Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universitat Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Instruction Set Extensions

FAKULTAT
FUR INFORMATIK
Faculty of Informatics

for

Time-Predictable Code Execution

DIPLOMARBEIT
zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Technische Informatik
eingereicht von

Clemens Bernhard Geyer
Matrikelnummer 0427482

an der
Fakultat fir Informatik der Technischen Universitat Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Peter Puschner

Wien, 9. Mai 2012

(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 » www.tuwien.ac.at

Faculty of Informatics

FAKULTAT
FUR INFORMATIK

Instruction Set Extensions for
Time-Predictable Code Execution

MASTER’S THESIS
submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Computer engineering
by

Clemens Bernhard Geyer
Registration Number 0427482

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Peter Puschner

Vienna, 9. Mai 2012

(Signature of Author) (Signature of Advisor)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 » www.tuwien.ac.at

Erklarung zur Verfassung der Arbeit

Clemens Bernhard Geyer
Ohligsgasse 6, 1110 Wien

Hiermit erkldre ich, dass ich diese Arbeit selbstindig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstindig angegeben habe und dass ich die Stellen der Arbeit
— einschlieBlich Tabellen, Karten und Abbildungen —, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

Abstract

Nowadays, highly dependable real-time systems are part of many applications in the aerospace
and automotive industries. The requirements of real-time applications do not only include the
correctness of results, but also the instant of time, when a result is available. In case of a so-
called hard real-time system, the whole system may crash if a task does not finish within a given
period of time. Thus, knowing worst-case execution times of programs in advance is of utmost
importance.

Worst-case execution time analysis (WCET analysis) calculates the longest possible dura-
tion an application may take to finish. To do so, all external and internal influences have to be
considered, for example, processor and memory load, the implemented caching strategy, etc. In
order to simplify the analysis of assembler code, Puschner and Burns presented the so-called
single-path transformation of algorithms in [PBO2, [Pus03]. It is based on the idea to eliminate
conditional branches such that just one possible execution path remains which is trivial to ana-
lyze. Nevertheless, this is only possible if the processor provides certain kinds of instructions.

Within the current thesis, the instruction set of the SPARC V8 processor has been extended
so that the analysis of assembler code is simplified. Additional goals included that it should
be easy to implement these instructions in hardware and adapt existing code generators to sup-
port the instruction set extension. Moreover, the resulting worst-case performance should be
improved. In order to evaluate the feasibility of the additional instructions, new code generating
passes have been added to an existing compiler and an instruction set simulator has been imple-
mented. Based on the results of numerous simulated benchmark algorithms, the most promising
instruction set extensions have been identified and suggested to be part of future processors used
in real-time systems.

iii

Kurzfassung

Hochzuverlissige Echtzeitsysteme sind heutzutage Teil vieler Anwendungen im Bereich der
Luft- und Raumfahrt, sowie der Automobilindustrie. Die Anforderungen betreffen dabei nicht
nur die Korrektheit der gelieferten Ergebnisse, sondern auch den konkreten Zeitpunkt, wann die-
se der Anwendung zur Verfiigung stehen. Im Falle eines so genannten harten Echtzeitsystems
kann es zur Katastrophe, zum Beispiel einem Flugzeugabsturz, kommen, wenn eine Anwen-
dung zu lange fiir ihre Berechnungen bendtigt. Deshalb ist es wichtig, schon im Vorhinein die
maximalen Ausfithrungszeiten eines Programms zu kennen.

Die Worst-case execution time Analysis (WCET analysis) befasst sich mit der Berechnung
der ldngst moglichen Ausfiihrungszeiten eines Programms. Dabei miissen theoretisch alle As-
pekte eines Prozessors, wie aktueller Speicherzustand, das zu Grunde liegende Caching Mo-
dell etc., beriicksichtigt werden. Um die Analyse des Assembler-Codes zu vereinfachen, wurde
von Puschner und Burns in [PB02, |PusO3|] eine Transformation vorhandener Algorithmen vor-
geschlagen, sodass nur mehr ein moglicher Ausfithrungspfad existiert. Allerdings unterstiitzen
nicht alle Prozessoren die dazu notigen Instruktionen.

Im Rahmen dieser Diplomarbeit wurde das Instruction Set des SPARC V8 um Befehle er-
weitert, die die Analysierbarkeit des resultierenden Assembler-Codes vereinfachen sollen. Wei-
tere Ziele waren eine einfache Umsetzung der zusétzlichen Befehle in Hardware, eine moglichst
leichte Integration in vorhandene Codegeneratoren, sowie eine Verbesserung der Worst-case
Performance. Um ein moglichst unverfilschtes Ergebnis zu erhalten, wurde ein vorhandener
Compiler so angepasst, dass die vorgeschlagenen Erweiterungen bei der Ubersetzung beriick-
sichtigt werden. Auflerdem wurde ein Simulator entwickelt, sodass die Performance der zusitz-
lichen Befehle anhand mehrerer Benchmark-Algorithmen erhoben werden konnte. Auf Grund
der Messergebnisse war es moglich, die vielversprechendsten Kombinationen der Befehlserwei-
terungen zu identifizieren und sie als Grundlage fiir zukiinftige Prozessoren im Echtzeitbereich
vorzuschlagen.

2

Instruction Set Analysis|

2.1 Analog Devices Blackfin Microprocessor]

[3.1 The Necessity of Time Predictable Processors|
[3.2 The Spring Architecture|
33 MACSI. . . .

Extensions and Modifications of an Existing Instruction Set|

1 Problem mentl e

Impacts on Code Generators|

5.1 'The LLVM Compiler Framework|.

Contents

23

.......... 23
.......... 25
.......... 26
.......... 28
.......... 29
.......... 30
.......... 32
.......... 34
.......... 35
.......... 37

39

.......... 39
.......... 41
.......... 43

57

.......... 57

vii

[5.2 Implementing Code Generation for Conditional Move and Conditional Selectf . 60
[5.3 Implementing Code Generation for Predicated Instructions and Predicated Blocks| 61

[5.4 Implementing Code Generation for Hardware Loops| 67
6__Evaluation of Instruction Set Extensions| 69
|6.1 Manual Evaluation of Small Examples| 70
|6.2 Evaluation of Selected Algorithms| 79
Towar Time Predictable InstructionSetl 92
[Z__Conclusionl 103
[(Z1 _Final Review on the Presented Instruction Set Extensions| 103
[7.2 Suggestions for Further Research|. 104
..................................... 104
Append 107
|A~ Performance Evaluation of Selected Algorithms| 109
[A.1 BubbleSortl 109
B2 FNdEIsl oo 112
[A.3 Binary Search| 114
|[A.4 Increment Multi-byte Counter] 116

B Benchmark Results| 117
[B.1 Binary Greatest Common Divisorf 118
|B.2 Binary Greatest Common Divisor — Single-Path| 121
IB.3 Binary Search| 123
IB.4 Binary Search — Single-Path for Fixed Size| 125
[B.5 Binary Search — Single-Path for Vaniable S1ze} 127
Bubble Sort — Wor nariol 129

B.7 SwitchCaseTestl 131
[B.8 Dijkstra Algorithm| L 133
[B.9 Dijkstra Algorithm — Single-Path| 135
[B.10 Dyjkstra Algorithm — Optimized Single-Path| 137
[B.11 Fourier Discrete Cosine Transformationl 139
[B.12 Interpolation Table| 141
[B.13 Interpolation Table — Single-Path| 143
BI4 Matrix Sumlo 145
B.15 Median with Quick Sort|. L 147
[B.16 Median without Sorting| 149
[B.17 Median without Sorting — Single-Path| 151
BIBSREILSOM - - . o o v vt e e e e e 153
[B.19 Shell Sort — Single-Path|. 155
[B.20 Software Division — Naive Implementation| 157
IB.21 Software Division — Shift Implementation| 159

viii

B23Threshold 163
|B.24 Threshold — Single-Path| 165
Bibliograp 167
Index] 173

List of Figures

4.1 Opcode formats of SPARC VS.|. 43
4.2 Conditional move instructionl. oL 45
|4.3 Opcode proposal for the conditional move instruction.|. 46
|4.4 Possible block layout of the conditional move instruction.| 46
4.5 Conditional selectinstruction) L oL L. 47
|4.6 Opcode proposal for the conditional select instruction.| 48
|4.7 Predicated blocks based on integer conditioncodes.| 50
|4.8 Possible block layout of predicated blocks.|. 50
|4.9 Opcode proposal for predicated blocks based on condition codes.|. 51
|4.10 Predicated blocks based on predicate registers.|. 52
|4.11 Opcode proposal for predicated blocks based on predicate registers.| 52
|4.12 Instruction proposal for hardware loops.| 54
|4.13 Opcode proposal for hardware loop instructions.|. 55
|4.14 Possible block layout of a hardware loopmodule.| 55
5.1 Overviewofthe [INM workflow] 58

-then-else-translation oL 62
B3 Branchelimination] 63
5.4 Nested if-then-else elimination. 66
6.1 Performance evaluation of bubblesortl 82
(6.2 Performance evaluationof find firstl. 85
|6.3 Performance evaluation of binary search| 89
|6.4 Performance evaluation of multi-byte counter|] 91
|6.5 Code size in comparison with SPARC Vg 99
6.6 Deviation on SPARC V8 and v&-selec| 100
|6.7 Number of branches in comparison with SPARC Vg|. 101
|6.8 Measured cycles in comparison with SPARC VS|. 102

iX

List of Tables

[2.1 Feature overview of different processor architectures.| 22
[A.1 Code size evaluation of bubble sort) 110
A.2 Performance evaluation ot bubble sort) oL 111
[A.3_Code size evaluation of find first] L. 112
[A4 Performance evaluationof find first Lo oL 113
|IA.5 Code size evaluation of binary search.| 114
|A.6 Performance evaluation of binary search.|. 115
|IA.7 Code size evaluation of incrementing a multi-byte counter.| 116
|IA.8 Performance evaluation of incrementing a multi-byte counter,|. 116

List of Algorithms

[5.1 Swapping algorithm for conditional select instructions.| 61
[5.2 Algorithm for if-then-else elimmnation.| 63
[5.3 Algorithm for nested 1f-then-else elimination.| 65
5.4 Optimization algorithm for predicated blocks.| 66
15.5 Generating assembler code for hardware loops.| 68

List of Code Examples

[2.1 Examples for arithmetic vector operations of the Blackfin processor.| 7

X

o)

'Two possible realizations of hardware-supported loops on the Blackfin processor| 9

[2.3 Storing and loading of multiple registers on ARM processors.|. 11
[2.4 Predicated instructions on ARM processors.| 12
[2.5 Conditional execution of Thumb instructions on ARM processors.| 13
|4.1 ‘Translation of if-then-else structure using conditional moves.| 45
|4.2 Translation of if-then-else structure using conditional selects.|. 47
|4.3 ‘Translation of if-then-else structure using predicated instructions.|. 49
|4.4 ‘Translation of if-then-else structure using predicated blocks.| 53
|4.5 'Translation of a for-loop using hardware loop instructions.| 54
[5.1 LLVM table description definition of the conditional move instruction.| 60
[5.2 Transtormation of nested 1f-then-else structures to predicated blocks.|. 65
|6.1 Code generation for a simple branchtest.| 71
6.2 Code generation for a complex branchtest| 73
|6.3 Code generation for an adapted version of the complex branch test|. 74
6.4 Code generation for a simple looptest|. 76
|6.5 Code generation for a simple loop test containing branches.|. 78
|6.6 'Traditional implementation of the bubble sort algorithm.| 80
|6.7 Single-path implementation of the bubble sort algorithm.| 81
|6.8 Alternative single-path implementation of the bubble sort algorithm.| 81
[6.9 Traditional implementation of the find first algorithm.. 83
|6.10 Single-path implementation of the find first algorithm.|. 84
|6.11 Simple backward loop implementation of the find first algorithm.|. 84
|6.12 ‘Traditional implementation of the binary search algorithm.| 86
|6.13 Single-path implementation of the binary search algorithm.| 87
|6.14 Improved single-path implementation of the binary search algorithm.|. 88
|6.15 Traditional implementation of incrementing a multi-byte counter.|. 89
|6.16 Single-path implementation of incrementing a multi-byte counter.| 90
[6.17 Improved single-path implementation of incrementing a multi-byte counter.| . . 90

X1

List of Abbreviations

ADC Analog to Digital Converter

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated Circuits
BCET Best Case Execution Time

CFG Control Flow Graph

CPI Cycles per Instruction

CPU Central Processing Unit

DES Data Encryption Standard

DMA Direct Memory Access

DSP Digital Signal Processor

FIFO First In First Out

FIR Finite Impulse Response

FPGA Field Programmable Gate Array
I’C Inter-Integrated Circuit

ISA Instruction Set Architecture
JPEG Joint Photographic Experts Group
JVM Java Virtual Machine

LRU Least Recently Used

LSB Least Significant Bit/Byte

MAC Multiply And Accumulate

Xiii

MBB Machine Basic Block

MCU Microcontroller Unit

MSB Most Significant Bit/Byte

NOP No Operation

PWM Pulse Width Modulation

RAM Random Access Memory

RISC Reduced Instruction Set Computer

SIMD Single Instruction Multiple Data

SPI Serial Peripheral Interface

SRAM Static Random Access Memory

SSA Single Static Assignment

UART Universal Asynchronous Receiver Transmitter
VGA Video Graphics Array

VHDL Very High Speed Intagrated Circuits Hardware Description Language
VLIW Very Large Instruction Word

WCET Worst-Case Execution Time

Xiv

CHAPTER

Introduction

1.1 Problem Statement

Real-time systems have become more and more important over the past decades: In the 1980’s,
the automotive and aerospace industries started to use digital controllers for several non-critical
tasks. Nowadays, nearly all regulating operations of an airplane or a car are executed by embed-
ded systems. For normal computer programs, the main requirement is that they deliver correct
results. Time-critical controlling tasks have the additional requirement to deliver correct results
until a specified instant of time, which is called a deadline. If the whole system may collapse in
case the deadline cannot be met, it is called a hard real-time system. Examples are controlling
tasks in an airplane or a nuclear power plant. If the system is only affected for a short period
of time in case the deadline is missed, the system is denoted as a soft real-time system, confer
[Kop97, p. 2f]. These include, for example, digital telecommunication systems.

One important aspect when dealing with real-time systems is the predictability of the imple-
mented algorithms. If a task may take an arbitrary long time to finish, it could miss a deadline,
causing the whole system to crash. Hence, it is of utmost importance to identify worst-case sce-
narios such that the timing constraints are known in advance. Unfortunately, modern processors
are not designed to behave predictably, but to speed-up the average case performance. They
make use of caches, static and dynamic branch prediction, pipelining, etc. All of these features
have to be taken into account for a Worst-case execution time (WCET) Analysis. However, it is
not always possible to reliably identify the worst-case scenario when all external influences are
considered. This is the reason why WCET analysis often uses simplified models of processors,
delivering pessimistic results.

For the current thesis, we restrict the focus of WCET analysis only to the influence of the
instruction set provided by the processor: Conditional branches as well as instructions with vari-
able execution times increase the number of scenarios to be analyzed. Moreover, the assembler
output of the compiler highly depends on the available instructions: If, for example, an algo-
rithm involves a division which is not provided by the instruction set, it has to be emulated by
software. Of course, this solution has a much worse performance in comparison with an in-

struction provided by hardware. Thus, the resulting code quality of the assembler output may be
improved by supporting additional instructions.

Although there are several approaches defining time predictable processor architectures,
none of them analyzes the impact of the underlying instruction set architecture (ISA) on the
resulting assembler code. This thesis tries to identify instructions which should be part of such
architectures in order to get predictable and easy to analyze assembler code. These instructions
should (1) easily be implemented in hardware, (2) easily be added to an existing instruction set,
(3) be used by code generating passes and (4) improve the predictability and performance of the
resulting assembler code.

In a first step, instruction sets and uncommon features of existing processors have been an-
alyzed. Moreover, an evaluation of various approaches of time predictable processors has been
done. In a second step, the SPARC V8 instruction set has been extended by several instructions
which meet the previously described requirements. These additional instructions have been
added to the code generating pass of the LLVM compiler framework. Hence, the impacts of the
instruction set extensions on the assembler output could be verified. To analyze the effect of the
newly introduced instructions on the worst-case performance, an instruction set simulator of the
SPARC V8 has been implemented. Finally, a big variety of algorithms has been translated to
assembler code. By enabling different combinations of the instruction set extensions in the code
generating phase, the most feasible solutions in terms of code size and worst-case performance
could be identified. The additional instructions which had the most positive influence on per-
formance and WCET analysis have been proposed to be part of instruction sets of future time
predictable processors.

1.2 Overview of WCET Analysis

In [PBOO], Puschner and Burns define the targets of WCET analysis:

* WCET Analysis calculates safe upper bounds of task execution times. This means that
the actual worst-case scenario may indeed have a lower execution time.

* WCET Analysis should deliver tight bounds of task execution times. Hence, the calculated
results should be safe, but not too pessimistic as they otherwise would be useless.

Calculating the worst-case execution time of a given program is not possible for the gen-
eral case, because it is an instance of the famous Halting Problem as indicated by Kirner and
Puschner in [KP0OS]]. This is the reason why most WCET analysis techniques try to simplify
the problem: By providing additional information such as flow facts,' an analysis tool is able
to identify the worst-case scenario more easily. Another possibility is to ignore the underly-
ing hardware in a first step and to extract flow facts from the control flow graph (CFG) of the
high-level code. This information is used later to calculate the exact worst-case cycle count on
assembler code level.

As WCET analysis including cache and pipeline models becomes more and more complex,
Puschner and Burns introduced the so-called single-path transformation in [PBO2]. It is based

'Flow facts are presented in [KP03|| and denote descriptions which paths within the control flow graph of a
program are to be taken more likely.

2

on the idea that nearly all algorithms used in real-time systems can be implemented with fixed
loop bounds and no complex loop exiting conditions. The minimal precondition, an instruction
set has to provide in order to do a single-path transformation, is a conditional move instruction
with constant execution time. In case conditional or predicated instructions are supported by the
instruction set of the processor (see, e.g., Section [2.2.4)), it is simpler to apply the single-path
transformation. The main idea is to execute both, the if- and else-branch, and to decide after-
wards which result will be used. It is also possible to transform nested if-then-else structures and
loops with fixed bounds as presented in [PB02, [Pus03]]. Thus, the analysis of the corresponding
control flow graph is trivial because only one possible path exists. Nevertheless, the resulting
code usually shows worse performance, not only in the average, but also in the worst case.

1.3 Outline

Chapter [2] gives an overview of existing state-of-the-art processors used in embedded systems.
The main focus lies on the provided instruction set and tries to evaluate whether it fully supports
the single-path transformation. Nearly each of the presented processors features special instruc-
tions. It will be evaluated whether these instructions are useful in order to simplify WCET
analysis. Chapter 3| presents the most interesting scientific approaches which try to define a time
predictable architecture. Some of them have really been implemented in hardware, whereas
others only enumerate basic concepts.

The main part of the thesis can be found in Chapters [to [6] First, the SPARC V8 pro-
cessor and suggestions for instruction set extensions are presented. The chapter also includes
opcode considerations and possibilities of how the extensions might be implemented in hard-
ware. Chapter [5] gives an overview of the LLVM compiler framework and how it has been
extended to support code generation for the additional instructions. The performance evaluation
of the instruction set extensions is done in Chapter[6] It is based on a number of benchmark algo-
rithms, which have been translated into multiple assembler codes: One implements the original
SPARC V8 instruction set, others provide different combinations of the proposed instruction set
extensions. Based on the resulting code sizes and worst-case performance, two combinations of
additional instructions have been decided to be most feasible for processors being predictable
and easy to analyze.

CHAPTER

Instruction Set Analysis

This chapter gives an overview of common state-of-the-art embedded processors/microcon-
trollers'. The focus lies on the instruction sets they provide, but additional information about
important hardware features is also presented. The evaluation of the processors is mainly based
on the impacts on WCET analysis, i.e., whether the ISA and properties of the individual proces-
sors provide useful functionality in the domain of real-time systems.

All presented microprocessors are used in different types of embedded applications, most
of them related to real time systems such as controllers in the automotive industry or mobile
devices in the field of telecommunications. Of course, the selection may not cover all available
processors, e.g., the commonly used PowerPC is not part of the current analysis because it does
not have any features which are specific to real-time systems or which are not covered by the
other presented processors.

The aim of the current chapter is to present instructions or hardware features which are
unique for a single processor and may be useful extensions for a time-predictable architecture.
Consequently, only features which have not been described so far are explained in full detail.
The order of presentation is alphabetical, based on the name of the manufacturer, and is no
indication of the quality or importance of the individual processors.

2.1 Analog Devices Blackfin Microprocessor

2.1.1 General Features>

According to [[Analll], Blackfin processors are widely in use for embedded audio and video
applications, voice and image processing, in the field of real time security, and in other applica-
tions. As the Blackfin is mainly used in signal processing, it combines features of a typical DSP
with the possibilities and flexibility of microcontrollers. This may be the reason why Analog

! Although these terms usually carry different meanings, there is no generally valid definition. Thus, processor
and microcontroller are often used equivalently, depending on the specific definition of the manufacturer.
2Confer[GK07, p- 163-167], [Ana08| p. 1.1-1.6] and [AnalOl p. 1.1-1.10].

Devices declares the Blackfin an embedded processor. It is based on a RISC architecture with
an instruction size of 32 bits. However, frequently used instructions are encoded with 16 bits.

The Blackfin processor allows to address up to 4 GByte of internal and external memory,
which are used for caches, internal RAMs and I/O registers. 4 KByte of the internal L1 memory
may be used as a scratchpad such that time-critical applications get guaranteed access times to
requested data. The processor has eight 32-bit registers RO to R7, which may also be used as
sixteen 16-bit registers (e.g., by separately accessing the lower and upper 16 bits of the corre-
sponding registers RO . L and RO . H). There are six 32 bit pointer registers which are used for
address calculations. Moreover, the Blackfin has two independent 40-bit accumulators, which
support multiple computational operations® for a single instruction (see Section for de-
tails). Of course, there are several more registers, but they are mostly for internal usage or
special instructions.

As already mentioned, the Blackfin processor is not mainly designed for applications in hard
real-time systems. Nevertheless, it offers some instructions supporting the WCET analysis of
algorithms commonly in use in such kind of systems. In the following sections, these instructions
are presented, together with instructions which are rather uncommon and specific to the Blackfin
processor.

2.1.2 Instructions for Calculating Minimum and Maximum Value*

The Blackfin processor offers the programmer hardware instructions to determine the minimum
and maximum of two given integers. The given input numbers are interpreted as signed 16- or
32-bit values, depending on the instruction type. A number is said to be negative if the MSB
is set. It is also possible to evaluate both operations independently on two 16 bit registers (see
Section [2.1.3).

The application of these instructions is mainly to provide a hardware implementation of the
MIN () and MAX () functions, which are used in nearly all high-level programming languages>.
It may help to find the smallest/greatest element of an unsorted array in shorter time because the
integer comparison is done in hardware and saving the smaller/greater value does not require ad-
ditional conditional branches. Consequently, the control flow graph of the program gets simpler
and WCET analysis is much easier.

2.1.3 Single Instruction Multiple Data (SIMD)®

The Blackfin processor offers several possibilities to perform multiple operations with just one
instruction. In principle, there are two possibilities:

3In the current thesis, the term instruction refers to an assembly or high level language instruction whereas
operation is equivalent to a basic mathematical function implemented in hardware. Thus, an instruction may unite
multiple operations; the opposite is usually not true. In some cases the terms may be used interchangeably, e.g., in
context of arithmetic instructions or operations.

“Confer [Ana08| p- 15.31-15.35].

3Usually, in the C programming language a macro like #define MAX (a,b) ((a)>(b))2(a): (b); is
defined for this purpose.

®Confer [GKO7] p- 167-173] and [Ana08, p. 19.1-20.10]

(1) An instruction performs two or more operations on one 32-bit register, but the lower and
upper 16 bits are treated separately. Analog Devices calls this type of instruction a vector
operation.

(2) There are certain instructions which can be performed in parallel, beginning with one 32-
bit instruction followed by two 16-bit instructions. These three are treated as one 64-bit
instruction. Analog Devices calls this type a parallel instruction.

Additionally, the Blackfin processor offers so-called MAC instructions (Multiply And Accu-
mulate). They allow to add or subtract the result of a multiplication to or from the currently saved
value in one of the accumulators. Although this single instruction performs multiple operations,
it is a quite common feature of processors implementing an accumulator architecture. More-
over, it is a typical feature of DSPs, which allows the implementation of efficient matrix-matrix
multiplications, which are needed for Fourier transformations. See [Ana0O8|, p. 15.56-15.70] for
a detailed description.

Vector operations usually work on 16-bit registers. However, two 32-bit registers may also
serve as vector input for arithmetic instructions. Code example [2.1|shows different possibilities
for this kind of operations: The first line subtracts the upper 16 bits of r3 from the upper 16 bits
of r2, while at the same time the lower 16 bits of each register are added. The next example
shows how two 32-bit registers are simultaneously added and subtracted while the results of
both operations are saved to different destination registers. The last code line performs four
arithmetic instructions with eight 16-bit input registers.” The four results of these operations are
saved in the upper and lower 16 bits of registers r0 and r1, respectively. Note that each real
instruction is closed with a semicolon, whereas two instructions belonging together are separated
by a comma.

Code Example 2.1 Examples for arithmetic vector operations of the Blackfin processor.

r0 = r2 —-|+ r3;
r3 ro + r7, rd = r6 - r7;
r0 = r2 +|- r3, rl = rd —-|- r5;

There also exist vector operations for the simultaneous calculation of the minimum and max-
imum of two 16-bit values. In contrast to arithmetic instructions, only one of the two operations
may be performed on both registers. Moreover, vector multiplications as well as vector MAC
instructions are supported. They will not be discussed here as the principle is the same as for the
instructions just presented.

Parallel instructions have a special syntax as it is only possible to execute certain operations
concurrently. The first instruction has to be a 32-bit instruction and may also be a NOP. Sup-
ported are arithmetic, move, bit operation and vector operation instructions. It is followed by
two 16-bit instructions which are subject to certain restrictions. For example, it is not possible to
access registers used by the first 32 bit instruction. Nevertheless, it is possible to perform a MAC

"The involved source operands are the upper 16 bits of r2 and r 3, the lower 16 bits of r2 and r3 as well as the
lower and upper 16 bits of r4 and r5.

operation and execute two read or write instructions in the same instant of time. The so-called
Instruction Alignment Unit of the Blackfin processor always accesses eight bytes from the in-
struction memory to ensure that all instructions are aligned properly. This is necessary because
there are 16-, 32- and 64-bit instructions. The last format is used for parallel operations. Con-
sequently, the instruction fetch operation always takes the same amount of time, regardless of
the current bit width. In case of a parallel instruction, the execution duration of each of the three
instructions is equal. See [[Ana08|, p. 4.7-4.9] for further details about the pipelining concept of
the Blackfin processor.

Beside the functions presented in the current section, there are so-called video pixel opera-
tions. They are also typical for DSPs and allow for the simultaneous calculation of the pairwise
average of eight bytes. This feature may be useful when calculating a transition image of two
given pictures. See [Ana0O8,, p. 18.1-18.40] for more details about this kind of instructions.

2.1.4 Instructions for Cache Control®

As already mentioned in Section [2.1.2] the Blackfin processor allows the programmer to define
the usage of its L1 memory. This is done by writing configuration bits into the DMEM_CONTROL
register, indicating whether some parts of the memory should be used as an instruction cache,
a data cache, as usual SRAM or as a scratchpad. Although the presented instructions are not
very powerful on their own, it is a quite uncommon feature to let the user perform cache-related
operations, which are usually only implemented by a hardware controller.

When L1 is defined as a data cache, the programmer has the possibility to perform some
actions to manipulate the content of the cache. This may help to provide an easier analysis of
execution time or to guarantee worst-case timings. The prefetch instruction allows the user
to load a memory region into the internal data cache. The address of that region is provided by
a pointer register. The f1ush and invflush operations provide the possibility to explicitly
perform a read from or write to higher memory levels if the cache line has been marked as dirty.

2.1.5 Hardware Loops’

The Blackfin processor allows the programmer to make use of a loop implemented in hardware.
This is done by saving all necessary information for the loop bounds in special registers: LCx
holds the value of the loop counter, LTx holds the address of the first instruction within the
loop, and LBx holds the address of the first instruction after the loop. As the processor also
supports nested loops for one inner and one outer loop, the registers with suffix “1” (e.g., LC1)
have higher priority and should be used for the inner loop, whereas registers with suffix “0” can
be used either for a single or for the outer loop. The instructions within the hardware loop may
be of any kind, but must not be conditional branch, jump or call instructions. Otherwise, the
execution behavior of the loop is undefined.

The assembler language definition of the Blackfin processor gives the user three possibilities
for implementing the loop: The first five lines of Code Example [2.2] make use of the loop -
begin_loop - end_1loop construction, which is the most readable form. Note that the three

8Confer [Ana08| p. 17.1-17.10] and [Anal0, p. 2.1-2.6]
Confer [GKO7] p- 178-182] and [AnaO8| p. 7.13-7.19]

instructions in line four are executed in parallel, as indicated by the two vertical bars (| |) which
conjunct parallel instructions presented in Section[2.1.3] The second possibility is also shown in
Code Example[2.2]and is semantically equivalent to the upper assembler code: In both cases, the
loop counter L.CO is initialized to “32”, LTO is set to the address of the first instruction within the
loop, and LBO to the address of the first instruction after the loop (the last line of each example).
It is not necessary to start the loop straight after the 1oop or 1setup instruction, which is the
reason why the user explicitly has to state the starting address of the loop. LTx and LBx are
set automatically by the two instructions. The end address label is encoded with 11 bits by the
instruction, meaning that the end address may be 2046 bytes away from the current program
counter at maximum. Consequently, the address range of a loop is quite limited. Nevertheless,
it is also possible to manually initialize all needed loop registers such that the address range
includes the whole memory of 4 GBytes.

Code Example 2.2 Two possible realizations of hardware-supported loops implemented with
the instruction set of the Blackfin processor. The code is based on Example 5.15 in [GKO7,
p. 181].

p5 = 0x20;

loop MYLOOP 1c0 = pb5;

loop_begin MYLOOP

r2 = r0 + rl || r3 = [pl++] || x4 = [11++];
loop_end MYLOOP

r2 = r3 + r4;

p5 = 0x20;

lsetup (loop_start, loop_end) 1lcO0 = p5;
loop_start:

r2 = r0 + rl || r3 = [pl++] || r4d = [11++];
loop_end:

r2 = r3 + r4;

2.1.6 Conclusion

Although the Blackfin processor is not primarily designed for hard real-time tasks, its instruc-
tion set offers quite good possibilities to design WCET-aware applications. The analysis of the
CFG can be dramatically simplified by using features like hardware loops, which guarantee pre-
dictable timings also in case of nested loops. Moreover, it is possible to influence the cache
semantics or even to turn off the cache and use the available memory as a normal RAM. As a
cache is always a source of unpredictability, these features also help to improve the correctness
of WCET analysis.

Nevertheless, the Blackfin does not provide any conditional instructions like predicated in-
structions or conditional moves. Thus, it is not possible to apply the single-path approach as
described in Section [I.2]to programs optimized for the Blackfin processor. Moreover, due to the
10-stage pipelining concept paired with numerous possibilities of combining multiple instruc-
tions (vector operations and parallel instructions) with different bit widths, the timing analysis

9

of scenarios with multiple possibilities for branch prediction may be very complex or even im-
possible. Consequently, the Blackfin processor may be an applicable choice for soft real-time
systems, but it is not ideal for hard real-time systems with complex timing constraints.

2.2 ARM Processors

2.2.1 General Features'®

The ARM company was originally formed as a joint venture between Acorn Computers, Apple
Computers and VLSI Technology in 1990, but is an autonomous business today. It specializes
in designing processors and embedded processors for all types of applications, including smart-
phones and mobile devices, automotive braking systems and smart sensors, as well as many
others.!! The main goals of the first ARM processors, which were designed as RISC processors,
included high performance, high code density, low power consumption, and small die area.

The ARM instruction set uses a constant width of 32 bits, but it is also possible to change to
the so-called Thumb instruction set (see Section[2.2.5)), which only uses 16 bits. This provides an
even higher code density, resulting in less power consumption because fewer memory fetching
operations for instructions are necessary. In the latest version of the ARM instruction set, it is
also possible to switch between the two instruction sets quite easily. Over the years, the ARM
instruction set has been extended to include DSP operations and management instructions for
handling multi-threaded operations.

ARM processors provide different modes (user, supervisor, system, etc.) with individual
register sets. In each mode, there are 17 32-bit registers available (including the program counter
and the processor state register), but up to eight registers may be dedicated to a certain mode.
This kind of registers are called banked registers, whereas the registers which are visible to all
processor modes are called unbanked.

Current ARM processors make use of the ARMv7 instruction set, although ARMv6 and
ARMVS are still in use. Moreover, the newer versions try to provide backward compatibility so
that most ARMvVS5 instructions are also supported by ARMv6 and ARMv7. In the following sub-
sections, the special features of the ARM instruction set are presented. They include predicated
instructions, SIMD instructions, which are partially identical to the Blackfin instruction set, and
special operations on floating point numbers. Note that the particular versions of the instruction
sets will not be considered because the main focus lies on architectural principles and supported
features.

2.2.2 Single Instruction Multiple Data (SIMD)

Like the Blackfin processor, the ARM instruction set provides some features which are quite
typical for DSPs. There are instructions allowing the programmer to split two 32-bit registers
into four independent 16-bit registers and calculate the sum or difference of them. The simul-
taneous calculation of two different operations (i.e., add and subtract) on the 16-bit registers is

0Confer [GS03] and [ARMO3! p- A2.1-A2.15].
"Confer [ARMT14] for further information.

10

also possible. Moreover, the user may split a 32-bit register into four 8-bit registers. In this case,
only one arithmetic instruction may be executed simultaneously on all registers.

Besides these types of simple arithmetic functions, it is also possible to multiply two 16-bit
values, add or subtract a third register and save the result in a destination register. Alterna-
tively, there are instructions dealing with four 16-bit registers, which are multiplied (separate
multiplication of high halfword and low halfword of each 32-bit register). The results of both
multiplications are summed up and added to the value of another register. The result of the
whole operation is saved to the specified destination register.'3

So far, the SIMD instructions of the ARM processor nearly provide the same functionality
as the instruction set of the Blackfin processor. Nevertheless, there are special load and store
instructions allowing to get or save multiple registers from or to memory. The user has access to
all visible general-purpose registers of the current mode, including the program counter.'* Code
Example [2.3] shows how concurrently storing and loading multiple registers is done: The first
part is the instruction itself, STM, which stands for store multiple. It is followed by the addressing
mode decrement after, DA, and the base address register R1. The optional exclamation mark
indicates that the value of R1 should be updated after the instruction. This might be useful when
using R1 as the base address register of a stack. The last part of the instruction is a list of registers
which shall be transferred to the memory. The LDMIB (load multiple with increment before)
instruction in the last line of the example restores the state of the previously saved registers.

Code Example 2.3 Storing and loading of multiple registers with a single 32 bit instruction. The
example is based on [ARMOS, p. A3.26].

STMDA R1!, {R2, R5, R7 — R9, R11}

ILDMIB R1!, {R2, R5, R7 - R9, R11l}

2.2.3 Floating Point Instructions'>

Some ARM processors provide operations on floating point vectors, which are executed on a
coprocessor. This extension is called the vector floating-point architecture, abbreviated VFP.
The format of the numbers is based on the IEEE 754 standard and offers single and double pre-
cision operations. Besides the usual arithmetic operations (addition, subtraction, multiplication
and division), the VFP module also provides a multiply and accumulate instruction on floating
point registers. One special arithmetic instruction is the square root operation, which allows the
calculation of the square root of a single or double precision floating point register.

2Confer [ARMO3, p. A3.14f].

BConfer [ARMO3] p. A3.10ff].

4Confer [ARMO3, p. A3.26f, A4.36-A4.42].
5Confer [ARMO3 p. C1.1-C4.126]

11

2.2.4 Predicated Instructions'®

One of the main features of the ARM processors are the so-called predicated or conditional in-
structions. This means that the programmer can, for nearly every instruction, specify a condition
on which it shall be executed. If the condition is not met, the instruction behaves like a NOP.
The condition flags for each instruction are evaluated (e.g., equal or less than) and compared
with the CP SR (Current Program Status Register). This mechanism implies that all instructions
which might change the flags of the CPRS should also only be able to write them when specified.
Otherwise, the condition for all following instructions might become invalid.

The advantage of this technique is that small blocks of if-then-else code can be translated
easily. The condition is used as a predicate for all instructions of the then-block, whereas the
negated condition serves as predicate for the else-branch. Of course, it is not easy to translate
complex nested if-then-else-statements without any conditional branch, but the CFG of the re-
sulting assembler code may be much simpler for the WCET analysis. Moreover, predicated
instructions allow the user to convert the CFG of a given program to a single-path variant as
explained in Section[I.2]

Code example [2.4shows a possible translation of a simple if-then-else statement: In the first
line, R3 is subtracted from R2 and the result saved to R1. The suffix S after the SUB instruction
indicates that the flags in the CP SR should be updated. The next instruction, which adds R6 to
R5 and saves the result in R4, will only be executed if R2 and R3 are equal, meaning that R1 is
zero. The last ADD instruction is only executed when R2 and R3 are not equal. It is also possible
to use any other condition for the instructions, they do not have to be mutually exclusive.

Code Example 2.4 Example for conditional execution of the ADD instruction: depending on the
result of the first subtraction, either the second or the third line is executed. Confer [ARMI11Db),
p. A8.24f, p. A8.422f].

SUBS R1, R2, R3
ADDEQ R4, R5, R6
ADDNE R4, R5, R7

2.2.5 Thumb Instruction Set

“The Thumb instruction set was developed as a 16-bit instruction set with a sub-
set of the functionality of the ARM instruction set. It provides significantly improved
code density, at a cost of some reduction in performance.”!”

This quotation shows the original intention of the Thumb instruction set, namely to provide
a reduction of the quite powerful ARM instruction set in order to achieve a higher code density.
As most ARM processors support both types of instruction sets, it is possible to switch between
them at runtime. There are two instructions providing this switching functionality:'8

Confer [ARMI1D, p. A4.3, p. A8.8].
"See [ARMI1b), p. A1.3]
8Confer [ARMO3] p. A4.16-A4.20].

12

BX The so-called branch and exchange instruction conditionally performs a jump to the ad-
dress given in the specified register. The LSB of the address register indicates whether the
instruction at the destination address is a normal ARM instruction or a Thumb instruction.

BLX The branch, link and exchange instruction is one of the few instructions which have no
conditional field and are always executed. The semantics are quite similar to the BX
instruction, but the address of the following instruction is saved in R14. The instruction
can be used for a function call to a subroutine provided in the Thumb instruction set.
Returning from the subroutine may be done using the BX instruction with R14 as address
register.

Version 2 of the Thumb instruction set was introduced with the sixth version of the ARM in-
struction set (ARMv6). It provides additional features and also makes use of 32-bit instructions.
One major advantage of the Thumb instruction set version 2 is that it supports nearly the full
functionality of the ARM instruction set, while still offering a higher code density. Although one
of the key features of the ARM instruction set, namely the conditional execution of instructions
as presented in Section [2.2.4] is not supported, it is possible to conditionally execute a block
of four instructions: Code example [2.5] shows the syntax and semantics of the IT instruction,
which is an acronym for if-then. The single argument of the instruction is the condition for the
the subsequent instruction. This is “not equal” (NE) in our case. The mask TTE after the instruc-
tion stands for “then”, “then” and “else”, meaning that the second and third instruction will also
be executed if the condition is met, whereas the fourth instruction is only executed if the condi-
tion is not fulfilled. Of course, it is possible to specify any other execution mask. By regularly
making use of this instruction, it is possible to provide predicated instructions for the Thumb
instruction set, too. One disadvantage is that none except the last instruction may be a jump or
similar instruction, because it could provoke undefined behavior according to the manual.

Code Example 2.5 Conditional execution of Thumb instructions by making use of the IT in-
struction. See [ARMI10, p. A7.277f] for more details.

ITTTE NE
STR R2, [SP]
ADDC R1,R1, #1
LDR R2, R1

SUB R1,R1, #1

2.2.6 Conclusion

ARM processors are currently among of the most widely used processors in embedded appli-
cations and provide low power consumption, high code density and a powerful instruction set.
Moreover, with the powerful features of floating point operations (e.g. square root implemented
in hardware) and predicated instructions, WCET analysis of programs may be easier, especially
when the algorithms involve floating point operations presented in Section [2.2.3] Additionally,

13

ARM processors offer a considerable range of SIMD instructions, which are useful for finding
an efficient solution for DSP applications.

Nevertheless, a compiler trying to find an assembler translation feasible for WCET analysis
(e.g., a single-path transformation) of a given program requires sophisticated and complex tech-
niques. That is the reason why the programmer has to be aware of the specific challenges and
problems of an algorithm and may have to support the compiler.

Another problem regarding WCET analysis is to find the exact timing of instructions: As
most ARM processors make use of static and dynamic branch prediction, but only within cer-
tain bounds, the calculation of the exact duration of a jump or conditional branch is nearly
impossible. Although most operations take one or two clock cycles to finish, there are some
instructions, like multiplications and coprocessor instructions, which may take up to five clock
cycles, but may finish earlier, depending on the instruction length and whether they are condi-
tional. Consequently, WCET analysis of a concrete single-path translation of a given code may
also be very complex, even if the timing model does not include caches, which are also part of
most ARM processors. '’

2.3 Atmel AVR Microcontrollers

2.3.1 General Features

Atmel offers two different types of microcontrollers: One for small embedded applications such
as automotive and peripheral controllers, and the other one for general-purpose applications
including DSPs. The first type is the 8-bit variant of AVR microcontrollers, the second the
newer 32-bit variant. Because the instruction set of the 32-bit AVR was developed completely
from scratch, there are not many similarities to the 8-bit version. The naming “8-bit” and “32-
bit” only relates to the bit-width of the general-purpose registers and has nothing to do with the
instruction length of the instruction sets. In the following subsections, both types of instruction
sets and the main features of the corresponding microcontrollers are presented.

2.3.2 8-Bit AVR Instruction Set*

Atmel’s 8-bit microcontrollers are mainly used for embedded controlling tasks, including dis-
tributed systems, and provide programmers with a small, but powerful instruction set. They
were introduced by Atmel in 1996 and have been quite successful since then.”! Nearly all 8-
bit AVR microcontrollers provide numerous features for digital and analog input and output.
These include analog comparators, ADCs, various timer functions (PWM, input capture, etc.),
interrupt-triggered input pins and hardware implementations of different communication inter-
faces (e.g., UART, SPI, I°C).

One of the main advantages of the 8-bit AVR instruction set is its simplicity, which makes
it quite easy for beginners to get in touch with assembler and microcontroller programming.

Confer [ARMO9] p. 16.1-16.34].
20Based on [Atm10].
2 Confer [AtmI1] p- 2]

14

Moreover, most of the microcontrollers are very cheap and affordable for private persons. These
are the reasons why they are a common solution for hobby engineers. Nearly all instructions
have a length of 16 bits, with the exception of calling, jumping, loading and storing functions
with absolute addresses. As all registers have a width of 8 bits, it is possible to initialize a
register just with one instruction, which is usually not the case for most instruction sets. The
8-bit AVR instruction set provides all arithmetic functions except for integer division. Moreover,
bit manipulating instructions like setting or clearing a bit of a register, data transfer functions
like loading from and storing to memory, and control flow instructions like conditional branches
are supported. Naturally, all arithmetic functions are also available for integers with more than
8 bits (add with carry bit etc.).

The 8-bit AVR instruction set does not provide any sophisticated SIMD instructions like
Blackfin or ARM processors, and there is no possibility of conditional execution of any instruc-
tion.”? Nevertheless, some devices offer a hardware implementation of DES having nearly con-
stant execution times of one encryption or decryption operation. This can make WCET analysis
of applications involving DES quite easy, although this is a rather uncommon scenario.

As 8-bit AVR processors do not have any caches or complex pipelines and only use static
branch prediction, the timing of all instructions is nearly independent of any constraints. This
makes the 8-bit AVR instruction set very convenient for WCET analysis. Nevertheless, there are
no features for single-path conversion. Consequently, the WCET analysis is highly dependent
on the complexity of the CFG of a given program.

2.3.3 32-Bit AVR Instruction Set?’

Like the Thumb version 2 instruction set of ARM processors (see Section[2.2.5), commonly used
instructions have a length of 16 bits whereas more powerful, but rare instructions are encoded
with 32 bits. Like nearly all modern processors, 32-bit AVR microcontrollers offer several pro-
cessor modes for exception and interrupt handling. Moreover, there are several pipeline stages
which allow to execute an instruction nearly every clock cycle. Some 32-bit AVR processors
also offer hardware support for the Java virtual machine so that Java byte code can be executed
directly, without retranslating the program.

Like ARM and Blackfin processors, 32-bit AVR microcontrollers provide a range of differ-
ent SIMD instructions, including multiply accumulate and parallel adding and subtracting on
two halfwords of a 32-bit register (see Section for further details). Additionally, it is pos-
sible to load and store multiple registers from and to memory. Refer to the architecture manual
([Atm11]) for a detailed description of all SIMD instructions.

In contrast to ARM processors, it is not possible to execute all instructions conditionally.
Nevertheless, the most common operations may be predicated so that they are only executed
when a given condition is met. These operations include conditional add, subtract, return, load
and store instructions, which allow single-path conversion of any given code.

Like the Blackfin processor, 32-bit AVR microcontrollers allow to control the cache explici-
tly: There are instructions in the supervisor mode for prefetching data and instructions and for

22One exception are the sbrc and sbrs (skip next instruction if bit in register is cleared, resp. set).
BBased on [Atml1]

15

setting control bits in the page table of the memory. Thus, an operating system can implement a
custom replacement strategy for pages and caches.

Another interesting feature is the possibility to evaluate the current performance. The hard-
ware mechanism to do that works as following: There is one counter register which is incre-
mented every clock cycle. Additionally, there are two so-called performance counters which are
incremented when a specified event occurs. By monitoring certain events, like the completion of
an instruction execution or a cache miss, it is possible to calculate performance statistics during
operation, with only minimal additional delay.

2.3.4 Conclusion

Although the 8- and 32-bit versions of the AVR instruction set are very different, they both
offer some interesting features which could help making WCET analysis easier: On one hand,
the timing analysis of 8-bit AVR instructions is easy because there are nearly no internal or
external dependencies such as pipeline stalling, cache misses or data dependencies. On the other
hand, 32-bit AVR microcontrollers offer some conditional instructions which make single-path
conversion possible. Moreover, calculated theoretical results of WCET analysis may be verified
by evaluating the performance counter registers.

Unfortunately, the 8-bit AVR instruction set does not provide any predicated instructions,
which can make WCET analysis quite complicated when analyzing translated assembler code.
The 32-bit AVR is not 100 percent suitable for hard real-time tasks, either: Although a single-
path conversion is theoretically possible, the resulting code might be useless for real-time sys-
tems due to the increased runtime. Moreover, the provided performance-enhancing features like
caches and pipelining prohibit a completely correct WCET analysis.

2.4 Infineon TriCore Processors

2.4.1 General Features*

The Infineon TriCore processor was designed with the intention to unite the features of three
different types of processors:

* CPUs provide hardware mechanisms which are useful for operating systems. Moreover,
CPUs usually have the ability to deal with floating point numbers and support memory
management.

* MCUs are efficient when dealing with interrupts and bit manipulations.

* DSPs are designed to provide typical arithmetic instructions for signal processing appli-
cations, including multiplication and accumulation.

The TriCore tries to unite the advantages of all three types of processors in a single core, which
is the reason for its name TriCore. It is mainly in use in automotive applications for control
and communication tasks. Although Infineon states in the manual that the instruction set of the

% Confer [[nf03al p- 15-27]

16

processor is rather large, all instructions are encoded with 16 or 32 bits, which is a common
technique for 32-bit processors.

The processor provides 16 data and 16 address registers with 32 bits length. That con-
sequently means that a specific register may only be used by a subset of the instruction set.
Nevertheless, operations dealing with address registers are optimized for address calculation,
whereas instructions on data registers provide DSP and bit manipulating features.

2.4.2 SIMD Instructions

Like all presented 32-bit processors, the TriCore supports multiply add, multiply subtract and
multiply accumulate instructions. Additionally, it also supports the execution of so-called packed
multiply add and subtract instructions: The lower and upper 16 bits of two registers are multi-
plied and the 32-bit result of each multiplication is added (subtracted) to (from) a 64-bit register.
The concurrent execution of a multiply add and a multiply subtract instruction is also possible.?’

Nearly all arithmetic instructions (except for division) are also available as packed instruc-
tions, which means that the operation on a 32-bit register behaves like an operation on two 16-bit
or four 8-bit registers. In contrast to the Blackfin processor, simultaneous adding and subtract-
ing of two 16-bit values is not possible. Nevertheless, the TriCore provides packed versions of a
minimum and maximum instruction, which allow the calculation of the minimum/maximum of
up to four bytes in one instruction.®

2.4.3 Conditional Instructions and Branches?’

Like the 32-bit AVR, the TriCore is not fully predicated, but provides some instructions which
are only executed on a provided condition. The condition is saved in a register which may
only be tested for equality or non-equality to zero. The TriCore has a 32-bit select and a 16-bit
conditional move instruction. The select instruction saves the value of the first register to the
destination register if the condition register is zero, otherwise, the value of the second register
is saved to the destination register. This behavior can be compared to a hardware multiplexer
which selects one of two input signals depending on a control signal. The conditional move
is a restricted version of the select instruction and is only capable of taking data register 15 as
conditional register. Moreover, depending on the value of d15, either the value of a specified
register is saved to the destination register or the destination register remains untouched.

Beside the instructions just presented, there are also conditional add and subtract instruc-
tions. Depending on the value of the conditional register, which is only tested for non-equality
to zero, the sum or difference of two registers is saved to a destination register. If the condition
register is zero, the value of the destination register remains untouched. There is also a 16-bit
version of these instructions: Data register 15 is implicitly used as condition register, and the
destination register has to be equal to the second source register of the addition or subtraction.

The Infineon TriCore, like the Blackfin, provides a hardware support for loops: There is one
instruction which increments or decrements a register, checks the value, and performs a jump to

BConfer [Tnf03al p. 203-215 and p. 232-242]
*Confer [Inf03a p. 30-39 and p. 52f]
?Confer [Inf03al p. 68ff and p. 168ff]

17

a specified address if the result is equal to zero. Its assembler acronyms are JNEI and JNED,
which stands for jump if not equal and increment or decrement, respectively. An improved
variant is the 1oop instruction, which has a similar syntax, but is only executed the first time
the loop is entered. The counting register is automatically decremented when the end of the
loop is reached, and a check for zero is performed. According to the manual, using the 1oop
instruction results in a much better performance than using the JNED instruction. Although
there is no information about nested loops, it is stated in [InfO3b, p. 26] that the loop cache
only comprises two levels. Consequently, having more than one inner loop does not enhance the
performance.

2.4.4 Timing Analysis®

The TriCore processor consists of two computational units; the integer processing (IP) and the
load/store (LS) unit. The former is responsible for nearly all arithmetic instructions, whereas
the latter is mainly responsible for address calculations and memory accesses. Disregarding
conditional branches, pipeline hazards or multi-cycle instructions, all instructions take one clock
cycle to finish. Moreover, it is also possible to execute one IP and one LS instruction — which
do not depend on each other — in one clock cycle.

Pipeline stalls may occur when dealing with multiply accumulate instructions where one
instruction uses the destination register of a preceding SIMD instruction as source register. In
all other cases, the cycle duration is highly dependent on the type of instruction that follows.
Infineon gives some recommendations for sophisticated instruction scheduling strategies. For
example, a simple idea is to alternately use LS and IP instructions. The interested reader is
referred to the manual and the guide for compiler writers for additional information.

2.4.5 Conclusion

Although the TriCore unites nearly all presented special features of the Blackfin, ARM and 32-
bit AVR processors, analyzing the exact execution time of a given program is a quite challenging
task. Firstly, one has to take into account the instruction scheduling; changing the order of only
two instructions may cause a completely different result in the cycle count. Secondly, the static
branch prediction model is very sophisticated and the exact number of cycles depends on the
jump type (forward or backward jump).

Moreover, the possibilities when dealing with conditional instructions are very limited — in
comparison with the ARM instruction set, as well as with the 32-bit AVR: Applying a single-
path conversion to a given algorithm surely reduces the complexity of the CFG, but may have
a tremendous effect on the WCET, which will certainly increase. Nevertheless, the Infineon
TriCore processor provides some very interesting and useful instructions for WCET analysis,
although the complex hardware implementation may cancel out the advantages of these features.

BConfer [Inf03al p. 264-275] and [nf03bl p. 30-43].

18

2.5 Tensilica Xtensa

2.5.1 General Features®

In contrast to all other presented processors of the current chapter, the Tensilica Xtensa is no oft-
the-shelf ASIC, but provides the developer a basic set of features which may be fully adapted
to personal needs. This ranges from the individual scaling of the size of cache, RAM and ROM
to the implementation of custom instructions. In contrast to other FPGA-based processors*’
like Altera’s NIOS II, the Xtensa is delivered with a complete toolchain allowing the customer
to adapt hardware, compiler, and software individually. Additionally, the processor may be
optimized for different characteristics like small die area or low power consumption.

The main application field of the Xtensa processor lies in hardware-software codesign:
When there is an application-specific problem to be solved, which requires high performance
of a single task and the general-purpose instruction set of an average processor, the Xtensa
processor may be an adequate choice. Section [2.5.4] gives some practical examples of how to
increase the performance of an application with the help of additional instructions implemented
in hardware. The following sections give an overview of the Xtensa architecture and instruction
set. At the end, the predictability of the processor is evaluated.

2.5.2 Architecture Overview

As already mentioned, the Xtensa architecture is not fixed and may be configured and extended.
31

In principle, it consists of five different types of modules/features:

Base ISA Features These modules are the only fixed parts of the Xtensa. They implement the
basic instruction set, basic processor control features, memory access, and the processing
pipeline, which consists of five stages (see below).

Configurable Functions Like the base ISA features, these modules are part of every Xtensa
implementation, but their parameters can be set to user-defined values. They include the
register file, the instruction memory and the data memory. The memory size of each
module may be chosen from a given list of options.

Optional Functions In contrast to the configurable functions, optional modules may or may
not be added to the current processor design. They include a JTAG controller, a debug-
ging interface and several ALU features like multiply-accumulate, DSP and floating point
operations.

Optional and Configurable Functions These modules may or may not be added to the current
processor design. They include data and instruction caches, data and instruction RAMs,
timers, and an extension for exceptions and interrupts. Moreover, the user can specify
several characteristics, such as cache size and cache replacement strategy.

2 Confer [Gon00].
3Such processors are usually denoted soff cores.
3 Confer [Ten02] p. 1ff] and [Tenl0, p. 6].

19

Designer-Defined Features These modules provide the highest freedom for the designer. With
the help of a description language, the user may add individual modules for the ALU, thus
providing application-specific instructions. Moreover, it is also possible to implement a
user-defined load/store unit or to adapt the pipeline to support SIMD instructions.

The Xtensa pipeline consists of five stages, which are similar to a typical RISC architecture.
They include instruction fetch, instruction decode & register fetch, execute, memory access, and
write back. Usually, an instruction takes five (pipeline) cycles to complete, but there are two
exceptions: A memory load may cause a so-called bubble cycle, which is introduced by the next
instruction if it depends on the result of the load operation. The second exception are branch
instructions, which cause two instructions within the pipeline to be invalid if the branch is taken.
Consequently, nearly all base instructions finish within one clock cycle, but load instructions
may introduce one additional cycle and branch instructions two.?

2.5.3 Xtensa Basic and Optional Instruction Set*

The basic set of the Xtensa consists of 82 so-called core instructions, including load/store, move,
basic arithmetic, shift, logical, branch, call and processor control instructions.>* The basic in-
struction set also supports conditional moves allowing the application of a single-path conversion
on a given code. Without any extensions, all instructions are encoded with 3 bytes, but the code
density module allows 16-bit encoding of commonly used instructions. This can be compared to
the Thumb instruction set of ARM processors as presented in Section[2.2.5] although the Xtensa
does not need a special instruction for switching.

Another extension to the basic instruction set is the hardware-supported loop. The mech-
anism works similar to the hardware loops of the Blackfin and TriCore processors, but nested
hardware loops are not supported. Nevertheless, there are fewer restrictions, meaning, for ex-
ample, that calls and conditional branches within the loop boundaries are allowed. Nevertheless,
the programmer has to take care that the last instruction of a loop is no branch or call, and there
are also some limitations on the start and end addresses of the loop.

There are several extensions for arithmetic functions including 16- and 32-bit multiplication,
16-bit multiply-accumulate, 32-bit integer division, and minimum and maximum calculation.
Nearly each of them may be implemented separately. Moreover, a floating point coprocessor
may be implemented, providing IEEE 754 single-precision floating point operations. Another
interesting instruction set extension is the multiprocessor support providing synchronizing func-
tions for shared memories. Of course, there are several other interesting extension modules, e.g.,
for cache management, which will not be discussed here. The interested reader is referred to the
Xtensa ISA manual [Tenl0Q], where all features are described in detail.

2Confer [Ten02] p. 671].
33Confer [Tenl0l p. 71-105]
3See Table 3-11 in [Tenl0, p. 33].

20

2.5.4 Individual Instructions®

One of the most interesting features of the Xtensa processor architecture is the possibility to im-
plement fully customized instructions with the so-called Tensilica Instruction Extension (TIE)
language. The programmer may define the opcode, the assembler name, the used data types
(e.g., integer), the semantics, and some other characteristics of the new instruction. The de-
livered assembler and C compilers automatically recognize the newly defined instructions, so
that no additional compiler adaption is needed. Moreover, the Xtensa design framework auto-
matically tries to adapt the new instructions to the existing processor settings, i.e., by adding the
corresponding features to all relevant pipeline stages. Additionally, the framework automatically
tries to verify the new instructions, if test vectors have been provided.

Gonzalez gives an impressive example of how a hardware-accelerated DES implementation
may cause a speed-up of more than 50 times in comparison to a software-based solution, while
only needing 4.500 additional gates of hardware. Some other examples include JPEG image
compression, FIR filtering, and motion estimation for video streaming.® Consequently, the
Xtensa seems a quite feasible solution for applications which benefit from specific hardware-
implemented operations while still offering all relevant features of a general-purpose processor.

2.5.5 Conclusion

The Xtensa processor cannot easily be evaluated from a real-time system designer’s point of
view because there are so many different features which can be part of the processor and could
make WCET analysis difficult. Nevertheless, as the Xtensa allows to design a processor without
caches and complex SIMDs or floating point instructions, but at the same time provides hard-
ware support for conditional moves and loops, it may be an interesting choice for hard real-time
systems; the low performance due to missing data and instruction caches can be strongly im-
proved by implementing a user-defined function perfectly fitting the needs of the application.
Unfortunately, it is not possible to change some fundamental internals of the processor, like
predicated instructions or support for nested hardware loops. Consequently, the Xtensa proces-
sor is the ideal choice for systems with individual needs which cannot be fully met by general-
purpose processors or ASICs.

2.6 Conclusion

All processors presented in the current section have advantages and disadvantages with respect to
WCET analysis. Table gives an overview of the most significant features of each processor.
Although the 8-bit AVR shows good characteristics for timing analysis, it does not provide any
support for single-path conversion. Moreover, its limited instruction set and low performance on
complex calculations do not make it very attractive when dealing with sophisticated real-time
tasks. Only ARM processors support a fully predicated instruction set, which makes them very

33Confer [Ten02, p. 59-62] and [Gon00Q].
3Some of the named examples were presented in [Gon00]], but experienced an additional speed-up, as may be
verified in [[Ten02, p. 3].

21

=
g
g
5 g
= O
E 2 £
g 2 &
Q = [aa] ()
2 3 ~ =) ©
S s 8 5 2
E = « 2 E
5 T £ < <
2 3] 5 o0
8 2 & g e £
2 % £ 2 E % &
A~ 7 k= 7R O =
Blackfin 32 2-4 yes — yes difficult
ARM 32 2-4 yes 4+ yes difficult
8-bit AVR 8 2-4 no — no easy
32-bitAVR 32 2-4 yes £ yes difficult
TriCore 32 2-4 yes + yes difficult
Xtensa 32 2-3 yes” + yes/mo’ medium®

“ May be 8 bytes for a parallel instruction.
» Depending on the concrete implementation.
¢ May be up to 8 bytes for extended instruction set.

Table 2.1: Feature overview of all presented architectures of the current sec-
tion.

feasible for single-path conversion. Nevertheless, the timing analysis of a given code is a quite
challenging task due to the elaborate pipeline model and the involvement of caches.

Only ARM, 32-bit AVR processors and the TriCore processor may be used for single-path
conversion. Unfortunately, the TriCore has an even more sophisticated internal architecture than
ARM processors and provides only limited support for conditional execution of instructions.
When directly comparing ARM and Atmel processors, ARM provides better support for single-
path conversion, whereas Atmel offers better features for performance measurements. Finally,
the Blackfin processor may at the first glance be the totally wrong choice when implementing
a real-time system, but it provides some convenient features like hardware loops and cache
memory management, which could make it quite attractive when operating in soft real-time
environments.

22

CHAPTER

Time Predictable Architectures

3.1 The Necessity of Time Predictable Processors

As could be seen in Chapter [2] the design of modern (embedded) processors is mainly based
on improving the performance of average case scenarios and providing functions for multiple
data processing (SIMD). This trend can be identified over the past decades, although there have
been proposals for predictable processor architectures for about 20 years. The main problem is,
that on the one hand, the average case performance of processors may be successfully improved
while on the other hand, the worst-case execution time might not be calculated any more due
to complex constraints like cache and pipeline status or even different types of memory access
strategies. Moreover, improvements for the average case may result in worse performance for
worst-case scenarios.

As processor design gets more and more sophisticated while at the same time the com-
plexity of hard real-time and highly dependable systems increases, the necessity of simple and
predictable architectures arises. For example, many current state-of-the-art embedded applica-
tions make use of multi-threading. It is true for most contemporary processor architectures, that
the timing behavior of each task depends on the execution and status of the other tasks, thus
making reliable WCET analysis nearly impossible. Martin Schoberl outlines five points which
will be of major concern for highly predictable architectures of future real-time systems (see
[SchO9bl)):

(i) There is a mismatch between performance-oriented computer architectures and worst-
case analyzability.
(ii) Complex features result in increasingly complex models.
(iii) Caches, a very important feature for high performance, need new organization.
(iv) Thread level parallelism is natural in embedded systems. Exploration of this parallelism
with simple chip multiprocessors is a valuable option.
(v) One thread per processor obviates the classic schedulability analysis and introduces sche-
duling of memory access.

23

Thiele and Wilhelm give a definition of performance and predictability in the context of
hard real-time systems (confer [TWO04]): According to them, the performance of a processor
may be defined as the reciprocal value of the execution time. This means, that processors with
low execution times have high performance and processors with high execution times have low
performance. There has to be distinguished between best, average and worst-case performance
because a good average execution time does not necessarily imply good timing results for the
worst case and the other way round. Predictability may also be defined for lower and upper
bounds, i.e., predictability of best and worst case: some processors may behave quite predictably
for best case scenarios, but are too complex for providing predictability for worst-case scenarios.
Consequently, the overall predictability of a processor or system architecture also depends on
the predictability of all relevant scenarios.

In 1997, when WCET analysis was still mainly based on manual calculations and measure-
ments, Zhang (confer [Zha97]) tried to figure out techniques to improve predictability. He was
already aware of the complexity which comes along when introducing caches, especially if the
analysis includes preempted or interrupt driven real-time systems. Therefore, he suggests that
the cache should be partitioned into several segments such that every task has an independent
cache set. Many presented architectures of the current chapter use a similar approach. To im-
prove predictability of processor pipelines, he refers to the shared pipeline approach which was
originally implemented by Cogswell et al. in the MACS architecture (see Section [3.3|for further
details). As Zhang tried to involve many aspects of real-time systems, he also enumerates several
factors influencing the predictability which can usually not be influenced by the hardware design
of a processor. These include unpredictability caused by sampling analogue signals, communi-
cation protocols, clock drifts and context switches initiated by the operating system. Although
they may all be the reason for uncertain timings, they will not be taken into account in the current
thesis.

Heckmann et al. presented one of the first tools for static WCET analysis in 2003 (confer
[HLTWO3[)). They implemented analyzing algorithms for architectures with different levels of
complexity, including various cache replacement strategies and pipeline architectures. Although
the results seem quite convincing, the authors admit that all implemented architectures were
analyzed and implemented manually. This means that it takes an enormous effort to extend
the tool for other processors because every architecture has unique characteristics. In the end,
they give some advice for designing predictable processors or processors which can be analyzed
statically. This guidance includes to make use of simple cache architectures, i.e., separate caches
for data and instructions and make use of simple cache replacement strategies like LRU (least
recently used). Moreover, the processor should only rely on static branch prediction and should
not support out-of-order execution. Last, the design should avoid short-cuts causing a speed-up
for certain scenarios which may only be rarely relevant. The problem of static WCET analysis
is not related to a single architectural feature, but to the side effects which multiple features may
have on each other (e.g., dynamic branch prediction and caches).

The current chapter tries to give an overview on different approaches of implementations of
time predictable architectures in the past twenty years . They cover general design approaches
for whole real-time systems like the Spring Architecture presented in Section[3.2]as well as very
detailed proposals for time predictable processors. Some of them also have been implemented

24

in hardware (e.g., on an FPGA) such that concrete performance statistics exist. Nevertheless,
in most cases, the architectural specification spares a description of the implemented instruction
set. Hence, there do not exist any general guidelines, stating which instructions should be part
of a predictable processor.

3.2 The Spring Architecture

In [Sta90], John Stankovic presents the so-called Spring Architecture, which is a general design
approach for real-time systems. It includes the separation of the operating system, which is ex-
ecuted on a system processor, from the user tasks, being executed on one or more application
processors. In contrast to the approach to provide a critical and a non-critical CPU, this archi-
tecture has the advantage that the current status of the operating system may not influence the
execution of a critical task. In case of a critical and non-critical CPU, the application and the
operating system are executed on both processors and may influence each other. In addition to
the CPU segmentation, both processors have their own I/O areas.

The Spring Architecture also introduces partitioning for resources (e.g., sensors or actua-
tors) and for tasks. This means that tasks may be of three different types (critical, essential and
non-essential) and that the needed resources and worst-case behavior is known a priori. Con-
sequently, the Spring kernel, which is implemented on all nodes of the distributed real-time
system, can decide at run-time which task shall be scheduled next. Nevertheless, critical tasks
have to be scheduled a priori. Such, it is possible to provide graceful degradation — all critical
tasks meet their deadlines, but not all essential tasks may finish on time in a worst-case scenario.

Stankovic outlines the necessity for using simple processors, i.e., RISC processors, which
accomplish executing one instruction in a constant number of CPU cycles at any time. The pre-
dictability of the used processors is important for the static WCET analysis of the critical tasks.
One problem which may arise when making use of co-processors, e.g., for floating-point cal-
culations, is that such instructions may involve uncertainty when interrupts or exceptions occur.
Stankovic therefore suggests that co-processors should only be used if they are not pipelined
and are only capable of executing a single operation at once. Other external resources which
may be needed are memory management units, DSPs and DMA (direct memory access) con-
trollers. They have to be integrated into the system such that they may not have any influence on
time-critical tasks.

To summarize, the Spring Architecture may be seen as an interesting design proposal for a
real-time system as a whole, but does not present a suitable solution for real-time processors. Al-
though highly predictable processors are a requirement for reliable hard real-time systems, they
are simply assumed as existing: Stankovic only states that an ideal real-time processor does not
include caches or pipelines, but still has to show good performance — an assumption which might
not be fulfilled in most cases. Moreover, the introduction of sophisticated dynamic scheduling
algorithms may cause the system to become indeterministic and therefore static system analysis
is out of discussion. Nevertheless, Stankovic’s call for using simple components which provide
high predictability, is still up to date and can be seen as one of the key aspects when designing
modern real-time systems.

25

3.3 MACS

The MACS (Multiple Active Context System) architecture was introduced in [CS91] by
Cogswell and Segall and describes a predictable multitasking processor. The processor uses
a pipeline, but does not have any caches. To provide a predictable pipeline and constant cycle
counts for each instruction, the authors implemented a shared pipeline for multiple tasks, which
are called contexts. This means that a context switch is automatically executed every clock cy-
cle. All tasks are executed periodically in a round-robin manner. So, when there are IV tasks
supported by hardware, each context may execute a single instruction every N*® clock cycle.
The MACS architecture denotes the period, until all tasks have made a complete execution step,
a major cycle, which takes N clock cycles. This kind of shared pipeline is based on two ideas:

(1) Usually, there are no dependencies between any two instructions of two different tasks,
except for memory accesses to shared memories, which will be discussed later.

(2) When supporting a feasible number of contexts, all instructions may finish within a major
cycle such that there do not exist any dependencies between two following instructions of
a single task. This means, no branch prediction is needed to speed up conditional jumps
and the pipeline does not need to support register forwarding or similar techniques.

Although this approach seems highly inefficient at the first glance, the authors argue that the
average performance is comparable with a cached processor while still remaining predictable:
The average cycle count per instruction (CPI) is calculated by

CPLiached = Thit * Chit + Tmiss * Cmiss = Thit * Chit + (1 - rhit) * Cmiss 3.1)

in the case of a cached processor. r,;; indicates the statistical cache hit rate, r;,;ss the miss rate
and cp;¢ and ¢4 the cycle count in case of a cache hit or miss, respectively. Given the MACS
architecture, one major cycle consists of N CPU cycles. N is determined by the amount of
tasks/contexts supported by the processor. Assuming that only U out of N contexts are really
used and that all instructions need one major cycle to finish, the average cycles per instructions
are defined as

N
CPlyvacs = U (3.2)

Assuming, one wants to implement a MACS architecture having the same average performance
as a cached processor. Let the clock frequency of both processors be equal. If we want to find out
the smallest number of tasks, such that MACS provides the same CPI as the cached architecture,

we have to set (3.2)) equal to (3.1):

N
T = Thit " Chit T (1 = Thit) - Cmiss (3.3)
From this formula, it follows that
N
U > [—‘ . (3.4)
Thit - Chit + (1 — Thit) * Cmiss

Let us now assume that a worst-case memory access takes M CPU cycles. Consequently, we
have to choose the number of supported tasks by MACS to be at least equal to M such that all

26

instructions may finish within one major cycle. Moreover, let us assume that a memory access to
cached data ideally takes one clock cycle. Applying this to (3.4), we can calculate the minimum
number of used tasks U for a MACS architecture which provides the same CPI as the cached

prOCCSSOr:
M
U > 3.5
- Lhz’t +M-(1- Thit)—‘ (5

Setting M to 16 and rp;; to 90 % reveals that the number of used tasks has to be at least 7 —
less than 50 % of the available contexts. In a scenario of 95 % hit rate and a worst-case memory
access time of 8 cycles, the number of used tasks has to be at least 6. Even for this scenario, the
processor usage is only about 75 %.

Although the MACS architecture provides considerable performance in comparison to
cached processors, one open point is the memory organization: The programming model which
is implemented by each context is the so-called uniform memory access model. This means that
every task has its own local memory bank, which has a guaranteed access time of one major
cycle. Consequently, access to local memory banks has no influence on the timings of other
tasks. Moreover, every context has access to shared global data. The access time to global data
is dependent on the amount of contexts concurrently working on the same data set. The more
tasks want to access this shared memory at the same instant, the longer a task might have to
wait. In the worst-case scenario, all N contexts of MACS are used and all of them want to
access the same shared memory location. It may now take up to /N major cycles until all tasks
may have completed the access. Nevertheless, Cogswell and Segall argue that the remaining
unpredictability, i.e., the scaling factor between best and worst-case execution time, is still much
less than for a typical cached processor. This statement is also confirmed by simulation results,
which show a maximum divergence factor of 2 in case of a MACS architecture supporting up
to 16 contexts whereas a typical cached architecture may have a factor of 2.5 or more. Still, the
question arises whether a profound static WCET analysis delivering an exact cycle count is still
feasible for the MACS architecture or whether it is only possible to provide a reduced jitter for
soft real-time applications.

Summarizing, the MACS architecture is an interesting approach towards a predictable pro-
cessor and was one of the first evaluated architectures in this research area. Unfortunately, the
evaluation is only based on simulation and there does not exist a hardware implementation of
MACS. For the simulation, the instruction set of MIPS R2000 has been used. It was extended
by special instructions for hardware supported task management (e.g., fork, lock, etc.). Beside
the fact that MACS has never been realized in hardware, another aspect has to be considered:
The discrepancy between memory and processor speed has still increased over the past 20 years,
resulting in even higher clock cycle delays for memory accesses than in 1991. Consequently, a
current implementation of MACS may require a relatively high number of supported contexts to
guarantee access to memory within one major cycle. This problem could be avoided by imple-
menting a multi-processor or multi-core realization of MACS, which has also been suggested by
Cogswell and Segall. Unfortunately, there has not been any further research about the MACS
architecture, but modern proposals for predictable processors like the PRET architecture pre-
sented in Section [3.§|refer to similar concepts. This indicates that MACS might have been a first
step in the right direction.

27

3.4 SPEAR

The Scalable Processor for Embedded Applications in Real-time Environments (SPEAR) was
developed by the Institut fiir Technische Informatik of the Vienna Univeristy of Technology, con-
fer [Del02, IDHPSO03]]. According to the authors, there are two main requirements for processors
working in real-time environments:

(1) The response time of the processor shall be as small as possible. It is of utmost importance
that time-critical tasks meet their deadlines. A general purpose processor might not be able
to handle all tasks correctly in a worst-case scenario due to its indeterminism.

(2) The response-time jitter, i.e., the variability of the response time, shall be as small as
possible. An ideal predictable real-time processor has no jitter at all. Consequently, a task
always reacts to certain events after a constant time, disregarding the internal and external
status of the real-time system.

As most real-time systems have to interact with the external environment, they have to be
able to react to asynchronous events within a minimum period of time. This can often only be
guaranteed by using interrupts. Unfortunately, interrupts usually may occur at any instant such
that the required context switch might have variable response times, depending on the internal
state of the processor. To guarantee a predictable behavior in all possible scenarios, Delvai et al.
propose the following implementation:

Synchronization: In order to react predictably to asynchronous external events, it is necessary
to synchronize all involved operations. First, the signal causing an interrupt has to be
synchronized, i.e., the digital representation of the signal has to be present at the beginning
of the next clock cycle. Afterwards, the instruction synchronization is responsible that an
interrupt service routine may only be executed at safely defined points in time. This
synchronization may only be fully implemented if the processor is predictable and does
not include sophisticated features like out-of-order execution, multi-cycle instructions,
etc.

Context Switch: The context switch consists of two phases, namely saving the current context
and identifying the corresponding service routine. Although hardware supported context
switches are more efficient, they introduce unpredictability and may increase the response-
time jitter. That is the reason why the authors of SPEAR decided to use the traditional
software stack-based solution. Identifying the corresponding interrupt routine to an exter-
nal event may become difficult when there are multiple possible sources. Therefore, it is
required that the mapping of an external signal is deterministic and is guaranteed to finish
on time.

Interrupt Service Routine: Usually, the major part of the response time of a real-time system
depends on the implementation of the interrupt service routine. Although it is not in
scope of influence of the processor to provide predictable algorithms, it can support the
programmer with several instructions for single path conversion etc.

28

To accomplish the just described requirements, the SPEAR architecture shows several fea-
tures: It implements a so-called 16-bit core, meaning that all registers, the data and address bus
as well as the instructions have the same fixed size of 16 bit. Thus, instruction fetch, decode and
data access are quite simple and do not require sophisticated mechanisms. To achieve an accept-
able average performance, the SPEAR is a pipelined architecture, but avoids data and control
hazards by operand forwarding and pipeline clearing. Such, it is possible that every instruction
is executed in a constant number of CPU cycles, regardless of the current processor state. To
avoid a memory bottle neck, it implements a Harvard architecture and has separate instruction
and data memories of 4 KByte each.

The instruction set of the SPEAR comprises 80 instructions, including operations which
are only executed if a condition flag is set. The concept is similar to the ARM predicated
instructions, which are described in Section [T_ﬂ} Unfortunately, some of the most common
instructions like add or subtract do no support conditional execution meaning that the single-
path conversion of some algorithms may cause code bloating.

Except for the just described conditional instructions, the SPEAR instruction set does not
provide any special operations like SIMD or DSP instructions. Moreover, SPEAR does not
support floating point operations or integer division and multiplication. That is the reason why
the authors give the designer the possibility to add so-called extension modules. In contrast to
the Xtensa processor by Tensilica — see Section for further details — these modules are not
integrated into the internal design, but may be compared to coprocessors. The SPEAR provides
memory dedicated registers for data exchange between the processor core and the extension
modules. The modules may either be individually implemented in a hardware description lan-
guage or chosen among existing ones like, e.g., a UART.

The SPEAR architecture is a very interesting approach towards a time predictable proces-
sor and unites a neat and easy to analyze instruction set with the flexibility introduced by the
extension modules. Moreover, in contrast to other architectural proposals of the current chap-
ter, it has been implemented and evaluated on real hardware. Nevertheless, real-time systems
involving complex tasks like DSP or floating point operations require sophisticated hardware
implementations of extension modules to guarantee predictability and constant response times
for worst-case scenarios.

3.5 VISA

The Virtual Simple Architecture (VISA) was presented by a research group of the North Car-
olina State University in [ASP™03]. It is based on the following idea: Although complex pro-
cessors are not feasible for WCET analysis, they show better average performance and may also
have less execution time for worst-case scenarios. Simple architectures may be easily analyzed
but usually only provide low performance. The VISA approach suggests to use an architecture
which is capable to dynamically switch between a complex and a simple processor implemen-
tation. The complex pipeline may realize dynamic branch prediction and caches, which can be
disabled on demand. Consequently, if the complex architecture is not able to meet deadlines
which have been calculated for the simple architecture, a switch to the simple architecture is
performed.

29

In order to guarantee that a switch does not cause a deadline to be missed, the deadline
calculation takes the needed overhead into account. Moreover, a task is divided into multiple
sub-tasks. Whenever a sub-task finishes, a watchdog application checks whether the execution
of the whole task is still on time. If that is not the case, the switch to the simpler architecture is
performed, otherwise, the next sub-task is executed.

The instruction set of VISA is based on the so-called Simplescalar instruction set, which
has been developed by the University of Wisconsin. The authors argue that like ISA, VISA
shall be an abstraction from the really used architecture and therefore may be ported to different
processors. Although this seems to be a reasonable approach, VISA has only be evaluated by a
cycle accurate simulator and there is currently no hardware implementation. Thus, no statement
can be done whether VISA is flexible enough to be used for different processors or instruction
sets.

The simulated benchmarks however show that the VISA approach is quite applicable for
real-time systems in low power environments: In all tested scenarios, the complex architecture
shows better worst-case behavior than the simple variant. Consequently, either the processor
may be switched into a less energy consuming sleep-mode when a task has finished, or the
supply voltage may be reduced, resulting in smaller clock frequencies and less average energy
consumption. Anantaramen et al. showed that the VISA approach may yield energy savings of
40 to 60 % in comparison to a conventional architecture.

Concluding, the VISA approach shows good average performance while satisfying hard
deadlines and reducing energy consumption. Nevertheless, it is no applicable solution in envi-
ronments requiring low jitter. Moreover, dividing a time-critical task into multiple sub-tasks and
setting up safe deadlines requires sophisticated techniques, which have to be adapted for differ-
ent applications. Finally, a hardware implementation of the presented approach is necessary to
evaluate the performance in comparison to other existing time predictable architectures.

3.6 JOP

The Java optimized processor, abbreviated JOP, was developed and implemented by Martin
Schoberl during his PhD thesis. The processor is also in industrial use and was improved and
extended by several users and students of technical universities in Vienna and Copenhagen.
Beside from Schoberl’s PhD thesis [SchO5bl], there are several conference papers presenting
different aspects of the processor, e.g., performance and real-time garbage collection, and a
manual [Sch09a], which can be seen as an updated version of the PhD thesis. The whole JOP
project, including the programming tool chain and VHDL code, is available in open source under
the GNU General Public License, version 3; see [Schl1]] for more information.

Although the main intention of JOP was to provide an implementation of the Java virtual
machine (JVM) in hardware, the processor should also be applicable for real-time systems.
Consequently, the architecture tries to support all features of a software implementation of the
virtual machine while remaining predictable and providing support for WCET analysis. Like the
JVM, JOP is a stack-based architecture, but implements a reduced instruction set. This design
decision is based on two observations:

30

(1) A reduced instruction set allows simple encoding of instructions in opcode. JOP only uses
8 bits for each of its 43 instructions.! Additionaly, a fixed bit width for the microcode
makes instruction fetching and decoding easier and is thus more predictable.

(2) The JVM provides some instructions which are usually implemented by system calls or
software libraries and cannot easily be implemented in hardware. Such complex instruc-
tions are emulated by multiple simple operations which are supported by JOP.

The pipeline of JOP has four stages: The first is responsible for fetching Java bytecode, which
is the usual output of a Java compiler. All existing JVM instructions are saved in a ROM table
in the second stage. The first pipeline stage is also responsible to map a Java bytecode to the
corresponding ROM address. A JVM instruction in the ROM table may be implemented in two
different ways:

(1) The Java bytecode is directly mapped to one JOP instruction. Consequently, the second
stage generates a signal, indicating that the first pipeline stage may fetch the next Java
instruction.

(2) The Java bytecode has to be emulated by multiple JOP instructions. In this case, the
ROM address corresponds to the starting address of a sequence of JOP instructions. This
principle may be compared to a function call. The last JOP instruction is responsible
to generate a next signal which triggers the first pipeline stage to fetch the next JVM
instruction.

Note that the described approach requires two different program counters: one Java program
counter indicating the next address of the Java bytecode and one JOP program counter for ac-
cessing the next JOP instruction. The third pipeline stage is responsible for the decoding of JOP
instructions and address generation. The last stage executes an operation and saves the result in
the designated destination register. As JOP implements a stack-based architecture, the result is
always available at the same register and there is no need for a separate write-back stage.

JOP has about 40 instructions, which are able to implement the complete functionality of
the JVM. All JOP instructions are executed within one cycle, except for the wait instruction.
The latter may be used to implement pipeline stalls for memory accessing instructions. The
JVM of JOP consists of three pipeline stages because the Java bytecode fetching stage can be
disregarded. Thus, two consecutive wait instructions are necessary to fill the (JVM) pipeline.
The execution time of the wait instruction depends on the timing of memory accesses. Hence,
the usage of predictable memories is necessary to support WCET analysis.

Although JOP was mainly designed to be predictable, it should also show a good average
performance. Thus, JOP makes use of separate data and instruction caches. The data cache is
called stack cache because the whole memory is organized in a stack-based manner. It does
not need to be very complex, because only top elements of the current stack may be accessed.
For the instruction cache, Schoberl introduced a so-called method cache. 1t is based on the
following idea: Java bytecode mainly consists of small basic blocks and many function and
method calls. In order to remain predictable, a basic block in the instruction cache is only

'In fact, there is a nxt and opd bit for each instruction such that the effective length is 10 bits.

31

replaced when a method call occurs. The cache replacement strategy is a simple FIFO (first
in first out) implementation and does not consider whether a memory region has indeed been
accessed. In comparison to a direct-mapped cache, the presented approach is not significantly
slower, but is predictable and is therefore applicable for static WCET analysis.

In [Sch05al], multiple implementations of the JVM including JOP are compared concerning
their performance executing relatively small Java applications. The limitation to short programs
is due to the typical application area of JOP, which lies in embedded real-time systems. This
is the reason why the software based JVM running on an Intel MMX processor shows the best
performance: The whole program fits into the cache of the processor. The evaluation may also
be seen somehow problematic because the presented solutions are based on completely different
architectures with several clock rates, memory and cache sizes and other factors. To remain
somehow comparable, the performance is also evaluated relatively to the clock frequency of
the corresponding processors. In comparison with 8 other processors, JOP shows the highest
absolute and relative performance after the already mentioned software based solution executed
on an Intel MMX processor. Moreover, JOP based implementation shows the smallest difference
between best and worst-case execution time resulting in low jitter.

Like the SPEAR, the Java Optimized Processor has been implemented in hardware and is
also in industrial use. In contrast to SPEAR, it implements the existing instruction set of the
JVM by partially emulating the most complex instructions. Moreover, SPEAR is a classic load-
store architecture whereas JOP is stack-based. By introducing a predictable cache architecture,
average and worst-case performance is increased. WCET analysis may be performed on differ-
ent levels, such as Java bytecode or the resulting JOP instructions. Although Java was originally
designed for user applications, the development of real-time Java made it an interesting choice
for dependable system developers over the last years. As could be shown by Martin Schoberl,
it is possible to implement a Java based processor which exhibits competitive performance and
is still predictable. Consequently, JOP may be a valuable choice for future applications in the
segment of real-time systems.

3.7 MCGREP

The MCGREP (microprogrammed coarse grained reconfigurable processor), presented by Jack
Whitham and Neil Audsley in [WAQ6], follows a completely different approach to the so far
presented solutions of the current chapter. Their design is based on the idea that application
specific processors provide better performance than general purpose processors when they are
restricted to certain tasks. Consequently, implementing application specific instructions may
dramatically improve the execution time while the processor is still predictable. Although this
approach appears to be quite similar to the Tansilica Xtensa processor, presented in Section
Whitham and Audsley go one step further: MCGREP provides instructions to reconfigure the
given hardware implementation during runtime.

Witham and Audsley differ between simple CPU architectures such as the Motorola 68000,
complex architectures like the Intel Pentium, application specific instruction set processors like
the Xtensa and reconfigurable architectures, which are mainly implemented on FPGAs. These
reconfigurable processors allow dynamically changing the instruction set of the processor, re-

32

sulting in higher flexibility. According to the authors, a perfect processor for real-time systems
provides high throughput, high predictability, high flexibility and low transistor count. A low
transistor count results in a small die area, which corresponds to less power consumption and
small prices. High flexibility is needed if the same processor shall be used for various specific
tasks.

Although a reconfigurable architecture usually has a high transistor count and is not pre-
dictable, Witham and Audsley showed that MCGREP may be implemented with medium hard-
ware effort and is still applicable for real-time systems. A first version of the MCGREP archi-
tecture implements a simple two stages pipeline, namely instruction fetch & decode and execute
& write back. Every instruction may either be executed within a single clock cycle or stalls
the pipeline until it is finished. Nevertheless, the execution time is constant and independent
from the current pipeline status or other instructions. The implemented instruction set is based
on the open source soft core OpenRISC, which has been slightly adapted to support instruc-
tions for reconfiguration. In this basic configuration, the MCGREP shows similar performance
to MicroBlaze, another soft core processor, and the OpenRISC processor, but has slightly less
throughput in some benchmarks.

To increase performance while remaining predictable, MCGREP does not implement a
cache, but allows the reconfiguration of the current hardware within one clock cycle. This
means that dedicated multiplexers and functional units may be activated or disabled by spe-
cial microcode instructions.” This technique allows to provide hardware support for hot spots
and worst-case paths within a program, which have to be identified in advance. Unfortunately,
this process had to be done manually and is an issue for future improvement.

Evaluation shows that the throughput of MCGREP nearly remains constant when a task
gets periodically interrupted by another task, whereas the execution time of MicroBlaze and
OpenRISC highly depends on their instruction cache. In more than 70 % of the presented bench-
marks, MCGREP even shows a higher worst-case performance than MicroBlaze. Moreover, the
microcode of MCGREP may be used to provide real-time operating system support such as task
and interrupt priorities, context switching and atomic actions. Consequently, the predictability
of an operating system only depends on its implementation and not on the underlying hardware
architecture.

In [WAOS]], Whitham and Audsley added a so-called trace scratchpad to the existing archi-
tecture. Traces include multiple micro operations, which are executed in a given order or at the
same time. They were first introduced to simplify the generation of VLIW code. Consequently,
the compiler has to identify parts of given code and generates traces, which help to optimize the
worst-case path. The statically generated traces may be loaded to the scratchpad on given points
in the program to preserve predictability. In the case of conditional branches, it may happen that
another trace which has not been loaded to the scratchpad becomes valid. Now, the processor
has to switch back to normal execution and the micro operations in the scratchpad become in-
valid. Thus, new worst-case scenarios may arise, which all have to be taken into account when
traces for scratchpads are generated.

The presented approach by Whitham and Audsley is based on a completely different idea
than the other architectures of the current chapter. Nevertheless, MCGREP shows medium av-

*Normal MCGREP instructions are denoted machine code, instructions to reconfigure the hardware microcode.

33

erage performance and provides flexibility and high predictability. Unfortunately, the presented
toolchain involving analyzing hot spots and worst-case paths in programs and manually gener-
ating microcode is not very feasible for real life applications.

3.8 PRET

The Precision Timed Machine was firstly presented by Stephen Edwards and Edward Lee in
2007 in [ELO7]. They show that current processors are not feasible to provide reliable or pre-
dictable execution times because they are designed for improving average case performance, ig-
noring possible degradation in worst-case scenarios. Moreover, traditional layers of abstractions,
like ISA or high-level programming languages, are no adequate solutions in case of real-time
systems: Current instruction sets usually cannot guarantee a constant execution time for all op-
erations because the exact duration commonly depends on the current pipeline and cache stage.
Consequently, real-time operating systems, which need exact timings for each task, cannot give
any guarantee that the system always meets its deadlines. Edwards and Lee therefore want to
introduce PRET machines which allow static analysis and exact timing behavior. A first version
of PRET was presented in [LLK™08].

Like the MACS architecture (see Section[3.3)), the PRET architecture makes use of a pipeline
shared by multiple threads. Consequently, stalling and clearing of the pipeline can be avoided
as there are no dependencies between any instructions of different tasks. Moreover, except for
memory accessing functions and the so-called deadline operation, all instructions may finish
within one pipeline cycle, i.e., six CPU cycles. The pipeline consists of six stages and supports
the so-called replay of an instruction if it takes more than six CPU cycles. Thus, the execution
time of one task does not have any influence on other tasks.

The previously mentioned deadline instruction was first presented by Ip and Edwards in
[IEOG6]. It is meant to provide a cycle accurate delay of a following instruction without using
NOPs. In principle, the deadline instruction sets an internal countdown timer to a given value.
The next instructions starts the timer such that the subsequently following instruction will be
delayed until the timer reaches zero. Consider an easy example: a conditional branch usually
takes different cycle counts, depending on the implemented branch prediction and the pipeline
depth. With a preceding deadline function, the instruction following the conditional branch will
not be executed until the deadline is over. Currently, nothing happens if the deadline is missed,
but future extensions may cause an exception to be raised. Consequently, the deadline instruction
may provide cycle accurate timing.

Like the MACS architecture, each task has its own local memory. Unfortunately, a mem-
ory access takes 13 clock cycles, which is far more than a complete pipeline cycle. Moreover,
DRAM needs to be refreshed such that no data may get lost. Usually, a burst refresh is per-
formed, meaning that the whole memory bank is not available for reading and writing. This
strategy introduces unpredictability and is no adequate solution for the timing analysis of instruc-
tions involving memory. Liu, Reineke and Lee describe their solution in [LRL10]: A so-called
memory wheel is responsible that a task may only access its dedicated memory bank within a
specified period of time. Meanwhile, the memory banks of other tasks can be refreshed. The
memory wheel grants access for 13 cycles to each task in a round-robin fashion and repeats its

34

schedule every 78 cycles (13 - 6 = 78). In a worst-case scenario, a task misses its window by
one cycle and has to wait for 77 cycles. Thus, a memory access may take up to 90 cycles.

In [LLK™08], a simple producer-consumer example is given, which makes extensive use of
the deadline function for task synchronization. The consumer task starts a deadline counter such
that it is guaranteed that the producer has at least written its first byte to a globally accessible
array. Another presented application using the deadline instruction is a VGA (video graphics
array) driver, which needs exact timings to generate a valid output signal.

As PRET is based on the instruction set of SPARC, the authors could easily evaluate the
performance in comparison to the LEON3 processor, which is an industrial implementation of
SPARC. Although the tested benchmarks did not include multiple tasks, PRET was only about
3 to 4 times slower than the LEON3. In a scenario with six concurring tasks, PRET may show
even better performance than LEON3, but additionally provides predictability. Moreover, the
benchmarks did not take the deadline instruction into account, meaning that they do not fully
exploit all of the hardware features of PRET.

As already mentioned, the PRET approach uses similar techniques like the 20 year old
MACS architecture. Nevertheless, modern hardware features like DRAM and scratchpads are
used to improve performance and provide predictability. If the deadline instruction will be im-
plemented such that a deadline miss triggers an exception, system designers may get a con-
venient means for testing and error detection. Moreover, static WCET analysis might become
easier because the precise cycle count at specified points of a program are known. Although this
approach seems to be similar to the watchdog points in VISA (see Section [3.5)), the resulting
cycle counts are constant and do not represent upper bounds. Future research will show whether
PRET is indeed competitive to other industrial and academic solutions in the field of predictable
processors.

3.9 Time-Predictable VLIW Processors

Although most modern processors are not based on a VLIW architecture, this approach has
some remarkable advantages concerning predictability: Superscalar processors provide multiple
functional units and out-of-order execution. Hence, they cannot guarantee reliable timings due
to data and structural dependencies. The idea behind VLIW processors is to give the compiler
the responsibility to set up a correct and possibly fast instruction schedule. One first step to adapt
VLIW processors for real-time systems is to change the scheduling strategy of the compiler such
that the worst case is taken into account.

Yan and Zhang tried to make an existing VLIW processor more predictable by redefining
the instruction scheduler in [YZ08]. They implemented a simulator based on the HPL-PD ar-
chitecture, which also provides predicated instructions. Their first approach did not take any
caches into account to verify the correctness and evaluate the performance of the proposed algo-
rithms. On the one hand, they implemented a full-if conversion function which replaces all basic
if-then-else blocks with predicated pendants. This approach is indeed very efficient in the case
of predicated VLIW processors because both branches can be concurrently executed without
needing to perform conditional jumps. On the other hand, they implemented a so-called intra-
block nop insertion to provide better predictability. This algorithm looks for joining branches

35

within the CFG of a program. It calculates the WCET of the last instruction of each branch and
inserts the corresponding number of NOPs such that the first instruction of the joint path may
be executed immediately. Consider the following example: There is a multiplication instruc-
tion which usually takes 3 cycles and an unconditional jump which takes 1 cycle to finish. The
target address of the jump is the next instruction after the multiplication. Thus, depending on
the current execution path, this instruction may have to wait until the multiplication has finished
or can be executed immediately. To avoid this problem, the algorithm inserts two NOPs after
the multiplication such that the next instruction always takes the same cycle count. Note that
this technique usually does not change the resulting execution time, but eliminates complex side
effects, which had to be taken into account for WCET analysis otherwise.

Although the primary goal of Yan and Zhang was to provide a reliable method to increase
the predictability of VLIW processors, the evaluation of their benchmarks showed that they also
lowered the WCET in all but one test run. In a second step, they also considered caches and
calculated the WCET based on static simulation. Note that the usual complexity of WCET ana-
lysis including caches is mainly based on the fact that branch prediction, pipeline and cache
state are highly coupled. As the pipeline of VLIW processors is statically determined, the calcu-
lated WCETSs were quite conform to the simulated results. Nevertheless, the presented approach
requires the knowledge of the exact timing of each instruction and the support of predicated
instructions. Thus, a reliable result of the static analysis may only be given when the underlying
processor is predictable and deterministic.

A proposal for a concrete implementation of a predictable VLIW processor is presented by
Schiberl et al. in [SSPT11]. The processor is called Patmos, referring to the name of a Greek
island. Currently, Patmos implements a dual-issue 32-bit VLIW architecture to increase the
performance of single threaded execution. It is planned to add multi-chip support in the future.
There are no pipeline stalls except for instructions waiting on the memory controller. All delays
are visible at ISA level, which allows reliable WCET analysis, but also needs sophisticated
scheduling techniques to guarantee exact and efficient execution.

The instruction set of Patmos is based on common RISC architectures like MIPS. All in-
structions may be predicated; the final number of different predicates is not yet fixed, but will
be at least 8. There are two identical pipelines, which consist of three stages each and support
operand forwarding. Both pipelines have access to the same register set. To still increase perfor-
mance, Patmos has several kinds of caches, namely a method and a stack cache like JOP, a data
cache and a scratchpad memory.

The original idea behind VLIW processors was to move complexity from hardware, like
out-of-order execution and rearrangement, to software, meaning that a compiler is responsible
for the correct scheduling of instructions. The Patmos architecture extends this approach such
that the compiler is also responsible for finding out worst-case execution paths and rearranging
instructions. A conventional compiler is responsible for identifying hot spots in the control flow
graph of the program and optimizing them. A WCET aware compiler should be able to take
annotations by the programmer in the source code into account and to find solutions for worst-
case scenarios. Unfortunately, this is still an area of research and no general applicable solution
has been found so far.

A first prototype of Patmos has been implemented on an FPGA. Moreover, a backend for

36

the LLVM compiler [LLV11]] based on backends for similar architectures, has been written. A
porting of the GNU binutils library for Patmos is planned. Unfortunately, the approach is still
under development such that no evaluation results exist up to now. Nevertheless, due to the
scientific research on VLIW architectures by Yan and Zhang, it can be expected that Patmos will
offer quite efficient performance and predictable timings. In every case, time predictable VLIW
processors for real-time systems are still at an early stage, but may be an interesting alternative
to existing processors.

3.10 Conclusion

The current chapter enumerated some interesting approaches of the last two decades in the field
of time predictable architectures. Of course, it is not possible to present all feasible solutions, but
the described processors cover a wide area of possibilities. Nearly all approaches tried to provide
exact execution times for each instruction such that WCET analysis of given programs becomes
easier. Moreover, different techniques to increase performance and preserve predictability have
been applied, ranging from pipelines shared among concurring tasks to scratchpad memories
and predictable method caches. Unfortunately, it is nearly impossible to compare the presented
processors, because they are based on completely different architectures and the authors used
distinct benchmark suits for the evaluation of their processors. Most interestingly, most ISAs of
the presented processors are based on given instruction sets and were only slightly adapted. The
impact of different instruction sets on static WCET analysis is still an open field of research.

37

CHAPTER

Extensions and Modifications of an
Existing Instruction Set

4.1 Problem Statement

Although nearly all processors and architectures of Chapter[3]try to provide features necessary in
hard real-time systems, none of the presented solutions focus on the impacts of the implemented
instruction set. The main goal is to find a useful hardware solution such that the resulting instruc-
tions are highly predictable concerning timing analysis. Nevertheless, most approaches just take
the given instruction set of an existing processor without reflecting whether these instructions
provide all functionality required in the context of real-time applications. !

The main target of this thesis is to explore the impacts of certain instructions which are
added to the existing instruction set of a general purpose processor. In the subsequent chapters,
the following questions are tried to be answered:

1. Do the instruction set extensions simplify the WCET analysis, e.g., by reducing branches?
2. How difficult is it to add these instructions to an existing instruction set?

2.1. How may the additional instructions be integrated into existing opcodes?

2.2. How may the additional instructions be implemented as hardware modules?
3. Which impacts do the instruction set extensions have on existing code generators?
4. How do the additional instructions influence the timing behavior of given algorithms?

5. Which additional instructions may be considered to be useful and which combinations of
additional instructions turn out to be most effective?

'One exception is the PRET architecture by Edwards and Lee, which provides a deadline instruction to guarantee
predictable timings. Confer Section [3.8]for details.

39

Although not all of the given questions can be answered in full detail, the presented approach
tries to give a good orientation for future design considerations concerning the ISA of time
predictable processors. The evaluation is based on a simulator of a SPARC V8 processor in
combination with an extended code generating backend of the LLVM compiler framework. The
reason for the choice of this combination is based on the following reflections:

(a) The SPARC V8 processor is a commonly used 32-bit general purpose processor, which
does not provide any exceptional instructions.

(b) There exist open source implementations of the SPARC V8 architecture like the LEON2
processor. In a future evaluation, the presented instruction set extensions of this thesis
may also be implemented and verified in hardware.

(c) Extending an existing code generator like GCC or LLVM allows evaluating the impact of
different implementations of the same algorithm in a high-level programming language
on the generated assembler code. The results may easily be compared, because no manual
optimizations have been added.

(d) The LLVM compiler framework provides a code generation backend for SPARC V8 pro-
cessors which might be easily extended by additional passes to produce assembler output
with new instructions.

(e) Implementing an assembler and a simulator allows evaluating algorithms which would be
far too complex for a manual timing and code size analysis.

The workflow of the evaluation of most presented algorithms in the current thesis was done
the following way: First, a given algorithm was implemented in the C programming language.
The code was translated by 11vm—gcc into the LLVM intermediate representation (IR) lan-
guage, which may be seen an equivalent to JVM assembler code. Afterwards, the LLVM com-
piler translated the IR code into SPARC V8 assembler code or SPARC V8 assembler including
several of the presented instruction set extensions. An assembler created a binary file, which
serves as input for the simulator. Several useful instruction set extensions have been combined
to form a new SPARC V8 target. The assembler as well as the simulator have been implemented
separately for each target. The assembler and simulator of each target provide special instruc-
tions to clear and print out an internal cycle counter in order to evaluate the performance of the
resulting code.

The remaining part of the current thesis focuses on the following points: Section 4.2] gives
an overview of the SPARC V8 architecture and assembler instructions. Section 4.3 introduces
several additional instructions to the original SPARC V8 instruction set. It will be shown what
the binary opcode of these instructions may look like and how they may be realized in hardware.

Chapter [5]explains how an existing compiler can be modified to support code generation for
the newly introduced instructions. Section [5.1] gives an overview of the used LLVM compiler
framework; the remaining sections of that chapter explain the specific implementation of the
code generating passes for the additional instructions.

Chapter [6] presents a number of algorithms which are translated into assembler code using
different combinations of instruction set extensions. The performance and code size of the
resulting code is evaluated and the most feasible instruction set extensions are identified.

40

4.2 The SPARC VS8 Architecture

4.2.1 General Features

The Scalable Processor ARChitecture is an ISA specification which may be implemented by
any processor. The eighth version (V8) was introduced by the SPARC International cooperation
in 1992; confer [SPA92]]. It defines the instruction set and the corresponding opcodes and gives
suggestions for a possible assembler language. Moreover, it gives implementation guidelines for
subsets of the instruction set and specific hardware realizations. This might be the reason why
there are several different implementations of the SPARC ISA. Nevertheless, as the SPARC V8
is no official standard, these implementations might not be fully compatible to each other.

The SPARC V8 is a 32-bit based RISC and uses a register windowing mechanism, meaning
that each function possesses its own view of the integer register set: The first eight registers
— g0 to g7 — are globally available and may be compared to general purpose registers of a
common processor. g0 is usually implemented to be read only and set to the constant value
zero. Registers 16 to 23 or 10 to 17 (1 is the letter “”) are the local registers of each function,
meaning that they are only visible in the current window. Registers 8 to 15 are the output
registers of the current window, registers 24 to 31 the input registers. In assembly language,
they are usually notated as o0 to o7 and 10 to 17, respectively. If parameters shall be passed
to a function, the calling function only has to use its local output registers, which become the
local input registers of the called function. Return values are passed to the calling function the
other way round. The so-called current window pointer is a counter which saves the number
of the currently active window. It is accessible through the processor state register and may be
incremented and decremented by the save and restore instructions.

Although the described window mechanism has the big advantage that there do not exist
any caller or callee saved registers, there are two major drawbacks: First, the number of real
registers in hardware is quite high, namely eight global registers plus 16 times the number of
register windows.? Secondly, in case of a large call stack, the available windows might not be
enough to hold the registers of all calling functions and the current window pointer may finally
point to a window which is already in use. Although this might be a rare scenario for most cases
without recursions, an exception routine for both window overflow and window underflow has
to be provided by the programmer. These routines usually are responsible for saving the register
contents of the last window on the stack or to restore them. Of course, this exception mechanism
has to be part of a profound WCET analysis for hard real-time systems.>

4.2.2 Instruction Set*

As already mentioned, SPARC V8 is a 32-bit architecture and in contrast to, e.g., the ARM in-
struction set, all instructions have four bytes. The available instructions may be divided in six
categories: Load/store, arithmetic/logic/shift, control transfer, read/write control register, float-

28 local registers for each window and 8 input and output registers, respectively. As the input and output registers
are shared among neighboring windows, only 8 registers are needed for each window.

3Confer [SPA92, p. 23-30].

4Confer [SPA92] p. 11ff. and p. 81-89].

41

ing point operate and coprocessor operate. A manufacturer of a SPARC processor is free to
implement the floating point and coprocessor instructions, which saves hardware and develop-
ment costs if they are omitted.

Nearly all instructions have two source operands and one destination operand. The second
source operand may be a 13-bit signed immediate, all other operands are registers. If the instruc-
tion is a load or store operation, the source operands are used to calculate the memory address.
The first source operand determines the base address, the second operand is used as offset. If g0
is used as destination register, the result of the current operation is not saved, just the condition
flags of the processor state register might change. Such, it is possible to implement compare or
test instructions by using subcc (subtract and change condition flags) and orcc (logical or and
change condition flags).

The SPARC V8 instruction set provides arithmetic and logical instructions of every kind,
including multiplication, division and uncommon instructions like xnor (negated exclusive or)
or nor (negated or). Some of them exist in two different versions; one sets the corresponding
control flags of the processor state register, e.g., the overflow flag, the other leaves them un-
touched. Hence, it is possible to implement operations for 64-bit operands or provide compare
and test operations as has previously been shown. The flags of the processor state register are
used for conditional branches. As all branch and jump instructions take two cycles to complete,
the instruction subsequently following either has to be independent from the branch condition
or has to be a nop instruction. This is due to the fact that the instruction will be executed re-
gardless whether the branch is taken or not. In case a nop has to be inserted, it is called a delay
slot, because its only purpose is to delay the execution of the next instruction. The SPARC V8
instruction set also provides the possibility to conditionally execute the instruction following a
branch: If the condition is satisfied, the result of the operation will be ignored. Although this
feature might be very attractive to reduce average case performance, it complicates the WCET
analysis and therefore should be avoided.

Apart from arithmetic-logic operations, the SPARC V8 ISA also specifies instructions de-
signated for operating systems. These include an atomic register-memory swap operation or
instructions that are only available in privileged mode. Moreover, there are several instructions
to handle traps, which might be seen as alternative to exceptions. They are executed if ex-
ceptional conditions are fulfilled, like, e.g., when a load operation tries to access an unaligned
address.

4.2.3 Binary Opcode Considerations

In [SPA92| p.43-47], three different binary formats are defined, which are used depending on
the type of operation. They are determined by the two most significant bits.

(1) The first format is only used by the call instruction. The remaining 30 bits determine
the 32-bit aligned destination address of the next program counter relative to the current
program counter. As all instructions need 4 bytes, it is possible to address up to 4 GByte
of instruction space.

(2) The second format is used by the sethi instruction and by all kind of branch instruc-
tions. As both of them only have two operands, there is enough space for saving 22-bit

42

immediate values. Consequently, branch instructions allow jumps of 8 MByte relative to
the current program counter. This is far beyond the needs of most common scenarios.

(3) The third format is used by all arithmetic-logic instructions as well as by all instructions
involving data memory access. All three operands need five bits to address the corre-
sponding registers. In case the second source operand is an immediate value, a 13-bit
signed integer may be used, providing a range from —4096 to +4095.

Figure [.1] shows the implementation details of all three formats: Formats (2) and (3) use
bits 25-29 to address the destination register or to encode the branch condition in case of control
flow instructions. Bits 22-24 determine the instruction type in case of format (2), bits 19-24 in
case of a format (3) instruction. As there are only 5 different instructions based on format (2),
there are 3 unimplemented opcodes, which could be used by additional instructions. In format
(3), bit 13 defines whether the second source operand is an immediate (bit is one) or a register
(bit is zero). The address of the first source operand is saved in bits 14-18.

Format 1 (op = 1): call

’ op ‘ disp30
31 29 0
Format 2 (op = 0): sethi & Branches
op rd op2 imm?22
op a\ cond | op2 disp22
31 29 28 24 21 0
Format 3 (op = 2 or 3): Remaining instructions
op rd op3 sl |0 asi | 12
op rd op3 rsl 1 simm13
op rd op3 rsl opf \ rs2
31 29 24 18 13 12 4 0

Figure 4.1: Opcode formats of SPARC V8. The figure was taken from [SPA92] p. 44]. Refer to
the SPARC V8 manual for further explanations.

4.3 Instruction Set Extensions for the SPARC V8 Processor

There exist several approaches for extending instructions sets of existing processors. Some of
them follow a dynamic selection strategy that decides which extensions are most effective for
the given input codes. In [VATJO6], the authors use the instruction set of a PowerPC 405, which
does not implement the full ISA of the PowerPC. As their target processor is implemented as an
FPGA soft-core, it is relatively simple to provide additional hardware modules implementing the
unavailable instructions. The selection algorithm for the instruction set extensions is based on a
formula which calculates the possible speedup in case the additional operations are used. Most

43

of these extensions are related to floating point operations which would otherwise be emulated
by software. Although their experiments were not performed in the context of real-time systems,
the authors could show that it is possible to provide a complete framework which automatically
selects hardware modules and instruction set extensions, to achieve better performance.

Yu and Mitra also presented an approach with instruction set extensions in [YMO3]], but they
focus on improving WCET performance. In contrast to Veale et al., they do not use a processor
implementing a subset of an ISA. They rely on soft-core processors like the Altera Nios or
extensible processors like the Tensilica Xtensa, which is presented in Section This allows
them to find out the critical path within the control flow graph of a given code and to implement
a critical instruction in hardware instead of software. Of course, this alternation of the resulting
assembler code also influences the timing behavior and may reveal a new critical path or another
worst-case scenario. Yu and Mitra used a heuristic approach for choosing which instructions are
going to be implemented in hardware. The resulting problem was formulated as an integer linear
program. The authors could show that the WCET performance was improved by up to 39 % in
comparison to the original solution.

Beside the dynamic extension of given instruction sets, there also exist evaluations for static
modifications. Two examples using the SPARC V8 architecture were realized by Tillich et al.
at Technical University of Graz. In [TGO06, IGTSQ7], they tried to improve the performance of
standard encrypting algorithms like AES by implementing commonly used operations as hard-
ware instructions. The additional instructions have to be inserted manually by inline assembler.
The authors showed that the execution time as well as the resulting code size of the encryption
algorithms could be reduced rigorously.

One major target of the SPARC V8 instruction set extensions described in this thesis is to
simplify the WCET analysis of given algorithms, e.g., by reducing branches, and to improve the
temporal predictability. Nevertheless, the resulting average and worst-case performance, code
size and implementation effort for hardware modules must not be neglected. The following
subsections present the syntax and semantics of the additional instructions, their possible opcode
encoding and suggestions for a hardware implementation.

4.3.1 Conditional Move and Conditional Select Instructions

The idea to provide a conditional move or a conditional select instruction is based on multiple
reflections: First, this kind of instruction is the minimum requirement to transform existing algo-
rithms into a single-path variant. Second, the SPARC V9 instruction set provides a conditional
move instruction. As the used LLVM compiler framework also provided passes to generate as-
sembler output for SPARC V9 targets, these instructions only had to be slightly adapted. Third,
the LLVM intermediate representation (IR) language provides a conditional select (selcc) in-
struction, meaning that the translation process may be implemented easily. Moreover, many
current processors support conditional moves (refer to Chapter 2, indicating that it is not exces-
sively complicate to implement them in hardware.

Figure [4.2] shows the assembly language syntax used in the current thesis. In contrast to the
SPARC V9 conditional move instruction, it is only possible to specify integer condition codes
(floating point operations have not been considered at all). If the specified condition is met,
the contents of the source register are copied to the destination register. Otherwise, it is left

44

mov [ec] src, dst

Figure 4.2: Conditional move instruction: cc is replaced by a condition code, src and dst repre-
sent the source and the destination register, respectively.

untouched. Such, it is possible to remove conditional branches in case of if-then-else structures
as shown in Code Example In most cases, the compiler recognizes this kind of selections
automatically and uses the corresponding instruction of the LLVM IR language. Thus, the as-
sembler code generator only needs to replace the select instruction with the newly introduced
SPARC V8 instruction. A possibility to enforce the compiler to make use of conditional move
or select instructions is to write the code in a SSA (single static assignment) similar manner as
has been done in the comments of the SPARC assembler in Code Example[d.1]

Code Example 4.1 A simple if-then-else construction in C may be translated without using
conditional branches when a movcc instruction is available.

if (a == b) {
c =1;
} else {
c = 2;
}
or %90, 1, %i0 ' ¢l = 1;
or %g0, 2, %i3 I c2 = 2;
subcc %11, %$i2, %g0 ! cc = (a == b);
mov [ne] %i3, %i0 ! ¢ = cc ~1 c2;

To implement the conditional move instructions into the existing opcode of the SPARC V8,
the unimplemented opcodes of format (2) were used: As can be seen in Figure there are
three bits available for the op2 field, resulting in eight different instructions of which five are
currently in use. Thus, up to three additional instructions can be defined. For the evaluation of
the benchmarks within this thesis, the opcode shown in Figure [4.3| was used for the conditional
move instruction. The bits for both source operands and the integer condition codes conform
to opcode format (2) and (3): The two most significant bits are set to 0 to identify a format
(2) instruction. The op?2 field is set to the constant value 3 in decimal representation as this
value is currently not used by any other instruction. Bits 25 to 28 are used for the integer
condition codes like in conditional branch instructions. As the conditional move instruction in
the presented variant is not very complex, it would also be possible to implement checking the
condition codes of the floating point or of the co-processor.

The hardware implementation of the conditional move instruction is quite simple, because it
only needs additional logic elements for the instruction decoding stage and a multiplexer for the
selection of the corresponding register. Figure[4.4]shows a possible realization in hardware. The
presented approach does not rely on a specific pipeline model, but it is assumed that the opcode
has previously been decoded — indicated by the dashed line on the left hand side — and that there

45

00 11 200000000
2 (e 0

31 29 28 24 21 18 13 4 0

Ay

s 00000000000005000000002050077 rS2=r
00000000000020000005007007007
020220020220220000020220220207

Figure 4.3: Opcode proposal for the conditional move instruction. Unused bits have been
crossed out.

is some write back mechanism which saves the result in the corresponding register. The integer
condition code (icc) of the conditional move is evaluated with respect to the currently set flags
of the processor state register (psr). The output of this operation (sel) serves as select signal for
the multiplexer. The result and the address of the destination register (rd) is forwarded to the
next pipeline stage, which might be implemented by another hardware module.

from instruction decode to write back

| icc |ICC psr 1
‘ Evaluation PSR 1
! sel !
| 2-MUX !
. rsl . opl l
———— Register result
2 | op2

; ile !
| rd |

Figure 4.4: Possible block layout of the conditional move instruction.

As has already been mentioned, the LLVM IR language provides a conditional select in-
struction which also allows us to use signed immediate values for both source operands. Con-
sequently, translating them to conditional moves could involve a number of additional copy
instructions. The opcode of the conditional move instruction presented in the current thesis does
not need all available 32 bits. These are the reasons why an alternative instruction has also been
implemented: the conditional select instruction. The assembler code syntax is shown in Fig-
ure 4.5} Depending on the condition code and the set flags of the processor state register, the
value of one of the two source operands is copied to the specified destination register. In case the
condition is met, the first source operand will be moved, otherwise the second one. In contrast to
the conditional move instruction, the second source operand does not need to be identical with
the destination register. Moreover, both source operands may be signed immediate values.

Code Example {.2] shows the resulting assembler code when using a conditional select in-
struction. The underlying C code is identical to the one used in Code Exampled.1] Note that the
version involving conditional moves needs two additional initialization instructions to copy the

46

sel[ce] srcl, src2, dst

Figure 4.5: Conditional select instruction: cc is replaced by a condition code, srcl and src2 may
be a register or a signed immediate value and dst is the register, the selected value is saved to. In
the presented implementation, it is not possible to use an immediate value for src/ and a register
for src2 at the same instruction.

immediate values into temporary registers. These steps may be omitted for conditional selects if
the immediate values do not exceed the boundaries presented in the upcoming paragraphs.

Code Example 4.2 A simple if-then-else construction in C may be translated without using
conditional branches when a se 1 cc instruction is available. Moreover, in simple cases, there is
no need to copy immediate values to temporary registers.

if (a == b) {
c =1;
} else {
c = 2;
}
subcc %11, %$i2, %g0 ! cc = (a == b);
sel[e] 1, 2, %i0 ! ¢ = cc 2;

There are three different types of the conditional select instruction: The first type is used
when both source operands are registers, the second type when the first source operand is a reg-
ister and the second operand an immediate value and the third type when both source operands
are immediate values. As can be seen in Figure [4.6] nearly all available bits could be exploited.
Moreover, the boundaries for the immediate values of both source operands are given: If the first
source operand is a register, the second source operand may be an immediate value from —1024
to +1023. If both source operands are immediate values, they can only be from —128 to +127.
Note that there is one remaining bit combination for the type field (ty = 3). It could be used if
the first source operand is an immediate value while the second is a register. This variant has not
been implemented due to the facts that it needs additional hardware and that it does not provide
additional functionality.’

Although the introduction of the conditional select instruction might not involve the intro-
duction of additional complex hardware modules at the first glance, the instruction decoding is
more sophisticated than for other instructions: The used bits for the first source operand register
(rs1) differ from format (3). Moreover, the instruction introduced two new data types, namely
signed immediates with 8 and 11 bits. Finally, the integer condition codes (icc) are saved in
another bit field than it is the case for format (2) instructions. Unfortunately, there does not ex-
ist an ideal solution for this encoding problem, because other implementations would introduce

5If the first operand has to be an immediate value, the source operands can be switched and the selection condition
has to be negated. This could easily be done by the compiler or the assembler.

47

Type 1 (ty = 0): Both source operands registers.
00] td Joi1]00] icc | w1 AT w2 |

31 29 24 21 19 15 10 4 0

Type 2 (ty = 1): First source operand register, second immediate value.

[00] rd Jotr]O1] icc [sl | simm11 |
31 29 24 21 19 15 10 0
Type 3 (ty = 2): Both source operands immediate values.

(00 rd Jo11[10] icc | simm8 [simm8 |
31 29 24 21 19 15 7 0

Figure 4.6: Opcode proposal for the conditional select instruction. Unused bits have been
crossed out. The type field (bits 20-21) determines the type of the source operands.

complexity for other bit fields. Thus, extending an existing ISA by a conditional select instruc-
tion requires far more additional hardware than extending it by a conditional move instruction.
Whether this additional hardware cost can be justified will be analyzed in Chapter [6]

4.3.2 Predicated Instructions

Predicated or conditional instructions are based on the idea that an operation is only executed if
a certain condition is met. A most basic variant is available in many instruction sets: a skipcc
instruction. It means that the subsequent instruction is only executed if the specified condition
code applies. Another type of predicated instruction has just been presented: the conditional
move and conditional select. ISAs which only provide a few predicated instructions are called
partially predicated instruction sets. If every instruction is executed based on a specified condi-
tion, the ISA is called fully predicated instruction set as defined in [MHM™95]|.

Predicated instruction sets have been known since the first computers, but have not been in
use for a long time. At the beginning of the 1990’s, when instruction-level parallelism (ILP)
was a current topic of research, predicated instructions were subject of compiler generators
again: In [PSO1], Joseph Park and Mike Schlansker explain how a predicated instruction set
may help scheduling algorithms for parallel instruction execution. The main idea is that two
disjoint paths of the control flow graph may be executed in parallel because they do not depend
on each other. Unfortunately, the hardware of a processor cannot easily determine which paths
are disjoint. However, if the paths may be identified by mutually exclusive conditions specified
for each instruction, both paths may be easily identified. In [MHM™95|, Mahlke et al. show
the difference between a partially and a fully predicated instruction set and the impact on code
generators, path analysis and instruction level parallelism. Nevertheless, most research in the
field of predicated instruction sets has not been done in the context of WCET analysis and real-
time systems.

In principle, there exist two possibilities to implement the conditions or predicates for a fully
predicated instruction set: Each instruction is executed conditionally based on condition codes
or based on a separate predicate register. Both variants exist and have been implemented; the

48

first one is used in the ARM instruction set, the second one is implemented by the ISA of the
Intel Itanium processor. Code Example {4.3] shows the difference for a SPARC V8 instruction
set extension: The first variant is based on condition codes, the second one on a predicate reg-
ister. To save the current condition to a specified register, an additional predset instruction
is necessary. Although the first variant seems to be more efficient at the first glance, the second
one is more flexible when dealing with nested conditions, because they can easily be saved to a
predicate register. Unfortunately, providing a fully predicated instruction set requires additional
bits for each instruction, which have to be saved in the opcode. Of course, this code size over-
head may be compensated by the compiler by saving branch instructions etc. Howsoever, this
involves adaptations to existing compilers and may be another reason why many current ISAs
do not provide a fully predicated instruction set.

Code Example 4.3 A more complex if-then-else block may be easily translated to assembler
code if the instruction set supports a fully predicated instruction set based on integer condition
codes (upper assembler code) or on a separate predicate register (lower assembler code). The
predicate registers may be recognized by the leading p (e.g., $p0). The condition, when an
instruction may be executed, is given in the square braces. For the second variant, an additional
flag is needed to check whether the predication register has to be set (flag is t) or cleared (flag
is).

if (a == b) {
c =a + b;
} else {
c =a - b;
}
subcc i1, %i2, %g0
add[e] %il, %12, %io0 ! ¢ = (a ==Db) ? (a + b)) : c;
sub[ne] %il, %i2, %i0 ' ¢ = (a !l=Db) ? (a b) : c;
subcc %11, %$i2, %g0
predset [e] $p0
add[%$p0] [t] %11, %i2, %10 ! ¢ = (a ==Db) ? (a + b) ;
sub[%$p0] [£f] %il, %12, %i0 ! ¢ = (a!=b) ? (a-b) : c;

Although the LLVM compiler has been adapted to code generation of fully predicated in-
structions within the context of this thesis, the current implementation of the assembler and
the simulator do not support them. This is due to the huge amount of adaptations which are
necessary when the current opcode formats of the SPARC V8 should support fully predicated
instructions. Nevertheless, a solution to evaluate the principle of predicated instructions has
been found and is presented in the following section.

4.3.3 Predicated Blocks

A possibility to extend the existing SPARC V8 instruction set to support predicated instructions
is to introduce so-called predicated blocks. The idea is based on the ARM thumb instruction set,

49

which offers an instruction predicating the following four instructions (see Assembler Code[2.3]
in Section[2.2.5]). To be more flexible and provide the functionality of a fully predicated instruc-
tion set, the following instructions have been introduced: When providing predicated instruc-
tions based on integer condition codes, there is only need for a begin and an end instruction.
When dealing with predicate registers, one instruction to set and one to clear them is needed
additionally.

predbegincc]
predend

Figure 4.7: Predicated blocks based on integer condition codes: All instructions following a
predbegin instruction will be conditionally executed based on the condition code specified in
the cc field.

The syntax of both needed instructions for the first variant is given in Figure A predi-
cated block always begins with a predbegin instruction and may be either ended by another
predbegin or by a predend instruction. There are some restrictions on the instructions
which might occur within predicated blocks: An instruction setting the flags of the processor
state register may cause undefined behavior. Although it seems quite reasonable that there is no
real need for a compare instruction to be within a predicated block, the flags of the processor
state register are also touched by an add operation of two 64-bit integers. This restriction is irrel-
evant for predicated blocks relying on predicate registers as will be described later. Furthermore,
branch instructions of any kind should be avoided.

from execute

next psr

next icc :
Tble) Pred State icc |ICC psr PSR
—a) Register Evaluation
| bl
| nd Leneble

result | o0t

File

Figure 4.8: Possible block layout of predicated blocks based on integer condition codes.

The reason for this can be seen in Figure .8 which shows the block diagram of a possible

50

hardware implementation: It is assumed that the result of the current operation and the address
of the destination register are available, e.g., from a preceding execute stage. They are denoted
result and rd in the figure. If the current instruction is predbegin, the condition codes for all
following instructions have to be saved. This is done by the two signals next icc and enable. A
predend instruction may easily be implemented by setting the next icc signal to always. Based
on the icc signal and the current processor state register (psr), an enable signal is generated which
controls whether the result and the new value for the processor state register (next psr) will be
written. To guarantee that all instructions are executed by default, the icc signal has to be set to
always initially.

[00[B] icc | 101

31 29 28 24 21 0

Figure 4.9: Opcode proposal for predicated blocks based on condition codes. Unused bits have
been crossed out.

Figure[4.9)shows the opcode format for the predicated block instructions based on condition
codes: op?2 is set to the constant decimal value 5, which is currently not in use by any SPARC V8
instruction. The integer condition code of the predbegin instruction is saved in bits 25 to 28,
which is conform to the format of conditional branch instructions. Bit 29, labeled B in the figure,
is used to determine whether it is a predbegin (B = 1) or a predend (B = 0) instruction.
An alternative could be to use the integer condition code always to finish a predicated block.
Thus, predend and predbegin [a] would be equivalent.

When condition registers are used instead of condition codes, additional instructions and
hardware modules are necessary. A predicate register should be capable to save at least three
different states: one true state, meaning the predicate is set, one false state, indicating that a
condition is not fulfilled and a clear state which is necessary to initialize the register and to
implement nested if-then-else structures (see Section [5.3.2] for details). Consequently, two bits
for each predicate are needed: A conditional predset instruction sets the true bit and clears
the false bit if the condition is satisfied. Otherwise, the true bit is cleared and the false bit is set.
A predclear instruction clears both bits. The instructions within a predicated block are only
executed if the specified true or false bit of the predicate register as defined by the predbegin
instruction is set (refer to the first line of Figure 4.10). Consequently, if a predicate register is
cleared and is not set by the conditional predset instruction, neither the true, nor the false
predicated block will be executed.

For the simulator, a 32-bit predicate register has been used, meaning that there are 16 differ-
ent predicates available. In the assembler code, they are labeled from $p0 to $pl15. Although
only four bits are needed to address all 16 registers, the existing five bit fields for the destina-
tion and source 2 registers of format (3) have been used as can be seen in Figure The
rdp field represents the number of the destination predicate register and is identical to the rdp
specified in the assembler code instructions. The predicate source register rsp as needed by the
predbegin instruction is saved in bits O to 4. For the conditional predset instruction, the
condition code is saved to bits 16 to 19. The tf flag of the predbegin instruction will be saved

51

predbegin [rsp] [tf]
predend

predset rdp
predset [ce] rdp
predclear rdp

Figure 4.10: Predicated blocks based on predicate registers. rsp and rdp are predicate registers,
representing the condition (rsp) or the destination (rdp) of an instruction. tf may be either t,
indicating that the corresponding predicate register has to be set, or £, if the predicate register
has to be cleared. cc is the condition code upon which the predicate register will be set.

in bit 5. To distinguish between the different predicated block instructions, the type field is used:
for predbegin, tyis 0, for predend, tyis 1, and for predset and predclear, tyis 2. An
unconditional predset?® is indicated by the condition code always, a predclear by the con-
dition code never. In all other cases, the condition code is evaluated and the corresponding bits
of the predicate registers are set. Code Example [.4] shows the practical use and the difference
between both predicated block variants.

(00] rdp [101 [ty]| icc [

31 28 24 21 19 15 5 4 0

Figure 4.11: Opcode proposal for predicated blocks based on predicate registers. Unused bits
have been crossed out.

Concerning a possible hardware implementation of predicated blocks with predicate regis-
ters, it has to be said that the instruction decoding is more complex than the variant only relying
on integer condition codes: The type field has to be evaluated additionally and the icc field has
another position than in any other instructions. Moreover, the involved register addresses de-
scribe another register file which also has to be accessed in an operand fetch and write back
stage. Besides these concerns, the hardware implementation might be quite similar to the block
layout shown in Figure[d.8] Instead of saving integer condition codes, the states of predicate reg-
isters are evaluated and the processor state register is only needed for evaluation condition codes
in case of a predset instruction. Consequently, it is possible to have instructions touching
the flags of the processor state register within predicated blocks, because the condition, when a
block is executed, is saved separately.

4.3.4 Hardware Loops

Some modern processors offer special hardware loop instructions like the Blackfin and TriCore
processors (see Sections [2.1.5]and[2.4.3). By such hardware loops, it is possible to have a perfect

% An unconditional predset sets both, the frue and the false bit of a predicate register.

52

Code Example 4.4 Conversion of the same C code as used in Code Example 4.3|to predicated
blocks. The first variant uses predicated blocks based on integer condition codes, the second
is based on predicate registers. Note that in the second variant, the predclear instruction is
not necessary for the presented example, but may be important for nested if-then-else structures.
Although the code size is greater than that of a fully predicated instruction set, the needed mod-
ifications of hardware modules and adaptations to an existing assembler are far less complex.
Beside from the code size and the resulting increased cycle count, the fully predicated instruction
set provides the same features as the block variants.

subcc %$il, %i2, %90

predbegin|e]

add $il, %i2, %io0 ! ¢ = (a ==D>b) ? (a + b) : c;
predbegin[ne]

sub $il, %i2, %i0 ' ¢ = (al!=Db) ? (a - b)) : c;
predend

predclear %p0

subcc %11, %i2, %90

predset [e] %p0 ! p0 = (a == b);
predbegin[%p0] [t]

add %11, %i2, %i0 ! ¢ = (p0) (¢ b) c;
predbegin[%p0] [f]

sub %11, %i2, %i0 I ¢ = (Ip0 (a — b) c;

branch prediction of conditional jumps usually occurring at the tail of a loop. Although the ISA
of the TriCore processor also allows branch instructions within a hardware loop, this solution
does not seem to be adequate for WCET analysis.

In [LSMA99], Lee et al. implemented a new prediction algorithm for so-called short back-
ward branches instructions. The authors analyzed many embedded programs and found out that
PC-relative backwards branches within 16 instructions are one of the most common scenarios
for loops. They introduced two additional instructions, one for short backward and one for short
forward branches. The authors gave a proposal for an opcode implementation and showed that
it is possible to implement the new instructions in hardware. Moreover, they evaluated the per-
formance including these instructions in comparison with hardware loop instructions similar to
the Infineon TriCore processor. Although their solution could improve the average performance
by about 7 %, the performance when including native loop instructions was even better.

One possibility to simplify the WCET analysis of a given program is to reduce branches,
which correspond to edges of the control flow graph. A hardware loop instruction which au-
tomatically decrements an index register and performs a conditional jump is an easy means to
reduce the number of branches. The chosen implementation is similar to the hardware loop in-

53

hwloop init label, %loops
hwloop init label, %loope
hwloop init src, %$loopb
hwloop start

Figure 4.12: Instruction proposal for hardware loops.

struction of the Blackfin processor: Figure d.12]shows the assembler syntax of the implemented
instructions. There are three registers which contain all necessary information of an active loop:
%$1oops (loop start) saves the absolute address of the first instruction within the loop. Although
this information could be automatically retrieved from the current PC value, it provides the user
more flexibility and is easier to read. More efficient implementations could spare this instruc-
tion. $1loope (loop end) saves the absolute address of the first instruction after the loop. Both
are initialized with a label, which will be replaced with a PC-relative value by the compiler. The
%$1loopb (loop bound) register saves, how many times the loop will be executed. The source
operand may either be a 22 bit unsigned immediate (allowing loops to be executed up to 222 — 1
times) or an integer register containing the value. Such, it is possible to make use of greater loop
bounds up to 32-bit values. Finally, there is a hwloop start instruction, which informs the
processor that all loop related registers have been initialized correctly. Code Example§.5|shows,
how these instructions may be used to implement a simple for-loop in assembler.

Code Example 4.5 Implementation of a simple for-loop in assembler featuring native hardware
loop instructions. Note that the loop body has to consist of two instructions at least. This is the
reason why the nop instruction has been inserted after the add operation.

for (i = 0; i < 10; i++) {
sum = sum + 1;

}

hwloop init .loopbegin, $%$loops
hwloop init .loopend, %loope
hwloop init 10, %loopb
hwloop start
.loopbegin:
add %10, 1, %i0 ! sum = sum + 1;
nop
.loopend:

Figure[4.13|shows a possible opcode implementation of the presented hardware loop instruc-
tions. Again, an unused value of op2 of format (2) has been used. Like all branch instructions,
the lower 22 bits are used to save label addresses relative to the current program counter, i.e.,
relative to the current instruction. Bits 25 to 29 are used to specify the loop instruction type: the
first two bits may be used to identify multiple loop modules (e.g., for nested loops). They are
currently not needed and set to O by default. The remaining three bits determine the type of the

54

five loop instructions: 000 indicates that the $1oops register will be initialized, 001 indicates
that the $1 oope register will be initialized and 01« that the $1oopb register will be set. If the
least significant bit is O for the latter case, the 22 bit immediate value of the opcode will be used,
otherwise, the content of the register specified in bits 14 to 18 is copied. The hwloop start
instruction is encoded 100.

[00 [loopins | 001 | simm22 |
31 29 24 21 0

loopins = 00011: source operand of hwloop init %loopb is aregister
[00] 00011 [001 PZ777] sl

////////

31 29 24 21 18 13 0

Figure 4.13: Opcode proposal for hardware loop instructions. Unused bits have been crossed
out.

A possible implementation in hardware is shown in Figure All hwloop init in-
structions save the specified values into the corresponding loop registers. They are labeled loops
and loope in the Figure. The value of the loop bound is initially saved in the loopcounter register.
The HWLOOP State register is set active by the hwloop start instruction. In every cycle, if
the register is active, the value of the loope register is compared to the address saved in the next
program counter. If they are equal, two enable signals are triggered: one to copy the contents of
the loops register to the next program counter and another to decrement the loop counter. If the
loop counter equals zero, the HWLOOP State register will be set to idle. As the value of the next
program counter is set,” a hardware loop has to consist of two instructions at least. Generally
said, a hardware loop instruction is just an implementation of a perfect branch prediction mech-
anism. Such a mechanism exists, because the loop boundaries are known at runtime and can be
used to determine whether a branch will be taken or not.

—){ next PC | | loope |

is equal

— —3
@E(— gt\/}/at:oop —>{ -1 ‘ ’Ioopcounter
T 1
1

loops

Figure 4.14: Possible block layout of a hardware loop module.

"The same is done by all branch instructions of the SPARC V8.

55

CHAPTER

Impacts on Code Generators

This chapter gives an overview of how the instruction set extensions presented in Section [4.3|
may be added to the code generating functions of an existing compiler framework. The LLVM
compiler backend has been chosen for the reasons given in Section 4.1} The structure of the
chapter is the following: First, the basic principles of LLVM will be presented in Section
The subsequent sections will introduce algorithms allowing automatic code generation for the
new additional instructions. These algorithms do not rely on the specifics of the LLVM compiler
framework such that they may also be implemented for any other code generator. The source
code of the new LLVM backend used for the benchmark evaluation of this thesis is available on
GitHub (https://github.com/cgeyer/1llvm-cbqg).

5.1 The LLVM Compiler Framework

The so-called Low Level Virtual Machine started as a research project at the University of Illi-
nois and was initiated by Chris Lattner and Vikram Adve. Originally, it was a tool for compiler
optimization passes, but changed to a complete compiler framework over the years. In Novem-
ber 2003, the first stable version was released. By now (January 2012), the current stable version
is 3.0, which was released in December 2011. The additional compiler passes of the current the-
sis were implemented on LLVM 2.9. LLVM is available under an open source license and may
be freely adapted and redistributed. The main features of the first version are listed in [LAO4];
all information about current versions is available online, see [LLV11]].

5.1.1 Workflow for Creating Assembler Output

In [Lat11], Chris Lattner describes the basic principles of multi-phase compilers and the chosen
implementation in LLVM: Usually, there is a first phase or pass which translates a high level
programming language into an intermediate code representation. This representation may be
subject to several optimization passes and serves as input for the backend phase. The backend
phase is target dependent and creates assembler output for the specified processor. Before the

57

https://github.com/cgeyer/llvm-cbg

actual code is generated, there might be additional target specific optimization passes. Hence,
implementing code generation for a new programming language is quite comfortable because all
supported processors of the provided backend already exist as output targets. Moreover, when
writing a compiler for a new ISA, only an additional backend pass has to be implemented. All
supported high level programming languages may afterwards be translated into the newly added
assembly language. Figure[5.1|shows the basic principle of the translation workflow when using

the LLVM compiler framework.

Figure 5.1: Overview of the LLVM workflow: A source file of a supported high level program-
ming language is translated by the LLVM frontend into the LLVM intermediate representation
(IR) language. This is used as input for the LLVM backend passes to create assembly or binary
output for a supported target platform. The workflow sketch is based on Figures 11.3 and 11.4

in

LLVM frontend

C Frontend

Fortran Frontend

Ada Frontend

N

Optimizations

LLVM IR

[Latl1].

One advantage of LLVM is its flexible architecture, which might be easily extended: All
translation and optimization processes may be interpreted as passes which simply take a given
input and might produce a new output. Dependent on the given target platform, there might be
additional passes, e.g., if one implementation of a processor supports special instructions which
another does not have. All these passes are summarized as optimization passes in the backend of
Figure[5.1] Such, it is possible to provide a generic backend for one processor family, e.g., x86,
and to choose the correct instructions of the corresponding target platform, e.g., an Intel Core 2

Duo processor.

58

The just described pass architecture of LLVM is an ideal starting point for implementing

LLVM backend

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

X86 Backend

—

X86 Optimizations

Assembler
File

ARM Backend — ARM Optim.
SPARC Backend — SPARC Optim.
—

the code generating functionality for the additional instructions presented in the current thesis:
LLVM provides features to define new subtargets of a generic architecture such as SPARC. A
subtarget only supports a subset of all available instructions. Moreover, it is possible to provide
passes which will only be executed for specified subtargets. All presented code generating algo-
rithms of the current section are based on passes which are specific for a subtarget implementing
the SPARC V8 ISA with one or multiple instruction set extensions. They analyze and change
the current control flow graph, insert new and delete redundant instructions. As LLVM passes
are quite generic, the existing delay slot filling pass of the SPARC code generating backend is
fully compatible with the newly implemented passes.'

5.1.2 Definitions

The current section gives an overview of the most commonly used terms when implementing
LLVM passes. Although an official glossary does not exist, these definitions are based on the
LLVM documentation [LLV11]] and the personal experience of the author.

Frontend The LLVM frontend is responsible for translating a given high level programming
language into LLVM IR language. The frontend used in the current thesis is the 1 1vm-gcc,
creating assembly output.

Backend The LLVM backend is responsible for translating a given LLVM IR code into assem-
bly code of the specified target processor.

Target The Target is a concrete implementation of an LLVM backend and is usually generic.
LLVM currently supports multiple targets such as x86, ARM, PowerPC and SPARC.
Some are still experimental and are not officially maintained.

Subtarget An LLVM target may provide multiple features, such as floating point operations,
SIMD instructions, etc. A subtarget aggregates some of these features and has to be
specified for a given architecture when creating assembly language output with the LLVM
backend.

Target Description File LLVM provides a generic approach to define registers, instructions
and special features of a specified target. These are all saved in a target description file,
which will be translated into C++ classes. Although this mechanism is quite powerful,
some features cannot be described and have to be implemented natively in C++.

Basic Block A basic block in general meanings is a vertex of the control flow graph and has
one defined entry and one defined exit point. In high level programming languages, basic
blocks are usually delimited by special instructions like end or symbols like curly braces.
A machine basic block (MBB) is a basic block in a target specific assembly language.
The entry point may be either a label as defined by branch instructions or a so-called fall-
through. This is the case when the preceding machine basic block ends with a conditional

! As described in Section[4.2.2] it is necessary to insert delay instructions after all kind of branches. This is done
in the delay slot filling pass of the LLVM SPARC V8 backend.

59

jump. In case the branch is not taken, the succeeding machine basic block is entered. The
exit points of machine basic blocks are all instructions which may be seen as terminators:
These include all kind of branches and return operations.

Pass As has already been mentioned, the whole translating process in LLVM is implemented
by several passes. There are various kinds of passes which define when they might be
executed and what they are allowed to change. The most important pass for late optimiza-
tions is a function pass, which operates on machine functions. Machine functions consist
of multiple machine basic blocks and cover all instructions of the corresponding function
of the high level programming language. Although it is possible to change nearly every-
thing within the given function, it is not possible to get access to other machine functions
or to modify global variables etc.

5.2 Implementing Code Generation for Conditional Move and
Conditional Select

Extending the code generator of the existing SPARC V8 to support conditional moves and con-
ditional selects as presented in Section4.3.1 was quite simple for the following reasons:

(1) The SPARC backend supports code generation for the SPARC V9 ISA, which provides a
conditional move instruction. This conditional move has nearly the same assembler syntax
as the one used in the current thesis.

(2) The LLVM IR language has a conditional select instruction, which can be easily mapped
to a conditional move or conditional select instruction.

Code Example 5.1 LLVM table description definition of the conditional move instruction.

1 // conditional move instructions

2 let Predicates = [HasMovCC], Uses = [ICC],

3 Constraints = "$src2 = $dst" in {

4 def MOVcc_rr : Pseudo<

5 (outs IntRegs:S$dst),

6 (ins IntRegs:$srcl, IntRegs:$src2, CCOp:$cc),
7 "mov[$cc] _$srcl, $src2",

8 [(set IntRegs:S$dst,

9 (

10 SPselecticc IntRegs:$srcl, IntRegs:$src2,
11 imm: $cc

12)

13)]

14 >;

15 }

Hence, only small adaptions had to be implemented: The second source operand of condi-
tional moves is also the destination operand, which may be defined by a constraint in the LLVM
table description definition as can be seen in line [3|of Code Example 5.1} The conditional move

60

has one output register $dst, two input registers $srcl and $src2 and an immediate value
representing the condition code $cc. The conditional move is a Pseudo instruction, meaning
that there does currently not exist an opcode definition and that there are no special constraints,
e.g., concerning the supported number of operands. Line [7] shows the syntax definition for the
assembly language. All registers and immediate values will be replaced by the actual used values
(e.g., $src2 by %$10). The subsequent part represents the syntax tree which will be substituted
by the current instruction if the specified pattern matches.

The definition for conditional selects is quite similar, but there exist several variants: One
with two registers as source operands, two with one register and one immediate value as source
operands and one with two immediate values as source operands. Moreover, the bit width of the
immediate values has to be specified. The variant in which the first source operand is an im-
mediate value and the second one is a register is not supported by the current opcode represen-
tation. Nevertheless, this operation may be easily emulated by switching both source operands
and negating the condition code of the conditional select instruction. Algorithm [5.1] shows a
possible implementation of this swapping function.

Algorithm 5.1 Swapping algorithm for conditional select instructions.

1 function swap(instr selcc) {

2 if (selcc.srcl.type = immediate) {

3 change (selcc.srcl, selcc.src2);

4 selcc.conditionCode := —selcc.conditionCode;
5 }

6 }

5.3 Implementing Code Generation for Predicated Instructions
and Predicated Blocks

Implementing code generation for predicated instructions is quite similar to code generation for
predicated blocks: The basic idea is to find machine basic blocks which will only be executed if
a certain condition is met. In case of a fully predicated instruction set, that condition is added to
every instruction. For predicated blocks, it is only necessary to insert a conditional predbegin
instruction before the first predicated instruction and a predend instruction after the last one.
Thus, identifying basic blocks which might be predicated involves the same procedure for both
variants.

5.3.1 If-then-else Elimination

In [PSO1]], Park and Schlansker presented a branch-elimination algorithm based on predicated
execution. It is based on the idea of program dependency graphs presented in [FOW&7]]. Their
main goal was to identify and merge branches with the same predicate such that branches de-
pending on different conditionals can be executed in parallel. This algorithm is known RK algo-
rithm and is the basis of many other branch eliminating algorithms. Within this thesis, we will

61

restrict branch elimination only to some basic concepts in order to keep the additional compiler
passes simple.

The basic idea of introducing conditionally executed machine basic blocks is to eliminate
if-then-else branches and if-branches. Figure [5.2]shows the usual transformation of the original
C code (left part) to assembler code (middle part). The condition is checked by the first machine
basic block (subcc) which is terminated by a conditional branch (b [cc]). If the condition
is not satisfied, the conditional jump will not be taken and the else block (B) is executed. It is
terminated by an unconditional branch instruction to the first basic block after the if-then-else
structure (ba .end). In case the condition is true, the then block (2) is executed, which is
located between block B and the end block. The resulting control flow graph is shown in the
right part of the Figure. The presented solution is the implemented transformation algorithm
of the LLVM code generator for SPARC targets. It is the basis to reliably identify if-then-else
structures in the CFG of a given program.

C Code Assembler Code Control Flow Graph
if (cond) { subcc ...
A b[cc] .true ‘
} else { B
B ba .end —cond
} .true:
A e cond
.end:

Figure 5.2: Translation process of an if-then-else structure to assembler code and the resulting
control flow graph. Each vertex corresponds to a machine basic block in the assembler code.

When referring to Figure [5.2] again, an if-then-else-structure within a given control flow
graph may be identified when two vertices (a then block A and an else block B) are given and
the following conditions are satisfied:

(1) A and B only have one predecessor

(2) A and B have the same predecessor

(3) A and B only have one successor

(4) A and B have the same successor

(5) A and B are not identical

(6) B is the layout successor? of the predecessor of A and B

2A layout successor denotes the machine basic block which will be printed straight after the current machine
basic block. Although this condition is not needed to guarantee correctness, it avoids that multiple combinations of
the same basic blocks are identified as an if-then-else structure.

62

(7) A is the layout successor of B

Algorithm [5.2] shows the merging function, which is called if A and B meet the stated con-
ditions. The predicateBlock function in lines 4 and [5| may either insert predbegin and
predend instructions or add the corresponding condition to all instructions within the given
basic blocks. The whole transformation process is illustrated in Figure [5.3] Although there are
some restrictions on the used instructions within predicated blocks (no branches etc.), there is
no much additional checking necessary: Branches cannot be within the machine basic blocks by
definition (see Section[5.1.2)), such that the code generator only has to check for call instruc-
tions and operations changing the processor state register.

Algorithm 5.2 Algorithm for if-then-else elimination. MBB is the abbreviation for machine
basic block. A is the then block, B the else block. The function returns a newly created machine
basic block, which contains at least the if, then and else blocks.

1 function predicate (MBB A, MBB B) {

2 condition trueCond := getCondition (A. predecessor);
3 MBB newMBB ;

4 predicateBlock (A, trueCond);

5 predicateBlock (B, —trueCond);

6 if (|A.successor.predecessors|=2) {

7 newMBB := A.predecessor U A U B U B.successor;
8 } else {

9 newMBB := A.predecessor U A U B;

10 }

11 return newMBB;

12}

S
A
iiiii Yeond
| 757) }=cond
l
1

Figure 5.3: Branch elimination of an if-then-else control flow graph: The first three blocks may
be merged; block A gets predicated with cond and block B with the opposite condition. If A and
B are the only predecessors of the fourth block in the CFG, it may also be added, such that there
is only one remaining block (middle part). If the fourth is the branch target of other basic blocks,
it cannot be merged (right part).

63

Identifying a simple if-then-structure, i.e., an if-then-else-structure without an else branch,
requires some adaptations: Let A be the then block and B the end block, i.e., the block which
will be executed after A in any case. In this case, the following conditions have to be satisfied:

(1) A only has one predecessor

(2) A is the layout successor of its predecessor
(3) B is the only successor of A

(4) A and B are not identical

The merging algorithm for if-then-structures is quite similar to the merging of if-then-else-
structures, but only block A will be predicated. Like before, the end block (now B) may only be
merged if A is its only predecessor. The implemented LLVM pass iterates over all combinations
of machine basic blocks of a given function and checks whether the conditions for if-then-else
or if-then structures are satisfied. If they are, both basic blocks are passed to the corresponding
predicating function. Although there might be more sophisticated variants for identifying and
eliminating if-then-else structures, the presented algorithm is a correct and reliable solution and
works fine in practice.

5.3.2 Nested If-then-else Elimination

Although it is possible to transform nested if-then-else-blocks to single-path variants by only
using predicates based on condition codes, it is far easier to implement if predicate registers are
available. They have been presented in Section4.3.2]and are able to save the result of a compare
operation. As it is possible to use a conditional predset instruction within a predicated block,
nested if-then-else structures may be implemented easily: Code Example[5.2]shows blocks A and
B, which will only be executed if cond_1 is satisfied. Moreover, their execution also depends
on cond_2. If the algorithm presented in the last section tries to transform the corresponding
CFG, only A and B will be predicated, block C will still be a branch target. Nevertheless, when
analyzing the resulting new control flow graph, where the if-statement, block A and block B have
been merged, the algorithm can identify another if-then-else structure which may be predicated.
This is only possible if the inner condition cond_2 has been saved to a predicate register. The
resulting assembler code is shown in the lower part of Code Example [5.2]

Algorithm [5.3] shows the basic principle, how nested blocks may be eliminated: If any if-
then-else structure can be removed, the resulting new CFG will be analyzed again. If no branches
could be removed, the iteration stops. Figure [5.4] illustrates block merging of nested if-then-
else structures: In the first step, two such structures could be identified and get merged. The
remaining nodes of the resulting CFG may be merged again, such that there is only one machine
basic block left as shown in the right part.

Although the presented solution does not seem to be very complex, there is still one open
question when dealing with nested if-then-else structures: How does register allocation work
for predicate registers and when do they get cleared? Assuming, there is an iterative process for
nested if-then-else elimination as shown in Figure [5.4] the first predicate register $p0 is chosen
in the first step. The register does not need to be cleared, because the corresponding true and
false bits will be set in any case. In subsequent elimination iterations, the merged basic blocks

64

Code Example 5.2 Transformation of nested if-then-else structures to predicated blocks.

if (cond_1) {
if (cond_2) {
A;
} else {
B;
}
} else {
Ci
}

subcc ... !
predclear %p0
predset [eq] %pl
predbegin([%pl] [t]

subcc ... ! Test for cond 2
predset [egq] %pO0

predbegin[%p0] [t] ! if (cond 1 && cond 2)
A

predbegin[%p0] [f] ! if (cond 1 && !cond 2
B: ...

predbegin[%$pl] [f] ! if (!cond 1)

C: ...

predend

Algorithm 5.3 Algorithm for nested if-then-else elimination. Line [7| makes use of an adapted
version of Algorithm to eliminate branches. As long as if-then-else structures can be re-
moved, the resulting CFG is analyzed again.

1
2
3
4
5
6
7
8

9
10
11
12

function eliminateNestedBlocks (MachineFunction F) {
bool Change :=T;
while (Change) {
Change := _1;
for (MBB A, B € F) {
if (isIfThenElse(A,B) V isIfThen(A,B)) {
predicate (A,B);
Change = T;
1
}
}
}

65

Figure 5.4: Nested if-then-else elimination: The left part shows the original control flow graph.
Vertices B, B2 and B; are merged to a predicated block B/ as indicated by the dashed rectangle.
The transformed control flow graph is shown in the center. It may be transformed again, such
that finally only one machine basic block B{] remains.

have to be analyzed carefully: based on the used predicate registers of the inner blocks, the next
free register has to be chosen. Now, another problem arises: Assuming, there are two predicated
blocks depending on the same predicate register, e.g., B} and B} of Figure The original
inner nodes B; and Bj are both only executed if the true bit of $p0 is set. Consequently, if
B is executed and the true bit is set, the original Bs will also be executed although the outer
condition is not satisfied. One solution is to get all used predicate registers of the inner blocks
and to clear them globally, i.e., in a non-predicated block before it is firstly needed.

When using predicated blocks, the most simple solution for predicating them is to insert a
corresponding predbegin before the first and a predend after the last instruction. When
dealing with nested if-then-else structures, it might be that multiple predbegin or predend
instructions are inserted subsequently. Although this is semantically irrelevant, the runtime may
be dramatically increased by instructions which are completely redundant. Hence, an additional
optimization algorithm has been implemented. This algorithm is called after each if-then-else
elimination iteration. It is responsible for finding multiple occurrences of predbegin and
predend and simply removes all but the last instruction. The corresponding pseudo code is
given in Algorithm[5.4]

Algorithm 5.4 Optimization algorithm for predicated blocks by eliminating multiple occur-
rences of predend and predbegin instructions within the given machine basic block.

1 function removePredEnds (MBB block) {

2 for (Instruction i € block) {

3 if ((i=predbegin V i=predend) A

4 (i.next=predbegin V 1i.next=predend)) {
5 remove (i) ;

6 }

7 }

8}

66

5.4 Implementing Code Generation for Hardware Loops

The basic idea of code generation for hardware loops is quite simple: Every bounded loop which
is not exited early (e.g., by a break or goto instruction) shall be transformed into a hardware
loop. Although LLVM has so-called loop passes, which automatically iterate over all basic
blocks of a loop, it only allows adding and removing LLVM IR code. Thus, the code generation
has been implemented as machine function pass nearly at the end of the compiling process. Of
course, it is a simple task to find loops within the CFG of a given program, but determining the
entry and exit points of the loop is far more complex. Moreover, identifying loop bounds and
index variables is more difficult for multiple basic blocks or even nested loops. Consequently,
the current solution only supports loops covering a single machine basic block. If the code
generating pass for hardware loops is the only one active, the algorithm would be quite restricted,
because conditional branches within a loop cannot be recognized. Hence, it is recommended to
execute the branch elimination passes before the identification process of hardware loops. The
current implementation only uses low-level information based on target dependent assembler
code to identify loops, loop bounds and index variables. A better solution could include more
information from the high level programming language, such that the identification process of
nested loops may be easily supported.

The transformation of a given assembler code to hardware supported loops is done in mul-
tiple steps: First, all machine basic blocks which are successors of themselves are determined.
Afterwards, it is tried to find a loop index candidate. This is the register which is compared with
another value or register before the conditional branch at the end of the current machine basic
block. The index variable has to satisfy the following conditions within the current basic block:

(1) The compare instruction including the index register must be the last operation changing
the condition flags of the processor state register.

(2) The index register must only be incremented or decremented once.

(3) The index register must not be the destination register of any other instruction.

If all three conditions are met by the index register candidate, the loop bound may be found out
by taking the second source operand of the compare instruction. The loop bound may be either

(1) a constant value or
(2) aregister value if it is not used as destination of any operation.

It is assumed that the index variable is either incremented within [0, loopbound) or decremented
within [loopbound, 0). Consequently, the value of the loop bound candidate register may just be
moved to the corresponding hardware loop bound register. In case the conditional branch is less
than or equal, the loop bound register needs to be incremented before it may be saved. Algo-
rithm [5.5] shows the pseudo code implementation of the complete code generating process. The
insertHWLoop function is responsible for creating the loop header, initializing all hardware
registers as presented in Section [4.3.4] Moreover, if the current basic block is a branch target
of other basic blocks, all destination labels have to be set to the newly created machine basic
block. Line [6]is responsible to remove the conditional branch and compare instructions at the
end of the given machine basic block. If the index register is only used to determine the loop

67

exit condition and not used as source operand of any operation, it can safely be removed. This
is done in line[71

Algorithm 5.5 Generating assembler code for hardware loops.

1 function HWLoopPass(MachineFunction F) {

2 for (MBB block € F) {

3 if (block.next = block)

4 (indexReg, loopVal) := getLoopBounds(MBB);
5 insertHWLoop (MBB, loopVal);

6 removeConditionalBranch (MBB) ;

7 removelndexVar (MBB, indexReg);

8

9

0

1

68

CHAPTER

Evaluation of Instruction Set
Extensions

The last chapters presented extensions of the SPARC V8 ISA and how they may be implemented
in hardware. Moreover, a prototype implementation of code generating passes for the new in-
structions has been described. Until now, nothing has been said about the actual performance of
these extensions, i.e., whether they are useful at all and if there are some combinations of them
which are more effective than other ones. Consequently, the current chapter tries to answer the
following questions:

(1) Will an additional instruction be used at all by a given benchmark? If yes, how often does
it occur in the resulting assembler code?

(2) How many branches will be replaced by corresponding instruction set extensions, e.g.,
conditional move instructions or hardware loops?

(3) How does the programming style in a high-level programming language influence the
code generating process?

(4) Is the resulting code size less or greater than the original solution?

(5) Is the worst-case performance, i.e., the worst-case cycle count better or worse than the
original solution?

The source code of the SPARC V8 ISA simulator including the instruction set extensions is
available on GitHub (https://github.com/cgeyer/Sparc-V8-IS—extension-
simulator).

Section gives some basic examples how the newly introduced instructions change the
CFG of a given algorithm and their influence on code size and performance. It will be ana-
lyzed what kind of high-level C-Code structures cause the LLVM compiler to introduce the new
instructions and how the resulting assembler code looks like. To evaluate the best- and worst-
case cycle count of the presented code examples, they will be calculated manually. Finally, it
will be tried to identify useful combinations of instruction set extensions such that the resulting
assembler code shows fewer branches, less code size and a better worst-case cycle count.

69

https://github.com/cgeyer/Sparc-V8-IS-extension-simulator
https://github.com/cgeyer/Sparc-V8-IS-extension-simulator

Section|[6.2] focuses on the impact of the coding style in a high-level programming language
on the resulting assembler code if various combinations of instruction set extensions are enabled:
Four standard algorithms will be implemented in several variants to test whether the resulting
assembler code is a single-path solution and thus shows constant execution time for all possible
input data. Moreover, the code size and worst-case cycle count for multiple combinations of
the instruction set extensions will be evaluated. It will be shown that there is a single-path
implementation for nearly all analyzed algorithms which has a smaller worst-case cycle count
in comparison with a traditional implementation of the algorithm in case several instruction set
extensions have been enabled.

Section assesses the general performance of the newly introduced instructions: More
than 20 algorithms have been compiled and simulated on more than 10 different versions of
SPARC V8 processors with several combinations of instruction set extensions. The main goal
of this evaluation is to set up guidelines for future ISAs of time predictable processors by iden-
tifying combinations of instructions which show fewer branches, smaller code size and a better
worst-case cycle count than the original SPARC V8 instruction set for most of the evaluated
algorithms. Of course, there is no target which fits all needs perfectly. Nevertheless, most of the
presented solutions show much better worst-case performance for single-path algorithms while
having fewer branches than the assembler code of the original SPARC V8 target.

6.1 Manual Evaluation of Small Examples

6.1.1 Branch Elimination of Simple If-then-else Structures

One of the most common structures of usual programs are conditionally executed blocks. In a
high level programming language such as C, these blocks are often implemented as if-then-else,
or only if-then structures. Usually, these blocks will be translated into three different machine
basic blocks on assembler level, as can be seen in Code Example 6.1} The assembler code right
to the original C algorithm consists of a block checking the condition input > 5 which is
done in line[3] The original condition gets negated such that the subsequent conditional branch
to label . LBBO_2 (i.e., basic block 2) will only be executed if input is less than or equal
to (1e) 5. The then block is covered by lines[7|to [§] All in all, the solution for the original
SPARC VS8 instruction set generated by LLVM consists of four basic blocks, one conditional
and one unconditional jump. Calculating the worst-case path reveals that block 1 consists of two
instructions and consequently takes more cycles to execute than block 2.

Although this is just a trivial code example, which is not quite realistic, it shows how much
influence modifications of an ISA may have on the resulting assembler code: The first improve-
ment concerning path analysis is to introduce predicated blocks. For simplicity, we currently
restrict them to integer condition codes. The assembler code shown in the left part of Code
Example only consists of one basic block and does not have any branches. Analyzing the
code size shows that it has exactly the same size as the original solution, namely 40 bytes (each
instruction needs 32 bits). The last presented solution introduces conditional selects, which may
also take two (small) integers as source operands. Thus, the resulting code size is smaller than
for the other solutions, namely 24 bytes.

70

Code Example 6.1 Code generation for a simple branch test. The resulting assembler code
is shown for different targets: The upper right solution implements the original SPARC V8§
instruction set, the lower left introduces predicated blocks and the lower right one makes use of
conditional selects. The assembler code has been taken from the LLVM compiler output and has
only been slightly adapted for better reading.

C-Code: SPARC V8:

int branch_test (int input) { 1 Dbranch_test:
int tmp = 0; 2 save %sp, —-96, %sp
if (input > 5) { 3 subcc %10, 5, %10
tmp = 3; 4 ble .LBBO_2
} else { 5 nop
tmp = -7; 6 ! BB#1:
} 7 ba .LBBO0_3
return tmpxinput; 8 or %g0, 3, %10
} 9 .LBBO_2:
10 or %90, -7, %10
11 .LBBO_3:
12 smul %10, %i0, %i0
13 Jmp %$17+8
14 restore %90, %g0, %g0
SPARC V8 + predblock: SPARC V8 + selcc:
1 Dbranch_test: 1 Dbranch_test:
2 ! BB#0: 2 ! BB#0:
3 save %sp, —96, %sp 3 save %sp, —-96, %sp
4 subcc %10, 5, %10 4 subcc %10, 5, %10
5 predbegin(le] 5 sel[g] 3, -7, %10
6 or %g0, -7, %10 6 smul %10, %i0, %i0
7 predbegin(g] 7 jmp %$17+8
8 or %90, 3, %10 8 restore %g0, %g0, %g0
9 predend
10 smul %10, %i0, %io0
11 Jmp %17+8
12 restore %90, %g0, %g0

What about the timing behavior of the three presented solutions? All instructions of the
presented assembler code take exactly one cycle, except for the multiplication, which takes
5 cycles. Obviously, the solution including predicated blocks will be the slowest, because all
instructions will be executed in any case. Thus, the resulting cycle countis 9-1+41-5 = 14.
Calculating the performance of the solution with conditional selects results in 5 -1+ 1-5 =
10 cycles. As both solutions do not include any conditional branches, the resulting cycles will
always be the same, regardless of the input value.

When calculating the worst-case cycle count of the assembler code without any additional
instructions, we have to identify the worst-case path: Basic block 0 consists of four instructions,
thus taking 4 cycles. Basic block 1 takes 2 cycles, whereas basic block 3, consisting of one
multiplication and two simple instructions, takes 7 cycles. Thus, the resulting worst-case perfor-

71

mance is 4 4+ 2 4+ 7 = 13 cycles, which is only slightly better than the solution with predicated
instructions. Nevertheless, it is no single-path solution, such that the best case needs one cycle
less and the path analysis is more complex. Although the presented example is somehow the-
oretical, it shows the basic problems of path analysis and why it is sometimes more preferable
to have a less efficient solution in terms of performance. Nevertheless, the solution with the
smallest code size is also easy to analyze and has the best performance. Thus, conditional move
and select instructions might be very desirable instruction set extensions.

6.1.2 Branch Elimination of Nested If-then-else Structures

How does adding an additional if-then-else structure influence the code generating process? As
can be seen in Code Example [6.2] the resulting assembler code for the SPARC V8 ISA now
consists of 6 basic blocks and has two conditional and two unconditional branches. Identifying
the worst-case path is rather difficult, but still possible: Basic block 3 may be reached by a fall
through from basic block 2, which results in 5 cycles, all other combinations consume fewer
cycles. Thus, if the input variable has a value from 6 to 9, the worst-case path will be taken,
resulting in an overall execution time of 16 cycles. Most interestingly, the generated assembler
output is identical for the conditional move and select instruction set extensions, meaning that
the compiler is not able to optimize the given CFG.

However, the output for predicated blocks reveals that the implemented branch elimination
algorithm presented in Sections[5.3.1and [5.3.2] works in practice: The version using predicated
blocks based on integer condition codes reduces the number of basic blocks to four. It only has
one conditional and one unconditional branch. The code size is the same as for the SPARC V8,
namely 60 bytes. The resulting worst-case scenario takes 17 cycles which is one more than the
original code. For the variant implementing predicated blocks based on predicate registers it is
possible to replace all branches such that the solution only consists of one basic block. Neverthe-
less, the code size is larger (72 bytes) and the worst-case performance is worse (19 cycles). Thus,
reducing branches usually provokes an increase of code size and a performance degradation.

Code Example|[6.3]shall demonstrate how the coding style may influence the code generating
process: The C code is semantically equivalent to Code Example [6.2] but does not make use of
if-then-else blocks. The ternary ?-operator can be translated by the LLVM compiler, such that
conditional move and select instructions are introduced. However, the generated assembler code
for the original SPARC V8 ISA is very similar to the second version: It consists of six basic
blocks and has two conditional branches, but only one unconditional jump. The resulting code
size is 60 bytes. Finding the worst-case path is quite a challenging task because we do not only
have to analyze the given CFG, but also take into account all possible values for the input
variable. In principle, there are three different cases we have to consider:

(1) input <5
(2) input > 5 A input < 10
(3) input > 10.

Although the given CFG would allow the execution path including basic blocks 0,1, 3,4, 5,
this path is infeasible: For case (1) of all values of input, variable tmp will first be set to 4

72

Code Example 6.2 Slightly adapted branch test from Code Example The nested if-then-
else structure cannot be converted by LLVM, such that conditional move or select instructions
are used; the resulting assembler output is equal to the output for the original SPARC V8 ISA.
However, the inner branch may be eliminated when predicated blocks based on integer condition
codes are used; see lower left part. When predicate registers are used instead, the resulting code
is a single-path implementation as can be seen in the lower right part.

C-Code:

int tmp = 0;
if (input > 5) {
if (input < 10)
tmp = 3;
} else {
tmp = 4;
}
} else {
tmp = -7;
}

return tmpxinput;

{

int branch_test2 (int input)

SPARC V8 + predblock icc:

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

branch_test2:

I BR

L (020
save %sp, —96, %sp
subcc %10, 6, %10
bge .LBBO0O_2
nop
! BB#1:
ba .LBBO_3
or %g0, -7, %10
.LBBO_2:
subcc %i0, 10, %10
predbegin[ge]
or %90, 4, %10
predbegin(1l]
or %g0, 3, %10
predend
.LBBO_3:
smul $10, %i0, %iO
Jmp %$17+8
restore %g0, %g0,

SPARC V8:
1 Dbranch_test2:
2 ! BB#0:
3 save %sp, -96,
4 subcc %i0, 6,
5 bge .LBBO0_2
6
7
8
9 %1
10
11 subcc %i0, 10,
12 bge .LBBO_4
13 nop
14 ! BB#3:
15 ba .LBBO0_5
16 or %90, 3, %10
17 .LBBO_4:
18 or %90, 4, %10
19 .LBBO_5:
20 smul %10, %io0,
21 Jmp %17+8
22 restore %90, %

SPARC V8 + predblock pred. reg.:

1
2
3
4
5
6
5
8

9
10
11
12
13
14
15
16
17
18
19
20

branch_test2:

! BB#0:
save %sp, —-96,
subcc %10, 6,
predclear %pl
predclear %p0
predset [ge] %p
predbegin[$pl]
subcc %10, 10,
predset [ge] %p
predbegin [$p0]
or %90, 4, %10
predbegin [%p0]
or %g0, 3, %10
predbegin[%$pl]
or %90, -7, %1
predend
smul %10, %io0,
Jmp %17+8
restore %g0, %

%sp
%10

%10

)

%10

g0,

%sp
%10

1
[t]
%10
0
[t]

[£]

[£]
0

%90

73

Code Example 6.3 Semantically equivalent implementation of Code Example [6.2] using the
ternary ?-operator instead of if-then-else structures. The code generator is now able to introduce
conditional move and select instructions, resulting in fewer branches, smaller code size and
better performance. The assembler output for the SPARC V8 instruction set is very similar to
Code Example[6.2]

C-Code: SPARC V8:

branch_test3:
i

int branch_test3(int input) {
int tmp = 0;

RBRH#() -
DB#U 2

1
2
tmp = (input > 5 && 3 save %sp, —-96, %sp
input < 10) 7 4 add %i0, -6, %10
3 : 4; 5 subcc %10, 4, %10
tmp = (input > 5) ? 6 bcc .LBBO_2
tmp : -7; 7 nop
return tmpxrinput; 8 ! #1:
} 9 ba .LBBO0_3
10 or %g0, 3, %10
11 .LBBO_2:
12 or %90, 4, %10
13 .LBBO_3:
14 subcc %10, 5, %11
15 bg .LBBO_5
16
17
18 g0, -7, %10
19 5
20 %10, %i0, %10
21 Jmp %$17+8
22 restore %g0, %g0, %g0
SPARC V8 + movcc: SPARC V8 + selcc:

branch_test3: branch_test3:

1 1

2 ! BB#0: 2 ! BB#0:

3 save %sp, —-96, %sp 3 save %sp, —-96, %sp

4 or %g0, 3, %10 4 add %$i0, -6, %10

5 or %g0, 4, %11 5 subcc %10, 4, %10

6 add %$i0, -6, %12 6 selfcs] 3, 4, %10

7 subcc %12, 4, %12 7 subcc %10, 5, %11

8 mov[cs] %10, %11 8 sel[g] %10, -7, %10

9 or %g0, -7, %10 9 smul %10, %10, %io0
0
1

10 subcc %i0, 5, %12 1 Jmp %$17+8

11 mov[g] %11, %10 1 restore %90, %g0, %g0
12 smul %10, %i0, %io0

13 Jmp %1i7+8

14 restore %g0, %g0, %g0

74

and finally set to —7. The corresponding execution path includes basic blocks 0, 2, 3,4, 5. For
value range (2), tmp is set to 3 in the first step, but will not be changed anymore. Hence, this
corresponds to executing blocks 0, 1,3, 5. For the last case, tmp will initially be set to 4 and
will not be changed anymore as for the previous case. The according execution path covers
basic blocks 0, 2, 3, 5. Having a look at all three cases reveals that the worst case is reached for
conditions (1) and (2). The resulting cycle countis (5-1)+(1-1)4(3-1)+(1-1)+(1-5+2-1) = 17
orb-1)+(2-H)+@B-1)+(1-54+2-1)=17.

Analyzing the assembler code including conditional move instructions is far simpler: The
code size is 48 bytes; the single-path solution always takes 16 cycles. The solution with con-
ditional select instructions is even better concerning performance and code size: it only has
36 bytes and takes 13 cycles, which are the lowest numbers of all presented assembler codes.
Thus, the current implementation of the LLVM code generating passes needs additional support
by the programmer if the resulting code shall be performant, small in size and easy to analyze.

6.1.3 The Impact of Hardware Loops

Code Example shows how a bounded C loop is identified by the loop generating pass and
correctly transformed to a hardware supported loop. Although the resulting code has one addi-
tional block in comparison with the SPARC V8 solution, the analysis is easier: Basic block 0
will be executed only once and takes 3 cycles. The loop initialization is done in block 1, takes
4 cycles and will also be executed only once. All instructions of block 2 take one cycle except
for the 1d instruction, which takes 2 cycles. The resulting 6-1+41-2 = 8 cycles will be executed
20 times, thus taking 160 cycles. Adding the last two cycles of the instructions in block 3 results
in 3 44+ 160 + 2 = 169 cyles.

Calculating the cycle count of the SPARC V8 assembler code of Code Example [6.4] needs
additional information: If the analysis tool is able to refer to the original C code, it can easily
identify the loop bound for basic block 1. Otherwise, the branch condition for line[I5]has to be
taken into account. The condition not equal is fulfilled if register $10 is not equal —20. $10
is used as destination register only in lines [] and [I3} The first time it is set to 0, the second
time it is decremented. Hence, the branch will be taken 20 times before basic block 2 can be
reached. Basic block 0 is executed only once, thus taking exactly 3 cycles. Basic block 1 takes
9-1+1-2 =11 cycles and is executed 20 times resulting in 220 cycles. The last block only
takes 2 cycles, meaning that the total cycle count is 3 + 220 4+ 2 = 225 which is about 33 %
more than the solution with hardware loops. The code size of the SPARC V8 is only 60 bytes,
whereas the solution including hardware loops needs 64 bytes. Thus, for the current example,
there is no solution outperforming the other one in all aspects. Nevertheless, in hard real-time
systems, where an easy WCET analysis and performance can be seen more important than code
size, the target supporting hardware loops should be preferred.

75

Code Example 6.4 Implementation of a simple function calculating the sum of an array. As the
loop does not contain any branches, the compiler can easily identify the index variable and the
loop bound. Thus, the generated code benefits from the hardware loops instruction set extension
as can be seen in the lower right example. Although the output for the SPARC V8 ISA is very
similar, the calculated cycle count is greater and the WCET analysis might be more complex.

C-Code:

#define ARRAY_SIZE 20

int array[ARRAY_SIZE] = {

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 20
bi

int loop_test (int input) {
int i, sum = 0;
for (i = 0; i < ARRAY SIZE; i++) {
sum += array[i];
}
return sum;

}

SPARC VS8: SPARC V8 + hwloop:
1 loop_test: 1 loop_test:
2 ! BB#0: 2 ! BB#0:
3 save %sp, —-96, %sp 3 save %sp, —-96, %sp
4 sethi 0, %10 4 sethi 0, %10
5 or %g0, %10, %io0 5 or %g0, %10, %io0
6 .LBBO_1: 6 ! 1:
7 sethi %hi (array), %11 7 init .LBBO_2, %loops
8 add %11, %lo(array), %11 8 init .LBBO0_3, %loope
9 sll %10, 2, %12 9 init 20, %loopb
10 sub %11, %12, %11 10 start
11 1d [%11], %11 11
12 add %11, %i0, %io0 12 sethi %hi (array), %11
13 add %10, -1, %10 13 add %11, %lo(array), %11
14 subcc %10, -20, %11 14 sll %10, 2, %12
15 bne .LBBO_1 15 sub %11, %12, %11
16 nop 16 1d [%11], %11
17 ! BB#2: 17 add %11, %10, %io0
18 Jmp %$17+8 18 add %10, -1, %10
19 restore %g0, %g0, %g0 19 .LBBO_3:
20 Jmp %$17+8
21 restore %g0, %g0, %g0

76

6.1.4 If-then-else Structures and Hardware Loops

When adding a conditional branch to the just presented example, the advantage of introducing
multiple instruction set extensions can be verified: In Code Example [6.5] the sum is only cal-
culated if the current index is not equal to 7. As can be seen, the resulting assembler code for
the SPARC V8 is more complex and consists of 5 basic blocks and two conditional branches.
Unfortunately, LLVM is not able to identify the branch and replace it by a conditional move or
select instruction. However, when introducing predicated blocks, the involved basic blocks can
be merged and a hardware loop is generated as can be seen in the lower right assembler output
of Code Example [6.5]

Calculating the cycle count for the solution including predicated blocks and hardware loops
is quite easy because no conditional branches exist: Basic Block 1 and 2 are executed once and
take 3 + 4 = 7 cycles. Basic block 2 is executed 20 times and thus takes (9 -1+ 1-2)-20 =
220 cycles. Adding two cycles of the remaining basic block 3 results in a total cycle count of
7+ 220 4+ 2 = 229. The performance evaluation of the SPARC V8 assembler code is a little
more complex: From the original C code we know that the loop will be executed 20 times and
that basic block 2 will not be executed if the index is equal to 7. Thus, basic blocks 1 and 3
will be executed 20 times, whereas basic block 2 will only be executed 19 times. The resulting
cycle count is 3 - 20 = 60 cycles for basic block 1, (5-1+ 1-2)-19 = 133 cycles for basic
block 2 and 4 - 20 = 80 cycles for basic block 3. When adding the 5 remaining cycles from basic
blocks 0 and 4, the total amount of cycles is 60 + 133 + 80 + 5 = 278. Note that the introduced
nop instructions in lines |§I and which are used as delay slots for all types of branches', are
executed 20 times. Thus, the presented solution spends 40 cycles in nop instructions, i.e., doing
nothing, whereas the other solution does not have any superfluous instructions. As for Code
Example [6.4] the assembler output for the SPARC V8 instruction set has a slightly better code
size (72 bytes in contrast to 76 bytes), but has a remarkable greater cycle count, meaning that
the solution including the instruction set extensions is more feasible for real-time systems.

6.1.5 Conclusion

Although the presented code examples of the current section might be seen theoretical and can-
not cover real-life scenarios, they showed some interesting aspects concerning the proposed
instruction set extensions. This leads to the following assumptions:

(1) The manual timing analysis of a given code gets more complex when introducing loops
and multiple conditional structures such as if-then-else blocks.

(2) If the resulting assembler code makes use of instruction set extensions, the manual analy-
sis is easier and sometimes even trivial because there is a single-path solution.

(3) Some code examples only benefit from the instruction set extensions if they are combined,
e.g., predicated blocks and hardware loops.

(4) For some examples, the generated assembler output with instruction set extensions is eas-
ier to analyze and shows better performance than the solution for the original SPARC V8§
ISA. However, this is not generally true for the resulting code size.

'See Section for details.

77

Code Example 6.5 Slightly adapted implementation of Code Example The loop now ex-
hibits a conditional branch instruction which is too complex for the compiler to be replaced
by a conditional move or conditional select. The hardware loop generating pass in its current
implementation only handles loops covering a single basic block. Hence, the assembler out-
put for targets with support for conditional move and hardware loop instructions is equal to the
SPARC V8 output. However, the branch elimination pass introducing predicated blocks is able
to unite all blocks of the loop. Consequently, the resulting assembler output shows hardware
loop instructions as can be seen in the lower right example.

C-Code:

#define ARRAY_SIZE 20

int array[ARRAY_SIZE] = {

i, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 20
}i

int loop_test (int input) {

int i, sum = 0;
for (i = 0; i < ARRAY SIZE; i++) {
if (1 !'=7) {

sum += array[i];

}

return sum;

}

SPARC V8: SPARC V8 + predblock icc + hwloop:
1 loop_test: 1 loop_test:
2 ! BB#0: 2 ! BB#0:
3 save %sp, —96, %sp 3 save %sp, —96, %sp
4 sethi 0, %10 4 sethi 0, %10
5 or %g0, %10, %i0 5 or %g0, %10, %i0
6 .LBBO_1: 6 ! BB#1:
7 subcc %10, -7, %11 7 hwloop init .LBBO_2, %loops
8 be .LBBO0_3 8 hwloop init .LBBO_3, %loope
9 nop 9 hwloop init 20, $loopb
10 ! BB#2: 10 hwloop start
11 sethi %hi (array), %11 11 .LBBO_2:
12 add %11, %lo(array), %11 12 subcc %10, -7, %11
13 sll %10, 2, %12 13 predbegin[ne]
14 sub %11, %12, %11 14 sethi %hi (array), %11
15 1d [%11], %11 15 add %11, %lo(array), %11
16 add %11, %10, %io0 16 sll %10, 2, %12
17 .LBBO_3: 17 sub %11, %12, %11
18 add %10, -1, %10 18 1d [%11], %11
19 subcc %10, -20, %11 19 add %11, %10, %io0
20 bne .LBBO_1 20 predend
21 nop 21 add %10, -1, %10
22 ! BB#4: 22 .LBBO_3:
23 Jmp %$17+8 23 Jmp %$17+8
24 restore %g0, %g0, %g0 24 restore %g0, %g0, %g0

78

6.2 Evaluation of Selected Algorithms

In [PusO7]], Peter Puschner analyzes the impacts of different implementations of the same al-
gorithms on the generated assembler code. The target processor is a Motorola M-Core, which
provides conditional move and several simple predicated instructions. The assembler code has
been simulated and the resulting cycle counts documented. Most of the implementations are
written in the C programming language, but there are several solutions that use inline assem-
bler. Thus, these implementations cannot be used in the current section, because the SPARC V8
instruction set and the proposed extensions are completely different to the M-Core processor.”

The following subsections show how the coding style in a high level language influences
the resulting assembler code. The performance evaluation has been done with an instruction set
simulator, implementing the SPARC V8 ISA and the presented extensions. In a first step, the
C code is translated to LLVM IR by the 11vm-gcc with optimization level 3 (option —03).
Afterwards, SPARC V8 assembler code is generated by LLVM and the implemented additional
passes. It has been tried to find the corresponding worst-case scenarios of every algorithm to
draw conclusions about the feasibility of the proposed instruction set extensions. In most cases,
a preferred solution could be found. The detailed results of the performance evaluation are listed
in Appendix[Al The analyzed targets implemented the following instruction set extensions:

* v8 — The original SPARC V8 instruction set without any extensions.

* v8-predblockicc — The original SPARC V8 instruction set with predicated blocks based on
integer condition codes.

* v8-hwloop — The original SPARC V8 instruction set with additional support for hardware
loops.

* v8-movcce — The original SPARC V8 instruction set with conditional move instructions
and support for hardware loops.

* v8-selcc — The original SPARC V8 instruction set with conditional select instructions and
support for hardware loops.

6.2.1 Bubble Sort
Bubble Sort Version 1

Bubble sort was the first algorithm which was analyzed in [Pus07]. The standard implementa-
tion, denoted version 1 in the paper, is shown in Code Example [6.6] As can easily be seen, the
worst-case scenario occurs when the if-then block is executed for every loop iteration. This is the
case if the values of the input array are given in reverse order. Similar to Code Example[6.2] the
LLVM compiler is not able to introduce conditional move or select instructions, but can elimi-
nate the most inner branch when predicated blocks are enabled. Although the number of basic
blocks is reduced by four in comparison to the SPARC V8 solution, the code size (368 bytes) and
the worst-case cycle count (99894 cycles for an array with 100 elements) are equal. However,

2The original C code of all described algorithms of the current section are available on the reposi-
tory of the simulator (https://github.com/cgeyer/Sparc-V8-IS—extension-simulator/)inthe
examples/cfiles folder.

79

https://github.com/cgeyer/Sparc-V8-IS-extension-simulator/

the generated code for the v8-predblockicc target is a single-path solution, meaning that the best,
the average and the worst-case performance are identical.

Code Example 6.6 Traditional implementation of the bubble sort algorithm. See [Pus07, p. 7].

static void BubbleSort (int a[]) {
int i, 3, t;
for (i=SIZE-1; 1>0; i--) {
for (j=1; Jj<=i; Jj++) {
if (a[j-11 > al3]) |

t = aljl;

/* swap */
aljl = alj-11;
alj-1] = t;

}
}
}
}
Bubble Sort Version 2

Version 2 of the bubble sort algorithm is shown in Code Example and is a single-path im-
plementation. Now, the LLVM compiler is able to recognize CFG patterns to insert conditional
move and select instructions. Of course, the assembler output for the v8 and the v8-hwloop tar-
gets are identical, because the inner loop consists of too many branches if neither conditional
move or select instructions, nor predicated blocks are supported. The resulting performance
decreases dramatically, meaning that the best case cycle count is 105042 for the current imple-
mentation, which is more than the worst-case performance of the traditional solution. Moreover,
the code size and the number of basic blocks increases for these targets.

However, analyzing the resulting assembler output of the v8-movcc and v8-selcc targets re-
veals that the single-path solution is quite feasible: Although the code size increases (384 bytes
for conditional move, 380 bytes for conditional select), the number of basic blocks and condi-
tional branches slightly decreases. Moreover, it is a single-path solution for both targets with
a constant cycle count of 87420 cycles (v8-movcc) and 82371 cycles (v8-selcc). This is about
20 % less than the best-case (!) cycle count of the same algorithm on the v8 target and about
15 % less than the worst-case cycle count of the traditional implementation.

Bubble Sort Version 4 & 5

The third version of bubble sort was implemented in assembler by Puschner and therefore is not
part of the current evaluation. Version 4 is based on the traditional implementation, but intro-
duces a break instruction causing an early exit from the outer loop in case the list has already
been sorted. On the one hand, this optimization increases best and average case performance
(the best case takes 1398 cycles), on the other hand, it decreases the worst-case performance
(104946 cycles). Version 5 is very similar, but the exit condition is in the loop header, such that
no break instruction was used. Nevertheless, the resulting assembler code is nearly the same

80

Code Example 6.7 Single-path implementation of the bubble sort algorithm. See [Pus07, p. 8].

static void BubbleSort (int a[]) {
int i, j, s, t;
for (i=SIZE-1; 1i>0; i--) {
for (j=1; j<=i; J++) {
s = alj-1];
t = aljl;
a

and shows no differences in performance. Hence, both solutions are not feasible for real-time
systems.

Bubble Sort Version 6

The last evaluated implementation of the bubble sort algorithm is based on version 5. The
main difference is that the outer loop is not exited earlier. To avoid that the instructions of
the inner loop are still executed, the swapping is conditionally executed as can be seen in Code
Example[6.8] Although the resulting assembler code is a single-path solution, the second version
of bubble sort shows better performance: The code size is 440 bytes in contrast to 384 bytes for
the v8-movcc target and the worst-case performance is about 5000 cycles worse.

Code Example 6.8 Second version of a single-path implementation of the bubble sort algorithm.
See [PusO7, p. 16].

static void BubbleSort (int a[]) {

int i, j, s, t;

int exchanged=1;

int loop_is_over;

for (i=SIZE-1; 1i>0; i--) {
loop_is_over = (exchanged == 0);
exchanged = 0;
for (j=1; Jj<=i; Jj++) {

s = alj-11;

t = aljl;

alj-1] = (loop_is_over || (s <=1t)) ? s : t;

aljl] = (loop_is_over || (s <= 1t)) 2?2 t : s;

exchanged = (loop_is_over || (s <= t)) ? exchanged : 1;

81

Summary

The evaluation results in some parts correspond to the results by Puschner, but there are some
remarkable differences: The gap between best case and worst-case performance is much higher
for the presented benchmarks of the current thesis than it was in [PusQ7]. Moreover, the second
version shows the best worst-case performance in case the target supports conditional move or

conditional select instructions. In the paper, the best worst-case performance was achieved by
the first version, disregarding the solutions implemented in assembler.

BCET and WCET of Different Versions of Bubble Sort

120000
Bubble Sort V1 Bubble Sort V2 Bubble Sort V6
100000
L~ 80000 f el e .
c
>
Q
(]
2 60000 |- .
>
o
40000 -M--B--B-B-B-B W]
20000 |- .
0
e A [i F F F F -
W o ww w w w w w w w W oW ww
O O O O O O O O O O O O O O O O O O
@ = o = a = I @ =T @ = a =
£ 2 8 g 8 8 £ 2 8 g 8 8 £ 2 8 g 8 8
& 3 8 3 5 3 8 g 8 3 8 3
E E & & EE & 4 E E & &
§§>> §§>> §§>>

Figure 6.1: BCET and WCET of different implementations of bubble sort simulated on several
SPARC VS8 targets.

Figure [6.1] summarizes the results of the current performance evaluation of bubble sort: As
can be seen easily, the cycle count of the first version is equal for the v8, v8-movcc and v8-selcc
target. However, in version 2, the v8-movcc and v8-selcc targets show constant execution time,
which is even better than the worst-case cycle count of the first version. Version 6 shows a much
greater worst-case cycle count on the the v8 target, but has a better worst-case performance on the
v8-movcce and v8-selcc targets than the original solution. Summarizing, introducing conditional
move or select instructions in combination with hardware loops improves the worst-case perfor-
mance and the control flow analysis of bubble sort if the programmer finds a feasible single-path
implementation. The detailed best- and worst-case cycle counts as well as the code size of each
implementation for every target can be found in Tables [A.T|and [A2]in Appendix [AT]

82

6.2.2 Find First

The problem statement for the find first algorithm is quite simple: The first occurrence of a
given value within in a specified input array of arbitrary integers shall be identified. The key
does not need to be part of the array. The algorithm shall either return the index of the array
element or an error code in case the key cannot be found. The test input vectors for all versions
of the algorithm were taken from the code listing on page 62f in [PusO7]. They include single,
multiple and no occurrences of the key in the array. The latter is the worst-case scenario for most
implementations.

Find First Versions 1 & 2

A naive implementation of find first is shown in Code Example [6.9] When translating this
version, LLVM is not able to use any of the proposed instruction set extensions such that the
resulting code size (152 bytes) and the worst-case cycle count (107 cycles) are equal for all
targets. The second version does not use any break instruction, but introduces a boolean
variable which is set when the key is found in the array. In every loop iteration, it has to be
checked whether the index variable is smaller than the array size and if the key has already
been found. This overhead needs 28 additional bytes for the SPARC V8 target, but only 8 bytes
more when using conditional selects. Unfortunately, the resulting worst-case performance is
lower (172 cycles for the SPARC V8 target, 132 cycles for the v8-selcc target) than the first
implementation. Only the best case execution time could be improved by one cycle for the
targets supporting conditional moves and selects.

Code Example 6.9 Traditional implementation of the find first algorithm. See [Pus07, p. 21].

static int findfirst (int key, int afl]) {
int i;
int position = SIZE;
for (i=0; i<=SIZE-1; i++) {

if (a[i] == key) {
position = i;
break;

}
}
return position;

}

Find First Version 3

The third version makes use of the ternary ?-operator to get a single-path transformation of
the second implementation as can be seen in Code Example When the compiler set-
tings include loop unrolling, the resulting code sizes for all targets are extraordinary large: The
smallest assembler code is generated for the v8-selcc target (484 bytes), the largest for the v§-
predblockicc target (892 bytes). The code size is only slightly larger than that of the first version
when turning off loop unrolling optimizations.

83

Regarding worst-case performance, the assembler output of the third version with loop un-
rolling has a smaller cycle count for the v8-selcc target in comparison with the first version on
all targets. When disabling loop unrolling, the cycle count increases for all targets, making this
solution very unattractive. Thus, version 3 is only feasible for real-time systems which do not
rely on small instruction memories.

Code Example 6.10 Single-path implementation of the find first algorithm. See [PusO7, p. 23].

static int findfirst (int key, int a[]) {
int i;
int position = SIZE;
int found = 0;

int cond;

for (i=0; 1<=SIZE-1; i++) {
cond = !found;
cond = cond & (al[i] == key);
found = (cond ? 1 : found);
position = (cond ? i : position);

}

return position;

Find First Version 5 & 6

The fifth version of find first, which is shown in Code Example[6.11] uses a completely different
approach: To avoid that the index is overwritten if the key occurs more than once, the search
starts from the end of the array and goes to its beginning. Thus, only the first occurrence is saved
in the position variable. In version 6, the inner if-then block is replaced by a ?-operator, but
there is no difference in the generated assembler outputs. Although the resulting code sizes are
greater than the first implementation, the worst-case cycle count could be decreased to 40 cycles
for the v8-selcc target. However, when disabling the loop unrolling optimization as for version 3,
the worst-case cycle count is 141 cycles for targets with conditional move or select instructions.

Code Example 6.11 Simple backward loop implementation of the find first algorithm. See
[PusO7, p. 26].

static int findfirst (int key, int afl]) {

int i;
int position = SIZE;
for (i=SIZE-1; 1i>=0; i--) {

if (a[i] == key) {

position = i;

}
}
return position;

}

84

Summary

The resulting code sizes and cycle counts of all versions are listed in Tables[A.3]and[A.4] In con-
trast to bubble sort, there does not exist an ideal solution: From the performance point of view,
the fifth version seems to be preferable when conditional select instructions are available (ver-
sion 5/6a). Nevertheless, loop unrolling is only suitable for arrays with few elements, because
the code size increases with every unrolled loop iteration. Moreover, when dealing with arrays
of variable size, it is not possible to use this kind of optimization. Figure [6.2] shows the best-
and worst-case cycle counts of all versions with disabled loop unrolling: As can be seen, there
is no solution which has a better worst-case performance than the first implementation on any
target even if conditional move or select instructions and hardware loops are enabled. However,
version 3 with no loop unrolling (version 3b) seems to be the most adequate and flexible solution
for targets supporting conditional select instructions: The algorithm has constant execution time

and is about 18 % slower in the worst-case than the original solution; its code size is 20 bytes
larger.

BCET and WCET of Different Versions of Find First

300
Find First V1 Find First V2 Find First V3b Find First V5/6b
250
200
£
>
[e]
(8]
o 150
[$]
>
o
100 |- i
50 [-

o
W
(SIS
Q=
[ee]
> g

- -
W w
[ORN&]
o=
8
R
o 5
g E
=2

V8 BCET
V8 WCET
V8-movcec BCET

V8-movcc WCET
V8 BCET

V8 WCET
V8-movce BCET

V8-movcec WCET
V8 BCET

V8 WCET

V8-movce BCET
V8-movcc WCET

-
w w
O O
o=
8 3
33
8§
>2

V8-selcc BCET
V8-selcc WCET
V8-selcc BCET
V8-selcc WCET

V8-selcc BCET
V8-selcc WCET

Figure 6.2: BCET and WCET of different implementations of find first simulated on several

SPARC V8 targets. The b after the version number denotes that loop unrolling has been disabled
by the compiler settings for the evaluation.

85

6.2.3 Binary Search

In contrast to find first, binary search tries to find a given value within a presorted array. In
[PusO7]], there are 11 different implementations of this algorithm; 7 are based on C code. The
current section will only go into details for three of them. The loop unrolling optimization has
been generally disabled, such that the resulting code sizes and cycle counts do less depend on
compiler optimizations. The used input vector was a logarithmically distributed array of 16
integers. The covered test scenarios searched for each array element. It has also been tried
to find the worst-case scenario by searching for one value which is greater than the last array
element.

Binary Search Version 1

The traditional implementation can be seen in Code Example [6.12} As soon as the key is found,
the function returns the corresponding index. Thus, the best case scenario occurs if the key is
saved in the center element of the array. The generated assembler output for the SPARC V8
instruction set has a code size of 208 bytes, a worst-case performance of 101 cycles and a best
case cycle count of just 10 cycles. LLVM is able to eliminate branches such that the code size
and worst-case execution time on targets with conditional move or select instruction is slightly
reduced.

Code Example 6.12 Traditional implementation of the binary search algorithm. See [Pus07,
p. 30].

static int binSearch (int key, int af]) {
int left = 0, right = SIZE - 1, idx, inc;
do {
idx = (right + left) >> 1;
if (a[idx] == key) {
return idx;
}
else if (a[idx] < key) {
left = idx+1;
}
else {
right = idx-1;
}
} while (right >= left);
return -1;

}

Binary Search Version 2 & 3

The second version introduces a boolean variable, which saves whether the key has already been
found. The loop is exited if the condition is true. However, the resulting assembler code is iden-
tical to the first version on all targets. Version 3 is a first trial of a single-path implementation,

86

but the C code is too complex for the compiler such that the resulting assembler output shows
worse performance and a greater code size in comparison with the first two implementations.

Binary Search Version 5

The first successful single-path transformation is achieved in version 5: The resulting code size
is only 5 to 10 % more than the original variant and the worst-case performance is better on
all targets, including the SPARC V8 without any instruction set extensions. Nevertheless, only
targets on which branches could be removed, e.g., by enabling predicated blocks or conditional
move instructions, show constant execution times for this implementation.

Binary Search Version 7

Code Example[6.13] presents a solution which does not seem to be a single-path implementation
at the first glance, but can be translated by the compiler to achieve constant execution times for
all tested scenarios. In contrast to all preceding variants, the left search boundary variable saves
the index, which will be finally returned. Except for the v8-selcc target, the resulting solution
shows the best worst-case performance so far’ and has nearly the same code size as the first
version.

Code Example 6.13 Single-path implementation of the binary search algorithm. See [Pus07,
p. 43].

static int binSearch (int key, int af[]) {
int left = 0, right = SIZE - 1, idx, inc;
do {
idx = (left + right) >> 1;

if (key > alidx]) {
left = idx + 1;
} else {
right = idx;
}
} while (left < right);
if (alleft] < key) {
return -1;
} else {
return left;

}

Binary Search Version 8 & 10

Version 8 is a modification of version 7 and makes use of the ternary ?-operator. Like the
third version, the C code is too complex for the compiler and the resulting assembler code is no

3The reason for this is a bug in the code generating pass for hardware loops, which inserts a loop where it should
not be done. When disabling this pass, the performance is about the same as on the v8-movcc target.

87

single-path solution. Code Example [6.14] (version 10) is an improved variant of version 8 for
which the LLVM compiler is able to identify the loop bound (i.e., log, 16 = 4) automatically,
such that a correct hardware loop may be introduced. The best performance is achieved on the
v8-selcc target, which has a constant cycle count of only 57 cycles. In comparison to the first
implementation on the v8 target, this is an improvement by nearly 44 % and the code size has
even decreased by 8 bytes.

Code Example 6.14 Slightly improved single-path implementation of the binary search algo-
rithm. See [PusO7, p. 49].

static int binSearch (int key, int afl]) {
int left = 0, right = SIZE - 1, idx, inc;

for (inc = SIZE-1; inc > 0; inc = inc >> 1) {
idx = (left + right) >> 1;
left = (key > af[idx]) ? idx + 1 : left;
right = (key <= a[idx]) ? idx : right;

}
return (a[left] < key) ? -1 : left;

Summary

The complete evaluation of all versions on all targets can be found in Tables and As
can be seen in Figure[6.3] the first implementation of binary search shows an excellent best-case
performance on many targets, but has no competitive worst-case cycle count. The best results
may be achieved with version 10 on targets with conditional move or select instructions and
hardware loops: The resulting assembler code shows constant execution time and the worst-case
cycle count is about 43 % less than the original worst-case cycle count on the SPARC V8 target
with no instruction set extensions.

6.2.4 Increment Multi-byte Counter

The fourth algorithm which was analyzed by Puschner, implements a simple counter which is
not restricted to a fixed bit size. The value is saved in an array of 8-bit integers, such that a
counter with an arbitrary bit width may be used. The implemented test scenario increments an
80-bit counter from the initial maximum value, which is 280 — 1, to 65 535. Note that an integer
overflow occurs for the the first incremental step from the maximum counter value to zero such
that all bytes of the counter array have to be incremented. Although it does not cover all possible
test cases, it can be verified whether the resulting assembler code shows constant performance
on a wide range of input values. As for binary search, the loop unrolling optimization has been
generally disabled.

88

BCET and WCET of Different Versions of Binary Search

Binary Search V1/2 Binary Search V5 Binary Search V8 Binary Search V10
100
80 -
€
2 60— —
o
<
o
>
o
40 E
20 foe =
0
e [i [e [
W w w W ow w W w w o owow w oW oo oo W w w w ow w
OO0 0000 OO0 0000 O 00000 OO0 0000
ozaozdz e O=z0=zaz ozad =0z
Q Q Q Q Q Q Q Q
Legg8yg 2e2gyg8yg 228888 2xggsg
23879 838739 238379 23879
gEeS gEe gEee 52
>Q 7= >Q 7= >Q 7= > 2 s

Figure 6.3: BCET and WCET of different implementations of binary search simulated on sev-
eral SPARC V8 targets.

Multi-byte Counter Version 1

Code Example [6.15|shows a first simple implementation of the multi-byte counter: Per default,
the first byte of the counter is incremented. If the resulting value equals O, the next byte is
incremented, otherwise, the loop is exited. The resulting assembler code is identical for all

targets and has a good best case performance of only 16 cycles. The worst case, which occurs if
all bytes have to be incremented, takes 142 cycles.

Code Example 6.15 Traditional implementation of incrementing a multi-byte counter. See

[Pus07, p. 54].

static void inc_counter (COUNTER counter) {
int idx;
for (idx=0; i1idx<COUNTERSIZE; idx++) {
unsigned char tmp;
tmp = counter[idx];
counter[idx] = tmp+l;
if (counter[idx] > 0)
break;

&9

Multi-byte Counter Version 2 & 4

The second version, which is shown in Code Example is a single-path implementation of
the first version. Due to its increased complexity, the code size is larger for all evaluated targets.
Moreover, the worst-case cycle count has increased, except for the target supporting conditional
selects for which it is about the same as for the original implementation. Code Example
is an improved single-path variant based on the following idea: Each byte is incremented by a
certain value, which is saved in a separate variable. Initially, the value is set to 1, but it gets
cleared as soon as no byte overflow occurs. The resulting assembler output has nearly the same
size as the first version and shows a better worst-case performance on targets with conditional
move or select instructions.

Code Example 6.16 First single-path implementation of incrementing a multi-byte counter. See
[PusO7, p. 55].

static void inc_counter (COUNTER counter) {
int idx;
int loop_is_over = 0;
for (idx=0; i1dx<COUNTERSIZE; idx++) {
unsigned char tmp;

tmp = counter[idx];
counter[idx] = loop_is_over ? counter[idx] : tmp+l;
loop_is_over = loop_is_over || (counter[idx] > 0);

Code Example 6.17 Improved single-path implementation of incrementing a multi-byte counter.
See [PusQ7, p. 57].

static void inc_counter (COUNTER counter) {
int idx, inc_val;
inc_val = 1;
for (idx=0; idx<COUNTERSIZE; idx++) {
unsigned char tmp;
tmp = counter[idx];
counter[idx] = tmp + inc_val;
if (counter[idx] > 0)
inc_val = 0;

Summary

Tables and [A.8] give a complete overview of all resulting code sizes and cycle counts. Fig-
ure [6.4] outlines the best- and worst-case performance of different implementations of the algo-
rithm simulated on several targets: Version 2 is a single-path solution in case of targets with

90

conditional move or select instructions, but the worst-case cycle count is slightly larger than
that of the original implementation. For Version 4, there is nearly no difference between best-
and worst-case cycle count on the v8 target, meaning that even on a target with no support of
branch elimination, a quasi single-path solution might be found. Moreover, on the v8-movcc and

v8-selcc targets, a much lower worst-case cycle count than that of the original solution can be
achieved.

BCET and WCET of Different Versions of Increment Multi Byte Counter

200
Multi Byte V1 Multi Byte V2 Multi Byte V4
150
£
]
8
o 100 .
[$]
>
o
50 -
0
F - F F F - - - F F - - - F
L L L w w w in] Ll L w w w Jin] L L L L w
O O O O O O O O O O O O O O O O O O
@ =z 0 =z o= @ =z 0 =z o= 0=z 0 =z 0 =
Q Q (o] Q Q (o]
S 2 8 g 8 8 S 2 8 g 8 8 S 2 8 g 8 8
2 3 ¢ o 2 3 ¢ 2 3 $ ©
E £ & & E £ & & E £ & &
® gg > 2 ® gg > 2 ® § > 2

Figure 6.4: BCET and WCET of different implementations of multi-byte counter simulated on
several SPARC V8 targets.

6.2.5 Concluding Remarks

As could be seen, enabling several of the instruction set extensions and changing the implemen-
tation of well-known algorithm can be very suitable in real-time environments: Three out of four
algorithms could be transformed such that the resulting assembler code is a single-path solution
and shows a lower worst-case cycle count than the first implementation without the additional in-
structions. Nevertheless, one has to take several aspects into account: The used LLVM compiler
is not optimized for generating assembler output for real-time systems, i.e., single-path codes
or small code sizes. Moreover, the implemented code generating passes for hardware loops and
branch elimination are not perfect and may be still improved. However, the LLVM IR language
has a conditional select instruction, meaning that the generated assembler output for targets with
hardware support for similar instructions has a better performance than targets where they have

91

to be emulated. Thus, the presented results are only valid for the current evaluation settings and
may not be feasible for other compilers and processors.

6.3 Towards a Time Predictable Instruction Set

6.3.1 Simulation Setup and Problem Statement

The previous sections showed the impacts of different coding styles on the generated assembler
output and identified useful instruction set extensions in terms of code size, number of branches
and worst-case behavior. However, the results were restricted to a small amount of algorithms
executed only on a few targets. Thus, the current section tries to find the most suitable combina-
tion of instruction set extensions such that

(1) the resulting assembler code is easy to analyze,
(2) the worst-case performance is still competitive, and
(3) the code size of the program does not increase dramatically.

In order to do so, 24 algorithms have been compiled for 13 different combinations of the SPARC
V8 instruction set including the additional instructions. A short overview of the evaluated targets
is given in Section [6.3.2} the algorithms are shortly described in Section [6.3.3] The resulting
assembler code has been simulated and the following key figures recorded:

* Code Size is the code size of the complete program, including test and main functions,
in bytes. Although memory size is usually no issue for desktop applications, it can be an
important factor for embedded systems.

» Conditional Branches denotes the number of conditional branches within the complete
program. It is an indication of the complexity of the control flow graph. A lower number
means that the complexity of the control-flow graph decreases and the worst-case path is
easier to identify.

* Unconditional Branches denotes the number of (unconditional) jump instructions within
the complete program. They usually do not have an influence on the complexity of the
control flow graph.

* Number of NOPs denotes the number of delay instructions which have to be inserted after
a conditional or unconditional branch, see Section 4.2.2] for details. It is an indicator for
the number of superfluous instructions, i.e., instructions doing nothing.

* Number of MBBs is the amount of machine basic blocks of the whole program and cor-
responds to the number of vertices of the control flow graph. Like the for conditional
branches, a lower number is an indicator that the worst-case path of the given assembler
code is easier to identify.

* Min/Max Cycles is the measured minimum/maximum cycle count. It does not necessarily
need to be the actual worst-case execution time. For algorithms with a single vector of
input values, only the measured cycle count has been recorded.

* Deviation is calculated by the formula specified in Equation [6.1] and is only stated if the
minimum and maximum cycle count of the current algorithm are available.

92

* Number of movCCs denotes the number of conditional move instructions which have been
used within the whole program.

* Number of selCCs denotes the number of conditional select instructions which have been
used within the whole program.

* Number of predbegins is equivalent to the number of basic blocks which have been predi-
cated.

* Nesting level of predicated blocks is only available for predicated instructions based on
predicate registers. It is equivalent to the highest predicate register which has been used
within the whole program. This relates to the nesting level of if-then-else structures which
could be eliminated.

* Number of HWLoops denotes the number of used hardware loops within the whole pro-
gram.

In [TWO04, p. 160], it is stated that the differences between the upper and lower bounds
and the worst and best cases of execution times, respectively, are measures for the timing pre-
dictability of the whole system. In other words, it can be said that hardware and software behave
predictably if the best- and worst-case execution times are either equal or nearly the same. A
system has a low timing predictability if the measured minimum and maximum cycle counts of
the same algorithm are highly divergent. Based on these definitions, the deviation key figure
used in the current evaluation has been introduced in order to provide an indicator of timing
predictability:

tmax - tmin
d =22 mmin e 0,1) 6.1)

tmax

The difference between measured minimum and maximum cycle count is divided by the max-
imum cycle count. The result d is a real number between zero and one. If the deviation is 0,
the algorithm has constant execution time, i.e., the minimum and maximum execution times are
equal; a value near 1 indicates a large deviation. If a target shows a deviation of 0 for a number
of algorithms, it can be said to be provide timing predictability and might thus be suitable for
real-time environments. In [KP11], Kirner and Puschner give a formula for the stability of a
system, which is quite similar to the just presented definition of the deviation, see Equation [6.2]
The main difference is that a system may be called stable if the stability is near or equal 1, which
is in fact the opposite of the definition of the deviation.

BCET,
stability(tm) = WgTzf (6.2)
tm

Another key figure for the current evaluation is the number of occurrences of each of the
instruction set extensions: On the one hand, it shows which algorithms may benefit (more)
from the newly introduced instructions. On the other hand, it indicates whether an additional
instruction is only useful in combination with another: If, for example, multiple hardware loops
are only introduced if predicated blocks have been enabled, it does not make any sense to add
support for hardware loops without predicated blocks.

93

6.3.2 Evaluated Combinations of Instruction Set Extensions

For the current evaluation, all algorithms have been translated to assembler code and simulated
on several targets covering nearly all possible combinations of the presented instruction set ex-
tensions. The following 13 targets have been defined:

* v8 — The original SPARC V8 instruction set without any extensions.

* v8-m — The original SPARC V8 instruction set with conditional move instructions.

* v8-s — The original SPARC V8 instruction set with conditional select instructions.

* v8-i — The original SPARC V8 instruction set with predicated blocks based on integer
condition codes.

* v8-r — The original SPARC V8 instruction set with predicated blocks based on predicate
registers.

* v8-[— The original SPARC V8 instruction set with hardware loops.

* v8-ml — The original SPARC V8 instruction set with conditional move instructions and
hardware loops.

* v8-sl — The original SPARC V8 instruction set with conditional select instructions and
hardware loops.

* v8-il — The original SPARC V8 instruction set with predicated blocks based on integer
condition codes and hardware loops.

* v8-rl — The original SPARC V8 instruction set with predicated blocks based on predicate
registers and hardware loops.

* v8-mil — The original SPARC V8 instruction set with conditional move instructions, pred-
icated blocks based on integer condition codes and hardware loops.

* v8-srl — The original SPARC V8 instruction set with conditional select instructions, pred-
icated blocks based on predicate registers and hardware loops.

* v8-sil — The original SPARC V8 instruction set with conditional select instructions, pred-
icated blocks based on integer condition codes and hardware loops.

6.3.3 Evaluated Algorithms

The current section will only give a short overview of the evaluated algorithms. A short listing of
them as well as the key figures for each target are given in Appendix [B] Moreover, the complete
simulation environment is available on GitHub (https://github.com/cgeyer/Sparc—
V8—-IS—extension-simulator/)in the benchmarks folder.

One part of the benchmarks algorithms has been taken from [Mallll], the WCET project
website of the Swedish Milardalen university. The majority of algorithms has been imple-
mented by students of TU Vienna participating in a lecture held by Peter Puschner. They were
collected and maintained by Benedikt Huber. Most of them are available in multiple versions:
one traditional implementation and one or more single-path solutions. The remaining benchmark
algorithms were implemented by myself and are also available in a traditional and a single-path
transformed variant.

* Binary Greatest Common Divisor (bgcd): This implementation of the greatest common
divisor algorithm by Euclid does neither use modulo nor division operations. All cal-

94

https://github.com/cgeyer/Sparc-V8-IS-extension-simulator/
https://github.com/cgeyer/Sparc-V8-IS-extension-simulator/

culations are based on addition, subtraction and shift operations, which are part of most
instruction sets.

* Binary Greatest Common Divisor — Single-Path (bgcd_sp): This is the single-path imple-
mentation of the binary version of the Euclid algorithm.

* Binary Search (bs): The first implementation of the binary search algorithm is similar to
the traditional implementation presented in Section [6.2.3]

* Binary Search — Single-Path for Fixed Size (bs_sp): This first single-path implementation
of the binary search algorithm is equivalent to version 5 in [PusQ7].

* Binary Search — Single-Path for Variable Size (bs_wcet): This is an improved version of
the first single-path implementation of binary search.

* Bubble Sort — Worst Case Scenario (bubble_sort): This is a performance test for the
worst-case scenario of the bubble sort algorithm.

* Switch Case Test (cover): This test implements three functions dealing with a loop and a
tremendous amount of switch-case instructions.

* Dijkstra Algorithm (dijkstra): The Dijkstra algorithm identifies the shortest path within a
given graph.

* Dijkstra Algorithm — Single-Path (dijkstra_sp): First single-path implementation of the
Dijkstra algorithm.

* Dijkstra Algorithm — Optimized Single-Path (dijkstra_wcet): Optimized single-path im-
plementation of the Dijkstra algorithm.

e Fourier Discrete Cosine Transformation (fdct): This algorithm implements the Fourier
discrete cosine transformation of a 8 x 8 matrix.

e Interpolation Table (interpolate): This algorithm implements the calculation of a mathe-
matical function of which only a few values are known. The output value is calculated by
interpolation between the two nearest available values.

e Interpolation Table — Single-Path (interpolate_sp): Single-path implementation of the
interpolation table algorithm.

* Matrix Sum (matrixsum): This algorithm calculates the sums of every row and every
column of a given matrix and is thus mainly dependent on arithmetic instructions.

* Median with Quick Sort (median): The first version of finding the median element of a
given array uses quick sort and returns the middle element of the sorted array.

* Median without Sorting (median_torben): The second version of calculating the median
value is based on the idea to guess the median in a first step and count the number of
elements which are greater and which are less. If both values are less or equal to half of
the number of array elements, the median has been found, otherwise, a new maximum or
minimum value for the next guess is set.

* Median without Sorting — Single-Path (median_sp): Single-path implementation of the
previously described algorithm.

 Shell Sort (shellsort): The shell sort algorithm is based on insertion sort, but divides the
array into small parts in a first step.*

* Shell Sort — Single-Path (shellsort_sp): Single-path implementation of the shell sort algo-
rithm.

“For a detailed description see http://en.wikipedia.org/wiki/Shellsort, accessed 2012-02-10.

95

http://en.wikipedia.org/wiki/Shellsort

» Software Division — Naive Implementation (swdivision): The first version of the software
division algorithm simply subtracts the divisor from the dividend, saves the result to the
dividend and increments a counter. This is done as long as the dividend is greater than the
divisor. The counter value is the result of the division.

» Software Division — Shift Implementation (swdivision_shift): The second variant of the
software division algorithm is based on the manual division as usually learned in school
for decimal numbers: It is based on shifting the divisor to the left and subtract it from the
dividend.

* Software Division — Single-Path (swdivision_sp): Single-path implementation of the soft-
ware division algorithm based on shifting.

» Threshold (threshold): The threshold algorithm checks for every element of an array,
whether it is within the given bounds, i.e., a maximum and a minimum level.

» Threshold — Single-Path (threshold_sp): Single-path implementation of the previously
described threshold algorithm.

6.3.4 Results
Arithmetic Benchmarks

A first glance at the evaluation results reveals that all instruction set extensions cannot improve
the performance or reduce the number of branches in scenarios which involve complex arith-
metic operations: The Fourier discrete cosine transformation introduces hardware loops and
conditional move and select instructions, but the resulting performance is nearly the same as for
the original SPARC V8 instruction set. In case of calculating the sums of each row and each
column of a given matrix (matrix sum), LLVM is not able to introduce any of the proposed in-
struction set extensions such that the resulting assembler code is equal for all targets. For these
two algorithms, additional SIMD instructions could have provoked an increase in performance.

Bubble Sort and Switch Case Test

Having a look at the performance evaluation of bubble sort shows that nearly no instruction
set extension could be introduced by LLVM. The evaluated implementation is similar to the
first version of bubble sort presented in Section [6.2.1] It has already been shown that other
versions are more effective such that the results of this benchmark are not fully representative.
Another algorithm which only sparely benefits from the instruction set extensions is the switch
case test: It just consists of a huge look-up table, which introduces a lot of branches, but cannot
be optimized by the compiler. Hence, this benchmark is more interesting to test the performance
of a WCET analysis tool or of a code generator and not that of a processor.

Binary Greatest Common Divisor

Nearly all single-path implementations of a given algorithm could benefit from the instruction
set extensions: The binary greatest common divisor only has 3 conditional branches and only
about 50 % of the worst-case cycle count when comparing a target with hardware loops and
conditional select instructions with the original SPARC V8 solution. Using predicated blocks

96

instead of conditional moves or selects also decreases the number of branches, but causes a
performance degradation. Unfortunately, the single-path variant of the binary greatest common
divisor algorithm is not competitive to the traditional variant, which has a smaller code size on
most targets and shows a much better worst-case performance.

Dijkstra Algorithm

The traditional implementation of the Dijkstra algorithm, calculating the shortest path between
two vertices of a graph, has a code size of 1860 bytes and a worst-case cycle count of 1388 cycles
in case of a SPARC V8 instruction set. The optimized single-path variant has a better code size
on all targets, but shows much less worst-case performance: In case of the SPARC V8 instruction
set, the worst-case cycle count is 2743 cycles, which is about twice the cycle count of the first
implementation. Moreover, the resulting assembler code does not have constant execution time,
which is only achieved if the target supports conditional blocks. However, the performance
decreases for every eliminated branch, resulting in a worst-case execution time of 3325 cycles
for targets with predicated blocks based on condition codes and 5071 cycles for targets with
predicate registers. Thus, the single-path implementation is only a feasible solution if there
is not much memory available and constant execution time is more important than the actual
performance.

Interpolation Table

The situation is slightly better for the single-path variant of the interpolation table: If the target
supports conditional move or select instructions combined with hardware loops, the resulting
worst-case cycle count is only about 20 cycles (16 %) higher than the traditional implementation
on the SPARC V8 target. The code size of the single-path variant is about 18 % greater in case
of no instruction set extensions. When introducing conditional select instructions, the difference
gets smaller and code size is only 5 % more than the original solution.

Shell Sort

When analyzing the results of the shell sort algorithm evaluation, it can be seen that this is the
only example which does not show constant execution times in the single-path transformation.
Only when introducing predicated blocks based on predicate registers, which support branch
elimination of nested if-then-else blocks, a constant execution time can be achieved. Neverthe-
less, the resulting worst-case performance of all solutions is about three times the cycle count of
the original implementation, meaning that this single-path variant is not very useful.

Software Division

The software division algorithm has been implemented to provide a division operation for 16-bit
unsigned integers if it is not available in hardware. The first version just subtracts the divisor
from the dividend as long as possible and increments a counter. It shows a good average case
performance of only a few cycles, but takes over 4 million cycles (!) in the worst case. The sec-
ond variant uses a combination of shifting and subtraction. Although the code size has increased

97

for about 55 %, the resulting worst-case cycle count is only 398 cycles for the original SPARC
V8 target and 314 cycles if conditional select instructions are provided. The last version is a
single-path implementation of the second version. The worst-case cycle count of the SPARC V8
target has increased, but when introducing conditional select instructions and hardware loops, it
shows a constant cycle count of 302 cycles. The price of the performance improvement is an
increase in code size of more than 100 % which is caused by loop unrolling.

Threshold

Another example which demonstrates the positive influence of the proposed instruction set ex-
tensions is the threshold algorithm, which can be useful in signal processing applications. It
simply checks every value of a given array whether it is below or above a specified threshold.
If that is the case, the corresponding element is set to a defined minimum or maximum value.
The first version shows the same performance on all evaluated targets; the differences in the
code sizes are caused by branch eliminations in the main function. The second solution is the
single-path transformation of the algorithm and does not show good performance on the original
SPARC V8 instruction set: The code size has slightly increased and the worst-case cycle count
is about 50 % higher than the first version. However, if the target supports conditional select
and hardware loop instructions, the code size may be even decreased by a few bytes, while the
constant execution time is lower than the original worst-case cycle count. Unfortunately, this is
not true for any other combination of instruction set extensions.

Instructions Suitable for Time Predictable Processors

Which of the evaluated targets can be seen to be the most suitable solution for real-time systems?
It should be a target which shows

¢ small code size,

* few branches,

* asmall deviation (high predictability) and

* a good worst-case performance, i.e., a low worst-case cycle count.

Although there is no target which is outstanding in all of the listed categories, two targets may
be seen as a remarkable improvement to the original SPARC V8 instruction set: v8-movcc and
v8-selcc.

Figure [6.5]shows the relative code size of these two targets in comparison with SPARC V8:
As can be seen easily, the solution with conditional select instructions is slightly better, meaning
that the resulting assembler code is smaller for this target. Moreover, both solutions have a
smaller code size than the original solution except for the bubble sort algorithm. Nevertheless,
the code bloating occurs in the testing function and not in the sorting algorithm itself such that
this issue can be neglected.

Concerning timing predictability, both targets behave nearly equally, meaning that the de-
viation of them is almost that of the original SPARC V8 target as can be seen in Figure [6.6]
However, for most of the single-path solutions, v8-movce and v8-selcc have no deviation at all
whereas constant execution time cannot be achieved on the original SPARC V8 instruction set.

98

Relative Code Size in Relation to SPARC V8

\}8 wlith n!10V(;C ar|1d h\INIoolp —
V8 with selcc and hwloop =——1

T T i

-20

percental change to original code size

-25
-30
-35

T Q9w o £ 5 8 a5 5 o cC o c £ ac £ oo a

o o a9 o 8 o ¢ = o 8 8 s @ g 8 ® & 6 » 6 = & G 0

o] | | s 2 3 @ | s = 3 2 © e o | % o I & |

2 37 82 3 G o= g 3 8 & X o § 63T 5 s 15 a3

2 T 5 2 T £ < L 6 =2 8 8 5

14 2 5 © 9 g I £ E g | £ ® T o » = <

Qo 2 3 X = L 0 ® @ ¢ o=z = 2 2 £ B

= 5 2 £ 2 E € © 25 2 2 = 9

3 © _E > S < S © =

© € i} @ T 2 ES

£ e :

Figure 6.5: Relative code size of v8-movcce and v8-selcc with original SPARC V8, which corre-
sponds to 100 %.

An important issue for the static analysis of the control flow graph is the number of con-
ditional branches, which are shown in Figure In 15 out of 24 algorithms, at least one
conditional branch could be replaced either by a conditional move or select instruction or by
a hardware loop. The number of branches is equal for the remaining algorithms. Thus, introdu-
cing the new instructions either does not change the number of branches at all or makes control
flow analysis easier when branches can be removed. In no cases, additional branches have been
introduced.

One of the most important factors when designing real-time systems is the worst-case execu-
tion time: If a processor shows an excellent average performance, but has a very high worst-case
cycle count, another target with lower maximum timings might be preferred. Figure [6.8] shows
the relative worst-case cycle count of v8-movce and v8-selcc in comparison with the v8 target:
In case of conditional select instructions, the cycle count can be reduced by about 40 % for three
algorithms. v8-movcc shows similar improvements like v8-selcc, but has a much higher worst-
case cycle count for shell sort. The reason for this lies in the difference of conditional move and
conditional select: The latter can be translated easily by LLVM whereas conditional move in-
structions might involve additional overhead resulting in greater code size and higher execution
times. Nevertheless, both targets can be seen as a suitable solution for real-time systems which
decrease the code size, the number of branches and the worst-case cycle count in nearly all of
the evaluated single-path algorithms.

99

Deviation of SPARC V8 and SPARC V8 with conditional select and hardware loop

12 " T T 7 SPARCVS
V8 with selcc and hwloop ===
1
0.8
j
k]
.g 0.6 -
[0
[a)
0.4
0.2

p
P

dijkstra :

cover
threshold_s

bgcd

bgcd_sp
bs_wcet
dijkstra_sp
dijkstra_wcet
interpolate
interpolate_sp
median
median_sp
median_torben
shellsort
shellsort_sp
swdivision
swdivision_shift
swdivision_s
threshold

Figure 6.6: Deviation as defined in Equation|[6.1]is an indicator of timing predictability. A value
near 1 denotes bad predictability or high deviation whereas a value near 0 corresponds to nearly
constant execution time. The chart shows the deviation of selected algorithms simulated on the
SPARC V8 and v8-selcc targets.

Summary

Summarizing the results of the evaluated benchmarks shows:

(1) All single-path implementations of the given algorithms show worse performance in com-
parison with the original version in case none of the instruction set extensions are used.

(2) Introducing several instruction set extensions may increase the code size and the worst-
case cycle count for non-single-path algorithms or does not have any effect.

(3) Introducing conditional select and hardware loop instructions increases the worst-case
performance of all single-path implementations except for the Dijkstra algorithm® in com-
parison with the original SPARC V8 instruction set.

(4) A constant execution time of all single-path algorithms may be achieved by just introdu-
cing conditional move or select instructions. This is not true for the shell sort algorithm.

(5) Predicated blocks are not commonly used if conditional move or select instructions are
enabled. They cause an increase in code size and show a greater worst-case cycle count
than all other solutions.

SFor the Dijkstra algorithm, the compiler has not been able to introduce any of the proposed instruction set
extensions such that the assembler code is the same as for the original solution.

100

Number of Conditional Branches in Relation to SPARC V8

\}8 wlith rTI10v<;c ar|1d h\INIooIp —
V8 with selcc and hwloop ==

10 L Lt Y O I

-20

absolute difference of conditional branch instructions
o

-25 L

T O v ag t s 8 a5 o a c o c £t ac £ oo a
o o a9 o 8 o ¢ = o 8 8 s @ g 8 ® & 6 » 6 = & G 0
o] | | s 2 3 @ | s = 3 2 © e o | % o I & |
2 37 82 3 G o= g 3 8 & X o § 63T 5 s 15 a3
K] = s Q © © 1 o 2 ¢ 9 o ©
14 2 5 © 9 g I £ E g | £ ® T o » = <
Qo 2 3 X = L 0 ® @ ¢ o=z = 2 2 £ B
> 5 2 £ 2 E € © 25 2 2 = 9
3 © _E > S < S © =
© € i} @ T 2 ES

£ £ H

Figure 6.7: Absolute difference in the number of branches of v8-movcc and v8-selcc in compar-
ison with the number of branches on the original SPARC V8.

(6) Using predicate registers instead of the current processor status register as condition for
predicated blocks does not really increase the number of eliminated branches for most
cases.

(7) Introducing the hardware loop instruction as the single instruction set extension is nearly
useless, because the current compiler implementation is not able to identify simple loops
ranging over multiple basic blocks.

Finding the most appropriate combination of instruction set extensions which increase the
timing predictability of a processor is based on the following considerations: The hardware
costs should be as low as possible, but the resulting worst-case performance should be much
better than the performance of the original instruction set. Moreover, the number of eliminated
branches and the code size should also be taken into account. Of course, there is no combination
of instruction set extensions outperforming all others in every aspect. Nevertheless, two promis-
ing combination candidates have been identified to be part of future time-predictable instruction
sets: Conditional move instructions with hardware loop support or conditional select with hard-
ware loop support. Both targets show a better worst-case performance for single-path solutions
and have a smaller code size than the original SPARC V8 instruction set. Moreover, the resulting
assembler code of both targets has fewer conditional branches and is therefore easier to analyze.
The decision whether conditional move or select instruction should be implemented mainly de-
pends on the hardware costs. If code size and performance is more important than the number

101

Relative Worst-Case Performance to SPARC V8
10 T T T

\}8 wlith I’TI‘IOV(;C ar|1d h\IN|OOIp —
V8 with selcc and hwloop ==

0 : : - T

percental change to original cycle count
N
o

-50

T Q9w af £ 5 8 a5 5 o Q cC o c £t ac & anv o
o o 9 o 8 o 2 = o 8 kS| 5 @ g S ® & 6 » 6 = ® G 0
o) | | = o 3 @ | = = 3 & o e o | % o | & |
2 37 2 3 G o= g 3 S & X 0o § 63T 5 s 1§ a2
2 T 5 2 T £ < L c =2 8 8 5
= 2 35 T v O 3 = E 3 | £ & T 6 @ = <
o © 2 X = L o ® @ c o< =22 2 £ G
= 5 2 £ 2 E £ o L 5 2 5 = o
o = [0 S 7] = =
S £ @ T 2 £

£ IS H

Figure 6.8: Relative worst-case cycle count of v8-movcc and v8-selcc with original SPARC V8,
which corresponds to 100 %. In case no worst-case scenario has been identified, the measured
maximum cycle count has been taken.

of used logical elements, the conditional select instruction should be preferred. The hardware
loop is a nice-to-have feature, which does not really influence the resulting code size, but may
increase the performance by 10 to 20 % while not needing much additional hardware.

102

CHAPTER

Conclusion

7.1 Final Review on the Presented Instruction Set Extensions

It could be seen in the last chapter that conditional move and select instructions are very attrac-
tive extensions to existing instruction sets: The additional hardware costs are quite moderate,
adaptations of existing compilers are relatively simple and the resulting assembler code shows
fewer conditional branches and better performance in many cases. However, the following facts
have to be considered for the current evaluation:

» The SPARC V8 instruction set offers several possibilities to be extended, because there is
an amount of unused opcodes available. Other targets might not provide such a flexibility
for instruction set extensions.

e LLVM natively supports a conditional select instruction. Thus, the code generating pro-
cess for the LLVM IR language favors the use of the select instruction.

» The performance of the instruction set extensions depends on the quality of generated as-
sembler code. Consequently, improving the code generating passes presented in Chapter 3]
might also make other instruction set extensions like predicated blocks more feasible.

Thus, the specific results of the evaluation are only valid for the presented approach using LLVM
and the SPARC V8 instruction set. However, in many previous proposals for additional instruc-
tions of existing processors (e.g., [TG06,|GTSO07]]), the presented code examples and benchmark
algorithms have been implemented manually, resulting in a better performance than the original
solution. In the current thesis, all evaluations were based on automatically generated assembler
codes. Thus, the presented approach is a proof of concept that even a compiler which has not
been designed to generate predictable assembler code is able to correctly and efficiently translate
single-path algorithms if the underlying instruction set provides corresponding instructions.

103

7.2 Suggestions for Further Research

The current evaluation is based on the measured results of a SPARC V8 instruction set simula-
tor. More realistic results can be obtained if the proposed instruction set extensions will really
be implemented in hardware. Moreover, the presented code generating algorithms could be im-
proved such that hardware loops may cover multiple basic blocks, nested loops can be translated
and branch elimination is done more efficiently. All additional compiler passes use assembler
code input and try to identify branches and loops. If additional information from high-level
programming languages is used, code generation will become easier and perhaps more efficient.

Another interesting investigation could include the performance evaluation on targets which
provide predicated and conditional move instructions. Small adaptations to the compiler could
generate assembler output using conditional move instructions without any other predications
and compare the execution times to assembler code without any restrictions. Possible processors
could include ARM or the Intel Itanium.

A complete different approach is implemented by VLIW processors: Their ISA is com-
pletely different to the SPARC V8 and would need other types of instructions to provide pre-
dictability. There are several investigations on creating predictable VLIW architectures, e.g.,
[SSPT11]. VLIW offers the possibility to execute the if- and else-branch concurrently, which
are ideal preconditions for a single-path transformation.

7.3 Summary

The current thesis has given an overview of existing processors used in real-time systems. More-
over, several approaches for time predictable architectures have been presented. Unfortunately,
most of them do not focus on the underlying instruction set, but either on the complete system
design or on the specific implementation in hardware. In this thesis, several instructions have
been identified which should be part of future processors if they want to provide timing pre-
dictability: It is not only sufficient to offer constant execution times of hardware instructions,
but also to provide instructions which allow the compiler to produce time predictable code.

The SPARC V8 instruction set, which has been designed to fit for a general purpose proces-
sor, has been extended such that predictable assembler code with constant execution times can be
generated. The LLVM compiler framework has been adapted to support the newly introduced
instructions. It has been shown that a number of conditional branches can be replaced easily
if the underlying instruction set supports conditional execution of instructions (e.g., predicated
blocks) and hardware loops.

Finally, the impacts of the instruction set extensions on the generated assembler code and
the performance have been evaluated by simulating more than 20 benchmark algorithms on tar-
gets providing different instruction sets. It has been shown that a conditional move instruction
is sufficient to generate single-path code of an algorithm and that this solution shows better
performance, i.e., lower execution time, than introducing a predicated instruction set. The most
promising combinations of the presented instruction set extensions have been identified and sug-
gested to be part of future time predictable instruction sets. These include conditional move or
select instructions together with support of hardware loops: For most of the evaluated benchmark

104

algorithms the code size has decreased, the number of basic blocks and conditional branches has
been reduced and the worst-case timing behavior has improved.

105

Appendices

107

APPENDIX

Performance Evaluation of Selected
Algorithms

All benchmark algorithms of the current appendix have been first translated into the LLVM IR
language by 11vm—gcc. If not stated differently, all compiler optimizations have been enabled
(-03). Afterwards, the LLVM compiler 11c has been used to generate SPARC V8 assembler
code with certain instruction set extensions. The implemented instruction set of each target can
be found in Section [6.2] Due to a bug, the elimination of the index variable in hardware loops
had to be generally disabled.

A.1 Bubble Sort

The original implementations of the bubble sort algorithm may be found in [PusO7, p. 7-19].
The evaluated scenarios include a sorted array, equivalent to the best case, a pseudo-randomly
initialized array and an array sorted in reverse order, which is the worst case for all variants. The
array consisted of 100 integer elements. The version numbering corresponds to the numbering
of the paper.

109

Version1 Version2 Version4 Version5 Version 6

v8 368 388 376 396 440
v8-predblockicc 368 392 376 396 444
v8-hwloop 368 388 376 396 452
v8-movce 368 384 376 396 440
v8-selcc 368 380 376 396 428

Table A.1: Code size of several implementations of bubble sort on different targets.
The given numbers represent the code size in bytes.

110

'sI93aUI ()0 JO sAeire
Q1oM $10309A IndUI 189) QY], "UOISIOA Pay1oads 9y 10§ JUN0D 2[2Ad (LD AL) WnwiIxew J0 (D) Wnuwiur ay) juasardax
SIOqUINU UJAIS [V "S193I8) JUAIQIP UO 1I0S 9[qqnq JO SUONBIUQWI[dWI [BIAS JO UOHBN[BAD QOUBWLIONS] 7'V d[qEL

999¢8 999¢8 6EES0T 86ET 9¥6V0T 86ET TLECY TLECS T6866 V610L 2I]25-84
¥9L¢6 ¥9L¢6 6EESOT 86ET 9V6F0T 86ET 0CVL8 0CV.L8 ¥6866 T610L J240u-g4a
€9LG¢T T9¢c¥I 6E€G0T 86ET 9IV6¥0T 86ET CV6VIT <P0SO0T 76866 ¥610L doojmy-ga
L866ET GIVET 6£€G0T 160C 9V6F0T 160G T686IT T6S6IT 76866 F6866 221400]qpaid-ga
€9LGcl L9¢€C 6EES0T 86ET 9¥6V0T 86ET Cv6FVIT <POS0T 76866 V¥610L 84

LM 1dDd 1dOM 1dD9d 1dOM 1dD09 1dOM 1d0d 1dOM 1dOd
9 UOISIIA S UOISIIA p UOISIIA 7 UOISIDA T UOISIIA

111

A.2 Find First

The original implementations of the find first algorithm may be found in [PusO7, p. 21-28]. The
evaluated scenarios were taken from [PusO7, p. 62f] and cover single, multiple and no occurences
of the key in an array of 10 integers. The version numbering corresponds to the numbering of
the paper.

Version 1 Version 2 Version 3a Version 3b Version 5/6a Version 5/6b

v8 152 180 768 216 304 168
v8-predblockicc 152 184 892 228 312 172
v8-hwloop 152 180 768 216 304 168
v8-movce 152 164 604 188 272 156
v8-selcc 152 160 484 172 228 156

Table A.3: Code size of several implementations of find first on different targets. The given numbers
represent the code size in bytes. Versions 3 and 5/6 were generated with different 11vm-gcc settings:
(a) is the assembler output if all optimizations are turned on, (b) is the assembler output if loop unrolling
is disabled.

112

PIIqesIp

st Surfjosun dooy j1 indino rejquasse ayj st (q) ‘uo pawiny are suonezrundo [[e j1 ndino 1sjquasse 9y SI (B) :S3UMISS O0D-WATT
JUQIOHIP UYIIM PIIBIdUAT 9JoM /G PUB ¢ SUOISIOA "UOISIOA Payroads ay) J0J Unod A0 (JADM) Wwnwixew Jo ([4Dg) wnwrumu
o) Juasaxdal sIoquUINU UAIS [y "S195I8) JUSIQJJIP UO 1SIY PUl JO SUONRIUWS[dWI [BISASS JO UOIIBN[BAD QOURWIONS] :H°V d[qEL

71 |74} ov oy 9¢1 9¢l 10T 10T el 11 201 ¢l 2J]28-§4
47! jAg! 8F 8F Lyl Lyl 6T 6¢1 49} 11 L0T ¢l 9240Ui-84
TLT 191 Gg Ly 69¢ 05¢ 69T 44} cLl g1 20T ¢l doojmy-ga
18T 18T LS L9 €6¢ €6¢ 002 002 c61 LT 20T 4 201y00]qp24d-g4
TLT 191 Gg Ly 69¢ 09¢ 64T 44} CLl a1 20T 4! 84
LAOM 1309 1dOM L1HDE J1dOM 1309 L1HOM 1HD09 1dO0M 1dDd I1HdOM 1dDd

q9/S UOISIIA B9/S UOISIIA Q€ UOISIIA B¢ UOISIIA T UOISIIA T UOISIIA

113

A.3 Binary Search

The original implementations of the binary search algorithm may be found in [PusO7, p. 30-52].
The evaluated scenarios use a logarithmically distributed integer array of 16 elements. The keys
to be found are saved in the array or are greater than the largest element, which is the worst-case
scenario. The version numbering corresponds to the numbering of the paper.

Version 1/2 Version3 Version5 Version7 Version8 Version 10

v8 208 288 220 216 244 224
v8-predblockicc 208 288 220 216 244 224
v8-hwloop 208 288 220 216 244 224
v8-movce 196 256 212 196 228 212
v8-selcc 196 240 208 196 224 200

Table A.5: Code size of several implementations of binary search on different targets. The given
numbers represent the code size in bytes. For all versions, loop unrolling has been disabled.

114

*S9[0AD [9 SI aWI} UOIINOAX JUBISUOD Funnsal oy} ‘sdoof aremprey 3urjqesip
USUA\ "SUOp 3q Jou p[noys 31 a1aym doo] arempiey e syIasul yorym ‘ssed Sunerouad opod doof arempiey ay) ut Snq & 0) anp SI SIY],
"1931.) 201300)qpPa4d-Q4a 9y} UO dourWIOJIad Y} URY) ISIOM UAAD ST YOIYM 1a3I8) 20]25-94) UO dourwWIOjIad MO[AI9A B SBY / UOISIOA
Jey) 9JON 'PoIqesIp A[ersuas usaq sey Surfjoiun doo "uoIsioA payroads oy} J0J JUNod I[0Ad (ILDHM) WnwiIxew Jo (1 gDg) wnwrumu
oy Juasardar sIaquinu UAIS [[V °S193Ie) JUISHIP UO YdIeas AIeulq JO suonejuawa[dull [BI9AS JO UOIIBN[BAD QOUBULIONS] :9°V J[qRL

L9 AS €8 6. VLT VLT L9 19 6¢T 99 16 0T 22]25-84
¢9 ¢9 78 08 ¢9 ¢9 89 89 ! LL 16 0T J240U-g4a
6. 8L 26 88 gl 2 g8 6. 191 a8 10T 0T doojmy-ga
€8 €8 26 €6 6. 6. 06 06 181 €6 901 0T 201420]1qpa.1d-ga
6. 8L L6 88 Gl (2 g8 6. 191 g8 10T 0T 84

LHOM 1HOd I1dO0M 1409 L1dOM 1HD09 I1dOM 14049 JIdOM 1d09d J1dOM 1HD9
0T UOISIIA 8 UOISIIA L UOISIIA S UOISIIA € UOISIIA 7/T UOISIIA

115

A.4 Increment Multi-byte Counter

The original implementations of the binary search algorithm may be found in [PusO7, p. 54-
58]. The evaluated scenarios use an 8-byte counter, initially set to the largest value. It will
be incremented for 65 535 times. The version numbering corresponds to the numbering of the

paper.

Version1 Version2 Version 4

v8 140 164 144
v8-predblockicc 140 164 144
v8-hwloop 140 164 144
v8-movcce 140 164 148
v8-selcc 140 152 140

Table A.7: Code size of several implementations of incrementing a multi-
byte counter on different targets. The given numbers represent the code size
in bytes. For all versions, loop unrolling has been disabled.

Version 1 Version 2 Version 4
BCET WCET BCET WCET BCET WCET
v8 16 142 182 191 152 154
v8-predblockicc 16 142 202 202 161 161
v8-hwloop 16 142 182 191 152 154
v8-movce 16 142 156 156 135 135
v8-selcc 16 142 145 145 115 115

Table A.8: Performance evaluation of several implementations of increment-
ing a multi-byte counter on different targets. All given numbers represent the
minimum (BCET) or maximum (WCET) cycle count for the specified ver-
sion. Loop unrolling has been generally disabled.

116

APPENDIX

Benchmark Results

All benchmark algorithms of the current appendix have been first translated into the LLVM IR
language by 11vm—gcc. All compiler optimizations have been enabled (-03). Afterwards,
the LLVM compiler 11c has been used to generate SPARC V8 assembler code with certain
instruction set extensions. To evaluate which combinations of additional instructions are most
feasible, 13 different targets have been defined:

v8 — The original SPARC V8 instruction set without any extensions.

v8-m — The original SPARC V8 instruction set with conditional move instructions.

v8-s — The original SPARC V8 instruction set with conditional select instructions.

v8-i — The original SPARC V8 instruction set with predicated blocks based on integer
condition codes.

v8-r — The original SPARC V8 instruction set with predicated blocks based on predicate
registers.

v8-1 — The original SPARC V8 instruction set with additional support for hardware loops.
v8-ml — The original SPARC V8 instruction set with conditional move instructions and
support for hardware loops.

v8-sl — The original SPARC V8 instruction set with conditional select instructions and
support for hardware loops.

v8-il — The original SPARC V8 instruction set with predicated blocks based on integer
condition codes and support for hardware loops.

v8-rl — The original SPARC V8 instruction set with predicated blocks based on predicate
registers and support for hardware loops.

v8-mil — The original SPARC V8 instruction set with conditional move instructions, pred-
icated blocks based on integer condition codes and support for hardware loops.

v8-srl — The original SPARC V8 instruction set with conditional select instructions, pred-
icated blocks based on predicate registers and support for hardware loops.

v8-sil — The original SPARC V8 instruction set with conditional select instructions, pred-
icated blocks based on integer condition codes and support for hardware loops.

117

For each algorithm, the following key figures have been recorded:

* Code Size is the code size of the complete program, including test and main functions, in
bytes.

* Conditional Branches denotes the number of conditional branches within the complete
program. It is an indication of the complexity of the control flow graph. A lower number
means that the complexity of the control-flow graph decreases and the worst-case path is
easier to identify.

» Unconditional Branches denote the number of jump instructions within the complete pro-
gram. They usually do not have an influence on the complexity of the control flow graph.

* Number of NOPs denotes the number of delay instructions which have to be inserted after
a conditional or unconditional branch, see Section [4.2.2]for details.

* Number of MBBs is the amount of machine basic blocks of the whole program and cor-
responds to the number of vertices of the control flow graph. Like the for conditional
branches, a lower number is an indicator that the worst-case path of the given assembler
code is easier to identify.

* Min/Max Cycles is the measured minimum/maximum cycle count and does not need to be
the actual worst-case execution time. For algorithms with a single vector of input values,
only the measured cycle count has been recorded.

* Deviation is calculated by the formula specified in Equation [6.1] and is only stated if the
minimum and maximum cycle count of the current algorithm are available.

* Number of movCCs denotes the number of conditional move instructions which have been
used within the whole program.

* Number of selCCs denotes the number of conditional select instructions which have been
used within the whole program.

* Number of predbegins is equivalent to the number of basic blocks which have been predi-
cated.

* Nesting level of predicated blocks is only available for predicated instructions based on
predicate registers. It is equivalent to the highest predicate register which has been used
within the whole program. This relates to the nesting level of if-then-else structures which
could be eliminated.

* Number of HWLoops denotes the number of used hardware loops within the whole pro-
gram.

B.1 Binary Greatest Common Divisor

This implementation of the greatest common divisor algorithm by Euclid does neither use mo-
dulo nor division operations. All calculations are based on addition, subtraction and shift oper-
ations, which are part of most instruction sets, see the code listing below. As can be seen in the
following table, only two basic blocks can be eliminated when predicated blocks are supported.
In all other cases, none of the presented instruction set extensions is used, resulting that the
performance of all targets is quite similar.

#idefine EVEN (x) ((x&0x1)==0)

118

static int gcd_binary(int a, int D)

{

unsigned int u = (a < 0) ? (-a) a;
unsigned int v = (b < 0) ? (-b) b;
int shift= 0;

if (u==0 || v == 0) { return (ulv); }

while (EVEN (u)) {
u >>= 1;
if (EVEN (v)) |
v >>= 1;
shift++;

}
while (v > 0) {
while (EVEN(v)) v >>= 1;

if(u < v) v —= u;
else {
int diff = u-v;
u = v;
v = diff;

}

return u << shift;

119

v8 v8-m v8-s v8-i v8-r v8-1 v8-ml v8-il v8-rl v8-mil v8-srl v8-sil
Code Size 304 304 304 304 312 304 304 304 312 304 312 304
Conditional Branches 11 11 11 10 10 11 11 11 10 10 10 10 10
Unconditional Branches 5 5 5 4 4 5 5 5 4 4 4 4 4
Number of NOPs 9 9 9 8 8 9 9 9 8 8 8 8 8
Number of MBBs 23 23 23 21 21 23 23 23 21 21 21 21 21
Max Cycles 554 554 554 615 665 554 554 554 615 665 615 665 615
Min Cycles 33 33 33 35 37 33 33 33 35 37 35 37 35
Deviation 0.9404 09404 0.9404 09431 0.9444 0.9404 09404 0.9404 0.9431 09444 09431 0.9444 09431
Number of movCCs - 0 - - - - 0 - - - 0 - -
Number of selCCs - - 0 - - - - 0 - - - 0 0
Number of predbegins - - - 2 2 - - - 2 2 2 2 2
Nesting level of predicated blocks - - - - 0 - - - - 0 - 0 -
Number of HWLoops - - - - - 0 0 0 0 0 0 0 0

120

B.2 Binary Greatest Common Divisor — Single-Path

This is the single-path implementation of the binary version of the Euclid algorithm. As can
be seen in the following table, nearly all branches can be removed if the target supports con-
ditional move or select instructions or predicated blocks. Note that the number of basic blocks
increases if hardware loops are introduced. However, their usage reduces the amount of condi-
tional branches, such that the complexity of the CFG decreases.

#define EVEN (x) ((x&0x1)==0)

static int gcd_binary(int a, int D)

{
unsigned int u = (a < 0) ? (-a) : a;
unsigned int v = (b < 0) ? (-b) : b;
int shift= 0;

if (u == [l v ==20) { u=v=(ulv); }

int i;

for(i = 0; i < 31; i++) {
int even_u = EVEN(u);
int even_v = EVEN(v);
if (even_u) u >>= 1;
if (even_v) v >>= 1;
if (even_u & even_v) shift++;

}

for(i = 0; 1 < 60; ++1i) {
int diff = u-v;
if((v & Ox1) & (diff < 0)) v = —-diff;

if((v & Ox1) & (diff >= 0)) u = v;
if((v & Ox1) & (diff >= 0)) v = diff;
v >>= 1;

}

return u << shift;

121

v8 v8m v8-s v8-i v8r v81 v8ml v8sl v8il v8rl v8-mil v8-srl v8-sil
Code Size 400 328 308 412 484 404 336 312 420 492 336 312 312
Conditional Branches 14 5 5 5 5 13 3 3 3 3 3 3 3
Unconditional Branches 2 1 1 1 1 2 1 1 1 1 1 1 1
Number of NOPs 8 2 3 2 2 8 2 2 2 2 2 2 2
Number of MBBs 30 11 11 11 11 31 13 13 13 13 13 13 13
Max Cycles 2114 1634 1514 2354 2954 2025 1369 1189 2089 2689 1369 1189 1189
Min Cycles 2091 1634 1514 2354 2954 2002 1369 1189 2089 2689 1369 1189 1189
Deviation 0.0109 0 0 0 0 0.0114 0 0 0 0 0 0 0
Number of movCCs - 9 - - - - 9 - - - 9 - -
Number of selCCs - - 9 - - - - 9 - - - 9 9
Number of predbegins - - - 10 10 - - - 10 10 0 0 0
Nesting level of predicated blocks - - - - 0 - - - - - - - -
Number of HWLoops - - - - - 1 2 2 2 2 2 2 2

122

B.3 Binary Search

The first implementation of the binary search algorithm is similar to the traditional implemen-
tation presented in Section [6.2.3] As the input vectors for the evaluation differ in size, the
deviation of maximum and minimum execution time has not been calculated. It can be seen in
the following table that none of the presented instruction set extensions could be used.

static int bs (intxkeys, int key, int size) {
int mid;
int low = 0;
int high = size - 1;
while (low <= high) {
mid = (int) (((unsigned int)low + (unsigned int)high) >> 1);
int midval = keys[mid];

if (midval < key) low = mid + 1;
else if (midval > key) high = mid - 1;
else return mid; // key found

}

return -1;

123

v8

v8-m

v8-s

v8-i

v8-r

v8-1

v8-ml

v8-sl

v8-il

v8-rl

v8-mil

v8-srl

v8-sil

Code Size

248

248

248

248

248

248

248

248

248

248

248

248

248

Conditional Branches

Unconditional Branches

Number of NOPs

Number of MBBs

Max Cycles

96

96

96

96

96

96

96

96

96

96

96

96

96

Min Cycles

23

23

23

23

23

23

23

23

23

23

23

23

23

Number of movCCs

Number of selCCs

Number of predbegins

Nesting level of predicated blocks

Number of HWLoops

124

B.4 Binary Search — Single-Path for Fixed Size

This first single-path implementation of the binary search algorithm is equivalent to version 5
in [PusO7]. The execution time for arrays of equal sizes is constant, but as can be seen in the
following table, small arrays have a lower cycle count. Thus, the current implementation may

be only seen as a single-path solution for arrays with fixed sizes.

static int bs (intxkeys, int key, int size)

{

int inc;

int left = 0, right = size-1;

int idx = (right + left) >> 1;

for (inc = size; inc > 0; inc >>= 1) {
right = (key < keys[idx] ? idx-1 : right);
left = (key > keys[idx] ? idx+1l : left);
idx = (right + left) >> 1;

}

return (keys[idx] == key) ? idx : -1;

125

v8 v8m v8s v8si v8r v81 v8ml v8-sl v8il v8rl v8-mil v8-srl v8-sil
Code Size 400 380 372 404 444 400 380 372 404 444 380 380 372
Conditional Branches 14 10 10 10 9 14 10 10 10 9 10 9 10
Unconditional Branches 3 3 3 3 2 3 3 3 3 2 3 2 3
Number of NOPs 9 6 6 6 5 9 6 6 6 5 6 5 6
Number of MBBs 25 17 17 17 14 25 17 17 17 14 17 14 17
Max Cycles 88 77 76 93 115 88 77 76 93 115 77 76 76
Min Cycles 26 25 24 29 35 26 25 24 29 35 25 24 24
Number of movCCs - 4 - - - - 4 - - - 4 - -
Number of selCCs - - 4 - - - - 4 - - - 4 4
Number of predbegins - - - 4 6 - - - 4 6 0 2 0
Nesting level of predicated blocks - - - - 0 - - - - 0 - 0 -
Number of HWLoops - - - - - 0 0 0 0 0 0 0 0

126

B.5 Binary Search — Single-Path for Variable Size

This is an improved version of the first single-path implementation of binary search. As can be
seen in the following table, the cycle count has dramatically increased, but is equal for arrays of
all sizes. The reason for this is the fact, that the input vectors of the evaluation only consists of
16 elements, but the loop bounds have been chosen to support array sizes of 32 elements. Note
that loop unrolling has been enabled for the first single-path solution, causing that the resulting
code size is much greater than for the current implementation.

static int bs (intxkeys, int key, int size)
{

int i;
int left = 0, right = size-1;
int idx = (right + left) >> 1;

for(i = 0; i < sizeof(int)*8; i++) {

right = (key < keys[idx] ? idx-1 : right);
left = (key > keys[idx] ? idx+1 : left);
idx = (right + left) >> 1;

}

return (keys[idx] == key) ? idx : -1;

127

v8 v8m v8s v8i v8-r v8-1 v8ml v8-sl v8-il v8rl v8mil v8-srl v8-sil
Code Size 272 256 252 272 296 272 260 256 276 300 260 256 256
Conditional Branches 9 6 6 6 6 9 5 5 5 5 5 5 5
Unconditional Branches 3 3 3 3 3 3 3 3 3 3 3 3 3
Number of NOPs 7 4 4 4 4 7 4 4 4 4 4 4 4
Number of MBBs 18 12 12 12 12 18 13 13 13 13 13 13 13
Max Cycles 493 428 427 525 655 493 336 335 433 563 336 335 335
Min Cycles 463 428 427 525 655 463 336 335 433 563 336 335 335
Deviation 0.0609 0 0 0 0 0.0609 0 0 0 0 0 0 0
Number of movCCs - 3 - - - - 3 - - - 3 - -
Number of selCCs - - 3 - - - - 3 - - - 3 3
Number of predbegins - - - 3 3 - - - 3 3 0 0 0
Nesting level of predicated blocks - - - - 0 - - - - 0 - - -
Number of HWLoops - - - - - 0 1 1 1 1 1 1 1

128

B.6 Bubble Sort — Worst Case Scenario

This is a performance test for the worst-case scenario of the bubble sort algorithm. As can be
seen in the following table, introducing hardware loops does not change the performance at all,
which is due to the fact, that the loop occurs in the initialization function and is therefore not
considered in the evaluation. Neither conditional move nor select instructions could be used,
but two branches could be eliminated when predicated blocks were enabled. Nevertheless, the
resulting cycle count is worse than the original solution for targets using predicate registers.

static void BubbleSort (int Array[])

{

int Sorted = FALSE;
int Temp, LastIndex, Index, 1i;

for (i = 1; i <= NUMELEMS-1; i++)

{
Sorted = TRUE;
for (Index = 1; Index <= NUMELEMS-1;
if (Index > NUMELEMS-i)
break;
if (Array[Index]
{

Index ++)

> Array[Index + 11])

Temp =
Array[Index] =
Array[Index+1]

Sorted = FALSE;

Array[Index];
Array[Index+1l];
= Temp;

}

if (Sorted)
break;

{

129

v8

v8-m

v8-s

v8-i

v8-r

v8-1

v8-ml

v8-sl

v8-il

v8-rl

v8-mil

v8-srl

v8-sil

Code Size

256

256

256

256

264

264

264

264

264

272

264

272

264

Conditional Branches

9

9

9

8

8

8

Unconditional Branches

2

2

2

2

2

2

Number of NOPs

6

6

6

5

5

6

6

6

5

5

5

5

Number of MBBs

17

17

17

14

14

18

18

18

15

15

15

15

Cycles

125138

125138

125138

125138

135038

125138

125138

125138

125138

135038

125138

135038

125138

Number of movCCs

0

0

0

Number of selCCs

Number of predbegins

Nesting level of predicated blocks

S| N D

Number of HWLoops

130

B.7 Switch Case Test

The current test implements three functions dealing with a loop and a tremendous amount of
switch-case instructions. As the loop bounds are different for each function, only the maximum
and minimum cycle count have been recorded. The following table shows that this algorithm
does not benefit at all from the presented instruction set extensions. The introduced conditional
move or select instruction is only part of the evaluation function.

static int swil20 (int c)
{
int i;
for (i=0; 1<120; i++) {
switch (i) {
case 0: c++; break;

case 119: c++; break;
default: c——; break;

}

return c;

static int swib0 (int c¢)
{
int i;
for (i=0; 1<50; i++) {
switch (i) {
case 0: c++; break;

case 59: c++; break;
default: c-——-; break;

}

return c;

static int swilO (int c)
{
int i;
for (i=0; 1<10; i++) {
switch (1) {
case 0: c++; break;

case 9: c++; break;
default: c-—-; break;

}

return c;

131

v8 v8m v8-s v8i v8r v81 v8ml v8sl v8-il v8rl v8mil v8-srl v8-sil
Code Size 4164 4152 4144 4164 4164 4164 4152 4144 4164 4164 4152 4144 4144
Conditional Branches 279 278 278 279 279 279 278 278 279 279 278 278 278
Unconditional Branches 88 88 88 88 88 88 88 88 88 88 88 88 88
Number of NOPs 279 278 278 279 279 279 278 278 279 279 278 278 278
Number of MBBs 375 373 373 375 375 375 373 373 375 375 373 373 373
Max Cycles 3390 3390 3390 3390 3390 3390 3390 3390 3390 3390 3390 3390 3390
Min Cycles 179 179 173 179 179 179 179 173 179 179 179 173 173
Number of movCCs - 1 - - - - 1 - - - 1 - -
Number of selCCs - - 1 - - - - 1 - - - 1 1
Number of predbegins - - - 0 0 - - - 0 0 0 0 0
Nesting level of predicated blocks - - - - - - - - - - - - -
Number of HWLoops - - - - - 0 0 0 0 - 0 0 0

132

B.8 Dijkstra Algorithm

The Dijkstra algorithm identifies the shortest path within a given graph. It is one of the few
examples, where predicated instructions based on predicated registers is able to remove nested
if-then-else structures such that hardware loops are successfully identified. Nevertheless, the
resulting solution is neither single-path nor does it show better performance than the other im-
plementations.

static void dijkstra(int cost[] [NRNODES], int *preced, int xdistance)
{

int selected[NRNODES]={0};

int current=0,k=0,1i,dc,smalldist, newdist;

for (i=0; 1<NRNODES; i++)
distance[i1]=INFINITE;

selected[current]=1;
distance[0]=0;
current=0;

while(!'allselected(selected))
{
smalldist=INFINITE;
dc=distance[current];
for (i=0; 1<NRNODES; i++)
{
if (selected[i]==0)
{
newdist=dc+cost [current] [i];
if (newdist<distance[1])
{
distance[i]=newdist;
preced[i]=current;
}
if (distance[i]<smalldist)
{
smalldist=distance[i];
k=1i;

}

current=k;
k=0;
selected[current]=1;

133

v8 v8-m v8-s v8-i v8-r v8-1 v8-ml v8-il v8-rl v8-mil v8-srl v8-sil
Code Size 1860 1860 1860 1860 1960 1860 1860 1860 1860 1980 1860 1980 1860
Conditional Branches 40 40 40 30 25 40 40 40 30 20 30 20 30
Unconditional Branches 15 15 15 15 15 15 15 15 15 15 15 15 15
Number of NOPs 44 44 44 34 29 44 44 44 34 24 34 24 34
Number of MBBs 91 91 91 71 61 91 91 91 71 66 71 66 71
Max Cycles 1388 1388 1388 1418 2069 1388 1388 1388 1418 2004 1418 2004 1418
Min Cycles 1133 1133 1133 1253 1904 1133 1133 1133 1253 1802 1253 1802 1253
Deviation 0.1837 0.1837 0.1837 0.1164 0.0797 0.1837 0.1837 0.1837 0.1164 0.1008 0.1164 0.1008 0.1164
Number of movCCs - 0 - - - - 0 - - - 0 - -
Number of selCCs - - 0 - - - - 0 - - - 0 0
Number of predbegins - - - 10 20 - - - 10 20 10 20 10
Nesting level of predicated blocks - - - - 1 - - - - 1 - 1 -
Number of HWLoops - - - - - 0 0 0 0 5 0 5 0

134

B.9 Dijkstra Algorithm — Single-Path

Although this implementation of the Dijkstra algorithm has been written such that single-path
code should be generated, LLVM has not been able to do so except for targets with predicated
blocks. The number of conditional branches could be decreased on all targets as well as the code

size, but the resulting performance is very poor.

static void dijkstra(int cost[] [NRNODES],int x*preced,

{

int selected[NRNODES]={0}, dc;

volatile int current=0,k=0,1i, j,smalldist,newdist, temp,

, dist_temp;

for (i=0; 1<NRNODES; i++)
distance[i]=INFINITE;

selected[current]=1;
distance[0]=0;
current=0;

for (j=0; J<NRNODES-1; j++)

{
smalldist=INFINITE;
dc=distance[current];
for (1=0; i<NRNODES; i++)
{

newdist= dc+cost[current] [i];

preced_temp = preced[i];

dist_temp = distancel[i];

temp = (newdist < dist_temp) ? current
preced[i]=(selected[1i]==0) ? temp

temp = (newdist < dist_temp) ? newdist
distance[i]=(selected[i]==0) ? temp
dist_temp = distancel[i];

temp = (dist_temp < smalldist) *?
k= (selected[i]==0) ? temp : k;
temp = (dist_temp < smalldist)
smalldist=(selected[i]==0) ? temp

}

current=k;

selected[current]=1;

? dist_temp

int xdistance)

preced_temp

preced_temp;

preced_temp;

dist_temp;
dist_temp;
k;

smalldist;
smalldist;

135

v8 v8-m v8-s v8-i v8-r v8-1 v8-ml v8-il v8-rl v8-mil v8-srl v8-sil
Code Size 1236 1236 1236 1244 1308 1236 1236 1236 1244 1308 1244 1308 1244
Conditional Branches 24 24 24 16 16 24 24 24 16 16 16 16 16
Unconditional Branches 13 13 13 5 5 13 13 13 5 5 5 5 5
Number of NOPs 26 26 26 20 20 26 26 26 20 20 20 20 20
Number of MBBs 58 58 58 34 34 58 58 58 34 34 34 34 34
Max Cycles 7160 7160 7160 8072 8744 7160 7160 7160 8072 8744 8072 8744 8072
Min Cycles 7130 7130 7130 8071 8743 7130 7130 7130 8071 8743 8071 8743 8071
Deviation 0.0042 0.0042 0.0042 0.0001 0.0001 0.0042 0.0042 0.0042 0.0001 0.0001 0.0001 0.0001 0.0001
Number of movCCs - 0 - - - - 0 - - - 0 - -
Number of selCCs - - 0 - - - - 0 - - - 0 0
Number of predbegins - - - 16 16 - - - 16 16 16 16 16
Nesting level of predicated blocks - - - - 0 - - - - 0 - 0 -
Number of HWLoops - - - - - 0 0 0 0 0 0 0 0

136

B.10 Dijkstra Algorithm — Optimized Single-Path

The optimized single-path version of the Dijkstra algorithm still is much slower than the original
solution and only shows constant execution time on targets providing predicated instructions.
However, the code size and number of conditional branches could again be reduced. Thus, the
current implementation is superior to the first single-path solution.

static void dijkstra(int cost|[] [NRNODES],int xpreced, int xdistance)
{

int selected[NRNODES]={0}, dc;

volatile int current=0,k=0,1i, j, smalldist, newdist;

volatile int preced_temp, dist_temp;

for (i=1; 1<NRNODES; i++)
distance[i]=INFINITE;

selected[current]=1;
distance[0]=0;

for (j=0; J<NRNODES-1; j++) {
smalldist=INFINITE;
dc=distance[current];

for (i=1; i<NRNODES; i++) {
if (selected[i]==0) {
newdist= dc+cost[current] [i];
preced_temp = preced[i];

dist_temp = distancel[i];

if (newdist < dist_temp) {

preced[i] = current;
distance([i] = newdist;
dist_temp = newdist;

} else {
preced[i] = preced_temp;
distance[i] = dist_temp;
dist_temp = dist_temp;

if (dist_temp < smalldist) {
k = 1i;
smalldist = dist_temp;
} else {
k = k;
smalldist = smalldist;

}
current=k;
selected[current]=1;

137

v8 v8-m v8-s v8-i v8-r v8-1 v8-ml v8-il v8-rl v8-mil v8-srl v8-sil
Code Size 1084 1084 1084 1088 1112 1084 1088 1084 1088 1112 1088 1112 1088
Conditional Branches 19 19 19 17 16 19 17 19 17 16 17 16 17
Unconditional Branches 7 7 7 5 5 7 5 7 5 5 5 5 5
Number of NOPs 22 22 22 21 20 22 21 22 21 20 21 20 21
Number of MBBs 42 42 42 36 34 42 36 42 36 34 36 34 36
Max Cycles 2743 2743 2743 3325 5071 2743 2743 2743 3325 5071 3325 5071 3325
Min Cycles 2728 2728 2728 3324 5070 2728 2728 2728 3324 5070 3324 5070 3324
Deviation 0.0055 0.0055 0.0055 0.0003 0.0002 0.0055 0.0055 0.0055 0.0003 0.0002 0.0003 0.0002 0.0003
Number of movCCs - 0 - - - - - - - - - - -
Number of selCCs - - 0 - - 0 - 0 - - - 0 0
Number of predbegins - - - 4 7 - 4 - 4 7 4 7 4
Nesting level of predicated blocks - - - - 1 - - - - 1 - 1 -
Number of HWLoops - - - - - 0 0 0 0 0 0 0 0

138

B.11 Fourier Discrete Cosine Transformation

This algorithm implements the Fourier discrete cosine transformation of a 8 x 8 matrix. Although
all conditional branches can be removed if hardware loops and conditional move or select in-
structions are provided, the performance only slightly increases. This is due to the fact that the
algorithm involves a lot of arithmetic operations, which are usually part of DSPs. Hence, intro-
ducing SIMD instructions could reduce the cycle count more than the proposed instruction set
extensions.

static void fdct (short int xblk, int 1x)
{
int tmpO, tmpl, tmp2, tmp3, tmp4, tmpb5, tmp6, tmp7;
int tmplO0, tmpll, tmpl2, tmpl3;
int z1, z2, z3, z4, z5;
int i;
short int xblock;

int constant;

/* Pass 1:

ue DCT,; %/

/* Note resu

/* furthermore, we

block=blk;
for (i=0; 1i<8; i++)
{
tmp0 = block[0] + block[7];

block[7] = (tmp4 + z1 + z3) >> (CONST_BITS-PASS1_BITS);

block += 1x;

block=blk;

for (i = 0; 1i<8; i++)
{
tmp0 = block[0] + block[7x1x];

block[2x1x] = (z1 + (tmpl3 % constant)) >> (CONST_BITS+PASS1_BITS
+3);

/+ advance to next

block++;

139

v8

v8-m

v8-s

v8-i

v8-r

v8-1

v8-ml

v8-sl

v8-il

v8-rl

v8-mil

v8-srl

v8-sil

Code Size

820

808

800

820

820

832

820

812

832

832

820

812

812

Conditional Branches

0

Unconditional Branches

Number of NOPs

Number of MBBs

Cycles

Number of movCCs

Number of selCCs

Number of predbegins

Nesting level of predicated blocks

Number of HWLoops

140

B.12 Interpolation Table

This algorithm implements the calculation of a mathematical function of which only a few values
are known. The output value is calculated by interpolation between the two nearest available
values. As can be seen in the following table, the instruction set extensions are only used sparely

and do not have much influence on the performance.

static intl6_t tab_lookup(const tab » map, intlé6_t x)
{

intl6_t Aux_S16, Aux_Sl6_a;

uintl6_t Aux_Ul6, Aux_Ul6_a, t;

const intl6_t » x_table ;
const intl6_t x z_table ;

x_table = (const intl6_t %) map->x_table;
z_table = (const intl6_t «) map->z_table;

if (x <= x(x_table)) {
return z_table[0];

if (x >= x_table[(uint8_t) (map—>Nx - 1)1) {
return z_table[(uint8_t) (map->Nx - 1)];

(x_table) ++;

while (x > *((x_table)++)) {
(z_table) ++;

}

x_table -= 2 ;

Aux_S16 = *((z_table)++);

Aux_Sl6_a = x(z_table);

Aux_Ul6 = (uintleé_t) (((uintlé6_t) x) — ((uintle6_t)
Aux_Ul6_a = (uintle6_t) (((uintle_t) x_table[l]) -
x_table[0]));

if (Aux_S16 <= Aux_S16_a) {
Aux_Sl6 += t;

}

else {
Aux_Sl6 —-= t;

}

return Aux_S16;

x_table[0]));
((uintle_t)

141

v8 v8-m v8-s v8-i v8-r v81 v8-ml v8-il v8-rl v8-mil v8-srl v8-sil
Code Size 312 308 308 312 320 312 308 312 320 308 308 308
Conditional Branches 7 6 6 6 6 7 6 6 6 6 6 6 6
Unconditional Branches 3 3 3 3 3 3 3 3 3 3 3 3 3
Number of NOPs 5 4 4 4 4 5 4 4 4 4 4 4 4
Number of MBBs 17 15 15 15 15 17 15 15 15 15 16 15 15
Max Cycles 124 125 125 126 128 124 124 124 126 128 125 125 125
Min Cycles 51 52 52 53 55 51 51 51 53 55 52 52 52
Deviation 0.5887 0.584 0.584 0.5794 0.5703 0.5887 0.5887 0.5887 0.5794 0.5703 0.584 0.584 0.584
Number of movCCs - 1 - - - - 1 - - - 1 - -
Number of selCCs - - 1 - - - - 1 - - - 1 1
Number of predbegins - - - 1 1 - - - 1 1 0 0 0
Nesting level of predicated blocks - - - - 0 - - - - 0 - - -
Number of HWLoops - - - - - 0 0 0 0 0 0 0 0

142

B.13 Interpolation Table — Single-Path

Although the single-path variant of the interpolation table algorithm shows worse performance
on the SPARC V8 target, it strongly benefits from the instruction set extensions: If conditional
select and hardware loop instructions are provided, the resulting code size is nearly the same as
the first implementation and only shows a slightly increased worst-case performance. Note that
the number of conditional branches could be reduced by 50 %.

static intl6_t tab_lookup_sp(const tab » map, intl6_t x)
{

uint8_t N = map->Nx;

uintl6_t Aux_Ul6, uintl6_t Aux_Ul6_a;

uintleo_t t;

const intl6_t » x_table_safe, * x_table;
const intl6_t x z_table ;

x_table_safe = (const intl6_t) map->x_table;
z_table = (const intl6_t «) map->z_table;

int i, p = 0;
X_table = x_table_safe+l;
for(i = 1; i < N-1; i++)
{

if(x > *(x_tablet+)) pt++;
}
intle_t x0,x1,v0,vl;

x_table = x_table_safe + p;
x0 = *(x_table++);

x1 = *x_table;
if(x > map->x_table[N-1])x = x1;
if (x < map->x_table[0]) x = x0;

z_table += p;
v0 = *x(z_table++);
vl = xz_table;

Aux_Ul6 = (uintle_t) (((uintlé6_t) x) - ((uintle_t) x0));
Aux_Ul6_a = (uintle_t) (((uintleée_t) x1) - ((uintleo_t) x0));

if (v0 > vl) t=-t;
v0 += t;

return v0;

143

v8 v8m v8s v8i v8r v81 v8ml v8-sl v8il v8rl v8-mil v8-srl v8-sil
Code Size 368 340 324 376 408 368 344 328 380 412 344 328 328
Conditional Branches 8 4 4 4 4 8 3 3 3 3 3 3 3
Unconditional Branches 3 1 1 2 2 3 1 1 2 2 1 1 1
Number of NOPs 4 2 2 2 2 4 2 2 2 2 2 2 2
Number of MBBs 19 9 9 10 10 19 10 10 11 11 10 10 10
Max Cycles 204 183 171 218 244 204 157 145 192 218 157 145 145
Min Cycles 194 183 171 218 244 194 157 145 192 218 157 145 145
Deviation 0.049 0 0 0 0 0.049 0 0 0 0 0 0 0
Number of movCCs - 4 - - - - 4 - - - 4 - -
Number of selCCs - - 4 - - - - 4 - - - 4 4
Number of predbegins - - - 5 5 - - - 5 5 0 0 0
Nesting level of predicated blocks - - - - 0 - - - - 0 - - -
Number of HWLoops - - - - - 0 1 1 1 1 1 1 1

144

B.14 Matrix Sum

Similar to the Fourier discrete cosine transformation, the matrix sum algorithm is mainly depen-
dent on arithmetic instructions. LLVM is not able to introduce any of the presented instruction
set extensions such that the performance is identical on all targets.

static void matrix_sum(intxx inputmatrix,
intx rowsums,
intx colsums,
int size) {
int i, J;

// init loop
for (i = 0; 1 < size; i++) {
// init rowsu [i] with O

rowsums [i] =
S/ 1A

/ 't col
// 1nNi1t cCcolsu

colsums[i] = 0;

// sum up rows and colun
for (i = 0; i < size; i++) |
for (j = 0; j < size; J++) {
rowsums [1] += matrix[i][
colsums[j] += matrix[i]][

imns

[P -
~

145

v8

v8-m

v8-s

v8-i

v8-r

v8-1

v8-ml

v8-sl

v8-il

v8-rl

v8-mil

v8-srl

v8-sil

Code Size

312

312

312

312

312

312

312

312

312

312

312

312

312

Conditional Branches

Unconditional Branches

Number of NOPs

Number of MBBs

Cycles

Number of movCCs

Number of selCCs

Number of predbegins

Nesting level of predicated blocks

Number of HWLoops

146

B.15 Median with Quick Sort

The first version of finding the median element of a given array uses quick sort and returns the
middle element of the sorted array. As can be seen in the following table, only predicated blocks
may be introduced, but the resulting performance is nearly the same.

static elem_type median(elem_type m[], int n) {

int start, end, lowerindex, upperindex;
elem_type *tmp = m;
elem_type element, tmpelement;
start = 0; end = n - 1;
if (!tmp)
return ((elem_type) O0);

while (1) {
element = tmp[start];
lowerindex = start + 1;

upperindex = end;
do {
while (upperindex > (start + 1) && tmp[upperindex] >= element)
upperindex——;

while (lowerindex < end && tmp[lowerindex] <= element)
lowerindex++;

if (lowerindex < upperindex) {

tmpelement = tmp[lowerindex];
tmp [lowerindex] = tmp[upperindex];
tmp [upperindex] = tmpelement;

} while (lowerindex < upperindex);

if (tmp[upperindex] < element) {

tmp[start] = tmp[upperindex];
tmp [upperindex] = element;

} else {
upperindex = start;

if (upperindex < ((n + 1)/2 - 1)) {
start = upperindex + 1;

} else if (upperindex > ((n + 1)/2 - 1)) {
end = upperindex - 1;

} else {
break;

}
return tmp[(n+l)/2 - 11;

147

v8 v8-m v8-s v8-i v8-r v8-1 v8-ml v8-il v8-rl v8-mil v8-srl v8-sil
Code Size 384 384 384 388 396 384 384 388 396 388 396 388
Conditional Branches 11 11 11 10 10 11 11 11 10 10 10 10 10
Unconditional Branches 7 7 7 7 7 7 7 7 7 7 7 7 7
Number of NOPs 10 10 10 10 10 10 10 10 10 10 10 10 10
Number of MBBs 28 28 28 26 26 28 28 28 26 26 26 26 26
Max Cycles 36712 36712 36712 36976 37042 36712 36712 36712 36976 37042 36976 37042 36976
Min Cycles 2783 2783 2783 2795 2805 2783 2783 2783 2795 2805 2795 2805 2795
Deviation 0.9242 0.9242 0.9242 09244 0.9243 09242 09242 0.9242 09244 09243 0.9244 09243 0.9244
Number of movCCs - 0 - - - - 0 - - - 0 - -
Number of selCCs - - 0 - - - - 0 - - - 0 0
Number of predbegins - - - 1 1 - - - 1 1 1 1 1
Nesting level of predicated blocks - - - - 0 - - - - 0 - 0 -
Number of HWLoops - - - - - 0 0 - - 0 0 0 0

148

B.16 Median without Sorting

The second version of calculating the median value is based on the idea to guess the median in a
first step and count the number of elements which are greater and which are less. If both values
are less or equal to half of the number of array elements, the median has been found, otherwise, a
new maximum or minimum value for the next guess is set. As can be seen in the following table,
this solution is more efficient than the version using quick sort. Nevertheless, when introducing
predicated blocks based on predicate registers, the performance decreases dramatically.

static elem_type torben(elem_type m[], int n) {
int i, less, greater, equal;

elem_type min, max, guess, maxltguess, mingtguess;
min = max = m[0];

for (i=1 ; i<n ; i++) {
if (m[i]<min) min=m(i]; /#* ai: flow (here) <= "torben"; */
if (m[i]>max) max=m[i]; /* (here) <= */

while (1) {
guess = (min+max)/2;
less = 0; greater = 0; equal = 0;
maxltguess = min;
mingtguess = max;

for (i=0; i<n; i++) {
if (m[i]<guess) {
less++;
if (m[i]>maxltguess) maxltguess = m[i];
} else if (m[i]>guess) {
greater++;
if (m[i]<mingtguess) mingtguess = m[i];
} else equal++;
}
if (less <= (n+l)/2 && greater <= (n+l)/2) break;
else if (less>greater) max = maxltguess;
else min = mingtguess;

if (less >= (n+l)/2) return maxltguess;
else if (less+equal >= (n+l)/2) return guess;
else return mingtguess;

149

v8 v8-m v8-s v8-i v8-r v8-1 v8-ml v8-il v8-rl v8-mil v8-srl v8-sil
Code Size 396 368 364 416 472 396 372 424 484 388 420 384
Conditional Branches 15 12 12 10 7 15 11 11 9 5 9 5 9
Unconditional Branches 4 4 4 4 2 4 4 4 4 2 4 2 4
Number of NOPs 11 10 10 11 6 11 9 9 11 6 11 6 1
Number of MBBs 29 23 23 21 14 29 24 24 22 16 22 16 22
Max Cycles 29309 29018 29017 36226 68208 29309 28830 28829 36102 62354 35652 61645 35651
Min Cycles 2030 1708 1707 2094 3654 2030 1520 1519 1970 3339 1520 2630 1519
Deviation 0.9307 09411 0.9412 09422 0.9464 09307 09473 0.9473 09454 09465 0.9574 09573 0.9574
Number of movCCs - 3 - - - - 3 - - - 3 - -
Number of selCCs - - 3 - - - - 3 - - - 3 3
Number of predbegins - - - 5 12 - - - 5 12 2 8 2
Nesting level of predicated blocks - - - - 2 - - - - 2 - 2 -
Number of HWLoops - - - - - 0 1 1 1 2 1 2 1

150

B.17 Median without Sorting — Single-Path

The single-path variant is based on the previous version of the median algorithm and includes
knowing the upper bound of the outer loop. The code size and worst-case performance of the
SPARC V8 target is much worse than for the first two versions. However, targets implementing
conditional move or select instructions and support hardware loops show a quite good worst-case
performance and have a reduced number of conditional branches.

static elem_type torben_sp(elem_type m[], int n) {

int i, less, greater, equal;

elem_type min, max, guess, maxltguess, mingtguess;
elem_type tmp, med; /x defi
int j, boolean; /x defined for sp-conversion #/
min = max = m[0];

ned for sp—-conversion x/

for (i =1 ; 1 < n ; 1i++) {
tmp = m[i];
if (tmp < min) min = tmp;
if (tmp > max) max = tmp;

for (i = 0; 1 < ((NUMBER_OF_ELEMENTS + 1)/2); i++) {
guess = (min+max)/2;
less = 0; greater = 0; equal = 0;
maxltguess = min;
mingtguess = max;

for (3=0; J < n; j++) |

tmp = m[J];

if (tmp < guess) less++;

if (tmp < guess && tmp > maxltguess) maxltguess = tmp;
if (tmp > guess) greater++;
if (tmp > guess && tmp < mingtguess) mingtguess = tmp;
if (tmp == guess) equal++;

if ((less <= (n+l)/2) && (greater <= (n+l)/2)) boolean = 0;
if (boolean && (less > greater)) max = maxltguess;
if (boolean && (less <= greater)) min = mingtguess;

med = mingtguess;

if (less >= (n+l)/2) med = maxltguess;

if ((less + equal >= (n+l1)/2) && (less < (n+l)/2)) med = guess;
return med;

151

v8 v8-m v8-s v8-i v8-r v8-1 v8-ml v8-sl v8-il v8-rl v8-mil v8-srl v8-sil
Code Size 640 504 428 688 848 640 512 436 696 856 512 436 436
Conditional Branches 25 5 5 5 5 25 3 3 4 4 3 3 3
Unconditional Branches 3 3 3 3 3 3 3 3 3 3 3 3 3
Number of NOPs 12 4 4 4 4 12 3 3 4 4 3 3 3
Number of MBBs 52 12 12 12 12 52 14 14 13 13 14 14 14
Max Cycles 96935 70808 57606 110136 140888 96935 64317 51115 110012 140764 64317 51115 51115
Min Cycles 92581 70808 57606 110136 140888 92581 64317 51115 110012 140764 64317 51115 SI115
Deviation 0.0449 0 0 0 0 0.0449 0 0 0 0 0 0 0
Number of movCCs - 20 - - - - 20 - - - 20 - -
Number of selCCs - - 20 - - - - 20 - - - 20 20
Number of predbegins - - - 20 20 - - - 20 20 0 0 0
Nesting level of predicated blocks - - - - 0 - - - - 0 - - -
Number of HWLoops - - - - - 0 2 2 1 1 2 2 2

152

B.18

Shell Sort

The shell sort algorithm is based on insertion sort, but divides the array into small parts in a first
step.! As can be seen in the following table, none of the proposed instruction set extensions
could be introduced.

static void sort (AbstractType *data, int N)

{

// u
// h
// ht
int i, 3, k, h;
AbstractType v;
//Input length is limited, so we don’t need to use all increments
const int incs[2] = {4,1};

for (k = 0; k < 2; k++) {

for (h = incslk], 1 = h; 1 <N; 1i++) /xai: loop here MAX 6 */

{

ing shellsort with Ciura Se

.pdf

v = datalil];

jo=1i;
while ((j >= h) && datal[j-h] > v) /*ai: loop here MAX 5 x/
{
datalj] = datal[j-h];
j —= h;
}

1Foradetaileddescriptionseehttp://en.wikipedia.org/wiki/Shellsort,a(:cessed2012--02—10.

153

http://en.wikipedia.org/wiki/Shellsort

v8 v8-m v8-s v8-i v8-r v8-1 v8-ml v8-sl v8-il v8-rl v8-mil v8-srl v8-sil
Code Size 388 388 388 388 388 388 388 388 388 388 388 388 388
Conditional Branches 10 10 10 10 10 10 10 10 10 10 10 10 10
Unconditional Branches 7 7 7 7 7 7 7 7 7 7 7 7 7
Number of NOPs 6 6 6 6 6 6 6 6 6 6 6 6 6
Number of MBBs 22 22 22 22 22 22 22 22 22 22 22 22 22
Max Cycles 312 312 312 312 312 312 312 312 312 312 312 312 312
Min Cycles 164 164 164 164 164 164 164 164 164 164 164 164 164
Deviation 0.4744 04744 0474 04744 04744 04744 04744 04744 04744 04744 04744 04744 04744
Number of movCCs - 0 - - - - 0 - - - 0 - -
Number of selCCs - - 0 - - - - 0 - - - 0 0
Number of predbegins - - - 0 0 - - - 0 0 0 0 0
Nesting level of predicated blocks - - - - - - - - - - - - -
Number of HWLoops - - - - - 0 0 0 0 0 0 0 0

154

B.19 Shell Sort — Single-Path

The single-path variant of shell sort is the single algorithm of the current evaluation, which shows
constant execution time only if nested if-then-else elimination is supported. However, the result-
ing performance is only competitive if the target also supports conditional select instructions as
can be seen in the following table.

static void sort (AbstractType *data, int N)
{

int i, j, k, h,lastj;

bool abort, done;

AbstractType v;

//Input length is limited, so we don’t need to use all increments
const int incs([2] = {4,1};
N=6;
for (k = 0; k < 2; k++)
{
for (h = incs([k], 1 = h; i < 6; i++)
{
v = datalil]l;
j = i;
lastj = i;
abort = (datal[j-h] < v); //initial loop conditions
done = false;
for(; j >= h; j —-= h)
{

if (!done && 'abort) abort = (datal[j-h] < v);
if(!done && !abort) datalj] = datalj-hl];

if (!done && abort) done = true;
if(
if(

done && abort) lastj = 7j;

done && abort) abort = false;
}
if (!done) lastj = 3j; //loop tern a break
datallastj] = v;

155

v8 v8-m v8-s v8i v8r v8-1 v8-ml v8-sl v8-il v8rl v8-mil v8-srl v8-sil
Code Size 640 620 532 652 748 640 620 532 652 748 620 552 532
Conditional Branches 20 10 10 9 8 20 10 10 9 8 9 8 9
Unconditional Branches 4 3 2 2 2 4 3 2 2 2 3 2 2
Number of NOPs 12 5 5 4 4 12 5 5 4 4 4 4 4
Number of MBBs 41 22 21 19 17 41 22 21 19 17 20 17 19
Max Cycles 1255 1267 1004 1443 1813 1255 1267 1004 1443 1813 1309 1147 1046
Min Cycles 1132 1129 892 1339 1813 1132 1129 892 1339 1813 1231 1147 994
Deviation 0.0980 0.1089 0.1116 0.0721 0 0.0980 0.1089 0.1116 0.0721 0 0.059 0 0.04971
Number of movCCs - 10 - - - - 10 - - - 10 - -
Number of sel CCs - - 10 - - - - 10 - - - 10 10
Number of predbegins - - - 13 14 - - - 13 14 1 2 1
Nesting level of predicated blocks - - - - 1 - - - - 1 - 0 -
Number of HWLoops - - - - - 0 0 0 0 0 0 0 0

156

B.20 Software Division — Naive Implementation

The first version of the software division algorithm simply subtracts the divisor from the divi-
dend, saves the result to the dividend and increments a counter. This is done as long as the
dividend is greater than the divisor. The counter value is the result of the division. The covered
test cases divided 65 535 by all possible 16-bit values from 0 to 65535. As can be seen in the
following table, the difference between maximum and minimum cycle count is tremendous.

static uintl6_t divide_simple (uintlé6_t a, uintlé_t b) {
uintl6_t result = 0;
if (b == 0) {
return UINT16_MAX;
}
while ((int32_t) (a - b) >= 0) {
a=a - b;
result++;
}
return result;

}

157

v8

v8-m

v8-s

v8-i

v8-r

v8-1

v8-ml

v8-sl

v8-il

v8-rl

v8-mil

v8-srl

v8-sil

Code Size

224

224

224

224

224

224

224

224

224

224

224

224

224

Conditional Branches

Unconditional Branches

Number of NOPs

6

6

6

[§

6

6

6

6

6

6

6

6

6

Number of MBBs

13

13

13

13

13

13

13

13

13

13

13

13

13

Max Cycles

458753

458753

458753

458753

458753

458753

458753

458753

458753

458753

458753

458753

458753

Min Cycles

4

4

4

4

4

4

4

4

4

4

4

4

4

Deviation

Number of movCCs

Number of selCCs

Number of predbegins

Nesting level of predicated blocks

Number of HWLoops

158

B.21 Software Division — Shift Implementation

The second variant of the software division algorithm is based on the manual division as usually
learned in school for decimal numbers: It is based on shifting the divisor to the left and sub-
tract it from the dividend. Although the resulting deviation is still near 1, the worst case cycle
count could be reduced from over 4 million to only a few hundred cycles, as can be seen in the
following table.

static uintl6_t divide_shift (uintl6_t a, uintlé_t b) {

uintl6_t result = 0;
uintl6_t divisor = b;

if (b == 0) {
return UINT16_MAX;
}

while (b < a && !(b & (uintle_t) (1<<15))) {
b =Db << 1;
}

while (b >= divisor) {

result = result << 1;
if (a >= Db) {
result = result + 1;

a=a - b;
}
b =Db>> 1;
}

return result;

159

v8 v8-m v8-s v8-i v8-r v8-1 v8-ml v8-il v8-rl v8-mil v8-srl v8-sil
Code Size 352 332 324 356 372 352 332 356 372 332 324 324
Conditional Branches 12 10 10 10 10 10 10 10 10 10 10 10
Unconditional Branches 2 1 2 1 1 2 1 2 1 1 1 2 2
Number of NOPs 7 6 6 6 6 7 6 6 6 6 6 6 6
Number of MBBs 20 15 16 15 15 20 15 16 15 15 15 16 16
Max Cycles 398 350 314 446 510 398 350 314 446 510 350 314 314
Min Cycles 4 4 4 4 4 4 4 4 4 4 4 4 4
Deviation 0.9899 0.9886 0.9873 0.9910 0.9922 0.9899 09886 0.9873 0.9910 0.9922 0.9886 0.9873 0.9873
Number of movCCs - 2 - - - - 2 - - - 2 - -
Number of selCCs - - 2 - - - - 2 - - - 2 2
Number of predbegins - - - 3 3 - - - 3 3 0 0 0
Nesting level of predicated blocks - - - - 0 - - - - 0 - - -
Number of HWLoops - - - - - 0 0 0 0 0 0 0 0

160

B.22 Software Division — Single-Path

The last version is a single-path transformation of the software division algorithm. Although it
shows a larger code size, the worst case performance could still be reduced when conditional
move or select as well as loop instructions are supported. Moreover, the number of conditional
branches has decreased about 50 % in comparison to the shift implementation as can be seen in
the following table.
static uintl6_t divide_wcet (uintl6_t a, uintle_t b) {

int i = 0;

int booleanl;

int boolean2;

uintl6_t result = 0;
uintl6_t divisor = b;

for (i = 0; 1 < 16; i++) {

booleanl = (b & (uintlé_t) (1 << 15));
b = booleanl ? b : b << 1;

for (i = 0; 1 < 16; i++) {

booleanl = (b >= divisor);

result = booleanl ? result << 1 : result;

boolean2 = (a >= Db);

result = (booleanl && boolean2?) ? result + 1 : result;
a = (booleanl && boolean2) ? a - b : a;

b = booleanl ? b > 1 : Db;

booleanl = (b != 0);
result = booleanl ? result : UINT16_MAX;
return result;

161

v8 v8m v8s v8i v8r v8-1 v8ml v8-sl v8il v8rl v8mil v8-srl v8-sil
Code Size 556 532 516 564 596 556 536 520 568 600 536 520 520
Conditional Branches 10 6 6 6 6 10 5 5 5 5 5 5 5
Unconditional Branches 1 1 1 1 1 1 1 1 1 1 1 1 1
Number of NOPs 7 5 5 5 5 7 5 5 5 5 5 5 5
Number of MBBs 20 12 12 12 12 20 13 13 13 13 13 13 13
Max Cycles 475 412 346 495 593 475 368 302 451 549 368 302 302
Min Cycles 429 412 346 495 593 429 368 302 451 549 368 302 302
Deviation 0.1133 0 0 0 0 0.1133 0 0 0 0 0 0 0
Number of movCCs - 4 - - - - 4 - - - 4 - -
Number of selCCs - - 4 - - - - 4 - - - 4 4
Number of predbegins - - - 4 4 - - - 4 4 0 0 0
Nesting level of predicated blocks - - - - 0 - - - - 0 - - -
Number of HWLoops - - - - - 0 1 1 1 1 1 1 1

162

B.23 Threshold

The threshold algorithm checks for every element of an array, whether it is within the given
bounds, i.e., a maximum and a minimum level. As can be seen in the following table, the cycle
count is equal for all targets, although some of the instruction set extensions have been used.
This is due to the fact that only occur within the main and initialization functions and thus do
not influence the cycle count of the threshold algorithm itself.

static int threshold(intx array, int size, int min_val, int max_val) {

int i;
int counter = 0;
for (i = 0; 1 < size; i++) {
if (array[i] < min_val) {
array[i] = min_val;
counter++;
continue;

} else if (array[i] > max_val) {
array[i] = max_val;
counter++;
continue;

}
}

return counter;

163

v8 v8-m v8-s v8-i v8-r v8-1 v8-ml v8-il v8-rl v8-mil v8-srl v8-sil
Code Size 500 500 500 504 540 500 500 504 540 504 540 504
Conditional Branches 13 13 13 12 9 13 13 13 12 9 12 9 12
Unconditional Branches 6 6 6 6 4 6 6 6 6 4 6 4 6
Number of NOPs 8 8 8 8 5 8 8 8 8 5 8 5 8
Number of MBBs 28 28 28 27 21 28 28 28 27 21 27 21 27
Max Cycles 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555 23555
Min Cycles 20483 20483 20483 20483 20483 20483 20483 20483 20483 20483 20483 20483 20483
Deviation 0.1304 0.1304 0.1304 0.1304 0.1304 0.1304 0.1304 0.1304 0.1304 0.1304 0.1304 0.1304 0.1304
Number of movCCs - 0 - - - - 0 - - - 0 - -
Number of selCCs - - 0 - - - - 0 - - - 0 0
Number of predbegins - - - 1 6 - - - 1 6 1 6 1
Nesting level of predicated blocks - - - - 3 - - - - 3 - 3 -
Number of HWLoops - - - - - 0 0 - 0 0 0 0 0

164

B.24 Threshold - Single-Path

The single-path implementation of the threshold algorithm shows a worse performance on the
SPARC V8 target, but benefits a lot from conditional move and select instructions if they are
introduced in combination with hardware loops: The code size as well as the worst-case cycle
count is less than for the first implementation and the number of conditional branches has de-
creased. Like before, some of the introduced instruction set extensions occur in the main and
initialization function and do not influence the cycle count of the algorithm.

static int threshold(intx array, int size, int min_val, int max_val) {

int i;

int counter = 0;

int tmp;

for (i = 0; 1 < size; i++) {

tmp = arrayl[i];

if (tmp < min_val) {
tmp = min_val;
counter++;

}

if (array[i] > max_val) {
tmp = max_val;
counter++;

}

array([i] = tmp;

}

return counter;

165

v8 v8-m v8-s v8-i v8-r v8-1 v8-ml v8-sl v8-il v8-rl v8-mil v8-srl v8-sil
Code Size 532 504 484 540 608 532 508 488 544 612 512 528 492
Conditional Branches 15 11 11 10 7 15 10 10 9 6 9 6 9
Unconditional Branches 5 5 5 5 3 5 5 5 5 3 5 3 5
Number of NOPs 9 6 6 6 3 9 6 6 6 3 6 3 6
Number of MBBs 31 23 23 22 16 31 24 24 23 17 23 17 23
Max Cycles 35844 27652 24579 36868 45060 35844 24584 21511 33800 41992 24584 21511 21511
Min Cycles 33796 27652 24579 36868 45060 33796 24584 21511 33800 41992 24584 21511 21511
Deviation 0.0571 0 0 0 0 0.0571 0 0 0 0 0 0 0
Number of movCCs - 4 - - - - 4 - - - 4 - -
Number of selCCs - - 4 - - - - 4 - - - 4 4
Number of predbegins - - - 5 10 - - - 5 10 1 6 1
Nesting level of predicated blocks - - - - 3 - - - - 3 - 3 -
Number of HWLoops - - - - - 0 1 1 1 1 1 1 1

166

[AnaO8]

[AnalO]

[Anall]

[ARMO5]

[ARMO09]

[ARM10]

[ARM11a]

[ARM11b]

[ASP103]

[Atm10]
[Atm11]

[CS91]

Bibliography

Analog Devices, Norwood, Mass. Blackfin® Processor Programming Reference,
September 2008. Revision 1.3.

Analog Devices, Norwood, Mass. ADSP-BF50x Blackfin® Processor Hardware
Reference, December 2010. Revision 1.0.

Blackfin processor homepage, 2011. URL http://www.analog.com/
en/processors—-dsp/blackfin/products/index.html. Accessed:
2011-08-24.

ARM, Cambridge, England. ARM Architecture Reference Manual, July 2005.

ARM, Cambridge, England. ARM1136JF-S™ and ARM1136J-S™ Technical Ref-
erence Manual, February 2009. Revision r1p5.

ARM, Cambridge, England. ARM®v7-M Architecture Reference Manual, Novem-
ber 2010. Errata markup.

Arm processor homepage, 2011. URL http://www.arm.com/products/
processors/index.php. Accessed: 2011-08-30.

ARM, Cambridge, England. ARM® Architecture Reference Manual — ARM®v7-A
and ARM®v7-R edition, July 2011. Errata markup.

Aravindh Anantaraman, Kiran Seth, Kaustubh Patil, Eric Rotenberg, and Frank
Mueller. Virtual simple architecture (visa): Exceeding the complexity limit in safe
real-time systems. In In International Symposium on Computer Architecture, pages
250-261. IEEE Computer Society, 2003.

Atmel, San Jose, CA. 8-bit AVR® Instruction Set, July 2010.
Atmel, San Jose, CA. AVR32 Architecture Document, April 2011.

Bryce Cogswell and Zray Segall. Macs: a predictable architecture for real time
systems. In Real-Time Systems Symposium, 1991. Proceedings., Twelfth, pages
296-305. IEEE Computer Society, December 1991.

167

[Del02]

[DHPSO03]

[ELO7]

[FOWS8T7]

[GKO7]

[Gon00]

[GSO05]

[GTSO07]

[HLTWO3]

[IE06]

[InfO3a]

[InfO3b]

168

Martin Delvai. Handbuch fiir spear (scalable processor for embedded applica-
tions in real-time environments). Research Report 70/2002, Technische Univer-
sitdt Wien, Institut fiir Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna,
Austria, 2002.

Martin Delvai, Wolfgang Huber, Peter Puschner, and Andreas Steininger. Proces-
sor support for temporal predictability - the spear design example. In Real-Time
Systems, 2003. Proceedings. 15th Euromicro Conference on, pages 169-176. IEEE
Computer Society, July 2003.

Stephen A. Edwards and Edward A. Lee. The case for the precision timed (pret)
machine. In Proceedings of the 44th annual Design Automation Conference, DAC
"07, pages 264-265. ACM, New York, NY, USA, 2007. ISBN 978-1-59593-627-1.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence
graph and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319 —
349, July 1987.

Woon-Seng Gan and Sen M. Kuo. Embedded signal processing with the Micro
Signal Architecture, chapter 5 — Introduction to the Blackfin Processor, pages 163
—216. John Wiley & Sons, Hoboken, Canada, 2007.

Ricardo E. Gonzalez. Xtensa: a configurable and extensible processor. Micro,
IEEE, 20(2):60-70, March/April 2000. ISSN 0272-1732.

John Goodacre and Andrew N. Sloss. Parallelism and the arm instruction set ar-
chitecture. Computer, 38(7):42 — 50, July 2005. ISSN 0018-9162.

Johann Grofschidl, Stefan Tillich, and Alexander Szekely. Performance evalua-
tion of instruction set extensions for long integer modular arithmetic on a sparc v8
processor. In Digital System Design Architectures, Methods and Tools, 2007. DSD
2007. 10th Euromicro Conference on, pages 680-689, August 2007.

Reinhold Heckmann, Marc Langenbach, Stephan Thesing, and Reinhard Wilhelm.
The influence of processor architecture on the design and the results of wcet tools.
Proceedings of the IEEE, 91(7):1038-1054, July 2003. ISSN 0018-9219.

Nicholas Ip and Stephen Edwards. A processor extension for cycle-accurate real-
time software. In Edwin Sha, Sung-Kook Han, Cheng-Zhong Xu, Moon-Hae Kim,
Laurence Yang, and Bin Yiao, editors, Embedded and Ubiquitous Computing, vol-
ume 4096 of Lecture Notes in Computer Science, pages 449—-458. Springer Berlin
/ Heidelberg, 2006. ISBN 978-3-540-36679-9.

Infineon, Miinchen, Germany. TriCore™ 32-bit Unified Processor DSP Optimiza-
tion Guide, Part 1: Instruction Set, January 2003. Version 1.6.4.

Infineon, Miinchen, Germany. TriCore™ Compiler Writer’s Guide, December
2003. Version 1.4.

[Kop97]

[KPO5]

[KP11]

[LAO4]

[Latl1]

[LLK08]

[LLVI11]

[LRL10]

[LSMA99]

[Malll]

[MHM*95]

Hermann Kopetz. Real-time Systems. Design Principles for Distributed Embedded
Applications. Kluwer Academic Publishers, Boston, Dordrecht, London, 1997.

Raimund Kirner and Peter Puschner. Classification of wcet analysis techniques. In
Proceedings of the 8th IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC’05). IEEE Computer Society Press, Wash-
ington DC, 2005.

Raimund Kirner and Peter Puschner. Time-predictable computing. In Sang Minand
Robert Pettit, Peter Puschner, and Theo Ungerer, editors, Software Technologies
for Embedded and Ubiquitous Systems, volume 6399 of Lecture Notes in Computer
Science, pages 23—-34. Springer Berlin / Heidelberg, 2011.

Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the 2004 International Sym-
posium on Code Generation and Optimization (CGO’04). Palo Alto, California,
March 2004.

Chris Lattner. Llvm. In Amy Brown and Greg Wilson, editors, The Archi-
tecture of Open Source Applications. Elegance, Evolution and a Few Fearless
Hacks, chapter 11. lulu.com, June 2011. ISBN 978-1-257-63801-7. URL http:
//www.aosabook.org/en/index.html. Accessed: 2012-01-16.

Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D. Patel, Stephen A. Edwards, and
Edward A. Lee. Predictable programming on a precision timed architecture. In
Proceedings of the 2008 international conference on Compilers, architectures and
synthesis for embedded systems, CASES °08, pages 137-146. ACM, New York,
NY, USA, 2008. ISBN 978-1-60558-469-0.

The llvm compiler infrastructure project homepage, 2011. URL http://11vm.
org/. Accessed: 2011-10-23.

Isaac Liu, Jan Reineke, and Edware A. Lee. A pret architecture supporting con-
current programs with composable timing properties. In Signals, Systems and
Computers (ASILOMAR), 2010 Conference Record of the Forty Fourth Asilomar
Conference on, pages 2111-2115, November 2010. ISSN 1058-6393.

Lea Hwang Lee, Jeff Scott, Bill Moyer, and JOhn Arends. Low-cost branch folding
for embedded applications with small tight loops. In Microarchitecture, 1999.
MICRO-32. Proceedings. 32nd Annual International Symposium on, pages 103—
111, 1999.

Milardalen wcet project / benchmarks, 2011. URL http://www.mrtc.mdh.
se/projects/wcet/benchmarks.html. Accessed: 2011-10-02.

Scott A. Mahlke, Richard E. Hank, James E. McCormick, David I. August, and
Wen mei W. Hwu. A comparison of full and partial predicated execution support

169

[PBOO]

[PB02]

[PSO91]

[Pus03]

[Pus07]

[Sch05a]

[SchO5b]

[Sch09a]

[SchO9b]

[Schll1]

[SPA92]

[SSPT11]

[Sta90]

170

for ilp processors. In Computer Architecture, 1995. Proceedings., 22nd Annual
International Symposium on, pages 138—149, June 1995. ISSN 1063-6897.

Peter Puschner and Alan Burns. Guest editorial: A review of worst-case execution-
time analysis. Real-Time Systems, 18:115-128, 2000. ISSN 0922-6443.

Peter Puschner and Alan Burns. Writing temporally predictable code. In Pro-
ceedings of the 7th IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS’02). IEEE Computer Society Press, 2002.

Joseph C.H. Park and Mike Schlansker. On predicated execution. Technical report,
Hewlett Peckard Software and Systems Laboratory, May 1991.

Peter Puschner. The single-path approach towards wcet-analysable software.
In IEEE International Conference on Industrial Technology (ICIT’03). Tiskarna
tehniSkih fakultet, Maribor, 2003.

Peter Puschner. Evaluation of the single-path approach and wcet-oriented pro-
gramming. Research report, Technische Universitdt Wien, Institut fiir Technische
Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria, January 2007.

Martin Schoberl. Evaluation of a java processor. In Tagungsband Austrochip 2005,
pages 127—-134. Vienna, Austria, October 2005.

Martin Schoberl. JOP: A Java Optimized Processor for Embedded Real-Time Sys-
tems. PhD thesis, Technische Universitidt Wien, Vienna, Austria, January 2005.

Martin Schoberl. JOP Reference Handbook. CreateSpace, 2009. ISBN 978-
1438239699.

Martin Schoberl. Time-predictable computer architecture. EURASIP Journal on
Embedded Systems, 2009.

Martin Schoberl. Jop homepage, 2011. URL http://www. jopdesign.
com/. Accessed: 2011-10-16.

SPARC International, Menlo Park, CA. The SPARC Architecture Manual — Version
8, 1992.

Martin Schoberl, Pascal Schleuniger, Wolfgang Puffitsch, Florian Brandner, Chris-
tian W. Probst, Sven Karlsson, and Tommy Thorn. Towards a time-predictable
dual-issue microprocessor: The patmos approach. In First Workshop on Bringing
Theory to Practice: Predictability and Performance in Embedded Systems (PPES
2011), pages 11-21, 2011.

Johan A. Stankovic. The spring architecture. In Real Time, 1990. Proceedings.,
Euromicro 90 Workshop on, pages 104—113. IEEE Computer Society Press, June
1990.

[Ten02]

[Ten10]

[TGO6]

[TWO04]

[VATJO6]

[WAO06]

[WAO8]

[YMO3]

[YZ08]

[Zha97]

Tensilica Inc., Santa Clara, CA, USA. Xtensa® Microprocessor Overview Hand-
book, August 2002.

Tensilica Inc., Santa Clara, CA, USA. Xtensa® Instruction Set Architecture (ISA)
Reference Manual, September 2010.

Stefan Tillich and Johann GroBschéddl. Instruction set extensions for efficient aes
implementation on 32-bit processors. In Louis Goubin and Mitsuru Matsui, editors,
Cryptographic Hardware and Embedded Systems - CHES 2006, volume 4249 of
Lecture Notes in Computer Science, pages 270-284. Springer Berlin / Heidelberg,
2006. ISBN 978-3-540-46559-1.

Lothar Thiele and Reinhard Wilhelm. Design for timing predictability. Real-Time
Systems, 28:157-177, 2004. ISSN 0922-6443.

Brian F. Veale, John K. Antonio, Monte P. Tull, and Sean A. Jones. Selection of
instruction set extensions for an fpga embedded processor core. In Parallel and
Distributed Processing Symposium, 2006. IPDPS 2006. 20th International, April
2006.

Jack Whitham and Neil C. Audsley. Mcgrep—a predictable architecture for embed-
ded real-time systems. In Real-Time Systems Symposium, 2006. RTSS *06. 27th
IEEFE International, pages 13-24. IEEE Computer Society, December 2006. ISSN
1052-8725.

Jack Whitham and Neil C. Audsley. Using trace scratchpads to reduce execution
times in predictable real-time architectures. In Real-Time and Embedded Technol-
ogy and Applications Symposium, 2008. RTAS ’08. IEEE, pages 305-316. IEEE
Computer Society, April 2008. ISSN 1080-1812.

Pan Yu and Tulika Mitra. Satisfying real-time constraints with custom instructions.
In Hardware/Software Codesign and System Synthesis, 2005. CODES+ISSS ’05.
Third IEEE/ACM/IFIP International Conference on, pages 166171, September
2005.

Jun Yan and Wei Zhang. A time-predictable vliw processor and its compiler sup-
port. Real-Time Systems, 38:67-84, January 2008.

Lichen Zhang. Predictable architecture for real-time systems. In Information,
Communications and Signal Processing, 1997. ICICS., Proceedings of 1997 In-
ternational Conference on, volume 3, pages 1761-1765. IEEE Press, September
1997.

171

A
ARM Processorcoouu.... 110l
AVR
32-bit . I
8-bit. .ot 14
B
BasicBlock............. 59
Binary Search........................ 36|
Blackfin Micorocessor
BubbleSort.............. /9
C
Conditional Move A4
Conditional Select 46|
F
Find First . .. oov e B3
H
Hardware Loop.............. BL[17 52
J
JOP . 30]
L
LLVM ... 40l 57
M
MACS. ... 26|
MCGREP............... 32|
P
Predicated Instructions
32-bitAVR ... 13
ARM.

Index

Fully predicated instructions. [g]
Predicated blocks................. 49
PRET ... B4
S
SIMD
32-bit AVR 115
ARM Processor 11O
Blackfin.......................... 6)
TriCore.ooeeeea ... il
Single-path transformation.............. 2]
SPARCVS. ... 4]
SPEAR 28]
Spring Architecture 23]
T
Thumb Instruction Set................. 12
TriCore......ccovvviiiiii .. 16
\'}

VISA . .. 29
VLIW .
X
XEeNSA. . ottt 119

173

	Titlepage German
	Titlepage English
	Abstract
	Zusammenfassung
	Contents
	List of Abbreviations
	Introduction
	Problem Statement
	Overview of WCET Analysis
	Outline

	Instruction Set Analysis
	Analog Devices Blackfin Microprocessor
	ARM Processors
	Atmel AVR Microcontrollers
	Infineon TriCore Processors
	Tensilica Xtensa
	Conclusion

	Time Predictable Architectures
	The Necessity of Time Predictable Processors
	The Spring Architecture
	MACS
	SPEAR
	VISA
	JOP
	MCGREP
	PRET
	Time-Predictable VLIW Processors
	Conclusion

	Extensions and Modifications of an Existing Instruction Set
	Problem Statement
	The SPARC V8 Architecture
	Instruction Set Extensions for the SPARC V8 Processor

	Impacts on Code Generators
	The LLVM Compiler Framework
	Implementing Code Generation for Conditional Move and Conditional Select
	Implementing Code Generation for Predicated Instructions and Predicated Blocks
	Implementing Code Generation for Hardware Loops

	Evaluation of Instruction Set Extensions
	Manual Evaluation of Small Examples
	Evaluation of Selected Algorithms
	Towards a Time Predictable Instruction Set

	Conclusion
	Final Review on the Presented Instruction Set Extensions
	Suggestions for Further Research
	Summary

	Appendices
	Performance Evaluation of Selected Algorithms
	Bubble Sort
	Find First
	Binary Search
	Increment Multi-byte Counter

	Benchmark Results
	Binary Greatest Common Divisor
	Binary Greatest Common Divisor – Single-Path
	Binary Search
	Binary Search – Single-Path for Fixed Size
	Binary Search – Single-Path for Variable Size
	Bubble Sort – Worst Case Scenario
	Switch Case Test
	Dijkstra Algorithm
	Dijkstra Algorithm – Single-Path
	Dijkstra Algorithm – Optimized Single-Path
	Fourier Discrete Cosine Transformation
	Interpolation Table
	Interpolation Table – Single-Path
	Matrix Sum
	Median with Quick Sort
	Median without Sorting
	Median without Sorting – Single-Path
	Shell Sort
	Shell Sort – Single-Path
	Software Division – Naive Implementation
	Software Division – Shift Implementation
	Software Division – Single-Path
	Threshold
	Threshold – Single-Path

	Bibliography
	Index

