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Kurzfassung

Bei der Entwicklung von selbstfahrenden, autonomen Fahrzeugen kommen der Zuverlässigkeit
und Genauigkeit der Sensoren eines Fahrzeuges immer größere Bedeutung zu. Einer der wich-
tigsten Parameter ist die Geschwindigkeit des Fahrzeuges. Dieser Parameter wird bisher durch
Methoden gemessen, die die Rotation der Räder erfassen. Bei Schlupf der Räder beziehungs-
weise bei Traktionsverlust versagen diese Methoden.

Thema dieser Diplomarbeit ist die Entwicklung und Implementierung eines neuartigen Sensor-
Systems um Bewegungsparameter eines Fahrzeuges wie z.b. Geschwindigkeit und Beschleuni-
gung zu erfassen. Dieser Sensor basiert auf einer Kombination aus einer Kamera und speziellen
Computer Vision Algorithmen, die die erforderlichen Parameter aus dem Videostream der Ka-
mera berechnen. Durch die weite Verbreitung von hochqualitativen Video Systemen zu immer
geringeren Kosten kann ein auf Video basierendes System zum Beispiel in Fahrassistenzsys-
temen und sogar autonomen Fahrzeugen verwendet werden. In solchen sicherheitskritischen
Systemen ist es notwendig, mehrfach redundante Sensoren für die benötigten Messgrößen zu
verwenden, um ein hohes Maß an Fehlertollereanz zu erreichen. Um systematische Fehler, die
durch Radschlupf beziehungsweise Traktionsverlust entstehen zu vermeiden, muss eine Metho-
de gefunden werden, die auf einem anderen Prinzip als der Rotation der Räder beruhen.

Es ist üblich, mehrere verschiedene Sensoren für die selbe Messgröße gleichzeitig zu ver-
wenden. Die Messwerte der verschiedenen Sensoren werden durch ein Sensor Fusion System
ausgewertet, um das gewünschte Maß an Zuverlässigkeit und Fehlertoleranz zu erreichen und
außerdem die Genauigkeit der Messung zu erhöhen.Um die bestmögliche Funktion eines Sensor
Fusion System sicherzustellen ist es notwendig, zu jedem Messwert auch einen Konfidenzwert
bereitzustellen, der die Zuversicht in die Genauigkeit des Messwertes ausdrückt. Es wurden
Methoden erarbeitet, um aus dem Videostream neben den primären Bewegungsparametern auch
Konfidenzwerte zu berechnen.

In dieser Arbeit werden unterschiedliche Algorithmen, basierend auf verschiedenen Me-
thoden, implementiert und untereinander verglichen. Neben der Genauigkeit ist dabei auch der
benötigte Rechenaufwand ein relevanter Parameter. Weiters wird untersucht, ob und wie es
möglich ist, den Sensor dynamisch an variierende Bedingungen anzupassen, wie beispielsweise
verschiedene Geschwindigkeitsbereiche oder unterschiedliche Untergründe (Asphalt gegenüber
Kopfsteinpflaster). Als Ergebnis dieser Diplomarbeit wurde ein System als wiederverwendba-
res Software Modul für das ROS (Robot Operating System) implementiert. Der Sensor wurde
unter unterschiedlichen Bedingungen in anwendungsnahen Szenarios mit einem autonomen For-
schungsfahrzeug erprobt, um die Funktion des Sensors zu demonstrieren.
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Abstract

On the road towards autonomous self driving cars, the reliability and accuracy of the vehi-
cles sensors are becoming even more important than ever. An important parameter is the vehi-
cles speed, which is traditionally measured with methods based on the rotation of the vehicle’s
wheels. When the vehicles wheels are slipping, these methods fail completely.

The topic of this master thesis is the design and implementation of a new sensor system for
gathering measurements of a moving vehicle, i.e. speed and acceleration. The sensor uses a
video camera in combination with a computer vision algorithm that extracts the required param-
eters from the provided image stream.

With the widespread availability of high quality video systems at ever decreasing cost, a
system like that could be used for instance in driving assistance systems and even autonomously
self driving cars. In such a safety-critical system, it is required to provide several redundant sen-
sors to capture the required parameters, in order to achieve fault tolerance. To avoid systematic
errors caused by wheel slipping, it is advisable to use a fundamentally different method. Mea-
surements of all sensors are combined in a sensor fusion system to provide the required level of
fault tolerance and increase precision at the same time.

In a sensor fusion system, it is also necessary to have a confidence value that indicates if
the current measurement is likely to be accurate and precise. Methods have been developed
derive such a confidence value from the video stream while calculating the primary movement
parameters.

This work explores and implements several algorithms based on different methods, and com-
pares them for their performance. Not only the accuracy, but also the computational effort are
important parameters. Furthermore, it was investigated if and how it is possible to dynamically
adapt the resulting system to various conditions, for example different speed or the difference
between a asphalted street, cobblestone and a meadow.

As the final result of this thesis, a sensor was implemented as a Robot Operating System
(ROS) module that can easily be reused.

The sensor was tested in different real world conditions with a autonomous research rover
to prove the viability of the implemented sensor.
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CHAPTER 1
Introduction

The research on Autonomous Ground Vehicle (AGV)s is currently an important topic in the
field of Cyper-physical System (CPS)s. This is pretty evident, when looking at the development
roadmaps of distinctive car manufacturers, where autonomously driving cars play an important
role [3], [1], [2], [13]. A wide range of engineering domains are involved, one of them being the
sensing and measuring of motion parameters.

For obvious reasons, autonomous vehicles are safety-critical systems - the failure in the
control of an autonomous vehicle will most likely result in danger to the life of the vehicles
passengers and other traffic participants - and as such, the fault tolerance of all systems involved
in the control of the vehicle plays a major role. The reliability of sensors is of particular interest.
In this work, the focus lies on sensors for movement parameters, in especial speed, acceleration
and yaw rate, which are necessary to determine the movement of a vehicle, to estimate its
position and evaluate safety conditions (e.g. the force on breaks in ABS systems). This task of
ego-motion estimation is in turn a prerequisite for autonomous navigation.

1.1 Motivation

Traditionally, vehicle movement is measured by observing the rotation of the vehicles wheels.
Tachometer and Odometer both work based on this measurement.

A Problem arises, when the wheel’s rotation does not correspond to the vehicle movement
anymore. For example in the case of blocking wheels or when wheel slip occurs. Systematic
errors like this usually can not be detected without the use of distinct method. Thus, it is desirable
to use various fundamentally different methods for measuring the same value at the same time
to achieve fault tolerance.

In this work, an optical system is proposed that works with a monocular camera system
installed on the vehicle, pointing perpendicular to the ground and filming the ground below the
vehicle. Computer Vision algorithms are applied to analyze the video stream by searching for
distinctive features in the image or by overlapping consecutive images and find displacements
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between them. Based on this analysis, the aforementioned movement parameters are calculated.
Potential weaks pots of the developed sensor system will be discussed in more detail in the
course of this work. However, in the spirit of fault tolerance, the goal is not necessarily to find
an alternative method to replace the others, but to utilize different fundamental methods, so that
it is possible that systematic errors of one method can be detected and masked by the other
methods.

Combining different sensors, a practice that is also known as sensor fusion, is not only done
to achieve fault tolerance, but also to achieve better accuracy in general. As an example, imagine
that there are different speed sensors available that each have a different, possibly intersecting,
range within which they are known to work very accurate, and outside these ranges, their accu-
racy is known to decrease. By ’fusing’ them together in a sensor fusion system, the value of the
sensor which, at the current speed, delivers the most accurate value could be weighted stronger
than the value of the other sensors. This approach achieves an accurate measurement over the
whole desired range.

For the use in a sensor fusion system, a secondary parameter besides the primary move-
ment parameters is necessary to expresses the confidence in the correctness and accuracy of a
measurement. In the previous example, this confidence value would be some function of the
measurement itself - if the sensor is known to work good in the range of 0 to 45 km/h for exam-
ple, the confidence value would be high in this range and then decrease when the reading is over
45 km/h. This approach needs prior knowledge about the specific characteristics of the sensors
in use.

Analysis of the camera image can not only be used to calculate the primary movement pa-
rameters. Additional results, like statistical parameters of the current image, are generated in the
process as temporary values, that can be aggregated to reason about the quality of the measure-
ment. A quick example is the number of tracked features in the images if a feature base method
is used. This quality measurement can then be used as a confidence value as additional output
of the sensor.

1.2 Structure of the work
In the next chapter, important concepts like safety-critical systems, fault tolerance, sensor fu-
sion and computer vision will briefly be introduced, with which the reader needs to be familiar
in order to understand the content of this work. Following that, the state-of-the-art will be
presented in Chapter 3.

The main part of this work is described in Chapter 4 and Chapter 5, where the architecture
of the sensor system is developed and documented. Different image processing and estimation
methods are presented, explained and implemented.

Chapter 6 presents the experimental results of the implemented methods with regards to their
performance in different circumstances and compares them with each other.

Finally, the results will be concluded and an outlook for future works is given in Chapter 2.
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CHAPTER 2
Concepts

2.1 Safety-Critical Systems
When talking about safety-critical systems, it is necessary to define whats even meant by safety.
“Safety must be defined in terms of hazards or states of the system that when combined with
certain environmental conditions could lead to a mishap.” ([50]) This definition can then be
extended to a technical system: “Safety-critical systems are those systems whose failure could
result in loss of life, significant property damage, or damage to the environment.” ([45]) Hence,
the consequences of a failure are key criterium for a system to be considered safety-critical.
There are applications that could be considered as traditional safety-critical. For instance avia-
tion, space flight, railway signaling, nuclear power plants or weapons are typical examples where
human lives are potentially at risk. But with the ever expanding use of technical systems in ev-
ery aspect of our daily life, many more of these systems also gain the potential to be considered
safety-critical. In [45], some of these new areas are listed. Examples are telecommunication
systems like the 911 emergency call infrastructure, transportation control and electrical power
generation. “All of these applications are extensively computerized, and computer failure can
and does lead to extensive loss of service with consequent disruption of normal activities. In
some cases, the disruption can be very serious.” ([45])

It is important not to confuse safety with security, even though both concepts are closely
related. Both deal with threats and risks, but while these risks in the former one affect life or
property, the latter risks in the latter one threaten privacy or national security [50].

The automotive industry, where the use of embedded computer systems has seen a rapid
adoption that is still ongoing without foreseeable slowdown, is particularly interesting. Whereas
at the beginning, “the computer applications on board a car are focused on non critical body
eletronics or comfort functions” ([46]), the industry soon adopted an integration of core vehicle
functions like engines, brakes, transmission and suspension “with the goal to increase the vehicle
stability in critical driving maneuvers” ([46]), all of which do have safety implications. One of
the long term goals of this field is to develop self driving cars. A project that is well known to
the public is the Google Autonomous Car [12] [7] [4].
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2.2 Fault Tolerance

In [47], Kopetz starts the chapter about fault tolerance with the following sentence: “Fault
tolerance is important in safety-critical real-time systems because otherwise a single component
failure may lead to a catastrophic system failure.” ([47])

Fault tolerance, which has been defined by Avizienis in 1971 as “the ability to execute spec-
ified algorithms correctly regardless of hardware and program errors” ([15]) is therefore one
of the fundamental concepts when dealing with safety-critical systems to achieve the required
level of safety. The according field of engineering is concerned with the design, specification,
implementation and verification of a system that continues to provide its service and continues
operation properly even in the event of the failure of one or several of its components.

Failure of a system is defined as a deviation of the actual from the intended behavior. Failures
can have diverse manifestations, Figure 2.1 shows a classification of failure.

Failure

Nature Perception Effect Oftenness

Value
Timing

Consistent
Inconsistent

Benign
Malign

Permanent
Transient

Figure 2.1: Classification of failures [48]

This classification takes into account the nature (is a value incorrect or was the value pre-
sented at an incorrect time in a real time system), perception (does every user perceive the same
failure consistent or differently) the effect (does the failure cause an effect in the same order of
magnitude as the utility of the system or can the failure lead to a catastrophe) and the oftenness
(does the failure occur only once, or constantly).

Along with the ever increasing complexity of technical systems as a potential cause of errors,
the hardware itself becomes more vulnerable to faults: “The trends of shrinking device geome-
tries, lower voltages and higher frequencies in modern processors are expected to increase the
rate of intermittent faults” ([73]).

When designing a fault tolerance system, the important parameters are reliability(the prob-
ability, that the system produces a correct output) and safety (the probability, that system either
produces a correct output, or a detectable error). For a systematic approach in the design of a
fault tolerant system, it is important to specify the types of faults that should be tolerated (using
fault models and fault hypothesis) and how the system should be able to detect and recover from
the occurrence of a fault. This specification is later used for the validation and verification of the
system.

2.2.1 Replication vs. Diversity

A key concept to achieving fault tolerance in a system is via redundancy. There are two kinds
of redundancy: replication and diversification. The first one is the replication of critical com-
ponents, where for a given level of redundancy (= the number of replicas), a number of identical
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units are used. A common example is Tripple modular redundancy (TMR), where there are 3
identical replicas of the critical component all work at the same time, and a voter that decides on
the final value [47]. Such a system can tolerate the failure of up to 2 units when they fail silently
or a byzantine ([47]) failure of 1 unit.

The other kind of redundancy is diversification. This means “a large number of implemen-
tation alternatives exist with varying degree of reliability and safety” ([72]). For example when
measuring a physical quantity, different methods are used to avoid systematic errors of a specific
method. This thesis concentrates on diversification by developing a new method to measure
movement parameters, to avoid the systematic errors of currently common methods.

2.3 Sensor Fusion
“Sensor Fusion is the combining of sensory data or data derived from sensory data such that

the resulting information is in some sense better than would be possible when these sources were
used individually.” ([27]) These individual sources are not necessarily required to be identical
sensors, a combination of sensor readings from different sensors is also included in this definition
just as the combination of multiple successive readings from one single sensor is. In the sense
of the above definition, better could mean more accurate or more dependable. In the context of
this thesis, the main goal is better dependability.

There are various algorithms to fuse readings from multiple sensors together, from simple
majority voting and maximum likelihood estimations to Kalman filter [39] and Baysian
Networks [18].

2.4 Computer Vision
The overall goal of Computer Vision is to emulate the humans visual perception system and
to automatically interpret 3D information from 2D images and videos. We as humans are able
to look at a picture of a group of people and count the number of people, identify them and
even read into their emotions with appearent ease. In the picture of a scene, we can distinguish
between different objects, seperate them from the background and have an intuition about their
size and position.

“Perceptual psychologists have spent decades trying to understand how the visual system
works and, even though they can devise optical illusions to tease apart some of its principles, a
complete solution to this puzzle remains elusive” ([69])

The main problem is, that information is lost when the 3D world is projected into a 2D im-
age, yet it is necessary to infer unknown variables from insufficient information. Many times
with ambiguous solutions. The human brain is astoundingly good at finding patterns and recon-
structing the missing information, though ambiguous solutions can also trick the human brain in
the form of optical illusion (see Figure 2.2 for some examples).

Computer Vision consists of tasks on different abstraction levels. Figure 2.3 tries to illustrate
these abstraction levels by means of an example. In the lower level, the image is being processed
(see section 2.4.1 for more details). In this example, it is converted from color to grayscale and
filtered with a gaussian blur. On the analysis level, the image is segmented. The moving cars
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Figure 2.2: Some classical geometric-optical illusions from [33]

are detected and seperated from the background. A green rectangle is drawn around the detected
cars and their movement direction and speed is calculated from a sequence of frames like a
video stream. On the highest abstraction level, the image is described in natural language just
as a human would describe the image to someone else who cant see it: there is a street, two cars
are driving into the same direction. Besides these two cars, there seems to be little traffic. Also
it seems to be winter, because the side of the street is covered with snow.

The term Computer Vision spans over a lot of different tasks, some examples being:

• Recognition: Finding and separating objects in an image, recognizing and categorizing
them. For example face detection and recognition.

• Motion analysis: Methods and applications to process a sequence of images e.g. from a
video, and extracting information from this sequence. Example: Figure 2.3.

• Scene reconstruction: Building a 3D model from a set of images of the scene from
different perspectives or from an image sequence from a moving camera. E.g. Google
Streetview [44], Building Rome in a Day [14]

• Image restoration: The process of removing disturbances and detriments from an image
to recover the original image. [61]

Despite many open problems, Computer Vision is already used in the real worls for real
applications. A long list of application can be found in [69], here’s just an excerpt, an even more
comprehensive list of real world CV applications is given by [51].
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Figure 2.3: Computer Vision: Abstraction Levels

• Optical character recognition (OCR) The process of automatically recognizing printed
or even handwritten characters from a scan or picture. Already used for example for auto-
matic number plate recognition or for receipts, passports, invoices and other documents.

• 3D model building The construction of digital 3D models of objects from a moving cam-
era or multiple viewpoints (stereo vision). Already used for construction of 3D maps from
aerial photographs, for augmented reality applications or autonomous navigation.

• Motion Capture Capturing the natural motion of humans or other things with the use of
retro-reflective markers observed from multiple cameras. The cameras are positioned at
known positions and can precisely calculate the position of the markers in space. Already
used for animations in computer games and movies.

• Surveillance Monitoring peoples movement in public places, automatic analysis from
surveillance cameras or traffic surveillance, for example in combination with ORC: sec-
tion control

• Fingerprint recognition and biometrics For automatic authentication and access con-
troll, even used in todays smartphones.

2.4.1 Related Fields

The field of computer vision is very closely related to the fields of machine vision and image
processing. Other related fields are Mathematics, Statistics, Stochastic, Artificial Intelligence,
Machine Learning, Signal Processing, Imaging, and Neurobiology.
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Figure 2.4: Some image processing operations: (a) original image, (b) blured, (c) sharpened, (d)
smoothed with edge-preserving filter. Taken from [69]

Machine Vision

The boundaries between Computer Vision and Machine Vision are not exactly defined and
there’s a big overlap between these two areas. Simply put, while Computer Vision is about
understanding an image, Machine Vision is ’only’ about recognizing certain things. However,
while Computer Vision is ’just’ about processing an image, starting from the image, the topic of
Machine Vision includes the whole process, starting from a physical object through the design
and implementation of the mechanical, lightning, optical and camera subsystems [17]. The pri-
mary use of Machine Vision methods are for industrial applications where the parameters and
the underlying circumstances of the application are very exactly specified and the system is de-
signed exactly to the requirements of the specific application. Examples are barcode/QR-code
scanning, quality assurance and sorting on conveyer belts or production lines.

Digital Image Processing

In a wide sense, Image Processing is concerned with every kind of signal processing, where the
input is an image or a series of images. It is a term for a range of techniques for manipulating
and modifying images. Examples for Image Processing are the removal of noise, the filtering
of artifacts, edge detection, image compression or image restoration. See Figure 2.4 for some
demonstrations. In practice, almost every Computer Vision application also makes use of Image
processing like linear and non-linear filtering, fourier transforms, image pyramids and wavelets.
This thesis takes place in the intersection of Computer Vision and Image Processing
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CHAPTER 3
State of the Art

3.1 Related Work

3.1.1 Computer Vision Methods

Computer Vision (CV) is a very broad topic. In the following, some CV areas with notable
application for this work will be presented.

Image Stitching

Image Stitching is used to generate seamless panoramic images from single images. Imagine
taking a series of images from a wide landscape similar to the top row of images in Figure 3.1.
These images are then registered to each other by an image registration algorithm. “Image
stitching algorithms take the alignment estimates produced by such registration algorithms and
blend the images in a seamless manner, taking care to deal with potential problems such as blur-
ring or ghosting caused by parallax and scene movement as well as varying image exposures.”
([68]). In this context, registration is the task of transforming different datasets into a common
coordinate system. Datasets may be images from different cameras with different viewpoints,
images taken at different points in time. Datasets can also be more abstract, like visualizations
of extracted features or data from different sensors like depth- or thermal cameras.

Video Stabilization

Video Stabilization is used to correct unsteadiness in a video caused by vibration, bouncing or
other small movements of the camera. There are mechanical systems for video stabilization
based on accelerometers, gyros or mechanical dampers, but such systems are usually not precise
when small, and get really big and bulky with increasing precision [34]. Furthermore, such
mechanical systems are generally too large for application in todays smartphones or upcoming
gadgets like smart glasses or watches.

9



Figure 3.1: Example of Image Stitching. The top row of images are separate images of a
panorama, they are registered to each other, transformed and blended into a single panorama
(bottom image).

The alternative are pure software solutions that work based on image registration algorithms
to correct unwanted movement in images.

Optical Mouse

Optical Mice have to solve the same basic problem in a more constrained setting. “The key
to the optical mouse is a sensor chip that reports motion of visible spots relative to the chip
coordinate system” ([54]). The image sensor is very close to the surface at a fixed distance, and
the surface is constantly illuminated with a self provided light source usually an Light Emitting
Diode (LED) or a laser diode. Only translation is detected. The image sensor of a modern
optical mouse has a very low resolution e.g. 18x18 pixel, but a very high frame rate of up to
1500 Frames per Second (FPS) [64], [55].

Some related works are based on using optical mouse sensors, e.g. [43] or [49].
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3.1.2 Egomotion Estimation

Egomotion Estimation has been an active field of research over the last few years and various
methods have been proposed. In this chapter, some related works based in different methods
will be presented.

Egomotion Estimation is often used for navigation tasks, for example for autonomous vehi-
cles. By continuously updating the estimated position of the vehicle with the relative movement
data from the motion estimation, the position of the vehicle relative to its starting position can
be determined. The problem of passive navigation - “the ability of an autonomous agent to
determine its motion with respect to the environment” ([19]) - is described in [19] as finding two
parameters:

• Heading Direction (HD): the straight line on which the vehicle is moving.

• Time to collision (TTC): the time until the vehicle collides with another object on the
straight line projected by the HD

Odometers, gyros or acceleration sensors are often used to determine the vehicles movement,
but they are not very precise and with incremental position estimation, the error adds up. In [19]
it is claimed, that the task could be performed with visual sensors with lower uncertainty. They
introduce a new method based on 3D motion estimation which is computed from a 2D motion
field from a camera mounted on the vehicle. This 2D motion field is produced by the motion of
the vehicle. This motion is projected to a singular point on the image plane, the so called Focus
of Expansion (FOE) It is explained, that methods for motion estimation often only treat cases
where the rotation is bounded to values where the FOE still is within the Field of View (FOV).
Since even small rotations or camera vibrations could violate this condition, these methods ef-
ficiency in real contexts strongly depends on the angular velocity values. The proposed method
aims to eliminate this restriction by using a “3D motion estimation approach based on approxi-
mating the available 2D motion field with a linear combination of 2D bases functions describing
the projections on the image plane of 3D elementary motion.” ([19])

[49] works on the same premise as this work. They begin with anaysing the problem of
localization that can be further decomposed into absolute or global localization, and relative
localization. They concentrate their work on the latter. They note, that usually wheel based
method, for example with wheel encoders, are used, and that wheel slip or uneven surfaces
could cause errors and poor estimates. Thus, they describe a method that works even in the
presence of wheel slip. The proposed method is based on the use of optical flow sensors, in fact,
they use commercial optical mice as sensors.

If only a single sensor is used, the robots angular movement is lost and a different method
has to be used in addition to measure it. Furthermore, a kinematic constraint is given, that
assumes the center of the robot to move only perpendicular to the wheel axis. If multiple optical
sensors are used, it is either possible to increase accuracy and confidence by feeding the results
of all sensors into a data fusion method, or it allows to remove the kinematic constraint when
the sensors are placed at suitable locations. Following this result, a lot of attention is paid to the
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placement of the sensors on the robot, considering different placements in the case of a single
sensor as well as when using multiple sensors.

Since they use optical mice, which have a very narrow band of operation with regard to the
focal length, they need to place the sensors very close to the ground. In fact, they needed to
apply force to press the mice to the ground. This increased the friction, and therefore the chance
of wheel slipping. Obviously, this fact also renders this method unusable in environments other
than a perfectly flat and smooth surface.

Even though they started out to investigate a very similar problem, they arrived at a solution
specialized to the specific application in small to medium robots that operate indoors. It can be
assumed that their solution is computationally much less demanding than our method, but this
advantage comes at the price of versatility and outdoor applicability. Similar work to [49] was
done by [63] as well.

[43] expands the same approach using multiple optical mice as sensors, positioned in a
triangular, or general polygon array to enable omnidirectional velocity estimation. They focus
heavily on techniques that can be used to estimate velocity from multiple sensors installed in
such an arrangement, and most importantly on how to calibrate such an array of sensors. Since
the installation of sensors is almost certainly not absolutely perfectly aligned with the triangle
or polygon, the resulting accuracy may be degraded significantly. Therefore, calibration with
the help of other sensors, for example wheel encoders, is required. Obviously, calibration has to
be performed in an environment where systematic errors for wheel based methods, like wheel
slipping, do not occur. This method is intended to be simple, efficient and low cost, and the use
in personal service robots is specifically mentioned.

[24] also focuses on the position of multiple optical mouse sensors on a mobile robot, pro-
viding a method to locate N sensors on the robot that works by solving an optimization problem.

The use of all these methods that are based on optical mice are limited to the use in extremely
flat surfaces only found in indoor environments because of limitations of the mouse sensor.

When it comes from indoors applications to cars on real streets, requirements in robustness
increase. Computer Vision in general is already applicable for a variety of tasks, beginning
from already available parking assistance [67], over lane departure warning systems and lane
guidance assistants [25], [76], including meta tasks like detection of free parking spots [38], to
all sorts of sensing tasks in the development of fully autonomous cars [28].

[58] gives an very brief overview of the computer vision algorithms and architectures that
are involved in an autonomous car.

[16] is using a mobile stereo camera setup computing 3D points from the environment and
additionally establishing correspondences between points in successive frames by optical flow
calculation. Using multiple cameras, it is possible to calculate the 3D coordinates of points in
the environment in a passive way - meaning that no additional information is necessary - by
triangulation. The goal is to calculate all six degrees of movement (translation and rotation,
each with 3 parameters in the 3-dimensional space) of a vehicle in typical traffic situations. For
the egomotion estimation, it is necessary to determine the movement of the camera with respect
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to a static scene. In typical traffic situations, there is not only the static scene, but also other self
moving participants that must be excluded from the static scene. This is effectively achieved
by imposing a so called Smoothness Motion Constraint (SMC) based on the assumption that
the frame rate is high enough that the movement between single consecutive frames is very
similar. Then, every correspondence is checked with the previous movement and is rejected, if
the error is greater than a certain threshold. This threshold needs to be chosen in a way, that any
reasonable change in movement between frames is still within the threshold, yet independently
moving objects are rejected. They use a fairly sophisticated model to determine the threshold.
First, the optical flow is computed for the image of the left camera. If the calculation was
successful, the disparities between left and right image are calculated, followed by triangulation.
A list of tracked points with their 3D position is generated in order to allow multi frame motion
estimation, meaning that the estimation is not only based on the current and the previous frame,
but on the sequence of m frames preceding the current one. The aforementioned smoothness
constraint is applied to exclude outliers and the remaining points are used to determine the
motion parameters with a least squares method. The result is an estimation for the 6 motion
parameters, 3 for translation and 3 for rotation in space.

The combination of stereo vision, optical flow, smoothness constraint and multi-frame es-
timation yields very good results in some real life experiments. It is claimed to be better than
odometry and to provide better results than GPS for short travelled distances.

While stereo camera systems, when calibrated, are able to recover 3D coordinates of objects
in the scene via depth perception, this is not directly possible in monocular systems. Still, it is
possible to derive relative motion of the camera by detecting and tracking features and calculat-
ing displacements thereof. Many existing methods for egomotion estimation are based on optical
flow or local image features to establish a spatial relationship between two images, [31] presents
a new method that makes use of the Fourier-Mellin Transform (FMT) for registering images in
a video sequence to then calculate the rotation and translation of the camera motion. The FMT
is an efficient and accurate method for image pairs where the assumption of rigid transformation
between two images holds. That is, that the distortions due to perspective projection are not too
large. A camera mounted at the front of the vehicle is used, pointing to the ground at a certain
angle. The tilt of the camera with respect to the ground plane needs to be rectified before con-
tinuing with the calculation, which is no problem since the mounting parameters (distance to the
ground and the angles) are known beforehand. Furthermore, a similar smoothness constraint is
applied similar to the method in [16].

In their experiments, they tried different window functions in order “to remove antialiasing
effects introduced by the log-polar representation of the FMT” ([31]). They found a Kaiser
window to work best.

Comparisons of the FMT method with a correlation based optical flow method and with
a SIFT-feature based method are presented, and the biggest differences between the methods
seems to be the amount of rotation recovered. Unfortunately, they have not compared the com-
putational performance of the different methods.

In [41], an ego-motion estimation technique is presented that works much simpler than the
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previously presented publications. They focus on high computational performance to achieve
computation at very high framerates and low latency. One of the potential applications men-
tioned, besides robot movement, is human head tracking, for example for usage in virtual reality
headsets. In this application, very low latency is crucial and in fact more important than ab-
solute accuracy. More generally, motion capturing is considered, where there are two principal
approaches. In the first one, a specific area is equipped with cameras that are set up and calibrated
to track multiple markers in the 3D room that is monitored. The problem with this approach is,
that the area is limited and the setup and calibration are long-winded tasks. The alternative is
mounting cameras on the subject and estimating the position inside out like, e.g., the Wii Re-
mote does. Still, these systems usually require markers placed in the area to be sensed by the
camera and this limits the space yet again. Kato proposes an algorithm that works as cameras on
the body technique that doesn’t require markers and needs low computational power to achieve
a high update rate and a low latency.

Basically, their method works by calculating intensity averages for each row and each col-
umn of the image and then determining the x- and y offset by calculating the correlation with the
previous row- and column arrays. Obviously, this method requires very little calculation and can
therefore be performed really fast. They claim to have reached 714 FPS with their experimental
setup on an Intel Core2 Duo with 2.80GHz. This benchmark only includes the calculation, since
they had no camera that could operate on such high frame rates. Also, results varied widely
between x- and y-axis, most likely because the images are not square and the length of the row-
and column array are therefore different.

Obviously, this method can only calculate movement in x- and y-direction. Rotation can not
be detected, but it is very simple and efficient, and seems to be well suited for tasks like head
tracking on a Head-mounted Display (HMD) where high update rate and low latency is more
important than precision.

3.2 Motion Detection

State-of-the-art are systems that work with odometry data or dead reckoning based on wheel
rotation. Odometry data is gathered based on the rotation of the wheels of a vehicle via rotary
encoders. When the vehicle moves, the wheels and therefore the rotary encoders turn by an
amount which is directly correlated with the distance the vehicle has traveled. Problems arise,
when this direct correlation is violated, for example when wheel slip occurs. In such a situation,
the sensor readings will be wrong. Alternatives are GPS or inertia sensors, all of them with a
different set of advantages and disadvantages. GPS does not suffer from wheel slip because it
is able to determine the absolute position of the vehicle. However, GPS is only accurate to a
range of a few meters (the GPS signal in space is guaranteed to provide a worst case pseudo-
range accuracy of 7.8 meter at 95% confidence level, [71]), which is not good enough for most
applications. Even worse, its use is limited to outdoors with line-of-sight to at least 4 satellites.
In urban environment (canyon effect), tunnels or indoors, the service performance degrades or
ceases to work at all. Inertial sensors like gyros do not suffer from wheel slip as well, but they
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are not precise enough, and incremental error sums up over time. Additionaly, they often have
to be re-calibrated.

3.3 OpenCV

“OpenCV (Open Source Computer Vision Library) is an open source computer vision and
machine learning software library. OpenCV was built to provide a common infrastructure for
computer vision applications and to accelerate the use of machine perception in commercial
products. Being a BSD-licensed product, OpenCV makes it easy for businesses to utilize and
modify the code.” ([8])

The development of OpenCV was started by Intel in 1999 and was later continued by Willow
Garage in 2008 ([30]) where it is currently in active development. It is available for a wide range
of platforms and operating systems, including Windows, Linux, Mac OS as well as for mobile
Platforms like iOS and Android. The Library is written in C++ (and still contains some legacy
C), but interfaces are available for a lot of programming languages, including Python, Java or
Matlab as well as wrappers for additional ones like C# or Ruby.

“The library has more than 2500 optimized algorithms, which includes a comprehensive set
of both classic and state-of-the-art computer vision and machine learning algorithms. These
algorithms can be used to detect and recognize faces, identify objects, classify human actions in
videos, track camera movements, track moving objects, extract 3D models of objects, produce
3D point clouds from stereo cameras, stitch images together to produce a high resolution image
of an entire scene, find similar images from an image database, remove red eyes from images
taken using flash, follow eye movements, recognize scenery and establish markers to overlay it
with augmented reality, etc.” ([8])

Thanks to its release under a BSD license it is free for the use in academic as well as in
commercial use and is in fact used by many major companies like Google, Yahoo, Microsoft,
Intel, IBM, Sony, Honda or Toyota [8]

3.4 Robot Operating System

In general, the acronym ROS stands for Robot Operating System and describes a collection of
tools for the specific purpose of controlling the hardware of a robot:

“A robot operating system (ROS) is similar to that of an operating system on a personal
computer, in that it comprises a collection of programs which offer control to a user. In the case
of a ROS however, these programs allow a user to control the mobile operations of a robot rather
than applications on a computer.” ([42])

In [42], 16 different ROS’s were analyzed with the goal to find a suitable system as a teaching
tool in their classroom for students with limited programming experience. While the details of
their research is of limited interest for this work, it serves as an example for the wide range of
ROS’s that exist.

In the context of this work however, the term ROS always references one specific system
that goes by the that exact name.
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The Robot Operatiing System (ROS) [11][59] is a flexible software framework as well as
a collection of libraries for creating robot applications. In [59], the philosophical goals of ROS
are summarized to be

• Peer-to-peer

• Tools-based

• Multi-lingual

• Thin

• Free and Open-Source

The fundamental concepts in ROS are the nodes, messages, topics and services.

Nodes

In the context of ROS, the term node is synonym to the term software module. A modular system
can consist of many nodes where each node is a closed process of computation, while nodes can
communicate with each other via messages and services.

“Our use of the term “node” arises from visualizations of ROS- based systems at runtime:
when many nodes are running, it is convenient to render the peer-to-peer communications as a
graph, with processes as graph nodes and the peer-to-peer links as arcs.” ([59])

Figure 3.2 shows an example of a ROS-graph, gscam_publisher, rostopic_5688_1397667160639
and sensor are 3 nodes in this graph.

Topics

In order to organize messages in a meaningful way, they are always published for a specific
topic. A topic is just a name that gives additional semantic to a message, examples of topics
could be camera, localization, sensor or movement. Nodes can publish to several topics, and
several nodes can publish to the same topic. Conversely, a node can subscribe several topics,
and several nodes can subscribe to the same topic. Publishers and subscribers do not know of
each others existence, let alone about details of their implementation. The utilized Publish-
and Subscribe therefore helps to decouple nodes and abstract away from their implementation
details.

In the example ROS-graph in Figure 3.2 camera is a topic with one published message-
type image_raw. The node gscam_publisher publishes this topic, and the two nodes ros-
topic_5688_1397667160639 and sensor subscribe this topic.

Messages

To communicate with each other, nodes send messages to each other. The process of message
passing is provided directly by the ROS core, so nodes only need to publish messages and sub-
scribe to topics to receive messages. The structure of a message is declared in an implementation
unspecific format and can contain simple datatypes like integers and floats as well as arrays and
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Figure 3.2: ROS-Graph example

string first_name
string last_name
uint8 age
uint32 score

int64 a
int64 b
---
int64 sum

Figure 3.3: Declaration of a ROS message (left) and a ROSservice (right)

even other messages. An example of such a declaration can be seen in Figure 3.3. The mes-
sage generation tool from the ROS toolset generates the specific message in whatever language
necessary from the declaration.

Services

There are use-cases, where the broadcast scheme of the Publish- and Subscribe architecture
is not appropriate and a tighter, synchronous communication is needed. For these use-cases,
ROS provides the concept of a service. A service is declared similar to a message, but in this
case, two message structures are declared: one for the request and one for the response. Just
as for a message, the message generation tool generates the specific service-messages from this
declaration for which an example is given in Figure 3.3. In contrast to topics, only one node can
advertise a specific service at a time.

3.5 Image Processing Concepts
The basic problem is known as the Image Registration problem. It has to do with the task of
matching two or more images from a single scene taken either from a different viewpoint or at
different times and geometrically align them. “The goal of registration is to establish geometric
correspondence between the images so that they may be transformed, compared and analyzed
in a common reference frame” ([75]). These images could also come from different sensors like
a depth-map or a heath image from a thermal camera. In the concrete case of this work, image
registration is used to determine the motion of an object (the vehicle) from a set of images
that show the floor below the object. Consecutive images are registered to each other and the
geometrical transformation, especially translation and rotation, between them is used to reason
about the motion of the object.

In [32], a large survey of different image registration techniques can be found. This section
will describe general considerations about the necessary image processing on a higher level.
Concrete methods will be presented in section 3.6.
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3.5.1 Geometric Transformations

Figure 3.4: Illustration of image transforms [69]

Considered are only transformations on the 2D plane. Figure 3.4 displays these transforma-
tions with an example image. There is an inherent order to these transformations with increasing
number of Degrees of Freedom (DOF), that means with increasing number of parameters. Start-
ing from the most simple one, translation(which is just a shift of the image in x- and y direction),
each transformation contains the image changes of all previous transformation plus additional
changes. Therefore, an rigid (or Euclidean) transform consists of translation plus rotation of the
original image. The similarity transform adds a change in scale, the affine transformation adds
shearing and the projective transformation finally adds a perspective distortion. Similarly, there
is a number of properties of the original image preserved by the transformation. For these, the
highest order transform preserves the least number of properties (i.e. the projective transform
only preserves straight lines) and in decreasing order, each next transformation preserves all the
previous properties plus an additional one. Table 3.1 shows a summary of the transformations
with their preserved properties.

This table also indicates the necessary size of the transformation matrix to represent the
according transformation.

When working with transformations on 2D-images, image points are usually converted to
homogeneous coordinates. Every coordinate (x, y) can be converted to a homogeneous coordi-
nate x1, x2, x3 where x =

x1
x3

and y =

x2
x3

.
In this representation, the effect of a transformation can be calculated by multiplying the

source point with the transformation matrix:

0

@
x
y
1

1

A · [ H ]3x3 =

0

@
x0

y0

1

1

A

For this, the transformation matrix needs to be of size 3x3. Each 2x3 matrix in Table 3.1 can
be extended to a full homogeneous transformation matrix by appending a third row with [ 0 0 1 ].

Chapter 3.6 in [69] goes more into detail about geometric transforms of images.
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Transformation Matrix #DOF Preserves
translation [ I | t ]2x3 2 orientation
rigid (Euclidean) [ R | t ]2x3 3 lengths
similarity [ sR | t ]2x3 4 angles
affine [ A ]2x3 6 parallelism
projective [

˜H ]3x3 8 straight lines

Table 3.1: Hierarchy of geometric transformation from [69]. Each transformation preserves all
the properties of the lines below, so e.g. the affine transformation preserves parallelism and
straight lines, while the similarity transform also preserves angles.

3.5.2 Image Pyramids

An Image Pyramid is a multi-scale representation of an image constructed from that image and
several downscaled copies thereof, arranged in levels with each level being of lower resolution
than the next higher level. Figure 3.5 displays the concept of image pyramids with an example.

Level 9: 512x512

Level 1: 2x2

Level 2: 4x4

Level 3: 8x8

coarse

fine

Figure 3.5: Traditional image pyramid where each level has 1/2 the resolution and therefore 1/4
of the size of its prior level.

There are different ways to construct specific pyramids, like gaussian pyramides [65],
laplacian pyramids [22] or more complex forms like the scale space consisting of sub-octave
gaussian and Difference of Gaussian (DoG) levels used in Scale Invariant Feature Transform
(SIFT) [52]. These methods differ mostly in the way the downscaling between image levels is
performed.

Pyramids are commonly used for scale invariant algorithms like the aforementioned SIFT-
algorithm, where, basically, the scale of a feature is given by the level of the pyramid on which
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it was detected. Another common application of pyramids is to “accelerate coarse-to-fine search
algorithms” ([69]).

The latter one is the application that is useful for improving the performance of an algo-
rithm based on an error metric (i.e. any kind of function that determines, how different two
images are, taking into account their relative orientation to each other. Common error metrics
are Normalized Cross-Correlation (NCC) or Sum of Square Differences (SSD), performed on
grayscale versions of the images. The goal is to find an relative alignment of the images, where
the error is minimal). The algorithm starts on the coarsest scale and aligns the image as good
as possible. Because the resolution is low, the number of possible alignments that have to be
tried is low. When the best alignment is found, the procedure is repeated on the next finer scale
of the pyramid, where the previously found alignment is used as initial position, and the search
range is limited by the scale factor between the levels. Not only the number of positions that
have to be tried is much lower compared to the version without image pyramid, but also the total
number of pixels that have to be taken into account for the calculation of the error is reduced by
mainly on downscaled versions of the original image. On the other hand, the construction of the
pyramid, especially downscaling between levels introduces additional computational overhead,
though this is usually negligible when compared to the savings.

3.5.3 Rotation

It was mentioned before that the possibility of rotation already increases the complexity of the
image registration problem significantly. As long as only translation is allowed, it is still feasible
to simply ’guess and check’ by overlaying both frames and calculating the error, repeat this for
every possible offset by shifting the images relatively to each other on the x- and y axis and then
take the relative orientation with the best match or lowest error. This process can be optimized
by the use of Image Pyramids as described in subsection 3.5.2.

However, as soon as rotation is allowed, the number of possible configurations that have to
be checked simply becomes to large to be feasibly solved by such a naive approach. Therefore,
a more efficient method is needed.

Polar Transform

Usually, an image is presented in a two dimensional spacial domain over x and y which repre-
sent a coordinate on a scale corresponding to the width and the height of an image in cartesian
coordinates. The same spacial image can also be represented in polar coordinates. This repre-
sentation brings some special properties. One of them being the fact that rotation of the image
in cartesian domain is transformed to a pure translation on the '-axis in polar coordinates. This
property makes it possible to apply methods that can only detect translation on the transformed
image in order to find the rotation.

To calculate the transformation, for every point (x, y) the polar coordinate (r,') can be
calculated with the following formulas:

r =

p
(x� x

c

)

2
+ (y � y

c

)

2
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Figure 3.6: Illustration of the transformation from cartesian image coordinates to polar coordi-
nates.
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where (x
c

, y
c

) is the center point of the transformation which can be chosen arbitrarily. Fig-
ure 3.7 shows the effect of choosing different center points.

Note that both, r and ' are unlikely to result in integers which would be required to rep-
resent the result again in an image. To correct this, interpolation has to be used. Figure 3.6
visualizes the process of polar-transformation and Figure 3.7 illustrates the transformation with
a real example image.

An extension of the polar transform is the Log-Polar Transform (LTP) which is described
and used in [62] and [75]. In the LTP, the logarithm of the radius is used which results in a
change of the coordinates (r,') = (log(r),') and brings the advantage, that a change in scale
of the cartesian image is mapped to a translation along the r-axis in log-polar representation and
thus can be detected just as easily as rotation and translation. However, in the scope of this work,
change in scale is not of further interest.

There’s one caveat to the method of using polar-transformed images though: the center of
the rotation has to be known beforehand. In principle, it would be possible to configure that
based on the position of the sensor on the vehicle, but theory rotational center of a vehicle is
not constant and depends on the steering angle. Figure 3.8 illustrates this with the example of
a car that turns with two different steering angles. Both cars turn on concentric circles around
the same center which is far outside of the images. The radius r1 of the left car is smaller than
the radius r2 of the middle car. Therefore the rotation center, relative to the car, is located at a
different distance depending on the steering angle.

Theoretically, it would be possible to read out the position of the steering wheel and calculate
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Figure 3.7: Polar-Transform of an image. Y-Axis is radius and X-Axis is angle. Top left is
the original image, top right is the polar transformed image with center in the middle of the
original inmage. Bottom left has the transformation center at the left border of the original
image (vertically centered) and bottom right has the center even further outside of the original
image.

the rotation center based on that position. This could work as long as the vehicle is moving
normally. The car on the right is drifting on a circle with radius r3. In this scenario, the radius
does not correspond with the steering angle anymore. Even worse, the line from the car to
the center of the rotation is not perpendicular anymore, which is hinted by the short-dashed
line. Albeit, it could be defined that the measurement is not required to be perfectly accurate in
such an unusual case. Wheel based methods would work even worse in such a case because of
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r1 r2 r3

φ

Figure 3.8: Illustration of rotation center with different steering angles. The car in the left image
has a steeper steering angle than the car in the middle,. Therefore the turning radius r1 is smaller
than the radius r2 of the middle car. The car on the right is drifting on a circle with radius r3. In
that case, the rotation-center does not correspond with the position of the steering wheels.

spinning wheels. Another problem is also already hinted in Figure 3.8. The radius from the car
to the rotational center can become very large, especially for small steering angles. But still, for
the maximum rate at which a car can turn, the rotation center lies well outside of the image. The
bottom examples in Figure 3.7 show the effect of a center at the edge of the image or outside: a
large portion of the resulting image is simply black while the original image is compressed into
a small portion of the transformed image. This could be solved by not transforming the whole
range from 0  '  2⇧ and 0  r  rmax, but rather only the range where the original image
is located 0  'min  '  'max  2⇧ and 0  rmin  r  rmax.

3.5.4 Lense Distortion and Camera Calibration

Due to imperfect lenses, most cameras do not exactly produce a linear projection. This unwanted
nonlinearity results in a distortion in the produced image that either pushes image points further
away from the image center (barrel distortion, Figure 3.9b) or pulls them towards the image
center (pincushion distortion, Figure 3.9c) by an amount proportional to their distance from the
image center [69].

This radial distortion results in straight lines not appearing as straight lines in the produced
image. This reduces the quality of measurements.
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a) No Distortion b) Barrel c) Pincushion

Figure 3.9: Examples of radial distortion

It is possible to correct this distortion separately. This process is described in [69] in chapter
2.1.6. In order to perform the correction process, the distortion parameters need to be determined
first, which can be done by a camera calibration process. There has been a lot of research on
the topic of camera calibration ([23], [77], [66]). The approach that has been used for the
implementation is described in Section 5.4.

3.6 Image Processing Algorithms

The image registration problem presented in the previous section can be found in a broad variety
of practical problems from panoramic image stitching to video stabilization and thus, a variety
of algorithms to solve the problems exists. According to [62], they can be classified into two
categories. The first class consists of intensity based methods where the whole image is used to
calculate the transformation based on intensity values of each pixel. The other class are feature
based methods. Here, images are first analyzed and points of interests (also called features) are
calculated. In the next step, only these features are used to calculate the mapping.

This section presents some algorithms of both classes that have been implemented. These
implementations have been tested in experiments to compare them and to find, which ones pro-
duce the best results for certain scenarios, these results can be found in chapter 6.

3.6.1 Histogram

This is one of the simplest possible methods which is also computationally very cheap. It is
presented in [41] as a method for ego motion estimation. Specifically mentioned applications
are human head tracking and robot movement.

Given the n-th image in a sequence with X rows and Y columns, the method works by
first converting the image into grayscale. This conversion results in exactly one intensity value
for each pixel that can then be normalized to the range 0...1. These intensity values are then
summed up for each row and each column as is demonstrated in Figure 3.10.

Rn[y] =
XX

x=0

I
n

(x, y)
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Figure 3.10: Intensity Averaging Algorithm
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... n-th image, Rn(y)... Sum of Row y, Cn(x)... Sum of Column x

Rn and Cn are vectors with length equal to the width and height of the image I respec-
tively, containing the column- and row intensity averages for the n-th image. These vectors can
be compared with their corresponding counterparts from the previous frame by calculating the
cross-correlations between the n-th and the (n� 1)-th frame:
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with Rn and Cn being the mean of Rn and Cn, and sR
n

and sC
n

being the standard deviations
of Rn and Cn respectively.

The offset between frame n � 1 and n can then be found by searching for the index of the
maximum max(r

row

) and max(r
col

). The parameter j can range from �X to X and �Y to
Y respectively. Since the index (i � j) could potentially be outside of the array, it is important
to define how to deal with these cases. One possibility is to simply ignore these cases and only
include terms in the sum where the index is within the bounds. Another way is to take the last
valid value.

C(x) =

8
><

>:

C(x) 0  x  X

C(0) x  0

C(X) x � X

The biggest advantage of this method is, that it is computationally very cheap compared to
the following methods. Its results are expected to be reasonably good for images with irregular

25



ï��
ï��

�
��

��

ï��

ï��

�

��

��
���

���

���

���

���

���

���

�

Correlation

Center2IIVHW� ������ï�

Figure 3.11: Example of correlation between the top left and bottom left image. The bottom
image is a copy of the top image, shifted by an offset of (10px, -5px).

distinctive structure. However, when the texture is smooth and homogeneous, the row- and
column histogram may become uniform and thus, it is not possible to calculate reliable results
in such cases.

3.6.2 Error Metric Based

This method takes one image I(x, y) and a template t(x, y). In the context of this thesis, the
template will be the current (n-th) frame and the image will be the previous ((n� 1)-th) frame.
The template is laid over the image and for every possible alignment and the error is calculated.
Finally, the alignment with the minimal error is selected. In general, any error metric could be
used, for example SSD, but cross-correlation or more specific NCC are most commonly used.

In [20], the formula for calculating the NCC is given for an image I of size M
x

⇥M
y

and
template t of size N

x

⇥N
y

with

�(u, y) =

P
x,y

(I(x, y)� I
u,v

) · (t(x� u, y � v)� t)
qP

x,y

(I(x, y)� I
u,v

)

2
P

x,y

(t(x� u, y � v)� t)2

where I(x, y) and t(x, y) are the intensity values of the image I and template t at position (x, y)
and �(u, v) is the value of the NCC at position (u, v). “Furthermore, I

u,v

denotes the mean
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value of I(x, y) in the area of the template t shifted to (u, v) which is caulcuated by” ([20])

I
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t is the mean of the template t and can be calculated in a similar way.
In the context of this work, image I and template t are two consecutive image frames, and

therefore M
x

= N
x

and M
y

= N
y

.
To find the translation between these two images, it is again necessary to find the indices

(u
max

, v
max

) where �(u, v) is maximal. Figure 3.11 shows an example. The function value
�(u, v) is plotted for the NCC between the two images on the left, where the bottom image is
just a shifted version of the top one. The peak denotes the value where the NCC is maximal and
its offset from the center is equivalent to the translation between these images.

Obviously, this method is computationally more expensive than the histogram approach from
the previous section. Image Pyramids (subsection 3.5.2) are often used to reduce the number
of necessary calculations.

The precision of this method is expected to be much higher than the previously presented
histogram method. It should even be possible to detect translations in fine textured images.
However, [68] mentions, that the NCC is undefined for two images with zero variance and in
general, “its performance degrades for noisy low-contrast regions” ([68]).

3.6.3 Phase Correlation

In its essence, an image is a set of intensity samples on a two dimensional plane. If these
samples are interpreted as samples of a function f(x, y), this function can also be transformed
from the spatial domain into spectral domain. Even though the signal in the spatial domain is
not a function of time, the spectrum is usually called frequency domain.

“Translation, rotation, and scale all have their counterpart in the Fourier Domain. Fourier
methods differ from other registration strategies because they search for the optimal match ac-
cording to information in the frequency domain” ([60]).

The advantage of using the frequency domain is, that it is possible to achieve much better
resistance against noise than in the spatial domain [62].

The phase correlation method relies on the shift property of the Fourier transform. If an
image f2 is just a shifted version of image f1

f2(x, y) = f1(x� x0, y � y0)

with displacement (x0, y0), then their Fourier transforms F1 and F2 are related by
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This means, that the spectrum F2 is just a phase-shifted version of the spectrum F1 with the
same magnitude. According to the shift theorem the phase difference can be expressed as
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Figure 3.12: Example of phase correlation between the top left and bottom left image. The
bottom image is a copy of the top image, shifted by an offset of (10px, -5px).

where ⇤ is the complex conjugate [60], [62]. This phase difference can be transformed back
into the spatial domain with the inverse Fourier transform which will result in an image which
isapproximately zero and only has one impulse located at a position that corresponds to the
displace x0, y0 of the images. Therefore, this displacement can be found by determining the
position of the peak in the resulting image.

Figure 3.12 shows an example of the phase correlation applied to the two images on the left,
where once again, the bottom left image is a shifted version of the top left image. The right
image shows the result of the process that was explained before where a peak at the position of
the offset can be seen. In comparison to the correlation of the same images in Figure 3.11, the
peak in the phase correlation is much clearer with a much sharper peak and a larger distance
from the peak to the surrounding values.

Later in subsection 4.5.2 it will been claimed that the accuracy of algorithms is limited
by the resolution of the camera or more specific by the physical size of pixels in the image.
However, this is not always true as [29] presents an extension to the phase correlation algorithm
that achieves even sub-pixel accuracy.

3.6.4 FMT

Another method operating in the frequency domain is the FMT. In contrast to the phase corre-
lation, the FMT can also calculate the rotation and even scale.

Additionally to the Fourier shift property that was used for the phase correlation, the rota-
tion property needs to be addressed:
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so now, the magnitudes of F1 and F2 are not equal anymore, but
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This relation shows, that the magnitude of F2 is a rotated version of the magnitude of F1

[60].
A difference in scale is related by the Fourier scale property. But since scale is not consid-

ered in the scope of this work, it is not further mentioned here. Details about scale calculation
can be found in [60].

Because the phase spectrum is not affected by the rotation, the translation can still be calcu-
lated from the phase spectrum via phase correlation.

In [60], the rotation of the magnitude spectrum is calculated in a few additional steps, all of
them are already familiar at this point:

1. Transform the magnitude spectra into polar (or log-polar, if scale is also considered) rep-
resentation. As explained in section 3.5.3, the rotation in the magnitude spectra is now
transformed to a translation in the polar magnitude spectra

2. Calculate the polar translation via phase correlation on the polar magnitude spectra

3. Calculate the rotation of the original images from the polar translation.

The problem with this method is the same that was already mentioned in section 3.5.3: the
center of rotation needs to be known for the polar transform. Nonetheless, this method has been
used for visual vehicle egomotion estimation in [31]. More details about the similarities and
differences of their work to this one can be found in subsection 3.1.2.

3.6.5 Feature based

All previously mentioned methods belong to the class of intensity based methods where all
pixels in the images are used for calculation. In contrast, feature based methods first extract
features from the images and then work with them.

The basic steps are usually the same

• Feature Detection: search for stable features that can be found and identified in other
images as well with high probability.

• Feature Description: in preparation for the next step, every detected feature has to be
described in a way that allows it to compare features and to recognize the same feature in
different images.

• Feature Matching: for every feature in an image, try to find the same feature in the other
image and establish a relation.

• Transformation Estimation: from the correspondences, a transformation that maps the
points in one image to their corresponding points in the second image is estimated. (see
section 4.2)
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Figure 3.13: An example of feature matching, the right image is a rotated and translated version
of the left one. The threshold for the descriptor distance is set very low to only include very
good matches, thus reducing the number of features for better visibility

Features (also called keypoints or points of interest) in a general computer vision context
can be “significant regions (forests, lakes, fields), lines (region boundaries, coastlines, roads,
rivers) or points (region corners, line intersections, points on curves with high curvature)” ([78]).
In the context of this work, mostly points are relevant.

As of today, there are numerous feature detection algorithms available, starting from the
early Moravec corner detection [57], the classic Harris Corner Detector [35] to mordern meth-
ods like SIFT [52]. An extensive overview can be found in [70].

One important characteristic of a feature detection algorithm is the repeatability and it is
invariance to geometric transforms. For example, rotation invariance means, that the same
feature can be found even in a rotated version of the image, which is an important characteristic
in the context of this work, whereas scale invariance - the ability to detect the same feature at a
different scale is not so important.

The detected features in the reference image have to be matched against the detected features
in the other image. In order to be able to identify a feature and match it against another one,
features have to be described in some way. This is done via a so called descriptor. For images
that are only related by translation, simple error metrics like SSD or NCC of the pixel-intensity
values can be used on small image patches around the feature [69], [56]. However, in most cases
there will be additional transformation, like rotation or even perspective distortions. To still be
able to match features, more robust descriptors need to be used, for example MOPS [21] or SIFT
[52], or one of the many more that can be found in [69] and [70].

Next, the features need to be matched to find correspondences and once again, there is a
wide range of possible solutions. Szeliski further divides this step into two separate components.
“The first is to select a matching strategy, which determines which correspondences are passed

30



on to the next stage for further processing. The second is to devise efficient data structures and
algorithms to perform this matching as quickly as possible.” ([69]). If the feature descriptor is
designed appropriately and is represented as vector, the euclidean distance between two features
can directly be used to rate the matching between features. Due to the transformation, it is
possible that not every feature from the reference image is visible in the other image as well.
Thus it is not guaranteed that every feature has a match, and due to noise and imperfections
in the descriptor, features might be matched wrongly. The most easy way to deal with this is
to take the closest match for every feature, but define a threshold and discard matches where
the distance between descriptors exceeds that threshold. In Figure 3.13, a matching of features
from one image to a rotated and translated version of the same image is demonstrated. For more
elaborate methods, have a look at [69], [70] or [78].

The final step, called transformation estimation, is not different from the other algorithms
presented in this section and is described in section 4.2.

3.6.6 Optical Flow

According to [69], optical flow is the most general version of motion estimation where motion
estimates are computed for each pixel to create a dense motion field. There are local methods
based on image patches that usually involve Taylor series expansion of the image displacement
function

E
LK�SSD

(u+�u) =
X

i

[J1(xi + u)�u+ e
i

]

2

where
J1(xi + u) = rI1(xi + u) = (

�I1
�x

,
�I1
�y

)(xi + u)

is the image gradient or Jacobian at (xi + u) and

e
i

= I1(xi + u)� I0(xi)

is the current intensity error [69]. An example of this method is the Lucas-Kanade method
presented in [53]. Alternatively, there are also methods that work globally by trying to minimize
a global energy function, a classic example being the method of Horn and Schunck [37]. In
[74] both, local and global methods are combined to calculate dense motion fields that are more
robust against noise.

An example of an application of the optical flow method is displayed in Figure 3.14, where
two consecutive frames of a traffic surveillance camera are displayed. The cars have continued
their motion between the frames, the bottom left shows the movement of pixels in a color coded
way, where the color represents the direction and the saturation the velocity. The bottom right
image explicitly displays arrows for movement vectors.
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Figure 3.14: Examples of Optical Flow. The top left and right image are two consecutive frames
of a video with moving cars. The bottom left image shows the optical flow with color coded
movement directions. The bottom right image shows a similar scene where the optical flow is
visualized with vectors.
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CHAPTER 4
Optical Motion Detection Framework

4.1 Overview

The goal of this work was to construct a motion sensor based on visual methods as an alternative
approach to traditional speed sensors that are based on wheel rotation. The use of different
methods is motivated by the desire to avoid systematic errors of a particular method by using
several diverse methods as explained in subsection 2.2.1. In the case of wheel based sensors,
the systematic error that should be avoided is wheel slippage, which results in situations where
the wheel rotation does not correspond correctly with the actual speed of the vehicle. A flat
tire would be another scenario in which wheel base methods fail by delivering wrong sensor
readings.

The new system consists of a video camera mounted on the vehicle for which the motion
should be measured, pointing perpendicular to the ground, and a processing unit, executing a
suitable algorithm which is part of this work as well. While the vehicle is moving, the camera
produces a video stream of the ground over which the vehicle is moving, consisting of a sequence
of single image frames. Every pair of consecutive images is related with its predecessor and
successor via a transformation determined by the change in position or viewpoint from where the
image is taken. Thus by the position of the vehicle in space. As long as these image frames have
sufficient overlap, it is possible to calculate this transformation between consecutive images,
and consequently to conclude the difference in position from where they have been taken. This
problem is usually referred to as image registration [75]. From this difference in position, the
movement speed and direction of the vehicle can be concluded, as well as the derived values
such as acceleration and turning rates.

An image based sensor can furthermore produce additional measurements exceeding the
possibilities of a wheel based method, like confidence values from analysis of the surface in the
image. These analysis results could be used to adapt the method to the current circumstances as
well. These aspects will be explained in more detail later in this chapter.
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Rotation from multiple correspondences

If the camera is allowed to move freely around, the transformation between frames can be-
come of high order (see Table 3.1) and the solution of the image registration problem becomes
quite hard. By mounting the camera to the vehicle in a fixed known distance from the ground
pointing perpendicular at the ground, the transformation order is restricted. To be precise, only
translation in x- and y direction and rotation are allowed which corresponds to an euclidean
transform. This limitation simplifies the problem of finding the transformation, though the ad-
dition of possible rotation already poses a significant increase in complexity compared to other
similar problems like video stabilization (see Section 3.1.1) or optical mouse (See section 3.1.1).

Figure 4.1: Basic concept of using multiple image patches / tiles for image registration

The proposed system solves the rotation problem with an alternative approach. Many corre-
spondences of the form ((x, y), (x0, y0)), where both points (x, y) and (x0, y0) denote the same
point in different images, are calculated. A transformation can be derived from these correspon-
dences. Figure 4.1 illustrates the principal idea of dividing the image into patches or tiles and
calculating the translation for each patch separately. The region of the patch in the original image
will be called Region of Interest (ROI) in this work. The arrows indicate the movement of each
local patch. Looking at the image as a whole, the arrows already suggest a global transformation
including rotation around a center that lies outside of the image to the left. What the human
brain does intuitively from such a set of arrows can also be calculated formally. The necessary
mathematical models are presented in Section 4.2.

If the tiles are relatively small compared to the amount of change caused by the rotation, it
is possible to use methods that only detect translation without their result being distorted by the
rotation. This opens up the possibility to use methods that are simpler and can be performed
with less computational effort. Moreover, since it is not necessary that the tiles cover the whole
image, the number of pixels for the calculation could further be reduced.

Alternatively, some methods inherently produce point correspondences as output like for
example feature based methods or optical flow calculation.
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input : An image frame
output: Movement parameters

1 for ever do
2 frame getFrame();
3 rois splitIntoRois(frame);
4 foreach (roi,previousRoi)in (rois, previousRois) do
5 // Actually, not every tuple (roi, previousRoi) is enumerated, only every pair of

corresponding ROIs;
6 roiTranslations.append(calculateTranslation(roi, previousRoi));
7 end
8 previousRois rois;
9 movementParameters calculateMovementFromROIS(roiTranslations);

10 confidence calculateConfidenceFromROIS(roiTranslations);
11 publishResult(movementParameters, confidence);
12 end

Algorithm 4.1: High-Level description of main runloop

Sensor Architecture

The architecture of the sensor is based around the method of using multiple correspondences.
Image frames that are sent from the camera to the sensor are segmented into several ROIs. For
each ROI correspondence is calculated with one of the implemented image processing algo-
rithms from Section 3.6. From these correspondences, the homography is calculated as well as
a confidence value.

Algorithm 4.1 shows a high level description of the main calculation loop. For each frame,
one iteration of the loop has to be performed, producing one measurement for each frame. The
single steps can be separated relatively easily as long as their interfaces are well defined and
stable. Especially, the calculation for a single ROI in line 6, the movement calculation in line
9 and the confidence calculation in line 10 are eligible for separation which allows to exchange
and combine different methods for these processing steps.

It has already been shown in section 3.6 that there are various image processing methods that
can be used. It will further be shown that for the Homography Estimation and the Confidence
Estimation, several different algorithms can be used as well (see section 4.2 and section 4.3).

Naturally, a few questions arise:

• Which method works best for the different tasks of calculating local correspondences, a
global transformation and confidence values?

• Does a method always work well?

• If not, under which circumstance does a method work well and can this knowledge be
used to improve the results?

• How should the methods for these different tasks be combined? Do they interfere with
each other or can they be combined arbitrarily?

35



These questions are answered by experiments in chapter 6.
To be able to experiment with different configurations, the software architecture needs to

allow easy reconfiguration of single parts of the calculation. This is not only advantageous for
experiments, the exact same structure can later be utilized to dynamically adapt the system to
changing conditions, see section 4.4. It has already been mentioned, that the computation steps
in algorithm 4.1 are clearly separated from each other. In section 5.5 it is explained, how the
implemented software architecture meets these requirements.

4.2 Homography Estimation

A homography is defined as “an invertible mapping h from (the projective space) P2 to itself
such that three points x

n

, x2 and x3 lie on the same line if and only if h(x
n

), h(x2) and h(x3)
do.” ([36]). The names projectivity and projective transformation are used synonymous. The
following theorem from [36] shows, how the homography can be represented in a homography
matrix, and how this homography matrix relates the source and target points to each other:

Theorem. A mapping from P2 ! P2 is a projectivity if and only if there exists a non-singular
3⇥ 3 matrix H s.t. for any point in P2 represented by a vector x it is true that its mapped point
equals Hx

When dealing with 2D-images, the image-points (x, y) need to be converted into so called
homogeneous coordinates x

n

, x2, x3 where x =

x

n

x3
and y =

x2
x3

.
One property of the homography matrix H is, that it can be multiplied by any constant factor

without change to the actual transformation. For this reason, H only has 8 degrees of freedom
and 8 unknown values that need to be solved for, even though it has 9 elements [26]. Table 3.1
in subsection 3.5.1 already presented the transformation matrices for different geometric trans-
formations with the projective transformation being the represented by the homography matrix
and the other transformations being constraint variants thereof.

The calculation produces a set of point correspondences of the form (x
n

, y
n

) ! (x0
n

, y0
n

).
They are converted to homogeneous coordinates (x

n

, y
n

, 1)T ! (x0
n

, y0
n

, 1)T . The problem is
to find the homography matrix H s.t.
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There are two basic approaches to solves this problem: calculating an exact solution and cal-
culating an approximate solution. The first approach only takes the minimum required number of
correspondences and calculates the solution from those. The problem with that approach is, that
it’s error prone when dealing with real world data where the accuracy of the correspondences is
affected by noise and measurement inaccuracies. Approximation methods take a bigger number
of correspondences as input and produce a solution that best fits all the points at once, which is
better suited for real world applications. However, there are also ways to use exact solutions, for
example when combined with Random Sample Consensus (RANSAC).
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One example of each approach will be represented, additional methods can be found in [40]
and [26].

4.2.1 Extracting Results and Relation to Physical Parameters

Recall the form of the transformation matrix from subsection 3.5.1 for rigid transformations:

[ R | t ]2x3

As explained in subsection 3.5.1, this matrix can be extended into a full homography matrix
by appending a third row of 0, 0, 1 which leads to the following matrix where all elements are
explicitly named:

H =

0

@
cos' � sin' t

x

sin' cos' t
y

0 0 1

1

A

It can be seen, that the necessary measurement results t
x

, t
y

(translation in x- and y direction)
and ' (rotation angle) can be directly taken from the calculated homography:

t
x

= H3,1

t
y

= H3,2

' = cos

�1H1,1

If the sensor is not mounted directly in the center of the vehicle, the rotation causes devia-
tions of the measured translation values to the real translation values. The situation is depicted
in Figure 4.2. This figure shows a pure translation by the value of '. If the sensor is positioned
with an offset of R

y

from the center, this rotation causes additional translations �x and �y at
the position of the sensor:

�x = R
y

· sin(')

�y = R
y

· cos(')

The measurements for t
x

and t
y

have to be corrected. Assuming the sensor has an offset
only in the movement direction and is in the lateral center of the vehicle:

t
xcorrected = t

x

+R
y

· sin'

t
ycorrected = t

y

+R
y

· (1� cos')

However, obviously the translation values t
x

and t
y

have been calculated in the unit of pixels.
Figure 4.3 displays the relation of physical lengths to pixel distance for one dimension in a two
dimensional example. Basically, a length with a physical dimension is mapped onto an image
with pixel dimension. The relation between these is given by a scale factor that depends on the
cameras angle of view ' and the distance d of the lens to the image plane (the ground).
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Figure 4.2: Correcting Rotation
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Figure 4.3: Mapping from pixel-distance to physical length

W [m] = 2 · d · tan' b= W [px]

The width in pixel units is constant and known from the cameras resolution, therefore the
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scale factor s
x

can be calculated from

s
x

=

W [m]

W [px]
=

2 · d · tan'
W [px]

The scale factor s
y

for the height can be calculated analogous. Unfortunately, the cameras
angle of view ' is often not known and needs to be measured. But then it is easier to directly
determine the scale factor by either measuring the physical dimensions of the field of view or by
taking a picture of a calibration pattern with structures of known physical size. It is important for
both options, that the distance is equal to the distance from the ground at which the camera will
be mounted. This can be done during camera calibration (see subsection 3.5.4). Furthermore,
for correctly calibrated cameras the scale factors s

x

and s
y

should be identical, so that the scale
factor s can be used.

Furthermore, the time between two measurements needs to be known. This is given by the
framerate of the camera:

�t =
1

fcamera

The speed in m/s can then be calculated with the following formulas:

v
x

[m/s] = t
x

· s
x

· fcamera = t
x

· s · fcamera

v
y

[m/s] = t
y

· s
y

· fcamera = t
y

· s · fcamera

Further measurements like the acceleration can then be derived as usual:

a[m/s2] =
�v[m/s]

�t
= �v[m/s] · fcamera

4.2.2 Homography Estimation Methods

Exact Homography

It has already been established that for this work, only isometry transformations are considered.
Therefore exactly two correspondences are needed. From these two correspondences, the ho-
mography is calculated with the following formula from [40]. One of the two correspondences
is selected as a pivot element (x

n

, y
n

) and (x0
n

, y0
n

):

H
e

= A
b

·R⇥̂ ·A0

with

Ab =

0

@
1 0 x0

n

0 1 y0
n

0 0 1

1

A , A0 =

0

@
1 0 �x

n

0 1 �y
n

0 0 1

1

A , R⇥̂ =

✓
R(

ˆ

⇥) 0
0T 1

◆
, R(

ˆ

⇥) =

 
cos(

ˆ

⇥) � sin(

ˆ

⇥)

sin(

ˆ

⇥) cos(

ˆ

⇥)

!

and
ˆ

⇥ = ⇥

0 �⇥

Obviously, by restricting the transformation to isometry, the formula is simplified signifi-
cantly. For a general solution and different methods have a look at [40] and [26].
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Least Squares DLT (Direct Linear Transform)

This approximation method calculates the least squares solution from all correspondences as
described in [40]. Again, because the homography is limited to isometry, a simplified form can
be used. For more general solutions and alternative methods, consult [40] and [26].
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The parameters a, b, c, d can be calculated by solving the following system:
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where the point correspondences need to be in homogeneous coordinates (x
i

, y
i

, w
i

).

4.2.3 Removing Outliers

It’s the nature of real world applications, that measurements are not always perfectly precise and
that distortions and noise can cause erroneous measurements. These erroneous measurements
lead to erroneous correspondences or so called outliers. Outliers affect the precision of the
resulting Homography Estimation, how server the impact is depends on the specific method
used for the Homography Estimation.

There are methods to detect outliers that can be applied to remove them from the dataset of
correspondences before the Homography Estimation calculation, so that resulting homography
is not affected by these outliers.

Correspondence Consensus

This method is based on the assumption that all single correspondences agree with the result i.e.
if the resulting homography is applied to a correspondence, the error to the actual result should
be minimal.

First, the homography Hn for the frame n is calculated from all correspondences.

Hn = F (cn)

where F is any Homography Estimation method and cn is the set of all correspondences for
frame n.

Then, the set of outliers cn
o

is calculated with
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= {c
n
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and contains all correspondences, where the distance of the correspondence target (x0
i

, y0
i

)

to the correspondence source (x
i

, y
i

) that has been transformed by the calculated Homography
Hn is greater than a threshold T .

Finally, the homography H is calculated again from the correspondences without outliers:

H = F (cn \ cn
o

)

Unfortunately, the underlying assumption that the relative motion is the same for every cor-
respondence is only true for euclidean transforms (only translation in x- and y direction). As
soon as rotation is allowed, this assumption does not hold anymore and this method can not be
applied.

SMC

In [16], a Smoothness Motion Constraint is developed with which outliers can be detected and
removed very effectively.

This method is based on the assumption that the observer (e.g. the vehicle) underlies physical
constraints and has some inertia that prevents it from instantly changing its movement. Much
rather, the movement direction and speed can only change at a certain rate which at a sufficient
frame rate yields a smooth motion between consecutive frames.

Based on this assumption, every correspondence can be checked and rejected, if the motion
differs too much from the previous motion.

The process is similar to the Correspondence Consensus method can be used, but instead
of calculating Hn from all correspondences, the homography Hn�1 from the previous frame is
used instead.

cn
o

= {cn
i

|(|

0

@
x0
n

i

y0
n

i

1

1

A�Hn�1

0

@
x
n

i

y
n

i

1

1

A| > T )}

and

Hn = F (cn \ cn
o

)

where the subscript
n

denotes values from the current frame and the subscript
n�1 denotes

the previous frame.
As will be explained in the next section, the threshold T can be choosen to correspond to

the physical limits of the vehicle to discard only those correspondences as outliers, that are
physically not possible to be correct.

Not only does this method reduce computational cost compared to the Correspondence
Consensus method but more importantly, since it is based on the previous movement instead of
a constant assumption, it is also applicable when rotation and even higher order transforms are
allowed.
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4.3 Confidence Estimation
The confidence is a value that reflects, how accurate a measurement is estimated to be. Espe-
cially for the use in a sensor fusion system (section 2.3), a metric is required to reason about
the accuracy and validity of incoming measurements. Conventional methods involve knowledge
available at design time, like ranges of speed where a certain sensor is known to perform well
or ranges where it is known to not work good. Using different sensors that work well at dif-
ferent ranges and weighting their results with the this knowledge based on the current speed
measurement can result in accurate measurements over wider ranges than with single sensors.

One major advantage and novelty of the system proposed in this thesis is, that it inherently
produces a variety of values like statistical data of the current image that can be used to reason
about the quality of the measurement and calculate a confidence value.

First and foremost, the image processing methods often produce various parameters like
number of detected features or quality of matches that can be used to estimate their current
performance. Such calculations are specific to the concrete image processing algorithm. Some
examples are:

4.3.1 Normalized Cross-Correlation (NCC)

The method based on NCC as presented in subsection 3.6.2 calculates a value I(x, y) of the
image with an overlaid and transposed version of the image for each possible offset (x, y) . The
resulting movement is the offset (x

i

, y
i

) where I(x
i

, y
i

) is maximal.
Due to the normalization, I(x, y) 3 [0, 1] is always a value between 0 and 1 where 1 is

equivalent to a perfect match and 0 is equivalent to no match at all. This means, that the value
I(x, y) can directly be used as a confidence estimation. Other error metrics than NCC can also
be used, but would need to be normalized to [0, 1].

4.3.2 Feature-Based Method

In the feature matching step of feature based methods (see subsection 3.6.5), it is necessary to
calculate a score in order to match the features. One simple method is to calculate the euclidean
distance of the descriptors. This distance can be used to calculate the confidence. If the distance
is 0, the matching is perfect and the confidence is high. The greater the distance, the higher
the matching error ematching, and therefore, the confidence becomes lower. Usually, there is a
threshold k on the error. Matchings with an error greater than this threshold k are discarded as
outliers. The confidence function is a linear function:

c =

(
1� ematching

k

e < k

0 e � k

This function is depicted in Figure 4.4.
Furthermore, there are generic measurements that do not depend on a specific implemen-

tation. These are calculated on frame level from information from the tiles like the number of
utilized tiles, consistency of a measurement with a prediction model (based on previous mea-
surements) or knowledge about the limits of the system itself.
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Figure 4.4: Confidence-Function for Feature-Matching Distance: c = 1 � (ematching/k) with
k = 5

4.3.3 Number of Correspondences

For feature based methods, the more features are detected, the more stable the solution is and
thus, the higher the confidence is. Even for other methods with a fixed number of tiles, the
number of correspondences can be less than the number of tiles when some correspondences
have been discarded as outliers.

There is a minimum number of correspondences required for the Homography Estima-
tion task. As explained in subsection 4.2.2, this number is 2 for isometry transformations.

If the Exact Homography method from subsection 4.2.2 is used which requires exactly 2

correspondences, a confidence can be calculated as a simple binary value of wether the necessary
2 correspondences are available or not:

c =

(
0 Ncorrespondences < 2

1 else

If the Direct linear transform (DLT) method from subsection 4.2.2 is used, a higher number
of correspondences means a more robust solution and, thus, a higher confidence. However, the
higher the number of correspondences gets, the smaller the improvement becomes.

A function has been chosen to weight the number of correspondences into the confidence
value with

c = 1� e
x�1
2

which is also depicted in Figure 4.5. The parameters have been chosen such that the confidence
quickly approaches 1 as soon as the number of correspondences becomes greater than 6 which
is three times the minimum required number of correspondences.

The parameters have been chosen because in experiments a further increase in correspon-
dences did not increase the accuracy significantly.

4.3.4 Prediction and Physical Model Consensus

In subsection 4.2.3, SMC has been introduced as a method to remove outliers. It works by
determining the distance from the actual measurements to a prediction based on the previous
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measurement because it is assumed that the speed and direction of the vehicle can not change
instantly. It is expected, that there is a small error from the prediction to the actual measurements.
However, the magnitude of the error is limited by the physical characteristics of the vehicle i.e.
its maximal acceleration.

To recap, a correspondence is a tuple (pi,p
0
i) with pi as the source point and p0

i as the
target point. Their relation is defined by the current homography H

n

. Based on the previous
homography H

n�1, a second target point is calculated from the source:

p00
i = H

n�1 pi

which is the predicted target point. Now, the prediction error can be calculated as the distance
from the predicted to the actual target point:

d
i

= |p0
i � p00

i |

This is the same calculation as required for SMC and therefore, requires no additional com-
putation. It is only necessary to save the error distance for all correspondences when calculating
SMC.

This process calculates one prediction error distance d
i

for every correspondence c
i

which
then have to be reduced into one single confidence value. In order to do so, first the average
prediction error distance is calculated:

d =

NX

i=1

d
i

N

From this average error distance, the confidence is calculated with the following formula:

c =

(
1� e(d�k) d < k

0 d � k
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which models the fact that no change (= constant speed) or small changes (= small acceleration)
are expected. As the acceleration approaches the threshold k, the confidence approaches 0. This
function is depicted in Figure 4.6. The value of the threshold k should correspond to the maximal
acceleration of the vehicle, see subsection 4.2.1 on how the pixel units can be related to physical
units.
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c

Figure 4.6: Confidence-Function for Prediction Error: c = 1� e(d�k) with k = 5

The second limiting factor determined by physical properties of the system is the maximal
speed that can be measured. This comes from the fact that there needs to be at least a certain
amount of overlap between two frames. With respect to the confidence calculation, the move-
ment distance is used in pixel units. In subsection 4.5.2 this will be further related to a physical
unit as well. The confidence is calculated with the formula:
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where t is the translation in x or y direction in pixels, and D is the corresponding dimension
(either the width or the height of the ROI) in pixels. This function operates on the quotient t

D

,
which is the translation in x or y direction in relation to the width or height of the ROI. The
function (plotted in Figure 4.7) has been chosen such that the confidence decreases quickly for
overlaps smaller than 20%. This threshold value has proved to be appropriate as a common
baseline for all implemented algorithms. Some algorithms may even need less overlay to work
properly, therefore the parameters of the function could be adjusted to specific algorithms as
well.

4.3.5 Combining multiple confidence values

For every frame, multiple individual confidence values are generated. Every single tile produces
a confidence value and furthermore, there are additional global confidence values that have been
just introduced in this section. Ultimately, all these individual confidences have to be combined
into one single value. The simplest way to do this is by averaging all individual confidences:

c =
NX

n=1

c
n

N
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where N is the number of different confidences. More complex methods like weighted averages
or complex filter methods are also possible.

4.4 Dynamic Adaptation
The calculation of the confidence value is based on a variety of information produced during
normal operation of the sensor. The question aries, if this information can also be used to
increase the confidence and precision by adapting the sensor to the current situation (e.g. current
speed).

Figure 4.8: Dynamic Adaption Overview

In Figure 4.8, the general structure of an adaptive system is depicted. The first part is the
calculation of an output (a measurement) from an input (the current image frame). Additionally,
results of this calculation, not necessarily just the output, but also possibly intermediate results
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or other values derived from the input, are used to adapt the parameters of the calculation. This
adaption is then fed back into the calculation to take effect. This adaption can be specific to the
image processing methods like ANMS and it can also change global parameters of the calcula-
tion like Adaptive Frame Size or Adaptive Frame Position.

4.4.1 Adaptive non-maximal suppresion

Adapting a threshold is something commonly done. An example is the following method used
for feature based methods. In a typically image, features are generally not evenly distributed,
but rather clustered. For many operations an even distribution is necessary, or at least preferable.
To solve this problem, the threshold that decides if a feature is significant enough to be included
for further processing or rejected is not statically fixed. Adaptive non-maximal suppresion
(ANMS) [21] is such a method, where the threshold is dynamically adapted to filter features
that are not global maxima, but rather local maxima in a pixel radius. Thus distributing features
more evenly over the image. Figure 4.9 shows a comparison between static thresholds at the top
and ANMS-threshold at the bottom row.

4.4.2 Adaptive ROI Size

As will be explained in subsection 4.5.2, the maximal speed measurable by the sensor is deter-
mined by the size of the ROI which is used for calculation. Therefore a ROI should preferably be
of large size. On the other hand, the computational complexity is in direct relation with the size
of a ROI, thus, a ROI should not be excessively large. For most methods, a ROI does not need to
be square though. To find a sensible configuration for the size, previous knowledge of the move-
ment speed and direction can be used, to size and skew a ROI to yield maximal precision while
maintaining roughly the same area and therefore keeping the computation time approximately
constant while varying the width and height. Figure 4.10 visualizes the principle. Lets assume
that the system has just been initialized before taking the first image for frame 1, where the ROI
is square because initially, there is no speed information available. In frame 2, there is already a
previous measurement available with movement speed and direction, therefore the ROI size can
be adapted. The vehicle is moving to the right, therefore the ROI is strained on the y axis and
clinched on the x axis.

A simple approach is to keep the headroom (bigger size than theoretically necessary) of the
ROI constant as long as possible. This can be achieved by adding the current translation value
to a base size:

w = w0 + |v
x

|

h = h0 + |v
y

|

Figure 4.11 shows a plot of this adaption function for a base size of d0 = 20. d stands for
dimension, either w or h. Obviously, the size of the ROI is ultimately limited by the size of the
whole image frame. This needs to be considered when implementing this strategy.
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Figure 4.9: Adaptive non-maximal suppresion. In (a) and (b), features are selected by a static
threshold on their corner strength. In (c) and (d), the ANMS adaptive threshold is used. [21]

4.4.3 Adaptive ROI Position

Similarly, the position of a ROI can be moved around within the frame. ROIs should preferably
be positioned in regions of the frame, where Tile Algorithms can produce accurate results. Edges
are a good indication of ’good’ ROI-positions in the frame. The following is a method which is
very cheap with respect to computational complexity:

E = (I ⌦ [�1, 1]) � (I ⌦ [�1, 1]T )

where I is the original image, filtered with the kernels [�1, 1] and [�1, 1]T to find horizontal
and vertical edges. These filter results are then multiplied element wise to produce the result E
which represents the strength of edges in the original image. In Figure 4.12 the resulting E is
visualized for an example image.
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Figure 4.10: Dynamic adaption of frame size: initially, the speed is unknown, so ROI1 is a
square. Later, the speed is already known and ROI2 has adapted its dimensions to match the
movement speed and direction

�10 �8 �6 �4 �2 0 2 4 6 8 10

0

5

10

15

20

25

30

35

v

d(v)

Figure 4.11: Size-Adaption-Function for Adaptive Grid Frame Algorithm: d = d0 + v
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The bright pixels / spikes in the resulting image E represent strong edges. Areas with very
strong edges or with a high edge density are prefered positions for ROIs.

Since Tile Algorithms work sequentially and need a current, as well as a previous image, it
is not very practical to continuously move ROIs around. The position adaption should rather be
triggered for a ROI individually, when its confidence decreases and better positions for that ROI
can be found.
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Figure 4.12: Simple Edge Detection: The original image on the top left is filtered and produces
the grayscale (almost black/white) image at the bottom left. The brighter the pixel, the stronger
the edge. The right image visualizes the bottom left image in a mesh-plot.

4.5 Remarks

4.5.1 Known Weakness / Difficult Situations

Naturally, there are systematic weaknesses that cause hard or even insolvable problems to system
like the proposed one.

The most obvious problem with using a camera is, that it is sensitive to light conditions.
When it is getting dark, the output image starts to get noisy and the number of erroneous pixels
increases rapidly. Below a certain brightness threshold there is not enough light to produce
an usable image anymore. An obvious solution is to illuminate the ground below the camera,
but that increases cost and energy consumption and may not be desirable anyway. However, it
is not mandatory to record images within the visible spectrum of light. In some situations it
might be more feasible to capture infrared light for example. But that still leaves the problem of
additional hardware cost and energy consumption. Another manifestation of the same problem
is the occlusion of the view. For example, by stirred sand and dust when driving over a gravel
road or on a sandy road. Furthermore, the sensor could become dirty from mud or dust and
needs to be kept clean.

Another kind of problem is caused by environmental influences where the ground, or at
least the part perceived by the camera, is not stable. One could imagine driving on a street in fall
when there is dry leaves and foliage on the ground that go flying when the car drives along. Their
movement could confuse the sensor because it is random and not correlated with the movement
of the car at all. Similarly, when it is raining and there is already water puddles or even flowing
water on the street. The water perceived from the camera is not solid. Its flow and also the
reflections on the water could also confuse the camera.
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In General, it is not strictly necessary to use a video camera as input. Any other method that
produces a texture with sufficient resolution and update rate as output could be used instead and
some other imaging method could be immune to some or all of the aforementioned problems.

4.5.2 Limits / Restrictions

There are two fundamental restrictions that limit the maximal and minimal transformation dis-
tance between two frames that still can be detected. The former is very obvious: the translation
has to be smaller than the size of the image because there needs to be at least a small overlap
between two consecutive frames.

d
xmax = W · s

d
ymax = H · s

where W and H are the width and height of the image frame in pixels, and s is the scale
factor introduced in subsection 4.2.1, that relates pixel units to physical distance units. From
these distances, the maximal measurable speed can be calculated by taking the frame rate of the
camera into account:

v
xmax = d

xmax · fcamera

v
ymax = d

ymax · fcamera

To show the general order of magnitude, take for example a cam that takes 30 FPS and has a
FOV of 0.5 meters which is typical for a camera mounted at a height of⇠ 0.5 meters. For sake of
simplicity it is assumed that the camera has a square FOV (which implies v

xmax = v
ymax = vmax).

The maximal measureable speed with this setup then is

vmax = 0.5 · 30 = 15m/s = 54km/h

However, keep in mind that in order to be able to calculate results with sufficiently high confi-
dence, the overlapping area should be sufficiently large. This fact is modelled by a confidence
estimation based on the meassured speed, see section 4.3.

For an autonomous rover, 54km/h is certainly fast enough. For application in a car however,
the limit can easily be increased by using high speed cameras. If a camera with 120 FPS is used
instead, the limit is already increased to 216km/h for example.

The second limit is a little bit more subtle and not absolutely defined. For most methods
the accuracy is bound to whole pixels, meaning that the minimal measurable physical speed
corresponds to the dimensions of the area visible in a single pixel.

This value is directly given by the value of the scaling factor s from subsection 4.2.1.
However, there are some methods that achieve even sub-pixel accuracy. One of them is the

extension to the FMT method thats mentioned in subsection 3.6.3.
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CHAPTER 5
Implementation

5.1 Overview

In this chapter, the conceptual framework from chapter 4 will be transferred from theory to a
practical implementation. The first paragraphs of this chapter will describe the environment that
was used for development. Following that, the software architecture of the implemented system
is described and it is highlighted how the implementation works within the ROS framework.
Then, the actual processing procedures are explained along with the details of their general
implementation as well as specific methods that have been implemented.

5.2 Environment

5.2.1 Robot Operating System

As explained in section 3.4, ROS is framework- and toolset for the implementation of complex
robot systems. ROS is open source, widely used in research and portable to a lot of (robotic-
) platforms. Therefore, the choice to implement this work’s practical part as a ROS module
ensures that the implementation is usable in practical applications and also for other researchers
with no extra work in an environment they are already familiar with.

5.2.2 OpenCV

A major part of the implementation consists of the implementation and the use of Computer
Vision (section 2.4) methods. OpenCV has been chosen as the computer vision framework to
be used, because it is Open Source and cross-platform with support for many operating systems
and runtime frameworks. Most importantly, OpenCV is also available for use within the ROS
framework. Also, it is very widely used and currently maintained by a Non-Profit organization.
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5.2.3 Xcode

In order to be able to develop without the need of having actual access to the robot, the project
was started in Xcode1 with the ROS module being isolated into a submodule of the project.
Only a small wrapper is necessary to run the sensor either as standalone OSX application or as a
ROS module. This approach has been chosen because the author is familiar with the toolset for
debugging, analyzing and profiling provided by Xcode.

5.3 ROS Integration

For an application to be usable within the ROS framework, it needs to be implemented as a ROS
module. The running instance of an application within ROS is called a node. The ROS runtime
allows the execution of multiple independent nodes at the same time and provides a way for
nodes to communicate with each other via a Publish/Subscribe-architecture.

For a program to be usable as a ROS module, it is only necessary to implement a few specific
lines of code that register the application as a node with a chosen name to the ROS runtime and
some additional lines to register as publisher and/or subscriber for communication.

ROS modules are distributed as packages. A package is just a fixed scheme for organizing
source files and some configuration. This configuration enables the ROS build tools to automat-
ically manage dependencies and compilation of the module.

Executing programs in the ROS runtime are refered to as ROS nodes. When the executable
programm in a module is running, it is also refered to as node.

5.3.1 ROS Modules

Figure 5.1: ROS-Setup with an external image publisher and the sensor as separate ROS-module.

Figure 5.1 illustrates the resulting ROS setup with an image publisher and the sensor as sep-
arated ROS modules. The modules communicate over a ROS topic, the Image Publisher node
publishes a video stream to which the sensor node subscribes. The sensor node then publishes
its result to another ROS topic to make these results available to other nodes.

1Xcode is an IDE for developing software in Objective C, C++ and Swift, developed by Apple for OS X
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int16 delta_x_px
int16 delta_y_px
float32 phi
float32 confidence
int64 number_of_frames
float32 frameProcessingTime
float32 meanProcessingTime

Figure 5.2: Measurement Message Definition

Topic Message Type
Input camera/image_raw sensor_msgs/Image

Output sensor/movement_params measurement

Table 5.1: Interface Summary for Sensor ROS-Module

5.3.2 Image Publisher

The sensor works on an image stream as input. The stream has to be published to the ROS topic
camera/image_raw with the message type sensor_msgs/Image.

It was discussed to include the image acquisition directly into the sensor module which
would have reduced the communication overhead of sending the image stream over the ROS
system via message publishing. However, this approach would have limited the number of
useable cameras to only those that are directly implemented in the sensor.

By using a ROS-topic as image input to the sensor, the image acquisition process is com-
pletely decoupled from the sensor. The big advantage of this approach is, that the used camera
can be easily replaced without the necessity to change the sensor. With respect to portability,
this is an important requirement that ultimately outweighs the communication overhead.

Currently, the gscam [5] [6] ROS-module is used as webcam driver which supports a wide
range of webcams. A ROS launch file is provided to start gscam for the used webcam.

5.3.3 Sensor

The sensor module gets sequential images as input in form of a ROS message and calculates
measurements as output. A measurement is a custom ROS message that encapsulates the results
like speed in x- and y direction, angular velocity, confidence, and some additional performance
indicators. Its definition can be seen in Figure 5.2. Table 5.1 summarizes the in- and output of
the sensor with their exact topics and message types.

The calculation flow for a single frame is depicted in Figure 5.3. It has been divided into two
basic tasks that consist of a few steps each. The first one is the processing for whole frames. This
task is carried out by the so called Frame Algorithm. The Frame Algorithm however does not
do the actual image processing, it rather coordinates the image processing in a number so called
tiles. This is necessary, because as mentioned in subsection 3.5.3, calculation of rotation from
one single image is not possible in a single step. The solution that was presented in section 4.1
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is to calculate a number of correspondendes at multiple smaller patches of the image that only
account for translation and then to calculate the global rotation from these correspondences.

Figure 5.3: Overview of the sensor architecture. This illustrates the subtasks that are necessary
to calculate a measurement and the calculation flow through the sensor.

The Frame Algorithm distributes several ROIs in the whole frame, where a ROI is just a
rectangular image section. These image sections are then extracted into separated tiles. The
difference between a ROI and a tile is, that the ROI is a reference to a region within a bigger
image, in this case the whole frame, wheras the tile is that image region extracted into smaller
image that contains only that region. Every tile is processed by a Tile Algorithm. There are
various specific methods and algorithms that can be used for this task, some of them have been
presented in section 3.6. Regardless of the specific algorithm, the processing steps for each tile
are always the same and can be seen in Figure 5.3. The Tile Algorithm is agnostic about the fact
that this is usually just a part of a bigger frame. Since the difference between the previous and
the current tile is calculated, the sequence of images needs to be handled. Then, the tile frame
is preprocessed, the offset between the previous and the current tile is calculated as well as a
confidence estimation. Then, the Tile Algorithm outputs a single measurement that contains the

offset distance ~d =

✓
dx
dy

◆
and the confidence estimation. The Frame Algorithm collects the
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These correspondences are used to calculate a global homography that also includes rota-
tion. Furthermore, a global confidence value is calculated that contains information about how
accurate the calculated measurement is. There are two kind of confidences involved: method
dependent values are based on specific knowledge of a certain Tile Algorithm method and the
input data, so specific values have to be determined by the Tile Algorithm. On the other hand,
as soon as there are several tiles in a frame, their specific confidences need to be combined into
a global solution. This process has to be generic. Details about specific confidence calcula-
tions are mentioned in the description of the corresponding Tile Algorithm, the generic ones are
explained in section 5.8.

5.4 Camera Calibration
In order to get accurate measurements, the camera that is used needs to be calibrated. This is
necessary to rectify images from the camera and remove distortions that come from the camera’s
imperfection (see subsection 3.5.4 for more detail).

The MonocularCalibration [10] ROS-module has been used for this task. The calibration
works by using a known image. In this case a checkerboard pattern with known dimensions.
This image is then moved around in the cameras field of view, covering different positions,
scales and orientations relative to the camera. The calibration node then calculates and displays
the calibration matrix. The calibration matrix can also be exported into a calibration file which
can directly be imported into the gscam image publisher node. This means, that the images
published by gscam have already been corrected and the sensor does not have to deal with
camera calibration.

5.5 Software Architecture
The sensor module has been implemented in C++ in an Object Oriented Programming approach.

The aforementioned parts of the calculation have been partitioned into a structure that very
closely resembles the structure from Figure 5.3. These parts have been implemented in separated
classes that interact with each other. To be precise, there are 4 different classes that are important.

The main entry point is the Frame Algorithm that basically encapsulates the whole compu-
tation. Its main responsibility is the segmentation of the image into tiles and the coordination
of these tiles and the rest of the data flow between the other components in the course of the
computation. It is implemented in the class FrameAlgorithm (From now on, the tyewriter
font denotes the name of a class). The general behavior of handling tiles is implemented in this
class. Specific behavior regarding tile placement and dynamic relocation of tiles is intended to
be implemented in a subclass of FrameAlgorithm. Each frame is processed by an instance
of the class FrameAlgorithm which implements the basic housekeeping of the calculation
necessary for every specific algorithm. This housekeeping consists of initialization, manag-
ing the frame sequence, managing size change, performance measurement and creating
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Calculation-Step Class Input Output
Offset of a tile TileAlgorithm Frame(ROI) Correspondence
Homography esti-
mation

HomographyEstimation Correspondences +
last Result

Homography

Confidence
estimation

ConfidenceEstimation Correspondences +
last Result

Confidence

Table 5.2: Computation steps, the classes that implement these steps and their inputs and outputs
for Frame Algorithm composition.

debug output. The implementation of a specific image processing algorithm like one of those
presented in section 3.6 is intended to done in a subclas of TileAlgorithm. The following
homography estimation and the final confidence estimation are both implemented as subclasses
of HomographyEstimation and ConfidenceEstimation respectively. For these two,
the superclass merely provides an the interface that all specific subclasses have to implement.

Other than for an organized codebase, this class structure serves a second purpose. It is clear
that with the variety of methods for Tile Algorithms, Homography Estimation and Confidence
Estimation as well as various ways to layout and position tiles, there are ultimately countless
possible configurations for the sensor by combining these different methods.

To be able to find configurations that work well, it was necessary to create a structure in
which different methods can be exchanged, combined and tested with ease which was achieved
by a composition structure.

The FrameAlgorithm has slots for tiles in the form of TileAlgorithms and for a
HomographyEstimation and a ConfidenceEstimation. At runtime, these slots can
be filled by instances of the corresponding classes or specific subclasses. The behavior of the
sensor is therefore composed from several classes. By exchanging these instances at runtime,
even drastic adaptions are possible dynamically.

Table 5.2 summarizes the classes that implement the separated computation steps and their
(informal) interfaces in form of their inputs and outputs that are used for the composition. They
all follow the same pattern and have a minimalistic interface, it is easy to implement new strate-
gies in a new subclass.

5.6 Tile Algorithms

Interface

The main interface for a Tile Algorithm is very simple and contains the following methods:

• processFrame(cv::Mat) processes a new frame

• getMeasurement() returns the last measurement

• prepareRoiUpdate() prepares the tile for a change of the roi
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All these methods are already implemented in the superclass and are responsible for all the
housekeeping necessary for any algorithm. A subclass can specialize its behavior by implement-
ing these methods:

• processFrameInternal() this is where the actual algorithm has to be implemented.

• preprocessFrameInternal(cv::Mat &,cv::Mat &) pre-processing of an im-
age, usually consists of colorspace conversions or filtering.

• type() just returns the type of the algorithm

These methods will be called at the appropriate time during the frame processing by the
superclass.

Additionally, there are two methods for debugging purpose, in most cases they can be han-
dled entirely by the superclass and do not actually need to be implemented in a subclass:

• setDebug(bool) enables or disables the debug mode

• getDebugFrame(cv::Mat &) returns the current frame with additional debug infor-
mation drawn into it (like e.g. the visualized offset)

Common Behavior

The common behavior which is implemented by the superclass, also called housekeeping ear-
lier, consists of initialization, managing the frame sequence, managing size change, perfor-
mance measurement and creating debug output.

input : An image tile
output: Movement parameters

1 currentTileImage preProcessFrameInternal(input);
2 if ¬initialized then
3 previousTileImage currentTileImage;
4 initialized true;
5 end
6 startClock();
7 movementParameters processFrameInternal();
8 stopClock();
9 if debugMode then

10 prepareDebugFrame();
11 end

Algorithm 5.1: High-Level description of tile computation

The computation sequence for a tile can be seen in algorithm 5.1. In the first line, the input
image is preprocessed. This step usually consists of some image filtering to remove noise or
color conversions since most algorithms operate on grayscale images. Lines 2-4 deal with the
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initialization of the image sequence. If the current frame is the first frame, the same frame is
simply used as previous frame as well since it is always necessary to have a previous frame
initialized. This means that for the first frame, the calculated offset will obviously be 0. Lines
6 and 8 have to do with measuring the performance of the calculation, while line 7 is the actual
processing. Finally, line 10 prepares a debug frame when the debug mode is activated.

Implemented Tile Algorithms

The following algorithms have been implemented in order to be able to compare these different
methods with each other.

• Histogram (subsection 3.6.1): is a custom implementation of the theoretical algorithm

• Correlation (subsection 3.6.2): is a custom implementation that makes use of some
OpenCV functions for the correlation.

• Phase Correlation (subsection 3.6.3): is a custom implementation of the theoretical al-
gorithm.

• Features (subsection 3.6.5): makes use of the OpenCV function goodFeaturesToTrack
which already implements ANMS.

• Optical Flow (subsection 3.6.6): uses the OpenCV optical flow algorithm.

5.7 Homography Estimation

After the first processing steps, a set of local correspondences has been calculated, be it from a set
of tiles with an offset or from a set of features that have been matched. These correspondences
have to be combined to find a global solution for the transformation from one frame to the
other. For this specific application as motion sensor, the homography transform is constraint to
a isometry transform, as long as the camera is correctly mounted pointing perpendicular to the
floor which is assumed to be the case. In section 4.2, two methods have been introduced and
pointers to additional methods have been provided.

Subclasses of HomographyEstimation need to implement only one method,

virtual HomographyParams_t
estimateHomographyFromCorrespondences(vector<PointCorrespondence_t>
&correspondences, measurement_t previousResult);

which takes a vector of correspondences from the current frame as well as the results from the
previous frame and returns the parameters of the homography.

In the following paragraphs, the implemented algorithms are described.
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Exact Match

An exact solution is unique and maps the source points exactly to their target points. To calculate
an exact solution, the number of required correspondences is exactly defined by the type of
transformation that should be calculated and is equal to the DOF of the transformation.

This HomographyEstimation is an implementation of the exact method that has been
introduced in section 4.2.2. The exact method needs exactly 2 correspondences. If more corre-
spondences are passed in, still only the first two are taken into account.

Least Squares DLT (Direct Linear Transform)

With real-world data which is impaired by noise and inaccuracies, an exact solution is often not
appropriate. If one of the correspondences is subject to measurement errors, the homography
is directly affected. Moreover, since only isometry is considered, certain cases of measurement
errors can cause extreme errors in the calculated homography, since the exact method forces
the solution to match the data. Such a situation could arise for example if the measurement
suggests that the points have changed their position due to a measurement error which could be
explained by a change in scale or perspective, but since these transformations are not considered,
the results might be off by a large factor.

To remedy the situation, usually more samples than the minimum required number are taken
and are averaged.

One typical method to find an optimal solution for a lot of data is a least squares approach,
that is in short, the calculation of a solution where the sum of squared distances from the real
datapoints to the datapoints that are projected by the solution is minimal.

This HomographyEstimation is an implementation of the DLT method that has been
introduced in section 4.2.2.

Smoothness Motion Constraint

Even though non-exact estimations are more robust with regard to measurement errors, outliers
still impair the accuracy of the resulting homography. To improve the accuracy, these outliers
can be determined and removed from the data set before the calculation. In section 4.2.3, a
method to remove outliers based on a smoothness motion constraint has been presented which
has been implemented in this HomographyEstimation. The Least Squares DLT-
Homography Estimation method is then used to calculate the homography from the remaining
correspondences.

5.8 Confidence Estimation

The final processing step in algorithm 4.1 is the estimation of the confidence of the solution.
A wide variety of parameters can be used for the estimation. More details about the theory of
confidence estimation can be read in section 4.3.

It is important to understand that this Confidence Estimation is about the confidence for a
whole frame. Additionally, every Tile Algorithm calculates a confidence based on the specific
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algorithm that it implements. This is only possible with deeper knowledge about the specific
Tile Algorithm. Therefore, on Frame Algorithm level, an abstract estimation based on generally
known parameters is needed. Obviously, the tile’s confidences can still be factored into the
global confidence.

A subclass of ConfidenceEstimation needs to implement only one method,

virtual float
estimateConfidenceForFrame(IV::FrameAlgorithmMeasurement_t const
&measurement, IV::measurement_t previousResult);

where FrameAlgorithmMeasurement_t is a special datatype that captures all the cur-
rent correspondences and the confidences for each tile and measurement_t is the measurement
from the previous frame that can be used to determine the confidence based on the change of
measurements from one frame to the next.

The methods described in section 4.3 have been implemented in the aforementioned way.

5.9 Frame Algorithms
Interface

The main interface is very simple and consists of just two methods that are necessary for a caller
to utilize a Frame Algorithm:

• processFrame(cv::Mat) processes a new frame

• getMeasurement() returns the last measurement

There are also additional methods for special setup and parameterization, e.g. for setting of
margins, adding and updating ROIs in arbitrary positions as well as in a column/row pattern. If
one of the implemented subclasses is used, these methods can be ignored by the caller. The most
important two are the methods that add tiles to the frame:

• addROI(cv::Rect, tileAlgorithm_t) adds a ROI with a Tile Algorithm of the
given type to the Frame

• setRowsAndColums(int, int, tileAlgorithm_t) spans Tile Algorithms of
the given type in a grid with ranging over the whole frame (respecting the margins) with
the given number of rows and tiles

Furthermore, there are two additional methods for debugging purposes

• setDebug(bool) enables or disables the debug mode

• getDebugFrame(cv::Mat &) returns the current frame with additional debug infor-
mation drawn into it (like e.g. the visualized offset)
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Common Behavior

The FrameAlgorithm superclass implements the bulk of behavior needed for frame pro-
cessing. In Fact, it can be used as it is when the caller just adds a tile to it. All implemented
subclasses are merely templates for different prepared configurations and are explained in detail
later in this section.

The basic processing procedure depicted in Figure 5.3 and shown in algorithm 4.1 is imple-
mented in the FrameAlgorithm superclass. By dynamically invoking the actual FrameAlgorithm in-
stance at runtime and calling a post-processing hook, the basis for customization, and even dy-
namic reconfiguration, is laid out. Additionally, adaption to changes of the frame size and the
necessary reinitialization for the new sizes are implemented, as well as some basic performance
benchmarking like counting the number of processed frames and measuring the time that the
algorithm takes for processing a single frame and calculating an average processing time. These
processing times are used to reason about the computational performance and efficiency of cer-
tain methods.

Figure 5.4: Illustration of how margins can be used to constraint the effective image frame.

Furthermore, most of the necessary configuration and parameterization methods are already
implemented in the FrameAlgorithm superclass, like support for margins around the frame.
Margins are necessary when it is not possible to mount the camera in an ideal way. For example,
in tests, there often was an area in the bottom of the frame, where a shadow of the robot was
visible and it was not possible to mount the camera further away to avoid the shadow. Obvi-
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Algorithm # ROIs Homography Strategy Confidence Strateg Dynamic Adatpion
Feature Based 1 Least Squares SMC Projection Difference 7
Exact 2 Exact Match Tiles Mean 7
Least Squres 4 Least Squares SMC Tiles Mean 7
Grid 15 Least Squares SMC Projection Difference 7
Adaptive Grid 9 Least Squares SMC Projection Difference 3

Table 5.3: Overview of implemented Frame Algorithms

ously, this shadow would have had a negative effect on the calculation. So the bottom margin
was adjusted to ignore the area of the image in which the shadow was visible. Figure 5.4 ex-
plains how the margins effect the resulting effective image frame. Even though these margins
are implemented in the superclass, every subclass is responsible to respect these margins when
placing tiles.

In order to prepare a Frame Algorithm , tiles need to be added to a frame. There are two
method for this purpose. One for adding a tile with an arbitrary ROI, and one that pans out a grid
of tiles over the whole frame. It is perfectly fine for a caller to add ROIs at will. Alternatively,
one of the preconfigured subclasses can be used. They already initialize tiles and ROIs.

It was already mentioned, that the subclasses of Tile Algorithm can be thought of as con-
figuration templates. They feature specific tile/ROI layouts, Homography Estimation and Con-
fidence Estimation strategies. If one of these subclasses is used, no further configuration is nec-
essary, and only processFrame(cv::Mat) and getMeasurement() need to be called.
The following paragraphs describe the implemented configurations and their specific properties.
Additionally, Table 5.3 summarizes the key facts about them.

Figure 5.5: Tile Layouts for Tile Algorithms: 2 Exact (left) and 4 Least Squares (right)

Feature Based

Feature based Frame Algorithms are special because, they inherently produce a large number of
correspondences, one for each detected feature. This means, in contrast to other methods it is
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not necessary to use several tiles to calculate a rotation.
This Frame Algorithm is designed to hold a single feature based Tile Algorithm with the tile

ranging over the whole effective image frame (respecting the margins). So the tile layout looks
exactly like in Figure 5.4.

The homography strategy is Least Squares SMC and the default confidence algorithm is
Projection Difference.

Exact

This Frame Algorithm was implemented to test the Exact Match homography algorithm. Since
an exact match needs exactly two correspondences, two tiles are arranged in the pattern that
can be seen in Figure 5.5. The correspondence algorithm in use is Tiles Mean because both
correspondences are exactly in the homography, so there are no outliers.

Least Squares

This algorithm arranges 4 tiles around the center of the frame without overlapping. The layout
is visualized in Figure 5.5. The matching strategy of choice is Least Squares SMC and it is
intended to learn about the performance of the least squares method with a low number of tiles.
Due to its small number, the confidence is calculated by Tiles Mean.

Figure 5.6: Tile Layouts for Tile Algorithms: Grid (left) and Adaptive Grid (right)

Grid

It is intuitive to just divide the whole frame into equally sized ROIs and use all of them. This
algorithm implements this strategy with tiles of a fixed size as can be seen in Figure 5.6. The
default parameters are 5 columns and 3 rows, but these numbers could be changed. The default
homography strategy is Least Squares SMC and because the number of tiles is relatively high,
the Projection Difference confidence algorithm is used.
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Adaptive grid

This is an adaptiv version of the gird strategy. The layout is similar grid, but the tiles are not
placed to take up the whole frame, but rather are placed at fixed positions that are defined by the
number of columns and rows, which are 3x3 by default.

The dynamic adaption then changes the size of the tiles in reaction to the speed that was
calculated according to the Adaptive Frame Size strategy from section 4.4. The tile will be
stretched in the direction of the movement vector and compressed in the direction normal to the
movement vector. This causes the area of the tile, and therefore the also calculation time, to
stay almost the same, while the stretching enables the measurement of higher speeds since the
maximal measurable speed is determined by the size of the tile.
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CHAPTER 6
Results

6.1 Experimental Setup

The sensor has been tested in an experimental setup with a vehicle driving in different environ-
ments.

The vehicle used in the experiments was a Pioneer 3-AT1 research rover with a Playstation
3 EYE2 USB camera mounted on the rover to observe the ground under the rover.

The rover was programmed to move on a certain path including several speed levels in for-
ward and backward direction, left- and right turns while also driving forward and pure rotations
while not moving forward or backward.

This sequence of movement was then performed by the rover in different environments with
different floor patterns. The video from the camera has been recorded for every run. These
videos have been used as input for the sensor in different configurations in order to determine
the performance of varying sensor configurations in different scenarios.

Pioneer 3-AT Research Rover

“Pioneer 3-AT is a small four-wheel, four-motor skid-steer robot ideal for all-terrain oper-
ation or laboratory experimentation.” ([9]). Figure 6.1 shows an image of this rover. It has
ROS (GROOVY Distribution) installed and can be controlled with the RosARIA 3 module by
sending cmd_vel commands with linear- and angular velocities.

To perform the scripted motion path, a separate ROS-module has been implemented that
sends a defined sequence of cmd_vel commands. Because of varying message delays (ROS
does not garuantee real time deadlines) and a possible influence of the surface, the path is not
expected to be exactly the same for each run. In practice, however, the resulting paths had very
little deviation.

1http://www.mobilerobots.com/ResearchRobots/P3AT.aspx
2http://us.playstation.com/ps3/accessories/playstation-eye-camera-ps3.html
3http://wiki.ros.org/ROSARIA
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Figure 6.1: Pioneer 3-AT Research Rover

Playstation 3 EYE Camera

A Playstation 3 EYE Camera has been used as the camera of choice because it can achieve frame
rates of up to 120 FPS. Yet, because it has been produced in huge quantities for the Playstation
3, its price is even below the price of other USB webcams.

However, for the same reason, there are no official drivers available. For live usage in ROS,
the gscam module already works with the camera as described in subsection 5.3.2. To be able
to record videos from the webcam, it was necessary to develop a separate capture program
specifically for the PS3 Eye. This specifically created capture program saves the video frame by
frame as single images as they are received from the camera to avoid errors introduced by lossy
video compression. Additionally, it offers control over basic hardware settings of the camera,
like gain and shutter speed, which was necessary to adjust for different lighting conditions, as
described in the next section.

Calibration Values

The camera was mounted on the rover at a height of 25cm, with an offset of -43cm from the
robot’s center (mounted at the backside of the robot), with no lateral offset. The camera was
recording with 30FPS in standard VGA resolution (640x480). The field of view was measured
to be 21,2cm in the width dimension. These parameters result in the following calibration values:

• camera_offset: -1298px

• pixel_size: 0,00033125m

• fps: 30s�1

• maximal speed: 0,8m/s
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Figure 6.2: Experimental Setup

Value Recording

In total, 17 different sensor configurations have been tested in 11 different scenarios. In order
to do so, a benchmark program has been written that loads a list of sensor configurations and
a list of scenarios as JSON files. With this approach, it is easy to add new configurations and
scenarios in the future.

The experimental setup is depicted in Figure 6.2. For each scenario, the input is read either as
compressed video file or as sequence of single images. For every configuration, a new instance
of the sensor is allocated and configured accordingly. The scenario’s input images are sent to
the sensor and the sensors output is then sent over UDP to the benchmark server.

The benchmark server is implemented in Javascript with the node.js4 Framework. It hosts
a UDP server to receive the measurements from the sensor as well as a local HTTP server, that
visualizes the received values in a live plot. Furthermore, the HTTP server allows the download
of the results in the form of .csv files at the end of a benchmark run.

6.1.1 Reference Movement Sequence

The movement sequence is illustrated in Figure 6.3 as the linear and angular velocity for the
vehicle. The solid line represents the commands that are issued to the vehicle. The dotted line
represents a simulation of the actual movement of the vehicle taking inertia into account.

Another way to visualize the movement is to plot the accumulated linear and angular velocity
as depicted in Figure 6.4. These values represent the position and orientation from the starting
point at each time instance. This visualization gives a better sense of movement and absolute

4http://nodejs.org/
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Figure 6.3: Illustration of vehicle movement parameters

deviations can be spotted easier. Again, the solid line is the ideal movement based on the input
commands, while the dotted line is the simulated movement taking the vehicles inertia into
account.
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Figure 6.4: Illustration of cummulative velocities

6.2 Scenarios

In order to assess the performance of the sensor in different situations, various places with vary-
ing floor patterns in and around the institute building have been examined. These different
set-ups will be called scenarios.

For every scenario, the accumulated linear velocity for every Tile Algorithm is plotted to
give a first impression on over how good the general performance of the different algorithms is.
This plot is mainly meant to privode an outline. Some algorithms can already be discarded at
this point. The others will then be analyzed in more detail.

Street

The images in Figures 6.5, 6.6, 6.7 and 6.8 depict different street scenarios. The corresponding
videos have been recorded on a day with fair weather, shortly after lunch when the sun was very
bright. The settings of the camera had to be adjusted to the minimal possible gain and fastest
shutter speed. Still, the images are very bright.

The first one, street1 (Figure 6.5), is an example of a tarred street. The picture is dark, but
with high contrast and a rich structured texture. The surface is evenly flat.

The second (street2, Figure 6.6) and third (street3, Figure 6.7) scenarios are both examples
of a common street. The surface is flat and even, and similarly to street1, the textures have a rich

71



structure and good contrast.
The fourth scenario is from a cobblestone path (Figure 6.8). The surface is pretty rough and

bumpy. Because of this, the robot suffered from sever vibrations while driving on this surface.
Furthermore, the color of the surface was very bright and reflected a lot of light. Therefore the
image is very bright as well, even with the camera settings adjusted as much as possible.
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Figure 6.5: Floor-Patterns Street 1
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Figure 6.6: Floor-Patterns Street 2
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Figure 6.7: Floor-Patterns Street 3
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Figure 6.8: Floor-Patterns Cobblestone

Indoor laminated

These scenarios (see Figures 6.9, 6.10, 6.11 and 6.12) have been recorded indoors in the institute
building. The surface in all these cases is a laminated floor that is very evenly flat. The first two
scenarios were recorded in a lab room with different lighting conditions. In the dark one, the
window blinds of the room have been lowered to dim the incoming sunlight. The room was
located at the shadow side of the building. In these scenarios, both, shutter speed and gain, are
in the default center position. The third one was recorded inside of the institute where there was
a big window through which the sun was shining. Because of this, the image is very well lit.
The last one was recorded in a different room where there is no window, and the room is only lit
with artificial light. Here, the gain had to be increased by about 50%, which already produced
visible noise in the images.
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Figure 6.9: Floor-Patterns Street 1
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Figure 6.10: Floor-Patterns Lab Dark
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Figure 6.11: Floor-Patterns Institute
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Figure 6.12: Floor-Patterns Kitchen
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Indoor Tiles

The scenarios in Figure 6.13 and Figure 6.14 are from the staircase and the foyer of the institute
building. The floor consists of tiles, the seams between the tiles have caused subtle vibrations in
the robot when driving over them.
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Figure 6.13: Floor-Patterns Foyer
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Figure 6.14: Floor-Patterns Staircase

Grass

The scenario in Figure 6.15 was recorded on a meadow. It is different from all the other scenarios
in that it has more different colors than the floors seen before and irregular patterns. Another
uniqueness is, that the height of the grass was up to 5cm, and therefore, the distance to the
ground varies in the image. Furthermore, wind was blowing and some grass blades and leaves
were moving because of the wind, causing irregular movement in the image.
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Figure 6.15: Floor-Patterns Grass

6.3 Results

6.3.1 General Results

The first obvious result when looking at the plots for different scenarios is, that only the corre-
lation Tile Algorithm works consistently good in almost all scenarios. The results are always
very close to the reference curve. The only exception is the cobblestone scenario (Figure 6.8)),
where, as mentioned, the vehicle was vibrating very much, because of the uneven structure of
the floor which caused a lot of erroneous movement in the camera frame.

The second finding is, that the optical flow method does not work well in any of these
scenarios. The problem is illustrated in Figure 6.16: the whole image should be evenly colored
in the same color. However, because of uniform structures, big parts of the image can not be
matched, and the resulting parts are white, meaning that the movement at this point is calculated
to be zero.

Figure 6.16: Debug-Visualization of Optical Flow Method. The color for each pixel represents
the movement direction at that pixel, the saturation of the color represents the magnitude of the
movement. White pixels correspond to zero movement.
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For similar reasons, the feature based Tile Algorithm performs poorly, except in the grass
scenario. Due to the texture, even though great numbers of features are detected in each frame,
these features are very similar to each other and can not reliably be matched.

FMT and histogram methods perform reasonably well in some of the scenarios - seemingly
in the street and the grass scenarios - and perform bad in some other scenarios. They only work
up to a certain speed. The reason for this is illustrated in Figure 6.17 - at higher speeds, the
image is smeared in the movement direction. This is because the shutter speed of the camera is
too low and the vehicle moves too far in the timeframe of the exposure.

Since in the outdoor scenarios, the shutter speed was already as fast as possible, a faster
camera would be necessary to fix this problem. In indoor scenarios, additional illumination
would be necessary as well. Otherwise the image would get too dark with faster shutter speeds.

Figure 6.17: Illustration of image smearing at higher speed. The left image was recorded at
low speeds and is sharp. The right image was recorded at higher speed and it is smeared in the
movement direction.

Due to these findings, the following analysis will concentrate on the correlation methods
with more detailled investigations.

6.3.2 Performance Results

Beside accuracy, the computational performance of the sensor is a major factor. These Performance-
Metrics have been recorded while running the scenarios on an 2.6 GHz Intel Core i5 Macbook
Pro with 8GB DDR3 RAM. Obviously, the absolute performance values listed in Table 6.1 can
vary depending on the machine, the sensor is running on. To compare the methods to each other,
their relative performance results have also been determined. These relative results also stay the
same on other hardware configurations.

It is not surprising, that the Histogram method with Exact Homography Estimation is the
fastest configuration. First, this is because the Histogram method is computationally very sim-
ple as mentioned in subsection 3.6.1. Secondly, this is because the Exact Homography Estima-
tion has the smallest area to compute.
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The values in the relative time column in Table 6.1 are related to this configuration which
acts as the reference configuration.

Configuration Time/Frame [ms] Avg. FPS [s�1
] Relative Time Factor[1]

Feature Based 23.988 41.688 19.072

O
pt

.F
lo

w Grid 111.189 8.994 88.405
A.Grid 51.643 19.364 41.061

Least Squares 33.876 29.519 26.935
Exact 14.837 67.399 11.797

FM
T

Grid 30.951 32.309 24.609
A.Grid 17.025 58.737 13.537

Least Squares 8.470 118.065 6.734
Exact 4.326 231.145 3.440

C
or

re
la

tio
n Grid 12.057 82.941 9.586

A.Grid 8.691 115.060 6.910
Least Squares 3.243 308.360 2.578

Exact 1.635 611.611 1.300

H
is

to
gr

am

Grid 7.838 127.581 6.232
A.Grid 3.862 258.913 3.071

Least Squares 2.606 383.730 2.072
Exact 1.258 795.089 1.000

Table 6.1: Computational Performance Results. The Relative Time Factor is based on the refer-
ence configuration (Histogram + Exact).

The relative performances have been listed in Table 6.2 sorted by Tile Algorithm and Frame
Algorithm. This table illustrates the order of the algorithms by computation speed from fastest
to slowest:

Histogram < Correlation < FMT < Optical Flow

and
Exact < Least Squares < Adaptive Grid < Grid

The order of Tile Algorithms can easily be explained by the total area that has to be calcu-
lated. Exact only has two tiles of a fixed size, Least Squares has 4 tiles of the same size and
therefore twice the area. As expected, the computation time is also almost exactly twice as long.
On the other hand, Grid always calculates the whole area of the input image. While the worst
case area of Adaptive Grid is also about the whole image, most of the time the tile size can
reduced by the adaptive algorithm.

These orders also have been visualized in Figure 6.18 and Figure 6.19.
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Histogram Correlation FMT Optical Flow
Exact 1 1,300 3,440 11,797

Least Squares 2,072 2,578 6,734 26,935
A.Grid 3,071 6,910 13,537 41,061
Grid 6,232 9,586 24,609 88,405

Table 6.2: Performance Comparison of different Configurations relative to the reference config-
uration (Historgram + Exact).
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Figure 6.18: Comparison of computation time for various Frame Algorithms, relative to the
reference configuration (Historgram).
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Figure 6.19: Comparison of computation time for various Tile Algorithms, relative to the refer-
ence configuration (Histogram).
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6.3.3 Velocities and Confidence

The plots in Figure 6.20 display the results for linear velocity, angular velocity and confidence
for each frame of the street2 scenario. The configuration was the Grid-Frame Algorithm with
Correlation tiles. It can be seen that the values fit the reference curve pretty good, but for both,
linear and angular velocity, there is some jitter around the mean value. This jitter seems to be
continuous like a pattern, alternating between over- and underestimating the actual value. It may
be possible that this is caused by an image frame rate that is not perfectly constant. Possibly,
this jitter could be eliminated by recording precise timestamps when a new frame is available,
and using these timestamps to calculate the precise time between frames. Unfortunately, this
correction was not possible with the recorded video.

Furthermore, it can be observed that the few outliers, especially in the angular velocity
around frame 275 and in the linear velocity between frame 450 and 500, are detected by the
confidence estimation and the confidence value decreases drastically as desired.
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Figure 6.20: Linear- and Angular Velocity with Confidence for Scenario street2 with Correlation
in Grid Configuration

6.3.4 Least Squares vs. Exact Homography

In this experiment, the methods for homography estimation are compared to each other. As ex-
plained in subsection 4.2.2, there are two different methods: exact and approximation methods.
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Because the former only requires the minimal number of correspondences, it was suspected that
the exact estimation is more prune to outliers.

Figure 6.21 shows the results in scenario street3 with the forward speed and confidence. The
configuration with exact match homography has 2 correlation tiles, the configuration with least
squares homography had 16 correlation tiles in grid-configuration.

Overall, the speed results are almost the same. However, at the times around frame 280 and
around frame 415, outliers cause severe estimation errors in the exact homography. Still, these
errors are detected by the confidence estimation, and as expected the confidence at these points
is 0.
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Figure 6.21: Comparison of Least Squares Homography Estimation vs. Exact Homography
Estimation

6.3.5 Accuracy

In order to compare the accuracy of different configurations, different values have been calcu-
lated and compared to the reference from subsection 6.1.1. In Table 6.3, the final value of the
cumulative speed, angle and position have been determined, and their deviations to the reference
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have been listed. The calculation for the cumulative velocities is very straight forward:

Vlinear =

NX

i=0

v
ilinear · t

Vangular =

NX

i=0

'
i

· t

For the final position, the movement vectors for every frame have to be summed up respecting
the current angular orientation, which is the cumulative rotation from the start to the current
frame, taking the time between two frames t into account:

�

i

=

iX

n=0

'
i

· t

Again, the elapsed time between two frames t has to be taken into account for the translation

Pos
x

=

NX

i=0

v
ilinear · cos�i

· t

Pos
y

=

NX

i=0

v
ilinear · sin�i

· t

The relative values are in reference to the total traveled distance and the total rotation respec-
tively:

Vtotallinear =

NX

i=0

|v
ilinear | · t = 2, 5866333274m

Vtotalangular =

NX

i=0

|'
i

| · t = 197, 3194444444�

Another way to analyzie the accuracy is to calculate statistical parameters over the whole
timeseries. The values in Table 6.4 show the deviations of the measured velocities from the
reference velocities. Note that in addition to the linear and angular velocities, that are already
familiar, the lateral velocity is listed as well. This is the velocity normal to the vehicles moving
direction. In normal driving situations, this velocity is zero. An example of an abnormal driving
situation where this velocity is not zero is if the car is drifting. As mentioned in subsection 4.2.1,
the position of the sensor causes lateral velocity to be measured, which is then filtered out with
the help of the sensors calibrated position and the measured linear and angular velocity. There-
fore, these values are a good indicator of how accurate the linear and angular velocity are in
relation to each other. For each velocity, the mean µ as well as the standard deviation �2 is
included. Obviously, a value closer to zero is better for both measurements.

The velocity deviation values have also been visualized in Figure 6.23, Figure 6.24 and
Figure 6.25. In these plots, excessively large values have been truncated such that the differences
of the more accurate methods can be better compared.
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Scenario Config Linear Error Angular Error Position Error
Abs. [m] Rel. Abs. [�] Rel. Abs. [m] Rel.

Street1

A.Grid 0,106 4,10% 4,723 2,39% 0,101 3,92%
Grid 0,114 4,39% 2,364 1,20% 0,118 4,56%

Least S 0,172 6,67% 0,782 0,40% 0,171 6,63%
Exact 0,164 6,35% -8,224 -4,17% 0,188 7,26%

Street1

A.Grid 0,032 1,25% 4,095 2,08% 0,038 1,47%
Grid 0,062 2,39% 3,818 1,94% 0,060 2,31%

Least S 0,035 1,34% -0,371 -0,19% 0,071 2,75%
Exact 0,040 1,53% 2,674 1,36% 0,069 2,65%

Street1

A.Grid -0,030 -1,16% -5,567 -2,82% 0,039 1,52%
Grid 0,033 1,29% -7,538 -3,82% 0,061 2,36%

Least S -0,013 -0,50% -4,736 -2,40% 0,053 2,05%
Exact 0,038 1,47% -14,355 -7,27% 0,147 5,67%

Street1

A.Grid 0,744 28,75% 98,769 50,06% 0,579 22,40%
Grid 0,380 14,68% 9,040 4,58% 0,353 13,65%

Least S 0,278 10,74% 5,560 2,82% 0,261 10,10%
Exact 0,405 15,67% -0,540 -0,27% 0,402 15,53%

Street1

A.Grid 0,025 0,97% 0,624 0,32% 0,140 5,41%
Grid -0,049 -1,91% 39,528 20,03% 0,340 13,15%

Least S -0,019 -0,73% 21,155 10,72% 0,082 3,16%
Exact -0,039 -1,50% 12,153 6,16% 0,210 8,13%

Street1

A.Grid -0,026 -1,02% 56,624 28,70% 0,023 0,89%
Grid 0,098 3,80% -11,296 -5,72% 0,111 4,30%

Least S 0,060 2,32% -1,887 -0,96% 0,058 2,25%
Exact 0,009 0,33% 32,708 16,58% 0,125 4,85%

Street1

A.Grid 0,017 0,66% 4,759 2,41% 0,048 1,86%
Grid 0,056 2,17% -1,125 -0,57% 0,057 2,19%

Least S 0,121 4,68% -7,379 -3,74% 0,143 5,53%
Exact 0,321 12,39% -15,657 -7,93% 0,283 10,94%

Street1

A.Grid 0,356 13,75% 157,178 79,66% 0,312 12,07%
Grid 0,028 1,08% -26,727 -13,55% 0,260 10,06%

Least S 0,048 1,85% -25,740 -13,04% 0,247 9,55%
Exact 0,038 1,49% -2,949 -1,49% 0,055 2,12%

Street1

A.Grid 0,123 4,77% 312,731 158,49% 0,118 4,56%
Grid 0,031 1,18% -0,715 -0,36% 0,072 2,80%

Least S 0,072 2,80% 0,715 0,36% 0,083 3,21%
Exact 0,094 3,64% 5,672 2,87% 0,104 4,00%

Street1

A.Grid 0,119 4,62% 169,235 85,77% 0,100 3,86%
Grid 0,022 0,85% 2,334 1,18% 0,017 0,66%

Least S 0,062 2,40% -5,032 -2,55% 0,121 4,67%
Exact 0,047 1,81% 5,659 2,87% 0,045 1,72%

Street1

A.Grid 0,073 2,82% 81,450 41,28% 0,577 22,32%
Grid 0,068 2,63% 11,040 5,59% 0,068 2,63%

Least S 0,140 5,42% 1,742 0,88% 0,139 5,36%
Exact 0,259 10,03% -3,551 -1,80% 0,270 10,45%

Table 6.3: Deviations of measured final cumulative values from measured values.
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Scenario Config Lateral Error [m/s] Lineral Error[m/s] Angular Error [�/s]
µ �2 µ �2 µ �2

Street1

A.Grid 0,018 0,014 0,005 -0,202 0,034 3,441
Grid 0,004 0,011 0,005 -0,101 0,028 3,317

Least S 0,010 0,012 0,007 -0,033 0,053 4,253
Exact -0,018 0,035 0,007 0,353 0,058 26,677

Street2

A.Grid 0,016 0,013 0,001 -0,175 0,029 4,067
Grid 0,016 0,012 0,003 -0,164 0,026 3,480

Least S 0,002 0,017 0,001 0,016 0,037 5,781
Exact 0,018 0,020 0,002 -0,114 0,030 6,982

Street3

A.Grid -0,011 0,018 -0,001 0,239 0,032 3,228
Grid -0,016 0,024 0,001 0,324 0,030 3,027

Least S -0,007 0,020 -0,001 0,204 0,040 4,686
Exact -0,059 0,054 0,002 0,616 0,062 10,209

Cobble-
stone

A.Grid 0,576 0,267 0,032 -4,239 0,193 83,071
Grid 0,032 0,026 0,016 -0,388 0,125 10,148

Least S 0,000 0,048 0,012 -0,238 0,108 7,358
Exact 0,015 0,021 0,017 0,023 0,137 10,444

Lab
Dark

A.Grid 0,024 0,023 0,001 -0,027 0,022 5,034
Grid 0,170 0,107 -0,002 -1,696 0,029 7,539

Least S 0,153 0,046 -0,001 -0,908 0,031 10,341
Exact 0,218 0,161 -0,002 -0,521 0,058 31,528

Lab
Bright

A.Grid 0,262 0,130 -0,001 -2,430 0,163 21,618
Grid -0,070 0,029 0,004 0,485 0,029 3,522

Least S -0,029 0,021 0,003 0,081 0,026 3,070
Exact 0,123 0,047 0,000 -1,403 0,035 8,549

Institute

A.Grid -0,002 0,042 0,001 -0,204 0,024 3,235
Grid -0,026 0,041 0,002 0,049 0,025 3,253

Least S -0,071 0,045 0,005 0,317 0,064 9,081
Exact 0,086 0,254 0,014 0,672 0,106 70,349

Kitchen

A.Grid 0,863 0,387 0,015 -6,746 0,158 33,337
Grid -0,102 0,053 0,001 1,147 0,026 4,937

Least S -0,095 0,048 0,002 1,105 0,028 4,814
Exact -0,020 0,029 0,002 0,127 0,044 7,005

Foyer

A.Grid 1,605 0,671 0,005 -13,422 0,160 31,618
Grid 0,011 0,022 0,001 0,031 0,027 3,232

Least S 0,015 0,023 0,003 -0,030 0,025 3,049
Exact 0,029 0,024 0,004 -0,243 0,037 5,893

Staircase

A.Grid 0,904 0,376 0,005 -7,263 0,161 30,215
Grid -0,032 0,023 0,001 -0,100 0,029 4,666

Least S -0,065 0,038 0,003 0,216 0,029 4,293
Exact -0,014 0,023 0,002 -0,243 0,048 7,684

Grass

A.Grid 0,179 0,234 0,003 -3,495 0,089 56,828
Grid 0,021 0,052 0,003 -0,474 0,040 4,006

Least S -0,001 0,035 0,006 -0,075 0,045 5,630
Exact 0,004 0,023 0,011 0,153 0,071 13,812

Table 6.4: Deviations of measured velocities from reference velocities
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To compare the statistical results, they have been plotted in a form similar to boxplot. Fig-
ure 6.22 illustrates an example for the values from Table 6.5. In this example, there are two
scenarios (Scenario 1 and Scenario 2) with 2 methods each (Method A and Method B). Method
A in Scenario 1 has a mean of µ = 0, 5 and a standard deviation of �2

= 0, 1. In the plot, the
mean is presented by a mark on the horizontal axis at the value of µ, in this case at 0, 5. The
standard deviation is represented by the line starting from the mean value and extending to the
left to (µ� �2

) and to the right to (µ+ �2
), from 0, 4 to 0, 6 in this example. All scenarios are

listed in a vertical sequence, with every configuration grouped together for each scenario.

Scenario Config Example Error
µ �2

Scenario 1 Method A 0,5 0,1
Method B 0,0 0,75

Scenario 2 Method A 1,0 0,75
Method B 1,0 0,25

Table 6.5: Data for Example Plot

�1 �0.8�0.6�0.4�0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

scenario1

scenario2

µ± �2

Method B
Method A

Figure 6.22: Example for Mean / Standard Deviation Plot. The Bar indicates the mean value µ,
the line extending goes from (µ� �2

) to (µ+ �2
)
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Figure 6.23: Lateral Deviations of Correlation Algorithms. The value range has been truncated
such that the more accurate methods can be compared better.
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Figure 6.24: Linear Deviations of Correlation Algorithms. The mean values are relatively close
to zero, but the standard deviation values vary widely. The value range has been truncated such
that the more accurate methods can be compared better.
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Figure 6.25: Angular Deviations of Correlation Algorithms. The mean values are relatively
almost zero for every entry, but the standard deviation values vary widely. The value range has
been truncated such that the more accurate methods can be compared better.

90



From the experiments it becomes clear that the performance of the Frame Algorithms heav-
ily depends on the particular scenario as well. Overall, the Grid method is pretty solid, but
especially in the dark scenarios (lab dark, kitchen) it performed worse than others. Surprisingly,
the accuracy of the Adaptive Grid method was the worst in many of the scenarios. But pre-
cisely in the two dark scenarios, where the normal Grid failed, the Adaptive Grid performed
exceptionally well.

Interestingly, the Least Squares method has produced more accurate results than the Grid
method in most of the scenarios with a lot less tiles, as well as considerably better computational
performance. Probably, this method should be used as a default, with the option to switch to
another method if the confidence decreases. Another possibility would be to implement more
sophisticated rejection strategies to filter out bad tile results on a frame-by-frame basis for the
Grid method.

It was already predicted, that the cobblestone scenario would yield bad measurements due to
sever vibrations of the vehicle caused by the uneven structure of the floor. More unexpectedly,
the street3 scenario lead to inaccurate measurements as well.

For every other scenario, at least one Frame Algorithm can be found that performs with an
accuracy better than 0.2m/s and 5 degree with the used experimental setup, for most scenarios
even a lot better. It is expected, that the accuracy can be furthermore improved by using a better
camera, as mentioned in subsection 6.3.1, as well as by circumventing or filtering out the jitter
mentioned in subsection 6.3.3.

Note, that these statistical scores do not take the confidence value into account. For the
most part, the confidence estimation was able to detect bad measurements, such that a following
sensor fusion system would have been able to filter outlier measurements with low confidence.
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CHAPTER 7
Conclusion

In this work, a novel motion sensor architecture has been developed that is based on image
processing methods. To determine the movement parameters, the sequence of images from
a camera, which is mounted at the vehicle, pointing to the ground, is analyzed by an image
processing algorithm. Additionally, the algorithm also computes confidence values. A wide
range of possible configurations has been derived.

The developed sensor was implemented as a software module for the Robot Operation Sys-
tem (ROS). Its implementation details and how the module can be used in ROS works have
been described. A software architecture has been developed to support the reconfiguration of
the sensor at runtime.

Finally, the sensor has been used in a real application scenario with a research rover. The
results have been recorded and analyzed in detail. The main goal was to prove the viability of
the developed sensor. The secondary goal was to gather data about the performance of different
configurations in different scenarios.

7.1 Major Results
The most important result of this thesis is, that it was in fact possible to develop a new sensor
that makes it possible to avoid systematic errors caused by wheel slipping. It was proved that
the sensor is viable and for every scenario that was tested. At least one configuration was able to
detect linear- and angular velocities with high accuracy. Furthermore, in all cases where it was
not possible to achieve high accuracy, the sensor was able to detect the situation and indicate
poor results by a low confidence value.

This means that the sensor can be used in a sensor fusion system along with other methods.
Systematic errors of wheel based velocity sensors can thereby be covered by the optical sensor
as desired.

The sensor system is ready for use in research rovers like the Pioneer 3-AT in the tested
setup with the PS3 EYE camera and a lot of similar USB cameras supported by gscam. Thanks
to the implementation as a ROS-module, it is easy to integrate it into most existing ROS system.
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When a better camera is used (see Future Work), it is also feasible to deploy the sensor
system in normal cars and use it at higher speeds as well.

7.2 Future Work

The implemented software architecture is a solid basis for future research and improvements.
The goal of easy reconfiguration at runtime has been met, it is simple to implement new algo-
rithms. The only requirement is that they comply with the defined interfaces. Obviously, future
research can be focused on exploring additional algorithms and configurations than presented in
this thesis. Furthermore, there are a lot of other topics that could be improved:

• Using a better camera In subsection 4.5.1, the maximal measurable speed was presented
to be limited by the frame rate via geometrical constraints. It was discovered, that in real
applications, the shutter speed further reduces the maximal speed. This was explained in
Figure 6.17 with the smearing that occurs in the image, if the vehicle moves too far during
the exposure of the image. This effect is sometimes also referred to as motion blur.It has
been shown that some algorithms like correlation are relatively resilient to this blurring,
while other methods like fmt or histogram are heavily impaired by this effect. To combat
this, a faster camera would be necessary, but also additional lighting to counteract the
brightness loss caused by shorter exposure.
The methods that suffered from the motion blur should be reevaluated as soon as a better
camera is used.

• Illumination: The scenarios from section 6.2 have displayed a large dynamic range in
the image brightness. For some of the indoor scenarios, the lighting conditions already
were almost too poor and the image noise caused by high image gain was already visibly
lowering the image quality. To achieve more consistent results, artificial illumination
is inevitable. Especially, if the frame rate is increased and the shutter time decreased,
because these adaptions lead to even darker images. In order to implement illumination,
additional hardware is necessary.

• GPU Implementation: The largest part of the computational complexity is necessary for
the computer vision algorithms. These algorithms are very suitable for implementation
on a GPU, because they are highly parallelizable. Implementing them on a GPU would
not only boost performance and the achievable frame rate, but it would also reduce the
energy impact significantly. Furthermore, CPU time would be freed up for other modules,
because the sensor is after all not the only module that is active on an autonomous robot.

• More sophisticated rejection strategy: As mentioned at the end of chapter 6, using more
tiles than necessary, coupled with more sophisticated rejection strategies could increase
accuracy and confidence. The currently implemented rejection strategies rely mostly on
the physical limits of the vehicle, which ensures that implausible results are rejected. It
would be possible to use more details directly from the images in addition to find even
outliers that comply with the physical limits, but are still wrong.
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• Exchange Algorithms at Runtime: As discovered, for different scenarios, there are spe-
cific algorithms that work better than others. This knowledge could be used to adapt the
sensor by switching the whole algorithm depending on the current scenario. In section 5.5,
it is explained that a frame is processed by one, or potentially more tiles, via Tile Algo-
rithms. It’s easy to add new Tile Algorithms to a frame at runtime, as well as to remove
existing ones. The frame is analyzed for defined characteristics, and then appropriate al-
gorithms can be chosen for the situation at hand. The findings from chapter 6 can be used
as a basis for deciding which algorithm to use in which scenario. This task might also be
well suited for the application of machine learning methods.

• Adaptive Optics: Besides adaptations to the software of the sensor, hardware adaptations
are possible as well. The maximum detectable speed is limited by the physical size of
the floor patch perceived by the camera (see subsection 4.5.2). While the minimal speed,
in the sense of the minimal movement distance still detected by the sensor, is limited by
the pixel size, and therefore, by the resolution of the camera. Simply increasing the FOV
and the resolution of the camera only work within small boundaries, and are limited by
the characteristics of available cameras. Furthermore, increasing both of these parameters
also increases the total number of pixels, and therefore, the computation time which is
also undesirable. An optical system with which the zoom factor of the image can be

z2

z1

frame1

frame2

Figure 7.1: Dynamic adaption of zoom: frame 1 has a zoom-factor that captures a bigger Field
of View than frame 2, but also the image details are smaller in frame 1 than in frame 2.

changed dynamically, is able to solve these problems and extend the operation range of
the sensor without affecting the computation time. The zoom is controlled by the speed
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of the vehicle. If the vehicle is moving slowly, the optical system zooms in to the ground,
projecting a much smaller area of the ground to the equally sized image frame. As a result,
the distance of a single pixel corresponds to a much smaller distance than before, and the
minimal detectable speed decreases. However, if the vehicle moves fast, the optical system
zooms out, such that a much larger area is visible in the camera’s frame. Thus increasing
the maximal speed measurable. Of course, the output value and other values, that are used
for adaptation, need to be scaled with the current zoom factor. Figure 7.1 displays the
concept, where the zoom-factor in frame 2 is higher than in frame 1. Therefore, frame 1
captures a bigger FOV, but details are smaller. The zoom factor in frame 1 can be used
for higher speeds than the zoom factor in frame 2.
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APPENDIX A
Acronyms

AGV Autonomous Ground Vehicle

CPS Cyper-physical System

ROI Region of Interest

ROS Robot Operating System

TMR Tripple modular redundancy

DLT Direct linear transform

LTP Log-Polar Transform

FOV Field of View

LED Light Emitting Diode

FPS Frames per Second

DOF Degrees of Freedom

SSD Sum of Square Differences

NCC Normalized Cross-Correlation

DoG Difference of Gaussian

SIFT Scale Invariant Feature Transform

FMT Fourier-Mellin Transform

RANSAC Random Sample Consensus
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ANMS Adaptive non-maximal suppresion

FOE Focus of Expansion

TTC Time to collision

HD Heading Direction

SMC Smoothness Motion Constraint

HMD Head-mounted Display
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