
-

Natural multimodal human robot interaction

performed on a low cost robot head

DIPLOMARBEIT

Ausgeführt zum Zwecke der Erlangung des akademischen Grades eines

Diplom-Ingenieurs (Dipl.-Ing.)

unter der Leitung von

Ao. Univ.-Prof. Dr. techn. M. Vincze
Dr. techn. W. Wohlkinger

eingereicht an der

Technischen Universität Wien
Fakultät für Elektrotechnik und Informationstechnik
Institut für Automatisierungs- und Regelungstechnik

von
Markus Bajones

Schönburgstrasse 25/3
1040 Wien
Österreich

Wien, im August 2013

Vision4Robotics Group
A-1040 Wien, Gusshausstr. 27, Internet: http://www.acin.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Vorwort

Zuerst möchte ich mich bei meiner Familie bedanken, für die Unterstützung die sie mir
zukommen ließ, für die Möglichkeiten die sie mir geboten und für das Vertrauen daß sie
immer in mich gesetzt hat.
Danke.

Außerdem gebührt den Menschen der Hochschülerinnen- und Hochschülerschaft,
speziell natürlich der Fachschaft Elektrotechnik ein besonderer Platz in meinem Herzen.
Mit vielen von euch habe ich Freundschaften geschlossen von denen ich hoffe sie bestehen
ein Leben lang. Es war ein sehr schöner Weg den ich mit euch beschreiten durfte.

Weiters möchte ich mich bei Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Markus Vincze und
Dipl.-Ing. Dr.techn. Michael Zillich für die Unterstützung und Hilfe bedanken die ich
von ihnen in der Zielgeraden meiner Diplomarbeit erhalten habe.

Zu guter Letzt danke ich meinem Betreuer, Dipl.-Ing. Dr.techn. Walter Wohlkinger
für die Unterstützung, Anregungen und Herausforderungen die ich von ihm erwarten
durfte. Ohne ihn wäre der Weg zum Abschluss dieser Diplomarbeit kein so erlebnisre-
icher und spannender gewesen.

Vielen Dank.

Wien, im August 2013 Markus Bajones

I

Abstract

Within the scope of this diploma thesis we investigated the possibilities of mulitmodal
human robot interaction with current technologies. For this, a pre-built low-cost robot
head, called Eva, has been used and a software system was developed which includes state
of the art algorithms from the fields of speech recognition, face detection, face recognition
and object classification. Special attention was given to provide natural communication
between users and the robot by using current speech recognition technology. Multiple
systems were evaluated after integrating them in our implementation, before using one of
them in our complete set-up. For the ability to find and identify individual people known
algorithms were implemented and compared to each other. These include two variations
of the Viola-Jones algorithm for face detection as well as Eigenfaces, Fisherfaces and
Local Binary Pattern histograms for face recognition. These, in combination with face
tracking by coupling the Viola-Jones algorithm with either a Kalman filter or a Lucas-
Kanade optical flow estimation, provide one more part of the multimodal interaction
between Eva and the user. Object classification provides the robot with the ability to
perform further analysis in the field of interaction with objects. One method for this,
using random decision forests, is explained as well.

II

Kurzzusammenfassung

Im Rahmen dieser Diplomarbeit wurde untersucht, welche Möglichkeiten für eine mul-
timodale Mensch-Roboter-Interaktion mit aktueller Technologie bestehen. Dazu wurde
ein bestehender Low-Cost Roboterkopf, genannt Eva, genutzt und ein Softwaresystem
entwickelt welches State of the Art Algorithmen der Bereiche Spracherkennung, Per-
sonendetektion, Personenidentifikation und Objektklassifizierung integriert. Besondere
Aufmerksamkeit galt der möglichst natürlichen Kommunikation zwischen Eva und den
Anwendern. Dafür wurde auf die Möglichkeit eingegangen Spracherkennungssoftware
der aktuellen Generation für die Kommunikation zu nutzen. Mehrere Systeme wur-
den dafür implementiert und deren Fähigkeiten evaluiert bevor sie im Gesamtsystem
zum Einsatz kamen. Zum Auffinden und Identifizieren der Anwender wurden gängige
Verfahren gegenüber gestellt. Dazu zählen Viola-Jones in zwei unterschiedlichen Vari-
anten zur Gesichtsdetektion sowie Eigenfaces, Fisherfaces und Local Binary Pattern
Histogramme zur Personenidentifizierung. Diese Methoden, sowie die Nachverfolgung
von Gesichtern mit Hilfe eines Kalman Filter und eines Lucas-Kanade Trackers dienen
der multimodalen Kommunikation mit den Anwendern. Außerdem wird ein System zur
Klassifizierung von Objekten unter Verwendung von random decision forests erläutert,
welcher in weiteren Folgen genutzt werden könnte um mit diesen Gegenständen sinnvoll
zu interagieren.

III

Contents

1 Introduction 1

2 System decisions 3
2.1 Used frameworks . 3
2.2 Systems state machine . 5

3 Face detection and recognition 8
3.1 Face detection . 8

3.1.1 Viola-Jones Algorithm . 9
3.2 Face recognition . 13

3.2.1 Eigenfaces . 14
3.2.2 Fisherfaces . 14
3.2.3 Local binary patterns histograms 16
3.2.4 3D face recognition using local appearance-based models 17

3.3 Implementation . 20

4 Face tracking 23
4.1 Lucas-Kanade . 23
4.2 Discrete Kalman filter . 26
4.3 Implementation with Kalman filter . 28

5 Object classification 31
5.1 Ensemble of shape functions (ESF) descriptor 31
5.2 Decision forests for classification . 32
5.3 Implementation . 37

6 Speech recognition 38
6.1 Speech recognition . 38
6.2 Mathematical background . 39
6.3 Implementation . 43

7 Experiments 45
7.1 Evaluation of face relevant implementations 45
7.2 Evaluation of the object classification . 57
7.3 Comparison of speech recognition packages 58

8 Conclusion 62

IV

List of Figures

1.1 Eva - front view . 2
1.2 Eva - components and design . 2

2.1 Actionlib client-server interaction . 4
2.2 State machine design . 6
2.3 System summary . 7

3.1 2-, 3- and 4-rectangle based features . 9
3.2 Integral image areas . 10
3.3 Haarcascade features visualization . 11
3.4 AdaBoost cascade . 13
3.5 Eigenface visualized . 15
3.6 Fisherface examples . 16
3.7 LBPH extraction sequence . 18
3.8 Zig-zag scan to obtain the K-dimensional feature vector 19
3.9 People detection flowchart . 22

4.1 Two dimensional optical flow . 24
4.2 Aperture problem . 25
4.3 Kalman cycle . 28
4.4 Combining prediction and measurement with the Kalman filter 29

5.1 D2 shape and line ratio functions. 32
5.2 A3 and D3 shape functions. 32
5.3 Object query against the classification. 33
5.4 General decision tree structure . 34
5.5 Random forest with ρ = |T | . 35
5.6 Random forest with ρ = 1 . 35
5.7 Usage of ESF and a decision forest . 37

6.1 Plot of the Mel-scale . 40
6.2 Speech signal processing . 41
6.3 Triphone Hidden Markov model . 42
6.4 Speech recognition application . 44

7.1 Tracking and recognition of Andreas . 48
7.2 Tracking and recognition of Isabella . 49
7.3 Tracking and recognition of Suedi . 50

V

List of Figures VI

7.4 Tracking and recognition of Johnny . 51
7.5 Tracking and recognition of Berni . 52
7.6 Tracking and recognition of Matze . 53
7.7 Detected and Kalman filtered face xy-positions of Andreas 54
7.8 Detected and Kalman filtered face xy-positions of Davor 55
7.9 Detected and Kalman filtered face xy-positions of Manuel 56
7.10 Coloured point cloud for object: hammer 58
7.11 Coloured point cloud for object: plane . 59
7.12 Coloured point cloud for object: microphone with cable 59
7.13 Coloured point cloud for object: car . 60

1 Introduction

Human-robot interaction is a complex, difficult task. To set up even simple tasks involved
sending commands with a programming device, a keyboard and joysticks or with an
application on a computer. As robots are tools that should provide assistance for humans
the act of commanding the robot to perform a task should be as natural as telling
another person to do the same task. To make the interaction for the user this natural
it is necessary for the robot to understand at least a subset of the spoken language
of the user. This natural human robot interaction simplifies specifying tasks and are a
prerequisite for acceptance by averages users. Further a robot has to be able to recognize
a set of individuals and distinguish them from each other as well as learn new people.
Another important ability for a robot is to classify objects in order to estimate its
possible interaction with them and its capability to find such an object. This thesis uses
a selected set of state of the art techniques to implement natural human robot interaction
by providing face-detection and -recognition and speech recognition. In chapter 2 the
requirements and the resulting decisions for the system are explained and the used
frameworks are presented. Section 1 explains what hardware was used during this entire
work and what goals it should be able to accomplish. The mathematical background
of detecting and recognizing as well as tracking of a user by observing his or her face
are described in chapter 3 and chapter 4. Object classification by the means of using
decision forests is presented in chapter 5 and the handling of speech recognition is shown
in chapter 6. In each of these chapters first an introduction to the state of the art and
the methods used by our implementation as well as details about the implementation is
given. Chapter 7 presents the evaluation of the implemented algorithms and show how
well they operate.

Hardware

For the thesis a low-cost robot head was used, which is home to all needed sensors. The
design of this head was chosen under the conditions to keep the cost of the complete
implementation as low as possible while maintaining the ability to perform the following
tasks.

pan and tilt
of the head in order to track a user and to extend the range of vision during the
task of classifying an object and the taks of searching a users face.

presentation
of an artificial face to display emotions in order to provide a feedback to the user.

1

1 Introduction 1 Introduction 2

detection and classification of three-dimensional objects
as a way of learning items which could be grasped with an robotic arm and hand.

detection and tracking of people
to follow the users face during a conversation. This should provide a higher ac-
ceptance by users as the need to stay within a certain area is diminished for the
user.

Figure 1.1: Eva - front view

Figure 1.2: Eva - components and design. Source1

To accomplish these tasks the robot has two servomotors, one pico-projector, a stripped
down Kinect sensor and one infra-red temperature sensor mounted inside its head. The
power supply connectors as well as all connections for data transport are accessible on
the main platform, which is about 50cm below the head. The complete platform is
battery powered and connects to the control system on a computer using multiple USB
connections. Figures showing the finished head, used components and the rendered
design are figure 1.1 and figure 1.2.

1http://www.acin.tuwien.ac.at/?id=294

http://www.acin.tuwien.ac.at/?id=294

2 System decisions

As the main features of this work are people and face detection, recognition and track-
ing, speech recognition for voice commands and object detection and classification, the
implementation requires the combination of a hardware part, which has been built in a
previous work, and the software stack.

2.1 Used frameworks

For the software implementation we chose ROS as the de-facto standard framework for
robotics, OpenCV and Point Cloud Library for their abilities in computer vision for 2D-,
3D- as well as depth-images and SMACH as state machine library. A short introduction
to each of these components is given in this section.

Robot Operating System (ROS)

The use of the ROS2 software framework, which can be seen as the standard software
framework in the field of robotics, gives the possibility to reuse and adapt modules. This
framework distributes the workload onto individual nodes, which can be on the same
or on different hardware and software platforms. These include various GNU/Linux
distributions on platforms which support the C++ or Python programming languages
as well as Android based devices via the Java based rosjava3 system. For any form of
communication between the nodes, they have to register to the so called master node,
which has to be started as the first process. ROS defines a few basic principles of
communication between ROS-nodes.

Topics handle the communication in a one-way style. Every node can publish and listen
to a topic. Each topic has a well defined message format, which has to be used
to publish data onto this topic. This is extremely useful to send a continuous
data stream of video frames from a module handling the recorded data from a
camera (two-dimensional or with additional depth information) or other devices
like temperature- or distance-sensors. The sensor data gets published at a fixed
rate in one message at a time.

Services handle the communication in a slightly different way. Nodes which use this
form of communication have to implement either a server or a client. The client
sends a request message to the server, that processes the data in the request and

2http://www.ros.org
3http://code.google.com/p/rosjava/

3

http://www.ros.org
http://code.google.com/p/rosjava/

2 System decisions 2.1 Used frameworks 4

puts the result data in the response. Afterwards this response will be handed to
the client over the network.

Actionlib Due to the fact that some tasks require a long time to be executed (e.g.
navigation, pick and place process) another form of communication is provided by
the Actionlib package. The communication between a client and server application
is done via the ROS Actionlib4protocol, which is built on top of the ROS message
stack and reuses the publisher/subscriber infrastructure as illustrated in figure 2.1.

Figure 2.1: Actionlib Client-Server interaction. Source4

Actionlib specifies three types of messages between the Action client and the Action
server.

Goal In here the client sends informations and parameters of the desired workload.

Feedback The server sends feedback messages on a regular time basis to inform
the client on the progress of the desired goal.

Result The result message is only sent once as it marks the reaching of the goal.

It is possible to define and execute multiple Actionlib goals in one server, but as
it is overcomplicated and not needed in this work we will only explain the Simple-
ActionServer which discards a goal whenever a new or a preempt goal is received.
The communication between client and server is best described in the way that the
client wishes to inform the server it should work on a specific task, e.g. to move
the head to a certain position. The client implementing the ActionClient generates
the corresponding goal message and publishes it on the automatically created topic
onto which the ActionServer inside the server application is subscribed. On recep-
tion of the goal it starts the corresponding code and sends the feedback messages
back to the client. From here on two things can happen: First, the ActionServer
receives another goal message which will trigger the execution of the user code
given by the data in the new goal. Second, the task for the last goal has been
reached and the final message - the result - is sent to the ActionClient. After this
the server waits for any new goal messages.

4http://www.ros.org/wiki/actionlib

http://www.ros.org/wiki/actionlib

2 System decisions 2.2 Systems state machine 5

OpenCV

OpenCV5 is a widely used open source computer vision library originally developed by
the Intel Corporation and is supported by the non-profit organisation OpenCV.org since
2012. OpenCV is a comprehensive collection of the most commonly used state of the art
computer vision algorithms. In this thesis it is widely used to detect, track and identify
a person, but this is only a small subset of features offered by this library. An overview
and documentation about the features currently offered by OpenCV are provided on
http://docs.opencv.org/.

Point Cloud Library

PCL6 is a framework dedicated to ease the processing of point clouds and 2-D/3-D im-
ages. Features used in this thesis include registration, segmentation, keypoint and feature
detection and are part of the object classification. Details about their implementation,
usage and further documentation is available on http://pointclouds.org/documentation.

SMACH

SMACH7 is a Python library, designed to build hierarchical state machines. It provides
an easy way to develop robust robot behaviour with maintainable and modular code.
Even though it is independently usable without ROS SMACH is well equipped to be used
in a ROS-aware application. It also provides a useful debugging mechanism in form of
the graphical SMACH viewer, in which the state machine with the current transitions,
states and shared data can easily be observed in real time.

2.2 Systems state machine

In figure 2.2 the design of the state machine is pictured. It consists of four major states.
These are main, learn person, follow face and classifiy object.

Response is a helper state which gives a verbal confirmation or reply to the user, so
that a feedback system is implemented. Especially for tasks which take longer than 30
seconds for the confirmation, that the command has been understood and the robot is
in the process of handling it, this is a good measure.

Start handles the start up of all needed services, checks the availability of the needed
devices and runs the main loop if the checks return a positive result.

The end state on the other hand is responsible to shut down all remaining processes
and free the remaining system resources and devices. In main voice commands are
received, checked against available features and the next state is executed with the
appropriate arguments supplied to it.

5http://www.opencv.org
6http://pointclouds.org
7http://http://www.ros.org/wiki/smach

http://docs.opencv.org/
http://pointclouds.org/documentation
http://www.opencv.org
http://pointclouds.org
http://http://www.ros.org/wiki/smach

2 System decisions 2.2 Systems state machine 6

Follow face will try to locate a persons face in the supported field of view and if found,
hold the face in the center of the recorded image with the implementations detailed in
section 3.1, section 3.2 on page 13 and chapter 4 on page 23 until the state gets stopped
by another command.

Learn person handles the addition of a new person into the database of known indi-
viduals and will exit after the training process is done or it gets pre-empted in which
case the person is not added. The state classifiy object will take its input point cloud,
perform classification by means explained in chapter 5 on page 31 and return the name
of the objects class, as well as the certainty it achieved. If no object can be found an
error message is returned instead.

start

main

response

learn person

classify object

follow face

end

init

stop

pre
em

pt preem
pt

p
reem

p
t

Figure 2.2: State machine design

The following chapters will detail the techniques and implementation of the above
components and their interaction in the state machine.

2
S

y
stem

d
ecisio

n
s

2
.2

S
y
stem

s
sta

te
m

a
ch

in
e

7

controller PC

face detection

face recognition

object classification

USB c on nect
io

n

Eva

Kinect sensor

tilt / pan head unit

pico projector

Nexus 7

speech recognition

WiFi connection

F
igu

re
2.3:

S
y
stem

su
m

m
ary

3 Face detection and recognition

In this chapter the basic methods to detect and identify a user are explained. First the
detection of a face by analysing two-dimensional image data, then multiple algorithms
for classification and thereby identification of single users are described.

3.1 Face detection

In any application where human machine interaction has to feel like an interaction be-
tween two individual people it is essential for the system to identify the human as quickly
and reliable as possible. After a human is found the robot should address the human by
looking at the persons face in the ongoing conversation. In this thesis the robot is not
mobile, so there is no way of leaving the designated work space to look for the user. A
face can only be searched in the view area which is limited by the pan and tilt angles
of the two servomotors on which the robot head is mounted. As it is assumed that the
robot is only in use when a user is present the face detection mechanism has to look for a
human and his or her face in the possible area. To perform face detection, according to
Yang et al. [29] and Szeliski [24], a feature-based, template-based, or appearance-based
approach can be used.

feature-based
This approach tries to find unique features, like the nose, mouth, eyes and ears,
and if found calculates the plausibility of their geometrical relations to each other.

template-based
Template faces are constructed and compared at different scales to all regions of
an image. These templates can be as simple as elliptic outlines for the head, the
eyes and the mouth region. If the overlay of the template matches a region this
region is considered to be a face.

appearance-based
Use training sets of face and non-face images to learn a classifier to distinguish
between them.

All of these methods must find some way to overcome several barriers to detect faces on
a reliable basis. Obvious challenges include:

face position and orientation
The look of a face changes heavily under the influence of the camera’s position
relative to the face. May that be the fact that the camera takes its pictures in an

8

3 Face detection and recognition 3.1 Face detection 9

45° downward angle, the person rotates her head or is just too close or far away
from the camera.

light conditions
Different lighting conditions, resolution changes as well as the sensor and lens
properties affect the ability to perform the search with the desired result.

occlusion
A part of the face can be occluded by another object, which can disturb the
detection algorithms. These obstacles can be anything from glasses, facial hair to
objects passing by.

3.1.1 Viola-Jones Algorithm

The Viola and Jones [25] algorithm describes the object detection in images based on the
value of simple features. Although the name suggest that this is a feature based method
it is in fact appearance-based, as can be seen in this section. These simple features are
similar to the Haar basis functions used by Papageorgiou et al. [21]. Viola and Jones use
three distinguished features (two-, three- and four-rectangle based features). The value
of a two-rectangle feature is calculated as the difference of the sum of pixel values within
two rectangular areas. These areas are of same size and shape and are neighbouring each
other horizontally or vertically. A three-rectangle feature is built by the sum of the pixel
values from the two outside regions subtracted from the sum in the middle rectangle.
The last one, the four-rectangle feature, calculates its value as the difference of the sums
of the diagonal pairs of rectangles. A graphical representation of the possible features
can be seen in figure 3.1 and an example of features on the Lenna sample face is in
figure 3.3 on page 11.

Figure 3.1: 2-, 3- and 4-rectangle based features

3 Face detection and recognition 3.1 Face detection 10

(xA,yA) (xB ,yB)

(xC ,yC) (xD,yD)

Figure 3.2: Integral image areas

Integral Images

For fast processing of the features the integral image is calculated. It is defined at the
point (x, y) as the sum of all pixels to the left and above beginning at the point (0, 0).

I(x, y) =
∑

x′≤x
y′≤y

i(x′, y′) (3.1)

The full integral image, for every point (x, y) of the processed image, can be computed
in one single pass. Afterwards it is possible to easily retrieve the sum of any rectangular
region of the original image by four lookups in the integral image figure 3.2.

∑

xA≤x′≤xD

yA≤y′≤yD

i(x′, y′) = I(xD, yD) + I(xA, yA)− I(xB , yB)− I(xC , yC) (3.2)

To obtain the features for two-rectangles we need six lookups in the integral image,
for three rectangles eight and for four-rectangles nine lookups. Within a 24 × 24 pixel
sub-window x there are 45, 396 rectangular features which can be evaluated by weak
classifiers hj(x). Each of these classifiers is described as

hj(x) =

{

1 if pjfj(x) < pjθj

0 otherwise
(3.3)

with a feature fj, a threshold θj and a parity pj indicating the direction of the inequality
sign.

To overcome the need to compute each of these features a variant of the AdaBoost
learning algorithm is introduced.

8http://ahprojects.com/projects/cv-dazzle

http://ahprojects.com/projects/cv-dazzle

3 Face detection and recognition 3.1 Face detection 11

Figure 3.3: Haarcascade features visualization. Source8

AdaBoost

AdaBoost, which is short for Adaptive Boosting, is a learning algorithm, which combines
multiple weak learners to build a stronger one. The weak learners are classifiers which
can change the odds of an 0 or 1 decision in favour of one of the possibilities by a
small margin, in the Viola-Jones algorithm these are the two-, three- and four-rectangle
feature classifiers. The boosting of these weak classifiers can be described by the following
algorithm.

• Given a set of training images (x1, y1) . . . (xn, yn) with xi ∈ X and yi ∈ {0, 1} for
negative and positive example images.

• Initialize weights:

w1,i =

{
1

2m yi = 0
1
2l yi = 1

m . . . number of negative, l . . . number of positive examples

• For t = 1 . . . T (T . . . number of classifiers constructed by a single feature)

1. Normalize weights:

wt,i ←
wt,i

n∑

j=1
wt,j

3 Face detection and recognition 3.1 Face detection 12

2. For each feature j train a classifier hj equation (3.3) on page 10 which is
composed of one single feature and calculate the error with respect to wt.

ǫj =
∑

i

wi|hj(xi)− yi|

3. The classifier with the lowest error ǫt gets chosen and the weights updated
according to et.

wt+1,i = wt,iβ
1−ei
t , βt =

ǫt
1− ǫt

with ei = 0 if xi was classified correctly, ei = 1 if not.

• The final strong classifier is then:

h(x) =

0
T∑

t=1
αtht(x) ≥ 1

2

T∑

t=1
αt, αt = log 1

βt

1 otherwise

The AdaBoost learning algorithm provides us with strong classifier to select only the
best features in the images, as the weaker features get eliminated in one of the individual
stages of the trained classifier.

Training the face cascade

It is possible to train the classifier yourself by providing positive samples, which contain
the object the classifier should later be able to identify and negative samples, which bear
no resemblance to a human face. The quality of the final classifier is always dependent
on the training data. As this approach is widely used a collection of already trained face
cascades is available for free use in OpenCV, introduced in section 2.1 on page 5.

Cascade

The classifiers extracted by AdaBoost are now placed in a cascade system with the
weakest, but on the other hand fast, classifier at the beginning of it. These simpler
classifiers can reject most of the sub-windows before the more complex classifiers are
called. Each classifier can reject its input or trigger the evaluation of it by the next
stage. Only if all stages of the cascade evaluated the input region as true it is accepted
for further processing. This results in a boosted as in faster, more efficient calculation,
as a majority of regions in an image do not have to be evaluated by all classifiers of the
cascade chain. The schematic of this cascade design is pictured in figure 3.4 on the next
page.

3 Face detection and recognition 3.2 Face recognition 13

sub-window for evaluation

reject

accept

Stage 1 Stage 2 . . . Stage n

Figure 3.4: AdaBoost cascade

3.2 Face recognition

Face detection is a two-class classification problem, where the goal is to assign a region
of an image either the class "face" or the class "non-face". Face recognition on the other
hand aims to provide the possibility to differentiate one member of the class "face" from
every other member of it and is therefore a multi-class classification.

One of the first things a human learns in his life is to recognize people in their sur-
rounding and to differ between them. It comes naturally for a human to recognize these
people among a group of other humans and to memorize previously unknown people
after a short period of time. The more contact the child has with these human beings,
the more it learns who they are and that they can and sometimes should listen to them.
For our robot, Eva, we aim to implement this behaviour, so that we are able to fol-
low a recognized person’s face. Small differences in appearance can make it difficult to
get a certain recognition rate. To reduce the possible patterns a robot could verify we
limit the area of recognition to the human face. This is the most prominent feature
to distinguish two people from each other which can be obtained by using a 2D or 3D
camera alone. In the following section I will lay down the mathematical background
to three two-dimensional and one three-dimensional based face recognition approaches.
Afterwards a short introduction to the implementation of this module is given and in
section 7.1 on page 45 an comparison between the implemented algorithms is given.

3 Face detection and recognition 3.2 Face recognition 14

3.2.1 Eigenfaces

The Eigenfaces algorithm uses the following approach to recognize faces in a given train-
ing set: With the definitions from Belhumeur et al. [1] this approach can be described in
the following manner: First we define the image space, a high-dimensional space which
elements are the pixel-values of the sample images. This high-dimensional space gets
processed by principal components analysis (PCA) to reduce the dimensionality. This
uses a dimensionality reducing projection which maximizes the scatter of all projected
samples. Starting with N sample images {x1,x2, . . . ,xN} with pixel values from 0 to
255 (grey-scale images) in the n-dimensional image space, with each image in one of the
c classes {X1,X2, . . . ,Xc}. We then consider a linear transformation mapping the n-
dimensional image space into a m-dimensional feature space, where m < n. The feature
vectors yk ∈ R

m are defined as:

yk = W T xk k = 1, 2, . . . , N

where W ∈ R
n×n is a matrix with orthonormal columns. The total scatter matrix is

defined as

ST =
c∑

k=1

(xk − bmµ)(xk − µ)T

where µ ∈ R
n is the mean image of all sample images and c is the number of classes. After

applying the linear transformation W T the scatter of the transformed feature vectors
{y1,y2, . . . ,yN} is W TSTW . During PCA, the projection Wopt which maximizes the
determinant of the total scatter matrix of the projected samples is chosen.

Wopt = arg max
W

|W TSTW | = [w1 w2 . . . wm]

where {wi|i = 1, 2, . . . ,m} is the set of n-dimensional eigenvectors of ST corresponding
to the m largest eigenvalues. These eigenvectors have the same dimension as the original
images and are called Eigenfaces, see the example set in figure 3.5 on the next page.

3.2.2 Fisherfaces

This recognition is based on Fisher’s linear discriminant (FLD) which is in close relation
to linear discriminant analysis (LDA). Both of them look for linear combinations of
variables which best fit to the given data points. Parts of the thorough explanation from
Mika et al. [18] and Welling [27] are given bellow. We define the between-classes scatter
matrix as

SB =
c∑

i=1

Ni(µi − µ)(µi − µ)T

and the within-class scatter matrix as

SW =
c∑

i=1

∑

xk∈Xi

(xt − µi)(xk − µi)
T

9http://docs.opencv.org/trunk/modules/contrib/doc/facerec/facerec_tutorial.html

http://docs.opencv.org/trunk/modules/contrib/doc/facerec/facerec_tutorial.html

3 Face detection and recognition 3.2 Face recognition 15

Figure 3.5: Eigenface visualized. Source9

where µi is the mean image of class Xi, µ is the mean image of all classes, Ni is the
number of samples in class Xi and c the number of classes. If SW is non-singular,
we chose the optimal projection Wopt as the matrix with orthonormal columns which
maximizes the ratio determinant of the between-class scatter matrix of the projected
samples to the determinant of the within-class scatter matrix of the projected samples,
i.e.

Wopt = arg max
W

|W TSBW |

|W TSWW |
= [w1 w2 . . . wm] (3.4)

where {wi|i = 1, 2, . . . ,m} is the set of generalized eigenvectors of SB and SW corre-
sponding to the m largest generalized eigenvalues {λi|i = 1, 2, . . . ,m}, i.e.

SBwi = λSW wi, i = 1, 2, . . . ,m.

As there are c − 1 non-zero generalized eigenvalues it is an upper bound on m. To
overcome the problem that the within-class scatter matrix SW ∈ R

n×n is always singular,
because of the face that the rank of SW is at most N − c and the number of images in
the learning set is much smaller than the number of pixel in each image, we adapt FLD.
We reduce the dimension of the feature space to N − c with PCA. Afterwards we apply
the standard FLD equation (3.4) to reduce the dimension to c− 1.

W T
opt = W T

fldW
T
pca (3.5)

where

Wpca = arg max
W

|W TSBW |

Wfld = arg max
W

|W TW T
pcaSBWpcaW |

|W TW T
pcaSWWpcaW |

.

3 Face detection and recognition 3.2 Face recognition 16

Figure 3.6: Fisherface examples. Source10

Visualized Fisherfaces can be observed in figure 3.6

3.2.3 Local binary patterns histograms

Another popular method used in the field of pattern recognition is called Local Binary
Pattern Histogram, or LBPH. Ojala et al. [19] introduced the basic LBP operator for a
pixel at position xc, yc, its intensity ic and eight surrounding neighbours with their corre-
sponding intensities ip. The LBP operator assigns a label to every pixel by thresholding
the 3× 3-neighbourhood with the value of the center pixels intensity. We use both, the
decimal and the binary representation of the resulting label, in further considerations.

LBP (xc, yc) =
p−1
∑

p=0

2psign(ip − ic), sign(x) =

{

1 if x ≥ 0

0 otherwise
(3.6)

Extended versions of the LBP handle greater neighbourhoods than 3× 3 and uniform
Local Binary patterns. The first one (LBP (P, r)) calculates the value for P sample
points at a circle of the radius r instead of the fixed position neighbours. The second
extension classifies a Local Binary Pattern as uniform if no more than two transitions
from 0 to 1 or vice versa can be found in the binary representation of the LBP (P, r)

10http://docs.opencv.org/trunk/modules/contrib/doc/facerec/facerec_tutorial.html

http://docs.opencv.org/trunk/modules/contrib/doc/facerec/facerec_tutorial.html

3 Face detection and recognition 3.2 Face recognition 17

and is noted as LBP (P, r)u2. The remaining non-uniform LBP’s receive the same label
(binary representative number). A histogram for the labelled image fl is defined as

Hi =
∑

x,y

I{fl(x, y) = i}, i = 0, 1, . . . , n− 1 (3.7)

where n is the number of unique labels resulting from the LBP operator and

I(a) =

{

1 if a is true

0 if a is false.

This histogram contains information about the distribution of local patterns which cor-
respond to edges, corners, lines, spots and flat areas over the whole image. For efficient
face recognition the addition of spatial information is introduced Chan et al. [4]. This
is done by splitting the image into m regions R0, R1, . . . Rm−1 and defining the spatially
enhanced histogram as

Hi,j =
∑

x,y

I{fl(x, y) = i}I{(x, y) ∈ Rj}, i = 0, 1, . . . , n− 1, j = 0, 1, . . . ,m− 1 (3.8)

This process is visualized in figure 3.7 on the following page.

3.2.4 3D face recognition using local appearance-based models

Face recognition based on 3-dimensional data needs more preparations than its 2-dimen-
sional counterparts. This results in a greater computational effort, but as the results
are not influenced by pose variation and illumination changes the added work is well
worth it. Koschan et al. [15] defines three stages which are necessary prior to the actual
face reconstruction process. Afterwards a depth-map of the recorded face is present and
subject to a recognition analysis.

data acquisition
In this stage the data from a 3-D sensor is acquired and preprocessed. This is
needed as the depth data has spikes or holes, often corresponding to eyeballs and
eyebrows (Bowyer et al. [2]), as well as noise from the sensor itself. To handle the
spikes a median filter is applied, the holes are filled using linear interpolation. For
a smoother face surface a Gaussian filter is used as well.

data registration
Wherein all faces are transformed to a common coordinate system. This transform
is based on common landmarks which are placed on salient facial features such as
the nose tip, the endpoints of the mouth, the lowest point of the chin as well as the
endpoints of the eyes. The base mesh, onto which all faces are to be projected on,
is calculated by using the generalized Procrustes algorithm (Gower [8]). Regions
outside the face itself, such as the neck and ears, are removed from the depth
image.

3 Face detection and recognition 3.2 Face recognition 18

2 1 8

67 4

0 5 9

0 0 1

11

0 0 1

Binary: 00111001
Decimal: 57

treshold

Figure 3.7: LBPH extraction sequence

integration
This stage handles the re-sampling of the face as depth map based on the projected
mesh from the registration stage. Commonly used are closest-point, which result
in folds and uneven sampling where the correspondence between surfaces with high
curvature is not very close. These can result in points not being sampled at all,
which would introduce a fold in the final mesh. Ekenel et al. [7] used ray-casting
as an alternative re-sampling method, which they described as follows. A ray is
cast through each vertex of the base mesh along the z-axis onto the target surface.
If there is a crossing point on the target surface it is considered to be the re-
sampled point. If it does not exist, most often at the border of the base mesh, the
closest-point mapping is used to acquire the re-sampled point.

For the resulting depth-map a local face representation based on the discrete cosine
transform (DCT) is generated using the following steps. Divide the input depth image
into 8 × 8 pixel sized regions. For each block the DCT coefficients are calculated and
represent the entire block with N ×M being the size of the input block, f(i, j) as the
intensity of the input pixel at position (i, j) and F (u, v) as the DCT coefficient for the

3 Face detection and recognition 3.2 Face recognition 19

...

K

1

2

3

DCT
feature
selection

Figure 3.8: Zig-zag scan to obtain the K-dimensional feature vector

pixel at (i, j).

F (u, v) =

√

2

N

√

2

M

N−1∑

i=0

A(i) cos

(
u(2i+ 1)π

2N

) M−1∑

j=0

A(j) cos

(
u(2j + 1)π

2N

)

f(i, j) (3.9)

where

A(i) =

1√
2

for u = 0

1 otherwise
A(j) =

1√
2

for v = 0

1 otherwise

The DCT coefficients are ordered using a zig-zag pattern as shown in figure 3.8. This
is done to group low frequency coefficients together at the top of the vector. For an
image of size 128 × 128 we obtain 16384 coefficients. From them the first K = 128
coefficients are selected. The K-dimensional vector from each block of the input image
is then concatenated to construct the overall feature vector of the corresponding depth
image.

Before a classification is possible the training phase has to be started. During this
phase a set of face images is run through the classifiers and the resulting data is stored
in a database in combination with a label corresponding to the class. This data differs
from method to method and consists of eigenvectors for the Eigenface or Fisherface
algorithms, LBP-historgram or DCT-coefficients for the local appearance-based method.
To perform a classification of a recorded face the data obtained by the descriptors are fed
into a decision engine, which returns the class in which the face belongs with the highest
probability. One of the most common used algorithms to perform the classification is
the k-nearest neighbour method, which can be extended by including a weight in form
of the inverse of Euclidean distance from the test data for every k-neighbours. Another
popular classification method is to use support vector machines (SVM). These work by
mapping the original finite-dimensional data into a higher-dimensional space where the
data is linearly separable by a hyperplane. Standard SVMs only distinguish between

3 Face detection and recognition 3.3 Implementation 20

two classes, but SVMs handling multiple classes have emerged. This works by either
dividing a multiclass problem into multiple binary classification problems or cast the
multiclass problem onto a constrained optimization problem with a quadratic objective
function [5].

3.3 Implementation

The implementation we chose is based on the people_perception module from the Fraun-
hofer Institute for Manufacturing Engineering and Automation (IPA)11. This module was
chosen as it provided most of the functions needed for face detection and recognition for
a previous release of ROS. Therefore only slight modifications were needed to run the
first evaluation trials. The people_perception module uses the Eigenface method for face
recognition, but thanks to the fact that the original face images and not the Eigenfaces
themselves were stored the data could be reused without invasive code changes. This
and the circumstance that the procedure which calculates the Eigenfaces could easily be
replaced with the equivalent for Fisherfaces or Local binary pattern histograms.

face detection
This module receives its input data from the topic
/camera/depth_registered/points which contain the coloured point cloud data
(RGBD) supplied by the "opennimodule" handling the Kinect-sensor. The first
step in this module is to limit the frame rate to constant 25Hz and passes the
coloured point cloud data to the next node in the processing pipeline. In the
head detector node the RGB-D data is split into a depth- and a color-image. On
the latter one a Haar-like feature cascade is applied and each found head-region is
published on topic /cob_people_detection/head_detector/head_positions. If a face
has been found there are two further possibilities in the modules code execution
path. The first is to learn the new face by acquiring a set of 50 pictures of the
face region, calculate the corresponding Eigenfaces and save them and the name
of the person in the internal database. Afterwards the database is reloaded to be
able to use the new information as soon as possible. The second possible path is
to compare the newly found face against the stored set of people in the database.
This is done by calculating the Eigenface of the face region and run a nearest
neighbour search against the training set in the database. If a person is found which
matches the tested face with more than a fixed probability it will publish on topic
/cob_people_detection/face_recognizer/face_recognitions informations about the
person which include the position and size of the region of interest of the head and
face, the persons name and the distance from the sensor. These will be used by both
the detection tracker node which aims to keep track of the faces, deletes multiple
detections of the same person, evaluates the plausibility of the face’s movement
between two frames and publishes the confirmed head positions as well as needed
meta-data on /cob_people_detection/detection_tracker/face_position_array
which is used in the people detection display node to finally display the original
RGB image data as well as an overlay of information gathered through the process

3 Face detection and recognition 3.3 Implementation 21

detailed in this section. The same data is used to follow the recognised person
with the robots head by the use of the two servo motors.

face tracking
The goal of this node is to follow a persons face of which the name has been pub-
lished on /tuw_acin_eva/processed_commands and control the two servomotors
in a way that the tracked face is in the middle of the picture from the Kinect
sensor. For this it needs the face positions provided by
/cob_people_detection/detection_tracker/face_position_array and utilizes the
Actionlib package to communicate with the node in charge of controlling the hard-
ware of the servomotors. The Actionlib approach with only a SimpleActionServer
is chosen because of the fact that the positions of the tracked face and the head
move in an independent manner. So if the head moves to the desired position but
the face moves away from the center of the viewed area in which it should be,
the head pose can easily be changed by sending a new goal to the SimpleAction-
Server. With an implementation based on topics or services it would have one of
the following problems: Either the first sent position would always be moved to,
even if the face was already in the desired area of view. Only then a new pose
could be sent to the servomotor controller, or multiple nodes could send speed or
position data to the servomotors, which would result in an unknown or at least
jittery movement. A big problem for the tracker node is the fact that the face
detector is unable to deliver a accurate position of a head in every frame. This can
lead to the annoying fact that there can be gaps between frames with confirmed
face detections. As this would lead to a trajectory with jumps between the desired
positions a node which implements a Kalman filter is added between the face de-
tection and the node controlling the servo motors. This provides the possibility to
position the head to a well defined position corresponding to every time frame.

As the implementation of face detection and face tracking is done in a single module
we did anticipate the background details for face tracking which are explained in the
next chapter.

11http://www.ros.org/wiki/cob_people_detection

http://www.ros.org/wiki/cob_people_detection

3 Face detection and recognition 3.3 Implementation 22

sensor
sensor message

gateway
head

detector

face
detector

face
recognizer

detection
tracker

/camera/depth_registered/points

/cob_people_detection/sensor_message_gateway/pointcloud_rgb_out

/cob_people_detection/head_detector/head_positions

/cob_people_detection/face_detector/face_positions

/cob_people_detection/face_recognizer/face_recognitions

/cob_people_detection/detection_tracker/face_position_array

Figure 3.9: People detection flowchart adopted from 11

4 Face tracking

For the human robot interaction it is vital to be able to follow the users face and in
doing so give the user the feeling that the robot is aware of his or her presence and that
the robot is listening and following the interaction. Face tracking suffers from one great
problem, which is the inability to detect the users face in each situation, even when
a face is present. This failure depends heavily on the used method for face detection
and suffers typically from changes in illumination, pose, facial expressions and partial
occlusion. As it is not possible to detect a face at every moment, the robot should
at least be able to guess where the users face might be given the last known position,
direction and velocity.

To handle these challenges two algorithms (Lucas-Kanade optical flow and Kalman
filter) are explored in this chapter.

4.1 Lucas-Kanade

For the Lucas-Kanade method we first have to clarify the definition of optical flow. For
this we observe every pixel of two frames from a video stream and analyse the movement
that happens for a pixel between the observed frames. This associates a velocity to each
pixel in an image and is called a dense optical flow. As it is computationally expensive
to calculate the velocity field for every pixel in every frame of a video stream we look
at sparse optical flow as an alternative. There we do not want to track every pixel,
but a subset of points which have to be selected before the velocity field is calculated.
Lucas-Kanade is one of the most popular sparse tracking method.

Lucas-Kanade Bradski and Kaehler [3] builds upon three assumptions:

Brightness constancy During the possible movement between two frames, a pixel in
the image does not change its appearance. This means that in a greyscale image a
pixel will not change its intensity during its transition from one frame to the next.

Temporal persistence The movement speed of a tracked object between two frames is
low in comparison to the frame rate of the video stream.

Spatial coherence Points neighbouring each other belong to the same surface, thus also
to the same object, and therefore have a similar or the same direction and velocity.

The first assumption leads us to the formulation of

f(x, t) ≡ I(x(t), t) = I(x(t+ dt), t + dt)
∂f(x, t)

∂t
= 0 (4.1)

23

4 Face tracking 4.1 Lucas-Kanade 24

The second assumption leads us to the idea that the motions between two consecutive
frames are so small that we can approximate them by the derivative of the intensity
with respect to time. With Ix and Iy as the spatial derivatives in the directions of x
and y across the first frame, It the derivative between images over time and u, v as the
unknown velocities between the frames equation equation (4.1) on the preceding page
equates to

∂I

∂x

∣
∣
∣
∣
t

It

︸ ︷︷ ︸

Ix

(
∂x

∂t

)

It

︸ ︷︷ ︸

u

+
∂I

∂y

∣
∣
∣
∣
t

It

︸ ︷︷ ︸

Iy

(
∂y

∂t

)

It

︸ ︷︷ ︸

v

+
∂I

∂t

∣
∣
∣
∣
x(t)

︸ ︷︷ ︸

It

= 0 (4.2)

or
∇ITu = −It (4.3)

with

∇I =

[

Ix

Iy

]

u =

[

u
v

]

.

u

v

Ixu+ Iyv = −It

−It

|∇I|
"normal flow"

Figure 4.1: Two dimensional optical flow

As we can see this bears the problem that when we solve equation (4.3) the results
for u and v from a singular pixel are not unique. Only for the normal or perpendicular
flow component the equation can be solved (see figure 4.1). But this suffers from the
aperture problem. This states that if the window through which motion is observed, is
so small that only an edge but no corner can be detected, it is not possible to determine
the exact motion of the object. This problem is shown in figure 4.2 on the next page
where it is impossible to determine the exact direction and velocity by observing the
small window in the middle. To overcome this fact we rely on the third assumption of
Lucas-Kanade which states that if a local patch of pixels moves coherently, we can solve
the equation for the motion of the center pixel by using the neighbouring pixels to set
up a system of equations.

4 Face tracking 4.1 Lucas-Kanade 25

Figure 4.2: Aperture problem

By using a 5 by 5 window of intensity values for grey-scale images the set of 25 equations
can be written as:

Ix(p1) Iy(p1)
Ix(p2) Iy(p2)

...
...

Ix(p25) Iy(p25)

︸ ︷︷ ︸

A∈R25×2

[

u
v

]

︸︷︷︸

d∈R2×1

= −

It(p1)
It(p2)

...
It(p25)

︸ ︷︷ ︸

b∈R25×1

. (4.4)

This system is overdetermined and can be solved under the premise that it contains
more than just one edge in the 5 by 5 window. We use a least-squares minimization of
the equation in which min ||Ad− b||2 is in the standard form as

(

AT A
)

︸ ︷︷ ︸

2×2

d
︸︷︷︸

2×1

= AT b
︸ ︷︷ ︸

2×1

(4.5)

or [∑
IxIx

∑
IxIy

∑
IxIy

∑
IyIy

] [

u
v

]

= −

[∑
IxIt

∑
IyIt

]

. (4.6)

If AT A is invertible the system can be solved, which corresponds to the requirement

of full rank or in this case rank
(

AT A
)

= 2. This is the case when it has two large

eigenvectors which can be observed when the observation window is hovering over a
corner region in the image. The resulting velocities are then solved as

[

u
v

]

=
(

AT A
)−1

AT b. (4.7)

4 Face tracking 4.2 Discrete Kalman filter 26

With the results of the Lucas-Kanade method we gain the knowledge of the displace-
ment between two frames. Using this information it is possible to first detect a face
with the Viola-Jones algorithm, use pixel in the face region as initial data for the optical
flow calculation. When no face is detected in the next frame the optical flow is used to
follow the observed pixels in the current frame. As soon as a face has been re-detected
the optical flow data is discarded and the Viola-Jones data is used to control the servo
motor movement.

4.2 Discrete Kalman filter

Following the definitions of the Kalman filter from Kalman et al. [13] and Welch and
Bishop [26] it describes a possible way to estimate a state x of a linear, time invariant,
time discrete system which is described by

xk+1 = Φxk + Γuk + Gwk x(0) = x0 (4.8a)

yk = Cxk + Duk + Hwk + vk, (4.8b)

where x ∈ R
n is the state of the system, u ∈ R

p is the p-dimensional deterministic input,
y ∈ R

q is the q-dimensional measurement, w ∈ R
r is the r-dimensional process noise and

v is the measurement noise. In absence of either a driving function u or process noise
the matrix Φ ∈ R

n×n relates the states from step k to the next step k + 1. Γ ∈ R
n×p

is the optional control-input and C ∈ R
q×r is the observation model which maps the

measured state xk into the observed space. For the process noise and the measurement
noise we assume that they are independent of each other and with normal probability
distributions

E(vk) = 0 E(vkvT
j) = Rδkj (4.9)

E(wk) = 0 E(wkwT
j) = Qδkj (4.10)

E(wkvT
j) = 0, (4.11)

where the indices k and j mean two different discrete points in time. With the positive-
semidefinite matrices Q ≥ 0 and R ≥ 0, the positive-definite matrix HQHT + R > 0

and the Kronecker delta δkj. The expected value of the state at the beginning x0 and
the covariance matrix of the error at k = 0 are

E(x0) = m0 E([x0 − x̂0][x0 − x̂0]T) = P0 ≥ 0. (4.12)

Furthermore we assume that the process noise wk for k ≥ 0 and the measurement noise
vl for l ≥ 0 do not correlate with the start value x0.

E(wkxT
0) = 0 E(vlx

T
0) = 0 (4.13)

4 Face tracking 4.2 Discrete Kalman filter 27

and therefore with equation (4.8a) on the preceding page

E(wkxT
j) = 0 if k ≥ j (4.14)

E(vlx
T
j) = 0 ∀l, j (4.15)

To derive the Kalman filter we define x̂−
k to be the a priori state estimate at step k using

all the knowledge of the process until the step k − 1 and x̂k to be the posteriori state
estimate given the measurement yk. The first step in the Kalman cycle is to use the
initial values for the state x̂k and the error covariance Pk to predict x̂−

k+1 and P−
k+1.

This process is called the Time Update or Prediction,

x̂−
k+1 = Φkx̂k + Γkuk (4.16)

P−
k+1 = ΦkPkΦT

k + GkQkGT
k . (4.17)

The second step is the Measurement Update or Correction. First the Kalman gain Kk,
which is used to introduce a weight for the difference between the measurement yk and
the predicted state x̂−

k , is updated. With the new Kk and the identity matrix I the error
covariance matrix is recalculated:

Kk = P−
k CT

k (CkP−
k CT

k + HkQkHT
k + Rk)−1 (4.18)

x̂+
k = x̂−

k + Kk(yk −Ckx̂−
k −Dkuk) (4.19)

P+
k = (I−KkCk)P−

k . (4.20)

In figure 4.3 on the next page the Kalman cycle is pictured, the changes in certainty of
position during this cycle of prediction, measurement and update is shown in figure 4.4 on
page 29. This clearly illustrates that the knowledge of the position gets more uncertain
as long as no measurement occurs. After a new measurement is done the state vector
x̂k gets updated according to equation (4.19) and resembles a higher certainty.

The Kalman filter can now be used to predict the corners of the bounding box around
a detected face and predict the most probable positions of them in the next frame. For
this the mathematical steps between the state variable at time k and k + 1 have to be
formulated and known.

4 Face tracking 4.3 Implementation with Kalman filter 28

x̂−
k+1 = Φkx̂k + Γkuk

P−
k+1 = ΦkPkΦT

k + GkQkGT
k

Kk = P−
k CT

k

(

CkP−
k CT

k + HkQkHT
k + Rk

)−1

x̂+
k = x̂−

k + Kk (yk −Ckx̂k −Dkuk)

P+
k = (I−KkCk) P−

k

Initial values:

x̂−
0 = x̂0

P−
0 = P0

prediction

correction

Figure 4.3: Kalman cycle

4.3 Implementation with Kalman filter

We use a Kalman-filter to predict the location of the face and to correct this prediction
based on actual detections by the face detector. To correctly implement a Kalman
filter the knowledge of the transition matrix Φ, the measurement vector yk, the noise
matrices for the measurement R and the state transition Q are required. Equation (4.8)
is adapted for our implementation. The input u is zero as there is no way to control the
position of the face with any input from our system. The matrices H and G are set to
the identity matrix. Starting with the accordingly simplified state-space model

xk+1 = Φxk + wk x(0) = x0 (4.21a)

yk = Cxk + vk (4.21b)

under the constraints of

E(wkwT
j) = Qδkj (4.22)

E(vkvT
j) = Rδkj (4.23)

the system is defined by the state vector
xk = [x1,k, y1,k, x2,k, y2,k, vx1,k, vy1,k, vx2,k, vy2,k]T and the measurement vector yk =
[x1,k, y1,k, x2,k, y2,k]T , which are the four corner points of the bounding box returned
by Viola-Jones detector. In order to determine the transition matrix Φ the simplified

4 Face tracking 4.3 Implementation with Kalman filter 29

x

p(x) N(xk−1, σ
2
k−1) predicted

N(yk, σ
2
k) measurement

N(x̂k, σ̂
2
k) corrected

Figure 4.4: Combining prediction and measurement with the Kalman filter

equations of motion, with v as velocity and the point in space x are

x = x0 + vxt

vx = vx0,
(4.24)

For y the same equations apply. With the the next step in the recursive form

xk+1 = xk + vx,kt

vx,k+1 = vx,k

(4.25)

the model is

x1,k+1

y1,k+1

x2,k+1

y2,k+1

vx1,k+1

vy1,k+1

vx2,k+1

vy2,k+1

=

1 0 0 0 △t 0 0 0
0 1 0 0 0 △t 0 0
0 0 1 0 0 0 △t 0
0 0 0 1 0 0 0 △t
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

x1,k

y1,k

x2,k

y2,k

vx1,k

vy1,k

vx2,k

vy2,k

, (4.26)

where △ t = 40ms, limited by the cameras frame rate. The process noise matrix Q is
chosen as

Q =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

× 0.01. (4.27)

4 Face tracking 4.3 Implementation with Kalman filter 30

The measurement matrix C represents the link between the measured coordinates in yk

and the state vector xk as defined by the system in equation (4.21a) on page 28:

C =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

. (4.28)

The matrix R, the covariance of the measurement is determined empirically. From the
observation that the Viola-Jones face detector detects faces within 10 pixels of the face
position 95% of the time and the condition that the error is Gaussian distributed the

variance in each direction is 6.5 pixels. This is represented in vk =
[

6.5 6.5 6.5 6.5
]T

and therefore also in

R =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

× 42.25. (4.29)

The implementation is designed in the way that we first detect a face in the video
stream at frame k and gain knowledge of the corner points of the bounding box around
the face. These points are the measurements yk, which are used with the initial values
of the state x̂−

0 and the error covariance matrix P −
0 to predict the state according to

the system equation (4.8a) on page 26. This state information contains the positions of
the corners for the bounding box in the next frame and can be already sent to the servo
motor controller. The Kalman cycle is repeated whether an update occurs or not. If an
update occurs through the means of a new measurement, the Kalman filter incorporates
the new information into its calculation and returns the state vector with a heightened
probability and lower variance figure 4.4 on the preceding page. If no update happens
the Kalman filter still provides a state vector, but this has a high variance in which the
actual corner positions should be. Whatever case occurs, the positions are sent to the
servo motor control node where the movement for the servo motors is calculated and
handed to the actual hardware.

5 Object classification

This process handles the task of linking an object in a 3D-scene to the object descriptor
in a database. For each known object the database contains a three-dimensional model
and a description (e.g. the name). Details of the object’s size are not stored, as the 3D
model is scalable without loss of information.

5.1 Ensemble of shape functions (ESF) descriptor

The ESF descriptor is defined as the combination of three angle, three area, three dis-
tance and one distance ratio shape functions, each of them described by a 64-bin his-
togram.

D2
The D2 shape function proposed by Osada et al. [20], extended by Ip et al. [10]
to work on three-dimensional structures and further enhanced by Wohlkinger and
Vincze [28] to work on partial point clouds is used. Osada formed the D2 shape
function by sampling randomly chosen point-pairs and calculating their distances
into a histogram. Ip classified the line between the points as either inside a 3D
model, outside of it or a mixture of both. Wohlkinger adapted this to categorize
the lines as on or off the surface spanned by the point cloud. This is done by
tracing the lines with the 3D Bresenham algorithm in a voxel grid with a side
length of 64. After the tracing the lines are represented in three histograms which
display distances in the possible ON, OFF or MIXED states.

Line ratio
The lines described as MIXED are further used as information source by calculating
the ratio from the ON to the OFF part and form an independent histogram for
the ESF descriptor as seen in figure 5.1.

A3
The A3 angle shape function chooses three random points, draws two lines between
them and encodes the angle between them by classification of the third line which
is opposing the angle (figure 5.2a). This line can have the three states ON, OFF
or MIXED.

D3
D3 area shape function is calculated by increasing the dimensionality of the D2
shape function and evaluating the area enclosed by the three randomly selected
points (figure 5.2b). The classification in to ON, OFF or MIXED of the area uses
the same methodology as for the D2 shape functions.

31

5 Object classification 5.2 Decision forests for classification 32

(a) (b) D2 shape function

Figure 5.1: D2 shape and line ratio functions. Source12

(a) A3 shape function (b) D3 shape function

Figure 5.2: A3 and D3 shape functions. Source12

5.2 Decision forests for classification

The actual implementation uses decision forests as a method to combine weak classifiers
into a strong method to predict a certain information. A basic introduction of binary
decision trees and forests is derived from Criminisi et al. [6]. The requested classification
of two objects, a banana and a mug, against the database is shown in figure 5.3. The
green histograms are the stored values of a mug, which has been trained against the
classifier earlier. The red lines denote the object which is to be classified. In the next
sections the details of this tasks, training and classification, are explained in detail.

Decision tree

A decision tree consists of a set of nodes and edges connecting them together. The nodes
have exactly one incoming edge and can be either split nodes or leaf nodes. Split nodes
have two outgoing edges, hence the name binary decision tree, while leaf nodes are at
the end of the tree and therefore only have one incoming and no outgoing edge at all.
At every split node a basic decision is made, and the contestant is sent along the left or

12Wohlkinger and Vincze [28]

5 Object classification 5.2 Decision forests for classification 33

Figure 5.3: Object query against the classification. Source12

right outgoing edge to one of its child nodes. The principal structure of a decision tree
is illustrated in figure 5.4 on the next page.

The usage of a decision tree consists of the following two parts.

Tree training
The parameters θ of the split functions for each node are optimized so that the
information gain I is maximized.

I = H(S)−
∑

i∈1,2

∣
∣Si

∣
∣

|S|
H(Si) (5.1)

with the Shannon entropy defined as H(S) = −
∑

c∈C p(c) log p(c) and S is the set
of data which is passed into the split node. Besides, stopping criteria are applied
to let the tree stop growing further branches.

Tree testing
Data points v are fed into the root node of the tree, which starts applying the
predefined split function h(v,θ) ∈ {0, 1} and sends the data to the left or right
child node. This process is repeated until the data reaches a leaf node. In this
node a so called leaf predictor associates the data input v with a class label.

Decision forest

An ensemble of decision trees combined together form the decision forest. The forest is
adapted to the actual goal to achieve by setting up the type of split functions, the leaf
predictor, stopping criteria, the ensemble model as well as the randomness model. To
understand how these parameters influence the behaviour of the decision forest a short
description is given.

5 Object classification 5.2 Decision forests for classification 34

0

1

3

7 8

4

9 10

2

5

11 12

6

13 14

root node

split node

leaf node

Figure 5.4: General decision tree structure

Weak learner model
is described by its parameters θ = (φ,ψ, τ) where ψ is the geometric primitive
used to separate the given data (a general surface in our case). The parameter
vector τ contains the thresholds for the inequalities used in the binary test and
the filter function φ chooses a subset of features from the complete data vector v.
Together these parameters are used in the binary split function defined for node j
as

h(v,θj) ∈ {0, 1} (5.2)

Training objective function
After choosing the split functions, the optimal parameters for them have to be
obtained during training. Therefore we seek the optimal parameters θ∗

j which
maximize the information gain objective function

Ij = I(Sj ,S
L
j ,S

R
j ,θj) (5.3)

Sj ,S
L
j ,S

R
j represent the training data points before the split and after split corre-

sponding to the left and right edge respectively:

θ∗
j = arg max

θj

Ij (5.4)

5 Object classification 5.2 Decision forests for classification 35

Randomness model
Randomness of the individual trees is a key aspect of decision forests. It states
that all decision trees in the forest are randomly different from each other. This
leads to improved generalization and is in our case achieved by randomized node
optimization during the training phase. This means that if T is the set of all
possible parameters θ we only make the subset Tj ⊂ T available during the training
of the jth node. Therefore the training of a tree is achieved by optimizing each
split node j by

θ∗
j = arg max

θj∈Tj

Ij . (5.5)

The ratio |Tj|/|T | controls the amount of randomness in the decision tree. It is
common to introduce the parameter ρ = |Tj| = 1, . . . , |T |. If ρ = 1 we get the
maximum randomness and uncorrelated trees in the forest. For ρ = |T | all trees
are identical and act as if only one decision tree is used.

t = 1 t = 2 t = 3

Figure 5.5: Random forest with ρ = |T |

t = 1 t = 2 t = 3

Figure 5.6: Random forest with ρ = 1

5 Object classification 5.2 Decision forests for classification 36

Leaf prediction model
Each leaf stores the empirical distribution over the classes associated to the subset
of training data that reached that leaf. For the tth decision tree the probabilistic
leaf predictor is

pt(c|v) c ∈ {ck}. (5.6)

Ensemble model
The ensemble model describes the method of how to combine the predictions from
all the trees in the forest into a single prediction output. In classification the two
most used models are the average operation or simple multiplication

p(c|v) =
1

T

T∑

t=1

pt(c|v) (5.7)

p(c|v) =
1

Z

T∏

t=1

pt(c|v) (5.8)

where Z is a partition function used to ensure probabilistic normalization. Both
methods are heavily influenced by the most confident trees. Averaging has the
effect of reducing noisy tree contributions and are therefore more robust to noise.

Stopping criteria
Stopping criteria decide when a tree should stop growing individual branches.
One common way to stop the growing is after a maximum number of levels D
has been reached, another is to stop after a node that contains less then a defined
number of training points. Alternatively a minimum information gain can act as
the requirement to further grow the branches.

5 Object classification 5.3 Implementation 37

5.3 Implementation

The implementation of the classification uses the point clouds obtained from the Kinect
sensor and removes the supporting surface (e.g. table) under the object which has to be
classified. Then it tries to build one cluster by connecting the remaining data points,
then the ESF descriptor is calculated. The histograms of the descriptor are stored in
the data vector v which is afterwards fed into the decision forest. During the training
stage the label of the object is known and assigned to the leaf nodes which are reached
after v has been inserted at the root node. The forest then returns the label of the class
with the highest probability and the probability itself.

cluster data

t
=

1

t
=

2

t
=

3

t
=
n

class label

Figure 5.7: Usage of ESF and a decision forest

6 Speech recognition

Humans easily learn the concept of speech and words during the early years of their life.
They learn their native language by training over the period of years while growing up
as part of their childhood. As one of our goals is to establish a natural human robot
interaction, Eva needs the ability to understand at least parts of natural human speech.
The english language was chosen as main requirement for the recognition, with German
as a secondary goal. The technical learning of speech recognition differs a lot from how
a human obtains this ability. The mathematical methods to translate spoken words into
machine readable text are covered in the next section. At the end of this chapter details
about the chosen method and details from the implementation are further described.

6.1 Speech recognition

Prior to the implementation of this essential module we had to consider the following
necessities:

Recognized languages
The minimum requirement of supported languages is English and German. English
as it is the universal language in the scientific community and german as this
software is likely to be used in demonstrations and applications for German native
speakers without the knowledge of english language. More supported language are
no requirement, but act as a bonus for the chosen system.

Programming language
As the ROS software stack gives the possibility to use either Python, C++ or to
some extent Java only programs or development tools with the ability to work with
one of these programming languages could be used.

Offline vs. online recognition
In the speech recognition part one of the major design decisions is whether the
recognition should be processed online, which moves the computational workload
to remote servers, or offline, where the device doing the speech to text processing
does not need to connect to an external source.

Avoiding teach-in
Classical speech to text software modules heavily relies on a process called teach-
in. During this a user who wishes to be recognized at a later point in time has
to read a text passage to the speech recognition system until either the system is
trained to recognize the voice of the talking person or, the speaker has adapted

38

6 Speech recognition 6.2 Mathematical background 39

his or her way to talk while speaking to the recognition system. As this process is
often slow, not very accurate and not suitable if multiple persons should be able to
talk to the robot without much preparation the selected process should not need
any kind of teach-in.

Cost
As one of the major goals of the complete robotic system is to be cost effective
it should limit the amount of money spent on the speech recognition software. If
possible free or open source software is preferred.

Operating system
The system should not require the installation of a proprietary operating system.
This helps to reduce costs as well as to filter out text to speech software which has
been mainly designed as a semi-automated dictation system.

6.2 Mathematical background

The task of translating a spoken word into computer readable text is a statistical prob-
lem. To calculate it we follow the explanations from Mathew [17], Ittichaichareon et al.
[11], Jurafsky and Martin [12] and Logan [16].

Ŵ = arg max
W

P (W |Y)

= arg max
W

P (Y |W)P (W)

P (Y)

with W = {w1,w2, . . . ,wm} is a sequence of m words and Y = {y1,y2, . . . ,yn} is a
sequence of m acoustic vocal observation vectors. P (Y |W) is the probability of the
acoustic vector Y when the word W is given, P (W) denotes the probability with which
the word sequence W occurs in the written language and P (Y) is the probability with
which the acoustic vector sequence Y occurs in the spoken language. Therefore Ŵ is
the particular word sequence W which has maximum a posteriori probability given the
observation sequence Y . As P (Y) is independent of the spoken word sequence Ŵ can
be calculated without P (Y). This leads us to

Ŵ = arg max
W

P (Y |W)P (W). (6.1)

For the evaluation of equation (6.1) we need P (W) which we generate from a language
model and evaluate an acoustic model for P (Y |W).

Preprocessing

This process consists of five main steps to compute the Mel-Frequency Cepstral Co-
efficients (MFCCs) [European Telecommunications Standards Institute][9], Logan [16]
Mathew [17] and is shown in figure 6.2 on page 41. These steps are:

6 Speech recognition 6.2 Mathematical background 40

Divide the audio signal into frames
This is done by splitting a 1 second time period into 100 overlapping timeslots of
typically 25 ms. It consists of a 10 ms long time frame with 7.5 ms from both the
previous and the next time slot. A first-order filter i s applied afterwards, which
corresponds to the transformation as Y0[n] = x[n]−αx[n−1], 0.9 ≤ α ≤ 1, 0 <
n < samples per frame. A Hamming window is used to reduce FFT leakage in
the next step.
Y1[n] = x[n] × H[n], 0 < n < framesize with H[n] = c1 − c2 × cos(

2πn
framesize−1)

and c1, c2 chosen appropriately (e.g. c1 = 0.54 and c2 = 0.46 as used in [European
Telecommunications Standards Institute][9] and Mathew [17])

Calculate the Fourier transform
Pad the frame with zeros so that the frame size N is a power of two. Calculate
Y2 = DFT (Y1) and Y3[n] = real(Y2[n])2 + imag(Y2[n])2, 0 < n ≤ N/2 so that the
results are real numbers.

0

500

1000

1500

2000

2500

3000

3500

0 2000 4000 6000 8000 10000

p
er

ce
p

tu
al

p
it

ch
in

m
el

s

frequency in Hz

Figure 6.1: Plot of the Mel-scale

Map the spectrum onto the Mel-scale
With a set of usually 40 triangular filters the frequency spectrum after the FFT
(Fast Fourier Transform) is smoothed and perceptually meaningful frequencies are
emphasized. This is done by projecting the spectrum onto the Mel-frequency scale

6 Speech recognition 6.2 Mathematical background 41

which is shown in figure 6.1 on the preceding page. The Mel-scale is used as the
human interpretation of pitch rises with the frequency and was experimentally
derived in the 1940’s by Stevens et al. [23].

Y4[n] =
∑N/2

i=0 Y3[i] ×MelWeight[n][i], 0 < n < number of filters The Mel-scale
is chosen as studies have shown that low frequencies are perceptually more im-
portant in speech than high frequencies. Therefore the center frequencies of the
triangular filters are placed so that the distance between the bins in the spectrum
are equidistant on the Mel-scale.

Calculate the Log Compression
As the analysis against the acoustic model requires a near Gaussian statistical
distribution we calculate the natural logarithm value after the projection onto the
Mel-scale. Y5[n] = lnY4[n], 0 < n < Number of filters

Compute the Discrete Cosine Transform (DCT)
The DCT is used to compress the results into a set of low order coefficients which
we call the Mel-cepstrum and consists of 13 coefficients (MFCCs), Y6 = DCT (Y5).
For further analysis we also compute the first and second derivatives of the MFCCs.

frame blocking pre-emphasis
Hamming
window

fast Fourier
transformation

Mel
filter bank

logarithmic
compression

discrete cosine
transformation

numerical
differentiation

13 Mel cepstral coefficients
13 first derivatives
13 second derivatives

speech signal
16kHz, 16bits

Figure 6.2: Speech signal processing

Acoustic model

To calculate the probability of an acoustic vector sequence Y for a given word W basic
sounds which combined together build words, so called phonemes, are used. Approxi-

6 Speech recognition 6.2 Mathematical background 42

Figure 6.3: Triphone Hidden Markov model

mately 50 can be used to build every word of the English language. Spoken phonemes
are dependant on the previous and the following phonemes. According to Jurafsky and
Martin [12] this leads us to triphones which are used to represent the context in which a
phoneme can occur. At the end of a word a phoneme for silence has to be added. With
about 50 phonemes there can be 503 triphones, from which only 26.000 actually occur in
the English language. The probability that an acoustic vector sequence corresponds to
a particular triphone may be estimated using a Hidden Markov Model (HMM). Current
speech recognizers use HMM models with three internal states and one entry and one
exit state, as shown in figure 6.3.

A HMM model is a probabilistic finite state machine that generates observation se-
quences. If the model is in state Si at timestep t, then it has a probability Bi(Yt) of
producing the acoustic vector Yt and it switches to state Sj with probability Aij . The
problem of computing P (Y |W) now becomes what is known as the evaluation problem
for HMMs - the problem of estimating the probability with which a given HMM could
have generated the observation sequence Y . The evaluation problem can be solved us-
ing the Forward/Backward algorithm for HMMs, but since the optimal state sequence
is needed at a later stage, it is common to do a more expensive Viterbi search which
can compute the probability and uncover the optimal state sequence simultaneously
(Mathew [17] and Rabiner [22].)

Language model

A language model assigns a probability to each word in a given sequence. Models which
calculate the probability of a word with respect to its prior context are called N-gram
models and predict the probability of a word based on the last N − 1 words. Commonly
used are bigram (N = 2) and trigram (N = 3) models. In order to train such an N-gram
model the probability is estimated as

P (wn|w
i−1
i−N−1) =

C(wi−1
i−N+1wn)

C(wi−1
i−N+1)

(6.2)

where C is the relative frequency or count in which the word sequence wk occurs. To
train the language model equation (6.2) is used on a large vocabulary. Given the fact,
that there is a high chance that not all possible trigrams are in the training data the

6 Speech recognition 6.3 Implementation 43

probabilities of bigrams or unigrams (N = 1) are used in these cases instead. This
approach is called back-off and recalculates the probabilities by multiplying with back-
off weights α to account for the fact that higher N-grams have not been found by the
training algorithm. Katz [14] extended the language model to:

P (wi|wi−N+1 · · ·wi−1) =

dwi−N+1···wi

C(wi−N+1...wi−1wi)
C(wi−N+1···wi−1) if C(wi−N+1 · · ·wi) > k

αwi−N+1···wi−1P (wi|wi−N+2 · · ·wi−1) otherwise

(6.3)

where d = r′

r is the discount coefficient found through Turing’s discounting in which we
set r′ = r∗ = (r+ 1)nr+1

nr
with nr as the number of words which occured exactly r times

in the sample text. k is chosen as k = 5 by Katz.
α is then calculated with auxiliary variable

βwi−N+1···wi−1 = 1−
∑

{wi:C(wi−N+1···wi)>k}
dwi−N+1···wi

C(wi−N+1...wi−1wi)

C(wi−N+1 · · ·wi−1)

so that

αwi−N+1···wi−1 =
βwi−N+1···wi−1

∑

{wi:C(wi−N+1···wi)≤k} P (wi|wi−n+2 · · ·wi−1)
. (6.4)

Equation (6.3) states that if the N-gram occurred more than k times during the model
training the conditional probability of a word given its previous context is proportional
to the maximum likelihood estimation of that N-gram. Otherwise it is equal to the
back-off probability of the (N-1)-gram. After the training of both the acoustic model
and the language model it is possible to compare a given vocal input against them and
gain the word with the highest probability to be the textual representation of the spoken
word in the language of the language model.

6.3 Implementation

As it would extend the boundaries and time for this thesis to write a speech-recognition
module the decision was made to evaluate multiple vendor products. At the end of
the search for a speech recognition software that could possibly fit the requirements a
list of three possible contestants was found. These were evaluated against each other
with regard to their accuracy, repeatability of results and handling of multiple users.
The three systems are PocketSphinx 13, Nuance Dragon Mobile SDK 14 and Google
Voice15. All three of them can run on Google’s Android platform, but not necessarily on
another operating system with ROS support like GNU/Linux. Therefore the next step
was to implement an Android based ROS node which handles the voice input, processes
the recognition with one of the libraries and evaluate the outcome of this. Details and
results for the evaluation of the three programs can be found in section 7.3 on page 58.

13Carnegie Mellon University http://cmusphinx.sourceforge.net
14http://www.nuancemobiledeveloper.com
15https://code.google.com/p/google-voice-typing-integration/

http://cmusphinx.sourceforge.net/
http://www.nuancemobiledeveloper.com
https://code.google.com/p/google-voice-typing-integration

6 Speech recognition 6.3 Implementation 44

Eva

speech

recognition

Eva,

follow Markus

alternative recognitions

Eva, follow Mark

Eve, hollow Markus

Eve, follow mark

Figure 6.4: Speech recognition application

The speech recognition runs on any Android based phone or tablet from version 4.0
(Codename: Ice Cream Sandwich) and upwards, lower versions may be compatible, but
have not been tested. The application we developed is split into three parts. On the first
screen you have the choice of the languages ’English’ and ’German’ and to which ROS
master node you wish to connect. On the next screen you see the last recognized sentence
or a default text that has been sent as a ROS topic message to the rest of the software
running on the robot in a green highlighted text box. Below the alternative recognition
results are shown and can be chosen by the user if one of them is a better match for
his or her spoken sentence. At this moment this is a one way communication from the
tablet to the robot Eva. It could be adapted to provide a text-to-speech (TTS) feedback
to the user in front of the tablet by publishing the text which the robot speaks onto a
ROS topic. The application on the tablet would listen to this message and perform a
TTS to play back the response to the user on its speakers. This would be useful in a
scenario where the user with the input tablet is not in the same room as Eva or out of
hearing range. The recognition process is started on a screen, which concept design is
shown in figure 6.4. When this process is started it will try to automatically detect the
start and end of a sentence and present the user with the four most likely recognition
results. The result with the highest probability will be automatically sent to the robot,
but the user can select one of the other recognition results to be sent to Eva. There it
will be processed and if a command is recognized the SMACH state machine will act
accordingly.

7 Experiments

7.1 Evaluation of face relevant implementations

To evaluate the different methods of face detection, recognition and tracking the following
approach was chosen.

• A group of ten individuals was recorded in a room of the local students union of the
faculty of electrical engineering and information technology. This room was chosen
to evaluate the problems of background images that can mislead the Viola-Jones
face detector. By avoiding a clean room, without any background other than a
consistent coloured wall, the evaluation is closer to real life applications, as a user
can not be expected to remove their decorations or furniture from a room just to
be found by a robot.

• The recordings, which include two-dimensional image data and point clouds of the
scene, were recorded with the rosbag utility. During the evaluation we observed
with the rosbag application that the images and the point clouds were not syn-
chronized, as the OpenNI Kinect driver and the rosbag utility did not manage to
record them in a synchronous fashion.

• The two-dimensional image stream was then exposed to the traditional Viola-Jones
face detector as described in section 3.1.1. The result of the detector, the lower
left and the upper right corner of the largest detected face is then pushed into the
Kalman Filter. Anticipating the results from this section we had to acknowledge
that the Kalman filter did provide the needed accuracy to track a face and follow it
with Eva’s head, but not for a robust extraction of the face for the face recognition.
Especially during the database training every false detection would lead to the
fact that the face classes would overlap with data from the same false positive
measurements from the face detector. Such data can be observed in frame 448 of
figure 7.1a, frame 211 of figure 7.3a and frame 007 of figure 7.6a. The resulting x
and y positions of this approach for test subjects Andreas, Davor and Manuel are
in figure 7.7, figure 7.8 and figure 7.9. In figure 7.1a, figure 7.2a and figure 7.3a
chosen frames for this method are shown.

• The point cloud and the two-dimensional images are fed into the
people_perception module by IPA. This module have been partially introduced in
section 3.2.4 and the results are compared to the two-dimensional only detection
and tracking in figure 7.1, figure 7.2, figure 7.3, figure 7.4, figure 7.5 and figure 7.6.
It reduces the search area for the face detector by using a Haarcascade, trained

45

7 Experiments 7.1 Evaluation of face relevant implementations 46

to detect heads instead of faces, on coloured point clouds. This provided a stable
detecttion of a head, which could then be used for tracking, face-detection and
recognition. The problems that we experienced with the 2D tracking during the
training phase did not occur, as the detection on the smaller regions yielded a
far lower false positive detection rate. Therefore the face recognition was only
continued with this mixed 3D and 2D approach.

The approach with two-dimensional images led to the expected results. The Viola-Jones
face detector had problems detecting a face in some frames, often jumped to random
spots in the image, like a picture on the wall, and could not handle rotation of the
head. The applied Kalman filter did a fairly good job at keeping up with the actual face
position, but was mislead through the false positive measurements from the face detector.
As these measurements are used to update the Kalman filter the results drifted away
from the actual face position with every frame in which a false positive was reported.
This can be observed in figure 7.4a, frame 287. The green rectangle is the result from
the face detection, the red one is the position derived from the Kalman filter. As a
false positive was delivered for a long period of time, about 50 frames in this case, the
Kalman filtered result obviously drifted into this wrong position. Other occurrences of
wrong positives by the Viola-Jones face detector are shown in frame 135 of figure 7.5a,
frame 141 in figure 7.2a and 422 of figure 7.6a. To a human the region of the images
have no resemblance to a persons face, but for the Haar filter cascade the proportions
match. Good examples of the evaluation of the Haar like features at different sizes are
in frame 448 of figure 7.1a, frame 31 of figure 7.2a and frames 135 and 493 of figure 7.5a.
Plots of the face position over time are split in x position over time and y position over
time. The positions are from the calculated center point of the detected faces.

The point cloud enabled tracking is pictured in the right handed subfigures (b) of the
figures 7.1 up to 7.6. In contrast to the 2D only method multiple regions are marked
by rectangles by the detector chain. The first stage, the head detector, marks any
region in a light blue rectangle in which a head is discovered by the Haar cascade filter
appropriately. This regions are now subject to the next stage, an implementation of
the Viola-Jones face detector. If this stage found a face in one of the head regions it is
highlighted by a surrounding yellow rectangle and handed to the third stage in which
the face recognition is performed.

If the face recognition stage recognizes a face and assigns a label to its region, the
surrounding rectangle will change the color to green to indicate the successful identifi-
cation.

From now on the face recognition and the face detection stage can fail to provide a
positive result in the next frames, as the label of the recognized person will be assigned
to the head region in which the face was detected in the first place. Furthermore the
head regions rectangle will change its colour to a dark blue.

Whenever the face recognition is not able to classify a face into one specific class it
will show the label ’Unknown’. This is the most likely outcome when the database has
only one users data stored and another individual should get recognized.

7 Experiments 7.1 Evaluation of face relevant implementations 47

The last possibility from the face recognition stage is that the detected face is outside
of the mean face class. This will yield the result that no face recognition is possible and
that the label ’No face’ gets assigned to the region.

The evaluation of the two-dimensional face tracking algorithms showed that the
Kalman filter provided us with a result within a small region of the actual face position
as long as the velocity and direction do not change. If they do change the Kalman
filter would constantly loose accuracy as long as no measurement update occurs. The
weakness of the Kalman filter is that it relies solely on the measurements of the face
detection. Whenever false positive detections occur the Kalman filter is mislead.

For the face tracking part of this work the Kalman filter provided better results as
the Lucas-Kanade optical flow algorithm. As we recall the optical flow rely on three
assumptions, which could not be met at all the time. A good example for this is the
fact that during a head rotation, in a fashion that the user first looks frontal into the
camera and then to the side in one smooth motion. During this movement the lighting
condition will most likely change, because the primary light source in a room is at a
fixed point in space during such an act. Therefore assumption is not fulfilled. The same
applies to the assumption that neighbouring points move with the same speed, which
can be assumed in a two-dimensional space, but not in the three-dimensional one. This
can be thought through for a few significant points of a head (e.g. nose, ears) which will
at different speeds. Therefore this method was not further evaluated, as the alternatives
were not limited in such ways.

During training of the face recognition we observed that two out of the ten recorded
rosbag data files did not contain enough information to learn their faces into the clas-
sification database. The data of these test subjects were therefore only used for the
evaluation of face tracking. The standard implementation using the Eigenface method
in the people_perception module provided a positive recognition at more than 90% of
the trials, the two failed candidates not included, without further modifications.

7 Experiments 7.1 Evaluation of face relevant implementations 48

(a) 2D detection and Kalman filtered tracking (b) 3D head and face detection

Figure 7.1: Tracking and recognition of Andreas

7 Experiments 7.1 Evaluation of face relevant implementations 49

(a) 2D detection and Kalman filtered tracking (b) 3D head and face detection

Figure 7.2: Tracking and recognition of Isabella

7 Experiments 7.1 Evaluation of face relevant implementations 50

(a) 2D detection and Kalman filtered tracking (b) 3D head and face detection

Figure 7.3: Tracking and recognition of Suedi

7 Experiments 7.1 Evaluation of face relevant implementations 51

(a) 2D detection and Kalman filtered tracking (b) 3D head and face detection

Figure 7.4: Tracking and recognition of Johnny

7 Experiments 7.1 Evaluation of face relevant implementations 52

(a) 2D detection and Kalman filtered tracking (b) 3D head and face detection

Figure 7.5: Tracking and recognition of Berni

7 Experiments 7.1 Evaluation of face relevant implementations 53

(a) 2D detection and Kalman filtered tracking (b) 3D head and face detection

Figure 7.6: Tracking and recognition of Matze

7 Experiments 7.1 Evaluation of face relevant implementations 54

100

150

200

250

300

350

400

450

500

550

0 100 200 300 400 500 600 700 800

x
p

os
it

io
n

frame

ground truth
detected positions

filtered positions

(a) center x-position over time

100

200

300

400

500

0 100 200 300 400 500 600 700 800

y
-p

os
it

io
n

frame

ground truth
detected positions

filtered positions

(b) center y-position over time

Figure 7.7: Detected and Kalman filtered face xy-positions of Andreas

7 Experiments 7.1 Evaluation of face relevant implementations 55

200

300

400

500

600

0 100 200 300 400 500 600 700 800

x
p

os
it

io
n

frame

ground truth
detected positions

filtered positions

(a) center x-position over time

200

250

300

350

400

450

500

0 100 200 300 400 500 600 700 800

y
-p

os
it

io
n

frame

ground truth
detected positions

filtered positions

(b) center y-position over time

Figure 7.8: Detected and Kalman filtered face xy-positions of Davor

7 Experiments 7.1 Evaluation of face relevant implementations 56

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300

x
p

os
it

io
n

frame

ground truth
detected positions

filtered positions

(a) center x-position over time

100

200

300

400

500

0 50 100 150 200 250 300

y
-p

os
it

io
n

frame

ground truth
detected positions

filtered positions

(b) center y-position over time

Figure 7.9: Detected and Kalman filtered face xy-positions of Manuel

7 Experiments 7.2 Evaluation of the object classification 57

7.2 Evaluation of the object classification

The object classification was also subject to verification. For this a training database
was generated from 3D models, freely available from Google 3D Warehouse 16. Nine
categories were chosen for the evaluation of the implementation. The categories and
there recognition rate is later shown in table 7.1, but first the process of the analysis is
explained.

Acquire and prepare 3D model
Download the model for the respective class from 3D Warehouse. As these are in
the Collada file format we use the open source program MeshLab17 to convert it
into the Polygon File Format. The resulting .ply files are placed in a subfolder,
named after the corresponding class inside
/Model3DClassification/database/TrackingDB.

Database training
Startup the Model3DClassification and sent the String "train" to the ROS topic
/M3D/trainer_requests once. From these ply files the random decision forest is
trained by creating point clouds from the 3D models and running those through
the forest.

Object classification
The point clouds, recorded with the Kinect sensor, are fed into the decision for-
est which is now in its classification mode. For each object class label and the
probability of this class is returned.

average success rate

mug 97.54%

horse 95.21%

banana 98.30%

plane 96.48%

water filled bottle 07.21%

car 95.42%

hammer 93.21%

microphone 47.82%

Table 7.1: Average success rate of object classification

Most of the items we used for this tests had a successful classification rate above 90%.
The water filled bottle proved to be the most problematic candidate. This is not due
to problems with the classification itself, but with the recording of the depth data with

16http://sketchup.google.com/3dwarehouse/
17http://meshlab.sourceforge.net

http://sketchup.google.com/3dwarehouse/
http://meshlab.sourceforge.net/

7 Experiments 7.3 Comparison of speech recognition packages 58

the Kinect sensor. The transparent surface of the bottle combined with the reflections
from the water within the bottle did result in multiple separated point clouds which
were classified as a bottle with a single-digit success rate.

The images (7.10, 7.11, 7.12 and 7.13) were taken during the classification experiments
and represent a small subset of data that was recorded and processed.

Figure 7.10: Coloured point cloud for object: hammer

7.3 Comparison of speech recognition packages

For voice recognition three systems were evaluated. These are PocketSphinx from
Carnegie Mellon University, Dragon Mobile from Nuance and Voice typing from Google.
The evaluation was done with the following procedure.

• Create a list of words and sentences which should be recognized.

• Create language model and dictionary for PocketSphinx.

• Record sentences and plain words to test against the candidates.

• Obtain or build sample applications for evaluation.

• Play the words and sentences to the candidates and save the number of tries the
program needs to correctly identify the spoken words. Repeat this up to five times.

The results for a subset of individuals from the evaluation process are shown in ta-
ble 7.2. The number represent the quantity of repeats after which the tested recognition
engine would deliver a correct result. A ’-’ denotes that the speech recognition engine

http://cmusphinx.sourceforge.net
http://www.nuancemobiledeveloper.com
https://code.google.com/p/google-voice-typing-integration/

7 Experiments 7.3 Comparison of speech recognition packages 59

Figure 7.11: Coloured point cloud for object: plane

Figure 7.12: Coloured point cloud for object: microphone with cable

7 Experiments 7.3 Comparison of speech recognition packages 60

Figure 7.13: Coloured point cloud for object: car

did not successfully return the precise dictated sentence or word. As we can see Pock-
etSphinx can recognize most of the words without the need for more than two repeats.
Sentences represent a major problem, especially when a sentence was slightly altered.
Just by changing an indefinite to a definite article the basic recognition by PocketSphinx
shows severe problems. Nuance’s and Google’s recognition services handle this kind of
work much better. This higher recognition rate is due to the fact that their applications
can rely on a bigger and optimized language and acoustic model to work with, as well as
the possibility to examine sentences after the recognition against a plausibility model.
By doing so a command like "take out the car" which probably meant "take out the cat"
is corrected before it is sent to the user. After the evaluation of the recognition results
we chose to use the recognition library provided by Nuance. Its recognition rate was
at least on par with the system provided by Google. PocketSphinx could not keep up
with the other two. One main reason to use Nuance was the fact that changing the
recognized language can be handled from within the system itself, a feature which could
not be replicated in the Google application.

As these trials were conducted at the beginning of this master thesis the circumstances
could have changed. Google has implemented a new speech recognition, Google Now,
in its applications for Android. This provides, in contrast to Nuance, the ability to
implement an offline-only speech recognition application. The problem with this is that
no stable Application programming interface has been released yet.

7 Experiments 7.3 Comparison of speech recognition packages 61

candidate 1
(female)

candidate 2
(male)

candidate 3
(male)

G
o
og

le

N
u

an
ce

P
o
ck

et
S

p
h

in
x

G
o
og

le

N
u

an
ce

P
o
ck

et
S

p
h

in
x

G
o
og

le

N
u

an
ce

P
o
ck

et
S

p
h

in
x

AGAIN 1 1 1 1 1 3 2 2 1

AIRPLANE 2 1 1 1 2 1 2 2 2

APPLE - 1 - 4 1 - 4 2 3

ARE - 5 - - 4 1 5 5 -

BANANA 1 1 1 1 1 1 1 1 1

BOWL - 4 3 4 3 2 - 5 3

BYE 2 1 1 2 2 1 3 1 1

CAR - 2 1 3 2 2 - 3 1

DONE 4 2 1 3 3 1 4 3 1

EVA 1 1 2 1 1 1 2 1 1

FIND 1 1 1 1 1 1 2 1 1

GOOD - 2 5 4 3 4 4 2 4

HAMMER - 2 2 3 2 1 - 3 1

HOW 3 2 - 3 2 4 3 1 4

JOB 3 1 1 3 1 1 2 2 1

LOOK 1 1 - 1 1 3 1 1 3

MUG - - 1 5 5 1 - - 2

SEARCH 1 1 1 1 1 1 1 1 1

SLEEP 3 2 4 3 3 3 2 1 5

START - 2 - 2 2 1 3 1 4

STOP 2 1 3 3 1 2 2 2 4

WELL - - 1 3 3 2 4 4 2

WHO 1 2 2 2 2 1 1 1 1

YOU 1 1 1 2 2 1 2 1 3

FOLLOW 4 2 - 4 2 4 3 1 4

HELLO 1 1 - 1 2 4 1 1 4

HOW ARE YOU 1 1 5 2 2 4 1 1 4

FIND HAMMER 2 2 1 2 2 3 2 1 2

FIND BANANA 2 1 - 1 2 3 1 1 4

FIND MUG 3 - - 2 4 2 3 2 4

SEARCH CAR 1 2 1 2 2 2 2 2 5

Table 7.2: Speech recognition results from three speakers
Green entries mark the best result
Blue entries denote a tie between the marked speech engines

8 Conclusion

In this thesis we showed that a natural multimodal interaction between human and
robots is reliable, but by no means perfect. The voice recognition has a good success
rate and is able to understand most commands after one or two repetitions. Possible
ways to improve the recognition rate include the usage of a dedicated microphone instead
of the tablets internal or the implementation of a context aware recognition logic which
can evaluate the results based on the surroundings of the robot. The Viola-Jones face
detection performed well inside the expected limits and provided, in combination with a
Kalman filter, a reliable method to implement a face tracking solution. Using filter cas-
cades for different views of faces other than frontal could provide improved results. The
face recognition based on the data from this approach could not provide solid findings.

The mixed 3D and 2D face recognition process was able to recognize eight out of ten
individuals after the short learning phase. The pre-recorded video and point cloud se-
quences of the remaining two test subjects failed to provide the required amount of data
for the learning process. The amount of needed data was lowered for evaluation pur-
poses, but it was soon discovered that these modifications showed a significantly higher
false positive rate for face recognition rate. The best results were obtained when only
one person was in the line of sight of the Kinect sensor and the face was frontal to the
camera for the whole time of the recorded scene.

The object classification provided an accurate classification for the objects within the
trained classes. Some objects outside of them were randomly classified into one of the
trained classes (e.g. bowl classified as a mug). Problems occurred when multiple objects
were close together as there point clouds were connected and formed an object which
could not be recognized. Another problem was observed when the surface on which the
objects rested could not be removed entirely, which changed the analysed cluster in such
a fashion that the classification did not result in a correct manner.

The future outlook for multimodal interaction between humans and robots is bright.
Speech recognition is well on the way to replace traditional input methods like touch
input on a screen and will provide an easier way to control robots in the next years. Face
detection suffers from false positive recognitions based on unrelated objects most often
in the background of the user itself. With the help of 3D data we are able to reduce this
problem already. Future detections should move away from the face centred detection
of individuals and incorporate multiple sensors like contactless temperature and vital
signs sensors to accurately detect and maybe even identify an individual. To the object
classification the next step will be to the object recognition, which should provide the

62

8 Conclusion 8 Conclusion 63

ability to distinguish between an object of one user or another, even if both of them are
in the same object class.

Provided these improvements were made human robot interaction will be simplified
in a significant amount.

Bibliography

[1] Peter N. Belhumeur, João P. Hespanha, and David J. Kriegman. Eigenfaces vs.
fisherfaces: Recognition using class specific linear projection, 1997.

[2] Kevin W. Bowyer, Kyong Chang, and Patrick Flynn. A survey of approaches and
challenges in 3d and multi-modal 3d & 2d face recognition. Computer Vision and
Image Understanding, 101:1 – 15, 2006.

[3] Gary Bradski and Adrian Kaehler. Learning OpenCV. O’Reilly Media Inc., 2008.

[4] Chi-Ho Chan, Josef Kittler, and Kieron Messer. Multi-scale local binary pattern
histograms for face recognition. In Proceedings of the international conference on
Advances in Biometrics, pages 809–818. Springer-Verlag, 2007.

[5] Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass
kernel-based vector machines. Journal of Machine Learning Research, 2:265–292,
2002.

[6] Antonio Criminisi, Jamie Shotton, and Ender Konukoglu. Decision forests for clas-
sification, regression, density estimation, manifold learning and semi-supervised
learning. Technical report, Microsoft Research, 2011.

[7] H.K. Ekenel, Hua Gao, and R. Stiefelhagen. 3-d face recognition using local
appearance-based models. IEEE Transactions on Information Forensics and Se-
curity, 2:630–636, 2007.

[8] J.C. Gower. Generalized procrustes analysis. Psychometrika, 40:33–51, 1975.

[9] European Telecommunications Standards Institute. Speech processing, transmission
and quality aspects; distributed speech recognition; front-end feature extraction
algorithm; compression algorithms, 2003.

[10] Cheuk Yiu Ip, Daniel Lapadat, Leonard Sieger, and William C. Regli. Using shape
distributions to compare solid models. In Proceedings of the seventh Association
for Computing Machinery symposium on Solid modeling and applications, pages
273–280, 2002.

[11] Chadawan Ittichaichareon, Siwat Suksri, and Thaweesak Yingthawornsuk. Speech
recognition using mfcc. In IEEE International Conference on Software Mainte-
nance, 2012.

64

Bibliography Bibliography 65

[12] D. Jurafsky and J.H. Martin. Speech and language processing: an introduction
to natural language processing, computational linguistics, and speech recognition.
Prentice Hall series in artificial intelligence. Prentice Hall, 2000.

[13] Kalman, Rudolph, and Emil. A new approach to linear filtering and prediction
problems. Transactions of the ASME - Journal of Basic Engineering, 82:35–45,
1960.

[14] Slava M. Katz. Estimation of probabilities from sparse data for the language model
component of a speech recognizer. In IEEE Transactions on Acoustics, Speech and
Signal Processing, pages 400–401, 1987.

[15] A. Koschan, V.R. Ayyagari, F. Boughorbel, and M.A. Abidi. Automatic 3d face
registration without initialization. In Andreas Koschan, Marc Pollefeys, and Mongi
Abidi, editors, 3D Imaging for Safety and Security, volume 35 of Computational
Imaging and Vision, pages 69–93. Springer Netherlands, 2007.

[16] Beth Logan. Mel frequency cepstral coefficients for music modeling. In In Interna-
tional Symposium on Music Information Retrieval, 2000.

[17] Binu Mathew. The Perception Processor. PhD thesis, School of Computing, Uni-
versity of Utah, 2004.

[18] Sebastian Mika, Gunnar Rätsch, Jason Weston, Bernhard Schölkopf, and Klaus-
Robert Müller. Fisher discriminant analysis with kernels, 1999.

[19] T. Ojala, M. Pietikainen, and D. Harwood. Performance evaluation of texture
measures with classification based on kullback discrimination of distributions. In
International Conference on Pattern Recognition, volume 1, pages 582–585 vol.1,
1994.

[20] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. Matching 3d models with
shape distributions. In International Conference on Shape Modeling and Applica-
tions, pages 154 –166, 2001.

[21] C Papageorgiou, M Oren, and T Poggio. A general framework for object detection.
In Proceedings of IEEE International Conference on Computer Vision, 1998.

[22] Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications
in speech recognition. In Proceedings of the IEEE, pages 257–286, 1989.

[23] S. S. Stevens, J. Volkmann, and E. B. Newman. A scale for the measurement of the
psychological magnitude pitch. The Journal of the Acoustical Society of America,
pages 185–190, 1937.

[24] Richard Szeliski. Computer Vision: Algorithms and Applications. Springer-Verlag
New York, Inc., 2010.

Bibliography Bibliography 66

[25] Paul Viola and Michael Jones. Robust real-time object detection. In International
Journal of Computer Vision, 2001.

[26] Greg Welch and Gary Bishop. An introduction to the kalman filter, 1995.

[27] Max Welling. Fisher linear discriminant analysis, 2005.

[28] W. Wohlkinger and M. Vincze. Ensemble of shape functions for 3d object classifica-
tion. In IEEE International Conference on Robotics and Biomimetics, pages 2987
–2992, 2011.

[29] Ming-Hsuan Yang, D. Kriegman, and N. Ahuja. Detecting faces in images: a survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24:34–58, 2002.

	1 Introduction
	2 System decisions
	2.1 Used frameworks
	2.2 Systems state machine

	3 Face detection and recognition
	3.1 Face detection
	3.1.1 Viola-Jones Algorithm

	3.2 Face recognition
	3.2.1 Eigenfaces
	3.2.2 Fisherfaces
	3.2.3 Local binary patterns histograms
	3.2.4 3D face recognition using local appearance-based models

	3.3 Implementation

	4 Face tracking
	4.1 Lucas-Kanade
	4.2 Discrete Kalman filter
	4.3 Implementation with Kalman filter

	5 Object classification
	5.1 Ensemble of shape functions (ESF) descriptor
	5.2 Decision forests for classification
	5.3 Implementation

	6 Speech recognition
	6.1 Speech recognition
	6.2 Mathematical background
	6.3 Implementation

	7 Experiments
	7.1 Evaluation of face relevant implementations
	7.2 Evaluation of the object classification
	7.3 Comparison of speech recognition packages

	8 Conclusion

