
Two-Phase Local Search for the
Bi-objective Connected Facility

Location Problem
DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Thomas Petelin
Matrikelnummer 0525199

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.-Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Mitwirkung: Dipl.-Ing. Dr.techn. Markus Leitner

Wien, 04.12.2013
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der Arbeit

Thomas Petelin
Stettnerweg 20, 2100 Korneuburg

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Danksagung

An dieser Stelle möchte ich mich recht herzlich bei ein paar Personen bedanken, die mich
während meines Studiums und vor allem während meiner Masterarbeit unterstützt haben.

Bei Univ.-Prof. Dipl.-Ing. Dr.techn. Günther Raidl bedanke ich mich für die Genehmigung
des Themas und die Betreuung während der Masterarbeit.

Bei Dipl.-Ing. Dr.techn. Markus Leitner bedanke ich mich für die kompetente fachliche Un-
terstützung in den verschiedenen Arbeitsphasen und dafür, dass er mir immer mit Rat und Tat
zur Seite gestanden hat.

Bei meinen Eltern bedanke ich mich für sämtliche Unterstützungen während meines Studiums.

iii

Abstract

In this thesis a two-phase local search based metaheuristic algorithm for the Bi-objective Con-
nected Facility Location Problem (BoConFL) is presented.

The Connected Facility Location Problem (ConFL) is an NP-hard combinatorial optimiza-
tion problem that has been recently proposed to model the extension of fiber-optic-networks us-
ing so-called fiber-to-the-curb (FTTc) strategies. In FTTc scenarios telecommunication providers
aim to extend their fiber-optic networks to mediation points (facilities) that bridge between fiber-
optic and copper technology. Customers are finally connected to facilities using the previously
existing copper network. Thus, the bandwidth of customers can be significantly increased with
less investment costs compared to connecting each customer using fiber-optics, i.e., compared
to fiber-to-the-home scenarios.

The main drawbacks of previously considered variants of ConFL are that they either aim to
mandatorily connect all potential customers or that they simply optimize the difference between
the revenue obtained by connecting a subset of customers and the resulting network construc-
tion costs. In many realistic settings, however, customer „revenues“ may be given e.g. by means
of demands rather than in monetary units. Thus, simply maximizing the previously mentioned
difference is not meaningful. Hence, the Bi-objective Connected Facility Location Problem (Bo-
ConFL) which is addressed in this thesis aims to simultaneously maximize the collected revenue
and minimize the resulting costs for constructing the network. In many relevant scenarios, the
addition of a second objective function provides a better representation of the real world since
these two objectives are conflicting, rather than finding a single optimal solution in the BoConFL
we are interested in identifying the set of non-dominated, i.e., Pareto-optimal, solutions.

Based on previous work for single-objective variants of the problem and successful ap-
proaches for different bi-objective combinatorial optimization problem a two-phase algorithm
is developed in order to get a good approximation of the Pareto front with the following two
main steps:

a) Construction of a set of promising solutions by aggregation of the two objectives to a
single one. Variable neighborhood descent is used to further improve the obtained set of
initial solution candidates.

b) Application of a Pareto local search algorithm that takes both objectives explicitly into
account to further improve the quality of the solution set.

The influence of the algorithms components and parameters on the runtime and the quality
of the obtained approximation is analyzed using a computational study.

v

Kurzfassung

In dieser Arbeit wird ein auf lokaler Suche basierender zwei phasiger metaheuristischer Algo-
rithms für das Bi-objective Connected Facility Location Problem (BoConFL) präsentiert.

Das Connected Facility Location (ConFL) Problem ist ein NP hartes kombinatorisches Opti-
mierungsproblem, welches erst kürzlich als Modell für die Erweiterung von Glasfaserkabelnetz-
werken zu sogenannten Fiber-to-the-Curb (FTTc) Strategien vorgeschlagen wurde. Bei solchen
FTTc Szenarien versuchen Telekommunikationsanbieter ihr Glasfasernetzwerk zu sogenannten
Vermittlungspunkten (Facilities) zu erweitern, welche den Übergang von Glasfaser zu Kupfer
handhaben. Dadurch wird dem Kunden deutlich mehr Bandbreite geboten und zusätlich werden
die Ausbaukosten geringer gehalten, als würde jeder Kunde einen direkten Glasfaseranschluss
bekommen.

Der größte Nachteil in den bisher präsentierten Varianten des ConFL Problems liegt darin,
dass entweder versucht wird jeden Kunden mit einer Facility zu verbinden oder es wird einfach
versucht die Differenz zwischen Ausbaukosten und Gewinn zu minimieren indem nur ein be-
stimmter Teil aller möglichen Kunden angebunden wird. In vielen realistischen Szenarien kann
der „Ertrag“ eines Kunden eher durch dessen Anforderung definiert werden als über erhaltenen
Gewinn. Dadurch ist die einfache Maximierung von Gewinn minus Ausbaukosten nicht aussa-
gekräftig. Auf Grund dessen haben wir versucht das BoConFL Problem zu lösen, mit dem Ziel
den Kundennutzen zu maximieren während wir die Ausbaukosten minimieren. Da die Erwei-
terung des ConFL Problems um eine weitere Zielfunktion eine bessere Abbildung der Realität
darstellt, weil sich die beiden Zielfunktionen widersprechen, haben wir versucht eine Menge
von sich nicht gegenseitig dominierenden (Pareto-optimale) Lösungen zu suchen anstatt einer
einzelnen optimierten Lösung.

Basierend auf bisherigen Arbeiten zu dem normalen, single-objective ConFL Problem und
diversen erfolgreichen Ansätzen für bi-objective kombinatorische Optimierungsprobleme wer-
den wir einen zwei-Phasen Algorithmus entwickeln, welcher versucht die Paretofront so gut als
möglich anzunähern. Dieser Algorithmus besteht aus folgenden zwei Schritten:

a) Konstruktion einer Menge von vielversprechenden Lösungen durch Aggregation der bei-
den Zielfunktionen zu einer einzigen, unter Verwendung von Gewichten. Weiters ver-
wenden wir eine variable Nachbarschaftssuche um die initialen Lösungen nochmals zu
verbessern.

b) Anwendung einer Pareto-lokalen Suche, welche beide Zielfunktionen berücksichtigt, um
die Lösungen weiter zu verbessern.

vii

Um den Einfluss der Komponenten des Algorithmus und seiner Parameter auf die Laufzeit
und die Qualität der berechneten Lösungen zu analysieren, werden wir den Algorithmus auf ein
Set verschiedener Testinstanzen anwenden.

Contents

1 Introduction 1
1.1 Aim of the work . 2
1.2 Outline of the Thesis . 2

2 Problem Definition 3

3 Methodologies 5
3.1 Integer Linear programming . 5
3.2 Metaheuristic Approaches . 7

3.2.1 Greedy Heuristic . 7
3.2.2 Greedy Randomized Adaptive Search Procedure 7
3.2.3 Local Search . 8
3.2.4 Variable Neighborhood Descent . 9
3.2.5 Variable Neighborhood Search . 10
3.2.6 Tabu Search . 11
3.2.7 Population based Approaches . 12

3.3 Basic Definitions for Multi-objective Optimizations 14

4 Previous & Related Work 17
4.1 State of the art . 17

5 The Two-Phase Local Search Algorithm 21
5.1 Paretofilter . 22
5.2 Phase 1 . 22

5.2.1 Aggregation of objective Functions 23
5.2.2 Adaptation of Weights . 24
5.2.3 Construction Heuristic . 25
5.2.4 Variable Neighborhood Descent . 28

5.3 Phase 2 . 32
5.3.1 Pareto Local Search . 32

6 Computational Tests and Results 35
6.1 Test instances . 35
6.2 Test Environment . 37

ix

6.3 Evaluation . 37
6.3.1 Quality Metrics . 38

6.4 Computational Results . 40

7 Conclusion 49
7.1 Future work . 49

A Running Time Table 51

B Pareto Fronts 55

Bibliography 67

x

CHAPTER 1
Introduction

With the increasing availability of video-on-demand and other internet based products customers
need access to higher bandwidth internet connections. Thus the telecommunication industry
needs to extend their existing networks. Among other strategies so-called fiber-to-the-home
(FTTh), fiber-to-the-building (FTTb), or fiber-to-the-curb (FTTc) networks are considered as
particularly relevant by telecommunication providers to increase the bandwidth available to cus-
tomers.

Starting with copper only networks telecommunication providers soon extended their networks
by replacing the connections between their main distribution centers by fiber-optic cables that
are capable of handling a higher traffic volume. Due to the increased availability of different
services on the internet, customers needed a better connection to their service providers. At
first only the main hubs of telecommunication providers were connected with fiber optic cables
which improved the performance significantly. Still, however, the end customers were not sat-
isfied. To solve this problem the fiber optic networks should be brought closer to the consumer.
In FTTc scenarios telecommunication providers aim to extend their fiber-optic networks to me-
diation points (facilities) that bridge between fiber-optic and copper technology. Customers are
finally connected to facilities using the previously existing copper network. If the length of the
copper path between a customer and the facility is not too long, the bandwidth of customers can
be significantly increased. The associated investment costs are, however, typically significantly
smaller than connecting each customer using fiber-optics, i.e., compared to fiber-to-the-home
scenarios where the customer would be directly connected to the fiber-optic network of the
provider.

To model such extensions of fiber-optic-networks the Connected Facility Location Problem
(ConFL) has been proposed recently. The main drawbacks of previously proposed variants of
ConFL are that they either aim to mandatorily connect all potential customers or that they simply
optimize the difference between the revenue obtained by connecting a subset of customer and the
resulting network construction costs. In many realistic settings, however, customer „revenues“

1

may be given, e.g., by means of demands rather than in monetary units. Thus, simply maximiz-
ing the previously mentioned difference is not meaningful. In all previous attempts these two
conflicting objectives were merged and solved as a single objective problem. However the addi-
tion of a second objective function provides a better representation of the real world. As these
two objectives are conflicting, rather than finding a single optimal solution in the BoConFL we
are interested in identifying the set of non-dominated, i.e., Pareto-optimal, solutions. Hence,
the Bi-objective Connected Facility Location Problem (BoConFL) which is addressed in this
thesis aims to simultaneously maximize the collected revenue and minimize the resulting costs
for constructing the network.

1.1 Aim of the work

In this thesis different existing methods to solve the single objective ConFL and variants thereof
are presented. Furthermore an overview of approaches to solve bi- and multi-objective prob-
lems, either with exact methods or heuristics is given. Our aim was to develop a metaheuristic
algorithm based on local search for the bi-objective connected facility location problem that is
capable of finding a good approximation of the set of non-dominated solutions. Focusing on a
local search based approach was somehow natural, since this technique has been successfully
applied to single objective problems with similar characteristics. Furthermore the bi-/multi-
objective ConFL was not tackled before by a local search based algorithm.
Finally, by a computational study, the influence of the components and parameters on the run-
time and the quality of the obtained approximations of the developed approach is investigated.

1.2 Outline of the Thesis

In Chapter 2 the ConFL and the bi-objective ConFL which is tackled in this thesis are for-
mally defined. Chapter 3 gives an overview of common approaches to solve the single objective
combinatorial optimization problems, including exact algorithms, heuristics as well as genetic
algorithms. Chapter 4 which gives an overview of the most commonly used approaches in the
literature to conquer the single objective ConFL and briefly summarizes relevant algorithms for
bi- and multi-objective problems. Chapter 5 describes the algorithm developed in this thesis and
discusses the implementation. In the next Chapter the results obtained from a computational
study are discussed. Finally, in Chapter 6 some conclusions are drawn and ideas for future work
based on this thesis are presented.

2

CHAPTER 2
Problem Definition

The Connected Facility Location Problem is a generalization of the Facility Location Problem
and the Steiner Tree Problem and defined as follows:

Definition 2.1.1 (Connected Facility Location Problem). We are given a graph G = (V,E)
where the node set is the disjoint union of customer nodes R ⊆ V , facility nodes F ⊆ V and
potential Steiner nodes T = V \ (F ∪R). The set of edges E is the disjoint union of core edges
EC = {{i, j} ∈ E : i, j ∈ F ∩ T} and assignment edges EA = {{i, j} ∈ E : i ∈ F, j ∈ R}.
For all core edges e ∈ EC we are given an edge cost ce ≥ 0, for all facilities i ∈ F we are given
facility opening costs fi ≥ 0, and each edge e ∈ EA we are given costs aij ≥ 0 for assigning
customer j ∈ R to facility i ∈ F .

A solution to the ConFL consists of a set of open facilities F ′ ⊆ F , a set of chosen assign-
ment edges E′A ⊆ EA such that each customer j ∈ R is connected to exactly one open facility
i(j) ∈ F ′ and a Steiner tree (V ′, E′C) which is a subgraph of (F ∪ T,EC).

The objective value of a solution is given by the sum of the opening costs, the costs of
assigning customers to open facilities and the edge costs of the Steiner tree connection the open
facilities, i.e.

min
∑
i∈F ′

fi +
∑
j∈R

ai(j)j +
∑
e∈E′

C

ce, (2.1)

and the overall objective is to identify a solution with minimal costs. Note that in this for-
mulation closed facility nodes can also be used as pure Steiner nodes.

The bi-objective ConFL can be modeled equivalently with the addition that a potential rev-
enue is assigned to each customer and not every customer has to be assigned to a facility in a
feasible solution.

Definition 2.1.2 (Bi-objective Connected Facility Location Problem). We are given a graph
G = (V,E) where the node set is the disjoint union of customer nodes R ⊆ V , facility nodes

3

F ⊆ V and potential Steiner nodes T = V \ (F ∪ R). Further we are given a root node
b ∈ (F ∪ T) which can either be a facility (open or closed) or a Steiner node. The set of edges
E is a disjoint union of core edges EC = {{i, j} ∈ E : i, j ∈ F ∩ T} and assignment edges
EA = {{i, j} ∈ E : i ∈ F, j ∈ R}. For all core edges e ∈ EC we are given an edge cost
ce ≥ 0, for all facilities i ∈ F we are given facility opening costs fi ≥ 0. Additionally a
potential revenue rk > 0 is assigned for each customer k ∈ R. For each edge e ∈ EA we are
given the costs of assigning a customer j ∈ R to a facility i ∈ F as aij ≥ 0.

A solution S = ((V ′, E′C), F ′, R′, E′A) to the BoConFL consists of a set of open facilities
F ′ ⊂ F , a set of chosen assignment edges E′A ⊆ EA such that each selected customer j ∈ R′,
R′ ⊆ R, is connected to exactly one open facility i(j) ∈ F ′ and a Steiner tree (V ′, E′C) which
is a subgraph of (F ∪ T,EC) where F ′ ⊆ V ′.

In the BoConFL we have not one but two objective values for each solution, the cost z1(S)
which is given by the sum of the opening costs, the costs of assigning customers to open facilities
and the edge costs of the Steiner tree connection the open facilities and the revenue z2(S) which
is the sum of the revenue of each selected customer.

In the BoConFL we want to simultaneously minimize the total costs z1(S) and maximize the
collected revenue z2(S) of a solution S, i.e.,

z1(S) =
∑
i∈F ′

fi +
∑
j∈R′

ai(j)j +
∑
e∈E′

C

ce, (2.2)

z2(S) =
∑
k∈R′

rk. (2.3)

The objective is to identify the set of Pareto optimal solutions, i.e., the set of feasible solutions
for which one cannot find another feasible solution that is better w.r.t. to one of the objectives
without deteriorating the other objective.

In order to create a minimization problem, instead of calculating the revenue which would
be maximized we calculate the lost revenue z′2(S) which needs to be minimized. This results in
the following two objective functions:

z1(S) =
∑
i∈F ′

fi +
∑
j∈R′

ai(j)j +
∑
e∈E′

C

ce, (2.4)

z′2(S) =
∑

k∈R\R′

rk. (2.5)

4

CHAPTER 3
Methodologies

The following chapter will provide an introduction to exact and heuristic approaches for solving
combinatorial optimization problems (COPs) Furthermore an overview of methods used to con-
quer bi- and multi-objective problems is given. Finally Section 3.3 introduces basic definitions
and terminology of multi-objective optimization.

Exact methods usually take a form of branching and other forms of exhaustive search in
order to find optimal solutions for given problems if given enough time. Due to their behavior
these methods tend to find good if not exact solutions but the drawback is the long runtime
because of the large solution space which needs to be searched. The most common and widely
used approach for COPs is mixed integer linear programming.

3.1 Integer Linear programming

This topic was first studied by Kantorovich [23] and gained military interest during the second
world war. A few years later, independent of Kantorovich, Dantzig [9] formalized linear pro-
gramming and published the well known simplex algorithm to solve linear programs (LPs). Von
Neumann [50] proposed the theory of duality of LPs stating that every minimization problem
has an equivalent maximization problem and vice versa.

Formulation (3.1)-(3.3) is the standard for a linear program (LP),

min. cTx (3.1)

s.t. Ax ≥ b (3.2)

x ≥ 0 (3.3)

where x ∈ Rn is the vector of variables which needs to be determined, c ∈ Rn is the cost
vector, b ∈ Rm is a coefficient vector and matrix A ∈ Rm×n is a matrix of coefficients. cT

5

denotes the transposed vector of c. The objective function (3.1) is to be optimized regarding to
the given criterion. The inequality (3.2) is the constraint which specify a convex polytope over
which the objective function will be optimized. The domain of the variables (3.3) defines the
value range of x.

The most well known algorithms to solve linear programs are the Simplex algorithm by Dantzig
[8] and the Interior point method [25, 47] as well as adaptations of them.

Some problems are formulated as maximization problems so these need to be transformed to
minimization problems by application of the theorem of von Neumann (3.1) - (3.3):

max. bTy (3.4)

s.t. ATy ≥ c (3.5)

y ∈ Rn (3.6)

This transformation can also be used in the other direction, from minimization to maximization
problems.

Based on the domain is the variable (3.3) we differentiate between the following four forms
of LPs: The domain of x need not to be restricted to R. Due to a more restricted domain of x
we can differentiate some special forms:

• Integer Linear Program (ILP): x ∈ Zn

• Binary Integer Program (BIP): x ∈ {0, 1}n

• Mixed Integer Program (MIP): x ≥ 0,xi ∈ Z, i ∈ S ⊂ {1, ..., n}

In order to solve ILPs, BIPs or MIPs some advanced algorithms that implement the simplex
algorithm are used, e.g., branch and bound method [29], branch and cut algorithm [41]. This
is done by relaxing the integer condition of variables from x ∈ N to a continuous value range
x ∈ R. Due to this relaxation of a constraint the solution obtained might not be integral any-
more. This fact can be used to get a lower bound of the relaxed minimization problem as well as
an upper bound by solving the dual maximization problem or vice versa. The Branch and Bound
algorithm is used to solve such relaxation problems. It uses a divide and conquer approach to
break the problem into smaller and easier subproblems which can be solved independently. If a
solution to a relaxed problem is found with one or more variables being a fractal by using binary
branching, e.g.: a solution of a ILP with x = 3.5 will be branched to two new subproblems each
having an additional constraint x ≤ 3 and the other x ≥ 4.

After a new solution is obtained, it is checked if it worse than the best upper / lower bound
already found the node is pruned and all resulting subproblems as well. The branch and bound
procedure is finished when the lower and and the upper bound respectively the the primal and
dual solution are equal and integral.

6

3.2 Metaheuristic Approaches

Metaheuristics often try to optimize a solution for a problem by iteratively trying to improve a
solution with regard to a specific measure of quality with no assumption about the optimality of
the solution. They can search a very large set of candidate solutions but they do not guarantee
that an optimal solution will be found. In the following subsections, which follows the lecture
slides of Heuristic Optimization Techniques, an overview of the most common metaheuristic
algorithms is given.

3.2.1 Greedy Heuristic

A greedy heuristic (also called a construction heuristic) is typically used to create an initial
solution. Due to their nature they usually fail to find optimal solutions and do not derive any
information on the distance to the optimum. Usually they make a decision with no concern
if this was good on the long run, thus they are called short sighted. They are typically fast
and often find good approximations of the optimal solution. Algorithm 1 shows a pseudo code
implementation of a greedy heuristic. Starting from an empty solution and continuously adding
the cheapest item to the solution until it has discovered a complete solution.

Algorithm 1 Greedy construction heuristic
1: x← empty solution
2: while x is no complete solution do
3: e← current cheapest extension for x
4: x← x⊕ e
5: end while

3.2.2 Greedy Randomized Adaptive Search Procedure

A Greedy Randomized Adaptive Search Procedure (GRASP), introduced by Feo and Resende
[12], is also used as a construction heuristic like the greedy heuristic. As opposed to the latter, a
GRASP is usually used to generate a set of independent initial solutions which are needed, e.g.,
population based metaheuristics.

As a greedy heuristic, GRASP, starts with an empty solution. Rather than just adding the next
best element to the solution it evaluates all existing solution candidates that are extensions to
the current solution. These candidates are added to a Candidate List (CL) and a subset of these,
which are most likely the better ones, are added to the Restricted Candidate List (RCL). How
many of the solutions are added to the RCL determines the randomness of the GRASP. If the
size of the RCL is one, then the GRASP would resemble a deterministic greedy algorithm as de-
scribed in Section 3.2.1. Next the algorithm selects a random element from the RCL and extends
the actual solution by the selected candidate. This process is repeated until a complete solution
has been generated.

Algorithm 2 details a single iteration of GRASP, e.g. the construction of a single solutions.

7

Algorithm 2 Greedy Randomized Adaptive Search Procedure
1: x← empty solution
2: while x is no complete solution do
3: CL← all possible extension of x
4: RCL← promising subset of CL
5: e← random element of RCL
6: x← x⊕ e
7: end while

Figure 3.1: Example of a move within the 2-exchange neighborhood on the TSP. Two edges are
selected and their endpoints are exchanged in order to check if the solution derived is better than
the initial one.

3.2.3 Local Search

The Local Search (LS) algorithm (see Algorithm 3) tries to find an optimal solution by iteratively
improving candidate solutions within a given neighborhood. The main parts of a LS are the
definition of a solution representation, the generation of an initial solution, a selection of the
neighborhood structure to use and of a step function and finally a stopping criterion.

Algorithm 3 Local Search
1: x← initial solution
2: repeat
3: select an x′ ∈ N(x)
4: if f(x′) ≤ f(x) then
5: x← x′

6: end if
7: until termination criterion met

A neighborhood structure is a functionN : S → 2S that assigns to each solution x ∈ S a set
of neighbors N(x) ⊆ S. N(x) is often called the neighborhood of x. Usually a neighborhood is
defined by a set of possible moves. For the symmetric Traveling Salesman Problem (TSP), e.g.,
the k-exchange neighborhood defines a neighborhood structure in which each tour differs from
the initial tour by a maximum of k edges (see Figure 3.1 for an exemplary 2-exchange move).

As one can imagine from the example the number of neighbors can be large. There exist
three common strategies (step functions) to select neighboring solutions (cf. Step 3 of Algorithm

8

Figure 3.2: Difference between local and global optimum

3):

• Random Improvement: use a random neighboring solution from N(x).

• Next Improvement: search N(x) in a fixed order and take the first neighboring solution
that is better than x.

• Best Improvement: search all N(x) and take the best neighboring solution x.

The main drawback of the basic LS algorithm is that it only finds a local optimum x in the
neighborhood structureN , i.e., a solution x such that f(x) ≤ f(x′),∀x′ ∈ N(x). As also shown
in Figure 3.2 such a local optimum may not be a global optimum, i.e., there may exist a solution
x′′ with f(x′′) ≤ f(x).

To overcome that problem the following extensions of the basic LS algorithm can be used.

3.2.4 Variable Neighborhood Descent

The Variable Neighborhood Descent method [19] can be used to overcome the problem of the
basic local search (LS). The disadvantage of the LS which only uses a single neighborhood is
that one might find a local optima in that specific neighborhood but which probably not a global
optima for the whole solution space. They used the fact that a local optima of one neighborhood
structure is not necessarily an optima of another as well as that a global optima is a local op-
tima for each possible neighborhood structures and that for most problems the local optima lie
relatively close together.

A VND iterates deterministically over a set of neighborhood structures N1, ...,Nlmax with
the step function usually being next or best improvement (see Algorithm 4). The solution that
is obtained by a VND will be optimal with respect to all neighborhood structures but still need
not be a global optimum. In VND, the neighborhood structures are usually ordered either by
ascending size or complexity.

9

Algorithm 4 Variable Neighborhood Descent (x)

1: x←initial Solution
2: l← 1
3: repeat
4: find an x′ satisfying f(x′) ≤ f(x′′),∀x′′ ∈ Nl(x)
5: if f(x′) < f(x) then
6: x← x′;
7: l← 1
8: else
9: l← l + 1

10: end if
11: until l > lmax

12: return x

3.2.5 Variable Neighborhood Search

Hansen and Mladenovic [42] proposed the Variable Neighborhood Search (VNS) which utilizes
a method which is called shaking and improve this solution by applying LS. Shaking is a process
which takes a solution and modifies it to resemble another solution which might not be achieved
by only applying local search because it does not follow any improvement strategy. It applies k
random moves in the given neighborhood. The greater the value of k the more the new solution
diverges from the initial one. It is basically a means to escape local optima by applying a
number of random moves in one or different neighborhoods and to avoid cycling which might
occur when applying deterministic rules.

The basic pseudo code for a VNS can be seen in Algorithm 5, where Nl describes the lth

neighborhood with l ∈ 1, ..., lmax. Before each local search application shaking is performed
in order to alter the existing solution more or less, depending on k. The local search performed
in line 5 is the same as described in Section 3.2.3 with the extension that the Nl defines the
neighborhood structure in which the local search will be searching. In case a better solution is
found the neighborhood is reset back to N1 else shaking and local search is applied in the next
neighborhood until the stopping criterion is reached.

There exist some different VNS variants. The Basic Variable Neighborhood Search (BVNS)
[5] is the the basic variant described above (see Algorithm 5). A simplified variant is the Re-
duced Variable Neighborhood Search (RVNS) [20], where the LS (Step 5 from Algorithm 5)
is removed. For the General Variable Neighborhood Search (GVNS) [5] the shaking and the
LS steps of the BVNS are removed and instead a VND is performed. Another variant is the
Variable Neighborhood Decomposition Search (VNDS) [20] which is also an extension of the
BVNS where instead of a normal LS a specialized version of LS applied where all elements
which are in solution x and x′ are fixed and the optimization only considers elements which are
different.

10

Algorithm 5 Basic Variable Neighborhood Search (x, k)

1: repeat
2: l← 1
3: repeat
4: x′ ← generate random neighbor in N(x)
5: x′ ← localSearch(x′, Nl)
6: if f(x′) ≤ f(x) then
7: x← x′;
8: l← 1
9: else

10: l← l + 1
11: end if
12: until l > lmax

13: until termination criterion met
14: return x

3.2.6 Tabu Search

Tabu Search was first presented by Hansen [18] and later described by Glover [14]. Its idea is
based on a memory (called Tabu list (TL)) which keeps track of the course of optimization and
uses this knowledge to escape local optima. To avoid cycles already or recently visited solutions
are temporarily forbidden and can not be visited again for a certain period. Tabu search is mostly
guided deterministically and in most cases a best neighbor step function is used. Algorithm 6
details its basic principles. As shown on line 4 in each iteration all possible neighbors of xwhich
are not prohibited due to the tabu list TL are considered. Then, based on X ′, the best possible
solution is obtained. This solution is then added to TL and the oldest solution is removed from
the tabu list.

Algorithm 6 Tabu Search
1: TL← ∅
2: x← initial solution
3: repeat
4: X ′ ← subset of N(x) considering TL
5: x′ ← best solution of X ′

6: TL← TL⊕ x′
7: delete elements from TL which are older than tL
8: if f(x′) ≤ f(x) then
9: x← x′;

10: end if
11: until termination criterion met

Typically one either stores whole solutions or the relevant attributes of visited solutions. In a
tabu search approach for the TSP based on a two-exchange neighborhood one could, e.g., simply

11

store a current move and forbids to reverse it for the next tL iterations with tL being the length
of the TL. In practice different tabu lists for different attributes have shown to be useful. Also
parameter tL is very important because it decides how long a move or a solution is restricted
which influences the direction in which the solution is optimized in the next iterations. Optimal
tL values have to be evaluated experimentally.

Battiti and Tecchiolli [4] proposed Reactive Tabu Search which is a variant of the Tabu Search
mentioned above which was originally developed for the 0/1-knapsack problem and used an
adaptive tabu list length and a diversification strategy to get better solutions.

3.2.7 Population based Approaches

Contrary to the methods described before, population based methods maintain a whole set of
solutions in a population. These solutions evolve, might merge and exchange information to
generate new solutions which possibly replace other solutions from a previous generation. In
the following subsections three common population based metaheuristics are described.

3.2.7.1 Evolutionary Algorithms

In contrast to previously mentioned methods Evolutionary Algorithms (EA) work on a set of
candidate solutions, called the population, instead of just on one single solution. They follow
a principle that is easily applicable for various problems from combinatorial optimization to
continuous parameter optimization as well as optimization of non-linear structures.

Algorithm 7 shows a basic evolutionary algorithm. Various adaptions of this EA have been
proposed in the literature and some of them presented in the following subsections.

Algorithm 7 Evolutionary algorithm
1: P ← set of initial solutions
2: evaluate(P)
3: repeat
4: Q ← generateNewSolutionsByVariation(P)
5: evaluate(Q)
6: P ← selectBetterSolutionsFrom(P ,Q)
7: until termination criterion met

3.2.7.2 Genetic Algorithms

The idea for genetic algorithms (GA) came from J. H. Holland and was later adapted by D. E.
Goldberg [15]. A GA is a special search heuristic which is based upon the process of natural
evolution. The algorithm works not only on a single solution but on a set of candidate solutions
and every individual can be mutated and altered in the evolutionary process. In each iteration
some individuals will be selected for reproduction, based on a fitness value, of which two or
more parents will create offspring. Next the new individuals can mutate to vary a bit from their

12

parents and in the end of an iteration the offspring will replace the original population, however
some individuals of the original population may survive as well, if they have proven worthwhile
to keep, which depends on the evolution strategy used. The structure of a GA is shown by
Algorithm 8.

Algorithm 8 Genetic algorithm
1: t← 0
2: Initialization(P(t))
3: Evaluation(P(t))
4: while not termination-condition do
5: t← t+ 1
6: Qs(t)← Selection(P(t− 1))
7: Qr(t)← Recombination(Qs(t))
8: Qm(t)← Mutation(Qr(t))
9: P(t)← Replacement(P(t− 1),Qm(t))

10: Evaluation(P(t))
11: end while

In a GA each solution has to be represented in a genetic form (called the chromosome or
genotype) that contains all the properties of a candidate solution. A fitness function f (i) is
needed to evaluate a solution. Usually a high fitness value equals a good solution and a low
fitness value a bad solution. Each iteration of the algorithm produces a new generation of the
population P .

Initialization: Initial solutions can either be generated randomly or for example using a con-
struction heuristic described in Section 3.2.1 or 3.2.2. The size of the initial population P
highly depends on the problem considered and can range from a few to several thousand
individuals.

Evaluation: Each solution s ∈ P gets evaluated and a fitness value is assigned which is then
used to rank the solutions.

Selection: In each generation a set QS ⊆ P of individuals (chromosomes) is selected to breed
the next generation. There exists various types of selection strategies such as, e.g., fitness
proportional selection, linear ranking, rank selection, tournament selection, weights tour-
nament selection, each with its own advantages and disadvantages, have been proposed in
the literature.

Recombination: This process, which is also called crossover, is like the biological reproduc-
tion process where the offspring is produced from their parents. The crossover process
can take two or more parents from the selected individuals (Qs) and the new individual
should be build upon attributes that are inherited from its parents. There exist various ap-
proaches which should reproduce offspring with whom and different crossover techniques
such as, e.g., one-point crossover, two-point crossover, cut and splice, uniform crossover.

13

The recombination process is repeated until a new population (Qr) of appropriate size is
generated.

Mutation: In this step, small random changes are made to some individuals in order to intro-
duce new characteristics into the population.

Replacement: Here another selection process is done, deciding which individual will survive
from the current generation and the new offspring to to next generation. The size of
the population usually stays constant, but which individual will be be chosen can vary.
The extremes are that the offspring completely replaces the parents or only one parent is
replaced by a new individual, but commonly some form in between is chosen.

3.2.7.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) tries to optimize a problem iteratively by improving a can-
didate solution with regard to a fitness function. This method was first proposed by Kennedy and
Eberhart [26], see also [27]. The idea of this optimization scheme is inspired by the movement
of bird flocks and fish schools which both try to find the optimal position in the swarm.

As a GA, a PSO algorithm also works on a set of candidate solutions (swarm). Each indi-
vidual solution is called particle. Each particle i, 1 ≤ i ≤ P , has a velocity and they store their
best known position pBesti. Also the position of the globally fittest particle, gBest, is tracked
by the metaheuristic. In each iteration each particle is accelerated toward pBest and gBest with
its velocity which is weighted by a random value. Algorithm 9 shows the basic implementation
of PSO.

The velocity vmax is an important parameter as it determines the resolution with which re-
gions are searched. A too high value might cause particles to move past good solutions and a
too low value can make it unable to move over local optima and trap it there. The acceleration
constants α and β are usually set to a fixed value depending on the application.

Another option to escape from local optima, besides changing vmax is to not use gBest but
rather use lBest, which is the best particle of a predefined neighborhood. The neighborhood
size is a value set to, e.g., two and thus defining the neighbors of particlei as particlei−1 and
particlei+1 and the neighbors do not change during a run. In order to use this local variant of
PSO one has only to change to calculation of the velocity v the following way:

vi ← vi + α ∗ rnd() ∗ (pBest i − xi) + β ∗ rnd() ∗ (lBest i − xi)

3.3 Basic Definitions for Multi-objective Optimizations

Let us consider the following, general multi-objective optimization problems with l ≥ 2 objec-
tives

„min“ z(x)

s.t. x ∈ X

14

Algorithm 9 Particle Swarm Optimization
1: initialize swarm
2: while termination criterion not met do
3: for i← 1 to P do
4: if fitness(xi) < fitness(pBest i) then
5: pBest i ← xi
6: end if
7: if fitness(xi) < fitness(gBest i) then
8: gBest ← xi
9: end if

10: end for
11: for i← 1toP do
12: vi ← vi + α ∗ rnd() ∗ (pBest i − xi) + β ∗ rnd() ∗ (gBest i − xi)
13: if vi > vmax then
14: vi ← vmax

15: end if
16: xi ← xi + vi
17: end for
18: end while

where x ∈ Rn is the variable vector, z = (z1, ..., zl) with Rn → Rl is the objective function,
„min“ (z(x)) refers the component-wise minimization andX ∈ Rn is the feasible set. If some of
zi’s, 1 ≤ i ≤ l are conflicting usually no single solution to this problem exists, but the objective
usually is to identify all so-called non dominated solutions. More precisely one typically aims
to identify one solution for each point of the so-called Pareto front.

Definition 3.3.1 (Pareto dominance). A vector u∗ = (u1, ..., un) dominates a vector v∗ =
(v1, ..., vn), denoted by u ≺ v if and only if ∀i ∈ {1, ..., n} : ui ≤ vi and ∃j ∈ {1, ..., n} :
uj < vj .

Definition 3.3.2 (Non-dominated solution). A feasible solution x∗ is non-dominated if no other
solution y∗ with z(y∗) ≺ z(x∗) exists.

Definition 3.3.3 (Non-dominated point). The point of a non-dominated solution x∗ in the objec-
tive space, z(x∗), is called non-dominated point.

Definition 3.3.4 (Extreme non-dominated point). The point of a non-dominated solution x∗ in
the objective space is called an extreme non-dominated point if it exists no other solution y∗

where any single objective ĉ(y∗) < ĉ(x∗).

Definition 3.3.5 (Equivalent solutions). Two solutions x∗ and y∗ are called equivalent if z(x∗) =
z(y∗).

Definition 3.3.6 (Non-dominated set). A non-dominated set is a set of non-dominated solutions.

15

Definition 3.3.7 (Pareto front). The Pareto front is the image of the non-dominated set in the
objective space.

Definition 3.3.8 (Minimal complete set). The minimal complete set contains all existing non-
dominated solutions.

When considering metaheuristic approaches for multi-objective problems we do not know
whether a currently non dominated solution, with respect to the set of known solutions, is really
non dominated. Therefore, the following concepts will be used:

Definition 3.3.9 (Non-dominated solution with respect to S). Let S be a set of feasible solutions.
A feasible solution x∗ is non dominated w.r.t. S if solution y∗ ∈ S with z(y∗) ≺ z(x∗) exists.

Definition 3.3.10 (Non-dominated point with respect to S). The point of a non-dominated solu-
tion x∗ w.r.t. S in the objective space is called non-dominated point w.r.t. S.

Definition 3.3.11 (Extreme Non-dominated point with respect to S). Let S be a set of feasible
solutions. The point of a non-dominated solution x∗ in the objective space is called an extreme
non-dominated point w.r.t. S if no other solution y∗ ∈ S where any single objective zi(y∗) <
zi(x

∗), ∀i ∈ {1, ..., l}.

Definition 3.3.12 (Non-dominated set with respect to S). A non-dominated set w.r.t. S is a set
of non-dominated solutions w.r.t. S.

Whenever it is clear from the context we will simply use non-dominated solution (ex-
treme non-dominated set, non-dominated set) instead of non-dominated solution (extreme non-
dominated set, non-dominated set) with respect to S.

16

CHAPTER 4
Previous & Related Work

In this chapter an overview of the relevant previous work is given starting with single objective
variants of the ConFL. Since the multi-objective ConFL is not explored yet a brief review on
applied multi-objective approaches for different problems is given later on.

4.1 State of the art

ConFL has been introduced by Karger and Minkoff [24] who also presented an approximation
algorithm for the problem. Subsequently various algorithmic approaches for several problem
variants have been proposed.

In the single objective case three different approaches have been mainly used to solve the con-
nected facility location problems. Depending on the time available and the desired quality of
the delivered solution one has the options to choose between metaheuristic approaches, approx-
imation algorithms and exact methods which are usually based on methods from mixed integer
programming. Leitner and Raidl [34] considered a prize-collecting variant of ConFL, i.e., not
all customers need to be connected, which also considers capacity constraints on facilities and
proposed exact methods based on mixed integer programming which are solved using branch-
and-cut and branch-and-cut-and-price algorithms. Gollowitzer et al. [16] developed an integer
programming model based on single commodity flow for the capacitated connected facility lo-
cation problem. There also exists a set of mixed integer programming (MIP) formulations for
the ConFL modeled by Gollowitzer and Ljubić [17].

Leitner and Raidl propose a combination of Lagrangian decomposition with very large scale
neighborhood search [33] for ConFL, a variable neighborhood search (VNS) for the prize col-
lecting capacity constrained ConFL [32] and a VNS for the capacitated ConFL [35]. Tomazic
and Ljubić [48] developed a greedy randomized adaptive search procedure (GRASP) algorithm
and Ljubić [36] proposed a hybrid VNS, combining a VNS with a reactive tabu search for the

17

ConFL.

Swamy and Kumar [46] propose a primal-dual approximation algorithm for the ConFL by solv-
ing an exponential size linear program relaxation. Eisenbrand et al. [11] present a simple ran-
domized algorithm framework to approximate the ConFL problem via random facility sampling
and core detouring.

In the single-objective case one can always say that a solution is better, equal or worse than
another one. In the multi-objective scenario, however, the different candidate solutions are not
necessarily comparable with each other. Thus optimality depends on the preferences of the de-
cision maker, who may value one objective more than another. If the weight of the objectives
is known we can reduce the problem to the single objective case. If nothing is known about
the decision maker’s preferences, it is common to tackle problems in terms of Pareto optimal-
ity, to obtain a set of Pareto optimal solutions approximating the Pareto front as good as possible.

As the bi-/multi-objective ConFL has not been considered previously the following part gives an
overview of the currently used methods to solve bi-/multi-objective optimization problems.

Evolutionary algorithms (EAs) are widely used in multi-objective optimization because of their
ability to possibly find multiple Pareto optimal solutions in a single run. Fonseca and Flem-
ing [13] present a review of the early work done in the area and discussing the similarities
and differences of the various approaches. The best-known EA in the field was proposed by
Deb et al. [10]. This Non-Dominated Sorting Genetic Algorithm for multi-objective optimiza-
tion (NSGA-II) features low computational requirements, an elitist approach, a parameter-less
sharing approach, and has been successfully applied to a number of problems. Coello and
Lechuga [7] propose another population based algorithm based on particle swarm optimiza-
tion (PSO) [27]. They use the concept of Pareto dominance to determine the flight direction of
the particles and use a global storage for non-dominated solutions to guide the algorithm toward
optimality. Other PSO approaches for multi-objective problems are presented by Parsopoulos
and Vrahatis [45] and Zhang [51] respectively.

A different way to tackle multi-objective problems is to use local search (LS) variants instead of
EAs. Most of these LS based methods are applied to the bi-objective TSP and use a two-phase
approach. Paquete and Stützle [44] propose a two-phase algorithm for the bi-objective TSP
that generates initial solutions by considering only one of the objective functions. In the second
phase a LS algorithm, using an aggregated weight function (Marler and Arora [38]) which varies
the weights until all aggregations are explored is applied. In contrast to Parquet and Stützle, Lust
and Teghem [37] present another two-phase algorithm. In the first phase they aggregate the two
objective functions with different weights to generate a set of initial non-dominated solutions
and subsequently apply a Pareto local search (PLS) [1, 2, 43] to the initial set to get a better ap-
proximation of the Pareto front. Lagnua et al. [28] propose a combination of a genetic algorithm
(GA) and a LS for a beacon layout problem. An overview of different metaheuristic methods
used to tackle multi-objective combinatorial problems is given by Basseur et al. [3]. Several ex-

18

act approaches for bi-objective problems including, e.g., the ε-constraint [6,30] or the two-phase
method have also been proposed.

19

CHAPTER 5
The Two-Phase Local Search

Algorithm

As discussed in Chapter 4 there exist a lot of different algorithms for multi-objective problems
with population based approaches being the majority of it. Due to the structure of the ConFL it
is, however, very hard to find a good solution representation that can be used for a population
based method like the NSGA-II [10]. Thus we had to look for other alternatives.

Based on the previous work done on the single-objective variants of the problem and successful
approaches for different bi-objective combinatorial optimization problems a two-phase algo-
rithm [37, 44] approach seemed to be promising to conquer the bi-objective ConFL.

Hence we decided to implement a two-phase algorithm which in phase 1 (see Section 5.2) ag-
gregates the two objective functions with different weights and runs a single objective variant of
a VND algorithm on each weight set to generate different solutions. Each solution is inserted
into a paretofilter (see Section 5.1 which keeps track of the set of non dominated solutions, i.e.,
which removes dominated solutions. This set of non dominated solutions is then used as input
for the second step (see Section 5.3) of the two-step procedure in which a Pareto Local Search
(see Section 5.3.1) is used to improve the already found solutions to find an even better approx-
imation of the Pareto front.

In order to implement such a two-step procedure as described above one more crucial method
needs to be introduced first - the Paretofilter for which we first need some definitions already
presented in Section 3.3 for how to compare solutions for a bi-objective ConFL instance.

21

5.1 Paretofilter

A Paretofilter is a method that takes as input a set S of solutions and a newly generated solution
sn. It checks whether sn is non-dominated w.r.t. S in which case sn will be added to S. Further
the method will remove all solutions from S that are dominated by the newly found solution
thus securing that only non-dominated solutions are kept.

This procedure, which is given in Algorithm 10, removes all solutions that are dominated by
sn by iterating over all members from S and sn is added to S in case sn is not dominated by any
other solution currently in S.

Algorithm 10 Paretofilter
1: add← true
2: for all s ∈ S do
3: if z(sn) ≺ z(s) then
4: S ← S \ {s}
5: else
6: if z(s) ≺ z(sn) then
7: add← false
8: end if
9: end if

10: end for
11: if add then
12: S ← S ∪ {sn}
13: end if

5.2 Phase 1

In this phase weights ω1 ≥ 0 and ω2 ≥ 0, ω1 + ω2 = 1, are set for each objective function,
which are used to aggregate the two functions to one and then a construction heuristic is run to
get an initial solution s. This initial solution is subsequently optimized using a VND to obtain an
even better solution s′. The solution of this procedure will then be inserted into the paretofilter
for evaluation against the non dominated solution set S. After each iteration the weights are
adjusted by ∆ω with 0 < ∆ω ≥ 1. This is needed in order to weight the cost and revenue
differently for the next run to create a new initial solution which should diverge from the last
one. Then the whole procedure is rerun which can be seen in Algorithm 11.

In order to generate initial solutions and apply a single-objective VND in the first phase the
two objective functions

z1(s) =
∑
i∈Fs

fi +
∑
e∈Es

ce (5.1)

z2(s) =
∑

k∈R\Rs

rk (5.2)

22

Algorithm 11 Phase 1
1: S ← ∅
2: ω1 ← 0
3: ω2 ← 1
4: while ω1 < 1 do
5: s← constructionHeuristic(ω1, ω2) see Algorithm 12
6: s′ ← VND(s, ω1, ω2) see Section 5.2.4
7: S ← Paretofilter(S, s′) see Algorithm 10
8: ω1 ← ω1 + ∆ω

9: ω2 = 1− ω1

10: end while

are aggregated into a new single objective function Z based on which single objective optimiza-
tion can be performed.

5.2.1 Aggregation of objective Functions

Several methods that can be used to aggregate objective functions have been proposed (see,
e.g., [38]) - the most commonly used ones are described below for general multi-objective opti-
mization problems with l objectives.

Weighted exponential sum: This is one of the most general functions for weight aggregation.
There are two commonly used variants.

Z =

k∑
i=1

ωi[zi(s)]
p (5.3)

Z =
k∑
i=1

[ωizi(s)]
p (5.4)

The parameter p is set to a fixed value that has to be determined be experimentation and
the weights are typically ωi > 0 with

∑k
i=1 ωi = 1.

Weighted sum: This is the method of choice for this master thesis as it has no parameters that
could vary (besides the weights ωi). The weighted sum method is a special case of the
weighted exponential sum where p = 1 and by far the most common approach used to
aggregate multiple objectives.

Z =

k∑
i=1

ωizi(s) (5.5)

Exponential weighted criterion: The aim of this method is to capture points on non-convex
portions of the Pareto optimal surface.

Z =

k∑
i=1

(ep∗ωi − 1)ep∗zi(s) (5.6)

23

To implement that aggregation function one needs to take care as it can easily lead to a
numerical overflow depending on the selection of p.

Weighted product: The following method allows functions with different orders of magnitude
to have similar significance.

Z =

k∏
i=1

[zi(s)]
ω
i (5.7)

Usually when aggregation is done a single run will just yield one solution but the Pareto
front consists of a set of non-dominated solutions thus making it necessary that several runs
with different weight sets are done in order to find a good initial approximation of the Pareto
front.

5.2.2 Adaptation of Weights

As there are different methods for the weight aggregation there also exist several approaches for
the weight adaption process in each iteration [21]. Some of them are listed below.

Conventional Weighted Aggregation (CWA): When CWA is used a priory knowledge of the
search space is required as the weights are fixed and in a run only one Pareto optimal
solution can be found. Thus, using this method one needs to rerun the algorithm with
different weight values in order to find other Pareto optimal points. A common approach
here is to use a fixed step size ∆ω = 1/(nr − 1) where nr is the number of different
weight sets that should be used. This was the aggregation method of choice for this thesis,
cf. Algorithm 11.

Bang-Bang Weighted Aggregation (BWA): To overcome the limitation of CWA that in each
iteration only one Pareto optimal point can be found Bang-Bang weighted aggregation
modifies the weights during the optimization process and determines the weights based
on the iteration’s index t and the change frequency F .

ω1(t) = sign(sin(
2πt

F
)), ω2(t) = 1− ω1(t) (5.8)

BWA changes the weights rather abruptly due to the sign function.

Dynamic Weighted Aggregation (DWA): This method also changes the weights during an it-
eration but as is does not use the sign function it is not as harsh as BWA. Its slower weight
change leads the optimization algorithm to head toward the Pareto front.

ω1(t) = |sin(
2πt

F
)|, ω2(t) = 1− ω1(t) (5.9)

There also exist some adaptions of the DWA method proposed by Jin: Evolutionary Dy-
namic Weighted Aggregation (EDWA) [21] and Randomly Weighted Aggregation (RWA)
[22] which are normally used in multi-objective evolutionary algorithms.

As there are some good applications of local search heuristics on the ConFL and variants
thereof in the single objective case [32, 33, 35, 36] we decided to apply a variant of such a
method to our given aggregated problem using the simple CWA approach.

24

5.2.3 Construction Heuristic

To create initial solutions there exist different approaches and how to obtain starting solutions
which serve as input for the various VND applications with changed weights.

The following three approaches to create initial solutions for further improvement by the VND
seem natural:

Random Solutions: The easiest way to create a starting solution is to generate a random so-
lution and use this as a starting point with the big disadvantage that this could lead to a
long runtime of the VND as that solution could be very far from optimal w.r.t. the chosen
weighted sum objective.

Independent Heuristic Solutions: In order to get a better initial solution a common way is to
use a construction heuristic every time an initial solution is needed. The advantage of
this approach is that the starting solutions is generated w.r.t. the chosen weighted sum
objective and thus could reduce the runtime of the VND significantly. The only disadvan-
tage is that depending on the complexity of the problem the algorithm could be very time
consuming and it is not adviceable to rerun it every time a new starting solution is needed.

Iterative Heuristic Solutions: In order to conquer the long runtime of the creation of indepen-
dent heuristic solutions a common practice is to run a construction heuristic once at the
beginning and then after each application of the optimization heuristic the last found solu-
tion is modified by applying random moves in one or more neighborhood structures with
the advantage that it might take less time to alter an existing solution compared to running
the complete construction heuristic again. The big advantage of this procedure is that it
can potentially save a lot of time but on the downside there are two major disadvantages
depending on the number of random moves in the neighborhood structures. In case too
few moves are applied the newly generated initial solution could lie relatively close to the
original solution and thus the next optimization run with a different weight set might lead
to a new optimized solution which is close to another existing non-dominated solution in
the solution space thus leading to a bad approximation of the Pareto front. On the other
hand, if too many moves are applied the altered solution is more or less equivalent to a
random generated solution which, as mentioned above, might lead to a long run of the
optimization heuristic and thus wasting the saved time of not running the construction
heuristic again.

In order to use such an approach to generate initial solutions some tests are necessary to
determine the right amount of moves in the neighborhood structures to not go too far away from
the last found solution and stay close enough to not resemble a random solution.

We decided to use a construction heuristic each time (i.e., the „independent“ approach) since
tests showed that the construction heuristic is rather fast.

The construction heuristic starts with a solution that initially consists of the root node only.

25

Let S′ = ((V ′, E′C), F ′, R′, E′A) be the partial solution of the current iteration, where F ′ ⊂ F
is the set of open facilities, E′A ⊆ E′ the set of chosen assignment edges such that each selected
customer j ∈ R′ with R′ ⊂ V ′ is connected to exactly one open facility i(j) ∈ F ′ and a Steiner
tree (V ′, E′C) which is a subgraph of (F ∪ T,EC) where F ′ ⊆ V ′.

For s ∈ F \F ′, let c̃(s) ≥ 0 be the minimum costs of extending (V ′, E′) by a path to contain
s and (V ′(s), E′(s))) denote the corresponding path (which is calculated for all s ∈ F \ F ′) by
computing a shortest path with source b where costs f edges e ∈ E′ are set to zero.

Furthermore for each s ∈ F \F ′ let c(s, ω1, ω2) = {j ∈ R : ∃{s, j} ∈ EA∧aij < ω2rj} be
the set of customer nodes that can be assigned to s in a profitable way w.r.t. ω1 and ω2. In each
iteration facility s′ = argmins∈F\F ′{ω1[c̃(s) + fs +

∑
j∈c(s,ω1,ω2)

aij] − ω2
∑

j∈c(s,ω1,ω2)
rj}

is selected and added to the solution (together with the necessary extensions of the Steiner tree
and customer assignments). Thus the new solution is given by ((V ′ ∪ V ′(s′), E′ ∪E′(s′)), F ′ ∪
{s′}, R′ ∪R′(s′)). This process is repeated until there is no more facility found which improves
the objective value.

Algorithm 12 Construction Heuristic
1: S′ ← emptySolution()
2: add start node to S′

3: repeat
4: get s′ = argmins∈F\F ′{ω1[c̃(s) + fs +

∑
j∈c(s,ω1,ω2)

aij]− ω2
∑

j∈c(s,ω1,ω2)
rj}

5: add s′ to S′

6: add edges and Steiner nodes ((V ′(s), E′(s))) between s′ and S′ to S′

7: add customers and assignment edges to S′

8: until termination-condition met

Due to the fact that during the construction heuristic a customer node j ∈ R could be
assigned to more than one facility if the condition

as′j ∗ ω1 − rj ∗ ω2 < 0 (5.10)

holds, the solution S could be not valid, because the problem definition states that each customer
can only be assigned to a maximum of one facility. In order to secure this condition and also to
make some small improvements to the solution generally we apply a set of improvement/post-
processing strategies after the construction of the initial solution is finished.

5.2.3.1 Solution Post-processing:

Figure 5.1 visualizes the improvement strategies which were applied in order to further optimize
the solution.

Method 1: Remove multiple customer connections As mentioned above, it can happen dur-
ing the construction phase that a customer is assigned to multiple open facilities. In order to
solve the problem of the multiple connections all edge from each customer in the solution S
will be removed except the cheapest one. Let E′A(j) = {{i, j} ∈ E′A} be the set of assign-
ment edges for customer j ∈ R′ to each facility i ∈ F ′ it is assigned to. This improvement

26

Figure 5.1: Improvement Strategies visualization - Shown in this figure are the 3 methods used
to improve the solution and make it valid. Method 1 removes multiple customer assignments
because during the construction heuristic it can happen that a customer is assigned to more than
one open facility. In Method 2 previously opened facilities which have lost all the customer
assignments because of Method 1 are now closed because open facilities without customers
worsen the objective value. Finally Method 3 prunes all leaf nodes which are neither open
facilities nor customers.

strategy aims to remove all assignment edges for each selected customer except the „cheapest“
E′′A =

⋃
j∈R′{{i, j} ∈ E′A : aij = argmins∈F ′({i, j} ∈ E′A)} w.r.t. to the objective value.

Method 2: Close facilities After removing multiple customer connections it could happen
that a facility ends up with no customer attached to it but initially it was an open facility because
it had some customers connected to it. These facilities will be closed because an open facility
creates costs and earns no revenue. The remaining set of open facilities can be described as
F ′ ← F ′ \ {s ∈ F ′ : {j : {s, j} ∈ E′A} = ∅}.

27

Method 3: Prune leaf facilities and Steiner nodes After the first two improvement methods
it could happen that a closed facility node or a Steiner node ends up as a leaf node in the core
graph of the solution. These leaf nodes create unnecessary costs because they serve no customer
thus moving the solution away from the Pareto front and making it mandatory to remove them.
In order to achieve this all degree-one Steiner nodes t ∈ V ′ \ (F ′ ∪ R′) where deg(t) = 1 and
their corresponding edge et ∈ E′C are removed recursively.

5.2.4 Variable Neighborhood Descent

The second step in the first phase is to apply a VND heuristic for each constructed solution.

We used the following neighborhood structures which have already been used for ConFL with
a single objective. In the VND the neighborhood structures are considered in the same order as
presented here.

5.2.4.1 Key-Path Improvement

As the Steiner tree problem (STP) is a subproblem of ConFL we decided to use a Key Path
Improvement neighborhood structure as is has been successfully applied to the STP as well as
in some of its generalizations [31, 39, 49].

In order to define a key path it is necessary to define key nodes first. The set of key nodes
is defined as K = {b} ∪ Fs ∪ {v ∈ Rs|degs(v) ≥ 3} where b is the root node, i.e., it consists
of the root node, all open facilities and all nodes of degree ≥ 3 of the core graph of the current
solution S. A key path is a path between any two nodes u, v ∈ K of s which contains no other
key node along its path.

Leitner and Raidl [33] proposed to use Key-Path improvement on a neighborhood search for
the capacitated ConFL which we adopted. Their algorithm, described in Algorithm 13, consid-
ers every key path P = (V, E) ∈ P̄ (s), where P̄ (s) is the set of all key paths, of a solution S.
In each iteration one key-path is replaced by a shortest path between its key nodes in a best im-
provement manner. Thereby, when identifying a shortest replacement of key path (V, E) ∈ P̄ (S)
the costs of all other core edges in the solution are set to zero.

5.2.4.2 Facility Swap

This neighborhood structure opens a currently closed facility or closes an open one. Thereby
to update a solution in an appropriate way, the following cases need to be distinguished. For
s ∈ F \ F ′, i.e., a new facility is opened, two possibilities exist:

a) s ∈ V ′: The facility s is used as Steiner node in the current solution S′, see Figure 5.2. In
this case s is simply marked as open, i.e., F ′ = F ′ ∪ {s} and all unassigned customers of
s R′U (s) = {j ∈ R : ∃{s, j} ∈ EA ∧ ω1csj < ω2rj} and their corresponding edges are
added to S′.

28

Algorithm 13 Key Path Improvement
1: repeat

2: c′e =

{
0

ce
, ∀e ∈ E

3: δ = 0
4: for all key paths P = (V, E) ∈ P̄ (s) do
5: // key path end nodes are u and v
6: c′e = ce,∀e ∈ E
7: find shortest path P ′ = (V ′, E ′) in (V ′, E′) between u and v w.r.t. c′

8: δ′ =
∑

e∈E ′ c
′
e −

∑
e∈E ce

9: if δ′ < δ then
10: δ = δ′

11: store replacement of path P by P ′ as best move
12: end if
13: c′e = 0, ∀e ∈ E
14: end for
15: if δ < 0 then
16: apply best move
17: end if
18: until δ ≥ 0

Figure 5.2: Example of facility swap neighborhood - the facility to open (s) is already in the
current solution (s ∈ V ′), thus only neighboring customers where equation ω1csj < ω2rj holds
are be added.

b) s /∈ V ′: Next to opening and assigning customers to it, facility s must be connected to the
Steiner tree (V ′, E′). As for the construction heuristic, this is achieved by computing a
cheapest path P = (V, E) between s and the solutions core graph (V ′, E′). Thus, the new
solutions S′′ is given as S′′ = (V ′∪V, E′∪E∪{{s, l} : l ∈ R′U (s)}, F ′∪{s}, R′∪R′U (s)),
see also Figure 5.3.

If facility s should be closed, i.e., s ∈ F ′, we need to distinguish the following cases (shown
in Figure 5.4,5.5 and 5.6) depending on the degree of node s (deg′G(s)) in G′ = (V ′, E′).

29

Figure 5.3: Example of facility swap neighborhood - the facility to open (s) is not in the current
solution (s /∈ V ′), thus it needs to be opened and connected to (V ′, E′C) and then all customers
which suffice ω1csj < ω2rj are connected.

a) degG′(s) ≥ 3: In that case node s must be used as Steiner node to ensure connectivity
after closing facility s. Hence the new solution is defined by closing s, i.e., F ′ = F ′ \{s},
and removing all customers assignments R′(s) for s, i.e., R′ = R′ \ R′(s) and their
corresponding assignment edges E′A(s). See Figure 5.4 for an example.

b) degG′(s) = 2: In this case all assigned customersR′(s) are removed, i.e.,R′ = R′\R′(s),
as well as the assignment edges E′A(s). Further s is removed , i.e., F ′ = F ′ \ {s} as well
as both edges connected to s, E′C(s). This procedure separates the core graph SC =
(F ′ ∪ T ′, E′C) into two subtrees SC1 = (F ′1 ∪ T ′1, E′C1) and SC2 = (F ′2 ∪ T ′2, E′C2). Due
to the removal of s and its corresponding edges it can happen, like during the construction
heuristic, that Steiner nodes in SC1 with degSC1

(t′) = 1, where t′ ∈ T ′1, exist. These will
be removed iteratively from SC1 along with their connecting edge. This removal if also
performed for SC2. In order to reconnect the two subtrees SC1 and SC2 the shortest path
P ′ = (V ′, E ′) from SC1 to SC2 is calculated by using modified edge costs

c′e =

{
0,∀e ∈ (E′C1 ∪ E′C2)

ce,∀e ∈ EC \ (E′C1 ∪ E′C2)
.

At last P ′ is added two SC = (F ′ ∪ T ′ ∪ V ′, E′C ∪ E ′) (see Figure 5.5).

c) degG′(s) = 1: When s is a leaf node after disconnecting all customers, i.e., degS(s) = 1,
it will be removed from S along with its connecting edge. See Figure 5.6 for an example.
This removal process is repeated for all subsequent Steiner nodes where degS(t′) = 1,
with t′ ∈ T ′.

5.2.4.3 Facility Exchange

The facility exchange neighborhood is just an extension of the facility swap neighborhood by
doing both, opening and closing a facility. We decided to close a facility before opening a
new one because if first the new facility is opened and afterwards the other one is removed the

30

Figure 5.4: Example of facility swap neighborhood - the facility to close (s) has more than 2
adjacent open facilities or Steiner nodes(degG′(s) ≥ 3) thus it is a node which is important for
the solution so this facility will just be closed and all adjacent customers R′(s) their assignment
edges E′A(s) are removed from S, i.e., R′ = R′ \R′(s) and E′A = E′A \ E′A(s).

Figure 5.5: Example of facility swap neighborhood - the facility to close (s) has exactly two
neighboring open facilities or Steiner nodes (degG′(s) = 2) then swill be closed and all adjacent
customers and their corresponding assignment edges will be removed from S. As it can be
seen in subfigure 2, when s and its adjacent edges are removed G′ is split in two parts SC1 =
(F ′1 ∪T ′1, E′C1) and SC2 = (F ′2 ∪T ′2, E′C2). The left subgraph has a leaf node which is a Steiner
node, followed by a closed facility and then again a Steiner node. To remove these leaf nodes an
adaption of Method 3, described in Section 5.2.3.1, is applied. The result can be seen in subfigure
3. Now the two disconnected graphs, SC1 = (F ′1 ∪ T ′1, E′C1) and SC2 = (F ′2 ∪ T ′2, E′C2), are
then reconnected by the shortest path P ′ = (V ′, E ′) w.r.t. modified edge weights c′e from SC1 to
SC2 such that the reconnected graph is again a valid solution.

following could happen: The facility to open so /∈ V ′ and the facility to close sc is a leaf node.
In order to add so to S the shortest path P = (V, E) between so and S is calculated. Assume so
is added before sc is removed it is possible that sc ∈ P and therefore sc is no leaf node anymore
and thus would just be closed and not removed. The problem is, in case a new facility is opened
before the other one is removed that it could exist a shortest path P ′ = (V, E) between so and
(V ′ \ {sc}, E′C \ E′C(sc)) for which

∑
e∈P ce <

∑
e∈P ′ ce. Considering that at the time of the

shortest path calculation sc ∈ S it could be that
∑

e∈P ce + E′C(sc) >
∑

e∈P ′ ce which makes
P ′ the better path but P would be selected. Figure 5.7 visualized the case that so is added before
removing sc and 5.8 shows the other way round.

31

Figure 5.6: Example of facility swap neighborhood - the facility to close (s) has only one
neighboring open facility or Steiner node (degG′(s) = 1). By removing all connected customers
and their assignment edges s becomes a leaf node, and then by application of an adapted version
of Method 3, described in Section 5.2.3.1, s and all subsequent leaf nodes created by the removal
will be removed iteratively.

Figure 5.7: Example of facility exchange neighborhood - Opening so before removing sc can
lead to the problem that the shortest path P = (V, E) between so and S includes sc and thus it
wont be removed although when taking the decision to swap it was a leaf facility. This could
lead to the problem that there exists another shortest path P ′ = (V, E) connecting so to S \ {sc}
such that the overall objective value after the swap is done is better. This can be seen in Figure
5.8

5.3 Phase 2

In the second phase of the 2-phase algorithm a Pareto local search (PLS) algorithm is applied
to all non dominated solutions acquired in phase to further improve the approximation of the
Pareto front. Figure 5.9 shows the basic concept of a PLS.

5.3.1 Pareto Local Search

The Pareto Local Search method was introduced by different authors [1, 2, 43]. It is based on
a local search algorithm for multi-objective problems and works without the need for objective
aggregation. The basic concept of PLS is to explore the neighborhood of each solution of the
non-dominated set of solutions. In case a not dominated neighbor is found, it is added to the
set of non-dominated solutions. This process iterates until no further non-dominated solution
can be found. Algorithm 14 shows the pseudo code of the PLS method. The input for a PLS
algorithm can be a single solution or a set of solutions. For our given problem we used the same
neighborhood structures that are used in Phase 1.

32

Figure 5.8: Example of facility exchange neighborhood - Exemplary facility exchange move
as done by our implementation. At first sc is closed and all assigned customers are removed
from S. Next sc is removed from S along with its adjacent edge because it was a leaf node.
This process is repeated for the next Steiner node until a node v′ ∈ V ′ where degG′(v′) > 1 is
reached. Now the removal steps are done and so is added to via the shortest path P ′ = (V, E) to
the solution.

After applying the PLS procedure to the set of non-dominated solutions acquired in phase 1,
S contains the set of non-dominated solutions which approximate the Pareto front.

33

Figure 5.9: Example: A PLS algorithm is applied to improve the approximation of the Pareto
front.

Algorithm 14 Pareto Local Search
1: S← solutions generated in phase 1
2: explored← ∅
3: for all s ∈ S do
4: explored(s)← false
5: end for
6: while ∃x ∈ S : explored(x) = false do
7: y ← random Solution from S : explored(y) = false
8: for all y′ ∈ N(y) do
9: if y′ � y then

10: S← Paretofilter(S, y′)
11: explored(y′)← false
12: end if
13: end for
14: explored(y)← true
15: end while

34

CHAPTER 6
Computational Tests and Results

6.1 Test instances

Our test instances (I01 - I64) were originally test instances for the ConFL and used by Ivana
Ljubic in a paper about a hybrid VNS for the ConFL [36]. The problem was that in all instances
all customer nodes were connected to each facility node and almost all cases the optimum was
to connected all valuable customers to the root node or the root node and a second facility to
cover all valuable customers. To overcome that issue we needed test instances where not every
customer is connected to every facility. To achieve that we randomly removed 30% of the as-
signment edges of each customer node. Further as the test instances were from a single objective
ConFL they did not have a revenue value for each customer which we also assigned randomly
for each customer in order to create usable test instances for the bi-objective case.

See table 6.1 for an overview of instance properties (facility, Steiner and customer node and
edge count).

Table 6.1: Node and edge count of instances

Nodes Edges
Instance |V | |F | |T | |R| |E| |EC | |EA|
ID01 800 300 200 300 27425 625 26800
ID02 1200 200 800 200 13862 2000 11862
ID03 800 300 200 300 27429 625 26804
ID04 750 250 250 250 19213 625 18588
ID05 700 200 300 200 14369 2500 11869
ID06 1200 200 800 200 16869 5000 11869
ID07 1500 500 500 500 99663 25000 74663
ID08 1300 300 700 300 28807 2000 26807

Continued on next page

35

Table 6.1: Node and edge count of instances

Nodes Edges
Instance |V | |F | |T | |R| |E| |EC | |EA|
ID09 1250 250 750 250 19840 1250 18590
ID10 1500 500 500 500 75941 1250 74691
ID11 800 300 200 300 27814 1000 26814
ID12 1200 200 800 200 13126 1250 11876
ID13 1250 250 750 250 20596 2000 18596
ID14 1200 200 800 200 36876 25000 11876
ID15 1500 500 500 500 76676 2000 74676
ID16 750 250 250 250 21093 2500 18593
ID17 1500 500 500 500 79672 5000 74672
ID18 750 250 250 250 31084 12500 18584
ID19 1250 250 750 250 23584 5000 18584
ID20 1000 500 0 500 77177 2500 74677
ID21 1200 200 800 200 13116 1250 11866
ID22 1000 500 0 500 87175 12500 74675
ID23 800 300 200 300 27806 1000 26806
ID24 1250 250 750 250 43589 25000 18589
ID25 1000 500 0 500 75680 1000 74680
ID26 1000 500 0 500 75302 625 74677
ID27 800 300 200 300 39308 12500 26808
ID28 1300 300 700 300 28805 2000 26805
ID29 1250 250 750 250 23579 5000 18579
ID30 700 200 300 200 12500 625 11875
ID31 1300 300 700 300 28055 1250 26805
ID32 1500 500 500 500 76679 2000 74679
ID33 1500 500 500 500 99672 25000 74672
ID34 1300 300 700 300 51798 25000 26798
ID35 1000 500 0 500 75665 1000 74665
ID36 1200 200 800 200 36878 25000 11878
ID37 1000 500 0 500 87169 12500 74669
ID38 1250 250 750 250 20593 2000 18593
ID39 1250 250 750 250 43593 25000 18593
ID40 1250 250 750 250 19837 1250 18587
ID41 700 200 300 200 24373 12500 11873
ID42 800 300 200 300 29305 2500 26805
ID43 1200 200 800 200 16865 5000 11865
ID44 800 300 200 300 29299 2500 26799
ID45 1000 500 0 500 77165 2500 74665
ID46 1000 500 0 500 75304 625 74679
ID47 700 200 300 200 12874 1000 11874

Continued on next page

36

Table 6.1: Node and edge count of instances

Nodes Edges
Instance |V | |F | |T | |R| |E| |EC | |EA|
ID48 700 200 300 200 24374 12500 11874
ID49 700 200 300 200 12499 625 11874
ID50 1300 300 700 300 31806 5000 26806
ID51 1500 500 500 500 75927 1250 74677
ID52 1300 300 700 300 51804 25000 26804
ID53 750 250 250 250 19591 1000 18591
ID54 700 200 300 200 14375 2500 11875
ID55 1200 200 800 200 13871 2000 11871
ID56 700 200 300 200 12871 1000 11871
ID57 750 250 250 250 19589 1000 18589
ID58 1500 500 500 500 79668 5000 74668
ID59 1300 300 700 300 31802 5000 26802
ID60 750 250 250 250 19219 625 18594
ID61 750 250 250 250 31094 12500 18594
ID62 1300 300 700 300 28051 1250 26801
ID63 800 300 200 300 39301 12500 26801
ID64 750 250 250 250 21079 2500 18579

6.2 Test Environment

All the algorithms described in chapter 5 have been implemented in the C++ language. The
C++/C compiler used was gcc version 4.6.1. The software was tested on a Linux-cluster of 14
Intel Xeon E5540 machines (each processor with quad-core, 2.53 GHz kernels, 8MB L3 Cache).
Each evaluation run was performed on a single core.

6.3 Evaluation

Since no other approaches for solving the bi-objective ConFL have been previously proposed,
we could not evaluate our results against other solutions. Also the well known genetic algorithm
NSGA-II which is widely used for several multi-objective combinatorial optimization problem
could not be applied here because finding a good evolutionary encoding of solutions is not ob-
vious.

Hence, we will mainly compare the results after the first phase to the final results of our al-
gorithm. Thus, we analyze the quite high computational effort of the second phase and its pay
off.

37

In the following subsection we are going to introduce some common quality metrics that are
used to evaluate multi-objective solutions/Pareto fronts.

All statistical evaluations were performed using R and the package emoa [40].

6.3.1 Quality Metrics

To evaluate the performance of bi- and multi-objective algorithms and their found solutions there
is the need for some quality metrics to assign numerical values to solution sets in order to com-
pare them to each other. Thus several methods have been proposed in the literature with the
intention to measure different preferences, see, e.g., Zitzler et al. [53] for an overview.

Basically one can say quality metrics are a way to map solution sets to the set of real numbers
in order to enable us to quantify quality differences between solution sets by applying common
mathematical metrics.

Often not only just a single quality indicator is used to assess an solution set but rather a
combination of different quality indicators is used to measure the quality of a Pareto front.

6.3.1.1 Unary Indicators

Unary indicators are widely used due to the fact that they assign to each solution set a real value
independent of the other solution sets available but therefore often the optimal Pareto front has
to be known or a reference point has to be chosen in the solution space to evaluate the indicator
values.

Hypervolume indicator The hypervolume indicator [56] is a widely used measure to evaluate
bi- and multi-objective solutions because whenever an solution completely dominates another
solution, the hypervolume indicator of the latter will be lower than hypervolume indicator of
the former. It was first introduced by Zitzler and Thiele [54, 55] who called it the „size of the
space covered“. Today it is one of the most popular measures for the performance assessment
of multi-objective optimization algorithms.

For a definition of the hypervolume indicator see Zitzler et al. [52]. Figure 6.1 shows an
example of the hypervolume indicator IH(A) of approximation set A = (x1, x2, x3, x4). The
hypervolume is the area covered between the Pareto frontA and the reference point r. The draw-
back is that the value of IH depends on the selection of the reference point so for each presented
solution also the reference point should be noted in order to make the results reproduceable.

There exist several implements to efficiently calculate the hypervolume indicator. In this thesis
an R implementation was used to calculate the corresponding values.

6.3.1.2 Binary Indicators

Binary indicators overcome some limitations of unary indicators as they do not need the optimal
Pareto front or a reference point but evaluate one solution set against another one. The drawback

38

Figure 6.1: Example: Hypervolume indicator IH(A) of solution set A = (x1, x2, x3, x4).

is that for n approximation sets one would get n ∗ (n − 1) indicator values which makes the
representation and evaluation more difficult.

Epsilon indicator Zitzler et al. [56] also proposed this indicator (see Figure 6.2 for an exam-
ple) as a measure to compare two Pareto front approximations, A and B. The binary multiplica-
tive epsilon indicator Iε(A,B) calculates the minimum factor ε by which objective vectors from
B have to be multiplied in order to move the Pareto front approximation in the objective space
that B is weakly dominated by A.

Iε(A,B) = inf
ε∈R
{∀x2 ∈ B∃x1 ∈ A : x1 �ε x2} (6.1)

The ε-dominance relation is defined as:

x1 �ε x2 ⇐⇒ ∀i ∈ {1, . . . , n} : fi(x
1) ≤ ε ∗ fi(x2). (6.2)

It is also possible to use the ε indicator as an unary indicator in which case a reference set R
(optimal Pareto front) is needed:

Iε(A) = Iε(A,R). (6.3)

39

Figure 6.2: Example: Epsilon indicator Iε(A,B) - shows how B is moved by multiplying its
vectors with ε that it is weakly dominated by A.

6.4 Computational Results

Due to the design of our algorithm the only parameter which is needed to be selected in advance
is the aggregation step size ∆ω. This value defines with how many different weight sets phase 1
(see Section 5.2) is run before starting phase 2. Paquete and Stützle [44] showed in their work
that a ∆ω < 1/100 does not provide any significant improvements in the resulting solutions.
We also came to that conclusion after experimenting with different ∆ω values that for lower step
sizes there are no more diverging results than compared to greater values.

Also the lower the ∆ω the higher the run time, which is also a factor to consider. We finally
did evaluation runs for the following ∆ω = {1/100, 1/20, 1/10, 1/5, 1/2}.

After an initial look on the results of the different ∆ω values the first interesting point were
the runtimes. Generally one can observe that the lower the ∆ω the longer the runtime.

Figure 6.3 compares the runtimes of the no-PLS variant (i.e. only phase 1) with the full
two phase approach. Such a runtime behavior is caused by the fact that a small ∆ω leads to
more initial solutions found during phase 1 which helps the Pareto local search in phase 2. This
is clearly visible if you look at the runtimes for ∆ω = 0.50 where phase 1 only finds up to 3
solutions that can be used as initial solution set for phase 2 which forces the Pareto local search
to iterate much more possible solutions. For the full details of all runtimes see Table A.1 in
Appendix A. Also very interesting is Figure 6.4 which shows boxplots of the runtimes of phase
1 and the runtimes of phase 2 in minutes.

Next to the runtimes, we also compared for each step size the hypervolume values between
the no-PLS and PLS variant.

Figure 6.5 shows exactly what we assumed. The smaller the ∆ω the better the solutions
found in phase 1. This is easily explained because a lower value of ∆ω automatically increases
the number of runs of the construction heuristic which leads to a higher number of initial solution
for Phase 2 (e.g., if ∆ω = 0.05 this means there are 1/0.05 = 20 steps from 0 to 1 and the
construction heuristic will be run 1/0.05 + 1 = 21 times) and the higher the number of initial
solutions the better is the approximation of the Pareto front in Phase 1. Furthermore, it can be

40

Figure 6.3: Comparison of runtime differences between the no-PLS variant and the PLS variant
depending on ∆ω. The x-axis shows runtime in percent on the basis of the no-PLS variant
which represents 100% and the PLS variant has in all cases > 100%, e.g., for ∆ω = 0.05 the
PLS variant needed on average 2.5 times the time to complete than the no-PLS variant.

seen ,e.g., for ∆ω = 0.5 that the hypervolume of the full algorithm is on average double the size
the variant without the Pareto local search. This difference gets lower and lower the smaller the
∆ω.

Table 6.2: Hypervolume values of instances in percent in relation
to best solution found for each ∆ω value with and without PLS.
The underlined values represent the instances where the time limit
of 2 hours was reached. The reference point used was individually
selected for each instance and composed by the maximum of the
cost and the maximum of the lost revenue. This explains why some
of the values are 0 because in such a case there were only 2 points
on the Pareto front which either had the same value for the costs
or the lost revenue.

no PLS, ∆ω = with PLS, ∆ω =
Instance 0.01 0.05 0.10 0.20 0.50 0.01 0.05 0.10 0.20 0.50

ID01 99.5 93.8 90.3 85.1 54.8 100 98.3 96.3 95.2 90.9
ID02 99 94 87.2 73.7 53.1 100 98 95.2 91.2 90.6
ID03 99.4 95.1 89.1 79.8 49.3 100 98.8 96.7 93.4 90.2

Continued on next page

41

Table 6.2: Hypervolume values of instances in percent in relation
to best solution found for each ∆ω value with and without PLS.
The underlined values represent the instances where the time limit
of 2 hours was reached. The reference point used was individually
selected for each instance and composed by the maximum of the
cost and the maximum of the lost revenue. This explains why some
of the values are 0 because in such a case there were only 2 points
on the Pareto front which either had the same value for the costs
or the lost revenue.

no PLS, ∆ω = with PLS, ∆ω =
Instance 0.01 0.05 0.10 0.20 0.50 0.01 0.05 0.10 0.20 0.50

ID04 96.2 63.2 0 0 0 100 88.4 76.2 76.2 76.2
ID05 99.3 95.2 87.6 72.2 44.1 100 98.7 96.2 93.3 89.4
ID06 99.2 93.4 88.1 73.4 43.4 100 98.3 96.1 93.7 90.3
ID07 98 65.2 0 0 0 100 86.1 74.9 74.9 74.9
ID08 99.6 95.4 92.6 85 61.3 100 98.8 98 96.1 92.7
ID09 95.5 62.6 0 0 0 100 90.8 76.9 76.9 76.9
ID10 97.7 65.3 0 0 0 100 87.6 76.5 76.4 76.4
ID11 99.7 95.6 90.6 83.5 51 100 98.7 96.9 94.4 89.8
ID12 99.1 93.6 89.8 80.6 49.6 100 97.7 96.4 93.6 90
ID13 96.1 64 0 0 0 100 88.4 73.9 73.9 73.9
ID14 98.5 95 88.8 80.1 45.9 100 98.8 97.9 96.1 91.9
ID15 100 78.4 0 0 0 100 88.8 92.1 92.1 92.1
ID16 94.3 62.6 0 0 0 100 88.4 73.9 73.9 73.9
ID17 97.8 65.1 0 0 0 100 87 77.2 77.1 77.1
ID18 94.4 62.7 0 0 0 100 89.2 72.7 72.7 72.7
ID19 93.5 62.2 0 0 0 100 90.9 75.9 75.9 75.9
ID20 97.4 64.8 0 0 0 100 90.2 76.1 76.1 76.1
ID21 98.9 92.6 88.1 76.5 41.5 100 97.3 95.4 92.7 86.2
ID22 97 64 0 0 0 100 88.4 73.9 73.9 73.9
ID23 99.4 93.9 87.4 80.2 46.8 100 98.8 96.6 94.8 92.1
ID24 95.2 61.7 0 0 0 100 88.7 75.5 75.5 75.5
ID25 98.3 65.5 0 0 0 100 88.7 75.9 75.9 75.9
ID26 98 65.7 0 0 0 100 89.4 75.6 75.6 75.6
ID27 98.7 91.4 88.6 79.8 42.9 100 99.2 97.6 95.3 91.9
ID28 98.7 95 90.4 81.1 55.8 100 98.6 96.7 95.1 91.6
ID29 94.7 62.3 0 0 0 100 89.1 75.2 75.2 75.2
ID30 99.4 94.2 88.1 82.3 57.5 100 97.4 94.5 94 90.2
ID31 99.3 95 91 81.1 56.1 100 98.2 96.9 94.3 91.6
ID32 99.4 65.8 0 0 0 100 88.2 78.3 78.3 78.3
ID33 98.5 65.4 0 0 0 100 89 75.7 75.7 75.7
ID34 99 92 85.6 80.8 41.6 100 97.9 96.5 94.9 87.9

Continued on next page

42

Table 6.2: Hypervolume values of instances in percent in relation
to best solution found for each ∆ω value with and without PLS.
The underlined values represent the instances where the time limit
of 2 hours was reached. The reference point used was individually
selected for each instance and composed by the maximum of the
cost and the maximum of the lost revenue. This explains why some
of the values are 0 because in such a case there were only 2 points
on the Pareto front which either had the same value for the costs
or the lost revenue.

no PLS, ∆ω = with PLS, ∆ω =
Instance 0.01 0.05 0.10 0.20 0.50 0.01 0.05 0.10 0.20 0.50

ID35 97.9 65.1 0 0 0 100 90.4 75.3 75.3 75.3
ID36 98.5 91.2 85.3 74.3 34.3 100 98.5 97 94.3 90.3
ID37 97.9 65.9 0 0 0 100 90.5 74.6 74.6 74.6
ID38 96.3 64.3 0 0 0 100 91.8 79.9 79.9 79.9
ID39 94.4 63.2 0 0 0 100 90.3 73.8 73.8 73.8
ID40 96.3 64 0 0 0 100 91.6 77.8 77.8 77.8
ID41 99.2 94.8 88.4 78.2 47.5 100 98.4 96.6 94 88.8
ID42 99.1 92.8 88.4 80.7 41.9 100 98.5 96.9 95.5 89.7
ID43 98.7 95.6 91.2 79.9 51.4 100 99 96.8 94.5 90.9
ID44 98.9 95.3 90.6 85.6 53.1 100 99 98 96.8 92.4
ID45 98.2 65.5 0 0 0 100 90.1 74.8 74.8 74.8
ID46 98.1 65.5 0 0 0 100 84.3 76.1 76.1 76.1
ID47 99.5 94 87.5 75.9 47 100 99.1 96.6 95 91.7
ID48 99 93 86.2 75.8 47 100 98.7 97.1 94.1 90.7
ID49 98.4 91.7 86.7 71.8 47.4 100 98.1 95.9 92.5 89.4
ID50 99.2 91.6 87.8 82 49.3 100 97.6 96.2 94.4 89.7
ID51 97.7 64.6 0 0 0 100 88.5 76.3 76.3 76.3
ID52 99 92.2 86.9 76.4 38.9 100 98.6 96.8 95.2 89.8
ID53 93.9 62.3 0 0 0 100 88.5 73.6 73.6 73.6
ID54 99 92.8 87.1 78 46.2 100 98 96.5 93.8 90.5
ID55 98.9 94.9 88.9 79.2 59.7 100 98.8 96.7 94.3 92.3
ID56 99.4 95 90.5 78.4 45.7 100 99.2 97.7 93.8 90.7
ID57 94.4 62.8 0 0 0 100 90.2 73.9 73.9 73.9
ID58 98.8 66.2 0 0 0 100 87.1 76.8 76.8 76.8
ID59 99.2 91.8 87.9 79.8 42 100 98.2 95.8 93.4 88.2
ID60 95.5 63.7 0 0 0 100 88.8 76.5 76.5 76.5
ID61 94.8 62.8 0 0 0 100 87.4 72.7 72.7 72.7
ID62 99.4 92.3 89.7 81.3 38.1 100 98.3 96.9 94.7 88.8
ID63 98.9 94 89.4 82.2 45.5 100 98.9 96.7 94.8 89.3
ID64 94.1 63.2 0 0 0 100 89.4 72.1 72.1 72.1

Table 6.2 shows the calculated Hypervolume values for each instance and ∆ω value. The un-

43

Figure 6.4: Comparison of runtimes of phase 1 and phase 2 of the algorithm depending on ∆ω.

derlined values represent the instances where the algorithm didn’t finish in the given timeframe
of 2 hours. It is clearly visible that the best hypervolume value for each instance in either the
no PLS or the PLS variant is the found with the lowest ∆ω value which completed in the given
timeframe. Figure 6.6 displays the difference between best solutions found (PLS − noPLS).
One might wonder why for some instances the no PLS solution is equal compared to the PLS
variant (e.g., Instance ID15). The reason why this happened is because we had a maximum
runtime limit and in each case where the no PLS variant equals the PLS variant is that the Pareto
local search did not finish in the given timeframe. In case the Pareto local search would have
finished, the ∆ω = 0.01 solution would be at least as good as the no PLS variant, most likely

44

Figure 6.5: Comparison of hypervolume values between the no-PLS variant (100%) and the
PLS variant separate for all ∆ω we used for evaluation.

better, judged by the derived results of our tests.
Figure 6.7 shows a scatter plot of the differences in percent of the hypervolume values versus

the runtimes for the best no PLS and the best PLS solution. This graphic gives a good summary
of the facts mentioned before. The average difference in the hypervolume values is relatively low
thus making the solutions found by additional application of Pareto local search not significantly
better compared to the no PLS solutions. There are some outliers on the right hand side of the
figure which indicate that for some instances the hypervolume difference of the PLS variant is
100% compared to the no PLS variant. This can be explained by Figure 6.8, where the average of
the Pareto front size for the no PLS variant of ∆ω = 0.5 is 2.5 solutions per instance. This means
there are instances with only 2 solutions on the Pareto front thus resulting in a hypervolume value
of 0, which leads to a 100% difference (see figure 6.7). The differences of runtimes lead us to
assume that in general the Pareto local search takes significantly more time than only phase 1
with the addition that the hypervolume increase is just marginal. However, when looking at the
calculated Pareto fronts (see Appendix B), the distribution of points on the fronts are much better
distributed.

45

Figure 6.6: Difference of hypervolume values between the best no-PLS and the best PLS variant
for each instance.

Figure 6.7: Scatter plot of the difference of hypervolume values versus the difference of run-
times in percent for the best no PLS and PLS solutions for each instance.

46

Figure 6.8: Boxplots of Pareto front sizes for each ∆ω used.

47

CHAPTER 7
Conclusion

In this thesis we tackled the bi-objective connected facility location (BoConFL) problem with
a two-phase local search algorithm. We chose the a two-phase local search algorithm because
of the successful applications of local search approaches for the single objective ConFL as well
as their efficiency for combinatorial optimization problems and the Pareto Local Search because
it showed in various other bi-objective problems (e.g. bi-objective TSP) to further improve the
solutions found by the construction heuristic to approximate the Pareto front even better.

After we implemented a suitable construction heuristic based on a greedy algorithm we
tested each selected neighborhood structures with a simple local search. We came to the con-
clusion that for our problem instances the next improvement strategy was the most reliable one.
Next to evaluating the neighborhood structures we extended our basic local search to a variable
neighborhood decent (VND) in order to take advantage of a lager neighborhood coverage. This
led to good starting solutions for phase 2 - the Pareto local search.

Results from our computational study show that phase 1 of our algorithm required signif-
icantly less time compared to phase 2. The additional runtime needed by the PLS required to
complete a run on an instance compared to the improvement in the quality of the Pareto front
achieved is rather insignificant. This fact is clearly visible when comparing the runtimes of only
phase 1 and the corresponding hypervolume values to the runtime and hypervolume values of the
whole two-phase algorithm. For many instances the PLS did not finish in the given timeframe
which also leads to the conclusion that the Pareto local search improves the quality of the Pareto
front but also has high costs in terms of runtime, which can be seen for some instances which
had a solution in phase 1 but in the given time frame the Pareto local search did not manage to
complete its run.

7.1 Future work

As there does not exist an exact method to solve the BoConFL such an implementation would
be interesting in order to have a fixed comparison for other approaches like our implementation.

49

Furthermore the VND could be refined to a VNS which can then be improved by applying a
Pareto local search. Our results show that the Pareto local search would need some improve-
ments or modifications in order to cover to objective space more efficiently.

To use a VNS in phase 1 it would also be adviceable to not just increase the weights by ∆ω

stepwise but rather start with the two extreme settings of ω1 = 0, ω2 = 1 and ω1 = 1, ω2 = 0.
The next weight set of phase 1 to evaluate should then be ω1 = 0.5, ω2 = 0.5 and then as long
as the time limit of the VNS is not reached each of these intervals between these points should
be further halved in order to get an evenly distributed set of solutions at the end of phase 1.

Following this improvement of phase 1 also the PLS could be refined in a similar way.
Therefore the PLS should not just take a random solution and tries to further optimize it but
rather do some kind of Pareto front analysis to choose a solution to improve. Therefore it could
be interesting to use some kind of fast clustering algorithm on the points of the current Pareto
front and cluster the points in order so find areas where there are only small clusters which
should indicate an area which is not well researched and take a solution from there to start its
improvement. This procedure should also lead to a better distributed Pareto front approximation
then just using random points.

50

APPENDIX A
Running Time Table

51

Ta
bl

e
A

.1
:

R
un

tim
es

(f
or

m
at

:
hh

:m
m

::s
s)

of
in

st
an

ce
s

fo
r

ea
ch

∆
ω

va
lu

e
w

ith
an

d
w

ith
ou

t
PL

S
-

on
ly

av
ai

la
bl

e
fo

r
in

st
an

ce
s

w
hi

ch
fin

is
he

d
in

th
e

gi
ve

n
tim

ef
ra

m
e.

T
he

un
de

rl
in

ed
va

lu
es

re
p-

re
se

nt
th

e
ru

nn
in

g
tim

e
of

th
e

be
st

no
PL

S
an

d
PL

S
so

lu
tio

n.

no
PL

S,
∆
ω

=
w

ith
PL

S,
∆
ω

=
In

st
an

ce
0.

01
0
.0

5
0.

10
0
.2

0
0
.5

0
0.

01
0
.0

5
0
.1

0
0.

20
0
.5

0

ID
01

1:
11

:0
8.

3
12

:4
2.

7
5:

09
.6

2:
38

.1
1:

05
.1

1:
18

:0
1.

1
25

:3
8.

2
8:

30
.4

7:
36

.5
14

:0
9.

5
ID

02
23

:0
8.

5
5:

29
.0

2:
32

.2
59

.6
28

.8
26

:3
6.

4
11

:2
1.

9
5:

43
.6

9:
08

.9
4:

38
.6

ID
03

1:
08

:0
9.

4
12

:4
4.

3
6:

18
.1

2:
14

.9
19

.6
1:

15
:5

5.
9

23
:2

2.
9

14
:1

4.
8

12
:1

7.
5

15
:1

9.
4

ID
04

7:
54

.6
18

.7
5.

7
5.

1
4.

8
2:

15
.8

2:
8

57
:4

0.
8

59
:4

1.
1

1:
02

:1
7.

8
ID

05
13

:2
9.

4
2:

39
.3

1:
13

.6
29

.9
10

.3
17

:2
8.

6
5:

38
.3

3:
33

.5
3:

02
.5

2:
56

.7
ID

06
12

:4
3.

8
2:

49
.3

1:
9

32
.6

6.
6

18
:3

0.
5

9:
31

.9
4:

38
.8

4:
05

.7
5:

11
.5

ID
07

38
:4

8.
4

8:
47

.5
1:

30
.9

1:
16

.5
1:

09
.9

2:
01

:4
1.

9
2:

34
.8

2:
14

.9
2:

8.
7

2:
37

.4
ID

08
1:

43
:4

0.
4

20
:1

3.
4

8:
47

.9
3:

30
.0

55
.0

1:
55

:1
5.

4
31

:3
8.

9
13

:3
1.

9
8:

54
.5

10
:1

6.
6

ID
09

6:
04

.9
16

.0
6.

3
5.

9
5.

5
2:

24
.5

2:
8.

7
44

:5
5.

5
46

:1
0.

0
46

:5
0.

8
ID

10
28

:2
9.

0
7:

02
.8

36
.5

33
.8

34
.0

2:
39

.1
2:

01
:3

5.
5

2:
8.

8
2:

41
.2

2:
27

.2
ID

11
34

:3
7:

28
.7

4:
36

.5
2:

09
.7

34
.8

45
:1

7.
8

18
:0

3.
8

10
:3

7.
8

8:
28

.1
11

:2
5.

7
ID

12
28

:4
1.

7
5:

13
.7

2:
43

.6
1:

19
.1

14
.7

32
:4

8.
5

11
:1

7.
7

5:
35

.3
6:

38
.0

4:
14

.4
ID

13
13

:0
8.

8
2:

56
.2

6.
5

5.
5

5.
1

2:
8.

9
2:

18
.9

37
:5

5.
6

37
:4

6.
8

38
:0

9.
2

ID
14

15
:1

3:
31

.5
58

.6
32

.7
14

.2
27

:5
4.

8
13

:2
6.

0
5:

4
6:

16
.5

6:
03

.1
ID

15
2:

08
:3

9.
1

44
:0

2.
1

39
.8

31
.9

29
.8

2:
08

:3
9.

1
2:

23
.1

2:
2.

6
2:

5.
3

2:
16

.6
ID

16
4:

13
.2

43
.3

8.
8

7.
3

6.
7

2:
10

.3
2:

0.
7

19
:2

6.
3

18
:5

8.
7

20
:3

3.
6

ID
17

31
:5

6.
5

2:
20

.7
51

.5
51

.5
49

.4
2:

34
.6

2:
01

:2
6.

4
2:

15
.8

2:
8.

1
2:

40
.1

ID
18

3:
27

.8
1:

02
.4

14
.0

13
.0

11
.8

2:
10

.1
2:

0.
4

8:
51

.3
9:

59
.2

9:
37

.4
ID

19
4:

15
.1

1:
15

.9
8.

1
6.

8
6.

1
2:

5.
6

2:
3

49
:4

5.
2

47
:2

4.
2

50
:0

7.
1

ID
20

41
:5

7.
5

6:
21

.8
51

.9
48

.3
43

.8
2:

9.
2

2:
49

.9
2:

22
.2

2:
23

.5
2:

11
.0

ID
21

23
:3

8.
5

4:
32

.9
2:

11
.4

1:
08

.7
19

.2
26

:4
9.

7
7:

59
.9

4:
15

.8
3:

22
.4

4:
19

.0
ID

22
33

:4
0.

6
5:

43
.5

1:
44

.2
1:

35
.4

1:
28

.6
2:

4.
5

2:
52

.8
1:

59
:0

0.
9

1:
53

:1
6.

0
2:

30
.1

ID
23

37
:4

9.
7

6:
58

.3
3:

09
.4

45
.0

41
.4

44
:2

6.
1

16
:2

8.
0

7:
17

.3
5:

45
.8

9:
29

.2
C

on
tin

ue
d

on
ne

xt
pa

ge

52

Ta
bl

e
A

.1
:

R
un

tim
es

(f
or

m
at

:
hh

:m
m

::s
s)

of
in

st
an

ce
s

fo
r

ea
ch

∆
ω

va
lu

e
w

ith
an

d
w

ith
ou

t
PL

S
-

on
ly

av
ai

la
bl

e
fo

r
in

st
an

ce
s

w
hi

ch
fin

is
he

d
in

th
e

gi
ve

n
tim

ef
ra

m
e.

T
he

un
de

rl
in

ed
va

lu
es

re
p-

re
se

nt
th

e
ru

nn
in

g
tim

e
of

th
e

be
st

no
PL

S
an

d
PL

S
so

lu
tio

n.

no
PL

S,
∆
ω

=
w

ith
PL

S,
∆
ω

=
In

st
an

ce
0.

01
0
.0

5
0.

10
0.

20
0
.5

0
0.

01
0
.0

5
0
.1

0
0.

20
0
.5

0

ID
24

3:
53

.9
1:

10
.6

16
.0

12
.3

9.
1

2:
4.

6
2:

5.
6

24
:0

0.
2

27
:0

5.
3

25
:3

7.
4

ID
25

1:
07

:5
2.

8
20

:5
6.

0
45

.1
41

.0
40

.5
2:

01
:3

0.
5

2:
29

.9
1:

29
:0

4.
8

1:
26

:4
1.

1
1:

30
:4

1.
0

ID
26

41
:4

0.
2

18
:5

1.
9

38
.9

32
.7

32
.5

2:
19

.5
2:

43
.1

2:
1.

3
2:

5.
6

2:
31

.4
ID

27
29

:0
1.

4
6:

19
.1

2:
54

.5
1:

20
.7

43
.4

42
:3

0.
6

19
:0

8.
8

9:
32

.8
5:

06
.1

6:
54

.5
ID

28
1:

30
:1

5.
6

20
:0

1.
1

8:
50

.6
4:

39
.6

1:
06

.3
1:

38
:5

7.
6

29
:2

2.
5

14
:0

3.
2

19
:3

0.
8

14
:1

9.
3

ID
29

8:
31

.6
1:

28
.5

8.
4

7.
7

7.
2

2:
17

.1
2:

4
41

:0
5.

7
41

:5
2.

3
41

:2
9.

0
ID

30
21

:5
4.

5
3:

52
.7

1:
30

.2
51

.2
21

.7
24

:1
2.

5
7:

43
.7

3:
49

.0
2:

41
.3

5:
33

.9
ID

31
1:

07
:3

0.
2

12
:0

3.
8

6:
09

.5
2:

47
.5

1:
01

.4
1:

17
:2

6.
3

22
:1

2.
5

11
:3

7.
4

11
:4

2.
4

10
:3

0.
8

ID
32

1:
38

:3
2.

4
40

:2
7.

2
41

.9
33

.9
31

.0
2:

8.
9

2:
01

:3
2.

0
2:

1
2:

14
.4

2:
21

.7
ID

33
44

:1
8.

2
8:

29
.6

1:
23

.7
1:

11
.6

1:
03

.6
2:

22
.4

2:
01

:1
6.

9
2:

6.
6

2:
1

2:
13

.8
ID

34
39

:0
8.

4
6:

07
.9

3:
17

.0
2:

29
.8

29
.4

1:
02

:5
0.

0
23

:4
6.

2
13

:1
3.

1
11

:5
3.

2
20

:2
5.

2
ID

35
43

:4
3.

4
7:

07
.3

40
.9

39
.2

38
.5

2:
18

.0
2:

47
.2

2:
9.

7
2:

13
.7

2:
7.

7
ID

36
15

:5
5.

5
3:

04
.9

1:
32

.8
46

.3
20

.4
26

:1
8.

1
13

:0
3.

7
6:

08
.5

3:
25

.4
7:

21
.6

ID
37

28
:3

4.
4

5:
55

.6
1:

38
.3

1:
24

.6
1:

21
.4

2:
2.

1
2:

01
:2

8.
1

1:
20

:1
8.

4
1:

20
:5

6.
9

1:
19

:2
6.

1
ID

38
9:

47
.8

1:
48

.8
6.

9
6

5
2:

14
.6

2:
14

.0
1:

02
:4

2.
5

1:
04

:2
9.

5
1:

01
:5

4.
0

ID
39

8:
02

.2
1:

41
.2

23
.3

16
.7

16
.7

2:
10

.9
2:

6.
2

23
:0

0.
2

24
:2

9.
9

27
:3

5.
8

ID
40

13
:2

2.
2

19
.8

6.
2

5.
7

5.
4

2:
9.

8
2:

19
.5

1:
48

:0
6.

6
1:

49
:4

7.
9

1:
53

:1
7.

9
ID

41
10

:4
3.

5
2:

28
.3

1:
05

.3
27

.7
16

.3
15

:1
1.

5
8:

58
.4

3:
46

.9
2:

31
.5

2:
38

.3
ID

42
30

:2
3.

0
5:

56
.6

2:
08

.1
1:

19
.6

17
.3

40
:4

5.
5

17
:2

6.
0

6:
04

.2
6:

09
.1

5:
24

.5
ID

43
11

:0
5.

4
2:

40
.8

1:
01

.9
47

.9
11

.5
17

:1
4.

2
6:

46
.5

3:
13

.7
3:

51
.7

4:
33

.9
ID

44
25

:5
9.

0
4:

39
.7

2:
13

.0
1:

30
.8

13
.3

37
:5

1.
2

14
:3

2.
7

6:
55

.5
5:

33
.3

3:
58

.6
ID

45
33

:0
0.

9
8:

44
.4

1:
02

.7
55

.4
52

.7
2:

15
.8

2:
7.

7
2:

20
.0

2:
6.

1
2:

5.
1

ID
46

39
:2

8.
5

1:
35

.3
55

.4
47

.1
47

.5
2:

01
:1

4.
1

2:
02

:0
1.

8
2:

12
.2

2:
10

.3
2:

11
.8

C
on

tin
ue

d
on

ne
xt

pa
ge

53

Ta
bl

e
A

.1
:

R
un

tim
es

(f
or

m
at

:
hh

:m
m

::s
s)

of
in

st
an

ce
s

fo
r

ea
ch

∆
ω

va
lu

e
w

ith
an

d
w

ith
ou

t
PL

S
-

on
ly

av
ai

la
bl

e
fo

r
in

st
an

ce
s

w
hi

ch
fin

is
he

d
in

th
e

gi
ve

n
tim

ef
ra

m
e.

T
he

un
de

rl
in

ed
va

lu
es

re
p-

re
se

nt
th

e
ru

nn
in

g
tim

e
of

th
e

be
st

no
PL

S
an

d
PL

S
so

lu
tio

n.

no
PL

S,
∆
ω

=
w

ith
PL

S,
∆
ω

=
In

st
an

ce
0.

01
0
.0

5
0.

10
0
.2

0
0
.5

0
0.

01
0
.0

5
0
.1

0
0.

20
0
.5

0

ID
47

8:
35

.0
2:

11
.0

1:
05

.5
32

.5
11

.0
11

:1
3.

3
5:

20
.0

3:
08

.1
3:

59
.7

2:
48

.7
ID

48
9:

15
.4

1:
28

.2
52

.5
21

.8
11

.0
13

:4
5.

6
5:

57
.4

2:
25

.5
1:

15
.1

2:
28

.4
ID

49
16

:5
1.

0
3:

26
.2

1:
44

.8
34

.4
10

.7
19

:5
1.

0
6:

20
.1

3:
53

.3
3:

33
.9

3:
56

.3
ID

50
43

:4
2.

9
6:

42
.1

3:
18

.4
1:

22
.5

43
.5

57
:2

1.
6

23
:4

1.
8

17
:3

2.
7

12
:0

2.
4

12
:4

3.
3

ID
51

22
:1

1.
7

1:
44

.3
39

.0
35

.6
31

.4
2:

01
:3

2.
7

2:
6.

6
2:

27
.4

2:
13

.2
2:

3.
8

ID
52

44
:3

6.
0

8:
00

.6
3:

35
.4

1:
40

.3
32

.6
1:

06
:5

1.
4

29
:1

4.
3

12
:1

3.
3

8:
07

.1
16

:0
9.

8
ID

53
6:

07
.6

1:
02

.6
7.

1
6.

6
6

2:
4.

9
2:

2.
5

31
:1

8.
4

31
:5

9.
7

30
:2

7.
4

ID
54

12
:5

5.
9

2:
14

.2
1:

05
.4

21
.5

21
.1

17
:2

7.
9

5:
19

.8
2:

44
.5

2:
03

.8
1:

37
.3

ID
55

25
:5

3.
9

4:
15

.2
1:

57
.5

43
.7

18
.8

29
:4

6.
6

8:
47

.6
3:

57
.2

3:
34

.9
3:

01
.4

ID
56

9:
42

.4
1:

46
.9

1:
07

.3
28

.6
9.

8
13

:1
1.

2
4:

39
.5

2:
43

.2
3:

1
3:

13
.2

ID
57

3:
17

.4
34

.4
6.

3
5.

8
5.

7
2:

1.
3

2:
5.

5
22

:5
3.

6
22

:5
0.

7
25

:3
4.

2
ID

58
1:

18
:2

9.
7

22
:2

7.
8

55
.0

50
.7

47
.3

2:
02

:0
8.

4
2:

17
.6

2:
27

.3
2:

18
.5

2:
45

.2
ID

59
34

:1
7.

2
6:

34
.9

2:
55

.7
1:

15
.8

28
.9

42
:0

2.
6

17
:4

3.
0

10
:5

9.
1

10
:1

5.
1

6:
52

.5
ID

60
14

:2
4.

2
2:

26
.3

5.
8

4.
9

4.
7

2:
11

.2
2:

4.
8

32
:0

8.
6

31
:3

4.
5

32
:5

4.
2

ID
61

4:
02

.6
44

.3
13

.3
13

.2
13

.0
2:

9
56

:0
4.

4
6:

54
.0

8:
10

.5
9:

06
.8

ID
62

1:
01

:4
0.

1
11

:3
9.

3
5:

10
.1

2:
03

.7
29

.8
1:

09
:3

6.
9

22
:4

4.
3

10
:1

9.
3

8:
31

.2
13

:4
4.

0
ID

63
30

:4
0.

2
6:

11
.9

3:
15

.0
1:

36
.4

59
.9

43
:3

2.
4

18
:2

1.
6

7:
18

.7
5:

32
.1

10
:1

4.
3

ID
64

6:
04

.3
1:

14
.2

7.
1

6.
5

5.
7

2:
4.

2
2:

0.
8

13
:2

1.
8

13
:5

0.
8

13
:0

9.
1

54

APPENDIX B
Pareto Fronts

55

Figure B.1: Pareto Fronts of best no PLS and best PLS solution.

56

Figure B.2: Pareto Fronts of best no PLS and best PLS solution.

57

Figure B.3: Pareto Fronts of best no PLS and best PLS solution.

58

Figure B.4: Pareto Fronts of best no PLS and best PLS solution.

59

Figure B.5: Pareto Fronts of best no PLS and best PLS solution.

60

Figure B.6: Pareto Fronts of best no PLS and best PLS solution.

61

Figure B.7: Pareto Fronts of best no PLS and best PLS solution.

62

Figure B.8: Pareto Fronts of best no PLS and best PLS solution.

63

Figure B.9: Pareto Fronts of best no PLS and best PLS solution.

64

Figure B.10: Pareto Fronts of best no PLS and best PLS solution.

65

Figure B.11: Pareto Fronts of best no PLS and best PLS solution.

66

Bibliography

[1] E. Angel, E. Bampis, and L. Gourvès. A dynasearch neighborhood for the bicriteria travel-
ing salesman problem. Lecture Notes in Economics and Mathematical Systems, 535:153–
176, 2004.

[2] M. Basseur. Design of cooperative algorithms for multi-objective optimization: application
to the flowshop scheduling problem. 4OR, 4(3):255–258, 2006.

[3] M. Basseur, E.-G. Talbi, A. Nebro, and E. Alba. Metaheuristis for multiobjective combi-
natorial optimization problems: Review and recent issues. Rapport de recherche, 5978:39,
2006.

[4] R. Battiti and G. Tecchiolli. The reactive tabu search. ORSA Journal on Computing,
6:126–140, 1994.

[5] J. D. Beltrán, J. E.Calderón, R. J. Cabrera, J. A. Moreno-Pérez, and J. M. Moreno-Vega.
Grasp-vns hybrid for the strip packing problem. Hybrid metaheuristics, pages 79–90, 2004.

[6] J.-F. Berube, M. Gendreau, and J.-Y. Potvin. An exact ε-constraint method for bi-objective
combinatorial optimization problems: Application to the traveling salesman problem with
profits. European Journal of Operational Research, 194:39–50, 2009.

[7] C. A. C. Coello and M. S. Lechuga. Mopso : A proposal for multiple objective particle
swarm optimization. Evolutionary Computation, 2:1051–1056, 2002.

[8] G. B. Dantzig, A. Orden, and P. Wolfe. The generalized simplex method for minimizing a
linear form under linear inequality restraints. Pacific Journal of Mathematics, 4:183–195,
1955.

[9] G. B. Dantzig and P. Wolfe. The decomposition algorithm for linear programs. Economet-
rica, 29:767–778, 1961.

[10] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated sorting
genetic algorithm for multi-objective optimization: Nsga-ii. Lecture Notes in Computer
Science, 1917/2000:849–858, 2000.

67

[11] F. Eisenbrand, F. Grandoni, T. Rothvoß, and G. Schäfer. Approximating connected facil-
ity location problems via random facility sampling and core detouring. SODA ’08 Pro-
ceedings of the nineteenth annual ACM-SIAM Symposium on Discrete algorithms, pages
1174–1183, 2008.

[12] T. A. Feo and M. G. Resende. Greedy randomized adaptive search procedures. Journal of
global optimization, 6:109–133, 1995.

[13] C. M. Fonseca and P. J. Fleming. An overview of evolutionary algorithms in multiobjective
optimization. Evolutionary Computation, 3:1–16, 1995.

[14] F. Glover and E. Taillard. A user’s guide to tabu search. Annals of Operations Research,
41:1–28, 1993.

[15] D. Goldberg. Genetic algorithms in search, optimization and machine learning. Addison-
Wesley, 1989.

[16] S. Gollowitzer, B. Gendron, and I. Ljubic. A cutting plane algorithm for the capacitated
connected facility location problem. Computational Optimization and Applications, 2013.

[17] S. Gollowitzer and I. Ljubić. Mip models for connected facility location: A theoretical and
computational study. Computers & Operations Research, 38:435–449, 2011.

[18] P. Hansen. The steepest ascent mildest descent heuristic for combinatorial programming.
In presented at the congress on Numerical Methods in Combinatorial Optimization, 1986.

[19] P. Hansen and N. Mladenović. Variable neighborhood search: Principles and applications.
European journal of operational research, pages 449–467, 2001.

[20] P. Hansen, N. Mladenović, and D. Perez-Britos. Variable neighborhood decomposition
search. Journal of Heuristics, pages 335–350, 2001.

[21] Y. Jin. Effectiveness of weighted aggregation of objectives for evolutionary multiobjective
optimization: Methods, analysis and applications. soft-computing.net, 2002.

[22] Y. Jin, M. Olhofer, and B. Sendhoff. Dynamic weightedaggregation for evolutionary multi-
objective optimization: Why does it work and how? Proceedings of the Genetic and
Evolutionary Computation Conference, 2001.

[23] L. V. Kantorovich. Mathematical methods of organizing and planning production. Man-
agement Science, 6:366–422, 1960.

[24] D. R. Karger and M. Minkoff. Building steiner trees with incomplete global knowledge.
Proceedings. 41st Annual Symposium on Foundations of Computer Science, pages 613–
623, 2000.

[25] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,
4:373–395, 1984.

68

[26] J. Kennedy and R. Eberhart. Particle swarm optimization. Conference on Neural Networks,
Proceedings, IEEE International, 4:1942 – 1948, 1995.

[27] J. Kennedy and R. C. Eberhart. Swarm Intelligence. Elsevier, 2001.

[28] M. Laguna, J. O. Roa, A. R. Jimenez, and F. Seco. Diversified local search for the optimal
layout of beacons in an indoor positioning system. IIE Transactions, 41:247–259, 2009.

[29] A. H. Land and A. G. Doig. An automatic method of solving discrete programming prob-
lems. Econometrica, 28:497–520, 1960.

[30] M. Leitner, I. Ljubic, and M. Sinnl. Solving the bi-objective prize-collecting steiner tree
problem with the ε-constraint method. Proceedings of the 6th International Network Opti-
mization Conference (INOC), 41:181–188, 2013.

[31] M. Leitner and G. Raidl. Lagrangian decomposition, metaheuristics, and hybrid ap-
proaches for the design of the last mile in fiber optic networks. Hybrid Metaheuristics,
5296:158–174, 2008.

[32] M. Leitner and G. R. Raidl. Variable neighborhood search for a prize collecting capacity
constrained connected facility location problem. Proceedings of the 2008 International
Symposium on Applications and the Internet, SAINT 2008, pages 233–236, 2008.

[33] M. Leitner and G. R. Raidl. Combining lagrangian decomposition with very large scale
neighborhood search for capacitated connected facility location. Post-Conference Book of
the Eight Metaheuristics International Conference, 2009.

[34] M. Leitner and G. R. Raidl. Branch-and-cut-and-price for capacitated connected facility
location. Journal of Mathematical Modelling and Algorithms, 2011.

[35] M. Leitner and G. R. Raidl. Variable neighborhood search for capacitated connected facil-
ity location. Extended Abstracts of the Thirteenth International Conference on Computer
Aided Systems Theory, pages 261–263, 2011.

[36] I. Ljubić. A hybrid vns for connected facility location. Hybrid Metaheuristics, 4771:157–
169, 2007.

[37] T. Lust and J. Teghem. Two-phase pareto local search for the biobjective traveling salesman
problem. J Heuristics, pages 475–510, 2010.

[38] R. Marler and J. Arora. Survey of multi-objective optimization methods for engineering.
Structural and Multidisciplinary Optimization, pages 369–395, 2004.

[39] S. Martins, M. Resende, C. Ribeiro, and P. Pardalos. A parallel grasp for the steiner tree
problem in graphs using a hybrid local search strategy. Journal of Global Optimization,
17:267–283, 2000.

[40] O. Mersmann. emoa: Evolutionary multiobjective optimization algorithms, September
2012.

69

[41] J. Mitchell. Branch-and-cut algorithms for combinatorial optimization problems. Hand-
book of Applied Optimization, pages 65–77, 2002.

[42] N. Mladenović and P. Hansen. Variable neighborhood search. Computers & Operations
Research, 24:1097–1100, 1997.

[43] L. Paquete, M. Chiarandini, and T. Stützle. Pareto local optimum sets in the biobjective
traveling salesman problem: An experimental study. Lecture Notes in Economics and
Mathematical Systems, 535:177–199, 2004.

[44] L. Paquete and T. Stützle. A two-phase local search for the biobjective traveling sales-
man problem. Proceeding EMO’03 Proceedings of the 2nd international conference on
Evolutionary multi-criterion optimization, pages 479–493, 2003.

[45] K. Parsopoulos and M. Vrahatis. Particle swarm optimization method in multiobjective
problems. SAC ’02 Proceedings of the 2002 ACM symposium on Applied computing, pages
603–607, 2002.

[46] C. Swamy and A. Kumar. Primal-dual algorithms for connected facility location problems.
Approximation Algorithms for Combinatorial Optimization, 2462:256–270, 2002.

[47] M. N. Thapa. Linear Programming 2: Theory and Extensions. Vol. 2. Springer, 2003.

[48] A. Tomazic and I. Ljubic. A grasp algorithm for the connected facility location problem.
Applications and the Internet, 2008. SAINT 2008. International Symposium on, pages 257–
260, 2008.

[49] M. Verhoeven and M. Severens. Parallel local search for steiner trees in graphs. Annals of
Operations Research, pages 185–202, 1999.

[50] J. von Neumann. Duality theory. privately circulated notes - Princeton, 1947.

[51] H. Zhang. Multiple particle swarm optimizers with inertia weight for multi-objective op-
timization. Proceedings of the International MultiConference of Engineers and Computer
Scientists, 1, 2012.

[52] E. Zitzler, D. Brockhoff, and L. Thiele. The hypervolume indicator revisited: On the de-
sign of pareto-compliant indicators via weighted integration. Evolutionary Multi-Criterion
Optimization, pages 862–876, 2007.

[53] E. Zitzler, J. Knowles, and L. Thiele. Quality assessment of pareto set approximations.
Multiobjective Optimization, pages 373–404, 2008.

[54] E. Zitzler and L. Thiele. Multiobjective optimization using evolutionary algorithms - a
comparative case study. PPSN-V, pages 292–301, 1998.

[55] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative case
study and the strength pareto approach. IEEE Transactions on Evolutionary Computation,
3:257–271, 1999.

70

[56] E. Zitzler, L. Thiele, M. Laumanns, C. M. Foneseca, and V. G. da Fonseca. Performance
assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on
Evolutionary Computation, 7:117–132, 2003.

71

	Introduction
	Aim of the work
	Outline of the Thesis

	Problem Definition
	Methodologies
	Integer Linear programming
	Metaheuristic Approaches
	Greedy Heuristic
	Greedy Randomized Adaptive Search Procedure
	Local Search
	Variable Neighborhood Descent
	Variable Neighborhood Search
	Tabu Search
	Population based Approaches

	Basic Definitions for Multi-objective Optimizations

	Previous & Related Work
	State of the art

	The Two-Phase Local Search Algorithm
	Paretofilter
	Phase 1
	Aggregation of objective Functions
	Adaptation of Weights
	Construction Heuristic
	Variable Neighborhood Descent

	Phase 2
	Pareto Local Search

	Computational Tests and Results
	Test instances
	Test Environment
	Evaluation
	Quality Metrics

	Computational Results

	Conclusion
	Future work

	Running Time Table
	Pareto Fronts
	Bibliography

