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Kurzfassung

Das automatisierte Abfragen von Dokumentenbildern anhand bestimm-
ter Kriterien (z. B. nur Dokumente die handgeschriebenen Text enthalten)
wird verwendet, um in einer Menge unsortierter Bilder von Dokumenten jene
zu finden, die für die vorliegende Aufgabe relevant sind. Um etwa Dokumen-
te zu finden, die von der selben Person verfasst wurden, können händische
Unterschriften verwendet werden, sofern die Dokumente Unterschriften ent-
halten. Daher wird in dieser Arbeit ein System präsentiert, das anhand einer
Referenzunterschrift Bilder mit Unterschriften der selben Person findet.

Hierfür wird ein Algorithmus zum Abgleich von Unterschriften mit ei-
nem Vorfilterungsschritt kombiniert um festzustellen, welche Unterschrif-
tenbilder zur selben Person gehören. Es werden für jedes Bild jene Thin-
Plate Spline (TPS) Transformationen berechnet, die ein Referenzbild am
besten auf die anderen Unterschriften abbilden. Aus diesen Transformatio-
nen werden anschließend jeweils folgende vier Distanzmaße berechnet: Die
Beugungsenergie, die shape context Distanz, die anisotrope Skalierung und
der Restfehler der Registrierung. Die Gesamtdistanz eines Referenzbilds zu
den anderen Unterschriften wird berechnet, indem die vier Distanzmaße mit
Hilfe von Gewichten kombiniert werden, welche über Lineare Diskriminan-
zanalyse (LDA) ermittelt werden. Mit Hilfe eines Vorfilterungsschritts, der
auf der shape context Distanz basiert, wird der Vorgang beschleunigt, so dass
die zeitaufwendige Berechnung der Transformationen und der Distanzmaße
nur mehr für 3% der Unterschrifen durchgeführt werden muss.

Für die Evaluierung werden zwei Teilmengen der GPDS960signature Da-
tenbank verwendet. Der hybride Ansatz dieser Arbeit erreicht eine um 1,6
Prozentpunkte höhere MRP und eine um 0,9 Prozentpunkte höhere MAP
als die Distanzmaße allein, während gleichzeitig die Laufzeit auf der grö-
ßeren Teilmenge um das 16-fache verringert werden kann. Die Ergebnisse
zeigen außerdem, dass die gewichtete Implementierung des Restfehlers der
Registrierung, welche in dieser Arbeit vorgeschlagen wird, eine deutlich hö-
here MAP erreicht (54,8% statt 7,6%), als eine auf exakten Korresponden-
zen basierende Implementierung. Weiters wird gezeigt, dass das vorliegende
System zum Abgleich von Unterschriftenbildern nicht auf Trainingsdaten
angewiesen ist, da die Ergebnisse mit 25% Trainingsdaten höchstens 0,3
Prozentpunkte besser sind als ohne Trainingsdaten.
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Abstract

Document image retrieval is a method used for searching through un-
sorted images of documents to find the ones which are relevant for a given
task. One way to do this is by sorting the documents according to their
corresponding author. For documents that contain handwritten signatures
this can be done using signature matching techniques. This thesis therefore
presents a signature retrieval system that uses query signature images in
order to find images with signatures from a specific author.

The retrieval system uses a state-of-the-art signature matching algo-
rithm that is combined with a pre-filtering step to determine which signa-
ture image belongs to the same author. For this purpose it computes the
Thin-Plate Spline (TPS) transformation that best maps one signature im-
age to another for each signature image in a library. This transformation is
used to compute four dissimilarity measures, namely the bending energy, the
shape context distance, the anisotropic scaling and the registration residual
error. The total dissimilarity of the query signature to the other signatures
is computed by combining the four dissimilarity measures using weights ob-
tained by means of Linear Discriminant Analysis (LDA). The whole process
is sped-up by applying a pre-filtering step based on the shape context dis-
tance to the query signature such that the time-consuming computation of
the transformation and the dissimilarity measures is done for only 3% of the
images in the library.

The evaluation of the signature retrieval system is done using two sub-
sets of the GPDS960signature database. The hybrid approach proposed in
this thesis achieves a 1.6 percentage points higher MRP and a 0.9 percent-
age points higher MAP than the dissimilarity measures on their own, while
providing a speed-up of factor 16 on the larger set. The results also demon-
strate that the weighted implementation of the registration residual error
that is proposed yields a significantly higher MAP (i.e. 54.8% compared to
7.6%) than the implementation which uses exact matches. Furthermore, it
is shown that the retrieval system is not dependent on the use of training
data as the performance with 25% training data is at most 0.3 percentage
points better than without any training data.
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CHAPTER 1
Introduction

In order to analyse libraries of unsorted documents it is helpful to be able to
automatically find documents which meet certain criteria (e.g. only documents
with handwritten text). One example of such a library are the so-called Stasi-files.
The Ministry for State Security (Ministerium für Staatssicherheit, briefly Stasi)
was founded in 1950 as the secret service of the German Democratic Republic
(GDR). Over the years it collected records on the citizens of the GDR in the
form of documents, photographs, videos and audiotapes. Before its dissolution in
1990, members of the Stasi started to destroy a portion of the records. Since the
electronic paper shredders could not handle the amount of documents, a large part
was torn by hand [47]. The results of this are more than 16,000 bags containing over
600 million hand-torn paper fragments. Since manual reconstruction is estimated
to take 30 people 600 to 800 years [47], members of the Fraunhofer Institute for
Production Systems and Design Technology (IPK)1, Berlin and the Computer
Vision Lab (CVL)2 at Vienna University of Technology are working on a system
for automated reconstruction. Besides putting torn pieces together to documents,
the system also has to group documents together which belong to the same record.

1.1 Motivation
One way of sorting libraries of documents is by determining the corresponding
author of each document. In context of the Stasi files this additional information
can be used to group documents together which belong to the same record. Since
documents that do not contain any handwritten text cannot be assigned to an

1http://www.ipk.fraunhofer.de
2http://www.caa.tuwien.ac.at/cvl/
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author using handwriting recognition, other means have to be considered in order
to determine the author. An effective means for doing this is the use of signature
matching techniques [1, 61] provided that the document contains a signature.

There is a distinction between offline and online signature matching, where
online means that the signature is captured using an electronic device which also
captures temporal information on the stroke sequence. Thus the signature can be
parameterised over time and the matching can be done using methods like Dynamic
Time Warping (DTW) [1]. In offline signature matching, on the other hand, no
electronic device is needed to record the stroke sequence, however, only static
information is available for matching and there is no inherent 1-D parametrisation
of the signature [1].

Signature matching is used in areas such as verification [57], identification [49]
and retrieval [48]. While signature verification deals with confirming the gen-
uineness of a signature and signature identification tries to find the corresponding
author [40], signature retrieval aims at finding document images that contain signa-
tures from a specific individual [48]. The differences between the three categories
are illustrated in Figure 1.1. It shows the respective problems that have to be
solved for signature verification (left), identification (middle) and retrieval (right).

query image image in database

genuine?

veri�cation

id1

id2

.

.

.

idn

images in database

query image

whose signature
is most similar?

identi�cation

.

.

.

images in database

query image

which signatures
belong to this
author?

retrieval

Figure 1.1: An illustration of the differences between the three areas of application
for signature matching. Figure inspired by [40].

In contrast to signature verification, where both online and offline recogni-
tion methods are applicable [27], document image retrieval deals only with offline
methods. Another difference between signature verification and document image
retrieval using signatures is that verification is a one-to-one problem (i.e. a test
signature is compared to a stored reference signature to verify the identity of the
signer) whereas document image retrieval is a one-to-many problem (i.e. a test
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signature is compared to all other signatures in the dataset to find the documents
with matching signatures).

1.1.1 Scope of Discussion
This thesis focuses on the matching aspects of a signature-based document image
retrieval system. The aim is to analyse state-of-the-art signature retrieval methods
and enhance them by applying a pre-filtering step. The scientific question can
therefore be posed as: Can the runtime of a state-of-the-art signature retrieval
system be reduced by means of a pre-filtering step without decreasing the retrieval
performance?

Since the data set used for evaluating the signature retrieval system in this
thesis contains binary images of segmented signatures, there is no binarization
included in the preprocessing of the presented system. Furthermore, there is also
no printed text removal implemented in the retrieval system which would be nec-
essary for real-world documents since the signature can overlap with the person’s
machine-printed name or the complementary close.

A complete document image retrieval system would also require the localization
of the signature in the document and its segmentation. The retrieval system in this
thesis, however, only deals with the matching and retrieval part and is therefore
more accurately called a signature retrieval system.

1.1.2 Objective
The task of signature matching and retrieval comprises several challenges. Firstly,
in contrast to handwriting, signatures are more stylistic and not necessarily related
to a sequence of characters [61]. Existing approaches towards document retrieval
using handwriting can therefore not be used for signatures. Secondly, due to
the stylistic nature of signatures, different signatures from the same person appear
differently. This can be seen in Figure 1.2 where each row shows different signatures
of one author. Hence, the signature matching algorithm of the retrieval system
in this thesis has to be flexible enough to recognise different signatures from the
same author as being similar, while still separating them from the signatures of
other individuals.

1.1.3 Contribution
The aim of this thesis is to analyse state-of-the-art signature retrieval approaches
and develop software that is able to scan libraries of signature images using a
query signature. It provides an introduction to the topic and gives an overview
of related areas. The retrieval system based on the approach of Zhu et al. [61]

3



Figure 1.2: Each row depicts different signatures of one author that show great
variation in their appearance.

(see Chapter 3) is tested using different abstraction techniques and point sampling
rates to evaluate the effects on the retrieval performance.

Furthermore, a weighted implementation of one of the dissimilarity measures
used by Zhu et al. (i.e. the registration residual error) is proposed and it is shown
that it yields a significant increase in retrieval performance compared to the im-
plementation that uses exact matches.

The main contribution of this thesis is the suggestion to combine the approach
of Zhu et al. with a shape-context-based pre-filtering step to reduce the runtime.
Due to the computational load of the approach and the fact that the dissimi-
larity measures have to be computed for the entire test set for each new query
signature, since they depend on the transformations between the query signature
and the candidate signatures, the approach becomes infeasible for larger datasets.
The runtime reduction provided by the hybrid approach proposed in this thesis
therefore extends the retrieval system such that it can be used for larger sets of
signature images.

1.2 Definition of Terms
This section gives an overview of terms and abbreviations that are used throughout
this thesis.

BFE Best-Fit Ellipse: The ellipse which best fits a two-dimensional
object. It can be used to normalize the orientation of the object by
aligning the ellipse’s major or minor axis with the horizontal axis
(see Section 3.2).
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CC Connected Component: In visual computing, foreground pix-
els that are connected with each other form a so-called CC. It
is distinguished between 4-connectivity where only horizontal and
vertical connections are allowed and 8-connectivity where diagonal
connections are allowed as well.

EMD Earth Mover’s Distance: A distance metric that is used to com-
pute the difference between two histograms. In contrast to the
simpler χ2 test statistic it also considers cross-bin relationships [45]
(see Section 2.3.3).

HMM Hidden Markov Model: A statistical model used in pattern
recognition where each HMM represents a pattern that can be rec-
ognized. The model with the highest probability of producing a
given feature vector determines the outcome of the recognition pro-
cess [43] (see Section 2.3.2).

ICP Iterative Closest Point: A fast iterative method for registering
point clouds using nearest-neighbour relationships [3].

LDA Linear Discriminant Analysis: A means of finding directions
that efficiently separate different classes of data based on the Fisher
classifier [19]. It can also be used to combine several features by
taking the coefficients of the separating hyperplane as weights (see
Section 3.1.3).

MAP Mean Average Precision: A performance measure in document
image retrieval that rewards higher rankings of relevant documents
while penalizing that of irrelevant ones [6, 61] (see Chapter 4).

MRP Mean R-Precision: A performance measure in document image
retrieval that is computed as the precision at a certain rank which
means that it ignores the exact ranking of the documents [6, 61]
(see Chapter 4).

NN Neural Network: A statistical model with the aim to emulate
the human brain. It consists of several layers with interconnected
neurons and has to be trained before it can be used for classifica-
tion [55] (see Section 2.3.2).
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SIFT Scale-Invariant Feature Transform: A local descriptor that is
invariant to changes in image scale and rotation. Scale invariance
is achieved using difference-of-Gaussian images and rotation invari-
ance is accomplished using a histogram of gradient directions and
assigning each descriptor one or more main directions [34].

SVM Support Vector Machine: A machine learning technique that
can be used to classify data using a hyperplane. This hyperplane is
obtained by training the SVM such that it separates the two classes
with maximum margin [11, 37] (see Section 2.3.2).

TPS Thin-Plate Spline: A model that can be used to describe a
transformation with an infinite thin metal plate that is deformed
according to the transformation. It is able to model affine and
non-rigid transformations such that they can be separated [5] (see
Section 3.1.1).

TPS–RPM Thin-Plate Spline – Robust Point Matching: A method for
registering point clouds using a TPS to model the transformation
from one point cloud to another [10] (see Section 3.3).

1.3 Results
The retrieval system proposed in this thesis is evaluated on two subsets of the
GPDS960signature database [4] which contains 24 binary signature images each of
960 individuals. The performance is measured in terms of Mean Average Precision
(MAP), Mean R-Precision (MRP) and runtime since the former two are the most
common measures in document image retrieval [61] and the latter is an important
factor of the retrieval system in discussion (see Section 3.5).

The evaluation shows that the hybrid approach proposed in this thesis is able
to achieve a 1.6 percentage points higher MRP and a 0.9 percentage points higher
MAP than the dissimilarity measures on their own, while providing a speed-up
of factor 16. It is also shown that increasing the reduced set size yields further
performance gain of up to 1.9 percentage points while still providing a speed-up
of factor 13.

The results also show that the signature retrieval system does not require the
use of training data. The hybrid approach achieves an only 0.1 percentage points
higher MAP with 25% training data than without any training data. The dissim-
ilarity measures on their own even perform best when not using training data at
all.
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Furthermore, the evaluation demonstrates the performance gain obtained from
the two implementations of the registration residual error that are proposed in
this thesis (see Section 3.4.4). More precisely, the weighted registration residual
error (i.e. DW

re ) achieves an MAP of 54.8% at a runtime of 15.6 hours on the smaller
test set while the implementation that uses exact matches (i.e.DH

re) achieves merely
an MAP of 7.6% at a runtime of 25.4 hours.

1.4 Thesis Structure
The outline of this thesis is as follows. The next chapter discusses state-of-the-art
methods related to the subject of document image retrieval. It starts by giving a
short introduction to layout analysis while focusing on handwritten text and sig-
nature localization. It subsequently presents common preprocessing methods and
describes the state of the art of signature matching techniques and their respective
fields of application.

Chapter 3 describes all parts of the signature retrieval system presented in
this thesis. First, it gives an introduction to the techniques used in the matching
algorithm and explains the workflow of the retrieval system. It then describes
the preprocessing and point sampling techniques that are used and discusses the
algorithm for matching two signature images. The chapter is concluded by pre-
senting the four dissimilarity measures used for signature retrieval along with the
pre-filtering step that is suggested in this thesis.

The various parts of the retrieval system are evaluated in Chapter 4. First,
three different implementations of one of the dissimilarity measures (i.e. the reg-
istration residual error) and three orientation normalization techniques are eval-
uated. The following tests evaluate the effects of different abstraction methods
(i.e. edge detection and skeletonization) and varying sampling rates. The hybrid
approach presented in this thesis is then evaluated and compared to the perfor-
mance of the dissimilarity measures on their own.

Finally, Chapter 5 concludes the thesis by discussing advantages and disadvan-
tages of the retrieval system presented in this thesis and also gives suggestions for
future work on the topic.
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CHAPTER 2
Related Work

This chapter is intended to give an overview of all aspects involved in a document
image retrieval system that is based on handwritten signatures. The first part pro-
vides a general introduction to layout analysis and the task of finding a signature
in a document. Section 2.1.1 deals with the more general case of handwritten text
localization while Section 2.1.2 discusses signature localization in particular. The
second part addresses the subject of preparing a signature image for further pro-
cessing by means of common preprocessing techniques and the third part focuses
on signature matching in different areas of application.

The third part of this chapter is split into three sections. Section 2.3.1 gives
an overview of feature extraction techniques that are used for signature matching
and Sections 2.3.2 and 2.3.3 present some methods from the fields of signature
verification, identification and retrieval respectively.

2.1 Layout Analysis
For completely automated analysis of document images, it is first necessary to
analyse their layout [20]. This allows to classify the image according to its content
and segment certain areas such as machine-printed text or handwritten signatures.
Further algorithms can then be applied to a specific region only instead of the entire
document image.

Document segmentation approaches are generally split into hierarchical and
non-hierarchical methods [52]. Hierarchical methods work either in a top-down,
bottom-up or combined manner to segment different regions, while non-hierarchical
methods ignore the geometric relation among blocks [52]. Top-down approaches
split the document into coarse regions and then recursively segment each region
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into finer ones. It is distinguished between basic objects, which are the leaf nodes
of the segmentation tree, and composite objects which are all other nodes [52].
Bottom-up approaches on the other hand start from Connected Components (CCs)
and merge them into successively larger regions based on local features. There are
also hybrid approaches (e.g. [36]) which use a combined top-down and bottom-up
analysis for segmenting document images.

Top-down approaches are faster than bottom-up approaches but primarily ef-
fective for documents with a known layout (e.g. forms) [52]. Bottom-up approaches
are more flexible than top-down approaches regarding the document layout but are
also more computationally expensive [52]. This is why top-down approaches are
considered as being knowledge driven while bottom-up approaches are so-called
data driven methods [52].

Text localization techniques are split into region-based and texture-based meth-
ods [24]. Region-based approaches use CCs or edges and merge them into Bounding
Boxes (BBs) of text regions in a bottom-up manner. Texture-based approaches
on the other hand use methods like Gabor filters, wavelets or Fast Fourier Trans-
form (FFT) to detect distinct textural features of text areas [24].

Layout analysis on documents that contain noise (e.g. vertical and horizontal
lines, dots and elements which are particularly small compared to the remaining
elements in the document) can be improved by applying noise removal before
classifying the elements of a document [44]. Other preprocessing methods in layout
analysis include binarization of the document and skew estimation [13].

Jung et al. [23] find CCs using Canny edge detection [9] followed by dilation
and erosion operations. The CCs are refined using their horizontal and vertical
projection profiles. Each line is then classified as text or non-text using a Support
Vector Machine (SVM). Finally the text BBs are refined using the SVM output
scores. Similarly, Messaoud et al. [35] do Canny edge detection and CC merging
based on BB intersections.

The following sections focus on localization methods which are specifically used
for handwritten text and signatures respectively.

2.1.1 Handwritten Text Localization
In order to classify segments as handwritten text it is necessary to extract features
which can discriminate handwritten text from other document elements such as
machine-printed text. An early approach by Kuhnke et al. [31] uses the straightness
of vertical and horizontal lines together with the symmetry relative to the centre of
gravity of each character. This is based on the idea that Roman characters consist
mostly of straight lines, while characters without straight lines are described by the
symmetry feature. The discrimination between handwritten and machine-printed
text is done using a feed-forward Neural Network (NN) with three active layers.

9



This method, however, only works on single images of handwritten and printed
characters where it achieves a recognition rate of 78.5%.

An approach that localizes and discriminates handwritten text from other doc-
ument elements is presented by Kavallieratou and Balcan [28]. They use eight
low-level features of first-order and second-order CCs, including the black pixel
density, three symmetry features and the ratio of distinct heights in second-order
CCs. Decision rules based on thresholds are used to decide whether a first-order
CC is classified as machine-printed or handwritten. The decisions are based on
observations such as the smaller aspect ratio and higher black pixel density of
machine-printed text compared to handwritten text [28]. This approach has a
high recognition rate of 96% on first-order CCs, however, it relies on the correct
selection of five thresholds which is difficult for general data.

A different approach is presented by Diem et al. [13] who propose a Gradi-
ent Shape Feature (GSF) which is based on the shape context feature of Be-
longie et al. [2]. The GSF is computed for a square sliding window that is moved
along the principal axis of the BB of a CC. For each sliding window an SVM with
a Radial Basis Function (RBF) kernel is used to determine the class (i.e. handwrit-
ten, machine-printed or noise) and a weight which corresponds to the log likelihood
of the SVM for the feature. The final class of the CC is computed by accumulat-
ing the weights of all corresponding sliding windows. The classification is further
improved by using back propagation to correct the class labels of falsely classified
CCs. This method does not rely on the manual selection of thresholds, but is based
on machine learning methods and achieves a precision of 92.4% on real-world data.

2.1.2 Signature Localization
Esteban et al. [16] state that automatic localization of signatures in documents
received little attention in literature which is why it is still an open problem [61].
One reason for this is that in the area of signature verification on cheques the
approximate location of the signature can be found through prior knowledge of the
document structure (see Figure 2.1). An overview of methods for form document
processing is given in [52].

Ramakrishnan et al. [44] propose to use Zernike moments [53] as features for
classification of CCs with an SVM having an RBF kernel. To refine the results
they perform Delaunay triangulation [12] on the CCs and use the attributes of
neighbouring triangles to reassign class labels. If more than 50% of the neighbour-
ing triangles have similar features but a different class label, their label is assigned
to the current triangle. However, Ramakrishnan et al. do not differentiate between
handwritten text and signatures but merely classify both as handwritten text.

An approach that focuses particularly on the localization of signatures on
cheques using evidence accumulation is proposed by Esteban et al. [16]. They make
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(a) (b)

Figure 2.1: Two cheques with the signature search region marked in blue. Image
taken from [16].

use of the fact that in signature verification a reference signature is known before-
hand. The contours of this signature and the signature search region (see Figure 2.1
where the signature search region is marked by a blue rectangle), which on a cheque
corresponds approximately to the bottom right corner [16], are extracted through
a morphological operator. Each contour is split into smaller segments which are
described by a 4-tuple (x, y, Θ, κ), where x and y are the coordinates of the middle
point of the segment, Θ is the angle of its tangent through that point and κ is the
curvature of the segment. Subsequently a correspondence vector is computed by
subtracting the signature tuple from the search region tuple and normalizing Θ
to [−π/2, π/2) for each possible combination of segments from the signature and
the search region. After a clustering step of the correspondence vectors the larger
cluster determines the location of the signature in the search region. This step
is repeated after reducing the limits of the grid used for clustering towards the
largest cluster until a fixed amount of time has passed. This approach, however,
is only applicable when the signature is known in advance.

Zhu et al. [61], on the other hand, propose a method that localizes signatures
in arbitrary documents without making any assumptions on the appearance of
the signature. They present a multiscale detection algorithm that uses curvature
properties to compute saliency values based on a signature production model that
interprets signatures as concatenations of elliptic segments. Firstly the document
image is smoothed with a Gaussian kernel and resampled using a Lanczos filter [7]
before edges are extracted using a Canny edge detector. By applying this pro-
cedure to the document image at multiple scales small gaps in curves are filled,
thus reconnecting contours that are broken due to poor ink condition or image
degradation. Secondly, CCs are extracted from the edge image and saliency values
are computed for each of them. The final result of the localization is obtained by
connecting the most salient CCs with neighbouring CCs based on curvilinear con-
straints. The localization results are further improved by using document context,
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i.e. only curves at the bottom of the document are used for signature detection.

2.2 Preprocessing
Before a located signature can be used in a matching algorithm it is necessary
or simply advantageous to apply further preprocessing methods on the image.
Depending on the localization and matching techniques that are used, some or all
of the following methods can be applied.

2.2.1 Binarization
Binarization is commonly used as a preprocessing step in the area of signature
verification [26, 39] and identification [21, 40]. An early binarization approach
is presented by Otsu [38] who computes a global threshold for an image that
separates foreground and background based on the histogram of its intensity values.
However, global thresholding techniques like this one fail for documents which are
not separable into foreground and background by a single threshold (e.g. due to
changing illumination) [14].

An adaptive binarization method is proposed by Sauvola and Pietikäinen [46]
who use a so-called hybrid switch that quickly differentiates between text regions
and non-text regions. The text regions are then binarized by computing a thresh-
old for each pixel using the local mean, standard deviation and the dynamic range
of the standard deviation in a neighbourhood window. They reduce the computa-
tion time by computing the threshold for every nth pixel only and interpolating
the values for the remaining pixels. The computation can be further sped up us-
ing integral images, thus making the computation complexity independent of the
neighbourhood window size [60].

A more recent approach by Kleber et al. [29] uses a scale space for binarization,
thus making the algorithm independent of script size and allowing to use the
coarser scales as a foreground estimation. In addition, the Gaussian smoothing
of the coarser scales removes high frequency noise which makes the binarization
more robust. The image at each scale is binarized using the local maximum and
minimum approach of Su et al. [51].

2.2.2 Noise Removal
A widely used method [26, 39, 48] for reducing the noise in an image is to apply
a median filter. This filter assigns each pixel the median intensity value of the
pixels in its proximity. It is effective against salt and pepper noise (i.e. light and
dark dots on the image) while preserving edges (in contrast to a Gaussian filter for
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example) [39]. Figure 2.2 illustrates this by adding salt and pepper noise to the
signature image in (a) and filtering the resulting image in (b) using a median filter
(c) and a Gaussian filter (d). The results in (c) and (d) show that the median
filter is able to remove most of the noise while preserving the signature edges
whereas the Gaussian filter blurs the image and is unable to remove the noise.
Other possibilities include the removal of noise based on custom criteria (e.g. size)
or using morphological operators. The latter can also be used to fill small gaps in
broken contours which can occur due to poor ink condition.

(a) (b)

(c) (d)

Figure 2.2: (a) The original signature image. (b) The image from (a) with 5% salt
and pepper noise. (c) The result of filtering (b) with a 3×3 median filter. (d) The
result of filtering (b) with a 5× 5 Gaussian filter with σ = 0.83.

2.2.3 Printed Text Removal
For document images where the signature overlaps with machine-printed text it
is necessary to remove that text before using the signature for further processing.
Srihari et al. [50] do so by using the aspect ratio of the BB of a CC and the ratio
of its size compared to the largest CC in the image as features for a Fisher linear
discriminant classifier. However, CCs which are labelled as printed text are only
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removed if they are in a line with other CCs that are labelled as printed text. The
last step is to find and remove isolated CCs by analysing the neighbourhood of
the remaining CCs that are classified as machine-printed text.

2.2.4 Normalization
In case the features which are used for matching are not size and rotation invariant,
it is necessary to normalize the signature images accordingly. Pavlidis et al. [40] for
example perform orientation normalization by aligning the elongation axis of each
signature with the horizontal axis, but do not normalize the size of the signature
images because they use size invariant features. Since their orientation normaliza-
tion approach has two possible outcomes for each signature image (depending on
whether the image is rotated to the left or to the right), they use both results for
their signature identification algorithm.

Oz [39] and Karki et al. [26] normalize the signature images to a fixed size,
thereby changing the aspect ratio between width and height of the image. On
the other hand, Lin and Chang [33] preserve aspect ratios by normalizing the
image size according to the length of its diagonal. They also perform orientation
normalization similar to Pavlidis et al. [40] by computing the Best-Fit Ellipse
(BFE) of the signature and aligning its major axis with the horizontal axis.

2.2.5 Abstraction
By computing an abstract representation of the signature it is possible to reduce
computational complexity and to aid shape comparison [61], e.g. by reducing the
image to curve segments. One method to do this is to compute the skeleton of the
image by means of a thinning or skeletonization algorithm as the one proposed
by Zhang and Suen [59]. This method has the advantage of removing stroke
thickness information, thus making a subsequent matching algorithm independent
of the pen that is used for signing. However, thinning also introduces artefacts
such as spurs [42]. A Canny edge detector on the other hand provides a more
robust abstraction [61], but also captures the stroke thickness since each stroke
results in two edges. The differences of these abstraction techniques are visualized
in Figure 2.3 where the second row shows augmentations of the areas marked in
the first row. It depicts a binary signature image on the left, the skeleton of this
signature in the middle and its edges on the right.
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Figure 2.3: The first column shows the original signature image, the second column
shows the result of a thinning algorithm and the last column shows the Canny
edges. The second row shows augmentations of the areas which are marked in the
first row.

2.3 Signature Matching
The matching stage consists of two steps, namely the extraction of features from
the signature image and the comparison of these features. Depending on the
application the features are used to verify that the signature belongs to a specific
individual (signature verification), to find the corresponding author (signature
identification) or to retrieve the signatures from the same author in a dataset
(signature retrieval). The following sections present different feature extraction
techniques and discuss how they are used in signature verification, identification
and retrieval.

2.3.1 Feature Extraction
Two early approaches to signature matching by Han and Sethi [21] and Pavlidis
et al. [40] are both based on string representations. Han and Sethi first detect
vertical and horizontal bars, loops, end points, branch points, crossing points,
convex points and concave points in each signature image. They subsequently
project the features onto the horizontal and vertical axis of the image and construct
two strings which contain the features for each axis in left-to-right and top-to-
bottom order respectively. Each feature is replaced by a letter representation
(e.g. L for loop, B for branch point, etc.) for this purpose. This allows the use
of partial queries where parts of the signature are missing. However, it can easily
happen that features change their position in the string representation of different
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signatures from the same author. Figure 2.4 illustrates this behaviour on a simple
example with edge (purple) and branch (green) points on two signatures from the
same person. It shows that the horizontal and vertical order changes significantly
even when only these two features are detected.

(a) (b)

Figure 2.4: Parts of two different signature images from one person with edge
and branch points marked in purple and green respectively. The dots on the axes
indicate the horizontal and vertical order of the detected points.

Pavlidis et al. extract a more robust string representation at the cost of higher
computational complexity. This is done by first placing two opposing particles
on the enclosing ellipse of the signature which are connected by an elastic spring
through the centre of the signature. The particles are attracted by the force of
the spring and a virtual gravity field around the signature until they rest on the
contour of the signature. This step is repeated for two new particles which are
placed 5 degrees rotated from the last position until all 72 (i.e. 360/5) particles
are lying on the signature. The sequence of these particles is then used as an
abstract representation of the signature shape. The noise in this abstraction is
subsequently reduced by computing a polygonal approximation which smooths
small fluctuations of almost straight lines. This polygon is eventually transcoded
into a string representation by following its edges and storing the angle θ between
two adjacent edges as a letter A, . . . , R (i.e. A for θ ∈ (0◦, 20◦], B for θ ∈ (20◦, 40◦],
etc.).
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The following three approaches use a grid-segmentation scheme to extract local
features. The first is presented by Justino et al. [25] who compute two static and
two pseudo-dynamic features for each grid cell, namely: The pixel density as the
number of black pixels divided by the total number of pixels per cell, the gravity
centre distance, the stroke curvature as the curvature angle of the biggest stroke
in the cell and the predominant slant. Each column of the grid is then converted
to a feature vector for each of the four features. These vectors are subsequently
converted to a codebook using a vector quantization procedure with a k-means
algorithm.

A less complex method in terms of that it does not require the generation of a
codebook is presented by Srihari et al. [50]. They compute a binary feature vector
consisting of Gradient, Structural and Concavity (GSC) features [17] which are
extracted for each cell of a 4 × 8 grid. To compute the gradient feature vector,
the binary image is first convolved with two Sobel operators to approximate the
x and y derivatives of the image (see Figure 2.5 (a) and (b)). The derivatives
are then combined using vector addition to get the image gradient (see Figure 2.5
(c) and (d)). For each cell a histogram is computed from the gradient directions
and thresholded to get the binary gradient feature vector. The structural feature
vector is computed by passing 3× 3 operators over each cell of the gradient image
to detect patterns and combining them to larger features using a rule table. The
concavity feature vector is composed of 8 feature values for each grid cell. One
value is computed by counting the number of foreground pixels and thresholding
it. Two values are used to indicate the presence of longer horizontal or vertical
lines by counting the run lengths of signature pixels and applying a threshold. The
remaining five values are computed using a star-operator which shoots rays from
each pixel in 8 directions. Depending on which ray hits a foreground pixel and
which ray hits the image border, this operator yields different patterns which are
used to classify the region as upward, downward, left or right concavity or as a
hole. In combination this results in a 1024 bit binary feature vector. The quality
of this feature vector, however, relies heavily on the selection of the thresholds that
are used for the binarization of the feature values.

The approach of Karki et al. [26] neither requires the generation of a codebook
nor the assumption of thresholds. They use a simple grid feature together with
several global features. The grid feature is computed by splitting the image into 96
(12× 8) segments and counting the number of foreground pixels in each segment.
The values are normalized such that the lowest value becomes zero and the highest
value becomes one. The global features that are used are:

• Image area – the number of foreground pixels in the image.

• Pure width and height – the width and height of the image after all rows
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Figure 2.5: The Sobel filter kernel used for the (a) x and (b) y derivative. (c) A sig-
nature image with the gradient vectors (blue) computed from the two derivatives.
(d) A magnification of the green area marked in (c).

and columns with less than two pixels have been removed from the edge of
the image.

• Baseline shift – the difference between the vertical centres of gravity in the
left and right half of the image.

• Vertical centre of the signature – the vertical centre of gravity obtained from
the horizontal projection of the image.

• Horizontal centre of the signature – the horizontal centre of gravity obtained
from the vertical projection of the image.

• Maximum vertical and horizontal projection – the maximum value of the
vertical and horizontal projection histogram, respectively.

• Global slant angle – the rotation angle at which the horizontal projection
reaches its maximum. It is obtained by rotating the image by −30◦ and then
rotating it back in steps of 2◦ and computing the horizontal projection at
each step.

These features together with the number of edge points, the number of cross points,
the number of closed loops and the grid feature form the final feature vector.

Two approaches based on high-level features are presented by Oz [39] and
Shirdhonkar and Kokare [48]. Oz uses moment invariants as proposed by Hu [22]
and computes them at 12 different angles (i.e. in 30◦ steps from 0◦ to 360◦).
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The two-dimensional moments of a geometrical pattern which is represented by a
density distribution function ρ(x, y) is defined as

mpq =
∫ ∞
−∞

∫ ∞
−∞

xpyqρ(x, y) dxdy, (2.1)

where (p+ q) is the order of the moment and p, q ∈ N0 [22]. The central moments
are then defined as

µpq =
∫ ∞
−∞

∫ ∞
−∞

(x− x̄)p(y − ȳ)qρ(x, y) d(x− x̄)d(y − ȳ), (2.2)

with x̄ = m10/m00 and ȳ = m01/m00. From these moments Hu [22] derives the 7
moment invariants shown in Table 2.1. This results in a feature vector of 84 values
(i.e. 7 invariants at 12 different angles) for each signature that is independent
of size, orientation and translation [39]. While yielding good recognition results
(i.e. 100% success rate) for known signatures the moment invariants perform poorly
for signatures which were not in the training set. However, Oz overcomes this
problem by applying signature verification after the recognition step to sort out
false results.

Table 2.1: Moment invariants as used by Oz [39].

I1 = µ20 + µ02
I2 = (µ20 − µ02)2 + 4µ2

11
I3 = (µ30 − 3µ12)2 + (3µ21 − µ03)2

I4 = (µ30 + µ12)2 + (µ21 + µ03)2

I5 = (µ30−3µ12)(µ30 +µ12) · [(µ30 +µ12)2−3(µ21 +µ03)2]+(3µ21−µ03)(µ21 +
µ03) · [3(µ30 + µ12)2 − (µ21 + µ03)2]

I6 = (µ20 − µ02) · [(µ30 + µ12)2 − (µ21 + µ03)2] + 4µ11(µ30 + µ12)(µ21 + µ03)
I7 = (3µ21−µ03)(µ30 +µ12) · [(µ30 +µ12)2−3(µ21 +µ03)2]−(µ30−3µ12)(µ21 +

µ03) · [3(µ30 + µ12)2 − (µ21 + µ03)2]

Shirdhonkar and Kokare [48] use wavelets for signature retrieval where it is not
possible to rely on a verification step to eliminate false matches. They use Dual
Tree Complex Wavelet Transforms (DT–CWTs) and Dual Tree Rotated Complex
Wavelet Filters (DT–RCWFs), which are obtained by rotating DT–CWT filters
by 45◦ [49], to decompose each signature into energy and standard deviation com-
ponents. Energy Ek and standard deviation σk at sub-band level k are computed
as

Ek = 1
M ×N

M∑
i=1

N∑
j=1
|Wk(i, j)|, (2.3)
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σk =

√√√√√ 1
M ×N

M∑
i=1

N∑
j=1

(Wk(i, j)− µk)2, (2.4)

where Wk(i, j) is the wavelet-decomposed sub-band at level k, M ×N is the size
of this sub-band and µk is the mean at sub-band level k with k = 1, . . . , 6. The
final feature vector for each signature image is obtained by unifying the energy
and standard deviation values of all sub-bands.

2.3.2 Verification and Identification
Han and Sethi [21] who use string representations as features for their signatures
perform signature identification by storing all strings in one hash table per axis
(horizontal and vertical). They use a perfect hash function to map each sequence
of 3 consecutive characters of a string to a position in the hash map where the
ID of the corresponding signature is stored in a linked list. To identify the author
of a query signature, first the hash map addresses are computed for its strings.
The IDs stored at each address vote for their corresponding signature and the
top 3 signatures from both hash maps become candidate signatures. Finally, the
Longest Common Subsequence (LCS) is computed for each candidate signature
and the candidate with the longest LCS is used to identify the author of the query
signature. To account for unknown query signature authors, the identification
is only valid if the length of the LCS is above a threshold. The drawback of this
approach is that it requires the administration of two hash maps and several linked
lists.

Pavlidis et al. [40] propose a method with less complex data structures which
uses credit points to find the author of a query signature based on its string rep-
resentation. For two strings D = d1d2 . . . dn and E = e1e2 . . . em, dk = ej is
considered a full match which yields two credit points and dk ± 1 = ej is con-
sidered a half match that is worth one credit point. The strings are aligned by
the characters representing the first angle on the left of the starting point of the
feature extraction stage. Based on the credit points H they compute a similarity
measure Q which is infinite for a perfect match and zero if H = 0 as

Q = H

2 ·max(|D|, |E|)−H . (2.5)

The candidate string with the largest value of Q is used to identify the query
signature. Again a threshold is used to verify that the identification is valid.

The following sections give an overview of some of the widely used machine
learning methods for deciding whether a signature is genuine or to identify its
author. This includes NNs, Hidden Markov Models (HMMs) and SVMs.
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Neural Networks

An artificial NN is a statistical model that tries to emulate a brain [55]. It consists
of an input and an output layer and one or more hidden layers which contain several
neurons. The neurons between layers have weighted connections and process the
input of the preceding layer using a transfer function. The result is passed on to
the next layer until it reaches the output layer. Before the NN can be used to verify
or identify a signature it has to be trained, i.e. the weights of the connections have
to be adjusted such that the NN generates the desired output for a set of training
data.

Oz [39] uses two similar NNs for verification and identification. Both NNs have
84 input variables (the moment invariants) and one hidden layer. For verification
the hidden layer has 40 neurons and the output layer has 2 variables for indicating
a genuine or fake signature. The NN used for identification has 60 neurons in the
hidden layer and 40 in the output layer (one value per signer). Karki et al. [26]
also use NNs for verification and identification. They use 20 neurons for the input
layer and 10 in the hidden layer with a log-sigmoid transfer function. The NN has
20 output values each corresponding to a signer. Oz and Karki et al. both use the
backpropagation algorithm to modify the weights such that the difference between
the desired output and the output of the NN is minimized.

Hidden Markov Models

An HMM is a statistical model that is used for pattern recognition by computing
the likelihood that a given output (i.e. a feature vector) is produced by a certain
HMM. Each HMM consists of several states and transitions between the states
with certain probabilities. After each transition an output value is produced by
the current state [43]. Given a feature vector it is thus possible to compute the
likelihood for each HMM that this model produces the output sequence represented
by the feature vector. In signature identification there is usually one HMM for each
signature [8]. A query signature is therefore identified as a signature of the author
of the candidate signature which belongs to the HMM with the highest probability
of producing the given feature vector as its output. A simple example of an HMM
with four states is given in Figure 2.6. The transitions between the states are
illustrated with black arrows where the saturation indicates the probability for a
certain transition. Each state produces one of two output values with a certain
probability which is illustrated using green arrows with different saturations.

Support Vector Machines

SVMs were originally designed to find the hyperplane which separates two classes
with maximum margin [37]. This hyperplane can be found by considering only a
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Figure 2.6: Example of a simple HMM for binary feature vectors with colour-
coded state transition (black) and output (green) probabilities (higher saturation
corresponds to a higher probability).

small subset of training data, i.e. the so-called support vectors [11]. It can be used
to decide to which of the two classes the feature vector of a query signature belongs.
In order to separate training data that cannot be linearly separated it is possible
to use an SVM with a non-linear kernel function (e.g. an RBF). For data sets that
cannot be separated even with a non-linear kernel function so-called slack variables
are used to represent the magnitude of the classification error. Since SVMs are
only able to make two-class decisions, it is necessary to use multiple SVMs for
multi-class problems. Two typical strategies are one-against-all, where one SVM
is used per class to separate this class from all other classes, and one-against-one
which uses one SVM for each pair of classes [37]. Justino et al. [25] successfully
use SVMs in signature verification where one SVM can be used per individual to
decide whether a signature is genuine or forged.

2.3.3 Retrieval
In signature retrieval there is no prior knowledge of classes as it is in the case of
signature verification and identification. Thus the desired output of a signature
retrieval system is not a class label or a flag which indicates whether a signature
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is genuine or not, but a list of signatures ranked by their similarity. Although this
means that signature verification and identification techniques cannot be used for
retrieval, it is possible to modify some methods for this purpose. For example,
a signature identification method that is based on a nearest neighbour classifier
(i.e. it assigns a query signature the class label with the smallest distance) can also
be used to produce a ranking of similar signatures based on their distances [21].

The ranking distances for image retrieval are computed from the feature vectors
using a distance function. Such a distance measure or metric D for vectors a,b, c
must have the following properties [15]:

• D(a,b) ≥ 0 (non-negativity)

• D(a,b) = 0 if and only if a = b (reflexivity)

• D(a,b) = D(b, a) (symmetry)

• D(a,b) +D(b, c) ≥ D(a, c) (triangle inequality)

The rest of this section presents state-of-the-art distance measures and discusses
their area of application.

Srihari et al. [50] who use binary feature vectors compute the distances of a
query signature to all other signatures by means of a correlation similarity measure.
For two feature vectors X and Y the similarity measure S is computed as

S(X, Y ) = 1
2 + S11S00 − S10S01

2
√

(S10 + S11)(S01 + S00)(S11 + S01)(S00 + S10)
, (2.6)

with Sij denoting the number of occurrences where pattern i appears at the same
position in vectorX as pattern j appears in vector Y . The retrieval results are then
obtained by ordering the signature images according to their similarity measure,
starting with the smallest distance. The drawback of this similarity measure is
that it can only be used for binary feature vectors.

A distance measure for general feature vectors is used by Shirdhonkar and
Kokare [48] who compute the distance between the feature vector x of a query sig-
nature and the feature vector y of a candidate signature using Canberra distance,
which is defined as

Canb(x, y) =
d∑

i=1

|xi − yi|
|xi|+ |yi|

, (2.7)

with d denoting the length of a feature vector. They improve the retrieval results
using a user-guided relevance feedback algorithm that moves a query closer to
relevant signature samples and further away from irrelevant ones.

Another approach proposed by Zhu et al. [61] uses four dissimilarity measures
that are computed from the transformation of a query signature to a candidate
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signature. They combine the four dissimilarity measures to a final distance which
is then used to rank the signature images accordingly. The retrieval results are
further improved by using multiple signature images of one person as queries and
combining their distances. A more detailed description of their approach is given
in Chapter 3.

A distance measure that is used to compare histograms is the χ2 test statis-
tic. It gives less importance to differences between large bins than to differences
between small bins [41]. For two histograms P,Q it is defined as

χ2(P,Q) = 1
2
∑

i

(Pi −Qi)2

Pi +Qi

, (2.8)

where i specifies the bin in each histogram. However, this histogram distance
measure only takes bin-to-bin differences into account.

The Earth Mover’s Distance (EMD) on the other hand also considers cross-bin
relationships as it is based on solving the transportation problem [56]. It is defined
as the minimal cost of transforming one histogram into another and is computed
as the work that is necessary for the transformation divided by the optimal flow
that solves the transportation problem [45]. For two histograms P,Q it is given as

EMD(P,Q) =
∑

i,j dijfij∑
i,j fij

, (2.9)

where fij is the flow between Pi and Qj that minimizes the overall cost, dij is the
distance between Pi and Qj, and the following constraints hold:

fij ≥ 0,
∑

j

fij ≤ Pi,
∑

i

fij ≤ Qj,
∑
i,j

fij = min
∑

i

Pi,
∑

j

Qj

 . (2.10)

While the EMD can be both robust and discriminative [41], it is computationally
more complex than the χ2 distance.

Summary
This chapter gave an overview of the steps involved in a document image retrieval
system which is based on handwritten signatures. It presented state-of-the-art
methods for signature localization, preprocessing and signature matching. Each
part also included related topics as handwritten text localization and signature
identification and verification to provide a broad perspective on the topic. It was
shown that signature localization remains an open research area and that the
majority of papers on signature matching does not deal with localization [16, 61].
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The last section of this chapter presented machine learning methods that are
successfully used in signature verification and identification. However, it was also
explained that these techniques cannot be directly used for signature retrieval
since it requires a ranking based on distance or similarity values. Hence, the
methodology presented in the following chapter of this thesis is also based on a
distance measure, namely the approach proposed by Zhu et al. [61].
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CHAPTER 3
Methodology

The signature retrieval system proposed in this thesis is mainly based on the
methods presented by Zhu et al. [61] but also introduces modifications that result
in reduced computational time and increased matching performance. The main
difference is the use of a shape-context-based pre-filtering step that reduces the
computational time by a factor of 16.

In the first step of the retrieval system the image is preprocessed as proposed
by Lin and Chang [33]. This step normalizes the image and extracts an abstract
representation of the signature. The point set which represents the signature in
the remainder of the algorithm is created by randomly sampling points on the ab-
straction of the signature image. In the next step the shape context descriptor [2]
is computed for each point set and is subsequently used to compute the shape
context distance to the remaining signature images in the test set. This distance
is used in the following pre-filtering step to decide whether the image is processed
further or not. In the former case the TPS transformations which best map the
point set to the point sets of the other images are computed. Each TPS transfor-
mation is then used to compute four distance measures which accumulate to the
overall distance of the signature to another in the test set through a weighted sum.
The weights that are used to combine the distance measures are obtained using
LDA. The retrieval is finally performed by ranking the shape context distances of
the filtered images and the combined distance measures of the remaining images.
The workflow of the signature retrieval system is illustrated in Figure 3.1. The first
row shows the points sampled on the abstract representation of the signature and
their distribution into different bins of the shape context descriptor for an example
point. The shape context descriptor is used to filter the set of signatures such that
the steps in the second row (i.e. the computation of the TPS transformation and
the four dissimilarity measures) do not have to be computed for all images in the
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set. The results of the first and second row are combined to rank the signature
images in the set as depicted on the right.

image preprocessing & sampling shape context descriptor

transformation

retrieval

.

.

.

1.

2.

3.

distance measures

Figure 3.1: The workflow of the signature retrieval system. The steps in the second
row are only performed for the signatures which remain after filtering. The results
of the steps in both rows are combined in the retrieval step.

This chapter gives a detailed description of the techniques that are used in the
signature retrieval system that is developed for this thesis. Section 3.1 gives an
introduction to key technologies that are used in the remainder of this chapter.
The preprocessing of the signature images and the extraction of the point set that
is used for further processing is described in Section 3.2. The computation of
the TPS transformation that best maps one point set to another is described in
Section 3.3 and Section 3.4 explains the computation of the four distance measures.
Finally, Section 3.5 describes the pre-filtering process.

3.1 Theoretical Background
This section presents techniques and technologies that are used in the signature
retrieval system proposed in this thesis and explains their theoretical backgrounds.
It is intended as an introduction for readers who are not familiar with these topics.

3.1.1 Thin-Plate Splines
The signature retrieval algorithm in this thesis uses TPSs to model the transfor-
mation from one point set to another. The TPS transformation is also used to
compute the four distance measures which accumulate to the final distance. This
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section explains how they are used to support the matching algorithm by assessing
the quality of correspondence assignments and also gives a brief overview of their
underlying theory.

TPSs are a tool for interpolating surface splines over scattered data [5]. The
algebra is based on the physical properties of an infinite thin metal plate that is
fixed at certain points (i.e. the control points). This plate fits the control points
such that the energy necessary to bend it is minimized. When used as a transfor-
mation for two-dimensional point matching, the amount of energy that is necessary
to deform the TPS such that one point cloud matches the other can be used as an
indicator for the quality of the match. This energy – the so-called integral bending
norm – is measured using only the non-affine part of the transformation, which
is possible since the TPS is able to model affine and non-rigid transformations
such that they can be separated. The remainder of this section describes the al-
gebra of TPSs and the computation of the integral bending norm as presented by
Bookstein [5].

The TPS transformation is described using the function

f(x, y) = a1 + axx+ ayy +
n∑

i=1
wiU(||Pi − (x, y)||), (3.1)

where a1, ax, ay are the affine coefficients, wi are the non-affine coefficients, U(r) =
r2 log r2 and Pi with i = 1, . . . , n are the control points the TPS passes through.
The computation of the coefficients is done using the matrix

L =
 Φ P h

P h> 0

 , (3.2)

with the n× n TPS kernel matrix

Φ =


0 U(r12) · · · U(r1n)

U(r21) 0 · · · U(r2n)
· · · · · · · · · · · ·

U(rn1) U(rn2) · · · 0

 , (3.3)

for rij = ||Pi − Pj||, the set of control points in homogeneous coordinates

P h =


1 x1 y1
1 x2 y2
... ... ...
1 xn yn

 , (3.4)

and the 3 × 3 matrix of zeros 0. The TPS coefficients are then computed from a
vector V0 = (V, 0, 0, 0) with V = (v1, . . . , vn) as

L−1V0 = (w1, . . . , wn, a1, ax, ay). (3.5)
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By setting V = (x′1, . . . , x′n) and V = (y′1, . . . , y′n) with (x′i, y′i) being the coordinates
of a second point set that correspond to (xi, yi) this yields the coefficients of the
functions fx, fy describing the x and y-coordinate changes respectively.

As mentioned before, function f minimizes the integral bending norm which is
given as

If =
∫∫
R2

(∂2f

∂x2

)2

+ 2
(
∂2f

∂x∂y

)2

+
(
∂2f

∂y2

)2
 dxdy. (3.6)

The value of If is proportional to

WΦW> = V (L−1
n ΦL−1

n︸ ︷︷ ︸
B

)V >, (3.7)

whereW = (w1, . . . , wn) and L−1
n is the upper left n×n block of the inverse matrix

of L. Matrix B is also called the bending energy matrix since its eigenvectors
indicate the amount of bending at each control point.

An example with two small sets of 5 points each is given in Figure 3.2. The
point sets P in Figure 3.2 (a) and Q in Figure 3.2 (b) are

P =
[

3.6929 4.8189 6.7756 5.6969 6.5827
10.3819 11.2047 12.0866 10.0748 8.8386

]

and
Q =

[
3.9724 5.4016 6.5394 5.7756 6.6969
6.5354 6.4528 7.2362 5.1142 4.1181

]
,

where the ith point in set P corresponds to the ith point in set Q for i = 1, . . . , 5.
The bending energy matrix as defined in Equation 3.7 has two eigenvectors that
correspond to non-zero eigenvalues for this example. These eigenvectors are

(−0.2152, 0.6553,−0.1346,−0.6320, 0.3265)

and
(−0.4941, 0.4700,−0.3370, 0.6026,−0.2415)

and can be interpreted as the amount of bending that is necessary at each control
point. It can be observed that the sum of absolute energy necessary is highest
at points 2 (0.6553 + 0.4700) and 4 (0.6320 + 0.6026) which matches the visual
impression of Figure 3.2 (b).

3.1.2 Shape Context Descriptor
The shape context descriptor is a rich descriptor of the shape of an object which was
introduced by Belongie et al. [2]. It is a central component of the retrieval system
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Figure 3.2: (a) Point set P with an undistorted TPS grid. (b) Point set Q to-
gether with the TPS transformation that maps P to Q. The numbers indicate the
correspondences between the points in the different sets. Figure inspired by [5].

proposed in this thesis as it is used in the pre-filtering step as well as to compute
one of the four distance measures. It describes a shape by connecting each sample
point on the shape with all other sample points. Since different representations of
shapes may vary from one instance to another, the entire graph would be much
too detailed [2]. This is why Belongie et al. use the lengths and orientations of
the connecting lines to create a log-polar histogram for each sample point. This
histogram typically has 12 bins for the orientations and 5 bins for the logarithm
of line lengths. The logarithm is applied to give more emphasis to changes in the
distance of close points than to points which are far apart. This representation
effectively describes the structural relation of one point to the other points in the
set and can therefore be used to evaluate the quality of a match. An example is
given in Figure 3.3. The first row shows two point sets and the bin distribution in
the log-polar histogram. The second row depicts the shape context histograms of
the three points which are marked in the point sets. It shows that the histograms
of two points which are in a similar position on a similar shape (i.e. circle and
diamond) are also similar, while the histogram of a point in a different position
looks different.

Since the shape context histogram of each point captures the relative position
of other points with respect to this point, changes in the orientation of the image
result in changes in the histogram. The shape context descriptor is therefore not
orientation invariant. The histogram bins which store the logarithmic lengths of
connecting lines, however, are normalized by the line lengths, thus making the
descriptor invariant to scale. This behaviour is illustrated in Figure 3.4, where (c)
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(a) (b) (c)

Figure 3.3: (a) and (b) show two point sets sampled from different shapes of a
character. (c) shows the bins of the log-polar histogram. The second row shows
the shape context histograms of the points which are marked in the sets in the
first row. The correspondences are indicated by the symbols (i.e. circle, diamond
and triangle). Image taken from [2].

shows the image from (a) rotated by 90◦. Figure 3.4 (d) and (f) show the shape
context histograms which correspond to the point marked in (a) and (c) respec-
tively. It can be observed that the bins are shifted horizontally due to the rotation,
thus yielding a high shape context distance value of 70.25 for the two images. The
shape context histogram in Figure 3.4 (e) which corresponds to the point marked in
the scaled image in (b) on the other hand is exactly the same as the histogram for
the same point marked in (a). The shape context distance between these images
is therefore 0.

3.1.3 Linear Discriminant Analysis
Before the signature images can be ranked in the last step of the retrieval system
the four distance measures have to be combined to a single distance for each image.
This is accomplished by means of LDA which provides the respective weights for
the distance measures. The remainder of this section discusses the basic principles
of LDA and how it can be used to obtain the aforementioned weights.

In contrast to Principal Component Analysis (PCA) which tries to find direc-
tions for an efficient representation for data by means of dimensionality reduction,
the goal of LDA [19] is to find directions that efficiently separate different classes
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Figure 3.4: (a) Points sampled on a signature image. (b) The same image scaled
by factor 0.5. (c) The image from (a) rotated by 90◦. The second row shows the
shape context histograms of the points which are marked by green circles in the
first row.

of data [15]. This is done by projecting the data onto a line w and looking for the
position and orientation of this line at which the separation of projected data is
best. The separation is defined by a threshold that splits the points on the line
into different classes. The border which separates the original data is then given
as the hyperplane which is perpendicular to w and intersects it at the threshold.

This method is used in machine learning to train a linear classifier on a training
set. The position and orientation of w is obtained from the normal distribution
which is estimated for each class in the training set. The separating hyperplane is
then used in the classification step to assign class labels to test data. As mentioned
before, LDA can also be used to combine several features into one by taking the
coefficients of the hyperplane as weights. An example is given in Figure 3.5 where
(a) shows a two-dimensional example of the result of LDA on a set of training data
and (b) shows one class separated from the other classes in the test set using the
coefficients of LDA to combine four features into one.
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Figure 3.5: (a) Two-dimensional example of an LDA with one class (red) separated
from another (blue) by a hyperplane (green line). (b) Coefficients of the separating
hyperplane used to accumulate four features into one to separate one class (red)
from four other classes (blue) in the training set. The margin between the two
LDA classes is illustrated with two green lines.

3.2 Preprocessing and Point Sampling
Since the test set that is used for evaluating the methods in this thesis consists
of noise-free, binary images of signatures it is not necessary to apply noise re-
moval, printed text removal and binarization methods. Therefore the preprocess-
ing in this thesis merely consists of a normalization step similar to the approach
of Lin and Chang [33] and an abstraction step. In the first step the signature im-
ages are rotated such that the major axis of the Best-Fit Ellipse (BFE) is aligned
with the horizontal axis. This step is necessary because the shape context de-
scriptor is not invariant to changes in orientation (see Section 3.1.2). In contrast
to Pavlidis et al. [40] the rotation is unambiguous in this case since there are no
rotations ≥ 90◦ in the data set. It is therefore not necessary to store two repre-
sentations of one signature image.

The BFE orientation normalization is compared to a shape-context-based and
a gradient-based normalization in Section 4.2 to see which one performs best on the
data set. The shape-context-based approach is chosen because it seems natural to
use a descriptor that contains orientation information and is already used in other
parts of the algorithm. It computes the shape context descriptor for the centre of
gravity of all foreground pixels of an image using 18 bins for angles from −90 to
90 degrees. Angles from 90 to 270 degrees are inverted such that they point in the
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opposite direction and are counted as their [−90◦, 90◦) counterpart. The image is
then normalized using the angle which corresponds to the largest bin.

The gradient-based orientation normalization is chosen because gradient ori-
entations are also used to make the Scale-Invariant Feature Transform (SIFT)
descriptor [34] invariant to rotation. This approach starts by convolving the im-
age with a 5 × 5 Gaussian filter with σ = 2. The x and y derivatives of the
image are then approximated using two Sobel operators (see Figure 2.5). The
gradient directions which are computed from these derivatives are again arranged
in 18 bins for angles from −90 to 90 degrees, similar to the shape-context-based
approach, and the image is finally normalized with the angle that is represented
by the largest bin. Figure 3.6 shows an example of the different results using these
three orientation normalization techniques on skeleton images.

Figure 3.6: The results of using different orientation normalization techniques on
skeleton images. The techniques are BFE (first row), shape context normalization
(second row) and gradient normalization (third row).

After the orientation normalization step the image is trimmed to fit the size
of the signature and resized to normalize the length of the diagonal (see Fig-
ure 3.7 (b)). The normalized diagonal length that is used for the evaluation in this
thesis is set to 300 pixels.

Two different abstraction steps are used to evaluate their performance. The first
technique uses a Canny edge detector to extract the contour of the signature (see
Figure 3.7 (d)). This would not be necessary in a binary image where the contours
are already given by neighbourhood relations among pixels. In this case, however,
the image is not binary any more due to resampling in the scaling step. The second
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Figure 3.7: (a) Original signature image with major (red) and minor (green)
axis of the BFE. (b) The same image after size and orientation normalization.
(c) The skeleton of the normalized image. (d) The edges of the normalized image.
(e) Points sampled on the edge image.

technique computes the skeleton of the signature using morphological thinning (see
Figure 3.7 (c)) which requires a binary image to reduce the amount of spurs and
artefacts in the resulting abstraction. Each image is therefore normalized to the
interval [0, 1] and binarized by means of a simple thresholding with the constant
c = 0.3.

The point set which represents the signature image in the remainder of the
algorithm is created by randomly sampling points on the edge or skeleton image
(see Figure 3.7 (e)) and normalizing them to the interval [0, 1]. In order to sample
roughly the same amount of points for each image the sampling probability p for
each pixel is computed using the black pixel density Dbp. It is computed as

p = q

Dbp

= N · q
Nbp

, (3.8)

where q is the sampling parameter which controls how many points are sampled,
Nbp is the number of black pixels and N is the total number of pixels in the image.
Each pixel that lies on the abstract representation of the signature and is selected
for sampling, contributes to the final set of points which describes the signature.
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For example, the point set for the signature in Figure 3.7 is computed using
the sampling parameter q = 0.007 which yields a sampling probability of p = 0.1.
This means that every pixel in the image has a chance of 0.1 to be selected. Each
selected pixel that overlaps with a foreground pixel of the signature is then added
to the final point set (see Figure 3.8).

(a) (b)

Figure 3.8: (a) All selected points in the image with p = 0.1. (b) The points which
are selected and lie on the abstract representation of the signature, i.e. the final
point set which represents the signature.

3.3 Thin-Plate Spline – Robust Point Matching
Algorithm

The TPS transformation as described in Section 3.1.1 needs known correspon-
dences between the points of two sets to be computed. To overcome this limita-
tion Chui and Rangarajan [10] developed the so-called Thin-Plate Spline – Robust
Point Matching (TPS–RPM) algorithm. It makes use of the fact that the com-
putation of correspondences has an optimal solution once the transformation is
known and vice versa [10] by computing them in an alternating manner until the
solutions converge. Each step of this iterative process refines the correspondence
assignment and the transformation.

The performance of the TPS–RPM algorithm is compared to the similar Itera-
tive Closest Point (ICP) algorithm [3] by Chui and Rangarajan [10] using synthetic
data to evaluate behavioural changes due to the degree of deformation, the amount
of noise and the amount of outliers in the point sets. It is shown that the error
rates of the TPS–RPM algorithm are not only lower than those of the ICP, but also
increase much slower for test cases with increased deformation, noise and outliers.

The TPS–RPM algorithm uses an annealing parameter to influence the change
of the TPS transformation such that it permits global changes in the beginning

36



and more local ones towards the end. This is done using a temperature variable T
in analogy to physical annealing and allowing larger changes in the transformation
for higher temperatures and smaller changes for lower ones. The temperature
decreases at each annealing step according to the annealing rate r until the final
temperature Tfinal is reached.

Instead of having a binary correspondence matrix Chui and Rangarajan choose
a softassign approach where the correspondence values are continuous in the inter-
val [0, 1]. This is due to the fact that binary correspondences are less meaningful
in the early stages of the iteration because the transformation is still far away from
the optimal solution [10].

The pseudo code of the algorithm is shown in Algorithm 1. The first step is
to initialize the annealing parameters T , T0, Tfinal, the annealing rate r, the TPS
smoothness constraints λinit

1,2 and the TPS kernel matrix Φ. For two point sets X,
V of size N and K respectively, the parameters are set to T = 0.5, T0 = max(V 2

x ),
Tfinal = 0.001, r = 0.93, λinit

1 = 1 and λinit
2 = λinit

1 · 0.01, where Vx denotes the x-
coordinates of point set V . The TPS kernel matrix used by Chui and Rangarajan
differs slightly from that of Bookstein given in Equation 3.3 and is computed as
Φij = ||Vi − Vj||2 log ||Vi − Vj|| with Vi, Vj being the coordinates of points i and j
respectively.

Algorithm 1 TPS–RPM Algorithm
1: initialize parameters and variables
2: while T > Tfinal do
3: for i = 1→ 5 do
4: update correspondence matrix
5: update TPS parameters
6: end for
7: update annealing parameters
8: end while

The inner loop of Algorithm 1 consists of two parts. The first is to update the
correspondence matrix m with the estimated transformation f(V ) such that

mkn = 1√
T

exp
(
−(Xn − f(Vk))>(Xn − f(Vk))

T

)
, (3.9)

for k = 1, . . . , K and n = 1, . . . , N . Since the transformation is unknown when m
is computed for the first time it is initialized as f(V ) = V . To account for outliers
in the point sets, m is expanded by an outlier row and an outlier column:

mK+1,n = mk,N+1 = 1√
T0

exp(−1). (3.10)
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The additional row and column are used to update the correspondences in m by
first dividing each column and then each row by their sum respectively.

In the second part the TPS parameters are updated with the correspondences
in m. For this purpose an additional point set Y is computed as

Yk =
N∑

n=1
mknXn, (3.11)

which can be seen as the set of transformed points V . The TPS parameters are
then computed using the homogeneous variants Y h and V h of these point sets
where V h

k = (1, Vkx, Vky) and Y h
k = (1, Ykx, Yky). V h is then split up into the three

matrices Q1, Q2 and R using QR decomposition [54] such that

V h = [Q1 Q2]
[
R
0

]
, (3.12)

where Q1 is a K × 3 matrix, Q2 is K × (K − 3), R is 3 × 3 and 0 is a K × 3
matrix of zeros. Together with the smoothness constraints λ1, λ2 and the TPS
kernel matrix Φ these matrices yield the TPS parameters w and d as follows:

w = Q2(Q>2 ΦQ2 + λ1IK−3)−1Q>2 Y
h, (3.13)

d = (R>R + λ2I3)−1(R>Q>1 (Y h − Φw)−R>R) + I3, (3.14)
with I being a square identity matrix and its index indicating the size. The
transformation of the sample points is then obtained using the function

f(V h) = V hd+ Φw (3.15)

and the whole process is repeated. Chui and Rangarajan [10] state that after
five loop iterations the estimation is close to convergence which is why the inner
loop stops after five runs. The annealing parameter T is subsequently updated
by multiplying it with the annealing rate r and the smoothness constraints are
updated using λ1,2 = λinit

1,2 · T ·K respectively.
Figure 3.9 (a) shows the point sets that are matched (green dots and blue

circles) and the transformed point set (red crosses) as result of the algorithm.
Figure 3.9 (b) visualizes the TPS transformation as a blue grid on top of the two
signatures that are matched.

3.4 Dissimilarity Measures
Once the transformation between the query signature and a candidate signature is
known, it is used to compute four distance measures as proposed by Zhu et al. [61];
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(a) (b)

Figure 3.9: (a) The results of the TPS–RPM algorithm for finding a transformation
from point set V (green dots) to X (blue circles). The transformed points f(V )
are shown as red crosses. (b) The signatures from which the point sets are sampled
together with the TPS transformation which is represented by a blue grid.

namely the bending energy Dbe, the shape context distance Dsc, the anisotropic
scaling Das and the registration residual error distance Dre. They are accumulated
into the final distance D using the weighted sum

D = wbeDbe + wscDsc + wasDas + wreDre, (3.16)

where the weights w are estimated via LDA on a random subset of signature images
that are not in the test set. The weights are then obtained from the coefficients of
the hyperplane (see Section 3.1.3) which separates the training set into two classes
using a query signature which is also not in the test set.

Once the four distances for all signatures in the test set are obtained, the final
distance D can also be computed without using training data by normalizing each
distance measure with its standard deviation:

D = Dbe

σbe

+ Dsc

σsc

+ Das

σas

+ Dre

σre

. (3.17)

3.4.1 Bending Energy
The integral bending norm of a TPS as described in Section 3.1.1 is a measure
which relates to the amount of non-affine deformation in the transformation. In
this thesis the variant of this norm is used that was proposed by Chui and Ran-
garajan [10] as

Dbe = λ1 · trace(w · (Y h)>), (3.18)
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where λ1 is the TPS smoothness constraint of the non-affine part of the trans-
formation, w is the TPS parameter describing the non-affine transformation (see
Equations 3.13 and 3.15) and Y h is the point set introduced in Equation 3.11.

3.4.2 Shape Context
The shape context descriptor (see Section 3.1.2) is used to compute the shape
context distance Dsc between a set P from a query signature with k points and a
set Q from a candidate signature with n points as stated in [2]:

Dsc(P,Q) = 1
k

∑
p∈P

arg min
q∈Q

C(f(p), q) + 1
n

∑
q∈Q

arg min
p∈P

C(f(p), q), (3.19)

where f is the TPS transformation given in Equation 3.15 and C is the matching
cost for two points, defined using the χ2 test statistic:

C(p, q) = 1
2

B∑
b=1

[hp(b)− hq(b)]2
hp(b) + hq(b)

, (3.20)

where hp and hq are the shape context histograms of points p and q, and b specifies
the bin with a total number of B bins.

3.4.3 Anisotropic Scaling
The anisotropic scaling is computed directly from the affine transformation matrix
d (see Equations 3.14 and 3.15). It is defined in [61] as

Das = log max(Sx, Sy)
min(Sx, Sy) , (3.21)

where Sx, Sy are obtained by singular value decomposition of d. Here Sx, Sy are
the scaling factors of the affine part of the TPS transformation. Thus Das is 0 if
there is only isotropic scaling in d (i.e. Sx = Sy).

3.4.4 Registration Residual Error
The last distance measure proposed by Zhu et al. [61] is the residual error of the
estimated transformation. It describes the quality of the matching by computing
the sum of Euclidean distances between corresponding points, normalized by the
total number of matches. For a matching assignment M(i) it is defined as

DH
re =

∑min(k,n)
i=1 ||f(pi)− qM(i)||

min(k, n) , (3.22)
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where f is the TPS transformation given in Equation 3.15 and k, n are the sizes of
point sets P and Q respectively. However, since this formula requires one-to-one
correspondences and the TPS–RPM algorithm yields only soft matches (i.e. con-
tinuous values in the correspondence matrix instead of binary ones) it is first neces-
sary to find correspondences. This is done using the Hungarian method [30] with
the inverse matching quality from the correspondence matrix of the TPS–RPM
algorithm as the matching cost.

Since the Hungarian method is computationally expensive, two other formulas
for computing the registration residual error are suggested and evaluated in this
thesis. The first one estimates correspondences by simply assigning the best match
to each point of the smaller point set. Since this is likely to result in duplicate
matches the following slightly modified formula is used to compute the registration
residual error:

DD
re =

∑min(k,n)
i=1 ||f(pi)− qM(i)||
min(k, n)− err(M) , (3.23)

where M(i) is the estimated matching assignment and err(M) is the number of
duplicate matches in M .

The second alternative implementation does not estimate one-to-one corre-
spondences at all, but simply uses the matching quality from the correspondence
matrix of the TPS–RPM algorithm as a weight for the Euclidean distance between
two points. It is defined as

DW
re =

∑k
i=1

∑n
j=1mij · ||f(pi)− qj||

min(k, n) , (3.24)

where m is the correspondence matrix of the TPS–RPM algorithm (see Equa-
tion 3.9). The performance of the three variants of the registration residual error
distance measure is evaluated in Section 4.1.

3.5 Pre-Filtering
Since the dissimilarity measures are computed from the transformation that best
maps a query signature to a candidate signature, the time-consuming TPS–RPM
algorithm has to be computed for the entire test set for each new query signature.
Therefore it is suggested in this thesis to speed up the retrieval process by first
reducing the search space. This is done by computing the shape context distance
from a query signature to all other signature images in the test set similar to
Equation 3.19 but without prior computation of the transformation (i.e. f(p) =
p). The results are then sorted and the expensive TPS–RPM algorithm and the
dissimilarity measures are computed for only up to five percent of the highest
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ranked signatures. The remaining signatures are ranked according to their shape
context distance.

Summary
This chapter presented the methodology that is used in the signature retrieval sys-
tem which is proposed in this thesis. The system operates on point clouds which are
sampled from preprocessed signature images using a probability function. These
point clouds are matched using the TPS–RPM algorithm which also estimates the
TPS transformation that maps one point cloud to the other. The TPS transfor-
mation is then used to compute four distance measures which are combined to a
final distance value using weights that are estimated by means of LDA on a set of
training data. The whole system is sped-up by introducing a pre-filtering step that
reduces the amount of signature images for which the computationally expensive
TPS–RPM algorithm and the distance measures are computed.

The following chapter uses the GPDS960signature dataset to evaluate the sig-
nature retrieval system and analyse the effects of using different orientation normal-
ization and abstraction techniques (see Section 3.2), different sampling techniques
and different methods for computing the registration residual error distance (see
Section 3.4.4).
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CHAPTER 4
Results

The signature retrieval system proposed in this thesis is evaluated in Matlab using
the GPDS960signature database [4]. This database contains binary images of 24
genuine signatures from 960 individuals. It also contains 30 forged signatures for
each individual, however, only genuine ones are used for the evaluation because
this thesis does not deal with signature verification. Since the computation of the
TPS–RPM algorithm and of the dissimilarity measures takes about 2.6 seconds for
a single comparison without parallelization (i.e. about 16.6 hours for the evaluation
of one query signature on the entire dataset of 960 signers and 24 signatures) an
evaluation on the entire set is not feasible (see Table 4.1). The tests in this chapter
are therefore conducted on the following subsets of this dataset:

setA – consists of 5 signatures each from 40 individuals, thus comprising a total
of 200 signature images.

setB – consists of 8 signatures each from 120 individuals, thus comprising a total
of 960 signature images.

The smaller set is used whenever the computation on the larger set would take
too long (i.e. for the computations of the dissimilarity measures on their own
unless they are compared to different approaches). Furthermore, the evaluation
is parallelized on six cores since that is the maximum number of physical cores in
the test system that can be used over a longer period of time (e.g. two weeks).

The performance of the document image retrieval system is evaluated using the
same measures as in [61], namely Average Precision (AP) and R-Precision (RP).
The precision of a retrieval system is computed as

precision = number of relevant documents retrieved
number of documents retrieved . (4.1)
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Table 4.1: Runtime comparison for a complete evaluation on different sets using
parallelization for speed-up

Method setA setB Full set
without pre-filtering ~18 hours ~17 days ~11 years
with pre-filtering ~1 hour ~1 day ~2 years

AP is the mean of the precisions at each rank that adds another relevant document,
with a precision of zero for relevant documents that are not retrieved [6]. This
means that the AP of a retrieval of a total of 3 relevant documents, where only 2
documents are found at positions 1 and 5, is given as AP = (1/1 + 2/5 + 0)/3 =
46.7%. RP is the precision for retrieving R documents where R is the number of
relevant documents for the given query. Thus the RP for the example given above
is RP = 1/3 = 33.3%, because only one relevant document is retrieved at rank 3.
AP rewards higher rankings of relevant documents and penalizes that of irrelevant
ones while RP ignores the exact ranking of the results and is more useful when a
large number of relevant documents is present in the dataset [61].

All test runs in this chapter are conducted using each signature in the test set
as query and removing it from the test set for this run. The average of the results
for each query signature are then presented as the MAP and the MRP. Some of
the results are also illustrated by plotting the average recall at each rank. The
recall of a retrieval system is defined as

recall = number of relevant documents retrieved
number of relevant documents . (4.2)

As mentioned in Section 3.4, LDA is used to compute the weights for combining
the four dissimilarity measures to a single distance (see Equation 3.16). Table 4.2
shows the actual weights that are utilized in the evaluation of the signature retrieval
system. weight1 and weight2 are both obtained using a random training set that is
one third of the size of setB, thus resulting in a 75% to 25% split between test set
and training set. The training set contains at least two signature images from the
same individual such that one is used as the reference image and the other is used to
compute the distance and compare it to the distances to all the images from other
individuals in the training set. The weights are then obtained from the hyperplane
which separates these two classes as explained in Section 3.1.3. Since the training
data for computing the weights are selected randomly, each computation yields
different weights. Therefore, two weights are used in the evaluation such that each
test run uses the weights that give the best overall results for this test.

The following sections evaluate each part of the retrieval system presented in
Chapter 3 and also compare it to the performance of the dissimilarity measures
on their own. First the three different registration residual error implementations
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Table 4.2: Weights that are used to combine the dissimilarity measures

Name wbe wsc was wre

weight1 50.31 0.1806 3.232 372.9
weight2 52.99 0.1104 2.159 1,057

presented in Section 3.4.4 are evaluated to see which one performs best. Then the
three orientation normalization techniques described in Section 3.2 are compared.
The pre-filtering step and the dissimilarity measures are subsequently evaluated
using edge detection and skeletonization as abstraction technique. The effects
of varying sampling rates are then evaluated to find the best trade-off between
retrieval performance and runtime. Finally, the performance of the signature re-
trieval system presented in this thesis is evaluated with different reduced set sizes
and compared to the dissimilarity measures.

4.1 Registration Residual Error
The three different methods for computing the registration residual error distance
as described in Section 3.4.4 are evaluated on setA for the sake of computation time.
The test is performed using Canny edges as abstraction technique (see Section 4.3)
and a sampling parameter of q = 0.007 (see Equation 3.8) which yields about 200
points per signature image (see Section 4.4). Figure 4.1 illustrates the results in
terms of MRP, MAP and total runtime and Table 4.3 shows the exact values. It
can be observed that the two approaches proposed in this thesis (i.e. DD

re and DW
re )

are not only faster than the approach with the Hungarian method since they do not
require the computation of optimal correspondences, but also achieve significantly
higher retrieval rates. The method that is chosen for computing the registration
residual error distance in the remainder of the evaluation is therefore DW

re .

Table 4.3: Retrieval performances and runtimes of the different registration resid-
ual error implementations

Method MRP MAP Runtime
DH

re 5.1% 7.6% 25.4 h
DD

re 33.6% 39.2% 16.4 h
DW

re 48.3% 54.8% 15.6 h
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Figure 4.1: (a) The retrieval performances of the three implementations of the
registration residual error distance in terms of MRP and MAP. (b) The runtimes
of the evaluation of each implementation on the entire set of 40 × 5 signature
images in hours.

4.2 Orientation Normalization Techniques
The orientation normalization step is crucial in order for the pre-filtering to work
properly (see Section 3.1.2). It is therefore important to evaluate which of the
three techniques presented in Section 3.2 – i.e. BFE, shape context and gradient
normalization – works best for the given data set. This is done by computing the
shape context distance from each image in setB to all remaining images in the
set and ranking the results accordingly. The results in terms of MRP, MAP and
recall using skeletonization as abstraction technique are shown in Figure 4.2. The
exact results are given in Table 4.4. It can be observed that the BFE achieves
the highest retrieval rates and has the best recall with respect to the number of
signature images retrieved, it is therefore the orientation normalization technique
that is used for all other tests in this chapter.

Figure 4.2 (b) also shows that the gradient orientation normalization technique
ranks more relevant signatures among the top ranks than the shape-context-based
technique, but has to retrieve more images to find all relevant signatures. This
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Figure 4.2: (a) The retrieval performances using the Best-Fit Ellipse (BFE), the
Shape Context (SC) and the Gradient (GR) orientation normalization with skele-
ton images in terms of MRP and MAP. (b) The recall of the pre-filtering method
using BFE (red), shape context (blue) and gradient normalization (cyan) on skele-
ton images with respect to the number of signature images retrieved.

Table 4.4: Retrieval performances of the different orientation normalization tech-
niques using skeleton images

Method MRP MAP
BFE 51.3% 55.6%
Shape context 39.8% 42.5%
Gradient 48.9% 52.7%

means that it is better suited for finding as many relevant signatures as possible
among the top ranks, but worse for finding all relevant signatures in a given set.
The results for the test run on edge images are presented in Figure 4.3 and Table 4.5
and do not show great deviation from those for the tests using skeleton images.

4.3 Abstraction Techniques
As mentioned in Section 3.2 the retrieval system is evaluated using two different
abstraction techniques (i.e. thinning or skeletonization and edge detection) to see
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Figure 4.3: (a) The retrieval performances using the Best-Fit Ellipse (BFE), the
Shape Context (SC) and the Gradient (GR) orientation normalization with edge
images in terms of MRP and MAP. (b) The recall of the pre-filtering method
using BFE (red), shape context (blue) and gradient normalization (cyan) on edge
images with respect to the number of signature images retrieved.

Table 4.5: Retrieval performances of the different orientation normalization tech-
niques using edge images

Method MRP MAP
BFE 48.3% 52.6%
Shape context 38.5% 40.8%
Gradient 46.0% 49.2%

how they perform. For this purpose the key parts of the retrieval system, namely
the pre-filtering step using the shape context distance and the computation of the
dissimilarity measures based on the TPS transformation, are both computed using
skeleton and edge images. Instead of using the pre-filtering step to reduce the set
for computing the dissimilarity measures, both parts are evaluated independently
on setB. Figure 4.4 shows a comparison of the results for computing the shape
context distance with both abstraction techniques in terms of (a) MRP, MAP and
(b) recall with respect to the number of signatures retrieved. The comparison of
the results for the dissimilarity measures is given in Figure 4.5. The exact results
of the two test runs are given in Table 4.6 and 4.7 respectively. Both tests use a
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sampling parameter of q = 0.007 yielding about 200 points per signature image.
The results for the dissimilarity measures are obtained using weight1.
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Figure 4.4: (a) The retrieval performances using the shape context distance with
skeleton (left) and edge (right) images in terms of MRP and MAP. (b) The recall
of the pre-filtering method using skeleton (red) and edge (blue) images with respect
to the number of signature images retrieved.

Table 4.6: Retrieval performances of the shape context distance using skeleton and
edge images

Method MRP MAP
Skeleton 51.2% 56.1%
Edges 48.3% 52.6%

The tests show that skeleton images provide better results than edge images
for the shape context distance and weaker results when they are used to compute
the dissimilarity measures. The superiority of edge images for the dissimilarity
measures matches the observations of Zhu et al. [61]. They compare their contour-
based abstraction approach, which extracts edge-like images, with two skeletoniza-
tion techniques and show that their representation yields better retrieval results
for the dissimilarity measures. The weaker performance of edge images for the

49



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Skeleton  Edges

Re
tr

ie
va

l p
er

fo
rm

an
ce

 

 
MRP
MAP

0 50 100 150 200 250 300 350
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of signatures retrieved

Re
ca

ll

 

 
Skeleton
Edges

(a) (b)

Figure 4.5: (a) The retrieval performances using the dissimilarity measures with
skeleton (left) and edge (right) images in terms of MRP and MAP. (b) The recall
of the dissimilarity measures using skeleton (red) and edge (blue) images with
respect to the number of signature images retrieved. All results are obtained using
weight1 to combine the dissimilarity measures.

Table 4.7: Retrieval performances of the dissimilarity measures using skeleton and
edge images with weight1

Method MRP MAP
Skeleton 58.2% 62.3%
Edges 62.5% 66.9%

shape context distance, on the other hand, can be explained by the fact that edge
images consist of two edges for each stroke instead of one. Since the shape context
descriptor gives more importance to points in close proximity, edge images add
potential for noise by having points sampled on both edges of a stroke.

4.4 Sampling Techniques
In this section, the effects of varying sampling rates on the performance of the
signature retrieval system and its runtime are evaluated. For this purpose the
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shape context distance that is used as the pre-filtering step of the signature retrieval
system is computed for each image in setB using different sampling parameters q.
Since it is shown in Section 4.3 that skeletonization yields better results when
computing the shape context distance, it is the abstraction technique which is
used for this test run. Figure 4.6 illustrates the results in terms of MAP and
runtime in hours. The MRP is not included in the figure since it changes similarly
to the MAP and would only add confusion. However, all results including the
respective sampling parameters q and the average numbers of points are shown in
Table 4.8.
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Figure 4.6: A comparison of runtime and performance in terms of MAP for differ-
ent numbers of sample points using the shape context distance. The axis values
corresponding to the runtime and MAP graphs are shown on the left and right
side respectively.

The performance generally increases with higher numbers of sample points with
an exception at ~550 points, where the performance decreases again by 0.7 percent-
age points compared to the performance at ~490 sample points. However, it can
also be seen that the runtime increases exponentially with the number of points.
While sampling ~350 points increases the MAP by 7.6 percentage points compared
to sampling ~190 points, it also almost doubles the runtime. Similarly, the per-
formance significantly improves when sampling ~670 points compared to sampling
~350 points, but the runtime increases simultaneously by a factor of about 2.7.
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Table 4.8: Retrieval performances and runtimes using the shape context distance
on setB with different sampling parameters

q Number of points MRP MAP Runtime
0.007 ~190 51.2% 56.1% 7.98 h
0.015 ~346 59.2% 63.7% 14.32 h
0.025 ~489 60.5% 65.4% 21.87 h
0.03 ~554 60.1% 64.7% 26.67 h
0.05 ~670 66.6% 71.6% 38.34 h

The best trade-off between runtime and performance is therefore achieved when
sampling ~350 points.

To find optimal sampling properties for the retrieval system it is also important
to look at the performance of the dissimilarity measures at varying numbers of
sample points. This test run is performed using edges as abstraction technique,
since Section 4.3 shows that the dissimilarity measures achieve better results on
edge images. The results are computed on setA for the sake of computation time
using weight2 for combining the dissimilarity measures. They are presented in
Figure 4.7 in terms of MAP and runtime. The MRP is again omitted for better
clarity and all results are shown in Table 4.9.

Table 4.9: Retrieval performances and runtimes using the dissimilarity measures
with weight2 on setA with different sampling parameters

q Number of points MRP MAP Runtime
0.005 ~152 55.6% 62.8% 7.75 h
0.007 ~208 67.1% 73.1% 17.64 h
0.009 ~260 72.0% 78.1% 31.78 h
0.011 ~312 75.5% 80.9% 51.89 h
0.015 ~405 75.6% 81.5% 108.14 h
0.02 ~516 77.8% 83.2% 215.28 h

For the dissimilarity measures it can again be observed that the performance
increases with higher numbers of sample points while the runtime increases expo-
nentially. However, the performance increase falls beneath 2 percentage points per
100 additional points, once the number of sample points reaches ~300. So while
the performance in terms of MAP increases by merely 0.6 percentage points when
sampling ~410 points instead of ~310, the runtime doubles to more than 108 hours
on the small setA. It is therefore not reasonable to sample more than ~300 points,
because the performance increase does not justify the enormous runtime. It is also
worth noting that the evaluation with ~310 points takes more than 2 days on a
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set with only 200 signature images. For larger sets it is therefore recommended to
sample less than 300 points. Hence, the number of points sampled for computing
the dissimilarity measures in all other sections of this chapter is ~200 which is also
the number of points that Zhu et al. [61] use for their evaluation.

4.5 Hybrid Approach
Since it is shown in Section 4.3 that the pre-filtering step performs better on skele-
ton images and the dissimilarity measures achieve better results on edge images,
the retrieval system that is proposed in this thesis uses a hybrid approach. Due to
the insights obtained in Section 4.4 regarding the optimal number of sample points,
the shape context distance in the pre-filtering step is computed by sampling about
350 points (i.e. q = 0.015) on skeleton images and the dissimilarity measures for
the reduced set are then computed by sampling about 200 points (i.e. q = 0.007)
on edge images. The following subsections evaluate the different aspects of the
hybrid approach, namely the size of the reduced set, the performance compared to
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the dissimilarity measures, the effects of using training data and the performance
of single distances.

4.5.1 Reduced Set Size
As mentioned in Section 3.5 the shape context distance is used for pre-filtering
such that the dissimilarity measures are computed for only up to five percent of
the signature images in the set. In order to see differences in varying sizes of
this reduced set, the signature retrieval system is evaluated on setB with weight2
using the pre-filtering step with reduced sets from one to five percent. Figure 4.8
illustrates the results in terms of MRP and MAP while the exact values are shown
in Table 4.10. The results show that – just as one would expect – the performance
increases with the size of the reduced set. However, while the step from 1%
to 2% reduced set size yields a significant performance boost of 1.9 percentage
points MRP and 1.4 percentage points MAP all further steps yield only small
improvements of 0.3 percentage points or less. Note that the last step from 4% to
5% results in an increased retrieval performance of merely 0.1 percentage points.
These results suggest that the best trade-off between retrieval performance and
runtime is achieved with a reduced set of about 3%.
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Figure 4.8: Retrieval performances in terms of MRP and MAP with different
reduced set sizes.
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Table 4.10: Retrieval performances using pre-filtered sets of different sizes. The
exact number of signatures in the reduced set is shown in parentheses

Performance 1% (10) 2% (19) 3% (29) 4% (38) 5% (48)
MRP 61.8% 63.7% 64.0% 64.2% 64.3%
MAP 66.1% 67.5% 67.8% 68.1% 68.2%
Runtime 18.57 h 21.86 h 23.80 h 26.28 h 30.57 h

4.5.2 Comparison with Zhu et al.
Since Zhu et al. [61] evaluate the dissimilarity measures on a different dataset,
namely the Tobacco-800 [32] set which consists of real world documents from US
tobacco companies, their results cannot directly be compared to the results in
this thesis. For this reason both the dissimilarity measures on their own and the
hybrid approach using the dissimilarity measures with the pre-filtering step are
evaluated on setB to see how they perform in comparison. Regarding the size of
the dataset used by Zhu et al. they state that Tobacco-800 contains 66 classes with
6-11 signatures each, which results in 396-726 signatures in total. Since 20% are
used as training data this leaves 317-581 signatures that are left as test data. The
test set used in their evaluation is therefore smaller than setB.

The results in terms of MRP and MAP are visualized in Figure 4.9 (a) and a
comparison of the recall of both methods at each rank is given in Figure 4.9 (b).
The exact values including the total runtime of the experiments are shown in
Table 4.11 and the weight used for combining the four dissimilarity measures is
weight2.

Table 4.11: Retrieval performances and runtimes on setB using weight2

Method MRP MAP Runtime
Dissimilarity measures 62.4% 66.9% 16.71 days
Hybrid approach (3%) 64.0% 67.8% 0.99 days

The results show that the hybrid approach with a reduced set of 3% provides
a speed-up of factor 16 on the test set and even achieves slightly better retrieval
results in terms of MRP and MAP than the dissimilarity measures on their own. It
can be seen in Figure 4.9 (b), however, that the hybrid approach has a lower recall
rate when about 20-80 signatures are retrieved which means that the dissimilarity
measures are more likely to rank relevant signatures at these positions than the
hybrid approach. This effect occurs due to the reduced set which contains only 29
signatures in this case and can be reduced by increasing its size. Note that the
hybrid approach with a reduced set of 5% still provides a speed-up of factor 13 and
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Figure 4.9: The results (a) in terms of MRP and MAP and (b) the average recall
of the hybrid approach with a reduced set size of 3% (red) and the dissimilarity
measures (blue).

achieves a 1.9 percentage points higher MRP and a 1.3 percentage points higher
MAP compared to the dissimilarity measures (see Table 4.10).

4.5.3 Training Data
It is mentioned in Section 3.4 that the dissimilarity measures can also be combined
without using pre-computed weights, thus making it possible to retrieve signature
images without the need for training data. This section evaluates the impact of
using training data on the retrieval performance. For this purpose the hybrid ap-
proach with a reduced set of 3% and the dissimilarity measures are both evaluated
on setB using weight1, weight2 and no weights. The results of this test in terms of
MRP and MAP are shown in Figure 4.10 and Table 4.12. It can be seen that the
hybrid approach achieves the best results with weight2, while weight1 yields the
worst performance of the three. The results also show that it is possible to obtain
only slightly lower performance rates without using any training data than with
weight2 which uses 25% training data. To be precise, the MRP and MAP of the
hybrid approach with weight2 are only 0.3 and 0.1 percentage points higher than
without weights.

The results of the dissimilarity measures show even better performance without
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Figure 4.10: The retrieval performances in terms of MRP and MAP using
(a) weight1, (b) weight2 and (c) no weights for the hybrid approach with a re-
duced set of 3% and the dissimilarity measures.

Table 4.12: Retrieval performances using different weights and no weights for the
hybrid approach with a reduced set of 3% and the dissimilarity measures

Performance weight1 weight2 without weights
Hybrid DMs Hybrid DMs Hybrid DMs

MRP 62.8% 61.8% 64.0% 62.4% 63.7% 62.6%
MAP 67.0% 65.9% 67.8% 66.9% 67.7% 66.9%

using weights than the hybrid approach. They achieve a 0.2 percentage points
higher MRP and the same MAP without training data as with weight2 and a more
than 0.8 percentage points higher MRP and MAP compared to using weight1.
These results suggest that it is not mandatory for the dissimilarity measures and
the hybrid approach to use training data since it reduces the size of the test set.
However, the GPDS960signature database is several times larger than setB which
means that enough training data is available. The results in this thesis are therefore
computed using weights.

4.5.4 Single Distances
This section gives an overview of the performance of single distances similar to
Zhu et al. [61]. The results for the dissimilarity measures and the hybrid approach
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using single distances on their own are presented in Figure 4.11 and Table 4.13.
Firstly it can be seen that the order in terms of retrieval performance is different
for the two approaches. While for the dissimilarity measures the shape context
distance (Dsc) performs best, followed by the registration residual error (Dre), the
bending energy (Dbe) and the anisotropic scaling (Das), it is Dre which performs
best for the hybrid approach followed by Dbe, Dsc and Das. The only similarity
here is that Das performs worst for both approaches. Comparing the results of
the dissimilarity measures to those of Zhu et al., it is also worth noting that Dre

and Das swapped their position. The results in Section 4.1 suggest that this is
due to the performance gain from using the weighted registration residual error
implementation (DW

re ).
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Figure 4.11: The retrieval performance of single distances in terms of MRP and
MAP for (a) the dissimilarity measures and (b) the hybrid approach with a reduced
set of 3%.

Secondly the results show that the retrieval performance for single distances
is significantly higher (i.e. up to 34.6 percentage points for Dbe) for the hybrid
approach than for the dissimilarity measures. This can be explained by the fact
that each distance profits from the pre-filtering step used in the hybrid approach,
thus resulting in a better retrieval performance for each distance on its own.
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Table 4.13: Retrieval performances of single distances for the dissimilarity mea-
sures and the hybrid approach with a reduced set of 3%

Distance Dissimilarity measures Hybrid approach (3%)
MRP MAP MRP MAP

Dbe 23.9% 25.9% 56.7% 60.5%
Dsc 45.3% 48.8% 55.0% 59.5%
Das 11.0% 13.1% 36.9% 40.5%
Dre 33.0% 34.8% 59.9% 63.8%

4.6 Prototype
In the course of the work on this thesis a prototype was developed which allows
to use the methods presented for signature image retrieval. The Graphical User
Interface (GUI) of the prototype is shown in Figure 4.12. It allows to choose a
signature image to retrieve similar images from a signature library. The weights for
combining the dissimilarity measures can be selected from the menu or imported
from a custom file which contains the weights. Alternatively it is possible not to
use weights but instead compute the overall distance as described in Section 3.4.
Depending on the method selected on the left, different approaches are used for
searching the library. The Fast method scans the library using only shape context
distances, while the Thorough method computes the dissimilarity measures for all
images in the library. The Normal method corresponds to the hybrid approach
presented in this thesis using the shape context distance for pre-filtering and com-
puting the dissimilarity measures for the reduced set only. The exact workflow of
each method is described in Table 4.14. Once the search is completed the images
in the library are ranked according to their distance and presented in the Results
window (see Figure 4.13) where each image is shown with its file name and the
distance from the query image.

Summary
In this chapter the key aspects of the signature retrieval system presented in this
thesis were evaluated using two subsets of the GPDS960signature database. First
the three different implementations of the registration residual error (i.e. DH

re,
DD

re and DW
re ) were evaluated. The tests showed that the two implementations

presented in this thesis perform significantly better than DH
re, both in terms of

retrieval performance and runtime. The BFE was then compared to a shape-
context-based and a gradient orientation normalization technique to evaluate the
quality of the orientation normalization of the retrieval system. The experiments
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Figure 4.12: The main window of the prototype which allows to search signature
image libraries with a query signature. The numbers on the left indicate the steps
necessary in order to search a signature library.

showed that the best retrieval performance is achieved using the BFE.
In the following sections the performance of the pre-filtering step and the dis-

similarity measures was evaluated using different abstraction techniques, namely
skeletonization and edge detection, and varying numbers of sample points. The
results showed that the pre-filtering step performs best (in terms of retrieval per-
formance and runtime) when sampling about 350 points on skeleton images and
that the dissimilarity measures achieve the best results when sampling about 200
points on edge images. This led to the proposal of the hybrid approach which
uses skeleton images for the pre-filtering step and edge images for computing the
dissimilarity measures on the reduced set.

Subsequently it was demonstrated that the best trade-off between retrieval per-
formance and runtime is obtained by using a reduced set of 3%. The performance
of the hybrid approach with a reduced set of 3% was then compared to that of the
dissimilarity measures on setB. This test showed that the hybrid approach yields a
speed-up of factor 16 while still achieving slightly better performance results com-
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Table 4.14: Workflow for the three available methods
Fast Normal Thorough

Scan library for image files
Preprocess signature images

Compute shape context descriptors for all images
Compute shape context distances to query image

Sort results
Select reduced set
Compute TPS transformations
Compute dissimilarity measures

Combine dissimilarity measures and sort results
Display results

pared to the dissimilarity measures. The next test analysed the impact of using
training data and led to the conclusion that it is not mandatory to use training
data for the signature retrieval system proposed in this thesis. The performance of
each single distance on its own was evaluated in the following section and demon-
strated significant differences between the hybrid approach and the dissimilarity
measures. Finally, the prototype which was developed in the course of this thesis
was presented together with the workflow of the available options for searching
signature libraries.
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Figure 4.13: The results window which allows the user to browse the signature
images ranked by their distance (shown in parentheses).
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CHAPTER 5
Conclusion

In this thesis a hybrid approach is proposed that combines a state-of-the-art docu-
ment image retrieval method with a pre-filtering step. The images are first prepro-
cessed by normalizing their orientation using the BFE and their size in terms of
diagonal length. As demonstrated in Section 3.1.2 the orientation normalization is
necessary in order for the shape-context-based pre-filtering step to work properly.
The pre-filtering step subsequently reduces the test set by computing the shape
context distance between the query signature and each signature in the dataset
and ranking the signatures accordingly. The distances to the top 3% of signatures
are then re-computed using the TPS–RPM algorithm and computing four dissim-
ilarity measures from the resulting TPS transformation. Finally, all the signature
images are ranked by their combined distance.

The signature retrieval system proposed in this thesis was evaluated on two
subsets of the GPDS960signature database. First, the performance improvements
of the two registration residual error implementations proposed in this thesis were
demonstrated by comparing them to the results of the registration residual error
implementation which uses the hungarian method for finding optimal matches.
It was then shown that the BFE yields the best retrieval performance compared
to two other orientation normalization techniques, namely a shape-context-based
normalization and a gradient orientation normalization.

Subsequent experiments analysed the effects of using skeletonization or edge
detection as abstraction technique. It was observed that the dissimilarity measures
yield better results using edge images while the shape context distance in the pre-
filtering step performed better on skeleton images. This was argued to be due to
the fact that edge images comprise stroke thickness information which adds noise
to the shape context descriptor.
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Further experiments were conducted to find the best trade-off between perfor-
mance and runtime for varying numbers of sample points. The results of these
experiments led to the proposal of the hybrid approach which performs the pre-
filtering step on skeleton images using a higher sampling rate while the dissimilarity
measures are computed on edge images with a lower sampling rate. The analysis
of the size of the reduced set demonstrated that a reduced set of 3% yields the best
trade-off between performance and runtime. It was shown that the pre-filtering
brings a significant speed-up while providing slightly better retrieval results than
the dissimilarity measures on their own. The reason why the shape context dis-
tance is used to estimate correspondences is that after the normalization of the
images in the preprocessing step similar signatures have a low shape context dis-
tance even without knowing the transformation between them.

Additional evaluations demonstrated that the use of training data has only a
small effect on the retrieval performance which means that it is not mandatory to
train the signature retrieval system. Finally, the comparison of the performance
of single distance measures showed that each distance measure benefits from the
pre-filtering step in the hybrid approach, thus achieving significantly better results
than without the pre-filtering step.

5.1 Disadvantages
The most obvious disadvantage of the signature retrieval system presented in this
thesis is its runtime. Since the dissimilarity measures are computed using the
transformation from one signature to another, it is necessary to run the compu-
tationally expensive TPS–RPM algorithm for each image in a signature library in
order to retrieve images. Additionally, the transformation cannot be pre-computed
for the signature library since each new query image has different transformations
to the images in the library. This is because the retrieval system is based on
distances instead of feature vectors which can be computed once for the entire
signature library.

5.2 Advantages
As presented in Section 4.5 the hybrid approach proposed in this thesis is more
than 16 times faster than the dissimilarity measures on their own. Moreover it also
achieves slightly better retrieval results in terms of MRP and MAP. The signature
retrieval system therefore clearly benefits from the pre-filtering step using the shape
context distance. It was also shown in Section 4.5.3 that the performance of the
retrieval system does not rely on the use of training data. It can therefore be used
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with different signature image libraries without the need for training it with every
new library.

5.3 Future Work
Since this work solely focuses on the matching and retrieval of signature images, the
system could be extended by a localization algorithm which detects signatures in
document images. Furthermore, additional preprocessing elements such as printed
text removal and filtering of noise could be added. The system can also be im-
proved by implementing a more robust orientation normalization technique which
would further improve the performance of the pre-filtering step. If the system is
extended to document image retrieval by adding a signature localization it is also
recommendable to improve the TPS–RPM algorithm to support outlier handling in
both point sets as proposed by [58] since real world documents contain more noise
than the binarized signature images contained in the GPDS960signature database.

Future work may also try to adapt an approach for writer retrieval presented
by Fiel and Sablatnig [18]. They use a bag of words approach with SIFT features
to retrieve documents from a specific writer. The documents are ranked using
the χ2 distance between histograms of the cluster centres of the SIFT features.
The advantage of this approach is that it is based on features which can be pre-
computed and only have to be converted to distances for retrieval.
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List of Acronyms

AP Average Precision

BB Bounding Box

BFE Best-Fit Ellipse

CC Connected Component

DT–CWT Dual Tree Complex Wavelet Transform

DT–RCWF Dual Tree Rotated Complex Wavelet Filter

DTW Dynamic Time Warping

EMD Earth Mover’s Distance

FFT Fast Fourier Transform

GDR German Democratic Republic

GSC Gradient, Structural and Concavity

GSF Gradient Shape Feature

GUI Graphical User Interface

HMM Hidden Markov Model

ICP Iterative Closest Point

LCS Longest Common Subsequence

LDA Linear Discriminant Analysis

MAP Mean Average Precision

MRP Mean R-Precision
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NN Neural Network

PCA Principal Component Analysis

RBF Radial Basis Function

RP R-Precision

SIFT Scale-Invariant Feature Transform

SVM Support Vector Machine

TPS Thin-Plate Spline

TPS–RPM Thin-Plate Spline – Robust Point Matching
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