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Abstract

Intercalation of Ni under graphene/Ir(111). To gain insight into the inter-
calation of metal layers in-between graphene (Gr) and its supporting substrate, we
investigate the diffusion processes of a single nickel atom through a graphene sheet
which is adsorbed on Ir(111). Utilizing the ab-initio DFT code VASP, the intercala-
tion is assessed numerically for different instances of the system, starting with diffusion
through an unsupported graphene sheet. Both an ideal graphene layer as well as a
layer featuring a vacant carbon site are taken into account. The process is modelled
by tuning the vertical distance of the Ni atom with respect to the surface in each
numerical run, followed by a full relaxation of the nearest carbon atoms. The energy
vs. reaction coordinate data is then used to determine the transition state of the par-
ticular reaction in more detail by means of the dimer method, for which VASP offers
a systematic approach for finding saddle points on high-dimensional potential energy
surfaces and thus the reaction mechanism. Having obtained the transition state, the
corresponding cell geometry is placed on an Ir(111) support. We find that, if assessing
the data for unsupported graphene layers, the diffusion through a pristine sheet is
facing a barrier of about 12 eV, which is very large and extremely unlikely to be over-
come at typical annealing temperatures. However, at a vacancy, this barrier is lowered
significantly to about 2 eV. A further decrease of approximately 0.5 eV is obtained if
the vacant graphene is placed on top of the Ir(111) substrate.

Graphene/Ag(111)/Re(0001). Data from angle-resolved photoemission spectra
(ARPES) on graphene/Re and graphene/Ag/Re, which features an additional inter-
calated Ag monolayer, demonstrates that the decoupling of graphene (Gr) from the
Re substrate is not as pronounced as expected as soon as Ag is introduced. The
Ag layer grows epitaxially, and there is evidence of a hybridization of the Ag bands
with graphene’s π-state. We study the electronic structure of Gr/Ag(111)/Re(0001)
by means of numerical ab-initio DFT calculations employing the VASP code. The
properties of Gr/Ag/Re are determined in a simplified approach by studying a prim-
itive (1x1) cell for both the lattice constant of Re and Gr, i.e. either stretching Gr
or compressing the underlying Ag/Re substrate, respectively. Different interface mod-
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Abstract

els and graphene-substrate distances were tested to determine the energetically most
favorable placement of the carbon atoms relative to the substrate surface, yielding
the top-fcc arrangement, i.e. one C on top of Ag and the other on the fcc hollow
site, as the structure featuring the lowest energy. Due to interaction with the Ag/Re
substrate, the electronic structure of graphene is modified, showing good agreement
with the above mentioned ARPES experiments. We observe a downward shift of the
Dirac point with respect to the Fermi energy and also a hybridization of the graphene
π-band with the Ag d-bands. The magnitude of both phenomena is shown to depend
on the graphene-substrate distance.
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Kurzfassung

Interkalation von Ni unter Graphen/Ir(111). Um einen Einblick in die Inter-
kalation von Metallschichten zwischen Graphen (Gr) und einem tragenden Substrat zu
erhalten untersuchen wir Diffusionsprozesse eines einzelnen Nickel Atoms durch eine
auf Ir(111) adsorbierte Graphen Schicht. Die Interkalation wird numerisch mit Hilfe
des ab-initio DFT Codes VASP für verschiedene Realisierungen des Systems unter-
sucht, angefangen mit der Diffusion eines Ni Atoms durch eine freie Graphen Lage.
Wir betrachten sowohl ideales Graphen als auch eine Graphen Schicht mit Fehlstellen.
Der Prozess selbst wird untersucht indem zunächst der vertikale Abstand des Ni Atoms
von der Graphen Oberfläche sukzessive verringert wird. In jedem Schritt wird eine
volle Relaxation der benachbarten C Atome zugelassen. Die auf diesem Wege erhal-
tenen Daten von Energie vs. Reaktionskoordinate ermöglichen in weiterer Folge die
Bestimmung des Übergangszustandes mittels der Dimer-Methode, für welche VASP
einen systematischen Algorithmus bereitstellt um Sattelpunkte auf der hochdimension-
alen Energieoberfläche zu finden. Die Geometrie des Übergangszustandes wird dann
auch anschließend auf die Ir(111) Oberfläche transferiert. Unsere Untersuchungen
zeigen, dass für die Diffusion durch eine ideale, freie Graphen Schicht eine Energiebar-
riere von 12 eV überwunden werden muss, ein Wert der sehr hoch ist und daher einen
sehr unwahrscheinlichen Mechanismus darstellt. Ist jedoch eine Fehlstelle im Graphen
vorhanden, wird die Energiebarriere auf 2 eV reduziert. Eine weitere Reduktion um
0.5 eV wird erreicht sobald diese Graphen Schicht auf das Ir(111) Substrat aufgebracht
wird.

Graphen/Ag(111)/Re(0001). Photoelektronenspektroskopie (engl. angle-resolved
photoemission spectroscopy - ARPES) an Graphen/Re sowie an Graphen/Ag/Re, das
eine zusätzliche interkalierte Monolage Ag aufweist, deutet darauf hin dass die Ent-
kopplung von Graphen (Gr) vom Rhenium Substrat keineswegs so ausgeprägt ist wie
erwartet. Weiters zeigt das Experiment, dass die Ag Lage epitaktisch aufwächst und
eine Hybridisierung der Ag Bänder mit dem Graphen π-Zustand zeigt. Wir unter-
suchen die elektronische Struktur von Gr/Ag/Re mittels numerischen ab-initio DFT
Rechnungen unter der Verwendung von VASP. Wir ermitteln die Eigenschaften dieses
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Kurzfassung

Materials in einem vereinfachten Modell, indem wir eine primitive (1x1) Zelle verwen-
den. Die unterschiedlichen Gitterkonstanten von Graphen bzw. Rhenium machen es
nötig, zwei gesonderte Fälle zu betrachten, nämlich entweder die Graphen Lage zu
strecken bzw. das Ag/Re Substrat zu komprimieren. In diesen Systemen betrachten
wir verschiedene Grenzflächen-Geometrien sowie Graphen-Substrat Abstände um die
energetisch günstigste Lage der Kohlenstoff Atome zum Substrat zu bestimmen. Dabei
finden wir, dass die top-fcc Struktur, d.h. ein C Atom über (top) einem Ag Atom und
das andere in der fcc Lücke, diejenige mit der stabilsten energetischen Konfiguration
ist. Aufgrund der Wechselwirkung mit dem Ag/Re Substrat wird die elektronische
Struktur von Graphen modifiziert, was in guter Übereinstimmung mit dem oben genan-
nten ARPES Experiment ist. Wir finden eine Absenkung des Dirac Punktes bezüglich
der Fermi Energie und weiters eine Hybridisierung der Ag d-Bänder mit Graphens
π-Band. Beide Phänomene hängen, wie gezeigt wird, stark vom Graphen-Substrat
Abstand ab.
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Chapter 1

Introduction

Ever since single-layered carbon planes were made experimentally accessible by K.
Novoselov and A. Geim et al. in 2004, they have attracted much attention in the
scientific community. Graphene (Gr), as this two dimensional material was termed,
possesses a variety of favorable features, clearly distinguishing it from conventional,
previously known materials. Most surprisingly in the first place was the very existence
of planar graphene itself, in contrast to previous theoretical belief [1, 2].

Owing to its remarkable high purity, graphene exhibits, among others, ballistic
transport, exceptionally high mobilities and the quantum Hall effect (QHE) even at
room temperature. Furthermore, since graphene remains stable in the nanometer
regime, it allows for single-electron-transistors and, combined with a reduced switching
time, might embody the successor of silicon in the semiconductor industry’s search for
ever smaller devices [3]. Also, due to its linear dispersion relation at the Dirac point,
charge carriers in graphene are described by massless quasiparticles which obey the
relativistic Dirac equation rather than the Schroedinger equation. These quasiparticles
are thus called Dirac fermions [4, 5, 6].

For completeness, we may add that scientific interest in carbon isn’t solely limited
to its two dimensional manifestation, but also focusses on its allotropes, i.e. fullerenes
(0D), carbon nanotubes (1D) and graphite (3D).

With regard to possible future graphene based electronic devices, it is desirable
to harness graphene’s wide range of preferable characteristics. If, however, placed
upon a substrate, these features might not be conserved or, at the worst, might get
completely lost due to interaction with the support, rendering the specific graphene
on metal interface unfeasible for particular applications.

Several substrates have been determined to show only a weak interaction with
graphene, where, due to the weak bonding at distances greater than 3 Å, the ph-
ysisorbed graphene layer almost exhibits its pristine electronic structure. Metals which
belong to this class of materials are, for instance, Pt [7], Ir [8, 9] and Cu [10, 11].
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Chapter 1. Introduction

In contrast, metals such as Ni [12, 13], Ru [14] or Rh [15, 16] display a much stronger
interaction, resulting in a reduced distance between substrate and the chemisorbed
graphene layer which is over 1 Å closer than in weakly interacting systems. As a
result of the strong coupling, graphene’s unique electronic structure is destroyed.

It was found, however, that the addition of an intercalated noble metal layer can
lead to a significant reduction of graphene’s coupling to the supporting substrate in
these systems. Common perception thinks of this additional layer as a spacer layer
which leads to a reduction of the overlap of the involved orbitals of graphene and its
support, thus almost restoring the electronic features of a pristine graphene sheet.

In the present thesis, we investigate two different realizations of systems which
belong to the topic of intercalation. Our first assessment will concern the question of
how an intercalated layer is formed, while the effect of an intercalated layer on the
graphene-substrate coupling is the subject of the subsequent investigation:

Intercalation of Ni under Gr/Ir(111). In the first part of this thesis, we are
interested in the formation of the intercalated layer. This will be done by determining
the energy barriers of the various reaction processes by means of ab-initio numeri-
cal density functional calculations employing the Vienna Ab-initio Simulation Pack-
age (VASP). More precisely, we model the diffusion of a single Nickel atom through
graphene sheets which feature no or one vacant carbon site. Freestanding layers and
graphene supported by iridium are considered.

Gr/Ag(111)/Re(0001). In the second part the Gr/Ag/Re system is examined,
which features already an intercalated monolayer of silver. Opposed to the above
mentioned common view, experimental data for this particular system suggest that
the expected decoupling of graphene from the metal substrate after intercalation is
actually significantly less effective than expected. We thus study the electronic struc-
ture of Gr/Ag/Re to reveal the nature of the observed deviation from currently known
systems in which graphene is adsorbed on a noble metal/metal interface.

Both topics originated from collaborations with experimental groups participating
in the EuroGRAPH/SpinGraph research project of the European Science Foundation
(ESF), which are M. Fonin et al. of the University of Konstanz (Gr/Ni/Ir) and M.
Papagno and coworkers in C. Carbone’s group at ELETTRA/Trieste (Gr/Ag/Re).

This thesis is structured as follows. Chapter 2 reviews the electronic properties of
graphene, focussing on its bandstructure as obtained by the tight-binding model. In
chapter 3 we introduce the basics of the methods which are used in the VASP code,
namely Density Functional Theory (DFT). Additionally, the Hartree theory and its
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Chapter 1. Introduction

successor, the Hartree-Fock (HF) theory are covered. Representing the crucial quantity
in DFT calculations and thus also in this current thesis, different approximations
to the DFT exchange-correlation potential are briefly addressed. The results of our
investigations of the diffusion of Ni under Gr/Ir as well as for Gr/Ag/Re are presented
in chapter 4. In the last chapter, we conclude by briefly summarizing our findings and
by providing an outlook for potential further investigations. The appendix provides
additional information on useful shell scripts which were written in the course of the
present thesis to allow a more convenient operation of VASP.
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Chapter 2

Graphene

Figure 2.1: Honeycomb lattice of graphene.

Graphene, a perfectly two-dimensional carbon based material which crystallizes in
a honeycomb lattice, has created an unparalleled amount of research since it was made
experimentally accessible by K. Novoselov and A. Geim et al. in 2004. Surprisingly
enough, the bandstructure of graphene has already been derived 65 years ago by P.R.
Wallace while examining the electronic properties of bulk graphite [17].

In this section we want to give a concise treatment of selected remarkable prop-
erties of graphene. Since graphene’s bandstructure represents an integral part of its
fascinating features, and also due to its prominent role in this present thesis, we want
to display the analytical tight-binding bandstructure calculation of graphene in the
following section. Subsequently, the connection of graphene’s electrons to ultrarela-
tivistic particles is motivated.1

1This chapter’s treatment largely follows Refs. [18, 19, 20].
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Chapter 2. Graphene

Figure 2.2: Unit cell of graphene. The two differencent sublattices are indicated by
coloured circles.

2.1 Tight-binding bandstructure

Graphene is composed of carbon atoms which are arranged periodically to form a
honeycomb lattice (see Fig. 2.1). The exceptional structural properties of graphene
stem from the carbon atoms being bound by sp2-hybrid orbitals which establish σ-
and π-bonds with neighboring in-plane sites. Carbon’s electronic configuration reads
1s22s22p2, thus leaving four valence electrons for bonding. Three of these four valence
electrons take part in the σ-bond, whereas one remaining electron occupies the pz

orbital. It is the latter which will form the π and π∗-bands of graphene and are thus
our main object in this section.

The honeycomb structure is not a Bravais lattice but is rather characterized as
a triangular lattice with a basis of two atoms per unit cell, A and B, as depicted in
Fig. 2.2. At first we choose the primitive lattice vectors a1 and a2 as follows,

a1 = a

(
1
2√
3

2

)
and a2 = a

(
1
2

−
√

3
2

)
, (2.1)

with a being the system’s lattice constant. The coordinates of the atoms of the two
sublattices A and B are then taken to be linear combinations of the primitive basis
vectors an with an additional position vector ti which points from a given lattice point
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Chapter 2. Graphene

to an atom of sublattice A or B,

RA,nm = na1 +ma2 + tA = Rnm + tA

RB,nm = na1 +ma2 + tB = Rnm + tB. (2.2)

One then obtains the infinitely extended 2D graphene crystal by translating the unit
cell to fill the whole two dimensional space. In the spirit of the LCAO approach,
the wavefunction |Ψk(r)〉 for the π-bonds is chosen as a linear combination of atomic
orbitals |φ(r)〉,

|Ψk(r)〉 =
1√
N

∑
Rnm

eikRnm [A |φ(r−RA,nm)〉+B φ(r−RB,nm)〉] . (2.3)

The coefficients A and B denote unknown amplitude parameters and N is the
number of lattice sites in the crystal. The wavefunction |φ(r)〉 corresponds to the pz

orbital of the sp2 hybridized carbon atom. We might add that Eq. (2.3) can also be
written in a form more reminiscent of Bloch’s theorem, i.e.

|Ψk(r)〉 = eikr|uk(r)〉, (2.4)

with

|uk(r)〉 =
1√
N

∑
Rnm

e−i(r−kRnm) [A |φ(r−RA,nm)〉+B φ(r−RB,nm)〉] , (2.5)

which function has the required periodicity of the lattice. To have a more convenient
form of Eq. (2.3), we rewrite it further,

|Ψk(r)〉 = A |ΨA
k 〉+B |ΨB

k 〉, (2.6)

with the |Ψi
k〉 given by.

|Ψi
k〉 =

1√
N

∑
Rnm

eikRnm |φi(r−Ri,nm)〉 (2.7)

The system’s Hamiltonian is composed of the electron’s kinetic energy, as well as the
contribution of all carbon atoms from sublattices A and B, respectively,

H =
p2

2me

+
∑
Rnm

[V (r−RA,nm) + V (r−RB,nm)] . (2.8)
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Chapter 2. Graphene

Applying H to |Ψk(r)〉 and acting with 〈Ψi
k| from the left yields

〈Ψi
k|Ĥ|Ψk〉 = A 〈Ψi

k|Ĥ|ΨA
k 〉+B 〈Ψi

k|Ĥ|ΨB
k 〉

= A HiA +B HiB, (2.9)

= E(k)
(
A 〈Ψi

k|ΨA
k 〉+B 〈Ψi

k|ΨB
k 〉
)

= E(k) (A SiA +B SiB) , (2.10)

with the matrix elements 〈Ψi
k|Ĥ|Ψ

j
k〉 = Hij and 〈Ψi

k|Ψ
j
k〉 = Sij. Writing above equa-

tion in matrix form, we have(
HAA − E(k)SAA(k) HAB − E(k)SAB(k)

H∗AB − E(k)S∗AB(k) HBB − E(k)SBB(k)

)(
A

B

)
=

(
0

0

)
. (2.11)

To obtain the energy eigenvalues E(k) we determine the roots of the secular equation,

E(k)± =
(2E0 − E1)±

√
(2E0 − E1)2 − 4E2E3

2E3
(2.12)

with the Ei abbreviated by

E0 = HAASAA, E1 = SABH
∗
AB +HABS

∗
AB

E2 = H2
AA −HABH

∗
AB, E3 = S2

AA − SABS
∗
AB. (2.13)

Taking only the nearest-neighbor interaction into account, i.e. only the three adjacent
lattice sites (see Fig. 2.2) contribute, we have

HAA =
1

N

∑
RA,nm

∑
RA′,nm

eik(RA′,nm−RA,nm)〈φA(r−RA,nm)|H|φA(r−RA′,nm)〉

=
1

N

∑
RA,nm

〈φA(r−RA,nm)|H|φA(r−RA,nm)〉 = ε2p, (2.14)

with N being the total number of primitive cells in the crystal. The vectors RA,nm

and RA′,nm determine the atomic positions of A and A′, respectively. Since the atomic
wavefunctions are normalized, SAA = 1, i.e.

〈φA(r−RA,nm)|φA(r−RA,nm)〉 = 1. (2.15)

The same holds true for HBB. HAB is obtained by summing over the three nearest-
neighbors,
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Chapter 2. Graphene

HAB =
1

N

∑
RA,nm

∑
RB,nm

eik(RB,nm−RA,nm)〈φA(r−RA,nm)|H|φB(r−RB,nm)〉

= γ0

(
eikR11 + eikR12 + eikR13

)
, (2.16)

with
γ0 = 〈φA(r−RA,nm)|H|φB(r−RA,nm −R1i)〉, (i = 1, 2, 3). (2.17)

Correspondingly,
SAB = s0

(
eikR11 + eikR12 + eikR13

)
, (2.18)

with
s0 = 〈φA(r−RA,nm)|φB(r−RA,nm −R1i)〉, (i = 1, 2, 3). (2.19)

R1i is defined as the vector which points from the atomic site A to the nearest-neighbor
atoms B. Inserting our findings into Eq. (2.12), we obtain

E(k)± =
ε2p ∓ γ0

√
f(k)

1∓ s0

√
f(k)

, (2.20)

where we introduced the function f(k),

f(k) = 3 + g(k)

= 3 + 2 cos k · a1 + 2 cos k · a2 + 2 cos k · (a1 − a2) (2.21)

In practice, the three parameters ε2p, γ0 and s0 are determined by means of a fit to
experimental or first-principles data. Fig. 2.1 shows the bandstructure for the choice
of values ε2p = 0, γ0 = 2.7 and s0 = 0.15, as well as the density of states.
More precisely, part (a) of Fig. 2.1 displays graphene’s π bands as obtained by Eq. (2.20)
along lines of high symmetry in the first Brillouin zone, i.e. from K to Γ over M back
to K (illustrated in Fig. 2.1 (c)). Resulting from spin-degeneracy, each k value is
assumed by two electrons. With the pz electrons from each of the two basis atoms
(A and B) the π or valence band is completely filled at T = 0, whereas the π∗ or
conduction band is empty. The Fermi level EF intersects the π and π∗ band exactly at
the K-point, rendering it a semi-metal or zero-gap semiconductor, which can also be
seen in the graphene density of states (Fig. 2.1 (d)). Fig. 2.1 (b) displays the roots of
graphene’s fame, which originates from its linear dispersing bands in the proximity of
the K-point in reciprocal space, clearly distinguishing graphene from materials which
feature a parabolic dispersion at the band edge.
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Figure 2.3: Tight-binding bandstructure of graphene’s π- and π∗-bands. a) Bands
along the closed path K → Γ → M → K in the first Brillouin zone. b) Linear
dispersion of the valence and conduction bands in proximity to the K-point. The
green lines indicate perfectly linear behavior. c) First Brillouin zone of graphene,
including points of high symmetry. c) Density of states per unit cell as determined by
Eq. (14) in Ref. [18].

2.2 Dirac fermions

A rather surprising consequence of graphene’s linearly dispersing π bands close to the
K-point is its connection to quantum electrodynamics (QED): due to their interaction
with the periodic potential, new quasiparticles emerge at low energies E which are
rather described as massless Dirac fermions [6, 5, 4]. This implies that the correct
description of these particles has to move from the Schroedinger equation to the rela-
tivistic Dirac equation with an effective speed of light vF ≈ 106 m s−1, being described
by the Dirac-like hamiltonian

Ĥ = h̄vF

(
0 kx − iky

kx + iky 0

)
= h̄vF σ̂k. (2.22)

k is the quasiparticle momentum, σ̂ the 2D Pauli matrix and, as mentioned above,
vF corresponds to the speed of light. The conical shape of the bands at E = EF is
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Chapter 2. Graphene

called Dirac cone and is caused by graphene’s crystal symmetry, i.e. the two equivalent
carbon sublattices A and B. These sublattices also necessitate the introduction of two-
component wavefunctions, spinors, where each sublattice determines one component
and is called pseudospin.

The charge carrier’s relativistic behavior also enables experimentalists to probe
some of the consequences of quantum electrodynamics. One of QED’s most counter-
intuitive predictions might probably be Klein’s paradox, which states that relativistic
particles are allowed to penetrate arbitrarily high and thick potential barriers with
a transmission probabilty of 100% [21]. As opposed to particle physics, this very
phenomenon can be realised experimentally much easier in condensed matter physics.
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Method

The main focus of the current thesis lies on the determination of the electronic and
structural properties of graphene based solid state systems, a goal which we wish to
accomplish by means of ab-initio quantum-mechanical simulations, i.e. calculations
which, in the ideal case, solely rely on the system’s Hamiltonian without the need for
additional empirical data.

To be more precise, we employ the Vienna Ab-initio Simulation Package (VASP),
developed by G. Kresse et al. [22, 23, 24]. The VASP code is based on Density Func-
tional Theory (DFT), which represents an efficient way to numerically treat molecules
and solids, i.e. quantum-mechanical many-body problems.

VASP makes use of pseudopotentials [25, 26] and a plane wave basis set to deter-
mine the ion electron interaction and to expand all cell periodic functions, respectively.
For the valence states the pseudo-wave functions are replaced by true wavefunctions
using the Projector Augmented Wave (PAW) formalism. Furthermore, VASP also
allows for the calculation of forces and the full stress tensor for structure relaxation
purposes. Several exchange-correlation potential approximations are implemented in
the numerical code, ranging from LDA to different flavors of GGA.

In the following chapter, we wish to motivate and review some of the basic princi-
ples which are necessary when approaching quantum-mechanical many-body systems,
starting by writing down the full Hamiltonian for N interacting electrons and M nuclei.
Simplifications such as the Born-Oppenheimer approximation are employed to greatly
facilitate the problem. Explicit methods for solving these system are presented next:
for completeness and for historical reasons, we also want to shortly cover the Hartree
equations and the more sophisticated Hartree-Fock equations. Finally, we give an
overview of DFT since it forms the basis of the numerics incorporated in the program
VASP.

If not denoted otherwise, the major content of the subsequent chapter is based on
Refs. [27, 28, 29, 30, 31].
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3.1 Born-Oppenheimer approximation

To obtain the electronic properties of a given material which consists of N electrons
and M nuclei, one has to solve the system’s Schroedinger equation,

ĤΨ(r1, ..., rN ,R1, ...,RM) = EΨ(r1, ..., rN ,R1, ...,RM), (3.1)

with Ĥ being the multi-body Hamiltonian

Ĥ = −1

2

N∑
i=1

∇2
i −

1

2

M∑
I=1

∇2
I

nI

+
1

2

N∑
i=1

N∑
i 6=j

1

|ri − rj|
(3.2)

+
1

2

M∑
I=1

M∑
I 6=J

Z2

|RI −RJ |
− 1

2

N∑
i=1

M∑
i 6=J

Z

|ri −RJ |
. (3.3)

From Eq. (3.3), we identify the first (second) term with the kinetic energy of the elec-
trons (nuclei), the third (fourth) term corresponds to the electrostatic electron-electron
(nucleus-nucleus) repulsion and the last term represents the Coulombic electron-nucleus
attraction. Note that we have employed atomic units (me = e = h̄ = c = 1), as well
as adopted the notion that lower case letters (i,j) describe electrons and upper case
letters (I,J) nuclei, respectively. The number nI is determined by the ratio MI/me.

This result, although seemingly simple, still makes it necessary to solve a system
depending on 3N electronic and 3M ionic coordinates. It can, however, be simplified
considerably by noticing that the nuclei’s masses are much larger than their electronic
counterparts. Keeping the nuclei’s positions RI fixed and using their position as a
parameter in further calculations, we arrive at the Born-Oppenheimer approximation
[32], so that Eq. (3.3) now reads

Ĥ = −1

2

N∑
i=1

∇2
i︸ ︷︷ ︸+

1

2

N∑
i=1

N∑
i 6=j

1

|ri − rj|︸ ︷︷ ︸−
1

2

N∑
i=1

M∑
i 6=J

Z

|ri −RJ |︸ ︷︷ ︸ (3.4)

= T̂ + V̂ee + V̂ext, (3.5)

where T̂ is the electron’s kinetic energy, V̂ee the Coulomb interaction between the N
electrons and V̂ext labels the coulombic interaction of the electrons with the frozen
nuclei, respectively. Here, the constant nucleus-nucleus interaction was neglected for
convenience and has to be taken into account if one wishes to evaluate the system’s
total energy. T̂ and V̂ee are said to be universal since said expressions have this exact
form in every N electron system. V̂ext, however, depends on the investigated material
and is therefore characteristic for the actual system one is interested in.
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3.2 Hartree and Hartree-Fock equations

Strategies to iteratively solve Schroedinger’s equation for the many-body Hamilto-
nian in Eq. (3.5) lead to the Hartree-Fock equations and its predecessor, the Hartree
equations. Both approaches make use of the variational principle to minimize the ex-
pectation value 〈Ψ|Ĥ|Ψ〉/〈Ψ|Ψ〉 of the system’s Hamiltonian operator, however only
the Hartree-Fock method accounts for the electron’s fermionic character.

Hartree equation. Hartree’s approach adopts the assumption that the wavefunc-
tion |Ψ〉 can be approximated by a product of independent single-electron orbitals
|φi〉,

|Ψ〉 =
∏

i

|φi〉 = |φ1〉 · · · |φN〉. (3.6)

Note that, since the spin degree of freedom is omitted in the Hartree approach, |Ψ〉 is
not antisymmetric with respect to an exchange of particles. To minimize the system’s
energy, we write the expectation value as

E =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

= 〈φ1 . . . φN |T̂ + V̂ee + V̂ext|φ1 . . . φN〉 (3.7)

=
N∑
i

〈φi|

(
T̂ + V̂ext +

∑
j 6=i

〈φj|V̂ee|φj|〉

)
|φi〉. (3.8)

This quantity is now varied with respect to 〈φi| such that the energy assumes an
extremal value,

δ

δ (〈φi|)

(
〈Ψ|Ĥ|Ψ〉 −

∑
i

εi〈φi|φi〉

)
= 0. (3.9)

Using εi as Lagrange multipliers the additional term
∑

i εi〈φi|φi〉 ensures that each one-
electron wavefunction is normalized. We consequently obtain the Hartree equations,{

−1

2
∇2

i + V̂eff

}
|φi〉 = εi|φi〉, (3.10)

V̂eff = V̂ext +
∑
j 6=i

〈φj|V̂ee|φj〉. (3.11)

The resulting equations are therefore Schroedinger equations, where an electron i

moves in an external potential originating from the ions, V̂ext, and an additional
term which represents the electrostatic potential generated by all electrons j 6= i,∑

j 6=i〈φj|V̂ee|φj〉. This additional potential, also called the Hartree term, would arise
from solving Poisson’s equation using a charge density 〈φi|φi〉 for each electron.

20



Chapter 3. Method

Hartree-Fock equation. The product ansatz for the wavefunction |Ψ〉 does not
take into account Pauli’s principle which forbids two electrons sharing the same quantum-
mechanical state. This deficiency can be cured by taking the wavefunction to be a
Slater determinant, i.e. an antisymmetrized product function,

|Ψ〉 =
1√
N !

∑
P

(−1)PP

{
|φ1〉 · · · |φN〉

}
(3.12)

=
1√
N !

∣∣∣∣∣∣∣∣
|φ1(1)〉 · · · |φ1(N)〉

... . . . ...
|φN(1)〉 · · · |φN(N)〉

∣∣∣∣∣∣∣∣ , (3.13)

where the |φi(j)〉 denotes an electron j occupying the orbital i. Plugging the antisym-
metrized |Ψ〉 from Eq. (3.13) into the energy expectation value 〈Ψ|Ĥ|Ψ〉 followed by
a minimization yields{

−1

2
∇2

i + V̂ext

}
|φi〉 +

∑
j

〈φj|V̂ee|φj〉 |φi〉

−
∑

j

〈φj|V̂ee|φi〉 |φj〉 = εi|φi〉. (3.14)

The first three terms are obtained in analogy to the Hartree approach, while the
additional energy term, −

∑
〈φj|V̂ee|φi〉 |φj〉, is called exchange energy. It becomes

effective only for electrons which share the same spin, since |φi〉 also includes the spin
wavefunction which is orthogonal for spins of opposite direction. For electrons with
different spin, the exchange energy is equal to zero. The exchange energy features a
minus sign, thus reducing the energy for two electrons with equal spin. This behavior,
which is an entirely quantum-mechanical effect which has no classical analogy, results
from electrons with like spin avoiding each other, thus reducing their Coulomb energy.
Note that, for i = j, the before divergent Hartree term is exactly canceled by the
exchange term. The iteration of Eqn. (3.14) to obtain a self-consistent solution comes
at a high computational cost, thus necessitating more elaborate methods to treat
quantum-mechanical many-body systems.

3.3 Hohenberg-Kohn theorems and Kohn-Sham equa-

tions

Solving the Hamiltonian Eq. (3.5) poses severe difficulties due to its many-body na-
ture, since even with the Born-Oppenheimer approximation the system’s wavefunction
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depends on 3N coordinates. In 1965, W. Kohn and L.J. Sham [33] proposed a new
way to treat this multi-body problem by means of N coupled Schroedinger equations,
describing a fictions system of N non-interacting electrons. Incorporating the two
theorems put forward by Hohenberg and Kohn [34],

Theorem 1
The electron density n(r) uniquely determines the external potential V̂ext as well
as the system’s total energy, hence E = E[n(r)]

Theorem 2
The ground-state density n0(r) which yields

∫
n0(r)dr = N minimizes the en-

ergy, E0[n0(r)] = min
n(r)

E[n(r)]

we express the energy as a functional of the electron density n(r) rather than by means
of the wavefunction |Ψ〉,

E[n(r)] = T [n(r)] + Vee[n(r)] + Vext[n(r)], (3.15)

where the exact functional dependence is only known for Vext[n(r)], namely

Vext[n(r)] =

∫
dr n(r) Vext(r). (3.16)

W. Kohn and L.J. Sham [33] now rewrote Eq. (3.15) in terms of Ts[n(r)], the kinetic
energy of a virtual system of non-interacting electrons which yields the same density
as the original interacting one, and the Hartree energy U [n(r)], which stems from the
electrostatic interaction of an electron with all other electrons, respectively,

U [n(r)] =
1

2

∫
dr

∫
dr′

n(r)n(r′)

|r− r′|
, (3.17)

Ts[n(r)] = −1

2

N∑
i=1

∫
dr ϕ∗i (r)∇2ϕi(r). (3.18)

Furthermore, the exchange-correlation energy Exc[n(r)] is introduced, accounting for
both deviations of Ts[n(r)] from the real kinetic energy T [n(r)] as well as of U [n(r)]

from Vee[n(r)],

Exc[n(r)] =
(
T [n(r)]− Ts[n(r)]

)
+
(
Vee[n(r)]− U [n(r)]

)
, (3.19)
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leading ultimately to

E[n(r)] = Ts[n(r)] + U [n(r)] + Vext[n(r)] + Exc[n(r)]. (3.20)

We now minimize Eq. (3.20) with respect to the electron density n(r), subject to the
constraint that the total number of electrons is conserved,

0 =
δ

δn(r)

{
E[n(r)]− µ

(∫
n(r)dr−N

)}
. (3.21)

Since the dependency of Ts on the density n(r) is not known explicitly, we vary the
wave functions ϕ∗i and make use of the chain rule for terms which depend on n(r),

0 =
δTs

δϕ∗i
+

δ

δn(r)

{
U [n(r)] + Vext[n(r)] + Exc[n(r)]

}
δn(r)

δϕ∗i
. (3.22)

Finally, this yields the famous Kohn-Sham equations,{
−1

2
∇2

i + Veff(r)

}
ϕi(r) = εiϕi(r), (3.23)

with i = 1, . . . , N and

n(r) =
N∑

i=1

|ϕi(r)|2, (3.24)

Veff(r) = Vext(r) +

∫
n(r′)

|r− r′|
dr′ +

δExc(r)

δn(r)
. (3.25)

As is apparent from Eq. (3.23), we have now arrived at N coupled Schroedinger
equations of non-interacting particles. The Kohn-Sham equations are now to be solved
iteratively until self consistency is reached, starting from an initial guess n0(r) of the
charge density. This guess is inserted into the effective potential Veff(r) which subse-
quently enables the solution of the Kohn-Sham equations Eqn. (3.23). The updated
density n(r) is obtained by summing over the square of the absolute values of the
orbitals ϕi(r). If the solution is not yet converged, i.e. the change of the density or
energy from one iterative step to the next is still larger than a certain pre-defined
threshold, one re-evaluates the effective potential at the density n(r) and repeats.
Fig. 3.1 illustrates this iterative procedure to solve the Kohn-Sham equations with the
help of a flow chart.

Note that we have yet to put forward the expression for the exchange correlation
energy Exc[n(r)]. Under the hypothetic assumption that one knew the exact functional
form of this expression, one could solve the ground-state properties for the interacting
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n0(r)

Evaluate Veff(r)

Solve
Hϕi(r) = εiϕi(r)

n(r) =
∑

i |ϕi(r)|2

n(r)

Convergence?

Stop

no

yes

Figure 3.1: Flow chart illustrating the procedure to solve Eq. (3.23), as presented in
Ref. [31].

system exactly. This quantity is, however, not known and thus has to be approximated
in practice. Numerically there exist several approximations of the exchange correlation
term, for which we want to give a brief overview in the following.

3.4 Exchange-correlation functionals

The sole unknown expression which is required to be able to solve the Kohn-Sham
equations Eq. (3.23) and which is therefore subject to approximations is the unknown
exchange-correlation potential vxc(r),

vxc(r) =
δExc(r)

δn(r)
. (3.26)

LDA. In the local density approximation (LDA), Exc(r) is approximated by a exchange-
correlation potential which is local in space,

ELDA
xc [n(r)] =

∫
εxc

(
n(r)

)
n(r) dr. (3.27)

24



Chapter 3. Method

The quantity εxc

(
n(r)

)
represents the exchange-correlation energy density as obtained

from a homogeneous electron gas.

GGA. More elaborate functionals also take gradient contributions of the electron
density into account, resulting in the generalized gradient approximations (GGA) [35],

EGGA
xc [n(r)] =

∫
f
(
n(r), |∇n(r)|

)
n(r) dr, (3.28)

which exists in a multitude of different parametrizations.

Above expressions can be refined even further, by considering spin up and spin
down densities separately, leading to the local spin density approximation (LSDA),

ELSDA
xc [n↑(r), n↓(r)] =

∫
εxc

(
n↑(r), n↓(r)

)
n(r) dr, (3.29)

and

EGGA
xc [n↑(r), n↓(r)] =

∫
f
(
n↑(r), n↓(r),∇n↑(r),∇n↓(r)

)
n(r) dr, (3.30)

with n(r) = n↑(r) + n↓(r).
In the course of this thesis, we exclusively employ spin-polarized calculations. Both

the local density approximation (LDA) and the GGA in the Perdew-Burke-Ernzerhof
(PBE) [36] parametrization are used as exchange-correlation functionals.

3.5 Van-der-Waals interaction

Above functionals are successful if applied to systems which form by means of covalent
or ionic bonds, i.e. where chemical bonds are present. They give, however, poor results
in weakly bonded systems, such as graphite, molecular crystals, organic compounds,
molecules adsorbed on surfaces and, also, graphene adsorbed on metals. This failure
stems from the fact that LDA and GGA don’t include nonlocal dispersive forces, such
as van-der-Waals (vdW) forces [37, 38, 39, 40]. In the following we want to introduce
shortly the underlying physics.

3.5.1 Background

The van-der-Waals or dispersion force is a long-ranged interaction acting between
neutral atoms. Even though these systems do not possess a permanent dipole moment,
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Figure 3.2: Two hydrogen atoms A and B, well separated by a distance R� rA, rB.
The coordinate ri correspond to the vectors pointing from the protons to the adjacent
electrons.

fluctuations of the electron cloud around the nucleus develop temporary dipoles that
result in an electric field which induces dipoles in nearby atoms by polarization.

To make this more quantitative, consider, e.g., two hydrogen atoms which are
spatially well separated, in analogy to the treatment in Ref. [41]. The system is
described by the Hamiltonian H,

H = −1

2
∇2

A −
1

rA

− 1

2
∇2

B −
1

rB

+
1

R
+

1

|R + rB − rA|
− 1

|R− rA|
− 1

|R + rB|
. (3.31)

See Fig. 3.2 for an explanation of the coordinates employed. The first line of Eq. (3.31)
corresponds to twice the Hamiltonian of an isolated hydrogen atom, H0 = HA

0 +HB
0 .

The second line describes the residual interactionW which is small for large separations
R and can thus be approached with perturbation theory. We choose the wavefunction
Ψ0(rA, rB) as a product of hydrogen’s groundstate wavefunctions ϕi(ri),

Ψ0(rA, rB) = ϕA(rA)ϕB(rB), (3.32)

H i
0ϕi(ri) = ε0ϕi(ri), (3.33)

where i denotes the atomic site and ε0 the energy eigenvalue of hydrogen’s groundstate.
To obtain the eigenvalue E0, we act with H0 on the wavefunction Ψ0(rA, rB),

H0Ψ0(rA, rB) = E0Ψ0(rA, rB), (3.34)

resulting in E0 = 2ε0 < 0. We now rewrite the interaction term W by choosing our
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coordinate system such that the z-axis connects both hydrogen atoms, i.e. R = R ez,
yielding

W =
1

R
+

1√
R2 + 2R · (rB − rA) + (rB − rA)2

− 1√
R2 + 2R · rB + r2

B

− 1√
R2 − 2R · rA + r2

A

(3.35)

=
1

R

(
1 +

1√
1 + 2 (zB−zA)

R
+ (rB−rA)2

R2

− 1√
1 + 2 zB

R
+

r2
B

R2

− 1√
1− 2 zA

R
+

r2
A

R2

)
(3.36)

Expanding the (1 + x)−1/2 expression to third order we obtain, after some manipula-
tions,

W ≈ 1

R3

(
rA · rB − 3

(
rA · R̂

)(
rB · R̂

))
, (3.37)

which is the interaction between two dipoles separated by a distance R. Note that
we use atomic units, therefore the atom’s dipole moment is simply given by ri. R̂

corresponds to the unit vector pointing in the direction of R.
To first order the energy correction vanishes because the groundstate wavefunction

of hydrogen is spherically symmetric, i.e. ∆E(1) = 〈Ψ0|W |Ψ0〉 = 0. By means of
second order perturbation theory, the second order energy correction is given by

∆E(2) =
∑
n6=0

|〈ψn|W |ψ0〉|2

E0 − En

. (3.38)

Here, |Ψn〉 = |ϕAn〉|ϕBn〉 denotes the electron’s excited states and En their correspond-
ing eigenvalue. Plugging Eq. (3.37) into above equation, we thus arrive at the famous
van-der-Waals interaction term,

∆EvdW ∝ − 1

R6
, (3.39)

which leads to a lowering in energy and is thus an attractive force. Note that the inter-
action goes with R−6. The vdW force mainly contributes to the interaction between
neutral atoms but also exists for charged ions. In this case, however, the monopole
contribution of the Coulomb interaction dominates.
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3.5.2 Implementation

Since the incorporation of the nonlocal electron-electron correlations into DFT is not
straightforward and a challenging task, several approaches are followed to account for
the vdW interaction.

Grimme corrections. In Ref. [40], S. Grimme approached the missing nonlocal
and long-ranged correlation effects in GGA functionals by including a modified ver-
sion of the empirical dispersion correction Edisp to the Kohn-Sham energy EKS-DFT as
introduced in Ref. [42],

EDFT-D = EKS-DFT + Edisp (3.40)

with

Edisp = −s6

N−1∑
i=1

N∑
j=i+1

Cij
6

R6
ij

fdmp(Rij). (3.41)

N is the number of atoms in the system, Cij
6 corresponds to the dispersion coefficient

for an atom pair ij, s6 is a global scaling factor dependent on the employed func-
tional and Rij is the interatomic distance. fdmp is a damping function which ensures
that near-singularities for small R are avoided. Our calculations utilize the Perdew-
Burke-Ernzerhof functional including the above force-field corrections, referred to as
PBE+Grimme in the following.

vdW-DF. In vdW-DF and its refinements [43, 38], the exchange-correlation energy
is written as

Exc = EGGA
x + ELDA

c + Enl
c , (3.42)

where EGGA
x is the GGA exchange energy, ELDA

c the local correlation energy as ob-
tained within LDA and Enl

c accounts for the nonlocal part. In its simplest form, this
quantity is given by

Enl
c =

1

2

∫
d3r

∫
d3r′n(r)φ(r, r′)n(r′), (3.43)

where the function φ(r, r′) is a function depending on r− r′ and the densities n in the
proximity of r and r′, respectively. In the present work, the functional optB88 was
employed [38, 39], which functional has only recently been implemented into VASP.
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Results

If placed on a metal substrate like, e.g., Nickel, Ruthenium or Rhodium, graphene cou-
ples strongly to its support, which consecutively leads to the destruction of graphene’s
unique and favorable electronic structure. Most importantly, its linear dispersion near
the Dirac point is lost. With regard to potential future graphene based electronic
devices, which benefit exactly from this feature, it is therefore desirable to overcome
this shortcoming by tailoring the electronic structure of these systems.

As current research demonstrates, this can indeed be accomplished by the incorpo-
ration of an additional layer of a noble metal between the substrate and the graphene
sheet. This layer is more or less seen as a spacer layer which leads to a reduced overlap
of the involved graphene and metal orbitals and should thus help the graphene states
to regain their freestanding, ideal behavior [12, 13, 14].

Controlling the intercalation process is fundamental if one wishes to effectively
achieve this decoupling. The exact underlying mechanisms are, however, not yet fully
understood and still subject to current investigations. In Ref. [44], e.g., the formation
of intercalated nanoislands (INIs) of Ni is traced back to two main contributions:
the diffusion through pre-existing lattice defects in graphene and via metal-generated
defects followed by defect healing of the graphene lattice. The second mechanism is
based on the observation that some INIs do not exhibit any perturbations of their
moiré structure, as for example shown in Fig. 4.1.

In the following, we thus want to assess the question of how intercalated layers
are formed under Gr/Ir(111) by determining the energy barriers a single nickel atom
encounters during the intercalation process.

In the second part of this chapter, we will analyze the consequences of intercalation
for Gr/Ag/Re, which already features an additional intercalated monolayer of Ag.
Here we have experimental angle-resolved photoemission spectroscopy (ARPES) data
at hand which were provided by M. Papagno et al. [45]. Contrary to expectations,
these measurements did not reveal a behavior known for similar systems, but show a

29



Chapter 4. Results

Figure 4.1: STM image of an intercalated Ni island underneath Gr/Ir(111) as found
in experiment. The inset at the bottom sketches the fact that islands can also be
found underneath areas of unmodified graphene sheets. This figure was taken from
Ref. [44].

not at all negligible residual coupling.

4.1 Intercalation process: Graphene/Ni/Ir(111)

4.1.1 Introduction

Understanding the formation of a layer of foreign atoms between graphene and its
supporting substrate by the process of intercalation plays an important role in exper-
imentally controlling the growth of intermediate layers and in assessing experimental
data. This knowledge can then, e.g., put into action to efficiently reduce the coupling
of strongly interacting graphene/metal systems, as will be shown in the subsequent
section.

In a first step towards intercalation in experiment, epitaxial graphene is grown on
the surface, e.g., by exposure to hydrocarbons. Subsequent heating leads to cracking
and a desorption of the hydrogen atoms [18]. The hereby grown graphene sheet is
then covered with the desired material to initiate intercalation. This is followed by
an annealing procedure of defined time and temperature. Fig. 4.2 illustrates this
schematically. Note that the intercalation process happens after graphene is already
present on the surface.

The rates of the various reaction processes occuring experimentally depend, firstly,
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Figure 4.2: Schematic illustration of the experimental annealing process to achieve
intercalation. In the first step graphene is grown on the surface. The foreign atoms
are then positioned ontop of the Gr/metal system, followed by annealing. During the
heat exposure intercalation occurs by atoms diffusing through the graphene sheet.

on the applied temperature during the annealing and can thus be controlled by the
experimentor. The second key quantity is the height of the energy barriers the inter-
calating atoms feel during the intercalation process, which we will analyze below for
the specific system Gr/Ir(111).

4.1.2 Numerics

In what follows, we want to numerically investigate the intercalation paths which lead
to the formation of a Ni layer under Gr/Ir(111). To achieve this, the energy barriers
a single Ni atom encounters when diffusing through graphene are determined. We
start out by investigating the diffusion while completely neglecting the supporting
substrate. Once the transition mechanism is obtained, we will use the transition state
structure to evaluate the full, supported system, thus including the Ir(111) substrate
in our calculations.

4.1.2.1 Setup

Throughout the subsequent computations, we make use of the DFT code VASP [24,
22]. As mentioned in chapter 3, we allow for a spin-polarized calculation. PAW
potentials [25, 26] and a cutoff-energy of 400 eV are employed. All numerical runs
were performed in a 4 × 4 cell, except where explicitly noted. We used the local
density approximation (LDA) to approximate the exchange-correlation energy and
the Γ-only version of VASP, i.e. a 1 × 1 × 1 grid to numerically sample the Brillouin
zone.
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The structural properties of the graphene layer were taken from the data shown in
the next section of this chapter.

4.1.2.2 Methods

To determine the reaction barrier of the diffusing Ni atom, we adopt two strategies.
To obtain a good guess of the reaction mechanism, we search at first for the transition
state more or less by hand, a procedure we term fixed coordinate method. Based on
the output of this search, a more refined search algorithm is used, given by the dimer
method which we will review subsequently.

Fixed coordinate method. In a more or less brute force attempt, we reduce the
z-distance of the Ni atom relative to the graphene layer gradually, employing a fixed
step-size (Fig. 4.3). At each distance, we determine the system’s total energy after
allowing the most nearby carbon atoms of the graphene sheet to relax until all forces are
smaller or equal than a threshold of 0.01 eV/Å. The atoms constituting the boundary
of the cell are kept fixed in this process. Hints at the involved reaction mechanism
are obtained from the recorded energy vs. reaction coordinate data, which is, in the
present case, just the z-distance between Ni and the initial z-coordinate of the graphene
sheet. This method will, in the following, also be referred to as the fixed coordinate
approach.

Dimer method. The above method allows an approximate guess of the correct
transition state (TS), which state represents a saddle point on the potential energy

Figure 4.3: Sketch of the fixed coordinate method, as employed in our numerics. The
z-distance of the diffusing atom is decreased gradually. We show here two examples
of the fixed coorrdinate approach in a 4x4 unit cell, i.e. the diffusion through a
pristine graphene sheet (left) and through a vacant site in the graphene layer (right),
respectively. For simplicity the cell is depicted using a wireframe representation.
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surface (PES). Directly at the TS, the forces which act on the Ni atom are equal to
zero. Since, however, the actual transition state can differ quite significantly from the
one obtained by the fixed coordinate method, a more refined algorithm for finding the
saddle point is needed. One efficient approach to accomplish this is the dimer method
[46, 47] and, as implemented into VASP, the improved dimer method [48]. Unlike
conventional techniques, the dimer method embodies a mode-following method which
only requires the first derivatives of the energy, rendering it also capable of treating
large systems. Technically, the dimer method uses two replicas of the system, thus
lending this technique its name. The dimer is used to transform the forces such that
the system converges towards a saddle point rather than a minimum by means of an
optimization procedure allowing both a translation and a rotation of the dimer [47].

The implementation of this procedure into VASP is not as straight-forward as
before. Following the suggestions from the VASP manual on the application of the
dimer method1, three steps are required to determine the energy diagram and, hence,
the energy barrier. Starting from the TS guess, we calculate the frequency spectrum of
the system. The mode featuring an imaginary frequency is then used as an initial dimer
axis in the actual dimer method run. A sampling of the PES is achieved by iterative
rotation and translation of the dimer. If converging, the dimer should move towards
the energy maximum of the reaction path which forms a saddle point. Convergence
is achieved if the forces on the ions, which were allowed to move, are smaller than
0.03 eV/Å. To obtain the energies of the initial (IS) and final state (FS), we deflect
the Ni atom from its (unstable) equilibrium position and relax the system by means
of a velocity quenched algorithm as implemented in VASP by setting IBRION=3. The
energy and positional data is extracted from the OSZICAR and XDATCAR output files. In
the appendix we include the scripts which were written during this thesis to accomplish
the above mentioned task.

In contrast to the fixed coordinate approach, where the reaction coordinate is
determined by the Ni atom’s z-coordinate, we introduce here another measure based
on the norm between two different configurations ξ(i) belonging to consecutive iterative
steps in the ionic relaxation process,

d =
∑

i

∣∣ξ(i+1) − ξ(i)
∣∣ , (4.1)

where the index i runs over all ionic iteration steps. The system’s structure is entirely
specified by the 3N dimensional configuration vector ξ(i), with N denoting the total

1http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html
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number of ions in the employed unit cell,

ξ(i) =


R

(i)
1
...

R
(i)
N

 . (4.2)

4.1.2.3 Unsupported graphene

Pristine graphene sheet. Fig. 4.4 shows the results of the diffusion of a Ni atom
through the central graphene ring in a p(4x4) cell for both, the fixed coordinate as
well as the dimer method. Of the 32 carbon atoms, we fix the outermost ions and
allow the inner C atoms to move in all directions during relaxation. We present the
structures for the initial and transition state in (a) and the total energy of the unit
cell [eV] versus the reaction coordinate [Å] in (b). In the left panel of the bottom row,
we show the results as obtained by the fixed coordinate method. We start the search
for the transition state at a z-distance of 7.5 Å between the graphene sheet and the
Ni atom, which lies exactly in the middle of our 15 Å thick vacuum region. Here, we
use the convention that the initial state lies to the left, featuring negative values of
the reaction coordinate. Note that the zero point in our fixed coordinate calculations
does not correspond to the transition state. Since the closest carbon atoms are allowed
to give way when the Ni atom approaches, the transition state can be found about
1 Å below the initial position of the graphene sheet.

The d = 7.5 Å configuration lies about 2.64 eV above the reactant state energy,
which was chosen as the reference energy state. It corresponds to the minimum at
about -1.5 Å. Upon approaching, the Ni atom is caught in a local minimum basin. For
the intercalation of Ni to happen, i.e. to get from the initial state on the left of the
barrier to the final state on the right, an energy barrier of 11.95 eV has to be overcome.
Approximately 12 eV is a very large barrier and is unlikely to be overcome at typical
annealing temperatures.

Note that our curve features a discontinuous jump at the TS. This is an artefact
of the procedure which we employ: due to the constant step size the evading carbon
atoms are suddenly confronted with a repellent force as soon as the Ni atom moves
over the transition state. A smoother behavior in the energy vs. reaction coordinate
plots will be obtained by the dimer method in the following.

The right panel of (b) in Fig. 4.4 corresponds to the data as acquired by the
dimer method, starting from the configuration closest to the TS based on the fixed
coordinate approach. The diffusion barrier determined by this method differs by only
30 meV from the previously obtained data. The marginal difference therefore does
not change the above assessment of the probability of this particular type of reaction.
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Figure 4.4: a) Structures of the p(4x4) cell at the initial (left) and transition state
(right). b) Total energy of the unit cell [eV] as a function of the reaction coordinate
[Å], shifted to feature the initial state as the reference energy. The unit cell consists
of 32 carbon atoms and one Ni atom, respectively. For the fixed coordinate model
(left panel), black lines are included which correspond to the transition state and the
d = 7.5 Å configuration. The right panel displays the barrier as obtained by the dimer
method. Note that both approaches use different definitions of the reaction coordinate,
the x-coordinates are therefore not to scale (see text for details).

An explanation of this finding might most presumably be the fact that we already
had a very good initial guess of the transition mechanism when we employed the fixed
coordinate method.

Defective graphene sheet. The above obtained energy barriers are too high to
explain the formation of intercalated Ni layers as observed by experiment [44]. Another
possibility which we now want to analyze is the reaction happening at a vacant carbon
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Figure 4.5: a) Structures of the p(4x4) cell at the initial (left) and transition state
(right). b) Total energy of the unit cell [eV] as a function of the reaction coordinate
[Å], shifted to feature the initial state as the reference energy. The unit cell consists
of 31 carbon atoms and one Ni atom, respectively. For the fixed coordinate model
(left panel), black lines are included which correspond to the transition state and the
d = 7.5 Å configuration. The right panel displays the barrier as obtained by the dimer
method. Note that both approaches use different definitions of the reaction coordinate,
the x-coordinates are therefore not to scale (see text for details).

site in the honeycomb lattice, see (a) in Fig. 4.5. Qualitatively speaking, it is obvious
that a defect will be more reactive than a pristine graphene ring. In the following we
want to make this assertion more quantitative.

Part (b) of Fig. 4.5 depicts the data in analogy to our treatment of the pristine
graphene system. Comparing the energy diagrams, we now have a rather different
picture than before. Approaching the graphene surface, the Ni atom gains 8.05 eV
on its way to the reactant state in the minimum at about -1.1 Å. This portion of
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Figure 4.6: a) Structures of the p(8x8) cell at the initial (left) and transition state
(right). b) Total energy of the unit cell [eV] as a function of the reaction coordinate
[Å], shifted to feature the initial state as the reference energy. The unit cell consists
of 127 carbon atoms and one Ni atom, respectively. For the fixed coordinate model
(left panel), black lines are included which correspond to the transition state and the
d = 7.5 Å configuration. The right panel displays the barrier as obtained by the dimer
method. Note that both approaches use different definitions of the reaction coordinate,
the x-coordinates are therefore not to scale (see text for details).

energy corresponds to the large vacancy energy of graphene and is a consequence of
the strong bonding of graphene’s carbon atoms. Most evidently, the energy barrier
is significantly reduced by almost 10 eV, resulting in a diffusion barrier of 2.35 eV. A
treatment which takes the TS as determined in the fixed coordinate run and employs
the dimer method yields, finally, 1.96 eV, which is a by 0.39 eV smaller barrier. This
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result represents a much more likely mechanism for intercalation.
Since the next nearest-neighbors of the diffusing Ni atom in our p(4x4) cell are

already fixed, we also checked if this restriction leads to any substantial deviations by
examining a p(8x8) cell (see Fig. 4.6). Both the fixed coordinate and dimer method
were employed for this system. Difficulties arose during the dimer run, where we
encountered a failure of VASP to converge the system towards the saddle point and
resulted in the ions scattering in all directions. Fortunately, this behavior could be
counteracted by manually setting the VASP flags STEP_SIZE and STEP_MAX, which
flags both control step sizes for the dimer optimization steps, to 80% of its default
values. The results obtained in this larger cell are, as expected, similar to the ones
obtained in the smaller p(4x4) cell. For the fixed coordinate method the values differ
from the p(4x4) cell by about 2%. By means of the dimer method we get, for an
optimized transition state geometry, deviations of approximately -4% compared to the
smaller cell’s barrier. We can thus conclude that the p(4x4) cell already represents a
large enough system. We might add that the lowering of the barrier stems from the
fact that the larger 8x8 supercell offers more degrees of freedom for the ionic relaxation.

We still have, however, to consider the full system, i.e. Gr/Ir(111), which we will
examine in the following section.

4.1.2.4 Supported graphene

The transition state structure, as obtained by the dimer method for the p(4x4) cell
featuring a vacancy, was then put on a three layered Ir(111) slab in the top-fcc ar-
rangement, i.e. one C atom on top of Ir and the other on the fcc hollow site. This
interface structure offers therefore two options for a vacancy. In this work, however, we
focus on a defect directly above the top site. To achieve an epitaxial graphene layer,
the substrate was compressed by about 10% so that the iridium support matches the
lattice structure of the terminating graphene sheet. The spacing between the fixed
carbon atoms and the substrate was determined such that we examined the equilib-
rium distance between an ideal graphene sheet and the Ir(111) surface in an energy
vs. graphene-substrate distance scan analogous to the treatment in the next part of
this chapter, leading to d = 3.1 Å. For the dimer run, the substrate ions were kept
fixed while the inner carbon atoms were again allowed to move in all directions.

Fig. 4.7 summarizes our findings. To the left, at -3.5 Å, we have the reactant state
which serves as a reference energy in our calculations. Surmounting the energy barrier
would require 1.50 eV, which is an significant reduction of the barrier compared to the
unsupported system. Additionally, the Ni atom is stabilized at the final (=intercalated)
state, differing by 1.08 eV from the initial state. Fig. 4.8 provides the structures as
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Figure 4.7: Total energy of the unit cell [eV] as a function of the reaction coordinate
[Å] as obtained by the dimer method, shifted to feature the initial state as the reference
energy. The unit cell consists of 48 Ir atoms, 31 carbon atoms and one Ni atom. Black
lines are included which correspond to the initial state (at 0.0 eV), transition state (at
1.50 eV) and the final state (-1.08 eV), respectively.

obtained numerically at the reactant, transition and product state, respectively.
Based on our numerically obtained data we can conclude this section’s findings by

stating that the intercalation of Ni atoms through defect sites in the graphene sheet is
a very plausible mechanism to occur at typical annealing temperatures. Additionally,
our numerics show that, if the graphene sheet does not feature any vacancy, a large
energy barrier prevents any significant contribution to diffusion.
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a) Reactant state

b) Transition state

c) Product state

Figure 4.8: Structures from the diffusion process of a single nickel atom through a
defective graphene sheet supported by three layers of Ir(111). Shown are the reactant
state (a), the transition state (b) and the product state (c), respectively.
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4.2 Graphene/Ag(111)/Re(0001)

4.2.1 Experiment

Figure 4.9: Angle-resolved photoemission spectra of (a) a Re surface, (b) Gr/Re and
(c) Gr/Ag/Re, respectively. The measurements were conducted by M. Papagno and
coworkers [45].

The origin of our numerical investigations were experimental findings by Marco
Papagno and coworkers [45], who conducted angle-resolved photoemission experiments
to measure the bandstructure of Gr/Ag/Re at 3 different stages of the experimental
formation process, starting from a Re substrate as indicated in Fig. 4.9. In a) we see
the bandstructure of Re along high-symmetry lines in the first Brillouin zone, from Γ to
the K-point and from K to M, respectively. Figure b) was measured after the Re(0001)
surface was exposed to ethylene at a temperature of 1100 K. This treatment lead to
the formation of a graphene layer on the surface, which is evidenced by the emergence
of graphene’s π- and σ-bands. The π band now exhibits a parabolic dispersion, as
well as a gap of approximately 4 eV at the K-point, which is a sign of a very strong
interaction of the graphene sheet with the underlying supporting metal, similar to the
behavior of Ni, Ru or Rh, as was mentioned in the introduction of this thesis.

In the final step, Papagno and coworkers deposited two layers of Ag on the Gr
sheet, followed by an annealing procedure at 500 K. This process lead to some of
the Ag atoms to intercalate and to form a monolayer of Ag between Gr and the
Re substrate, whereas the other atoms most presumably desorbed from the surface.
Justification for the assumed intercalated monolayer is provided by the bandwidth of
the Ag 4d bands, which is smaller than the bandwidth of a Ag multilayer.
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The additional intercalated Ag monolayer leads to a reduction of the graphene-
substrate interaction and almost recovers graphene’s Dirac cone at the K-point. Al-
though a gap of approx. 450 meV still persists, the linear disperson in proximity to
the Fermi level in k-space re-emerges. Also, corresponding to a charge transfer from
the substrate to graphene, a downward shift of the Fermi energy EF with respect to
the Dirac point is observed, enabling the π∗ band to be accessible experimentally.

Additional points which we want to analyze more closely are the electronic features
at a binding energy of approximately 6 eV, halfway from Γ to K, where the π bands
display a band gap. To determine the character of the electronic properties as well as
the structure of the present system, we will examine the Gr/Ag/Re system in terms
of simple model structures.

4.2.2 Numerics

4.2.2.1 Setup

Within this work spin-polarized DFT calculations have been performed with the
Vienna Ab-initio Simulation Package (VASP) [24, 22]. We employed PAW poten-
tials [25, 26] and an energy cutoff of 400 eV. To integrate the Brillouin zone a Γ-
centered 15× 15× 1 k-point mesh was used. All calculations have been carried out in
a primitive 1× 1 unit cell. In the course of our study, we also employ several choices
for exchange-correlation potential approximations, ranging from the local density ap-
proximation (LDA) to several incarnations of the generalized gradient approximation
(GGA), i.e. PBE [36] and PBE+Grimme [40], as well as the only recently published
vdW functional optB88 [38, 39].

4.2.2.2 Lattice constants

As is common practice in the course of a computational analysis, the various lat-
tice constants of the equilibrium structures have to be determined. Since experiment
finds Ag to grow pseudomorphically between Gr and Re, we are only left with the
identification of the lattice constants of those two materials.

Graphene. As presented in chapter 2, graphene crystallizes in a honeycomb lat-
tice which is described by a Bravais lattice with a two-atom basis. We determine the
equilibrium lattice constant by scanning through different lattice constant parameters,
which quantity we tune in each numerical run. From the resulting lattice constant a
vs. energy plot, the equilibrium constant was obtained by means of finding the mini-
mum of a polynomial interpolating the data set. To be able to compare the behavior
of different functionals, we repeat this procedure for LDA, PBE, PBE+Grimme and
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Figure 4.10: Energy [eV] vs. lattice constant [Å], as employed numerically to de-
termine the equilibrium lattice constant a of graphene. In these numerical runs, the
optB88 functional was used to approximate the exchange-correlation functional.

optB88. Fig. 4.10 shows the obtained data for the optB88 functional, Tab. 4.1 tabu-
lates the respective data for all the functionals employed as well as the value of a as
determined by experiment.

Experimental data suggests an equilibrium lattice constant of 2.46 Å, a value which
our numerics reproduce quite well, regardless of the employed functional. In the local
density approximation (LDA) the binding is known to be overestimated, in agreement
with our data where LDA is the only functional resulting in a lattice parameter smaller
than experiment, namely 0.54% less. The overbinding can also be easily observed in
the equilibrium energy, Emin. Even though the Perdew-Burke-Ernzerhof (PBE) func-
tional performs, as will be shown below, poorly in systems where van-der-Waals (vdW)
interaction is of importance, we find the numerically obtained lattice parameter a de-
viating only by 0.32% from experiment. This agreement can be explained by noting
that vdW interaction plays an negligible role in planar graphene, where bonding is

Functional a [Å] ∆a/aexp [%] Emin[eV atom−1]
Experiment 2.46 - -
LDA 2.44671 -0.540 -10.10005
PBE 2.46777 0.316 -9.22863
PBE+Grimme 2.46765 0.311 -9.28360
optB88 2.46320 0.130 -10.07345

Table 4.1: Experimentally and numerically obtained equilibrium lattice constants a
and energies per carbon atom of graphene, calculated for different exchange-correlation
potential approximations.
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×

Figure 4.11: Map of the energy [eV] vs. lattice constants a [Å] and c/a, as employed to
determine the equilibrium lattice constants a and c/a of Re. Darker colors correspond
to a and c/a combinations which are lower in energy. In these runs, the optB88
functional was used as the exchange-correlation functional. × indicates the minimum
energy configuration.

dominated by the strong covalent in-plane σ-bonds. As a result, also PBE’s further
developed version, PBE+Grimme, which represents an attempt to account for the
vdW interaction by means of semi-empirical force field corrections, does not lead to
significant enhancements over the PBE data. The lattice parameter a closest to exper-
iment is obtained by means of the vdW functional optB88, which includes a nonlocal
energy contribution to approximate nonlocal density correlation effects, differing only
by 0.13% from 2.46 Å.

Bulk rhenium. Rhenium’s crystal structure is the hexagonal close packed (hcp)
lattice, which structure makes it necessary to determine two lattice constants, a and c
respectively. In analogy to the energy versus lattice constant scan which we conducted
for graphene, we now vary both lattice parameters independently and subsequently
extract the equilibrium lattice constants from the minimum of an interpolating func-
tion in the three dimensional a vs. c/a vs. energy space (see Fig. 4.11). The respective
results are summarized and compared to experiment in Tab. 4.2.

Employing the functionals LDA, PBE, PBE+Grimme and optB88, we see that
the in-plane lattice constant a is subject to deviations from the experimental value
of 2.761 ranging from -1.73% to 0.59%. As explained above, LDA overestimates the
binding, leading to smaller lattice constants and higher binding energies. The out-of-
plane lattice parameter c, or, as used computationally, the reduced out-of-plane lattice
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Functional a [Å] ∆a/aexp [%] c/a ∆(c/a)/(c/a)exp [%] Emin[eV atom−1]
Experiment 2.761 - 1.61463 - -
LDA 2.74109 -0.721 1.61387 -0.047 -13.76032
PBE 2.77305 0.436 1.61724 0.161 -12.42284
PBE+Grimme 2.71330 -1.728 1.61237 -0.140 -14.68282
optB88 2.77728 0.590 1.61375 -0.055 -11.27007

Table 4.2: Experimentally and numerically obtained lattice constants a and c/a and
equilibrium energies per Re atom, calculated for different exchange-correlation poten-
tial approximations.

parameter c/a, features a more uniform behavior throughout the various exchange-
correlation functionals. Here the bandwidth of different values only reaches from
-0.055% to 0.161%.

Comparison rhenium vs. graphene lattice constant. Tab. 4.3 compares the
various deviations of the lattice constants of graphene with the lattice constants of Re
and vice versa. Most importantly, we find that the lattice parameter of graphene is
about 11% smaller than the one of Re, regardless of the employed functional. This
lattice mismatch leaves us with two options for a simplified epitaxial 1× 1 model cell,
which are to either

1. stretch the graphene sheet so that it assumes the structure of the supporting
Ag/Re slab, or

2. compress the substrate in order to achieve a matching lattice with the terminating
graphene layer.

In the present thesis, both options are considered, although we want to stress
the fact that, in reality, we would encounter a moiré superstructure which would
lie in between those two extremes. This would require a 9 × 9 graphene cell on an
8 × 8 Ag/Re cell, as considered in Ref. [45]. This large cell, however, comprises a
crucial obstacle. The quantity we are interested in is the system’s bandstructure,

Functional aRe [Å] aGr [Å] (aRe − aGr)/aGr [%] (aGr − aRe)/aRe [%]
Experiment 2.761 2.46 12.236 -10.902
LDA 2.74109 2.44671 12.032 -10.740
PBE 2.77305 2.46777 12.371 -11.009
PBE+Grimme 2.71330 2.46765 9.955 -9.054
optB88 2.77728 2.46320 12.751 -11.309

Table 4.3: Comparison of the equilibrium lattice constants of rhenium and graphene,
respectively.
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which we want to compare to the experimental ARPES data. Yet, the evaluation of
the bandstructure is made difficult in this large cell since for the present system an
unfolding procedure shows too little significancy in the bandstructure plots to be able
to make any meaningful assertions [49]. In the following we will thus concentrate on
a primitive (1x1) cell which allows a much more simplified discussion of the system’s
bandstructure.

4.2.2.3 Unit cell preparation

Figure 4.12: Three different interface structures were considered in our numerical
treatment of Gr/Ag/Re, namely top-hcp, top-fcc and hcp-fcc. a) and b) show the
Gr/Ag/Re cell in a top and side view, respectively. The structural data stems from an
actual simulation of graphene on a Ag/Re substrate employing the optB88 functional
and was expanded from the 1x1 to a 4x4 cell to achieve better visibility.

To relax the Re slab we fixed the middle layer while the atoms of the adjacent Re
bilayers were allowed to move in all directions until all forces were <0.01 eV/Å. The
same relaxation procedure was employed following the addition of an Ag monolayer,
however restricting the Ag atom’s degrees of freedom to the z-coordinate and assuming
a continuation of rhenium’s hexagonal structure. This resulted in a Ag-substrate
distance of 2.5 Å. The bonding distance of the terminating graphene layer was obtained
by scanning through different graphene-substrate spacings while allowing an in-plane
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Figure 4.13: Energy [eV] per Gr/Ag/Re unit cell versus graphene-substrate distance d
[Å], calculated by means of the optB88 functional for the two models employing the Re
(left) and Gr (right) lattice constant and different interface geometries, respectively.

relaxation for both carbon atoms at each numerical run. The placement of graphene’s
C atoms relative to the substrate was tested with different structures, namely top-
hcp, top-fcc and hcp-fcc, respectively. The various adsorption sites are displayed in
Fig. 4.12. To the left, we have the two carbon atoms of the unit cell above the metal
atoms of the first and second layer, termed the top-hcp arrangement. The figure in the
middle corresponds to the top-fcc structure, for which the carbon atoms lie above the
top and fcc-hollow site, respectively. In the hcp-fcc interface geometry, the graphene
layer is placed such that both the hcp- and fcc-hollow sites are covered if viewed from
the top. We want to stress the fact that this list of adsorption sites is not exhaustive
and that there exist other interface arrangements, as, e.g., analyzed for Gr/Ni(111) in
Ref. [50].
To determine the equilibrium distance between the terminating graphene sheet and
the Ag/Re substrate, we scanned through different distances and recorded the energy
at each numerical run, for each model and for every adsorption site. Fig. 4.13 shows
the obtained energy vs. distance curves for the optB88 functional.

Tab. 4.4 displays a summary of the obtained data. If considering the structure in
models based on rhenium’s lattice constant (left column of Tab. 4.4), we find that,
regardless of the employed functional, the top-fcc adsorption site is determined to
be the most stable configuration, featuring the highest binding energy. LDA leads
to distances of approximately 2.6 Å, whereas PBE+Grimme and optB88 find a by
0.3 Å larger distance. The PBE functional nearly misses the bonding of the graphene
sheet to the substrate with a distance of 4.7 Å. As was already mentioned earlier, this
behavior originates in the missing van-der-Waals interaction and demonstrates that
this particular choice of functional is inappropriate for the considered system.

The model with a = aGr exhibits much larger distances compared to the aRe
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Functional Structure d [Å]
LDA top-hcp 2.589

top-fcc 2.573
hcp-fcc 3.177

PBE top-hcp 4.706
top-fcc 4.685
hcp-fcc 4.769

PBE+Grimme top-hcp 2.950
top-fcc 2.913
hcp-fcc 3.000

optB88 top-hcp 3.000
top-fcc 2.939
hcp-fcc 3.300

Functional Structure d [Å]
LDA top-hcp 3.570

top-fcc 3.564
hcp-fcc 3.593

PBE top-hcp 4.654
top-fcc 4.400
hcp-fcc 3.624

PBE+Grimme top-hcp 3.269
top-fcc 3.266
hcp-fcc 3.238

optB88 top-hcp 3.600
top-fcc 3.623
hcp-fcc 3.624

Table 4.4: Equilibrium graphene-substrate distances d in Å, tabulated for different
functionals and interface structures. The left column corresponds to the toymodel
emplying the lattice constant of rhenium (a = aRe), the right column to the lattice
parameter of graphene (a = aGr), respectively.

model. Strikingly, there is close to no difference anymore between the different interface
structures and, in particular, no distinguished energetically favored adsorption site can
be detected throughout the various functionals.

We will now, for the subsequent discussion, only focus on the top-fcc arrangement
and optB88, which functional was determined to suit the experimental data best.
The final unit cell at aRe features a vacuum distance of 13.2 Å between consecutive
slabs. Since this portion of vacuum might seem too little, we also conducted addi-
tional calculations which involved a larger value of 20.0 Å and as well accounted for
dipole corrections by setting the VASP flags LDIPOL=.TRUE. and IDIPOL=3. The re-
sults showed that the energies are sufficiently converged, thus demonstrating that the
originally employed vacuum of 13.2 Å was already enough.

4.2.2.4 Bandstructure

Having now obtained the equilibrium structures for both models, we can evaluate the
bandstructures. Fig. 4.14 displays the bandstructures of both models of Gr/Ag/Re,
i.e. the models employing the Re and Gr lattice constants, respectively.

Green indicates graphene’s π states and red corresponds to the 4d bands of Ag,
respectively. The size of the circles indicates the degree of the state’s localization and
provides information about the character of the different bands. Here we have quite
distinct differences between the two bandstructures, but first we want to recapitulate
the experimental findings: Ref. [45] found that the intercalated Gr/Ag/Re system
features a slight n-doping of graphene, a gap at the K-point and also features a gap of
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d = 2.9 Å d = 3.6 Å

Figure 4.14: Bandstructure of Gr/Ag/Re, employing the equilibrium structures of
the Re (left column) and the Gr model (right column) for the functional optB88. The
radius of the circles corresponds to the degree of the state’s localization. Included are
graphene’s π-bands (green) and the Ag d-bands (red), respectively. For the former, the
radius of the circles has been multiplied by a factor of 5.5 to achieve better visibility,
for the latter a factor of 2.5 was employed. The energy is shifted such that the Fermi
energy EF represents the reference energy.

the Gr π band in the middle of the Brillouin zone between Γ and K.
Employing the lattice constant model for aRe (left hand side of Fig. 4.14) at a

distance of 2.9 Å, all of these three features are also encountered in our numerics. In
qualitative agreement, we find a downward shift of the Dirac point with respect to
the Fermi level, corresponding to electron charge transfer from the substrate to the
graphene sheet. And, even though it cannot be resolved in Fig. 4.14, we even find
a small bandgap of about 16 meV. Our numerics also reproduce the experimentally
encountered splitting of the π band, where we have evidence of a hybridization of
graphene’s π band with the Ag d bands which opens a gap of about 1 eV.

Turning to the model with a = aGr at a distance d = 3.6 Å, which corresponds
to a compressed structure compared to the former, we have, at first, a broadening of
the bandwidths due to the increased overlap of the various orbitals. With this model
we find a splitting of the graphene π states as well, however smaller in magnitude
and, additionally, the doping is inverted compared to the lattice constant model of Re.
Since this finding represents a major deviation from the experimental data, we will,
in the following, employ the lattice constant model of Re exclusively.

The qualitative deviations of both models give rise to the question of whether this
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d = 2.9Å d = 3.4Å d = 4.0Å d = 5.0Å

Figure 4.15: Bandstructure of Gr/Ag/Re, employing the optB88 optimized top-fcc
structure and equilibrium lattice constant of Re for a selection of different substrate-
graphene distances d. The radius of the circles corresponds to the degree of the
state’s localization. Included are graphene’s π-bands (green) and the Ag d-bands
(red), respectively. For the former, the radius of the circles has been multiplied by a
factor of 5.5 to achieve better visibility, for the latter a factor of 2.5 was employed.
The energy is shifted such that the Fermi energy EF represents the reference energy.

behavior is more controlled by the employed lattice constant, or rather dominated by
the different distances d between the graphene sheet and the substrate.

Contribution of distance d. To investigate this assessment, we rerun our calcula-
tions for systems in which the distance d was gradually increased from 2.9 Å to 5.0 Å,
as shown in Fig. 4.15. Going from the equilibrium distance of 2.9 Å to 5.0 Å, one ob-
serves that the splitting of graphene’s π-band gets less and less the more the spacing
between graphene and Ag/Re is increased. At 5.0 Å, basically no sign of a hybridiza-
tion is left. We thus have a clear dependence of the hybridization on the distance
between graphene and the Ag/Re substrate, since the splitting of the π-band is lost
at larger spacings. The numerical data also implies that the larger distance gives rise
to a shift of the Dirac point with respect to the Fermi level, where graphene’s doping
changes from n- to p-doping. Note that we also evaluate the bandstructure close to
the equilibrium distance found in a more realistic 9× 9 Gr on 8× 8 Ag/Re cell, which
features a mean spacing of 3.47 Å [45].

To further investigate the (1x1) cell at a distance of 3.4 Å, we now include a
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a) Gr/Ag/Re b) Gr/Ag/Re
(experiment)

c) Ag/Re d) Gr/Ag

dxz,
dyz

s, dz2

dxy,
dx2−y2

s, dz2

Figure 4.16: Bandstructure of Gr/Ag/Re from experiment [45] (a), of Gr/Ag/Re at a
graphene-substrate distance of 3.4 Å (b), of Ag/Re (c) and Gr/Ag (d). The radius of
the circles corresponds to the degree of the state’s localization. Graphene’s π-bands
are colored green, silver’s s- and dz2-bands blue and the remaining d-bands are colored
red. The energy is shifted such that the Fermi energy EF represents the reference
energy.
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close-up of the experimental and DFT bandstructures in Fig. 4.16. Additionally, the
bandstructure of Ag/Re and Gr/Ag is shown, i.e. systems where either Gr or the Re
substrate have been removed, respectively. Note the extended color code, which now
distinguishes between the s, dz2 bands and the dxy, dx2−y2 , dxz and dyz bands of Ag,
respectively. On the left hand side of Fig. 4.16 in (a), we see the electronic features
arising from the intercalation, labeled A,B and C, respectively. From the bandstructure
of Ag/Re (Fig. 4.16 (c)), one recognizes at the Γ-point two degenerate dxz and dyz

states at a binding energy of -3.0 eV, a s, dz2 hybrid state at -3.8 eV, two degenerate
dxy and dx2−y2 states at -4.3 eV and, finally, another s, dz2 hybrid at -6.0 eV below the
Fermi energy EF . With the help of these findings, we can compare the experiment to
the full Gr/Ag/Re cell (Fig. 4.16 (b)). Based on these simulations, we assign feature
A to the dxz, dyz, B to the s, dz2 and C to the dx,y, dx2−y2 bands, respectively. Note that
the theoretical predictions of the band’s position are higher in energy. Techniques such
as GW which are going beyond standard-DFT to incorporate many-body effects are,
however, found to shift the bands to lower values, in almost quantitative agreement
with experiment [45].

Graphene adsorbed on a Ag monolayer further illustrates the origin of the bandgap
(Fig. 4.16 (d)). On the upper edge, the Gr π-band hybridizes with the s, dz2 bands
of Ag whereas on the lower edge a gap is induced by the Ag dyz states. If compared
to the results from Gr/Ag/Re, one sees that the Ag dyz states are also subject to a
strong hybridization with the Re states, leading to the formation of only a single gap
in graphene’s π band.

We wish to add that the bandgap’s size in the Gr/Ag/Re (1x1) model at aRe might
also be underestimated here, since the supercell would allow for graphene’s bondlength
to be closer to its pristine value which would increasing the bandwidth of the π-band.

Role of Ag monolayer. Finally, to investigate the role of the intercalated monolayer
of silver, we run two more calculations. On the one hand, we account for the view
that the Ag layer just leads to an increased graphene-substrate distance by completely
removing it from our system. This leaves a spacing of 5.4 Å between the Re substrate
and the graphene sheet. In the next step, to see the interaction of graphene with Re
at closer distance of 2.9 Å, we also evaluate the bandstructure in a system where the
Ag layer is chemically interchanged with Re. See Fig. 4.17 for an illustration of these
structures.

In the system where the silver monolayer is made invisible, graphene’s π- bands
show no signs of hybridization, thus displaying bands resembling the ones of ideal
graphene, apart from a slight p-doping (see Fig. 4.18). If the Ag layer is replaced by
Re, we have signs of a strong interaction of graphene with the Re substrate, show-
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Figure 4.17: Cell configuration of graphene supported by five (six) layers of rhenium,
featuring a graphene-substrate distance of 5.4 Å (2.9 Å). The structure was expanded
from the 1x1 to a 4x4 cell to achieve better visibility.

Figure 4.18: Bandstructure of graphene supported by five (six) layers of rhenium,
featuring a graphene-substrate distance of 5.4 Å (2.9 Å). The radius of the circles
corresponds to the degree of the state’s localization. Graphene’s π-bands are colored
green. The different geometries correspond to the structures depicted in Fig. 4.17.
The energy is shifted such that the Fermi energy EF represents the reference energy.
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ing numerous bandgaps which lead to a disruption of graphene’s π band. The band
splitting, however, takes place in different parts of the Brillouin zone, as opposed to
the behavior predicted by experiment. We can, therefore, clearly conclude that the
experimentally observed splitting is entirely due to a hybridization of the π-band of
graphene with the d-bands of silver.
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Summary and Outlook

By way of numerical ab-initio simulations employing the Vienna Ab-intio Simulation
Package VASP we analyzed the properties of intercalated systems featuring a termi-
nating graphene layer on top of a supporting substrate. Motivated by experimental
data put forward by M. Fonin et al. in Ref. [44] and M. Papagno and coworkers
in Ref. [45], we investigated intercalation processes of Ni under Gr/Ir(111) and the
electronic structure of Gr/Ag/Re(0001).

We could demonstrate that the diffusion of a single Ni atom through a pristine,
ideal graphene sheet faces an energy barrier of almost 12 eV, thus revealing that this
process is of no significance in experiment. This assessment, however, is only applicable
to graphene sheets which feature no defects. As soon as a single vacancy is introduced
into the honeycomb lattice the corresponding barrier is lowered by approximately 10
eV. In the full system where we allowed for an Ir(111) support of the defective graphene
layer, this quantity is even reduced further to 1.5 eV, rendering this process a very
likely one to occur at experimentally employed annealing temperatures.

Since our results hint at an extremely weak contribution from intercalation at
intact lattice sites, we didn’t examine reaction processes for supported systems with
a pristine graphene sheet. The question of whether other reaction mechanisms are
responsible for larger reaction rates, as e.g. speculated in Ref. [44], remains. Huang et
al. [51], for instance, assessed the diffusion through a pristine graphene sheet under the
assumption of a defect-creation and subsequent self-healing process of the C-C bonds.
The assessment of such mechanisms, however, is made difficult since the method we
employ requires an already good guess of the reaction mechanism. The evaluation of
these mechanisms is therefore left for future investigations.

The second part of this thesis is related to the structural and electronic properties
of Gr/Ag/Re, for which ARPES data suggests a weaker-than-expected decoupling of
graphene from the Re substrate after the intercalation of a monolayer of Ag. This is in
contrast to the currently common view, where incorporated layers of less reactive noble
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metal atoms are thought of as a spacer which reduces the orbital’s overlap and, thus,
the interaction. To reveal the nature of this finding, we study Gr/Ag/Re in a simplified
(1x1) cell approach employing two limiting models featuring the lattice constants of
either Re or Gr, respectively. Our data agree with photoemission experiments, showing
that the residual interaction stems from a hybridization of graphene’s π-states with
the d-states of Ag, inducing a bandgap in the π-band. Hence, we can state that the
electronic structure of graphene adsorbed on a noble metal/metal interface may still
deviate significantly from the behavior of an ideal, unsupported graphene sheet.
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In the course of this thesis a lot of situations arose where the existing tools for computer
based operations proved inadequate and troublesome. These difficulties came into
play while working on clusters using the Sun-Grid-Engine (SGE) or while trying to
visualize VASP data with the need for special requirements. A lot of work went into
the development of these scripts and it is thus the author’s wish to share them in order
to spare future users the task of writing similar tools themselves.

1 SGE job script

subSGE.sh was written to simplify the work with the SGE queuing system. While
having the program VASP in mind, the script can run any executable as specified by
the -p option or by setting the PROGRAM variable manually in the source file.

1
2
3 #!/ bin /bash
4
5 ##
6 ## subSGE . sh
7 ##
8 # submit job us ing the Sun−Grid−Engine queuing system
9 #

10
11 ### FUNCTIONS ###
12 func t i on pr intUsage ( ) {
13 cat <<−EOF
14 usage : $0
15 [ −e " s c r i p t " . . . execute bash s c r i p t ]
16 [ −s "NSLOTS" . . . use NSLOTS nodes ]
17 [ −h . . . execute VASP in cur rent d i r e c t o r y ]
18 [ −p " executab l e " . . . execute program d i f f e r e n t from VASP]
19 [ −g . . . use gamma−only vasp ve r s i on ]
20 EOF
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21 }
22
23 ### PARSE INPUT ###
24 PROGRAM="vasp" # ente r executab l e name here
25
26 whi l e ge topt s e : s : hgp : OPTS
27 do
28 case $OPTS in
29 e ) EXEC=$OPTARG; ;
30 s ) NNODES=$OPTARG; ;
31 g ) PROGRAM="vasp_gamma" ; ;
32 p) PROGRAM=$OPTARG; ;
33 h)
34 RUN="run . sh"
35 cat > $RUN <<−EOF
36 mpirun −mach in e f i l e \$TMPDIR/machines −enva l l −np \$NSLOTS

$PROGRAM
37 EOF
38 EXEC=$RUN
39 ; ;
40 esac
41 done
42
43 ### VARIABLE CHECK ###
44 i f [ [ −z $EXEC ] ] ; then
45 # i f no executab l e s h e l l s c r i p t i s s p e c i f i e d , s earch f o r ∗ . sh in
46 # current d i r e c t o r y ; e x i t i f more than one or no ∗ . sh i s found
47 SH_SCR=$ ( l s | grep " . sh" )
48 SH_NUM=$( echo "$SH_SCR" | wc − l )
49 i f [ [ "$SH_NUM" −eq "1" ] ] ; then
50 EXEC="$SH_SCR"
51 e l s e
52 pr intUsage
53 e x i t 1
54 f i
55 f i
56
57 i f [ [ −z $NNODES ] ] ; then
58 # se t NNODES=16 i f no arguments are supp l i ed
59 NNODES="16"
60 f i
61
62 ### WRITE/SUBMIT SGE_JOBSCRIPT ###
63 SGE_JOBNAME=$ ( echo $EXEC | sed ’ s / . sh //g ’ )
64 SGE_JOBSCRIPT="SGE_JOBSCRIPT. sh"
65
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66 cat > $SGE_JOBSCRIPT <<−EOF
67 #!/ bin /bash
68
69 ### SGE Parameters ###
70 #$ −N ${SGE_JOBNAME}
71 #$ −o "temp_${SGE_JOBNAME} . dat"
72 #$ −q a l l . q
73 #$ −j y
74 #$ −pe mpich $NNODES
75 #$ −S /bin /bash
76 #$ −cwd
77 #$ −V
78 source \$SGE_O_WORKDIR/$EXEC
79 ex i t
80 EOF
81
82 qsub $SGE_JOBSCRIPT
83
84 ### CLEANUP ###
85 rm $SGE_JOBSCRIPT
86 i f [ [ ! −z $RUN ] ] ; then
87 rm $RUN
88 f i

2 Visualize ionic relaxation

During the evaluation of the diffusion data from the first part of chapter 4 it became
painfully evident that existing tools like p4vasp don’t offer a way to visualize the
system’s configuration for each relaxation step, let alone the forces acting on the
various ions. The following set of scripts was thus written as a package to control
the numerical runs underlying the dimer method calculations, but they can also be
used for monitoring any relaxation procedure from VASP output. The program which
was found to perfectly suit this kind of requirements is xmakemol1, which reads in
positional data in .xyz format and additionally allows for the display of vectors at
each ion to visualize the acting forces.

The following script xmake.sh is meant to be executed in the same directory as the
VASP run. The correct usage is included in the source file. visualizeRelaxation.sh
extracts the number of ionic steps from the OUTCAR, the ionic coordinates from the
XDATCAR and the forces acting on each ion at each numerical step from the OUT-
CAR file of VASP. xmakemol is then able to separately display every ionic step and can

1www.nongnu.org/xmakemol/
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even animate the relaxation. Note that visualizeRelaxation.sh also distinguishes
between atomic species, i.e. different ions are colored differently if the output is read
in by xmakemol.

The script showUnstableModes.sh was written to facilitate the evaluation of un-
stable modes from the vibrational spectrum analysis required for the dimer method.
It searches the file OUTCAR for entries with imaginary frequency and outputs the
cell configuration including the mode’s directions in .xyz format.

2.1 xmake.sh

1
2
3 #!/ bin /bash
4
5 ###
6 ### xmake . sh
7 ###
8 # view/animate VASP data in xmakemol from an e x i s t i n g . xyz f i l e
9 # or a f i l e generated by v i s u a l i z eRe l a x a t i o n . sh and/or

10 # showUnstableModes . sh
11 #
12
13 #
14 # usage : $0
15 # [ −f . . . execute " v i s u a l i z eRe l a x a t i o n . sh > tmp ; xmakemol −f tmp" ]
16 # [ −d . . . execute "showUnstableModes . sh > tmp ; xmakemol −f tmp" ]
17 # [ − i " input " . . . open input f i l e g iven in . xyz format ) ]
18 #
19
20 ### INPUT ###
21 INPUT="$2"
22
23 ### PARSE INPUT ###
24 whi le ge topt s i : fd OPTS
25 do
26 case $OPTS in
27 f )
28 ARGS=" v i s u a l i z eRe l a x a t i o n . sh > tmp ; xmakemol −f tmp" ; ;
29 d)
30 ARGS="showUnstableModes . sh > tmp ; xmakemol −f tmp" ; ;
31 i )
32 ARGS="xmakemol −f $INPUT" ; ;
33 esac
34 done
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35
36 ### MAIN ###
37 eva l "$ARGS"

2.2 visualizeRelaxation.sh

1
2
3 #!/ bin /bash
4
5 ###
6 ### v i s u a l i z eRe l a x a t i o n . sh
7 ###
8 # ext ra c t f o r c e s and i o n i c coo rd ina t e s from OUTCAR, OSZICAR and XDATCAR
9 # and save in . xyz format to view/animate in xmakemol

10 #
11
12 ### get # of i o n i c s t ep s from OSZICAR ###
13 NSTEPS=$ ( cat OSZICAR | grep ’F=’ | t a i l −1 | awk ’{ p r i n t $1 } ’ )
14 ### get # of i on s ###
15 NIONS=$ ( cat XDATCAR | \
16 awk ’NR==7 { sum=0
17 f o r ( j =1; j<=NF; j=j+1 ) sum=sum+$j
18 p r i n t sum } ’
19 )
20 ### s c a l i n g f a c t o r o f f o r c e s ###
21 SCALE=1
22
23 f o r ( ( i =0; i<=$ ( (NSTEPS−1) ) ; i++)) ; do
24 #f o r ( ( i=$ ( (NSTEPS−1) ) ; i >=0; i−−)) ; do <−−− USE TO VIEW RELAXATION IN

REVERSED ORDER
25 cat OUTCAR | grep TOTAL−FORCE −A$( (NIONS+1) ) | sed ’/−−/d ’ | \
26 awk −v i=$ i −v NIONS_TOT=$NIONS −v SCALE=$SCALE ’
27 BEGIN {
28 LC=0
29 whi l e ( g e t l i n e < "XDATCAR" > 0 )
30 {
31 i f ( LC == 6 ) {
32 f o r ( j =1; j<=NF; j=j +1) {
33 NSPECIES=NF; NIONS[ j ]= $ j
34 NIONS_TOT=0; f o r ( k=1;k<=NF; k++ ) NIONS_TOT=NIONS_TOT+$k
35 }
36 }
37 LC++
38 i f ( LC == 6 ) { f o r ( j =1; j<=NF; j++) {IONS [ j ]= $ j }}
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39 }
40 p r in t NIONS_TOT
41 pr in t "FORCE: " " Sca l i ng f a c t o r : " SCALE " I t e r a t i o n : " i+1
42 }
43 {
44 FLAG="UNSET"
45 i f ( NR>=i ∗(NIONS_TOT+1)+2 && NR<=(i +1)∗(NIONS_TOT+1) )
46 {
47 f o r ( j =1; j<=NSPECIES ; j++)
48 {
49 NIONS_CURR=0
50 f o r ( k=1;k<=j ; k++)
51 {
52 NIONS_CURR=NIONS_CURR+NIONS[ k ]
53 }
54 i f ( (NR−i ∗(NIONS_TOT+1) )<=1+NIONS_CURR && FLAG=="UNSET" )
55 {
56 ION=IONS [ j ] ; FLAG="SET"
57 }
58 }
59 p r i n t f "%−5s %9.6 f %9.6 f %9.6 f \ t %−15s %9.6 f %9.6 f %9.6 f \n" ,
60 ION, $1 , $2 , $3 , "atom_vector" ,SCALE∗$4 ,SCALE∗$5 ,SCALE∗$6
61 }
62 } ’
63 done

2.3 showUnstableModes.sh

1
2
3 #!/ bin /bash
4
5 ###
6 ### showUnstableModes . sh
7 ###
8 # ext ra c t d i sp lacement d i r e c t i o n s and i o n i c
9 # coo rd ina t e s from OUTCAR, OSZICAR and XDATCAR

10 # a f t e r a v i b r a t i o n a l modes c a l c u l a t i o n and save in . xyz
11 # format to view in xmakemol
12 #
13
14 ### get # of i o n i c s t ep s from OSZICAR ###
15 NSTEPS=$ ( cat OUTCAR | grep f / i | wc − l )
16 ### get # of i on s ###
17 NIONS=$ ( cat XDATCAR | \
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18 awk ’NR==7 { sum=0
19 f o r ( j =1; j<=NF; j=j+1 ) sum=sum+$j
20 p r i n t sum } ’
21 )
22 ### s c a l i n g f a c t o r o f f o r c e s ###
23 SCALE=40
24
25 f o r ( ( i =0; i<=$ ( (NSTEPS−1) ) ; i++)) ; do
26 cat OUTCAR | grep f / i −A$( (NIONS+1) ) | sed ’/−−/d ’ | sed ’/dx/d ’ |

sed ’ s/−/ −/g ’ | \
27 awk −v i=$ i −v NIONS=$NIONS −v SCALE=$SCALE ’
28 BEGIN {
29 pr in t NIONS
30 pr in t "FORCE: "
31 }
32 NR>1+i ∗(NIONS+1)&&NR<1+( i +1)∗(NIONS+1) {
33 i f ( NR == ( i +1)∗(NIONS+1) ) ION="Ni" ; e l s e ION="C"
34 p r i n t f "%−5s %9.6 f %9.6 f %9.6 f \ t %−15s %9.6 f %9.6 f %9.6 f \n" ,
35 ION, $1 , $2 , $3 , "atom_vector" ,SCALE∗$4 ,SCALE∗$5 ,SCALE∗$6
36 } ’
37 done

3 Reaction coordinate

This script corresponds to the numerical implementation of Eq. (4.1) to obtain the
energy diagrams from relaxation runs. Both the OSZICAR and XDATCAR files are
needed.

1
2
3 #!/ bin /bash
4
5 ###
6 ### getReact ionCoord inate . sh
7 ###
8 # ext ra c t energy vs . r e a c t i on coord inate from OSZICAR and XDATCAR
9 #

10
11 ### temporary f i l e ###
12 TMP="TMP1. dat"
13 TMP2="EvsD . dat"
14 ### get # of i o n i c s t ep s from OSZICAR ###
15 NSTEPS=$ ( cat OSZICAR | grep ’F=’ | t a i l −1 | awk ’{ p r i n t $1 } ’ )
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16 ### c e l l h e i g h t ###
17 zCELL=$ ( cat CONTCAR | awk ’NR==2 {a0=$1 } ; NR==5 {c0=$3 } ; NR==41 {z0Ni=

$3 } ; END { pr in t a0∗ c0 } ’ )
18 ### get # of i o n i c coo rd ina t e s ###
19 NIONS=$ ( cat XDATCAR | awk ’NR==7 {sum=0; f o r ( j =1; j<=NF; j=j+1 ) sum=

sum+$j ; p r i n t sum} ’ )
20 ### # of l i n e s in XDATCAR in f r on t o f i o n i c p o s i t i o n s ###
21 NXDATCAR="8"
22
23 f o r i in $ ( seq −1 1 $ ( (NSTEPS−1−2)) ) ; do
24 zNi=$ ( cat XDATCAR | awk −v i=$ i −v zCELL=$zCELL −v NIONS=$NIONS −v

NXDATCAR=$NXDATCAR ’
25 BEGIN { r=0; s=0; t =0;sum=0;sum_x=0;sum_y=0;sum_z=0}
26 {
27 f o r ( k=1;k<=3;k++) {
28 i f ( NR==2+k ) {
29 # get brava i s matrix
30 v [ k ,1 ]= $1 ; v [ k ,2 ]= $2 ; v [ k ,3 ]= $3
31 }
32 }
33 }
34 {
35 f o r ( k=1;k<=NIONS; k++ ) {
36 i f ( NR==NXDATCAR+(NIONS+1)∗( i )+k ) {
37 # get o ld c on f i gu r a t i on
38 x_old [ k ,1 ]= $1∗v [1 ,1 ]+ $2∗v [2 ,1 ]+ $3∗v [ 3 , 1 ]
39 x_old [ k ,2 ]= $1∗v [1 ,2 ]+ $2∗v [2 ,2 ]+ $3∗v [ 3 , 2 ]
40 x_old [ k ,3 ]= $1∗v [1 ,3 ]+ $2∗v [2 ,3 ]+ $3∗v [ 3 , 3 ]
41 }
42 i f ( NR==NXDATCAR+(NIONS+1)∗( i +1)+k ) {
43 # get new con f i gu r a t i on
44 x_new [ k ,1 ]= $1∗v [1 ,1 ]+ $2∗v [2 ,1 ]+ $3∗v [ 3 , 1 ]
45 x_new [ k ,2 ]= $1∗v [1 ,2 ]+ $2∗v [2 ,2 ]+ $3∗v [ 3 , 2 ]
46 x_new [ k ,3 ]= $1∗v [1 ,3 ]+ $2∗v [2 ,3 ]+ $3∗v [ 3 , 3 ]
47 # RMS change from x_old to x_new
48 sum_x=sum_x+(x_new [ k ,1]−x_old [ k , 1 ] ) ∗∗2
49 sum_y=sum_y+(x_new [ k ,2]−x_old [ k , 2 ] ) ∗∗2
50 sum_z=sum_z+(x_new [ k ,3]−x_old [ k , 3 ] ) ∗∗2
51 sum=sqr t (sum_x+sum_y+sum_z)
52 }
53 }
54 }
55 END {
56 i f ( i==−1 ) { p r in t 0 .0} e l s e { p r i n t sum}
57 } ’
58 )
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Appendix

59 E=$ ( cat OSZICAR | grep " $ ( ( i +1+1)) F" | awk ’{ p r i n t $5 } ’ )
60 echo $zNi $E >> $TMP
61 cat $TMP | awk ’{ sum+=$1 ; p r i n t sum , $2 } ’ > $TMP2
62 rm $TMP
63 done
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