
Beyond Uniform Equivalence
between Answer-Set Programs

Relativisation and Projection

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Johannes Oetsch
Matrikelnummer 0025631

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: A.o. Univ. Prof. Dr. Hans Tompits

Wien, 31.09.2011
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Erklärung zur Verfassung der Arbeit

Johannes Oetsch
Telekygasse 24, 1190 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten
Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit - ein-
schließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im Wort-
laut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung
kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

First, I would like to thank Hans Tompits for supervising this work and for his excellent intro-
duction to scientific research. Furthermore, I want to thank Martina Seidl and Stefan Woltran for
their collaboration on many paper projects related to this thesis. Also, I am graceful to Elfriede
Nedoma, Eva Nedoma, and Matthias Schlögel for their important administrative and technical
support. Finally, I would like to thank my parents, Elke Oetsch and Hans Oetsch, for all the
support and for not giving up hope that I would eventually finish my master thesis.

This work has been supported by the FWF project “Formal Methods for Comparing and Op-
timizing Nonmonotonic Logic Programs” under grant P18019 and by the FWF project “Methods
and Methodologies for Developing Answer-Set Programs” under grant P21698.

iii

Deutsche Zusammenfassung

Diese Arbeit beschäftigt sich mit erweiterten Äquivalenzbegriffen für nichtmonotone logische Pro-
gramme unter der Answer-Set Semantik. Dieses Thema erfreut sich zunehmendem Interesse da
solche Äquivalenzbegriffe die theoretische Basis für viele Entwicklungsaufgaben wie Optimie-
rung von Programmen, Debugging, modulares Programmieren und Verifikation bilden.

Verschiedene Äquivalenzbegriffe für Logikprogramme sind ein relevanter Forschungsschwer-
punkt auf dem Gebiet der Answer-Set Programmierung (ASP). Ein prominenter Vertreter eines
solchen Äquivalenzbegriffes ist uniforme Äquivalenz, welche überprüft ob zwei Programme, ver-
eint mit einer beliebigen Menge von Fakten, die gleiche Semantik besitzen. In dieser Diplomarbeit
studieren wir eine Familie von verfeinerten Versionen der uniformen Äquivalenz, nämlich relati-
vierte uniforme Äquivalenz mit Projektion, welche gewöhnliche uniforme Äquivalenz durch zwei
zusätzliche Parameter ergänzt: einen, um das Eingabealphabet der Programme zu spezifizieren,
und einen, um das Ausgabealphabet festzulegen. Der zweite Parameter wird benötigt um Answer
Sets auf bestimmte Ausgabeatome zu projizieren. Diese Answer-Set Projektion erlaubt es, im spe-
ziellen, Programme, die auf Hilfsatome zurückgreifen, miteinander zu vergleichen. Dieser Aspekt
ist aufgrund praktischer Erfordernisse unerlässlich.

Wir führen neue semantische Charakterisierungen für die betrachtete Formen der Programm-
äquivalenz ein, und wir analysieren die strukturelle Berechnungskomplexität entsprechender Ent-
scheidungsprobleme. Im allgemeinen Fall befinden sich diese Probleme auf der dritten Ebene der
polynomiellen Hierarchie und können daher, unter den üblichen koplexitätstheoretischen Annah-
men, nicht auf (propositionale) Answer-Set Programme selbst reduziert werden. Dennoch sind
Problemreduktionen auf quantifizierte Boole’sche Formeln (QBFs) möglich. Wir beschreiben sol-
che Reduktionen auf QBFs und diskutieren Vereinfachungen für spezielle Sonderfälle von Äqui-
valenzproblemen.

Die betrachteten Übersetzungen haben die Eigenschaft, dass sie immer effizient, sogar in
linearer Zeit, konstruierbar sind. Diese QBF Reduktionen liefern die Basis für eine Prototyp-
Implementierung in Form des Systems cc>. Der in diesem System realisierte Ansatz basiert auf
der Übersetzung eines Programmkorrespondenzproblems in QBFs sowie der Verwendung exter-
ner QBF Beweiser zur Lösung der resultierenden Formeln. Wir beschreiben eine Anwendung
von cc> um die Korrektheit von Programmen zu verifizieren, die als Lösungen von Studenten
im Rahmen von Lehrveranstaltungen über logische Programmierung und Wissensrepräsentation
an der TU Wien eingereicht wurden. Der zugrundeliegende Äquivalenzbegriff um Korrektheit zu
entscheiden ist relativierte uniforme Äquivalenz mit Projektion. Schließlich komplementieren wir
unsere Untersuchungen mit einer Leistungsevaluierung von cc>, welche zeigt, dass es wesent-

v

lich ist zwischen verschiedenen QBF Beweisern zu unterscheiden um eine optimale Performanz
zu erreichen.

Abstract

This thesis deals with advanced notions of equivalence between nonmonotonic logic programs
under the answer-set semantics, a topic of increasing interest because such notions form the basis
for program optimisation, debugging, modular programming, and program verification.

In fact, there is extensive research in answer-set programming (ASP) dealing with different
notions of equivalence between programs. Prominent among these notions is uniform equivalence
which checks whether two programs have the same semantics when joined with an arbitrary set of
facts. In this thesis, we study a family of more fine-grained versions of uniform equivalence, viz.
relativised uniform equivalence with projection, which extends standard uniform equivalence in
terms of two additional parameters: one for specifying the input alphabet and one for specifying
the output alphabet for programs. In particular, the second parameter is used for projecting answer
sets to a set of designated output atoms. Answer-set projection, in particular, allows to compare
programs that make use of different auxiliary atoms which is important for practical programming
aspects.

We introduce novel semantic characterisations for the program correspondence problems un-
der consideration and analyse the computational complexity of deciding these problems. In the
general case, deciding these problems lies on the third level of the polynomial hierarchy. There-
fore, this task cannot be efficiently reduced to propositional answer-set programs itself (under
the usual complexity-theoretic assumptions). However, reductions to quantified Boolean formulas
(QBFs) are feasible. Indeed, we provide efficient, in fact, linear-time constructible, reductions to
QBFs and discuss simplifications for certain special cases. These QBF reductions yield the basis
for a prototype implementation, the system cc>, for deciding correspondence problems by using
external QBF solvers. We discuss an application of cc> for verifying the correctness of students’
solutions drawn from a laboratory course on logic programming and knowledge representation at
the Vienna University of Technology, employing relativised uniform equivalence with projection
as the underlying program correspondence notion. We complement our investigation by discussing
a performance evaluation of cc>, showing that discriminating among different back-end solvers
for quantified propositional logic is a crucial issue towards optimal performance.

vii

Contents

1 Introduction 1

2 Preliminaries 7
2.1 Logic Programs . 7
2.2 Program Correspondence . 9
2.3 Quantified Propositional Logic . 11
2.4 Complexity Theory . 13

3 Propositional Query Implication and Equivalence Problems 17
3.1 Basic Definitions and Properties . 17
3.2 Model-Theoretic Characterisations . 21
3.3 Relations Between Correspondence Problems 23
3.4 Computational Complexity . 29

4 Translations into Quantified Propositional Logic 33
4.1 Ancillary Modules . 34
4.2 Main Translations . 35
4.3 Simplifications and Special Cases . 37
4.4 Transformations into Normal Forms . 43

5 The Reasoning Tool cc> 47
5.1 System Methodology . 47
5.2 Illustrating Example . 48
5.3 Obtaining Counterexamples . 50

6 Empirical Evaluation of cc> 53
6.1 Experimental Setup . 53
6.2 Results . 54

7 cc> on Stage: A Verification Application 63
7.1 Programs with Variables . 63
7.2 Problem Specification . 65
7.3 Program Verification . 67
7.4 Results . 72

ix

8 Related Work 75

9 Conclusion and Future Work 79

Bibliography 81

x

CHAPTER 1
Introduction

An important issue in software development is to determine whether two encodings of a given
problem are equivalent, i.e., whether they compute the same result on a given problem instance.
Although the question is well known to be undecidable for Turing-complete programming lan-
guages, there are important programming languages for knowledge representation (KR) where it
is decidable. Our object of investigation is one such language, viz. the class of disjunctive logic
programs (DLPs) under the answer-set semantics [34].

Logic programs under the answer-set semantics represent the canonical instance of the general
answer-set programming (ASP) paradigm, an important approach for declarative problem solv-
ing. The characteristic feature of ASP is that solutions to problems are given by the models (the
“answer sets”) of their encodings and not by proofs as in traditional logic-based formalisms. ASP
has been proven useful in a variety of domains, such as semantic-web reasoning [71], systems
biology [36], planning [23], diagnosis [22,53], configuration [79], multi-agent systems [4], cladis-
tics [11,31], super optimisation [10], etc. The success of ASP is mainly due to two reasons: First,
the performance of answer-set solvers, like clasp [33, 72] or DLV [17, 44], is improving con-
tinuously [12, 16]. Second, ASP offers an expressive high-level specification language and thus
allows to model problems with ease. For a comprehensive introduction to ASP, we refer to the
well-known textbook by Baral [3].

Given the nonmonotonic nature of DLPs under the answer-set semantics, a standard equiva-
lence notion in the sense that two programs are viewed as being equivalent if they have the same
answer sets is too weak to yield a replacement property like in classical logic. That is to say, given
a programM along with some subprogram P ⊆M , when replacing P with an equivalent program
Q in M , it is not guaranteed that Q ∪ (M \ P) is equivalent to M . This led to the introduction of
stricter notions of equivalence, viz. strong equivalence [46] and uniform equivalence [25].

In fact, this research was for the most part initiated by the seminal work of Lifschitz, Pearce,
and Valverde [46] about strong equivalence. Albeit the latter notion in effect amounts to a replace-
ment property by definition, and thus circumvents the failure of ordinary equivalence in this regard,
it is however too restrictive for certain applications. This led to the investigation of more liberal
notions, chiefly among them uniform equivalence [25]: uniform equivalence checks whether two

1

programs have the same answer sets for any arbitrary input, i.e., when joined with any set of facts.
In more formal terms, two programs P and Q are strongly equivalent iff, for any program R

(the “context program”), P ∪R and Q∪R have the same answer sets, and P and Q are uniformly
equivalent iff the former condition holds for any set R of facts. For illustration, consider the
programs

P = {a ∨ b←} and Q =
{
a← not b ,
b← not a

}
,

which express the nondeterministic selection of one of the atoms a or b. Both programs yield the
same answer sets, viz. {a} and {b}. Nevertheless, consider the context program

R =
{
a← b ,
b← a

}
.

The unique answer set of P ∪R is {a, b} while Q∪R has no answer set at all. Thus, P and Q are
not strongly equivalent. On the other hand, P and Q are uniformly equivalent since any addition
of facts does not close the cycle between a and b, and thus the difference between disjunction and
guessing via default negation does not come into effect in this case.

While strong equivalence is relevant for program optimisation and modular programming in
general [26, 49, 67], uniform equivalence is useful in the context of hierarchically structured pro-
gram components, where lower-layered components provide input for higher-layered ones. We
note that uniform equivalence was first studied in the context of datalog programs as a decidable
approximation of datalog equivalence [78].

Strong and uniform equivalence are, however, too restrictive in the sense that standard pro-
gramming techniques like the use of local (auxiliary) variables, which may occur in some subpro-
grams but which are ignored in the final computation, is not taken into account. In other words,
these notions do not admit the projection of answer sets to a set of designated output letters. To
illustrate this, consider programs

P ′ = P ∪ {a← c} and Q′ = Q ∪
{
a← e, c ,
e←

}
,

where P and Q are the programs from the above. While the rule a ← c in P ′ expresses that a
is selected if c is known, the same condition is formulated in Q′ using an additional fact e. The
augmented programs P ′ and Q′ are not uniformly equivalent as each answer set of Q′ contains e
which is not in any answer set of P ′. However, if we take a and b as designated output letters and
determine uniform equivalence on the basis of answer sets projected to {a, b}, equivalence does
hold.

In previous work, Eiter, Tompits, and Woltran [30] introduced a general framework for defin-
ing parameterised notions of program correspondence, allowing for both answer-set projection as
well as the specification of the context class of programs that should be used for comparisons.
This framework thus generalises not only strong and uniform equivalence but also relativised ver-
sions thereof [87] (where “relativised” means that the alphabet of the context class is an additional
parameter). In their analysis, Eiter, Tompits, and Woltran [30] focused on correspondence prob-
lems for propositional DLPs effectively generalising strong equivalence—in other words, they
considered correspondence problems amounting to relativised strong equivalence with projection.

2

The system cc> [55] was developed as a checker for the type of correspondence problems
which were the main focus of the analysis of Eiter et al. [30], i.e., for correspondence problems
generalising strong equivalence. The main approach of cc> to verify these kinds of problems is to
reduce them to the satisfiability problem of quantified propositional logic. Recall that quantified
propositional logic is an extension of ordinary propositional logic allowing quantifications over
atomic formulas. Following custom, we refer to formulas of quantified propositional logic as
quantified Boolean formulas (QBFs). Such a reduction approach is motivated by two aspects:

(i) the high complexity of the considered problems—lying on the fourth level of the polynomial
hierarchy—makes it presumably infeasible to compute them by means of (propositional)
answer-set solvers, yet efficient encodings to quantified propositional logic are possible, and

(ii) the existence of sophisticated solvers for quantified propositional logic.

In this thesis, we complement these investigations by considering correspondence problems
that amount to relativised uniform equivalence with projection. More formally, we assume two
fixed alphabets A and B (i.e., sets of atoms) which serve as parameters of our equivalence prob-
lems. Then, given two programs P and Q, we check, for any set R ⊆ A of facts, whether the
answer sets of P ∪ R and Q ∪ R projected to B coincide. (In a relativised strong equivalence
problem with projection, R would be a program over A.) Like Eiter, Tompits, and Woltran [30],
we also consider implication problems, i.e., checking set inclusion of the projected answer sets
rather than equality. In such a setting, Q can be viewed as an approximation of P which is sound
with respect to cautious reasoning from P . Note that since relativised strong equivalence (resp.,
implication) with projection implies relativised uniform equivalence (resp., implication) with pro-
jection (with respect to the same alphabets) but not vice versa, characterisations of the former
kinds of problems in general do not capture the latter kinds of problems and so new methods are
needed. Developing such characterisations is actually one of the main achievements of this thesis.

Taking a database point of view in which logic programs are seen as queries over databases,
we refer to the equivalence problems studied here as propositional query equivalence problems
(PQEPs) and to the considered implication problems as propositional query implication problems
(PQIPs).

Contribution of the Thesis

The main contributions of this thesis can be summarised as follows:

• We introduce semantic characterisations for PQEPs and PQIPs in terms of novel structures
associated with each program. We have that a PQEP holds iff the associated structures
coincide, and a PQIP holds iff the structures meet set inclusion. Interestingly, our character-
isation differs from the well-known characterisation of (relativised) uniform equivalence in
terms of (relativised) UE-models [25, 87] in case the projection set is unrestricted. Thus, as
a by-product, we obtain a new characterisation of these special forms of equivalence.

• We analyse the computational complexity of checking PQEPs and PQIPs. While check-
ing the kinds of correspondence problems analysed by Eiter, Tompits, and Woltran [30] is

3

ΠP
4 -complete in general, checking PQEPs or PQIPs is “only” ΠP

3 -complete. As checking
relativised strong or uniform equivalence is ΠP

2 -complete [87], projection thus adds a source
of complexity, providing the polynomial hierarchy does not collapse.

• Since checking PQEPs and PQIPs is computationally hard—lying on the third level of the
polynomial hierarchy—a similar reduction approach to QBFs as for the their strong counter-
parts is viable. In fact, we provide efficient reductions of PQEPs and PQIPs into quantified
propositional logic and discuss simplifications for certain special cases. We also discuss
an extension of cc> [55] for checking PQIPs and PQEPs. The new component of cc>
is based on these QBF reductions. Given the availability of efficient off-the-shelf solvers
for the latter language, we thus can employ them for deciding the correspondence problems
under consideration.

• As cc> admits the use of different QBF solvers as back-end engines, we report about an
experimental evaluation of the tool using a set of benchmark problems. This evaluation
shows the runtime behaviour of the system depending on a chosen solver. The experiments
were based on a set of parameterisable benchmarks stemming from the hardness proof of
the complexity analysis for the corresponding equivalence problems. These benchmarks
have the particular advantage that they can be used to easily verify the correctness not only
of cc> but also of the employed QBF solvers. This proved to be very helpful during the
development of the system. The experiments show that discriminating among different
back-end QBF solvers is crucial towards optimal performance.

• We discuss how PQEPs can be used to verify the correctness of solutions provided by
students as part of their assignments for a laboratory course on logic programming and
knowledge-based systems at our university, relative to a reference solution. The assign-
ments are taken from the domain of model-based diagnosis and use the diagnosis front-end
of the well-known answer-set solver DLV [17, 44] as underlying reasoning engine. The
main difficulty for verifying the students’ solutions is that PQEPs deal with propositional
programs only, whilst the programs in our application scenario are non-ground. A naive
grounding would not be feasible, so we resorted to a special technique restricting the do-
main to admissible inputs as well as employing the intelligent grounder of DLV. It turned out
that verifying the solutions in this way yielded less false positives than the testing approach
employed in the courses, which is based on a collection of sample test cases.

Organisation of the Thesis

The thesis is organised as follows. In Chapter 2, we give a formal background on logic pro-
grams under the answer-set semantics, notions of program correspondence, quantified proposi-
tional logic, and complexity theory. Then, in Chapter 3, we introduce the central objects of our
investigations: PQIPs and PQEPs. We provide basic definitions and study properties as well as re-
lations between such correspondence problems. After a model-theoretic characterisation of PQIPs
and PQEPs, we provide a basic complexity analysis regarding the important reasoning tasks. In
Chapter 4, we describe how PQIPs and PQEPs can be translated to QBFs. In particular, we outline
the single modules used to realise such translations in detail, we discuss how the transformation

4

can be simplified for many special cases of correspondence problems known from the literature,
and we review our method to transform resulting QBFs into certain normal forms required by most
off-the-shelf QBF solvers. The tool cc> that implements respective QBF translations is subject of
Chapter 5. We explain the overall methodology of cc> and illustrate how to use it with a simple
example. In Chapter 6, we report on an empirical analysis of cc> and different back-end QBF
solvers on different classes of benchmark problems. We outline the experimental setup and discuss
the obtained results. Subsequently, in Chapter 7, we describe a case study where we used cc>
in a real-world scenario. In particular, we outline an application scenario of cc> for verifying
students’ solutions stemming from a course on logic programming. Then, we review related work
in Chapter 8. Finally, we conclude and give pointers to future work in Chapter 9.

Bibliographic Notes

The results of this thesis are published in different workshop and conference proceedings. In
particular, the system cc>was first presented at the 20th Workshop on Logic Programming (WLP
2006) [58]. More thorough descriptions of the system and the underlying reduction approach for
problems generalising strong equivalence appeared in different workshop proceedings [56, 57].
A system description of cc> was also accepted for the 10th European Conference on Logics in
Artificial Intelligence (JELIA 2006) [54]. A detailed performance evaluation of cc> for problems
generalising strong equivalence appeared in the proceedings of the 15th International Conference
on Computing (CIC 2006) [55].

PQIPs and PQEPs were first introduced at the Workshop on Correspondence and Equivalence
for Nonmonotonic Theories (CENT 2007) [62]. Later, a respective conference paper was accepted
for the 22nd National Conference on Artificial Intelligence (AAAI 2007) both as a poster and as a
regular research paper [63]. The extended component of cc> for deciding PQIPs and PQEPs was
first presented at the 20th Workshop on Logic Programming (WLP 2007) [59]. A performance
analysis of this component as well as a case study describing an verification application appeared
in the proceedings of the 10th International Conference on Logic Programming and Nonmonotonic
Reasoning (ICLP 2009) [60].

5

CHAPTER 2
Preliminaries

In the following, we present formal preliminaries about logic programs under the answer-set se-
mantics and we review notions of program correspondence. Furthermore, we review quantified
propositional logic and basics on complexity theory.

2.1 Logic Programs

We are concerned with propositional disjunctive logic programs (DLPs) which are finite sets of
rules of form

a1 ∨ · · · ∨ al ← al+1, . . . , am, not am+1, . . . ,not an, (2.1)

where n≥m≥ l≥ 0, all ai, 1 ≤ i ≤ n, are propositional atoms from some fixed universe U , and
“not” denotes default negation. Rules of form a ← are facts and are usually written without the
symbol “←”. For a rule r of form (2.1), We refer to a1, . . . , al as the head of r, to al+1, . . . , am
as the positive body of r, and to am+1, . . . , an as the negative body of r. If the head of r is empty,
we say that r is as a constraint.

For a program P , an atom a is extensional in P if it does not occur in the head of any rule in
P , and a is intensional otherwise.

We denote by At(P) the set of all atoms occurring in a program P , and we say that a program
is over A if At(P) ⊆ A. We use PA to refer to the set of all programs over A, and we use FA to
refer to the set of all programs over A that consist of facts only.

By an interpretation, we understand a set of atoms. A rule r of form (2.1) is true under an
interpretation I , symbolically I |= r, iff {a1, . . . , al} ∩ I 6= ∅ whenever {al+1, . . . , am} ⊆ I and
{am+1, . . . , an} ∩ I = ∅. If I |= r holds, then I is also said to be a model of r. As well, I is a
model of a program P , symbolically I |= P , iff I |= r, for all r ∈ P .

Following Gelfond and Lifschitz [34], an interpretation I is an answer set of a program P iff
it is a subset-minimal model of the reduct P I , resulting from P by

(i) deleting all rules containing a default negated atom not a such that a ∈ I , and

7

(ii) deleting all default negated atoms in the remaining rules.

The collection of all answer sets of a program P is denoted by AS (P). Note that each answer set
of P is a subset of At(P). As customary, we will identify sets of facts with interpretations and
vice versa.

For instance, consider the following program:

P =

male ∨ female ← person ,

adult ← person, not child ,
person ←

 .

The intended meaning is that a person is either male or female. Furthermore, a person is an adult
by default. More precisely, we assume that a person is an adult if there is no evidence that the
person is a child. One answer set M of P is {person, adult , female}. In order to verify this, we
have to inspect the reduct of P with respect to M :

PM =

male ∨ female ← person ,

adult ← person ,
person ←

and test whether M is minimal model of PM . This is indeed the case, thus M is an answer set of
P . One can verify that N = {person, adult , female} is the only answer set of P besides M by
investigating all other subsets of At(P).

We will make use of the following properties of the program reducts and the relation |= in the
sequel:

• For every interpretation Y and for every program P , Y |= P Y iff Y |= P .

• For every interpretation I and J , and for every program P and Q, the following statements
are equivalent:

(i) I |= (P ∪Q)J ,

(ii) I |= P J ∪QJ , and

(iii) both I |= P J and I |= QJ .

• Let X be a set of facts and let Y be an arbitrary interpretation. Then, XY = X and, for any
interpretation Z, Z |= XY iff X ⊆ Z.

Proposition 1 Let P be a program over universe U , X a set of facts over U , and let Y be an
interpretation. Then, Y ∈ AS (P ∪X) iff

(i) Y |= P ,

(ii) X ⊆ Y , and

(iii) for each Y ′, if X ⊆ Y ′ ⊂ Y , then Y ′ 6|= P Y .

8

Proof. By the definition of the an answer set, Y ∈ AS (P ∪ X) iff Y is a minimal model of
(P ∪X)Y , which holds iff Y is a minimal model of P Y ∪XY . SinceX is a set of facts, XY = X ,
and we obtain that Y ∈ AS (P ∪ X) iff Y is a minimal model of P Y ∪ X . The latter holds iff
Y |= P Y ∪X and for each Y ′, if Y ′ ⊂ Y then Y ′ 6|= P Y ∪X . Now, Y |= P Y ∪X iff Y |= P Y

and Y |= X . As well, Y ′ 6|= P Y ∪X iff Y ′ 6|= P Y or Y ′ 6|= X . We obtain that Y ∈ AS (P ∪X)
iff Y |= P Y , Y |= X , and for each Y ′, if Y ′ ⊂ Y and Y ′ |= X , then Y ′ 6|= P Y . Finally, we use
the properties that

• Y |= P Y iff Y |= P ,

• Y |= X iff X ⊆ Y , and

• Y ′ |= X iff X ⊆ Y ′,

and obtain that Y ∈ AS (P ∪ X) iff Y |= P , X ⊆ Y , and for each Y ′, if X ⊆ Y ′ ⊂ Y , then
Y ′ 6|= P Y , which concludes the proof. �

We will also make use of a splitting property introduced by Lifschitz and Turner [47]. Let P
be a logic program. Then, a splitting set for P is any set U such that, for every rule r ∈ P of
form (2.1), if {a1, . . . , al} ∩ U 6= ∅, then {a1, . . . , an} ⊆ U . The set of rules r ∈ P of form (2.1)
with {a1, . . . , an} ⊆ U is the bottom of P relative to U .

Proposition 2 (Lifschitz [47]) Let U be a splitting set for a program P and let B be the bottom
of P with respect to U . Then, an interpretation A is an answer set of P iff there exists some
A′ ∈ AS (B) such that A ∈ AS ((P \B) ∪A′).

We use the following notation in the sequel: For an interpretation I and a collection S of
interpretations, S|I is defined as {Y ∩ I | Y ∈ S}. For a singleton set S = {Y }, we also write
Y |I instead of S|I . Furthermore, for sets S and S ′ of interpretations, an interpretation B, and
� ∈ {⊆,=}, we define S �B S ′ iff S|B � S ′|B .

2.2 Program Correspondence

Next, we recapitulate characterisations of some important notions of program correspondence
from the literature.

One rather basic concept is the notion of ordinary equivalence: Two programs P and Q are
ordinarily equivalent iff AS (P) = AS (Q).

As noted already in the introduction, Lifschitz, Pearce, and Valverde [46] introduced the notion
of strong equivalence where two programs P and Q are strongly equivalent iff AS (P ∪ R) =
AS (Q ∪ R), for any program R. Strong equivalence can be characterised by SE-models [85]:
A pair (X,Y) of interpretations with X ⊆ Y is an SE-model for a program P iff Y |= P and
X |= P Y . Let SE (P) denote the set of SE-models of a program P . Then, two programs P and Q
are strongly equivalent iff SE (P) = SE (Q) [85].

Following Eiter and Fink [25], two programs P and Q are uniformly equivalent iff AS (P ∪
F) = AS (Q ∪ F), for any set F of facts. They gave a characterisation in terms of UE-models
which are a selection of special SE-models: A pair (X,Y) of interpretations is a UE-model for

9

a program P iff, for every SE-model (X ′, Y) of P , it holds that X ⊂ X ′ implies X ′ = Y . We
denote the set of all UE-models of P by UE (P). Two programs P andQ are uniformly equivalent
iff UE (P) = UE (Q).

The notion of strong equivalence has been generalised as follows. Two programs P and Q are
strongly equivalent relative to a set A of atoms iff AS (P ∪ R) = AS (Q ∪ R), for any program
R over A [87]. This notion can be characterised by means of A-SE-models: A pair (X,Y) with
X = Y or X ⊂ Y |A is an A-SE-model for a program P iff Y |= P , for all Y ′ ⊆ Y with
Y ′|A = Y |A, Y ′ 6|= P Y , and X ⊂ Y implies the existence of an X ′ ⊆ Y with X ′|A = X
such that X ′ |= P Y [87]. Let SEA(P) denote the set of all A-SE-models of a program P . Two
programs P and Q are strongly equivalent relative to a set A of atoms iff SEA(P) = SEA(Q).

Woltran [87] also relativised the notion of uniform equivalence in the following sense: Let
P and Q be two programs, P and Q are uniformly equivalent relative to A iff AS (P ∪ F) =
AS (Q ∪ F), for any set F ⊆ A. A pair (X,Y) is an A-UE-model of a program P iff (X,Y) is
an A-SE-model for P and, for every A-SE-model (X ′, Y) of P, X ⊂ X ′ implies X ′ = Y . We
denote the set of all A-UE-models of P by UEA(P). Then, two programs P and Q are uniformly
equivalent relative to A iff UEA(P) = UEA(Q).

Following Eiter, Tompits, and Woltran [30], a correspondence problem (over U) is a quadruple
Π = (P,Q, C, ρ), where P,Q ∈ PU are programs over U , C ⊆ PU is a class of programs (the
context class of Π), and ρ ⊆ 22U × 22U is a binary relation over sets of interpretations. Π is said
to hold iff, for each program R ∈ C, (AS (P ∪ R),AS (Q ∪ R)) ∈ ρ. By instantiating C and
ρ, different equivalence notions from the literature can be expressed. In particular, the following
relations hold:

• P and Q are ordinarily equivalent iff (P,Q, {∅},=U) holds;

• P and Q are strongly equivalent iff (P,Q,PU ,=U) holds;

• P and Q are uniformly equivalent iff (P,Q,FU ,=U) holds;

• P and Q are strongly equivalent relative to A, for A ⊆ U , iff (P,Q,PA,=U) holds; and

• P and Q are uniformly equivalent relative to A, for A ⊆ U , iff (P,Q,FA,=U) holds.

Eiter, Tompits, and Woltran [30] considered even more fine-grained correspondence prob-
lems, viz. problems of form (P,Q,PA,=B) and (P,Q,PA,⊆B) with A,B ⊆ U . For verifying
such correspondence problems, Eiter, Tompits, and Woltran [30] introduced the notion of an A-
B-certificate: without going into details, (P,Q,PA,=B) holds iff P and Q have the same A-B-
certificates. In this work, the focus is on problems of form (P,Q,FA,=B) and (P,Q,FA,⊆B),
for A,B ⊆ U . Inter alia, we will introduce model-theoretic characterisations for such problems
similar to A-B-certificates in the sense that (P,Q,FA,=B) holds iff the associated structures
coincide, and (P,Q,FA,⊆B) holds if the associated structures meet set inclusion.

Example 1 Recall program P from the above. Define P ′ = P \ {person ←} and consider the
following program:

Q =
{

male ← person, not female ,
female ← person, not male

}
.

10

Since AS (P ′) = AS (Q) = {∅}, P ′ and Q are equivalent in the ordinary sense. Nevertheless, P ′

and Q are not strongly equivalent which is witnessed, e.g., by R = {person}:

AS (P ′ ∪R) = {{male, adult}, {female, adult}}

but
AS (Q ∪R) = {{male}, {female}} .

Since R contains only a fact, it follows that P and Q are not uniformly equivalent as well. How-
ever, consider problems (P ′, Q,FA,=B) over U with A ⊆ U and B = {male, female}. It is
straightforward to verify that all such problems hold. ♦

2.3 Quantified Propositional Logic

We also make use of quantified propositional logic, an extension of classical propositional logic
where formulas are permitted to contain quantifications over propositional atoms. In fact, quan-
tified propositional logic constitutes the target language for our reduction approach for deciding
correspondence problems. We assume that the reader is familiar with classical propositional logic
and recapitulate the basic facts about quantified propositional logic in this section.

Similar to predicate logic, ∃ and ∀ are used as symbols for existential and universal quan-
tification, respectively. It is customary to refer to formulas of quantified propositional logic as
quantified Boolean formulas (QBFs).

The language of QBFs is inductively defined as follows:

(i) each propositional atom, including the truth constant >, is a QBF;

(ii) if Φ is a QBF, then ¬(Φ) is a QBF;

(iii) if Φ and Ψ are QBFs, then (Φ ◦Ψ), for ◦ ∈ {∧,∨}, is a QBF; and

(iv) if Φ is a QBF, then Qp (Φ), where Q ∈ {∃,∀} and p is a propositional atom, is a QBF,

(v) a QBF is constructed only according to (i)–(iv).

For two QBFs Φ and Ψ, (Φ → Ψ) is an abbreviation for (¬(Φ) ∨ Ψ), and (Φ ↔ Ψ) is an
abbreviation for ((Φ → Ψ) ∧ (Ψ → Φ)). Also, ⊥ abbreviates ¬(>). As usual, parentheses may
be omitted as long as no ambiguities arise. If parentheses are omitted, we assume the following
precedence order concerning the binding of connectives:

¬ , ∧ , ∨ , → , ↔ .

Note that Items (i)–(iii) above define the language of classical propositional logic.
For a QBF of form QpΨ, where Q ∈ {∃, ∀}, we call Ψ the scope of Qp. An occurrence of

an atom p not directly preceded by ∃ or ∀ is free in a QBF Φ if it does not occur in the scope of a
quantifier Qp in Φ. A QBF without free occurrences of atoms is closed.

The immediate subformula relation is defined as follows. Given formulas Φ and Ψ, formula Ψ
is an immediate subformula of Φ iff Φ is of one of the following forms: ∀pΨ, ∃pΨ, ¬Ψ, Ψ ∧Ψ′,

11

Ψ′ ∧Ψ, Ψ ∨Ψ′, or Ψ′ ∧Ψ, for some formula Ψ′ and some atom p. As customary, the subformula
relation is the transitive-reflexive closure of the immediate subformula relation.

In a QBF ¬Φ, Φ is the scope of ¬. Given a QBF Φ defined according to the formation rules
(i)–(v) without the use of abbreviations, each occurrence of a subformula in Φ has an associated
polarity with respect to Φ. Polarities are either positive or negative and can be defined as follows:
An occurrence of a subformula Ψ is positive within a formula Φ if that occurrence of Ψ is in the
scope of an even number of occurrences of the negation operator ¬ in Φ, otherwise the occurrence
of Ψ is negative within Φ.

Let P be a finite set of atoms. Then, QP Ψ stands for the QBF

Qp1Qp2 · · ·Qpn Ψ ,

for any list p1, . . . , pn of atoms such that {p1, . . . , pn} = P and Q ∈ {∀, ∃}.
We adopt the convention that an interpretation is identified with the set of atoms that are true in

this interpretation. For an interpretation I and a QBF Φ, the relation I |= Φ is recursively defined
as follows:

1. if Φ = >, then I |= Φ;

2. if Φ = p, where p is a propositional atom, then I |= Φ iff p ∈ I;

3. if Φ = ¬Ψ, then I |= Φ iff I 6|= Ψ;

4. if Φ = Ψ ∧ Ω, then I |= Φ iff I |= Ψ and I |= Ω;

5. if Φ = Ψ ∨ Ω, then I |= Φ iff I |= Ψ or I |= Ω;

6. if Φ = ∃pΨ, then I |= Φ iff I \ {p} |= Ψ or I ∪ {p} |= Ψ; and

7. if Φ = ∀pΨ, then I |= Φ iff I \ {p} |= Ψ and I ∪ {p} |= Ψ.

Let I be an interpretation. Then, I is a model of a QBF Φ iff I |= Φ. We say that Φ is true
under I if I is a model of Φ, otherwise Φ is false under I . A QBF Φ is satisfiable iff Φ possesses
at least one model. Furthermore, Φ is valid iff I |= Φ for each interpretation I . Note that a
closed QBF Φ is valid iff Φ is satisfiable. Two QBFs Φ and Ψ are equivalent iff Φ and Ψ have the
same models. Moreover, Φ and Ψ are satisfiability equivalent iff Φ is satisfiable whenever Ψ is
satisfiable and vice versa.

Let Φ be a QBF and X the set of all atoms with a free occurrence in Φ. Then, the existential
closure of Φ is the QBF ∃X Φ. Clearly, if a QBF Φ is satisfiability equivalent to a QBF Ψ, then
the existential closure of Φ and the existential closure of Ψ are equivalent.

Similar to classical propositional logic, we can state a replacement property with respect to
equivalent subformulas.

Proposition 3 Consider two equivalent QBFsA andB. Then, any QBF Φ withA as a subformula
is equivalent to Φ′, where Φ′ results from Φ by replacing one or more occurrences of A in Φ by B.

12

Proof. The result follows by straightforward induction on the logical complexity of Φ, i.e., the
number of connectives occurring in Φ. �

A QBF Φ is said to be in prenex normal form (PNF) iff it is closed and of the form

QnPn · · ·Q1P1 φ, (2.2)

where n ≥ 0, φ is a propositional formula, Qi ∈ {∃,∀} such that Qi 6= Qi+1 for 1 ≤ i ≤ n − 1,
and (P1, . . . , Pn) is a partition of the propositional variables occurring in φ. We say that Φ is in
prenex conjunctive normal form (PCNF) iff Φ is of the form (2.2) and φ is in conjunctive normal
form. Likewise, Φ is in prenex disjunctive normal form (PDNF) iff Φ is of the form (2.2) and φ is
in disjunctive normal form.

A QBF of form (2.2) is also referred to as an (n,Qn)-QBF. Any closed QBF Φ is easily
transformed into an equivalent QBF Φ′ in prenex normal form such that each quantifier occurrence
from the original QBF Φ corresponds to a quantifier occurrence in Φ′. Let us call such a QBF Φ′ a
prenex normal form (PNF) of Φ. In general, there are different ways to obtain an equivalent QBF
in PNF, cf. the work of Egly et al. [19] for more details on this issue.

2.4 Complexity Theory

We proceed by recapitulating some basic facts about complexity theory which deals with problem
classes, their properties, and their relations among each other. For more information, we refer
to the work of Papadimitriou [66]. Problems are examined with respect to their structural, i.e.,
problem inherent, complexity. A problem class is defined as a set of problems that can be solved
using a certain machine model under bounded resources.

The classical machine model is the Turing machine [84]. Resources for computation are usu-
ally limited by running time and memory space. We distinguish between deterministic Turing
machines (DTMs) and non-deterministic Turing machines (NDTMs). Both have the same compu-
tational power, but the NDTM branches non-deterministically from one state to a set of successor
states and can execute computation in some sense in parallel. Whether a NDTM can be simulated
by a DTM in polynomial time is one of the most prominent open question in theoretical computer
science so far.

A problem description (or simply a problem) is a pair (L, Y), where L is a formal language
and Y ⊆ L, representing the positive instances. The decision problem associated with (L, Y) is
the problem of determining whether I ∈ Y , for some problem instance I ∈ L.

A complexity class is a collection of decision problems. In the context of this work, we con-
sider the following prominent complexity classes:

• P, the class of problems that can be solved by a DTM in polynomial time with respect to the
size of the problem instance;

• NP, the class of problems that can be solved by a NDTM in polynomial time with respect
to the size of the problem instance; and

• PSPACE, the class of problems that can be solved by a DTM using polynomial space with
respect to the size of the problem instance.

13

For a problemA = (L, Y), the complementary problem, Ā, is defined as (L,L\Y). For a problem
class C, the complementary class co-C is defined as {Ā|A ∈ C}. The following set inclusions
hold:

P ⊆ NP ⊆ PSPACE.

It is unknown so far whether these inclusions are proper or not. Given two problems P1 = (L1, Y1)
and P2 = (L2, Y2), P1 is polynomial-time many-to-one reducible to P2, denoted by P1 � P2, iff
there exists a function f that maps each problem instance I1 ∈ L1 to an instance I2 ∈ L2 in
polynomial time such that I1 ∈ L1 iff f(I1) ∈ L2. For a class C, a problem A is called hard with
respect toC, orC-hard, iff for eachB ∈ C, it holds thatB � A. A is called complete with respect
to C, or C-complete, iff it is hard for C and a member of C, i.e., A ∈ C. To prove completeness
for a problem A with respect to a class C, it is sufficient to

1. show that B � A for some problem B that is hard for C, and

2. show membership of A, i.e., A ∈ C.

Many problems, especially in the field of propositional nonmonotonic reasoning, are hard for NP
(resp., co-NP) and members of the class PSPACE without being hard for it. For those problems, it
is appropriate to make use of the concept of oracle classes. An oracle for a classC can be regarded
as a procedure that solves problems A ∈ C in constant time. For a complexity class C, the class
PC (resp., NPC) denotes the class of problems that can be solved by a DTM (resp., NDTM) with
the help of an oracle for class C in polynomial time.

The polynomial hierarchy (PH) [80] consists of classes ΣP
k ,Π

P
k ,∆

P
k , k ≥ 0, and is inductively

defined as follows: for k = 0,
ΣP

0 = ΠP
0 = ∆P

0 = P,

and, for k > 0,

∆P
k+1 = PΣP

k ,

ΣP
k+1 = NPΣP

k ,

ΠP
k+1 = co-ΣP

k+1 .

The following relations hold:

∆P
k ⊆ (ΣP

k ∩ΠP
k) ,

(ΣP
k ∪ΠP

k) ⊆ ∆P
k+1 , and

∞⋃
k=0

ΣP
k ⊆ PSPACE .

For QBFs, the following property is essential:

Proposition 4 (Meyer and Stockmeyer [50]) For every k ≥ 0, deciding the truth of a given
(k,∃)-QBF is ΣP

k -complete.
Likewise, deciding the truth of a given (k, ∀)-QBF is ΠP

k -complete.

14

Hence, any decision problem D in ΣP
k (resp., ΠP

k) can be mapped in polynomial time to a
(k, ∃)-QBF (resp., (k, ∀)-QBF) Φ such that D holds iff Φ is valid. Let T [·] be an encoding from
decision problems into QBFs. Following Besnard et al. [8], T [·] is adequate iff, for each decision
problem D,

(i) T [D] evaluates to true iff D holds,

(ii) T [D] is computable in polynomial time with respect to the size of D, and

(iii) determining the truth value of the QBF resulting from T [D] is not computationally harder
than checking whether D holds.

15

CHAPTER 3
Propositional Query Implication and

Equivalence Problems

Eiter, Tompits, and Woltran [30] focused on two important instantiations of their framework, viz.
on problems of form (P,Q,PA,⊆B) and of form (P,Q,PA,=B), where A,B ⊆ U are sets
of atoms fixing the alphabet of the context class PA and the alphabet relevant in comparing the
answer sets, respectively. Our interest here are correspondence problems likewise parameterised
by A and B as above, but where the context class is given by sets of facts from A rather than PA.

3.1 Basic Definitions and Properties

Definition 1 Let U be a set of atoms, A,B ⊆ U , and P,Q ∈ PU . Then,

(i) (P,Q,FA,⊆B) is a propositional query implication problem (over U), or PQIP, and

(ii) (P,Q,FA,=B) is a propositional query equivalence problem (over U), or PQEP.

Example 2 Consider the programs

P =
{
a ∨ b← ,
a← c

}
and Q =

a← not b ,
b← not a ,
c← a

 .

The answer sets of P and Q are given by AS (P) = {{a}, {b}} and AS (Q) = {{a, c}, {b}}.
Choosing B = {a, b}, we then have that

AS (P)|B = AS (Q)|B = {{a}, {b}} .

In fact, for A = B = {a, b}, the PQEP (P,Q,FA,=B) holds. ♦

17

Note that (P,Q,PA,⊆B) holds only if (P,Q,FA,⊆B) holds, but not vice versa. Indeed, the
PQIP (P,Q,FA,⊆B) from Example 2 holds but (P,Q,PA,⊆B) does not hold, as witnessed by
the context program {

a← b,
b← a

}
∈ PA .

It is convenient to assemble the objects witnessing the violation of a PQIP into a single concept.
We introduce two versions of such a concept.

Definition 2 Let Π = (P,Q,FA,⊆B) be a PQIP over U . Then,

(i) a pair (X,Y) with X ⊆ A and Y ⊆ U is an explicit counterexample (over U) for Π iff
Y ∈ AS (P ∪X) and no Y ′ with Y ′|B = Y |B is contained in AS (Q ∪X); and

(ii) a pair (X,Y) with X ⊆ A and Y ⊆ B is a projective counterexample for Π iff Y ∈
AS (P ∪X)|B and Y /∈ AS (Q ∪X)|B .

Lemma 1 Let Π = (P,Q,FA,⊆B) be a PQIP over U . For any explicit counterexample (X,Y)
for Π, (X,Y |B) is a projective counterexample for Π.

Conversely, for any projective counterexample (X,Y) for Π, there exists an explicit counterex-
ample (X,Y ′) with Y ′|B = Y .

Proof. Assume (X,Y) is an explicit counterexample for Π. Hence, by definition, (i) Y ∈ AS (P ∪
X) and (ii) there is no Y ′ with Y ′|B = Y |B such that Y ′ ∈ AS (Q∪X). From (i), we immediately
get that Y |B ∈ AS (P ∪X)|B and (ii) implies that Y |B itself is not an answer set of Q∪X , hence
Y |B 6∈ AS (Q ∪X)|B . But then, (X,Y |B) is a projective counterexample for Π by definition.

For the second part of the lemma, assume that (X,Y) is a projective counterexample for Π.
Therefore, (i) Y ∈ AS (P ∪X)|B but (ii) Y 6∈ AS (Q∪X)|B . Condition (i) implies the existence
of a Y ′ ∈ AS (P ∪X) with Y ′|B = Y . It follows from Condition (ii) that no Z with Z|B = Y is
contained in AS (Q ∪X), and hence, no Z with Z|B = Y ′|B is contained in AS (Q ∪X). Thus,
(X,Y ′) is an explicit counterexample for Π. �

Theorem 1 Let Π = (P,Q,FA,⊆B) be a PQIP over U . Then, the following conditions are
equivalent:

(i) Π does not hold;

(ii) Π has an explicit counterexample; and

(iii) Π has a projective counterexample.

Proof. We show that (i) implies (ii), (ii) implies (iii), and (iii) implies (i). Assume that Condition (i)
holds, i.e., Π does not hold. Thus, there exists an X ∈ FA such that

AS (P ∪X) ⊆B AS (Q ∪X)

18

does not hold, i.e., there exists a set Y such that Y ∈ AS (P ∪X) but there exists no Y ′ such that
Y ′|B = Y |B and Y ′ ∈ AS (Q∪X). Then, by definition, (X,Y) is an explicit counterexample for
Π, thus (i) implies (ii).

That Condition (iii) follows from Condition (ii) is immediately established by Lemma 1. It
remains to show that (i) follows from (iii). Assume that Π holds. Hence, for each X ∈ FA,

AS (P ∪X) ⊆B AS (Q ∪X) .

It follows that for each Y ⊆ U and for each X ∈ FA it holds that if Y ∈ AS (P ∪ X), then
there exists a Y ′ such that Y ′ =B Y and Y ′ ∈ AS (Q ∪ X). Thus, for any X ∈ FA and
any Y ⊆ U , (X,Y) is not an explicit counterexample for Π. By Lemma 1, there cannot be a
projective counterexample for Π as well. Hence, Condition (iii) implies Condition (i). �

Example 3 Consider P and Q from Example 2. For A = {a, b, c} and B = {a, b}, the PQIP
Π = (P,Q,FA,⊆B) does not hold. This is witnessed by ({b, c}, {a, b, c}) which is the unique
explicit counterexample (over {a, b, c}) for Π. The corresponding projective counterexample for
Π is ({b, c}, {a, b}). ♦

As far as PQEPs are concerned, we introduce the following notation:

Definition 3 For any PQEP Π = (P,Q,FA,=B),

Π→ = (P,Q,FA,⊆B) and

Π← = (Q,P,FA,⊆B)

are the PQIPs associated with Π.

Obviously, a PQEP Π holds iff both Π→ and Π← hold. We extend Definition 2 straightfor-
wardly to PQEPs.

Definition 4 A pair (X,Y) is an explicit counterexample for a PQEP Π if (X,Y) is an explicit
counterexample for Π→ or Π←.

Likewise, (X,Y) is a projective counterexample for a PQEP Π if (X,Y) is a projective coun-
terexample for Π→ or Π←.

Next, we introduce the novel concept of anA-B-wedge for programs over U , whereA,B ⊆ U .
A-B-wedges decide problems of form (P,Q,FA,�B), for � ∈ {⊆,=}, in such a way that they
can be computed separately for P and Q. In particular, A-B-wedges for a program P collect the
projected answers sets for all possible extensions of P .

Definition 5 Let A,B ⊆ U be two sets of atoms, and P ∈ PU a DLP. A pair (X,Y) of interpre-
tations with X,Y ⊆ U is an A-B-wedge (over U) of P iff

(i) X ⊆ A and

(ii) Y ∈ AS (P ∪X)|B .

19

The set of all A-B-wedges of P is denoted by ωA,B(P).

Lemma 2 A pair (X,Y) is a projective counterexample for a PQIP Π = (P,Q,FA,⊆B) iff

(i) (X,Y) ∈ ωA,B(P) and

(ii) (X,Y) 6∈ ωA,B(Q).

Proof. (⇒) Assume that (X,Y) is a projective counterexample for Π. Hence, X ⊆ A, Y ∈
AS (P ∪X)|B , and Y 6∈ AS (Q∪X)|B which implies that (X,Y) is an A-B-wedge of P but not
of Q.

(⇐) Assume that (X,Y) ∈ ωA,B(P) \ ωA,B(Q). Thus, (X,Y) is an A-B-wedge of P but
not of Q. Then, by the definition of A-B-wedges, X ⊆ A, Y ∈ AS (P ∪ X)|B , and Y 6∈
AS (Q ∪X)|B . From this follows that (X,Y) is a projective counterexample for Π. �

Now, the following central property is easily shown:

Theorem 2 Let P,Q ∈ PU be two programs and A,B ⊆ U two sets. Then,

(i) the PQIP (P,Q, FA,⊆B) holds iff ωA,B(P) ⊆ ωA,B(Q), and

(ii) the PQEP (P,Q, FA,=B) holds iff ωA,B(P) = ωA,B(Q).

Proof. First, we show Part (i). By Theorem 1, a PQIP Π = (P,Q, FA,⊆B) holds iff there
exists no projective counterexample for Π. Hence, by Lemma 2, Π holds iff there exists no pair
(X,Y) ∈ ωA,B(P) \ ωA,B(Q) which holds iff ωA,B(P) ⊆ ωA,B(Q).

As for showing Part (ii), consider the PQEP Π = (P,Q,FA,⊆B) and the associated PQIPs
Π← and Π→. The PQEP Π holds iff Π← and Π→ jointly hold. As shown above, this is the case
iff ωA,B(P) ⊆ ωA,B(Q) and ωA,B(Q) ⊆ ωA,B(P), i.e., iff ωA,B(P) = ωA,B(Q). �

Example 4 Reconsider the programs P and Q from Example 2. First, consider A = B = {a, b}.
One can verify that ωA,B(P) = ωA,B(Q) = S , where

S = {(∅, {a}), (∅, {b}), ({a}, {a}), ({b}, {b}), ({a, b}, {a, b})} .

Hence, the PQEP (P,Q,FA,=B) holds.
Second, consider the PQEP (P,Q,FA′ ,=B) with A′ = A ∪ {c}. We now obtain

ωA′,B(P) = S∪{({c}, {a}), ({a, c}, {a}), ({b, c}, {a, b}), ({a, b, c}, {a, b})},
ωA′,B(Q) = S∪{({c}, {a}), ({c}, {b}), ({a, c}, {a}), ({b, c}, {b}), ({a, b, c}, {a, b})}.

By Theorem 2, the PQEP (P,Q,FA′ ,=B) does not hold. In fact, all projective counterexamples
are given by the symmetric difference

ωA′,B(P)4ωA′,B(Q) = {({c}, {b}), ({b, c}, {b}), ({b, c}, {a, b})}

and the corresponding explicit counterexamples are ({c}, {b, c}), ({b, c}, {b, c}), and ({b, c},
{a, b, c}). ♦

20

3.2 Model-Theoretic Characterisations

Next, we deal with semantic characterisations for explicit counterexamples and A-B-wedges in
the style of UE-models and A-UE-models. Recall that UE-models and A-UE-models have been
introduced to capture uniform equivalence and uniform equivalence relative to A, respectively.

First, let us give a more direct characterisation of UE-models, resp., A-UE-models, than in
Chapter 2 by direct tests over program reducts:

Proposition 5 (Eiter and Fink [25]) A pair (X,Y) is a UE-model of a program P iff

(i) X ⊆ Y , Y |= P , X |= P Y , and

(ii) for each X ′ with X ⊂ X ′ ⊂ Y , X ′ 6|= P Y .

Note that Condition (i) expresses that (X,Y) is an SE-model of P , while Condition (ii) expresses,
in a sense, a maximality condition regarding X and the property that X |= P Y .

Proposition 6 (Woltran [87]) A pair (X,Y) is an A-UE-model of P iff

(i) X ⊆ Y , Y |= P ,

(ii) for each X ′ ⊂ Y with X|A ⊂ X ′|A or X ′|A = Y |A, X ′ 6|= P Y , and

(iii) X ⊂ Y implies the existence of an X ′ ⊆ Y with X ′|A = X|A and X ′ |= P Y .

Now, let us introduce an characterisation of explicit counterexamples in the style of the model-
theoretic characterisations of UE-models and A-UE-models as given by Propositions 5 and 6.

Theorem 3 Let Π = (P,Q,FA,⊆B) be a PQIP over U and consider X,Y ⊆ U . Then, (X,Y)
is an explicit counterexample over U for Π iff

(i) Y |= P and X ⊆ Y |A,

(ii) for each Y ′ with X ⊆ Y ′ ⊂ Y , Y ′ 6|= P Y , and

(iii) for each Z with X ⊆ Z, Z|B = Y |B , and Z |= Q, there is some Z ′ with X ⊆ Z ′ ⊂ Z such
that Z ′ |= QZ .

Proof. (⇒) Assume that (X,Y) is an explicit counterexample for Π Hence, it holds that (1)
X ⊆ A, (2) Y ∈ AS (P ∪X), and (3) for each Z, Z =B Y implies Z 6∈ AS (Q ∪X). According
to Proposition 1, Condition (2) is equivalent to Y |= P , X ⊆ Y , and for each Y ′, if X ⊆ Y ′ ⊂ Y ,
then Y ′ 6|= P Y . But then, since Condition (1) together with X ⊆ Y is equivalent to X ⊆ Y |A,
Items (i) and (ii) hold. It remains to show that Condition (3) implies Item (iii). In fact, we show
that Condition (3) is equivalent to Item (iii). Again, we apply Proposition 1: Z 6∈ AS (Q ∪ X)
from Condition (3) holds iff, whenever Z |= P and X ⊆ Z, there is some Z ′ with X ⊆ Z ′ ⊂ Z
and Z ′ |= QZ . Hence, Condition (3) holds iff, for each Z with X ⊆ Z, Z|B = Y |B , and Z |= Q,
there is some Z ′ with X ⊆ Z ′ ⊂ Z such that Z ′ |= QZ .

21

(⇐) Assume that Items (i) to (iii) hold. We show that (X,Y) is an explicit counterexample
for Π, i.e., Conditions (1) to (3) from above hold. If X ⊆ Y |A from Item (i) holds, then both
X ⊆ Y and X ⊆ A. Hence, Condition (1) holds. Moreover, X ⊆ Y together with Item (ii) imply
Condition (2) by virtue of Proposition 1. We showed already the equivalence of Condition (3) and
Item (iii), thus also Item (iii) holds which concludes the proof. �

Next, we characterise A-B-wedges.

Theorem 4 A pair (X,Y) is an A-B-wedge of a program P iff

(i) X ⊆ A and

(ii) there is a Y ′ with X ⊆ Y ′ and Y = Y ′|B such that Y ′ |= P and, for each X ′ with
X ⊆ X ′ ⊂ Y ′, X ′ 6|= P Y

′
.

Proof. According to Definition 5, (X,Y) is an A-B-wedge of P iff X ⊆ A and Y ∈ AS (P ∪
X)|B . It thus remains to show that the latter condition is equivalent to (ii). Now, Y ∈ AS (P ∪
X)|B iff there is some Y ′ with Y = Y ′|B and Y ′ ∈ AS (P ∪X). By Proposition 1, the latter is
equivalent to Y ′ |= P , X ⊆ Y ′, and, for each X ′ with X ⊆ X ′ ⊂ Y ′, X ′ 6|= P Y

′
. Thus, we

showed that (X,Y) is an A-B-wedge of P iff Conditions (i) and (ii) hold. �

Since uniform equivalence between programs over U is captured by PQEPs over U of form
(P,Q,FU ,=U), let us now describe the relation between UE-models and A-B-wedges with A =
B = U .

First of all, a pair (X,Y) is a U-U-wedge of some program only ifX ⊆ Y . Now, for a program
P , (Y, Y) is a U-U-wedge of P iff Y |= P . Furthermore, for X ⊂ Y , (X,Y) is a U-U-wedge
of P iff Y |= P and, for all X ′ with X ⊆ X ′ ⊂ Y , X ′ 6|= P Y holds. So, there is only a subtle
difference between U-U-wedges and UE-models laid down in detail by the next result.

Theorem 5 Let X ⊆ Y ⊆ U and P ∈ PU . Then:

(i) (Y, Y) is a UE-model of P iff (Y, Y) is a U-U-wedge of P . Moreover, if (Y, Y) is a UE-
model of P but no (X,Y) with X ⊂ Y is a UE-model of P (i.e., Y is an answer set of P),
then, for all X ⊆ Y , (X,Y) is a U-U-wedge of P .

(ii) If (X,Y) is a UE-model of P and X ⊂ Y , then (X ′, Y) is a U-U-wedge for any X ⊂ X ′ ⊆
Y .

(iii) If (X,Y) is a U-U-wedge of P and (∅, Y) is not a U-U-wedge of P , then there exists a
UE-model (X ′, Y) of P with X ′ ⊂ X .

Proof. We start with Item (i). By definition of a UE-model, (Y, Y) is a UE-model of P iff Y |= P .
By definition of U-U-wedges, (Y, Y) is a U-U-wedge of P iff Y |= P . Thus, (Y, Y) is a UE-
model of P iff (Y, Y) is a U-U-wedge of P . Furthermore, Item (i) states that for any answer set Y
of P , each pair (X,Y) with X ⊆ Y is a U-U-wedge of P . So, assume that Y is an answer set of
P . We show that Y |= P and, for each X ′ with X ⊆ X ′ ⊂ Y , X ′ 6|= P Y . Since Y is an answer

22

set of P , by definition, Y |= P and, for each Y ′ ⊂ Y , Y ′ 6|= P Y . The latter implies that, for each
X ′ with X ⊆ X ′ ⊂ Y , X ′ 6|= P Y . Thus, (X,Y) is U-U-wedge for P .

We proceed with Item (ii). Consider a UE-model (X,Y) with X ⊂ Y . Hence, Y |= P ,
X |= P Y , and, for each Z with X ⊂ Z ⊂ Y , Z 6|= P Y . From the latter it follows that, for each
X ′ with X ⊂ X ′ ⊂ Y , (X ′, Y) is a U-U-wedge for P . Moreover, (Y, Y) is a U-U-wedge for P
since Y |= P . Thus, if (X,Y) is a UE-model and X ⊂ Y , then (X ′, Y) is a U-U-wedge for any
X ′ with X ⊂ X ′ ⊆ Y .

We conclude with Item (iii). Assume that (X,Y) is a U-U-wedge for P and (∅, Y) is not a
U-U-wedge of P . Since (X,Y) is a U-U-wedge for P , it follows that Y |= P , hence (Y, Y) is a
UE-model of P . As (∅, Y) is not a U-U-wedge of P , it follows that Y is not an answer set of P .
Since Y |= P , there has to exist at least one X ′ ⊂ Y such that X ′ |= P Y . If we take a maximal
such X ′, we obtain a UE-model (X ′, Y) of P . �

Example 5 Consider the programs

P = {a ∨ b←} and Q =
{
a← not b ,
b← not a

}
,

which are uniformly equivalent. The UE-models of P and Q are

({a}, {a}), ({b}, {b}), ({a}, {a, b}), ({b}, {a, b}), ({a, b}, {a, b}),

but the U-U-wedges of the two programs are

(∅, {a}), ({a}, {a}), (∅, {b}), ({b}, {b}), ({a, b}, {a, b}).

♦

While UE-models have been defined with the aim to select a subset of SE-models (which
characterise strong equivalence), wedges are not designed in this respect. Rather, they have a
much closer relation to projective counterexamples.

3.3 Relations Between Correspondence Problems

Next, we investigate the interplay between different notions of program correspondence. More
concretely, we will study the relations between different instantiations of PQIPs and PQEPs with
respect to the specified context class and the comparison relation.

The first result states in effect an anti-monotonicity property for PQIPs and PQEPs with respect
to their context classes and comparison relations.

Theorem 6 For any problem Π = (P,Q,FA,�B), for � ∈ {⊆,=}, whenever Π holds, then
(P,Q,FA′ ,�B′) holds as well, for any A′ ⊆ A and B′ ⊆ B.

Proof. We first prove the result for PQIPs. Assume that Π = (P,Q,FA,⊆B) holds. We show that
then Π′ = (P,Q,FA′ ,⊆B′) holds as well, for A′ ⊆ A, B′ ⊆ B. Clearly, A′ ⊆ A implies that the

23

context class FA′ is a subset of FA. From B′ ⊆ B, it follows that S ⊆B S ′ implies S ⊆B′ S ′, for
all sets S,S ′ of interpretations. By assumption, for any R ∈ FA, AS (P ∪ R) ⊆B AS (Q ∪ R).
Since FA′ ⊆ FA, it follows that for any R ∈ FA′ , AS (P ∪R) ⊆B AS (Q ∪R). Moreover, since
B′ ⊆ B, for any R ∈ FA′ , we have that AS (P ∪ R) ⊆B′ AS (Q ∪ R), thus (P,Q,FA′ ,⊆B′)
holds as well.

The result for PQIPs extends to PQEPs as follows. Assume the PQEP Π = (P,Q,FA,=B)
holds. Thus, the associated PQIPs Π← and Π→ hold as well. Since we have shown the result for
PQIPs already, it follows that Π′← = (Q,P,FA′ ,⊆B′) and Π′→ = (P,Q,FA′ ,⊆B′) hold as well,
thus Π′ = (P,Q,FA′ ,=B′) holds. �

Lemma 3 Let Π = (P,Q,FA,⊆B) be a PQIP. For any V ⊆ U with At(P ∪ Q) ∩ V = ∅, if Π
holds, then (P,Q,FA,⊆B∪V) holds.

Proof. Assume that problem Π holds. Thus, for each X ∈ FA, Y ∈ AS (P ∪ X) implies that
Y ′ ∈ AS (Q ∪X), where Y ′ =B Y . Note that, by Proposition 1, Y ∈ AS (P ∪X) implies that
X ⊂ Y . Moreover, as no atom from V occurs in P , Y |V = X|V . Likewise, Y ′ ∈ AS (Q ∪ X)
implies that X ⊆ Y . Since no atom in V occurs in Q, Y ′|V = X|V follows. It remains to show
that Y ′ =B∪V Y . Observe that

Y ′|B∪V = Y ′|B ∪ Y ′|V = Y |B ∪X|V = Y |B ∪ Y |V = Y |B∪V .

We showed that for each X ∈ FA, Y ∈ AS (P ∪ X) implies that Y ′ ∈ AS (Q ∪ X), where
Y ′ =B∪V Y . Thus, (P,Q,FA,⊆B∪V) holds. �

Lemma 4 Let Π = (P,Q,FA,⊆B) be a PQIP. For any V ⊆ U with At(P ∪ Q) ∩ V = ∅, if Π
holds, then (P,Q,FA∪V ,⊆B) holds.

Proof. Assume that Π holds. Thus, for eachX ∈ FA, Y ∈ AS (P ∪X) implies Y ′ ∈ AS (Q∪X),
for some Y ′ with Y ′| =B Y . We show that (P,Q,FA∪V ,⊆B) holds as well. Take an arbitrary
X ∈ FA∪V and assume that Y ∈ AS (P ∪X) holds. We show that Y ′ ∈ AS (Q ∪X), for some
Y ′|B = Y |B . Define X ′ = X \ (V \ A) and Z = Y \ (V \ A). Since Y ∈ AS (P ∪ X),
Proposition 1 implies that X ⊆ Y . As no atom in V occurs in P , we get that Y |V = X|V .
Hence, Z ∈ AS (P ∪X ′). Since X ′ ∈ FA and Z ∈ AS (P ∪X ′), it follows by assumption that
Z ′ ∈ AS (Q ∪X ′), for some Z ′ with Z ′|B = Z|B . The latter and the fact that no atom in V \ A
occurs in Q implies that Y ′ ∈ AS (Q ∪ X), where Y ′ = Z ′ ∪ (V \ A). It remains to show that
Y ′|B = Y |B . Observe that

Y ′|B = Z ′|B ∪ (V \A)|B = Z|B ∪ (V \A)|B = (Y \ (V \A))|B ∪ (V \A)|B = Y |B .

We showed that for each X ∈ FA∪V , Y ∈ AS (P ∪X) implies that Y ′ ∈ AS (Q ∪X), for some
Y ′ with Y ′ =B Y . Thus, (P,Q,FA∪V ,⊆B) holds. �

Theorem 7 For every problem Π = (P,Q,FA,�B), � ∈ {⊆,=}, and all sets V and W such
that At(P ∪Q) ⊆ V ⊆ U and At(P ∪Q) ⊆ W ⊆ U , Π holds iff (P,Q,FA′ ,�B′) holds, where
A′ = A|V and B′ = B|W .

24

Proof. The only-if direction follows directly from Theorem 6. The if direction follows from
Lemmata 3 and 4 since A = A′ ∪ (A \ V), (A \ V) ∩ At(P ∪Q) = ∅, B = B′ ∪ (B \ V), and
(B \ V) ∩At(P ∪Q) = ∅. �

The significance of the above theorem is that, for any problem (P,Q,FA,�B), � ∈ {⊆,=},
we can always safely assume that both A and B contain only atoms that occur in program P or
program Q.

Eiter, Tompits, and Woltran [30] showed an invariance result for correspondence problems
based on strong equivalence: Let Π be an equivalence problem (P,Q,PU ,=B) and B ⊆ U
an arbitrary set of atoms, then Π holds iff P and Q are strongly equivalent. More generally,
(P,Q,PA,�B) holds iff (P,Q,PA,�A∪B) holds. It is to mention that such invariance results fail
for PQEPs, as illustrated by the following example.

Example 6 Consider the two programs P = {a} and Q = ∅. Then, the PQEP (P,Q,FU ,=∅)
holds. Nevertheless, this does not imply that P and Q are uniformly equivalent, as they are not
even equivalent in the ordinary sense. ♦

The next theorem relates PQIPs and PQEPs to special cases of correspondence problems of
form (P,Q,PA,�B), � ∈ {⊆,=}. It shows that any PQIP, resp., PQEP, can be reduced to
ordinary implication, resp., equivalence, with projection.

Theorem 8 Given Π = (P,Q,FA,�B), for � ∈ {⊆,=}, we have that Π holds iff

Π′ = (P ∪GA, Q ∪GA, {∅},�B′)

holds, where

GA = {a′ ∨ a′′ ←; a← a′ | a ∈ A} ,
B′ = B ∪ {a′, a′′ | a ∈ A} ,

and all a′, a′′ are new atoms.

Proof. Note that the answer sets of GA correspond to the subsets of A: indeed, S ⊆ A iff
S ∪ S′ ∪ (A \ S)′′ ∈ AS (GA), where the notation S′, resp., S′′, denotes the set {x′ | x ∈ S},
resp., {x′′ | x ∈ S}. Moreover, the set of disjunctive rules from GA is the bottom for both P and
Q with respect to the splitting set A′ ∪ A′′. The non-disjunctive rules in GA simply enforce that
whenever a primed atom is in an answer set of GA ∪ P or GA ∪Q, then also the unprimed atom
must be in that answer set.

Now, Π holds iff, for each X ⊆ A, AS (P ∪X)�B AS (Q ∪X). The latter holds iff the sets

R = {Y ∪X ′ ∪ (A \X)′′ | Y ∈ AS (P ∪X), X ⊆ A}

and
S = {Y ∪X ′ ∪ (A \X)′′ | Y ∈ AS (Q ∪X), X ⊆ A}

satisfy �B′ . Taking the properties of GA into account, it follows from Proposition 2 thatR�B′ S
iff AS (P ∪GA)�B′ AS (Q ∪GA) which is equivalent to the condition that Π′ holds. �

25

Example 7 Consider the two programs from Example 2 and the PQEP Π = (P,Q,FA,=B)
where A = B = {a, b}. The programs possess the following answer sets (with projection to B).

AS (P)|B = {{a}, {b}}; AS (Q)|B = {{a, c}, {b}}|B={{a}, {b}};
AS (P ∪ {a})|B = {{a}}; AS (Q ∪ {a})|B = {{a, c}}|B={{a}};
AS (P ∪ {b})|B = {{b}}; AS (Q ∪ {b})|B = {{b}};

AS (P ∪ {a, b})|B = {{a, b}}; AS (Q ∪ {a, b})|B = {{a, b, c}}|B={{a, b}}.
Clearly, Π holds. In view of Theorem 8, let us define

Π′ = (P ∪GA, Q ∪GA, {∅},�B′) , where
GA = {a′ ∨ a′′ ← a; a← a′; b′ ∨ b′′ ←; b← b′} , and
B′ = {a, b, a′, a′′, b′, b′′} .

The (projected) answer sets of P ∪GA and Q ∪GA are:

AS (P ∪GA)|B′ = {{a′′, b′′, a}, {a′′, b′′, b}, {a′, b′′, a}, {a′′, b′, b}, {a′, b′, a, b}};
AS (Q ∪GA)|B′ = {{a′′, b′′, a, c}, {a′′, b′′, b}, {a′, b′′, a, c},

{a′′, b′, b}, {a′, b′, a, b, c}}|B′
= {{a′′, b′′, a}, {a′′, b′′, b}, {a′, b′′, a}, {a′′, b′, b}, {a′, b′, a, b}}.

Indeed, also Π′ holds. ♦

So far, we only considered sets of facts as context class for PQEPs and PQIPs. Of course, it is
legitimate to ask whether PQEPs or PQIPs are suitable to decide problems where the context class
is defined by sets of disjunctive facts, i.e., the set of all rules r of form (2.1), where n = l. Denote
by DA the set of disjunctive facts over A. By definition, we have that, for all programs P and Q,
all alphabets A and B, and � ∈ {⊆,=}, (P,Q,FA,�B) holds whenever (P,Q,DA,�B) holds.

The converse direction however does not hold in general, as the following example shows.

Example 8 Consider the following two programs

P =
{
a← b ,
b← a

}
and Q =

b← a, c ,
a← b, d ,
c← a,not d ,
d← b,not c ,
a← c ,
b← d

,

and let A = B = {a, b}. The following relations can be easily checked:

AS (P)|A = {{∅}}; AS (Q)|A = {{∅}};
AS (P ∪ {a})|A = {{a, b}}; AS (Q ∪ {a})|A = {{a, b, c}}|A = {{a, b}};
AS (P ∪ {b})|A = {{a, b}}; AS (Q ∪ {b})|A = {{a, b, d}}|A = {{a, b}};

AS (P ∪ {a, b})|A = {{a, b}}; AS (Q ∪ {a, b})|A = {{a, b, c}, {a, b, d}}|A
= {{a, b}}.

26

On the other hand, we have

AS (P ∪ {a ∨ b←})|A = {{a, b}} and AS (Q ∪ {a ∨ b←})|A = ∅.

Hence, (P,Q,DA,⊆B) does not hold, although (P,Q,FA,⊆B) holds. ♦

However, in a setting without projection, i.e., relativised uniform equivalence, disjunctive facts
do not play a special role. In our setting, this result can be formulated in case of PQIPs as follows.

Proposition 7 Problem (P,Q,DA,⊆U) holds iff (P,Q,FA,⊆U) holds.

Proof. The only-if direction is by definition. For the if direction, suppose that (P,Q,DA,⊆U)
does not hold. We show that (P,Q,FA,⊆U) does not hold. Since (P,Q,DA,⊆U) does not hold,
there is a set D of disjunctive facts over A and an interpretation Y such that Y ∈ AS (P ∪D) but
Y /∈ AS (Q ∪D).

We first show the following result. Define a Y -selection of D to be any set F ⊆ Y |A of facts
such that, for each a1 ∨ · · · ∨ an ∈ D, {a1, . . . , an} ∩ F 6= ∅. Then, Y ∈ AS (P ∪ D) implies
Y ∈ AS (P ∪ F), for each Y -selection F of D. Towards a contradiction, suppose there exists a
Y -selection F of D such that Y /∈ AS (P ∪ F). By assumption, Y |= P ∪D, and, by definition,
Y |= F . Thus, Y |= P ∪ F . It follows that there exists a set Y ′ ⊂ Y such that Y ′ |= P Y ∪ F .
Again, it is clear that Y ′ |= F implies Y ′ |= D. But then, Y ′ |= P Y ∪ D. A contradiction to
Y ∈ AS (P ∪D).

To show the assertion, it thus remains to show that there exists a Y -selection F of D such
that Y /∈ AS (Q ∪ F). Clearly, if Y 6|= Q we are done. So suppose Y |= Q. We already know
that Y |= D, hence (by assumption that Y /∈ AS (Q ∪ D)), there exists a Y ′ ⊂ Y such that
Y ′ |= QY ∪D. Since Y ′ |= D, there exists also a Y -selection F of D such that Y ′ |= F . Hence,
Y ′ |= QY ∪ F . We obtain that Y /∈ AS (Q ∪ F). �

We conclude this section by introducing the following theorem which directly relates PQIPs
and PQEPs by showing how to compute PQIPs by means of PQEPs. This result slightly gener-
alises a result by Eiter, Tompits, and Woltran [30].

Theorem 9 The PQIP Π = (P,Q,FA,⊆B) holds iff the PQEP

Π′ = (LP,Q ∪ {gQ ← not gP }, LP,Q ∪ {gQ ∨ gP ←},FC ,=B)

holds, where A ⊆ C ⊆ A ∪ {gP , gQ}, gP and gQ are new atoms, and

LP,Q = {← gP , gQ} ∪ {H ← gR, B | R ∈ {P,Q}, H ← B ∈ R}.

Proof. (⇒) Assume that the PQIP Π holds. We show that the PQIP Π′ holds as well. By
Proposition 6, we only need to consider A ∪ {gP , gQ} for C. Hence, we show that, for any
set F ⊆ A ∪ {gP , gQ},

AS (LP,Q ∪ {gQ ← not gP } ∪ F)|B = AS (LP,Q ∪ {gQ ∨ gP ←} ∪ F)|B .

Now, consider an arbitrary F ⊆ C. We distinguish four cases for F (recall that gP and gQ are new
atoms):

27

(i) gP ∈ F, gQ ∈ F : Since LP,Q contains the rule←gP , gQ,

AS (LP,Q ∪ {gQ ← not gP } ∪ F) = AS (LP,Q ∪ {gQ ∨ gP ←} ∪ F) = ∅ .

(ii) gP ∈ F, gQ 6∈ F : Then,

AS (LP,Q ∪ {gQ ← not gP } ∪ F)|B = AS (P ∪ F)|B , resp.,

AS (LP,Q ∪ {gQ ∨ gP ←} ∪ F)|B = AS (P ∪ F)|B .

(iii) gP 6∈ F, gQ ∈ F : Similar to the previous case, we have that

AS (LP,Q ∪ {gQ ← not gP } ∪ F)|B = AS (Q ∪ F)|B , resp.,

AS (LP,Q ∪ {gQ ∨ gP ←} ∪ F)|B = AS (Q ∪ F)|B .

(iv) gP 6∈ F, gQ 6∈ F : Here,

AS (LP,Q ∪ {gQ ← not gP } ∪ F)|B = AS (Q ∪ F)|B and

AS (LP,Q ∪ {gQ ∨ gP ←} ∪ F)|B = AS (P ∪ F)|B ∪AS (Q ∪ F)|B .

By assumption, for each set of facts F ′ ⊆ A,

AS (P ∪ F ′)|B ⊆ AS (Q ∪ F ′)|B .

This is equivalent to the condition that for each set of facts F ′ ⊆ A,

AS (Q ∪ F ′)|B = AS (P ∪ F ′)|B ∪AS (Q ∪ F ′)|B .

Then, it holds in particular for F that

AS (LP,Q ∪ {gQ ← not gP } ∪ F)|B = AS (LP,Q ∪ {gQ ∨ gP ←} ∪ F)|B .

Thus in all cases, for F , we obtain

AS (LP,Q ∪ {gQ ← not gP } ∪ F)|B = AS (LP,Q ∪ {gQ ∨ gP ←} ∪ F)|B ,

and hence Π′ holds.
(⇐) Assume that the PQIP Π does not hold. Hence, there is a set F ⊆ A and there exists a

Y ∈ AS (P ∪ F)|B but Y 6∈ AS (Q ∪ F)|B . As for the PQEP Π′, for any set F ′ ⊆ A,

AS (LP,Q ∪ {gQ ← not gP } ∪ F ′)|B = AS (Q ∪ F ′)|B and

AS (LP,Q ∪ {gQ ∨ gP ←} ∪ F ′)|B = AS (P ∪ F ′)|B ∪AS (Q ∪ F ′)|B .

Thus, Y ∈ AS (LP,Q ∪ {gQ ∨ gP ←} ∪ F)|B but Y 6∈ AS (LP,Q ∪ {gQ ← not gP } ∪ F)|B , and
therefore Π′ does not hold. �

Roughly speaking, the above theorem yields two properties: First, it maps PQIPs into PQEPs
via two new atoms. Second, it shows that these new atoms can be arbitrarily fixed in the context
of the resulting PQEP. These points will have a certain significance for our subsequent complexity
results.

28

3.4 Computational Complexity

We now analyse the complexity of deciding PQIPs and PQEPs. Let us first summarise some results
from the literature.

Proposition 8 (Eiter, Tompits, and Woltran [30]) Given programs P,Q ∈ PU , A,B ⊆ U , and
� ∈ {⊆,=}, deciding whether (P,Q, PA,�B) holds is ΠP

4 -complete. The problem is coNP-
complete if A = U .

Moreover, it can be shown that (P,Q, PU ,�B) holds just in case that (P,Q, PU ,�U) holds,
for � ∈ {⊆,=}. In other words, projection does not play a role when assuming an unrestricted
context [30]. The coNP-hardness of the problem of deciding whether (P,Q,PU ,�B) holds is thus
immediate by known complexity results for strong equivalence (see, e.g., related articles [28, 48,
68]). Indeed, one reduction to show coNP-hardness of strong equivalence (as used by Eiter, Fink,
and Woltran in their proof of Theorem 6.17 [28]), also applies to the inclusion problems (P,Q,
PU ,⊆U). On the other hand, the coNP-membership for the problem of deciding (P,Q, PU ,⊆B)
follows from the known coNP-membership of deciding (P,Q, PU ,=B) and Theorem 9.1

The following result by Eiter, Tompits, and Woltran [30] is in particular relevant for our pur-
pose, since it provides complexity bounds for PQIPs and PQEPs as a special case.

Proposition 9 (Eiter, Tompits, and Woltran [30]) Given programs P,Q ∈ PU , B ⊆ U , � ∈
{⊆,=}, and C ⊆ PU , where each R ∈ C is polynomial in the size of P ∪ Q, deciding whether
(P,Q, C,�B) holds is ΠP

3 -complete.

Another relevant previous result concerns the complexity of checking relativised uniform
equivalence [28, 87], which thus provides us complexity bounds for PQIPs and PQEPs without
projection (again, the complexity results for implication problems follow from Theorem 9 and by
inspecting the respective hardness proofs for equivalence problems, which turn out to be applicable
to implication problems, as well).

Proposition 10 (Woltran [87]) Given programs P,Q ∈ PU , A ⊆ U , and � ∈ {⊆,=}, deciding
whether the problem (P,Q,FA,�U) holds is ΠP

2 -complete. Hardness holds even for arbitrary but
fixed A.

For general PQIPs and PQEPs, we expect an increase in complexity but, in view of Propo-
sition 9, it cannot be beyond ΠP

3 . However, Proposition 9 does not provide details about the
hardness of such problems. In fact, Eiter, Tompits, and Woltran [30] report ΠP

3 -hardness for ordi-
nary equivalence with projection, i.e., PQEPs of the form (P,Q,FA,=B) with A = ∅. Our main
result below shows that nearly all parameterisations for PQIPs and PQEPs result in a matching
lower bound. In particular, we show that ΠP

3 -hardness holds even if the context alphabet A is
fixed arbitrarily. This is in stark contrast to Proposition 8, which shows that considering programs
over A (instead of sets of facts over A) remains in coNP, providing A = U .

1We would like to thank Chiaki Sakama and Katsumi Inoue for pointing out that these result do not follow imme-
diately from results by Eiter, Tompits, and Woltran [30].

29

Theorem 10 Given programs P,Q ∈ PU and sets A,B ⊆ U of atoms, deciding whether the
PQIP (P,Q,FA,⊆B) holds is ΠP

3 -complete. Hardness holds even for arbitrary but fixed A.

Proof. Membership in ΠP
3 follows from Proposition 9. We show ΠP

3 -hardness by reducing the
ΠP

3 -hard problem of checking validity of a (3,∀)-QBF in PDNF into PQIPs.
The reduction is as follows: Let Φ = ∀Z∃X∀Y φ be a QBF of the described form with

φ =
∨n
i=1Ci being a formula in DNF. Define ΠΦ = (PΦ, QΦ,FA,⊆Z), where A is an arbitrary

set of atoms and PΦ, QΦ are given as follows:

PΦ = {z ∨ z̄ ← ; ← z, z̄ | z ∈ Z}∪
{← v ; ← v̄ | v ∈ X ∪ Y };

QΦ = {v ∨ v̄ ← ; ← v, v̄ | v ∈ Z ∪X}∪
{y ∨ ȳ ←; y ← a; ȳ ← a; a← y, ȳ | y ∈ Y }∪
{a← C∗i | 1 ≤ i ≤ n} ∪ {a← not a}.

Here, C∗ is a sequence of atoms containing each atom w occurring positively in C, and w̄ for each
w occurring negatively in C. Moreover, a and all v̄’s are new distinct atoms.

We show that Φ is valid iff ΠΦ holds. For the if direction, suppose that Φ is not valid. We
show that (PΦ, QΦ,FA,⊆Z) does not hold, for A = ∅. By definition, (PΦ, QΦ,FA,⊆Z) then
cannot hold for arbitrary A. Since Φ is not valid, there exists an interpretation IZ ⊆ Z such that
∃X∀Y φ[IZ] is not valid, where φ[IZ] simplifies φ with respect to interpretation IZ . We show that
IZ ∈ AS (PΦ)|Z but IZ 6∈ AS (QΦ)|Z . The former is clear. For the latter, towards a contradiction,
suppose that QΦ possesses an answer set K ∈ AS (QΦ) with K|Z = IZ . By definition of QΦ, we
further have that for each z ∈ Z, z̄ ∈ K iff z /∈ IZ . From this, one can show that the program

QΦ[IZ]= {x ∨ x̄← ; ← x, x̄ | x ∈ X}∪
{y ∨ ȳ ←; y ← a; ȳ ← a; a← y, ȳ | y∈Y }∪
{a← CIZi | 1 ≤ i ≤ n} ∪ {a← not a},

where CIZi is as C∗i but using the conjuncts from φ[IZ] instead of φ, has an answer set. However,
the latter holds iff ∃X∀Y φ[IZ] is valid. This can be seen by inspecting the original proof for ΣP

2 -
hardness of deciding whether a program has at least one answer set [29], which uses essentially
the same program as QΦ[IZ]. Since ∃X∀Y φ[IZ] is not valid, however, we get a contradiction.

For the only-if direction, suppose ΠΦ does not hold. We show that Φ is not valid. Since ΠΦ

does not hold, by Theorem 1 there is a projective counterexample (J, I) for ΠΦ, i.e., J ⊆ A,
I ∈ AS (PΦ ∪ J)|Z , and I /∈ AS (QΦ ∪ J)|Z hold. From I ∈ AS (PΦ ∪ J)|Z , we derive the
following properties: for any v ∈ X ∪Y , neither v nor v̄ is contained in J , and (J ∩Z) ⊆ I ⊆ Z.
Similar arguments as before yield the following chain of equivalences: I /∈ AS (QΦ ∪ J)|Z iff
QΦ[I] has no answer set iff ∃X∀Y φ[I] is not valid. But then, the QBF Φ = ∀Z∃X∀Y φ cannot
be valid. �

Since a PQEP Π holds iff its associated PQIPs Π→ and Π← both hold, it follows that the
complexity of checking PQEPs is in ΠP

3 as well. Moreover, the matching lower bounds for PQEPs

30

(P,Q,FA,=B) for arbitrary A follow in view of Theorem 9 since it it maps PQIPs into PQEPs
via two new atoms and it shows that these new atoms can be arbitrarily fixed in the context of the
resulting PQEP. Thus, hardness carries over also for arbitrary but fixed alphabets.

Corollary 1 Given programs P,Q ∈ PU and sets A,B ⊆ U of atoms, deciding whether the
PQEP (P,Q,FA,=B) holds is ΠP

3 -complete. Hardness holds even for arbitrary but fixed A.

We observe that thus also the special case when A = B, which amounts to notions similar to
modular equivalence [65], and database-like settings, whereA is a subset of extensional predicates
and B is set of intensional query predicates, remain hard for ΠP

3 .

31

CHAPTER 4
Translations into Quantified

Propositional Logic

In this section, we discuss issues for computing PQIPs and PQEPs. We adopt a reduction approach
here, translating the problems under consideration into problems for which solvers already exist.
Naturally, the translations we seek should be constructible in polynomial time.

First of all, we remark that since checking PQIPs and PQEPs is ΠP
3 -complete, these tasks

cannot be efficiently reduced to (propositional) DLPs under the answer-set semantics, unless the
polynomial hierarchy collapses to the second level [29]. Hence, a more expressive language is
required. This leads us to quantified propositional logic as a suitable target language, as any
decision problem in PSPACE can be efficiently reduced to QBFs [66].

Recall that any decision problem D in ΣP
k (resp., ΠP

k) can be mapped in polynomial time to a
(k, ∃)-QBF (resp., (k, ∀)-QBF) Φ such thatD holds iff Φ is valid (Proposition 4). In what follows,
we will seek for reductions from correspondence problems to QBFs that are adequate in the sense
of Besnard et al. [8], cf. Section 2.4.

Besides the structural complexity of the considered problems that suggests a reduction ap-
proach, there are several efficient solvers for QBFs available which can be used as back-end infer-
ence engines for solving the encoded problems.

In fact, a similar reduction approach to QBFs was already adopted for realising a first version
of the system cc> [55], which allows to verify the kinds of correspondence problems studied
by Eiter, Tompits, and Woltran [30]. In principle, we could use cc> as such to verify PQIPs and
PQEPs, because the latter problems can be reduced to the former, in view of Theorem 8. However,
verifying PQIPs and PQEPs that way would involve two reduction steps, as cc> relies itself on a
reduction to QBFs. The direct encodings described next avoid this.

33

4.1 Ancillary Modules

In what follows, we make use of sets of globally new atoms in order to refer to different assign-
ments for the same atoms within a single formula. More formally, given a set V of atoms, we
assume pairwise disjoint copies V i = {vi | v ∈ V }, for every i ≥ 1. In fact, we make use
of such superscripts as a general renaming schema for formulas and rules as well. That is, for
each i ≥ 1, αi expresses the result of replacing each occurrence of an atom v in α by vi, where
α is any formula or rule. For a rule r of form (2.1), we also define H(r) = a1 ∨ · · · ∨ al,
B+(r) = al+1 ∧ · · · ∧ am, and B−(r) = ¬am+1 ∧ · · · ∧ ¬an. We identify empty disjunctions
with ⊥ and empty conjunctions with >.

The following construct will be central for our purposes.

Definition 6 Let P be a program and i, j ≥ 1. Then,

P 〈i,j〉 =
∧
r∈P

((B+(ri) ∧B−(rj))→ H(ri)) .

The following property holds:

Theorem 11 Let P be a program with At(P) = V , I an interpretation, and X,Y ⊆ V such that,
for some i, j, I|V i = Xi and I|V j = Y j . Then, I |= P 〈i,j〉 iff X |= P Y .

Proof. By definition of a program reduct and of a model of a program, X |= P Y holds iff for each
rule r ∈ P of form (2.1), whenever (i) {al+1, . . . , am} ⊆ X and (ii) Y ∩ {am+1, . . . , an} = ∅,
then (iii) X ∩ {a1, . . . , al} 6= ∅. Furthermore, as I|V i = Xi and I|V j = Y j by assumption, for
each rule r ∈ P of form (2.1), (i) holds iff I |= B+(ri), (ii) holds iff I 6|= ajm+1 ∨ · · · ∨ ajn, which
in turn holds iff I |= B−(rj), and (iii) holds iff I |= H(ri). Putting all together, X |= P Y iff
I |= ∧r∈P ((B+(ri) ∧B−(rj))→ H(ri)). Hence, X |= P Y iff I |= P 〈i,j〉. �

Example 9 Consider the program

Q =
{
a← not b ,
b← not a

}
.

Then, for instance,
Q〈1,2〉 = (¬b2 → a1) ∧ (¬a2 → b1) .

For any X1 ⊆ {a1, b1}, the interpretation {a2, b2} ∪ X1 is a model of Q〈1,2〉, reflecting the fact
that any X (over {a, b}) is a model of the reduct Q{a,b}. ♦

Next, we introduce operators which allow to compare different subsets of atoms from a com-
mon set V under subset inclusion, proper-subset inclusion, and set equality, respectively:

Definition 7 Let V be a set of atoms and i, j ≥ 1. Then,

(i) (V i ≤ V j) =
∧
v∈V (vi → vj) ,

(ii) (V i < V j) = (V i ≤ V j) ∧ ¬(V j ≤ V i) , and

34

(iii) (V i = V j) = (V i ≤ V j) ∧ (V j ≤ V i) .

Observe that the latter is equivalent to
∧
v∈V (vi ↔ vj).

Theorem 12 Let V be a set of atoms. Given an interpretation I and X,Y ⊆ V such that, for
some i, j, I|V i = Xi and I|V j = Y j , we have that

(i) I |= (V i ≤ V j) iff X ⊆ Y ,

(ii) I |= (V i < V j) iff X ⊂ Y , and

(iii) I |= (V i = V j) iff X = Y .

Proof. We proof only Item (i) since Items (ii) and Item (iii) are immediate consequences.
(⇒) Consider interpretation I and sets X,Y ⊆ V such that, for some i, j, I|V i = Xi and

I|V j = Y j . We show that if I |= (V i ≤ V j) then X ⊆ Y . Suppose that a ∈ X . Then ai ∈ Xi,
and since I|V i = Xi, it follows that I |= ai. Since I |= V i ≤ V j by assumption, I |= aj follows.
But then aj ∈ Y j because I|V j = Y j . Hence, a ∈ Y . Consequently, X ⊆ Y .

(⇐) We show that if X ⊆ Y then I |= (V i ≤ V j). Take an arbitrary ai ∈ V i. We distinguish
two cases: either I |= ai or I 6|= ai. In the first case, I|V i = X implies ai ∈ Xi. Hence, a ∈ X .
Then, a ∈ Y by assumption, and aj ∈ Y j . Since I|V j = Y j , I |= aj follows. Thus, I |= ai → aj .
In the second case, we immediately get that I |= ai → aj . We showed that I |= vi → vj for all
v ∈ V , hence I |= V i ≤ V j . �

4.2 Main Translations

With the above building blocks at hand, we proceed with our central encoding.

Definition 8 Let Π = (P,Q,FA,⊆B) be a PQIP, At(P ∪Q) = V , and A,B ⊆ V . Then,

ΦΠ = P 〈1,1〉 ∧ (A2 ≤ A1) ;

Φ′Π = ∀V 3
(

((A2 ≤ A3) ∧ (V 3 < V 1))→ ¬P 〈3,1〉
)

;

Φ′′Π = ∀V 4
(

(B4 = B1)→ ΨΠ

)
where

ΨΠ = ((Q〈4,4〉 ∧ (A2 ≤ A4))→ ∃V 5(((A2 ≤ A5) ∧ (V 5 < V 4)) ∧Q〈5,4〉)) and

S[Π] = ΦΠ ∧ Φ′Π ∧ Φ′′Π .

Observe that the free variables of S[Π] are given by V 1 ∪A2. For models of S[Π], the assign-
ments to V 1 ∪A2 yield the explicit counterexamples for Π. More specifically, S[Π] expresses the
conditions of Theorem 3, where assignments for V 1, A2, V 3, V 4, and V 5 correspond to Y , X ,
Y ′, Z, and Z ′, respectively. Taking the semantics of the introduced building blocks into account,
Y 1 ∪ X2 |= ΦΠ iff X and Y satisfy the first item of Theorem 3, Y 1 ∪ X2 |= Φ′Π iff X and Y
satisfy the second item of Theorem 3, and Y 1 ∪ X2 |= Φ′′Π iff X and Y satisfy the third item of
Theorem 3. Formally, we obtain the following result:

35

Lemma 5 Let Π = (P,Q,FA,⊆B) be a PQIP, At(P ∪Q) = V ,A,B ⊆ V ,X ⊆ A, and Y ⊆ V .
Then, (X,Y) is an explicit counterexample for Π iff Y 1 ∪X2 |= S[Π].

Proof. We show that Y 1 ∪ X2 |= S[Π] iff (X,Y) is an explicit counterexample for Π, i.e.,
Items (i)–(iii) of Theorem 3 hold. More precisely, we show that

1. Y 1 ∪X2 |= ΦΠ iff Item (i) holds,

2. Y 1 ∪X2 |= Φ′Π iff Item (ii) holds, and

3. Y 1 ∪X2 |= Φ′′Π iff Item (iii) holds.

We start to prove Condition 1. By definition of ΦΠ, Y 1 ∪ X2 |= ΦΠ iff Y 1 ∪ X2 |= P 〈1,1〉

and Y 1 ∪ X2 |= A2 ≤ A1. By Theorem 11, since (Y 1 ∪ X2)|Y 1 = Y 1, the former holds iff
Y |= P Y , which in turn holds iff Y |= P . In view of Theorem 12, since (Y 1 ∪ X2)|Y 1 = Y 1,
(Y 1 ∪X2)|X2 = X2, and X ⊆ A by assumption, the latter holds iff X ⊆ Y |A.

Next, we prove Condition 2. We have that Y 1 ∪X2 |= Φ′Π iff for each Y ′ ⊆ V ,

Y 1 ∪X2 ∪ Y ′3 |= ((A2 ≤ A3) ∧ (V 3 < V 1))→ ¬P 〈3,1〉 .

The latter holds iff, for each Y ′ ⊆ V , whenever (a) Y 1∪X2∪Y ′3 |= A2 ≤ A3 and (b) Y 1∪X2∪
Y ′3 |= V 3 < V 1 then (c) Y 1∪X2∪Y ′3 6|= P 〈3,1〉. Since, by Theorem 12, (a) holds iff X ⊆ Y |A,
which in turn holds iffX ⊆ Y (sinceX ⊆ A), (b) holds iff Y ⊂ Y ′, and, by Theorem 11, (c) holds
iff Y ′ 6|= P Y , it follows that Condition 2 holds iff, for each Y ′ ⊆ V , X ⊆ Y ′ ⊆ Y implies that
Y ′ 6|= P Y , i.e., iff Item (ii) of Theorem 3 holds.

Finally, we prove Condition 3. To begin with, Y 1 ∪ X2 |= Φ′′Π iff, for each Z ⊆ V , if
Y 1 ∪ X2 ∪ Z4 |= B4 = B1, Y 1 ∪ X2 ∪ Z4 |= Q〈4,4〉, and Y 1 ∪ X2 ∪ Z4 |= A2 ≤ A4, then
there exists a Z ′ ⊆ V with Y 1 ∪X2 ∪ Z4 ∪ Z ′5 |= A2 ≤ A5, Y 1 ∪X2 ∪ Z4 ∪ Z ′5 |= V 5 < V 4,
and Y 1 ∪X2 ∪ Z4 ∪ Z ′5 |= Q〈5,4〉. Then, in view of Theorem 12, Condition 3 holds iff, for each
Z ⊆ V , if Y |B = Z|B , Z |= QZ , and X ⊆ Z|A, then there exists a Z ′ ⊆ V with X ⊆ Z ′|A,
Z ′ ⊂ Z, and Z ′ |= QZ . Recall that Z |= QZ iff Z |= Q, andX ⊆ Z ′|A iffX ⊆ Z ′, sinceX ⊆ A.
Thus, Condition 3 holds iff Item (iii) of Theorem 3 holds. �

Expressing the task whether a PQIP holds is now a simple matter to realise:

Theorem 13 For any PQIP Π = (P,Q,FA,⊆B) with At(P∪Q) = V , Π holds iff¬∃V 1∃A2S[Π]
is valid.

Proof. (⇒) Assume that¬∃V 1∃A2S[Π] is not valid. Hence, there exists a pair (X,Y) with Y ⊆ V
and X ⊆ A such that Y 1 ∪X2 |= S[Π]. Then, by Lemma 5, (X,Y) is an explicit counterexample
for Π. Hence, in view of Theorem 1, Π does not hold.

(⇐) Suppose that Π = (P,Q,FA,⊆B) does not hold. Therefore, by Theorem 1, there exists
an explicit counterexample (X,Y) for Π. It follows by Lemma 5 that Y 1 ∪ X2 |= S[Π]. Since
X ⊆ A by definition of an explicit counterexample, the closed QBF ∃V 1∃A2S[Π] is true and,
consequently, ¬∃V 1∃A2S[Π] is not valid. �

The extension of the encodings to PQEPs is done by means of the associated PQIPs.

36

Lemma 6 Let Π = (P,Q,FA,=B) be a PQEP, At(P ∪ Q) = V , A,B ⊆ V , X ⊆ A, and
Y ⊆ V . Then, (X,Y) is an explicit counterexample for Π iff Y 1 ∪X2 |= S[Π→] ∨ S[Π←].

Proof. We have the following chain of equivalences: Y 1 ∪X2 |= S[Π→] ∨ S[Π←] iff Y 1 ∪X2 |=
S[Π→] or Y 1 ∪ X2 |= S[Π←] iff (according to Lemma 5) (X,Y) is an explicit counterexample
for Π→ or for Π←. �

Theorem 14 For any PQEP Π = (P,Q,FA,=B) with At(P ∪ Q) = V , problem Π holds iff
¬∃V 1∃A2(S[Π→] ∨ S[Π←]) is valid.

Proof. (⇒) Assume that ¬∃V 1∃A2(S[Π→]∨S[Π←]) is not valid. Thus, there exists a pair (X,Y),
with Y ⊆ V and X ⊆ A, such that Y 1 ∪X2 |= S[Π→] ∨ S[Π←]. Then, by Lemma 6, (X,Y) is
an explicit counterexample for Π→ or Π←, and, by Theorem 1, Π→ or Π← does not hold. Thus,
Π does not hold.

(⇐) Assume that Π = (P,Q,FA,=B) does not hold. Therefore, there exists an explicit
counterexample (X,Y) for Π→ or Π←. Then, by Lemma 6, Y 1 ∪ X2 |= S[Π→] ∨ S[Π←], and
sinceX ⊆ A by definition of an explicit counterexample, the closed QBF ∃V 1∃A2S[Π→]∨S[Π←]
is true. Thus, ¬∃V 1∃A2(S[Π→] ∨ S[Π←]) is not valid. �

4.3 Simplifications and Special Cases

In this section, we introduce an alternative QBF encoding that can be regarded as a simplification
of S[·]. Then, we discuss how this simplification behaves when used for different special cases of
correspondence problems like uniform equivalence or ordinary equivalence.

Alternative Encoding

The benefit of the alternative encoding discussed now is that the number of universally quantified
variables is reduced—in fact, in some specific cases, one quantifier block even vanishes. This
guarantees adequacy (in the sense of Besnard et al. [8]) also for special cases of query problems
without projection.

The key observation for the subsequent adaption is that we use a fixed assignment for atoms
in view of the subformula B4 = B1 of Definition 8. Hence, for the quantifier block ∀V 4, it is
sufficient to take only atoms from V 4 \ B4 into account and replace all occurrences of atoms
v4 ∈ B4 by v1 within the remaining part of the formula. The modified translation is given as
follows.

Definition 9 Let Π = (P,Q,FA,⊆B) be a PQIP, At(P ∪Q) = V , and A,B ⊆ V . Then,

T[Π] = ΦΠ ∧ Φ′Π ∧ ∀(V 4 \B4) ΨΠ[B4/B1] ,

where ΦΠ and Φ′Π are defined as in Definition 8 and ΨΠ[B4/B1] denotes the QBF that results
from ΨΠ when, for each atom v ∈ B, each occurrence of v4 in ΨΠ is replaced by v1.

37

Next, we illustrate the different outcomes of the two encodings.

Example 10 Consider the PQIP Π = (P,Q,FA,⊆B) from Example 3 with A = B = {a, b}.
Then,

S[Π] = ΦΠ ∧ ∀a4b4c4((a4 ↔ a1) ∧ (b4 ↔ b1)→ (((¬b4 → a4) ∧ (¬a4 → b4) ∧ (a4 → c4)∧
(a2 → a4) ∧ (b2 → b4))→ ∃a5b5c5((a2 → a5) ∧ (b2 → b5)∧
(a5 → a4) ∧ (b5 → b4) ∧ (c5 → c4) ∧ ¬((a4 → a5) ∧ (b4 → b5)∧
(c4 → c5)) ∧ (¬b4 → a5) ∧ (¬a4 → b5) ∧ (a5 → c5)))) ,

T[Π] = ΦΠ ∧ ∀c4(((¬b1 → a1) ∧ (¬a1 → b1) ∧ (a1 → c4)∧
(a2 → a1) ∧ (b2 → b1))→ ∃a5b5c5((a2 → a5) ∧ (b2 → b5)∧
(a5 → a1) ∧ (b5 → b1) ∧ (c5 → c4) ∧ ¬((a1 → a5) ∧ (b1 → b5) ∧ (c4 → c5))∧
(¬b1 → a5) ∧ (¬a1 → b5) ∧ (a5 → c5))) .

♦

Theorem 15 For any PQIP Π, the QBFs S[Π] and T[Π] are equivalent.

Proof. Observe that for any PQIP Π, S[Π] and T[Π] differ only in the definition of the respective
subformula φ = ∀V 4((B4 = B1) → ΨΠ) in S[Π] and φ′ = ∀(V 4 \ B4)ΨΠ[B4/B1] in T[Π].
Hence, by Proposition 3, it suffices to show that φ is equivalent to φ′, i.e., for any interpretation I ,
I |= φ iff I |= φ′. Furthermore, note that the free variables of both φ and φ′ are given by A2 ∪B1.

(⇒) Assume that X2 ∪ Y 1 6|= φ′, for some X2 ⊆ A2 and Y 1 ⊆ B1. Thus, for some
Z4 ⊆ V 4 \ B4, X2 ∪ Y 1 ∪ Z4 6|= ΨΠ[B4/B1]. We show that then X2 ∪ Y 1 6|= φ as well.
Indeed, for the interpretation I = X2 ∪ Y 1 ∪ Z4 ∪ Y 4, I |= B4 = B1 but I 6|= ΨΠ. The
former is by Theorem 12 since I|B4 = Y 4 and I|B1 = Y 1. The latter clearly follows from
X2 ∪ Y 1 ∪ Z4 6|= ΨΠ[B4/B1], because, for any a ∈ B, I |= a4 iff I |= a1.

(⇐) For the other direction, we show thatX2∪Y 1 6|= φ′ follows fromX2∪Y 1 6|= φ, for some
X2 ⊆ A2 with Y 1 ⊆ B1. By assumption, I 6|= (B4 = B1)→ ΨΠ, for some I = X2 ∪ Y 1 ∪ Z4

with Z4 ⊆ V 4. Thus, I |= B4 = B1 and I 6|= ΨΠ. The former implies that Z ∩ B = Y since
I|B4 = (Z ∩ B)4 and I|B1 = Y 1 (cf. Theorem 12). It remains to show that X2 ∪ Y 1 6|= φ′. In
fact, X2 ∪ Y 1 ∪ (Z \B)4 6|= ΨΠ[B4/B1], which directly follows from I 6|= ΨΠ and Z ∩B = Y .
This concludes the proof. �

As an immediate consequence from the previous theorem, we thus obtain results similar to
those for the encoding S[·] from the previous section:

Theorem 16 Let Π = (P,Q,FA, ⊆B) be a PQIP, At(P ∪ Q) = V , A,B ⊆ V , X ⊆ A, and
Y ⊆ V . Then, (X,Y) is a counterexample for Π iff Y 1 ∪X2 |= T[Π], and Π holds iff the closed
QBF ¬∃V 1∃A2T[Π] is valid.

Moreover, for any PQEP Π = (P,Q,FA,=B), (X,Y) is a counterexample for Π iff Y 1 ∪
X2 |= T[Π→] ∨ T[Π←], and Π holds iff ¬∃V 1∃A2(T[Π→] ∨ T[Π←]) is valid.

Proof. Respective results for encoding S[·] appear as Lemma 5, Theorem 13, Lemma 6, and The-
orem 14. The theorem follows from these results, the equivalence of S[·] and T[·] by Theorem 15,
and the replacement property as stated in Proposition 3. �

38

Obviously, these encodings, as well as the ones from the previous section, are (i) always linear
in the size of P , Q, A, and B, and (ii) possess at most two quantifier alternations in any branch of
the formula tree. The latter shows that any such encoding is easily translated into a (3,∀)-QBF.
Thus, the complexity of evaluating these QBFs is not harder than the complexity of the encoded
decision problems, which shows adequacy in the sense of Besnard et al. [8].

Empirical experiments with the different encodings S[·] and T[·] (cf. Chapter 6 below) indicate
that using the simplified encoding T[·] does not always lead to better running times compared to the
S[·] encoding. Performance is also considerably influenced by specifics of the used QBF solvers.
From a different point of view, experiments with both encodings can be used to reveal interesting
differences between QBF solvers with respect to their ability to deal with implicit simplifications,
in our case, with fixed assignments for universally quantified variables.

Simplifications

We proceed with a discussion on how our new reduction can be simplified for special cases. Re-
call that by a proper parameterisation of a PQIP (resp., PQEP) also important special cases of
equivalence problems known from the literature can be specified.

Ordinary Equivalence with Projection

For problems (P,Q,FA,⊆B) with A = ∅ and B arbitrary, the translation T[·] can be simplified
as follows.

Definition 10 Let Π be a PQIP (P,Q,FA,⊆B) with At(P ∪Q) = V , A = ∅, and B ⊆ V , then

Toep [Π] =
(
P 〈1,1〉 ∧ ∀V 3((V 3 < V 1)→ ¬P 〈3,1〉)

)
∧

∀(V 4 \B4)
(
Q〈4,4〉 → ∃V 5((V 5 < V 4) ∧Q〈5,4〉)

)
[B4/B1] .

Lemma 7 Given a problem Π = (P,Q,FA,⊆B) with A = ∅, the QBF T[Π] is equivalent to
Toep [Π].

Proof. Since A = ∅, all terms (Ai ≤ Aj) in T[Π] are equivalent to >. Furthermore, (Ai ≤ Aj)
only occurs in T[Π] within a subformula of T[Π] which is of form (Ai ≤ Aj)∧φ or φ∧(Ai ≤ Aj).
In either case, we can replace that subformula by φ in T[Π] and obtain an equivalent formula by
Proposition 3. Let ΦΠ, Φ′Π, and ΨΠ be the subformulas of T[Π] from Definition 9. Then, ΦΠ

simplifies to P 〈1,1〉, Φ′Π simplifies to

∀V 3((V 3 < V 1)→ ¬P 〈3,1〉) ,

and ΨΠ simplifies to (
Q〈4,4〉 → ∃V 5((V 5 < V 4) ∧Q〈5,4〉)

)
after respective replacements. We thus obtain Toep [Π]. �

39

Theorem 17 For any PQEP Π = (P,Q,FA,=B) with A = ∅ and At(P ∪ Q) = V , Π holds iff
¬∃V 1(Toep [Π→] ∨ Toep [Π←]) is valid.

Proof. Note that the free variables of Toep [Π] are given by V 1 only. By Theorem 16, Lemma 7,
and Proposition 3, it follows that Π holds iff ¬∃V 1(Toep [Π→] ∨ Toep [Π←]) is valid. �

Observe that on each branch of the formula tree of Toep [·] there are at most two quantifier
alternations, witnessing the ΠP

3 -complexity of this special case (cf. Theorem 10).

Relativised Uniform Equivalence

Next, we analyse special settings without projection, i.e., problems of form (P,Q, FA,⊆B) with
B = U . Further special cases are then obtained by settingA = ∅ andA = U , respectively. In view
of of the ΠP

2 -complexity result for equivalence problems without projection (cf. Proposition 10),
we expect that the number of quantifier alternations in the resulting QBFs decreases by one.

Definition 11 Let Π be a PQIP (P,Q,FA,⊆B) with At(P ∪Q) = V , B = U , and A ⊆ V , then

True [Π] = ΦΠ ∧ Φ′Π ∧
(
Q〈1,1〉 → ∃V 5((A2 ≤ A5) ∧ (V 5 < V 1) ∧Q〈5,1〉)

)
,

where ΦΠ and Φ′Π are defined as in Definition 9.

Lemma 8 Given a problem Π = (P,Q,FA,⊆B) with B = U , the QBF T[Π] is equivalent to
True [Π].

Proof. Let Ψ′Π be the following subformula of T[Π]:

Ψ′Π = ∀(V 4 \B4) ((Q〈4,4〉∧(A2 ≤ A4))→ ∃V 5(((A2 ≤ A5)∧(V 5 < V 4))∧Q〈5,4〉))[B4/B1] .

Observe that the quantifier block ∀(V 4 \B4) in Ψ′Π vanishes since V \B = ∅. Since B = U , all
atoms v4 in the scope of ∀(V 4 \B4) are replaced by v1. Hence, Ψ′Π is of form

((Q〈1,1〉 ∧ (A2 ≤ A1))→ ∃V 5(((A2 ≤ A5) ∧ (V 5 < V 1)) ∧Q〈5,1〉)) .

Observe that ΦΠ is of form ψ∧ (A2 ≤ A1). Therefore, the condition (A2 ≤ A1) in the antecedent
of Ψ′Π is redundant in T[Π]. It follows that T[Π] is equivalent to True [Π] because the latter results
from T[Π] by replacing (Q〈1,1〉 ∧ (A2 ≤ A1)) in Ψ′Π by Q〈1,1〉. �

Theorem 18 For any PQEP Π = (P,Q,FA,=B) with B = U , At(P ∪Q) = V , and A ⊆ V , Π
holds iff ¬∃V 1∃A2(True [Π→] ∨ True [Π←]) is valid.

Proof. The result immediately follows from Theorem 16, Lemma 8, and Proposition 3. �

Note that the structure of the formula True [·] indeed matches the ΠP
2 -complexity result for

relativised uniform equivalence.

Interestingly, QBF True [·] is satisfiability equivalent to an even simpler formula.

40

Definition 12 Let Π be a PQIP (P,Q,FA,⊆B) with At(P ∪Q) = V , then

T◦[Π] = ΦΠ ∧ Φ′Π ∧ (Q〈1,1〉 → ((V 2 < V 1) ∧Q〈2,1〉)) ,

where ΦΠ and Φ′Π are defined as in Definition 9.

Lemma 9 For any problem Π = (P,Q,FA,⊆B) with B = U , the QBF True [Π] is satisfiability
equivalent to T◦[Π].

Proof. Assume I |= True [Π], where I = Y 1∪X2, Y ⊆ V , andX ⊆ A. We show that there exists
an interpretation I ′ such that I ′ |= T◦[Π]. If I 6|= Q〈1,1〉, then clearly I |= T◦[Π]. So assume that
I |= Q〈1,1〉. It follows that I |= ∃V 5(((A2 ≤ A5) ∧ (V 5 < V 1)) ∧ Q〈5,1〉). Hence, for some
J ⊆ V , I ∪ J5 |= ((A2 ≤ A5) ∧ (V 5 < V 1)) ∧ Q〈5,1〉. By Theorem 12, we get that X ⊆ J |A
and J ⊂ Y . Define I ′ = I ∪ J2. Note that I ′|V 2 = J2 and I ′|A2 = J |A2. Since I |= ΦΠ,
I|V 1 = I ′|V 1 , and JA ⊆ YA, it follows that I ′ |= ΦΠ. Regarding Φ′Π, it holds that for each Z with
X ⊆ Z and Z ⊂ V , I ∪ Z3 |= ¬P 〈3,1〉. As I ′|V 2 = J2, I ′|A2 = J |A2, X ⊆ J , and J ⊂ Y ,
also I ′ |= Φ′Π. It remains to show that I ′ |= Q〈1,1〉 → ((V 2 < V 1) ∧ Q〈2,1〉). That I ′ |= Q〈1,1〉

follows from I |= Q〈1,1〉, I ′ |= (V 2 < V 1) follows from J ⊂ Y and Theorem 12, and I |= Q〈2,1〉

follows from I ′|V 2 = J2, I ∪ J5 |= Q〈5,1〉, and Theorem 11. Hence, satisfiability of True [Π]
entails satisfiability of T◦[Π].

For the other direction, assume I |= T◦[Π], where I = Y 1 ∪ X2, Y ⊆ V , and X ⊆ V .
As before, we assume that I |= Q〈1,1〉. We show that I |= True [Π]. To this end, we only
need to show that I |= ∃V 5(((A2 ≤ A5) ∧ (V 5 < V 1)) ∧ Q〈5,1〉), i.e., for some Z ⊆ V ,
Y 1 ∪X|A2 ∪ Z5 |= (A2 ≤ A5) ∧ (V 5 < V 1) ∧Q〈5,1〉. We take X for Z. From I |= (V 2 < V 1)
follows, by Theorem 12, X ⊂ Y . It holds that X|A2 ∪ Z5 |= (A2 ≤ A5) because X = Z and
thus X|A ⊆ Z. Likewise, Y 1 ∪ Z5 |= (V 5 < V 1) follows from X ⊂ Z. Finally, by Theorem 11,
I |= Q〈2,1〉, I = Y 1∪X2, and Z = X implies that Y 1∪Z5 |= Q〈5,1〉. Hence, I is indeed a model
of True [Π]. �

Theorem 19 For any PQEP Π = (P,Q,FA,=B) with B = U and At(P ∪Q) = V , Π holds iff
¬∃V 1∃V 2(T◦[Π→] ∨ T◦[Π←]) is valid.

Proof. It follows from Lemma 9 that φ = T◦[Π→] ∨ T◦[Π←] and ψ = True [Π→] ∨ True [Π←] are
satisfiability equivalent. Note that ∃V 1∃V 2 φ is the existential closure of φ, and ∃V 1∃A2 ψ is the
existential closure of ψ. Hence, ∃V 1∃V 2 φ and ∃V 1∃A2 ψ are equivalent, and so are ¬∃V 1∃V 2 φ
and ¬∃V 1∃A2 ψ. Now, the theorem follows directly from Theorem 18. �

Note that, although we can get rid off the quantifier block ∃V 5 in True [·] as well, this simpli-
fication does not influence the number of quantifier alternations.

Uniform Equivalence

For the case of uniform equivalence, the associated PQIPs are of form Π = (P,Q,FA,⊆B) with
A = B = U . For this setting, however, we get no further simplifications compared to True [Π]. In
any case, we have the following corollary from Theorem 18.

41

Corollary 2 For any PQEP Π = (P,Q,FA,=B) with A = B = U and At(P ∪ Q) = V , Π
holds iff ¬∃V 1∃V 2(True [Π→] ∨ True [Π←]) is valid.

As uniform equivalence is a special case of relativised uniform equivalence, also this QBF is
satisfiability equivalent to T◦[Π]. The following result is a corollary of Theorem 19.

Corollary 3 For any PQEP Π = (P,Q,FA,=B) with A = B = U and At(P ∪ Q) = V , Π
holds iff ¬∃V 1∃V 2(T◦[Π→] ∨ T◦[Π←]) is valid.

Again, the formula structure of the respective QBF encodings reflect the complexity of verify-
ing uniform equivalence.

Ordinary Equivalence

Finally, for ordinary equivalence, the associated PQIPs are problems of form (P,Q,FA,⊆B) with
A = ∅ and B = U . Here, we observe similar effects as in the encoding for ordinary equivalence
with projection.

The following lemma directly relates QBFs and answer sets of a logic program. In fact, the fol-
lowing translations coincides with the encoding for computing answer sets via QBFs as described
by Egly et al. [18] modulo a different notation for new atoms.

Lemma 10 Let P be a DLP with At(P) = V and Y an interpretation. Then, Y ∈ AS (P) iff

Y 1 |= P 〈1,1〉 ∧ ∀V 2((V 2 < V 1)→ ¬P 〈2,1〉) .

Proof. Interpretation Y 1 is a model of the above formula iff (i) Y 1 |= P 〈1,1〉 and (ii) for each
Z ⊆ V , Y 1 ∪ Z2 |= (V 2 < V 1) implies that Y 1 ∪ Z2 6|= P 〈2,1〉. By Theorem 11, (i) holds iff
Y |= P Y . Furthermore, by Theorem 12 and Theorem 11, (ii) holds iff, for each Z with Z ⊂ Y ,
Z 6|= P Y . Hence, (i) and (ii) hold iff Y ∈ AS (P). �

Definition 13 Let Π be a PQIP with (P,Q,FA,⊆B) with At(P ∪Q) = V , then

Toe [Π] =
(
P 〈1,1〉 ∧ ∀V 3((V 3 < V 1)→ ¬P 〈3,1〉)

)
∧
(
Q〈1,1〉 → ∃V 5((V 5 < V 1) ∧Q〈5,1〉)

)
.

Lemma 11 Given a problem Π = (P,Q,FA,⊆B) with A = ∅ and B = U , T[Π] is equivalent
to Toe [Π].

Proof. Note that, since A = ∅, the free variables of T[Π] as well as of Toe [Π] reduce to V 1.
Moreover, for each Y ⊆ V , Y 1 |= T[Π] iff Y ∈ AS (P) but Y 6∈ AS (Q) (cf. Theorem 16). Note
that

Q〈1,1〉→ ∃V 5((V 5 < V 1) ∧Q〈5,1〉)
in Toe [Π] is the negation of

Q〈1,1〉 ∧ ∀V 5((V 5 < V 1)→ ¬Q〈5,1〉) .
By Lemma 10, Y 1 |= Toe [Π] iff Y ∈ AS (P) but Y 6∈ AS (Q), hence Toe [Π] and T[Π] are
equivalent. �

42

Theorem 20 For any PQEP Π = (P,Q,FA,=B) with A = ∅, B = U , and At(P ∪Q) = V , Π
holds iff ¬∃V 1(Toe [Π→] ∨ Toe [Π←]) is valid.

Proof. The result immediately follows from Theorem 16, Lemma 11, and Proposition 3. �

Note that the structure of the closed QBF ¬∃V 1(Toe [Π→] ∨ Toe [Π←]) witnesses the ΠP
2 -

membership of ordinary equivalence. Moreover, ordinary equivalence is also a special case of
relativised strong equivalence with projection. Recall that similar QBF reductions for the latter
problem have been introduced and implemented in previous work [55, 81]. It turns out that the
resulting QBFs for PQEPs and relativised strong equivalence coincide for the special case of ordi-
nary equivalence.

As ordinary equivalence is a special case of relativised uniform equivalence, we can obtain a
further simplification in terms of T◦[·].

Definition 14 Let Π be a PQIP (P,Q,FA,⊆B) with At(P ∪Q) = V , Then,

T4[Π] =
(
P 〈1,1〉 ∧ ∀V 3((V 3 < V 1)→ ¬P 〈3,1〉)

)
∧
(
Q〈1,1〉 → ((V 5 < V 1) ∧Q〈5,1〉)

)
.

Lemma 12 For any PQIP Π = (P,Q,FA,⊆B) with A = ∅ and B = U , Toe [Π] is satisfiability
equivalent to T4[Π].

Proof. Since no atom from V 5 occurs outside the scope of ∃V 5 in Toe [Π], we can shift ∃V 5 and
write Toe [Π] as ∃V 5 T4[Π]. Hence, as Toe [Π] and ∃V 5 T4[Π] are equivalent, Toe [Π] and T4[Π]
are a fortiori satisfiability equivalent. �

Theorem 21 For any PQEP Π = (P,Q,FA,=B) with A = ∅, B = U , and At(P ∪Q) = V , Π
holds iff ¬∃V 1∃V 5(T4[Π→] ∨ T4[Π←]) is valid.

Proof. The result follows from Theorem 20 by analogous arguments as in the proof of Theorem 19.
�

We have shown that all special cases with B = U have in common that the respective en-
codings always yield QBFs with at most one quantifier alternation in each branch of the formula,
witnessing the ΠP

2 -membership of those problems. Thus, all presented simplifications are ade-
quate in the sense that, after putting them into PNF, the number of quantifier alternations in the
prenex always matches the complexity for the respective notion of program correspondence.

4.4 Transformations into Normal Forms

Most available QBF solvers require its input formula to be in a certain normal form, viz. in prenex
conjunctive normal form (PCNF). Hence, in order to employ these solvers, the translations de-
scribed above have to be transformed by a further two-phased normalisation step which consists
of the following two tasks:

43

1. translating the given QBF into prenex normal form (PNF), and

2. translating the propositional part of the resulting formula in PNF into CNF.

Both steps require to address different design issues. In what follows, we describe the funda-
mental problems and then briefly provide our solutions in some detail.

First, a QBF does not have a unique PNF in general. In this sense, the step of translating a QBF
into PNF, also known as prenexing, is not deterministic. As discussed by Egly et al. [19], there are
numerous so-called prenexing strategies. The concrete selection of such a strategy, also depending
on the specific QBF solver used, crucially influences the running times of the QBF solver. When
prenexing a QBF, certain dependencies between quantifiers have to be respected when combining
the quantifiers of different subformulas to one linear prefix. For our encodings, these dependen-
cies are rather simple and analogous for both encodings ¬∃V 1∃A2S[·] and ¬∃V 1∃A2T[·]. First,
observe, however, that both encodings have negation as their outermost connective which has to
be shifted into the formula by applying suitable equivalence-preserving transformations which are
similar to ones well known from first-order logic. In what follows, we implicitly assume that this
step has already been performed. This allows us to consider the quantifier dependencies cleansed
with respect to their polarities. The dependencies for the encoding ¬∃V 1∃A2S[·] can then be
illustrated as follows:

∀V 1

∀A2

∃V 3 ∃V 4

∀V5

1

Here, the left branch results from the subformula Φ and the right one results from the subformula
∀V 4((B4 = B1)→ Ψ) in S[·].

Inspecting these quantifier dependencies, we can only group together ∀V 1 with ∀A2 and ∃V 3

with ∃V 4. This yields the following way for prenexing our encodings:

∀(V 1 ∪A2)∃(V 3 ∪ V 4)∀V5.

Concerning the transformation of the propositional part of a prenex QBF into CNF, we use
a method following Tseitin [83] in which new atoms, so-called labels, are introduced abbre-
viating subformula occurrences. More precisely, we consider an optimisation due to Plaisted
and Greenbaum [70], where the polarities of the subformulas are taken into account. This so
called structure-preserving normal-form transformation has the property that the resultant CNFs
are always polynomial in the size of the input formula. Recall that a standard translation of a
propositional formula into CNF based on distributivity laws yields formulas of exponential size
with respect to the original formula in the worst case. More information on structure-preserving
normal-form transformations can also be found in related work [42, 86].

Towards the transformation, we introduce the following definitions. Let φ be a propositional
formula. The set Σ(φ) denotes the set of all subformulas of φ. By Σ+(φ) we denote the set of

44

all subformulas occurring positively in φ, and by Σ−(φ) we denote the set of all subformulas
occurring negatively in φ. The set L(φ) of labels is defined as {Lψ | ψ ∈ Σ(φ)}. We assume that
all labels are globally new atoms.

Definition 15 Let φ be a propositional formula and ψ, δ, γ ∈ Σ(φ). For each ψ ∈ Σ(φ), a label
formula for ψ is introduced as follows:

1. if ψ is a propositional atom, then

d+
ψ = ¬Lψ ∨ ψ,
d−ψ = Lψ ∨ ¬ψ;

2. if ψ = ¬δ, then

d+
ψ = ¬Lψ ∨ ¬Lδ,
d−ψ = Lψ ∨ Lδ;

3. if ψ = δ ∧ γ, then

d+
ψ = (¬Lψ ∨ Lδ) ∧ (¬Lψ ∨ Lγ),

d−ψ = Lψ ∨ ¬Lδ ∨ ¬Lγ ;

4. if ψ = δ ∨ γ, then

d+
ψ = ¬Lψ ∨ Lδ ∨ Lγ ,
d−ψ = (Lψ ∨ ¬Lδ) ∧ (Lψ ∨ ¬Lγ).

Furthermore, we define

D(φ) = Lφ ∧

 ∧
ψ∈Σ+(φ)

d+
ψ

 ∧
 ∧
ψ∈Σ−(φ)

d−ψ

 .

Obviously, D(φ) is in conjunctive normal form and D(φ) is linear in the size of φ. Note that
the normal-form translation into CNF using labels is not validity preserving like the one based
on distributivity laws but only satisfiability equivalent with respect to the introduced labels. More
formally, the following proposition holds.

Proposition 11 (Plaisted and Greenbaum [70]) Given a propositional formula φ, φ is satisfi-
able iff D(φ) is satisfiable.

Recall that for QBFs, satisfiability equivalence can easily be lifted to logical equivalence by
considering the existential closure.

Corollary 4 For each propositional formula φ, φ and ∃L(φ)D(φ) are equivalent.

45

Moreover, the following essential result for closed QBFs is an immediate consequence of Corol-
lary 4 and the replacement property for QBFs from Proposition 3.

Proposition 12 (Klotz [42], Woltran [86]) Let Φ = QnPn · · ·Q1P1φ, for Qi ∈ {∃, ∀} and n >
0, be either an (n,∀)-QBF with n being even or an (n,∃)-QBF with n being odd. Then, Φ and
QnPn . . . Q1P1∃L(φ)D(φ) are logically equivalent, where L(φ) are the new labels introduced by
the above CNF transformation.

For Φ as in the above proposition, we have that Q1 = ∃. Hence, in this case,

QnPn · · ·Q1P1∃L(φ)D(φ)

is the desired PCNF, equivalent to Φ, used as input for QBF solvers requiring PCNF format for
evaluating Φ. To transform a QBF Ψ = QnPn . . .Q1P1ψ which is an (n,∀)-QBF with n being odd
or an (n, ∃)-QBF with n being even, we just apply Proposition 12 to QnPn . . .Q1P1¬ψ, where
Qi = ∃ if Qi = ∀ and Qi = ∀ otherwise, which is equivalent to ¬Ψ. That is, in order to evaluate
Ψ by means of a QBF solver requiring PCNF input, we compute QnPn . . .Q1P1¬ψ and “reverse“
the output. This is accommodated in cc>—the respective tool that implements the translations
from this chapter—that either the original correspondence problem or the complementary problem
is encoded whenever an input yields a QBF like Ψ. The system cc> is described in more detail
in the next chapter.

For the entire normal-form transformation, one can use the quantifier-shifting tool qst [89].
It accepts arbitrary QBFs as input and returns an equivalent PCNF QBF in Q-DIMACS format
which is a de-facto standard for PCNF-QBF solvers [74]. The tool qst implements 14 different
prenexing strategies and uses the mentioned structure-preserving normal-form transformation for
the transformation to CNF.

46

CHAPTER 5
The Reasoning Tool cc>

The encodings from correspondence problems to QBFs discussed in the previous chapter were
implemented as an extension of the system cc> [55]. This includes also all simplifications out-
lined in the previous chapter. The abbreviation “cc>” stands for “correspondence-checking tool”.
Instead of “t”, we use the symbol > in “cc>” which is consequently pronounced as “ze-ze-top”
(with all due respect to the famous rock group). In this chapter, we describe the methodology
behind cc> in more detail, and we illustrate the usage of the new component of cc> for de-
ciding PQIPs and PQEPs. Experimental evaluations using different QBF solvers are reported in
Chapter 6. In Chapter 7, we describe an application of cc> in a real-world application.

5.1 System Methodology

The tool is entirely developed in ANSI C, using LEX and YACC for the parser. In its current form,
the entire package consists of more than 2500 lines of code. The system is publicly available
(including the source code); it can be downloaded from the Web at

http://www.kr.tuwien.ac.at/research/systems/ccT.

The methodology of cc> to verify correspondence problems is to reduce them to the satisfi-
ability problem of quantified propositional logic and to use external QBF solvers [43, 52] for the
latter language as backend-inference engines. The reductions required for this approach to decide
PQIPs and PQEPs are described in Chapter 4.

The overall application framework for cc> is depicted in Fig. 5.1. In order to decide a prob-
lem (P,Q,FA,�B), for � ∈ {⊆,=}, cc> takes as input two programs, P and Q, as well as
sets A and B. We refer to A as context set and to B as projection set. Command-line options
select between two kinds of reductions from correspondence problems to QBFs, namely the direct
encoding S[·] and the alternative encoding T[·]. Also, the comparison relation � ∈ {⊆,=} is
specified via command-line arguments. Detailed invocation syntax of cc> can be requested with
option ‘-h’.

47

ccT

program P

program Q

context set A

projection set B

non-normal form

QBF-solver

normal form

QBF-solver
qst

non-normal form

QBF

normal form

QBF

input files

Figure 5.1: Overall application framework for cc>.

The input for cc>, consisting of programs P and Q as well as the context set A and the
projection set B, is then transformed into a QBF according to the selected encodings. Afterwards,
the resulting QBF is handed to a QBF solver. Validity of the resulting QBF reflects the outcome
of the original problem. Since the QBFs generated by cc> are not in a particular normal form,
for solvers requiring normal-form QBFs—this is the case for the vast majority of QBF solvers—,
a corresponding normaliser, qst [89], is needed.

5.2 Illustrating Example

As an illustrating example, consider the programs

P =

sad ∨ happy ,

sappy ← sad , happy ,
confused ← sappy

 and Q =

sad ← not happy ,

happy ← not sad ,
confused ← sad , happy

which express some knowledge about the moods of a person. While program Q is defined over
atoms {sad , happy , confused}, program P additionally uses an auxiliary atom sappy . The in-
tended meaning of program P is that a person always feels happy or sad. If a person is happy and
sad at the same time, then we refer to this special mood as “sappy”. In case a person feels sappy,
then it feels confused. For programQ, the intended meaning is quite similar. A person feels happy
if it does not feel sad. Likewise, a person feels sad if it does not feel happy. As for program P , a
person feels confused if it is both happy and sad.

Programs P and Q can be seen as queries over a propositional database consisting of facts
from, e.g., {happy , sad}. For the output, it would be natural to consider the common intensional
atom confused . To decide whether P andQ are interchangeable in such a setting, we thus consider
Π = (P,Q,FA,=B) as a suitable PQEP, specifying A = {happy , sad} and B = {confused}.
It is a straightforward matter to check that Π, defined in this way, holds. Note however, though
P and Q are equivalent in the ordinary sense, P and Q are not uniformly equivalent and also not

48

uniformly equivalent relative to A. This is because answer sets of P may contain sappy which
never occurs in any answer set of Q. This shows the relevance of projecting answer sets to a set of
dedicated output atoms when comparing programs that make use of auxiliary atoms.

Next, let us turn our attention to the concrete usage of cc>. The syntax of the programs is
the basic DLV syntax [17, 44]. In this syntax, the two programs P and Q from the above example
look as follows:

P =

sad v happy.
sappy :- sad, happy.
confused :- sappy.

 , Q =

sad :- not happy.
happy :- not sad.
confused :- sad, happy.

 .

Let us assume that the two programs are stored in the files P.dl and Q.dl, respectively. The two
sets A and B from the example are written as comma separated lists within brackets:

context set A: (happy, sad),
projection set B: (confused).

We assume them to be stored in files A and B, respectively. The concrete invocation syntax for
translating the problem Π = (P,Q,FA,=B) into a corresponding QBF is

ccT -u -e P.dl Q.dl A B .

The command-line options “-u” together with “-e” enforce that cc> interprets input parameters
P.dl, Q.dl, A, and B as a problem of form Π = (P,Q,FA,=B), thus as a PQEP. Without
option “-u”, the tool would assume PA instead of FA in Π and thus interpret the input files as a
problem generalising strong equivalence instead of uniform equivalence. To decide an associated
implication problem to Π, one has to replace “-e” by “-i” or omit the parameter. Then, cc>
will assume⊆B instead of =B in Π. By default, cc> will use encoding T[·] for translating Π into
a QBF; option “-S” can be used to force the tool to use encoding S[·] instead.

The resulting output QBF will be written directly to the standard-output device from where it
can serve as input for QBF solvers. Besides that, cc> will write a message to the standard-output
device that clarifies how the truth value of this QBF has to be interpreted, i.e., if the specified
correspondence problems holds if the QBF is true, or if it holds when the QBF is false.

Since cc> does not output QBFs in a specific normal form, for using solvers requiring
normal-form QBFs, the additional normaliser qst [89] can be used. For illustration, assume
that nf-solver is a QBF solver that requires its input to be in PCNF, and solver is a QBF
solver that can process arbitrary QBFs, then respective tool pipes to decide problem Π from above
could be realised as follows:

ccT -u -e P.dl Q.dl A B | qst | nf-solver , resp.,

ccT -u -e P.dl Q.dl A B | solver .

Important special cases of PQEPs, e.g., ordinary equivalence or uniform equivalence (possibly
relative to some set of atoms), can easily be specified using respective command-line arguments.
If we omit A or B when launching cc>, the tool takes At(P ∪Q) for the respective set. Hence,
we can use cc> to decide if P and Q are uniformly equivalent by the following command:

49

ccT -u -e P.dl Q.dl .

If we write 0 instead of a filename, cc> assumes the empty set for the respective input element.
Note that it can be necessary to explicitly state which file corresponds to which input element,
as illustrated by the following example. To check for ordinary equivalence, we can use cc> as
follows:

ccT -u -e P.dl Q.dl -A 0 .

Here, we use option “-A” to express that 0 is the context set. The projection set equals At(P ∪Q).
In general, we can use options “-P”, “-Q”, “-A”, and “-B” and write

ccT -u -e -P P.dl -Q Q.dl -A A -B B .

to state that file P.dl defines P , Q.dl defines Q, A defines A, and B defines B in a PQEP
(P,Q,FA,=B). These options can be used for defining PQIPs likewise. Observe that the follow-
ing invocations would have been equivalent to the one above:

ccT -u -e -P P.dl -Q Q.dl A B ,
ccT -u -e -A A -B B P.dl Q.dl ,
ccT -u -e -Q Q.dl -B B P.dl A .

5.3 Obtaining Counterexamples

When dealing with PQEPs and PQIPs, often one is not only interested in the outcome of the
respective decision problems. In particular, if a correspondence problem does not hold, it can
be important to know why it is not holding. Hence, it can be necessary to compute concrete
counterexamples that witness that a correspondence problem does not hold.

Recall that, by Lemma 5, the explicit counterexamples for a PQIP Π correspond to the models
of S[Π], and, by Lemma 6, the explicit counterexamples for a PQEP Π correspond to the models
of S[Π→] ∨ S[Π←]. For encoding T[·], there is an analogous relation to explicit counterexamples
with is detailed in Theorem 16. Therefore, we can use our reduction approach to QBFs not only to
decide PQIPs and PQEPs but also to compute counterexamples in case program correspondence
does not hold. This feature, in terms of modified QBF translations, has been incorporated into
cc>.

For illustration, reconsider programs P , Q and files P.dl, Q.dl from the previous section.
Programs P and Q are ordinarily equivalent but not uniformly equivalent. To reveal an explicit
counterexample, cc> can be launched as follows:

ccT -u -e -c P.dl Q.dl .

Here, parameter “-c” specifies that the tool should generate a QBF ψ such that, in any model of
ψ, the truth assignments to the free variables of ψ encode an explicit counterexample for Π→ or
Π←, where Π = (P,Q,FU ,=U). In this case, ψ = T[Π→] ∨ T[Π←], and the free variables of
ψ are V 1 ∪ V 2, where V = At(P ∪ Q). For any explicit counterexample (X,Y) for Π and for
any model I of ψ, the atoms over V 1 that are true in I encode X , and the atoms over V 2 that are

50

true in I encode Y according to Theorem 16. Now, any QBF solver that can compute satisfying
assignments for QBFs with free variables can be used to compute counterexamples. One such
assignment would reveal that (X,Y), with X = {sad , happy} and Y = {sad , happy , confused},
is an counterexample for Π← since Y ∈ AS (Q ∪X) but Y 6∈ AS (P ∪X).

51

CHAPTER 6
Empirical Evaluation of cc>

We now give a performance evaluation of the implemented extension of cc> for testing PQIPs and
PQEPs. The goal of the experiments is to clarify the interplay of different QBF solvers, different
encodings, and different problem settings in terms of running-time performance.

6.1 Experimental Setup

In the spirit of previous experiments with cc> [55], we use the reduction from QBFs to PQIPs
given by the ΠP

3 -hardness proof of Theorem 10 (Section 3.4) for deciding PQIPs. This provides
us with a class of random benchmark problems for cc> which captures the inherent hardness of
the problem.

The method to generate benchmark instances is as follows:

1. generate a random (3, ∀)-QBF Φ in PDNF;

2. reduce Φ to ΠΦ according to the transformation of Theorem 10, where ΠΦ holds iff Φ is
valid; and

3. apply cc> to derive a corresponding QBF encoding Ψ for Π.

A particular advantage of this method is that it allows in a straightforward way to verify the
correctness of the overall system: just check whether the QBF Φ, that serves as a seed in the
process of generating a benchmark instance, and the QBF Ψ, that is given as output of cc>, have
the same truth value. Indeed, with the help of this feature, we were able to find errors in some
QBF solvers.

Our benchmark set consists of 1000 instances. Each randomly generated QBF Φ of Step 1
contains 24 different atoms. From those 24 atoms, each quantifier block binds 8 of them. Each
term in the PDNF QBF Φ contains 4 atoms which are selected by random from the 24 atoms and
are negated with probability 0.5. The whole formula consists of 38 terms.

53

From the 1000 instances, 506 evaluate to true and 494 evaluate to false. Thus, the ratio between
true and false instances is close to 1. Therefore, having easy-hard-easy patterns in mind, we
suppose the benchmark set to be located in a rather hard region.

From each QBF Φ in our benchmark set, we construct the PQIP ΠΦ = (P,Q,FA,⊆B) such
that Φ is true iff Π holds according to Step 2. It is important to notice that P , Q, and B are
determined by the reduction but the context A can be chosen arbitrarily. For our experiments, we
use three different settings regarding the choice of the context set A, namely

1. the empty context A = ∅,

2. the full context A = U , and

3. an in-between setting ∅ ⊆ A ⊆ U .

For the last setting, each atom in At(P ∪Q) is in A with probability 0.5.
We consider both encodings from PQIPs to QBFs, S[·] and T[·], together with the three choices

for the context set. The QBFs stemming from S[·] possess 197 atoms each for the empty context;
221 atoms (on average) for the in-between context; and 246 atoms for the full context. For QBFs
from T[·], the respective numbers are 189, 213, and 238.

We compare the four QBF solvers semprop [45] (release 24/02/02), qube-bj [35] (v1.2),
quantor [9] (release 25/01/04), and qpro [20, 21]. We selected these solvers because they
proved to be competitive in previous QBF evaluations [43, 52] and yielded only correct results
on our benchmarks. The solvers qpro, qube-bj, and semprop are based on the standard
DPLL decision procedure extended by special learning techniques whereas quantor implements
a combination of resolution and variable expansion.

All solvers except qpro require the input to be in PCNF. Thus, for those solvers, an interme-
diate prenexing step is necessary. However, for our instances, the structure of the prenex is fixed
in such a way that avoiding an increase of the number of quantifier alternations during the trans-
formation to PNF can only be accomplished by placing each quantifier into a uniquely determined
quantifier block of the target (3,∀)-QBF (cf. Section 4.4). Recall that for both translations, cc>
encodes the complementary problem if projection is used. The reason is to avoid an additional
quantifier alternation after the transformation to PCNF—details are discussed in Section 4.4.

After that prenexing step, QBFs from S[·] consist (on average) of 1035 clauses over 632 atoms
(for the empty context), 1203 clauses over 728 atoms (for the in-between context), and 1378
clauses over 828 atoms (for the full context). For T[·], the numbers are: 1003 clauses over 608
atoms (for the empty context), 1171 clauses over 704 atoms (for the in-between context), and 1346
clauses over 802 atoms (for the full context).

All experiments were carried out on a 3.0 GHz Dual Intel Xeon workstation, with 4 GB of
RAM and Linux version 2.6.8.

6.2 Results

Figure 6.1 summarises the results of the comparison. The different QBF solvers, encodings (S[·]
and T[·], respectively), and settings for the context (empty, in-between, and full, respectively) are
given on the abscissa, and the median running times in seconds are depicted on the ordinate.

54

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

qube-bj semprop quantor qpro

se
co

nd
s

S-empty
T-empty

S-in-between
T-in-between

S-full
T-full

Figure 6.1: Median running times for different solvers, encodings, and problem settings.

A rather surprising observation is that the alternative encoding T[·] does not achieve faster
running times for all solvers, although it uses less propositional atoms. For qpro and qube-bj,
QBFs from T[·] are solved—as one would expect—faster. This is not the case for semprop
and quantor, where semprop solves QBFs from S[·] slightly faster and quantor solves such
QBFs much faster (the bar for quantor with full context and encoding T[·] illustrates that the
median value is above 100 seconds).

The next point that deserves some attention is the connection between running time and context
parameterisation. The non-normal-form solver qpro achieves best results for the empty context
but rather poor results for the full context. For qube-bj, the contrary is true however, i.e., it
achieves best results for the full context but poor results for the empty context—a quite surprising
observation. Finally, the most robust solver in this aspect is semprop. Recall that each of the
derived PQIPs (P,Q,FA,⊆B) either holds for anyA, or does not hold for anyA. The assignments
of atoms from X1 in the encodings S[·] and T[·] which “guess” context-program candidates are
thus completely irrelevant for the truth value of the QBFs. Now, as qpro does not implement
any heuristics concerning the selection of atoms, it is no longer surprising that running times scale
exponentially when the context gets larger. The heuristics realised in semprop seem to avoid that
too much time is spend on finding assignments for those “decoy” variables. On the other hand,
qube-bj suffers from the absence of those variables.

Figures 6.2–6.9 provide some deeper insights concerning the running-time behaviour of the
non-normal-form solver qpro as well as of the normal-form solvers semprop, qube-bj, and
quantor, respectively. For those figures, the abscissa gives the running time in seconds (scaled

55

0

200

400

600

800

1000

 0.1 1 10 100

in
st

an
ce

s

seconds

qpro

S-empty
S-in-between

S-full
T-empty

T-in-between
T-full

Figure 6.2: Running-time distribution for qpro.

0

200

400

600

800

1000

 0.1 1 10 100

in
st

an
ce

s

seconds

semprop

S-empty
S-in-between

S-full
T-empty

T-in-between
T-full

Figure 6.3: Running-time distribution for semprop.

56

0

200

400

600

800

1000

 0.1 1 10 100

in
st

an
ce

s

seconds

qube-bj

S-empty
S-in-between

S-full
T-empty

T-in-between
T-full

Figure 6.4: Running-time distribution for qube-bj.

0

200

400

600

800

1000

 0.1 1 10 100

in
st

an
ce

s

seconds

quantor

S-empty
S-in-between

S-full
T-empty

T-in-between
T-full

Figure 6.5: Running-time distribution for quantor.

57

0

100

200

300

400

500

 0.1 1 10 100

in
st

an
ce

s

seconds

true instances

S-empty
S-in-between

S-full
T-empty

T-in-between
T-full

0

100

200

300

400

500

 0.1 1 10 100

in
st

an
ce

s

seconds

false instances

S-empty
S-in-between

S-full
T-empty

T-in-between
T-full

Figure 6.6: Running-time distributions for qpro: true and false instances.

58

0

100

200

300

400

500

 0.1 1 10 100

in
st

an
ce

s

seconds

true instances

S-empty
S-in-between

S-full
T-empty

T-in-between
T-full

0

100

200

300

400

500

 0.1 1 10 100

in
st

an
ce

s

seconds

false instances

S-empty
S-in-between

S-full
T-empty

T-in-between
T-full

Figure 6.7: Running-time distributions for semprop: true and false instances.

59

0

100

200

300

400

500

 0.1 1 10 100

in
st

an
ce

s

seconds

true instances

S-empty
S-in-between

S-full
T-empty

T-in-between
T-full

0

100

200

300

400

500

 0.1 1 10 100

in
st

an
ce

s

seconds

false instances

S-empty
S-in-between

S-full
T-empty

T-in-between
T-full

Figure 6.8: Running-time distributions for qube-bj: true and false instances.

60

0

100

200

300

400

500

 0.1 1 10 100

in
st

an
ce

s

seconds

true instances

S-empty
S-in-between

S-full
T-empty

T-in-between
T-full

0

100

200

300

400

500

 0.1 1 10 100

in
st

an
ce

s

seconds

false instances

S-empty
S-in-between

S-full
T-empty

T-in-between
T-full

Figure 6.9: Running-time distributions for quantor: true and false instances.

61

logarithmically) and the ordinate gives the number of solved problem instances. This means that
for each running time in the data, we depict how many instances were solved with running time
less or equal to that time. The different curves correspond to the different combinations of the
chosen encoding and context parameterisation. For better legibility, different symbols are at-
tached to the curves. Figures 6.2–6.5 depict the running-time distributions for qpro, semprop,
qube-bj, and quantor, respectively. Figures 6.6–6.9 allow for a even more thorough analysis
by separately depicting respective distribution for true and false problem instances.

Figure 6.2 is a good illustration of how qpro benefits from the alternative encoding: the re-
spective curves for S[·] and T[·] are running in parallel. The similarity of the median running times
for semprop in Figure 6.1 extends to quite similar curves in Figure 6.3 for the whole distribution.
Note that symmetric curves (with respect to the median) on a logarithmically scaled axis imply
skewed distribution of the data, i.e., low deviation for instances with running times below the me-
dian and high deviation for instances with running times above the median. Figure 6.4 provides
some insight into the rather odd behaviour of qube-bj on this set of problem instances. While
the curves for full and in-between context are rather similar, the curves for the empty context are
standing out and illustrate the higher effort for qube-bj to solve them. The sharp inclination of
the curves for quantor (Figure 6.5) implies that there is not much deviation in the data. Here,
the running times of most instances are close to the median. Moreover, compared to the other
systems, there are no instances with short running times, more precisely shorter than 11 seconds.

An analysis of the running times separated by true and false instances given in Figures 6.6–6.9
reveals that the tendency is that false instances are solved faster on average. However, for empty
and in-between context, qube-bj is faster on the true instances (cf. Figure 6.8).

62

CHAPTER 7
cc> on Stage: A Verification

Application

We next discuss an application of cc> for verifying the correctness of logic programs. In particu-
lar, these programs represent the solutions of students as part of their assignments for a laboratory
course on logic programming and knowledge-based systems at the Vienna University of Tech-
nology. We compare these solutions relative to a reference program based on verifying certain
PQEPs. As the involved programs are non-ground, i.e., they contain variables, we need special
techniques to take this into account. Hence, this also demonstrates how our reduction approach to
QBFs can be applied to non-ground programs as well.

7.1 Programs with Variables

So far, we only considered propositional programs, i.e., programs consisting of rules of form (2.1),
where all atoms come from a fixed propositional universe. In practice, programs may (and usually
do) contain variables. We say that an expression (atom, rule, or program) is ground if it does
not contain variables, and it is non-ground otherwise. In this chapter, we deal with non-ground
programs. That we focused on propositional programs so far is justified because the semantics of
non-ground programs is defined, as we will see, by means of propositional ones.

A non-ground program, or program for short, is a finite set of rules of form

a1 ∨ · · · ∨ al ← al+1, . . . , am, not am+1, . . . ,not an , (7.1)

where all ai, 1 ≤ i ≤ n, are function-free first-order atoms over some fixed vocabulary. We adhere
to the convention that names of constant symbols start with a lower case letter, and variables start
with an upper case letter. We adopt the conventions regarding facts and constraints from rules of
form (2.1). A rule r of form (7.1) is safe if each variable occurring in in a rule r of form (7.1)
also occurs in some atom {al+1, . . . , am} in r. A program P is safe if each rule r ∈ P is safe.
We assume that all programs are safe. As usual, the Herbrand universe, HUP , of a program P is

63

the set of all constant symbols occurring in P . If P does not contain any constant symbol, HUP

contains an arbitrary one. The Herbrand base, HBP , is the set of all atoms constructible from the
predicate symbols in P and the constants in HUP .

For any rule r of form (7.1), the grounding of r with respect to a set C of ground terms, in
symbols grnd(r, C), is the smallest set of rules that contains each rule r′ that can be obtained from
r by uniformly replacing each variable in r by a term in C. For a program P , the grounding of P
with respect to C, grnd(P,C), is defined as

grnd(P,C) = {r′ | r′ ∈ grnd(r, C), r ∈ P} .

Note that grnd(P,C) is always a ground program. Following custom, we identify ground pro-
grams with propositional ones.

Let P be a non-ground program. Then, the answer sets of P are defined as the answer sets of
grnd(P,HUP). As in the propositional case, we use AS (P) to denote the collection of all answer
sets of P .

The assumption that programs are safe guarantees a property known as language indepen-
dence [3], i.e., it is always sufficient to consider the language implicitly defined by a program for
grounding the program. This is formalised by the next lemma.

Lemma 13 Let P be a program and C a set of constant symbols such that HUP ⊆ C. Then,

AS (grnd(P,HUP)) = AS (grnd(P,C)) .

Proof. We start with some basic observations. Let X be an answer set of a ground program Q.
First, each atom a ∈ X occurs in the head of some rule in Q. Otherwise, X cannot be a minimal
model of QX . Second, if Q contains a rule r such that some atom a occurs in the positive body
of r and a does not occur in the head of any rule in Q, then X is answer set of Q \ {r}. This
can be seen as follows: Since X is a minimal model of QX , a occurs in the positive body of r by
assumption, and, by our first observation, a 6∈ X , it follows that X must be a minimal model of
Q \ {r} as well. By analogous arguments, one can show that for any rule r such that some atom a
occurs in the positive body of r and a occurs in the head of any rule in Q, X is an answer set of
Q ∪ r.

Define R = grnd(P,C) \ grnd(P,HUP). Each rule r ∈ R contains a constant symbol c in
C \ HUP , otherwise r ∈ grnd(P,HUP) would hold. Safety implies that some body atom a of r
contains c. However, a cannot occur in the head of any rule in grnd(P,HUP), otherwise c ∈ HUP

would hold. If follows, by our second observation, that each answer set of grnd(P,HUP) is an
answer set of grnd(P,HUP)∪R and vice versa. Observe that grnd(P,HUP)∪R = grnd(P,C),
thus AS (grnd(P,HUP)) = AS (grnd(P,C)) follows. �

Note that state-of-the-art answer-set solvers like DLV [17,44] or clasp [33,72] support many
language extensions like weak constrains, optimisation statements, integer arithmetics, built-in
comparison predicates, function symbols, and aggregates.

Example 11 We next illustrate how instances of the 3-colourability problem (3COL) can be
solved using ASP. Given a graph G = (V,E) consisting of vertices V and edges E ⊆ V × V ,
a solution for 3COL for G is a mapping from V into a set of three colours, say red, green, and

64

si1

i2

i3
air_out

threeway_in

air_in

scale_in

i2

o1i1

o1

o1i1

i2

i1

i2

i3

vi1

i3

i2

h

o1

o2

c

Figure 7.1: Overall architecture of an air-conditioning system considered in one of two courses
of the Vienna University of Technology.

blue, such that no two adjacent vertices get assigned the same colour. The following program P
encodes 3COL:

colour(X, red) ∨ colour(X, green) ∨ colour(X, blue)← vertex (X) ,
← edge(X,Y), colour(X,C), colour(Y,C) .

Roughly speaking, the first rule non-deterministically assigns a colour (red, green, or blue) to a
each vertex, and the second rule excludes answer sets where two adjacent vertices have the same
colour. A graph is then encoded by means of facts over vertex/1 and edge/2. For instance,
a graph G = (V,E), with V = {a, b} and E = {(a, b), (b, a)}, is encoded my means of the
following set F of facts:

{vertex (a), vertex (b), edge(a, b), edge(b, a)}.

The answer sets of P ∪ F and the solutions of 3COL for G are in one-to-one correspondence. ♦

7.2 Problem Specification

One of the objectives of the course on knowledge-based systems mentioned above is to model
a simple air-conditioning system by means of logic programs and, based on this model, to solve
Reiter-style diagnosis tasks [75] with the dedicated diagnosis front-end of DLV [22]. The programs
we consider here are students’ attempts to model the components of the air-conditioning system
by means of ASP. They are taken from three installments of the course between 2006 and 2008.
The problem description changed only slightly from year to year.

Figure 7.1 illustrates the specification of an air-conditioning system used in 2008. This system
consists of four components, viz. a heater “h”, a cooler “c”, a switch “s”, and a valve “v”. They
are connected by air lines (grey bars) and data lines (ordinary lines). The students’ task is to
model each component of the system as well as the connections between the components and
some additional constraints required for diagnosing by respective programs.

65

The problem description provides detailed specifications of the system and its components and
defines the predicate symbols to be used for the input and output of the single components and the
whole system. The system’s input airstream “air_in” is modeled by a temperature value, ranging
from 0 to 60, and a value specifying whether or not air is streaming (“on” or “off ”). The same
holds for the output airstream “air_out”. The input values of “threeway_in” is one of “cool”,
“heat”, and “off ”. This value determines if the system should cool or heat incoming air or if the
system is turned off. The value of “threeway_in” is input for all components. Performance of the
air-conditioning system is regulated by the input value of “scale_in” which can be 0, 1, 2, or 3.
Here, 3 means maximal performance. The value of “scale_in” is input for the switch, the heater,
and the cooler component.

The behaviour of each component as well as of the entire system is precisely specified. We
illustrate such a specification along with an ASP model that represents this specification for the
heater component. The following specification determines the behaviour of the heater component
if it is functional:

The heater raises the temperature of the incoming airstream by three times the value
set on the data line but only to a maximum value of 45. If the incoming airstream
is already warmer than 45, then it is propagated unaltered to the heater’s output. Air
is streaming at the component’s output iff it is streaming at the component’s input.
If it is not streaming at the output, the temperature is set to the value defined by a
dedicated predicate ambient_t/1.

To model this component by means of ASP, students have to use the following predicates:

• Predicate t(C, I, V) defines the temperature of an incoming our outgoing airstream of a
component. In particular, C ∈ {s, h, v , c} is the name of the component, I ∈{i1, i2, i3, o1,
o2} is the measuring point, and V ∈ {0, . . . , 60} is the measured temperature value.

• Predicate s(C, I, V) states whether or not air is streaming. Analogous to t(C, I, V), C ∈
{s, h, v , c} is the name of the component, I ∈ {i1, i2, i3, o1, o2} is the measuring point,
and V ∈ {on, off } indicates whether air is streaming.

• Predicate d(C, I, V) represents a data value of an input line. Again, C ∈ {s, h, v , c} is the
name of the component, and I ∈ {i1, i2, i3, o1, o2} is the measuring point. For the heater
component, V ∈ {0, 1, 2, 3} are the possible constants for the data values.

• Predicate ambient_t(T) defines the ambient temperature, hence T ∈ {0, . . . , 60}.

• Predicates heater(C), cooler(C), switch(C), and valve(C), for C ∈ {s, h, v , c}, define
which constant symbols represent which component.

A program that represents the heater specification from above is given in Figure 7.2. Note that
ab/1 is a special predicate employed by DLV referring to a defective component. An example

66

% relates output airstream (on, off) with input airstream
s(H, o1, X)← heater(H), s(H, i1, X), not ab(H) ,

% heating the airstream according to the specification
t(H, o1, X)← heater(H), t(H, i1, Y), d(H, i2, Z), s(H, o1, on),

A = Z ∗ 3, X = Y +A,X ≤ 45,not ab(H) ,

t(H, o1, 45)← heater(H), t(H, i1, Y), d(H, i2, Z), s(H, o1, on),
A = Z ∗ 3, X = Y +A,X > 45, t(H, i1, T), T ≤ 45, not ab(H) ,

t(H, o1, T)← heater(H), t(H, i1, Y), d(H, i2, Z), s(H, o1, on),
A = Z ∗ 3, X = Y +A,X > 45, t(H, i1, T), 45 < T,not ab(H) ,

% temperature of the output airstream when air is not streaming
t(H, o1, X)← heater(H), s(H, o1, off), ambient_t(X), not ab(H)

Figure 7.2: Program representing the specification of the heater component.

input for this program could be given by the following facts:

heater(h) ,
ambient_t(20) ,
s(h, i1, on) ,
t(h, i1, 10) ,
d(h, i1, 2) .

Hence, the incoming airstream has a temperature value of 10 and air is floating. Moreover, the
value of the data input is 3. We would expect, from the specification of the heater component, that
the outgoing airstream has the temperature value 16 and air is floating as well. Indeed, if we join
these input facts with the program in Figure 7.2, the unique answer set of the resulting program
contains the atoms s(h, o1, 1) and t(h, o1, 16).

7.3 Program Verification

We next consider the verification task of determining the correctness of the students’ solutions.
First, we give a formal definition of a program being correct with respect to a specification. Then,
we show how to reduce problems of program correctness to PQEPs, and we discuss pragmatic
issues related to solving such problems.

Program Correctness

Let us denote by σ a (natural language) specification that we want to model by a logic program, and
let Ref (σ) be a reference solution, i.e., a logic program that is assumed to adequately represent σ.

67

Furthermore, we associate two sets, I(σ) and O(σ), with Ref (σ). Both I(σ) and O(σ) are finite
sets of ground atoms. We refer to I(σ) as the input signature of Ref (σ) and to O(σ) as the output
signature of Ref (σ). Note that Ref (σ) usually is a non-ground program. We assume that no atom
in I(σ) is intensional in grnd(Ref (σ), C), for any set C of constant symbols.

Example 12 If σH is the natural language specification for the heater component from the above,
Ref (σH) can be defined as the program from Figure 7.2. Input and output signatures can then be
fixed as follows:

I(σH) = { heater(C) | C ∈ Comp }∪
{ ambient_t(T) | T ∈ Temp }∪
{ d(C, I, Z) | C ∈ Comp, I ∈ Inp, Z ∈ Scale }∪
{ t(C, I, T) | C ∈ Comp, I ∈ Inp, T ∈ Temp }∪
{ s(C, I, S) | C ∈ Comp, I ∈ Inp, Z ∈ Strm } and

O(σH) = { t(C, o1, T) | C ∈ Comp, T ∈ Temp }∪
{ s(C, o1, S) | C ∈ Comp, S ∈ Strm } , where

Comp = {s, h, c, v} ,
Inp = {i1, i2} ,

Strm = {on, off } ,
Temp = {0, . . . , 60} , and
Scale = {0, 1, 2, 3} .

♦

Usually, specifications make further (sometimes implicit) assumptions concerning the input,
e.g., some predicates need to be defined always or are restricted to be functional in some argument.
We call a set A ⊆ I(σ) satisfying such assumptions admissible with respect to σ. Analogously
to specifications and reference programs, we assume that the admissible inputs of a specification
σ are modelled adequately by a logic program C(σ). Moreover, we assume that C(σ) contains,
besides atoms from I(σ), only atoms over predicates that are globally new. Program C(σ) defines
admissible inputs as follows:

Definition 16 Let σ be a specification. Then, S ⊆ I(σ) is admissible with respect to σ iff

S ∈ AS (C(σ) ∪ S)|I(σ) .

Example 13 Let us reconsider specification σH for the heater component. For σH , we assume
that any subset A ⊆ I(σH) is admissible if A contains exactly one atom over ambient_t/1 and
never specifies two different temperature values, data values, or streaming values by means of
predicates t/3, d/3, or s/3, respectively. These conditions can be modelled by program C(σH),
given in Figure 7.3. ♦

We next give the central definition of when we say that a program P is correct with respect to
a specification σ.

68

% one value for the ambient temperature
def _ambient_t ← ambient_t(T) ,
← not def _ambient_t ,
← ambient_t(T1), ambient_t(T2), T1 <> T2 ,

% s, t, and d are functional in their third argument
fail ← s(C, I, S1), s(C, I, S2), S1 <> S2 ,
fail ← t(C, I, T1), s(C, I, T2), T1 <> T2 ,
fail ← d(C, I,D1), s(C, I,D2), D1 <> D2 ,
← fail

Figure 7.3: A program defining admissible inputs for the heater component.

Definition 17 Let σ be a specification. A program P is correct with respect to σ iff, for each set
A ⊆ I(σ) that is admissible with respect to σ,

AS (P ∪A) =O(σ) AS (Ref (σ) ∪A) .

In the above definition, we assume that no atom in I(σ) is intentional in grnd(P,C), for any
set C of constant symbols. This is no restriction, however. If a program P does not satisfy this
assumption, we can always rewrite P into a program that meets this assumption: Let P be a
program and σ a specification. Moreover, let P ′ be the program that results from P by replacing
each occurrence of a predicate symbol p that also occurs in I(σ) by l(p), where l is an injective
function from X into a set of globally new predicate symbols. Define P [σ] as P ′ ∪ {l(a) ← a |
a ∈ L}. Then, I(σ) clearly cannot contain any atom that is intensional in grnd(P [σ], C), for any
set C of constant symbols. Moreover, this transformation preserves the semantics of P . More
specifically, for any set X ⊆ I(σ), I ∈ AS (P ∪X) iff I ′ ∈ AS (P [σ] ∪X), where

I ′ = I \ I(σ) ∪ {l−1(a)((c1, . . . , cn)) | a(c1, . . . , cn) ∈ I(σ) ∩ I} .

The following result establishes the connection between program correctness and PQEPs:

Theorem 22 A program P is correct with respect to a specification σ iff (M,N,FA,=B) holds,
where A = I(σ), B = O(σ), and

M = grnd(P ∪ C(σ), D) ,
N = grnd(Ref (σ) ∪ C(σ), D),

where D is a finite set that contains all constants in P ∪ Ref (σ) ∪ C(σ) ∪ I(σ).

Proof. Program P is correct with respect to σ iff

(∗) for each set A ⊆ I(σ) that is admissible with respect to σ,

AS (P ∪A) =O(σ) AS (Ref (σ) ∪A).

69

Recall that C(σ) contains, besides atoms from I(σ), only atoms over predicates that are globally
new. Moreover, for each set S ⊆ I(σ), S is admissible with respect to σ iff S ∈ AS (C(σ)∪S)|I(σ)

by definition. Therefore, if S is admissible with respect to σ, then, for any program P , S ∈
AS (P ∪ C(σ) ∪ S)|O(σ) iff S ∈ AS (P ∪ S)|O(σ). On the other hand, if S is not admissible with
respect to σ, then, for any program P , S 6∈ AS (P ∪ C(σ) ∪ S). It follows that Condition (∗) is
equivalent to the following condition:

(�) for each set A ⊆ I(σ), AS (P ∪ C(σ) ∪A) =O(σ) AS (Ref (σ) ∪ C(σ) ∪A).

Now,

AS (P ∪ C(σ) ∪A) = AS (grnd(P ∪ C(σ) ∪A,HUP∪C (σ)∪A)) and
AS (Ref (σ) ∪ C(σ) ∪A) = AS (grnd(Ref (σ) ∪ C(σ) ∪A,HURef (σ)∪C (σ)∪A)) .

Observe that HUP∪C (σ)∪A ⊆ D and HURef (σ)∪C (σ)∪A ⊆ D. By virtue of Lemma 13,

AS (grnd(P ∪ C(σ) ∪A,HUP∪C (σ)∪A)) = AS (grnd(P ∪ C(σ) ∪A,D)) and

AS (grnd(Ref (σ) ∪ C(σ) ∪A,HURef (σ)∪C (σ)∪A)) = AS (grnd(Ref (σ) ∪ C(σ) ∪A,D)) .

Hence, (�) is equivalent to the following condition: for each set A ⊆ I(σ),

AS (grnd(P ∪ C(σ) ∪A,D)) =O(σ) AS (grnd(Ref (σ) ∪ C(σ) ∪A,D))

which, in turn, holds iff the PQEP (M,N,FA =B) holds. �

Using cc> for Program Verification

In order to apply cc> for verifying program correctness, we follow Theorem 22. The reason
why a reduction to standard uniform equivalence or ordinary equivalence (with additional guess-
ing rules) is not feasible, is the necessity of answer-set projection which has two sources: first,
programmers usually employ auxiliary atoms which are not considered as output predicates, and
second, new atoms are sometimes added by the grounding procedure (we return to this point in a
moment). Recall that in terms of complexity theory, projection is the reason why deciding PQEPs
is exponentially harder than to decide problems of ordinary equivalence or uniform equivalence
(cf. Section 3.4).

Verifying students’ solutions by following Theorem 22 and then applying cc> is in principle
possible but the resulting programs would be prohibitively large. So, instead of applying a naive
grounding by strictly following the definition, we make use of the intelligent grounding component
of DLV. In fact, DLV implements several optimisations when grounding a program, e.g., input
rewriting, deletion of rules whose body is always false, and semi-naive evaluation. The choice of
enabled options has significant impact on the running times of the subsequently employed QBF
solver, however. We also remark that some optimisations, e.g., input rewriting, introduce new
atoms. Thus, not only auxiliary atoms used by a programmer but also such new atoms stemming
from the grounding request the use of projection in equivalence tests. Note that by using DLV’s
intelligent grounder, we can use strong negation as well as integer arithmetics and comparison

70

predicates in the programs. The grounder translates rules containing these constructs into rules of
form (2.1).

However, the optimisations of the intelligent grounder may be too excessive. For any program
P , the intelligent grounder only guarantees that grnd(P,HUP) and the result of the grounder are
ordinarily equivalent with projection on At(grnd(P,HUP)). For example, the grounding of the
program P for the heater in Figure 7.2 would result in the empty program since it contains no facts.
Indeed, P and ∅ are ordinarily equivalent. We need a method that guarantees that the semantics
of the ground program, possibly joined with atoms from I(σ), is correctly preserved under the
conservative assumption that the grounder only preserves ordinary equivalence (with projection to
the language of the considered program).

Our concrete method to ground programs is as follows:

Definition 18 Let P be a program and σ a specification. Then, igrnd(P, σ) is the program that
results from P by performing the following steps:

1. Augment P by rules a← a′ and a′ ∨a′′ for any a ∈ I(σ), where a′ and a′′ are globally new
atoms.

2. Use the intelligent grounder of DLV to ground the augmented version of P .

3. Finally, delete all rules containing primed or double-primed atoms from the resulting ground
program.

Theorem 23 Let P be program and σ a specification. Define M = grnd(P,D), where D is a
finite set containing all constant symbols that occur in P ∪ I(σ), and N = igrnd(P, σ). Then, the
PQEP (M,N,FI(σ),=HBP

) holds.

Proof. Let P ′ be the program that results from P after the first step of the transformation described
in Definition 18, and define P ′′ as the output of the intelligent grounder in the second step in
Definition 18. Recall that the intelligent grounder preserves ordinary equivalence with projection
on V = At(grnd(P ′,HUP ′)). Thus, the PQEP (grnd(P ′, D), P ′′, {∅},=V) holds. This implies,
by Theorem 8, that the PQEP (M,N,FI(σ),=D) holds as well. �

In order to apply cc> for verifying correctness of a program P with respect to a specification
σ, we follow Theorem 22 but make use of igrnd(·, ·) instead of grnd(·, ·):

1. we compute M = igrnd(P ∪ C(σ), D) and N = igrnd(Ref (σ) ∪ C(σ), D), where D is
defined as in Theorem 22, and

2. we use cc> (along with a QBF solver) to decide the PQEP (M,N,FI(σ),=Oσ).

It follows directly from Theorems 23, 6, and 7 that P is correct with respect to σ iff the PQEP
(M,N,FI(σ),=Oσ) holds. However, programs resulting from this procedure are still very large in
general. We thus restrict the sets I(σ) to contain only certain relevant predicates in our verification
application. For the heater specification σH from above for example, we restrict I(σH) in such a
way that not all temperature values from 0 to 60 are considered but only an interval around 45 since
it is very likely that if a student program is not correct, then it will diverge from the specification
on input from this interval.

71

Table 7.1: Results of the program verification.

Semester Component Number of Classified as correct Running-times (sec.)
instances Previous cc> Average Median

approach approach
ws2006 c 50 44 38 0.9 1.0

h 50 39 32 1.0 1.1
s 50 29 22 0.4 0.1
v 50 40 34 5.1 5.6
all 50 42 32 70.2 103.0

ws2007 c 78 67 56 0.8 0.8
h 78 69 59 0.6 0.6
s 78 52 0 1.4 1.5
v 78 48 8 4.5 2.9
all 78 60 39 491.4 894.0

ws2008 c 100 54 40 1.3 2.3
h 100 70 13 0.2 0.2
s 100 59 28 1.4 3.0
v 100 53 25 0.6 1.1
all 100 52 19 132.3 72.5

7.4 Results

As already mentioned, we considered student data from three semesters. All experiments were
carried out on a 3.0 GHz Quad Core Intel Xeon workstation with 33 GB of RAM and SuSE
Linux version 10.3. We used the QBF solver qpro with encoding T[·] as it turned out that all
other solvers mentioned in the previous chapter showed a running-time behaviour several orders
of magnitude worse than qpro’s. Concerning the setting for the intelligent grounder, we achieved
best performance when the option for input rewriting was disabled. The reason is that this optimi-
sation introduces new atoms which seems to be disadvantageous for qpro.

We also compared the outcomes of the equivalence tests with results from a test approach
previously used in the course. In this test, sets of test cases are individually specified for each
component and the whole system, where a test case for a component with specification σ is a
subset of I(σ) that is admissible with respect to σ. Then, we test whether a student’s attempt to
model the component by program P and our reference program Ref (σ) yield the same answer
sets—projected to O(σ)—when joined with such a test case. If this is the case, we say that a P
passes a test case, otherwise P fails the test case. For each component, we specify a set of test
cases that usually comprises 10 to 20 instances. As it turned out, many errors were undetected by
the previous approach, thus it is rather prone to false-positives with respect to the verification task,
i.e., P passes all its test cases, but still P is not correct with respect to σ.

Table 7.1 summarises the results of our experiments. We provide the year of the semester
a course took place, the name of the component we considered, the number of instances of that

72

component, the number of instances classified as correct by the current approach, the number of
instances classified as correct by our reduction approach, the average running times in seconds,
as well as the median running time for solving the QBFs. A program is classified as correct by
the current approach if it passes all its test cases. Components c, h , s , v denote the cooler, heater,
switch, and valve as before, while “all” refers to the overall program consisting of all components,
the encoding of the connections between them, and additional constraints required for diagnosing.

The ground programs for the component tests contain up to 985 rules. The number of atoms
in the resulting QBFs ranges from 229 to 623. For the overall tests, programs contain up to 4818
rules, and the QBFs contain 949 to 3143 atoms. Table 7.1 shows that running times for the solved
QBFs keep in reasonable bounds.

Note that whenever a program is classified as not correct by the current approach, then it is
classified as not correct by the cc> approach as well. Hence, the difference between the numbers
of programs classified as correct by the two approaches is the number of false positives for the
current approach. Coming as no surprise, the cc> approach reveals significantly more incorrect
solutions than the current approach. The reason that the number of correct overall programs is not
smaller than the minimum number of its correct components is mainly due to different restrictions
on what admissible input means. The two significantly small numbers of correct solutions for the
switch and the valve component in the ‘ws2007’ test set is because of subtle differences between
the reference and the student solutions in case some input values are missing which is informative
for diagnosing. If this is considered to be too strict, one could simply exclude such cases by
changing the admissibility constraints accordingly.

73

CHAPTER 8
Related Work

A related refined equivalence notion in the context of answer-set programming is visible equiva-
lence between disjunctive logic programs, introduced by Janhunen and Oikarinen [41]. Visible
equivalence is a form of ordinary equivalence with projection on what Janhunen and Oikari-
nen [41] call visible atoms. A major difference to the projection used in this paper is that, for
visible equivalence, there has to be a bijection between the visible parts of the programs’ answer
sets. An equivalence problem of this form can be decided by a reduction to a logic program such
that the latter has no answer sets iff the equivalence problem holds.

The system dlpeq [64] is capable of comparing disjunctive logic programs under ordinary
equivalence. Similar to cc>, dlpeq is based on a translational approach. However, dlpeq re-
duces problems of ordinary equivalence to logic programs which is feasible since deciding prob-
lems of ordinary equivalence lies on the second level of the polynomial hierarchy [29]. Here, the
reduction of a correspondence problem results in further logic programs such that the latter have
no answer sets iff the encoded problem holds. In particular, dlpeq uses GnT [38] as answer-set
solver. If the problem does not hold, the answer sets correspond to counterexamples. Hence, this
system uses answer-set solvers themselves in order to check for equivalence.

We also mention the system selp [13] which checks strong equivalence by means of a reduc-
tion approach, very much in the spirit of our QBF approach. In particular, the problem of checking
strong equivalence between disjunctive logic programs is reduced to propositional logic (recall that
deciding strong equivalence is coNP-complete). Hence, the system makes use of SAT solvers as
back-end inference engines instead of QBF solvers. Our system generalises selp in the sense
that cc> handles a correspondence problem which coincides with a test for strong equivalence by
the same reduction as used in SELP [55].

The methodologies of both of the above systems have in common that their range of appli-
cability is restricted to very special forms of program correspondences, while cc> provides a
wide range of more fine-grained equivalence notions that allow practical comparisons useful for
program verification, optimisation, debugging, and modular programming. The correspondence
problems addressed by dlpeq and selp can be specified with cc> as special cases. For the
special case of ordinary equivalence, we compared cc> against the system dlpeq in previous

75

work [55]. There, the used benchmarks rely on randomly generated (2,∃)-QBFs. Each QBF is
reduced to a program such that the latter possesses an answer set iff the original QBF is valid.
The idea is to compare the program with itself having a randomly selected rule dropped, thus sim-
ulating a “sloppy” programmer. For details on the considered benchmark set, cf. Oikarinen and
Janhunen [64]. The dlpeq approach turns out to be faster than the reduction approach to QBFs.
Interestingly, among the tested QBF solvers, qpro showed to be the most competitive one while
the PCNF-QBF solvers perform comparably bad even for small instances.

A further related equivalence notion is update equivalence [37]. For this notion, equivalence
problems are defined in terms of two sets Q and R of programs: Q defines the sets of rules that
might be deleted from the programs under consideration, andQ defines the set of rules that might
be added to the programs. Hence, two programs P1 and P2 are update equivalent iff, for any
Q ⊆ Q and any R ⊆ R, (P1 \ R) ∪Q and (P2 \ R) ∪Q have the same answer sets. This notion
captures also the notion of relativised uniform equivalence and thus uniform equivalence but does
not incorporate projection.

Woltran [88] considered parameterised correspondence problems that allow to express rel-
ativised versions of both strong and uniform equivalence. In particular, this notion of equiv-
alence, called hyperequivalence, relativises strong equivalence by two parameters: a head al-
phabet H and a body alphabet B. Two programs P and Q are equivalent under this notion iff
AS (P ∪ R) = AS (Q ∪ R), for each program R consisting of rules whose heads contain only
atoms from H and whose bodies contain only atoms from B. It was shown that uniform and rel-
ativised uniform equivalence is indeed a special case of hyperequivalence, namely if B = ∅ [88].
However, projection on the answer sets was not considered which limits the relevance of hyper-
equivalence in practice. Truszczynski [82] investigated a generalisation of strong and uniform
equivalence based on operators on complete lattices. As well, Pührer, Tompits, and Woltran [73]
discuss necessary and sufficient conditions under which the elimination of disjunction, negation,
or both, in programs is possible, preserving hyperequivalence.

Our work focuses on propositional programs only. Nevertheless, an important issue is the
more general non-ground setting where programs are defined over a first-order language and are
thus allowed to use variables ranging over a, in general, infinite domain. However, thereby we
have to face undecidability which holds already for unrelativised uniform equivalence [27]. Note,
however, that results for the propositional case are relevant for the non-ground case as well: When-
ever the underlying domain can be finitely fixed—a reasonable assumption for many practical
applications—non-ground programs can be considered as concise representation for their propo-
sitional counterparts that are obtained by grounding them over the finite domain. Recall that we
illustrated an application of cc> involving non-ground programs in Chapter 7.

The more general case involving also infinite domains was considered by Oetsch and Tom-
pits [61]. There, correspondence problems generalising PQIPs and PQEPs to the first-oder level
are translated to formulas of second-order logic. It is also shown that referring to second-order
logic is inescapable due to recursion-theoretic reasons. In this context, we also mention the work
by Fink [32] who extended the notion of uniform equivalence to non-ground theories. There, char-
acterisations using a first-order version of the logic of here-and-there were introduced. Note that
strong equivalence between non-ground programs can be decided by a dedicated system that is
based on a reduction to a decidable fragment of first-order logic [24].

76

Our approach to decide correspondence problems relies on efficient reductions to QBFs and
to subsequently employ efficient QBF solvers to compute solutions. Similar reductions to the
language of quantified propositional logic have been considered in the context of many prob-
lems whose complexity is beyond NP. Such problems in particular come from the realm of
nonmonotonic reasoning, including default reasoning, disjunctive logic programs, autoepistemic
logic, and propositional circumscription [18]. Furthermore, QBF reductions have been consid-
ered for argumentation [7], equilibrium logic and programs with nested expressions [69], belief
revision [14, 15], paraconsistent reasoning [1, 2, 8], and planning [76, 77].

Regarding Chapter 7 on testing and verifying logic programs, we mention that structure-based
testing and different notions of test-input coverage were considered for propositional programs
in related work [39]. These testing methods were evaluated in a subsequent paper for testing
non-ground programs [40]. To this end, the considered non-ground programs were grounded over
some finite domain, similar to the verification approach outlined in this thesis.

77

CHAPTER 9
Conclusion and Future Work

In this thesis, we studied refined versions of uniform equivalence, called PQEPs, for disjunctive
logic programs under the answer-set semantics. We also considered corresponding implication
problems, which we call PQIPs, in which projective set inclusion is taken as basic comparison
relation instead of projective set equality. Such correspondence problems allow to restrict the
alphabet of the context class and facilitate the removal of auxiliary atoms in the comparison of
programs—two important concepts for program comparisons in practice.

In particular, we provided novel model-theoretic characterisations in terms of wedges which,
at the same time, yield new characterisation for (relativised) uniform equivalence (vis-a-vis UE-
models). We also analysed the computational complexity of correspondence checking, revealing
that deciding PQEPs and PQIPs is hard, viz. laying on the third level of the polynomial hierarchy.
Finally, we described efficient reductions of PQIPs and PQEPs to QBFs and simplifications for
certain special cases of correspondence problems. These reduction serve as basis for an extension
of the system cc> for deciding PQIPs and PQEPs and have been incorporated into the system ac-
cordingly. This reduction approach to QBFs is motivated, on the one hand, by the high complexity
of the correspondence problems at hand. On the other hand, we can use efficient QBF solvers
as back-end engines for computing QBFs. We presented the architecture and system specifics of
cc> for deciding PQEPs and PQIPs. In fact, the implemented translations include optimised ver-
sions in the sense that adequacy with respect to the structure of a resulting QBF and the intrinsic
complexity of a correspondence problem is retained also for (relativised) uniform equivalence.

We complemented our more theoretical discussions with an analysis of experiments with dif-
ferent QBF solvers which reveal interesting differences of the solvers depending on the particular
problem parameterisation and the choice of the encoding. This analysis shows that discriminating
among different back-end solvers for quantified propositional logic is a crucial issue towards op-
timal performance. Moreover, our encodings also provide a challenging benchmark set for QBF
solvers for which there are only a few structured problems with more than one quantifier alter-
nation available. We also showed how cc> can be used in a concrete application scenario that
is concerned with the verification of programs. Although cc> processes propositional programs
only, it can still be employed for program comparisons of non-ground programs by finitely fixing

79

a domain of interest.
There remain many issues for future work. For instance, we used PQEPs to verify programs

that realise diagnostic reasoning in Chapter 7. For model-based diagnosis, however, native con-
cepts of equivalence, directly defined in terms of a diagnosis problem, would be useful.

In case programs are not equivalent, a counterexample that gives information why the pro-
grams are not equivalent is often of great value. Although cc> can be used to generate QBFs such
that assignments for the open variables correspond to such counterexamples, few QBF solvers can
directly compute such assignments. A different option to handle this issue in future work would be
to make use of certificates for QBFs, where a certificate can be seen as a compact representation of
a model of a QBF [5]. As some QBF solvers are able to produce certificates [6,51], these could be
used for generating counterexamples from respective certificates if an equivalence problem does
not hold.

A further open topic for future work is the extension of our results to more general classes of
programs like, e.g., nested programs or arbitrary theories. Also, to deal with other language ex-
tensions like aggregates or optimisation statements seems to be a worthwhile effort since they are
needed in many problem encodings. Often, non-ground programs are formulated over a language
with an infinite domain. An important topic is to single out at least sufficient conditions when we
can restrict this domain to a finite subdomain such that program equivalence over this subdomain
implies equivalence over the unrestricted domain. Also, we plan to conduct experiments with
more real-world oriented benchmarks, like ones stemming from planning or scheduling domains.

80

Bibliography

[1] Ofer Arieli. Paraconsistent preferential reasoning by signed quantified Boolean formulae. In
Proceedings of the 16th European Conference on Artificial Intelligence (ECAI 2004), pages
773–777. IOS Press, 2004.

[2] Ofer Arieli and Marc Denecker. Reducing preferential paraconsistent reasoning to classical
entailment. Journal of Logic and Computation, 13(4):557–580, 2003.

[3] Chitta Baral. Knowledge Representation, Reasoning, and Declarative Problem Solving.
Cambridge University Press, Cambridge, England, 2003.

[4] Chitta Baral and Michael L. Fredman. Reasoning agents in dynamic domains. In Jack
Minker, editor, Logic-based Artificial Intelligence, pages 257–279. Kluwer Academic Pub-
lishers, 2000.

[5] Marco Benedetti. Extracting certificates from quantified boolean formulas. In Proceedings of
the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pages 47–53.
Morgan Kaufmann Publishers Inc., 2005.

[6] Marco Benedetti. sKizzo: A suite to evaluate and certify QBFs. In Proceedings of the 20th
International Conference on Automated Deduction (CADE 2005), volume 3632 of Lecture
Notes in Computer Science, pages 369–376. Springer, 2005.

[7] Philippe Besnard, Anthony Hunter, and Stefan Woltran. Encoding deductive argumentation
in quantified Boolean formulae. Artificial Intelligence, 173(15):1406–1423, 2009.

[8] Philippe Besnard, Torsten Schaub, Hans Tompits, and Stefan Woltran. Representing para-
consistent reasoning via quantified propositional logic. In Inconsistency Tolerance, volume
3300 of Lecture Notes in Computer Science, pages 84–118. Springer, 2005.

[9] Armin Biere. Resolve and expand. In Proceedings of the 7th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2004), volume 3542 of Lecture Notes
in Computer Science, pages 59–70. Springer, 2005.

[10] Martin Brain, Tom Crick, Marina De Vos, and John Fitch. TOAST: Applying answer set
programming to superoptimisation. In Proceedings of the 22nd International Conference
on Logic Programming (ICLP 2006), volume 4079 of Lecture Notes in Computer Science,
pages 270–284. Springer, 2006.

81

[11] Daniel R. Brooks, Esra Erdem, Selim T. Erdogan, James W. Minett, and Donald Ringe. In-
ferring phylogenetic trees using answer set programming. Journal of Automated Reasoning,
39(4):471–511, 2007.

[12] Francesco Calimeri, Giovambattista Ianni, Francesco Ricca, Mario Alviano, Annamaria
Bria, Gelsomina Catalano, Susanna Cozza, Wolfgang Faber, Onofrio Febbraro, Nicola
Leone, Marco Manna, Alessandra Martello, Claudio Panetta, Simona Perri, Kristian Reale,
Maria Carmela Santoro, Marco Sirianni, Giorgio Terracina, and Pierfrancesco Veltri. The
Third Answer Set Programming Competition: Preliminary report of the system competition
track. In Proceedings of the 11th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR 2011), volume 6645 of Lecture Notes in Computer Science,
pages 388–403. Springer, 2011.

[13] Yin Chen, Fangzhen Lin, and Lei Li. SELP - A system for studying strong equivalence
between logic programs. In Proceedings of the 8th International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR 2005), volume 3552 of Lecture Notes in
Artificial Intelligence, pages 442–446. Springer, 2005.

[14] James P. Delgrande, Torsten Schaub, Hans Tompits, and Stefan Woltran. On computing
belief change operations using quantified Boolean formulas. Journal of Logic and Compu-
tation, 14(6):801–826, 2004.

[15] James P. Delgrande, Torsten Schaub, Hans Tompits, and Stefan Woltran. Belief revision of
logic programs under answer set semantics. Transactions on Computational Logic, to appear.

[16] Marc Denecker, Joost Vennekens, Stephen Bond, Martin Gebser, and Miroslaw Truszczyn-
ski. The Second Answer Set Programming Competition. In Proceedings of the 10th Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2009),
volume 5753 of Lecture Notes in Computer Science, pages 637–654. Springer, 2009.

[17] DLV system. www.dlvsystem.com, last visited: July 20, 2011.

[18] Uwe Egly, Thomas Eiter, Hans Tompits, and Stefan Woltran. Solving advanced reasoning
tasks using quantified Boolean formulas. In Proceedings of the 7th Conference on Artificial
Intelligence (AAAI 2000) and of the 12th Conference on Innovative Applications of Artificial
Intelligence (IAAI 2000), pages 417–422. AAAI Press, 2000.

[19] Uwe Egly, Martina Seidl, Hans Tompits, Stefan Woltran, and Michael Zolda. Comparing
different prenexing strategies for quantified Boolean formulas. In Proceedings of the 6th
International Conference on the Theory and Applications of Satisfiability Testing (SAT 2003).
Selected Revised Papers, volume 2919 of Lecture Notes in Computer Science, pages 214–
228. Springer, 2004.

[20] Uwe Egly, Martina Seidl, and Stefan Woltran. A solver for QBFs in nonprenex form. In
Proceedings of the 17th European Conference on Artificial Intelligence (ECAI 2006), pages
477–481. IOS Press, 2006.

82

[21] Uwe Egly, Martina Seidl, and Stefan Woltran. A solver for QBFs in negation normal form.
Constraints, 14(1):38–79, 2009.

[22] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. The diagnosis frontend of
the DLV system. AI Communications, 12(1-2):99–111, 1999.

[23] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel Polleres. Planning
under incomplete knowledge. In Proceedings of the 1st International Conference on Com-
putational Logic (CL 2000), volume 1861 of Lecture Notes in Computer Science, pages
807–821. Springer, 2000.

[24] Thomas Eiter, Wolfgang Faber, and Patrick Traxler. Testing strong equivalence of Datalog
programs - Implementation and examples. In Proceedings of the 8th International Confer-
ence on Logic Programming and Nonmonotonic Reasoning (LPNMR 2005), volume 3662 of
Lecture Notes in Computer Science, pages 437–441. Springer, 2005.

[25] Thomas Eiter and Michael Fink. Uniform equivalence of logic programs under the stable
model semantics. In Proceedings of the 19th International Conference on Logic Program-
ming (ICLP 2003), volume 2916 of Lecture Notes in Computer Science, pages 224–238.
Springer, 2003.

[26] Thomas Eiter, Michael Fink, Hans Tompits, and Stefan Woltran. Simplifying logic programs
under uniform and strong equivalence. In Proceedings of the 7th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR 2004), volume 2923 of Lecture
Notes in Computer Science, pages 87–99. Springer, 2004.

[27] Thomas Eiter, Michael Fink, Hans Tompits, and Stefan Woltran. Strong and uniform equiv-
alence in answer-set programming: Characterizations and complexity results for the non-
ground case. In Proceedings of the 20th National Conference on Artificial Intelligence (AAAI
2005), pages 695–700. AAAI Press, 2005.

[28] Thomas Eiter, Michael Fink, and Stefan Woltran. Semantical characterizations and complex-
ity of equivalences in answer set programming. ACM Transactions on Computational Logic,
8(3), 2007.

[29] Thomas Eiter and Georg Gottlob. On the computational cost of disjunctive logic program-
ming: Propositional case. Annals of Mathematics and Artificial Intelligence, 15(3/4):289–
323, 1995.

[30] Thomas Eiter, Hans Tompits, and Stefan Woltran. On solution correspondences in answer
set programming. In Proceedings of the 19th International Joint Conference on Artificial
Intelligence (IJCAI 2005), pages 97–102. Professional Book Center, 2005.

[31] Esra Erdem, Vladimir Lifschitz, and Donald Ringe. Temporal phylogenetic networks and
logic programming. Theory and Practice of Logic Programming, 6(5):539–558, 2006.

83

[32] Michael Fink. Equivalences in answer-set programming by countermodels in the logic of
here-and-there. In Proceedings of the 24th International Conference on Logic Programming
(ICLP 2008), volume 5366 of Lecture Notes in Computer Science, pages 99–113. Springer,
2008.

[33] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. Conflict-driven
answer set solving. In Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI 2007), pages 386–392. AAAI Press/MIT Press, 2007.

[34] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunc-
tive databases. New Generation Computing, 9:365–385, 1991.

[35] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. Backjumping for quanti-
fied Boolean logic satisfiability. Artificial Intelligence, 145:99–120, 2003.

[36] S. Grell, T. Schaub, and J. Selbig. Modelling biological networks by action languages via
answer set programming. In Proceedings of the 22nd International Conference on Logic
Programming (ICLP 2006), volume 4079 of Lecture Notes in Computer Science, pages 285–
299. Springer, 2006.

[37] Katsumi Inoue and Chiaki Sakama. Equivalence of logic programs under updates. In Pro-
ceedings of the 9th European Conference on Logics in Artificial Intelligence (JELIA 2004),
volume 3229 of Lecture Notes in Computer Science, pages 174–186. Springer, 2004.

[38] Tomi Janhunen, Ilka Niemelä, Dietmar Seipel, and Patrik Simons. Unfolding partiality and
disjunctions in stable model semantics. ACM Transactions on Computational Logic, 7(1):1–
37, 2006.

[39] Tomi Janhunen, Ilkka Niemelä, Johannes Oetsch, Jörg Pührer, and Hans Tompits. On testing
answer-set programs. In Proceedings of the 19th European Conference on Artificial Intel-
ligence (ECAI 2010), volume 215 of Frontiers in Artificial Intelligence and Applications,
pages 951–956. IOS Press, 2010.

[40] Tomi Janhunen, Ilkka Niemelä, Johannes Oetsch, Jörg Pührer, and Hans Tompits. Random
vs. structure-based testing of answer-set programs: An experimental comparison. In Pro-
ceedings of the 11th International Conference Logic Programming and Nonmonotonic Rea-
soning (LPNMR 2011), volume 6645 of Lecture Notes in Computer Science, pages 242–247.
Springer, 2011.

[41] Tomi Janhunen and Emilia Oikarinen. Automated verification of weak equivalence within
the SMODELS system. Theory and Practice of Logic Programming, 7(4):1–48, 2007.

[42] Volker Klotz. The System QUIP: A Solver for Advanced Reasoning Tasks using Quantified
Boolean Formulas. Master’s thesis, Vienna University of Technology, Vienna, Austria, 2001.

[43] Daniel Le Berre, Massimo Narizzano, Laurent Simon, and ArmandoTacchella. The Second
QBF Solvers Comparative Evaluation. In Proceedings of the 7th International Conference

84

on Theory and Applications of Satisfiability Testing (SAT 2004). Revised Selected Papers,
volume 3542 of Lecture Notes in Computer Science, pages 376–392. Springer, 2005.

[44] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,
and Francesco Scarcello. The DLV system for knowledge representation and reasoning.
ACM Transactions on Computational Logic, 7(3):499–562, 2006.

[45] Reinhold Letz. Lemma and model caching in decision procedures for quantified Boolean
formulas. In Proceedings of the International Conference on Automated Reasoning with
Analytic Tableaux and Related Methods (TABLEAUX 2002), volume 2381 of Lecture Notes
in Computer Science, pages 160–175. Springer, 2002.

[46] Vladimir Lifschitz, David Pearce, and Agustín Valverde. Strongly equivalent logic programs.
ACM Transactions on Computational Logic, 2(4):526–541, 2001.

[47] Vladimir Lifschitz and Hudson Turner. Splitting a logic program. In Proceedings of the 11th
International Conference on Logic Programming (ICLP 1994), pages 23–37. MIT Press,
1994.

[48] Fangzhen Lin. Reducing strong equivalence of logic programs to entailment in classical
propositional logic. In Proceedings of the 8th International Conference on Principles of
Knowledge Representation and Reasoning (KR 2002), pages 170–176. Morgan Kaufmann,
2002.

[49] Fangzhen Lin and Yin Chen. Discovering classes of strongly equivalent logic programs.
Journal of Artificial Intelligence Research, 28:431–451, 2007.

[50] Albert R. Meyer and Larry J. Stockmeyer. Word problems requiring exponential time. In
Proceedings of the 5th Annual ACM Symposium on Theory of Computing, pages 1–9. ACM
Press, 1973.

[51] Massimo Narizzano, Claudia Peschiera, Luca Pulina, and Armando Tacchella. Evaluating
and certifying QBFs: A comparison of state-of-the-art tools. AI Communications, 22(4):191–
210, 2009.

[52] Massimo Narizzano, Luca Pulina, and Armando Tacchella. Report of the Third QBF Solvers
Evaluation. Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):145–164,
2006.

[53] Monica Nogueira, Marcello Balduccini, Michael Gelfond, Richard Watson, and Matthew
Barry. An A-Prolog decision support system for the Space Shuttle. In Answer Set Pro-
gramming: Towards Efficient and Scalable Knowledge Represenation and Reasoning, pages
139–145. AAAI Press, 2001.

[54] Johannes Oetsch, Martina Seidl, Hans Tompits, and Stefan Woltran. ccT: A correspondence-
checking tool for logic programs under the answer-set semantics. In Proceedings of the
10th European Conference on Logics in Artificial Intelligence (JELIA 2006), volume 4160
of Lecture Notes in Computer Science, pages 502–505. Springer, 2006.

85

[55] Johannes Oetsch, Martina Seidl, Hans Tompits, and Stefan Woltran. ccT: A tool for checking
advanced correspondence problems in answer-set programming. In Proceedings of the 15th
International Conference on Computing (CIC 2006), pages 3–10. IEEE Computer Society
Press, 2006.

[56] Johannes Oetsch, Martina Seidl, Hans Tompits, and Stefan Woltran. ccT: A tool for checking
advanced correspondence problems in answer-set programming. In Proceedings of the 1st
International Workshop on Logic and Search (LaSh 2006), 2006.

[57] Johannes Oetsch, Martina Seidl, Hans Tompits, and Stefan Woltran. A tool for advanced cor-
respondence checking in answer-set programming. In Proceedings of the 11th International
Workshop on Nonmonotonic Reasoning (NMR 2006), volume IfI-06-04 of IfI Technical Re-
port Series, pages 20–28. Institut für Informatik, Technische Universität Clausthal, 2006.

[58] Johannes Oetsch, Martina Seidl, Hans Tompits, and Stefan Woltran. A tool for advanced
correspondence checking in answer-set programming: Preliminary experimental results. In
Proceedings of the 20th Workshop on Logic Programming (WLP 2006), volume 1843-06-02
of INFSYS Research Report, pages 200–205. Technische Universität Wien, Austria, 2006.

[59] Johannes Oetsch, Martina Seidl, Hans Tompits, and Stefan Woltran. Testing relativised uni-
form equivalence under answer-set projection in the system ccT. In Proceedings of the 17th
International Conference on Applications of Declarative Programming and Knowledge Man-
agement (INAP 2007) and the 21st Workshop on Logic Programming (WLP 2007), volume
5437 of Lecture Notes in Computer Science, pages 241–246. Springer, 2007.

[60] Johannes Oetsch, Martina Seidl, Hans Tompits, and Stefan Woltran. ccT on stage: Gener-
alised uniform equivalence testing for verifying student assignment solutions. In Proceedings
of the 10th International Conference on Logic Programming and Nonmonotonic Reasoning
(ICLP 2009), volume 5753 of Lecture Notes in Computer Science, pages 382–395. Springer,
2009.

[61] Johannes Oetsch and Hans Tompits. Program correspondence under the answer-set seman-
tics: The non-ground case. In Proceedings of the 24th International Conference on Logic
Programming (ICLP 2008), volume 5366 of Lecture Notes in Computer Science, pages 591–
605. Springer, 2008.

[62] Johannes Oetsch, Hans Tompits, and Stefan Woltran. Facts do not cease to exist because they
are ignored: Relativised uniform equivalence with answer-set projection. In Proceedings
of the Workshop on Correspondence and Equivalence for Nonmonotonic Theories (CENT
2007), pages 25–36, 2007.

[63] Johannes Oetsch, Hans Tompits, and Stefan Woltran. Facts do not cease to exist because they
are ignored: Relativised uniform equivalence with answer-set projection. In Proceedings of
the 22nd National Conference on Artificial Intelligence (AAAI 2007), pages 458–464. AAAI
Press, 2007.

86

[64] Emilia Oikarinen and Tomi Janhunen. Verifying the equivalence of logic programs in the
disjunctive case. In Proceedings of the 7th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR 2004), volume 2923 of Lecture Notes in Computer
Science, pages 180–193. Springer, 2004.

[65] Emilia Oikarinen and Tomi Janhunen. Modular equivalence for normal logic programs. In
Proceedings of the 17th European Conference on Artificial Intelligence (ECAI 2006), pages
412–416. IOS Press, 2006.

[66] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[67] David Pearce. Simplifying logic programs under answer set semantics. In Proceedings of the
20th International Conference on Logic Programming (ICLP 2004), volume 3132 of Lecture
Notes in Computer Science, pages 210–224. Springer, 2004.

[68] David Pearce, Hans Tompits, and Stefan Woltran. Encodings for equilibrium logic and logic
programs with nested expressions. In Proceedings of the 10th Portuguese Conference on
Artificial Intelligence on Progress in Artificial Intelligence, Knowledge Extraction, Multi-
agent Systems, Logic Programming and Constraint Solving (EPIA 2001), volume 2258 of
Lecture Notes in Computer Science, pages 306–320. Springer, 2001.

[69] David Pearce, Hans Tompits, and Stefan Woltran. Characterising equilibrium logic and
nested logic programs: Reductions and complexity. Theory and Practice of Logic Program-
ming, 9(5):565–616, 2009.

[70] David A. Plaisted and Steven Greenbaum. A structure preserving clause form translation.
Journal of Symbolic Computation, 2(3):293–304, 1986.

[71] Axel Polleres. Semantic web languages and semantic web services as application areas
for answer set programming. In Nonmonotonic Reasoning, Answer Set Programming and
Constraints, number 05171 in Dagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2005.

[72] Potassco: The Potsdam Answer Set Solving Collection Homepage. http://potassco.
sourceforge.net, last visited: July 18, 2011.

[73] Jörg Pührer, Hans Tompits, and Stefan Woltran. Elimination of disjunction and negation
in answer-set programs under hyperequivalence. In Proceedings of the 24th International
Conference on Logic Programming (ICLP 2008), volume 5366 of Lecture Notes in Computer
Science, pages 561–575. Springer, 2008.

[74] QBFLIB Homepage. www.qbflib.or, last visited: July 27, 2011.

[75] Raymond Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1):57–
95, 1987.

[76] Jussi Rintanen. Constructing conditional plans by a theorem prover. Journal of Artificial
Intelligence Research, 10:323–352, 1999.

87

[77] Jussi Rintanen. Asymptotically optimal encodings of conformant planning in QBF. In Pro-
ceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI 2007), pages 1015–
1050. AAAI Press, 2007.

[78] Yehoshua Sagiv. Optimizing Datalog programs. In Jack Minker, editor, Foundations of
Deductive Databases and Logic Programming, pages 659–698. Morgan Kaufmann, 1988.

[79] Timo Soininen and Ilkka Niemelä. Developing a declarative rule language for applications
in product configuration. In Proceedings of the 1st International Workshop on Practical
Aspects of Declarative Languages (PADL 1999), volume 1551 of Lecture Notes in Computer
Science, pages 305–319. Springer, 1999.

[80] Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1–
22, 1976.

[81] Hans Tompits and Stefan Woltran. Towards implementations for advanced equivalence
checking in answer-set programming. In Proceedings of the 21st International Conference
on Logic Programming (ICLP 2005), volume 3668 of Lecture Notes in Computer Science,
pages 189–203. Springer, 2005.

[82] Miroslaw Truszczynski. Strong and uniform equivalence of nonmonotonic theories - An
algebraic approach. In Proceedings of the 10th International Conference on Principles of
Knowledge Representation and Reasoning (KR 2006), pages 389–399. AAAI Press, 2006.

[83] Grighori S. Tseitin. On the complexity of derivation in propositional calculus. In Studies
in Constructive Mathematics and Mathematical Logic, Part II, pages 234–259. Seminars in
Mathematics, V.A. Steklov Mathematical Institute, vol. 8, 1968. English translation: Con-
sultants Bureau, New York, 1970, pp. 115–125.

[84] Alan Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, 2(42):230–265, 1936.

[85] Hudson Turner. Strong equivalence made easy: Nested expressions and weight constraints.
Theory and Practice of Logic Programming, 3(4-5):602–622, 2003.

[86] Stefan Woltran. Quantified Boolean Formulas—From Theory to Practice. Dissertation, Vi-
enna University of Technology, Vienna, Austria, 2003.

[87] Stefan Woltran. Characterizations for relativized notions of equivalence in answer set pro-
gramming. In Proceedings of the 9th European Conference on Logics in Artificial Intelli-
gence (JELIA 2004), volume 3229 of Lecture Notes in Computer Science, pages 161–173.
Springer, 2004.

[88] Stefan Woltran. A common view on strong, uniform, and other notions of equivalence in
answer-set programming. Theory and Practice of Logic Programming, 8(2):217–234, 2008.

[89] Michael Zolda. Comparing different prenexing strategies for quantified boolean formulas,
2004. Master’s Thesis, Vienna University of Technology.

88

