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Abstract

Today’s Internet of Things (IoT) landscape is fragmented by proprietary solutions offered by
different vertical industries. Gateway application environments were introduced to integrate the
domain- and vendor-specific communication protocols, data models, and control devices with
management level business processes. But rather than reducing the heterogeneity, they intro-
duced additional, often proprietary communication protocols. Furthermore, the automation of
application deployment in IoT framework environments is barely supported and the management
procedures are not portable due to the lack of standardization. Thus, the operation of IoT solu-
tions requires time consuming manual configuration and detailed knowledge about each gateway
framework in use. Interestingly, quite similar problems appeared in the domain of cloud appli-
cations. The absence of standardized APIs led to heterogeneous cloud environments making
vendor-specific application life-cycle management procedures necessary. Porting these proce-
dures to a new environment resulted in a cost and time intensive task. The portability problem in
cloud environments was perceived by industry and academics, leading to the OASIS Topology
and Orchestration Specification for Cloud Applications (TOSCA), which provides a meta-model
to define the topology of applications and their life-cycle management in a portable way.

The goal of this work is to investigate how TOSCA can be applied to the IoT domain to au-
tomate application deployment and life-cycle management in a portable and reusable way. The
structure of IoT applications is composed of reusable components which capture detailed man-
agement knowledge. Their behaviour is defined by life-cycle management procedures which are
defined in a portable and interoperable way. Furthermore we show how the device virtualization
proposed in the IoT PaaS architecture can be accomplished by applying TOSCA.

To show the feasibility of this approach, a prototype that implements a building automation
use case is developed, based on the OpenTOSCA runtime environment. The prototypical appli-
cation consists of two Air Handling Unit (AHU) instances which are deployed onto two distinct
gateway frameworks – Sedona and Niagara.
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Kurzfassung

Die heutige Internet of Things (IoT) Landschaft wird durch proprietäre Lösungen, welche von
unterschiedlichen Wirtschaftsbranchen entwickelt werden, fragmentiert. Gateways wurden ein-
geführt, um die domänen- und herstellerspezifischen Kommunikationsprotokolle, Datenmodel-
le und Steuergeräte zu integrieren. Aber anstatt die Heterogenität der Systeme zu verringern,
wurden weitere, oftmals proprietäre Kommunikationsprotokolle eingeführt. Des Weiteren wird
das automatische Deployment von Anwendungen von IoT Frameworks kaum unterstützt und
Management-Prozeduren sind aufgrund fehlender Standardisierung nicht portabel. Somit er-
fordert der Betrieb von IoT Lösungen eine zeitaufwändige manuelle Konfiguration sowie de-
tailliertes Wissen über jedes verwendete Gateway-Framework. Interessanterweise sind ähnli-
che Probleme im Gebiet der Cloud-Anwendungen entstanden. Das Fehlen von standardisier-
ten APIs führte zu heterogenen Cloud-Umgebungen, welche herstellerspezifische Management-
Prozeduren zur Steuerung von Anwendungslebenszyklen nötig gemacht haben. Das Portieren
dieser Prozeduren in eine neue Umgebung war eine zeitaufwändige und teure Aufgabe. Das
Portabilitätsproblem in Cloud-Umgebungen wurde von Wirtschaft und Wissenschaft wahrge-
nommen, was zur Entwicklung der OASIS Topology and Orchestration Specification for Cloud
Applications (TOSCA) geführt hat. Diese Spezifikation stellt ein Meta-Modell zur Definition
der Topologie von Anwendungen und den dazu gehörenden Management-Prozeduren zur Ver-
fügung.

Das Ziel dieser Arbeit ist es zu untersuchen, wie TOSCA auf die IoT Domäne angewen-
det werden kann, um das Deployment von Anwendungen und das Lifecycle-Management auf
portable und wiederverwendbare Art und Weise zu automatisieren. IoT Anwendungen sind aus
wiederverwendbaren Komponenten zusammengesetzt, welche detailliertes Wissen über deren
Management beinhalten. Das Verhalten ist durch Management-Prozeduren zur Steuerung des
Lifecycles definiert, welche auf portable und kompatible Art und Weise umgesetzt werden. Des
Weiteren wird gezeigt, wie die Virtualisierung, welche in der IoT PaaS Architektur konzipiert
wurde, durch die Anwendung von TOSCA erreicht werden kann.

Um die Machbarkeit dieses Ansatzes zu zeigen, wird ein Prototyp auf Basis der OpenTOSCA
Laufzeitumgebung entwickelt, welcher einen Anwendungsfall auf dem Gebiet der Gebäude-
automatisierung implementiert. Die prototypische Anwendung besteht aus zwei Klimagerät-
Instanzen, welche auf zwei verschiedene Gateway Frameworks – Sedona und Niagara – de-
ployed werden.
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CHAPTER 1
Introduction

1.1 Problem Statement

Today’s Internet of Things (IoT) landscape is fragmented by proprietary solutions offered by
different vertical industries as depicted in Figure 1.1. Their domain specific network protocols
and control devices are mainly used for local control scenarios where the majority of them rely
on field buses rather than on IP networks [1]. Kastner et al. [2] defines modern Building Au-
tomation Systems (BAS) as “distributed systems where the control functionality is spread across
a three level hierarchy”. Figure 1.2 shows a subset of BAS standards and their associated layers.
Granzer et al. [3] explains this hierarchy as follows. Direct interaction with control devices like
collecting measurement data or changing configuration parameters happens on the field level,
whereas the execution of control loops and sequences happens on the automation level. Finally,
global configuration and management tasks like visualization happen at the management level.
Gateways (cf. Section 3.3) were introduced to deal with the resulting heterogeneity of hardware,
communication protocols and data models by implementing required communication standards
as well as integrate legacy systems. But these efforts again have led to many proprietary applica-
tion runtime environments lacking standardized service management procedures. For example,

Figure 1.1: Vertically oriented solutions using field buses [1].
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Figure 1.2: Technologies in BAS [3].

the NiagaraAX [4] framework provides middleware functionality to integrate BAS systems with
management level business processes, but lacks the capability of automating the deployment
process. Instead, a tool for semi-automatic device provisioning, specific to the framework and
its proprietary protocols, is offered to system integrators. In contrast, the open source platform
Sedona [5] - focusing on constrained devices - offers a protocol for low-level device provisioning
and component management. The Internet of Things integration middleware (IoTSyS1) [6] is
a transparent multi-protocol gateway that integrates various sensor and actuator systems, which
can be found in current home and building automation systems. The integration middleware pro-
vides a stack of communication protocols for embedded devices based on various standards to
support interoperability that gets directly deployed on 6LoWPAN devices. But this framework
again focuses on device integration rather than the application deployment aspect. In summary,
the automation of application deployment in IoT framework environments is barely supported
and the management procedures are not portable due to the lack of standardization.

Interestingly, the same problems appeared in the domain of cloud applications. The ab-
sence of standardized APIs led to heterogeneous cloud environments making vendor-specific
application life-cycle management procedures necessary. Thus, porting these procedures to a
new environment resulted in a cost and time intensive task. The portability problem in cloud
environments was perceived by industry and academics, leading to the OASIS Topology and
Orchestration Specification for Cloud Applications (TOSCA) [7, 8] (cf. Section 3.4). It defines
a meta-model for defining service topologies and facilitates the interoperable deployment and
life-cycle management of application layer services. Although TOSCA was primarily developed
to facilitate Cloud portability, an application to the IoT domain seems promising.

1.2 Aim of the Work

The goal of this thesis is to investigate how TOSCA can be applied to the IoT domain to improve
the re-usability of service management processes and facilitate the automation of IoT application
deployment. To show that the proposed mechanism works in practice, a prototypical building
automation use case scenario consisting of a Sedona and a Niagara gateway will be developed.

1https://code.google.com/p/iotsys/
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Furthermore, this prototype will serve as practical proof to the approach described in [9] and
thus will extend IoT PaaS [10] in future work (cf. Section 2).

The most important concepts of the prototypical implementation are:

• A hierarchical model of nodes and relationships describing components typically oc-
curring in the BAS domain. These node and relationship definitions extend the current
TOSCA node model.

• A Topology Template specifying the internal topology of the components of the complete
use case and its properties. This application model is composed of reusable node defini-
tions.

• Plans to deploy and un-deploy the complete use case respectively. These high-level life-
cycle management procedures are composed of lower-level management operations of the
affected nodes. Additional plans are used to perform life-cycle operations on the nodes of
the application model.

The actual implementation of the life-cycle operations of the nodes used in the Topology Tem-
plate will yield valuable information about the extent to which the details of TOSCA match
the requirements of the IoT domain, e.g. cloud configuration management makes extensive use
of scripts in contrast to IoT application deployment. Potentially necessary modifications to the
TOSCA environment or the IoT frameworks will be discussed in this work as well as required
interfaces and constraints which applications on specific IoT frameworks need to provide and
satisfy respectively. This domain-specific application of the proposed approach will prove that
the heterogeneity of IoT environments can be mitigated by applying TOSCA.

1.3 Methodological approach

The methodological approach consists of the following steps:

• First, current application approaches of the TOSCA specification are analyzed.

• Second, the deployment processes and management procedures of the IoT frameworks Se-
dona and Niagara are reviewed. A comparison of the open-source Sedona framework to
the proprietary Niagara framework will bring up valuable knowledge to support general-
ization considerations regarding interfaces and the definition of the TOSCA type models.
Additionally, a basic application will be developed for each framework to show case the
application deployment in later steps.

• Third, Web services that provide access to the life-cycle management procedures of each
IoT framework will be implemented. If necessary, modifications are made to the respec-
tive frameworks and applications to allow Web service access. These constraints caused
by e.g. proprietary protocols will be discussed for each framework type.

3



• Fourth, the OpenTOSCA [11] Ecosystem v1.12 - a TOSCA runtime environment that im-
plements a subset of the TOSCA specification - will be used to deploy and manage IoT
framework applications of the use case. A Cloud Service Archive (CSAR) will be devel-
oped and processed by the OpenTOSCA Ecosystem. The CSAR will consist of a hetero-
geneous IoT application setup specifying Sedona and Niagara types. The implementation
of the TOSCA types will use the Web services of the third step as Implementation Arti-
facts and the applications of the second step as Deployment Artifacts. BPEL Plans will be
developed to invoke the life-cycle management procedures.

• Finally, the findings gained from the implementation of the CSAR and the modifications
made to the environment are consolidated to discuss the portability and automation ac-
complished by this approach.

1.4 Organization

The remainder of this thesis is structured as follows:

• Chapter 2 discusses several application approaches of TOSCA as well as deployment
languages and frameworks.

• Chapter 3 introduces important terms and concepts used in the Building Automation (BA)
domain. Additionally, the TOSCA standard and its implementation in the OpenTosca
runtime environment are discussed. Finally, the IoT PaaS is presented.

• Chapter 4 defines the prototypical use case scenario and explains its relevance to the BA
domain.

• Chapter 5 comprises the high-level design of the prototype’s architecture and the inter-
action of its components. A TOSCA Service Template describes the topology of the
prototype.

• Chapter 6 describes the vendor-specific implementations of generic TOSCA nodes to-
gether with gateway-specific implementation artifacts needed to integrate the OpenTOSCA
environment with the gateways used by the prototype. Finally, plans implementing life-
cycle management procedures are presented.

• Chapter 7 evaluates the knowledge gained during the implementation of the prototype
with regard to the application of TOSCA concepts. Furthermore, the extent to which
these concepts facilitate the automation of application deployment in heterogeneous IoT
environments is discussed. Finally, the possible integration of this prototype with IoT
PaaS is explained.

• Chapter 8 recapitulates the findings of this thesis and gives an outlook to future research.

2http://files.opentosca.de/v1.1/
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CHAPTER 2
State of the Art

2.1 Deployment Languages & Frameworks

A Meta-Model Approach for the Deployment of Services-oriented Applications

The Deployment Language for Services Applications (DLSA) [12, 13] defines a meta-model to
specify a language to describe applications together with deployment activities to face problems
like services implementations selection, services dependencies and scheduling, which occur dur-
ing application deployment in Service-Oriented Computing (SOC). A “services applications
meta-model” [12] is used to describe Services Applications composed of several Services, and
their Interactions. Each Service can contain a Provided Interface and several Required Inter-
faces [12]. As this approach is aimed at constrained Execution Environments (EEs), the main
goal is to apply a sharing mechanism to re-use already deployed services to minimize the re-
source consumption of applications and thus maximize the number of installable applications.
The DLSA provided by the meta-model is used by a Deployment Manager for Services Ap-
plications (DMSA) [12]. The deployment manager is realized with a centralized server and an
embedded manager in each EE, which together can perform the following deployment activi-
ties: Installation, Activation, De-Activation, De-Installation, and Management [13]. Figure 2.1
describes the manager’s Installation activity that uses the service application model (application
described by the DLSA) and the configuration of the targeted EE (collected by the embedded
manager’s part), to calculate a deployment plan. A scheduling algorithm is used to resolve de-
pendencies and check for inconsistencies (taking required interfaces into account) as well as to
determine the right activation sequence for the participating services. For each service, the selec-
tion algorithm then selects a service implementation (e.g. jar file) from the Repository, favouring
already installed implementations. The resulting deployment plan is then sent to and executed
by the Deployment Plans Manager on the target platform [13]. Although this approach is quite
comprehensive, services sharing is facilitated at the implementation level and thus doesn’t solve
the problem induced by sharing of service instances that may comprise an interaction-sensitive
internal state posing side-effects between applications [13].

5



Figure 2.1: Manager’s installation activity data exchanges [13].

A Flexible and Extensible Architecture for Device-Level Service Deployment

An approach for a Deployment and Configuration system [14] was developed as part of the mid-
dleware in the SOCRADES1 research project. It addresses the challenges arising from remote
deployment and configuration of services in constrained environments by dynamically select-
ing appropriate Strategies at runtime with respect to the current configuration of target devices.
According to Frenken et al. [14], such a system must support the following use cases: Ser-
vice Publication, Updating, Querying, (Re)Mapping, Deployment, Execution, Monitoring and
(De)Activation. Additionally, services, devices, and deployment objectives are stated as the three
dimensions of heterogeneity to be addressed by the proposed system. Taking these requirements
into account, the high-level architecture depicted in Figure 2.2 arose. In this Deployment and
Configuration system, the System State is aggregated from User Input (e.g. QoS constraints,
services to map) on the one hand and from monitoring of the Platforms hosted on devices on the
other hand. The Monitor keeps track of all nodes available within each Platform, the deployed
service instances and the topology of the system. The Mapper then calculates a deployment
plan based on the current System State, using concrete implementations selected by the Strategy.

1http://www.socrades.eu/
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Figure 2.2: High-Level Architecture for Deployment and Configuration [14].

Finally, the Injector executes the deployment plan on the targeted Platform. The Injector and
the Monitor both consist of a platform-specific and a platform-agnostic part [14]. To gain flexi-
bility, the actual implementation splits the deployment planning phase in a Node Selection and a
Matchmaking phase [14]. In the first phase, node selection strategies enrich the system state by
marking each device with the service IDs it is capable to host at the moment. The Matchmaking
phase then calculates a deployment plan by mapping the desired services to appropriate devices,
taking service dependencies and requirements into account.

Cross-Platform Generative Agent Migration

To support the execution of mobile agents on heterogeneous platforms, Groot et al. [15] inves-
tigates the concept of generative migration introduced by Brazier et al. [16] that proposes the
use of agent blueprints instead of sending complete code and data. A blueprint describes an
agent’s structure and functionality in an implementation-independent way using XML syntax.
An Agent Factory [16] service provided by target platforms automatically assembles an agent
from the blueprint using platform-specific building blocks from a local repository. Generative
agent migration thus “relies on homogeneity of libraries on different platforms to re-incarnate
agents, but does not require homogeneity of platforms” [15].

7



2.2 IoT integration approaches

openHAB - Open Home Automation Bus

“openHAB2 presents an integration platform that operates on a higher level of abstraction. The
architecture is based on an event bus in combination with a publish-subscribe pattern, realized
on OSGi. To integrate any kind of device of an IoT infrastructure, abstract items are defined
to model these devices” [9]. Item Types like Switch, Dimmer or Rollershutter for blinds define
Command Types like OnOff, UpDown or IncreaseDecrease to trigger a state change. The Item
Repository provides state information of items to the automation logic execution engine and
the user interface. In addition, bindings are used to bind items to concrete hardware, protocols
or interfaces. This concept allows the platform to be vendor-neutral and hardware/protocol-
agnostic. The openHAB environment can be configured via configuration files defining amongst
others the items and automation rules.

oBIX - Open Building Information eXchange

The OASIS standard oBIX3 [17] provides technological-independent information modelling by
using a common object model to represent devices in the domain of building automation [3, 4].
In the oBIX object model all devices are represented as objects holding collections of data points
with a specified data type [18]. Additionally, the concept of Contracts “allow us to tag objects
with normalized semantics and structure” [17]. The object types are directly mapped to XML el-
ement types in case of XML encoding. Constrained devices can make use of a binary encoding
to reduce message size [17]. A simple Web service based protocol aligned to RESTful inter-
actions together with XML encoding of the objects builds an interoperable, platform agnostic
interface. A client can interact with an object on an oBIX server by addressing it through its uni-
form resource identifier (URI) and by using one of three request types, namely read, write and
invoke, which map to the HTTP methods GET, PUT and POST [6]. Data and service discovery is
provided through a central entry point (http://server/obix by convention), called the Lobby [17].
There, a client can register objects with the WatchService to retrieve real-time information us-
ing so called watches, which is a model for client polled eventing. Invoking the pollChanges
operation on the Watch URI delivers the events, which occurred since the last poll [17].

A transparent IPv6 multi-protocol gateway to integrate Building Automation
Systems in the Internet of Things

Jung et al. [6] presents the Internet of Things integration middleware (IoTSyS4) which is a
transparent multi-protocol gateway combining the centralized with the decentralized approach
(cf. Section 3.2). Management level business processes can control and monitor devices and
their data through centralized interfaces, whereas device-level interfaces facilitate M2M com-
munication. Transparent access to legacy devices is guaranteed by assigning IPv6 addresses to

2http://www.openhab.org/
3http://www.obix.org/
4https://code.google.com/p/iotsys/
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Figure 2.3: Excerpt of IoT contracts (adapted from [18]).

their interfaces [6]. IoT contracts (cf. Figure 2.3) define a generic set of custom oBIX contracts
that represent functional blocks to model devices occurring in modern BAS systems. The most
generic contract is the Thing, generalizing the Sensor and Actuator contract, which themselves
group more specific contracts. The LightSwitchActuator contract of Listing 2.1 is an example
for a specialization of the Actuator contract, specifying a writeable boolean data point.

Listing 2.1: Light switching actuator contract [18].

1 <obj href="iot:LightSwitchActuator" is="iot:Actuator">
2 <bool name="value" href="value" val="false"
3 writable="true"/>
4 </obj>

Although these IoT contracts add semantics to the oBIX object model, the “semantic de-
scription of oBIX contracts is only intended for human beings but not usable for machine based
semantic processing” [6]. Contracts like the LightSwitchActuator depicted in Listing 2.1 “can
be compared to function blocks of BAS that describe standardized behaviors of sensors, actua-
tors and control devices and define the semantics of input and output data points of devices that
implement the function blocks” [6]. Thus, oBIX together with the IoT contracts form the top
layer of the “IPv6 multi-protocol gateway stack” [6].

sMAP - a Simple Measurement and Actuation Profile for Physical Information

“Since in IoT Systems most devices use their own proprietary communication stack and inter-
faces, it is challenging to offer the gathered data in a standardized way. Dawson-Haggerty et
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al. [19] proposes sMAP5 that tries to overcome this challenge by presenting physical informa-
tion via RESTful interfaces using a simple JSON6 schema. This allows consumers to retrieve
data, without the need to access the underlying infrastructure and dealing with proprietary for-
mats” [9]. Additionally, a modified protocol stack is presented to support the execution of sMAP
on constrained devices. sMAP voluntarily focuses on data representation rather than interpreta-
tion to allow for a wide use in distinct application domains.

BOSS: Building Operating System Services

“Based on sMap, Dawson-Haggerty et al. [20] presents BOSS, a distributed system that provides
a collection of crucial, common and reusable services that enable the development of portable
and robust applications for heterogeneous physical environment” [9]. A hardware presenta-
tion layer (HPL) adds metadata to the sMAP interface, thus making context-aware applications
possible. Furthermore, the hardware abstraction layer (HAL) provides an approximate query
language [21] to retrieve devices without knowing their network address. “The HAL also ab-
stracts the logic used to control building components such as pumps, fans, dampers, chillers,
using a set of drivers to provide standard interfaces. Drivers provide high-level methods such as
set_speed and set_temperature that are implemented using command sequences and
control loops over the relevant HPL points” [20].

2.3 Research based on TOSCA

“The research and application of TOSCA is still in its infancy. The early works are generally
focused on exploring the possibilities of applying TOSCA for various management tasks, thus
providing feedback to the standardization efforts and gaining experiences for industrial adop-
tion” [9].

Integrating Configuration Management with Model-Driven Cloud Management
Based on TOSCA

“Wettinger et al. [22] presents several concepts that integrate both model-driven cloud man-
agement and configuration management. The goal of the overall approach is to combine the
advantages of these service management paradigms based on TOSCA” [9]. As a result, two
implementation artifacts are provided for each life-cycle operation (cf. Figure 2.4). The first
one consisting of configuration management tool specific configuration definitions (e.g. a Chef
Recipe), whereas the second one programmatically encapsulates the first one in a wrapper script.
Now, the TOSCA environment either can use the particular artifact (if it’s type is supported)
gaining more control over its execution, or the wrapper script supported by any TOSCA envi-
ronment. This solution leads to a high degree of portability [22].

5https://code.google.com/p/smap-data/
6http://www.json.org/
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Figure 2.4: Combined integration results in two alternative implementation artifacts for each
operation [22].

Improve Resource-Sharing through Functionality-Preserving Merge of Cloud
Application Topologies

“Binz et al. [23] uses TOSCA to describe application topologies in a portable and manageable
way. Based on this common TOSCA description the authors present an approach that merges
two application topologies into one, to save resources by sharing similar components, but pre-
serve the functionality of both applications” [9]. It is important to state that the nodes represent-
ing the business logic of a topology are not addressed by this process as there is no generic way
to merge them. The merge of the supporting infrastructure nodes consists of an automated node
matching phase followed by a manual evaluation phase undertaken by architects and developers
which review correspondences yielded by the previous phase. Finally, a resource saving topol-
ogy is generated by the merging phase. The proposed solution relies on plugins implementing
type-specific logic to decide which components can be shared.

Pattern-based Runtime Management of Composite Cloud Applications

“Breitenbücher et al. [24] proposes an approach that enables the management of composite ap-
plications and their deployment on a higher level of abstraction. Furthermore the authors show
how high and low level management tasks can be implemented separately and fully automated
applied to the respective applications, by facilitating the features of TOSCA” [9]. Therefore,
application management is divided into three layers of granularity, namely Management Plans,
Management Planlets and Management Operations. Management Plans provide high-level man-
agement tasks by orchestrating low-level Management Operations which are tightly coupled to
the components providing them. Small and recurring management tasks consisting of several
Management Operations can be grouped into Planlets, forming generic building blocks for dif-
ferent applications. A globally accessible Application State Model keeps track of the application
components’ states allowing Planlets to retrieve and modify the properties of components in-
volved in their management tasks.
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2.4 Towards Automated IoT Application Deployment

Efficient and scalable IoT service delivery on Cloud

“All introduced frameworks require considerable efforts to understand their application manage-
ment process, and tedious manual configurations are a norm” [9]. “Thus, rather than proposing
another ”universal” architecture” [9], we proposed the IoT PaaS [10] architecture (cf. Sec-
tion 3.1), “on which IoT solutions can be delivered as virtual verticals by leveraging computing
resources and middleware services on cloud” [10]. Assuming “that IoT infrastructure is hetero-
geneous and will continue to be so” [9], “a methodology to easily integrate different domain-
specific protocols and data models” [9] was developed.

Towards Automated IoT Application Deployment by a Cloud-based Approach

“Even worse than the situation in data exchange protocols, the deployment processes of an
application can vary among IoT solutions even if the applications are realizing the same ser-
vice” [9]. Thus, our latest work [9] demonstrates the feasibility of extending the application
scope of TOSCA to IoT applications “to formally describe the internal topology of application
components and the deployment process of IoT applications” [9] to manage the “heterogeneity
in a coherent way” [9]. It demonstrates that “the node and relationship models can be shared for
the same application, and the artifact models can be reused for gateways using the same software
framework” [9].
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CHAPTER 3
Background & Analysis

In this Section we discuss several frameworks, architectures and protocols which are relevant to
the research presented in this thesis. First of all, the IoT PaaS architecture is explained and the
process of providing and managing control applications as IoT resources is discussed in detail.
In a second step, the integration levels of Building Automation Systems (BAS) are explained.
Afterwards, gateway application environments are considered in general followed by a detailed
discussion of the two specific gateway frameworks – Niagara and Sedona – which will be part
of the prototype. Next, the TOSCA specification will be discussed. TOSCA facilitates the
portable definition of the structure as well as the behaviour of applications. Finally we introduce
OpenTOSCA, an open-source implementation of the TOSCA processing environment, that we
will use to showcase the results of the implementation work of this thesis.

3.1 IoT PaaS

As discussed in Section 1.1, “IoT services are often delivered in physically isolated verticals
(often referred to as ‘silos’), in which hardware, middleware and application logics are tightly
coupled to fulfill domain or even project-specific requirements” [9]. With IoT PaaS [10] we
proposed a “novel IoT service delivery platform that leverages the service delivery model of
PaaS cloud. On this architecture, we offer the possibility of providing end-to-end IoT solutions
as virtual verticals on cloud, opposed to the traditional delivery model of physically-isolated
and tightly-coupled vertical solutions” [9]. This means that “each IoT solution customer owns
a virtually isolated solution which they can customize to their physical environments and de-
vices” [10].

3.1.1 Architecture

The IoT PaaS architecture depicted in Figure 3.1 is described in a bottom-up manner. “The
IoT infrastructure consists of networked tags, sensors, actuators, smart devices and so on” [10],
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Figure 3.1: The IoT PaaS platform [10].

which are integrated with enterprise applications by Gateways (cf. Section 3.3). “The mech-
anisms for providing service interfaces for devices are generally referred to as device virtual-
ization [25], since they effectively translate device and network interfaces to software inter-
faces” [10]. “IoT resource management provides a registration point for virtualized devices,
gateways and control applications. The component monitors the resource status and enforces
the access policies through gateways. Although most existing gateway solutions are intended to
mitigate lower-level hardware and communication heterogeneity to a certain extent, the diversity
of exiting domain-specific data models has introduced another layer of heterogeneity. There-
fore, we propose domain mediators to mediate the interfaces between different gateways in the
same application domain. This mechanisms allows IoT solutions to conform to the standard-
ization efforts in various domains, such as oBIX for building management or Continua Health
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Alliance (CHA)1 for healthcare” [10]. “Event processing is to process and analyze real-time
events generated by sensory devices” [10], whereas Data services provides access to persistent
data. “Tenant management provides a consolidated view of the resources that are accessible by
each tenant. In the IoT PaaS architecture, the resources include not only cloud resources such
as virtual machines and software instances in traditional cloud offerings, but also IoT resources.
Device capabilities and control applications can be provided to multiple tenants through virtu-
alization. For instance, fire alarms can be shared between building management and emergency
service of a city” [10]. “In the convergence of IoT and cloud, each application is running in a
complex and dynamic context, which may encompass available IoT and cloud resources as well
as software configurations. Thus, Application context management is focused on maintaining
the optimal runtime resources and software configurations for applications” [10]. “The tenant
management and application context management together give each IoT solution a virtually
isolated operational environment, enacting the concept of virtual verticals” [10].

3.1.2 Providing Control Applications

Figure 3.2: Providing control applications on IoT PaaS [10].

1http://www.continuaalliance.org/
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The process of providing control applications on the IoT PaaS architecture (cf. Figure 3.2)
results in “highly reusable, multi-tenant control applications” [10] which are “managed within
the overall service framework, in contrast to the vertical solutions in which applications are
managed separately within each solution” [10].

First, a control application developer registers (Step 1 of Figure 3.2) new control applica-
tions to the IoT resource management. These control applications, posing IoT resources, can
be used by solution providers to compose IoT services. Solution providers therefore have to
subscribe (Steps 2.1 and 2.2) to the control applications they want to use in their virtual vertical
solutions (via Tenant management). They define the application context by configuring (Step 3)
the application parameters, like device IDs, of each control application. During the deployment
step (Step 4.1), the Application context management uses this information to deploy the solution
with all its subscribed control applications to the application context. Furthermore, IoT resource
management monitors the availability of IoT resources to then provision (Step 4.2) the solution.
Each application is executed (Step 5.1) in its own context using domain mediators to steer the
related devices (Steps 5.1 and 5.2).

3.2 Building Automation System Integration Levels

BAS systems can be integrated using a centralized or a decentralized integration approach. The
former uses a server to offer a centralized Web service interface for all devices behind it, whereas
the latter provides each device with its own Web service interface, which allows the use of Web
services to natively interact with the devices. Compared to the centralized approach, such field
devices have an increased demand of computational resources, but therefore they can use Web
services to communicate with each other. Jung et al. [6] “identifies four possible integration

Figure 3.3: Centralized and decentralized integration [6].

approaches” (cf. Figure 3.3). (1) “A centralized server at the IP backbone of a BAS is the state
of the art approach and allows the integration into enterprise systems and remote access” [6].

16



The Niagara Supervisor discussed in Section 3.3.1 follows this approach. (2) “Providing the
Web service interface at the automation layer (which bridges the backbone and the field layer)
via an IP/field router is a more decentralized approach but from the application layer aspects
equivalent to the central deployment” [6]. The Niagara JACE gateway (cf. Section 3.3.1) is
utilized at this layer. (3) “IP field devices using IP not only as data link but also as network layer
protocol can be equipped with Web services and may offer this interface directly to other devices
and Web service clients” [6]. Such devices are also called native IP devices. (4) “Finally, it is
even possible to emulate Web service interfaces with a separate IPv6 address either at a central-
ized server or at an IP/field router acting as transparent gateway. Equipping this gateway with
multiple protocol stacks and physical interfaces to different media allows to build a transparent
multi-protocol gateway mentioned above” [6].

3.2.1 The data model

An integral part of each BAS is its application model. “The application models usually follow
a data point approach, meaning that every device is expressed as a collection of input and out-
put data points of well defined data types” [6]. The actual behaviour of field devices (e.g. a
thermostat), can then be described by functional blocks assembled from several data points [6].
Although the majority of BAS systems use this approach, each solution comes with its own,
usually incompatible implementation of the information model [1, 3, 6]. Standardization efforts
are manifested in different data models and protocols discussed next.

3.2.2 Centralized integration approaches at the management level

“Within the domain of home and building automation, integration approaches using Web ser-
vice technologies like oBIX, OPC UA2 or BACnet/WS address this problem by providing a
centralized Web service interface at the management tier of a typical BAS” [18].

Web Services for Building Automation and Control Networks (BACnet/WS)

The BACnet/WS standard [26] adds Web service capability to the BACnet standard to integrate
data sources at the management tier. A generic data model facilitates the organization of data
sources by representing them as hierarchical related nodes which hold their state as a collection
of attributes. The concept of normalized points [26] allows to expose common point’s state
information through common attribute names to allow data retrieval without knowing the exact
details of the accessed data source. Additionally, generic access services provide access to nodes
and attributes using an URL like path where a “path like ‘/East Wing/AHU #5/Discharge Temp’
identifies a node, and ‘/East Wing/AHU #5/Discharge Temp:InAlarm’ identifies the InAlarm
attribute of that node” [26].

2https://opcfoundation.org/about/opc-technologies/opc-ua/
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Open Building Information eXchange (oBIX)

As already mentioned in Section 2.2, the OASIS standard oBIX provides technological-indepen-
dent information modelling by using a common object model to represent devices in the domain
of building automation [3, 4]. The oBIX object model “defines 17 standard object types rang-
ing from basic data items like like bool, int, real and str over to more complex object
types” [6]. One of the more complex data types is the op object, that is used to define operations
with input and output object data type specified. The root obj element depicted in Listing 3.1
models a simple thermostat [17], where the real child elements model the space temperature
sensor and the setpoint, whereas the bool element represents the furnace state. This oBIX doc-
ument is clearly identified and accessible through the URI specified in its href attribute. In this
example, each child element is tagged as obix:Point via the is attribute which is “a stan-
dard contract defined by oBIX for representing normalized point information. By implementing
these contracts, clients immediately know to semantically treat these objects as points” [17].

Listing 3.1: oBIX representation of a thermostat [17].

1 <obj href="http://myhome/thermostat/">
2
3 <!-- spaceTemp point, current space temperature -->
4 <real name="spaceTemp" is="obix:Point"
5 val="76.0" status="fault"
6 unit="obix:units/fahrenheit"/>
7
8 <!-- setpoint point, desired temperature -->
9 <real name="setpoint" is="obix:Point"

10 val="72.0"
11 unit="obix:units/fahrenheit"/>
12
13 <!-- furnaceOn point, heating -->
14 <bool name="furnaceOn" is="obix:Point" val="true"/>
15 </obj>

The open-source oBIX Toolkit3 provides a Java software library for implementing oBIX
enabled applications. The toolkit contains a data model for object trees, XML encoder/decoder,
REST session management, and a Swing diagnostics tool. The oBIX Committee is already
working on an improved oBIX version 2.0 [27], which will provide enterprise services based
on new contract types. Furthermore, advanced reporting and aggregation to handle large data
sets, enterprise alarm logic to allow more advanced alarm queries and enterprise scheduling
to schedule interactions with building systems are some of the features planned for oBIX 2.0.
“These contracts will be designed for more direct interaction with enterprise systems, able to
participate in service oriented architectures (SOA) [. . . ]” [27].

3http://sourceforge.net/projects/obix/
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3.2.3 Decentralized integration approaches

Decentralized communication [6, 18] relies on per-device IPv6 interfaces used by native IP de-
vices or transparent gateways like the IoT gateway discussed in Section 2.2. As the number
of embedded IoT devices increases continuously, the standardization of a lightweight protocol
stack is essential to handle the heterogeneity of these embedded devices. The Constrained Ap-
plication Protocol (CoAP) discussed next is one of them.

Constrained Application Protocol (CoAP)

The Constrained Application Protocol (CoAP) [28] is an application protocol that “is designed
for machine-to-machine (M2M) applications such as smart energy and building automation” [28],
targeting devices in constrained RESTful environments (CoRE). They often use 8-bit microcon-
trollers with very little memory and rely on lossy and low-power networks like 6LoWPAN [28].
In contrast to heavy-weight SOAP-based web services (WS-*) [25], CoREs come with a flat-
tened communication stack lacking some features of WS-* standards, but therefore allowing the
deployment on most constrained devices [6]. CoAP works “on a protocol stack based on IPv6
and UDP” [6] and comes with “built-in discovery of services and resources” [28] facilitating
RESTful interaction with resources on field devices [25]. In comparison to HTTP based com-
munication, which “provides reliability but limits the communication to a connection oriented
point-to-point communication” [6], CoAP “provides unreliable packet-oriented communication
with group communication and asynchronous interaction within the client/server communication
model. Due to these differences, CoAP adds facilities for non-confirmed and confirmed mes-
sage exchange and furthermore extends the regular HTTP protocol with an observe verb [29].
The enhancement supports observing a resource and avoids frequent polling of resources such
as event streams or alarms” [6].

3.3 Gateway Application Environments

In modern building automation systems (BAS), gateways are used to simplify “the configuration,
monitoring, and maintenance of heterogeneous systems” [4] and “enable high-value applica-
tions such as energy management and remote monitoring of equipment“ [4]. Solutions typically
consist of IP/field routers situated at the automation level [6]. These intelligent multi-protocol
devices are needed to accommodate the high diversity of proprietary and standards-based com-
munication protocols used by vendor-specific devices available today [4]. Therefore, different
fieldbus drivers [4, 30, 31] enable access to commonly used network protocols (cf. Figure 1.1)
like BACnet, LonWorks and Modbus, whereas protocols like HTTP and SOAP are typical solu-
tions to facilitate the communications at the enterprise level [4].

First, the widely used NiagaraAX framework will be discussed in detail, counting more than
123.4504 instances deployed worldwide. Afterwards, the open source platform Sedona will be
evaluated.

4http://www.niagaraax.com/, Accessed: 14.04.2014

19

http://www.niagaraax.com/


3.3.1 Niagara Framework

The Niagara framework is defined as “a universal software infrastructure that allows compa-
nies to build custom, web-enabled applications for accessing, automating, and controlling smart
devices in real time over the Internet” [32], where the term smart devices refers to sensors,
actuators and metering systems. It “integrates diverse systems and devices (regardless of man-
ufacturer or communication protocol) into a unified platform that can be easily managed in real
time over the Internet (or intranet) using a standard web browser” [32]. The framework is “fully
scalable, meaning that it can run on platforms spanning the range from small, embedded devices
to enterprise class servers. Fields of application are energy–services, building–automation, in-
dustrial–automation and M2M applications” [32]. “Niagara is targeted for embedded systems
capable of running a Java VM. This excludes some very low-end devices that lack 32-bit pro-
cessors or have only several megabytes of RAM” [32].

Hardware and Protocol interconnectivity

To integrate diverse systems, a physical connection to a device’s network is required. The Java
Application Control Engine (JACE) [33] refers to a family of embedded platforms [4], which
provide connectivity to common network protocols such as LonWorks, BACnet, and Modbus,
along with many proprietary networks. “Scalability and reliability concerns are avoided with the
unique distributed architecture that a network of JACE devices creates” [33].

Semantic interoperability

Besides the hardware and protocol interconnectivity provided by JACE devices, “semantic in-
teroperability is essential to allow the same tools to be used for monitoring and configuration—
regardless of how this information is encoded or communicated” [4]. The Niagara framework
deals with this issue by using a common object model, that can be seen as “a uniform, normal-
ized database of objects” [4]. “The object model is a hierarchical composition of concepts in
building automation, from the elementary level of simple data types to abstract concepts such as
communication sessions and control schedules, [. . . ] through which other applications interact
with the various systems” [4]. Based on this object model, “a set of general services such as a
real-time control engine, scheduling, alarming and Internet connectivity” [4] is provided. The
common object model is referred to as a meta-protocol by [4], which evolved into the oBIX
standard discussed in Section 3.2.2.

Architecture

The Niagara software architecture [4, 30, 32] consists of four layers. “The bottom layer [. . . ] is
the host platform, either a JACE controller or a PC” [32]. The second layer is a J2ME compliant
Java virtual machine (JVM) hosting the Niagara runtime environment (NRE) [32]. A Niagara
component application [30] is then executed as a so called Station in the NRE. Figure 3.4 outlines
the communication protocols applied within the Niagara environment. The framework “includes
a proprietary protocol called Fox which is used for all network communication between stations
as well as between Workbench and stations. Fox is a multiplexed peer to peer protocol which
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Figure 3.4: NiagaraAX communication and deployment [30].

sits on top of a TCP connection” [30]. A Workbench is a user interface to perform management
tasks whereas the Web Browser provides restricted Workbench functionality. The latter provides
data retrieved from the Stations Web service modules, which use HTTP and SOAP for commu-
nication. The Niagara Daemon provides commissioning and bootstrap functionality to Niagara
platforms through the also proprietary Niagarad protocol [30]. Finally, the communication to
devices connected to field buses is established via the Driver module. Next, the most important
modules of the Niagara software stack depicted in Figure 3.5 will be described.

Software stack

Baja. The Building Automation Java Architecture (Baja) is “the core framework built by Trid-
ium5 [which] is designed to be published as an open standard” [30]. “Fundamentally Baja
is an open specification and the Niagara Framework is an implementation of that specifica-
tion” [30]. The Niagara type system, as part of Baja, is built on top of the Java type system and
identifies types in the Object model using the following format: {module name}:{type
name} [30]. On top of the Object model the Component model allows to declaratively model
control flows of applications and “integrate a wide range of physical devices, controllers, and
primitive control applications including LonMark profiles, BACnet objects, and legacy control
points” [30], by assembling the required components. To identify resources within the Niagara
environment, Object Resolution Descriptiors (ords) [30] of the Naming module are used, where

5www.tridium.com
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Figure 3.5: NiagaraAX Software Stack [30].

e.g. local:|fox:|station:|slot:/Logic/Add would identify an Add component in
the Logic folder residing in the Station’s root.

The Registry module provides information about all modules and types available in the cur-
rent Niagara environment and describes how those types are related or provide functionality to
each other. The registry’s contents are updated at station startup from information contained
within each module. The Niagara registry provides a convenient way to check if a desired type
is available on the station and then create a new instance as depicted in Listing 3.2.

Listing 3.2: Look-up and instantiation of a Niagara Add component.

1 Sys.getRegistry().getType("control:Add").getInstance();

Horizontal Applications. Niagara comes with a broad library of standard components ap-
plicable to different M2M domains [30]. The fundamental concept of the Control and automa-
tion module are “normalized components for representing control points” [30]. “Control points
are typically used [. . . ] to read and write points in external devices” [30]. Figure 3.6 shows
the graphical representation of a control point that is connected to an external temperature sen-
sor’s data point, as displayed in the NiagaraAX Workbench tool. The driver framework of the
Driver module helps “to model and synchronize data with external devices or systems” [30],
by abstracting from the various underlying communication protocols. There are three modules
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Figure 3.6: Niagara control point.

built on top of the Control module [30]. First, the History module helps with storing and access-
ing historical data collected from selected control points whereas the Alarm module provides
lifecycle management of alarms triggered for example by an output value out of a specified
range. Finally, the Schedule module is used to fire events or change values of control points in a
recurring manner, like switching off the lights of a room every day at 8 pm.

Device & Enterprise Interfaces. A wide range of protocols are supported on the one hand
by the Device Interfaces module, which integrates various field bus protocols such as Modbus or
BACnet [30]. The Enterprise Interfaces module [30] on the other hand facilitates the integration
of enterprise systems such as relational databases or Web services, where oBIX, as an important
example, was discussed in Section 2.2 and 3.2.2.

Deployment process

A system integrator typically configures a gateway by using a Station setup wizard specify-
ing the modules and drivers to be installed. This process yields a station database [30, 32]
manifested in a single config.bog file, which contains a XML tree structure of the cur-
rent configuration. On gateway startup, the corresponding Station is then booted from the
file:!stations/{stationName}/config.bog file into the gateway’s VM. Now, an
integrator can build and modify control applications by opening a remote connection using the
Niagara Workbench tool and “program” the Station’s behaviour by assembling different com-
ponents graphically. [34] summarizes how Niagara JACE devices can be leveraged to integrate
lighting, lawn irrigation, heating and air conditioning (HVAC) and security systems in a house.
An example of the graphical representation of a lighting control application, which reacts on
daylight and door sensors and makes use of the Schedule component is depicted in Figure 3.7.
The actual components are created by developers. In the contrary to the Sedona Framework
discussed next, the ability of manipulating a Station’s component tree programmatically is re-
stricted to Niagara’s proprietary Fox protocol and thus preventing direct connections from a
custom client application outside of the Niagara environment.

3.3.2 Sedona Framework

The Sedona Framework [5] is an open source platform similar to the Niagara framework, but
targeting different device platforms. The goal of the Sedona Framework is to support very low
cost and low power embedded devices with lack of memory and restricted network access. To
meet these requirements, deployed applications require less than 100KB of memory [5] and
communication supports 6LoWPAN networks [5].
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Figure 3.7: Niagara Home Automation example - Lighting control application [34].

Architecture

The UDP based Sox6 protocol avoids the memory footprint of TCP and relies on important
properties like session management, flow control and reliability provided by the underlying
Datagram Authenticated Session Protocol7 (DASP). The Sedona language is a Java-like, compo-
nent and object oriented programming language designed for embedded platforms with limited
resources [35].

Deployment process

Usually, the application deployment process is conducted by two different user groups. On the
one hand, developers build components and package them into modules, so called kits. Selected
kits are installed as a kits.scode image on the Sedona Virtual Machine (SVM) of the target Se-
dona device as illustrated in Figure 3.8. On the other hand, system integrators, which are often
domain experts, use graphical tools like the Sedona Framework Workbench8 to build applica-
tions by assembling the former installed components. The Sedona component model9 allows

6http://sedonadev.org/doc/sox.html
7http://sedonadev.org/doc/dasp.html
8http://www.sedonadev.org/products.html
9http://www.sedonadev.org/doc/apps.html
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Figure 3.8: Sedona architecture and deployment process [36].

to define the control flow of an application (app.sab) in a declarative way by building a tree of
components and thus separating it from the code packaged into the referenced kits. The Sox pro-
tocol [37] is used to retrieve information from Sedona framework-enabled devices and perform
provisioning tasks on them. Furthermore, remote programming performed through the Java
client implementation of the Dasp/Sox protocol stack allows full control over the deployed ap-
plications and their components. To modify applications at runtime, components can be looked
up reflectively using the kit::component pattern (cf. Listing 3.3). Thus, a type registry is
modelled by the reflection mechanism10. Consequently, the aforementioned roles of developers
and system integrators could be merged, avoiding the use of a graphical assembly tool.

Listing 3.3: Look-up a Sedona type by its qualified name.

1 Type t = Sys.findType("control::Ramp")

10http://www.sedonadev.org/doc/reflection.html
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3.3.3 Comparison

Both Niagara and Sedona use a component model to declaratively model control flows of ap-
plications and thus enable graphical programming using standard components. Even though
information can be retrieved from and actions can be invoked on Niagara devices via the oBIX
protocol, direct access to the object model from outside of the Niagara environment is impossi-
ble due to the proprietary Fox protocol. In contrast, the Sedona framework offers full access to
its components via the open protocol Sox.

3.4 TOSCA

The Topology and Orchestration Specification for Cloud Applications (TOSCA) [7,8] “is a new
OASIS standard for improving portability of cloud applications in face of growingly hetero-
geneous cloud application environments” [9]. Binz et al. [38] defines three major challenges
TOSCA is dealing with in the area of IT service management:

1. Automated Application Deployment and Management,

2. Portability of Applications and their Management, and

3. Interoperability and Reusability of Components.

Automation is accomplished by workflows which contain expert knowledge about application
management procedures, allowing non-experts to manage the applications life-cycle on a higher
level of abstraction. Portability is assured by the formal definition of the applications structure
and their components in a self-contained way. The definition of management tasks is based on
widely used and standardized workflow languages. To support Interoperability and Reusability,
components are defined with their implementations in a reusable way to facilitate application
development by composing them. As with Portability, the self-contained packaging is impera-
tive [38].

Throughout this section we describe the major TOSCA service roles as well as important
use cases leveraging the advantages provided by TOSCA. Afterwards the TOSCA core con-
cepts are explained and how they are applied by developers and processed by TOSCA execution
environments.

3.4.1 TOSCA Service Roles & Benefits

The TOSCA standard defines three roles, namely Cloud Service Developer, Cloud Service
Provider, and Cloud Service Consumer [8]. Cloud services are developed by Cloud Service
Developers and provided to Cloud Service Consumers by Cloud Service Providers. The actors
of this role model benefit from the application of TOSCA in several ways. Consumers gain more
flexibility in their selection of an appropriate service provider and experience a cost reduction
due to the automation of installation and maintenance tasks. The main advantage of facilitating
TOSCA for service providers is to reduce the time to market of cloud services, as the deploy-
ment tasks are already specified. Furthermore, the generation of additional service instances is
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simplified, leading to lower operational costs. Finally, Developers can build on the operational
knowledge of cloud providers and are able to select different cloud providers [8].

3.4.2 Use Cases

In the following, the most important use cases leveraging the advantages of standardizing Service
Templates [7] defined by TOSCA are discussed.

Services as Marketable Entities. By defining services in a standardized manner, they can
be published in service catalogs, where customers can select from. Providers can adjust the
interoperable definitions of the structure of services to map the topology to their hardware envi-
ronment [7]. Likewise, the plans defined in the Service Templates are adjusted. Several kinds of
plans are used, which are usually created by developers and adjusted by providers. Build plans
are used to instantiate a service defined by a Topology Template, whereas termination plans are
used to destroy them. Management plans provide means for life-cycle management. Thus, a
customer can invoke these plans without understanding the inherent domain-knowledge, leading
to a reduction of management costs [7].

Portability of Service Templates. Standardizing Service Templates makes service defini-
tions portable. TOSCA defines portability as “the ability of one cloud provider to understand the
structure and behavior of a Service Template created by another party” [7]. Hence, portability
of the components of a service is not covered by TOSCA.

Service Composition. Service Templates allow for an abstraction from the concrete hosting
environment, which facilitates the composition of a service from several other services hosted
on different cloud providers [7].

3.4.3 Service Templates

The TOSCA specification defines a meta-model for defining portable services, facilitating the
interoperable deployment and life-cycle management of application layer services [7, 8, 39]. A
Service Template (cf. Figure 3.9) formally describes the structure (Topology Template) and
behavior (Plans) of a service.

Topology Template

“The structure of a service is defined by the Topology Template, which consists of Node Tem-
plates and Relationship Templates. Together they represent a service by a directed graph” [9],
which may consist of separated sub-graphs. “In this graph, every component is represented by
a Node Template that instantiates a Node Type, which defines the properties and management
operations of a component. To support re-usability, Node Types are defined separately and just
referenced in Node Templates” [9]. The Node Template defines the properties like IP addresses
or credentials required for instantiation as well as the Capability Definitions and Requirement
Definitions to indicate which Relationship type can be applied to them and thus which and how
many Node Templates can be related to them. “Relationship Templates specify the relationship
among nodes in the Topology Template, where each Relationship Template refers to a separately
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Figure 3.9: Structural Elements of a Service Template and their Relations [7].

defined Relationship Type, which in turn defines the semantics and any properties that can be
used to represent a relationship, such as ‘dependOn’ or ‘connectTo’ ” [9].

“The actual scripts, configuration files and application archives required by an application
are called Artifacts, which are explicitly specified in Artifact Types and Artifact Templates” [9].
TOSCA defines two different artifact types, namely Implementation Artifacts and Deployment
Artifacts. Implementation Artifacts implement the management operations defined by the in-
terfaces of node types, whereas Deployment Artifacts are installed into target environments
realizing the instances of their nodes. Thus, the Implementation Artifacts are deployed into the
TOSCA container before any life-cycle operation on nodes is invoked, as they are used to deploy
Deployment Artifacts to the target environment [7]. These Artifacts in form of scripts, images,
configuration files, or libraries amongst others are then referenced from NodeTypeImplementa-
tions and RelationshipTypeImplementations defining an implementation of a specific Node Type
or RelationshipType respectively.

Plans

“The management process of creating, deploying and terminating a service can be defined by
Plans” [9]. These workflows implement high-level management procedures by orchestrating
low-level management operations of interfaces provided by Node Types or Relationship Types.
To define these process models as portable and interoperable as possible, existing languages like
Business Process Model and Notation11 (BPMN) or Business Process Execution Language12

(BPEL) are used [7].
11http://www.bpmn.org/
12http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
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Figure 3.10: Moodle Application Topology [11].

3.4.4 Example Topology Template

Binz et al. [11] defines a Topology Template to describe the structure of the Web based e-learning
platform Moodle (cf. Figure 3.10). Basically it tells us that the Moodle Web application is hosted
on an Apache Web server which is hosted on an operating system installed on a virtual machine.
The Web application depends on a PHP module hosted on the same Apache Web server and
connects to a Moodle Database hosted on a different virtual machine. The Relationship Tem-
plates interconnect the Node Templates adding semantics, e.g. the “depends on” Relationship
Template would establish a remote database connection, whereas a “hosted on” Template would
e.g. deploy the Moodle PHP files to the Apache Web server.

Such Topology Templates can be interpreted by a TOSCA-compliant management environ-
ment which instantiates the Templates and manages their instances. TOSCA Processing Envi-
ronments are discussed in the following.

3.4.5 TOSCA Processing Environment

“The topology templates, plans and artifacts of an application are packaged in a Cloud Service
Archive (.csar file) and deployed in a TOSCA environment, which is able to interpret the models
and perform specified management operations” [9]. Such a TOSCA runtime environment, also
called TOSCA container, is hosted by a Cloud Service Provider [8].

Imperative vs. Declarative processing. Plans are only one way of specifying the manage-
ment procedures of a Service Template. They explicitly define a sequence of steps needed to
perform certain management procedures, which is known as Imperative processing [8]. In case
of Declarative processing, the TOSCA environment has to “infer the correct topology and man-
agement procedure just by interpreting the topology template” [9], which is restricted to simple
applications [11]. Following a strict Declarative style, the complete management logic is imple-
mented by the TOSCA container, making application modeling easier [40]. On the other hand,
the Imperative style allows more flexibility in the creation of complex management procedures,
as the complete logic resides in the Service Template [40].
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3.4.6 Roles Involved in Modeling a Cloud Application

The roles required to develop a cloud service are Type Architect, Artifact Developer and Applica-
tion Architect [8], which specialize the role Cloud Service Developer introduced in Section 3.4.1.
A Type Architect is specialized on the types of components and the relationships amongst them.
For example, vendors can facilitate Node Type Inheritance to add product-specific management
operations and properties to vendor-neutral node and relationship types previously defined by
vendor consortia [8]. Thus, Type Architects create re-usable type definitions that include lo-
cal management knowledge. An Artifact Developer can implement these type definitions by
providing NodeTypeImplementations (or RelationshipTypeImplementations) consisting of Im-
plementation Artifacts and Deployment Artifacts mentioned above, thus specifying all means
to instantiate and manage the respective type. A vendor can now package the type definitions
together with their corresponding implementations in a CSAR file. Subsequently, an Applica-
tion Architect creates a service topology by composing these re-usable component definitions.
Therefore, node and relationship templates referring to node node relationship types are de-
fined to form the topology template of the service definition. A global application life-cycle
management covering all management aspects is developed by orchestrating local management
operations defined by type architects. Finally, such a service application itself can be perceived
as a composable component by defining the boundary definitions of its topology template. A
specific implementation of the TOSCA processing environment is discussed next.

3.5 OpenTOSCA Runtime Environment

OpenTOSCA13,14 [11] is an open-source implementation of the TOSCA processing environment
supporting imperative processing of TOSCA-based applications. This means that Plans are used
to define deployment and life-cycle management procedures (cf. Section 3.4.5).

3.5.1 Architecture & Processing Sequence

Now the process of deploying and instantiating a TOSCA application will be explained in detail
(cf. Figure 3.11).

Application Deployment

First of all, the TOSCA application, packaged as Cloud Service Archive (CSAR), is uploaded to
the OpenTOSCA container (e.g. using the Admin UI). Now the CSAR is unpacked and the files
are saved to the Files store. The Control component processes the TOCSA definition files and
invokes the Implementation Artifact Engine and the Plan Engine. As defined by the TOSCA
specification, local management operations of Node Types and Relationship Types are imple-
mented by Implementation Artifacts like scripts, Web services or external service invocations.
In case of a Web service, which can be packaged in the CSAR as a Web Service Archive (WAR),
the Implementation Artifact Engine uses an appropriate Plugin to deploy (cf. Figure 3.11, (a))

13www.opentosca.org
14http://www.iaas.uni-stuttgart.de/OpenTOSCA
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Figure 3.11: OpenTOSCA Architecture Overview and Processing Sequence [11].

the WAR file to the respective Implementation Artifact Runtime, e.g. a Tomcat web server. The
endpoint of the implemented operation is persisted in the Endpoints database. Now the Plan
Engine binds these endpoints to the service invocations defined in each Plan and deploys (cf.
Figure 3.11, (b)) it to the related Plan Runtime. This deployment-time service binding is facili-
tated by an Invoker service which automatically selects an appropriate service implementation,
thus encouraging the portability of Plans [39]. The Plan Engine uses Plugins to support different
workflow languages (e.g. BPMN or BPEL) and runtimes (e.g. ODE15) [11].

Application Instantiation

Build plans are used to instantiate a previously deployed application. They can be invoked by
selecting an appropriate plan via the Self-Service Portal (the so-called Vinothek) or by directly
sending a SOAP message containing required input parameters [11]. A Plan uses the Plan
Portability API to publish the Service Template of the application, which instantiates the Node
Templates of its topology model, making it possible to retrieve the Node’s properties (cf. Fig-
ure 3.11, (c)). With this information at hand, the workflow invokes (cf. Figure 3.11, (d)) the
management operations of Node Templates and Relationship Templates necessary for instantia-
tion. Corresponding Deployment Artifacts are retrieved from the Files store and installed on the
target environment. The Plan continuously updates the states and properties of Nodes to keep
the topology model aware of the actual state of the application instance. Finally, the build plan
returns information about the outcome of the Plan’s execution as well as the Url of the deployed
application instance.

In summary, the extensible OSGi-based plugin architecture supports the introduction of new
Artifact and Plan types, whereas the decoupling of concrete service endpoints from the definition
of Plans leads to Plans which are portable between runtime environments [11]. Furthermore, the
modular architecture allows scalability of each component as needed [11].

15http://ode.apache.org/
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3.5.2 OpenTOSCA Ecosystem

In addition to the Runtime Environment discussed in this chapter, the OpenTOSCA Ecosystem
provides tools to aid in the process of application development and delivery. The open-source
visual modeling tool Valesca16 supports the user in modeling application topologies and related
management plans by providing a palette of predefined components to graphically compose an
application. As a follow-up, the modeling tool Winery17 has been proposed as an Eclipse project.
The modeling process yields a self-contained application archive that can be downloaded from
Winery and uploaded into the OpenTOSCA Container using the Admin UI to make it available
to Customers. They make use of the self-service UI called Vinothek, which is used by Customers
to choose and instantiate their application of choice.

16http://www.cloudcycle.org/en/valesca/
17http://www.eclipse.org/proposals/soa.winery/
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CHAPTER 4
Use Case Definition

The facility management for large commercial buildings consists of systems for Heating, Ven-
tilation, and Air Conditioning (HVAC), lighting control, security, and alarming [20]. These
systems are often provided by different vendors, leading to a heterogeneous system setup due to
domain- and vendor-specific network protocols and control devices (cf. Section 1.1).

An Air Handling Unit (AHU) is used to condition and circulate air in an HVAC system.
AHUs are commonly found in commercial solutions1, thus making an AHU a good candidate
to show how the deployment of its application logic can be automated and how its life-cycle
management can be defined in a re-usable way. As depicted in Figure 4.1, sensors and actuators
are applied to an AHU in order to remotely monitor and control them. This specific AHU mixes
fresh air from the outside with the returning air from the room. A ventilator then blows the air
through heating and cooling coils to heat or cool the air to a selected temperature point. The
valves can be positioned to economically pre-heat or pre-cool the air by mixing the outside air
with the return air.

Until now, building operators had to manually provision and configure the application logic
of each gateway, which resulted in a time consuming and cost intensive task. The same ap-
plies for management tasks which needed to be ported to other building management setups,
especially if gateway environments of different vendors were combined. Furthermore, expert
knowledge about vendor-specific management operations was required to perform these tasks.

To show how we address the heterogeneity, this use case consists of two AHU instances
which are deployed onto two distinct gateway frameworks. One instance is deployed onto a
Niagara [41] gateway whereas the other is deployed onto a Sedona [5] gateway. The automation
of deployment and life-cycle management procedures leads to an easier adaption and optimiza-
tion of the control logic of AHUs. Thus, occupants will experience a better room climate and
building operators can reduce the operational costs and energy consumption.

With the help of this use case we will show how IoT application deployment can be auto-
mated and how the re-usability of service management procedures can be accomplished.

1http://www.pacificcontrols.net/projects/ict-project.html
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Figure 4.1: Air Handling Unit defined in the NiagaraAX [41] demo station.
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CHAPTER 5
Design

The goal of this chapter is to describe the design of the prototypical implementation of the
Air Handler use case introduced in the previous chapter. The HVAC Application depicted in
Figure 5.1 consists of one AHU Controller instance deployed on a Niagara Gateway and a
second AHU Controller instance deployed on a Sedona Gateway. This prototype is based on the
OpenTOSCA Environment.

Figure 5.1: Overview of HVAC Application Prototype.

By creating this prototype we will show how IoT application deployment can be automated
and how the re-usability of service management procedures can be accomplished. First, the re-
quirements regarding the AHU instance management are defined. This includes the life-cycle
states for the prototype’s components together with the management operations. Then, the hi-
erarchical node and relationship models defining the reusable components with their life-cycle
interfaces are described. Additionally, the relation to the model introduced in our previous work
will be discussed. Finally we present the architecture based on the OpenTOSCA Environment
and the gateway-specific life-cycle implementations, which are based on interfaces we defined
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for the control applications deployed on each gateway environment. This includes the interface
definition of the workflows which perform life-cycle management procedures used to deploy,
manage and terminate the HVAC application.

5.1 Definition of Life-cycle States & Management Operations

Throughout this Section we define the life-cycle states and management operations in a device-
neutral way. The implementation of the HVAC application defined in Chapter 4 then needs to
provide a vendor-specific implementation for the Niagara as well as for the Sedona environment.
The Instance Management of the OpenTOSCA runtime is used to keep track of the state of each
node instance. This is essential for executing life-cycle management procedures, as certain
management operations only make sense if invoked in the correct starting state. For each class
of components we defined suitable states to reflect the behaviour of the physical component it
describes. The state changes are performed by life-cycle operations defined by the life-cycle
interface of each component. After analyzing the use case we developed the state chart depicted
in Figure 5.2 to describe the life-cycle of an Air Handling Unit Controller. It contains all instance
states and management operations to deploy, configure, manage and undeploy an AHU control
application. Before the AHU Controller is deployed to a gateway environment, it resides in state
Undeployed. The “deploy” operation leads to a deployed and Stopped Controller which then can
be configured using the “changeSetpoint” operation. After invoking the “start” operation, state
Running is reached where the “Setpoint” of the Air Handler can further be adjusted. The “stop”
operation stops the control logic from further steering the AHU, thus leading to the Stopped
state. The “undeploy” operation deletes the application from the gateway environment.

Figure 5.2: Controller’s Instance States and Air Handler’s Management Operations.

The life-cycle states and management operations of a Gateway are illustrated in Figure 5.3.
As this work clearly focuses on the automation of application deployment, this state chart was
kept simple. Of course, there would be several configuration and management operations like
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Figure 5.3: Gateway’s Instance States and Management Operations.

installing new control modules, updating existing modules or changing the gateway’s configura-
tion, that would perfectly make sense in a productive environment. Thus, the sole management
operation for Gateways implemented by the prototype is the “reboot” operation. After a short
Unavailable phase, the Gateway changes back to state Running. These life-cycle states and op-
erations of Gateways and AHUs will be used throughout the following section to define the IoT
node and relationship models based on TOSCA.

5.2 Node and Relationship Models by TOSCA

The TOSCA node model consists of components typically appearing in Cloud applications. By
adding NodeTypes representing common components occurring in IoT applications, TOSCA
facilitates the modeling of building management applications like the AHU use case. The hier-
archical node model we proposed in our previous work [9] is depicted in Figure 5.4. The node
hierarchy consists of three tiers – Base Node Types, Domain-specific Node Types and Concrete
Node Types. “The Base Node Types are directly derived from a generic TOSCA root node type.
This puts them at the same level as other common cloud application nodes, including server,
database and so on. The nodes at this level present the most fundamental concepts in IoT ap-

Figure 5.4: Node Types [9].
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plications” [9]. We determined Controller, Gateway, Driver and Sensor to be the most generic
types to classify the components occurring in our use case. “The Domain-specific Node Types
are related to IoT applications in a certain industrial domain, which is building automation in
our case. For example, oBIX is a protocol widely used in building automation projects” [9]. Air-
FlowController and AirTemperatureController add AHU specific properties and interfaces to
the definition of the generic Controller Node Type. “The Concrete Node Types define the node
types to be used in a specific application, with information about specific hardware and software
vendors, models and versions” [9]. NiagaraGateway and SedonaGateway are the concrete Node
Types adding vendor-specific properties and interfaces to the generic Gateway node type.

Based on this hierarchical node model we propose a simplified deployment view (cf. Fig-
ure 5.5) describing the AHU application prototype throughout our previous work. As one can

Figure 5.5: Air Handling Unit use case [9].

see, a JCTemperatureController together with a JCAirFlowController connected to it, build up
a logical AHU component. Both Controllers require an oBIX Driver to be installed on each
Gateway they are deployed on. This approach allows us to model the components of the control
logic running on a specific gateway using TOSCA types.

The advantage is a fine-grained topology model of the application, but there is also a down-
side. Supporting application modeling at this granularity level leads to a significantly increasing
development effort for Concrete Node Type implementations induced by gateway framework
specifics. After analyzing the architectures of the gateway frameworks occurring in the use case,
we decided to deviate from the previously proposed hierarchical node model.

The Topology of the prototype used in this work describes the application logic for each
AHU as a whole, by using the individual vendor-specific TOSCA Nodes SedonaAHUController
and NiagaraAHUController. The application logics steering the physical AHUs are provisioned
as complete application images to the gateway. Although the adaption of the hierarchical node
model changes the level of granularity, this prototype shows the feasibility of applying TOSCA
to the IoT domain by facilitating the automation of application deployment and management
and making life-cycle management portable even if gateways of different vendors are used.
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5.2.1 Hierarchical Node Model

The hierarchical node model used in this work is illustrated in Figure 5.6. We determined Gate-
way and Controller as the Base Node Types for modeling the building automation application
of this prototype. These abstract node types are derived from the RootNodeType. The Gateway
node type describes generic IoT gateways and defines the properties Host, Port, Username
and Password needed to access them.

SedonaGateway and NiagaraGateway are the device-specific Gateway node types, where
NiagaraGateway defines additional properties related to the Niagara Proxy component, which
will be discussed in Section 5.3.4.

Figure 5.6: Node Types implemented for the use case.

The Controller node type defines a ManagementInterface referencing a specific com-
ponent to interface with the Controller’s application logic deployed on a gateway (cf. Sec-
tion 5.3). The previously defined life-cycle management operations for AHU control applica-
tions (cf. Figure 5.2) are incorporated in the node model by requiring any kind of Controller to
support at least the “deploy”, “start”, “stop” and “undeploy” operations. The domain-specific
abstract AHUController node type is derived from Controller and adds the Setpoint property
allowing to configure the desired setpoint temperature of an Air Handler in a device-independent
manner. Adding the “changeSetpoint” operation to the four basic management operations de-
rived from Controller completes the state transitions of the AHU life-cycle. SedonAHUCon-
troller and NiagaraAHUController represent the vendor-specific AHUController node types
which can be consecutively be instantiated to implement the IoT application (cf. Section 6.3).
The implementation of the node types is discussed in detail in Section 6.2.

Gateway and Controller are Base Node Types using the Gateway Instance States and Con-
troller Instance States illustrated in Figure 5.7 to keep track of the life-cycle states of the com-
ponents they represent.
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Figure 5.7: Gateway and Controller Instance States.

5.2.2 Life-cycle Interfaces

Each Concrete Node Type has at least one life-cycle interface defining management operations
with vendor-specific parameters. The abstract node types of the node model (cf. Figure 5.6) de-
fine the operations of the interfaces which then get refined with the vendor-specific parameters
of the Concrete Node Types. Figure 5.8 depicts the life-cycle interfaces to be implemented by the
Concrete Node Types. The NiagaraGateway node type defines the NiagaraGateway inter-
face and the NiagaraAHUController node type defines the NiagaraController interface as
well as the NiagaraAHUController interface. The SedonaGateway node type defines the

Figure 5.8: Concrete Node Types’ Life-cycle Interfaces.
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SedonaGateway interface and the SedonaAHUController node type defines the Sedona-
Controller interface as well as the SedonaAHUController interface. These life-cycle
interfaces are defined by the Node Type definitions of Section 6.2.1. The interfaces of the con-
crete Node Types are then implemented by the Node Type Implementations (cf. Section 6.2.2)
to facilitate the invocation of the management operations by high-level management procedures
(cf. Section 5.4).

5.2.3 Hierarchical Relationship Model

To model the structure of an application, TOSCA defines Relationship Types defining depen-
dencies between application components specified through Requirement and Capability defini-
tions. We defined the abstract DeployedOn relationship type which is derived from RootRela-
tionshipType and specifies a semantic relation of a generic Controller node type deployed on a
generic Gateway node type (cf. Figure 5.9). This Base Relationship Type defines this relation
by specifying a ControllerRequirement requirement type as source element and a correspond-
ing ControllerCapability capability type as target element. The Concrete Relationship Types
NiagaraControllerDeployedOnNiagaraGateway and SedonaControllerDe-
ployedOnSedonaGateway define the vendor-specific DeployedOn relationship using the
vendor-specific requirement and capability definitions.

Figure 5.9: Relationship Types implemented for the use case.

To make the Relationship Types applicable to the node types defined in the previous Sec-
tion, the node types need to define their Requirements and Capabilities. Thus, the Niagara Gate-
way node type specifies a CapabilityDefinition of type NiagaraControllerCapability,
meaning that it can host a Niagara Controller application. The NiagaraControllerRe-
quirement defined by the Niagara Controller node type can then be satisfied by intercon-
necting it to the Gateway Node Type through the NiagaraControllerDeployedOn-
NiagaraGateway relationship type. Following the same schema, the Sedona Gateway node
type specifies a CapabilityDefinition of type SedonaControllerCapability, meaning
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that it can host a Sedona Controller application. The SedonaControllerRequirement
defined by the Sedona Controller node type can then be satisfied by interconnecting it to the
Sedona Node Type through the SedonaControllerDeployedOnSedonaGateway rela-
tionship type. The implementation of the Relationship Types is discussed in Section 6.2.3.

5.3 Architecture

The architecture of the prototype consists of three major components – the OpenTOSCA envi-
ronment, the Sedona environment and the Niagara environment. The architecture of the Open-
TOSCA and Sedona environment is depicted in Figure 5.10. The Niagara environment is illus-
trated in Figure 5.11. Only the most important components are part of the diagrams to give an
overview of the prototypes architecture, including the interfaces between the components.

5.3.1 OpenTOSCA Environment

The architecture of the OpenTOSCA Container Runtime 1.1 was already discussed in detail in
Section 3.5. The Container is needed to process the CSAR file containing the artifacts which
define the prototypical application.

It deploys the Implementation Artifacts (IAs) (SedonaIAService.war and SedonaIAService.war
WAR files) on the Implementation Artifact Runtime (e.g. Apache Tomcat 7 Web server) and
the BPEL workflows defining the Management Plans on the Plan Runtime (e.g. WSO2 Busi-
ness Process Server (BPS)). The Management Plans rely on the BPEL4Rest extension to access
the REST API of the Instance Management to retrieve and modify the properties and states of
Node instances. They use the Service Invoker to invoke management operations defined by the
life-cycle interfaces of node templates. The Service Invoker delegates the invocations to the Im-
plementation Artifact service that implements the corresponding interface. The implementation
of the IAs is discussed in Section 6.5 and the interfaces for the Management Plans are defined
in Section 5.4. The implementation of these BPEL workflows is explained in Section 6.6. The
Web applications of the Admin UI (admin.war), Self-Service UI (vinothek.war) and the Mod-
eling tool Winery (winery.war and winery-topologymodeller.war) are part of the OpenTOSCA
Ecosystem and are also running on the Web server.

5.3.2 Interfacing with Gateways & Control Applications

The Implementation Artifacts implement the life-cycle management operations of the Gateways
and AHU Controllers by incorporating deep management knowledge about the gateway envi-
ronment (cf. Section 3.3) in use. Specifics of the available communication protocols as well as
architectural constraints are acknowledged by each implementation. The Sedona gateways for
example allow a more direct implementation than the Nigara gateways as they offer low-level
access to the Sedona environment via the open Sox protocol. The Niagara environment provides
higher-level management operations, but due to the proprietary protocols (Fox, Niagarad) they
can’t be accessed directly. Sophisticated vendor-specific solutions are worth the development
effort, as the Implementation Artifacts can be reused to communicate with any amount of gate-
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ways of the same type. Furthermore, the life-cycle management operations are portable between
TOSCA runtimes which understand the WAR Implementation Artifact type.

Controllers developed to control Air Handling Units are implemented by gateway environ-
ment specific control applications. To change the state and the configuration of an AHU Con-
troller, the properties of the control application have to be changed. To facilitate the automation
of the life-cycle management of the control application, each Controller requires a corresponding
Management Interface definition as part of the control application. Thus, the life-cycle manage-
ment does not need to understand the data points and control components the application is built
of.

5.3.3 Sedona Environment

The architecture of the Sedona Environment is depicted in Figure 5.10. The SedonaIAService
uses the Sox Client to connect to the Sedona Gateway to deploy and configure the Sedona AHU
Controller Application. The open source Sox protocol allows live-programming of gateways
running the Sox Service. The Sox Service exposes the AHUMgmt interface facilitating the con-
figuration of the actual control logic defined by the AHUImpl component. The implementation
of the AHUMgmt component, as part of the Sedona AHU Controller application, is discussed in
Section 6.4.1. The SedonaIAService uses the Sox Client API for application deployment, which
is explained in Section 6.5.

5.3.4 Niagara Environment

The NiagaraIAService uses the Obix-Toolkit to deploy and configure Niagara AHU Controllers
via the Obix protocol. As indicated by Figure 5.11, deployment and configuration are separated.
Deployment and undeployment capabilities are implemented by the LifecycleManagementProxy
component installed on the Niagara Supervisor Station which is hosted on a Supervisor Plat-
form1. The Obix Network Driver exposes the management operations of the LifecycleManage-
mentProxy. The interface definition (cf. Table 5.1) defines the Obix actions and the required
parameters. Its implementation is discussed in Section 6.5.3. The Proxy uses the Station Man-

Obix actions Parameters
reboot/ host, port, username, password
deploy/ host, port, username, password, stationName
undeploy/ host, port, username, password

Table 5.1: LifecycleManagementProxy Obix Interface.

ager to connect to the Target Platform running on the Niagara Gateway through the Niagarad
protocol. A Niagara Station (which is represented as a config.bog database file) contain-
ing the control logic of the AHU Controller is deployed or terminated by the StationManager.

1A Supervisor is installed on a PC rather than a gateway, providing more computational resources for complex
control logics. A supervisor typically consolidates and visualizes data points of several gateways. - http://www.
tridium.com/galleries/datasheet_pdf/2011-T-AXS.FINAL.pdf
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Figure 5.10: OpenTOSCA Environment and Sedona Architecture.
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Figure 5.11: Niagara Architecture.

45



Obix actions Parameters
startController/ none
stopController/ none
changeSetpoint/ setpoint : float

Table 5.2: AHUManagement Obix Interface.

The Obix Network Driver of the AHU Controller exposes the AHUManagement interface (cf.
Table 5.2) to configure the actual control logic defined by the Air Handler component. The
implementation of the AHUManagement component is discussed in Section 6.4.2.

5.4 Life-cycle Management Procedures

Plans are workflows implementing high-level management procedures by orchestrating manage-
ment operations defined by life-cycle interfaces (cf. Section 5.2.2) of node types. Throughout
this section we define the BPEL workflow interfaces for the life-cycle management procedures
that will be used in the ServiceTemplate definition to implement the prototype application (cf.
Section 6.3). A BuildPlan is used to instantiate the ServiceTemplate of the application by de-
ploying and configuring the AHU Controller control logic on the gateways. A TerminationPlan
deletes the control logic from the gateways and terminates the service instance. Several plans of
type ManagementPlan perform life-cycle management operations on specific Node Instances.
The implementation of the following Plan definitions and their implications on the architectural
components will be discussed in detail in Section 6.6.

5.4.1 Application Deployment

The BuildPlan instantiates the topology model of the application by deploying and configuring
the Niagara and Sedona AHU Controller gateway control logic on the corresponding gateways
(cf. Figure 5.12).

Figure 5.12: IoT Application Deployment Workflow.

The interface of the BuildPlan is part of the Plans definition of the ServiceTemplate and is
depicted in Listing 5.1. This Plan definition indicates that it is of type BuildPlan (planType)
and uses the WS-BPEL 2.0 workflow language (planLanguage). The BuildPlan receives the
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name of the CSAR file as well as the Url of the Container API. The Plan returns the Uri of the
newly created service instance as well as the Uri of each Node Instance. Furthermore, the result
of each management operation is returned. The Node Instance Uris are consecutively used by
management plans to manipulate the related Node Instances directly. Finally the PlanModelRef-
erence points to the location of the BPEL workflow implementation.

Listing 5.1: HVAC BuildPlan Definition.

1 <Plan id="DeployHVAC"
2 name="Deploy HVAC Instance"
3 planType="http://.../tosca/.../PlanTypes/BuildPlan"
4 planLanguage="http://.../wsbpel/2.0/process/executable">
5
6 <InputParameters>
7 <InputParameter name="csarName" type="string" />
8 <InputParameter name="containerApi" type="string" />
9 </InputParameters>

10
11 <OutputParameters>
12 <OutputParameter name="serviceInstanceUri" type="string" />
13
14 <OutputParameter name="sedonaGatewayNodeInstanceUri" />
15 <OutputParameter name="sedonaAHUControllerNodeInstanceUri" />
16 <OutputParameter name="niagaraGatewayNodeInstanceUri" />
17 <OutputParameter name="niagaraAHUControllerNodeInstanceUri"/>
18
19 <OutputParameter name="sedonaDeployResult" type="string" />
20 <OutputParameter name="sedonaConfigureResult" type="string"/>
21 <OutputParameter name="sedonaStartResult" type="string" />
22 <OutputParameter name="niagaraDeployResult" type="string" />
23 <OutputParameter name="niagaraConfigureResult" />
24 <OutputParameter name="niagaraStartResult" type="string" />
25 </OutputParameters>
26
27 <PlanModelReference
28 reference="Plans/HVACBuildPlan.zip" />
29 </Plan>

5.4.2 Application Termination

The TerminationPlan decommissions the Niagara and Sedona AHU Controller gateway control
logic from the corresponding gateways and removes the Service Instance from the OpenTOSCA
Container’s Instance Management. The Plan’s definition (cf. Listing 5.2) indicates that it is
of type TerminationPlan (planType) and uses the WS-BPEL 2.0 workflow language (plan-
Language). The plan’s interface defines the name of the CSAR file, the Url of the Container
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API and the Service Instance Uri as InputParameters and the result of the stop and unde-
ployment operation of each controller type as OutputParameters. Finally, the PlanModel-
Reference points to the location of the BPEL workflow implementation.

Listing 5.2: HVAC TerminationPlan Definition.

1 <Plan id="UndeployHVAC"
2 name="HVAC Termination"
3 planType="http://.../tosca/.../PlanTypes/TerminationPlan"
4 planLanguage="http://.../wsbpel/2.0/process/executable">
5
6 <InputParameters>
7 <InputParameter name="containerApi" type="string" />
8 <InputParameter name="csarName" type="string" />
9 <InputParameter name="serviceInstanceUri" type="string" />

10 </InputParameters>
11
12 <OutputParameters>
13 <OutputParameter name="sedonaStopResult" type="string" />
14 <OutputParameter name="sedonaUndeployResult" />
15
16 <OutputParameter name="niagaraStopResult" type="string" />
17 <OutputParameter name="niagaraUndeployResult" />
18 </OutputParameters>
19
20 <PlanModelReference
21 reference="Plans/HVACTerminationPlan.zip" />
22 </Plan>

5.4.3 Application Management

The BPEL workflows to configure, start and stop the air handlers controlled by AHU Controllers
are defined in a way such that the invoking party doesn’t need to know the concrete type (e.g.
Niagara or Sedona) of the node instance the operation is invoked on. The plans query the actual
concrete node type via the container’s instance management to decide which implementation
needs to be used.

Air Handler Configuration

A Plan of type ManagementPlan to change the setpoint temperature of the AHU Controller
is defined in Listing 5.3. The controllerNodeInstanceUri points to an AHU Controller
node instance whereas the gatewayNodeInstanceUri points to the Gateway it is deployed
on. The setpoint InputParameter specifies the desired target temperature of the AHU.
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Listing 5.3: HVAC ChangeSetpoint Plan Definition.

1 <Plan id="ChangeSetPoint"
2 name="Change SetPoint of AHU Controller"
3 planType="http://.../tosca/.../PlanTypes/ManagementPlan"
4 planLanguage="http://.../wsbpel/2.0/process/executable">
5
6 <InputParameters>
7 <InputParameter name="csarName" type="string" />
8 <InputParameter name="controllerNodeInstanceUri" t="string"/>
9 <InputParameter name="gatewayNodeInstanceUri" t="string" />

10 <InputParameter name="setpoint" type="float" />
11 </InputParameters>
12
13 <OutputParameters>
14 <OutputParameter name="result" type="string" />
15 <OutputParameter name="processedNodeType" />
16 </OutputParameters>
17
18 <PlanModelReference
19 reference="Plans/ChangeSetPointPlan.zip" />
20 </Plan>

Start & Stop Controller

The operations to manage the life-cycle of a generic Controller are implemented by the Start-
Controller and StopController management plans. The StartController plan is depicted in List-
ing 5.4. As the StopController plan differs only by the method names (substitute any “start”
by “stop”) it is not shown here. The controllerNodeInstanceUri points to an AHU
Controller node instance whereas the gatewayNodeInstanceUri points to the Gateway it
is deployed on. As these plans can be invoked on any node instance of a node type that is de-
rived from the generic Controller node type, it can be used to start and stop the AHU Controller
instances. The StopController Plan would change the state to “Stopped”.

Listing 5.4: HVAC StartController Plan Definition.

1 <Plan id="StartController"
2 name="Start generic Controller"
3 planType="http://.../tosca/.../PlanTypes/ManagementPlan"
4 planLanguage="http://.../wsbpel/2.0/process/executable">
5 <InputParameters>
6 <InputParameter name="csarName" type="string" />
7 <InputParameter name="controllerNodeInstanceUri" />
8 <InputParameter name="gatewayNodeInstanceUri" />
9 </InputParameters>
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10
11 <OutputParameters>
12 <OutputParameter name="result" type="string" />
13 <OutputParameter name="processedNodeType" />
14 </OutputParameters>
15
16 <PlanModelReference
17 reference="Plans/StartControllerPlan.zip" />
18 </Plan>
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CHAPTER 6
Implementation

Now the implementation of the prototype designed in the previous Chapter will be discussed.
First, the structure of the Cloud Service Archive will be explained. Second, we show how the
reusable node and relationship types are implemented following the definition of the hierarchical
node and relationship models (cf. Section 5.2). Then we describe how the prototype is imple-
mented by composing these components to create the Topology Template of the HVAC applica-
tion. Afterwards, the implementation of the interfaces for the device-specific AHU Controllers
to be deployed on the gateways are discussed. Then, the implementation of the Implementation
Artifacts is discussed in detail by explaining their class structure together with important code
snippets. This Chapter concludes with a description of the BPEL workflows that implement the
Plans defined in Section 5.4. This includes a detailed discussion of the interaction between the
Plans and other components of the architecture (cf. Section 5.3) during the execution of the
life-cycle management procedures.

6.1 Structure of the Cloud Service Archive (CSAR)

The HVAC application is packaged in a self-contained way as a Cloud Service Archive (CSAR).
This HVAC.csar file can be processed by the OpenTOSCA container environment. The direc-
tory structure of the CSAR is depicted in Figure 6.1.
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HVAC
Definitions
DeploymentArtifacts
IAs

NiagaraService
SedonaService

Imports
Plans
SELFSERVICE-Metadata
TOSCA-Metadata
Types

Figure 6.1: CSAR Directory Structure.
Next, each folder’s content will be describe briefly, starting with the most important one.

• The Definitions folder, required by the TOSCA specification, contains the definitions
of the reusable TOSCA types, categorized in base types, specific types as well as concrete
Niagara and Sedona types (cf. Section 5.2 for Design and Section 6.2 for Implementation).
Building upon these type definitions, the Service Template (cf. Section 6.3) of the HVAC
application is defined within the HVAC-Definitions.xml file.

• The TOSCA-Metadata folder contains the obligatory TOSCA.meta file. This file con-
tains metadata about the CSAR as well as an Entry-Definitions element advising
the TOSCA environment to start with the HVAC-Definitions.xml file when pro-
cessing the CSAR.

• The DeploymentArtifacts folder contains the Sedona and Niagara archive artifacts
containing all files (e.g. application images) to successfully deploy each gateway applica-
tion (cf. Section 6.4).

• The IAs folder contains the Implementation Artifacts (cf. Section 5.3 for Design and
Section 6.5 for Implementation) which implement the vendor-specific Node Types as Web
services – Niagara-Service.war and Sedona-Service.war).

• The Imports folder contains all WSDL Web service definitions of Plans (PlanArtifact.
wsdl files) which are imported by HVAC-Definitions.xml as well as the WSDL
definitions of the Implementation Artifacts (SedonaIAService.wsdl and Sedona-
IAService.wsdl) which are imported by the Sedona and Niagara node type defini-
tions.

• The Plans folder contains the BPEL workflows as “zip” files, which are referenced
from the Service Template in the HVAC-Definitions.xml. The Plans are defined in
Section 5.4 and implemented in Section 6.6.

• The Types folder contains the XML schema definitions (xsd files) to specify a schema
for the properties of each node type.
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• The SELFSERVICE-Metadata folder contains information used by the “Vinothek”
self-service UI. The data.xml is used to describe the HVAC application and to define
the “Deploy” and “Terminate” life-cycle management procedures referencing a SOAP
message (e.g. plan.input.deploy.xml to automatically invoke the corresponding
BPEL workflows.

6.2 Node & Relationship Type Definitions

This Section provides detailed information about the Node and Relationship Types implement-
ing the hierarchical models defined in Section 5.2. Furthermore, the Node Type Implementations
used to specify the Implementation Artifacts which realize the life-cycle interfaces (cf. Sec-
tion 5.2.2) of Node Types are discussed.

6.2.1 Node Type Definitions

Now we implement the NodeTypes described in Figure 5.6. The abstract Controller Node-
Type (cf. (1)1 of Listing 6.1) is derived from RootNodeType (3) and defines the Controller
specific properties (4-5). The RequirementDefinition (7-9) defines the necessity of a
“gateway” to deploy the Controller onto. (11-15) defines the possible Controller Instance States
introduced in Figure 5.7. The life-cycle interface http://.../lifecycle/controller/2

(17-22) defines the management operations required by a Controller.

Listing 6.1: Controller NodeType.

1 <NodeType name="Controller" abstract="yes">
2 <documentation>Generic IoT Controller</documentation>
3 <DerivedFrom typeRef="tns:RootNodeType" />
4 <PropertiesDefinition
5 element="baseTypes:ControllerProperties" />
6 <RequirementDefinitions>
7 <RequirementDefinition
8 name="gateway" lowerBound="1" upperBound="1"
9 requirementType="tns:ControllerRequirement" />

10 </RequirementDefinitions>
11 <InstanceStates>
12 <InstanceState state="www.example.com/undeployed" />
13 <InstanceState state="www.example.com/running" />
14 <InstanceState state="www.example.com/stopped" />
15 </InstanceStates>
16 <Interfaces>
17 <Interface name="http://.../lifecycle/controller/">

1The numbers refer to the code lines of the listing.
2Full interface name: http://docs.oasis-open.org/tosca/ns/2011/12/interfaces/

lifecycle/controller/
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18 <Operation name="deploy" />
19 <Operation name="start" />
20 <Operation name="stop" />
21 <Operation name="undeploy" />
22 </Interface>
23 </Interfaces>
24 </NodeType>

The abstract AHUController NodeType (cf. (1) of Listing 6.2) is derived from Controller (3)
and defines the AHUController specific properties (4-5). The http://.../interfaces/
lifecycle/ahu/ life-cycle interface (7-9), defining the “changeSetpoint” operation to con-
figure an AHU, is added to the Controller’s management interfaces.

Listing 6.2: AHUController NodeType.

1 <NodeType name="AHUController" abstract="yes">
2 <documentation>Generic AHU Controller</documentation>
3 <DerivedFrom typeRef="baseTypes:Controller" />
4 <PropertiesDefinition
5 element="tns:AHUControllerProperties" />
6 <Interfaces>
7 <Interface name="http://.../interfaces/lifecycle/ahu/">
8 <Operation name="changeSetpoint" />
9 </Interface>

10 </NodeType>

The gateway environment specific SedonaAHUController NodeType (cf. (1) of Listing 6.3)
is derived from AHUController (4) and defines the SedonaAHUController specific properties
(5-6). The RequirementDefinition (8-10) refines the definition of the Controller node
type by requiring a gateway that satisfies the “SedonaControllerRequirement”.

Listing 6.3: SedonaAHUController NodeType.

1 <NodeType name="SedonaAHUController">
2 <documentation>Sedona implementation of an
3 Air Handling Unit Controller</documentation>
4 <DerivedFrom typeRef="specificTypes:AHUController" />
5 <PropertiesDefinition
6 element="SedonaAHUControllerProperties" />
7 <RequirementDefinitions>
8 <RequirementDefinition
9 requirementType="SedonaControllerRequirement"

10 name="gateway" upperBound="1" lowerBound="1" />
11 </RequirementDefinitions>
12 </NodeType>

The gateway environment specific NiagaraAHUController NodeType (cf. (1) of Listing 6.4)
is derived from AHUController (4) and defines the NiagaraAHUController specific properties
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(5-6). The RequirementDefinition (8-10) refines the definition of the Controller node
type requiring a gateway satisfying the “NiagaraControllerRequirement”.

Listing 6.4: NiagaraAHUController NodeType.

1 <NodeType name="NiagaraAHUController">
2 <documentation>Niagara implementation of an
3 Air Handling Unit Controller</documentation>
4 <DerivedFrom typeRef="specificTypes:AHUController" />
5 <PropertiesDefinition
6 element="NiagaraAHUControllerProperties" />
7 <RequirementDefinitions>
8 <RequirementDefinition
9 requirementType="NiagaraControllerRequirement"

10 name="gateway" upperBound="1" lowerBound="1" />
11 </RequirementDefinitions>
12 </NodeType>

The abstract Gateway NodeType (cf. (1) of Listing 6.5) is derived from RootNode-
Type (3) and defines the Gateway specific properties (4-5). The CapabilityDefinition
(7-9) defines the capability of deploying a Controller on the Gateway. (11-14) defines the pos-
sible Gateway Instance States introduced in Figure 5.7. The life-cycle interface http://..
./interfaces/lifecycle/gateway/ (16-18) defines the management operations re-
quired by a Gateway.

Listing 6.5: Gateway NodeType.

1 <NodeType name="Gateway" abstract="yes">
2 <documentation>Generic IoT Gateway</documentation>
3 <DerivedFrom typeRef="tns:RootNodeType" />
4 <PropertiesDefinition
5 element="baseTypes:GatewayProperties" />
6 <CapabilityDefinitions>
7 <CapabilityDefinition
8 name="controller" lowerBound="0" upperBound="1"
9 capabilityType="tns:ControllerCapability" />

10 </CapabilityDefinitions>
11 <InstanceStates>
12 <InstanceState state="www.example.com/unreachable" />
13 <InstanceState state="www.example.com/running" />
14 </InstanceStates>
15 <Interfaces>
16 <Interface name="http://.../interfaces/lifecycle/gateway/">
17 <Operation name="reboot" />
18 </Interface>
19 </Interfaces>
20 </NodeType>

55



The gateway environment specific SedonaGateway NodeType (cf. (1) of Listing 6.6) is
derived from Gateway (4) and defines the SedonaGateway specific properties (5-6). The Capa-
bilityDefinition (8-10) restricts the “controller” capability to Sedona Controllers.

Listing 6.6: Sedona Gateway NodeType.

1 <NodeType name="SedonaGateway">
2 <documentation>Sedona implementation of an
3 Air Handling Unit Controller</documentation>
4 <DerivedFrom typeRef="base:Gateway" />
5 <PropertiesDefinition
6 element="sedona:SedonaGatewayProperties" />
7 <CapabilityDefinitions>
8 <CapabilityDefinition
9 capabilityType="tns:SedonaControllerCapability"

10 name="controller" upperBound="1" lowerBound="0" />
11 </CapabilityDefinitions>
12 </NodeType>

The gateway environment specific NiagaraGateway NodeType (cf. (1) of Listing 6.7) is
derived from Gateway (4) and defines the NiagaraGateway specific properties (5-6). The Capa-
bilityDefinition (8-10) restricts the “controller” capability to Niagara Controllers.

Listing 6.7: Niagara Gateway NodeType.

1 <NodeType name="NiagaraGateway">
2 <documentation>Niagara implementation of an
3 Air Handling Unit Controller</documentation>
4 <DerivedFrom typeRef="base:Gateway" />
5 <PropertiesDefinition
6 element="niagara:NiagaraGatewayProperties" />
7 <CapabilityDefinitions>
8 <CapabilityDefinition
9 capabilityType="tns:NiagaraControllerCapability"

10 name="controller" upperBound="1" lowerBound="0" />
11 </CapabilityDefinitions>
12 </NodeType>

6.2.2 Node Type Implementations

We decided to capture all Sedona related management knowledge in the “SedonaControl” Im-
plementation Artifact and all Niagara related management knowledge in the “NiagaraControl”
Implementation Artifact.

The NodeTypeImplementation of the SedonaGateway node type (cf. (1-2) of Listing 6.8)
defines the “SedonaControl” interface (5) and references the ArtifactTemplate (7) of type “WAR”
(6) which is discussed next.
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Listing 6.8: Sedona Gateway NodeTypeImplementation.

1 <NodeTypeImplementation name="SedonaGatewayTypeImpl"
2 nodeType="tns:SedonaGateway">
3 <ImplementationArtifacts>
4 <ImplementationArtifact name="SedonaControl"
5 interfaceName="SedonaControl"
6 artifactType="toscatypes:WAR"
7 artifactRef="demo:SedonaService" />
8 </ImplementationArtifacts>
9 </NodeTypeImplementation>

The “SedonaService” ArtifactTemplate (cf. (1) of Listing 6.9) is used to configure the
properties of the Web service by defining the ServiceEndpoint (5), the PortType (8)
and InvocationType (11). The location of the WAR-file is defined by the Artifact-
Reference (16-17).

Listing 6.9: Sedona IA Service Artifact Template.

1 <ArtifactTemplate id="SedonaService" type="tns:WAR">
2 <Properties>
3 <opentosca:WSProperties>
4 <opentosca:ServiceEndpoint>
5 /services/NiagaraIAService
6 </opentosca:ServiceEndpoint>
7 <opentosca:PortType>
8 {http://sedona.aws.ia.opentosca.org}SedonaIAService
9 </opentosca:PortType>

10 <opentosca:InvocationType>
11 SOAP/HTTP
12 </opentosca:InvocationType>
13 <opentosca:WSProperties>
14 </Properties>
15 <ArtifactReferences>
16 <ArtifactReference
17 reference="IAs/SedonaService/Sedona-Service.war" />
18 </ArtifactReferences>
19 </ArtifactTemplate>

The NodeTypeImplementation of the NiagaraGateway node type (cf. (1-2) of List-
ing 6.10) defines the “NiagaraControl” interface (5) and references the ArtifactTemplate (7)
of type “WAR” (6) which is discussed next.

Listing 6.10: Niagara Gateway NodeTypeImplementation.

1 <NodeTypeImplementation name="NiagaraGatewayTypeImpl"
2 nodeType="tns:NiagaraGateway">
3 <ImplementationArtifacts>
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4 <ImplementationArtifact name="NiagaraControl"
5 interfaceName="NiagaraControl"
6 artifactType="toscatypes:WAR"
7 artifactRef="demo:NiagaraService" />
8 </ImplementationArtifacts>
9 </NodeTypeImplementation>

The “NiagaraService” ArtifactTemplate (cf. (1) of Listing 6.11) is used to configure the
properties of the Web service by defining the ServiceEndpoint (5), the PortType (8)
and InvocationType (11). The location of the WAR-file is defined by the Artifact-
Reference (16-17).

Listing 6.11: Niagara IA Service Artifact Template.

1 <ArtifactTemplate id="NiagaraService" type="tns:WAR">
2 <Properties>
3 <opentosca:WSProperties>
4 <opentosca:ServiceEndpoint>
5 /services/NiagaraIAService
6 </opentosca:ServiceEndpoint>
7 <opentosca:PortType>
8 {http://niagara.aws.ia.opentosca.org}NiagaraIAService
9 </opentosca:PortType>

10 <opentosca:InvocationType>
11 SOAP/HTTP
12 </opentosca:InvocationType>
13 <opentosca:WSProperties>
14 </Properties>
15 <ArtifactReferences>
16 <ArtifactReference
17 reference="IAs/NiagaraService/Niagara-Service.war" />
18 </ArtifactReferences>
19 </ArtifactTemplate>

The implementation of the “Sedona-Service.war” and the “Niagara-Service.war” Implemen-
tation Artifacts is discussed in Section 6.5.

6.2.3 Relationship Type Definitions

Following the definition of the relationship model in Section 5.2, we implement the Relation-
shipTypes described in Figure 5.9. The abstract DeployedOn RelationshipType (cf. (1) of
Listing 6.12) is derived from RootRelationshipType (2) and defines the source and target
types it can be attached to (3-4). As the relationship types in our prototype are quite simple, we
omit the remaining definitions and refer to the following Section where the RelationshipTypes
are instantiated and described in detail.
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Listing 6.12: Deployed On RelationshipType.

1 <RelationshipType name="DeployedOn" abstract="yes">
2 <DerivedFrom typeRef="tns:RootRelationshipType" />
3 <ValidSource typeRef="tns:ControllerRequirement" />
4 <ValidTarget typeRef="tns:ControllerCapability" />
5 </RelationshipType>

6.3 Implementing the IoT Application

Following the use case description of Chapter 4 and the overview of the prototype in the Design
chapter (cf. Figure 5.1) we implement an IoT application that consists of four components.

Figure 6.2: Prototype’s Application Topology as depicted by the Winery Modeling Tool.

An Air Handling Unit representing a Sedona AHU Controller control logic deployed on a
Sedona VM 1.2.283 and a Main Air Handler representing a Niagara AHU Controller control
logic deployed on a PC M2M JACE4 running the NiagaraAX 3.7.106 framework [30, 32] (cf.
Section 3.3.1). The latter represents the Niagara gateway. A graphical representation of the
prototypical application’s topology is depicted in Figure 6.2. The TOSCA ServiceTemplate (cf.
Listing 6.13) describes the structure as well as the behaviour of the HVAC application. The
structure becomes manifest in the TopologyTemplate whereas the behaviour is defined by Plans.
The Plans have already been defined in the Design chapter (cf. Section 5.4), thus they are
omitted here.

3http://sedonadev.org/download/build/
4https://www.tridiumeurope.com/storage/downloads/TridiumEuropeDatasheet_

m2mjace_1355839010.pdf
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Listing 6.13: HVAC Service Template.

1 <ServiceTemplate id="HVAC" name="HVAC Template">
2 <TopologyTemplate>
3 <NodeTemplate id="SedonaAHUController"
4 name="Air Handling Unit"
5 type="sedona:SedonaAHUController">...</NodeTemplate>
6
7 <RelationshipTemplate
8 id="SedonaControllerDeployedOnSedonaGateway"
9 name="SedonaController DeployedOn SedonaGateway"

10 type="sedona:SedonaControllerDeployedOnSedonaGateway" />
11
12 <NodeTemplate id="SedonaGateway" name="Sedona VM"
13 type="sedona:SedonaGateway">...</NodeTemplate>
14
15 <NodeTemplate id="NiagaraAHUController"
16 name="Main Air Handler"
17 type="niagara:NiagaraAHUController">...</NodeTemplate>
18
19 <RelationshipTemplate
20 id="NiagaraControllerDeployedOnNiagaraGateway"
21 name="NiagaraController DeployedOn NiagaraGateway"
22 type="niagara:NiagaraControllerDeployedOnNiagaraGateway"/>
23
24 <NodeTemplate id="NiagaraGateway" name="PC M2M JACE"
25 type="niagara:NiagaraGateway">...</NodeTemplate>
26 </TopologyTemplate>
27
28 <Plans targetNamespace="http://.../ServiceTemplates/HVAC">
29 ...
30 </Plans>
31 </ServiceTemplate>

6.3.1 Topology Template

The TopologyTemplate (cf. (2-26) of Listing 6.13) consists of four NodeTemplate def-
initions, each instantiating a specific NodeType with concrete properties. The concrete node
types are imported either from the sedona or niagara namespace. The composition of these
components is completed by two RelationshipTemplate definitions which model the re-
lations between the components. Next, each NodeTemplate and RelationshipTemplate of the
TopologyTemplate will be discussed in detail.

The SedonaAHUController NodeTemplate (cf. (1-2) of Listing 6.14) defines Prop-
erties, Requirements and DeploymentArtifacts . The Properties define the
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actual values needed to instantiate a SedonaAHUController Node Type. An initial Setpoint
temperature (7) as well as the ManagementInteface (8) for the Air Handler is specified
here. The DeploymentArtifact (17-20) defines the SedonaApplication-archive (20) con-
taining the control logic to be deployed on the Sedona gateway. The artifactRef (18)
points to the ArtifactTemplate which specifies the exact location of the archive. Finally,
the “SedonaController_Environment” Requirement (12-14) describes the necessity of an en-
vironment being able to host this Controller.

Listing 6.14: Sedona AHU Controller NodeTemplate.

1 <NodeTemplate id="SedonaAHUController" name="Air Handling Unit"
2 type="sedona:SedonaAHUController">
3 <Properties>
4 <sedona:SedonaAHUControllerProperties
5 xmlns:sedona="http://www.example.com/tosca/Types/Sedona"
6 xmlns="http://www.example.com/tosca/Types/Sedona">
7 <Setpoint>21.0</Setpoint>
8 <ManagementInterface>AHUMgmt</ManagementInterface>
9 </sedona:SedonaAHUControllerProperties>

10 </Properties>
11 <Requirements>
12 <Requirement id="SedonaController_Environment"
13 name="container"
14 type="sedona:SedonaControllerRequirement" />
15 </Requirements>
16 <DeploymentArtifacts>
17 <DeploymentArtifact
18 artifactRef="at-c5a973c5-3823-4f24-ae28-f944fe896666"
19 artifactType="baseTypes:ArchiveArtifact"
20 name="SedonaApplication-archive" />
21 </DeploymentArtifacts>
22 </NodeTemplate>

The SedonaController_DeployedOn_SedonaGateway RelationshipTemplate (cf. List-
ing 6.15) defines the “deployedOn” relationship between the SedonaAHUController node tem-
plate and the SedonaGateway node template. The relationship connects the Requirement
for a hosting environment (SourceElement) to the Capability of hosting an application
(TargetElement).

Listing 6.15: Sedona Controller RelationshipTemplate.

1 <RelationshipTemplate name="deployed on"
2 id="SedonaController_DeployedOn_SedonaGateway"
3 type="sedona:SedonaControllerDeployedOnSedonaGateway">
4 <SourceElement ref="SedonaController_Environment" />
5 <TargetElement ref="SedonaController_Application" />
6 </RelationshipTemplate>
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The SedonaGateway NodeTemplate defines Properties and Capabilities (cf.
Listing 6.16). The Properties definition configures the NodeTemplate with the parameters
needed to connect to the Sedona VM gateway. The “SedonaControllerApplication” Capabil-
ity referenced by the SedonaController_DeployedOn_SedonaGateway relationship template
defines the ability of handling the deployment of a Sedona controller application on the gate-
way’s application environment.

Listing 6.16: Sedona Gateway NodeTemplate.

1 <NodeTemplate id="SedonaGateway" name="Sedona VM"
2 type="sedona:SedonaGateway">
3 <Properties>
4 <sedona:SedonaGatewayProperties>
5 <Host>localhost</Host>
6 <Username>admin</Username>
7 <Password>*****</Password>
8 <SoxPort>1876</SoxPort>
9 </sedona:SedonaGatewayProperties>

10 </Properties>
11 <Capabilities>
12 <Capability id="SedonaController_Application"
13 name="Environment for Sedona controller deployment."
14 type="sedona:SedonaControllerCapability" />
15 </Capabilities>
16 </NodeTemplate>

The NiagaraAHUController NodeTemplate (cf. (1-2) of Listing 6.17) defines Prop-
erties, Requirements and DeploymentArtifacts. The Properties define the
actual values needed to instantiate a NiagaraAHUController Node Type. An initial Setpoint
temperature (10) is specified as well as the ManagementInterface (12) for the Main Air
Handler. As a Niagara Station running on a Niagara Platform requires additional log-in infor-
mation, the credentials are provided here (8-9). The DeploymentArtifact (22-25) defines
the NiagaraApplication-archive containing the control logic (the Niagara Station) to be deployed
on the Niagara gateway. The artifactRef (23) points to the ArtifactTemplate which
specifies the exact location of the archive. Finally, the “NiagaraController_Environment” Re-
quirement (17-19) describes the necessity of an environment being able to host this Con-
troller.

Listing 6.17: Niagara AHU Controller NodeTemplate.

1 <NodeTemplate id="NiagaraAHUController" name="Main Air Handler"
2 type="niagara:NiagaraAHUController">
3 <Properties>
4 <niagara:NiagaraAHUControllerProperties
5 xmlns:niagara="http://www.example.com/tosca/Types/Niagara"
6 xmlns="http://www.example.com/tosca/Types/Niagara">
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7 <!-- Niagara Station on M2M JACE -->
8 <Username>admin</Username>
9 <Password>*****</Password>

10 <Setpoint>21.0</Setpoint>
11 <ManagementInterface>
12 http://128.131.172.101/obix/config/AHUManagement/
13 </ManagementInterface>
14 </niagara:NiagaraAHUControllerProperties>
15 </Properties>
16 <Requirements>
17 <Requirement id="NiagaraController_Environment"
18 name="container"
19 type="niagara:NiagaraControllerRequirement" />
20 </Requirements>
21 <DeploymentArtifacts>
22 <DeploymentArtifact
23 artifactRef="at-c5a973c5-3823-4f24-ae28-f944fe897777"
24 artifactType="baseTypes:ArchiveArtifact"
25 name="NiagaraApplication-archive" />
26 </DeploymentArtifacts>
27 </NodeTemplate>

The NiagaraController_DeployedOn_NiagaraGateway RelationshipTemplate (cf. List-
ing 6.18) defines the “deployedOn” relationship between the NiagaraAHUController node tem-
plate and the NiagaraGateway node template. The relationship connects the Requirement
for a hosting environment (SourceElement) to the Capability of hosting an application
(TargetElement).

Listing 6.18: Niagara Controller RelationshipTemplate.

1 <RelationshipTemplate name="deployed on"
2 id="NiagaraController_DeployedOn_NiagaraGateway"
3 type="niagara:NiagaraControllerDeployedOnNiagaraGateway">
4 <SourceElement ref="NiagaraController_Environment" />
5 <TargetElement ref="NiagaraController_Application" />
6 </RelationshipTemplate>

The NiagaraGateway NodeTemplate defines Properties and Capabilities (cf.
Listing 6.19). The Properties definition configures the NodeTemplate with the parame-
ters needed to connect to the Niagara platform running on the gateway. The Lifecycle-
ManagementProxyUrl defines the Obix Url to access the LifecycleManagementProxy com-
ponent running on the Niagara Supervisor Station. Thus, the credentials for the Supervisor Sta-
tion are defined too. The NiagaraStationDB specifies the path to the local stations database
of the Niagara installation. The “NiagaraController_Application” Capability referenced by
the NiagaraController_DeployedOn_SedonaGateway relationship template defines the ability
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of the gateway’s application environment to handle the deployment of a Niagara controller ap-
plication.

Listing 6.19: Niagara Gateway NodeTemplate.

1 <NodeTemplate id="NiagaraGateway" name="PC M2M JACE"
2 type="niagara:NiagaraGateway">
3 <Properties>
4 <niagara:NiagaraGatewayProperties>
5 <!-- Platform on M2M JACE -->
6 <Host>128.131.172.101</Host>
7 <Port>3011</Port>
8 <Username>tridium</Username>
9 <Password>*****</Password>

10 <!-- Niagara Supervisor Station on server,
11 acting as Proxy -->
12 <LifecycleManagementProxyUrl>
13 http://localhost/obix/config/LifecycleManagementProxy/
14 </LifecycleManagementProxyUrl>
15 <ProxyUsername>admin</ProxyUsername>
16 <ProxyPassword>*****</ProxyPassword>
17 <NiagaraStationDB>
18 C:\Niagara\Niagara-3.7.106\stations
19 </NiagaraStationDB>
20 </niagara:NiagaraGatewayProperties>
21 </Properties>
22 <Capabilities>
23 <Capability id="NiagaraController_Application" name="app"
24 type="niagara:NiagaraControllerCapability" />
25 </Capabilities>
26 </NodeTemplate>

The “SedonaApplication-archive” ArtifactTemplate depicted in Listing 6.20 is of
type=“base:ArchiveArtifact“. This generic Base Artifact Type was deliberately chosen so any
TOSCA environment can basically handle it, without knowing what it actually contains. The
logic on how to process the Sedona application image files is contained in the implementation
of the Sedona Gateway Node Type. The ArchiveArtifactProperties contain informa-
tion about the type (“zip”) of the archive. The ArtifactReference points to the zip-file
containing the Sedona application image files.

Listing 6.20: Sedona Air Handler DeploymentArtifact ArtifactTemplate.

1 <ArtifactTemplate id="at-c5a973c5-3823-4f24-ae28-f944fe896666"
2 type="base:ArchiveArtifact" name="SedonaApplication-archive">
3 <Properties>
4 <base:ArchiveArtifactProperties
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5 xmlns:base="http://.../tosca/ns/2011/12/ToscaBaseTypes"
6 xmlns="http://.../ns/2011/12/ToscaBaseTypes">
7 <ArchiveInformation archiveType="zip"
8 archiveReference="files/SedonaAirHandler.zip" />
9 </base:ArchiveArtifactProperties>

10 </Properties>
11 <ArtifactReferences>
12 <ArtifactReference reference="files/SedonaAirHandler.zip" />
13 </ArtifactReferences>
14 </ArtifactTemplate>

The “NiagaraApplication-archive” ArtifactTemplate depicted in Listing 6.21 follows
the same concept, only that it’s ArtifactReference points to the zip-file containing the
Niagara Station image files.

Listing 6.21: Niagara Air Handler DeploymentArtifact ArtifactTemplate.

1 <ArtifactTemplate id="at-c5a973c5-3823-4f24-ae28-f944fe897777"
2 type="base:ArchiveArtifact" name="NiagaraApplication-archive">
3 <Properties>
4 <base:ArchiveArtifactProperties
5 xmlns:base="http://.../tosca/ns/2011/12/ToscaBaseTypes"
6 xmlns="http://.../tosca/ns/2011/12/ToscaBaseTypes">
7 <ArchiveInformation archiveType="zip"
8 archiveReference="files/NiagaraAirHandler.zip" />
9 </base:ArchiveArtifactProperties>

10 </Properties>
11 <ArtifactReferences>
12 <ArtifactReference reference="files/NiagaraAirHandler.zip"/>
13 </ArtifactReferences>
14 </ArtifactTemplate>

6.4 AHU Controller Gateway Applications

The SedonaAHUController and the NiagaraAHUController defined in the previous Section ref-
erence a Deployment Artifact which describes the device-specific control logic to be deployed
on the gateways. For demonstration purpose we use the AHU control logic (cf. Figure 6.3)
of the NiagaraAX [41] demo station. In this demo station the control logic is visualized by a
graphical representation of an Air Handler (cf. Figure 4.1). The Sedona implementation uses a
similar AHU control logic.

6.4.1 Sedona Interface

To implement the management interface for the Sedona AHU Controller, a custom Sedona com-
ponent was developed. The tosca::AHUManagement component depicted in Figure 6.4 is
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Figure 6.3: Niagara Workbench wire-sheet view of Air Handler control logic. Adapted from the
Niagara Framework [41] Demo Station.

Figure 6.4: Sedona Air Handling Unit Management component.

derived from the more general sys::Component class and exposes the properties enabled
and setpoint of the AHU Controller it is connected to. The Sedona code implementing the
AHUManagement component is depicted in Listing 6.22.

Listing 6.22: Sedona AHUManagement Component.

1 public class AHUManagement extends Component
2 {
3 @config property bool enabled = false
4
5 @unit=Units.celsius
6 @config property float setpoint = 21.0
7 }
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This interface component representing an AHU Controller implementation must be placed below
the App node of the Sedona application (cf. Figure 6.5 (a)) and the properties must be connected
to the corresponding AHU Controller (“AHUImpl”) to propagate property changes immediately.
The name of the interface (e.g. “AHUMgmt”) is configured in the ManagementInterface
property of the controller’s node template (cf. Section 6.3), which is the SedonaAHUController
node template in our prototype. If the value of the enabled property is set to true, the Con-
troller is in state “Running”, whereas false means it is in state “Stopped”. These properties
are changed via the Sox Service running on the target Sedona gateway environment.

Figure 6.5: AHU Management Interface and Implementation as displayed in the Niagara Work-
bench. (a) Sedona Application. (b) Niagara Supervisor Station. (c) Niagara Station.

6.4.2 Niagara Interface

The BAHUManagement component depicted in Figure 6.6 implements the AHUManagement
Obix Interface (cf. Table 5.2). It is derived from the basic Niagara BComponent class. It
defines the enabled and setpoint properties which are changed by invoking the methods

Figure 6.6: Niagara Air Handling Unit Management component.
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doStartController(), doStopController() and doChangeSetpoint(BDouble
temperature). Listing 6.23 shows the declarative definition of the properties and actions.
The Slot-o-matic tool of the Eclipse Niagara Plugin 7.1.75 was used to generate boiler-plate code
from the declarative component definition.

Listing 6.23: Declarative definition of Niagara BAHUManagement component.

1 /*-
2 class BAHUManagement
3 {
4 properties
5 {
6 enabled: boolean
7 default {[ false ]}
8
9 setpoint: double

10 default {[ 21.0 ]}
11 }
12 actions
13 {
14 startController()
15 stopController()
16 changeSetpoint(temperature: BDouble)
17 default{[ 22.0 ]}
18 }
19 }
20 -*/

This interface component representing an AHU Controller implementation that can be placed
at any location of the Niagara target Station, as the Obix Service allows direct access (e.g. via
http://<host>/obix/config/AHUManagement/) to the AHUManagement compo-
nent. This Url indicates that the component was placed below the config node of the Niagara
Station. It is configured via the ManagementInterface property of the controller’s node
template, which is the NiagaraAHUController node template in our prototype. The proper-
ties (Niagara Slots) must be connected to the corresponding AHU Controller implementation
to propagate property changes immediately. The enabled property of the AHUManagement
component was connected to the “enabled” slot of the HvacProgram component and the set-
point property to the “In10” slot of the SetPoint component of the Niagara control logic (cf.
Figure 6.3). The Niagara navigation tree depicted in Figure 6.5 (c) shows the AHUManagement
component and the AirHandler folder containing the control logic as part of the “AirHandler”
Station’s Config node.

5https://community.niagara-central.com/ord?portal:/blog/BlogEntry/273
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6.5 Implementation Artifacts

The Implementation Artifacts realizing the management operations for Niagara and Sedona node
types are implemented as Web services. The class structure of both Services is depicted in
Figure 6.7. The SedonaIAService implements all life-cycle interfaces (cf. Section 5.2.2) related

Figure 6.7: NiagaraIAService and SedonaIAService Class Diagram.

to Sedona node types and the NiagaraIAService implements all life-cycle interfaces related to
Niagara node types. The parameters of the operations are omitted in Figure 6.7 but match the
parameters of the operations defined by the Life-cycle Interfaces (cf. Figure 5.8). Both Services
rely on adaptions of Downloader and IUnpacker used by the OpenTOSCA Container6 and the
EC2LinuxIAService included in the Moodle example. Downloader facilitates the download of

6http://files.opentosca.de/v1.1/
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Deployment Artifacts from the Container’s File store. IUnpacker is implemented by Unpacker
which uses the ZipManager to unzip the downloaded zip files. The DirectoryVisitor allows to
process the files of a Deployment Artifact after it was uncompressed.

6.5.1 Sedona

The SedonaIAService uses the SedonaGatewayConnection to connect to a gateway via the Sox-
Client. Listing 6.24 depicts the process of deploying and configuring a Sedona AHU Controller
application. First, a SoxClient connection based on a DaspSocket is established to connect to
the target gateway. The basic provisioning steps are depicted in Lines 7-13. It includes copying
the application files (7-8) with exactly these names followed by a renaming (9-10) of the very
same files. The provisioning process is completed by restarting the gateway application (13).
The AHU Controller is then configured by looking up the management interface (15-16) and
changing the setpoint temperature (17-18). Finally, the changes are saved (21).

Listing 6.24: Deploy Sedona Control Application.

1 DaspSocket dasp =
2 DaspSocket.open(-1, null, DaspSocket.SESSION_QUEUING);
3 SoxClient sox = new SoxClient(dasp,
4 InetAddress.getByName(host), port, username, password);
5 sox.connect();
6 // provision
7 sox.putFile("app.sab.writing", SoxFile.make(appSab));
8 sox.putFile("kits.scode.writing", SoxFile.make(scodeBin));
9 sox.renameFile("app.sab.writing", "app.sab.stage");

10 sox.renameFile("kits.scode.writing", "kits.scode.stage");
11 // reboot
12 SoxComponent app = sox.loadApp();
13 sox.invoke(app, app.slot("restart"), null);
14 // change setpoint
15 SoxComponent managementComp = sox.loadApp().
16 getChild(managementComponentName);
17 sox.write(managementComp, managementComp.slot("setpoint"),
18 sedona.Float.make((float) temperature));
19 // save changes
20 app = sox.loadApp();
21 sox.invoke(app, app.slot("save"), null);

6.5.2 Niagara

As discussed in the Design chapter (cf. Section 5.3), the NiagaraIAService uses two distinct
interfaces for deployment and configuration. The NiagaraIAService uses the NiagaraProxy-
Connection to invoke the “reboot”, “deploy” and “undeploy” operations of the LifecycleMan-
agementProxy (cf. Section 6.5.3). Listing 6.25 outlines how a new ObixSession object is created
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based on the Url of the LifecycleManagementProxy component together with the credentials (1-
2).

Listing 6.25: Invoke Deployment Action Method on LifecycleManagementProxy.

1 ObixSession os = new ObixSession(new Uri(
2 lifecycleManagementProxyUrl), proxyUsername, proxyPassword);
3 os.invoke(lifecycleManagementProxyUrl+"deploy/", new Str(
4 paramsToString(host, port, username, password, stationName));

In a second step, the “deploy” action is invoked (3-4) with the parameters defined in Table 6.1.
The LifecycleManagementProxy is discussed in the next Section.

To configure the AHU Controller, the NiagaraIAService invokes the management operations
defined by Table 5.2. Lines (3-4) of Listing 6.26 show the invocation of the “changeSetpoint”
operation of the AHUManagement component.

Listing 6.26: Change Setpoint Temperature via Niagara AHUManagement Interface.

1 ObixSession os = new ObixSession(
2 new Uri(ahuManagementUrl), stationUsername, stationPassword);
3 os.invoke(ahuManagementUrl+"changeSetpoint/",
4 new obix.Real(temperature));

6.5.3 Niagara Proxy

As discussed earlier, the architecture of the Niagara Environment requires an extra compo-
nent, namely the LifecycleManagementProxy, that is part of a Niagara Supervisor Station. The
NiagarIAService is configured with the location of the local Station Database defined by the
NiagaraStationDB property of the NiagaraGateway node template. During application de-
ployment, the NiagarIAService copies the new Niagara Station image to the Station Database
before invoking the deployment operation of the LifecycleManagementProxy running on
the Supervisor Station. The BLifecycleManagementProxy component depicted in Fig-
ure 6.8 is derived from the basic Niagara BComponent class. It defines the life-cycle opera-
tions doDeploy(BStringparams), doUndeploy(BStringparams) and doReboot
(BString params) as Obix action handlers which can be invoked via the Obix Service run-
ning on the Niagara Supervisor Station. Due to the restriction of Obix action invocations to one
parameter only, the sole parameter is passed to the operations as a comma separated list of the
parameters (cf. Table 6.1). The Action Handlers implement the Obix actions of the interface
definition of the LifecycleManagementProxy Obix Interface (cf. Table 5.1).

Action Handlers Comma Separated Parameter Strings
doDeploy “host,port,username,password,stationName”
doUndeploy “host,port,username,password”
doReboot “host,port,username,password”

Table 6.1: LifecycleManagementProxy methods with parameters.
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Figure 6.8: BLifecycleManagementProxy component for the Niagara Supervisor Station.

72



As depicted by the Niagara architecture (cf. Figure 5.11), the deployment and undeploy-
ment capabilities are implemented by the LifecycleManagementProxy component installed on a
Niagara Supervisor Station. In the prototype, the LifecycleManagementProxy was placed as a
child node of the Config node of the Supervisor Station depicted in Figure 6.5 (b).

The BLifecycleManagementProxy (cf. Figure 6.8) is an adaption of the PlatformUtil7

that uses the javax.baja.platform API. The BLifecycleManagementProxy uses plat-
form and station specific life-cycle management functionality defined by the javax.baja.
platform package to compose the higher-level management procedures. The Station-
Manager interface (cf. Figure 6.8) offers station management functions, for example to create
a new station on a remote gateway, retrieve access to an existing station or to reboot a remote
gateway. The RemoteStation interface allows to modify, start, stop and delete a station run-
ning on a remote gateway. The life-cycle methods defined by the BLifecycleManagement-
Proxy use PlatformOperations implementing the IPlatformOperationListener
interface to start long-running platform tasks by spawning a new Thread for each operation.
Platform operations to create, start, stop, backup and delete stations as well as rebooting a gate-
way are defined. The LocalStation is used to represent stations retrieved from the Niagara
Station Database which then can be copied to a remote gateway environment during deployment.
The deployment process is depicted in Listing 6.27 where the abstract PlatformDaemon fac-
tory (1-2) is used to connect to the platform daemon of the target gateway environment. The
CreateStation platform operation copies the station from the Niagara Station DB to the
target gateway (3-5). The Station creation is performed by the StationManager (7).

Listing 6.27: Niagara Station Deployment by BLifecycleManagementProxy.

1 PlatformDaemon daemon =
2 PlatformDaemon.make(host, port, username, password);
3 CreateStation platformOp =
4 new CreateStation(station.dir, station.name, resultLog);
5 platformOp.execute();
6 // performed by CreateStation:
7 daemon.getStationManager().createStation(dir, name, this);

6.6 Implementing the Life-cycle Management Procedures

The Plan definitions described in Section 5.4 are implemented using the WS-BPEL 2.0 workflow
language together with XPath 2.0. To access the REST API of the OpenTOSCA container, the
BPEL4RestLight Extension (cf. Listing 6.28) is used.

In the following, the most important concepts used by the management procedures are ex-
plained. Sequence diagrams are used to depict the management operations that get invoked by
the BPEL workflows incorporating all subsequent major invocations on architectural compo-
nents involved in the deployment and management of the application – from high-level manage-
ment plans to gateway interfaces.

7Niagara Ord: module://docSource/demoAppliance/appliance.ui/PlatformUtil.java
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Listing 6.28: Defining the BPEL4RestLight Extension.

1 <bpel:extensions>
2 <bpel:extension
3 namespace="http://iaas.uni-stuttgart.de/
4 bpel/extensions/bpel4restlight" mustUnderstand="yes" />
5 </bpel:extensions>

6.6.1 Application Deployment

The application deployment plan (cf. Section 5.4.1) consists of a common part (cf. Figure 6.9)
and management operations specific to the Sedona and Niagara environment. The HVAC De-

Figure 6.9: Common part of the HVAC Build Plan.

ployment Plan first publishes the Service Instance (cf. Figure 6.9, 1) to the Instance Manage-
ment, which instantiates the selected Service Template defined in the CSAR file. Listing 6.29
shows how the Service Template is selected by the csarID (e.g. HVAC.csar) and serviceTem-
plateID (e.g. http://localhost:1337/containerapi) parameters. The workflow
receives the ServiceInstanceUri in response.

Step (2) of Figure 6.9 is a repetitive task to retrieve the Uri of the Node Instance related to
the Node Template defined in the Topology Template. An example for retrieving the nodeIn-
stanceUri of a NodeTemplate is depicted in Listing 6.30. The node instances are identified by
the Uri of the Service Instance together with the NodeTemplate identifiers.
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Listing 6.29: Publish the Service Instance.

1 <bpel:extensionActivity>
2 <bpel4RestLight:POST
3 uri="$bpelvar[ContainerURL]/instancedata/serviceInstances?
4 csarID=$bpelvar[CSARName];
5 serviceTemplateID={http://.../ServiceTemplates/HVAC}HVAC"
6 accept="application/xml"
7 response="instanceAPIResponse">
8 </bpel4RestLight:POST>
9 </bpel:extensionActivity>

Listing 6.30: Node Instance Uri retrieval.

1 <bpel:extensionActivity>
2 <bpel4RestLight:GET
3 uri="$bpelvar[ContainerURL]/instancedata/nodeInstances?
4 nodeTemplateID={.../ServiceTemplates/HVAC}SedonaGateway;
5 serviceInstanceID=$bpelvar[theServiceInstance_URI]"
6 accept="application/xml"
7 response="instanceAPIResponse">
8 </bpel4RestLight:GET>
9 </bpel:extensionActivity>

The properties of each Node Instance are retrieved in Step (3) of Figure 6.9. The Plan
Portability API is used to query for the Urls where the Deployment Artifacts can be downloaded
from (Figure 6.9, 4). Listing 6.31 shows the process of querying for the Deployment Artifact
of the SedonaAHUController. First, the information about the Deployment Artifacts is retrieved
from the Plan Portability API (Listing 6.31, Lines 1-12). In a second step, a XPath 2.0 query is
used (Listing 6.31, Lines 16-24) to acquire the Url where the “zip” file is located.

Listing 6.31: Query for the Sedona Deployment Artifact download URL.

1 <bpel:extensionActivity>
2 <bpel4RestLight:GET
3 uri="$bpelvar[ContainerURL]/portability/artifacts?
4 artifactType=DA;
5 csarID=HVAC.csar;
6 targetNamespace=http://.../tosca/ServiceTemplates/HVAC;
7 templateID=SedonaAHUController;
8 serviceTemplateID=HVAC"
9 accept="application/xml"

10 response="sedona_DeploymentArtifacts">
11 </bpel4RestLight:GET>
12 </bpel:extensionActivity>
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13 <bpel:assign name="sedonaDeploymentArtifactPathAssign">
14 <bpel:copy>
15 <bpel:from variable="sedona_DeploymentArtifacts">
16 <bpel:query
17 queryLanguage="...:wsbpel:2.0:sublang:xpath2.0">
18 <![CDATA[//*[local-name()='Artifacts']
19 /*[local-name()='deploymentArtifacts']
20 /*[local-name()='deploymentArtifact'
21 and @name='SedonaApplication-archive']
22 /*[local-name()='references']
23 /*[local-name()='ref']/text()]]>
24 </bpel:query>
25 </bpel:from>
26 <bpel:to variable="sedona_DA_path" />
27 </bpel:copy>
28 </bpel:assign>

The deployment procedures for Sedona and Niagara are then performed concurrently. The
Niagara specific deployment sequence is depicted in Figure 6.10. The “deploy” management
operation (Figure 6.10, 1) provided by the NiagaraIAService is invoked through the Container’s
Invoker Service (cf. Section 5.3). The invokeOperationSync data structure (cf. List-
ing 6.32) is configured to invoke the “deploy” operation (cf. Listing 6.32, 12) of the “Niagara-
Control” interface (cf. Section 6.2.2) of the “NiagaraGateway” node template. The parameters
(13-34) adhere to the interface definition of Section 5.2.2 and are provided as key value pairs.
The properties retrieved from the instance management are then copied to the corresponding
elements of the invocation message (not shown here).

Listing 6.32: Define parameters for Niagara Controller deployment.

1 <impl:invokeOperationSync
2 xmlns:impl="http://siserver.org/schema"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
4 <impl:CsarID>value</impl:CsarID>
5 <impl:ServiceTemplateIDNamespaceURI>
6 http://www.example.com/tosca/ServiceTemplates/HVAC
7 </impl:ServiceTemplateIDNamespaceURI>
8 <impl:ServiceTemplateIDLocalPart>HVAC
9 </impl:ServiceTemplateIDLocalPart>

10 <impl:NodeTemplateID>NiagaraGateway</impl:NodeTemplateID>
11 <impl:InterfaceName>NiagaraControl</impl:InterfaceName>
12 <impl:OperationName>deploy</impl:OperationName>
13 <impl:Params>
14 <impl:Param>
15 <impl:key>host</impl:key>
16 <impl:value>value</impl:value>
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17 </impl:Param>
18 <impl:Param>
19 <impl:key>port</impl:key>
20 <impl:value>value</impl:value>
21 </impl:Param>
22 <impl:Param>
23 <impl:key>username</impl:key>
24 <impl:value>value</impl:value>
25 </impl:Param>
26 <impl:Param>
27 <impl:key>password</impl:key>
28 <impl:value>value</impl:value>
29 </impl:Param>
30 <impl:Param>
31 <impl:key>deploymentArtifactUrl</impl:key>
32 <impl:value>value</impl:value>
33 </impl:Param>
34 </impl:Params>
35 </impl:invokeOperationSync>

The Service Invoker service is then invoked with the invokeOperationSync message
(cf. Listing 6.33) leading to a selection and invocation of the “deploy” management procedure
of the NiagaraIAService.

Listing 6.33: Invoke Niagara Deployment through Service Invoker.

1 <bpel:invoke name="deployNiagaraControllerSI"
2 partnerLink="SIInvokerPL"
3 operation="invokeOperationSync"
4 inputVariable="niagara_invokerSyncRequest"
5 outputVariable="niagara_invokerResponse" />

The NiagaraIAService then downloads the Deployment Artifact from the Container’s file
store and copies it to the Station Database of the Niagara Supervisor installation. Now the
Lifecycle Management Proxy (cf. Section 6.5.3) running on the Supervisor Station is invoked
to create a new Niagara Station by copying it to the Target Platform and rebooting the target
Gateway. Next, the AHU Controller implemented by the Station is configured by changing
the Setpoint temperature (Figure 6.10, 2). From now on, the NiagaraIAService invokes the
AHU Management component running on the target Gateway directly. After the Air Handler is
configured, the Controller is started (Figure 6.10, 3) again via the AHU Management. Finally,
all Node Instance states are set to state “Running” (Figure 6.10, 4).

The Sedona specific deployment sequence is depicted in Figure 6.11. The “deploy” man-
agement operation (Figure 6.11, 1) provided by the SedonaIAService is invoked through the
Container’s Invoker Service (like the invocation of the NiagaraIAService discussed earlier). The
SedonaIAService then downloads the Deployment Artifact from the Container’s file store and
uses the Sedona Gateway Connection to provision it via the Gateway Sox Service to the Gate-
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Figure 6.10: Niagara Deployment Procedure of HVAC Build Plan.

way. The Gateway is then restarted to load the new application. Next, the AHU Controller
implemented by the Sedona application is configured by changing the Setpoint temperature
(Figure 6.11, 2). After the Air Handler is configured, the Controller is started (Figure 6.11,
3) and the Node Instance states are set to state “Running” (Figure 6.11, 4).

6.6.2 Termination Plan

The interaction of the HVAC Termination Plan (cf. Section 5.4.2) with the Instance Management
API is illustrated in Figure 6.12. First, the node instance Uri’s (e.g. http://localhost:
1337/containerapi/instancedata/serviceInstances/1) of the application in-
stance are retrieved (1) to query for the properties (2) needed to undeploy the gateway applica-
tions. After invoking the Niagara and Sedona specific life-cycle operations, the Service Instance
is unpublished from the Instance Management (3).

The Niagara specific undeployment sequence is depicted in Figure 6.13. The properties
retrieved in the general part of the plan are used to invoke the “stop” operation of the Niagara-
IAService via the Invoker Service (1). The managementComponentUrl is used to connect
to the AHUManagement component on the Niagara gateway where the Controller is stopped.
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Figure 6.11: Sedona Deployment Procedure of HVAC Build Plan.

Figure 6.12: HVAC Termination Plan.
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Figure 6.13: Niagara Undeployment Procedure of Application Termination Plan.

The “undeploy” operation of the Lifecycle Management Proxy component on the Supervisor
station is invoked to perform a “deleteStation” platform operation to delete the controller appli-
cation from the target gateway platform (2). A reboot is not necessary.

The Sedona specific undeployment sequence is depicted in Figure 6.14. The properties
retrieved in the general part of the plan are used to invoke the “stop” operation of the Sedona-
IAService via the Invoker Service (1). The managementComponentName is used to connect
to the AHUMgmt component on the Sedona gateway to stop the AHU Controller. The “unde-
ploy” operation (2) of the SedonaIAService decommissions the AHU Controller by deploying a
minimal Sedona application which runs the required Sox service. A gateway reboot completes
the undeployment procedure.

Figure 6.14: Sedona Undeployment Procedure of Application Termination Plan.
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6.6.3 Management Plans

The management plans (cf. Section 5.4.3) to start, stop and configure AHU Controllers are
described in this section.

Air Handler Configuration

The management procedure to change the setpoint temperature of an AHU Controller is illus-
trated in Figure 6.15. First, the ChangeSetpoint Plan queries (1) for the actual NodeType of
the node instance that is referenced by the controllerNodeInstanceUri. Then, either
the properties for the Sedona (2) or the Niagara (4) node instance are retrieved from the In-
stance Management. The properties are used to invoke the “changeSetpoint” operation via the
Invoker Service. In case of the SedonaAHUController (3), the SedonaIAService sets the set-
point property of the Sedona AHU Mgmt interface component to the new value. The new value
is immediately propagated to the AHU Controller’s control logic attached to it. In case of a
Niagara node type, the NiagaraIAService invokes the start operation (5) of the Niagara AHU
Management interface component to change the configuration of the Niagara AHU Controller’s
control logic. Finally, the state of the AHUController node instance is set to “Running” (6).

Start & Stop Controller

The management procedure to start a Controller is illustrated in Figure 6.16. This figure and
the explanations apply to the stop Controller management procedure by substituting the “start”
by “stop” operations. First, the Start Controller Plan queries (1) for the actual NodeType of the
node instance that is referenced by the controllerNodeInstanceUri. Then, either the
properties for the Sedona (2) or the Niagara (4) node instance are retrieved from the Instance
Management. The properties are used to invoke the “start” operation via the Invoker Service. In
case of the SedonaAHUController (3), the SedonaIAService starts the Controller via the Sedona
AHU Mgmt component whereas the NiagaraIAService invokes the start operation (5) of the
Niagara AHU Management component in case of a NiagaraAHUController. Finally, the state
of the AHUController node instance is set to “Running” (6). The StopController Plan would
change the state to “Stopped”.
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Figure 6.15: Management Plan to Change Setpoint of AHU Controller.
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Figure 6.16: Start Controller Management Plan.
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CHAPTER 7
Deployment & Demonstration

7.1 Use Case Setup

The concrete setup for the use case described in Chapter 4 consists of a Niagara and a Sedona
gateway. A M2M JACE1 (NPM-2) depicted in Figure 7.1 running the NiagaraAX 3.7.106 frame-
work [30,32] (cf. Section 3.3.1) represents the Niagara gateway. It is connected to the local area
network via Ethernet using a static IP address (128.131.172.101).

Figure 7.1: Niagara M2M JACE (NPM-2)2

The Platform Daemon runs on default port 3011. The Niagara Station (cf. Section 3.3.1)
that will be deployed on the JACE gateway is running the Obix Network driver to provide access
to the Obix API via http://128.131.172.101/obix/. A temperature sensor, to sense

1https://www.tridiumeurope.com/storage/downloads/TridiumEuropeDatasheet_
m2mjace_1355839010.pdf

2http://one-sightsolutions.com/wp-content/uploads/2013/04/M2M-JACE-
300x200.jpg
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the room temperature, is connected to the universal input of the gateway and accessed via the
Niagara Remote Input Output (NRIO3) driver network.

A Sedona VM 1.2.284 is running on the local workstation in platform mode – started with
the svm -plat command – representing the Sedona gateway (cf. Section 3.3.2). A basic user
interface for runtime diagnostics can be accessed via http://localhost:8099/. The Sox
service is running on default port 1876.

The Niagara Workbench is used to connect to the gateways and examine their status. The
proprietary Sedona Framework TXS 1.2.100.15 plugin is installed on the Niagara Workbench to
connect to the Sedona gateway.

7.2 Application Deployment & Management

The prototype (HVAC.csar file discussed in Section 6.1) was deployed on the OpenTOSCA
Container by uploading it to the OpenTOSCA Admin UI (http://localhost:8080/
admin/). In a second step, the HVAC application was selected via the OpenTOSCA Self-
Service UI (http://localhost:8080/vinothek/). There, the life-cycle management
procedure to deploy the HVAC application on the gateway environments was initiated by se-
lecting and invoking the corresponding build plan interface (cf. Listing 5.1). The deployment
plan then instantiated the topology model of the application and configured and started the AHU
Controllers as discussed in detail in Section 6.6.1. The successful deployment of the two AHU
Controller instances (implemented by a Niagara and a Sedona control application) was verified
by monitoring the gateways through the Niagara Workbench tool. The process copied the new
Niagara Station to the Niagara gateway. After a reboot of the gateway, the Niagara Station was
started and became accessible via the Niagara Workbench (cf. Figure 7.2). The structure of the

Figure 7.2: Application Director view of M2M JACE Platform showing the “AirHandler” Station
with Status “Running”.

Niagara Station deployed on the Niagara platform is shown in Figure 7.3. The “Config” node of
the “AirHandler” Station defines platform services and drivers as well as the AHUManagement
component (cf. Section 6.4.2), which implements the management interface of the “AirHandler”
control application. The wire-sheet view of the Niagara AHU control application is depicted in
Figure 7.4. It shows the Niagara AHU control application that is connected to the temperature
sensor (“Outside” component) and the AHUManagement interface (“SetPoint” and “HvacPro-
gram” components).

3http://www.victordistcontrols.com/wp-content/uploads/2012/02/Niagara-AX-
NRIO-Guide.pdf

4http://sedonadev.org/download/build/
5http://www.tridium.com/galleries/datasheet_pdf/Sed-TXS-FINAL.pdf
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Figure 7.3: Structure of the Niagara “AirHandler” Station including the “AHUManagement”
interface and the “AirHandler” control application.

Figure 7.4: Wire-sheet view of the Niagara AHU Control Application.

At the same time, the Sedona application files were copied to the Sedona gateway before
rebooting it. The Sedona application then was accessible via the Sedona plugin of the Niagara
Workbench tool. Figure 7.5 shows the structure of the Sedona application deployed on the
Sedona VM. The “App” node defines the Sedona platform services as well as the AHUMgmt
component (cf. Section 6.4.1) which implements the management interface of the AHU control
application. The wire-sheet view of the “AHUImpl” control logic, which is connected to the
“AHUMgmt” management interface (“AHU” component), is depicted in Figure 7.6.
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Figure 7.5: Structure of the Sedona “AHU Controller” application including the “AHUMgmt”
interface and the “AHUImpl” control application.

Figure 7.6: Wire-sheet view of the Sedona AHU Control Application connected to the
AHUMgmt interface (AHU).

The output parameters of the deployment plan contain the Uri of the service instance (
http://localhost:1337/containerapi/instancedata/serviceInstances/
1), as well as the Uris of the node instances, which point to the instance management REST API
of the OpenTOSCA container. The Uris of the instances of the NiagaraAHUController node
template,
http://localhost:1337/containerapi/instancedata/nodeInstances/2
the NiagaraGateway node template,
http://localhost:1337/containerapi/instancedata/nodeInstances/4
the SedonaAHUController node template,
http://localhost:1337/containerapi/instancedata/nodeInstances/3
and of the SedonaGateway node template are returned.
http://localhost:1337/containerapi/instancedata/nodeInstances/1
These Uris consecutively facilitate the invocation of life-cycle management procedures on the
node instances. SoapUI6 was used to demonstrate the invocation of the management proce-
dures. For example, the ChangeSetpoint Management Plan (http://localhost:9763/
services/ChangeSetpointPlanService/) was invoked with the SOAP message de-
picted in Listing 7.1.

6http://www.soapui.org/
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Listing 7.1: SOAP message to invoke ChangeSetpoint management procedure.

1 <soapenv:Envelope
2 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
3 xmlns:buil="http://www.opentosca.org/examples/HVAC/BuildPlan">
4 <soapenv:Header/>
5 <soapenv:Body>
6 <buil:ChangeSetPointPlanRequest>
7 <buil:csarName>HVAC.csar</buil:csarName>
8 <buil:controllerNodeInstanceUri>
9 http://.../containerapi/instancedata/nodeInstances/2

10 </buil:controllerNodeInstanceUri>
11 <buil:gatewayNodeInstanceUri>
12 http://.../containerapi/instancedata/nodeInstances/4
13 </buil:gatewayNodeInstanceUri>
14 <buil:setpoint>21</buil:setpoint>
15 </buil:ChangeSetPointPlanRequest>
16 </soapenv:Body>
17 </soapenv:Envelope>

The ChangeSetPointPlanRequest (Lines 6-15) contains the name of the CSAR file (7)
as well as the Uris of the NiagaraAHUController node instance (9) and the NiagaraGateway
node instance (12) where the Controller is deployed on. The ChangeSetpoint Management Plan
then changes the setpoint temperature (14) of the Niagara specific AHU Controller as ex-
plained in Section 6.6.3. The management procedures to start and stop the Controllers were
tested the same way. Again, the Niagara Workbench tool was used to monitor the effects the
management procedures had on the control components. Finally, the service instance was termi-
nated by invoking the Termination Plan interface (cf. Listing 5.2) resulting in an undeployment
of the control applications as explained in Section 6.6.2.

7.3 Result

With the prototype implemented throughout this thesis we showed that by applying TOSCA to
the IoT domain we can automate the deployment and life-cycle management of applications in
heterogeneous IoT environments.

As intended by TOSCA, we defined the structure of the HVAC application in a topology tem-
plate (cf. Section 6.3.1) composed of reusable components. The reusable components defined
(cf. Section 6.2.1) and implemented (cf. Section 6.2.2) as node type definitions pose the basic
building blocks for the HVAC application. They capture Niagara and Sedona framework spe-
cific management knowledge, which can be reused by any other application that builds on these
frameworks. The high-level life-cycle management procedures (cf. Section 5.4) were imple-
mented using BPEL workflows (cf. Section 6.6) which orchestrate the management operations
provided by node types. The HVAC application is portable to any TOSCA environment which
supports the BPEL workflow language for Plans and Implementation Artifacts of type “WAR”.
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7.4 Possible Integration with IoT PaaS

The knowledge gained throughout the implementation of the prototype can be applied to the IoT
PaaS architecture (cf. Section 3.1) to enhance the management of IoT applications.

The concept of providing control applications on IoT PaaS, explained in Figure 3.2 is revised
in the following way. IoT resources like control applications can be registered to the IoT resource
management as TOSCA node template definitions (Step 1 of Figure 3.2). The node templates
define their management operations via the referenced node types (cf. Section 6.2). Solution
providers subscribe to the control applications they want to use in their virtual vertical solution
(Step 2.1+2.2). They define the application context (Step 3) by adjusting the parameters of the
node templates (cf. Section 6.3). During solution deployment the IoT resource management
monitors the availability of IoT resources (Step 4.2) through the gateway interfaces defined by
TOSCA node type definitions. The application context management then instantiates (Step 4.1)
the node templates, which represent the selected control applications.
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CHAPTER 8
Conclusion & Future Work

8.1 Conclusion

In the face of a rapidly growing number of IoT devices installed in today’s facility manage-
ment solutions, the automation of application deployment and life-cycle management is of vital
importance. So far, the heterogeneous nature of the IoT domain together with the lack of stan-
dardized management procedures have led to physically isolated IoT solutions requiring high
development and maintenance efforts.

In the course of this thesis we investigated how TOSCA can be applied to the IoT domain
to automate application deployment and life-cycle management in a portable and reusable way.
We extended the TOSCA node and relationship models with IoT specific node and relationship
types to model the components typically occurring in IoT solutions. By defining and implement-
ing the life-cycle interfaces of Niagara and Sedona framework specific node types, we showed
that the specific knowledge required to manage IoT resources can be defined in a portable and
reusable way. The topology of the prototypical IoT application we implemented throughout this
thesis is composed of these reusable component definitions. The automation of application de-
ployment and management was achieved by implementing high-level management procedures
as workflows, which orchestrate the management operations provided by the life-cycle inter-
faces of node types. Finally we demonstrated that by deploying a self-contained application
package to a TOSCA runtime environment, the life-cycle of IoT applications can be managed
without understanding the internal details of the targeted gateway environments. Furthermore
we discussed how the concepts implemented by this prototype can be applied to the IoT PaaS
architecture we proposed in previous work. In summary, we showed that by applying TOSCA to
the IoT domain, the IoT application deployment and life-cycle management can be automated.
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8.2 Future Work

The prototype we have implemented proved that the deployment of IoT applications can be au-
tomated by OpenTOSCA. Further research will focus on improving and extending the concepts
proposed in this thesis.

• In this thesis we used a TOSCA node model where a control application is represented by
one single TOSCA node (cf. Section 5.2). In a next step, the hierarchical node model will
be adjusted to describe application components at a finer grained level (cf. Section 5.3).
This will allow the definition of application topologies (cf. Section 5.5) which describe
the components and dependencies of control application. This modification leads to the
ability of managing several controller instances on the same gateway.

• As a next step, we will integrate the prototype into the IoT PaaS architecture (cf. Sec-
tion 3.1) to improve the automated management of IoT resources to enhance IoT solution
delivery.

• In a dynamic environment like the IoT domain, changes to the topology of an application
instance are common. Since the modification of an instantiated topology model is out of
the scope of the TOSCA specification, possible solutions to deal with this requirement
need to be investigated.
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