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Abstract

This work deals with average consensus on time-varying graphs. Various types of time-

varying graphs represening simple scenarios (1-D grid, 2-D grid) as well as more com-

plex, reality relevant mobility models (random geometric graph, fluid rotational mixing)

are considered. We study the convergence properties given different network and mobil-

ity models and provide proof of concept experiments for the mobility as an accelerating

feature in distributed averaging. We derive a lower bound on the mean squared error

of average consensus using constant weights in a random geometric graph for a specific

random walk mobility model. The lower bound after two iterations is tight in case of

uncorrelated sensor measurements and for one moving node, and loose for two and more

moving nodes. Numerical investigations are performed via simulations to demonstrate

the behaviour of average consensus convergence under different conditions and their

relation to the derived bound.

Keywords : wireless sensor networks, mobility in wireless sensor networks, Metropolis

weights, constant weights, average consensus, MSE, random geometric graphs, sensor

grids



Zusammenfassung

Diese Diplomarbeit untersucht Algorithmen der verteilten Mittelwertbildung in zeitva-

rianten Sensornetzwerken. Unterschiedliche zeitvariante Graphen repräsentierend ein-

fachere Netzwerkscenarien (1-D, 2-D Gitter) und auch komplexere, realitätsnahe Bewe-

gungsmodelle (zufällige geometrische Graphen, Rotationsmischung) werden untersucht.

Wir studieren die aus verschiedenen Netzwerk- und Mobilitätsaufstellungen folgende

Konvergenzeigenschaften und geben Proof of Concept Experimente für Mobilität als

beschleunigender Faktor in der Mittelwertbildung. Es wird eine untere Schranke der

mittleren quadratischen Abweichung des verteilten Mittelwertbildungs hergeleitet, für

den Fall konstanter Gewichte, unkorrelierten Sensormesswerten, zufälligen geometri-

schen Graphen und einer spezifischen, random Walk Bewegungsmodell. Numerische

Untersuchungen zeigen das Verhalten der Mittelwertbildung unter verschiedenen Be-

dingungen und deren Zusammenhang zu der hergeleiteten Schranke.
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1

Introduction

Wireless sensor networks (WSNs) consist of spatially distributed autonomous sensors

which monitor some of their environments’ features. Applications range from envi-

ronmental/Earth monitoring (air/water quality and pollution monitoring, forest fire

detection, landslide detection, traffic monitoring) through industrial monitoring (ma-

chine monitoring, data logging, controlling) to localization and tracking. One node

consists of at least the following four major parts:

• a sensing unit, which is in direct connection with the environment and creates

data for the

• processing unit with limited memory and computational power,

• a wireless interface, which includes transmitter, receiver and antenna, and

• a power supply unit.

4
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WSNs have important properties that define their functionality. Since the sensing units

are distributed over large areas and hence cannot be supplied by wires, they are mostly

battery-powered. To maximize the energy lifespan of the sensors, it is required to

minimize the power consumption while fulfilling the designated task. Thus, there are

limits on computational power and wireless transmission range (and time). These two

limitations and the demand for the ability to cope with sporadic link and node failures

rise the need for robust algorithms that run on WSNs in a distributed manner with low

computational and communicational effort. For more details on functionality, design,

management and applications of WSNs we refer to [1].

This work deals with distributed average consensus (AC), whose goal is to compute

the average of the sensors’ measured values in a distributed fashion such that it is

available at all nodes after processing. This is achieved by exchanging messages between

neighboring nodes periodically, while performing simple local computations. Much

research has been done to understand the behaviour of AC in static networks. However,

in many applications nodes might leave or join the network, links may fail due to fading

or temporary obstacles. The main driving force of this work is the inherent nature of

nodes to change their positions in many practical applications. Therefore we deal with

mobile WSNs and analyze how AC performs in such a challenging setup. The main parts

of the investigation involve modelling the structure of the WSN, describing mobility in

WSN, and studying the parameters of AC such that it reaches its goal similar to the

well studied static setting.

This work is structured as follows:

Chapter 2: This chapter gives a basic introduction to graph theory and to algebraic

matrices linked to graphs, and their properties. Moreover, network models are

presented and the corresponding graphs are described.

Chapter 3: This part of the work deals with AC in static WSNs. First, definitions and

notations are provided, then convergence conditions and weight design methods
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are discussed.

Chapter 4: In this chapter mobility in WSN with distributed averaging is introduced.

A short review of mobile WSNs is followed by the discussion of mobility models.

After redefining AC for the mobile case, the analysis of two examples show how

mobility affects the convergence of AC.

Chapter 5: This chapter provides a theoretical MSE lower bound of AC in mobile

WSN. The main findings are formulated within a theorem and are followed by

detailed calculations and intuitive illustrations of the corresponding geometric

properties.

Chapter 6: In the next part of the work the impact of mobility is analyzed through

selected simulations. Moreover, the numerical results verify our theoretical deriva-

tions.

Chapter 7: Finally, we give a summary of the work.



2

Background

2.1 Graph Theoretical Representation

A WSN consists of sensors and communication links between them. Such a network

can be represented by a graph G = (V, E), with node set V and edge set E . Every

element in the set V = {v1, v2, . . . , vI} represents one of the I sensors in the network,

while every element in the set E represents a communication link between two sensors.

Two nodes vi and vj are said to be neighbors or adjacent if and only if there is an edge

from vi to vj , that is, (vi, vj) ∈ E . If not mentioned otherwise, we assume undirected

graphs, i.e. the edges do not have a direction: (vi, vj) = (vj , vi). Further, we denote

Ni =
{

vj
∣

∣ (vi, vj) ∈ E
}

as the set of neighbors of node vi. The degree di of node vi

denotes the number of its neighbors, i.e. di = |Ni|.

A path in a graph is a sequence of vertices such that from each of its vertices there

is an edge to the next vertex in the sequence. If there exists a path between every pair

of nodes, then and only then is the graph connected. Intuitively, this states that every

node in the graph is reachable from every other node via edges and hence no part of

the graph is isolated from another. If a graph is not connected, i.e. it consists of two

or more components, information flow through the whole graph is not possible. Since

7



Chapter 2. Background 8

the latter is essential for distributed algorithms, we mainly consider connected graphs

in the following.

2.2 Adjacency and Laplacian Matrix

A matrix that describes the topology of a graph G is the adjacency matrix AG, which

represents adjacency relations of the nodes. Its entries are given by

ai,j =















1 if (i, j) ∈ E ,

0 otherwise.

In case of undirected graphs the adjacency matrix is symmetric. Note that
I
∑

i=1

ai,j = di,

that is, the row (column) sums equal the corresponding nodes degree.

Further, the the degree matrix DG of G is defined as

DG = diag (d1, d2, . . . , dI) ,

where di is the degree of vertex vi.

The Laplacian matrix of G, LG is defined as:

LG = DG −AG.

The Laplacian has−1 elements at positions whereAG is non-zero (connected nodes) and

the degrees listed on the diagonal. Note that the row (column) sums of the Laplacian

are 0, because there are as many −1 elements in one row (column) as the value of the

diagonal element in that row (column): the sum equals di + di (−1) = 0. It directly

follows that LG has an eigenvector 1 with a corresponding eigenvalue 0, since 1 simply

sums the row elements: LG1 = 0 1 = 0. In [2] it is shown that LG is positive-semidefinite
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and that the multiplicity of the 0 eigenvalue equals the number of connected components

in G. Thus, for a connected graph we have λ1 = 0 and λ2 > 0 if we denote the eigenvalues

λ1 ≤ λ2 ≤ . . . ≤ λI . This is shown in Lemma 1. The magnitude of λ2 denotes spectral

gap and the algebraic connectivity of G.

Lemma 1. Let G = (V, E) be a connected graph and λ1 ≤ λ2 ≤ . . . ≤ λI the eigenvalues

of its Laplacian L. Then, λ2 > 0.

Proof. Let x be the eigenvector corresponding to the eigenvalue λ1 = 0 of L. Then

Lx = 0,

and so

xTLx =
∑

(vi,vj)∈E
(xi−xj)

2 = 0

Thus, for each pair of vertices (vi, vj) connected by an edge, xi equals xi. Since the

graph is connected, xi equals xj for all pairs (vi, vj), which implies that x is a scalar

multiple of the all ones vector. Thus, the eigenspace of the eigenvalue 0 has dimension

1, its algebraic multiplicity is 1 and because of the positive-semidefiniteness λ2 > 0.

These properties of the Laplacian will help us to obtain a better understanding of

the convergence properties of AC in different network and mobility models.

Algebraic Connectivity. The algebraic connectivity of a graph G is the second

smallest eigenvalue λ2 of its Laplacian. This eigenvalue is greater than 0 if and only if

the graph is connected. The magnitude of λ2 reflects how well the graph is connected:

increasing the number of vertices while leaving the number of edges constant decreases

λ2. On the other hand, increasing the number of edges while leaving the number of

nodes constant increases λ2.
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2.3 Network Models

Since it is very difficult to examine generalized models of real world networks, we

use simple models instead. These consist of graphs with simple construction rules.

The modelling graphs can then be analyzed efficiently, since many deterministic and

statistical properties are known. Unfortunately, every specific application needs its own

model, thus the number of models can quickly rise. Thus, we limit our investigations

to a few simple models.

Toroidal Assumption. When examining graphs embedded to surfaces, taking

the boundaries into account makes theoretical analysis almost unfeasable. For example,

the calculation of the average number of neighbors in the network with boundaries

is a difficult problem. When modelling the mobility of nodes, boundaries are even

harder to handle. To overcome this, a toroidal assumption can be made: the area in

which the graph is defined, is folded together along the (pairs of) opposite edges. This

generates, for example, a circle structure out of the 1-D grid graph. A two-dimensional

graph defined on a rectangle is transformed onto a toroidal surface, hence the distance

of the upper and lower edge and that of the right and left edges gets zero. Also

spherical structures enable for deeper investigation. To this end, the absolute position

of the nodes is not relevant anymore, only their relative position and the distribution

probability density. A more detailed description is given in Section 4.2.

2.3.1 Grid Graphs

In general, the node placement in grid graphs is defined as follows: the Eucledian

distance of a node to its (geometrical) nearest neighbors is constant for every node and

the placement of the nodes corresponds to the vertices of a (spacially confined) regular

tiling of the n-dimensional Eucledian space R
n. A more detailed description can be

found in [3]. An important classification of grids is their dimensionality n, thus we
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r

Figure 2.1: 1-D grid graph with I = 6 nodes and r = 1.

follow this approach.

In a one-dimensional (1-D) grid or lattice graph the nodes are aligned equidistantly

on a line and every node communicates with the nodes that are not further from it than

a given distance r (communication radius). Without loss of generality we normalize

the distance of the geometrically neighboring nodes (lattice constant) to 1. This way,

every node communicates with at most ⌊2r⌋ neighbors. In Figure 2.1 a 1-D grid graph

consisting of 6 nodes and r = 1 is illustrated.

In two dimensions the node placement can resemble for instance a triangular, a

hexagonal or square grid. We restrict our investigation of the 2-D graph on a regular

square grid which is a special case with lattice constants in x and y directions of R2

being equal, as shown in Figure 2.2 with lattice constant 1. For these graphs the number

of neighbors (degree), which is equal for all nodes (in an infinite lattice), is known as

the solution of the Gauss circle problem. No exact solution is known, but it scales with

πr2 with a residual bounded by O(r
1

2
+ǫ), which is shown in [4].

The three- and more-dimensional generalizations can be derived by placing nodes

on a 3-D, 4-D etc. lattice. However, for dimensions above 3 it might be difficult to find

any direct applications.

The above models are strong simplifications of real world setups, however, they

allow simple analysis of the topology and distributed algorithms. The closest appli-



Chapter 2. Background 12

r

Figure 2.2: 2-D grid graph with r = 1.

cations include scenarios where regular placement of sensors is expected: networks

covering rooms, buildings, cities and traffic paths where communication is confined into

a partially orthogonal grid, and larger geographical areas.

2.3.2 Random Geometric Graphs

A random geometric graph (RGG) is defined as follows: I nodes are placed in a region

A ⊂ R
2 such that their x and y coordinates (denoted by ix and iy for node vi) are realiza-

tions of uniformly identically and independently distributed (i.i.d.) random variables.

An edge is established between nodes vi and vj if and only if their Euclidean distance is

not larger than the communication radius r, i.e. (vi, vj) ∈ E ⇔ (ix−jx)
2+(iy−jy)

2 ≤ r2.

In many cases the unit square area is considered, i.e. A = [0, 1]× [0, 1]. An example is

illustrated in Figure 2.3.

The random geometric graph represents a very important class of graphs, because

it can be described statistically in a simple way and analytical statements can be made.

Even though for most applications the i.i.d. placement of the nodes is not a reason-

able assumption, it allows analysis of a wide variety of applications: e.g. in wildlife

research, in environmental and crowd monitoring, where the placement of units is far

from independent. The fixed communication radius encompasses the simplified model

for electromagnetic wave propagation properties of the wireless channel. The modelling
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Figure 2.3: Realization of a random geometric graph with I = 100 nodes and r = 0.16.

graphs are undirected because we assume reciprocity of the wireless channel. Note that

in a real setup, communication range does not only depend on the distance of transmit-

ter and receiver, but also on fading, different path losses etc, and communication can

be unidirectional. A wider description of modelling networks with RGGs can be found

in [5], and for deeper mathematical investigations we refer to [6].

Circular RGG. In Section 6 , circular movement will be investigated. Thus, it

turns out to be practical to define an RGG within a circle with radius R in the R
2

plane, A =
{

(x, y)
∣

∣

√

x2 + y2 ≤ R
}

. One method of achieving uniform node placement

with elementar methods is to work in polar coordinates. First, choose an angle φ

from U (0, 2π), then choose the distance from the origo r from a probability density

function p (r) = 2
R
r. The linearly growing pdf of the radius compensates for the larger

circumfence of the circle with larger radius. The x and y coordinates of the nodes are

then obtained as x = r cos (φ) and y = r cos (φ).



3
Average Consensus in Static

WSN

3.1 Introduction

In WSNs the goal of distributed averaging is to calculate the average of the sensors’

measurements or a sufficient approximation of it and make it available to all sensors.

This can be achieved in multiple ways. For example, a central unit can collect measure-

ment data from all sensors, perform the averaging computation and finally broadcast

the result to all sensors. In large or mobile networks however, the connection to such a

central unit is not always feasable. Multi-hopping is a possible solution, but it creates

significant communication overhead. The essence of distributed algorithms is to avoid

such a fusion center: more specifically, the computational power of the network arises

from the sum of the computations of the low complexity units and the connectivity of

the network. In literature, there are three main approaches for distributed averaging:

Consensus propagation, which was introduced in [7], gossip algorithms, which we will

shortly introduce in Subsection 3.5, but for a complete survey we refer to [8]; and the

focus of this work is on a third method, average consensus (AC), for which the rest of

14



Chapter 3. Average Consensus in Static WSN 15

node vi

node vj

node vk

node vl

wijxj

wilxl

wikxk

wiixi

Figure 3.1: Every node receives state values from neighboring nodes and builds a linear
combination of those and its own state value.

this chapter is dedicated for. A comprehensive summary on consensus and cooperation

can be found in [9].

3.2 Average Consensus

In AC each node vi stores only one value, its state xi[k] at time instance k, usually a

real number. The nodes take their measurement and store the obtained value in their

state xi[0]. Supposing that nodes are synchronized, in every iteration (k = 1, 2, ...)

neighboring nodes exchange only their states with each other. In other words, every

node is broadcasting a message which is valid for all receivers. After receiving all the

values from the neighbors, each node replaces its stored value with a linear combination

of its own and the received values, xi[k + 1].

Above can be formulated mathematically as follows. The goal of distributed aver-

aging is to reach at every node the average

x̄ =
1

I

I
∑

i=1

xi[0]. (3.1)

Supposing that state exchange between nodes occur at the same time instances, the
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synchronous update equation at node i at time k+1 is

xi[k + 1] = wiixi[k] +
∑

j∈Ni

wijxj [k] (3.2)

with wij denoting the weights in the linear combination of the received values. An

example is shown in Figure 3.1: node vi receives states from nodes vj , vk and vl and

updates its state with a linear combination of these and its own state. The choice of

the weights will be discussed in Subsection 3.4.

It is practical to formulate the definitions above in matrix-vector notation. The

state vector is defined as

x[k] =













x1[k]

...

xI [k]













,

which denotes the state of all nodes. The state vector x[0] containes the initial mea-

surements. The weight matrix is defined as

W =



















w11 w12 · · · w1I

w21 w22 · · · w2I

...
. . .

wI1 wI2 · · · wII



















.

Since we assume undirected graphs and equal weight between nodes vi-vj and vj-vi, W

is symmetric. Usually the considered graphs are not fully connected, which yields a

weight matrix W with the same zero-pattern as that of the adjacency matrix AG, with

the difference that the diagonal elements of AG are always zero. The diagonal elements

of W are discussed in Section 3.4 and are in general non-zero.

The update equation in matrix/vector notation reads

x[k + 1] = Wx[k]. (3.3)
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Finally, the recursive structure in (3.3) allows us compute the state vector at iteration

k:

x[k] = Wkx[0].

Discussion. To save power, the WSN consists of low complexity units, which are

capable of only simple computations and have low memory: each node stores only

one number and performs additions and multiplications. In practice, of course, the

stored number is a rational number up to a certain precision depending on the installed

hardware. Even though we only consider the theoretical approach of real states, the

quantized averaging is a big issue because of quantization errors. Also, quantized com-

munication can help to save transmission power at the cost of the precision. More

details on AC with quantized communication is provided in [10].

3.3 Convergence Conditions

We can write the average as

1

I
1Tx [0] = x̄.

To get the state vector containing the average, we multiply by 1:

1
1

I
1Tx [0] = 1x̄.

This implies that AC reaches the average at all nodes if

lim
k→∞

Wk =
1

I
11T . (3.4)

This matrix is the only matrix that maps any state vector to a state vector containing

the average of the elements. A necessary and sufficient condition for (3.4) to hold is

shown in [11]. This, however, is a more general theorem, because it allows for W to be
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non-symmetric.

Theorem 1. LetW be a weight matrix of a network for AC. Then, limk→∞Wk = 1
I
11T

holds if and only if

1TW = 1T , (3.5)

W1 = 1, (3.6)

ρ

(

W − 1

I
11T

)

< 1, (3.7)

where ρ(·) denotes the spectral radius of a matrix, i.e.

ρ (W) = max
i

|λi (W) |.

Discussion. Note that for a symmetric matrix W the first two conditions are

identical. Thus, this theorem includes the general case of directed graphs. The first

condition (3.5), states that 1 is a left eigenvector of W associated with eigenvalue 1,

which implies that 1Tx [k + 1] = 1Tx [k] for all k, so the sum and therefore the average

of the node states is preserved at each iteration. From (3.6) it follows that 1 is also

a right eigenvector of W associated with eigenvalue 1, which means that any constant

vector is a fixed point of the iteration (3.3). That is, once the average is reached, there

will be no change in the node values. Together with the first two conditions, (3.7)

means that one is a simple eigenvalue of W and all other eigenvalues are less than one

in magnitude. One can conclude that if the elements of W are nonnegative, then (3.5)

and (3.6) state that W is doubly stochastic.

3.4 Weight Design

Since AC only provides conditions for the edge weights, the design of the weight matrix

is a researched topic on its own. There are multiple performance criteria. In [11]

optimization of the weights for the asymptotic convergence rate is discussed. If we
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allow for time-varying weights, it is possible to choose weights in every averaging step

and so we maximize the MSE gain achieved in one iteration. In [12] time-varying

weights are considered, which provide the best possible convergence in the sense of

mean squared error (MSE). There are many weight designs, here we give a review of

two simple but important designs.

3.4.1 Constant Weights

The simplest way to design the edge weights wij is to choose a constant value for all

edges. The self-loop weight is designed such that all edge weights belonging to a node

sum up to 1. This ensures the first two convergence conditions of Theorem 1 to hold

((3.5) and (3.6)). The weights are defined as

wij =































α if j ∈ Ni,

1−∑l∈Ni
wil = 1− αdi if i = j,

0 otherwise,

where α is a constant. In Lemma 2 we show that the choice α < 1
dmax

with dmax =

max
i=1,...,I

di being the maximum degree in G leads to the convergence of the node values

(3.4). Choosing α = 1
dmax

can in the following case lead to divergence. In a regular1

bipartite2 (connected) graph every node will update its state with the weighted sum of

the node values of the other side only, because di = dmax and thus wii = 0 for i = 1, ..., I.

This way, one side calculates the average of the other side, and after reaching the partial

averages, the values will oscillate between the two sides.

A secure estimate of α is 1
I
, since dmax < I for every graph topology. This, however

should only be used if the graph topology is unknown and no estimate of dmax is

available.

1In a regular graph every vertex has the same number of neighbors.
2A bipartite graph is a graph whose vertices can be devided in two disjoint sets U and V such that

every edge connects a vertex in U with a vertex in V .
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Convergence Analysis

Next we show that the convergence criteria of Theorem 1 hold for constant weights if

α < 1
dmax

, using the methods shown in [9].

Lemma 2. Let G be a connected graph with I nodes and maximum degree dmax. Then,

the weight matrix W = I−αLG of constant weight design with parameter 0 < α < 1
dmax

,

satisfies the following properties.

(i) W is nonnegative and doubly stochastic, i.e. it has a left and a right trivial eigen-

value 1.

(ii) ρ
(

W − 1
I
11T

)

< 1, i.e. W has one eigenvalue with magnitude 1 and all other

eigenvalues are less than 1 in magnitude.

Proof. To prove nonnegativeness, we check the diagonal elements of W first: the ith

element is 1 − αdi ≥ 1 − αdmax = 0. So every diagonal element is nonnegative.

Next we check the off-diagonal elements: (W)ij = 0 − αlij ≥ α1 > 0. So the off-

diagonal elements are also nonnegative, thus all elements of W are nonnegative. To

prove the row stochastic property of W, we check whether 1 is a right eigenvector:

W1 = (I− αLG) 1 = 1 − αLG1 = 1, because LG = 01 = 0 (as in Section 2.2). 1 is a

right eigenvector of W, i.e. latter is row stochastic. The matrix W is symmetric, thus

it is doubly stochastic.

To prove (ii), we notice that based on Gershgorin theorem described in [13], all eigen-

values of W are located in the union of disks centered at wii with radii 1− wii. These

disks touch the unit circle from the inside at point λ = 1, thus all eigenvalues are less

than or equal to 1 in magnitude. According to Lemma 1, the eigenvalue λ = 1 is unique,

thus all other eigenvalues of W are smaller than 1 in magnitude. We conclude that (ii)

holds.
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3.4.2 Metropolis Weights

An approach to the Fastest Mixing Markov Chain Problem described in [14], the

Metropolis-Hastings algorithm shows a close similarity to AC weight design in case

of non-negative weights. Choosing the edge weight as the maximum of the degrees of

the two incident nodes and the self-loop weight as the number completing the sum to

1, the Metropolis weights read

wij =































1
1+max{di,dj} if vj ∈ Ni,

1−∑l∈Ni
wil if i = j,

0 otherwise.

The one plus term in the case vi and vj are neighbors ensures that no oscillation of

the node values happens in case of a regular bipartite structure. The weights can be

computed locally by exchanging information with neighboring nodes and that means

communication overhead. This, however, can be included for example in the link setup

process.

Convergence Analysis

In fact, one can prove that a modified design of the Metropolis weights also leads to

convergence:

wij =































1
ǫ+max{di,dj} if vj ∈ Ni,

1−∑l∈Ni
wil if i = j,

0 otherwise,

(3.8)

where any ǫ > 0 ensures that the diagonal elements of W (the (self-loop weights) are

positive. The convergence can be proven even for time-varying graphs similarly to

the proof in [15], here we show convergence only for fixed topologies, i.e. fixed weight

matrices.
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Lemma 3. Let G be a connected graph with I nodes and the Metropolis weight matrix

W defined in (3.8) with ǫ > 0. Then, the convergence criteria of Theorem 1 hold:

(i) W is nonnegative and doubly stochastic.

(ii) W has one eigenvalue with magnitude 1 and all other eigenvalues are less than 1

in magnitude.

Proof. To check nonnegativeness we note that in row i of W there are di + 1 nonzero

elements out of which the di nondiagonal are strictly less than 1
di
. The diagonal element

thus is wii > 1−di
1
di

= 0, we conclude thatW is a positive matrix and thus nonnegative.

The diagonal elements are chosen as to complete the row sums to 1, andW is symmetric,

thus W is also doubly stochastic.

To prove (ii) we again apply Greshgorin theorem. All eigenvalues of W must lie within

the union of the I disks centered at wii with radii
I
∑

j=1,j 6=i

|wij|:

|λ− wii| ≤
I
∑

j=1,j 6=i

|wij|.

Since the disk centers and the corresponding radii sum up to 1, these disks touch the

unit circle at point λ = 1 from the inside. According to Lemma 1 the eigenvalue 1 is

unique, and all other eigenvalues of W are smaller than 1 in magnitude. We conclude

that (ii) holds.

Comparison of Constant and Metropolis Weights

An experimental investigation in [16] shows that AC with Metropolis weights is much

faster than with constant weights. Also, the difference in speed gets more pronounced

with increasing number of nodes. This result will be demonstrated through simulations

in Section 6.
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3.5 Gossip Algorithms

In gossip algorithms each iteration one pair of nodes communicates. Gossip algorithms

can be classified as deterministic or randomized, synchronous or asynchronous. In the

synchronous case, at every time step, each node becomes active with a certain probabil-

ity. In the asynchronous case, each node becomes active at an exponentially distributed

random time instant. Detailed description of the algorithm and its classification are

provided in [17] and in [18].

A canonical example of gossip algorithms for distributed averaging is a randomized

protocol, in which in one iteration one randomly selected pair of neighboring nodes

exchange their current estimates and set xi[k + 1] = xj [k + 1] = 1
2
(xi[k] + xj [k]). In

terms of weights, this can be written as

wij [k] =































1
2

if nodes vi and vj are connected at time k,

1 if i = j and node vi has no connection at time k,

0 otherwise.

As long as the graph is connected and every node communicates frequently enough, the

algorithm is guaranteed to converge to the average. This form shows, that the average

is a representative of all linear functions of the node states and it is possible to compute

all functions in the form
∑I

i=1 cixi[0] in a distributed way.



4
Average Consensus in Mobile

WSN

4.1 Mobile WSN

In many cases the network may change over time. For instance, nodes may join or

leave the network, they can permanently/temporarily fail. Not only nodes, but also

the communication links may fail because of channel fading or temporary obstacles. In

contrast to that in many applications a key feature of wireless sensor networks is the

mobility of the nodes. A few examples of such mobile applications are traffic, biological

and environment monitoring, machine monitoring and product tracking. Clearly, as the

nodes change their positions, communication links may get lost and new connections

may arise. Moreover, link failures and node failures can be interpreted as position

changes.

These circumstances altogether motivate the investigation of time-varying WSNs.

To this end robust averaging algorithms are needed which are able to cope with a

temporally changing topology. While such algorithms already exist (see [19] for details),

analyzing their performance is still a difficult challenge.

24
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4.2 Mobility Models

In this section we review our investigated mobility models that might have physical

relevance. It turns out that the simplest models are the random hopping and the

random walking in RGGs, whose statistical description enables us to give analytical

statements about the averaging performance.

4.2.1 Random Hopping

Random hopping is expected to be statistically the fastest information mixing move-

ment. In a RGG the set of moving nodes Vm choose their random positions after every

iteration, that is, ix, iy ∼ U(0, 1) for vi ∈ Vm. This mobility preserves the RGG struc-

ture of the network since the new node positions are also uniformly i.i.d. in the network

area.

4.2.2 Random Walk

Random walking nodes vi ∈ Vm choose a random direction after every motion step and

move a predefined distance ν. The directions are chosen i.i.d. uniformly φi ∼ U(0, 2π)

(measured from a predefined axis, e.g. the horizontal). This mobility preserves the

RGG structure of an RGG, the new node positions are again uniformly distributed.

This movement is illustrated in Figure (4.1)

4.2.3 Uniform Motion

In the case of uniform motion, a (possibly random) speed νi ∼ U(0, D) and a (possibly

random) direction φi ∼ U(0, 2π) is assigned to each moving node vi ∈ Vm initially,

prior to starting the averaging. After every iteration, all moving nodes take position

according to their assigned speeds (distances) in their assigned directions.
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νi = r

Figure 4.1: Illustration of uniform motion with constant speed equal to the communica-
tion range r. In case of random walk the direction changes after every step randomly.

4.2.4 Rotational Mixing

In case of the circular RGG, similar to fluid flow, rotational mixing can be simulated.

Every (moving) node has an angular speed and optionally a relatively small random

radial speed. We use different ways:

• A subset of the nodes (e.g. half of them) have an angular speed defined before

beginning the averaging. If the speeds are identical, this model imitates two RGGs

rotating on top of each other.

• Another simple model of fluid mixing is to assign a new random angular speed to

each node after every averaging iteration: νik ∼ U(0, 2µD) (or U(µD − T, µD + T )

with T > 0 or U(−µD, µD)) and a small radial speed wik ∼ N (0, σw), with

σw ≪ µD.

4.2.5 Boundary Conditions

Boundary conditions have to be considered for multiple reasons. First, we have not

defined what happens when the mobility model prescribes a certain movement along

which a node hits the area boundary. By defining boundary conditions, this deficiency is

corrected. Secondly, the statistical description of the network models can be simplified
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a lot in case of the toroidal assumption from Section 2.3, and this simplification is

needed to provide analytical results, which are derived in Chapter 5.

Following the toroidal assumption, a node which would exit the graph region A

while moving between two iterations, enters on the other side of A through the merged

edge(s).

Other possibilities include imitating reflection or bouncing at the boundaries. An

option which might imitate the centripetal force in the case of rotational mixing is, once

a node reached the edge of the circular area, it stays there or will only take angular

speed for the rest of the iterations.

4.3 Average Consensus in Mobile WSN

We have investigated AC for static networks in Chapter 3. However, the description

did not account for mobility of the nodes, thus we have to reformulate AC for mobile

WSNs using the notation of Section 2.1 and Chapter 3.

A time-varying WSN can be represented by a time-varying graph G [k] = {V, E [k]},

with time index k. We suppose that we are only interested in the graph topology

when nodes communicate. The assumption that only edges are time-varying gives a

complete representation for our purposes: it accounts for failing links as well as failing

and moving nodes. If we assume a time-varying vertex set, the size of the corresponding

matrices (e.g. weight, adjacency and Laplacian matrix) will change and make analysis

unnecessarily complicated.

Since the edge weights depend on time, the weight matrix becomes

W[k] =



















w11[k] w12[k] · · · w1I [k]

w21[k] w22[k] · · · w2I [k]

...
. . .

wI1[k] wI2[k] · · · wII [k]


















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The sequence of weight matrices has (apart from a few very special cases) varying

number of non-zero elements and a time-varying zero pattern. Further, the update

equation can be rewritten as

x[k + 1] = W[k + 1]x[k].

4.3.1 Weight Design

The weight designs presented in Section 3.4 may rely on the knowledge of the fixed

graph topology, and therefore they have to be rediscussed for mobile WSNs. We do

this in the following paragraphs.

Constant Weights

Introduced in Subsection 3.4.1, the constant weight design can be used for time-varying

networks with α = 1
I
, because α ≤ 1

dmax
is satisfied for all possible node arrangements

with I nodes. However, this conservative choice may lead to relatively slow convergence.

One way of solving this issue is to limit the number of links one sensor can maintain

to a number m < I and set α = 1
m+1

, however this supposedly leads to a lower λ2 of

the graphs Laplacian and lower connectivity of the graph when the limitation is acting.

Thus, there is a tradeoff between better connectivity with lower weights, and lower

connectivity with higher weights.

Another way of obtaining the weights is either to use α = E
{

1
dmax

}

, or through

exchange of degree information in the whole network before every averaging step. How-

ever, latter leads to considerable overhead (especially in comparison to the averaging

information).

Metropolis Weights

In comparison to constant weights, Metropolis weights need only local information for

setting up the edge weights. As introduced in Subsection 3.4.2, Metropolis weights lead
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to faster convergence (and are in a way more compatible with mobile WSNs, since the

exchange of degree information can be included in the link setup process).

4.3.2 Convergence Conditions

In Section 3.3 we extensively investigated the convergence conditions of AC for static

networks. When the graph and so the weight matrix changes over time, it is much

more difficult to give convergence conditions explicitly. While [15] proves a sufficient

condition on the convergence of averaging with Metropolis weights and an edge sequence

Ek, k=0, 1, . . ., [20] shows sufficient convergence conditions for a general weight matrix:

Lemma 4. The sequence

x[k] =

k
∏

κ=1

W[k − κ]x[0] k = 1, 2, . . .

converges to x̄1 with probability 1 if the following conditions hold:

(i) The sequence {W[κ]}κ≥1 is stationary.

(ii) W[κ]1 = 1, κ = 1, 2, . . . with probability 1.

(iii) 1TW[κ] = 1T , κ = 1, 2, . . . with probability 1.

(iv) ‖W[κ] ‖2 ≤ 1, κ = 1, 2, . . . with probability 1.

(v) ∀ǫ > 0, E [Tǫ] < ∞.

where E [Tǫ] denotes the expectation of the stopping time Tǫ, defined as:

Tǫ = inf
t

{

k ≥ 1 :

∣

∣

∣

∣

∣

k
∏

κ=1

W[k − κ]− 1

I
11T

∣

∣

∣

∣

∣

≥ ǫ > 0

}

,

with an arbitrary small positive number ǫ. The notation W ≥ ǫ is understood as

elementwise inequality.
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Discussion. Conditions (iv) together with (ii) or (iii) imply ‖W[κ] ‖2 = 1 because

in case of a symmetric matrix W its non-negative eigenvalues equal the singular values

and ‖W‖2 = σmax (W) = λmax (W). As discussed in Section 3.3, W has only positive

eigenvalues and its largest eigenvalue is 1. Condition (v) relates to the connectivity of

the network: if links fail independently, asymptotically the graph sequence is equivalent

to a connected graph. On the other hand, if the graph, for example, consists of two

components (two sets of vertices with no edges between the nodes of the two sets),

the stopping time is ∞. We note that the original definition of the stopping time is

inft

{

k ≥ 1 :
∏k

κ=1W[k − κ] ≥ ǫ > 0
}

, which in our interpretation is not relevant to

averaging. This definition relates to the product of the weight matrices converging to

the all zeros matrix, which does not average the measurements, but lead the node states

to being zero.

4.4 Proof of Concept

Two basic examples of mobile WSNs are investigated in this subsection. It is demon-

strated how mobility in WSN under certain conditions can accelerate averaging.

Figure 4.2 shows two simulations with a 1-D grid graph of I = 10 nodes and commu-

nication radius r = 1, that is, every node (except for the two closing nodes at positions

1 and 10) communicates with its two neighbors in the time-invariant case. The node

at position 1 has an inner state x1[0] = 10 and all other nodes have 0, so the average

to reach is 1
I

∑

i xi[k] = 1 (green solid line). In the first simulation, the sensor net-

work is time-invariant. The dashed blue, red and black lines show the node states after

k = 10, 20 and 50 averaging iterations, respectively.

In the second simulation, the node at 1 starts moving to the right side with 2 lattice

constants per averaging iteration. When reaching the node at position 10, this moving

node changes direction and moves to the left till it reaches its original position, and so

on (uniform motion with reflection). The solid blue, red and black lines show the node



Chapter 4. Average Consensus in Mobile WSN 31

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

node location

in
ne

r 
st

at
es

 

 

k=10
k=20
k=50

Figure 4.2: 10 node 1D grid graph demonstrating accelerated information flow with 1
moving node.

states after k = 10, 20 and 50 averaging iterations, respectively.

It can be seen, how presence of mobility changes the information flow process. Com-

paring the identically colored dashed and solid lines, more balanced state distribution

can be observed in presence of mobility, which in the end means faster convergence.

In the second example, we consider a RGG and compare the mean squared error

(MSE) defined in Section 6.1 for different numbers of moving nodes and weight designs.

The nodes with communication radius r = 0.2 measured a Gaussian field and followed

the random hopping mobility model. Figure 4.3 shows the MSE of the six simulations

over the averaging iterations. By comparing the dashed lines with their corresponding

identically colored solid lines it can be clearly observed, that averaging with Metropolis

weights converges faster than averaging with constant weights, and that the difference

enhances as more and more nodes move. Also convergence accelerates with increasing

number of moving nodes, after 100 averaging iterations the difference in MSE is up to

5 dB and 15 dB with 5 and 10 moving nodes, and 18 dB and 34 dB with Metropolis

weights. We averaged the MSE over 1000 scenarios and recalculated the constant weight

design in every movement iteration.



Chapter 4. Average Consensus in Mobile WSN 32

10
0

10
1

10
2

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

averaging iterations

M
S

E
/d

B

 

 

Constant weights, static
Metropolis weights, static
Constant weights, 5 hopping
Metropolis weights, 5 hopping
Constant weights, 10 hopping
Metropolis weights, 10 hopping

Figure 4.3: Comparison of Metropolis and constant weights with 0, 5 and 10 moving
nodes in a RGG with 110 nodes.

4.5 Related Work

Before introducing our theoretical derivations, we briefly survey the most representative

works in this field to gain insight into other approaches and related problems.

A network of distributed sensors is considered in [16], where each sensor takes a

linear measurement of some unknown parameters, corrupted by independent Gaussian

noises. The purpose of their iterative scheme, based on distributed average consensus,

is to compute the maximum-likelihood estimate of the parameters. At each step, every

node can compute a local weighted least-squares estimate, which converges to the global

maximum-likelihood solution. This scheme is robust to unreliable communication links.

It is shown that it works in a network with dynamically changing topology, provided

that the infinitely occurring communication graphs are jointly connected.

The impact of mobility on the performance of gossip algorithms is studied in [21].

It is shown that a small number of fully mobile nodes can yield a significant decrease in

convergence time. A method is developed for deriving lower bounds on the convergence

time by merging nodes according to their mobility pattern. This method is used to show

that if the agents have one-dimensional mobility in the same direction the convergence

time is improved by at most a constant. If, for example, any number of nodes are

mobile in only one dimension (e.g. horizontal), the information still has to diffuse into
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the orthogonal (vertical) direction and thus, mobility is not that beneficial as randomly

chosen mobility for a lower number of nodes. Upper bounds on the convergence time

are obtained by using techniques from Markov chain theory and they show that simple

models of mobility can dramatically accelerate gossip as long as the mobility paths

significantly overlap. Simulations verify that these bounds are still valid for more general

mobility models that seem analytically intractable, and they further illustrate that

different mobility patterns can have significantly different effects on the convergence of

distributed algorithms.

The performance of averaging algorithms in time-varying networks is investigated in

[20]. Utilizing ergodic theory they present sufficient conditions on averaging algorithms

that ensure convergence to the average at every node. Further, using the product of

random matrices they introduce a new metric for the performance, the contraction

coefficient, different from the second largest eigenvalue of the expected weight matrix,

which characterizes the asymptotic convergence rate exactly.

A somewhat different approach is introduced in [22]. Self-organization is observed

in many WSN applications (biological, farming, insect monitoring) and is characterized

by well described, synchronous mobility patterns. The aim of their work is to develop

an adaptive active motion model such that it improves the estimation process. Nodes

move cooperatively while solving the estimation problem in a distributed manner.



5

Analytical Performance

Assessment

5.1 Introduction

In [23] the authors investigate the impact of mobility on AC in a RGGs. They provide

a closed-form lower bound on the MSE for the case when (some of) the nodes hop

randomly. Following their approach, we come up with a lower bound on the MSE of

AC for our proposed random walk mobility model (cf. Section 4.2), where the walk

distance is equal to the communication radius. The latter bound is a function of the

iteration number k, the communication radius r, the number of nodes I, and the number

of moving nodes Im, respectively.

34
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5.2 Performance Bound

In the following we give an brief review of [23], the key ingredient for our derivations.

Let us assume a Markovian evolving graph (described in [24]) with I nodes. That

is a sequence of topologies T = E1, ..., Ek, which is a stationary Markov chain, with

a constant node set V. The performance metric, the per-node MSE in iteration k is

defined as

ǭ2[k] =
1

I
ET
{

ǫ2[k]
}

with ǫ2 [k] = E
x[0]|T

{

‖x[k]− x̄1‖2
}

.

ET and E
x[0]|T denote the expectations with respect to the sequence T of graph

topologies and the conditional expectation with respect to the measurements x[0] given

T , respectively. Further, ωk = ‖W2kW2k−1‖2F and Ps̄2 = E
x[0]|T {x̄2} = 1

I2
1TRx[0]1

where Rx[0] = E
x[0]|T

{

x[0]x[0]T
}

is the measurement correlation matrix. The squared

Frobenius norm of the product of two subsequent weight matrices, ωk, as the perfor-

mance metric, is an indicator for the convergence speed. Since we speak of a Markovian

evolving graph, it suffices to consider E {ω1} = E {‖W2W1‖2F}. The authors of [23]

provide the following theorem:

Theorem 2. Consider average consensus on stationary Markovian evolving graph and

assume that PS̄ does not depend on T , that Rs has full rank, and that ET {ωkωk−1} ≥

ET {ωk}ET {ωk−1}. Then, the MSE is lower bounded as

ǭ[k] ≥ (I − 1)Ps̄

[

ET {ω1} − 1

I − 1

]⌈k
2⌉

. (5.1)

Discussion. The assumption that Ps̄ is independent of T implies an i.i.d. sen-

sor placement, which is fulfilled for RGGs. ET {ωkωk−1} ≥ ET {ωk}ET {ωk−1} excludes

graph evolutions that are oscillating between stronger and weaker connected topolo-

gies, which is satisfied for our random walk mobility model. The MSE bound decays
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exponentially by a factor of ET {ω1}−1
I−1

every other iteration, where ET {ω1} describes how

on average the connectivity of the graph changes between two iterations. A proof is

provided in [23].

The measure ET {ω1} can be expressed as

ET {ω1} = (I − Im)ET {g2ii; vi /∈ Vm}+ ImET {g2ii; vi ∈ Vm}

+((I − 1)I − Im(2I − Im − 1))ET {g2ij ; vi, vj /∈ Vm}

+Im(2I − Im − 1)ET {g2ij; vi ∈ Vm or vj ∈ Vm} (5.2)

with gij = (G)ij and G = W2W1. The operator ET denotes the expectation value

with respect to the sequence of topologies and ET {ω1} is separated into a sum of four

terms: ET {g2ii; vi /∈ Vm} accounts for the diagonal elements of G when vi is not moving;

ET {g2ii; vi ∈ Vm} refers to the diagonal elements of G when vi is moving. The off-

diagonal elements are taken into account in ET {g2ij; vi, vj /∈ Vm} for static nodes vi and

vj , and in ET {g2ij; vi ∈ Vm or vj ∈ Vm} when at least one of the corresponding nodes

move.

In the following we investigate the case with one node moving (Im = 1) by analyt-

ically evaluating the corresponding geometric probabilities. Nodes are denoted by vi,

vj , vl, vn, and the mobile one is denoted by vm. For the case of more mobile nodes the

probabilities will be approximated in the last part of this section. We consider toroidal

surfaces (identical to a periodically extended rectangular region) on which the nodes

are distributed, which we denote as A. The communication area of node vi with radius

r is Ai, and Aij stands for the overlapping area of Ai and Aj (Ai ∩ Aj, illustrated in

Figure 5.1). The set of neighbors of node vi is N (vi), while N1(vm) and N2(vm) denote

the set of neighbors of a moving node vm before and after one movement step (written

shortly as vm1 and vm2 in formulas). The distance of nodes vi and vj is dij . The mobility

of the node vm follows the random walk model from Section 4.2.
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vjvi

Ai

Aij

r

Figure 5.1: The dotted area illustrates Ai, while the diagonally shaded area Aij.

5.3 Geometric Probabilities

The authorts of [23] show that evaluating the expectation values in (5.2) boils down to

three probabilities that describe static node placement and seven geometric probabilities

related to mobile nodes. In the following we present the calculations of these ten

probabilities. Since the function cos−1(·) occurs often in the following derivations, we

define a function

c (x) = cos−1
( x

2r

)

,

with r being the communication radius, for simplicity reasons.

5.3.1 Static WSN

The computation of the following three basic probabilities is necessary to characterize

the static geometric relationship between nodes.
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Pairwise neighborhood probability

The probability p0 denotes that of two independent nodes being neighbors,

p0 = P {vj ∈ N (vi)} = P {vi ∈ N (vj)}

=
r2π

|A| , (5.3)

which is equal to the ratio of area covered by a node’s communication range and the

whole WSN area.

Triple neighborhood probability

This probability describes the relation between three independent nodes, i.e. if they

are able to communicate with each other. Two of the nodes, vi and vj have to be closer

than r (dij ≤ r) and the third node vl has to be in the intersecting area Aij so it is a

neighbor of both vi and vj. The probability is then equal to E
{

|Aij |
|A|

}

=
E{|Aij |}

|A| . Since

Aij is not of constant size, but depends on the distance of the circles defining it, we

condition |Aij| on dij:

|Aij| = |Aij(dij)| =















2r2c (dij)−dijr sin (c (dij)) if dij ≤ 2r,

0 if dij > 2r,

and the probability density function (pdf) of dij reads

f
(

dij
∣

∣dij < r
)

= 2πdij.

Further,
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E {|Aij|} =

r
∫

0

|Aij(dij)| f
(

dij
∣

∣dij < r
)

P {dij ≤ r} ddij

=
1

|A|

r
∫

0

(

2r2c

(

dij
2r

)

−dijr sin

(

c

(

dij
2r

)))

2πdij r
2π ddij

=
(r2π)2

|A|

(

1− 3
√
3

4π

)

.

Formally,

P {vl ∈ N (vj), vi ∈ N (vj) ∩ N (vl)} =
(r2π)

2

|A|2

(

1− 3
√
3

4π

)

= p20

(

1− 3
√
3

4π

)

.

Four-hop path probability

Next, we need to derive the probability of the existence a loop of length four. Using

previous results and elementary geometrical tools:

P {vl ∈ N (vi) ∩N (vj), vn ∈ N (vi) ∩ N (vj)} =
(

r2π
)3
(

1− 16

3π2

)

= p30

(

1− 16

3π2

)

.

5.3.2 Mobile WSN

The movement of nodes being independent and stationary, they can be characterized

by the following seven probabilities:

(i) p1 = P {vj ∈ N1(vm) ∩N2(vm)}

(ii) p2 = P {vl ∈ N (vm) ∩N (vj)}

(iii) p3 = P {vj ∈ N1(vm), vl ∈ N1(vm) ∩N (vj)}
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(iv) p4 = P {vj ∈ N (vm) ∩ N (vl), vl ∈ N2(vm)}

(v) p5 = P {vj ∈ N1(vm) ∩N2(vm), vl ∈ N1(vm) ∩ N2(vm)}

(vi) p6 = P {vj ∈ N1(vm) ∩N2(vm), vl ∈ N1(vm) ∩ N (vj)}

(vii) p7 = P {vi ∈ N (vl) ∩ N (vn), vj ∈ N (vl) ∩N (vn)}

In the following, the calculation of these probabilities are presented in detail.

(i) Probability p1 denotes the probability of a static node being the neighbor of a

mobile node before and after it has moved (illustrated in Figure 5.2):

p1 = P {vj ∈ N1(vm) ∩N2(vm)}

=
|Avm1vm2|

|A|

=
r2π

|A|

(

2

3
−

√
3

2π

)

= p0

(

2

3
−

√
3

2π

)

. (5.4)

For our random walking model it is simply the probability of the node being in

the intersection of two circles with radius r and distance r divided by the whole

area (|A|).

(ii) Probability p2 is equal to the probability that one node lies in the neighborhood

of two specific other nodes (see Figure 5.3):

p2 = P {vl ∈ N (vm) ∩N (vj)}

= P {vl ∈ N (vm)}P {vl ∈ N (vj)}

=
(r2π)

|A|
(r2π)

|A|
= p20.

Where we use the property of statistical independence and obtain p20.
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vm1 vm2

vj

Figure 5.2: Illustration of p1: node vj must fall into the shaded area. The distance of
the circle centers is r.

vm vj′ vj′′

Figure 5.3: Illustration of p2: node vl must fall into the shaded area, whereas latter
depends on the distance of vm and vj. The variation of the area is illustrated with
different shades. This illustration applies to p3, too, where the distance of vm and vj is
not larger than r.
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(iii) Separating p3 using the total probability theorem, we obtain:

p3 = P {vj ∈ N1(vm), vl ∈ N1(vm) ∩N (vj)}

= P {vj ∈ N1(vm)}P
{

vl ∈ Ajm

∣

∣vj ∈ N1(vm)
}

.

The first term can be expressed via (5.3). The second term is the probability of a

node falling into the neighborhood area of vj and vm if vj and vm are neighbors,

that is, their distance is not larger than r. This can be calculated as the ratio of

the expectation value of that area and of the whole WSN area:

P
{

vl ∈ Ajm

∣

∣vj ∈ N1(vm)
}

=
E
{

|Amj|
∣

∣dmj ≤ r
}

|A| .

Conditioning the area size on the node distances, we obtain:

E
{

|Amj|
∣

∣dmj ≤ r
}

=

∫ r

0

|Amj(dmj)|f(dmj

∣

∣dmj ≤ r)P {dmj ≤ r}ddmj

=

∫ r

0

(

2r2c (djm)−djmr sin (c (djm))
)

djm
2

r2
ddjm

=

(

1− 3
√
3

4π

)

.

Substituting into above calculations leads to the result:

p3 = p0

(

1− 3
√
3

4π

)

.

(iv) We can separate p4 due to the total probability theorem:

p4 = P {vj ∈ N (vm) ∩N (vl), vl ∈ N2(vm)}

= P {vl ∈ N1(vm)}P
{

vj ∈ N2(vm) ∩N (vl)
∣

∣vl ∈ N1(vm)
}

.

Then the first term is, again, (5.3). The second term, however, is somewhat more

complicated. We must condition |Alm2
| on dlm2

, which has to be less than or equal
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vm2 vl

f(dlm2
)

vm2 vl

Figure 5.4: Illustration of f(dlm2
), the arc length of the circle centered at vm2 with

radius dlm2
and contained in Am1

. It follows a d cos−1(d
r
) function (neglecting indices).

to 2r:

P
{

vj ∈ N2(vm) ∩ N (vl)
∣

∣vl ∈ N1(vm)
}

= E {|Alm2
|}

=

2r
∫

0

|Alm2
(dlm2

)|f(dlm2
≤ 2r)P {dlm2

≤ 2r}ddlm2

=

∫ 2r

0

(

2r2c (dlm2
)−dlm2

r sin(c (dlm2
))
)

2dlm2
c (dlm2

)
1

4r2
ddlm2

,

where f(dlm2
) can be expressed as the arc length of the circle centered at vm2 with

radius dlm2
, and contained in Am1

(shown in Figure 5.4). Calculating the integral

and substituting into previous lines leads to the result:

p4 = p20

(

5

4
− 4

π2

)

. (5.5)
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(v) Probability p5 describes two independent static nodes both being in the neigh-

borhood of one mobile node before and after latter has moved, thus it equals p21:

p5 = P {vj ∈ N1(vm) ∩ N2(vm), vl ∈ N1(vm) ∩N2(vm)}

= P {vj ∈ N1(vm) ∩ N2(vm)}P {vl ∈ N1(vm) ∩N2(vm)}

=

( |Am1m1
|

|A|

)2

=

(

r2π

(

2

3
−

√
3

2π

))2

= p20

(

2

3
−

√
3

2π

)2

.

(vi) Probability p6 can be separated due to the total probability theorem:

p6 = P {vj ∈ N1(vm) ∩N2(vm), vl ∈ N1(vm) ∩ N (vj)}

= P {vj ∈ N1(vm) ∩N2(vm)}P
{

vl ∈ N1(vm) ∩ N (vj)
∣

∣vj ∈ N1(vm) ∩ N2(vm)
}

.

Then, the first term is known from (5.4), for the second term (5.5) can be used

by with an upper integration limit r:

P
{

vl ∈ N1(vm) ∩ N (vj)
∣

∣vj ∈ N1(vm) ∩ N2(vm)
}

= E {|Amj|}

=

r
∫

0

|Amj(dmj)|f(dmj

∣

∣dmj ≤ r)P {dmj ≤ r}ddmj

= p1

r
∫

0

(

2r2c (dmj)−dmjr sin(c (dmj))
)

2dmjc (dmj) ddmj.

Evaluating the integral and substituting, the result reads:

p6 = p20

(

23

36
− 7

4
√
3π

− 13

16π2

)

.

(vii) In p6 the area in which the third and fourth node vl and vj had to fall had constant

size, but in p7 we have to deal with the expectation value of that area size squared:
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p7 = P {vi ∈ N (vl) ∩N (vn), vj ∈ N (vl) ∩ N (vn)}

=
E {|Aln|2}

|A|2 .

E
{

|Aln|2
}

= E
{

|Aln|2
∣

∣dln ≤ 2r
}

=

∫ 2r

0

|Aln|2 f(dln
∣

∣dln ≤ 2r) P{dln ≤ 2r}ddln

=

∫ 2r

0

(

2r2c (dln)−dlnr sin(c (dln))
)2

2πdln
1

(2r)2 π
ddln

Evaluating the integral and substituting, the result reads:

p = p0

(

1− 16

3π2

)

.

The results p0 to p7 were validated through simulations via MATLAB R© by least 108

Monte-Carlo experiments.

More Mobile Nodes

In order to obtain a lower bound for the case of more moving nodes, we have to evaluate

the seven probabilities (i)-(vii), but without the condition that only one node (vm)

moves. Since this is not trivial in general, in many cases lower bounds are used.

First we consider the cases where vi and vj are not moving. Here, pm1
expresses the

probability of choosing a moving node given we already picked a moving node, while

pm2
is the probability of choosing a moving node given we already picked a non-moving

node: pm1
= P

{

vj ∈ Vm

∣

∣vi ∈ Vm

}

= Im−1
I−1

and pm2
= P

{

vj ∈ Vm

∣

∣vi /∈ Vm

}

= Im
I−1

. Note

that when more than one mobile node is involved, pm2 is only an approximation.

(i) p21 = P
{

vk ∈ N1(vi) ∧ vk ∈ N2(vi)
∣

∣k 6= j
}

Since two nodes are involved and vi is fixed, we condition on whether vk is moving:

I. vk ∈ Vm: pm2
p0

(

2
3
−

√
3

2π

)

,

II. vk /∈ Vm: (1− pm2
)p0.
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(ii) In this probability there is no mobility involved, because vi is fixed:

p22 = P {vj ∈ N1(vi) ∧ vj ∈ N2(vi)} = p0.

(iii) p33 = P {vj ∈ N1(vi) ∧ vl ∈ N1(vi) ∧ vl ∈ N2(vj)}

Conditioning on whether vl moves or not, in first case the probability turned out

to be too complex to express it analytically, thus we lower bound it with 0:

I. vl ∈ Vm: ≥ 0,

II. vl /∈ Vm: (1− pm2
)p20

(

1− 3
√
3

4π

)

.

(iv) p34 = P {vi ∈ N1(vj) ∧ vl ∈ N1(vj) ∧ vl ∈ N2(vi)} = p33

Using the total probability theorem, we conditioning on the mobility of vl. In

first case the calculations were too difficult, thus we lower bound it with 0:

I. vl ∈ Vm: ≥ 0 II. vl /∈ Vm: (1− pm2
)p20

(

1− 3
√
3

4π

)

.

(v) p45 = P {vn ∈ N1(vi) ∧ vl ∈ N1(vi) ∧ vn ∈ N2(vi) ∧ vl ∈ N2(vi)}

Now we have to investigate four cases, depending on whether vl and vn move or

not:

I. vn, vl ∈ Vm: p
2
m2

(

2
3
−

√
3

2π

)2

II. vn /∈ Vm, vl ∈ Vm: pm2
(1− pm2

)p0

(

2
3
−

√
3

2π

)

III. vn ∈ Vm, vl /∈ Vm: pm2
(1− pm2

)p0

(

2
3
−

√
3

2π

)

IV. vn, vl /∈ Vm: (1− pm2
)2p20.

(vi) p46 = P {vj ∈ N1(vi) ∧ vl ∈ N1(vi) ∧ vl ∈ N2(vj) ∧ vi ∈ N2(vj)} = p34

Again, conditioning on whether vl moves or not, we evaluate or bound the prob-

abilities for following cases:

I. vl ∈ Vm: ≥ 0

II. vl /∈ Vm: (1− pm2
)p20

(

1− 3
√
3

4π

)

.
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(vii) p47 = P {vn ∈ N1(vi) ∧ vl ∈ N1(vi) ∧ vn ∈ N2(vj) ∧ vl ∈ N2(vj)}

Conditioning on whether vl and vn move or not, we calculate following four cases:

I. vn, vl ∈ Vm: p
2
m2

∫ 3r

0
dd ≥ 0

II. vn /∈ Vm, vl ∈ Vm: pm2
(1− pm2

)p20
∫ 2r

0
dd ≥ 0

III. vn ∈ Vm, vl /∈ Vm: pm2
(1− pm2

)p20
∫ 2r

0
dd ≥ 0

IV. vn, vl /∈ Vm: (1− pm2
)2p20.

Next, we consider the cases where vi is moving. Thus, calculations reach an almost

unmanageable complexity and more bounds have to be applied.

(i) p21 = P
{

vk ∈ N1(vi) ∧ vk ∈ N2(vi)
∣

∣k 6= j
}

Now we know that vi moves, thus we only have to condition on whether vk moves

or not:

I. vk ∈ Vm: > 0

II. vk /∈ Vm: (1− pm1
)p0

(

2
3
−

√
3

2π

)

(ii) p22 = P {vj ∈ N1(vi) ∧ vj ∈ N2(vi)}

Here, we condition on whether vj moves or not:

I. vj ∈ Vm: > 0

II. vj /∈ Vm: (1− pm1
)p0

(

2
3
−

√
3

2π

)

(iii) p33 = P {vj ∈ N1(vi) ∧ vl ∈ N1(vi) ∧ vl ∈ N2(vj)}

Dealing with 3 nodes now, the two conditions provides us with 4 cases depending

on whether vj and vl move or not:

I. vj , vl ∈ Vm: > 0

II. vj /∈ Vm, vl ∈ Vm: (1− pm1
)pm1p

2
0

(

5
4
− 4

π2

)

III. vj ∈ Vm, vl /∈ Vm: (1− pm1
)pm1p

2
0

(

5
4
− 4

π2

)
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IV. vj , vl /∈ Vm: (1− pm1
)2p20

(

1− 3
√
3

4π

)

(iv) p34 = P {vi ∈ N1(vj) ∧ vl ∈ N1(vj) ∧ vl ∈ N2(vi)}

Similarly, we deal with 4 cases here, out of which 3 are very difficult to calculate

exactly, thus we bound them from below:

I. vj , vl ∈ Vm:> 0

II. vj /∈ Vm, vl ∈ Vm: > 0

III. vj ∈ Vm, vl /∈ Vm: > 0

IV. vj , vl /∈ Vm: p
2
m1p

2
0

(

5
4
− 4

π2

)

(v) p45 = P {vn ∈ N1(vi) ∧ vl ∈ N1(vi) ∧ vn ∈ N2(vi) ∧ vl ∈ N2(vi)}

Here too, we have to lower bound 3 of the 4 conditional probabilities:

I. vn, vl ∈ Vm: > 0

II. vn /∈ Vm, vl ∈ Vm: > 0

III. vn ∈ Vm, vl /∈ Vm: > 0

IV. vn, vl /∈ Vm: (1− pm1
)2p20

(

2
3
−

√
3

2π

)2

(vi) p46 = P {vj ∈ N1(vi) ∧ vl ∈ N1(vi) ∧ vl ∈ N2(vj) ∧ vi ∈ N2(vj)}

The calculations follow as above:

I. vj , vl ∈ Vm: > 0

II. vj /∈ Vm, vl ∈ Vm: > 0

III. vj ∈ Vm, vl /∈ Vm: > 0

IV. vj , vl /∈ Vm: > 0

(vii) p47 = P {vn ∈ N1(vi) ∧ vl ∈ N1(vi) ∧ vn ∈ N2(vj) ∧ vl ∈ N2(vj)}

Dealing with 4 indepentent nodes in this case, the probability can be separated

into 8 conditional probabilities:

I. vj , vn, vl ∈ Vm: > 0
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II. vj /∈ Vm, vn, vl ∈ Vm: > 0

III. vn /∈ Vm, vj, vl ∈ Vm: > 0

IV. vl /∈ Vm, vj, vn ∈ Vm: > 0

V. vj , vn /∈ Vm, vl ∈ Vm: > 0

VI. vj , vl /∈ Vm, vn ∈ Vm: > 0

VII. vn, vl /∈ Vm, vj ∈ Vm:(1− pm1
)2pm1

p30
(

1− 16
3π2

)

VIII. vj , vn, vl /∈ Vm: (1− pm1
)3p30

(

1− 16
3π2

)

As an example of the complexity involved, examine for instance the last probability,

p47: in 7 cases out of the 8 at least 2 nodes move, and in 4 cases at least 3 nodes

move, which mean double and triple integrals, respectively. Since we already failed to

evaluate some probabilities involving only one moving node, we state that it would not

be rewarding to perform exact analysis for all cases.

One might suspect that the performance bound is looser for more moving nodes

than for one moving node, since the probabilities for this case involve many lower

approximations. In the next chapter we will demonstrate the MSE bound through

comparing it to real scenarios and show that the former suspection is correct. Moreover,

tightness is not only influenced by the number of moving nodes, but also by the iteration

number k. The MSE bound is tight when node states are spatially uncorrelated, i.e.

at k = 0 and 2, which can be verified by a sufficiently large number of Monte-Carlo

experiments. In that case equality holds in (5.1). For larger ks however, since averaging

acts as a spatial low-pass filter, node states are correlated and the bound becomes looser.
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Numerical Performance

Assessment

6.1 Mean Squared Error

The mean squared error (MSE) is calculated as

ǫ2[k] =

∑

i,s |x
(s)
i [k]− x̄(s)|2

∑

i,s |x
(s)
i [0] |2

,

where x
(s)
i [k] is the state of node vi in the sth scenario after the kth averaging iteration,

and x̄(s) is the average node value in scenario s. The MSE averages the magnitude

of the difference of the states and the average over all the nodes and scenarios, where

one scenario is one realization of all random parameters, usually node placement, node

value distribution etc.

50
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6.2 Measured Fields

Since the MSE and so the performance of averaging significantly depends on how node

states are initially distributed, we shortly review the representations of measured phys-

ical fields.

6.2.1 Low-pass field

To follow reality and take the smoothness of physical fields over space into account,

low-pass fields are considered (described in detail in [25]), which are defined as follows:

consider a real spatial field f(x) defined in the regionA = {x = (rx, ry)
T
∣

∣x ∈ R
2, ‖x‖1 ≤

1},A ⊂ R
2. The field f(x), modeling a real physical field, has L degrees of freedom

in the x-direction and L degrees of freedom in y-direction and is composed as a linear

combination of L orthonormal basis functions, which can be chosen differently depend-

ing on the application. In following applications the L basis functions are the complex

exponentials ej2πi, i = 0, 1, ..., L− 1 with j =
√
−1 being the imaginary unit. The field

is then constructed as

f(x) =
L
∑

l=−L

cx,le
j2π l

L
rx

L
∑

l=−L

cy,le
j2π l

L
ry ,

where cx,l = c∗x,(−l) and cy,l = c∗y,(−l) to ensure that the field is real. Such a field consists

of a linear combination of a given number of sine functions with random amplitudes

and frequencies that are multiples of a fundamental frequency. This is a good model

for physical field strengths, where quantities assigned to coordinates in space cannot

change arbitrarily steeply (e.g. temperature, water level, pressure, electric field). For

en example, see Figure 6.1



Chapter 6. Numerical Performance Assessment 52

field value

Figure 6.1: Illustration of a low-pass field with L=4.

6.2.2 Gaussian noise field

When measuring a Gaussian noise field, the measurements are i.i.d. according to

xi[0] ∼ N (µ, σ2). Thus, measurements are spatially uncorrelated. To simplify, we set

µ = 0 and σ2 = 12. This way we save the normalization with the input signal power,

and can lower computation time.

6.2.3 Spatial Dirac field

An example of this type of field can be seen in Figure 6.2. By setting xi[0] = 1 for

a randomly chosen node vi ∈ V and leaving all other nodes with a state 0 it can be

observed, how information diffuses within the network through the nodes. This setup

corresponds to an ”impulse response” of the network from that node, which gives an

answer to the question: what happens when the network already reached the consensus,

after that one sensor changes its internal state, and AC restarts; how does information

spread out?
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Figure 6.2: 2-D grid graph on a spacial Dirac field.

6.2.4 Spacial ramp function

In a one-dimensional placement of the nodes the measured value is proportional to the

distance from one end of the line which the nodes are placed on. With incremental

numbering of the nodes this gives xi[0] = ci with some non-zero constant c. In the

two-dimensional placement of the nodes (as for example in Figure 6.3) the measured

value is proportional to x + y, where x and y denote the Euclidean coordinates of the

node. Using this measurement it can be nicely visualized, how a gradient over the field

disappears while averaging.

6.3 Examples

In the following we present the behaviour of average consensus under different circum-

stances (fields, weight designs, network models). We focus on the differences in results

that originate from the different setups.
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Figure 6.3: 2-D grid graph placed on a spacial ramp type field.

6.3.1 Evaluating Theoretical Results

In Section 5 we developed a tight lower bound (for k = 0, 2) on the MSE for the case

of one moving node and uncorrelated measurements. Figure 6.4 shows the MSE in

dB over the iterations when Gaussan field is measured in a network of 50 nodes with

r = 0.16. Three setups are simulated, static, mobile with one node walking randomly

and one node hopping randomly. As expected, there is a only a slight difference in the

AC performance, since only 2% of the nodes move. Since the performance measure is

equal for uncorrelated measurements (a lower bound has to be pessimistic), the bound

after 2 iterations equals the expected value of the MSE. In later iterations the node

states are not uncorrelated anymore (the averaging acts as a spatial low-pass filter) and

thus the bound gets loose. As a comparison, the same simulations were evaluated on

a Dirac field, where the one moving node carries the initial nonzero state. The strong

performance gain is illustrated in Figure 6.5.

Note that constant weight design is used. However, we use a constant weight

w < E{ 1
dmax+1

} over all simulations and do not calculate 1
dmax+1

in every iteration of
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Figure 6.4: MSE over the number of averaging iterations for static, random walk and
random hop mobility scenarios with 50 nodes and 1 moving node. The performance
difference is insignificant in the case of uncorrelated measurements (Gaussian noise).
The performance bounds for walking and hopping are accurate in the first steps when
the node states are uncorrelated and get looser in later iterations.

every scenario. Figure 6.6 shows the calculated lower bound on the performance mea-

sure ET {ω1} for random hopping and random walking. While the result for hopping

is a tight bound, the geometric probabilities for random walking are more difficult to

calculate and involve many approximations, thus the bound is tight only for one mov-

ing node and gets looser for more moving nodes. In the same figure results of 1000

Monte-Carlo simulations were averaged to approximate the real ET {ω1}.

6.3.2 1D Lattice Graph

Figure 6.7 shows the result of averaging in a 1-D grid graph with 50 nodes and r = 1.

The measurements are uniformly i.i.d. and constant weight design is used. An interest-

ing artifact can be observed: after some time (∼100 iterations) all nodes have similar

MSEs, except for one node, whose MSE is significantly lower than that of the rest. This

”knot” wanders to the middle of the network where it creates a small ”valley” of lower

MSE. Besides this effect the average MSE of the overall network decreases, of course.
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Figure 6.5: MSE over the number of averaging iterations for static, random walk and
random hop mobility scenarios with 1 moving node among 50 nodes. The gain in per-
formance is because the measured field is a Dirac at the moving node.
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Figure 6.6: For more than one moving node the Frobenius norm measure is inaccurate
in the case of random walk and accurate in the case of random hop, as in [23].

Figure 6.7: MSE in dB plotted over the averaging iterations and node positions in a
constant 1D grid graph.
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Figure 6.8: MSE in dB plotted over the averaging iterations and node positions in a
constant 1-D grid graph with toroidal structure.

6.3.3 1D Toroidal Lattice Graph

Slightly modifying above network with the toroidal assumption, that is, the nodes are

arranged on a circle, not on a line, gives two ”knots” of the above type. Figure 6.8

shows the result of the simulation. Interestingly the two knots wander into a position

where they face each other in the circle, that is, their distance converges to I/2, in this

case 25.

6.3.4 Circular RGG with Varying Speed

Next we consider a circular RGG over a low-pass field with maximum frequency L = 2.

Some of the I = 100 nodes have angular speeds shown in degrees on the vertical axis

of Figure 6.9. On the horizontal axis the number of rotating nodes is varied. As

expected, a symmetry around 50 moving nodes is observed, since without any noise in

the movement only relative position change matters. Also, higher speed as well as more

circulating nodes lead to faster averaging and are in sense of convergence acceleration

interchangeable.

6.3.5 Rotational RGG with Centripetal Force

We consider a circular RGG over a low-pass field with rotational mixing mobility model:

nodes have a constant angular speed on top of which noise is added in form of a smaller,
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Figure 6.9: MSE in dB plotted over the number of circulating nodes and their angular
speed (in degrees) after 100 averaging iterations.

normally distributed radial speed. Also, once nodes reach the proximity of the edge of

the rotational field, they will not move towards the middle of the field anymore, hereby

simply modeling the centripetal force in fuild mixing. We would expect to have faster

convergence while reaching the final state when all nodes are on the edge and create a

circular chain, since they appear to be packed more densely (approximately after 500

moves). However, taking a look at the increasing average spectral radius of the weight

matrix (inversely proportional to λ2(LG), cf. Section 2.2) in each iteration (illustrated

in Figure 6.10), it turns out that convergence speed decreases as nodes approach the

circle formation.

This is in correspondence with the connectivity of the graph in different formations.

It is possible calculate the average degree of one node in the RGG (start) situation and

the final formation and it turns out that the connectivity of that circular structure is

lower than the original RGG at the time of the measurement.
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Figure 6.10: Time-varying spectral radius of the weight matrix in a rotational mixing
graph model.



7

Summary

After giving a brief introduction on sensor networks with focus on wireless sensor net-

works, a detailed mathematical description is presented. Aspects in graph theory and

algebraic graph theory were examined and applied in order to analyze distributed av-

erage consensus. Convergence conditions were presented and proven for AC in static

topologies. After reviewing graph representations of networks, state of the art averag-

ing in static and in mobile wireless sensor networks were described, with a review on

recent work on averaging in time-varying networks. Convergence properties and condi-

tions were presented for the case of time-varying topologies. Also, application-relevant

mobility models were described. A lower bound on the MSE of distributed averaging

has been developed for a random walk mobility model, which is tight for one moving

node and looser for more moving nodes. Simulations have confirmed the theoretical re-

sults and have shown other relevant issues in averaging in different graph and mobility

models.
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Outlook

Analyzing other RGG property conserving mobility models suggests itself, since in the

presented calculation only the geometric probabilities have to be substituted. The

random walk model can be generalized with two parameters, the communication radius

and the per-step walk distance.

For more complicated mobility models the calculation of the geometric probabilities

could get very complex, thus, one could bound the l2 distance using the l1 and the l∞

distances.

Also the idea of the calculation and proof of an upper bound on the MSE for similar

setup is obvious.

A theoretical investigation could be performed on whether the regular bipartite graph

is the only one on which the zero self-loop weights lead to not converging. Up to now,

no results regarding this could be found in the literature.

More practically relevant scenarios could be analyzed with numerical tools, e.g. traffic

situations and specific, industry-relevant sensor placements. Existing implementations

of sensor networks can be used to experiment and evaluate theoretical considerations

(e.g. Wireless Sensor Networks Lab at the Technical University Darmstadt, for details

see [26]).
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Further, the impact of mobility on other important distributed algorithms (for example

ADMM reviewed in [27] and particle filtering as described in [28]) could be analyzed,

since both distributed algorithms and mobility gain attention in near future.
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