
Reducing SLA Violations of
Composite Services Deployed to

the Cloud

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Mathias Hess
Matrikelnummer 0125388

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Schahram Dustdar
Mitwirkung: Univ.Ass. Mag. Philipp Leitner

Wien, 17.10.2011
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Reducing SLA Violations of
Composite Services Deployed to

the Cloud

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Mathias Hess
Registration Number 0125388

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.Prof. Dr. Schahram Dustdar
Assistance: Univ.Ass. Mag. Philipp Leitner

Vienna, 17.10.2011
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Mathias Hess
Ringelseegasse 17/21, 1210 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Abstract

Composite services are fundamental to the integration of heterogeneous enterprise applications,
and especially to build complex distributed applications that extend across the boundaries of or-
ganizations. Their guaranteed Quality of Service (QoS) characteristics, such as availability and
performance, are formulated within Service Level Agreements (SLAs), service providers and
consumers agree upon. Service providers need to dimension the capacities of their infrastruc-
tures in accordance to these guarantees. Misestimating the load their services are exposed to,
results in violating SLAs and facing penalties. Papers, proposing solutions to this issue, either fo-
cus on the services instead of the infrastructure, hosting a composite service, or do not consider
opportunities of hosting composite services in the Cloud.

This thesis suggests deploying a composite service, together with its infrastructure, into the
Cloud, so service providers take advantage of the Cloud’s handling of resources. Moreover
it proposes an approach to reduce the amount of SLA violations by using these capabilities.
Therefore, the design and implementation of a runtime engine for composite services will be
explained. The engine is able to provision itself with additional resources, and uses an event-
driven approach to evaluate SLA violations. A prototype, using the open source Cloud platform
Eucalyptus, was implemented as part of this thesis. Its internals and deployment within Eucalyp-
tus will be presented in detail. The ideas presented within this thesis are applicable to Amazon
Elastic Compute Cloud (EC2) as well. This is because Eucalyptus makes use of similar con-
cepts (e.g., pre-built machine images and instance types) and provides a compatible interface.
As will be shown by the results of an extensive evaluation, considering both the benefits and
limitations of the proposed approach, the prototype is able to significantly reduce the amount of
SLA violations, even to an extent that also outweighs potential costs.

iii

Kurzfassung

Composite Services bilden die Grundlage, um heterogene Unternehmensanwendungen zu ver-
binden und im Speziellen, um komplexe verteilte Applikationen zu entwickeln, welche sich
über die Grenzen von Organisationen erstrecken. Zugesicherte Qualitätseigenschaften, wie Ver-
fügbarkeit und Leistung, werden im Rahmen von Service Level Agreements (SLAs) formuliert,
die zwischen den Anbietern und Nutzern von Services vereinbart werden. Anbieter müssen die
Kapazitäten ihrer Infrastrukturen nach diesen Garantien ausrichten. Schätzen sie allerdings die
Auslastung ihrer angebotenen Services falsch ein, führt dies zur Verletzung von SLAs und sie
haben mit Vetragsstrafen zu rechnen. Wissenschaftliche Arbeiten, die sich mit Lösungen dieser
Problematik beschäftigen, legen den Schwerpunkt entweder auf die Services selbst, anstatt sich
mit den Infrastrukturen zu befassen, welche die Services bereitstellen, oder sie vernachlässigen
gänzlich die Möglichkeit Composite Services in der Cloud zu betreiben.

In dieser Diplomarbeit wird daher die Bereitstellung eines Composite Services, zusammen
mit dessen Infrastruktur, in der Cloud vorgeschlagen. Service Anbieter können dadurch von
den Vorteilen der Cloud, in Hinsicht auf deren Umgang mit Ressourcen, profitieren. Diese Di-
plomarbeit präsentiert daher eine Lösung zur Reduzierung von SLA Verletzungen, bei der diese
Fähigkeiten der Cloud genutzt werden. Dazu werden das Konzept und die Umsetzung einer
Laufzeitumgebung für Composite Services beschrieben, die dazu fähig ist, sich selbständig mit
zusätzlichen Ressourcen zu versorgen, und die Entscheidung dafür anhand der Auswertung von
SLAs zu treffen. Ein Prototyp, der die Open Source Cloud Platform Eucalyptus verwendet, wurde
im Zuge dieser Diplomarbeit erstellt. Dieser wird schließlich, sowie seine Bereitstellung mittels
Eucalyptus, umfassend beschrieben. Eucalyptus verwendet ähnliche Konzepte wie Amazon Ela-
stic Compute Cloud (EC2), zum Beispiel Virtual Machine Images und sogenannte Instanztypen,
und bietet darüber hinaus eine mit Amazon EC2 kompatible Schnittstelle an. Die in dieser Di-
plomarbeit präsentierten Ideen sind daher auch auf Amazon EC2 anwendbar.

Anhand der Resultate einer eingehenden Untersuchung, welche die Vorteile, aber auch die
Anwendungsgrenzen der vorgestellten Lösung betrachtet hat, wird gezeigt, dass der Prototyp
in der Lage ist, die Anzahl an Verletzungen eines SLAs signifikant zu reduzieren und, dass die
damit verbundenen potentiellen Kosten übertroffen werden.

v

Contents

List of Figures ix

List of Tables x

List of Listings xi

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 3
1.3 Organization . 4

2 State of the Art Review 5
2.1 Service-oriented Architecture (SOA) . 5

2.1.1 Web Services . 6
2.1.2 Service Compositions . 8
2.1.3 Service Level Agreements (SLAs) . 9

2.2 Cloud Computing . 11
2.2.1 Introduction . 11
2.2.2 Cloud Actors and Scenarios . 12
2.2.3 Amazon Elastic Compute Cloud - EC2 14
2.2.4 Eucalyptus . 16

2.3 Autonomic Computing . 18
2.3.1 Self-management Capabilities . 19
2.3.2 Autonomic Computing Architecture 20

2.4 Event Processing . 21
2.4.1 Concepts of Event Processing . 21
2.4.2 Principles of Event Processing . 22
2.4.3 Event Processing Styles . 23
2.4.4 WS-Eventing . 24

3 Related Work 25
3.1 Dynamic Hosting Scenarios in the Cloud . 25
3.2 Adapting and Monitoring Composite Services 27

3.2.1 Without Concurrency Considerations 27

vii

3.2.2 With Concurrency Considerations . 29
3.2.3 Monitoring . 30

3.3 Migration and Relocation . 31
3.3.1 Process Migration . 32
3.3.2 Virtual Machine Migration . 33
3.3.3 Service Migration . 35

4 Background 37
4.1 Windows Workflow Foundation . 37

4.1.1 Activities . 38
4.1.2 Workflow Runtime and Services . 39
4.1.3 Workflow Tracking . 39
4.1.4 Workflow Hosting . 39

4.2 VRESCo - Vienna Runtime Environment for Service-oriented Computing . . . 39
4.2.1 Metadata and Service Model . 42
4.2.2 VRESCo Eventing . 42

4.3 Load Scaling . 43

5 Design & Implementation 47
5.1 Runtime Architecture . 47

5.1.1 Runtime Overview . 49
5.1.2 Composite Service Execution . 51
5.1.3 Composition Monitoring and SLA Evaluation 51
5.1.4 Runtime Relocation . 52
5.1.5 Workload Migration . 54

5.2 Prototype Implementation . 55
5.2.1 Composite Service Hosting . 55
5.2.2 Event Processing . 56
5.2.3 Runtime Life-Cycle Events and Notifications 57
5.2.4 Virtual Machine Launching . 58
5.2.5 Migrating Composite Service Instances 59

5.3 Deployment in the Cloud . 62
5.3.1 Eucalyptus Setup . 63
5.3.2 Interacting with the Cloud . 65
5.3.3 Deployment of the Runtime . 66
5.3.4 Infrastructure Initialization . 68
5.3.5 Loading the Runtime . 68
5.3.6 Machine Images . 69
5.3.7 Issues with Windows-based EMIs . 70

6 Evaluation 73
6.1 Evaluation Setup and Approach . 73
6.2 Composite Service Performance in the Cloud 76
6.3 Resource Provisioning . 79

viii

6.3.1 Runtime Relocation Duration . 81
6.3.2 Instance Migration Duration . 82

6.4 Resource Provisioning Cost . 83
6.4.1 Migration Cost . 83
6.4.2 Relocation Cost . 85

6.5 Evaluation Summary . 86

7 Conclusion and Future Work 87
7.1 Future Work . 88

A List of Acronyms 89

B SQL for Retrieving the Duration of Composite Service Execution 91

C SQL for Retrieving the Time for Resource Provisioning 93

D Composite Service of the Evaluation Scenario 95

Bibliography 97

List of Figures

1 Web Services Architecture Stack . 7
2 Cloud Actors (adapted from [110]) . 13
3 Eucalyptus Hierarchical Architecture . 17
4 Autonomic System (adapted from [58]) . 20

5 VRESCo Runtime Environment Architecture (from [75]) 41
6 VRESCo Eventing Architecture (from [73]) . 43
7 Scaling a Cluster of Web Servers Horizontally . 44
8 Scaling a Server Vertically . 44
9 Combining Vertical and Horizontal Scaling . 45

10 Autonomic Runtime Control Loop . 48
11 Autonomic Composite Service Runtime Architecture 49
12 Resource Provisioning Procedure . 54
13 Saving a Comoposite Service Instance to WorkflowMigrationStore 61
14 Eucalyptus Setup . 64

ix

15 Graphical User Interface of Hybridfox . 65
16 Autonomic Runtime Deployment . 67

17 Evaluation Setup . 74
18 Load Generator Requests . 75
19 Experimentation Procedure . 77
20 Execution Durations of a Composite Service with Increasing Concurrency 78
21 Average Execution Duration of a Composite Service with Increasing Concurrency . 79
22 Durations of Composite Services Instances . 81
23 Resource Provisioning to m1.large . 85

24 Composite Service Workflow . 95

List of Tables

1 Resource Capacity of Elastic Compute Cloud (EC2) Instance Types [4] (as of 2011-
05-23) . 15

2 EC2 Prices in EU (Ireland) per Hour [5] (as of 2011-05-23) 15

3 Tracking Events for Workflows in Windows Workflow Foundation (WF) 40
4 Execution States of Activities in WF . 40

5 Autonomic Runtime Life-Cycle Events . 52
6 Hardware Specification . 63
7 Basic Commands of Eucalyptus euca2ools . 66
8 Autonomic Composite Service Runtime Eucalyptus Machine Image (EMI) 70
9 Web Services EMI . 70
10 VRESCo Runtime Environment EMI . 71

11 Customized Resource Capacity of Eucalyptus Instance Types 74
12 Load Generator Parameters . 75
13 Autonomic Runtime Parameters . 76
14 Relocation from c1.medium to m1.large . 80
15 Relocation from c1.medium to c1.xlarge . 80
16 Relocation from m1.large to c1.xlarge . 81
17 Durations of Runtime Relocation Phase in Minutes 82
18 Durations of Instance Migrations Without Load 82
19 Migration from c1.medium to m1.large . 83

x

20 Migration from c1.medium to c1.xlarge . 84
21 Migration from m1.large to c1.xlarge . 84
22 Durations of Instance Migrations During Load . 84

List of Listings

1 Event Processing Language (EPL) Filtering WorkflowTrackingEvents . . 56
2 EPL Evaluating Web Service Invocations . 57
3 Subscribing to RuntimeStarted Event Using the VRESCo Client Library . 57
4 Publishing RuntimeStarted Event Using Modified VRESCo Eventing Service 58
5 Publishing CompositionEngineEvent Using VRESCo Client Library . . 58
6 Launching Virtual Machine (VM) Instance with Amazon Web Services (AWS)

Software Development Kit (SDK) . 59
7 Associate Public Internet Protocol (IP) Address with VM Instance Using AWS SDK 59
8 Querying Instance Metadata from Eucalyptus 59
9 Serializing and Deserializing Composite Services 60
10 Asynchronously Invoking Unload() with a Delegate 62
11 Invoking Runtime Service from a Custom Activity 62
12 Resuming a Composite Service . 63
13 SQL for composite service duration . 91
14 SQL for resource provisioning duration . 93

xi

CHAPTER 1
Introduction

In today’s design of distributed systems, Service-oriented Architectures (SOAs) [31] without ques-
tion play a fundamental role. Their building blocks are services, which, basically spoken, rep-
resent reusable software modules, providing well-defined functionalities and are accessible over
a network. The primary implementing technology of SOAs are Web services [3]. They became
a widely used and broadly accepted technology due to their high degree of standardization by
the World Wide Web Consortium (W3C) [112] and their independence from concrete hardware
and software platforms. Besides theses characteristics, or better still, because of theses char-
acteristics, Web services are highly suitable for being combined and composed to provide new
functionalities, which may in turn be exposed in the form of services. This process is called ser-
vice composition and its products are composite services. The benefits of service composition are
proven in the areas of engineering inter-organizational business processes on the one hand, and
the integration and connection of existing applications within organizations, commonly known
as Enterprise Application Integration (EAI) [27], on the other hand.

Web services, and composite services, are subject to legally binding contracts, formalized
in so called Service Level Agreements (SLAs) [28], agreed upon by consumer and provider of a
service and defining guaranteed characteristics in terms of the quality of a service [57]. Basically,
such agreements are statically specified and published by the service provider. The customer
agrees by simply consuming and paying for the corresponding service. On the contrary, both
parties may individually establish SLAs, either by negotiating and contracting manually or even
automatically by using software agents. Violations of a SLA by one party imply certain penalties
which are specified as part of a SLA and grant compensation to the other party.

Besides SOAs, Cloud computing [56] has been one of the most observed and discussed tech-
nologies of the past years. It has been dominating not only marketing- and consulting-speech
but also managed to attract attention of industrial and academic research. Above all, Cloud
computing has influenced the perception of computing resources and the organization of data
centers. Providing Cloud computing services to the public has become a successful business
model as shown by offerings like Amazon Web Services (AWS) [7], Microsoft Azure [61] and
Google AppEngine [48]. Furthermore, the availability of open source Cloud platforms such as

1

Eucalyptus [36], OpenNebula [107] and OpenStack [99] enable companies to turn their own
data centers into private Clouds.

1.1 Motivation

In order to ensure compliance with SLAs, service providers need to dimension their resource
capacities according to their guaranteed service quality. They have to establish facilities to
constantly monitor their services and keeping track of their current level of SLA conformance by
evaluating and checking monitored data against the objectives of SLAs [57].

The amount of resources, demanded by a service varies over time. Requests to a service, and
therefore the workload it is exposed to, vary according to seasonal cycles or according to the time
of the day [67]. Additionally an overall trend may increase the workload continuously over time
as a result of growing popularity and demand for the service. The service provider is also at
risk of falling victim to unexpected demand bursts due to external events (e.g., news events).
Dimensioning resources to a service is also accompanied by the question of the magnitude of
the peak workload, which results in resources being idle during periods of average workload;
resources that have caused high investment costs and create ongoing maintenance and operation
costs. [13]

It is impossible to keep up with such variations in demand and to always provide the exact
amount of physical computing resources needed at the moment. Yet it is undesirable to vio-
late SLAs because of lacking resources. What is needed is the ability to dynamically provision
resources based on the current demand to prevent the SLAs on composite services from being
violated. The paradigm of Cloud computing offers opportunities that build the foundation for
accomplishing this challenge. According to [111], three aspects are new to Cloud computing
which underline the capabilities of the Cloud in terms of dynamically handling resources. They
are summarized by [13] as follows:

1. „The illusion of infinite computing resources available on demand, thereby
eliminating the need for Cloud Computing users to plan far ahead for provi-
sioning;“

2. „The elimination of an up-front commitment by Cloud users, thereby allowing
companies to start small and increase hardware resources only when there is
an increase in their needs; and“

3. „The ability to pay for use of computing resources on a short-term basis as
needed (e.g., processors by the hour and storage by the day) and release them
as needed, thereby rewarding conservation by letting machines and storage go
when they are no longer useful.“

These characteristics induced further contemplation on the issue of dynamically provision-
ing resources to a composite service to reduce the amount of SLA violations and thus motivated
the solution proposed in this thesis.

2

1.2 Contributions

The overall goal of this thesis is to improve SLA protection of composite services by deploying
them to the Cloud and by utilizing capabilities provided by the Cloud, to handle computing
resources dynamically. This idea will be implemented by designing and then prototyping a
runtime engine for hosting composite services. The runtime engine, in the following referred to
as the runtime, will be able to scale itself according to the current amount of SLA violations. It
accomplishes this by fetching additional computing resources from the Cloud on demand. The
open source Cloud platform Eucalyptus, which is representative for the current state of the art in
Cloud technology, and shares many concepts with Amazon Elastic Compute Cloud (EC2), will
be used for this purpose.

Reducing SLA violations by resource provisioning is based on the assumption that the amount
of resources provided to a composite service runtime directly impacts the amount of SLA viola-
tions. The experiments carried out as part of this thesis confirm this assumption and their results
will be shown later on.

The following section details the individual contributions of this thesis:

Autonomic The runtime engine will provide itself with further resources, without human
interaction, by communicating with the Cloud. It will decide on its own, by
monitoring itself, when it is necessary to do so. The logical separation of tasks
within the runtime is based on the architecture and the loop of autonomic sys-
tems presented in [58].

Monitoring An event-based approach will be considered, enabling the runtime to monitor
itself in real time. Monitoring includes tracking its own life-cycle, invocations
and execution of the composite service, as well as evaluating SLA conformance.
To retrospectively evaluate the behavior of the runtime, events will be persisted
to a database.

Resource
Provisioning

An approach to scaling the runtime engine of composite services in the Cloud
will be proposed, which is different from those already covered by other pa-
pers. It includes upgrading the runtime, which is hosting the composite service,
without causing service degradation or unavailability. Cloud platforms, such
as Eucalyptus and Amazon EC2, do not support changing the amount of com-
puting resources provided to a system, therefore the composite service will be
transparently relocated within the Cloud. Evaluating this approach will give an
understanding on how the performance of a composite service is influenced by
the amount of provided resources. Further on, will the potential of the presented
solution be evaluated in terms of its ability to reduce SLA violations.

Migration The concept of migrating currently running instances of composite services be-
tween two remote runtime engines will be presented. Migration includes sus-
pension and serialization on one runtime, transport over the network and re-
suming on the remote runtime. This concept will be used in connection with

3

the approach to resource provisioning to transfer them to a relocated composite
service runtime.

Cloud
Deployment

In addition to illustrating the capabilities of Cloud platforms, such as Eucalyptus
and Amazon EC2, in terms of resource provisioning, this thesis will explain in
detail the deployment of the runtime to Eucalyptus. This includes extensive
usage of concepts, also provided by Amazon EC2, such as machine images,
instance types and Elastic IP. Not only will the preparation of the runtime itself
be shown, but also that of services used by the runtime, as they will also be
hosted in the Cloud.

Costs As part of evaluating a prototype implementation of the presented solution, the
costs for provisioning resources will be analyzed to see whether they justify
resource provisioning and under which conditions. Costs will be expressed in
terms of SLA violations caused by the resource provisioning procedure.

1.3 Organization

This thesis is organized as follows:

Chapter 2 reviews current state of the art technologies, such as SOAs and Cloud computing,
enabling the solution presented within this thesis.

Chapter 3 gives an overview on academic research, including Cloud capabilities, scaling
composite services and process migration, related to the concepts used.

Chapter 4 provides the necessary background by explaining concrete software components
and concepts used for implementation.

Chapter 5 discusses in detail the solution proposed by this thesis, as well as the implemen-
tation of the prototype, its preparation and deployment to Eucalyptus.

Chapter 6 extensively evaluates the prototype and shows its capabilities, as well as its limi-
tations.

Finally, Chapter 7 concludes this thesis by summarizing and giving an outlook on future
work regarding the proposed solutions.

4

CHAPTER 2
State of the Art Review

The following chapter reviews state of the art technologies that provide the basis for the solu-
tion presented within this thesis. First, the principles of SOAs and their primary implementing
technology, Web services, are explained. The objects of study of this thesis, composite services
and the composite service runtime engine, are based on Web service technology. Following
this, Cloud computing and its characteristics, as well as Amazon EC2 and Eucalyptus, which are
representative Cloud platforms, are described. Finally, the vision and principles of autonomic
computing, as well as the principles of event processing are presented, providing the basis for
the architectural approach of the composite service runtime.

2.1 Service-oriented Architecture (SOA)

The model of SOA [31] is based on the design paradigm of service-orientation. The underlying
concept of service-orientation are services. They represent units of solution logic and are im-
plemented as independent software programs to which the principles of service-orientation are
applied. According to [33], the main strategic goal of service-orientation and the application of
service-oriented architectures is to enhance the agility and cost-effectiveness of an enterprise,
while reducing the overall burden of Information Technology (IT).

[32] describes the design principles of service-orientation in the following way:

Standardized
Service
Contracts

Services in a SOA provide contracts that precisely describe their functionality
in terms of interfaces, data types, data models and policies. This description
provides other applications with the information on how to interact with the
service.

Loose
coupling

The level of coupling refers to the degree of dependency between software ap-
plications. Services interact in such a way that they do not need to know the

5

design and implementation details, e.g., underlying platform and programming
language, of each other. This characteristic is referred to as loosely coupled.
Tightly coupled applications communicate in a RPC-style and synchronous
manner, whereas message-based, asynchronous ways of communication, en-
able the development of loosely coupled applications [96].

Abstraction This principle aims at hiding as many details of a service as possible and there-
fore enabling loosely coupled relationships.

Reusability The service reusability principle aims at services not to be bound to a specific
functional context or business process. The logic of a service should be de-
signed to be robust, generic and with a focus on quality. This is comparable to
the design of a commercial product and automatically increases the potential of
the service to be reused.

Autonomy Services can control their environment and resources to a significant degree.

Discoverabil-
ity

Services are attached with meta-data that is published to a central service reg-
istry so that they can be discovered and understood.

Statelessness For services to be scalable and to increase their reliability, states are outsourced
to an external component. Resource consumption of a service is decreased and
the service is free to use its resources to handle requests.

Composabil-
ity

Services should be able to participate as effective members in solutions or busi-
ness processes that represent compositions of services.

2.1.1 Web Services

A technology that is well suited and primarily used to implement SOAs, are Web services [3].
Their goal is to achieve interoperability between different software applications, regardless of
their underlying platform and building framework, by providing standard means of interopera-
tion [112]. Generally speaking, a Web service is a self-describing and self-contained software
module that is accessible over a public or private network. A Web service may, for example,
complete tasks, solve problems or conduct transactions as requested by an external entity like an
application or user [96]. A more complete definition of a Web service is provided by the W3C as
follows:

„A Web service is a software system designed to support interoperable machine-
to-machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web ser-
vice in a manner prescribed by its description using SOAP messages, typically con-
veyed using HTTP with an XML serialization in conjunction with other Web-related
standards.“ [113]

6

Compositions

Service

Description

Messaging

Choreography (WS-CDL)

 Orchestration (WS-BPEL)

Web Service Description

Language (WSDL)

SOAP

HTTP SMTPFTP RMI

B
a

s
e

 T
e

c
h

n
o

lo
g

y

X
M

L
, D

T
D

, S
c
h

e
m

a

Transport

Figure 1: Web Services Architecture Stack

This definition already mentioned the fundamental technologies that are involved in Web ser-
vices. Figure 1 shows these technologies, how they relate to each other and the different layers
of their responsibility. Their specifications are consistently standardized and publicly available.
Web Service Description Language (WSDL) [117], SOAP [116] and the purpose of Hypertext
Transfer Protocol (HTTP) and eXtensible Markup Language (XML) in the context of Web ser-
vices are described below.

XML and
HTTP

XML and HTTP are the key enabling technologies for Web services. HTTP is used
by Web services at the transport level, mainly to carry SOAP data. XML offers
a standard and widely accepted data format with the advantageous properties of
being flexible and extensible.

WSDL WSDL is an interface definition language based on XML, used to precisely de-
scribe the way of how a Web service is accessed. A WSDL document contains
an abstract definition of communication endpoints and messages as well as a
separate concrete description of the supported network protocols and data en-
codings. The concrete, reusable specification of the network protocol and data
format is called a binding. Endpoint definitions are the combinations of a bind-
ing and a network address, and are grouped together to form a service. The data
being exchanged is described by directly referencing XML schema types. inter-
faces are abstract collections of operations which in turn abstractly describe the
actions supported by an endpoint. WSDL provides Web services with the ability
to implement the SOA design principle of standardized service contracts, which
was presented above.

SOAP SOAP is a communication protocol based on XML technologies. It comprises
a framework for constructing messages that are to be exchanged between dis-

7

tributed computing platforms over a network. Most commonly SOAP is used
together with HTTP as underlying transport protocols but Simple Mail Trans-
port Protocol (SMTP), File Transfer Protocol (FTP) and Remote Method Invoca-
tion (RMI) are supported too. According to [96], the major design principles of
SOAP are simplicity and extensibility.

2.1.2 Service Compositions

Composite services are the primary object of study of this thesis. Therefore, the following
explanations will illustrate the concept of composite services. Services, adhering to the SOA

design principles, can be combined to composite services. These, in turn, are offered as high-
level services or business processes that may even span different enterprises. [96] defines a
business process to be an ordered set of related tasks, respectively activities, that are performed
to achieve well-defined business outcomes. Specifically, a process can be defined as a sequence
of steps that is initiated by an event, transforms information, materials, or commitments, and
produces an output [97].

The procedure of creating composite services is called service composition [3]. Service com-
position can happen statically or dynamically [30]. Static service composition takes place during
design-time, i.e., the components are chosen, linked together, compiled and deployed. In con-
trast, dynamic compositions are adapted to a changing environment and changing requirements
during execution-time.

Transactions are needed to add guarantees to the interactions that occur in composite ser-
vices. The WS-Coordination [95] protocol in combination with the WS-Transaction [12] stan-
dards provide the ability to guarantee ACID (atomicity, consistency, integrity, and durability)
properties to short-duration transactions and compensation mechanisms to long-running busi-
ness activities in Web services.

Web services provide software systems with the characteristic of composability. Web Ser-
vices Business Process Execution Language (WSBPEL) [94], which is maintained by the Or-
ganization for the Advancement of Structured Information Standards (OASIS), is a language,
based on XML technology, for specifying business processes composed of Web services. In Fig-
ure 1, showing the stack of Web service technologies, WSBPEL is located at the top most layer
(Compositions). WSBPEL extends the service model of WSDL by providing means to describe
peer-to-peer interaction between Web services. A process defined by WSBPEL is in turn exposed
as a Web service using WSDL. While WSBPEL is not used within this thesis to create a composite
service of Web services, as explained in Section 4.1, it is nevertheless one of the most important
technologies of service composition.

In the context of Web service composition it is being differentiated between choreography
and orchestration [98]. Orchestration describes interactions from the viewpoint of a participator
that controls the interaction, i.e., an executable process is described. Choreography, in contrast,
tracks the message sequences between the participating parties by describing interactions from
the viewpoint of an independent observer. Whereas WSBPEL is an orchestration language, WS-
CDL [114], also based on XML, describes collaborations of peers by choreography.

8

2.1.3 Service Level Agreements (SLAs)

Services and composite services are subject to SLAs [28]. [24] defines SLAs to be mandatory
agreements which define mutual understandings and expectations between the provider and the
consumer of a service. Specifically do they define the quality of the service offered by a provider
to a customer and the circumstances under which this quality is guaranteed. According to [55],
SLAs may consist of, but are not limited to, the following contents:

• The purpose that describes the reasons behind the creation of the SLA.

• Parties that are involved in the SLA and their respective roles (i.e., provider and consumer
of a service).

• The validity period that defines the period of time (start and end) that the SLA will cover.

• The scope that defines the services that are covered by the agreement.

• Restrictions that define the necessary steps to be taken in order for the requested service
levels to be provided.

• The service-level objectives that are agreed upon, and usually include a set of service level
indicators, like availability, performance and reliability.

• Penalties that define what happens in case the service provider does not meet the objectives
in the SLA (e.g., contract termination).

• Optional services may be defined that are not normally required by the user, but might be
required as an exception.

• The exclusions that specify what is not covered in the SLA.

• Administration that describes the processes to meet and measure the objectives of the SLA

and defines organizational authorities for overseeing them.

In service-oriented environments, where services are discovered and bound to on demand,
service consumers and providers tend to automate the ways of handling non-functional service
properties. Services are selected by a consumer in accordance with his non-functional require-
ments. Additionally, services are expected to have properties that are guaranteed by the provider.
Therefore non-functional requirements are formulated in SLAs that guarantee specific quality re-
lated service properties to which both, the service providers and consumers are committed to.
Those properties are referred to as Quality of Service (QoS) [70]. In contrast to traditional „pa-
per“ SLAs that are formulated in plain natural language, SLAs in service-oriented environments
are of dynamic nature [104]. They are specified by formal languages that provide the abil-
ity to be automatically processed by information systems. HP [18] demonstrated the use of a
contract definition language in 1998 within its architecture for SLA management in federated
environments. IBM published the WSLA framework [57], which provides automatic manage-
ment functionality for SLAs in Web services, in 2004. While the contract definition language by

9

HP used a C-like syntax, IBM’s WSLA-language was based on XML. Both approaches showed
the emerging need for standardized ways of specifying SLAs and managing their (possibly short)
life-cycles with minimal human interventions.

WS-Agreement

A standard way of establishing agreements between a service provider and a service consumer
is WS-Agreement [92]. It represents a protocol that is based on Web services and defines XML

schema for specifying agreements as well as operations for the creation, expiration and moni-
toring of agreement states for the management of agreement life-cycles. An extension to WS-
Agreement is WS-Agreement-Negotiation [93] that specifies the way of how agreements are
negotiated among two parties and that can be used to renegotiate agreements which need to be
modified.

SLA Monitoring and QoS

To guarantee the conformance with already established SLAs, service providers and consumers
use infrastructures to monitor the status of SLAs (i.e., to see if they are violated or fulfilled).
This is done by measuring a service’s QoS attributes in accordance with the objectives defined
within a SLA. Some quality aspects of Web services, whose metrics may also be measured by
monitoring infrastructure, are listed below [69]:

• Availability represents the probability that a service is available. It may also refer to the
percentage of time that a service is operating [70].

• Accessibility represents the degree to which a Web service is capable of serving requests
(e.g., a probability measure denoting the success rate or chance of a successful service
instantiation at a point in time).

• Integrity refers to the correctness of the interaction in respect of the contract (i.e., WSDL

description). Correctness of interaction can be provided by a proper usage of transactions.

• Performance is measured in terms of throughput and latency. Whereas latency refers to the
elapsed time between sending a request and receiving the response, throughput represents
the rate of Web service requests that can be processed and served in a given period of time.

• Reliability represents the capability of a Web service to maintain the service and its quality
(e.g., the number of failures per time period) as well as the capability of assuring the or-
dered delivery for messages being sent and received by service providers and consumers.

• Regulatory describes the conformance, e.g., with law, compliance with standards, and
established service level agreements.

• Security refers to the presence of authentication, encryption and access control mecha-
nisms to ensure confidentiality and non-repudiation of messages or requests.

10

Basically there are two ways of monitoring the metrics of services. Services can be moni-
tored from within the service (server-side) or from the outside of the service (client-side). Mon-
itoring from the client-side usually meters just a snapshot of a QoS attribute at a discrete point in
time as probes can only be taken at specific time intervals [74]. As suggested in [70], a customer
may also delegate monitoring to a third-party monitoring service.

2.2 Cloud Computing

This chapter gives a brief introduction to Cloud computing and points out the characteristics
and benefits of this paradigm. Amazon EC2 [6], a Cloud platform offered by Amazon, is pre-
sented to see the scope of services and functionality of representative public Cloud offering. The
Eucalyptus [36] open source Cloud platform, which enables enterprises to build a Cloud from
commodity infrastructure components, is discussed to complete the understanding about Cloud
computing on the one hand and to introduce the Cloud platform being used within this thesis on
the other hand.

When studying publications on Cloud computing it is easy to tell, what the term Cloud
computing actually covers, but it turns out that it is even harder to specify what is not covered
by this term. This aspect was also part of the industries’ thoughts on Cloud computing a few
years ago as Larry Ellison, CEO of Oracle, said at an Oracle OpenWorld conference and Andy
Isherwood, vice president on software service of HP in Europe, told ZDNet UK:

„The interesting thing about cloud computing is that we’ve redefined cloud com-
puting to include everything that we already do. I can’t think of anything that isn’t
cloud computing...I don’t understand what we would do differently in the light of
cloud.“ [41] Larry Ellison, quoted in the Wall Street Journal, September 26, 2008

„A lot of people are jumping on the bandwagon of cloud, but I have not heard two
people say the same thing about it. There are multiple definitions out there of ’the
cloud’.’ [15] Andy Isherwood, quoted in ZDnet News, December 11, 2008

2.2.1 Introduction

Two approaches of describing Cloud computing will be made. Firstly, a short outline of the
basic concepts of Cloud computing that are mentioned by scientific literature will be presented.
Secondly, a definition proposed by the authors of [110], which studied around 20 definitions of
what a Cloud is, will be shown.

The basic idea of Cloud computing is that of utility computing where computing resources
are consumed and provided like water, gas, electric power and telephony [22]. In terms of Cloud
computing those resources are provided as services like virtual infrastructure, software appli-
cations and middleware platforms [64]. They are accessed over the public Internet or a private
network like a LAN and WAN using standardized communication protocols (i.e., TCP/IP) [47].
The datacenter hardware and software that provide those services are referred to as the „Cloud“.
If they are provided to the public, then it is referred to as a „Public Cloud“. If provided to a
limited set of clients it is called a „Private Cloud“ [13].

11

In [110] the authors encompass a definition of what can be understood by the term „Cloud“:

„Clouds are a large pool of easily usable and accessible virtualized resources (such
as hardware, development platforms and/or services). These resources can be dy-
namically reconfigured to adjust to a variable load (scale), allowing also for an
optimum resource utilization. This pool of resources is typically exploited by a
pay-per-use model in which guarantees are offered by the Infrastructure Provider
by means of customized SLAs.“ [110]

These definitions suggest the core concept of Cloud computing being the consumption and
offering of virtualized computing resources and the very specific way of how they are made
accessible to their consumers. To go into more detail, the five essential characteristics of Cloud
computing as proposed by the National Institute of Standards and Technology (NIST) in [89] are
presented in the following.

On-demand
self-service

Customers can decide by themselves when to provision computing capa-
bilities and when to use a certain service without the need for human inter-
action with the service provider.

Broad network
access

Customers have access to the services and capabilities by means of a com-
puter network and standardized mechanisms.

Resource pooling Customers are served by the providers using multi-tenancy. Thereby the
resources of a provider are pooled and dynamically assigned and reas-
signed according to the demand of customers. Customers do not know
where their resources are exactly located but they may chose for example
from a given set of geographically distributed data centers.

Rapid elasticity Customers are able to provision new resources to their applications in a
rapid and elastic way. For the customer the illusion appears of almost
infinite available resources that can be purchased in any quantity at any
time.

Measured Service To provide usage based means of charging and transparency for the provider
and customer, mechanisms are used to meter the usage of resources and
services.

Now that Cloud computing was defined and its characteristics were shown, the scenarios of
Cloud computing and its participating parties will be described.

2.2.2 Cloud Actors and Scenarios

Three stereotypes or actors (shown in Figure 2) can be identified that participate in the scenarios
where Cloud computing may take place [110]. Service Users are accessing and consuming
services (e.g., software applications). Those services are provided by the Service Providers
that in turn use the infrastructure that is offered by Infrastructure Providers. Therefore it’s not

12

Virtualization

Layer

OS

Hardware
Infrastructure

Provider

Service Users

Service Providers

Virtualization

Layer

OS

Hardware

Virtualization

Layer

OS

Hardware

Software as a Service

<<use>>

<<provide>>

<<use>>

Platform as a Service

Infrastracture as a Service

Virtualization

Layer

OS

Hardware

<<provide>>

Figure 2: Cloud Actors (adapted from [110])

necessary for the Service Providers to operate resources by themselves. [110] The following
three scenarios, respectively models, are mentioned in [110] and are also proposed in [89] by
the NIST.

Infrastruc-
ture as a
Service - IaaS

Infrastructure as a Service (IaaS) is a Cloud computing scenario where virtual-
ized infrastructure components like storage, network and computing resources
are provided „as a service“. As will be illustrated in more detail in 2.2.3, Ama-
zon provides such services with its Elastic Compute Cloud (EC2). Hereby,
Amazon acts as the Infrastructure Provider who is operating the resources that
are provided to his customers, the Service Providers, e.g., as virtual machines.
The Service Provider on the other hand is able to deploy those virtual machines
by means of self-service and is able to setup the necessary software stack to run
his services.

Platform as a
Service - PaaS

A different Cloud scenario is Platform as a Service (PaaS). PaaS offerings provide
an abstraction from the hardware resource layer and instead provide a complete

13

software stack for applications or services to run on. Examples of such Cloud
offerings are Google Apps Engine and Microsoft Azure.

Software as a
Service - SaaS

In the Cloud computing scenario of Software as a Service (SaaS) the Service
Users are able to access software applications like web-based email clients or
web-based office and business applications from anywhere in the world. They
do not have any knowledge about and are not able to access the underlying in-
frastructure. Prominent examples of such services are Google Gmail, the CRM
applications of Salesforce.com and Microsoft Office Live.

Everything as
a Service -
XaaS

Other terms like Database as a Service or Storage as a Service do exist that
refer to even more Cloud computing offerings. Therefore the term „XaaS“ has
been established that refers to Everything as a Service [64].

2.2.3 Amazon Elastic Compute Cloud - EC2

Amazon EC2 is part of the Cloud service offering AWS. EC2 is an IaaS Cloud service which
enables users to run virtual machines on the data center infrastructure of Amazon. Management
capabilities for EC2 are provided to users as web-based graphical interfaces and well-defined
Web service interfaces (SOAP and REST [118]). The functionality of Amazon EC2 can be
combined with the storage services Amazon Simple Storage Service (S3) and Elastic Block
Store (EBS) which will be discussed later on in this section.

Locations

Amazon provides multiple geographically distributed locations where EC2 virtual machine in-
stances can be deployed to by customers. Those locations are comprised of regions and avail-
ability zones. By the time of this writing the following regions are available to AWS customers:

• Virginia (US East),

• Northern Carolina (US West),

• Ireland (EU),

• Tokyo (Asia Pacific) and

• Singapore (Asia Pacific).

Every region consists of up to four availability zones. Availability zones are isolated from the
errors that may occur in the other availability zones of the same region in so far as they do not
share any critical resources. Applications can be distributed among different availability zones
to provide higher availability and fault tolerance. Network traffic between availability zones in
the same region is free of charge and offers high bandwidth as well as low latency.

14

Cores ECUs Memory Storage Platform I/O
GB bit

m1.small 1 1.0 1.7 160 32 moderate

m1.large 2 4.0 7.5 850 64 high

m2.xlarge 2 6.5 17.1 420 64 moderate

m2.4xlarge 8 26.0 68.4 1690 64 high

Table 1: Resource Capacity of EC2 Instance Types [4] (as of 2011-05-23)

Linux/Unix Usage Windows Usage
$

m1.small 0.095 0.12

m1.large 0.380 0.48

m2.xlarge 0.570 0.62

m2.4xlarge 2.280 2.48

Table 2: EC2 Prices in EU (Ireland) per Hour [5] (as of 2011-05-23)

Instance Types

Amazon EC2 uses instance types to classify the amount of resources that are provided to a virtual
machine instance. An instance type is chosen by the user at creation time of the virtual machine.
A few representational instance types that are available on EC2 by the time of this writing are
shown in Table 1. Amazon indicates processor capacity by EC2 Compute Units (ECUs), where
one ECU provides the equivalent CPU capacity as a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon
processor. Input/Output (I/O) performance is indicated by the classifications low, moderate, high
and very high. The higher the I/O performance of an instance, the larger is the allocation of
shared resources and the smaller is the variance of I/O performance.

Pricing

All AWS offerings are priced on a pay-per-use basis where users only pay for resources that
were actually used. EC2 instances are accounted on an hourly rate. The actual price per hour
depends on the instance type used and the region the instance is deployed to. Table 2 shows the
hourly prices of some EC2 instance types in region EU (Ireland).

Amazon S3 - Simple Storage Service

S3 is part of the Cloud service-portfolio AWS. It provides online storage with a simple structure
for data organization. Amazon S3 offers both, a SOAP- and a REST-based Web service interface.
Data is organized as buckets that contain objects which in turn contain the actual data. Buckets

15

in S3 can not be nested, thus providing a strictly flat hierarchy. Every object is addressable by its
globally unique object- and bucket-name. The maximum size of an object is 5 GB.

Amazon EBS - Elastic Block Store

With Amazon EBS, customers can create block-based volumes and attach them to virtual ma-
chine instances within the same availability zone. EBS volumes behave like regular disks and
can be formatted with any filesystem. They continue to exist after a virtual machine has been
shut down, keeping all data, but can only be attached to a single machine at the same time. To
persist a certain state of an EBS volume’s data, a snapshot of the volume can be created and
stored into Amazon S3.

AMIs - Amazon Machine Images

Virtual machine instances are created from Amazon Machine Images (AMIs). AMIs contain the
operating system and pre-installed software that will constitute the software environment of a
virtual machine after its creation. Amazon provides many pre-built AMIs with differing operating
systems like Microsoft Windows and GNU/Linux. Customers can create their own AMIs by
customizing already existing ones and uploading them into Amazon S3 either for private use or
to provide them to the public.

Elastic Load Balancers and Elastic IPs

Some further concepts of EC2 are Elastic IPs and Elastic Load Balancers. Elastic IPs provide
customers with the ability to allocate public Internet Protocol (IP) addresses. They can be allo-
cated independently and may be attached to and released from virtual machines at any time. As
such they are usable in public Domain Name System (DNS). Elastic Load Balancers are virtual
load balancers that can be created to distribute the load (e.g., HTTP requests) among multiple EC2

instances. They may be configured in such a way to start and stop virtual machines automatically
to ensure availability and performance of applications.

2.2.4 Eucalyptus

Eucalyptus is an open source software implementation that enables enterprises to use their exist-
ing IT resources and data center infrastructure to build an IaaS Cloud. The solution proposed in
this thesis is based on the concepts of Eucalyptus, whose functionality is closely aligned to the
features offered by Amazon EC2. Eucalyptus provides services for the management of virtual
machines as well as block- and bucket-based storage. The Application Programming Inter-
faces (APIs) offered by Eucalyptus are fully compatible with the interfaces of AWS, therefore the
AWS Software Development Kit (SDK) may be used to interact with Eucalyptus. Virtualization
technologies supported by Eucalyptus are XEN [108], KVM [14] and VMWare [49], whereas
VMWare is only supported in the commercial edition of Eucalyptus. Eucalyptus also supports
concepts like Elastic IPs, availability zones and user self sign-up [37].

16

Cluster

Walrus

Cluster

CLC

CCCC

NC NC NC

Storage

Controller

Storage

Controller

Web GUI

Web Service

VMVMVM

NC NC NC

VMVM

VM VM

VM

VM

Figure 3: Eucalyptus Hierarchical Architecture

Eucalyptus is implemented as open source and runs on GNU/Linux. The source code can
be downloaded from the Eucalyptus website [36]. Binary packages are available for multiple
GNU/Linux distributions (e.g., Red Hat, Fedora, openSUSE).

Architecture

The architecture of Eucalyptus reflects underlying resource topologies by means of a hierarchical
design. Three central software components, the Cloud Controller (CLC), the Cluster Controller
(CC) and the Node Controller (NC), constitute this architectural concept. They are deployed to the
various distributed hardware resources of the Cloud infrastructure and communicate with each
other over the network using Web service technologies and well-defined interfaces described
by WSDL contracts [91]. This hierarchical concept is shown in Figure 3. The controllers are
described in the following.

Cloud
Controller
(CLC)

The CLC is the single entry-point to the Cloud infrastructure. It is responsible
for high level scheduling decisions by querying the underlying components for
resource information and implementing decisions by sending requests to the
cluster controllers. The CLC abstracts from the underlying, possibly heteroge-
neous, virtualization, storage and network components and provides a consis-
tent view to the users and external components. The API is compatible to the

17

one provided by Amazon EC2 as it is built from the WSDL-service contract of
AWS.

Cluster
Controller
(CC)

The CC is a front-end component to a set of nodes that host virtual machines.
It communicates with the CLC as well as the node controllers to distribute the
execution of virtual machines among the hosts. The CC also manages the virtual
network used by the virtual machines and participates in the enforcement of
SLAs as directed be the CLC.

Node
Controller
(NC)

The NC software is executing on every host that may potentially run virtual ma-
chines. It is responsible for the inspection, execution and termination of virtual
machines on its host. The NC therefore communicates with the host’s oper-
ating system and virtualization hypervisors in response to queries and control
requests from the CLC. The NC also manages images of its virtual machines (i.e.,
operating system, root filesystem and ramdisk image) and their virtual network
endpoints.

Virtual Storage

Eucalyptus also provides storage functionality like Amazon EBS, for block-based storage, and
Amazon S3, for bucket-based storage. Block storage in Eucalyptus is controlled via a component
that is called Storage Controller. The Storage Controller is capable of interfacing with various
storage systems (e.g., NFS, iSCSI, FC) and provides block store devices that can be attached
to the filesystem of a virtual machine. The storage service Walrus is a pendant to Amazon S3

where persistent data is organized in buckets and objects. Buckets support create, list and
delete operations and objects can be accessed by the operations put, get and delete.
To restrict the access of data, access control policies are supported. As stated by the Eucalyp-
tus manual [37], the SOAP and REST interface provided by Walrus is fully compatible to the
interface of Amazon S3.

Instance Types

Eucalyptus uses predefined instance types to describe the hardware resources of virtual ma-
chines. Eucalyptus does not implement all instance types of Amazon EC2 but in contrast to
Amazon EC2, the amount of resources associated with an instance type can be modified. The
creation of new instance types as well as changing the name of existing instance types is not
supported. Whereas in Amazon EC2 the instance types m1.small and c1.medium can only be
deployed to 32-bit platforms and all other instance types are based on a 64-bit architecture,
Eucalyptus instance types can be deployed to any platform [17].

2.3 Autonomic Computing

The progress of information technology and its objective to build more powerful computing
systems is accompanied by an increase in complexity that gets more and more difficult to be

18

handled and overseen by human beings. When IBM [51] published their manifesto on Auto-
nomic Computing in 2001 they were motivated by exactly this development and warned that the
benefits of IT are threatened from being undermined by the growing complexity of IT infrastruc-
tures. To overcome this development, the paradigm of autonomic computing, dealing with the
topic of Autonomic Systems, systems that are able to fully manage themselves with just minimal
human intervention, was proposed. The thesis at hand seizes on the idea of autonomic systems.
To implement this functionality in the proposed composite service runtime, its architecture is
based on the closed control loop of autonomic systems, which is described below.

As it is not trivial to implement autonomic computing capabilities into existing IT infras-
tructures, [88] defined the following levels that describe the path towards autonomic computing.
They outline the degree of an IT infrastructure’s ability to govern itself by means of autonomic
computing.

• Basic Level: This level is the starting point. Each system is managed independently
by system administrators. No aspects of self-management are implemented at this level.
System administrators set up their systems and just enhance them as needed.

• Managed Level: At this level, system management technologies are used to collect infor-
mation from different systems. They simplify the collection and evaluation of information.
While this is the starting point of automation of IT management, most of the evaluation is
still performed by system professionals.

• Predictive Level: This level makes use of new technologies that enable individual com-
ponents to monitor themselves, analyze their collected data and offer advices to system
administrators. Human interaction is drastically reduced and decision making is improved.

• Adaptive Level: At this level, systems are first able to perform actions on their own,
based on the information that is available to them. Human interaction is still necessary to
a minimal degree.

• Autonomic Level: This is the level of full autonomy where the system operations are
only managed by business policies and objectives that were established by administrators.
Systems are still monitored by humans but they only interact with the system to change
their policies.

2.3.1 Self-management Capabilities

The ability of self-management [58] is the fundamental function of an autonomic system. Self-
management involves the following areas:

• Self-configuration is the ability of automated configuration of components following
high-level policies

• Self-healing provides automated detection and repair of defective components

• Self-optimization refers to the automated detection of opportunities to improve perfor-
mance

19

Autonomic System

Autonomic Manager

Knowledge

Plan

Monitor Execute

Analyze

Managed Element

Figure 4: Autonomic System (adapted from [58])

• Self-protection refers to the ability of automated prevention and defending of malicious
attacks

Apart from being master in these areas of self-management, an autonomic system not only
needs to know itself but also the environment and the context surrounding it. It will have to
function in heterogeneous environments and unavoidably coexist together with other systems
where interdependence exist to a certain degree. Therefore autonomic computing strongly relies
on the development of open standards, especially will autonomic systems have to implement
open standards that enable them to interact regardless of their underlying platform [51].

2.3.2 Autonomic Computing Architecture

[58] describes the structure and architecture of autonomic systems. An autonomic system con-
sists of multiple autonomic elements that interact with each other. They in turn contain resources
and deliver services. Figure 4 shows the architectural concept of an autonomic element. Auto-
nomic elements are managing themselves as well as their interactions with other autonomic
elements in accordance to policies that were established by humans or other autonomic ele-
ments. An autonomic element consists of one or more managed elements that are coupled with
one autonomic manager. The autonomic manager is responsible for controlling the managed

20

element and for representing the managed element to the outside environment. For example,
the managed element is a hardware device, such as a Central Processing Unit (CPU), a storage
system, a software service, a web server or a database.

As shown in Figure 4, the functionality of an autonomic manager involves the following
four tasks: monitor, analyze, plan and execute. This sequence of tasks, the autonomic manager
iterates over continuously, is defined by [58] to be the closed control loop of autonomic sys-
tems. By monitoring the managed element and the environment, data is collected and stored
into a knowledge base that may be used by all functional components of the autonomic man-
ager. The collected data is analyzed to see if any actions and alterations to the managed element
are required. This may for example be needed because a policy is not being met anymore. In
this case a planning function is triggered, that is responsible for the creation of an appropriate
change plan. This plan represents the alteration, which will be applied to the managed element.
The plan is then passed to the execution function, which schedules and performs the changes
according to the plan. As can be seen from this procedure, the knowledge base is the central
part of the autonomic manager. It has to be shared among the before mentioned four tasks. The
goal of this procedure and the autonomic manager is to relieve humans of the responsibility of
directly interacting with the managed element.

2.4 Event Processing

The concept of event processing [35] is applied by the composite service runtime, developed as
part of this thesis, to monitor itself and the execution of a composite service. As the name im-
plies, event processing deals with events, especially the operations performed on them. Among
those operations are reading, creating, transforming and deleting events. Two major areas are
related to event processing. On the one hand, the topic of event processing is concerned with the
construction of software applications that make use of events. This is also being referred to as
event-driven architecture or event-driven programming. On the other hand, operations process-
ing such events, and used by event processing applications, are of concern. Event processing
can be applied in several scenarios and used by several categories of applications. Among the
use cases of event processing are monitoring of business processes by looking at exceptional be-
havior, diagnosing a problem based on observed symptoms or delivering of personalized infor-
mation. A luggage handling system at an airport, tracing the boarding and routing of luggage by
means of radio-frequency signals, as well as an emergency control system, that detects incidents
and notifies people, are applications that may use event processing. The logic of event process-
ing is often encapsulated within a dedicated event processing platform and separated from the
software components that create or take notice of events. Some event processing platforms are
for example Esper [34], which is used within this thesis, Apama1 and Streambase2.

2.4.1 Concepts of Event Processing

The following terms illustrate the concepts of event processing applications as defined by [35].

1http://web.progress.com/en/apama/ Visited: 2011-09-29
2http://www.streambase.com/index.htm Visited: 2011-05-29

21

Event An event represents an occurrence, something that has happened, within a par-
ticular system or domain. The term event also refers to the programming entity
in a computing system that holds the information associated with an event.

Event
Producer

An event producer is a component that represents the source of events and emits
them to other components inside an event processing application or event pro-
cessing system. It can be a hardware device like a physical sensor or a part of a
software application.

Event
Consumer

Event consumers are components that receive and process events inside an event
processing application or event processing system. Consumers can be any kind
of physical actuators that perform actions on receipt of an event or software
modules like an event log or a business application.

Event
Processing
Agent

Intermediary event processing might be done by dedicated event processing
agents. They are able to consume and produce events by receiving and for-
warding them. Event processing agents can be used to filter events, transform
events and to detect patterns in the event flow.

Event Stream An event stream is a set of associated events that is often temporarily ordered
on the basis of timestamps that are part of the events. Whereas homogeneous
events streams only consist of events of the same type, heterogeneous event
streams may contain events of different types.

2.4.2 Principles of Event Processing

The two key attributes of an event-driven architecture are the extremely loose coupling and
the high distribution of its components. Producers of an event neither have knowledge of the
parties that are interested in the events nor do they know any further processing steps of the
events [71]. [35] defines the following general principles of event processing:

Decoupling The producer of an event does not depend on any particular processing or course
of action being taken by the consumer of the event. Conversely, the consumer does not depend
on any action performed by the producer other than the creation of the event itself.

Asynchrony Events are often sent as one-way messages. A producer does not have any ex-
pectations on a consumer to take a specific action after it received an event. After a producer
has sent an event message, it gets on with other things and without having to wait for responses
while the consumer of an event processes the event independently.

Push-style interaction With push-style event distribution the event is transported to interested
parties by sending them a one-way message that contains the event as soon as the event has
occurred.

22

Pull-style interaction Within pull-style event interaction the events are requested by interested
parties on demand. When used in combination with the request-response pattern the event is
passed within the response.

Channel based distribution Two issues arise with directly transporting events from a pro-
ducer to consumers. Firstly, the producer must have knowledge of the consumers, e.g., by
consulting an external information source or by the consumers subscribing dynamically at the
consumer. In any way this implies additional responsibilities on the event producer. Secondly,
the producer may have to transport multiple copies of the same event to individual consumers.
Both responsibilities can be delegated to an intermediary event channel, that is logically posi-
tioned between the producer of an event and any consumers. The event channel takes care of
forwarding events to the event consumers.

Request-response interaction There is a fundamental difference between the request-response
pattern used in traditional software applications and the interaction style used with event pro-
cessing. Whereas an event is the indication of something that has already happened, a request
expresses the requester’s wish that something specific should happen in the future. The request-
response interaction pattern can also be used to transport events from a producer to a consumer.
The event is thereby passed as a parameter on the request or the response.

2.4.3 Event Processing Styles

[71] describes three basic styles of event processing that differ in their complexity and that
may also be used in combination with each other. Thereby it is distinguished between ordinary
and notable events. While notable events trigger certain specific actions, ordinary events are
screened for notability and just passed to information subscribers.

Simple event processing In simple event processing, notable events occur that directly dictate
certain actions. It is commonly used to drive the real-time flow of work, reducing lag-time and
cost.

Stream event processing Stream event processing deals with the correlation and aggregation
of ordinary events. Ordinary events, usually of the same context, are thereby filtered, routed
and reformatted into notable events that in turn dictate certain actions. Stream event process-
ing is used by enterprises to enable in-time decision making by driving the real-time flow of
information.

Complex event processing - CEP Complex Event Processing (CEP) is commonly used to de-
tect and respond to business anomalies, threats, and opportunities. A confluence of ordinary and
notable events that may occur over a long period of time are evaluated using sophisticated tech-
niques for event pattern detection, matching and correlation. Common usage cases of complex
event processing are the detection of the absence of an event or the comparison event patterns to
multiple conditions and past data.

23

2.4.4 WS-Eventing

WS-Eventing [115] [96] was published by Microsoft, BEA Systems, Sun Microsystems and
Tibco Software. Its specification allows Web services to subscribe to events that occur at other
Web services. As part of the WS-* specifications, WS-Eventing is intended to work together
with other WS-* specifications like WS-Addressing and WS-Security. The basic concepts of
WS-Eventing are the following. Web services that send one-way messages, called notifications,
to indicate that an event has occurred are called event source. An event source also accepts re-
quests for subscriptions. Notifications are received by Web services that are called event sinks.
A subscription manager is a Web service that manages the status, renewal and deletion of sub-
scriptions on behalf of an event source and accepts requests from a subscriber which demand
such management actions.

24

CHAPTER 3
Related Work

The following sections deal with work related to the concepts used in this thesis. To begin with,
a study on hosting web servers in the Cloud showing the basic principles and capabilities of
hosting in the Cloud is presented. After that, approaches to adapting and monitoring composite
services are discussed. On the one hand, concepts focusing on single composite service instances
and on the other hand, concepts focusing on concurrently executing composite service instances
are shown. Finally, work on the topic of migrating processes, services and Virtual Machines
(VMs) is presented as it is related to the migration of composite service instances investigated in
this thesis.

3.1 Dynamic Hosting Scenarios in the Cloud

The authors of [67] discuss the various scenarios of how to host web servers in EC2. They also
study and compare two different work load and traffic patterns. The conclusion of their work is
that, in terms of resource utilization, a single web server setup is not best suited for all different
kinds of considered traffic pattern. Rather each hosting scenario should be fitted to one specific
pattern. The work in the thesis at hand is based on the principal hosting scenarios and uses them
in a modified way to host the runtime environment of a composite service.

The authors of [67] also propose criteria for switching between the hosting scenarios dy-
namically and to provision additional resources to them to cope with changing loads on the web
servers. In the thesis at hand resource provisioning mechanisms are used to serve the same
purpose of handling a too high load in Eucalyptus instead of EC2.

For one of the two traffic patterns mentioned above, an encrypted network channel is used
to transfer short requests and responses. This pattern results in a high amount of CPU utilization.
The other traffic pattern results in a high consumption of network bandwidth, whereby files of a
size up to 40 MB are downloaded over an unencrypted channel.

Benchmarks of the two traffic patterns were performed with three instance types, m1.small,
c1.medium and c1.xlarge (see Table 1 for resource specifications), of Amazon EC2. The results

25

of the benchmarks show, that the m1.small instance is not able to saturate it’s network interface,
neither with the CPU intensive pattern nor with the bandwidth intensive pattern. The CPU inten-
sive pattern exhausts the CPU at an amount of 1,350 parallel sessions, whereas the bandwidth
intensive pattern exhausts the CPU at 1,190 parallel sessions. Once the CPU resources for the
bandwidth pattern were slightly increased by using c1.medium instead of m1.small, saturation
of the network interface was accomplished at 1,800 parallel sessions. A c1.xlarge instance was
able to serve up to 7,000 parallel sessions during the load of the CPU intensive traffic pattern.

The following four different scenarios of hosting web servers in EC2 are considered in [67]:

• A web server is hosted on a single small instance (m1.small). This is the cheapest way of
how to run a web server in EC2, but also provides the least resources. It is best suited for
a low web server load, for instance during the night. The CPU capacity of the m1.small
instance type is equivalent to a single 1.0-1.2 GHz 2007 Opteron of Xeon processor. The
bandwidth of the network interface is about 800 Mbps.

• A load balancer is used to distribute the load among multiple VM instances hosting the web
servers. While the CPU capacity for the web servers is virtually unlimited, the network
traffic to the load balancer (and therefore the traffic of the clients) is limited to 400 Mbps
because the load balancer needs to relay traffic to the web server instances. The load
balancer is hosted by a c1.medium instance and m1.small instances are used for the web
servers.

• The web server is hosted on a single large instance (c1.xlarge). The CPU power of a
c1.xlarge instance is many times greater than the one of a m1.small instance. c1.xlarge
provides 8 virtual CPUs with each being clocked at a higher frequency than that of m1.small.
The network bandwidth is again 800 Mbps.

• DNS load balancing is used to distribute the load among multiple machine instances. This
scenario is useful if the needed bandwidth is too high for a single Cloud component to cope
with, or the CPU utilization exceeds the capacity of a single instance. DNS is configured
in such a way, that it points to multiple IP addresses (instead of only one) where each one
corresponds to a single c1.xlarge instance. This scenario is only bounded by the traffic
limit into the Amazon EC2 infrastructure.

The criteria for switching dynamically among these scenarios, in case the load on the web
servers changes, are based on the benchmarks described above. Switching from a weaker sce-
nario to a stronger one takes place if either CPU capacities or network bandwidth exceed the
limit of the current configuration. In case the bandwidth does not exceed 400 Mbps, but the
CPU capacities are exhausted, a switch from the single m1.small instance to a c1.medium load
balancer and m1.small instances would take place. If bandwidth utilization is between 400 and
800 Mbps a switch to the single large instance will be necessary. More than 800 Mbps can only
be handled by the DNS load balancing configuration. The criteria for switching downwards are
exactly the opposite.

The work in [67] shows the basic capabilities of the Cloud, specifically EC2, to deploy host-
ing environments that each provide different amounts of resources and to switch among them.

26

The concept of hosting with single instances is used in the thesis at hand to accomplish the task
of dynamic resource provisioning for composite services. It is not considered in [67] how auto-
mated switching facilities among the discussed configurations may be implemented. In addition,
no attention was payed to the cost, and time needed for a possible switching process The thesis
at hand implements switching facilities and studies the costs and the effectiveness of dynamic
resource provisioning mechanisms in the Cloud, specifically Eucalyptus. The benchmarks and
deployment scenarios focus on Service-oriented Computing (SoC) instead of web servers and
web applications. Furthermore, monitoring in [67] is based on measuring the consumption of
resources instead of evaluating SLA conformance.

3.2 Adapting and Monitoring Composite Services

The papers presented in this section differ significantly in their approaches to coping with vary-
ing influential conditions that composite services are confronted with during their existence,
specifically during their execution time. They also deal with different ways to establish mecha-
nisms to monitor composite services and their hosting infrastructures.

[87] and [62] focus on adapting single composite service instances to prevent them from
violating SLAs. They do not take into consideration the concurrency of multiple parallel com-
posite service instances and the impact of their parallelism on their execution duration. Neither
do they make adaptations to the infrastructure of the hosting environment, that operates the com-
posite services or the called Web services. In contrast, approaches like [29], [68] and [42] exist,
that focus on coping with concurrent invocations of composite services to either ensure SLA

conformance or generally decrease the execution duration of composite services.
While [29] and [42] balance the load only at the layer of Web service invocations, [68] takes

load balancing of requests to the WSBPEL runtime into consideration. In contrast to all other
papers presented, the approaches of [29] and [68] are able to dynamically adapt the hosting
infrastructure in the Cloud or in similar dynamic environments.

These approaches, that attempt to cope with concurrent composite service instances, are
based on different manifestations of load balancing and extend the WSBPEL engines to support
the dynamic selection of Web service endpoints at runtime, bind to them and invoke them. This
is accomplished by intercepting the invocation of Web services in the WSBPEL engine.

3.2.1 Without Concurrency Considerations

[87] presents the ADULA system. It implements an approach to automatically detect and repair
SLA violations of composite services that are implemented as WSBPEL processes. The detection
of violations is accomplished by using statistical tests on the duration of Web service calls and
WSBPEL processes. If a Web service is detected that causes a WSBPEL process to violate a SLA,
ADULA will replace it with an alternative one by rebinding the Web service call to a different
Web service endpoint. The duration of Web service calls is measured by invoking them with
special dynamic proxies that are able to monitor the duration between requests to and responses
from a Web service.

27

Instead of modifying a WSBPEL runtime, like other approaches do [29] [68], the WSBPEL

processes are transformed automatically before being deployed to ADULA. This transformation
modifies a WSBPEL process in such a way that it requests Web service endpoints from ADULA
at startup and notifies ADULA about its completion.

The whole evolution of a WSBPEL process is tracked. This means that the history of endpoint
replacements are stored in a database, starting with the very first replacement. Initial service end-
points, chosen at development time of the WSBPEL process, are preserved after transformation.
They can be used again, if the corresponding Web services recover from their degraded state.

ADULA provides the abilities to detect SLA violations and to repair them, so that future vio-
lations can be prevented. The repair strategy is limited to the replacement of Web services cause
a composite service to violate a SLA. Otherwise, ADULA does not implement any actions to re-
act on SLA violations whose cause are not the invoked Web services, e.g., insufficient resources
for executing composite services.

A similar approach to SLA protection is presented in [62]. The authors propose a system,
the PREvent framework, that is able to prevent SLA violations of composite services by applying
certain adaptation actions to them at runtime. Instead of statistical tests, as in [87], they use
machine learning techniques and regression models to predict SLA violations. PREvent operates
in three phases. During the monitoring phase, runtime data of composite service executions is
collected by an event-based monitoring component and stored in a metric database. At certain
checkpoints within the execution of a composite service, the system tries to predict whether the
composite service will violate a Service Level Objective (SLO) or not. Checkpoints are prede-
fined and stored in a database that is loaded by the prediction component during the prediction
phase. If the system predicts a violation it will trigger the adaptation of the composite service.
Which adaptations are applied depends on the adaptation strategy being used. The safe strategy
applies all possible adaptations so that the SLO will most likely be satisfied. The minimal strategy
applies only those adaptations that will make the composite service just pass the SLO. This latter
strategy has the drawback that an inaccurate prediction could lead to the SLO not being satisfied.
Three different kinds of adaptation actions are implemented within the PREvent framework.

• The data exchanged within the composite service can be manipulated. An example men-
tioned in [62] is the interception of input messages to an activity that handles the shipping
of certain goods. The value within the message that indicates whether express shipment
will take place or not could be set to true by the adaptation component.

• The binding to a Web service can be changed at runtime. An example is the rebinding
from a bad performing service to a better performing one.

• The third kind of adaptation enables changes to the structure of the composite service.
Such adaptation actions can remove activities from or add activities to a composite service
at runtime.

The evaluation of the two mentioned adaptation strategies showed that the system was able to
prevent 78% of predicted violations by the use of the safe strategy and 60% by using the minimal
strategy.

28

The PREvent framework will adapt composite services at runtime autonomically, so that
they will satisfy the SLAs. It is not limited to the replacement of Web service endpoints, but
also supports additional adaptation mechanisms to influence the logic of a composite service.
However, PREvent does not yet support adaptations regarding the hosting environment of a
composite service to prevent SLA violations that arise from it.

The approach of [62] is based on eventing (see Section 2.4) to collect runtime information
about composite services and external occurrences. Like the adaptation framework presented in
this thesis, PREvent uses the event engine provided by the VRESCo runtime (see Section 4.2).
While monitoring in PREvent considers the metrics of single composite service instances, the
monitoring mechanism that is used in the thesis at hand considers the aggregation of metrics
from multiple composite service instances.

3.2.2 With Concurrency Considerations

[42] proposes dynamic endpoint selection based on the scheduling strategies round robin, lowest
counter first and weighted random. The number of concurrent invocations to a Web service and
the duration of recent invocations is tracked.

In addition to invocation interception in the WSBPEL engine, the WSBPEL process is modified
before being executed by the WSBPEL runtime. The ActiveBPEL engine is extended with a
scheduler module. The invocation activities of the WSBPEL process are wrapped with invocations
to the scheduler module which results in a transformation of the process. The scheduler module
is invoked like a Web service by the process, before and after the actual Web service is called. It
can track the invocation time and the number of parallel Web service invocations.

In their experiments, the weighted random strategy provides the best overall results. Average
duration of Web service calls within many concurrent processes was reduced by 27% compared
to static processes.

The solution presented in this thesis is based on VRESCo 4.2 and makes use of the eventing,
dynamic service invocation capabilities. It is compatible to the PREvent framework discussed
in 3.2 which is also based on VRESCo and does not support infrastructural adaptations so far.

An approach to scaling WSBPEL processes dynamically in the Cloud is presented in [29].
The authors use load balancing to distribute the invocations of the WSBPEL process to the Web
services among multiple VM instances. Their implementation is an extension to the ActiveBPEL
runtime.

The topology of the system is composed from three main components. A resolver compo-
nent intercepts the invocations of the WSBPEL runtime to the Web services and queries the load
balancer component to get information about concrete Web service endpoints. The load balancer
manages a registry that contains information about available Web services and the load on their
hosting VM instances. On incoming requests, the load balancer decides, based on the informa-
tion stored in the registry, to which Web service endpoint the invocation should be scheduled. If
the load on all of the currently available VMs is too high, the load balancer launches additional
VM instances by using the interfaces provided by the cloud platform. On the other hand the load
balancer will terminate idle machines, if the system is underutilized. Monitoring of the system
load is implemented by a Web service, which represents the third component. It is hosted on

29

each VM instance and provides information about CPU utilization on its host. This Web service
is queried on demand by the load balancer.

The provisioning of new Web service hosts is accomplished by using the Amazon AWS SDK

which provides functionality to launch and terminate VM instances. They use a customized AMI

that downloads the application software from a central web server at startup so that it is not
necessary to rebuild the AMI if updates to the software are deployed. This concept is also used
in a modified form in the work of this thesis as described in Chapter 5.

In contrast to the work presented in [68] and to what this thesis focuses on, the load on the
system hosting the WSBPEL runtime is not taken into consideration. The intention of [29] is soley
to scale at the level of Web service invocations.

In [68], the authors focus on scaling at the level of the composite service runtime. They
identify the composite service runtime to potentially be a bottleneck, in contrast to [29], where
the focus is on scaling the hosting components of Web services that are invoked by a composite
service runtime. Again, the service invocation mechanism of ActiveBPEL is extended by the
authors of [68] to accomplish the dynamic binding and resolving of Web services.

Their performance evaluations show how a load balancing approach outperforms a single
WSBPEL engine. Their experiments were performed on a sample composite service whose ex-
ecution time was around 10 seconds. While the throughput of executing composite service
instances at lower request rates is equal to the request rate itself, higher request rates result in
the throughput declining below the request rate. The throughput was measured to decline at 240
requests per minute on a single WSBPEL engine in contrast to the load balanced configuration
that won’t decline until 420 requests per minute. These results illustrate that the throughput of a
composite service can be increased by adding more WSBPEL engines to the system.

The approach uses a Heart Beat function causing the clustered WSBPEL engines to regularly
report their living status and their load to a central component, the Engine Manager, which is part
of the load balancer. A registry that is used by the formerly mentioned interception mechanism
to find available services and bind to them at runtime is also part of the system.

The load balancer is exposed to clients in form of a Web service that can be called like the
actual composite service that is to be invoked. The load balancer then schedules the execution
of the composite service to one of the clustered WSBPEL engines.

What they do not take into account is the way of how to dynamically start and stop the
WSBPEL engines as well as how they would provision additional resources for their hosting. Like
in [29] the scaling mechanism depends on a central management component for monitoring and
scheduling.

3.2.3 Monitoring

The load balancing solutions proposed in [29] and [68] use contrary attempts to monitor their
hosting environment. While both of them use the idea of a central and static component that
monitoring is built upon, i.e., the load balancer, the concrete realization differs. In [29], the
load balancer component queries the nodes that are hosting services on demand. In [68], the
nodes regularly report their load to the load balancer. While the former approach may therefore
be pictured as pulling the information from the source, the basic idea of the latter approach is
to push monitoring data from distributed sources to the central component, the load balancer.

30

The scheduling component used in [42] tracks the invocations to Web services as they arrive at
the load balancer. While the pull and the push style monitoring is actively performed the latter
mentioned tracking mechanism takes place passively.

In [86], the authors present the architecture and a proof of concept implementation of their
approach to monitor composite service infrastructures for the occurrence of certain situations
of interest, e.g., fraudulent behavior, failing operations or absent situations. Their approach
is based on CEP, which was discussed in Section 2.4. An event model is proposed in [86] that
organizes the different kinds of events in a hierarchy to generalize the way of handling them. The
model distinguishes between simple base events and more complex domain specific events. Base
events have general attributes like a timestamp and a success indicator. They are used to build
domain specific events that inherit their attributes and extend them with more specific attributes.
Domain specific events are used to represent the occurrence of a specific situation, e.g., the
invocation of a certain composite service or a certain Web service. The core of the proposed
architecture is represented by the monitoring runtime that integrates the event processing engine
and certain adapters to outside components like the various event sources, event sinks and the
composite service runtime. The implementation uses WSBPEL and supports the ActiveBPEL
and the ApacheODE runtime engines. The implementation uses the event processing engine
Esper [34] in combination with the Esper Event Processing Language (EPL). Creation of events
is realized by a message interception layer that is intercepting the WSBPEL runtime at the SOAP
layer and accesses SOAP messages. As part of the interception procedure event objects are
created, stored in a database and passed to the event processing runtime.

The CEP approach to monitor a composite service infrastructure is used in the thesis at hand
to evaluate the SLOs of composite services. CEP provides the capabilities to filter complex event
patterns and to aggregate different events. The evaluation in [86] shows that eventing with the
Esper runtime has almost no impact on the performance of the executed composite services and
that the event processing runtime implemented therein is able to handle around 2000 events per
second. The PREvent framework [62] uses a similar approach that is based on CEP to measure
the metrics of composite service instances.

3.3 Migration and Relocation

The thesis at hand implements mechanisms that accomplish the provisioning of resources to
composite services in the Cloud at runtime. Because Cloud platforms do not support the upgrade
of VM instances, the concept of migration is used to transfer executing composite services from
a VM instance to a better equipped one.

This section deals with the migration of executing entities between different computing sys-
tems, starting with a review of the concept of process migration, followed by a presentation on
work regarding the migration of virtual environments and concluding with an approach to move
runtime services from one virtual server to another.

31

3.3.1 Process Migration

In the 1980s and 1990s, academic research considered the concept of migrating processes and
tasks between system nodes aiming at improving system performance, reliability and main-
tenance. [85] provides an overview on migration concepts and compares implementations of
process migration in distributed operating systems at that time, like MOSIX, Sprite and Mach.
The main goals of process migration are mentioned to be the following.

Distribution
of load

Processes may be migrated from overladed nodes to less loaded nodes for better
utilization of available resources.

Fault
resilience

Processes that are executing on failing nodes can be migrated to correct nodes
and devices.

Resource
locality

To improve system performance, processes may be migrated to nodes that are
closer to the data and resources used by the processes.

Improve
maintenance

By migrating processes to another node, the original node can be deactivated
for maintenance tasks without having to stop the processes, which are hosted
on that node.

Process migration refers to the procedure of transferring a process, i.e., the executing in-
stance of a computer program, between two machines during its execution. It is therefore said
to be migrated from the source to the destination node. A process consists of components like
memory regions for data and code (e.g., stack, heap, etc.) that need to be taken into consid-
eration when it is thought about migration. On the destination node a new process instance is
created, which is referred to as destination instance. The process on the source node that still
exists during migration is called the source instance. This terminology is also used throughout
the thesis at hand when referring to the migration of composite service instances.

The algorithm for migrating processes is generalized and summarized in [85] as follows.

1. A migration request is sent to a remote node.

2. The migrating process a detached from source node.

3. Messages to the process are queued up and delivered after the process is completely mi-
grated.

4. The state of the process is extracted.

5. An instance of the destination process is created.

6. The state is transferred and imported into the destination instance.

7. References to the process are forwarded to the new location.

8. The new process instance is resuming execution.

32

While this algorithm considers processes as the entity of migration, composite service in-
stances are the targets of interest in the thesis at hand. The migration algorithm used within this
thesis is therefore designed to be compatible with composite service instances. The approach
used to transfer the state of composite service instances is based on the eager (all) strategy which
extracts the state of a process and transfers it to the destination node as a whole. Systems like
LSF [119] and Condor [66] implement this strategy in their checkpoint-restart mechanisms [66].
In contrast to eager, the copy on reference strategy transfers data not until it is referenced by the
destination instance. While the latter approach has a lower initial migration cost than the fist
one, the costs are increasing during runtime.

3.3.2 Virtual Machine Migration

Apart from process migration, the need for migrating VMs between physical nodes was emerging
with the raising importance of virtualization and the transition from common data centers into
Virtualized Data Centers (VDCs). Live migration, i.e., migrating VMs without downtime and loss
of network connectivity, was topic of research [90], [25] and is meanwhile state of the art, since
it is supported by virtualization software from vendors like VMWare, Red Hat and Microsoft.
Migration enables the redistribution of VMs among physical machines, e.g., to ensure that VMs

receive enough processing power from the underlying physical resources and to optimally utilize
physical resources or to provide maintenance windows for the physical hardware.

[59] and [19] formulate the challenge of optimally placing VMs on physical nodes as a
specific form of the bin packing problem [26] and propose approximation algorithms. Their goal
is to fulfill SLAs by detecting VMs that cannot allocate enough resources to their applications and
migrate them from overloaded physical nodes to lesser loaded nodes. The optimal destination
node of a VM is decided by approximation algorithms. While the algorithm presented in [59]
resolves SLA violations reported by VMs, the algorithm of [19] is used in combination with
workload forecasting and therefore enables preventive migrations of VMs.

Live migration of VMs is used in [105] to accomplish autonomic adaptations on so called
VIOLIN systems [54], a special kind of virtual distributed computation environments. VIOLINs
are isolated from each other and logically separated from the underlying infrastructure. They
are composed of VMs which are interconnected by a virtual network. The central components in
the approach presented in [105] are the adaptation manager and virtual machine monitors. The
virtual machine monitors are deployed to each physical host and provide information regarding
the utilization and availability of CPU and memory. Based on this information, the adaptation
manager autonomically decides whether adaptations are necessary or not. It adapts the alloca-
tion of available resources to the virtual environments by dictating the monitoring system on the
physical host. The system supports mechanisms for local, as well as multi-domain adaptations.
Local adaptations provide fine-grained control over the CPU and memory allocations for each
VM. Multi-domain adaptations refer to the migration of single VMs or the whole virtual environ-
ment to remote physical nodes. In contrast to [59] and [19], the authors of [105] do not focus
on optimizing the overall allocation of resources to VMs. Instead, their approach incrementally
increases the performance of the whole system. If a VM demands resource allocation above its
current allocation, the reallocation policy will attempt to assign appropriate resources to the VM.
If this demand can not be satisfied locally, the VM or the whole VIOLIN will be migrated to other

33

nodes. [105] uses the capabilities provided by the virtualization platform for memory ballooning
and CPU weighting to increase or decrease the resource allocations of VMs. The virtual environ-
ment and adaptations are directly based on the virtualization platform (i.e., XEN). In contrast,
Clouds abstract from this virtualization layer and Cloud consumers do not have access to those
functionalities.

The concepts discussed so far cannot upgrade the resources of VMs above their preconfigured
amount. A VM created and started with 2 GB of memory and 2 CPUs cannot exceed this limit
regardless of how many resources are available on the physical node.

The authors of [45] propose a model driven approach to a self-adaptive VDC that autonom-
ically protects its SLAs. They refer to Virtual Execution Environments (VEEs) (e.g., VMs) that
provide elementary services that in turn can be combined and provided to users. Their focal idea
is an adaptation controller that implements the closed control-loop of autonomic computing
(Section 2.3) and controls the VDC.

They assume that the adaptation controller can perform the assignment of additional re-
sources to a VEE (e.g., add additional disk storage), migrate a VEE (e.g., a web server) from a
physical server to a cluster, add or remove VEEs and balance the load among the components
(e.g., use server A one time and use video server B the other time).

Those adaptation actions are trigger depending on the factors pictured by the following mod-
els:

• Workload models describe the amount of requests during a period of time, consider peak
loads, normal usage and trends of increasing and decreasing load.

• Service composition models describe workflows and provide information about the next
expected service invocation.

• Architectural models express dependencies and interactions between components that re-
alize elementary services.

• VEE allocation models express the allocation of VEEs to physical nodes and the resource
demand of VEE on their hosting node.

• Physical resource models represent resources that are available within the VDC, as well as
their ability of being changed and allocated.

While their approach considers the assignment of additional resources to VEEs, this assign-
ment is not trivial in practice. VMs cannot upgrade their resources like memory and CPU during
runtime.

While the approach considers the migration of VEEs between physical nodes in the VDC,
as well as the instantiation of new VEEs and components, no solution is presented that shows
how the migration of VEEs may actually be accomplished. Live migration of VEEs, that are
represented by VMs, is supported by XEN and VMWare. In contrast, no solution is provided that
considers the migration of composite services between VMs.

34

3.3.3 Service Migration

In [44], the authors consider service migration as an extended concept to process migration. In
contrast to process migration the concept of service migration is not only concerned with just
moving the execution context of a process, but instead enabling the reconstruction of a whole
execution environment on a remote node. The work presented in [44] is based on a mobile
extension of a Distributed Shared Array (DSA) runtime system [16] and enables the migration
of the Java Virtual Machine (JVM) runtime data structures used by a DSA service. The contents
of the heap and the JVM stack are extracted and serialized into a platform independent data
structure, called the service pack. The class files are instead prefetched by the remote node from
a lightly loaded neighboring node, located in the same subnet. This enables the transfer of data
(i.e., the service pack) and classes in parallel.

The migration procedure proceeds as follows.

1. If the LoadMonitor component detects an overloaded or unavailable node, it will send a
request to the migration coordinator.

2. At synchronization points, the migration coordinator is requested to check if migration
request is active.

3. The migration coordinator sends the migration request to the bootstrap daemon at the
destination node.

4. The bootstrap daemon at the destination node contacts the bootstrap daemon at the source
node.

5. The data (i.e., service pack) is transmitted to the destination node.

6. The destination node loads the data.

7. An acknowledgment is sent to the coordinator.

This approach enables the reconstruction of a service runtime onto a remote node without
having to migrate the whole VM and provides the ability to migrate to a VM that is equipped
with a larger amount of resources. The migrating entity in this approach is a DSA service and
the loaded class objects are downloaded from a neighboring node that is part of the distributed
system. In contrast, the thesis at hand focuses on the migration of composite service instances,
but uses a similar approach to deploy the runtime code. Additionally, it discusses the deployment
of destination nodes for dynamic resources provisioning in the Cloud.

35

CHAPTER 4
Background

First, this chapter provides the background to understand Windows Workflow Foundation (WF) [20]
and VRESCo, as they are the key software components used in this thesis. WF is a programming
framework for the development of workflow-based applications and provides the ability to build
composite services. VRESCo is a runtime environment for SoC that serves as a Web service reg-
istry, enables dynamic service invocation and employs eventing facilities. Finally, this chapter
presents the idea of dynamic scaling and explains the difference between horizontal and vertical
scaling.

4.1 Windows Workflow Foundation

The concept of composing Web services to composite services, as well as the WSBPEL technol-
ogy were already presented in Section 2.1.2. WSBPEL is a platform independent standard for
specifying processes out of Web services. WSBPEL processes are executed by WSBPEL engines,
such as ApacheODE [11] or ActiveVOS [1]. Another way of building composite services is
provided by WF. WF is a component of Microsoft .NET 3.5 [65] allowing the development of
workflow-based applications. Composite services are one example of such applications. WF is
used in this thesis to express and run composite services.

WF supports two different styles of workflow authoring. State Machine Workflows are au-
thored equally to state machines. They are composed of states that transition to other states on
certain occurrences. The entry to the workflow is the start state. As soon as the workflow reaches
the final state, the workflow has completed. The sequence of state transitions is controlled by
external events and is not defined by a fixed flow of control within the workflow. State machine
workflows are therefore well suited for problems that involve human interactions. Sequential
Workflows are authored to describe a fixed series of activities that will be executed sequentially.
They are useful for repetitive, predictable operations that are always the same. Common control
flow structures, such as loops and conditional branches are only supported by sequential work-
flows [20]. The following discussions on WF are exclusively dedicated to sequential workflows,
as state machine workflows were not used in this thesis.

37

Developers can use the Workflow Designer to develop their workflows. The workflow de-
signer is a graphical editor part of Microsoft Visual Studio [100]. It is basically operated by
dragging and dropping activities from a toolbox into the modeling area. The graphical definition
of the workflow is then translated into the code that defines the workflow. Additionally, devel-
opers are able to define a workflow by writing the code manually, without using the workflow
designer.

4.1.1 Activities

Sequential workflows are built from activities. An activity is an encapsulated entity in the se-
quence of a workflow of steps performing certain actions. WF supports more than thirty different
types of activities that each serves an individual purpose. Activities are represented by the
Activity class within WF, whereof all types of activities are derived from. The spectrum of
activity types ranges from activities that represent flow control constructs, such as loops or con-
ditional branches, to event-driven activities, or custom activities. The most important activities
are described in the following.

• IfElseActivity is used to model conditional branches, such as the if-else construct
of common programming languages.

• WhileActivity allows to define loops that are executed until a certain condition oc-
curs.

• ParallelActivity allows to execute multiple sequences of activities concurrently.

• CodeActivity allows to implement individual programming logic which is executed
when the activity is invoked.

• SuspendActivity suspends the execution of a workflow. Resumption has to be in-
voked explicitly.

• InvokeWebServiceActivity invokes a Web service by the use of a proxy class.

• SequenceActivity is a composite activity, composed of other activities, which are
executed in a specified order.

A special kind of activity are Custom Activities. They are similar to CodeActivity ac-
tivities in so far as they allow to execute custom code. But in contrast to a CodeActivity,
they are more versatile and more complex. Their code is decoupled from the workflow and
implemented within self-contained objects with clearly defined inputs and outputs. While a
CodeActivity is bound to one workflow, a custom activity can be reused throughout differ-
ent workflows. As they do not depend on one specific workflow, they can be tested indepen-
dently and are suitable for unit testing. In their basic form, custom activities are derived from
the Activity class. They may as well be derived from SequenceActivity to implement
custom composite activities. Custom composite services can in turn execute a sequence of other
activities, custom activities or even custom composite activities.

38

4.1.2 Workflow Runtime and Services

The WorkflowRuntime is the central element of WF. It is responsible for executing workflow
instances and manages their life-cycle. Workflow instances are represented by Workflow-
Instance objects that are created by the WorkflowRuntime. WorkflowInstance ob-
jects are accessible to the developer and can be used to control the workflow instance, e.g., to
stop, to suspend or to resume it.

The WorkflowRuntime utilizes so called Runtime Services that are selected by the devel-
oper to customize the behavior of the runtime. WF ships with ready to use runtime services that
provide means to persist workflow instances into a relational data base or to track their execution
with the Structured Query Language (SQL). Developers are able to implement custom runtime
services that can be used by the WorkflowRuntime for workflow persistence and tracking.
The various types of runtime services are represented by abstract classes that do not provide
any implementation. To use them, they have to be derived and all of their operations need to
be implemented and overridden. WF also supports the creation of completely new runtime ser-
vices that serve individual purposes. They can be used explicitly from within Code Activities or
Custom Activities. The implementation of runtime services and the usage of a custom runtime
service will be shown in detail in Section 5.2.

4.1.3 Workflow Tracking

WF provides facilities to track the life-cycle of workflows, for example the creation or completion
of a workflow. It also reports the execution states of activities, such as activity initialization or
activity compensation. Tracking of events is accomplished by registering a tracking service at
the WorkflowRuntime. The various workflow events that are reported by WF are listed and
described in Table 3. Table 4 shows the execution states of activities that WF is able to track.

Developers can track their code with custom events with the UserEventData class, e.g.,
from within custom activities.

4.1.4 Workflow Hosting

Hosting of workflows as composite services is accomplished by using Windows Communication
Foundation (WCF) [21]. Two scenarios are possible for hosting workflows. Workflows can either
be hosted with Microsoft IIS [83] or by self-hosting. The way of how composite services are
hosted in this thesis is described in Section 5.2.

4.2 VRESCo - Vienna Runtime Environment for Service-oriented
Computing

VRESCo [52] is a runtime environment for SoC. The motivation behind its development was to
recover the publish-find-bind triangle of SoC that is said to be broken because service registries
are rarely used in real-world scenarios and binding of clients to services happens at design-
time. [72] VRESCo picks up those neglected concepts and addresses the current challenges

39

Event Description
Created A workflow instance was created

Started A Workflow instance starts executing

Idle Execution is delayed until the occurrence of a specific external
event, e.g., a timer, a message, etc.

Unloaded A workflow was unloaded from memory and persisted into a data
store

Loaded A workflow was loaded into memory from a data store

Completed Execution of a workflow has finished

Persisted A workflow instance was persisted (but may still be executing)

Suspended Execution was suspended manually

Resumed Execution was resumed from suspension

Exception An exception was raised within a workflow instance

Terminated A workflow instance was terminated; persisted and in-memory state
was cleared

Aborted A workflow instance was aborted

Changed A workflow instance was changed

Table 3: Tracking Events for Workflows in WF

Event Description
Initialized An activity was initialized

Executing An activity is executing

Compensating The actions of an activity are being rolled back, i.e., reverted

Canceling An activity is being canceled

Closed Execution of an activity has finished

Faulting An error occurred in the activity

Table 4: Execution States of Activities in WF

40

Figure 5: VRESCo Runtime Environment Architecture (from [75])

of SoC that especially encompass the management of metadata in service registries, as well as
dynamic service binding and invocation.

VRESCo is implemented in C# [106]. Its subsystems are exposed as Web services and
hosted with WCF. A client library for VRESCo exists that can be used to access the VRESCo
runtime services. The messaging protocol SOAP which was briefly discussed in Section 2.1.1,
is used by VRESCo to communicate with clients.

The architecture of VRESCo is shown in Figure 5 and comprised of the following subsys-
tems.

• The Publishing and Metadata Service allows for the versioning of services and stores
functional, as well as non-functional (QoS) attributes of Web services.

• The Management Service provides an interface to manage users and their permissions
within the runtime.

• The Query Engine allows to search for stored entities within the VRESCo runtime by
filtering for attributes or by using a full text query.

• The Notification Engine provides means for the notification of clients in a publish-subscribe
style. Clients can subscribe for certain events and will be notified if they occur. The usage
of the VRESCo notification engine within this thesis is described in Section 5.2.

VRESCo provides capabilities for the dynamic selection and invocation of services and ser-
vice endpoints, based on QoS attributes. QoS attributes are reported by a standalone component,
the QoS Monitor. The QoS Monitor constantly monitors target Web services and reports the
measured attributes to the publishing service of VRESCo. A detailed discussion on the QoS ca-
pabilities of VRESCo can be found in [74]. VRESCo accomplishes the dynamic invocation of

41

Web services with the Daios framework [63]. Daios is capable of binding to Web services at run-
time by using a protocol independent and message oriented approach. A detailed presentation
on Daios can be found in [63].

4.2.1 Metadata and Service Model

VRESCo specifies two data models for the description of Web services. On the one hand
VRESCo specifies a metadata model for the description of abstract functionalities offered by
Web services. The central elements of the metadata model are categories, features and
data concepts. Categories are used to group, i.e., categorize, Web services by their in-
tended purposes or use. Features are concrete actions that are implemented within a system
and associated to a category. Data concepts define the data types that are used within a
system. On the other hand a service model is defined in VRESCo. It allows for the description
of concrete service manifestations and QoS attributes of Web services. Within the service model,
a Web services is represented by a service entity that is associated to certain categories
and one or more revisions. The revisions describe the concrete versions of a Web ser-
vice that implement a set of operations that may in turn require several parameters.
Parameters are mapped to the data concepts specified within the metadata model and
operations are concrete implementations of features. A detailed illustration of the data
models used in VRESCo can be found in [103] and [52].

4.2.2 VRESCo Eventing

The notification engine of VRESCo utilizes NEsper [34] for the processing of events. NEsper
is a customized version of Esper for Microsoft .NET. Subscriptions are realized in Esper by the
registration of listeners at the runtime, together with queries that specify the events that will be
filtered. A listener is invoked by the runtime on the occurrence of an event that matches the
associated query. Queries are defined with the EPL. EPL is similar to the SQL, but designed to use
event streams as its source of data, instead of relational databases.

The architecture of the VRESCo notification engine is illustrated in Figure 6. Clients use
the subscription interface of the notification engine to subscribe for notifications. They pass an
EPL query, a notification endpoint and an expiration date to the subscription manager. An Esper
listener is then created by VRESCo and registered together with the query at the NEsper en-
gine. On event occurrence, the notification manager extracts the information on the event from
the listener and notifies subscribed clients by publishing the event at the declared endpoints.
Furthermore, subscriptions are removed by the notification manager on expiration. VRESCo
supports WS-Eventing which was described in Section 2.4 and which is used in this thesis to-
gether with VRESCo for event notifications. The utilization of the eventing service, that provides
clients with the ability to report the occurrence of certain events, will be shown in Section 5.2.
A detailed discussion on the VRESCo notification engine is provided in [73].

VRESCo implements a hierarchical event type model, similar to the approach that was
shown in Section 3.2. The base event of VRESCo’s event model is the VRESCoEvent class,
whereof all other event types inherit from. The event model is extended as part of this thesis

42

Query Engine

Notification Engine

Querying
Service

Subscription
Manager

Events

Subscriptions

Queries

Results

Event
Adapters

Eventing
Service

Notifications Notification
Manager

Storage

Event
Database

Es
pe

r E
ng

in
e

Subscription
Interface

Event Search
Interface

Figure 6: VRESCo Eventing Architecture (from [73])

to reflect specific occurrences in the composite service hosting infrastructure and to accomplish
communication between infrastructural components that do not know of each other.

VRESCo allows events and their attributes to be persisted and stored in the event database,
together with the date of their occurrence. This is especially useful for retrospective evaluations
and the reconstruction of event sequences. The evaluations in Chapter 6 are based on events that
were persisted during test runs.

4.3 Load Scaling

Load scaling a system is the ability to change its size in accordance to increasing or decreasing
load (e.g., amount of requests from clients to a web server). Two distinct approaches to load
scaling can be differentiated, vertical and horizontal scaling [109]. Horizontal scaling deals
with adding or removing nodes to or from an already existing cluster of nodes which together
constitute a system that performs a task or provides a service. The task is thereby split into
separate parts, each being handled by a different node. To split the load of a service, provided
over a network, e.g., the Internet, requests are distributed among different nodes. This process
may be achieved by using a component (i.e., a load balancer) that dispatches requests and
forwards them to nodes within the cluster based on a scheduling policy [23]. Figure 7 shows
a scenario of horizontal scaling where a node is joining a cluster of web servers because two
nodes are overloaded with requests.

Vertical scaling, in contrast, deals with upgrading the amount of resources (e.g., CPUs or
memory) of a single node. Scaling a system vertically depends on the Operating System (OS) and

43

Load Balancer

Overloaded Node Overloaded Node

. . . .

Web Server Cluster

Requests

Clients

Jo
in

 C
lu

st
er

Figure 7: Scaling a Cluster of Web Servers Horizontally

Overloaded Node

Scale Up

Clients

Vertically Scaling Server

Scale Up

Requests

Figure 8: Scaling a Server Vertically

the hardware platform to support the installation of components during runtime. Otherwise it is
necessary to shutdown the system, install additional resources and start the system again, which
results in unavailability of the system. The approach to vertically scale a server is illustrated in
Figure 8.

Finally, both approaches, vertical and horizontal scaling, may as well be combined as shown
in Figure 9.

Virtualization and Cloud computing provide capabilities to scale systems dynamically. Ama-
zon Auto Scaling [8] is a Cloud service, able to add and remove VMs automatically to or from

44

Load Balancer

Web Server Cluster

Requests

Clients

Scale Up

Vertically Scaling Server

Scale Up

Vertically Scaling Server

J
o
in

 C
lu

s
te

r

Figure 9: Combining Vertical and Horizontal Scaling

a load balancer. To use Amazon Auto Scaling, the user defines a threshold for a certain metric,
such as CPU consumption and selects a type of VMs. Amazon Auto Scaling then creates VMs

and registers them with a load balancer, based on monitoring the specified metric and threshold.
As discussed in [67], load balancers are subject to limitations in network bandwidth and are
vulnerable of being overloaded when too many nodes need to be served.

Dynamic assignment and removal of virtual resources to and from VM instances would elimi-
nate the need for installing physical hardware components manually. Although, Clouds and their
handling of virtual resources provide the base for automating vertical scaling, Cloud platforms,
with Amazon EC2 and Eucalyptus leading the way, currently do not support changing the amount
of resources of a VM. Vertical scaling of a VM instance is therefore limited to replacing this VM

in way that will be shown in the following sections.

45

CHAPTER 5
Design & Implementation

This chapter presents the concept of an autonomic composite service runtime, hosted in the
Cloud and able to extend its own resources during runtime as needed by evaluating SLAs. Event-
driven monitoring is used to keep track of composite service executions and the VRESCo run-
time environment, which was described in Section 4.2, is utilized for event notifications and
event persistence.

To begin with, the architecture of the autonomic runtime and its capabilities are discussed.
Then the implementation of a prototype is explained and finally is shown how this system is
deployed to the Cloud.

5.1 Runtime Architecture

The composite service runtime presented in this section, can decide by itself when it is neces-
sary to provision resources and it executes this step without human interaction. To accomplish
this autonomic behavior, the architecture of the runtime is based on the closed control loop of
autonomic systems (monitor, analyze, plan and execute) and the idea of distinguishing between
the roles, or tasks, of an autonomic manager and a managed element. These concepts were
discussed in Section 2.3. The composite service runtime, which is representing the autonomic
manager, is therefore called Autonomic Composite Service Runtime, or shorter Autonomic Run-
time, throughout this thesis. The managed element is represented by the composite service itself.
The closed loop of the autonomic runtime is as follows:

1. Execution of composite services instances, as a result of clients invoking the composite
service

2. Monitoring of executing composite service instances and the autonomic runtime

3. SLA evaluation by analyzing monitored data and reporting SLA violations

47

Composite Service

Runtime

Relocation

Workload

Migration

Cloud

Environment

SLA

Evaluation

Composition

Monitoring

Composite

Service

Execution

Figure 10: Autonomic Runtime Control Loop

4. Relocation of the autonomic runtime to a dynamically created virtual machine instance
equipped with additional resources

5. Workload migration, i.e., transfer of currently executing instances of a composite service
to the relocated autonomic runtime

Figure 10 shows the composite service and its executing instances, as well as the loop of
tasks of the autonomic composite service runtime.

Two concepts, implemented by the autonomic runtime, are distinguished, relocation of the
autonomic runtime itself and migration of composite service instances. The fundamental dif-
ference is that the autonomic runtime is actually duplicated and hosted on two virtual machine
instances for a short period of time, as illustrated in Section 5.2, while composite service in-
stances are removed from one autonomic runtime and transferred to the other.

The procedure of resource provisioning can therefore be separated into two phases, the Run-
time Relocation Phase and the Instance Migration Phase. The Runtime Relocation Phase lasts
from the moment the decision to provision resources was made, to the moment the newly created
machine instance has loaded the autonomic runtime and serves composite service requests. The
Instance Migration Phase lasts from the moment the migration of composite service instances
was started until the migration of the last composite service instance has finished.

As discussed in Section 2.2, resources in Eucalyptus, as well as Amazon EC2, are represented
by instance types which encompass different amounts of computing resources. The instance type
of a VM is specified at the time the VM is created and can not be changed afterwards. Because

48

VRESCo

Runtime

Environment

Autonomic Composite Service Runtime

Runtime

Manager

Composite

Service

Engine

Execution

Monitor

Runtime

Web Service

Event Listener

Eventing Engine

Events

Cloud Controller

Provision

Resources

P
u

b
lis

h
in

g
/

M
e

ta
d

a
ta

S
e

rv
ic

e

E
v
e

n
ti
n

g

S
e

rv
ic

e

N
o

ti
fi
c
a

ti
o

n

S
e

rv
ic

e

EventsEvents

Stream

Invoke

Cloud

Resource

Provisioner

Instance

Migrator

Notification

Web Service

Report

SLA Violation

Relocated Autonomic

Runtime

Runtime

Web Service

p
u

b
lis

h
/

s
u

b
s
c
ri
b

e q
u

e
ry

Migrate

Invoke

Composite

Service

Serialize

Create

Create

Composite Service

Intance

Cloud

Web Service

Web

Services
Web

Services
Web

Services

Suspend

ClientsClientsClients

VRESCo

Database

Process

Resume

Figure 11: Autonomic Composite Service Runtime Architecture

of this, provisioning further resources can only be accomplished by creating an additional VM

instance, either replacing or just supporting the original machine.
Provisioning resources to a system in the Cloud by scaling vertically makes it necessary

to migrate or relocate the system between VM instances. The idea of relocating a composite
service runtime is similar to the idea of relocating whole VMs among physical nodes which
was discussed in Section 3.3. The vertical, as well as the horizontal approach to scaling, can
be combined with taking over the whole or part of the current workload from the original VM

instance to the new one. Papers, proposing horizontal scaling by utilizing load balancing, were
discussed in Section 3.2. However, none of them considers the migration of the workload (i.e,
the currently executing instances of composite services).

5.1.1 Runtime Overview

The architecture of the autonomic composite service runtime is shown in Figure 11. It is com-
posed of the following components:

• The central component of the system is the Runtime Manager that orchestrates all other
components and initializes the system.

49

• The Composite Service Engine is responsible for the execution of composite services,
keeps track of running composite services and provides an interface for the communica-
tion with executing composite service instances.

• The Runtime Monitor receives event notifications about the execution states of composite
services. It keeps track of SLA conformance and reports when the system is unable to
ensure SLA conformance any longer.

• The Cloud Resource Provisioner communicates with the Cloud platform and uses the
interfaces provided by the Cloud to provision additional resources.

• The Instance Migrator is responsible for the migration or relocation of the composite
service runtime.

• The Runtime Web Service receives request from clients that invoke the composite service.

• The Notification Web Service receives notifications from VRESCo.

VRESCo acts as a central, static point of communication for the autonomic runtime and
serves as a Web service registry. As will be discussed later on, the VRESCo endpoint is known
to the Cloud platform and the autonomic runtime can query the Cloud for the exact location of
the VRESCo runtime environment.

The CLC represents the single interface to the Cloud. It is used by the autonomic runtime
to provision resources and to query for information about the surrounding infrastructure. Com-
munication to the CLC is based on SOAP. A SDK from the Cloud provider can be used that
encapsulates the concrete communication mechanism.

Composite service instances dynamically invoke Web services whose endpoints are stored
centrally within the service registry of VRESCo. Their endpoints do not need to be statically
provided to the composite service and it does not matter whether they are in or outside of the
Cloud platform.

Resource provisioning is established through utilizing the capabilities that are provided by
the Cloud platform. Clouds usually provide a SOAP based interface, as well as a SDK which en-
ables the implementation of automatic interactions with the Cloud within software applications.
Eucalyptus’ endpoint for interactions is represented by the CLC. The CLC provides a Web ser-
vice that is compatible with AWS. Therefore the AWS SDK is usable with Eucalyptus. It provides
operations to create and terminate machine instances, to configure their networking attributes,
as well as to query the Cloud for certain information.

To inform two different instances of the autonomic runtime about each other, a publish-
subscribe mechanism is used. On resource provisioning, the autonomic runtime subscribes its
Notification Web Service to the event that represents the successful launch of a relocated auto-
nomic runtime. On startup, the relocated autonomic runtime publishes its successful launch to
VRESCo, which in turn notifies the original autonomic runtime through the Notification Web
Service.

50

5.1.2 Composite Service Execution

The autonomic runtime is represented to the outside by the Runtime Web Service, which provides
a SOAP based interface that clients use to invoke the composite service. Each invocation from
a client triggers the creation of a composite service instance by the Composite Service Engine.
The Composite Service Engine needs to keep track of all composite service instances currently
executing and it is able to communicate with them. A composite service instance is represented
by an in-memory object that provides an interface for controlling the executing instance. After
the creation of a composite service instance, the runtime stores a reference to the instance, which
is removed when the instance has completed. Each composite service instance has to run in a
separate thread to provide a high level of parallelism and to be able to utilize all available CPUs.

5.1.3 Composition Monitoring and SLA Evaluation

The autonomic runtime performs actions based on the evaluation of SLAs. To evaluate them,
it constantly monitors its executing composite service instances. It decides grabbing additional
resources from the Cloud, as soon as SLA conformance can no longer be established with the
currently allocated resources.

Monitoring is performed by the Runtime Monitor component. It tracks the execution of
each composite service instance and measures performance attributes of the runtime, which are
relevant for SLA evaluation (e.g., execution duration of composite service executions or Web
service invocations, amount of Web service invocations per second, etc.). To track composite
service instances, the Runtime Monitor relies on the Composite Service Engine to publish the
occurrence of events that are related to the composite service. The events that are reported and
tracked depend on the metrics needed for evaluation. The execution duration of composite ser-
vice instances can be tracked by notifying about the creation and the completion of a composite
service instance. Web service invocations can be measured by publishing an event right before
the request to the Web service and right after the response.

The central component of the Runtime Monitor is the Event Processing Engine, which is
used for CEP. Event Listeners, that are registered with the Event Processing Engine, handle the
events and evaluate the SLAs. The Runtime Monitor notifies the Cloud Resource Provisioner
whether the runtime is unable to satisfy the SLAs at the current workload. The Cloud Resource
Provisioner determines the resources that are needed and contacts the Cloud to provision these
to the runtime.

Besides event-based tracking and monitoring of composite services, events are used by the
autonomic runtime to track its own life-cycle. Table 5 lists and describes the states that were
defined for this purpose. To identify the source of these events, they were attached with informa-
tion about the originating autonomic runtime, such as the IP address of the hosting VM instance
and an unique identifier of the composite service engine. The state RuntimeStarted is pub-
lished via the VRESCo eventing service and used to inform the autonomic runtime through the
Notification Web Service about its relocation. All of these events are persisted by VRESCo,
together with their attributes, and used for the evaluation in Chapter 6.

51

State Description
RuntimeStarted Published as soon as an autonomic runtime has started and is ready

to serve invocation of to the composite service. It may also indicate
the completion of the Runtime Relocation Phase

RuntimeTerminated Reports that the autonomic runtime and its hosting VM instance
were terminated

ProvisioningResources The provisioning of resources was triggered and the Runtime Relo-
cation Phase has started

MigrationStarted Reports the beginning of the InstanceMigrationPhase which im-
plies that the migration of composite service instances has started

MigrationFinished Published when all composite service instance were migrated and
the InstanceMigrationPhase has finished

Table 5: Autonomic Runtime Life-Cycle Events

5.1.4 Runtime Relocation

The thesis at hand considers resource provisioning in terms of scaling the runtime vertically by
relocating itself within the Cloud. Relocation is thereby based on four main concepts.

Central
deployment

Firstly, the code of the autonomic runtime, together with the parameters, are
stored centrally and are available for automatic deployment during the phase of
resource provisioning. When a VM instance has started, an initialization pro-
cedure, the Autonomic Runtime Loader, which will be described in detail in
Section 5.3, automatically locates the repository where the autonomic runtime
is stored, then downloads and launches it. The autonomic runtime is packaged
together with its parameters and stored on the host that serves the VRESCo
runtime environment.

Machine
images

Machine images serve as templates for the VMs, which will host the autonomic
runtime. They contain an OS and any software components that were deployed
to the OS when the image was created. The machine image that hosts the run-
time contains the Autonomic Runtime Loader, which is executed automatically
when the OS has started. The concept of machine images is called Eucalyptus
Machine Images (EMIs) within Eucalyptus and AMIs within Amazon EC2. As
part of this thesis, various EMIs were created to deploy the autonomic runtime
and its environment to Eucalyptus. They are presented in Section 5.3.

Instance types Instance types specify the amount of provisioned resources. The autonomic
runtime differentiates between three instance types (m1.medium, m1.large and
c1.xlarge). It does not know about their individual hardware specifications,
but only about their ranking. c1.xlarge provides more resources than m1.large,
and m1.large provides more resources than m1.medium. If the decision was

52

made to provision resources, the autonomic runtime figures out the currently
used instance type and then chooses the next higher ranked instance type for
relocating itself. The instance types that are pre-configured in Eucalyptus can
be customized as needed. Customizable attributes of an instance type are the
number of virtual CPUs, the amount of memory and disk space. Eucalyptus
uses the term cores to refer to the CPU attribute of an instance type, but they
are presented as separate CPU sockets rather than CPU cores to the operating
system of a VM instance. Therefore the operating systems needs to support the
actual amount of CPU sockets. Operating systems such as Windows Server 2003
or Windows XP are available in different versions that support just a specific
amount of CPU sockets [79].

Dynamic IP
allocation

To relocate the autonomic runtime from one host to another, transparent for
any clients, a public IP address is used that can be allocated, attached to and
released from a VM instance as needed. This feature is equivalent to the Elastic
IP of EC2. As soon as this IP address is released from the old VM instance and
attached to the new one, all client requests will be received by the relocated
autonomic runtime.

The procedure that implements resource provisioning in the prototype, based on the concepts
illustrated above, is shown in Figure 12. As the original and the relocated autonomic runtime
do not know each other, they utilize the VRESCo runtime environment as a central endpoint for
communication. WS-Eventing is used by VRESCo to notify the original runtime.

1. The autonomic runtime subscribes to the RuntimeStarted event at the VRESCo notifica-
tion service and launches the Notification Web Service.

2. The next higher ranked instance type is chosen by the runtime and AWS SDK is used to
launch a new VM instance of that type.

3. Eucalyptus creates, initializes and boots the VM instance. During this step the execution
of composite services by the runtime is not affected.

4. The new machine instance loads the autonomic runtime.

5. The newly loaded runtime fetches the public IP address, which is released from the source
VM instance and associated with the destination VM instance. The original runtime will be
called source runtime and the newly loaded runtime relocated runtime from now on.

6. From now on the relocated runtime serves composite service requests.

7. The relocated autonomic runtime publishes the RuntimeStarted event using the VRESCo
eventing service. VRESCo notifies the source autonomic runtime.

8. Either all executing composite service instances are suspended, serialized and then trans-
ferred to the relocated runtime at its Runtime Web Service or they are processed by the
original runtime until their completion.

53

VRESCo Eucalyptus
Relocated

Runtime

Source

Runtime

Publish

RuntimeStarted

Event

Shutdown

Suspend

Instances

Choose Instance

Type

Subscribe

RuntimeStarted

Event

Fetch Public

IP Address

S
o

u
rc

e
 R

u
n

ti
m

e
 S

e
rv

in
g

C
o

m
p

o
s
it
e

 S
e

rv
ic

e

R
e

lo
c
a

te
d

 R
u

n
ti
m

e
 S

e
rv

in
g

C
o

m
p

o
s
it
e

 S
e

rv
ic

e

Launch

Instance

Launch

Notification Web

Service

Transfer

Instances

Release IP From

Source VM

Associate IP With

Destination VM

Create

Destination VM

Start Destination

VM

Load

Autonomic

Runtime

Save

Subscription

Invoke Notification

Web Service

Terminate

Source VM

Unsubscribe from

RuntimeStarted

Event

Delete Subscription

Transfer

Instances

Figure 12: Resource Provisioning Procedure

9. The source runtime shuts itself down and terminated its hosting VM instance.

5.1.5 Workload Migration

Provisioning of resources by the autonomic runtime is accomplished by relocating itself onto a
dynamically created VM instance that is equipped with more capacity for the execution of com-
posite service instances. The relocation can either include the migration of the current workload,
which is represented by currently executing composite service instances or leave the composite
service instances on their original VM and let them finish there. The decision has to be based on
several factors:

• Migration of composite service instances uses additional resources of the destination ma-
chine, as well as on the original machine.

• Composite service instances have to be suspended for a short period of time which makes
them more likely to violate a SLA.

• Operation of multiple VM instances in parallel can lead to increasing financial costs (e.g.,
pay usage cost for resources, licenses, etc.).

54

Migration takes place by suspending a composite service instance and serializing its current
state. This state is then transferred to the destination machine where the state will be deserialized
and the composite service instance resumed. The Instance Migrator takes care of this procedure
by fetching the executing composite service instances from the local Composite Service Engine
and subsequently resuming them at the Composite Service Engine on the destination machine
by invoking the remote Runtime Web Service.

5.2 Prototype Implementation

This section provides a detailed presentation of the prototype and its implementation issues. The
prototype makes use of the VRESCo runtime services, Esper and Microsoft WF. For the commu-
nication with the Cloud platform it utilizes the AWS SDK, which is compatible with Eucalyptus.

5.2.1 Composite Service Hosting

The prototype implemented as part of this thesis is based on Microsoft .NET and handles com-
posite services, built out of Windows workflows, using Microsoft WF technology. As discussed
in Section 4.1, workflows in WF are represented by WorkflowInstance objects. The proto-
type implements interaction with WorkflowInstances by using a wrapper that encapsulates
the WF specifics of handling workflows.

The Runtime Web Service is implemented using WCF, so Operation Contracts were necessary
to specify the operations of the Web service. The Runtime Web Service provides two operations,
startWorkflow() and resumeWorkflow(). An invocation of the
startWorkflow() operation starts the execution of a composite service instance. The
resumeWorkflow() operation differs from the startWorkflow() method as it does not
start the composite service, but resumes a previously suspended composite service from a spec-
ified state.

The signatures of these operations are as follows:

[OperationContract]
Guid startWorkflow(String type, string user, string pwd);

startWorkflow() takes the type of the workflow (or composite service), the user ID
and a password as parameters. It starts the workflow of the given type and uses the ID of the
user, as well as the password to authenticate the client. The Globally Unique Identifier (GUID)
of the started workflow instance is then returned to the caller. This ID, which is created by the
WorkflowRuntime, will be used later on to identify the workflow instance within the Instance
Migration Phase.

[OperationContract]
void resumeWorkflow(String type, byte[] state, Guid instanceId);

The first parameter of resumeWorkflow() specifies the type of the workflow that will
be resumed. The current state of the suspended composite service instance, represented as an

55

1 SELECT
2 _ e v e n t as msg ,
3 _ e v e n t . WFTimestamp as wft imestamp ,
4 _ e v e n t . C o m p o s i t i o n I d as id ,
5 _ e v e n t . Workf lowSta t e as s t a t e
6 FROM Workf lowTrack ingEven t _ e v e n t
7 WHERE _ e v e n t . Workf lowSta t e = ’ C r e a t e d ’
8 OR _ e v e n t . Workf lowSta t e = ’ Completed ’

Listing 1: EPL Filtering WorkflowTrackingEvents

array of bytes, is included in the second parameter. As the composite service will be recreated
and resumed with its original ID, this ID has to be included within the third parameter.

5.2.2 Event Processing

The prototype uses Esper and VRESCo for the processing of events. It utilizes a
WorkflowTrackingService, which is the default way of tracking workflows in WF. This
concept was briefly presented on Section 4.1. An implementation of the
WorkflowTrackingService has to be registered with the WorkflowRuntime. Devel-
opers have to attach a custom WorkflowTrackingChannel to the
WorkflowTrackingService that implements ways of further processing the events. At
the occurrence of an event, the tracking service puts the event on the tracking channel by issuing
the send() operation of the individual WorkflowTrackingChannel.

The tracking channel used within the prototype converts the events, that were reported by WF,
to the corresponding event types of VRESCo. Event types in VRESCo are derived from the base
event type VRESCoEvent. These events are then published and persisted by VRESCo. Each
event is provided with a timestamp of millisecond accuracy which is used to calculate durations
and SLA conformance. The tracking profile used in the prototype specifies the following events
to be tracked by WF: Created, Started, Unloaded, Loaded, Completed and Persisted

SLA evaluation in the prototype is based on the execution duration of composite service
instances and takes place within an event listener that is registered at Esper together with an
EPL query. Esper notifies the listener by calling the Update() operation, which has to be
implemented by the listener.

The queries used in the prototype are shown below:
The query shown in Listing 1 filters for WorkflowTrackingEvents of the state Cre-

ated or Completed and selects the timestamps and IDs of workflow instances. The duration of
composite service instances is then calculated within the listener by subtracting the timestamp
of the Created event from the timestamp of the Completed event.

As shown by the EPL query in Listing 2 that is used to calculate the execution duration of a
Web service invocation, the duration can also be directly calculated by Esper. The query selects
the duration of service invocations and the ID of the invoking composite service instance.

The prototype calculates the duration of composite service instances within the listener be-
cause the listener also displays the current state of the runtime at the terminal of the VM. Each

56

1 SELECT
2 _ b e f o r e . WorkflowId as id ,
3 _ b e f o r e . Ac t iv i tyName as name ,
4 (_ a f t e r . WFTimestamp − _ b e f o r e . WFTimestamp) as d u r a t i o n
5 FROM
6 BeforeWFInvokeEvent _ b e f o r e ,
7 Af terWFInvokeEvent _ a f t e r
8 WHERE _ b e f o r e . WorkflowId = _ a f t e r . WorkflowId
9 AND _ b e f o r e . Ac t iv i tyName = _ a f t e r . Ac t iv i tyName

10 AND _ a f t e r . B e f o r e R e f e r e r = _ b e f o r e . WFId

Listing 2: EPL Evaluating Web Service Invocations

1 / / c r e a t e t h e VRESCo c l i e n t proxy
2 IVReSCOSubscr iber s u b s c r i b e r = VReSCOClientFactory . C r e a t e S u b s c r i b e r (l o g i n) ;
3
4 / / u se EPL t o s u b s c r i b e f o r t h e R u n t i m e S t a r t e d e v e n t
5 s t r i n g e p l =
6 ’ s e l e c t ∗ from Compos i t i onEng ineEven t where S t a t e = " R u n t i m e S t a r t e d "
7 and E n g i n e I d = ’ + n e w I n s t a n c e I d ;
8 s u b s c r i b e r . Subscr ibePerWS (eq l , . . . , n o t i f i c a t i o n E n d p o i n t , e x p i r a t i o n D a t e) ;

Listing 3: Subscribing to RuntimeStarted Event Using the VRESCo Client Library

event and each change of a state triggers an update of the displayed information.
The SLA used within this prototype, represents an agreement on the duration of a composite

service instance. It is specified as a parameter within a configuration file, that is loaded by the
prototype during startup. The value for this parameter is specified as milliseconds. In addition
to the SLA, a threshold is defined within the configuration file. It determines the amount of
SLA violations tolerated by the runtime until the decision to provision resources will be made.
The listener that was described above, tracks the number of SLA violations and triggers the
provisioning of resources when the specified threshold is exceeded.

5.2.3 Runtime Life-Cycle Events and Notifications

A custom event type, CompositionEngineEvent, that extends the VRESCo event model,
was created for the purpose of tracking the states from Table 5. CompositionEngineEvent
is directly derived from VRESCoEvent and defines attributes that contain the IP address and
the unique identifier of the originating VM instance.

Listing 3 shows the usage of the VRESCo client library with an EPL query to subscribe for
the RuntimeStarted event. The endpoint of the Notification Web Service, which is included
within the noficationEndpoint attribute, is registered at the VRESCo subscription ser-
vice. expirationDate defines when the subscription will expire. The EPL query filters the
RuntimeStarted events for the unique identifier of the VM instance that was launched.

The VRESCo eventing service was extended to support the reporting of this event. The
usage of the extended VRESCo eventing service is shown in Listing 4.

57

1 / / c r e a t e proxy f o r communica t ion w i t h e v e n t i n g s e r v i c e
2 C ha n n e l F a c t o r y < I E v e n t i n g S e r v i c e > e v e n t i n g F a c t o r y =
3 new C ha n n e lF a c to r y < I E v e n t i n g S e r v i c e >(" B a s i c H t t p B i n d i n g _ E v e n t i n g S e r v i c e ") ;
4 I E v e n t i n g S e r v i c e eSrv = e v e n t i n g F a c t o r y . C r e a t e C h a n n e l () ;
5 eSrv . W o r k f l o w H o s t S t a r t e d (myId , myIp , " R u n t i m e S t a r t e d ") ; / / p u b l i s h t h e e v e n t

Listing 4: Publishing RuntimeStarted Event Using Modified VRESCo Eventing Service

1 c l a s s W o r k f l o w E v e n t L i s t e n e r : RKiss . WSEventing . I E v e n t N o t i f i c a t i o n
2 {
3 p u b l i c vo id N o t i f y (VRESCoEvent [] newEvents ,
4 VRESCoEvent [] o l d E v e n t s ,
5 s t r i n g s u b s c r i p t i o n I d)
6 {
7 foreach (VRESCoEvent myEvent in newEvents) {
8 i f (myEvent . Type == " Compos i t i onEng ineEven t ") {
9 Compos i t i onEng ineEven t e n g i n e E v e n t = (Compos i t i onEng ineEven t) myEvent ;

10 i f (e n g i n e E v e n t . S t a t e == " s t a r t e d ") {
11 IWorkflowManager wfMgr = Workf lowManagerFactory . getWorkflowManager () ;
12
13 / / n o t i f y r u n t i m e manager abou t r e l o c a t e d au tonomic r u n t i m e
14 wfMgr . Mach ine In s t anceReady (e n g i n e E v e n t . HostIP , e n g i n e E v e n t . E n g i n e I d) ;
15
16 . . .

Listing 5: Publishing CompositionEngineEvent Using VRESCo Client Library

Listing 5 shows how the Notification Web Service is implemented using an WS-Eventing li-
brary for .NET [102]. IEventNotification, which is a component of this library, contains
an Operation Contract for notify() which is used by the prototype to expose the operation
as a Web service with WCF.

5.2.4 Virtual Machine Launching

Interaction with the Cloud is accomplished by using the EC2 library that is part of the AWS SDK

for .NET [9]. The operations AssociateAddress() and RunInstances() are used for
launching VM instances and associating a public IP address. These operations encapsulate the
SOAP communication with the Web service that is provided by the CLC of Eucalyptus.

Listing 6 shows how the autonomic runtime launches a VM instance using the AWS SDK. The
EC2 library has to be configured with an access key and a secret key, used for authentication, and
the Uniform Resource Locater (URL), identifying the CLC of Eucalyptus. The instance type, the
amount of VM instances to be launched and the EMI, containing the Autonomic Runtime Loader,
need to be specified withing the request to Eucalyptus.

The autonomic runtime completes its relocation by associating the public IP address as
shown in Listing 7.

The autonomic runtime learns about its own attributes, such as its currently used instance

58

1 / / c r e a t e c l i e n t proxy
2 e c 2 c f g = new AmazonEC2Config () . WithServiceURL (u r l) ;
3 ec2 = AWSClien tFac tory . Crea teAmazonEC2Client (key , s e c r e t , e c 2 c f g) ;
4

5 / / i n i t i a l i z e t h e r e q u e s t
6 R u n I n s t a n c e s R e q u e s t r i R e q u e s t = new R u n I n s t a n c e s R e q u e s t () ;
7 r i R e q u e s t . WithImageId (imageId) ; / / EMI h o s t i n g t h e au tonomic r u n t i m e
8 r i R e q u e s t . W i t h I n s t a n c e T y p e (i n s t a n c e T y p e) ; / / d e s t i n a t i o n i n s t a n c e t y p e
9 r i R e q u e s t . WithMaxCount (1) ; / / d e f a u l t s t o 20 i n s t a n c e s

10 r i R e q u e s t . WithMinCount (1) ; / / l a un ch e x a c t l y one i n s t a n c e
11

12 / / l a unc h VM i n s t a n c e
13 R u n I n s t a n c e s R e s p o n s e r i R e s p o n s e = ec2 . R u n I n s t a n c e s (r i R e q u e s t) ;

Listing 6: Launching VM Instance with AWS SDK

1 / / a s s o c i a t e p u b l i c IP a d d r e s s
2 A s s o c i a t e A d d r e s s R e q u e s t r = new A s s o c i a t e A d d r e s s R e q u e s t () ;
3 r . W i t h I n s t a n c e I d (i n s t a n c e I d) ; / / i n s t a n c e , IP a d d r e s s w i l l be a s s o c i a t e d w i t h
4 r . W i t h P u b l i c I p (i p) ; / / a s s o c i a t i n g IP a d d r e s s
5 A s s o c i a t e A d d r e s s R e s p o n s e r e s = ec2 . A s s o c i a t e A d d r e s s (r) ;

Listing 7: Associate Public IP Address with VM Instance Using AWS SDK

1 System . n e t . WebCl ient c l i e n t = new System . n e t . WebCl ient () ;
2 s t r i n g u r l = " h t t p : / / 1 6 9 . 2 5 4 . 1 6 9 . 2 5 4 / l a t e s t / meta−d a t a / i n s t a n c e −t y p e " ;
3 s t r i n g myItem = c l i e n t . DownloadSt r ing (u r l) ;

Listing 8: Querying Instance Metadata from Eucalyptus

type, the IP address and the unique identifier of its VM instance by querying its own meta-
data from the fixed IP address 169.254.169.254 as explained in [38]. This feature is available
in Eucalyptus, as well as Amazon EC2. Listing 8 shows how the autonomic runtime uses the
WebClient of .NET to accomplish metadata querying.

5.2.5 Migrating Composite Service Instances

The autonomic runtime subscribes to the RuntimeStarted event at the VRESCo runtime environ-
ment, when resource provisioning was triggered. During the startup of the relocating autonomic
runtime, this event is published to VRESCo together with the private IP address of the newly
created VM instance. VRESCo then notifies the original autonomic runtime via WS-Eventing
about the occurrence of this event. The original autonomic runtime subsequently starts the mi-
gration of composite service instances to the relocated autonomic runtime by connecting to the
Runtime Web Service at the IP address that was reported within the RuntimeStarted event.

The WorkflowPersistenceService of WF is used to migrate the state of compos-
ite service instances. It provides the base for saving and loading WorkflowInstances.

59

1 p u b l i c c l a s s W o r k f l o w M i g r a t i o n S e r v i c e : W o r k f l o w P e r s i s t e n c e S e r v i c e
2 {
3 p r o t e c t e d o v e r r i d e void S a v e W o r k f l o w I n s t a n c e S t a t e (A c t i v i t y r o o t A c t i v i t y , bool

un lo ck)
4 {
5 Guid i n s t a n c e I d = Workf lowEnvironment . W o r k f l o w I n s t a n c e I d ;
6 MemoryStream ms = new MemoryStream () ;
7

8 / / s e r i a l i z e s t a t e o f c o m p o s i t e s e r v i c e i n s t a n c e
9 r o o t A c t i v i t y . Save (ms) ;

10

11 / / s t o r e s t a t e w i t h i n W o r k f l o w M i g r a t i o n S t o r e
12 W o r k f l o w M i g r a t i o n S t o r e . u n l o a d I n s t a n c e S t a t e (i n s t a n c e I d , ms) ;
13 }
14

15 p r o t e c t e d o v e r r i d e A c t i v i t y L o a d W o r k f l o w I n s t a n c e S t a t e (Guid i n s t a n c e I d)
16 {
17 / / l oad s t a t e from W o r k f l o w M i g r a t i o n S t o r e
18 MemoryStream ms = W o r k f l o w M i g r a t i o n S t o r e . l o a d I n s t a n c e S t a t e (i n s t a n c e I d) ;
19

20 / / d e s e r i a l i z e s t a t e o f c o m p o s i t e s e r v i c e i n s t a n c e
21 A c t i v i t y r o o t A c t i v i t y = A c t i v i t y . Load (ms , n u l l) ;
22

23 / / d e l e t e s t a t e from W o r k f l o w M i g r a t i o n S t o r e
24 W o r k f l o w M i g r a t i o n S t o r e . d e l e t e I n s t a n c e S t a t e (i n s t a n c e I d) ;
25

26 / / r e t u r n s t a t e t o Work f lowRunt ime
27 re turn r o o t A c t i v i t y ;
28 }
29 }

Listing 9: Serializing and Deserializing Composite Services

The Unload() and Load() operations of WorkflowInstance trigger the Workflow-
Runtime to call the SaveWorkflowInstanceState() and LoadWorkflowInstance-
State() operations of a registered WorkflowPersistenceService. To use this mecha-
nism the SaveWorkflowInstanceState() and LoadWorkflowInstanceState()
operations were implemented within the WorkflowMigrationService which is directly
derived from the abstract WorkflowPersistenceService. Listing 9 shows the imple-
mentation of these operations.

The state of suspended composite service instances is stored in the in-memory residing
WorkflowMigrationStore. Access to the WorkflowMigrationStore was imple-
mented based on a thread-safe version of the Singleton [46] design pattern. The Workflow-
MigrationService uses the WorkflowMigrationStore to either save the state of an
WorkflowInstance when the Unload() operation is called, or retrieve the state from the
WorkflowMigrationStore when the instance is loaded with the Load() operation. The
SaveWorkflowInstanceState() operation serializes the workflow instance using the
Activity.Save() operation and stores the state together with the ID of the instance to

60

:CustomActivity
:WorkflowUnload

Service
i:WorkflowInstance

unloadWorkflowInstance(instanceId)

GetWorkflowInstance(instanceId)

:WorkflowRuntime

i:WorkflowInstance

Unload()

:WorkflowMigration

Service
:WorkflowMigration

Store

SaveWorkflowInstanceState(rootActivity)

rootActivity:Activity

Save()

unloadInstanceState(m, instanceId)

m:MemoryStream

Figure 13: Saving a Comoposite Service Instance to WorkflowMigrationStore

the WorkflowMigrationStore. The LoadWorkflowInstanceState() method re-
trieves the state by the instance ID and deserializes it with the Activity.Load() operation.

Saving a composite service to the WorkflowMigrationStore is shown in Figure 13.
To be able to serialize the state of a composite service instance, it has to be suspended at a point
in time where its state is consistent and readable by the execution engine. In WF, the suspension
of a workflow is only possible when the workflow instance is not currently executing an activ-
ity. To suspend and serialize all composite service instances at the earliest possible moment, a
system-wide flag controls the suspension. This flag is checked by a workflow instance at the end
of each activity. If this flag states an ongoing Instance Migration Phase, all workflow instances
suspend themselves and trigger the serialization of their state. Because it is not possible to access
a corresponding WorkflowInstance from within an activity of the workflow, a custom Run-
time Service has been implemented. This custom service, the WorkflowUnloadService,
has been attached to the WorkflowRuntime and is accessible from within an instance of the
workflow. If the system-wide flag is active, the workflow instance will invoke the corresponding
operation of the WorkflowUnloadService to suspend and serialize itself. The invocation
of the Unload() operation within the custom runtime service has to take place asynchronously,
as it would otherwise block forever. Unload() does not return until serialization has finished
which in turn requires the workflow instance to be ready for suspension and the currently execut-
ing activity to be finished. Asynchronous invocation is accomplished by the help of a delegate.
The implementation of WorkflowUnloadService and the use of a delegate are shown in
Listing 10. Listing 11 shows how the runtime service is invoked from within a WF Custom
Activity.

Transmission of composite service states is accomplished by using the Runtime Web Service
of the destination runtime and invoking its resumeWorkflow() operation. The source run-
time invokes this operation for each composite service instance that has to be transferred one
by one. The destination runtime extracts the state and ID from the parameters of resume-

61

1 p u b l i c c l a s s Workf lowUnloadServ ice : Workf lowRunt imeServ ice
2 {
3 p u b l i c vo id s u s p e n d W o r k f l o w I n s t a n c e (Guid i n s t a n c e I d)
4 {
5
6 / / f e t c h c o r r e s p o n d i n g W o r k f l o w I n s t a n c e
7 W o r k f l o w I n s t a n c e i = base . Runtime . GetWorkflow (i n s t a n c e I d) ;
8
9 / / c r e a t e d e l e g a t e f o r Unload () o p e r a t i o n

10 MethodInvoker i n v o k e r = new MethodInvoker (i . Unload) ;
11
12 / / t e l l d e l e g a t e i n v o k e o p e r a t i o n
13 i n v o k e r . Beg in Invoke (nul l , n u l l) ;
14 }
15 }

Listing 10: Asynchronously Invoking Unload() with a Delegate

1 c l a s s C u s t o m A c t i v i t y : System . Workflow . ComponentModel . A c t i v i t y {
2 o v e r r i d e A c t i v i t y E x e c u t i o n S t a t u s Execu te (A c t i v i t y E x e c u t i o n C o n t e x t c t x)
3 {
4
5 . . . / / dynamic i n v o c a t i o n o f a Web s e r v i c e
6
7 i f (I n M i g r a t i o n . i n M i g r a t i o n)
8 {
9 / / f e t c h W o r k f l o w U nl o a d S er v i c e and t r i g g e r s u s p e n s i o n

10 Workf lowUnloadServ ice u n l o a d S e r v i c e =
11 e x e c u t i o n C o n t e x t . G e t S e r v i c e (t y p e o f (Workf lowUnloadServ ice)) ;
12 u n l o a d S e r v i c e . s u s p e n d W o r k f l o w I n s t a n c e (t h i s . W o r k f l o w I n s t a n c e I d) ;
13 }
14 }
15 }

Listing 11: Invoking Runtime Service from a Custom Activity

Workflow(). The state is stored in the WorkflowMigrationStore and a new workflow
instance is created with the WorkflowRuntime using the original ID of the workflow.

Before the Load() operation can be invoked on the newly created instance, the
WorkflowInstance has to be put into an unloaded state. This is accomplished by invoking
the Unload() operation right before the call to Load(). The procedure that is used to resume
a WorkflowInstance is shown in Listing 12.

5.3 Deployment in the Cloud

This section deals with the deployment of the autonomic composite service runtime to a pri-
vate installation of the open source Cloud platform Eucalyptus. Eucalyptus was introduced in
Section 2.2.4. To begin with, the way of how the Cloud was accessed and used as part of this

62

1 WorkflowRuntime wfRuntime = new WorkflowRuntime () ; / / c r e a t e Work f lowRunt ime
2
3 / / a t t a c h r u n t i m e s e r v i c e s
4 wfRuntime . AddServ ice (new VRESCoTrackingService ()) ; / / t r a c k i n g s e r v i c e
5 wfRuntime . AddServ ice (new W o r k f l o w M i g r a t i o n S e r v i c e ()) ; / / m i g r a t i o n s e r v i c e
6 wfRuntime . AddServ ice (new Workf lowUnloadServ ice ()) ; / / un load s e r v i c e
7
8 / / c r e a t e work f low u s i n g o r i g i n a l i n s t a n c e ID
9 W o r k f l o w I n s t a n c e w f I n s t a n c e =

10 wfRuntime . Crea teWorkf low (wfType , nul l , i n s t a n c e I d) ;
11
12 wfRuntime . S t a r t R u n t i m e () ; / / s t a r t r u n t i m e s e r v i c e s
13 w f I n s t a n c e . Unload () ; / / p u t s work f low i n t o un loaded s t a t e
14 w f I n s t a n c e . Load () ; / / l o a d s work f low s t a t e from m i g r a t i o n s t o r e

Listing 12: Resuming a Composite Service

System Dell PE M610 Blade Servers

Operating System Debian 6.0 Squeeze, Linux 2.6.32

Memory 16 GB DDR3-1333

CPU 2 x Xeon E5620 Quad Core @ 2.4 GHz, 12M Cache

Disk 2 x 146 GB SAS HDDs (Hardware Raid-1)

Table 6: Hardware Specification

thesis will be shown. Next, the deployment of the various components of the autonomic runtime
and how they communicate with each other will be presented. Then, the initialization of the
autonomic runtime in the Cloud will be illustrated. Finally, the creation of EMIs and the various
issues that came up in doing so will be described.

5.3.1 Eucalyptus Setup

The installation of Eucalyptus, available for this thesis, was provided by the Institute of Infor-
mation Systems at the Vienna University of Technology. It consists of five Dell PE M610 Blade
Servers. Their specifications are shown in Table 6. One of them is hosting the CLC, CC and
Walrus services, while four servers host the NCs and form one Eucalyptus cluster, managed by
the CC. Additionally, Dynamic Host Configuration Protocol (DHCP) and DNS services are hosted
together with the CLC to dynamically assign IP addresses to VMs and to associate them with do-
main names. The NCs and the CLC are located in the physcical Local Area Network (LAN) of the
institute and additionally connected through a virtual LAN, dedicated to Eucalyptus. This setup
is illustrated in Figure 14.

Eucalyptus 2.0 is used within this setup. It was configured to use the greedy policy for
placing VMs among nodes. This policy places VMs on the first node which is found to provide
the necessary resources. Eucalyptus also supports round robin placement of VMs, where VMs are

63

Campus

WAN

Dell PE M610 Blade

Server

CLC/CC

Walrus

Eucalyptus

Virtual LAN

NC

NC

NC NC

Institute

LAN

Eucalyptus

Cluster

Figure 14: Eucalyptus Setup

64

Figure 15: Graphical User Interface of Hybridfox

distributed evenly among the nodes. As an inefficient use of resources was experienced when
using round robin policy, this setup is using greedy policy.

5.3.2 Interacting with the Cloud

The Web service of the CLC is the single communication endpoint for interactions with the
Cloud platform. Both the Eucalyptus command line tools (euca2ools) and the Amazon AWS

SDK can be used for communication with the CLC. While Amazon EC2 also provides a rich
web-based user interface that enables users to graphically manage their VMs, the web-based
user interface of Eucalyptus is limited to basic administration tasks. It provides user access
management and the configuration of a few Cloud settings, for example, customizing instance
types and the network settings of the CLC and Walrus. Cloud users are able to change their
account information and their password, as well as download their credentials for the command
line tools and the Eucalyptus Web service. To still enjoy the benefits of a graphical user interface
that gives a clear view on VM instances and their states, Hybridfox1, which is as browser plugin
for Firefox2 and a fork from Elasticfox3, was used for this thesis. Hybridfox tries to support all
features of Eucalyptus without breaking the EC2 functionality. Figure 15 shows a screenshot of
Hybridfox displaying information about VM instances, for example, the state of each instance,
their addresses and instance types. Table 7 describes the basic commands of euca2ools.

The following output from the command euca-describe-availability-zones
shows the resources that are associated with the various instance types and their availability. At
the time of this output, enough resources for the creation of eight c1.xlarge instances (from a
maximum of twelve instances) were available.

$ euca-describe-availability-zones verbose
AVAILABILITYZONE dsgcluster 10.11.11.1
AVAILABILITYZONE |- vm types free / max cpu ram disk
AVAILABILITYZONE |- m1.small 0045 / 0064 1 512 20
AVAILABILITYZONE |- c1.medium 0042 / 0060 1 1024 20
AVAILABILITYZONE |- m1.large 0019 / 0028 2 2048 20
AVAILABILITYZONE |- m1.xlarge 0013 / 0020 2 3072 20
AVAILABILITYZONE |- c1.xlarge 0008 / 0012 4 4096 20

1http://code.google.com/p/hybridfox/ Visited: 2011-10-10
2http://www.firefox.com/ Visited: 2011-10-10
3http://sourceforge.net/projects/elasticfox/ Visited: 2011-10-10

65

Command Description
euca-describe-instances Displays information about VM instances (e.g., their state,

instance type, owner, etc.)

euca-run-instances Creates one or more VM instances of a specified instance
type from an EMI

euca-terminate-instance Terminates a VM instance

euca-allocate-address Allocates a public IP address that can be associated with a
VM instance; the IP addresses is reserved by the allocating
user until it is manually released

euca-associate-address Associated a public IP address with a VM instance

euca-authorize Configures security groups to allow certain networking
traffic

euca-create-volume Creates a dynamic block volume that can be attached to a
running VM instance

euca-describe-
availability-zones

Display information about an availability zone, for exam-
ple, available and maximum resources

Table 7: Basic Commands of Eucalyptus euca2ools

The following execution of the euca-run-instances command creates an instance of
the autonomic composite service runtime host by using an instance type of c1.medium, EMI
emi-3FB7169E, kernel eki-30CD0D30 and ramdisk eri-8F570F48.

$ euca-run-instances emi-3FB7169E --kernel eki-30CD0D30 --ramdisk eri-8F570F48 -t c1.medium
RESERVATION r-360605BF mhess mhess-default
INSTANCE i-37B206B6 emi-3FB7169E euca-0-0-0-0.tuwien.ac.at euca-0-0-0-0.eucalyptus.internal
pending 2 011-09-20T09:24:43.96Z eki-30CD0D30 eri-8F570F48

5.3.3 Deployment of the Runtime

All communication that occurs between the autonomic runtime and external systems is based on
the SOAP protocol and therefore uses IP networking. External systems, the autonomic runtime
is interacting with, are the VRESCo Runtime Environment, the Web Services that compose the
composite service, the CLC of Eucalyptus and the clients invoking the composite service. It does
not matter to the autonomic runtime whether the VRESCo runtime environment and the Web
services are hosted in the same or a different Cloud infrastructure or not in a Cloud at all, as
long as they are accessible by the autonomic runtime over the network. This thesis considers
both of them being hosted in the same installation of Eucalyptus. This has the advantage of
optimal network latency and bandwidth, because all systems are located in the same LAN. The
deployment, considered by the thesis at hand, is as follows. Figure 16 illustrates this deployment.

• The Autonomic Composite Service Runtime is hosted on a single VM instance at a time.
This instance may be replaced by the resource provisioning procedure. The autonomic
runtime is self-hosting without the use of a dedicated web server.

66

Internet

Web Services

VM

VRESCo

VM

VRESCo Database

Cloud Controller

Eucalyptus

Clients

Autonomic Runtime VMs

Figure 16: Autonomic Runtime Deployment

• The VRESCo Runtime Environment is hosted on a dedicated VM instance together with a
web server that exposes the services of VRESCo to any clients.

• The VRESCo Database, which is needed by VRESCo, is hosted on the same VM instance
as VRESCo itself.

• The Web Services invoked by the composite service, are hosted together on a single VM

instance as they do not implement any resource expensive application logic. They need
to be published to the VRESCo service registry to be available for being queried by the
autonomic runtime at the time of their invocation.

• The CLC is a part of the Cloud infrastructure and therefore available to the autonomic
runtime over the LAN.

• Clients may communicate with the autonomic runtime and invoke the composite service
over the Internet or from any other location where the autonomic runtime is accessible
from. They may as well be located in the same Cloud infrastructure as the autonomic
runtime.

The autonomic runtime, VRESCo and the Web services communicate by using private IP

addresses of the Eucalyptus LAN. Communication is therefore not effected by a changing public

67

IP address of the autonomic runtime during the phase of resource provisioning. Private IP ad-
dresses are likely to change after the termination or restart of a VM instance and are unable to be
reserved in contrast to public IP addresses. Therefore, the autonomic runtime was designed in
such a way that it does not need to know the endpoints of the Web services and VRESCo a pri-
ori. While the endpoints of the Web services are queried from the VRESCo registry and invoked
dynamically, VRESCo is the only component that has to be located at initialization time. This is
accomplished by providing the autonomic runtime with a static endpoint that is very unlikely to
change, e.g. the CLC, and that can be queried for the exact location of VRESCo. The following
sections present in detail how this was accomplished with the prototype.

5.3.4 Infrastructure Initialization

The initial startup of the autonomic runtime can take place with either one of the browser
plugins or the euca2ools. Before startup a public IP address has to be allocated using the
command euca-allocate-address. This address will be used by the autonomic run-
time and associated with VM instances on demand. A VM instance has to be created with the
corresponding EMI, the correct kernel and ramdisk images and an initial instance type using
euca-run-instances. As soon as the VM instance has booted and the autonomic runtime
is online, clients can be served with the composite service.

The security group settings for the VM hosting the autonomic runtime, needs to be config-
ured to enable communication with components outside of the Cloud. This is done by using
euca-authorize. The exact configuration depends on the concrete deployment of the sys-
tem (e.g., whether VRESCo is within the same Cloud as the autonomic runtime). Above all,
clients, expected to be outside of the Cloud, need to be able to send requests to the autonomic
runtime.

5.3.5 Loading the Runtime

The startup of the autonomic runtime is performed by a dedicated component, the Autonomic
Runtime Loader. It is included by the EMI that serves the autonomic runtime and starts automat-
ically at the time its VM instance has booted. This was achieved by registering the autonomic
runtime loader as a Windows Service.

The complexity of the autonomic runtime loader is reduced to a minimum, so that changes
are very unlikely to be necessary and to prevent a redeployment of this component. Its usage
was motivated by two issues that came up during the development of the autonomic runtime
prototype. On the one hand, how the dynamic nature of the private IP addresses used for com-
munication within the Cloud could be bypassed. On the other hand, how changes to the code of
the autonomic runtime or its parameters could be applied without needing to recreate and upload
the EMI.

To solve these issues, the autonomic runtime loader performs within two phases. In the first
phase, the autonomic runtime loader locates the address of the VRESCo runtime environment.
Eucalyptus does not support tagging of instances, therefore the VM instance that hosts VRESCo
is identified by the name of its EMI. The name of the EMI that includes the VRESCo runtime
environment, is known to the autonomic runtime loader. The loader queries the CLC for all

68

instances that were created from this EMI and that are located in the same availability zone as
the loader. If the CLC returns more than one instance, the first one will be used. The private IP

addresses of this instance is then extracted and from now on used for the communication with
the VRESCo runtime environment.

The second phase downloads the compressed code and parameters of the autonomic runtime
from the VRESCo host, decompresses them and starts the autonomic runtime. To centrally
deactivate the automatic startup of the autonomic runtime for testing or debugging purposes,
the loader reads a boolean attribute from the web server, also hosting the VRESCo runtime
environment, that controls whether the runtime will be started.

5.3.6 Machine Images

To host the autonomic composite service runtime in Eucalyptus, an EMI was created, that in-
cludes the required software stack to load and execute the runtime. As this thesis considers the
VRESCo runtime environment and the Web services to be hosted in Eucalyptus together with
the autonomic runtime, EMIs were also created for VRESCo and the hosting of the Web services.

The creation of the EMIs was accomplished using KVM [14]. The steps that were taken to
prepare a single image for Eucalyptus are summarized in the following:

1. A disk image of type RAW was created with the command kvm-image of KVM

2. The operating system was installed onto this image using KVM

3. The drivers for the network and disk interfaces were installed to this system

4. The individual software stack was installed to the system and the system configuration
was customized

5. The image was bundled with the euca-bundle-image command of euca2ools

6. The image was uploaded to Walrus with euca-upload-image and registered with
euca-register

Virtual disks of VM instances in Eucalyptus are ephemeral. They lose any changes that were
made to them during the execution of the instance. Therefore, all EMIs, that were created as part
of this thesis, were prepared in such a way to require only minimal or no changes to running VM

instances.
The following EMIs were created and equipped with the required software stack to run the

corresponding components of the autonomic runtime and its environment. Tables 8, 9, 10 show
the individual configurations that were made during the preparation of the EMIs (i.e., before they
were bundled and registered with Eucalyptus).

• The EMI shown in Table 8 is equipped with the required software to load and initialize
the autonomic composite service runtime. The Autonomic Runtime Loader was converted
into a Windows Service that starts automatically at Windows startup. No manual changes
need to be made after a VM instance was created from this EMI.

69

Name workflow-win2k3x64.raw

Operating System Windows Server 2003 R2 64 Bit [80]

Additional Software .NET 3.5, AWS SDK for .NET

Deployed Software Com-
ponent

Autonomic Runtime Loader

Windows Firewall 8081 (Autonomic Runtime Web Service), 8082 (Auto-
nomic Notification Web Service), permit autonomic run-
time application to listen on these TCP ports

Size Image 1.6 GB, Disk 4 GB

Table 8: Autonomic Composite Service Runtime EMI

Name services-winxp32sp3.raw

Operating System Windows XP SP3 32 Bit [84]

Additional Software .NET 3.5

Deployed Software Com-
ponent

Web Services Binaries

Windows Firewall 60000 - 60010 (Web Services), permit Web service appli-
cation to listen on these TCP ports

Size Image 1.1 GB, Disk 4.5 GB

Table 9: Web Services EMI

• The EMI shown in Table 9 hosts the Web services. If DNS is not used to access the Web
services, the private IP address of the hosting VM instance has to be set in the configuration
file of the Web services and registered at the VRESCo registry.

• The EMI shown in Table 10 hosts the VRESCo runtime environment and the VRESCo
database. Therefore the VRESCo database was created and prepared as part of the EMI

creation. That way VRESCo is ready to be used, as soon as a VM image is booted from
this EMI. During EMI preparation, Microsoft IIS7 [83] was also configured to host two web
folders, one that serves requests for the VRESCo runtime environment and one that hosts
the deployment file of the autonomic composite service runtime which is downloaded by
the Autonomic Runtime Loader. As VRESCo is accessed using HTTP over Secure Socket
Layer (SSL), a x509 certificate was generated and deployed to IIS7.

5.3.7 Issues with Windows-based EMIs

By the time this thesis was written, Eucalyptus was available in version 2.0. This version did
not officially support the usage of VM instances which run Windows operating systems. The

70

Name vrescohost-win2k3x64r2.raw

Operating System Windows Server 2003 R2 64 Bit

Additional Software .NET 3.5, Microsoft IIS7, MySQL 5 (as part of XAMPP
1.7.4 [10])

Deployed Software Com-
ponent

VRESCo Runtime Environment, VRESCo Database

Windows Firewall 80 (HTTP), 443 (HTTPS), 3306 (MySQL)

Size Image 1.7 GB, Disk 10 GB

Table 10: VRESCo Runtime Environment EMI

roadmap for Eucalyptus scheduled the support for hosting Windows to be implemented in ver-
sion 3.0 [39]. Creating Windows based EMIs and using them to run Windows in Eucalyptus was
therefore afflicted with various issues. These issues and the online publications that helped to
solve them are illustrated in the following.

Partitioning RAW Images The image type RAW had to be used because a bug in the used
version of Eucalyptus prevented the usage of the more efficient qcow2 images with Windows
based EMIs. The images had to include two distinct partitions, so that Eucalyptus won’t handle
them in the same way as Linux images.

Kernel and Initrd Images To boot the Windows-based EMIs, customized images for kernel
and an initial ramdisk (initrd)4 had to be used as shown in [2]. The kernel image was created
from the SYSLINUX bootloader5 and the initrd was created from a conventional Windows boot
floppy [76].

ATA and SCSI The default interface that Eucalyptus uses to connect virtual disks to VMs is
Small Computer System Interface (SCSI)6. While guidelines, as for instance [2] and [60], that
document the procedure of creating a Windows based EMI, describe the installation of SCSI

drivers into the EMI, using SCSI was not able with the Eucalyptus installation used in this thesis.
Therefore, Eucalyptus was configured to use ATA7 instead of SCSI to connect virtual disks.

Networking Drivers Network driver for e1000 [53] network interfaces as described in [50]
had to be installed, as the virtual network interfaces that are used by Eucalyptus are of this type.
Without these drivers networking was not possible with the custom EMIs.

4http://en.wikipedia.org/wiki/Initrd Visited: 2011-10-02
5http://www.kernel.org/pub/linux/utils/boot/syslinux/ Visited: 2011-10-02
6http://en.wikipedia.org/wiki/SCSI Visited: 2011-10-02
7http://en.wikipedia.org/wiki/Parallel_ATA Visited: 2011-10-02

71

Debug EMIs with VNC To debug the EMIs, VNC [101] was used as described in [40]. If an
instance was not able to boot or no network connections to the VM were possible a VNC client
was used to connect to the terminal of the VM instance to see the output.

CPU and Memory Support of Windows As the various versions of Windows support differ-
ent amounts of CPUs and memory, care has to be taken on the choice of which Window version
is used with an instance type. The CPU and memory support of the various Windows versions is
shown in [79].

Remote Management of Virtual Machines The Remote Desktop Service of Windows [77]
was enabled on all EMIs to provide remote administration of the VMs. To permit traffic on this
port, the Windows firewall, as well as the Eucalyptus security groups had to be configured to
permit incoming traffic on Transmission Control Protocol (TCP) port 3389.

Windows Firewall and Automatic Windows Updates For security reasons, the Windows
firewall was active on the EMIs, although it complicates debugging them. It was configured
at preparation time to permit exactly the traffic needed by the systems to work. Automatic
Windows updating was deactivated to prevent the update service from influencing the autonomic
runtime. Besides, installed updates would get lost after termination because the virtual disks are
ephemeral.

TCP Adjustments The Windows registry was modified to enable Windows to use more TCP

ports and to reuse them faster, as the database connections which were made for persisting the
high amount of events required that. This was done as recommended by [78]. The attributes
TcpTimedWaitDelay [82] and MaxUserPort [81] were changed to 30 and 65534 respec-
tively.

UTC Hardware Clock Support The Windows EMIs had to be configured to support a Coor-
dinated Universal Time (UTC) hardware clock, because Eucalyptus runs VM instance with a UTC

enabled hardware clock. Therefore the Windows Registry had to be adjusted to support UTC as
shown in [43].

72

CHAPTER 6
Evaluation

This chapter shows the results of an extensive evaluation of the presented prototype. The goal is
to prove the usefulness of the prototype and to discuss limitations of the autonomic runtime by
answering the following questions:

1. Will the overall amount of SLA violating composite service instances be decreased by
provisioning resources to the composite service runtime?

2. Can the violation of the SLA by a composite service instance be prevented by migrating
this instance and in what circumstances is this possible?

3. What is the cost for provisioning resources and does the benefit outweigh the cost?

First of all, the setup of the evaluation and the approach are presented. Then the impact
of resources on the composite service runtime is explained. Last but not least the three ques-
tions previously raised are answered by taking a closer look at the capabilities of the autonomic
runtime prototype.

6.1 Evaluation Setup and Approach

The Eucalyptus instance types were customized to ensure the types used to host the autonomic
runtime differ in their amounts of CPUs and memory. These choices had to be aligned with
the physical resources available from the underlying hardware. The instance types and their
resources are shown in Table 11.

The evaluation setup was based on the deployment described in Section 5.3. Each participat-
ing component, except for the composite service consumers, was hosted in the same installation
of the Eucalyptus Cloud. The presented EMIs were used to launch VM instances, hosting these
software components. The setup for the evaluation is shown in Figure 17.

The following components participate in the evaluation setup:

73

Cores Memory Storage Platform
MB GB bit

m1.small 1 512 20 64

c1.medium 1 1024 20 64

m1.large 2 2048 20 64

m1.xlarge 2 3072 30 64

c1.xlarge 4 4096 30 64

Table 11: Customized Resource Capacity of Eucalyptus Instance Types

Web Services

VM

Autonomic Runtime

VM

VRESCo

VM

VRESCo DB

Load Generator

Find Services /

Publish Events

Bind /

Invoke

Publish

Invoke

Composite Service

Eucalyptus

Figure 17: Evaluation Setup

• The Autonomic Composite Service Runtime was hosted on single VM instances of types
c1.medium, m1.large and c1.xlarge.

• The VRESCo Runtime Environment and the VRESCo Database were hosted together on a
single VM instance of type m1.large. VRESCo stores the endpoints of the Web services
and provides them to the autonomic runtime to invoke the Web services dynamically.

• The Web Services were hosted on an instance of type m1.small together. These Web
services do not implement any application logic but provide the interfaces to be invokable
by the composite service. Their responses are randomly delayed for up to 50 milliseconds,
to simulate implemented application logic. Web services have to be published to the
VRESCo service registry.

The load was generated by a specifically built load generator. It invokes the composite ser-
vice and thereby triggers the creation of composite service instances in the autonomic runtime. It
supports invoking the composite service at two alternating rates. One rate continuously invokes
the composite service at a constant frequency. The other rate sequentially invokes the composite

74

sleep
intervalSingle

parallelInvocations

intervalParallel

Executing Composite

Service Instances
Invocation Request

parallelInvocations

Load Generator
Invoke

Autonomic Runtime

VM

Figure 18: Load Generator Requests

Parameter Description Low Rate High Rate
intervalSingle (ms) Frequency of single invoca-

tions
1,000 900

intervalParallel Amount of single invoca-
tions between parallel invo-
cations

30 30

parallelInvocations Number of parallel invoca-
tions

80 90

sleep (ms) Pause after parallel invoca-
tions

10,000 10,000

Table 12: Load Generator Parameters

service as fast as possible. Two different rates are needed to create a certain amount of concur-
rently executing instances of the composite service. On the one hand, the resources have to be
utilized extensively to force SLA violations. To evaluate migration, multiple composite service
instances need to be available at any point in time. On the other hand, the runtime must not get
overloaded by handling too many invocations, resulting in Denial of Service (DoS). Figure 18
illustrates invocation of the composite service by the load generator.

Table 12 describes the parameters of the load generator. Two distinct parameterizations were
used throughout this evaluation to generate the load. A lower frequency of composite service
invocations was used when provisioning resources to a c1.medium instance, a higher frequency
when provisioning resources to a m1.large instance.

Evaluations were made by retrospectively observing the behavior and actions of the au-
tonomic runtime. This was possible due to persisted events from composite services and the
runtime, as described in Section 5.2. Therefore it was possible to query specific events and their
time of occurrence from the VRESCo database. Two examples of evaluation queries are shown
in the appendix. The SQL query in Listing 13 calculates the runtime (in milliseconds) of mi-
grated composite service instances. Listing 14 shows an SQL query calculating the duration (in

75

Paramter Value Description
Public IP E.g. 192.168.2.23 Defines the public IP address of

the autonomic runtime

Migration yes/no Defines whether instances will
be migrated

Startup yes/no Defines whether the autonomic
runtime is loaded automatically
after VM startup

Termination yes/no Defines whether the autonomic
runtime terminates the source
VM after resource provisioning

SLA Value E.g. 35 ms Defines the SLA for executing a
composite service instance

SLA Violation
Threshold

E.g. 200 Defines when resource provi-
sioning will be triggered by the
autonomic runtime

Table 13: Autonomic Runtime Parameters

minutes) of resource provisioning.
Each experiment involved preparing the environment of the autonomic runtime and indi-

vidual parametrization of the load generator and the autonomic runtime. Table 13 shows the
parameters of the autonomic runtime. Figure 19 illustrates the overall procedure of how experi-
ments were performed.

6.2 Composite Service Performance in the Cloud

It is important to understand how the runtime performance of a composite service depends on
the amount of provided resources. This will help to extensively evaluate the solution provided in
this thesis and will allow to evaluate usefulness of the resource provisioning concept presented
in Chapter 5. The metric chosen to measure the performance of the runtime is represented by
the execution duration of composite service instances. In other words, it is represented by the
time passing between the creation of a composite service instance and its completion.

To learn how provided resources impact the execution duration, the autonomic runtime was
hosted on the three previously mentioned instance types independently from each other. On
each instance type, the runtime served a certain amount of composite service invocations and
thereby executed a corresponding amount of composite service instances in parallel. Autonomic
resource provisioning was deactivated for this evaluation. The composite service was invoked
repeatedly at the fastest possible rate. I.e., invoking the service without any delays between
invocations. The amount of parallel executing composite service instances thereby depends on
the speed the runtime is working off the instances, and how fast the invocation requests could be

76

Launch c1.medium or m1.large VM from Autonomic Runtime EMI

(workflow-win2k3x64)

Wait for Startup and Initialization of Autonomic Runtime

Allocate Public IP Address of Autonomic Runtime

Publish Web Services to VRESCo Registry

Launch m1.small VM from Web Services EMI (services-winxp32sp3)

Launch m1.large VM from VRESCo EMI (vrescohost-win2k3x64r2)

Deploy Autonomic Runtime Binary to VRESCo Host

Configure Load Generator

Start Load Generator

Wait for Experiment to Complete

Retrieve Evaluation Results from Event Database

Configure Startup and Runtime Policies

Terminate Virtual Machines

E
x
p

e
ri
m

e
n

t

C
o

n
fi
g

u
ra

ti
o

n

R
u

n
ti
m

e
 E

n
v
ir
o

n
m

e
n

t

P
re

p
e

ra
ti
o

n

E
x
p

e
ri
m

e
n

t

E
x
e

c
u

ti
o

n
E

v
a

lu
a

ti
o

n

Figure 19: Experimentation Procedure

handled.
Figure 20 shows the results of this evaluation. As can be seen, when hosting the runtime

on c1.medium, the durations increase much faster than on m1.large and c1.xlarge. Starting
from 400 executing composite service instances, the duration on c1.medium breaks out, while
m1.large and c1.xlarge can still handle the load. Because of these excessive durations and the
limited amount of memory, no more than 600 instances were considered on c1.medium.

The more composite service instances are executed simultaneously, the more their durations
vary. This is due to the longer lasting duration of composite services, started at the beginning of
each experiment. During their execution, the runtime still needs to handle the ongoing invoca-
tions. Composite service instances started towards the end are affected to a much smaller extent.

77

of Executing Composite Service Instances

D
ur

at
io

n
[s

ec
on

ds
]

25
0

100

200

300

400

500

600
1

� �

50

�

100

�

200 400 600 800 1000

Instance Type
c1.medium

m1.large

c1.xlarge

Figure 20: Execution Durations of a Composite Service with Increasing Concurrency

Figure 21 illustrates the increasing averages of the results discussed. A certain limit on each
instance type can be identified, from where the averages grow almost exponentially. c1.medium
reaches this limit when executing 200 parallel instances. While the proof for an exponential
growth on m1.large and c1.xlarge is not apparent from Figure 21, exponential growth is assumed
to occur from 1000 parallel instances upwards. On the other hand, it is safe to assume that the
more CPUs a VM instance has, the flatter the slope of the curve will be. With only one CPU, as
on c1.medium, just one composite service instance can be served at the time, while the other
executing composite service instances have to wait for a CPU cycle. With an increasing amount
of CPUs, more composite service instances can be handled simultaneously.

A composite service still depends on its called Web services and their performance char-
acteristics. Assuming these Web services perform optimally, i.e., each requested Web service
responds within the minimum possible time, a minimum execution duration for the composite
service exists. Figures 20 and 21 show the minimum of the composite service, used throughout
this evaluation, to be at about 25 seconds.

The results presented in this section show the impact of resources on the composite service

78

of Executing Composite Service Instances

Av
g.

 D
ur

at
io

n
[s

ec
on

ds
]

25
0

100

200

300

400

500

c1.medium

m1.large

c1.xlarge

1 50 100 200 400 600 800 1000

Figure 21: Average Execution Duration of a Composite Service with Increasing Concurrency

runtime and on the duration of executing concurrent composite service instances. The time spent
to execute a composite service can be decreased by providing more resources, especially CPUs

to the composite service runtime.

6.3 Resource Provisioning

The following experiments show the benefits of using the autonomic runtime in terms of SLA

compliance. Three different resource provisioning scenarios were investigated. The autonomic
runtime relocated itself from VM instances of type c1.medium to m1.large, c1.medium to c1.xlarge
and m1.large to c1.xlarge. Each experiment involved invoking about 2000 composite service
instances, 1000 before and 1000 after relocating the runtime, independently from the SLA viola-
tions detected so far. The lower rate, as shown in Table 12, was used to generate the load. The
SLA on the execution duration of a composite service instance was defined at 35 seconds.

To illustrate savings, the results of the experiments are compared to results without resource
provisioning and relocating. Violations without provisioning (column Without Prov. in Table 14)

79

Without
c1.medium m1.large Total Prov.

Instances # 1173 923 2096 2096

Violations # 902 356 1258 1612

% 76.9 38.6 60.0 76.9

Avg. Dur. sec. 51.093 33.746 43.454

Table 14: Relocation from c1.medium to m1.large

Without
c1.medium c1.xlarge Total Prov.

Instances # 1000 997 1997 1997

Violations # 902 231 1133 1798

% 90.0 23.2 56.7 90.0

Avg. Dur. sec. 52.597 32.109 42.368

Table 15: Relocation from c1.medium to c1.xlarge

are extrapolated by applying the percentage of violations measured before provisioning (column
c1.medium) to the total number of instances (column Total). The difference between violations
without provisioning and total violations represent savings.

Table 14 shows the ratio of processed composite service instances and their violations within
a runtime that relocated itself from c1.medium to m1.large. The 76.9% of violations on c1.medium
were reduced to 38.6% on m1.large, which amounts to 60.0% violations in total. If all 2096 in-
stances were executed without resource provisioning, the total amount of violations would have
been increased to 1612 violations instead of 1258 violations. The benefit of relocating the run-
time therefore amounts to approximately 22%.

The results of the experiment of relocating the runtime from c1.medium to c1.xlarge are
presented in Table 15. This time the ratio between violated and completed composite service
instances on c1.medium is higher. This results from resources being allocated differently in the
Cloud or the OS on the VM instance than before. In contrast to 22% from the previous experiment,
the improvement of resource provisioning now amounts to 37%. This arises from the high
amount of SLA violatins on c1.medium. Even if there were fewer violations on c1.medium, a
significant improvement would still be experienced.

As m1.large is equipped with more resources than c1.medium, the higher rate from Table 12
was used for the experiment with relocating the autonomic runtime from m1.large to c1.xlarge
to force about the same amount of SLA violations as with the previous two experiments. The
SLA was again defined at 35 seconds. Table 16 shows the results of this experiment. This time
the improvement by provisioning amounts to 27%. Because the proportion of resources between
c1.medium and m1.large is equal to m1.large and c1.xlarge, this improvement is almost the same
as that of the first experiment shown in Table 14.

80

Without
m1.large c1.xlarge Total Prov.

Instances # 1074 1152 2226 2226

Violations # 917 462 1379 1901

% 85.4 40.1 61.9 85.3

Avg. Dur. sec. 43.340 33.964 38.488

Table 16: Relocation from m1.large to c1.xlarge

D
ur

at
io

n
[s

ec
on

ds
]

0

20

40

60

�

�

�

�

� �

�

� ��

�

� �
�

�

�

�
�

�

�
�

�

� �

�

�� �
� �

�

�
� � �

� �

�
� �

�

� �

�
�

�
�

�
�

�
�

�
�

�
��

�

�

�

�

�

�
�

�
�

� ��

�

� � �

� ��

�

� �

�

�
� ��

�

�

�
�

�
��

�

�
�

�

�

�

� �
� �

�

�

�

�
�

�

� �

�
�
�

� �
�

�

�

�

�
��

�
�

�

� �
��

�
��

��

�

�
�

�

�

��
� �

�

�

�

�

�

�

��

�
�

�

�

�
�

�

�
�

�

�
�

�

�

�

�

�
�

�

�
�

�

�
�

�

�� �

�
��� �
�

�
�

�
�

�

�
�

�

�
�

�
�

�

�
�

�

�
�

�

��
��

�

�

�� �

�

�

�
�

�

�
��

� �
�

�� � �
� � �

��

�
�

�
��

� �

�� �

�
� � ��� �

� ��
� �

� �
�

�
� ��

� �

� �
� �

�

�

�

��

�

�

�

� �

�

�
�

�
�

�

�

�

��

�

� �

�

�

���

��

�
�

�

� �

�

�

�

�

�

�

�
�

�� �
�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

��

�

�

�

�

�

�

�

�

� ��

�

�
�

��

�

�

��

�

�

�
�

�

�
�

�
�

��
�

�

�

�
�

�
��

�
�

��

�

�

�

� ��

�

�

�
�

�
� �

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

� �

�

�

�

�

��

� �
�

� �

�

�

�

�

�
�

�

�

�

�

�

�

�
��

�

�

�

��

��

�

� �

�

�

� � ��
�

�
�

�

�
�

�
��

�

�

�

�

�

�
���

�

�

�

�

� ��

�

�
�

�

�
�

�

�

�

�� �
�

� �

�

�
�

�

�

�

�
�

� �

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

� �

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�
�

�� �
�

�

�

�
�

�

�

��
�

� � � �

�

� �

� �

� �
��� �

�� �
�

�

� �
�

��

�

�

�

� �

�

�
�

�

�

��
�

�

�
�

�

�

�

�

�

�

�

�

�
�

�
��

�

�
��

�

� �

�

�
� �

�

��

�
�

��

�
�

�

� �

�

�

�� �
�

�

�

�

�� �

�

�

�
� ��

�

�
�

�
�

�

�

�

�

�

�

�

��

�

�

�
�

�
�

�

�
�

�

�

�

�

�

�

�
�

��

�

� �

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�
�

�

�
�

�

�

�
�

� � ��
�

���

�
�

�
��

�
�

��
�

�

�

�

�

�

�

�

��

�

�
�

�

�

�

�
�

�

�

��

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��

�

�

�

�

� �

�

�

�
�

� �

�

�

�

�

�

���

��

�
�

��

�
�

�

�
��

�

�
�

�

��

�
� �

�� �

�
��

�

� �

�

�
�

��

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�
�

�

�

�

�

��

�

�
�

�
�

�

��
�

�

�

��
�

�

��
��

�

�

�

�
�

��

�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��

�

� �

�

�

�

�

�

�
�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�
��

�

�

�
�

�

�
�

� �� �
� �

�
�

�
� �

�

�� �

�

�
��

�
�

�
�

�

���
�

� ��� �
�

�
�

�

�

�

�
�

�

��

�
�

�

�

�

�

� �
�

�

�

�

�

�

�

� � �

�

�

�

�

�

�

�

� ��

� �

�

��
�

�

�
�

�

�

�

�

�

�

��

�

�

�

�
��

�

�

�

��
�

�

�

�
�

�

�

�
��

�� �
��

��

�

�

�
��

�

� �
�

�

�
�

�
�

�

�

� ��

� �
�

��
�

��

�

��
�

� �

��

�

�
��

�� �
��

�
�

�

�

��

�
�

�

�

�

�

�

�

�

�

�

��
�

�
�

�

��

��

�

�

�
�

�

�

� �

�

�
�

�

�

�

�

�

�

�
� �

�

�
��

�

�

� �
� �

��
�� ��

�
�

�
�

�

� �

� �
�

�

��

�� �
��

�
� ��

�

�� �
� �

��

�� �
� � �

� ��
�

�

� �
�

�
�

�
�

�

�
� � �

�
��

�

�
�

�

�

�
�

�
�

��� �

��
�

�

� ��
�

�

�

��

�

�
�

�

�

����

�

�

�

�

�

�

�

�
��

�

�

�

� �

�

�

�
� �

�
� � �

��

��
��

� �
�� �� �

�

� �
� ��

�
� ��

�� ��

�� ��
�

�
�

�

�
�

�

�
��

�
�

��
� �

� �� �

� � ��� � �
� � �

��

�
�

�

�

�

�

�

�
� �

�
�

�

�

� �
�

�

�

�

�

�

�

�

�

�

�

�

�
�

��
� � � �

�

�
�

�

�

�

�
��

�
�

� � �

�

� �

�
�

� �� �
� �

��
�

�
�

�

��

� �

�

�

�
�� �

� �
��

�

��
� � �

�
��

�
�

�

�
�

���

�
�

�

�

�

�
�

�� �

��
�

�� ���
�

� ���
� �� �

�� �

�

�

�

�

�

�

��
��

� �
� �

�� ��
�

�
��

� �
�

�
�

��
�

��

�
�

�
�

�

�

� � ��
� �

�
� �

��

��

�

�
�

�

� �

�
��

�
� �

�
� � �

�

��

�

�

�

�

�

�

� �

�

�

�

� �

�

�

�
�

�

�

�
�� �

�

��

�

�
���

�
�� �

�

�

�
���� �

�

� �
�

�����
� �

�
��

�

�
�� �

�
�� �

�
� ��

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

��
� �

��
�

�
�

�
�

�

� ��
� �

�

�

�

�

�
�

�

�

�
�

�

� �
�

� �

�

� �

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�
� �

�

�

�

�
�

�

�
�

�

�

�
�

�

�

��

�

�

�

�
�

�
�

���
�

�

�

�
�

���
�

�

� ��

�

�

�
�

�
�

�

�

�
�

�
� �

�
�

�

� �

� �� �

� �

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

� �
�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�
��

� �

� �

� �
�

��

�

�
�

�

�

�
�

�

�

�

�
��

�� �

��

�

�

�
� � �

� � ��
�

�
�� �

�

��
��

�
�

��
��� ��

�

� �
�

�
�

�
�

��

�
�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

� �

� �

�

�

�
��

� �
�

�

�

� �

�
�

� �
� ��

�

�

�
�

�

�� �

�
�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
��

�
�

�
�

�� �
�

�

�

�

�

�
�

�
�

�
�

�

�
�

�� ��

c1.medium m1.large

(a)

0

20

40

60

�

�

�

�

� �
�

� ��
��

�

�

��

�
�

�

�

�

�

��
�

�

�

�
� �

�
� �

��
�

� �
��

�
�

�

��

� � �

�

��

�

�
�

�
�

�

�

�

�
�

�

�

�

�
�

�� �
�

�
�

�
�

�

�

�
�� ��

��
�

�

�

�

�

�� �

���
�

�

�

�

�

�

�

�

�

�� �
�

�

�

�
�

�
�

��

�

�

�

�
� �

�

�
�

�

� �
�

� �

�
�

�

�

�

�

�

�

�

�

�

� ��

�

�

�

�

�
�

�

�
�

�

�

��

�

�

�
�

�

�

�

�

�

�� �
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�
� �

� �

�

�

��

� �

�

��
�

�

��

�

�
�

�

�
� �

�

�

�
�

�

�

�
�

�

� �

�

�

��

�

�

�

�

�
�

�

� �

�

�
�

�

�

�

�
�

�
�

�

�
�

�

�

�

�

�

� �
�

�

�

�

�

��

�
�

�� �

�

�

�

�

��

�

�

��

�

�

�

�

�

�

�

�
� �

�

�

�

�
��

�

�
�

�

�
�

�
� �

��

�

�

�
�

�

�

�

� �
�

��

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

��

�
�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

� �

�

�

�

�

�

�

�
�

�

�
�

�

�

�

��

�

���

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�
�

�

�

��

�

�� �

�

�

�

�� �

�

�

�
�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

��

�

�
�

�
� � �
�

��

�

� �

�

� � �
�

�
�

��

�

�

�

�
��

�
� �

� �

��

� �
�

�

�

�
�

�

�

�

�

�

��

�

�

�
�

�
�

�
�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�
�

�

�
� �

�

�

�

��
�

�

�

�

�

� �

��
�

�
�

�

�

��

�

��

�

��

�

�

�

� �

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

� �
�

�

�

�
�

�

�

�

��

�

�

�

�
�

�

� �

�
�

�

�
�

�
�

�
�

�
�

�

�

�

� ��

�

�

�

�

�

�� �
��

�

�

�

�

�

�

�

�

�

�

��

�

�

�
�

�

�
��

�

� �
�

�

�

�

�
�

�
��

��

�
�

�

��

�

�
�

� �

�

�

�

� ��

�

�

��
�

�
�

��

�

�

�

�

�

��

�
�

��

�

�
�

�

�

�

�

�

�

��

�

�

�

�

�

�
�

�
�

�
�

�
�

� �

�

�

�

�
�
�

� �

�

�

�

�

�

�

�

��

�
�

��

��

�

�

�

� �
� �

�� � �

�

�� �
� ��

� �
�

���

�

�

�
�

�

�

�

�

��

��

�

�

�

�

�

��
��

�

�

�
� ��

� �
�

��

�� �

��
�

�

�

�

�

�

� �

� ��
�

�

�
�

�
�

�

� �
��

�
�

�
�

�

�

�

�

�

�

�

�
����

�

� � ��
�

�

�

�

�

�

�
�

�
�

� � �

�
�

�
�

�
� �

�

�

�

�

�

�

�

�

�
�

�
� � �

�
�

� �
� �

�

�
�

�
�

��

�

�

�

�

�
�

�
� �

��

��� � ��

�
�

�
�

�

�
�

�
� �

�
��

��
�

�

�

���
�

� �� �
���

�
�

�

�

�

�

��

�

�

�
�

��
�

��

� � �

�
�

�
�

�

�
�

�

� �

�

�

�

�

�
�

�

�
�

�

� �

� �
�

�
�

��
��

��
� ���

� �� ���� �

�
�

� �� �
� ��

�
�� �

��

�

�
�

�

�

��

�

�

� �
�

�
�

���� �� �
�

�� �
�

�
��

�

��

�

�

��

�

�

�

�

�

�
�

�

�

�

�

�

�
� �

�
�

�

�

�
��

�
�

�

� �

� �

�

�

�

�

�
�

� � � ���
��
��
�

��
�

���
�

��

� �
�

� �
�

�

� �

�
� �

�
� �

�
�

�

��
�

��
�

�
�

� �
�

�
� �

��� �� ��
�

� �� � � �
� �

�
��

�
�

�

��
�

�

� �
�

�

�
��

�

�

�
�

�
�

�

� �
� �� � ��

�

�

�
�

� ��
�

�

� ���

� � ���
��
�

�
� �

�� ���

�
��

�
�

��
�

�
��

��

�

�
�

�

�
��

�

�
�

�
�

�

� �
�

�
� � �

� �� �� �
� �

�

�

�
� �

�

�

�
��

�
�

� �

�

�

�

�

�

�

� �

�

� ��

�

�
�

�
� �

� �
���

�

�

�
� ��
� �

��
�

��
�

�
�

� ��
�

�
�

�
�

� ��

��
�

�

�

�

�

�
�� �

��� �
�

�� ��
�

� � �
�

� �
�

�
�� �

�
� �

�

�
�

�
�� � �

�

�

�
� ��

�

��
�� � ���
��
���

��
�

�� ��� �
��

� � ��
��� �

�
�� �

� � �� � �� �

�

�� ���

� �
�

� �
� �� �

�

�

��
�� �

�� � �
��

�
�

�

�

�

�

�� � � �
� ��

�
�

�� ��
�

�
�

� �

� ��
��

�

�

� � �

�

�
�

�
�� �

�
�

�
�

�

�

�
�

�
� �

��
�� � ��� �

�
�

���� �

�
� �

�

�

�
�� �� � �

��

� �
�� �

�

�

��
��

� ��
�

�
� ���

�

�

�

�

�

� �

�

�

�
�

��

�

�

�
�

��

�

�

�

� �

��

�

�

�

�

� ��
�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�
�

�

��

�

� �

�

�

�
�

�

�

� �

�
� �

��

�

�

� �

��

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�
�

�

��

�

� �

� �

�

�

�

�

�

���

�
�

�

�

�
�

��

�

�

�

�

� �

��

� �

��

�

�

�

�

�

�

�

�
�

� �

��

�
��

�

�

�

�

�

�

�

�

�
�

�
�

�� �
��

�
�

�

�
�

��
�

�

�

�

�

�

�
�

�

�
�� ��

�

�
��

�
�

�
��

� � �
�

�

�
�

�

�

�
�� � �

�

�

�
�

� ��
�

�

�
�

�
�

�

�

�
� ��

�

c1.medium c1.xlarge
Instance Types

(b)

0

20

40

60

�
�

� �
�

�

�

� � �

�

�
��

�
�

�

�

�

�
�

�
�

� � � ��� �
�

�

�
� ���

� �

�

�

�

�
�

�

�

�

�
�

�

� �

�

� �

�

�
�

�
�

�

�
�

�

�

�
�

�

�

� �

�

�

�

�
�

� �

�

�

�

���

�

�

�

�

�

� �

�� ��

� �

�
� �

� �
��

�

� �

�� �
�

��
� �

�
��

�

��
��

�
��� �

��

�

��
�

�

� �

�

�

�
� �

�

�

��� � �� � ��

��
�� � �

���
� �

� � ��
�

�
� ��

�

�
�

�
�

� �
�

� �� �� �

� �
�

��
��

�� �
�

�

�

�

�
�

��

�
�

� �
��

�

�

�
�

�

�
�

� �
�

�

� �
�

� �

� � � ���
�� ��� �

�

�
� �

�
�� ��
�

�
��

� � � �
�

�
�

�
�

��

�
�

�

� �
�� �

� �
�

��

�
� �

�
��

�� � ��
�

� �
�

�� �
�

�
�

�

�

��
�

� �
�

�
��

�

�
�
�

�

�

�

�
�

�
�

�
�

�

�

�

�
�

�

�

�
�

��

�

�

�
�� �

�

� �
�

�

�
�

�
� � ��

�
�

�
�

��
�

�

�� ���
�

�
�

�
�� �

�

�
�

��� �
�

� �
�

��

�
�

��

�
� �� � ��� � ���� � ��

�
�
�

�
�

�
�� �

�

� �
�

�
� � �

�
� �

�

�

�
�

��

�

� �
� �

�

�
� �

�

�

��

� �

�

�
�

�

� � �� �
�

���
���

�� � �

� ��

� �
�

��
� ��

�

�

�

�
�

�� �

�

��
� ���

�
�

�

�

�

�

�

��

�
�
�

�
�

�

�
��

�
� �

�� � � �

�

�
�

�

�

�

�

�

�
�

�

�

�
�

�
�

�� �
��
�

� ��

��

�
�

� �
�

�� �� �

�
���

�

� �

��
�

�

�

�
�

�

�
�

��
�

�
�

� ���
��

�� �
� �
�

� � �� �
� �

�

��
�

�

��
� �

�

�
�

�

�
� ���� �
�

�
� �

�

��
�

� � ��

�
�

� �
�

��

� �
� � �

�
� �� �

�
�

�

�

�

�

�
��

�

�

�

� �
�

�
�

� ��
��

� �

�
�

� � � �
�

�
�

�
� ���

��
�

�

�

�
� �

�

�

�
�

�
�

�

� �

�

�

�

�

�� �

�
�

�
��

��

�
�

�
�
��

�

�

�

�

�

�

�

�

�

�

�

�
� �

� �

�

�
�

�

�
�

�

�

�

�

�

�

��

�

� �

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

� �

�

�

�
�

��

�

�

�

�

�
�

��

�

�

�

�

�

�

�

�

�
�

��

�

�

�

�

�

�

�

�

�
�

�

�
�

��
�

�
�

��
�

�

�

�
� � �

�
�

�
�

�
�

�
�� �

�

�
�

�

�

�

�

�

�

�

��
�

�

�

�

�

�

�

�

�

�

�
��

�

�� �

�

�

�

�

�
� �

�

�
�

�

�
�

�
� �

� �

� �
�

���

� �

�

� �

� �

�
�

�
�

�
�

�

�
�

�
�

� �
�

�
�

�

�

�

�

�

�

�

�
� �� � � �

�
�

�
� � �

� �
��� �
�

�
��

�

� �� �
�

���� � �

�

�
�

�
�

�

��

�

�

�

�

�

�

�

�

�
�

�

�

�

��
� �

�
�

�
�

�

��
�

� �

�

�

��
�

�

� � �

�
� � ��

� ��

�
�

�
�

��� �
��
��

��
� �� � �

�

�

�
�

�

� �
��� �

�

�

�

�

�

�

�
�

�

�

�

�
�

��

�

�
�

�

�
� �

�

�

�

��

�

�

�

�
�

�

�

� �

�

�

�

� �
�

�
�

�
��

� �
�

�
�

�
�� �

�
��

�
� ��

�� �

� �

��

�
�

� �

�

�

�
��

�
�

�
�

�

�
�

� �
�

�

��

�

�

�

�
�

� �
�

� �

� ��
�

�
�

��
� �

�
�

��

�

�

�

�

�

�
�

�
�

�

�
�

�

��

�

�
�

�

�

�

�
�

�

�
� �

� �

�

�

�

�
�

��
�

��
� �� �

��� ��

� �
�
�� �

� �

��� �

�

� �

�

�
�

�

��
��

�

� �
�

�
� �

�
�

�

�

� �
�

�
�

�

�

���

�

�
� �

�
� �

�
��

� �

�

�

�

�
�

�
�

� �

��
�

�
�

�

�

�

��

�

�
�

�

�

� �
�

�
� �

�

�

���
�

�

���

�
�

�
�

�

�

�

�
��

�

�
�

�

�

�

��

�
�

��� �� �

��

�

�

�

�

�
�

�

�

�

� �

���
�

��

�

�
�

�

�

�
�

�

�

� �
�

�

�

�

�

�

�

��

�

�

�

�
��

�
�

�

�

�

�
�

�

� �
�

�

�
�

�

�

�

�

� �

��

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�
�

�
�

� �

�

�

�

�
� ��

�

�
�

�
�

� ��

���

��

�

�

�

�
�

�

�
�

�

�

�
�

�
�

�
�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
� �

�

�

�

�
�

�

�

�
�

�

� �

�

�

�

�
�

�

�

�

�

��

�

� �� �
�

�

�

�

��
�

� �

�� �
�

�
�

�

�

�

�

� �

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
� �

��
� �� �

�

�

�

� ��

�

�

�

� �

� �

�
�

�

�

�

�
�

�

�

�

�

�

�
�

�

� �

�

�
��

�

�

� �

�

�
�

�
�

�

�

� �
�

� �
�

�

�

�
�

� ��
�

�
�

��
�

�� � �
� �

� �

�
�

�

�

�

�

�

�

�

�

��
�

�
�

�

�

�

�

��

��

�

� �

��

�

�

�

�
�

�
� �

��
�

�

��

��
�

�

�

�
�

�

� � �
�

�

�
�

�

�

�

�

�
�

��
�

�
��

��

�

�� �

�

�
�

��

�
�

�
�

�

�
�

�
�

�
��

�

� �
�

�� �

�

�

�

�
�

�

�

�

�

�

�

� �
� �

�

�
�� �

�
�

�

�

�

�

�

�

�

�

�

�

�

�
��

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

� �

�
�

�

�

�

�

�

�
��

�

�

�
�

�
�

�

�

�
�

�
�

��

�

��� ���
� �

�
� �

�

��
�

�

�

�

�
�

�
�

�

��

�

�

� �
�

�

� �

�

�

�

�

�
� �

�

�

�

� �

�

�

�
�

�

��
� �

�

� �

�

�

�

�

�

�

�

� �

�

�

�

�

� �

�

�

�

�

�

��
�

� �
�

� �

��
�

�
�

�

�
�

�

�

�
� �

�
�

�

�

�� �

��

�

� �

�

�

� �

�

�
�

�

�

�

�

� �

�

�� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

� �
�

�

�

�
�

�

�

�

�
�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

��

�

�

�

�

� �

�

�
�

�

�

�

�

�
�

�
�

�� �

�
�

�

�
�

�

�
�

�

� �

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

�

�

� ��

�

�

�
���

�

� �

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�� �

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

� �

�

�

�
�

�� �

�

�
��

�

�
�

�
� �

� �� � �

�

��

�

�

� �

�

�

�

�

�

�
�

�

�

�

�

�

�

�

��

�

�

�

��

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�
�

��

�

�
�

�

�

�

�

� �

�

�
�

�

� �

�

�
�

�
�

�

�
��

�� � ��
�� �

m1.large c1.xlarge

(c)

Figure 22: Durations of Composite Services Instances

Figure 22 visualizes the individual durations and their distribution on the three different
instance types from the experiments presented in this section so far. Red instances violate the
SLA, blues do not. As can be seen, the minimum duration on all instances types is about 25
seconds as was discussed in Section 6.2. Most composite service instances are reported above
the SLA on the source runtime, and below this value on the destination runtime. While SLA

violations on the destination runtime concentrate just strait above the limit, they are distributed
over the whole y-axis on the source runtime.

6.3.1 Runtime Relocation Duration

To learn the duration of resource provisioning, whose longest part is the Runtime Relocation
Phase, the time passed between the occurrence of the ProvisioningResources and RuntimeS-
tarted events was calculated from their timestamps. Table 17 presents durations from various
experiments.

As can be seen from these results, the duration of provisioning resources does not depend
on the provisioned instance type. The procedure of how Eucalyptus launches a VM instances
clarifies their occurrence. The EMI is specified by the client when requesting to launch a VM

instance. First, Eucalyptus downloads the compressed and encrypted EMI from Walrus to the

81

m1.large c1.xlarge

Duration
min.

Avg. 6:09 5:27

Min. 4:59 5:02

Max. 12:26 6:01

Table 17: Durations of Runtime Relocation Phase in Minutes

Migrations
16 35 47 71 82 88 88

Migration
sec.

Avg. 0.8 3.3 3.5 4.0 4.2 7.3 9.9

Min. 0.6 0.5 0.7 0.6 1.0 1.2 1.6

Total 9.0 9.7 17.7 13.0 16.2 23.5 29.0

Execution
sec.

Avg. 26.7 34.1 47.0 46.6 56.3 62.3 60.6

Min. 24.3 28.0 38.2 32.3 44.4 49.7 44.5

Max. 29.4 39.7 56.7 56.3 67.9 77.3 85.0

Violations # 0 14 47 68 82 88 88

Table 18: Durations of Instance Migrations Without Load

node, hosting the instance, and stores it in the local cache of the node. Then it is decrypted and
decompressed on this node into a file representing the disk of the VM instance. Because of the
high amount of I/O that comes with reading from the network interface and interacting with local
or remote disks, the duration of launching a VM instance strongly depends on the size of the EMI.
If the EMI was already stored within the local cache of the node, the transfer over the network
would not be necessary and the duration would be reduced drastically.

The EMI used to host the prototype of the autonomic runtime is 1.6 GB large and has a virtual
disk size of 4 GB. The time to launch an instance from this EMI is around 5 to 6 minutes, if the
EMI is stored in the cache as shown in Table 17.

6.3.2 Instance Migration Duration

Experiments on migrating a set of composite service instances between c1.medium and c1.xlarge
resulted in durations shown in Table 18. First, the composite service was invoked multiple times.
As soon as a certain amount of composite service instances were executing, their migration was
triggered by relocating the autonomic runtime. To avoid affecting the migration procedure, no
invocations occurred during the time of migration. The source, as well as the relocated runtime
were able to use all their available resources for migrating and resuming composite service
instances.

The minimum and the average duration for migrating a single instance, as well as the du-
ration of the whole Instance Migration Phase vary. They depend on the number of migrated
composite service instances. A higher amount of migrated instances seems to lead to longer

82

Without
c1.medium m1.large Migrated Total Migr.

Instances # 631 601 77 1309 1309

Violations # 555 420 77 1052 975

% 88 69.8 100 80.4 74.5

Table 19: Migration from c1.medium to m1.large

durations because the relocated runtime immediately resumes migrated instances and therefore
shares resources between a larger amount of already resumed instances and the migration pro-
cedure. Additionally, the more instances being migrated, the higher the effort of serializing and
sending the instances on the source runtime.

Composite service instances are suspended during migration. The time consumed for their
migration has a direct impact on their total execution duration. The longer they are suspended,
the more likely do they violate the SLA defined on their execution duration. As can be seen in
Table 18, when many instances were migrated, only few satisfied the SLA.

6.4 Resource Provisioning Cost

As discussed in the previous section, resource provisioning is afflicted with two issues. Launch-
ing a VM instance during relocation of the runtime lasts several minutes on the one hand and
migrating composite service instances involves their suspension on the other hand. These issues
increase the number of SLA violations. From now on they will be referred to as costs. Costs can
be expressed in terms of additional SLA violations and are analyzed in this section.

6.4.1 Migration Cost

To see the cost, the three scenarios from Section 6.3 are considered. The durations in Table 18
were measured without invoking the composite service during migrations. This time, the load
generator was used to continuously invoke the composite service even during migrations. The
SLA was again configured to be 35 seconds. Additionally, a threshold of 200 violations was
specified that triggered the provisioning of resources by the runtime.

Table 19 shows the migration of 77 composite service instances from c1.medium to m1.large.
As all of them violated the SLA, the cost amounts to an additional 77 violations. Despite the
cost, resource provisioning pays off, because the violation rate on m1.large is low enough to
compensate the cost.

Similar results were measured when migrating from c1.medium to c1.xlarge, shown in Ta-
ble 20. Cost amounts to 74 violations, which increases overall violations by 5.7 percentage
points.

Even when migrating instances from m1.large to c1.xlarge, none of the migrated compos-
ite service instances was able to satisfy the SLA, as illustrated in Table 21. It uses the higher
invocation rate from Table 12. The cost amounts to 69 violations.

83

Without
c1.medium c1.xlarge Migrated Total Migr.

Instances # 605 630 74 1309 1309

Violations # 511 154 74 739 665

% 85.5 24.4 100 56.5 50.8

Table 20: Migration from c1.medium to c1.xlarge

Without
m1.large c1.xlarge Migrated Total Migr.

Instances # 737 688 69 1494 1494

Violations # 639 250 69 958 889

% 86.7 36.3 100 64.1 59.5

Table 21: Migration from m1.large to c1.xlarge

Source Dest. Migrations Avg. Total
Instance Type # Dur. (sec.)

c1.medium c1.large 77 2.800 46.000

c1.medium c1.xlarge 74 3.343 34.797

m1.large c1.xlarge 69 5.499 13.830

Table 22: Durations of Instance Migrations During Load

The average suspended duration is show in Table 22. The Instance Migration Phases involv-
ing the c1.medium VMs lasted much longer than migration from m1.large to c1.xlarge because
memory and CPU were already exhausted at the time of the migration.

In contrast to the results shown in Table 18, where some instances were able to satisfy the
SLA, now all instances violated the SLA. Firstly, this was caused by using the load generator at
a higher rate, resulting in a higher amount of migrated instances. Secondly, the load generator
continued to invoke the composite service even during migrations. Because of this migrating
and executing instances took much longer on the source as well as on the destination runtime.

Assuming all instances violate the SLA in a worst case scenario, inequation 6.1 defines
whether instances should be migrated:

xsource/ysource < (xdst + a)/(ydst + a) (6.1)

It will be satisfied if and only if 6.2 holds:

(xdstysource − xsourceydst)/(xsource − ysource) > a (6.2)

84

where
xsource, xdst amount of completed instances on the source and the destination runtime
ysource, ydst amount of violating instances on the source and destination runtime
a amount of migrated, and therefore violated, instances
xsource
ysource

ratio between completed and violated instances on the source runtime
xdst
ydst

ratio between completed and violated instances on the destination runtime

Total Instances/Violations: 1494/958

210 Instances

200 Violations

+527 Instances

+439 Violations

+69 Instances

+69 Violations

+688 Instances

+250 Violations

c
1

.x
la

rg
e

R
e

s
o

u
rc

e

P
ro

v
is

io
n

in
g

m
1
.l
a

rg
e

Serving

Requests

Serving

Requests

SLA Threshold

Exceeded

Launching

c1.xlarge

Migrate

Intances
VM Launched /

Runtime

Loaded

Instances

Migrated

69 Migrations

(13.8 s)

~5 Minutes
End

Terminate

VM

Figure 23: Resource Provisioning to m1.large

In other words, the level of SLA conformance on the relocated runtime has to be adequate to
compensate violations caused by migration.

6.4.2 Relocation Cost

As can be seen in Figure 23, which illustrates Table 21, only 210 composite service instances
executed until the threshold of 200 SLA violations exceeded. This corresponds with a 95% rating
of violations. During a five minute resource provisioning, another 527 instances were processed.
439 violated the SLA, corresponding with a rating of 83% violations. When adding this up with
migrations and violations occurred on c1.xlarge, 64% violations occured in total. If the time
for resource provisioning was reduced to just one minute, approximately 105 instances would
have been executed within this timespan on m1.large and 422 instances would have been exe-
cuted on c1.xlarge. This amounts to 87 violations on m1.large and 151 violations on c1.xlarge.
A shorter duration of resource provisioning significantly decreases the number of violated in-
stances. As during resource provisioning, no additional resources are consumed by the currently
executing runtime, the duration of relocation can be consider as not being too critical. While a
shorter duration reduces the number of violations, a longer duration does not increase the ratio
of violations. The number of violations during relocation can not be referred to as cost.

85

6.5 Evaluation Summary

After extensively studying the capabilities of the prototype by means of various experiments, the
questions formulated at the beginning of this chapter, regarding the usefulness and limitations
of the autonomic composite service runtime, can now be answered.

Will the overall amount of SLA violating composite service instances be decreased by pro-
visioning resources to the composite service runtime? The amount of SLA violations could
be decreased drastically by means of resource provisioning. Each provisioning scenario showed
a significant reduction of violations after the autonomic runtime relocated itself to VM instances
equipped with more resources. To measure the benefit of resource provisioning, the violations
encountered with resource provisioning were compared to those when no resource provisioning
was triggered. The experiments showed reductions of SLA violations between 22% and 37%.
These experiments were ended after a specific amount of composite service instances was fin-
ished. It can be assumed that the reductions would increase the longer the experiments would
last.

Can the violation of the SLA by a composite service instance be prevented by migrating
this instance and in what circumstances is this possible? The minimum time measured for
migration, and therefore suspension, was 500 milliseconds. This additional time adds to the du-
ration of executing a composite service instance. To decrease the whole execution duration, this
amount has to be compensated after migration by benefiting from a larger amount of available
resources. While the duration of migrating a composite service instance is low when only a few
instances are in need of migration, the duration increases with a growing amount of migrated
instances. Summarized, these durations are subject to the amount of resources available to the
source and the destination runtime for migration. The experiments showed, that if the autonomic
runtime was exposed to composite service invocations during migration, none of the migrated
composite service instances would satisfy the SLA.

What is the cost for provisioning resources and does the benefit outweigh the cost? The
costs were defined to be the amount of additional SLA violations caused by resource provision-
ing. Because relocating the autonomic runtime does not utilize any of its resources, it is not
affected by relocating itself. In contrast, migrating composite service instance utilizes resources
provided to the autonomic runtime and hence impacts the level of SLA conformance. All ex-
periments on resource provisioning conducted with the prototype, resulted in a high amount of
prevented SLA violations which always outweighed additional SLA violation caused by migra-
tion. Therefore in any case it will turn to account to bear the cost for migration in order to
minimize SLA violations.

86

CHAPTER 7
Conclusion and Future Work

Service compositions play a fundamental role in SOAs. They are exposed as Web services and
are subject to guaranteed quality aspects in terms of SLAs. To ensure SLAs, a service provider has
to align the amount of resources provided for hosting the service in accordance to his promised
quality aspects. He needs to constantly monitor the current level of SLA compliance and take
adequate actions in case of their violation. As the amount of resources demanded by a service
may vary over time, it is hard to keep up with provisioning physical resources. The Cloud offers
dynamic handling of resources and provides the base for their instant provisioning. This thesis
proposed deploying a composite service to the Cloud.

Based on these capabilities of the Cloud, this thesis presented a solution for reducing SLA

violations of composite services. It illustrated the design of a composite service runtime, able to
monitor itself, thereby evaluating SLAs, based on an event-driven approach, and finally able to
provide itself with additional resources needed to ensure a certain level of SLA compliance. This
composite service runtime was designed to decide and act autonomically, based on predefined
policies, without any human interaction. It runs on top of the open source Cloud platform
Eucalyptus, which shares the same Cloud concepts as Amazon EC2 and provides a compatible
interface.

To show the practicability and feasibility of this solution, a prototype was implemented
as part of the practical work in this thesis, that implements the fundamental concepts of the
proposed approach. Developing the prototype involved setting up its environment, including
the VRESCo runtime environment for SoC, in the Cloud, which in turn required the extensive
preparation of its deployment. To develop and evaluate the prototype, the Institute of Information
Systems at the Vienna University of Technology provided its installation of Eucalyptus.

A general study, that was part of the evaluation in this thesis, demonstrated the impact of the
amount of resources available to a composite service runtime on its performance and therefore
the compliance with SLAs. Evaluating the prototype showed its capability to significantly reduce
the amount of SLA violations by provisioning itself with resources in the Cloud. While the
evaluation illustrated the costs connected to the resource provisioning procedure, these costs
were always outweighed by the benefits in terms of preventing SLA violations.

87

7.1 Future Work

Both, the prototype and the solution itself, leave room for improvements in terms of flexibil-
ity and effectiveness. First of all, extending the resource provisioning procedure to support
more accurate scaling would allow for a preciser selection and provisioning of resources. Cur-
rently, resource provisioning is limited to three different instance types. They are ranked by their
amount of resources. More instance types could be introduced. Distinguishing between their in-
dividual characteristics, i.e., differentiating between memory- and CPU-rich instance types, could
enable their provisioning according to particular needs. Additionally, it would be interesting to
see how the proposed solution and the prototype can be extended and benefit from concepts
provided by Amazon EC2 but missing in Eucalyptus. While Eucalyptus does not differentiate
between the performance of I/O operations of instance types, instance types in Amazon EC2 are
provided with different levels of I/O performance. Another interesting aspect of Amazon EC2

is their distribution of data centers around the world. A service may be relocated between dif-
ferent regions (e.g., from US to EU) to further reduce the distance between consumers and itself.

Further extensions of the resource provisioning procedure, deserving attention, comprise the
runtime’s ability to scale itself down by releasing resources currently not needed. Additionally,
the specific vertical scaling approach, followed by the resource provisioning procedure, may as
well be combined with a horizontal scaling approach, balancing the load of composite services
among multiple runtime engines and simultaneously scaling individual runtime engines verti-
cally as needed.

In terms of effectiveness, the proposed solution leaves room for optimizing the duration of
resource provisioning and thereby further reducing the amount of SLA violations. The relocation
routine depends on Eucalyptus fetching an EMI and preparing the virtual disk of the requested
virtual machine instance. To reduce the deployment time of a virtual machine, the size of the
EMI may either be reduced or the infrastructure hosting Eucalyptus may be upgraded to allow
a better throughput of I/O operations. Additionally, it would be interesting to examine how this
way of provisioning resources performs with Amazon EC2. On the other hand, future versions
of Eucalyptus may improve the procedure of deploying virtual machines.

Besides further investigating composite service relocation, migrating running composite ser-
vice instances deserves additional analysis as well. Evaluations showed, that the amount of
migrated instances and the amount of available resources impacts the duration of migrating in-
stances. It would be interesting to see whether the progress of a composition at the time of
its migration, and to what extent the size of a serialized state, effect migration performance.
Clearly, transferring the state over the network is subject to bandwidth and latency, but analyzing
the performance of migrating composite services between data centers is interesting in terms of
utilizing regions in Amazon EC2.

88

A List of Acronyms

AMI Amazon Machine Image
API Application Programming Interface
AWS Amazon Web Services
CC Cluster Controller
CEP Complex Event Processing
CLC Cloud Controller
CPU Central Processing Unit
DHCP Dynamic Host Configuration Protocol
DNS Domain Name System
DoS Denial of Service
DSA Distributed Shared Array
EAI Enterprise Application Integration
EBS Elastic Block Store
EC2 Elastic Compute Cloud
ECU EC2 Compute Unit
EMI Eucalyptus Machine Image
EPL Event Processing Language
FTP File Transfer Protocol
GUID Globally Unique Identifier
HTTP Hypertext Transfer Protocol
I/O Input/Output
IaaS Infrastructure as a Service
IP Internet Protocol
IT Information Technology
JVM Java Virtual Machine
LAN Local Area Network
NC Node Controller
NIST National Institute of Standards and Technology
OASIS Organization for the Advancement of Structured Information Standards
OS Operating System
PaaS Platform as a Service
QoS Quality of Service
RMI Remote Method Invocation
S3 Simple Storage Service
SaaS Software as a Service
SCSI Small Computer System Interface
SDK Software Development Kit
SLA Service Level Agreement
SLO Service Level Objective
SMTP Simple Mail Transport Protocol
SOA Service-oriented Architecture

89

SoC Service-oriented Computing
SQL Structured Query Language
SSL Secure Socket Layer
TCP Transmission Control Protocol
URL Uniform Resource Locater
UTC Coordinated Universal Time
VDC Virtualized Data Center
VEE Virtual Execution Environment
VM Virtual Machine
W3C World Wide Web Consortium
WCF Windows Communication Foundation
WF Windows Workflow Foundation
WSBPEL Web Services Business Process Execution Language
WSDL Web Service Description Language
XML eXtensible Markup Language

90

B SQL for Retrieving the Duration of Composite Service
Execution

1 SELECT
2 b e g i n . I n s t a n c e T y p e ,
3 ((end . wf t imes tamp − b e g i n . wf t imes tamp) / 1 0 0 0) AS dura t i on_ms ,
4 b e g i n . timestamp
5 FROM VRESCoEvent AS b e g i n
6 INNER JOIN
7 (SELECT
8 Timestamp , wf t imestamp , c o m p o s i t i o n i d , i n s t a n c e t y p e
9 FROM VRESCoEvent

10 WHERE EVENTTYPE = ’ Workf lowTrack ingEven t ’
11 AND Workf lowSta t e = ’ Completed ’
12) AS end
13 ON b e g i n . c o m p o s i t i o n i d = end . c o m p o s i t i o n i d
14 WHERE b e g i n . EVENTTYPE = ’ Workf lowTrack ingEven t ’
15 AND Workf lowSta t e = ’ C r e a t e d ’
16 AND b e g i n . i n s t a n c e t y p e != end . i n s t a n c e t y p e ;

Listing 13: SQL for composite service duration

91

C SQL for Retrieving the Time for Resource Provisioning

1 SELECT
2 b e g i n . i n s t a n c e t y p e , end . i n s t a n c e t y p e ,
3 ((end . wf t imes tamp − b e g i n . wf t imes tamp) / 6 0 0 0 0) AS d u r a t i o n _ m i n u t e s
4 FROM VRESCoEvent AS b e g i n
5 INNER JOIN
6 (SELECT
7 Timestamp , wf t imestamp , e n g i n e i d , i n s t a n c e t y p e , s t a t e
8 FROM VRESCoEvent
9 WHERE EVENTTYPE = ’ Compos i t i onEng ineEven t ’

10 AND S t a t e = ’ m i g r a t i o n F i n i s h e d ’
11) AS end
12 ON b e g i n . e n g i n e i d = end . e n g i n e i d
13 WHERE b e g i n . EVENTTYPE = ’ Compos i t i onEng ineEven t ’
14 AND b e g i n . S t a t e = ’ p r o v i s i o n i n g R e s o u r c e s ’ ;

Listing 14: SQL for resource provisioning duration

93

D Composite Service of the Evaluation Scenario

Receive Item

Assembly Order

Get List of Parts

Get Costs for Part

Caclute Total

Costs

Order Externally

Construct Item

Generate Invoice

Charge Credit

Card

Available in

Warehouse?

Perform Bank

Transfer

Ship Item

Yes

No

Check

Payment

Method

Credit Card Bank Transfer

Order Finished

Each Part

Checked

Reserve in

Warehouse

Check Part

Availability

Each Part

Processed

Wait for Part

Add Up Costs

Figure 24: Composite Service Workflow

95

Bibliography

[1] Active Endpoints Inc. ActiveVOS. http://www.activevos.com/, 2011. Visited:
2011-09-15.

[2] ajmf. Running Windows on Eucalyptus (Improved). http://ajmf.wordpress.
com/2009/10/14/running-windows-on-eucalyptus-improved/, 2009.
Visited: 2011-09-15.

[3] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services: Con-
cepts, Architecture and Applications. Springer Verlag, 2004.

[4] Amazon Web Services LLC. Amazon EC2 Instance Types. http://aws.amazon.
com/ec2/instance-types. Visited: 2011-09-23.

[5] Amazon Web Services LLC. Amazon EC2 Pricing. http://aws.amazon.com/
ec2/pricing. Visited: 2011-09-23.

[6] Amazon Web Services LLC. Amazon Elastic Compute Cloud (Amazon EC2). http:
//aws.amazon.com/ec2/. Visited: 2011-09-10.

[7] Amazon Web Services LLC. Amazon Web Services. http://aws.amazon.com/.
Visited: 2011-09-10.

[8] Amazon Web Services LLC. Amazon Auto Scaling. http://aws.amazon.com/
de/autoscaling/, 2011. Visited: 2011-09-10.

[9] Amazon Web Services LLC. AWS SDK for .NET. http://aws.amazon.com/de/
sdkfornet/, 2011. Visited: 2011-09-15.

[10] Apache Friends. XAMPP Webpage. http://www.apachefriends.org/
xampp.html, 2011. Visited: 2011-09-15.

[11] Apache Software Foundation. Apache ODE. http://ode.apache.org/, 2011.
Visited: 2011-09-15.

[12] Arjuna, BEA, Hitachi, IBM, IONA, and Microsoft. Web Services Transac-
tions specifications. http://www.ibm.com/developerworks/library/
specification/ws-tx/.

[13] Michael Armbrust et al. Above the clouds: A berkeley view of cloud computing. Techni-
cal Report UCB/EECS-2009-28, EECS Department, University of California, Berkeley,
Feb 2009.

[14] Christoph Arnold, Michel Rode, Jan Sperling, and Andreas Steil. KVM Best Practices.
dpunkt Verlag, 2011.

[15] Colin Barker. HP dismisses cloud ’hype’. http://www.zdnet.com/news/
hp-dismisses-cloud-hype/255222, December 2008. Visited: 2011-09-16.

97

http://www.activevos.com/
http://ajmf.wordpress.com/2009/10/14/running-windows-on-eucalyptus-improved/
http://ajmf.wordpress.com/2009/10/14/running-windows-on-eucalyptus-improved/
http://aws.amazon.com/ec2/instance-types
http://aws.amazon.com/ec2/instance-types
http://aws.amazon.com/ec2/pricing
http://aws.amazon.com/ec2/pricing
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/
http://aws.amazon.com/de/autoscaling/
http://aws.amazon.com/de/autoscaling/
http://aws.amazon.com/de/sdkfornet/
http://aws.amazon.com/de/sdkfornet/
http://www.apachefriends.org/xampp.html
http://www.apachefriends.org/xampp.html
http://ode.apache.org/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.zdnet.com/news/hp-dismisses-cloud-hype/255222
http://www.zdnet.com/news/hp-dismisses-cloud-hype/255222

[16] Ramzi Basharahil, Brian Wims, Cheng-Zhong Xu, and Song Fu. Distributed Shared
Arrays: An Integration of Message Passing and Multithreading on SMP Clusters. Journal
of Supercomputing, 31:161–184, February 2005.

[17] Christian Baun, Marcel Kunze, Jens Nimis, and Stefan Tai. Cloud Computing, Web-
basierte dynamische IT-Services. Springer-Verlag Berlin Heidelberg, 2011.

[18] P. Bhoj, S. Singhal, and S. Chutani. SLA management in federated environments. Com-
puter Networks, 35:5–24, January 2001.

[19] Norman Bobroff, Andrzej Kochut, and Kirk Beaty. Dynamic Placement of Virtual Ma-
chines for Managing SLA Violations. In IM’07: Proceedings of 10th IFIP/IEEE Interna-
tional Symposium on Integrated Network Management, 2007.

[20] Bruce Bukovics. Pro WF: Windows Workflow in .NET 3.5. Apress Series. Apress, 2008.

[21] Michele LeRoux Bustamante. Learning WCF. O’Reilly Media, Inc., 2007.

[22] Rajkumar Buyya et al. Cloud computing and emerging IT platforms: Vision, hype, and
reality for delivering computing as the 5th utility. Future Generation Computer Systems,
25(6):599 – 616, 2009.

[23] Valeria Cardellini, Michele Colajanni, and Philip S. Yu. Dynamic Load Balancing on
Web-Server Systems. IEEE Internet Computing, 3:28–39, May 1999.

[24] Malu Castellanos, Fabio Casati, Umeshwar Dayal, and Ming-Chien Shan. Intelligent
Management of SLAs for Composite Web Services. In Nadia Bianchi-Berthouze, editor,
Databases in Networked Information Systems, volume 2822 of Lecture Notes in Computer
Science, pages 158–171. Springer Berlin / Heidelberg, 2003.

[25] Christopher Clark et al. Live migration of virtual machines. In NSDI’05: Proceedings
of the 2nd conference on Symposium on Networked Systems Design & Implementation -
Volume 2, 2005.

[26] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms for bin
packing: a survey. In Approximation algorithms for NP-hard problems, pages 46–93.
PWS Publishing Co., Boston, MA, USA, 1997.

[27] David S. Linthicum. Enterprise Application Integration. Addison-Wesley, 1999.

[28] Jimmy Desai. Service Level Agreements: A Legal and Practical Guide. IT Governance
Publishing, 2010.

[29] Tim Dornemann, Ernst Juhnke, and Bernd Freisleben. On-Demand Resource Provision-
ing for BPEL Workflows Using Amazon’s Elastic Compute Cloud. In CCGRID’09: Pro-
ceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and
the Grid, 2009.

98

[30] Schahram Dustdar and Wolfgang Schreiner. A survey on web services composition. In-
ternational Journal of Web and Grid Services, 1:1–30, August 2005.

[31] Thomas Erl. Service-Oriented Architecture (SOA): Concepts, Technology, and Design.
Prentice Hall, 2005.

[32] Thomas Erl. SOA: principles of service design. Prentice Hall, 2008.

[33] Thomas Erl et al. Web Service Contract Design and Versioning for SOA. The Prentice-
Hall service-oriented computing series from Thomas Erl. Prentice Hall, 2008.

[34] Esper contributors & EsperTech Inc. Esper. http://esper.codehaus.org/. Vis-
ited: 2011-09-02.

[35] Opher Etzion and Peter Niblett. Event Processing in Action. Manning, August 2010.

[36] Eucalyptus Systems Inc. Eucalyptus Open Source Cloud Platform. http://open.
eucalyptus.com/. Visited: 2011-10-04.

[37] Eucalyptus Systems Inc. Eucalyptus Open-Source Cloud Computing Infrastructure - An
Overview. http://www.eucalyptus.com/resources/whitepapers, Au-
gust 2009. Visited: 2011-09-02.

[38] Eucalyptus Systems Inc. Eucalyptus - Accessing Instance Meta-
data. http://open.eucalyptus.com/participate/wiki/
accessing-instance-metadata, 2011. Visited: 2011-09-15.

[39] Eucalyptus Systems Inc. Eucalyptus 3.0 Roadmap. http://open.eucalyptus.
com/participate/roadmaps/eucalyptus_3.0, 2011. Visited: 2011-10-02.

[40] Eucalyptus Systems Inc. Using VNC to debug an image. http://open.
eucalyptus.com/participate/wiki/using-vnc-debug-image, 2011.
Visited: 2011-09-15.

[41] Dan Farber. Oracle’s Ellison nails cloud computing. http://news.cnet.com/
8301-13953_3-10052188-80.html, September 2008. Visited: 2011-09-16.

[42] Marvin Ferber, Sascha Hunold, and Thomas Rauber. Load Balancing Concurrent BPEL
Processes by Dynamic Selection of Web Service Endpoints. In ICPPW’09: Proceedings
of the 2009 International Conference on Parallel Processing Workshops, 2009.

[43] findleyd. Set hardware clock to UTC on Windows. http:
//weblogs.asp.net/dfindley/archive/2006/06/20/
Set-hardware-clock-to-UTC-on-Windows-_2800_
or-how-to-make-the-clock-work-on-a-Mac-Book-Pro_2900_
.aspx, 2006. Visited: 2011-09-15.

99

http://esper.codehaus.org/
http://open.eucalyptus.com/
http://open.eucalyptus.com/
http://www.eucalyptus.com/resources/whitepapers
http://open.eucalyptus.com/participate/wiki/accessing-instance-metadata
http://open.eucalyptus.com/participate/wiki/accessing-instance-metadata
http://open.eucalyptus.com/participate/roadmaps/eucalyptus_3.0
http://open.eucalyptus.com/participate/roadmaps/eucalyptus_3.0
http://open.eucalyptus.com/participate/wiki/using-vnc-debug-image
http://open.eucalyptus.com/participate/wiki/using-vnc-debug-image
http://news.cnet.com/8301-13953_3-10052188-80.html
http://news.cnet.com/8301-13953_3-10052188-80.html
http://weblogs.asp.net/dfindley/archive/2006/06/20/Set-hardware-clock-to-UTC-on-Windows-_2800_or-how-to-make-the-clock-work-on-a-Mac-Book-Pro_2900_.aspx
http://weblogs.asp.net/dfindley/archive/2006/06/20/Set-hardware-clock-to-UTC-on-Windows-_2800_or-how-to-make-the-clock-work-on-a-Mac-Book-Pro_2900_.aspx
http://weblogs.asp.net/dfindley/archive/2006/06/20/Set-hardware-clock-to-UTC-on-Windows-_2800_or-how-to-make-the-clock-work-on-a-Mac-Book-Pro_2900_.aspx
http://weblogs.asp.net/dfindley/archive/2006/06/20/Set-hardware-clock-to-UTC-on-Windows-_2800_or-how-to-make-the-clock-work-on-a-Mac-Book-Pro_2900_.aspx
http://weblogs.asp.net/dfindley/archive/2006/06/20/Set-hardware-clock-to-UTC-on-Windows-_2800_or-how-to-make-the-clock-work-on-a-Mac-Book-Pro_2900_.aspx

[44] Song Fu and Cheng-Zhong Xu. Service migration in distributed virtual machines for
adaptive grid computing. In ICPP’05: International Conference on Parallel Processing,
2005, pages 358–365, June 2005.

[45] Alessio Gambi, Mauro Pezze, and Michal Young. Sla protection models for virtualized
data centers. In SEAMS’09: ICSE Workshop on Software Engineering for Adaptive and
Self-Managing Systems 2009, pages 10–19, May 2009.

[46] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison-Wesley, Boston, MA, 1995.

[47] Chunye Gong et al. The Characteristics of Cloud Computing. In ICPPW’10: Proceedings
of the 2010 39th International Conference on Parallel Processing Workshops, pages 275–
279, Washington, DC, USA, 2010. IEEE Computer Society.

[48] Google Inc. Google App Engine. http://code.google.com/appengine/. Vis-
ited: 2011-10-04.

[49] Edward Haletky. VMware ESX and ESXi in the Enterprise: Planning Deployment of
Virtualization Servers (2nd Edition). Prentice Hall, 2011.

[50] Haydn Solomon. How do you use e1000 option on a win-
dows Guest? http://www.linux-kvm.com/content/
how-do-you-use-e1000-option-windows-guest, 2008. Visited: 2011-09-
15.

[51] Paul Horn. Autonomic computing: IBM’s Perspective on the State of Information
Technology. http://www.research.ibm.com/autonomic/manifesto/
autonomic_computing.pdf, 2001.

[52] Waldemar Hummer et al. VRESCo - Vienna Runtime Environment for Service-oriented
Computing, pages 299–324. Service Engineering. European Research Results. Springer,
2010.

[53] Intel Corporation. Drivers and software for Intel Gigabit and PRO/1000 Wired Ethernet
Adapters. http://www.intel.com/SUPPORT/NETWORK/SB/CS-006120.
HTM, 2011. Visited: 2011-09-15.

[54] Xuxian Jiang and Dongyan Xu. VIOLIN: Virtual Internetworking on Overlay Infrastruc-
ture. In Proceedings of the 2nd Snternational Symposium on Parallel and Distributed
Processing and Applications, pages 937–946, 2003.

[55] Li jie Jin, Vijay Machiraju, and Akhil Sahai. Analysis on Service Level Agreement of
Web Services. Technical report, HP Laboratories, 2002. Visited: 2011-09-14.

[56] John Rhoton. Cloud Computing Explained: Implementation Handbook for Enterprises.
Recursive Press, 2009.

100

http://code.google.com/appengine/
http://www.linux-kvm.com/content/how-do-you-use-e1000-option-windows-guest
http://www.linux-kvm.com/content/how-do-you-use-e1000-option-windows-guest
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf
http://www.intel.com/SUPPORT/NETWORK/SB/CS-006120.HTM
http://www.intel.com/SUPPORT/NETWORK/SB/CS-006120.HTM

[57] Alexander Keller and Heiko Ludwig. The WSLA Framework: Specifying and Moni-
toring Service Level Agreements for Web Services. Journal of Network and Systems
Management, 11:57–81, March 2003.

[58] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Computing. Computer,
36:41–50, January 2003.

[59] Gunjan Khanna, Kirk Beaty, Gautam Kar, and Andrzej Kochut. Application Performance
Management in Virtualized Server Environments. In NOMS’06: 10th IEEE/IFIP Network
Operations and Management Symposium, pages 373 –381, april 2006.

[60] kiranmurari. UEC: Bundling Windows Image. http://kiranmurari.
wordpress.com/2010/03/29/uec-bundling-windows-image/, 2010.
Visited: 2011-09-15.

[61] Sriram Krishnan. Programming Windows Azure: Programming the Microsoft Cloud.
O’Reilly Media, 2010.

[62] Philipp Leitner, Anton Michlmayr, Florian Rosenberg, and Schahram Dustdar. Monitor-
ing, Prediction and Prevention of SLA Violations in Composite Services. In ICWS’10:
Proceedings of the 2010 IEEE International Conference on Web Services, pages 369–376,
2010.

[63] Philipp Leitner, Florian Rosenberg, and Schahram Dustdar. Daios: Efficient Dynamic
Web Service Invocation. IEEE Internet Computing, 13:72–80, May 2009.

[64] Alexander Lenk et al. What’s inside the Cloud? An architectural map of the Cloud land-
scape. In CLOUD’09: Proceedings of the 2009 ICSE Workshop on Software Engineering
Challenges of Cloud Computing, pages 23–31, Washington, DC, USA, 2009. IEEE Com-
puter Society.

[65] Jesse Liberty and Alex Horovitz. Programming .NET 3.5. O’Reilly Media, Inc., 2008.

[66] Michael Litzkow and Marvin Solomon. Supporting checkpointing and process migration
outside the Unix kernel. In Proceedings of the USENIX Winter Conference, pages 283–
290, 1992.

[67] Huan Liu and Sewook Wee. Web Server Farm in the Cloud: Performance Evaluation and
Dynamic Architecture. In CloudCom’09: Proceedings of the 1st International Confer-
ence on Cloud Computing, pages 369–380, Berlin, Heidelberg, 2009. Springer-Verlag.

[68] Ru-Yue Ma et al. Grid-Enabled Workflow Management System Based On BPEL. In-
ternational Journal of High Performance Computing Applications, 22:238–249, August
2008.

[69] Anbazhagan Mani and Arun Nagarajan. Understanding quality of service for Web ser-
vices. http://www.ibm.com/developerworks/library/ws-quality.
html, January 2002.

101

http://kiranmurari.wordpress.com/2010/03/29/uec-bundling-windows-image/
http://kiranmurari.wordpress.com/2010/03/29/uec-bundling-windows-image/
http://www.ibm.com/developerworks/library/ws-quality.html
http://www.ibm.com/developerworks/library/ws-quality.html

[70] Daniel A. Menascé. QoS Issues in Web Services. IEEE Internet Computing, 6:72–75,
November 2002.

[71] Brenda M. Michelson. Event-Driven Architecture Overview. http://www.omg.
org/soa/Uploaded%20Docs/EDA/bda2-2-06cc.pdf, 2006. Visited: 2011-
09-25.

[72] Anton Michlmayr et al. Towards recovering the broken SOA triangle: a software engi-
neering perspective. In IW-SOSWE’07: Proceedings of the 2nd international workshop
on Service oriented software engineering: in conjunction with the 6th ESEC/FSE joint
meeting, pages 22–28, New York, NY, USA, 2007. ACM.

[73] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram Dustdar. Ad-
vanced event processing and notifications in service runtime environments. In DEBS’08:
Proceedings of the second international conference on Distributed event-based systems,
pages 115–125, New York, NY, USA, 2008. ACM.

[74] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram Dustdar. Compre-
hensive QoS monitoring of Web services and event-based SLA violation detection. In
MWSOC’09: Proceedings of the 4th International Workshop on Middleware for Service
Oriented Computing, pages 1–6, New York, NY, USA, 2009. ACM.

[75] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram Dustdar. End-
to-End Support for QoS-Aware Service Selection, Binding, and Mediation in VRESCo.
IEEE Transactions on Services Computing, 3:193–205, July 2010.

[76] Microsoft Corporation. How to create a bootable floppy disk for an NTFS or FAT partition
in Windows XP. http://support.microsoft.com/kb/305595, 2007. Visited:
2011-09-15.

[77] Microsoft Corporation. How to use the remote desktop feature of windows xp pro-
fessional. http://support.microsoft.com/kb/315328/en, 2007. Visited:
2011-09-12.

[78] Microsoft Corporation. Description of TCP/IP settings that you may have to adjust when
SQL Server connection pooling is disabled. http://support.microsoft.com/
kb/328476, 2009. Visited: 2011-09-15.

[79] Microsoft Corporation. Processor and memory capabilities of Windows XP Profes-
sional x64 Edition and of the x64-based versions of Windows Server 2003. http:
//support.microsoft.com/kb/888732, 2010. Visited: 2011-09-15.

[80] Microsoft Corporation. Microsoft Windows Server 2003. http://www.microsoft.
com/germany/windowsserver2003/default.mspx, 2011. Visited: 2011-09-
15.

[81] Microsoft Corporation. TechNet Library: MaxUserPort. http://technet.microsoft.com/en-
us/library/cc938196.aspx, 2011. Visited: 2011-09-12.

102

http://www.omg.org/soa/Uploaded%20Docs/EDA/bda2-2-06cc.pdf
http://www.omg.org/soa/Uploaded%20Docs/EDA/bda2-2-06cc.pdf
http://support.microsoft.com/kb/305595
http://support.microsoft.com/kb/315328/en
http://support.microsoft.com/kb/328476
http://support.microsoft.com/kb/328476
http://support.microsoft.com/kb/888732
http://support.microsoft.com/kb/888732
http://www.microsoft.com/germany/windowsserver2003/default.mspx
http://www.microsoft.com/germany/windowsserver2003/default.mspx

[82] Microsoft Corporation. TechNet Library: TcpTimedWaitDelay.
http://technet.microsoft.com/en-us/library/cc938217.aspx, 2011. Visited: 2011-09-
12.

[83] Microsoft Corporation. The Official Microsoft IIS Site. http://www.iis.net/,
2011. Visited: 2011-09-15.

[84] Microsoft Corporation. Windows XP - Microsoft Windows. http://windows.
microsoft.com/de-AT/windows/products/windows-xp, 2011. Visited:
2011-09-15.

[85] Dejan S. Milojičić et al. Process migration. ACM Computing Surveys, 32:241–299,
September 2000.

[86] Oliver Moser, Florian Rosenberg, and Schahram Dustdar. Event driven monitoring for
service composition infrastructures. In WISE’10: Proceedings of the 11th international
conference on Web information systems engineering, pages 38–51, Berlin, Heidelberg,
2010. Springer-Verlag.

[87] Adina Mosincat and Walter Binder. Automated maintenance of service compositions with
SLA violation detection and dynamic binding. International Journal on Software Tools
for Technology Transfer, 13:167–179, April 2011.

[88] Richard Murch. Autonomic Computing. IBM Press, 2004.

[89] National Institute of Standards and Technology (NIST). The nist definition of cloud com-
puting (draft). http://csrc.nist.gov/publications/drafts/800-145/
Draft-SP-800-145_cloud-definition.pdf, January 2011. Visited: 2011-
09-11.

[90] Michael Nelson, Beng-Hong Lim, and Greg Hutchins. Fast transparent migration for
virtual machines. In ATEC ’05: Proceedings of the annual conference on USENIX Annual
Technical Conference, 2005.

[91] Daniel Nurmi et al. Eucalyptus: A Technical Report on an Elastic Utility Computing Ar-
chitecture Linking Your Programs to Useful Systems. UCSB Computer Science Technical
Report Number 2008-10, August 2008.

[92] Open Grid Forum (OGF). Web Services Agreement Specification (WS-Agreement).
http://forge.gridforum.org/projects/graap-wg/. Visited: 2011-09-
14.

[93] Open Grid Forum (OGF). WS-Agreement Negotation. http://forge.
gridforum.org/projects/graap-wg/. Visited: 2011-09-14.

[94] Organization for the Advancement of Structured Information Standards (OASIS).
Web Services Business Process Execution Language Version 2.0. http://docs.
oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf, May 2006.

103

http://www.iis.net/
http://windows.microsoft.com/de-AT/windows/products/windows-xp
http://windows.microsoft.com/de-AT/windows/products/windows-xp
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf
http://forge.gridforum.org/projects/graap-wg/
http://forge.gridforum.org/projects/graap-wg/
http://forge.gridforum.org/projects/graap-wg/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

[95] Organization for the Advancement of Structured Information Standards (OASIS). Web
Services Coordination (WS-Coordination). http://docs.oasis-open.org/
ws-tx/wscoor/2006/06, 2009. Visited: 2011-09-15.

[96] Michael P. Papazoglou. Web Services: Principles and Technology. Prentice Hall, 2008.

[97] Harmon Paul. Analysing activities. Business Process Trends, 1(4):1–13, April 2003.

[98] Chris Peltz. Web Services Orchestration and Choreography. Computer, 36:46–52, Octo-
ber 2003.

[99] Ken Pepple. Deploying OpenStack. O’Reilly Media, 2011.

[100] Nick Randolph and David Gardner. Professional Visual Studio 2008. Wrox Press Ltd.,
2008.

[101] Kevin Roebuck. Virtual Network Computing (Vnc): High-impact Strategies - What You
Need to Know: Definitions, Adoptions, Impact, Benefits, Maturity, Vendors. Tebbo, 2011.

[102] Roman Kiss. WS-Eventing for WCF (Indigo). http://www.codeproject.com/
KB/WCF/WSEventing.aspx, 2006. Visited: 2011-09-15.

[103] Florian Rosenberg, Philipp Leitner, Anton Michlmayr, and Schahram Dustdar. Integrated
Metadata Support for Web Service Runtimes. In Proceedings of the 2008 12th Enterprise
Distributed Object Computing Conference Workshops, pages 361–368, Washington, DC,
USA, 2008. IEEE Computer Society.

[104] Igor Rosenberg, Antonio Conguista, and Roland Kuebert. Management for Service Level
Agreements. In Service Oriented Infrastructures and Cloud Service Platforms for the
Enterprise, pages 103–124. Springer Berlin Heidelberg, 2010.

[105] Paul Ruth et al. Autonomic Live Adaptation of Virtual Computational Environments in a
Multi-Domain Infrastructure. In ICAC’06: IEEE International Conference on Autonomic
Computing 2006, pages 5–14, June 2006.

[106] Jon Skeet. C# in Depth, Second Edition. Manning Publications Co., Greenwich, CT,
USA, 2010.

[107] Lambert M. Surhone, Mariam T. Tennoe, and Susan F. Henssonow. OpenNebula. Be-
tascript Publishing, 2011.

[108] Chris Takemura and Luke S. Crawford. The Book of Xen: A Practical Guide for the
System Administrator. No Starch Press, 2009.

[109] Luis M. Vaquero, Luis Rodero-Merino, and Rajkumar Buyya. Dynamically scaling ap-
plications in the cloud. ACM SIGCOMM Computer Communication Review, 41:45–52,
January 2011.

104

http://docs.oasis-open.org/ws-tx/wscoor/2006/06
http://docs.oasis-open.org/ws-tx/wscoor/2006/06
http://www.codeproject.com/KB/WCF/WSEventing.aspx
http://www.codeproject.com/KB/WCF/WSEventing.aspx

[110] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break in the
clouds: towards a cloud definition. ACM SIGCOMM Computer Communication Review,
39:50–55, December 2008.

[111] W. Vogels. A head in the clouds-the power of infrastructure as a service. In First workshop
on Cloud Computing and in Applications (CCA ’08), October 2008.

[112] World Wide Web Consortium (W3C). Web Services Architecture. http://www.w3.
org/TR/ws-arch/, February 2004. Visited: 2011-09-17.

[113] World Wide Web Consortium (W3C). Web Services Glossary. http://www.w3.
org/TR/ws-gloss/, February 2004. Visited: 2011-09-17.

[114] World Wide Web Consortium (W3C). Web Services Choreography Description Language
Version 1.0. World Wide Web Consortium, Candidate Recommendation CR-ws-cdl-10-
20051109, November 2005.

[115] World Wide Web Consortium (W3C). Web Services Eventing (WS-Eventing). http:
//www.w3.org/Submission/WS-Eventing/, March 2006. Visited: 2011-09-
17.

[116] World Wide Web Consortium (W3C). SOAP Version 1.2. http://www.w3.org/
TR/soap12-part1/, 2007. Visited: 2011-09-15.

[117] World Wide Web Consortium (W3C). Web Services Description Language (WSDL) 2.0.
http://www.w3.org/TR/wsdl20/, 2007.

[118] Jim Webber, Savas Parastatidis, and Ian Robinson. REST in Practice: Hypermedia and
Systems Architecture. O’Reilly Media, 2010.

[119] Songnian Zhou, Xiaohu Zheng, Jingwen Wang, and Pierre Delisle. Utopia: a load sharing
facility for large, heterogeneous distributed computer systems. Software: Practice and
Experience, 23:1305–1336, December 1993.

105

http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-gloss/
http://www.w3.org/TR/ws-gloss/
http://www.w3.org/Submission/WS-Eventing/
http://www.w3.org/Submission/WS-Eventing/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/

	List of Figures
	List of Tables
	List of Listings
	Introduction
	Motivation
	Contributions
	Organization

	State of the Art Review
	Service-oriented Architecture (SOA)
	Web Services
	Service Compositions
	Service Level Agreements (SLAs)

	Cloud Computing
	Introduction
	Cloud Actors and Scenarios
	Amazon Elastic Compute Cloud - EC2
	Eucalyptus

	Autonomic Computing
	Self-management Capabilities
	Autonomic Computing Architecture

	Event Processing
	Concepts of Event Processing
	Principles of Event Processing
	Event Processing Styles
	WS-Eventing

	Related Work
	Dynamic Hosting Scenarios in the Cloud
	Adapting and Monitoring Composite Services
	Without Concurrency Considerations
	With Concurrency Considerations
	Monitoring

	Migration and Relocation
	Process Migration
	Virtual Machine Migration
	Service Migration

	Background
	Windows Workflow Foundation
	Activities
	Workflow Runtime and Services
	Workflow Tracking
	Workflow Hosting

	VRESCo - Vienna Runtime Environment for Service-oriented Computing
	Metadata and Service Model
	VRESCo Eventing

	Load Scaling

	Design & Implementation
	Runtime Architecture
	Runtime Overview
	Composite Service Execution
	Composition Monitoring and SLA Evaluation
	Runtime Relocation
	Workload Migration

	Prototype Implementation
	Composite Service Hosting
	Event Processing
	Runtime Life-Cycle Events and Notifications
	Virtual Machine Launching
	Migrating Composite Service Instances

	Deployment in the Cloud
	Eucalyptus Setup
	Interacting with the Cloud
	Deployment of the Runtime
	Infrastructure Initialization
	Loading the Runtime
	Machine Images
	Issues with Windows-based EMIs

	Evaluation
	Evaluation Setup and Approach
	Composite Service Performance in the Cloud
	Resource Provisioning
	Runtime Relocation Duration
	Instance Migration Duration

	Resource Provisioning Cost
	Migration Cost
	Relocation Cost

	Evaluation Summary

	Conclusion and Future Work
	Future Work

	List of Acronyms
	SQL for Retrieving the Duration of Composite Service Execution
	SQL for Retrieving the Time for Resource Provisioning
	Composite Service of the Evaluation Scenario
	Bibliography

