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Abstract

Basing on a request of a team of scientists from the Neurology department of the General

Hospital Vienna (AKH), the topic of statistical support on the scope of computer-based

assessment of pathological characteristics of brain tumors was covered in this diploma the-

sis.

The goal of this work was to investigate, if there exist any statistical methods, which

can be used as indicators for the computer-based analysis and assessment of cell activities

in human brain tumors. This matter was discussed by defining of four indicators and ap-

plying those on two samples of digitalized human brain tumor tissue sections.

This thesis focuses on two issues. On the one side, any information about the possible

distribution or at least about the properties of the measurements is tried to accomplish.

On the other side the spatial distribution of potential groupings is of peculiar interest.

Starting with a two dimensional kernel density estimation with a Gaussian kernel on a

square grid, the defined indicators are applied and the obtained results are demonstrated.
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Chapter 1

Introduction

While the individual man is an insoluble puzzle, in the aggregate he becomes a

mathematical certainty. You can, for example, never foretell what any one man

will be up to, but you can say with precision what an average number will be up

to. Individuals vary, but percentages remain constant. So says the statistician.

Arthur Conan Doyle - The Sign of the Four

1.1 Motivation

In Austria the second most common cause of death is cancer. Each year cancer is diag-

nosed for about 38.000 people in Austria. There exist different types of cancer. The most

frequent cancer cases are bowel, lung, breast and prostate cancer and the chance to get

one of these cancer types before the age of 75 is about 10%. [Austria, 2011b]

Brain tumors are one of the most common type of central nervous system cancer. In

2009 the rate of malignant brain tumors was 1.6% of all reported new incidences of cancer

in Austria, while the mortality rate was about 2.6% of all death rates of cancer. The chance

to get a brain tumor was about 0.5% for men and about 0.4% for women. [Austria, 2011a]

There are various kinds of research and considerable improvements in the field of treatment

of brain tumors and the death rates show a decrease regarding the past twelve years. But

there is also a need of more research whithin the scope of computer-based assessment of

pathological characteristics of brain tumors.

Therefore a team of scientists from the Neurology department of the AKH Vienna asked for

statistical support on this issue. With this diploma thesis the first steps in this direction
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CHAPTER 1. INTRODUCTION 7

of research will have been done.

1.2 Goal of the Thesis

The classification of tumors plays an important role for the treatment and is necessary for

a harmonized evaluation and a simplified exchange of results. Moreover it is an important

factor for the further prognosis.

The histological classification of tumors distinguishes three types of tumor differentiation:

light-microscopical, electron-microscopical and immunhistochemical differentiation. In this

thesis the last one will be considered.

The immunhistochemical tumor differentiation deals with the growth behavior, the differ-

entiation and the metastatic spread of tumors. [Bertolini, 2012]

The metastatic spread is a purpose of staging of tumors, which deals with the anatomic

spread and will not be considered during this thesis.

For the histomorphological analysis the typing and grading of tumors play an important

role. This will be explained in detail in Chapter 2.

The cell proliferation is used as an index for the growth behaviour of tumors. It is an

important factor for the prediction of the survival time of a patient. As yet the determina-

tion of the proliferation index has been occured manually. Since the computation depends

on the investigator, the evaluation of the proliferation index appears to be a subjective

method.

The goal of this diploma thesis is now to investigate if there exist any statistical methods

which can be used as indicators for the computer-based analysis and assessment of cell

activities in human brain tumors. The aim is to define indicators which ensure an objec-

tive assessment and which are also precise. During this work two samples of human brain

tumors will be investigated.

1.3 Approach to Achieve the Goals

At first the scanned and digitalized brain tumor samples undergo a process of segmentation

in several parts and a process of determination of the marked cell nuclei by the software

product developed by DI Andreas Walser during his master’s thesis, see [Walser, 2011].
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The result is an ASCII-file for each segment, which contains - among other things - the

information about the x and y coordinates of the marked cell nuclei.

Within this work all parts of the samples are imported and a bivariate kernel density

estimation with a Gaussian kernel is conducted for each sector. This is necessary since the

amounts of pixels even of the several parts of the data are too big for further analysis.

This thesis focuses on two issues. On the one side, any information about the possible

distribution or at least about the properties of the measurements is tried to accomplish.

On the other side the spatial distribution of potential groupings is of peculiar interest.

For the statistical analysis of data the free and open-source software environment R, ver-

sion 2.14.2 is used, which is an object-oriented and interpreted language and environment

for statistical computing and graphics. For further information about the software see [R,

2011].

1.4 Overview of the Diploma Thesis

Here an overview on the following chapters of the thesis will be given:

* In Chapter 2 the necessary medical background is presented.

* Chapter 3 gives an overview about some computer-based image analysis methods

based on studies and in addition the editing of data for this thesis is described.

* In Chapter 4 the essential mathematical background, which is used for the determi-

nation of the indicators, is explained in more detail.

* In Chapter 5 the indicators are defined and explained.

* Chapter 6 shows the obtained results of the considered samples with a corresponding

interpretation of the results.

* Chapter 7 will give a summary and a conclusion of the thesis and the results.



Chapter 2

Medical Background

2.1 Introduction to Brain Tumors

A tumor is a neoplasm, which is a lesion, a mass of cells, that is either be formed by an

abnormal growth of neoplastic cells or is present at birth. In other words, they occur as

a result of mutation and damage of the regulation of cell growth and allow cells to grow

and proliferate out of control. The growth of a tumor can be affected by variant growth

factors, the mitosis rate, the loss of cells and by the blood supply of the tumors.

Tumors can appear anywhere in the body, whereby a tumor is not necessarily equal to

cancer. A cancer is a malignant tumor, whereas tumors can also be benign. [NINDS, 2011,

Bertolini, 2012]

Benign tumors are not cancerous and consist of cells that are similar to normal cells.

They have a slow growth and there is no spread into other parts of the body. Usually they

can be removed surgically and mostly they do not reappear. [NINDS, 2011]

Malignant tumors are the cancerous ones which consist of cells that are different from

normal cells. This kind of tumors are difficult to remove completely with surgery because

of their unclear shape and their invasion to other surrounding tissue. [NINDS, 2011]

One of the most common types of cancer of the central nervous system are brain tu-

mors. A brain tumor can occur within the brain or the central spinal canal and can be

life-threatening because it can show an invasive and infiltrative character. There are var-
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CHAPTER 2. MEDICAL BACKGROUND 10

ious types of brain tumors. The ones within the brain itself, also called as intracranial

tumors, arise commonly from neurons or glial (non-neuronal) cells, such as astrocytes,

oligodentrocytes and ependymal cells. The glial cells are the cells which are responsible

for regulating the internal environment and maintaining a stable constant condition of

properties of neural cells. They also have a support and protection function for neurons in

the brain as well as in other parts of the nervous system. [UK, 2012], [ASCO, 2012]

2.2 Classification of Tumors

There are several types of classification of central nervous system tumors. Tumors are

differentiated by their localisation, their typing, their grading and their anatomic spread.

The anatomic spread distinguishes if it is a primary tumor or a local lymph node or a

distant metastasis.

The histomorphology deals with the typing and grading of tumors. The histological typing

of tumors is structured through the similarity to the normal tissue. [Bertolini, 2012]

Central nervous system tumors are histopathologically graded commonly by the grading

system of the World Health Organization established in 1993. This grading is based on

the location and the cell-building of tumor cells. [NINDS, 2011]:

- Grade I: Tumors which have a slow growth and do not show a metastic spread

belong to this group. These tumors are benign and the surgical removal of the entire

tumor is often possible. Grade I tumors are associated with long-term survival.

- Grade II: Tumors of this type show a slow growth too, but they can infiltrate

surrounding tissue and thus recur as higher grade tumors. These tumors can show

a benign or malignant condition and the treatment depends on the location of the

tumor. It can require chemotherapy, radiation and also surgery.

- Grade III: These tumors are malignant and often recur as higher grade tumors.

The invasion and infiltration into other tissues is very quick. The treatment requires

often a combination of chemotherapy, radiation and/or surgery.

- Grade IV: Tumors of this type are malignant and very aggressive. They show a

very different makeup of tissue than the surrounding ones and invade rapidly other

tissues. It is very hard to treat these tumors and an aggressive treatment is required.
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2.3 Ependymomas

Ependymomas are primary glial brain tumors that arise from ependymal cells, which are

tissues of the central nervous system. Between 3% and 9% of all neuroepithelial tumors

are ependymomas and about 50% to 70% of ependymomas are located within the brain

itself.

Children and young adults are mostly affected by this type of cancer, whereby in children

about 90% of ependymomas are intracranial and usually occur in the infratentorial com-

partement, which is also known as the fourth ventricle of the brain.

By contrast, about 75% of ependymomas in adults and adolescents are located within the

spinal canal and only a small number is intracranially and occurs in the supratentorial

compartement of the brain.

The WHO-classification for these tumors distinguishes four types of ependymomas. The

myxopapillary ependymoma (MPE) and the subependymoma are from WHO Grade I and

about 85% of ependymomas are benign MPEs. Subependymomas are uncommon lesions,

but show the benign characteristics of MPEs and affect usually adults over 40 years of age.

From WHO Grade II are ependymomas with cellular, papillary and clear cell variants.

Ependymomas can also be anaplastic and these ones are classified from type WHO Grade

III. Malignant ependymomas and ependymoblastomas belong to this group.

The treatment of patients with ependymomas is influenced by the tumor grades and con-

sists of neurosurgical intervention and post-operative radio- and/or chemotherapy. The

low-grade ependymomas are usually treated with radiation therapy only, but in general

a total surgical removal is preferred, in combination with radiation and chemotherapy.

[Bruce, 2009], [Preusser et al., 2008].

The following images show an example from different views for an infratentorial ependy-

moma in a pediatric case. In the first image, Figure 2.1, the ependymoma is illustrated by

an MRI (Magnetic Resonance Imaging) image through a sagittal view, which means that

the image has been taken while a vertical plane passed through the standing body from

the front to the back. [CERN, 2011b]
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Figure 2.1: MRI-Sagittal View: Infratentorial Ependymoma, Source: [CERN, 2011a]

The second MRI-image, Figure 2.2, has been taken from an axial view, through the

passing of a straight line through a spherical body between two poles and the body revolv-

ing around. [CERN, 2011b]

Figure 2.2: Axial View: Infratentorial Ependymoma, Source: [CERN, 2011a]
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2.4 Materials and Methods

The materials used in this thesis are two of 78 specimens of intracranial ependymomas,

which had been collected from a group of scientists from the General Hospital Vienna

(AKH) primarily for diagnostic purposes, but which then also had been used for research

purposes including the assessment of the Ki67 index. Ki67 is a histopathological biomarker

and is used to determine the tumor cell proliferation.

These specimens had been taken from patients - ranged from 1.2 months to 74.4 years

of age - at the AKH between 1965 and 1999 and had been selected after an initially evalu-

ation of the quality and size of the tissue sections by the scientists J.A. Hainfellner and M.

Preusser, where the ones with a small tissue size were excluded. The remaining 78 tissues

had a size greater than one microscopic field at a magnification of x400. [Preusser et al.,

2008]

2.4.1 Immunhistochemistry

After fixing the tumor tissue blocks with formalin and embedding those with paraffin, sec-

tions were cut at a thickness of 3-5 µm. Then a heat-induced epitope retrieval in 0.01 M

(molar mass) citrate buffer (pH 6.0 ) was conducted with the slides for 30 minutes in a

microwave oven at 600 W. After the incubation of the sections with a monoclonal mouse

anti-Ki67 antibody at a dilution of 1:50 for 25 minutes, the detection process of the im-

munoreactivity using the ChemMate kit (Dako) and diaminobenzidine as chromogen was

performed. The Ki67 immunohistochemistry was conducted according to the standard op-

erating procedure of the laboratory of the AKH. [Preusser et al., 2008]

2.4.2 Computation of the Cell Proliferation

The conventional determination of the tumor cell proliferation index is in the following

way:

The anti-Ki67 immunoreactive tissue section is scanned at a low magnification and the

area with the highest density of immunolabelled tumor cell nuclei is determined. This area

is also called as “hot-spot”. Then a total of 500 tumor cell nuclei are evaluated within the

hot-spot area and through manual counting on an eye-grid the fraction of the labelled cell

nuclei per 500 tumor cell nuclei is calculated and is expressed as a percentage. The count-



CHAPTER 2. MEDICAL BACKGROUND 14

ing of 500 cells per case yields good results since it takes two minutes by an experienced

person. Using a higher number of cells has been to tiresome in a routine setting. [Preusser

et al., 2008]



Chapter 3

Computer-Based Digital Image

Analysis

In this chapter some image analysis methods, which are commonly used in image process-

ing are briefed at first. Then the methods applied to the data for this thesis are presented

shortly.

3.1 Image Analysis in Other Studies

The aim of image analysis is to define methods for extracting meaningful information about

the contents of a digitalized image.

In the following some methods are presented which were chosen in different studies for

the analysis of similar images like our data. In these studies multiple methods are used for

getting the requested results. The first step in image analysis is the process of segmenta-

tion, by which the image is splitted into its components, parts and background.

The most similar study to these thesis is a study performed in 2009 by scientists in Poland

[Grala et al., 2009]. This study was about the automated image analysis methods for the

assessment of Ki67 index in meningiomas (another type of brain tumors), based on the

mathematical description of the cell morphology and combined with the Support Vector

Machine (SVM). The materials were similarly prepared for the further image analysis,

where ten microscopic areas were randomly selected and an Olympus DX-50 microscope

at 400x magnification was used. The images had a resolution of 576 x 768 pixels. For

15
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further analysis following methods had been applied: sequential thresholding, filtering and

the watershed algorithm.

The algorithm they have defined, starts with the SVM tool for the separation of the

immunopostitve (brown) and immunonegative (blue) cell nuclei classes. The SVM classi-

fier of a linear kernel deliveres the appropriate value D(x) for each pixel of an image that

is characterized by the vector x containing three RGB- components of the pixels ([Grala

et al., 2009]).

The output of the SVM, D(x), which was determined for each pixel x of the original image,

is used in the Sequential Thresholding Method (STM) as input described by the following

equation

Tt(D(x)) =

8<:1 if D(x) ≥ t,

0 else,
(3.1)

where t is the actual bias and the STM starts from t = min(D(x)) and t increases by each

step until the maximum of D(x) is reached. Then the watershed algorithm (see below) is

used for the correction in cases of adjacent or overlapping cell nuclei. The last step is the

separation into the blue and brown group. Therefore the SVM classifier of the Gaussian

kernel is used. If the majority of the pixels in the cell nuclei is brown, all pixels of the nuclei

are classified as immunopositive. Analogously, immunonegative nuclei are determined.

Another similar study was performed by the Department of Oncology-Pathology in Swe-

den, which is concerned with 2-dimensional and 3-dimensional segmentation of cell nuclei

in tissue sections [Wählby et al., 2004]. A region-based method has been developed, in

which seeds were created, which represent the object pixels and also the background pixels,

by the combination of the morphological filtering of the original image and the gradient

magnitude of the image. These seeds were used as the starting values for the watershed

algorithm.

The watershed algorithm uses the intensity of an image, defined as elevation in a landscape,

and splits the image into regions that are similar to the drainage regions of this landscape.

The watershed borders are built at the crests in the image.

In this study the cell nuclei in the tissues were labelled with fluorescence. The images were

of the size of 1024x1024 pixels and were smoothed by a 3x3 Gauss-Filter (see for more

information about the Gauss-Filter [Hermes, 2005]). Then seeding process was performed

using the h-extended maxima transformation (see [Wählby et al., 2004]), where all fore-
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ground seeds were uniquely labelled by connected component labelling. Then the gradient

magnitude image was calculated. At the local maximum of the gradient magnitude image,

the seeds of the fore- and background should grow and meet, where the magnitude of the

gradient expresses the variation of the local contrast in the image. Sharp edges have a high

gradient magnitude, whereas the uniform areas show a gradient magnitude close to 0, and

the strongest edge between the fore- and background is described by the local maximum of

the gradient amplitude. Using the Sobel operators, which are a set of linear filters for the

approximation of the gradients in x and y directions of the images, the gradient magnitude

image was approximated. For details see [Wählby et al., 2004].

The next step in this study was the application of the watershed algorithm. The idea

behind the watershed segmentation is the interpretation of the intensity image as a land-

scape, where every minima of the landscape is represented as a hole and the landscape is

submerged in water. Then the water fills the minima and catchment basins are created.

If the water rises, water from adjacent catchment basins will meet and at this points a

damn (watershed) is built. These watersheds are the segmentations of the image. In the

seeded watershed algorithm there are minima with pixels which are marked as seeds and

unseeded local ones. The water will rise from the seeded and unseeded minima and the wa-

tersheds are built only between the catchment basins, which are associated with different

seeds. The rise will stop when each seeded catchment basin in the gradient magnitude im-

age meets another seeded catchment basin. For more information see [Wählby et al., 2004].

A study dealing with the region-based analysis about two dimensional PAGE (Polyacrylo-

mide Gel Electrophoresis) images [Li et al., 2011], bases also on the watershed algorithm,

where the algorithm was used for the segmentation of the whole gel images into regions.

The aim of this study was to compare the quantities of the same protein under different

treatment by comparing spot intensities.

2D PAGE is a technique which deals with separating complex mixtures, where thousands

of proteins are separated and measured simultaneously.

Using the watershed algorithm, the proteins were divided into several watershed regions

and the pixels in each watershed region were classified as fore- or background. Regions,

which were correlated, were selected and the proteins were separated into independent sets.

Then ANOVA tests were used for the independent protein regions and MANOVA tests for

the correlated ones. The p-values were considered for detecting those regions with the

significant changes across experimental conditions. A description of this study in detail is

in [Li et al., 2011].
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3.2 Preprocessing of Data

Materials for this Thesis

After the process of immunhistochemistry, see Subsection 2.4.1, the tissue sections get

digitalized with a digital pathological scanner, called NanoZoomer Digital Pathology

(NDP), which is a product suite for “Virtual Microscopy” from the Hamamatsu Corpora-

tion. During the digitalization all information of the original slide are preserved and this

enables among other things a software-aided image analysis. For further information about

NDP see [Hamamatsu, 2012].

Now the virtualized slides have an NDPI-format, which is based on TIFF (Tagged Image

File Format) or on JPEG (Joint Photographics Expert Group) format and is the standard

format of the NanoZoomer.

For further image analysis of the NDPI-data a special software development kit (SDK),

called NDP.read from Hamamatsu, is needed. This enables the readout of the data.

The digitalized data were at first preprocessed by DI Andreas Walser during his mas-

terthesis [Walser, 2011], where he has used methods of the image analysis to filter the

information about the Ki67 labelled cell nuclei.

For this purpose, the development environment Microsoft Visual Studio C++ in combina-

tion with Qt, a cross-platform toolkit enabling the run and compiling of applications on

several platforms such as Windows, Mac OS X, Linux, and OpenCV, a free image process-

ing software, were used. For more information see [Walser, 2011].

The following subsections give a short overview about the used image analysis methods,

separating the Ki67 labelled cell nuclei from those which are unlabelled.

The main difference between the Ki67 labelled (brown) and unlabelled (blue) cell nuclei is

in the color difference. Therefore the first step is the separation of the color channels of

the slide. But initially the digitalized slide has to be divided into several sectors, because

the slides have on average resolutions of the size 100.000x100.000 pixels. Thus, i.e. the

processing of such an image with a color depth of 24 Bit would need a memory consump-

tion of (100002 · 24)/8 = 30 Gigabyte. But the images could also have larger sizes and this

would yield to the need of huge memory consumptions, i.e. 100GB or larger. Hence, a

special computer would be needed.

Therefore the slides were divided into sectors of size 5000x5000 pixels. This means 75

Megabyte memory consumption per sector at a color depth of 24 Bit, and this can be used
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with a usual processor with at least 4 Gigabyte computer memory. [Walser, 2011]

Methods for detecting the Ki67 labelled cell nuclei

At first the sectors with the size of 5000x5000 pixels undergo the process of separating

the BGR-color channels. The BGR-color model is the same like the RGB-model, only the

order of the color channels are changed. The RGB-color model consists of the overlapping

of the three color channels red, green, blue, and the intensity can take a value within the

interval [0, 255]. Through addition of the several red-, green- and blue-color shades, over

several millions of color shades can be produced.

The process of color separation splits the image with a color depth of 24 Bit into 3 gray-value

images with a depth of 8 Bit, where the first gray-value image consists of the intensities of

blue shades, the second one of intensities of green shades and the third one of the intensities

of the red shades. For the determination of the brown cell nuclei, the blue color channel

seems to be the most suitable, since the blue shades do not appear, or they appear only

with a small intensity within the color brown. Therefore the brown pixels appear black

within the gray-value image of the blue channel and the blue ones get clear due to its

intensity.

The next step is the application of the thresholding method, which enables the separa-

tion of objects from the background. There are several methods for determination of the

threshold value, like the one of Nobuyuki Otsu [Otsu, 1979]. This method splits the gray

values into 2 groups: the one with values bigger than the threshold value t and the one

where the gray values are lower than the threshold value t. The threshold value is defined

as the value where the variance between the groups reaches a maximum and the variance

within the groups is minimal:

t = argmax
� V arB(t)

V arW (t)

�
. (3.2)

For more information about the thresholding methods and the several threshold value

types, see [Walser, 2011] and [Otsu, 1979]. The output image is a binary image. Pixels

which belong to the background get the value 0 and pixels which belong to the foreground

the value 1:
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Imout(g) =

8<:0, if g < t,

1, if g ≥ t,
(3.3)

where g is the gray value of the considered pixel.

The third step is to find the contours of the brown cell nuclei. Therefore the method

of edge tracing is used. Binary images have two kinds of contours, internal and exterior

contours. Starting with an initial value a tracing method along the contour from Satoshi

Suzuki and Keiiche Abe, [Gonzales and Woods, 2008], is applied and the coordinates of

the internal and exterior contours are defined.

Finally a highpass filter is applied to the binary image to distinguish the brown cell nuclei

from artefacts, which developed during the labeling process. These stains are smaller and

more edged than the cell nuclei. [Walser, 2011]

Methods for filtering the unlabelled cell nuclei

Analogously to the previous subsection, the unlabelled cell nuclei, which have the color

blue are determined. But instead of the separation of the color channels, the conversion of

the BGR color model into the HSV color model is used. The HSV stands for Hue, Satura-

tion and Value and the colortype is determined through its wavelength. The wavelengths

are mapped onto a ring and classified on this ring into color degrees between 0 − 360◦.

Thus red has a degree of 0◦, green has 120◦ and blue has a degree of 240◦.

For the saturation two values are possible: 0 stands for a total unsaturated color and 1 for

a total saturated color. The value of a color means the intensity of a color, where 0 means

black and 1 the maximal possible intensity.

The conversion from the BGR color model into the HSV model is explained in detail in

[Walser, 2011].

After the conversion a filter is applied, which allows the through-passing for only a specified

color spectrum. The ouput is again a binary image, where the blue pixels belong to the

foreground and get the value 1 and the other pixels belong to the background with the

value 0. Again edge tracing is used for the determination of the contours of the blue cell

nuclei, see [Walser, 2011].



Chapter 4

Mathematical Background

4.1 Distributions

Here, an overview about two important distributions, the uniform and normal distribution

is given. For more information, see [Groß, 2004] and [Kütting and Sauer, 2011] and [Cramer

and Kamps, 2008] and [Soong, 2004].

4.1.1 The Uniform Distribution

Definition 4.1.1 Let a, b ∈ R with a < b and [a, b] be a closed interval in R. A continuous

random variable X is said to follow a uniform distribution, if it has the following probability

density function f : R→ R

f(x) =

8>>><>>>:
0, for x < a

1
b−a , for x ∈ [a, b]

0, for x > b.

(4.1)

The distribution function of the uniform distribution is defined as

F (x) =

8>>><>>>:
0, for x < a

1
b−a(x− a), for x ∈ [a, b]

1, for x > b.

21
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Expectation and Variance

A uniformly distributed random variable X ∼ U([a, b]) with the density function (4.1) has

the following expectation

µ = E(X)

=
Z ∞
−∞

x · f(x)dx =
Z b

a
x · f(x)dx

=
1

b− a

Z b

a
xdx =

1

b− a

�
x2

2

� ����b
a

=
1

b− a
· 1

2
· (b2 − a2) =

a+ b

2
, (4.2)

and the variance

σ2 = V ar(X)

=
Z ∞
−∞

(x− µ)2 · f(x)dx =
1

b− a

Z b

a
(x− µ)2dx

=
1

b− a

Z b

a
(x2 − 2µx+ µ2)dx

=
1

b− a

�
1

3
x3 − µx2 + µ2x

� ����b
a

µ=a+b
2=

1

b− a

�
1

3
(b3 − a3)− 1

2
(a+ b)(b2 − a2) +

1

4
(a+ b)2(b− a)

�
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=
1

b− a

�
1

12
(b3 − a3) +

1

4
(a2b− ab2)

�

=
1

12

�
b2 + ab+ a2 − 3ab

�

=
(b− a)2

12
. (4.3)

Bivariate Uniform Distribution

Definition 4.1.2 Let (X, Y ) be a two dimensional random variable, where X ∼ U([a1, b1])

and Y ∼ U([a2, b2]) with the functional parameters a1 < b1 and a2 < b2 with a1, a2, b1, b2 ∈
R and let X and Y independent, then the joint probability density function is defined as

f(x) =

8<:
1

(b1−a1)(b2−a2) , for a1 ≤ x ≤ b1 and a2 ≤ y ≤ b2

0, else.
(4.4)

If the variables X and Y are not independent, the simple form for the bivariate density is

not given. In the extreme case, if X and Y are perfectly correlated, the bivariate proba-

bility density function (pdf) has the form of a line over the (x, y)-plane.

4.1.2 The Normal Distribution

Definition 4.1.3 A continuous random variable X is said to follow a normal distribution,

if it has a probability density function f : R→ R, x 7→ f(x) with

f(x) =
1

σ
√

2π
exp

�
−1

2

�
x− µ
σ

�2
�
,

where −∞ < µ < ∞ and 0 < σ are parameters describing the expected value and the

standard deviation.
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The distribution function of the normal distribution is defined as:

F (x) =
1

σ
√

2π

Z x

−∞
exp

�
−1

2

�
t− µ
σ

�2�
dt.

Properties of the Density Function of the Normal Distribution

- The pdf f shows a symmetric behaviour at x = µ and has a bell shape. For x ≥ 0 ∈ R
then one has f(µ− x) = f(µ+ x).

- The maximal value of f is achieved at the value x = µ, and is f(µ) = 1
σ
√
2π

.

- The inflection points of the pdf of the normal distribution are achieved at the

values x1 = µ − σ and x2 = µ + σ and the functional value at these spots is

f(µ± σ) = 1
σ
√
2π

exp
�
−1

2

�
.

The shape of the density function is affected by the parameters µ and σ, where the first

one is called location paramater of the normal distribution and is responsible for the trans-

lations on the x-axis. The second parameter σ is the scaling parameter of the normal

distribution and is responsible for the y-axis, where it makes the density function flatter

or higher around µ.

Thus the greater the value for µ is, the righter the pdf-curve will be shifted and the greater

the deviation σ is the smaller will be the maximum.

Expectation and Variance

The expectation and the standard deviation of a normally distributed random variable

X ∼ N(µ, σ2) are equal to the parameters µ and σ:
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E(X) =
Z ∞
−∞

x
1

σ
√

2π
exp

�
−1

2

�
x− µ
σ

�2
�
dx

y=x−µ
σ=

1√
2π

Z ∞
−∞

(σy + µ) exp(−y
2

2
)dy

=
σ√
2π

Z ∞
−∞

y exp

�
−y

2

2

�
dy + µ

Z ∞
−∞

1√
2π

exp

�
−y

2

2

�
| {z }

Density of N(0,1)

dy (4.5)

=
σ√
2π

�
− exp

�
−y

2

2

�� ����∞
−∞| {z }

=0

+µ

= µ

and

E(X2) =
Z ∞
−∞

x2
1

σ
√

2π
exp

�
−1

2

�
x− µ
σ

�2
�
dx

=
1√
2π

Z ∞
−∞

1

σ
x2 exp

�
−1

2

�
x− µ
σ

�2
�
dx

y=x−µ
σ=

1√
2π

Z ∞
−∞

(σ2y2 + 2σyµ+ µ2) exp

�
−y

2

2

�
dy

=
1√
2π

Z ∞
−∞

σ2y2 exp

�
−y

2

2

�
dy +

2σµ√
2π

Z ∞
−∞

y exp

�
−y

2

2

�
dy| {z }

=0,see (4.5)

+ µ2
Z ∞
−∞

1√
2π

exp

�
−y

2

2

�
dy| {z }

=1,since Density of N(0,1)
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= µ2 +
σ2

√
2π

Z ∞
−∞

y|y exp

�
−y

2

2

�
dy|

part. integr.
= µ2 +

σ2

√
2π

26664− exp

�
−y

2

2

�
y

����∞
−∞| {z }

=0

+
Z ∞
−∞

exp

�
−y

2

2

�
dy

37775

= µ2 + σ2
Z ∞
−∞

1√
2π

exp

�
−y

2

2

�
dy| {z }

=1, since Density of N(0,1)

= µ2 + σ2, (4.6)

yields the following result for the variance V ar(X) = E(X2)−E(X)2 = σ2. Thus the two

parameters are adequate to specify the normal distribution.

Standard Normal Distribution

Definition 4.1.4 A random variable X with the expectation E(X) = 0 and the variance

V ar(X) = 1 is standard normally distributed with the following pdf φ(x)

φ(x) =
1√
2π

exp(−1

2
x2)

and the cummulative distribution function

Φ(x) =
Z x

−∞
φ(t)dt =

Z x

−∞

1√
2π

exp(−1

2
t2)dt.

Standardization

Since the normal distribution is entirely specified by its location and scaling parameters a

linear transformation of a normally distributed random variable does not alter the type of

distribution. This changes only the location and scaling.
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Theorem 4.1.1 If X ∼ N(µ, σ2) then one has for any scalar a > 0 and b > 0, the random

variable Z = a± bX follows a N(a± bµ, b2σ2) distribution.

Proof of Theorem 4.1.1 X ∼ N(µ, σ2) and Z = a + bX with a > 0 and b > 0, then

because of the additivity and linearity of the expectation the expectation of Z is as follows

E(Z) = E(a+ bX) = E(a) + E(bX) = a+ bE(X) = a+ bµ.

Using (4.6) additionally the variance of Z is:

V ar(Z) = E(Z2)− (E(Z))2

= E((a+ bX)2)− (E(a+ bX))2| {z }
(a+bµ)2

= a2 + 2abµ+ b2E(X2)| {z }
µ2+σ2

−a2 − 2abµ− b2µ2

= b2σ2.

Thus a normally distributed random variable is invariant to linear transformation. �

If X is a random variable with X ∼ N(µ, σ2) then the random variable Z = X−µ
σ

is called

standardized and normally distributed with the parameters E(Z) = 0 and V ar(Z) = 1.

The relationship between pdf f(x) of the N(µ, σ2) and the pdf φ(x) of the N(0, 1) is

shown through

f(x) =
1

σ
φ
�
x− µ
σ

�
,

and for the cummulative distribution functions one has following relation:

Theorem 4.1.2 If X ∼ N(µ, σ2) then the cdf F (x) of X is given by

F (x) = Φ
�
x− µ
σ

�
for −∞ < x <∞.

There is a proof of Theorem 4.1.2 for instance on p. 313 in [Kütting and Sauer, 2011].
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Bivariate Normal Distribution

Definition 4.1.5 Let (X, Y ) be a two-dimensional random variable having a bivariate

normal distribution with parameters µ1, µ2, σ1 > 0, σ2 > 0 and −1 < ρ < 1 then one has

the following joint pdf of X and Y:

f(x, y) =
1

2πσ1σ2
√

1− ρ2
exp

�
−1

2
Q(x, y;µ1, µ2, σ1, σ2, ρ)

�
, (4.7)

where

Q(x, y;µ1, µ2, σ1, σ2, ρ) =
1

(1− ρ2)

�
(x− µ1)

2

σ2
1

− 2ρ
(x− µ1)(y − µ2)

σ1σ2
+

(y − µ2)
2

σ2
2

�
. (4.8)

Contours of the bivariate normal distribution are defined as follows:

Definition 4.1.6 If the parameters µ1, µ2, σ1, σ2 and ρ are given and c ∈ R is fix, then

the bivariate normal pdf f(x, y) is the same for any point (x, y) from the set of points

{(x, y) : Q(x, y;µ1, µ2, σ1, σ2, ρ) = c2}. (4.9)

For different values c2 is the set above called contours of the bivariate normal distribution

and they describe in the xy-plane ellipses with the center (µ1, µ2).

Special cases:

- If ρ = 0 then the axes of the ellipses are parallel to the x- and y-axis.

- If ρ = 0 and σ1 = σ2 the contours describe circles in the xy-plane, since both axes

have the same length.

In Figure 4.1 there is an example for the probability density function of the bivariate nor-

mal distribution and also a respective contour plot.
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Figure 4.1: Probability density function of the bivariate normal distribution with param-

eters µ1 = µ1 = 0 und σ1 = σ2 = 10, where the correlation is ρ = 0.

If the case where ρ = 0 and σ1 = σ2 = σ and µ1 = µ2 = 0 is considered, the pdf of the

bivariate normal distribution is

f(x, y) =
1

2πσ2
exp

�
−1

2

�x2
σ2

+
y2

σ2

��
(4.10)

and the contours of the bivariate normal distribution can be calculated analytically in the

following way:

Let k ∈ R be a constant value, then the contour describes the place where f(x, y) = k.

Thus one has

1

2πσ2
exp

�
−1

2

�x2
σ2

+
y2

σ2

��
= k

exp

�
−1

2

�x2
σ2

+
y2

σ2

��
= 2πσ2k
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−1

2

�x2
σ2

+
y2

σ2

�
= ln(2πσ2k)

x2

σ2
+
y2

σ2
= −2 ln(2πσ2k)

x2 + y2 = −2σ2 ln(2πσ2k). (4.11)

Equation (4.11) describes a circle with the centerM = (0, 0) and the radius r =
È
−2σ2 ln(2πσ2k).

For µ1 6= µ2 6= 0 the center of the circle is shifted to M = (µ1, µ2).

If ρ = 0 and σ1 > σ2 then the contours describe ellipses of the form

(x− µ1)
2

2σ2
1 ln( 1

2πσ1σ2k
)

+
(y − µ2)

2

2σ2
2 ln( 1

2πσ1σ2k
)

= 1,

with center (µ1, µ2) and axis lengths 2 ·
q

2σ2
1 ln( 1

2πσ1σ2k
) and 2 ·

q
2σ2

2 ln( 1
2πσ1σ2k

) .

If the correlation ρ 6= 0, then the contours are tilted ellipses with center (µ1, µ2) .

Properties of the Bivariate Normal Distribution

Theorem 4.1.3 If the random variable (X, Y ) has a bivariate normal distribution with

the parameters µ1, µ2, σ1 > 0, σ2 > 0 and −1 < ρ < 1 then:

(i) X ∼ N(µ1, σ
2
1),

(ii) Y ∼ N(µ2, σ
2
2).

Notice: The converse of statements (i) and (ii) from the Theorem above is not true in

general, but only in the case that X and Y are independent (see [Groß, 2004] p. 177).

Proof of Theorem 4.1.3 :

(X, Y ) ∼ N(µ1, µ2, σ
2
1, σ

2
2, ρ) with the pdf in (4.7) and if one defines

x̃ =
x− µ1

σ1
and ỹ =

y − µ2

σ2
,
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then one has for the bivariate pdf

f(x, y) =
1

2πσ1σ2
√

1− ρ2
exp

�
− 1

2(1− ρ2)
(x̃2 − 2ρx̃ỹ + ỹ2)

�
. (4.12)

Now if the expression in the exponent is considered and completed to a square by adding

and removing ρ2x̃2, one has

(x̃2 − 2ρx̃ỹ + ỹ2) = x̃2(1− ρ2) + (ỹ − ρx̃)2.

That implies for the pdf in (4.12) the following factorization:

f(x, y) = g(x) · h(x, y)

with

g(x) =
1√

2πσ1
exp

�
− x̃

2

2

�

=
1√

2πσ1
exp

�
−(x− µ1)

2

2σ2
1

�

∼ N(µ1, σ
2
1),

h(x, y) =
1√

2πσ2
√

1− ρ2
exp

�
− 1

2(1− ρ2)
(ỹ − ρx̃)2

�
=

1√
2πσ2

√
1− ρ2

exp

�
− 1

2(1− ρ2)σ2
2

(y − (µ2 + ρσ2x̃))2
�

∼ N(µ2 + ρσ2x̃, (1− ρ2)σ2
2).
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The marginal density of X is

fX(x) =
Z ∞
−∞

f(x, y)dy

=
Z ∞
−∞

g(x)h(x, y)dy

= g(x)
Z ∞
−∞

h(x, y)dy| {z }
=1

= g(x).

That implies that the marginal density of X is again a normal distribution with parameters

µ1 and σ2
1. Analogously the marginal density of Y ∼ N(µ2, σ

2
2). �

Theorem 4.1.4 If (X, Y ) has a bivariate normal distribution with the parameters µ1, µ2,

σ1 > 0, σ2 > 0 and −1 < ρ < 1 then one has for a 6= 0 and b 6= 0:

aX + bY ∼ N(aµ1 + bµ2, a2σ2
1 + 2ρabσ1σ2 + b2σ2

2).

The converse of this statement is true in the case X and Y are not perfectly correlated,

i.e. |ρX,Y | < 1.

4.2 Kernel Density Estimation

This subsection gives an overview about the subject of kernel density estimation and its

properties. This topic is well discussed e.g. in [Härdle et al., 2004] and [Scott, 1992].

The idea behind kernel density estimation is to define an estimator so that the estima-

tion of a smooth continuous probability density function is possible and which is free of

the problem of choosing the origin of a bin grid.

A reasonable way to estimate the pdf f(x) is to calculate

1

n · interval length
#{observations that fall into a small interval around x}, (4.13)
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where the considered interval is of the form [x− h, x+ h) and hence it has a length of 2h

with h being the binwidth.

Thus (4.13) is equal to

f̂h(x) =
1

2hn

nX
i=1

I(xi ∈ [x− h, x+ h]), i = 1, . . . , n. (4.14)

Now consider a random sample X1, . . . , Xn. If the observations Xi which fall into the

interval [x − h, x + h) are weighted through a kernel function K as weighting function,

(4.14) yields the following formula

f̂h(x) =
1

nh

nX
i=1

K
�x−Xi

h

�
. (4.15)

Kernel Function

Definition 4.2.1 Let X1, . . . , Xn be a random sample and u : X × X → R a distance

measure, then a mapping K : R→ R, u 7→ K(u) with the following properties

- K(u) ≥ 0,

-
R
K(u)du = 1,

is called a kernel function. K(u) has the following regularity conditions:

(i) K(u) = K(−u),

(ii) K(u) is bounded,

(iii) |u|K(u)→ 0 for |x| → 0,

(iv)
R
u2K(u)du <∞.
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Examples for Kernel Functions

Uniform Kernel K(u) = 1
2
I(|u| ≤ 1),

Triangle Kernel K(u) = (1− |u| ≤ 1)I(|u| ≤ 1),

Epanechnikov Kernel K(u) = 3
4
(1− u2)I(|u| ≤ 1),

Gaussian Kernel K(u) = 1√
2π

exp(−1
2
u2),

where u = x−Xi
h

is the scaled distance and I(|u| ≤ 1) the indicator function.

Figure 4.2 displays the above mentioned kernel functions.
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Figure 4.2: Some kernel functions



CHAPTER 4. MATHEMATICAL BACKGROUND 35

4.2.1 Univariate Kernel Density Estimation

Definition 4.2.2 Let X1, . . . , Xn be a random sample and K : R → R a kernel function

like in Definition 4.2.1.

f̂h(x) =
1

n

nX
i=1

Kh(x−Xi), (4.16)

where

Kh(x,Xi) =
1

h
K
�x−Xi

h

�
,

is called univariate kernel density estimator with binwidth h and kernel K.

Since the kernel function is by definition a probability density function, this implies that

the kernel density estimator is a pdf too, i.e.
R
K(u)du = 1⇒ R

f̂(x)dx = 1.

In addition, f̂ inherits all the continuity and differentiability properties of K.

Statistical Properties

The expectation of the kernel density estimation is calculated as

E(f̂h(x)) = E
� 1

n

nX
i=1

Kh(x−Xi)
�

=
1

n

nX
i=1

E(Kh(x−Xi))

= E(Kh(x−Xi))

=
1

h

Z
K
�x− u

h

�
f(u)du (4.17)
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and the variance as

V ar(f̂h(x)) = V ar
� 1

n

nX
i=1

Kh(x−Xi)
�

=
1

n2

nX
i=1

V ar(Kh(x−Xi))

=
1

n
V ar(Kh(x−Xi))

=
1

n

�
E(Kh(x−Xi))

2 − [E(Kh(x−Xi))]
2
�
, (4.18)

where

1

n
(E(Kh(x−Xi))

2) =
1

nh2

Z �
K
�x− u

h

��2
f(u)du. (4.19)

In addition, for the Bias the following calculations can be done:

Bias(f̂h(x)) = E(f̂h(x))− f(x)

by(4.17)
=

1

h

Z
K
�x− u

h

�
f(u)du− f(x). (4.20)

Now using the regularity conditions of the kernel function (see 4.2.1) and defining s = u−x
h

and a second order Taylor expansion of f(u) around x: f(x + sh) = f(x) − hsf ′(x) +
h2s2

2
f ′′(x) + o(h2) yields the following result
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Bias(f̂h(x)) =
1

h

Z
K
�x− u

h

�
f(u)du− f(x)

= −hf ′(x)
Z
sK(s)ds| {z }

=0

+
h2f ′′(x)

2

Z
s2K(s)ds| {z }
=:µ2(K)

+o(h2)

=
h2f ′′(x)

2
µ2(K) + o(h2), as h→ 0. (4.21)

Hence the bias is proportional to h2 and therefore a small h reduces the bias. Furthermore

it depends on the f ′′(x) and large values of |f ′′(x)| imply large values of the bias of the

kernel density estimator.

Analogously for the variance performing a second taylor expansion with similar variable

substitution and using Equation (4.19) and E(Kh(x−X)) = f(x) + o(h) yields

V ar(f̂h(x)) =
1

nh

Z
K(s)2ds| {z }
||K||22

f(x) + o
� 1

nh

�
, as nh→∞. (4.22)

Since the variance of the kernel density estimator is nearly proportional to 1
nh

a very large

value for h is needed to keep the variance small.

The aim is to keep the variance and the bias small. But increasing h will lower the vari-

ance while it will raise the bias and decreasing will do the opposite (⇒ trade-off between

variance and bias).

A compromise to avoid over- and undersmoothing is in minimizing the MSE, the sum

between the variance and squared bias.

MSE(f̂h(x)) = Bias(f̂h(x))2 + V ar(f̂h(x))

=
h4

4
f ′′(x)2µ2(K)2 +

1

nh
||K||22f(x) + o(h4) + o

� 1

nh

�
. (4.23)

This shows that the MSE of the kernel density estimator goes to zero for h → 0 and
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nh→∞. Thus the kernel density estimator is consistent. Furthermore, the MSE depends

on f and f ′′ and does not drop out by deriving and thus in practice, it is not applicable

to derive an optimal value for h by minimizing the MSE.

Derivation of the Optimal Bandwidth

The Mean Integrated Squared Error (MISE) for the kernel density estimator is calculated

as follows

MISE(f̂h) =
Z
MSE(f̂h(x))dx

by (4.23)
=

1

nh
||K||22

Z
f(x)dx| {z }
=1

+
h4

4
µ2(K)2

Z
f ′′(x)2dx+ o(h4) + o

� 1

nh

�

=
1

nh
||K||22 +

h4

4
µ2(K)2||f ′′||22 + o

� 1

nh

�
+ o(h4), (4.24)

as h→ 0, nh→∞,

and this yields the approximated MISE (AMISE) by ignoring higher order terms

AMISE(f̂h) =
1

nh
||K||22 +

h4

4
µ2(K)2||f ′′||22. (4.25)

Through differentiation the AMISE with respect to h and solving the first-order condition,

the AMISE-optimal bandwith is calculated:

− 1

nh2
||K||22 + h3µ2(K)2||f ′′||22 = 0

h5µ2(K)2||f ′′||22 =
1

n
||K||22
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hopt =

�
||K||22

||f ′′||22µ2(K)2n

� 1
5

∼ n−
1
5 . (4.26)

Still, the optimal bandwidth hopt depends on an unknown quantity ||f ′′||22. Therefore a

plug-in method introduced by Silverman (see e.g. [Silverman, 1986] and [Sheather and

Jones, 1991]) will be derived. The main idea is to replace the unknown parameter through

an estimate. Since ||f ′′||22 is the unknown quantity, the assumption that f belongs to the

family of normal distributions with mean µ and variance σ2 is made and the following

result is obtained:

||f ′′||22 = σ−5
Z

(φ′′(x))2dx

= σ−5
3

8
√
π

≈ 0.212σ−5, (4.27)

where φ(·) describes the pdf of the standard normal distribution.

Now the unknown σ has to be replaced by the estimator

σ̂ =

Ì
1

n− 1

nX
i=1

(xi − x)2

and taking the Gaussian kernel as kernel function the following optimal bandwidth is

obtained

ĥrot =

�
||φ||22

||f̂ ′′||22µ2(φ)2n

� 1
5

by (4.27)
=

�
4σ̂5

3n

� 1
5

≈ 1.06σ̂n−
1
5 , (4.28)
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where the Gaussian kernel is identical to the pdf of the standard normal distribution. This

bandwidth is called the “rule-of-thumb” bandwidth.

Since the rule-of-thumb bandwidth is sensitive to outliers, a more robust estimator for

σ is given through the interquartile range

R = X[0.75n] −X[0.25n].

Assuming that the true pdf is normal and X ∼ N(µ, σ2) and Z = X−µ
σ
∼ N(0, 1) the

following result for R is obtained

R = X[0.75n] −X[0.25n]

= (µ+ σZ[0.75n])− (µ+ σZ[0.25n])

= σ(Z[0.75n] − Z[0.25n])

≈ σ(0.67− (−0.67)) = 1.34σ. (4.29)

This implies for the estimator of σ

σ̂ =
R̂

1.34
,

where R̂ is the estimated interquartile range.

Plugging this into the rule-of-thumb bandwidth in (4.28) yields

ĥrot = 1.06
R̂

1.34
n−

1
5 ≈ 0.79R̂n−

1
5 . (4.30)

The combination of (4.28) and (4.30) gives a “better rule-of-thumb” bandwidth as

ĥrot = 1.06 min

(
σ̂,

R̂

1.34

)
n−

1
5 . (4.31)
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4.2.2 Bivariate Kernel Density Estimator

Analogously to the univariate kernel density estimator, the bivariate and in general a

multivariate kernel density estimator can be defined. In the following the bivariate one is

considered.

Definition 4.2.3 Let X = (X1, X2)
T ∈ R2 be an i.i.d random variable, then a function

K : R2 → R is called a bivariate kernel function if for u ∈ R2

Z
K(u)du = 1

is complied and it fulfills the following regularity conditions

(i)
R
uK(u)du = 0,

(ii)
R
uuTK(u)du = µ2(K)I2,

where I2 denotes the 2× 2 identity matrix.

An example for a bivariate kernel function is the bivariate Gaussian kernel

K(u) =
1

2π
exp

�
− 1

2
uTu

�
.

Definition 4.2.4 Let K : R2 → R a kernel function and Xi = (Xi1, Xi2)
T a random Sam-

ple, for i = 1, . . . , n. Then for any x = (x1, x2)
T ,

f̂h(x) =
1

n

nX
i=1

1

h2
K
�x−Xi

h

�

=
1

n

nX
i=1

1

h2
K
�x1 −Xi1

h
,
x2 −Xi2

h

�
(4.32)



CHAPTER 4. MATHEMATICAL BACKGROUND 42

is called a bivariate kernel density estimator with the same bandwidth h for both compo-

nents and kernel K.

If a vector of bandwidths h = (h1, h2)
T is considered, then one has the following bivariate

kernel density estimator

f̂h(x) =
1

n

nX
i=1

1

h1 · h2
K
�x1 −Xi1

h1
,
x2 −Xi2

h2

�
. (4.33)

Furthermore, the bivariate kernel function is of the form K(u) = K(u1) · K(u2) for

u = (u1, u2)
T , and the bivariate kernel density estimator in (4.33) becomes

f̂h(x ) =
1

n

nX
i=1

1

h1 · h2
K
�x1 −Xi1

h1

�
K
�x2 −Xi2

h2

�
. (4.34)

Using a Gaussian kernel the following bivariate kernel density estimator is obtained

f̂h(x ) =
1

n

nX
i=1

1

2πh1h2
exp

�
−1

2

�
x1 −Xi1

h1

�2
�
· exp

�
−1

2

�
x2 −Xi2

h2

�2
�
, (4.35)

for Xi1 ∈ [x1 − h1, x1 + h1) and Xi2 ∈ [x2 − h2, x2 + h2).

Statistical Properties

Analogously to the univariate case, the expectation, variance and bias can be calculated

by using a second order Taylor expansion of f around x :

f(x + t) = f(x ) + tT∇f (x ) +
1

2
tTHf (x )t + o(tT t), (4.36)

where ∇f (x ) = ( ∂f
∂x1
, ∂f
∂x2

)T is the gradient and Hf (x) =

�
∂2f

∂x1∂x1

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x2∂x2

�
the Hessian

matrix of f , and t ∈ R2.
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The expectation is obtained through

E(f̂H(x )) =
Z
KH(u − x )f(u)du

=
Z
K(s)f(x + Hs)ds

≈
Z
K(s)[f(x ) + sTHT∇f (x ) +

1

2
sTHTHf (x )Hs ]ds , (4.37)

where H = diag(h1, h2) is a diagonal matrix of the bandwidths.

For the variance one has

V ar(f̂H(x )) =
1

n

Z
(KH(u − x ))2du − 1

n
(E(f̂H(x )))2

≈
Z 1

nh1h2
K(s)2f(x + Hs)ds

≈
Z 1

nh1h2
K(s)2

�
f(x ) + sTHT∇f (x )

�
ds

≈ 1

nh1h2
||K||22f(x ). (4.38)

Furthermore, the regularity conditions in Definition 4.2.3 and (4.37) yields E(f̂H(x )) −
f(x ) ≈ 1

2
µ2(K) tr(HTHf (x )H), and now the bias is obtained by

Bias(f̂H(x )) ≈ 1

4
µ2
2(K)

Z �
tr(HTHf (x )H)

�2
dx , (4.39)

where tr is the trace of a matrix.
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There are several methods for the determination of the matrix of the bandwidths in [Härdle

et al., 2004] and [Scott, 1992]. In this thesis those are calculated like in Equation (4.31).

4.3 Distance Measures

In the following the term of “distance” is defined, see [Schlittgen, 2009].

Definition 4.3.1 Let X be a random set. The mapping d : X × X → R is said to be a

metric, if it fulfills the following conditions:

∀x, y, z ∈ X :

- d(x, x) = 0,

- d(x, y) > 0 if x 6= y,

- d(x, y) = d(y, x),

- d(x, y) ≤ d(x, z) + d(z, y).

An important group of metrices is constituted by the Lp - distances, also calledMinkowski-

metrices, and which is defined for the measurements x1, . . . , xn of the quantity x and

y1, . . . , yn of the quantity y as:

dp(x, y) =

 
qX
i=1

|xi − yi|p
! 1
p

, p ≥ 1. (4.40)

Definition 4.3.2 For the case p = 1 the metric in (4.40) yields the L1-distance, which is

defined as

d1(x, y) =
nX
i=1

|xi − yi|. (4.41)
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If p = 2 the distance in (4.40) gives the Euclidean-distance, defined as

d2(x, y) =

 
nX
i=1

(xi − yi)2
! 1

2

.



Chapter 5

Definition of Indicators

In this chapter the aim is to define appropriate measures, which deliver information about

the behaviour of the distribution of measurements analyzed in Chapter 6.

Both first indicators are measures for the inequality within the behavior of the distribution.

The last two will give information on the spatial distribution of possible groupings.

5.1 Indicator 1: giniUTR

The goal is to consider the behaviour of the density estimation by considering points of

intersection with the density along the z-axis. Thus the first step is the definition of the

ratio 5.1.

46



CHAPTER 5. DEFINITION OF INDICATORS 47

x

y

density

x

y

density

Level = 8.786849e−08

0 1000 2000 3000 4000 5000
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0

0

 8.786849e−08 

 8.786849e−08 

 8
.7

86
84

9e
−0

8 

Figure 5.1: KDE with a level cut along the z-axis.

Figure 5.1 presents a plot of an example for a kernel density estimation and a level cut

along the z-axis, where the vector of level cuts is given through α ∈ Rm. The plot on the

right side shows the contours of the density estimation, where the yellow areas represent

the values at the level cut α3 = 8.786849e − 08 and the green area, including the yellow

areas too, describes the area at the first level α1. The following ratio is now supposed to

set the yellow areas in relation to the green one.

Upper-To-Total - Ratio

At first the upper-to-total- ratio (UTR) is calculated. Suppose we have given a sample

x1, . . . , xn. For this purpose a vector α = (α1, . . . , αm)T ∈ Rm is defined, which describes

the level cuts along the z-axis of the bivariate density estimation. At each level cut αj,

j ∈ {1, . . . ,m}, the ratio of the number of the values of the density estimation that are

bigger than the level αj is set in relation to the total number of the values of the density

estimation, where α1 is the level at the baseline. Since the density estimation contains

values too close to zero, a baseline, as the minimal level of all levels, is the defined and

only values larger than this baseline are considered for the analysis:

UTRj =

PN
l=1 I(yl ≥ αj)PN
l=1 I(yl ≥ α1)

, (5.1)

with
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I(yl ≥ αj) =

8<:1, for yl ≥ αj

0, else ,

where UTRj ∈ [0, 1], αj ∈ R and yl with l = 1, . . . , N are the values of the density estima-

tion.

Since the UTR is considered for several level cuts αj, a vector of ratio-values in descending

order is obtained and thus UTR is a m-dimensional vector of values, where each component

is in the interval [0, 1].

Gini-Index

The Gini-Coefficient, also known as Gini-Index, is a measure for concentration respectively

a measure of inequality considering all parts of the distribution. It enables to compare the

inequality of two groups or data directly independent of their size. There are different ways

for the calculation of the Gini-Index. The algebraic way is to compute directly from the

following formula, if the data x = (x1, · · · , xn)T is ordered from the smallest to the largest

value [Travis, 2008]:

gini(x ) =

Pn
i=1(2i− n− 1)xi

n2µ
∈ [0, 1], (5.2)

where i describes the rank order number and µ = 1
n

Pn
i=1 xi.

If the Gini-Index takes the value 0 then there is a perfect equality within the data. There

is a perfect inequality resp. a concentration to one value if the Gini-Index is 1. Hence the

smaller the Gini is, the closer the data are to equality.

For the graphical interpretation of the Gini-Index, the Lorenz-Curve is considered. The

Lorenz-Curve describes the relative concentration, where the observations resp. considered

data is ordered from the lowest to the highest value. Then the cummulative proportion of

the relative frequencies (u) is calculated for the x-axis and the cummulative proportion of

the variables of interest (v) for the y-axis,

u =
j

n
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and

v =

Pj
i=1 xiPn
i=1 xi

.

Example

5 companies are considered, with the following sales (see [Faes, 2007]):

Company 1 2 3 4 5

Sales in Million e 20 50 15 15 20

Table 5.1: Example: Sales of 5 companies

Then the companies are sorted with regard to their sale and the computation of the cum-

mulative proportion of the relative frequencies (u) and the cummulative proportion of the

variables of interest (v) result in:

Company 3 4 1 5 2

Sales in Million e 15 15 20 20 50

u 0.2 0.4 0.6 0.8 1.0

v 0.125 0.250 0.417 0.583 1.000

Table 5.2: Example: Cummulative proportion of the relative frequencies (u) and the cum-

mulative proportion of the variables of interest (v)

In Figure 5.2 the obtained results for u and v are plotted, where the equality line is plotted

as a diagonal line.
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Figure 5.2: Lorenz Curve and Gini-Index (plottet via the function in [Faes, 2007])

The Gini-Index describes now the deviation of the Lorenz-Curve from the curve of the

perfect equality which is represented as a diagonal line. The area between this line and

the Lorenz-Curve is the half of the Gini-Index. For the Example above the Gini-Index is

0.25.

For more information see [Travis, 2008] and [Sachs and Hedderich, 2006].

Definition giniUTR

The first indicator is supposed to compare the upper-to-total-ratio of the data with the

upper-to-total-ratio of the uniform distribution for m level cuts and hence the Gini-Index

can be used as measure.

Using the UTR in Equation (5.1) and the Definition (5.2) of the Gini-Index yields the

following definition of the first indicator

giniUTR = gini(UTR) =

Pn
i=1(2i− n− 1)UTRi

n2µ
, (5.3)
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where UTRi ∈ [0, 1] and µ = 1
n

Pn
i=1 UTRi.

5.2 Indicator 2: cpUTR

The second indicator is a measure for the comparison of the behaviour of the UTR of the

data with the UTR of the normal distribution for several level cuts α ∈ Rm along the

z-axis. For this purpose the Gini-Index again will be considered for both UTR of both

distributions.

The UTR of the bivariate normal distribution with the parameters ρ = 0, µ1 = µ2 = 0

and σ1 = σ2 = σ can also be calculated analytically, see in Chapter 4, (4.10) and (4.11).

Since the contours of the bivariate normal distribution describe in this case circles with

center (0, 0) and radius ri =
È
−2σ2 ln(2πσ2αi) for several level cuts αi with i = 1, . . . ,m,

the UTRi can be calculated as the ratio of the area of the circle at the level cut αi in

relation to the area of the circle at the first level α1. Therefore the UTR of the bivariate

normal distribution with the parameters ρ = 0, µ1 = µ2 = 0 and σ1 = σ2 = σ is defined as

nUTRi =
r2i
r21
, i = 1, . . . ,m, (5.4)

where nUTR is a m-dimensional vector with nUTRi ∈ [0, 1].

For this bivariate normal distribution the nUTR can also be defined as a function, see

below.

Derivation of the nUTR for the N(0, 0, σ2, σ2, 0)

At first the equidistant level cuts αi with i = 1, . . . ,m, where a = α1 < α2 < . . . < αm = b

are defined as a function k through
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k(i) = a+ (i− 1)
b− a
m− 1

= a+ (i− 1)hα. (5.5)

Considering ri =
È
−2σ2 ln(2πσ2αi) and (5.4) yields the following definition of a function

for the nUTR

nUTRi =
r2i
r21

=
−2σ2 ln(2πσ2αi)

−2σ2 ln(2πσ2α1)

by(5.5)
=
−2σ2 ln(2πσ2k(i))

−2σ2 ln(2πσ2k(1))

=
ln(2πσ2k(i))

ln(2πσ2k(1))

:= V (k(i)). (5.6)

Now it is possible to calculate the derivative of the function V (k(i)) and hence the be-

haviour of the nUTR can be analyzed. Using the chain rule

∂V (k(i))

∂i
=
∂V

∂k
· ∂k
∂i

the derivative of V is

∂V (k(i))

∂i
=

1

2σ2π ln(2πσ2k(1)) · k(i)
· ∂k
∂i
, (5.7)

where
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∂k

∂i
= hα =

b− a
m− 1

> 0, (5.8)

and thus

∂V (k(i))

∂i
=

hα
−r21π

1

k(i)

= − hα
r21π(a+ (i− 1)hα)

< 0 ∀i ∈ N.

If i ∈ N increases by one unit, then k will increase with the factor hα and hence V will

decrease with − hα
r21π(a+(i−1)hα) towards 0.

The following definition gives an indicator for the comparison of the UTRs between the

data and the bivariate normal distribution.

Definition cpUTR

The absolute value of the difference of both Gini-Indices is calculated as

cpUTR = |gini(UTR of data)− gini(UTR of normal distr.)|. (5.9)

Figure 5.3 demonstrates an example for the second indicator cpUTR, where the shaded

area corresponds to the cpUTR.
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Figure 5.3: Plots of the UTR of the bivariate normal distribution and the UTR of a density

estimation.

5.3 Indicator 3: NGroups

The following indicator is supposed to give a view into the behaviour of the groupings

within the density estimation for each level cut αi, with i = 1, . . . ,m, within a predeter-

mined evaluation area (eval.area).

eval.area

The evaluation area is the largest coherent area containing the majority of the density. For

the determination of the evaluation area, the largest contour line of the density estimation

at the level of a given baseline (like in Chapter 4, Equation (4.9)) is selected. The pur-

pose is to determine the number of groupings of the density values within this eval.area

for several level cuts, meaning the number of the yellow areas in the right plot in Figure 5.1.
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Definition NGroups

The indicator NGroups is defined as the total number of the groupings within the eval.area

at each level cut αi:

NGroupsi =
X

I(Gj ∈ eval.area), (5.10)

with

I(Gj ∈ eval.area) =

8<:1, for Gj ∈ eval.area,

0, else ,
(5.11)

where Gj denotes the j-th grouping, with j = 1, . . . , k.

The calculation of NGroups for several level cuts α ∈ Rm is of further interest and will

also be needed for the calculation of the last indicator modCHI (5.17). Thus NGroups is

used to be a vector of length m, see also Chapter 6.

5.4 Indicator 4: modCHI

The second part of the analysis of the distribution of the measurements deals with the

spatial distribution of the groupings among them.

In the previous subsection the number of the groupings has been defined. Now the sepa-

ration of these groupings of the density is of interest. Therefore the aim now is to find a

measure to set the density groupings in relation to the distances between the groupings. An

appropriate method is a modification of the Calinski Harabasz Index, which is explained

in detail below.

Calinski Harabasz Index

The Calinski Harabasz Index (CHI) is used here to be a measure for the (dis)similarity

between groupings over the (dis)similarity within groupings, see [Calinski and Harabasz,

1974], [Maulik and Bandyopadhyay, 2002] and [Schlittgen, 2009].
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Thus the sum of squared errors between the j-th grouping and the remaining j − 1 group-

ings is calculated and compared to the within sum of squared errors for the j groupings.

BSS(k) =
kX
j=1

nj(xj − x)(xj − x)T (5.12)

is the between sum of squares for k groupings, where xj = 1
nj

Pnj
i=1 xi is the center of Gj

and nj is the number of data points within grouping Gj and x is the overall mean. The

within sum of squares is as follows

WSS(k) =
kX
j=1

X
xi∈Gj

(xi − xj)(xi − xj)T . (5.13)

Hence, the Calinski Harabasz Index is defined as

CHI =
BSS(k)

WSS(k)

n− k
k − 1

, (5.14)

where n is the number of data points and k is the number of groupings.

A larger value for CHI as dissimilarity measure indicates a better separation, because

this means that the BSS has a high value and the WSS a lower one and hence the differ-

ence between the groupings is large.

Definition modCHI

A slight modification of the Calinski Harabasz Index yields the definition of the last indi-

cator.

Instead of the BSS and WSS of the k groupings, the sum of the absolute distances between

the centers of the groupings (BSA) and the sum of the absolute distances of the density

points from the center of the grouping within the groupings (WSA) is considered:

BSA =
kX

l>j=1

|xl − xj| (5.15)

and
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WSA =
kX
j=1

njX
i=1

|xi − xj|, (5.16)

where nj is the number of density points within grouping j and xj = 1
nj

Pnj
i=1 xi is the

center of the j-th grouping.

Analogously to the CHI, the indicator modCHI is obtained by setting BSA and WSA in

relation.

modCHI =
BSA

WSA

N − k
k − 1

, (5.17)

where N is the number of the density points within the considered area and k is the number

of groupings (NGroups) within this area.

Since the modCHI is a dissimilarity measure, the larger the values for the modCHI the

better the separation of the groupings within the considered area.

The indicator modCHI is also used to be a vector with a length of m, since it is cal-

culated for several level cuts α ∈ Rm within the predetermined eval.area, see Chapter 6.



Chapter 6

Evaluation

In this chapter the results of the computer-based statistical analysis of two human brain

tumor tissue sections with R will be presented. Since the data size of the original digital-

ized slides are in average about 100.000x100.000 pixels and hence too big for the analysis

(see Chapter 3.2), the sample-files will be considered and analyzed partly. Therefore the

slides are splitted into several sectors at first. Both samples have been previously aparted

into several sectors of size 5000x5000 pixels, like explained in Chapter 3.2.

The data for each sector, which has to be investigated, consists of three columns, where the

first and second column contain the x- and y-coordinates of the pixels of the Ki67 labelled

cell nuclei. The last column represents the categories of cell nuclei.

The next step is to perform a two-dimensional kernel density estimation with a bivariate

Gaussian kernel (Chapter 4.2) for each sector by using the predefined function kde2d()

within the R - package MASS [R, 2011] . To find an acceptable bandwidth, a function

named Bandwidth() (Appendix A.2) has been written. This function computes the wanted

bandwidth h for all sectors of both samples by evaluating the optimal bandwidth for each

sector using the method “better rule of thumb” in Chapter 4.2 Equation (4.31), and then

taking the mean of the calculated optimal bandwidths.

The two-dimensional kernel density estimation is evaluated on a square grid, where the

number of grid points in each direction has been chosen as 100. The obtained density

estimations of each sector have been saved in a list to simplify further analysis.

In the following only the values of the density estimations of the sectors, greater than

a baseline, a defined density level, will be considered for the analysis since the values be-

neath the baseline are too close to zero and hence negligible.

58
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Therefore an R-function named baseline() (Appendix A.5) has been written. This func-

tion evaluates the levels of the contour lines of the density estimations for all sectors of

both samples and takes the minimal level of all levels as baseline bl - also called as minlevel.

To compute those contour lines the predefined R-function in the package grDevices called

contourLines(), [R, 2011], has been used. This function calculates the coordinates of the

contours for one or more levels for a set of data, consisting of the x- and y- coordinates of

the grid lines and the corresponding measurements at the grid points.

For the further analysis and the application of the indicators defined in Chapter 5, an

unitary vector of level cuts α ∈ Rm along the z-axis of the two-dimensional density esti-

mation for each sector per sample has to be determined. Therefore an equidistant vector

of m = 50 level cuts is defined, starting at the baseline up to a maximum.

6.1 Evaluation of Sample 1

The statistical analysis takes place in two steps. During the first one the aim is to get

any information about the behaviour of the distribution of the data. This purpose is satis-

fied by the indicators giniUTR and cpUTR, previously defined in Chapter 5. The second

part of the analysis deals with the spatial distribution of groupings among the values of

the density estimations. The indicators NGroups and modCHI deliver the corresponding

measures.

The first Sample of a human brain tumor tissue section, that is going to be analyzed,

has been splitted into 20 equal sectors of size 5000x5000 pixels during the preprocessing

(see Chapter 3.2 ) and delivered 14 sectors which are relevant for further analysis.

Figure 6.1 shows the original scanned and digitalized tumor tissue slide, whereby the grid,

which splits the sample, is also added. The brown points represent the cell nuclei of the

proliferating cells.
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Figure 6.1: Map of Sample 1 - NDPI 1250

Starting with sector S1 all sectors will be analyzed in the following.
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Figure 6.2 shows the plot of Sector S1 in R, where the black points represent the Ki67

labelled cell nuclei.
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Figure 6.2: Marked Cell nuclei of Sector S1

In Figure 6.3 a two dimensional kernel density estimation with a Gaussian kernel and

the optimal bandwidth h = (541.12, 544.90)T , calculated like in Equation (4.31) with the

function Bandwidth() (Appendix A.2), is presented.
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Figure 6.3: Kernel Density Estimation of Sector S1

6.1.1 Evaluation Indicator giniUTR

The inequality in the behaviour of each density estimation of each sector per 50 level cuts

is analyzed, i.e. the deviation from the perfect uniform distribution. For the calculation of

the density of the theoretical bivariate uniform distribution two vectors of size 100, with

components in the interval [0, 100], have been considered (see gvt2d(), Appendix A.6).

Definition Level Cuts

A vector of 50 equidistant level cuts αj ∈ [bl, ul] is defined, where bl is the baseline cal-

culated through the function baseline() (Appendix A.5) and the upper limit ul is the

maximum value of the density estimations of all regarded sectors and is defined as

ul = max
i=1,...,n

(dSi), (6.1)

where d stands for the density estimations of the sectors with n is the total number of the

considered sectors of both samples.

Thus the vector of level cuts α has components within the interval [1.00e− 08, 1.92e− 06].
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UTR of Sample 1

In the following the UTR for all 14 Sectors of Sample 1 is calculated, like in Chapter 5 in

Equation (5.1), by using the function UTR() within the function Inequ() in R, see Ap-

pendix A.8 and Appendix A.9.

The figures below show the results for the UTR of all sectors of Sample 1:
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Figure 6.4: UTR for Sector S1 to S5

Figure 6.4 (left) presents the UTR for the Sectors 1 to 5, while the figure in the right

shows the UTR for those sectors on a logarithmic scale. The solid grey line indicates the

UTR for the bivariate uniform distribution U(0, 0, 100, 100).

The UTRs for the Sectors S1, S4 and S5 seem to behave similar, nearly identical with a

fast decrease to 0, whereas the Sectors S2 and S3 show a significant deviation.
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Figure 6.5: UTR for Sector S6 to S10

From Figure 6.5 it is obvious that the UTR of Sector S6 falls slower than in other sectors.
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Figure 6.6: UTR for Sector S11 to S14

The Sector S14 has also a slower decrease than the other sectors. The comparison of
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the UTR of all sectors of Sample 1 shows that the Sectors S2, S6, S12 and S14 have a

significant deviation in the behaviour than the remaining ones.

giniUTR of Sample 1

The indicator giniUTR calculates the inequality within a vector, in other words the devi-

ation of this vector from the perfect uniform distribution.

This is ensured through the function Inequ(), see Appendix A.9, and is calculated like

explained in Chapter 5 in Equation (5.3).

If the giniUTR is 0, there is no deviation from the uniform distribution, meaning there is

a perfect equality. giniUTR = 1 means that there is high concentration to one value.

The following table gives the percental inequality in the UTR of all sectors of Sample

1:

Sector 1 2 3 4 5 6 7

giniUTR in % 95.45 89.73 92.54 95.52 96.08 73.35 92.39

Sector 8 9 10 11 12 13 14

giniUTR in % 93.50 87.47 94.29 88.43 89.32 91.35 79.72

Table 6.1: giniUTR of all sectors of Sample 1

Overall, the obtained results show that there is a concentration to one value in all sec-

tors of Sample 1. Sector S5 shows the largest inequality with 96.08% and the smallest

inequality is in Sector S6 with 73.35%.

6.1.2 Evaluation Indicator cpUTR

The second indicator gives a measure for the deviation from the behaviour of the bivariate

normal distribution. Therefore the UTRs of all sectors again are considered and compared
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with the UTR of the normal distribution.

For this purpose two vectors of size 100 within the interval [−10, 10] have been defined.

Following parameters as mean and standard deviation for the bivariate normal distribution

have been selected: µ1 = µ1 = 0 and σ2
1 = σ2

2 = 10, where the correlation is ρ = 0. The

calculation of the density in R is done through the function nvt2d() (Appendix A.7).

The next step is to scale the density estimations of the sectors and redefine the level

cuts α respectively. This is necessary since the aim here is the comparison with the be-

haviour of the normal distribution.

The level cuts are now within the interval [bl,max(N(0, 0, 10, 10, 0))] and hence αj ∈
[1e− 08, 0.0159], with j = 1, . . . , 50. Again 50 equidistant level cuts are considered.

The scaling of the density estimations of the sectors is done in R during the calcula-

tion of the UTR within the function Inequ(), see Appendix A.9.

The UTR for the bivariate normal distribution is calculated like in Chapter 5 in Equation

(5.6) via the R-function nUTR(), see Appendix A.10.

The following figures show the scaled UTRs of all sectors of Sample 1 including the UTR

for the bivariate normal distribution.
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Figure 6.7: Scaled UTRs for Sector S1 to S10
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Figure 6.8: Scaled UTRs for Sector S11 to S14 vs. nUTR

From Figure 6.8 it is visible that the scaled UTR of Sector S12 of Sample 1 shows the

most deviant behaviour of the nUTR and of the other sectors, whereas Sector S6 has the

most similar behaviour of the UTR to the nUTR. Sectors S9 and S11 show also an UTR

near to the UTR of the normal distribution.

In the following Table 6.2 the results for the comparison of the scaled UTRs of the sectors
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with the nUTR of the bivariate normal distribution are presented, where the computa-

tions are done in R like explained in Chapter 5 in Equation (5.9), by using the function

CompNdist(), see Appendix A.11.

Sector 1 2 3 4 5 6 7

cpUTR in % 1.39 10.20 8.21 7.44 6.71 7.36 2.74

Sector 8 9 10 11 12 13 14

cpUTR in % 1.19 5.45 8.47 2.81 6.94 3.63 8.56

Table 6.2: Results for cpUTR of Sample 1

The obtained results show that the maximum absolute difference in behaviour of the UTRs

is between the Sector S2 and the normal distribution and is 10.2%. The minimum difference

is between S8 and normal distribution and S1 and normal distribution. In average there is

only a slight difference in behaviour of Sample 1 and the bivariate normal distribution.

6.1.3 Evaluation Indicator NGroups

The following two indicators deal with the spatial distribution of possible groupings within

the density estimations of all sectors. Therefore 50 equidistant level cuts αj ∈ [bl, ul], with

j = 1, . . . , 50 are considered again and thus αj ∈ [1.00e− 08, 1.92e− 06].

The indicator NGroups calculates the number of groupings per level within a defined

coherent evaluation area, see Chapter 5 Eval.area 5.3) and Equation (5.10).

Hence the next step is to define such an area. This is enabled in R through the function

Areanew(), see Appendix A.13. This function has as input the largest contour line of

the density estimation at the level of baseline and the density estimation and determines,

considering several conditions, the coordinates of the requested evaluation area. This step

is necessary since the predefined function contourLines() of R, which calculates the co-

ordinates of the contours of a data set, was inadequate for the data to investigate. Thus an

extension of the area determined via contourLines() was required and complied through

Areanew(), see Appendix A.13.
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Next the grouping within a density estimation has to be determined. Therefore another

function must be used, called grouping() (Appendix A.15). In this function the groupings

within the density estimation per level cut is determined and then the values of the density

estimation are assigned to the corresponding groups.

Thereby it is possible now to compute the number of groupings per level for each Sec-

tor Si of Sample 1. The function NGroups() (Appendix A.16) delivers the requested result.

The following figures show the obtained results for the indicator NGroups for all sec-

tors of Sample 1.
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Figure 6.9: Indicator NGroups for Sector S1 to S14

From Figure 6.9 it is apparent, that all sectors start with one grouping at the level of

baseline and all end with one grouping at their last level, at which the eval.area is not

empty. The largest number of grouping is in Sector S7 at the 4-th level cut and has the

value 9. Sector S6 is the Sector with the highest density peak, followed by Sector S14.
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6.1.4 Evaluation Indicator modCHI

After the computing of the number of groupings per level in the previous subsection, now

the separation of these groupings is of further interest. The groupings within the density

estimations of the sectors are already determined above, with the function grouping() for

the calculation of indicator NGroups.

The following figures represent the groupings of the density estimation for each sector at

the level where the sectors have a maximum of groupings.
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Figure 6.10: Grouping within Sectors S1 - S2, where the centers of the groupings are

marked with ∗.
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Figure 6.11: Grouping within Sectors S3 - S8, where the centers of the groupings are

marked with ∗.
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Figure 6.12: Grouping within Sectors S9 - S14, where the centers of the groupings are

marked with ∗.
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The center of the k-th grouping is computed through the arithmetic mean via xk =
1
nk

Pnk
i=1 xi, where nk is the number of the density points within the grouping k.

The last indicator modCHI is calculated, like defined in Chapter 5 in Equation (5.17),

in R via the function separation() (Appendix A.17). This function has as input the ma-

trix containing the coordinates of the density estimation with the corresponding groupings

at a level αj and computes as indicator the modified Calinski Harabasz Index by calculat-

ing the sum of absolute distances between the centers of the groupings (BSA) and the sum

of the absolute distances of the density points from the center of the grouping within the

groupings (WSA) with respectively weighted and set in relation.

This function is applied to all sectors considering all 50 levels. The larger the value for the

modCHI the better the separation of the groups within the eval.area. Small values would

mean that there is a concentration within the evaluation area.

The obtained results for Sample 1 are shown in Figure 6.13:
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Figure 6.13: Separation of groupings within the eval.area of S1-S14

The maximum value for modCHI is obtained for Sector S11 at the 13-th level being

36.43. modCHI = 0 means that there is only one grouping within the eval.area at this

level, whereas NA is obtained if there is not any grouping within the eval.area and thus

the curves in Figure 6.13 stop at the last level, which is not empty.
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6.2 Evaluation of Sample 2

Analogously to the Evaluation of Sample 1, Section 6.1, the same indicators are cal-

culated for a second Sample of a digitalized brain tumor tissue section. The results are

demonstrated as follows.

After the preprocessing, following image (Figure 6.14) is obtained for Sample 2:

Figure 6.14: Map of Sample 2 - NDPI 1230
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Sample 2 is larger than Sample 1 and has therefore more sectors to be analyzed. Sample

2 is aparted into 81 Sectors of size of 5000x5000 pixels, where 53 sectors are selected for

further analysis, see Figure 6.14.

Again a two-dimensional kernel density estimation, with a Gaussian kernel and the same

bandwidth h = (541.12, 544.90)T like in Sample 1, is performed for each Sector Si, i =

1, . . . , 53.

6.2.1 Evaluation Indicator giniUTR

50 equidistant level cuts are considered and the vector of level cuts α has again components

in the interval [1.00e − 08, 1.92e − 06]. The inequality in the behaviour of each density

estimation of each sector is of interest and thus the UTR for all sectors is compared with

the previously computed UTR of the bivariate uniform distribution like in Subsection 6.1

in 6.1.1.

The comparison of the UTRs for the Sectors Si with i = 1, . . . , 53 of Sample 2 yields

that Sector S36 has the most deviating behaviour, by showing a slower decrease than the

other ones. The Sectors S8, S9, S14, S16,S28, S30, S37, S45, S46 and S47 show also a slower

decrease. The remaining sectors behave similar and have a fast falling to zero.

The following Figure 6.15 presents the obtained results for the comparison with the bivari-

ate uniform distribution by considering the indicator giniUTR.
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Figure 6.15: Deviation of Sample 2 from the perfect equality

The results show that Sector S36 has the minimum rate of inequality with 47.73% which

means that this Sector is the one with the most minimal deviation from the uniform dis-

tribution in Sample 2.

The largest deviation from the perfect equality is in S12 with a rate of 97.28%, followed by

S43,S23, and S11.
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6.2.2 Evaluation Indicator cpUTR

The deviations in behaviour of the sectors of Sample 2 from the behaviour of the bivariate

normal distribution are of further interest. Therefore again the scaled UTRs of all sectors

are considered and compared with the nUTR of the normal distribution.

Again 50 equidistant level cuts are considered. The level cuts are in the interval

[bl,max(N(0, 0, 10, 10, 0))] and thus αj ∈ [1e− 08, 0.0159], j = 1, . . . , 50.

The scaled UTRs of the sectors and the nUTR are shown in the following Figures 6.16 -

6.18
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Figure 6.16: Scaled UTR for Sector S1 to S10 and S11 to S20

The scaled UTRs of the Sectors S1 to S20 show a significant deviating behaviour than

the UTR of the bivariate normal distribution.

From the next four figures in Figure 6.18, it can be seen that the behaviour of the scaled

UTRs of the Sectors S28, S37 and S53 seems similar to the nUTR. But the Sector S45 is

the one with the most similar UTR to the UTR of the normal distribution.
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Figure 6.17: Scaled UTR for Sector S21 to S30 and S31 to S40
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Figure 6.18: Scaled UTR for Sector S41 to S50 and S51 to S53
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The results for the second indicator cpUTR are shown in Figure 6.19 below. The min-

imal deviation from the behaviour of nUTR is in Sector S8 with nearly 0.0002% and the

maximal deviation is in S5 with a rate of 25.57%. The rate for cpUTR is in average about

8% and thus the deviation from the behaviour of the normal distribution is low for Sample

2.
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Figure 6.19: Indicator cpUTR for Sample 2

6.2.3 Evaluation Indicator NGroups

In the following the results for the number of groupings within an evaluation area for 50

level cuts are presented. The equidistant level cuts are within the interval [bl, ul] and hence
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αj ∈ [1.00e− 08, 1.92e− 06] with j = 1, . . . , 50.

The indicator NGroups calculates the number of groupings per level within a defined co-

herent evaluation area. The same calculations like for Sample 1 are performed for Sample 2.

The next figures in Figure 6.20, show the obtained results, where it is clear that Sec-

tor S23 shows the maximal number of groupings within the evaluation area at the second

level. It appears that the first 10 sectors do not have any groupings as from the 21th level

cut, where in fact the sectors except Sector S3 do not show any groupings as from level 15.

The next ten Sectors Si, with i = 11, . . . , 20, show also a similar behaviour, since those do

not have any groupings as from 8th level. The only exceptions are the Sectors S14, which

does not have any groupings in about as from the 18th level, and S16, which does not have

any as from the level 21.

Sectors Si, i = 21, . . . , 30, do not have any groupings as from the level 13, except S28 and

S30, which have at least one grouping in about up to the level 34 resp. up to the level 39.

In the Sectors Si, i = 31, . . . , 40, are at least one grouping until the 13th level, as from

then, only the Sectors S36 and S37 show groupings, where S36 has at least one grouping up

to the 50th level.

The Sectors Si, i = 41, . . . , 50, show groupings up to the level 11, where S45, S46 and S47

have at least one grouping until the 31th level. The Sector S53 show groupings up to the

level 39.
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Figure 6.20: Indicator NGroups for Sector S1 to S53
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6.2.4 Evaluation Indicator modCHI

In this last part of the evaluation of Sample 2 the separation of the groupings of the sectors

is determined.

The same steps like for Sample 1 are done and since Sample 2 has many sectors, the

evaluation area including the groupings is shown only for one sector.

Therefore, in Figure 6.21, Sector S23 including the maximum number of groupings at the

second level is presented:
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Figure 6.21: Groupings in Sector S23 of Sample 2 at the second level cut

The indicator modCHI is calculated for all sectors of Sample 2 and is shown in the

following figures in Figure 6.22, where modCHI takes the value 0, if there is only one

grouping in the eval.area at this level. The curves in these figures do not fall always

towards 0, since if there is not any grouping within the eval.area at a level, the value for

modCHI becomes NA at this level.

It appears that at the second, but mostly at the third level the largest rates for the indicator

modCHI are obtained. Sector S23 has the maximum rate with 184.57. Other sectors with

a high rate for modCHI at these levels are S5, S15, S17 and S39. Sectors with a low rate

are among others S46, S47 and S53. There is a high concentration to one grouping in these

sectors.
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Figure 6.22: Indicator modCHI for Sector S1 to S53



Chapter 7

Summary and Conclusion

This diploma thesis deals with the basic research of statistical support on the issue of

computer-based assessment of pathological characteristics of brain tumors and it has been

performed on request of a team of scientists from the Neurology department of the General

Hospital Vienna (AKH).

The motivation of this work was the investigation of statistical methods which can be

used as indicators for the computer-based analysis and assessment of cell activities in hu-

man brain tumors. The aim was the definition of some indicators which ensure an objective

assessment. In this diploma thesis two digitalized human brain tumor tissue-sections were

analyzed by using the free and open-source software environment R, version 2.14.2.

At first the scanned and digitalized brain tumor samples underwent a process of segmen-

tation in several parts and a process of determination of the marked cell nuclei during the

preprocessing by DI Andreas Walser. This splitting into sectors was necessary because the

digitalized slides had in average resolutions of the size of 100.000x100.000 pixels and the

processing of such an image with a color depth of 24 Bit would need a memory consump-

tion of 30 Gigabyte. But the images could also have larger sizes and this would yield to

the need of huge memory consumptions, i.e. 100GB or larger. Hence, a special computer

would be needed. Therefore the slides were divided into sectors of size 5000x5000 pixels.

The next step after the preprocessing was the performing of a two dimensional kernel

density estimation with a Gaussian kernel of each sector, since the size of the sectors were

still to large for further analysis.

During this thesis mainly two issues were of interest: On the one side, any information
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about the properties of the measurements has been tried to accomplish. On the other side

the spatial distribution of potential groupings has been considered.

For the first issue two indicators giniUTR and cpUTR have been defined as measures

for inequality within the behaviour of the distribution of each sector. The idea was to

consider the behaviour of the density estimation by considering points of intersection with

the density along the z-axis. Thus the UTR, meaning upper-to-total- ratio, was defined,

which calculates the ratio of the number of the values of the density estimation that are

bigger than a level in relation to the total number of the values of the density estimation.

By using the Gini-Index, which is a measure for the inequality, the first indicator was

defined and gives the deviation of the UTRs from the UTR of the uniform distribution.

The first investigated Sample 1 delivered a maximum deviation with 96.08% for its Sector

S5 and the minimum deviation was in S6 with a rate of 73.35%. The second Sample 2,

which was much larger than the first one, showed a maximum deviation in its Sector S12

with a rate 97.28% and the minimum inequality was in S36 with 47.73%.

The indicator cpUTR was defined as a measure for the comparison of the behaviour of

the UTR of the sectors with the UTR of the normal distribution for several level cuts

α ∈ Rm along the z-axis. For this purpose the Gini-Index again had been considered for

both UTR of both distributions.

The obtained results showed that in Sample 1 the deviation from the normal distribution

was varying between 1.19% and 10.2%. For Sample 2 the values were between 0.0002%

and 25.57%.

For the second issue of interest, two other indicators were defined NGroups and modCHI,

which were supposed to give any information on the spatial distribution of possible group-

ings within the density estimation, for each level cut within a predetermined coherent

evaluation area containing the majority of the density.

The indicator NGroups was defined as the total number of the groupings within the eval-

uation area at each level and delivered for Sample 1, a maximal number of groupings for

its Sector S7 with a rate of 9 at the 4th level, and for the second Sample 2, a maximal

value of 32 groupings for the Sector S23 at the 2nd level.

The last indicator modCHI was supposed to measure the separation of these groupings

within the density estimations. Therefore the setting of the density groupings in relation

to the distances between those groupings has been considered. A modified version of the
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Calinski Harabasz Index is an appropriate method to measure the dissimilarity between

groupings over the similarity within groupings.

For Sample 1, the maximum separation was obtained for Sector S11 at the 13th level with

a rate of 36.43, and for Sample 2, the Sector S23 showed the maximal separation with a

rate of 184.57 at the 2nd level.

In conclusion, this diploma thesis demonstrated the usefulness of statistical methods for

the computer-based assessment of human brain tumors. It requires further research on

this topic and it is also reasonable to apply other statistical techniques. But nevertheless,

the problem of the size of the digitalized original slides still exists, which will require the

process of preprocessing and splitting the slides into sectors.

There also might be other approaches without the application of a kernel density estima-

tion, i.e. splitting the sectors again into parts and may performing a regression analysis

and modelling the counts of the data points per part. But there is further research needed

to find the most appropriate statistical method.

In summary it can be said, that further research and improvement on this topic are re-

quired to define an automated software solution that is based on statistical techniques.

This is beyond the scope of this thesis.



Appendix A

R-Code

A.1 data.read()

Every sector of both samples is imported separately into R and is saved in a list. Because

of the structure of the received ASCII-files, it was necessary to write a separate R-function

for importing the data. This function removes unnecessary information for further analysis

and converts the structure of data into a data.frame.

1 ### Function for reading the Data after Preprocessing :

2 setGeneric("data.read", function(f ,...){ standardGeneric("data.read") })

3 setMethod("data.read", definition=function(f){

4

5 dat <-scan(f, what="numeric", sep=" ",

6 na.strings=c("Contour", "Number:","", "-->", "ContourArea:", "x:", "y:"))

7

8 datn <-as.numeric(dat)

9 ind <-which(!is.na(datn))

10

11 i<-seq(1,length(datn) ,1)

12 pp<-which((ind[i+1]-ind[i])==7)

13 x<-datn[ind[pp+1]]

14 pl<-which((ind[i+1]-ind[i])==3)

15 y<- datn[ind[pl+1]]

16 cc<-which((ind[i+1]-ind[i])==5)

17 cont <-c(datn[ind[cc]])

18

19 M<-cbind(x,y)

20 Mn<-cbind(x,y, NA)

21

22 j<-seq(1,( length(cc) -2) ,1)

23

24 con1 <-rep(cont[1], trunc(cc[2]/2) -1, each=T)

25 con <-rep(cont[j+1], (trunc(cc[j+2]/2)-trunc(cc[j+1]/2) -1), each=T)

26

89
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27 r<-(dim(Mn)[1]-( length(con1)+length(con)))

28 con2 <-rep(cont[length(cont)], r, each=T)

29

30 Mn[1: length(con1) ,3]<-con1

31 Mn[( length(con1)+1):( length(con1)+length(con)) ,3] <- con

32 Mn[( length(con1)+length(con)+1):dim(Mn)[1] ,3] <-con2

33

34 return(Mn)

35 }

36 )

37

38 #daten <-list ()

39 #f<-file ("C:/.../out3.txt ")

40 #dat <-data.read(f)

41 #daten [[1]] <-dat

42 #do this step for all data of both samples and save as list:

43 #save(file ="C:\\...\\ daten.RData", "daten ")

44 #load ("C:\\...\\ daten.RData ")

A.2 Bandwidth()

This function computes the optimal bandwidth for the kernel density estimation for all

sectors of both samples.

1 ## Function for Determination of the optimal Bandwidth :

2 library(MASS)

3 setGeneric("Bandwidth", function(daten ,...){ standardGeneric("Bandwidth") })

4 setMethod("Bandwidth", signature=c("list"), definition=function(daten){

5

6 BW<-matrix(ncol=2, nrow=length(daten))

7 colnames(BW)<-c("bwx","bwy")

8

9 for(i in 1: length(daten)){

10 BW[i,]<-c(bandwidth.nrd(daten[[i]][ ,1]),bandwidth.nrd(daten [[i]][ ,2]))

11 }

12 h<-c(mean(BW[,1]), mean(BW[,2]))

13

14 return(h)

15 }

16 )

17 #h<-Bandwidth (daten)

18 #save(file ="C:\\...\\ bw.RData", "h")

19 #load ("C:\\...\\ bw.RData ")
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A.3 kde2()

The bivariate kernel density estimation for all sectors is done via the following function:

1 ## Function calculation the 2D density estimation for all data

2 ## with the optimal bandwidth :

3 library(MASS)

4 setGeneric("kde2", function(daten ,h,n){ standardGeneric("kde2") })

5 setMethod("kde2", definition=function(daten ,h,n){

6

7 dichte <-list()

8 for(i in 1: length(daten)){

9 dichte [[i]] <- kde2d(daten[[i]][,1], daten [[i]][,2], h=h, n=n)

10 }

11

12 return(dichte)

13 }

14 )

15 #dichten <- kde2(daten ,h, 100)

16 #save(file ="C:\\...\\ dichten.RData", "dichten ")

17 #load ("C:\\...\\ dichten.RData ")

A.4 kde2dplot()

The function below is a function for plotting the kde2d, where the code is basing on the

code from [Francois, 2011b].

1 ## Function for plotting the 2D KDE:

2 kde2dplot <- function(d, cuts , plot2d=T,

3 # d is a 2d density computed by kde2D

4 ncol=50, # the number of colors to use

5 zlim=c(0,max(z)), # limits in z coordinates

6 nlevels =20, # the number of colour levels

7 theta=30, # see option theta in persp

8 phi =30) # see option phi in persp

9 {

10 z <- d$z

11 nrz <- nrow(z)

12 ncz <- ncol(z)

13

14 couleurs <- tail(topo.colors(trunc (1.4 * ncol)),ncol)

15 fcol <- couleurs[trunc(z/zlim [2]*(ncol -1))+1]

16 dim(fcol) <- c(nrz ,ncz)

17 fcol <- fcol[-nrz ,-ncz]

18 if(!missing(cuts) & plot2d ==T){

19 par(mfrow=c(1,2),mar=c(0.5 ,0.5 ,0.5 ,0.5))

20 res <-persp(d,col=fcol ,zlim=zlim ,theta=theta ,phi=phi ,xlab="x", ylab="y",

21 zlab="density")
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22 xx<-expand.grid(c(min(d$x), max(d$x)),c(min(d$y), max(d$y)))

23

24 polygon(trans3d(c(min(d$x), max(d$x),max(d$x), min(d$x),min(d$x)),

25 c(min(d$y),min(d$y),max(d$y),max(d$y),min(d$y)),cuts ,pmat=res),

26 density =20, border=F, col="red")

27 par(new=T)

28 persp(d,col=fcol ,zlim=zlim ,theta=theta ,phi=phi ,xlab="x", ylab="y",

29 zlab="density")

30 #title(main ="2D Density - Estimation ", line =-1)

31 mtext(bquote(Level == .(cuts)), line =-0.8)

32 lines(trans3d(c(min(d$x), max(d$x),max(d$x), min(d$x),min(d$x)),

33 c(min(d$y),min(d$y),max(d$y),max(d$y),min(d$y)),

34 cuts ,pmat=res),col="red", lty="dotted")

35

36 par(mar=c(2,2,2,2))

37 image(d,col=couleurs)

38 contour(d,add=T,levels=cuts)

39 box()

40 }

41 if(missing(cuts) & plot2d ==T){

42 par(mfrow=c(1,2),mar=c(0.5 ,0.5 ,0.5 ,0.5))

43 persp(d,col=fcol ,zlim=zlim ,theta=theta ,phi=phi ,xlab="x", ylab="y",

44 zlab="density")

45 #title(main ="2D Density - Estimation ", line =-1)

46 par(mar=c(2,2,2,2))

47 image(d,col=couleurs)

48 contour(d,add=T,nlevels=nlevels)

49 box()

50 }

51 if(plot2d ==F){

52 par(mar=c(2,2,2,2))

53 image(d,col=couleurs)

54 contour(d,add=T,nlevels=nlevels)

55 # title(main =" Contour Plot 2D-Density Estimation ", line =1)

56 box()

57 }

58 }

59 setGeneric("kde2dplot")

A.5 baseline()

In the following the baseline of all sectors of both samples is determined:

1 ## Function for computing the baseline for all Samples:

2 setGeneric("baseline", function(dichte){ standardGeneric("baseline") })

3 setMethod("baseline", definition=function(dichte){

4

5 minLevel <-vector ()

6 iso <-sapply (1: length(dichte), function(i) contourLines(dichte [[i]]))

7

8 for(j in 1: length(iso)){
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9 level <-sapply (1: length(iso[[j]]), function(x) iso[[j]][[x]]$level)

10 minLevel[j]<-min(level)

11 }

12 minlevel <-min(minLevel)

13

14 return(minlevel=minlevel)

15 }

16 )

A.6 gvt2d()

The bivariate uniform distribution is computed via the function below, where the code is

taken from [Arminger, 2009], with a little modification.

1 ## Function computing the theoretical bivariate uniform distribution

2 gvt2d <-function(x.vec = c(1,4),y.vec = c(2,5),n=100){

3 n.axes=max(x.vec ,y.vec)

4 x <- seq(from=0, to=n.axes ,length=n)

5 y <- x

6 z <- matrix(0, nrow=n, ncol=n)

7 for (i in 1:n){

8 for (j in 1:n){

9 if(x.vec[1]<=x[i] && x[i]<=x.vec[2] && y.vec[1]<=y[j] && y[j]<=y.vec [2]){

10 z[i,j] <- 1/((x.vec[2]-x.vec [1])*(y.vec[2]-y.vec [1]))

11 }

12 }

13 }

14 return(list(x=x, y=y, z=z))

15 }

16 setGeneric("gvt2d")

A.7 nvt2d()

The function is for the computing of the bivariate normal distribution, where the code is

taken from [Francois, 2011a] with a little modification.

1 ## Function for computing the theoretical bivariate normal distribution

2 nvt2d <-function(x1,x2,

3 mu1=0, # setting the expected value of x1

4 mu2=0, # setting the expected value of x2

5 s11=1, # setting the variance of x1

6 s12=0, # setting the covariance between x1 and x2

7 s22=1, # setting the variance of x2

8 rho =0){

9 # setting the correlation coefficient between x1 and x2
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10 f<-function(x1,x2){

11 term1 <- 1/(2*pi*sqrt(s11*s22*(1-rho^2)))

12 term2 <- -1/(2*(1-rho^2))

13 term3 <- (x1 -mu1)^2/s11

14 term4 <- (x2 -mu2)^2/s22

15 term5 <- -2*rho*((x1-mu1)*(x2-mu2))/(sqrt(s11)*sqrt(s22))

16 term1*exp(term2*(term3+term4 -term5))

17 }

18 # setting up the function of the multivariate normal density

19 z<-outer(x1,x2,f) # calculating the density values

20 return(list(x=x1, y=x2, z=z))

21 }

22 setGeneric("nvt2d")

A.8 UTR()

The function below calculates the UTR and also the scaled sUTR, if there is a scaling

value given as input for the level cuts.

1 setGeneric("UTR", function(d,minval ,cuts ,...){ standardGeneric("UTR") })

2 setMethod("UTR", definition=function(d,minval , cuts){

3

4 baseline <-which(d$z> minval , arr.ind=TRUE)

5 dznew <- d$z[baseline]

6 ## calculates density > cuts , column corresponds to level cuts:

7 res <- sapply(cuts , function(x) dznew >= x)

8 ## sum of the values >= cuts

9 len <- apply(res , 2, sum)

10 ## UTR:

11 ratio.ges <-len/nrow(res)

12

13 return(as.matrix(ratio.ges))

14 }

15 )

A.9 Inequ()

With the folowing function the first indicator giniUTR is computed for all sectors and for

all level cuts in one step.

1 ## Function for computing Indikator 1:

2 library(ineq)

3 setGeneric("Inequ", function(dens ,alpha ,init ,ndens ,sc ,...){ standardGeneric("Inequ") })

4 setMethod("Inequ",definition=function(dens ,alpha ,init ,ndens ,sc ,...){

5 ## minlevel=alpha [1]
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6 ## init = initial sector to be analyzed (dens)

7 ## ndens= last sector to be analyzed (dens)

8 ## for the case of scaling with a factor:

9 if(!missing(sc)){

10 for(i in init:ndens){

11 fak <-sc/max(dens[[i]]$z)

12 dens[[i]]$z<-dens[[i]]$z*fak

13 }

14 }

15 else dens <-dens

16

17 IND1 <-matrix(ncol=1, nrow=(ndens -init +1))

18 ## rows of UTRDd are the level cuts and columns are the sectors

19 UTRd <-matrix(nrow=length(alpha), ncol=(ndens -init +1))

20 vec <-seq(init , ndens ,1)

21

22 for(i in 1:(ndens -init +1)){

23 d<-dens[[vec[i]]]

24 UTRd[,i]<- UTR(d, alpha[1], alpha)

25 IND1[i]<-ineq(UTRd[,i])

26 }

27

28 return(list(UTR=UTRd , Inequ=IND1))

29 }

30 )

A.10 nUTR()

This function delivers the analytically computed UTR for the bivariate normal distribution

with µ1 = µ2 = 0 and σ1 = σ2 = σ and ρ = 0.

1 ## Function for the analytical computation of the UTR for the

2 ## bivariate normal distribution with mu=0, rho=0, and sigma_1= sigma_2:

3 setGeneric("nUTR", function(sigma ,nalpha ,...){ standardGeneric("nUTR") })

4 setMethod("nUTR", definition=function(sigma , nalpha ,...){

5 minlevel <-nalpha [1]

6 n<-length(nalpha)

7 maxtnvt <-nalpha[n]

8 ## Calculation of the level cuts as function

9 k<- function(i) minlevel +(i-1)*(maxtnvt -minlevel)/(n-1)

10 ## Calculation of the nUTR:

11 V<-function(i) log(2*pi*sigma*k(i))/log(2*pi*sigma*k(1))

12 nutr <-V(1:n)

13

14 return(nUTR=nutr)

15 }

16 )
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A.11 CompNdist()

In the function below the second indicator cpUTR is computed.

1 ## Function for Indicator 2 CompNdist:

2 setGeneric("CompNdist", function(dens , nalpha , init , ndens , sigma , maxtnvt)

3 {standardGeneric("CompNdist")})

4 setMethod("CompNdist",

5 definition=function(dens , nalpha , init , ndens , sigma , maxtnvt){

6

7 n.utr <-nUTR(sigma , nalpha)

8 ## Scaled UTR:

9 UTRd <-Inequ(dens ,nalpha ,init ,ndens ,maxtnvt)$UTR

10 ## Scaled Indicator Inequ

11 IND1scaled <-Inequ(dens ,nalpha ,init ,ndens ,maxtnvt)$Inequ

12 ## Difference between nUTR and Scaled UTRs:

13 IND2 <- abs(ineq(n.utr)-IND1scaled)

14

15 return(list(sUTR=UTRd , CNdist=IND2))

16 }

17 )

A.12 dmat()

This function is supposed to convert the the list of the density estimation, which consists

of 3 elements, where the first two elements are x- and y- coordinates of the grid points

where the values are estimated and the third element z is the matrix of the values of the

density estimation. As result a matrix of the density estimation is obtained.

This function will be needed later in the function grouping().

1 ## Function for unlisting and converting the list of the densities for all

2 ## sectors of both samples , where the density values < minlevel become 0:

3 setGeneric("dmat", function(d, minlevel){standardGeneric("dmat")})

4 setMethod("dmat", signature=c("list","numeric"),

5 definition=function(d, minlevel){

6 coord <-as.matrix(expand.grid(d$x,d$y))

7 n<-length(d$x)*length(d$y)

8 ss<-seq(1,n,1)

9 MM<-cbind(coord[ss ,], d$z[ss])

10 colnames(MM)<-c("x","y","z")

11 ind <-which(MM[,3] < minlevel)

12 MM[,3][ind]<-0

13

14 return(MM)

15 }

16 )
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A.13 Areanew()

With the function below, the evaluation area for a sector for the computing of the group-

ings is determined.

1 ## Function for defining the eval.area:

2 setGeneric("Areanew", function(Area , K){standardGeneric("Areanew")})

3 setMethod( "Areanew", signature=c("matrix", "matrix"),

4 definition= function(Area , K){

5

6 ## 1.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ##

7 ## separation of the image into 4 quadrants:

8 qu1 <-cbind(c(5000/2, 5000/2, 5000, 5000, 5000/2),

9 c(5000/2, 5000, 5000 ,5000/2, 5000/2))

10 qu2 <-cbind(c(1, 1, 5000/2, 5000/2,1),

11 c(5000/2, 5000, 5000 ,5000/2, 5000/2))

12 qu3 <- cbind(c(1, 1, 5000/2, 5000/2,1),

13 c(1, 5000/2,5000/2,1, 1))

14 qu4 <-cbind(c(5000/2, 5000/2, 5000, 5000 ,5000/2),

15 c(1, 5000/2, 5000/2,1, 1))

16

17 ## testing the density points , to which quadrant they belong

18 test.qu1 <-point.in.polygon(K[,1], K[,2], qu1[,1], qu1[,2])

19 test.qu2 <-point.in.polygon(K[,1], K[,2], qu2[,1], qu2[,2])

20 test.qu3 <-point.in.polygon(K[,1], K[,2], qu3[,1], qu3[,2])

21 test.qu4 <-point.in.polygon(K[,1], K[,2], qu4[,1], qu4[,2])

22

23 lqu1 <-length(which(test.qu1 >0))

24 lqu2 <-length(which(test.qu2 >0))

25 lqu3 <-length(which(test.qu3 >0))

26 lqu4 <-length(which(test.qu4 >0))

27

28 ## testing the Area to which quadrant they belong:

29 Aqu1 <-point.in.polygon(c(Area[1,1], Area[nrow(Area) ,1]),

30 c(Area[1,2], Area[nrow(Area) ,2]), qu1[,1], qu1[,2])

31 Aqu2 <-point.in.polygon(c(Area[1,1], Area[nrow(Area) ,1]),

32 c(Area[1,2], Area[nrow(Area) ,2]), qu2[,1], qu2[,2])

33 Aqu3 <-point.in.polygon(c(Area[1,1], Area[nrow(Area) ,1]),

34 c(Area[1,2], Area[nrow(Area) ,2]), qu3[,1], qu3[,2])

35 Aqu4 <-point.in.polygon(c(Area[1,1], Area[nrow(Area) ,1]),

36 c(Area[1,2], Area[nrow(Area) ,2]), qu4[,1], qu4[,2])

37

38 ## +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ##

39

40 # 2.) Testing the image (Density):

41 ### ************************************************************************ ###

42 # a) mainly right top:

43 if((lqu1 > lqu2) & (lqu1 > lqu3) & (lqu1 > lqu4) & ((Aqu4 [1]>0 & Aqu2 [2]>0) ||

44 (Aqu1 [1]>0 & Aqu2 [2]>0))){

45 if( (Aqu4 [1]>0 & Aqu2 [2]>0) & (min(K[,2])==Area [1,2])){

46 areanew <-cbind(c(Area[,1],Area[nrow(Area) ,1],Area[nrow(Area) ,1],

47 max(K[,1]), max(K[,1])),

48 c(Area[,2],Area[nrow(Area) ,2],max(K[,2]),max(K[,2]),min(K[,2])))
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49 }

50 if((Aqu1 [1]>0 & Aqu2 [2]>0)||( Aqu4 [1]>0&Aqu2 [2]>0)&(min(K[,2])!=Area [1 ,2])){

51 areanew <-cbind(c(Area[,1], Area[nrow(Area) ,1],Area[nrow(Area) ,1],

52 max(K[,1]),Area [1,1]),

53 c(Area[,2], Area[nrow(Area) ,2],max(K[,2]),max(K[,2]),Area [1,2]))

54 }

55 }

56

57 # b) mainly right bottom:

58 if((lqu4 > lqu1) & (lqu4 > lqu2) & (lqu4 > lqu3) & (Aqu3 [1]>0 & Aqu1 [2]>0)){

59 if(Area[nrow(Area) ,2]==max(K[,2])){

60 areanew <-cbind(c(Area[,1],Area[nrow(Area) ,1],max(K[,1]),max(K[,1]),

61 Area[nrow(Area):1,1] ),

62 c(Area[,2],Area[nrow(Area) ,2],max(Area [,2]),min(K[,2]),

63 rep(min(K[,2]), nrow(Area))))

64 }

65

66 if(Area[nrow(Area) ,2]!=max(K[,2])){

67 areanew <-cbind(c(Area[,1], Area[nrow(Area) ,1] ,max(K[,1]), Area [1,1]),

68 c(Area[,2], Area[nrow(Area) ,2], min(K[,2]), Area [1 ,2]))

69 }

70 }

71 # c) right side:

72 if((((lqu4 >lqu3)&(lqu1 >lqu2))||(lqu4 >lqu2)&(lqu1 >lqu4))&((Aqu1 [1]>0&Aqu4 [2]>0)

73 ||( Aqu4 [1]>0 & Aqu1 [2]>0)||( Aqu3 [1]>0 & Aqu2 [2]>0))){

74 if((Aqu4 [1]>0 & Aqu1 [2]>0) ||( Aqu3 [1]>0 & Aqu2 [2] >0)){

75 areanew <-cbind(c(Area[,1],Area[nrow(Area) ,1],max(K[,1]),max(K[,1]),Area [1,1]),

76 c(Area[,2],Area[nrow(Area) ,2],max(K[,2]),min(K[,2]),min(K[,2])))

77 }

78 if((Aqu4 [1]>0 & Aqu1 [2]>0) & (Area[nrow(Area) ,2]!=max(K[,2]))){

79 areanew <-cbind(c(Area[,1],Area[nrow(Area) ,1],Area[nrow(Area) ,1],Area [1,1]),

80 c(Area[,2], Area[nrow(Area) ,2],min(K[,2]),min(K[,2])))

81 }

82

83 if(Aqu1 [1]>0 & Aqu4 [2]>0){

84 areanew <-cbind(c(Area[,1],Area[nrow(Area) ,1],max(K[,1]),max(K[,1]),Area [1,1]),

85 c(Area[,2],Area[nrow(Area) ,2],min(K[,2]),max(K[,2]),max(K[,2])))

86

87 }

88 }

89 # d) middle , mainly right:

90 if((lqu3 >= lqu4) & (lqu1 >lqu2) & (Aqu3 [1]>0 & Aqu1 [2] >0)){

91 areanew <-cbind(c(Area[,1],Area[nrow(Area) ,1],max(K[,1]),max(K[,1]),

92 Area[nrow(Area):1,1] ),

93 c(Area[,2],Area[nrow(Area) ,2],max(Area [,2]),min(K[,2]),

94 rep(min(K[,2]), nrow(Area))))

95 }

96 # e) middle bottom:

97 if(((( lqu4 > lqu1)&(lqu3 > lqu2))||(lqu4 >lqu1 & lqu4 >lqu3))&

98 ((Aqu2 [1]>0 & Aqu1 [2] >0)||( Aqu3 [1]>0 & Aqu4 [2]>0)||( Aqu4 [1]>0 & Aqu2 [2]>0)||

99 (Aqu2 [1]>0 & Aqu4 [2]>0))){

100 if(Aqu4 [1]>0 & Aqu2 [2]>0){

101 areanew <-cbind(c(Area[,1], Area[nrow(Area) ,1],min(K[,1]),min(K[,1]),

102 Area[1,1], Area [1,1]),

103 c(Area[,2], Area[nrow(Area) ,2], max(Area [,2]),
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104 min(K[,2]), min(K[,2]), Area [1 ,2]))

105 }

106 if(!(Aqu4 [1]>0 & Aqu2 [2] >0)){

107 areanew <-cbind(c(Area[,1],Area[nrow(Area) ,1],Area[nrow(Area):1,1],Area [1 ,1]),

108 c(Area[,2],Area[nrow(Area) ,2],rep(min(K[,2]),nrow(Area)),Area [1 ,2]))

109 }

110 }

111 # f) mainly left bottom:

112 if( (lqu3 > lqu4) & (lqu3 > lqu2) & (lqu3 > lqu1) & ((Aqu2 [1]>0 & Aqu3 [2]>0))){

113 if(Area[1,1]<=Area[nrow(Area) ,1]){

114 areanew <-cbind(c(Area[,1],Area[nrow(Area) ,1],Area[nrow(Area) ,1],min(K[,1])),

115 c(Area[,2],Area[nrow(Area) ,2],min(K[,2]),min(K[,2])))

116 }

117 if(Area[1,1]>Area[nrow(Area) ,1]){

118 areanew <-cbind(c(Area[,1],Area[nrow(Area) ,1],Area[nrow(Area) ,1],Area [1,1]),

119 c(Area[,2],Area[nrow(Area) ,2],max(K[,2]),max(K[,2])))

120 }

121 }

122 # g) left side:

123 if((lqu2 > lqu1)&(lqu3 > lqu4)&((Aqu4 [1]>0 & Aqu2 [2] >0)||( Aqu3 [1]>0 & Aqu2 [2] >0)

124 ||( Aqu3 [1]>0 & Aqu1 [2]>0) ||( Aqu4 [1]>0 & Aqu1 [2] >0))){

125 if(Aqu4 [1]>0 & Aqu1 [2] >0||( Aqu3 [1]>0 & Aqu2 [2]>0) ||( Aqu3 [1]>0 & Aqu1 [2]>0)){

126 areanew <-cbind(c(Area[,1],Area[nrow(Area) ,1],Area[nrow(Area) ,1],min(K[,1]),

127 min(K[,1]),Area [1,1]),

128 c(Area[,2],Area[nrow(Area) ,2],max(K[,2]),max(K[,2]),

129 min(K[,2]),min(K[,2])))

130 }

131 if(!(Aqu4 [1]>0&Aqu1 [2] >0)& !(Aqu3 [1]>0 & Aqu2 [2]>0)& !(Aqu3 [1]>0 & Aqu1 [2]>0)){

132 areanew <-cbind(c(Area[,1], Area[nrow(Area) ,1] ,Area[nrow(Area) ,1],

133 min(K[,1]), min(K[,1]),Area[nrow(Area):1,1], Area [1,1] ),

134 c(Area[,2], Area[nrow(Area) ,2], max(K[,2]), max(K[,2]),

135 min(K[,2]),rep(min(K[,2]), nrow(Area)), Area [1,2]))

136 }

137 }

138 # h) special case left middle:

139 if( (lqu4 > lqu3) & (lqu2 >lqu1) & (lqu3 > lqu2) & (Aqu1 [1]>0 & Aqu1 [2] >0)){

140 areanew <-cbind(c(Area[,1], Area[nrow(Area) ,1], Area[nrow(Area) ,1],

141 min(K[,1]), min(K[,1]),Area [1,1]),

142 c(Area[,2], Area[nrow(Area) ,2], max(K[,2]), max(K[,2]),

143 min(K[,2]), min(K[,2])))

144 }

145 # i) mainly left top:

146 if((lqu2 > lqu1) & (lqu2 > lqu3) & (lqu2 > lqu4) & ((Aqu1 [1]>0 & Aqu3 [2]>0)

147 ||( Aqu2 [1]>0 & Aqu3 [2]>0)||( Aqu3 [1]>0 & Aqu2 [2]>0)||( Aqu1 [1]>0 & Aqu2 [2]>0)

148 ||( Aqu3 [1]>0 & Aqu1 [2]>0) ||( Aqu4 [1]>0 & Aqu1 [2] >0))){

149 if((Area[1,1]<=Area[nrow(Area) ,1 ]) & (Aqu3 [1]>0 & Aqu2 [2] >0)){

150 areanew <-cbind(c(Area[,1],Area[nrow(Area) ,1],min(K[,1]),min(K[,1]),Area [1,1]),

151 c(Area[,2],max(K[,2]),max(K[,2]),min(K[,2]),Area [1,2]))

152 }

153 if((Area[1,1]<=Area[nrow(Area) ,1 ]) & ( Aqu2 [1]>0 & Aqu3 [2]>0)){

154 areanew <-cbind(c(Area[,1],Area[nrow(Area) ,1],min(K[,1]),min(K[,1])),

155 c(Area[,2],min(K[,2]),min(K[,2]),max(K[,2])))

156 }

157 if((Area[1,1]<=Area[nrow(Area) ,1]) &

158 ((Aqu3 [1]>0 & Aqu1 [2]>0) ||( Aqu4 [1]>0 & Aqu1 [2]>0))){
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159 areanew <-cbind(c(Area[,1],Area[nrow(Area) ,1],Area[nrow(Area) ,1],

160 min(K[,1]),min(K[,1]) ),

161 c(Area[,2],Area[nrow(Area) ,2],max(K[,2]),

162 max(K[,2]),Area [1,2]))

163 }

164 if((Area [1,1] > Area[nrow(Area) ,1 ]) &

165 (!((Area[1,1]<=Area[nrow(Area) ,1 ]) & ( Aqu2 [1]>0 & Aqu3 [2]>0 ||

166 (Aqu3 [1]>0 & Aqu2 [2]>0))) || !((Area[1,1]<=Area[nrow(Area) ,1 ]) &

167 (( Aqu3 [1]>0 & Aqu1 [2]>0) || (Aqu4 [1]>0 & Aqu1 [2]>0))))){

168 if(!(Aqu3 [1]>0 & Aqu2 [2] >0)){

169 areanew <-cbind(c(Area[,1],Area[nrow(Area) ,1],Area[nrow(Area) ,1],Area [1,1]),

170 c(Area[,2],Area[nrow(Area) ,2],max(K[,2]),max(K[,2])))

171 }

172 if((Aqu3 [1]>0 & Aqu2 [2]>0)){

173 areanew <-cbind(c(Area[,1],Area[nrow(Area) ,1],Area[nrow(Area) ,1],

174 min(K[,1]),min(K[,1]),Area[nrow(Area):1,1] ),

175 c(Area[,2],Area[nrow(Area) ,2],max(K[,2]),max(K[,2]),

176 min(K[,2]),rep(min(K[,2]),nrow(Area))))

177 }

178 }

179 }

180 # j) special case left top:

181 if(max(lqu1 ,lqu2 ,lqu3 ,lqu4)==lqu2 & (Aqu2 [1]>0 & Aqu2 [2]>0) &

182 (Area [1,2]!=Area[nrow(Area) ,2])){

183 if(Area[nrow(Area) ,1] <= Area [1 ,1]){

184 areanew <-cbind(c(Area[,1],Area[nrow(Area) ,1],Area[nrow(Area):1 ,1]),

185 c(Area[,2],Area[nrow(Area) ,2],rep(max(K[,2]),nrow(Area))))

186 }

187 if(!(Area[nrow(Area) ,1] <= Area [1,1])){

188 areanew <-cbind(c(Area[,1],Area[nrow(Area) ,1],Area[nrow(Area):1,1],

189 min(K[,1]),min(K[,1]),Area [1,1] ),

190 c(Area[,2],Area[nrow(Area) ,2],rep(max(K[,2]),nrow(Area)),

191 max(K[,2]),min(K[,2]),Area [1 ,2]))

192 }

193 }

194 # k) middle top:

195 if((lqu1 >lqu4)&(lqu2 >lqu3)&(Aqu1 [1]>0 & Aqu3 [2]>0)){

196 areanew <-cbind(c(Area[,1],Area[nrow(Area) ,1],Area[nrow(Area) ,1],

197 max(K[,1]),Area [1,1]),

198 c(Area[,2],Area[nrow(Area) ,2],max(K[,2]),

199 max(K[,2]),Area [1,2]))

200 }

201 # l) special case left bottom:

202 if((Aqu3 [1]>0 & Aqu3 [2]>0) & (!isTRUE(all.equal(lqu1 ,lqu2 , tol =0.15)) ||

203 !isTRUE(all.equal(lqu1 ,lqu3 , tol =0.15)) ||

204 !isTRUE(all.equal(lqu1 ,lqu4 , tol =0.15))) & (Area[nrow(Area) ,2]!=Area [1,2])){

205 if(Area[nrow(Area) ,1]== Area [1 ,1]){

206 areanew <-cbind(c(Area[,1],Area[nrow(Area) ,1]),c(Area[,2],Area[nrow(Area) ,2]))

207 }

208 if(Area[nrow(Area) ,1]!=Area [1 ,1]){

209 areanew <-cbind(c(Area[,1],Area[nrow(Area) ,1],min(K[,1]),min(K[,1])),

210 c(Area[,2],Area[nrow(Area) ,2],min(K[,2]),Area [1,1]))

211 }

212 }

213 # m) special case: only in the third quadrant
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214 if((Aqu3 [1]>0 & Aqu3 [2]>0) & (!isTRUE(all.equal(lqu1 ,lqu2 , tol =0.15)) ||

215 !isTRUE(all.equal(lqu1 ,lqu3 , tol =0.15)) ||

216 !isTRUE(all.equal(lqu1 ,lqu4 , tol =0.15))) & (Area[nrow(Area) ,2]== Area [1,2])

217 & any(( isTRUE(all.equal(lqu1 ,lqu2 , tol =0.15)) & (lqu1 >0 | lqu2 >0)),

218 (isTRUE(all.equal(lqu1 ,lqu3 , tol =0.15)) & (lqu1 >0 | lqu3 >0)),

219 (isTRUE(all.equal(lqu1 ,lqu4 , tol =0.15)) & (lqu1 >0 | lqu4 >0)))){

220

221 areanew <-cbind(c(min(K[,1]),min(K[,1]),max(K[,1]),max(K[,1]),min(K[,1])),

222 c(min(K[,2]),max(K[,2]),max(K[,2]),min(K[,2]),min(K[,2])))

223 }

224 # n) special case: only in the third quadrant

225 if((Aqu3 [1]>0 & Aqu3 [2]>0) & (!isTRUE(all.equal(lqu1 ,lqu2 , tol =0.15)) ||

226 !isTRUE(all.equal(lqu1 ,lqu3 , tol =0.15)) ||

227 !isTRUE(all.equal(lqu1 ,lqu4 , tol =0.15))) & (Area[nrow(Area) ,2]== Area [1,2])

228 & (!any(( isTRUE(all.equal(lqu1 ,lqu2 , tol =0.15)) & (lqu1 >0 | lqu2 >0)),

229 (isTRUE(all.equal(lqu1 ,lqu3 , tol =0.15)) & (lqu1 >0 | lqu3 >0)),

230 (isTRUE(all.equal(lqu1 ,lqu4 , tol =0.15)) & (lqu1 >0 | lqu4 >0))))){

231

232 areanew <-cbind(c(Area[,1],Area[nrow(Area) ,1],Area[nrow(Area):1 ,1]),

233 c(Area[,2],Area[nrow(Area) ,2],rep(min(K[,2]),nrow(Area))))

234 }

235 # o) special case: uniformly distributed with a concentratin to right top

236 if(isTRUE(all.equal(lqu1 ,lqu2 ,tol =0.15)) & isTRUE(all.equal(lqu1 ,lqu3 ,tol =0.15))

237 & isTRUE(all.equal(lqu1 ,lqu4 , tol =0.15)) & ((Aqu1 [1]>0 & Aqu1 [2]>0) ||

238 (Aqu2 [1]>0 & Aqu2 [2]>0) || (Aqu3 [1]>0 & Aqu3 [2]>0) ||

239 (Aqu4 [1]>0 & Aqu4 [2]>0) || (Aqu3 [1]>0 & Aqu2 [2]>0))){

240

241 areanew <-cbind(c(min(K[,1]),min(K[,1]),max(K[,1]),max(K[,1]),min(K[,1])),

242 c(min(K[,2]),max(K[,2]),max(K[,2]),min(K[,2]),min(K[,2])))

243 }

244 # p)special case: uniformly distributed with a concentratin to right bottom

245 if((lqu3 > lqu1) & (lqu4 > lqu2) & (lqu3 > lqu2) & (lqu1 >lqu2) &

246 ((Aqu2 [1]>0 & Aqu2 [2]>0))){

247 areanew <-cbind(c(Area[,1],Area[nrow(Area) ,1],max(K[,1]),max(K[,1]),

248 Area[nrow(Area):1,1]),

249 c(Area[,2],Area[nrow(Area) ,2],max(Area [,2]),min(K[,2]),

250 rep(min(K[,2]),nrow(Area))))

251 }

252 # q) special case: only in the 4th quadrant

253 if((Aqu4 [1]>0 & Aqu4 [2]>0) & (!isTRUE(all.equal(lqu1 ,lqu2 , tol =0.15)) ||

254 !isTRUE(all.equal(lqu1 ,lqu3 , tol =0.15)) ||

255 !isTRUE(all.equal(lqu1 ,lqu4 , tol =0.15)))){

256

257 areanew <-cbind(c(Area[,1],Area[nrow(Area) ,1],Area[nrow(Area):1,1] ),

258 c(Area[,2],Area[nrow(Area) ,2],rep(min(K[,2]),nrow(Area))))

259 }

260 # r) special case: only in the 2nd quadrant

261 if( (Aqu2 [1]>0 & Aqu2 [2]>0) & (!isTRUE(all.equal(lqu1 ,lqu2 , tol =0.15)) ||

262 !isTRUE(all.equal(lqu1 ,lqu3 , tol =0.15)) ||

263 !isTRUE(all.equal(lqu1 ,lqu4 , tol =0.15))) &

264 !((lqu3 > lqu1) & (lqu4 > lqu2) & (lqu3 > lqu2) & (lqu1 >lqu2)) &

265 !(max(lqu1 ,lqu2 ,lqu3 ,lqu4)==lqu2 & (Area [1,2]!=Area[nrow(Area) ,2]))){

266

267 areanew <-cbind(c(Area[,1],Area[nrow(Area) ,1],Area[nrow(Area):1 ,1]),

268 c(Area[,2],Area[nrow(Area) ,2],rep(max(K[,2]),nrow(Area))))
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269 }

270 # s) special case: only in the first quadrant:

271 if((Aqu1 [1]>0 & Aqu1 [2]>0) & !((lqu4 > lqu3) & (lqu2 >lqu1) & (lqu3 > lqu2)) &

272 (!isTRUE(all.equal(lqu1 ,lqu2 ,tol =0.15)) ||

273 !isTRUE(all.equal(lqu1 ,lqu3 ,tol =0.15)) ||

274 !isTRUE(all.equal(lqu1 ,lqu4 ,tol =0.15)))){

275

276 areanew <-cbind(c(Area[,1],Area[nrow(Area) ,1],Area[nrow(Area):1 ,1]),

277 c(Area[,2],Area[nrow(Area) ,2],rep(max(K[,2]),nrow(Area))))

278 }

279 # t) special case: middle bottom , concave curvature:

280 if((Aqu3 [1]>0 & Aqu4 [2]>0) & !((lqu4 > lqu3) & (lqu2 >lqu1) & (lqu3 > lqu2)) &

281 !((( lqu4 > lqu1) & (lqu3 > lqu2)) || (lqu4 >lqu1 & lqu4 >lqu3)) &

282 (!isTRUE(all.equal(lqu1 ,lqu2 , tol =0.15)) ||

283 !isTRUE(all.equal(lqu1 ,lqu3 , tol =0.15)) ||

284 !isTRUE(all.equal(lqu1 ,lqu4 , tol =0.15)))){

285

286 areanew <-cbind(c(min(K[,1]),min(K[,1]),max(K[,1]),max(K[,1]),min(K[,1])),

287 c(min(K[,2]),max(K[,2]), max(K[,2]), min(K[,2]),min(K[,2])))

288 }

289

290 return(Areanew=areanew)

291 }

292 )

A.14 groups.fix()

This function calculates for a sector the contour lines of possible groups at a given level.

1 ## Function for determining contours of possible groups:

2 library(grDevices)

3 setGeneric("groups.fix", function(d, fix){ standardGeneric("groups.fix") })

4 setMethod("groups.fix", definition=function(d, fix){

5 isofix <-contourLines(d, nlevels=1, levels=fix)

6 if(length(isofix)==0) MAT <-cbind (0,0,0)

7 if(length(isofix)==1) MAT <-cbind(isofix [[1]]$x, isofix [[1]]$y, 1)

8 if(length(isofix) >1){

9 fixmat <-lapply (1: length(isofix),

10 function(x) cbind(isofix [[x]]$x, isofix [[x]]$y, x))

11 ## converting list of density into matrix:

12 nr<-sapply (1: length(fixmat), function(x) nrow(fixmat [[x]]))

13 gr<-cumsum(nr)

14 MAT <-matrix(nrow=sum(nr), ncol =3)

15 MAT [1:gr[1],] <-fixmat [[1]]

16 k<-seq(2,length(nr), 1)

17 l<-1

18 for(i in k){

19 MAT[(gr[i -1]+1):gr[i], ]<-fixmat [[i]]

20 l=l+1

21 }

22 }
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23 colnames(MAT)<-c("x","y", "group")

24 return(MAT )

25 }

26 )

A.15 grouping()

In the function below the groupings within the evaluation area, determined via Areanew(),

are computed the ouput is a list, containing as first element the matrix of the coordinates of

the denisty points and in the third column the corresponding classification of the grouping.

The second element of the output is the eval.area.

1 ## Function determines the groupings within density per fix level cut:

2 #library(sp)

3 library(gstat)

4 setGeneric("grouping",function(d, minlevel , cuts , fix.value)

5 {standardGeneric("grouping")})

6 setMethod("grouping", signature=c("list","numeric", "numeric", "numeric"),

7 definition= function(d, minlevel , cuts , fix.value){

8

9 bl<- which(d$z> minlevel , arr.ind=TRUE)

10 M<-matrix(0, nrow =100, ncol =100)

11 M[bl]<-d$z[bl]

12 ## consider density > minlevel

13 dnew <-list(x=d$x, y=d$y, z=M)

14

15 ## determination of the possible Area for the evaluation :

16 borders <- contourLines(dnew , levels=minlevel)

17 ## maximal contour is chosen:

18 geb <-sapply (1: length(borders), function(x) length(borders [[x]]$x))

19 nr<-which(geb==max(geb))

20 ## possible evaluation area:

21 Area <-cbind(borders [[nr]]$x, borders [[nr]]$y)

22 ## list of density converted into matrix:

23 dm<-dmat(dnew , minlevel)

24 ##### ******************************************************************* ######

25 K<- dm[dm[,3]>= fix.value ,1:2]

26 KAA <-dm[dm[,3]>= minlevel ,1:2]

27 ## determination of eval.area:

28 areanew <-Areanew(Area , KAA)

29 ###### **************************************************************** ######

30 ## Considering matrix of contours of possible groups:

31 MAT <-groups.fix(dnew , fix.value)

32 ## Matrix of Density:

33 ## -) If K is empty:

34 if(nrow(matrix(K, ncol =2))==0) MM<-cbind (0,0,0)

35 ## -) If K has only one row:

36 if(nrow(matrix(K, ncol =2))==1){

37 K<-matrix(K, ncol =2)
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38 RES <-point.in.polygon(MAT[MAT[,3]==1,1],MAT[MAT[,3]==1,2], areanew[,1],

39 areanew [,2])

40 ## contour is strict outside of the eval.area:

41 if(all(RES ==0)){

42 MAT [,1:3] <- 0

43 MM<-cbind (0,0,0)

44 }

45 ## contour is within or at the border of the eval.area:

46 if(any(RES)!=0){

47 MAT <-MAT

48 ## testing which density points are within the eval.area:

49 test <-point.in.polygon(K[,1], K[,2], areanew [,1] , areanew [,2])

50 r<-which(test >0, arr.ind=TRUE)

51 Knew <-K[r,]

52 ## Matrix of density with resp. to one grouping

53 MM<-cbind(matrix(Knew , ncol =2), 1)

54 }

55 }

56 ## -) K consist of more than one rows: ************************ #################

57 if(nrow(matrix(K, ncol =2)) > 1){

58 ## case with only one group ----------------------- ##############

59 if(max(MAT[,3]) ==1){

60 RES <-point.in.polygon(MAT[MAT[,3]==1,1],MAT[MAT[,3]==1,2], areanew[,1],

61 areanew [,2])

62 ## contour is strict outside of the eval.area:

63 if(all(RES ==0)){

64 MAT [,1:3] <- 0

65 MM<-cbind (0,0,0)

66 }

67 ## contour is within or at the border of the eval.area:

68 if(any(RES)!=0){

69 MAT <-MAT

70 ## testing which density points are within the eval.area:

71 test <-point.in.polygon(K[,1], K[,2], areanew [,1] , areanew [,2])

72 r<-which(test >0, arr.ind=TRUE)

73 Knew <-K[r,]

74 ## Matrix of density with resp. to one grouping:

75 MM<-cbind(matrix(Knew , ncol =2), 1)

76

77 }

78 }

79 # ############# -------------------------------- ##################

80

81 ## case with more than one group: ----------------------##########

82 if(max(MAT[,3]) >1){

83 ## checking the contours of possible groups:

84 RES <-sapply(min(MAT[,3]):max(MAT[,3]), function(i){

85 point.in.polygon(MAT[MAT[ ,3]==i,1],MAT[MAT[ ,3]==i,2], areanew[,1],

86 areanew [,2])})

87 for(i in min(MAT[,3]):max(MAT[,3])){

88 if(all(RES[[i]]==0)){

89 ## all contours outside of the eval.area are deleted:

90 MAT <-MAT[-which(MAT[,3]==i),]

91 }

92 else MAT <-MAT
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93 }

94

95 if(nrow(MAT)==0) MM<-cbind (0,0,0)

96

97 if( nrow(MAT)>0 ){

98

99 if(min(MAT[,3])==max(MAT[,3])) {

100 test <-point.in.polygon(K[,1], K[,2], areanew [,1] , areanew [,2])

101 r<-which(test >0, arr.ind=TRUE)

102 Knew <-K[r,]

103 ## Matrix of density with resp. to one grouping:

104 MM<-cbind(matrix(Knew , ncol =2), min(MAT[,3]))

105 }

106 ## determation which contours are at the border which are in the eval.area and

107 ## splitting the Matrix of contours into the one within the area and the one at

108 ## the border of the area:

109 if(min(MAT[,3])!=max(MAT[,3])){

110 ## MATborder .... Matrix of contours at the border

111 MATborder <-matrix(NA , ncol =3)

112 ## MATin .... Matrix of contours within the area

113 MATin <-matrix(NA, ncol =3)

114

115 ## vector of the classification of contours within

116 con <-vector ()

117 ##vector of the classification of contours at the border

118 con.out <-vector ()

119

120 n<-1

121 k<-1

122

123 for(i in min(MAT[,3]): max(MAT[,3])){

124 if(all(RES[[i]]==1)){

125 con[n]<-i

126 n<-n+1

127 }

128 if(length(con) >=1){

129 rin <-sapply (1: length(con), function(i) nrow(MAT[MAT[ ,3]== con[i], ]))

130 crin <-cumsum(rin)

131 m<-1

132 MATin <-matrix(nrow=sum(rin), ncol =3)

133 for(j in 1: length(con)){

134 MATin[m:crin[j], ]<-MAT[MAT[ ,3]==con[j],]

135 m<-crin[j]+1

136 }

137 }

138 if(any(RES[[i]]==2) || any(RES[[i]]==3) ||

139 (any(RES[[i]]) ==1 & all(RES[[i]])!=1)){

140 con.out[k]<-i

141 k<-k+1

142 }

143 if(length(con.out) >=1){

144 r<-sapply (1: length(con.out),

145 function(i) nrow(MAT[MAT [,3]==con.out[i],]))

146 cr<-cumsum(r)

147 m<-1
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148 MATborder <-matrix(nrow=sum(r), ncol =3)

149 for(j in 1: length(con.out)){

150 MATborder[m:cr[j],] <- MAT[MAT[,3]==con.out[j], ]

151 m<-cr[j]+1

152 }

153 }

154 }

155

156 ## checking which density points are within the eval.area:

157 test <-point.in.polygon(K[,1], K[,2], areanew[,1],areanew [,2])

158 r<-which(test >0, arr.ind=TRUE)

159 Knew <-K[r,]

160 ## Knew is matrix of density points within the eval.area

161 ## Checking of contours within the eval.area:

162 ## a) case no contours within:

163 if(nrow(na.omit(MATin))==0) MMin <-matrix(NA , ncol =3)

164

165 if(nrow(na.omit(MATin)) >0){

166 MMin <-matrix(NA, ncol =3)

167

168 ## b) only 1 contour within:

169 if((min(MATin [,3])==max(MATin [,3]))){

170 test1 <-point.in.polygon(Knew[,1], Knew[,2],

171 MATin[MATin [,3]== min(MATin [,3]) ,1] , MATin[MATin [,3]==min(MATin [,3]) ,2])

172 rgr <- which(test1!=0, arr.ind=TRUE)

173

174 if(length(rgr) >0){

175 MMin <-cbind(matrix(Knew[rgr , ], ncol =2), min(MATin [,3]))

176 }

177 if(length(rgr)==0) MMin <-matrix(NA, ncol =3)

178 }

179 ## c) more than one contour within:

180 if(min(MATin [,3])!=max(MATin [,3])){

181 test1 <-vector("list",length(min(MATin [,3]):max(MATin [,3])))

182 l<-vector ()

183 for(i in min(MATin [,3]):max(MATin [,3]) ){

184 test1[[i]]<-point.in.polygon(Knew[,1], Knew[,2],

185 MATin[MATin [,3]==i,1], MATin[MATin [,3]==i,2])

186 }

187 rg<-lapply (1: length(test1),function(i) which ((test1[[i]])!=0,arr.ind=TRUE))

188 for(i in 1: length(rg)){

189 if(all(is.integer (0)==rg[[i]])== FALSE) l[i]<-i

190 }

191 l<-na.omit(l)

192 ## Converting the list into matrix:

193 if(is.logical(l)!=TRUE){

194 if(length(l)==1) MMin <-cbind(matrix(Knew[rg[[l]],], ncol =2),l)

195 if(length(l) >1){

196 KK<-lapply (1: length(l),

197 function(i) cbind(matrix(Knew[rg[[l[i]]],], ncol =2),l[i]))

198 nr<-sapply (1: length(KK), function(x) nrow(KK[[x]]))

199 csnr <-cumsum(nr)

200 MMin <-matrix(nrow=(sum(nr)), ncol =3)

201 MMin [1: csnr[1], ] <- KK[[1]]

202 for(i in 2: length(nr)){
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203 MMin[(csnr[i -1]+1) :(csnr[i]) ,] <- KK[[i]]

204 }

205 }

206 }

207 }

208 }

209 ## Deleting the points from Knew , which have been already applied above to the

210 ## corresponding groups:

211 gin <-sapply (1: nrow(Knew), function(i) which((Knew[i,1]== MMin[,1] &

212 Knew[i ,2]== MMin [,2]), arr.ind=TRUE))

213 indin <-vector ()

214 for(i in 1: length(gin)){

215 if(length(gin[[i]]) ==0) indin[i]<-i

216 }

217 indin <-na.omit(indin)

218 Knew <-Knew[indin , ]

219

220 ## Checking the remaining density points ,to which contour at border they belong

221 ## a) case if there is no contour at border:

222 if(nrow(na.omit(MATborder))==0) MMb <-matrix(NA, ncol =3)

223 ## SubMatrix of border contours:

224 MMbor <-matrix(NA, ncol =3)

225

226 if(nrow(na.omit(MATborder)) >0){

227 MATb <-MATborder

228

229 ## b) case if only one contour at border:

230 if(length(con.out)==1){

231 pol <-Areanew(MATb[,1:2], KAA)

232 testAA <-point.in.polygon(Knew[,1], Knew[,2], pol[,1], pol[,2])

233 rr<-which(testAA >0, arr.ind=TRUE)

234 ##MMb Matrix of density with resp. contours

235 if(length(rr) >0){

236 MMb <- cbind(matrix(Knew[rr ,], ncol =2), con.out)

237 }

238 }

239 ## c) case more than one contour at border:

240 if(length(con.out) >1){

241 kont <-sapply (1: length(con.out),

242 function(x) nrow(MATb[MATb [,3]==con.out[x],]))

243 KA<-list()

244 Kn<-Knew

245 for(i in 1: length(con.out)){

246 if(nrow(Kn) >0){

247 nrkon <-which(kont==max(kont))

248

249 if(length(nrkon) >1){nrkon <-nrkon [1]}

250 if(length(nrkon)==1) nrkon <-nrkon

251

252 AA<-MATb[MATb [,3]==con.out[nrkon],]

253 ppoly <-Areanew(AA[,1:2], KAA)

254 testAA <-point.in.polygon(Kn[,1], Kn[,2], ppoly[,1], ppoly[,2] )

255 rr<-which(testAA >0, arr.ind=TRUE)

256 if(length(rr >0)){

257 KA[[i]]<- cbind(matrix(Kn[rr ,], ncol =2), con.out[nrkon ])
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258 }

259 if(length(rr)==0) KA[[i]]<- NA

260 if(any(!is.na(KA[[i]]))){

261 ind1 <-vector ()

262 gg<- sapply (1: nrow(Kn), function(x) which ((Kn[x ,1]==KA[[i]][ ,1])

263 & (Kn[x,2]== KA[[i]][ ,2]), arr.ind=TRUE))

264 for(j in 1: length(gg)){

265 if(length(gg[[j]]) ==0) ind1[j]<-j

266 }

267 ind1 <-na.omit(ind1)

268 Kn<-matrix(Kn[ind1 , ], ncol=2 )

269 }

270 MATb <-MATb[-which(MATb [ ,3]== con.out[nrkon ]), ]

271 kont[nrkon]<-0

272 }

273 }

274 if(any(!is.na(KA))){

275 nrb <-vector ()

276 ## Checking for NA ’s

277 for(x in 1: length(KA)){

278 if(all(!is.na(KA[[x]]))) nrb[x] <- nrow(KA[[x]])

279 else nrb[x] <- 0

280 }

281 ## Converting the list KA into Matrix

282 csnrb <-cumsum(nrb[nrb >0])

283 MMb <-matrix(nrow=sum(nrb), ncol =3)

284 if(any(nrb ==0)){

285 KA<-KA[-which(nrb ==0)]

286 }

287 if(all(nrb!=0)) KA<-KA

288 if(!is.list(KA)) MMb <-KA

289 if(is.list(KA)){

290 MMb [1: csnrb[1], ] <- KA [[1]]

291 if(length(csnrb) >1){

292 for(i in 2: length(csnrb)){

293 MMb[(csnrb[i -1]+1) :(csnrb[i]) ,] <- KA[[i]]

294 }

295 }

296 }

297 }

298 ## Deleting the applied density points of Knew

299 g<-sapply (1: nrow(Knew), function(i) which ((Knew[i,1]== MMb[,1] &

300 Knew[i ,2]== MMb[,2]), arr.ind=TRUE))

301 ind <-vector ()

302 for(i in 1: length(g)){

303 if(length(g[[i]]) ==0) ind[i]<-i

304 }

305 ind <-na.omit(ind)

306 Knew <-Knew[ind , ]

307 ## case if there are not any density points left

308 if(nrow(na.omit(Knew))==0) MMb <-MMb

309 ## case checking of the remained density points , where they belong:

310 if(nrow(na.omit(Knew)) >0){

311 testborder <-vector("list",length(min(MATborder [,3]):max(MATborder [,3])))

312 lborder <-vector ()
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313 for(i in min(MATborder [,3]):max(MATborder [,3]) ){

314 testborder [[i]]<-point.in.polygon(Knew[,1], Knew[,2],

315 c(MATborder[MATborder [,3]==i,1]) , c(MATborder[MATborder [ ,3]==i,2]))

316 }

317 rborder <-sapply (1: length(testborder),function(i) which (( testborder [[i]])!=0,

318 arr.ind=TRUE))

319 for(i in 1: length(rborder)){

320 if(all(is.integer (0)== rborder [[i]])== FALSE) lborder[i]<-i

321 }

322 lborder <-na.omit(lborder)

323 if(length(lborder)==1){

324 MMbor <- cbind(matrix(Knew[rborder [[ lborder [1]]],], ncol =2),lborder [1])

325 }

326 if(length(lborder) >1){

327 Kbor <-sapply (1: length(lborder), function(i)

328 cbind(matrix(Knew[rborder [[ lborder[i]]],], ncol =2),lborder[i]))

329 nrbor <-sapply (1: length(Kbor), function(x) nrow(Kbor[[x]]))

330 csnrbor <-cumsum(nrbor)

331 MMbor <-matrix(nrow=(sum(nrbor)), ncol =3)

332 MMbor [1: csnrbor [1], ] <- Kbor [[1]]

333 for(i in 2: length(nrbor)){

334 MMbor[( csnrbor[i -1]+1) :( csnrbor[i]) ,] <- Kbor[[i]]

335 }

336 }

337 }

338 }

339 }

340 MM<-na.omit(rbind(MMb , MMbor , MMin))

341 }

342 }

343 }

344 ###### ----------------------- ######################

345 }

346 ### ****************************** ########################################

347 return(list(Dpoints=MM , Area=areanew))

348 }

349 )

A.16 NGroups()

With this function the number of groupings within the eval.area of a sector per level cut,

hence the third indicator, is calculated.

1 ## Function for Indicator 3, computes the number of Groupings per level:

2 setGeneric("NGroups", function(Dp){ standardGeneric("NGroups") })

3 setMethod("NGroups", signature=c("matrix"), definition=function(Dp){

4 con <-Dp[,3]

5 if(all(con >0)){

6 test <-sapply (1: length(con), function(x) con[x]== con[x+1])

7 ind <-which(test== FALSE)
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8 contours <-(1+ length(ind))

9 }

10 if(all(con ==0)) contours <-0

11

12 return(contours)

13 }

14 )

A.17 separation()

The function below enables the calculation of the last indicator modCHI for a sector per

level cut.

1 ## Function for the computing of the indicator Sep:

2 library(stats)

3 setGeneric("separation", function(MM){standardGeneric("separation")})

4 setMethod("separation", signature=c("matrix"), definition= function(MM){

5 ## case if there is no density points > fix.value :

6 if(all(MM==0)){

7 IND <- NA

8 kern <-NA

9 }

10 ## case for only one grouping:

11 if(min(MM[,3])==max(MM[,3]) & any(MM > 0)){

12 ## defining of center of grouping

13 mx<- mean(c(MM[,1]))

14 my<- mean(c(MM[,2]))

15 kern <-cbind(na.omit(mx), na.omit(my))

16 IND <- 0

17 }

18 ## case for more than one grouping:

19 if((min(MM[,3])!= max(MM[,3]))){

20 ind <-lapply(seq(min(MM[,3]),max(MM[,3]) ,1),

21 function(i) if(length(MM[MM[ ,3]==i,])!=0){ which(MM[,3]==i)} )

22 pp<-sapply (1: length(ind), function(i) (length(ind[[i]]) >0))

23 ind <-ind[pp==TRUE]

24 ## center

25 mx<-sapply(seq(1,length(ind) ,1), function(i) mean(c(MM[,1][ind[[i]]])))

26 my<-sapply(seq(1,length(ind) ,1), function(i) mean(c(MM[,2][ind[[i]]])))

27 kern <-cbind(na.omit(mx), na.omit(my))

28 ## calculating WSA:

29 WS<-sapply(seq(1,length(ind) ,1),

30 function(j) sum(abs(MM[,1][ind[[j]]]-mx[j])+abs(MM[,2][ind[[j]]]-my[j])))

31 WSS <-sum(na.omit(WS))

32 ## calculating BSA:

33 BS<-dist(kern , method="manhattan", diag=F)

34 BSS <- sum(BS)

35 ## INDIKATOR:

36 IND1 <-BSS/WSS

37 IND <-IND1*(nrow(MM)-nrow(kern))/(nrow(kern) -1)
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38 }

39 return(list(INDIKATOR=IND , Centre=kern))

40 }

41 )

A.18 eval.sep()

This function is supposed to compute the third and fourth indicator for all sectors of a

sample in one step.

1 ## Function for evaluation of IND3 and IND4 in one step for all Sectors and

2 ## for all level cuts:

3 setGeneric("eval.sep", function(dens , alpha , init , ndens){standardGeneric("eval.sep")})

4 setMethod("eval.sep", signature=c("list", "vector", "numeric", "numeric"),

5 definition= function(dens , alpha , init , ndens){

6

7 dpoints <-list()

8 Aread <-list()

9 IND3 <-matrix(nrow=length(alpha), ncol=(ndens -init +1))

10 IND4 <-matrix(nrow=length(alpha), ncol=(ndens -init +1))

11 centre <-list()

12 vec <-seq(init , ndens , 1)

13 for(i in 1:(ndens -init +1)){

14 d<-dens[[vec[i]]]

15 dpoints [[i]]<- sapply (1: length(alpha),

16 function(x) grouping(d, alpha[1], alpha , alpha[x])$Dpoints)

17 Aread[[i]]<- grouping(d, alpha [1], alpha , alpha [1])$Area

18 ## IND3: columns represent sectors , rows the level cuts

19 IND3[,i]<-sapply (1: length(alpha), function(x) NGroups(dpoints [[i]][[x]]))

20 ## IND4 sep:

21 IND4[,i]<-sapply (1: length(alpha),

22 function(x) separation(dpoints [[i]][[x]])$INDIKATOR)

23 ## center of groupings

24 centre [[i]]<-sapply (1: length(alpha),

25 function(x) separation(dpoints [[i]][[x]])$Centre)

26 }

27 return(list(Earea=Aread ,Dp=dpoints , cent=centre , IND3=IND3 , IND4=IND4))

28 }

29 )

A.19 Script

In the following the main steps for the evaluation are described, based on Sample 1:

1 ### Evaluation :

2 rm(list=ls())
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3

4 # ########## ************************************************* #################

5 ## load data ( previously imported via data.read ())

6 load("daten.RData")

7 ## optimal bandwidth ( previously computed via Bandwidth ())

8 load("bw.RData")

9 ## density estimation of both Samples as list ( previously computed via kde2 ())

10 load("dichten.RData")

11

12 ## computing minlevel:

13 minlevel <-baseline(dichten)

14 maxima <-sapply (1: length(dichten), function(i) max(dichten [[i]]$z))

15 upperlimit <-max(maxima)

16 ## level cuts alpha:

17 alpha <-seq(minlevel , upperlimit , length.out =50)

18

19 ## computing bivariate uniform distribution :

20 x.vek <-c(0 ,100)

21 y.vek <-c(0 ,100)

22 tgvt <-gvt2d(x.vek ,y.vek , 100)

23 maxtgvt <-max(tgvt$z)

24

25 ## Evaluation by the example of Sample 1,

26 ## with sectors of density: dichten [[1]] to dichten [[14]]:

27

28 ####### **************************************************************** #######

29 # 1) Indikator giniUTR: Comparison with ~U:

30 ## scale tgvt , so that max(tgvt)= upperlimit

31 fak <-upperlimit/maxtgvt

32 newtgvtt <-list(x=tgvt$x, y=tgvt$y, z=tgvt$z*fak)

33 UTRg <-UTR(newtgvtt , minlevel , alpha)

34

35 UTRd <-Inequ(dichten ,alpha ,1,14)$UTR

36

37 IND1 <-Inequ(dichten ,alpha ,1,14)$Inequ

38

39 ### Plot UTR Sample1:

40 vcol <-palette(gray(seq(0,0.9,len =14)) )

41 plot(alpha ,UTRd[,1], type="l", col=vcol [2] ,lwd=2, xlab="Level Cuts", ylab="UTR")

42 lines(alpha ,UTRd[,2], lty=5, lwd=2, col=vcol [3])

43 lines(alpha ,UTRd[,3], lty=2, lwd=2, col=vcol [4])

44 lines(alpha ,UTRd[,4], lty=4, lwd=2.5, col=vcol [8])

45 lines(alpha ,UTRd[,5], lty=6, lwd=2, col=vcol [6])

46 ## tgvt:

47 lines(alpha ,UTRg , lwd=2, col=vcol [9])

48 title(main="UTR ")

49 legend("right", legend=c("S_1", "S_2", "S_3", "S_4","S_5", "~U"),

50 col=c(vcol[2],vcol[3],vcol[4],vcol[8],vcol[6],vcol [9]), lty=c(1,5,2,4,6,1),

51 lwd=c(2,2,2,2.5,2,2))

52

53 ### Log -Plot UTR Sample1:

54 plot(log="x",UTRd[,1], type="l", col=vcol [2] ,lwd=2, xlab="Log -Level Cuts", ylab="UTR")

55 lines(UTRd[,2], lwd=2, col=vcol [3] ,lty=2)

56 lines(UTRd[,3], lwd=2, lty=3, col=vcol [4] )

57 lines(UTRd[,4], lwd=2.5, lty=4, col=vcol [8] )
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58 lines(UTRd[,5], lwd=2, lty=5, col=vcol [6] )

59 ## tgvt:

60 lines(UTRg , col=vcol[9], lwd=2, lty =1)

61 title(main="UTR on a logarithmic Scale")

62 legend("right", legend=c("S_1", "S_2", "S_3", "S_4","S_5", "~U"),

63 lty=c(1,5,2,4,6,1),col=c(vcol[2],vcol[3],vcol[4],vcol[8],vcol[6],vcol [9]),

64 lwd=c(2,2,2,2.5,2,2))

65 ## do this plots for all 14 sectors

66

67 ### Plot Indikator 1 Gini:

68 plot(IND1 , type="l", lwd=2, xlab="Sectors", ylab="giniUTR")

69 title(main="Gini -Index for all Sectors of Sample 1")

70 # rcol <-palette(gray(seq (0 ,0.9 , len =14)) )

71 # rcol <-palette(rainbow (14))

72 rcol <-palette( gray(seq(0,0.9,len =15)))

73 barplot(IND1[,1], names.arg=c(1:14) , col=rcol [1:14] ,

74 ylim=c(0.0 ,1.0), xlab="Sectors", ylab="giniUTR")

75

76 # 2.) Comparison with biv. normal distr. :

77 x1<-seq(-10,10, length =100)

78 x2<-x1

79 tnvt <-nvt2d(x1,x2 , s11=10, s22=10, rho =0)

80 maxtnvt <-max(tnvt$z)

81 ## Scaling of data within the UTR ()

82 ## factor for ~U, so that: max(tgvt)=max(tnvt)

83 fak1 <-maxtnvt/maxtgvt

84 newtgvt <-list(x=tgvt$x, y=tgvt$y, z=tgvt$z*fak1)

85

86 ## adjusted level cuts:

87 nalpha <-seq(minlevel ,maxtnvt , length.out =50)

88

89 utr.g<-UTR(newtgvt , minlevel , nalpha)

90

91 ## nUTR analytically computed:

92 n.utr <-nUTR(10, nalpha)

93 ## Scaled UTR ’s of Sectors 1:14 :

94 UTRd <-CompNdist(dichten ,nalpha ,1,14,10, maxtnvt)$sUTR

95 ## Indicator 2 for Sample 1:

96 IND2 <-CompNdist(dichten ,nalpha ,1,14,10, maxtnvt)$CNdist

97

98 rcol <-palette( gray(seq(0,0.9,len =15)))

99 ### Plot scaled UTR Sample1 vs nUTR for all Sectors:

100 plot(nalpha ,n.utr , type="l", col=rcol[1], lwd=2.5, xlab="Level Cuts", ylab="UTR")

101 lines(nalpha ,UTRd[,1], lwd=1.5,col=rcol[2], lty =1)

102 lines(nalpha ,UTRd[,2], lwd=2,col=rcol[3], lty=2)

103 lines(nalpha ,UTRd[,3], lwd=2,col=rcol[4], lty=3)

104 lines(nalpha ,UTRd[,4], lwd=2,col=rcol[5], lty=4)

105 lines(nalpha ,UTRd[,5], lwd=2,col=rcol[6], lty=5)

106 ## tgvt:

107 lines(nalpha ,utr.g, lwd=2, col=rcol[8], lty=1)

108 title(main="Scaled UTRs vs nUTR")

109 legend("right", legend=c("nUTR","S_1","S_2","S_3","S_4","S_5",

110 "~U"), col=c(rcol [1:6], rcol [8]),

111 lty=c(1,1,2,3,4,5,1), lwd=c(2.5,1.5,2,2,2,2,2))

112
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113 ### Plot Indikator 2 cpUTR for Sample 1:

114 plot(IND2 , type="l", lwd=2, xlab="Sectors", ylab="cpUTR")

115 title(main="Indicator cpUTR for all Sectors of Sample 1")

116 barplot(IND2[,1],names.arg=c(1:14) , col=rcol [1:14] , ylim=c(0.0 ,0.15) ,

117 xlab="Sectors", ylab="cpUTR")

118

119

120 ######## ************************************************************** ########

121 ## 3.) Computing NGroups and modCHI:

122 alpha <-seq(minlevel , upperlimit , length.out =50)

123 #result <-eval.sep(dichten , alpha , 1, 14)

124 #save(file =" result1250 .RData", "result ")

125 load("result1250.RData")

126

127 ## IND 3: NGroups forall Sectors:

128 IND3 <- result$IND3

129 ## IND 4: Separation (modCHI) forall Sectors:

130 IND4 <-result$IND4

131 ## do the plots forall sectors!

132 rcol <-palette(rainbow (14))

133 plot(alpha , IND3[,11], type="l", col=rcol[1],lwd=1,xlab="Level Cuts",ylab="NGroups",ylim=c

(0,10))

134 lines(alpha , IND3[,12], lwd=2, col=rcol[2], lty=2)

135 lines(alpha , IND3[,13], lwd=2,col=rcol[3], lty=3)

136 lines(alpha , IND3[,14], lwd=2, col=rcol[4], lty=4)

137 lines(alpha , IND3[,10], lwd=2, col=rcol[5], lty=5)

138 title(main="Indicator NGroups for Sample 1")

139 legend("topright", legend=c("S_1", "S_2","S_3","S_4", "S_5"),

140 lty=c(1,2,3,4,5), col=c(rcol [1:5]) , lwd=c(1,2,2,2,2))

141

142 ## plot IND 4 Sep:

143 plot(alpha , IND4[,1], type="l", col=rcol[1], lwd=1,xlab="Level Cuts",ylab="modCHI",ylim=c

(0,40))

144 lines(alpha , IND4[,2], lwd=2,col=rcol[2], lty =2)

145 lines(alpha , IND4[,3], lwd=2,col=rcol[3], lty =6)

146 lines(alpha , IND4[,4], lwd=2, col=rcol[4], lty=4)

147 lines(alpha , IND4[,5], lwd=2,col=rcol[5], lty =5)

148 title(main="Indicator modCHI for Sample 1")

149 legend("topright", legend=c("S_1", "S_2", "S_3","S_4", "S_5"),

150 lty=c(1,2,6,4,5),col=c(rcol [1:5]) , lwd=c(1,2,2,2,2))

151

152 ## Dp ... Density points:

153 Dp<-result$Dp

154 ## cent ... centers of the groupings:

155 cent <-result$cent

156 ## eval.area:

157 eval.area <-result$Earea

158

159 ## plot eval.area at level with maximal groupings in the sectors:

160 mxngr <-sapply (1: ncol(IND3), function(i) which(IND3[,i]== max(IND3[,i])) )

161 ## ergibt eine liste 1:14

162 mngr <-sapply (1: length(mxngr), function(i) mxngr [[i]][1])

163 ## mngr is vector , where Ngroups is max.

164 ## if max not unique , select the first level where Ngroups is max

165
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166 for(i in 1:14){

167 x11()

168 plot(eval.area[[i]], type="l", lwd=2, xlim=c(0 ,5000), ylim=c(0 ,5000),

169 xlab="x-coord", ylab="y-coord")

170 title(main="Grouping within Density Estimation", line =2.3)

171 mtext(bquote(Level == .( alpha[mngr[i]])), side=3, line =0.8, cex =0.7)

172 points(result$Dp[[i]][[ mngr[i]]],col=result$Dp[[i]][[ mngr[i]]][,3],pch=19,

173 cex =0.5)

174 points(result$cent[[i]][[ mngr[i]]], pch="*", cex=1.5,col=1)

175 }

176

177 ####### ************************************************************* #########
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