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Deutsche Kurzfassung

Diese Dissertation befasst sich mit AR und ARMA Modellen, die zu den wichtigsten

Modellklassen der Ökonometrie gehören. Ein Schwerpunkt liegt auf der Analyse singulärer

AR und ARMA Modelle. Insbesondere werden Schätzverfahren für die Modellparameter im

singulären Fall betrachtet.

Ein zentrales Thema der Dissertation ist der so genannte mixed frequency Fall, d.h. dass

die einzelnen Komponenten einer multivariaten Zeitreihe zu unterschiedlichen Abtastraten

vorliegen. Die Analyse des mixed frequency Falls beschränkt sich auf Beobachtungen von

AR Modellen. Es werden zwei verschiedene Ansätze zur Schätzung der Modellparameter

beschrieben, die beide unterschiedliche Schätzer liefern und auch unterschiedliche Einsichten

in die Problemstellung gewähren. Beide ermöglichen generisch einen konsistente Schätzung

der AR Parameter. Der erste Ansatz beruht auf erweiterten Yule Walker Gleichungen und

besticht durch einen simplen Schätzer. Der zweite Ansatz besteht im Blocken der beobachteten

Daten. Dadurch werden alle vorhandenen Informationen in den Schätzer einbezogen.

Der letzte Teil der Dissertation befasst sich mit generalisierten linearen dynamischen Fak-

tormodellen, die zur Modellierung hochdimensionaler Zeitreihen eingesetzt werden. Singuläre

AR und ARMA Modelle sind von besonderer Bedeutung für diese Modelle, weil sie dort für

die Modellierung so genannter statischer Faktoren eingesetzt werden können. Von besonderem

Interesse ist hier der mixed frequency Fall, d.h. dass die einzelnen Komponenten der Beobach-

tungen des Faktormodells zu unterschiedlichen Abtastraten vorliegen. Es kann ein Verfahren

angegeben werden, dass es erlaubt, einen mixed frequency statischen Faktor zu bestimmen.

Dieser Faktor kann nun mittels eines AR Systems beschrieben werden, dessen Parameter mit

den zuvor diskutierten Methoden bestimmt werden können.
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Abstract

In this thesis we are concerned with AR and ARMA models which are some of the most

important model classes in econometric modeling. We focus on singular AR and ARMAmodels

and consider estimation procedures for the system and noise parameters for the singular case.

A central part of the thesis is concerned with time series whose univariate component

series are available at di�erent sampling frequencies. We call this the mixed frequency case.

Our analysis is restricted to mixed frequency observations of AR processes. We consider two

approaches for showing generic identi�ability of the AR parameters. These two approaches

give di�erent insights into the problem and lead to di�erent estimation procedures. The �rst

approach is based on extended Yule Walker equations and yields a simple estimator. The

second approach is based on blocking all observed data and thus the corresponding estimator

exploits all available information.

In the last part of the thesis we consider generalized linear dynamic factor models which are

used to model high dimensional time series. Singular AR and ARMA models are of particular

importance for these factor models as they can be used to model so-called static factors. We

focus on the case that the univariate components of the observations of the factor model are

mixed frequency. We propose a procedure for consistently estimating a mixed frequency static

factor. This static factor can then be modeled by an AR system. The system and noise

parameters of this AR system can be determined with methods developed in the thesis.
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Introduction

Modeling high dimensional time series and mixed frequency data are important topics in

current econometric modeling. In this thesis, we deal with these two topics and we highlight

the interface of both.

This thesis consists of three parts. Firstly, we consider AR and ARMA systems with

particular emphasis on singular AR and ARMA systems. These models are important as

models for static factors of generalized linear dynamic factor models which are widely used

for modeling high dimensional time series. A focus here is identi�ability of the parameters

from covariance data and the corresponding estimation procedures. For regular AR system,

we shortly consider the well-known Yule Walker equations. For singular AR systems, we

consider an approach also based on Yule Walker equations described in Deistler et al. [2011].

For ARMA processes, we want to determine the parameters of a state space model which also

determine the ARMA parameters. For the regular case, we discuss the subspace procedure

presented in Deistler et al. [1995]. Subsequently, we adapt the procedure of Deistler et al.

[1995] for the singular case.

In the second part, which is in a certain sense the central part of the thesis, we are

concerned with mixed frequency observations of an AR process: We assume that part of the

observations are available at every time point and part of the observations are available at

every Nth time point, N ∈ N. The main focus is on identi�ability of the parameters of the AR

system generating all outputs at the highest frequency. We consider two approaches which

both enable us to show generic identi�ability of the AR parameters, but will give di�erent

insights into the identi�ability problem.

The �rst approach, based on extended Yule Walker equations (see Chen and Zadrozny

[1998]) is presented in Chapter 2. The second approach is based on the technique of blocking

is presented in Chapter 3. Chapter 2 and most of Chapter 3 is joint work with the coauthors

Manfred Deistler, Brian D. O. Anderson, Bernd Funovits, Lukas Kölbl and Mohsen Zamani and

has been taken from Anderson et al. [2014]. In addition, in this thesis, we extend some results

of the paper mentioned above, namely results concerning the blocking approach in Sections

1



2 INTRODUCTION

3.2, 3.3, and 3.4 to more general cases as considered in Anderson et al. [2014]. Furthermore

we give an alternative proof of Theorem 8 in Anderson et al. [2014].

In the third part, we are concerned with modeling high dimensional time series. We

concisely outline GDFMs following the seminal papers Forni et al. [2000], Forni and Lippi

[2001], Forni et al. [2004]. Finally, we assume that we have mixed frequency observations of

our GDFM. Applying the ideas of Hallin and Liska [2007] to our mixed frequency setting we

propose a procedure for consistently estimating the minimal static factor on a mixed frequency

level. This static factor can then be modeled using the techniques developed in the second

part of the thesis.



Part 1

Single Frequency





CHAPTER 1

Regular and Singular AR and ARMA Models

In the �rst part of this thesis we are considering AR and ARMA models. These models are

some of the most important model classes in econometrics and have been extensively treated

in respective literature, see e.g. Hannan [1970], Brockwell and Davis [1987], Reinsel [1993],

Hannan and Deistler [2012], Deistler [2007].

We especially dedicate our attention to singular AR and ARMA systems which are not

as thoroughly explored as regular AR and ARMA systems. We are particularly interested in

singular AR and ARMA models as they can be used as models for the so-called static factor

in generalized linear dynamic factor models. Further �elds of applications for singular AR and

ARMA models are de�nitional equations and dynamic stochastic general equilibrium models.

A main focus of this thesis is the problem of identi�ability, i.e. question if the (real-valued)

parameters of the AR or ARMA model can be uniquely determined from population second

moments which can be obtained from observed variables. However, if we are not able to show

identi�ability we can often show identi�ability on a generic subset of the parameter space

where a subset of the parameter space Θ is called generic if it contains a subset that is open

and dense in Θ.

1.1. AR Systems and Solutions

In the following we are going to use z both for the backward shift on Z, i.e. z (yt)t∈Z =

(yt−1)t∈Z, as well as for a complex variable, z ∈ Z. It will become clear from the context how

z is used.

Definition 1.1.1. A vector autoregressive process is a (wide sense) stationary solution

(yt)t∈Z of an AR(p) system

(1.1.1) yt = a1yt−1 + a2yt−2 + · · ·+ apyt−p + bεt

with aj ∈ Rn×n, b ∈ Rn×q and where a(z) = I − a1z − · · · − apzp ful�lls the stability

assumption det a(z) 6= 0, |z| ≤ 1 and where εt is white noise with variance covariance matrix

Eεtε′t = Iq and b has full column rank.

5



6 1. REGULAR AND SINGULAR AR AND ARMA MODELS

If Σ = bb′ > 0, we say that the AR system is regular, whereas for rkΣ = rkb = q < n we

call the AR system singular.

In this de�nition we restrict ourselves to a0 = I, but it is no restriction of generality to

introduce this normalization, since the set of solutions is not changed by premultiplying the

AR equation by a constant non-singular matrix.

Note that a n× q matrix b with q < n is commonly called tall.

Our interest in singular AR system was sparked by the occurrence of such models as

models for the so-called latent variables in generalized linear dynamic factor models which

will be introduced in Chapter 4.

Equation (1.1.1) can be written as

(1.1.2) a(z)yt = bεt.

We will call (a1, . . . , ap) the system parameters and b the noise parameters of the AR

system. The transfer function from (εt)t∈Z to (yt)t∈Z can be written as k(z) = a−1(z)b. Note

that there can be many di�erent AR systems corresponding to the same transfer function.

The next de�nition will be helpful in many situations to determine a particular AR system

such that k(z) = a−1(z)b:

Definition 1.1.2. The polynomial matrix (a(z), b(z)) is called left coprime if all polyno-

mial matrices u(z) satisfying

(a(z), b(z)) = u(z)
(
â(z), b̂(z)

)
where â(z), b̂(z) are polynomial too, are unimodular, i.e. detu(z) = const. 6= 0.

As can be shown, left coprimeness is equivalent to (a(z), b(z)) being of full row rank ∀z ∈ C,
see e.g. Hannan and Deistler [2012] Lemma 2.2.1. For an AR system, left coprimeness means

that (a(z), b) has to be of full row rank which is always ful�lled for regular AR systems. For

a singular AR system, it can be shown that we can always �nd a coprime AR realization of

k(z), see e.g. Anderson et al. [2012a] Theorem 1.

System (1.1.2) can be written in companion form as a state space system:
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yt
...

yt−p+1


︸ ︷︷ ︸

xt+1

=



a1 a2 · · · ap−1 ap

In 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 In 0


︸ ︷︷ ︸

A


yt−1

...

yt−p


︸ ︷︷ ︸

xt

+


b

0
...

0


︸ ︷︷ ︸
B

εt(1.1.3)

yt =
(
a1 a2 · · · ap−1 ap

)
︸ ︷︷ ︸

C

xt + b︸︷︷︸
D

εt

The vector xt is called the state of (1.1.3). The transfer function from (εt)t∈Z to (yt)t∈Z can

be written in the parameters of the state space system as k(z) =
(
C (I −Az)−1 Bz +D

)
εt.

The corresponding (discrete time) Lyapunov equation is

(1.1.4) Γp = AΓpA′ + BB′

where Γp = Extx′t.
If ap is non-singular, the degree of det a(z) is np and all eigenvalues λj of A are the inverse

of the zeros of det a(z). If ap is singular of rank m < n, the degree of det a(z) is less than np.

We say that det a(z) has an in�nite zero. Clearly, A has eigenvalue 0 of multiplicity n −m.

Thus under the stability assumption holds |λj | < 1.

As is easily seen, Γp =
∑∞

j=0AjBB
′ (Aj)′ is a solution of (1.1.4) and under the stability

assumption the solution is unique for given (A,B). (If there were any other solution, the dif-

ference of both solutions would ful�ll ΓD = AΓDA′ which cannot hold since for all eigenvalues

λj of A |λj | < 1, see e.g. Inouye [1983].)

The pair(A,B) is called controllable if

rk
(
B,AB, . . . ,Anp−1B

)
= np

and a pair(C,A) is called observable if

rk


C
CA
...

CAnp−1

 = np.
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A system is called minimal if the state dimension for xt in (1.1.3) is minimal among all

systems with given transfer function k(z). The system (1.1.3) is minimal if and only if it is

controllable and observable, see e.g. Hannan and Deistler [2012], Chapter 2.

For showing observability or controllability, the PBH (Popov Belevitch Hautus) test proves

very helpful, see e.g. Kailath [1980] p 135:

Theorem 1.1.3 (PBH Test). • A pair (A,B) is controllable if and only if there is

no left eigenvector of A that is orthogonal to B.
• A pair (C,A) is observable if and only if there is no right eigenvector of A that is

orthogonal to C.

Lemma 1.1.4. (C,A)in (1.1.3) is observable if and only if ap is non-singular.

Proof. If ap is singular, there exists an eigenvector c =
(

0 · · · 0 c′p

)′
of A correspon-

ding to the eigenvalue λ = 0 which is obviously in the right kernel of C and thus (C,A) is not

observable.

Note that if ap is non-singular observability of (C,A) is equivalent to observability of((
In 0 · · · 0

)
,A
)
. If ap is non-singular, any eigenvector c =

(
c′1 · · · c′p

)′
6= 0 of A

corresponding to the eigenvalue λ 6= 0 has to ful�ll

p∑
i=1

aici = λc1

c1 = λc2

...

cp−1 = λcp

see e.g. Anderson et al. [2012b] Lemma 2. Thus c1 6= 0 and obviously c is not in the right kernel

of
(
In 0 · · · 0

)
and thus

((
In 0 · · · 0

)
,A
)
and equivalently (C,A) is observable. �

Lemma 1.1.5. Controllability of (A,B) is equivalent to Γp > 0.

Proof.

Γp =

∞∑
j=0

AjBB′
(
Aj
)′

=
(
B AB A2B · · ·

)


B′

B′A′

B′
(
A2
)′

...


Using the Cayley-Hamilton Theorem it is easy to see that (A,B) is controllable if and only if

Γp is non-singular. �
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The next lemma relates controllability of the pair(A,B) and the AR system (a(z), b).

Lemma 1.1.6. Controllability of (A,B) is equivalent to left coprimeness of (a(z), b) and

(ap, b) being of full row rank.

Proof. The PBH Test tells us that controllability of (A,B) is equivalent to (λI −A,B)

being of full row rank for all eigenvalues λ of A. As is easily seen, see e.g. Anderson et al.

[2012b] Lemma 1, α is a left eigenvectors of A if and only if

α′1a1 + α′2 = λα′1

α′1a2 + α′3 = λα′2
...

α′1ap−1 + α′p = λα′p−1

α′1ap = λα′p.

Thus(λI −A,B) being of full row rank is equivalent to
(
λpI − λp−1a1 − · · · − ap, b

)
being of

full row rank. For eigenvalues λ 6= 0, this is equivalent to
(
a(λ−1), b

)
being of full row rank

which is - together with a(0) = I - equivalent to left coprimeness of (a(z), b). For the eigenvalue

λ = 0,
(
λpI − λp−1a1 − · · · − ap, b

)
being of full row rank is equivalent to (ap, b) being of full

row rank. �

Thus we can formulate the meaning of minimality of (1.1.3) in terms of the parameters of

the underlying AR system:

Lemma 1.1.7. The state space system with parameter matrices (A,B, C,D) is minimal if

and only if (a(z), b) is left coprime and ap is non-singular.

Observability is generic in Θ as for an open and dense subset of Θ ap is non-singular.

Obviously, controllability is always ful�lled for regular AR systems. However, for singular AR

systems controllability is still generic in Θ, see Wonham [1985] p 44.

A main focus of this thesis is the recovery of the AR parameters using second moments of

observed data. We explicitly de�ne the parameter space although it has already been de�ned

implicitly. Note that we assume n, p and q to be given.

Definition 1.1.8. The parameter space of the AR system (1.1.2) is the set

(1.1.5) Θ = {(a1, . . . , ap) | det a(z) 6= 0, |z| < 1} ×
{

Σ | Σ = ΣT , Σ ≥ 0, rkΣ = q
}
.

We assume that there are no cross-restrictions between system and noise parameters. Note

that we choose this particular de�nition of the parameter space since without any further
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restrictions b can only be determined up to postmultiplication by an orthogonal constant

matrix. To specify a unique choice, we can consider LQ decompositions and assume that b is

a quasi lower triangular matrix, see Filler [2010], Proposition 3.1.2. Nevertheless, we will use

both (a1, . . . , ap, b) and (a1, . . . , ap,Σ) for the system and noise parameters of the AR system.

Also note that the corresponding set of system parameters

S = {(A1, . . . , Ap) | det (a(z)) 6= 0, |z| ≤ 1}

is open in Rn×np.
Given the parameters of an AR(p) system and a white noise process εt, Σε = Iq, we can

ask for the set of solutions (yt)t∈Z ful�lling the AR equation.

It is well known, see e.g. Hannan [1970], p 14, that the set of solutions of a system of

linear vector di�erence equations a(z)yt = bεt is

(ypt )t∈Z +
{(
yht

)
t∈Z
| a(z)yht = 0

}
where (ypt )t∈Z is a particular solution solving a(z)ypt = bεt and

{(
yht
)
t∈Z | a(z)yht = 0

}
is the

set of all homogenous solutions. The latter set is a linear vector space and the homogeneous

solutions of linear vector di�erence equations are of the form

(1.1.6) yht =
m∑
j=0

nj−1∑
k=0

ckt
k

 z−tj vj

where m is the number of distinct zeros zj of det a(z) and nj is the multiplicity of the zero zj ,

vj are elements of the kernel of a(zj) and ck are arbitrary coe�cients.

We are interested in stationary solutions only.

For �nding a particular solution, we use the so-called z-transform, see e.g. Deistler [1975].

Using z now as a complex variable, the stability assumption on a(z) guarantees that a−1(z)

can be expanded as a power series on a closed disk containing the unit circle. Thus we have

the causal transfer function

k(z) = a−1(z)b =

∞∑
j=0

kjz
j .

.

It is easy to see that there is an isomorphism with respect to multiplication between

power series in the backward shift z and in the complex variable z respectively. Note that

‖kj‖ < cρ−j0 , |ρ0| > 1 holds where |ρ0| < |zi| , ∀zi such that det a(zi) = 0 and where ‖.‖
denotes the Euclidean norm. Thus

∑∞
j=0 ‖kj‖ <∞.
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Therefore k(z) is stable, i.e. for bounded inputs the output is bounded. Moreover, for

stationary inputs, the output is stationary. A stationary particular solution thus is the steady

state solution starting in the in�nite past

(1.1.7) ypt =

∞∑
j=0

kjεt−j

This solution is called steady state and in particular only depends on inputs. For every

homogeneous solution, the stability assumption on a(z) implies limt→∞ y
h
t = 0, which can

easily be seen from (1.1.6). Hence the only stationary homogeneous solution is 0 and the

steady state solution (1.1.7) is the unique stationary solution of (1.1.2).

In some situations it might make sense to look at AR systems where the stability assump-

tion does not hold.

If the stability assumption does not hold, for singular AR systems, the transfer function

k(z) = a−1(z)b might still have a convergent causal power series expansion and ypt = k(z)εt

might still be a stationary particular solution of a(z)yt = bεt. Note that this can only occur

for non left coprime systems (a(z), b).

We quote the following lemma and its proof from Deistler et al. [2011] (Proposition 2).

Lemma 1.1.9. The AR equation a(z)yt = bεt with det a(z)6=0, |z|<1 and rkb = q < n has a

stationary solution if and only if there is a ã(z) such that det ã(z)6=0, |z| ≤1 where a−1b = ã−1b

and (ã(z), b) is left coprime.

Proof. If det ã(z) 6=0, |z| ≤1, then there exists the stationary solution ypt = a−1(z)bεt. On

the other hand, if a(z)yt = bεt has a stationary solution, yt say, then the state equation of

(1.1.3) must be ful�lled and thus also the Lyapunov equation (1.1.4) holds for this solution. If

A is not stable, i.e. it has at least one eigenvalue λ such that |λ| ≥ 1, then for a corresponding

eigenvector there must hold (
1− |λ|2

)
x′Γpx = x′BB′x ≥ 0.

Thus for |λ| ≥ 1 there has to hold x′Γpx = 0 and therefore x′BB′x = 0 which implies that

x′B = 0 for |λ| ≥ 1. Subsequently,
(
I −Aλ−1,B

)
is not of full rank or equivalently (a(λ−1), b)

is not of full rank and thus not left coprime. Let u(z) be a (polynomial) greatest common

left divisor of (a(z), b) such that (a(z), b) = u(z)(ā(z), b̄(z)), with (ā(z), b̄(z)) left coprime,

then b̄(z) is of full column rank for all z ∈ C since a−1(z)b = ā−1(z)b̄(z). Thus we �nd a left

coprime pair (ã(z), b) (see Deistler et al. [2010]) with a−1(z)b = ā−1(z)b̄(z) = ã−1(z)b. �
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The lemma establishes that ypt = k(z)εt = ã−1(z)b =
∑∞

j=0 kjεt−j is a particular solution

of a(z)yt = bεt. But unlike in the case of strict stability of a(z) there can be non-trivial

stationary homogeneous solutions.

If we do not impose strict stability, but instead allow for zeros on the unit circle, i.e.

det a(z)6=0, |z|<1, there are non-trivial stationary homogeneous solutions which belong to a

special class of stationary processes, compare Felsenstein [2010], Section 2.4:

Lemma 1.1.10. Stationary (real valued) homogeneous solutions of (1.1.2) can only exist if

det a(z) has zeros on the unit circle. The solutions then are harmonic processes of the form

(1.1.8) yht =

m∑
j=0

e−iλjtvj

where the frequencies λj are determined by det a(eiλjt) = 0, λj ∈ [−π, π], and the weights vj

have to ful�ll a(eiλjt)vj = 0 (and for yht to be real valued −λ1+j = λh−j and v1+j = v̄h−j).

Proof. Recall that homogeneous solutions of linear vector di�erence equations are of the

form

yht =
m∑
j=0

nj−1∑
k=0

ckt
k

 z−tj vj

where m is the number of distinct zeros zj of det a(z) and nj is the multiplicity of the zero zj ,

vj are elements of the kernel of a(zj) and ck are arbitrary coe�cients, see e.g. Hannan [1970],

p 14.

As is easily seen, for |zj | 6= 1 or ck 6= 0, k > 0 E
(
yht
)′
yht would not be bounded and(

yht
)
t∈Z would therefore not be stationary. So possible stationary homogeneous solutions take

the form

yht =

m∑
j=0

e−iλjtvj

with vj : Ω→ Cn, Evj =

0 λj 6= 0

Eyht λj = 0
, Ev∗j vj <∞ and Evjv∗l = 0, j 6= l and are real valued

random variables if −λ1+j = λh−j and v1+j = v̄h−j . Thus yht has to be a harmonic process

which has to ful�ll

a(z)yht =
m∑
j=0

(e−iλjtvj − a1e
−iλj(t−1)vj − · · · − ape−iλj(t−p)vj) =

m∑
j=0

e−iλjta(eiλjt)vj = 0.

This implies that a(eiλjt)vj = 0 because of the linear independence of eiλ, λ ∈ [−π, π] and

thus we have det a(eiλjt) = 0, λj ∈ [−π, π] and a(eiλjt)vj = 0, ∀j. �



1.1. AR SYSTEMS AND SOLUTIONS 13

Note that m is determined by the number of (distinct) zeros on the unit circles of det a(z).

If we have yht−1, . . . , y
h
t−m and the zeros on the unit circles of det a(z), we can determine

the weights vj in 1.1.8, compare Deistler et al. [2011]:
yht−1
...

yht−m

 =


e−iλ1(t−1)I · · · e−iλm(t−1)I

...
...

e−iλ1(t−m)I · · · e−iλm(t−m)I


︸ ︷︷ ︸

V ′


v1

...

vm



where V ′ is the transpose of a generalized Vandermonde matrix and as such non-singular. If

we have the covariances γh(0), . . . γh(m − 1) of the homogeneous solution, we can determine

the variances F1, . . . , Fm of the random weights v1, . . . , vm
γh(0)
...

γh(m− 1)

 =


e−iλ1(t−1)I · · · e−iλm(t−1)I

...
...

e−iλ1(t−m)I · · · e−iλm(t−m)I


︸ ︷︷ ︸

V ′


F1

...

Fm

 .

. Above we described a particular solution (ypt )t∈Z and for the singular case with zeros of

det a(z) on the unit circle the set of homogeneous solutions.

For (yt)t∈Z =
(
ypt + yht

)
t∈Z to be stationary, we have to postulate that Eεtv′j = 0,∀j =

1, . . . ,m, ∀t ∈ Z. It is easy to see that this condition is both necessary and su�cient, see e.g.

Felsenstein [2010]. Under this initial conditions ypt and y
h
t themselves are orthogonal.

Theorem 1.1.11. The decomposition yt = ypt +yht = a−1(z)bεt+
∑m

j=0 e
−iλjtvj corresponds

to the Wold decomposition of yt where a
−1(z)bεt is the linearly regular part and

∑m
j=0 e

−iλjtvj

is the linearly singular part.

Proof. The process (ypt )t∈Z is a linearly regular process. Let L2 denote the Hilbert space

of all scalar square integrable random variables over an underlying probability space (Ω,A,P).

Let Hx(t) ⊆ L2 be the Hilbert space spanned by the components of xs, s ≤ t. Then (1.1.7)

implies that Hyp(t) ⊆ Hε(t) and the AR equation (1.1.2) implies that Hyp(t) ⊇ Hε(t). Thus

Hyp(t) = Hε(t). Thus we have that (1.1.7) is the Wold representation of (ypt )t∈Z.

On the other hand, since yht is a harmonic process it is linearly singular and it is orthogonal

to ypt .

Finally, since Hyp(t) = Hε(t) ⊆ Hy(t), where the inclusion trivially holds because of the AR

equation (1.1.2), and Hyh(t) ⊆ Hy(t) because of yt − ypt︸ ︷︷ ︸
∈Hy(t)

= yht the decomposition yt = ypt + yht

coincides with the Wold decomposition. �
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Note that we will only consider linearly regular causal solutions of the AR equation ob-

tained via the transfer function, i.e. the steady state solutions.

For stationary yt,

yt = a1yt−1 + a2yt−2 + · · ·+ apyt−p︸ ︷︷ ︸
yt| t−1,...,t−p

+bεt

yt| t−1,...,t−p is the orthogonal projection of yt on its �nite past yt−1, . . . , yt−p, a1, . . . , ap are the

coe�cients of the projection and bεt is the approximation (one-step-ahead prediction) error.

Theorem 1.1.12. A regular stationary process (yt)t∈Z is an AR process if and only if the

best linear least squares projection onto the �nite past span
{
y

(1)
t−1, . . . , y

(n)
t−1, . . . , y

(1)
t−p, . . . , y

(n)
t−p

}
,

p > 0, is the same as the projection on the in�nite past Hy(t− 1).

Proof. ⇐ If the best linear least squares projection of yt onto the in�nite past yt−1, . . .

uses only a �nite number of regressors with nonzero coe�cients, the process is AR. Stability

can be proven as follows: (yt) has a transfer function of the form a−1(z)b where a(z) is a

polynomial matrix and bb′ with b of full column rank is the variance covariance matrix of the

regression residuals. Similarly to the proof of Lemma 1.1.9, we argue that if det a(z) had a

zero |z| ≤ 1 , then there would be a polynomial matrix ã(z), det ã(z) 6= 0, |z| ≤ 1, such that

ã−1(z)b = a−1(z)b and therefore (yt) is an AR process with stable ã(z).

⇒For an AR process, the projection onto the �nite past is the best linear prediction from

the in�nite past. This can be easily seen since εt is orthogonal to Hy(t − 1) and thus not

only to yt−1, . . . , yt−p, but also to the in�nite past yt−1, . . . and therefore yt| t−1,...,t−p = yt| t−1,

where yt| t−1 denotes the projection on the in�nite past. �

Remark 1.1.13. In the following we will restrict ourselves to the case that γ(0) > 0. If

γ(0) were singular, a case which can only occur for singular AR systems, yt would contain

linearly dependent components and we could select all linearly independent components of

yt, Syt. The random vector yt could be recovered from Syt by a linear transformation T ,

yt = TSyt. The selected process Syt would still be an AR process which can easily be seen by

considering that the Hilbert space spanned by the components of ys, t− p ≤ s ≤ t− 1 is the

same as the Hilbert space spanned by Sys, t− p ≤ s ≤ t− 1.

1.2. ARMA Systems

In this section we introduce the class of ARMA systems which includes the class of AR

systems as a proper subset.
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In order to de�ne ARMA systems we �rst give a mathematically proper de�nition of poles

and zeros of a rational matrix via the so-called Smith McMillan form, e.g. Hannan and Deistler

[2012]:

Lemma 1.2.1 (Smith McMillan form). Every n×r rational matrix of rank q can be written

as k = uΩv where u and v are unimodular matrices and Ω is diagonal of the form

Ω(z) =


ω1(z) 0 0

. . .
...

0 ωq(z) 0

0 · · · 0 0


with ωi = φiψ

−1
i , where φi and ψi are relatively prime monic polynomials, φi divides φi+1 and

ψi+1 divides ψi, i = 1, . . . , q − 1.

Ω is then called Smith McMillan form of k. Note that the Smith McMillan form is unique

for k.

Definition 1.2.2. Let k be a rational matrix.λ ∈ C is called a

• zero of k if there is a numerator polynomial φi in its Smith McMillan form such that

φi(λ) = 0.

• pole of k if there is a denominator polynomial ψi in its Smith McMillan form such

that ψi(λ) = 0.

As can be easily seen, a value λ can be both a zero and a pole of the rational matrix k. A

rational matrix is called zeroless if it has no zeros. In this case the numerator polynomials φi

in its Smith McMillan form are all equal to one.

Definition 1.2.3. A vector autoregressive moving average process is a n-dimensional (wide

sense) stationary solution (yt)t∈Z of an ARMA(p, v) system

(1.2.1) yt = a1yt−1 + a2yt−2 + · · ·+ apyt−p + b0εt + · · ·+ bvεt−rv

with aj ∈ Rn×n, bj ∈ Rn×q where b0 has full column rank q. The stability assumption,

i.e. det a(z) 6= 0, |z| ≤ 1, for a(z) = I − a1z − · · · − apzp, holds as well as the strict miniphase

assumption, i.e. b(z) = b0 − · · · − bvzv has no zeros for |z| ≤ 1. The process (εt)t∈Z is white

noise with variance covariance matrix Eεtε′t = Iq.

If Σ = b0b
′
0 > 0, we say that the ARMA system is regular, whereas for rkΣ = rkb0 = q < n

we call the ARMA system singular.
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Equivalently, (1.2.1) can be written as

(1.2.2) a(z)yt = b(z)εt

Obviously, the class of ARMA(p, v) systems contains as a subset the class of AR(p) systems.

In this thesis, we are mainly interested in singular ARMA systems which will appear as

models for the so-called static factor in Chapter 4. As we will show, generically we can model

this factor as an AR process, but for the sake of completeness we will analyze a procedure for

modeling singular ARMA processes in Section 1.5 where we estimate a state space model for

the ARMA process.

Note that for ARMA systems we only consider linearly regular stationary solutions (yt)t∈Z
which exist because of the stability assumption:

yt = a−1(z)b(z)εt =
∞∑
j=0

kjεt−j .

The strict miniphase assumption enables us to �nd a causal left inverse of b(z), b−(z)b(z) = Iq,

such that

εt = b−(z)a(z)yt =
∞∑
j=0

hjyt−j .

Therefore (εt)t∈Z are the innovations and we have Hy(t) = Hε(t). Thus this is the Wold

representation.

Remark 1.2.4. For an ARMA process (yt)t∈Z which is not an AR process, the best linear

least squares prediction is the orthogonal projection of yt onto its in�nite past, Hy(t− 1), the

projection onto �nite past gives an approximation where the variance of the residuals is larger.

1.3. Rational Spectra and Transfer Functions

1.3.1. Rational Spectra - ARMA. Every linearly regular process (yt)t∈Z with Wold

decomposition yt =
∑∞

j=0 kjεt−j = k(z)εt,
∑∞

j=0 ‖kj‖
2 <∞, has a spectral density

fy(λ) =
1

2π
k(e−iλ)k∗(e−iλ)

where ∗ denotes transposition and complex conjugation. Thus the spectral density of a linearly

regular process can be easily obtained via its transfer function. The converse problem, which is

�nding a transfer function from a spectral density of a linearly regular process, is the so-called

spectral factorization see e.g. Rozanov [1967].

It is well known that fy(λ) is rational if and only if (yt)t∈Z is an ARMA process, see e.g.

Hannan and Deistler [2012].
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The spectral density of an ARMA process is

fy(λ) =
1

2π
a−1(e−iλ)b(z)b∗(z)a−∗(e−iλ).

Obviously, the continuation of the spectral density fy on C,

fy(z) =
1

2π
k(z)k∗(z) =

1

2π
a−1(z)b(z)b∗(z)a−∗(z),

is singular for singular ARMA systems and non-singular for regular ARMA systems. The

normal rank of fy(z) is q.

Conversely, by spectral factorization of a rational spectral density we obtain a rational

transfer function from the spectral density, see e.g. Rozanov [1967], Chapter I.10 or Hannan

[1970]:

Theorem 1.3.1 (Spectral Factorization). Every n× n rational spectral density f(λ), λ ∈
[−π, π], of rank q a.e. which has no poles in [−π, π] can be factorized as

f(λ) =
1

2π
k(e−iλ)k∗(e−iλ)

where k(z), z ∈ C is a n×q real rational matrix of full normal column rank which has no poles

|z| ≤ 1 and no zeros for |z| < 1.

If we in addition assume that the spectral density has no zero on the unit circle, the

transfer function k(z) has no zeros on the unit circle either. Then it can be shown that k(z)

is unique up to postmultiplication by constant orthogonal matrices. This is the case we are

interested in from now on.

k(z) is often called a spectral factor of f(λ). The transfer function k(z) is called causal

and stable if it has no poles for |z| ≤ 1 and it is called strictly miniphase if it has no zeros for

|z| ≤ 1.

The causal, stable and strictly miniphase rational transfer function k(z) can be realized

by a stable and strictly miniphase ARMA system, see Hannan and Deistler [2012].

1.3.2. Zeroless Rational Spectra - AR. The particular solution (ypt )t∈Z of the AR

system (1.1.2) we are considering is a regular process obtained via k(z) = a−1(z)b and thus

has a rational spectral density

fyp(λ) =
1

2π
a−1(e−iλ)bb′a−∗(e−iλ).

The continuation of the spectral density fyp on C,

fyp(z) =
1

2π
k(z)k∗(z) =

1

2π
a−1(z)bb′a−∗(z),
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is singular for singular AR systems and non-singular for regular AR systems. fyp has no zeros,

i.e. for no value z ∈ C the rank of fyp(z) is less than q, the normal rank, which means that

fyp is of constant rank q. Thus the causal, stable and strictly miniphase spectral factor k(z)

of fyp is zeroless.

As the next theorem and its proof from Deistler et al. [2010] show, every zeroless stable

and strictly miniphase rational transfer function can be realized by an AR system.

Theorem 1.3.2. The following three statements for (ypt ) are equivalent:

(1) The spectral factors k(z) of the spectral density fyp of (ypt ) as de�ned in Theorem

1.3.1 are zeroless.

(2) There exists a polynomial left inverse k−(z) of k(z).

(3) (ypt ) is a stationary solution of a stable AR system (1.1.2) where det a(z) 6= 0, |z| ≤ 1

and where εt is white noise with variance covariance matrix Eεtε′t = Σε = In and b

has full column rank q.

Proof. 1. → 2. Let Ω be the Smith McMillan form of k = uΩv. It is easy to see that

k− = v−1(Ω′Ω)−1Ω′u−1 is a left inverse of k and that k− has no poles and no zeros for |z| ≤ 1.

Since all numerator polynomials in Ω are equal to one and u and v are unimodular k− is

polynomial.

2.→ 1. is straightforward.

3.→ 2. Premultiplying (1.1.2) by (b′b)−1b′ yields a k− of the desired form.

1.→ 3.We commence from an ARMA representation for ypt : ã(z)ypt = b̃(z)εt where ã(z) is

stable and we can choose ã(z) and b̃(z) left coprime. As k(z) = ã(z)−1b̃(z) is zeroless, because

of left coprimeness the same holds for b̃(z). As is well known every zeroless tall polynomial

matrixb̃(z) can be completed by suitable choice of a polynomial matrix g(z) to a unimodular

matrix u(z) =
(
b̃(z)g(z)

)
by extending the Smith McMillan form of b̃(z) = ũΩ̃ṽ to

(
b̃(z)g(z)

)
= ũ

(
Ω̃

(
0

I

))(
ṽ 0

0 I

)
.

Then ã(z)ypt = u(z)

(
εt

0

)
and u(z)−1ã(z)ypt =

(
εt

0

)
. By premultiplication of the last equation

ã−1(0)u(0)u(z)−1ã(z)ypt = ã−1(0)u(0)

(
εt

0

)
gives the autoregressive representation in 3. �

The homogeneous solution
(
yht
)
t∈Z of the AR system (1.1.2) is a singular process, in

fact a harmonic process with a spectral distribution function which is a monotonic, non-

negative, right continuous step function and thus does not have a spectral density. The
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spectral distribution function is

Fyh(λ) =
∑
j:λj≤λ

Fj

with Fj = Evjv∗j which has its jumps at the frequencies λj corresponding to the zeros of

det a(z) on the unit circle. Note that there is a one-to-one relationship between the spectral

distribution and the (non-central) covariance function.

1.3.3. Observational Equivalence. In the last sections, we argued that a spectral den-

sity is rational if and only if it is the density of an ARMA process and that a rational spectral

density is zeroless on C if and only if it is the density of an AR process. But it may be that

this ARMA or AR process is not uniquely determined by the spectral density.

First recall that we already stated that the spectral factor k(z) is only unique up to

postmultiplication by a constant orthogonal matrix O. To specify a unique choice, we can

consider LQ decompositions and assume that b0 is a quasi lower triangular matrix, see Filler

[2010], Proposition 3.1.2.

The next de�nition introduces the class of ARMA (or AR) systems realizing the same

spectral density. Since we consider only innovations with unit variance, i.e. Eεtε′t = Iq, the

de�nition given here is slightly di�erent than the de�nition in standard literature:

Definition 1.3.3. Two ARMA systems (a(z), b(z)) and
(
ã(z), b̃(z)

)
, where a(z) and ã(z)

are n × n and where b(z) and b̃(z) are n × q, are called observationally equivalent if for the

spectral densities there holds a−1bb′a−∗ = ã−1b̃b̃′ã−∗.

Remark 1.3.4. Note that we have identi�ability in the parameter space Θ if Θ contains

no observationally equivalent systems.

Obviously, the systems (a, b) and
(
ã, b̃
)

= u(z) (a, b) where u(z) is (non-singular) polyno-

mial are observationally equivalent. A way to restrict the classes of observationally equivalent

systems is to only consider left coprime system. Let us consider the class of observationally

equivalent left coprime ARMA(p, v) systems:

Lemma 1.3.5. For a left coprime ARMA(p, v) system, (a(z), b(z)) with a(0) = I the class

of observationally equivalent left coprime ARMA(p, v) systems
(
ã(z), b̃(z)

)
with ã(0) = I is

given by (
ã(z), b̃(z)

)
= u(z) (a(z), b(z)O)

where O is an orthogonal matrix and u(z) is unimodular, u(0) = I, and such that for the

degrees hold δ(u(z)a(z)) ≤ p and δ(u(z)b(z)) ≤ v.
If rk(ap, bv) = n and b0 is restricted to be quasi lower triangular, it can be shown that

u(z) = I.
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Proof. The proof of the �rst part is trivial. Therefore we only show the second part

which is straightforward. If b0 is restricted to be quasi lower triangular, O = I. If u(z) 6= I,

there would be a coe�cient matrix ui 6= 0 of zi in u(z), but since the degrees of ã(z) and b̃(z)

are restricted ui(ap, bv) = 0 had to hold which is a contradiction to rk(ap, bv) = n. �

1.4. Yule Walker Equations

We are interested in determining the AR parameters (a1, . . . , ap, b) from the second mo-

ments of observed data.

1.4.1. Regular AR Systems. For regular AR systems, the renowned Yule Walker equa-

tions are obtained by postmultiplying (1.1.2) by lagged yt−1, . . . , y
′
t−p and by yt and taking

expectation:

(γ(1), . . . , γ(p)) = (a1, . . . , ap)


γ(0) γ(1) · · · γ(p− 1)

γ(−1) γ(0)
...

. . .

γ(−p+ 1) γ(0)


︸ ︷︷ ︸

Γp

(1.4.1)

Σ = bb′ = γ(0)− (a1, . . . , ap) (γ(1), . . . , γ(p))′(1.4.2)

where γ(h) = Eyt+hy′t.
For regular AR systems, i.e. n = q, the state of the companion form (1.1.3) xt con-

tains only linearly independent components which implies Γp = Extx′t > 0 and thus we have

identi�ability, i.e. the parameters can be uniquely determined from the second moments.

Remark 1.4.1. If the population second moments are replaced by consistent estimators

in the Yule Walker equations (1.4.1), we obtain consistent estimators
(
â1, . . . , âp, b̂

)
for the

parameters.

Moreover, we know that the AR system with parameters
(
â1, . . . , âp, b̂

)
estimated by Yule

Walker equations is always stable, for a proof for n = 1 see Brockwell and Davis [1987].

Remark 1.4.2. Note that given (γ(0), . . . , γ(p)) the Yule Walker equations allow us to

uniquely continue the covariance sequence since γ(p+ h) = (a1, . . . , ap)


γ(p+ h− 1)

...

γ(h)

.
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1.4.2. Singular AR Systems. For singular AR systems, Γp might be non-singular or

singular. If Γp > 0 holds, the Yule Walker equations still give a unique solution (a1, . . . , ap, b).

For singular Γp, the set of solutions of the Yule Walker equations (1.4.1) for each row of

(a1, . . . , ap) consists of one particular solution plus the left kernel of Γp. The noise parameters

bb′ are still unique as the variance covariance matrix of the perpendiculars of the orthogonal

projection of yt on its past and are determined by (1.4.2) for any solution (a1, . . . , ap).

Despite the non-uniqueness of (a1, . . . , ap) for singular Γp, the next lemma from Deistler

et al. [2011] shows that the transfer function a−1(z)b is always unique:

Lemma 1.4.3. All solutions (a1, . . . , ap, b) of the Yule Walker equations determine the same

causal transfer function k(z) = a−1(z)b.

Proof. Let the systems (a1(z), b) and (a2(z), b) denote two di�erent solutions of the Yule

Walker equations. The process (yt)t∈Z is a solution to both systems. By Theorem 1.1.11

a−1
1 (z)bεt = a−1

2 (z)bεt and thus a−1
1 (z)b = a−1

2 (z)b holds. �

Thus the particular linearly regular process (ypt )t∈Z is independent of the choice of the

solution of the Yule Walker equations.

Remark 1.4.4. Also for the singular case, the Yule Walker equations enable us to uniquely

continue the covariance sequence: Form the point of view of orthogonal projections, the AR

equation

yt = a1yt−1 + a2yt−2 + · · ·+ apyt−p︸ ︷︷ ︸
yt|t−1

+bεt

can be used to interpret yt as the sum of its projection on its own past, yt|t−1 , plus its

perpendicular, bεt. The coe�cients of this projection might not be unique, but the projection

yt|t−1 is. Thus

γ(p+ h) = Eyt|t−1 y
′
t−p−h = (a1, . . . , ap)


γ(p+ h− 1)

...

γ(h)


is the same for all (a1, . . . , ap).

. For the case of singular Γp, a procedure is described in Deistler et al. [2011] to determine

a canonical form for the solution (a1, . . . , ap) of the Yule Walker equations:

Since Γp = Extx′t holds, it is immediate to see that the dependence structure of the rows

of Γp is the same as the dependence structure of the one dimensional components of the state

xt. Thus selecting the �rst basis from the elements of xt for the Hilbert space spanned by the
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one dimensional components of xt corresponds to selecting a �rst basis for the row space of

Γp.

Note that if y(i)
t−h−1 is part of the �rst basis, so is y(i)

t−h since if y(i)
t−h can be expressed by

preceding basis elements then y(i)
t−h−1 can be expressed by the same linear combination of the

corresponding shifted components and thus also by its preceding basis elements. If S denotes

a matrix selecting the �rst basis of xt, it is easy to see that ESxtx′tS′ = SΓpS
′ > 0.

Set in (a1, . . . , ap) the columns of ai not corresponding to components of the �rst basis are

set equal to zero. Then

(γ(1), . . . , γ(p))S′ = (a1, . . . , ap)S
′ (SΓpS

′)
= (ā1, . . . , āp)

(
SΓpS

′)
de�nes a unique solution for (ā1, . . . , āp) = (a1, . . . , ap)S

′, i.e. the columns of (a1, . . . , ap)

corresponding to the �rst basis, are obtained.

In a second step, the components of Sxt might be further reduced by deleting more zero

columns in (a1, . . . , ap)S
′: If the ith column of ag+h, h ≥ 0 is zero, the component y(i)

t−g is not

needed for any predictor and will be deleted from Sxt. (Note that if the component y(i)
t−g is

not needed for any predictor also the component y(i)
t−g−1 is not needed.)

We denote the state obtained by deleting all components as described above by Sext. The

state Sext contains the components y(1)
t−1, . . . , y

(1)
t−p1

, . . . , y
(n)
t−1, . . . , y

(n)
t−pn . The corresponding

nonzero system parameters are (a1, . . . , ap)S
′
e. The corresponding polynomial matrix has

column degrees (p1, . . . , pn).

Remark 1.4.5. Note that the canonical solution (a1, . . . , ap)S
′
e de�ned by this procedure

gives us the solution of the Yule Walker equations with the smallest possible column degrees

and thus by this solution we have de�ned a predictor using the most recent past.

The procedure described above motivates the following state space system

x̄t+1 = Āx̄t + B̄εt(1.4.3)

yt = (ā1, . . . , āp) x̄t + bεt

where x̄t = Sxt, Ā = SAST , B̄ = SB. Equation Ā has been called the quasi companion form

in Deistler et al. [2011]. Let Γ̄p = Ex̄tx̄′t.
Next we are interested in the stability of the canonical solution which was shown in Deistler

et al. [2011], Theorem 4.1 and Corollary 4.2.

Lemma 1.4.6. The canonical solution (ā1, . . . , āp) is stable if and only if the set of solutions

of the Yule Walker equations contain a stable solution.
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Proof. If the canonical solution (ā1, . . . , āp) is stable, then the set of solutions of the Yule

Walker equations trivially contain a stable solution.

Conversely, if the set of solutions of the Yule Walker equations contain a stable solution

we can show that the canonical solution (ā1, . . . , āp) is stable.

If the Yule Walker equations contain a stable solution, the corresponding AR process

must be linearly regular with block Toeplitz variance covariance matrix Γp. Since Remark

1.4.3 tells us that any solution of the Yule Walker equations determines the same transfer

function and therefore the same particular process we know that Γp is the block Toeplitz

variance covariance matrix of any particular process. Thus x̄t is also linearly regular and

Γ̄p =
(
B̄, ĀB̄, . . .

) (
B̄, ĀB̄, . . .

)′
> 0. Hence

(
Ā, B̄

)
is controllable.

Since (1.1.4) also Γ̄p ful�lls a Lyapunov equation:

Γ̄p = ĀΓ̄pĀ′ + B̄B̄′

If Ā were not stable, i.e. there was an eigenvalue λ ≥ 1 of Ā with eigenvector x such that

(
1− |λ|2

)
x′Γx̄x = x′B̄B̄′x.

Since x′B̄B̄′x ≥ 0 it follows that x′B̄ = 0 which is a contradiction to the PBH Test for

controllability, see Theorem1.1.3.

That the system (a(z), b) is stable easily follows since the eigenvalues of Ā are the recip-

rocals of the zeros of det a(z). �

From this point on we only consider the case where the Yule Walker equations have a stable

solution (a1, . . . , ap) and therefore the unique solution (yt)t∈Z of the AR system (a(z), b) with

noise (εt)t∈Z is a linearly regular process.

.

Remark 1.4.7. The system (1.4.3) is not necessarily minimal.

By de�nition we have Γ̄p = Ex̄tx̄′t =
(
B̄, ĀB̄, . . .

) (
B̄, ĀB̄, . . .

)′
> 0 and therefore control-

lability of (1.4.3) is ful�lled.

Observability is not always ful�lled. The observability matrix
(ā1, . . . , āp)

(ā1, . . . , āp) Ā
...

(ā1, . . . , āp) Ā
∑
i pi−1
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for the case of nonzero column degrees, pi > 0, ∀i, is the same as and in the case that there is

an i such that pi = 0 contains as a submatrix
(In−s, 0, . . . , 0)

(In−s, 0, . . . , 0) Ā
...

(In−s, 0, . . . , 0) Ā
∑
i pi−1

 Ā
where s is the number of zero column degrees.

Let

ai(z) = ei − [a1]�,i z . . .− [ap]�,i z
p

denote the ith column of a(z) and let

CE =
(

[ap1 ]�,1 , . . . , [apn ]�,n

)
be the so-called column end matrix of a(z).

For pi > 0, ∀i, it is easy to see that
(
Ā, (In, 0, . . . , 0)

)
is observable if and only if the

column end matrix of a(z) is non-singular. If the column end matrix of a(z) is non-singular,

then all eigenvalues λ of Ā are nonzero and all right eigenvectors α have to ful�ll

Āα = λα

S2S
′
1α1 = λα2

S3S
′
2α2 = λα3

...

SpS
′
p−1αp−1 = λαp

where α =
(
α′1, . . . , α

′
p

)′
and S = diag(Si) are partitioned conformable to the columns of

(ā1, . . . , āp) (note that pi > 0 implies that S1 = Inand α1 is n× 1), which implies α1 6= 0 and

therefore (In, 0, . . . , 0)α 6= 0. If the column end matrix is singular, then Ā is singular and

therefore observability does not hold.

Thus in case of nonzero column degrees (1.4.3) is minimal if and only if the column end

matrix of a(z) is non-singular and Γ̄p > 0. In case that there is an i such that pi = 0, Γ̄p > 0

and a non-singular column end matrix of S1a(z) imply minimality of (1.4.3).

. Let Θ(p1,...,pn) denote the subspace of Θ where additionally the highest degree of the

respective ith column of a(z) is bounded by pi and let (ā1, . . . , āp) denote the submatrix

consisting of all columns of(a1, . . . , ap) which are not prescribed to be zero.
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Considering the canonical form described in this section, we see that if appropriate maxi-

mum column degrees p1, . . . , pn of a(z) rather than the degree of a(z) are prescribed we can

obtain identi�ability in the restricted parameter space Θ(p1,...,pn). Note that, as we see from

the second step of the procedure for obtaining the canonical form, the actual column degrees

of a(z) might be smaller than the prescribed column degrees for guaranteeing uniqueness.

. Another solution of the Yule Walker equations is the so-called minimum norm solution

which is presented in Deistler et al. [2010] and inChen et al. [2011].

It is given by

(ã1, . . . , ãp) = (γ(1), . . . , γ(p)) Γ#
p

where Γ#
p denotes the Moore-Penrose pseudo inverse of Γp and as such gives the row-wise

minimum norm solution among all solutions

Remark 1.4.8. In Deistler et al. [2011] it is shown that the minimum norm solution in

the set of all solutions of the Yule Walker equations has the least number of zeros on the unit

circle and the largest number of zeros outside of the unit circle and no zeros inside the unit

circle. Thus if there is a stable solution in the set of all solutions of the Yule Walker equations,

the minimum norm solution is also stable. If the minimum norm solution is not stable, then

there is no stable solution of the Yule Walker equations.

1.5. State Space Representations and Subspace Procedures for ARMA Processes

Theorem 1.3.1 states that a rational transfer function k(z) with no poles and zeros for |z| ≤
1 can be realized by a stable and strictly miniphase left coprime ARMA system. Analogously,

such a rational transfer function can also be realized as a minimal, stable and miniphase state

space system.

Here we will have a closer look at the de�nition of a state and the meaning of minimality.

Starting from an observed ARMA process (yt)t∈Z we want to �nd a minimal state space

system with output (yt)t∈Z and the innovations (εt)t∈Z as inputs.

In Subsection 1.5.1 we discuss a so-called subspace procedure which is built along a reali-

zation procedure where the estimation of the state is based on canonical correlation analysis

which was described in detail in Larimore [1983], Deistler et al. [1995]. This subspace proce-

dure is de�ned for the case that output dimension n and input dimension q are the same, i.e.

(yt)t∈Z is the solution of a regular ARMA system. For the case that n > q, i.e. (yt)t∈Z is the

solution of a singular ARMA system, we have to modify the algorithm in Subsection 1.5.2.

An n-dimensional ARMA process (yt)t∈Z with q-dimensional innovations (εt)t∈Z, which

are white noise with Eεtε′t = Iq, q ≤ n, and a rational causal, stable and strictly miniphase

transfer function k(z) can also be modeled by a state space system
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xt+1 = Axt +Bεt(1.5.1)

yt = Cxt +Dεt

where xt is the, m-dimensional say, state and A ∈ Rm×m, B ∈ Rm×q , C ∈ Rn×m and

D ∈ Rn×q and where the system is stable, i.e. for the eigenvalues λi of A holds |λj | < 1, and

strictly miniphase, i.e. the system matrix

M(z) =

(
Im −Az B

−Cz D

)
(1.5.2)

has no zeros for |z| ≤ 1.

As we already stated in Section 1.1, a state space system (A,B,C,D) is minimal if and

only if the pair (A,B) is controllable, i.e. the rank of C =
(
B,AB,A2B, . . .

)
is equal to m,

and the pair (C,A) is observable, i.e. the rank of O′ =
(
C ′, A′C ′,

(
A2
)′
C ′, . . .

)
is equal to m.

The transfer function k(z) then can be written as

(1.5.3) yt =
(
C(I − zA)−1Bz +D

)︸ ︷︷ ︸
k(z)

εt =

∞∑
j=1

CAj−1B︸ ︷︷ ︸
kj

εt−j + D︸︷︷︸
k0

εt.

Let (a(z), b(z)) be a left coprime ARMA realization of k(z). Thus

k(z) = a−1(z)b(z).

It is easy to show that the system matrix M(z) of a minimal state pace system for (yt)t∈Z
and the matrix b(z) of a left coprime ARMA system have the same (�nite) zeros and thus

the notions of a miniphase left coprime ARMA system and a miniphase minimal state space

system are both re�ected in the corresponding transfer function being miniphase. Note that

the miniphase assumption implies b0 = D to be of full column rank. The following lemma

and its proof are a slight modi�cation of Lemma 9.2.7 in Filler [2010], see also Kailath [1980]

p 448.

Lemma 1.5.1. Let k(z) be an (nxq) rational transfer function such that yt = k(z)εt holds.

Let (A,B,C,D) be a minimal state space system for yt with k(z) = C (Im −Az)−1 zB + D

and let (a(z), b(z)) be a left coprime ARMA realization of k(z) = a−1(z)b(z) where b(z) is of

dimension (nxq) and a(z) is of dimension (n× n).
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Then the matrices

(
(Im −Az) B

−Cz D

)
and

(
Im 0

0 b(z)

)
have the same Smith McMillan

form, i.e. they have the same (�nite) zeros.

Proof. By de�nition we have

k(z) = a−1(z)b(z) = C (Im −Az)−1 zB +D

with (a(z), b(z)) left coprime where a(z) is of dimension (n× n) and b(z) is of dimension

(n × q). We de�ne w(z) = C(Im − Az)−1z + D̃ = ã−1(z)b̃(z) with
(
ã(z), b̃(z)

)
, ã(z) of

dimension (n× n) and b̃(z) of dimension (n×m) left coprime such that b(z) = b̃(z)B (which

implies D = k(0) = b(0) = b̃(0)B = D̃B) holds. Note that a full rank condition on B is

not needed. We know that since
(
ã(z), b̃(z)

)
is left coprime there exist polynomial matrices

X̄(z), Ȳ (z) of dimensions (m× n) and (n× n) such that

b̃(z)X̄(z) + ã(z)Ȳ (z) = In

holds, see e.g. Hannan and Deistler [2012] Lemma 2.2.1. We know further that observability

of (C,A) - or equivalently via PBH Test full rank ∀z of

(
(Im −Az)

C

)
- implies full rank

∀z of

(
(Im −Az)

Cz + D̃ (Im −Az)

)
(since according to the PBH Test we only have to test for left

eigenvectors of A, and thus D̃ (Im −Az) is irrelevant) and thus

(
(Im −Az)

Cz + D̃ (Im −Az)

)
has

full column rank ∀z which is equivalent to right coprimeness. Therefore there exist polynomial

matrices X(z), Y (z) of dimensions (m×m) and (m× n) such that

X(z) (Im −Az) + Y (z)
(
Cz + D̃ (Im −Az)

)
= Im

holds. As b̃(z) (Im −Az)− ã(z)
(
Cz + D̃ (Im −Az)

)
= 0 holds too we have

(1.5.4)

(
X(z) −Y (z)

b̃(z) ã(z)

)(
(Im −Az) X̄(z)

−Cz − D̃ (In −Az) Ȳ (z)

)
=

(
Im −Q(z)

0 In

)
where Q(z) = −X(z)X̄(z) + Y (z)Ȳ (z). As the two square block matrices on the left hand

side of 1.5.4 are polynomial they are unimodular as the matrix on the right hand side of 1.5.4
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is unimodular. Thus we have(
X(z) −Y (z)

b̃(z) ã(z)

)(
I 0

−D̃ I

)(
(Im −Az) B

−Cz D

)

=

(
X(z) −Y (z)

b̃(z) ã(z)

)(
(Im −Az) B

−Cz − D̃ (Im −Az) 0

)
=

(
Im X(z)B

0 b̃(z)B

)
As matrices which are related by a multiplication of a unimodular matrix have the same Smith

McMillan form, the matrices

(
Im X(z)B

0 b̃(z)B

)
=

(
Im X(z)B

0 b(z)

)
and

(
(Im −Az) B

−Cz D

)
have

the same Smith McMillan form. As(
Im X(z)B

0 b(z)

)(
Im −X(z)B

0 Iq

)
=

[
Im 0

0 b(z)

]
holds, and the second matrix on the left hand side of the equation above is unimodular, the

result follows. �

Let us have a closer look at the concept of a minimal state:

By the results obtained by Akaike [1974] and Kalman [1963, 1965, 1974] (see also Hannan

and Deistler [2012] Chapter 2) we have the following state construction:

Let H+
y (t) denote the Hilbert space spanned by all one-dimensional components of the

future random variables y(i)
t+h, h > 0, H+

y (t) = span
{
y1
t+1, . . . , y

n
t+1, y

1
t+2, . . . , y

n
t+2, . . . ,

}
and

let H−y (t) denote the Hilbert space spanned by all components of the present and past variables

y
(i)
t−j , j ≥ 0, H−y (t) = span

{
y1
t , . . . , y

n
t , y

1
t−1, . . . , y

n
t−1, . . . ,

}
. The state space is the space

spanned by the projections of the elements of H+
y (t) onto H−y (t). This state space is �nite

dimensional if and only if the spectral density of (yt)t∈Z is rational, and in this case every

basis of the state space forms a minimal state of a stable and miniphase state space system

with (yt)t∈Z as outputs and the innovations (εt)t∈Z as inputs. Thus if xt is a minimal state all

other minimal states are obtained as Qxt where Q is a non-singular matrix. The dimension

of the state space is the so-called McMillan degree of the transfer function corresponding to

such a stable and miniphase system.

For the AR case, the minimal state xt consists of �nite linear combinations of y(i)
s , s <

t, i = 1, . . . , n, see Theorem 1.1.12. If (yt)t∈Z is not an AR process, this is not the case since

contrary to the AR case the best linear predictor of (yt)t∈Z is the projection on the in�nite

past, see Remark 1.2.4.

The last considerations help us in obtaining a procedure for determining the state from

(yt)t∈Z. We are using a slightly di�erent notation here than in Deistler et al. [1995] to accom-

modate also the case of singular ARMA systems.
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First let us transform the system (1.5.1) into a system with input (yt)t∈Z and output

(εt)t∈Z. Let D
− denote the (generalized left) inverse of D, i.e. D−D = I, then we have

xt+1 =
(
A−BD−C

)
xt +BD−yt(1.5.5)

εt = −D−Cxt +D−yt.

and call K =
(
BD−, (A−BD−C)BD−, (A−BD−C)2BD−, . . .

)
the controllability matrix

of this system. As easily can be seen K is of full column rank if and only if O is of full column

rank. (In fact is is easy to see that (1.5.5) is minimal if and only if (1.5.1) is minimal.)

Let us de�ne the vector of all future variables y+(t) =
(
y′t+1, y

′
t+2, y

′
t+3, . . .

)′
and the

vector of all past variables y−(t) =
(
y′t, y

′
t−1, y

′
t−2, . . .

)′
and accordingly the vector of fu-

ture innovations ε+(t) =
(
ε′t+1, ε

′
t+2, ε

′
t+3, . . .

)′
and the vector of past innovations ε−(t) =(

ε′t, ε
′
t−1, ε

′
t−2, . . .

)′
. Obviously, the components of y+(t) span H+

y (t) and the components of

y−(t) span H−y (t). Note that because we assume the system (1.5.1) to be miniphase we have

that H−y (t) = Hε(t) where Hε(t) is spanned by the components of ε−(t). The vector ε+(t) is

orthogonal to both ε−(t) and y−(t).

Clearly,


yt+1

yt+2

...

 =


k1 k2 k3 · · ·
k2 k3 k4 · · ·
k3 k4 k5

...
...

. . .


︸ ︷︷ ︸

Hk


εt

εt−1

...

+


k0

k1 k0

k2 k1 k0

...
...

. . .


︸ ︷︷ ︸

I


εt+1

εt+2

...



or in short since Hk = OC

y+(t) = OCε−(t) + Iε+(t).

From (1.5.1) and (1.5.5) we also have

xt = Cε−(t) = Ky−(t)

and thus

y+(t) = OKy−(t) + Iε+(t).(1.5.6)

Note that because of observability the row space of OK is the same as the row space of K.

1.5.1. A Subspace Procedure for Regular ARMA Systems. Now we shortly

describe the subspace procedure presented in Deistler et al. [1995] which has �rst been proposed
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in Larimore [1983] for estimating a minimal state and subsequently estimating a minimal state

space system (A,B,C,D) for the case that (yt)t∈Z is the solution of a regular ARMA system,

i.e. n = q. In Deistler et al. [1995] consistency of the estimated procedure was proved up to

basis transformation.

The �key� equation for the procedure is (1.5.6). For a given �nite data set (y1, . . . , yT ),

analogously to (1.5.6), we consider a �nite regression

(1.5.7) y+
h (t) = βhy

−
h (t) + v(t)

where the dependent variables are y+
h (t) =

(
y′t+1, y

′
t+2, . . . , y

′
t+h

)′
, the regressors are y−h (t) =(

y′t, y
′
t−1, . . . , y

′
t−h+1

)′
and v(t) is the orthogonal residual. The index h is determined by

approximating (yt)t∈Z by a long autoregression. The autoregressive order is estimated by the

BIC criterion where this criterion is minimized over 1 ≤ h ≤ (lnT )α , α < ∞. For an AR

process, h will be �nite whereas for an ARMA process h will increase with T , but much more

slowly. It is shown in Deistler et al. [1995] that βh of the �nite regression model (1.5.7) (under

suitable assumptions on (εt)t∈Z) converges to OhKh for h → ∞ where Oh and Kh consist of

the �rst nh rows of O and columns of K respectively. We assume that h ≥ m.

If we denote the variance covariance matrices of y−h (t) and y+
h (t) and the cross covariance

matrix of y−h (t) and y+
h (t) as

Γ−h = Ey−h (t)y−h (t)′,

Γ+
h = Ey+

h (t)y+
h (t)′,

and

Hγh = Ey+
h (t)y−h (t)′,

then

βh = Hγh
(
Γ−h
)−1

.

Note that for h large enough rkβh = m holds. This can be seen as follows. As γ(j) = Eyjy′0 =∑∞
i=0 kj+ik

′
i we have
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γ(1) γ(2) γ(3) · · ·
γ(2) γ(3) γ(4) · · ·
γ(3) γ(4) γ(5)
...

...
. . .


︸ ︷︷ ︸

Hγ

=


k1 k2 k3 · · ·
k2 k3 k4 · · ·
k3 k4 k5

...
...

. . .


︸ ︷︷ ︸

Hk


k′0

k′1 k′0

k′2 k′1 k′0
...

...
. . .



where the second matrix on the right hand side has full row rank. Thus the rank of the Hankel

matrixHγ of covariances of (yt)t∈Z is the same as the rank of the Hankel matrixHk of a causal,
stable and miniphase transfer function of (yt)t∈Z , which has �nite rank m, since. Therefore

for h large enough Hγh has rank m.

On the sample level we have the following: Call

Y + =


y2 y3 · · · yT+1

y3 y4 · · · yT+2

...
...

...

yh+1 yh+2 · · · yT+h


and

Y − =


y1 y2 · · · yT

y0 y1 · · · yT−1

...
...

...

y−h+2 y−h+3 · · · yT−h+1


where ys = 0 for s ≤ 0 and s > T the data matrices. Thus the sample counterparts of Γ−h , Γ+

h

and Hγh can be written as

Γ̂−h =
1

T
Y −

(
Y −
)′
,

Γ̂+
h =

1

T
Y +

(
Y +
)′
,

and

Ĥγh =
1

T
Y +

(
Y −
)′

respectively. Then the least squares estimator of βh is

β̂h = Ĥγh
(

Γ̂−h

)−1
.
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Whereas βh has rank m it is clear that β̂h will �typically� be of full rank nh. Thus the authors

in Deistler et al. [1995] propose a reduced rank regression: First let us transform β̂h(
Γ̂+
h

)−1/2
β̂h

(
Γ̂−h

)1/2
=
(

Γ̂+
h

)−1/2
Ĥγh
(

Γ̂−h

)−1/2

where Γ̂±h =
(

Γ̂±h

)1/2 (
Γ̂±h

)1/2
and let

UΛV ′ =
(
U1 U2

)(Λ1 0

0 Λ2

)(
V ′1

V ′2

)
be a singular value decomposition of this transformation where Λ1 contains on its diagonal

the m largest singular values. Thus we have an estimator for Kh, the �rst nh columns of K,

K̂h = Λ̂
1/2
1 V ′1

(
Γ̂−h

)−1/2
,

and an estimator the state xt,

x̂t = K̂hy−h (t).

Note that the transformation of β̂h is used because of its statistical properties. The m singular

values in Λ11are also the �rst canonical correlation coe�cients between the row spaces of Y −

and Y +, see e.g. Brillinger [1981].

Now that we have an estimator x̂t, t = 1, . . . , T we can compute an estimate of C from

yt = Ĉx̂t + ν̂t

by least squares regression

Ĉ =

(
1

T

(
T∑
t=1

ytx̂
′
t

))(
1

T

T∑
t=1

x̂tx̂
′
t

)−1

where the residual ν̂t is an estimate of Dεt. Note that in Deistler et al. [1995] D was restricted

to D = In and instead the variance covariance matrix of εt was free. Since we restrict

Eεtε′t = Iq, D is free, but can only be determined up to postmultiplication by an orthogonal

constant matrix. A unique choice of D can be speci�ed using LQ decomposition, see Filler

[2010], Proposition 3.1.2. We can give an estimator of D from the eigenvalue decomposition

of
1

T

T∑
t=1

ν̂tν̂
′
t = O∆O′

and determine D̂ as the lower triangular matrix of the LQ decomposition of O∆1/2. An estimate

of εt can be obtained as

ε̂t = D̂−1ν̂t.
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Estimators of A and B can be obtained from

x̂t+1 = Âx̂t + B̂ε̂t + ut

by least squares regression as

Â =

(
1

T

(∑
x̂t+1x̂

′
t

))( 1

T

∑
x̂tx̂
′
t

)−1

and

B̂ =

(
1

T

(∑
x̂t+1ε̂

′
t

))( 1

T

∑
ε̂tε̂
′
t

)−1

.

Note that the estimated system is always stable but not necessarily miniphase. In Deistler

et al. [1995] consistency of the procedure is shown.

1.5.2. A Subspace Procedure for Singular ARMA Systems. For the case that

(yt)t∈Z is the solution of a singular ARMA system, i.e. q < n, (1.5.6) still holds, but y−(t)

and y+(t) both contain linearly dependent components. Thus we �rst consider a procedure

for determining the �rst bases of linearly independent components of y−(t) and y+(t).

Let us consider the spectral density of our ARMA(p, v) process (yt)t∈Z

fy(z) = a−1(z)b(z)︸ ︷︷ ︸
k(z)

b(z−1)′a−1(z−1)′︸ ︷︷ ︸
k∗(z)

which clearly has rank q. We are interested in a polynomial (n − q) × n matrix w(z) in the

backward shift z whose rows form a basis of the left kernel of fy(z). As is easily seen,

w(z)fy(z) = 0

immediately implies

w(z)yt = 0.

In particular, we are interested in a minimal polynomial basis of the left kernel of fy(z), i.e.

a polynomial basis with the smallest sum of row degrees vi (or smallest order), see Forney jr.

[1975]. As is shown in Forney jr. [1975], all minimal polynomial bases have the same row

degrees up to reordering. Furthermore, in Theorem 2 of Forney jr. [1975] it is stated that all

minimal polynomial bases have the same unique echelon form, where a (n− q)× n matrix is

said to be in (row polynomial) echelon form if

• it is row reduced with decreasing row degrees, i.e. v1 ≥ v2 ≥ · · · ≥ vn−q

(A polynomial (n− q) × n matrix is row reduced if and only if there is a (n− q) × (n− q)
submatrix whose determinant has degree

∑
vi, see e.g. Hannan and Deistler [2012] p 42.)
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• for row i with 1 ≤ i ≤ (n− q) there is a pivot index pi such that the (i, pi) element

is monic with degree vi and for all elements (i, j), j > pi the degree is less than vi

• for vi = vj , i < j it follows pi < pj and

• the (j, pi), j 6= i, elements have degree less than vi.

Note that here we follow the de�nition of an echelon form given in Anderson et al. [2012a],

where the di�erence to the more standard de�nition in Forney jr. [1975] is the descending

order of row degrees instead of increasing. This di�erence, however, is immaterial for the cited

results, but by the descending order we obtain the following:

The unique echelon form gives us the �rst basis of the Hilbert space of the past variables,

H−y (t), i.e. the �rst components of y−(t) =
(
y′t, y

′
t−1, . . .

)′
forming a basis of H−y (t):

Consider the ith row of the echelon form of w(z), wi(z). Then since wi(z)yt = 0 the

component y(pi)
t−vi can be expressed as a linear combination of preceding components y(l)

t−s, l =

1, . . . , n, s = 0, . . . , vi − 1 and y(l)
t−vi , l < pi. Because of the last bullet point this linear com-

bination does not include components y
(pj)
t−s , s ≥ vj , j 6= i which themselves can be expressed

as linear combinations of preceding components. Those q components without a correspon-

ding pivot index in the echelon form of w(z) can never be expressed as linear combinations of

preceding components.

Thus the row degrees of the echelon form give us the �rst basis of H−y (t).

Next we discuss the problem of giving an upper bound for the degree of the (unique)

echelon form of a minimal polynomial basis by the (assumed to be known) integer model class

parameters p, v and q.

Obviously, the spectral density fy(z) has in its kernel

k⊥(z) = b⊥(z)a(z)

with b⊥(z)b(z) = 0, where the rows of b⊥(z) form a minimal polynomial basis of the left kernel

of b(z). Theorem 3 and its Corollary of Forney jr. [1975] establishes that the sum of row

degrees of a minimal polynomial basis of the space spanned by the rows of b⊥(z) is equal to

the sum of column degrees of a minimal polynomial basis of the space spanned by the columns

of b(z). Therefore we can give a bound for the degree of b⊥(z), the maximum row degree,

namely vq, the bound of the sum of the v column degrees of b(z).

Hence we can give a bound on the degree of the unique echelon form of a minimal poly-

nomial basis, which is the bound on the degree of k⊥(z) = b⊥(z)a(z), which is p+ vq.

As is easily seen, if w(z) is the basis of a polynomial left kernel of fy(z) in the backward

shift z then w∗(z) = w′(z−1) is the basis of a polynomial right kernel of fy(z) in the forward
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shift z−1. Then

fy(z)w
′(z−1) = 0

immediately implies

y′tw
′(z−1) = 0

w(z−1)yt = 0.

Therefore, completely analogously to the case of the left kernel in the backward shift z, the

unique echelon form of a minimal polynomial basis of w(z−1) the in the forward shift z−1 gives

us the �rst basis of Hilbert space of the future variables, H+
y (t), i.e. the �rst components of

y+(t) =
(
y′t+1, y

′
t+2, . . .

)′
forming a basis of H+

y (t).

Thus summarizing we have established the following lemma:

Lemma 1.5.2. Let the n-dimensional process (yt)t∈Z be the stationary solution of a singular

ARMA(p, v) system with q-dimensional innovations. Then we can �nd one selector matrix S

selecting the �rst bases of y−(t) and y+(t), Sy−(t) and Sy+(t) respectively.

If a component y
(i)
t−p−vq is in Sy

−(t), then also all components y
(i)
t−g, g > p+vq are elements

of Sy−(t). Likewise, if a component y
(i)
t+p+vq+1 is in Sy

+(t) then also all components y
(i)
t+h, h >

p+ vq + 1 are elements of Sy−(t).

Since the �rst basis of components in y−(t) is the same as the �rst basis of the row space of

Γ− = Ey−(t)y−(t)′ we can determine the in�nite matrix S from the �nite matrix Γ−p+vq+1: We

determine the �rst basis of Γ−p+vq+1.The rows selected from the last block of rows of Γ−p+vq+1

will also be selected from all further blocks for a �rst basis of Γ−g , g > p+ vq+ 1 and hence we

are able to determine S.

As in the regular case we want to estimate a minimal state by projecting the future space

H+
y (t) onto the past space H−y (t) in order to select a basis of the resulting subspace. A basis

for the resulting subspace will be a minimal state xt. In order to avoid complications with

invertibility of covariance matrices and to avoid the computation of redundant equations we

are projecting a basis of H+
y (t) onto a basis of H−y (t). Thus similar to (1.5.6) we obtain

Sy+(t) = SOKP ′Sy−(t) + SIε+(t).

xt = KP ′Sy−(t)

where P ′ is lower triangular such that y−(t) = P ′Sy−(t).

Since the McMillan degree of the transfer function is m, we can conclude that SO has full

column degree m and therefore the row space of SOKP ′ is the same as the row space of KP ′.
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Thus an estimate of xt may be constructed from an estimate of KP ′. As in the regular case

we consider a truncated �nite regression

Shy
+
h (t) = βhShy

−
h (t) + v(t)

where h is chosen analogously to the regular case. The matrix Sh selects the �rst basis of y
−
h (t),

and y+
h (t) (and let us also de�ne P ′h as a submatrix of P ′ such that y−h (t) = P ′hShy

−
h (t)).

The procedure for estimating the state xt and the parameter matrices is analogous to the

regular case:

The least squares estimator of βh is given by

β̂h = ShĤγhS
′
h

(
ShΓ̂−h S

′
h

)−1
.

Now �typically� β̂h has full rank whereas βh has rank m. Therefore we perform a reduced rank

step:

Let

UΛV ′ =
(
U1 U2

)(Λ1 0

0 Λ2

)(
V ′1

V ′2

)
be the singular value decomposition of(

ShΓ̂+
h S
′
h

)−1/2
β̂h

(
ShΓ̂−h Sh

)1/2
=
(
ShΓ̂+

h S
′
h

)−1/2
ShĤγhS

′
h

(
ShΓ̂−h S

′
h

)−1/2

Then KhP ′h, i.e. the �rst h block columns of KP ′, is estimated as

K̂hP ′h = Λ
1/2
1 V ′1

(
ShΓ̂−h S

′
h

)−1/2

and the state as

x̂t = K̂hP ′hShy−h (t).

For the estimate for the state, the estimates of the system matrices (A,B,C,D) are then

computed by least squares regression. From

yt = Ĉx̂t + ν̂t(1.5.8)

we obtain

Ĉ =

(
1

T

(
T∑
t=1

ytx̂
′
t

))(
1

T

T∑
t=1

x̂tx̂
′
t

)−1

.
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The residuals ν̂t, an estimate of Dεt, will consist of n linearly independent components, not

only q. Thus we look at the eigenvalue decomposition of

1

T

T∑
t=1

ν̂tν̂
′
t = O∆O = O1∆1O

′
1 +O2∆2O

′
2

to obtain an estimator D̂ for D as the unique quasi lower triangular matrix in the LQ decom-

position of O1Λ
1/2
1 , see Filler [2010], Proposition 3.1.2., with Moore-Penrose pseudo inverse

D̂−. We then estimate εt as

ε̂t = D̂−ν̂t.

Estimators of A and B can be obtained from

x̂t+1 = Âx̂t + B̂ε̂t + ut

by least squares regression as

Â =

(
1

T

(
T∑
t=1

x̂t+1x̂
′
t

))(
1

T

T∑
t=1

x̂tx̂
′
t

)−1

B̂ =

(
1

T

(
T∑
t=1

x̂t+1ε̂
′
t

))(
1

T

T∑
t=1

ε̂tε̂
′
t

)−1

1.5.3. Simulation Results. In this thesis, we are not investigating the analytical pro-

perties of the subspace procedure for the singular ARMA case described in the last subsection.

Instead, in this subsection, we are considering Monte Carlo simulations. We consider a singular

stable and miniphase ARMA system with 3-dimensional outputs and 2-dimensional normally

distributed innovations. For sample sizes T = 1000, 2000, 4000, 8000, and 16000 we repea-

tedly, i.e. 100 times, simulate observations for this ARMA system and estimate the system

and noise parameters. We compare the echelon form of the estimated and the true parameters,

θ̂ and θ respectively, see Hannan and Deistler [2012] Theorem 2.5.2, and compute the mean

squared error, 1
100

∑
i θ̂

(j)
i − θ(j) of the unrestricted parameters.

Note that we use a di�erent estimator for the block Toeplitz matrices Γ−h , and Γ+
h and the

Hankel matrix Hγh by truncating the data matrices

Y + =


yh+1 yh+2 · · · yT−h+1

yh+2 yh+3 · · · yT−h+2

...
...

...

y2h y2h+1 · · · yT
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and

Y − =


yh yh+1 · · · yT−h

yh−1 yh · · · yT−h−1

...
...

...

y1 y2 · · · yT−2h+1


where all elements are observed. We sacri�ce the e�ciency of the estimator of the second

moments in order to preserve the dependence structure of the estimators Γ̂−h , Γ̂+
h and Ĥγh.

Using these estimators, it is easy to determine the selector matrix Sh.

As in Deistler et al. [1995], we determine the number of blocks h by AIC where we use

a form of the likelihood of singular ARMA systems described in Srivastava and von Rosen

[2002].

Let us �rst consider a singular stable and miniphase ARMA(2, 1) system.

yt−

 2.46313 0.97628 0.61516

−1.66592 −0.26521 −1.17880

−0.80264 0.17668 0.82098

 yt−1 −

−1.35121 −0.80471 −0.49328

1.32774 0.85409 0.93859

0.55288 −0.19481 −0.08439

 yt−2

=

1.61266 0

1.01399 1.50797

2.27170 −2.91294

 εt +

3.42768 3.18331

0.28016 0.66802

0.61889 −4.00152

 εt−1(1.5.9)

The McMillan degree m of the corresponding transfer function, which is the number of

linearly independent rows of the Hankel matrix Hk, is 6. The so-called Kronecker indices

mi, i = 1, . . . , 3 indicate how often the ith row of the 3-dimensional blocks in Hk is part of

the �rst basis of rows, see Hannan and Deistler [2012] Chapter 2. Clearly,
∑

imi = m holds.

In our example we have mi = 2.

The parameter matrices of the state space system in echelon form are

A =



0 1 0 0 0 0

−1.35121 2.46313 −0.80471 0.97628 −0.49328 0.61516

0 0 0 1 0 0

1.32774 −1.66592 0.85409 −0.26521 0.93859 −1.17880

0 0 0 0 0 1

0.55288 −0.80264 −0.19481 0.17668 −0.08439 0.82098
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B =



9.78724 2.86360

15.60734 7.12211

−5.35319 3.70187

−11.35901 0.02357

1.36869 −6.12656

−7.17541 −6.72211


, C =

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

 , D =

1.61266 0

1.01399 1.50797

2.27170 −2.91294

 ,

compare Hannan and Deistler [2012], Theorem 2.6.2. The absolute values of the zeros of the

corresponding transfer function lie in (1.18, 1.54) and the absolute values of the poles lie in

(1.15, 1.3). The mean squared errors of the unrestricted parameters of the echelon form are

summarized in Table 1. We see that with increasing sample size the mean squared errors seem

to converge to zero. Note that we consider here 35 unrestricted parameters in Table 1 even

though the corresponding echelon ARMA(2, 1) system has only 29 free parameters, i.e. 18 AR

parameters, 6 MA parameters and 5 noise parameters, compare Hannan and Deistler [2012]

Chapter 2.

As a second example we consider an ARMA(2, 1) model with the same MA part but the

zeros of the AR part are closer to the unit circle.

yt−

−2.20527 7.17390 3.96550

−0.15429 1.38884 0.23676

−2.47919 5.48425 3.98930

 yt−1 −

1.81410 −4.81866 −2.51307

0.23189 −0.85009 −0.29477

1.47996 −3.24972 −2.02613

 yt−2

=

1.61266 0

1.01399 1.50797

2.27170 −2.91294

 εt +

3.42768 3.18331

0.28016 0.66802

0.61889 −4.00152

 εt−1.(1.5.10)

The absolute values of the zeros of the corresponding transfer function lie again in (1.18, 1.54)

and the absolute values of the poles lie in (1.56, 1.74). The echelon state space form has

parameter matrices

A =



0 1 0 0 0 0

1.81410 −2.20527 −4.81866 7.17390 −2.51307 3.96550

0 0 0 1 0 0

0.23189 −0.15429 −0.85009 1.38884 −0.29477 0.23676

0 0 0 0 0 1

1.47996 −2.47919 −3.24972 5.48425 −2.02613 3.98930
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B =



16.15400 2.45005

15.48193 −19.63442

1.97747 2.07266

1.75861 0.33662

11.24424 −7.35204

10.14145 −23.03509


, C =

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

 , D =

1.61266 0

1.01399 1.50797

2.27170 −2.91294

 .

As to be expected, the mean squared errors of the AR parameters for this model are larger

than for the last model considered but also seem to converge with growing sample size, see

Table 2.

Finally, we consider a singular stable and miniphase ARMA(3, 3) system with the Kronecker

indices of the corresponding Hankel matrix of the transfer function m1 = 3, m2 = 2, and

m3 = 1. The parameter matrices of the state space echelon form of this system are

(1.5.11) A =



0 1 0 0 0 0

0 0 1 0 0 0

−0.30800 −0.19358 −0.96632 −0.10290 −0.23966 −0.65652

0 0 0 0 1 0

0.60403 0.42846 1.56074 0.39152 0.56827 0.90352

−0.23963 −0.21281 0 −0.16083 −0.16131 −0.18751



B =



0.03670 −0.31239

1.90743 0.75658

−0.03840 0.15236

−0.46565 0.35749

0.01974 −0.07971

−1.01956 −0.19552


, C =

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

 , D =

2.07500 0

0.44091 1.55924

0.45089 −1.52729

 .

Note that in this case the free echelon ARMA parameters are exactly those considered in Table

3. Also for this model the mean squared errors of the free parameters seem to converge to

zero.

Thus the results of our Monte Carlo simulation seem encouraging for the procedure we

proposed.
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Table 1. Mean squared errors for model (1.5.9)

T 1000 2000 4000 8000 16000
a21 1.39604 0.59406 0.24119 0.13154 0.07452
a22 0.01310 0.00673 0.00260 0.00137 0.00078
a23 0.44414 0.19124 0.07740 0.04216 0.02374
a24 0.32940 0.13452 0.05437 0.02959 0.01689
a25 0.50332 0.21463 0.08644 0.04688 0.02676
a26 0.01546 0.00552 0.00247 0.00145 0.00073
a41 0.20657 0.07587 0.03049 0.02090 0.00923
a42 0.00236 0.00095 0.00039 0.00024 0.00012
a43 0.06620 0.02458 0.00985 0.00668 0.00297
a44 0.04545 0.01642 0.00655 0.00458 0.00196
a45 0.07420 0.02733 0.01089 0.00741 0.00331
a46 0.00178 0.00059 0.00024 0.00020 0.00007
a61 2.02843 0.68686 0.29598 0.18415 0.06824
a62 0.02378 0.00814 0.00420 0.00207 0.00088
a63 0.65948 0.22085 0.09565 0.05916 0.02195
a64 0.43869 0.15056 0.06147 0.04025 0.01488
a65 0.72436 0.24470 0.10435 0.06555 0.02422
a66 0.01806 0.00647 0.00248 0.00175 0.00065
b11 0.07289 0.02836 0.01372 0.00668 0.00377
b12 0.00828 0.00412 0.00157 0.00083 0.00029
b21 0.33429 0.14625 0.06035 0.03329 0.01640
b22 0.15604 0.08761 0.02840 0.01555 0.00674
b31 0.03112 0.01818 0.00932 0.00421 0.00205
b32 0.01158 0.00602 0.00280 0.00145 0.00061
b41 0.13078 0.06646 0.02830 0.01160 0.00741
b42 0.05387 0.02718 0.01137 0.00426 0.00263
b51 0.04867 0.02857 0.01521 0.00609 0.00358
b52 0.03555 0.01716 0.00967 0.00461 0.00245
b61 0.12458 0.04516 0.02685 0.01461 0.00833
b62 0.06763 0.03698 0.02161 0.00807 0.00586
d11 0.00157 0.00069 0.00033 0.00016 0.00009
d21 0.00302 0.00119 0.00072 0.00033 0.00016
d22 0.00129 0.00054 0.00029 0.00016 0.00007
d31 0.01042 0.00658 0.00334 0.00163 0.00065
d32 0.00483 0.00201 0.00107 0.00061 0.00025
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Table 2. Mean squared errors for model (1.5.10)

T 1000 2000 4000 8000 16000
a21 12.26395 7.70273 1.65868 0.97747 0.09165
a22 6.13558 17.63984 1.17842 0.49677 0.03365
a23 43.38748 85.32671 4.78501 2.37126 0.30552
a24 176.98326 451.69339 33.08721 13.23878 0.80607
a25 26.80685 17.52294 3.90321 2.21355 0.19628
a26 0.57935 6.93584 0.14766 0.03691 0.00287
a41 1.01008 0.70584 0.10223 0.05567 0.00662
a42 0.40794 1.49361 0.06776 0.03049 0.00324
a43 3.68878 15.04505 0.32806 0.15269 0.02428
a44 9.19908 45.75105 1.83640 0.76375 0.06979
a45 2.12246 1.16545 0.23590 0.12609 0.01440
a46 0.03865 0.75635 0.00872 0.00277 0.00040
a61 73.52685 15.44782 0.76441 0.33869 0.10806
a62 17.02306 25.37387 0.63922 0.24087 0.04811
a63 337.59338 329.22158 3.06262 0.89766 0.32390
a64 282.58066 852.20290 21.52508 7.66332 1.05689
a65 148.83477 23.49256 1.84560 0.80465 0.23614
a66 0.96825 13.82036 0.08043 0.02619 0.00483
b11 0.16621 0.06987 0.03337 0.01646 0.00927
b12 0.00674 0.00352 0.00128 0.00068 0.00024
b21 0.80584 0.50762 0.21805 0.09076 0.04838
b22 0.49949 0.22157 0.10498 0.05691 0.03517
b31 0.01068 0.00432 0.00221 0.00123 0.00060
b32 0.00767 0.00392 0.00150 0.00075 0.00036
b41 0.01410 0.00678 0.00242 0.00175 0.00093
b42 0.01010 0.00498 0.00262 0.00128 0.00083
b51 0.12594 0.08207 0.03956 0.01651 0.00934
b52 0.04652 0.02203 0.01217 0.00584 0.00304
b61 0.72838 0.43031 0.23047 0.08688 0.05302
b62 0.48965 0.22836 0.13221 0.05941 0.03500
d11 0.00151 0.00068 0.00033 0.00016 0.00009
d12 0.00000 0.00000 0.00000 0.00000 0.00000
d21 0.00297 0.00119 0.00072 0.00032 0.00016
d22 0.00125 0.00051 0.00029 0.00016 0.00007
d31 0.01042 0.00662 0.00335 0.00164 0.00065
d32 0.00466 0.00191 0.00107 0.00061 0.00025
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Table 3. Mean squared errors for model (1.5.11)

T 1000 2000 4000 8000 16000
a31 0.00453 0.00157 0.00083 0.00027 0.00016
a32 0.02415 0.00880 0.00399 0.00127 0.00103
a33 0.30890 0.15302 0.03663 0.01780 0.00841
a34 0.01768 0.00788 0.00389 0.00127 0.00083
a35 0.14745 0.06996 0.01886 0.00812 0.00397
a36 0.05350 0.01888 0.00854 0.00387 0.00270
a51 0.01074 0.00329 0.00159 0.00068 0.00038
a52 0.05711 0.02151 0.00859 0.00357 0.00277
a53 0.71374 0.36526 0.08523 0.04253 0.01894
a54 0.04435 0.02010 0.00974 0.00354 0.00239
a55 0.28333 0.14217 0.03334 0.01529 0.00715
a56 0.12289 0.04417 0.01852 0.00980 0.00675
a61 0.00077 0.00043 0.00017 0.00009 0.00005
a62 0.00184 0.00072 0.00040 0.00021 0.00008
a64 0.00147 0.00070 0.00035 0.00013 0.00008
a65 0.00997 0.00359 0.00162 0.00065 0.00039
a66 0.00612 0.00291 0.00116 0.00065 0.00034
b11 0.00444 0.00235 0.00094 0.00044 0.00021
b12 0.00388 0.00227 0.00071 0.00042 0.00022
b21 0.00702 0.00302 0.00139 0.00071 0.00040
b22 0.00168 0.00063 0.00032 0.00016 0.00010
b31 0.00746 0.00370 0.00175 0.00066 0.00034
b32 0.00413 0.00216 0.00093 0.00040 0.00025
b41 0.00287 0.00147 0.00070 0.00033 0.00021
b42 0.00213 0.00103 0.00045 0.00022 0.00019
b51 0.00207 0.00141 0.00054 0.00034 0.00018
b52 0.00089 0.00051 0.00028 0.00012 0.00006
b61 0.00346 0.00160 0.00069 0.00049 0.00020
b62 0.00193 0.00105 0.00047 0.00018 0.00016
d11 0.00236 0.00106 0.00052 0.00027 0.00014
d21 0.00253 0.00115 0.00067 0.00031 0.00014
d22 0.00128 0.00054 0.00031 0.00017 0.00007
d31 0.00227 0.00130 0.00070 0.00034 0.00014
d32 0.00123 0.00051 0.00030 0.00016 0.00007
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Introduction - Mixed Frequency AR Models

In the second part of this thesis we consider the case that the individual component series

of a multivariate time series are available at di�erent sampling frequencies. We call this setting

mixed frequency.

In many cases when dealing with high dimensional time series, the individual one dimen-

sional component series are mixed frequency. For example, in economic applications, some

time series may be available monthly, such as unemployment data, whereas others may be

available quarterly, such as GNP data. Another example of mixed frequency data are time

series containing both real and �nancial data, where �nancial data, such as interest rates, are

typically sampled much more frequently than real data such as industrial production.

As the setting of mixed frequency data is quite common, a lot of approaches have been

considered in the literature, see e.g. Zadrozny [1990], Chen and Zadrozny [1998], Ghysels et al.

[2006], Ghysels [2012]. Here we follow the approach of Chen and Zadrozny [1998].

We restrict our analysis of mixed frequency data to the case that there is an AR model

at the highest frequency generating all the outputs, but we observe these outputs only par-

tially, i.e. we observe some outputs at the highest frequency but others only at an integer

submultiple of the highest frequency. Our main focus will be identi�ability of the system and

noise parameters of the underlying high frequency AR model.

We will consider two di�erent approaches to this problem which will show that generically

identi�ability can be ensured using second moments which can be observed in principle. In

Chapter 2 we consider extended Yule Walker equations which were proposed in Chen and

Zadrozny [1998]. In Chapter 3 we consider the technique of blocking which is commonly used

in signal processing.

We consider these two di�erent approaches as they both give di�erent insights into the

problem of identi�ability and they provide two di�erent estimation procedures for θ ∈ Θ. A

vantage point for the extended Yule Walker equations is their simplicity as they are linear in

the second moments. However, they do not use all available second moments. By blocking we

are using all second moments which can be observed in principle.
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These approaches are both �constructive� in the sense that we present �realization algo-

rithms�, i.e. algorithms which give the parameters from the second moments which can be

observed in principle. In addition it is shown that the problem is well-posed in the sense that

the parameters depend continuously on these second moments. Thus, when these population

second moments are replaced by their sample counterparts, this leads to consistent estimation

procedures.

Clearly, the setting of mixed frequency is more likely to occur the higher the dimension of

the time series considered in an application. A way of dealing with high dimensional mixed

frequency data is modeling the data by a mixed frequency factor model as described in Chapter

5.

Except for Sections 3.3 and 3.4, the content of Chapters 2, and 3 is joint work with the

coauthors Manfred Deistler, Brian D. O. Anderson, Bernd Funovits, Lukas Kölbl and Mohsen

Zamani and has been presented in Anderson et al. [2014]. Note that the realization algorithm

considered here in Section 3.2 works under slightly more general conditions than that of An-

derson et al. [2014]. Furthermore we give an alternative proof of Theorem 3.2.3.

The description of the mixed frequency setting is the same as in Anderson et al. [2014]:

For simplicity, we consider the case where the components of the observed process are

available at two sampling frequencies, a so-called high frequency and a slow frequency which

is an integer multiple N of the high frequency.

Except for Section 2.5, we consider the case where there are stock variables only. We

partition the process

yt =

(
yft

yst

)
into the nf -dimensional so-called fast component yft which is observed at the highest frequency

t ∈ Z and the ns-dimensional so-called slow component yst which is observed only for t ∈ NZ
(N ∈ N, N > 1) , i.e. for every Nth time point. Throughout we assume nf ≥ 1.

We assume that the high frequency system, i.e. the system generating all data at the

highest frequency, is a vector autoregression (1.5.2) of order p with parameters (a1, . . . , ap, b)

where a(z) ful�lls the stability assumption det a(z) 6= 0, |z| ≤ 1 and b has full column rank.

The matrices

ai =

(
aff (i) afs(i)

asf(i) ass(i)

)
, Σ = bb′ =

(
σff σfs

σsf σss

)
are partitioned according to yft and yst .
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The population second moments which can be observed in principle, i.e. the population

second moments which can be obtained from the observed components of the process (yt)t∈Z,

are

γff (h) = E
(
yft+h

(
yft

)′)
, h ∈ Z;

γsf (h) = E
(
yst+h

(
yft

)′)
, h ∈ Z;

γss(h) = E
(
yst+h (yst )

′) , h ∈ NZ.(1.5.12)

We focus on the central question of identi�ability, i.e. whether, for given parameter space

Θ, de�ned in (1.1.5), the parameters ai and Σ = bb′ of the high frequency system are uniquely

determined by those second moments which can be observed in principle.

Let us introduce the 'blocked observed' process (ỹt)t∈NZ,

ỹt =


yt

yft−1
...

yft−N+1

 ,

whose covariances are exactly the second moments described above.

Note that if identi�ability holds and if in addition there is an algorithm for obtaining the

parameters of the high frequency system from the population second moments which can be

observed in principle, we can reconstruct the missing moments γss(h) = E
(
yst+h (yst )

′) , h ∈
NZ−j, j ∈ {1, . . . , N − 1} and thus all γ(h) = E

(
yt+h (yt)

′) , h ∈ Z. Then linear least squares
methods for forecasting, nowcasting, and interpolation of non-observed output variables can be

applied. If such an algorithm de�nes a continuous function and thus the problem is well-posed,

the algorithm may be applied to sample second moments, in order to yield consistent estimators

of the system and noise parameters of the underlying high frequency system and thus of missing

second moments. In other words, identi�ability and well-posedness are important in obtaining

consistent estimators of the system and noise parameters, ai and Σ respectively. In this case,

nowcasts, forecasts and interpolations of high frequency observations based on mixed frequency

data are available.





CHAPTER 2

Identi�ability Results Using Extended Yule Walker Equations

2.1. Derivation of the Extended Yule Walker Equations for Mixed Frequency

Data

By postmultiplying equation (1.1.2) by y′t−j , j > 0 and forming expectations, we obtain
the extended Yule Walker equations

(
γff (1) γfs(1) · · · γff (p) γfs(p) · · ·
γsf (1) γss(1) · · · γsf (p) γss(p) · · ·

)
=

(
aff (1) afs(1) · · · aff (p) afs(p)

asf (1) ass(1) · · · asf (p) ass(p)

)
.

(2.1.1)

.



γff (0) γfs(0) · · · γff (p− 1) γfs(p− 1) · · ·
γsf (0) γss(0) · · · γsf (p− 1) γss(p− 1) · · ·

γff (−p+ 1) γfs(−p+ 1) · · · γff (0) γfs(0) · · ·
γsf (−p+ 1) γss(−p+ 1) · · · γsf (0) γss(0) · · ·


The problem with equation (2.1.1) is that matrices on both the left and right hand side

contain unobserved second moments. In order to overcome this problem, we postmultiply

equation (1.1.2) by
(
yft−j

)′
, j > 0 and form expectations. Thereby we obtain extended Yule

Walker equations (XYW, see Chen and Zadrozny [1998] ) as a subsystem of equations of (2.1.1)

as

(2.1.2) E
(
yt

(
(yft−1)′, (yft−2)′, . . .

))
= (A1, . . . , Ap)E



yt−1

...

yt−p

((yft−1)′, (yft−2)′, . . .
) .

Let

(2.1.3) K := E
(
xt

(
yft−1

)′)
= E



yt−1

...

yt−p

(yft−1

)′ =



γff (0)

γsf (0)
...

γff (−p+ 1)

γsf (−p+ 1)


= Γp


Inf

0
...

0

 .
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From equation (1.1.3), i.e. xt+1 = Axt + Bεt, we have that xt =
∑∞

i=0AiBεt−i−1 and xt+s =

Asxt +
∑s−1

i=0 AiBεt+s−i−1. The block columns of the second matrix on the right hand side of

(2.1.2) are of the form

E
(
xt

(
yft−j−1

)′)
= E

(
xt+j

(
yft−1

)′)
= E

((
Ajxt +

j−1∑
i=0

AiBεt+j−i−1

)(
yft−1

)′)

= AjE
(
xt

(
yft−1

)′)
= AjK, j ≥ 0.

Thus the rightmost matrix in the extended Yule Walker equations (2.1.2) can be written

as (K,AK,A2K, . . . ). From the Cayley-Hamilton Theorem and since A ∈ Rnp×np, we see that
the second matrix on the right hand side of (2.1.2) has full row rank if and only if the matrix

consisting of the �rst np blocks has full row rank. In this way we have obtained our XYW

equations which are of the form

(2.1.4) E
[
yt

(
(yft−1)′, . . . , (yft−np)

′
)]

= (A1, . . . , Ap)E



yt−1

...

yt−p

((yft−1)′, . . . , (yft−np)
′
)

︸ ︷︷ ︸
=Z

.

The crucial point is that the matrix Z can be written as

(2.1.5) Z = (K,AK,A2K, . . . ,Anp−1K),

and therefore has the structure of a controllability matrix.

Clearly, the system parameters (a1, . . . , ap) of (1.1.2) are identi�able if Z has full row rank

np, or equivalently, and in the language of linear system theory, the pair (A,K) is controllable.

Note, however, that contrary to usual controllability matrices compare Lee and Markus [1967]

and Wonham [1985], here K depends on A, which makes the task of verifying controllability

more demanding.

Remark 2.1.1. As will be shown in Section 3.1 full row rank of the matrix Z is a su�cient

condition for identi�ability of the system parameters, but it is not necessary.

Remark 2.1.2. Note that since the XYW equations (2.1.4) only use covariances γff (h)

and γsf (h), h ≥ 0, they can also handle mixed frequency data with more than two sampling

frequencies.

Remark 2.1.3. The advantage of commencing from the XYW equations is that they

immediately give linear and consistent estimators.
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2.2. Generic Identi�ability of System Parameters

The parameter space in this section is the set Θ of all ((a1, . . . , ap) ,Σ) where (a1, . . . , ap) ∈
S and Σ has rank q as de�ned in (1.1.5). We analyze identi�ability of system parameters �rst.

The next theorem, which is a central result, shows that the matrix Z in equation (2.1.4) is

generically of full row rank and thus we have generic identi�ability for (a1, . . . , ap). Note that

this holds both for regular and singular AR systems, for all sampling frequency ratios N , and

all nf ≥ 1.

Theorem 2.2.1. The matrix Z in the extended Yule Walker equations (2.1.4) has full row

rank np on a generic subset of the parameter space Θ, and thus the system parameters are

generically identi�able.

Proof. The proof uses the following well known result, see e.g. Lee and Markus [1967],

Wonham [1985], Bochnak et al. [1998]:

Let f : Θ → R be a polynomial function. If there exists a θ∗ ∈ Θ such that f(θ∗) 6= 0,

then the set of zeros of f is a proper algebraic set and in particular its complement in Θ is

generic.

In a �rst step, we have to show that Z is a rational function of θ ∈ Θ. It follows immediately

that Z is rational if we can show that K is a rational function of θ ∈ Θ. Vectorizing the

Lyapunov equation (1.1.4) we obtain

vecΓp = (A⊗A) vecΓp + vecBB′

and thus

(2.2.1) vecΓp = (I(np)2 − (A⊗A))−1vecBB′.

Note that the absolute value of all eigenvalues λj of A is smaller than one by the stability

assumption det a(z) 6= 0, |z| ≤ 1 . Therefore the same holds for the eigenvalues of (A⊗A) since

the eigenvalues of (A⊗A) are λiλj i, j = 1, . . . , np and thus
(
I(np)2 − (A⊗A)

)
is non-singular.

This implies that vecΓp is a rational function in ((a1, . . . , ap) ,Σ) having no poles in Θ. ThusK

and AjK and subsequently Z are rational in ((a1, . . . , ap) ,Σ) on Θ. Without loss of generality

we may restrict ourselves to the case where K is a vector and thus Z is square. Multiplying

Z by det
(
I(np)2 − (A⊗A)

)
we obtain a polynomial in the entries of ((a1, . . . , ap) ,Σ) since

det
(
I(np)2 − (A⊗A)

)
has no zeros. Thus the set of zeros of the determinant of the polynomial

matrix det
(
I(np)2 − (A⊗A)

)
Z is the same as the set of zeros of the determinant of Z and

thus is an algebraic set in Θ, compare Bochnak et al. [1998] page 23.

Now consider a point θ∗ in Θ given by
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(2.2.2) A =


0 · · · 0 ρC

In
. . .

In 0

 , B = E1 =


1

0
...

0

 ,

where ρ ∈ (0, 1) and

C =



0 0 · · · 0 1

1 0 · · · · · · 0

0 1
. . .

...
...

. . . . . . . . .
...

0 · · · 0 1 0


is a so-called circulant matrix and de�ne e1 ∈ Rn, where the �rst component is one and all

others are zero. We will show that for this point in the parameter space, detZ 6= 0 holds.

Note that for an AR(p) process wt of a system with parameters θ∗ the covariances γ(jp), j ∈
Z are diagonal and all other covariances are zero which is easily seen by looking at the Wold de-

composition wt =
∑∞

j=0 ρ
jCje1εt−jp. Obviously, γ(0) =

∑∞
j=0 ρ

2jCje1e
′
1

(
Cj
)′
is non-singular.

Thus Γp > 0 holds and this implies that
(
B,AB,A2B, . . .

)
is of full row rank, see Lemma 1.1.5.

Now it is immediate that Z is of full row rank since, as Γp is diagonal,

Z =
(
ΓpE1,AΓpE1,A2ΓpE1, . . .

)
is a multiple of

(
B,AB,A2B, . . .

)
. Thus detZ 6= 0 holds.

Thus the set of zeros of detZ is a proper algebraic set, i.e., an algebraic set of dimension

smaller than the dimension of Θ. Therefore its complement in the parameter space, which

corresponds to all controllable pairs, is the complement of a proper algebraic set and hence is

open and dense in the parameter space. �

2.3. Generic Identi�ability of the Noise Parameters

Theorem 2.3.1. The noise parameters Σ are generically identi�able in Θ.

Proof. We commence from identi�able system parameters (a1, . . . , ap).

Let us de�ne G = (In, 0, . . . , 0). Through columnwise vectorization of

γ(0) = E(yty
′
t) = GΓpG′

we obtain

vecγ(0) = (G ⊗ G)vecΓp.
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This together with (2.2.1) gives

(2.3.1) vecγ(0) = (G ⊗ G)
(
I(np)2 − (A⊗A)

)−1
(G′ ⊗ G′)vecΣ.

where we used that BB′ = G′ΣG.
Note that

(
I(np)2 − (A⊗A)

)
is non-singular. For a1 = · · · = ap = 0, the matrix(

I(np)2 − (A⊗A)
)−1

is triangular with ones on its diagonal. Thus, in view of the particu-

lar form of G, the matrix (G ⊗ G)
(
I(np)2 − (A⊗A)

)−1
(G′ ⊗ G′) is a principal submatrix of(

I(np)2 − (A⊗A)
)−1

with the same property and is therefore non-singular. (G⊗G)
(
I(np)2 − (A⊗A)

)−1
(G′⊗

G′) is a function rational in (a1, . . . , ap) having no poles. Thus the set of zeros of this function

is a proper algebraic set on Θ not depending on Σ. On the complement of this proper algebraic

set we have

(2.3.2) vecΣ =
(

(G ⊗ G)
(
I(np)2 − (A⊗A)

)−1
(G′ ⊗ G′)

)−1
vecγ(0).

�

2.4. General Remarks

Remark 2.4.1. From Theorems 2.2.1 and 2.3.1 we see that the system and noise parame-

ters are generically identi�able, i.e. identi�able on the intersection of the sets described in the

proof of Theorem 2.2.1 and Theorem 2.3.1. Note that the results shown in the proofs above

are stronger than the genericity results, because the set where Z has not full row rank np is a

proper algebraic set and the same statement holds for the case of noise parameters.

Remark 2.4.2. Note that the property that Z has full row rank np depends on (a1, . . . , ap)

as well as on Σ whereas the uniqueness of Σ obtained via (2.3.2) depends only on (a1, . . . , ap).

The �rst assertion is easy to see by considering a two-dimensional AR example: Consider the

special cases aff 6= ass, afs = asf = 0. If Σ is diagonal, Z has rank 1 otherwise Z has rank 2.

Remark 2.4.3. We have not been able to give an explicit description of those elements in

Θ which are not identi�able or those parameters where Z is not of full row rank np.

If the system (1.1.3) is not controllable, i.e. if Γp is singular, then clearly we have non-

identi�ability even for high frequency data, as the Yule Walker equations then have no unique

solution. Note however, that, as will be shown in Section 2.6, in such a situation identi�ability

might be obtained by suitably prescribing the column degrees in a(z).
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2.5. Flow Variables and More General Aggregation Schemes

In the previous sections only stock variables have been considered. Here we deal with

the case where the process (yst )t∈Z consists of �ow variables or variables aggregated by more

general schemes. For �ow variables, the aggregation to the corresponding observed process,

(wt)t∈NZ say, is of the form

(2.5.1) wt = yst + yst−1 + · · ·+ yst−N+1 = (1 + z + · · ·+ zN−1)yst , t ∈ NZ.

Remember that z denotes the backward shift on Z.
Note that the second moments required in the extended Yule Walker equations are the

autocovariances E
(
yft+h

(
yft

)′)
, h ∈ Z and the cross covariances E

(
yst+h

(
yft

)′)
, h ∈ Z. We

now show how these cross covariances can be retrieved from the cross covariances E
(
wt+h

(
yft

)′)
, h ∈

Z of the observations.

To show this, assume for the moment that wt is available ∀t ∈ Z and that the inverse of

the linear transformation (2.5.1) exists for t ∈ Z, i.e.

(2.5.2) yst = l.i.m.
M→∞

M∑
j=0

h
(M)
j wt−j , h

(M)
j ∈ Rns×ns , t ∈ Z

where l.i.m. denotes the limit in mean squares. Then

(2.5.3) γsf (h) = E
(
yst+h

(
yft

)′)
= lim

M→∞

M∑
j=0

h
(M)
j E

(
wt+h−j

(
yft

)′)
︸ ︷︷ ︸

γ
wyf

(h−j)

.

Note that for our purposes the inverse of the linear transformation (2.5.2) only has to exist

for the special input (wt)t∈Z. In order to show the existence of the inverse transformation

(2.5.2), it is more convenient to use the frequency domain rather than the time domain, see

Rozanov [1967], Hannan [1970]. Let

fysys(λ) = (2π)−1
∞∑

h=−∞
γss(h)e−iλh

and

fww(λ) = (2π)−1
∞∑

h=−∞
Ewt+h (wt)

T e−iλh

denote the spectral density of (yst )t∈Z and (wt)t∈Z, respectively.
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As is well known, then the spectral density fww(λ) of (wt)t∈Z satis�es

fww(λ) =
(

1 + e−iλ + · · ·+ e−i(N−1)λ
)
Insfysys(λ)Ins

(
1 + eiλ + · · ·+ ei(N−1)λ

)
and thusˆ (

1 + e−iλ + · · ·+ e−i(N−1)λ
)−1

Insfww(λ)Ins

(
1 + eiλ + · · ·+ ei(N−1)λ

)−1
dλ

=

ˆ
fysys(λ)dλ <∞

and therefore each row of
(
1 + e−iλ + · · ·+ e−i(N−1)λ

)−1
Ins is an element of the frequency

domain L2 (fwwdλ) of fww and by the isomorphism between the frequency and the time

domain the inverse transformation (2.5.2) is therefore well de�ned. From (2.5.3) we then

obtain

(2.5.4) fysyf (λ) = (2π)−1
∞∑

h=−∞
γsf (h)e−iλh =

(
1 + e−iλ + · · ·+ e−i(N−1)λ

)−1
Insfwyf (λ)

and thus γsf (h), h ∈ Z. In this way, we get all covariances in the extended Yule Walker

equations. Note that whereas for the case of stock variables these covariances can be directly

observed in principle, in the case considered here, they have to be reconstructed as described

above.

A completely analogous derivation holds if we replace (2.5.1) by the more general aggre-

gation scheme

(2.5.5) wt = k0y
s
t + k1y

s
t−1 + · · ·+ kN−1y

s
t−N+1, k0 nonsingular.

Thus, taking into account that generically Z has row rank equal to np, we obtain

Theorem 2.5.1. Given the aggregation scheme (2.5.5) for the slow variables (wt)t∈NZ, the

system and noise parameters of the high frequency system (1.1.2) are generically identi�able

from γff (h) and γwyf (h), h ∈ Z.

Note that if we set k0 = I and kj = 0, j = 1, . . . , N−1, we have the case of stock variables.

Thus Theorems 2.2.1 and 2.3.1 are special cases of Theorem 2.5.1.

As is immediately seen, Theorem 2.5.1 also covers the case where the slow variables are

formed by a mixture of stock and �ow variables.

2.6. Generic Identi�ability for Prescribed Column Degrees

In this section we are interested in identi�ability of AR systems from mixed frequency data

for the case that the column degrees of a(z) rather than the degree of a(z) are prescribed.
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As in the high frequency case described in Section 1.4.2, prescribing column degrees may help

in obtaining identi�ability of the system and noise parameters of singular AR systems in the

mixed frequency case.

Singular AR systems are of particular interest for us as they serve as models for latent

variables or for static factors in generalized linear dynamic factor models, see Section 1.3.2.

In Chapter 5 we will consider mixed frequency factor models where the mixed frequency

latent variables or the mixed frequency static factor will be modeled by singular AR systems.

Therefore we deal with the problem of identi�ability of singular AR systems from mixed

frequency data in this section.

As in Section1.4.2, let p1, . . . , pn denote these prescribed column degrees and again let

Θ(p1,...,pn) denote the subspace of Θ where additionally the highest degree of the respective ith

column of a(z) is bounded by pi and let (ā1, . . . , āp) denote all columns of (a1, . . . , ap) which

are not prescribed to be zero.

Remember that for the regular AR case Γp is always non-singular, whereas for the singular

case it might be non-singular or singular. For both, the high frequency and the mixed frequency

case, prescribing only the degree of a(z) is not enough to ensure identi�ability when Γp is

singular as the (high frequency) Yule Walker equations (1.4.1) do not have a unique solution.

As we discussed in Section 1.4.2, in the high frequency case, if Γp is singular, identi�ability

in a restricted parameter space can be obtained by selecting a basis for the row space of Γp

consisting of the �rst basis rows. As in Section 1.4.2 let SΓp denote the matrix formed by

these basis rows where S is a
∑
pi × np selector matrix.

We shall �rst consider the case pi > 0, i = 1, . . . , n. Let us recall the so-called quasi

companion form (1.4.3). Note that in the case of nonzero column degrees in forming Ā and B̄
only �structural� zeros and ones are deleted in A and B. Thus in this case of prescribed column

degrees, identi�ability of (a1, . . . , ap) and Σ is equivalent to the identi�ability of (ā1, . . . , āp) =

(a1, . . . , ap)S
′ and Σ.

We recall that the observation equation of the quasi companion form (1.4.3) is

(2.6.1) yt = (ā1, . . . , āp)x̄t + bεt

which we can use to derive the modi�ed XWY equations completely analogously to Section

2.1:
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E
(
yt
(

(yft−1)′, . . . , (yft−np+s)
′
))

= (ā1, . . . , āp)E
(
x̄t
(

(yft−1)′, . . . , (yft−np+s)
′
))

= (ā1, . . . , āp)
(
K̄, ĀK̄, Ā2K̄, . . . , Ānp−s−1K̄

)︸ ︷︷ ︸
=Z̄

(2.6.2)

where s is the number of prescribed zero columns in (a1, . . . , ap) and Ā ∈ R(np−s)×(np−s) and

where Γ̄p = Ex̄tx̄′t and K̄ = Γ̄p

(
Inf

0

)
.

Now obviously the parameter matrices (ā1, . . . , āp) are identi�able if the matrix Z̄ has full

row rank.

In an analogous way as in the two preceding sections we obtain:

Theorem 2.6.1. For prescribed nonzero column degrees p1, . . . , pn, the system parameters

(ā1, . . . , āp) and the noise parameters Σν are identi�able on a generic subset of the parameter

space Θ(p1...pn). Moreover this statement remains true for more general aggregation schemes

(2.5.5).

Proof. The proof is along the same lines as the proof of Theorem 2.2.1. A point θ∗ ∈
Θ(p1...pn) where Z̄ has full row rank is constructed as follows: Let

ai(z) = ei − [a1]�,i z . . .− [ap]�,i z
p

denote the ith column of a(z) and let

CE =
(

[ap1 ]�,1 , . . . , [apn ]�,n

)
be the column end matrix of a(z), compare Remark 1.4.7. Then we take

CE = ρC, ρ ∈ (0, 1)

where C is the circulant de�ned in the proof of Theorem 2.2.1 and

[Ak]�,i = 0, 0 < k < pi; i = 1, . . . , n

and b = e1. Then again, Γ̄p = SΓpS
′ can be shown to be diagonal and non-singular and thus

det Z̄ 6= 0 holds. Once the system parameters are unique, Σν is obtained in the same way as

in the proof of Theorem 2.3.1. �

We now consider the case where there is at least one i such that pi = 0. In this case we

de�ne two subprocesses of (yt)t∈Z: Let (yrt )t∈Z contain all components of yt, y
(i)
t , with pi > 0,

yrt = S1yt, and let (yzt )t∈Z contain all components y(i)
t with pi = 0, yzt = Szyt. It is easy to see

that (yrt )t∈Z is again an AR process. We obtain the following theorem:
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Theorem 2.6.2. For prescribed column degrees p1, . . . , pn, the system and noise parameters

(ā1, . . . , āp) and Σ are identi�able on a generic subset of the parameter space Θ(p1...pn) if (yrt )t∈Z
contains at least one fast component. Moreover this statement remains true for more general

aggregation schemes (2.5.5).

Proof. We �rst consider the AR process (yrt )t∈Z with parameters not prescribed zero

(ār1, . . . , ā
r
p) = S1(ā1, . . . , āp). Let us de�ne x̄rt as the state of a quasi-companion form of

yrt . Obviously, using Theorem 2.6.1 we have generic identi�ability of (ār1, . . . , ā
r
p) from mixed

frequency data since

Z̄r = E
(
x̄rt

(
(yr ft−1)′, . . . , (yr ft−np+s)

′
))

=
(
K̄r, ĀrK̄r,

(
Ār
)2
K̄r, . . . ,

(
Ār
)np−s−1

K̄r
)
,

where K̄r = Γ̄rp

(
I(nr)f

0

)
and Γ̄rp = Ex̄rt (x̄rt )

′, is generically of full column rank.

Thus we are left to show generic identi�ability of the remaining rows (āz1, . . . , ā
z
p) =

Sz(ā1, . . . , āp), which is easily done since yzt = (āz1, . . . , ā
z
p)x̄

r
t + bzεt, where bz are the rows

of b corresponding to yzt , and thus

E
(
yzt

(
(yr ft−1)′, . . . , (yr ft−np+s)

′
))

= (āz1, . . . , ā
z
p)E

(
x̄rt

(
(yr ft−1)′, . . . , (yr ft−np+s)

′
))

︸ ︷︷ ︸
=Z̄r

.

Therefore (ā1, . . . , āp) is identi�able if Z̄r has full row rank which is generic.

Once the system parameters are unique, Σ is obtained in the same way as in the proof of

Theorem 2.3.1. �



CHAPTER 3

Identi�ability Results Using Blocking

In this chapter for the case of stock variables only we consider the technique of blocking

for the mixed frequency setting. Blocking has been used in signal processing for a number

of purposes, see Bittanti et al. [1988], Vaidyanathan [1993], Chen and Francis [1995]. For

blocking in case of mixed frequency data see Filler [2010], Ghysels [2012], Zamani [2014].

As in Chapter 2 we obtain generic identi�ability results. We present this alternative

approach here for three reasons: First, it provides additional insights into the structure of the

problem; second, all second moments which are directly observed are used (note that in the

XYW equations the available autocovariances of the slow process have not been used), and

third, it leads to an alternative estimation procedure.

First we consider the special case of two-dimensional AR(1) systems for which we are able

to give an explicit description of the set of all identi�able systems in Section 3.1. In Section

3.2 we consider the more general case of AR(p) systems and in Section 3.3 we consider the case

of prescribed column degrees (p1, . . . , pn) for a(z) for which we also can show generic identi-

�ability of the parameters θ ∈ Θ. For mostly notational convenience, we assume throughout

Sections 3.1, 3.2 and 3.3 that N = 2 holds. In Section 3.4 we consider the method of blocking

for N > 2.

3.1. Generic Identi�ability for AR(1) Systems

In this section we restrict the analysis of identi�ability for mixed frequency data to the

case p = 1. In addition, we restrict ourselves to the case N = 2, nf = ns = 1. Furthermore, we

assume throughout this section that the AR(1) system is regular. As will be shown below, this

analysis yields special results; in particular the subset, ΘI say, of Θ, where identi�ability is

obtained, can be described explicitly. The complement of this set is a so-called semi-algebraic

set, and so we also conclude that for generic parameter values identi�ability occurs. This

special case is dealt with before we treat the general case in order to give an example and to

illustrate the comparative intricacy of identifying the semi-algebraic set on which identi�ability

cannot be achieved. The AR(1) case has been described in detail in Anderson et al. [2012b].

61
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We �rst consider the case where in addition Σ = bb′ is diagonal. Let νt = bεt. Using a

self-evident notation, we can write

(3.1.1)

(
yft

yst

)
=

(
aff afs

asf ass

)
︸ ︷︷ ︸

A

(
yft−1

yst−1

)
+

(
νft

νst

)
.

Now, the one-step-ahead predictor for yft−1, t− 1 odd, based on observed outputs is obtained

from the following equation, also easily derived:

yft−1 = affy
f
t−2 + afsy

s
t−2 + νft−1

and the two-step-ahead predictor of yt, t even, is obtained from

yt = A2yt−2 +Aνt−1 + νt.

Combining both equations gives a three-dimensional system on 2Z:

(3.1.2)

 yft

yst

yft−1


︸ ︷︷ ︸

ỹt

=

(
A2 0

aff afs 0

)
︸ ︷︷ ︸

Ã

y
f
t−2

yst−2

yft−3

+

(
Aνt−1 + νt

νft−1

)
︸ ︷︷ ︸

ν̃t

Note that (3.1.2) is an AR(1) system on 2Z whose outputs ỹt are the observed variables and

thus may serve as a model for the MF data.

The parameter matrices Ã and Σν̃ = Eν̃tν̃Tt are uniquely determined from (ỹt)t∈2Z; however

not all entries in Ã, Σν̃ are free, as

(3.1.3) Ã =

 a2
ff + afsasf affafs + afsass 0

asfaff + assasf asfafs + a2
ss 0

aff afs 0



(3.1.4) Σν̃ =

σff 0 0

0 σss 0

0 0 0

+

aff afs

asf ass

1 0

(σff 0

0 σss

)(
aff asf 1

afs ass 0

)

hold.

Here the high frequency system has 6 free parameters, whereas a general AR(1) system

for n = 3 has 15 free parameters. As the components of ỹt−2 are linearly independent by the

regularity assumption, Ã and Σν̃ are uniquely determined from the second moments which can

be observed in principle. In order to analyze identi�ability we solve (3.1.3), (3.1.4) for given
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Ã, Σν̃ for the high frequency parameters A and Σν . We see that if afs and asf are both zero,

then only a2
ss is unique, otherwise A and Σν are unique and thus we have non-identi�ability

if and only if afs = asf = 0 and ass 6= 0 hold.

It is interesting to note that here we have identi�ability whenever the two component

processes
(
yft

)
t∈Z

and (yst )t∈Z are not orthogonal.

If we drop the assumption σsf = 0, we obtain

Theorem 3.1.1. Assume that p = 1, nf = ns = 1, Σν > 0 and N = 2. The system and

noise parameters

(
aff afs

asf ass

)
, σff , σsf and σss are not identi�able if and only if they satisfy

the equations

afs = 0

asf +
σsf
σff

(ass − aff ) = 0(3.1.5)

ass 6= 0.

The complement of the set of solutions of (3.1.5) is a superset of an open and dense set (with

respect to the whole parameter space).

Proof. If σsf is not necessarily equal to zero, then (3.1.3) remains unchanged and (3.1.4)

is changed to

(3.1.6) Σν̃ =

σff σsf 0

σsf σss 0

0 0 0

+

aff afs

asf ass

1 0

(σff σsf

σsf σss

)(
aff asf 1

afs ass 0

)
.

Thus aff , afs and σff are unique for given Ã, Σν̃ .

We are left with the problem to uniquely solve equation systems (3.1.3) and (3.1.6) in the

variables asf , ass, σsf , and σss. Thereto we distinguish two cases, namely the case afs = 0

and the case afs 6= 0, considering that we already know afs.

We start with the case afs 6= 0. It is easy to see that the missing parameters asf , ass, σsf
can be recovered using (3.1.3) and (3.1.6). Subsequently σss can be recovered using equation

(3.1.6).

In the event that afs = 0, then A2 is lower triangular, with (2, 2) entry a2
ss. First, observe

that the (2, 3) and (2, 1) entries of Σν̃ are σffasf + σsfass and aff (σffasf + σsfass) + σsf ,

respectively. It is immediate that σsf is available.

Next, if ass = 0, something which is immediately known from the (2, 2) entry of A2, then

the (2, 3) entry of Σν̃ is simply σffasf and since σff is obviously nonzero, the value of asf can
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be obtained. Also, the (2, 2) entry of Σν̃ is asf (σffasf + σsfass) + σss and one immediately

has σss.

It therefore remains to consider the situation where ass 6= 0. The following quantities α

and β, corresponding to the (2, 1) entry of A2 and the (2, 3) entry of Σν̃ , are known:

asfaff + assasf = α

σffasf + σsfass = β

By eliminating asf , we obtain

−a2
ssσsf + (β − affσsf ) ass + affβ = ασff

Using this equation and the value for a2
ss available from A2, it follows that ass is uniquely

determined if and only if

β − affσsf 6= 0

Introducing the expression above for β, this yields:

asfσff + assσsf − affσsf 6= 0

To sum up, identi�cation is possible except for parameters satisfying

afs = 0

ass 6= 0

asfσff + assσsf − affσsf = 0

The set of non-identi�able points as described by equations (3.1.5) is a so-called semi-

algebraic set, see Bochnak et al. [1998] p 24, De�nition 2.1.4, i.e. a set of (multivariate)

polynomial zeros where in addition inequalities are imposed. Here, in particular, the set of

all identi�able parameters, which is a complement of the semi-algebraic set above, contains a

generic subset of the parameter space, viz. the complement of the set de�ned by the zeros of

the polynomial equalities alone. �

Remark 3.1.2. An interesting interpretation of Theorem 3.1.1 is the following. The pa-

rameters of the underlying high frequency model cannot be obtained if and only if there is a

static linear transformation such that the transformed model has a diagonal innovation vari-

ance and the transformed system matrix is diagonal with nonzero (2, 2) entry. Note that such

a transformation must be of the form T =

(
1 0

−σsfσ−1
ff 1

)
and that for given T the conditions

non-identi�ability arising are exactly the same as in (3.1.5). Thus identi�ability for systems
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with non-diagonal innovation variance can be traced back to identi�ability for systems with

diagonal innovation variance.

Remark 3.1.3. Consider again the two-dimensional AR(1) process of Section 3.1. In this

case the matrix Z in equation (2.1.4) is rank de�cient for ãss = 0, ãsf = 0 even if ãfs 6= 0

which shows that the condition that rk(Z) = np hold, is not necessary for identi�ability. For

the example discussed in the previous section, where for the case σsf = afs = asf = 0 the

classes of observationally equivalent parameters consist of two points (corresponding to the

two choices for the square root of a2
ss), the solution set of the XYW is a nontrivial a�ne subset.

This shows that the XYW do not use the full information contained in the second moments

which are in principle observed.

Note that equations (3.1.3), (3.1.4) may also be used for identi�ability analysis for n =

q > 2 though dealing with the various special cases is more intricate since scalars are replaced

by matrices. The analysis above cannot be extended to the case p > 1; its advantage on the

other hand is that the subset of identi�able parameters is explicitly given, and the genericity

property stands out clearly.

To clarify the restrictions of this method, we consider a two dimensional AR(2) example

yt = A2yt−2 + νt t ∈ Z

where A2 is non-diagonal with Wold representation yt =
∑∞

j=0A
j
2νt−2j . Obviously, there holds

Eyt+2h−1y
′
t = 0, ∀h ∈ Z. Thus the blocked process on t ∈ 2Z


yft

yst

yft−1

yst−1

 =

(
A2 0

0 A2

)
yft−2

yst−2

yft−3

yst−3

+

(
νt

νt−1

)

consists of two orthogonal subprocesses, namely (yt)t∈2Z and (yt−1)t∈2Z, which are AR(1)

processes on 2Z. Therefore in the mixed frequency case, when we do not observe (yst )t∈2Z,

to determine whether (ỹt)t∈2Z is an AR process, we only have to look at the subspectrum for

(yt)t∈2Z, whose spectral density may look like this:

f(z2) =

(
1 1

0 1

)(
1

(az2+1)(cz2+1)
0

0 1
(az2+1)

)(
1 0

1 1

)
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where z2 is a symbol of its own. The subspectrum for (yst )t∈2Z is 1
(az2+1)(cz2+1)

+ 1
(az2+1)

.

Clearly, this subspectrum has a zero at z2 = −2
c and therefore is the spectrum of an ARMA,

not an AR process.

The fact that AR systems are not closed under marginalization is well known, see e.g.

Amemiya and Wu [1972], Tiao [1972].

3.2. Generic Identi�ability for AR(p) Systems

In the last section we already discussed the special case of two-dimensional AR(1) systems.

In this section we discuss AR(p) systems p ≥ 1. We restrict ourselves to the case that Γp > 0.

We commence from the high frequency process (yt)t∈Z. In blocked form this process can

be written as (Yt)t∈2Z where Yt =

(
yt

yt−1

)
.

Note that the state spaces for even t of (yt)t∈Z and (Yt)t∈2Z are the same, see Section 1.5,

and both processes are AR processes with minimal state dimension smaller than or equal to

np and equal to np if and only if ap is non-singular. Throughout this section, we assume that

ap is non-singular. In particular, we have from (1.1.3) the state space representation

xt+1 = A2︸︷︷︸
Ab

xt−1 + (B,AB)︸ ︷︷ ︸
Bb

(
εt

εt−1

)
(3.2.1)

Yt =

( In 0 0 · · · 0
)
A2(

In 0 0 · · · 0
)
A

xt−1 +

(
b a1b

0 b

)(
εt

εt−1

)
(3.2.2)

for t ∈ 2Z, where, if for notational simplicity we consider the case of p even, the minimal state

is given as

xt+1 =


Yt
...

Yt−p+2

 .

Now, for the mixed frequency case, for stock variables and N = 2, we use the blocked observed

process as (ỹt)t∈2Z, ỹt =

(
yt

yft−1

)
exactly as in Section 3.1. Note that the second moments of

(ỹt)t∈2Z are precisely those second moments (1.5.12) which can be observed in principle.
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From (3.2.1), (3.2.2) we obtain the following state space representation for (ỹt)t∈2Z

xt+1 = Abxt−1 +Bb

(
εt

εt−1

)
(3.2.3)

ỹt =

( In 0 0 · · · 0
)
A2(

Inf 0 0 · · · 0
)
A


︸ ︷︷ ︸

Cb

xt−1 +

(
b a1b

0
(
Inf , 0nf×ns

)
b

)
︸ ︷︷ ︸

Db

(
εt

εt−1

)
.(3.2.4)

Whereas in (3.2.1), (3.2.2), as easily can be seen,

(
εt

εt−1

)
t∈2Z

are innovations for (Yt)t∈2Z,(
εt

εt−1

)
t∈2Z

are not innovations for ỹt, as is already clear for the case n = q from considering

the dimensions of the respective vectors.

The spectral density of (ỹt)t∈2Z, using (3.2.3), (3.2.4), can be represented as

(3.2.5) fỹ
(
z2
)

=

(
Cb

(
Inp
(
z2
)−1 −Ab

)−1
Bb +Db

)(
B′b
(
Inpz

2 −A′b
)−1

C ′b +D′b

)
where the spectral factor on the r.h.s. of (3.2.5) is �fat� and not miniphase. On the other hand

the spectral density of (ỹt)t∈2Z can be written as

(3.2.6) fỹ
(
z2
)

= k
(
z2
)
k′
(
z−2
)

where k
(
z2
)
is a stable and miniphase spectral factor. Therefore for a suitable quadruple(

Āb, B̄b, C̄b, D̄b

)
denoting a minimal, stable and miniphase state space system we have

(3.2.7) k
(
z2
)

=

(
C̄b

(
Inp
(
z2
)−1 − Āb

)−1
B̄b + D̄b

)
.

The question of the relation of the state dimensions of minimal, stable and miniphase

state space systems for (ỹt)t∈2Z and (Yt)t∈2Z arises. The next theorem states that despite the

fact that the unobserved outputs have been omitted in ỹt, generically the McMillan degrees

in (3.2.1), (3.2.2) and in k
(
z2
)

=

(
C̄b

(
Inp
(
z2
)−1 − Āb

)−1
B̄b + D̄b

)
are the same.

For the proof of the theorem, we will need the following lemma:

Lemma 3.2.1. If for eigenvalues λi 6= 0 of A λi 6= λj implies λ
2
i 6= λ2

j , then the kernels of

(A− λiI)m and
(
A2 − λ2

i I
)m

are the same ∀m ∈ N.

Proof. To show

ker (A− λI)m ⊆ ker
(
A2 − λ2I

)m
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is trivial since
(
A2 − λ2I

)m
= (A+ λI)m (A− λI)m. To show

ker (A− λI)m ⊇ ker
(
A2 − λ2I

)m
consider a vector v /∈ ker (A− λI)m. Thus(

A2 − λ2I
)m

v = (A+ λI)m (A− λI)m v︸ ︷︷ ︸
6=0

6= 0

since (A+ λI) is non-singular because of our assumption −λ cannot be an eigenvalue of A. �

Theorem 3.2.2. For ((a1, . . . , ap) ,Σν) ∈ Θ, if ap non-singular, Γp > 0, and if for eigen-

values of A such that λi 6= λj it follows that λ
2
i 6= λ2

j holds, the McMillan degree of a causal

and miniphase spectral factor k
(
z2
)
of fỹ(z

2) is equal to np.

Proof. First note that the McMillan degree of k
(
z2
)
is equal to the rank of the Hankel

matrix of covariances Hγ :
Let k(z2) =

∑∞
j=0 k2jz

2j be the power series expansion of k
(
z2
)
. As γ̃(2j) = Eỹ2j ỹ

′
0 =∑∞

i=0 k2j+2ik
′
2i we have
γ̃(2) γ̃(4) γ̃(6) · · ·
γ̃(4) γ̃(6) γ̃(8) · · ·
γ̃(6) γ̃(8) γ̃(10)
...

...
. . .


︸ ︷︷ ︸

Hγ

=


k2 k4 k6 · · ·
k4 k6 k8 · · ·
k6 k8 k10

...
...

. . .


︸ ︷︷ ︸

Hk


k′0

k′2 k′0

k′4 k′2 k′0
...

...
. . .



where the second matrix on the right hand side is of full row rank since k
(
z2
)
is miniphase.

Thus we have that rkHγ = rkHk holds. Since a spectral miniphase factor of the spectral

density fY
(
z2
)
of (Yt)t∈2Z has McMillan degree np, the McMillan degree of k

(
z2
)
must be

smaller than or equal to np.
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Thus it remains to prove that a �nite submatrix of Hγ has rank np:

Hγnp = E


ỹt+2

...

ỹt+2np

(ỹ′t · · · ỹ′t−2(np−1)

)
∈ R(n+nf )np×(n+nf )np

= E



yt+2

yft+1

yt+4

yft+3
...

yt+2np

yft+2np−1


(
y′t

(
yft−1

)′
· · · y′t−2np+2

(
yft−2np+1

)′)

=


γ̃(2) γ̃(4) . . . γ̃(2np)

γ̃(4) γ̃(6) . . .
...

...
. . .

γ̃(2np) γ̃(4np− 2)



=



γ(2) [γ(3)]�,1:nf
γ(4) [γ(5)]�,1:nf

· · ·
[γ(1)]1:nf ,.

γff (2) [γ(3)]1:nf ,.
γff (4) · · ·

γ(4) [γ(5)]�,1:nf
γ(6) [γ(7)]�,1:nf

· · ·
[γ(3)]1:nf ,.

γff (4) [γ(5)]1:nf ,.
γff (6) · · ·

.

.

.

.

.

.

.

.

.

.

.

.

γ(2np) [γ(2np+ 1)]�,1:nf
γ(2np+ 2) [γ(2np+ 3)]�,1:nf

· · ·
[γ(2np− 1)]1:nf ,.

γff (2np) [γ(2np+ 1)]1:nf ,.
γff (2np+ 2) · · ·

· · · γ(2np) [γ(2np+ 1)]�,1:nf

· · · [γ(2np− 1)]1:nf ,.
γff (2np)

· · · γ(2np+ 2) [γ(2np+ 3)]�,1:nf

· · · [γ(2np+ 1)]1:nf ,.
γff (2np+ 2)

.

.

.

.

.

.

· · · γ(4np− 2) [γ(4np− 1)]�,1:nf

· · · [γ(4np− 3)]1:nf ,.
γff (4np− 2)
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0
)
A6Γp

(
Inf

0

)
.
.
.

.

.

.
.
.
.

.

.

.(
In 0

)
A2npΓp

(
In

0

) (
In 0

)
A2np+1Γp

(
Inf

0

) (
In 0

)
A2np+2Γp

(
In

0

) (
In 0

)
A2np+3Γp
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0
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0
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0
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0
)
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0

) (
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0
)
A2np+1Γp

(
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0

) (
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0
)
A2np+2Γp
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0
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· · ·

· · ·
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)
A2npΓp
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0
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)
A2np+1Γp
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0

)

· · ·
(
Inf

0
)
A2np−1Γp

(
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0

) (
Inf

0
)
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(
Inf

0

)
(
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)
A2np+2Γp

(
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0

) (
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)
A2np+3Γp

(
Inf

0

)
(
Inf

0
)
A2np+1Γp

(
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0

) (
Inf

0
)
A2np+2Γp

(
Inf

0

)
.
.
.

.

.

.

· · ·
(
In 0

)
A4np−2Γp

(
In

0

) (
In 0

)
A4np−1Γp

(
Inf

0

)

· · ·
(
Inf

0
)
A4np−3Γp

(
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0

) (
Inf

0
)
A4np−2Γp

(
Inf

0
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We look at the following submatrix of Hγnp



(
In 0

)
A2Γp

(
In

0

) (
In 0

)
A4Γp

(
In

0

) (
In 0

)
A6Γp

(
In

0

)
· · ·

(
In 0

)
A2npΓp

(
In

0

)
(
In 0

)
A4Γp

(
In

0

) (
In 0

)
A6Γp

(
In

0

) (
In 0

)
A8Γp

(
In

0

)
· · ·

(
In 0

)
A2np+2Γp

(
In

0

)
(
In 0

)
A6Γp

(
In

0

) (
In 0

)
A8Γp

(
In

0

) (
In 0

)
A10Γp

(
In

0

)
· · ·

.

.

.
.
.
.

.

.

.(
In 0

)
A2npΓp

(
In

0

) (
In 0

)
A2np+2Γp

(
In

0

) (
In 0

)
A4np−2Γp

(
In

0

)



=



(
In 0

)
A2(

In 0
)
A4(

In 0
)
A6

.

.

.(
In 0

)
A2np


(

Γp

(
In

0

)
A2Γp

(
In

0

)
A4Γp

(
In

0

)
· · · A2np−2Γp

(
In

0

))
= OC = H

Since we assumed that the eigenvalues are nonzero, λi 6= 0, and for eigenvalues λi 6= λj of

A λ2
i 6= λ2

j holds, it is easy to see from Lemma 3.2.1 that qi is an eigenvector of A2 if and only

if qi is an eigenvector of A.
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Observe that O is of full column rank. To show this we are using the PBH Test, Theorem

1.1.3, and the fact that for any right eigenvector qi of A the �rst n components are not all

equal to zero, as shown in Anderson et al. [2012b], Lemma 2:(A2 − λ2
i I
)(

In 0
)
A2

 qi =

(
0[

λ2
i qi
]
1:n
6= 0

)

Also observe that C is of full row rank if and Γp > 0. Again we are using the PBH Test,

Theorem 1.1.3:

We have to test for all left eigenvectors q′i of A2 or equivalently A that

q′i

((
A2 − λ2

i I
)
,Γp

(
In

0

))
=

0, q′i


γ(0)
...

γ(1− p)


 6= 0

Thus if qi is orthogonal to


γ(0)
...

γ(1− p)

 also

q′iAj


γ(0)
...

γ(1− p)

 = 0, ∀j ∈ N,

holds which implies q′iΓp = 0 which is in contradiction to Γp > 0.

Therefore for all eigenvectors qi of A20, q′i


γ(0)
...

γ(1− p)


 6= 0.

Now, according to Theorem 2.3.2 in Hannan and Deistler [2012] H has rank np. �

The next theorem can be used to determine the relation between
(
Āb, C̄b

)
and (Ab, Cb). It

is stated in a general form, for spectral factors which are rational in z, but, as is easily seen,

it also holds for the �special case� that the spectral factors are rational in z2.

We de�ne the McMillan degree of a spectral density fy to be twice the McMillan degree

of a stable and miniphase spectral factor which is equivalent to twice the rank of the Hankel

matrix of covariances of (yt).
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Theorem 3.2.3. Let fy(z) be a rational spectral density with McMillan degree 2m and let

k(z) and k̃(z) be spectral factors of fy(z) with the same McMillan degree m but not necessarily

the same dimensions. Then for minimal realizations of k(z) and k̃(z) the matrices (A,C) and

(Ã, C̃) are the same up to basis change, i.e.

Ã = T−1AT

C̃ = CT

i.e. for a suitable chosen non-singular m×m matrix T .

Proof. First we show how to determine a minimal state of (yt)t∈Z and a corresponding

minimal state space realization of k(z) from the Hankel matrix of the transfer function k(z),

see Ho and Kalman [1966], Akaike [1974] or Hannan and Deistler [2012] Chapter 2. Let (εt)

be the inputs of the transfer function k(z) such that yt = k(z)εt. Clearly, we have
yt

yt+1

...

 =


k1 k2 k3 · · ·
k2 k3 k4 · · ·
k3 k4 k5

...
...

. . .


︸ ︷︷ ︸

Hk


εt−1

εt−2

...

+


k0

k1 k0

k2 k1 k0

...
...

. . .




εt

εt+1

...

 .

A minimal state xt of (yt)t∈Z is a basis of the space spanned by the projection of the future

of (yt)t∈Z onto the space spanned by the past of (yt)t∈Z:
yt|t−1

yt+1|t−1
...

 =


k1 k2 k3 · · ·
k2 k3 k4 · · ·
k3 k4 k5

...
...

. . .


︸ ︷︷ ︸

Hk


εt−1

εt−2

...



Let S be a selector matrix selecting a basis of this projection (where S does not necessarily

select the �rst basis).

xt = S


yt|t−1

yt+1|t−1
...

 = S


k1 k2 k3 · · ·
k2 k3 k4 · · ·
k3 k4 k5

...
...

. . .


︸ ︷︷ ︸

Hkα


εt−1

εt−2

...
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A state equation of a minimal state space system can be obtained as follows:

xt+1 = S


yt+1|t

yt+2|t
...



= S


k1 k2 k3 · · ·
k2 k3 k4 · · ·
k3 k4 k5

...
...

. . .


︸ ︷︷ ︸

Hkα


εt

εt−1

...



= S


k2 k3 k4 · · ·
k3 k4 k5 · · ·
k4 k5 k6

...
...

. . .


︸ ︷︷ ︸

Hkα+n


εt−1

εt−2

...

+ S


k1

k2

k3

...

 εt

= AS


k1 k2 k3 · · ·
k2 k3 k4 · · ·
k3 k4 k5

...
...

. . .


︸ ︷︷ ︸

Hkα


εt−1

εt−2

...



︸ ︷︷ ︸
xt

+S


k1

k2

k3

...

 εt.

Thus the state transition matrix A can be uniquely obtained as a solution of the linear equation

system

(3.2.8) Hkα+n = AHkα.
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An observation equation can be obtained as follows:

yt =
(
k1 k2 k3 · · ·

)
εt−1

εt−2

...

+ k0εt

= CHkα


εt−1

εt−2

...


︸ ︷︷ ︸

xt

+k0εt.

Therefore C can be determined as the unique solution of the linear equation system

(3.2.9)
(
k1 k2 k3 · · ·

)
= CHkα.

In the next step we discuss the connection of the row spaces of the Hankel matrices of the

transfer functions k(z) and k̃(z). We use the relation of the Hankel matrices of the transfer

functions k(z) and k̃(z) and Hγ , the Hankel matrix of the covariances of (yt)t∈Z:

Hγ = Hk


k′0

k′1 k′0

k′2 k′1 k′0
...

...
. . .


and

Hγ = Hk̃


k̃′0

k̃′1 k̃′0

k̃′2 k̃′1 k̃′0
...

...
. . .

 .

Note that the left kernels of Hk and Hk̃ are subsets of the left kernel of Hγ . Thus we have the
following: Let S be a selector matrix selecting a basis of the row space of Hγ . Then S also

selects bases of the row spaces of Hk and Hk̃.
Let Hkα = SHk and Hkα+n be de�ned as above. De�ne Hk̃α = SHk̃ and Hk̃α+n accordingly.

Then

Hkα


k′0

k′1 k′0

k′2 k′1 k′0
...

...
. . .

 = Hk̃α


k̃′0

k̃′1 k̃′0

k̃′2 k̃′1 k̃′0
...

...
. . .
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and

Hkα+n


k′0

k′1 k′0

k′2 k′1 k′0
...

...
. . .

 = Hk̃α+n


k̃′0

k̃′1 k̃′0

k̃′2 k̃′1 k̃′0
...

...
. . .


hold. Therefore

Hkα+n


k′0

k′1 k′0

k′2 k′1 k′0
...

...
. . .

 = AHkα


k′0

k′1 k′0

k′2 k′1 k′0
...

...
. . .


with transition matrix A from (3.2.8) implies

Hk̃α+n


k̃′0

k̃′1 k̃′0

k̃′2 k̃′1 k̃′0
...

...
. . .

 = AHk̃α


k̃′0

k̃′1 k̃′0

k̃′2 k̃′1 k̃′0
...

...
. . .

 .

W.l.o.g. let k̃(z) be miniphase then k̃0 has full column rank and the last equation above

implies

Hk̃α+n = AHk̃α.

Thus A is also the state transition matrix of a minimal state space realization of k̃(z).

Analogously, we treat the observation equation. Since

(
k1 k2 k3 · · ·

)

k′0

k′1 k′0

k′2 k′1 k′0
...

...
. . .

 =
(
k̃1 k̃2 k̃3 · · ·

)

k̃′0

k̃′1 k̃′0

k̃′2 k̃′1 k̃′0
...

...
. . .


we have that

(
k1 k2 k3 · · ·

)

k′0

k′1 k′0

k′2 k′1 k′0
...

...
. . .

 = CHkα


k′0

k′1 k′0

k′2 k′1 k′0
...

...
. . .
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with C as in (3.2.9) implies

(
k̃1 k̃2 k̃3 · · ·

)

k̃′0

k̃′1 k̃′0

k̃′2 k̃′1 k̃′0
...

...
. . .

 = CHk̃α


k̃′0

k̃′1 k̃′0

k̃′2 k̃′1 k̃′0
...

...
. . .

 .

Thus since we assumed w.l.o.g. that k̃(z) is miniphase we have that(
k̃1 k̃2 k̃3 · · ·

)
= CHk̃α.

Therefore any Ã and C̃ of a minimal state space realization of k̃(z) are related to A and

C of a minimal state space realization of k(z) via a basis change.

�

Thus we have that

Āb = T−1AbT(3.2.10)

C̄b = CbT(3.2.11)

Remark 3.2.4. Note that Theorem 3.2.2 is essential for (3.2.10), (3.2.11) because it ensures

that Āb and Ab are of the same dimension. Also note that the result of Theorem 3.2.3 holds

despite the fact that the states in (3.2.3), (3.2.4) and in the minimal, stable and miniphase

system corresponding to (3.2.7) are not the same not even up to basis change.

These considerations lead us to the following procedure for obtaining the high frequency

parameters (a1, . . . , ap):

We need the following assumptions:

• ap is non-singular.
• Γp > 0.

• For eigenvalues λi 6= λj of A, λ2
i 6= λ2

j holds.

• The pair
((
Inf 0

)
,A
)
is observable (which is generic, see Anderson et al. [2012b]).

Note that the subset de�ned by the assumptions listed above is generic in Θ.

We commence from the population spectral density for the observed blocked process

(ỹt)t∈2Z. Then we determine a stable and miniphase spectral factor. For factorization of

rational spectral densities see Rozanov [1967], Hannan [1970], Hannan and Deistler [2012].

Realizing this factor gives us matrices Āb and C̄b which are similar to Ab and Cb according to

Theorems 3.2.2 and 3.2.3.
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We are left with the task to �nd the root Ā = T−1AT of the matrix Āb = Ā2 and to �nd

the transformation T corresponding to basis change to get A = TĀT−1.

For this purpose, we write A in Jordan normal form as A = Q1Λ1Q
−1
1 where Λ1 =

diag(J1, ..., Jnp), Ji are the Jordan blocks of A and Q1 = (q1, .., qnp) where qi are the eigenvec-

tors or generalized eigenvectors respectively. In the exact same manner we write A2 in Jordan

normal form as A2 = Q2Λ2Q
−1
2 . Note that since Ap is non-singular and for eigenvalues λi 6= λj

of A λ2
i 6= λ2

j holds the block sizes of the Jordan blocks of A and A2 are the same which follows

from Lemma 3.2.1. Therefore we know which columns of Q2 are eigenvectors both of A and

A2.

Since we computed in the �rst step Āb = T−1Q2Λ2Q
−1
2 T we can determine T−1Q2. There-

fore we can compute

C̄bT
−1Q2 =

( In 0 0 · · · 0
)
A2(

Inf 0 0 · · · 0
)
A

TT−1Q2(3.2.12)

=

( In 0 · · · 0
)
A2Q2(

Inf 0 · · · 0
)
AQ2

 .

Since we know which columns of Q2 are eigenvectors of both A and A2 by looking at the

submatrix ( Inf 0 · · · 0
)
A2Q2(

Inf 0 · · · 0
)
AQ2


of (3.2.12) we can determine the eigenvalues λi of A: For a column q2

i of Q2 which is an

eigenvector of both A and A2, we obtain(
Inf 0 · · · 0

)
A2q2

i =
(
Inf 0 · · · 0

)
λ2
i q

2
i

and (
Inf 0 · · · 0

)
Aq2

i =
(
Inf 0 · · · 0

)
λiq

2
i .

Observability of
((
Inf 0

)
,A
)
guarantees that the �rst nf components of q2

i are not all zero

and thus we obtain λi.

So far we described how to determine Λ1. To determine Ā = T−1Q1Λ1Q
−1
1 T we are

left with the task to determine T−1Q1. Note �rst that the Jordan normal form of Λ2
1 is
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Λ2
1 = Q3Λ2Q

−1
3 . It is easy to see that

A2 = Q1Λ2
1Q
−1
1

= Q1Q3Λ2Q
−1
3 Q−1

1

= Q2Λ2Q
−1
2

and therefore a basis Q1 of appropriate eigenvectors and generalized eigenvectors of A is

transformed through basis change with transformation matrixQ3 into a basisQ2 of appropriate

eigenvectors and generalized eigenvectors of A2. Thus since we can compute T−1Q2 and Q3

we can compute

T−1Q1 = T−1Q2Q
−1
3 .

Let us partition T as

T =


T1

T2

...

Tp

 , Ti ∈ Rn×np.

Ā can be calculated as follows:

(3.2.13) Ā = T−1P1Λ1P
−1
1 T = T−1AT

From (3.2.13) we obtain

a1T1 + a2T2 + ...+ apTp = T1Ā

T1 = T2Ā

T2 = T3Ā

...

Tp−1 = TpĀ.

Using the fact that we know T1 from

(3.2.14) C̄bĀ
−1
b =

(
In 0 0 · · · 0

0
(
Inf , 0nf×ns

)
0 · · · 0

)
A2TT−1A−2T =

(
T1

∗

)
we can calculate the remaining Ti from Ti = T1Ā

−i+1, i = 2, .., p. Finally we obtain the desired

companion form A = TĀT−1 where the free system parameters are in the �rst n rows and are

uniquely determined.

Thus we have shown:
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Theorem 3.2.5. Under the assumptions of Theorem 3.2.2 and the additional assumptions

that the pair
((

Inf 0 · · · 0
)
,A
)
is observable the system parameters (a1, . . . , ap) are

uniquely determined from those population second moments which can be observed in principle.

Note that the assumptions of Theorem 3.2.5 do not determine a largest set where iden-

ti�ability holds. Consider again the set described in Theorem 3.1.1 for the two dimensional

AR(1) case. For ass = 0, asf = 0, the assumption that ap is non-singular is violated.

Given the system parameters, the noise parameters can be determined as in Subsection

2.3.

The approach via blocking is again constructive as is the approach via XYW, as we have

proposed an algorithm for obtaining a unique parameter which is identi�able in Θ. It is

straightforward to show that θ depends on the second moments of (ỹt)t∈2Z in a continuous way:

In an analogous way as in Hannan and Deistler [2012], Chapter 2, the continuous dependence

of Āb and C̄b on these second moments can be seen and by the procedure described above, θ

is continuously dependent on Āb and C̄b.

Note that
(
Āb, C̄b

)
is contained in an Euclidean space of dimension np(np+ n+ nf ) and

the corresponding innovation covariance of (ỹt)t∈2Z has (n+nf )(n+nf +1)/2 free parameters

whereas θ has n2p+ n(n+ 1)/2 free parameters see Section 3.1.

We have not been able to describe a relation between the generic set corresponding to

XYW and the generic set corresponding to blocking.

One advantage for blocking, as has been said already, seems to be that all second moments

which can be observed in principle are used in contrast to the case of XYW. Accordingly, one

could hope for better results when working with real data.

3.3. Generic Identi�ability for Prescribed Column Degrees

In this section we consider blocking for the case that Γp and ap may be singular. As we

already mentioned the case that Γp is singular is of special interest for us as singular AR

models can be used as models for static factors in GDFMs.

As in Section 2.6 we are interested in identi�ability of mixed frequency AR systems for

the case that the column degrees of a(z) rather than the degree of a(z) are prescribed.

Again, let p1, . . . , pn denote these prescribed column degrees and again let Θ(p1,...,pn) denote

the subspace of Θ where additionally the highest degree of the respective ith column of a(z) is

bounded by pi and let (ā1, . . . , āp) denote all columns of (a1, . . . , ap) which are not prescribed

to be zero.

Nonzero Column Degrees. For the moment, let us assume pi > 0. Recall the quasi

companion form (1.4.3) stated in Section 1.4.2. Also recall that this state space system is
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minimal if and only if Γ̄p > 0 and the column end matrix of a(z),
(

[ap1 ]�,1 , . . . , [apn ]�,n

)
, is

non-singular which is generic in Θ(p1,...,pn).

Analogously to Section 3.2 we can write down the state space representation for (Yt)t∈2Z =(
yt

yt−1

)
t∈2Z

x̄t+1 = Ā2x̄t−1 +
(
B̄ ĀB̄

)( εt

εt−1

)
(3.3.1)

Yt =

(In 0 . . . 0
)
Ā2(

In 0 . . . 0
)
Ā

 x̄t−1 +

(
b ā1b

0 b

)(
εt

εt−1

)

Clearly, the system (3.3.1) is minimal if and only if (1.4.3) is minimal. For the blocked

observed process (ỹt)t∈2Z =

(
yt

yft−1

)
t∈2Z

, we obtain the following state space representation

x̄t+1 = Ā2x̄t−1 +
(
B̄ ĀB̄

)( εt

εt−1

)
(3.3.2)

ỹt =

(In 0 . . . 0
)
Ā2(

Inf 0 . . . 0
)
Ā

 x̄t−1 +

b ā1b

0
(
Inf 0

)
b

( εt

εt−1

)

which is not miniphase.

We want to show that generically a transfer function corresponding to system (3.3.2) has

the same McMillan degree as a causal, stable and miniphase transfer function for (ỹt)t∈2Z.

Theorem 3.3.1. For ((ā1, . . . , āp) ,Σ) ∈ Θ(p1,...,pn), pi > 0, where the column end matrix

of a(z) is non-singular and Γ̄p > 0 and if for eigenvalues of Ā such that λi 6= λj it follows that

λ2
i 6= λ2

j holds, the McMillan degree of a causal and miniphase spectral factor k(z2) of fỹ(z
2)

is equal to
∑

i pi.

Proof. The proof is completely analogous to the proof of Theorem 3.2.2.

Note that since pi > 0

γ(k) =
(
In 0

)
Ext+kxTt

(
In

0

)
=
(
In 0

)
AkΓp

(
In

0

)

=
(
In 0

)
Ex̄t+kx̄Tt

(
In

0

)
=
(
In 0

)
ĀkΓ̄p

(
In

0

)
.

For ease of notation we let m =
∑

i pi. Thus let us look at the Hankel matrix Hγm =
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(
In 0

)
Ā2Γ̄p

(
In

0

) (
In 0

)
Ā3Γ̄p

(
Inf

0

) (
In 0

)
Ā4Γ̄p

(
In

0

) (
In 0

)
Ā5Γ̄p

(
Inf

0

)
· · ·

(
Inf

0
)
ĀΓ̄p

(
In

0

) (
Inf

0
)
Ā2Γ̄p

(
Inf

0

) (
Inf

0
)
Ā3Γ̄p

(
In

0

) (
Inf

0
)
Ā4Γ̄p

(
Inf

0

)
· · ·

(
In 0

)
Ā4Γ̄p

(
In

0

) (
In 0

)
Ā5Γ̄p

(
Inf

0

) (
In 0

)
Ā6Γ̄p

(
In

0

) (
In 0

)
Ā7Γ̄p

(
Inf

0

)
(
Inf

0
)
Ā3Γ̄p

(
In

0

) (
Inf

0
)
Ā4Γ̄p

(
Inf

0

) (
Inf

0
)
Ā5Γ̄p

(
In

0

) (
Inf

0
)
Ā6Γ̄p

(
Inf

0

)
.
.
.

.

.

.
.
.
.

.

.

.(
In 0

)
Ā2mΓ̄p

(
In

0

) (
In 0

)
Ā2m+1Γ̄p

(
Inf

0

) (
In 0

)
Ā2m+2Γ̄p

(
In

0

) (
In 0

)
Ā2m+3Γ̄p

(
Inf

0

)
· · ·

(
Inf

0
)
Ā2m−1Γ̄p

(
In

0

) (
Inf

0
)
Ā2mΓ̄p

(
Inf

0

) (
Inf

0
)
Ā2m+1Γ̄p

(
In

0

) (
Inf

0
)
Ā2m+2Γ̄p

(
Inf

0

)
· · ·

· · ·
(
In 0

)
Ā2mΓ̄p

(
In

0

) (
In 0

)
Ā2m+1Γ̄p

(
Inf

0

)

· · ·
(
Inf

0
)
Ā2m−1Γ̄p

(
In

0

) (
Inf

0
)
Ā2mΓ̄p

(
Inf

0

)
(
In 0

)
Ā2m+2Γ̄p

(
In

0

) (
In 0

)
Ā2m+3Γ̄p

(
Inf

0

)
(
Inf

0
)
Ā2m+1Γ̄p

(
In

0

) (
Inf

0
)
Ā2m+2Γ̄p

(
Inf

0

)
.
.
.

.

.

.

· · ·
(
In 0

)
Ā4m−2Γ̄p

(
In

0

) (
In 0

)
Ā4m−1Γ̄p

(
Inf

0

)

· · ·
(
Inf

0
)
Ā4m−3Γ̄p

(
In

0

) (
Inf

0
)
Ā4m−2Γ̄p

(
Inf

0

)



We look at the following submatrix of Hγm:

(
In 0

)
Ā2Γ̄p

(
In

0

) (
In 0

)
Ā4Γ̄p

(
In

0

)
· · ·

(
In 0

)
Ā2mΓ̄p

(
In

0

)
(
In 0

)
Ā4Γ̄p

(
In

0

) (
In 0

)
Ā6Γ̄p

(
In

0

)
· · ·

(
In 0

)
Ā2m+2Γ̄p

(
In

0

)
(
In 0

)
Ā6Γ̄p

(
In

0

) (
In 0

)
Ā8Γ̄p

(
In

0

)
· · ·

.

.

.

.

.

.(
In 0

)
Ā2mΓ̄p

(
In

0

) (
In 0

)
Ā2m+2Γ̄p

(
In

0

)
· · ·

(
In 0

)
Ā4m−2Γ̄p

(
In

0

)



=



(
In 0

)
Ā2(

In 0
)
Ā4(

In 0
)
Ā6

.

.

.(
In 0

)
Ā2m


(

Γ̄p

(
In

0

)
Ā2Γ̄p

(
In

0

)
Ā4Γ̄p

(
In

0

)
· · · Ā2m−2Γ̄p

(
In

0

))
= OC = H
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Since we assumed that the eigenvalues are nonzero, λi 6= 0, and for eigenvalues λi 6= λj of

A λ2
i 6= λ2

j holds, it is easy to see from Lemma 3.2.1 that qi is an eigenvector of Ā2 if and only

if qi is an eigenvector of Ā.
Observe that O is always of full column rank if the column end matrix of a(z) is non-

singular. Again we use the PBH Test, Theorem 1.1.3, and the fact that for any right eigenvector

q′i of Ā the �rst n components are not all equal to zero, as shown in Remark 1.4.7:(Ā2 − λ2
i I
)(

In 0
)
Ā2

 qi =

(
0[

λ2
i qi
]
1:n
6= 0

)

Also observe that C is always of full column rank if the column end matrix of a(z) is

non-singular and Γ̄p > 0: Again we are using the PBH Test, Theorem 1.1.3:

We have to test for all left eigenvectors qi of Ā2 or equivalently Ā that

q′i

((
Ā2 − λ2

i I
)
, Γ̄p

(
In

0

))
=

(
0, q′iΓ̄p

(
In

0

))
6= 0

Thus if qi is orthogonal to Γ̄p

(
In

0

)
also

q′iĀjΓ̄p

(
In

0

)
= 0, ∀j ∈ N,

holds which implies q′iΓ̄p = 0 which is in contradiction to Γ̄p > 0.

Therefore no eigenvector qi of Ā2 is orthogonal to Γ̄p

(
In

0

)
.

Now, according to Theorem 2.3.2 in Hannan and Deistler [2012] H has rank
∑

i pi. �

For obtaining the high frequency parameters (ā1, . . . , āp), we end up with a very similar

procedure as in the case that only p is prescribed:

We need the following assumptions:

• The column end matrix of a(z) is non-singular.

• Γ̄p > 0.

• For eigenvalues λi 6= λj of Ā, λ2
i 6= λ2

j holds.

• The pair
((
Inf 0 . . . 0

)
, Ā
)
is observable (which is generic, see Anderson et al.

[2012b] and Remark 1.4.7).

Note that the subset de�ned by the assumptions listed above is generic in Θ(p1,...,pn).
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Realizing a stable and miniphase spectral factor of the population spectral density for the

observed blocked process (ỹt)t∈2Z gives us matrices Āb and C̄b which are similar to Ā2 and(In 0 . . . 0
)
Ā2(

Inf 0 . . . 0
)
Ā

, see Theorem 3.2.3:

Āb = T−1Ā2T

and

C̄b =

(In 0 . . . 0
)
Ā2(

Inf 0 . . . 0
)
Ā

T.

Exactly as in the regular case, we can reconstruct the root Ā = T−1ĀT of Āb since we assume

that for eigenvalues of Ā such that λi 6= λj it follows that λ2
i 6= λ2

j holds and
((
Inf 0

)
, Ā
)

is observable.

Let us partition the
∑

i pi ×
∑

i pi matrix T as

T =


T1

T2

...

Tp


where the number of rows of Ti corresponds to the number of columns in āi.

As in Section 3.2 we can get T1, the �rst n rows of T , via

C̄bĀ
−1
b =

(In 0 . . . 0
)
Ā2(

Inf 0 . . . 0
)
Ā

TT−1Ā−2T =

(
T1

∗

)

Let S = diag(Si) as in Remark 1.4.7 and note that pi > 0 implies S1 = In. Then

Ā = SAS′ =



ā1 ā2 · · · āp−2 āp−1 āp

S2 0 0

0 S3S
′
2

. . .

Sp−1S
′
p−2 0

0 0 SpS
′
p−1 0


.

Thus we can reconstruct T and subsequently Ā from:
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ā1T1 + ā2T2 + ...+ āpTp = T1Ā(3.3.3)

S2T1 = T2Ā

S3S
′
2T2 = T3Ā

...

SpS
′
p−1Tp−1 = TpĀ

We obtain the desired companion form Ā = TĀT−1 where the free system parameters are in

the �rst n rows and are uniquely determined in Θ(p1,...,pn).

Zero Column Degrees. For the case that there is an i such that pi = 0, let us assume

that Γ̄p > 0 and the column end matrix of S1ā(z) is non-singular. These conditions imply

minimality of (1.4.3), see Remark 1.4.7.

The state space systems of (Yt)t∈2Z =

(
yt

yt−1

)
t∈2Z

and (ỹt)t∈2Z =

(
yt

yft−1

)
t∈2Z

are slightly

di�erent from the case of nonzero column degrees, namely

x̄t+1 = Ā2x̄t−1 +
(
B̄ ĀB̄

)( εt

εt−1

)
(3.3.4)

Yt =

(
(ā1, . . . , āp) Ā
(ā1, . . . , āp)

)
x̄t−1 +

(
b ā1b

0 b

)(
εt

εt−1

)
and

x̄t+1 = Ā2x̄t−1 +
(
B̄ ĀB̄

)( εt

εt−1

)
(3.3.5)

ỹt =

 (ā1, . . . , āp) Ā(
Inf 0

)
(ā1, . . . , āp)

 x̄t−1 +

b ā1b

0
(
Inf 0

)
b

( εt

εt−1

)
.

Note that if a column degree is zero, since (ā1, . . . , āp) = (a1, . . . , ap)S
′ contains rows

which are not contained in Ā = SAS′,

(
(ā1, . . . , āp) Ā
(ā1, . . . , āp)

)
and

 (ā1, . . . , āp) Ā(
Inf 0

)
(ā1, . . . , āp)

 only

contain as a submatrix the matrices

(In−s 0 . . . 0
)
Ā2(

In−s 0 . . . 0
)
Ā

 and

(In−s 0 . . . 0
)
Ā2(

Inf−sf 0 . . . 0
)
Ā

,
respectively where s again is the number of i such that pi = 0 and where sf is the number of

fast components such that pi = 0.
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Let the (n− s)-dimensional process yrt contain all components of yt with prescribed column

degree pi > 0, yrt = S1yt.

We can obtain a quasi companion state space representation for (yrt )t∈Z as

x̄t+1 = Āx̄t + B̄rε̄t(3.3.6)

yrt = S1 (ā1, . . . , āp) x̄t + b̄ε̄t

where b̄ε̄t = S1bεt with b̄b̄′ = S1bb
′S1, where b̄ has minimal column degree, r say, and Σε̄ = Ir,

and where
(
B̄r
)′

=
(
b̄′ 0

)
. As yrt clearly is an AR process and b̄ is of full column rank, (3.3.6)

is miniphase.

Note that (3.3.6) is minimal if and only if Γ̄p > 0 and the column end matrix of S1ā(z) is

non-singular.

A stable and miniphase state space system for (Y r
t )t∈2Z =

(
yrt

yrt−1

)
t∈2Z

is given by

x̄t+1 = Ā2x̄t−1 +
(
B̄r, ĀB̄r

)( ε̄t

ε̄t−1

)
(3.3.7)

Y r
t =

(In−s 0 . . . 0
)
Ā2(

In−s 0 . . . 0
)
Ā

 x̄t−1 +

(
b̄ ā1b̄

0 b̄

)(
ε̄t

ε̄t−1

)

and a stable but not miniphase state space system for (ỹrt )t∈2Z =

(
yrt

yrft−1

)
t∈2Z

is given by

x̄t+1 = Ā2x̄t−1 +
(
B̄r, ĀB̄r

)( ε̄t

ε̄t−1

)
(3.3.8)

ỹrt =

(In−s 0 . . . 0
)
Ā2(

Inf−sf 0 . . . 0
)
Ā

 x̄t−1 +

b̄ ā1b̄

0
(
Inf−sf 0

)
b̄

( ε̄t

ε̄t−1

)
.

Both systems (1.4.3) and (3.3.6) are stable and miniphase. Thus for both (yt)t∈Z and

(yrt )t∈Z the McMillan degree of a causal and miniphase transfer function is
∑n

i=1 pi. As is

easily seen, therefore also for both (Yt)t∈2Z and (Y r
t )t∈2Z the McMillan degree of a causal and

miniphase transfer function is
∑n

i=1 pi. Since (ỹt)t∈2Z and (ỹrt )t∈2Z are subprocesses of (Yt)t∈2Z

(and (Y r
t )t∈2Z, respectively), the McMillan degrees of (ỹt)t∈2Z and (ỹrt )t∈2Z smaller or equal to∑n

i=1 pi which can easily be seen from the proof of Theorem 3.2.2 or also 3.3.1 since a Hankel

matrix of covariances of a process e.g. (Yt)t∈2Z, contains the Hankel matrix of covariances of

any subprocess, e.g. (ỹt)t∈2Z. Under the assumptions that Γ̄p > 0 and the column end matrix

of S1ā(z) is non-singular and for eigenvalues λi 6= λj of Ā λ2
i 6= λ2

j holds, using Theorem 3.3.1
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we obtain that a causal miniphase transfer function for (ỹrt )t∈2Z has McMillan degree
∑n

i=1 pi

and since (ỹrt )t∈2Z is a subprocess of (ỹt)t∈2Z also a causal miniphase transfer function for

(ỹt)t∈2Z has McMillan degree
∑n

i=1 pi .

Thus Theorem 3.2.3 tells us that realizing a stable and miniphase spectral factor of the

population spectral density for the observed blocked process (ỹt)t∈2Z , e.g. by the subspace

algorithm proposed in Section 1.5.2, gives us matrices Āb and C̄b such that

Āb = T−1Ā2T

C̄b =

 (ā1, . . . , āp) Ā(
Inf 0

)
(ā1, . . . , āp)

T

for a suitable non-singular matrix T .

C̄b contains as a submatrix (In−s 0 . . . 0
)
Ā2(

Inf−sf 0 . . . 0
)
Ā

T

As before, we can reconstruct the root Ā = T−1ĀT of Āb if we assume that for eigenvalues of

Ā such that λi 6= λj it follows that λ2
i 6= λ2

j holds and
((
Inf−sf 0 . . . 0

)
, Ā
)
is observable.

Let T be partitioned as in the case of nonzero prescribed column degrees. We can compute(In−s 0 . . . 0
)
Ā2(

Inf−sf 0 . . . 0
)
Ā

TT−1Ā−2T =
(
T1

)
From equation (3.3.3) we obtain the remaining rows of T . Subsequently from the now

known matrices C̄b, T−1Ā−1T and T−1 we can compute the system parameters (ā1, . . . , āp):

C̄bT
−1Ā−1T T−1 =

 (ā1, . . . , āp) Ā(
Inf 0

)
(ā1, . . . , āp)

TT−1Ā−1TT−1

=
(

(ā1, . . . , āp)
)
.

Thus, for prescribed column degrees we have proved a very similar result to the case that

only the degree p of a(z) is given:

Theorem 3.3.2. For ((ā1, . . . , āp) ,Σ) ∈ Θ(p1,...,pn) where the column end matrix of S1a(z)

is non-singular, Γ̄p > 0, if for eigenvalues of Ā such that λi 6= λj it follows that λ2
i 6=

λ2
j holds, nf − sf > 0, and the pair

((
Inf−sf 0 · · · 0

)
, Ā
)
is observable the system
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parameters (ā1, . . . , āp) are uniquely determined from those population second moments which

can be observed in principle.

As in the case that only p is speci�ed, given the system parameters, the noise parameters

can be determined as in Subsection 2.3.

3.4. Generic Identi�ability for AR(p) Systems with General Sampling Frequency

N

In this section we are shortly describing how to extend the results of Section 3.2 to the

case that the sampling frequency of the slow components is N > 2. Again we assume that

Γp > 0 and that ap is non-singular.

The blocked process is (Yt)t∈NZ =


yt

yt−1

...

yt−N+1


t∈NZ

. Analogously to Section 3.2 the state

spaces for t ∈ NZ of (yt)t∈Z and (Yt)t∈NZ are the same and both processes are AR processes

with minimal state dimension np. A minimal, stable and miniphase state space representation

for (Yt)t∈NZ is

xt+1 = AN︸︷︷︸
Ab

xt−N+1 +
(
B,AB, . . . ,AN−1B

)︸ ︷︷ ︸
Bb


εt

εt−1

...

εt−N+1

(3.4.1)

Yt =



(
In 0 · · · 0

)
AN(

In 0 · · · 0
)
AN−1

...(
In 0 · · · 0

)
A

xt−N+1

+



(
In 0 · · · 0

) (
B,AB, . . . ,AN−1B

)(
In 0 · · · 0

) (
0,B,AB, . . . ,AN−2B

)
...(

In 0 · · · 0
)

(0, . . . , 0,B)




εt

εt−1

...

εt−N+1

 .(3.4.2)
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Now the blocked observed process is (ỹt)t∈NZ =


yt

yft−1
...

yft−N+1


t∈NZ

. A state space represen-

tation is

xt+1 = Abxt−N+1 +Bb


εt

εt−1

...

εt−N+1

(3.4.3)

ỹt =



(
In 0 · · · 0

)
AN(

Inf 0 · · · 0
)
AN−1

...(
Inf 0 · · · 0

)
A


︸ ︷︷ ︸

Cb

xt−N+1

+



(
In 0 · · · 0

) (
B,AB, . . . ,AN−1B

)(
Inf 0 · · · 0

) (
0,B,AB, . . . ,AN−2B

)
...(

Inf 0 · · · 0
)

(0, . . . , 0,B)


︸ ︷︷ ︸

Db


εt

εt−1

...

εt−N+1

 .(3.4.4)

The spectral factor of the spectral density fỹ
(
zN
)
of (ỹt)t∈NZ corresponding to (3.4.3),

(3.4.4) is causal and stable but not miniphase. Analogously to Section 3.2 we want to show that

a causal, stable and miniphase spectral factor k
(
zN
)

=

(
C̄b

(
Inp
(
zN
)−1 − Āb

)−1
B̄b + D̄b

)
of fỹ

(
zN
)
has (generically) McMillan degree np. Then we have from Theorem 3.2.3 that

Āb = T−1AbT

C̄b = CbT

Note that the next theorem here states a slightly weaker result as Theorem 3.2.2 since we

assume that A is diagonalizable.
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Theorem 3.4.1. For ((a1, . . . , ap) ,Σν) ∈ Θ, if ap non-singular, Γp > 0, A diagonalizable,

and if for eigenvalues of A such that λi 6= λj it follows that λNi 6= λNj holds, the McMillan

degree of a causal and miniphase spectral factor k
(
zN
)
of fỹ(z

N ) is equal to np.

Proof. The proof is analogous to the proof of Theorem 3.2.2. Again we consider the

Hankel matrix of covariances

Hγnp = E


ỹt+N
...

ỹt+npN

(ỹ′t · · · ỹ′t−(np−1)N

)
∈ R(n+(N−1)nf )np×(n+(N−1)nf )np.

This matrix contains as a submatrix

(
In 0

)
ANΓp

(
In

0

) (
In 0

)
A2NΓp

(
In

0

)
· · ·

(
In 0

)
AnpNΓp

(
In

0

)
(
In 0

)
A2NΓp

(
In

0

) (
In 0

)
A3NΓp

(
In

0

)
· · ·

(
In 0

)
A(np+1)NΓp

(
In

0

)
(
In 0

)
A3NΓp

(
In

0

) (
In 0

)
A4NΓp

(
In

0

)
· · ·

...
...(

In 0
)
AnpNΓp

(
In

0

) (
In 0

)
A(np+1)NΓp

(
In

0

)
· · ·

(
In 0

)
A(2np−1)NΓp

(
In

0

)



=



(
In 0

)
AN(

In 0
)
A2N(

In 0
)
A3N

...(
In 0

)
AnpN


(

Γp

(
In

0

)
ANΓp

(
In

0

)
A2NΓp

(
In

0

)
· · · A(np−1)NΓp

(
In

0

))
= OC = H

Since we assumed that A is diagonalizable and the eigenvalues are nonzero, λi 6= 0, and

for eigenvalues λi 6= λj of A λNi 6= λNj holds, it is easy to see that qi is an eigenvector of AN

if and only if qi is an eigenvector of A. Then completely analogously to the proof of Theorem

3.2.2 we can show that O and C have full rank.
To show that O is of full column rank we again use the PBH Test, Theorem 1.1.3, and the

fact that for any right eigenvector qi of A the �rst n components are not all equal to zero, as

shown in Anderson et al. [2012b], Lemma 2:(AN − λNi I)(
In 0

)
AN

 qi =

(
0[

λNi qi
]
1:n
6= 0

)

Again using the PBH Test, we show that C is of full row rank if and Γp > 0:
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We have to test for all left eigenvectors qi of AN or equivalently A that

q′i

((
AN − λNi I

)
,Γp

(
In

0

))
=

0, q′i


γ(0)
...

γ(1− p)


 6= 0

Thus if qi is orthogonal to


γ(0)
...

γ(1− p)

 also

q′iAj


γ(0)
...

γ(1− p)

 = 0, ∀j ∈ N,

holds which implies q′iΓp = 0 which is in contradiction to Γp > 0.

Therefore for all eigenvectors qi of AN0, q′i


γ(0)
...

γ(1− p)


 6= 0.

Now, according to Theorem 2.3.2 in Hannan and Deistler [2012] H has rank np. �

The set of θ such that A is diagonalizable is generic. This result is implied by the following

lemma:

Lemma 3.4.2. The set of θ such that the eigenvalues of A are simple is generic in Θ.

Proof. The eigenvalues of A are the inverse of the zeros of det a(z). Thus we can prove

the lemma by showing that generically the zeros of det a(z) are simple. Note that ap is non-

singular on a generic subset of Θ. On this generic subset the degree of det a(z) is np.

Clearly, zi is a zero of det a(z) with multiplicity larger than one if and only zi is also a

zero of the derivative of det a(z). Therefore we use the Sylvester matrix of det a(z) and its

derivative, see e.g. Kailath [1980] p 142. The nonzero elements of the Sylvester matrix are the

coe�cients of these two polynomials. The determinant of this matrix, the so-called Sylvester's

resultant, is zero if and only if there is a common zero of det a(z) and its derivative. If we

consider ai, i = 1, . . . , p diagonal, it is easy to �nd a special choice of (a1, . . . , ap) such that the

resultant is nonzero. Since the resultant is polynomial in (a1, . . . , ap) it is generically nonzero

and the lemma is proved. �

The procedure for obtaining the high frequency parameters (a1, . . . , ap):
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We need the following assumptions:

• ap is non-singular.
• Γp > 0.

• A is diagonalizable.

• For eigenvalues λi 6= λj of A, λNi 6= λNj holds.

• The pair
((
Inf 0 . . . 0

)
,A
)
is observable (which is generic, see Anderson et al.

[2012b]).

Note that the subset de�ned by the assumptions listed above is generic in Θ.

Realizing a stable and miniphase spectral factor of the population spectral density fỹ
(
zN
)

for the observed blocked process (ỹt)t∈NZ gives us matrices Āb and C̄b which are similar to Ab
and Cb according to Theorems 3.4.1 and 3.2.3.

We are left with the task to �nd the root Ā = T−1AT of the matrix Āb = ĀN and to �nd

the transformation T corresponding to basis change to get A = T ĀT−1.

For the generic case that A is diagonalizable, the eigendecomposition of A is A = QΛQ−1

where Λ = diag(λ1, ..., λnp), and Q = (q1, .., qnp) where qi are the eigenvectors. Now it

immediately follows that Ā = T−1QΛQ−1T and Āb = T−1QΛNQ−1T , which is the eigen-

decomposition of Āb. Note that T−1Q and ΛN and can be determined from Āb. Now we

have

C̄bT
−1Q =



(
In 0 0 · · · 0

)
AN

...(
Inf 0 0 · · · 0

)
A2(

Inf 0 0 · · · 0
)
A

TT−1Q(3.4.5)

=



(
In 0 0 · · · 0

)
ANQ

...(
Inf 0 0 · · · 0

)
A2Q(

Inf 0 0 · · · 0
)
AQ

 .

Since Q is a matrix of eigenvectors for both A and A2, by looking at the submatrix( Inf 0 · · · 0
)
A2Q(

Inf 0 · · · 0
)
AQ


of (3.4.5) we can determine the eigenvalues λi of A analogously to Section 3.2.
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Ā can be determined as follows:

(3.4.6) Ā = T−1QΛQ−1T = T−1AT

We partition T as before: T ′ =
(
T ′1 T ′2 · · · T ′p

)′
, Ti ∈ Rn×np. Using the fact that we know

T1 from

C̄bĀ
−1
b =



(
In 0 0 · · · 0

)
AN

...(
Inf 0 0 · · · 0

)
A2(

Inf 0 0 · · · 0
)
A

TT−1A−NT(3.4.7)

=


T1

...

∗


we can calculate the remaining Ti as in Section 3.2 from Ti = T1Ā−i+1, i = 2, .., p. Finally we

obtain the desired companion form A = T ĀT−1 where the free system parameters are in the

�rst n rows and are uniquely determined.

Thus we have shown:

Theorem 3.4.3. Under the assumptions of Theorem 3.4.1 and the additional assumptions

that that the pair
((

Inf 0 · · · 0
)
,A
)
is observable the system parameters (A1, . . . Ap) are

uniquely determined from those population second moments which can be observed in principle.

Given the system parameters, the noise parameters can be determined as in Subsection

2.3.



Part 3

GDFMs Single and Mixed Frequency





CHAPTER 4

Generalized Linear Dynamic Factor Models (GDFMs)

In the last part of the thesis we consider generalized linear dynamic factor models (GDFMs)

which were a great incentive for us to closely investigate singular AR models. Singular AR

models appear as models for the latent variables as well as for the static factor which will be

explained below.

Factor models are a useful instrument when dealing with high dimensional data. In mode-

ling high dimensional time series we usually face the problem that the number of parameters

of a model used to describe the series is proportional to the squared cross-sectional dimension

whereas the data only grows linearly in the cross-sectional dimension (and of course linearly in

the time dimension). Factor models overcome this problem by condensing not only information

which is contained in the time dimension but also information contained in the cross-sectional

dimension and thus being able to reduce the number of parameters such that they depend

only linearly on the cross-sectional dimension. As a trade o� assumptions on the dependence

in the cross-sectional dimension have to be made, which will ensure some sort of co-movement

of the components of the time series. The time series can be explained by common factors

plus some noise.

As classical factor models for many applications turn out to pose too strict assumptions

on the structure of the noise, i.e. a diagonal covariance matrix, the GDFMs, which are

a generalization of linear dynamic factor models, see e.g. Geweke [1977], Sargent and Sims

[1977], Scherrer and Deistler [1998], and generalized static factor models, see e.g. Chamberlain

and Rothschild [1983], Chamberlain [1983], prove to be more apt in many situations as they

allow for cross-sectional dependence of the noise components, i.e. a non-diagonal covariance

matrix.

GDFMs have been introduced by two di�erent groups, a European group around Forni,

Lippi, Hallin and Reichlin, see Forni et al. [2000], Forni and Lippi [2001], Forni et al. [2004,

2005], and a U.S. American group, Stock and Watson, see Stock and Watson [2002a,b, 2005].

In this thesis we consider the GDFMs introduced by Forni, Lippi, Hallin and Reichlin. In

this chapter we give a short presentation of GDFMs as given in Deistler et al. [2010].

95
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4.1. GDFMs: De�nitions and Assumptions

In this section we introduce a set of assumptions de�ning the generalized linear dynamic

factor models we are considering in this thesis.

Let us denote the cross-sectional dimension by n and the time dimension by T .

The fundamental idea of a factor model is to decompose the observations znt into the so-

called latent variables or common component ẑnt and the idiosyncratic noise or idiosyncratic

component ξnt

znt = ẑnt + ξnt

where the latent variables contain the co-movement, the similarities of all the observations

and are �strongly dependent� and the idiosyncratic noise contains the information which is

speci�c for a single (or for GDFMs only a few) time series and are �weakly dependent�. (We

will de�ne the terms weak and strong dependence below.) Then we want to write the latent

variables as ẑnt = Λyt where Λ ∈ Rn×r is the so-called static factor loading matrix and yt are

the static factors with r � n. The appeal of the factor model is clearly that modeling the

factors instead of the high dimensional latent variables is much more convenient.

Of course assumptions have to be made to guarantee that the observed process (znt ) allows

for a (unique) GDFM representation.

We assume that (ẑnt ) and (ξnt ) are wide sense stationary with zero mean

Eẑnt = Eξnt = 0, ∀t ∈ Z,

both have absolutely summable covariances in order to ensure the existence of the spectral

densities fnẑ (λ) and fnξ (λ), λ ∈ [−π, π], and are mutually orthogonal

Eẑnt (ξns )′ = 0, ∀s, t ∈ Z,

an thus

fnz (λ) = fnẑ (λ) + fnξ (λ)

holds.

To allow for a more general covariance structure of the idiosyncratic noise ξnt (than a

classical factor model) and still have some sort of factor model representation we have to let

T as well as n tend to in�nity. Thus we are looking at a sequence of GDFMs where the

index is the cross-sectional dimension n. Therefore the following assumption on our process

of observations is useful:
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Assumption 4.1.1. The doubly indexed sequence (znt )n∈Nt∈Z corresponds to a nested sequence

of models in the sense that the one dimensional components ẑit and ξit of ẑ
n
t and ξnt do not

depend on n for i ≤ n.

Assumption 4.1.2. The spectral density fnẑ is rational and there is a n0 such that ∀n ≥ n0

fnẑ has constant rank q < n on [−π, π].

Assumption 4.1.3. There is a n0 such that ∀n ≥ n0 the rank q of fnẑ is independent of n.

The last two assumptions assure that ∀n ≥ n0 the latent variables can be modeled by

a singular ARMA model which is strictly miniphase with q dimensional innovations from a

certain n0 onwards.

Assumption 4.1.4. The dimension, m say, of a minimal state space realization of a stable

and miniphase spectral factor of fnẑ is independent of n from a certain n0 onwards.

This assumption constrains the dynamics of the model, in fact it constrains the McMillan

degree of a causal, stable and miniphase transfer function for the latent variables from a certain

n0 onwards.

Weak and strong dependence: Let us de�ne µj(λ) , λ ∈ [−π, π], as the function associating

λ with the jth eigenvalue of the spectral density f at λ the, see e.g. Brillinger [1981] Chapter

9 or Forni et al. [2000]. The function µj is called the jth dynamic eigenvalue of f .

Assumption 4.1.5 (weak dependence). The largest dynamic eigenvalue of fnξ is uniformly

bounded in λ and n.

Note that this assumption allows for serial dependence of (ξnt ) as well as for some depen-

dence the cross-section.

Assumption 4.1.6 (strong dependence). The largest dynamic q eigenvalues of fnẑ diverge

to in�nity for all frequencies as n→∞.

The last two assumptions are crucial in uniquely decomposing the observations znt into

the latent variables ẑnt and the idiosyncratic noise ξnt . Since we allow for some cross-sectional

dependence in ξnt , ẑ
n
t and ξ

n
t are not uniquely identi�able from znt for any �xed n. As mentioned

above, we need n→∞ for a unique decomposition, see Forni and Lippi [2001].

In Forni and Lippi [2001] the authors have also proved the following:

Lemma 4.1.7. Let µzni(λ) denote the ith dynamic eigenvalue of the spectral density fnz (λ)

of process (znt )t∈Z. Then given i for n > i the function µzni(λ) is non-decreasing in n, i.e. ∀λ
µzni(λ) ≤ µz(n+1)i(λ).
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This gives rise to the de�nition of the function µzi (λ) = supn∈N µ
z
ni(λ).

Theorem 4.1.8 (Unique Representation Theorem). The doubly indexed process (znt )n∈Nt∈Z

has a generalized linear dynamic factor model representation if and only if there is a integer q

such that

• µzq(λ) diverges to in�nity a.e. in [−π, π] as n→∞ and

• µzq+1(λ) is essentially bounded as n→∞.

Note that this theorem gives us necessary and su�cient conditions on the nested sequence

of the the spectral density of the observations (znt )t∈Zsuch that the doubly indexed process

(znt )n∈Nt∈Z permits a representation as a generalized dynamic factor models. As we will see later,

the integer q will be the dimension of the so-called minimal dynamic factor.

For ease of notation, from now on we omit the index n.

4.2. Minimal Static Factors of the Latent Variables

As already mentioned, we are interested in modeling the n-dimensional latent variables by

a process of much smaller dimension, the (minimal) static factor process which we de�ne in

the following:

Definition 4.2.1. A process (yt)t∈Z is called a static factor of the n-dimensional process

(ẑt)t∈Z if it has dimension smaller than n and there is a constant matrix Λ such that ẑt =

Λyt,∀t ∈ Z. A minimal static factor is a static factor of least possible dimension.

From Assumption 4.1.2 it follows that there is a minimal, stable and miniphase state space

system with the latent variables as outputs:

xt+1 = Fxt +Gεt+1(4.2.1)

ẑt = Hxt

Note that the system (4.2.1) is a di�erent state space system compared to the systems con-

sidered in Chapter 1 as a minimal state here is a basis of the space spanned by the projec-

tions of the components of y+(t − 1) =
(
y′t, y

′
t+1, . . .

)′
onto the space of present and past

H−y (t) = span
{
y1
t , . . . , y

n
t , y

1
t−1, . . . , y

n
t−1, . . . ,

}
and thus we have no error term in the second

equation of (4.2.1). We call this an overlapping state space system.

Obviously, the state xt is a static factor of ẑt but not necessarily a minimal one. The next

Lemma shows how to determine the dimension of a minimal static factor.
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Lemma 4.2.2. Let (ẑt)t∈Z be a stationary n-dimensional process. Then the dimension of a

minimal static factor is the rank r ≤ n of the zero-lag variance covariance matrix of (ẑt)t∈Z,

Eẑtẑ′t.

Proof. Suppose yt is a static factor with ẑt = Λyt. Then Eẑtẑ′t = ΛEyty′tΛ′ and it follows

that there can be no static factor of dimension less than the rank r of Eẑtẑ′t. Let S be a

selector matrix selecting the �rst linearly independent components of ẑt then yt = Sẑt clearly

is a r-dimensional static factor. �

Let us call the space spanned by the one dimensional components of the minimal static

factor yt the factor space. As is easily seen, the factor space coincides with the space spanned

by the one dimensional components of ẑt. Obviously, any basis of the factor space constitutes

a minimal static factor. Thus without any further restrictions on the factor model, only the

factor space, not the minimal static factor is determined. Any minimal static factors can be

obtained by premultiplying the minimal static factor yt by a non-singular constant matrix R:

ẑt = ΛR−1Ryt, ∀t ∈ Z.

Static Principal Components. Since we do not observe the minimal static factor directly, we

need a procedure for consistently estimating minimal static factors from the observations. In

Stock and Watson [2002a] the authors use static principal component analysis for estimation.

Thus we give a short description of static principal component analysis, see e.g. Jolli�e [2002].

The main idea of principal component analysis is to compress information contained in a

n-dimensional process (zt)t∈Z. We want to �nd a r-dimensional process, in fact a linear

transformation O′1zt of zt such that

minE
(
zt −O′1zt

)′ (
zt −O′1zt

)
subject to O′1O1 = Ir. As it turns out the solution of the minimization problem can be

achieved via eigenvalue decomposition:

Eztz′t = OΛO′ = O1Λ1O
′
1 +O2Λ2O

′
2

where Λ1 contains the r largest eigenvalues of Eztz′t with corresponding (orthonormal) eigen-

vectors O1 and Λ2 contains the n − r smallest eigenvalues of Eztz′t with corresponding (or-

thonormal) eigenvectors O2. Thus the r �rst principal components O′1zt explain as much of

the variance covariance matrix of Eztz′t as possible. When dealing with data Eztz′t has to be

estimated by 1
T

∑T
t=1 ztz

′
t.
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In Stock and Watson [2002a] it is shown that under certain assumptions the space spanned

by the �rst r static principal components of the observations converges for n, T → ∞ to the

space spanned by the static factor. Therefore the �rst r static principal components of the

observations are consistent estimators for a minimal static factor.

The assumptions under which the Stock and Watson [2002a] show consistency are the

following. First we state the assumptions on the minimal static factors and the factor loading

matrix:

Assumption 4.2.3. 1
nΛ′Λ→ Ir

Assumption 4.2.4. Eyty′t = γ(0) > 0 is diagonal with elements γii > γjj > 0 for i < j.

These two assumptions on the factor loading matrix Λ and the minimal static factor

yt are made to determine a normalization up to sign change of the minimal static factor.

We already mentioned that any minimal static factor can be obtained by premultiplying the

minimal static factor by a non-singular constant matrix R, ẑt = ΛR−1Ryt, ∀t ∈ Z. The �rst
assumption restricts R to be a constant orthogonal matrix. The second assumption restricts

R to be diagonal. Thus we have rii = ±1, rij = 0, i 6= j.

Furthermore these two assumptions guarantee that each of the r components of the minimal

factor contributes substantially to the observations zt.

Further assumption on the factor loading matrix are:

Assumption 4.2.5. There exists a bound λ̄ such that for the elements λij of the loading

matrix Λ |λij | ≤ λ̄ <∞ holds.

Assumption 4.2.6. 1
T

∑T
t=1 yty

′
t
p→ γ(0), i.e. ergodicity of the minimal static factor.

The assumptions on the idiosyncratic noise are:

Assumption 4.2.7. Let γξn,t(h) = 1
nEξ

′
tξt−h then limn→∞ supt

∑∞
h=−∞

∣∣∣γξn,t(h)
∣∣∣ <∞.

This assumption allows for some limited serial correlation of the idiosyncratic noise.

Let ξ(i)
t denote the ith component of ξt.

Assumption 4.2.8. limn→∞ supt
1
n

∑n
i=1

∑n
j=1

∣∣∣Eξ(i)
t ξ

(j)
t

∣∣∣ <∞.

This assumption allows the idiosyncratic noise to be weakly correlated in the cross-section.

The last two assumptions are closely related to the assumption of weak dependence of the

idiosyncratic noise ξt which also allows for some serial and cross-sectional dependence.

Assumption 4.2.9. limn→∞ sups,t
1
n

∑n
i=1

∑n
j=1

∣∣∣Eξ(i)
s ξ

(i)
t ξ

(j)
s ξ

(j)
t

∣∣∣ <∞.

This last assumption limits the fourth moments of the idiosyncratic noise.
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4.3. Modeling the Minimal Static Factors

In this section we want to model the dynamics of the latent variables and of the minimal

static factors.

Because of Assumptions 4.1.2 and 4.1.3 we know that we can �nd a tall rational n × q
transfer function w(z), a spectral factor of the spectral density of the latent variables (ẑt)t∈Z,

with no zeros and poles inside and on the unit circle, see Theorem 1.3.1. Therefore we can �nd

a singular ARMA model for the latent variables (ẑt)t∈Z with q-dimensional innovations (εt)t∈Z.

Note that the q-dimensional innovations (εt)t∈Z are minimal dynamic factors generating the

latent variables:

Definition 4.3.1. A process (εt)t∈Z is called a dynamic factor of the n-dimensional process

(ẑt)t∈Z if it has dimension smaller than n and there is a causal, stable and strictly miniphase

transfer function w(z) such that ẑt = w(z)εt,∀t ∈ Z. A minimal dynamic factors is a dynamic

factor of least possible dimension.

Remark 4.3.2. Note that it is easy to see that the minimal dimension of a dynamic factor

is q = rkfẑ. As already mentioned, the innovations (εt)t∈Z are a minimal dynamic factor. All

other minimal dynamic factors can be obtained as u(z)εt where u(z) is a (q × q) causal, stable
and strictly miniphase transfer function.

As is easy to see for a minimal static factor yt of (ẑt)t∈Z there is a matrix Λ of full column

rank such that ẑt = Λyt. Thus we have that yt = Λ−ẑt with generalized inverse Λ−. Therefore

a state space system for (yt)t∈Z can be obtained from (4.2.1) as

xt+1 = Fxt +Gεt+1(4.3.1)

yt = Lxt

where L = Λ−H. Obviously, this state space system is stable and controllable. Observability

can be seen as follows: Since ẑt = Λyt holds we have that Hxt = ΛΛ−Hxt and thus H Extx′t︸ ︷︷ ︸
>0

=

ΛΛ−HExtx′t implies H = ΛΛ−H. Thus the observability matrices of (4.2.1) and (4.3.1) are

related by 
H

HF
...

HFm−1

 =


Λ

Λ
. . .

Λ




L

LF
...

LFm−1

 .
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Clearly, if the observability matrix
(
H ′ F ′H ′ . . . (Fm−1)′H ′

)′
has full column rank then

also the observability matrix
(
L′ F ′L′ . . . (Fm−1)′L′

)′
has full column rank. Since the �rst

matrix on the right hand side of the equation above has full column rank, full column rank

of
(
L′ F ′L′ . . . (Fm−1)′L′

)′
implies full column rank of

(
H ′ F ′H ′ . . . (Fm−1)′H ′

)′
.

With the same reasoning we can show that the system matrices of (4.2.1) and (4.3.1) have the

same zeros since they are related by(
I − Fz −G
H 0

)
=

(
I 0

0 Λ

)(
I − Fz −G
L 0

)
.

Note that here we encounter a slightly di�erent form of system matrix due to the fact that

(4.2.1) and (4.3.1) are overlapping state space systems. Nevertheless, as is shown in Lemma

9.2.7 in Filler [2010] the zeros of these system matrices are the zeros of the corresponding

transfer functions. Therefore (4.2.1) is miniphase or zeroless if and only if (4.3.1) is miniphase

or zeroless, respectively.

Thus we have shown that the transfer function k(z) = L (I − Fz)−1G corresponding

to the system (4.3.1) is causal, stable and miniphase if and only if the transfer function

w(z) = H (I − Fz)−1G corresponding to the system (4.2.1) is causal, stable and miniphase.

Furthermore k(z) can be realized by an AR system if and only if w(z) can be realized by an

AR system. Since k(z) is a r× q matrix independent of n this transfer function is much more

convenient to realize than w(z).

Let us now consider tall transfer functions. In Anderson and Deistler [2008], Filler [2010],

Anderson et al. [2012c] it is proved that a tall transfer function with minimal (non-overlapping)

state space realization (A,B,C,D) ∈ (Rm×m,Rm×q,Rr×m,Rr×q) is generically zeroless in

(Rm×m,Rm×q,Rr×m,Rr×q). This is proved for k(z−1) = C
(
Imz

−1 −A
)−1

B + D in the

forward shift z−1. We, however, consider a slightly di�erent theorem as we consider k(z) in

the backward shift z. Also, the proof is a slight modi�cation of the proof given in Anderson and

Deistler [2008] as we have to adapt it for the backward shift and we include some considerations

on the geometric multiplicity of zeros which were adopted from Anderson et al. [2012c].

Theorem 4.3.3. Let the r × q rational transfer function k(z) be tall, i.e. r > q, with

minimal state space realization (A,B,C,D) then for a generic set of parameter matrices

(A,B,C,D) ∈ (Rm×m,Rm×q,Rr×m,Rr×q) k(z) has no (�nite) zeros.



4.3. MODELING THE MINIMAL STATIC FACTORS 103

Proof. In Lemma 1.5.1 we showed that the zeros of k(z) are the same as the zeros of the

(m+ r)× (m+ q) system matrix

M(z) =

(
Im −Az B

−Cz D

)
.

Generically M(0) =

(
Im B

0 D

)
has full column rank (m+ q) since D is generically of full

column rank. Thus generically z = 0 is not a zero of M(z) and the normal rank of M(z) is

(m+ q). A zero of M(z) must be a zero of every (m+ q) × (m+ q) minor of M(z). Since

M(z) is (generically) of normal rank (m+ q) there is a (m+ q)×(m+ q) minor ofM(z) which

has full rank for almost all z ∈ C.
Let us denote the �rst (m+ q)× (m+ q) minor by

M̃(z) =

(
Im −Az B

−C̃z D̃

)

where C̃ and D̃ are the �rst q rows of C and D, respectively. As a square matrix, the zeros

of M̃(z) are the zeros of det M̃(z). We will show that generically the zeros of det M̃(z) are

distinct:

We again use the following well known result that a scalar function f : R(m+r)(m+q) → R
which is polynomial in vec (A,B,C,D) ∈ R(m+r)(m+q) is generically nonzero, see e.g. Lee and

Markus [1967], Wonham [1985], Bochnak et al. [1998].

Since D̃ is generically non-singular, using the Schur complement we have that generically

det M̃(z) = det D̃ det
(
Im −Az +BD−1Cz

)
= det D̃ det

(
Im − z

(
A−BD−1C

))
.

Thus we see that the maximal degree of det M̃(z) is smaller or equal to m. Consider B = 0

and a diagonal matrix A then it is evident that the maximal degree of det M̃(z) is equal to m.

Since the coe�cients of det M̃(z) rationally depend on the parameter matrices (A,B,C,D),

generically the maximal degree of det M̃(z) will be m.

It is easy to see that a zero of det M̃(z) has multiplicity larger than one if and only if

it is a zero of det M̃(z) and the derivative of det M̃(z) simultaneously. Thus we can use the

Sylvester matrix of det M̃(z) and its derivative, see e.g. Kailath [1980] p 142, which is a

matrix in the coe�cients of these two polynomials. The determinant of this matrix is called

Sylvester's resultant and it is zero if and only if there is a common factor, i. e. a common

zero, of det M̃(z) and its derivative. If we again consider the special case B = 0 and diagonal

matrix A now with distinct diagonal entries, we know that the resultant is not equal to zero
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and therefore is nonzero on a generic set of parameters (A,B,C,D). Thus generically the

zeros of M̃(z) have multiplicity one.

Let us consider the Smith McMillan form of the polynomial matrix

M̃(z) = u


φ1

. . .

φm+q

 v.

Since generically the zeros are distinct, we have φ1 = · · · = φm+q−1 = 1 and cφm+q = det M̃(z).

Thus generically the dimension of the kernel of any zero of M̃(z) is one-dimensional.

Let z0 6= 0 be a zero of M̃(z) then the kernel M̃(z0) is (generically) one-dimensional. Now

consider the (q + 1)st row of
(
−C̃z0 D̃

)
. Generically this row will not be orthogonal to

the kernel of M̃(z0) and thus z0 is not a zero of M(z). Generically this row will also not be

orthogonal to any other kernel corresponding of the other (�nitely many) zeros of M̃(z) and

thus the theorem is proved. �

Note that the set of stable and strictly miniphase state space systems is an open subset of

(Rm×m,Rm×q,Rr×m,Rr×q) and thus we also have generic zerolessness of k(z) in this subset.

As we already mentioned, GDFMs were a motivation for our close look at singular AR and

ARMA models: The last theorem implies that if r > q, generically the minimal static factors

can be modeled by a singular AR system. We already described an estimation procedure in

Section 1.4.2. For the non-generic case that the minimal static factors have to be modeled

by a singular ARMA or state space system, we already considered an estimation procedure in

1.5.2.



CHAPTER 5

Mixed Frequency GDFMs

5.1. Mixed Frequency Static Factors

In this chapter we are considering the case that we have mixed frequency observations of

the process (zt)t∈Z which permits a GDFM representation. We assume that we observe part

of the one dimensional components of (zt)t∈Z at every time point,
(
zft

)
t∈Z

say, and part of

the components at every second time point, (zst )t∈2Z say. Further we assume that both the

dimension nf of the fast components
(
zft

)
t∈Z

and the dimension ns of the slow components

(zst )t∈2Z tend to in�nity.

Our goal is to determine a mixed frequency minimal static factor (yt) =

(
yft

yst

)
for which

we can determine
(
yft

)
t∈Z

and (yst )t∈2Z . More precisely, we want to determine a minimal

static factor with the maximum number of fast components
(
yft

)
t∈Z

. This minimal static

factor will have at least one fast component. Thus we can (generically) determine a high

frequency AR model for this minimal static factor (yt)t∈Z from those second moments which

are observed in principle using the techniques described in the second part of the thesis.

Note that here we have shown an interface of our analysis of mixed frequency data and

modeling of high dimensional time series.

The procedure for determining the minimal static factor we are suggesting is a form of gene-

ralization of the approach in Hallin and Liska [2007] where the authors assume that the process

(zt)t∈Z consists of two subpanels at the same sampling frequency. We, however, consider the

case that the observations of the two blocks are available at di�erent sampling frequencies, i.e.

the subpanels are exactly the fast components
(
zft

)
t∈Z

and the slow components (zst )t∈2Z.

In Hallin and Liska [2007] the authors prove that if (zt)t∈Z has a GDFM representation

also
(
zft

)
t∈Z

and (zst )t∈Z permit GDFM representations. The factor model decomposition of(
zft

)
t∈Z

and (zst )t∈Z is then closely analyzed:
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If we - for the sake of notational simplicity - set aside the nestedness assumption for a

moment, we can write the factor model decomposition of (zt)t∈Z as

zt =

(
zft

zst

)
=

(
ẑft

ẑst

)
+

(
ξft

ξst

)
, t ∈ Z.

The individual factor model decompositions of
(
zft

)
t∈Z

and (zst )t∈Z are

zft = χft + ζft , t ∈ Z

and

zst = χst + ζst , t ∈ Z

where χft and χst are the latent variables and ζ
f
t and ζst is the idiosyncratic noise respectively.

For i = f, s, let HC
i be the Hilbert space spanned by the one dimensional components of

χit, HC
z the space spanned by the one dimensional components of ẑt and HI

z the space spanned

by the one dimensional components of ξt. Then we can decompose the Hilbert space spanned

by the one dimensional components of zft into four orthogonal spaces(
HC
f ∩HC

s

)
+ HC

f \
(
HC
f ∩HC

s

)
+ HC

z \HC
f + HI

z

where A \ B denotes the orthocomplement of B in A. Thus the two di�erent factor model

representations can be used to further decompose both zft into four mutually orthogonal com-

ponents.

ẑft︷ ︸︸ ︷
zft = φft + ψft︸ ︷︷ ︸

χft

+ωft + ξft︸ ︷︷ ︸
ζft

, t ∈ Z

where φft is called strongly common as φft ∈
(
HC
f ∩HC

s

)
, ψft is called weakly common as

ψft ∈ HC
f \

(
HC
f ∩HC

s

)
, ωft is called weakly idiosyncratic as ωft ∈ HC

z \ HC
f , and ξ

f
t is called

strongly idiosyncratic as ξft ∈ HI
z. Completely analogously we can decompose zst into

ẑst︷ ︸︸ ︷
zst = φst + ψst︸ ︷︷ ︸

χst

+ωst + ξst︸ ︷︷ ︸
ζst

, t ∈ Z.
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Note that ωft is weakly idiosyncratic which means that for the individual factor model of(
zft

)
t∈Z

ωft is part of the idiosyncratic noise, but for the full factor model of (zt)t∈Z ωft is

part of the common component, the latent variables. Thus ωft ∈ HC
s holds. An analogous

statement holds for ωst .

Therefore we can justify the following procedure for our mixed frequency GDFM setting:

We treat the fast components
(
zft

)
t∈Z

and the slow components (zst )t∈2Z separately as

two di�erent blocks. Let Assumptions 4.2.3-4.2.9 hold for
(
zft

)
t∈Z

and (zst )t∈Z. Let rf be

the minimal number of static factors of a factor model decomposition of
(
zft

)
t∈Z

and rs the

minimal number of static factors of a factor model decomposition of (zst )t∈Z. We compute the

rf and rs �rst static principal components of zft for t ∈ Z and zst for t ∈ 2Z respectively. We

call these �rst fast and slow static factors
(
yft

)
and (ỹst ). Then, we consider the covariance

matrix of the stacked vector

(
yft

ỹst

)
and select the �rst basis in terms of rows for the rowspace

of this covariance matrix. Then, we cancel those elements in ỹst which do not correspond to

a basis row in the covariance matrix described above. It is easy to see that the static factor

yt =

(
yft

yst

)
obtained by this procedure is minimal and contains the maximum number of fast

components.

For nf and ns going to in�nity, this leads to a consistent estimation procedure for a version

of the true static factors.

A drawback of this procedure is the following: The fast static factor yft is a minimal static

factor of the fast subpanel and only explains χft which is the sum of the strongly common

component φft and weakly common component ψft . The weakly idiosyncratic components ωft
is explained by yst . If ω

f
t is nonzero, the latent variables of the full panel ẑft are not a linear

transformation of yft alone but of yft and yst . The factor loading matrix Λ in ẑt = Λyt does

not have the structure Λ =

(
Λf 0nf×rs

Λsf Λs

)
and thus we cannot determine all components of

the fast latent variables ẑft for all t ∈ Z. However, using the techniques of the second part of

the thesis, we can (generically uniquely) determine the system and noise parameters of an AR

model for the minimal static factor. Consequently, we can interpolate (with error) the missing

slow components of (yt)t∈Z for instance using the Kalman smoother for missing observations,

see Jones [1980]. This interpolated minimal static factor can then be used to interpolate (with

error) the latent variables ẑt for all t ∈ Z.
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5.2. Simulation Example

In this section we illustrate the procedure described in the last section.

For n = T = 1000, we simulate observations of a GDFM

zt = Λyt + ξt

with a two dimensional minimal static factor yt. This minimal static factor yt is the solution

of a regular AR(1) system with parameters(
a1 =

(
−0.04765167 0.58589510

1.13259476 0.04362198

)
, b = I2

)
.

We partition the observations zt such that nf = ns = 500. We choose a factor loading matrix

Λ =

(
Λf Λfs

Λsf Λs

)
such that we have

• nonzero entries of Λf and Λsf and thus φft 6= 0 and φst 6= 0, and

• nonzero entries of Λs and zeros for all but 5 entries of Λfs and thus ψst 6= 0 and

ωft 6= 0.

The idiosyncratic errors are chosen uncorrelated in the cross-section.

We want to estimate the mixed frequency minimal static factor via the procedure described

in the last section:

Therefore we compute the static principal components ŷft of zft , t = 1, . . . , 1000. The plot

of the variances of the �rst principal components suggests one fast static factor.

For zs2t, t = 1, . . . , 500, we �nd two dominant slow static factors ŷst .
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We compute the eigenvalues of the zero lag covariance of the (scaled) fast factor and the

�rst slow factor

(
ŷft

ŷ
s(1)
t

)
: 1.029 and 0.966. The components are linearly independent. The

eigenvalues of the zero lag covariances of all the (scaled) estimated factors

(
ŷft

ŷst

)
are 1.994,

0.998 and 0.001. Thus we choose ŷt =

(
ŷft

ŷ
s(1)
t

)
as the minimal static factor. Thus we estimated

r = 2 correctly.

To determine whether the space spanned by the estimated minimal static factor ŷt is a

good estimate of the space spanned by the true minimal static factor yt we regress ŷt onto

yt. We compute the coe�cient of determinationR2 as a measure of the goodness of �t. The

closer R2 is to 1 the better is the static factor space estimated. For the fast static factor, we

have R2
f = 0.997 and for the slow static factor we have R2

s = 0.998. Thus it seems the (mixed

frequency) estimator ŷt of the minimal static factor is a good choice.
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