
Online Test Vector Insertion –
A Concurrent Built-In Self-Testing (CBIST)

Approach for Asynchronous Logic

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Jürgen Maier

Matrikelnummer 0825749

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Steininger

Wien, 12.08.2014
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





Online Test Vector Insertion –
A Concurrent Built-In Self-Testing (CBIST)

Approach for Asynchronous Logic

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

by

Jürgen Maier

Registration Number 0825749

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Steininger

Vienna, 12.08.2014
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at





Erklärung zur Verfassung der Arbeit

Jürgen Maier
Eschenweg 1, 2223 Martinsdorf

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i





Acknowledgements

First of all I want to thank my advisor professor Andreas Steininger for introducing me to that
very interesting and thrilling field of application and his guidance while working on this thesis.
I also want to thank my dear colleague Stefan Mödlhamer, who helped to improve the quality of
this thesis with his indispensable input. Last but not least I would like to thank Sandra Burin for
her patience while checking the thesis for grammar flaws as well as my parents for their never
ending support throughout my studies.

iii





Abstract

Testing electronic circuits during their operation in the field is mandatory to ensure correct func-
tionality over a long period of time. To avoid fault accumulation test vectors have to be applied
actively to the circuit under test, without disturbing the normal operation. In synchronous cir-
cuits this topic has been investigated thoroughly, however for asynchronous ones, a more and
more emerging design paradigm due to its superior properties, only few test approaches are
available. In this thesis a novel concurrent Built-In Self-Testing (CBIST) approach is presented,
that is capable of testing asynchronous logic without interrupting the normal operation at any
point in time. For that purpose the rather unproductive NULL-phase of a 4-phase communica-
tion protocol is replaced by dedicated TEST values, which are generated and analysed on chip.
In detail two 4-phase input streams (user and test data) are combined to a 2-phase one, which is
afterwards processed by the circuit under test and then split up into two 4-phase streams again.
The units responsible for merging and splitting had to be implemented from scratch due to miss-
ing references in literature, both for the bundled data and completion detection communication
style and in several versions, differing by their complexity and level of concurrency. The pro-
posed test procedure has the advantage that the test data are independent of the user data and
can therefore be defined already at design time. This yields several advantages, for example the
possibility to test rather complex structures like cyclic pipelines. As our assessment shows, the
price for the test approach in terms of increased hardware effort and additional delay is very
moderate, especially for large circuits. For those reasons the proposed test approach is a good
alternative if data processing must not be interrupted at all.
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Kurzfassung

Um zu gewährleisten, dass eine elektronische Schaltung auch über längere Zeit gemäß ihrer
Spezifikation arbeitet, ist es zwingend notwendig, diese im laufenden Betrieb zu testen. Zur
Verhinderung von Fehlerakkumulation innerhalb der Schaltung müssen Testvektoren aktiv an
die zu testende Einheit weitergegeben werden, ohne natürlich die normale Funktionsweise ein-
zuschränken. Für synchrone Schaltungen wurde dieses Thema schon zur genüge erforscht. Für
asynchrone Implementierungen, die sich aufgrund ihrer zahlreichen Vorteile immer stärker ver-
breiten, sind jedoch relativ wenig Testmethoden vorhanden. In dieser Arbeit wird deshalb ein
völlig neuartiges Testverfahren präsentiert, das es ermöglicht, asynchrone Schaltungen zu tes-
ten, ohne die normale Funktion auch nur ein einziges Mal zu unterbrechen. Zu diesem Zweck
wird die eher unproduktive NULL Phase eines 4-Phasen Kommunikationsprotokolls durch dezi-
dierte Testvektoren ersetzt, die direkt am Chip erzeugt und analysiert werden. Im Detail werden
zwei 4-Phasen Eingänge zu einem 2-Phasen Ausgang kombiniert, der anschließend von der zu
testenden Schaltung verarbeitet und am Ende wieder in zwei 4-Phasen Ausgänge aufgespalten
wird. Die Schaltungen, die das Verschmelzen bzw. Aufspalten übernehmen, mussten komplett
neu entwickelt werden, da in der Literatur nichts Vergleichbares gefunden werden konnte. Diese
Einheiten wurden für die bundled data als auch für die completion detection Kommunikati-
onsmethode in unterschiedlichen Versionen implementiert, welche sich durch ihre Komplexität
und den Grad der Parallelität unterscheiden. Die vorgestellte Testmethode hat den Vorteil, dass
die Testdaten komplett unabhängig von den Nutzdaten gewählt werden können, was es mög-
lich macht, diese bereits im Zuge der Entwicklung zu bestimmen. Dies hat etliche Vorteile, so
gewährt es zum Beispiel die Möglichkeit, sehr komplexe Strukturen, wie etwa zyklische Pipe-
lines, zu testen. Wie unsere Analysen zeigen, fällt der Preis dieser Testmethode, ausgedrückt in
zusätzlicher Hardware und Verzögerungszeit, sehr moderat aus, besonders bei großen Schaltun-
gen. Aus diesem Grund stellt die hier präsentierte Methode eine gute Alternative dar, wenn die
laufende Datenverarbeitung auf keinen Fall unterbrochen werden darf.
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CHAPTER 1
Introduction

Over the last few decades a tremendous shrinking of the feature size of electronic circuits has
been observed, making it possible to implement more and more logic on the same die size.
Together with the trends to higher speed and lower supply voltages [29] this leads to an in-
creased sensitivity to disturbances, making it unreasonable to assume the correct functionality
of a unit, once tested after fabrication, throughout its whole lifetime. The fact that more and
more critical tasks, i.e. those where an unintended behaviour has severe consequence, are han-
dled by integrated circuits drives the need to assure, that a unit is working along its specification.
Some approaches, for example triple modular redundancy (TMR), are designed to tolerate a
certain amount of faults. However, especially for long operation times, this yields several dis-
advantages, because it is commonly known that a TMR exhibits lower reliability compared to
a normal approach, as soon as one replicate encounters a permanent fault [14]. For that reason
test approaches are required that examine circuits and detect existing faults. A straight forward
approach is to monitor input and output values of the circuit under test (CUT) and determine, if
the output generated based on the inputs is valid or not. The big disadvantage of these methods
is, that the test vectors are determined by the input data making it possible, that some parts of
the circuit are not tested for a very long period, enabling fault accumulation [20, 29]. If all of
these faults are activated later at once they may exceed the capabilities of the used fault-tolerance
approach, which in general utilise the single fault model, i.e. they are able to handle one fault at
a time. To prevent fault accumulation actively applying test values to the CUT during its normal
operation becomes mandatory.

Asynchronous circuits are receiving increasing attention due to their superior properties
compared to their synchronous counterparts [11, 12, 23]. In contrast to the latter ones no central
clock is required to control the circuit, but instead the units inside communicate with each other
by using handshake protocols. These are used to indicate the succeeding unit that new data are
available or to tell the preceding one that the data have been processed and are not required
any more. This mechanism makes the asynchronous design style event driven and timing much
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more flexible, yielding an improved tolerance to process,voltage and temperature (PVT) vari-
ations. The main advantages, however, are that it naturally tackles the current problems with
synchronous circuits, namely low skew clock networks and high power dissipation, due to its
absence of a clock and the event driven working procedure. One important reason why asyn-
chronous circuits, introduced already several decades ago, are not spread widely is their bad
testability which results from the high level of concurrency. The fact that the single components
of the CUT coordinate themselves results in a huge amount of possible states the system may be
in, yielding a very high test effort.

The goal of this thesis is to tackle the bad testability of asynchronous circuits by implement-
ing a novel online test approach, i.e. one that actively applies test vectors to the circuit under test
during its normal operation. To achieve real concurrency the rather unproductive NULL-phase
of a 4-phase handshake protocol1 is utilised for testing. For that purpose the NULL values are
replaced at the input of the CUT by dedicated TEST values and the resulting data stream is then
processed. At the end the TEST values are removed again and checked for correctness, resulting
in a unit, that uses the 4-phase protocol at its interfaces but the 2-phase one inside. In this thesis
it is analysed what infrastructure is necessary to implement this test approach for the bundled
data and completion detection design style together with a critical reflection on its properties.

Unfortunately the units inserting and removing the TEST values had to be designed from
scratch due to missing references in literature. Several designs are presented in this thesis for
these units, differing in complexity and level of concurrency. The circuit implementations are
derived by designing the desired behaviour in a state transition graph (STG) and afterwards
converting it automatically to a net list. To show the correct functionality of the approach a
proof-of-concept implementation is used, which also states the basis for overhead considerations
in the value and time domain.

This thesis is structured in the following way: In chapter 2 one will find a State-of-the-Art
analysis of currently available implementations. In chapter 3 concepts as well as definitions used
throughout the thesis are shortly described, followed by an overview of the used methodology
in chapter 4. The chapters 5, 6, 7 and 8 then show the concrete implementation in theory, a
proof-of-concept implementation, including an area and delay overhead analysis, is presented in
chapter 9. Finally a critical reflection on and characterisation of the proposed test approach is
carried out in chapter 10 followed by a final conclusion (chapter 11).

1An explanation as well as additional information on these topics follow in section 3.
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CHAPTER 2
State-of-the-Art

Verifying that an electronic circuit is working according to its specifications is a well researched
field in dependable computing. In this chapter existing approaches are presented, whereat two
fundamental test methods are distinguished: concurrent checking and (online) testing. If the
circuit under test has to be tested in the field it is crucial that no external units are required
for testing, meaning that all necessary parts of the test approach have to be integrated on chip,
also known as Built-In Self-Test (BIST). As one can imagine these approaches are of growing
interest due to the increasing application of electronic devices in mobile applications. It would
be unimaginable, if such a unit has to be connected to a separate test device to ensure its correct
functionality. Many of the approaches shown in this section can be integrated as BIST approach,
yielding more or less hardware overhead.

Concurrent Checking

Test approaches in this group observe the output and input of the CUT during its normal oper-
ation and determine, if the calculated result based on the input values is correct. To determine
the correctness of the output values some kind of redundancy has to be introduced which how-
ever differs from approach to approach. One very favourable property of this procedure is, that
it can be carried out completely concurrent to the normal operation, due to the fact that the
input and output lines are only observed. In addition the results are available (nearly) in real
time, yielding fantastic response times. This properties make these approaches very well suited
to detect transient and intermittent faults (see section 3.10), however not for permanent ones.
The reason is, that the test values, i.e. the input values, are not controllable, making it possible
that certain parts of the circuit are not tested for a long time, implying the possibility of fault
accumulation [20, 29].

The above mentioned redundancy can be introduced in many different ways, for example in
the space domain. For that purpose either the CUT gets duplicated or a unit carrying out the same
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functionality is implemented and connected to the same inputs. For error detection the outputs
of both units are compared and if they differ an error has appeared [31]. Careful design of both
implementations is advised to assure, that a fault is not present in both units, which would yield
it undetectable. A very simple implementation for the additional unit is for example a lookup
table realised by a storage element. This method works fine as long as both implementations do
not produce identical errors, as outlined in [16], requires however a huge hardware overhead.
In addition it is vulnerable to faults on shared resources like the clock signal. Researches have
also discovered several shortcomings when used with asynchronous logic [41]. An even simpler
approach also presented in [16] uses the additional unit solely to predict the parity of the output
lines. This method however relies on the single fault assumption, i.e. that at a time only one
fault exists. If a linear system, i.e. one having a linear relationship between input and output,
has to be tested, the additional unit can be used to calculate the output analytically, as shown
in [32].

A quite different approach uses codes for error detection. In detail the input lines are encoded
leading to encoded output lines [20,26]. A fault is detected if the output value is not a valid code
word, requiring additional data lines and therefore increased area. In addition the code has to
be designed thoroughly, such that it is capable of detecting all modelled faults, which is a very
challenging task. However it is possible that certain faults are only detectable by non-code
words, making the approach incapable of detecting all faults, since non-code words will never
be processed [18].

In addition to checking the logic values on the lines, [20] mentions the possibility to observe
reliability indicators such as electric current, temperature, intermediate voltage, output activity
and total dose to predict correct behaviour. By checking e.g. the power consumption it is possible
to detect faults, that do not alter the output results, but for example increases the drained current
[39], which may be a severe failure in modern low power applications. In addition it is possible
to implement protocol checkers with this approach, assuring the correct temporal behaviour of
a unit, due to the fact that CMOS circuits only consume power when they switch. A necessity
for this approach however are current measurement units that are fast and precise enough for the
given problem.

(Online) Testing

As mentioned before concurrent checking approaches allow fault accumulation. If even faults
in rarely used parts of the CUT have to be detected reliably, as it is the case for units with
long operation times, actively applying test vectors becomes mandatory. To detect a fault the
output, like with concurrent checking, is investigated, with the difference, that the expected
result can be precalculated. This makes it, at least in theory, possible, to check the semantic of
the output signal and not just its syntax. Online testing, however, requires to interrupt the normal
operation, implying a degradation of the delivered service. Therefore a proper integration of the
test procedure yields a very big challenge. To assure efficient and fast error detection online test
approaches are measured on the following quality criteria [14]:
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• low performance penalty for the application

• high test coverage for a given fault model, determined by the quality and amount of test
vectors

• low error detection latency, determined by the period required to apply the whole set of
test vectors

Two fundamental properties have to be fulfilled by an online test approach:

non-interference in time domain The normal operation must not be delayed beyond the point
that deadlines are missed. This can be assured by either including the test procedure into the
schedule, which decreases the response time, or by making the test process preemptive [29]. For
example is it imaginable to start the test procedure when the circuit is idle or at fixed points in
time, independent of the current workload.

non-interference in value domain The internal state of the circuit must not be altered during
the test. More specifically the first user data value that is processed after the test has finished
must see the same environment as if it was processed right before the test. For that reason so
called “transparent” test approaches are required, which restore the system state after they have
been executed. [19] shows such a test approach for RAMs, where several operations are carried
out on the data, eventually leading back to the original values (for example two times XOR).
Another transparent approach is described in [1], where reconfigurable blocks in an FPGA are
tested before configuration.

Most online test approaches use two distinct operation modes: In the normal mode the circuit
processes user data and forwards the achieved results, whereas the test circuitry sleeps. Only
after the circuit switches to the test mode, in most cases realised by an input line, the inputs of
the CUT are redirected (for example by MUXes) to the test vector generator and the outputs to
the test response analyser. The purpose of the latter is to compare the received results to the
expected ones and indicate an error if they differ. It would of course require lots of memory
to store the response to each single test vector, therefore so called compactors are used that
generate unique values based on the received results [23,25,27]. Concrete implementations can
be found for example in [17,21], which mainly differ in the way the test vectors are generated and
analysed. Please note, that for certain approaches the test response analyser, i.e. the compactor,
can be replaced by a checker [12]. As mentioned testing is only carried out when the circuit is in
the test mode. When and how long it enters that state largely depends on the specific application
and has to be determined at design time.

A different approach, called scan chain test, uses the internal storage elements to set the
CUT to a specific state. Therefore all internal storage elements are connected to a linear chain,
making it possible to shift the desired setting into the circuit under test. After the state was set,
normal operation is started, but only for a very short amount of time. Afterwards the connected
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storage elements are read out in the same fashion as before and the received state is compared to
a reference value. This approach makes it possible to test each imaginable system configuration
making it a very extensive test method. The downside is, as one can imagine, that it takes quite
some time to shift in a new state and afterwards shift out the result. This implies that the normal
operation also has to be interrupted for a long time. Furthermore in general additional devices
are required to compare the resulting state to the intended one, making it not well suited for
online testing. For synchronous circuits the amount of steps the test approach carries out can
be controlled very well by the clock signal, which however is not available in asynchronous
ones. Therefore the integration in these is a lot harder, but has already been achieved in several
approaches [2, 23, 37].

Due to the dramatic shrinking of transistor sizes more and more logic can be placed on a sin-
gle chip, making it possible to implement general purpose processors in embedded applications.
This yields the possibility to shift testing to a higher level of abstraction, i.e. into the software
domain, also called Software Based Self Test (SBST) [22]. In this domain complementary test
methods are possible: A test procedure especially designed to activate every part of the chip is
run from time to time and the generated results are analysed. The main difficulty in this case
is the development of that specific test procedure. Of course also non-interference in the time
domain has to be assured, which however can be implemented by using the scheduler of the
processor [3]. Redundancy can also be introduced in the time domain, for example by double
execution. In that case the calculations are carried out twice and the results of both runs are af-
terwards compared [10]. This makes it possible to detect transient faults that only effect a single
computations however permanent ones, altering both, can not be detected. Even more elabo-
rate mechanisms, exploiting the possibilities of processors, are realisable. The approach in [7],
for example, uses the debug port to observe the control flow inside the processor. In detail the
checker controls which branches are taken and generates checksums on the executed commands
to assure the correct functionality.

Unfortunately no completely concurrent test approach, actively applying test vectors, could
be found in literature. A very interesting approach, combining properties from concurrent check-
ing and online testing, is called input vector monitoring Concurrent BIST [46]. This method
determines a subset of all possible input vectors as test set. As soon as a new input vector is
applied to the CUT it is checked if that value is part of the test set and if it has not been pro-
cessed in the current cycle. If that is the case the output of CUT is compressed in a compactor.
After all vectors of the test set have shown up the computed signature is compared to a precal-
culated value. Due to the fact that the input values are not controllable it might happen, that the
set is never received completely, yielding the test procedure unfinished and stuck. To prevent
this, the circuit switches to a special test mode if testing was not finished within a certain time
interval and the still missing vectors are actively applied to the input. The earliest implemen-
tation of this approach has been proposed in [28] and was afterwards extended several times in
w-MCBIST [46], SWiM-BIST [44], MICSET [48], R-CBIST [49], exploiting “X” values [43],
NEMO [45] and w-CBIST [47], just to name a few. These differ mainly in the way the input
vectors are detected as member of the test set. In the first version the input value is compared
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to a value generated by a generator unit. Only when that value is detected the next one is gen-
erated. In future implementations this mechanism has been improved for example by window
based approaches, capable of comparing more vectors at the same time, or by utilising RAMs.

Asynchronous Circuits

Most of the available test procedures were developed for synchronous circuits and afterwards
adapted to asynchronous ones. Due to the fact that the two implementations may differ signifi-
cantly (e.g. handshake lines, dual rail) not all possible faults are detectable by these approaches.
For example is it a common mistake to assume that faults on the control lines cause a circuit to
halt automatically; in fact that is only true for stuck-at faults under various constraints as pointed
out in [30]. Others may for example introduce additional transitions, causing severe malfunc-
tions of the CUT. Therefore protocol checkers have been developed [30, 52], which check the
control lines not only in the value but also in the time domain. In the latter case the correct
temporal order of the signals is assured, for example that a new value is only indicated after the
old one has been acknowledged or that an acknowledge signal is only sent after new data values
have been received.

Asynchronous circuits are in general harder to test due to the missing clock signal and the
therefore increased concurrency of the single components of a chip. This makes it (nearly) im-
possible to verify each possible system state in an offline test. Therefore online test approaches,
like the one proposed in this thesis, become even more valuable, because they are capable of
testing the unit during its normal operation.
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CHAPTER 3
Background on Asynchronous Logic

The purpose of this chapter is to give a short overview of the concepts and definitions applied in
the thesis. For more detailed information on each topic follow the references stated in the text.

3.1 Asynchronous Circuits

Only a small percentage of today’s circuits are asynchronous, despite the fact that they have
been invented a long time ago. However nowadays the number of implementations is rising
due to their advantages compared to synchronous logic. The following listing gives a short
overview over the most important properties of asynchronous logic and the main differences to
the synchronous one.

Asynchronous circuits ...

• possess no central clock. The units coordinate themselves using handshake signals, indi-
cating that data are available or have been processed. This mechanism also renders time
consuming timing analysis unnecessary.

• are more robust against additional delays introduced for example by environmental changes,
e.g. temperature or voltage. They simply lower their working speed but will continue to
deliver results, not fail completely as synchronous ones do, when timing violations occur.

• consume less power compared to synchronous circuits because they only work when new
data are available. In the synchronous case the clock drives the circuit always, even if
nothing has to be done. In addition the clock network itself consumes a lot of power too
1.

1Please note that power saving mechanisms like clock gating were introduced in synchronous designs to tackle
those problems.

9



Figure 3.1: (a) 2-Phase and (b) 4-phase Signalling [41]

• have a high level of concurrency making development and testing very difficult. In addi-
tion they have to be designed very thoroughly to prevent glitches and spikes.

• lack design tool support because they are not used widely, making development even
harder.

3.2 Handshake Styles

The process used to coordinate the data exchange, i.e. the temporal order of sending and re-
ceiving data between two units, in asynchronous logic is called handshaking. Two fundamental
styles (see also figure 3.1) are used for this purpose:

4-phase

The name yields from the fact that there are four distinct phases in a complete transmission cycle.
In the first one the sender indicates new data to the receiver which the latter acknowledges in the
second phase. In the third one the sender returns to its base state which is again acknowledged
by the receiver in the fourth phase. This method is also called Return To Zero (RTZ) or level
signalling.

The 4-phase communication style uses two differing phases 2, i.e. the DATA-phase holding
the actual value and the NULL-phase used to separate two consecutive DATA values.

Due to the fact that efficient and simple robust function blocks are harder to build using
the 2-phase style, combinational gates are in general realised using the 4-phase communication
style [15].

2These are not connected to the phases the expression 4-phase refers to.

10



2-phase

As the name indicates this style needs only two phases for a single transmission. The sender
indicates new data in the first phase and the receiver acknowledges it in the second one. This
method is also called Non Return to Zero (NRZ) or transition signalling.

When using 2-phase communication DATA values are sent consecutively without any sepa-
rating value in between. To recognise the end of the old value and the beginning of a new one
the data are sent in two alternating phases, which are recognisable by the receiver, similar to the
NULL-phase and DATA-phase of the 4-phase protocol.

The fact that only half of the phases are required to send the DATA values makes this style
faster than the 4-phase one and also more power efficient. However in general the implementa-
tion of efficient function blocks is very difficult [15], which is the reason why it is mainly used
for long communication lines connecting two units that internally use the 4-phase style.

3.3 Bundled Data Approach

A configuration is called bundled data if in addition to the data lines separate request and ac-
knowledge line are installed, which are used to indicate that valid data are ready to be processed
or that the data have been read, more specifically to carry out the handshake protocol. A detailed
description on bundled data is stated in [34, pp. 9-11].

A very important property of bundled data used in this thesis is the necessary delay on
the request line, which is required to assure, that the request signal reaches the next storage
element only after all input lines to that unit already got stable. The appropriate delay has to be
determined at design time by thorough timing analyses and simulations.

The bundled data approach can be seen as an intermediate step between synchronous and
DI3 asynchronous logic. On the one hand it is possible to remove the clock signal however on
the other hand thorough timing analysis, which are very time consuming and hard to execute,
are still mandatory.

The handshake styles described in section 3.2 can be realised by a differing handling of the
request line. In the 2-phase style each transition either from high to low or from low to high
indicates new data whereas with the 4-phase style only a high value on the request line has that
meaning. Due to the fact that no new data are sent in the NULL-phase, a delay of the request
line is not necessary in that particular case. Therefore an asymmetric delay line, that only delays
the high value of the request line, may be used in the 4-phase style. Please note that the same
logic cloud can be used for both styles; only the pipeline nodes have to be changed due to the
differing meanings of the transitions (single edge versus double edge) on the control lines.

3More information on that follow in section 3.5
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3.4 Completion Detection Approach

The completion detection approach [34, pp. 11-13] uses for each data bit multiple wires, in the
following called rails, for transmission. This enables the data themselves to indicate when they
are ready to be processed instead of using a separate line for that purpose, which not only renders
timing analysis unnecessary but also increases the stability.

Using a 4-phase protocol in conjunction with completion detection yields the dual rail NULL
convention logic (NCL), where one rail is named high rail and one low rail. A high value on the
high rail indicates that the sent signal is logic high, and a high value on the low rail stands for
a logic low value. Both wires carrying a high value is not allowed and never appears if every
unit is working correctly. The NULL-phase used to separate two consecutive DATA values is
identified by a low value on both rails.

Level encoded dual rail (LEDR), the 2-phase protocol chosen in this thesis, transmits two
consecutive DATA values without any value in between. To clearly distinguish between old and
new data, two phases are introduced, one where the parity of the two rails is even and one where
it is odd. To signal the receiver a new value only the phase has to change, which can be done
by changing a single rail. When looking at both rails one can see that one of the lines holds the
actual value and the other one is responsible to generate the correct phase. If the DATA value
between two succeeding phases is the same just the phase rail has to toggle to signal a new value.
If the value changes the value rail itself toggles automatically generating a different phase and
therefore indicating a new value.

Besides size and complexity another very important criterion has to be investigated when
using the completion detection approach, namely timing assumptions. A detailed explanation
follows in section 3.5.

3.5 Timing Assumptions

Timing assumptions express what timings have to be fulfilled to make the circuit work as speci-
fied. The fewer the assumptions that have to be made, the more robust the concrete implementa-
tion gets. A short summary of already specified assumptions shall be given here, a more detailed
description can be found in [34, pp. 9-28].

DI Delay Insensitivity is the least restrictive class allowing arbitrary but finite delays. Only
very few circuits are really DI because in general only inverters and Muller-C elements
are allowed [11]. In special configuration also other gates may be used without loosing
DI characteristics.

A clear sign that DI is not fulfilled is the violation of the indication principle ( [34, pp.
14-16]) which states, that every change at the input of a gate has to be recognisable also
at its output. If, for example, an OR-gate forwards a low value it can be said that both
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inputs are low, however if the output is high, it is not possible to distinguish if both of just
a single input lines holds a high value.

QDI Quasi Delay Insensitivity is very similar to DI with just one additional restriction. If a
signal line forks, i.e. is split up and directed to two different units, the signals on both
lines of the fork have to have the same delay, also called isochronic-fork. This implies
that a signal sent reaches both receiving units at the same time, which may be a very
challenging task, as pointed out in [11]. Furthermore the isochronic-fork property may
be violated during operation due to environmental properties such as a local temperature
deviation.

SI A circuit in general consists of several gates that are interconnected and together compute
the desired result. However different paths through these logic gates might have a longer
delay than others, causing gates to switch at different times, producing glitches or sim-
ply incorrect results. A circuit is called Speed Independent if no unintended behaviour is
possible as a consequence of gates switching at different points in time. Due to the fact
that the tool Petrify (section 3.8), used to develop the implementations in this thesis, only
generates SI circuits, this timing assumption is fulfilled by all implementations. In addi-
tion [11] claims, that QDI and SI are identical for practical purposes, making it possible
to assume all designed circuits QDI as well.

Please note that there exist additional, more restrictive, timing assumptions which are how-
ever neglected in this listing, because in this thesis only DI, or if that is not possible QDI, circuits
are presented.

3.6 Data-Validity Schemes and Channel Types

When using the bundled data design style a separate line, more specifically the request line,
indicates that new data are available, however there are different possibilities when the data
really are available at the input of the next unit. Furthermore two different channel types can be
distinguished, more specifically the push and the pull channel. In the first case the sender starts a
transmission by indicating that new data is available, in the latter case the receiver indicates that
it is ready to receive new data which causes the sender to transmit them if available. All these
approaches are shown and described in detail in [34, pp. 116-117]

In this thesis the early data-validity scheme on a push channel is used. In detail the data
lines hold valid data as soon as the request signal reaches the receiver and get invalid as soon as
the acknowledge signal is received at the sender. This implies that the receiver has to read and
process or store the DATA values before the acknowledge signal is sent.
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3.7 Signal Transition Graph

Signal Transition Graphs [11], or short STGs, are a special form of a Petri Net [34, pp. 86-113],
which specify the temporal order of transitions on input and output lines of a component. In this
thesis these graphs are used to generate concrete circuit implementations using the tool Petrify
(section 3.8).

In general an STG consists of places, arcs and special nodes, which are used to split or
combine paths. Due to the fact that the latter are not used in this thesis they won’t be described
in more detail.

place Places in an STG represent a transition either at an input or output line. The transition is
only allowed to occur, in the following also called to fire, if all its input arcs hold a token.
After the place fired the tokens of the incoming arcs are removed and each outgoing arc
receives a single token.

arc An arc connects two places and is able to hold one or more tokens. At the beginning an
initial marking has to be introduced to start the data processing at the intended position.

The STGs shown in this thesis encode the signals using the naming scheme xY s whereas
x ∈ {a, r, p}; Y ∈ {U, T, UT} and s ∈ {+,−}. The first letter specifies the type of the line,
which is either an acknowledge (a), request (r) or a phase detector (p). The letters afterwards
determine which data are delivered on the line, i.e. either the 4-phase types Test Data (T ), User
Data (U ) or the combined 2-phase version User/Test Data (UT ). Finally a ′+′ sign at the end
indicates a rising edge and a ′−′ a falling one.

3.8 Petrify

“Petrify is a tool for synthesis of Petri nets and asynchronous controllers.” [24] In this thesis it is
used to convert STGs to netlists, i.e. into specific circuit implementations. For this thesis version
4.2 compiled 13-Oct-03 at 3:06 PM was used, which can be downloaded at [24]. The used gate
library can be found in section B.1.

3.9 Circuit Drawings

Some of the developed circuits were also drawn using the gates shown in table 3.1. In the
figures the inputs (labels aXX or rXX) are always displayed at the left side, the outputs (labels
aXX or rXX) at the right and signals produced and consumed inside the unit (denoted by
everything except aXX or rXX) at any side. Please note that the term input or output declares
the data signals, the acknowledge line and, if used, the request line as a whole where an input
is recognised by an incoming flow on the data lines and an output by an outgoing one, as it
is also used when describing the overall functionality of a unit. The fact that all signals are
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gate symbol

AND
&

OR
≥ 1

Muller-C
C

Negation
1

Negation at gate input
x

Negation at gate output
x

Connection

Latch

L

enable

Gatekeeper
G

Line accepting information name

Line providing information name

Line accepting information name

Line providing information name

Table 3.1: logic elements and the corresponding symbols used in
graphical circuit representations

referred to by a single term however implies that the acknowledge signal of an input is actually
a line providing information to the outside and the acknowledge signal of an output is actually
receiving information from the outside. For that reason the signal direction is indicated on the
single lines by arrows, as they are shown in the last few lines of table 3.1.
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3.10 Fault Types

To classify fault sources it first of all has to be stated what the difference between fault, error
and failure is. A failure appears, if the behaviour of a unit deviates from its intended one. The
cause of a failure is an error, i.e. an incorrect system state which has been caused by a fault,
an unexpected environmental property [13]. Based on these definitions the following classes of
faults are distinguished [5]:

1. permanent faults: Faults in this category are first of all reproducible meaning that a vector
that activates this fault will do this every time. This implies that the fault does not vanish
by itself but it has to be removed actively. An example for this class are hardware defects
like a broken wire.

2. transient faults: Transient faults are only introduced once and for a short time. Due
to the increasing miniaturisation of circuits and the steady improvements in speed the
importance of this class grows bigger and bigger. The typical example is cosmic radiation
which causes voltage spikes on signal lines.

3. intermittent faults: Faults in this class are in general present all the time, however they
only introduce an error if a specific trigger condition is showing up. Despite the fact that
these faults are reproducible, they are in general very hard to detect and may be easily
confused with transient ones. A typical example for this class is a software fault, that only
produces a wrong result if a specific input value is received.

3.11 Circuit Characteristics

To describe the capabilities of a test circuit, [31] proposes three properties which are also used
for analysing the characteristics of the test scheme proposed in this paper in chapter 10.

1. Latency of Test Completion (LTC): This property describes how long it takes the test
circuit to completely test the circuit during its normal operation, i.e. that all test vectors
have been applied to the CUT.

2. Latency of Fault Detection (LFD): This attribute represents the time it takes the test circuit
to detect a fault after it has occurred. Again it is calculated under the assumption that the
CUT is working normally while testing is carried out.

3. Error Latency (EL): This indicator determines how long, in average, incorrect values are
possible until the corresponding fault is detected. It is calculated as the difference between
the LFD and the latency of fault manifestation (LFM) which indicates how long it takes
until a fault generates a failure. The smaller the EL is the better the test circuit works.
Please note that it is also possible for the EL to become negative indicating that faults are
detected before they generate failures.
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CHAPTER 4
Methodology

In a 4-phase protocol the exclusive task of the NULL-phase is to clearly separate two consecu-
tive DATA values. More specifically the circuit does not process any data during that time but
literally halts until the next DATA-phase starts. This behaviour introduced the question if it is
possible to use the circuit during the NULL-phase for other useful purposes, like in this thesis
to test the circuit without actually interfering with the original computations.

The easiest way to accomplish this assignment is to replace the NULL values by additional
TEST values, used to actually test the CUT. The communication protocol is converted to a 2-
phase type by carrying out this step, because afterwards a TEST value immediately follows a
DATA value. For this purpose additional units are required that are capable of merging DATA
values and TEST values into a single 2-phase output and another one that splits a single 2-phase
input into DATA values and TEST values. At first an extensive literature research was started
to find out if units having that particular behaviour already exist. Unfortunately this was not the
case because no application could be found that propagates two input values one after the other
to the output. The applications that were found always wait for both inputs to hold a DATA value
and then both of them are sent at the same time.

For that reason the appropriate units had to be designed completely new, which was carried
out by modelling state transition graphs (STGs) of the expected behaviour. These were then
transformed into concrete circuit implementations using Petrify and finally checked for further
simplifications. The top priority in this thesis was to identify the easiest and smallest ways to
carry out the above described functionality. It turned out, that it reduces the size of the resulting
circuits a lot, if the TEST values are delivered in the same way as the DATA values, i.e. by
using a 4-phase communication protocol. This leads to the following desired functionality of
the additional units:
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Merge This unit only propagates the DATA values of the inputs in an alternating fashion to the
output, the NULL values are dropped. If necessary a format conversion 1 is carried out on
the data to assure a valid 2-phase communication at the output.

Split This unit propagates the DATA values of the 2-phase input in an alternating fashion
to the two 4-phase outputs with optional necessary format conversions. Between any
two consecutive DATA values a NULL value has to be inserted to create a valid 4-phase
communication protocol.

While developing an efficient implementation of these two units several versions were dis-
covered, differing mainly in their level of concurrency and their hardware requirements. Due
to the fact that each of them has its pros and cons no “best” solution could be determined and
therefore several versions are described and analysed in this thesis.

After all theoretical preparations were finished, an actual implementation using the proposed
test approach was created. A simple three stage pipeline, was chosen as the CUT, which was
afterwards extended by the proposed test approach. To verify the correct functionality the imple-
mentation was simulated and it was checked, if the output was according to the results achieved
with the original pipeline. The internal test procedure was verified by introducing a stuck-at fault
and it was observed, if it is detected correctly, i.e. if an error is reported to the outside world.

In addition the area overhead and introduced delay were estimated analytically to achieve
generic formulae for an arbitrary amount of computational logic. The received results were then
used to calculate characteristic values for the proposed test approach, which were afterwards
analysed to determine the properties of the proposed test approach.

1If more than one rail per bit is used a conversion is mandatory.
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CHAPTER 5
Proposed Solution - Overview

This chapter gives a first introduction to the proposed test approach. At first the concept is de-
veloped step by step and afterwards the necessary components are presented as block diagrams.
Furthermore the idea of different implementation styles is presented however without showing
concrete circuit designs, which is the topic of the following two chapters.

5.1 Introduction

As it was shown in section 3.2 the NULL-phase in a 4-phase protocol has solely the purpose
to separate two DATA values, implying that it does not contribute to a computation at all. This
fact begs the question, if that particular phase may be used for additional tasks, rather than just
separating DATA values. In this thesis it is therefore investigated, if it is possible to implement
a self-testing circuit that uses the time available in the NULL-phase to test the actual circuit and
to develop appropriate implementations, if there are any.

To test a circuit, the TEST values have to use the same path as the DATA values. To achieve
this, the data input has to be blocked while the test vector is processed, because otherwise both
may interfere. Due to that fact the core idea of the proposed approach is to replace the NULL
values by TEST values, and afterwards feed the modified input stream into the circuit under test
(CUT). At the output of the CUT the test vectors are replaced again by NULL values to achieve
a correct 4-phase protocol. In parallel the processed test vectors, which were replaced by NULL
values, are checked against precalculated ones. If no differences are detected one may assume
that the application related calculations in the CUT were carried out without failures as well and
the results can be assumed to be correct, however if the test result was not identical with the
stored value a failure occurred and the circuit indicates this to the outside world.

By replacing the NULL-phase of a 4-phase protocol with another DATA-phase the protocol
is converted to a 2-phase one because in that case DATA values succeed one another without
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any value in between. For the purpose of merging User Data and Test Data a unit has to be
developed, that has two separate inputs, one for User Data and one for Test Data, and one output
for the combination of both, using the 2-phase communication protocol. In a similar fashion
also another unit is needed that splits the 2-phase User/Test Data stream up into Test Data and
User Data, at which the User Data output has to use a valid 4-phase protocol, to assure correct
functionality at the output of the CUT.

5.2 Approach

As starting point of all considerations a linear asynchronous Muller pipeline (i.e. without loops)
using a 4-phase protocol like in figure 5.1 is chosen. Within that structure no registers are
allowed, that store values from the previous computation for the next one, like the status register
in an arithmetic logic unit (ALU). Altogether no interactions between different computation
stages or succeeding values are allowed, as it is the case in state machines calculating their
actual output based on their internal state and the input or when loops in the data path are used.
This very restrictive model will be used to develop and exploit the fundamentals of the approach,
however in chapter 8 it is investigated if some of the stated restrictions may be lifted under certain
conditions.

. . . UD
4-phase

logic UD
4-phase

logic UD
4-phase

logic UD
4-phase

. . .

Figure 5.1: original Muller pipeline structure used as basis of considerations, multi-stage possi-
ble, 4-phase communication protocol

The nodes in the picture represent a controller with integrated latches, i.e. a complete
pipeline unit. A subset of these, namely the ones that have to be tested, are then chosen, forming
the Circuit Under Test (CUT) (figure 5.21). After the CUT was formed it is transformed to a
self-testing circuit, by integrating additional units2. Please note that it does not matter if the
additional units are placed before or after the logic cloud. The only difference, of course, is that
the logic will be tested if it is placed inside the CUT and not if it is outside.

One of the additional units, as already mentioned, is responsible for merging the inputs.
Figure 5.3 shows its inputs and output over time. Please note that the Test Data input was also
chosen as 4-phase input, resulting in simpler circuits. Due to the fact that this building block
converts two 4-phase inputs into one 2-phase output it is named 4-to-2 phase merge and gets
described in detail in section 5.5.

1In this figure the logic clouds are not shown for better readability.
2Details on this procedure follow in section 5.3 and 5.4
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4-phase

UD
4-phase

. . .

CUT

Figure 5.2: original Muller pipeline structure used as basis of considerations, CUT already
determined, logic clouds are dropped for better readability

t

UTD Output

UD Input

TD Input

UD NULL UD NULL UD NULL UD NULL

NULL TD NULL TD NULL TD NULL TD

UD TD UD TD UD TD UD TD

Figure 5.3: Input and Output of the 4-to-2 Phase Merge unit over time

To remove the TEST values from the data stream at the end of the CUT, more specifically
to split User Data and Test Data, another additional unit has to be integrated. It is exactly the
opposite of the one before, i.e. taking a 2-phase User/Test Data input and splitting it up into a
4-phase Test Data output and a 4-phase User Data output. The latter one has to use the 4-phase
protocol, whereas this property is not mandatory for the Test Data output, however as before the
4-phase style was chosen to simplify the resulting circuit implementation. Figure 5.4 shows the
temporal progress of the input and the outputs of this particular unit. Due to the fact that it splits
a 2-phase input up into two 4-phase outputs this building block is named 2-to-4 phase split and
gets described in detail in section 5.5.

The test vectors fed to the 4-to-2 phase merge unit are produced by a test vector generator
and the ones delivered from the 2-to-4 phase split unit are analysed by a test response analyser.
Due to the fact that these units can be implemented in many different ways they are described
in detail in section 5.7, where also the selection and generation of appropriate test vectors is
discussed.

Two implementation styles, describing how the conversion from the Muller pipeline to a self-
testing circuit is carried out, have been developed, namely Complete CUT Testing (CCUTT) and
Single Stage Testing (SST). These will be described in more detail in the following sections.
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Figure 5.4: Input and Output of the 2-to-4 Phase Split unit over time

5.3 Complete CUT Testing

This design method is the most straight forward approach. The NULL values of the User Data
input are replaced by TEST values at the beginning of the CUT and removed at the end. On the
processed Test Data error checking is carried out to determine if failures have occurred.

In detail the 4-to-2 phase merge unit is placed right at the entry of the CUT, or more specif-
ically in front of the first pipeline node inside the CUT. The resulting 2-phase data flow is then
injected into the original pipeline structure, which has to be adopted to the 2-phase communica-
tion protocol first. If the bundled data method is used this adaption only concerns the controller
nodes, if completion detection is used solely the logic in between has to be adapted. At the
end of the CUT Test Data and User Data are finally split up again in the 2-to-4 phase split unit.
The split up Test Data are afterwards checked (details see section 5.7) and the outside world is
informed through a signal line if the received result matched the expected result.

. . . UD
4-phase

4-to-2
PhM

TVG
4-phase

UTD
2-phase

UTD
2-phase

. . . UTD
2-phase

UTD
2-phase

2-to-4
PhS

TRA
4-phase

UD
4-phase

. . .

validity
CUT

Figure 5.5: complete CUT Testing Approach, Schematic View

Figure 5.5 shows the approach, which is very similar to the original pipeline structure (Figure
5.2). Altered nodes, i.e. those transformed from 4-phase to 2-phase, are represented as coloured
nodes, newly introduced ones, in detail the 4-to-2 phase merge (PhM) and 2-to-4 phase split
(PhS) unit as well as the test vector generator (TVG) and test response analyser (TRA) are
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displayed as nodes with a circular shape. As mentioned before, also the logic clouds, that are not
shown in this figure, may have to be converted, depending on the used communication protocol.

When comparing the data interfaces of the CUT to the ones in the original pipeline (figure
5.2) one can see, that they are the same. This means that the test procedure is carried out
transparent to the outside application, which is a necessary condition to test only parts of a
longer pipeline. Furthermore this property implies that one can not tell if testing is carried out
inside the unit by just looking at the data interface.

5.4 Single Stage Testing

Another possibility to verify the correct behaviour of the CUT is to test each pipeline stage
individually. In contrast to the Complete CUT Testing style described before only the logic
clouds between the pipeline nodes are tested in this approach.

. . . UD
4-phase

UD
4-phase

UD
4-phase

. . . UD
4-phase

UD
4-phase

UD
4-phase

. . .

CUT

UD
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4-to-2
PhM

UTD Logic
2-phase

2-to-4
PhS

UD
4-phase

TVG
4-phase

TRA
4-phase

validity

Figure 5.6: Single Stage Testing Approach, Schematic View, only shown for first stage, in real
implementation test circuit has to be integrated between every two consecutive pipeline nodes

For that purpose all parts of the test circuit (test vector generator, test response analyser,
4-to-2 phase merge, 2-to-4 phase split) have to be implemented between every two consecutive
pipeline nodes inside the CUT. Figure 5.6 shows this at the example of the first stage, using again
a circular shape for newly integrated nodes. The logic cloud in between is coloured because it
has to be converted from 4-phase to 2-phase when the completion detection design style is used,
whereas no conversion at all has to be carried out when bundled data is chosen. Test Data
and User Data are merged right after one pipeline controller, sent through the logic, which was
adopted to 2-phase, and split up in front of the following controller node. The split up Test Data
are checked for errors and the result is presented on an output line, in the figure named validity,
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which is afterwards connected to the validity lines of all other stages in a way, that a mismatch
is indicated to the outside application as soon as a single stage failed.

Advantages:

• The testing works transparent to the pipeline nodes i.e. they do not have to be modified,
because the conversion to a 2-phase protocol is carried out after the output of the first node
and the conversion back to a 4-phase one before the input of the next one. Therefore only
the logic has to be converted to 2-phase. If the bundled data approach is used even this
task can be dropped because in that case the logic for 2-phase and 4-phase is the same.
The only task that might remain is to replace asymmetric delay lines by symmetric ones.

• By introducing a test circuit into each single pipeline stage, it is possible to test every one
of them separately. Therefore the specific properties of each stage can be tested individ-
ually and not combined with others as in the previous case. This will in general reduce
the effort of finding the right test vectors and may also reduce the effort of designing and
implementing the TVG and TRA.

Disadvantages:

• The TVG and TRA design might get easier, however for each single stage one is needed.
With an increasing stage count the effort may raise to a level that the overall design and
implementation time exceeds that of a complex one.

• Errors in the stage controllers themselves are not detectable by this approach. That is the
reason why an additional test procedure is necessary, for example a parity check.

5.5 Transformation Blocks

While searching for literature for this thesis many different transformation circuits were found;
some convert a 2-phase into a 4-phase protocol and others transform between protocols of the
same phase type [15]. Even conversions between bundled data protocols and completion detec-
tion ones have already been introduced [8, 9]. However no publications could be found describ-
ing an approach for combining two 4-phase inputs to one 2-phase output or reverse. That is the
reason why these building blocks had to be designed completely new in this thesis.

The 4-to-2 phase merge as well as the 2-to-4 phase split block can be integrated as a switch
or as a pipeline node. The first method forwards either the User Data or the Test Data input but
does not store any data, yielding the advantage, that very small implementations are possible. If
the latter method is used an improved decoupling of in- and output can be achieved, resulting in
an increased working speed at still very little circuit complexity. The big disadvantage of this
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method is the additional latch, which can be seen as another failure source, making it more prob-
able for an error to occur. At least these additional failures are detectable by the test procedure
proposed in this thesis, as long as the latch is placed at the combined User/Test Data line.

All latches introduced are defined to become transparent, i.e. propagate the value at their
input to their output, whenever the enable input is high and store their actual value if the enable
input is low. In the first case the latch is also called open, in the latter one closed throughout the
thesis.

As it was described in the sections 3.2, 3.3 and 3.4 the 2-phase protocol sends the DATA
values in two alternating phases. The fact that always exactly one 2-phase channel and two
4-phase channels, served in an alternating fashion, are integrated in one transformation block,
makes it possible to assign each 4-phase channel to a specific DATA-phase of the User/Test Data
line. This yields the advantage, in contrast to other approaches like in [8], that phase relations can
be integrated hard wired and need not be calculated dynamically. This reduces the complexity
of the circuit and also increases the speed. In this thesis the User Data channel is assigned to
phase 1 i.e. when the request signal is high using the bundled data approach and odd parity when
using the completion detection approach. In contrast the Test Data channel is assigned to phase
0, i.e. low request signal respectively even parity. Of course all following considerations are still
correct when this assignment is interchanged i.e. User Data to phase 0 and Test Data to phase 1
however then some of the presented circuits have to be altered as well.

Due to the fact that the implementations for the bundled data and the completion detection
approach differ a lot, detailed implementations are described in the chapters 6 (BD) and 7 (CD).
The implementations are designed using STGs at which the starting configuration of User Data,
Test Data and User/Test Data signals are defined as:

• The first action to come is a rising transition on the input (either User Data or User/Test
Data)

• The Test Data Input/Output has already delivered its NULL-phase / acknowledged its
DATA-phase at startup.

The main guideline when designing the test circuit was to keep it as simple and small as
possible. One of the reasons for this choice was to keep the amount of necessary, additional
hardware very low. Furthermore this thesis is supposed to investigate if such an approach is
possible at all, so the driving force was to find any, not the best or fastest, implementation. That
is the reason why additional complexity for increased speed was avoided.

4-to-2 Phase Merge Unit

As mentioned in section 5.2 the 4-to-2 phase merge unit combines two 4-phase inputs, i.e. User
Data (UD) and Test Data (TD), to a single 2-phase output, i.e. User/Test Data (UTD). This
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is achieved by replacing the NULL-phase of one input signal by the DATA-phase of the other
one and only propagating the combined data stream. The User Data values are thereby always
assigned to phase 1 and the Test Data ones to phase 0. A time diagram of this process was already
shown in figure 5.3. In reality the input signals naturally will not be aligned as perfectly as it is
shown in that picture, but with a specific offset to each other. The point in time when the signals
are propagated to the output in these cases depends on the design of the merge unit. Several
different implementations are possible, differing in complexity and their level of concurrency.
More details on these follow in section 6.2 for the bundled data approach and in section 7.2 for
the completion detection approach.

In the STGs describing the behaviour of the single implementations the request and acknowl-
edge line of the User Data input are named aU respectively rU, those for the Test Data input
aT and rT and the ones for the output User/Test Data aUT and rUT, according to the naming
guidelines presented in section 3.7.

2-to-4 Phase Split Unit

As already described in section 5.2 the 2-to-4 phase split unit splits one 2-phase input, i.e.
User/Test Data (UTD), into two 4-phase outputs, i.e. User Data (UD) and Test Data (TD).
Therefore this block propagates all the values of phase 1 to the User Data output and the values
of phase 0 to the Test Data output. In addition the unit has to insert NULL values between two
consecutive DATA values on each output to create a valid 4-phase protocol. A time diagram of
this process was already shown in figure 5.4.

As with the 4-to-2 phase merge unit the output behaviour of the 2-to-4 phase split unit is
determined by the used implementations. Again several differing designs are possible, which
are explained in detail in section 6.5 for the bundled data approach and in section 7.4 for the
completion detection approach.

The nomenclature used for the signals is the same as with the 4-to-2 phase merge unit, with
the only difference that input and output are interchanged, i.e. that User Data and Test Data are
in this case output signals and User/Test Data the input signal.

5.6 Implementation Styles

Specific solutions are presented for the bundled data (see Section 6) and completion detection
(see Section 7) protocol. The separate study of these two is reasonable, because the circuit
implementations differ significantly. Nevertheless both have in common that the solutions are
working in the same manner and that optimisations are possible in a similar way. For each
approach different implementations are presented and shall be listed shortly here. For more
details head to the above mentioned sections. Please note that this listing is by far not complete,
i.e. there exist several additional implementations, however for this thesis only the simplest
solutions were chosen.
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Basic Implementation: A tight coupling between User Data and Test Data is introduced, forc-
ing both 4-phase channels to be in differing phases (one in its DATA-phase and one in its NULL-
phase) before the data value is propagated. In addition both 4-phase channels are requested/ac-
knowledged at the same time, i.e. as the signal of the 2-phase one arrives. These couplings
result in area efficient implementations with very little complexity. When used in the 4-to-2
phase merge unit it can be compared to the Join unit presented in [34, pp. 31-32, 58-60], with
the difference that both inputs have to have diverse phases for the data to be propagated. Fur-
thermore it has to be noted that unlike the Join unit this implementation only propagates values
from one input at a time to the output and not from both. The 2-to-4 phase split unit is very much
alike the Fork unit introduced in [34, pp. 31-32, 58-60], just differing by the fact that the request
line of one output is negated and of course the implicit conversion from 2-phase to 4-phase.

The fact that the operation halts until both 4-phase lines have changed their state also implies,
that the faster phase has to wait for the slower one. To tackle this problem some enhancements
can be applied to increase the speed for certain timing constellation, presented in the following
paragraphs.

Early NULL-phase: The considerations of this method are based on the fact, that the NULL-
phase is a pure spacer, so no information is acquired by receiving it or required to create it.
Therefore it is possible to acknowledge/start the NULL-phase much earlier than the DATA-
phase.

Figure 5.7 shows the concept on the 4-to-2 phase merge unit (bundled data implementation)
with its two 4-phase inputs at the top and the 2-phase output at the bottom. One can observe that
the DATA-phase arrives later than the NULL-phase, i.e. TDATA > TNULL. This situation can be
improved by acknowledging the NULL-phase already at time treq, giving the following DATA
values more time to reach the 4-to-2 phase merge unit. In bundled data systems the constellation
that DATA values are slower than NULL values is very probable if asymmetric delay lines are
used, i.e. ones that only delay the request signal. In all other protocols it is less probable and the
differences are not that big however it can not be precluded.

In the 2-to-4 phase split unit the implementation is very similar. In detail the NULL-phase at
the appropriate output gets initiated (request signal sent) at the same instant the input is acknowl-
edged. In contrast to the 4-to-2 phase merge unit in this case the NULL values get additional
time. As a consequence this implementation just yields an improvement if the DATA-phase is
faster than the NULL-phase, which however is far less probable than the reverse case.

Early DATA-phase: Another possibility to increase the speed is to focus on the DATA-phase
of the 4-phase inputs/outputs. Due to the fact that this phase holds all the information required
it is not necessary to also wait for NULL values, because they are dropped anyway. Therefore
in this method the units continue their operation as soon as new data are available.

Figure 5.8 shows the concept on the 4-to-2 phase merge unit (bundled data implementation).
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Figure 5.7: Early NULL-phase shown for the 4-to-2 phase merge unit in bundled data imple-
mentation

In this case the DATA values show up before the NULL values (TDATA<TNULL), however the
output is not requested until both of them have shown up, unnecessarily, because the NULL
values are dropped anyway. Therefore it is possible to forward the new data, i.e. to request the
output, already at time treq.
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Figure 5.8: Early DATA-phase shown for the 4-to-2 phase merge unit in bundled data imple-
mentation

When used in the 2-to-4 phase split unit this design style is realised by acknowledging the
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input as soon as the output that received the data has sent the acknowledge signal, even if the
other one has not sent the acknowledge signal for its NULL-phase. As before this just yields an
advantage if the DATA-phase is faster than the NULL-phase. Otherwise this design style falls
back to the speed of the Basic Implementation.

Additional Latch: The last improvement shown in this thesis adds an additional latch to the
User/Test Data input or output, making it possible to decouple in- and output even further. As
the latch is applied the 4-to-2 phase merge respectively 2-to-4 phase split unit no longer is a
simple switch propagating either User Data or Test Data but instead forms a complete pipeline
node with internal storage. Due to the latch the speed is increased with only a moderate increase
in circuit complexity, however the additional storage also can be seen as a supplementary error
source resulting in an increased error probability. Nevertheless these failures can be recognised
by the proposed test approach, because both User Data and Test Data pass the same latch.

5.7 Test Vector Generation and Response Analysis

The proposed test approach uses test vectors to check the correct functionality of the CUT. Due
to the fact that it was designed as built-in self-testing approach the generation as well as the
analysis of these has to be carried out on chip too. Several solutions have been proposed in the
past fulfilling this task, which will be discussed in the following subsections.

To simplify the implementation of the transformation blocks (section 5.5) the test vector
generator as well as analyser were designed as 4-phase components, i.e. they deliver and accept
test vectors using the 4-phase communication protocol.

Test Vectors

The most challenging task when actually integrating the proposed test circuit is the determination
of the used test vectors. These depend solely on the circuit structure and have to detect each
modelled fault that might show up. In detail this means that for each fault at least one test vector
has to exist that is altered by that particular fault. In that context it also does not matter if the
test values are valid input vectors at all, because it might happen, for example, that the circuit
is working according to its specification with the valid input values but actually has a stuck-on
error that sources current constantly.

With an increasing number of input lines it will get too cumbersome to use every possible
input vector as test vector. Therefore an intelligent selection of all possible vectors has to be car-
ried out to reduce the test effort however without reducing the error coverage. For that purpose
automated test pattern generators (ATPG) have been proposed (e.g. in [33, 42]) that analyse a
circuit and generate a fitting test set.
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Test Vector Generation

As soon as an appropriate test set has been found, it somehow has to be provided to the test
input. The easiest way is of course to store the values in a (read only) memory and apply one
vector after the other to the input. This however requires lots of memory on the chip, which
is very expensive and therefore only suitable for a small amount of test vectors. In general a
small circuit that generates one test vector after the other is a better solution. A simple example
is a counter, starting at the lowest value and counting to the highest one. With increasing data
width this will however take more and more time to finish and is therefore not preferable. An
alternative is a linear feedback shift register (LFSR) as used in [23]. The challenge is to find
a fitting LFSR that generates only the prior selected vectors and maybe in addition even in a
specific order. In the past several approaches have been proposed to synthesise a LFSR from a
given test set [40, 51]. Also cellular automata, as shown in [27] may be used for this purpose.

Test Response Analysis

The analysis of the test vectors has the task to determine if the received result is according to the
expected output. The straight forward method is again to save every input with its corresponding
output value in a storage element and compare the result as soon as it is available. Unfortunately
this method requires lots of memory and is therefore expensive and not applicable in real world
applications. For that reason so called compactors are used having the purpose to generate a
unique value from the received results, which then can be used to determine if an error occurred.
Many different properties have to be considered as it is described in [50]. Possible implementa-
tions are feedback shift registers [23], cellular automata [27] or rotate carry adders [25] just to
name a few.
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CHAPTER 6
Proposed Solution - Bundled Data

In this chapter concrete implementations using the bundled data design style, which was in-
troduced in section 3.3, are discussed. Please note that a thorough timing analysis is required
if one of the proposed designs is actually implemented, to assure that the timing requirements
described in the text are fulfilled.

6.1 4-to-2 Phase Merge

A general description of this building block was already given in section 5.5. At this point more
specific details about this unit are presented, when it is implemented using the bundled data
design style.

4-to-2 phase merge

Test Data (TD)

User Data (UD)

Data
switch

control
merge

User/Test Data (UTD)

Figure 6.1: 4-to-2 Phase Merge - bundled data

In the bundled data communication style the handshake protocol is carried out using two
control lines. The request line is used to indicate new data and the acknowledge line to tell the
sender, that the receiver has processed them. The data themselves do not contain any control
information at all making it possible to clearly separate data and control signal processing into
two different blocks, more specifically the data switch block and the control merge block. Figure
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6.1 shows these blocks as well as their interconnections. The data switch block is, as described
before, responsible for handling the data lines, the control merge block coordinates the control
signals. The arrow between these two blocks shows the fact, that the control merge unit tells the
data switch block how to handle the incoming data. It further has the duty to assure, that the
temporal order of control signals at the output is according to the 2-phase protocol.

In contrast to the data switch unit, which has a single implementation, many different ones
exist for the control merge block. A few chosen designs are presented in section 6.2.

Data Switch

The data switch block has the purpose to handle the data lines (see also section 6.1). More
specifically it works, as its name indicates, as a switch either forwarding the Test or the User
Data to the output, steered by the control merge block. If the bundled data style is used, just
a simple MUX unit (as shown in figure 6.2) is necessary. The control signal of the MUX is
connected to the request signal line of the output (rUT). In that case the User Data, connected to
the input of the MUX labelled with 1, is forwarded when the output request line is high, i.e. in
the phase that was assigned to the User Data in section 5.5. If the control signal however is low,
i.e. the output is in phase 0, then the Test Data input is propagated.

rUT

User/Test Data (UTD)
Test Data (TD)

User Data (UD)

MUX

0

1

Figure 6.2: Data switch - bundled data

Due to the additional delay introduced by this MUX it is possible that the request signal
arrives at the next stage before the data do. This has to be checked at design time and com-
pensated by additional delay elements at the rUT signal line if necessary. It is important, that
only the branch connected to the next stage is delayed and not the one controlling the MUX,
because otherwise the difference between the arrival of the data at the next stage and the instant
the request signal shows up stays the same.

For some control merge implementations it is necessary to upgrade this block by additional
latches, converting it from a simple switch to a complete control node. These concepts, however,
will be introduced as soon as they are used.
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Control Merge

The control merge block has the task to coordinate the control signals of input and output as
well as to control the data switch block, i.e. which data input has to be forwarded onto the data
lines. Due to the fact that the control signal of the MUX is directly connected to the rUT signal
(see section 6.1), the data switch control part becomes trivial.

The control merge block has to handle three input signals (rU,rT,aUT) as well as three output
signals (aU,aT,rUT) 1. The internal connections between them , i.e. the way the control merge
block is built, determines the speed and the degree of concurrency of the 4-to-2 phase merge
unit. This will be the topic of the subsequent section.

1For the signal naming convention refer to section 3.7.
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6.2 Implementations of 4-to-2 Phase Merge

Basic Implementation

The STG implementing the functionality described in section 5.6 is shown in figure 6.3. It can
be seen very easily that User Data and Test Data get acknowledged, using the signals aU and aT,
not before the User/Test Data at the output were acknowledged (signal aUT) and furthermore
that new data are only forwarded to the output, recognisable by a change of signal rUT, after
both inputs have indicated a new phase, by changing the value on their request line. Please note
that here, and also in the following, the terms input and output only describe the combination
of the data, acknowledge and request lines, where the direction is determined by the data flow,
as already mentioned in section 3.9. Therefore the acknowledge line of an input signal provides
and the one of an output signal accepts information.

aUT+

aU+

rU-

aT-

rT+

rUT-

rU+

aU-

aUT-

aT+

rT-

rUT+

Figure 6.3: STG, Basic Implementation, bundled data, 4-to-2 phase merge

The circuit implementation of the STG is shown in figure 6.4. The tight coupling of the
input signals made the circuit very small as it is the goal of this thesis. The drawback is the
strict coupling of Test Data and User Data which compromises performance. Therefore some
extensions to that design are presented in the following.

C
rT

rU
rUT

aT

aU
aUT

1

Figure 6.4: Circuit, Basic Implementation, bundled data, 4-to-2 phase merge
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Early NULL-phase

The Early NULL-phase functionality is achieved by the STG shown in figure 6.5. The only
difference compared to the Basic Implementation is, that the input currently in its NULL-phase
(either TD or UD) gets acknowledged at the same time the data of the other input is forwarded
to the output i.e. the circuit does not wait until the acknowledge signal of the receiver shows
up. One can also say that the NULL-phase is acknowledged as soon as the request signal at
the output changes. Starting from the STG used in the Basic Implementation this results in
an additional edge from rUT+ to aT− replacing the one coming from aUT+ and a newly
introduced edge from rUT− to aU− is replacing the one coming from aUT−.
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Figure 6.5: STG, Early NULL-phase, bundled data, 4-to-2 phase merge

The resulting circuit differs from the Basic Implementation only by an AND and an OR gate
(see figure 6.6), which are used to early acknowledge the NULL-phase. If the line rUT is set to
a high value the NOR gate gets low automatically acknowledging the NULL-phase on the Test
Data input. Similarly the AND gate forwards a low value as soon as the output request signal
rUT is set to a low value, acknowledging the NULL-phase on the User Data input.

&

≥ 1
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rT

rU
rUT

aT

aU

aUT

Figure 6.6: Circuit, Early NULL-phase, bundled data, 4-to-2 phase merge
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Early DATA-phase

The Early DATA-phase functionality is realised by the STG shown in figure 6.7, which differs
significantly from the ones presented in the previous subsections. Important to see is, that the
signal transition rUT+ depends solely on rU+ and rUT− solely on rT+, i.e. that the status
of the input which has to contribute the NULL values has no effect at all. However Test Data
and User Data still get acknowledged at the same time, implying that a speed improvement is
only achieved if the DATA-phase is faster than the NULL-phase. Since this is not a common
phenomenon this implementation may not come in hand in an actual circuit.

aU-

rU+rU-

aU+ rUT+

aUT+

rUT-

rT+

aT-

rT-

aT+

aUT-

Figure 6.7: STG, Early DATA-phase, bundled data, 4-to-2 phase merge

The increased decoupling of the inputs also yields a big increase in complexity. For that
reason the resulting circuit is not drawn here, however the corresponding Petrify output is shown
in listing B.2.

Additional Latch

For this implementation style an additional latch has to be integrated, in detail right after the
data switch block, as it can be seen in figure 6.8. Of course for each single data line one latch
has to be installed.

L

enL

Test Data (TD)

User Data (UD)

Data switch for
bundled data

without latches
User/Test Data (UTD)User/Test Data (UTD)

Figure 6.8: Data switch with latch at output, bundled data, 4-to-2 phase merge

In the STG (figure 6.9) one can see very clearly, that the User Data and Test Data inputs as
well as the User/Test Data output are working concurrently. As soon as both inputs have changed
their phase and the acknowledge signal at the output was received, the DATA values of the input
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currently in the DATA-phase are stored in the latches, the inputs are acknowledged and a request
is initiated at the output. After that the circuit waits for both inputs to change their phase and
the output to acknowledge the values to start over again. Please note that the latch control, i.e.
the circuit telling the latch if it has to store the actual value or to be transparent, is developed
separately and was therefore neglected in the STG. More details concerning that topic follow in
the next paragraphs.
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aU+aT-

rT+ rU-

rU+ rT-

aT+aU-

aUT+

aUT-

rUT-

Figure 6.9: STG, Additional Latch, bundled data, 4-to-2 phase merge

Despite the fact that the implementation is working highly concurrent the circuit stays at low
complexity, as can be seen in the circuit implementation shown in figure 6.10. The two Muller-C
gates are used to assure, that both input request lines as well as the output acknowledge line have
changed their value before a new request is initiated. In addition the input acknowledge lines are
directly connected to the output request line, automatically acknowledging both inputs when a
new value is indicated at the output.

1
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C

aT

rT

aU

rU
rUT

aUT

Figure 6.10: Circuit, Additional Latch, bundled data, 4-to-2 phase merge

In addition a circuit, that controls the latches, i.e. tells them when to store the actual value
and when to get transparent, has to be introduced. More specific they have to be closed as soon as
the request signal is raised at the output and can be opened again when the output acknowledge
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signal arrives. This means that the latches have to store their values when the signals rUT and
aUT are different and have to be transparent when both hold the same value. For that reason the
enable signal enL in figure 6.8 can be defined as

enL = (rUT ≡ aUT )

If a common latch is used the designer has to assure that the data are stored before the new
ones arrive. This depends on the speed of the equality gate, the latch itself and the connections
between them. As an alternative it is possible to replace the latch by a capture-pass event-
controlled storage element as described in [35] and [34, pp. 9-28]. In that case the rUT signal
line has to be connected to the capture input and the aUT line to the pass input. Connected in
that way the functionality is equal to the above described latch-based version however the effort
for the timing analysis is reduced.

As already pointed out several times, timing analyses are mandatory if the bundled data
design style is used. With this implementation the designer has to additionally take care that
the latches are working correctly, i.e. that no setup and hold time violations occur. Consider
the following case: The inputs have already changed their phases, just the acknowledge signal
at the output is still missing, causing the latches to still hold their actual value. As soon as
the acknowledge signal arrives the latches get transparent, however at the same time the output
request signal is set again causing them to return to the storing state right away. Depending on
the timing the latches may not get transparent at all or not long enough to store the new data
correctly. Therefore delay elements may be necessary to guarantee correct behaviour of the
circuit.

Furthermore the data propagation within the unit has to be investigated very carefully. The
fact that the output request line also controls the MUX implies that it will take some time until
the data arrive at the latches. If the control signals of the latches are too fast they may be already
storing their actual values by the time the data arrive.

It is also possible to merge the control circuits for latch and control lines. Listing B.3 shows
the Petrify output for an STG closing the latch right after rUT was changed and opening it up
again after the acknowledge signal of the output was arrived.
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6.3 Enhancements

The implementations presented above were designed under the perspective of simplicity. Of
course there exist a lot more different designs, each with its individual properties and advantages.
Nevertheless the development of an optimal controller was not the goal of this thesis and was
therefore intentionally left open for future research.

In the following some further improvements and improved designs are presented to show,
that more complex solutions are possible, but they neither have been further investigated nor
optimised. It is probable that much more compact and simple solutions exist. Please note that
these enhancements are just presented once with the 4-to-2 phase merge unit using the bundled
data design style but are in general applicable to all other units and styles as well, of course with
appropriate modifications.

Latches at Input

One example of such an enhancement is to add latches in front of the data switch block as it
can be seen in figure 6.11. Please note that the signal coordinating the latches, named enL in
the figure, is also used to control the MUX, though in negated form. This means that the latch
at a particular input holds its value if the data of that input are propagated to the output, and is
transparent otherwise.

L

L

Test Data (TD)

User Data (UD)

enL

enL

Data switch for
bundled data

without latches
User/Test Data (UTD)

Figure 6.11: Data switch with latches - bundled data

The benefit of this design is, that the input data can be acknowledged before the acknowledge
signal at the output has been received. An STG using that design style can be seen in figure 6.12,
the resulting netlist generated by Petrify in listing B.4. The additional latches however represent
a supplementary fault source, which are not testable using the presented test procedure. To cover
these an additional one has to be introduced.

Decoupled Controller

The STG of a completely decoupled controller design is shown in figure 6.13. There, two nearly
independent loops can be identified, one handling the User Data input (left side of the STG) and
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Figure 6.12: STG, Latches at Input, bundled data, 4-to-2 phase merge

one the Test Data input (right side of the STG). These are only connected by the control signals of
the output, that assure alternating sending of User Data and Test Data. All other operations like
requesting and acknowledging the NULL-phase are carried out completely independently. In
contrast to other presented implementations the speed of the circuit depends on the overall time
needed to complete both the NULL-phase and the DATA-phase, whereat the individual length
of each phase has no effect, as it was the case with previous designs. This implementation is
achieved when trying to combine the Early NULL-phase and Early DATA-phase approach.
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Figure 6.13: STG, Decoupled Controller, bundled data, 4-to-2 phase merge

Unfortunately the high concurrency leads to a very complex implementation, which can be
seen in the Petrify output in listing B.5.

Decoupled Controller with latches at input

At last a combination of latches at the input together with a decoupled controller is presented.
In this implementation the inputs are acknowledged as soon as the data were forwarded to the
output and therefore stored in the latches, which further increases the speed. The corresponding
STG is shown in figure 6.14.
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Figure 6.14: STG, Decoupled Controller with latches, bundled data, 4-to-2 phase merge

By introducing latches the gate count of the control circuit is slightly reduced compared
to the decoupled controller without latches (see listing B.6), however the overall count is in-
creased. Furthermore these latches represent not only additional error sources, but also require
a supplementary error detection method, as already described earlier.
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6.4 2-to-4 Phase Split

The schematics of the 2-to-4 phase split unit (figure 6.15) shows two blocks, the data fork one,
responsible for handling the data lines, and the control split one, used to coordinate the control
lines. One difference compared to the 4-to-2 phase merge unit however is the missing connection
from the control split unit to the data fork block, which will be explained in the next subsection.

2-to-4 phase split

Test Data(TD)

User Data(UD)
control

split

User/Test Data (UTD)

data
fork

Figure 6.15: 2-to-4 phase split - bundled data

Data Fork

The data fork unit is used for data handling, more specific to forward the input data to the correct
output. In this case, i.e. by using the bundled data style, it is possible to implement this building
block as a simple fork, using the control lines to indicate which unit is supposed to read the data.
This is only possible because a device using the 4-phase protocol does not read or write the data
lines in its NULL-phase, making it possible to put arbitrary data there. Of course one could also
integrate a DEMUX as counterpart to the MUX used in the 4-to-2 phase merge block but in this
case it is not necessary.

If an increased level of concurrency is required, it is possible, as before, to add latches either
on the in- or the output. These concepts however will be described in detail as soon as they are
used.

Control Split

The control split block serves the purpose to coordinate the control signals in a way, that on both
outputs a correct 4-phase protocol is delivered. As mentioned before the data path is a simple
fork, implying that the whole complexity lies within the control split block. Furthermore the
timing of the signal is important too, since both outputs get the same data and have to know
when they have to read the lines. As before this block can be implemented in various shapes,
differing in speed, size and level of concurrency. Concrete implementations will be discussed in
the following section.
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6.5 Implementations of 2-to-4 Phase Split

Due to the characteristics of the bundled data approach the implementations of the 2-to-4 phase
split unit are sometimes just the opposite of the 4-to-2 phase merge implementations described
in section 6.2. Therefore the circuits presented here differ only slightly from their counterparts
shown earlier. Nevertheless there are some functional differences, that are pointed out in the
description of the designs, that have to be considered.

Basic Implementation

The Basic Implementation of the 2-to-4 phase split unit is nearly the same as the one for the 4-to-
2 phase merge, which can be seen best in the STG (figure 6.16). As soon as a request is received
at the input it is forwarded to the User Data output and in its negated form to the Test Data one.
After the acknowledge signal has been received on both outputs the input acknowledge signal is
sent.

rUT+

rU+

aU+

rT-

aT-

aUT+

aU-

rU-

rUT-

rT+

aT+

aUT-

Figure 6.16: STG, Basic Implementation, bundled data, 2-to-4 phase split

This tight coupling yields a very small and simple circuit which is shown in figure 6.17. It
can be seen very clearly that the request signal at the input is forwarded without delay to both
outputs, whereas the acknowledge signal is only propagated if both, the User Data and the Test
Data output, have acknowledged their current phases.
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rUT

aU

aT

rU

rT1

Figure 6.17: Circuit, Basic Implementation, bundled data, 2-to-4 phase split
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Early NULL-phase

The STG for this implementation can be seen in figure 6.18. It is very similar to the Basic
Implementation, just with an additional edge from aUT− to rT− replacing the one coming
from rUT+ and an additional edge between aUT+ and rU− replacing the one coming from
rUT−. The first change has the effect that the Test Data NULL-phase is requested right after
the input was acknowledged instead of waiting until a new request was received at the input.
The second change introduces the same effect at the User Data output.

rUT+

rU+

aU+
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Figure 6.18: STG, Early NULL-phase, bundled data, 2-to-4 phase split

The resulting circuit implementation can be seen in figure 6.19. Compared to the Basic
Implementation circuit only two AND gates are added, which are responsible to generate the
early NULL-phase requests. If aUT rises from low to high the AND gate at the TD output
(signal rT ) gets ready to propagate the next incoming request to the consecutive stage. At the
same time the AND gate at the UD output (signal rU ) forwards a low value, automatically
starting the NULL-phase at that output. If aUT eventually drops back to a low value the same
procedure occurs, with the difference that rU and rT are interchanged.

C

&

&

aU

aT

rU

rT
rUT
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Figure 6.19: Circuit, Early NULL-phase, bundled data, 2-to-4 phase split
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Early DATA-phase

The corresponding STG describing this implementation using the bundled data style can be seen
in figure 6.20. It differs significantly from the ones presented in the previous implementations,
the main difference however is, that aUT+ solely depends on aU+ and aUT− solely on aT+.
This assures that the acknowledge signal at the input is sent right after the acknowledge signal
was received at the output that received the most recent data.

rU+

aU+aU-

aUT+rU-

rUT-

aUT-

aT+

rT+

aT-

rT-

rUT+

Figure 6.20: STG, Early DATA-phase, bundled data, 2-to-4 phase split

This implementation, as well as the one before, are yielding an improvement if the NULL-
phase is slower than the DATA-phase, however for the opposite case no simple implementation
was found. Just assume for a moment that such a method would exist. To improve the speed
under the specified properties the DATA values would have to be forwarded to the appropriate
output before the NULL values are propagated to the other one, giving the DATA values more
time to travel to the following stage and to be acknowledged than the NULL values. However the
earliest possible moment the NULL-phase may be started is the moment the acknowledge signal
is sent to the User/Test Data input, whereas the first possible point in time the DATA-phase can
be launched is the moment the request signal of the User/Test Data input arrives. Since the first
always occurs earlier in time than the second one that kind of method is not realisable.

That is the reason why two methods speeding up the circumstance, that is less probable
to appear, exist and none optimising the more probable one. When comparing the circuit im-
plementation of these methods (listing B.7) one can see that the Early NULL-phase method is
superior to the Early DATA-phase one concerning area by far. In addition differing working
speeds are imaginable depending on the run time deviations between the two phases.

45



Additional Latch

For this implementation an additional latch has to be introduced into the data fork unit, as it is
shown in figure 6.21. It is installed on the input path making it possible to acknowledge the
input value right away. Please note that for each single data line a latch has to be installed.

User/Test Data (UTD) L

enL

Test Data (TD)

User Data (UD)

Figure 6.21: data fork, Additional Latch, bundled data, 2-to-4 phase split

The corresponding STG is shown in figure 6.22. It can be seen that in- and output signals
are completely decoupled. More specific the input gets acknowledged as soon as both outputs
have acknowledged their current phase. This further implies that the slowest phase determines
the working speed of the circuit.

aUT+

rT-rU+

aU+ aT-

aU- aT+

rU- rT+

rUT-

rUT+

aUT-

Figure 6.22: STG, Additional Latch, bundled data, 2-to-4 phase split

An additional challenge in this implementation is the latch control. As soon as a new data
arrive at the input and the circuit is ready to propagate it, the latches have to store them until the
corresponding output (either TD or UD) sends the acknowledge signal, which causes the latches
to get transparent again, ready to store the next input data. This behaviour is achieved when
defining the signal enL controlling the latches as

enL = (aU ∧ aUT ) ∨ (aT ∧ ¬aUT )
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Due to the definition in section 5.1 the latches get transparent if the enable signal is high,
i.e. if the data delivered by the input got acknowledged by the appropriate output and stores its
actual value, if the enable signal is low.

As always when using a bundled data approach a timing analysis is important to prove the
correct behaviour of the circuit, whereas the propagation delay of the signal controlling the latch
has to be investigated extremely thoroughly. Due to the fact that enL is calculated from the
acknowledge value aUT it is possible that new data arrive before the old one have been stored in
the latch. As an alternative again the latch could be replaced by a capture-pass event-controlled
storage element as described in [35] and [34, pp. 9-28]. The capture input has to be connected
to the aUT signal and the pass to a Muller-C gate having aU and ¬aT as inputs.

Due to the fact that still a very tight coupling between the two phases is used, the circuit is
very simple, as it can be seen in figure 6.23. The Muller-C gates again assure that a new value
is ready at the input and that both outputs have changed their phases before acknowledging the
next input value and at the same time requesting the outputs. The improved decoupling of input
and output is paid with an additional latch, not only introducing a supplementary error source
but also transforming the 2-to-4 phase split unit from a simple switch to a node with internal
storage.

1

C

C

rT

aT

rU

aU

aUT

rUT

Figure 6.23: Circuit, Additional Latch, bundled data, 2-to-4 phase split

Please note that it is possible to integrate the logic calculating the latch control signal enL
into the circuit handling the request and acknowledge signals. For that purpose the STG shown
above has to be extended such that the latch is ordered to store its actual value right after the
input was acknowledged and to get transparent again after the DATA-phase got acknowledged.
The Petrify output of an STG altered in that way is shown in listing B.8.
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CHAPTER 7
Proposed Solution - Completion

Detection

In this chapter the proposed approach is implemented using the completion detection communi-
cation method, which was already described in section 3.4. At first a closer look is taken at the
4-to-2 phase merge unit and afterwards at the 2-to-4 phase split one. Again different implemen-
tations, each with its individual advantages and disadvantages, are shown.

When using the completion detection style timing constraints (see section 3.5) have to be
considered to determine under which restrictions the circuit is working correctly. These con-
straints of course have to be checked in a timing analysis at design time, which is the reason
why it is tried in this thesis to achieve DI implementations wherever possible. Unfortunately
this is very hard so most of the circuits represented here are only QDI. Nevertheless this already
simplifies integration a lot due to its rather little restrictions.

7.1 4-to-2 Phase Merge

At the beginning the block combining Test Data and User Data is discussed, i.e. the 4-to-2 phase
merge unit. In contrast to the bundled data approach this unit does not have a fixed size but
instead consists of two basic components, namely the data format conversion and control merge
unit, which have to be extended by additional units if an improved level of concurrency has to be
achieved. The first one gets more complex compared to the bundled data implementation, due
to the fact that the data format has to be changed between 4-phase and 2-phase and because the
data implicitly hold the information when they are ready to be processed.

The basic components (solid lines) as well as some possible additional ones (dashed and dot-
ted lines) can be seen in figure 7.1. The arrows in the upper row represent the data lines whereas
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the ones to and from the control merge block represent control information (e.g. acknowledge
signals, phase information, steering signals).

4-to-2 phase merge

Test Data(TD)

User Data(UD)

phase
detection

data format
conversion

Gatekeeper

control
merge

User/Test
Data (UTD)

Figure 7.1: 4-to-2 Phase Merge unit using completion detection communication style, basic
components in solid lines, additional components in dashed and dotted lines

Data Format Conversion

As mentioned before, the amount of units processing the data signals is variable and scales with
the desired concurrency and speed. Although the approaches differ significantly all of them have
to have a data format conversion block that transforms the data from NCL to LEDR encoding,
which is necessary due to the differing rail usage in both schemes (see section 3.4).

An implementation of this data format conversion unit, which has to be introduced on each
single input line separately, can be seen in figure 7.2. On the right side the 2-phase User/Test
Data output is shown, where the value rail (VR) holds the actual value and the phase rail (PR)
is responsible to generate the correct phase. On the left side the User Data (UD,bottom) and
Test Data (TD,top) input are shown each with its high (HR) and low (LR) rail. Due to the
limitations of the 4-phase protocol NCL only one rail of an input can be set to a high value at a
time (compare section 3.4). Therefore exactly three of the four OR gates propagate a high value
if both inputs are in their DATA-phase, two if only one input is in its DATA-phase and none if
both are in their NULL-phase.

The unique property of this circuit is, that it just changes the value at its output when exactly
two of the four OR-gates propagate a high value, i.e. when one input is in its DATA-phase and
the other one in its NULL-phase. This is the case because both inputs of a Muller-C gate have to
have the same value to set the output, implying that if both OR-gates at the input of one Muller-C
element forward a high value the inputs differ and the current value is stored. Only after one
of them switches to low the Muller-C gate opens for the new data. This implies a very tight
coupling between the inputs because changes are only propagated if both inputs are in different
phases (NULL-phase and DATA-phase).

Unfortunately this circuit is not DI by design. The reason is that when both inputs are
in their DATA-phase a single OR gate receives a high value on both its inputs. This violates
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Figure 7.2: Data Format Conversion unit, conversion from NCL to LEDR

the indication principle because it can not be assured that the value on both input lines has
reached the gate when it starts forwarding a high value. Based on this considerations it is easy
to construct a situation where the actions of the unit deviate from the desired behaviour. The
reader is encouraged to sketch shortly such a setting.

Control Merge

The control merge block is again responsible for managing the control signals, however it is
a lot smaller compared to the bundled data approach because only acknowledge lines have to
be coordinated. The request lines, responsible to indicate that new data are available, were
eliminated, because the data themselves determine when they are complete and ready to be
processed. However it has to be noted that the complexity of this block starts to rise when
optional blocks are added, as it is shown later in this chapter.

Phase Detection

This building block is optional and is used to determine the actual phase the data are in. In
detail its output is set to a high value if all inputs are in phase 1, i.e. if they all have an odd
parity and to a low value if all are in phase 0, i.e. having an even parity. When single inputs
are in differing phases the unit keeps its current output until one of the two above described
configurations appears again.

Gatekeeper

The Gatekeeper block is used to block inputs from propagating into the unit or to the outside
and is an optional building block. Connected to this unit are input lines and the same amount of
output ones as well as a control line. If the latter one holds a high value the data are propagated
from the input to the output and if it holds a low value, low values are put on all output lines. It
is possible to implement these units by simple AND gates having the control signal and an input
line as inputs.
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7.2 Implementations of 4-to-2 Phase Merge

In this section concrete implementations for the 4-to-2 phase merge block are shown, follow-
ing the listing presented in section 5.6, starting with the simplest one. Afterwards the more
concurrent versions are presented and discussed in detail.

Basic Implementation

As mentioned in section 5.6 in this implementation style the DATA values of one input are
only propagated if the other input is in its NULL-phase. Due to the fact that this is exactly the
behaviour of the data format conversion unit introduced in the last section (figure 7.2) nothing
more is necessary to process the data lines.

Since the data propagation is coordinated by the data format conversion block the only thing
left to do for the control merge block is to coordinate the acknowledge signals, which is a fairly
easy task, as the STG shows (see figure 7.3). As soon as the output acknowledges the data the
signal is further propagated to the inputs.

aU+ aT-

aUT+

aUT-

aU- aT+

Figure 7.3: STG, Basic Implementation, 4-to-2 phase merge, completion detection

This direct propagation yields a very simple implementation in the form of a direct connec-
tion and one inverter as it can be seen in figure 7.4. Due to the fact that only one inverter was
used the control merge implementation is DI [34, pp. 9-28]. Because of the timing restrictions
of the data format conversion block, the unit as a whole however is again just QDI.

aT

aU
aUT

1

Figure 7.4: Circuit, Basic Implementation, 4-to-2 phase merge, completion detection
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Early NULL-phase

To implement the Early NULL-phase behaviour an additional unit is necessary, namely a phase
detection (see section 7.1), which is installed after the data format conversion block. The data
processing part of this 4-to-2 phase merge implementation therefore consists of the data format
conversion block and the phase detection unit. A sooner acknowledgement of the input currently
in its NULL-phase furthermore requires, that the output of the data format conversion logic does
not change when both inputs carry DATA values because otherwise the arrival of the new data
might disturb the actual transmission, which might not be finished at that time. However this
property is true for the format conversion unit as already shown earlier.

The corresponding STG is shown in figure 7.5, where the characteristics can be observed
very easily. As soon as new data have passed the data format conversion unit they are detected
by the phase detector (signal pUT ) and at the same time the NULL-phase at the appropriate
input gets acknowledged. The DATA-phase on the other one however gets acknowledged not
before the acknowledge signal at the output has been received.

pUT+

aUT+

aT-

aU+

pUT-

aUT-

aU-

aT+

Figure 7.5: STG, Early NULL-phase, 4-to-2 phase merge, completion detection

The complexity of the control merge block increases due to the additional control signal of
the phase detection unit, which can be observed in the circuit implementation shown in figure
7.6. The AND and NOR gate are used to send the acknowledge signals as soon as the phase
detector indicates a phase change by changing its output value. At the beginning the aUT and
pUT signals are low. As soon as pUT rises to a high value the NOR gate sets its output to low,
i.e. acknowledging the NULL-phase. The AND gate does not react at all, it just switches when
aUT finally gets high. When pUT returns to low the AND gate immediately issues a low value
which acknowledges the NULL-phase and the NOR gate reacts after aUT got low.

Unfortunately the implementation is just QDI due to the violation of the indication principle
explained in section 3.5. With unfortunate delays it may happen, that phases are acknowledged
too early or that additional phases are inserted. Again the reader is encourage to sketch these
situations.

53



≥1aT
pUT

&aU
aUT

Figure 7.6: Circuit, Early NULL-phase, control merge, completion detection

Early DATA-phase

In this implementation new data have to be propagated to the output as soon as they are ready at
the input, independent of the state of the other input. Unfortunately the data format conversion
does only propagate data if the inputs are in differing phases, so the NULL-phase has to be
imposed on the corresponding input if this style is desired. For that purpose the Gatekeeper
units can be used due to the fact that the NULL-phase is defined as a low value on both rails,
which is exactly the output if a Gatekeeper blocks the signals.
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Figure 7.7: data format conversion, Early DATA-phase, completion detection

In the data format conversion block these Gatekeepers are integrated in the data path of the
User Data and Test Data input as shown in figure 7.7, where they are represented by a building
block containing the letter G. The control lines are drawn above (below) and are connected to
the inversion of aU in the one case and to the inversion of aT in the other one. In detail the
Gatekeeper blocks the input lines if aT respectively aU gets high and propagates them if aT
(aU ) gets low. This implies that as soon as the DATA-phase is acknowledged on one line, the
data lines are blocked by the Gatekeeper giving the other input the opportunity to instantly start
sending its own data. When an input is currently in its NULL-phase the Gatekeeper forwards
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the input lines as soon as the NULL-phase was acknowledged. This is allowed due to the fact
that the output of the format conversion unit does not change if new data arrive while other data
are processed.

By adding these Gatekeepers the timing requirements have to be reconsidered. Due to the
fact that they do not alter the data directly but only block them at some points in time, the timing
requirements stated earlier for the data format conversion block, i.e. QDI, is also required in this
implementation. More specific this implies that the acknowledge signals reach the Gatekeepers
at the same time as the actual node. If the delay of the NULL-phase is low, the speed of this
design approaches the one of the Basic Implementation, providing that the Gatekeeper circuit
does not introduce an additional delay.

Unfortunately additional phase detection units have to be added on both input lines, used to
detect new data on the line. These are mounted right before the data format conversion unit and
prevent an error that may appear if the phases are acknowledged too early. Assume the case that
the UD input just delivered its DATA-phaseand that the time it takes the following NULL-phase
to reach the data format conversion unit is huge. Right after the output acknowledge signal was
received the Gatekeeper at the UD input blocks the input lines, i.e. propagates the NULL-phase.
If the TD input already got new DATA values they are propagated and eventually acknowledged.
As that acknowledge signal arrives, the Gatekeeper at the UD input gets transparent, propagating
the data of the previous DATA-phase because the following NULL-phase has not reached the
input yet. For that reason it has to be checked if the input has changed its phase before a new
acknowledge signal is sent.

aU-

pU-

aU+

pU+

aUT+ aT-

pT+

aUT-

pT-

aT+

Figure 7.8: STG, Early DATA-phase, 4-to-2 phase merge, completion detection

The corresponding STG is shown in figure 7.8. The most important thing to see is, that the
transition aU−, i.e. the acknowledgement of the NULL-phase and therefore the opening of the
Gatekeeper at the User Data input, does depend on the phase detection signal pU− i.e. that
NULL values are present at the input. This prevents the case that the Gatekeeper opens and
propagates old values to the output. The same observations can be made at the Test Data input.
The Petrify output, showing only a slight increase in complexity, can be seen in listing B.9.
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Additional Latch

As proposed in section 5.6 input and output can be further decoupled by introducing a latch
at the output line. For the latch control circuit however an additional phase detection unit is
necessary, which has to be integrated right after the latch, as it is shown in figure 7.9.

data format
conversion

L

enL

phase
detection

pUT

User/Test Data (UTD)
Test Data (TD)

User Data (UD)

Figure 7.9: data path of Additional Latch, 2-to-4 phase split, completion detection

The phase detection unit in this implementation is used to detect new data at the output which
is used to control the latch as well as the acknowledgement mechanism of the inputs, which can
also be seen in the STG (figure 7.10). As soon as both inputs have changed their phases, the
new DATA values are forwarded to the latch which, if transparent, propagates it to the output
and also to the phase detection unit. A change on the output of the latter indicates the beginning
of a new phase at the 4-to-2 phase merge output resulting in an acknowledgement of the inputs
as well as the command to close the latch. More details on the circuit responsible for the latter
follow in the next paragraphs.

pUT+

aU+aUT+ aT-

pUT-

aU- aUT-aT+

Figure 7.10: STG, Additional Latch, 4-to-2 phase merge, completion detection

Please note that the signal aUT was solely introduced in the STG to indicate that a new
output value may only appear after the acknowledge signal of the old output value was received
(see also the latch control). For the design of the control circuit handling the input acknowledge
lines it is not needed and is therefore automatically dropped by Petrify.

The final circuit implementation is shown in figure 7.11. It can be seen that the acknowledge
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signals are directly connected to the output of the phase detection unit, in the Test Data case
with an additional negation. In the same figure the latch control implementation (output enL) is
shown. This output gets high, i.e. the latch gets transparent, if the phase that is currently present
at the output already got acknowledged.

≡
aUT

pUT

enL

aU

aT 1

Figure 7.11: Circuit, Additional Latch, 4-to-2 phase merge, completion detection

Please note that race conditions appear if such an implementation is used. Even if QDI is
assumed it only demands that the pUT signal reaches the equivalence gate and the previous
pipeline stage at the same time. If the first one is very slow it may happen that the signal
for the latch to close shows up too late, forwarding the new DATA values before the old had
been acknowledged. A more robust implementation can be achieved by replacing the latch by a
capture-pass event-controlled storage element as described in [35] and [34, pp. 9-28], where the
capture input has to be connected to pUT and the pass input to aUT . In that case QDI property
assures that the pUT signal reaches the storage element and the previous pipeline stage at the
same time. Please note that even this does not completely guarantee correct behaviour, however
the chance for an error is very small and can therefore be accepted. Nevertheless to assure correct
functionality it has to be checked at design time if the capture-pass storage element stores its
current value faster than it takes the DATA values to propagate from the previous pipeline stage
to the storage element, which can be carried out using a thorough timing analysis.

An alternative approach is to include the latch control already in the STG and use Petrify
to synthesise the whole unit. For test purposes this has also been carried out, however the latch
control did also depend on the acknowledge signals, as it was the case with the first implemen-
tation. This means that even in this case QDI is not enough to ensure correct behaviour. For that
reason the usage of an ordinary latch is only possible in combination with a timing analysis.
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7.3 2-to-4 Phase Split

The 2-to-4 phase split unit divides the 2-phase input data stream into two independent 4-phase
output data streams. The layout of this block (figure 7.12) is very similar to the 4-to-2 phase
merge block described in section 7.1. Again the mandatory blocks, data format conversion and
control split, can be extended by additional units like a phase detector or Gatekeepers, if an
increased concurrency has to be achieved. As before, the control flow (arrows from and to the
control split unit) does not directly reach the data format conversion block, i.e. it is not necessary
to control it in any sense. The data flow in the picture is represented by the arrows from and to
the data format conversion block.

4-to-2 phase split

Test Data(TD)

User Data(UD)

User/Test
Data (UTD)

Gatekeeperdata format
conversion

phase
detection

control
split

Figure 7.12: 2-to-4 Phase Split Unit

Data Format Conversion

The data format conversion block is used to convert the input data, which are delivered in the
2-phase LEDR format, to an equivalent representation in the NCL format. The general layout
of this unit can be seen in figure 7.13. Two independent format conversion (FC) units, both
working on the same input data, are used to realise the conversion. Each FC block thereby
handles exactly one of the two phases of the input signal and blocks the other one. Furthermore
it introduces an additional NULL-phase to create a valid 4-phase signal at the output.

FC
phase 0

FC
phase 1

Test Data (TD)

User Data (UD)

User/Test Data (UTD)

Figure 7.13: Format Conversion from 2 to 4 phase

Please note that this approach is only possible because User Data and Test Data are always
assigned to the same phase (as described in section 5.5). According to the definitions stated
there the block handling phase 1 is connected to the UD output and the one handling phase 0 to
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the TD output. If the reverse mapping is required i.e. phase 1 to TD and phase 0 to UD also the
FC blocks have to be interchanged.

The circuit implementation for the FC block handling phase 1, i.e. odd parity, is shown in
figure 7.14. In the picture the input rails are named value rail, holding the actual value (high or
low), and phase rail, which is responsible to generate the correct parity for the actual phase.

&

&

low rail

high rail
value rail

phase rail

Figure 7.14: Circuit, Format Conversion, Phase 1, 2-to-4 phase split, completion detection

If the input rails of the FC phase 1 block have an odd parity, which implies that exactly
one of the input lines is high and the other one low, the input value is transformed into the
corresponding NCL value, otherwise the NULL value is sent, because in that case both AND
gates dispense a low value. This can also be seen in the truth table presented in table 7.1.

value rail phase rail high rail low rail
0 0 0 0
0 1 0 1
1 0 1 0
1 1 0 0

Table 7.1: Truth Table, Format Conversion, Phase 1, 2-to-4 phase split, completion detection

The circuit implementation of phase 0 is similar to the one of phase 1 and is shown in figure
7.15. The only differences are the input negations of the AND gates, causing this unit to only
propagate values, having the same logical level on both rails, or more specific if the parity is
even. All others are blocked and the NULL value is sent due to the fact, that both AND gates
evaluate to a low value. More details shows the truth table in table 7.2.

&

&

low rail

high rail
value rail

phase rail

Figure 7.15: Format Conversion, Phase 0, 2-to-4 phase split, completion detection

The truth tables show very clearly, that the two FC blocks are dual i.e. that the values
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value rail phase rail high rail low rail
0 0 0 1
0 1 0 0
1 0 0 0
1 1 1 0

Table 7.2: Truth Table, Format Conversion, Phase 0, 2-to-4 phase split, completion detection

propagated by the one handling phase 0 are blocked by the one handling phase 1 and vice versa.
Furthermore in a 2-phase communication protocol the next value is achieved from the current
one by changing a single rail, which also switches the parity. This implies that the FC unit that
sent a DATA value before sends the NULL value afterwards and the one propagating the NULL
value before forwards the DATA value afterwards. For that reasons it is indeed possible to attach
both of them to the same input, leading to an alternating propagation of the DATA values as well
as a valid 4-phase communication protocol at the User Data and Test Data output.

In a similar fashion as done in section 7.1 it can be shown that the implementation is only
QDI, due to the fact that the AND gates violate the indication principle. In detail an input change
is not always recognisable when the output is low. Therefore it can happen that a low input line
masks the other, heavily delayed, leading to massive disturbances and failures. Again the reader
is encouraged to design a situation leading to that undesired behaviour.

Control Split

Due to the fact that the request signals, used to indicate that the data on the lines are ready to
be read are already integrated in the data themselves, this building block just has to handle the
acknowledge lines in its Basic Implementation. However if an increased concurrency is needed,
additional units like a phase detector have to be integrated. These generate additional control
signals that also have to be integrated into the control split block, which results in more complex
designs. Concrete implementations for this unit are presented in the following section.
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7.4 Implementations of 2-to-4 Phase Split

Basic Implementation

In the Basic Implementation the single unit on the data path is the data format conversion block,
converting the 2-phase input automatically into two 4-phase outputs. By looking at the format
conversion (FC) implementations for phase 0 (figure 7.15) and phase 1 (figure 7.14) one can
see, that each input value only causes a single AND gate to forward a high value in both units
combined. This further implies that exactly one output line has a high value at a time which is
equal to the fact, that one output is in its DATA-phase and the other one in its NULL-phase .

As already mentioned earlier the only thing left to do for the control split block is to handle
the acknowledge signals, or more specifically to acknowledge the input as soon as the acknowl-
edge signal has been received at the User Data and Test Data output. The corresponding STG
can be seen in figure 7.16.

aU+ aT-

aUT-

aUT+

aU- aT+

Figure 7.16: STG, Basic Implementation, control split, completion detection

The circuit generated by Petrify is shown in figure 7.17. Despite the fact that the control split
unit is DI, because it only consists of a single Muller-C gate, the whole implementation is just
QDI, due to the data format conversion block, which was shown to be QDI (see section 7.3).

CaUT
aT

aU

Figure 7.17: Circuit, Basic Implementation, control split, completion detection
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Early NULL-phase

User/Test
Data (UTD)

G
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FC
phase 1

FC
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enG

enG

User Data
(UD)

Test Data
(TD)

Figure 7.18: Data Path, Early NULL-phase, 2-to-4 phase split, completion detection

To implement the design idea presented in section 5.6 additional units, more specifically two
Gatekeepers, have to be introduced into the data path. The complete layout is shown in figure
7.18, where the Gatekeepers, denoted by the letter G, are introduced at the Test Data and User
Data output, making it possible to prevent data from propagating. The signal enG is the control
line for the Gatekeepers telling them to block or to propagate data. In the first case these units
forward a low value on both rails, which is equal to the NULL-phase, making it possible to start
the NULL-phase at the User Data output by setting the enable signal enG to a low value and on
the Test Data output by changing enG to a high value.

enG-

aU+ aT-

aUT+ enG+

aU- aT+

aUT-

Figure 7.19: STG, Early NULL-phase, 2-to-4 phase split, completion detection

The corresponding STG can be seen in figure 7.19. In the starting position the enable signal
enG is low, implying that the Gatekeeper at the Test Data outputs blocks incoming data and the
one at the User Data output forwards them. Therefore the acknowledge line aU eventually gets
a high value, automatically acknowledging the input and changing enG to a high value. This
causes the Gatekeeper at the User Data output to start blocking, which starts the NULL-phase
due to the fact that both lines are set to a low value. This gives the NULL values more time to
propagate to the next pipeline stage. By closing the Gatekeeper at the UD output the one at the
TD output gets opened, which however has at that point in time no effect because the format
conversion block handling phase 0 forwards a NULL value anyway. Only after the data at the
input have changed they are forwarded to the Test Data output and get eventually acknowledged,
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starting the cycle over again.

The resulting circuit implementation is shown in figure 7.20. It can be seen that the enable
signal is equal to the acknowledge signal for the input, yielding a very simple circuit. The
Muller-C gate is again used to assure that both outputs are in differing phases.

C
aT

aU
aUT

enG

Figure 7.20: Circuit, Early NULL-phase, control split, completion detection

To assure correct functionality it has to be taken care that the control signals arrive at the
Gatekeepers before the next data of that line show up. If that is not the case it might happen that
the DATA-phase is aborted before it was acknowledged and maybe in addition the introduced
NULL-phase might end early starting an extra DATA-phase with the same value again. For that
reason QDI is required, causing the control signal to reach the Gatekeepers at the same time as
the preceding pipeline stage.
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Early DATA-phase

In the Early DATA-phase approach the input is acknowledged as soon as the output currently
in its DATA-phase has sent the acknowledge signal, making it possible for the input to send
the next DATA values earlier. If only the data format conversion unit would be used on the
data path, as it was done for example in the Basic Implementation, the new data would be
automatically propagated to both outputs, implying that data are sent to the output currently in
its NULL-phase before the acknowledge signal was received. To prevent this incorrect handling
of the communication protocol the new data have to be stalled until the receiver at that output
indicates, that it is ready to accept new data. This behaviour can be realised by a Gatekeeper unit
at each output which however requires an additional phase detection unit on the input to know
when to block which output. The resulting data path scheme, can be seen in figure 7.21.

User/Test
Data (UTD)

phase
detection

pUT

G

G

FC
phase 1

FC
phase 0

enT

enU

User Data
(UD)

Test Data
(TD)

Figure 7.21: Data Path, Early DATA-phase, 2-to-4 phase split, completion detection

As mentioned before the Gatekeepers at the outputs are used to prevent data propagation if
the NULL-phase has not yet been completed. For that purpose they start blocking as soon as
the phase resulting in a NULL-phase at that specific output shows up at the input, in particular
if phase 0 is currently processed then the Gatekeeper at the UD output closes and if phase 1 is
worked on the one at the TD output closes. It is not necessary to start blocking the input so early
because the data format conversion block would convert it to the NULL value anyway, however
in that way larger delays are tolerable. For example, if the delay to the Gatekeepers is too big,
they just start blocking after the next DATA-phase was propagated to their input. This results in
a propagation of DATA values despite the NULL-phase was not finished yet, a termination of
the DATA-phase before it was acknowledged and maybe even the sending of the same DATA
value twice, if the blocking sequence of the Gatekeeper is shorter than the input signal. A more
robust version would be to close these gates at the same time the input is acknowledged, i.e. a
combination with the Early NULL-phase approach, which is however not further pursued here.

In contrast to the data path the control split unit differs heavily to the Early NULL-phase
design which can be seen best in the STG shown in figure 7.22. As soon as new data arrive at
the input one Gatekeeper starts blocking and the other one starts propagating if the NULL-phase
has been completed. One very important thing to see is, that the signal aUT+ solely depends
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on aU+ and aUT− solely on aT+.

pUT+

enU+

aU+

aUT+

pUT-

enU-

aU-

aUT-

aT+

enT-

aT-

enT+

Figure 7.22: STG, Early DATA-phase, control split, completion detection

As already mentioned above there are some race conditions that have to be checked when
the design is integrated, more specifically that the Gatekeepers start blocking before new data
for their output arrive. However it was tried to give these units as much time as possible such
that a violation of the timings is very improbable.

The results received from Petrify can be observed in listing B.10. There, an increased com-
plexity is noticeable, resulting from the increased concurrency.
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Additional Latch

By introducing an additional latch at the input a better decoupling can be achieved. In detail the
value of the input is stored, making it possible to acknowledge it right away. Please note that a
latch has to be introduced on each single input rail, more specifically two times as many as with
the bundled data approach. The rest of the circuit remains unchanged.

L

enL

User/Test
Data (UTD)

phase
detection

pUT

FC
phase 1

FC
phase 0

User Data
(UD)

Test Data
(TD)

Figure 7.23: Data Path, Additional Latch, 2-to-4 phase split, completion detection

The improved data path can be seen in figure 7.23. The building block labelled with L
thereby represents the latch, which is transparent if the control signal enL is high and closed if
enL is low.

As soon as the phase detection unit indicates new data the latches are closed, causing them to
hold their actual values and at the same time the input gets acknowledged. Afterwards the circuit
waits until on both outputs the acknowledge signal has been received and afterwards opens the
latches at the input. Only after that has happened a new phase can be identified by the phase
detection unit, because just in that case new data are possible to pass the latches, starting the
cycle all over again.

pUT+

aUT+

pUT-

aUT-

Figure 7.24: STG, Additional Latch, 2-to-4 phase split, completion detection

It is possible to design the latch control and the acknowledgement of the input in different
circuits. The STG for the latter one is shown in figure 7.24 and is very simple. As soon as the
phase detector announces a new phase, which implies that the latches are transparent, the input
is acknowledged. At the same time the latches have to be closed, i.e. they have to store their
current value, until both outputs have acknowledged their phases. This represents a very tight
coupling and may be loosened however it yields a very simple circuit implementation, which can
be seen in figure 7.25. There in addition the circuit of the STG shown before is also integrated,
as a simple connection from pUT to aUT . For the latch control the acknowledge signals of the
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outputs have to be connected using a Muller C gate to assure that both outputs got acknowledged.
The result of that gate is then connected together with the signal pUT to an equality gate, whose
output is set to a high value if both inputs have the same logic value. At startup the equality
gate forwards a high value, causing the latches to be transparent. As soon as a new data phase
is detected, pUT switches causing enL to change to low, i.e. store the values in the latches,
until both outputs have acknowledged their phases. If that happens the Muller-C gate switches
its output value causing the latches to get transparent again giving the phase detector the chance
to detect a new data phase.

C
≡ aT

aU

enL

aUT

pUT

Figure 7.25: Circuit, Additional Latch, 2-to-4 phase split, completion detection

This implementation has the big disadvantage that the timing requirements are very compli-
cated. Even QDI is not enough because this only implies that pUT arrives at the prior pipeline
node and the equality gate at the same time. If the latter is very slow it might happen that new
data already arrive before the latches are closed. To make the circuit more robust the simple
latch can be replaced by a capture-pass event-controlled storage element as described in [35]
and [34, pp. 9-28]. The capture input has to be connected to pUT and the pass input to the
output of the Muller-C gate. However also with this specific unit QDI is not enough to assure
correct behaviour because this only states, that the enable signal reaches the storage element at
the same instant as the previous pipeline stage. However in general the time it takes to store a
value is far less than it takes to put new data on the line plus the time it takes these values to
propagate to the input of the 2-to-4 phase split unit.

Similar to the 4-to-2 phase merge unit the latch control for an ordinary latch may be inte-
grated into the STG, unfortunately again without yielding advantages. For that reason the usage
of a simple latch in this implementation is only reasonable in combination with a thorough tim-
ing analysis carried out at design time to assure, that the actual values of the data lines are stored
before the new values show up.
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CHAPTER 8
Proposed Solution - Extensions

In section 5.2 some restrictions were introduced to ease the development of the test approach.
In this chapter it is investigated if these restrictions may be lifted or at least softened without
changing the overall functionality.

8.1 Cyclic Pipeline

The first restriction affected the pipeline structure, more specifically no loops inside the CUT
were allowed. However in real life applications feed back or feed forward loops are very well
imaginable so in this section it is studied, if the proposed approach is also applicable to cyclic
pipelines.

In general, verifying a result depending on the previous input values, is very hard. However
if the test approach described in this thesis is used, all test vectors as well as their order are
known a priori and for that reason the results can also be computed a priori, even if cyclic
pipelines are used. One major problem with this pipeline structure is, that faulty values are fed
back or forward into the loop before they were checked, making it possible that they introduce
periodic failures each time the incorrect value interchanges with a correct one. Moreover it can’t
be told if the fault is still present or if the present failures are just introduced by the incorrect feed
back values. The source of these problems is the fact that the history, e.g. the number of values
that have been used for computing particular data may become infinitely in cyclic pipelines. For
that reason they have to be cleared after a fault was detected by applying input vectors to the
CUT, that reset the internal registers to the initial state. This also has to be carried out for the
test vectors. Another possibility is to activate the reset signal locally for the specific block if
possible. Alternatively it would be possible to prove for the given settings that a cyclic failure
based on the Test Data and the expected User Data is not possible at all.
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In the following subsections some more specific forms of cyclic pipelines are investigated
as well as some restrictions that have to be taken care of. For the purpose of visualisation the
notation from [34, chapter 3] is used, which represents latches as boxes with double vertical lines
whereas the logic in between is neglected. If the label in a box is surrounded by a circle, the
latch holds a valid value and if not the value has already been consumed by the unit afterwards,
i.e. the latch holds a so called bubble. To indicate a NULL value the label E is used and for a
DATA value the label V . In this thesis the usage is extended to the 2-phase protocols, whereas
the label U indicates User Data belonging to phase 1 and T Test Data belonging to phase 0.

Feed Back Loop

In a feed back loop the value of a later stage of the pipeline is used in an earlier one. The
schematic view for the synchronous case is shown in figure 8.1. The quadratic blocks in the
picture represent a pipeline stage, i.e. the data move ahead one stage at each clock tick. The data
lines are split up at the start point of the loop, marked with a black dot, fed back to a previous
pipeline stage and integrated in the logic, shown as black circle. Please note that the minimum
length of the feedback path is 1 and not like the picture might suggest 2 or more.

. . . . . . . . .

Figure 8.1: Feed Back Loop, Synchronous Pipeline

This concept has to be adopted to asynchronous logic to check if it is also testable with the
test procedure presented in this thesis. For that purpose it is first converted to work for a 4-
phase communication protocol and afterwards adapted to a 2-phase one. This intermediate step
is reasonable, as it will be shown later, because the 4-phase implementation is very similar to
the final one.

The main problem when using feed back loops in a 4-phase protocol are the alternating
DATA-phase and NULL-phase. It has to be taken care that DATA values only interact with other
DATA values and not with NULL values. To assure this property it is necessary to integrate two
additional nodes in the feed back loop for each pipeline stage that has to be passed. This means
that if the loop jumps back n pipeline stages, 2 ∗ n additional nodes are required. Figure 8.2
shows the 4-phase version of the synchronous pipeline implementation. The fed back data as
well as the data of the pipeline are joined using the Join unit also presented in [34, chapter 3].
This building block requires that both inputs are in the same phase, i.e. either DATA-phase or
NULL-phase, before it propagates the input values to the output. To prevent a deadlock right at
the start, the nodes on the feed back path have to be initialised, starting at the first every other
with a DATA value and all others with a NULL value. The initial DATA values have to be chosen
carefully, in the best case they are neutral elements to the operation that is carried out on them,
e.g. 0 if the operation is an addition or 1 if it is a multiplication.
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The first data token on the pipeline joins the first data token in the feed back loop and prop-
agates through the whole pipeline until it reaches the fork unit. Its current value is afterwards
inserted at the end of the loop, if the last node on the feed back path already contains a bubble.
The following NULL value is handled in the same way. After the next n− 1 DATA and NULL
values the first inserted value is ready to be joined with the value that appeared n steps later,
which is exactly the same functionality as in the synchronous case.

E

V E

E . . . E E

EV. . .

. . . . . .

Figure 8.2: Feed Back Loop, Asynchronous Pipeline, 4-phase

As already mentioned the structure presented for the case of a 4-phase protocol is very much
alike the one that is used for the test approach presented here, despite the fact that inside the
CUT a 2-phase protocol is used. In general the phases in a 2-phase communication protocol are
allowed and, after a slight conversion, well able to interact, however in the CUT one phase only
contains User Data and the other one only Test Data. For that reason they must not interact at all
because otherwise the functionality of the whole unit would be destroyed. Due to the fact that
the same restriction was introduced for the 4-phase implementation, the structure can be adopted
as it is with just minor changes. At first the labels are changed from V to U indicating DATA
values, and from E to T displaying TEST values. Furthermore the Join and Fork units also have
to be replaced by their counterparts capable of the 2-phase protocol. The complete feed back
loop can be seen in figure 8.3.

T

U T

T . . . T T

TU. . .

. . . . . .

Figure 8.3: Feed Back Loop, Asynchronous Pipeline, 2-phase

Please note that the presented pipeline structure is the minimal feasible feed back path. To
improve the performance, it is of course possible to add latches in the feedback path, as is was
described in [34, chapter 3]. Nevertheless the count of initialised nodes has to stay the same
because they define how long the DATA values are delayed.
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Feed Forward Loop

In a feed-forward loop the actual value of a specific stage is used also in a stage further ahead
in the pipeline as the original one. Figure 8.4 shows this case schematically for the synchronous
case. At the point marked with a black dot, the data lines fork and one part is forwarded to
another stage, marked with a black circle. As already mentioned in the description of the feed
back loop the boxes represent a pipeline node such that the data propagate to the following node
at each clock tick. It has to be noted, as also mentioned when describing the feed back loop, that
the minimal count of stages that are passed by the loop is one and not two or more like the figure
might suggest.

. . . . . . . . .

Figure 8.4: Feed Forward Loop, Synchronous Pipeline

When adopting this concept to a 4-phase communication protocol it again has to be taken
care that the correct phases interact i.e. DATA-phase with DATA-phase and NULL-phase with
NULL-phase. If the structure of the circuit stays the same as in the synchronous case severe
problems occur. Assume that the data should be forwarded right to the following stage. However
at the time one stage processes the DATA-phase the following one already handles the NULL-
phase of the previous DATA values. This would make it impossible to create a feed-forward
loop over an odd amount of stages.

To counteract this behaviour, every synchronous stage controller that is bypassed by the data
on the loop has to be replaced by two asynchronous controllers, as it is shown in figure 8.5. Due
to the fact that the 4-phase implementation as well as the one for the actual test approach only
differ by labels, the picture already shows the final design. Assume that n stages are bypassed
by the loop then the n synchronous controllers have to be replaced by 2 ∗ n asynchronous
ones, capable of handling 2-phase communication. Starting at the last one every other has to be
initialised with a User Data token and all others with Test Data one. This is necessary to assure
on the one hand the correct delay of the values and on the other hand to prevent deadlocks, that
would appear if the Join unit at the end of the loop does not get a pair of the same phase at its
input.

. . . T
T U . . . T U

T . . .

Figure 8.5: Feed Forward Loop, Asynchronous Pipeline, 2-phase

At the time the first DATA values arrive at the last stage in front of the loop, they are im-
mediately forwarded to the Join unit at the end. Due to the fact that both inputs of the Join
unit are in the same phase (User Data) the values are forwarded to the next stage and eventually
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acknowledged. After all elements of the pipeline in the loop have progressed to the next node,
the first one gets empty, implying that it now is ready to accept the value that is stored in the
previous stage. Afterwards the data are propagated through the two times n stages and finally
interact with the correct data. Please note that the speed can be significantly increased if addi-
tional nodes are introduced into the pipeline inside the loop, however there always have to be
two times n initially filled stages present. Please note that twice the amount of nodes does not
automatically mean that the hardware overhead is 100 %. Due to the fact that an asynchronous
latch is one half of a synchronous flip flop.

A possible extension to the above presented pipeline structures in the synchronous elements
is to add additional controller nodes on the feed-back/forward loop, used to delay the values
for one clock tick per introduced unit. This behaviour can be realised in the asynchronous case
too, by simply adding two additional stage controllers for each delay controller node in the
synchronous pipeline, which have to be filled with tokens.

Computational Loop

Besides feed-back and feed-forward loops also more general circuits are testable using the pro-
posed test scheme however with restrictions. In the following, circuits that accept a value at
the input and compute the result in an arbitrary amount of steps are investigated. An example
circuit can be seen in figure 8.6, which calculates the greatest common divisor (GCD) of two
numbers. Please note that the implementation in the picture is based on 4-phase logic so it has
to be converted to a 2-phase one to be testable by the test scheme proposed in this thesis. To
achieve that, the NULL-phase has to be replaced by an additional DATA-phase and the control
circuits have to be adopted to 2-phase logic.

In the adopted configuration the circuit accepts one User Data and one Test Data at the input
and afterwards starts the computations. After these are finished the results are propagated to the
output and new inputs are read. As long as the Test Data and the User Data are processed in the
same amount of computation steps no problems occur, because they both get read in in the same
circle and the result is also presented at the output in the same computation cycle. However if
User Data and Test Data are not computed in the same amount of steps, as it can happen easily
when calculating the GCD, serious problems may appear. Assume for example that it takes five
iterations to process the User Data value and three for the Test Data one. At the beginning the
DATA value of phase 1 is accepted at the input and afterwards the one of phase 0. The stage in
front of the GCD will then propagate the next User Data value to the input. In the meantime the
calculations start until phase 0 is finished. In that case the circuit tries to read the next Test Data
value from the input where however only a User Data value is available. This causes the circuit
to deadlock because the Merge unit at the entry only works if the values at its inputs are in the
same phase.

As this little example shows only circuits delivering the result in a fixed amount of compu-
tation steps are testable by the proposed test approach. If it is desired that also circuits are tested
not fulfilling this property, then the Test Data would have to be adopted to the actually processed
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Figure 8.6: circuit calculating the greatest common divider of two numbers [34, p.39]

User Data, destroying however the foundation of the proposed test scheme because in that case
the applied test vectors are no longer known a priori and therefore the whole test approach is not
applicable at all.

Restrictions

In addition to the already stated conditions for the usage of loops, one more rule has to be
introduced, namely that a loop has to start and end inside the CUT. This means, that it is not
allowed for a loop to start inside the CUT and end outside as well as to start outside and end
inside. The most obvious reason for this is, that the communication protocol used within the
CUT does not match the one at the outside (4-phase vs. 2-phase).

8.2 Storage Elements

Registers

The second restriction introduced in section 5.2 forbids registers, used to store parts of the result
such that it can be used in the next computation. Due to the fact that User Data and Test Data are
processed in an alternating fashion this behaviour is not allowed because otherwise they would
start to interact which has to be prevented under all circumstances. More specific a value stored
in e.g. phase 0 has to be kept hidden while the stage works in phase 1 and is only allowed to be
used if another value of phase 0 is processed.
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There are two possibilities to actually include the register concept. The first one is to use
a feed back loop only over that particular stage. In that case the values are not stored in the
control node but travel around the stage and arrive at the input at the same time new data show
up. Nevertheless this method requires lots of hardware because at least two additional nodes
have to be introduced on the feed back loop. The second possibility is to use an actual register
in the node however duplicated i.e. one for phase 0 and one for phase 1. The pipeline stage has
to detect the phase the circuit is currently in and use the appropriate register.

The huge disadvantage of this method is that the User Data registers are not testable by
the proposed approach, making it necessary to add an additional test mechanism observing the
registers, like a parity checker for example.

State Machines

Similarly to registers also state machines, i.e. circuits that compute their output based on their
current internal state and the input, are very problematic units when using the proposed test
approach. If the internal 2-phase User/Test Data stream would be connected to the input of that
kind of unit, both would interfere causing miscalculations.

One solution for this problem is to duplicate the state machine, whereas one duplicate is
assigned to phase 0 and the other one to phase 1, and furthermore to implement a control logic
forwarding the data to the appropriate unit, depending on the actual phase. Another approach
would be to just double the registers storing the internal storage which has the advantage of less
hardware overhead. However as mentioned before the hardware only used for User Data is not
tested by the proposed test approach, demanding additional test methods.
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CHAPTER 9
Proof-of-concept

In this chapter a concrete implementation of the theoretical concepts described in the previous
chapters is presented, which is furthermore used to show the correct functionality of the stated
test approach. In addition the introduced delay and the additional required area is calculated
analytically to estimate the overhead.

9.1 Introduction

To verify the proposed test approach a simple pipeline structure with three stages (see figure 9.1)
was chosen as CUT. The squares in the figure represent controller nodes which are connected
directly to each other, i.e. without any logic in between. Therefore this implementation does
not compute anything but only propagates input values without modifying them. This pipeline
design is despite its simplicity suitable for the desired purpose, because mainly the merging
and splitting of the data had to be investigated. Furthermore this approach was chosen to make
the results better readable and easier to understand. The feed back path in the figure is drawn
dashed, meaning that it is not part of the original pipeline and is only added at the end to show
the correct functionality when using a cyclic pipeline structure.

Figure 9.1: Pipeline Schematic used for the implementation, pipeline nodes squares, optional
feed back path dashed
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For each design style, i.e. bundled data and completion detection, three different versions
have been implemented. The first one only consists of the three pipeline stages and is used to
verify the correct functionality of the original pipeline. In the second version the devices used
to test the CUT are added to realise a CCUTT approach, more specific a 4-to-2 phase merge
unit and a test vector generator are installed in front of the first pipeline node and a 2-to-4 phase
split unit as well as a test vector analyser right after the last one. In the third version finally the
feedback path is added to the pipeline structure. In this case the 2-to-4 phase split unit is mounted
after the point feeding the data into the feedback path. The 4-to-2 phase merge and 2-to-4 phase
split unit were implemented in their Basic Implementations, saving the other implementation
styles for future research. Also the TVG as well as the TRA were kept as simple as possible, by
implementing them as mere lists applying one element after the other to the input respectively
comparing the output to the next element in its list.

The data path itself was implemented by eight rails, resulting in eight information bits when
using bundled data and four when using completion detection. The control lines also had to be
adapted depending on which communication style was used, as it has been described earlier.

The implementation was written in VHDL, synthesised in Quartus R©II 32-bit Version 12.1
Build 177 11/07/2012 SJ Web Edition and afterwards simulated using a Post-Layout simulation
in ModelSim-Altera R© Starter Edition 10.1d, which both are available for download at [6].

Please note that the main purpose of this implementation was to prove, that the proposed
testing scheme is working according to its specifications in an actual implementation. This
means that no time was invested to optimise the VHDL code in terms of speed and area, which
is also one of the reason why the overheads were calculated analytically and not taken from the
implementation. Nevertheless the usage of such a minimal test circuit is a valid proof-of-concept
implementation due to the following reasons:

• It can be shown that testing is carried out completely concurrent, i.e. without interrupting
the normal operation.

• It can be observed very well if the 4-to-2 phase merge and 2-to-4 phase split units combine
and separate the 4-phase respectively 2-phase data streams as desired.

• The test approach works independently of the CUT making it possible to replace the sim-
ple pipeline by any circuit fulfilling the criteria stated earlier without changing the overall
functionality.

• It can be proven, that feedback loops work for a feedback count of two, which can be
easily extended to n without effects to the rest of the implementations.

• SST can be achieved from the shown implementation by replacing the CUT by a sin-
gle combinational cloud. Again this does not change the overall functionality only the
expected test vectors have to be altered according to the introduced logic.
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9.2 Implementation

Bundled Data

As mentioned earlier no logic clouds between the pipeline nodes were implemented, implying
that the data are forwarded as they are from one pipeline stage to the following. This is, however,
not true for the last version, i.e. the one with the feed-back loop. In that case the lower four bits
are taken from the feed back path and the other ones from the previous stage. If logic clouds
would have been used they would not have to be altered when adding the test procedure because
one property of the bundled data design style is, that it is possible to use the same logic units in
the 4-phase and 2-phase style.

The dataflow of the implementation can be observed in figure 9.2 and 9.3, whereat in the
latter one a loop was introduced into the linear pipeline. The signals in the figure are arranged
according to the order they are processed, starting with the input at the top and ending with
the output at the bottom. At the very top the input interface, i.e. the input data (data_In) and
the request (req_In) and acknowledge line (ack_In), are shown. Afterwards the output of the
test vector generator (TV G) is presented, which is combined with the data input inside the 4-
to-2 phase merge unit to the signal PhM_Out. That one is afterwards processed by stage 1,
resulting in signal stage1_Out, which is fed into stage 2, leading to signal stage2_Out. The
output of the last stage is the same as the input of the 2-to-4 phase split unit, which is shown in
line PhS_In. The 2-to-4 phase split unit afterwards splits User Data and Test Data resulting in
the data streams that are described by TRA (TD) and data_Out (UD). For the latter also the
request (req_Out) and acknowledge (ack_Out) line are shown. Please note that the request and
acknowledge signals inside the CUT are not shown in the picture to improve the readability.

Figure 9.2: Simulation of bundled data implementation without loop

Figure 9.3 shows the implementation with a loop in the pipeline structure. The behaviour is
very similar to the one described above with the difference that the output of the feedback loop,
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denoted as the signal feedback_Out in the picture, is combined with the output of stage 1 and
fed together into stage 2. This can be seen best when comparing the signals stage1_Out and
stage2_Out where the lower four bits are replaced by the value 2 if it is a DATA value and by 7
if it is a TEST value.

Figure 9.3: Simulation of bundled data implementation with loop

Completion Detection

Like in the bundled data implementation no logic gates were used between the pipeline stages,
causing the data to be propagated without changes. Solely when a feed back loop is used the
upper two bits (four rails) are taken from the feed back path and the lower two from the previous
stage. If logic gates are used they have to be adapted to work with the new data encoding scheme,
which in general increases the size of the gates.

The operation within the CUT is shown in the figures 9.4 and 9.5. In the first case a linear
pipeline was used, in the latter one an additional feedback loop was introduced. The overall
functionality is the same as with bundled data, described already earlier, with the difference,
that the data encoding is changed for the Test Data in the merge and split unit (e.g. 5A→ 0F ),
whereas the User Data are not changed at all. This results from the fact that the former are
assigned to the phase having an even parity and the latter to the odd parity phase.

9.3 Fault Detection

To verify that faults are detected correctly a stuck-at fault at bit 3 was introduced in the bundled
data implementation, causing it to be low all the time. The effects of the introduced fault can be
observed in figure 9.6. While the first few values (UD: 44 and 25; TD: 14) are propagated with-
out modification the TEST value 9B is converted to 93 which is detected by the test approach
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Figure 9.4: Simulation of completion detection implementation without loop

Figure 9.5: Simulation of completion detection implementation with loop

and the detected failure is reported to the outside using a high value on the signal cmpDev. Please
note that also the DATA value 3F following afterwards is changed to 37.

9.4 Area Overhead

The introduction of the test circuitry requires additional area on the chip. For that reason calcu-
lations are carried out in this section to estimate the overhead. Despite the fact that the whole
circuit was integrated on an FPGA the calculations are carried out analytically and are presented
in transistor counts. This method was preferred because the amount of units required may differ
from design tool to design tool due to different optimisation algorithms. Another advantage of
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Figure 9.6: Simulation of bundled data implementation with introduced fault

the chosen method is, that an upper bound is received, which may be improved significantly by
an optimised implementation.

Table 9.1 lists the transistor count of the gates used in the calculations. Please note that the
overhead is only computed for the basic implementations of the test infrastructure. The more
elaborate versions are left for future research.

gate transistor count
negation 2
transmission gate 2
NOR, NAND 4
OR, AND 6
XOR 10
MUX, Latch 12
Muller-C 12

Table 9.1: Area requirements for standard building blocks in transistors

Bundled Data

Figure 9.7 shows the layout of a Muller pipeline as it was proposed in [35]. One can see that
each pipeline node consists of a latch per data line, a Muller-C element and a negation, overall
accumulating to 14 + 12 ∗ k transistors whereat k represents the amount of data lines. When
assuming n pipeline stages and also considering the combinational logic between the stages,
represented in average transistor count per pipeline stage (comb), the overall transistor count
sums up to

native = n ∗ (14 + k ∗ 12 + comb)
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Figure 9.7: Muller Pipeline as proposed in [35]

When introducing the test approach the latches inside the pipeline nodes have to be replaced
by capture and pass storage elements proposed by Sutherland [35]. For the calculations the
implementation shown in figure 9.8 consisting of 5 inverters, 6 transmissions gates and 2 addi-
tional inverters for generating the negated control signals for the transmission gates was chosen,
resulting in an overall transistor count of 26. It is possible to integrate this unit on far less space,
however in the calculations this pessimistic estimation is used to achieve a safe upper bound of
what to expect.

Figure 9.8: Implementation of a Capture and Pass Storage Element [35]

Additionally the 4-to-2 phase merge as well as the 2-to-4 phase split units in their basic
implementation have to be integrated, whereat the first one consists of two negations (4 tran-
sistors (T)), one Muller-C gate (12 T) and one MUX/data line (DL) (12 T) summing up to
16T + 12T/DL. The latter one simply consists of two negations (4 transistors (T)) and one
Muller-C gate (12 T) resulting in overall 16 T. Assuming n pipeline stages and k data lines the
overall transistor count for the bundled data test implementation accumulates to
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test = n ∗ (14 + k ∗ 26 + comb) + 32 + k ∗ 12

The overhead therefore results to

overhead =
test− native

native

=
14 ∗ k ∗ n+ 12 ∗ k + 32

12 ∗ k ∗ n+ 14 ∗ n+ n ∗ comb
By assuming no logic between the stages (worst case assumption) and large values for k (> 32)
the expression can be further simplified to

overhead =
14 ∗ k

12 ∗ k + 14
+

1

n
∗ 12 ∗ k + 32

12 ∗ k + 14

≈ 14

12
+

1

n
∗ 12

12

≈ 117 +
100

n
%

introducing an error of plus 4 to 5 % for k = 32 and around 2 % for k = 64.

If the pipeline consists solely of a single stage the overhead results to 217 %, however with
an increasing length this value decreases linearly towards 117 %. Please keep in mind, that this
model represents the worst case with no combinational logic at all between the stages, a situation
that will never occur in reality. By adding l combinational logic transistors per data line (DL),
i.e. comb = l ∗ k, the formula stated above can be rewritten to

overhead =
14 ∗ k

12 ∗ k + 14 + l ∗ k +
1

n
∗ 12 ∗ k + 32

12 ∗ k + 14 + l ∗ k
≈ 14

12 + l
+

1

n
∗ 12

12 + l

which is shown in figure 9.9. The x-axis represents the size of the logic and the y-axis the area
overhead in %. The calculations were carried out for a data line count of k = 64 and a pipeline
length of n ∈ {1, 2, 5, 10, 50}. As it can be seen very clearly the area overhead drops very
quickly as soon as combinational logic is added. When looking at the worst case scenario, i.e.
when only a single pipeline stage exists (n = 1), then a logic of 12T/DL/stage already halves
the relative overhead. When more and more logic is added the overhead of course approaches 0
%.
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Figure 9.9: area overhead in % in dependence of amount of logic and number of pipeline stages
(n), k = 64 data lines, bundled data

Completion Detection

The native implementation using the completion detection design style uses also one negation
(2 T) and one Muller-C gate (12 T) to control the storage elements within one pipeline stage,
however for each data line in addition one OR (6 T) and several Muller-C gates (12 T) are
required to implement the completion detection mechanism. In detail both rails of each signal
line are connected to the same OR-gate and the outputs of these are then concentrated using
a tree of Muller-C elements. This tree requires k − 1 such units, where k again denotes the
amount of data lines. This tree forwards a high value only when all OR-gates forward a high
value, indicating that all lines hold a data value. For a low value the same statements can be
made, whereas this indicates that all lines hold a NULL value. Furthermore for each single DL
consisting of two rails two capture pass storage elements (26 T) have to be installed, because in
contrast to the bundled data approach even the NULL values have to be stored to guarantee a
frictionless operation.

In the following calculations the logic was dropped because the additional overhead is not
exactly known, due to missing numbers in literature. Therefore an educated guess had to be
made which will be discussed separately at the end of this section. Without logic gates the
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overall transistor count for the native approach having n pipeline stages results to

native = n ∗ (14 + k ∗ 6 + 12 ∗ (k − 1) + 2 ∗ k ∗ 26)

When adding the test circuit the communication method is changed from two to four phase
yielding several consequences. The first one is that now XOR units are required instead of the
OR gates for the completion detection mechanism, resulting in four additional transistors per
DL. In addition the 4-to-2 phase merge (2T + 44 T/DL: 2 OR, 2 NOR, 2 Muller-C, 1 negation)
and 2-to-4 phase split (14T + 22T/DL, 3 NOR, 1 NAND, 3 negations, 1 Muller-C) have to be
inserted, whereat simple optimisations such as combining OR and negation to NOR have been
carried out.

By summing up the single components the overall transistor count for the test implementa-
tions results to

test = n ∗ (14 + k ∗ 6 + 12 ∗ (k − 1) + 2 ∗ k ∗ 26 + 4 ∗ k) + 66 ∗ k + 16

The overhead is then calculated to

overhead =
test− native

native

=
4 ∗ k ∗ n+ 66 ∗ k + 16

70 ∗ k ∗ n+ 2 ∗ n

For large k this simplifies to

overhead =
4 ∗ k

70 ∗ k + 2
+

1

n
∗ 66 ∗ k + 16

70 ∗ k + 2

≈ 4

70
+

1

n
∗ 66

70

This means that for long pipelines the overhead approaches a value of about 6 % however only
because the logic was completely neglected earlier. Unfortunately no concrete values of the
additional necessary overhead when converting 4-phase logic to 2-phase one could be found in
the literature so it is roughly estimated by 100%, which is assumed to be a very pessimistic
guess. By adding the combinational logic (comb) to the formulae from above and assuming the
amount of logic to be l transistors/DL/stage the following formula for the overhead is derived:
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overhead =
test+ (1 + 100%) ∗ n ∗ comb− (native+ n ∗ comb)

native+ n ∗ comb
=

4 ∗ k ∗ n+ 66 ∗ k + 16 + n ∗ comb
70 ∗ k ∗ n+ 2 ∗ n+ n ∗ comb

=
4 ∗ k

70 ∗ k + 2 + l ∗ k +
1

n
∗ 66 ∗ k + 16 + l ∗ k ∗ n

70 ∗ k + 2 + l ∗ k
≈ 4

70 + l
+

1

n
∗ 66 + l ∗ n

70 + l

The last simplification was again based on the assumption of many data lines, i.e. a large k.

Figure 9.10 shows the overhead graphically. One can see that it is very low when no combi-
national logic is present due to the already very high area requirements of completion detection
logic. However as soon as computational blocks are added they start to dominate the overhead
directing it toward the boundary value of 100 %. It has to be stated again that the area over-
head was just a guess and seems to strongly depend on the specific circuit, which may cause the
overhead to drop significantly.

Figure 9.10: Area overhead in % in dependence of amount of logic and number of pipeline
stages (n), k = 64 data lines, completion detection
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Summary

Table 9.2 summarises the results achieved for the area overhead introduced by the test approach
for bundled data and completion detection. The first four rows show the hardware effort in
transistors for the original pipeline implementation (column native) and the additional transistor
count required to implement the test approach (column test). The last two then present generic
formulae for the overhead for a pipeline of length n in % once without and once with combina-
tional logic.

BD CD
native test native test

merge unit - 16 + 12/DL - 2 + 44/DL

combinational - - - ≈*2

pipeline node 14 + 12/DL 14/DL 2 + 70/DL 4/DL

split unit - 16 - 14 + 22/DL

n stages (%)
117 + 100

n 5.7 + 94
nwithout comb.

n stages (%)
100 ∗

(
14

12+l + 1
n ∗ 12

12+l

)
100 ∗

(
4

70+l + 1
n ∗ 66+l∗n

70+l

)
with comb.

Table 9.2: Area overhead estimated by transistor count, l represents combinational logic in
transistors/DL/stage
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9.5 Additional Delay

By adding the test infrastructure to the original circuit and converting it from 4-phase to 2-
phase an additional delay is introduced. In this section analytic calculations are carried out
to achieve a rough estimation of what has to be expected. Please note that again only the basic
implementation of the test circuit is analysed, the more elaborate ones are left for future research.

The introduced delay was determined in multiples of the unit delay using the gate delays
stated in table 9.3. These were determined by observing the longest path in concrete imple-
mentations of the single units. Of course more elaborate methods, like logical effort presented
in [36], do exist to calculate the delay. For a rough estimation the chosen approach however is
sufficient.

gate delay
negation 1
transmission gate 1
NOR, NAND 1
OR, AND 2
Muller-C 2
XOR 3
MUX, Latch 3
capture-pass register 4
wires 0

Table 9.3: Delay of used building blocks in multiples of the inverter delay

It has to be stated that for the calculations it was assumed, that the TEST values are a lot
faster than the DATA values, such that the latter are not slowed down. For that reason the
elements, not passed by DATA values, have been neglected in the following considerations.

Bundled Data

When looking at the pipeline structure shown before (9.7) one can see, that the request signal
has to pass the delay element ∆ to reach the Muller-C element and the acknowledge line of the
succeeding pipeline stage a negation. Only after both have reached the Muller-C gate it switches
making the latch transparent, which again only works with a certain delay. By adding the delay
values for the Muller-C element, the inverter and the latch the initial delay for n pipeline stages
sums up to

native = n ∗ (2 + 1 + 3) + n ∗∆ = 6 ∗ n+ n ∗∆
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When introducing the test approach the latches inside the nodes have to be replaced by
capture-pass registers adding one unit delay. In addition the 4-to-2 phase merge (one Muller-
C element+ MUX) and 2-to-4 phase split unit (one Muller-C element) have to be considered.
Please note that the inverters in both units have been dropped due to the fact that these are solely
present for the TEST values and are, as stated above, not considered here. In total the delay for
the test implementation sums up to

test = native+ 7 + n = 7 + 7 ∗ n+ n ∗∆

The overhead in this case results to

overhead =
test− native

native

=
n+ 7

6 ∗ n+ ∆ ∗ n
=

1

6 + ∆
+

1

n
∗ 7

6 + ∆

If no combinational logic is assumed at all the worst case overhead is achieved as

overhead =
1

6
+

1

n
∗ 7

6
=

(
17 +

117

n

)
%

As with the area overhead also the additional delay has a high overhead for short pipelines
and no combinational logic. However as soon as some of the latter is added the overhead again
quickly approaches 0 % as shown in figure 9.11.

Completion Detection

The calculation of the additional delay for circuits using the completion detection approach is
somewhat harder due to the fact, as already mentioned when evaluating the area overhead, that no
concrete numbers could be found, stating how much a gate changes when it is converted from 4-
phase to 2-phase. Therefore the combinational logic is neglected in the following considerations.
Just at the end an educated guess is made to estimate the additional delay and the following
overhead.

The completion detection signals used to control the capture-pass registers inside one pipeline
node are generated by an OR gate followed by a tree of Muller-C gates with a maximum depth
of dlog2(k)e with k equal to the number of data lines. Afterwards the signal, as before, has to
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Figure 9.11: delay overhead in % in dependence of delay of single combinational cloud and
number of pipeline stages (n), bundled data

pass another Muller-C element with negation until it reaches the storage element which again
needs some time to react. The overall delay then sums up to

native = n ∗ (2 + 2 ∗ dlog2(k)e+ 2 + 1 + 4) = n ∗ (9 + 2 ∗ dlog2(k)e)

When adapting the circuit to the test approach the OR gates inside the pipeline nodes have
to be replaced by XOR gates, increasing the delay by one unit delay. In the 4-to-2 phase merge
unit only the data format conversion part adds delay in the amount of one OR and one Muller-C
gate on its longest path. In the split unit at most one AND gate and one Muller-C element have
to be passed, whereat again the negation on the test path has been dropped. Overall the delay of
the test approach accumulates to

test = n+ 8 + native = n ∗ (10 + 2 ∗ dlog2(k)e) + 8

The overhead can be computed to
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overhead =
test− native

native

=
n+ 8

n ∗ (9 + 2 ∗ dlog2(k)e)
=

1

9 + 2 ∗ dlog2(k)e +
1

n
∗ 8

9 + 2 ∗ dlog2(k)e

which is initially already very low (42.9 % for k = 64 and n = 1) and further drops with increas-
ing pipeline length. The reasons are the already very high delay of the native implementation
and, of course, that the combinational logic was neglected. As mentioned earlier an educated
guess had to be made for the introduced delay when converting the logic, which was set to plus
100 %. As before this value is believed to be a very pessimistic one so actual implementations
might work out far better than calculated here. By adding the logic in the form of delay ∆ per
pipeline stage the overhead results to

overhead =
test+ (1 + 100%) ∗ logic− (native+ logic)

native+ logic

=
n+ 8 + ∆ ∗ n

n ∗ (9 + 2 ∗ dlog2(k)e+ ∆)

=
1 + ∆

9 + 2 ∗ dlog2(k)e+ ∆
+

1

n
∗ 8

9 + 2 ∗ dlog2(k)e+ ∆

A graphical illustration of the results is shown in figure 9.12. It can be seen that an increased
amount of pipeline stages also reduces the overall overhead. However when adding combina-
tional logic it quickly starts to dominate and the overhead approaches the boundary value of 100
%.

Summary

The results for bundled data and completion detection are summarised in table 9.4. As before
the first four rows show the delay for the original (column native) implementation and the
additional delay when the test approach is included (column test). The last two rows state
analytical formulae once with and once without considering combinational logic. The variable
∆ represents the average delay of the logic per stage and k the amount of data lines.
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Figure 9.12: delay overhead in % in dependence of delay of single combinational cloud and
number of pipeline stages (n), k = 64, completion detection

BD CD
native test native test

merge unit - 5 - 4

combinational - - - ≈*1.5− 2

pipeline node 6 1 9 + 2 ∗ dlog2(k)e 1

split unit - 2 - 4

n stages (%)
17 + 117

n 100 ∗
(

n+8
n∗(9+2∗dlog2(k)e)

)
without comb.
n stages (%)

100 ∗
(

1
6+∆ + 1

n ∗ 7
6+∆

)
100 ∗

(
n+n∗∆+8

n∗(9+2∗dlog2(k)e+∆)

)
with comb.

Table 9.4: delay overhead estimated by unit delay, ∆ represents combinational logic delay per
stage, k stands for the amount of data lines
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CHAPTER 10
Critical Reflection

In this chapter the proposed test approach is investigated thoroughly to determine its advantages
and disadvantages. For that purpose at first some general considerations are carried out and later
several characteristic values are computed, to determine the achieved test properties.

10.1 Analysis

The proposed test approach is, as the title of this thesis indicates, truly CBIST, meaning that the
test circuit checks a CUT while it is working without interrupting its normal operation at any
point in time. This means that it is not necessary to switch to a specific test mode even once,
like it may happen when using for example the input vector monitoring approach. Furthermore
the test procedure is carried out completely transparent to the outside world i.e. that an outside
observer is not able to tell if testing is carried out or not by just looking at the data interfaces.
With a little extra effort the proposed test approach can also be used as off-line test method e.g.
for initial testing after fabrication. The only thing that has to be done is to feed dummy DATA
values into the CUT, due to the fact that testing is only carried out after user data have been
processed.

To test a circuit using the proposed approach several additional components, with 4-to-2
phase merge and 2-to-4 phase split leading the way, have to be implemented which implies a
higher area requirement compared to the original circuit. The actual implementation size of
these units largely depends on the chosen implementation style, which may differ between the
two units. It is possible, for example, to implement the 4-to-2 phase merge unit using the Basic
Implementation and the 2-to-4 phase split one using the Early NULL-phase. Such configura-
tions are useful, if the properties of the interfaces differ, requiring different implementations to
enhance the working speed at input and output. Furthermore the TVG and TRA have to be im-
plemented, whose individual size again depends on the implementation method. The smallest
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results for large test sets will probably deliver a Linear Feedback Shift Register (LFSR) or an
automaton, for small sets a memory holding the actual values may be an alternative.

When applying the test approach to an existing circuit, utilising the 4-phase communication
style, the circuit itself has to be transformed first. When using bundled data a conversion of
the pipeline nodes to support the 2-phase protocol has to be carried out as well as a conversion
of asymmetric delay lines to symmetric ones, however the logic can be left untouched. When
completion detection is used only the logic gates have to be adapted to the new data format
because the pipeline controllers are the same for both communication protocol types. Unfor-
tunately no concrete comparison between 2-phase and 4-phase implementations of logic gates
could be found in the literature so the overhead can not be determined exactly. Overall it has to
be noted that the hardware actually being tested is not the same as the one that originally was
supposed to be investigated, because of the conversion of single components and the addition
of new ones. This may lead to some extra faults in the altered CUT that would not have been
possible in the original one, but at least these are recognisable.

A general estimation of the delay introduced by the proposed test approach is, similar to the
area overhead, very difficult. At least in theory it does not decrease the overall working speed
provided that the Test Data input is much faster than the User Data one, because in that case the
UD are propagated as soon as they show up, i.e. at the original speed. In specific situations some
implementation styles may even increase the working speed compared to the original pipeline,
because delays are compensated. In real world implementations however the speed of the circuit
will always be slower than presumed in theory as it can also be seen in the proof-of-concept
implementation in section 9. The actual delay again depends on the implementation itself, in
detail on the routing of the signals, the working speed of the individual parts, etc.

Area and time overhead also largely depend on whether Single Stage Testing (SST) or Com-
plete CUT Testing (CCUTT) is used. Assume that a CUT having n pipeline stages has to be
tested. When using SST n TVGs, TRAs, 4-to-2 phase merge and 2-to-4 phase split units have to
be introduced, whereas with CCUTT only one of each is required. Despite the fact that the indi-
vidual test vector units may get easier to design when using SST, their sum will in general exceed
the requirements for the one used with CCUTT. Therefore the usage of SST is not advisable be-
cause faster and smaller test approaches exist for bare logic testing, like codes. However it has to
be noted, as also mentioned in [4], that pipelines are approaching their worst case performance
the longer they get and therefore such structures may not be found in actual implementations.

The conversion of (parts of) the original circuit is one of the most challenging tasks that has
to be carried out when implementing the proposed test approach. The conversion from a 4-phase
to a 2-phase style does not only result in improved area requirements due to the lower efficiency,
as mentioned in section 3.2, but also restricts the amount of testable implementations. As pointed
out in chapter 8 some computational circuits can only be tested by such TEST values that lead to
a result in the same amount of computation steps as the DATA value currently processed. This
however implies that the test vectors are correlated to the input and can not be chosen freely
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making it impossible to determine the result a priori. Therefore the proposed test approach may
only be used to test computational circuits computing their result in a fixed amount of steps
independent of the input value. Cyclic pipelines, in contrast, are fully supported by the proposed
test approach. In such cases, i.e. when feed back or feed forward loops are present, it is not
possible to predict the output solely based on the actual input but also the internal values have to
be considered. Due to the fact that the order of the TEST values is fixed, even in such situations
the correct results can be computed a priori, making it possible to test this kind of circuits very
well, which is not possible with other approaches. However it has to be noted that the complexity
of the TRA unit might rise because in general more reference values have to be stored in that
case.

In this thesis LEDR and FSL were chosen as representatives for the completion detection
communication protocol. To increase the speed and reduce overhead the developed units were
adapted specifically for these protocols. Please note that other data encodings, like M-of-N
[38], have not been investigated at all. This implies that the validity of the whole test approach
has to be shown if other encoding schemes are used. A generic expression for all available
schemes could not be derived due to the fact, that the format conversion units are unique for
each combination of 4-phase and 2-phase encoding.

The fact that separate TEST values are used, yields the advantage that the test vectors can
be arranged by the designer at design time implying that they do not depend in any way on the
input data, as it is the case with the input vector monitoring approach. This also means that no
changes to explicit test modes are necessary but instead the testing can be carried out completely
concurrent. Furthermore the knowledge of the exact order of the test vectors makes it possible
to regulate the frequency of signature checking in the TRA for the desired purpose. In detail it
is possible to check each output value of course with a corresponding memory effort or to check
only once per test cycle. Each possible value in between is also realisable even not equidistant
sections are imaginable. More specifically the signature can be compared after the first x values
and then after the next y values. This makes it possible to adapt this parameter for the actual
implementation depending on the required EL and available die space.

The introduction of the separate TEST values however yields the disadvantage that the User
Data are not checked themselves. Instead the results of TD validations are used to estimate the
correctness of the actual User Data. This circumstance leads to problems when transient fault
with a duration shorter than a single data transmission are assumed. Due to the fact that one
test vector is sent per user data vector the probability is 50 % that the transient fault hits the test
phase, resulting in an error detection despite the fact, that the User Data were correct all the time.
In contrast no failure is reported if the fault hits the User Data phase although a wrong value was
propagated. A correct functionality only shows up if the fault hits both phases. In these cases
the input vector monitoring approach yields some advantages because it compares the actual UD
output to precalculated values. However it has to be noted, that in general not all input vectors
are in the test set, therefore errors on these values are not detectable at all. Intermittent failures
can be handled better with the proposed approach, due to the fact that repeating application
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of test vectors for a specific intermittent fault lead to a sufficiently high probability that it is not
present, as outlined in [31]. Overall the proposed test approach is best suited to detect permanent
faults – which, after all, is the genuine dedication of a test – with very limited capabilities for
transient and intermittent ones. It also has to be noted that only faults on the data path are
detected, meaning that violations of the communication protocol, current draining gates, etc. are
not detectable in a systematic manner and require a separate testing method.

The fact that the correct result of the test vector operations is known a priori yields the
big advantage that even several faults altering the output simultaneously are detectable, as long
as they do not cancel each other. This leads to an improvement compared to code checking
where the data may be altered to form a valid code word which however is not according to the
expected result. In that case the code checking approach would not detect an error because only
the code property can be checked and not the actual result. Of course this may also happen in the
proposed test approach (although with far lower probability), more specific when a compactor is
used in the TRA and several failures lead to the expected signature. This could only be avoided
for sure if each result is precalculated and checked as it shows up at the output, also yielding a
fantastic LFD as well as an EL. Due to the fact that this would require lots of memory on chip,
it is only conceivable for circuits which are testable with very few different test vectors.

As mentioned in section 1 asynchronous circuits only operate when new data are available.
The fact that a TEST value is only processed after a DATA value has been, implies, that testing
is also just carried out when new data are available. When nothing has to be done for a longer
period the circuit halts, rising the possibility for multiple faults. For that reason single fault
models may be problematic with asynchronous logic, which therefore were not used in this
thesis.

10.2 Circuit Characteristics

In the following some characteristic values of the proposed test approach will be evaluated. A
detailed description of each single value can be found in section 3.11.

Latency of Test Completion (LTC): In the proposed test approach the test vectors are applied
in a fixed order by the test circuit which is known a priori. Due to the fact that asynchronous
logic is used no exact test time can be specified, because testing is only carried out after DATA
values have arrived. For that reason the LTC is expressed in a number of input DATA values
that have to arrive, causing the test circuit to check the complete CUT. This is the case if each
modelled fault has been addressed by at least one input test vector, which is assumed in the
following as the whole test set. In detail this means, that each test vector is altered by exactly
one fault, i.e. that the whole test set is necessary to check the whole CUT yielding

LTC = #test vectors = n
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It can be seen easily that the LTC can be optimised by reducing the test set. More important,
however, is the fact, that it is constant during operation, which was found problematic with the
input vector monitoring approach [47].

Latency of Fault Detection (LFD): The time it takes to detect a fault largely depends on the
frequency the signature computed in the TRA is compared to precomputed values. For that
reason the value C describes in the following, how often per cycle, i.e. while n test vectors are
applied to the input, the signature is checked. It is assumed that each test vector is important to
detect a specific fault and that faults appear equally probable at any instant in time, yielding the
received LFD to represent the worst case performance.

In addition it is assumed that checking is carried out in equal time intervals, splitting the set
of n test vectors into C blocks of length BC = n/C. This is shown in figure 10.1 for n = 9,
C = 3 and BC = n/C = 3, where C1, C2 and C3 mark the spots when the signature at the
TRA is checked. In the following p denotes the position of a test vector inside a block starting
at 0. Taking the example from the figure for test vector 8 p results to 1, for 6 to 2 and so forth.

1 2 3 4 5 6 7 8 9

C1 C2 C3

BC BC BC

n

Figure 10.1: test set structure for n = 9 and C = 3 resulting to BC = n/C = 3

The LFD for the whole test set can be computed by determining it for a single block because
it was assumed, that each fault is detected by a single test vector. In detail this implies that the
test vectors with the same p value have the same fault detection latency, yielding the same LFD
for each single block. By averaging again the original value is received so calculating the LFD of
a single block is indeed valid. For more elaborate test sets, i.e. multiple test vectors for frequent
faults, this argumentation is not valid any more.

The signature in the TRA is checked always at the end of a block, therefore the LFD varies
depending on the position of the corresponding test vector within the block. Furthermore it
depends on the point in time the fault appears in relation to the moment the test vector, used to
detect that particular fault, is applied to the CUT. Figure 10.2 shows the best and worst case for
test vector number 2 (test set as shown in figure 10.1). In the first case the fault appears right
before the corresponding test vector is applied to the CUT, marked by tf2,BC in the picture.
Due to the fault the signature computed in the TRA deviates from the expected one after test
vector number 2 has been processed. This is detected the next time the signature is checked,
i.e. at point tf2,DBC . Expressed mathematically p has to be subtracted from BC to achieve the
number of steps it takes to detect the fault. In the shown case this would beBC−p = 3−1 = 2
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steps which is exactly tf2,DBC − tf2,BC . In the latter case the fault shows up right after the
corresponding test vector (tf2,WC). In that case the signature is not altered until test vector 2 is
applied to the CUT again, due to the assumption, that only a single vector is altered by a single
fault. Therefore the fault is detected at point tf2,DWC , i.e. the next time the signature is checked
after test vector 2 has been processed again. The number of steps it takes to detect the fault in the
worst case thus is achieved by subtracting p from BC−1 and adding n for the additional time it
takes to reach the next test cycle. Overall the latency in the worst case sums up toBC−1−p+n
which is in the toy example 3− 1− 1 + 9 = 10 and also equal to tf2,DWC − tf2,DBC .

t

. . . 9 1 2 3 4 5 6 7 8 9 1 2 3 4 . . .test
values

C3,n−1 C1,n C2,n C3,n C1,n+1

tf2,BC

tf2,WC

tf2,DBC tf2,DWC

Figure 10.2: detection latency of a fault detected by test vector 2 for best and worst case

Please note that tf2,BC and tf2,WC are in reality not directly at the borders but somewhere
in between. The actual position however depends on the location of the faulty node inside the
circuit. For simplicity reasons and because the introduced shift is expected to be rather small
compared to n these considerations have been neglected in these evaluations.

The latency in the worst case and best case for the first and last element of one block are
shown in table 10.1. The average case is achieved by the arithmetic mean, because the values
between the best and worst case scale linearly.

position worst case best case average case
first element BC − 1 + n BC (n− 1)/2 +BC

last element n 1 (n+ 1)/2

Table 10.1: LFD for test vectors at first and last position within one block

The average case latencies for the elements within the block can again be achieved by linear
interpolation between the first and last element. To achieve an average value for the whole block,
i.e. the LFD, again only the arithmetic mean has to be created. Therefore the LFD results, with
the usage of BC = n/C, to

LFD(n,C) =
n−1

2 + n
C + n+1

2

2
=
n

2
+

n

2C
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If C is set to one, more specifically that the TRA compares the computed signature only
once per cycle, a value of

LFD(n, 1) = n

is achieved, i.e. in average it takes one whole test cycle to detect a fault. This seems plausible
because it takes in average n/2 cycles until the appropriate test vector shows up and additional
n/2 cycles until the signature is checked, resulting also to the above achieved n cycles.

Error Latency (EL): For the calculation of the error latency the latency of fault manifesta-
tion (LFM), defined as the time it takes a fault to lead to an undesired behaviour at the output
with a certain probability, was used. The LFM largely depends on the amount of possible input
values and their probabilities to appear. In several papers an equal distribution was assumed
which however does not describe a real world implementation properly. Nevertheless this as-
sumption is also used in the calculations shown later, to achieve comparable results. Please keep
in mind that the calculated value might differ significantly from the one received for an actual
implementation.

In contrast to the LTC the LFM has two arguments, namely the fault f and the probability
α that f manifests in an erroneous value at the output. Furthermore let m(f) be the number
of differing inputs that are affected by f and N the overall number of inputs. Based on these
definitions the probability α, in dependence of the number of applied input vectors denoted as
L, can be described as

α = 1−
(

1− m(f)

N

)L

The interesting variable for the calculation of the LFM is L, i.e. how many input vectors
have to be applied that a specific fault results in a failure at the output with a certain probability.
By transforming the equation to the form L = . . . and replacing L by LFM(f, α) the following
formula is achieved:

LFM(f, α) =
loge(1− α)

loge

(
1− m(f)

N

)

Finally the error latency is received by calculating the difference of the LFD , i.e. the time
it takes to detect a fault and the LFM , i.e. how long it takes until a fault manifests as undesired
behaviour. Therefore the EL, after plugging in the values for the LFD and LFM, results to:
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EL(f, α, n, C) = LFD(n,C)− LFM(f, α) =
n

2
+

n

2C
− loge(1− α)

loge

(
1− m(f)

N

)

As it can be seen the EL can be reduced by decreasing the amount of TEST values that are
necessary to test the whole CUT, denoted by variable n, or to check the signature in the TRA
more often, i.e. by increasing value C. Another possibility is to reduce the amount of input
vectors that are affected by a single fault, i.e. decreasing m(f).

The resulting EL can be interpreted as the amount of input vectors that are applied to the
input while erroneous results are produced at the output. Due to the characteristics of an asyn-
chronous circuit, i.e. that it just works when data are available, it is not possible to determine the
latency characteristics in actual time values. Note that the EL can also become negative which
represents the case that the fault is detected before it causes a single error at the output.

Table 10.2 shows some calculations for the above mentioned property values, where a 16 bit
input was chosen and all input vectors may appear, implying that N = 216. In that calculation
the overall test vector count n was set to 212 and C to 1.

m(f) α LTC = LFD LFM(f,α) EL(f,α)

24
0.5

212
2838.78 1257.22

0.7 4930.87 −834.87
0.9 9430.24 −5334.24

26
0.5

212
709.44 3386.56

0.7 1232.27 2864.73
0.9 2356.70 1738.30

28
0.5

212
177.10 3918.90

0.7 307.62 3788.39
0.9 588.31 3507.69

210
0.5

212
44.01 4051.99

0.7 76.45 4019.55
0.9 146.21 3949.79

Table 10.2: Calculation results for LFD, LFM, LTC and EL for N = 216 and n = 212.

Notice that the obtained values of LTC, LFD and EL are excellent in comparison with other
test approaches, since a new test vector can be applied with every data word. In the Concurrent
Checking approach one has to wait until the input data stream happens to produce the complete
desired set of test vectors, while in the case of a switching between test and operational mode,
one has to find a trade-off between the duty cycle among those. In both cases one will typically
end up with much worse characteristics.
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CHAPTER 11
Conclusion

In this thesis a novel test approach, especially designed for asynchronous circuits, has been
presented. It exploits the unique properties of handshake protocols to process test data in parallel
to the normal operation without interrupting it at any point in time. More specifically the rather
unproductive NULL-phase of a 4-phase protocol is replaced by user defined TEST values and
then fed into the circuit under test. In that way the tightest possible interleaving (every other
value is a TEST value) as well as complete independence between user and test data is achieved.
This makes it possible to fully determine the TEST values as well as the expected results not only
in the value but also in the time domain at design time. Please note, that in contrast to similar
approaches also stated with the title BIST, the test approach proposed in this thesis actively
applies test vectors to the inputs of the CUT .

In addition implementation methods have been developed, i.e. how a given circuit has to be
altered to be tested using the proposed test approach. During this process additional necessary
units have been identified and designed from scratch due to missing references in literature. Sev-
eral implementations have been achieved differing in their level of complexity and concurrency,
for the bundled data as well as the completion detection communication style. At last it was in-
vestigated what criteria a CUT has to fulfil to be testable, which turned out to be rather relaxed,
because even cyclic pipelines are allowed.

Finally a proof-of-concept implementation, developed on an FPGA, demonstrated the cor-
rect functionality of the proposed test approach. It was shown that the newly designed units
work indeed as specified and the test approach detects faults reliably. The introduced overheads
have been analysed analytically and turned out to be rather moderate. In the case of bundled data
in the worst case an overhead of around 200 % is achieved which however quickly approaches 0
% when logic is added to the initially empty pipeline. For completion detection lower values are
received in the beginning (around 30 %) which however approaches the boundary value of 100
% with additional logic. The reason for that increase is, that the overhead for converting com-
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pletion detection gates from 4-phase to 2-phase was estimated with plus 100 % due to missing
numbers in literature.

The additional delay introduced by the test approach also turned out to be very moderate. In
the case of bundled data a value of 134 % for short pipelines and without considering combi-
national logic is achieved. This value however quickly converges to 0 % when logic is added.
Unfortunately completion detection circuits do not show this favourable behaviour due to the
increase of logic when converting it from 4-phase to 2-phase. Due to missing numbers in liter-
ature an educated an very pessimistic guess of an increase of 100 % was chosen. The very low
overhead for pipelines without combinational logic is quickly dominated by the logic, raising
the overhead to the boundary value of 100 %. Please note that this estimation, as well as the
one for the additional area, was chosen pessimistically and real values may be way below, which
however is a topic for future research.

One general conclusion from the implementation and analyses is that the approach is well
suited for bundled data circuits, where the overheads in terms of area and speed scale quite
nicely and amount to reasonable values for typical parameters (pipeline stages, logic gates per
stage), and where testing is essential. Completion detection circuits, in contrast, exhibit a worse
scaling behaviour and are hence less suited for the proposed approach. In addition, their inherent
protection by coding makes them hardly prone to undetected permanent faults.

The analysis of characteristic values for the test approach furthermore revealed very favourable
properties. First of all, the duration required to test the whole CUT is constant all of the time. In
addition it is achievable to detect faults in average before they result in an undesired behaviour
at the output. Another big advantage is, that the characteristic values can, to a certain degree, be
tweaked by the designer to allow for example faster fault detection.

In this thesis only the basic structure of the new test approach was described, leaving plenty
of work for future research. Still missing is an investigation under which conditions the proposed
implementations for the 4-to-2 phase merge and 2-to-4 phase split unit indeed increase the speed
and by what factor compared to e.g. the Basic Implementation. Another interesting topic might
be the development of even faster and maybe even smaller implementations than the presented
ones as well as the creation of a completely DI design, or a proof that it is impossible at all. It
is also possible to extend the approach to other completion detection communication protocols
like M-of-N or to show that these are not supported.

The key results of this thesis were accepted at the 17th IEEE Symposium on Design & Diag-
nostics of Electronic Circuits & Systems (DDECS) and the submission received the best paper
award. The corresponding paper [14] can be found in Appendix C.

At last the following list summarises advantages, disadvantages and unique properties of the
proposed test approach:
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• Data processing and testing are carried out in parallel i.e. it is not necessary to change to
a specific test mode which interrupts normal data processing at any point in time.

• The test approach is transparent to the world outside the CUT. In detail a communication
partner can not determine if testing is carried by just observing the interfaces.

• Through the replacement of the NULL-phase the protocol type is changed from a 4-phase
to a 2-phase one. This implies that the control logic, when using bundled data, and the data
logic, when using completion detection, has to be altered, which results in an increased
effort and increased costs.

• The presented implementations only work correctly if the early data-validity scheme on a
push channel is used.

• Despite the fact that the test approach was designed as online method it can also be used
for initial tests in the factory. The only thing that has to be done is to apply proper request
and acknowledge signals to the interfaces.

• The approach works well for permanent faults, which are the target of a test. Transient
and intermittent faults may be covered, but may as well lead to false positives and false
negatives, unless they span at least two computational cycles. This is because the test
only checks the integrity of the Test Data, while User Data are passed through essentially
without protection.

• Due to the fact that the correct result of each test vector is known the value of the output
can be checked directly, not just if it justifies some properties as it is the case when using
coding. This makes it possible to even detect multiple failures as soon as they do not
cancel each other.

• For the purpose of the proposed approach, the original target circuit needs to be modified
and extended. As a consequence, it may exhibit different and additional faults compared
to the original.

• It is only possible to detect faults on the data path, all others, for example on the control
lines, are not detectable at all.

• Based on the implementation the detection of an error has more or less delay. This largely
depends on the frequency the signature generated by the test vector analyser is compared
to the precomputed values. More frequent checking decreases the response time however
increases the hardware requirements, because more reference values have to be stored.
Here a good compromise between the LFD and the area overhead has to be found by the
designer.

• The test vectors in this approach can be chosen freely, making the testing independent of
the actual User Data that is applied to it. The determination of an optimal test set, i.e. that
is as small as possible but is capable of detecting any modelled fault, however is a very
challenging task. Furthermore the size of the test set directly influences the LTC, which is
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in this approach constant and equal to the size of the test set. This of course implies that
the CUT can be checked more often in a given time interval when the set gets smaller.

• In the test approach it is not defined what has to be done when the behaviour of the
CUT is not according to the expected one, meaning that the error handling as well as
possible recovery steps have to be carried out by the outer application. Several methods are
possible, which again depend on the functionality of the CUT as well as on the criticality
of the results provided by that unit.

• Due to the fact that asynchronous circuits are used, computations might not be carried
out on a regular basis as with synchronous logic. This implies that also testing is not
carried out regularly because a test vector is just processed after a User Data one had been,
meaning that if no User Data are delivered for a period of time also testing is not taking
place for the same amount. Therefore Mean Time Between Upset (MTBU) calculations
are harder to carry out than in synchronous designs because it may happen that the period
between two test cycles is very long, making the single fault assumption unreasonable.
This may lead to problems because most methods, for example the coding approach, might
have problems with multiple faults.

• In certain cases it is possible to achieve a negative EL, meaning that the fault is detected by
the test circuit before it manifests in a single failure within the User Data. This however
requires a high test effort or only a little amount of input vectors that are altered by a fault.

• It is possible to test cyclic pipeline structures, in detail feed forward and feed back loops,
because the test values that are interacting are known at design time. When using these
structures it may happen that errors cycle within the CUT, periodically leading to failures.
For that reason it is necessary to clear the whole CUT after an error has been detected, for
example by resetting the circuit, or to prove, that it is impossible for an error to cycle.

• Unfortunately not every circuit structure is testable by the proposed test approach, more
specific computational circuits whose number of computation steps depend on the input
data. Furthermore circuits with internal storage like registers or state machines have to be
altered to become testable.
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APPENDIX A
Glossary

BD Bundled Data

CBIST Concurrent Built-In Self-Testing

CD Completion Detection

CCUTT Complete CUT Testing

CUT Circuit Under Test

DI Delay Insensitive

DL Data Line

EL Error Latency

FC Format Conversion

LEDR Level Encoded Dual Rail

LFD Latency of Fault Detection

LFM Latency of Fault Manifestation

LTC Latency of Test Completion

NCL Null Convention Logic

NRZ No Return to Zero

PhM Phase Merge

PhS Phase Split
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QDI Quasi Delay Insensitive

RTZ Return To Zero

STG State Transition Graph

SST Single Stage Testing

T Transitors

TD Test Data

TRA Test Response Analyser

TVG Test Vector Generator

UD User Data

UTD User/Test Data
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APPENDIX B
Code

B.1 Petrify Library
1 # −−− COMBINATIONAL GATES
2
3 GATE " i n v : c o m b i n a t i o n a l " 16 O=!A;
4 PIN ∗ INV 1 999 1 . 2 1 . 2
5
6
7 GATE " and2 : c o m b i n a t i o n a l " 32 O=A∗B ;
8 PIN ∗ NONINV 1 999 1 . 2 1 . 2
9

10 GATE " and2_1 : c o m b i n a t i o n a l " 32 O=A∗ !B ;
11 PIN ∗ NONINV 1 999 1 . 2 1 . 2
12
13 GATE " nand2 : c o m b i n a t i o n a l " 24 O= ! (A∗B) ;
14 PIN ∗ INV 1 999 1 . 2 1 . 2
15
16 GATE " nand2_1 : c o m b i n a t i o n a l " 24 O= ! (A∗ !B) ;
17 PIN ∗ INV 1 999 1 . 2 1 . 2
18
19
20
21
22 GATE " and3 : c o m b i n a t i o n a l " 40 O=A∗B∗C ;
23 PIN ∗ NONINV 1 999 1 . 2 1 . 2
24
25 GATE " nand3 : c o m b i n a t i o n a l " 32 O= ! (A∗B∗C) ;
26 PIN ∗ INV 1 999 1 . 2 1 . 2
27
28 GATE " and4 : c o m b i n a t i o n a l " 48 O=A∗B∗C∗D;
29 PIN ∗ NONINV 1 999 1 . 2 1 . 2
30
31 GATE " nand4 : c o m b i n a t i o n a l " 40 O= ! (A∗B∗C∗D) ;
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32 PIN ∗ INV 1 999 1 . 2 1 . 2
33
34
35 GATE " or2 : c o m b i n a t i o n a l " 32 O=A+B ;
36 PIN ∗ NONINV 1 999 1 . 2 1 . 2
37
38 GATE " or2_1 : c o m b i n a t i o n a l " 32 O=A+!B ;
39 PIN ∗ NONINV 1 999 1 . 2 1 . 2
40
41 GATE " nor2 : c o m b i n a t i o n a l " 24 O= ! (A+B) ;
42 PIN ∗ INV 1 999 1 . 2 1 . 2
43
44 GATE " or3 : c o m b i n a t i o n a l " 40 O=A+B+C ;
45 PIN ∗ NONINV 1 999 1 . 2 1 . 2
46
47 GATE " nor3 : c o m b i n a t i o n a l " 32 O= ! (A+B+C) ;
48 PIN ∗ INV 1 999 1 . 2 1 . 2
49
50 GATE " or4 : c o m b i n a t i o n a l " 48 O=A+B+C+D;
51 PIN ∗ NONINV 1 999 1 . 2 1 . 2
52
53 GATE " nor4 : c o m b i n a t i o n a l " 40 O= ! (A+B+C+D) ;
54 PIN ∗ INV 1 999 1 . 2 1 . 2
55
56
57 GATE " a o i 2 2 : c o m b i n a t i o n a l " 40 O= ! (A∗B+C∗D) ;
58 PIN ∗ INV 1 999 1 . 2 1 . 2
59
60 GATE " a o i 1 2 : c o m b i n a t i o n a l " 32 O= ! (A+B∗C) ;
61 PIN ∗ INV 1 999 1 . 2 1 . 2
62
63
64 GATE " o a i 2 2 : c o m b i n a t i o n a l " 40 O= ! ( (A+B) ∗ (C+D) ) ;
65 PIN ∗ INV 1 999 1 . 2 1 . 2
66
67 GATE " o a i 1 2 : c o m b i n a t i o n a l " 32 O= ! (A∗ (B+C) ) ;
68 PIN ∗ INV 1 999 1 . 2 1 . 2
69
70
71 GATE " ao22 : c o m b i n a t i o n a l " 56 O=A∗B+C∗D;
72 PIN ∗ NONINV 1 999 1 . 2 1 . 2
73
74 # The f o l l o w i n g f u n c t i o n s a r e n o t used . They a r e b i n a t e and
75 # t h e r e i s no g u a r a n t e e o f b e i n g hazard−f r e e . Use them a t
76 # your own r i s k
77
78 #GATE " xor : c o m b i n a t i o n a l " 40 O= ! (A∗B+!A∗ !B) ;
79 #PIN ∗ UNKNOWN 1 999 1 . 2 1 . 2
80
81 #GATE " x o r b a r : c o m b i n a t i o n a l " 48 O=A∗B+!A∗ !B ;
82 #PIN ∗ UNKNOWN 1 999 1 . 2 1 . 2
83
84 #GATE "mux2 : c o m b i n a t i o n a l " 48 O=D1∗SEL+D2∗ !SEL ;

110



85 #PIN D1 NONINV 1 999 1 . 2 1 . 2
86 #PIN D2 NONINV 1 999 1 . 2 1 . 2
87 #PIN SEL UNKNOWN 1 999 1 . 2 1 . 2
88
89 GATE " c o n s t 1 : c o m b i n a t i o n a l " 8 O=CONST1 ;
90 GATE " c o n s t 0 : c o m b i n a t i o n a l " 8 O=CONST0 ;
91
92 # −−− ASYNCH LATCHES
93
94 # Pure d e l a y
95 LATCH " d e l a y : asynch " 0 Q=D;
96 PIN D NONINV 1 999 0 .00001 0 .00001 0 .00001 0 .00001
97 SEQ Q ANY ASYNCH
98
99 # I n v e r t e r

100 LATCH " d e l a y _ i n v : asynch " 16 Q=!D;
101 PIN D NONINV 1 999 0 .00001 0 .00001 0 .00001 0 .00001
102 SEQ Q ANY ASYNCH
103
104 # Cross−c o u p l e d NAND ( SR l a t c h )
105 LATCH " s r _ n a n d : asynch " 40 Q=!S+R∗Q_NEXT;
106 PIN S INV 1 999 1 . 2 1 . 2
107 PIN R NONINV 1 999 1 . 2 1 . 2
108 SEQ Q Q_NEXT ASYNCH
109
110 # Cross−c o u p l e d NOR ( SR l a t c h )
111 LATCH " s r _ n o r : a synch " 40 Q=S+!R∗Q_NEXT;
112 PIN S NONINV 1 999 1 . 2 1 . 2
113 PIN R INV 1 999 1 . 2 1 . 2
114 SEQ Q Q_NEXT ASYNCH
115
116 # Cross−c o u p l e d NAND ( RS l a t c h )
117 LATCH " r s _ n a n d : asynch " 40 Q=!R+S∗Q_NEXT;
118 PIN S INV 1 999 1 . 2 1 . 2
119 PIN R NONINV 1 999 1 . 2 1 . 2
120 SEQ Q Q_NEXT ASYNCH
121
122 # Cross−c o u p l e d NOR ( RS l a t c h )
123 LATCH " r s _ n o r : a synch " 40 Q=!R∗Q_NEXT+!R∗S ;
124 PIN S NONINV 1 999 1 . 2 1 . 2
125 PIN R INV 1 999 1 . 2 1 . 2
126 SEQ Q Q_NEXT ASYNCH
127
128
129 # C−e l e m e n t
130 LATCH " c _ e l e m e n t 1 : asynch " 40 C = !A∗B+ ( !A+B) ∗C_NEXT ;
131 PIN A NONINV 1 999 1 . 2 1 . 2
132 PIN B NONINV 1 999 1 . 2 1 . 2
133 SEQ C C_NEXT ASYNCH
134
135 # C−e l e m e n t
136 LATCH " c _ e l e m e n t 0 : asynch " 40 C = A∗B+(A+B) ∗C_NEXT ;
137 PIN A NONINV 1 999 1 . 2 1 . 2
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138 PIN B NONINV 1 999 1 . 2 1 . 2
139 SEQ C C_NEXT ASYNCH
140
141 # C−e l e m e n t
142 LATCH " c _ e l e m e n t 2 : asynch " 40 C = !A∗ !B+ ( !A+!B) ∗C_NEXT ;
143 PIN A NONINV 1 999 1 . 2 1 . 2
144 PIN B NONINV 1 999 1 . 2 1 . 2
145 SEQ C C_NEXT ASYNCH
146
147
148 # Gated La tch
149 LATCH " g a t e d _ l a t c h 0 : asynch " 40 Q=D∗G+Q_NEXT∗ ( !G+D) ;
150 PIN D NONINV 1 999 1 . 2 1 . 2
151 PIN G UNKNOWN 1 999 1 . 2 1 . 2
152 SEQ Q Q_NEXT ASYNCH
153
154 # Gated La tch
155 LATCH " g a t e d _ l a t c h 1 : asynch " 40 Q=D∗ !G+Q_NEXT∗G;
156 PIN D NONINV 1 999 1 . 2 1 . 2
157 PIN G UNKNOWN 1 999 1 . 2 1 . 2
158 SEQ Q Q_NEXT ASYNCH

Listing B.1: Petrify Library
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B.2 Petrify Netlists
1 module FourToTwoPhase_net (
2 rU ,
3 rT ,
4 aUT ,
5 aU ,
6 aT ,
7 rUT
8 ) ;
9

10 i n p u t rU ;
11 i n p u t rT ;
12 i n p u t aUT ;
13
14 o u t p u t aU ;
15 o u t p u t aT ;
16 o u t p u t rUT ;
17
18
19 / / F u n c t i o n s mapped i n t o l i b r a r y g a t e s :
20 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21
22 nand2_1 : c o m b i n a t i o n a l _U0 ( . A( c sc0 ) , . B( aUT ) , .O( aU ) ) ;
23 nand2_1 : c o m b i n a t i o n a l _U1 ( . A( aUT ) , . B( c sc0 ) , .O( aT ) ) ;
24 o a i 1 2 : c o m b i n a t i o n a l _U2 ( . A( c sc0 ) , . B( rU ) , . C( aUT ) , .O( _2_ ) ) ;
25 / / Th i s i n v e r t e r s h o u l d have a s h o r t d e l a y
26 i n v : c o m b i n a t i o n a l _U3 ( . A( aUT ) , .O( _3_ ) ) ;
27 o a i 1 2 : c o m b i n a t i o n a l _U4 ( . A( _2_ ) , . B( rT ) , . C( _3_ ) , .O( rUT ) ) ;
28 / / Th i s i n v e r t e r s h o u l d have a s h o r t d e l a y
29 i n v : c o m b i n a t i o n a l _U5 ( . A( c sc0 ) , .O( _5_ ) ) ;
30 a o i 1 2 : c o m b i n a t i o n a l _U6 ( . A( aUT ) , . B( _5_ ) , . C( rU ) , .O( _6_ ) ) ;
31 a o i 1 2 : c o m b i n a t i o n a l _U7 ( . A( _6_ ) , . B( rT ) , . C( c sc0 ) , .O( _7_ ) ) ;
32 i n v : c o m b i n a t i o n a l _U8 ( . A( _7_ ) , .O( c sc0 ) ) ;
33
34 / / s i g n a l v a l u e s a t t h e i n i t i a l s t a t e :
35 / / ! rU ! rT ! aUT ! aU aT _2_ _3_ ! rUT ! _5_ _6_ ! _7_ csc0
36 endmodule

Listing B.2: Petrify netlist, Early DATA-phase, bundled data, 4-to-2 phase merge

1 module FourToTwoPhase_net (
2 rU ,
3 rT ,
4 aUT ,
5 aU ,
6 aT ,
7 rUT ,
8 enL
9 ) ;

10
11 i n p u t rU ;
12 i n p u t rT ;
13 i n p u t aUT ;
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14
15 o u t p u t aU ;
16 o u t p u t aT ;
17 o u t p u t rUT ;
18 o u t p u t enL ;
19
20
21 / / F u n c t i o n s mapped i n t o l i b r a r y g a t e s :
22 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
23
24 buf _U0 ( aU , rUT ) ;
25 / / Th i s i n v e r t e r s h o u l d have a s h o r t d e l a y
26 i n v : c o m b i n a t i o n a l _U1 ( . A( rUT ) , .O( aT ) ) ;
27 / / Th i s i n v e r t e r s h o u l d have a s h o r t d e l a y
28 i n v : c o m b i n a t i o n a l _U2 ( . A( rU ) , .O( _1_ ) ) ;
29 nand4 : c o m b i n a t i o n a l _U3 ( . A( enL ) , . B( aUT ) , . C( rT ) , .D( _1_ ) , .O( _2_ ) ) ;
30 / / Th i s i n v e r t e r s h o u l d have a s h o r t d e l a y
31 i n v : c o m b i n a t i o n a l _U4 ( . A( rU ) , .O( _3_ ) ) ;
32 / / Th i s i n v e r t e r s h o u l d have a s h o r t d e l a y
33 i n v : c o m b i n a t i o n a l _U5 ( . A( enL ) , .O( _4_ ) ) ;
34 nor4 : c o m b i n a t i o n a l _U6 ( . A( aUT ) , . B( rT ) , . C( _3_ ) , .D( _4_ ) , .O( _5_ ) ) ;
35 c _ e l e m e n t 0 : asynch _U7 ( . A( _2_ ) , . B( _5_ ) , . C( rUT ) ) ;
36 nor2 : c o m b i n a t i o n a l _U8 ( . A( aUT ) , . B( rUT ) , .O( _7_ ) ) ;
37 a o i 1 2 : c o m b i n a t i o n a l _U9 ( . A( _7_ ) , . B( aUT ) , . C( rUT ) , .O( _8_ ) ) ;
38 i n v : c o m b i n a t i o n a l _U10 ( . A( _8_ ) , .O( enL ) ) ;
39
40 / / s i g n a l v a l u e s a t t h e i n i t i a l s t a t e :
41 / / ! aU ! rU ! rT ! aUT aT _1_ _2_ _3_ ! _4_ ! _5_ ! rUT _7_ ! _8_ enL
42 endmodule

Listing B.3: Petrify netlist, Additional Latch, bundled data, 4-to-2 phase merge

1 module FourToTwoPhase_net (
2 rU ,
3 rT ,
4 aUT ,
5 aU ,
6 aT ,
7 rUT
8 ) ;
9

10 i n p u t rU ;
11 i n p u t rT ;
12 i n p u t aUT ;
13
14 o u t p u t aU ;
15 o u t p u t aT ;
16 o u t p u t rUT ;
17
18
19 / / F u n c t i o n s mapped i n t o l i b r a r y g a t e s :
20 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21
22 or2 : c o m b i n a t i o n a l _U0 ( . A( rUT ) , . B( c sc0 ) , .O( aU ) ) ;
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23 nand2 : c o m b i n a t i o n a l _U1 ( . A( rUT ) , . B( c sc0 ) , .O( aT ) ) ;
24 nand2 : c o m b i n a t i o n a l _U2 ( . A( rT ) , . B( c sc0 ) , .O( _2_ ) ) ;
25 / / Th i s i n v e r t e r s h o u l d have a s h o r t d e l a y
26 i n v : c o m b i n a t i o n a l _U3 ( . A( c sc0 ) , .O( _3_ ) ) ;
27 a o i 2 2 : c o m b i n a t i o n a l _U4 ( . A( _3_ ) , . B( rU ) , . C( _2_ ) , .D( rUT ) , .O( _4_ ) ) ;
28 i n v : c o m b i n a t i o n a l _U5 ( . A( _4_ ) , .O( rUT ) ) ;
29 / / Th i s i n v e r t e r s h o u l d have a s h o r t d e l a y
30 i n v : c o m b i n a t i o n a l _U6 ( . A( rT ) , .O( _6_ ) ) ;
31 o a i 1 2 : c o m b i n a t i o n a l _U7 ( . A( aUT ) , . B( c sc0 ) , . C( _6_ ) , .O( _7_ ) ) ;
32 s r _ n a n d : asynch _U8 ( . S ( _7_ ) , . R( rU ) , .Q( c sc0 ) ) ;
33
34 / / s i g n a l v a l u e s a t t h e i n i t i a l s t a t e :
35 / / ! rU ! rT ! aUT ! aU aT _2_ _3_ _4_ ! rUT _6_ _7_ ! c sc0
36 endmodule

Listing B.4: Petrify netlist, Latches at Input, bundled data, 4-to-2 phase merge

1 module FourToTwoPhase_net (
2 rU ,
3 rT ,
4 aUT ,
5 aU ,
6 aT ,
7 rUT
8 ) ;
9

10 i n p u t rU ;
11 i n p u t rT ;
12 i n p u t aUT ;
13
14 o u t p u t aU ;
15 o u t p u t aT ;
16 o u t p u t rUT ;
17
18
19 / / F u n c t i o n s mapped i n t o l i b r a r y g a t e s :
20 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21
22 and2 : c o m b i n a t i o n a l _U0 ( . A( c sc0 ) , . B( c sc1 ) , .O( aU ) ) ;
23 / / Th i s i n v e r t e r s h o u l d have a s h o r t d e l a y
24 i n v : c o m b i n a t i o n a l _U1 ( . A( rT ) , .O( _1_ ) ) ;
25 / / Th i s i n v e r t e r s h o u l d have a s h o r t d e l a y
26 i n v : c o m b i n a t i o n a l _U2 ( . A( aT ) , .O( _2_ ) ) ;
27 o a i 2 2 : c o m b i n a t i o n a l _U3 ( . A( c sc2 ) , . B( c sc3 ) , . C( _1_ ) , .D( _2_ ) , .O( aT ) ) ;
28 / / Th i s i n v e r t e r s h o u l d have a s h o r t d e l a y
29 i n v : c o m b i n a t i o n a l _U4 ( . A( c sc2 ) , .O( _4_ ) ) ;
30 nand4 : c o m b i n a t i o n a l _U5 ( . A( _4_ ) , . B( rT ) , . C( c sc1 ) , .D( c sc3 ) , .O( _5_ ) ) ;
31 / / Th i s i n v e r t e r s h o u l d have a s h o r t d e l a y
32 i n v : c o m b i n a t i o n a l _U6 ( . A( c sc1 ) , .O( _6_ ) ) ;
33 a o i 2 2 : c o m b i n a t i o n a l _U7 ( . A( _6_ ) , . B( c sc0 ) , . C( _5_ ) , .D( aUT ) , .O( _7_ ) ) ;
34 i n v : c o m b i n a t i o n a l _U8 ( . A( _7_ ) , .O( rUT ) ) ;
35 nor2 : c o m b i n a t i o n a l _U9 ( . A( c sc1 ) , . B( c sc3 ) , .O( _9_ ) ) ;
36 c _ e l e m e n t 0 : asynch _U10 ( . A( rU ) , . B( _9_ ) , . C( c sc0 ) ) ;
37 a o i 1 2 : c o m b i n a t i o n a l _U11 ( . A( aUT ) , . B( c sc0 ) , . C( c sc1 ) , .O( _11_ ) ) ;
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38 i n v : c o m b i n a t i o n a l _U12 ( . A( _11_ ) , .O( c sc1 ) ) ;
39 s r _ n o r : a synch _U13 ( . S ( aT ) , . R( c sc3 ) , .Q( c sc2 ) ) ;
40 nand2_1 : c o m b i n a t i o n a l _U14 ( . A( c sc2 ) , . B( aT ) , .O( _14_ ) ) ;
41 c _ e l e m e n t 1 : asynch _U15 ( . A( _14_ ) , . B( aUT ) , . C( c sc3 ) ) ;
42
43 / / s i g n a l v a l u e s a t t h e i n i t i a l s t a t e :
44 / / ! rU rT ! aUT ! aU ! _1_ _2_ ! aT ! _4_ _5_ _6_ _7_ ! rUT _9_ ! c sc0 _11_ !

c sc1 csc2 ! _14_ ! c sc3
45 endmodule

Listing B.5: Petrify netlist, Decoupled Controller, bundled data, 4-to-2 phase merge

1 module FourToTwoPhase_net (
2 rU ,
3 rT ,
4 aUT ,
5 aU ,
6 aT ,
7 rUT
8 ) ;
9

10 i n p u t rU ;
11 i n p u t rT ;
12 i n p u t aUT ;
13
14 o u t p u t aU ;
15 o u t p u t aT ;
16 o u t p u t rUT ;
17
18
19 / / F u n c t i o n s mapped i n t o l i b r a r y g a t e s :
20 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21
22 o a i 1 2 : c o m b i n a t i o n a l _U0 ( . A( c sc0 ) , . B( rUT ) , . C( c sc2 ) , .O( _0_ ) ) ;
23 i n v : c o m b i n a t i o n a l _U1 ( . A( _0_ ) , .O( aU ) ) ;
24 / / Th i s i n v e r t e r s h o u l d have a s h o r t d e l a y
25 i n v : c o m b i n a t i o n a l _U2 ( . A( c sc1 ) , .O( _2_ ) ) ;
26 a o i 1 2 : c o m b i n a t i o n a l _U3 ( . A( _2_ ) , . B( rUT ) , . C( c sc2 ) , .O( aT ) ) ;
27 nand3 : c o m b i n a t i o n a l _U4 ( . A( aUT ) , . B( c sc2 ) , . C( c sc1 ) , .O( _4_ ) ) ;
28 / / Th i s i n v e r t e r s h o u l d have a s h o r t d e l a y
29 i n v : c o m b i n a t i o n a l _U5 ( . A( c sc2 ) , .O( _5_ ) ) ;
30 a o i 2 2 : c o m b i n a t i o n a l _U6 ( . A( _5_ ) , . B( c sc0 ) , . C( _4_ ) , .D( rUT ) , .O( _6_ ) ) ;
31 i n v : c o m b i n a t i o n a l _U7 ( . A( _6_ ) , .O( rUT ) ) ;
32 nor3 : c o m b i n a t i o n a l _U8 ( . A( aUT ) , . B( rUT ) , . C( c sc2 ) , .O( _8_ ) ) ;
33 c _ e l e m e n t 0 : asynch _U9 ( . A( rU ) , . B( _8_ ) , . C( c sc0 ) ) ;
34 nand2 : c o m b i n a t i o n a l _U10 ( . A( rUT ) , . B( c sc2 ) , .O( _10_ ) ) ;
35 c _ e l e m e n t 1 : asynch _U11 ( . A( _10_ ) , . B( rT ) , . C( c sc1 ) ) ;
36 / / Th i s i n v e r t e r s h o u l d have a s h o r t d e l a y
37 i n v : c o m b i n a t i o n a l _U12 ( . A( c sc1 ) , .O( _12_ ) ) ;
38 o a i 1 2 : c o m b i n a t i o n a l _U13 ( . A( rUT ) , . B( _12_ ) , . C( c sc2 ) , .O( _13_ ) ) ;
39 s r _ n a n d : asynch _U14 ( . S ( _13_ ) , . R( c sc0 ) , .Q( c sc2 ) ) ;
40
41 / / s i g n a l v a l u e s a t t h e i n i t i a l s t a t e :
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42 / / ! rU rT ! aUT _0_ ! aU _2_ ! aT _4_ _5_ _6_ ! rUT _8_ ! c sc0 _10_ ! c sc1 _12_
_13_ ! c sc2

43 endmodule

Listing B.6: Petrify netlist, Decoupled Controller with latches, bundled data, 4-to-2 phase merge

1 module TwoToFourPhase_net (
2 rUT ,
3 aT ,
4 aU ,
5 rT ,
6 rU ,
7 aUT
8 ) ;
9

10 i n p u t rUT ;
11 i n p u t aT ;
12 i n p u t aU ;
13
14 o u t p u t rT ;
15 o u t p u t rU ;
16 o u t p u t aUT ;
17
18
19 / / F u n c t i o n s mapped i n t o l i b r a r y g a t e s :
20 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21
22 nor2 : c o m b i n a t i o n a l _U0 ( . A( rUT ) , . B( c sc0 ) , .O( rT ) ) ;
23 and2 : c o m b i n a t i o n a l _U1 ( . A( rUT ) , . B( c sc0 ) , .O( rU ) ) ;
24 / / Th i s i n v e r t e r s h o u l d have a s h o r t d e l a y
25 i n v : c o m b i n a t i o n a l _U2 ( . A( rUT ) , .O( _2_ ) ) ;
26 o a i 1 2 : c o m b i n a t i o n a l _U3 ( . A( c sc0 ) , . B( aU ) , . C( _2_ ) , .O( _3_ ) ) ;
27 o a i 1 2 : c o m b i n a t i o n a l _U4 ( . A( _3_ ) , . B( aT ) , . C( rUT ) , .O( aUT ) ) ;
28 / / Th i s i n v e r t e r s h o u l d have a s h o r t d e l a y
29 i n v : c o m b i n a t i o n a l _U5 ( . A( aU ) , .O( _5_ ) ) ;
30 o a i 1 2 : c o m b i n a t i o n a l _U6 ( . A( rUT ) , . B( _5_ ) , . C( c sc0 ) , .O( _6_ ) ) ;
31 s r _ n a n d : asynch _U7 ( . S ( _6_ ) , . R( aT ) , .Q( c sc0 ) ) ;
32
33 / / s i g n a l v a l u e s a t t h e i n i t i a l s t a t e :
34 / / ! rUT aT ! aU rT ! rU _2_ _3_ ! aUT _5_ _6_ ! c sc0
35 endmodule

Listing B.7: Petrify netlist, Early DATA-phase, bundled data, 2-to-4 phase split

1 module FourToTwoPhase_net (
2 rUT ,
3 aT ,
4 aU ,
5 aUT ,
6 rT ,
7 rU ,
8 enL
9 ) ;

10

117



11 i n p u t rUT ;
12 i n p u t aT ;
13 i n p u t aU ;
14
15 o u t p u t aUT ;
16 o u t p u t rT ;
17 o u t p u t rU ;
18 o u t p u t enL ;
19
20
21 / / F u n c t i o n s mapped i n t o l i b r a r y g a t e s :
22 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
23
24 / / Th i s i n v e r t e r s h o u l d have a s h o r t d e l a y
25 i n v : c o m b i n a t i o n a l _U0 ( . A( enL ) , .O( _0_ ) ) ;
26 / / Th i s i n v e r t e r s h o u l d have a s h o r t d e l a y
27 i n v : c o m b i n a t i o n a l _U1 ( . A( aU ) , .O( _1_ ) ) ;
28 nor4 : c o m b i n a t i o n a l _U2 ( . A( _0_ ) , . B( _1_ ) , . C( rUT ) , .D( aT ) , .O( _2_ ) ) ;
29 / / Th i s i n v e r t e r s h o u l d have a s h o r t d e l a y
30 i n v : c o m b i n a t i o n a l _U3 ( . A( aU ) , .O( _3_ ) ) ;
31 nand4 : c o m b i n a t i o n a l _U4 ( . A( _3_ ) , . B( rUT ) , . C( aT ) , .D( enL ) , .O( _4_ ) ) ;
32 c _ e l e m e n t 2 : asynch _U5 ( . A( _2_ ) , . B( _4_ ) , . C( aUT ) ) ;
33 / / Th i s i n v e r t e r s h o u l d have a s h o r t d e l a y
34 i n v : c o m b i n a t i o n a l _U6 ( . A( aT ) , .O( _6_ ) ) ;
35 a o i 1 2 : c o m b i n a t i o n a l _U7 ( . A( aUT ) , . B( enL ) , . C( _6_ ) , .O( rT ) ) ;
36 / / Th i s i n v e r t e r s h o u l d have a s h o r t d e l a y
37 i n v : c o m b i n a t i o n a l _U8 ( . A( enL ) , .O( _8_ ) ) ;
38 o a i 1 2 : c o m b i n a t i o n a l _U9 ( . A( aUT ) , . B( aU ) , . C( _8_ ) , .O( _9_ ) ) ;
39 i n v : c o m b i n a t i o n a l _U10 ( . A( _9_ ) , .O( rU ) ) ;
40 / / Th i s i n v e r t e r s h o u l d have a s h o r t d e l a y
41 i n v : c o m b i n a t i o n a l _U11 ( . A( aUT ) , .O( _11_ ) ) ;
42 a o i 2 2 : c o m b i n a t i o n a l _U12 ( . A( _11_ ) , . B( aT ) , . C( aUT ) , .D( aU ) , .O( _12_ ) ) ;
43 i n v : c o m b i n a t i o n a l _U13 ( . A( _12_ ) , .O( enL ) ) ;
44
45 / / s i g n a l v a l u e s a t t h e i n i t i a l s t a t e :
46 / / ! rUT aT ! aU ! _0_ _1_ ! _2_ _3_ _4_ ! aUT ! _6_ rT ! _8_ _9_ ! rU _11_ ! _12_

enL
47 endmodule

Listing B.8: Petrify netlist, Additional Latch, bundled data, 2-to-4 phase split

1 module FourToTwoPhase_net (
2 aUT ,
3 pU ,
4 pT ,
5 aU ,
6 aT
7 ) ;
8
9 i n p u t aUT ;

10 i n p u t pU ;
11 i n p u t pT ;
12
13 o u t p u t aU ;
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14 o u t p u t aT ;
15
16
17 / / F u n c t i o n s mapped i n t o l i b r a r y g a t e s :
18 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19
20 or2 : c o m b i n a t i o n a l _U0 ( . A( aUT ) , . B( c sc0 ) , .O( aU ) ) ;
21 nand2 : c o m b i n a t i o n a l _U1 ( . A( aUT ) , . B( c sc0 ) , .O( aT ) ) ;
22 i n v : c o m b i n a t i o n a l _U2 ( . A( pT ) , .O( _2_ ) ) ;
23 o a i 1 2 : c o m b i n a t i o n a l _U3 ( . A( aUT ) , . B( _2_ ) , . C( c sc0 ) , .O( _3_ ) ) ;
24 s r _ n a n d : asynch _U4 ( . S ( _3_ ) , . R( pU ) , .Q( c sc0 ) ) ;
25
26 / / s i g n a l v a l u e s a t t h e i n i t i a l s t a t e :
27 / / ! aUT ! pU pT ! aU aT ! _2_ _3_ ! c sc0
28 endmodule

Listing B.9: Petrify netlist, Early DATA-phase, completion detection, 4-to-2 phase merge

1 module TwoToFourPhase_net (
2 pUT ,
3 aT ,
4 aU ,
5 aUT ,
6 enU ,
7 enT
8 ) ;
9

10 i n p u t pUT ;
11 i n p u t aT ;
12 i n p u t aU ;
13
14 o u t p u t aUT ;
15 o u t p u t enU ;
16 o u t p u t enT ;
17
18
19 / / F u n c t i o n s mapped i n t o l i b r a r y g a t e s :
20 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21
22 / / Th i s i n v e r t e r s h o u l d have a s h o r t d e l a y
23 i n v : c o m b i n a t i o n a l _U0 ( . A( aU ) , .O( _0_ ) ) ;
24 nor2 : c o m b i n a t i o n a l _U1 ( . A(pUT) , . B( aT ) , .O( _1_ ) ) ;
25 / / Th i s i n v e r t e r s h o u l d have a s h o r t d e l a y
26 i n v : c o m b i n a t i o n a l _U2 ( . A( _1_ ) , .O( _2_ ) ) ;
27 a o i 2 2 : c o m b i n a t i o n a l _U3 ( . A( c sc0 ) , . B( _2_ ) , . C( pUT) , .D( _0_ ) , .O( aUT ) ) ;
28 and2_1 : c o m b i n a t i o n a l _U4 ( . A(pUT) , . B( c sc0 ) , .O( enU ) ) ;
29 and2_1 : c o m b i n a t i o n a l _U5 ( . A( c sc0 ) , . B( pUT) , .O( enT ) ) ;
30 / / Th i s i n v e r t e r s h o u l d have a s h o r t d e l a y
31 i n v : c o m b i n a t i o n a l _U6 ( . A(pUT) , .O( _6_ ) ) ;
32 o a i 2 2 : c o m b i n a t i o n a l _U7 ( . A( _6_ ) , . B( aU ) , . C( _1_ ) , .D( c sc0 ) , .O( _7_ ) ) ;
33 i n v : c o m b i n a t i o n a l _U8 ( . A( _7_ ) , .O( c sc0 ) ) ;
34
35 / / s i g n a l v a l u e s a t t h e i n i t i a l s t a t e :
36 / / ! pUT aT ! aU _0_ ! _1_ _2_ ! aUT ! enU enT _6_ ! _7_ csc0
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37 endmodule

Listing B.10: Petrify netlist, Early DATA-phase, completion detection, 2-to-4 phase split
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APPENDIX C
Paper

In this section the paper submitted to the 17th IEEE Symposium on Design & Diagnostics of
Electronic Circuits & Systems (DDECS), which was awarded with the best paper award, is pre-
sented. It is also already available for download from the IEEE database.
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Abstract—Complementing concurrent checking with online
testing is crucial for preventing fault accumulation in fault-
tolerant systems with long mission times. While implementing a
non-intrusive online test is cumbersome in a synchronous environ-
ment, this task becomes even more challenging in asynchronous
designs. The latter receive increasing attention, mainly due to
their elastic timing behaviour; however the issues related with
their testing remain a key obstacle for their wide adoption.

In this paper we present a novel approach for testing of
asynchronous circuits that leverages the redundancy present
in the conventional 4-phase protocol for implementing a fully
transparent and fully concurrent test procedure. The key idea is
to use the protocol’s unproductive NULL phase for processing test
vectors, thus effectively interleaving the incoming 4-phase data
stream with a test data stream in a 2-phase fashion. We present
implementation templates for the fundamental building blocks
required and give a proof-of-concept by an example application
that also serves as a platform for evaluating the overheads of our
solution which turn out to be moderate.

I. INTRODUCTION

Throughout the last decades we have witnessed a tremen-
dous shrinking in the feature sizes of VLSI chips, paired with
an increase of complexity. While, without doubt, these trends
have been the key to the rapidly increasing performance, they
also cause an increasing rate of faults per chip. In the face
of extremely high transistor counts and small critical charges
it is unrealistic to assume that a chip, once tested and put
into operation, will perform its operation without further ex-
periencing transient faults or permanent defects. Consequently,
fault-tolerance provisions, e.g. based on concurrent checking or
replication and masking, have been devised to cope with those
faults and defects. However, all these approaches are based
on assumptions about the multiplicity of faults – typically
the single fault assumption – and they will fail when these
are exceeded. While it is often sufficiently improbable that
multiple faults coincide, the potential of fault accumulation
is sometimes overlooked: A permanent fault that is tolerated
within a fault-tolerance concept still uses up its fault-tolerance
capacity, thus making the system vulnerable to the next fault
that may occur, unless the first fault is properly removed. It is,
e.g., well understood that a TMR architecture exhibits lower
reliability than a simplex architecture, once one of the replica
is affected by a permanent fault. This becomes particularly
cumbersome for systems with long mission times. Therefore

it is crucial, in addition to masking, to detect the existence of a
fault, diagnose and remove it. The identification of faults may
be non-trivial, especially when faults in rarely used resources
must be considered that may remain undetected by concurrent
checking approaches for a long time. This is where on-line
testing becomes mandatory [1].

Asynchronous design is receiving increasing attention since
it naturally avoids some of the most serious problems cur-
rently faced by synchronous designs, such as the need for
low-skew clock distribution, insufficient tolerance to process,
temperature and voltage (PVT) variations, and high power
dissipation. Instead of a global clock it employs local hand-
shaking to coordinate the activities, which makes operation
demand driven and timing much more flexible. One of the
main reasons why asynchronous design, although being around
for several decades, has still not been widely adopted is the
difficulty of testing – in the absence of a clock that the
tester can use to control the test procedure, even their off-
line test requires considerable efforts. In contrast, the approach
we propose here naturally leverages the redundancy already
present in the asynchronous 4-phase protocol for introducing
test patterns into the data stream in a transparent fashion and
fully concurrent with the ongoing operation. The key idea
is to build components that present a conventional 4-phase
interface to the outside, but internally operate with a 2-phase
protocol, which allows test vectors to be inserted between any
pair of regular data words, namely during the NULL phase of
the external protocol. At the component’s output the results
pertaining to the regular data stream are presented to the
outside, again in a 4-phase fashion, while the test results are
internally conveyed to a response analysis block.

The paper is structured as follows: After a review of
related work we will present the fundamental concepts of
the considered asynchronous design styles in Section III.
Section IV will be devoted to presenting our approach in detail.
A proof-of-concept implementation will be given and evaluated
in Section V. Finally we will conclude the paper in Section VI.

II. REQUIREMENTS AND RELATED WORK

Concurrent checking is a well researched field in depend-
able computing. Its key principle is to employ some form
of redundancy (hardware replication [2], coding [3], repeated
execution of a calculation, etc.) to allow checking whether
the result of a computation is correct. While this approach978-1-4799-4558-0/14/$31.00 c© 2014 IEEE



works fine for transient faults, it is not suitable for detecting
permanent faults that may reside in a resource that is not
exercised by the ongoing operation. Several of these dormant
faults may accumulate over time and, once activated together,
exceed the capabilities of the checking scheme. In order to
safely unveil these faults one cannot simply rely on the ongoing
operation to exercise the resources – a test is needed here that
actively applies a well selected set of stimuli, independent
of what is seen through normal system operation. This is
another heavily researched area, however most approaches
were developed for synchronous circuits, which sometimes
leads to dissatisfying results when used on asynchronous ones.

We have argued above that actively applying test stimuli is
desired and characteristic for testing. At the same time these
stimuli deliberately change the state of the system under test,
which interferes with the ongoing operation, and hence seems
to make testing and regular operation mutually exclusive.
Methods for online testing must fulfill two conditions: (value
domain) non-interference with the system state perceived by
the application and (time domain) no degradation of system
performance beyond the point where deadlines are missed.
This can be achieved by either interleaving phases of test and
normal operation in a carefully controlled way, or by devising
special test methods that remain transparent for the ongoing
operation [4].

The key quality criteria of an online test are

• low performance penalty for the application

• high test coverage for a given fault model; this is
determined by the quality and amount of test vectors

• low error detection latency; this is determined by the
period required to apply the whole set of test vectors

We could not find approaches for a truly transparent test
of asynchronous logic in the literature. The available methods
either interrupt the ongoing operation [5] or simply check the
output without actively applying test vectors [6]. An interesting
combination of these two models is called input vector moni-
toring in [7]. Here a list of desired test vectors is determined
as a subset of all possible inputs during operation. When one
of these vectors is encountered during normal operation, the
corresponding output is checked against a known reference,
and the vector marked successful in the list. The test cycle
completes as soon as all vectors in the list have been marked.
Variations of this scheme have been proposed that differ in
how strictly the sequence within the list must be kept; some
even enter a dedicated test mode to apply vectors that are still
missing after a timeout.

The approach we propose here is specifically designed for
asynchronous logic. It provides a tight interleaving of test and
ongoing operation and exploits specific protocol properties to
largely eliminate performance penalties. It can be used with
any arbitrary set of test vectors, whose generation can be
carried out by standard methods from literature.

III. BACKGROUND

In synchronous systems all activities, specifically data
exchange, are coordinated by a global clock. Asynchronous
design, in contrast, employs explicit handshaking between

communicating partners [8]: The sender indicates the validity
of the data provided by means of a request (REQ), while the
receiver indicates their reception by means of an acknowledge
(ACK) signal. This closed-loop principle is the root of the
elastic timing behaviour of asynchronous designs. Depending
on the specific interpretation associated with the transitions
on REQ and ACK two protocols can be distinguished: In
the 4-phase protocol (see fig. 1(a)) the sender indicates data
validity by activating REQ, to which the receiver responds
by activating ACK as soon as it has captured these data. This
is followed by a return-to-zero phase, in which sender and
receiver deactivate REQ and ACK, respectively. In the 2-
phase protocol (see fig. 1(b)) that unproductive return-to-zero
(RTZ) phase is avoided, and the falling transitions of REQ
and ACK already guide the transfer of the next data item.
This halves the number of control transitions per data transfer,
which makes the 2-phase protocol the preferred choice when
data needs to be transferred in an energy-efficient way. The
4-phase protocol, on the other hand, allows a more efficient
implementation of logic functions and registers, and is hence
usually employed for computation-centric blocks.

The indication of data validity via REQ faces a fundamen-
tal race condition: The activation of REQ must be perceived
by the receiver only after data has actually become valid.
The two principles used to ensure this pertain to different
timing models of the circuit and have substantially different
implementation complexity. In the bounded delay model a
delay element ∆ is artificially inserted into the REQ signal
path that is chosen large enough to accommodate for all
potential delays, including combinational functions, that the
data may experience on its travel from sender to receiver.
Obviously this necessitates a timing analysis and worst case
assumptions, just like in the synchronous case. We will further
refer to this approach as bundled data (BD), since it uses
one REQ for the complete bundle of data. In contrast, the
delay insensitive1 approach uses a more elaborate coding for
the data that allows the receiver to evaluate, by means of
a so-called completion detector, when a received data item
is valid. In this way no explicit REQ line is required any
more, thus avoiding the race condition. The advantage of this
solution is its ability to accommodate arbitrary delays on the
data path without the need for worst case assumptions, its
drawback is the necessity of data encoding (typically two
signal rails per data bit are required). We will refer to this
approach as completion detection (CD). In its 4-phase version
two successive data items are separated by a so-called NULL
spacer that establishes the RTZ phase. In the 2-phase version
the coding itself allows a separation of successive data items.

Like in the synchronous case a fundamental structure for
a data processing unit is a pipeline, in which register stages
separate complex logic operations into smaller ones. The
classical pattern in the asynchronous domain is the Muller
pipeline shown in fig.2. Its constituent component is the Muller
C-Element, whose function is as follows: When both inputs
match, the same value is reflected on the output; otherwise the
output retains its last value. In the 4-phase operation that we
will consider in the following, the latches in the datapath are
transparent when LE is active, and opaque otherwise.

1For the sake of simplicity we disregard the notion of quasi-delay insensi-
tivity here, for a more detailed discussion see e.g. [8]
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IV. PROPOSED APPROACH

When comparing the data streams in fig. 1 one can realise
that the 2-phase protocol works like a 4-phase protocol with
extra data items being conveyed during the RTZ phase. In the
CD case this can be understood as replacing the unproductive
NULL spacer by productive data2. So when processing an
incoming 4-phase data stream in a 2-phase function module,
we obtain the freedom to insert a data items of our choice in
place of the NULL spacers, (ideally) without loss of perfor-
mance. The key idea of our approach is to use this freedom
for inserting a stream of test data items into the original user
data stream. Notice that, although we obtain an extremely
tight interleaving between ongoing operation and test, this
approach is completely decoupled from and transparent to the
application, and allows choosing the test data freely.

Figure 3(a) illustrates the basic architecture of our proposed
approach. At the input of the device under test (DUT) we
place a 4-to-2 phase merge element (4-to2 PhM) that joins
the 4-phase user data stream (UD) with the 4-phase test data
stream (TD) into a single 2-phase data stream (UTD). Of
course, a source for the test vectors is required here, which
is considered part of the self-testing module. In the following
we will, however, not go into detail about which test vectors
to actually select, these can be freely derived in accordance
with the needs of the given DUT by means of the available
test pattern generation techniques [9]. Here we will only be
concerned with inserting a given test vector into the data stream
and extracting the respective response later on.

The DUT now has to process the 2-phase data stream,
so its design has to be converted from the original 4-phase
protocol to 2-phase. This renders it more complex, which
can somehow be considered the price for the online testing
property. The DUT’s 2-phase output stream finally needs to
be separated into the test responses and the results pertaining
to the application input data, which are both again 4-phase.
This task is performed by a 2-to-4 phase split element (2-
to-4 PhS). The test responses can be analysed (compressed

2For the BD approach we assume early data validity [8], which is the most
common approach anyway.

with a multiple-input shift register, e.g., and compared with a
stored reference) inside the self-testing function block, while
the application data stream is passed on to the actual output
where it naturally appears as the 4-phase stream of results that
one would expect in response to the original 4-phase input data
stream. So from the outside the self-testing DUT behaves like
a regular 4-phase logic block.

Interestingly, the approach allows an arbitrary choice of
the DUT size: One extreme case would be to consider every
single pipeline stage a separate DUT and equip it with all the
required infrastructure at its input and output (fig. 3(b)). The
other extreme would be to regard the complete design as the
DUT(fig. 3(a)), thus trading controllability and observability
for lower implementation overheads.

In the following we will focus on the description of the re-
quired merge and split elements, since they are fundamental for
our approach, and we could not find suitable implementation
patterns in the literature – only 2-phase/4-phase conversion of
a single data stream [10] has been considered, or splitting and
merging of datastreams following the same protocol [11], [12].

A. Merge and split for the bundled data approach

It is possible to compose the merge unit from two nearly
independent blocks, one for handling the data bus and one
for the control lines. The data handling block boils down to a
multiplexer (MUX) that selects between forwarding the user
data and the test data. In contrast to other approaches in the
literature [11] we have a strict alternation between the two
inputs and hence a fixed association between input source
and state of REQ in the 2-phase protocol on the output
side. This allows to hardwire the MUX’s select input to the
output REQ, yielding low circuit complexity. In particular
we chose to associate user data with REQ = 1 and test
data with REQ = 0. According to the bounded delay model
an appropriate delay needs to be added before conveying the
REQ signal downstream, to compensate the data delay caused
by the MUX.

For the output REQ, termed rUT in fig. 4, we want a
rising edge when (a) the REQ of the user data (rU ) rises,
indicating new user data are available, and (b) the REQ of
the test data (rT ) falls, indicating the test vector generator is
in its RTZ phase – whichever happens last. The same is true
for the falling edge of rUT , with the input transitions from
rU and rT inverted. The Muller C-element shown in fig. 4(a)
(top) serves exactly this purpose. The ACK signal coming
from the 2-phase function unit, termed aUT can be simply
conveyed as the ACK to the user input (as aU ), and after
inversion to the test input (aT ).
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For the 2-to-4 phase split element the data handling unit
becomes trivial, namely just a set of wire forks: Since the
data may assume any arbitrary value during the RTZ phase,
all incoming data are directly forwarded to both outputs at the
same time. It is up to the REQ signals to indicate which of
the outputs is intended to receive the respective data word.
Recall that the merge unit associated user data with rUT = 1.
Therefore we need to activate rU (and deactivate rT ) at the
split unit output when the rUT = 1 is seen at its input, and
set rT = 1 (and deactivate rU ) otherwise. The simple circuit
shown in fig. 4(b) (top) does this job and ensures that rU
and rT are activated in a mutually exclusive fashion. Merging
the ACK responses aU and aT from the 4-phase outputs
to a common 2-phase ACK, namely aUT , follows the same
pattern as outlined for the REQ signals in the merge unit.
Not surprisingly, a Muller C-element with one inverted input,
as shown in fig. 4(b) (bottom), does the job.

B. Merge and split for completion detection approach

From the available options for implementing the CD ap-
proach we chose NCL as the 4-phase protocol and LEDR
as the 2-phase one. As these protocols use different data
representations, a bit-level conversion becomes necessary in
the merge and split unit. Table I shows the required mapping
(per data bit). In the 2-phase protocol we have 2 rails per bit,
one value rail (val) and one phase rail (phs). On the 4-phase
side we have again 2 rails per bit, this time a one-hot code with
one rail indicating high (hi) and one low (lo). For the merge
unit we need to convert from 4-phase to 2-phase (right-to-left
in the table). Notice that in the 4-phase representation only a
single rail is high at a time in each of the four valid states.

The circuit shown in fig. 5(a) identifies these states and
maps them to the respective LEDR code. As the two 4-phase
inputs (user data and test data) originate in different sources,
we cannot avoid invalid intermediate input patterns (i.e. such
with 2 rails or no rail at high). This is why we use Muller
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Fig. 5. Completion detection format conversion from NCL to LEDR

C-elements to retain the valid previous outputs during those
phases. The ACK can be treated in the same way as in the
BD merge.

In the split unit the format has to be transformed back to
the 4-phase protocol (left-to-right in Table I). Notice in the
table how the alternation of test data and user data in the
2-phase stream leads to a natural insertion of the required
NULL spacers into the 4-phase data streams. The required
circuit can be easily derived and is not shown here. A purely
combinational (glitch-free) implementation without Muller C-
elements is sufficient here, since the 2-phase input does not
exhibit invalid intermediate states.

Finally, the generation of the ACK signal is again realised
by connecting the incoming ACK lines to a Muller-C element
with the test ACK in its negated form.

TABLE I. TRUTH TABLE, FORMAT CONVERSION

2-phase UTD 4-phase UD 4-phase TD
val phs int hi lo int hi lo int
0 0 LO(TD) 0 0 NULL 0 1 LO
0 1 LO(UD) 0 1 LO 0 0 NULL
1 0 HI(UD) 1 0 HI 0 0 NULL
1 1 HI(TD) 0 0 NULL 1 0 HI

C. Enhancements

So far we have presented the basic implementations of the
blocks handling the control signals. It is possible to increase
their speed at the cost of increased complexity and thus
increased area overhead. In the case of the merge element it



Fig. 6. Post-layout simulation with detection of a stuck-at fault

is possible to acknowledge the NULL phase earlier, namely
as soon as the data of the other input are propagated, giving
the data values more time to travel through the logic. This
yields advantages if NULL values are much faster than data
values, which is the case when asymmetric delay lines are
used. Another possibility is to propagate new data as soon
as they show up, no matter if the other input has already
delivered its NULL spacer or not, of course only after the
ACK was received from the succeeding stage. Furthermore,
introducing a latch at the output of the merge unit makes it
possible to acknowledge the inputs right away, resulting in a
further decoupling of in- and output.

For the split unit it is possible, to start the NULL phase
at the output that received the last data as soon as the input
gets acknowledged. Another alternative is to acknowledge the
input as soon as the output that recently received the data has
acknowledged them, without the necessity of the other one
having acknowledged its NULL phase. In addition a latch may
be implemented at the input making it possible to acknowledge
the input stream right away. For a more detailed and generic
treatment of this topic see [13].

V. EVALUATION

We verified our online test approach for a three-stage
Muller-pipeline. To keep the focus on the newly designed units,
we did not introduce combinational functions between the
pipeline registers; that would, however, be easy to add in a next
step. More specifically we augmented the pipeline by a test
vector generator, a response analyzer, and, most importantly,
by our proposed merge and split units.

After synthesizing the VHDL design we carried out a post-
layout simulation, whose result can be seen in fig. 6. The
topmost three traces show the input signals to the DUT and the
four traces at the bottom the output signals. TV G represents
the output of the test vector generator and TRA the input
of the test response analyser. The highlighted signal cmpDev
gets high as soon as TV G and TRA mismatch, i.e. a fault
is detected. Note how the values from data In and TV G
are processed in an alternating fashion and show up at the
output with some delay corresponding to their propagation
time through the pipeline.

To validate the self-testing capability of our approach we
introduced a stuck-at-0 fault on bit 3 in our design. This fault
is activated by the test vector 9B which is transformed to 93
(as well as the data vector 3F being transformed to 37). As
soon as the TRA recognizes 93 it raises cmpDev, as intended.

The area overhead and performance penalty introduced by
our approach depend on many implementation parameters and
are hard to estimate in general. We therefore decided to give an
analytic estimation here that still allows to judge the influence

of some choices, rather than presenting specific quantitative
area and timing data from the synthesized design.

For the area overhead we compare the transistor count of
the original pipeline with that of the enhancements required
for the online testing feature. We do not include the TVG
and the TRA in our analysis for two reasons: (1) The need for
these units is common to all test approaches, and (2) depending
on the specific demands the complexity of these units varies
by orders of magnitude. In general, when mapping gates to
transistor counts, we did not assume highly optimized cell
designs, but we applied simplifications in the overall circuit
when they were obvious (like reducing inverter count). The
results of our analysis are shown in table II.

The first row analyses the bundled data case. In the first
line the transistor count (unit “T” for “transistors”) for a stage
(register plus control) of the original pipeline is given; in case
the transistor count is proportional to the number of data bits
“/DL” indicates “per data line”. Line 2 gives the overheads
for the online test. The columns correspond to the individual
function blocks (merge and split), with the rightmost column
giving the overhead in % depending on the number n of stages,
for large data width and without combinational logic. For the
latches the overhead for conversion into a capture/pass latch
according to [14] is accounted for as well3. In the BD approach
the combinational function block (if any) remains unchanged.
As there are substantially different ways of implementing the
REQ delay required in the BD approach, and furthermore the
size largely varies with the required delay value, we did not
include it here. This means that the initial size of the pipeline is
underestimated here (making the relative overheads seemingly
higher), and that the extra delay to compensate for the MUX
introduction is not accounted for in the overheads.

The bottom row in table II shows the respective numbers
for the CD approach. Here the conversion of the logic is far
more complicated because each single gate has to be replaced.
Unfortunately no concrete numbers could be found in the
literature: That is why we make the pessimistic assumption
that the transistor count will duplicate when moving from 4-
phase to 2-phase4. Furthermore, merge and split blocks need
to be added, as well as the completion detector modified.

TABLE II. AREA OVERHEAD ESTIMATED BY TRANSISTOR COUNT

merge comb. pipel. node split n stages (%)

BD native - - 14 + 12/DL -
117 + 100

ntest 16 + 12/DL 14/DL 16

CD native - - 2 + 70/DL -
5.7 + 94

ntest 2 + 44/DL ≈*2 4/DL 14 + 22/DL

As shown in Table II the overhead for the BD approach
is 117 + 100/n%. For a test-per-stage approach (n = 1)
this yields 217%, while for a large number n of pipeline
stages between a single pair of merge/split elements, this value
drops towards 117%. With large logic function blocks this
relative overhead, however, quickly approaches 0%: Consider
a combinational block of 12T/DL/pipeline stage; just this
approximately halves the overhead.

3In contrast to the implementation proposed in [14] we did not account 8T
per switch but rather 4T (transmission gate).

4In a very simple example that we used for a first comparison, we could
build an XOR for NCL with about 70T, while its counterpart in LEDR required
100T, yielding an overhead of less than 50%.



For the CD approach with its more complex native pipeline
stages the relative overhead is much lower. However, as,
according to our pessimistic estimation, converting the logic
function blocks roughly duplicates their transistor count, the
situation does not improve with large function blocks.

For estimating the performance penalty we identify the
additional delays introduced by the test infrastructure. To attain
a generic view we consider gate delays (measured in inverter
delays ID of the respective technology) and assume zero wire
delays. The results are summarized in table III (k = number of
data lines). They show the accumulated values for forward and
backward (ACK) path. In all cases we assume that TVG and
TRA operate fast enough to perform the handshaking without
extra delays.

The numbers for the BD approach are shown in the first
row, with the first line referring to the native implementation
and the second one to the overhead for the online test infras-
tructure. The introduction of the merge and split units causes
a delay of 5 and 2 ID, respectively. Relative to the stage delay
this represents a penalty of more than 100%. However, as the
number of stages between merge and split, as well as the delays
of the logic function blocks (not considered here) grow, the
relative penalty quickly approaches 0%. Similarly, the extra 1
ID for the register stage becomes negligible in case of complex
combinational function blocks with high delays.

For the CD approach the picture is again initially better
(penalty below 100%), as the native pipeline stage has more
delay. The problematic point, however, is, once more, the com-
plexity increase when transforming the combinational logic
from 4-phase operation to 2-phase. The related performance
penalty strongly depends on the specific circuit; we roughly
estimate it as 50...100%. Unfortunately, this number does not
scale down with the number of stages or with the initial
complexity of the combinational logic, as in the BD approach.

TABLE III. PERFORMANCE PENALTY IN GATE DELAYS

merge comb. pipel. node split n stages (%)

BD native - - 6 -
17 + 117

ntest 5 - 1 2

CD native - - 9 + dlog2(k)e ∗ 2 - n+8
n(2∗dlog2(k)e+9)test 4 ≈*1.5− 2 1 4

VI. CONCLUSION

We have proposed to exploit the, normally unproductive,
RTZ phase or NULL spacers of the asynchronous 4-phase
protocols for conveying test vectors. While this can be done
fully transparent and concurrent to the ongoing application,
a new test vector can be applied after every single data
word, which yields the tightest possible interleaving between
test and operation, and hence an excellent detection latency.
Test vectors can be freely chosen, independent from the user
data, to optimize test coverage versus test period. We have
identified the required infrastructure blocks for this approach
and illustrated their basic implementation. In a case study we
have proven the feasibility of the approach.

For the BD approach the area overheads can, according to
our estimations, go up to 200% under the most pessimistic
assumptions. Fortunately they approach 0% quickly with in-
creasing number of stages and complexity of the combinational

logic. The performance penalty can be close to 150%, with the
same favorable trends. So in practical cases the overheads will
be very moderate. The CD approach exhibits lower relative
overheads in the worst case scenarios, simply because the
native implementation is more complex already. However, for
the conversion of the combinational logic from 4-phase to 2-
phase it is difficult to estimate the incident penalties. Under
our pessimistic assumptions the overheads for this conversion
dominate, and therefore we cannot attain the favorable scaling
as seen with the BD approach.

However, even in the worst cases the observed overheads
are still competitive with those of typical fault-tolerance
methods like TMR, duplication or time redundancy, given
the superior performance: In contrast to these fault-tolerance
approaches that are based on concurrent checking, our online
test detects permanent faults in the hardware, which are hard to
unveil otherwise, with the best attainable (namely cycle-wise)
interleaving between application and test.

Future work will be devoted to increasing the concurrency
within the merge and split modules, as already sketched in
this paper. This should aid in further reducing the performance
penalty. Furthermore, it will be interesting to study the prop-
erties of the approach in more complex settings.
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