
Balancing Bike Sharing Systems
A Hybrid Metaheuristic Approach for the Dynamic

Case

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Software Engineering/Internet Computing

eingereicht von

Ing. Andreas Pinter, Bakk.techn.
Matrikelnummer 0625726

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.-Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Mitwirkung:

Wien, 28.11.2013
(Unterschrift Verfasserin) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Balancing Bike Sharing Systems
A Hybrid Metaheuristic Approach for the Dynamic

Case

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering/Internet Computing

by

Ing. Andreas Pinter, Bakk.techn.
Registration Number 0625726

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.-Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Assistance:

Vienna, 28.11.2013
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Ing. Andreas Pinter, Bakk.techn.
Erdbergstraße 17/1/6, 1030 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
- einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Danksagung

Ich möchte mich an dieser Stelle zunächst bei meinem Betreuer Günther Raidl für die Un-
terstützung durch Diskussionen und Feedback bedanken. Weiters möchte ich Citybike Wien
und das Austrian Institute of Technology erwähnen, auf deren Vorarbeit, im geförderten Projekt
831740 der österreichischen Forschungsförderungsgesellschaft, ich aufbauen durfte.
Abschließend möchte ich sowohl meinen Eltern als auch meiner Freundin für deren Unter-
stützung und Motivation danken.

iii

Abstract

Bike Sharing Systems became popular in recent years to extend the public transportation net-
work of cities or regions. Most research in this area focuses on finding the optimal locations for
bike sharing stations. Still various approaches on how to operate such a system efficiently exist.
The usefulness of a bike sharing system strongly depends on the user convenience which is di-
rectly connected to the availability of bikes and parking slots when and where they are needed.
To increase user convenience a fleet of vehicles (usually cars with a trailer) are used to move
bikes between different stations to avoid empty or full stations.

The goal of this thesis is to provide an algorithm to efficiently calculate transportation routes
for balancing such a bike sharing system to improve user convenience. This problem can be
seperated into two different scenarios. The static case focuses on rebalancing the system while
there is no user activity or the user activity is negligible (e.g. during night time if users are only
allowed to rent bikes during the day time). This thesis is considering the dynamic case, in which
the system is still online during the rebalancing process. The proposed algorithm is divided
into two parts: solution search and solution evaluation. The first part is implemented using
two different variants of a Variable Neighborhood Search (VNS) with an embedded Variable
Neighborhood Descent (VND). While the set of neighborhood structures for the VNS variants
is equal they differ in the neighborhood structures used for the VND. The solution evaluation
part incorporates a Linear Programming (LP) approach to calculate the optimal set of loading
instructions for a solution found by the first part. In addition a greedy approach is constructed to
calculate a set of loading instructions.

Finally three variants (D: complete VND+LP; W: VND(with only two neighborhoods struc-
tures used)+LP; G: complete VND+Greedy) are tested on three different sets of test instances
with 60, 90 and 120 stations to evaluate the performance of the algorithm.

One initial conclusion is that nearly all the given computation time is used to calculate op-
timal loading instructions with LP. Comparing variant D and W gives the impression that D is
performing better although no strong statistical evidence was found. Compared to variant D
and W the solutions found by variant G are between 0.5% and 5% worse. On the other hand
the greedy approach evaluates about twice as much solutions than the other two methods in the
same amount of time. For real world applications the greedy approach may be the better one.
Although it is not guaranteed to find the optimal solution it will find good solutions relatively
fast.

v

Kurzfassung

Bike Sharing Systeme wurden in den letzten Jahren zunehmend beliebter um das öffentliche
Verkehrsnetz von Städten oder ganzen Regionen zu bereichern. Die meisten Forschungen in
dem Gebiet zielten deshalb auf die optimale Positionierung von entsprechenden Stationen ab.
Allerdings wurden ebenso unterschiedliche Forschungen zum effizienten Betrieb eines solchen
Systems durchgeführt. Die Sinnhaftigkeit eines Bike Sharing Systems ist allerdings nur dann
gegeben, wenn es von den Kunden auch genutzt wird. Dies wiederum hängt direkt damit zusam-
men ob zum gewünschten Zeitpunkt am gewünschten Ort ein Fahrrad bzw. ein Fahrradab-
stellplatz verfügbar ist. Um dies zu erreichen wird eine Flotte von Fahrzeugen (üblicherweise
PKWs mit Anhängern) eingesetzt, um Fahrräder von einer Station zur anderen zu bewegen.

Diese Arbeit stellt einen Algorithmus vor, der effiziente Fahrzeugrouten berechnet um solch
ein Bike Sharing System auszubalancieren und damit die Kundenzufriedenheit zu erhöhen.
Grundsätzlich lässt sich das Problem in einen statischen und einen dynamischen Fall aufteilen.
Im statischen Fall befindet sich das System in Ruhe, d.h es finden keine Benutzerinteraktionen
statt oder die stattfindenden Benutzerinteraktionen können vernachlässigt werden (zum Beispiel
in der Nacht, wenn Fahrradnutzung verboten ist). In dieser Arbeit wird der dynamische Fall
betrachtet, in dem das Ausbalancieren während des Systembetriebs stattfindet. Der vorgestellte
Algorithmus selbst teilt sich ebenfalls in zwei Teile: Lösungsfindung und Lösungsbewertung.
Für die Lösungsfindung werden zwei Varianten einer Variable Neighborhood Search (VNS) mit
integrierter Variable Neighborhood Descent (VND) eingesetzt. Beide Varianten verwenden ein
identes Set an Nachbarschaften für die VNS, unterscheiden sich allerdings bei den VND Nach-
barschaften. Bei der Lösungsbewertung wird ein Linear Programming (LP) Ansatz verfolgt um
die optimalen Be- und Entladeanweisungen zu berechnen. Zusätzlich wird ein Greedy Ansatz
zur Berechnung dieser Ladeanweisungen vorgestellt.

Schließlich wurden die Ergebnisse dreier Varianten (D: vollständiger VND+LP; W: VND(mit
lediglich zwei Nachbarschaften)+LP; G: vollständiger VND+Greedy) von drei Testsets mit 60,
90 und 120 Stationen verglichen, um die Effizienz des Algorithmus zu beurteilen.

Als eine intiale Beobachtung konnte festgestellt werden, dass die LP Berechnung einen
Großteil der CPU Zeit verbraucht. Vergleicht man Variante D und W miteinander entsteht der
Eindruck, dass D bessere Ergebnisse liefert. Allerdings konnte kein statistischer Beweis für diese
Hypothese gefunden werden. Verglichen mit Variante D und W sind die Ergebnisse von Vari-
ante G zwischen 0.5% und 5% schlechter. Allerdings wurden mit der Greedy Berechnung etwa
doppelt so viele Lösungen in der gleichen Zeit evaluiert. Für einen Anwendungsfall in der realen
Welt ist Variante G wohl am besten geeignet. Obwohl sie keine optimalen Lösungen garantiert,
finden sich gute Lösungen relativ schnell.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description . 3

2 Related Work 7

3 Algorithm for the Dynamic Balancing Bike Sharing Systems 13
3.1 Construction Heuristic . 17
3.2 Neighborhoods . 22
3.3 Optimal Loading Instructions . 28

4 Computationl Results 41
4.1 Instances . 41
4.2 Variants . 42
4.3 Results . 43

5 Conclusion and Future Work 55

6 Appendix 57

Bibliography 65

ix

CHAPTER 1
Introduction

1.1 Motivation

A bike sharing system is a system where numerous users share a set of bikes. Typically there are
multiple stations distributed in the area of a city like Vienna, where users can rent bikes. The big
advantage of this systems is that the bike does not have to be brought back to the same station
where it was rented. Instead, any station of the system will do. In theory the system would
balance itself if each station were equally desireable as a rent- or a bring back-station. In reality
people prefer riding downhill over uphill, riding into the city instead of out of the city and so
forth. There are lots of other reasons why one station tends to be empty while another tend to be
full. The whole system can only work properly if each station can be used as a pick-up and as
a drop-off location. This is absolutely essential for the usability of the system. There is nothing
more frustrating than taking a detour to pick up a bike, just to realize that this particular station
is currently empty. The same is true for returning a rented bike. The planing of the redistribution
tours is usually done by a human operator using his/her experience to decide where to go and
how many bikes to (un)load. Those plans are then executed by a fleet of vehicles to achieve a
reasonably balanced system. Since most of these systems are rather small (< 50 stations) this
can be done pretty easily, considering that it may be enough to simply fill the empty stations
with bikes from the full ones. As those systems become increasingly popular, more and more
stations are built. As the system grows, the complexity of the balancing task grows as well.
Additionally, with increasing frequency of usage it may not be sufficient any more to just look
at the empty/full stations, but also consider stations which are going to be empty/full in the near
future. The city of Vienna is currently working with 102 stations and 1,200 bikes. Figure 1.1
shows a snapshot of the station loads in Vienna, with red dots indicating full stations and blue
dots marking empty stations.

An extreme example of such a system is located in Paris with 1,225 stations and around
18,000 bikes shown in Figure 1.2

From a more technical point of view one could say that this problem is an instance of an
unpaired Pickup & Delivery Problem (PDP). The PDP is a special variant of the well known

1

Figure 1.1: snapshot of station status in Vienna (Source: Citybike Wien)

Figure 1.2: snapshot of station status in Paris (Source: Citybike Wien)

Vehicle Routing Problem (VRP). The VRP was first introduced by Dantzig and Ramser [4] in
1959 under the more specific name "The Truck Dispatching Problem". Their definition is built
as an generalisation of the Traveling Salesman Problem (TSP), which consists of finding the
shortest tour through a set of cities V .

Assume that the salesman carries some sample products with him. Obviously he can only
carry a fixed amount C of samples with him. Additionally each city in V "consumes" a different
amount of samples denoted by qi. Those two constraints were also introduced by Dantzig and
Ramser, although they were talking about product deliveries instead of samples. As long as

2

C ≥
∑
∀i∈V qi the problem is equivalent to the TSP, because the salesman can serve the whole

route before he runs out of samples. If the above equation does not hold, the salesman needs to
return to some kind of depot to fill his sample bag again. Finally, assume that there is more than
just one salesman and that they can all carry the same amount of samples with them. In order
to separate this problem from the TSP, one talks about vehicles (or trucks) instead of salesmen,
deliveries instead of samples and stations (or customers) instead of cities. The goal of the VRP
is to assign all the customers to one of the vehicles in such a way that the demand qi of all
customers is satisfied and the milage of all vehicles is minimal.

The problem described above can now be extended by various additional constraints. Since
the problem is described as an assignment between customers, vehicles and products, all three
objects can be subject of further constraints. Customers could specify time windows in which
they want to be served by the vehicles. Those time windows can be defined as hard time win-
dows, where service needs to happen in between, and soft time windows, where service outside
the time window is possible, but results in additional costs reflected in the objective function.
Those time windows can also be applied to the vehicle - or for that matter its driver. Truck drivers
are usually not allowed to work more than x hours a day or in a single route. Another possible
constraint could be that the exact amout of products is not known in advance and needs to be
covered by stochastic data. Additionally, the vehicles in the fleetcould have different capacities.

On the other hand, one may choose a different objective function than simply trying to
minimize the total milage of the vehicles. A very popular objective function focuses on the
minimization of the number of vehicles, because usually an additional vehicle is much more
expensive than driving a sub-optimal tour with another vehicle.

The PDP further introduces a transportation request, which consists of one pickup and one
delivery node. So the problem morphs from transporting goods from one central depot to mul-
tiple customers to transport goods from one location to another. This brings some additional
constraints for a valid solution. Obviously, pickup node i needs to be assigned to the same route
as the connected delivery node j and pickup node i need to be visited before delivery node j.
Another important thing is that with these bindings it is not as trivial as in the classical VRP to
define "neighbour" customers (this knowledge is usually used to find good solutions). All the
above constraints can also be applied to this problem. For the unpaired PDP, the pickup and
delivery locations are not linked together and can be assigned more freely to individual vehicles.

1.2 Problem Description

This paper aims to develop an algorithm for determining transportation plans to efficiently bal-
ancing bike sharing systems. This goal can be split into the static and the dynamic case. In the
static case, rebalancing is done while the status of the system is not changed by any means other
than the balancing process itself. An evaluation of different metaheuristic approaches (VNS,
GRASP) of this case can be found in Rainer-Harbach et al. [11]. In the dynamic case, the sys-
tem is active during the rebalancing process, resulting in users renting and dropping off bikes
and therefore changing the current status of the system. This dynamic behavior is modeled by
splitting the day into (not necessarily equal) intervals. At the end of each of those intervals user
activities are cosidered. For a practical application it is assumed that information about potential

3

user demands is gained by statistical methods.
An instance of this problem class is defined by the following items and their properties.

Note that the variable naming is similar to the ones in Rainer-Harbach et al. [11]. It should
allow easier comparison between both cases for the interested reader.

• A complete directed graph G0 = (V0, A0) representing all the relevant locations and the
shortest (in terms of costs, time or distance) connection between them. Relevant locations
are all the bike stations (V) and all the depots (O).

– Each arc au,v ∈ A0 with u, v ∈ V0 has

∗ costs: tu,v
– Each station v ∈ V has

∗ a maximum number of bikes it can store Cv > 0

∗ the number of initially stored bikes 0 ≤ pv ≤ Cv, i.e the number of bikes stored
before balancing starts
∗ a fixed stopping time (e. g. parking): tlstop ≥ 0

• A set of vehicles L for transporting bikes between locations. Each vehicle l ∈ L has

– a maximum number of bikes it can store Zl > 0

– a maximal tour duration t̂l > 0

– start and end points for the tour sl, dl ∈ O
– the number of bikes which are already in the vehicle when it leaves the depot b̂l ≥ 0

• A maximum amount of time Tmax for each route to be finished.

• demands qtv for each station v ∈ V at discrete times t ∈ T = {t1, t2, . . . , tmax}. qtv
indicates the difference between bike and parking slot demands

– qtv > 0 if more users want to rent qtv number of bikes at interval t from station v than
bring them back

– qtv < 0 if more users want to bring back −qtv bikes at interval t to station v than rent
some

– qtv = 0 if bike and parking slot demands are equally high

A possible solution for such a problem consists of a set of routes R. Each route r ∈ R has:

• a vehicle l assigned

• a total number of stops ρr

• An ordered list Pr specifying which stations are visited in which order. ri denotes the ith

stop on the route r for i ∈ {1, . . . , ρr}. Pr does not include the starting and endpoint of
the assigned vehicle.

4

• a set of loading instructions Y containing yri for the ith stop on the route r for i ∈
{1, . . . , ρr}

– When yri > 0, the instruction is to load yri bikes onto the vehicle.

– When yri < 0 the amount of bikes should be unloaded from the vehicle at the current
station.

– When yri = 0 no movement of bikes is necessary.

Each solution must satisfy the following condition to be considered feasible:

• each route r starts at sl and ends at dl.

• the amount of bikes inside a vehicle l can never be greater then Zl or smaller than 0.

• the amount of bikes at a station v can never be greater than Cv or smaller than 0.

• the amount of bikes remaining in a vehicle l at the end of its route has to be 0.

• the duration of a route r for vehicle l can never be greater than t̂l.

• it is prohibited to have unsatisfied user rent demands as long as there are bikes available
at the station when the demand takes place.

• it is also prohibited to have unsatisfied user bring back demands as long as there are
parking slots available at the station when the demand takes place.

From the set of possible solutions the one minimizing the amount of unsatisfied requests
should be found. Such a request occurs when a station v ∈ V at the end of an interval t ∈ T
does not have enough bikes or space to fulfill the user demand qtv. In a more formal way, assume
that atv states the amount of bikes available at station v at time t without taking qtv into account.
Then the number of unsatisfied requests is

δtv =

{
qtv −min(atv, qtv) when qtv > 0

−qtv −min(Cv − atv, −qtv) when qtv < 0
(1.1)

If two solutions are equally good in reducing the number of unsatisfied requests, the one
with a smaller total travel time for all vehicles is considered to be the better one. Should they
also be identical in length the last distinction is made by prefering the solution with less bike
movement. Solutions being equal in all three of these criterias are considered to be identical. To
make this distinction the factors τdist and τwork are used. Both values are set to 10−5 to ensure
for the problem instances at hand, that their respective terms in the objective function do not
exceed 1.

The complete objective function is

f(R, Y) = ounsat + τdistodist + τworkowork (1.2)

5

with

ounsat =
∑
∀v∈V

(
∑
∀t∈T

δtv) (1.3)

odist =
∑
∀r∈R

(

ρr−2∑
i=0

tri,ri+1) + tsrl ,r0 + trρr−1,drl
(1.4)

owork =
∑
∀r∈R

ρr−1∑
i=0

yri (1.5)

6

CHAPTER 2
Related Work

When researching for the ’bike sharing system’ topic one quickly notices that the interest for this
topic has increased in recent years. Most papers were publishing between 2010 and 2013 but
not all of them are relevant to this thesis. Some are focused on the aspect of strategical planing
and building such a bike sharing system subject to demands and possible connections between
stations, while others consider the whole package, like Sayarshad et al. [14]. In early 2011 a
small Google group was founded called "Bike Sharing Research and Practice1" to share ideas,
publications and relevant events between researches and operators of bike sharing systems.

The most related work is from Rainer-Harbach et al. [11], who are working on metaheuristic
approaches for the static case of the problem. In the static case each of the stations has an ex-
plicit target value qv of bikes, which should be reached by the end of the algorithm. They further
differentiate between the general case and a case where a special restriction named monotonicity
is in place. Monotonicity restricts the stations to be either a pickup (Vpic = {v ∈ V |pv ≥ qv})
or a delivery station (Vdel = {v ∈ V |pv ≤ qv}), where it is only allowed to pickup or deliver
bikes. With that in mind, it is clear that the amount of bikes on any station can only increase
or decrease monotonically. This addition to the problem has a major advantage since it is not
important any more in which order vehicles are visiting a given station. Rainer-Harbach et al.
started off with a greedy algorithm who extends a vehicle route incrementally. It computes all
stations which are reachable in time and the number of bikes that could be loaded or unloaded
to reach the target value qv. Based on this value a ’balance gain per time unit’ is calculated and
used to choose the best station. To assure that all vehicles are empty when their route ends, there
is a special calculation in place for pickup stations. For each pickup station it must be possible
to drop off at least bl + 1 bikes in time after the visit of the station. bl denotes the current load
of vehicle l and needs to be increased by at least 1 or a visit at that station would be pointless
anyway. Aside from this, the main focus of the paper is to remove the caluclation of the loading
instructions from the original problem and construct different approaches to evaluate loading

1https://groups.google.com/forum/?fromgroups#!forum/bikesharingsystems

7

instructions for a given set of routes. Three different approaches are presented. The first one is
a greedy one, assuming monotonicity. Although it does not guarantee to find an optimal set of
loading instructions it runs faster than the other two approaches. The second approach is based
on a specifically constructed flow network and is taken and adapted from Meunier et al.[9]. It
assures optimal loading instructions at the cost of an increase in average running time of about
120%. The final approach is a linear program solving a minimum cost flow problem. Its advan-
tage compared to the other two approaches is that it works for the general case as well as for
the monotonic case. Unfortunatly, this generality comes with the price of a running time of 110
times the max flow approach. According to Rainer-Harbach et al. the first two approaches are
equally good with respect to the solution quality with a slight advantage for the maximum flow
approach. In principle the LP is able to sometimes find a better solutions, but it is terminated by
the time limit of one hour in more than 60% of the test cases.
Contardo et al. [2] were the first to focus on the dynamic case. They are specifically looking
into the handling of the "peak hours" of a bike sharing system and distribute those time frames
into smaller chunks of two to five minutes, when user requests happen. In contrast to this the-
sis, they assign each station to be a pickup or a delivery station based on geographical data and
user behavior. It is assumed that the rent and bring back requests are continiously happening
during those peak hours. So the size of the time periods only defines the frequency of those
requests. Contardo et al. formulated two mathematical approaches to solve the problem. On one
hand, they designed an arc flow formulation (AFF) based on a space-time graph of the original
problem. The second approach is a column generation coupled with Benders decomposition
(CG+BD). Their two approaches were tested on two instance sets created by themselves. The
first set consists of randomly placed stations, alternating between pickup and delivery stations,
resulting in close to equal amounts of pickup and delivery stations. The second set contains
clustered stations, where each station in a cluster has the same type. Both sets are created for 25,
50 and 100 stations and a time horizon of two hours, seperated into two and five minute chunks.
The fleet size is set to five. The CG+BD approach produces better lower and upper bounds than
the AFF in less time. CG+BD also performs better on the clustered instances. Those are the
more realistic ones, since when looking at peak hours, users tend to search for ’near’ station if
the current station is full or empty. Contardo et al. believe that the better performance is causeed
by the additional structural information available.
A somewhat related topic was handled by Lin and Chou [8] in 2012. Based on the problem
of a bike sharing system they published a paper on how to add additional reality to provide a
balanced system. Most algorithms for a Vehicle Routing Problem are using Euclidean distance
to incorporate the travel costs from point A to B. But in basically all real world applications this
assumption is just wrong. Distances and travel times between bike stations are dependent on
road conditions, traffic regulations and other geographical factors. Lin and Chou analysed the
impacts of using real world travel distances on various algorithms. Instead of calculating real
travel times themselves, they used the Google Directions API. It is obvious that adding much
more realistic information results in better solutions for real world problems. On the other hand,
adding realistic data also affects the used algorithms. Both the savings heuristic (from Clarke
and Wright [1]) as well as the farthest insertion heuristic (from Rosenkrantz et al. [13]) need
to be modified. Those two heuristics are calculating the value of all possible modifcations to a

8

route and rely on the assumption that the distance from A to B and from B to A are equivalent.
Considering one-way streets and other geographical factors shows that this assumption is highly
unlikely to be true in the real world. This means that e.g. the savings heuristic need to caluclate
n(n−1) different saving values rather than just n(n−1)/2. A similar increase is needed for the
farthest insertion heuristic. Lin and Chou incorperated their idea into a simulation program for
bike sharing system managers to simulate the resulting routes with and without real world data.
As already mentioned, the addition of realistic travel times greatly increses the solution quality
for a real world problem. The solutions obtained by using the classical euclidian distance were
only competitive in small instances.
A recent work with similar goal is done by Schuijbroek et al.[15], who approach the problem
differently. Most importantly, the evaluation of target values is included into the problem. The
first step in finding a solution is to find stations which are not self-sufficient for a certain level
of user satisfaction. This level is expressed by a target range rather than a fixed target value and
is used as a hard constraint on the objective function. To satisfy these target values bikes are
moved by multiple vehicles without the usage of a central depot; user activity is assumed to be
negligible and therefore they are also working on the static case. Schuijbroek et al. implemented
three different approaches to solve the problem. The first one is a pure Mixed Integer Program-
ming approach, which they primarily used for benchmark reasons, since it is not applicable for
instances with more than 50 stations and three or more vehicles. Their second approach is a
Cluster-first, Route second heuristic. The idea is to group the unsatisfied stations into individual
clusters and then solve the those clusters seperately. Since the satisfaction of stations is a hard
constraint the minimization only considers the tour length of each cluster. In the clustering phase
the algorithm tries to create feasible clusters with a minimal tour length. To minimize the tour
length for the whole problem it would be necessary to know the tour length of each possible
cluster of stations in advance and so they designed an algorithm to estimate the routing costs for
each cluster. The estimated tour length is set to be the value of the Maximum Spanning Star,
which is a Spanning Tree with depth one, of all stations in the cluster. With that assumption
in mind it is clear that the found clusters may be imperfect, because the assumption about the
routing costs is imperfect as well. Based on the solution and the knowledge about their optimal
routing costs additional cuts can be added to the clustering to converge towards the optimal solu-
tion. To evaluate all three approaches (MIP, cluster, cluster+cuts), real life data from Boston and
Washington is used. The data from Boston contains 60 stations with about 10 not self-sufficient
stations and two to three vehicles. They observed that the cluster+cut approach outperformes
MIP on average by about 510% with two vehicles. Important to know is that the cluster+cut
approach was granted a total running time of 60 seconds, while the MIP approach was allowed
to run for two hours. When three vehicles are used, cluster+cut is even stronger: 1525%! The
instances from Washington consist of 135 stations and between 11 and 25 insufficient stations
and 5 vehicles. Those instances are already too complex for the pure MIP approach, so cluster
and cluster+cut are compared. On average the extended version outperforms the normal cluster
approach by more than 40%.
Pfrommer et al. [10] worked on a different approach to balance a bike sharing system. Their
main goal is to minimize the costs necessary to sustain a high service level. Besides the obvious
way to minimize the vehicle usage and travel distance, Pfrommer et al. also analiyed the possi-

9

bility to offer an incentive to customers to help balance the system. Whenever a customer wants
to bring back his rented bike, he is probably offered a bonus if he is willing to ride to a nearby
(unbalanced) station to park it there. The extent of the bonus is based on the additional travel
distance and the gained system balance. Alongside to this method a two step rebalance planning
algorithm is designed to direct the vehicles. Their approach to balance the dynamic system is to
only calculate routes for the next few steps (e.g. four) or the next few minutes of travel time (e.g.
40 minutes) and reapply the algorithm every ten minutes to account for the changed system.
Due to the fact that calculating all possible four station routes is still very time consuming they
reduced the algorithm to create only "promising routes". Therefore all stations are evaluated on
how promising they are, comparing added system balance to needed travel time. The best n
stations are then used to create the set of initial stops for a "promising route". Repeating that
step leads to a reduced tree of possible routes. In a second step each of those routes is evaluated
by calculating loading instructions with a quadratic program. Finally the route adding the most
utility to the system is chosen. For handling multiple vehicles they choose to not co-optimize
the trucks but rather optimize them sequentially so that routes from other vehicles are used as
known facts. Their whole approach is based on a set of historical real world data from London
and therefore tested on this information as well. Three consecutive days were simulated with
various settings for the number of trucks and the amount of incentives. The not so suprising
results are, that an increase in trucks or incentive values result in a much more balanced system.
However as the service level increases the addition of more trucks or incentives becomes less
and less effective. Another interesting observation from the simulation is that during weekend
the offered bonuses could be enought to keep an acceptable service level, while during work-
days the usage of trucks is absolutly necessary, because people value their time higher than the
offered incentive.
An important work was done by Meunier et al. [9]. The paper discusses the static case of
the Single Vehicle One-Commodity Capacitated Pickup and Delivery Problem - removing the
complexitiy of multiple vehicles interfering with each other. Most importantly they propsed a
polynomial algorithm to caluclate optimal loading instructions for a given vehicle route, allow-
ing them to focus on the vehicle routing problem. This idea is also essential for this thesis and
is described in more detail in section 3.3. To solve the remaining Vehicle Routing Problem two
different mixed integer linear programming relaxations to obtain lower bounds for the original
problem are introduced. The second relaxation is then used in a branch-and-cut approach. This
approach uses linear programming to solve the problem with a subset of the constraints. When
a solution is found it is checked against the whole set of constraints if any of them is violated
by the current solution. If a broken constraint is found, the linear programm is extended by this
constraint. If no broken constraint was found, the cutting part is finished and the branching be-
gins. This means, that if any of the variables in the current solution is fractional, the problem is
branched into two new problems. One of them is extended with a constraint stating that the frac-
tional variable v must be v ≤ bcurrent valuec and the other one requires v ≥ dcurrent valuee.
Next, a tabu search algorithm is defined. In contrast to a classical local search this algorithm
also allows non-improving steps during its search. To avoid the resulting possibility of cycling
between multiple solutions a list of recent steps is stored in a tabu list. In the paper, the tabu list
contains the removed arcs and their position in the solution. This allows the possible reinsertion

10

of a specific arc in a different spot. For the initial solution a bi-criteria heuristic is used. The
heuristic first considers stations which can be "closed" with a single move and takes the one
nearest to the current position of the vehicle as the next step of the route. A station is "closed"
when its amount of bikes is equal to the target value. If no station can be closed the second
criteria is used to determine the station with the greatest benefit towards the objective function.
For evaluating their approaches they compared the results of the tabu search starting fromt he bi-
criteria construction heuristic and the tabu search starting from the result of the branch-and-cut
approach. They noticed that the tabu search works efficient on small and medium instances up
to 60 stations but lose extremly fast with bigger instances. For 60 stations, the gap between the
lower bound from the branch-and-cut method and the result of the tabu search is around 3% on
average over all different vehicle capacities. This gap increases to around 23% for 100 station
instances.

11

CHAPTER 3
Algorithm for the Dynamic Balancing

Bike Sharing Systems

To solve the problem introduced in chapter 1.2, a Variable Neighborhood Search (VNS) was
chosen. This metaheuristic was summarized by Hansen and Mladenovic in 1997 [5] and aims
to provide a schema for solving optimization problems. One of the problems with optimization
problems is that the solution space S - the set of possible solutions - is eincredibly big. Another
one is the complexity of the problem at hand. The complexity of the problem presented in this
paper is NP-hard. This means that it is believed that no deterministic algorithm exists, which
can solve such a problem in a polynomial amount of computation time.

Instead of evaluating each possible solution, a single solution meta heuristic approach con-
structs an initial solution x and tries to improve it using a neighborhood structure. This struc-
ture is defined as a function N(x), which assigns to each solution x ∈ S a set of neighbors
N(x) ⊆ S. A neighbor y ∈ N(x) differs from solution x by applying a simple move operator
on x. A solution x can now be improved with respect to this neighborhood structure with the
simple local search algorithm shown in Algorithm 1.

Algorithm 1: Local neighborhood search
input : a solution x
output: a improved solution x with respect to the neighborhood

repeat1

choose best neighbor y ∈ N(x)2

if obj(y) ≤ obj(x) then3

x← y4

end5

until no improvement was found6

13

The basic idea of the VNS is based on this local search algorithm and three facts about these
neighborhoods listed in Hansen et al. [5]:

Fact 1
A local minimum with respect to one neighborhood structure is not necessarily a local
minimum with another structure.

Fact 2
A global minimum is a local minimum with respect to all possible neighborhood struc-
tures.

Fact 3
For many problems a local minimum with respect to one or several neighborhoods are
relatively close to each other.

Figures 3.1 and 3.2 illustrate a potential objective function for two different neighborhoods.
One can see that the local mimum 1 for neighborhood A is not a local minimum for neighbor-
hood B. On the other hand both neighborhoods share a minimum 2 . Since none of the two
neighborhoods can further improve the solution, it is a global minimum with respect to those
two neighborhoods.

f
(x
)

search space

1
2

f
(x
)

search space

2

Figure 3.1: objective functions for neighborhoods A and B

f
(x
)

search space

2
1

Figure 3.2: combined objective function for neighborhoods A and B

Hansen et al. [5] distinguish the usage of information into three kinds of VNS variants:
deterministic, stochastic and both. The deterministic approach (Algorithm 2) is called Variable
Neighborhood Descent (VND) and focuses on finding the local minimum for all the neigh-
borhood structures based on one single initial solution x and a set of neighborhoods Nk for
k = 1, . . . , kmax.

The problem with this approach - and basically with all local search algorithms - is that the
quality of the final solution strongly depends on the initial solution, because this algorithm does

14

Algorithm 2: Variable Neighborhood Descent (VND)
input : A solution x
input : a set of neighborhoods N
output: An improved solution x with respect to the neighborhoods in N

k ← 11

repeat2

choose best neighbor y ∈ Nk(x)3

if obj(y) ≤ obj(x) then4

x← y5

k ← 16

else7

k ← k + 18

end9

until k = kmax10

not have the possibility to escape local minima. Consider Figure 3.3 showing the combined
objective function for various neighborhoods. Solution A marks the initial solution and since
the above algorithm only moves towards better solutions, it can only move downhill to the local
minimum without a chance to find the global minimum.

f
(x
)

search space

A

Figure 3.3: a local search sinking into a local optimum

The stochastic approach (Algorithm 3) tries to do the same with the help of probability and
is called Reduced VNS (RVNS) by Hansen et al. [5].

According to Hansen this variant is useful when operating with very large instances, since
it only needs to evaluate one individual instead of the whole neighborhood structure. For the
stopping criteria used in the algorithm a maximum number of iterations without improvement is
adviced.

The final approach (Algorithm 4) combines those two into the Basic VNS (VNS) method.
This method capitalizes on the probability of the RVNS to escape local minima and the power
of a local search (like VND) to find the said minimum.

The idea behind Algorithm 4 is to use neighborhoods for the operation in line 4, which are
capable of making big moves in the search space. Those big moves usually come with the price
of additional running time. Since the algorithm is not evaluating the whole neighborhood but
only one random instance, that is not a problem. A useful stopping criteria could once again be
a set number of iterations or an amount of nonimproving iterations.

15

Algorithm 3: Reduced Variable Neighborhood Search
input : a solution x
input : a set of neighborhoods N
output: an improved solution x with respect to the neighborhoods in N

while stopping criteria not met do1

k ← 12

repeat3

choose a random neighbor y ∈ Nk(x)4

if obj(y) ≤ obj(x) then5

x← y6

k ← 17

else8

k ← k + 19

end10

until k = kmax11

end12

Algorithm 4: Basic Variable Neighborhood Search
input : a solution x
input : a set of neighborhoods N
input : a local search procedure LS
output: an improved solution x

while stopping criteria not met do1

k ← 12

repeat3

choose a random neighbor y ∈ Nk(x)4

y′ ← LS(y)5

if obj(y’) ≤ obj(x) then6

x← y′7

k ← 18

else9

k ← k + 110

end11

until k = kmax12

end13

16

For this paper a Basic VNS with an incorporated VND as a local search component is
choosen. In the following sections the individual parts for those two algorithms are defined.
Chapter 3.1 covers the creation of the initial solution and outlining possible improvements and
modifcations. The chapter thereafter 3.2 describes the used neighborhoods for the VNS and the
VND part. In addition to the basic VNS algorithm this paper utilizes the idea of Meunier et
al.[9] and removes the loading instructions from the original problem. Instead a sub-algorithm
is constructed to calculate the optimal set of loading instructions for a given route. The final
chapter 3.3 of this section describes two different approaches for this algorithm.

3.1 Construction Heuristic

The first step in finding a good or optimal solution for such a problem is to create a starting
solution. Creating a rather good starting solution usually improves the run time of the whole al-
gorithm. The better the initial solution is the less improvement is necessary. A greedy algorithm
is used to create this initial solution. The algorithm (seen in Algorithm 5) starts off with empty
routes. These routes are extended step by step. For each step the algorithm chooses the best
possible extension, with respect to the number of unsatisfied requests and the current situation.
For evaluating this best extension the following variables are needed:

• the current location r ∈ V of vehicle l

• the current load b ∈ {0, Zl} of vehicle l

• the distance between station r and s ∈ V \ {r}

• the demands at all stations v ∈ V \ {r}

• the available bikes bts at station s ∈ V at time t ∈ [0, Tmax] without considering loading
instructions from the visit of vehicle l.

• the time when the next user demand is considered tn = min(ti ∈ T |ti > t)

For each station which is reachable before tn the algorithm evaluates how much demand can
be satisfied if this particular station would be visited next. This calculation is done once with
the assumption of loading bikes onto the vehicle and once with unloading bikes from the vehicle
(seen in Algorithm 6). How much demand is satisfiable depends on the number of bikes the
vehicle can (un)load without interfering with other vehicles. In the following code fragment the
idea of this caluclation is illustrated. Further details are presented afterwards.

The amount of moveable bikes at station s to satisfy user demands in the future is denoted
as sats. The amount of remaining usable bikes at the station s is denoted by rests, while
restl denotes the amount of remaining usable bikes in vehicle l. The term "usable" means that
those bikes could be moved without interfering with other vehicles in the future. Moving more
than rests or restl bikes would interfer with other vehicles in such a way that their loading
instructions cannot be processed correctly any more.

Starting from the arival time of vehicle l at station s each event in the future is analysed to
get the maximal amount of satisfiable demands. Depending on the type of the event the previous

17

Algorithm 5: Basic Construction Heuristic
input : An instance I
output: A solution S for instance I

foreach l ∈ L do1

S ← empty solution2

finished← false3

while not finished do4

c← calculateCandidates(I,S)5

if c is empty then6

finished← true7

else8

s← selectExtension(S, c)9

addSelection(S, s)10

end11

end12

end13

Algorithm 6: Calculate Candidates
input : An instance I
input : An unfinished solution S
output: A set of candidates C to extend solution S

C ← ∅1

v ← calculateVehicleData(I,S)2

tnext ← min(t ∈ T |t > v.t)3

repeat4

foreach s ∈ V do5

if IsReachableBefore(s,tnext) and IsFeasibleReachable(s) then6

C ← C∪ calculateStationLoading(s,v,tnext)7

C ← C∪ calculateStationUnloading(s,v,tnext)8

end9

end10

tnext ← min(t ∈ T |t > tnext)11

until tnext ≥ Tnum or C 6= ∅12

18

values are changed accordingly (pseudo code is shown in Algorithm 7). The amout of bikes
can either be increased, by unloading vehicle visits as well as users bringing back bikes, or
decreased, by loading vehicle visits and users reting bikes.

Algorithm 7: Calculate Station Loading
input : A station s
input : A vehicle data object v
input : A time t
output: An data object i containing a potential loading instruction

rests ← StationLoad(s,t)1

restl ← v.C − v.b2

sats ← 03

R← ∅4

foreach e ∈ E =all events at station s do5

if e.t < t then continue6

if e = other vehicle then7

if vehicle is loading then rests ← rests − e.bikes8

else // e = a user request9

if unsatRentRequests(e) > 0 then10

rests ← rests−unsatRentRequests(e)
else11

add← min(unsatBringRequests(e), min(rests, restl))12

sats ← sats + add13

rests ← rests − add14

restl ← restl − add15

end16

R← R ∪ {(sats, rests)}17

if rests ≤ 0 then break18

if restl ≤ 0 then break19

end20

choose best tuple from R based on sats21

i.fulfill← best.sats22

i.bikes← min(best.sats + best.rests, Zl − v.b) i.greedy ← i.fulfill/tv.r,s23

i.distance← 1/tv.r,s24

Let the current assumption be that vehicle l is unloading bikes onto station s. The algorithm
iterates through all events starting from the arival time tl of vehicle l at station s. The initial
amount of sats is obviously 0, while rests = Cs − atls . When the next event is another visiting
vehicle, rests has to be reduced by the amount of bikes the other vehicle is unloading to station
s, because the alogithm needs to leave this space empty, if it does not want to interfere with the
other vehicles routes. If the vehicle is picking up some bikes, nothing changes for the current
evaluation, since the maximum amount of bikes the algorithm could unload is still at least capped

19

by the current amount of empty spaces. When the next event is a user demand it gets more
interesting. If it is a bring back demand, the algorithm needs to adjust rests similar to the
previous case. But if it is a rent demand the number of unsatisfied requests unsatts has to be
evaluated. Those are requests where users want to rent bikes, but there are no bikes left on station
s. Since the vehicle l is currently unloading bikes to station s those demands could possibly be
satisfied. The amount of satisfiable demands for this time interval t is cacluclated by

satts = min(unsatts,min(rests, b)) (3.1)

This value is used to update all the other variables. The number of satisfiable demands sats
increases by satts, the number of bikes in the vehicle b as well as the additional available amount
of moveable bikes rests decreases by satts. sats, t and rests are stored as a triple until the
algorithm finishes. This end is reached when either rests or b are 0 or if there are no further
events in the future for station s. From all those possible triples the most satisfying one is chosen.
Let SATs be the set of all those triples then the most satisfying one is

bestActions = max((sats ∗ t) ∀sats ∈ SATs where t = index ofSATs) (3.2)

When the assumption is made that vehicle l is loading bikes from station s a similar logic can
be used to calculate the best bike movement. The main difference is that the algorithm looks at
the remaining space in the vehicle and the remaining bikes in the station.

At this point for each reachable station the best action is known and the best overall station
can be chosen (see Algorithm 8). The best station is defined as having the biggest greedy value,
which is calculated by

greedys = sats/tlv ,s. (3.3)

In addition to the greedy value a distance value is calculated by

dists = 1/tlv ,s. (3.4)

This values is used if none of the reachable stations can satisfy any demands to choose the
nearest station to the current location as the next step. In both cases the amount of additional
bikess is used to distinct multiple stations with equal greedy or distance values.

When there are no reachable stations left, the tour for the current vehicle is finished and the
route for the next vehicle will be constructed.

Possible improvements

The above algorithm could be possibly improved in various ways. One idea is to combine the
selection of the "best" action and the selection of the best station into one calculation. Doing
so would increase the amount of information available for the calculation and therefore allow a
possibly better selection to be made. Looking at all the possible actions may lead to the selection
of an action which would have been ruled out due the above algorithm. Another possible weak-
ness of the above algorithm is that it first focuses on stations reachable until the next demand
interval for evaluation. Only if none of these stations can be used to statisfy any demands the

20

Algorithm 8: Select Extension
input : A set of possible candidates C
output: The choosen candidates instruction

greedyIndex← 01

greedyV alue← 02

greedyBike← 03

distIndex← 04

distV alue← 05

distBike← 06

foreach i ∈ C do7

if i.greedy > greedyV alue or (i.greedy = greedyV alue and8

i.bikes > greedyBike) then
greedyIndex = i9

greedyV alue = i.greedy10

greedyBike = i.bikes11

end12

if i.distance > distV alue or (i.distance = distV alue and i.bikes > distBike)13

then
distIndex = i14

distV alue = i.distance15

distBike = i.bikes16

end17

end18

if greedyV alue = 0 then return C[distIndex]19

return C[greedyIndex]20

algorithm considers stations reachable until the next demand interval. If an unsatisfied station
is located a little bit away from the other stations, it may not be possible to reach it within one
interval. As long as there are stations reachable until the next interval, with unsatisfied demands,
it may not be evaluated at all. The graph in Figure 3.4 illustrates such an example.

This could be improved by looking at each station no matter if they could be reached prior
to the next interval or not. This fact would have to be included into the greedy and distance
value calculation to account for the increased effort to reach that special station. Removing that
filtering would increase the runtime of the algorithm by a small amount. Most of the time the
distant station would still not be selected, since it is more expensive to go there than to some
other station with similar amount of satisfiable demands. Additionally, a real world bike sharing
system can be assumed to try to distribute their stations evenly around the city map anyways.

Possible modifications

One possible modification for the above algorithm is the support for parallel route construction.
The algorithm is currently constructing one route at a time and starts the next one when the

21

depot

b

c

d

e
tdepot,e > tnext

Figure 3.4: a station which is usually not reachable until the next interval

previous one is finished. A parallel construction will bring up a different initial solution since
the values and variables for deciding a next step will be different. In addition it would ease up
the calculation of possible next steps. The algorithm could simply ignore all stations which are
already visited by some other vehicle in the current time frame. Or at least it only needs to
care about a vehicle visit in the current time frame and not in the next one, since no vehicle is
currently visiting anything in the next time frame. All in all it may produce an even better initial
solution. Another possible modification could be to add an α value to the selection function.
This α value would be used to "randomize" the selection of the next step. The algorithm could
randomly choose one of the stations with a greedy value not more than α% away from the best
solution. This would allow to use this construction heuristic in a GRASP (greedy randomized
adaptive search procedure [6][12]) solution approach.

3.2 Neighborhoods

VND Neighborhoods

In this section the various neighborhoods used for the VND part of the algorithm are explained.
Most of them were adopted from Rainer-Harbach et al. [11] and have proven to be viable neigh-
borhoods in Vehicle Routing Problems or have been specifically designed by Rainer-Harbach
et al. for the Balancing Bike Sharing Systems Problem. The neigbhorhoods are used in this
specific static order. Only INSERT-SAT is discarded since it showed to be counterproductive,
since the number of satisfied stations increases with the solution quality. Therefore this neigh-
borhoods running time increased continuously with little to no increase in objective function.

Remove visit (REMOVE): This neighborhood works on a single route and tries to remove
each of the visits indidivually. Its goal is to remove visits which do not provide anything useful
for the overall solution quality. Consider Figure 3.5 representing the route of a vehicle. The
number on the arcs between the visits represents the current vehicle load. The outgoing arcs of
station 4 and 5 respesent the amount of unsatisfied pick up requests at that station. At station
3 the vehicle is picking up 2 bikes, which are then carried to station 5 without satisfying any
requests. Removing that node would yield an overall better route.

22

1 2 3 4 5
0 2 5 7 5 0

2 3

Figure 3.5: a suboptimal visit at station 3

Note that one could argue that station 1 does not provide anything to the solution as well and
could be removed instead of station 3. However, the neighborhood removes the stations which
results in the shortest route possible.

Insert unsatisfied requests (INSERT-UNSAT): This neighborhood also works on a single
route. First, all the unsatisfried requests in the current solution are collected. Then the neigh-
borhood tries to insert a visit to the stations where these requests occur prior to the request time.
This is done for each available route and each available insert position. In the following example,
station 4 has an unsatisfied request at time t1, which is not handled by the shown route in 3.6(a).
Routes 3.6(b) and 3.6(c) are two neighbors, which are evaluated through this neighborhood.

1 2 3

t1

(a) original route

4 1 2 3

t1

(b) neighbor 1

1 4 2 3

t1

(c) neighbor 2

Figure 3.6: original route and two of its neighbors through INSERT-UNSAT

Note that this is just a simplified example and that it may be possible that visiting station 4
prior to t1 would push both other visits over the edge of t1.

Intra-route 2-OPT (INTRA-2-OPT): This is the first neighborhood restructuring the solu-
tion rather than changing the used stations. It operates on one individual route and performs the
well know 2-OPT operation introduced by Croes et al. [3] for the Traveling Salesman Problem.
The idea of this optimization is to swap two arcs, which are overlapping in the plane of the
problem yielding a shorter overall route. Figure 3.7 shows the stations and the vehicle route in a

23

geographical viewpoint before and after the 2-opt is done. As one can see the endpoint of arc a
becomes c’s startpoint and vice versa. Note that the orientation of arc b needs to be reversed to
create a valid route again. This is true for each arc between arcs a and c.

4 2

1 3

ba
c

(a) original route

4 2

1 3
a

b

c

(b) after 2 opt

Figure 3.7: an example of a 2-opt swap

With this neighborhood each possible pair of arcs is used for a 2-opt operation. The resulting
route is then evaluated regarding its objective value compared to the original route.

Replace visit (REPLACE): This neighborhood aims to combine the neighborhoods RE-
MOVE and INSERT-UNSAT. Especially in very tight routes it may not be possible to insert
another visit, without exceeding the time budget, although it might be a good move to replace
one visit with another. The neighborhood evaluates all possible replacements of current visits
with those of still unsatisfied requests. Using the example from INSERT-UNSAT and executing
REPLACE instead would result the following two neighbors.

1 2 3

t1

(a) original route

4 2 3

t1

(b) neighbor 1

1 4 3

t1

(c) neighbor 2

Figure 3.8: original route and two of its neighbors through REPLACE

Intra-route OR-OPT (INTRA-OR-OPT): This neighborhood tries to use good subroutes
to produce better solutions. It moves a subroute of one, two or three consecutive visits to a

24

different location in the current route. This allows visits which benefit much from each other
- either because their stations are close to each other or they satisfy each others needs - to stay
together in the resulting route. In Figure 3.9 the nodes 2 and 3 are kept together and moved
around in the route.

1 2 3 4

(a) original route

2 3 1 4

(b) neighbor 1

1 4 2 3

(c) neighbor 2

Figure 3.9: original route and two of its neighbors through INTRA-OR-OPT

Note that the neighborhood evaluates all possible blocks of sizes one, two and three at each
possible insert location.

Inter-route 2-OPT STAR (INTER-2-OPT-STAR): This is the only neighborhood working
on multiple routes. Therefore it will not yield any improvements for instances with only one
vehicle. For multiple vehicle instances the last n visits of one routes are swapped with the last
m visits of another route. Each possible combination of two routes are evaluated with n and
m ranging from 1 to the actual length of the respective routes. Figure 3.10 shows all possible
neighbors for two short routes.

Based on the example it is clear that there are a lot of possible routes to evaluate in this
neighborhood. Therefore the algorithm breaks the search for some n if the addition of m makes
the route infeasible with regards to the time budget. If m − n additonal visits exceed the time
budget m− n+ 1 additional visits are not going to be any different.

Intra-route 3-OPT (INTRA-3-OPT): This neighborhood should be consideres as a fall-
back. It evaluates many posibilities, which are left after iterating through the other neighbor-
hoods. The given route is seperated into four parts a, b, c, d and reassembled as a, c, b, d. Note
that parts a and d can be empty, while parts b and c need to have minimum length of 4 each.
With this restriction the neighborhood avoids neighbors which were already evaluated through
INTRA-OR-OPT. Figure 3.11 showes one exemplary neighbor.

Insert satisfied Stations (INSERT-SAT): This last neighborhood is basically the same as
INSERT-UNSAT, unless it tries to insert already satisfied requests rather than unsatisfied ones.
The goal is to insert satisfied stations, so they can provide additional bikes or spots, which in
turn let the vehicle satisfy other requests down the road. Unfortunatly this neighborhood showed
to not be very effective. Even as first overall neighborhood it does not yield very good results.
In addition to its poor effect on the objective function, its time consumption increases, since the
better the solutions become the more satisfied requests are available to be inserted.

25

l1 1 2

l2 3 4

(a) original routes

l1 1 4

l2 3 2

(b) n = 1;m = 1

l1 1 3 4

l2 2

(c) n = 1;m = 2

l1 4

l2 3 1 2

(d) n = 2;m = 1

l1 3 4

l2 1 2

(e) n = 2;m = 2

Figure 3.10: original route and its four neighbors through INTER-2-OPT-STAR

1 2 3 4 5 6 7 8 9 10

(a) original route

1 2 7 8 9 10 3 4 5 6

(b) exemplary neighbor with a = {1, 2}; b = {3, 4, 5, 6}; c = {7, 8, 9, 10}; d = {}

Figure 3.11: original route and an exemplary neighbor with INTRA-3-OPT

VNS Neighborhoods

For the VNS part of the algorithm three different neighborhoods are used. Each of them can be
modified by a parameter, increasing the number of neighborhoods effectively to up to 18 (each
parameter is used with 6 different values).

Remove stations (p): This very basic neighborhood removes a certain stop from a route
with the given probability p. For each visit of each route in the solution this probability is
used to determine if this visit should be removed. Through the parameter p the probability to
remove a station constantly increases in six steps. Initially p is set to 0.1. With each subsequent
neighborhood p increases by 0.04 stopping at 0.3. So in the final call nearly 1

3 of the stations are
going to be removed from the routes.

This is the only neighborhood called for all solutions. The other neighborhoods are only
useful when more than one vehicle is involved.

26

Move sequence (l): In this VNS Neighborhood a fragment of stops are randomly moved
from one route to another. The values needed for this operation are determined by randomiza-
tion: the source and target routes of the fragment as well as the starting position in the source
and the insert position in the target. Parameter l controls the maximum length of the moving
fragment, but the real length is still randomly choosen between 1 and l, only limited by the
length of the source route. With a probability of 0.1 the moved fragment is inserted in reverse
order into the target route. Figure 3.2 illustrates the operation.

4 5 6 7

1 2 3

(a) randomly chosen routes, the chosen fragment is
marked, as well as the target location

6 7

1 2 4 5 3

(b) resulting neighbor

Figure 3.12: original route and an exemplary neighbor with MOVE SEQUENCE

This neighborhood is used with six different values for l. The first five calls are issued with
sizes 1 to 5, while the last call uses 99999. This allows the neighborhood to basically try to
merge two routes together. Figure 3.2 illustrates the neighborhood with l being set to 3.

Exchange sequence (l): With this neighborhood two randomly selected sequences of two
randomly selected routes are exchanged. The parameter l defines the maximal length of the
chosen fragments. Similar to the previous neighborhood this one is called with six different
values for l increasing from 1 to 5 and finally being set to 9999. Figure 3.2 illustrates the
operation with l being set to 2

27

4 5 6 7

1 2 3

(a) randomly chosen routes, the chosen fragments are
marked, as well as the target locations

3 6 7

4 5 1 2

(b) the resulting neighbor

Figure 3.13: original route and an exemplary neighbor with EXCHANGE SEQUENCE

3.3 Optimal Loading Instructions

In this section an algorithm for calculating optimal loading instructions based on given routes is
presented. The idea to create an own algorithm for this subproblem is coming from Meunier et
al. [9]. It is important to note that [9] works on a restricted static problem with only one vehicle
- both constraints this paper aims to avoid. For sake of completeness and understanding, the idea
of [9] is recapped here: A special flow network is constructed based on the input instance and a
given route r for vehicle l using the following rules:

1. add a node for each occurrence of a station v

2. add a node S and a node E for the starting and end point of the vehicle l

3. add arc (v, u) with capacity Zl if the vehicle is going from v to u in the given route

4. add arc (vji , v
j+1
i) with capacity Cv, with j indicating the jth occurrence of station vi on

route r

5. add arc (S, v1i) with capacity pv for the first occurrence of station vi on route r

6. add arc (vni , E) with capacity qv for the last occurrence of station vi on route r

The resulting flow network (as shown in figure 3.14) can be solved by any max flow algorithm.
Arcs created by rule 3 are modeling the movement of the vehicle l. The difference between
the incoming flow and the outgoing flow on these arcs denote the needed loading instructions.
Rule 4 models the remaining bikes for a station, which is visited multiple times by the vehicle.
Finally rules 5 and 6 are modeling the initial amount of bikes for each station and the desired
target amount respectively.

28

Example 1 In this example the flow network for an instance with 5 stations and a vehicle route
of a → b → d → a → c is shown. Red arcs are created by rule 3, the black one by rule 4, the
blue ones by rule 5 and the orange ones by rule 6.

S

E

a1 b d a2 c

Zl Zl Zl Zl

Ca

pa

pb

pd

pc

qc

qa

qd

qb

Figure 3.14: resulting flow network for an example instance

Based on this idea a solution for dealing with multiple vehicles and the dynamic case needs
to be found. Adding additional vehicles (and their routes) to the problem introduces additional
constraints to consider. A naive idea would be to calculate the loading instructions for each
vehicle sequentially, which may result in a problem illustrated in example 2.

Example 2

S

a

b

E

(a) r1 = {a, b}

S

c

b

E

(b) r2 = {c, b}

Figure 3.15: optimizing vehicle routes sequentially

Consider, two routes r1 = {a, b} and r2 = {c, b} as seen in Figure 3.15. Station a is already
satisfied, while station b is missing some bikes and station c is holding too many bikes. If r1 is
evaluated first it will probably load all bikes at station a and bring them to station b. This would
leave r2 with nothing useful to do since station b is already satisfied. If r2 is evaluated first it
would take bikes from station c and load them to b to satisfy both stations.

To avoid such problems the evaluation of routes sharing at least one station needs to be
done in a combined way. Ignoring the time constraint for a single vehicle one could argue that a

29

sequential evaluation is nothing different than one vehicle handling both routes one after another.
But there is a difference. When optimizing them as "one route" (as seen in figure 3.16(b)) both
networks are considered when finding a maximum flow, while in the sequential case 3.16(a)
only the result of the first network (which cannot be changed any more) is used for the second
network.

S1

a

b

E1 S2

c

b

E2

(a)

S1 a

b1

c

b2

E2

(b)

Figure 3.16: combining two routes

Transforming network 3.16(a) into network 3.16(b) can be done by first combining node E1

with S2 making the end node of one network the new start node from another network. In a next
step this new node can be completely replaced by additional arcs using rule 4 from the initial
rule set.

To extend the idea of Meunier et al. [9] for the dynamic case a similar approach can be used.
Each time interval of the dynamic problem could be seen as a single static problem. Similar to
the above case those subproblems cannot be solved individually because the result of the first
interval influences the calculations for the second interval.

Flow network approach

Putting all the above together a modified flow network for the dynamic case with multiple vehi-
cles can be constructed. The following inputs are used:

• a problem instance graph G0 = (V0, A0)

• the set of vehicle L

• the set of time intervals T = {t0, . . . , tmax}

• a given solution containing a set of routes rl = (r1l , . . . , r
pl
l) ∀l ∈ L, ril ∈ V

• a function to calculate the (absolute) arrival time of a vehicle l reaching its ith station
ta(ril)

The resulting graph Gf = (Vf , Af) is constructed by the following rules

1. add a starting node S and a target node D for the whole graph.

30

2. add a node for demand n at station at each time interval: ntv|t ∈ T, v ∈ V

3. add a node for each visit of some vehicle at a station: etv|t = ta(ril), v = ril , l ∈ L

4. add arcs with capacity pv from the starting node S to the starting node of each station:
(S, nt0v)|v ∈ V

5. add arcs with capacity Cv from the last interval node of each station to the target node D:
(ntmaxv , D)|v ∈ V

6. add arcs with capacity qtv from the starting node S to all bring back demands at a time
interval: (S, ntv)|v ∈ V, t ∈ T \ {t0}, qtv > 0

7. add arcs with capacity qtv from all rent demands at a time interval to the target node D:
(ntv, D)|v ∈ V, t ∈ T \ {t0}, qtv < 0

8. add arcs with capacityZl from one stop of a vehicle to the next: (etv, e
t′
u)|t = ta(ri−1l), t′ =

ta(ril), v = ri−1l , u = ril , i = 2, . . . , pl, l ∈ L

9. add arcs with capacity Cv from one event at a station (demand or vehicle visit) to the next:

• Let V ord
v be the set of all nodes ntv and etv for station v ordered by increasing t.

Further let oj be the jth element of this set and jmax the total amount of elements
in the set. Then the needed arcs can be constructed by: (oj−1, oj)|o ∈ V ord

v , j =
2, . . . , jmax

t1 t2 t3

a

b

S

D

qt2a < 0

qt2b > 0
time

Figure 3.17: an example for a dynamic flow network

Figure 3.17 illustrates such a graph. Most of the nodes in the graph can be classified in one
of the following three types. The list gives an explanation for each type and the meaning of each
of their arcs.

31

1. a bring back demand (figure 3.18(a)) with

• the current load p of station v prior to the demand (ingoing)

• the amount of bikes q which should be brought back (ingoing)

• the load of station v after the demand took place (outgoing)

2. a rent demand (figure 3.18(b)) with

• the current load p of station v prior to the demand (ingoing)

• the amount of bikes q which should be rented (outgoing)

• the load of station v after the demand took place (outgoing)

3. a vehicle visit (figure 3.18(c)) with

• the current load p of station v prior to the visit of vehicle l (ingoing)

• the current load b of vehicle l prior to visiting station v (ingoing)

• the load of station v after vehicle l visited (outgoing)

• the load of vehicle l after it visited station v (outgoing)

|q|

p p+ q

(a) bring back demand

q

p p− q

(b) rent demand

p

b

p− y

b+ y

y

(c) vehicle visit

Figure 3.18: illustrations of node types

This problem could be solved by a maximum flow algorithm. Unfortunately it could still
produce invalid solutions, since the algorithm needs to make sure that all the arcs from rule 6
and 7 are prioritized. Example 3 illustrates the problem.

Example 3 Let v be a station with qtv < 0 and an current station load of bv ≥ −qtv. There
would be enough bikes to satisfy the user demand, when interval t happens. Unfortunately the
flow algorithm may choose to increase the arc (oj , oj+1) - the outgoing arc for remaining bikes
at the station - instead of the arc (ntv, D) - the demand arc -, because it is more benefitial for
the maximum flow down the road. Transfered to the real world the system would hold back a
number of bikes to satisfy other demands later on. While this may be the optimal solution it is
not a realistic one, since the system cannot (and should not) prohibit the rent (or return) of bikes
if there are enough bikes (or slots) available.

To solve this issue, one could try to create a specialized max flow algorithm. This approach
is not pursued further, since it would be another research topic to construct such an algorithm.

32

Another idea is to create a repair algorithm to transform infeasible solutions into feasible ones
with minimal (or zero) increase in the objective function. This algorithm needs to push back
reserved bikes (or slots) up to the point where they would have been used in the first place. Such
an algorithm could work as follows:

1. Set tcurr to t0.

2. Find first unvisited, unsatisfied demand qtv where t >= tcurr.

3. If a unsatisfied demand was found, construct a residual network G′; Otherwise end algo-
ritm.

4. Cut all arcs starting or ending prior to t.

5. Include a new target node K.

6. Replace arc (D,ntv) in G′ with arc (ntv,K) using (−qtv − f(ntv ,D)) as capacity; or arc
(ntv, S) in G′ with arc (ntv,K) and capacity qtv − f(S,ntv) respectively.

7. Find an augmented path in G′ from D to K.

8. If no path exists, continue with 12.

9. If such a path exists reduce f(i,j) along the path according to the size of the augmented
flow.

10. If qtv is not satisfied, continue with 7.

11. If t == tmax end the algorithm.

12. Set tcurr to t and start again with 2 .

This algorithm iterates through the graph in a timely order and repairs each infeasible flow
at a demand arc. Theorem 1 argues that each possible infeasible solution can be repaired with
this algorithm.

Theorem 1. The proposed repair algorithm always creates a feasible solution from an infeasible
maxflow solution.

Proof. Assume an arbitrary infeasible solution, which holds back an arbitrary number of bikes
x at station s at time t instead of satisfying the current user request. According to the rule set
above those bikes amplify the flow to the next event for station s. From there on the bikes have
three possible ways to go:

stay at station s
When they stay at the station, they will either move on to the next event or to the sink of the
flow network if this is the last event for station s. They may even create unsatisfied bring
back requests since x additional slots are occupied at station s, ultimatively increasing the
objective function.

33

get loaded onto a vehicle
When loaded onto a vehicle the bikes will be moved to some different station at some
point in time. Since there is no arc from the vehicle routes to the sink it is not possible for
the bikes to stay in the vehicle. Sooner or later they will be dropped of at some station v.

used for a user request s
If the bikes are used for the next user request they are moved along this arc to the sink.
Since the amount of additional statisfied request must be ≤ x the objective function is not
significantly changed.

As one can easily see repeating that process ensures that the bikes are moved to the sink in any
case. What one can also see is, that those bikes are never moved along arcs which start prior to
t. Therefore it is clear that there must be a set of augmented paths in G′ from the sink to the
event at station s at time t with a total size of x.

At this point it seems that a maxflow network approach works for the static case (as in
Meunier et al. [9]) but adds a lot of complexity for the dynamic case. Therefore this approach is
not continued further. Since the constructed network is used as a base for the LP approach it is
essential to see the idea behind this network.

Linear Programming approach

Using the above flow network a linear (integer) program can be constructed to calculate the
optimal loading instructions for a given set of routes. For the sake of readability the rules for
constructing the network are reformulated in a set notation here.

Gf = (Vf , Af) with

• Vf = {S,D} ∪ Vt

• Vt = Vstation ∪ VL

• Vstation = {ntv|t ∈ T, v ∈ V }

• VL =
⋃
l∈L Vl

• Vl = {etv|t = ta(rli) v = ril , l ∈ L}

and

• Af = Astart ∪Aend ∪Ademand ∪AL

• Astart = {(S, nt0v)|v ∈ V }

• Aend = {(ntmaxv , D)|v ∈ V }

• Ademand = Aq+ ∪Aq−

• Aq+ = {(S, ntv)|v ∈ V, i ∈ T \ {t0}, qiv > 0}

34

• Aq− = {(ntv, D)|v ∈ V, i ∈ T \ {t0}, qiv < 0}

• AL =
⋃
l∈LAl

• Al = {(etv, et
′
u)|t = ta(ri−1l), t′ = ta(ril), v = ri−1l , u = ril , i = 2, . . . , pl, l ∈ L}

• AV =
⋃
v∈V Av

• Av = {(oj−1, oj)|o ∈ V ord
v , j = 2, . . . , jmax} (see rule 9 from the flow network for

definition of V ord
v and jmax)

In addition decision variables

• fu,v ≥ 0 ∀(u, v) ∈ Af

are used.
The LP is then

min
∑

∀(S,ntv)∈Aq+

qtv − fS,ntv +
∑

∀(ntv ,D)∈Aq−

−qtv − fntv ,D + τ(
∑

∀(l,e)∈VL

yl
+

e + yl
−
e) (3.5)

subject to

f
S,n

t0
v

= pv ∀(S, nt0v) ∈ Astart (3.6)

fS,ntv ≤ q
t
v ∀(S, ntv) ∈ Aq+ (3.7)

fntv ,D ≤ −q
t
v ∀(ntv, D) ∈ Aq− (3.8)

fu,v ≤ Cv ∀(u, v) ∈ {Aend ∪AV } (3.9)

fu,v ≤ Cl ∀(u, v) ∈ Al (3.10)∑
(u,v)∈{Astart∪Aq+∪AL}

fu,v =
∑

(v,w)∈{Aend∪Aq−∪AL}

fv,w ∀v ∈ Vt (3.11)

yle = fu,e − fe,w ∀(l, e) ∈ VL (3.12)

yle = yl
+

e − yl
−
e ∀(l, e) ∈ VL (3.13)

yl
+

e ≥ 0 ∀(l, e) ∈ VL (3.14)

yl
−
e ≥ 0 ∀(l, e) ∈ VL (3.15)

Equation (3.6) ensures that the initial value of each bike station is fixed. (3.7) and (3.8)
limit the maximal flow allowed at the demand arcs. (3.9) and (3.10) limit the flow on all the
remaining arcs. Finally (3.11) ensures flow conservation. Constraints (3.12) creates additional
variables holding the necessary loading instructions. Since those can be positive or negative
(3.13), (3.14) and (3.15) ensure positive values for usage in the objective function. The factor
τ needs to make sure that the second part of the objective function is between 0 and < 1. That
way a better solution (with less unsatisfied demands) is always prefered over a worse solution
with less loading instructions.

35

This linear program is still able to produce infeasible solutions (See Example 3.19). By
adding appropriate weights ωti to all the demands and to the objective function as well, the
simplex algorithm is forced to satisfy demands if bikes or slots are available. These weights are
decreasing along the time axis, so that satisfing early requests is more benefitial to the objective
function than saving bikes for later use. Equation (3.16) denotes the extended objective function
(LP+).

min
∑

∀(S,ntv)∈Aq+

ωti(q
t
v − fS,ntv) +

∑
∀(ntv ,D)∈Aq−

ωti(−qtv − fntv ,D) + τ(
∑

∀(l,e)∈VL

yl
+

e + yl
−
e)

(3.16)

Example 4

t1 t2

3/5

5/7

3/5

5/5

S D

a

b

2

Figure 3.19: illustration of an unrealistic solution

Assume two stations a and b. a holds 3 bikes, while b has 5 bikes. b has a rent-request of
5 bikes at t1 and a has a rent-request of 5 bikes at t2. Additionally there is a route from b to a
between t1 and t2 (see figure 3.19). The initial solution uses 3 bikes for the rent-request of b and
keeps 2 bikes to deliver to a for its rent-request. Using the LP extension all the bikes at b would
be used to satisfy the rent-request and no bikes are kept to send them to a. In this scenario we
reduce the number of unnecessary loading actions.

The question arises if it is necessary to define specific value for ω. Theorem 2 suggests that
it is sufficient to choose ωti in such a way that they decrease along the time axis of the problem
but are ≥ 1 at all times.

Theorem 2. The above LP, with extension (LP+), is not able to create an optimal solution
containing more unsatisfied requests than the solution created by the basic LP as long as ω
values decrease along the time axis and be ≥ 1 at all times.

36

Proof. Assume ωti � ωtj when tj � ti∀ti, tj ∈ T .
To create an additional unsatisfied request LP+ needs to take away (at least) one bike before

a pickup-requests takes place. In doing so, the objective function of LP+ is punished with ωti .
To lower the objective function again the taken bikes needs to be used to satisfy another request.
Since our vehicles are only moving forward in time, it is not possible to move the bikes to an
earlier station and all further incoming requests have ωtj � ωti . So the LP+ is not taking away
the bikes in the first place. If the bikes are not used to satisfy another request the punishment for
the pickup is even bigger.

A similar logic can be used for a delivery-request. In this case LP+ is adding another (ar-
bitrary) bike to a station, so the delivery-requests cannot be fully satisfied resulting in a penalty
of ωti . In the best case this missing bike leads to a state where another delivery-request can be
satisfied. This would reduce the penalty by ωtj � ωti . In the other cases it either does not
influence the result in any way or it creates another unsatisfied requests because this missing
bike should have been picked up later on.

Changing the assumption from the beginning would cause the LP to prioritize the later user
demands over the early ones. Additionally we need to specify ωti ≥ 1∀ti ∈ T . This ensures
that the first part of the objective function is always more valuable than the second part factored
by τ . Choosing a value ≤ 1 would make an additional satisfied request probably less valuable
than a shorter route.

Greedy approach

Based on the shown flow network and the presented greedy construction heuristic another ap-
proach for calculating the loading instructions was pursued. The idea is to reduce the obvious
drawback of an LP appraoch - the runtime - at the cost of not getting an optimal solution.

The greedy heuristic to calculate the loading instructions is entirely based on the already
presented methods used in the constructions heuristics. Still there is one main difference between
those two: the routes are already given and cannot be changed anymore.

Algorithm 9 illustrates the idea. Important to note here, is that the method getNextEvent is
returning all events from all routes in their chronological order. This is done so that the calcu-
lation of loading instructions does not need to care about interfering with other vehicles in the
future, since those visits are all set to have a loading instruction of 0. Another adventage of this
approach is that the algorithm can keep a local copy of the current load of each station and each
vehicle. A sequential approach on the individual routes would require to update all the supple-
mentary structures, which is a rather costly operation. To do so L and V are initialized with
the initial vehicle and station load, while operations updateVehicleData and updateStationData
are executing the choosen loading instruction on the local copy of the vehicle loads and station
loads respectively.

One problem with this approach remains. Since the heuristic is always moving as many
bikes as possible it may occur that there are bikes left in the vehicles at the end of their routes.
While this is not a problem itself it still reduces the meaningfulness of a comparison between
the LP and the greedy approach. Algorithm 10 shows how the resulting solution is fixed, if there
are any bikes left in the vehicles.

The algorithm is iterating the solution from the back. Method getPrevEvent is the opposite to

37

Algorithm 9: Calculate Greedy Loading Instructions
input : An instance I
input : A solution S with routes but without loading instructions
output: A finished solution with loading instructions

currL← initializeVehicleData1

currV ← initializeStationData2

e← getNextEvent(S)3

while e 6= NULL do4

foreach visit ∈ e.visits do5

if visit.l = −1 then updateStationData(currV , visit.bikes)6

else7

loading ← calculateStationLoading(visit.s, currL[visit.l],8

visit.t)
unloading ← calculateStationUnLoading(visit.s, currL[visit.l],9

visit.t)
best← selectExtension(S, {loading, unloading})10

updateVehicleData(currL, best.bikes)11

updateStationData(currV , best.bikes)12

end13

end14

end15

getNextEvent and provides the events in timely reversed order.Only pickup actions are modified.
Each left over bike was previously picked up on the route of this vehicle. Since it is still available
in the vehicle at the end of the route, it was picked up unnecessarily in the first place and can
safely be left at the station.

38

Algorithm 10: Repair Solution
input : An instance I
input : A solution S
output: A solution without bikes left in the vehicles at the end of their routes

currL← initializeFinalVehicleData(S)1

finished← 02

foreach l ∈ I.L do3

if currL[l] = 0 then finished++4

end5

while finished < I.L do6

e← getPrevEvent(S)7

if e =NULL then break8

foreach visit ∈ e.visits do9

l← visit.l10

if l 6= −1 and currL[l] > 0 then11

if visit.y > 0 then12

yMod← min(currL[l], visit.y])13

visit.y ← visit.y − yMod14

currL[l]← currL[l]− yMod15

if curr[l] ≤ 0 then finished++16

end17

end18

end19

end20

39

CHAPTER 4
Computationl Results

This section should illustrate the results of the proposed algorithm for a set of instances. Due
to the lack of a second algorithm for comparison, diverse variants of the VNS algorithm are
compared with each other. In the next section the testing instances are described, followed by
the different VNS variants. Finally in section 4.3 the results of each of the variants are compared.

4.1 Instances

Instead of creating own instances the set of instances from Rainer-Harbach et al. [11] is used.
This set can be found at the web page of the Institute of Computer Graphics and Algorithms of
the university of technology in Vienna1 and was constructed as follows:

the set of stations V
consists of 92 real world stations from CityBike Wien2 and 664 fictional stations which
were evaluated by the Austrian Institute of Technology (AIT)3 to be located at realistic
locations throughout the city of Vienna.

travel time tu,v
is calculated by the average travel time from u to v plus an estimated amount of time for
parking the vehicle and performing the (un)loading operation.

initial load pv
is taken from a snap shot of the real stations. For the artificial stations the value is taken
randomly from a real station in a randomly choosen snap shot.

time intervals T
are set to happen every hour for the duration of one work day (lasting 8 hours), resulting

1Instances: https://www.ads.tuwien.ac.at./w/Research/Problem Instances
2http://www.citybikewien.at
3http://www.ait.ac.at

41

in 8n demands. This can be easily extended to intervals happening every 15 minutes,
increasing the number of demands to 32n.

demands qtv
are generated in two steps. At first each station is assigned a type, indicating if the station
load tends to increase or decrease over the course of a day. This is not to be confused
with monotonicity, since the station load still increases/decreases but is more likely to
be below/above the starting value at the end of the day. The probability for each type is
0.5. In the next step the demand values for a single station v are calculated using a beta
distribution on the interval of [−Cv/2, Cv/2]. Parameters are set to p = 20 and q = 25
for a station tending to increase its load and to p = 25, q = 20 respectively.

Based on this information a single instance with n stations is created with the following
"algorithm".

1. Select the first station randomly out of the set of 756 stations.

2. Add the n nearest stations based on the Euclidean distance to the initial station.

3. Select one station randomly from the set of n+ 1 stations to be the depot.

For each size n, 30 independent instances are created and available in the mentioned set. For
the purpose of this paper instances with 60, 90 and 120 stations are primarily used. This decision
is based on the fact that the city of Vienna is currently (as of 2012) maintaining 102 stations. As
for the vehicle fleet, a homogeneous fleet with capacity of Zl = 20 ∀l ∈ L is assumed. The size
of the fleet varies in |L| ∈ {1, 2, 3, 5} to show the effects of additional vehicles on the solution
quality. The range of this set is based on the real world scenario of CityBike Wien, which uses
two vehicles to balance the system. Finally the time budget for the fleets is set to {2, 4, 8} hours
to show the effects of additional time on the solution quality. For the objective function each
unsatisfied request increases the value by 1, while the milage is added with a factor of 1−5 to
always prioritize solutions with less unsatisfied requests over shorter routes.

4.2 Variants

Executing a single algorithm on a set of test instances does not yield much insight about the
solution quality produced by said algorithm. Therefore three different variants of the VNS algo-
rithm are tested, to overcome that fact to a certain degree.
The variant D is using all of the available VND neighborhoods except INSERT-SAT. With these
VND neighborhoods in use the algorithm tries to improve a specific solution as far as possible
before trying to escape the current minimum with a VNS step resulting in a "depth-focused"
search.
Variant W is only using REMOVE and INSERT-UNSAT. Those two neighborhoods consume
the least computational time to explore them completely. Therefore the algorithm has more time
to explore the search space with the VNS neighborhoods resulting in a "width-focused" search.
During the evaluation of the above two variants a third variant emerged (variant G). Instead

42

of using the LP it is using the greedy approach to calculate the loading instructions. Since the
greedy algorithm is expected to be faster than the LP it is using all of the neighborhoods to offset
the fact that it is not necessarily calculating the optimal set of loading instructions.

4.3 Results

The proposed algorithm was implemented in C++ using GCC 4.6.3. Each of the test runs was
executed on a single core of an Intel Xeon E5540 machine with 2.53 GHz and 3 GB RAM. The
LP part of the algorithm was solved with CPLEX 12.4 with default settings and the restriction to
only use one thread. The algorihm was stasted 10 times for each of the 30 instances with every
possible combination of the above parameters. Each of those runs was granted a time limit of
one hour to complete.

The most important observation from tests is that nearly all runs are terminated by the dead-
line of 1 hour CPU-time. Only some instances with a time budget of two hours and a fleet size
of 1 or 2 vehicles are finished earlier. In each of those instances the best solution was found
very quickly, which means that the initial greedy solution was improved a little bit but could not
be improved any further. As soon as the algorithm has enough "room" to be able to improve
its solution through VND and VNS neighborhoods the running time always hits the deadline of
two hours. This is due the usage of a LP to evaluate the optimal loading instructions, which is
done for every evaluated solution. Tables 4.1, 6.1 and 6.2 show the average total cpu time T ,
the average cpu time used in CPLEX Tcplex and the average amount of solutions evaluated in
this time. Each of those solutions was first constructed through one of the neighborhoods, so
completing a constructed routing-solution with (optimal) loading instructions increases the time
consumption for evaluating one neighbor by a factor of δ.

tcreate = T − Tcplex (4.1)

δ =
Tcplex
tcreate

(4.2)

δ increases with the complexity of the instance up to a factor of over 100. These numbers can
be seen as a lower bound, since Tcplex counts the total time consumption of CPLEX but not every
solution created is evaluated with the LP. Some solutions get discarded earlier because their
route length exceeds the maximum time budget. So tcreate also includes solutions which were
created but not evaluated with the LP, while Tcplex only counts evaluated solutions. Therefore
tcreate would be even smaller when only containing evaluated solutions. This observation is
independent of the two VNS variants although it leads to the fact that the factor is higher with
variant D, where more solutions are produced through VND neighborhoods and therefore more
solutions get discarded prior to CPLEX.

Based on this observation it is somewhat clear that variant D is performing a little bit better
than variant W . Using the limited time left outside of CPLEX is better spent improving the
current solution with different neighborhoods instead of trusting probability to find a better so-
lution. This behavior is reflected in the average solution quality as well as the best and worst
solutions found. Tables 4.2 and 4.3 show the results for all instances with 90 and 120 stations

43

instances variant W variant D
|L| t̂ T Tcplex δ #sol T Tcplex δ #sol
1 120 2760.34 2457.18 8.10 673,417 3439.37 3115.04 9.60 832,993
1 240 3604.16 3437.39 20.61 715,188 3606.46 3454.65 22.75 697,542
1 480 3615.83 3534.97 43.71 516,473 3624.94 3547.61 45.87 495,902
2 120 3555.25 3175.44 8.36 718,853 3603.72 3302.39 10.95 692,780
2 240 3610.23 3497.92 31.14 481,133 3617.88 3516.51 34.69 465,191
2 480 3629.50 3575.26 65.91 327,966 3661.18 3613.88 76.40 311,989
3 120 3602.57 3290.07 10.52 572,972 3605.46 3358.03 13.57 564,860
3 240 3618.08 3529.55 39.86 374,724 3625.03 3548.88 46.60 356,620
3 480 3643.98 3589.15 65.46 265,843 3705.80 3660.15 80.18 246,340
5 120 3603.46 3344.65 12.92 443,763 3611.97 3423.82 18.19 432,210
5 240 3632.67 3563.40 51.44 275,440 3649.63 3601.12 74.22 250,940
5 480 3666.32 3615.23 70.75 239,615 3720.13 3681.50 95.29 221,262

Table 4.1: CPLEX time consumption for 90 stations

respectively on a time budget of 8 hours. These are the most realistic scenarios for the city of
Vienna.

Note that obj+ is the best objective value found in all test runs, while obj is the average and
obj− is the worst objective function. For instances with 90 stations, two vehicles and 8 hours
budget a Wilcox signed-rank test (illustrated in Table 4.4)supports the hypothesis that variant D
performs better than variant W . With sample data from the same instances with five vehicles
(seen in Table 4.5 the result is not significant anymore leading to the conclusion that both variants
would perform equally good given enough ressources.

For a Wilcox signed-rank test the following steps were executed:

1. calculate |objW − objD| for each pair values

2. calculate sgn(objW − objD) for each pair of values

3. assign rank numbers from 1 to N with N the number of pairs, in ascending order of the
absolute difference from step 1. Let Ri be the assigned rank and sgni the sign from step
2 for the ith pair.

4. calculate W = |
∑N

i=1(Risgni)|

The null hypothesis H0 stating that the mean difference between the average results of variant
W and D is zero can be rejected, when W > Wα=p,N .

Table 4.6 illustrates how often each variant is superior to the other. The first set of columns
focuses on the best objective value found, while the second set uses the average solution quality
for the given parameters. In both cases variant D seem to be better for the problem instances at
hand.

It is obvious that the amount of unsatisfied requests is reduced if additional vehicle(s) or
additional time budget is available. Table 4.7 compares the solution quality with one vehicle

44

instance variant W variant D
initial obj+ obj− obj obj+ obj− obj

00 284 42.0784 45.0797 43.4786 37.0819 42.0770 40.3785
01 299 49.0738 53.0777 50.1759 45.0758 49.0769 45.9773
02 290 53.0756 59.0737 55.1759 48.0774 53.0772 50.0774
03 343 81.0808 91.0837 86.1802 75.0825 82.0834 78.1840
04 327 62.0794 72.0772 67.4769 56.0778 65.0722 60.7760
05 332 51.0771 60.0811 52.9799 43.0801 50.0794 46.5811
06 313 53.0751 58.0806 55.4773 44.0820 51.0816 47.6779
07 288 43.0793 45.0765 44.1757 38.0769 43.0717 40.8773
08 329 65.0710 69.0735 66.7740 55.0825 63.0753 58.5759
09 328 58.0818 67.0766 61.3799 56.0786 61.0769 57.6802
10 341 58.0870 66.0791 62.1828 54.0862 58.0834 56.3845
11 297 38.0839 49.0801 43.5806 34.0830 38.0833 36.0825
12 329 51.0786 57.0814 54.0793 48.0812 52.0777 49.6806
13 298 51.0875 57.0837 54.1832 47.0896 53.0781 49.7829
14 244 50.0739 53.0774 51.9756 46.0750 49.0798 47.4776
15 407 105.0771 121.0793 114.6778 103.0820 112.0806 109.6813
16 239 12.0721 15.0703 13.5708 10.0723 13.0713 12.2701
17 281 45.0737 52.0770 46.7771 39.0799 45.0798 42.6789
18 281 29.0739 33.0749 31.2742 24.0757 30.0728 26.5743
19 234 27.0734 31.0758 29.0728 25.0766 28.0699 26.5729
20 322 43.0841 51.0818 48.8793 42.0815 47.0778 44.3809
21 201 15.0697 17.0705 15.8721 13.0714 15.0750 13.7724
22 323 80.0746 85.0766 82.6752 73.0751 78.0762 75.7764
23 221 26.0774 32.0805 29.1791 26.0806 29.0797 27.5789
24 280 19.0778 24.0814 21.3813 18.0808 23.0781 20.2803
25 322 51.0791 56.0772 54.4777 45.0794 50.0726 47.2793
26 357 75.0912 85.0832 79.3860 66.0868 74.0869 70.0865
27 301 63.0748 66.0789 64.2763 59.0742 63.0770 61.6755
28 307 59.0823 67.0828 63.9816 56.0837 61.0846 58.9841
29 256 31.0835 35.0841 33.2826 29.0787 31.0774 29.4820

Table 4.2: Best, worst and average solutions for instances with 90 stations, 2 vehicles and a time
budget of 480 minutes per vehicle

when additional time is added, while table 4.8 shows the effects of additional vehicles for both
variants. As one can see additional time increases the solution quality faster than adding vehi-
cles. Doubling the time budget increases the average solution quality faster than adding another
vehicle with a short time window. This may be due the fact that some unsatisfied requests are
not satisfiable with a small time window, because they occur late in the day and are therefore
not reachable with this model of the problem. In this algorithm a short time budget means that

45

instance variant W variant D
initial obj+ obj− obj obj+ obj− obj

00 407 129.0717 136.0744 132.7718 118.0779 128.0689 123.1739
01 377 114.0747 130.0721 122.1745 107.0809 114.0750 110.4788
02 376 106.0732 114.0709 109.7733 96.0785 104.0715 99.6754
03 400 116.0818 132.0830 124.3809 106.0861 115.0802 111.7834
04 404 132.0742 143.0768 138.6744 123.0736 132.0763 128.5750
05 439 160.0777 169.0802 164.7788 151.0807 156.0790 153.1804
06 472 153.0741 164.0794 159.7778 144.0766 158.0695 149.6786
07 449 148.0838 158.0820 152.0818 136.0834 144.0843 141.3842
08 372 107.0775 114.0721 111.5741 101.0789 107.0796 105.3779
09 383 100.0798 113.0781 106.5773 92.0787 101.0787 96.5782
10 310 68.0767 74.0794 70.9791 62.0822 69.0789 66.7793
11 476 178.0793 191.0720 186.0758 164.0790 176.0775 171.0773
12 406 118.0812 125.0799 121.2817 109.0849 116.0783 113.2832
13 332 82.0725 88.0783 84.9760 75.0763 82.0777 78.8756
14 427 127.0743 135.0806 130.4805 115.0817 123.0741 118.6809
15 410 112.0849 120.0804 114.8846 103.0828 111.0803 106.2839
16 452 153.0801 162.0760 158.9774 145.0797 153.0784 149.0790
17 500 172.0816 182.0784 177.6789 157.0792 162.0783 160.5787
18 389 90.0804 101.0797 94.5848 84.0834 91.0785 88.0830
19 364 88.0851 97.0801 93.3792 81.0836 94.0781 85.5812
20 343 83.0732 92.0719 87.4743 79.0766 83.0731 80.8741
21 415 131.0849 139.0830 135.3837 117.0870 126.0890 123.2874
22 314 64.0721 70.0726 67.0741 59.0810 63.0805 61.3791
23 321 87.0717 91.0689 88.5700 80.0701 85.0730 82.9736
24 441 132.0789 139.0767 135.7762 119.0797 123.0751 120.7787
25 394 122.0850 134.0734 126.7782 118.0792 121.0828 119.7815
26 372 82.0783 90.0791 85.9791 75.0835 83.0806 77.6805
27 453 160.0836 170.0823 165.4807 145.0847 154.0820 150.4830
28 293 63.0683 70.0690 67.2684 56.0723 62.0638 57.6697
29 461 150.0858 159.0787 155.6827 134.0868 144.0880 140.0878

Table 4.3: Best, worst and average solutions for instances with 120 stations, 2 vehicles and a
time budget of 480 minutes per vehicle

the vehicles can only be moved during the first t̂l minutes of the day, but still needs to satisfy
the whole day of requests. If some station is self-sufficient during this time it usually is not a
good idea to visit this station, while other unsatisfied stations are reachable. In addition, those
self-sufficient stations may become nearly full or empty due to user requests (but without un-
satisfied requests) therefore adding or removing bikes to satisfy requests later in the day, may
cause unsatisfied requests right now, ultimatively gaining nothing. With a lager time budget

46

W 465
Wα=0.05,30 137
Wα=0.01,30 109

Table 4.4: Wilcox signed-rank test for 90 stations, 2 vehicles and 8 hours time

W 67
Wα=0.05,30 137
Wα=0.01,30 109

Table 4.5: Wilcox signed-rank test for 90 stations, 5 vehicles and 8 hours time

these requests are then reachable and satisfiable.
In addition to increasing the time budget or the number of vehicles, one can also increase the

total running time of the algorithm. Table 4.9 compares the average objective value of 10 test
runs with 90 stations, 2 vehicles and a time budget of 480 minutes. The only difference is the
running time of the algorithm being 24 hours compared to only one hour. Note that none of the
(600) test runs terminated naturally but was stopped after 24 hours. The third column indicates
the difference in solution quality for the individual instances. As one can see the average quality
increase for both variants is located in the range from 10% to 15%. This means that the results
obtained after only one hour are relatively good considering the tradeoff between running time
and solution quality. Another interesting thing to see is that even after 24 hours, variantD seems
to be superior when the amount of vehicles is too small for the problem instance.

Tables 4.10 and 4.11 show average relative success rates of the various VND neighborhoods.
Those values are average values over all testruns and instances with 90 stations. As one can see
neighborhood 7 (3-OPT) does not yield better results. This is due its position at the end of the
VND search. Short spot tests showed that 3-OPT does yield improvements when executed earlier
in the search. Not very surprisingly, neighborhood 2 (INSERT-UNSAT) performs very well in
all cases, as one of two neighborhoods capable of inserting new nodes. Although one can see
that INSERT-UNSAT is becoming less effective when routes are getting more complex. In those
cases the restructuring neighborhoods (INTRA-2-OPT, INTRA-OR-OPT and INTER-2-OPT-
STAR) become more successful. Another observation is the decreasing success of neighborhood
4 (REPLACE). In routes with a short time budget it may not be possible to add another station
to the route without exceeding the time budget. Those are the cases were REPLACE shines,
since it combines neighborhood 1 and 2. As soon as the time budget (combined with the number
of vehicles) gets bigger this neighborhood cannot find as much of an improvement any more.
In table 4.10 we can see that the success rate of REPLACE drops from 43.25% to 10.71% and
further to just 0.45% by simply increasing the time budget of 5 vehicles. The drop is not as fast
with only 3 vehicles, but still there. Similar neighborhoods 3 (INTRA-2-OPT) and 5 (INTRA-
OR-OPT) increase their successrates with more complex routes to optimize.

Respectively Table 4.12 shows average relative success rates for all three VNS neighbor-
hoods. Since each of those neighborhoods is called 6 times with different parameters the table
sums up all 6 calls. The table should show how successful a single neighborhood concept is, re-

47

gardless of its respective parameters. While Neighborhood 1 (REMOVE STATIONS) becomes
more successful with an increasing time budget neighborhood 2 (MOVE SEQUENCE) declines.
Neighborhood 3 (EXCHANGE SEQUENCE) does not seem to have a correlation to the vehicles
time budget. Comparing with Table 6.8 and 6.9 only reveals that neighborhood 3 seems to work
best with a time budget of 4 hours as long as the number of vehicles is < 5, in which case it
declines with the vehicles time budget.

Finally Table 4.13 compares the solution quality of the individual variants with a vehicle
time budget of 8 hours (the most realistic case). The % values indicate the reduction of un-
satisfied user request compared to the initial status of the system. As one can see the greedy
approach is between 0.5% and 5% worse than the LP when the number of vehicles is suitable
for the problem. As soon as there are enough vehicles to satisfy all the requests even the greedy
approach finds a very good solution. Tables 6.10 and 6.11 illustrate a similar behaviour with two
and four hours of operating time.

Table 4.14 compares the average number of solutions evaluated by each variant and gives
a difference in percent. As one can see the Greedy approach evaluates usually about twice as
much solutions than one of the other two variants. When there is only one vehicle and a time
budget of two hours the numbers are not that impressive, but still bigger than for one of the
other two variants. When the number of vehicles increases the difference increases as well. The
same is true for an increased time budget. Both observations can be traced back to the increased
complexity (and therefore running time) for the LP in such cases.

48

obj+ obj

|V | |L| Tmax W D equal W D equal
60 1 120 1 7 22 1 9 20
60 1 240 2 13 15 2 25 3
60 1 480 1 20 9 0 30 0
60 2 120 2 7 21 2 17 11
60 2 240 2 20 8 1 29 0
60 2 480 6 24 0 2 28 0
60 3 120 2 12 16 2 25 3
60 3 240 1 28 1 1 29 0
60 3 480 1 29 0 4 26 0
60 5 120 7 13 10 7 23 0
60 5 240 0 30 0 2 28 0
60 5 480 0 30 0 1 29 0
90 1 120 1 9 20 1 10 19
90 1 240 2 13 15 2 26 2
90 1 480 1 28 1 0 30 0
90 2 120 3 16 11 3 19 8
90 2 240 1 29 0 0 30 0
90 2 480 1 29 0 0 30 0
90 3 120 2 18 10 2 26 2
90 3 240 0 30 0 0 30 0
90 3 480 3 27 0 1 29 0
90 5 120 5 19 6 6 24 0
90 5 240 0 30 0 0 30 0
90 5 480 5 25 0 12 18 0

120 1 120 2 13 15 3 12 15
120 1 240 3 18 9 1 27 2
120 1 480 0 27 3 0 30 0
120 2 120 2 16 12 3 21 6
120 2 240 0 29 1 0 30 0
120 2 480 0 30 0 0 30 0
120 3 120 3 17 10 5 24 1
120 3 240 0 30 0 0 30 0
120 3 480 0 30 0 0 30 0
120 5 120 3 23 4 2 28 0
120 5 240 0 30 0 0 30 0
120 5 480 8 22 0 8 22 0

Total 70 791 219 74 914 92

Table 4.6: Comparison on how often each variant yields the better result

49

variant W variant D
|V | 120 240 480 120 240 480
60 23.24 % 48.66 % 73.12 % 23.66 % 49.09 % 74.03 %
90 15.00 % 33.98 % 53.62 % 15.19 % 34.58 % 54.78 %
120 11.77 % 27.44 % 43.68 % 11.89 % 28.10 % 44.94 %

Table 4.7: Average solution qualitiy increase in % due to a bigger time budget (Tmax) for one
vehicle

variant W variant D
|V | 1 2 3 5 1 2 3 5
60 23.24 % 42.03 % 56.56 % 77.95 % 23.66 % 42.69 % 57.20 % 78.79 %
90 15.00 % 28.49 % 39.80 % 58.37 % 15.19 % 29.06 % 40.23 % 58.87 %
120 11.77 % 22.37 % 31.33 % 46.47 % 11.89 % 22.90 % 31.91 % 47.39 %

Table 4.8: Average solution qualitiy increase in % due to additional vehicles with a two hour
time budget

50

variant W variant D
instance 1h 24h δ 1h 24h δ

00 43.47 39.78 8.51% 40.37 36.98 8.42%
01 50.17 44.87 10.56% 45.97 40.97 10.88%
02 55.17 48.47 12.14% 50.07 43.28 13.58%
03 86.18 77.18 10.44% 78.18 72.88 6.78%
04 67.47 58.37 13.49% 60.77 55.58 8.55%
05 52.97 45.68 13.78% 46.58 42.08 9.66%
06 55.47 46.97 15.32% 47.67 41.08 13.84%
07 44.17 38.88 11.99% 40.87 37.88 7.34%
08 66.77 61.67 7.64% 58.57 54.17 7.52%
09 61.37 54.28 11.57% 57.68 52.48 9.01%
10 62.18 56.18 9.65% 56.38 51.88 7.98%
11 43.58 35.48 18.58% 36.08 33.28 7.76%
12 54.07 49.08 9.25% 49.68 45.48 8.46%
13 54.18 48.18 11.07% 49.78 44.48 10.64%
14 51.97 45.68 12.12% 47.47 43.88 7.58%
15 114.67 107.88 5.93% 109.68 101.68 7.30%
16 13.57 10.67 21.35% 12.27 9.97 18.72%
17 46.77 38.18 18.38% 42.67 36.57 14.30%
18 31.27 25.27 19.18% 26.57 21.77 18.05%
19 29.07 25.07 13.76% 26.57 22.07 16.93%
20 48.87 43.68 10.63% 44.38 40.88 7.88%
21 15.87 13.07 17.64% 13.77 11.47 16.68%
22 82.67 73.07 11.61% 75.77 71.77 5.28%
23 29.17 25.27 13.37% 27.57 22.88 17.04%
24 21.38 18.08 15.43% 20.28 16.18 20.20%
25 54.47 46.97 13.77% 47.27 42.37 10.37%
26 79.38 69.09 12.97% 70.08 64.59 7.85%
27 64.27 60.47 5.92% 61.67 58.27 5.52%
28 63.98 58.58 8.44% 58.98 56.28 4.58%
29 33.28 29.28 12.02% 29.48 26.58 9.83%
avg 12.55% 10.61%

Table 4.9: Average solution qualitiy increase in % due to a longer running time for 90 stations,
2 vehicles and an 8 hour time budget

51

INSERT- INTRA- INTRA- INTER-2- INTRA-
|L| t̂ REMOVE UNSAT 2-OPT REPLACE OR-OPT OPT-STAR 3-OPT
1 120 7.41 76.56 4.90 7.78 0 0 0
1 240 7.15 57.10 23.22 11.36 1.14 0 .0002
1 480 7.36 52.99 28.17 8.60 2.85 0 .0054
2 120 8.93 47.87 12.74 28.19 .15 2.09 0
2 240 6.25 41.34 32.28 15.16 2.46 2.47 .0032
2 480 11.26 36.68 35.52 8.86 4.97 2.68 .0041
3 120 8.68 41.26 11.59 35.49 .09 2.86 0
3 240 5.88 40.33 32.02 13.35 3.13 5.27 .0017
3 480 13.37 30.26 37.38 4.69 6.51 7.76 .0020
5 120 7.41 32.43 11.49 43.25 .19 5.19 0
5 240 5.79 34.85 32.77 10.71 4.51 11.34 .0006
5 480 11.06 23.51 37.18 .45 7.20 20.56 0

Table 4.10: Average relative VND Neighborhood success rates for 90 stations.

INSERT-
|L| t̂ REMOVE UNSAT
1 120 8.45 84.88
1 240 11.67 88.32
1 480 12.35 87.64
2 120 16.90 83.09
2 240 13.71 86.28
2 480 22.19 77.80
3 120 18.83 81.16
3 240 12.95 87.04
3 480 25.63 74.36
5 120 20.16 79.83
5 240 13.19 86.80
5 480 25.10 74.89

Table 4.11: Average relative VND Neighborhood success rates for 90 stations.

52

|L| t̂ REMOVE MOVE EXCHANGE
1 120 5.00 0 0
1 240 13.33 0 0
1 480 16.11 0 0
2 120 3.53 5.13 .68
2 240 7.31 3.84 2.52
2 480 8.39 3.16 1.98
3 120 3.65 7.25 1.33
3 240 8.02 3.87 2.27
3 480 9.23 3.19 .93
5 120 4.49 7.99 2.59
5 240 8.41 3.63 1.73
5 480 9.78 2.45 .37

Table 4.12: Average relative VNS Neighborhood success rates for 90 stations.

|V | |L| Constr.+VND Variant W Variant D Greedy
60 1 63.59 % 73.12 % 74.03 % 70.80 %
60 2 88.37 % 96.99 % 97.28 % 94.64 %
60 3 96.39 % 99.30 % 99.33 % 98.77 %
60 5 98.79 % 99.80 % 99.80 % 99.45 %
90 1 48.58 % 53.62 % 54.78 % 52.27 %
90 2 75.61 % 82.94 % 84.51 % 80.30 %
90 3 89.78 % 95.46 % 96.03 % 92.95 %
90 5 97.28 % 99.18 % 99.14 % 98.46 %
120 1 40.16 % 43.68 % 44.94 % 42.44 %
120 2 65.35 % 69.80 % 72.25 % 67.72 %
120 3 80.93 % 86.69 % 88.75 % 83.01 %
120 5 94.58 % 98.20 % 98.32 % 95.80 %

Table 4.13: Average solution qualitiy increase in % for different techniques with a vehicle time
budget of 480 minutes.

53

|V| |L| t̂ Variant W Variant D Greedy
60 1 120 543,760 871,322 1,042,558
60 1 240 820,337 777,516 1,440,833
60 1 480 572,413 532,012 1,333,627
60 2 120 757,600 798,079 1,378,567
60 2 240 530,245 497,889 1,294,001
60 2 480 392,928 358,595 1,156,529
60 3 120 629,255 629,347 1,338,262
60 3 240 411,275 378,352 1,171,423
60 3 480 361,518 327,081 1,076,731
60 5 120 497,069 470,588 1,248,190
60 5 240 345,945 310,065 1,044,502
60 5 480 343,759 306,998 1,018,749
90 1 120 673,417 832,993 956,876
90 1 240 715,188 697,542 975,451
90 1 480 516,473 495,902 911,010
90 2 120 718,853 692,780 950,909
90 2 240 481,133 465,191 886,425
90 2 480 327,966 311,989 779,453
90 3 120 572,972 564,860 915,365
90 3 240 374,724 356,620 805,457
90 3 480 265,843 246,340 697,107
90 5 120 443,763 432,210 859,558
90 5 240 275,440 250,940 698,324
90 5 480 239,615 221,262 629,627
120 1 120 652,267 743,132 750,099
120 1 240 627,791 618,484 741,754
120 1 480 476,806 463,189 700,681
120 2 120 624,159 607,085 723,260
120 2 240 441,482 428,559 686,400
120 2 480 308,914 298,925 608,626
120 3 120 509,773 509,644 699,588
120 3 240 350,785 336,230 630,268
120 3 480 242,309 227,936 546,439
120 5 120 405,919 400,727 656,353
120 5 240 260,188 240,800 544,597
120 5 480 202,849 187,202 472,036

Table 4.14: average number of solutions evaluated.

54

CHAPTER 5
Conclusion and Future Work

This paper presented an algorithm to solve the Dynamic Balancing Bike Sharing System Prob-
lem heuristically. It utilizes a VNS metaheuristic with an embedded VND local search. The
neighborhoods contain classical VRPs neighborhoods as well as some special neighborhoods
taken from [11]. Additionally a LP and a Greedy algorithm was used to calculate (optimal)
loading instructions for constructed solutions and further evaluate the objective value for those
solutions. Based on a set of semi-realistic example instances three variants of the algorithm were
tested. The first one (variant D) uses almost all available VND neighborhoods while the second
one (variant W) only uses two VND neighborhoods to utilize the VNS part more. Since most of
the computation time is used in the LP no strong statistical evidence was found for one variant
beeing superior to the other. The third one offsets this flaw by using the Greedy algorithm to
calculate the loading instructions.
For a real world application the Greedy approach is probably the best choice. Although it
does not provide an optimal solution, it finds good solutions in a relatively short time. Fu-
ture reasearch may focus on further improving the Greedy approach to produce better solutions
without increasing the running time too much. Another focus for future work could be the prob-
lem itself. A realistic addition would be to add a starting time tsl to each vehicle to indicate the
time when vehicle l starts its tour. This would allow modeling multiple vehicle crews sharing
vehicles and eliminiate the need to satisfy stations early through out the whole day.

55

CHAPTER 6
Appendix

In this section additional tables are included for the sake of completeness.

instances variant W variant D
|L| t̂ T Tcplex δ #sol T Tcplex δ #sol
1 120 1834.20 1700.71 12.74 543,760 3103.07 2931.62 17.09 871,322
1 240 3602.38 3508.58 37.40 820,337 3603.41 3523.20 43.92 777,516
1 480 3606.99 3567.83 91.11 572,413 3614.28 3580.44 105.78 532,012
2 120 3223.25 2998.21 13.32 757,600 3602.00 3405.58 17.33 798,079
2 240 3605.02 3542.61 56.76 530,245 3608.42 3556.99 69.15 497,889
2 480 3610.63 3567.33 82.37 392,928 3635.83 3600.12 100.81 358,595
3 120 3462.26 3258.25 15.97 629,255 3603.04 3440.83 21.21 629,347
3 240 3607.49 3553.79 66.18 411,275 3614.46 3575.65 92.12 378,352
3 480 3614.05 3566.42 74.87 361,518 3637.52 3596.61 87.90 327,081
5 120 3601.59 3431.72 20.20 497,069 3606.16 3490.86 30.27 470,588
5 240 3613.08 3556.66 63.04 345,945 3625.60 3583.85 85.82 310,065
5 480 3620.31 3566.04 65.71 343,759 3635.39 3592.78 84.31 306,998

Table 6.1: CPLEX time consumption for 60 stations

57

instances variant W variant D
|L| t̂ T Tcplex δ #sol T Tcplex δ #sol
1 120 3186.70 2760.00 6.46 652,267 3601.48 3186.72 7.68 743,132
1 240 3606.30 3384.34 15.24 627,791 3609.76 3402.79 16.44 618,484
1 480 3623.02 3504.95 29.68 476,806 3635.78 3525.27 31.90 463,189
2 120 3602.69 3131.40 6.64 624,159 3605.20 3219.32 8.34 607,085
2 240 3615.64 3460.22 22.26 441,482 3622.57 3482.90 24.93 428,559
2 480 3650.70 3570.36 44.44 308,914 3682.17 3607.61 48.38 298,925
3 120 3603.24 3201.43 7.96 509,773 3607.59 3283.86 10.14 509,644
3 240 3625.43 3500.88 28.10 350,785 3635.89 3528.27 32.78 336,230
3 480 3691.99 3623.24 52.70 242,309 3716.85 3656.51 60.59 227,936
5 120 3604.97 3264.29 9.58 405,919 3618.01 3368.22 13.48 400,727
5 240 3651.72 3553.96 36.35 260,188 3669.93 3597.13 49.41 240,800
5 480 3743.88 3675.65 53.87 202,849 3795.40 3735.14 61.97 187,202

Table 6.2: CPLEX time consumption for 120 stations

58

instance variant W variant D
initial obj+ obj− obj obj+ obj− obj

00 212 2.0491 6.0444 3.8488 2.0490 3.0502 2.3494
01 128 .0372 1.0357 .2379 .0370 1.0356 .1371
02 169 .0664 1.0590 .9571 1.0519 1.0574 1.0538
03 174 1.0575 2.0583 1.2581 1.0572 1.0577 1.0573
04 238 11.0659 14.0656 12.4650 10.0649 12.0649 10.8643
05 141 2.0400 2.0406 2.0402 2.0398 2.0399 2.0398
06 202 8.0636 12.0653 8.8648 8.0631 9.0670 8.2662
07 172 2.0630 3.0620 2.9598 2.0667 3.0589 2.9588
08 182 7.0580 9.0566 7.6577 7.0579 7.0591 7.0583
09 173 6.0630 9.0548 8.0579 7.0617 9.0538 7.9581
10 159 1.0427 1.0449 1.0436 1.0425 1.0475 1.0448
11 223 7.0655 12.0665 9.1657 7.0650 9.0657 7.3655
12 151 2.0445 3.0445 2.1450 2.0443 2.0469 2.0451
13 222 4.0692 5.0815 4.8695 3.0703 4.0720 3.7684
14 224 13.0742 17.0724 15.5720 12.0731 15.0702 13.4723
15 173 2.0497 4.0486 3.0489 3.0482 3.0488 3.0485
16 198 .0478 1.0485 .1485 .0475 1.0476 .1479
17 207 6.0738 9.0748 7.4733 6.0733 8.0692 6.9718
18 161 4.0516 5.0574 4.4520 4.0520 5.0488 4.3511
19 219 8.0612 11.0609 9.2629 8.0590 10.0592 8.7602
20 261 21.0732 25.0667 22.7732 20.0740 23.0719 21.5730
21 230 12.0770 16.0751 13.4776 11.0786 13.0753 12.5745
22 209 8.0645 9.0643 8.7638 8.0632 9.0629 8.2635
23 241 15.0626 20.0628 17.3647 14.0614 16.0652 14.9634
24 191 2.0570 4.0554 3.1570 2.0543 4.0525 2.4549
25 135 .0561 1.0525 .5546 .0559 1.0511 .5535
26 165 3.0540 4.0535 3.1547 3.0532 3.0544 3.0539
27 163 2.0600 4.0592 3.2611 2.0595 4.0575 2.6602
28 175 2.0513 3.0542 2.2530 2.0516 3.0534 2.1530
29 253 9.0684 14.0725 10.7692 8.0695 10.0656 9.0678

Table 6.3: Best, worst and average solutions for instances with 60 stations, 2 vehicles and a time
budget of 480 minutes per vehicle

59

INSERT- INTRA- INTRA- INTER-2- INTRA-
|L| t̂ REMOVE UNSAT 2-OPT REPLACE OR-OPT OPT-STAR 3-OPT
1 120 8.23 78.82 6.06 6.49 .37 0 0
1 240 6.68 58.85 26.04 6.88 1.52 0 0
1 480 7.80 57.42 26.82 4.51 3.42 0 .0076
2 120 9.74 46.63 12.57 27.71 .28 3.03 0
2 240 6.39 42.41 34.02 10.96 3.24 2.94 .0030
2 480 14.54 37.31 34.52 3.15 5.77 4.67 .0041
3 120 8.93 39.86 13.52 33.47 .38 3.81 0
3 240 6.87 40.12 32.91 10.07 3.91 6.09 .0010
3 480 12.46 33.81 34.58 .84 5.97 12.30 .0040
5 120 7.50 29.86 12.95 40.67 .40 8.58 0
5 240 7.77 39.34 27.66 2.81 3.77 18.62 0
5 480 8.67 32.61 30.70 .11 4.57 23.30 .0003

Table 6.4: Average relative VND Neighborhood success rates for 60 stations.

INSERT-
|L| t̂ REMOVE UNSAT
1 120 9.02 90.97
1 240 10.39 89.60
1 480 11.64 88.35
2 120 19.19 80.80
2 240 13.61 86.38
2 480 26.03 73.96
3 120 19.87 80.12
3 240 14.24 85.75
3 480 23.99 76.00
5 120 22.47 77.52
5 240 14.98 85.01
5 480 18.53 81.46

Table 6.5: Average relative VND Neighborhood success rates for 60 stations.

60

INSERT- INTRA- INTRA- INTER-2- INTRA-
|L| t̂ REMOVE UNSAT 2-OPT REPLACE OR-OPT OPT-STAR 3-OPT
1 120 11.00 67.72 11.41 9.85 0 0 0
1 240 7.68 52.97 24.65 13.69 .98 0 0
1 480 8.81 51.90 27.46 9.48 2.32 0 .0040
2 120 11.53 47.50 11.97 27.20 .21 1.58 0
2 240 6.25 40.40 31.46 17.41 2.06 2.39 .0008
2 480 11.51 36.47 32.94 12.63 3.95 2.46 .0029
3 120 9.66 42.00 11.21 34.54 .30 2.27 0
3 240 5.84 38.67 31.97 16.00 2.59 4.90 .0017
3 480 11.60 31.57 35.92 10.15 5.23 5.50 .0037
5 120 7.76 34.05 10.79 42.31 .38 4.68 0
5 240 5.39 34.66 32.83 14.11 3.59 9.39 .0013
5 480 11.95 21.28 40.15 1.26 7.85 17.48 0

Table 6.6: Average relative VND Neighborhood success rates for 120 stations.

INSERT-
|L| t̂ REMOVE UNSAT
1 120 11.93 84.73
1 240 12.45 87.54
1 480 14.35 85.64
2 120 18.69 81.30
2 240 14.25 85.74
2 480 22.96 77.03
3 120 19.44 80.55
3 240 13.37 86.62
3 480 23.59 76.40
5 120 21.12 78.87
5 240 12.77 87.22
5 480 27.73 72.26

Table 6.7: Average relative VND Neighborhood success rates for 120 stations.

61

|L| t̂ REMOVE MOVE EXCHANGE
1 120 3.33 0 0
1 240 12.22 0 0
1 480 16.66 0 0
2 120 4.61 5.60 1.08
2 240 7.23 4.37 3.02
2 480 7.67 3.91 2.81
3 120 3.92 7.96 2.21
3 240 7.59 3.99 2.60
3 480 8.41 3.86 1.60
5 120 3.80 8.14 2.58
5 240 7.74 4.23 1.95
5 480 8.44 3.97 1.08

Table 6.8: Average relative VNS Neighborhood success rates for 60 stations.

|L| t̂ REMOVE MOVE EXCHANGE
1 120 4.44 0 0
1 240 13.33 0 0
1 480 16.66 0 0
2 120 3.79 5.74 .97
2 240 6.94 4.24 2.53
2 480 8.56 3.27 1.59
3 120 3.95 8.24 1.73
3 240 7.74 3.41 2.10
3 480 8.95 3.17 .96
5 120 4.33 8.53 2.62
5 240 8.61 3.02 1.22
5 480 11.16 1.33 .11

Table 6.9: Average relative VNS Neighborhood success rates for 120 stations.

62

|V | |L| Constr.+VND Variant W Variant D Greedy
60 1 18.86 % 23.24 % 23.66 % 21.42 %
60 2 32.07 % 42.03 % 42.69 % 38.38 %
60 3 41.95 % 56.56 % 57.20 % 51.35 %
60 5 58.21 % 77.95 % 78.79 % 66.87 %
90 1 13.14 % 15.00 % 15.19 % 13.98 %
90 2 23.81 % 28.49 % 29.06 % 25.76 %
90 3 31.55 % 39.80 % 40.23 % 35.23 %
90 5 44.86 % 58.37 % 58.87 % 50.95 %
120 1 9.98 % 11.77 % 11.89 % 10.67 %
120 2 17.65 % 22.37 % 22.90 % 20.22 %
120 3 24.45 % 31.33 % 31.91 % 27.70 %
120 5 35.96 % 46.47 % 47.39 % 39.52 %

Table 6.10: Average solution qualitiy increase in % for different techniques with a vehicle time
budget of 120 minutes.

|V | |L| Constr.+VND Variant W Variant D Greedy
60 1 42.99 % 48.66 % 49.09 % 47.79 %
60 2 68.29 % 77.68 % 78.44 % 76.11 %
60 3 83.11 % 93.39 % 94.12 % 91.17 %
60 5 95.15 % 99.77 % 99.78 % 99.14 %
90 1 30.30 % 33.98 % 34.58 % 33.23 %
90 2 51.47 % 57.94 % 59.11 % 57.38 %
90 3 66.62 % 75.33 % 76.73 % 73.69 %
90 5 85.31 % 94.60 % 95.68 % 91.95 %
120 1 24.57 % 27.44 % 28.10 % 26.93 %
120 2 42.37 % 47.67 % 49.01 % 47.00 %
120 3 56.50 % 63.30 % 64.94 % 61.62 %
120 5 75.88 % 84.34 % 86.26 % 80.84 %

Table 6.11: Average solution qualitiy increase in % for different techniques with a vehicle time
budget of 240 minutes.

63

Bibliography

[1] G. Clarke and J.W. Wright. Scheduling of vehicles from a central depot to a number of
delivery points. Operations research, 12(4):568–581, 1964.

[2] C. Contardo, C. Morency, and L.M. Rousseau. Balancing a dynamic public bike-sharing
system. Tech. Rep. CIRRELT-2012-09, CIRRELT, Montréal, Canada, 2012.

[3] G.A. Croes. A method for solving traveling-salesman problems. Operations Research,
6(6):791–812, 1958.

[4] G. B. Dantzig and J. H. Ramser. The truck dispatching problem. Management Science,
6:80–91, 10 1959.

[5] P. Hansen and N. Mladenovic. Variable neighborhood search. Computers and Operations
Research, 24(11):1097–1100, 1997.

[6] P. J. Hart and A. W. Shogan. Semi-greedy heuristics: An empirical study. Operations
Research Letters, 6(3):107–114, 1987.

[7] F.S. Hillier and G.J Lieberman. Introduction to linear programming. In Introduction to
Operations Research, pages 31–43. McGraw-Hill Education, 9. edition, 2010.

[8] J.-H. Lin and T.-C. Chou. A geo-aware and VRP-based public bicycle redistribution sys-
tem. International Journal of Vehicular Technology, Volume 2012:14 pages, 2012. Article
ID 963427.

[9] F. Meunier, R. Wolfler Calvo, and D. Chemla. Bike hiring system: solving the rebalancing
problem in the static case. Discrete Optimization, 10(2):120–146, 2013.

[10] J. Pfrommer, J. Warrington, G. Schildbach, and M. Morari. Dynamic vehicle redistribution
and online price incentives in shared mobility systems. arXiv preprint arXiv:1304.3949,
2013.

[11] M. Rainer-Harbach, P. Papazek, B. Hu, and G. Raidl. Balancing bicycle sharing systems:
A variable neighborhood search approach. In M. Middendorf, C. Blum (eds.) Evolution-
ary Computation in Combinatorial Optimization, volume 7832, pages 121–132. Springer
Berlin Heidelberg, 2013.

65

[12] M. G. C. Resende and C. C. Ribeiro. Greedy randomized adaptive search procedures. In
Handbook of metaheuristics, pages 219–249. Springer, 2003.

[13] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, II. An analysis of several heuristics for
the traveling salesman problem. SIAM journal on computing, 6(3):563–581, 1977.

[14] H. Sayarshad, S. Tavassoli, and F. Zhao. A multi-periodic optimization formulation for
bike planning and bike utilization. Applied Mathematical Modelling, 36(10):4944–4951,
2012.

[15] J. Schuijbroek, R. Hampshire, and W.J. van Hoeve. Inventory rebalancing and vehi-
cle routing in bike sharing systems. Tech.Rep. 1491, Tepper School of Business, 2013.
http://repository.cmu.edu/tepper/1491.

66

	Introduction
	Motivation
	Problem Description

	Related Work
	Algorithm for the Dynamic Balancing Bike Sharing Systems
	Construction Heuristic
	Neighborhoods
	Optimal Loading Instructions

	Computationl Results
	Instances
	Variants
	Results

	Conclusion and Future Work
	Appendix
	Bibliography

