
1.00 0 6080 10004.9 4.9 0 0 11662 41.3 0.0 1

1 0.10 0 1841 5.4 0.0 1 0 2688 3.4 0.0 1
0.50 0 3922 10003.5 0.6 0 0 7578 17.6 0.0 1
0.80 0 5201 10005.2 3.8 0 0 9675 26.2 0.0 1
1.00 0 6407 10005.2 6.0 0 0 11754 32.2 0.0 1

2 0.10 0 2650 5.6 0.0 1 0 4520 4.5 0.0 1
0.50 0 3998 126.6 0.0 1 0 7427 13.8 0.0 1
0.80 0 4828 10004.1 3.1 0 0 9940 22.7 0.0 1
1.00 0 5877 10006.5 7.5 0 0 11183 41.8 0.0 1

3 0.10 0 3513 2.1 0.0 1 0 5700 1.8 0.0 1
0.50 0 5553 6799.3 0.0 1 0 8456 12.6 0.0 1
0.80 0 6422 10003.7 0.2 0 0 10759 21.2 0.0 1
1.00 0 7172 10005.6 1.7 0 0 11644 29.8 0.0 1

4 0.10 0 2807 4.5 0.0 1 0 5494 2.7 0.0 1
0.50 0 4674 83.8 0.0 1 0 9154 11.9 0.0 1
0.80 0 5783 10003.9 1.4 0 0 11533 22.6 0.0 1
1.00 0 6715 10004.2 5.9 0 0 12783 38.8 0.0 1

5 0.10 0 2980 1.4 0.0 1 0 3968 0.8 0.0 1
0.50 0 4816 110.4 0.0 1 0 8105 9.2 0.0 1
0.80 0 5797 10003.1 1.4 0 0 9541 17.0 0.0 1
1.00 0 6432 10005.6 6.6 0 0 11174 28.6 0.0 1

6 0.10 0 3202 86.4 0.0 1 0 5947 4.1 0.0 1
0.50 0 4826 10002.0 2.2 0 0 8797 24.8 0.0 1
0.80 739 9499 10004.8 100.0 0 0 11354 48.0 0.0 1
1.00 4553 11680 10005.2 100.0 0 0 12118 56.5 0.0 1

7 0.10 0 2776 3.4 0.0 1 0 5156 4.0 0.0 1
0.50 0 5243 10002.1 1.9 0 0 9020 16.3 0.0 1
0.80 100 10352 10004.1 100.0 0 0 10904 24.3 0.0 1
1.00 0 7157 10005.8 7.7 0 0 12432 41.4 0.0 1

8 0.10 0 1511 4.7 0.0 1 0 3097 4.2 0.0 1
0.50 0 6417 10002.9 33.8 0 0 9390 24.8 0.0 1
0.80 430 8930 10006.1 100.0 0 0 11296 52.8 0.0 1
1.00 4614 11950 10008.0 100.0 0 0 12491 116.7 0.0 1

9 0.10 0 2238 1.8 0.0 1 0 3222 1.1 0.0 1
0.50 0 4888 10002.6 0.5 0 0 9978 14.7 0.0 1
0.80 0 5541 10006.3 1.8 0 0 11119 27.8 0.0 1
1.00 8678 9961 10008.0 100.0 0 0 13220 47.2 0.0 1

10 0.10 0 1734 1.2 0.0 1 0 2487 1.3 0.0 1
0.50 0 4733 10002.5 1.4 0 0 8743 13.2 0.0 1
0.80 0 6237 10004.5 1.6 0 0 11916 24.7 0.0 1
1.00 0 6978 10006.1 3.6 0 0 12960 38.4 0.0 1

11 0.10 0 1849 17.3 0.0 1 0 3583 16.0 0.0 1
0.50 250 6800 10005.8 100.0 0 0 10490 49.9 0.0 1
0.80 350 10157 10008.9 100.0 0 0 13103 123.1 0.0 1
1.00 17462 11850 10012.1 100.0 0 0 14207 355.1 0.0 1

12 0.10 0 2696 5.8 0.0 1 0 4656 6.1 0.0 1
0.50 0 4467 10002.4 0.1 0 0 7421 15.6 0.0 1
0.80 0 5195 9094.6 0.0 1 0 9823 25.4 0.0 1
1.00 0 6237 10006.3 5.4 0 0 12088 40.3 0.0 1

13 0.10 0 2169 5.9 0.0 1 0 3486 3.0 0.0 1
0.50 0 3792 334.0 0.0 1 0 6706 17.8 0.0 1
0.80 0 7293 10006.8 37.6 0 0 9397 29.8 0.0 1
1.00 0 5577 10007.0 6.6 0 0 11255 44.0 0.0 1

14 0.10 0 3194 1172.5 0.0 1 0 6366 7.5 0.0 1
0.50 0 6231 10002.5 31.7 0 0 8345 20.2 0.0 1
0.80 600 8728 10005.9 100.0 0 0 11720 60.7 0.0 1
1.00 3409 10386 10007.5 100.0 0 0 12888 94.8 0.0 1

276

Table A.47: Performance of ILP-O and ILP-S for instance size (Sz.) 200, instance numbers (Nr.)
15–29.

ILP-O ILP-S
Sz. Nr. Load Ca Cu t[s] Gap Opt Ca Cu t[s] Gap Opt
200 15 0.10 0 2489 5.8 0.0 1 0 4206 1.8 0.0 1

0.50 0 4193 71.4 0.0 1 0 8536 11.2 0.0 1
0.80 0 5067 10003.7 1.1 0 0 9553 22.7 0.0 1
1.00 0 5756 10004.2 3.8 0 0 11220 35.2 0.0 1

16 0.10 0 2649 9.0 0.0 1 0 4321 3.2 0.0 1
0.50 0 3941 7659.6 0.0 1 0 7721 17.3 0.0 1
0.80 0 5201 10004.4 2.4 0 0 10027 27.6 0.0 1
1.00 3588 10403 10005.4 100.0 0 0 12455 47.6 0.0 1

17 0.10 0 1838 3.5 0.0 1 0 3533 3.4 0.0 1
0.50 0 4627 10002.0 1.6 0 0 8508 16.6 0.0 1
0.80 0 6196 10003.9 8.4 0 0 11135 28.8 0.0 1
1.00 3826 11663 10006.6 100.0 0 0 12952 49.9 0.0 1

18 0.10 0 2037 4.2 0.0 1 0 3959 3.2 0.0 1
0.50 0 4313 10003.6 0.2 0 0 8541 19.6 0.0 1
0.80 0 5763 10005.7 4.9 0 0 10523 33.8 0.0 1
1.00 5073 9603 10009.1 100.0 0 0 11741 53.0 0.0 1

19 0.10 0 2351 2.2 0.0 1 0 3668 1.9 0.0 1
0.50 0 3989 6174.1 0.0 1 0 7039 11.1 0.0 1
0.80 0 5797 10003.7 6.5 0 0 10318 23.0 0.0 1
1.00 0 6712 10004.5 9.5 0 0 11954 31.2 0.0 1

20 0.10 0 2598 23.1 0.0 1 0 5224 3.9 0.0 1
0.50 0 4652 10001.7 0.4 0 0 8840 13.6 0.0 1
0.80 0 5735 10003.7 5.4 0 0 10642 24.6 0.0 1
1.00 0 6756 10004.8 9.0 0 0 11786 30.3 0.0 1

21 0.10 0 2481 1.2 0.0 1 0 3710 1.1 0.0 1
0.50 0 4566 25.7 0.0 1 0 7960 8.4 0.0 1
0.80 0 5921 3776.0 0.0 1 0 10463 15.8 0.0 1
1.00 0 6341 10003.6 1.8 0 0 12437 19.3 0.0 1

22 0.10 0 2997 3.9 0.0 1 0 5071 2.0 0.0 1
0.50 0 4950 169.8 0.0 1 0 9109 18.7 0.0 1
0.80 0 5970 10004.4 0.4 0 0 10918 26.9 0.0 1
1.00 0 6855 10006.6 4.5 0 0 12466 53.0 0.0 1

23 0.10 0 2537 3.8 0.0 1 0 3988 2.9 0.0 1
0.50 0 4893 10003.1 1.5 0 0 8621 19.8 0.0 1
0.80 0 5711 10004.5 3.7 0 0 9939 32.2 0.0 1
1.00 0 7260 10006.1 9.2 0 0 12632 40.8 0.0 1

24 0.10 0 2193 3.2 0.0 1 0 3424 1.8 0.0 1
0.50 0 4617 65.5 0.0 1 0 8088 9.5 0.0 1
0.80 0 5517 10005.6 2.9 0 0 9712 24.0 0.0 1
1.00 0 6342 10006.0 3.4 0 0 11662 31.8 0.0 1

25 0.10 0 2790 21.4 0.0 1 0 5007 3.1 0.0 1
0.50 0 4645 10003.1 5.4 0 0 8918 21.2 0.0 1
0.80 0 5549 10006.1 8.3 0 0 11289 39.4 0.0 1
1.00 0 6347 10006.0 8.1 0 0 12373 36.9 0.0 1

26 0.10 0 2895 17.9 0.0 1 0 4772 6.7 0.0 1
0.50 0 4330 2205.0 0.0 1 0 7295 16.8 0.0 1
0.80 0 5744 10005.9 2.0 0 0 10030 28.0 0.0 1
1.00 0 6257 10007.3 4.4 0 0 11055 45.8 0.0 1

27 0.10 0 2416 1.1 0.0 1 0 3547 1.2 0.0 1
0.50 0 4503 253.7 0.0 1 0 7710 9.0 0.0 1
0.80 0 5544 10003.3 0.7 0 0 9842 17.5 0.0 1
1.00 0 5947 10005.2 3.1 0 0 10985 25.2 0.0 1

28 0.10 0 2331 2.1 0.0 1 0 4481 1.4 0.0 1
0.50 0 3864 10001.4 2.3 0 0 8410 14.6 0.0 1
0.80 0 5286 10004.7 6.5 0 0 10270 27.4 0.0 1
1.00 0 6481 10007.1 8.3 0 0 12288 44.9 0.0 1

29 0.10 0 2318 28.0 0.0 1 0 4985 2.6 0.0 1
0.50 0 4320 10002.2 3.4 0 0 9784 19.7 0.0 1
0.80 0 6018 10048.8 7.6 0 0 11948 55.3 0.0 1
1.00 1084 10443 10009.3 100.0 0 0 12903 74.3 0.0 1

277

Table A.48: Performance of ILP-O and ILP-S for instance size (Sz.) 500, instance numbers (Nr.)
0–14.

ILP-O ILP-S
Sz. Nr. Load Ca Cu t[s] Gap Opt Ca Cu t[s] Gap Opt
500 0 0.10 0 3722 250.6 0.0 1 0 6596 13.5 0.0 1

0.50 0 6726 736.2 0.0 1 0 12177 46.1 0.0 1
0.80 0 8286 10027.2 2.9 0 0 15490 96.7 0.0 1
1.00 16483 16274 10025.7 100.0 0 0 20935 193.9 0.0 1

1 0.10 0 3633 1985.5 0.0 1 0 6325 7.6 0.0 1
0.50 145 9123 10015.4 100.0 0 0 11265 60.7 0.0 1
0.80 1264 13307 10025.8 100.0 0 0 14666 136.4 0.0 1
1.00 9320 15518 10029.5 100.0 0 0 21198 1064.4 0.0 1

2 0.10 0 3329 36.4 0.0 1 0 6433 7.2 0.0 1
0.50 0 6243 10010.4 1.2 0 0 10252 37.8 0.0 1
0.80 2459 13800 10021.6 100.0 0 0 15297 88.4 0.0 1
1.00 16322 17450 10024.7 100.0 0 0 20207 160.2 0.0 1

3 0.10 0 2987 14.3 0.0 1 0 5033 11.4 0.0 1
0.50 0 5782 10015.3 1.1 0 0 10002 56.0 0.0 1
0.80 0 13022 10043.3 76.8 0 0 15190 187.8 0.0 1
1.00 4795 16388 10047.5 100.0 0 0 25129 408.4 0.0 1

4 0.10 0 2555 31.7 0.0 1 0 5284 11.7 0.0 1
0.50 0 8967 10019.6 32.8 0 0 11402 57.5 0.0 1
0.80 45 12775 10025.6 100.0 0 0 15281 157.1 0.0 1
1.00 5868 16026 10042.8 100.0 0 0 22320 505.1 0.0 1

5 0.10 0 2858 38.5 0.0 1 0 5262 7.1 0.0 1
0.50 0 6648 10014.6 3.0 0 0 12007 56.7 0.0 1
0.80 4851 14490 10023.0 100.0 0 0 16711 151.2 0.0 1
1.00 16673 17427 10033.8 100.0 0 0 19699 204.0 0.0 1

6 0.10 0 3167 237.8 0.0 1 0 5495 327.7 0.0 1
0.50 0 6556 10039.3 0.1 0 0 12300 332.3 0.0 1
0.80 886 12920 10053.6 100.0 0 0 15354 368.3 0.0 1
1.00 8250 16495 10049.3 100.0 0 0 20361 412.6 0.0 1

7 0.10 0 3220 15.3 0.0 1 0 4535 19.1 0.0 1
0.50 0 7170 10017.0 0.3 0 0 12733 101.7 0.0 1
0.80 5255 15456 10031.1 100.0 0 0 17862 165.2 0.0 1
1.00 12441 18699 10038.4 100.0 0 0 21870 210.3 0.0 1

8 0.10 0 2973 2610.9 0.0 1 0 6539 17.9 0.0 1
0.50 0 9553 10027.4 76.5 0 0 12954 90.3 0.0 1
0.80 2349 15746 10032.4 100.0 0 0 22026 297.6 0.0 1
1.00 19908 19533 10035.8 100.0 0 0 25113 649.3 0.0 1

9 0.10 0 2420 35.8 0.0 1 0 4565 7.5 0.0 1
0.50 20 8164 10021.5 100.0 0 0 10223 76.5 0.0 1
0.80 3052 12907 10029.1 100.0 0 0 14751 163.4 0.0 1
1.00 9392 15606 10035.2 100.0 0 0 23490 587.3 0.0 1

10 0.10 0 2962 29.2 0.0 1 0 5691 13.0 0.0 1
0.50 0 8586 10017.5 36.4 0 0 11010 65.3 0.0 1
0.80 344 13336 10024.4 100.0 0 0 17645 136.4 0.0 1
1.00 20951 17789 10035.6 100.0 0 0 22149 207.8 0.0 1

11 0.10 0 3446 11.1 0.0 1 0 5288 5.9 0.0 1
0.50 0 7218 10019.1 0.9 0 0 11641 67.4 0.0 1
0.80 778 12513 10028.2 100.0 0 0 13469 91.0 0.0 1
1.00 5612 15057 10036.1 100.0 0 0 17559 171.7 0.0 1

12 0.10 0 3061 9.1 0.0 1 0 5015 6.7 0.0 1
0.50 435 10761 10020.8 100.0 0 0 10685 73.4 0.0 1
0.80 7555 14944 10025.3 100.0 0 0 15064 133.3 0.0 1
1.00 19224 17711 10030.1 100.0 0 0 18521 245.7 0.0 1

13 0.10 0 2780 20.6 0.0 1 0 4777 9.3 0.0 1
0.50 0 8910 10019.0 36.4 0 0 12142 73.9 0.0 1
0.80 491 12995 10027.8 100.0 0 0 14288 115.6 0.0 1
1.00 6984 17009 10034.8 100.0 0 0 23228 352.7 0.0 1

14 0.10 0 3451 12.7 0.0 1 0 5398 7.0 0.0 1
0.50 0 10190 10019.7 37.7 0 0 11941 65.2 0.0 1
0.80 3412 15201 10031.7 100.0 0 0 17504 120.1 0.0 1
1.00 21324 19392 10044.4 100.0 0 0 24708 689.4 0.0 1

278

Table A.49: Performance of ILP-O and ILP-S for instance size (Sz.) 500, instance numbers (Nr.)
15–29.

ILP-O ILP-S
Sz. Nr. Load Ca Cu t[s] Gap Opt Ca Cu t[s] Gap Opt

500 15 0.10 0 3565 29.1 0.0 1 0 7629 12.0 0.0 1
0.50 0 8564 10018.3 35.0 0 0 11050 63.7 0.0 1
0.80 822 13489 10029.4 100.0 0 0 15173 141.8 0.0 1
1.00 18419 18031 10044.8 100.0 0 0 25124 686.2 0.0 1

16 0.10 0 2891 104.6 0.0 1 0 6172 10.5 0.0 1
0.50 0 6033 7791.4 0.0 1 0 11562 69.8 0.0 1
0.80 0 7942 10031.5 2.5 0 0 14536 130.8 0.0 1
1.00 6602 16230 10035.2 100.0 0 0 23400 339.8 0.0 1

17 0.10 0 2108 29.5 0.0 1 0 3660 5.4 0.0 1
0.50 0 5440 189.4 0.0 1 0 9449 43.8 0.0 1
0.80 0 7056 10027.8 1.4 0 0 14341 86.7 0.0 1
1.00 3856 13976 10037.1 100.0 0 0 18638 175.8 0.0 1

18 0.10 0 3445 22.9 0.0 1 0 5716 12.9 0.0 1
0.50 0 9346 10022.0 34.1 0 0 11116 64.7 0.0 1
0.80 783 14895 10036.8 100.0 0 0 15484 129.7 0.0 1
1.00 8189 19675 10043.9 100.0 0 0 22375 311.2 0.0 1

19 0.10 0 3022 56.7 0.0 1 0 5564 18.3 0.0 1
0.50 0 6978 10021.0 3.3 0 0 12364 84.1 0.0 1
0.80 2328 15313 10032.8 100.0 0 0 20738 340.4 0.0 1
1.00 22383 19932 10034.3 100.0 0 0 25188 1035.2 0.0 1

20 0.10 0 3267 6.3 0.0 1 0 5563 6.7 0.0 1
0.50 0 6600 10014.9 2.4 0 0 11601 52.8 0.0 1
0.80 140 13534 10027.9 100.0 0 0 14839 86.8 0.0 1
1.00 10625 17590 10034.8 100.0 0 0 19820 147.0 0.0 1

21 0.10 0 3029 52.6 0.0 1 0 5963 16.3 0.0 1
0.50 0 5619 10019.7 1.2 0 0 9973 62.4 0.0 1
0.80 0 7904 10026.6 4.8 0 0 15474 116.6 0.0 1
1.00 10421 17057 10038.8 100.0 0 0 24528 330.2 0.0 1

22 0.10 0 2446 141.2 0.0 1 0 4599 14.2 0.0 1
0.50 0 5553 10022.9 2.9 0 0 9396 66.7 0.0 1
0.80 2914 12548 10021.1 100.0 0 0 15124 128.3 0.0 1
1.00 9597 14935 10035.2 100.0 0 0 17656 182.4 0.0 1

23 0.10 0 3294 15.7 0.0 1 0 5565 5.8 0.0 1
0.50 0 6158 10011.8 1.8 0 0 10977 39.1 0.0 1
0.80 444 13460 10026.7 100.0 0 0 16007 99.1 0.0 1
1.00 29457 17271 10032.9 100.0 0 0 20383 194.2 0.0 1

24 0.10 0 2738 73.9 0.0 1 0 5573 73.6 0.0 1
0.50 0 5766 10034.4 0.4 0 0 11998 176.1 0.0 1
0.80 0 7636 10044.0 3.6 0 0 14699 250.5 0.0 1
1.00 25367 17170 10076.2 100.0 0 0 23296 450.8 0.0 1

25 0.10 0 3390 10003.1 0.7 0 0 6703 20.8 0.0 1
0.50 0 7041 10019.0 2.5 0 0 12706 90.2 0.0 1
0.80 2290 15194 10029.5 100.0 0 0 22136 335.3 0.0 1
1.00 8822 18437 10035.0 100.0 0 0 25256 2181.3 0.0 1

26 0.10 0 2888 34.1 0.0 1 0 5585 9.7 0.0 1
0.50 0 6340 10014.9 2.9 0 0 11408 58.9 0.0 1
0.80 5587 14590 10035.1 100.0 0 0 18068 138.2 0.0 1
1.00 23692 17156 10036.3 100.0 0 0 19893 199.5 0.0 1

27 0.10 0 3425 74.9 0.0 1 0 6049 13.0 0.0 1
0.50 0 6173 10022.9 1.0 0 0 11214 87.4 0.0 1
0.80 4348 14665 10032.7 100.0 0 0 16081 106.7 0.0 1
1.00 18469 16927 10038.9 100.0 0 0 20624 227.8 0.0 1

28 0.10 0 3004 67.7 0.0 1 0 5919 14.4 0.0 1
0.50 0 9044 10026.3 73.9 0 0 12079 101.6 0.0 1
0.80 4672 14631 10036.5 100.0 0 0 20703 261.2 0.0 1
1.00 14827 17823 10042.2 100.0 0 0 23266 314.9 0.0 1

29 0.10 0 3777 55.9 0.0 1 0 5939 23.4 0.0 1
0.50 0 6028 412.1 0.0 1 0 9413 55.9 0.0 1
0.80 0 12656 10038.0 40.6 0 0 15136 96.1 0.0 1
1.00 8686 16546 10054.0 100.0 0 0 20333 146.9 0.0 1

279

Table A.50: Performance of ILP-O and ILP-S for instance size (Sz.) 1000, instance numbers
(Nr.) 0–14.

ILP-O ILP-S
Sz. Nr. Load Ca Cu t[s] Gap Opt Ca Cu t[s] Gap Opt

1000 0 0.10 0 3912 705.0 0.0 1 0 7977 62.4 0.0 1
0.50 41 15071 10069.3 100.0 0 0 16389 194.1 0.0 1
0.80 3663 22502 10211.6 100.0 0 0 30527 721.7 0.0 1
1.00 - - - - - 0 37444 1640.8 0.0 1

1 0.10 0 3262 10003.7 0.3 0 0 5873 32.2 0.0 1
0.50 0 8308 10041.0 3.0 0 0 14212 161.8 0.0 1
0.80 2433 21052 10087.1 100.0 0 0 27025 481.2 0.0 1
1.00 16846 26477 10147.8 100.0 0 0 35046 1097.6 0.0 1

2 0.10 0 3966 83.2 0.0 1 0 7125 41.0 0.0 1
0.50 0 8850 10085.0 2.9 0 0 14804 246.5 0.0 1
0.80 7705 20612 10160.9 100.0 0 0 28623 586.4 0.0 1
1.00 - - - - - 0 35462 1546.1 0.0 1

3 0.10 0 3056 65.7 0.0 1 0 5323 46.3 0.0 1
0.50 78 12973 10074.6 100.0 0 0 13739 194.4 0.0 1
0.80 620 20989 10120.9 100.0 0 0 26914 692.8 0.0 1
1.00 - - - - - 0 35649 1954.9 0.0 1

4 0.10 0 4378 80.0 0.0 1 0 8169 37.8 0.0 1
0.50 411 13991 10102.2 100.0 0 0 21674 258.2 0.0 1
0.80 5337 18736 10149.8 100.0 0 0 27998 794.1 0.0 1
1.00 - - - - - 0 35095 1845.7 0.0 1

5 0.10 0 4801 298.4 0.0 1 0 8539 34.8 0.0 1
0.50 0 9183 10104.3 1.6 0 0 21531 266.0 0.0 1
0.80 6039 21893 10102.0 100.0 0 0 29258 532.4 0.0 1
1.00 - - - - - 0 35228 1694.8 0.0 1

6 0.10 0 4770 143.2 0.0 1 0 8831 61.9 0.0 1
0.50 0 8751 10102.6 2.3 0 0 14137 234.4 0.0 1
0.80 4198 19513 10140.7 100.0 0 0 28161 563.6 0.0 1
1.00 - - - - - 0 35958 1269.1 0.0 1

7 0.10 0 2642 174.9 0.0 1 0 5834 49.8 0.0 1
0.50 0 6971 10075.1 1.5 0 0 12615 168.6 0.0 1
0.80 4890 19680 10146.1 100.0 0 0 28173 516.8 0.0 1
1.00 - - - - - 0 34359 2069.2 0.0 1

8 0.10 0 3484 131.3 0.0 1 0 7233 21.1 0.0 1
0.50 0 6724 10055.6 0.5 0 0 10636 173.9 0.0 1
0.80 8167 20085 10129.6 100.0 0 0 27346 514.0 0.0 1
1.00 - - - - - 0 33449 2172.6 0.0 1

9 0.10 0 3376 10009.6 0.1 0 0 6783 46.7 0.0 1
0.50 0 12248 10075.6 75.3 0 0 18876 222.8 0.0 1
0.80 5838 19365 10090.7 100.0 0 0 27061 569.4 0.0 1
1.00 - - - - - 0 33438 1344.9 0.0 1

10 0.10 0 3032 540.5 0.0 1 0 6460 87.6 0.0 1
0.50 0 8311 10099.9 2.7 0 0 14394 253.1 0.0 1
0.80 6926 21602 10155.7 100.0 0 0 28290 523.6 0.0 1
1.00 13299 25286 10153.0 100.0 0 0 35415 1169.9 0.0 1

11 0.10 0 3754 2621.8 0.0 1 0 7068 28.9 0.0 1
0.50 0 7722 10039.5 2.1 0 0 12766 155.6 0.0 1
0.80 2403 19234 10084.5 100.0 0 0 28316 396.4 0.0 1
1.00 - - - - - 0 34903 1328.4 0.0 1

12 0.10 0 3454 299.3 0.0 1 0 7075 24.3 0.0 1
0.50 1735 14863 10089.3 100.0 0 0 17087 227.3 0.0 1
0.80 5453 21292 10126.5 100.0 0 0 27696 420.5 0.0 1
1.00 - - - - - 0 35966 1552.8 0.0 1

13 0.10 0 4204 90.9 0.0 1 0 7622 54.2 0.0 1
0.50 0 13085 10090.5 80.8 0 0 19931 239.4 0.0 1
0.80 1964 17975 10137.9 100.0 0 0 26705 577.3 0.0 1
1.00 - - - - - 0 35871 5516.8 0.0 1

14 0.10 0 3457 129.8 0.0 1 0 6745 33.0 0.0 1
0.50 84 11605 10056.4 100.0 0 0 11500 175.6 0.0 1
0.80 2927 17229 10090.8 100.0 0 0 25899 602.7 0.0 1
1.00 - - - - - 0 35056 3160.0 0.0 1

280

Table A.51: Performance of ILP-O and ILP-S for instance size (Sz.) 1000, instance numbers
(Nr.) 15–29.

ILP-O ILP-S
Sz. Nr. Load Ca Cu t[s] Gap Opt Ca Cu t[s] Gap Opt

1000 15 0.10 0 4310 155.7 0.0 1 0 8216 40.3 0.0 1
0.50 0 13171 10055.9 32.9 0 0 15171 160.3 0.0 1
0.80 755 20466 10088.0 100.0 0 0 26156 378.3 0.0 1
1.00 - - - - - 0 33574 769.7 0.0 1

16 0.10 0 3379 56.9 0.0 1 0 6218 38.2 0.0 1
0.50 0 8248 10106.8 0.8 0 0 14510 250.1 0.0 1
0.80 1402 17668 10167.9 100.0 0 0 27824 604.6 0.0 1
1.00 - - - - - 0 35507 1360.2 0.0 1

17 0.10 0 3147 10008.0 0.5 0 0 6173 47.1 0.0 1
0.50 0 9120 10081.2 1.5 0 0 15934 243.1 0.0 1
0.80 9575 22070 10115.8 100.0 0 0 30242 600.5 0.0 1
1.00 18155 24743 10156.9 100.0 0 0 34411 889.2 0.0 1

18 0.10 0 3561 221.5 0.0 1 0 6544 21.1 0.0 1
0.50 470 12661 10069.1 100.0 0 0 18935 177.4 0.0 1
0.80 3164 20325 10113.0 100.0 0 0 27722 643.3 0.0 1
1.00 - - - - - - - - - -

19 0.10 0 3228 10003.9 2.1 0 0 6740 25.6 0.0 1
0.50 21 13148 10060.5 100.0 0 0 18448 177.5 0.0 1
0.80 981 19866 10103.3 100.0 0 0 27358 377.6 0.0 1
1.00 - - - - - 0 34735 1285.8 0.0 1

20 0.10 0 4874 216.4 0.0 1 0 8248 31.1 0.0 1
0.50 0 8140 10064.8 1.8 0 0 13761 178.1 0.0 1
0.80 809 20242 10117.8 100.0 0 0 28112 388.9 0.0 1
1.00 - - - - - 0 33578 727.3 0.0 1

21 0.10 0 3826 713.0 0.0 1 0 7456 68.9 0.0 1
0.50 0 8017 10122.7 2.0 0 0 20455 289.2 0.0 1
0.80 1007 17922 10163.7 100.0 0 0 28622 602.9 0.0 1
1.00 - - - - - 0 35560 1055.6 0.0 1

22 0.10 0 3666 10006.4 0.5 0 0 6880 35.7 0.0 1
0.50 1661 13169 10059.0 100.0 0 0 17223 193.9 0.0 1
0.80 3284 20370 10145.5 100.0 0 0 26152 1260.9 0.0 1
1.00 - - - - - 0 35924 1528.4 0.0 1

23 0.10 0 4162 109.6 0.0 1 0 6915 21.3 0.0 1
0.50 36 13865 10053.6 100.0 0 0 14934 206.0 0.0 1
0.80 3892 19010 10097.3 100.0 0 0 26239 386.9 0.0 1
1.00 - - - - - 0 36037 1443.3 0.0 1

24 0.10 0 3361 37.2 0.0 1 0 6189 10.2 0.0 1
0.50 0 8857 10068.5 2.5 0 0 14901 215.8 0.0 1
0.80 6348 21149 10162.6 100.0 0 0 27857 591.4 0.0 1
1.00 14117 24242 10130.1 100.0 0 0 34531 915.9 0.0 1

25 0.10 0 3887 10015.3 0.3 0 0 7466 60.7 0.0 1
0.50 0 12830 10083.4 76.8 0 0 19888 230.0 0.0 1
0.80 - - - - - 0 29531 587.1 0.0 1
1.00 - - - - - 0 35631 1872.4 0.0 1

26 0.10 0 4450 44.3 0.0 1 0 7523 21.8 0.0 1
0.50 0 8277 10050.9 2.9 0 0 13145 155.1 0.0 1
0.80 2238 20437 10113.4 100.0 0 0 27649 1115.4 0.0 1
1.00 - - - - - 0 32847 1291.7 0.0 1

27 0.10 0 2881 228.2 0.0 1 0 5581 69.0 0.0 1
0.50 0 6943 10052.2 0.9 0 0 11883 180.1 0.0 1
0.80 907 17975 10135.7 100.0 0 0 24847 406.0 0.0 1
1.00 - - - - - 0 35397 1219.2 0.0 1

28 0.10 0 4438 535.1 0.0 1 0 8098 54.6 0.0 1
0.50 0 9527 10087.5 2.5 0 0 16811 196.1 0.0 1
0.80 1613 20802 10158.6 100.0 0 0 27594 401.0 0.0 1
1.00 - - - - - 0 36884 1349.2 0.0 1

29 0.10 0 4053 212.3 0.0 1 0 6991 63.7 0.0 1
0.50 215 12357 10078.9 100.0 0 0 12804 222.4 0.0 1
0.80 8784 19037 10112.0 100.0 0 0 26014 533.3 0.0 1
1.00 - - - - - 0 32722 895.0 0.0 1

281

CurriculumVitae

Personal Details
Name Johannes Inführ

Date of Birth October 29th, 1986
Address Kaposigasse 60, 1220 Vienna, Austria
E-Mail infuehr@ads.tuwien.ac.at

Education
since 2010 PhD studies in Computer Science, Vienna University of Technology.

Dissertation on the topic of “Optimization Challenges of the Future Federated Internet”
2008–2010 Master studies in Computational Intelligence, Vienna University of Technology.

Master thesis on the topic of “Automatic Generation of 2-AntWars Players with Genetic Pro-
gramming
Master examination passed with distinction

2006–2008 Bachelor studies in Software & Information Engineering, Vienna University of
Technology.
Bachelor thesis on the topic of “Scatter Search”
Bachelor examination passed with distinction

2000–2005 Upper Secondary School, School for higher technical education Donaustadt, Vienna.
Department of computer engineering
Diploma thesis on the topic of 2-D motion capture
General qualification for university entrance passed with distinction

1996–2000 Lower Secondary School, Polgarstraße, Vienna.
1992–1996 Elementary School, Essling, Vienna.

Work Experience
since 2011 University Assistant, Algorithm and Data Structures Group, Institute of Computer

Graphics and Algorithms, Vienna University of Technology.
2010–2011 Research Assistant, Algorithm and Data Structures Group, Institute of Computer

Graphics and Algorithms, Vienna University of Technology.
2005–2006 Military Duty, Department of Performance Medicine, Van-Swieten-Kaserne.
2001–2003 Internship, Department of Information-management, Generali Holding Vienna AG (one

month each year).

283

Languages
German native tongue
English fluent

Research Interests

My current research interests are telecommunication problems, with the focus on virtual network mapping.
I studied various heuristic and exact methods for solving the offline variant of this problem and plan to
extend those methods to solve online and dynamic variants, which are closer to the real world. Generally,
I am interested in any method for automatic problem solving, like meta-heuristics or algorithms from the
field of artificial intelligence. I find the emergent self-organization and evolutionary dynamics that can be
observed in genetic programming fascinating.

Publications

[Inf10] Johannes Inführ. Automatic Generation of 2-AntWars Players with Genetic Programming. Mas-
ter’s thesis, Vienna University of Technology, Institute of Computer Graphics and Algorithms,
July 2010. Supervised by G. R. Raidl.

[IR11] Johannes Inführ and Günther R. Raidl. Introducing the Virtual Network Mapping Problem with
Delay, Routing and Location Constraints. In J. Pahl, T. Reiners, and S. Voß, editors, Network
Optimization: 5th International Conference, INOC 2011, volume 6701 of LNCS, pages 105–117,
Hamburg, Germany, June 2011. Springer.

[IR12] Johannes Inführ and Günther R. Raidl. Automatic Generation of 2-AntWars Players with Genetic
Programming. In R. Moreno-Díaz, F. Pichler, and A. Quesada-Arencibia, editors, Computer
Aided Systems Theory – EUROCAST 2011, volume 6927 of Lecture Notes in Computer Science,
pages 248–255. Springer Berlin / Heidelberg, 2012.

[IR13a] Johannes Inführ and Günther R. Raidl. A Memetic Algorithm for the Virtual Network Mapping
Problem. In H. C. Lau, P. Van Hentenryck, and G. R. Raidl, editors, Proceedings of the 10th
Metaheuristics International Conference, pages 28/1–28/10, Singapore, 2013. Nominated for
best paper award.

[IR13b] Johannes Inführ and Günther R. Raidl. GRASP and Variable Neighborhood Search for the
Virtual Network Mapping Problem. In M. J. Blesa et al., editors, Hybrid Metaheuristics, 8th
Int. Workshop, HM 2013, volume 7919 of LNCS, pages 159–173. Springer, 2013.

[IR13c] Johannes Inführ and Günther R. Raidl. Solving the Virtual Network Mapping Problem with
Construction Heuristics, Local Search and Variable Neighborhood Descent. In M. Middendorf
and C. Blum, editors, Evolutionary Computation in Combinatorial Optimisation – 13th European
Conference, EvoCOP 2013, volume 7832 of LNCS, pages 250–261. Springer, 2013.

[ISH+13] Johannes Inführ, David Stezenbach, Matthias Hartmann, Kurt Tutschku, and Günther R. Raidl.
Using Optimized Virtual Network Embedding for Network Dimensioning. In Proceedings of
Networked Systems 2013, pages 118–125, Stuttgart, Germany, 2013. IEEE.

284

	Introduction
	The History of a Changing Internet
	Current Problems
	Network Virtualization: The Cure?
	Advantages and Applications
	Challenges

	Scope and Structure of this Thesis

	Theory and Methodology
	Introduction
	Combinatorial Optimization Problems and Solution Methods
	Combinatorial Optimization Problems
	Complexity Theory
	Multiobjective Problems and Pareto Optimality
	Construction Heuristics
	Local Search
	Variable Neighborhood Descent
	Variable Neighborhood Search
	Greedy Randomized Adaptive Search Procedure
	Genetic Algorithm
	Tree Search and Branch & Bound
	Constraint Programming
	Integer Linear Programming

	Graph Theory
	Dominators
	Strong Articulation Points
	All Pair Shortest Path

	Experimental Setup
	Computational Environment
	Statistical Tests
	Used Software

	The Virtual Network Mapping Problem
	Introduction
	Input of the VNMP
	Output of the VNMP
	Example VNMP Instance
	Objective
	Complexity
	Ranking
	Extensions
	Summary

	Related Work
	Introduction
	Network Models
	Resources and Constraints
	Objectives
	Testing Methodology
	Solution Methods
	Conclusion

	Towards a Realistic VNMP Benchmark Set
	Introduction
	Substrate
	Virtual Networks
	Stream Network
	Web Network
	Peer-to-Peer Network
	Voice-over-IP Networks

	Main VNMP Instance Properties

	Construction Heuristics, Local Search, and Variable Neighborhood Descent
	Introduction
	Construction Heuristics
	Local Search
	Variable Neighborhood Descent
	Results
	Construction Heuristics
	Local Search
	Variable Neighborhood Descent
	Comparing CH, LS and VND

	Conclusion & Future Work

	Memetic Algorithm
	Introduction
	Background and Related Work
	A Memetic Algorithm for the VNMP
	Results
	Conclusion and Future Work

	Greedy Randomized Adaptive Search Procedure and Variable Neighborhood Search
	Introduction
	GRASP
	VNS
	Results
	GRASP
	VNS
	Comparison

	Conclusions

	Preprocessing of VNMP Instances
	Introduction
	Solving the SDP
	The SDP for One Component
	Pruning by Simple Heuristics
	Pruning by All Pair Shortest Paths
	Pruning by Integer Linear Programming
	Pruning by Path Enumeration
	Fixing by Testing
	Fixing by Path Enumeration
	Fixing by Integer Linear Programming

	Solving the SDP for One Component Efficiently
	The Complete Preprocessing Algorithm
	Results
	Influence of Block Tree Decomposition
	Influence of the Domain Evaluation Order
	Influence of Partially Known Domains
	Modification of TwoFlow
	Modification of FixFlow
	Removal of ILP solutions
	Cutoff Size for Path Enumeration
	Comparison of Pruning and Fixing Methods

	Conclusion
	Future Work

	Constraint Programming
	Introduction
	Models
	Binary Model
	Set Model

	Heuristic Branching
	Strengthening Propagation
	Results
	Conclusion
	Future Work

	Mixed Integer Linear Programming
	Introduction
	Multi-Commodity Flow Model
	Path-based Model
	Results
	Solving Characteristics of FLOW Configurations
	Comparison of FLOW Configurations
	Starting with a Valid Solution
	Feasibility of PATH

	Conclusion
	Future Work

	Application Study
	Introduction
	Related Work
	Network Traffic Model
	Methodology
	Proving Unsolvability and Extracting Reasons
	Reacting to Failure Reasons

	Results
	VNMP Instance Properties
	Extension Procedure
	Change to the Embedding Probability

	Conclusion

	Comparison and Conclusions
	Introduction
	Number of Valid VNMP Solutions
	Additional Resource Cost
	Relative Rank
	Substrate Usage Cost Gap
	Required Run-time
	Conclusion
	Future Work

	Bibliography
	Solutions in Detail

