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Abstract

Automation finds an ever increasing scope of application. Consequently, automation systems
and the communication systems deployed within them have to meet new requirements. In safety-
critical environments, reliable communication is essential in order to prevent situations with se-
vere consequences, like life-threatening scenarios or costly damages. To increase the reliability
of communication systems, the concept of fault tolerance can be applied, which enables the
system to continue its operation even in the presence of a fault. This is basically achieved by
hardware redundancy like redundant links in the context of data communication. Networks with
redundant paths entail the necessity of a network protection and recovery protocol. Due to the
increasing importance of the Internet, network technologies such as Ethernet and IP find their
way even into the automation domain. However, different restrictions and additional demands,
such as limited network bandwidth and special real-time requirements, have to be considered in
this context. Although many different fault-tolerant communication technologies are available,
they are mainly intended for use in high-performance communication systems with a limited
number of network nodes.

The present work provides an overview of the state of the art of such protocols. Subse-
quently, an important representative, which is based on a ring topology, is investigated. Since
such a system is too complex for a formal analysis and the scalability cannot be examined in
a real scenario, a simulation-based approach is used. The communication system under inves-
tigation operates at Data Link Layer and is based on Ethernet, the data exchange is based on
IP. It offers further Quality of Service mechanisms to categorize the data traffic. The simulation
studies are based on networks which consist of links with a bandwidth of less than 1Mbps, oper-
ating in half duplex mode. The Media Redundancy Protocol (MRP), a protocol established in the
field of industrial automation, is selected and examined under the restrictive conditions stated
above. The simulation studies are performed with the discrete-event simulation environment
OMNeT++ in combination with the INET framework, which is extended by an MRP model
especially programmed for the purpose of this study. The investigations explore the scalability
of MRP with various parameter values and the spatial and temporal distribution of the network
utilization. Additionally, experiments show how different implementations of ARP influence the
network performance. Beyond the results of the simulation, the analysis of the MRP discovers
possible improvements for low-speed Ethernet connections.
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Kurzfassung

Mit dem wachsenden Anwendungsgebiet der Automation verändern sich auch die Anforderun-
gen, die an ein Automatisierungssystem und dessen Kommunikationssystem gestellt werden.
Vor allem bei sicherheitskritischen Systemen ist eine zuverlässige Kommunikation unerlässlich,
da ein Fehlverhalten des Systems schwerwiegende Folgen haben kann, wie etwa lebensbedrohli-
che Situationen oder immense Kosten. Die Zuverlässigkeit von Kommunikationssystemen kann
durch das Anwenden von Fehlertoleranz erhöht werden. Diese stellt die Funktionsfähigkeit eines
Systems auch bei Auftreten einer Fehlerursache sicher und wird durch eine redundante Ausfüh-
rung von Komponenten realisiert. Im Bereich der Datenkommunikation wird diese grundsätz-
lich durch Hardware-Redundanz in Form von redundanten Verbindungen umgesetzt. Auf Grund
redundanter Pfade in einem solchen Netzwerk, muss ein sogenanntes network protection and
recovery Protokoll eingesetzt werden. Mit der Bedeutungszunahme des Internets halten Netz-
werktechnologien wie Ethernet oder IP auch in die Automation Einzug. Allerdings müssen in
diesem Bereich auch verschiedene Einschränkungen und zusätzliche Anforderungen wie eine
geringe Bandbreite oder spezielle zeitliche Bedingungen berücksichtigt werden. Viele der ver-
fügbaren fehlertoleranten Kommunikationssysteme sind für den Einsatz in Netzwerken mit sehr
hohen Bandbreiten und wenigen Netzwerkteilnehmern konzipiert. Die vorliegende Arbeit bietet
einen Überblick über die aktuellesten Protokolle. Basierend darauf wird ein wichtiges Protokoll,
das auf einer Ringtopologie basiert, detailliert untersucht. Nachdem dieses System für eine for-
male Analyse zu komplex ist und keine Möglichkeit besteht, seine Skalierbarkeit in einer realen
Umgebung zu untersuchen, wird eine Simulationsstudie durchgeführt. Das betrachtete System
basiert auf Ethernet, wobei die Datenkommunikation über IP gehandhabt wird. Darüber hinaus
bietet das System mehrere Serviceklassen, die eine Priorisierung der Daten ermöglichen. Als
protection and recovery Protokoll wird das Media Redundancy Protocol (MRP), ein in der Indus-
trieautomation etabliertes Protokoll, ausgewählt. Das Verhalten dieses Kommunikationssystems
wird in dieser Arbeit unter speziellen Einschränkungen, die sich aus halb-duplex Verbindungen
mit einer Bandbreite von kleiner als 1Mbps ergeben, analysiert. Für die Simulationsstudie wird
die diskrete, ereignisorientierte Simulationsumgebung OMNeT++ und das dazugehörige Frame-
work INET verwendet. Dabei wird das Kommunikationssystem — und im Zuge dessen auch der
Standard MRP — im INET Framework implementiert. Im Anschluß wird durch verschiedene
Experimente die Skalierbarkeit des Systems, sowie die zeitliche und räumliche Verteilung der
Netzwerkauslastung in Ringtopologien untersucht. Zusätzlich wird eruiert, wie sich verschie-
dene Modelle von ARP auf die Netzwerkleistung auswirken. Neben den Ergebnissen aus den
Simulationsstudien liefert diese Arbeit mögliche Verbesserungen des MRPs für den Einsatz in
Ethernet basierten Netzwerken mit sehr langsamen Verbindungen.
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CHAPTER 1
Introduction

1.1 Motivation and problem statement

Communication technologies are key elements of automation systems and are present on every
level of the well-known automation pyramid depicted in Figure 1.1. On the one hand, sensors
and actuators, which act as interfaces to the real, physical world, are connected to the controllers
at the field level to exchange process data. On the other hand, multiple controllers share in-
formation at the automation level. At the third tier, the management level, all system data is
gathered and used for monitoring, optimization as well as visualization tasks. The communi-
cation systems of these levels have to fulfill different requirements. Accordingly, the amount
of data managed by a single function (or device implementing the function) increases from the
field level over the automation level toward the management level. In contrast, the number of
devices implementing the function of the corresponding level decreases. Generally speaking, at
higher tiers, higher bandwidths are needed, but the requirements on timeliness are lower [1].

Nowadays, the application field of automation becomes broader and hence the requirements
on automation systems and their communication systems change. Especially when automation
finds its way into safety-critical environments, communication systems have to become more
reliable in order to prevent scenarios with severe consequences, like life-threatening situations
or costly damages. To increase the reliability of communication systems and accomplish safety
of mission critical systems, fault tolerance is deployed. Fault-tolerant systems perform their
function according to their specification in spite of faults. Fault-tolerance can be achieved by
hardware redundancy, i.e. additional components are integrated which are not needed in the
absence of faults. In communication systems, this redundancy is accomplished by redundant
links.

Due to the increasing importance of the Internet, network technologies such as Ethernet
and the Internet Protocol (IP) are even applied in the automation domain. Besides that, there
is a trend toward IP-based approaches for communication on the automation level and even on
the field level, as the intelligence of components on the field level increases. Often, networks
are divided into segments when the buildings, where the automation system is installed, reach
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Figure 1.1: The automation pyramid [2].

considerable spatial dimensions. Therefore, an appropriate support by a protocol such as IP
is needed. In addition, multicast capable protocols contribute to the efficiency of the commu-
nication system [1]. Using Ethernet, a deterministic Carrier Sense, Multiple Access (CSMA)
based variant for media access control which supports frame prioritization, allows to efficiently
use the “raw” throughput capacity and to fulfill time constraints [1]. In contrast, networks with
redundant paths based on Ethernet require special network protection and recovery protocols to
ensure a loop-free topology.

However, automation networks often need to be constructed under restrictive conditions ful-
filling special real-time requirements. Such limiting circumstances can be network links which
only offer low bandwidths or large networks spanning over long distances. Most of the available
fault-tolerant communication technologies are designed for the application in high-performance
networks though. Besides, these systems usually restrict the number of communication nodes. It
is unknown, how these systems operate in networks with a much smaller performance compared
to the specified high-performance and how they behave with an increasing network size. There
is no knowledge about the scalability of such systems and consequently the timeliness. In addi-
tion, such systems are often too complex for formal analysis and the performing of real-world
experiments deploying them too costly.

1.2 Aim of this thesis

The main goal of this thesis is the investigation of one representative of the available fault-
tolerant communication technologies with regard to bandwidth restrictions and scalability. To
achieve this, an initial aim is to get an overview about existing mechanisms for providing reliable
communication. Another objective is the successful implementation of a selected mechanism in
an open simulation framework. Therefore, an appropriate simulation environment shall be se-
lected. The implementation shall result in a practical and complete toolchain, which allows to
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easily set up different experiments via command line interface and to automatically produce
statistical analysis. The latter process shall be supported by a suitable program for statistical
computing. Then, multiple milestones to achieve result from various experiments with the sim-
ulation model, which are all aiming at the investigation of the network performance and the
scalability of the communication system. These investigations shall examine the feasibility of a
fault-tolerant communication system under the aforementioned requirements. The gained results
shall be visualized for a better understanding after a thorough analysis. The final goal of this
study is to provide a basis for the calculation of the network convergence time and suggestions
how the investigated protocol can be improved.

1.3 Methodology

In the first step, a literature study about simulation in general was conducted. Thus, knowledge
about the methodology of a simulation study was gained to improve the quality of the model
implementation. Additionally, different simulation tools were discussed and an appropriate tool
was chosen. Among the considered simulators were OMNeT++, ns-2, OPNET, GloMoSim and
NetSim. Moreover, an understanding of the fundamental functioning of the simulation envi-
ronment was obtained which helped during the implemention process. Then, state-of-the-art
network protection and recovery protocols were examined. Finishing this process, one protocol
was selected for the communication system. Next, the conceptualized model of the commu-
nication system was implemented in the simulation environment. In the experimental phase,
various alternatives were designed and simulated. Concluding from the simulation results, the
communication system was analyzed and suggestions for improvements were given.

1.4 Structure of this thesis

The present work is structured as follows. The next chapter provides theoretical aspects of simu-
lation, involving terminology, advantages and disadvantages as well as a process flow model for
carrying out simulation studies. Moreover, a very technical insight is given into the fundamental
concept of discrete-event simulation and modern simulation tools are listed. Subsequently, the
concept of Virtual Local Area Networks (VLANs) is described, as they are applied in various
protection and recovery protocols. The second chapter is closed with a detailed overview of
the state of the art of such protocols. Chapter 3 deals with the model conceptualization of the
communication system and its implementation using the INET framework. Furthermore, two
enhancements of the framework are proposed in this section. Chapter 4 includes a description of
the conducted experiments and a thorough analysis. In Chapter 5, the thesis offers a discussion
of lessions learned and draws a final conclusion.
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CHAPTER 2
State of the Art

This chapter deals with the state-of-the-art of simulation and network technologies. More pre-
cisely, the first part of this chapter provides a detailed insight into the area of simulation. The
second section outlines the concept of VLANs, which are used in the proposed approaches for
building resilient networks. Subsequently, candidate technologies that can be used for resilient
communication are discussed in a further section.

2.1 Simulation

The following section introduces the terminology used in the field of simulation. Additionally,
purposes for carrying out simulation studies and their benefits and drawbacks are explained.
Furthermore, possible classification schemes are described. Then, a more technical insight is
provided into the functioning of discrete-event simulation environments. The last section deals
with network simulation tools.

2.1.1 Terms & Definitions

A simulation is defined by [3] as

“the imitation of the operation of a real-world process or system over time. Whether
done by hand or on a computer, simulation involves the generation of an artificial
history of a system and the observation of that artificial history to draw inferences
concerning the operating characteristics of the real system.”

In [4] it is stated that simulation is a very general term as it has many fields of applications and
is seen as

“a broad collection of methods and applications to mimic the behavior of real sys-
tems, usually on a computer with appropriate software.”
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or as

“the process of designing and creating a computerized model of a real or proposed
system for the purpose of conducting numerical experiments to give us a better
understanding of the behavior of that system for a given set of conditions.”

and refers to computer simulation when the imitation is done by software.
A more general definition is provided by [5], which describes a simulation in the context of
computable systems as

“the execution of calculations using a model where input data is transformed into
output data.”

In the area of computer simulations, this transformation is done by a simulation system or simu-
lator using an appropriate algorithm, which stores or outputs the results [5].
Summarizing these definitions, a simulation is an analysis method which is used to study the be-
havior of a system. [6] classifies simulation among other possibilities for studying real systems,
like experiments or analytical approaches, according to Figure 2.1.

Real system

Experiment

Theoretical study

Simulation Analytical approach

Model

Figure 2.1: Possibilities to study the behavior of a real system [6].

[5] cites that, a system is a set of the system’s elements — its subsystems — which cooperate
in a requested manner. It can be a physical object or a hypothetical construct and is characterized
by its environment, structure and behavior. Since the elements of a system are again subsystems,
it depends on the intention of the investigator at which abstraction level the system is observed.
According to [4], a system is a facility or process which is either actual or planned, for example:

• “A computer network with servers, clients, disk drives, tape drives, printers, networking
capabilities, and operators.”

• “A freeway system of road segments, interchanges, controls, and traffic.”

• “A bank with different kinds of customers, servers, and facilities like teller windows,
automated teller machines, loan desks, and safety deposit boxes.”

• “A distribution network of plants, warehouses, and transportation links.”
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[5] states that the model, as a imitation of the real system, has to be sufficiently similar to
the system in order to satisfy its purpose of creation. A simulation model is built with regard
to a set of assumptions concerning the operation of the system [3]. These assumptions are
mathematical, logical or symbolic expressions of the relationships between the objects of interest
of the system, also called entities. However, the collection of entities considered for investigation
can vary by the purpose of the simulation study. Numerical, computer-based simulation can
be used to imitate the system’s behavior over time, when real-world systems are too complex
for being solved mathematically (e.g., by differential calculus, probability theory or algebraic
methods) [3], or the mathematical solutions would not be valid anymore as they use a strong
simplified model [4].

[3] introduces the following terms. The state of a system is a set of variables which describes
the system at any time (considering the purpose of the study). An event is an occurrence, which
might changes the state. Attributes are properties of entities. An activity is a time period of
specified length. Endogenous activities or events happen within the system, exogenous in an
environment that affects the system. For example, having a communication system, entities can
be messages with their length or destination as attributes. The message transmission can be seen
as an activity and the arrival at the destination as an event. A state variable of the communication
system can be for instance the number of messages waiting to be transmitted.

2.1.2 Purposes, advantages & disadvantages

Simulation studies are carried out for several purposes bringing along advantages and disad-
vantages. By simulation, a system is investigated to gain information about it, e.g. for theory
construction [5]. “What if” questions about the system can be explored and insights into the
interactions of variables can be derived by varying the input data and studying the resulting
output [3]. The goal of a simulation study can even be the understanding of how the system
works, not necessarily the results of the study. Defining how the system works often opens in-
sights into what needs to be changed to improve its operation [4]. System parameters, which
lead to increased performance, can be determined by means of simulation. Furthermore, the
future behavior or development of a system can be predicted [5]. For example, how potential
changes on the system would impact the system’s performance [3]. Simulation also supports
planning, as information for the construction and dimensioning of a system or its subsystems
can be gathered [5]. A system still in the design state can be investigated or new designs or poli-
cies can be tested before they become implemented. Possible improvements might be already
identified during the design process of the simulation model [3]. Moreover, simulation can be
used for pedagogical purposes and allows learning without the cost of on-the-job instruction [3].
Besides, simulation allows to carry out experiments which can not be done on the real system.
For instance, when the (real) system does not exist yet or is not available or influenceable for
or by the experimenter (e.g., another star system). Other reasons are that an experiment would
be too dangerous or not ethically correct (e.g., nuclear tests), too expensive or even destroy the
system. Experiments on the real system are also impossible when it is not practicable to observe
the desired process in the real system or the experiment aims to predict the state of the system
in the future (e.g., weather forecast) [5]. Beyond that, analytical solutions can be verified using
simulation [3].
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However, it is not always appropriate to instrument simulation. [3] claims that simulation is not
suitable when:

• The problem can be solved by common sense or analytically.

• It is less expensive to do the experiments on the real system or the costs of a simulation
study exceed the savings.

• The resources or time needed for a simulation are not available. For example, neither
input data nor estimations are obtainable.

• There is not enough time or personnel available to conduct verification and validation of
the model.

• The system is too complex or can not be defined.

Besides that improving performance-price ratios of computer hardware increases the popularity
of simulation [4], investigators can benefit from the following advantages:

• Simulation allows to imitate also complicated or stochastic structures as a model. The
simplification of those for analytical methods could alter the system too much and thus
lead to falsified results [5]. [4] defines simulation as a versatile and powerful tool, as it is
able to deal with very complicated models of correspondingly complicated systems.

• Simulations can be used in stationary and non-stationary cases, whereas analytical solu-
tions can often only be deduced for the steady state [5].

• With a simulation, it is easier to apply different system configurations or change the envi-
ronmental conditions [5].

• A simulation allows to investigate the system over a longer period [5], or time can be
compressed or expanded to enable the observation of a speeded-up or slowed-down pro-
cess [3].

• Results of a simulation can be presented very realistically (e.g., flight simulator), which
leads to higher user acceptance [5].

• By building the model, more insights in and knowledge of the real system are gained [5].
Bottlenecks can be discovered [3].

• The experimentation with the model could reveal attractive alternatives, which could not
have been tried out with the real system [4].

• Mistakes on the simulation do not effect the real system [4]. Using simulation, new fea-
tures can be explored without interfering ongoing operations of the real system [3].

• In some cases, it is possible to perform quick and valid decision making [4].
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• Hypotheses about the occurrence of phenomena can be tested for feasibility [3].

On the contrary, simulation entails the following disadvantages:

• Results of stochastical simulations disperse per se. For exact deductions, several simula-
tion runs have to be carried out which then have to be analyzed with statistical methods [5].
It is hard to determine how long is “long enough” or how often is “often enough” [4].
Furthermore, it is sometimes difficult to determine whether an observation results from
system interrelationships or from the randomness [3].

• The development of simulation models can be very time consuming and expensive. In
some cases, special software is needed [5].

• With analytical solutions, a similar system can be deduced easily, whereas with simulation
all steps have to be repeated with the modified parameters [5]. In some cases, simulation
is used although analytical solutions would have been possible and preferable [3].

• Easy comprehensible results of simulations might bring along certainty which is not nec-
essarily justified [5].

• When the experiments are performed with the real system, investigations are unquestion-
ably conducted on the “right thing”. There have to be no worries whether a model is a
valid representation of the system [4]. [4] refers to a Type III Errors when right, simply and
clear answers are found to the wrong questions, for example because of an over-simplified
model of a system.

2.1.3 Classification of systems, models and simulations

The following paragraphs describe how systems, models and simulations can be classified.

Physical or logical models

[4] distinguishes between physical and logical or mathematical models. A physical model is
a physical replication — either scaled or real size — of a real system. For instance, future pi-
lots can be trained in flight simulators. The enlargement of an atom or the scaled-down version
of the solar system are scaled models [3]. A logical or mathematical model, which is usually
represented in a computer program, is a set of structural and quantitative approximations and
assumptions about the functionality of the (future) system [4]. Those are either traditional math-
ematical tools like queueing theory, differential-equation systems or linear programming, or an
algorithm to produce numerical answers when it is not possible to derive a simple closed-form
formula. [3] defines a simulation model as a particular type of a mathematical model. [5] even
lists the description of the relationship of “ego” and “super-ego” as an example for a verbal
model in the psychological theory.
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Static versus dynamic systems and models

[4] states that in dynamic models, time plays a natural role and most operational models are
dynamic, e.g. a manufacturing model. Tighter definitions are given by [3], which specify a
static simulation model as the representation of a system at a particular point in time and a
dynamic model as the representation of a system as it changes over time.
[5] states that there exist many definitions of static and dynamic models of different authors.
One of them claims that a system is dynamic when its state changes or can change during the
considered period of time. Another one defines a model as dynamic, when model variables
change over time. In economics or social science, a model is dynamic when the state of a model
depends on a former state, for example, when the gross national product is determined by the
previous year’s value.

Continuous versus discrete systems, models and simulations

In a discrete system, the state changes only at a discrete set of points in time (e.g., the number
of customers in a bank). On the other hand, [3] refers to a continuous system, when the state
changes continuously over time (e.g., the water level behind a dam). The definitions of a discrete
and continuous model are analogous, whereby a discrete model is not always used to model a
discrete system and a continuous model does not always represent a continuous system. When a
model consists of entities which are subject to both continuous and discrete changes, the model
is called mixed continuous-discrete model [4]. For example, a model of a refinery where the
pressure in the vessels changes continuously and shutdowns occur discretely, is a mixed model.
However, the choice of using a discrete, continuous or mixed simulation model depends on the
characteristics of the system and the goal of the study [3]. According to [3], a discrete-event
system simulation is

“the modeling of systems in which the state variable changes only at a discrete set
of points in time.”

[5] claims, that for classification, a distinction between quantities and processes in a system
and model is necessary, respectively. A continuous quantity (e.g., time intervals) can be defined
with an arbitrary value out of infinitely many values of a finite interval, whereas a discrete quan-
tity accepts only values out of a finite set in a finite interval (e.g., number of persons waiting
in a queue). However, sometimes continuous quantities in a real system become discrete in the
model because of measuring accuracy, or discrete quantities become quasi-continuously. For
instance, a quantity in the scope of trillions is quasi-continuously changing when only the unit
position is increased.

According to [5], a discontinuous process is an event without duration, which causes a sud-
den state change (“shift”) at a certain point in time. Furthermore, continuous processes presume
continuous quantities and discontinuous (discrete) quantities lead to discontinuous processes.
According to [5], in the context of simulation a combination of discontinuous processes and
continuous quantities can be classified as discrete-event simulation.
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[5] argues, that within a simulation, there are just countably many shifts on the quantities and
thus countably many manifestations of a quantity. Table 2.1 shows the proposed classification
by the kinds of process and quantity.

Quantities
continuous discrete

Process continuous continuous simulation —
discontinuous discrete simulation

Table 2.1: Classification of simulations by processes and quantities according to [5].

Deterministic versus stochastic models and simulations

In [3], a deterministic model is defined as a model where known inputs result in a unique set
of outputs, i.e. a model which does not contain random variables. On the contrary, a stochastic
model has at least one random variable as input and thus random outputs, which are just statis-
tical estimates of the true characteristics of the system. A model can have both stochastic and
deterministic inputs [4]. In [5], stochastic simulations include stochastic processes, realized as
stochastic variables which influence the simulation runs and cause the outputs to disperse.

Models and systems with or without feedback

In systems without feedback, there is just one direction of the causality, i.e. quantity A affects
quantity B but not vice versa [5]. Well known examples in engineering area are control engi-
neering for systems with feedback and systems with open-loop controllers for systems without
feedback.

The following examples illustrate the application of models with and without feedback in
the field of queuing theory [5]. For instance, in a supermarket, the length of a queue depends
on the number of customers who enqueue and those who dequeue after they were served at the
desk. Input data are the time between arrivals and the service time which are usually meant to
be invariant. Alternatively, the number of new arrivals at the queue of a sidewalk ice cream shop
may depend on the current length of the queue. Next, the customers can decide if they want to
queue up and are not forced to do it because they want to leave the shop (as in the supermarket).
The sidewalk shop would be represented in a model with feedback.

Terminating or non-terminating systems

A system is terminating, when there is a natural end of the system’s processes during the in-
vestigated period of time. More precisely, the system can run permanently, but the considered
processes terminate. In other words, the processes can be repeated, but the end state of a termi-
nated process will not be the initial state of the next repetition [5].
For instance, the line in a shop forms after the shop opening, does probably disappear during
the day and is eventually gone when the shop has closed. Then, all processes of the system are
terminated.
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Of course, the line can form again at the next shop opening, but the line state of the last opening
has no affect on the new opening [5].
A system is defined as non-terminating, when it or its processes run permanently [5]. In contrast
to terminating systems, the state is not reset after an interruption. For example, the stock size of
a warehouse is daily reduced when goods leave the warehouse and increases on a weekly basis
by deliveries. A longer interruption like the end of the work day does not affect the process of
the stock size, as the stock is as large in the evening as on the next morning.
Usually, the whole period of a terminating system and just a finite time span of the infinite
duration of a non-terminating system is investigated by simulation [5].

Stationary or non-stationary systems

[5] cites that (in discrete systems) the probability of a certain state remains the same in the
stationary phase. The dispersion of simulation quantities increases during the transient state and
has a steady maximum in the stationary phase. Systems which stay in non-stationary state have
for instance input data varying over time or the system itself has a permanent trend (e.g., the
earth’s population).

Real-time versus non-real-time simulation

Real-time simulations execute like the modeled system, for example a flight simulator, or have
real data as input. The non-real-time simulation’s duration depends on the computing capacity
and does not correlate with the real time. When the purpose of the simulation is to provide a
prediction (e.g., of climate or geological changes), the simulation has to run faster than in real-
time. Sometimes, it is also necessary that simulations slower processes down, for instance when
effects in nuclear physics are investigated [5].

Time-, event- or process-oriented simulation

The basic principles of a time- and event-oriented simulation are depicted in the flow-charts in
Figure 2.2a and 2.2b, respectively. In a time-oriented simulation, the state changes with every
incrementation of the time. Thus, the granularity of the time specifies the duration of a state
transition. The simulation stops when the simulation clock reaches a certain value or another
termination condition is fulfilled [5].
In the event-oriented simulation approach, the computational work depends on the occurrence
of events and their impact [4]. These events are stored in an event queue and thus processed
according to their scheduling time. The event triggers a state change on the associated object
and new events are probably generated and stored in the event queue. The execution of the
event itself is not time consuming. This kind of simulation terminates when the event queue is
empty, a certain event is triggered or a specified point in simulation time is reached [5]. In this
approach, one master controller manages all events, entities, attributes, variables, and statistical
accumulators [4].
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Figure 2.2: Time- and event-oriented progress in simulations [5].

In a process-oriented simulation, the simulation is seen from the point of view of an entity
“as it works its way through the model”, which is comparable to flowcharting [4]. Using this
approach, the simulation time progresses while an object’s method is executed where the state
of the object is changed. This is usually done with a waiting function. The object is deactivated
until the waiting period is over or another event occurs. For instance, when a customer enters
the cash desk, the desk changes its state to “busy”, waits as long as the service requires and
changes then back to the state “available”. Furthermore, other processes may run in parallel
when a process is waiting. Thus, the waiting process has to store its state and to recover, when
it is activated again [5].

Other simulation approaches

Additionally, there exist other types of systems and simulations, like chaotic systems, finite-
element-simulation and Monte-Carlo-methods [5]. In [7], a backbone network was simulated
using the OPNET Modeler. Therefore, a hybrid simulation (real-time according to [5]) was
carried out as previously measured real network traffic was imported as “background traffic”
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into the simulation model [7]. According to [8], emulation is performed when the simulation
exchanges data with real network devices. In [9], an interface was implemented which en-
ables communication between simulated and real, IP-based hosts in a network. This module
was extended to use it for an emulation environment for Message Passing Interface (MPI) pro-
grams [10, 11].

2.1.4 Simulation methodology

In [5], a basic model is provided, which shows the required steps to be processed for deriv-
ing a simulator from a real system. This basic model is depicted in Figure 2.3 and shows the
dependencies of the real or hypothetical system, the formal (mathematical) model and the com-
puter model (simulator). The initial step is the model building process, where the real system
is transformed into a mathematical or formal model. Therefore, a system analysis is carried out
to study the structure of the real system including interactions and behavior of its components.
In the phase of the model suitability test, the formal model is tested whether it represents the
system sufficiently to answer the research questions of the simulation study. During the model
implementation, the formal model is built into an executable simulation program (according to
usual software engineering paradigms). Model verification examines if the computer model is an
accurate representation of the formal model. To complement the basic model, model validation
is performed to check if the computer model is an adequate representation of the real system,
which is done by comparison of the simulation results with expected or results of the real sys-
tem. If necessary, the formal model or implementation has to be reviewed and modified and the
process starts again (not indicated in the graph).

Real or 

hypothetical 

system

Computer 

model

(simulator)

Formal 

(mathematical) 

model

Model suitability test Model verification

Model validation

Model building process Model implementation

Figure 2.3: Basic model of a simulation study according to [5].
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The steps processed for a thorough and sound simulation study according to [3] are depicted
in Figure 2.4. The first step of the process flow is the Problem formulation, where the problem
is stated by analysts or the owners of the problem. Occasionally, the problem formulation has to
be repeated during the study (not indicated in the graph), when a problem is encountered. In [5],
this step also includes the delimitation of the real system and a definition of the model’s level of
detail.

Problem formulation

Setting of objectives and

overall project plan

Model conceptualization

Model translation

Experimental design

Verified?

Data collection

Yes

Validated?

Yes

Production runs

and analysis

More runs?

Documentation

and reporting

Implementation

No

NoNo

Yes

Yes

No

Discovery and orientation

Model building and data collection

Running simulations

Implementation

Figure 2.4: Process flow model of a simulation study according to [3].

In the second step called Setting of objectives and overall project plan, the questions to be
answered are declared as aims of the study. Additionally it is determined, whether simulation
is the appropriate tool to solve the problem and accomplish the objectives. When simulation is
appropriate, a project plan is worked out. This plan includes a statement of alternative system
designs to be considered and how they can be evaluated with respect to their effectiveness.
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Additionally, the plan contains common points of project planning, like expected costs, the
amount of working-days required to accomplish different work packages and also results ex-
pected at the end of various milestones [3].

The steps Model conceptualization and Data collection take place in parallel as there is a
constant interaction between them. [3] describes the construction of a system’s model to be as
much art as science. The model improves with the designer’s ability to abstract crucial features
of a problem and “to select and modify basic assumptions that characterize the system” [3]. Us-
ing these essences, the model is elaborated until it is a useful approximation of the system. [3]
recommends to start with a simple model and successively add more complexity. This complex-
ity should not exceed the desired complexity needed for the purpose of the study, as it would just
cost unnecessary resources. There is no need of an one-to-one mapping between the model and
the real system [3]. In [5], the kind of the simulation, either deterministic or stochastic, or time-,
event- or process-oriented, is specified in this phase. Along with the changing of the model’s
complexity, the required data elements can vary. The kind of data to be collected depends on
the objectives of the study. For instance, when the study is about the dependency of lengths of
waiting lines and the number of cashiers, distributions of interarrival times and service-times for
the cashiers are needed. Historic distributions on the lengths of queues will be used to validate
the model [3]. In the fifth state, the Model translation, the conceptual model is transformed into
a computer-recognizable format. This can be either done by programming the model in a sim-
ulation language or using special simulation software. Simulation languages are more powerful
and flexible, but development effort can be reduced when it is possible to embed the problem
into a simulation software [3]. The (repeatable) step Verified? checks if the computerized rep-
resentation (operational model) of the conceptual model is correct, i.e., if the conceptual model
is reflected accurately in the operational model. The phase Validated? is carried out to examine,
if the conceptual model is a sufficiently accurate representation of the real system. [3] describes
that this is usually done by calibration, where the behavior of the computerized model is com-
pared with the real system’s behavior and the model is successively improved through gained
insights and revealed discrepancies. As indicated in Figure 2.4, the phase of model building
and data collection can be repeated many times and a continuing interplay might be necessary
among its steps until an acceptable representation of the real system is achieved [3].

For each system design that is investigated, the nature of the experiment (e.g., the length of
the initialization period and run, the number of replications) is specified in the phase Experimen-
tal design. Which alternatives are simulated might depend on results of already completed and
analyzed runs, as indicated by the feedback arrow originating from step the More runs?. In Pro-
duction runs and analysis, the defined experiments are carried out. Subsequently, estimations
of measures of performance for the simulated system designs are obtained through analysis.
Depending on the results, the analyst decides if more runs or even experiments with different
system designs are needed [3].

When all runs are completed, the step Documentation and reporting follows. On the one
hand, program documentation is created to support the understanding of how the simulation
environment works, for example when it is used again or modified later by the same or another
analyst, or when model users want to learn about the relationships between input parameters
and output measures by changing parameters. On the other hand, frequent deliveries of progress
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documentation during the project provide important information about work done and made
decisions during the simulation project. A final report will allow the model users to review the
final problem formulation, the investigated alternative systems and how they were compared,
the results of the experiments and proposed solutions to the stated problem. Additionally, the
final report should add to the credibility of the model and its building process and provides a
foundation of certification for higher level decisions [3].

The last step Implementation, indicates the completion of the study. According to [3], a
successful implementation “depends on continual involvement of the model user and on the
successful completion of every step in the process”. [3] claims that the validation step is perhaps
the most crucial one, as it prevents from building an invalid model and thus Type III Errors (see
Section 2.1.2).

2.1.5 Fundamental concept of discrete-event simulation environments

This section describes the fundamental manner of functioning of discrete-event simulations.
Additionally to some basic blocks defined in Section 2.1.1, the following components are intro-
duced or repeated [3]:

• A list is a “collection of (permanently or temporarily) associated entities”. It is ordered in
some logical fashion.

• An event is an “instantaneous occurrence that changes the state of a system”.

• An event notice is a “record of an event to occur at the current or some future time, along
with any associated data necessary to execute the event”.

• An event list is a “list of event notices for future events, ordered by time of occurrence”.
The list is always sorted by the event time indicated in the event notice. It is also known
as Future Event List (FEL) or Future Event Set (FES) [12].

• An activity is “a duration of time of specified length, which is known when it begins”. The
duration is characterized and defined by the modeler, either deterministically (e.g., exactly
3 minutes), stochastically (e.g., drawn at random from a set with equal probability) or by
a function depending on system variables and/or entity attributes.

• A delay is a “duration of time of unspecified indefinite length, which is not known until
it ends”. For example, the customer’s delay in a Last In First Out (LIFO) waiting queue
depends on future arrivals of customers.

• Clock is a variable which represents the simulated time.

The duration of an activity is computable at the instant it begins and is not affected by
other events, unless this is enabled by the simulation package. In such a case, the simulation
environment allows canceling or postponing of an activity in progress. Thus, to keep track of
an activity and its completion time, an event notice for an end-of-activity event is created at the
simulated begin of the activity’s duration.
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This event, often called primary event, occurs at the completion time of the activity [3]. For
example, if the current value of clock is 50 and an activity A with duration 5 is just beginning,
an event notice for an event “end-of-activity-A” with occurrence time 55 is created [3].
On the contrary, the duration of delays is not predefined a priori and is rather determined by
system conditions, e.g., when some logical conditions become true or other events occur [3].
However, the completion of delays, also named conditional or secondary events, are not man-
aged by event notices stored in the FEL. The associated entities are placed in another list until
the system conditions admit their processing [3]. A delay is also referred to as conditional wait
and an activity as unconditional wait [3].

As dynamic systems change over time, the simulation system’s state, number of active en-
tities, attributes, the contents of sets, as well as activities and delays currently in progress are
changing over time. These components are functions of the simulation time clock [3]. As al-
ready stated in Section 2.1.3, a discrete-event simulation models a system which changes at
certain points in time. Those are the points when an event occurs. The evolution of the sys-
tem over time is represented by a sequence of system snapshots (images) [3]. A snapshot at
clock = t includes the current system state, FEL, sets, statistical accumulators and other values
at time t [3].

Event-scheduling/time-advance algorithm

The FEL is the key element in the event scheduling and time advance algorithm. It holds a list
of event notices for events which are scheduled in the future time. Scheduling a future event
means that, at the time an activity begins, an end-of-activity event notice is placed into to the
FEL, whose event time is the activity’s begin time plus its duration [3]. At clock = t, the FEL
contains all events scheduled before t which will occur in the future. The FEL is always sorted
in chronological order by the event times t1, t2, . . .. Thus, the event times in a FEL satisfy

t < t1 ≤ t2 ≤ t3 ≤ . . . ≤ tn.

The imminent event is the next event which will occur, in the above case the event associated
with time t1. After the system image has been updated at clock = t, the simulation time
advances to clock = t1, the event notice associated with t1 is removed from the FEL and its
event is processed. Thereby, the event changes the snapshot of time t, which results in the
new snapshot for time t1. When new future events are generated at t1, they are scheduled
by placing them into the right (temporal) position on the FEL. Then, the simulation time is
advanced to the event time of the new imminent event and the procedure starts again. This
is repeated until the end of a simulation, which is either triggered by scheduling of a “stop
simulation” event at a specified future time or by waiting for a certain event to occur. The time
of this event is not known apriori, it might even be an interest of the simulation study [3]. The
event-scheduling/time-advance algorithm refers to the mechanism a simulator has to perform
to advance the clock and build a new system snapshot [3]. As described, unlike real time, the
simulated clock does not flow continuously but rather jumps from the time of one event to the
time of the next event [4].
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The management of the FEL has a major impact on the model’s computer runtime, as the
FEL is subject to permanent changes during the simulation progress. The main operations are
the removal of the imminent event and the insertion of a new event somewhere in the list with re-
spect to the logical organization of the ordering [3]. In the Objective Modular Network Testbed
in C++ (OMNeT++), the FEL is organized as a binary heap which is stored in an array. A cir-
cular buffer is realized to store the events which are scheduled at current simulation time1 [12].

Furthermore, the question of what happens if two events have the same event time may arise.
In some simulation systems like e.g., OMNeT++, events are realized as messages which are sent
from one module to another. These messages are stored in the FES. The time an event occurs
is the arrival time of the message [12]. As stated in [12], events are consumed from the FES
applying the following rules to meet causality:

1. Given two messages, the message with the earlier arrival time is executed first. If the
arrival times are the same,

2. the message with the smaller scheduling priority value is consumed first. If the priorities
are the same,

3. the message which was sent earlier is processed first.

The scheduling priority is a message attribute which can be assigned by the user.

2.1.6 Network simulation tools

[13] lists different modeling and simulation tools used in the field of communication networks.
According to [13], the tools can be classified into four groups:

• Analytical tools are used to design a network model and calculate various factors, e.g.,
reliability or utilization.

• Simulation tools are, besides modeling, able to simulate dynamic behavior of networks,
e.g. the Transmission Control Protocol (TCP) protocol, packet flow or link failures.
Mostly, it can visualize the dynamic behavior of a system whereas analytical tools can
not.

• Topology discovery tools are used to extract an actual network topology and present it in
a graphical or textual manner.

• Topology generation tools allow to generate network topologies based on different algo-
rithms.

For the purpose of this thesis, a hybrid of an analytical and simulation tool is needed. [13] di-
vides simulation tools by their field of usage, either educational, commercial or specialized.
Some of the educational simulation tools mentioned are ns-2, pdns, MaRS, Network Workbench,

1see cmessageheap.h and cmessageheap.c of OMNeT++ 4.2.2
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WIPSIM, GTNetS and NetSim. OPNET is listed among the commercial tools, all other tools
provided in [13] are currently not available. ATM-TN, GloMoSim and QUIPS-II are stated as
examples for software in specialized fields.

The last version of ns-22 was released in November 2011 and is developed in C++. Simula-
tion models are written in OTcl (an objected oriented version of Tool command language (Tcl))
scripts and the behavior of a model can be visualized with nam (Network Animator) [13]. New
object classes have to be programmed in a OTcl class and added to the original source code of
ns-2 [14]. Hereby, re-compiling is necessary, but inefficient [15]. pdns3 is an extension of the
ns-2 simulator and enables the user to run ns simulations in a distributed environment. ns-34

is a new release of ns-2, which is not backward compatible to ns-2. Both versions are avail-
able for free though [15]. ns-3 is mostly used in the field of wireless IP simulations. Network
Workbench5 contains a protocol stack abstracted from the TCP/IP stack including Ethernet and
TCP/IP [13]. Apparently, it does not implement a full version of IP but rather a protocol with
limited functions [16]. Ethernet is only implemented as an abstracted version, too. MaRS6 only
supports network routing protocols. The support of protocols on the transport and application
layer is very limited [13]. The WIPSIM7 project started in 2000 and its focus is put on the Media
Access Control (MAC) and IP layer. Due to the small user and developer base of WIPSIM, there
exists some uncertainty about the correctness of the implemented protocols [13]. The network
simulation environment GTNetS8 is based on C++ and supports a number of protocols including
Ethernet and Internet Protocol version 4 (IPv4). Building a network simulator is done by devel-
oping a C++ main program that instantiates the network elements, applications and protocols.
After compiling and linking this program with GTNetS libraries, the simulation executable can
be run. This can be a major drawback, when the program has to be re-compiled everytime the
setup of a simulation experiment changes. GloMoSim is a simulation environment for wireless
mobile networks and thus cannot be used in the context of this thesis. NetSim9 is available under
a proprietary license. QUIPS-II is specialized on the design and evaluation of IP networks us-
ing differentiated service (DiffServ) for Quality of Service (QoS) mechanisms [17]. ATM-TN10

is used to simulate Asynchronous Transfer Mode (ATM) networks. The commercial tool OP-
NET11 is not considered as it is not available for free. [15] compares a set of different network
simulators including ns-2 and OMNeT++12. According to this comparison, OMNeT++ is the
most efficient open-source environment among this selection for this work.

2http://www.isi.edu/nsnam/ns/
3http://www.cc.gatech.edu/computing/compass/pdns/
4https://www.nsnam.org/
5http://netlab.gmu.edu/networkbench/
6http://www.cs.umd.edu/projects/netcalliper/software.html
7http://ostatic.com/wipsim
8http://www.ece.gatech.edu/research/labs/MANIACS/GTNetS/
9http://tetcos.com/netsim_gen.html

10http://warp.cpsc.ucalgary.ca/Software/ATM-TN/atm-tn.php
11http://www.riverbed.com/products-solutions/products/

network-performance-management/network-planning-simulation/
Network-Simulation.html

12http://www.omnetpp.org/
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OMNeT++, is an open-source library and framework for building network simulations based
on C++. According to [12], it has a broad field of application and can be used e.g., for mod-
eling of wired and wireless communication networks, queuing networks, multiprocessors and
other distributed hardware systems or even for validating hardware architectures. Generally,
any system where the discrete event approach is applicable, can be modeled and simulated us-
ing OMNeT++ [12]. The simulations can be run on a graphical, animated user interface or
command-line based which is very practicable for batch execution. OMNeT++ is free for aca-
demic and non-profit use, for commercial purposes a license can be obtained [12]. In [8] is
stated, that OMNeT++ itself is not a network simulator, it rather includes the machinery and
tools to write simulations. The components needed for various applications are rather provided
by simulation models and frameworks13 [8].
INET14 is a framework, which is based on a modular approach and provides models for proto-
cols of the International Organization for Standardization (ISO) Open Systems Interconnection
(OSI) layers, such as Ethernet, Address Resolution Protocol (ARP), Internet Control Message
Protocol (ICMP), IPv4, Internet Protocol version 6 (IPv6), User Datagram Protocol (UDP), TCP
or Hypertext Transfer Protocol (HTTP). New mechanisms can be added and the already imple-
mented protocols can be modified and extended easily. INETMANET, developed in parallel to
INET, is an extension which adds protocols mainly used for mobile ad-hoc networks. MiXiM15

is a framework which contains protocols for mobile and fixed wireless networks. According to
its webpage, it offers detailed models of radio wave propagation, interference estimation, radio
transceiver power consumption and wireless MAC protocols such as Zigbee. TTE4INET is an
extension of INET for the simulation of the time-triggered Ethernet (TTEthernet).

From the INET framework, the models for Ethernet, ARP and IPv4 can be used for the
simulations in the context of this thesis. The combination of OMNeT++ and INET, along with
their flexibility (even the FES can be accessed, see Section 3.3.1), makes a very powerful tool
and is thus chosen for this work.

2.2 Virtual Local Area Network

VLANs provide the possibility to create independent logical networks within a physical net-
work [18]. Using VLANs, one physical Local Area Network (LAN) can be treated as many
logical LANs [19]. These logical LANs are grouped by end-station or switch characteristics,
or frame protocols — there is no need to change the cabling. The stations do not have to be
on the same LAN, it is sufficient when there exist physical connections (like backbones and
bridges) among them [18]. A trunk link, incident to a switch’s trunk port, is a connection be-
tween two switches which is able to carry traffic of multiple VLANs at a time [20]. Therefore,
VLANs can be used to realize advanced switching functions such as redundancy mechanisms
(see Section 2.3).

13http://omnetpp.org/models/catalog
14http://inet.omnetpp.org/
15MiXiM, http://mixim.sourceforge.net/
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VLANs can be classified by the way the VLAN membership is determined. [18] distin-
guishes between attribute- and protocol-based VLANs. With the attribute-based approach, each
switch possesses an access list which holds attribute/VLAN associations. When it relays a
frame, a switch can deduce whether ports are members of VLANs based on these mappings.
In [18], the attributes include the switch port number, the station MAC and IP address. With
the protocol-based method, the VLANs are determined by characteristics of the frame, not the
station characteristics or switch port setting [18]. The most commonly used technique is frame
tagging, which is also employed in the IEEE 802.1Q standard [21].
[22] refers to static VLAN assignment — also known as port-based VLANs — when a port
is assigned to one particular VLAN. Hereby, the drawback is that the configuration has to be
changed after a workstation has moved. Thus, with dynamic VLAN membership determina-
tion the switch retrieves information about the port’s VLAN from a VLAN Membership Policy
Server (VMPS). The VMPS maps the MAC address of the host, which is connected to the re-
quested port, to a VLAN [22].
The following VLAN association rules for determining the VLAN membership are described
in [23]. Based on these rules, a VLAN-aware device (station or a switch) decides about the
belonging of a frame. A VLAN-aware switch makes its forwarding decision not only on the
destination MAC address, but primarily on VLAN information associated with the frame. [23]
underlines, that from the device’s perspective, a frame, not the station, protocol or application is
unambiguously associated with one VLAN.
Implicit tagging is applied for membership determination, when a frame is parsed and a set of
association rules is applied on the gained information [23]. This is typically done on switches
which connect VLAN and non-VLAN environments. For example, an implicit tag could be the
source MAC address, the protocol type, higher-layer network identifiers or application specific
fields. Explicit tagging or simply tagging is done by adding a particular tag (VLAN tag) to a
frame [23]. For instance, a VLAN-aware switch receives an untagged frame, applies the asso-
ciation rules, tags the frame and forwards it to a VLAN-aware environment [23]. Accordingly,
the switches also have to remove a tag when the frame is relayed from a VLAN environment to
VLAN-unaware domains. Both, the tagging and untagging requires a recalculation of the Frame
Check Sequence (FCS) [23]. As the VLAN tags are transparent to VLAN-unaware switches be-
cause of the frame format definition, VLAN-unaware switches are able to process tagged frames
according to their MAC addresses (i.e. like usual frames) [23].
In port-based VLANs, the membership determination entirely depends on the port where the
frame arrived [23]. Thus, no frame parsing is necessary. MAC address-based mapping relies
on the source MAC address of the frame. It facilitates user mobility, as the user is associated
with its address and not the port it is connected to. In case of unkown source addresses, some
switches stick to the rules and do not forward the frame, saving the integrity of the VLANs
and providing security. Other switches just forward the frame based on the destination MAC
address, i.e. broadcast frames with unknown destination addresses [23]. However, port-based
and address-based mappings can be combined. Protocol-based VLAN association is based on
the used protocols, e.g. IP, Internetwork Packet eXchange (IPX) or AppleTalk. Combining
this with a mapping based on source MAC addresses, a VLAN for each set of protocol-specific
application can be created [23].
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In the example depicted in Figure 2.5, station 4 is a server which provides IP- and IPX-based
application services. Station 3 cannot access the IP-based service as it is on a different IP subnet,
but is able to use the IPX-based as it is on the same IPX network. Furthermore, all stations are
able to use the printer (station 5), as they are all members of the VLAN defined by the AppleTalk
protocol.

Figure 2.5: VLANs are defined for each set of protocol-specific application [23].

Using the IP subnet-based mapping, the membership is based on the subnet of the source
IP address contained in the encapsulated IP datagram. The switch extracts the IP subnet part
from the address using a configured subnet mask. Application-based VLAN mapping requires
the switch to examine the type of application from an untagged frame, which can be a complex
process and should not be a switch’s task. Thus, frame tagging by VLAN-aware end stations
provides a better solution. However, the resulting VLANs may be very transient as the stations
and applications running on the end stations can change frequently [23].

The standard IEEE 802.1Q implements frame tagging. It specifies a tag (of length 4 bytes)
which is inserted into Ethernet frames. The first two bytes after the source MAC address is
the Tag Protocol Identifier (TPID) field, which stores the specified value of 0x8100. Usually,
in untagged Ethernet frames, this is the position of the Type/Length field. When the value in
this field is greater than or equal to 1536 (0x0600), it is not interpreted as length but indicates
the protocol encapsulated in the payload (MAC client protocol) [24]. Since 0x8100 is larger
than 0x0600, the field denotes a Q-tagged frame. The Tag Control Information (TCI) field fol-
lowing the TPID comprises the fields priority, Canonical Format Indicator (CFI) and VLAN
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Identifier (VID)16 [18]. Using the three bit priority field, an eight level frame classification can
be performed. The CFI flag is set to one if the physical layer is based on Ethernet. If the flag is
zero, the frame is destined for a token ring and thus not forwarded as token ring cannot handle
tagged frames [18]. The 12-bit VID defines the VLAN the frame belongs to and thus enables
separation of frames belonging to different VLANs [21]. The null VID indicates that the frame
only contains priority information [21] and one is used as default VID when frames ingress a
port [21]. According to [24], the maximum length of Q-tagged frames is extended to 1522 bytes.
VLAN tags are not processed by hosts, so they just need to be available between switches [19].
As there exist switches or hosts which are not VLAN enabled, VLAN-compliant switches have
to be able to attach and detach the tag [19]. Devices which cannot handle Q-tagged frames, do
reject them [18].

The use of VLANs entails the following benefits. For example in a company, VLANs can be
used when the physical network structure does not fit the structure of the company. For instance,
the finance and R&D departments are located in the same building and use the same LAN in-
frastructure [19], or the logistics department is split up into two buildings. Then, the users can
be grouped by VLANs rather than by the physical network [25]. Being in the same VLAN, they
have access to the same servers and applications as if they were on the same physical LAN [25].
VLANs introduce flexibility, as it is possible to alter, e.g. add or remove stations [18] to or
from the logical topology without changing address assignments, the cabling [26] or physically
move stations and people [18]. This also allows to save costs of both money and time [18].
According to [18], stations can be members of multiple VLANs and VLANs are easy to config-
ure. Although the VLAN approach is cheaper for providing user mobility, it also involves more
performance requirements on the VLAN-aware switches [23] [18]. Furthermore, a workstation
should not necessarily be added to the VLAN for just occasional communication [18].
Inter-VLAN communication has to be controlled by a router and thus better control of network
security is reached by distributing users across different VLANs [25]. Then, stations can for in-
stance only eavesdrop on the multicast and unknown unicast traffic within their own VLAN [23],
unless one of the vulnerabilities mentioned below is exploited. Also, injected malicious traffic
is restricted to the own VLAN and does not disrupt the whole network [23]. For instance,
when using VLANs it is possible to separate the guest host from the LAN of hosts or servers
with confidential data. Notwithstanding, the concept of VLANs is vulnerable to security threats
like Tagging Attacks, Double-Encapsulated 802.1Q/Nested VLAN Attack, ARP Attack, Multicast
Brute Force Attack, Spanning-Tree Attack or Random Frame Stress Attack [27].
With VLANs, broadcast and multicast domains are restricted to a single VLAN and thus the net-
work utilization is minimized and the performance is increased [18,19]. However, using VLANs
bandwith preservation comes along without any more effort required [23]. For instance, the
enormous traffic produced by the R&D department during experiments can be separated from
the management in order to not disturb the management’s video conference [19].
VLANs can be created independent of the installed physical layer (e.g., Ethernet or Token Ring)
of the LAN [25], even though token rings cannot accept tagged frames [18].

16The priority field is called user_priority in IEEE 802.1Q-2003 and Priority Code Point (PCP) from IEEE
802.1Q-2005 on. Furthermore, the IEEE 802.1Q-2011 renames CFI to Drop Eligible Indicator (DEI).
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Some of the protocols described in Section 2.3 are based on VLANs or use VLANs to achieve
load balancing. Also, the Multiple Spanning Tree Protocol (MSTP) explained in Section 2.3.2
enables defining separate spanning tree instances within a grouping of VLANs [18].

2.3 Network protection and recovery protocols

Network protection protocols can be located on different layers of the ISO OSI reference model.
Building resilient networks at the Network Layer (NWL) implies the support of the resilient
mechanisms by the end-stations. In contrast, at the Data Link Layer (DLL), resilient networks
can be constructed without end-stations involved efficiency issues. Thus, only DLL protocols
based on Ethernet are considered in the following.

At the DLL, redundant switched networks are used to build resilient networks. Having mul-
tiple paths between two switches, bridging loops and thus broadcast storms may emerge which
excessively consume network resources. Therefore, a mechanism is needed to prevent such
loops in a topology. On the other hand, it is desirable that the topology is fault-tolerant, i.e. that
a redundant path is used in case of a failure.
The following sections describe such protection and recovery algorithms. In general, these pro-
tocols change the particular topology by blocking and unblocking certain ports. The period the
switches need to agree on the new topology after a change is called convergence time [28].

2.3.1 Proprietary protocols

In the following sections, the proprietary protocols Resilient Ethernet Protocol (REP), Ethernet
Protection Switching Ring (EPSR), Rapid Ring Protection Protocol (RRPP) and Turbo Chain
are described.

Resilient Ethernet Protocol

The REP is a proprietary technology implemented on Cisco R© Carrier Ethernet switches [29].
Figure 2.6 shows the basic element named REP segment, which consists of multiple switches
connected through REP enabled ports and is identified with a unique segment Identification
Number (ID). The ports at each end of the segment are called edge ports and are part of the edge
switches. In each segment, at least one port — the alternate port — is always blocked.

Figure 2.6: A REP segment [29].

A segment can be wrapped into a ring by installing the two edge ports on the same edge
switch or connecting the two edge switches. More complex ring topologies are shown in Fig-
ure 2.7. The links connecting the edge switches could be running Spanning Tree [29].
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However, a segment can be added to various network topologies by “plug and play” which
makes REP a very flexible protocol [29]. But, a switch has at most two REP ports with the same
segment ID.

Figure 2.7: More complex network topologies with three coupled rings at a time. The crossed
lines indicate the alternate ports and the arrowheads the edge ports [29].

Usually, on an intact segment the alternate port is blocked to establish a loop-free environ-
ment. If a failure is detected by one of the following to techniques, REP introduces a switch-over.
Basically, the integrity of a link is monitored via Loss Of Signal (LOS) testing and additionally
two adjacent REP nodes exchange hello packets to check the connectivity. After the detection
of a failure, the corresponding port sends notifications to unblock the alternate port and initiate
the other nodes to flush their Filtering Database (FDB). To speed up the convergence, these no-
tifications are sent with a Cisco multicast MAC address. The REP Adjacency Protocol, based on
sequence numbering and packet acknowledgement, allows a reliable dispersal. By default, REP
blocks one of the restored ports after a recovery. Using the so-called preemption feature, a pre-
ferred alternate port can be blocked instead after a certain delay or anytime manually. Thereby,
the segment remains in a well-known state. Additionally, REP is able to inform other segments
about topology changes by sending Topology Change Notification (TCN) messages.

Furthermore, REP supports security by using a key. Just REP nodes possessing the alternate
port key are able to unblock the REP alternate port and thus introduce a switch-over. The alter-
nate port automatically generates and distributes its key within the corresponding segment only.
So, every segment owns a unique key.

Moreover, it is possible to perform load balancing based on two ranges of VLANs. Then,
the primary edge port and a configurable alternate port is defined for the two VLAN ranges. In
the example illustrated in Figure 2.8a, two VLAN ranges 1− 200 and 201− 400 are defined for
load balancing.
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(a) Intact ring (b) Ring with a link failure

Figure 2.8: REP load balancing based on VLANs [29].

The alternate port of VLANs 1 − 200 is the primary edge port and the one of VLANs
201 − 400 a predefined port “Preferred Port”. The dashed arrows indicate the transmission
direction of frames per VLAN range. When a link failure happens, both blocked ports are
opened and the load balancing is deactivated per se (see Figure 2.8b). After a link recovery, one
of the ports incident to the repaired link comes up blocked. If preemption is enabled, the original
configuration is restored after the preemption delay.

Although REP does not aim to replace Spanning Tree Protocol (STP), it is able to interop-
erate with STP in case of topology changes [29]. As exemplified in Figure 2.9, it is possible
that a domain controlled by REP is adjacent to a domain controlled by STP, i.e. a switch can
offer both REP and STP functionality, but not at once on the same port. REP is able to in-
form STP about topology changes by creating and sending Spanning Tree Topology Changes
Notification (STCN) messages, but does not forward STP Bridge Protocol Data Unit (BPDU)
messages into the REP part of the network. In the above example, the link failure is propagated
with REP TCN messages within the segment, and to the STP domain by the “Edge Switch B”
using STCN messages.

Ethernet Protection Switching Ring

EPSR is a proprietary protocol of Allied TelesisTM 17 [30] which follows a similar approach as
Ethernet Automatic Protection Switching (EAPS). The protocol specifies a set of data VLANs,
a control VLAN and the associated switch ports of switches in a ring as EAPS domain [30]. One
node in the ring is referred to as Master node whose ports are defined as primary port and sec-
ondary port. In the absence of failures, the Master node blocks its secondary port only for the
data VLANs to avoid a loop. The control frames do not circulate as they are consumed by the
Master. EAPS implements two mechanisms for failure detection. The Master node either be-
comes aware of a failure when periodically sent Healthcheck frames do not reach the secondary

17www.alliedtelesis.com
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Figure 2.9: Interoperability of REP and STP in case of a link failure [29].

port anymore, or when it receives an unsolicited Link-down frame from a Transit node. When a
link or node failure happens, the Master acts similar to EAPS (see Section 2.3.2). EPSR imple-
ments enhanced recovery to support the recovery of a link in presence of two failures. Usually,
when a link recovers, the adjacent Transit node transitions into the Pre-forwarding state, i.e. it
blocks the repaired port until it receives a Ring-up-flush message from the Master node. When
there exists another failure on the ring, the restored port would remain in the Pre-forwarding
state without the enhanced recovery.

As shown in Figure 2.10a, two link failures divide the ring in two broadcast domains, do-
main1 (Node1, Master-Node, Node5) and domain2 (Node2, Node3, Node4). Since the Master
node is in the fault-state, it continues sending Healthcheck messages without receiving them
on its secondary port. When only one link recovers and the enhanced recovery is disabled, the
Master node would still not receive the Healthcheck messages and thus would not send a Ring-
Up-Flush frame. Hence, the newly restored ports would stay in Pre-forwarding state and for
data traffic, the network would still look as depicted in Figure 2.10a.

When the link between Node1 and Node2 comes up again having the enhanced recovery
enabled, both Transit nodes send a Link-Forward-Request to the Master node. Opon reception,
the Master sends a special Healthcheck message. If the message does not arrive on the other
port within a certain period, the Master node sends a Permission-Link-Forward. Either when
the Transit nodes receive a Permission-Link-Forward or do not receive it within a given interval,
they open the repaired ports for the data VLANs. In the latter case, the Transit nodes deduce
that the Master node is not reachable at all. After this enhanced recovery, all nodes are again
reachable on the data VLANs, i.e. domain1 and domain2 merge to one broadcast domain (see
Figure 2.10b).
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(b) One link recovered and enhanced recovery was applied.

Figure 2.10: A ring recovers from one of two link failures by “enhanced recovery” [30].

Like EAPS, the EPSR addresses the problem of possibly emerging “super-loops” as well.
Therefore, EPSR assigns a priority to every EPSR ring [30]. In case of a link failure of a
common link, the incident Transit nodes send Link down messages only to the Master of the
highest priority ring and thus only one secondary port will be opened [30].

Rapid Ring Protection Protocol

RRPP was developed by H3C an follows a similar approach than EAPS and EPSR. An RRPP
ring is defined on an Ethernet switched ring topology and owns a unique ID. An RRPP domain
can be configured on a single RRPP ring or multiple connected RRPP rings, whereas the con-
figuration depends on the kind of topology [31]. On a single ring, all devices are defined in one
domain (see Figure 2.11).

(a) Single-domain (b) Multi-domain

Figure 2.11: One or multiple domains can be configured on a single ring [31]. All devices of the
ring are within the domain.
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On intersecting rings, all devices are configured in one domain as well and one ring is ded-
icated as primary ring and the others as subrings (see Figures 2.12 and 2.14). In this case,
the whole primary ring acts like a logical node on the subrings [31]. However, when rings are
tangent as depicted in Figure 2.13, each of them needs to be in an own domain [31].

Figure 2.12: Two domains defined on two intersecting rings [31].

Each RRPP ring contains exactly one master node. The rest of the nodes are called transit
nodes. In an RRPP domain, the transit nodes edge node and assistant edge node are located at the
intersection points of the primary ring and subrings. The ports of the edge nodes incident to the
primary ring are named common ports and those incident to the subring edge ports. The common
link lies between the edge and assistant edge node (see Figure 2.14). The Sub Ring Packet Tunnel
in Major Rings (SRPTs) of a subring are the two paths on the primary ring connecting the edge
and assistant edge node. In the “dual homed” topology example provided in Figure 2.15a, the
common link is S2−S3 and the SRPTs ofRing 2 andRing 3 are “S3-S4-S1-S2” and “S3-S2”.

Each RRPP domain possesses a primary control VLAN, a secondary control VLAN and a
group of VLANs, which is protected by the domain. Data traffic is handled on the protected
VLANs. RRPP control frames, called Rapid Ring Protection Protocol Data Unit (RRPPDU), are
sent on the control VLANs.

Figure 2.13: A domain is configured for each RRPP ring in a topology of tangent rings [31].
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Figure 2.14: One domain defined on two intersecting RRPP rings [31].

An RRPPDU contains, amongst others, a field with the domain and ring ID it belongs to.
Primary ring control frames (RRPPDUs) and EDGE-Hello messages of subrings are transported
in the primary control VLAN. The ports on the primary ring are parts of the primary and sec-
ondary control VLAN, whereas ports on a subring are members of the secondary control VLAN
only. In the example depicted in Figure 2.14, both the primary control VLAN 3 and the sec-
ondary control VLAN 4 are defined on the ports of the primary ring Ring 1. On the other hand,
the ports of subring Ring 2 are only part of the secondary control VLAN.
As in EAPS and EPSR, the integrity of the rings is monitored by a polling and reporting mecha-
nism. When a ring is intact, the master node of the ring blocks its secondary port for all VLANs
except its control VLAN. When a link fails, the master opens its secondary port to recovery the
ring. However, this mechanism can lead to loops in subrings of “dual homed” topologies and to
overcome this problem, the SRPT State Detection Mechanism was introduced.
As mentioned above, multiple domains can be configured on single or intersecting rings (see
Figure 2.11b respectively 2.12). Thus, load sharing can be achieved since the traffic of both
domains chooses different paths when different master nodes are configured [31].

SRPT State Detection Mechanism
As stated previously, all control frames of subrings except EDGE-Hello messages are sent in the
secondary control VLAN. In a topology with intersecting rings, protocol packets of a subring are
transparently tunneled over one SRPT on the primary ring. Thus, no loops form on the primary
ring as those RRPPDUs are sent like data traffic.
In the example illustrated in Figure 2.15a, Ring 1 is the primary ring and Ring 2 and Ring 3
are subrings. When there is no failure present, the primary ring’s master blocks its secondary
port and thus no loops exist for the subrings’ data and RRPPDU messages on the primary ring.
But, the subrings’ masters receive their Hello-messages at their secondary port via the SRPT
S3 − S2. When there is a failure on the common link, the master S1 unblocks its secondary
port and the subring Hello-messages reach their master nodes via the second SRPT “S3-S4-
S1-S2” (see Figure 2.15b). Hence, the subring masters keep their secondary port blocked in
both scenarios.
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(a) no failure, both SRPTs are available (b) one failure, SRPT “S3-S4-S1-S2” is available

Figure 2.15: An RRPP domain with three intersecting rings [31].

When both SRPT tunnels go down, both subring masters cannot receive their Hello-messages
anymore and unblock their secondary port18. This results in a loop as depicted in Figure 2.16a.

(a) without SRPT (b) with SRPT

Figure 2.16: An RRPP domain with three intersecting rings and both SRPTs disabled [31].

Applying the SRPT State Detection Mechanism in this situation, the edge node of a subring
blocks the edge port before the secondary port of the master is unblocked [31]. Therefore,
the edge node monitors the state of the SRPTs by sending EDGE-Hello messages out of both
common ports. The assistant node will receive them on at least one port, if at least one SRPT for
the subring is healthy. Otherwise, if the assistant node does not receive EDGE-Hello messages
for a given period of time, it detects two failed SRPTs and transmits periodically MAJOR-Fault
messages through its edge port over the subring to the edge node.

18This is only the case, when a master of one subring ignores Hello messages of another subring’s master. As
both masters send their Hello messages in the same secondary control VLAN, one master could receive the Hello
messages of the other one, also when both SRPTs are down. A master could verify the belonging of a Hello message
via the domain or ring ID field. However, no further details are provided in [31] regarding this topic.
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When the subring is intact, these MAJOR-Fault messages reach the edge node. As long
as the edge node receives them, it blocks its edge port to prevent loops in subrings (see Fig-
ure 2.16b). As soon as the edge node does not receive MAJOR-Fault messages anymore for a
specified interval, it unblocks the edge port (e.g., because of a link failure in the subring). When
at least one SRPT recovers, the assistant node receives EDGE-Hello messages again, hence
stops sending MAJOR-Fault messages. Assuming that all links on a subring are working, the
subring’s master receives Hello messages again and thus blocks its secondary port. Addition-
ally, it sends a Complete-Flush-FDB out of the primary port. Upon reception of this message,
the edge node unblocks its edge port if not done yet. The edge port could be already opened
in the case the edge node has not received a MAJOR-Fault message for a given period of time.
When a subring link is down when a SRPT recovers, the edge port is unblocked as soon as the
edge node does not receive MAJOR-Fault messages for a specified interval. Also, the secondary
port of the subring master is kept opened, as the master does not receive its Hello messages.
Concluding, after the recovery of one SRPT, either the secondary port of one subring master is
blocked and a subring link is broken, or the secondary port of both subring masters are blocked
when the subrings are intact.
RRPP defines two different control messages for directing FDB flushes and state transitions.
On the one hand, a Complete-Flush-FDB is sent by a master when it switches to the complete
state, i.e. the ring has recovered. Upon reception, a node flushes its FDB even when it is lo-
cated on the primary ring and the sender is a subring’s master. Additionally, a transit node in
the pre-forwarding state transitions to the link-up state, unless it is member of the primary ring
and the sender was a subring’s master. To progress from the pre-forwarding to the link-up state,
temporarily blocked ports are opened. On the other hand, a Common-Flush-FDB is sent by mas-
ters when they transition to the failed state [31]. Nodes just flush their FDB when they receive
this control message, even when they are located on the primary ring and the control messages
origins from a subring’s master.
Usually, the edge node of every subring sends EDGE-Hello messages on the primary ring. To
reduce the network utilization, subrings can be grouped to a ring group and then only the active
subring with the smallest ID transmits EDGE-Hello messages.
Furthermore, RRPP can only be combined with STP in coupled ring topologies, where no com-
mon ports exist (tangent mode), as the port state calculations could come into conflict [31].

Turbo Chain

Turbo Chain is a technology implemented by Moxa R© on their industrial managed Ethernet
switches [32]. The system is based on a chain, which is a line of connected switches where
the first switch is the Head switch and the last the Tail switch. According to [32], any redundant
topologies can be built by simply connecting the chain to an Ethernet network. To avoid loops,
the Tail switch blocks the port toward the connected network. In case of a failure in the chain,
the Tail switch recovers the network within 20ms by opening the blocked port [32]. Turbo chain
is compatible with other redundant protocols, i.e. the chain can be linked to networks using for
instance STP or Rapid Spanning Tree Protocol (RSTP).
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2.3.2 Standardized protocols

The following protocols are either standardized or publicated in a Request For Comments (RFC).
The selection of protocols includes the STP, the Rapid Spanning Tree Protocol (RSTP), the Mul-
tiple Spanning Tree Protocol (MSTP), the Ring-based Redundancy Protocol (RRP), Ethernet
Automatic Protection Switching (EAPS) and the Media Redundancy Protocol (MRP).

Spanning Tree Protocol

STP, specified in IEEE 802.1D, transforms a redundant switched network topology into a span-
ning tree by blocking distinct ports (see Figure 2.17). Thus, bridging loops are prevented.

(a) Interconnected LANs (b) Spanning tree

Figure 2.17: Interconnected LANs are transformed into a spanning tree by STP [33].

The STP processes several steps to reach this cycle free topology. First of all, the root bridge
is defined as reference point in the network. Then, all paths from every switch to the root bridge
are calculated. When redundant paths are found, STP selects the most efficient path and blocks
forwarding on the other paths [34]. However, when a forwarding port goes down, the STP
recalculates the spanning tree topology and reactivates a redundant path by opening a blocked
port [35]. To perform the STP, switches exchange information about their status using BPDU
frames, which are either Configuration or TCN BPDU frames [34] and always sent to the STP
multicast destination address “01:80:C2:00:00:00”. A Configuration BPDU is sent for spanning
tree computation and the TCN BPDU for notification of topology changes [35]. A BPDU frame
contains the field root BID, which is the Bridge Identification Number (BID) of the root bridge
and comprises of a Bridge Priority and the MAC address of the bridge.
The switch with the lowest BID is elected as root bridge. Every switch powering up immediately
assumes that it is the root bridge and propagates configuration BPDUs with its own BID as root
BID, i.e. the field sender BID equals the field root BID. When a switch receives a BPDU
with a lower root BID, it stops advertising itself as root and instead forwards the BPDUs of
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the superior switch [36]. When the election has converged, all switches agree on one switch as
root bridge and henceforth, Configuration BPDUs are only sent by the root bridge every two
seconds [35]. The other switches simply update the sender BID and Root Path Cost field in the
BPDUs and forward the frame. Whenever a new switch powers up, it tries to advertise itself
as root bridge by having its own BID in the root BID field in transmitted BPDU frames. The
election procedure starts again and thus, root bridge election is an ongoing process [35].
After the selection of the root bridge, every non-root switch in the network determines exactly
one root port. The root port of a switch is the starting point of the path with the lowest costs
from the switch to the root bridge. The costs of a path are the sum of costs of the traversed
links. The costs of a link depend on its bandwidth. IEEE defines the default values for costs
such that higher bandwidth links have lower costs. The Configuration BPDU contains a value
Root Path Cost which stores the cumulative costs along a path [34]. When the root bridge sends
out a BPDU, this values is zero. Then, every switch that receives the BPDU adds the cost of the
traversed link to the Root Path Cost to get the Root Path Cost of the incoming port. The root port
of a switch is the port with the lowest Root Path Cost. This Root Path Cost is also used when
the switch sends out the BPDU [35].
The third step for building the spanning tree is to determine the designated switches for each
network segment. The designated switch is the switch with the lowest Root Path Cost and
the only one, which can forward traffic from and to the segment via its designated port [37].
Otherwise, bridging loops can arise. Switches know about the Root Path Cost of neighbors on
a shared segment from received BPDUs. When a neighbor switch has a lower Root Path Cost
value, it owns the designated port [35]. When multiple switches on a segment have the same
Root Path Cost, the switch with the lowest BID is selected [37]. All switch ports, which are not
root ports, designated ports or ports of the root switch, are in blocking state.
The described steps show how the root bridge, the root and designated ports are determined.
However, to prevent the forming of loops, each port in the network progresses through different
port states [35]:

• Disabled: A port in this state is shut-down due to administration or a failure.

• Blocking: After a port comes up, it is in blocking state and thus does not receive and
transmit data or learns source MAC addresses. However, blocked ports do receive BPDU
frames in order to allow the switch gaining information about its neighbors. Ports are set
in blocking state to avoid bridging loops.

• Listening: In this state, the port still does not receive and transmit data, but is able to
receive, send and process BPDU frames. Thus, it can actively take part in the STP pro-
cess and is allowed to become a root or designated port. When the port loses its root or
designated port status, it transitions back to the blocking state.

• Learning: After a period of time known as Forward Delay, the port progresses from the
listening to the learning state. In addition to receive and send BPDUs, the port is able to
learn source MAC addresses. The port is allowed to gather information about the network
topology for another period of Forward Delay. Then, it transitions into the forwarding
state.

35



• Forwarding: In this state, the port can receive and transmit both BPDU and data frames
and learn source MAC addresses.

Furthermore, the following three timers are used by the STP to let the network converge prop-
erly [35]:

• Hello Time: The root bridge sends Configuration BPDUs in periods of the Hello Time,
which defaults to 2s in the IEEE standard. Additionally, every switch has a Hello Time
stored which is used for transmitting TCN BPDUs.

• Forward Delay: A port remains in both the listening and learning states for the period of
Forward Delay. IEEE 802.1D specifies a Forward Delay of 15s.

• Max (maximum) Age: This time defines how long a BPDU is saved. When a stored
BPDU ages out, the switch notices that the sender of the BPDU has lost connection and a
topology change happened. The default value is 20s.

The root bridge continues sending Configuration BPDUs periodically every Hello T ime
interval and all other switches receive them on their root ports. A switch notices a failed link
or device when it does not receive these BPDUs anymore and after the Max Age time, it re-
acts on the topology change [36]. In case of a link failure or recovery, the adjacent switches
send TCN BPDUs out of the root port to the root bridge. The TCN frames are sent periodically
with the Hello Time interval until the switch receives an acknowledgement from an upstream
neighbor [35]. When the root bridge receives the TCN it also sends an acknowledgement and a
Configuration BPDU with the Topology Change Flag enabled, indicating that a topology change
happened. This BPDU instructs all other switches to shorten their FDB aging time to the For-
ward Delay. Thus, the period of time the switches have FDB entries differing from the new
topology can be minimized.

According to [35], the STP timer values are derived from a reference model of a network.
This network has a diameter of seven switches, i.e. seven switches are connected in a line from
the root bridge to the end of any branch [35]. Furthermore, STP does not necessarily compute the
minimum spanning tree. It is possible that the slowest switch is elected as the root bridge [28].

Rapid Spanning Tree Protocol

The RSTP, as specified in IEEE 802.1D-2004 [38], is an advancement of STP which allows
faster convergence times of maximum 6s compared to 30 − 50s in STP [28]. Furthermore, it
can react on link failures within a few milliseconds [28].

Multiple Spanning Tree Protocol

MSTP, which is based on RSTP, was published in IEEE 802.1s [39] and integrated into the
standard IEEE 802.1Q [21] in 2005 [40]. MSTP allows to define spanning tree instances per
VLAN or per group of VLANs. Thus, more links in a LAN are used and load balancing can be
achieved [41]. As stated in [42], MSTP improves the fault tolerance of a network since a failure
in one instance does not affect the forwarding paths of other instances.
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Ring-based Redundancy Protocol

The RRP, described in [43], is a recovery protocol for ring networks built of RRP devices.
Basically, a RRP device contains an internal hardware full-duplex switch and two R-ports which
are connected to a line or ring topology. The device is able to control the frame forwarding
process. Every device is assigned a Unique Identifier (UID) which consists of a two-octet device
and a six-octet MAC address. Depending on the position of the device in the network and the
network structure, the forwarding possibilities are configured differently. The network topology
is either a ring or a line, depending on the state of the RRP network establishment or the presence
of link or device failures.
In a ring, the infinite circulation of frames is prevented by two adjacent Ring Network Managers
(RNMs). Both RNMs are elected automatically by a RRP procedure, whereas the Primary Ring
Network Manager (RNMP) is the device with the highest UID and the Secondary Ring Network
Manager (RNMS) one of its direct neighbors. The dedicated RNMs are configured in a way,
that the RNMP does not forward frames to the port toward RNMS and vice versa. Figure 2.18
exemplifies an RRP ring with six nodes and Device5 and Device6 being the RNMs. As indicated
with two red arrows, one RNM cannot forward frames to the other one.

Figure 2.18: RRP ring with six devices and Device5 and Device6 defined as RNMs [43].

The device at each end of a line structure is called Line Network Manager (LNM) and is dis-
abled to forward frames in both directions. All other devices in a ring or line topology, named
General Devices (GDs), relay frames depending on the frames being multicast or broadcast
frames or being designated for the device itself or another device. A Gateway Device (GWD)
is a RRP device with more than three ports. The ports other than the R-ports can be attached
to an external Ethernet network. The GWD is able to switch frames between the RRP and the
external network using a dynamic table in the application layer, which maps RRP to general
MAC addresses.
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Each RRP device stores a Network Management Information Base (NMIB) which contains net-
work information and a path table. Basically, the path table provides the preferred R-port for
sending a frame to a destination device. The preferred R-port is the port which points to the
cheapest path in means of the lowest hop count, or R-port1 when the hop counts are equal. Is
the path starting at the preferred R-port blocked by an RNM (in case of a ring topology), the
other R-port is chosen. The devices share link information by sending Network Control Mes-
sage Type (NCMT) messages and so are able to keep their NMIBs up to date. Whenever a link
or device failure happens or a new RRP device is added to the network, all devices are informed.

Table 2.2 lists the path table of Device3 of the ring depicted in Figure 2.18. For example,
although both the clockwise and counter clockwise path to Device6 have hop count two, Device3
chooses port R-port2 since the clockwise path is blocked by the RNM node Device5. For in-
stance, when Device1 detects a fault on the link to Device2 it initiates a topology change from a
ring to a line and thus an update of the NMIBs by informing the other devices. Additionally, De-
vice1 and Device2 become LNM devices. Also the RNMs recognize the change and transform
to GDs opening the link connecting them for frame forwarding.

R-port Destination
Device1 Device2 Device4 Device5 Device6

R-port1 3 hops 4 hops 0 hop 1 hop 2 hops
R-port2 1 hop 0 hop 4 hops 3 hops 2 hops
Preferred Port port 2 port 2 port 1 port 1 Don’t care
Destination Port port 2 port 2 port 1 port 1 port 2

Table 2.2: Path table of Device3 of the example depicted in Figure 2.18 [43].

Ethernet Automatic Protection Switching

EAPS, a proprietary protocol of Extreme networksTM 19, was published under RFC 3619 [44].
An EAPS domain is defined on a single ring and is constructed to protect a set of VLANs
(protected VLANs) [45]. This group of VLANs including a unique control-VLAN is specified
by EAPS and has to be configured an all ring ports. The protected VLANs carry data traffic
and the control-VLAN is used for transmitting EAPS control frames. Additionally, one node is
defined as master-node and the others are referred to as transit-nodes. An EAPS enabled switch
can be member of multiple EAPS domains when it implements multiple instances of the EAPS
protocol machine.

Furthermore, multiple domains, having unique control-VLANs and own sets of protected
VLANs, can coexist on one ring, which makes spatial reuse of the network’s bandwidth pos-
sible [45]. The master-node blocks traffic of the protected VLANs on one of its ports, the
secondary port, to ensure a cycle free environment on an intact ring.

19www.extremenetworks.com
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On the other hand, this port is left opened for the control-VLAN and thus all control frames
of the corresponding EAPS domain can be switched over the whole ring. To prevent the control
frames from circulation, the master-node does not forward them.

EAPS follows two mechanisms to detect ring failures. First, using the alert mechanism,
transit-nodes send a Link-down EAPS control frame to the master-node whenever they detect
a link failure. Second, a polling mechanism is implemented to handle a possible loss of the
Link-down frame. With this “backup” facility, the master-node periodically sends Health-check
frames out of its primary port on the control-VLAN. The master-node is invoked to transition
into the ring-fault state when it does not receive the Health-check frames for a configurable pe-
riod of time or receives a Link-down frame. Then it unblocks its secondary port for the protected
VLANs, flushes its FDB and sends a Ring-down-flush-fdb frame to the transit-nodes directing
them to flush their FDBs as well [44]. Henceforward the nodes learn about the new topology
by switching frames. The master-node continues sending Health-check frames when it is in the
fault-state. Once the ring is restored, it again receives a Health-check frame on the secondary
port. Then it detects the restoration of the ring and switches to the normal state. This means that
it blocks the secondary port for non-control frames, flushes its FDB and sends Ring-up-flush-fdb
to the transit-nodes instructing them to flush their FDBs. During the interval between the link
recovers and the master-node detects the operational state of the ring, the transit-nodes incident
to the repaired link remain in the preforwarding-state. In this state, the transit-nodes block all the
protected VLANs on the restored port to avoid temporary loops as the masters’ secondary port
is still opened. Only after the transit-node receives the order to flush, it unblocks the repaired
port.

Having a common link between two EAPS protected rings and VLANs spanning over these
domains, “super-loops” arise when the common link fails. To overcome this problem, the pro-
tocol EAPS Shared-Ports was introduced where the nodes Controller and Partner prevent the
topology from becoming a loop when the common link goes down [46].

Moreover, false switch-overs to the fault-state can happen when the master-node does not
receive Healthcheck frames for other reasons than link failures, e.g. due to incorrect configu-
ration, dropping of frames or increased delays because of exceedingly high network utilization.
In [46], a method to reduce the number of these “false failures” was introduced. Thereby, the
master-node verifies a possible link failure by sending a Query-link-status frame out of both
ports. The transit-nodes with a broken link will then answer with a Link-down frame and the
failure is detected with the alert mechanism.

Media Redundancy Protocol

The MRP, as specified in [47], is a recovery protocol which reacts deterministically on a single
failure — either a link or a switch failure — in a switched ring topology. The redundancy
domain, i.e. a ring, is identified with a unique domain ID. If nodes are part of multiple MRP
rings, multiple instances of the MRP protocol machine are necessary where every domain gets
a unique ID and exactly two unique MRP ports. Otherwise, the MRP frames of one ring, sent
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with specified multicast addresses20, would interfere with other MRP rings. According to [47],
MRP is located above the DLL of each MRP node. One node of the ring is configured as Media
Redundancy Manager (MRM) and the others are defined as Media Redundancy Clients (MRCs).
In the ring-closed state, i.e. all links and switches are working properly, the MRM blocks one of
its MRP ring ports (see Figure 2.19). Only Management (MGMT) frames are allowed to enter
and exit a blocked port of a switch, all other frames are discarded. This prevents non MGMT
frames from circulation as the ring transforms into a line topology.

Figure 2.19: An MRP ring in ring-closed state as no failure is present. The MRM blocks one of
its MRP ports [47].

In order to check the integrity of the ring, the MRM continuously sends MRP test frames as
MGMT frames out of both ring ports. These MRP test frames are simply forwarded by the MRCs
on the ring. The MRM detects a failure when it does not receive MRP test frames on either of
its ports for a certain period of time. Then, the MRM switches over into the ring-open state
by setting the blocked port to forwarding and sending multiple MRP topology change frames.
Additionally, at the time an MRC detects a link failure, it automatically sets the corresponding
port to blocking. This prevents the topology from becoming a ring for data frames immediately
after the link recovers. After a particular delay, communicated by the topology change frames,
all MRCs and the MRM flush their FDB. Then the convergence process is completed and all
nodes successively rebuild their FDB according to the new topology through switching of data
frames.

In the ring-open state, the MRM continues sending MRP test frames and as soon it again
receives a test frame, the ring is recovered from the failure. Then the MRM introduces a switch-
over to the ring-closed state by transmitting topology change frames.

20MRP test frames are sent with the destination MAC address “01:15:4E:00:00:01” and topology and link change
frames with “01:15:4E:00:00:02”.
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After the delay indicated in these frames, all MRP nodes flush their FDB, the MRM blocks one
of its ports and the MRCs affected by the link failure set their ports to forwarding. To speed up
the failure or ring integrity detection, involved MRCs send Link up and Link down frames when
a link goes up or down, respectively. Receiving either of them, the MRM reduces the interval of
sending MRP test frames. Optionally, the MRM can be configured to immediately introduce a
switch-over on the reception of a Link up or Link down frame.

After discussing various protocols, MRP is chosen for the implementation of the communication
system, since it is an efficient, robust and deterministic protocol.
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CHAPTER 3
Implementation

This chapter deals with the model implementation. As explained in Section 2.1.4, during this
process, the formal model of the system is built into an executable simulation program.

3.1 General

The aim of this work is to examine the performance of a fault-tolerant communication system
connecting communication nodes (CNs). Thus, the objects of interest are mainly messages ex-
changed by the CNs, which are influenced by the switching behavior of the CNs and the links.
The fault tolerance is based on redundancy introduced by a ring topology. This ring redundancy
involves the necessity of ring protection and recovery mechanisms. In this work, the MRP was
chosen for this purpose.

According to Section 2.1.3, the investigated communication system is a dynamic and dis-
crete system, as its state changes over time at discrete points in time, e.g., when data exchange
or a failure happens or even when address tables are aging. Besides that, it is a non-terminating
system as it runs permanently. The derived logical model and the simulations are stochastically,
as failures and message transmissions can happen at arbitrary point in times. In contrast, the
resulting simulations are non-real-time, as they are neither simulated in real-time, nor connected
to a real system and do not use real data. For building the simulation program, the phase model
building and data collection of the process flow model described in Section 2.1.4 was iterated
multiple times. Model verification and validation was performed by means of exploratory test-
ing [48].

The simulation model was built using OMNeT++1, an open-source environment for discrete
event simulation, in combination with the communication networks framework INET. Although
INET provides different models for protocols of the ISO OSI layers (see Section 2.1.6), several
modules, which are necessary for this thesis, had to be implemented.

1http://www.omnetpp.org/
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OMNeT++ is an extensible and modular simulation library and framework [8]. In OMNeT++,
simple modules can be encapsulated to compound modules using the Network Description (NED)
language, whereas the number of hierarchy levels is not limited [8]. Also, virtual networks are
built in this way (see Figure 3.1).
The behavior of the simple modules is implemented in C++ and each module has parameters,
which are used to configure the module. The parameters can be assigned with default values or
volatile with a random number drawn from a statistical distribution [8].
The modules communicate by message passing, either via gates or by sending messages directly
to the destination module. Two gates can be linked with a connection, which may model proper-
ties like propagation delay, data rate and bit error rate. Protocol stacks are usually implemented
as modules which exchange messages (e.g., the TCP module with the IP module) [8].
Different simulation experiments can be created by overriding the default values of the module
parameters with settings in *.ini files. Additionally, the number of runs, the seed set and
desired output can be configured via this file.

Figure 3.1: OMNeT++ follows a modular approach [49].

3.2 Communication system modeling

Fundamentally, a CN is a network node composed of a Microcontroller Unit (MCU) and a
switch. The traffic producing application is executed on the MCU and the switch is responsible
for relaying network traffic. The CNs can be logically arranged in a hierarchical topology,
where a super CN is hierarchically superior to an inferior CN. The ring and recovery protocol
mechanism, in particular MRP, runs on the MCU, too.

The model of a CN is built of two compound modules, an MCU module and a switch module
which consist of both (modified) simple modules provided by the INET framework and imple-
mented modules (see Figure 3.2). A formal model for the MRP is provided in form of the MRP
standard [47]. The switch module follows the datasheet of a real, VLAN capable switch [50].

3.2.1 The Microcontroller Unit model

The model of the compound module MCU is depicted in Figure 3.3. The functions of its mod-
ules, located at layer 2 and layer 3 of the ISO OSI reference model, are defined as follows:

• mac: This module on layer 2 represents an Ethernet interface according to the IEEE 802.3
standard, involving full-duplex and half-duplex transmission of Ethernet frames. It sim-
ulates the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) protocol,
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Figure 3.2: The model of a CN consists of an MCU and a switch module.
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Figure 3.3: The compound module of the MCU contains the compound module networkLayer.

and the backoff algorithm2 for half-duplex communication. It is also able to handle Eth-
ernet PAUSE frames and to connect and disconnect the interface dynamically from the
communication channel, for example when triggered by the ScenarioManager dur-
ing runtime. Additionally, a redundant channel and listeners for the state of the channel
(either redundant or non-redundant) and the connection state of the interface were im-
plemented. As specified in IEEE 802.3, a frame is discarded after a certain number of
retransmission attempts in half-duplex mode3. The modified module needs to allow to
disable this function.

• The encap module is responsible for Ethernet frame padding, encapsulation and decap-
sulation. In addition, it performs VLAN-tagging and dispatches MRP frames directly to
the MRP module. In case of a simulated MCU failure, it discards every frame except MRP
frames.

• A CN includes either an mrm or an mrc module which are implementing the correspond-
ing functionality according to the MRP standard [47]. In order that MRP frames can pass
through a blocked switch port, they are defined as MGMT frames by locking the MRP
multicast address, including a destination port vector and priority, into the switch’s ad-
dress table. So, incoming MRP frames are always relayed to the MCU port.

2IEEE 802.3, 4.2.3.2.5 Collision backoff and retransmission.
3According to IEEE 802.3, 4.4.2 MAC parameters, the maximum number of attempts is 16.
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For outgoing frames, the MCU uses the trailer mode to supersede the switch’s logic, i.e.
it sets the destination port vector and a priority for the frame and disables source address
learning. Moreover, the mrm module does not send MRP frames with its own MAC ad-
dress, since the mrc’s switches would toggle the destination port vector of the mrm’s
address in the address table, as MRP frames pass the ring in two directions4. Both the
mrm and mrc module register a listener on the connection state of all mac interfaces.

• The interfaceTable holds, additionally to a loopback interface, information about
all mac interfaces which register dynamically at the start of the simulation. Amongst
others, the data include a unique identifier, the MAC address, the Maximum Transmission
Unit (MTU) value, the current state (up or down) and flags indicating whether the interface
supports broadcast and multicast. It also provides management functions for manipulating
these data5. Protocol specific IPv4 data are added by the ipv4NetworkConfigurator,
the cnApp and carp module when they are creating subinterfaces. With the modified
version, it is also possible to create VLAN devices by assigning a VLAN ID and a VLAN
QoS tag (the priority) to a virtual device. The actual VLAN-tagging of frames happens in
the module encap.

• The module routingTable represents the IP routing table. When a device is added
to or deleted from the interfaceTable, it automatically updates the routing table by
appending or removing the netmask route (“on-connection route”). Basically, routes can
be added or removed by the ipv4NetworkConfigurator before the start of the sim-
ulation or via cnApp scenario during runtime. IP forwarding can be enabled and disabled
with the flag IPForward and has to be enabled on CNs with routing functionality.

• arp: The implemented version of the ARP module is a simplification of the algorithm
used in the Linux kernel 2.2+ module6. The INET framework on the other hand imple-
ments ARP according to [52]. Basically, the number of retries per resolution attempt, the
time interval between two consecutive retries and the ARP cache timeout are configurable.
The INET model always sends ARP requests as broadcasts. The ARP cache is updated by
received ARP packets only and entries which are not updated for the timeout period are re-
moved from the cache. On the contrary, the implemented version sends broadcast as well
as unicast ARP requests and uses a randomly chosen cache table timeout time. This time-
out is chosen from the interval [0.5 ∗ base_reachable_time, 1.5 ∗ base_reachable_time].
Also, ARP table entries are not deleted immediately when they time out, but considered
being stale. An ARP resolution of a timed out (stale) entry is done by unicast requests
after a certain delay7.

4According to [47], the port MAC address is used for the MRP Data Link Layer Protocol Data Unit (DLPDU)
5Basically, the class offers functions for manipulating the interfaceTable similar to the linux command ifcon-

fig (http://linux.die.net/man/8/ifconfig).
6As stated on http://linux.die.net/man/7/arp, the kernel module uses algorithms of RFC 2461

(Neighbor Discovery for IPv6) [51] when applicable for IPv4 ARP.
7This delay is called DELAY_FIRST_PROBE and defaults to 5s in the linux module.
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Additionally, it supports upper-layer reachability confirmation, i.e. higher level protocols
can confirm an entry for a neighbor when the connection makes forward progress. This
means, that “the packets received from a remote peer can only be arriving, if recent packets
sent to that peer are actually reaching it” [51].

• The ip module implements the IPv4 protocol and thus is responsible for routing of data-
grams using the interfaceTable and routingTable. However, IPv4 address as-
signment is done by the ipv4NetworkConfigurator. The modified module is also
able to handle frames entering a subinterface by assigning the correct InterfaceEntry
of the InterfaceTable to the frame.

• In the context of this work, just the network utilization caused by Common Address Re-
dundancy Protocol (CARP) is relevant. Hence, the module carp only transmits CARP
advertisements to the CARP multicast address8 and does not implement the fail-over
logic of the CARP masters. Instead, the switch-over from the master to the backup is
carried out by providing multiple Extensible Markup Language (XML) elements for the
ScenarioManager.
To successfully set up CARP, it is required to add the corresponding interfaces of the
selected hosts to the multicast group. This can be done by the following element:

< m u l t i c a s t −group h o s t s =" cn3 . cpu cn4 . cpu " i n t e r f a c e s =" mac "
a d d r e s s =" 2 2 4 . 0 . 0 . 1 8 " / >

Then, for example, cn3 can be selected as master by:

< !−− add ing s u b i n t e r f a c e w i t h v i r t u a l IP a d d r e s s 1 9 2 . 1 6 8 . 1 . 1 4 −−>
<addDevice t =" 0 .015 s " module=" cn3 . cpu . ne tworkLaye r . c a r p " name=" c a r p 0 "

a d d r e s s =" 1 9 2 . 1 6 8 . 1 . 1 4 " netmask =" 2 5 5 . 2 5 5 . 2 5 5 . 2 4 0 " mtu=" 1500 "
m u l t i c a s t =" t r u e " b r o a d c a s t =" t r u e " / >

< s e t I P F o r w a r d t =" 0 .015 s " module=" cn3 . cpu . ne tworkLaye r . cnApp "
v a l u e =" t r u e " / >

< !−− s t a r t s e n d i n g CARP a d v e r t i s e m e n t s e v e r y 2 s and send a g r a t u i t o u s
ARP message −−>

< s t a r t C A R P a d v e r t t =" 0 .016 s " module=" cn3 . cpu . ne tworkLaye r . c a r p "
a d v e r t F r e q =" 2 " sendGratARP=" t r u e " i n t e r f a c e =" c a r p 0 " / >

The last element starts the sending of advertisements with a period of 2s. To fail-over
from cn3 to cn4, the following steps are necessary:

< !−− s t o p cn3 from b e i n g ma s t e r −−>
<stopCARPadver t t =" 7 . 4 s " module=" cn3 . cpu . ne tworkLaye r . c a r p " / >
< d e l D e v i c e t =" 7 . 4 s " module=" cn3 . cpu . ne tworkLaye r . c a r p " name=" c a r p 0 " / >
< s e t I P F o r w a r d t =" 7 . 4 s " module=" cn3 . cpu . ne tworkLaye r . cnApp "

v a l u e =" f a l s e " / >
< !−− and s w i t c h−over t o backup cn4 −−>
<addDevice t =" 7 . 5 s " module=" cn4 . cpu . ne tworkLaye r . c a r p " name=" c a r p 0 "

a d d r e s s =" 1 9 2 . 1 6 8 . 1 . 1 4 " netmask =" 2 5 5 . 2 5 5 . 2 5 5 . 2 4 0 " mtu=" 1500 "
m u l t i c a s t =" t r u e " b r o a d c a s t =" t r u e " / >

8UCARP 1.5.2 uses “224.0.0.18” as default, see http://www.pureftpd.org/project/ucarp

47

http://www.pureftpd.org/project/ucarp


< s e t I P F o r w a r d t =" 7 . 5 s " module=" cn4 . cpu . ne tworkLaye r . cnApp " v a l u e =" t r u e "
/ >

< s t a r t C A R P a d v e r t t =" 7 . 6 s " module=" cn4 . cpu . ne tworkLaye r . c a r p "
a d v e r t F r e q =" 2 " sendGratARP=" t r u e " i n t e r f a c e =" c a r p 0 " / >

It is also possible to add VLAN interfaces by complementing the element addDevice
with the attributes vlanid and qos. To use another than the local MAC address for the
interface, the attribute mac can be set.

• cnApp: The three main features of this module are CN configuration, traffic generation,
and recording of statistical data. If the parameters are provided by the *.ini file, the
cnApp adds one or two (VLAN) device(s) to the interfaceTable of the MCU. This
is for example necessary, when the CN provides router functionality. For traffic genera-
tion and recording, the CN first retrieves a list of its superior and inferior CNs from the
module cnAddressTable. Then, the traffic generation is defined per set of superior
and inferior CNs of the sending node.

For data communication among CNs, the following message classes are defined:

– DataPeriodic: is periodically sent with the configured priority and size

– DataSporadic: is sent with the configured priority when triggered by scenarios

The nature of the workload (sending of DataPeriodic messages) generated by a CN
can be defined in the cnAppBase.ned or *.ini file. It is possible to separately define
the priority9, the packet size, the send interval, the start and stop time of message genera-
tion10 for communication with all super CNs, inferior CNs or explicitly defined receivers.
By defining explicit receivers, it is possible to produce higher traffic between a CN and
any other CN, regardless of their logical relationship. The transmission of other types’
messages is triggered by scenarios.

Upon message reception, the cnAppmodule performs upper-layer reachability confirmation
(ULC) of the source IPv4 address. Usually, this is done by a protocol at least on layer 4
(w.r.t. to the ISO/OSI reference model), such as TCP. However, this model of the MCU
does only consider layer 2–3 and thus the process is simulated by the cnApp. Further-
more, it records the delay (arrival time - send time) for all kind of messages separately for
each sender. It also counts the number of sent/received messages to/from all other CNs.

The module cnApp is scriptable via the ScenarioManager. It is able to add or delete
VLAN devices to or from the interfaceTable and routes to or from the routingTable.
Also, the IPForward flag can be set. To trigger the sending of sporadic data or a burst
of messages this module processes the following XML element (example):

< s p o r a d i c t =" 10 s " module=" cn1 . cpu . ne tworkLaye r . cnApp "
t i m e s p a n =" 2 s " number=" 10 " p r i o r i t y =" 3 " s u p e r =" 1 " i n f =" 0 " / >

9The IPv4 Type of Service (TOS) field values 28, 92, 156 and 220 correspond to the switch priorities 0, 1, 2 and
3 respectively.

10The generation of messages is automatically stopped 3s before simulation end to allow the system to fade out.
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This results in a burst of DataSporadic messages, sent uniformly distributed between
time 10s and 12s to all of cn1’s superior CNs.

Another scenario is controlled via MAC state listeners. The changing of a switch’s mac
interface from connected to disconnected or of an adjacent channel’s state from redundant
to non-redundant, is notified by sending of CNLinkFailure messages to all superior
CNs.

3.2.2 The switch model

Figure 3.4 shows the simulation model of the switch. The functionalities of the modules are
specified as follows:

switch

mac_fullduplex mac_halfduplex

IngressUnits egressUnits

innerQueue egressQueues

roundRobinScheduler queueManager

addressTranslationUnit

vlanTranslationUnit

relayUnit

portsConfig

(a) Compound module of the switch

egressQueue

classifier

queueHighest

queueHigh

queueLow

queueLowest

scheduler

(b) Compound module of egressQueue

Figure 3.4: The compound module of the switch contains a compound module egressQueue for
each port.

• mac: The switch offers mac interfaces in both half- and full-duplex mode. The RS485
links are emulated by half-duplex connections.
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• There is one IngressUnit module per port. This modules decides if the frame is al-
lowed to enter the switch, based on the port state and whether the frame is a MGMT
frame or not. The implemented switch supports the port states disabled, blocking/listen-
ing, learning and forwarding. In this implementation, a frame is considered as MGMT
frame when its destination address is locked in the switch’s address table, i.e. the address
is not flushed from the address table when aging is performed. Furthermore, low-priority
frames are discarded when no ingress buffer is available. The switch guarantees forward-
ing of high-priority frames by memory reservation. It is not exactly stated in the manual
which priorities are always relayed and how much memory is reserved to do so. Thus, the
ingress module always forwards frames with priority three and two (if allowed by the port
state). The used “reserved” memory is recorded for statistics.
When the port state is learning, the module IngressUnit invokes MAC address learn-
ing, which can be disabled with a flag in a frame trailer (e.g., applied to MRP frames).
Additionally, this module performs QoS classification for the Queue-
Manager by mapping of one of the following values to one of four switch priorities in
order by:

1. the value provided by the frame trailer (if available),

2. the destination address’ priority in the address database (if the address is stored),

3. the IEEE 802.1Q priority tag11,

4. the IPv4 TOS field or

5. the port’s default priority

To prefer the IPv4 TOS field to the IEEE 802.1Q priority tag, the flag tagIfBoth can
be set. Although this module extracts the VID from the frame and/or the portsConfig,
the module QueueManager prevents frames from entering or leaving a port based on
VLAN conditions. Using the default port VID instead of the extracted VID can be forced
by setting the forceDefaultVid flag. The ingressUnit also performs untagging
of VLAN (double) tagged frames.

• The innerQueue implements a First In First Out (FIFO) queue with unlimited buffer
space. The available memory on the switch is controlled by the QueueManager and not
restricted by this module.

• The module roundRobinScheduler implements a Weighted Round-Robin (WRR)
scheduler which serves the queues in a cyclic manner. This modification of the provided
WRR scheduler also considers messages simultaneously arriving at the input queues, as
described below.

• The module queueManager requests frames from the roundRobinScheduler and
processes them in a serial manner. The processing time of a real switch is simulated by
this module and can be configured with the parameter processingTime.

11Called user_priority in IEEE 802.1Q-2003, Priority Code Point from IEEE 802.1Q-2005 on.
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To process a frame, the QueueManager retrieves the destination port vector of the frame
from the relayUnit and forwards it to the relevant egressQueues or discards it
when no ports were selected, e.g. when the frame is filtered because of the VLAN config-
uration.
Additionally, the queueManager is responsible for buffer management. Hereby, it as-
signs ingress buffer to the ingressUnits and works as a multicast handler, i.e. it frees
the buffer memory used by a multicast frame not before the frame has left every port. It
also records statistics about memory consumption.

• The relayUnit module implements the switching logic of the switch. It resolves the
output port(s) for an incoming frame based on its destination MAC address considering
VLAN configurations, a possibly available frame trailer and the frame being a MGMT
frame or not. The VLAN mode can either be port-based VLAN or a 802.1Q VLAN.
The latter supports the three different options secure, check and fallback, which differ
in level of security. Using a frame trailer, the output port(s) found by the relayUnit
can be overruled. So, the MCU is able to supersede the switch’s logic. MGMT frames
are, ignoring any VLAN configurations, always forwarded to the ports indicated in the
addressTranslationUnit address database.
The relayUnit also offers switch configuration possibilities. Basically, per-port de-
fault settings are defined in Ingress.ned and can be modified by any *.ini file when
starting a simulation. Per-port settings include the port state, the ingress and egress mode,
the VLAN mode, the VLAN-table for port-based VLANs and so on. However, the re-
sulting configuration can be overruled by an XML configuration file which is passed to
the relayUnit. Furthermore, up to 64 VLANs and MAC addresses (including the
entry state and priority) can be added to the vlanTranslationUnit respectively
addressTranslationUnit database via the configuration file. The relayUnit
is able to load a new switch configuration file during runtime via the following element
(example):

< l o a d C o n f i g t =" 6 s " module=" cn4 . s w i t c h . r e l a y U n i t "
f i l e =" Swi t chConf ig2 . xml " / >

• The switch comprises one egressQueue per port. This compound module is depicted
in Figure 3.4b and consists of a classifier, one passive FIFO queue for each switch
priority and a scheduler. The classifier sorts frames based on the priority into
the corresponding queue. The scheduler selects the next frame which can egress the
port based on a fixed-priority or weighted-fair scheme. With the fixed-priority scheme,
all higher priority frames are scheduled before any lower-priority frames are selected.
Using this mode, it is possible that lower-priority frames are never chosen for transmitting
(starvation) and thus the weighted-fair scheme is enabled.

• There is one egressUnit per port. It receives frames from the egressQueue and
resolves if they are allowed to exit the port. The decision is based on the port state and
whether a frame is a MGMT frame or not. How a frame egresses — either unmodified,
untagged or tagged — depends on the egress mode of the port (in case of port-based
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VLAN) or the membertags in the VLAN database (in case of IEEE 802.1Q VLANs). The
egressUnit then forwards the frame to the mac module for transmitting.

• Basically, the module addressTranslationUnit represents the address database
of a switch. It contains an address table and functions for manipulating them. For each
learned MAC address there exists a table entry with the corresponding destination port
vector, the entry state12 and the priority. MAC addresses can be learned from the source
addresses of incoming frames or via relayUnit and a configuration file. The learning
procedure can be disabled via learningDisabled flag. The address table is also
subject to aging, i.e. entries with a certain age are purged from the table, if they are not
locked. The maximum age of an entry is per default 304s. Of course, an address’ entry is
refreshed when it again appears as a frame’s source address or is updated when endstations
move. When the address table is full and the switch tries to learn a new address, entries
are deleted according to a Least Recently Used (LRU) algorithm. Besides learning, the
other main feature of this module is MAC address resolving. This function is used by
the relayUnit to retrieve the destination port vector according to a destination MAC
address.

• The module vlanTranslationUnit holds the database for dynamic VLANs, i.e. a
table where each entry consists of a VID and a membertag for every port. A membertag
describes if the port is a member of the VLAN and how frames should egress the port.
Both the relayUnit and the egressUnit obtain VLAN information for VLAN fil-
tering respectively frame modification from this module.

• The control data of every port are contained in the module portsConfig. The data
include the port state, the ingress, egress and the VLAN mode, the default priority and
VID. Additionally, this module provides functions to modify and access this information
and stores a static VLAN table per port used for port-based VLAN. Moreover, other
modules can register a listener on the port state of all ports, in order to be notified when a
change happens.

3.2.3 Additional modules

To complete a simulation set up, the following modules have to be complemented to a network:

• cnAddressTable: This module represents a central site containing the address and
logical relationships information of all existing CNs in a simulation. Therefore, it parses
a list of CNs including their names and assigned IPv4 addresses. In addition, it retrieves
the logical relationships among the CNs from a file. This input file can be generated by a
Perl script (IDIPMatching.pl) which was developed in the context of this thesis. The
output of this script has the following structure:

12The age of an entry can be deduced from the entry state.
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# ADDRESSES
<CN 0 name> < ipv4 a d d r e s s 0>
<CN 1 name> < ipv4 a d d r e s s 1>
<CN 2 name> < ipv4 a d d r e s s 2>
. . .
# i n f CNs ( x : y means x i s a i n f e r i o r CN of y )
<CN 0 name >: <CN 2 name>
<CN 1 name >: <CN 2 name>
<CN 2 name >:
. . .

Each cnApp is able to retrieve a list of its superior and inferior CNs from this module.

• ipv4NetworkConfigurator: This module is responsible for the IP address assign-
ment and the set up of routing tables. According to the provided configuration file, it
allows to assign addresses to all interfaces of all nodes. This can be done either manually,
automatically or even in a combined way, considering that only modules with the node
property are treated as nodes in the topology.
The ipv4NetworkConfigurator is able to set up hierarchical networks by using
wildcards, e.g. by the following configuration13:
< c o n f i g >

< i n t e r f a c e h o s t s =" a r e a 1 1 . l a n 1 .∗ " a d d r e s s =" 1 0 . 1 1 . 1 . x "
netmask =" 2 5 5 . 2 5 5 . 2 5 5 . x " / >
< i n t e r f a c e h o s t s =" a r e a 1 1 . l a n 2 .∗ " a d d r e s s =" 1 0 . 1 1 . 2 . x "

netmask =" 2 5 5 . 2 5 5 . 2 5 5 . x " / >
< i n t e r f a c e h o s t s =" a r e a 1 2 . l a n 1 .∗ " a d d r e s s =" 1 0 . 1 2 . 1 . x "

netmask =" 2 5 5 . 2 5 5 . 2 5 5 . x " / >
< i n t e r f a c e h o s t s =" a r e a 1 2 . l a n 2 .∗ " a d d r e s s =" 1 0 . 1 2 . 2 . x "

netmask =" 2 5 5 . 2 5 5 . 2 5 5 . x " / >
< i n t e r f a c e h o s t s =" a r e a ∗ . r o u t e r ∗ " a d d r e s s =" 1 0 . x . x . x "

netmask =" x . x . x . x " / >
< i n t e r f a c e h o s t s ="∗ " a d d r e s s =" 1 0 . x . x . x " netmask =" 2 5 5 . x . x . 0 " / >

< / c o n f i g >

On the other hand, the ipv4NetworkConfigurator can be forced to use an address
by restricting every attribute, e.g.:
< i n t e r f a c e h o s t s =" cn0 . cpu " a d d r e s s =" 1 9 2 . 1 6 8 . 1 . 1 "

netmask =" 2 5 5 . 2 5 5 . 2 5 5 . 2 4 0 " / >

The second major task of this module is the configuration of IPv4 routes. Again, static
routes can either be set up by providing them in the configuration file or automatically.
For instance, setting up a default gateway can be done by
< r o u t e h o s t s =" cn0 . cpu " d e s t i n a t i o n ="∗ " netmask ="∗ "

gateway =" 1 9 2 . 1 6 8 . 1 . 1 4 "
i n t e r f a c e =" mac " m e t r i c =" 0 " / >

To execute all its functions, the ipv4NetworkConfigurator accesses information
of the interfaceTable and routingTable modules of the particular nodes.

13see IPv4NetworkConfigurator.ned of INET 2.0
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• scenarioManager: Using this module, various scenarios can be simulated by spec-
ifying them in XML. This feature makes the simulation environment very flexible, as
the scenarios can be modified easily. Also, it increases the reusability, as the scenarios
can be applied on various networks. Therefore, it processes XML elements and either
executes them by itself or by calling the processCommand() function of a module
implementing the IScriptable interface. The scenarioManager is able to con-
nect or disconnect a channel to or from a module, set an arbitrary parameter of a module
and an attribute of a channel. In the example below, the datarate of an existing channel,
connected to the first mac interface of cn0, is set to 10Mbps at an arbitrary time in [3s,
3.7s]:

< s e t−channe l−a t t r t =" 3 s " t e n d =" 3 . 7 s " s r c−module=" cn0 "
s r c−g a t e ="ethBMZA$o [ 0 ] " a t t r =" d a t a r a t e " v a l u e =" 10Mbps" bo th =" t r u e "
/ >

By providing the following element, a channel will be disconnected from cn4 at the time
5s and re-connected at 8.8s:

< d i s c o n n e c t t =" 5 s " s r c−module=" cn4 " s r c−g a t e ="ethBMZA [ 1 ] " / >
< c o n n e c t t =" 8 . 8 s " s r c−module=" cn4 " s r c−g a t e ="ethBMZA [ 1 ] "

d e s t−module=" cn3 " d e s t−g a t e ="ethBMZA [ 1 ] "
channe l−t y p e =" ned . D a t a r a t e C h a n n e l " >
<param name=" d a t a r a t e " v a l u e =" 640 kbps " / >
<param name=" d e l a y " v a l u e =" 0 .0000005 s " / >

< / c o n n e c t >

The modules CARP, relayUnit and cnApp are implementing the IScriptable in-
terface.

• throughputMeteringChannel: This module is an extension of the simple module
DatarateChannel and can be used on desired links. It represents a channel which is
able to measure and record current and average parameters. The current values are calcu-
lated per configured interval whereas the average values are accumulated values divided
by the elapsed simulation time. Thus, the current values are recorded periodically and the
average values whenever a packet is transmitted. The parameters include the current and
average number of packets per second and the overall number of transmitted packets at
the end of the simulation. Another parameter is the average bandwidth in bits per second,
which is the average number of bits transferred until a certain point in time. A further
important parameter is the current channel utilization in %, which describes the current
number of bits per second divided by the bandwidth capacity of the link. Moreover, each
indicator is separately calculated and recorded for EtherJam frames only.

In addition, every module implements functionality to collect statistical records. The measured
values are either vector objects, i.e. a series of time and value pairs, or scalars and are stored in
*.vec or *.sca files, respectively.

54



3.3 INET framework issues

During the implementation, two relevant problems of the INET framework were identified.

3.3.1 Erroneous Round-Robin scheduler

In OMNeT++, not only messages in the common sense, but also events like “a message was
inserted into a queue” are represented by the class cMessage or a derived class. As described
in [12], “the place where the event will occur is the message’s destination module, and the time
of occurrence the arrival time of the message”. So, for instance, a timer is implemented by a
message which is sent from a module to itself at a certain time. For a detailed description of
event handling in discrete-event simulation environments see Section 2.1.5.

The sequential order of processing events in the simulation environment leads to the fact that
the Round-Robin (RR) scheduler which is currently implemented in the INET framework is not
completely fair. The ingress part of the switch model comprises seven FIFO queues (each per
port) and a RR scheduler which serves the non-empty queues in a cyclic manner. At every turn,
exactly one message per non-empty queue is selected. The scheduler leaves out empty queues
and serves non-empty queues instead. Assuming two queues A and B where the next queue to
be served is B and messages concurrently inserted into both queues, a fair RR scheduler would
serve B first and A subsequently.
However, because of the sequential order of processing events, the INET RR scheduler chooses
queue A before queue B. More precisely, the OMNeT++ event scheduler schedules the event
“message inserted into queue A” before the event “message inserted into queue B”, both stored
in the FES. The scheduling sequence of the events in the FES is influenced by the ID of the
module. When the event “message inserted into queue A” is scheduled, the INET RR scheduler
immediately recognizes a non-empty queue A but an empty queue B and serves queue A instead
of queue B, although it would have been queue B’s turn. This would result in an incorrect
simulation model as the RR scheduler always prefers the FIFO queue with the lower module ID.
In order to avoid this favoritism, a fair RR scheduler was implemented which first checks if
there are concurrent messages by looking into the FES. Based on that, it makes the scheduling
decision.

3.3.2 Erroneous throughput-metering channel

In half duplex mode, the INET version of the throughput-metering channel includes bits of un-
successfully transmitted messages and thus calculates wrong utilization values. According to
IEEE 802.3 [24], a node stops the transmission of a message, when it detects a collision and
sends jam instead of ensuring that other transmitting nodes on the network detect the collision
as well14. In the provided model though, the throughput-metering channel adds the bits of a
message as soon as a transmission attempt is performed, regardless of the success of the try.

14The content of the jam is not defined but has a specified length of jamSize, which is 32 bits in connections with
datarates up to 100 Mb/s [24]. After jamming, the nodes start the retransmission of the message according to the
“truncated binary exponential backoff” algorithm [24].
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The throughput-metering channel was modified in such a way that only bits of a message trans-
mitted until a collision event, successfully transmitted messages and jam are counted as work-
load. Additionally, the current channel utilization is calculated in equidistant intervals to sim-
plify comparison of channel utilization on different links.

3.4 Simulation workflow

The simulation workflow is supported by various Perl15 and R [53] scripts. They either assist in
creating input files for the simulation environment and modules or are used to analyze output of
the simulation runs.

3.4.1 Input file generation

The script NedFileGenerator.pl generates a *.ned file with a network according to
channel definitions and a matrix, describing the physical connections among the CNs. For in-
stance, an input file may look as follows:

c h a n n e l : name = c1 ; d a t a r a t e = 640 kbps ; d up l e x = h a l f ;
c h a n n e l : name = c2 ; d a t a r a t e = 10Mbps ; d up l e x = f u l l ; d e l a y = 0 .0000005 s ;

+ cn1 cn2 cn3 cn4 cn5
cn1 0 c1 0 0 0
cn2 0 0 c2 0 0
cn3 0 0 0 c1 0
cn4 0 0 0 0 c1
cn5 c1 0 0 0 0

isMRM : cn2

This example results in a network with a ring of five CNs plus the necessary modules ipv4Net-
workConfigurator, scenarioManager, cnAddressTable and cn2 set as MRM.

The purpose of IPConfigFileGenerator.pl is to produce an XML file for IP address
assignment and setting of default gateway routes. Therefore, it takes a list of CNs and assigns
IPv4 addresses according to regular expressions, for example:

BMZs : cnL0 cnL1 cnL2 cnR0 cnR1 cnR2

IP : r e g e x = /^ cnR / ; a d d r e s s = 1 9 8 . 1 6 8 . 0 . 0 ; ne tmask = 2 5 5 . 2 5 5 . 2 5 5 . 2 4 0
IP : r e g e x =/L / ; a d d r e s s = 1 9 8 . 1 6 8 . 1 . 0 ; ne tmask = 2 5 5 . 2 5 5 . 2 5 5 . 2 4 0

The resulting output serves as input for IDIPMatching.pl and the ipv4Network-
Configurator16.

The script IDIPMatching.pl is used to create an input file for the module cnAddress-
Table. Therefore, it parses a list of CNs including their IPv4 addresses from a file generated

15http://www.perl.org/
16It might need some adjustments like adding a multicast group for CARP or additional routes.
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by IPConfigFileGenerator.pl and combines it with a matrix representing the logical
relationships of the CNs.

3.4.2 Simulation data processing

The scripts ExtractScalars.pl and ExtractVectors.pl are used to extract data from
the text-based output files *.sca and *.vec, respectively and export them in a syntax readable
for the R scripts. An example *.vec file segment may look like the following:
v e r s i o n 2
run Ring64RS485_MRP_sc3−122−20131114−04 : 0 1 : 2 6 −17660
a t t r conf igname Ring64RS485_MRP_sc3
a t t r d a t e t i m e 20131114−04 : 0 1 : 2 6
a t t r e x p e r i m e n t Ring64RS485_MRP_sc3
a t t r i n i f i l e mrp64_kw46 . i n i
a t t r ne twork r i n g 6 4 . Ring64_RS485_600M
a t t r r e p e t i t i o n 22
a t t r r e s u l t d i r r e s u l t s
a t t r runnumber 122
a t t r s c r i p t s c 0 " \ " r i n g 6 4 / s c e n a r i o s 6 4 _ 3 . xml \ " "
a t t r s e e d s e t 22
a t t r t s t D e f a u l t T 0 . 5
a t t r tstNRmax 14
. . .

v e c t o r 1585 Ring64_RS485 . cn64 . cpu . mrm mrp_flushFDBinMRPManager ETV
v e c t o r 1577 Ring64_RS485 . cn63 . cpu . mrc mrp_flushFDBinMRPClient ETV
v e c t o r 1267 Ring64_RS485 . cn1 . cpu . mrc mrp_flushFDBinMRPClient ETV
v e c t o r 1572 Ring64_RS485 . cn62 . cpu . mrc mrp_flushFDBinMRPClient ETV
. . .
1267 26335524 48.736000465 2
1572 26336060 48.737076903 2
1577 26335499 48.735990465 2
. . .

The extraction is based on applying regular expressions on the vector or scalar names (e.g.
mrp_FlushFDBinMRPClient) and can be refined by providing an additional regular expression
for the module name (e.g. Ring64_R485.cn63.cpu.mrc). Both scripts are able to filter input files
by an attribute. For instance, it is possible to choose only simulation runs with the attribute
tstDefaultT set to 0.5s. For matters of traceability, each generated output file is enclosed
with a log file containing the names of all used *.vec or *.sca files.

ExtractScalars.pl additionally calculates delivery ratios of MRP frames and data
packets for each sender/receiver combination. The export of the latter can be generated in dif-
ferent gradations, i.e. from one output file for delivery ratios of all senders to a separate file for
each communication pair. The script ExtractVectors.pl is able to temporally break down
extracted series into up to five intervals and to output them in separate files. Furthermore, it can
calculate the differences of the maximum and minimum of the time or data values per interval
and input file.
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For instance, this is a practical function to obtain the time span elapsing between the first and
last CN flushing its FDB in case of an MRP switch-over. Another special feature of this script
is the calculation of the time span elapsing between the first scenario and the first and last flush
of the FDB among all CNs. Moreover, the script gathers packet transmission delays of every
communication pair and is also able to output it in various gradations. Beyond that, the script
can correct erroneous values by replacing them with a minimum or maximum default value.

The superscript ExtractAndPlot.pl calls ExtractVectors.pl or Extract-
Scalars.pl. As a meta-script, it automatically generates R scripts for a selection of scalars
and vectors, e.g. for analyzing MRP test frame or data packet delays (with the regular expression
mrp_TestFrameDelay respectively AD), the channel utilization (CH_current_channel_utilization)
or data packet delivery ratios (dNUM). When the extracted data was partitioned into multiple
intervals, the ExtractAndPlot.pl script builds an R script for each one. If enabled, it im-
mediately executes the R scripts. The reason why R scripts are produced for every single data
extraction and interval is modifiability. In this way, certain plots can be adjusted by simple mod-
ifying the script and executing it again.

The R scripts basically read data from extraction files and plot them in a suitable way to
*.pdf files. Additionally, some of them calculate statistical values like mean, standard devia-
tion or median and save them to a text file for subsequent manual evaluation.
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CHAPTER 4
Simulation

The following sections describe the simulation studies which were carried out during this work.
The last section provides a summary of the gained results and knowledge.

4.1 Experiments

As stated in Section 2.1.1, a simulation is used to analyze the behavior of a system, which is a set
of cooperating subsystems. Which subsystems are observed, depends on the chosen abstraction
level.
In this work, the behavior of the communication system in form of a ring topology is analyzed.
The system consists of the subsystems “CNs” and “communication links”. A CN could again
be segmented into its subsystems “Switch” and “MCU”, but as the entities (objects of interest)
are the links, MRP test frames and data packets, respectively the network performance, the first
abstraction level is sufficient.

4.1.1 Channel utilization

The main purpose of this simulation study is to obtain a suitable basis for the configuration of the
workload generation for successive experiments. The required workload traffic should utilize
the links at the network’s bottleneck at around 66% of their bandwidth. Once an applicable
configuration is found, the temporal and spatial allocation of the bandwidth utilization on the
network is examined.

The network setup consists of a ring topology of 64 CNs which are connected by half-duplex
links with a bandwidth of 640kbps (see Figure 4.1). One node — say cn64, w.l.o.g. — acts as
MRM and sends MRP test frames with the highest switch priority every 1s. Additionally, it
blocks the port toward cn63 and so the ring transforms into a line topology for non MGMT
frames. For workload generation, every CN periodically sends DataPeriodic messages with
a specified size of payload and a random frequency to every other CN. More precisely, the start-
ing time of the sending process and the periods are drawn from a uniformly distributed interval
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Figure 4.1: A ring of 64 CNs where cn64 acts as MRM and blocks the port toward cn63 at the
beginning.

for each CN separately. Furthermore, throughput-metering channels (see Section 3.3.2) are in-
stalled on multiple links distributed over the ring. Then, alternative systems were derived by
choosing different payload sizes and start and sending intervals. As described in Section 2.1.4,
new alternatives were created by varying systems which have been already analyzed after the
completion of their runs, i.e. steps 8 to 10 of the proposed process flow model were iterated
multiple times. For each configuration, 40 replications with a length of 600s were run.

After analyzing the resulting utilizations of these experiments, the following configuration
was chosen as the basic setting for successive experiments. In this configuration, every CN
sends DataPeriodic messages with a payload of 160 bytes to every other node in periods
uniformly chosen from [6s, 9s], starting after an offset uniformly drawn from [0s, 2s]. The
workload is produced with switch priority 2.

Figure 4.2 shows the resulting utilizations of this configuration on selected links. Particularly
on the links cn1 – cn2, cn8 – cn9 and cn16 – cn17 the utilization is higher at the beginning and
declines gradually until 50s. After this, the mean utilization remains tolerably constant with a
fluctuation of 15% on all links. Thus, only a time range of [0s, 170s] was investigated further.

The boxplots of the channel utilizations, partitioned in two intervals, are depicted in Fig-
ure 4.3. As expected, the link utilization decreases with increasing distance of the link to the
middle of the ring respectively line. This origins from the fact that traffic sent from one end of
the line to the other end has to pass the links in the middle, which therefore can be seen as the
bottlenecks of the network. As shown in Figure 4.3a and 4.3b, the median channel utilizations
during the interval [0s, 50s) are higher than the median channel utilizations during [50s, 170s].
The mean median utilization of all measured links is 63.2% during [0s, 50s) and 48.5% for the
remainder of the simulated time. It is≈ 70% on the bottleneck links for the interval [50s, 170s].
The high channel utilizations in the first 50s is caused by the extensive communication of the
ARP (as described in Section 4.1.2).
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(b) Link cn8 – cn9
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(c) Link cn16 – cn17
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Figure 4.2: Channel utilizations on chosen links measured in the range [0s, 170s] of the simu-
lated time. The circles represent the utilizations of different runs and the lines show their mean
value.

●
●

●
●

●

●

●
●
●
●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●
●●
●

●

●

●
●●
●

●
●●

●

●●
●

●

●●

●
●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●
●

●●
●●

●●

●
●●

●

●●

●

●
●
●
●

●

●●●
●

●

●

●

●

●

●

●

●

●
●
●
●
●●
●

ch
an

ne
l u

til
iz

at
io

n 
(%

)

0

10

20

30

40

50

60

70

80

90

100

cn
1 

− 
cn

2

cn
8 

− 
cn

9

cn
16

 −
 cn

17

cn
24

 −
 cn

25

cn
32

 −
 cn

33

cn
33

 −
 cn

34

cn
40

 −
 cn

41

cn
48

 −
 cn

49

cn
55

 −
 cn

56

cn
62

 −
 cn

63

se
lec

te
d 

lin
ks

(a) Interval [0s, 50s)

●

●

●

●●

●
●

●

●●

●
●

●●

●

●

●●
●●
●
●●

●

●

●●

●

●

●

●

●●

●
●

●●●●

●
●●

●●

●
●

●

●

●
●

●

●

●●

●
●●●

●

●
●●

●

●●●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●
●●
●
●●

●

●

●

●●

●●
●●
●●

●

●

●
●

●

●●●
●

●

●

●
●

●●

●

●

●●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●
●

●●

●

●
●

●

●

●

●●
●

●

●
●
●
●

●

●

●

●

●

●●●
●●●●●●
●

●●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●
●
●●●
●

●
●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●●

●●

●●●
●

●

●
●

●●

●

●●●

●

●●
●
●

●●
●

●

●●

●

●

●
●●
●●

●

●●●
●

●
●
●●
●

●

●●

●

●

●●
●
●●●●●●
●

●

●

●

●

●

●●

●
●

●

●
●
●

●

●●●●

●

●
●
●
●●●
●

●

●

●

●
●●●●

●

●

●
●
●●●

●

●

●●
●

●

●

●●

●

●
●●

●

●

●

●

●
●
●

●

●

●
●

●

●

●
●
●

●

●

●●

●
●

●
●

●●
●●●●●●●
●

●

●

●

●
●●
●
●●
●●

●

●●●●●●

●

●

●
●●
●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●●
●
●
●
●

●

●

●
●●

●

●
●
●
●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●
●●
●

●

●
●●●
●●●
●
●

●

●
●

●
●●●●
●●●
●
●
●●●
●

●

●●
●
●●
●

●

●

●●
●

●
●

●

●●●●
●
●●
●

●

●

●●

●

●●
●

●

●
●

●

●
●

●

●●●●●
●
●
●

●

●
●

●

●

●

●●
●●
●●

●●

●

●

●

●●●
●●

●

●

●

●●

●

●●●
●●
●●●●
●●●
●
●
●

●

●●
●●
●
●●●●●

●

●●
●●●●●●●●●●●●●●

●

●

●

●●●●

●

●
●●
●

●

●●
●

●

●
●●●●●●●
●●●

●

●

●●
●●●

●

●
●
●●

●

●●
●

●

●●
●
●

●

●●●●
●

●

●

●

●

●
●●●●
●

●

●
●

●

●
●

●

●

●

●
●●
●
●
●●
●●
●●
●

●

●

●

●
●

●

●●

●

●
●
●●●

●
●●
●●
●●
●
●
●●●

●
●●●

●
●●

●●●
●

●

●●

●

●

●●

●

●

●
●

●

●

●
●
●

●
●●
●
●
●●
●

●

●

●

●

●

●●
●
●
●●●●●●

●

●

●

●

●●

●

●
●●

●

●
●●
●●

●●

●
●●

●

●●●
●
●●●
●●●
●●●
●
●

●

●
●
●●

●

●

●
●●
●
●

●

●●
●
●

●

●
●
●●
●

●

●●

●
●●
●
●

●

●
●

●●

●

●

●

●●

●

●●●●●●●●●
●
●●
●●
●
●●●

●

●

●

●●
●●●
●●●
●

●

●
●●

●

●●

●
●

●

●●
●

●

●

●

●●

ch
an

ne
l u

til
iz

at
io

n 
(%

)

0

10

20

30

40

50

60

70

80

90

100

cn
1 

− 
cn

2

cn
8 

− 
cn

9

cn
16

 −
 cn

17

cn
24

 −
 cn

25

cn
32

 −
 cn

33

cn
33

 −
 cn

34

cn
40

 −
 cn

41

cn
48

 −
 cn

49

cn
55

 −
 cn

56

cn
62

 −
 cn

63

se
lec

te
d 

lin
ks

(b) Interval [50s, 170s]

Figure 4.3: Boxplots of the channel utilizations on selected links and overall channel utilization
of these links in “selected links”, partitioned in two intervals.
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4.1.2 Address Resolution Protocol

In this simulation study, three different approaches for implementing and simulating ARP are
compared. The version provided by INET is contrasted with the implemented version with ei-
ther ULC enabled or disabled (for a description see Section 3.2.1). Additionally, the influence
of these ARP alternatives on the channel utilization and consequently transmission delays was
investigated.

For conducting the study, the following three scenarios were defined:

• INET_ARP: using the INET implementation of ARP with

– cache table timeout time = 30s

– retry timeout = 1s

– retry count = 3

• ULC_enabled: using the implemented ARP with ULC enabled and1

– cache table timeout time in [15s, 45s] (derived from base_reachable_time = 30s)

– delay first probe = 5s

– retry timeout (retrans_time) = 1s

– retry count unicasts (ucast_solicit) = 3

– retry count multicasts (mcast_solicit) = 3

• ULC_disabled: is the same configuration as ULC_enabled only with ULC disabled

The upper-layer reachability confirmation process is usually done by protocols at layer 4 (w.r.t.
ISO/OSI, e.g., TCP) but since the MCU model only covers layers two and three of the OSI
model, it is imitated by the cnApp. So, whenever the application receives a packet, it completes
the confirmation.
The ring was utilized as described above and ARP packets were sent with the lowest switch
priority. The length of a simulation run was defined with 170s and the number of replications
with 40. This length is reasonable long enough, as it covers the initial phase with higher channel
utilization and the ARP cache table timeouts for around four times.

Initiated and failed ARP resolutions

The dispersion of the initiated and failed resolutions resulting from these experiments over time
are shown in Figure 4.4. Figure 4.5 summarizes these values for each scenario. In all scenarios
considerably more resolutions were initiated in the interval [0s, 50s). In scenario ULC_enabled,
99.97% of the resolutions were initiated in this interval, whereas for scenario ULC_disabled it
were 59.57% and for INET_ARP 81.45%.

1These values are according to arp(7), see http://linux.die.net/man/7/arp.
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(c) Scenario ULC_enabled

Figure 4.4: Frequencies of initiated and failed ARP resolutions of all simulation runs.

This is because all nodes start sending packets at the beginning having empty ARP caches. Con-
sidering the whole simulation time, scenario INET_ARP requires 21% and scenario ULC_disabled
72% more resolutions than scenario ULC_enabled (see Figure 4.5a). The histogram in Fig-
ure 4.4c shows that in scenario ULC_enabled the last ARP resolution was initiated at 62.16s
and failed at 65.16s.
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(b) Failed resolutions

Figure 4.5: Number of the initiated and failed ARP resolutions (the values are normalized, i.e.
divided by the number of simulation replications, and rounded).

In scenario INET_ARP, 88% of all failed resolutions happened in the interval [0s, 50s),
whereas for ULC_disabled and ULC_enabled 64% and 99.97% failed in the same period, re-
spectively (see Figure 4.5b). In each scenario, during the first 50s about two-third (62%–
66.77%) of the initiated resolutions failed. Most of the resolutions fail in the beginning due
to the higher channel utilization in this phase. Interestingly, ULC_disabled has about 41%
more initiated and failed resolutions than INET_ARP considering the whole simulation time.
In interval [50s, 170s], it has about 208% more initiated and around four times as many failed
resolutions.

According to [52], ARP just broadcasts resolutions. In the Neighbor Discovery for IPv6
protocol [51] multicast-based resolutions are made instead of broadcast resolutions. The imple-
mented ARP module only broadcasts. However, in this work “multicast” is used as a synonym
for “broadcast” and “multicast”.

In Figure 4.6, the frequencies of the failed multicast resolutions of scenario INET_ARP
and failed uni- and multicast resolutions of ULC_disabled are contrasted. After the first 50s,
approximately the same number of multicast resolutions fail in INET_ARP and ULC_disabled.
In the latter scenario though, additionally unicast resolutions fail.

Sent ARP requests

The frequencies of the sent ARP requests (unicast and multicast requests in case of the imple-
mented ARP), are depicted in Figures 4.7(a)-(c) over the whole simulation time and summarized
in Figure 4.8. Intuitively, the number of requests sent in the two periods [0s, 50s) and [50s, 170s]
reflect the number of resolutions made. In scenario ULC_enabled, almost all requests were sent
in the first 50s and 99.5% of them were multicast requests. As a consequence, by using upper-
layer reachability confirmation all ARP resolutions are solved with ARP multicast requests at
the beginning and do not have to be resolved later.
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(b) Scenario ULC_disabled

Figure 4.6: Frequencies of failed ARP resolutions of all simulation runs. In case of scenario
ULC_disabled unicast and multicast resolutions.

In scenario ULC_disabled, two-third (60.84%) of the requests are performed in the interval
[0s, 50s), which are again mainly multicast requests (97.6%). On the contrary, approximately
two-third (70.7%) of the requests sent in [50s, 170s] were unicasts.

In scenario INET_ARP and ULC_disabled almost the same number of multicast requests
were necessary in both period [0s, 50s) and [50s, 170s] (the difference is about 88 requests per
run), but in scenario ULC_disabled additionally unicast requests were sent.

Not necessarily the random cache table timeout time is responsible for the additional unicast
requests in scenario ULC_disabled. In both the INET and implemented ARP, a cache table entry
of an address is updated when the module receives an ARP request having this address stored as
source IP address. The INET ARP sends requests always as broadcasts, and so every node in the
broadcast domain is updating its cache. Thus, caches of all nodes in the ring are continuously
updated by some nodes’ requests. On the contrary, in the implemented version of ARP a stale
entry is resolved by a unicast request. Since nodes delete the unicast MAC address assigned
frame at the MAC layer when it is not designated for them, they do not update their cache table.
On the other hand, this results in further unicast and multicast requests, when the former are
unsuccessful.
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(b) Scenario ULC_disabled
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Figure 4.7: Frequencies of sent ARP requests of all simulation runs.
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Figure 4.8: Number of the sent ARP requests (normalized and rounded values).

Effect on channel utilization, delays and delivery ratios

A slightly higher median channel utilization (on all measured links) can be identified in the
first 50s of scenario ULC_enabled (63% compared to 61% for scenario ULC_disabled and
INET_ARP). During the remaining simulation time though, the median utilization is lower (48%
compared to 50%). This is also reflected in the delays of packets. As summarized in Table 4.1,
scenario ULC_enabled has a larger mean delay in the first interval, whereas the variation of the
MRP test frame delays (0.58s) of all scenarios is larger than the one of data packets (0.37s).
In the second interval, scenario ULC_enabled has clearly smaller mean delays. The delta of
ULC_enabled and ULC_disabled is 1s for MRP test frames and 0.8s for data packets. The
difference to INET_ARP is 0.54s for MRP test frames and 0.43s for data packets.

[0s, 50s) [50s, 170s]
Delays INET_ARP ULC_dis. ULC_en. INET_ARP ULC_dis. ULC_en.
MRP test f. mean 5.164s 5.092s 5.670s 2.710s 3.178s 2.173s
MRP test f. std. dev. 2.714s 2.781s 3.059s 1.445s 1.591s 1.207s
MRP test f. median 4.839s 4.760s 5.282s 2.605s 3.096s 2.058s
Data p. mean 3.451s 3.419s 3.786s 2.461s 2.821s 2.034s
Data p. std. dev. 3.090s 3.083s 3.372s 2.093s 2.401s 1.781s
Data p. median 2.803s 2.771s 3.076s 2.122s 2.443s 1.719s

Table 4.1: Delays of MRP test frames and data packets during [0s, 50s) and [50s, 170s].

Table 4.2 lists the means and standard deviations of the delivery ratios. The different channel
utilizations do not effect the delivery ratio of high priority frames such as MRP test frames but
the ratio of lower priority packets like data packets. As expected, ARP with upper-layer reacha-
bility confirmation enabled has the best delivery ratio, followed by the INET implementation.
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[0s, 170s]

Delivery ratios INET_ARP ULC_disabled ULC_enabled
MRP test frames mean 98.289% 98.026% 98.896%
MRP test frames std. dev. 0.620% 0.748% 0.456%
Data packets mean 94.486% 90.850% 95.579%
Data packets std. dev. 6.696% 10.127% 5.646%

Table 4.2: Delivery ratios of MRP test frames and data packets.

Although the delivery ratio of MRP test frames is about the same for all three scenarios,
ULC_enabled has shorter MRP test frame delays. Furthermore, in ULC_enabled more data
packets are delivered with a smaller delay (in [50s, 170s]). As a consequence, enabling the
MSG_CONFIRM flag when using the linux send function2 results in a better performance. Pe-
riodically sent “Hello” packets for monitoring point-to-point connections are keeping the ARP
caches up to date, too. Also, knowing the first 50s to be ARP excessive, a reconfiguration of the
MRP parameters (e.g., the tstNRmax parameter) after this period leads to a shorter ring failure
detection time.

4.1.3 Media Redundancy Protocol

The delay of an MRP test frame Tring, i.e. the time the frame needs to be passed over the whole
ring (cf. Section 5.3), is crucial for the configuration of MRP parameters. In the ring-closed
state, the MRM periodically sends test frames every tstDefaultT . When it does not receive a
test frame back within Ttest = tstDefaultT ∗ tstNRmax, the MRM detects that a failure has
happened and changes to the ring-open state by setting the secondary port to forwarding.

Assuming an MRP test frame delivery ratio of 100%, the MRM has to be configured con-
sidering that Tring < Ttest holds. Otherwise, it would introduce a switch-over without a link
failure has happened and consequently a loop would emerge. Assuming that the first test frame,
which was sent when the MRM switched to the ring-closed state in the first place, does not
get lost, the loop would exist for the duration of Tring − Ttest. With a delivery ratio smaller
than 100%, the boundary for Tring is even more narrow. Under the assumption that exactly
one test frame can be delivered during a test interval, the constraint for Tring is reduced to
Tring < tstDefaultT . This means that the last frame sent in a test interval which has to be
received before the ring would be falsely detected as being opened, has to be delivered within
tstDefaultT .

However, the time the MRM needs to detect an open ring depends on Ttest. The actual time
elapsing from the occurrence of the failure to its detection is Tdetect = Ttest + Tring (Tring as
dead time) [47]. This value is even shortened on the reception of a LinkDown frame to speed
up this procedure. Hence, the configuration of an MRM is aiming at keeping Ttest minimal and
accordingly, as Ttest > Tring must hold in an optimal system, also Tring has to be minimized.

2http://linux.die.net/man/2/send
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Moreover, the detection of a closed ring depends on Tring, too. It can be accomplished faster
with shorter test frame delays.

The purpose of the following two simulation studies is to investigate how different priorities
and tstDefaultT parameters affect Tring. Moreover, the influence on delivery ratios and data
packet delays is explored.

MRP test frames with different switch priorities

This study shows how different MRP test frame priorities3 and tstDefaultT values affect the
performance of the ring.
For the setup, a ring with 64 nodes was constructed and utilized according to Section 4.1.1.
Node64 acts as MRM and blocks the port toward node63. Additionally, MRP test frames were
sent periodically with different tstDefaultT values and priorities.

12 alternative systems were specified by defining scenario sc($tstDefaultT, $priority) as fol-
lows:

• $tstDefaultT ∈ {0.1s, 0.25s, 0.5s, 0.75s, 1s, 2s} and $priority ∈ {2, 3}

• using the implemented ARP with upper-layer reachability confirmation enabled

• data packets are sent with switch priority 2

Again, the simulation length was specified with 170s and the number of runs was set to 20
for each scenario.

Figure 4.9 shows the MRP test frame delays of all scenarios partitioned in ARP excessive
and non-excessive phase. In both phases, using different priorities has a major influence on the
delays. In the ARP non-excessive phase, the mean delays of priority 3 frames are about 2.1s
lower than priority 2 frames’ delays. In the ARP excessive period, this delta is even higher with
approximately 3.7s. Considering the interval [0s, 50s) only and each priority separately, the
means of the scenarios with different tstDefaultT values vary in a range of 1s. The means of
all scenarios with priority 3 in the ARP non-excessive phase are distributed in a range of about
250ms. Thus, the delays of scenarios with priority 3 (scenarios sc(*,3)) in the non-excessive
ARP phase depend at least of all scenarios on the tstDefaultT parameter.

Comparing the ARP excessive and non-excessive phases, the mean delays of priority 2
frames are 4.9s higher in the interval [0s, 50s) than in [50s, 170s]. For frames with priority
3, this delta is lower with 3.4s. It holds for both priority sets, that the standard deviation of the
delays is higher in the first interval than in the second interval. The highest standard deviation
emerges in scenario sc(2s, 2) in the ARP excessive phase and is 3.481s, the smallest with 1.18s
in scenario sc(2s, 3) during the non-excessive phase.

3The switch supports four priorities. In the implementation, three corresponds to the highest priority.
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Figure 4.9: Means and standard deviations of MRP test frame delays using different
tstDefaultT and priority values.

Out of all mean delays, the smallest mean value has scenario sc(2s, 3) with 2.13s in the
non-excessive interval. Exact values are provided in the Tables A.1, A.2, A.3 and A.4 in the
appendix.

Furthermore, the mean delivery ratios of MRP test frames with priority 3 are slightly larger
than the corresponding ratios with priority 2 (see Figure 4.9). The same holds for delivery ratios
of data packets (see Figure 4.10). Exact values are provided in Table A.5 and Table A.6. The
highest mean delivery ratio can be identified in scenario sc(0.1s, 3) with 99.387% for MRP test
frames and scenario sc(2s, 2) with 98.314% for data packets, respectively.
The mean data packet delays of all scenarios are depicted in Figure 4.10. The mean delay is
approximately 3.8s during ARP excessive and 2.1s during ARP non-excessive phase. Within an
interval, the mean delay does not depend on the tstDefaultT nor on the priority of the MRP
test frames. Also, the median channel utilization on all measured links does not depend on dif-
ferent tstDefaultT values and priorities.

As a conclusion, the MRP test frames’ priority (either 2 or 3) does not affect the delays and
delivery ratios of data packets. In contrast, it has indeed an effect on the MRP test frame delays.
In general, in both the ARP excessive and non-excessive phase, test frames sent with priority
3 have shorter delays than priority 2 frames. Also, the difference between the delays in the
excessive phase and in the non-excessive phase are smaller for priority 3 frames as for priority 2
frames.
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Figure 4.10: Means and standard deviations of data packet delays using different tstDefaultT
and priority values.

For workload generation, every node sends data packets to every other node. The mean
data packet delay and standard deviation for every communication pair of scenario sc(1s, 3) are
depicted in Figure 4.11. The values at sender = receiver is 0 as a node does not send packets to
itself. Intuitively, the delay increases with the distance of the receiving node on the ring. Also,
the standard deviation increases proportionally to the distance between the sending and receiving
node (see Figure 4.11b). From the perspective of data packets, particularly non MGMT frames,
the ring topology performs like a line topology. In this setup up, node64 blocks the port toward
node63, thus the line topology “node64 – node1 – node2 – . . . – node62 – node63” is formed.
For instance, from node1 as sender, the delay increases until 4.494s at receiver node63 and then
suddenly falls to 0.0052s at receiver node 64. This is because node64 is an adjacent neigbor of
node1 and node63 is located on the opposite end of the line. The “butterfly-shaped” areas in the
sender/mean and receiver/mean planes result from the ring being opened between node63 and
node64. For a better understanding, Figure 4.12 shows the mean delays of packets sent from
sender node63 and node64. The peak in the corner of Figure 4.12a indicates that packets sent
from node63 to node64 have to be transmitted over the whole ring.

The mean data delivery ratio and standard deviation of every communication pair in scenario
sc(1s, 3) are shown in Figure 4.13. For reasons of better illustration, the ratio of the pairs
(sender, sender) was set to 100% and the standard deviation to 0%. The means decrease with
the increasing distance between the sender and receiver node, whereas the standard deviations
increase.
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Figure 4.11: Mean delay and standard deviation of data packets pairwise sent from sender to
receiver in scenario sc(1s, 3) during the period [50s, 170s].
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Figure 4.12: Mean delay of data packets sent from node63 and node64 in scenario sc(1s, 3)
during the period [50s, 170s].
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Figure 4.13: Mean data packet delivery ratios of packets sent pairwise from sender to receiver
in scenario sc(1s, 3) during the period [0s, 170s].

Data packets with different switch priorities

The aim of this simulation study is to examine how different priorities for data packets influence
MRP test frame and data packet delays and their delivery ratios. The set up used for this ex-
periments is a ring of size 64 (see Figure 4.1), where cn64 acts as MRM and sends test frames
periodically every 1s with priority 3. The workload was generated according to Section 4.1.1.

Three different system alternatives are specified, where scenario priority($dataPriority) is de-
fined as follows:

• data packets are sent with switch priority $dataPriority ∈ {0, 1, 2}

• tstDefaultT is 1s and the priority of MRP frames is 3

• the implemented ARP with ULC enabled is used

For each of the alternatives 40 runs were executed, each with a simulation duration of 170s.

The resulting means and standard deviations of the MRP test frame delays are depicted in
Figure 4.14 for the ARP excessive and non-excessive phase, respectively. As expected, a higher
data packet priority of 2 leads to higher mean delays of MRP test frames. In the ARP excessive
phase, the mean delay is approximately 1.4s and in the non-excessive phase about 0.3s higher
than of the other two scenarios with data priority 1 and 0. Also, the mean data packet delays
are larger for scenario priority(2), whereas the delta is about 1.2s and 0.4s (see Figure 4.15).
During the interval [0s, 50s), the mean delay of scenario priority(0) is marginally higher than of
scenario priority(1) due to the transmission of ARP packets with priority 0 in this period. All
three scenarios result in approximately the same MRP test frame delivery ratio.
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In contrast, a data packet priority of 2 leads to a much better delivery ratio of 95.6% com-
pared to about 90.7% for data priority 1 and 0. The exact values of delays and ratios are listed
in Tables A.7 and A.8.
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Figure 4.14: Means and standard deviations of MRP test frame delays using different priorities.
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Figure 4.15: Means and standard deviations of data packet delays using different priorities.
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To sum up, a higher data packet priority leads to a better data packet delivery ratio but
worse delays. Data packets with lower priority are faster if they can be switched. Furthermore,
choosing priority 1 or 0 does not make any difference for MRP or data transmission performance
during the ARP non-excessive phase.

4.1.4 Scalability of the Media Redundancy Protocol

According to [47], the following requirements shall be fulfilled in order to maintain a maximum
recovery time of ≤ 500ms using the MRP:

• The link speed shall be at least 100Mbps.

• The operation mode shall be full duplex.

• The number of nodes shall be smaller than 50, otherwise the ring may become instable.

In this work, ring topologies are needed which do not meet all of the aforementioned condi-
tions, since:

• The link speed is 640kbps.

• The links connecting the MRCs and the MRM operate in half duplex mode.

• More than 50 nodes are expected.

As explained in Section 4.1.3, the period an MRP test frame needs to be transmitted over
the whole ring is critical for the configuration of the MRP. This simulation study examines how
MRP behaves with an increasing number of nodes under the two constrictions half duplex mode
and reduced link speed. In addition, the trend of the delay and delivery ratio of data packets is
investigated. Furthermore, the results provide an estimator for arbitrary ring sizes by means of
polynomial functions.

For the experiments, 133 alternative systems are defined, where scenario scale($ring size, $tst-
DefaultT) is constructed as follows:

• $ring size ∈ {10n | n ∈ N ∧ 7 ≤ n ≤ 25}

• $tstDefaultT ∈ {0.05s, 0.1s, 0.25s, 0.5s, 0.75s, 1s, 1.5s}

• using the implemented ARP with upper-layer reachability confirmation enabled

• MRP test frames are sent with switch priority 3

• data packets are sent with switch priority 1

In all resulting ring topologies, node n0 is defined as MRM and blocks the port toward the
node with the highest index (see Figure 4.16). Thus, a line topology “n0 – n1 – . . . – nring size-2 –
nring size-1” is formed for non MGMT frames.
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For traffic generation, the first 32 nodes at the leftmost side of the line topology (i.e., {n0,
. . . , n31}) send data to the 32 nodes at the rightmost side (i.e., {nring size-32, . . . , nring size-1}) and
vice versa. The nodes start sending packets with 160byte payload at an arbitrary point in time
in [0s, 5s] and continue in periods uniformly chosen from [4s, 7s]. Using this configuration, the
link in the middle of the ring, i.e. the bottleneck, has a median channel utilization of approx-
imately 65%. Per configuration, a number of 10 replications with each a simulation length of
120s was simulated.

...

nringsize-1

nringsize-2

n0

n1

n2

Figure 4.16: The setup of a ring topology with a size of ring size where n0 acts as MRM.

In all scenarios, ARP communication utilizes the network mostly in the first 50s. ARP
resolutions performed after the first 50s are negligible for the network load. The means and the
standard deviations of the MRP test frame delays of all scenarios, partitioned in ARP excessive
and non-excessive phase, are depicted in Figure 4.17 and Figure 4.18, respectively.

Generally speaking, the mean delays and the standard deviations increase proportionally to
the ring size and inversely proportional to tstDefaultT . The highest mean delays result from
tstDefaultT = 0.05s and large ring sizes like 250 for the excessive and 240 for the non-
excessive phase. Considering the interval [50s, 120s] only, the highest mean delay is 6.74s for
scenario scale(240, 0.05s) and the lowest 2.38s for tstDefaultT = 1s and a ring with size 70.
The highest standard deviation has scenario scale(250, 0.05s) with 3s and the lowest scenario
scale(70, 1s) with 1.45s.

Examining the values in a mathematically correct way, the mean delays do just tend to in-
crease proportionally according to the ring size for each tstDefaultT , but are not strictly mono-
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Figure 4.17: Means of MRP test frame delays partitioned in ARP excessive and non-excessive
phase.
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Figure 4.18: Standard deviations of MRP test frame delays partitioned in ARP excessive and
non-excessive phase.

tonically increasing. However, for tstDefaultT = 0.05s the mean delay of ring size 240 (sce-
nario scale(240, 0.05s)) is only 0.0032s higher as the delay of ring size 250 (scenario scale(250,
0.05s)). Considering this difference as negligible, the delays for tstDefaultT = 0.05s can be
seen as strictly monotonically increasing with the ring size. It holds for all tstDefaulT values,
that the difference of the delays at the ring sizes where the delays violate the condition for being
monotonically increasing, is 0.33s maximum.
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For providing an estimator of the mean delays for arbitrary ring sizes, a polynomial function

MDtstDefaultT (ring size) = p1 ∗ ring size+ p2

was deduced from the simulation results for both the ARP excessive and non-excessive phase.

The coefficients for MDtstDefaultT , fitting the results of interval [50s, 120s] according to
the method of least squares4, are listed in Table 4.3. The polynomials and the corresponding
results of the experiments are illustrated in Figure 4.19b. Concluding from these polynomials,
the smallest mean delays are achieved using the highest tstDefaultT parameter 1.5s. The
derived polynomials and simulation results for period [0s, 50s) are shown in Figure 4.19a. In
this phase, the polynomials have a higher y-intercept and slope, i.e. the delays increase faster
proportionally with the ring size than in the non-excessive phase. The coefficients are provided
in Table A.9.

The maximum delta between the mean delays of interval [0s, 50s) and [50s, 120s] for ring
size 250 has tstDefaultT = 0.1s with 1.94s, the minimum tstDefaultT = 1.5s with 0.99s.
The minimum overall difference has scenario scale(70, 1.5s) with 0.85s. Thus, the difference
between the mean delays of the ARP excessive and non-excessive phase is at most 1.94s and at
least 0.85s for each tstDefaultT and all ring sizes. Roughly speaking, the deltas between ARP
excessive and non-excessive phase increase with a decreasing tstDefaultT value.

TstDefaultT p1 p2

0.05s 0.0207 1.5753
0.10s 0.0184 1.4587
0.25s 0.0164 1.4824
0.50s 0.0150 1.5339
0.75s 0.0154 1.5096
1.00s 0.0143 1.5864
1.50s 0.0144 1.5466

Table 4.3: Coefficients of MDtstDefaultT for mean MRP test frame delays during the interval
[50s, 120s].

In Figure 4.20a, the mean delivery ratios of MRP test frames of all scenarios are shown. Gen-
erally speaking, the mean delivery ratio falls with increasing ring size and faster for higher
tstDefaultT values. However, the delivery ratios do not strictly monotonically decrease for
a certain tstDefaultT over all ring sizes. Values which do not comply with the monotonicity
have a mean difference of 0.5%, the maximum difference is 2.22%.

Again, a linear polynomial function MRtstDefaultT was derived from the simulation results
of the whole duration [0s, 120s]. The coefficients are listed in Table 4.4 and the graphs are
depicted in Figure 4.20b.

4For calculation, the MATLAB R© function polyfit was used which executes “polynominal curve fitting in a
least square sense”, see http://www.mathworks.de/de/help/matlab/ref/polyfit.html
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Figure 4.19: Means of MRP test frames delays and corresponding polynomial functions
MDtstDefaultT .
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Figure 4.20: Means of MRP test frame delivery ratios and the corresponding polynomials
MRtstDefaultT for the whole simulation duration [0s, 120s].

Considering the polynomial functions, the MRP frames delivery ratio of all scenarios is
greater than 90%. Clearly, a higher frequency of MRP test frames leads to a better delivery
ratio.

To sum up, the mean delays and standard deviations of MRP test frames increase propor-
tionally with the ring size and inversely proportional to the parameter tstDefaultT . Thus,
scenarios with smaller tstDefaultT values do have higher delays with greater deviations.

Especially scenarios with tstDefaultT being 0.05s or 0.1s have longer delays per ring size
than the remaining scenarios. On the other hand, MRP test frames sent with a higher frequency
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TstDefaultT p1 p2

0.05s -0.0160 99.3435
0.10s -0.0162 99.2372
0.25s -0.0163 98.8077
0.50s -0.0239 99.3441
0.75s -0.0293 99.5347
1.00s -0.0322 99.3342
1.50s -0.0326 98.5813

Table 4.4: Coefficients of MRtstDefaultT for mean MRP test frame delivery ratios.

(i.e. smaller tstDefaultT value) have better delivery ratios. Thus, they are switched more
slowly but with a higher delivery ratio. The ratios for all tstDefaultT values and ring sizes are
larger than 90%.

The mean data packet delays are depicted in Figure 4.21a and 4.21b for the ARP exces-
sive and non-excessive phase respectively. During the excessive phase, the highest mean delay
9.698s results from scenario scale(250, 0.25s) and the lowest 4.713s from scale(70, 0.25s).

In interval [50s, 120s], the highest mean delay 9.052s results from scenario scale(250, 0.05s)
and the lowest value 4.0834s from scale(70, 1s). Thus, the delays are not strictly monotonically
increasing.
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(b) ARP non-excessive phase [50s, 120s]

Figure 4.21: Means of data packet delays partitioned in ARP excessive and non-excessive phase.

For a prediction of the data packet delays for arbitrary sizes of rings, a polynomial func-
tion DDtstDefaultT for each tstDefaultT was derived from the experiments. The coefficients
of these functions for the period [50s, 120s] are provided in Table 4.5 and visualized in Fig-
ure 4.22b. The resulting polynomials for the phase [0s, 50s) are illustrated in Figure 4.22a, their
coefficients are listed in Table A.10. Intuitively, the mean delays represented by these polyno-
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mials are shorter when MRP test frames are sent less frequently. The delays of all tstDefaultT
values and phases increase approximately equal with the ring size, i.e. the slope of the polyno-
mials is about the same.

The polynomials of scenarios with tstDefaultT ≥ 0.1 are within an envelope, whose
width spans from 0.2s at ring size = 70 to 0.4s at ring size = 250 for the period [50s, 120s],
respectively to 0.7s at ring size = 250 for the interval [0s, 50s).

Thus, the mean delays for tstDefaultT ≥ 0.1 have a maximum dispersion of 0.4s for all
ring sizes in the ARP non-excessive phase. The delays of polynomial DD0.05 are outliers and
are approximately 0.5s higher as the (mean of the) envelope in the phase [0s, 50s), and 0.66s
higher at maximum in the remaining simulation time.

TstDefaultT p1 p2

0.05s 0.0232 3.1751
0.10s 0.0224 2.9635
0.25s 0.0223 2.8088
0.50s 0.0211 2.9249
0.75s 0.0213 2.9976
1.00s 0.0209 2.9615
1.50s 0.0216 2.8437

Table 4.5: Coefficients of DDtstDefaultT for mean data packet delays during [50s, 120s].
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Figure 4.22: Means of data packet delays and corresponding polynomials DDtstDefaultT .

The mean data packet delivery ratio of each scenario is shown in Figure 4.23a. Intuitively,
the ratios decrease proportionally according to the ring size for each tstDefaultT . The ratios
for large ring sizes are worse since a frame encounters more collisions while traveling over
a large ring compared to a small ring. However, they do not strictly monotonically decrease
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within a tstDefaultT and the largest delta where they do not is 2.8%. The coefficients of the
polynomials DRtstDefaultT fitting the results are stated in Table 4.6. The ratios derived from
the polynomials of scenarios with tstDefaultT equals 0.05s and 0.1s are clearly lower than of
the rest, which lie in a 2% “tube” for all ring sizes (see Figure 4.23b). The smallest value of this
tube for ring size 70 is DR0.25 with 57.7% and the largest one is 59.7% from DR1.5. The tube
becomes more narrow at ring size 250, where the ratios range from 36% for DR0.25 to 36.7%
for DR1.

TstDefaultT p1 p2

0.05s -0.1226 61.9217
0.10s -0.1306 65.7739
0.25s -0.1209 66.1934
0.50s -0.1268 67.9966
0.75s -0.1210 66.9475
1.00s -0.1248 67.9202
1.50s -0.1303 68.8464

Table 4.6: Coefficients of DRtstDefaultT for mean data packet delivery ratios.
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Figure 4.23: Means of data packet delivery ratios and corresponding polynomialsDRtstDefaultT

for the whole simulation duration [0s, 120s].

Summarizing, different tstDefaultT values do have an effect on the data packet delays and
ratios. In general, the delays increase and the ratios decrease proportionally with the ring size.
Using tstDefaultT values of 0.05s or 0.1s, the delays and ratios are obviously worse than the
delays and ratios resulting from other tstDefaultTs. The delays of the latter ones disperse
within 0.4s and 0.7s for [50s, 120s] and [0s, 50s) respectively, and the ratios within 2%. For
all tstDefaultT > 0.1s holds, that the resulting delays are approximately 0.5s better in the
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ARP non-excessive than in the excessive phase. For the purpose of a better data transmission,
a higher tstDefaultT parameter like 1s or 1.5s is preferable, as more data are switched with
shorter delays.

4.2 Results

In this work, several simulation studies were carried out on various ring topologies. All ring
topologies consisted of CNs connected by half-duplex links with a bandwidth of 640kbps. In
every experiment, one node of the ring was configured as MRM, sending periodically MRP test
frames and blocking one of its ports for non MGMT frames. Thus, the rings transformed into
line topologies for non MGMT frames.
Except in the first study, the simulation results were analyzed based on a set of four metrics. This
set includes the MRP test frame delay, the MRP test frame delivery ratio and the data packet de-
lay and delivery ratio.

The first simulation study aimed to find a suitable workload generation function, which
leads to a link utilization of two-third of the bandwidth at the bottleneck link. Additionally,
investigations on the temporal and spatial distribution of the network utilization were performed.
Therefore, throughput-metering channels were installed on multiple links of the ring. For the
experiments, a ring of 64 nodes was constructed, where every node periodically sends data
to every other node. Applicable periods for this traffic generation were found by an iterative
simulation process (see Section 2.1.4), i.e. new alternatives were simulated after analyzing
completed runs. Intuitively, the bottleneck link is the link in the middle of the line, i.e. in the
opposite of the blocked port (w.r.t. the graphical representation), and the utilization decreases
with increasing distance of a link to the bottleneck. The measured utilization of multiple links
shows higher utilization in the first 50s. After that, the utilization remains tolerably constant
for the remaining simulation time. The higher utilization can be referred to extensive network
communication produced by ARP.

In the following study, three different approaches for implementing and simulating ARP
were investigated. One system alternative was the ARP version provided by INET, the other two
used the implemented versions of ARP, either with upper-layer reachability confirmation (ULC)
enabled or disabled. For the network setup, again a ring of 64 nodes was constructed and the
traffic was produced as recommended by the first simulation study. In all three scenarios, the first
50s can be defined as ARP extensive. During this time, the implemented ARP with ULC enabled
(scenario ULC_enabled) sends mainly multicast requests and after this period, it does not send
requests at all. The INET version and the ARP with ULC disabled (scenario ULC_disabled)
transmit approximately the same number of multicast requests in both the ARP excessive and
non-excessive phase, but scenario ULC_disabled additionally sends unicast requests in the sec-
ond period [50s, 170s]. This is caused by the fact that nodes delete unicast ARP requests with
a MAC address not designated for them and hence do not update their cache table. All three
scenarios have the same MRP test frame delivery ratio, but scenario ULC_enabled has shorter
delays. In this scenario more data packets are delivered with a shorter delay.

A third simulation study was carried out to examine how different switch priorities used for
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MRP test frames or data packets and tstDefaultT values affect the performance of the ring.
The focus was put on the MRP test frame delay (Tring), i.e. the time a frame needs to be passed
around the ring. Different tstDefaultT values or MRP test frame priorities have no major
effect on the data packet delays, neither in the ARP excessive nor non-excessive phase.

Using priority 3 instead of priority 2 for MRP test frames, results in better mean test frame
delays though. In the ARP excessive phase, the improvement is about 3.7s and in the non-
excessive period about 2.1s for all tstDefaultT . The delivery ratios of MRP test frames and
data packets are similar for all scenarios (approximately 99% and 95%, respectively), thus in-
dependent of the tstDefaultT value or priority. Consequently, a higher priority for MRP test
frames is the better choice as it results in faster test frame delays, regardless of the chosen
tstDefaultT parameter or the considered point in time (at least for the chosen ring size). On
the other hand, a higher data packet priority (but lower than the MRP frames’ priority) leads to
worse data packet delays and higher delivery ratio. Thus, data packets with lower priority are
faster if they can be switched. Furthermore, data priority 1 or 0 have the same effect on MRP or
data transmission performance during the interval [50s, 170s].

The purpose of the last experiments was to study the scalability of the MRP under conditions,
which violate the requirements provided by the standard for a correct functioning of the protocol.
These restrictions concern the bandwidth and operating mode of the links, together with the size
of the ring. Additionally to the scalability, various tstDefaultT parameters ranging from 0.05s
to 1.5s were investigated. For the experimental setup, ring topologies with sizes spanning from
70 to 250 were constructed. The connecting links performed with a bandwidth of 640kbps and
in half duplex mode. One node acted as MRM, sent periodically test frames (MGMT frames)
and blocked one of its ports. For workload generation in all scenarios, the 32 nodes on one end
of the formed line periodically send data to the 32 nodes on the other end and vice versa. In this
way, the bottleneck of the ring was utilized at about two-third of its bandwidth.
To simplify the analysis of the simulation metrics and to provide an estimator for arbitrary ring
sizes, polynomial functions were derived from the simulation results for every metric. As in
previous experiments, the simulated network utilization can be partitioned in an ARP excessive
and non-excessive phase. Occasionally, ARP resolutions occurred after 50s. As they do not
utilize the network extensively, the ARP excessive phase was defined as [50s, 120s]. Generally,
the means and standard deviations of MRP test frame and data packet delays are higher during
this phase in all scenarios.
Concerning all four metrics, the scenarios with tstDefaultT set to 0.05s or 0.1s (high fre-
quency group) stand out from all others. The low frequency group contains the tstDefaultT
values 0.25s, 0.5s, 0.75s, 1s and 1.5s. The means of the test frames increase proportionally with
the ring size and indirectly proportional with the tstDefaultT . During interval [50s, 120s], the
means range from about 2.6s at ring size 70, to about 5.3s at ring size 250 for low frequency
tstDefaultTs. The means of the high frequency group rises from 2.8s to approximately 6.3s.
Thus, MRP test frames sent with a higher frequency result in mean delays which are about 1s
longer for larger ring topologies. It holds for all tstDefaultT parameters, that the MRP frame
delivery ratio decreases with increasing ring sizes. Further, the delivery ratio falls faster with
increasing tstDefaultT value, i.e. the high frequency group results in better delivery ratios.
Altogether, the delivery ratios of all scenarios are above 90%.
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The mean data packet delay is about 4.5s for rings with size 70 during the second interval
[50s, 120s]. For ring size 250, the low frequency group shows a mean delay of 8.3s. The high
frequency group has a mean delay of 8.8s.

Hence, higher frequent test frames have a delaying effect on data packets. For all scenarios, the
data packet delivery ratio is below 60%. In scenarios with tstDefaultTs of the low frequency
group, 58% or 36% of all data packets are switched for ring size 70 and 250, respectively. The
high frequency group results in a 4% less delivery ratio. Consequently, MRP test frames sent
with higher frequency lead to worse data packet delivery ratios.

To sum up, MRP test frames sent with a higher frequency lead to higher MRP test frame
delays and data packet delays, higher MRP test frame delivery ratios, and a lower data packet
delivery ratios. A reconfiguration of MRP after the ARP excessive phase optimizes the perfor-
mance of MRP, at least for large ring sizes.
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CHAPTER 5
Conclusion and Outlook

5.1 Summary

In this work, a given fault-tolerant IP communication system was analyzed regarding scalability
and network performance. Additionally, the correctness of the communication scheme was in-
vestigated. For this purpose, a simulation methodology was applied. The network nodes of the
examined system incorporate a switching function and an IP stack. They exchange data pack-
ets based on IP on links with bandwidths much smaller than state-of-the-art links in the scope
of Mbps or Gbps. The fault tolerance is established on the DLL by redundancy in form of a
ring topology, which involves the necessity of ring protection and recovery mechanisms. With-
out such protocols, bridging loops form, resulting in message duplication and consequently in
broadcast storms, which extensively consume network resources. On the other hand, redundant
paths can be used in the case of a link or node failure. There exist multiple ring protection and
recovery protocols to serve these purposes, which are extensively described in Chapter 2.

Some of the protocols listed in Chapter 2 are proprietary (REP, EPSR, RRPP, Turbo Chain)
while others are standardized (STP, RSTP, MSTP, MRP, RRP, EAPS). Basically, they block
(multiple) ports of switches for non MGMT frames to prevent bridging loops. Some of them are
based on VLANs (MSTP, EAPS, EPSR, RRPP) or use it for load balancing (REP). VLANs are
outlined in Chapter 2, too. Another section deals with simulation studies in general. It presents
theoretical aspects of simulation like terms and definitions, purposes, advantages and disadvan-
tages, a scheme for classification and describes how simulation studies are carried out. Besides
that, a very technical insight is given into the fundamental functioning of discrete-event simula-
tion environments. Finally, an overview of current simulation tools is provided.

A major task of this work was the model implementation of the communication system.
First, different state-of-the-art simulation frameworks were examined and compared and based
on this, the simulation environment OMNeT++ was selected. Then, the protocol framework
INET of the simulation environment was modified and extended. During this process, an issue
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of the scheduler and throughput-metering channel was identified. The ready-to-use INET ver-
sion of the scheduler was not implemented according to the specification. More precisely, the
scheduler was not fair and the throughput-metering channel measured incorrectly. Both modules
were re-implemented in the context of this thesis. The modeled network node contains a specific
switch and an Ethernet capable MCU. The switch operates at layer 2 of the ISO OSI reference
model and supports QoS with four traffic classes. The MCU module models layer 2 and layer 3.
On the top of the network layer, an application is based for data traffic generation and recording
of statistical values. The standardized and — especially in the field of industrial automation —
established protocol MRP was chosen as ring protocol. It is performed as functionality of the
MCU and not as part of the switch, as it usually is the case in conventional industrial networks.
Using MRP, the ring transforms to a line topology for non MGMT frames as the MRM blocks
one of its port. The performance of MRP depends on Ttest, which has to be larger than the delay
of an MRP test frame, Tring. Additionally, scripts for input data generation and output data
processing were developed to complete the simulation workflow.

Subsequent to the implementation of the model, several simulation studies were carried out.
All experiments based on ring topologies with the same bandwidth on every half duplex link
and violating the requirements defined by the MRP standard concerning ring size, bandwidth
and operation mode.

5.2 Conclusion

To conclude this work, the results of the simulation studies were analyzed. The aim of the first
study was to figure out how an appropriate network utilization for other experiments can be
produced. The required utilization was two-third of the bandwidth at the network’s bottleneck
link. Moreover, the temporal and spatial distribution of the network utilization in the rings were
examined. As shown, the utilization decreases with increasing distance of the link to the middle
of the formed line. The links at the middle are considered as bottlenecks of the line. Furthermore,
in the first minute of data communication, a much higher utilization was identified. This higher
utilization is caused by traffic of ARP.

In the second study, the ARP provided by INET and an enhanced version were compared.
The latter one is based on RFC 2461 (Neighbor Discovery for IP Version 6 (IPv6)) and resolves
stale ARP cache entries with unicast resolutions instead of broadcast resolutions as in the origi-
nal ARP (RFC 826). Additionally, it supports upper-layer reachability confirmation. Clearly, the
enhanced version of ARP (with ULC enabled) improves the performance, meaning that shorter
MRP test frames were achieved. Also, more data packets with shorter delays were switched. In-
terestingly, the ARP according to RFC 826 leads to a better performance than the enhanced one
with ULC disabled. Consequently, when a real system with a kernel module that implements
the newer version of ARP, is developed, it is essential to perform ULC. For instance, this can be
done by the MSG_CONFIRM flag of the Linux send function. Since the MRP test frame delays
are shorter in the ARP non-excessive phase, a reconfiguration of the MRP parameters after the
first minute allows improving the MRP behavior.

In a further step, it was tried to optimize the MRP test frame delays. The experiments were
conducted with different tstDefaultT values and switch priorities for test frames and data
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packets. A higher priority for test frames reduces the test frame delay, but has no effect on
the data packet delays or delivery ratios. Using a higher data packet priority (but lower than
the test frames’ priorities), results in a better data packet delivery ratio but worse delays, i.e.
data packets with lower priority are faster if they can be switched. There was no performance
difference when using the lowest and second lowest priority for data packets during the ARP
non-excessive phase.

Finally, the scalability of MRP was investigated. Experiments with 19 different ring sizes
and seven different tstDefaultT parameters showed, that higher tstDefaultT values lead to
lower test frame delays (Tring), lower data packet delays and higher data packet delivery ratios,
which is in line with the intuition. In contrast, the resulting MRP test frame delivery ratios are
lower but still above 90% for all ring sizes. Consequently, it is better to use higher tstDefaultT
values to gain a better performance. The resulting worse test frame delivery ratios are negligible
for the ring integrity test, since it is more important that within an interval of Ttest, at least one
frame reaches the MRM with a small delay, than all or many test frames reach the MRM with a
large delay. Receiving at least one frame, the MRM is already able to detect the integrity of the
ring. Hence, also the convergence time of MRP, which depends on Ttest, can be reduced. The
improvement is possible as Ttest can be shortened when Tring is minimized. On the other hand,
test frames sent with a higher tstDefaultT extend the detection of a ring recovery. This can
be bypassed with very short tstShortT values upon the reception of a LinkUp frame. Besides,
a recovery from an open ring forms an exception compared to the integrity test, or at least shall
form an exception.

Furthermore, a problem regarding MRP would emerge for a real system which corresponds
to the implemented model of the network node. According to that, the MRC module fails and
does not forward test frames anymore, when the MCU running the MRP fails. Hence, the MRM
would introduce a switch-over due to the absence of test frames although all links and switches
are working, and consequently create a bridging loop.

5.3 Lessions learned

During the analysis of MRP, possible improvements for slow Ethernet connections were discov-
ered. The MRM protocol state machine provided in [47] introduces an unnecessary topology
change of the ring after a certain sequence of events. This can happen when the transmission of
a test frame over the whole ring lasts longer as the time the MRM needs to detect that one of its
ports went down. When a topology change is performed, the MRM and all MRCs having their
two ring ports up, flush their FDB. A segment of the state machine is shown in Figure 5.1. The
depicted states can be described as [47]:

• The MRM is in the PRM_UP (Primary Ring Port with Link Up) state, when only one port
has a link. This port is called the primary port. Although the secondary port is down, the
MRM periodically sends test frames.

• The MRM transitions to CHK_RO (Check Ring, Ring Open State), when it has not re-
ceived test frames for a given period of time.
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• In the state CHK_RC (Check Ring, Ring Closed State), the MRM shall send test frames
and check the link of its ring ports to test the integrity of the ring.

PRM_UP

CHK_RO

CHK_RC

Figure 5.1: A segment of the protocol state machine of the MRM according to [47].

Furthermore, the parameter REACT_MODE specifies, if the MRM should react immediately
on a received LinkDown frame and initiate a topology change. The tstDefaultT value defines
the period the MRM sends test frames with and Tring is the time an MRP test frame needs to be
transmitted over the whole ring. It is computed as follows [47]:

Tring = N ∗ (Tswitch + Tqueue + Tbit + Tline)

where

• N is the number of switches in the ring.

• Tswitch is the delay introduced by each switch.

• Tqueue is the delay added due to a switch’s queue.

• Tbit is the time needed by a switch to transmit a frame.

• Tline is the propagation delay of the physical medium.

Table 5.1 describes the sequence of transitions which leads to unnecessary flushes of the
FDBs. The topology changes, initiated in transition36 and transition47, are unnecessary as the
secondary port was already in blocking state before it went down. Thus, the topology has not
changed from the MRP nodes’ point of view. Assuming that all links on the ring use the same
bandwidth, the time window during which transition42 has to happen depends on Tring and is

Tcritical ≈ Tring − ToneNodeDistance =
N − 1

N
∗ Tring
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The problem can be overcome by an additional condition asking about the state of the sec-
ondary link in transition13. When the secondary link is down, the state machine shall remain in
the state PRM_UP.

State/transition Description Link states Port states
sec./prim. sec./prim.

CHK_RC The ring is closed. up/up blocking/
Pairs of test frames are periodically sent and forwarding
received as long as there is no failure.
(Test frame tf2 is sent out of the secondary port.)
Assuming that Tring << tstDefaultT ,
there are no other test frames except the
currently sent ones on the ring.

transition42 Immediately after tf2 has passed the neighbor
next to the secondary port, the secondary port’s
link goes down. The corresponding MRC starts
transmitting LinkDown frames.

PRM_UP Only the link at the primary port is up. down/up blkd/fwd
transition13 The MRM receives tf2 on its primary port.

No_TopologyChange_flag is set to false.
The MRM is initiated to send test frames.
Two transitions are possible depending on
the configuration of REACT_MODE.
REACT_MODE is disabled:

CHK_RC The MRM remains in CHK_RC as long as the down/up blkd/fwd
timer has not timed out tstNRmax times.
It sends additional test frames after tstShortT
on reception of a LinkDown frame from the MRC.

transition36 The timer timed out for the tstNRmax time.
The MRM introduces a topology change and
sets the secondary port to forwarding.
or REACT_MODE is enabled:

CHK_RC The MRM remains in CHK_RC as long as down/up bldk/fwd
the timer has not timed out tstNRmax times or
has not received a LinkDown frame.

transition47 The MRM received a LinkDown frame.
The MRM introduces a topology change and
sets the secondary port to forwarding.

CHK_RO The MRM continues testing the ring integrity. down/up fwd/fwd

Table 5.1: Two possible scenarios leading to an unnecessary topology change event
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However, this issue is irrelevant when the Ethernet interface is not able to detect a failed link
within the time Tcritical. For example, in a ring with 50 switches, 100Mbps links, Tswitch =
10µs, Tqueue = 0s, a frame size of 64 bytes and a propagation delay of Tline = 0.5µs, Tring
is 781µs and Tcritical = 765µs. Having connections with 10Mbps, Tcritical is 3.023ms.

Nevertheless, it becomes considerable when the ring consists of very slow half duplex con-
nections, where the transmission of MRP test frames indeed can take more than a second (as in
the experiments in Section 4.1).

5.4 Future work

As the model implements the complete MRP standard, further experiments with link failures on
different locations of the ring can be conducted. It can be investigated how various parameters
for the topology change or the react mode of the MRM influence the convergence time of MRP
in such slow environments.

Apart from simple ring topologies, more complex networks like coupled rings or mesh
topologies can be built and examined deploying the implemented framework. Besides from
analyzing existing networks, this framework can be used for developing new fault-tolerant com-
munication schemes.

In order to contribute to the improvement of OMNeT++, the discovered issues will be re-
ported to the community.
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APPENDIX A
Tables

TstDefaultT 0.1s 0.25s 0.5s
Priority 2 3 2 3 2 3
mean 9.663s 6.093s 9.624s 5.996s 8.954s 5.446s
std. dev. 2.743s 3.059s 2.655s 3.184s 2.653s 2.902s
median 9.389s 5.730s 9.496s 5.503s 8.815s 5.114s
maximum 20.961s 20.180s 22.392s 20.300s 19.279s 16.47s

Table A.1: MRP test frame delays during the ARP excessive phase [0s, 50s) using different
tstDefaultT values (0.1s, 0.25s, 0.5s) and MRP test frame priorities.

TstDefaultT 0.75s 1s 2s
Priority 2 3 2 3 2 3
mean 9.023s 5.482s 9.302s 5.670s 9.267s 5.173s
std. dev. 2.935s 3.029s 3.186s 3.059s 3.481s 3.078s
median 8.754s 5.057s 9.026s 5.282s 9.130s 4.707s
maximum 21.657s 17.265s 20.690s 17.984s 21.131s 17.245s

Table A.2: MRP test frame delays during the ARP excessive phase [0s, 50s) using different
tstDefaultT values (0.75s, 1s, 2s) and MRP test frame priorities.
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TstDefaultT 0.1s 0.25s 0.5s
Priority 2 3 2 3 2 3
mean 4.996s 2.660s 4.444s 2.348s s 4.273s 2.184s
std. dev. 1.564s 1.369s 1.503s 1.293s 1.453s 1.228s
median 4.867s 2.558s 4.3087s 2.229s 4.157s 2.073s
maximum 11.800s 8.604s 11.281s 9.397s 11.662s 10.061s

Table A.3: MRP test frame delays during the ARP non-excessive phase [50s, 170s] using differ-
ent tstDefaultT values (0.1s, 0.25s, 0.5s) and MRP test frame priorities.

TstDefaultT 0.75s 1s 2s
Priority 2 3 2 3 2 3
mean 4.224s 2.149s 4.148s 2.173s 4.211s 2.127s
std. dev. 1.446s 1.211s 1.478s 1.207s 1.471s 1.178s
median 4.115s 2.047s 4.014s 2.058s 4.045s 2.015s
maximum 10.688s 7.432s 13.341s 8.225s 10.799s 7.362s

Table A.4: MRP test frame delays during the ARP non-excessive phase [50s, 170s] using differ-
ent tstDefaultT values (0.75s, 1s, 2s) and MRP test frame priorities.

TstDefaultT 0.1s 0.25s 0.5s
Priority 2 3 2 3 2 3
MRP test f. mean 98.46% 99.387% 98.858% 99.221% 98.827% 99.26%
MRP test f. std. dev. 0.588% 0.384% 0.734% 0.376% 0.540 0.367%
MRP test f. median 98.442% 99.470% 99.045% 99.229% 98.900% 99.340%
Data p. mean 95.464% 95.48% 95.528% 95.685% 95.479% 95.533%
Data p. std. dev. 5.764% 5.706% 5.619% 5.573% 5.806% 5.700%
Data p. median 95.652% 95.652% 95.652% 95.652% 95.652% 95.833%

Table A.5: Delivery ratios of MRP test frames and data packets using different tstDefaultT
values (0.1s, 0.25s, 0.5s) and MRP test frame priorities.

TstDefaultT 0.75s 1s 2s
Priority 2 3 2 3 2 3
MRP test f. mean 99.04% 99.242% 98.838% 98.896% 98.314% 98.314%
MRP test f. std. dev. 0.569% 0.315% 0.556% 0.456% 0.495% 0.728%
MRP test f. median 99.231% 99.232% 98.830% 98.976% 98.256% 98.547%
Data p. mean 95.382% 95.637% 95.514% 95.579% 95.706% 95.514%
Data p. std. dev. 5.778% 5.642% 5.651% 5.646% 5.425% 0.728%
Data p. median 95.652% 95.833% 95.652% 95.833% 95.652% 98.547%

Table A.6: Delivery ratios of MRP test frames and data packets using different tstDefaultT
values (0.75s, 1s, 2s) and MRP test frame priorities.

100



[0s, 50s) [50s, 170s)
Delays priority(2) priority(1) priority(0) priority(2) priority(1) priority(0)
MRP test f. mean 5.670s 4.386s 4.206s 2.173s 1.863s 1.857s
MRP test f. std. dev. 3.059s 2.951s 2.921s 1.207s 1.020s 1.024s
MRP test f. median 5.282s 3.720s 3.549s 2.058s 1.803s 1.760s
MRP test f. maximum 17.984s 16.832s 17.674s 8.225s 6.315s 6.693s

Data p. mean 3.786s 2.553s 2.701s 2.034s 1.692s 1.683s
Data p. std. dev. 3.372s 2.528s 2.711s 1.781s 1.482s 1.485s
Data p. median 3.076s 1.902s 1.998s 1.719s 1.410s 1.389s
Data p. maximum 21.852s 19.586s 24.046s 17.498s 13.569s 12.815s

Table A.7: Delays of MRP test frames and data packets using the data priorities 2,1 and 0.

Delivery ratios priority(2) priority(1) priority(0)
MRP test f. mean 98.896% 99.057% 99.079%
MRP test f. std. dev. 0.456% 0.360% 0.378%
MRP test f. median 98.977% 99.123% 99.123%

Data p. mean 95.579% 90.804% 90.609%
Data p. std. dev. 5.646% 8.335% 8.246%
Data p. median 95.833% 91.304% 91.304%

Table A.8: Delivery ratios of MRP test frames and data packets using the data priorities 2,1
and 0.

TstDefaultT p1 p2

0.05s 0.0222 3.0165
0.10s 0.0225 2.3722
0.25s 0.0204 2.3232
0.50s 0.0185 2.2737
0.75s 0.0172 2.3352
1.00s 0.0152 2.4532
1.50s 0.0152 2.3372

Table A.9: Coefficients of MDtstDefaultT for mean MRP test frame delays during the interval
[0s, 50s).
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tstDefaultT p1 p2

0.05s 0.0248 3.8929
0.10s 0.0250 3.5461
0.25s 0.0259 3.3357
0.50s 0.0252 3.2503
0.75s 0.0255 3.3150
1.00s 0.0216 3.7549
1.50s 0.0231 3.5701

Table A.10: Coefficients of DDtstDefaultT for mean data packet delays during [0s, 50s).
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