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Zusammenfassung

Das harmonische Archipel ist ein Standardbeispiel für einen zwei-dimen-
sionalen topologischen Raum mit ungewöhnlichen und unerwarteten
Eigenschaften, vom Standpunkte der algebraischen Topologie aus betrach-
tet. Der Raum selbst ist mit Ausnahme eines einzigen Punktes homeo-
morph zu einer Kreisscheibe und kann als reduzierte Einhängung (reduced
suspension) des Graphen der Funktion y = sin(1/x) beschrieben werden.
Andererseits hat er auch eine natürliche Darstellung als Abbildungskegel
(mapping cone) einer Verklebung (wedge) von Kreisen.

Ersetzt man diese Kreise durch eine beliebige Schar von topologischen
Räumen Xi , erhält man den allgemeinen Begriff des Archipelraums (archi-
pelago space). Dessen Fundamentalgruppe ist ein Quotient des Topologen-
Produkts (topologist’s product) der zugehörigen Fundamentalgruppen
Gi =π1(Xi )modulo dem entsprechenden freien Produkt.

Im ersten Kapitel wird das überraschende Ergebnis gezeigt, daß dieser
QuotientA (Gi ), für höchstens abzählbare Gruppen Gi ohne Elemente
der Ordnung 2, unabhängig von der tatsächlichen Wahl der beteiligten
Gruppen ist. Insbesondere ist die Fundamentalgruppe eines Archipels,
das aus beliebigen lokal endlichen CW-Komplexen zusammengesetzt ist,
immer isomorph zuA (Z), der des harmonischen Standard-Archipels, oder
zuA (Z2), der des aus projektiven Ebenen zusammengesetzen Archipels.

Im zweiten Kapitel wird eine andere bemerkenswerte Eigenschaft ge-
zeigt: jede abzählbare lokal freie Gruppe läßt sich als Untergruppe inA (Z)
einbetten.

Im dritten Kapitel wird das Rekursionskalkül aus dem Beweis dieses
Einbettungssatzes auf andere Gruppen erweitert und zeigt sich so als nicht-
abelsche Entsprechung der Kotorsions-Eigenschaft. Damit ist es möglich,
eine vollständige Beschreibung der ersten Homologiegruppe mancher
wilder Räume zu gewinnen. Es erweisen sich insbesondere sämtliche
Abelisierungen der Archipelgruppen A (Gi ) als zu einander isomorph,
sofern nur alle Gi nicht die Kardinalität des Kontinuums überschreiten.
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Abstract

The harmonic archipelago is a standard example of a two-dimensional
space with unusual properties, regarding its algebraic topology. The space
is homeomorphic to a disc but for a single point and can be described as the
reduced suspension of the graph of the topologist’s sine curve y = sin(1/x).
On the other hand it also has a natural interpretation as a mapping cone
over a wedge of circles. Replacing these circles with an arbitrary family
of topological spaces Xi yields the generalized notion of an archipelago
space. The fundamental group of such an archipelago is a quotient of the
topologist’s product of the fundamental groups Gi =π1(Xi )modulo the
corresponding free product.

In the first chapter, it is shown that, surprisingly, for countable groups
Gi containing no elements of order 2 this quotientA (Gi ) is independent
of the actual choice of the constituent groups Gi . In particular, the funda-
mental group of any archipelago space built of locally finite CW-complexes
is isomorphic to either that of the standard harmonic archipelago,A (Z),
or to the one with projective planes instead of circles,A (Z2).

In the second chapter, another remarkable property is shown: that every
countable locally free group can be embedded intoA (Z) as a subgroup.

In the third chapter, the recursion technique used in the proof of this
embedding theorem is adapted to other groups and identified as a non-
abelian analogue of cotorsion. By this it is possible to obtain a complete
description of the first singular homology group of some wild spaces. In
particular, the abelianizations of the archipelago groupsA (Gi ), with the
Gi of cardinality less or equal to the continuum, are all isomorphic to each
other.
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Preface

Classical concepts in algebraic topology deal first and foremost with
spaces that are moderately nice everywhere, such as manifolds and CW-
complexes. Then, topological constructions like forming products or
gluing spaces together – preferably in an orderly manner! – often yield
a wonderfully natural correspondence to operations on groups: sums
and products, or the plethora of exact sequences that are a staple of any
introductory course in that area. But alas, how quickly do these trusty
methods forsake us, if local complexities raise their ugly heads. How little
do we know about more complicated wedges of spaces not locally simply
connected, be it a simple shrinking wedge of circles, a space known as the
Hawaiian earring (in former times also as the clamshell space); or worse yet,
a wedge of only two coned copies of that space (Griffiths’ double cone).

But there is hope, at least for one-dimensional wild spaces some tools
have been developed: it is possible to tell spaces apart by their fundamental
group, e.g. the earring, the Sierpiński triangle, or the universal Menger
sponge; and for Peano continua, the homology has a very complete descrip-
tion. For higher dimensions however, even just for two-dimensional spaces
that embed in R3, much less is known about their algebraic properties.
Not, whether the fundamental groups of the mentioned double cone and
that of the harmonic archipelago, a space that is homeomorphic to a disc
but for a single point, are the same or not; or, if subsets of R3 have torsion-
free fundamental groups. The additional difficulty stems from the greater
variability afforded by the extra dimension, as now it is possible that a
nontrivial loop might have arbitrary small representatives, thus dooming
any metric approach to gain insight into the fundamental group.

Leaving the safe haven of smooth manifolds we will venture on an adven-
turous journey to the isles of the harmonic archipelago, the quintessential
example of a space with nontrivial but small loops. The present thesis is
divided into three parts, that, while all analysing aspects of the archipelago,
make use of vastly different methods, and can easily be read in any order.
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10 PREFACE

The first chapter is the result of joint work with Greg Conner and Mark
Meilstrup. It sprang from discussions at a topology seminar at BYU, where
spaces similar to the standard archipelago and double cone were considered.
Unexpectedly, it turns out that many archipelagos have the same funda-
mental group. The proof of this isomorphism, in particular at the most
delicate step of the argument, makes use of the notion of infinite words.

As a contrast, the second and third chapters employ a more combinato-
rial approach in studying certain infinite recursions. These recursions are
always solvable in the archipelago group, and they were first used 60 years
ago, but seem to have lain dormant ever since. The embedding theorem of
the second chapter was first conjectured over breakfast with Greg Conner,
at a Viennese Café, naturally. The third and perhaps most purely algebraic
part was developed in concert with Wolfgang Herfort; probably at a more
expected location, staring at whiteboards and blackboards for endless hours.
I am greatly indebted to my advisors for their support and patience.

Wien, October 2013 Wolfram Hojka



CHAPTER 1

Archipelago groups

1. Introduction

In algebraic topology one of the prototypical two-dimensional spaces
eliciting unusual properties in its fundamental group is the harmonic
archipelago: commonly seen as a shrinking bouquet of circles, with discs
glued in between consecutive circles that bulge out to a constant height.
Perhaps it should come as no surprise that this space has interesting features,
as it is homeomorphic to the reduced suspension of the graph of the
topologist’s sine curve y = sin(1/x), a troublemaker well-known from
analysis and topology.

For our discussions it will be most useful to switch to a homotopy equiv-
alent construction, namely to the mapping cone of the natural continuous
map from a regular wedge of spaces to the same wedge but with a strong
topology. We will call this mapping cone A the archipelago space for the
sequence of spaces and its fundamental group then turns out to be the
penultimate term in the sequence

1→π1

�∨

nXn

�

→π1

� ˜∨
n Xn

�

→π1(A)→ 1.

If the spaces Xn are all taken to be circles, the resulting mapping cone is
homotopy equivalent to the harmonic archipelago. As another example,
consider the archipelago space of a sequence of projective planes. Our
main theorem will show that, amazingly, the fundamental group of any
well-behaved archipelago space, e.g. where each Xn is a locally finite CW-
complex, is either trivial or isomorphic to one of these two examples.

If the spaces are locally connected and first-countable at the basepoint
(or alternatively, if the wedges are understood as homotopy colimits instead
of regular ones), the first nontrivial group in the above sequence is iso-
morphic to the ordinary free product ∗nπ1Xn; the second one can be
written as the topologist’s product þnπ1Xn, first studied by Higman and
Griffiths in the 50’s, [Hig52, Gri56] (and also known as σ -product or free
complete product). In some sense the latter could be considered the correct
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12 CHAPTER 1. ARCHIPELAGO GROUPS

nonabelian product, since it allows combinining elements from infinitely
many constituent factors in a way that depends on their order. It can be
intuitively understood by using the concept of infinite words, see [Eda92].
Also, the free product is contained in it as a subgroup, just as the direct
sum embeds in the direct product for abelian groups.

Thus it is possible to define an archipelago groupA (Gn) of a sequence
of groups in purely algebraic terms as the quotient þn Gn/∗n Gn, and in
the special case of all groups being Z, this is the fundamental group of the
harmonic archipelago.

These groups allow the following remarkable classification.

Theorem 1.1. Let (Gn)n∈N be a collection of nontrivial countable (possibly
finite) groups. If only finitely many of the groups Gn have elements of order 2,
then

A (Gn)'A (Z).
If infinitely many of the groups Gn have elements of order 2, then

A (Gn)'A (Z2).

That is, any such group is isomorphic to either of two prototypes! In
particular, the groupsA (Z),A (Q), andA (Z3) are all isomorphic. The
next theorem collects various properties about this standard case.

Theorem 1.2. The fundamental groupA (Z) of the harmonic archipelago
has the following properties.

(1) The groupQ of rational numbers embeds as a subgroup inA (Z);
(2) A (Z) does not map onto the integers Z; and
(3) A (Z) is locally free.

The proof of Theorem 1.1 is astonishing in that it only employs arbitrary
set theoretic bijections between groups to derive an isomorphism between
the archipelago groups. This “trick” fails for involution elements, leading
to the two possible cases above. However, as we will see later, the group
A (Z2) is also torsion-free and it is even possible that the two groups are
the same:

Question 1.3. IsA (Z)'A (Z2)?

Indeed, more generally, any archipelago group is completely encoded by
a sequence of cardinals (Theorem 1.11); this bears a certain superficial re-
semblance to the classical situation for abelian groups, as [Hul62], together
with standard results in [Kap54], shows the quotient

∏

n Gn/
⊕

n Gn to
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also be depending only on a sequence of cardinal numbers, albeit a quite
different one (see section 3).

However, distinct cardinalities do not necessarily lead to different archi-
pelago groups, and it is also conceivable that the following two groups are
isomorphic.

Question 1.4. IsA (Z)'A (R)?

2. The Topological Viewpoint

For a collection of spaces Xn with basepoints pn the wedge
∨

nXn is their
coproduct in the category of pointed spaces. As a set, it can be naturally
considered as the subset of the product

∏

n Xn consisting of all points (an)n
such that an = pn for all but at most one n, the “main axes”. If the product
is given the box topology this yields the usual weak wedge topology. If
however the product is given the standard (Tychonoff) topology, that same
subset will be called the shrinking wedge ˜∨

n Xn.
This information can be encoded in the left half of following diagram:

∨

nXn
∏BOX

n Xn

˜∨
n Xn

∏

n Xn

f

∗n Gn
∑

n Gn

þn Gn
∏

n Gn

π1 (1)

The horizontal maps are the embeddings, the vertical maps are continu-
ous bijections. Assuming the spaces are nice at the basepoint (see below),
setting Gn := π1(Xn) and applying the functor π1 yields the right part
of the diagram together with the induced maps between the fundamental
groups. On this side, the vertical maps are embeddings, the horizontal
ones are onto. The symbol

∑

retrieves the set of elements in the product
with finite support. For abelian groups we will use the more common

⊕

,
denoting the same object.

As an example, recall that the Hawaiian earring is the planar set consist-
ing of circles cn of radius 1/n centered at (0,1/n). Note that each circle
contains the origin, and equivalently this space is the one-point compactifi-
cation of a sequence of open arcs. It is also a shrinking wedge ˜∨

n∈N S1 of
infinitely many circles and its fundamental group turns out to be þn∈NZ,
each copy of Z corresponding to one circle of the earring.
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Algebraically, the most straight-forward method of defining the topolo-
gist’s product for countable families is simply the following:

þi Gi :=
⋂

i

�

Gi ∗ lim←−n∗
i 6= j
1≤ j≤n G j

�

.

This group was first implicitly conceived by Higman in [Hig52] while
studying subgroups of lim←−n∗1≤ j≤n G j , a group he called the unrestricted
free product of the Gi . Griffiths then showed in [Gri56] (with a correction
due to Morgan and Morrison in [MM86]) the relation

π1(˜
∨

i Xi ) =þi π1(Xi )

between the topologist’s product and the shrinking wedge of spaces that
satisfy some local properties: being locally simply connected and first
countable at each basepoint.

Contrast this with the standard fact that

π1(
∨

i Xi ) =∗i π1(Xi )

holds under the same assumptions on the Xi .
These local requirements can be avoided by a simple procedure. To

each space (Xi , pi ) attach an arc to pi and shift the basepoint to the arc’s
other end. Let (X̃i , p̃i ) denote the thus modified space, then we can define
a homotopy shrinking wedge ˜∨ H

i (Xi , pi ) := ˜∨(X̃i , p̃i ). Now, with this
notation,

π1(
˜∨H

i Xi ) =þi π1(Xi )
holds for arbitrary spaces Xi .

Similarly, one can define a homotopy wedge by the same method. Note,
that the difference between a regular wedge and an homotopy wedge is
reflected in the distinction between taking the colimit or the homotopy
colimit of the diagram of a wedge, i.e. the collection of maps pi : {x}→Xi
that select the basepoint in each space. Those colimits are discussed in
detail in [Far04].

Another interesting property of the topologist’s product is that it can be
interpreted as an infinite word structure.

Definition 1.5. For a sequence (Gn)n of groups, an infinite word is a map
w : L→ ·⋃Gn r {1} from a countable linearly ordered set L to the disjoint
union of the non-identity elements of the Gn where the preimage of every
Gn is a finite set. Multiplication is simply concatenation, and inverses are
given by inverting the order of the word and replacing each element by its
inverse in Gn.
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Corresponding to the case of finite words, there is a natural notion of
cancellation within an infinite word (see [CC00] and [Eda92] for more
background on this concept). Cancellation induces an equivalence rela-
tion on the set of infinite words, and the classes together with the above
operations form the topologist’s product þn Gn.

We return our attention to the harmonic archipelago. This is usually
depicted as an earring with discs Di attached along each boundary ci c

−1
i+1

where an interior point of Di is raised to height z = 1 in R3.

FIGURE 1. (left) The harmonic archipelago. (right) An
homotopy equivalent realization as the mapping cone of
f :
∨

n S1→ ˜∨
n S1.

Recall that for a map f : X → Y , the mapping cone C f is defined as
X × I ∪ Y with every (x, 0) identified with f (x) and X ×{1} collapsed
to a point. Then the archipelago is homotopy equivalent to the mapping
cone C f of the continuous bijective map f :

∨

nS1→ ˜∨
n S1 from the wedge

to the shrinking wedge of circles, corresponding to the leftmost map in (1).
This allows us to generalize the notion of an archipelago space A of

arbitrary spaces Xn to be the mapping cone C f for f :
∨

nXn→ ˜∨
n Xn.

Theorem 1.6. The fundamental group of the archipelago space A = C f is
determined by the fundamental groups Gn :=π1(Xn) as the cokernel of f ∗ in
the sequence

1 → π1

�∨

nXn

�

=∗n Gn
f ∗
−→ π1

� ˜∨
n Xn

�

=þn Gn → π1(A) → 1.

It can directly be expressed as the quotient

π1(A) =þi Gi/∗i Gi .
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The free product naturally embeds in the topologist’s product, but not as
a normal subgroup. To simplify notation we will suppress to write taking
first the normal closure of the quotient group. The proof of the theorem is
a simple application of van-Kampen’s theorem.

In the introduction we have mentioned how this quotient is interesting
in purely algebraic terms. The preceding theorem motivates its name:

Definition 1.7. Given a countable collection of groups Gn, the archipelago
groupA ((Gn)n) is given by the topologist’s product of the Gn’s, modulo
their free product:

A ((Gn)n) :=þn Gn/∗n Gn.

If each Gn is the same group G, we writeA (G).

3. Further Results

Theorem 1.2 can be extended in various ways. Finding a subgroup
isomorphic toQ is similar in spirit to [BZ12] where the same is shown for
Griffiths’ double cone space. It is also a corollary to the theorem in the next
chapter that every countable locally free group embeds in the archipelago
(see Proposition 1.18 and Example 2.2).

The second property of Theorem 1.2 is not unique toA (Z), but holds
for any archipelago group.

Proposition 1.8. For any countable collection (Gn)n∈N of groups, A (Gn)
does not map onto the integers Z. In other words, Hom(A (Gn),Z) is trivial.

Similarly, neither is the third property unique, every archipelago group is
locally free as we will see in Chapter 3 (cf. Theorem 3.9). As an intermediate
step, here we will be satisfied with the following weaker fact.

Proposition 1.9. The groupA (Gn) is torsion-free.

Question 1.3 left as a possibility that every archipelago group composed
of countable groups Gn is isomorphic to that of the standard harmonic
archipelago. But certainly, not all archipelago groups are equal; for reasons
of cardinality there is an infinite class of them, all distinct:

Theorem 1.10. Suppose all groups Gn are of the same cardinality c, then the
archipelago group A (Gn) has cardinality cℵ0 . Hence there is more than a
set’s worth of distinct archipelago groups. In particular, the archipelago groups
obtained from free groups of iα+1 many generators are all distinct for α≥ 0.
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This however still allows for the two groups from Question 1.4,A (Z)
andA (R), of cardinality ≤ c= i1 to be isomorphic to each other.

On the other hand there is the following positive result on representing
archipelago groups by cardinal numbers.

Theorem 1.11. Let cn denote the cardinality of Gnr{1}, and λ that of the set
of indices i such that Gi contains an involution. ThenA (Gn) is determined
by these countably many cardinal numbers in the following way: if λ <ℵ0,

A (Gn)'A (∗cn
Z)

and if λ=ℵ0,
A (Gn)'A (∗cn

Z2).

Theorem 1.11 compares to classical results for abelian groups: In
[Hul62]Hulanicki shows that the quotient

∏

i Gi/
⊕

i Gi is algebraically
compact, a slightly generalized statement is in [Fuc63]. Using standard
techniques due to Kaplansky [Kap54], the quotient then has a representa-
tion as

∏

i
Gi/

⊕

i
Gi '

⊕

k

Q ⊕
∏

p prime
Ap

where

Ap ' p-adic completion of

 

⊕

mp,0

Jp ⊕
∞
⊕

k=1

⊕

mp,k

Z(pk)

!

that only depends on the countably many cardinals k, mp,k (for p prime,
k ∈N), with Jp the p-adic completion of Z.

Similarly, the nonabelian quotientA (Gn) =þn Gn/∗n Gn depends only
on the cardinalities of the groups and the presence of 2-torsion elements.
However there is no direct correspondence between the two sets of cardinal
numbers.

As þn Gn maps onto
∏

n Gn, one might wonder if for abelian groups
the canonical map þn Gn/∗n Gn→

∏

n Gn/
⊕

n Gn between the quotients
is simply induced by abelianization of the group – something that is sug-
gested by the case ofA (Z): here the abelianization coincides with the first
singular homology group of the harmonic archipelago. This homology
group was e.g. investigated in [KR12] where it is shown to be torsion-free
(which also follows from the stronger result of (3) in Theorem 1.2). It is
isomorphic to

∏

nZ/
⊕

nZ. Yet the abelianization map turns out to be
more complicated than the canonical map above.
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The issue is more readily seen for e.g. finite cyclic groups, as these give
rise to torsion in the abelian quotient. To wit, let Zk denote the cyclic
group of order k, then (1,1,1, . . .) ∈

∏

nZk gives an element of order k in
∏

nZk/
⊕

nZk . But if the order k is coprime to 2, the nonabelian quotient
þnZk/∗nZk is isomorphic toA (Z) by Theorem 1.1 and thus locally free
by Theorem 1.2. Hence its abelianization is torsion-free.

In the third chapter it is shown that the abelianizations ofA (Z),A (Z2),
andA (R) are in fact all equal to each other; perhaps offering some support
to Questions 1.3 and 1.4.

4. Proofs

A helpful tool in deriving properties for an archipelago is representing it
as a limit.

Proposition 1.12. The archipelago groupA (Gn) is a direct limit:

A (Gn) = lim−→kþi≥k Gi ,

where the bonding maps are the quotient maps

þi≥k Gi →
�

þi≥k Gi

�

/Gk 'þi≥k+1 Gi .

Proof. Note that any element of the free product ∗i≥1 Gi becomes trivial
after the application of finitely many bonding maps. Thus any group
mapped to from this directed system of groups must be a factor of
þn Gn/∗n Gn = A (Gn), which then satisfies the universal property of
the direct limit. �

In the following lemma, we will use functions between groups that
have some of the properties of homomorphisms, but are somewhat less
restrictive. We call a function ϕ : G→H identity-preserving if ϕ(eG) = eH .
Similarly, ϕ is inverse-preserving if for all g ∈G, ϕ(g−1) =

�

ϕ(g )
�−1.

Lemma 1.13. If for every i there exists an identity-preserving and inverse-
preserving function ϕi : Gi →Hi (not necessarily a homomorphism), then the
functions ϕi induce a homomorphism Φ :A (Gi )→A (Hi ).

Remark. Note that we do not require ϕi to preserve multiplication.

Remark. For the technical details of the proof it is necessary to recapitulate
certain properties of the word calculus used to describe the topologist’s
product. Consider a word w : L→ ·⋃Gi r {1} as in Definition 1.5 and
write the concatenation of words u and v as u · v. As the preimage of



1.4. PROOFS 19

every group Gi is finite, there is a projection pn(w) of w to a finite word
in ∗n

i=1 Gi for each n. A word w is called reduced if
(i) for each nontrivial subword w ′ (i.e. w = u ·w ′ · v) there exists some

projection pn(w
′) that is nontrivial; and

(ii) no two consecutive points in the order L are mapped to g1, g2 in the
same group Gi .

In fact, every element of the topologist’s product (seen as a class of words)
can be represented by a reduced word, unique up to order isomorphism,
and one can naturally identify the elements of the group with the reduced
words. Let R(w) denote this reduced representative of a word w.

Of particular interest will be finding R(u ·v) for already reduced u and v ,
which can be accomplished by two simple reduction steps. It is possible to
write the two reduced words as concatenations u = a · g1 ·x and v = y · g2 ·b ,
with y = x−1 the inverse word of x, and g1, g2 in the same Gi (allowing
both g1 and g2, or x and y to perhaps be trivial). Then R(u ·v) = a ·(g g ′)·b
is reduced as a concatenation.

Proof of the Lemma. The union of the functions ϕi gives a set function
ϕ0 between the disjoint unions ·

⋃

i Gi and ·
⋃

i Hi . This function ϕ0 will
induce a map (not necessarily a homomorphism) ϕ between the topol-
ogist’s products, which will in turn induce our desired homomorphism
Φ :A (Gi )→A (Hi ), as we describe below.

The set function ϕW is a letter replacement defined by ϕ0, in the follow-
ing manner: an infinite word in the Gn is mapped to an infinite word in the
Hn of the same order type, by taking each letter a ∈G j to ϕ0(a) = ϕ j (a).
For example, a1a2a3 . . . 7→ ϕ0(a1)ϕ0(a2)ϕ0(a3) . . . . Generally, an infinite
word w : L→ ·⋃Gi r {1} is mapped to

ϕW (w) := ϕ0 ◦w : L→ ·⋃Hn r {1},

an infinite word in the Hn.
By considering group elements as reduced words, ϕW also induces a map

on the topologist’s product. Define ϕ :þn Gn→þn Hn, ϕ(u) := R◦ϕW (u).
This ϕ will not be a homomorphism; it does however resemble one,

at least for reduced concatenations. If a product uv of group elements is
equal to its concatenation u · v (or equivalently, R(u · v) = u · v), then

ϕ(uv) = ϕ(u)ϕ(v). (†)

This follows from the chain of equalities ϕ(uv) = R◦ϕW (u ·v) = R(ϕW (u)·
ϕW (v)) = R(ϕ(u) ·ϕ(v)) = ϕ(u)ϕ(v).
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We claim that ϕ induces an homomorphism Φ on the induced archipel-
ago groups:

þn Gn þn Hn

A (Gn) A (Hn)

ϕ

Φ

We will write w ∼ v to denote the equivalence between elements in the
topologist’s product projecting down to the same element in the archipel-
ago group (i.e. in the quotient by the free product). It needs to be shown
that Φ is well-defined, in other words, that w ∼ v implies ϕ(w) ∼ ϕ(v);
and that it is actually a homomorphism.

Claim. For reduced words u and v, ϕ(R(u · v))∼ ϕ(u)ϕ(v).

By the remark it is possible to write the reduced words as concatenations
u = a · g1 · x and v = y · g2 · b , with y = x−1 the inverse word of x and g1, g2
in some Gi Then R(u · v) = a · (g1 g2) · b is reduced as a concatenation of
reduced words, and thus from (†),

ϕ(R(u · v)) = ϕ(a(g1 g2)b ) = ϕ(a)ϕ(g1 g2)ϕ(b ).

Further note, h ∼ 1 for h ∈Hi and ϕ preserves inverses, thus

ϕ(R(u · v)) = ϕ(a)ϕ(g1 g2)ϕ(b )

∼ ϕ(a)ϕ(b )

∼ ϕ(a)ϕ(g1)ϕ(g2)ϕ(b )

= ϕ(a)ϕ(g1)ϕ(x)ϕ(x)
−1ϕ(g2)ϕ(b )

= ϕ(a)ϕ(g1)ϕ(x)ϕ(x
−1)ϕ(g2)ϕ(b )

= ϕ(a g1x)ϕ(y g2b )

= ϕ(u)ϕ(v),

as claimed.

Now suppose u ∼ v for two elements u, v ∈ þn Gn. Then using the
direct limit representation of the archipelago there exists an index j so
that τ j (u) = τ j (v) for the canonical projection τ j :þn Gn→þn> j Gn. By
virtue of the free decomposition

þn Gn = (G1 ∗ . . . ∗G j ) ∗ þn> j Gn

u can be written as a finite product u1 . . . ur , with each ui either in G1 ∗ . . .∗
G j or þn> j Gn. Let U1, . . . , Uk denote the subsequence of factors lying in
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the latter, then their product U1 . . . Uk yields precisely τ j (u). By recursively
applying the claim,

ϕ(U1) . . .ϕ(Uk) ∼ ϕ
�

R(U1 ·U2)
�

ϕ(U3) . . .ϕ(Uk) ∼ . . .

∼ ϕ
�

R(U1 · . . . ·Uk)
�

,

and hence

ϕ(u) = ϕ(u1 . . . ur )

= ϕ(u1) . . .ϕ(ur )

∼ ϕ(U1) . . .ϕ(Uk)

∼ ϕ
�

R(U1 · . . . ·Uk)
�

= ϕ
�

τ j (u)
�

.

Repeating the same process for v we arrive at ϕ(u) ∼ ϕ
�

τ j (u)
�

=
ϕ
�

τ j (v)
�

∼ ϕ(v), as desired. So Φ is well-defined.

It remains to show that Φ is a homomorphism, i.e.

Φ
�

[u][v]
�

=Φ
�

[u]
�

Φ
�

[v]
�

for u, v ∈ þn Gn. But for this it suffices that ϕ(uv) = ϕ
�

R(u · v)
�

∼
ϕ(u)ϕ(v) holds with respect to their reduced word representations, pre-
cisely as stated in the claim. �

Corollary 1.14. If the maps ϕi are bijections, then Φ is an isomorphism.

Proof. As the same argument now holds mutatis mutandis for the inverses
of the original bijections Gi → Hi , the so defined map ϕ−1 induces a
homomorphism that is clearly inverse to Φ. �

From Corollary 1.14, we can find many archipelago groups that are
isomorphic. The main factors to consider are the cardinalities of the
groups involved, and the number of those groups containing 2-torsion.
The groups’ cardinalities are essential in order to even construct bijections
among them. The 2-torsion is the only obstruction to then constructing
inverse-preserving bijections.

Before turning to the proofs of the theorems themselves, we mention a
few basic properties.

Lemma 1.15. An archipelago group satisfies the following:
(1) A (Gn) is independent of the ordering of the groups, i.e. for any

permutation f :N→N,A (Gn)'A (G f (n));
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(2) A (Gn)'A (Gn)n≥k ; and
(3) A (Gn)'A (G2n−1 ∗G2n).

Proof. First, (1) follows from the fact that both, the topologist’s and the free
product, share this symmetric property: þn Gn ' þn G f (n) and ∗n Gn '
∗n G f (n).

Also, finitely many groups can be split off as a free factor from these
products, as þn Gn ' (∗n≤k Gn) ∗ þn>k Gn. Thus by cancelling the left
factors in

A (Gn) = þn Gn / ∗n Gn '
'
�

(∗n<k Gn) ∗ þn≥k Gn

�

/
�

(∗n<k Gn) ∗ ∗n≥k Gn

�

'
' þn≥k Gn / ∗n≥k Gn,

property (2) follows.
Lastly, (3) is inherited from þn Gn 'þn(G2n−1 ∗G2n). �

Indeed, these properties can be combined in the following, slightly more
general statement, whose proof is left to the reader.

Proposition 1.16. Suppose f :N→N∪ {o} is finite-to-one. ThenA (Gn)'
A (∗i∈ f −1(n)Gi ).

Lemma 1.17. If G and H are nontrivial, the cardinality of the set of non-
involutions of G ∗H is given by

�

�{x ∈G ∗H : x2 6= 1}
�

�=max
�

ℵ0, |G|, |H |
	

.

If at least one of the two groups contains an involution, then the set of involu-
tions in the product has the same cardinality

�

�{x ∈G ∗H : x2 = 1}
�

�=max
�

ℵ0, |G|, |H |
	

.

Proof. The cardinality of the free product itself is max
�

ℵ0, |G|, |H |
	

, which
is therefore an upper bound. The elements of the form (g h)n are all distinct
in G ∗H for all choices g ∈Gr {1}, h ∈H r {1}, and n ≥ 1. Since none
of them can be involutions, this proves the first claim. For the second
part, assume a ∈H r {1} with a2 = 1. Then the elements a(g h)n derived by
conjugating a with (g h)n are all distinct and

�

a(g h)n�2 = 1. �

Proof of Theorem 1.11. Suppose λ < ℵ0, then by (2) in Lemma 1.15 we
may assume no Gn contains an involution. Then neither does any group
G2n−1∗G2n. Now G2n−1∗G2n and∗c2n−1

Z∗∗c2n
Z have the same cardinality
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max
�

ℵ0,c2n−1,c2n

	

. Hence it is possible, to define inverse preserving
bijections

ϕn : G2n−1 ∗G2n→∗c2n−1
Z ∗∗c2n

Z,

simply by setting ϕ(1) := 1 and taking each pair x, x−1 of a nontrivial
element together with its inverse to some pair y, y−1. And so, by applying
Corollary 1.14 to these maps and using property (3) twice, we see

A (Gn)'A (G2n−1 ∗G2n)'A (∗c2n−1
Z ∗∗c2n

Z)'A (∗cn
Z).

Now suppose λ = ℵ0, then by (1) in Lemma 1.15 the ordering of the
groups can be so arranged that every G2n contains an involution. Then
by Lemma 1.17 the cardinalities of both, the set of involutions and non-
involutions in G2n−1 ∗G2n, are max

�

ℵ0,c2n−1,c2n

	

. The same holds for
the group ∗c2n−1

Z2 ∗∗c2n
Z2. Between these we can again define an identity-

preserving map ϕn, this time by mapping involutions to involutions and
pairs of non-involutions x 6= x−1 to pairs of non-involutions. By the same
argument as in the other case, we get

A (Gn)'A (G2n−1 ∗G2n)'A (∗c2n−1
Z2 ∗∗c2n

Z2)'A (∗cn
Z),

as stated. �

Proof of Theorem 1.1. This can be reduced to the case where each group is
countably infinite by taking the free product of consecutive pairs of groups
Gn, as by (3) in Lemma 1.15 we may writeA (Gn) = A (G2n−1 ∗G2n).

Then applying Theorem 1.11 twice shows

þ(G2n−1 ∗G2n) ' A (∗ℵ0
Z) ' A (Z),

if only finitely many groups Gn contain involutions. Similarly with Z2
replacing Z, if infinitely many groups have 2-torsion. �

Proof of Theorem 1.10. First note that if c = 1, thenA (Gn) is the trivial
group. Otherwise we calculate the cardinality ofA (Gn) as follows. The
topologist’s product consists of words whose domain can be any countable
order type. For a fixed order type, there will be at most (ℵ0 ·c)ℵ0 words,
mirroring the number of functions from a countable set L to

⋃

n Gn, if
each of the countably many groups has order c. The cardinality of the set
of countable order types is c= 2ℵ0 , thus |þn Gn| ≤ c ·cℵ0 = cℵ0 , and that is
also an upper bound for the cardinality of the archipelago group.

For simplicity of notation, assume all Gn to be equal to G, and let g (n)

denote the instance of a g ∈G within Gn. We will define an injective set
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function (not a homomorphism) from GN intoA (Gn), thus providing
a lower bound, |GN| = cℵ0 ≤ |A (Gn)|. For a sequence (g j ) j ∈ GN of
elements in G define

ε
�

(g j ) j
�

:= g (1)1 g (2)1 g (3)2 g (4)1 g (5)2 g (6)3 g (7)1 g (8)2 g (9)3 g (10)
4 . . . ,

so to each element of GN we associate an infinite word of order typeω in
þn Gn. Now if ε((g j ) j ) and ε((h j ) j )

−1 are congruent modulo ∗n Gn that
implies g j = h j for all j ∈N. Therefore ε composed with the quotient map
from þn Gn toA (Gn) is injective, and hence |A (Gn)|= cℵ0 .

Recall that i0 :=ℵ0 is the cardinality of the integers and iα+1 := 2iα is
the cardinality of the power set of iα. Thus for successor cardinals,

(iα+1)
ℵ0 = (2iα)ℵ0 = 2iα = iα+1.

A free group in c≥ℵ0 many generators has cardinality c, thus the free
groups generated by iα+1 many generators are all distinct for different
α≥ 0. �

Next we prove the mapping properties ofA (Z) stated in Theorem 1.2.

Proposition 1.18. The group of rational numbers Q is contained as a sub-
group inA (Z).

Proof. We will content ourselves with the basic idea of finding a subgroup
isomorphic to Q, a more general construction can be found in the next
chapter. Consider as an element in þnZ the infinite word

w := a1(a2(a3(a4(. . .)
5)4)3)2,

then modulo the free product ∗nZ, one can remove the symbol a1 from
the word representation and w ∼ (a2(a3(a4(. . .)

5)4)3)2 =: w2
2 , so it is a square.

Similarly, w2 ∼ (a3(a4(. . .)
5)4)3 =: w3

3 , and thus w ∼ w6
3 is a sixth power.

Proceeding in this manner, w ∼ wn!
n , so w is a divisible element inA (Z).

Thus it is possible to define a homomorphism ε :Q→A (Z) by setting
ε(1) := w, ε(1/2) := w2, etc. and extending the map to multiples and
(additive) inverses of these. �

Remark. Proposition 1.18 also immediately implies that A (Z) is not
ℵ1-free, so (3) in Theorem 1.2 cannot be strengthened in that respect.

Proof of Proposition 1.8. For each Gn choose a connected CW-complex Xn
whose fundamental group is Gn. By Theorem 1.6, G =A (Gn) is the funda-
mental group of the space C f where f is the canonical map from the wedge
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to the shrinking wedge of the Xn, as described in the paragraph preceding
Theorem 1.6. By construction, C f has a countable neighbourhood basis at
the wedge point. Let ϕ ∈Hom(G,Z). By [CC06, Theorem 4.4(3)], there
is a neighborhood U of the wedge point so that the homotopy class of
any loop in U is in the kernel of ϕ. By construction, C f has the property
that every loop in C f is homotopic into every neighborhood of the wedge
point. Thus ϕ is trivial. �

Before demonstrating the torsion-freeness of the archipelago groups, it
is helpful to characterize the elements of finite order in the topologist’s
product.

Lemma 1.19. If g ∈ þn Gn has finite order k, then g is conjugate to an
element f in some Gi .

Proof. This relies on the fact that a torsion element in a free product A∗B
is conjugate to a torsion element in either A or B . Thus using the free
decompositions

þn Gn = G1 ∗ . . . ∗G j ∗ þn> j Gn

for j ∈ N, g is either conjugate to an element in some Gi , or can be
represented as g = c−1

j f j c j with f j ∈þn> j Gn and c j ∈þn Gn, for all j . But

in the latter case, the projection of g into ∗ j
n=1 Gn is trivial for all j . Since

the topologist’s product embeds in the inverse limit of these groups, that
compels g to be trivial. �

Proof of Proposition 1.9. Consider a torsion element h ∈A (Gn). As this
group is a direct limit, we know that for some index j there exists a torsion
element g ∈þn≥ j Gn representing h = [g] inA (Gn) with respect to the
equivalence relation induced by the direct limit. By the preceding lemma,
g is conjugate to an element f in Gi (for some i ≥ j ) by c ∈þn≥ j Gn. Thus

h = [g] = [c−1 f c] = [c−1][ f ][c] = [c−1][c] = 1,

so the archipelago group is torsion-free. �

In the case where there is no element of order 2 in the individual groups
Gn, we can strengthen that, so the archipelago group is not only torsion-
free, but also locally free. The general case requires a bit more effort, and is
the content of Theorem 3.9.

Proposition 1.20. A (Z) is locally free.
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Proof. In this case the groups Gn =Z, so we have the direct limit

A (Z) = lim−→kþi≥k Z= lim−→k HEk

where HEk = þi≥k Z is the Hawaiian earring group, using only loops
labelled i ≥ k. Recall that the group HE, being a subgroup of the inverse
limit of free groups, is locally free, following the result in [CF59].

So A (Z) is a direct limit of locally free groups, and thus locally free
itself. �

For completeness, we append a proof.

Lemma 1.21. The direct limit of locally free groups is locally free.

Proof. Let (Gi , i ∈ I ,ϕi j ) be a directed system of locally free groups. As a
set, the direct limit group can be represented as a quotient of the disjoint
union of the Gi , G := lim−→i

Gi =
∐

i Gi/∼, where gi ∈Gi and g j ∈G j are
equivalent if ∃k ≥ i , j such that ϕi k(gi ) = ϕ j k(g j ).

Let X be a finite subset of G. We may assume X to be a minimal
generating set of 〈X 〉 ≤G. Then for all x ∈X there is jx ∈ I and yx ∈G jx

,
such that ϕ jx

(yx) = x. Take n to be an upper bound of the jx . Then
K := 〈ϕ jx n(yx) : x ∈X 〉 is a free subgroup of the locally free group Gn, and
ϕn(K) = 〈X 〉. As the set X was chosen to be minimal, for each k ≥ n, the
group ϕnk(K) has the same rank as K , and ϕnk restricted to K is in fact an
isomorphism between free groups. Therefore, also 〈X 〉 is free. �



CHAPTER 2

A universal locally free group

1. Mapping into the harmonic archipelago

The fundamental group of the harmonic archipelagoA (Z) is a locally
free group that is universal in the sense that it contains every countable
locally free group as a subgroup. This group is interesting for multiple
reasons.

Firstly, it is the fundamental group of a two-dimensional space that can
be embedded in R3 – in that sense a best possible result as no planar space
could share the stated property (in particular, cannot contain divisible
elements, which follows from [FZ05]).

Secondly, its description as a quotient þi Gi/∗i Gi is independent of the
factor groups Gi , provided they are countable and contain no 2-torsion
elements, due to Theorem 1.1. It is thus “universal” in that regard as well.

Lastly, the group was not purposely built for embedding locally free
groups (unlike, e.g. the group described in [BC99]), and its behaviour in
this regard is rather ancillary. Indeed, the embedding map makes use of a
quite ingenious technique devised by Higman in [Hig52]. As a corollary,
not only can the rationals Q be embedded in this group, so also can the
perfect grope group.

Theorem 2.1. Any countable locally free group embeds into the harmonic
archipelago group A.

We mention two particular subgroups whose existence might come as
a surprise, judging by the geometric appearance of the archipelago space.
Firstly, it contains divisible elements, implying a similar result in [BZ12].

Example 2.2. The rationalsQ embed in A.

As another example, consider the fundamental group of a grope, in-
troduced in [Šta70]. For example, the minimal grope M is generated by
the elements a1,a2, . . . together with the relations ai = [a2i ,a2i+1] for all
i ∈N. Maps from this group to other grope groups were the topic of recent
research, e.g. in [CEV13].

27
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Example 2.3. The grope group M , which is a perfect group, embeds in A.

FIGURE 2. The minimal grope space.

2. Proof of the embedding theorem

The first lemma is adapted from Higman’s seminal article [Hig52] on
unrestricted free products, strengthened to allow the word wi to access
more than only the subsequent hi+1, and adapted in scope to the topolo-
gist’s product. The basic idea of the proof however remains essentially the
same.

Lemma 2.4. Let f1, f2, . . . be a sequence inþn Hn such that fi ∈þn≥i Hn . Let
wi be a word in `i+1 many arguments. Then there exists a sequence h1, h2, . . .
in þn Hn such that hi ∈þn≥i Hn , solving all the equations

hi = wi ( fi , hi+1, . . . hi+`i
).

Proof. We will define the elements hi by first determining what their pro-
jections pn(hi ) from the inverse limit to ∗n

j=1 H j ought to be. For n < i

set h (n)i := 1; then running through i = n, n − 1, . . . , 1 recursively define
h (n)i := wi (pn( fi ), h (n)i+1, . . . , h (n)

`i
).

Now we claim pnm(h
(n)
i ) = h (m)i holds for n > m. For n < i this is

obvious as then both are equal to 1, in the other case, again proceed by
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induction counting i down from n,

pnm(h
(n)
i ) = wi

�

pm( fi ), pnm(h
(n)
i+1), . . . , pnm(h

(n)
`i
)
�

by ind.
= wi (pm( fi ), h (m)i+1, . . . , h (m)

`i
) = h (m)i .

Consequently, the sequence (h (n)i )n defines for each i an element hi in
the inverse limit lim←−n∗n

m=1 Hm, and by construction these satisfy all the
equations hi = wi ( fi , hi+1, . . . hi+`i

).
It remains to show that hi is in þn≥i Hn. Beginning with h (n)n =

wn(pn( fn), 1, . . . , 1) ∈ Hn, another simple induction argument shows
h (n)i ∈∗n

m=i Hm. Thus hi is certainly at least in the limit lim←−n∗n
m=i Hm. By

recursively unravelling the word representations of the hi up to an index
j > i , one arrives at a word w ( j )i such that

hi = w ( j )i ( fi , . . . , f j , h j+1, . . . , hmax{m+`m : i≤m≤ j }).

Here the fi , . . . , f j are in þn≥i Hn while the h j+1, . . . are in lim←−n∗n
m= j+1 Hm.

Hence hi ∈ (þn≥i Hn) ∗ (lim←−n∗n
m= j Hm), considered as an internal free

product within lim←−n∗n
m=1 Hm, holds for all j , and so by the definition of

the topologist’s product, hi ∈þn≥i Hn. �

Now, turning to the proof of Theorem 2.1, let G = {g1, g2, g3, . . .} be
a countable locally free group. Then for each n there exists a free basis
bn,1, bn,2, . . . , bn,r with r ≤ n the rank of the group Gn generated by the
elements g1, g2, . . . , gn. To simplify notation set bn,i := 1 for i > r . Then
for each n, gn can be expressed as a word wn in these generators

gn = wn(bn,1, . . . , bn,n).

Similarly, as Gn <Gn+1, there exist words wn,i for 1≤ i ≤ n, with

bn,i = wn,i (bn+1,1, . . . , bn+1,n+1),

corresponding to the representation of an element bn,i as written in the
basis for Gn+1. We may require all these words to only involve the basis
elements (and not the bn+1,i equal to 1), which forces such a word to be
unique.

Define α :N×N→N by α(n, i ) := n(n− 1)/2+ i and let ai denote the
generator of the i -th Z-factor in the topologist’s product H =þi Z. The
map α−1 confers the order of the natural numbers onto the indices of the
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basis elements bn,i , as in the sequence

b1,1, b2,1, b2,2, b3,1, b3,2, b3,3, . . . ;

so by writing briefly hn,i for hα(n,i) and an,i for aα(n,i), Lemma 2.4 then
shows that the equations

hn,i = an,i ·wn,i (hn+1,1, . . . , hn+1,n+1) (∗)

can be solved simultaneously for all the unknowns hn,i ∈H . Now define a
function ϕ : G→H by

ϕ(gn) := wn(hn,1, . . . , hn,n).

This ϕ is not a homomorphism to H but we claim it will induce one, once
factored to the archipelago group A. Let “∼” denote the equivalence in H
brought about by this quotient to A, factoring out the normal closure of
the free group 〈a1,a2, . . .〉. The key property is the following.

Claim 2.5. For n ≥ k and a word w, the relation gk = w(bn,1, . . . , bn,n)
implies ϕ(gk)∼ w(hn,1, . . . , hn,n).

Proof of Claim. First observe that for 1≤ i ≤ k ≤ n there exists a unique
word w (n)

k ,i
satisfying the relation bk ,i = w (n)

k ,i
(bn,1, . . . , bn,n), this time corre-

sponding to the representation of an element bk ,i as written in the basis for
Gn. Evidently then, the identity

w (n)
k ,i
(bn,1, . . . , bn,n) = wk ,i

�

w (n)
k+1,1
(bn,1, . . . , bn,n), . . . , w (n)

k+1,k+1
(bn,1, . . . , bn,n)

�

holds for n > k, and due to the uniqueness of the presentation with respect
to a free basis, the identity holds for any evaluation of these words.

Equipped with this, we will now prove hk ,i ∼ w (n)
k ,i
(hn,1, . . . , hn,n) by

induction, counting k downwards from n− 1. To begin, for k = n− 1 this
follows directly from wk ,i = w (n)

k ,i
and an,i ∼ 1 in (∗). For k < n− 1,

hk ,i
by (∗)∼ wk ,i (hk+1,1, . . . , hk+1,k+1)

by ind.∼ wk ,i

�

w (n)
k+1,1
(hn,1, . . . , hn,n), . . . , w (n)

k+1,1
(hn,1, . . . , hn,n)

�

= w (n)
k ,i
(hn,1, . . . , hn,n).

We turn our attention back to the claim. If n = k, the statement is
simply the definition of ϕ with w = wn. For n > k, one arrives at

gk = wk(bk ,1, . . . , bk ,k) = wk

�

w (n)
k ,1
(bn,1, . . . , bn,n), . . . , w (n)

k ,k
(bn,1, . . . , bn,n)

�

= w(bn,1, . . . , bn,n),
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where the last equality again holds for arbitrary evaluations. Hence

ϕ(gk) = wk(hk ,1, . . . , hk ,k)

∼ wk

�

w (n)
k ,1
(hn,1, . . . , hn,n), . . . , w (n)

k ,k
(hn,1, . . . , hn,n)

�

= w(hn,1, . . . , hn,n),

precisely as claimed. �

Now to show the homomorphism property of ϕ, suppose gk gl = gm
and set n ≥ k , l , m. Then all three elements have a unique representation
gi = w ′i (bn,1, . . . , bn,n) in Gn, whence w ′k(bn,1, . . . , bn,n)w

′
l (bn,1, . . . , bn,n) =

w ′m(bn,1, . . . , bn,n) follows. Thus

ϕ(gk)ϕ(gl ) ∼ w ′k(hn,1, . . . , hn,n)w
′
l (hn,1, . . . , hn,n)

= w ′m(hn,1, . . . , hn,n)

∼ ϕ(gm) = ϕ(gk gl )

holds for the images, as desired.

To show that ϕ induces an embedding, the next property is quite useful.
Let τn denote the projection of þi Hi to the free factor Hα(n,1) ∗ . . .∗Hα(n,n).
Then the representation of an element gk with respect to the basis chosen
for Gn can be read off from such a projection:

Claim 2.6. For n ≥ k and a word w, the relation gk = w(bn,1, . . . , bn,n)
implies τn(ϕ(gk)) = w(an,1, . . . ,an,n).

Proof of Claim. Let τ≥n denote the canonical projection from þi Hi to
þi≥α(n,1)Hi ; the argument in the proof of Claim 2.5 does in fact show that
τ≥n(ϕ(gk)) = τ≥n(w(hn,1, . . . , hn,n)), as every invoked equivalence “∼” is
only concerned with dropping some ai for i <α(n, 1).

But on the other hand, τn(hn+1,i ) = 1 by Lemma 2.4, so τn(hn,i ) =
τn(an,i )wn,i (τn(hn+1,1), . . . ,τn(hn+1,n+1)) = an,i by (∗). Hence, τn(ϕ(gk)) =
τn(w(hn,1, . . . , hn,n)) = w(an,1, . . . ,an,n). �

Now suppose ϕ(gk) ∼ 1. This implies that for some j the projection
of ϕ(gk) to þi> j Z is trivial. Choose n such that α(n, 1) ≥ j and let w
be the word, such that the relation gk = w(bn,1, . . . , bn,n) holds. Then
τn(ϕ(gk)) = w(an,1, . . . ,an,n) = 1 which can only be satisfied if w is trivial;
this in turn implies gk = 1. Hence, the composed map G → H → A is
injective, and the proof is complete.





CHAPTER 3

Cotorsion and wild homology

1. Introduction

In the study of infinite abelian groups, two classes of groups are closely
related. Firstly, a group is cotorsion, if it is a direct summand of every
extension by a torsion-free group. Secondly, a group is algebraically compact,
if it is a direct summand of every extension where it embeds as a pure
subgroup. The former are known to be precisely the epimorphic images of
the latter, [Fuc70, 54.1]. Algebraically compact groups can be characterized
in various ways; one property of such a group is, that a system of equations
is solvable if every finite subsystem is.

This chapter provides a similar vantage point for cotorsion groups: they
are precisely those groups where every recursively defined system of equa-
tions xi = wi ( fi , xi+1) is solvable for any sequence of elements f1, f2, . . . and
equations w1, w2, . . . (Theorem 3.3). These recursions can easily be applied
also to the study of nonabelian groups, and indeed, they first appeared
in Higman’s article [Hig52] in investigating maps from an unrestricted
free product. Accordingly, we will call a not necessarily abelian group
Higman-complete, if every such recursive system is solvable.

Turning to topology, this property holds for the fundamental group
of any space with arbitrarily small representatives. This class of spaces
contains some intensly studied examples of wild 2-dimensional spaces,
such as Griffiths’ double cone and the harmonic archipelago. By virtue of
this technique we obtain a description of the first singular homology of
spaces of this type (Corollary 3.5); in particular, it is shown that the three
archipelago groups,A (Z),A (Z2), andA (R), whose mutual identity is
an open question (cf. Section 1 of the first chapter), at least agree on their
abelianization (Corollary 3.6).

Generally, cotorsion of homotopy and homology groups seems to play
an important role in the topological behaviour of spaces; independently,
a characterization of cotorsion-freeness in terms of homomorphisms to
fundamental groups of Peano continua was recently introduced by Eda

33
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and Fischer in [EF13], where that notion is also extended to nonabelian
groups. It remains open, in how far the notions of Higman-completeness
(interpreted as n-cotorsion) and their n-cotorsion-freeness match up beyond
the abelian case.

Ending on an algebraic note, we give a more tangible and geometric
approach to the embedding of the p-adically complete subgroups arising in
the homology of the Hawaiian earring and other spaces in Section 4.

2. Cotorsion and Higman-Completeness

Definition 3.1. A group G is called Higman-complete if for any sequence
f1, f2, . . . ∈G, and for a given sequence of words w1, w2, . . ., there exists a
sequence h1, h2, . . . ∈G such that all equations

hi = wi ( fi , hi+1)

hold simultaneously.

Lemma 3.2. If G is Higman-complete then so is every epimorphic image. In
particular, Ab(G) is Higman-complete.

Proof. Let N be a normal subgroup of G and hi = wi ( fi , hi+1) be any in-
verse recurrence for elements in G/N as in the definition. Every constant
fi ∈ G/N can be lifted to a f̃i ∈ G, and by assumption the inverse recur-
rence h̃i = wi ( f̃i , h̃i+1) admits a sequence of h̃i as a solution, whose images
hi := h̃i N/N form a solution sequence of our given recurrence in G/N .
Hence G/N is Higman-complete.

The second statement follows by letting N be the commutator subgroup
of G. �

Theorem 3.3. An abelian group A is Higman-complete if and only if it is
cotorsion.

Proof. Suppose first that A is Higman-complete. It suffices to show that any
exact sequence 0→A→G→Q→ 0 of abelian groups splits. Consider A
embedded as a subgroup of G. Q possesses a presentation generated by the
countably many xi := 1

i ! and with the relations xi − (i + 1)xi+1, for i ≥ 1.
Lift the xi to elements ξi in G. The relations inQ translate into

ξi = (i + 1)ξi+1+ ai

for suitable elements ai in A. Since A is by assumption Higman-complete
the infinite system of equations

hi = (i + 1)hi+1+ ai
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admits a solution sequence hi in A. The elements zi := ξi − hi ∈G satisfy
the relations

zi = (i + 1)zi+1

The Z-module, say Q0, generated by Z := {z1, z2, . . .} projects modulo A
onto Q. We still need to show that A∩Q0 = 0. Any q0 ∈ A∩Q0 can
be presented in the form q0 = λz j for some λ ∈ Z and j ∈ N, due to the
relations among the elements in Z . Modulo A this tells us that λx j = 0 and,
sinceQ is torsion-free, we must have that λ= 0, i.e., q0 = 0. Hence Q0 'Q
and thus the extension splits, as claimed.

Conversely, assume now that A is cotorsion. In the abelian group A, any
system of equations as in Definition 3.1 is of the type of an inverse linear
recurrence hi = di hi+1+ fi with di ∈Z and fi ∈A.

There is an algebraically compact group G such that A ' G/N for a
suitable subgroup N of G. Lift the elements fi to elements f̃i ∈G. Since
every finite subsystem of the inverse recurrence h̃i = di h̃i+1+ f̃i admits a
solution, the algebraic compactness of G implies the existence of a sequence
of h̃i in G solving all equations; the sequence of their images hi ∈ A
constitute a solution sequence of the original recurrence hi = di hi+1+ fi in
A. Hence A is Higman complete. �

In the following, we will consider spaces, where elements in the funda-
mental group can be represented by arbitrarily small loops. A basepoint
independent variation of this property is analysed in [Vir10].

Theorem 3.4. Let X be a first-countable space. Suppose that for each neigh-
bourhood U of x every element g in the fundamental group G :=π1(X , x)
has a representative loop included in U . Then G is Higman-complete.

Proof. Let f1, f2, . . . be a sequence of elements in G and w1, w2, . . . one of
words. We will inductively construct paths ηi : I → X such that for the
classes hi := [ηi] ∈G all equations hi = wi ( fi , hi+1) hold. The definition
of each ηi will be built up by slowly exhausting the domain I .

X is first-countable at x, so let U1 ⊇ U2 ⊇ . . . be a neighbourhood basis
of x. By assumption, we can pick for each fi , a representing path γi whose
image is enclosed in Ui . Let γi denote the reversed path corresponding to
the group element f −1

i .
Begin with the first equation: h1 = w1( f1, h2). The word w1 has finite

length, so subdivide I , as the domain of η1, into accordingly many pieces
(intervals) of equal size. For each place in w1 occupied by a f1 (or f −1

1 ) define
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η1, restricted to the corresponding piece of I , equal to an appropriately
scaled copy of γ1 (or γ1), while leaving the other pieces undefined for the
moment.

Now proceed in this manner for the second word w2, again splitting I
into as many pieces as is the length of w2, then setting η2 equal to a scaled
copy of γ2 (or γ2) for each piece corresponding to f2 (or f −1

2 ). After that,
fill the thus partially defined η2 into the pieces of the domain of γ1 that
correspond to h2 in the word w1 (and the reversed η2 for h−1

2 ).
Going forward, each time the partial definition of ηi is extended, it is

reinserted in the definition of ηi−1, and recursively all the way to η1. Note,
that the definitions of the prospective paths are in fact only extended, but
never changed in this process. Further, each endpoint of an interval is
always mapped to the basepoint by the γi , so bordering definitions do
match up properly. After running through all infinitely many steps of this
construction, each ηi is defined everywhere on I but for a closed, totally
disconnected set of limit points; set ηi constant to the base point on this
set. Thus ηi is well-defined.

Next, we show these paths are continuous. Clearly, ηi is continuous
restricted to the interior of a piece corresponding to some fn (or f −1

n ),
with n ≥ i . For t ∈ I not inside such a piece, t is mapped to the base-
point and the left (resp. right) continuity follows either from that of the
bordering piece, or, in the absence of one, from the fact that the pieces
converging to t have their image enclosed in eventually smaller and smaller
neighbourhoods Uk .

In summary, we have constructed a sequence of loops ηi , each a con-
catenation according to the word wi of the loops γi and ηi+1. Hence, the
equations hi = wi ( fi , hi+1) of the corresponding elements fi , hi ∈ G all
hold, as desired. �

3. Wild Homology

Cotorsion or Higman-completeness and, in the torsion-free case, alge-
braic compactness has a strong impact on the algebraic structure of the
homology of a space.

Corollary 3.5. Let X be as in Theorem 3.4. If additionally its first singular
homology group H :=H1(X , x) is torsion-free, it has the form

H '
⊕

k

Q ⊕
∏

p prime

̂⊕
mp

Jp
p
,
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depending only on the sequence of cardinal numbers k, m2,m3, . . . (where “ ̂ p”
denotes the p-adic completion and Jp the p-adic integers).

Proof. By Theorem 3.4, the fundamental group π1(X , x) is Higman-com-
plete, and by Lemma 3.2 so also is its abelianization H1(X , x). The latter
is cotorsion by Theorem 3.3, and a torsion-free cotorsion group is alge-
braically compact, [Fuc70, 54.5]. The given presentation now follows
from applying a series of known facts about abelian groups. First, H splits
into a direct sum of a divisible group D and a reduced group C (ibid. 21.3).
D is torsion-free, hence a direct sum ofQ’s (23.1), while C 'H/D , due to
a result by Kaplansky, is isomorphic to a product

∏

p Ap over all primes
with each Ap complete in the p-adic topology (40.1). Again using the

torsion-freeness, each Ap is isomorphic to ̂⊕mp
Jp

p
(remark after 40.2),

arriving at the claimed decomposition. �

Indeed, it was recently shown in [EF13] and [KR12] that two well-
known spaces in this class have isomorphic first homology groups: Grif-
fiths’ double cone space (first defined in [Gri54]) and the standard har-
monic archipelago. The second space has a natural interpretation as a
mapping cone from a weak wedge of circles to the same set given a strong
topology (as discussed in Section 1.2).

Let us review some notation: Consider a sequence of pointed spaces
(Xi , xi ) (good at the base point) and set Gi := π1(Xi , xi ). Then the
fundamental group of their shrinking wedge is the topologist’s product
þi≥1 Gi (see Definition 1.5 and the discussion preceeding it). The fun-
damental group of the archipelago space over the Xi is given by the group
A (Gi ) = þi≥1 Gi/(∗i≥1 Gi ), where the normal closure of the embedded
free product is factored out (Theorem 1.6 and Definition 1.7). Remarkably,
if in the standard archipelago the circles Xi = S1 are replaced by any other
sequence of locally finite CW-complexes, the fundamental group of the
resulting archipelago space has to be equal to one of two prototypes: to the
standardA (Z) – or toA (Z2), induced by each Xi being a projective plane
(that is Theorem 1.1, a fact we will make use of again later).

However, it is unknown, whether or not the two groups A (Z) and
A (Z2) are isomorphic. Similarly, increasing the cardinality of the groups
to continuum, i.e. as in A (R), may or may not alter the group (Ques-
tions 1.3 and 1.4). Not so on the other hand, for their abelianizations;
the first singular homology groups of the underlying archipelago spaces
happen to be all isomorphic to each other.
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Corollary 3.6. Ab(A (Z)), Ab(A (Z2)), and Ab(A (R)) are all isomorphic
to each other and to

∏

N
Z/
⊕

N
Z '

⊕

c

Q ⊕
∏

p prime

̂⊕
c

Jp
p
. (†)

We have to show that the assumptions of Corollary 3.5 can be satisfied
and then that the claimed cardinalities are attained. This will be accom-
plished in a couple of steps. The first lemma is a slight generalization of
Lemma 1.19.

Lemma 3.7. Every finite subgroup of þi Gi is conjugate into some factor G j .

Proof. Let I0 ⊂ I be finite then G is the free product G = GI0
∗GI ′0

with
GI0

:= ∗i∈I0
Gi and GI ′0

:= þi∈I ′0
Gi . By the conjugacy theorem for free

products, up to conjugacy, either H ≤GI0
or H ≤GI ′0

. In the first case we
can conclude our assertion from the conjugacy theorem applied to the free
product GI0

. Otherwise there is gI0
∈G and H ≤G

gI0

I ′0
. Hence, for proving

the assertion, it suffices to show that
⋂

I0âI

�

þi∈I\I0
Gi

�gI0

cannot contain torsion, for any choice of elements gI0
∈G. Now observe

that
⋂

I0âI

�

þi∈I\I0
Gi

�gI0 ≤
⋂

I0âI lim←−JâI ,I0∩J=;∗i∈J Gi . The group on the

r.h.s. is trivial whence the result follows. �

We will make use of embedding the topologist’s product in a group
introduced in [Hig52]; thus we have by chance again returned to the cradle
of the recurrences used in characterizing cotorsion.

Consider a sequence of groups Gi and the inverse system defined by the
canonical epimorphisms ∗n+1

i=1 Gi →∗n
i=1Gi with the normal closure of Gn+1

as its kernel. The inverse limit lim←−n ∗n
i=1Gi is called the unrestricted free

product, and, imparted by the projection maps from G :=þi Gi to finite
products, G embeds as a subgroup in lim←−n ∗n

i=1Gi .

Lemma 3.8. The exact sequences 1→ Kn →∗n
i=1 Gi →

∏n
i=1 Gi → 1 give

rise to an exact sequence

1→ lim←−n Kn→ lim←−n

�

∗n
i=1 Gi

�

→
∏∞

n=1 Gn→ 1.

Proof. This follows for the most part from the general fact that the in-
verse limit is “left-exact” in the category of groups. Namely, let (An,αnm),
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(Bn,βnm) and (Cn,γnm) be inverse systems of groups and denote the respec-
tive inverse limits by A, B , and C . Suppose that the sequences

1→An
fn−→ Bn

gn−→Cn

are all exact and that the maps commute with the bonding maps (i.e. fn ◦
βnm = αnm ◦ fm and gn ◦ γnm =βnm ◦ gm). Then the induced sequence

1→A
f
−→ B

g
−→C

of inverse limits is exact.
The only thing left to show is that the last term of the sequence in

the statement is exact. However, given y := (g1, g2, . . .) ∈
∏∞

i=1 Gi =
lim←−n(

∏n
i=1 Gi ) then the element (g1, g1 g2, . . .) evidently maps to y. �

Theorem 3.9. Given arbitrary groups Gi , the archipelago groupA (Gi ) is
locally free.

Proof. Let G := þi Gi , and let K denote the kernel of the canonical epi-
morphism onto

∏

i Gi . Set N :=
�⋃

i Gi

�

G, thenA (Gi ) =G/N .

Claim 1. Both, K and KN/N, are locally free.

As mentioned before Lemma 3.8, G embeds naturally in lim←−n∗n
i=1 Gi .

The lemma then implies that the kernel of the epimorphism from the latter
group onto

∏∞
i=1 Gi agrees with the inverse limit lim←−n Kn. Each Kn is a free

group by Kurosh’s subgroup theorem, and thus their inverse limit is locally
free by [CF59, Theorem 1]. Therefore, the subgroup K =

�

lim←−n Kn

�

∩G
is locally free.

Next observe that G/N = lim−→nPn where Pn := G/
�⋃n

i=1 Gi

�

G. Then
Pn 'þi>n Gi and so, using the first part, find that K/K ∩

�⋃n
i=1 Gi

�

G is
locally free. Now KN/N 'K/K ∩N is the direct limit of the locally free
groups K/K ∩

�⋃n
i=1 Gi

�

G and, as that property is preserved under direct
limits (by Lemma 1.21), it is locally free as well.

Claim 2. G/N is torsion free.

Suppose that some g ∈ G has finite order modulo N , i.e. g k ∈ N .
Observing that N =

⋃

n≥1

�⋃n
i=1 Gi

�

G =
⋃

n≥1

�∗n
i=1 Gi

�

G is an ascending
chain of normal subgroups, it follows that for some n we must have that
g k ∈ M :=

�∗n
i=1 Gi

�

G. Therefore, as g maps onto a torsion element in
G/M , and since G/M ' þi>n Gi , an application of Lemma 3.7 shows
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that g M/M is conjugate to an element in some G j M/M . Since G j M is a
subgroup of N , we conclude that g ∈N .

Claim 3. All groups Gi can be assumed to be of the same finite exponent e ∈N.

Let ci denote the cardinality of Gi . By Theorem 1.11, the groupA (Gi )
is either isomorphic toA (

⊕

ci
Z3) if only finitely many Gi contain ele-

ments of order 2, or toA (
⊕

ci
Z2) otherwise. The exponent of every Gi

is then either 2 or 3.

Returning to the statement of the theorem, let K̄ :=KN/N , and suppose
H is a finitely generated subgroup of G/N . We want to show, H is free.
The abelian quotient group G/K has exponent e and hence H K̄/K̄ '
H/(H ∩ K̄) has finite exponent. Therefore H ∩ K̄ has finite index in the
finitely generated group H , so H ∩ K̄ itself is finitely generated. Since
H ∩ K̄ is a subgroup of K̄ =KN/N , it is free by Claim 1.

Now H is torsion free by Claim 2 and an extension of finite index of a
free group, hence, by Stallings’ celebrated result [Sta68, Theorem 3], H is
free. �

Showing that the cardinalities in Corollary 3.6 are actually attained
is most directly accomplished by finding a subgroup with such decom-
position. For the larger group H := Ab(A (Gi )) to then inherit these
cardinalities, it is necessary that the embedded subgroup A is pure in H ,
i.e. if an element a ∈A is divisible in H by k ∈N, then it is already divisible
by k within A. This guarantees that the p-adic factors of A translate into
those of H , as otherwise they might simply be contained in the divisible
part of the group.

The simplest candidate for a suitable subgroup would be
∏

i Z, an ap-
proach pursued in [Eda92]. Instead we will describe an embedding of the
whole homology group of the Hawaiian earring into that of an archipel-
ago space. As a preparation, a better understanding of the combinatorial
structure of infinite words representing group elements inþi Gi is required.
Recall from Definition 1.5 that for a sequence (Gi )i of groups, an infinite
word is a map w : L→ ·⋃

i Gi r {1} from a countable linearly ordered set
L to the disjoint union of the non-identity elements of the Gi where the
preimage of each Gi is a finite set. Multiplication is simply concatenation,
and inverses are given by inverting the order of the word and replacing
each element by its inverse in Gi .



3.3. WILD HOMOLOGY 41

Cancellation induces an equivalence relation on the set of infinite words,
and these equivalence classes form the topologist’s product þi Gi .

Suppose g ∈ þi Gi is in the kernel of the abelianization map, then it
can be written as a finite product [a1, b2] . . .[ak , bk] of commutators. As
a word, we may consider that as a finite concatenation of reduced words
w1 · . . . · w4k , together with a pairing taking each wi to some w j = w−1

i .
This idea generalizes to the concept of commutator forms and, controlling
for divisibility, to n-forms, both introduced in [Eda92, Definition 4.10] for
þi Z. We will make use of the following variation.

Definition 3.10. Suppose all groups Gi are abelian. A word w : L→ ·⋃
i Gi

is of n-form if it can be written as a finite concatenation w = w1 · . . . ·w` of
reduced words and there exists a partition of {1, . . . ,`} into disjoint sets A,
B , C , and permutations β of B and γ of C , respectively, such that:

(1) for i ∈A, wi is a finite word, and the finite word concatenation of
only these wi , projected to

⊕

i Gi , is divisible by n;
(2) all permutation cycles of β have length 2, and for i ∈ B , wβ(i) =

w−1
i ; and

(3) all permutation cycles of γ have length n, and for i ∈ C , wγ (i) =
wi .

If, in addition, w = w1 · . . . ·w` is reduced, it is of canonical n-form. If n = 0
(and thus the set C is empty), w = w1 · . . . ·w` is a commutator form.

Lemma 3.11. Let x be in þi Gi , with all Gi abelian. Suppose Ab(x) is
divisible by n ∈N, then x has a canonical n-form.

The proof of this lemma is quite the same as that of Lemma 4.11 in
[Eda92]. If Ab(x) is divisible by n, a word representing x can be written
as a finite concatenation yn[a1, b2] . . .[ak , bk] with all ai , bi , and y reduced.
A reduced representation of x can then be obtained by finitely many
times removing cancelling blocks X ·X−1 and modifying β and γ on the
corresponding blocks mapped into X or X−1 by these functions. The
details are left to the reader.

Lemma 3.12. The homology group H1(HE) of the Hawaiian earring embeds
as a pure subgroup in the abelianization of any archipelago groupA (G), with
G abelian and nontrivial.

Proof. Consider the archipelago groupA (Gi ), and for each i ∈N choose
a nontrivial element gi ∈Gi 'G. Let r :N×N→N be a bijection, then
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define a homomorphism ϕ :π1(HE) =þi Z→þi Gi , first by mapping a
generator ai of the i -th copy of Z to an infinite word of order typeω

ϕ : ai → gr (i ,1) gr (i ,2) gr (i ,3) . . . ,

then by uniquely extending this map to all elements of þi Z. Let q denote
the canonical epimorphism mapping þi Gi to its quotientA (Gi ). The
functoriality of the abelianization induces homomorphisms ϕ and q , fitting
into the commutative diagram:

þi Z þi Gi A (Gi )

H1(HE) Abþi Gi AbA (Gi )

ϕ q

ϕ q

Ab Ab Ab

Similarly, it is possible to define an endomorphism σ onþi Gi that maps
Gr (i ,1) to 1 and shifts Gr (i ,n+1) to Gr (i ,n), for i , n ∈ N. The significance of
these maps lies in the following properties.

(1) x · y is reduced, if and only if ϕ(x) ·ϕ(y) is reduced;
(2) if ϕ(x) is of n-form, then so is x;
(3) σ(ϕ(x)) = ϕ(x); and
(4) for all z ∈ ker q there exists an exponent e ∈N, such that

σ e(z) = 1.

Here, (1) is evident from the definition of ϕ, which in turn implies
(2): any n-form on ϕ(x) gives rise to a partition A,B ,C and maps β,γ ,
as in Definition 3.10; the restriction of the words to letters in the groups
{Gr (i ,1) : i ∈ N} allows the same partition pattern, and by replacing each
gr (i ,1) with ai , the partition and the maps β,γ immediately translates into
an n-form on x.

Property (3) is inherited from σ(ϕ(ai )) = σ(gr (i ,1) gr (i ,2) gr (i ,3) . . .) =
1gr (i ,1) gr (i ,2) . . . = ϕ(ai ). On the other hand, z ∈ ker q can be writ-
ten as z = z c1

1 . . . z cn
n , a product of conjugates with each z j in some

Gk . Then choosing e so large that all these indices k are contained in
{r (i , m) : i ∈N, m ≤ e}, property (4) follows.

We will show that q ◦ϕ is the claimed embedding of a pure subgroup.
For x ∈þi Z, suppose n divides (Ab◦q ◦ϕ)(x) = (q ◦ϕ◦Ab)(x). Using the
surjectivity of q , there exists y ∈þi Gi such that n(Ab◦q)(y) = (Ab◦q ◦
ϕ)(x), and hence we may write ynϕ(x)−1 = z

∏k
i=1[ai , bi], with z ∈ ker q
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and the [ai , bi] some commutators in þi Gi . Using e as in (4) yields

σ e(ynϕ(x)−1) = (σ e(y))nϕ(x)−1 =
∏k

i=1[σ(ai ),σ(bi )].

Consequently, n also divides Ab◦ϕ(x), and thus ϕ(x) has a (canonical) n-
form by Lemma 3.11. By (2), then so does x, which means n divides Ab(x)
as well. We have thus found an element w ∈þi Z with n Ab(w) =Ab(x),
and finally applying the homomorphisms q and ϕ,

n(q ◦ϕ ◦Ab)(w) = (q ◦ϕ ◦Ab)(x).

Since (q ◦ ϕ ◦Ab)(w) is in the image of q ◦ ϕ, we have shown that this
image is a pure subgroup of Ab(A (Gi )). In particular, setting n := 0 shows
(q ◦ϕ)(x) = 0 implies x = 0, so the map is injective. �

Proof of Corollary 3.6. Consider the archipelago spaces built respectively
over circles S1, projective planes P2, or Hawaiian earrings HE, correspond-
ing to their fundamental groupsA (Z),A (Z2), andA (R); in each one of
them, each based loop has one homotopic to it, arbitrarily close to the base
point, so they each satisfy the condition of Theorem 3.4, and hence their
fundamental groups are Higman-complete. As they are also locally free by
Theorem 3.9, the homology groups as the corresponding abelianizations
are torsion-free, so the requirements of Theorem 3.5 are satisfied. We thus
have a decomposition

⊕

kQ ⊕
∏

p prime
̂⊕

mp
Jp

p
for each of them.

The only thing left to show is that the involved cardinalities are all equal
to that of the continuum c. This can be accomplished by embedding a
group of sufficient size. By Lemma 3.12, H1(HE) embeds in each as a pure
subgroup, and that group is isomorphic to

ZN ⊕
⊕

c

Q ⊕
∏

p prime

̂⊕
c

Jp
p
,

due to a result of Eda and Kawamura in [EK00]. This provides us with a
lower bound for the cardinalities.

As the cardinality of each of the groupsA (Z),A (Z2), andA (R) is itself
only continuum, we have proven the isomorphism of their abelianiziations
to the decomposition on the right in (†). The isomorphism of that group
to
∏

NZ/
⊕

NZ on the left is a theorem in [Bal59] by Balcerzyk, and the
proof is complete. �
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4. p-adic Embeddings

Finally, we would like to shed some more light on how the summands
in the algebraic decomposition appear geometrically in the homology of
these spaces. For the divisible part

⊕

cQ, this is done abstractly in [Eda92,
Theorem 4.14] for the earring, and in [BZ12, Corollary 9.2] in more
concrete terms for the harmonic archipelago. The principal idea is that a
recursively defined element h1(h2(h3(. . .)

4)3)2, with each hi := [g2i , g2i+1] a
commutator, give rise to aQ-subgroup in H1(HE). By varying the index
sequences involved, one can get continuum many linearly independent
copies ofQ.

A similar, but technically more involved presentation of the p-adic part
in terms of infinite words in the earring group is explained below. The
core idea is to ascertain specific divisibility properties whilst avoiding
intersection with the Ulm subgroup. Additional difficulty is caused by
having to resort to a non-constructive basis argument in a vector space.

Proposition 3.13.
∏

p prime
̂⊕

c Jp
p

embeds as a pure subgroup in H1(HE).

Proof. First some notation: Let G denote þi≥1Z=π1(HE) the fundamen-
tal group of the Hawaiian earring, and H := H1(HE) its abelianization.
For i ∈ N, let the symbol gi represent the generator of the i -th Z-factor
in this product (topologically, the path class in G running along the i -th
circle of the earring). We will lay out the embedding first for each Jp

individually, and then gradually proceed towards the full complexity of
embedding the whole product. To lower the notational clutter, writing
brackets for function arguments will be omitted when possible.

Let hi := [g2i , g2i+1], a commutator of generators. Let q : N→ N be
the map that runs through all integers not divisible by p. Consider Jp as
the set {0, . . . , p − 1}N of sequences corresponding to the coefficients in the
formal power series representation, a =

∑

k≥1 ak pk−1. Then

ϕ : (ak)k∈N 7→ b a1
1 (b

a2
2 (b

a3
3 (. . .)

pq3)pq2)pq1, where
bn := hn(hn+1(hn+2(. . .)

q(n+2))q(n+1))qn,

is a mapping from Jp into G. If we denote passing to the abelianization by

“ ”, then ϕ :=Ab◦ϕ is also injective. By construction, each b n is divisible
by any prime other than p, and since

ϕ((ak)k∈N)≡ b a1
1 b a2·p·q1

2 . . . b an ·pn−1·q1···q(n−1)
n (. . .)p

n ·q1···qn,
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modulo the commutator subgroup, ϕ((ak)k∈N) is similarly divisible.
On the other hand, p - b n and therefore pn | ϕ((ak)k∈N) if and only if

ak = 0 for k = 1, . . . , n. Since b n = qn · b n+1 (in the abelian group H ), the
exponents take on the role of the coefficients in the power series, and as a
consequence,

k | z1+ . . .+ zn if and only if k | ϕz1+ . . .+ϕzn (‡)

for arbitrary k ∈Z and zi ∈ Jp . However, ϕ is not a group homomorphism,
as adding the elements 1

1−p2 = (1,0,1,0,1, . . .), p
1−p2 = (0,1,0,1,0 . . .) ∈ Jp

illuminates.
Let Λ be a basis of the p-adic numbers Q̂p as a vector space overQ, such

that Λ is already included as a subset in Jp . We point out two important
properties of Q̂p and H : (i) Both groups are torsion-free; hence for k ∈
Z\ {0}, k x = ky implies x = y, i.e. if there exists a k-th root of an element,
it is unique. (ii) Every x ∈ Jp can be written as x = 1

k y with y ∈
⊕

λ∈ΛZλ
and k ∈ N. Thus the map ϕ restricted to Λ can be naturally extended,
first to a homomorphism on

⊕

λ∈ΛZλ, then to all of Jp by choosing the
uniquely determined k-th root in H – which exists according to (‡).

This extended map ψ : Jp → H , 1
k (m1λ1+ . . .+mnλn) 7→

1
k (m1ϕλ1+ . . .+

mnϕλn) is a well-defined injective group homomorphism, and its image is a
pure subgroup of H .

Concerning the injectivity, consider z ∈ Jp with ψ(z) = 0. Using
the representation as z = 1

k (m1λ1+ . . .+mnλn) with respect to the basis
Λ, we have p r k | m1ϕλ1 + . . .+ mnϕλn for every r ∈ N. Thus by (‡),
p r k | m1λ1+ . . .+mnλn, and z must be the 0-element in Jp , whence the
injectivity follows.

The purity is yet another consequence of (‡), as ψ(z) = k g for g ∈ H
shows k | z and thusψ(z) = kψ( 1

k z). In particular, it follows that the image
of ψ has trivial intersection with the Ulm subgroup U (H ). Note that ψ
and ϕ will disagree on many elements in Jp . However again employing
(‡), k | ϕ(z)+ϕ(−z) for all k ∈Z shows ϕ(z)≡−ϕ(−z)modulo the Ulm
group, and similarly, from k | ϕ(z1+ z2)−ϕ(z1)−ϕ(z2) for all k ∈ Z, it
follows that ϕ(z1+z2)≡ ϕ(z1)+ϕ(z2). We have thus salvaged the following
embedding, that does not rely on a vector basis argument:



46 CHAPTER 3. COTORSION AND WILD HOMOLOGY

Let υ be the canonical projection passing to the quotient modulo the Ulm
group. The composed map υ ◦Ab◦ϕ : Jp 7→ H/U (H ) is an injective group
homomorphism.

As another intermediate step, we turn our attention to the group
∏

p prime Jp . Now the coefficients need to be encoded for all primes at
the same time. Let P be the set of primes, then there are maps π :N→ P,
ι : N→ N, such that (π, ι) : N→ P×N is a bijection, and ι restricted to
π−1 p is always monotonic for each p ∈ P. Let ρp n :=πn if p 6=πn, else
ρp n := 1. Then define a mapping ϕ :

∏

p prime Jp →H by
�

(ap,k)k∈N
�

p∈P
7→ caπ1,ι1

1 (caπ2,ι2

2 (caπ3,ι3

3 (. . .)π3)π2)π1, where

cn := hn(hn+1(hn+2(. . .)
ρπn(n+2))ρπn(n+1))ρπn n.

Note that p divides c n if and only if p 6=πn, and pn
0 | ϕ

��

(ap,k)k∈N
�

p∈P
�

if
and only if ap0,k = 0 for k = 1, . . . , n. Thus again, k | z1+ . . .+ zn if and only
if k | ϕz1+ . . .+ϕzn. Now

∏

p∈P Q̂p is a vector space over Q, and there
exists a basis Λ, included in

∏

p∈P Jp , spanning the subspace generated by
that product. As above, ϕ restricted to this basis can be extended to the
whole product of p-adic integers.

The extended map ψ :
∏

p∈P Jp → H is an injective group homomorphism,
and its image is a pure subgroup of H .

For the general case, observe that ̂⊕c Jp
p
' ̂⊕

cZ
p
' Ap :=

�

((a f ,k)k∈N) f ∈c : ∀k∀̃ f : a f ,k = 0
	

⊆
∏

c Jp , where c = 2N and ∀̃ denotes
“for all but finitely many”. To allow for the higher variability afforded
by the greater cardinality, a larger family of infinite commutator words is
required. Let θ : 2N→NN be a map with the property that (θ f )n = (θg )n
holds for almost all n ∈ N if and only if f = g , and (θ f )n ≥ n. Choose
some order on c, then the mapping ϕ :

∏

p∈PAp →H ,

(ap, f ,k)p∈P, f ∈c,k∈N 7→
∏

f ∈c d
aπ1, f ,ι1

1, f
(
∏

f ∈c d
aπ2, f ,ι2

2, f
(
∏

f ∈c d
aπ3, f ,ι3

3, f
(. . .)π3)π2)π1,

where dn, f := h(θ f )n(h(θ f )(n+1)(h(θ f )(n+2)(. . .)
ρπn(n+2))ρπn(n+1))ρπn n,

is well-defined, as, by definition of Ap , each of the products over the f ∈ c

is in fact only finite and, with the order inherited from c, well-defined. The
words dn, f share the same divisibility properties as the cn, i.e. p | d n, f if
and only if p 6=πn; and pn

0 | ϕ((ap, f ,k)p∈P, f ∈c,k∈N) if and only if ap0, f ,k = 0
for k = 1, . . . , n and all f ∈ c.
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Let Λ be a basis of the subspace spanned by
∏

p∈PAp in the vector space
∏

p∈P
∏

c Q̂p . Finally, ϕ restricted to this Λ can be extended as above:

The extended map ψ :
∏

p∈P
̂⊕

cZ
p
→ H is an injective group homomor-

phism, and its image is a pure subgroup of H . �
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